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Preface

Surface-specific nonlinear spectroscopy, such as second harmonic generation (SHG)
or sum frequency generation (SFG), has been growing to be a popular tool of
interface characterization. These techniques have microscopic sensitivity to the
interfaces at a monolayer scale and are applicable to a variety of interfaces as long
as the interfaces are accessible by optical probe lights and signal. These techniques
are particularly useful to wet and/or soft interfaces, or even buried interfaces, which
are hard to be probed by most conventional surface science techniques. Therefore,
these techniques have large potential to expand our applicability of interface
characterization in wide areas of science and engineering, such as electrochemistry,
polymer science, colloid chemistry, heterogeneous atmospheric chemistry, etc. The
last decade witnessed great advances in technical aspects, and the surface nonlinear
spectroscopy is presently not just for limited experts of spectroscopy but available to
wide researchers who want to use these techniques in their fields using commercial
apparatus.

Currently I think that a major bottleneck to achieve further advancement in the
nonlinear spectroscopy lies in their difficulties to interpret the observed spectra.
Typical conventional analysis tries to interpret a spectrum by decomposing it into
some bands and by assigning these bands to various species at the interface.
However, such empirical analysis has apparently of limited utility, and spectral
decomposition is often quite ambiguous. To overcome such difficulties, therefore,
reliable support of theoretical analysis is strongly desirable in the field of surface
nonlinear spectroscopy. Recent advances in theory have made us possible to directly
“calculate” the spectra using molecular modeling and molecular dynamics (MD)
simulation, which allows for simultaneous understanding of the observed spectra
and interface structure in unprecedented details. I believe that close collaboration of
spectroscopic measurement and MD simulation will be a main avenue in the further
nonlinear spectroscopy of interfaces.

The present book aims at explaining the basic principles of theory and compu-
tation of surface nonlinear spectroscopy, mainly developed by the author’s group.
This book was originally intended to newcomers in our laboratory and in summer
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schools to have them familiarize with fundamental understanding of nonlinear spec-
troscopy and computation of it. However, the present book has been significantly
expanded for wide readers who are interested in theoretical aspects of surface
nonlinear spectroscopy. The topics covered by this book include the traditional
(electromagnetic) theory of surface nonlinear spectroscopy, quantum description
and modeling of nonlinear susceptibility, method of molecular modeling, and
computational scheme of SFG spectroscopy by MD simulation. The topics also
include recent efforts to deepen our understanding of the nonlinear susceptibility,
including quadrupole contribution, χ(3) effect, and chiral application. A few late
chapters are devoted to describe recent applications of the MD analysis of SFG
spectra for aqueous and organic interfaces. These examples demonstrate that the
combination of SFG spectroscopy and MD simulation is in fact quite powerful to
obtain clear insights into the interfaces. This book provides some problems and
solutions to help the reader to fully understand the theoretical aspects. The problems
mostly treat derivations of key formulas involved in the theory. I have shown detailed
solutions to these problems in the end of each chapter, which I think are an integral
part of this book.

I would like to acknowledge my current and former group members who helped
with improving the manuscript. In particular, Prof. Tatsuya Ishiyama extended the
applications of SFG analysis to various aqueous and organic interfaces. Dr. Kazuya
Shiratori made a key contribution to develop the theory of quadrupole in Chap. 7.
Drs. Lin Wang and Vladimir Sokolov developed the molecular modeling of various
organic species. Dr. Tatsuya Joutsuka performed the theoretical analysis of χ(3)

effect in Chap. 8. I also thank former students of my laboratory who carried out the
MD simulation of SFG spectroscopy, including Takako Imamura, Yuji Sato, Tatsuya
Kawaguchi, Yusuke Takei, Yuri Mizukoshi, Hiromi Sawai, Takashi Ishihara, Shogo
Tanaka, Kengo Saito, Tomonori Hirano, and Wataru Mori. Mr. Yamato Sato read this
manuscript and provided useful feedbacks from a viewpoint of student. The com-
putational studies of SFG spectroscopy inevitably become collaborative works with
my colleagues including experimentalists. I am grateful to my collaborators, such as
Drs. Tahei Tahara, Shoichi Yamaguchi, Satoshi Nihonyanagi, Takayuki Miyamae,
Yukio Ouchi, Takaaki Ishibashi, Toshiki Sugimoto, Yoshiyasu Matsumoto, Mischa
Bonn, Francesco Paesani, Heather Allen, Franz Geiger, Michiel Sprik, Kenichi
Inoue, and Shen Ye. I also thank Dr. Toshiki Sugimoto for permitting me to use
original figures of ice and Mr. Ko Hosokawa and Ms. Miyuki Tonosaki for helping
with typesetting. I greatly appreciate the comments of Profs. Tony Heinz and Ron
Shen for clarifying the discussion in Chap. 2. I am also grateful to Prof. Casey
Hynes for getting me interested in this field in relation to heterogeneous atmospheric
chemistry and his continued encouragement.

Sendai, Japan Akihiro Morita
April 2018
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Chapter 1
Introduction

Abstract A brief introduction of the sum frequency generation (SFG) spec-
troscopy, the main theme of this book, is provided. An overview of second-order
nonlinear optical processes, including SFG and second-harmonic generation (SHG),
is presented with emphasizing their spatial and temporal characteristics and sym-
metries. Fundamental features of visible-infrared SFG vibrational spectroscopy as
a tool of interface characterization are summarized in comparison with infrared
and Raman vibrational spectroscopies. Some examples of visible-infrared SFG
vibrational spectra are also illustrated to show typical spectroscopic information
drawn from the SFG spectroscopy.

Keywords SFG · SHG · Surface sensitivity · Vibrational spectroscopy

This chapter gives a brief introduction of the sum frequency generation (SFG)
spectroscopy, the main theme of this book, including the concept of second-order
nonlinear optical process, visible-infrared SFG spectroscopy, and some typical
experimental examples. The SFG spectroscopy has been reviewed in previous
literature from various aspects [4, 10, 18–21]. The present book deals with the theory
and computation of SFG spectroscopy, though the collaboration with experiments
will be a vital part of this book. The fundamental theory of SFG is common
to second harmonic generation (SHG). The two spectroscopies are based on the
second-order nonlinear optical processes where two photons with frequencies ω1
and ω2 generates a light with the sum frequency � = ω1 + ω2. SHG is considered
as a special case of ω1 = ω2. The following theory mostly deals with SFG, while
the general discussion also holds for SHG.

1.1 Sum Frequency Generation

A material system under external electric field E induces dipole moment, or
polarization, in general. The polarization P is defined as the dipole moment per
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2 1 Introduction

a unit volume of a bulk material. The definition of P depends on the system in
question. When the system indicates a surface, P is defined as the dipole moment
per a unit area. For a single molecule, P denotes the dipole moment of the molecule.
In any case, the induced polarization P is represented as a power series of the
electric field [3, 14, 17],

Pp =
∑

q

χ(1)
pq Eq +

∑

q,r

χ(2)
pqrEqEr +

∑

q,r,s

χ(3)
pqrsEqErEs +· · · (p, q, r, s = x ∼ z)

(1.1)
where the suffixes p, q, r , s denote the Cartesian components x ∼ z. Note that
P and E are vector quantities with one spatial suffix. The first term describes the
linear response of polarization with respect to the field, where χ (1) is a second-
rank tensor called linear susceptibility. (When the system is a molecule, it is
called polarizability.) The higher-order terms, describing nonlinear response of
the polarization, become substantial when the electric field is sufficiently intense.
The second term involving χ (2) is responsible to the second-order nonlinear
optical processes, such as SHG or SFG. χ (2) is a third-rank tensor called second-
order nonlinear susceptibility, or hyperpolarizability for a molecule. The following
discussion will mainly focus on this second term including χ (2) in relation to the
surface nonlinear spectroscopy.

[Problem 1.1] If we suppose that material properties such as χ (2) are invariant by
inversion, show χ (2) = 0. This indicates that the second-order optical processes in
Eq. (1.1) are forbidden for a centrosymmetric material.

Next we consider time-dependent electric field E(t), and accordingly generalize
Eq. (1.1) to treat time-dependent polarization P (t). The second-order term in
Eq. (1.1) is generalized to the time-dependent form P

(2)
p (t) as follows,

P (2)
p =

x∼z∑

q,r

χ(2)
pqrEqEr

−→ P (2)
p (t) =

∫ t

−∞
dt ′
∫ t

−∞
dt ′′

x∼z∑

q,r

χ(2)
pqr (t, t

′, t ′′)Eq(t ′)Er(t
′′), (1.2)

where the modified form allows for non-local response in the time domain. The
range of integral is restricted to t ′ ≤ t and t ′′ ≤ t t by the causality, since the
electric fields at t ′ and t ′′ can influence on the polarization at a later time t . The
time-dependent fields and polarization can be described with the Fourier series,

Pp(t) =
∑

k

Pp(ωk) exp(−iωkt), Eq(t) =
∑

k

Eq(ωk) exp(−iωkt) (1.3)
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where P (ωk) and E(ωk) denote the amplitudes of frequency ωk . The Fourier form
of Eq. (1.3) is convenient to deal with oscillating electric fields of light in the
following. Note that P (t) and E(t) are real quantities. Accordingly, the summation
with k in Eq. (1.3) must include a pair of the ωk term and its complex conjugate ω−k

(i.e. ω−k = −ωk and P (ω−k) = P (ωk)
∗) except for the static component ω = 0.

By inserting Eq. (1.3) into (1.2), the second-order polarization coefficient P (2) of
sum frequency � is expressed as follows,

P (2)
p (� = ω1 + ω2) =

x∼z∑

q,r

χ(2)
pqr (�, ω1, ω2)Eq(ω1)Er(ω2). (1.4)

[Problem 1.2] Derive Eq. (1.4) from Eqs. (1.2) and (1.3).
During the derivation, make use of the fact that the coefficient χ (2)(t, t ′, t ′′) in

Eq. (1.2) does not depend on the origin of time, i.e. χ (2)(t, t ′, t ′′) = χ (2)(t +�, t ′ +
�, t ′′ + �) with an arbitrary time shift by �. (In other words, χ (2)(t, t ′, t ′′) is a
function of the time intervals, τ ′ ≡ t − t ′ and τ ′′ ≡ t − t ′′.)

Explain that only the component of sum frequency, � = ω1 + ω2, appears in
the left-hand side of Eq. (1.4), when the right-hand side is composed of E(ω1) and
E(ω2).

Equation (1.4) means that two oscillating electric fields with ω1 and ω2 generate
the oscillating polarization with the sum frequency � = ω1 + ω2. χ (2)(�, ω1, ω2)

is the second-order nonlinear susceptibility which depends on the frequencies �,
ω1 and ω2. This property, including its frequency dependence, is characteristic
of materials. The oscillating polarization P (2)(�) emits the electromagnetic wave
of the frequency �, according to the theory of electrodynamics [8]. The SFG
spectroscopy detects this electromagnetic light as the signal.

The above mechanism of SFG emission is valid for the case of χ (2) 	= 0. This
condition means that the material should not have the inversion symmetry to be
SFG active. Most bulk materials of gas or liquid are isotropic and thus invariant
to inversion, indicating that these materials generate no SFG signal. Bulk crystals
having the inversion symmetry are not SFG active either for the same reason.
However, if two isotropic bulk phases form an interface, the inversion symmetry
necessarily breaks down in the vicinity of the interface, which generally results in
χ (2) 	= 0. For such a system involving the interface, the SFG signal selectively stems
from the interface. The interface sensitivity of the SFG spectroscopy is attributed to
the symmetry reason that interfaces generally lose the inversion symmetry.

Another important feature of the SFG spectroscopy is its coherent nature, since
the oscillating polarization with � is a consequence of coherent superposition of
two electric fields oscillating with ω1 and ω2. The coherent nature is manifested
in the directionality of the emitted SFG signal. When two monochromatic laser
lights with frequencies ω1 and ω2 are incident to the interface system, the SFG
signal is observed to a certain direction (see Fig. 2.1). The strong directionality of
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the SFG emission is convenient to experimental detection of its weak signal. This is
a consequence of interference among oscillating polarizations in spatially different
regions, which is analogous to the Bragg’s law of diffraction [11].

The coherent nature also implicates that the SFG signals emitted from different
oscillators (vibrating atomic groups) can interfere each other, which may complicate
the assignment of experimental SFG spectra. In the case that an observed SFG
spectrum originates from different oscillators in the same frequency region, the
interference of the overlapping source signals may enhance or suppress the intensity
of the SFG signal owing to the phase relation. Therefore, the observed SFG intensity
is not amenable to straightforward decomposition into the source oscillators. (In
other words, weak SFG signal does not necessarily mean that there is no or weak
SFG source. The weak intensity could be a consequence of cancelling interference.)
The interpretation of the SFG spectroscopy has to take account of the interference
effects, as discussed later.

1.2 Visible-Infrared SFG Vibrational Spectroscopy

The most common application of SFG to surface nonlinear spectroscopy employs
the combination of incident visible and infrared lights, and presents the SFG signal
as a function of infrared frequency ω2 with the visible frequency ω1 fixed. Such
measurement is considered as a vibrational spectroscopy of the interface. Some
features of the vibrational SFG spectroscopy are briefly summarized below.

1. It is possible to observe molecular species at the interface selectively, even though
overwhelming amount of the same species exists in the isotropic bulk region. The
sensitivity of detection is fairly high, and a submonolayer amount of the surface
species can be easily detected.

2. The vibrational spectra provide highly specific information to the molecular
species at the interface. The frequency shift also offers useful information on
local environment of the interface. Molecular orientation at the interface can
be measured, by choosing proper combinations of light polarizations of visible,
infrared and SFG.

3. Since the interface selectivity is entirely attributed to the symmetry reasons, no
vacuum condition is necessary in principle. The optical measurement is suitable
to in-situ detection of a variety of interfaces. This technique is also applicable to
buried interfaces, such as liquid-liquid or liquid-solid, as long as the interfaces
are accessible by light.

4. This technique is suitable to study ultrafast dynamics at the interfaces, by making
use of high temporal resolution of pulse lasers.
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Fig. 1.1 (Left panel) SFG spectrum of water surface in SSP configuration [16]. (Right panel)
Infrared absorption spectrum of water [2]. (Reprinted with permission from Ref. [16]. Copyright
2003 American Chemical Society.)

These features render the SFG spectroscopy a versatile tool of surface character-
ization, particularly to wet or soft interfaces [12]. Microscopic measurement of
wet interfaces has been limited due to scarcity of available experimental means,
compared to that of solid surfaces. The SFG spectroscopy is considered as a unique,
powerful technique to explore the wet or soft interfaces.

To exemplify the SFG spectroscopy, two typical visible-infrared SFG spectra are
illustrated, water and alkyl chains. Left panel of Fig. 1.1 displays the SFG spectrum
of liquid-vapor interface of water in the O-H stretching frequency region, 2900 ∼
3900 cm−1. In the right panel, the conventional infrared (IR) absorption spectrum of
bulk water is shown for comparison. Comparing the two spectra of O-H stretching
vibrations in Fig. 1.1, qualitative difference in spectral structure is apparent. These
spectra essentially reflect the differences in structure of surface and bulk water. The
SFG spectrum is composed of a sharp band at about 3700 cm−1 and a broad, red-
shifted band at 3000 ∼ 3600 cm−1. The former band of SFG finds no apparent
counterpart in the IR spectrum, and is attributed to the O-H moieties at the topmost
surface layer which are free from hydrogen bonds, called free O-H or dangling
O-H. The latter, broad band is assigned to hydrogen-bonding O-H moieties in a
few monolayer regions at the surface. The clear difference of SFG and IR spectra
in Fig. 1.1 demonstrates the surface sensitivity of the SFG spectroscopy to detect
structural features characteristic of surface water.

[Problem 1.3] Answer two frequencies of O-H stretching vibration of an isolated
water molecule (symmetric and anti-symmetric stretching). Where are these fre-
quencies located in the spectra of Fig. 1.1?

Another example of SFG and IR is given in Fig. 1.2, C-H stretching vibrational
spectra of self-assembled monolayer of alkane thiol on gold substrate. Panel (a)
is the observed SFG spectrum which involves the strong background from gold
substrate, and panel (b) is the calibrated SFG spectrum of C-H stretching with
the gold background eliminated. Comparing these panels (a) or (b) with the
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Fig. 1.2 Vibrational spectra
of self-assembled monolayer
of docosane thiol on gold
substrate. (a) SFG spectrum,
(b) SFG spectrum of C-H
vibration after calibrating the
background of gold, (c) IR
absorption spectrum [4].
(Reprinted with permission
from Ref. [4]. Copyright
2001, American Institute of
Physics.)
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conventional IR absorption spectrum in panel (c), one may notice a remarkable
feature that the location of vibrational bands of SFG does not correspond to that
of IR, implying that the two spectroscopies detect different vibrational bands. The
IR spectroscopy is dominated by methylene groups since the number of methylene
groups is much larger than that of methyl in the alkane thiol monolayer, whereas the
SFG spectroscopy selectively observes the outermost methyl groups. It is known
that the SFG yields little signal of methylene for a well-ordered all-trans monolayer,
though the vibrational bands of methylene emerges for a disordered monolayer with
gauche defects [1, 18]. This sensitive change in the spectra provides a useful clue
to characterize the order of self-assembled monolayers. The orientational angle
of alkyl chains is also widely analyzed by the SFG measurements with different
combinations of light polarizations [6, 7, 22, 23].
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1.3 Solutions to Problems

1.3.1 Inversion Symmetry of χ(2)

[Problem 1.1] If we suppose that material properties such as χ (2) are invariant by
inversion, show χ (2) = 0. This indicates that the second-order optical processes in
Eq. (1.1) are forbidden for a centrosymmetric material.

We impose electric field on the material and consider the induced polarization.
The second term in Eq. (1.1) is denoted by P

(2)
p ,

P (2)
p =

∑

q,r

χ(2)
pqrEqEr, (1.5)

which is the source of the second-order optical process. If we operate inversion
upon the coordinate system, vector quantities such as P

(2)
p , Eq or Er change their

signs. However, material properties such as χ (2) are assumed to be invariant by the
inversion. Therefore, the inversion operation transforms Eq. (1.5) to

− P (2)
p =

∑

q,r

χ(2)
pqr

(−Eq

)
(−Er) . (1.6)

Both Eqs. (1.5) and (1.6) should hold simultaneously, which necessarily leads to
χ (2) = 0. This means that P (2) = 0 in Eq. (1.5) for a centrosymmetric material.

1.3.2 Time and Frequency Domains

[Problem 1.2] Derive Eq. (1.4) from Eqs. (1.2) and (1.3).
During the derivation, make use of the fact that the coefficient χ (2)(t, t ′, t ′′) in

Eq. (1.2) does not depend on the origin of time, i.e. χ (2)(t, t ′, t ′′) = χ (2)(t +�, t ′ +
�, t ′′ + �) with an arbitrary time shift by �. (In other words, χ (2)(t, t ′, t ′′) is a
function of the time intervals, τ ′ ≡ t − t ′ and τ ′′ ≡ t − t ′′.)

Explain that only the component of sum frequency, � = ω1 + ω2, appears in
the left-hand side of Eq. (1.4), when the right-hand side is composed of E(ω1) and
E(ω2).

The time-dependent polarization of Eq. (1.2) is represented using the Fourier
series of the electric fields as
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P (2)
p (t) =

∫ t

−∞
dt ′
∫ t

−∞
dt ′′

x−z∑

q,r

χ(2)
pqr (t, t

′, t ′′)Eq(t ′)Er(t
′′) (1.2)

=
∑

k

∑

l

∫ t

−∞
dt ′
∫ t

−∞
dt ′′

x−z∑

q,r

χ(2)
pqr (t, t

′, t ′′)Eq(ωk)Er(ωl)

exp(−iωkt
′) exp(−iωlt

′′).

We note that χ (2)(t, t ′, t ′′) is invariant with respect to the origin of time, and thus it
is a function of time intervals, τ ′ ≡ t −t ′ and τ ′′ ≡ t −t ′′. Accordingly, the variables
of integration are transformed from (t ′, t ′′) to (τ ′, τ ′′), which leads to

P (2)
p (t) =

∑

k

∑

l

∫ ∞

0
dτ ′

∫ ∞

0
dτ ′′

x−z∑

q,r

χ(2)
pqr (t, t − τ ′, t − τ ′′)Eq(ωk)Er(ωl) exp(−iωk(t − τ ′)) exp(−iωl(t − τ ′′))

=
∑

k

∑

l

x−z∑

q,r

{∫ ∞

0
dτ ′

∫ ∞

0
dτ ′′χ(2)

pqr (t, t − τ ′, t − τ ′′) exp(iωkτ
′) exp(iωlτ

′′)
}

· Eq(ωk)Er(ωl) exp(−i(ωk + ωl)t). (1.7)

In Eq. (1.7) we notice that the quantity in the curly parentheses is independent of t ,
but depends on ωk and ωl . The quantity in the curly parentheses is denoted by
χ (2)(ωk + ωl, ωk, ωl), i.e.

χ(2)
pqr (ωk + ωl, ωk, ωl)

=
∫ ∞

0
dτ ′

∫ ∞

0
dτ ′′χ(2)

pqr (t, t − τ ′, t − τ ′′) exp(iωkτ
′) exp(iωlτ

′′). (1.8)

Equation (1.8) defines the relation of second-order susceptibility in the time domain,
χ (2)(t, t ′, t ′′), to that in the frequency domain, χ (2)(ωk + ωl, ωk, ωl). Using this
notation in the frequency domain, the second-order polarization P (2)(t) in Eq. (1.7)
is represented by

P (2)
p (t) =

∑

k

∑

l

x−z∑

q,r

χ(2)
pqr (ωk + ωl, ωk, ωl)Eq(ωk)Er(ωl) exp(−i(ωk + ωl)t)

=
∑

k

∑

l

P (2)
p (ωk + ωl) exp(−i(ωk + ωl)t). (1.9)
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The term that includes exp(−i(ωk + ωl)t) in Eq. (1.9) indicates the oscillating
component at the frequency ωk + ωl . Therefore, this term corresponds to the
polarization of sum frequency,

P (2)
p (ωk + ωl) =

x−z∑

q,r

χ(2)
pqr (ωk + ωl, ωk, ωl)Eq(ωk)Er(ωl). (1.10)

This equation coincides with Eq. (1.4), by replacing ωk , ωl , ωk +ωl with ω1, ω2, �,
respectively. Using monochromatic lights of ω1 and ω2, the sum frequency signal at
� = ω1 + ω2 occurs by the second-order process.

In relation to the above derivation of the sum frequency polarization, we can also
derive the difference frequency generation (DFG), a related second-order nonlinear
process to SFG. We have learned in Sect. 1.1 that the light field of frequency
ω, E(ω) exp(−iωt) in Eq. (1.3), is accompanied with its complex conjugate,
E(ω)∗ exp(iωt). Therefore, the combinations of light fields at ω1 ( 	= 0) and ω2
( 	= 0) actually give rise to four possible phase factors, exp (−i(±ω1 ± ω2)t). All the
possible combinations of ω1 and ω2 are presented in analogous forms to Eq. (1.4):

P (2)
p (ω1 + ω2) =

x−z∑

q,r

χ(2)
pqr (ω1 + ω2, ω1, ω2)Eq(ω1)Er(ω2), (1.11)

P (2)
p (ω1 − ω2) =

x−z∑

q,r

χ(2)
pqr (ω1 − ω2, ω1,−ω2)Eq(ω1)Er(ω2)

∗, (1.12)

P (2)
p (−ω1 + ω2) =

x−z∑

q,r

χ(2)
pqr (−ω1 + ω2,−ω1, ω2)Eq(ω1)

∗Er(ω2), (1.13)

P (2)
p (−ω1−ω2) =

x−z∑

q,r

χ(2)
pqr (−ω1−ω2,−ω1,−ω2)Eq(ω1)

∗Er(ω2)
∗. (1.14)

Among the above four terms, Eqs. (1.11) and (1.14) including ω1+ω2 and −ω1−ω2
correspond to SFG, whereas Eqs. (1.12) and (1.13) including ω1−ω2, and −ω1+ω2
to DFG.

1.3.3 Red Shift of O-H Frequency

[Problem 1.3] Answer two frequencies of O-H stretching vibration of an isolated
water molecule (symmetric and anti-symmetric stretching). Where are these fre-
quencies located in the spectra of Fig. 1.1?
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Two frequencies of the O-H stretching vibrations of an isolated water molecule
are 3657 cm−1 (symmetric stretching mode) and 3756 cm−1 (anti-symmetric
stretching mode) [5]. In the SFG spectrum (left panel) of Fig. 1.1, these frequencies
are located in the sharp band at about 3700 cm−1, which is assigned to the free O-H
moieties. In the infrared spectrum (right panel) of Fig. 1.1, they are located at the
high-frequency edge of the broad band in 3000 ∼ 3700 cm−1.

It is well known that the hydrogen bond formation gives rise to substantial red
shift of O-H frequency, and that the amount of the red shift reflects the strength of
the hydrogen bonds [9, 13, 15]. In the SFG spectrum (left panel), the frequency of
the free O-H vibration at the water surface retains the original frequency of isolated
water molecules since it is free from the hydrogen bond.
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Chapter 2
Electrodynamics at Interface

Abstract This chapter deals with electrodynamic aspects of the interfacial SFG
spectroscopy. In the SFG processes, two incident light fields generate nonlinear
polarization at the interface, which in turn emits the sum-frequency signal. We delin-
eate the whole SFG processes from macroscopic viewpoint of electromagnetics.
This theory forms a basis of the SFG spectroscopy in order to establish quantitative
relation between the nonlinear polarization at interface and the observed light fields.
The SFG spectroscopy of interface probe essentially investigates the former through
observing the latter. The present overview of the SFG processes helps us with
comprehending the essential factors in observable SFG spectra.

Keywords Maxwell equations · Boundary conditions · Fresnel factor · Source
polarization

The fundamental theory of the SFG spectroscopy consists of two aspects. One is the
macroscopic description of electrodynamic SFG process, where the incident lights
induce the nonlinear polarization at the interface which in turn generates the sum
frequency signal. Since the SFG spectroscopy investigates the nonlinear polarization
of interfaces through measuring the incident and emitted lights outside the interface,
understanding of the relation between observed lights and the source polarization at
the interface is of crucial significance in the analysis of SFG spectroscopy. The other
aspect is the microscopic theory of material properties, particularly the frequency-
dependent nonlinear susceptibility χ (2)(�, ω1, ω2). This theory is necessary to
connect the observed nonlinear polarization to the microscopic structure of inter-
faces. This chapter deals with the former, macroscopic theory of SFG mechanism,
while the theory of material properties will be treated in the following chapters.
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14 2 Electrodynamics at Interface

2.1 Electromagnetic Fields at Interface

In the macroscopic description of electromagnetic fields, the interface region
between two bulk media is often modeled with three layers, consisting of two bulk
media and the interface, illustrated in Fig. 2.1. The two bulk media are assumed
to be centrosymmetric, and their optical properties are represented with different
dielectric constants, εα(ω) and εβ(ω). (The dispersion with the frequency ω is taken
into account.) The interface layer represents a transient region between the two bulk
media, and accordingly its dielectric constant is given with a phenomenological
parameter ε′(ω). The thickness of the transient region is usually much smaller
than the typical scale of light wavelength. We discuss spatial configuration of
electromagnetic fields near the interface on the basis of the three-layer model in
Fig. 2.1.

In this chapter, we assume that the nonlinear source polarization P (2) is generated
only in the interface layer. The oscillating source polarization P (2) emits the sum
frequency signal of electromagnetic field. This sum frequency field is related to
the source polarization by solving the Maxwell equations under proper boundary
conditions in Sect. 2.1 [2]. In Sect. 2.2, the nonlinear source polarization P (2) is
derived from the incident visible and infrared electromagnetic fields with nonlinear
susceptibility of the interface χ (2). The combined discussion of the two subsections
describes the whole SFG process that the incident lights induce the nonlinear
polarization (in Sect. 2.2), which in turn generates the sum frequency signal (in
Sect. 2.1). We also note that the following discussion will be expanded in Chap. 7 to
incorporate quadrupole contributions in the bulk region.

2.1.1 Maxwell Equations

First we present the Maxwell equations to describe the electromagnetic fields
in Fig. 2.1. The electromagnetic fields are generated from the nonlinear source

Fig. 2.1 Spatial
configuration of lights near
the interface. The two
incident fields of visible
(green) and infrared (red)
frequencies and the sum
frequency signals (purple) of
reflected and transmitted
directions are illustrated
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polarization P (2)(r, t). This source polarization is equivalent to the following
charge density ρ(r, t) and current density j(r, t) in the Maxwell equations,

ρ(r, t) = −∇ · P (2)(r, t), j(r, t) = ∂P (2)(r, t)

∂t
(2.1)

We assume that no other source of charge or current is present in Fig. 2.1. Then the
Maxwell equations are given in the cgs Gauss unit system [1, 3],1

(a) ∇ · D = 4πρ = −4π∇ · P (2), (2.2)

(b) ∇ × E + 1

c

∂B

∂t
= 0, (2.3)

(c) ∇ · B = 0, (2.4)

(d) ∇ × H − 1

c

∂D

∂t
= 4π

c
j = 4π

c

∂P (2)

∂t
, (2.5)

where c is the light velocity in vacuo.
The nonlinear source polarization P (2) is distributed in the interface layer at

around z = 0 in Fig. 2.1, where the z axis is normal to the interface. In the
macroscopic description of electromagnetic fields by Eqs. (2.2), (2.3), (2.4), and
(2.5), the thickness of the interface layer is considered to be much thinner than the
order of light wavelength (∼100 nm), and consequently the spatial distribution of
P (2) can be represented with a delta function,

P (2)(r, t) = P S(x, y, t) δ(z). (2.6)

Equations (2.2), (2.3), (2.4), (2.5) and (2.6) with proper boundary conditions (at z =
0 and z → ±∞) determine the electromagnetic fields, on condition that the surface
polarization P S(x, y, t) is given. Note that Eq. (2.6) using the delta function is a
macroscopic description of the interface polarization. The microscopic distribution
of the induced polarization along the z axis will be treated in Chap. 7.

2.1.2 Boundary Conditions at Interface

The boundary conditions for electromagnetic fields between two different dielectric
media are derived with the help of the Gauss and Stokes theorems [1, 3]. We derive
the boundary conditions for B,D,E, and H at the interface z = 0 in Fig. 2.1
by taking account of the source polarization P s at z = 0. The present boundary
conditions at z = 0 are somewhat different from the conventional ones due to the
source polarization [2].

1The cgs Gauss units are used throughout for the electrodynamics in this chapter, except for
otherwise noted.
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Fig. 2.2 Schematic configurations of volume integral (left) and line integral (right) to derive the
boundary conditions at the interface. The left panel is used to the Maxwell equations of (a) and (c),
and the right panel to (b) and (d)

The matching condition for B or D at z = 0 is derived from the Maxwell
equations of (c) (Eq. (2.4)) and (a) (Eq. (2.2)), respectively. These equations are
integrated in the volume region V , as depicted in the left panel of Fig. 2.2. The
volume region V is an infinitely thin, square plate with the side length l, and it
contains the interface. The surface of this region is denoted by σ , and n̂ is the unit
normal vector at the surface element dσ . Then the Gauss divergence theorem leads
to the following conditions of Eqs. (2.7) and (2.8) from (c) and (a), respectively.

(c)
∫

V

(∇ · B)dr = 0 =
∫

σ

B · n̂dσ

Therefore,

�Bz = Bz(z = +0) − Bz(z = −0) = 0 (2.7)

(a)
∫

V

(∇ · D)dr = −4π

∫

V

[
∇ ·

(
P S(x, y)δ(z)

)]
dr =

∫

σ

D · n̂dσ

Therefore,

l2�Dz = −4π

∫

σ

(
P S(x, y)δ(z)

)
· n̂dσ = −4π

(
∂P S

x

∂x
l + ∂P S

y

∂y
l

)
l

�Dz = −4π∇t · P S (2.8)

where ∇t = x̂
∂

∂x
+ ŷ

∂

∂y
denotes the spatial derivative along the tangential direction

t , and x̂, ŷ are the unit vectors along the x, y directions, respectively. (Hereafter
the superscript ˆ designates a unit vector, except otherwise noted.) Note that the
symbol of time t should be distinguished from the unit vector t̂ along the tangential
direction.
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[Problem 2.1] Explain the derivation of Eqs. (2.7) and (2.8), by taking account of
the fact that the interface polarization P (2) is singular at z = 0.

We also note that the solution of ∇ ·B(r) = 0 (Eq. (2.4)) is regular, as the system
contains no magnetic source at the interface.

The matching condition for E or H at z = 0 is derived from the Maxwell
equations of (b) (Eq. (2.3)) and (d) (Eq. (2.5)), respectively. These equations are
integrated on the surface of loop A depicted in the right panel of Fig. 2.2. The loop A

is of rectangular shape and it crosses the interface. The Stokes theorem and Eq. (2.3)
lead to

(b)
∮

A

E · dl =
∫

S

(∇ × E) · (ẑ × t̂)ds = −
∫

S

(
1

c

∂B

∂t

)
· (ẑ × t̂)ds = 0,

where S is the surface area encircled by the loop A (see the right panel of Fig. 2.2).
Then the last expression on the surface integral vanishes in the limit of infinitesimal
area of S, as B remains finite at the interface. The line integral is expanded as
follows,

∮

A

E · dl =
∫ t+l/2

t−l/2

{
Et(z = +0, t ′) − Et(z = −0, t ′)

}
dt ′

+
∫ +0

−0

{
Ez

(
z, t − l

2

)
− Ez

(
z, t + l

2

)}
dz

= {Et(z= + 0, t)−Et(z = −0, t)} l+
∫ +0

−0

(
∂

∂t
Ez (z, t)

)
(−l)dz + o(l)

= 0

where l is the small tangential length of the loop A, and the loop center is located at
(z = 0, t). The line integral from z = −0 to +0 may have a non-zero value, as the
path crosses the singular source polarization P (2)(x, y, z) = P S(x, y)δ(z), i.e.

∫ +0

−0
Ezdz =

∫ +0

−0

Dz

ε′dz
= −

∫ +0

−0

4π

ε′ P (2)
z dz = −4π

ε′ P S
z .

In the above infinitesimal integral from z = −0 to +0, only the singular
component of integrand could give a non-zero value. The singularity is located at
the interface, where the dielectric constant is ε′ and Dz = ε′Ez holds. The third
expression is derived from the assumption that D + 4πP (2) is regular at any point
and hence

∫ +0
−0 (Dz + 4πP

(2)
z )dz = 0. Therefore, the line integral of E results in
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∮

A

E · dl = {Et(z = +0) − Et(z = −0)} l + 4π

ε′
(
t̂ · ∇tP

S
z

)
l + o(l) = 0,

and in the limit of l → 0, the matching condition for Et is derived

�Et = Et(z = +0) − Et(z = −0) = −4π

ε′ t̂ · ∇tP
S
z (x, y). (2.9)

It is noted that the tangential component of the electric field, Et , is not continuous
at the boundary z = 0, unlike the conventional boundary condition of electric field,
due to the source polarization P S .

The same argument also holds for the matching condition for H . The Stokes
theorem and Eq. (2.5) lead to

(d)

∮

A

H · dl =
∫

S

(∇ × H ) · (ẑ × t̂)ds =
∫

S

1

c

(
∂D

∂t
+ 4π

∂P (2)

∂t

)
· (ẑ × t̂)ds.

Noting that Hz and Dt are regular at the interface, the following condition is
obtained for Ht :

�Ht = 4π

c
t̂ ·
(

∂P S(x, y)

∂t
× ẑ

)
. (2.10)

[Problem 2.2] Derive Eq. (2.10), after the discussion associated to Eq. (2.9).

The above equations (2.7), (2.8), (2.9), and (2.10) define the boundary conditions of
electromagnetic fields at the interface, z = 0, which involves the nonlinear source
polarization.

2.1.3 SFG Signal Emitted from Interface

Let us consider the spatial geometry of lights in Fig. 2.1, where all the wave vectors
of visible (ω1), infrared (ω2) and sum frequency (� = ω1 +ω2) lights are on the xz

plane. ki (ω) designates the wave vector of light at frequency ω (= �, ω1, ω2) in the
bulk region i (= α or β). Suppose that two pump lights of ω1 and ω2 are incident
from the bulk region i = α onto the interface. These incident electric fields at ω1
and ω2 in the region i = α are expressed by

Eα
I (ω1) exp(ikα

I (ω1) · r − iω1t) + c.c.,
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Eα
I (ω2) exp(ikα

I (ω2) · r − iω2t) + c.c. (2.11)

respectively, where the subscript I indicates the incident field, and c.c. denotes the
complex conjugate. The two fields generate the second-order nonlinear polarization
of sum frequency � at the interface. The phase matching conditions in both spatial
and temporal senses in Eq. (1.4) require the following form of the sum frequency
polarization P (2)(r, t),

P (2)(r, t) = P S(�) exp(ikx(�)x − i�t)δ(z) + c.c. (2.12)

where kx(�) = kα
I,x(ω1)+kα

I,x(ω2). Here the nonlinear susceptibility at the interface

is assumed to be uniform along the x direction. P (S)(�) denotes the amplitude of
the surface polarization, and will be discussed in Sect. 2.2.

The nonlinear source polarization of Eq. (2.12) emits the electromagnetic wave
at the frequency � to the regions i = α and i = β. (The sum frequency signals
observed in the regions i = α and i = β are called reflection type and transmission
type, respectively.) Their wave vectors, kα(�) and kβ(�), are defined as

kα(�) = kx(�)x̂ + qα(�)ẑ, qα(�) =
√

εα(�)K2 − kx(�)2,

kβ(�) = kx(�)x̂ − qβ(�)ẑ, qβ(�) =
√

εβ(�)K2 − kx(�)2, (2.13)

where K = �/c is the wavenumber of sum frequency light in vacuo. qα(�)

and qβ(�) are the absolute z components of kα(�) and kα(�), respectively (i.e.
kα
z (�) = qα(�), k

β
z (�) = −qβ(�) in Fig. 2.1). Note that the x components of

the wavevectors are identical in both media, kx(�) = kα
x (�) = k

β
x (�), due to the

spatial phase matching condition, while the z components qα(�) and qβ(�) are
determined by Eq. (2.13), depending of the dielectric constants of the two media.
With these wavevectors, the emitted electromagnetic fields at the frequency � takes
the following forms,

Electric field: Ei (�) exp(iki (�) · r − i�t) + c.c. (i = α, β)

Magnetic field:
c

�

(
ki (�) × Ei (�)

)
exp(iki (�) · r − i�t) + c.c. (2.14)

where the amplitudes Ei (�) (i = α, β) should be determined from the nonlinear
source polarization of P S(�). The electromagnetic fields of Eq. (2.14) should
satisfy the boundary conditions at z = 0, Eqs. (2.7), (2.8), (2.9), and (2.10) in
Sect. 2.1.2. These conditions derive the relation between Ei (�) and P S(�),

Ei (�) = 2πK2

iqi

{
P S(�) −

(
k̂

i
(�) · P S(�)

)
k̂

i
(�)

}
(2.15)

under a simple assumption of εα(�) = εβ(�) = ε′(�) = 1. (The case of general
dielectric constants will be treated in the next subsection.) Equation (2.15) can be
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Fig. 2.3 Change in electric
field passing through the
interface layer

j

i

'

E  0 ie

E  0e

equivalently represented as

ê
i
(�) · Ei (�) = 2πK2

iqi

(
ê
i
(�) · P S(�)

)
(2.16)

using the unit vector of the electric field ê
i
(�) = Ei (�)/

∣∣Ei(�)
∣∣. Notice that

ê
i
(�) · k̂

i
(�) = 0 for the transverse wave of light.

[Problem 2.3] Derive Eq. (2.16) from the boundary conditions (2.7), (2.8), (2.9),
and (2.10).

2.1.4 Fresnel Factor

Then we discuss a general case that the dielectric constants of bulk media and
interface, εα , εβ , ε′, are different. When an electromagnetic wave passes a boundary
of different dielectric constants, the light is reflected or refracted as illustrated in
Fig. 2.3. The change of its wave vector and electromagnetic field at the boundary
is described with the Fresnel transformation. To extend Eq. (2.15) or (2.16) in the
general case of different dielectric constants, the Fresnel factor has to be considered.
The ordinary Fresnel factor between two bulk media is described in Appendix A.2.
Here we extend the Fresnel factor in the three-layer model in Fig. 2.3.

Consider the situation of Fig. 2.3 that an incident light wave passes from medium
i (= α or β) to j ( 	= i) through the interface layer. The wavevector varies in these
regions, and the amplitude of the incident electric field in the medium i, Ei

I = E0ê
i ,

is transformed to E0e inside the interface layer. In such case, the vector e is related
to ê

i as

e = F i→j · êi (2.17)

with the tensor F i→j called the Fresnel factor. This Fresnel factor F i→j in
Eq. (2.17) is written in a matrix form by
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F i→j =

⎛

⎜⎜⎜⎜⎜⎜⎝

2εiqj

εj qi + εiqj

2qi

qi + qj

2εiεj

ε′
qi

εj qi + εiqj

⎞

⎟⎟⎟⎟⎟⎟⎠
(2.18)

The detailed derivation of Eq. (2.18) is presented in Appendix A.3.

Note 1. The Fresnel factor is a function of frequency ω of the light field, since the
wavevectors and dielectric constants depend on the frequency ω.

Note 2. e in the left hand side of Eq. (2.17) is not necessarily a unit vector,
while ê

i is a unit vector by definition. The change in the absolute amplitude
is incorporated in the definition of e.

Note 3. e describes the electric field inside the interface layer, in the present
three-layer model [2]. Distinguish from the conventional Fresnel transformation
between two bulk media.

If one assumed ε′ = εj , the dielectric property of interface layer should be
identical to the bulk j . Accordingly the present three-layer model would become
the conventional two-layer model with dielectric constants εi and εj . Thereby the
Fresnel factor in Eq. (2.18) coincides with the conventional Fresnel factor between
two bulk media.

F
i→j
zz = 2εiεj

ε′
qi

εj qi + εiqj
→ 2εiqi

εj qi + εiqj

(
ε′ → εj

)

By taking account of the Fresnel transformation in Eq. (2.18), the expression of
Eq. (2.16) is modified in the case of different dielectric constants to

ê
i
(�) · Ei (�) = 2πK2

iqi

(
e(�) · P S(�)

)
. (2.19)

Although Eq. (2.19) resembles the previous expression of Eq. (2.16), note that ê
i
(�)

in the right hand side of Eq. (2.16) is replaced with e(�) = F i→j (�) · ê
i
(�) in

Eq. (2.19).

[Problem 2.4] Derive Eq. (2.19) in the general dielectric constants εα, εβ, ε′ on the
basis of the boundary conditions (2.7), (2.8), (2.9), and (2.10).

Equation (2.19) is the general formula to connect the surface nonlinear polarization
P S(�) to the irradiated electric field Ei (�) in the bulk medium i.
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2.2 Response to Incident Lights

In the previous subsection we have discussed the electromagnetic process that
the nonlinear polarization P (2)(r, t) leads to the sum frequency field Ei (�) by
Eq. (2.19). Next we specify the nonlinear polarization from the incident visible and
infrared fields. The surface polarization P S(�) is given using the third-rank tensor
of frequency-dependent nonlinear susceptibility χ (2)(�, ω1, ω2) by

P S(�) = χ (2)(�, ω1, ω2) : E(ω1)E(ω2)
(

or P S
p (�) =

x∼z∑

q,r

χ(2)
pqr (�, ω1, ω2)Eq(ω1)Er(ω2) (p, q, r = x ∼ z)

)

(2.20)

where E(ω1) and E(ω2) denote the amplitudes of the electric fields of visible
and infrared lights, respectively, in the interface. This equation is equivalent to
Eq. (1.4), though Eq. (2.20) implicitly takes account of the phase matching condition
of Eqs. (2.11) and (2.12) along the surface.

Equation (2.20) gives a relation among the interfacial properties, i.e. P S(�),
χ (2), E(ω1), E(ω2). However, E(ω1) and E(ω2) in Eq. (2.20) indicate the electric
fields inside the interface, which are not amenable to direct experimental mea-
surement. For convenience to interpret experimental measurements, Eq. (2.20) is
modified using the incident electric fields in the bulk media, instead of using E(ω1)

and E(ω2), the electric fields inside the interface. This modification is carried out
by the Fresnel transformation in Eqs. (2.17) and (2.18), and the transformed fields
are summarized in Table 2.1.

In this table, the visible and infrared lights are incident from the bulk i1 and
i2 (= α or β), respectively. (Note that Fig. 2.1 illustrates the incident geometry of
i1 = i2 = α, though other incident geometries are allowed.) And

e(ω1) = F i1→j1(ω1) · ê
i1

(ω1), e(ω2) = F i2→j2(ω2) · ê
i2

(ω2)

are defined after Eq. (2.17). Based on the above Fresnel transformation, Eq. (2.20)
is rewritten using the absolute incident amplitudes in the bulk i1 and i2, Ei1

I (ω1)

and Ei2
I (ω2), by

Table 2.1 Relations of electric fields in the bulk and in the interface

In bulk medium In interface layer

Visible ω1 (i1 → interface) ê
i1

(ω1)E
i1
I (ω1) = Ei1

I (ω1) e(ω1)E
i1
I (ω1) = E(ω1)

Infrared ω2 (i2 → interface) Cê
i2

(ω2)E
i2
I (ω2) = Ei2

I (ω2) e(ω2)E
i2
I (ω2) = E(ω2)
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P S(�) =
{
χ (2)(�, ω1, ω2) : e(ω1)e(ω2)

}
Ei1

I (ω1)E
i2
I (ω2) (2.21)

By substituting P S(�) in Eq. (2.19) with Eq. (2.21), the relation between the
incident fields (visible and infrared) and the output field (sum frequency) is given by

ê
i
(�) · Ei (�) = 2πK2

iqi

{
e(�) · χ (2)(�, ω1, ω2) : e(ω1)e(ω2)

}
Ei1

I (ω1)E
i2
I (ω2)

= 2π� sec θi(�)

ic
√

εi(�)

{
e(�) · χ (2)(�, ω1, ω2) : e(ω1)e(ω2)

}
Ei1

I (ω1)E
i2
I (ω2)

= 2π� sec θi(�)

ic
√

εi(�)
χ

(2)
eff Ei1

I (ω1)E
i2
I (ω2) (2.22)

where θi(�) denotes the angle of sum frequency emission in Fig. 2.1, and sec θi(�)

is given by Eq. (2.13),

sec θi(�) =
∣∣ki (�)

∣∣
∣∣ki

x(�)
∣∣ =

√
εi(�)K

qi(�)

(
K = �

c

)
.

In Eq. (2.22) the effective χ(2) amplitude

χ
(2)
eff = e(�) · χ (2)(�, ω1, ω2) : e(ω1)e(ω2) (2.23)

is introduced, which will be further discussed in Sect. 3.3 and Chap. 7.
Equation (2.22) indicates the relation between the electric fields of incident and

output lights. This can be converted to the relation between the light intensities as
follows. The intensity of an electromagnetic wave is represented with its irradiance
I i(ω), which is the magnitude of the pointing vector |(c/4π)(E × H )|. Therefore,
the irradiance I i(ω) at frequency ω in the medium i is given by

I i(ω) = c
√

εi(ω)

2π

∣∣∣Ei
I (ω)

∣∣∣
2

(2.24)

using the formulas of electromagnetic wave in Eq. (2.14). Consequently, the relation
between the irradiances of input and output lights becomes

I i(�) = 8π3�2 sec2 θi(�)

c3
√

εi(�)εi1(ω1)εi2(ω2)

∣∣∣χ(2)
eff

∣∣∣
2
I i1(ω1)I

i2(ω2)

= 8π3�2 sec2 θi(�)

c3
√

εi(�)εi1(ω1)εi2(ω2)

∣∣∣e(�) · χ (2)(�, ω1, ω2):e(ω1)e(ω2)

∣∣∣
2
I i1(ω1)I

i2(ω2).

(2.25)
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This is the general formula of SFG intensity I i(�) emitted into the medium i, as
a function of the incident visible and infrared intensities in the media i1 and i2,
I i1(ω1) and I i2(ω2), respectively [2, 5].

2.3 Summary of Factors in SFG Spectra

The general formula of Eq. (2.25) allows us to summarize the following factors to
determine the SFG spectra, (A)–(C).

(A) Surface nonlinear susceptibility tensor χ (2)(�, ω1, ω2).
This quantity reflects the molecular species as well as their orientation at the
interface. This is the most important factor to govern the features of SFG
spectra. The χ (2) depends on the incident frequencies ω1 and ω2, and its
dependence on the infrared frequency ω2 is essential for the application of SFG
to the vibrational spectroscopy. The next section will focus on the microscopic
interpretation of this quantity.

(B) Dielectric constants εi(ω).
Equation (2.25) involves the dielectric constants of three regions (bulk 1, bulk
2, and interface) at three frequencies (�, ω1, and ω2);

εα(ω), εβ(ω), ε′(ω), where ω = �, ω1, ω2.

These values are also incorporated in the Fresnel factors and the vectors, e(�),
e(ω1), and e(ω2). The dielectric constants in the bulk media, εα(ω) and εβ(ω),
are measurable quantities, whereas the dielectric constant at the interface,
ε′(ω), needs some modeling to be determined. This issue will be discussed
in Sect. 5.3.

(C) Spatial geometry of lights.
The SFG measurement includes the following three factors, (c1)–(c3), about

the light geometry.

(c1) Light Polarization.
Since the light wave is transverse, each light wave may have either S or P
polarization. In the geometry illustrated in Fig. 2.1 where the wave vector
lies on the xz plane, the S polarization means the case that the electric
field oscillates along the y direction (perpendicular to the xz plane), while
the P means the case that the electric field is in the xz plane. In the SFG
measurements, the complete set of polarization specifies those of three
lights, i.e. SFG, visible and infrared, and is thereby designated with three
letters, such as SSP, PPP, SPS, etc. The three letters correspond to the
polarizations of SFG, visible and infrared, respectively, in order.
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(c2) Incident angles (θ i1(ω1), θ
i2(ω2)) and incident media (i1, i2) of the

visible and infrared lights.

(c3) Direction of SFG.
The SFG signal is emitted in two directions in i = α and β. The
geometry of SFG detection is accordingly twofold, whether one observes
the reflected signal or transmitted signal.

Finally, we briefly discuss the heterodyne measurement of SFG, instead of
the conventional (homodyne) measurement of SFG signal intensity. The general
formula of Eq. (2.25) describes the intensity of SFG signal, I i(�) in Eq. (2.24). The
light intensity is proportional to the square of the electric field, and thus Eq. (2.25)
includes the square of the effective χ(2), |χ(2)

eff |2. The result of Eq. (2.25) corresponds
to the homodyne measurement of SFG intensity.

Recent development of the phase-sensitive or heterodyne SFG measurement
allows for detecting the amplitude and phase of the SFG signal [4, 6]. The phase
information of χ(2) is useful to the interpretation of SFG signals, and allows
for detailed comparison between experimental and computational results of SFG
signals, as we discuss in subsequent chapters. The heterodyne SFG signal can detect
the output SFG field itself, that is ê

i
(�) · Ei (�) in Eq. (2.22), which includes χ

(2)
eff

(without taking the square). Accordingly, the heterodyne signal is also governed by
the same factors (A)–(C) mentioned above. The discussion in this section on the
mechanism of SFG emission holds for the heterodyne SFG spectroscopy as well,
while the difference from the conventional SFG lies in the detection method of SFG
signals.

2.4 Solutions to Problems

2.4.1 Boundary Condition at Interface (1)

[Problem 2.1] Explain the derivation of Eqs. (2.7) and (2.8), by taking account of
the fact that the interface polarization P (2) is singular at z = 0.

We also note that the solution of ∇ ·B(r) = 0 (Eq. (2.4)) is regular, as the system
contains no magnetic source at the interface.

Equation (2.7) We integrate the Maxwell equation of (c) (Eq. (2.4)) in the small
volume V (the left panel of Fig. 2.2) and apply the Gauss’ divergence theorem as
∫

V

(∇ · B)dr =
∫

σ

B · n dσ = {Bz(z = +0) − Bz(z = −0)} l2 +
∫

side

B · n dσ = 0.
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The term for the surface integral on the side,
∫

side
B · n dσ , can be neglected in the

limit of infinitesimal thickness, as B(r) is regular. Therefore,

�Bz = Bz(z = +0) − Bz(z = −0) = 0. (2.7)

Equation (2.8) We integrate the Maxwell equation of (a) (Eq. (2.2)) in the vol-
ume V ,

∫

V

(∇ · D)dr = −4π

∫

V

[
∇ ·

(
P S(x, y)δ(z)

)]
dr

and apply the Gauss’ theorem to both sides of this equation. Thus the following
relation for the surface integrals is obtained,

∫

σ

D · ndσ = −4π

∫

σ

(
P S(x, y)δ(z)

)
· n dσ.

The surface integrals on σ are explicitly represented as follows,

{Dz(z = +0) − Dz(z = −0)} l2 +
∫

side

D · n dσ

= −4π

⎡

⎣
{
P S

z δ(z = +0) − P S
z δ(z = −0)

}
l2 +

∫

side

P S(x, y)δ(z) · n dσ

⎤

⎦ .

(2.26)

In the left-hand side of Eq. (2.26), the surface integral on the side planes is neglected
in the limit of infinitesimal thickness. This is because the tangential component of
D, Dt , has no singularity in the interface (see the discussion in Appendix A.1). In the
right-hand side of Eq. (2.26), the surface integral on the top and bottom planes has no
contribution as there is no nonlinear polarization P S outside the interface, whereas
the integral on the side planes could remain finite due to the singular component of
P (2) (δ-function in Eq. (2.6)) in the interface. Consequently, Eq. (2.26) becomes

{Dz(z = +0) − Dz(z = −0)} l2 = �Dz l2

= −4π

∫

side

P S(x, y)δ(z) · n dσ

= −4π

∫ y+l/2

y−l/2

{
P S

x

(
x + l

2
, y′
)

− P S
x

(
x − l

2
, y′
)}

dy′
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− 4π

∫ x+l/2

x−l/2

{
P S

y

(
x′, y + l

2

)
− P S

y

(
x′, y − l

2

)}
dx′

= −4π

(
∂P S

x

∂x
l + ∂P S

y

∂y
l

)
l + o(l).

By taking the limit of l → 0, this equation coincides with Eq. (2.8),
�Dz=−4π∇t ·P S .

2.4.2 Boundary Condition at Interface (2)

[Problem 2.2] Derive Eq. (2.10), after the discussion associated to Eq. (2.9).

We carry out surface integral of Eq. (2.5) within the small area S in the right
panel of Fig. 2.2, and apply the Stokes’ theorem to H ;

∫

S

(∇ × H ) · (ẑ × t̂)ds =
∫

S

1

c

(
∂D

∂t
+ 4π

∂P (2)

∂t

)
· (ẑ × t̂)ds

=
∮

A

H · dl = l�Ht +
+0∫

−0

{
Hz

(
z, t − l

2

)
− Hz

(
z, t + l

2

)}
dz. (2.27)

In Eq. (2.27), the surface integral of ∂D/∂t and the line integral of Hz are neglected
in the limit of infinitesimal area of S, since Hz and Dt are not singular there.
Consequently, Eq. (2.27) is simplified to be

l�Ht = 4π

c

∫

S

∂P (2)

∂t
· (ẑ × t̂

)
ds

= 4π

c

∫

S

(
∂

∂t
P S(x, y)δ(z)

)
· (ẑ × t̂

)
ds = 4π

c

∫

S

(
∂P S

∂t
× ẑ

)
· t̂δ(z)ds

= 4π

c
l

(
∂P S

∂t
× ẑ

)
· t̂ .

Therefore, Eq. (2.10) is obtained.
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2.4.3 Boundary Condition at Interface (3)

[Problem 2.3] Derive Eq. (2.16) from the boundary conditions (2.7), (2.8), (2.9),
and (2.10).

Here we have assumed εα(�) = εβ(�) = ε′(�) = 1. The wave vectors of sum
frequency � of reflection kα(�) and transmission kβ(�) in Eq. (2.13) are

kα(�) =
⎛

⎝
p

0
q

⎞

⎠ and kβ(�) =
⎛

⎝
p

0
−q

⎞

⎠ ,

respectively, where p = kα
x (�) = k

β
x (�), and q = qα(�) = qβ(�) =√

K2 − p2. In the following we only treat the sum frequency components of
field and polarization, and thus omit “(�)” from the notations of kα(�), Eα(�),
P S(�), etc.

Each emitted light with the wave vector ki (i = α, β) may have two polariza-
tions, namely P and S, which are represented with unit vectors of the electric fields,
ê
i
P and ê

i
S, respectively. ê

i
P, ê

i
S, and ki are orthogonal each other, and ê

i
S is parallel

to the y axis in Fig. 2.1. Accordingly, these polarization vectors are

ê
α
P = 1

K

⎛

⎝
−q

0
p

⎞

⎠ , ê
α
S =

⎛

⎝
0
1
0

⎞

⎠ , ê
β
P = 1

K

⎛

⎝
q

0
p

⎞

⎠ , ê
β
S =

⎛

⎝
0
1
0

⎞

⎠ .

Then the amplitudes of electric and magnetic fields, Ei and H i = (c/�) ki×Ei ,
in Eq. (2.14) are represented by

Ei =
⎛

⎝
Ei

x

Ei
y

Ei
z

⎞

⎠ (i = α, β),

Hα = c

�

⎛

⎜⎝
−qEα

y

qEα
x − pEα

z

pEα
y

⎞

⎟⎠ , H β = c

�

⎛

⎜⎝
qE

β
y

−qE
β
x − pE

β
z

pE
β
y

⎞

⎟⎠ .

The boundary conditions for the electromagnetic fields at z = 0 are derived from
Eqs. (2.7), (2.8), (2.9), and (2.10), and expressed using the electric field amplitudes
in the following five equations, (2.28), (2.29), (2.30), (2.31), and (2.32).

• From Eq. (2.7), condition for Bz = μHz:

Bz : μ
c

�

{
pEβ

y − pEα
y

}
= 0

Therefore, Eβ
y − Eα

y = 0 (2.28)
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• From Eq. (2.8), condition for Dz = Ez:

Dz : Eβ
z − Eα

z = −4πipP S
x (2.29)

• From Eq. (2.9), conditions for Ex and Ey :

Ex : Eβ
x − Eα

x = −4πipP S
z (2.30)

Ey : Eβ
y − Eα

y = 0 (same as Eq. (2.28))

• From Eq. (2.10), conditions for Hx and Hy :

Hx : c

�

{(
qEβ

y

)
−
(
−qEα

y

)}
= 4π

c
(−i�)P S

y

Therefore, q
(
Eβ

y + Eα
y

)
= −4πiK2P S

y (2.31)

Hy : c

�

{(−qEβ
x − pEβ

z

)− (
qEα

x − pEα
z

)} = −4π

c
(−i�)P S

x

Therefore, q
(
Eβ

x + Eα
x

)+ p
(
Eβ

z − Eα
z

) = −4πiK2P S
x (2.32)

(Note the right-hand side of Eq. (2.32) includes an extra minus sign due to the
property of vector product, x × z = −z × x.) Using Eqs. (2.28), (2.29), (2.30),
(2.31), and (2.32), both P and S components of Eα , Eβ in Eq. (2.14) are obtained
as follows.

P components Eqs. (2.29), (2.30), and (2.32) derive

Eβ
x = 2πi

(
−qP S

x − pP S
z

)
. (2.33)

This equation, along with the relation kβ · Eβ = pE
β
x − qE

β
z = 0, leads to

Eβ
z = p

q
Eβ

x = 2πi
p

q

(
−qP S

x − pP S
z

)
. (2.34)

Therefore, Eα
x and Eα

z are also determined from Eqs. (2.29), (2.30).

Eα
x = 2πi

(
−qP S

x + pP S
z

)
, Eα

z = −2πi
p

q

(
−qP S

x + pP S
z

)
. (2.35)

It is readily confirmed that Eqs. (2.33), (2.34), and (2.35) satisfy the condition of
Eq. (2.16) for the P polarization;

ê
α
P · Eα= 1

K

(−qEα
x +pEα

z

)=2πi

K

{
−q(−qP S

x +pP S
z ) − p

p

q
(−qP S

x + pP S
z )

}

= −2πi

Kq
(q2 + p2)

(
−qP S

x + pP S
z

)
= 2πK2

iq

(
ê
α
P · P S

)
,
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ê
β
P · Eβ = 1

K

(
qEβ

x + pEβ
z

) = 2πi

K

{
qEβ

x + p

(
p

q
Eβ

x

)}

= 2πi

Kq
(q2 + p2)

(
−qP S

x − pP S
z

)
= 2πK2

iq

(
ê
β
P · P S

)
.

S components Eqs. (2.28) and (2.31) derive

Eα
y = Eβ

y = 2πK2

iq
P S

y . (2.36)

Eα
y and E

β
y in Eq. (2.36) satisfy the condition of Eq. (2.16) in the S polarization;

ê
α
S · Eα = Eα

y = 2πK2

iq
P S

y = 2πK2

iq

(
ê
α
S · P S

)
,

ê
β
S · Eβ = Eβ

y = 2πK2

iq
P S

y = 2πK2

iq

(
ê
β
S · P S

)
.

2.4.4 Electric Field and Interfacial Polarization

[Problem 2.4] Derive Eq. (2.19) in the general dielectric constants εα, εβ, ε′ on the
basis of the boundary conditions (2.7), (2.8), (2.9), and (2.10).

Let us generalize the solution of Problem 2.3 without resort to the previous
assumption εα(�) = εβ(�) = ε′(�) = 1. The following derivation is rather similar
to that in Problem 2.3, and note the differences from the previous derivation.

For arbitrary values of εα(�), εβ(�), ε′(�), the wavevectors kα(�), kβ(�) for
the reflected and transmitted lights, respectively, become

kα =
⎛

⎝
p

0
qα

⎞

⎠ , kβ =
⎛

⎝
p

0
−qβ

⎞

⎠ ,

where

p = kα
x (�) = kβ

x (�) and

{
qα = √

εαK2 − p2

qβ = √
εβK2 − p2

(2.37)

The unit vectors for S and P polarizations are expressed by

ê
α
P = 1√

εαK

⎛

⎝
−qα

0
p

⎞

⎠ , ê
α
S =

⎛

⎝
0
1
0

⎞

⎠ , ê
β
P = 1√

εβK

⎛

⎝
qβ

0
p

⎞

⎠ , ê
β
S =

⎛

⎝
0
1
0

⎞

⎠
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Then the amplitudes of electric and magnetic fields, Ei and H i = (c/�) ki × Ei ,
in Eq. (2.14) are represented by

Ei =
⎛

⎝
Ei

x

Ei
y

Ei
z

⎞

⎠ (i = α, β),

Hα = c

�

⎛

⎜⎝
−qαEα

y

qαEα
x − pEα

z

pEα
y

⎞

⎟⎠ , H β = c

�

⎛

⎜⎝
qβE

β
y

−qβE
β
x − pE

β
z

pE
β
y

⎞

⎟⎠ .

The boundary conditions for the electromagnetic fields at z = 0 are derived
from Eqs. (2.7), (2.8), (2.9), and (2.10), and summarized in the following five
equations, (2.38), (2.39), (2.40), (2.41), and (2.42).

• From Eq. (2.7), boundary condition for Bz = μHz:

Bz : c

�

{
pEβ

y − pEα
y

}
= 0

Therefore, Eβ
y − Eα

y = 0 (2.38)

• From Eq. (2.8), condition for Dz = εEz:

Dz : εβEβ
z − εαEα

z = −4πipP S
x (2.39)

• From Eq. (2.9), conditions for Ex and Ey :

Ex : Eβ
x − Eα

x = −4πip

ε′ P S
z (2.40)

Ey : Eβ
y − Eα

y = 0 (same as Eq. (2.38))

• From Eq. (2.10), conditions for Hx and Hy :

Hx : c

�

{(
qβEβ

y

)
−
(
−qαEα

y

)}
= 4π

c
(−i�)P S

y

Therefore, qβEβ
y + qαEα

y = −4πiK2P S
y (2.41)

Hy : c

�

{(−qβEβ
x −pEβ

z

)− (
qαEα

x −pEα
z

)} = −4π

c
(−i�)P S

x

Therefore, qβEβ
x + qαEα

x + p
(
Eβ

z − Eα
z

) = −4πiK2P S
x (2.42)

(Note that the right-hand side of Eq. (2.42) includes an extra minus sign due to the
property of vector product x × z = −z × x.) Using Eqs. (2.38), (2.39), (2.40),
(2.41), and (2.42), both P and S components of Eα , Eβ in Eq. (2.14) are obtained
as follows.
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P components Equation (2.42) is modified with Eqs. (2.39) and (2.40) so as to
eliminate Eα ,

qβEβ
x + qα

(
Eβ

x + 4πip

ε′ P S
z

)
+ pEβ

z − p
1

εα

(
εβEβ

z + 4πipP S
x

)
= −4πiK2P S

x .

Therefore, using Eq. (2.37),

(qα + qβ)Eβ
x + p

(
1 − εβ

εα

)
Eβ

z = −4πi

(
K2 − p2

εα

)
P S

x − 4πip
qα

ε′ P S
z

= −4πi(qα)2

εα

(
P S

x + εαp

ε′qα
P S

z

)
.

Using the relation kβ · Eβ = pE
β
x − qβE

β
z = 0, we insert E

β
x = qβE

β
z /p into the

above equation and obtains

{
(qα + qβ)

qβ

p
+ p

(
1 − εβ

εα

)}
Eβ

z = −4πi(qα)2

εα

(
P S

x + εαp

ε′qα
P S

z

)
.

Therefore,

Eβ
z = − 4πipqα

εαqβ + εβqα

(
P S

x + εαp

ε′qα
P S

z

)
, (2.43)

Eβ
x = qβ

p
Eβ

z = − 4πiqαqβ

εαqβ + εβqα

(
P S

x + εαp

ε′qα
P S

z

)
. (2.44)

Consequently, using Eqs. (2.39) and (2.40), we also obtain

Eα
z = 4πipqβ

εαqβ + εβqα

(
P S

x − εβp

ε′qβ
P S

z

)
, (2.45)

Eα
x = − 4πiqαqβ

εαqβ + εβqα

(
P S

x − εβp

ε′qβ
P S

z

)
. (2.46)

It is confirmed that Eqs. (2.43) and (2.44) satisfy the condition of Eq. (2.19) in the P
polarization as follows.

ê
β
P · Eβ = 1√

εβK

(
qβEβ

x +pEβ
z

)= 1√
εβK

(
qβ qβ

p
Eβ

z +pEβ
z

)
=

√
εβK

p
Eβ

z

= −
√

εβK
4πiqα

εαqβ + εβqα

(
P S

x + εαp

ε′qα
P S

z

)
,
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2πK2

iqβ
eP · P S = 2πK2

iqβ

1√
εβK

(
Fβ→α

xx qβP S
x + Fβ→α

zz pP S
z

)

= −
√

εβK
4πiqα

εαqβ + εβqα

(
P S

x + εαp

ε′qα
P S

z

)
,

where eP = F β→α · ê
β
P , and F β→α is given in Eq. (2.18). Therefore, Eq. (2.19) is

proved for the β phase,

ê
β
P · Eβ = 2πK2

iqβ
eP · P S. (2.47)

The same argument can be applied to Eα in Eqs. (2.45) and (2.46);

ê
α
P · Eα = 1√

εαK

(−qαEα
x +pEα

z

)= 1√
εαK

(
qα qα

p
Eα

z +pEα
z

)
=

√
εαK

p
Eα

z

= √
εαK

4πiqβ

εαqβ + εβqα

(
P S

x − εβp

ε′qβ
P S

z

)
,

2πK2

iqα
eP · P S = 2πK2

iqα

1√
εαK

(
−Fα→β

xx qαP S
x + Fα→β

zz pP S
z

)

= √
εαK

4πiqβ

εαqβ + εβqα

(
P S

x − εβp

ε′qβ
P S

z

)
,

where eP = F α→β · êα
P . F α→β is also given in Eq. (2.18). Therefore,

ê
α
P · Eα = 2πK2

iqα
eP · P S. (2.48)

S components Equations (2.38) and (2.41) derive

Eα
y = Eβ

y = 4πK2

i(qα + qβ)
P S

y (2.49)

E
β
y in Eq. (2.49) satisfy the condition of Eq. (2.19) in the S polarization.

ê
β
S · Eβ = Eβ

y = 2πK2

iqβ

2qβ

qα + qβ
P S

y = 2πK2

iqβ
Fβ→α

yy P S
y = 2πK2

iqβ
eS · P S.

(2.50)
The same argument holds for Eα

y in Eq. (2.49),

ê
α
S · Eα = Eα

y = 2πK2

iqα

2qα

qα + qβ
P S

y = 2πK2

iqα
Fα→β

yy P S
y = 2πK2

iqα
eS · P S.

(2.51)
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The above equations (2.47), (2.48), (2.50), and (2.51) prove the relation of
Eq. (2.19) for both P and S polarizations in either phase of α or β.

Appendix

A.1 Singularity of Source Polarization

The boundary conditions of electromagnetic fields in Sect. 2.1 are affected by the
singularity of the nonlinear source polarization at the interface. The singularity is a
consequence of taking the limit of L → 0 for the interface thickness L. Here we
present some supplementary argument on the singularity issue.

Figure 2.4 show a picture of the three-layer model with a finite thickness L. The
thickness should be large enough to define the electric field and polarization in the
layer, while it is small compared to the scale of the light wavelengths. The nonlinear
source polarization P (2) inside the interface layer is given by

P (2)(x, y, z) =
⎧
⎨

⎩

P S(x, y)

L

(
−L

2
< z <

L

2

)

0 (otherwise)
(2.52)

Note that the limit of L → 0 recovers Eq. (2.6). In deriving Eq. (5.18) in Sect. 2.1
and Problem 2.1, we used the assumption that the tangential component of the
electric displacement, Dt , has no singularity at the limit, though the nonlinear source
polarization, P

(2)
t , may have a singular component of δ(z). In the following we

explain these subtle assumptions.2

Let us clarify the assumption by deriving the boundary condition of Eq. (2.8).
The Gauss divergence theorem is applied to Eq. (2.2) in the green rectangular box
in Fig. 2.4, and

Fig. 2.4 Geometry of the
three layers with a finite
thickness L of the interface.
The cross section of the
rectangular box is illustrated
in green

z

x (=t)
L

l/2-l/2

l

-L/2

L/2

2This problem is motivated by Ref. [2]. The author is grateful to Profs. Tony Heinz and Ron Shen
for clarifying this issue.
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Dz

(
L

2

)
l2 − Dz

(
−L

2

)
l2 +

∫ L/2

−L/2
dz

(
∂Dx

∂x
+ ∂Dy

∂y

)
l2

= −4π

∫ L/2

−L/2
dz

(
∂P

(2)
x

∂x
+ ∂P

(2)
y

∂y

)
l2

= −4πl2L

(
∂

∂x

P S
x

L
+ ∂

∂y

P S
y

L

)
= −4πl2

(
∂P S

x

∂x
+ ∂P S

y

∂y

)
. (2.53)

By dividing with l2 and taking the limit of L → 0, we obtain Eq. (2.8),

�Dz = lim
L→0

{
Dz

(
L

2

)
− Dz

(
−L

2

)}
= −4π

(
∂P S

x

∂x
+ ∂P S

y

∂y

)
. (2.8)

One may notice that the above derivation includes the assumption that

lim
L→0

∫ L/2

−L/2
dz

(
∂Dx

∂x
+ ∂Dy

∂y

)
= 0,

which means that the tangential component of D (Dx or Dy) is regular in the
interface layer. If Dt had a singular component DS

t (x, y)δ(z), then the above
derivation should lead to the following boundary condition,

�Dz + ∇t · DS
t = −4π∇t · P S

(
or �Dz = −∇t ·

(
4πP S + DS

t

))
,

instead of Eq. (2.8). Actually, the term with DS
t does not appear in Eq. (2.8),

indicating that DS
t has no singularity.

This assumption stems from physical consideration of the polarization. In the
present theory, the entire polarization induced in the material is classified into the
nonlinear polarization P (2) and the remaining, linear polarization P . The former is
treated as the source of charge and current in the Maxwell equations (see Eq. (2.1)),
while the latter is regarded as conventional linear polarization included in the
definition of electric displacement D = E + 4πP . When we adopt the three-layer
model with infinitely thin interface in Fig. 2.1, singular source of P (2) is allowed
to be located at the interface in the macroscopic radiation theory. However, the
distinction between P (2) and P is somewhat arbitrary in a microscopic sense. If we
did not distinguish P (2) and P and treated them just as polarization in the material,
the electric displacement would be alternatively defined as

D◦ = E + 4π(P + P (2)) = D + 4πP (2). (2.54)

If we employ D◦ defined as such, it should be regular everywhere because
the system contains no other source of charge or current than P (2). Figure 2.5
summarizes the sources of electric field and definitions of E, D and D◦ in the
present discussion.
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Fig. 2.5 Various sources of
electric fields and their
relation to E, D, and D◦

external
field

true
charge

nonlinear
polarization

linear
polarization

(2)P P

Sources of electric f ield

E

4D E P E

o (2) ( ) o24 4 ( )PD ED P E P

Since the present theory of SFG radiation in Sect. 2.1 assumes that P S is the only
source of nonlinear radiation generated at the interface, we can safely assume that
Dt has no singular component without loss of generality. If there were a singular
component, it should be incorporated into P (2) so that 4πP S + DS

t is regarded as a
new 4πP S .

A.2 Fresnel Factors for Two-Layer Model

The ordinary Fresnel factors at an interface of two bulk media are presented as
follows. Suppose the two bulk media have dielectric constants of ε1 and ε2, or the
refractive indices of n1 = √

ε1, n2 = √
ε2, respectively. Figure 2.6 illustrates the

situation that the incident light propagates from the medium i (= 1, 2) to j ( 	= i),
or reflects back to the medium i. The incident and transmitted angles are denoted
with θi and θj . The amplitudes of incident, reflected and transmitted electric fields
are E0, Er and Et , respectively.

First, the Snell’s law holds between the incident angle θi and transmitted one θj ,

ni sin θi = nj sin θj . (2.55)

Therefore, cos θj is expressed by

cos θj =
√

1 − sin2 θj =
√√√√1 − n2

i

n2
j

sin2 θi . (2.56)

This value becomes imaginary in the condition of total reflection.
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Fig. 2.6 Geometry of lights
(of P polarization) in the
two-layer model

n

ni

j

E 0 ie

E je
j

i

t

E ier

i

The ratios of reflected and transmitted field amplitudes to the incident one, r =
Er/E0 and t = Et/E0, depend on the polarization, P or S. Accordingly, these ratios
are denoted with rP (rS) and tP (tS) at the P (S) polarization. These ratios are derived
from the ordinary boundary conditions of electromagnetic fields at a plane interface,
and the results are summarized below [3].

• P polarization:

rP = nj cos θi − ni cos θj

nj cos θi + ni cos θj

, tP = 2ni cos θi

nj cos θi + ni cos θj

, (2.57)

• S polarization:

rS = ni cos θi − nj cos θj

ni cos θi + nj cos θj

, tS = 2ni cos θi

ni cos θi + nj cos θj

. (2.58)

where cos θj is given in Eq. (2.56).
One can readily prove that tP and tS in Eqs. (2.57) and (2.58) are equivalent to

Eq. (2.18) by putting ε′ = εj ;

F i→j =

⎛

⎜⎜⎜⎜⎜⎜⎝

2εiqj

εj qi + εiqj

2qi

qi + qj

2εiqi

εj qi + εiqj

⎞

⎟⎟⎟⎟⎟⎟⎠
. (2.59)

F i→j relates the electric field of incident and transmitted lights in Fig. 2.6 by
Et êj = F i→j · E0êi . For P polarization, the electric field amplitudes are

E0êi = E0

⎛

⎝
cos θi

0
sin θi

⎞

⎠ , Et êj = Et

⎛

⎝
cos θj

0
sin θj

⎞

⎠ = tPE0

⎛

⎝
cos θj

0
sin θj

⎞

⎠ ,

and accordingly

F
i→j
xx = tP

cos θj

cos θi

, F
i→j
zz = tP

sin θj

sin θi

. (2.60)
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For S polarization, the electric field amplitudes are

E0êi = E0

⎛

⎝
0
1
0

⎞

⎠ , Et êj = Et

⎛

⎝
0
1
0

⎞

⎠ = tSE0

⎛

⎝
0
1
0

⎞

⎠ ,

and accordingly

F
i→j
yy = tS. (2.61)

F
i→j
xx , F

i→j
yy , and F

i→j
zz in Eqs. (2.60) and (2.61) lead to Eq. (2.59), by using the

following notations,

qi = niω

c
cos θi, qj = njω

c
cos θj , εi = n2

i , εj = n2
j .

qi (j) denotes the z component of the wavevector in the medium i (j ), and εi (j) is
the dielectric constant in the medium i (j ).

In the following, we examine the Fresnel coefficients at glass-air interface for
example, where we suppose ni = 1.49 for the glass (i) and nj = 1 for the air (j).
The critical angle of total reflection is derived from sin θc = nj/ni = 1/1.49 and
hence θc = 42.2◦. The Fresnel coefficients rP, rS, tP, tS in Eqs. (2.57) and (2.58)
are plotted as a function of θi in Fig. 2.7. We notice that these coefficients become

30 60 90
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0
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(a) rP (b) tP

(c) rS (d) tS

Fig. 2.7 The Fresnel coefficients (a) rP, (b) tP, (c) rS, (d) tS for the glass (ni = 1.49) – air (nj = 1)
interface in Eqs. (2.57) and (2.58). The abscissas denote the incident angle θi in degrees. Red lines
stand for the real part while the blue lines for the imaginary part
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Fig. 2.8 Square of the Fresnel coefficients (a) |rP|2, (b) |tP|2, (c) |rS|2, (d) |tS|2 for the glass-air
interface. Other conditions are same as in Fig. 2.7

complex at θi > θc where the total reflection takes place. The square of the Fresnel
coefficients, which correspond to the intensity ratio, are also plotted in Fig. 2.8 in
the similar manner. The intensity ratio of reflected waves is unity in the condition of
total reflection, |rP|2 = |rS|2 = 1 at θi > θc, while the transmitted waves attenuate.
It is remarkable in Fig. 2.8 that the intensity of transmitted waves |tP|2, |tS|2 exhibits
a sharp maximum at θi = θc in both P and S polarizations. This enhancement near
the critical angle is utilized to augment the sensitivity of interfacial spectroscopy.

A.3 Fresnel Factors for Three-Layer Model

Here we derive the Fresnel factor F i→j in Eq. (2.18) for the three-layer model.

A.3.1 Fields and Wavevectors

For the three layer model, the incident light with the wave vector kI and the
frequency ω gives rise to four other waves, kR , kT ′ , kR′ and kT , as illustrated in
Fig. 2.9.
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Fig. 2.9 Light waves
associated to the incident
light kI in the three layer
model
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Each electromagnetic field is presented as

EX(r, ω, t) = EX exp(ikX · r − iωt) + c.c. (2.62)

HX(r, ω, t) = 1

K
(kX × EX) exp(ikX · r − iωt) + c.c

= HX exp(ikX · r − iωt) + c.c. (2.63)

where X = I , R, T ′, R′, or T . K = ω/c is the angular wavenumber of the light
in vacuo. The wavevector kX and the coefficients EX, HX for each wave X are
summarized as follows.

kX EX HX

I : kI =
⎛

⎝
kx

0
−qi

⎞

⎠ , EI =

⎛

⎜⎜⎜⎝

qi

niK
IP

IS

kx

niK
IP

⎞

⎟⎟⎟⎠ , H I = 1

K

⎛

⎝
qiIS

−niKIP

kxIS

⎞

⎠ ,

R : kR =
⎛

⎝
kx

0
qi

⎞

⎠ , ER =

⎛

⎜⎜⎜⎝

qi

niK
RP

RS

− kx

niK
RP

⎞

⎟⎟⎟⎠ , HR = 1

K

⎛

⎝
−qiRS

niKRP

kxRS

⎞

⎠ ,

T ′ : kT ′ =
⎛

⎝
kx

0
−q ′

⎞

⎠ , ET ′ =

⎛

⎜⎜⎜⎝

q ′

n′K
TP

′

TS
′

kx

n′K
TP

′

⎞

⎟⎟⎟⎠ , H T ′ = 1

K

⎛

⎝
q ′TS

′
−n′KTP

′
kxTS

′

⎞

⎠ ,

R′ : kR′ =
⎛

⎝
kx

0
q ′

⎞

⎠ , ER′ =

⎛

⎜⎜⎜⎝

q ′

n′K
RP

′

RS
′

− kx

n′K
RP

′

⎞

⎟⎟⎟⎠ , HR′ = 1

K

⎛

⎝
−q ′RS

′
n′KRP

′
kxRS

′

⎞

⎠ ,
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T : kT =
⎛

⎝
kx

0
−qj

⎞

⎠ , ET =

⎛

⎜⎜⎜⎝

qj

njK
TP

TS

kx

njK
TP

⎞

⎟⎟⎟⎠ , H T = 1

K

⎛

⎝
qjTS

−njKTP

kxTS

⎞

⎠ ,

(2.64)

where

⎧
⎨

⎩

kx
2 + (qi)2 = (niK)2 = εiK2

kx
2 + (q ′)2 = (n′K)2 = ε′K2

kx
2 + (qj )2 = (njK)2 = εjK2

(2.65)

and kx is common among the five waves due to the phase matching condition. In
what follows, we determine the relations among the unknown variables, IP , IS , RP ,
RS , TP

′, TS
′, RP

′, RS
′, TP and TS in Eq. (2.64) from the boundary conditions. The

suffixes P and S signify the variables related to P and S polarizations, respectively.

A.3.2 Boundary Conditions

Here we consider three kinds of boundary conditions among the medium i, interface
and medium j for the three-layer model in Fig. 2.9: between (1) i and interface, (2)
interface and j , and (3) i and j . At each boundary, the continuity conditions for Et ,
Dz, Ht and Bz are formulated with the help of Eq. (2.64).

(1) Medium i and Interface

�Et = 0:

[
EI,x + ER,x = ET ′,x + ER′,x

] : qi

niK
(IP + RP ) = q ′

n′K
(TP

′ + RP
′)
(2.66)

[
EI,y + ER,y = ET ′,y + ER′,y

] : IS + RS = TS
′ + RS

′ (2.67)

�Dz = 0:

[
εi(EI,z + ER,z) = ε′(ET ′,z + ER′,z)

]
: εikx

niK
(IP − RP ) = ε′kx

n′K
(TP

′ − RP
′)

(2.68)



42 2 Electrodynamics at Interface

�Ht = 0:

[
HI,x + HR,x = HT ′,x + HR′,x

] : 1

K
qi(IS − RS) = 1

K
q ′(TS

′ − RS
′)

(2.69)
[
HI,y + HR,y = HT ′,y + HR′,y

] : ni(−IP + RP ) = n′(−TP
′ + RP

′) (2.70)

�Bz = �(μHz) = 0: where μ = 1 is assumed in the nonmagnetic media.

[
HI,z + HR,z = HT ′,z + HR′,z

] : kx

K
(IS + RS) = kx

K
(TS

′ + RS
′) (2.71)

In the above six boundary conditions, we notice that Eqs. (2.67) and (2.71),
and Eqs. (2.68) and (2.70) are equivalent and thus there exist four independent
conditions. These four independent conditions are summarized as follows:

From (2.66) :
qi

ni
(IP + RP ) = q ′

n′ (TP
′ + RP

′) (2.72)

From (2.67), (2.71) : IS + RS = TS
′ + RS

′ (2.73)

From (2.69) : qi(IS − RS) = q ′(TS
′ − RS

′) (2.74)

From (2.68), (2.70) : ni(−IP + RP ) = n′(−TP
′ + RP

′) (2.75)

(2) Interface and Medium j

�Et = 0 :

[
ET ′,x + ER′,x = ET,x

] : q ′

n′K
(TP

′ + RP
′) = qj

njK
TP (2.76)

[
ET ′,y + ER′,y = ET,y

] : TS
′ + RS

′ = TS (2.77)

�Dz = 0:

[
ε′(ET ′,z + ER′,z) = εjET,z

]
: ε′kx

n′K
(TP

′ − RP
′) = εj kx

njK
TP (2.78)

�Ht = 0:

[
HT ′,x + HR′,x = HT,x

] : q ′

K
(TS

′ − RS
′) = qj

K
TS (2.79)

[
HT ′,y + HR′,y = HT,y

] : n′(−TP
′ + RP

′) = −njTP (2.80)

�Bz = �(μHz) = 0:

[
HT ′,z + HR′,z = HT,z

] : kx

K
(TS

′ + RS
′) = kx

K
TS (2.81)
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In the above conditions of Eqs. (2.76), (2.77), (2.78), (2.79), (2.80), and (2.81), we
have assumed that the phase difference over the thickness of the surface layer is
negligible, since the thickness is much smaller than the wavelength. In the above
conditions, Eqs. (2.77) and (2.81), and Eqs. (2.78) and (2.80) are equivalent. The
four independent conditions are

From (2.76) :
q ′

n′ (TP
′ + RP

′) = qj

nj
TP (2.82)

From (2.77), (2.81) : TS
′ + RS

′ = TS (2.83)

From (2.79) : q ′(TS
′ − RS

′) = qjTS (2.84)

From (2.78), (2.80) : n′(−TP
′ + RP

′) = −njTP (2.85)

(3) Media i and j

�Et = 0 :

[
EI,x + ER,x = ET,x

] : qi

niK
(IP + RP ) = qj

njK
TP (2.86)

[
EI,y + ER,y = ET,y

] : IS + RS = TS (2.87)

�Dz = 0:

[
εi(EI,z + ER,z) = εjET,z

]
: εikx

niK
(IP − RP ) = εj kx

njK
TP (2.88)

�Ht = 0:

[
HI,x + HR,x = HT,x

] : qi

K
(IS − RS) = qj

K
TS (2.89)

[
HI,y + HR,y = HT,y

] : ni(−IP + RP ) = −njTP (2.90)

�Bz = �(μHz) = 0:

[
HI,z + HR,z = HT,z

] : kx

K
(IS + RS) = kx

K
TS (2.91)

The boundary conditions of Eqs. (2.86), (2.87), (2.88), (2.89), (2.90), and (2.91)
are identical to those for the two-layer model. Therefore, the Fresnel factors to
connect the two bulk layers are same as those derived with the two-layer model,
irrespective of whether the thin interfacial layer is present. Among the above six
conditions, Eqs. (2.87) and (2.91) and Eqs. (2.88) and (2.90) are identical. Therefore,
four independent conditions are summarized as
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From (2.86) :
qi

ni
(IP + RP ) = qj

nj
TP (2.92)

From (2.87), (2.91) : IS + RS = TS (2.93)

From (2.89) : qi(IS − RS) = qjTS (2.94)

From (2.88), (2.90) : ni(−IP + RP ) = −njTP (2.95)

Actually Eqs. (2.92), (2.93), (2.94), (2.95) are derived from Eqs. (2.72), (2.73),
(2.74), (2.75) and (2.82), (2.83), (2.84), (2.85). There are a total of eight independent
boundary conditions in the three-layer model, which are two sets among Eqs. (2.72),
(2.73), (2.74), (2.75), (2.82), (2.83), (2.84), (2.85) and (2.92), (2.93), (2.94), (2.95).
We choose Eqs. (2.72), (2.73), (2.74), (2.75) and (2.92), (2.93), (2.94), (2.95) in the
following. These conditions are utilized to determine the relations among IP , IS ,
RP , RS , TP

′, TS
′, RP

′, RS
′, TP and TS .

A.3.3 Solution of Boundary Equations

Using Eqs. (2.92), (2.93), (2.94), (2.95), following two relations are readily derived:

RP = εiqj − εj qi

εiqj + εj qi
IP , (2.96)

RS = qi − qj

qi + qj
IS. (2.97)

P component By using Eq. (2.96), Eqs. (2.72) and (2.75) are converted to

TP
′ + RP

′ = n′qi

niq ′

(
1 + εiqj − εj qi

εiqj + εj qi

)
IP = 2n′niqiqj

q ′(εiqj + εj qi)
IP , (2.98)

TP
′ − RP

′ = ni

n′

(
1 − εiqj − εj qi

εiqj + εj qi

)
IP = ni

n′
2εj qi

εiqj + εj qi
IP . (2.99)

Equations (2.98) and (2.99) allow us to relate the P component of the electric field
in the interface layer (TP

′, RP
′) to the P component of the incident field (IP ).

Using these equations along with Eqs. (2.64), the following relations for the x and z

components are derived:

ET ′,x + ER′,x = q ′

n′K
(TP

′ + RP
′) = q ′

n′K
2n′niqiqj

q ′(εiqj + εj qi)
IP
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= q ′

n′K
2n′niqiqj

q ′(εiqj + εj qi)

niK

qi
EI,x = 2εiqj

εiqj + εj qi
EI,x = F

i→j
xx · EI,x,

(2.100)

ET ′(z) + ER′(z) = kx

n′K
(TP

′ − RP
′) = kx

n′K
ni

n′
2εj qi

(εiqj + εj qi)
IP

= kx

n′K
ni

n′
2εj qi

(εiqj + εj qi)

niK

kx

EI,z = εi

ε′
2εj qi

(εiqj + εj qi)
EI,z = F

i→j
zz · EI,z.

(2.101)

S component The y component is derived from the S polarization in the same way.
Using Eqs. (2.64), (2.73), and (2.97),

ET ′,y + ER′,y = TS
′ + RS

′ = IS + RS

=
(

1 + qi − qj

qi + qj

)
IS = 2qi

qi + qj
EI,y = F

i→j
yy · EI,y. (2.102)

Fresnel factor The above equations (2.100), (2.101), and (2.102) derive the Fresnel
factor F i→j ,

F i→j =

⎛

⎜⎜⎜⎜⎜⎜⎝

2εiqj

εj qi + εiqj

2qi

qi + qj

2εiεj

ε′
qi

εj qi + εiqj

⎞

⎟⎟⎟⎟⎟⎟⎠
(2.18)

The above derivation clarifies that the Fresnel factor F i→j in Eq. (2.18) for the
three-layer model describes the total (T ′+R′) electric field inside the thin interfacial
layer.
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Chapter 3
Microscopic Expressions of Nonlinear
Polarization

Abstract In the SFG processes described in the preceding Chap. 2, material
properties were treated as given parameters. This chapter formulates the mate-
rial properties relevant to the SFG spectroscopy from a microscopic viewpoint.
The most important property in the SFG spectra is the frequency-dependent
second-order nonlinear susceptibility tensor, χ (2)(�, ω1, ω2). We derive χ (2) by
the quantum mechanical perturbation theory of light-matter interactions. In the
vibrational SFG spectroscopy, vibrational resonance plays a critical role in the
nonlinear response of polarization. We further discuss some basic features of χ (2),
including the relation of its tensor elements to the light polarizations and molecular
orientation.

Keywords χ (2) · Perturbation theory · Vibrational resonance · Molecular
orientation

3.1 Density Matrix

In the present discussion on the light-matter interactions, we employ the semiclas-
sical description that the material is treated by quantum mechanics while the light
is treated as classical electromagnetic waves which perturb the material states.1 The
quantum states of materials in condensed phase are expressed preferably with the
density matrix rather than the wavefunction, for the reasons described below. Before
discussing the nonlinear susceptibility, we briefly introduce the density matrix and
summarize its merits [1, 13].

1The semiclassical theory suffices for properly describing susceptibilities of materials, including
the nonlinear ones, as the light fields provide perturbation on the materials states [12].
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3.1.1 Definition

First we begin with a simple case that the quantum state of material is expressed
by a wavefunction ψ(r, t), which is a proper superposition of energy eigenstates,
{φn(r) exp(−iEnt/h̄)};

ψ(r, t) =
∑

n

[
c′
n(t) exp

(−iEnt

h̄

)]
φn(r) =

∑

n

cn(t)φn(r). (3.1)

We suppose that the set of eigenstates {φn} are orthonormal and the wavefunctions
ψ is normalized. The normalization condition for ψ is

∑

n

|cn(t)|2 = 1. (3.2)

The expectation value of an arbitrary physical quantity A at this state ψ is

〈A(t)〉 = 〈ψ(t)|A|ψ(t)〉 =
∑

n

∑

m

cn(t)
∗cm(t) 〈n|A|m〉 . (3.3)

Now we introduce the density matrix ρ(t). Its matrix element ρmn is defined to be

ρmn(t) = cn(t)
∗cm(t) (3.4)

on the basis of the energy eigenfunctions {φn}. Note the order of suffixes m, n in
ρmn and its Hermitian character, ρmn = ρ∗

nm. According to Eqs. (3.3) and (3.4), the
expectation value 〈A(t)〉 could be written using the density matrix ρ by

〈A(t)〉 =
∑

n

∑

m

ρmnAnm = Tr [ρA]. (3.5)

The diagonal element ρnn = |cn|2 means the probability to find the state n. The
normalization condition (3.2) is written by

∑

n

ρnn = Tr [ρ] = 1. (3.6)

On the other hand, the off-diagonal element ρmn (m 	= n) represents the coherence
between the states m and n, as we discuss later (see Appendix A.1).

The time development of the density matrix ρ is defined from the Schrödinger

equation for ψ , ih̄
∂ψ

∂t
= Ĥψ . Substituting the expression of ψ in Eq. (3.1) into this

Schrödinger equation, we get the equations for the coefficients {cm(t)},

ih̄
dcm(t)

dt
=
∑

n

Hmncn(t). (3.7)
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Therefore, the time development of ρ(t) is defined by

ih̄
dρmn(t)

dt
= ih̄

(
dcn(t)

∗

dt
cm(t) + cn(t)

∗ dcm(t)

dt

)

= −
∑

l

H ∗
nlcl(t)

∗cm(t) +
∑

l

cn(t)
∗Hmlcl(t)

= −
∑

l

Hlnρml(t) +
∑

l

Hmlρln(t) = [Hρ(t) − ρ(t)H ]mn . (3.8)

Equation (3.8) is called the Liouville equation.

3.1.2 Features and Advantages

The density matrix ρ offers an alternative means for the wavefunction ψ to represent
the quantum state of the system. The merits of employing the density matrix
over the wavefunction are manifested when considering (i) statistical ensemble of
quantum states, and/or (ii) quantum states of a partial system embedded in a large
system, such as a solute molecule in solution. We discuss these two situations in the
following.

(i) Ensemble of States

Most of experimental measurements in molecular science usually observe an
ensemble of molecules, except for special cases of single molecule measurements.
Therefore, ensemble average tends to be involved and plays an important role in
interpreting the ordinary experiments from a microscopic viewpoint.

Let us consider an ensemble of quantum states consisting of ψj , where the
probability of finding the state j is P j . (Each ψj is supposed to be normalized,
but need not be orthogonal each other.) In such a situation, the expectation value of
a physical quantity A in Eq. (3.3) is given by taking the ensemble average over the
states j ,

〈A(t)〉 −−→
ensemble∑

j

P j
〈
ψj(t)|A|ψj(t)

〉
=
∑

j

∑

n

∑

m

P jc
j
n(t)∗cj

m(t) 〈n|A|m〉 .

Hereafter the ensemble average is denoted with the overbar. The above formula is
accordingly expressed by

〈A(t)〉 −−→ 〈A(t)〉 = 〈ψ(t)|A|ψ(t)〉 =
∑

n

∑

m

cn(t)∗cm(t) 〈n|A|m〉 . (3.9)
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We notice that 〈A(t)〉 involves two kinds of average manipulations, the quantum
mechanical average for the wavefunction ψj and the statistical average over the
ensemble j . The definition of the density matrix ρ in Eq. (3.4) is accordingly
extended to take account of the statistical ensemble to

ρmn(t) =
ensemble∑

j

P j c
j
n(t)∗cj

m(t) = cn(t)∗cm(t). (3.10)

Such ensemble of states is called “mixed state”, whereas a state represented with a
single wavefunction is called “pure state”. The density matrix ρ in Eq. (3.4) account
for a pure state, while that in Eq. (3.10) for a mixed state.

Then we extend the formulas of ρ in the preceding subsection to the mixed states.
However, it is rather surprising to confirm that the fundamental formulas of ρ are
unchanged by the extension of ρ. The following formulas are valid for the mixed
states as well as the pure states,

• Eq. (3.5): expectation value 〈A(t)〉 or 〈A(t)〉,
• Eq. (3.6): normalization condition,
• Eq. (3.8): time development (Liouville equation),

once we replace ρ in Eq. (3.4) with that in Eq. (3.10).

[Problem 3.1] Confirm that Eqs. (3.5), (3.6) and (3.8) are valid for the mixed states
as well.

The density matrix allows us to treat pure states and mixed states with the common
formalism. This is a remarkable advantage of the density matrix in treating ensemble
of states. We also note that it is possible to distinguish whether a given density
matrix ρ refers to a mixed state or a pure state by the following criterion,

{
Tr [ρ2] = 1 for pure state,

Tr [ρ2] < 1 for mixed state.
(3.11)

[Problem 3.2] Prove the criterion Eq. (3.11) to distinguish the pure state and the
mixed state. Recall the normalization condition of states and the Schwarz inequality
for inner products.

On the other hand, the wavefunction is not as convenient as the density matrix
to treat the mixed state, since the mixed state is not represented with a single wave-
function. One cannot take the statistical average for the wavefunctions themselves,
since an “ensemble averaged state” ψ = ∑

j P jψj would be a completely different
state! For example, the expectation value would be different as follows,
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〈ψ |A|ψ〉 =
ensemble∑

j,k

∑

n,m

P jP kc
j
n(t)∗ck

m(t)〈n|A|m〉

	= 〈A〉 =
ensemble∑

j

∑

n,m

P j c
j
n(t)∗cj

m(t)〈n|A|m〉.

If the mixed state is treated with the wavefunctions ψj , one should have to treat the
properties (expectation value, time development, etc.) at each wavefunction ψj and
then to explicitly take the statistical average over the wavefunctions.

(ii) Partial System in Bath

The density matrix is also advantageous in describing a partial system buried in
a large system when our main interest is focused on the partial system. Such a
situation is quite common in chemistry in condensed phase, e.g. a solute molecule
in solution. The wavefunction is hard to account for such situation. This is because
treating the wavefunction for the entire system may be tedious, and the wavefunction
for a partial system is not well defined when it interacts with the rest (called “bath”).

To illustrate such situation, we assume the collective coordinates of a partial
system and the bath to be r and R, respectively. The partial system has a set
of eigenstates {φn(r)} of the Hamiltonian for the partial system itself. Then the
wavefunction of the whole system � can be expressed in principle with the
superposition of {φn(r)} in the same way as Eq. (3.1),

�(r,R, t) =
∑

n

Cn(R, t)φn(r). (3.12)

Treating �(r,R, t) in Eq. (3.12) may be tedious, as the coefficients Cn explicitly
depend on the bath coordinates R. However, in case that we are interested in a
physical quantity for the partial system A, its expectation value is given by

〈A(t)〉 = 〈�|A|�〉 =
∑

n

∑

m

〈Cn(R, t)|Cm(R, t)〉 〈n|A|m〉 ,

where A is supposed to be a function of the system coordinates r . We could take the
statistical average over ensemble to get

〈A(t)〉 = 〈�|A|�〉 =
∑

n

∑

m

〈Cn(R, t)|Cm(R, t)〉 〈n|A|m〉 . (3.13)

Accordingly, we can define the density matrix for the partial system to be

ρmn(t) = 〈Cn(R, t)|Cm(R, t)〉, (3.14)
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and thereby Eq. (3.13) becomes equivalent to Eq. (3.5) in terms of the expression
of the expectation value. We note that ρmn(t) in Eq. (3.14) does not include the
explicit bath coordinates R any more, as they are averaged out in the right hand
side. Equations (3.13) and (3.14) provide a closed description of the partial system
within the coordinates r . The density matrix for the partial system in Eq. (3.14) is
sufficient to describe the physical quantity A for the partial system, with obviating
details of the bath wavefunctions Cn.

A remaining issue is to determine the time development of the density matrix thus
defined. The time development of the partial system could not be represented by the
Liouville equation (3.8) with the Hamiltonian for the partial system H , because the
time development is influenced by the interaction with the bath. One could describe
the time development using the Hamiltonian and density matrix (or wavefunction)
for the whole system, though such a way is not compatible with the merit of using
the density matrix formalism. Here we avoid the tedious route to treat the whole
system, but rather focus on the time development of the partial system itself in a
closed, phenomenological way.

When the partial system interacts with the bath, an outstanding feature arises that
the partial system approaches thermal equilibrium. This is a quite general tendency,
irrespective of the details of the interaction with the bath. The thermal equilibrium
is represented as a mixed state, where the probability of state n is proportional to
the Boltzmann factor exp(−En/kBT ) and the off-diagonal correlation vanishes by
random fluctuation. Therefore, the thermal equilibrium is specified by the following
steady-state density matrix,

ρ
eq
mn = exp (−En/kBT )∑

n

exp (−En/kBT )
δmn, (3.15)

where kB denotes the Boltzmann constant and T the absolute temperature. To
incorporate this relaxation in a simple and phenomenological manner, the Liouville
equation of (3.8) is extended to

ih̄
dρmn(t)

dt
= [Hρ(t) − ρ(t)H ]mn − ih̄�mn

(
ρmn(t) − ρ

eq
mn

)
, (3.16)

where the second term in the right hand side is added to account for the relaxation
to the thermal equilibrium. The parameters for relaxation rates �mn are real and
positive, and also symmetric with respect to the suffixes m, n, �mn = �nm, due
to the Hermitian condition for the density matrix (ρ∗

nm = ρmn). The following
discussion on the susceptibilities will be derived from the extended Liouville
equation of Eq. (3.16).

Finally, we note in passing the validity of Eqs. (3.16) and (3.8). The states m, n

in Eq. (3.16) refer to a system in a bath, and the damping parameter �mn stems from
perturbation from the bath. If the states m, n refer to the entire system (system +
bath), the Liouville equation of Eq. (3.16) becomes Eq. (3.8) with obviating �mn.
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The states for the entire system (system + bath) are hard to treat in practical
applications. However, in some occasions, the original formula of Eq. (3.8) is more
convenient than Eq. (3.16) to deal with formal properties of the susceptibilities,
since the discussion becomes free from the phenomenological parameter. We will
encounter such occasions in Sects. 4.3 and 7.4.

3.2 Perturbation Forms of Susceptibilities

3.2.1 Perturbation Expansion of Density Matrix

Based on the density matrix introduced above, let us discuss the quantum formulas
of susceptibilities [1, 13, 15]. We begin with the general perturbation theory of
materials by lights, and apply the formulas to the first-order susceptibility. In what
follows, the material in question is arbitrarily chosen, either a single molecule or the
interface system of condensed matter, since the following formulas are commonly
applicable.

We define the zero-th order state without the perturbation. Before irradiating the
light, the material is in the thermal equilibrium state,

ρ(0) = ρeq = 1

Q
exp

(
− H0

kBT

) (
Q = Tr

[
exp

(
− H0

kBT

)])
, (3.17)

where H0 is the Hamiltonian for the material system. (If it is embedded in
the bath, H0 refers to the partial system.) Q is the partition function for the
canonical ensemble. The above expression for ρeq is equivalent to Eq. (3.15), though
Eq. (3.15) shows the matrix element on the basis of energy eigenfunctions {φn}
(H0φn = Enφn).

Then let us turn on the light and allow it to interact with the material.
Consequently, the Hamiltonian changes from H0 to

H = H0 + H ′ = H0 − μ · E(t). (3.18)

The second term H ′ = −μ · E(t) represents the perturbation, which is the
interaction between the electric field E and the dipole moment of the material μ.
This expression is based on the electric dipole approximation for the light-matter
interaction, on the assumption that the dimension of surface layer is much smaller
than the typical wavelength of light. We also note that the light-matter interaction
Hamiltonian H ′ in Eq. (3.18) takes account of only the electric interaction, because
the interaction energy with the magnetic field is significantly smaller than with the
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electric field for nonmagnetic materials (see Appendix A.2).2 The electric field E(t)

in Eq. (3.18) is expressed by the superposition of oscillating fields like Eq. (1.3),

Eq(t) =
∑

k

Eq(ωk) exp(−iωkt) (q = x ∼ z)

= Eq(ω1) exp(−iω1t) + Eq(ω2) exp(−iω2t) + · · · + c.c.

The perturbation by this electric field alters the density matrix from ρ(0) to ρ,

ρ = ρ(0) + ρ(1) + ρ(2) + · · · .

By substituting this perturbation expansion of ρ in the Liouville equation (3.16), we
find that each order of perturbation has to satisfy the following equation.

0-th: ih̄
dρ

(0)
mn

dt
=
[
H0, ρ

(0)
]

mn
= 0 (3.19)

1-st: ih̄
dρ

(1)
mn

dt
=
[
H0, ρ

(1)
]

mn
+
[
H ′, ρ(0)

]

mn
− ih̄�mnρ

(1)
mn (3.20)

2-nd: ih̄
dρ

(2)
mn

dt
=
[
H0, ρ

(2)
]

mn
+
[
H ′, ρ(1)

]

mn
− ih̄�mnρ

(2)
mn (3.21)

...

The matrix elements in Eqs. (3.19), (3.20), and (3.21) are represented on the basis set
of energy eigenstates that satisfy H0 |n〉 = En |n〉. The zero-th order equation (3.19)
means that the original state ρ(0) in thermal equilibrium is a steady state. Since
ρ(0) = ρeq in Eq. (3.15) is diagonal, it is expressed by ρ

(0)
mn = ρ

(0)
n δmn hereafter.

3.2.2 First-Order Susceptibility

The first-order equation (3.20) is expanded by the energy eigenstates,

ih̄
dρ

(1)
mn

dt
=
[
H0, ρ

(1)
]

mn
+
[
H ′, ρ(0)

]

mn
− ih̄�mnρ

(1)
mn

= (Em − En)ρ
(1)
mn + 〈

m|H ′|n〉 (ρ(0)
n − ρ(0)

m ) − ih̄�mnρ
(1)
mn.

2We extend this treatment to include the interaction with electric quadrupole and magnetic dipole
in Chap. 7.
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This equation is written using ωmn = (Em − En)/h̄ by

dρ
(1)
mn

dt
+ iωmnρ

(1)
mn + �mnρ

(1)
mn = i

h̄

〈
m|H ′|n〉 (ρ(0)

m − ρ(0)
n )

= e−(iωmn+�mn)t d

dt

{
e(iωmn+�mn)tρ(1)

mn(t)
}

,

which can be readily integrated to obtain the following form,

e(iωmn+�mn)tρ(1)
mn(t) = i

h̄
(ρ(0)

m − ρ(0)
n )

∫ t

−∞
〈
m|H ′(τ )|n〉 e(iωmn+�mn)τ dτ

= − i

h̄
(ρ(0)

m − ρ(0)
n )

∫ t

−∞

x−z∑

q

〈
m|μq |n〉

∑

k

Eq(ωk)e
−iωkτ e(iωmn+�mn)τ dτ

= − i

h̄
(ρ(0)

m − ρ(0)
n )

∑

q

〈
m|μq |n〉

∑

k

Eq(ωk)
e(−iωk+iωmn+�mn)t

−iωk + iωmn + �mn

.

In the above integration, the boundary condition at t → −∞ was set to be
ρ(t) = ρ(0), assuming that the system was in thermal equilibrium in the past before
irradiated by light. Therefore, we have the following expression for ρ(1)(t),

ρ(1)
mn(t) = 1

h̄
(ρ(0)

m − ρ(0)
n )

∑

q

〈
m|μq |n〉

∑

k

Eq(ωk)
e−iωkt

ωk − ωmn + i�mn

(3.22)

Equation (3.22) presents the first-order perturbation of the density matrix by the
electric field E of light. The perturbed state results in the induced polarization
P (1)(t),

P (1)
p (t) = Tr

[
μpρ(1)(t)

]
=
∑

m,n

〈
n|μp|m〉 ρ(1)

mn(t)

= 1

h̄

∑

m,n

(ρ(0)
m − ρ(0)

n )
〈
n|μp|m〉

∑

q

〈
m|μq |n〉

∑

k

Eq(ωk)
e−iωkt

ωk − ωmn + i�mn

=
∑

k

P (1)
p (ωk)e

−iωkt . (3.23)

The above formula allows us to derive the first-order susceptibility of the material,
χ (1)(ω), which is defined with the induced polarization by the oscillating electric
field Eq(ω)

P (1)
p (ω) = χ(1)

pq (ω)Eq(ω) (3.24)



56 3 Microscopic Expressions of Nonlinear Polarization

Comparing Eqs. (3.23) and (3.24), one gets the form of χ (1)(ω) as

χ(1)
pq (ω) = 1

h̄

∑

m,n

(ρ(0)
m − ρ(0)

n )

〈
n|μp|m〉 〈m|μq |n〉
ω − ωmn + i�mn

. (3.25)

Equation (3.25) is equivalently written in the following,

χ(1)
pq (ω) = 1

h̄

∑

g,n

ρ(0)
g

[
−
〈
g|μp|n〉 〈n|μq |g〉
ω − ωng + i�ng

+
〈
g|μq |n〉 〈n|μp|g〉
ω + ωng + i�ng

]

=
∑

g

ρ(0)
g χ(1)

pq,g(ω). (3.26)

The last expression of Eq. (3.26) allows for the interpretation that χ
(1)
pq (ω) is given

by thermal average of the susceptibility at the state g, χ
(1)
pq,g(ω), over the population

distribution of g.

3.2.3 Second-Order Susceptibility

The second-order susceptibility χ (2) is derived from the second-order perturbation
of the density matrix ρ(2) in Eq. (3.21), or in the following form,

dρ
(2)
mn

dt
+ iωmnρ

(2)
mn + �mnρ

(2)
mn = − i

h̄

[
H ′, ρ(1)

]

mn
. (3.27)

Substituting ρ(1) of Eq. (3.22) into Eq. (3.27), we get the expression for ρ(2),

ρ(2)
mn(t) = − 1

h̄2

∑

l

∑

j,k

x∼z∑

p,q

{
(ρ

(0)
l − ρ(0)

n )

〈
m|μp|l〉 〈l|μq |n〉
ωk − ωln + i�ln

− (ρ(0)
m − ρ

(0)
l )

〈
m|μq |l〉 〈l|μp|n〉

ωk − ωml + i�ml

}

· 1

(ωj + ωk) − ωmn + i�mn

Ep(ωj )Eq(ωk)e
−i(ωj +ωk)t . (3.28)

[Problem 3.3] Derive ρ(2)(t) in Eq. (3.28).
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Therefore, the second-order induced polarization P (2)(t) is

P (2)
r (t) = Tr

[
μrρ

(2)(t)
]

=
∑

m,n

〈n|μr |m〉 ρ(2)
mn(t)

= − 1

h̄2

∑

m,n

〈n|μr |m〉
∑

l

∑

j,k

x−z∑

p,q

{
(ρ

(0)
l − ρ(0)

n )

〈
m|μp|l〉 〈l|μq |n〉
ωk − ωln + i�ln

−(ρ(0)
m −ρ

(0)
l )

〈
m|μq |l〉 〈l|μp|n〉
ωk−ωml+i�ml

}
· 1

(ωj+ωk)−ωmn+i�mn

Ep(ωj )Eq(ωk)e
−i(ωj +ωk)t.

(3.29)

The second-order nonlinear susceptibility χ
(2)
pqr (�, ω1, ω2) is derived from this

equation, by considering two incident fields, Eq(ω1) and Er(ω2), with specific
directions (q, r) and frequencies (ω1, ω2). Then the sum frequency polarization
along the p direction, P

(2)
p (� = ω1 + ω2), is induced by

P (2)
p (� = ω1 + ω2) = χ(2)

pqr (�, ω1, ω2)Eq(ω1)Er(ω2) (3.30)

where p, q, r denote the spatial coordinates x ∼ z. To compare Eq. (3.30) to (3.29),
we find that the induced polarization P

(2)
p (�) corresponds to a pair of terms,

Eq(ω1)Er(ω2) and Er(ω2)Ep(ω1), with exchanging the suffixes (p ↔ q) and

(j ↔ k) simultaneously in Eq. (3.29). Therefore, the expression of χ
(2)
pqr becomes

χ(2)
pqr (�, ω1, ω2) = − 1

h̄2

∑

m,n

〈
n|μp|m〉

·
∑

l

[{
(ρ

(0)
l − ρ(0)

n )

〈
m|μq |l〉 〈l|μr |n〉
ω2 − ωln + i�ln

− (ρ(0)
m − ρ

(0)
l )

〈m|μr |l〉
〈
l|μq |n〉

ω2 − ωml + i�ml

}

· 1

� − ωmn + i�mn

+
{

(ρ
(0)
l − ρ(0)

n )
〈m|μr |l〉

〈
l|μq |n〉

ω1 − ωln + i�ln

− (ρ(0)
m − ρ

(0)
l )

〈
m|μq |l〉 〈l|μr |n〉

ω1 − ωml + i�ml

}

· 1

� − ωmn + i�mn

]
(3.31)

We should note that the perturbation formula of χ (2) has a number of variations by
different notation of suffixes l, m, n. For example, the following expression is also
seen in literature,
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χ(2)
pqr (�, ω1, ω2) = 1

h̄2

∑

g,n,m

ρ(0)
g

[
〈g|μp|n〉〈n|μq |m〉〈m|μr |g〉(

�−ωng+i�ng

) (
ω2−ωmg+i�mg

) + 〈g|μp|n〉〈n|μr |m〉〈m|μq |g〉(
�−ωng+i�ng

) (
ω1−ωmg+i�mg

)

+ 〈g|μr |m〉〈m|μq |n〉〈n|μp|g〉(
�+ωng+i�ng

) (
ω2+ωmg+i�mg

)+ 〈g|μq |m〉〈m|μr |n〉〈n|μp|g〉(
�+ωng+i�ng

) (
ω1+ωmg+i�mg

)

− 〈g|μr |m〉〈m|μp|n〉〈n|μq |g〉
(� − ωnm + i�nm)

(
1

ω2 + ωmg + i�mg
+ 1

ω1 − ωng + i�ng

)

−〈g|μq |m〉〈m|μp|n〉〈n|μr |g〉
(� − ωnm + i�nm)

(
1

ω2 − ωng + i�ng
+ 1

ω1 + ωmg + i�mg

)]

=
∑

g

ρ(0)
g χ(2)

pqr,g(�, ω1, ω2). (3.32)

This expression is amenable to the similar interpretation with Eq. (3.26) that χ
(2)
pqr

is given by thermal average of the susceptibility at the state g, χ
(2)
pqr,g , over the

population distribution of g. The factors emphasized with bold fonts are discussed
in the following section.

3.3 Properties of χ(2)

The above equation (3.32) for χ (2)(�, ω1, ω2) is used to discuss qualitative features
of nonlinear susceptibility. We summarize some fundamental properties of χ (2)

in relation to the surface spectroscopy. This section deals with the mechanism of
resonance in χ (2) in Sect. 3.3.1, the relations of χ (2) to molecular orientation in
Sect. 3.3.2, and to light polarizations in Sect. 3.3.3.

3.3.1 Vibrational Resonance

Since χ (2) governs the SFG signal, its frequency dependence describes the spectral
shape. In particular, the dependence of χ (2) on the infrared frequency ω2 is essential
for interpreting the vibrational SFG spectroscopy. The ω2 dependence of χ (2) is
mainly attributed to vibrational resonance, as discussed in the following.

Among the terms in the right hand side of Eq. (3.32), some denominators includ-
ing ω2, such as (ω2 − ωmg + i�mg) and (ω2 − ωng + i�ng), are emphasized in a
bold font. These denominators indicate resonance when ω2 is close to ωmg or ωng ,
i.e. ω2 ≈ ωmg = (Em−Eg)/h̄ or ω2 ≈ ωng = (En−Eg)/h̄. Suppose ω2 is an infrared
frequency, the state m (or n) in resonance is usually a vibrationally excited state.
Other bold denominators including ω2 in Eq. (3.32), such as (ω2 + ωmg + i�mg),
also imply the possible resonance at ω2 ≈ −ωmg in case of ωmg < 0 (Em < Eg) that
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the initial state g is a vibrationally excited state. Therefore, one could categorize the
terms in Eq. (3.32) into those including the above-mentioned resonant denominators
((ω2 − ωmg + i�mg), (ω2 − ωng + i�ng), (ω2 + ωmg + i�mg)) and the rest. The
former is called the vibrationally resonant terms and denoted by χ (2),res, while the
latter is called the nonresonant terms χ (2),nonres. Accordingly,

χ(2)
pqr = χ(2),res

pqr + χ(2),nonres
pqr , (3.33)

where

χ(2),res
pqr (�,ω1, ω2) = 1

h̄2

∑

g,n,m

ρ(0)
g

[
〈g|μp|n〉〈n|μq |m〉〈m|μr |g〉(

�−ωng+i�ng

) (
ω2−ωmg+i�mg

)− 〈g|μq |m〉〈m|μp|n〉〈n|μr |g〉
(�−ωnm+i�nm)

(
ω2−ωng+i�ng

)

+ 〈g|μr |m〉〈m|μq |n〉〈n|μp|g〉(
�+ωng+i�ng

) (
ω2+ωmg+i�mg

)− 〈g|μr |m〉〈m|μp|n〉〈n|μq |g〉
(�−ωnm+i�nm)

(
ω2+ωmg+i�mg

)

]

(3.34)

and

χ(2),nonres
pqr (�,ω1, ω2) = 1

h̄2

∑

g,n,m

ρ(0)
g

[
〈g|μp|n〉〈n|μr |m〉〈m|μq |g〉(

�−ωng+i�ng

) (
ω1 − ωmg + i�mg

) − 〈g|μr |m〉〈m|μp|n〉〈n|μq |g〉
(� − ωnm + i�nm)

(
ω1 − ωng + i�ng

)

+ 〈g|μq |m〉〈m|μr |n〉〈n|μp|g〉(
�+ωng+i�ng

) (
ω1+ωmg+i�mg

)− 〈g|μq |m〉〈m|μp|n〉〈n|μr |g〉
(�−ωnm+i�nm)

(
ω1+ωmg+i�mg

)
]

.

(3.35)

χ (2),res in Eq. (3.34) is further modified to

χ(2),res
pqr (�,ω1, ω2)

= 1

h̄2

∑

g,n,m

ρ(0)
g

[
〈g|μp|n〉〈n|μq |m〉〈m|μr |g〉(

� − ωng + i�ng

) (
ω2 − ωmg + i�mg

)

− 〈g|μq |m〉〈m|μp|n〉〈n|μr |g〉
(� − ωnm + i�nm)

(
ω2 − ωng + i�ng

)
]
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+ 1

h̄2

∑

g,n,m

ρ(0)
g

[
〈g|μr |m〉 〈m|μq |n〉 〈n|μp|g〉

(
� + ωng + i�ng

) (
ω2 + ωmg + i�mg

)

− 〈g|μr |m〉 〈m|μp|n〉 〈n|μq |g〉

(� − ωnm + i�nm)
(
ω2 + ωmg + i�mg

)
]

= 1

h̄2

∑

g,n,m

ρ(0)
g

[〈
g|μp|n〉 〈n|μq |m〉
� − ωng + i�ng

−
〈
g|μq |n〉 〈n|μp|m〉
� + ωnm + i�nm

]
〈m|μr |g〉

ω2 − ωmg + i�mg

+ 1

h̄2

∑

g,n,m

ρ(0)
m

[〈
g|μq |n〉 〈n|μp|m〉
� + ωnm + i�nm

−
〈
g|μp|n〉 〈n|μq |m〉
� − ωng + i�ng

]
〈m|μr |g〉

ω2 − ωmg + i�mg

= − 1

h̄

∑

g,m

(
ρ(0)

g − ρ(0)
m

) 〈g|αpq(�)|m〉 〈m|μr |g〉
ω2 − ωmg + i�mg

, (3.36)

where the last expression includes the matrix elements of the Raman tensor〈
g|αpq(�)|m〉 defined by

〈
g|αpq(�)|m〉 = − 1

h̄

∑

n

[〈
g|μp|n〉 〈n|μq |m〉
� − ωng + i�ng

−
〈
g|μq |n〉 〈n|μp|m〉
� + ωnm + i�nm

]
. (3.37)

The matrix element
〈
g|αpq(�)|m〉 is associated to the transition probability of

Raman scattering from the state g to m [2, 8, 10, 11]. The diagonal element at
g = m,

〈
g|αpq(�)|g〉, is equal to χ

(1)
pq,g(�) in Eq. (3.26), the first-order susceptibility

at the state g. We also note that the nonresonant term χ (2),nonres in Eq. (3.35) can be
represented in the same manner to be

χ(2),nonres
pqr = − 1

h̄

∑

g,m

(
ρ(0)

g − ρ(0)
m

) 〈g|αpr(�)|m〉 〈m|μq |g〉
ω1 − ωmg + i�mg

. (3.38)

The χ (2) expressions in Eqs. (3.36) and (3.38) include product of the transition
dipole moment 〈m|μ|g〉 and the Raman tensor 〈g|α(�)|m〉 in the numerator.
Therefore, the SFG process includes both infrared active (〈m|μ|g〉 	= 0) and
Raman active (〈g|α|m〉 	= 0) transitions. This conclusion is in accord with the
basic selection rule of SFG in Chap. 1 that a system having inversion symmetry
has no active vibrational mode to SFG due to the IR-Raman mutual exclusion
theorem.

The principal difference between Eqs. (3.36) and (3.38) is seen in ω2 (infrared)
or ω1 (visible) included in the denomenator. In the vibrational SFG spectroscopy,
the vibrational transition could be in resonance with the infrared frequency ω2. The
vibrationally resonance term χ(2),res could be interpreted formally as successive
transitions by the infrared absorption and anti-Stokes Raman scattering, as schemat-
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Fig. 3.1 Schematic
illustration of vibrationally
resonant term χ (2),res in the
vibrational SFG spectroscopy.
ω2 is in resonance with the
energy gap between the
vibrational ground |g〉 and
excited |m〉 states. The
intermediate state |n〉 may be
off resonant from ω1 or �

m g

g

m

n

mgmg

g m

2

1

ically illustrated in Fig. 3.1. The main resonance term of χ
(2),res
pqr in Eq. (3.36) has the

following spectral lineshape as a function of ω2,

χ(2),res
pqr (ω2) ∼ −Cmg

ω2 − ωmg + i�mg

= −Cmg (ω2 − ωmg)

(ω2 − ωmg)2 + �2
mg

+ i
Cmg �mg

(ω2 − ωmg)2 + �2
mg

, (3.39)

where Cmg = (1/h̄)(ρ
(0)
g − ρ

(0)
m )

〈
g|αpq(�)|m〉 〈m|μr |g〉. Equation (3.39) is a

complex Lorentz function with the central frequency ω2 = ωmg and the width �mg ,
and Fig. 3.2 illustrates the ω2 dependence of its real and imaginary parts. On the
other hand, the nonresonant term χ (2),nonres does not show such dependence on ω2.
In a limited frequency range of ω2 in usual vibrational SFG spectra, the nonresonant
term can be approximated as a constant with respect to ω2. Therefore, χ (2) is often
represented phenomenologically as a superposition of a constant background C0

and some Lorentz functions in the form,

χ (2)(ω2) ≈ C0 −
N∑

k=1

Ck

ω2 − ωk + i�k
. (3.40)

Equation (3.40) is often employed in fitting experimental spectra, where the
ingredient parameters C0 and {Ck, ωk, �k} (k = 1 ∼ N ) are determined so as
to reproduce the experimental spectra.

In the above discussion we focused on the vibrational resonance with ω2 in
χ (2)(�, ω1, ω2). Conventional applications of vibrational SFG spectroscopy usually
employ a fixed visible frequency ω1 in electronically non-resonant condition.
When the frequency � is far off the electronic transition energy (� � ωng

in Fig. 3.1), the Raman tensor αpq is well approximated with the polarizability
tensor [14] (see Appendix A.3). In the following discussion we mainly deal with
vibrationally resonant but electronically non-resonant conditions in the vibrational
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(a) Cmg > 0

(b) Cmg < 0
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Water O-H Methyl sym. C-H

Fig. 3.2 Schematics of Lorentz functions in Eq. (3.39) in the case of (a) Cmg > 0 and (b)
Cmg < 0. Real and imaginary parts are written with blue dashed and red solid lines, respectively.
Right pictures illustrate corresponding molecular orientations of water and methyl group, as
discussed in Sect. 4.2

SFG spectroscopy, though the SFG process involving the electronic resonance has
been also discussed [4, 16–18].3

3.3.2 Relation to Molecular Orientation

Next we discuss the values of the χ (2) tensor elements. The χ (2) tensor can be
represented in an arbitrary coordinate system, and the values of the tensor elements
vary with the rotation of the system or the coordinate. Here we formulate the relation
between the tensor elements and orientation. The relation offers a useful clue to
investigate the orientation of molecules at interface by the SFG spectroscopy [9].

Let us recall that the χ (2) formula of Eq. (3.31) or (3.32) is applicable to either a
molecule or the interface system. When ρ and μ are defined for a single molecule,
Eq. (3.31) or (3.32) gives the second-order susceptibility for the molecule, usually
called the molecular hyperpolarizability α(2)(�, ω1, ω2). When ρ and μ are defined
for the interface system, the χ (2) formula gives the second-order susceptibility of the

3The SFG with electronic resonance involves the Raman tensor in electronically resonant
condition, and thus related to the resonance Raman scattering. The vibrational SFG spectroscopy
including electronic resonance plays an important role in the chiral applications in Chap. 8.
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interface. The hyperpolarizability of an individual molecule α(2) and the nonlinear
susceptibility of the interface χ (2) are treated on the same formulation. The relation
between χ (2) and α(2) is discussed as follows. In the following formulas about
molecular orientation, the suffixes p, q, r stand for the space-fixed coordinates
(x, y, z), while p′, q ′, r ′ for the molecule-fixed coordinates (ξ, η, ζ ).

Two Factors: Density and Orientation

Suppose that the interface system consists of molecules, the second-order sus-
ceptibility of the interface χ (2) is approximated by the sum of the second-order
susceptibility of constituent molecules α(2),

χ(2)
pqr ≈

N∑

l=1

α
(2)
l,pqr = N · α

(2)
pqr , (3.41)

where the suffix l stands for the constituent N molecules, and α
(2)
pqr = 1

N

N∑

l=1

α
(2)
l,pqr

is the average of α(2) in the space-fixed coordinate. Equation (3.41) indicates that
χ

(2)
pqr is proportional to the number of molecules N and the average of hyperpo-

larizability α
(2)
pqr . α

(2)
pqr is the average over molecules with various orientations, and

thus an index to the orientational order of the molecules. The two factors, number
density and orientational order, are regarded to govern the intensity of SFG signal
in a qualitative sense.

We note that Eq. (3.41) expresses the nonlinear polarization of the whole
system simply as the assembly of the induced polarizations of molecules. This
χ (2) expression of Eq. (3.41) is widely utilized in qualitative analysis of SFG
amplitude. However, this expression neglects dielectric coupling among molecular
polarizations, and the underlying approximation can break down in Sect. 9.3 [6, 7].
More accurate treatment of polarization will be provided in Chap. 5.

Rotational Matrix

Equation (3.41) relates the tensor elements χ
(2)
pqr and α

(2)
pqr on the common space-

fixed coordinates. However, the molecular property of α
(2)
pqr is conveniently pre-

sented on the molecule-fixed coordinates, while χ
(2)
pqr is usually given on the

space-fixed coordinates of the experimental geometry. Accordingly, we define
the transformation of the hyperpolarizability tensor α(2) from the molecule-fixed
coordinates (namely ξ, η, ζ ) to the space-fixed ones (x, y, z).

We denote the unit vectors along the molecule-fixed axes ξ, η, ζ by eξ , eη, eζ ,
respectively, and the unit vectors along the spaced-fixed axes x, y, z by ex, ey, ez.
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Fig. 3.3 Definition of the
Euler angles {φ, θ, ψ}

x

y

z

Then the relation between the two sets of unit vectors is given using the direction
cosine matrix D,

⎛

⎝
ex

ey

ez

⎞

⎠ = D

⎛

⎝
eξ

eη

eζ

⎞

⎠ , where D =
⎛

⎝
(ex · eξ ) (ex · eη) (ex · eζ )

(ey · eξ ) (ey · eη) (ey · eζ )

(ez · eξ ) (ez · eη) (ez · eζ )

⎞

⎠ (3.42)

The matrix D represents the rotation of the axes, which is given with the Euler
angles {φ, θ, ψ} by4

D =
⎛

⎜⎝
cos ψ cos φ − cos θ sin φ sin ψ − sin ψ cos φ − cos θ sin φ cos ψ sin θ sin φ

cos ψ sin φ + cos θ cos φ sin ψ − sin ψ sin φ + cos θ cos φ cos ψ − sin θ cos φ

sin ψ sin θ cos ψ sin θ cos θ

⎞

⎟⎠ .

(3.43)

The present definition of the Euler angles after Goldstein [3] is illustrated in Fig. 3.3,
though the way of their definition is not unique. When we express the coordinates
of a vector in two ways, by (ξ, η, ζ ) in the molecule-fixed coordinates and by
(x, y, z) in the space-fixed coordinates, the following relation holds between the
two expressions,

⎛

⎝
x

y

z

⎞

⎠ = D

⎛

⎝
ξ

η

ζ

⎞

⎠ . (3.44)

Comparing Eq. (3.44) to (3.42), we notice that the rotations of coordinates and axes
apparently take the same form of transformation. This is in accord with the fact
that an arbitrary vector r can be represented in either space-fixed or body-fixed
coordinates,

r = x ex + y ey + z ez = ξ eξ + η eη + ζ eζ ,

4φ and ψ in Fig. 3.3 and Eq. (3.43) denote the Euler angles, according to the conventional notation.
Distinguish them from the quantum states in this chapter.
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which can be converted each other using Eqs. (3.42) and (3.44) as

x ex + y ey + z ez = (
ex ey ez

)
⎛

⎝
x

y

z

⎞

⎠ = (
eξ eη eζ

)
DT · D

⎛

⎝
ξ

η

ζ

⎞

⎠

= (
eξ eη eζ

)
⎛

⎝
ξ

η

ζ

⎞

⎠ = ξ eξ + η eη + ζ eζ .

D in Eq. (3.44) is called the rotational matrix,5 and the transformation of Eq. (3.44)
holds for any vector (first-rank tensor).

Now let us express Eq. (3.41) with the α(2) elements in the molecule-fixed coor-
dinates. The molecular hyperpolarizability α(2) is represented in two ways, α(2),space

pqr

in the space-fixed coordinates or α
(2),mol
p′q ′r ′ in the molecule-fixed coordinates. As α(2)

is a third-rank tensor, the two representations of α(2) elements are related by

α
(2),space
pqr =

ξ∼ζ∑

p′

ξ∼ζ∑

q ′

ξ∼ζ∑

r ′
Dpp′Dqq ′Drr ′α(2),mol

p′q ′r ′ . (3.45)

Therefore, χ
(2)
pqr in Eq. (3.41) is represented by

χ(2)
pqr =

molecule∑

l

α
(2)
l,pqr =

molecule∑

l

ξ∼ζ∑

p′

ξ∼ζ∑

q ′

ξ∼ζ∑

r ′
Dl,pp′Dl,qq ′Dl,rr ′α(2),mol

p′q ′r ′ , (3.46)

using the rotational matrix Dl specified for the l-th molecule. The average α
(2)
pqr in

Eq. (3.41) is accordingly expressed by

α
(2)
pqr = 1

N

N∑

l=1

ξ∼ζ∑

p′

ξ∼ζ∑

q ′

ξ∼ζ∑

r ′
Dl,pp′Dl,qq ′Dl,rr ′α(2),mol

p′q ′r ′

=
∑

p′

∑

q ′

∑

r ′
Dpp′Dqq ′Drr ′ α

(2),mol
p′q ′r ′ . (3.47)

5The rotation matrix is often introduced with D−1 = DT , which satisfies

⎛

⎝
eξ

eη

eζ

⎞

⎠ = DT

⎛

⎝
ex

ey

ez

⎞

⎠ and

⎛

⎝
ξ

η

ζ

⎞

⎠ = DT

⎛

⎝
x

y

z

⎞

⎠ .

Do not confuse the two definitions, which are transpose each other.
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Note that Eq. (3.46) is consistent to the surface sensitivity of χ (2) mentioned
in Sect. 1.1, that an isotropic system has null χ (2). If a system consists of
molecules with fully random isotropic orientation, the average of Eq. (3.47) van-
ishes, Dpp′Dqq ′Drr ′ = 0, which leads to χ (2) = 0.

3.3.3 Tensor Elements of χ(2) and Polarization

Using the tensor elements of χ (2) in the space-fixed coordinates, we discuss the
relation to polarization combination of SFG measurement. Since χ

(2)
pqr is a third-

rank tensor, it has 33 = 27 elements in principle. In analyzing experimental SFG
spectra, relevant tensor elements of χ

(2)
pqr depend on the polarization of lights. There

are 8 possible combination of light polarizations in the SFG measurements, SSS,
SSP, SPS, PSS, SPP, PSP, PPS, and PPP, as noted in Sect. 2.3. The relation between
the experimental configuration and the relevant tensor elements of χ (2) is the main
topic of this subsection.

As discussed in Chap. 2, observed SFG signal is determined with the effective
susceptibility χ

(2)
eff ,

χ
(2)
eff = e(�) · χ (2)(�, ω1, ω2) : e(ω1)e(ω2) (2.23)

=
x∼z∑

p,q,r

ep(�)χ(2)
pqr (�, ω1, ω2)eq(ω1)er (ω2).

The polarization dependence of SFG signal is represented with three vectors, e(�),
e(ω1) and e(ω2), associated to the polarizations of three lights. These vectors
describe the electric fields at the respective frequencies ω = �, ω1 and ω2 inside
the interface, and are determined from the directions of the electric fields in the bulk
medium by the Fresnel transformation,

e(ω) = F i→j (ω) · ê
i
(ω). (2.17)

Therefore, we treat the directions of the electric fields in the bulk medium ê
i
(ω) in

relation to the experimental measurement.
Then let us consider the experimental configuration of Fig. 2.1, and observe the

reflective SFG signal in the medium α. In Fig. 2.1, θα(ω1) and θα(ω2) denote the
incident angles for the visible ω1 and infrared ω2 lights, respectively, and θα(�)

the emission angle for the sum-frequency � light into the medium α. These angles
specify the directions of the propagating lights in the medium α. The normalized
wavevectors for �, ω1, ω2 are accordingly given as

k̂
α
(�)=

⎛

⎝
sin θα(�)

0
cos θα(�)

⎞

⎠ , k̂
α
(ω1)=

⎛

⎝
sin θα(ω1)

0
− cos θα(ω1)

⎞

⎠ , k̂
α
(ω2)=

⎛

⎝
sin θα(ω2)

0
− cos θα(ω2)

⎞

⎠ .
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Each propagating light has two kinds of polarizations, S and P, as stated in Sect. 2.3
(c1). The directions of the S- and P-polarized electric fields in the medium α are
given by the following unit vectors,

• S-polarized:

ê
α
S(�) =

⎛

⎝
0
1
0

⎞

⎠ , ê
α
S(ω1) =

⎛

⎝
0
1
0

⎞

⎠ , ê
α
S(ω2) =

⎛

⎝
0
1
0

⎞

⎠ ,

• P-polarized:

ê
α
P(�)=

⎛

⎝
− cos θα(�)

0
sin θα(�)

⎞

⎠ , ê
α
P(ω1)=

⎛

⎝
cos θα(ω1)

0
sin θα(ω1)

⎞

⎠ , ê
α
P(ω2)=

⎛

⎝
cos θα(ω2)

0
sin θα(ω2)

⎞

⎠ .

The S-polarized electric field is perpendicular to the xz plane by definition, and
three vectors at each frequency, k̂

α
(ω), ê

α
S(ω), ê

α
P(ω), are orthogonal to each other.

For a given combination of light polarizations (SSS, SSP, . . . , PPP), ê
α
(ω) at each

frequency ω (= �,ω1, ω2) is determined, either ê
α
S(ω) or ê

α
P(ω), in the respective

order. Each ê
α
(ω) (ω = �, ω1, ω2) determines e(ω) by the Fresnel transformation in

Eq. (2.17). The set of e(�), e(ω1) and e(ω2) thus obtained specify χ
(2)
eff in Eq. (2.23)

and thereby the relevant tensor element(s) of χ
(2)
pqr (�, ω1, ω2) involved in χ

(2)
eff .

We note that all possible combinations of light polarizations do not necessarily
provide meaningful information on the interface systems, because independent
tensor elements of χ

(2)
pqr are much fewer than 33 = 27 in most systems for symmetry

reasons. In a typical case that two isotropic bulk phases are in contact with a flat
interface, this whole system has C∞v symmetry with the principal normal z axis. In
such case, following seven elements of χ

(2)
pqr are non-zero,

χ(2)
xxz = χ(2)

yyz, χ(2)
xzx = χ(2)

yzy, χ(2)
zxx = χ(2)

zyy, χ(2)
zzz. (3.48)

The other tensor elements vanish under C∞v , since all these elements include x or
y odd times. These elements change their sign by the reflection for the yz or xz

plane, respectively, though the system should be unchanged for its symmetry C∞v .
We also note that the x and y axes are equivalent under C∞v . Consequently, χ

(2)
eff in

Eq. (2.23) remains non-zero for only four combinations, SSP, SPS, PSS, and PPP.
The amplitudes for the four combinations are represented with the relevant tensor
elements and Fresnel factors as follows:

χ
(2)
eff,SSP = Fα→β

yy (�)Fα→β
yy (ω1)F

α→β
zz (ω2) sin θα(ω2)χ

(2)
yyz(�, ω1, ω2), (3.49)

χ
(2)
eff,SPS = Fα→β

yy (�)Fα→β
zz (ω1)F

α→β
yy (ω2) sin θα(ω1)χ

(2)
yzy(�,ω1, ω2), (3.50)
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χ
(2)
eff,PSS = Fα→β

zz (�)Fα→β
yy (ω1)F

α→β
yy (ω2) sin θα(�)χ(2)

zyy(�,ω1, ω2), (3.51)

χ
(2)
eff,PPP =

−Fα→β
xx (�)Fα→β

xx (ω1)F
α→β
zz (ω2) cos θα(�) cos θα(ω1) sin θα(ω2)χ

(2)
xxz(�,ω1,ω2)

−Fα→β
xx (�)Fα→β

zz (ω1)F
α→β
xx (ω2) cos θα(�) sin θα(ω1) cos θα(ω2)χ

(2)
xzx(�,ω1,ω2)

+Fα→β
zz (�)Fα→β

xx (ω1)F
α→β
xx (ω2) sin θα(�) cos θα(ω1) cos θα(ω2)χ

(2)
zxx(�,ω1,ω2)

+Fα→β
zz (�)Fα→β

zz (ω1)F
α→β
zz (ω2) sin θα(�) sin θα(ω1) sin θα(ω2)χ

(2)
zzz(�,ω1,ω2).

(3.52)

[Problem 3.4] Derive Eqs. (3.49), (3.50), (3.51), and (3.52). Also explain that other
combinations of light polarization vanish for the C∞v interface.

Note that the SSP, SPS, or PSS combination involves one tensor element of χ (2),
whereas the PPP involves a linear combination of four elements of χ (2).

3.4 Solutions to Problems

3.4.1 Formulas for Mixed States

[Problem 3.1] Confirm that Eqs. (3.5), (3.6) and (3.8) are valid for the mixed states
as well.

We confirm the three equations using the extended definition of ρ in Eq. (3.10).

1. Eq. (3.5): Expectation value.

〈A(t)〉 = Tr [ρA] =
∑

n

∑

m

ρmn(t)〈n|A|m〉 (3.5)

=
∑

n

∑

m

⎛

⎝
∑

j

P j c
j
n(t)∗cj

m(t)

⎞

⎠ 〈n|A|m〉

=
∑

j

P j
∑

n

∑

m

c
j
n(t)∗cj

m(t)〈n|A|m〉

=
ensemble∑

j

P j 〈ψj (t)|A|ψj(t)〉 = 〈A(t)〉. (3.9)
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2. Eq. (3.6): Normalization condition.

Tr [ρ] =
∑

n

ρnn = 1 (3.6)

=
∑

n

⎛

⎝
∑

j

P j c
j
n(t)∗cj

n(t)

⎞

⎠ =
∑

j

P j
∑

n

|cj
n(t)|2 = 1,

because the probability in the ensemble P j and each state ψj are both normal-
ized to unity,

∑

j

P j = 1 and |ψj(t)|2 =
∑

n

|cj
n(t)|2 = 1.

3. Eq. (3.8): Time development (Liouville equation).

ih̄
dρmn(t)

dt
= [Hρ − ρH ]mn (3.8)

= ih̄
∑

j

P j

(
dc

j
n(t)∗

dt
c
j
m(t) + c

j
n(t)∗ dc

j
m(t)

dt

)

=
∑

j

P j

(
−
∑

l

H ∗
nlc

j
l (t)∗cj

m(t) +
∑

l

c
j
n(t)∗Hmlc

j
l (t)

)

= −
∑

l

Hln

∑

j

P j c
j
l (t)∗cj

m(t) +
∑

l

Hml

∑

j

P j c
j
n(t)∗cj

l (t)

= −
∑

l

Hlnρml +
∑

l

Hmlρln = [Hρ − ρH ]mn .

3.4.2 Pure and Mixed States

[Problem 3.2] Prove the criterion Eq. (3.11) to distinguish the pure state and the
mixed state. Recall the normalization condition of states and the Schwarz inequality
for inner products.

First we note the normalization condition for the density matrix ρ,

Tr [ρ] =
∑

n

∑

j

P j c
j
n

∗
c
j
n =

∑

j

P j

(
∑

n

∣∣∣cj
n

∣∣∣
2
)

=
∑

j

P j = 1 (P j ≥ 0).
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Tr
[
ρ2
]

is then calculated using Eq. (3.10),

Tr
[
ρ2
]

=
∑

m,l

ρmlρlm =
∑

m,l

(
∑

i

P ici
mci

l

∗
)⎛

⎝
∑

j

P j c
j
l c

j∗
m

⎞

⎠

=
∑

i,j

P iP j
∑

m

ci
mc

j∗
m

∑

l

c
j
l ci∗

l =
∑

i,j

P iP j

∣∣∣∣∣
∑

m

ci
mc

j∗
m

∣∣∣∣∣

2

. (3.53)

We invoke the Schwartz inequality,

|a · b|2 ≤ |a|2|b|2 (3.54)

for two arbitrary non-zero vectors a and b, where the equal relation holds only for
a = b. Suppose that a = ci and b = cj , where ci and cj are the sets of coefficients
ci
m and c

j
m, respectively,

a = ci =
⎛

⎜⎝
ci

1
ci

2
...

⎞

⎟⎠ , b = cj =
⎛

⎜⎝
c
j

1

c
j

2
...

⎞

⎟⎠ .

Then Eq. (3.54) is written by

∣∣∣∣∣
∑

m

ci
mc

j∗
m

∣∣∣∣∣

2

≤
(
∑

m

|ci
m|2
)(

∑

l

|cj
l |2
)

. (3.55)

Applying Eqs. (3.55) to (3.53), the following relation is derived,

Tr
[
ρ2
]

=
∑

i,j

P iP j

∣∣∣∣∣
∑

m

ci
mc

j∗
m

∣∣∣∣∣

2

≤
∑

i,j

P iP j
∑

m

|ci
m|2

∑

l

|cj
l |2

=
(
∑

i

P i
∑

m

|ci
m|2
)2

= 1. (3.56)

The equal relation in Eq. (3.56) is realized only in the case that ci
m = c

j
m for all

m, indicating that the states i and j are identical. This condition should be satisfied
between any pair of states in the ensemble. Therefore, the equal relation means the
case that the ensemble of states consist of a single identical state (pure state).
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3.4.3 Derivation of χ(2)

[Problem 3.3] Derive ρ(2)(t) in Eq. (3.28).

Equation (3.27) is expanded by substituting ρ(1) with Eq. (3.22).

• Left side of Eq. (3.27):

dρ
(2)
mn

dt
+ iωmnρ

(2)
mn + �mnρ

(2)
mn = e−(iωmn+�mn)t d

dt

{
e(iωmn+�mn)tρ(2)

mn(t)
}

• Right side of Eq. (3.27):

− i

h̄

[
H ′, ρ(1)

]

mn

= i

h̄

∑

l

x−z∑

p

(〈
m|μp|l〉 ρ(1)

ln (t) − ρ
(1)
ml (t)

〈
l|μp|n〉

)∑

j

Ep(ωj )e
−iωj t

= i

h̄2

∑

l

x−z∑

p,q

∑

j,k

{〈
m|μp|l〉 (ρ(0)

l − ρ(0)
n )

〈
l|μq |n〉 1

ωk − ωln + i�ln

−(ρ(0)
m − ρ

(0)
l )

〈
m|μq |l〉 1

ωk − ωml + i�ml

〈
l|μp|n〉

}
Ep(ωj )Eq(ωk)e

−i(ωj +ωk)t .

Therefore,

d

dt

{
e(iωmn+�mn)tρ(2)

mn(t)
}

= i

h̄2 e(iωmn+�mn)t
∑

l

x−z∑

p,q

∑

j,k

{〈
m|μp|l〉 (ρ(0)

l − ρ(0)
n )

〈
l|μq |n〉 1

ωk − ωln + i�ln

−(ρ(0)
m − ρ

(0)
l )

〈
m|μq |l〉 1

ωk − ωml + i�ml

〈
l|μp|n〉

}
Ep(ωj )Eq(ωk)e

−i(ωj +ωk)t .

This equation can be integrated by t from −∞ to t , using the following relation,

∫ t

−∞
e(iωmn+�mn)τ e−i(ωj +ωk)τ dτ = e(iωmn+�mn)t e−i(ωj +ωk)t

−i(ωj + ωk) + iωmn + �mn

(�mn > 0).



72 3 Microscopic Expressions of Nonlinear Polarization

Then ρ(2) in Eq. (3.28) is derived,

ρ
(2)
mn(t) = i

h̄2

∑

l

∑

j,k

x−z∑

p,q

{〈
m|μp |l〉 (ρ(0)

l
− ρ

(0)
n )

〈
l|μq |n〉 1

ωk − ωln + i�ln

−(ρ
(0)
m − ρ

(0)
l

)
〈
m|μq |l〉 1

ωk − ωml + i�ml

〈
l|μp |n〉

}
Ep(ωj )Eq(ωk)

e
−i(ωj +ωk)t

−i(ωj + ωk) + iωmn + �mn

= − 1

h̄2

∑

l

∑

j,k

x−z∑

p,q

{
(ρ

(0)
l

− ρ
(0)
n )

〈
m|μp |l〉 〈l|μq |n〉
ωk − ωln + i�ln

− (ρ
(0)
m − ρ

(0)
l

)

〈
m|μq |l〉 〈l|μp |n〉

ωk − ωml + i�ml

}

· 1

(ωj + ωk) − ωmn + i�mn
Ep(ωj )Eq(ωk)e

−i(ωj +ωk)t
. (3.28)

3.4.4 Effective χ(2) Formula

[Problem 3.4] Derive Eqs. (3.49), (3.50), (3.51), and (3.52). Also explain that other
combinations of light polarization vanish for the C∞v interface.

Equations (3.49), (3.50), (3.51), and (3.52) are derived from the definition of χ
(2)
eff

in Eq. (2.23) and the unit vectors of electric fields below.

• S polarization:

ê
α
S(�) = ê

α
S(ω1) = ê

α
S(ω2) =

⎛

⎝
0
1
0

⎞

⎠

• P polarization:

ê
α
P(�)=

⎛

⎝
− cos θα(�)

0
sin θα(�)

⎞

⎠ , ê
α
P(ω1)=

⎛

⎝
cos θα(ω1)

0
sin θα(ω1)

⎞

⎠ , ê
α
P(ω2)=

⎛

⎝
cos θα(ω2)

0
sin θα(ω2)

⎞

⎠ .

In the SSP case,

χ
(2)
eff,SSP =

x∼z∑

q,r,u

eS,q (�)χ(2)
qru(�,ω1, ω2)eS,r (ω1)eP,u(ω2)
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=
x∼z∑

q,r,u

(
Fα→β

qq (�)êα
S,q(�)

)
χ(2)

qru(�,ω1, ω2)
(
Fα→β

rr (ω1)ê
α
S,r (ω1)

)

(
Fα→β

uu (ω2)ê
α
P,u(ω2)

)

=
(
Fα→β

yy (�)
)

χ
(2)
yyx(Ω,ω1, ω2)

(
Fα→β

yy (ω1)
) (

Fα→β
xx (ω2) cos θα(ω2)

)

+
(
Fα→β

yy (�)
)

χ(2)
yyz(�, ω1, ω2)

(
Fα→β

yy (ω1)
) (

Fα→β
zz (ω2) sin θα(ω2)

)

= Fα→β
yy (�)Fα→β

yy (ω1)F
α→β
zz (ω2) sin θα(ω2)χ

(2)
yyz(�, ω1, ω2), (3.49)

where the term in a shade box vanishes for the selection rule. The last expression
takes account of χ

(2)
yyx = 0 for the C∞v interface.

Similar expressions can be derived in the SPS and PSS cases.

χ
(2)
eff,SPS =

x∼z∑

q,r,u

eS,q (�)χ(2)
qru(�,ω1, ω2)eP,r (ω1)eS,u(ω2)

= Fα→β
yy (�)Fα→β

zz (ω1)F
α→β
yy (ω2) sin θα(ω1)χ

(2)
yzy(�,ω1, ω2), (3.50)

χ
(2)
eff,PSS =

x∼z∑

q,r,u

eP,q (�)χ(2)
qru(�,ω1, ω2)eS,r (ω1)eS,u(ω2)

= Fα→β
zz (�)Fα→β

yy (ω1)F
α→β
yy (ω2) sin θα(�)χ(2)

zyy(�,ω1, ω2). (3.51)

In the PPP case,

χ
(2)
eff,PPP =

x∼z∑

q,r,u

eP,q (�)χ(2)
qru(�,ω1, ω2)eP,r (ω1)eP,u(ω2)

=
x∼z∑

q,r,u

(
Fα→β

qq (�)êα
P,q (�)

)
χ(2)

qru(�,ω1, ω2)
(
Fα→β

rr (ω1)ê
α
P,r (ω1)

)

(
Fα→β

uu (ω2)ê
α
P,u(ω2)

)

= (−Fα→β
xx (�) cos θα(�)

) (
Fα→β

xx (ω1) cos θα(ω1)
) (

Fα→β
xx (ω2) cos θα(ω2)

)
χ

(2)
xxx

+ (−Fα→β
xx (�) cos θα(�)

) (
Fα→β

xx (ω1) cos θα(ω1)
) (

Fα→β
zz (ω2) sin θα(ω2)

)
χ(2)

xxz

+ (−Fα→β
xx (�) cos θα(�)

) (
Fα→β

zz (ω1) sin θα(ω1)
) (

Fα→β
xx (ω2) cos θα(ω2)

)
χ(2)

xzx

+ (Fα→β
zz (�) sin θα(�)

) (
Fα→β

xx (ω1) cos θα(ω1)
) (

Fα→β
xx (ω2) cos θα(ω2)

)
χ(2)

zxx

+ (−Fα→β
xx (�) cos θα(�)

) (
Fα→β

zz (ω1) sin θα(ω1)
) (

Fα→β
zz (ω2) sin θα(ω2)

)
χ

(2)
xzz

+ (
Fα→β

zz (�) sin θα(�)
) (

Fα→β
xx (ω1) cos θα(ω1)

) (
Fα→β

zz (ω2) sin θα(ω2)
)
χ

(2)
zxz
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+ (
Fα→β

zz (�) sin θα(�)
) (

Fα→β
zz (ω1) sin θα(ω1)

) (
Fα→β

xx (ω2) cos θα(ω2)
)
χ

(2)
zzx

+ (
Fα→β

zz (�) sin θα(�)
) (

Fα→β
zz (ω1) sin θα(ω1)

) (
Fα→β

zz (ω2) sin θα(ω2)
)
χ(2)

zzz

= (−Fα→β
xx (�) cos θα(�)

) (
Fα→β

xx (ω1) cos θα(ω1)
) (

Fα→β
zz (ω2) sin θα(ω2)

)
χ(2)

xxz

+ (−Fα→β
xx (�) cos θα(�)

) (
Fα→β

zz (ω1) sin θα(ω1)
) (

Fα→β
xx (ω2) cos θα(ω2)

)
χ(2)

xzx

+ (
Fα→β

zz (�) sin θα(�)
) (

Fα→β
xx (ω1) cos θα(ω1)

) (
Fα→β

xx (ω2) cos θα(ω2)
)
χ(2)

zxx

+ (
Fα→β

zz (�) sin θα(�)
) (

Fα→β
zz (ω1) sin θα(ω1)

) (
Fα→β

zz (ω2) sin θα(ω2)
)
χ(2)

zzz.

(3.52)

The shaded components of χ (2) also vanish for the C∞v interface to derive the last
expression.

The other combinations of polarization result in null amplitude and yield no SFG
signal for the C∞v interface. The relevant tensor components of χ (2) included in
χ

(2)
eff for the other polarization combinations are listed in the following.

• SPP — χ
(2)
yxx , χ

(2)
yxz, χ

(2)
yzx , χ

(2)
yzz.

• PSP — χ
(2)
xyx , χ

(2)
xyz, χ

(2)
zyx , χ

(2)
zyz

• PPS — χ
(2)
xxy , χ

(2)
xzy , χ

(2)
zxy , χ

(2)
zzy

• SSS — χ
(2)
yyy

We notice that all these components vanish.

Appendix

A.1 Off-Diagonal Elements of Density Matrix

We have learned in Sect. 3.1 that the density matrix can represent statistical
ensemble of states and a pure state in the common formulas. It is instructive to
illustrate the distinction between a superposition of quantum states and a statistical
ensemble of states. This example is useful to clarify the concept of coherence.

Let us consider two wavefunctions, φ1 and φ2, for example. If the two states are
superposed in the quantum sense, the state is represented by a wavefunction,

ψ(t) = c1(t)φ1 + c2(t)φ2

(
where |c1(t)|2 + |c2(t)|2 = 1

)

or equivalently by a density matrix

ρpure(t) =
(

c1c
∗
1 c1c

∗
2

c2c
∗
1 c2c

∗
2

)
. (3.57)
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The above state in Eq. (3.57) is a pure state, where the probabilities of finding the
states φ1, φ2 are P 1 = c1c

∗
1, P 2 = c2c

∗
2, respectively. On the other hand, we

consider a statistical ensemble consisting of φ1 and φ2 with the probabilities being
P 1 and P 2 respectively. This is a mixed state, presented by the following density
matrix

ρmixed(t) = P 1
(

1 0
0 0

)
+ P 2

(
0 0
0 1

)
=
(

c1c
∗
1 0

0 c2c
∗
2

)
, (3.58)

where c1c
∗
1 = P 1 (> 0), c2c

∗
2 = P 2 (> 0). Comparing ρpure and ρmixed, we see that

the diagonal elements are common, indicating that the probabilities of finding φ1, φ2
are the same. However, the off-diagonal elements are distinct between Eqs. (3.57)
and (3.58).

The off-diagonal element ρ12 = c1c
∗
2 implies correlation between the coefficients

(c1 and c2) of the constituent states (φ1 and φ2). To illustrate the physical meaning
of off-diagonal elements, we discuss the following two cases that exhibit no off-
diagonal elements. Let us consider an ensemble of states {ψ1, ψ2, ψ3, · · · }, where
each sample ψj is a superposition of two states (ψj = c

j

1φ1 + c
j

2φ2) and has a
probability of P j in the ensemble.

Case 1. First case is an extreme one that ψj is either φ1 (cj

2 = 0) or φ2 (cj

1 = 0).

Then the diagonal element ρ12 vanishes, c1c
∗
2 = ∑

j P j c
j

1c
j∗
2 = 0, because

either c
j

1 or c
j

2 is zero in each term of j . This case shows that the off-diagonal
element ρ12 arises from quantum superposition between φ1 and φ2.

Case 2. The quantum superposition is not a sufficient condition for the off-
diagonal elements. We consider another ensemble of {ψj = c

j

1φ1 +c
j

2φ2}, where

the coefficient c
j
m = |cj

m| exp(iθ
j
m) (m = 1, 2) has a definite amplitude |cm| but a

random phase factor θ
j
m (m = 1, 2). Then the ensemble average of the diagonal

element has a definite value |cm|2 while the off-diagonal element vanishes, e.g.

c1c
∗
1=

ensemble∑

j

P j c
j

1c
j∗
1 =

∑

j

P j |c1| exp(iθ
j

1 )|c1| exp(−iθ
j

1 )=
∑

j

P j |c1|2=|c1|2,

c1c
∗
2 =

ensemble∑

j

P j c
j

1c
j∗
2 =

∑

j

P j |c1| exp(iθ
j

1 )|c2| exp(−iθ
j

2 )

= |c1||c2|
∑

j

P j exp{i(θj

1 − θ
j

2 )} = |c1||c2| exp{i(θ1 − θ2)} = 0,

because the average of random phase distribution results in cancellation.

From the two cases, we find that the diagonal element is determined by the square
of amplitude |cm|2, irrespective of its phase. On the other hand, the off-diagonal
element is sensitive to the relative phase of the two superposition coefficients, c1
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and c2. If the phases of the two coefficients have no correlation, the off-diagonal
element disappears via the ensemble average.

In summary, a finite off-diagonal element ρ12 indicates that there involves a
definite quantum superposition between the states φ1 and φ2 with some phase
relation. In such case the coherence is present between the two states φ1 and φ2.

A.2 Interaction Energy of Nonmagnetic Materials

In Chap. 3, the perturbation Hamiltonian by the irradiated light is given by H ′ =
−μ · E(t) in Eq. (7.2), which represents the interaction to the electric field E.
This is based on the assumption that interaction energy with the magnetic field of
light is negligible compared to that with the electric field for ordinary nonmagnetic
materials. Here we estimate their relative orders of magnitude to justify this
assumption.

The interaction energy of material with the magnetic field H is

Um = −mH = −χmH 2,

where m is the magnetization, and χm is the magnetic susceptibility, which is
dimensionless in the cgs Gauss units. (A possible factor 1/2 is omitted for simplicity
to estimate the order of magnitude.) Typical values of χm for nonmagnetic materials
are in the range of |χm| = 10−4 ∼ 10−6 for paramagnetic materials, and |χm| =
10−6 ∼ 10−7 for diamagnetic materials [5]. On the other hand, the interaction
energy with the electric field E is analogously presented by

Ue = −PE = −χeE
2,

where χe is the electric susceptibility, also dimensionless in the cgs Gauss units.
Typical range of χe is in the order |χe| = 10−1 ∼ 10−2. For example, χm and χe of
liquid benzene are roughly estimated to

χm � −5.48 × 10−5 cm3/mol · 0.8765 g/cm3

78.11 g/mol
= −6.1 × 10−7,

χe � 1

4π
(2.2825 − 1) = 1.0 × 10−1,

using the experimental values of molar magnetic susceptibility (−5.48 ×
10−5 cm3/mol), density (0.8765 g/cm3), molecular weight (78.11 g/mol), and
dielectric constant (2.2825) [5].

The light field consists of electric and magnetic fields, whose amplitudes are
related to |E| � |H |, as seen in Eq. (2.14). Therefore, the ratio of electric and
magnetic interactions Um/Ue is evaluated to
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∣∣∣∣
Um

Ue

∣∣∣∣ =
∣∣∣∣
χmH 2

χeE2

∣∣∣∣ �
∣∣∣∣
χm

χe

∣∣∣∣ � 1

This relation confirms that typical interaction energy with magnetic field is much
smaller than that with the electric field in ordinary nonmagnetic materials.

A.3 Polarizability Approximation for Raman Tensor

This subsection shows that the Raman tensor of Eq. (3.37) is approximated with
the polarizability in electronically off-resonant conditions [10, 11, 14]. The Raman
tensor defined in Eq. (3.37) includes the states g, n and m, which denote the
initial, intermediate and final states, respectively. These states are represented as
products of electronic and vibrational states on the basis of the Born-Oppenheimer
approximation,

|g〉 = ∣∣ge(r,R)
〉 ∣∣gv(R)

〉
,

|n〉 = ∣∣ne(r,R)
〉 ∣∣nv(R)

〉
,

|m〉 = ∣∣me(r,R)
〉 ∣∣mv(R)

〉 = ∣∣ge
〉 ∣∣mv

〉
, (3.59)

where the superscript e designates the electronic states and v the vibrational states. r
and R denote the coordinates for electrons and nuclei, respectively. In the ordinary
Raman process illustrated in Fig. 3.4, both the initial state g and the final state m

are supposed to be the electronically ground state ge, while their vibrational states
are different. Here we assume that the ground electronic state ge is unique and
not degenerated. The total energy is also represented as the sum of electronic and
vibrational energies,

Eg = Ee
g + Ev

g ,

En = Ee
n + Ev

n ,

Em = Ee
m + Ev

m = Ee
g + Ev

m. (3.60)

We substitute Eqs. (3.59) and (3.60) into the expression of Raman tensor. If the

excitation energy h̄� is off resonant and thus the condition
∣∣∣
(
Ee

n − Ee
g

)
− h̄�

∣∣∣ �
∣∣∣Ev

n − Ev
g

∣∣∣ is satisfied (see Fig. 3.4), then the denominators of Eq. (3.37) are approx-

imated to be

∗ 1

� − ωng + i�ng

=
⎡

⎣� −
(
Ee

n − Ee
g

)
+
(
Ev

n − Ev
g

)

h̄
+ i�ng

⎤

⎦
−1
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Fig. 3.4 Raman process in
off-resonant condition

g g  g   g   g  g 
m  g   g   m  m 
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e v

v

v

E   -    - Ee e
n g

E v
g

E v
n

∼=
[
� − Ee

n − Ee
g

h̄
+ i�ng

]−1

= 1

� − ωe
ng + i�ng

, (3.61)

∗ 1

� + ωmn + i�mn

∼= 1

� + ωe
nm + i�nm

= 1

� + ωe
ng + i�ng

. (3.62)

Using these approximations of Eqs. (3.61) and (3.62),6 the Raman tensor element of
Eq. (3.37) is represented by

〈
g|αpq(�)|m〉 ∼= −

∑

ne

∑

nv

[
〈gv| 〈ge|μp|ne

〉 |nv〉 〈nv| 〈ne|μq |me
〉 |mv〉

� − ωe
ng + i�ng

−〈gv| 〈ge|μq |ne
〉 |nv〉 〈nv| 〈ne|μp|me

〉 |mv〉
� + ωe

ng + i�ng

]

=
〈
gv

∣∣∣∣∣−
∑

ne

[〈
ge|μp|ne

〉 〈
ne|μq |ge

〉

� − ωe
ng + i�ng

−
〈
ge|μq |ne

〉 〈
ne|μp|ge

〉

� + ωe
ng + i�ng

]∣∣∣∣∣m
v

〉

= 〈
gv(R)|αpq(�,R)|mv(R)

〉
, (3.63)

where the completeness condition
∑

nv |nv〉 〈nv| = 1 has been adopted. The
final expression of αpq(�,R) is no longer an explicit function of the electronic
coordinate r , as r is already integrated out in Eq. (3.63). αpq(�,R) means the
polarizability of the electronic ground state at the frequency � and given nuclear

6Equations (3.61) and (3.62) also involve the approximation of the dampling factor � for electronic
states. Actually the damping factor � is insignificant here in the electronically off-resonant
conditions, and often neglected in the present discussion.
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coordinates R. When � is far off resonant from the electronic excited state (i.e.
h̄� � Ee

n − Ee
g), the dispersion of α can be neglected and αpq(�,R) is further

approximated with the static polarizability, αpq(�,R) ∼= αpq(� = 0,R).
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Chapter 4
Two Computational Schemes of χ(2)

Abstract Now we provide the computational schemes of SFG spectroscopy on
the basis of the microscopic theory described in the preceding Chap. 3. The theme
of this chapter is to define two methods of calculating χ (2) spectra, via energy
representation and time-dependent representation. These methods can be utilized to
calculate the SFG spectra by molecular dynamics (MD) simulation. These methods
connect the formal theory of χ (2) to actual spectra of interfaces that consist of
molecules, and thus open new routes of SFG analysis with the aid of MD simulation.

Keywords Energy representation · Polarization analysis · Time correlation
function

4.1 Energy Representation

Now we develop a computational scheme of SFG spectroscopy on the basis of
the perturbation formula of χ (2), which is capable of describing experimental SFG
spectra of actual interfaces.

Equation (3.46) provides a recipe to construct χ (2) from the molecular hyper-
polarizability α

(2),mol
l and the rotational matrix Dl of constituent molecules. The

molecular hyperpolarizability α(2) is represented as the second-order susceptibility
of a single molecule as discussed in Sect. 3.2, and it consists of the vibrational
resonant term α(2),res and nonresonant term α(2),nonres after Eq. (3.33), α(2) =
α(2),res + α(2),nonres. The former term α(2),res is represented in the same way as
Eq. (3.36) by

α(2),res
pqr (�,ω1, ω2) = − 1

h̄

∑

g,m

(
ρ(0)

g − ρ(0)
m

) 〈g|αpq(�)|m〉〈m|μr |g〉
ω2 − ωmg + i�mg

, (4.1)

where αpq and μr refer to polarizability and dipole moment of a single molecule,
respectively. In the following we further introduce some approximations to Eq. (4.1)
for convenience of practical analysis of SFG spectra.
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Then we introduce following four assumptions, (i)–(iv).

(i) The vibrational mode(s) in question are intramolecular vibrations, such as
O-H or C-H stretching. The vibrational SFG spectroscopy deals with these
vibrations in most cases.

(ii) The energy gap of the vibrational mode h̄ωmg is considerably larger than the
thermal energy kBT . Thus the thermal population of the state g is dominated
by the vibrational ground state, ρ

(0)
g � ρ

(0)
m .

(iii) The vibrational mode a in question is treated as a harmonic oscillator.
Consequently, the matrix elements 〈g|α|m〉 and 〈m|α|g〉 in Eq. (4.1) remain
non-zero only when the state m is the first excited vibrational state of the mode
a. This is in accord with the conventional selection rule of Raman scattering or
infrared absorption. The non-zero matrix elements are given by [2]

〈
g|Ŷ |m

〉
=
〈
m|Ŷ |g

〉
=
〈
1|Ŷ |0

〉
=
√

h̄

2maωa

(
∂Y

∂Qa

)
, (4.2)

where Y denotes either α or μ. ωa is the harmonic frequency of the mode a.
Qa is the normal mode coordinate, and ma is its reduced mass. (ma depends
on the definition of Qa , and is often set to unity by properly defining Qa .)

(iv) In the electronically off-resonant condition that h̄� is far off the electronic
excitation energy (see Fig. 3.1), the dispersion in the Raman tensor α(�) by �

can be neglected and hence α(�) is regarded as the static polarizability tensor.

By employing the above four assumptions, Eq. (4.1) becomes

α(2),res
pqr (ω2) = −

mode∑

a

1

2maωa

(
∂αpq

∂Qa

)(
∂μr

∂Qa

)
1

ω2 − ωa + i�a

, (4.3)

where the suffix a refers to the intramolecular vibrational mode(s) to be investigated
by SFG, and �a denotes �mg in Eq. (4.1). This expression of α(2) allows for mod-
eling frequency dependence of the hyperpolarizability. In Eq. (4.3), the derivative
quantities (∂αpq/∂Qa), (∂μr/∂Qa) and the frequency ωa for the mode a can be

obtained by quantum chemical calculations. We can thereby evaluate α
(2),res
pqr in

Eq. (4.3) in the molecule-fixed coordinates.
Using the α

(2),res
pqr (ω2) thus defined, the nonlinear susceptibility of the interface

χ (2) is constructed with the help of MD calculation. The χ (2) expression of
Eq. (3.46) includes the rotation matrix Dl of l-th molecule. The orientation of
constituent molecules at the interface can be sampled by MD simulation for the
interface system. At each time step of MD simulation, the rotation matrix Dl

for the l-th molecule is obtained from the instantaneous configuration of the l-
th molecule and used to convert the hyperpolarizability tensor of the molecule
α

(2),res
l from the molecule-fixed coordinates to the space-fixed coordinates. The

contributions of all molecules in the interface system are summed to determine
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χ (2),res. The instantaneous value of χ (2),res at each time step is statistically averaged
over ensemble of MD snapshots. The averaged value of χ (2),res is thereby obtained,

χ(2),res
pqr =

molecule∑

l

ξ∼ζ∑

p′

ξ∼ζ∑

q ′

ξ∼ζ∑

r ′
Dl,pp′Dl,qq ′Dl,rr ′α(2),res

l,p′q ′r ′ . (4.4)

Equations (4.3) and (4.4) provide a route to evaluate the resonant term χ (2),res

through quantum chemical and molecular dynamics calculations.1 On the other
hand, the nonresonant term χ (2),nonres is regarded as a constant over the ω2
frequency range of SFG measurements. In practical analysis of SFG spectra, it
could be treated as an empirical parameter to fit the experimental spectra. Then
χ (2) = χ (2),res+χ (2),nonres is obtained by Eq. (3.33). The above procedure illustrates
the essential idea to calculate χ (2) on the basis of the energy representation.

Advantages and disadvantages The above analysis method of SFG spectra based
on the energy representation of χ (2) modeling has been proposed by Morita
and Hynes [15], and first applied to the water-vapor interface. This method has
been subsequently applied and developed by other researchers [4, 21, 22, 27].
The advantages of the energy representation of χ (2) modeling are summarized as
follows.

1. The model of molecular hyperpolarizability is based on quantum chemical
calculations of constituent molecules of the interface. Chemical specificity of
the molecules is readily reflected in the calculation of SFG spectra.

2. The calculated χ (2) in Eq. (4.4) is straightforwardly decomposed into and
assigned to molecular species, since Eq. (4.4) represents χ (2) as the summation
of molecular contributions. The effect of molecular orientation on the χ (2) tensor
is also readily analyzed [8, 9].

3. Computational cost of MD simulation is relatively modest, compared to the time-
dependent representation of χ (2) modeling in Sect. 4.3. The MD simulation is
used for sampling the molecular orientations at interfaces, and the molecular
orientation is readily investigated using conventional force fields.

The above features indicate that the energy representation of χ (2) modeling provides
a convenient tool to interpret experimental spectra from molecular properties and
orientation with modest cost of computation.

On the other hand, this method involves some difficulties as follows.

1. Accurate molecular modeling is hard to be generalized in condensed envi-
ronment. This is particularly the case for hydrogen-bonding systems, because
the perturbation on the vibrational frequency and transition matrix elements in
Eq. (4.3) is substantial.

1The molecular hyperpolarizability α
(2),res
l in Eq. (4.4) includes the suffix l to allow for distin-

guishing different species.
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2. Equation (4.4) constructs χ (2) with a simple sum of molecular hyperpolariz-
abilities. This feature has a merit for decomposition analysis as mentioned in
Advantage 2 above, though it is hard to incorporate the effects of intermolecular
couplings. For example, the vibrational modes Qa are largely perturbed via
intra- and inter-molecular couplings, and may depend on the environment.
Vibrational correlation among neighboring molecules can have a substantial
effect on χ (2) in strongly interacting system [11, 12]. The local field effect arises
from intermolecular dielectric couplings.

3. The above χ (2) model is not capable of determining the damping term �a in
Eq. (4.3). It arises from dephasing of the vibrations, and has to be treated as
empirical parameters. The motional effect of molecular orientation on χ (2) is
omitted [26], as discussed in Sect. 4.4.

In summary, the χ (2) model of Eqs. (4.3) and (4.4) is useful to interpret experimental
spectra in a qualitatively plain manner, though it is rather difficult to make this
modeling method a predictive tool of experimental spectra. The χ (2) model of
Eqs. (4.3) and (4.4) may not be convenient to accurately reflect the molecular
behaviors in condensed phase, including the perturbation of molecular properties,
vibrational couplings and dephasing. For example, the perturbation on the molecule
hyperpolarizability α(2),res in Eq. (4.3), generally called “solvent effect” in quantum
chemistry, is critical in the SFG spectrum of water. The first paper by Morita and
Hynes [15] made elaborated modeling of the solvent effect of water, to represent the
substantial perturbation on the transition dipole (∂μ/∂Qa), transition polarizability
(∂α/∂Qa), and the frequency ωa of water [18]. However, such elaborated modeling
hinders from applying it to general interfaces beside the pure water. It is therefore
desirable to develop an alternative method which allows for more rigorous and
general modeling of χ (2) and SFG spectroscopy. The need of extending the χ (2)

modeling spurred us to develop another method based on the time-dependent
representation [16, 17]. That method is described in Sect. 4.3 below.

4.2 Examples of χ(2) Tensor and Orientation

The above χ (2) model in Sect. 4.1 is actually quite useful to discuss the qualitative
relation between χ(2) tensor and molecular orientation for specific molecular
species. Here we discuss the relation in some typical examples of O-H and C-H
stretching vibrations, the two most commonly measured vibrational bands by the
SFG spectroscopy. Further details of computational analysis will be discussed in
the application chapters of 9 and 10.
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mg

mg

(a) Cmg > 0

(b) Cmg < 0
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Fig. 4.1 Schematics of Lorentz functions in Eq. (3.39) in the case of (a) Cmg > 0 and (b) Cmg <

0. Real and imaginary parts are written with blue dashed and red solid lines, respectively. (Same
as Fig. 3.2 in Chap. 3)

4.2.1 O-H Stretching

The O-H stretching vibration appears in 3000 ∼ 3800 cm−1 region, and is typically
seen in water and alcohols. Here we focus on a single O-H bond for simplicity,
and discuss the qualitative relation between the orientation of O-H bond and the
lineshape of χ(2) spectra, as illustrated in Fig. 4.1. In actual condensed phase, the
O-H bonds tend to form hydrogen bonds, and the vibrational modes are coupled and
delocalized. Therefore, the relation illustrated here is an ideal picture and offers the
basis toward treating more realistic O-H bond vibrations.

Let us consider a local vibration of the O-H1 bond of a water molecule, illustrated
along the ζ axis in the panel of Table 4.1, and introduce the local mode coordinate Q

to be the O-H1 distance. Then the calculated derivatives of dipole and polarizability
with respect to Q in Eq. (4.2) are displayed in Table 4.1. The table shows that
the derivatives (∂μr ′/∂Q) and (∂αp′q ′/∂Q) are dominated by the main elements
along the ζ axis in the molecule-fixed coordinates, i.e. (∂μζ /∂Q) and (∂αζζ /∂Q),
respectively. Accordingly, we roughly approximate α(2),mol by considering only the
product of the main elements for the local O-H vibration,

α
(2),mol
p′q ′r ′ = 1

2mω

(
∂αp′q ′

∂Q

)(
∂μr ′

∂Q

) −1

ω2 − ω + i�
(4.5)
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Table 4.1 Calculated derivatives of dipole ∂μr ′/∂Q and polarizability ∂αp′q ′/∂Q of a water
molecule by B3LYP/d-aug-cc-pVTZ [15]. Units: atomic units. The coordinate Q is Q = rO-H1 −
r

eq
O-H, where r

eq
O-H = 0.9575 Å. Right picture illustrates the configuration of water in the molecule-

fixed coordinates (ξ, η, ζ )

H1

O
H2

104.51
Q

≈
⎧
⎨

⎩

−Cζζζ

ω2 − ω + i�
(p′q ′r ′) = (ζ ζ ζ )

0 (p′q ′r ′) = otherwise
(4.6)

where

Cζζζ = 1

2mω

(
∂αζζ

∂Q

)(
∂μζ

∂Q

)
. (4.7)

Equation (4.5) or (4.6) is a Lorentz function in the same form as in Eq. (3.39).
Therefore, its real and imaginary spectra as a function of ω2 are illustrated in
Fig. 4.1a, noting that Cζζζ > 0 is obtained with the values in Table 4.1.

Sign of Im[χ(2)] Then we discuss the O-H bond that orients to an arbitrary
direction in the space-fixed coordinate. α(2),space is related to α(2),mol by

α
(2),space
pqr =

ξ∼ζ∑

p′

ξ∼ζ∑

q ′

ξ∼ζ∑

r ′
Dpp′Dqq ′Drr ′α(2),mol

p′q ′r ′ , (3.45)

= − 1

2mω

(
∂αpq

∂Q

)(
∂μr

∂Q

)
1

ω2 − ω + i�
,

and the imaginary part is

Im
[
α

(2),space
pqr

]
= 1

2mω

(
∂αpq

∂Q

)(
∂μr

∂Q

)
�

(ω2 − ω)2 + �2
. (4.8)

Using the assumption of Eq. (4.6), Im[α(2),space
yyz ] for the SSP polarization is repre-

sented with the help of Eqs. (3.45) and (3.43),

Im
[
α

(2)
yyz

]
≈ Im

[
DyζDyζDzζ

−Cζζζ

ω2 − ω + i�

]
= cos2 φ sin2 θ cos θ · Cζζζ

�

(ω2 − ω)2 + �2
,

(4.9)

where φ, θ , ψ are the Euler angles in Fig. 3.3, and the superscript “space” is omitted.
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We notice in Eq. (4.9) that the sign of Im[α(2)
yyz] is determined by the sign of

cos θ , as the other factors are always positive. By its definition, θ is the tilt angle
of the local O-H1 bond (ζ axis) from the surface normal (z axis) in the space-fixed
coordinate (see Fig. 3.3). Therefore, if the O-H1 bond points upward (cos θ > 0),
Im[α(2)

yyz] spectrum is positive (Fig. 4.1a). On the other hand, if the O-H1 bond points

downward (cos θ < 0), Im[α(2)
yyz] spectrum is negative (Fig. 4.1b). This qualitative

relation between the O-H orientation and the sign of Im[α(2)
yyz] is useful to interpret

the sign of O-H band of Im[χ(2)
yyz] spectrum in the SSP polarization.

4.2.2 C-H Stretching

The C-H stretching vibration usually appears in 2800–3000 cm−1 region. The C-H
vibrations are widely seen in organic molecules, particularly in alkyl moieties such
as methyl (CH3-) and methylene (-CH2-) groups. The relation between molecular
orientation and χ(2) tensor elements has been formulated in details [7–9, 23]. Here
we briefly present essential formulations in the case of methyl C-H symmetric
stretching mode. Further discussion of the C-H bands including other modes will
be given in Chap. 10 with the help of MD simulation.

To make the qualitative relation clear, we assume the (pseudo) C3v symmetry for
the methyl group. The symmetry allows us to simplify the vibrational analysis of
the local methyl C-H vibrations. (Note that such symmetry may not rigorously hold
for actual methyl groups, such as in methanol or ethanol [10, 24, 25].) Therefore,
we treat the C-H mode of acetonitrile as an ideal C3v molecule. Table 4.2 displays
the calculated derivatives of dipole moment and polarizability of acetonitrile
with respect to the methyl C-H symmetric stretching mode in the molecule-fixed
coordinates [19]. The dipole derivative ∂μr ′/∂q1 has a non-zero element along the
r ′ = ζ axis (molecular principal axis) with respect to the C-H symmetric stretching,
and the polarizability derivative ∂αp′q ′/∂q1 has non-zero diagonal elements for
(p′q ′) = (ξξ) = (ηη) and (p′q ′) = (ζ ζ ). We further notice that the dipole
derivative ∂μζ /∂q1 is negative, and the ratio of the two independent elements of
the polarizability derivative,

R =
(
∂αξξ /∂q1

)
(
∂αζζ /∂q1

) =
(
∂αηη/∂q1

)
(
∂αζζ /∂q1

) (4.10)

is estimated to be 0.80 in Table 4.2.

Sign of Im[χ(2)] First, we provide qualitative discussion about the molecular
orientation and the sign of the α

(2),space
yyz element for the SSP polarization. The sign

of Im[α(2),space
yyz ] is determined by the product of (∂αyy/∂q1) and (∂μz/∂q1) in the

space-fixed coordinates. The latter is determined by the molecular orientation as

(
∂μz

∂q1

)
=

ξ∼ζ∑

r ′
Dzr ′

(
∂μr ′

∂q1

)
= −0.005970 · cos θ,
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Table 4.2 Calculated derivatives of dipole ∂μr ′/∂q1 and polarizability ∂αp′q ′/∂q1 of acetonitrile
by B3LYP/aug-cc-pVTZ [19]. Units: atomic units. q1 denotes the normal mode coordinate of C-
H symmetric stretching defined for the stretching direction with unit reduced mass. Right picture
illustrate the configuration of acetonitrile in the molecule-fixed coordinates (ξ, η, ζ )

C

C

HH
H

N

which indicates that the z element (∂μz/∂q1) is negative when cos θ > 0 (upward
orientation of the methyl group) while positive when cos θ < 0 (downward). On the
other hand, the polarizability derivative (∂αyy/∂q1) is relatively insensitive to the
orientation, since the polarizability derivative is not much anisotropic.2 Therefore,
the sign of α

(2),space
yyz is determined by the tilt angle θ of the methyl axis. The

negative Im[χ(2)
yyz] band of the methyl C-H stretching band is indicative of the

upward orientation of the methyl group, while positive Im[χ(2)
yyz] band is indicative

of the downward orientation. These features are illustrated also in Fig. 4.1.

Polarization ratios In the experimental SFG measurements, the ratios of different
χ

(2)
pqr tensor elements are utilized to investigate the molecular orientation at inter-

faces. Here we formulate the ratios of different χ(2) elements, B = χ
(2)
yyz/χ

(2)
yzy and

C = χ
(2)
zzz/χ

(2)
yyz, in relation to the methyl orientation. These polarization ratios B

and C can be evaluated experimentally by using the combinations of SSP, SPS and
PPP polarizations.

Let us suppose that the χ
(2)
pqr elements are given by Eq. (3.41), χ

(2)
pqr ≈ N · α

(2)
pqr .

Accordingly, B and C are represented by

B = χ
(2)
yyz

χ
(2)
yzy

= N · α
(2)
yyz

N · α
(2)
yzy

= α
(2)
yyz

α
(2)
yzy

, C = χ
(2)
zzz

χ
(2)
yyz

= N · α
(2)
zzz

N · α
(2)
yyz

= α
(2)
zzz

α
(2)
yyz

. (4.11)

2If the polarizability derivative tensor is approximated with a spherical tensor (R ≈ 1) by
∂αp′q ′/∂q1 ≈ cδp′q ′ , the yy element (∂αyy/∂q1) is shown to be independent of the transformation,

(
∂αyy

∂q1

)
=

ξ∼ζ∑

p′

ξ∼ζ∑

q ′
Dyp′Dyq ′

(
∂αp′q ′

∂q1

)
≈

ξ∼ζ∑

p′

ξ∼ζ∑

q ′
Dyp′Dyq ′ c δp′q ′ = c (> 0).

Since the anisotropy is not large (R � 0.8 in Table 4.2), the qualitatively similar trend should hold
for the acetonitrile molecule.
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Equation (4.11) shows that the ratios B and C are free from the number of molecules

N , as it is cancelled. α
(2)
pqr in the space-fixed coordinates is represented by

α
(2)
pqr =

ξ∼ζ∑

p′

ξ∼ζ∑

q ′

ξ∼ζ∑

r ′
Dpp′Dqq ′Drr ′ α

(2),mol
p′q ′r ′ , (3.47)

which includes the molecular hyperpolarizability tensor α
(2),mol
p′q ′r ′ in the molecule-

fixed coordinates (ξ, η, ζ ) and the rotational matrix D. α(2),mol
p′q ′r ′ in Eq. (3.47) is given

in the analogous form with Eq. (4.5),

α
(2),mol
p′q ′r ′ = 1

2mω

(
∂αp′q ′

∂q1

)(
∂μr ′

∂q1

) −1

ω2 − ω + i�
, (4.12)

and the derivatives of dipole and polarizability in the molecule-fixed coordinates
take the following form,

(
∂μ

∂q1

)
=
⎛

⎝
0
0
μ

⎞

⎠ ,

(
∂α

∂q1

)
=
⎛

⎝
Rα 0 0
0 Rα 0
0 0 α

⎞

⎠ , (4.13)

as a consequence of the C3v symmetry. The values of μ, R, and α in Eq. (4.13) are
obtained from Table 4.2.

On the other hand, the rotational matrix D in Eq. (3.47) is represented using the
three Euler angles {φ, θ, ψ} by Eq. (3.43). The average manipulation in Eq. (3.47)
can be simplified by exploiting symmetries. The azimuthal angle φ should be
uniformly distributed due to the macroscopic C∞ symmetry of the interface, and the
distribution of the rotational angle ψ around the principal axis of the molecule is also
assumed to be uniform for the methyl group with the C3v symmetry. Consequently,
only the tilt angle θ remains to define the molecular orientation after the distributions
for the other two angles φ and ψ are averaged out. Therefore, the two ratios B and
C for different χ

(2)
pqr elements are represented in the following form [19, 20, 23, 28].

B = χ
(2)
yyz

χ
(2)
yzy

= (1 + R) cos θ − (1 − R) cos3 θ

(1 − R)(cos θ − cos3 θ)
(4.14)

C = χ
(2)
zzz

χ
(2)
yyz

= 2{R cos θ + (1 − R) cos3 θ}
(1 + R) cos θ − (1 − R) cos3 θ

(4.15)

[Problem 4.1] Derive Eqs. (4.14) and (4.15) on the basis of the above assumptions.
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Equations (4.14) and (4.15) are used to the polarization analysis of SFG
measurements. These equations include only three parameters, R, cos θ and cos3 θ ,
and thus suitable to simple modeling of the polarization analysis. R is estimated
by various means, such as the depolarization ratio of the Raman scattering [14], ab
initio or density functional theory calculations, and simple geometric argument of
molecules. If one further assumes a relation of cos θ and cos3 θ , one could derive the
molecular orientation θ from the B and/or C ratios. The simplest assumption would
be cos3 θ ≈ (cos θ)3. Then the tilt angle is estimated from B and C in Eqs. (4.14)
and (4.15), respectively, to be

cos θ ≈
[
B − (1 + R)/(1 − R)

B − 1

]1/2

or cos θ ≈
[

(1 + R)C − 2R

(1 − R)(C + 2)

]1/2

.

(4.16)
We note that the assumption cos3 θ ≈ (cos θ)3 is valid when the tilt angle θ is
well determined (or the distribution of θ is sufficiently narrow) at the interface. We
further discuss the polarization analysis with the help of MD simulation in Chap. 10.

4.3 Time-Dependent Representation

4.3.1 Time Correlation Function

This section presents an alternative expression of χ (2) based on the time correlation
function, instead of using the perturbation formula in the preceding sections.
According to the theory of statistical mechanics, physical quantities associated to
the response to external perturbation are generally expressed using time correlation
functions [13, 14].

χ (2),res in Eq. (3.36) is converted to an equivalent formula with time correlation
function as follows,

χ(2),res
pqr (�,ω1, ω2) = − 1

h̄

∑

g,m

(
ρ(0)

g − ρ(0)
m

) 〈
g|αpq |m〉 〈m|μr |g〉

ω2 − ωmg + i�mg

(3.36)

= i

h̄

∫ ∞

0
dt
∑

g,m

(
ρ(0)

g − ρ(0)
m

) 〈
g|αpq |m〉 〈m|μr |g〉 exp

[
i(ω2 − ωmg + i�mg)t

]

= i

h̄

∫ ∞

0
dt
∑

g,m

(
ρ(0)

g − ρ(0)
m

) 〈
g|αpq(t)|m〉 〈m|μr |g〉 exp (iω2t)

= i

h̄

∫ ∞

0
dt
∑

g,m

ρ(0)
g

(〈
g|αpq(t)|m〉 〈m|μr |g〉 − 〈g|μr |m〉 〈m|αpq(t)|g〉) exp (iω2t)
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= i

h̄

∫ ∞

0
dt
∑

g

ρ(0)
g

〈
g|αpq(t)μr − μrαpq(t)|g〉 exp (iω2t)

= i

h̄

∫ ∞

0
dt
〈
αpq(t)μr − μrαpq(t)

〉
exp (iω2t). (4.17)

In the above derivation from the second line to third, we adopted the Heisenberg
picture to regard the Raman tensor α as a time dependent quantity,

〈
g|αpq(t)|m〉 = 〈

g|αpq |m〉 exp
[
i(−ωmg + i�mg)t

]
. (4.18)

This relation is validated by the equivalence of Schrödinger and Heisenberg pic-
tures, as discussed in the following. In general, time dependence of the expectation
value of an arbitrary physical quantity A is represented in two ways,

〈A(t)〉 =
∑

g,m

Agmρmg(t) =
∑

g,m

Agm(t)ρmg, (4.19)

by Schrödinger and Heisenberg pictures, respectively. The former regards the state
(density matrix ρ) is a function of time, while the latter regards the physical quantity
A as time dependent. In the Schrödinger picture, the time development of the density
matrix ρ is given by the Liouville equation (3.16),

ih̄
dρmg(t)

dt
= [H0ρ − ρH0]mg − ih̄�mg

(
ρmg(t) − ρ

eq
mg

)

= (
Em − Eg

)
ρmg(t) − ih̄�mg

(
ρmg(t) − ρ

eq
mg

)
,

where the time development is driven by the Hamiltonian H = H0 (with no
perturbation) and the states g and m are eigenstates of H0. Therefore, the off-
diagonal element ρmg(m 	= g) is given as a solution,

ρmg(t) = ρmg exp
[
i(−ωmg + i�mg)t

]
,

which satisfies the proper boundary condition ρmg(t) → 0 at t → ∞ (�mg > 0).
Consequently, 〈A(t)〉 in Eq. (4.19) is presented by

〈A(t)〉=
∑

g,m

Agmρmg(t)=
∑

g,m

Agmρmg exp
[
i(−ωmg + i�mg)t

] =
∑

g,m

Agm(t)ρmg.

This solution leads to the equivalent Heisenberg picture by

Agm(t) = 〈g|A(t)|m〉 = Agm exp
[
i(−ωmg + i�mg)t

]
. (4.20)
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This relation elucidates Eq. (4.18) by setting A = αpq . We note again that the above
discussion about the time evolution is based on the Hamiltonian H0, not including
the perturbation. The diagonal elements (g = m) in Eq. (4.18) do not contribute to
Eq. (4.17), due to the vanishing factor (ρ

(0)
g − ρ

(0)
m ) = 0 for g = m.

In summary, Eq. (4.17) gives an equivalent expression of χ (2),res to Eq. (3.36).
It indicates that the vibrational resonant term of the nonlinear susceptibility χ (2),res

can be represented by the Fourier-Laplace transformation of the time correlation
function between the Raman tensor αpq and the dipole moment μr for the interface
system. It is a rigorous expression of χ (2),res on the basis of quantum mechanics.

4.3.2 Classical Analogue

The time correlation formula of Eq. (4.17) allows for an alternative computational
scheme of χ (2),res. The time correlation functions are utilized to evaluate various
properties of statistical mechanics [13], and amenable to be computed by molecular
dynamics (MD) simulation [1, 6]. In order to use this formula with MD simulation,
however, we should obtain a classical version of Eq. (4.17) since usual MD
simulations are carried out on the basis of classical mechanics. Deriving the classical
expression is the theme of this subsection.

χ (2),res in Eq. (4.17) is expressed by the Fourier-Laplace transformation of the
time correlation function F(t),

χ(2),res
pqr (�,ω1, ω2) =

∫ ∞

0
dt exp (iω2t)F(t), (4.21)

where

F(t) = i

h̄

〈
αpq(t)μr − μrαpq(t)

〉 = i

h̄

〈
δαpq(t)δμr − δμrδαpq(t)

〉
(4.22)

In this expression δαpq(t) = αpq(t) − 〈
αpq

〉
and δμr = μr − 〈μr 〉 denote

the displacements from the average values. Equation (4.22) is apparently a
quantum mechanical expression, since it includes h̄ and a commutation relation
[αpq(t), μr ] = αpq(t)μr − μrαpq(t) 	= 0. This form is not amenable to the
classical limit, since both h̄ and the commutation relation would go to zero and thus
F(t) → 0/0. To obtain a classical analogue, we change Eq. (4.21) to an equivalent
form with the canonical time correlation function [13].

A related function G(t) is introduced using the canonical time correlation
function,

G(t) =
〈
αpq(t) − α◦

pq; μr − μ◦
r

〉
(4.23)

= 1

β

∫ β

0
dλ
〈
exp (λH)

(
αpq(t) − α◦

pq

)
exp (−λH)

(
μr − μ◦

r

)〉
,
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where β = 1/(kBT ), and H is the Hamiltonian for the entire system (partial system
and bath). α◦ and μ◦ are the diagonal part of α and μ, respectively, on the basis of
energy eigenstates.3 〈A;B〉 denotes the canonical time correlation function defined
as follows,

〈A;B〉 = 1

β

∫ β

0
dλ 〈exp(λH)A exp(−λH)B〉. (4.24)

[Problem 4.2] Prove 〈A;B〉 = 〈B;A〉 for arbitrary operators A and B in
Eq. (4.24). This indicates that the operators in the canonical correlation function
are commutative like a classical one.

Then we find the relation between F(t) and G(t). In the following derivation
we define H and ρ for the entire system (partial system and bath). The Liouville
equation is formally given using H by

ih̄
∂ρ(t)

∂t
= Hρ(t) − ρ(t)H. (3.8)

This equation for the entire system involves no damping term, as we mentioned in
Sect. 3.1. Using H and ρ(t), F(t) in Eq. (4.22) is written by

F(t) = i

h̄

〈
δαpq(t)δμr − δμrδαpq(t)

〉

= i

h̄
Tr

[
ρ

{
exp

(
iHt

h̄

)
δαpq exp

(−iHt

h̄

)
δμr − δμr exp

(
iHt

h̄

)
δαpq

exp

(−iHt

h̄

)}]
, (4.25)

where exp(−iHt/h̄) is the time development operator. G(t) in Eq. (4.23) is
expanded using the eigenstates of the entire system, m, n, by

3Therefore, the matrix elements for an arbitrary operator A◦ (= α◦
pq or μ◦

r ) are represented using
energy eigenstates m, n of the entire system as

〈m|A◦|n〉 =
{

〈m|A|n〉 (m = n)

0 (m 	= n)
.

This is equivalent to the long-time average of 〈m|A|n〉,

〈m|A◦|n〉 = lim
T →∞

1

T

∫ T

0
dt 〈m|A(t)|n〉 = lim

T →∞
1

T

∫ T

0
dt exp

(
i(Em − En)t

h̄

)
〈m|A|n〉.

Note that A◦ is commutative with H, and thus A◦(t) = exp(iHt/h̄)A◦ exp(−iHt/h̄) = A◦.
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G(t) = 1

β

∫ β

0
dλ
〈
exp (λH)

(
αpq(t) − α◦

pq

)
exp (−λH) (μr − μ◦

r )
〉

= 1

β

∫ β

0
dλ Tr

[
ρ exp(λH) exp

(
iHt

h̄

)(
αpq − α◦

pq

)
exp

(−iHt

h̄

)

exp(−λH)
(
μr − μ◦

r

) ]

= 1

β

∫ β

0
dλ

∑

m

∑

n

exp(−βEm)

Q
exp(λEm) exp

(
iEmt

h̄

)(〈
m|αpq |n〉−

〈
m|α◦

pq |n
〉)

· exp

(
− iEnt

h̄

)
exp(−λEn)

(〈n|μr |m〉 − 〈
n|μ◦

r |m
〉)

= 1

β

∑

m

∑

n( 	=m)

exp(−βEm)

Q
exp

(
iEmt

h̄

) 〈
m|αpq |n〉 exp

(−iEnt

h̄

)
〈n|μr |m〉

· exp (β(Em − En)) − 1

Em − En

= 1

Q

∑

m

∑

n( 	=m)

exp (−βEm) − exp (−βEn)

−β (Em − En)
exp

(
iEmt

h̄

) 〈
m|δαpq |n〉

exp

(−iEnt

h̄

)
〈n|δμr |m〉 , (4.26)

where Em, En are the energy eigenvalues for the states m, n. Q =
∑

m

exp (−βEm)

is the partition function for the entire system. During the derivation in Eq. (4.26),
the diagonal terms (m = n) of A − A◦ (A = αpq or μr ) vanish, and 〈m|δA|n〉 =〈
m|A − 〈A〉|n〉 = 〈m|A|n〉 is employed for m 	= n.

Now Eq. (4.21) is expressed with G(t) instead of F(t) using Eqs. (4.25)
and (4.26) in the following way,

χ(2),res
pqr (�,ω1, ω2) =

∫ ∞

0
dt exp (iω2t)F(t) (4.21)

= i

h̄

∫ ∞

0
dt exp(iω2t)

∑

m

∑

n

exp(−βEm)

Q

{
exp

(
iEmt

h̄

) 〈
m|δαpq |n〉

exp

(−iEnt

h̄

)
〈n|δμr |m〉

− 〈m|δμr |n〉 exp

(
iEnt

h̄

) 〈
n|δαpq |m〉 exp

(−iEmt

h̄

)}

= i

h̄

∫ ∞

0
dt exp(iω2t)

∑

m

∑

n( 	=m)

exp(−βEm) − exp(−βEn)

Q
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· exp

(
iEmt

h̄

) 〈
m|δαpq |n〉 exp

(−iEnt

h̄

)
〈n|δμr |m〉

= − 1

Q

∑

m

∑

n( 	=m)

exp(−βEm) − exp(−βEn)

Em − En

〈
m|δαpq |n〉 〈n|δμr |m〉

− iω2

∫ ∞

0
dt exp(iω2t) · 1

Q

∑

m

∑

n( 	=m)

exp(−βEm) − exp(−βEn)

Em − En

· exp

(
iEmt

h̄

) 〈
m|δαpq |n〉 exp

(−iEnt

h̄

)
〈n|δμr |m〉

= βG(0) + iω2β

∫ ∞

0
dt G(t) exp(iω2t). (4.27)

From the third line to the fourth line, integration by parts is performed.
Equation (4.27) is amenable to the classical limit by replacing the canonical cor-

relation function G(t) in Eq. (4.23) with the classical time correlation function [13],

G(t) =
〈
αpq(t) − α◦

pq; μr − μ◦
r

〉
−−→ Gcl(t) = 〈

δαpq(t) δμr

〉
cl .

In the classical limit, the operators in Eq. (4.23) become commutable and the long-
time average of α and μ correspond to the ensemble average. Therefore, χ (2),res in
Eq. (4.27) finds a classical analogue to be

χ(2),res
pqr (�,ω1, ω2) � βGcl(0) + iω2β

∫ ∞

0
dtGcl(t) exp(iω2t)

= 1

kBT

〈
δαpqδμr

〉
cl + iω2

kBT

∫ ∞

0
dt
〈
δαpq(t)δμr

〉
cl exp(iω2t). (4.28)

This classical expression of χ (2),res in Eq. (4.28) is utilized in calculating the SFG
spectroscopy by MD simulation. Hereafter we omit the subscript “cl” and the over-
bar in the classical time correlation function unless otherwise noted.4 Accordingly,
Eq. (4.28) could be expressed as

χ(2),res
pqr (�,ω1, ω2) = 1

kBT

〈
δαpqδμr

〉+ iω2

kBT

∫ ∞

0
dt
〈
δαpq(t)δμr

〉
exp(iω2t)

= 1

kBT

(〈
αpqμr

〉− 〈αpq

〉 〈μr 〉
)+ iω2

kBT

∫ ∞

0
dt
(〈
αpq(t)μr

〉− 〈αpq

〉 〈μr 〉
)

exp(iω2t)

= 1

kBT

〈
αpqμr

〉+ iω2

kBT

∫ ∞

0
dt
〈
αpq(t)μr

〉
exp(iω2t). (4.29)

4In the classical mechanics, the distinction between quantum average 〈A〉 and statistical average A

in Sect. 3.1 disappears. Accordingly the classical time correlation function 〈A(t)B〉cl is equivalent
to A(t)B.
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Finally, we make the following three notes on the above derivation of the classical
analogue.

Note 1. In actual application to interpret vibrational spectra, we are interested
in the frequency dependence of χ (2)(ω2). In such cases, the second term of
Eq. (4.29) is often regarded as the vibrational resonant term,

χ(2),res
pqr (ω2) = iω2

kBT

∫ ∞

0
dt
〈
αpq(t)μr

〉
exp(iω2t). (4.30)

On the other hand, the first term of Eq. (4.29) is constant over the frequency ω2,
and thus it could be effectively regarded as a part of the nonresonant background
χ (2),nonres.

Note 2. The present classical form of Eq. (4.30) can be derived in an alternative
manner using the harmonic oscillator model [3, 17]. The harmonic oscillators
are exactly soluble both by quantum and classical mechanics, and thus allow for
finding the correspondence of quantum and classical descriptions.

Note 3. The classical formula of χ (2) does not necessarily reproduce its quanti-
tative amplitude. This issue is related to the attempts to seek a proper quantum
correction factor for time correlation functions [5]. The spectral lineshapes are
reliable though, as it is insensitive to the details of the quantum correction factor
over the frequency range of ω2. Therefore, Eq. (4.29) or (4.30) is useful enough
for the lineshape analysis of the vibrational spectra.

Equation (4.30) is the fundamental formula to calculate χ (2),res by MD simula-
tion. In the MD calculations of Eq. (4.30), the evaluation of polarization properties
in the interface system is critically important. We will discuss these polarization
properties in the following Chaps. 5 and 6.

4.4 Motional Effect on χ(2)

The time correlation formula of χ (2) derived above is able to incorporate the
dynamical effects on χ (2), including the vibrational couplings and dephasing, since
the dynamics of molecules are naturally reflected in the time correlation function
〈α(t)μ〉. This is an advantage of the time correlation formula of χ (2), while the χ (2)

model by the energy representation in Sect. 4.1 is not suitable to account for the
dynamical effects. Here we discuss the motional effect of orientation on χ(2) on the
basis of the time-dependent representation [26].
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4.4.1 Relation of Two χ(2) Models

For this purpose, we clarify the relation and difference of the two χ (2) modeling on
the basis of energy representation and time-dependent representation. The energy
representation model of χ (2) in Eqs. (4.3) and (4.4) can be derived from the time-
dependent representation in Eq. (4.29) with employing some assumptions.

Since Eq. (4.29) refers to the nonlinear susceptibility χ (2) of the whole interface
system, α and μ in this equation also stand for the polarizability and dipole of the
whole system. Thus α and μ of the whole interface system are expressed as the sum
of molecular quantities,

αpq ≈
molecule∑

l

ξ∼ζ∑

p′

ξ∼ζ∑

q ′
Dl,pp′Dl,qq ′αl,p′q ′, (4.31)

μr ≈
molecule∑

k

ξ∼ζ∑

r ′
Dk,rr ′μk,r ′ , (4.32)

where αl,p′q ′ and μk,p′ denote the polarizability tensor of l-th molecule and the
dipole vector of k-th molecule, respectively, in the molecule-fixed coordinates. We
note that Eqs. (4.31) and (4.32) are regarded as a crude approximation to neglect the
local field effect. The local field effect will be discussed in details in Chap. 5, and
thereby the above formulas will be refined in that chapter.

By substituting Eqs. (4.31) and (4.32) into Eq. (4.29), the following approximate
expression of χ(2) is obtained,

χ
(2),res
pqr (ω2) = 1

kBT
〈αpqμr 〉 + iω2

kBT

∫ ∞
0

dt
〈
αpq(t)μr (0)

〉
exp(iω2t) (4.29)

≈ 1

kBT

〈molecule∑

l

ξ∼ζ∑

p′,q′
Dl,pp′Dl,qq′αl,p′q′ ·

molecule∑

k

ξ∼ζ∑

r ′
Dk,rr ′μk,r ′

〉

+ iω2

kBT

∫ ∞
0

dt

〈molecule∑

l

ξ∼ζ∑

p′,q′
Dl,pp′ (t)Dl,qq′ (t)αl,p′q′ (t) ·

molecule∑

k

ξ∼ζ∑

r ′
Dk,rr ′ (0)μk,r ′ (0)

〉
exp(iω2t)

≈
molecule∑

l

ξ∼ζ∑

p′,q′,r ′

1

kBT

〈
Dl,pp′Dl,qq′αl,p′q′ · Dl,rr ′μl,r ′

〉

+
molecule∑

l

ξ∼ζ∑

p′,q′,r ′

iω2

kBT

∫ ∞
0

dt
〈
Dl,pp′ (t)Dl,qq′ (t)αl,p′q′ (t) · Dl,rr ′ (0)μl,r ′ (0)

〉
exp(iω2t).

(4.33)

From the second line to the third, we have employed another approximation to
neglect the cross correlations between different molecules (l 	= k). This approxima-
tion will be critically examined with some examples of aqueous electrolyte systems
in Sect. 9.3.
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Equation (4.33) shows explicitly that the time correlation function includes the
rotational matrices D(t) as a function of t , and thereby the orientational motion of
molecules. In a case that the orientational motion is slow and thus regarded to be
fixed during the decay time of the time correlation function, Eq. (4.33) becomes

χ(2),res
pqr (ω2)

≈
molecule∑

l

ξ∼ζ∑

p′,q ′,r ′
Dl,pp′Dl,qq ′Dl,rr ′

{
1

kBT

〈
αl,p′q ′μl,r ′

〉+ iω2

kBT

∫ ∞

0
dt
〈
αl,p′q ′ (t)μl,r ′ (0)

〉
exp(iω2t)

}

(4.34)

(fixed orientational motion)

where the average in the curly bracket is taken first before the average over the
orientation.5 In Eq. (4.34), the dynamics in the time correlation function is governed
by intramolecular vibrations. We represent the molecular vibrations with normal
mode(s) Qa . Thus the time evolution of a physical quantity Y (= α,μ) is driven by
the normal mode(s),

Y (t) = Y (0) +
mode∑

a

(
∂Y

∂Qa

)
Qa(t) + · · · , (4.35)

and the vibration of mode a is given with a damped harmonic oscillator,

〈Qa(t)Qa〉 = 〈Q2
a〉 exp(−�at) cos(ωat) = kBT

maω2
a

exp(−�at) cos(ωat). (4.36)

Then the curly bracket in Eq. (4.34) including the Fourier-Laplace transform is
written as

1

kBT
〈αμ〉 + iω

kBT

∫ ∞
0

dt 〈α(t)μ(0)〉 exp(iωt)

≈ 1

kBT
〈αμ〉 + iω

kBT

∫ ∞
0

dt

⎧
⎨

⎩〈αμ〉 +
mode∑

a

(
∂α

∂Qa

)(
∂μ

∂Qa

)
〈Qa(t)Qa(0)〉

⎫
⎬

⎭ exp(iωt)

= iω

kBT

∑

a

(
∂α

∂Qa

)(
∂μ

∂Qa

)
kBT

maω2
a

∫ ∞
0

dt exp(−�at) cos(ωat) exp(iωt)

= −
∑

a

(
∂α

∂Qa

)(
∂μ

∂Qa

)
ω

2maω2
a

(
1

ω − ωa + i�a
+ 1

ω + ωa + i�a

)

5Here we denote time correlation function by angle bracket 〈A〉 and orientational average by over-
bar A. In the classical mechanics, both notations 〈A〉 and A indicate the statistical average and thus
they are essentially equivalent in this context.
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≈ −
∑

a

1

2maωa

(
∂α

∂Qa

)(
∂μ

∂Qa

)
1

ω − ωa + i�a
, (4.37)

where the last expression takes the resonant term with the mode a by the rotating
wave approximation. Using the result of Eq. (4.37), χ

(2),res
pqr (ω2) in Eq. (4.34)

becomes

χ
(2),res
pqr (ω2)

≈
molecule∑

l

ξ∼ζ∑

p′,q′,r ′
Dl,pp′Dl,qq′Dl,rr ′

⎧
⎨

⎩−
mode∑

a

1

2maωa

(
∂αl,p′q′

∂Qa

)(
∂μl,r ′
∂Qa

)
1

ω2 − ωa + i�a

⎫
⎬

⎭.

(4.38)

Equation (4.38) coincides with the χ(2),res expression of Eqs. (4.3) and (4.4) in
Sect. 4.1 on the basis of energy representation.

4.4.2 Slow Limit and Fast Limit

The above derivation of Eqs. (4.3) and (4.4) helps justifying the χ(2),res formula
of energy representation as well as manifesting the approximations involved in
Eqs. (4.3) and (4.4). One important approximation is that the molecular orientation
is fixed during the correlation time of the vibrations. This approximation of static
orientation has been used to derive Eq. (4.34) in the above discussion. If the
molecular orientation changes within the correlation time, the decay profile of the
time correlation function is influenced by the orientational motion.

To discuss this motional effect, we could assume the other extreme case that the
orientational motion is fast enough in comparison with the correlation time. Then
the rotational average is taken first, and Eq. (4.33) should be

χ
(2),res
pqr (ω2) ≈

molecule∑

l

{
1

kBT

〈
αl,pq · μl,r

〉+ iω2

kBT

∫ ∞
0

dt
〈
αl,pq(t) · μl,r (0)

〉
exp(iω2t)

}
.

(4.39)

(fast orientational motion)

In this limit of fast orientational motion, the orientationally averaged values of α

and μ,

αl,pq(t) =
ξ∼ζ∑

p′,q ′
Dl,pp′(t)Dl,qq ′(t)αl,p′q ′(t) and μl,r (t) =

ξ∼ζ∑

r ′
Dl,rr ′(t)μl,r ′(t),
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are included in the time correlation function in Eq. (4.39). Wei and Shen argued
that the SPS spectra are particularly sensitive to the motional effect of molecular
orientation [26]. This is because the χ

(2)
yzy tensor component associated to the

SPS spectra includes αyz and μy components, and the off-diagonal element of
polarizability αyz is readily reduced by the orientational average.

The realistic situations fall between the two extreme cases of Eqs. (4.34)
and (4.39). We note that the motional effect of molecular orientation is naturally
incorporated in the MD calculation of χ (2) by the time correlation function formula.

4.5 Solutions to Problems

4.5.1 Polarization Ratios

[Problem 4.1] Derive Eqs. (4.14) and (4.15) on the basis of the above assumptions.

The ratios B and C are presented using Eq. (3.41) by

B = χ
(2)
yyz

χ
(2)
yzy

= N · α
(2)
yyz

N · α
(2)
yzy

= α
(2)
yyz

α
(2)
yzy

, C = χ
(2)
zzz

χ
(2)
yyz

= N · α
(2)
zzz

N · α
(2)
yyz

= α
(2)
zzz

α
(2)
yyz

.

Therefore, we formulate α
(2)
yyz, α

(2)
yzy , and α

(2)
zzz using Eqs. (3.43), (3.47) and (4.13) as

follows.

α
(2)
yyz =

∑

p′

∑

q ′

∑

r ′
Dyp′Dyq ′Dzr ′

(
∂αp′q ′

∂q1

)(
∂μr ′

∂q1

)

= DyξDyξDzζ Rαμ + DyηDyηDzζ Rαμ + DyζDyζDzζ αμ

= (cos ψ sin φ + cos θ cos φ sin ψ)2(cos θ) Rαμ

+ (− sin ψ sin φ + cos θ cos φ cos ψ)2(cos θ) Rαμ

+ (− sin θ cos φ)2(cos θ) αμ

= (cos θ sin2 φ + cos3 θ cos2 φ) Rαμ + cos θ sin2 θ cos2 ψ αμ

= (cos θ + cos3 θ)
Rαμ

2
+ (cos θ − cos3 θ)

αμ

2
, (4.40)

α
(2)
yzy =

∑

p′

∑

q ′

∑

r ′
Dyp′Dzq ′Dyr ′

(
∂αp′q ′

∂q1

)(
∂μr ′

∂q1

)
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= DyξDzξDyζ Rαμ + DyηDzηDyζ Rαμ + DyζDzζDyζ αμ

= (cos ψ sin φ + cos θ cos φ sin ψ)(sin ψ sin θ)(− sin θ cos φ) Rαμ

+ (− sin ψ sin φ + cos θ cos φ cos ψ)(cos ψ sin θ)(− sin θ cos φ) Rαμ

+ (− sin θ cos φ)(cos θ)(− sin θ cos φ) αμ

= (− cos θ sin2 θ cos2 φ − 2 sin2 θ cos ψ sin ψ cos φ sin φ) Rαμ

+cos θ sin2 θ cos2 φ αμ

= −(cos θ − cos3 θ)
Rαμ

2
+ (cos θ − cos3 θ)

αμ

2
, (4.41)

α
(2)
zzz =

∑

p′

∑

q ′

∑

r ′
Dzp′Dzq ′Dzr ′

(
∂αp′q ′

∂q1

)(
∂μr ′

∂q1

)

= DzξDzξDzζ Rαμ + DzηDzηDzζ Rαμ + DzζDzζDzζ αμ

= (sin ψ sin θ)2(cos θ) Rαμ + (cos ψ sin θ)2(cos θ) Rαμ + (cos3 θ) αμ

= cos θ sin2 θ Rαμ + cos3 θ αμ

= (cos θ − cos3 θ) Rαμ + cos3 θ αμ. (4.42)

In the above derivation of Eqs. (4.40), (4.41), and (4.42), the average over φ and
ψ is carried out with the assumption of uniform distribution. Using the results of
Eqs. (4.40), (4.41), and (4.42), B and C are given by

B = χ
(2)
yyz

χ
(2)
yzy

= α
(2)
yyz

α
(2)
yzy

=
(cos θ + cos3 θ)

Rαμ

2
+ (cos θ − cos3 θ)

αμ

2

−(cos θ − cos3 θ)
Rαμ

2
+ (cos θ − cos3 θ)

αμ

2

= (1 + R) cos θ − (1 − R) cos3 θ

(1 − R)(cos θ − cos3 θ)
, (4.14)

C = χ
(2)
zzz

χ
(2)
yyz

= α
(2)
zzz

α
(2)
yyz

= (cos θ − cos3 θ) Rαμ + cos3 θ αμ

(cos θ + cos3 θ)
Rαμ

2
+ (cos θ − cos3 θ)

αμ

2

= 2{R cos θ + (1 − R) cos3 θ}
(1 + R) cos θ − (1 − R) cos3 θ

. (4.15)

We notice that the final results of B and C in Eqs. (4.14) and (4.15) do not include
N , α and μ.
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4.5.2 Canonical Time Correlation Function

[Problem 4.2] Prove 〈A;B〉 = 〈B;A〉 for arbitrary operators A and B in
Eq. (4.24). This indicates that the operators in the canonical correlation function
are commutative like a classical one.

〈A;B〉 is

〈A;B〉 = 1

β

∫ β

0
dλ 〈exp(λH)A exp(−λH)B〉 (4.24)

= 1

β

∫ β

0
dλ Tr

[
exp(−βH)

Q
exp(λH)A exp(−λH)B

]
,

where Q is the partition function. The variable λ in the above integral is transformed
to λ′ = β − λ. Consequently,

〈A;B〉 = −1

βQ

∫ 0

β

dλ′ Tr
[
exp(−λ′H)A exp{(λ′ − β)H}B]

= 1

βQ

∫ β

0
dλ′ Tr

[
exp(−βH) exp(λ′H)B exp(−λ′H)A

]

= 1

β

∫ β

0
dλ′ 〈exp(λ′H)B exp(−λ′H)A〉

= 〈B;A〉 .
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Chapter 5
Molecular Theory of Local Field

Abstract In applying the microscopic SFG theory to actual interfaces, polarization
properties of condensed dielectric media have to be properly described. These
properties in uniform bulk media are often described with a phenomenological
model, though the detailed microscopic treatment becomes indispensable at inho-
mogeneous interfaces. This chapter summarizes the molecular theory of polarization
properties and offer a general scheme to calculate them by molecular simulation.
These properties can be determined in principle from molecular properties and their
interactions. This theory is of general significance to light-matter interactions, and
also an integral part in the computational analysis of SFG.

Keywords Local field correction factor · Effective polarizability · Interfacial
dielectric constant

The preceding chapter has given two representations of the second-order nonlinear
susceptibility χ (2), using the polarizability α and the dipole moment μ of the
interface system. In this chapter, we argue how the polarizability and dipole
moment of the interface system are described from microscopic configuration of
molecules. In the following discussion, the polarizability and dipole moment of
the whole interface system are denoted with the capital letters by A and M ,
respectively, to distinguish them from molecular properties. In the condensed phase,
the polarization properties such as A and M are affected by electrostatic interactions
among constituent molecules. The electrostatic intermolecular interactions mutually
polarize the constituent molecules, and consequently, the polarizability or dipole
moment of the whole system do not become the simple sum of polarizability or
dipole moment of non-interacting molecules. The reliable description of χ (2) should
take account of this effect of polarization coupling.

The coupling of polarizations is the origin of local field effect in a dielectric
medium, i.e. the local electric field at a molecule in the condensed phase is
influenced by the electrostatic interactions from neighboring molecules and thereby
deviates from the external field [3]. In the classical theory of dielectrics, the local
field effect is often treated by the simple Lorentz model or its analogues for a bulk
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medium [3]. Such classical models deal with the homogeneous bulk medium as
a dielectric continuum. In the inhomogeneous environment of interface, however,
the local field is more complicated than that in the homogeneous medium, and
the theory of dielectric continuum model should become less reliable. Here we
discuss the local field effect at the interface fully from a molecular point of view
[6, 7]. The microscopic theory of local field can accurately describe the effects of
polarization coupling in arbitrary environment, and is straightforwardly applicable
to MD simulation.

In Sect. 5.1 we formulate the general microscopic expressions of dipole moment
and polarizability for the interface system. In Sect. 5.2 these expressions are applied
to the nonlinear susceptibility χ (2) with fully incorporating the local field effect. The
local field effect in inhomogeneous environment is relevant to the dielectric constant
at interfaces ε′. Thus, we discuss this issue of ε′ from the microscopic viewpoint in
Sect. 5.3.

In the following discussion, molecular polarization is represented with the
polarizability α and dipole μ of constituent molecules in a general manner. The
effect of local field can be described with polarizable MD simulations in general,
irrespective of the modeling method of polarization. To implement the present
theory in practical MD simulation, however, one has to resort to a certain kind of
polarizable molecular model. There are a number of kinds of polarizable models,
such as the point dipole [1, 2, 11], fluctuating charge [8, 10, 13], and Drude
oscillator [5, 14, 15], which have their respective ways to represent the electronic
polarization of molecules. The following theory of local field captures the essential
mechanism of polarization interactions and is applicable to the various polarizable
model, though slight modifications may be required for some models to represent
the polarization properties. We present an example of the Charge Response Kernel
(CRK) model in Sect. 6.4.

5.1 Local Field Correction Factor

Self-consistent polarization We discuss the polarization at an arbitrary micro-
scopic configuration of molecules in the interface system. Let us suppose that the
i-th molecule is located at r(i) at an instantaneous moment, whose permanent
dipole moment vector and polarizability tensor are denoted by μ0(i) and α(i),
respectively. The polarization of molecules interact each other, and consequently
the total (permanent + induced) dipole moment of the i-th molecule μ(i) and the
electric field at the i-th molecule E(i) are determined in the following form,

μp(i) = μ0
p(i) +

x−z∑

q

αpq(i)Eq(i), (5.1)

Ep(i) = E0
p(i) −

∑

j ( 	=i)

x−z∑

q

Tpq(ij)μq(j), (5.2)
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where the suffixes p, q denote the space-fixed coordinates, x, y, or z. The first term
of the right-hand side of Eq. (5.1) means the permanent dipole moment of the i-th
molecule, and the second term the induced dipole. E(i) in Eq. (5.2) consists of two
terms. The field generated by the dipoles of neighboring molecules is represented
in the second term of the right-hand side of Eq. (5.2), while the first term E0(i)

accounts for the other sources of field than the dipole. T (ij) is called the dipole-
dipole coupling tensor, which describes the electric field at r(i) generated by a
dipole moment at r(j). The explicit form of Tpq(ij) is1

Tpq(ij) = δpq

r(ij)3
− 3rp(ij)rq(ij)

r(ij)5
, (5.3)

where r(ij) = |r(ij)| = |r(i) − r(j)|. Equations (5.1) and (5.2) define the
coupled relation between the dipole moment μ(i) and the electric field E(i),2 and
accordingly both quantities should be solved simultaneously in a self-consistent
manner. In polarizable MD simulation, instantaneous polarizations of constituent
molecules are determined at each time step t self-consistently in this way. We
also note that E0 in Eq. (5.2) includes the externally imposed field as well as the
intermolecular interactions other than the dipole-dipole coupling.

Solutions of μ and E Since Eqs. (5.1) and (5.2) are linear, the coupled equations
can be solved analytically. Equations (5.1) and (5.2) are written in the matrix form,

μ = μ0 + αE,

E = E0 − T μ. (5.4)

In Eq (5.4), μ,μ0,E,E0 are 3N -dimensional vectors, with N being the number of
molecules. They are represented by

μ =

⎛

⎜⎜⎜⎝

μ(1)

μ(2)
...

μ(N)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

μx(1)

μy(1)

μz(1)

μx(2)
...

μz(N)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, μ0 =

⎛

⎜⎜⎜⎝

μ0(1)

μ0(2)
...

μ0(N)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ0
x(1)

μ0
y(1)

μ0
z(1)

μ0
x(2)
...

μ0
z(N)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1Some other literature employs the reverse sign for the dipole-dipole tensor [4, 9].
2Equations (5.1) and (5.2) account for the dipole-dipole interaction to describe the local field, and
neglect the retardation of the electromagnetic interaction. The latter is relevant to the radiation and
is treated in a separate manner (see Sect. 5.3).
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E =

⎛

⎜⎜⎜⎝

E(1)

E(2)
...

E(N)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ex(1)

Ey(1)

Ez(1)

Ex(2)
...

Ez(N)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, E0 =

⎛

⎜⎜⎜⎝

E0(1)

E0(2)
...

E0(N)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

E0
x(1)

E0
y(1)

E0
z (1)

E0
x(2)
...

E0
z (N)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.5)

where the components μ(i),μ0(i),E(i),E0(i) for the i-th molecule are three-
dimensional vectors. On the other hand, α and T are 3N × 3N matrices, whose
components are written in the following form,

α =

⎛

⎜⎜⎜⎝

α(1) 0 · · · 0
0 α(2)
...

. . .

0 α(N)

⎞

⎟⎟⎟⎠ , T =

⎛

⎜⎜⎜⎝

0 T (12) · · · T (1N)

T (21) 0 T (2N)
...

. . .
...

T (N1) T (N2) · · · 0

⎞

⎟⎟⎟⎠ . (5.6)

In this Eq. (5.6), α is symmetric since α(i) denotes the 3×3 symmetric polarizability
tensor of the i-th molecule. T is also symmetric as T (ij) is a symmetric 3×3 matrix.
Then Eq. (5.4) is formally solved as follows.

E = E0 − T μ = E0 − T
(
μ0 + αE

)
, (5.7)

μ = μ0 + αE = μ0 + α
(
E0 − T μ

)
. (5.8)

Therefore,

E = [1 + T α]−1
(
E0 − T μ0

)
= g

(
E0 − T μ0

)
, (5.9)

μ = [1 + αT ]−1
(
μ0 + αE0

)
= gT

(
μ0 + αE0

)
= gT μ0′

, (5.10)

where μ0′ = μ0 + αE0. g is a 3N × 3N matrix defined by

g = [1 + T α]−1
(

or gT = [1 + αT ]−1
)

. (5.11)

Equations (5.9) and (5.10) manifest the physical meaning of g and gT . Equa-
tion (5.9) indicates that g is the factor to modify the electric field from E0 − T μ0

to E,

(
E0 − T μ0

)
g−→ E.
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The left side consists of the “external” field E0 and the electric field from permanent
dipoles of neighboring molecules −T μ0. E0−T μ0 is a hypothetical electric field in
Eq. (5.7) with the polarizability switched off, α = 0. In the realistic case, however,
the dipole moments of molecules are affected each other, and as a consequence,
the electric field changes from E0 − T μ0 to E. g is therefore considered to be a
microscopic definition of the local field correction factor, and deviates from unity
when the constituent molecules are polarizable.

In the same vein, Eq. (5.10) illustrates the role of gT , which changes the dipole
moments of molecules from μ0′

to μ,

(
μ0 + αE0

)
= μ0′ gT

−→ μ.

The left side μ0′
stands for the dipole moment consisting of the permanent dipole

μ0 and the induced one by the external field αE0. Accordingly, μ0′
does not include

the dipole-dipole interaction among molecular polarizations, and gT takes account
of the dipole-dipole coupling effect on the polarizations. To summarize, both factors
g and gT account for the effect of the self-consistent coupling among polarizations.
g affects on the electric field while gT on the dipole moment. Note the distinction
between g and gT in the transpose relation.

Dipole M Using the solutions of E and μ in Eqs. (5.9) and (5.10), we can derive
the dipole moment and polarizability of the whole system. The dipole moment of
the whole system M is given by the sum of total (permanent + induced) dipole
moments of constituent molecules,

M =
N∑

i=1

μ(i). (5.12)

μ(i) is a part of the 3N -dimensional vector μ in Eq. (5.5). Equation (5.12) is
expanded in the component representation using Eq. (5.10) by

Mp =
N∑

i=1

μp(i) =
N∑

i,j

x∼z∑

q

gT
pq(ij)

(
μ0

q(j) +
x∼z∑

r

αqr (j)E0
r (j)

)

=
N∑

i,j

x∼z∑

q

gT
pq(ij)μ0′

q (j) =
∑

i,j

x∼z∑

q

μ0′
q (j)gqp(j i) =

N∑

j=1

x∼z∑

q

μ0′
q (j)fqp(j).

(5.13)

g(ij) and gT (ij) are 3 × 3 matrices, which are parts of the 3N × 3N matrices of g

and gT , respectively,

g =

⎛

⎜⎜⎜⎝

g(11) g(12) · · · g(1N)

g(21) g(22)
...

. . .

g(N1) g(NN)

⎞

⎟⎟⎟⎠ , gT =

⎛

⎜⎜⎜⎝

gT (11) gT (12) · · · gT (1N)

gT (21) gT (22) gT (2N)
...

. . .
...

gT (N1) gT (N2) · · · gT (NN)

⎞

⎟⎟⎟⎠ .
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In the last expression of Eq. (5.13), f (i) is a 3 × 3 matrix for each i as,

fpq(i) =
N∑

j=1

gpq(ij). (5.14)

f (i) indicates the correction factor for the dipole moment of the i-th molecule.

Polarizability A The polarizability of the whole system A is defined as the
derivative of the dipole moment M with respect to the external field. Here we
introduce the generalized effective polarizability of 3N × 3N tensor, αeff =
∂μ/∂E0, as the derivative of μ with respect to the electric field E0. It is derived
by differentiating Eq. (5.10) as

αeff = ∂μ

∂E0 = gT α = [1 + αT ]−1α = α[1 + T α]−1 = αg. (5.15)

αeff is written by

αeff =

⎛

⎜⎜⎜⎝

αeff(11) αeff(12) · · · αeff(1N)

αeff(21) αeff(22)
...

. . .
...

αeff(N1) · · · αeff(NN)

⎞

⎟⎟⎟⎠ ,

using the 3 × 3 component matrices αeff(ij) = ∂μ(i)/∂E0(j). αeff(ij) is the
derivative of the dipole moment of the i-th molecule with respect to the electric
field at the j -th molecule. Note that αeff(ij) may have finite values for i 	= j due to
the interaction between induced polarizations, in contrast to α in Eq. (5.6).

Suppose that the external field at j -th molecule varies by δE0(j), it changes
the dipole moment of the same j -th molecule. As a consequence, the modified
dipole changes the polarization of a neighboring i-th molecule by δμ(i) through
the electrostatic intermolecular coupling. The first-order variation of δμ(i) is given
with the variation of δE0(j) by

δμ(i) =
N∑

j=1

αeff(ij) δE0(j)

=
N∑

j=1

α(i) g(ij) δE0(j) = α(i) δEloc(i). (5.16)

The last expression of Eq. (5.16) is obtained by using the differential relation of
Eq. (5.9) with respect to E0,

δE(i) =
∑

j

g(ij) δE0(j) ≡ δEloc(i),
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and δE(i) is denoted with the superscript “loc” to designate the local field of i-th
molecule.3 The last expression of Eq. (5.16) means that δμ(i) is also represented as
the local response of i-th molecule to the change in the local field δEloc(i).

Then we deal with a variation of the external field of light, δEext. This gives rise
to the uniform variation of E0, δE0(1) = δE0(2) = · · · = δE0(N) = δEext, since
the external field of light is considered uniform in the microscopic scale in question.
Accordingly, Eq. (5.16) indicates δμ(i) to be

δμ(i) =
N∑

j=1

αeff(ij) δE0(j) =
⎛

⎝
N∑

j=1

αeff(ij)

⎞

⎠ δEext.

This formula is written in the component representation using the factor g(ij)

or f (i),

δμp(i) =
N∑

j

∑

q

αeff
pq(ij) δEext

q =
N∑

j

x∼z∑

q,r

αpr(i) grq(ij) δEext
q

=
x∼z∑

q,r

αpr(i) frq(i) δEext
q =

x∼z∑

r

αpr(i) δEloc
r (i). (5.17)

Equation (5.17) includes the variation of the local field δEloc
r (i) given by

δEloc
r (i) =

∑

j

x∼z∑

q

grq(ij) δEext
q =

x∼z∑

q

frq(i) δEext
q . (5.18)

Equation (5.18) clearly indicates that f (i) is the correction factor for the local field
at the i-th molecule with respect to the uniform external field. By addition of the
uniform external field, the dipole moment of the whole system δM changes by

δM =
N∑

i=1

δμ(i) =
⎛

⎝
N∑

i=1

N∑

j=1

αeff(ij)

⎞

⎠ δEext.

This formula indicates the polarizability of the whole system A = ∂M/∂Eext,
which presents the response of M with respect to the uniform external field Eext, as

A =
N∑

i=1

N∑

j=1

αeff(ij).

3In the following we employ Eloc with the superscript “loc” for E to distinguish the local field
from other kinds of field.
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The components of A are written by

Apq =
N∑

i,j

αeff
pq(ij) =

N∑

i,j

x∼z∑

r

αpr(i)grq(ij) =
N∑

i

x∼z∑

r

αpr(i)frq(i). (5.19)

Equation (5.19) shows that A is not simply the sum of α(i), but involves the local
field correction factor f (i).

5.2 Local Field Correction for χ(2)

Next, we irradiate the interface system with oscillating electric fields of visible light
Eext(ω1) and infrared light Eext(ω2). The superscript “ext” designates the external
fields of perturbation.4 Then the nonlinear susceptibility of interface generates the
sum-frequency polarization at the i-th molecule, namely μ(2),0(i,�). Here we
formulate the sum-frequency polarization generated at the interface from the sum-
frequency polarization at each molecule.

Let us recall the microscopic derivation of nonlinear polarization from the
second-order perturbation on the density matrix in Chap. 3. When we have defined
the perturbation Hamiltonian Ĥ ′ = −μ̂ · Eext(t) in Eq. (3.18) in the semiclassical
theory, μ̂ designates the dipole operator of the whole material system (including
the interface) and Eext(t) is the external electric field as the perturbation. The dipole
operator for the whole material system μ̂ is given by the sum of dipole operators
of constituent molecules μ̂(j), i.e. μ̂ = ∑

j

μ̂(j). The second-order polarization in

Eq. (3.29) has been represented with the dipole operator μ̂ and the second-order
density matrix ρ(2) by

P (2),0
p (t) = Tr

[
μ̂p ρ(2)(t)

]
= Tr

⎡

⎣

⎛

⎝
N∑

j

μ̂p(j)

⎞

⎠ ρ(2)(t)

⎤

⎦ =
N∑

j

μ(2),0
p (j, t).

(5.20)

We put the superscript 0 in the left-hand side to emphasize that Eq. (5.20) is the
simple sum of the bare nonlinear polarizations of the molecules. This relation
is converted to the frequency domain by taking the Fourier transformation and
extracting the exp(−i�t) component,

P (2),0
p (�) =

N∑

j

μ(2),0
p (j,�). (5.21)

4We note the distinction between Eext(ω) and the incident field EI (ω) in Chap. 2, as detailed in
Sect. 5.3.
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Since P (2),0(�) in Eq. (5.21) is induced by Eext(ω1) and Eext(ω2), we could define
a nonlinear susceptibility χ

(2),0
pqr (�,ω1, ω2) by

P (2),0
p (�) = χ(2),0

pqr (�,ω1, ω2)E
ext
q (ω1)E

ext
r (ω2). (5.22)

As discussed in Chap. 3, the nonlinear susceptibility χ (2),0 consists of the vibra-
tionally resonant and nonresonant parts. The resonant part χ (2),0,res is represented
with the classical time correlation function between the polarizability A and dipole
moment M of the whole system (i.e. Apq in Eq. (5.19) and Mr in Eq. (5.13)),

χ(2),0,res
pqr (�,ω1, ω2) = iω2

kBT

∫ ∞

0
dt
〈
Apq(t)Mr

〉
exp(iω2t), (5.23)

where

Apq =
N∑

j=1

x∼z∑

r

αpr(j)frq(j), Mr =
N∑

k=1

x∼z∑

s

μ0
s

′
(k)fsr (k).

We note that the local field correction factors frq(i) and fsr (k) in the above
equations are associated to the visible and infrared fields, respectively. This role
becomes evident by multiplying the respective fields in Eq. (5.22) as follows,

ApqEext
q (ω1) =

N∑

j=1

x∼z∑

r

αpr(j)frq(j)Eext
q (ω1) =

N∑

j=1

x∼z∑

r

αpr(j)Eloc
r (j, ω1),

MrE
ext
r (ω2) =

N∑

k=1

x∼z∑

s

μ0
s

′
(k)fsr (k)Eext

r (ω2) =
N∑

k=1

x∼z∑

s

μ0
s

′
(k)Eloc

s (k, ω2).

These equations apparently indicate that the f factor changes the external visi-
ble/infrared field Eext(ω1/2) to the local field Eloc(ω1/2), respectively.

The above formulas (5.20), (5.21), (5.22) have treated the bare nonlinear
polarizations induced by the second-order perturbation. However, the bare nonlinear
polarization μ(2),0(i,�) interacts each other by the dielectric coupling in the same
way as discussed in Sect. 5.1, and thereby modifies itself from μ(2),0(i,�) to
μ(2)(i, �). This effect of dielectric coupling has to be considered to derive the
observed polarization at the sum frequency �. The relation between μ(2),0(i,�)

and μ(2)(i, �) is given after Eq. (5.8) in Sect. 5.1 by

μ(2)
p (i,�) = μ(2),0

p (i,�) −
x∼z∑

q

αpq(i)

N∑

j ( 	=i)

x∼z∑

r

Tqr (ij)μ(2)
r (j,�),
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or

μ(2)(�) = μ(2),0(�) − αT μ(2)(�)

= [1 + αT ]−1μ(2),0(�) = gT μ(2),0(�)

in the matrix form, where the external field E0(�) at the sum frequency � in
Eq. (5.8) is assumed to be absent. Consequently, the sum-frequency polarization
of the whole system P

(2)
p (�) is

P (2)
p (�)=

N∑

i

μ(2)
p (i,�)=

N∑

i,j

x∼z∑

s

gsp(j i)μ(2),0
s (j,�)=

N∑

j

x∼z∑

s

fsp(j)μ(2),0
s (j,�).

(5.24)

The second-order polarization including the dielectric coupling is thus represented
in the semi-classical manner by

P (2)
p (t) =

N∑

j

x∼z∑

s

fsp(j) Tr
[
μ̂s(j)ρ(2)(t)

]
. (5.25)

The above argument clarifies the distinction between P (2),0(�) in Eq. (5.21) and
P (2)(�) in Eq. (5.24) for describing the sum-frequency polarization. Accordingly,
we introduce another form of nonlinear susceptibility χ (2), instead of χ (2),0, which
corresponds to P (2)(�) as

P (2)
p (�) = χ(2)

pqr (�, ω1, ω2)E
ext
q (ω1)E

ext
r (ω2). (5.26)

The difference between χ (2),0 and χ (2) comes from the difference in the defi-
nition of the sum-frequency polarization, P (2),0(�) and P (2)(�). The observed
sum-frequency polarization and the corresponding nonlinear susceptibility are
represented by the latter quantities, P (2)(�) and χ (2), in Eq. (5.26).

The vibrationally resonant part of χ (2) is therefore expressed as

χ(2),res
pqr (�,ω1, ω2) = iω2

kBT

∫ ∞

0
dt
〈
Aeff,pq(t)Mr

〉
exp(iω2t), (5.27)

where

Aeff,pq =
N∑

j=1

x∼z∑

r,s

fsp(j)αsr (j)frq(j) ≡
N∑

j=1

αeff(j),

Mr =
N∑

k=1

x∼z∑

s

μ0
s

′
(k)fsr (k) ≡

N∑

k=1

μeff(k).

(5.28)
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The three local field correction factors, fsp(j), frq(j) and fsr (k), in Eq. (5.28) are
associated to the sum-frequency �, visible ω1, and infrared ω2 fields, respectively.
The computational analysis of SFG spectra by MD simulation employs the expres-
sion of Eq. (5.27).

To summarize the above computational procedure of Aeff and M , the calculation
of χ (2) by MD simulation requires the following properties of constituent molecules
at each time:

(i) dipole-dipole coupling tensor T (ij),
(ii) external field E0(j),

(iii) polarizability tensor α(j),
(iv) permanent dipole moment vector μ0(j).

Among these properties, (i) and (ii) are readily obtained from the instantaneous
molecular configuration {r(j)}. Conventional force fields for MD simulation allow
for calculating E0(j) at each time step, as it is a necessary quantity to evaluate
electrostatic forces. On the other hand, usual force fields of MD do not provide (iii)
and (iv). We have to obtain the instantaneous values of α(j) and μ0(j) at each time
step in addition to the force field calculations. The modeling of α(j) and μ0(j) will
be discussed in the next Chap. 6.

5.3 Interfacial Dielectric Constant ε′

The preceding argument on the local field is quite relevant to the microscopic
understanding of the interfacial dielectric constant ε′ mentioned in Chap. 2. As we
have summarized in Sect. 2.3 the factors to determine the SFG and SHG spectra,
the factors related to interface properties include the nonlinear susceptibility χ (2)

and the dielectric constant of the interface ε′. The preceding Sect. 5.2 provided
microscopic formulation of χ (2) on the basis of the molecular theory of local field.
In relation to the above argument, we discuss here the interfacial dielectric constant
ε′ from the same molecular viewpoint. The microscopic local field is connected to
the concept of ε′ in the phenomenological three-layer model.

External field vs. local field Let us consider the optical geometry of SFG
measurement in Fig. 2.1. We notice that Fig. 2.1 adopts the three-layer model and
assumes the infinite thin layer of interface at z ≈ 0. However, here we discuss
the structure and properties in the interface layer. In the following discussion the
medium α is assumed to be vacuum for simplicity, and hence εα = 1, though
extension to other situations is straightforward.

For microscopic treatment of electric fields at the interface, we distinguish the
incident field EI , external field Eext, and local field Eloc. Suppose a plane wave
Eα

I (ωf ) (f = 1 or 2) in Eq. (2.11) is incident from the medium α (vacuum) to the
interface, the interface region near z ≈ 0 feels the external field of the frequency
ωf , Eext(ωf ). This is a superposition of the incident and reflected radiation fields,
and thus related to the incident field through the optical factor LI (ωf ),
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Eext(ωf ) = LI (ωf )Eα
I (ωf ) (for f = 1 or 2), (5.29)

where

LI (ωf ) =

⎛

⎜⎜⎜⎜⎜⎜⎝

2qβ

εβqα + qβ
0 0

0
2qα

qα + qβ
0

0 0
2εβqα

εβqα + qβ

⎞

⎟⎟⎟⎟⎟⎟⎠
. (5.30)

The notations included in Eq. (5.30) are common with those of the Fresnel factor
F i→j in Eq. (2.18). F i→j for the three-layer model coincides with LI by setting
εα = ε′ = 1. Eext(ωf ) in Eq. (5.29) omits its z dependence, since we treat the field
near the interface (z ≈ 0) in a microscopic dimension much shorter than the light
wavelength.

The external field at the interface, Eext(ωf ), is not identical to the local field that
is felt by an individual molecule there, due to the local field correction in Sect. 5.1.
The microscopic local field near the interface Eloc is related to Eext with the local
field factor f (z, ωf ),5

Eloc(z, ωf ) = f (z, ωf )Eext(ωf ) = f (z, ωf )LI (ωf )Eα
I (ωf ). (5.31)

Eloc(z, ωf ) and f (z, ωf ) in Eq. (5.31) depend on the z coordinate in the micro-
scopic dimension (z ≈ 0) due to the inhomogeneous structure of the interface, in
contrast to Eext(ωf ). f (z, ωf ) is a diagonal tensor for an azimuthally isotropic
interface, where fx = fy and fz is distinct from the other two, for symmetry
reasons.

The above formulation of the local field involves both the optical factor L and
the local field factor f , which have distinct physical origins of interactions. L is
associated to the radiation field emitted by oscillating dipoles, while f is to the
near field or the dipole-dipole coupling. The f (z, ωf ) in Eq. (5.31) is essentially
equivalent to the microscopic quantity f (i) of Eq. (5.14) in Sect. 5.1. The latter is
defined at an instantaneous molecular configuration, while the former is obtained by
statistically averaging the molecular configurations of the interface.

Local field and dielectric constant We deal with the z dependence of f (z, ωf ) in
relation to the dielectric constant. First, consider the bulk region (z � 0) of uniform
medium with a dielectric constant ε. Then the classical Lorentz model [3] illustrated
in Fig. 5.1a, b leads to

fx = fy = ε + 2

3
and fz = ε + 2

3ε
. (5.32)

5Note that Ref. [12] denotes the local field factor by s.
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Pz
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r
r

ext

ext ext

ext

Fig. 5.1 Lorentz models in the bulk (a, b) and at the interface (c, d). (a, c) External electric field
Eext

x parallel to the interface, (b, d) Eext
z perpendicular to the interface

We notice that ε corresponds to the ratio of the local field factors, ε = fx/fz.
The dielectric constant acts as a screening factor of the electric field normal to a
surface by induced surface charges. In a similar manner, Zhuang et al. [16] applied
the Lorentz model to describe the dielectric property at the interface, and proposed

ε′ = ε(ε + 5)

2(2ε + 1)
. (5.33)

[Problem 5.1] Let us derive ε′ in Eq. (5.33) on the basis of the Lorentz model
illustrated in Fig. 5.1a–d.

(a, b) Bulk First, suppose a spherical cavity of radius r embedded in the bulk of a
slab with a dielectric constant ε, and put the system in an electric field Eext

x or Eext
z .

Show that the local fields inside the cavity in the two cases are

Eloc
x = fxE

ext
x = ε + 2

3
Eext

x and Eloc
z = fzE

ext
z = ε + 2

3ε
Eext

z . (5.32)
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Fig. 5.2 MD results of
dielectric properties at
air/water interface as a
function of the depth
coordinate ẑ [12], where
ẑ = 0 stands for the Gibbs
dividing surface, and ẑ > 0
(ẑ < 0) for the gas (liquid)
phase. (a) density profile
ρ(ẑ). (b) local field factors
fx(ẑ) (red) and fz(ẑ) (blue)
at optical frequency. Dashed
horizontal lines of f Lorentz

x

and f Lorentz
z show the results

of Lorentz model in
Eq. (5.32). (c) dielectric
constant ε(ẑ) = fx(ẑ)/fz(ẑ).
(Reprinted with permission
from Ref. [12]. Copyright
2011, American Institute of
Physics)
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(c, d) Surface Next, suppose a hemisphere cavity at the interface. Show that the
local fields Eloc

x and Eloc
z at the center of the hemisphere in the two cases are

Eloc
x = f surf

x Eext
x = ε + 5

6
Eext

x and Eloc
z = f surf

z Eext
z = 2ε + 1

3ε
Eext

z .

(5.34)
Take the ratio of the local field factors to derive ε′ = f surf

x /f surf
z .

We should note, however, that the quantitative applicability of Eq. (5.33) is not
clear because of the limitation of the dielectric continuum model in a molecular
scale. Alternatively, the molecular theory of local field in Sect. 5.1 allows us to
directly calculate f (z, ω) near the surface by MD simulation [12]. Figure 5.2 shows
an example of the MD results of f (z, ω) at optical frequency as a function of z

for air/water interface. Panel (b) shows that f → 1 at z � 0 (gas phase), while it
approaches the values of the Lorentz model in Eq. (5.32) at z � 0 (liquid phase).
The transition of f takes place within a nanometer of the interface region. The ratio
ε(z) = fx(z)/fz(z) is plotted as a function of z in Panel (c). The value varies from
ε = 1 (gas) to 1.72 (liquid), and its transition behavior is similar with that of the
density profile ρ(z) in Panel (a).

Microscopic ε′ The interfacial dielectric constant ε′ is a phenomenological param-
eter used in the three-layer model in Chap. 2. Essentially it accounts for the local
field effect on the nonlinear polarization at the interface for the SFG or SHG spectra.
Now the local field at the interface is formulated in the microscopic level, ε′ can be
represented as well.
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As we discussed in Sect. 5.2, the bare second-order polarization induced at the
interface, P (2),0(�) in Eq. (5.21), is influenced by the local field and modified to
P (2)(�) in Eq. (5.24). The two polarization are given by

P (2),0
p (�) =

N∑

j

μ(2),0
p (j,�), (5.21)

P (2)
p (�) =

N∑

j

x∼z∑

s

fsp(j) μ(2),0
s (j,�), (5.24)

where p = x ∼ z and j denotes the constituent molecules. Equations (5.21)
and (5.24) express the difference between P (2),0 and P (2) with the local field
factors of molecules fsp(j) (or f (j)T ). The ratio between P (2),0 and P (2) is thus
represented by

f surf
p = P (2)

p (�)

P (2),0
p (�)

=

N∑

j

x∼z∑

s

fsp(j) μ(2),0
s (j,�)

N∑

j

μ(2),0
p (j,�)

. (5.35)

The ratio f surf
p accounts for the local field correction for the nonlinear polarization

at the interface. Therefore, it allows for determining the effective local field factor
of the interface f surf for the SHG and SFG spectroscopy in the microscopic level.
f surf should be a diagonal tensor,

f surf =
⎛

⎝
f surf

x

f surf
y

f surf
z

⎞

⎠ ,

for an azimuthally isotropic interface with f surf
x = f surf

y for symmetry reasons, and
the diagonal elements are presented by Eq. (5.35). The interfacial dielectric constant
ε′ is accordingly defined as ε′ = f surf

x /f surf
z , using f surf in Eq. (5.35) instead of

Eq. (5.34).
Equation (5.35) shows that the local field factor of the interface f surf is the

average of the local field factor of j -th molecule f (j) with a weight of its nonlinear
polarization μ(2),0(j). This definition of f surf provides a microscopic basis to the
phenomenological parameter ε′.

We also note that the χ (2) formula of Eqs. (5.27) and (5.28) in Sect. 5.2
incorporates the effect of local field through molecular interactions. Therefore,
the computation of χ (2) by Eq. (5.27) or (5.28) obviates explicit use of the
phenomenological parameter ε′ to evaluate the nonlinear polarization at interface.
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5.4 Solutions to Problems

5.4.1 Interfacial Dielectric Constant

[Problem 5.1] Let us derive ε′ in Eq. (5.33) on the basis of the Lorentz model
illustrated in Fig. 5.1a–d.

(a, b) Bulk First, suppose a spherical cavity of radius r embedded in the bulk of a
slab with a dielectric constant ε, and put the system in an electric field Eext

x or Eext
z .

Show that the local fields inside the cavity in the two cases are

Eloc
x = fxE

ext
x = ε + 2

3
Eext

x and Eloc
z = fzE

ext
z = ε + 2

3ε
Eext

z . (5.32)

(c, d) Surface Next, suppose a hemisphere cavity at the interface. Show that the
local fields Eloc

x and Eloc
z at the center of the hemisphere in the two cases are

Eloc
x = f surf

x Eext
x = ε + 5

6
Eext

x and Eloc
z = f surf

z Eext
z = 2ε + 1

3ε
Eext

z .

(5.34)
Take the ratio of the local field factors to derive ε′ = f surf

x /f surf
z .

Here we discuss the relation between the local field and the dielectric constant.
The relation is distinct in the bulk and at the interface, and the difference could be
used to define the dielectric constant at the interface. The local field inside the cavity
is evaluated by the Lorentz model [3].

(1) Bulk In case (a),

(a)

Eloc
x = Eext

x +
∫

sphere
dσ

Px cos θ

r2
cos θ = Eext

x + 4π

3
Px

= ε + 2

3
Eext

x = fxE
ext
x , (5.36)

where σ denotes the surface of the cavity, and the polarization Px = ε − 1

4π
Eext

x .

In case (b),

(b)

Eloc
z = Eext

z +
∫

sphere
dσ

Pz cos θ

r2 cos θ − 4πPz = Eext
z − 8π

3
Pz
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= ε + 2

3ε
Eext

z = fzE
ext
z , (5.37)

where Pz = ε − 1

4π
(Eext

z − 4πPz) = ε − 1

4πε
Eext

z . We note that the induced charge at

the surface of the slab is involved in case (b). By comparing Eqs. (5.36) and (5.37),
the dielectric constant ε corresponds to the ratio of the two local fields, ε = fx/fz.

(2) Surface Next, we adopt the similar argument on the local field at the interface
using a hemisphere cavity in Fig. 5.1c, d. In case (c),

(c) Eloc
x = Eext

x +
∫

hemisphere
dσ

Px cos θ

r2 cos θ

= Eext
x +

∫ π

0
dφ

∫ π

0
sin θ dθ r2 Px cos2 θ

r2

= Eext
x + 2π

3
Px = ε + 5

6
Eext

x = f surf
x Eext

x . (5.38)

In case (d),

(d) Eloc
z = Eext

z +
∫

hemisphere
dσ

Pz cos θ

r2
cos θ − 2πPz

= Eext
z +

∫ 2π

0
dφ

∫ π/2

0
sin θ dθ r2 Pz cos2 θ

r2
− 2πPz

= Eext
z − 4π

3
Pz = 2ε + 1

3ε
Eext

z = f surf
z Eext

z . (5.39)

Therefore, the dielectric constant of the interface ε′ is

ε′ = f surf
x /f surf

z =
(

ε + 5

6

)/(2ε + 1

3ε

)
= ε(ε + 5)

2(2ε + 1)
. (5.33)
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Chapter 6
Charge Response Kernel for Electronic
Polarization

Abstract The charge response kernel (CRK) is a non-empirical and universal
method to represent polarization of molecules. It is particularly powerful to the
MD calculations of SFG spectroscopy. This chapter explains the CRK theory and
its application to polarizable MD simulation. The CRK is rigorously formulated as
a second-order derivative of electronic energy on the basis of electronic structure
theory, either the ab initio molecular orbital or density functional theory. The calcu-
lated CRK offers a general method of fluctuation charges to MD simulation, and also
represents the dipole, polarizability and second-order nonlinear susceptibility on the
same footing with equivalent accuracy to the underlying ab initio calculations.

Keywords Charge response kernel (CRK) · Electrostatic potential (ESP) charge ·
Coupled perturbed Hartree-Fock (CPHF) · Polarizable force field

This chapter deals with molecular modeling methods of Aeff and M in Eq. (5.28)
for actual interface systems. To construct Aeff and M from molecular simulation,
we need the molecular polarizability tensor α(j) and dipole moment vector μ(j).
These molecular properties should be defined at instantaneous configuration, as they
vary with molecular rotation and vibration. Since conventional force fields of MD
do not offer these properties, we need to evaluate them at each time step in addition
to the force field calculations. The modeling of α(j) and μ(j) is the heart of the SFG
calculation by MD simulation, and the reliability of the results critically depends on
the accuracy of this modeling. One straightforward method to describe them would
be to carry out direct electronic structure calculation of these quantities at each time
step of MD simulation like the ab initio MD simulation [4, 12, 14]. It could obviate
the modeling in principle, whereas the computational cost is substantially larger
than that of the usual ab initio MD simulation, since computation of polarizability
is more demanding than that of energy or force.

Here we present a general solution for the modeling of α(j) and μ(j) on
the basis of the charge response kernel (CRK) theory [3, 7, 9]. This theory
provides a universal method to describe molecular polarization from non-empirical

© Springer Nature Singapore Pte Ltd. 2018
A. Morita, Theory of Sum Frequency Generation Spectroscopy,
Lecture Notes in Chemistry 97, https://doi.org/10.1007/978-981-13-1607-4_6

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1607-4_6&domain=pdf
https://doi.org/10.1007/978-981-13-1607-4_6


124 6 Charge Response Kernel for Electronic Polarization

calculations of ab initio molecular orbital (MO) or density functional theory (DFT).
This is particularly useful to SFG calculations, as it reconciles the ab initio accuracy
in the above modeling and the computational efficiency of classical MD simulation.

6.1 Charge Response Kernel (CRK)

The charge response kernel (CRK) is introduced to represent electronic polarization
in a site representation of molecular model. As illustrated in the site model in
Fig. 6.1, CRK is defined with the following derivative quantity [7],

Kab =
(

∂Qa

∂Vb

)
, (6.1)

where Qa is the partial charge at the site a, and Vb is the electrostatic potential at the
site b. The locations of the sites are arbitrary in principle, though they are usually
set at nuclear positions. Equation (6.1) expresses the intramolecular redistribution
of electron density induced by the external electrostatic potential. When the sites a

and b are different, Kab represents non-local response of electron density.
The CRK theory defines Eq. (6.1) non-empirically on the basis of ab initio MO

or DFT. The partial charge Qa is defined as the electrostatic potential (ESP) charge
[2, 6], which is derived from quantum chemical calculation of electron density so as
to reproduce the surrounding electrostatic potential by the least square fitting. The
ESP charge is suitable to represent the intermolecular interactions, and is widely
used for molecular simulations. We employ the ESP charge in the following, though
other definitions of Qa are also feasible as long as Qa is uniquely determined from
the electron density.

The CRK theory offers a straightforward route of calculating Kab in Eq. (6.1)
by extending the definition of Qa . The calculation method of Kab is analogous to
that of Hessian or polarizability, as these quantities are commonly considered as
response quantities to external perturbation (nuclear position, electric field, etc.), or
second-order derivatives of the electronic energy.

Fig. 6.1 Interaction site
model of a molecule. Partial
charge at site a and
electrostatic potential at site b

are illustrated

Q

V

a

b
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6.2 Electronic Structure Theory of CRK

The CRK model is defined as a second-order derivative quantity in an arbitrary
electronic structure theory of ab initio MO or DFT. In the present section, it
is formulated with the closed-shell Hartree-Fock wavefunction for an example.
Application to other levels of theory, including DFT [3], is straightforward once
the perturbation Hamiltonian is given in the following.

Hamiltonian with perturbation The whole Hamiltonian of the electronic struc-
ture with the perturbation is given by

Ĥ = Ĥ0 + Ĥ ′, (6.2)

where Ĥ0 is the conventional (non-relativistic) electronic Hamiltonian for an
isolated molecule, consisting of the kinetic energy, nuclear attraction and electron
repulsion,

Ĥ0 =
Ne∑

i=1

(
− h̄2

2me

∇2
i −

nuc∑

c

Zce
2

|r i − RN(c)|

)
+

Ne∑

i

∑

>j

e2
∣∣r i − rj

∣∣

=
Ne∑

i=1

ĥ0(i) +
Ne∑

i

∑

>j

e2
∣∣r i − rj

∣∣ , (6.3)

where Ne is the number of electrons in the molecule, me is the electron mass, and r i ,
rj are the coordinates of electrons. Zc and RN(c) are the charge and coordinate of
the c-th nucleus, respectively. Equation (6.3) consists of the sum of the one-electron
operators,

ĥ0(i) = − h̄2

2me

∇2
i −

nuc∑

c

Zce
2

|r i − RN(c)| , (6.4)

and the electron-electron repulsion terms,
∑

i

∑

>j

e2

|r i − rj | .

Ĥ ′ in Eq. (6.2) is the perturbation Hamiltonian by the external electrostatic
potential in the site representation, i.e.

Ĥ ′ =
site∑

a

Q̂aVa, (6.5)

where Va is the electrostatic potential at the site a, and Q̂a is the ESP partial charge
operator at the site a [7]. Va is treated as the parameter for the external perturbation
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on the electronic structure. The partial charge Qa is given with the expected value
at an electronic (many-body) wavefunction � by

Qa =
〈
�|Q̂a|�

〉
.

The partial charge Qa is related to the derivative of the total energy E by the
Hellmann-Feynman theorem,

∂E
∂Va

= ∂

∂Va

〈
�|Ĥ |�

〉
=
〈
�| ∂Ĥ

∂Va

|�
〉

=
〈
�|Q̂a|�

〉
= Qa. (6.6)

This relation (6.6) is valid when the wavefunction � satisfies the variational
principle. The CRK is consequently given by the second-order derivative of the
total energy E ,

Kab = ∂Qa

∂Vb

= ∂2E
∂Va∂Vb

. (6.7)

The above Eq. (6.7) obviously indicates that Kab is a symmetric matrix, Kab = Kba .

ESP charge Then we define the ESP charge Qa and its operator Q̂a . The partial
charge Qa is determined from electron density and position of nuclei, and the elec-
tron density is given as a function of one-electron spatial coordinate. Accordingly, its
operator Q̂a is presented with the one-electron operator for population distribution
n̂a(i) and a function of the nuclear position by

Q̂a = −e

Ne∑

i=1

n̂a(i) + Qnuc
a . (6.8)

The first term of Eq. (6.8) is a sum of one-electron operators n̂a(i) for equivalent
Ne electrons, and represents the occupation number of electrons at each site a. The
second term Qnuc

a accounts for the contribution of nuclear charge. Qa is represented
as the expectation value of Q̂a ,

Qa =
〈
�|Q̂a|�

〉
= −e

AO∑

p,q

Dpq

〈
p|n̂a|q

〉+ Qnuc
a , (6.9)

where p, q denotes the basis sets (atomic orbitals in conventional quantum chem-
istry), and Dpq is the one-electron density matrix. The last expression of Eq. (6.9)
including the density matrix is valid also for DFT, which does not explicitly treat
the wavefunction.

The ESP charge Qa is determined so as to reproduce the surrounding electrostatic
potential, as illustrated in Fig. 6.2. First we introduce a set of monitoring points
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Fig. 6.2 Schematic picture
of the electrostatic potential
at RG(n)

RRG(n)

Qa

Zc
R  R  (c)

R

N

(r)

(a)

{RG(n)} to evaluate the electrostatic potential in outer region of the molecule. The
locations of {RG(n)} are arbitrary, though they are usually distributed evenly on the
van der Waals envelope (green line in Fig. 6.1) or in the outer region. The electrons
and nuclei of the molecule generate the electrostatic potential φ(RG(n)) at the point
RG(n) by

φ(RG(n)) = −e

∫
ρ(r)

|r − RG(n)| dr +
nuc∑

c

Zce

|RN(c) − RG(n)|

= −e

AO∑

p,q

Dpq

〈
p| 1

|r − RG(n)| |q
〉
+

nuc∑

c

Zce

|RN(c) − RG(n)| , (6.10)

where r is the electron coordinate, and ρ(r) is the electron density at r . The matrix

element

〈
p| 1

|r − RG(n)| |q
〉

is equivalent to the conventional one-electron integral

for the nuclear attraction in the quantum chemistry, by replacing RG(n) with the
nuclear coordinate.

Instead of the quantum chemical formula of Eq. (6.10), the electrostatic potential
at RG(n) is alternatively represented using a set of partial charges {Qa} located
at R(a). The electrostatic potential is presented with the model of partial charges
{Qa} by

φmodel(RG(n)) =
site∑

a

Qa

|R(a) − RG(n)| . (6.11)

(We again note that R(a) is arbitrary in the above formula, though it is often located
at the nuclear position, RN(c).) The set of ESP charges {Qa} are determined so
that φmodel(RG(n)) in Eq. (6.11) coincides with φ(RG(n)) in Eq. (6.10) as much as
possible. This procedure of optimization of {Qa} is carried out with the least square
fitting that minimizes the following square displacement L,

L({Qa}) =
grid∑

n

{
φmodel(RG(n)) − φ(RG(n))

}2
. (6.12)
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The least square fitting results in the following definition of n̂a and Qnuc
a in Eq. (6.9),

n̂a =
site∑

b

(A−1)abB̂b, (6.13)

Qnuc
a =

site∑

b

(A−1)abCbe, (6.14)

where A, B, C are given by

Aab =
grid∑

n

1

|R(a) − RG(n)| · 1

|R(b) − RG(n)| , (6.15)

B̂a =
grid∑

n

1

|r − RG(n)| · 1

|R(a) − RG(n)| , (6.16)

Ca =
grid∑

n

nuc∑

c

Zc

|RN(c) − RG(n)| · 1

|R(a) − RG(n)| . (6.17)

Equations (6.13) and (6.14) determine the partial charge Qa and its operator Q̂a in
Eq. (6.9).

[Problem 6.1] Derive n̂a and Qnuc
a in Eqs. (6.13) and (6.14) by minimizing L in

Eq. (6.12).

Note 1. If the locations of the site a coincide with those of nuclei, Qnuc
a in

Eq. (6.9) is identical to the nuclear charge at the site in Eq. (6.14).
Note 2. The above procedure of least square fitting is often accompanied with

some extra constraints on the total charge or the dipole moment of the molecule,
e.g.

site∑

a

Qa = Q (constant),

site∑

a

QaR(a) = μ (constant),

where the values Q and μ in the right hand side are given as the constraint
conditions. Such constraints can be readily implemented in the least square fitting
of Problem 6.1 using the Lagrange multipliers [9].
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Note 3. The ESP charges tend to be problematic to determine for buried sites of
molecules [1]. This problem is resolved with introducing a damping parameter
in the least square fitting procedure, as described in Ref. [9]. This modification
effectively removes the instability of the definition, while the following proce-
dure of CRK calculations unchanged.

Charge Response Kernel Once the perturbation Hamiltonian Ĥ ′ is defined above,
the derivative of the total energy E or the wavefunction � by the external parameter
V is uniquely determined. Consequently, the CRK Kab is determined using the
derivatives,

Kab = ∂2E
∂Va∂Vb

= ∂Qa

∂Vb

=
〈
∂�

∂Vb

|Q̂a|�
〉
+
〈
�|Q̂a| ∂�

∂Vb

〉
. (6.18)

In what follows, we outline the derivation of CRK with a closed-shell Hartree-Fock
wavefunction �. The details of the derivation is given in Appendix A.1.

The many-electron wavefunction � is given with a normalized Slater determi-
nant [13],

� = 1√
Ne!

∣∣∣∣∣∣∣∣∣

ψ1(1)α(1) ψ1(1)β(1) · · · ψNe/2(1)β(1)

ψ1(2)α(2)
...

. . .
...

ψ1(Ne)α(Ne) · · · ψNe/2(Ne)β(Ne)

∣∣∣∣∣∣∣∣∣

, (6.19)

where ψiα and �jβ denote the i-th molecular orbital with α and β spin, respec-
tively. Suppose that the i-th molecular orbital (MO) ψi is represented by a linear
combination of proper basis functions {χp},1

ψi =
AO∑

p

Cpiχp. (6.20)

Then the derivative of the wavefunction � in Eq. (6.18) can be presented with the
derivatives of the MO coefficients {Cpi}. We express these derivatives (∂Cpi/∂Vb)

in the form of linear combination of MO coefficients using a matrix Ub
ji by

∂Cpi

∂Vb

=
MO∑

j

CpjU
b
ji . (6.21)

Then Ub
ji is determined as the solution of the following linear equation.

(εl − εi)U
b
li +

occ∑

j

vir∑

k

HlikjU
b
kj = e

〈
ψl |n̂b|ψi

〉
, (6.22)

1In the present section, the suffixes i, j, k, l stand for the MOs, while p, q, r, s for the basis
functions.
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where the suffix j denotes the occupied MOs and k denotes the virtual (unoccupied)
MOs. εi is the canonical orbital energy for the i-th orbital ψi . Hlikj is the two-
electron integral in the MO representation,

Hlikj = 4
(
ψlψi |ψkψj

)− (
ψlψk|ψiψj

)− (
ψlψj |ψkψi

)
, (6.23)

where

(
ψiψj |ψkψl

) =
∫∫

ψi(r)ψj (r)
e2

|r − r ′|ψk(r
′)ψl(r

′)drdr ′

=
AO∑

p,q,r,s

CpiCqjCrkCsl

(
χpχq |χrχs

)

and

〈
ψl |n̂b|ψi

〉 =
AO∑

p,q

CplCqi〈χp|n̂b|χq〉. (6.24)

Equation (6.22) is a set of coupled linear equations for Ub
ji , called the Coupled-

Perturbed Hartree-Fock (CPHF) equation [5, 10]. Using the solution of Ub
li , the CRK

Kab is calculated as follows,

Kab = ∂Qa

∂Vb

= −e

AO∑

p,q

∂Dpq

∂Vb

〈
p|n̂a|q

〉 = −4e

occ∑

i

vir∑

j

〈
ψj |n̂a|ψi

〉
Ub

ji . (6.25)

The analogous formulations with CPHF are utilized to other response quantities
or second-order derivatives of the electronic energy, such as force constant, polar-
izability, etc. The CRK is a variant of the general formulations of the second-order
derivatives. As a consequence, the extension of CRK to other wavefunctions can be
carried out in the common framework with other derivative quantities.

[Problem 6.2] Since the CRK Kab is a symmetric matrix, it is diagonalized by a
proper unitary matrix P ,

P T KP =
⎛

⎜⎝
λ1

. . .

λNs

⎞

⎟⎠ ,

where Ns is the number of sites in the molecule. Prove that (i) all the eigenvalues
λa are not positive (λa ≤ 0), and (ii) one eigenvalue is necessarily zero.
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(Hint) Suppose that the zero-th order wavefunction and the total energy for the
ground state are �0 and E0, respectively, with no external perturbation V = 0.
Then, by adding the perturbation V , the total energy E is expanded in a series of
perturbation in the following manner,

E = E0 + E (1) + E (2) + · · · = E0 +
∑

a

QaVa + 1

2

∑

a,b

KabVaVb + · · · ,

(6.26)

where

Qa =
(

∂E
∂Va

)

V =0
and Kab =

(
∂2E

∂Va∂Vb

)

V =0
.

Recall that the second-order perturbation energy E (2) for the ground state is always
negative.

6.3 Polarizable Model with CRK

The CRK represents the electronic polarization using the ESP site charges, and can
be readily utilized as a polarizable model. Here we summarize the merits of CRK
modeling and its application to the SFG calculations.

Force Fields Most of current molecular simulations for polyatomic molecules
adopt force fields based on the interaction site model of molecules, where inter-
molecular interactions are constructed with site-site interactions. The CRK model-
ing is also based on the interaction site model, and readily incorporated in the MD
simulation. It allows for varying partial charges at the interaction sites, and thereby
representing the electronic polarization in MD simulation [8, 11].

Let us suppose a molecule in condensed phase, such as solution or interface.
The electrostatic potential Vbi at the site b of molecule i is presented by the
intermolecular Coulombic interactions from surrounding molecules j ( 	= i) in the
following form,

Vbi =
molecule∑

j ( 	=i)

site∑

a

Qaj

|R(bi) − R(aj)| , (6.27)

where Qaj and R(aj) are the partial charge and coordinates of the site a of molecule
j . The partial charge Qai of molecule i under the electrostatic potential Vbi is
represented with the CRK by

Qai = Q0
a +

site∑

b

KabVbi, (6.28)
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where Q0
a is the partial charge at the site a in the isolated condition free from the

external potential. Equation (6.28) shows that the site partial charge Qai varies in
response to the external potential up to the first order.2 Equations (6.27) and (6.28)
provide a self-consistent scheme to determine Vbi and Qai simultaneously. For
an actual condensed system, the site coordinates R(aj) changes with molecular
motions, and accordingly Eqs. (6.27) and (6.28) are solved to obtain the instanta-
neous values of Vbi and Qai at each time t during the MD simulation. The effect of
electronic polarization is thereby implemented through fluctuation of partial charges
during the time evolution.

In the CRK model, the whole electrostatic potential energy of the condensed
system is given by

U =
∑

i

∑

>j

∑

a

∑

b

QaiQbj

|R(ai) − R(bj)| − 1

2

∑

i

∑

a

∑

b

KabVaiVbi . (6.29)

The first term of the right hand side stands for the intermolecular site-site Coulomb
interactions, and the second term stands for the reorganization energy, as detailed
in Appendix A.2. The second term accounts for destabilization energy due to the
deformation of electronic polarization. Note that this term is always positive, since
the CRK Kab is a non-positive definite matrix (see Problem 6.2). The force acting
on the site a of molecule i, F (ai), is derived from Eq. (6.29) by

F (ai) = − ∂U

∂R(ai)
=
∑

j ( 	=i)

∑

b

QaiQbj (R(ai) − R(bj))

|R(ai) − R(bj)|3 . (6.30)

We notice that Eq. (6.30) does not include the derivatives ∂Q/∂R or ∂V/∂R. The
expression of F (ai) in Eq. (6.30) apparently coincide with the expression obtained
by differentiating the first term of U in Eq. (6.29) simply by R(ai), as if the site
charges Qai and Qbj were fixed. This feature greatly simplifies the calculation
of Eq. (6.30), by virtue of the self-consistent conditions of Eqs. (6.27) and (6.28).
Appendix A.2 further discuss this feature.

[Problem 6.3] By differentiating Eq. (6.29) with respect to the coordinate R(ai),
derive the formula of the force F (ai) in Eq. (6.30). We assume that Q0

a and Kab are
invariant under the molecular vibration for simplicity.

(Hint) Make use of the self-consistent relations of Qai and Vai in Eqs. (6.27)
and (6.28).

2Equation (6.28) treats a single species for simplicity. Extension to multi-species systems is
straightforward, and shown in Eq. (6.34) in Sect. 6.4.
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Non-empirical Modeling One of the most significant advantages of the CRK
modeling as a polarizable model is that the parameters of polarization are fully
determined by ab initio molecular orbital or DFT calculations, based on the common
scheme to the ESP charge. Once we employ a method of ESP charge calculation, the
extension to the CRK is unique and straightforward with no empirical parameter.
Accuracy of the CRK model is entirely conformed to the electronic structure
calculation, and it is possible to systematically improve the accuracy by improving
the electronic structure calculation.

Fully non-empirical character of the CRK model is quite advantageous to general
applications. For example, unstable species or radicals can be readily treated with
common accuracy to stable molecules [7, 8], though these unstable species are not
suitable to empirical modeling due to scarcity of available experimental properties.
It is also straightforward to obtain the conformational dependence of CRK for a
vibrating molecule, by performing the CRK calculations for a deformed molecule
from its equilibrium conformation. Accurate description of the conformational
dependence is a key requisite for MD calculations of vibrational Raman or SFG
spectra.

Dipole and Polarizability Next we describe the instantaneous dipole and polar-
izability of a molecule using the CRK model. We treat an arbitrary vibrating and
rotating molecule, and assume that the instantaneous coordinate of its site a is
R(a) in the space-fixed coordinates. Then the permanent dipole vector μ0 and the
polarizability tensor α are represented in the same space-fixed coordinates by

μ0
p =

site∑

a

Q0
aRp(a), (6.31)

αpq = −
site∑

a,b

KabRp(a)Rq(b), (6.32)

where the suffixes p, q denote x ∼ z in the space-fixed coordinates. In the
expressions of Eqs. (6.31) and (6.32), it is noteworthy that Q0

a and Kab are invariant
with respect to the molecular rotation and thus considered as scalar properties. These
scalar characters are advantageous to describe the vector and tensor elements of μ

and α in an arbitrary coordinate system. Once can determine the values of Q0
a and

Kab as a function of internal coordinates, the vector/tensor elements of μ0
p/αpq are

readily expressed with these values and the coordinates of sites {Rp(a)}.

[Problem 6.4] Explain the expression of the polarizability αpq in Eq. (6.32).
Recall that the polarizability is the derivative of dipole moment with respect to
spatially uniform electric field.

In summary, the CRK model offers a general scheme to describe the polarizable
force field as well as instantaneous dipole and polarizability in a unified manner.
Therefore, it is particularly suitable to calculate the vibrational SFG spectroscopy
by MD simulation.



134 6 Charge Response Kernel for Electronic Polarization

6.4 χ(2) Formula with CRK Model

Then we present the χ (2) formula based on the CRK model. We have derived χ (2) in
Sect. 5.2 with the time correlation function of Aeff and M in Eq. (5.27). The purpose
here is to express Aeff and M using the CRK model. The following derivation with
the CRK model provides an alternative but physically equivalent treatment of the
local field effect in Sect. 5.

As we discussed in Sect. 6.3, the partial charge Qai and electrostatic potential
Vbi are determined in the following self-consistent equations,

Vbi = −R(bi) · E0 +
molecule∑

j ( 	=i)

site∑

a

Qaj

|R(bi) − R(aj)| , (6.33)

Qai = Q0
ai +

site∑

b

KabiVbi . (6.34)

The above Eqs. (6.33) and (6.34) are essentially same as Eqs. (6.27) and (6.28), but
involve slight extensions. Equation (6.33) temporarily includes an uniform external
field E0. Equation (6.34) can describe multi-species systems, since the notations of
Q0

ai and Kabi including the suffix of molecule i allows for distinguishing different
species among the molecules. The coupled equations of (6.33) and (6.34) lead to the
following equations,

∑

j

site∑

c

(
δacδij −

site∑

b

Kbcj

|R(ai) − R(bj)|

)
Vcj = −R(ai) · E0

+
∑

j ( 	=i)

site∑

b

Q0
bj

|R(ai) − R(bj)| ,

(6.35)

∑

j

site∑

c

(
δacδij −

site∑

b

Kabi

|R(bi) − R(cj)|

)
Qcj = Q0

ai −
site∑

b

Kabi(R(bi) · E0).

(6.36)

To solve these equations, we introduce an auxiliary matrix G (or GT ) to be

[G]ai,cj = δacδij −
site∑

b

Kbcj

|R(ai) − R(bj)| , (6.37)

[GT ]ai,cj = [G]cj,ai = δacδij −
site∑

b

Kabi

|R(bi) − R(cj)| , (6.38)
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and V 0,

V 0
ai =

∑

j ( 	=i)

site∑

b

Q0
bj

|R(ai) − R(bj)| . (6.39)

Using G and V 0, the solutions of Eqs. (6.35) and (6.36) are given as follows:

Vai =
∑

j

site∑

c

[G−1]ai,cj

[
V 0

cj − R(cj) · E0

]
, (6.40)

Qai =
∑

j

site∑

c

[GT −1]ai,cj

[
Q0

cj −
site∑

b

Kcbj (R(bj) · E0)

]

=
∑

j

site∑

c

[G−1]cj,ai

[
Q0

cj −
site∑

b

Kcbj (R(bj) · E0)

]
. (6.41)

Now we can present the dipole moment and polarizability of the whole system
using the above solutions. The dipole moment is represented by

M =
∑

i

site∑

a

QaiR(ai)

=
∑

i

∑

j

site∑

a

site∑

c

[G−1]cj,aiQ
0
cjR(ai) (E0 = 0). (6.42)

The polarizability tensor of the whole system is given by differentiating M with
respect to E0 and then setting to E0 = 0,

A = ∂M

∂E0
=
∑

i

site∑

a

∂Qai

∂E0
R(ai)

= −
∑

i

site∑

a

site∑

b

Kab,iR(ai) ⊗
⎡

⎣
∑

j

site∑

c

[G−1]bi,cjR(cj)

⎤

⎦ (E0 = 0),

(6.43)
where ⊗ stands for tensor product. We further consider the local field correction for
the sum frequency field in the same manner as in Sect. 5.2, and thereby formulate
the effective polarizability Aeff as
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Aeff = −
∑

i

site∑

a

site∑

b

Kabi

⎡

⎣
∑

j ′

site∑

c′
[G−1]ai,c′j ′R(c′j ′)

⎤

⎦⊗
⎡

⎣
∑

j

site∑

c

[G−1]bi,cjR(cj)

⎤

⎦ . (6.44)

Equations (6.42) and (6.44) are the CRK expressions of the dipole and effective
polarizability, and are equivalent to Eq. (5.28) in Chap. 5.

6.5 Solutions to Problems

6.5.1 ESP Charge

[Problem 6.1] Derive n̂a and Qnuc
a in Eqs. (6.13) and (6.14) by minimizing L in

Eq. (6.12).

The condition of minimizing L is

∂L

∂Qa
= 2

grid∑

n

(
φmodel(RG(n)) − φ(RG(n))

) ∂φmodel(RG(n))

∂Qa
= 0

= 2
site∑

b

grid∑

n

Qb

|R(b) − RG(n)| · 1

|R(a) − RG(n)|

− 2
grid∑

n

⎧
⎨

⎩−e

AO∑

p,q

Dpq

〈
p| 1

|r − RG(n)| |q
〉
+

nuc∑

c

Zce

|RN(c) − RG(n)|

⎫
⎬

⎭ · 1

|R(a) − RG(n)| .

Therefore, the optimized values of {Qa} satisfy the following equation,

site∑

b

AabQb = −e

AO∑

p,q

Dpq

〈
p|B̂a|q

〉
+ Cae, (6.45)

where

Aab =
grid∑

n

1

|R(a) − RG(n)| · 1

|R(b) − RG(n)| , (6.15)
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B̂a =
grid∑

n

1

|r − RG(n)| · 1

|R(a) − RG(n)| , (6.16)

Ca =
grid∑

n

nuc∑

c

Zc

|RN(c) − RG(n)| · 1

|R(a) − RG(n)| . (6.17)

The solution of Eq. (6.45) is

Qa = −e

AO∑

p,q

Dpq

〈
p|

site∑

b

(A−1)abB̂b|q
〉

+
site∑

b

(A−1)abCbe.

Comparing this result with Eq. (6.9), we derive the following form of n̂a and Qnuc
a ,

n̂a =
site∑

b

(A−1)abB̂b, (6.13)

Qnuc
a =

site∑

b

(A−1)abCbe. (6.14)

6.5.2 Charge Response Kernel

[Problem 6.2] Since the CRK Kab is a symmetric matrix, it is diagonalized by a
proper unitary matrix P ,

P T KP =
⎛

⎜⎝
λ1

. . .

λNs

⎞

⎟⎠ ,

where Ns is the number of sites in the molecule. Prove that (i) all the eigenvalues
λa are not positive (λa ≤ 0), and (ii) one eigenvalue is necessarily zero.

(Hint) Suppose that the zero-th order wavefunction and the total energy for the
ground state are �0 and E0, respectively, with no external perturbation V = 0.
Then, by adding the perturbation V , the total energy E is expanded in a series of
perturbation in the following manner,

E = E0 + E (1) + E (2) + · · · = E0 +
∑

a

QaVa + 1

2

∑

a,b

KabVaVb + · · · ,

(6.26)
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where

Qa =
(

∂E
∂Va

)

V =0
and Kab =

(
∂2E

∂Va∂Vb

)

V =0
.

Recall that the second-order perturbation energy E (2) for the ground state is always
negative.

The total electronic energy E under the external potential V is represented by the
perturbation expansion,

E = E0 + E (1) + E (2) + · · ·

= E0 +
site∑

a

QaVa + 1

2

site∑

a,b

KabVaVb + · · · . (6.26)

The zero-th order wavefunction and energy for the ground state are denoted to be �0
and E0, respectively, with no external potential, V = 0. The first- and second-order
derivatives of the energy correspond to Qa = (∂E/∂Va) and Kab = (∂2E/∂Va∂Vb)

in Eqs. (6.6) and (6.7), respectively.
Suppose that the ground state �0 is not degenerated, the second-order energy

E (2) is generally represented in the following sum-over-state expression,

E (2) =
state∑

m( 	=0)

∣∣∣
〈
�0|Ĥ ′|�m

〉∣∣∣
2

E0 − Em

, (6.46)

where the suffix m denote the electronic states other than the ground state. �m and
Em are the m-th eigenstate of Ĥ0 and its energy, i.e. Ĥ0�m = Em�m (Em > E0).
Therefore, E (2) is always negative or zero,

E (2) = 1

2

∑

a,b

KabVaVb ≤ 0,

which indicates that Kab is a non-positive definite matrix.

The second-order energy E (2) of Eq. (6.46) vanishes only when
〈
�0|Ĥ ′|�m

〉
= 0

holds for all the states m( 	= 0) in Eq. (6.46). This is realized when the external site
potentials Vb are constant, V1 = V2 = · · · = VNs = const. (this value is assumed to
be V0.) Then the perturbation Hamiltonian also becomes constant,

Ĥ ′ =
∑

a

Q̂aVa =
(
∑

a

Q̂a

)
V0 = const.
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since the sum of the site charges is constant,
∑

a Q̂a = const., due to the charge
conservation. (This condition is often imposed explicitly as a constraint in the least

square fitting for Q̂a .) Therefore, in such case
〈
�0|Ĥ ′|�m

〉
= 0 holds for any

m( 	= 0).
The above argument concludes that the CRK Kab has always a zero eigenvalue,

with the corresponding eigenvector V ,

V =

⎛

⎜⎜⎜⎝

1
1
...

1

⎞

⎟⎟⎟⎠ .

This fact is readily understandable since uniform change in the site potentials has
no influence on the electron distribution. Accordingly

�Qa =
(
∑

b

Kab

)
V0 = 0

is derived, which indicates that the sum of the CRK elements in a row (or a column)
is inevitably zero.

6.5.3 Energy and Force with Polarizable Model

[Problem 6.3] By differentiating Eq. (6.29) with respect to the coordinate R(ai),
derive the formula of the force F (ai) in Eq. (6.30). We assume that Q0

a and Kab are
invariant under the molecular vibration for simplicity.

(Hint) Make use of the self-consistent relations of Qai and Vai in Eqs. (6.27)
and (6.28).

The formula of the force F (ai) is derived by differentiating the potential energy
U in Eq. (6.29) by the site coordinate R(ai),

F (ai) = − ∂U

∂R(ai)

= − ∂

∂R(ai)

⎧
⎨

⎩
∑

i

∑

>j

∑

a

∑

b

QaiQbj

|R(ai) − R(bj)| − 1

2

∑

i

∑

a

∑

b

KabVaiVbi

⎫
⎬

⎭
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=
∑

j ( 	=i)

∑

b

QaiQbj (R(ai) − R(bj))

|R(ai) − R(bj)|3 −
∑

j

∑

k( 	=j)

∑

b

∑

c

1

|R(bj) − R(ck)|
∂Qbj

∂R(ai)
Qck

+
∑

j

∑

b,c

KbcVbj

∂Vcj

∂R(ai)

=
∑

j ( 	=i)

∑

b

QaiQbj (R(ai) − R(bj))

|R(ai) − R(bj)|3 −
∑

j

∑

b

⎧
⎨

⎩
∑

k( 	=j)

∑

c

Qck

|R(bj) − R(ck)|

⎫
⎬

⎭
∂Qbj

∂R(ai)

+
∑

j

∑

b

{
∑

c

Kbc

∂Vcj

∂R(ai)

}
Vbj (6.47)

=
∑

j ( 	=i)

∑

b

QaiQbj (R(ai) − R(bj))

|R(ai) − R(bj)|3 −
∑

j

∑

b

Vbj

∂Qbj

∂R(ai)
+
∑

j

∑

b

∂Qbj

∂R(ai)
Vbj

(6.48)

=
∑

j ( 	=i)

∑

b

QaiQbj (R(ai) − R(bj))

|R(ai) − R(bj)|3 . (6.30)

In the derivation from Eq. (6.47) to (6.48), we employed the self-consistent
conditions of Eqs. (6.27) and (6.28).

If Qai and Vai satisfy the self-consistent conditions, the final expression of the
force F (ai) does not include the derivatives ∂Q/∂R, ∂V/∂R. This feature is related
to the variational principle of polarization, and is discussed in Appendix A.2.

6.5.4 Polarizability

[Problem 6.4] Explain the expression of the polarizability αpq in Eq. (6.32).
Recall that the polarizability is the derivative of dipole moment with respect to
spatially uniform electric field.

Let us assume that a small, uniform electric field �Eq is imposed along the
direction q (= x, y, z in the space-fixed coordinate). Then the electrostatic potential
at the site b changes by3

�Vb = −Rq(b) �Eq,

3Note that an arbitrary constant of the potential associated to the definition of spatial origin has no
influence (see Problem 6.2).
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where Rq(b) is the q coordinate of the site b. As a consequence, the partial charge
at the site a changes by

�Qa =
site∑

b

Kab�Vb = −
∑

b

Kab�EqRq(b).

The change in partial charges gives rise to the change in the dipole moment along
the direction p,

�μp =
site∑

a

�QaRp(a) = −
site∑

a,b

Kab�EqRq(b)Rp(a)

=
⎛

⎝−
site∑

a,b

KabRp(a)Rq(b)

⎞

⎠�Eq

Then the polarizability tensor is defined as the derivative of dipole moment with
respect to the electric field in the following form,

αpq = lim
�E→0

�μp

�Eq

= −
site∑

a,b

KabRp(a)Rq(b). (6.32)

Appendix

A.1 Derivation of CRK from CPHF Equation

In this section we derive the CPHF equation (6.22) and CRK in Eq. (6.25). The CRK
is given as a second-order derivative of the total energy, Kab = (∂2E/∂Va∂Vb), and
here it is formulated in the closed-shell Hartree-Fock theory [7]. Other formulations
in the unrestricted Hartree-Fock [7] and Kohn-Sham DFT [3] are found in literature.

A.1.1 Wavefunction Under External Field

We briefly summarize the Hartree-Fock wavefunction under the external potential
below. The total energy E for the wavefunction � in Eq. (6.19) is presented by [13]

E =
〈
�|Ĥ |�

〉
=
〈
�|Ĥ0 + Ĥ ′|�

〉
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=
Ne/2∑

i=1

2
〈
ψi |ĥ|ψi

〉
+

Ne/2∑

i=1

Ne/2∑

j=1

{
2
(
ψiψi |ψjψj

)− (
ψiψj |ψiψj

)}+
site∑

a

Qnuc
a Va

=
occ∑

i

2hii +
occ∑

i,j

{
2Jij − Kij

}+
site∑

a

Qnuc
a Va. (6.49)

In Eq. (6.49), the one-electron operator ĥ includes the perturbation,

ĥ = ĥ0 − e

site∑

a

n̂aVa (6.50)

where ĥ0 is the conventional one-electron operator in Eq. (6.4), and the second term
indicates the perturbation by the external electrostatic potential.

The Hartree-Fock theory provides a way to determine the wavefunction � and
total energy E through the variational principle. It determines the MO coefficients
Cpi of Eq. (6.19) by minimizing the energy E of Eq. (6.49), under the constraint of
the following orthonormal conditions among the MOs,

〈
ψi |ψj

〉 =
AO∑

p,q

CpiCqj spq = δij , where spq = 〈p|q〉 . (6.51)

This variational procedure derives the following general eigenvector problem, called
the Hartree-Fock-Roothaan equation, for the MO coefficients,

AO∑

q

FpqCqi = εi

AO∑

q

spqCqi, (6.52)

where εi corresponds to the eigenvalue, called the i-th canonical orbital energy. Fpq

is the Fock matrix given as follows,

Fpq =
〈
p|ĥ|q

〉
+ 1

2

AO∑

r,s

{2 (pq|rs) − (pr|qs)} Drs. (6.53)

Drs in Eq. (6.53) is called the density matrix,

Drs = 2
occ∑

i

CriCsi . (6.54)
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In the above procedure, we note that the parameter of external perturbation
Va is included in Eq. (6.50), which affects on the MD coefficients (6.52), Fock
matrix (6.53) and the total energy E .

A.1.2 Derivative of Wavefunction

We have learned that the MO coefficients determined by Eq. (6.52) are affected by
the external perturbation parameter. Therefore, the derivative of MO coefficients
with respect to Vb is obtained by differentiating Eq. (6.52),

∂

∂Vb

[
∑

q

FpqCqi − εi

∑

q

spqCqi

]
= 0

=
∑

q

Fpq

∂Cqi

∂Vb

− e
∑

q

〈
p|n̂b|q

〉
Cqi +

∑

q

∑

r,s

occ∑

j

{2 (pq|rs) − (pr|qs)}
(

∂Crj

∂Vb

Csj + Crj

∂Csj

∂Vb

)
Cqi

− εi

∑

q

spq

∂Cqi

∂Vb

. (6.55)

In the right hand side of Eq.(6.55), the differential of the Fock matrix ∂Fpq/∂Vb

with Eq. (6.53) is included in the second and third terms.
Then the derivative of the MO coefficients, ∂C/∂Vb, in Eq. (6.55) is expressed

with Ub in Eq. (6.21). Consequently, the first, third and fourth terms of the right
hand side of Eq. (6.55) become

• (first term) + (fourth term)

∑

q

Fpq

∂Cqi

∂Vb

− εi

∑

q

spq

∂Cqi

∂Vb

=
∑

j

(
∑

q

FpqCqj − εi

∑

q

spqCqj

)
Ub

ji

=
∑

j

(
εj − εi

)∑

q

spqCqjU
b
ji

• (third term)

∑

q

∑

r,s

occ∑

j

{2 (pq|rs) − (pr|qs)}
(

∂Crj

∂Vb

Csj + Crj

∂Csj

∂Vb

)
Cqi
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=
∑

q,r,s

occ∑

j

{4 (pq|rs) − (pr|qs) − (ps|qr)} ∂Crj

∂Vb

CsjCqi

=
∑

q,r,s

occ∑

j

∑

k

{4 (pq|rs) − (pr|qs) − (ps|qr)} CrkU
b
kjCsjCqi

where (pq|rs) = (χpχq |χrχs). We have employed Eq. (6.52) to derive the
first+fourth terms, and the symmetry relation of the two-electron integral, (pq|rs) =
(pq|sr), to derive the third term. By summarizing the above new expressions,
Eq. (6.55) becomes

∑

j

(
εj − εi

)∑

q

spqCqjU
b
ji − e

∑

q

〈
p|n̂b|q

〉
Cqi

+
∑

q,r,s

occ∑

j

∑

k

{4 (pq|rs) − (pr|qs) − (ps|qr)} CrkU
b
kjCsjCqi = 0.

We further convert this equation into the MO representation by operating
∑

p Cpl

on both sides of the equation,
∑

j

(
εj − εi

)∑

p,q

CplspqCqjU
b
ji − e

∑

p,q

〈
p|n̂b|q

〉
CplCqi

+
∑

p,q,r,s

occ∑

j

∑

k

{4 (pq|rs) − (pr|qs) − (ps|qr)} CplCrkU
b
kjCsjCqi

=
∑

j

(
εj − εi

)
δljU

b
ji − e

〈
ψl |n̂b|ψi

〉+
occ∑

j

∑

k

HlikjU
b
kj = 0. (6.56)

Hlikj has been defined in Eq. (6.23),

Hlikj = 4
(
ψlψi |ψkψj

)− (
ψlψk|ψiψj

)− (
ψlψj |ψkψi

)
, (6.23)

(
ψiψj |ψkψl

) =
∫∫

ψi(r)ψj (r)
e2

|r − r ′|ψk(r
′)ψl(r

′)drdr ′

=
AO∑

p,q,r,s

CpiCqjCrkCsl

(
χpχq |χrχs

)
,

and

〈
ψl |n̂b|ψi

〉 =
AO∑

p,q

CplCqi〈χp|n̂b|χq〉. (6.24)
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The MO coefficients also satisfy the orthonormal condition of Eq. (6.51). There-
fore, Eq. (6.51) is differentiated with Vb,

∂

∂Vb

AO∑

p,q

CpiCqj spq =
∑

p,q

(
∂Cpi

∂Vb

Cqj spq + Cpi

∂Cqj

∂Vb

spq

)

=
AO∑

p,q

MO∑

k

(
CpkU

b
kiCqj spq + CpiCqkU

b
kj spq

)

=
∑

k

(
δkjU

b
ki + δikU

b
kj

)
= Ub

ji + Ub
ij = 0,

which indicates that Ub
ij is an anti-symmetric matrix (Ub

ji = −Ub
ij ). This anti-

symmetric character restricts the summation over k in Eq. (6.56) to only the virtual
MOs, because the third term of Eq. (6.56) becomes

occ∑

j

∑

k

HlikjU
b
kj =

occ∑

j

occ∑

k

HlikjU
b
kj +

occ∑

j

vir∑

k

HlikjU
b
kj

= 1

2

occ∑

j

occ∑

k

(
HlikjU

b
kj + HlijkU

b
jk

)
+

occ∑

j

vir∑

k

HlikjU
b
kj =

occ∑

j

vir∑

k

HlikjU
b
kj

using the two following relations, Hlikj = Hlijk and Ub
kj = −Ub

jk . Therefore,
Eq. (6.56) derives the following CPHF equation,

(εl − εi) Ub
li +

occ∑

j

vir∑

k

HlikjU
b
kj = e

〈
ψl |n̂b|ψi

〉
. (6.22)

The above CPHF equation determines the coefficients Ub
kj between occupied MO

j and virtual MO k. The coefficients between the occupied and virtual orbitals
are sufficient to describe the deformation of the occupied MOs and the total
wavefunction �.

The present CPHF equation (6.22) for the CRK is analogous to those for other
response quantities that are represented as second-order derivatives of energy, such
as Hessian, polarizability, etc. The difference from other response quantities arises
in the right hand side of Eq. (6.22), while the left hand side is common.
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A.1.3 Formula of CRK

Using the solution of Ub
li thus obtained, the CRK Kab is derived as follows,

Kab = ∂Qa

∂Vb

= −e

AO∑

p,q

∂Dpq

∂Vb

〈
p|n̂a|q

〉

= −2e

AO∑

p,q

occ∑

i

(
∂Cpi

∂Vb

Cqi + Cpi

∂Cqi

∂Vb

) 〈
p|n̂a|q

〉

= −2e

AO∑

p,q

occ∑

i

∑

j

(
CpjU

b
jiCqi + CpiCqjU

b
ji

) 〈
p|n̂a|q

〉

= −2e

⎧
⎨

⎩

occ∑

i

occ∑

j

+
occ∑

i

vir∑

j

⎫
⎬

⎭

(〈
ψj |n̂a|ψi

〉
Ub

ji + 〈
ψi |n̂a|ψj

〉
Ub

ji

)

= −2e

occ∑

i

vir∑

j

(〈
ψj |n̂a|ψi

〉
Ub

ji + 〈
ψi |n̂a|ψj

〉
Ub

ji

)

= −4e

occ∑

i

vir∑

j

〈
ψj |n̂a|ψi

〉
Ub

ji . (6.25)

A.2 Reorganization Energy of Electronic Polarization

For a condensed system of N molecules, we suppose that the intermolecular
interactions are represented with the site charges Qai and the CRK Kab. In the
total potential energy U in Eq. (6.29), the second term

U reorg = −1

2

∑

i

site∑

a,b

KabVaiVbi (6.57)

is called the reorganization energy. U reorg represents destabilization energy due to
the electronic polarization, as explained below. This reorganization energy has to
be positive for the stability of the polarization, and in fact is proven to be positive
in Problem 6.2 because Kab is a non-positive definite matrix. When the external
perturbation is imposed on a molecule, the electronic polarization is induced so as
to stabilize the interaction with the external potential, at the expense of the polarized
(distorted) electronic state. The actual polarization is determined in the balance of
the above two factors of stabilization and destabilization. The reorganization energy
U reorg corresponds to the latter, destabilizing factor associated to the electronic
polarization.
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A.2.1 Derivation of Reorganization Energy

In this Appendix we derive the above formula of U reorg. The reorganization energy
is defined as the reversible work to polarize the molecule i. In the following
we treat the polarization of each molecule i separately, with no intermolecular
interactions. The reversible work is regarded to consist of the following two quasi-
static processes, (i) and (ii).

V = 0
Q = Q0

(i)−−→

V = V

Q = Q (ii)−−→

V = 0
Q = Q

(i) First, the external potential at the site a of molecule i is slowly changed from
V = 0 to Vai . During this process the site charge changes from Q0

a to Qai =
Q0

a +∑
b KabVbi .

(ii) Then, the external potential is slowly changed from V = Vai to 0 while the
partial charge Qai is fixed.

As a consequence, the external potential V is the same before and after the processes
(V = 0), while the site charge changes from Q0

a to Qai .
Considering that the charge Q and the electrostatic potential V are conjugate

quantities in the thermodynamic sense, an infinitesimal change in the electrostatic
potential dVai gives rise to a infinitesimal work (= increment of the internal energy
dU ), dU = Qai dVai . During the process (i), the intermediate potential is
represented by ξVai , where ξ is a scaling factor ranging from ξ = 0 to 1. The
overall change in the internal energy through the process (i), U(i), is thus obtained
by integrating dU from ξ = 0 to 1,

U(i) =
∑

i

∑

a

∫ 1

0
Qai({ξVai})Vaidξ =

∑

i

∑

a

∫ 1

0

(
Q0

a +
∑

b

KabξVbi

)
Vaidξ

=
∑

i

∑

a

Q0
aVai + 1

2

∑

i

∑

a,b

KabVaiVbi .

We note that the partial charge Qai varies from Q0
ai to Qai along with the change in

the intermediate potential ξV during the process (i). On the other hand, the change
in the internal energy during the process (ii) is obtained by integrating dU from
ξ = 1 to 0 in an analogous way,

U(ii) =
∑

i

∑

a

∫ 0

1
QaiVaidξ = −

∑

i

∑

a

QaiVai,
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where the partial charge Qai is fixed during this process. Therefore, the reorganiza-
tion energy U reorg is represented with the sum of the above two contributions,

U reorg = U(i) + U(ii)

=
∑

i

∑

a

Q0
aVai + 1

2

∑

i

∑

a,b

KabVaiVbi −
∑

i

∑

a

QaiVai (6.58)

= −1

2

∑

i

∑

a,b

KabVaiVbi . (6.57)

where the last expression is derived using Eq. (6.28).

A.2.2 Variational Principle of Polarization

The above derivation of the reorganization energy in Eq. (6.58) allows us to define
the whole electrostatic potential energy of the condensed system to be

U(Q, V ) = 1

2

∑

i

∑

j ( 	=i)

∑

a,b

QaiQbj

|R(ai) − R(bj)|

+
∑

i

∑

a

Q0
aiVai + 1

2

∑

i

∑

a,b

KabVaiVbi −
∑

i

∑

a

QaiVai . (6.59)

We confirmed that U in Eq. (6.59) coincides with U in Eq. (6.29) with the help of
Eq. (6.28).

Let us suppose that U in Eq. (6.59) is a function of {Qai} and {Vai}. Then the
conditions to minimize U(Q, V ) are given as follows.

∂ U(Q, V )

∂Qai

=
∑

j ( 	=i)

∑

b

Qbj

|R(ai) − R(bj)| − Vai = 0, (6.60)

∂ U(Q, V )

∂Vai

= Q0
ai +

∑

b

KabVbi − Qai = 0. (6.61)

Interestingly, these Eqs. (6.60) and (6.61) are identical to the self-consistent con-
ditions of Eqs. (6.27) and (6.28), respectively. This argument indicates that the
self-consistent conditions of Qai and Vai are regarded as variational principle
to minimize the whole energy U(Q, V ) in Eq. (6.59). The minimum energy of
U(Q, V ) coincides with the actual energy U in Eq. (6.29).
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The variational principle clarifies the feature discussed in Problem 6.3 that the
force F ai in Eq. (6.30) does not include the derivatives ∂Q/∂R or ∂V/∂R. This
is because the self-consistent conditions (6.60) and (6.61) are satisfied at any
time. The derivative of U(R,Q, V ) with respect to the coordinate Rai is formally
represented by

F ai = −∂ U(R,Q, V )

∂Rai

−
∑

j

∑

b

[
∂ U(R,Q, V )

∂Qbj

∂Qbj

∂Rai

+ ∂ U(R,Q, V )

∂Vbj

∂Vbj

∂Rai

]

= − ∂U
∂Rai

.

We can readily see that the terms including ∂Q/∂R or ∂V/∂R vanish thanks to
Eqs. (6.60) and (6.61).

We also note in passing that the above feature is commonly pertinent to the
derivative of energies that satisfy the variational principle. In the electronic structure
theories, some methods are based on the variational principle, such as Hartree-
Fock and MCSCF. Therefore, the first-order derivative of the energies do not
involve the derivative of the wavefunction for the same reason. As a consequence,
the calculation of forces requires a little additional cost of computation using
these methods. Yet the second-order derivative of energies, such as Hessian,
polarizability and CRK, requires the derivative of the wavefunction. In such cases
the CPHF equation described in Sect. 6.2 is invoked to calculate the derivative of
the wavefunction or MO coefficients.
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Chapter 7
Quadrupole Contributions from
Interface and Bulk

Abstract This chapter provides the comprehensive argument on quadrupole con-
tributions in SFG spectroscopy. Though the preceding chapters have dealt with
the induced dipole contribution, the accurate theory of SFG and SHG should take
account of the induced quadrupole beside the dipole. The former can arise from the
bulk region, while the latter stems only from the interface. We clarify three kinds of
quadrupole contributions, namely χ IQ, χ IQB and χB, in addition to the dipole one
χ ID. The four terms have different roles in SFG and SHG spectra, as summarized
in Sect. 7.5. The following discussion elucidates these quadrupole mechanisms and
characters, and derives their microscopic formulas for calculating them.

Keywords Quadrupole · Bulk contribution · χ IQB and χB

The present chapter provides comprehensive argument on the quadrupole contri-
butions to the SFG spectroscopy. In the preceding chapters, we have assumed
that the sum frequency signal originates from the second-order susceptibility
χ (2)(�, ω1, ω2) at the interface. We have argued in Problem 1.1 that the χ (2)

vanishes in isotropic bulk media, and this property renders the SFG spectroscopy
the surface selectivity.

We recall that this argument dealt with the induced electric dipole P (2) in
Eq. (1.4), which exclusively arises from a region where the inversion symmetry
is broken. However, the sources of the sum frequency signal may include higher-
order, electric quadrupole and magnetic dipole contributions in addition to the
electric dipolar polarization of Eq. (1.4). These higher-order contributions are not
necessarily forbidden in isotropic media for symmetry reason, and thus affect the
surface selectivity of SFG spectroscopy. Even if the intrinsic quadrupole signal
in the bulk is weaker than the dipole at the surface, the overwhelmingly larger
volume of the bulk could compensate for the weak quadrupole signal [10]. Rigorous
quantitative theory of SFG should take account of these contributions.1

1The general “quadrupole” term incorporates the electric quadrupole and the magnetic dipole
contributions, as we argue later.
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The quadrupole contributions were recognized at an early stage of studies on the
second-order optical processes [1, 16, 20]. Bloembergen et al. proposed a theory of
SHG involving the quadrupole contribution in centrosymmetric media [2, 3], and the
theory of SHG has been sophisticated by subsequent studies[6–8, 18, 19]. Here we
formulate the quadrupole contributions in SFG as well as in SHG. While the theory
of SFG and SHG is mostly common, the SFG spectroscopy has some different
sensitivity to the quadrupole contributions from SHG since the two incident fields
can propagate with different wavevectors. Once the quadrupole effect on SFG is
understood, SHG is regarded as a special case of SFG.

In the present chapter, some arguments given in preceding chapters have to
be modified in order to incorporate the quadrupole contributions. First, the three-
layer model of SFG in Chap. 2 is generalized to take account of the structure
within the interface in Sect. 7.1. Then the second-order polarization is extended to
include the quadrupole originating from both interface and bulk in Sect. 7.2. As
a consequence, the second-order susceptibility effectively consists of four terms
of different characters, namely χ ID,χ IQ,χ IQB, and χB. Section 7.3 presents the
microscopic formulas of those terms in both the energy representation and time-
dependent representation, after the discussion of χ (2) in Chap. 3. Section 7.4 argues
the invariance of the quadrupole formulas with respect to the molecular origin, a
fundamental requirement for the sound theory. Summary is then given in Sect. 7.5.

7.1 Beyond the Three-Layer Model

We extend the electrodynamic theory of SFG and generalize the three-layer model
in Chap. 2 by taking account of depth- (z-) dependent dielectric properties of the
interface. The phenomenological three-layer model is not capable of describing
internal structure within the interfacial layer. In order to evaluate the quadrupolar
polarizations at the surface, we need to account for the structure of electric field
gradient over the surface region in a molecular scale.

Notations for Surface SFG Figure 7.1 summarizes the optical geometry and
related notations for the SFG measurement. This geometry is identical to that in
Fig. 2.1, though the interface region around z ≈ 0 is not treated as a phenomeno-
logical third layer in Fig. 7.1. While the microscopic definition of the origin z = 0
is somewhat arbitrary due to finite thickness of the interface, this arbitrariness does
not affect the following discussion toward treating the surface and bulk contributions
from a unified view. This is because the thickness of the interface is generally much
shorter than the wavelengths of the light fields. (This condition is usually satisfied
in the surface nonlinear spectroscopy.)

Figure 7.1 shows all the wavevectors kG with the subscripts G = I, R and T ,
which distinguish the incident, reflected and transmitted fields, respectively. In the
following discussion the medium α is assumed to be vacuum for simplicity, and
hence εα = 1, though extension to other situations is straightforward. The absolute
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Fig. 7.1 Definition of
parameters used for the
surface SFG. The subscripts
f = 1, 2, 3 denote the two
incident lights and SFG,
respectively. e.g.
kα

1I = kα
I (ω1),

kα
2R = kα

R(ω2), θα
3R = θα

R(�).

k
k

k k
k

k k
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z

values of the wavevectors are obtained by

ki
G(ωf ) = |ki

G(ωf )| =
√

εi(ωf )ωf

c
,

where c is the velocity of light in vacuo, and i = α or β. Due to the continuity
of tangential wavevectors at the interface, the x component for each wavevector
is invariant under different i and G, e.g. kα

I,x(ωf ) = kα
R,x(ωf ) = k

β
T ,x(ωf ), and

hence ki
G,x(ωf ) is abbreviated to kx(ωf ) irrespective of i and G. The tangential

components satisfy the relation of momentum conservation,

kx(�) = kx(ω1) + kx(ω2). (7.1)

Suppose a plane wave Eα
I (ωf ) (f = 1 or 2) in Eq. (2.11) is incident from

the medium α (vacuum) to the interface. Then the external field and local field
of frequency ωf are represented near the interface (z ≈ 0) by

Eext(r, ωf , t) = Eext(ωf ) exp
(
ikx(ωf )x − iωf t

)
(7.2)

Eloc(r, ωf , t)=Eloc(z, ωf ) exp
(
ikx(ωf )x−iωf t

)
, (near z ≈ 0, f = 1 or 2)

(7.3)

respectively. Note that the real fields are given by Eext(r, ωf , t) + c.c. and
Eext(r, ωf , t) + c.c. We have discussed in Sect. 5.3 that Eext(ωf ) is related to the
incident field Eα

I (ωf ) with the optical factor LI (ωf ) by

Eext(ωf ) = LI (ωf )Eα
I (ωf ), (5.29)

and Eloc(z, ωf ) is represented with the local field factor f (z, ωf ) by

Eloc(z, ωf ) = f (z, ωf )Eext(ωf ) = f (z, ωf )LI (ωf )Eα
I (ωf ). (5.31)

Eloc(z, ωf ) and f (z, ωf ) depend on the z coordinate in a microscopic scale near
the interface (z ≈ 0) due to its inhomogeneous environment. f (z, ωf ) is a diagonal
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tensor,

f (z, ωf ) =
⎛

⎝
fx(z, ωf ) 0 0

0 fy(z, ωf ) 0
0 0 fz(z, ωf )

⎞

⎠ , (7.4)

and fx(z, ωf ) = fy(z, ωf ) for an azimuthally isotropic interface with C∞v

symmetry.

Z-dependence of nonlinear polarization Next we take account of the z-
dependent distribution of interfacial nonlinear polarization. The distribution of
the induced second-order polarization at the interface is

P
(2)
0 (r,�, t) = P

(2)
0 (z,�) exp(ikx(�)x − i�t), (7.5)

where

P
(2)
0 (z,�) = χD0(z,�,ω1, ω2) : Eloc(z, ω1)E

loc(z, ω2)
(

or P
(2)
0,p(z,�) =

x∼z∑

q,r

χD0
pqr (z,�,ω1, ω2)E

loc
q (z, ω1)E

loc
r (z, ω2).

)
(7.6)

χD0(z,�,ω1, ω2) is represented with the molecular hyperpolarizabilities αD0
l in the

space-fixed coordinates,

χD0(z,�,ω1, ω2) =
molecules∑

l

αD0
l (�, ω1, ω2)δ(z − zl), (7.7)

with zl being the z coordinate of the l-th molecule and the over-bar denoting
statistical average.2 χD0(z,�,ω1, ω2) in Eq. (7.7) is a bare assembly of molecular
hyperpolarizabilities, and these molecular hyperpolarizabilities interact with the
local fields in Eq. (7.6).

We have argued in Chap. 5 that the induced nonlinear polarization is also affected
by the local field to modify itself. The modified polarization becomes [6–8]

P (2)(r,�, t) = P (2)(z,�) exp(ikx(�)x − i�t), (7.8)

2In Eq. (7.6) each factor of χD0 and Eloc is statistically averaged before taking the product, whereas
in fully microscopic theory their product should be statistically averaged. Therefore, Eq. (7.6)
is regarded as an approximated treatment of the fully microscopic theory in Chap. 5, though it
is convenient to formulate the z-dependence of polarization. Fully microscopic computation of
quadrupolar susceptibilities does not involve this approximation unless they are decomposed along
the z.
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where

P (2)(z,�) = f (z,�)P
(2)
0 (z,�)

= f (z,�)

[
χD0(z,�,ω1, ω2) : {f (z, ω1)LI (ω1)E

α
I (ω1)

}

{
f (z, ω2)LI (ω2)E

α
I (ω2)

} ]
. (7.9)

The last expression is derived using Eqs. (7.6) and (5.31).
The nonlinear polarization P (2)(z,�) in Eq. (7.9) is induced within the interface

region (at about z ≈ 0) whose thickness is much smaller than the wavelength of the
fields. In such case, it is represented with a delta function in Eq. (2.12), P (2)(z,�) �
P S(�)δ(z), in the macroscopic treatment in Chap. 2. Accordingly, P S(�) is derived
by integrating P (2)(z,�) over the interface region,

P S(�) ≡
∫

P (2)(z,�)dz (7.10)

=
∫

dz f (z,�)

[
χD0(z,�,ω1, ω2) : {f (z, ω1)LI (ω1)ê

α
I (ω1)

}

{
f (z, ω2)LI (ω2)ê

α
I (ω2)

} ] · Eα
I (ω1)E

α
I (ω2)

= χ ID(�,ω1, ω2) : {LI (ω1)ê
α
I (ω1)

} {
LI (ω2)ê

α
I (ω2)

}
Eα

I (ω1)E
α
I (ω2).

(7.11)

In Eq. (7.11) the incident electric field Eα
I (ωf ) is expressed by Eα

I (ωf ) =
ê
α
I (ωf )Eα

I (ωf ), where Eα
I (ωf ) and ê

α
I (ωf ) are the absolute value and unit vector

of Eα
I (ωf ), respectively. χ ID is introduced as

χ ID(�,ω1, ω2) =
∫

dz f (z,�)
[
χD0(z,�,ω1, ω2) : f (z, ω1)f (z, ω2)

]
.

(7.12)

This is an alternative definition of the nonlinear susceptibility that incorporates the
local field corrections.

Effective nonlinear susceptibility Then we present the effective second-order
susceptibility χ

(2)
eff in Eq. (2.22) of Chap. 2 without resort to the three-layer model.

The effective susceptibility has been introduced in Chap. 2 by Eqs. (2.19)
and (2.22) as

e(�) · P S(�) = χ
(2)
eff Eα

I (ω1)E
α
I (ω2).
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(Here we have assumed both the incident phases i1 and i2 to be α in Fig. 7.1.)
As shown in Table 2.1, e(�) is given as the result of the Fresnel transformation in
the interface, e(�) = F i→j (�)ê

i
(�), and hence the left side is written by e(�) ·

P S(�) = ê
i
(�) · F i→j (�)P S(�). The Fresnel factor F i→j is a symmetric tensor

and is given in Eq. (2.18), which involves the interfacial dielectric constant ε′.
In the present chapter, however, we obviate the use of phenomenological

parameter ε′, and incorporate the effect into the microscopic local field correction
f . Accordingly, χ

(2)
eff,G is defined here so as to satisfy the following condition,

ê
i
G(�) · LG(�)P S(�) = χ

(2)
eff,GEα

I (ω1)E
α
I (ω2), (7.13)

where the subscript G (= R or T ) specifies reflected or transmitted SFG signal.
In Eq. (7.13) the optical factor LG(�) is used instead of F i→j , and the local field
f at the frequency � is incorporated in the definition of P S(�) (see Eqs. (7.11)
and (7.12)). χ

(2)
eff,G thus introduced will be expanded to incorporate the quadrupole

contributions in the next Sect. 7.2.
By inserting Eq. (7.11) into (7.13), we get the χ

(2)
eff,G formula for the electric

dipole contribution,

χ
(2)
eff,G(�,ω1, ω2)

= ê
i
G(�) · LG(�)

[
χ ID(�,ω1, ω2) : {LI (ω1)ê

α
I (ω1)

} {
LI (ω2)ê

α
I (ω2)

}]
.

(7.14)

For an interface of azimuthal C∞v symmetry, the effective susceptibilities for
possible polarization combinations are expressed as follows:

χ
(2)
eff,G, SSP(�,ω1, ω2) = LG,y(�) LI,y(ω1) LI,z(ω2) sin θα

I (ω2) χ ID
yyz(�,ω1, ω2),

(7.15)

χ
(2)
eff,G, SPS(�,ω1, ω2) = LG,y(�) LI,z(ω1) LI,y(ω2) sin θα

I (ω1) χ ID
yzy(�,ω1, ω2),

(7.16)

χ
(2)
eff,G, PSS(�,ω1, ω2) = LG,z(�) LI,y(ω1) LI,y(ω2) sin θi

G(�) χ ID
zyy(�,ω1, ω2),

(7.17)

χ
(2)
eff,G, PPP(�,ω1, ω2) =

− LG,x(�) LI,x(ω1) LI,z(ω2) cos θi
G(�) cos θα

I (ω1) sin θα
I (ω2) χ ID

xxz(�,ω1, ω2)

− LG,x(�) LI,z(ω1) LI,x(ω2) cos θi
G(�) sin θα

I (ω1) cos θα
I (ω2) χ ID

xzx(�,ω1, ω2)

+ LG,z(�) LI,x(ω1) LI,x(ω2) sin θi
G(�) cos θα

I (ω1) cos θα
I (ω2) χ ID

zxx(�,ω1, ω2)

+ LG,z(�) LI,z(ω1) LI,z(ω2) sin θi
G(�) sin θα

I (ω1) sin θα
I (ω2) χ ID

zzz(�, ω1, ω2),

(7.18)
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where the diagonal elements of LG(ωf ) are specified with a single subscript of
spatial coordinate; i.e. LG,p(ωf ) ≡ [LG(ωf )]pp (p = x, y, z). The present
Eqs. (7.15), (7.16), (7.17), (7.18) correspond to Eqs. (3.49), (3.50), (3.51), (3.52)
in Chap. 3 based on the three-layer model.

7.2 Extended Nonlinear Susceptibility

Next we extend the effective susceptibility χ
(2)
eff,G in Eq. (7.14) to include the

quadrupole, and elucidate the mechanism of surface and bulk contributions beyond
the dipole approximation.

7.2.1 Extended Source Polarization

The sum-frequency polarization P
(2)
0 (r,�, t) in Eq. (7.5) has been given by

Eq. (7.6). The equivalent formula including the phase factors is

P
(2)
0 (r,�, t) = χD0(z,�,ω1, ω2) : Eloc(r, ω1, t)E

loc(r, ω2, t)
(

or P
(2)
0,p(r,�, t) =

x∼z∑

q,r

χD0
pqr (z,�,ω1, ω2)E

loc
q (r, ω1, t)E

loc
r (r, ω2, t)

)
.

(7.19)

Then, we expand this formula to incorporate the quadrupole contributions as
follows,

P
(2)
0,p(r,�, t) =

x∼z∑

q,r

χD0
pqr (z,�,ω1, ω2)E

loc
q (r, ω1, t)E

loc
r (r, ω2, t)

+
x−z∑

q,r,s

[
χD1

pqrs(z,�,ω1, ω2)
∂Eloc

q (r, ω1, t)

∂s
Eloc

r (r, ω2, t)

+ χD2
pqrs(z,�,ω1, ω2)E

loc
q (r, ω1, t)

∂Eloc
r (r, ω2, t)

∂s

− ∂

∂s

{
χQ

pqrs(z,�,ω1, ω2)E
loc
q (r, ω1, t)E

loc
r (r, ω2, t)

}]
. (7.20)

The first line of Eq. (7.20) corresponds to Eq. (7.6), which is inherently surface
sensitive. The additional terms involving χD1

pqrs , χD2
pqrs and χ

Q
pqrs indicate the

quadrupole contributions. The second and third lines describe the induced electric
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dipole in response to the electric field and field gradient. A quantity which couples
with the field gradient is of quadrupolar character, as will be evident in Sect. 7.3.
The fourth line includes the induced quadrupole,

Q
(2)
0,sp(r,�, t) ≡

∑

q,r

χQ
pqrs(z,�,ω1, ω2)E

loc
q (r, ω1, t)E

loc
r (r, ω2, t), (7.21)

and the gradient of the quadrupole − ∂

∂s
Q

(2)
0,sp gives rise to a part of the dipole

polarization. Note that all the quadrupole terms in Eq. (7.20) are associated to spatial
gradient ∂/∂s.

We notice that the quadrupolar susceptibilities, χD1, χD2 and χQ, are non-zero in
the bulk region in contrast to the dipolar susceptibility χD0 (see Problem 1.1). The
contrasting selection rules stem from the fact that χD1, χD2, χQ are fourth-rank
(even-rank) tensors while χD0 is third-rank (odd-rank). Material properties of even-
rank tensors do not necessarily vanish non-centrosymmetric media for symmetry
reason. Therefore, the sum-frequency polarization P

(2)
0 (r,�, t) in Eq. (7.20) is

induced in the bulk region (z < 0) in addition to the interface (z ≈ 0). We
accordingly extend the definition of the local field Eloc(r, ωf , t) and the total sum-
frequency polarization P (2)(r,�, t) in Sect. 7.1 to treat the bulk region as follows.

Therefore, the formula of local field Eloc(r, ωf , t) in Eq. (7.3) is extended to be

Eloc(r, ωf , t) = Eloc(z, ωf ) exp(ik
β
T (ωf ) · r − iωf t), (7.22)

which can describe the local field in both the interface and bulk regions. The
nonlinear polarization P (2)(r,�, t) in Eq. (7.8) is analogously extended in the
following form,

P
(2)
p (r, �, t)

=
∑

q,r

fp(z, �)χD0
pqr (z,�, ω1, ω2) fq(z, ω1)LI,q (ω1)Eα

I,q (ω1) exp
(
ik

β
T

(ω1) · r − iω1t
)

· fr (z, ω2)LI,r (ω2)Eα
I,r (ω2) exp

(
ik

β
T

(ω2) · r − iω2t
)

+
∑

q,r,s

fp(z, �)χD1
pqrs(z, �,ω1, ω2)

∂

∂s

{
fq(z, ω1)LI,q (ω1)Eα

I,q (ω1)

exp
(
ik

β
T

(ω1) · r − iω1t
)}

· fr (z, ω2)LI,r (ω2)Eα
I,r (ω2) exp

(
ik

β
T

(ω2) · r − iω2t
)

+
∑

q,r,s

fp(z, �)χD2
pqrs(z, �, ω1, ω2) fq(z, ω1)LI,q (ω1)Eα

I,q (ω1) exp
(
ik

β
T

(ω1) · r − iω1t
)

· ∂

∂s

{
fr (z, ω2)LI,r (ω2)Eα

I,r (ω2) exp
(
ik

β
T

(ω2) · r − iω2t
)}
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−
∑

q,r,s

fp(z, �)
∂

∂s

{
χ

Q
pqrs(z,�, ω1, ω2) fq(z, ω1)LI,q (ω1)Eα

I,q (ω1)

exp
(
ik

β
T

(ω1) · r − iω1t
)

fr (z, ω2)LI,r (ω2)Eα
I,r (ω2) exp

(
ik

β
T

(ω2) · r − iω2t
)}

.

(7.23)

This equation (7.23) treats the sum-frequency polarization induced both in the
interface (z ≈ 0) and bulk medium β (z < 0) along the common z coordinate.
The arbitrariness in the microscopic definition of surface z = 0 does not affect the
description of the bulk polarization, because the phase of bulk polarization as well as
electric fields in the bulk is invariant within the range of arbitrariness (microscopic
thickness of the surface region).

7.2.2 Effective Polarization and Susceptibility

Next we discuss the emitted SFG signal in relation to the nonlinear polarization
P (2)(r,�, t) in Eq. (7.23). The direction G (= R or T ) of the emitted SFG signal is
determined by the boundary conditions at interface in Eq. (2.13) (see Sect. 2) and is
displayed in Fig. 2.1 or 7.1, regardless of whether the quadrupole source polarization
is involved. In fact, it is possible to extend the interfacial source polarization P S(�)

in Eq. (2.12) so as to involve the quadrupole contributions. Accordingly, we can
introduce effective interfacial polarization P eff,G for P S(�) in Eq. (2.12),

P S(�) exp (ikx(�)x − i�t) δ(z) −→ P eff,G exp (ikx(�)x − i�t) δ(z),

so that the radiated SFG field from P (2)(r,�, t) in Eq. (7.23) in the direction G

coincides with that from P eff,G at the interface (see Fig. 7.2). The suffix G of P eff,G
indicates that the effective interfacial polarization P eff,G depends on the direction
G. The effective second-order susceptibility χ

(2)
eff,G in Eq. (7.13) is analogously

extended using P eff,G instead of P S as

ê
i
G(�) · LG(�)P eff,G = χ

(2)
eff,GEα

I (ω1)E
α
I (ω2). (7.24)

The effective polarization P eff,G and susceptibility χ
(2)
eff,G thus defined above allow

us to represent the SFG signals including both the interface and bulk contributions
on the same footing, without apparently modifying the formulas of interfacial SFG.

In what follows, P eff,G including both the dipole and quadrupole terms is derived
from P (2)(r,�, t) in Eq. (7.23). P eff,G is divided into the contributions from the
interface, P I, and the bulk, P B

G,

P eff,G = P I + P B
G. (7.25)

P I and P B
G are discussed in Sects. 7.2.3 and 7.2.4, respectively. Note that only the

latter, bulk contribution P B
G depends on the direction of the emission G.
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Fig. 7.2 Schematic
definition of the effective
interfacial polarization
P eff,G. Left panels illustrate
the emission of SFG signal
from P (2)(r, �, t) from both
interface and bulk. Right
panels illustrate the
equivalent SFG emission
from P eff,G at the interface

=

=

P (r, , t)(2) Peff,R

Peff,TP (r, , t)(2)

Reflected Signal

Transmitted Signal

To make the following argument clearer, we briefly comment on the qualitatively
different mechanisms of the quadrupole contributions to P I and P B

G. Equa-
tion (7.23) shows that all the quadrupolar terms involve the spatial derivative ∂/∂s

(s = x, y, z), and the spatial derivative yields two kinds of terms, i.e. the derivative
of the local field factor f (z, ωf ) and of the phase factor exp

(
iki

G(ωf ) · r − iωf t
)
.

These two kinds of derivative correspond to distinct mechanisms of SFG. The
derivative of the local field factor ∂f /∂s arises from spatial inhomogeneity of the
interface, and thus it is considered as a part of interface polarization P l. On the
other hand, the derivative of the phase factor of light fields does not vanish in the
bulk region even though the material is homogeneous. It is considered as the bulk
polarization P B

G.

7.2.3 Interface Contribution

The interface polarization P l is derived from Eq. (7.23) by operating the derivative
∂/∂s on the local field factor f and then by integrating the nonlinear polarization
of P (2)(z,�) along z over the interfacial range. We note that the derivative ∂f /∂s

arises along the normal direction (s = z). Therefore,

P I
p exp (ikx(�)x − i�x)

=
∫ ∞

zb

dz

[
∑

q,r

fp(z,�)χD0
pqr (z,�,ω1, ω2)fq(z, ω1) fr(z, ω2)

+
∑

q,r

fp(z,�)χD1
pqrz(z,�,ω1, ω2)

∂fq(z, ω1)

∂z
fr(z, ω2)
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+
∑

q,r

fp(z,�)χD2
pqrz(z,�,ω1, ω2)fq(z, ω1)

∂fr(z, ω2)

∂z

−
∑

q,r

fp(z,�)
∂

∂z

{
χQ

pqrz(z,�,ω1, ω2) fq(z, ω1) fr(z, ω2)
}
]

· LI,q(ω1)E
α
I,q(ω1) exp

(
ikx(ω1)x − iω1t

)

· LI,r (ω2)E
α
I,r (ω2) exp

(
ikx(ω2)x − iω2t

)
. (7.26)

In the above integral along the z coordinate, the lower bound zb is chosen at an
arbitrary position sufficiently deep in the medium β so that the integral covers the
entire inhomogeneous region of the interface. Consequently, χD0 and ∂f /∂z vanish
outside the integral range. In the integral range, the variation in phase factor along z

is neglected, exp
(
ik

β
T ,z(ω1)z + ik

β
T ,z(ω2)z

)
≈ 1, since the relevant thickness of the

interface is much shorter than the light wavelengths. (The derivative with respect to
phase factor will be treated separately in the next subsection.)

We further modify the term including χQ in Eq. (7.26) (fifth line) using integra-
tion by part as

[fifth line of Eq. (7.26)]:

−
∫ ∞

zb

dz
∑

q,r

fp(z,�)
∂

∂z

{
χQ

pqrz(z,�,ω1, ω2)fq(z, ω1) fr(z, ω2)
}

=
∫ ∞

zb

dz
∑

q,r

∂fp(z,�)

∂z

{
χQ

pqrz(z,�,ω1, ω2)fq(z, ω1) fr(z, ω2)
}

−
∑

q,r

fp(z,�)
{
χQ

pqrz(z,�,ω1, ω2)fq(z, ω1) fr(z, ω2)
}∣∣∣∣∣

z=∞

z=zb

=
∫ ∞

zb

dz
∑

q,r

∂fp(z,�)

∂z

{
χQ

pqrz(z,�,ω1, ω2) fq(z, ω1) fr(z, ω2)
}

+
∑

q,r

f β
p (�)χQ,β

pqrz(�, ω1, ω2)f
β
q (ω1)f

β
r (ω2). (7.27)

In the last expression of the above derivation, the symbols with superscript β

denote the quantities in the bulk medium β; for example, χ
Q,β
pqrz(�, ω1, ω2) ≡

χ
Q
pqrz(zb,�, ω1, ω2) and f

β
p (�) ≡ fp(zb,�), which emerge from the lower bound

z = zb. Note that material properties in the interior of bulk medium β have no z-
dependence. The upper bound z = ∞ correspond to the gas phase, and thus the
quantities for the upper bound vanish.
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Consequently, P l in Eq. (7.26) is represented in the following form,

P I
p =

∑

q,r

(
χ ID

pqr (�,ω1, ω2) + χ IQ
pqr (�,ω1, ω2) + χ IQB

pqr (�,ω1, ω2)
)

·LI,q(ω1)LI,r (ω2)E
α
I,q(ω1)E

α
I,r (ω2), (7.28)

where

χ ID
pqr (�,ω1, ω2) =

∫ ∞

zb

dz χD0
pqr (z,�,ω1, ω2)fp(z,�)fq(z, ω1)fr(z, ω2),

(7.12)

χ IQ
pqr (�,ω1, ω2) =

∫ ∞

zb

dz

{
χD1

pqrz(z,�,ω1, ω2)fp(z,�)
∂fq(z, ω1)

∂z
fr(z, ω2)

+ χD2
pqrz(z,�,ω1, ω2)fp(z,�)fq(z, ω1)

∂fr(z, ω2)

∂z

+χQ
pqrz(z,�,ω1, ω2)

∂fp(z,�)

∂z
fq(z, ω1)fr(z, ω2)

}
, (7.29)

χ IQB
pqr (�,ω1, ω2) = χQ,β

pqrz(�, ω1, ω2)f
β
p (�)f β

q (ω1)f
β
r (ω2) (7.30)

The dipole contribution of χ ID has been already given in Eq. (7.12). χ IQ in
Eq. (7.29) indicates the quadrupole contribution associated to the gradient of the
local fields at the interface. χ IQB in Eq. (7.30) originates from the boundary of
integration. We notice that χ

IQB
pqr is entirely determined by bulk properties, and

contains no information on the interface [8]. The physical meaning of the χ IQB

term is further discussed in Appendix A.1.

7.2.4 Bulk Contribution

The remaining portion of the nonlinear polarization in Eq. (7.23) is the terms

including the derivative of the phase factors, exp
(
ik

β
G(ωf ) · r − iωf t

)
. This

portion is denoted with P (2),B(r,�, t), and is represented including the phase
factors by

P (2),B
p (r,�, t)

=
∑

q,r,s

f β
p (�)χD1,β

pqrs (�, ω1, ω2) f β
q (ω1)LI,q(ω1)E

α
I,q(ω1)
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{
∂

∂s
exp

(
ik

β
T (ω1) · r−iω1t

)}
f β

r (ω2)LI,r (ω2)E
α
I,r (ω2) exp

(
ik

β
T (ω2) · r−iω2t

)

+
∑

q,r,s

f β
p (�)χD2,β

pqrs (�, ω1, ω2) f β
q (ω1)LI,q(ω1)E

α
I,q(ω1) exp

(
ik

β
T (ω1) · r−iω1t

)

f β
r (ω2)LI,r (ω2)E

α
I,r (ω2)

{
∂

∂s
exp

(
ik

β
T (ω2) · r − iω2t

)}

−
∑

q,r,s

f β
p (�)χQ,β

pqrs(�, ω1, ω2)f
β
q (ω1)LI,q(ω1)E

α
I,q(ω1)f

β
r (ω2)LI,r (ω2)E

α
I,r (ω2)

· ∂

∂s

{
exp

(
ik

β
T (ω1) · r − iω1t

)
exp

(
ik

β
T (ω2) · r − iω2t

)}
. (7.31)

P (2),B is expressed in a similar manner as in Eq. (7.26) by separating the phase
factor along x,

P (2),B(r,�, t) = P B(z) exp (ikx(�)x − i�t) , (7.32)

where P B(z) is a function of z in the bulk region. By performing the derivative of
phase factor by

∂

∂s
exp

(
ik

β
G(ωf ) · r − iωf t

)
= ik

β
G,s exp

(
ik

β
G(ωf ) · r − iωf t

)
,

the bulk polarization of Eq. (7.31) or (7.32) is written as

P (2),B
p (r,�, t) = P B

p (z) exp (ikx(�)x − i�t)

= i
∑

q,r,s

f β
p (�)

{
χD1,β

pqrs (�, ω1, ω2)k
β
T ,s(ω1) + χD2,β

pqrs (�, ω1, ω2)k
β
T ,s(ω2)

−χQ,β
pqrs(�, ω1, ω2)

(
k
β
T ,s(ω1) + k

β
T ,s(ω2)

)}

· f β
q (ω1)LI,q(ω1)E

α
I,q(ω1) exp

(
ik

β
T (ω1) · r − iω1t

)

· f β
r (ω2)LI,r (ω2)E

α
I,r (ω2) exp

(
ik

β
T (ω2) · r − iω2t

)
(7.33)

and thus

P B
p (z) = i

∑

q,r,s

{
χD1,β

pqrs (�, ω1, ω2)k
β
T ,s(ω1) + χD2,β

pqrs (�, ω1, ω2)k
β
T ,s(ω2)

−χQ,β
pqrs(�, ω1, ω2)

(
k
β
T ,s(ω1) + k

β
T ,s(ω2)

)}

· f β
p (�)f β

q (ω1)f
β
r (ω2)LI,q(ω1)LI,r (ω2)E

α
I,q(ω1)E

α
I,r (ω2)

· exp
[
i
(
k
β
T ,z(ω1) + k

β
T ,z(ω2)

)
z
]
. (7.34)
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Then we derive P B
G in Eq. (7.25) from P B(z) in Eq. (7.34) so that P B

G and P B(z)

should emit equivalent sum-frequency radiation to the direction G, as discussed in
Sect. 7.2.2, though P B

G is supposed to be present at the interface z = 0 while P B(z)

is distributed in the bulk β. Figure 7.3 illustrates the geometry for the SFG emission
from the bulk polarization P B(z). Therefore, P B

G is expressed by integrating the

bulk polarization P B(z) along z with a phase shift exp
(
−ik

β
G,z(�)z

)
that takes

account of the retardation of the radiation [10]. Consequently,

P B
G,p =

∫ 0

−∞
dzP B

p (z) exp
(
−ik

β
G,z(�)z

)
(7.35)

= i

∫ 0

−∞
dz
∑

q,r,s

{
χD1,β

pqrs (�, ω1, ω2)k
β
T ,s(ω1) + χD2,β

pqrs (�, ω1, ω2)k
β
T ,s(ω2)

−χQ,β
pqrs(�, ω1, ω2)(k

β
T ,s(ω1) + k

β
T ,s(ω2))

}

· f β
p (�)f β

q (ω1)f
β
r (ω2)LI,q(ω1)LI,r (ω2)E

α
I,q(ω1)E

α
I,r (ω2)

· exp
[
i(k

β
T ,z(ω1) + k

β
T ,z(ω2) − k

β
G,z(�))z

]
, (7.36)

where the integral is taken in the bulk region of the medium β, −∞ < z < 0.
The upper bound of the integral is set to z = 0 with virtually no ambiguity,
since the interface region (z ≈ 0) has negligibly small contribution to Eq. (7.36)
in comparison to the bulk.3 The integral along z in Eq. (7.36) is straightforward;

i

∫ 0

−∞
dz exp

[
i(k

β
T ,z(ω1) + k

β
T ,z(ω2) − k

β
G,z(�))z

]

= 1

k
β
T ,z(ω1) + k

β
T ,z(ω2) − k

β
G,z(�)

≡ lG, (7.37)

where lG is the coherence length in the direction G (= R or T ). We note that the
coherence length lG is longer in the transmitted direction (G = T ) than in the
reflected direction (G = R) [10]. This is because k

β
R,z(�) has the opposite sign to

k
β
T ,z(ω1) + k

β
T ,z(ω2) while k

β
T ,z(�) has the same sign to it (see Fig. 7.3).

Equation (7.36) includes the χD1,χD2, and χQ tensors in the bulk medium. In an
isotropic material, such fourth-rank tensors χpqrs become greatly simplified. They
have following three independent nonvanishing elements in general,

χpqpq ≡ χ1, χppqq ≡ χ2, χpqqp ≡ χ3, (p 	= q) (7.38)

3We note in passing that Eq. (7.36) is different from the bulk polarization given in the previous
literature [5, 11] (e.g. Eq. (1.2) of Ref. [11]). In Appendix A.3 we detail the difference and
recommend the present definition.
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Fig. 7.3 Definitions of
parameters for the SFG
emission from polarization at
z, P B(z), embedded in the
medium β. The subscripts
f = 1, 2, 3 denote the two
incident lights and SFG,
respectively, e.g.
kα

1I = kα
I (ω1),

k
β
2T = k

β
T (ω2), θα

3R = θα
R(�)

k1I

k2I

k1R

k2R
k3R

k1T k3T

k2T

k3R k3T

3R

x

z

3T

bulk polarization bulk polarization P (z)B

and

χpppp = χ1 + χ2 + χ3. (7.39)

[Problem 7.1] Derive Eq. (7.39) from the three independent elements of Eq. (7.38)
in the isotropic condition.

Therefore, in isotropic bulk media, Eq. (7.36) is transformed into

P B
G,p =

∑

q,r

χB0
G,pqr (�,ω1, ω2)LI,q(ω1)LI,r (ω2)E

α
I,q(ω1)E

α
I,r (ω2), (7.40)

where

χB0
G,pqr (�,ω1, ω2) = lG

{
ζ

Q1,β
2 (�,ω1, ω2)δpqk

β
T ,r

(ω1) + ζ
Q2,β
1 (�,ω1, ω2)δprk

β
T ,q

(ω2)

+ζ
Q1,β
3 (�, ω1, ω2)δqrk

β
T ,p

(ω1) + ζ
Q2,β
3 (�, ω1, ω2)δqrk

β
T ,p

(ω2)
}

f
β
p (�)f

β
q (ω1)f

β
r (ω2)

(7.41)

and the ζ ’s are expressed using the notations of Eq. (7.38) by

ζ
Q2,β
1 (�,ω1, ω2) ≡ χ

D2,β
1 (�,ω1, ω2) − χ

Q,β
1 (�,ω1, ω2), (7.42)

ζ
Q1,β
2 (�,ω1, ω2) ≡ χ

D1,β
2 (�,ω1, ω2) − χ

Q,β
2 (�,ω1, ω2), (7.43)

ζ
Q1,β
3 (�,ω1, ω2) ≡ χ

D1,β
3 (�,ω1, ω2) − χ

Q,β
3 (�,ω1, ω2), (7.44)

ζ
Q2,β
3 (�,ω1, ω2) ≡ χ

D2,β
3 (�,ω1, ω2) − χ

Q,β
3 (�,ω1, ω2). (7.45)
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We note that Eq. (7.41) is derived using the orthogonal condition between the
electric field and the wave vector in the medium β,

∑

p

(f β
p (ωf )LI,p(ωf )Eα

I,p(ωf )) · k
β
T ,p(ωf ) = 0 (f = 1, 2). (7.46)

In summary, the effective polarization P eff,G = P l+P B
G in Eq. (7.25) consists of

Eqs. (7.28) and (7.40). As a consequence, the effective second-order susceptibility
including the surface and bulk contribution, χ

(2)
eff,G in Eq. (7.24), is expressed as

χ
(2)
eff,G(�,ω1, ω2) =

ê
i
G(�)LG(�)

[
χ

(2)
q0 G(�,ω1, ω2) : {LI (ω1)ê

α
I (ω1)

} {
LI (ω2)ê

α
I (ω2)

}]
, (7.47)

where

χ
(2)
q0 G,pqr (�,ω1, ω2) =

χ ID
pqr (�,ω1, ω2) + χ IQ

pqr (�,ω1, ω2) + χ IQB
pqr (�,ω1, ω2) + χB0

G,pqr (�,ω1, ω2).

(7.48)

Equation (7.47) is an extended form of Eq. (7.14) to incorporate the dipole and
quadrupole contributions. If the quadrupole terms of χ IQ,χ IQB and χB0

G were
neglected in Eq. (7.48), Eq. (7.47) would coincide with Eq. (7.14).

7.2.5 Expression of Bulk Term χB

For an interface of azimuthal C∞v symmetry, the (achiral) SFG signal is detected
only in the SSP, SPS, PSS, or PPP combination for symmetry reasons, even though
the bulk contribution is taken into account. These polarization combinations are
related to specific tensor elements of χ ID in Eqs. (7.15), (7.16), (7.17), (7.18),
and their relations have been already discussed in Eqs. (3.49), (3.50), (3.51),
(3.52) in Chap. 3. However, the bulk contribution in Eq. (7.48) would break the
relation of Eqs. (7.15), (7.16), (7.17), (7.18) between the effective susceptibilities
and nonvanishing tensor elements. Here we discuss this relation when the bulk
contribution is taken into account.

In the original expressions of χ
(2)
eff,SSP, χ(2)

eff,SPS, χ(2)
eff,PSS and χ

(2)
eff,PPP in Eqs. (7.15),

(7.16), (7.17), (7.18), the tensor elements of χ ID cannot be simply replaced with
those of χ

(2)
q0G in Eq. (7.48) to incorporate the quadrupole contributions, because

several extra tensor elements of χB0
G,pqr in Eq. (7.41) are not necessarily zero.

Equation (7.41) indicates that non-zero elements of χB0
G,pqr are (yyx), (yxy), (xyy),
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(zzx), (zxz), (xzz), and (xxx) in addition to the conventional non-zero elements of
(yyz), (yzy), (zyy), (xxz), (xzx), (zxx), and (zzz). As a consequence, the effective
susceptibility for the SSP combination, for example, would become

χ
(2)
eff,G,SSP(�,ω1, ω2) =

LG,y (�)LI,y(ω1) LI,z(ω2) sin θα
I (ω2) χ

(2)
q0 G,yyz(�,ω1, ω2)

+ LG,y(�) LI,y(ω1) LI,x(ω2) cos θα
I (ω2) χ

(2)
q0 G,yyx(�,ω1, ω2), (7.49)

where the second term originates from the extra element χB0
G,yyx . One might wonder

that the (yyx) element in Eq. (7.49) is incompatible with the C∞v symmetry of
the system. This apparent deviation from the symmetry requirement could be
understood by noticing that χB0

G is not an intrinsic property of the medium but
depends on the light geometry, since Eq. (7.41) includes the wave vectors of the
applied fields.

In what follows, we will resolve this problem by changing the formula of the
bulk contribution from χB0

G to χB
G so as to preserve the original expressions of

Eqs. (7.15), (7.16), (7.17), (7.18). Accordingly, χ
(2)
q0G in Eq. (7.49) is replaced with

χ
(2)
qG, which consists of χ ID, χ IQ, χ IQB and χB,

χ
(2)
q G,pqr (�, ω1, ω2) =

χ ID
pqr (�,ω1, ω2) + χ IQ

pqr (�,ω1, ω2) + χ IQB
pqr (�,ω1, ω2) + χB

G,pqr (�,ω1, ω2),

(7.50)

using the new definition of χB
G instead of χB0

G . χ
(2)
qG preserves the form of the

effective susceptibility in Eq. (7.15) with obviating the extra (yyx) element in
Eq. (7.49), i.e.

χ
(2)
eff,G,SSP(�,ω1, ω2)=LG,y(�) LI,y(ω1) LI,z(ω2)sin θα

I (ω2) χ
(2)
q G,yyz(�,ω1, ω2).

(7.51)

Such reformulation is possible by considering the relationship between the x and z

elements of the Fresnel factors, beam angles, and local field correction factors.
The χB0

G elements included in Eq. (7.49) are given by Eq. (7.41),

χB0
G,yyz(�,ω1, ω2) = lG ζ

Q1,β
2 (�,ω1, ω2)f

β
y (�)f β

y (ω1)f
β
z (ω2)k

β
T ,z(ω1),

(7.52)

χB0
G,yyx(�,ω1, ω2) = lG ζ

Q1,β
2 (�,ω1, ω2)f

β
y (�)f β

y (ω1)f
β
x (ω2)kx(ω1).

(7.53)
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In order that Eq. (7.49) is equivalent to (7.51), these two elements should be
converted to

χB
G,yyz(�,ω1, ω2)=lGζ

Q1,β
2 (�,ω1, ω2)

(
k

β
T (ω1)×k

β
T (ω2)

)

y

kx(ω2)
f β

y (�)f β
y (ω1)f

β
z (ω2).

(7.54)

[Problem 7.2] Derive χB
G,yyz in Eq. (7.54) from χB0

G in Eqs. (7.52) and (7.53).

(Hint) During the derivation, use the following two relations,

cos θα
I (ω2)

sin θα
I (ω2)

= qα(ω2)

kx(ω2)
,

f
β
x

f
β
z

= εβ,

and LI (ωf ) in Eq. (5.30).

Analogous reformulation is possible for other polarization combinations. The
relevant tensor elements of χB

G in Eq. (7.50) to the four polarization combinations
are summarized as follows.

• SSP case:

χB
G,yyz(�,ω1, ω2) =

lGζ
Q1,β
2 (�,ω1, ω2)

(
k

β
T (ω1) × k

β
T (ω2)

)

y

kx(ω2)
f β

y (�)f β
y (ω1)f

β
z (ω2), (7.54)

• SPS case:

χB
G,yzy(�,ω1, ω2) =

lGζ
Q2,β
1 (�,ω1, ω2)

(
k

β
T (ω2) × k

β
T (ω1)

)

y

kx(ω1)
f β

y (�)f β
z (ω1)f

β
y (ω2), (7.55)

• PSS case:

χB
R,zyy(�,ω1, ω2) = lR

1

kx(�)

{
ζ

Q1,β
3 (�,ω1, ω2)

(
k

β
T (ω1) × k

β
R(�)

)

y

+ζ
Q2,β
3 (�,ω1, ω2)

(
k

β
T (ω2) × k

β
R(�)

)

y

}
f β

z (�)f β
y (ω1)f

β
y (ω2), (7.56)

χB
T ,zyy(�,ω1, ω2) =
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lT
1

εα(�)kx(�)

{
ζ

Q1β
3

(
εα(�)k

β
T ,z(ω1)kx(�) + εβ(�)kx(ω1)k

α
R,z(�)

)

+ζ
Q2β
3

(
εα(�)k

β
T ,z(ω2)kx(�)+εβ(�)kx(ω2)k

α
R,z(�)

)}
f β

z (�)f β
y (ω1)f

β
y (ω2),

(7.57)

• PPP case:

χB
G,xxz = χB

G,yyz, χB
G,xzx = χB

G,yzy, χB
G,zxx = χB

G,zyy, (7.58)

χB
R,zzz = lR

⎧
⎪⎨

⎪⎩
ζ

Q1β
2

(
k

β
T (ω1) × k

β
T (ω2)

)

y

kx(ω2)
+ ζ

Q2β
1

(
k

β
T (ω2) × k

β
T (ω1)

)

y

kx(ω1)

+ζ
Q1β
3

(
k

β
T (ω1) × k

β
R(�)

)

y

kx(�)
+ζ

Q2β
3

(
k

β
T (ω2) × k

β
R(�)

)

y

kx(�)

⎫
⎪⎬

⎪⎭
f β

z (�)f β
z (ω1)f

β
z (ω2),

(7.59)

χB
T ,zzz = lT

⎧
⎪⎨

⎪⎩
ζ

Q1β
2

(
k

β
T (ω1) × k

β
T (ω2)

)

y

kx(ω2)
+ ζ

Q2β
1

(
k

β
T (ω2) × k

β
T (ω1)

)

y

kx(ω1)

+ ζ
Q1β
3

(
k
β
T ,z(ω1) + εβ(�)

εα(�)

kα
R,z(�)kx(ω1)

kx(�)

)

+ζ
Q2β
3

(
k
β
T ,z(ω2) + εβ(�)

εα(�)

kα
R,z(�)kx(ω2)

kx(�)

)}
f β

z (�)f β
z (ω1)f

β
z (ω2),

(7.60)

where G = T or R, and we used fx(ωf ) = fy(ωf ) to derive Eq. (7.58).
The difference in the definitions for the bulk contribution, χB0

G and χB
G, are

attributed to different treatment of geometric factors related to the light wavevectors,
ki

G(ωf ). The latter definition χB
G allows us to use the apparently same expressions

for the effective susceptibilities in Eqs. (7.15), (7.16), (7.17), (7.18).

7.2.6 Summary of Derivation

To summarize the SSP, SPS, PSS, and PPP measurements of C∞v systems, the rele-
vant effective susceptibilities incorporating the dipole and quadrupole contributions
are given in the following forms,
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χ
(2)
eff,G,SSP(�,ω1, ω2) = LG,y(�) LI,y(ω1) LI,z(ω2) sin θα

I (ω2) χ
(2)
q G,yyz

(�,ω1, ω2),

(7.61)

χ
(2)
eff,G,SPS(�,ω1, ω2) = LG,y(�) LI,z(ω1) LI,y(ω2) sin θα

I (ω1) χ
(2)
q G,yzy

(�,ω1, ω2),

(7.62)

χ
(2)
eff,G,PSS(�,ω1, ω2) = LG,z(�) LI,y(ω1) LI,y(ω2) sin θi

G(�) χ
(2)
q G,zyy

(�,ω1, ω2),

(7.63)

χ
(2)
eff,G,PPP(�,ω1, ω2) =

− LG,x(�) LI,x(ω1) LI,z(ω2) cos θi
G(�) cos θα

I (ω1) sin θα
I (ω2) χ

(2)
q G,xxz

(�,ω1, ω2)

− LG,x(�) LI,z(ω1) LI,x(ω2) cos θi
G(�) sin θα

I (ω1) cos θα
I (ω2) χ

(2)
q G,xzx

(�,ω1, ω2)

+ LG,z(�) LI,x(ω1) LI,x(ω2) sin θi
G(�) cos θα

I (ω1) cos θα
I (ω2) χ

(2)
q G,zxx

(�,ω1, ω2)

+ LG,z(�) LI,z(ω1) LI,z(ω2) sin θi
G(�) sin θα

I (ω1) sin θα
I (ω2) χ

(2)
q G,zzz

(�,ω1, ω2).

(7.64)

Equations (7.61), (7.62), (7.63), (7.64) are straightforward extension of Eqs. (7.15),
(7.16), (7.17), (7.18) by substituting χ ID with χ

(2)
qG,

χ
(2)
q G,pqr (�, ω1, ω2) =

χ ID
pqr (�,ω1, ω2) + χ IQ

pqr (�,ω1, ω2) + χ IQB
pqr (�,ω1, ω2) + χB

G,pqr (�,ω1, ω2).

(7.50)

The four constituent terms of Eq. (7.50) are given by

χ ID
pqr (�,ω1, ω2) =

∫ ∞

zb

dz χD0
pqr (z,�,ω1, ω2)fp(z,�)fq(z, ω1)fr(z, ω2),

(7.12)

χ IQ
pqr (�,ω1, ω2) =

∫ ∞

zb

dz

{
χD1

pqrz(z,�,ω1, ω2)fp(z,�)
∂fq(z, ω1)

∂z
fr(z, ω2)

+ χD2
pqrz(z,�,ω1, ω2)fp(z,�)fq(z, ω1)

∂fr(z, ω2)

∂z

+χQ
pqrz(z,�,ω1, ω2)

∂fp(z,�)

∂z
fq(z, ω1)fr(z, ω2)

}
, (7.29)

χ IQB
pqr (�,ω1, ω2) = χQ,β

pqrz(�, ω1, ω2)f
β
p (�)f β

q (ω1)f
β
r (ω2), (7.30)

and χB
G,(�,ω1, ω2) is given in Eqs. (7.54), (7.55), (7.56), (7.57), (7.58), (7.59),

(7.60).
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Fig. 7.4 Scheme of
derivation for the dipole and
quadrupole nonlinear
susceptibility terms from
(χD0,χD1,χD2,χQ) in
Eq. (7.20) to
(χ ID,χ IQ,χ IQB,χB) in
Eq. (7.50)

dipole

quadrupole

Q

D2

D1

D0

B

IQB

IQ

ID
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(7.29)

(7.30)

(7.54)-(7.60)

These four constituent terms include various tensor elements of χD0, χD1, χD2,
and χQ. The nonvanishing and equivalent tensor elements of χD0, χD1, χD2, χQ

for a system of C∞v symmetry are summarized as follows [4].

χD0
pqr : (xxz) = (yyz), (xzx) = (yzy), (zxx) = (zyy), (zzz),

χD1
pqrs, χD2

pqrs, χQ
pqrs :

(zzzz), (yzyz) = (xzxz), (yyzz) = (xxzz), (zyyz) = (zxxz),

and the χQ elements in isotropic bulk β are given on the basis of Eqs. (7.38)
and (7.39) by

χQ,β
pqrs : (xzxz) = (yzyz) = χ

Q,β
1 ,

(xxzz) = (yyzz) = χ
Q,β
2 ,

(zxxz) = (zyyz) = χ
Q,β
3 ,

(zzzz) = χ
Q,β
1 + χ

Q,β
2 + χ

Q,β
3 .

Finally, the extended effective susceptibility beyond the dipole approximation is
schematically summarized in Fig. 7.4. The second-order nonlinear optical response
to the electric field and its gradient is represented in Eq. (7.20), which includes χD0,
χD1, χD2 and χQ. Those second-order response including both the interface and
bulk contributions are represented with the extended susceptibility,

χ
(2)
qG = χ ID + χ IQ + χ IQB + χB

G. (7.50)

The first term χ ID originates from the response of electric dipole, while the last three
terms χ IQ + χ IQB + χB

G stem from the quadrupole.

The effective susceptibility χ
(2)
eff in Eqs. (3.49), (3.50), (3.51), (3.52) in Chap. 2

is accordingly extended to Eqs. (7.61), (7.62), (7.63), (7.64) in the present chapter.
By replacing the original χ (2) (=χ ID) with χ

(2)
qG in Eq. (7.50), the apparently same

formula for the effective susceptibility is applied to describe the SFG signal.
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7.3 Microscopic Formulas of Quadrupolar Susceptibilities

We have discussed in the preceding Sect. 7.2 that the second-order response includes
the term of dipolar origin, χD0, as well as those of quadrupolar origin, χD1, χD2,
χQ. Microscopic formulas for the former χD0 have been given in Chap. 3 on the
basis of quantum mechanical perturbation theory. In this section we provide the
formulas for the latter, quadrupolar susceptibilities, χD1, χD2, and χQ [14]. These
quantities are formulated in two ways, on the basis of the energy representation and
the time-dependent representation, by extending the discussion in Chap. 3.

7.3.1 Perturbation Expressions

The quadrupolar susceptibilities, χD1, χD2 and χQ are represented with molecular
properties in the same way as the dipolar susceptibility in Eq. (7.7),

χD1(z,�,ω1, ω2) =
molecules∑

l

αD1
l (�, ω1, ω2)δ(z − zl), (7.65)

χD2(z,�,ω1, ω2) =
molecules∑

l

αD2
l (�, ω1, ω2)δ(z − zi), (7.66)

χQ(z,�,ω1, ω2) =
molecules∑

l

α
Q
l (�, ω1, ω2)δ(z − zi), (7.67)

where αD1
l (�, ω1, ω2), αD2

l (�, ω1, ω2), and α
Q
l (�, ω1, ω2) are the quadrupolar

hyperpolarizabilities of the l-th molecule represented in the space-fixed coordinates.
In the following of this section we focus on the properties of this molecule, and omit
the subscript l from the notations.

Extension of perturbation Hamiltonian These properties are associated to the
induced electric quadrupole and magnetic dipole in addition to the electric dipole.
Therefore, we incorporate these responses in unified formulas. The sum frequency
components of the induced dipole μ(�) and quadrupole q(�) of a molecule are
given by

μp(�) =
x−z∑

q,r

αD0
pqr (�,ω1, ω2)Eq(ω1)Er(ω2)

+
∑

q,r,s

αD1
pqrs(�, ω1, ω2)(∇E(ω1))sqEr(ω2)
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+
∑

q,r,s

αD2
pqrs(�, ω1, ω2)Eq(ω1)(∇E(ω2))sr (7.68)

+ · · ·
qsp(�) =

∑

q,r

αQ
pqrs(�, ω1, ω2)Eq(ω2)Er(ω2) (7.69)

+ · · ·

where Ep(ω) is the electric field at frequency ω, and

(∇E(ω))pq = ∂pEq(ω) = ∂Eq(ω)/∂p

is the electric field gradient. μp(�) is the dipole moment at the frequency �, and
qsp(�) is the generalized quadrupole moment that incorporates both the electric
quadrupole and the magnetic dipole. It is defined as follows:

qpq(ω) = qE
pq(ω) + c

iω

x−z∑

r

μM
r (ω)εpqr , (7.70)

where qE
pq(ω) is the electric quadrupole moment defined in the Cartesian coordi-

nates. It is given by

qE
pq(ω) = 1

2π

∫
dt exp(iωt)

{
1

2

∫
dr pq ρ(r, t)

}
, (7.71)

where ρ(r, t) is the charge density at the position r and time t , and p, q denote
x ∼ z coordinates of r . μM

r (ω) is the magnetic dipole moment, and εpqr is
the Levi-Civita permutation symbol (see Appendix A.2). The first term of the
electric quadrupole in Eq. (7.70) is symmetric with respect to the exchange of
p and q, while the second term of the magnetic dipole is antisymmetric. In the
following discussion, the quadrupole moment includes both the electric quadrupole
and magnetic dipole unless otherwise noted.

The quadrupolar hyperpolarizabilities αD1, αD2, αQ, are derived by the quantum
mechanical perturbation theory with extending the perturbation Hamiltonian. The
perturbation Hamiltonian for the light-matter interactions is

Ĥ ′ = Ĥ int(ω1) + Ĥ int(ω2) (7.72)

including two incident frequencies ωf (f = 1, 2). Each component of the frequency
ωf involves the electric field Ep(ωf ), electric field gradient (∇E(ωf ))pq and
magnetic field Br(ωf ) as

Ĥ int(ωf ) = −
∑

p

μ̂pEp(ωf )−
∑

p,q

q̂E
pq(∇E(ωf ))pq −

∑

r

μ̂M
r Br(ωf ). (7.73)
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The first term of Eq. (7.73) denotes the conventional dipole interaction, already
treated in Eq. (3.18) of Chap. 3. The second and third terms of Eq. (7.73) stand for
the interactions with the electric field gradient and the magnetic field, respectively.
Those extra terms give rise to the extended second-order response beyond the dipole
approximation. Equation (7.73) is expressed by lumping the second and third terms
to be

Ĥ int(ωf ) = −
∑

p

μ̂pEp(ωf ) −
∑

p,q

q̂pq(ωf )(∇E(ωf ))pq (7.74)

using the generalized quadrupole moment operator,

q̂pq(ω) = q̂E
pq + c

iω

x−z∑

r

μ̂M
r εpqr . (7.75)

The equivalence of Eqs. (7.73) and (7.74) is shown by

−
∑

p,q

q̂pq(ωf )(∇E(ωf ))pq = −
∑

p,q

(
q̂E
pq + c

iω

∑

r

μ̂M
r εpqr

)
∂pEq(ωf )

= −
∑

p,q

q̂E
pq∂pEq(ωf ) −

∑

r

μ̂M
r Br(ωf ),

where the following Maxwell equation is invoked,

(∇ × E(ωf ))r =
∑

p,q

εrpq∂pEq(ωf ) = −1

c

∂Br(ωf )

∂t
= iωf

c
Br(ωf ).

Sum-over-state expressions Then we derive the quadrupolar hyperpolarizabilities
by using the perturbation Hamiltonian in Eq. (7.74) and the second-order pertur-
bation theory [14, 15]. This derivation is quite in parallel to that in Sect. 3.2. In
the previous section, we have employed the perturbation Hamiltonian of electric
dipole interaction, i.e. Ĥ int(ωf ) = −∑p μ̂pEp(ωf ), and derived the second-order

hyperpolarizability αD0,

αD0
pqr (�,ω1, ω2) = 1

h̄2

states∑

g,m,n

(ρ
(0)
g − ρ

(0)
m )

[ 〈g|μp|n〉〈n|μr |m〉〈m|μq |g〉
(ω1 − ωmg + img)(� − ωng + i�ng)

− 〈g|μr |n〉〈n|μp|m〉〈m|μq |g〉
(ω1 − ωmg + i�mg)(� − ωmn + i�mn)

+ 〈g|μp|n〉〈n|μq |m〉〈m|μr |g〉
(ω2 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|μq |n〉〈n|μp|m〉〈m|μr |g〉
(ω2 − ωmg + i�mg)(� − ωmn + i�mn)

]
,

(7.76)
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where g,m, n denote eigenstates of the molecule, ρ
(0)
g is a diagonal element of

the density matrix at thermal equilibrium, and �mn = �nm is the damping rate.
In this equation and hereafter, the symbol ˆ for an operator is omitted in a matrix
element. This Eq. (7.76) describes the second-order molecular hyperpolarizability,
and is equivalent to Eq. (3.31) in Chap. 3.

Equation (7.76) can be decomposed into the vibrationally resonant (αD0,res) and
non-resonant (αD0,nonres) terms, αD0 = αD0,res + αD0,nonres, where

α
D0,res
pqr (�, ω1, ω2) = 1

h̄2

states∑

g,m,n

(ρ
(0)
g − ρ

(0)
m )

[ 〈g|μp|n〉〈n|μq |m〉〈m|μr |g〉
(ω2 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|μq |n〉〈n|μp|m〉〈m|μr |g〉
(ω2 − ωmg + i�mg)(� − ωmn + i�mn)

]
,

(7.77)

α
D0,nonres
pqr (�,ω1, ω2) = 1

h̄2

states∑

g,m,n

(ρ
(0)
g − ρ

(0)
m )

[ 〈g|μp|n〉〈n|μr |m〉〈m|μq |g〉
(ω1 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|μr |n〉〈n|μp|m〉〈m|μq |g〉
(ω1 − ωmg + i�mg)(� − ωmn + i�mn)

]
.

(7.78)

The former includes (ω2 − ωmg + i�mg) in the denominator, indicating possible
resonance with the infrared frequency ω2, whereas the latter does not.

Then we employ the extended perturbation Hamiltonian including electric
quadrupole and magnetic dipole interactions in Eq. (7.74) and carry out the per-
turbation expansion up to the second order after Sect. 3.2. Since the derivation is in
parallel with that in Sect. 3.2, we omit here to repeat the derivation procedure. The
outcome of the second-order perturbation gives rise to additional hyperpolarizability
terms, αD1, αD2 and αQ, due to the extra term −q̂ : ∇E of Eq. (7.74). The sum-
over-state expressions of these terms are as follows.

αD1
pqrs(�,ω1, ω2) = 1

h̄2

states∑

g,m,n

(ρ
(0)
g − ρ

(0)
m )

[ 〈g|μp|n〉〈n|μr |m〉〈m|qsq(ω1)|g〉
(ω1 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|μr |n〉〈n|μp|m〉〈m|qsq(ω1)|g〉
(ω1 − ωmg + i�mg)(� − ωmn + i�mn)

+ 〈g|μp|n〉〈n|qsq(ω1)|m〉〈m|μr |g〉
(ω2 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|qsq(ω1)|n〉〈n|μp|m〉〈m|μr |g〉
(ω2 − ωmg + i�mg)(� − ωmn + i�mn)

]
,

(7.79)
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αD2
pqrs(�,ω1, ω2) = 1

h̄2

states∑

g,m,n

(ρ
(0)
g − ρ

(0)
m )

[ 〈g|μp|n〉〈n|qsr (ω2)|m〉〈m|μq |g〉
(ω1 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|qsr (ω2)|n〉〈n|μp|m〉〈m|μq |g〉
(ω1 − ωmg + i�mg)(� − ωmn + i�mn)

+ 〈g|μp|n〉〈n|μq |m〉〈m|qsr (ω2)|g〉
(ω2 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|μq |n〉〈n|μp|m〉〈m|qsr (ω2)|g〉
(ω2 − ωmg + i�mg)(� − ωmn + i�mn)

]
,

(7.80)

α
Q
pqrs(�,ω1, ω2) = 1

h̄2

states∑

g,m,n

(ρ
(0)
g − ρ

(0)
m )

[ 〈g|qsp(�)|n〉〈n|μr |m〉〈m|μq |g〉
(ω1 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|μr |n〉〈n|qsp(�)|m〉〈m|μq |g〉
(ω1 − ωmg + i�mg)(� − ωmn + i�mn)

+ 〈g|qsp(�)|n〉〈n|μq |m〉〈m|μr |g〉
(ω2 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|μq |n〉〈n|qsp(�)|m〉〈m|μr |g〉
(ω2 − ωmg + i�mg)(� − ωmn + i�mn)

]
.

(7.81)

We notice that Eqs. (7.76) and (7.79), (7.80), (7.81) have analogous forms except
for the operators μ and q in the matrix elements.

In these equations, the first two terms in the square bracket which include (ω1 −
ωmg + i�mg) in the denominator are vibrationally non-resonant terms, while the
latter two terms including (ω2 − ωmg + i�mg) are vibrationally resonant terms. For
example, αD1 in Eq. (7.79) is decomposed as αD1 = αD1,res + αD1,nonres, where

α
D1,res
pqrs (�,ω1, ω2) = 1

h̄2

states∑

g,m,n

(ρ
(0)
g − ρ

(0)
m )

[
+ 〈g|μp|n〉〈n|qsq(ω1)|m〉〈m|μr |g〉

(ω2 − ωmg + i�mg)(� − ωng + i�ng)
− 〈g|qsq(ω1)|n〉〈n|μp|m〉〈m|μr |g〉

(ω2 − ωmg + i�mg)(� − ωmn + i�mn)

]
,

(7.82)

α
D1,nonres
pqrs (�,ω1, ω2) = 1

h̄2

states∑

g,m,n

(ρ
(0)
g − ρ

(0)
m )

[ 〈g|μp|n〉〈n|μr |m〉〈m|qsq(ω1)|g〉
(ω1 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|μr |n〉〈n|μp|m〉〈m|qsq(ω1)|g〉
(ω1 − ωmg + i�mg)(� − ωmn + i�mn)

]
.

(7.83)

αD2 and αQ in Eqs. (7.80) and (7.81) are decomposed into the vibrationally resonant
and nonresonant terms in the analogous way.

Expressions for whole system Finally, we note that Eqs. (7.76), (7.77), (7.78),
(7.79), (7.80), (7.81), (7.82), (7.83) include the damping parameters �, since these
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formulas are derived with the phenomenological Liouville equation including �

(see Chap. 3). Accordingly, the states g,m, n in the above equations could refer to
a partial system embedded in bath. Equivalent expressions are possible in principle
when we define these states g,m, n for the whole system (partial system + bath).
Then the corresponding equations do not include the damping parameters;

αD0
pqr (�,ω1, ω2) = 1

h̄2

whole
states∑

g,m,n

(ρ(0)
g − ρ(0)

m )

[ 〈g|μp|n〉〈n|μr |m〉〈m|μq |g〉
(ω1 − ωmg)(� − ωng)

− 〈g|μr |n〉〈n|μp|m〉〈m|μq |g〉
(ω1 − ωmg)(� − ωmn)

+〈g|μp|n〉〈n|μq |m〉〈m|μr |g〉
(ω2 − ωmg)(� − ωng)

− 〈g|μq |n〉〈n|μp|m〉〈m|μr |g〉
(ω2 − ωmg)(� − ωmn)

]
, (7.84)

αD1
pqrs(�, ω1, ω2) = 1

h̄2

whole
states∑

g,m,n

(ρ(0)
g − ρ(0)

m )

[ 〈g|μp|n〉〈n|μr |m〉〈m|qsq(ω1)|g〉
(ω1 − ωmg)(� − ωng)

− 〈g|μr |n〉〈n|μp|m〉〈m|qsq(ω1)|g〉
(ω1 − ωmg)(� − ωmn)

+〈g|μp|n〉〈n|qsq(ω1)|m〉〈m|μr |g〉
(ω2 − ωmg)(� − ωng)

− 〈g|qsq(ω1)|n〉〈n|μp|m〉〈m|μr |g〉
(ω2 − ωmg)(� − ωmn)

]
,

(7.85)

αD2
pqrs(�, ω1, ω2) = 1

h̄2

whole
states∑

g,m,n

(ρ(0)
g − ρ(0)

m )

[ 〈g|μp|n〉〈n|qsr (ω2)|m〉〈m|μq |g〉
(ω1 − ωmg)(� − ωng)

− 〈g|qsr (ω2)|n〉〈n|μp|m〉〈m|μq |g〉
(ω1 − ωmg)(� − ωmn)

+〈g|μp|n〉〈n|μq |m〉〈m|qsr (ω2)|g〉
(ω2 − ωmg)(� − ωng)

− 〈g|μq |n〉〈n|μp|m〉〈m|qsr (ω2)|g〉
(ω2 − ωmg)(� − ωmn)

]
,

(7.86)

αQ
pqrs(�, ω1, ω2) = 1

h̄2

whole
states∑

g,m,n

(ρ(0)
g − ρ(0)

m )
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[ 〈g|qsp(�)|n〉〈n|μr |m〉〈m|μq |g〉
(ω1 − ωmg)(� − ωng)

− 〈g|μr |n〉〈n|qsp(�)|m〉〈m|μq |g〉
(ω1 − ωmg)(� − ωmn)

+〈g|qsp(�)|n〉〈n|μq |m〉〈m|μr |g〉
(ω2 − ωmg)(� − ωng)

− 〈g|μq |n〉〈n|qsp(�)|m〉〈m|μr |g〉
(ω2 − ωmg)(� − ωmn)

]
,

(7.87)

The above alternative expressions are based on the sum over eigenstates for the
whole system, and will be utilized in Sect. 7.4.

7.3.2 Time-Dependent Expressions

Equations (7.79), (7.80), (7.81) for αD1, αD2 and αQ can be converted to the equiv-
alent formulas based on the time correlation functions. The following derivation is
analogous to that in Sect. 4.3, where χ (2) (or αD0) is given with the time correlation
function of the polarizability α and the dipole moment μ.

Before extending the time correlation formula, we define the induced dipole and
quadrupole of a system (a molecule or the interface system) in response to an electric
field at a frequency ω as

μp(ω) =
x−z∑

q

αpq(ω)Eq(ω) +
x−z∑

q,r

β ′
pqr (ω)(∇E(ω))qr + · · · , (7.88)

qpq(ω) =
x−z∑

r

βpqr (ω)Er(ω) + · · · , (7.89)

where β and β ′ denote quadrupolar polarizability of the system (a molecule or the
interface system). β and β ′ are related to

βpqr(ω) = β ′
rpq(−ω)∗ = β ′

rpq(ω). (7.90)

α, β and β ′ in Eqs. (7.88) and (7.89) are represented with the perturbation
Hamiltonian Ĥ int(ω) in Eq. (7.74) and the first-order perturbation theory of quantum
mechanics. They are given on the basis of eigenstates as

αpq(ω) = − 1

h̄

states∑

g,m

(ρ(0)
g − ρ(0)

m )

〈
g|μp|m〉 〈m|μq |g〉
ω − ωmg + i�mg

= 1

h̄

states∑

g,m

ρ(0)
g

[
−
〈
g|μp|m〉 〈m|μq |g〉
ω − ωmg + i�mg

+
〈
g|μq |m〉 〈m|μp|g〉
ω + ωmg + i�mg

]
, (7.91)
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βpqr (ω) = − 1

h̄

states∑

g,m

(ρ(0)
g − ρ(0)

m )

〈
g|qpq(ω)|m〉 〈m|μr |g〉

ω − ωmg + i�mg

= 1

h̄

states∑

g,m

ρ(0)
g

[
−
〈
g|qpq(ω)|m〉 〈m|μr |g〉

ω − ωmg + i�mg

+ 〈g|μr |m〉 〈m|qpq(ω)|g〉
ω + ωmg + i�mg

]
,

(7.92)

β ′
pqr (ω) = − 1

h̄

states∑

g,m

(ρ(0)
g − ρ(0)

m )

〈
g|μp|m〉 〈m|qqr(ω)|g〉

ω − ωmg + i�mg

= 1

h̄

states∑

g,m

ρ(0)
g

[
−
〈
g|μp|m〉 〈m|qqr(ω)|g〉

ω − ωmg + i�mg

+
〈
g|qqr(ω)|m〉 〈m|μp|g〉

ω + ωmg + i�mg

]
.

(7.93)

Equation (7.91) is equivalent to Eqs. (3.25) and (3.26) in Chap. 3. αpq(ω) in
Eq. (7.91) is known to be a thermal average of the Raman tensor (see Appendix A.3),

αpq(ω) = Tr[ρ α(ω)],

where ρ is the density matrix and α(ω) denotes the Raman tensor. Its matrix element
is represented by

〈g|αpq(ω)|n〉 = 1

h̄

states∑

m

[
−
〈
g|μp|m〉 〈m|μq |n〉
ω − ωmg + i�mg

+
〈
g|μq |m〉 〈m|μp|n〉
ω + ωmn + i�mn

]
, (7.94)

which is equivalent to Eq. (3.37). We can define the quadrupolar Raman tensors in
an analogous manner by

〈g|βpqr(ω)|n〉 = 1

h̄

states∑

m

[
−
〈
g|qpq(ω)|m〉 〈m|μr |n〉

ω − ωmg + i�mg

+ 〈g|μr |m〉 〈m|qpq(ω)|n〉
ω + ωmn + i�mn

]
,

(7.95)

〈g|β ′
pqr (ω)|n〉 = 1

h̄

states∑

m

[
−
〈
g|μp|m〉 〈m|qqr(ω)|n〉

ω − ωmg + i�mg

+
〈
g|qqr(ω)|m〉 〈m|μp|n〉

ω + ωmn + i�mn

]
.

(7.96)

Using the extended Raman tensors, the vibrationally resonant terms of the dipolar
and quadrupolar hyperpolarizabilities are represented as follows.

α
D0,res
pqr (�,ω1, ω2) = 1

h̄2

states∑

g,m,n

(ρ
(0)
g − ρ

(0)
m )
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[ 〈g|μp|n〉〈n|μq |m〉〈m|μr |g〉
(ω2 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|μq |n〉〈n|μp|m〉〈m|μr |g〉
(ω2 − ωmg + i�mg)(� − ωmn + i�mn)

]

(7.77)

= − 1

h̄

states∑

g,m

(ρ
(0)
g − ρ

(0)
m )

〈g|αpq(�)|m〉〈m|μr |g〉
ω2 − ωmg + i�mg

, (7.97)

α
D1,res
pqrs (�,ω1, ω2) = 1

h̄2

states∑

g,m,n

(ρ
(0)
g − ρ

(0)
m )

[
+ 〈g|μp|n〉〈n|qsq(ω1)|m〉〈m|μr |g〉

(ω2 − ωmg + i�mg)(� − ωng + i�ng)
− 〈g|qsq(ω1)|n〉〈n|μp|m〉〈m|μr |g〉

(ω2 − ωmg + i�mg)(� − ωmn + i�mn)

]

(7.82)

= − 1

h̄

states∑

g,m

(ρ
(0)
g − ρ

(0)
m )

〈g|β ′
psq(ω1)|m〉〈m|μr |g〉

ω2 − ωmg + i�mg
, (7.98)

α
D2,res
pqrs (�,ω1, ω2) = 1

h̄2

states∑

g,m,n

(ρ
(0)
g − ρ

(0)
m )

[ 〈g|μp|n〉〈n|μq |m〉〈m|qsr (ω2)|g〉
(ω2 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|μq |n〉〈n|μp|m〉〈m|qsr (ω2)|g〉
(ω2 − ωmg + i�mg)(� − ωmn + i�mn)

]

= − 1

h̄

states∑

g,m

(ρ
(0)
g − ρ

(0)
m )

〈g|αpq(�)|m〉〈m|qsr (ω2)|g〉
ω2 − ωmg + i�mg

, (7.99)

α
Q,res
pqrs (�, ω1, ω2) = 1

h̄2

states∑

g,m,n

(ρ
(0)
g − ρ

(0)
m )

[ 〈g|qsp(�)|n〉〈n|μq |m〉〈m|μr |g〉
(ω2 − ωmg + i�mg)(� − ωng + i�ng)

− 〈g|μq |n〉〈n|qsp(�)|m〉〈m|μr |g〉
(ω2 − ωmg + i�mg)(� − ωmn + i�mn)

]

= − 1

h̄

states∑

g,m

(ρ
(0)
g − ρ

(0)
m )

〈g|βpsq(�)|m〉〈m|μr |g〉
ω2 − ωmg + i�mg

. (7.100)

These formulas of Eqs. (7.97), (7.98), (7.99), (7.100) are converted to the time
correlation ones, via the same procedure as described in Chap. 3. After the derivation
of Eq. (4.17), the equivalent formulas are
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αD0,res
pqr (�,ω1, ω2) = i

h̄

∫ ∞

0
dt 〈αpq(�, t)μr − μrαpq(�, t)〉 exp(iω2t),

(7.101)

αD1,res
pqrs (�, ω1, ω2) = i

h̄

∫ ∞

0
dt 〈β ′

psq(ω1, t)μr − μrβ ′
psq(ω1, t)〉 exp(iω2t),

(7.102)

αD2,res
pqrs (�, ω1, ω2) = i

h̄

∫ ∞

0
dt 〈αpq(�, t)qsr (ω2) − qsr (ω2)αpq(�, t)〉 exp(iω2t),

(7.103)

αQ,res
pqrs (�, ω1, ω2) = i

h̄

∫ ∞

0
dt 〈βspq(�, t)μr − μrβspq(�, t)〉 exp(iω2t).

(7.104)

The derivation of Eq. (7.101) has been described in detail in Sect. 4.3.1, and the
other three equations are derived in the same way.

So far we have treated molecular properties, αD0, αD1, αD2, and αQ. The same
discussion should hold for the interface system if the perturbation Hamiltonian Ĥ int

is defined for the system. The dipolar and quadrupolar nonlinear susceptibilities
χD0, χD1, χD2, and χQ are analogously represented with the time correlation
formulas,

χD0,res
pqr (�,ω1, ω2) = i

h̄

∫ ∞

0
dt 〈αpq(�, t)μr − μrαpq(�, t)〉 exp(iω2t),

(7.105)

χD1,res
pqrs (�, ω1, ω2) = i

h̄

∫ ∞

0
dt 〈β ′

psq(ω1, t)μr − μrβ ′
psq(ω1, t)〉 exp(iω2t),

(7.106)

χD2,res
pqrs (�, ω1, ω2) = i

h̄

∫ ∞

0
dt 〈αpq(�, t)qsr (ω2) − qsr (ω2)αpq(�, t)〉 exp(iω2t),

(7.107)

χQ,res
pqrs (�, ω1, ω2) = i

h̄

∫ ∞

0
dt 〈βspq(�, t)μr − μrβspq(�, t)〉 exp(iω2t).

(7.108)

Note that μ, α, β and β ′ in Eqs. (7.105), (7.106), (7.107), (7.108) are defined for the
interface system.

The classical forms of the time correlation functions are derived after Sect. 4.3.2.
When we suppose electronically nonresonant conditions and treat the vibrational
resonance, the classical time correlation formulas are given as
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χD0,res
pqr (�,ω1, ω2) = iω2

kBT

∫ ∞

0
dt 〈αpq(t)μr〉cl exp(iω2t), (7.109)

χD1,res
pqrs (�, ω1, ω2) = iω2

kBT

∫ ∞

0
dt 〈β ′

psq(t)μr〉cl exp(iω2t), (7.110)

χD2,res
pqrs (�, ω1, ω2) = iω2

kBT

∫ ∞

0
dt 〈αpq(t)qsr (ω2)〉cl exp(iω2t), (7.111)

χQ,res
pqrs (�, ω1, ω2) = iω2

kBT

∫ ∞

0
dt 〈βspq(t)μr 〉cl exp(iω2t), (7.112)

where the subscript cl of 〈 〉cl emphasizes the classical time correlation function,
and the frequency dependence of α, β and β ′ are omitted in the electronically non-
resonant conditions. The frequency dependence of qsr (ω2) in Eq. (7.111) is still
necessary to denote the general quadrupole including electronic quadrupole and
magnetic dipole in Eq. (7.70).

7.4 Invariance to Molecular Origin

Here we argue a fundamental issue pertinent to the quadrupole. When we treat
the quadrupole besides the dipole, we should pay attention to the origin of these
moments. In the multipole expansion in general, all the moments except for the
lowest-order nonzero one are dependent on the location of the origin. This problem
is relevant to the microscopic expressions of dipolar and quadrupolar susceptibilities
in Eqs. (7.7) and (7.65), (7.66), (7.67), χD0(z,�,ω1, ω2) and χF(z,�,ω1, ω2)

(F = D1, D2, Q), which include the location of l-th molecule, zl , in their definition.
The location of zl could be assigned at the molecular center of mass, though its
definition may not be unique. The ambiguity in the definition of molecular origin
was first pointed out by Byrnes et al. [5] In this subsection we argue that the effective
nonlinear susceptibility, χ(2)

eff,G, is well defined regardless of the definition of zl . This
argument is necessary to construct the present SFG theory on a physically solid
ground.

Let us change the definition of molecular origin of l-th molecule from zl to
zl + �zl in the space-fixed coordinate. This displacement �zl of l-th molecule
may be arbitrary for each molecule. Consequently, χ ID(�,ω1, ω2) in Eq. (7.12) is
transformed into χ ID′

(�,ω1, ω2) as follows,

χ ID′
pqr (�,ω1, ω2)

=
∫ ∞
zb

dz

⎛

⎝
molecules∑

l

αD0
l,pqr

(�, ω1, ω2)δ(z − (zl + �zl))

⎞

⎠ fp(z, �)fq(z, ω1)fr (z, ω2)

(7.113)
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= χ ID
pqr (�,ω1, ω2)

+
⎛

⎝
molecules∑

l

�zlα
D0
l,pqr

(�, ω1, ω2)δ(zb − zl)

⎞

⎠ f
β
p (�)f

β
q (ω1)f

β
r (ω2)

+
∫ ∞
zb

dz

⎛

⎝
molecules∑

l

�zlα
D0
l,pqr

(�, ω1, ω2)δ(z − zl)

⎞

⎠ ∂

∂z

{
fp(z, �)fq(z, ω1)fr (z, ω2)

}

+ · · · , (7.114)

where the delta function in Eq. (7.113) is expanded in the Taylor series,

δ(z − (zl + �zl)) = δ(z − zl) −
(

dδ(z)

dz

)

z=zl

�zl + · · · ,

and we neglect the second and higher order derivatives in Eq. (7.114).4 We note that
the dipolar hyperpolarizability αD0

l,pqr (�, ω1, ω2) in Eq. (7.113) is invariant under
the change of the molecular origin, since it is the lower-order nonzero term. (The
total charge is unchanged by imposing the electric fields and thus its derivative
is zero.)

Next we consider the transformation of the quadrupolar terms, χ IQ and χ IQB.
Unlike the dipolar term of αD0

l , the quadrupolar hyperpolarizabilities αF
l (F=D1,

D2, Q) vary with the molecular origin. When the origin of l-th molecule shifts by
�r , then the electric quadrupole operator q̂E

pq and the magnetic dipole operator μ̂M
r

are transformed into q̂E
pq

′
and μ̂M

r
′
, respectively, as follows:

q̂E
pq

′ = q̂E
pq − 1

2
μ̂p�rq − 1

2
μ̂q�rp, (7.115)

μ̂M
r

′ = μ̂M
r − 1

2c

x−z∑

p,q

εrpq�rpĵq, (7.116)

where ĵq is the electric current operator. Therefore, the generalized quadrupole
operator q̂pq(ωf ) in Eq. (7.75) is transformed into q̂pq

′(ωf ) as

q̂pq
′(ωf ) = q̂E

pq

′
(ωf ) + c

iωf

x−z∑

r

μ̂M
r

′
(ωf )εpqr

= q̂pq(ωf ) − 1

2
μ̂p�rq − 1

2
μ̂q�rp − 1

2iωf

(�rpĵq − �rqĵp).

(7.117)

4We could assume that �zl is infinitesimally small without losing generality, since an arbitrary
finite displacement is expressed by assembly of infinitesimally small ones.
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By replacing q̂(ωf ) in Eqs. (7.79), (7.80), (7.81) with the shifted operator q̂ ′(ωf ),
we obtain the transformed quadrupolar hyperpolarizabilities, αF ′

l . During the
derivation of αF ′

l , the matrix element of the current operator is represented using

the relation ĵ = dμ̂/dt as

〈
m|ĵ |n

〉
=
〈
m

∣∣∣∣
dμ̂

dt

∣∣∣∣ n
〉

= i

h̄
(Em − En)

〈
m|μ̂|n〉 = iωmn

〈
m|μ̂|n〉 ,

where the states m, n denote eigenstates of the whole system. Therefore, the matrix
element of q̂pq

′(ωf ) in Eq. (7.117) becomes

〈m|q̂pq
′(ωf )|n〉 = 〈m|q̂pq(ωf )|n〉

− 1

2
〈m|μ̂p|n〉�rq − 1

2
〈m|μ̂q |n〉�rp − ωmn

2ωf

〈m|μ̂q |n〉�rp + ωmn

2ωf

〈m|μ̂p|n〉�rq.

(7.118)

By inserting this transformed matrix element of Eq. (7.118) into Eqs. (7.85), (7.86),
(7.87), we find that the second and fifth terms in the right-hand-side of Eq. (7.118)
cancel each other whereas the third and fourth terms become equivalent. Therefore,
the transformed quadrupolar hyperpolarizabilities αF′

l eventually take the following
form,

αF
l,pqrs

′
(�,ω1, ω2) = αF

l,pqrs(�, ω1, ω2) − αD0
l,pqr (�, ω1, ω2)�rl,s (7.119)

(F = D1, D2, Q)

[Problem 7.3] Derive Eq. (7.119) for F = D1. Use the αD1 expression in Eq. (7.85)
and Eq. (7.118).

Consequently, χF
pqrz(z,�,ω1, ω2) in Eq. (7.65), (7.66), (7.67) is trans-

formed into

χF
pqrz

′
(z,�,ω1, ω2)

=
⎛

⎝
molecules∑

l

(
αF

l,pqrz(�, ω1, ω2) − αD0
l,pqr (�, ω1, ω2)�zl

)
δ(z − (zl + �zl))

⎞

⎠

(F = D1, D2, Q).

(7.120)
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Using Eq. (7.120), the χ IQ(�,ω1, ω2) term in Eq. (7.29) is transformed to

χ
IQ
pqr

′
(�,ω1, ω2) = χ

IQ
pqr (�,ω1, ω2)

−
∫ ∞
zb

dz

⎛

⎝
molecule∑

l

�zlα
D0
l,pqr

(�,ω1, ω2)δ(z − zl)

⎞

⎠ ∂

∂z

{
fp(z, �)fq(z, ω1)fr (z, ω2)

}

+ · · · , (7.121)

where we neglected the terms of higher order derivatives. We also get the trans-
formed expression of χ

IQB′
pqr (�,ω1, ω2) from Eqs. (7.30) and (7.119) as follows,

χ IQB
pqr

′
(�,ω1, ω2) = χ IQB

pqr (�,ω1, ω2)

−
⎛

⎝
molecule∑

l

�zlα
D0
l,pqr (�, ω1, ω2)δ(zb − zl)

⎞

⎠ f β
p (�)f β

q (ω1)f
β
r (ω2)

+ · · · . (7.122)

Equations (7.114), (7.121) and (7.122) indicate that the sum of these terms is
invariant against the shift of the molecular origin,

χ ID
pqr (�,ω1, ω2) + χ IQ

pqr (�,ω1, ω2) + χ IQB
pqr (�,ω1, ω2)

= χ ID
pqr

′
(�,ω1, ω2) + χ IQ

pqr

′
(�,ω1, ω2) + χ IQB

pqr

′
(�,ω1, ω2). (7.123)

On the other hand, the bulk contribution χB0 is invariant in itself by the change
of the molecular origin. This is evident because the factors ξ

Q2,β
1 , ξ

Q1,β
2 , ξ

Q1,β
3 and

ξ
Q2,β
3 involved in Eq. (7.41) are invariant. These four factors are given in Eqs. (7.42),

(7.43), (7.44), (7.45) as the difference of two susceptibility terms, e.g. ξ
Q2,β
1 =

χ
D2,β
1 −χ

Q,β
1 in Eq. (7.42), and thus the additional terms originating from the shift of

molecular origin in Eq. (7.120) cancel each other. The alternative expression of the
bulk contribution, χB, given in Sect. 7.2.4 by Eqs. (7.54) and (7.55), (7.56), (7.57),
(7.58), (7.59), (7.60) is also invariant for the same reason.

In conclusion, the effective nonlinear susceptibility χ
(2)
eff,G in Eq. (7.47) is well

defined irrespective of the choice of the molecular origin. This invariance is requisite
in order that χ

(2)
eff,G is related to experimental observables. Moreover, the sum of

the interface contributions, χ ID +χ IQ +χ IQB, and the bulk contribution, χB0 or
χB, are respectively invariant. Consequently, the interface and bulk contributions
in the SFG/SHG signals are respectively well defined, though each of three terms
consisting of the interface contribution, χ ID, χ IQ, χ IQB, is affected by the definition
of the molecular origin.
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7.5 Summary

In this section we have presented a unified treatment of the dipole and quadrupole
contributions to the second-order optical responses. The concept of effective sus-
ceptibility χ (2) is expanded to incorporate both the surface and bulk contributions.
This treatment allows us to quantitatively evaluate both surface and bulk contribu-
tions in experimental SFG/SHG spectra, and to calculate them from microscopic
expressions of general hyperpolarizabilities.

The source of the SFG/SHG signals consists of four terms, i.e. χ ID, χ IQ, χ IQB

and χB in Eq. (7.50). These four terms can be characterized in various ways as
follows, which help us understand the physical meanings of these terms.

Dipole vs. Quadrupole χ ID originates from the induced electric dipole, while
the other three terms, χ IQ, χ IQB, and χB originate from the quadrupole (electric
quadrupole and magnetic dipole).

The conventional SFG/SHG theory within the dipole approximation considers
only the χ ID term. The present theory shows that the conventional theory can be
straightforwardly extended by replacing χ ID with χq = χ ID + χ IQ + χ IQB + χB if
we properly define the latter three terms.

Interface vs. Bulk χ ID and χ IQ reflect properties of interface, while χ IQB and χB

are determined solely by bulk properties.
It is worth noting that χ IQB reflects no interface properties, as seen in Eq. (7.30),

since it is derived from the lower bound of the integral over the interface region in
Eq. (7.27).

Dependence on Optical Geometry χ ID, χ IQ and χ IQB are independent of the
optical geometry of measurement as they involve no wavevector ki

G(ωf ) or related
quantities. On the other hand, χB depends on the optical geometry as described in
Sects. 7.2.4 and 7.2.5.

This difference allows us to distinguish χB from the other terms by changing the
optical geometry of measurement.

The characteristics of the four terms, χ ID, χ IQ, χ IQB and χB, are schematically
summarized in Fig. 7.5.

7.6 Solutions to Problems

7.6.1 Isotropic Tensor Components

[Problem 7.1] Derive Eq. (7.39) from the three independent elements of Eq. (7.38)
in the isotropic condition.
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Characters of Nonlinear Susceptibility Terms

ID IQ IQB B

(1) Origin
Dipole vs. Quadrupole Dipole Quadrupole

(2) Properties
Surface vs. Bulk Surface Bulk

(3) Separate measurement
by experiment Inseparable Separable

Fig. 7.5 Characters of four nonlinear susceptibility terms

There are several ways to prove Eqs. (7.38) and (7.39) in the isotropic condition.
The most straightforward way is to calculate the spherical average of arbitrary
elements,

χpqrs =
x∼z∑

p′q ′r ′s′
Dpp′Dqq ′Drr ′Dss′χmol

p′q ′r ′s′ ,

where D is the rotation matrix in Sect. 3.3, and the overline denotes the isotropic
average. However, here we take a more intuitive way to derive Eq. (7.39) as
follows. In this section, suffixes of tensors are presented in square parentheses, e.g.
χ [xxxx] ≡ χxxxx .

First, we identify nonvanishing elements in Eq. (7.38). In the isotropic condition,
a tensor element χ [pqrs] should vanish in general when the suffixes pqrs include
either x, y, or z odd times and others even times, such as χ [xxxy] = 0, χ [xyyz] =
0, etc. (Note that a suffix not included is considered as even (zero) times.) This is
evident by operating a proper rotation on the isotropic system. A rotation by 180◦
along a plane consisting of the different types of suffixes should change the sign,
though the material is isotropic. For an example of the χ [xyyz] element, the 180◦
rotation along the xy plane changes its sign,

χ [xyyz] −→ “χ [(−x)(−y)(−y)z] ” = −χ [xyyz].
This indicates that such tensor elements vanish in the isotropic condition.

Therefore, non-zero elements of a fourth-rank tensor must take either form of
χ [pqpq], χ [ppqq], or χ [pqqp], where all the x ∼ z coordinates are included even
times. (It is not possible that all the x ∼ z coordinates appear odd times in a fourth-
rank tensor element.) Furthermore, the x, y and z coordinates have to be equivalent
in the isotropic condition. Therefore, we obtain three independent elements as

χ [xyxy] = χ [xzxz] = χ [yzyz] = · · · = χ [pqpq] (≡ χ1)

χ [xxyy] = χ [xxzz] = χ [yyzz] = · · · = χ [ppqq] (≡ χ2)

χ [xyyx] = χ [xzzx] = χ [yzzy] = · · · = χ [pqqp] (≡ χ3)
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Next we examine the diagonal element χ [pppp] (= χ [xxxx] = χ [yyyy] =
χ [zzzz]). As a simple example, let us rotate the coordinate system by 45◦ around
the z axis,

x → x + y√
2

, y → −x + y√
2

, z → z.

Then a tensor element χ [xxxx] is transformed as a direct product of the coordinates,

χ [xxxx] → “χ

[
x + y√

2

x + y√
2

x + y√
2

x + y√
2

]
”

= 1

4
{χ [xxxx] + χ [xxxy] + χ [xxyx] + χ [xxyy] + χ [xyxx] + χ [xyxy]

+ χ [xyyx] + χ [xyyy] + χ [yxxx] + χ [yxxy] + χ [yxyx] + χ [yxyy]
+χ [yyxx] + χ [yyxy] + χ [yyyx] + χ [yyyy]} .

Since the transformed element should be invariant to the original element in the
isotropic condition, the following relation should hold,

χ [xxxx] = 1

4
{χ [xxxx] + χ [xxxy] + χ [xxyx] + χ [xxyy] + χ [xyxx] + χ [xyxy]

+ χ [xyyx] + χ [xyyy] + χ [yxxx] + χ [yxxy] + χ [yxyx] + χ [yxyy]
+χ [yyxx] + χ [yyxy] + χ [yyyx] + χ [yyyy]}

= 1

4
{χ [xxxx] + χ [xxyy] + χ [xyxy] + χ [xyyx]

+χ [yxxy] + χ [yxyx] + χ [yyxx] + χ [yyyy]} ,

where the shaded elements are null. Therefore,

χ [pppp] = 1

4
{2χ [pppp] + 2χ1 + 2χ2 + 2χ3} ,

and hence

χ [pppp] = χ1 + χ2 + χ3 (7.39)

is obtained.



7.6 Solutions to Problems 189

7.6.2 Bulk Term χB

[Problem 7.2] Derive χB
G,yyz in Eq. (7.54) from χB0

G in Eqs. (7.52) and (7.53).

(Hint) During the derivation, use the following two relations,

cos θα
I (ω2)

sin θα
I (ω2)

= qα(ω2)

kx(ω2)
,

f
β
x

f
β
z

= εβ,

and LI (ωf ) in Eq. (5.30).

The expression of χ
(2)
eff,G,SSP in Eq. (7.49) including χB0 can be expanded using

Eq. (7.48) as follows,

χ
(2)
eff,G,SSP(�,ω1, ω2) =

LG,y (�)LI,y(ω1) LI,z(ω2) sin θα
I (ω2) χ

(2)
q0 G,yyz(�,ω1, ω2)

+ LG,y(�) LI,y(ω1) LI,x(ω2) cos θα
I (ω2) χ

(2)
q0 G,yyx(�,ω1, ω2) (7.49)

= LG,y (�)LI,y(ω1) LI,z(ω2) sin θα
I (ω2)

·
{
χ ID

yyz(�,ω1, ω2)+χ IQ
yyz(�,ω1, ω2)+χ IQB

yyz (�,ω1, ω2)+χB0
yyz(�,ω1, ω2)

}

+ LG,y(�) LI,y(ω1) LI,x(ω2) cos θα
I (ω2) χB0

G,yyx(�,ω1, ω2), (7.124)

since the yyx element of χ
(2)
q0 G involves only the χB0

G term. Equation (7.124)
should be equivalent to Eqs. (7.51) and (7.50). Apparent differences are found in
the terms related to χB0 and χB, by comparing the two expressions. To make the
two expressions equivalent, the following relation is required,

LG,y (�)LI,y(ω1) LI,z(ω2) sin θα
I (ω2) χB

G,yyz(�,ω1, ω2)

= LG,y (�)LI,y(ω1) LI,z(ω2) sin θα
I (ω2) χB0

G,yyz(�,ω1, ω2)

+ LG,y(�) LI,y(ω1) LI,x(ω2) cos θα
I (ω2) χB0

G,yyx(�,ω1, ω2).

Therefore,

χB
G,yyz(�,ω1, ω2)=χB0

G,yyz(�,ω1, ω2)+LI,x(ω2)

LI,z(ω2)

cos θα
I (ω2)

sin θα
I (ω2)

χB0
G,yyx(�,ω1, ω2).

(7.125)
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By inserting Eqs. (7.52) and (7.53) into Eq. (7.125), the above equation (7.125)
becomes

χB
G,yyz(�,ω1, ω2)

= lG ζ
Q1,β
2 (�,ω1, ω2)f

β
y (�)f β

y (ω1)f
β
z (ω2)k

β
T ,z(ω1)

+ LI,x(ω2)

LI,z(ω2)

cos θα
I (ω2)

sin θα
I (ω2)

lG ζ
Q1,β
2 (�,ω1, ω2)f

β
y (�)f β

y (ω1)f
β
x (ω2)kx(ω1)

= lG ζ
Q1,β
2 (�,ω1, ω2)f

β
y (�)f β

y (ω1)f
β
z (ω2)

×
{

k
β
T ,z(ω1) + LI,x(ω2)

LI,z(ω2)

cos θα
I (ω2)

sin θα
I (ω2)

f
β
x (ω2)

f
β
z (ω2)

kx(ω1)

}
.

We further employ Eq. (5.30) and the relations mentioned in this Problem,
cos θα

I (ω2)

sin θα
I (ω2)

= qα(ω2)

kx(ω2)
,
f

β
x (ω2)

f
β
z (ω2)

= εβ(ω2), and obtain the following form,

χB
G,yyz(�,ω1, ω2)

= lG ζ
Q1,β
2 (�,ω1, ω2)f

β
y (�)f β

y (ω1)f
β
z (ω2)

·
{
k
β
T ,z(ω1) + 2εα(ω2)q

β(ω2)

2εα(ω2)εβ(ω2)qα(ω2)

qα(ω2)

kx(ω2)
εβ(ω2)kx(ω1)

}

= lG ζ
Q1,β
2 (�,ω1, ω2)f

β
y (�)f β

y (ω1)f
β
z (ω2)

{
k
β
T ,z(ω1) + qβ(ω2)

kx(ω2)
kx(ω1)

}

= lG ζ
Q1,β
2 (�,ω1, ω2)

k
β
T ,z(ω1)kx(ω2) − k

β
T ,z(ω2)kx(ω1)

kx(ω2)
f β

y (�)f β
y (ω1)f

β
z (ω2),

(7.54)

where qβ(ω2) =
∣∣∣kβ

T ,z(ω2)

∣∣∣ = −k
β
T ,z(ω2) (see Fig. 7.3).

7.6.3 Transformation of Quadrupolar Susceptibility

[Problem 7.3] Derive Eq. (7.119) for F = D1. Use the αD1 expression in Eq. (7.85)
and Eq. (7.118).

Equation (7.118) shows that the matrix element 〈m|q̂sq
′(ω)|n〉 consists of five

terms,
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〈m|q̂sq
′(ω)|n〉 =

〈m|q̂sq(ω)|n〉
︸ ︷︷ ︸

A

− 1

2
〈m|μ̂s |n〉�rq

︸ ︷︷ ︸
B

− 1

2
〈m|μ̂q |n〉�rs

︸ ︷︷ ︸
C

− ωmn

2ω
〈m|μ̂q |n〉�rs

︸ ︷︷ ︸
D

+ ωmn

2ω
〈m|μ̂s |n〉�rq

︸ ︷︷ ︸
E

. (7.118′)

By substituting qsq in Eq. (7.85) with the above qsq
′, we obtain the transformed

quadrupolar susceptibility αD1′
(�,ω1, ω2) as follows,

αD1
pqrs

′
(�,ω1, ω2) = 1

h̄2

whole
states∑

g,m,n

(ρ(0)
g − ρ(0)

m )

[ 〈g|μ̂p|n〉〈n|μ̂r |m〉〈m|q̂sq
′(ω1)|g〉

(ω1 − ωmg)(� − ωng)
− 〈g|μ̂r |n〉〈n|μ̂p|m〉〈m|q̂sq

′(ω1)|g〉
(ω1 − ωmg)(� − ωmn)

+〈g|μ̂p|n〉〈n|q̂sq
′(ω1)|m〉〈m|μ̂r |g〉

(ω2 − ωmg)(� − ωng)
− 〈g|q̂sq

′(ω1)|n〉〈n|μ̂p|m〉〈m|μ̂r |g〉
(ω2 − ωmg)(� − ωmn)

]

= (A) − (B) − (C) − (D) + (E) (7.126)

where the terms (A), (B), (C), (D), (E) correspond to the first, second, third, fourth
and fifth terms in the right hand side of Eq. (7.118). These terms in Eq. (7.126) are
shown to be

(A) = αD1
pqrs(�, ω1, ω2), (7.127)

(B) = 1

2
αD0

psr (�, ω1, ω2)�rq, (7.128)

(C) = 1

2
αD0

pqr (�,ω1, ω2)�rs, (7.129)

(D) = 1

2h̄2

∑

g,m,n

(ρ(0)
g − ρ(0)

m )

[
ωmg

ω1

〈g|μ̂p|n〉〈n|μ̂r |m〉〈m|μ̂q |g〉
(ω1 − ωmg)(� − ωng)

− ωmg

ω1

〈g|μ̂r |n〉〈n|μ̂p|m〉〈m|μ̂q |g〉
(ω1 − ωmg)(� − ωmn)

+ωnm

ω1

〈g|μ̂p|n〉〈n|μ̂q |m〉〈m|μ̂r |g〉
(ω2−ωmg)(�−ωng)

−ωgn

ω1

〈g|μ̂q |n〉〈n|μ̂p|m〉〈m|μ̂r |g〉
(ω2−ωmg)(�−ωmn)

]
�rs,

(7.130)
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(E) = 1

2h̄2

∑

g,m,n

(ρ(0)
g − ρ(0)

m )

[
ωmg

ω1

〈g|μ̂p|n〉〈n|μ̂r |m〉〈m|μ̂s |g〉
(ω1 − ωmg)(� − ωng)

− ωmg

ω1

〈g|μ̂r |n〉〈n|μ̂p|m〉〈m|μ̂s |g〉
(ω1 − ωmg)(� − ωmn)

+ωnm

ω1

〈g|μ̂p|n〉〈n|μ̂s |m〉〈m|μ̂r |g〉
(ω2 − ωmg)(� − ωng)

−ωgn

ω1

〈g|μ̂s |n〉〈n|μ̂p|m〉〈m|μ̂r |g〉
(ω2 − ωmg)(� − ωmn)

]
�rq.

(7.131)

In what follows, we prove that (B) = (E) and (C) = (D).
In the term (D) of Eq. (7.130), we apply the three relations,

ωmg

ω1

1

(ω1 − ωmg)
= 1

ω1 − ωmg

− 1

ω1
,

ωnm

ω1

1

(ω2 − ωmg)(� − ωng)
= 1

(ω2 − ωmg)(� − ωng)

− 1

ω1

{
1

ω2 − ωmg

− 1

� − ωng

}
,

ωgn

ω1

1

(ω2 − ωmg)(� − ωmn)
= 1

(ω2 − ωmg)(� − ωmn)

− 1

ω1

{
1

ω2 − ωmg

− 1

� − ωmn

}
,

and thereby obtain

(D) = 1

2
αD0

pqr (�,ω1, ω2)�rs

+ 1

2h̄2

�rs

ω1

∑

g,m,n

(ρ(0)
g − ρ(0)

m )

[
−〈g|μ̂p|n〉〈n|μ̂r |m〉〈m|μ̂q |g〉

(� − ωng)
+ 〈g|μ̂r |n〉〈n|μ̂p|m〉〈m|μ̂q |g〉

(� − ωmn)

− 〈g|μ̂p|n〉〈n|μ̂q |m〉〈m|μ̂r |g〉
(ω2 − ωmg)

+ 〈g|μ̂p|n〉〈n|μ̂q |m〉〈m|μ̂r |g〉
(� − ωng)

+〈g|μ̂q |n〉〈n|μ̂p|m〉〈m|μ̂r |g〉
(ω2 − ωmg)

− 〈g|μ̂q |n〉〈n|μ̂p|m〉〈m|μ̂r |g〉
(� − ωmn)

]
.

In the above expression of (D), we can show that six terms in the square
bracket cancel each other and vanish. By adopting the relation of completeness,∑

m |m〉 〈m| = 1, and the commutation relation, μ̂pμ̂q = μ̂qμ̂p, we find that some
terms are canceled and consequently obtain the following expression of (D),
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(D) = 1

2
αD0

pqr (�,ω1, ω2)�rs

+ 1

2h̄2

�rs

ω1

[
∑

g,m,n

ρ(0)
m

〈g|μ̂p|n〉〈n|μ̂r |m〉〈m|μ̂q |g〉
(� − ωng)

+
∑

g,m,n

ρ(0)
g

〈g|μ̂r |n〉〈n|μ̂p|m〉〈m|μ̂q |g〉
(� − ωmn)

−
∑

g,m,n

ρ(0)
m

〈g|μ̂p|n〉〈n|μ̂q |m〉〈m|μ̂r |g〉
(� − ωng)

−
∑

g,m,n

ρ(0)
g

〈g|μ̂q |n〉〈n|μ̂p|m〉〈m|μ̂r |g〉
(� − ωmn)

]

= 1

2
αD0

pqr (�,ω1, ω2)�rs = (C)

where all the terms in the square bracket cancel each other by properly replacing the
suffixes, g,m, n. We could also prove (B) = (E) in the same way as above.

Therefore, we derive Eq. (7.119) for F=D1 from Eq. (7.126) as

αD1
pqrs

′
(�,ω1, ω2) = (A) − (B) − (C) − (D) + (E) = (A) − 2(C)

= αD1
pqrs(�, ω1, ω2) − αD0

pqr (�,ω1, ω2)�rs.

We can also confirm Eq. (7.119) for F=D2 and Q in the same way.

7.6.4 Levi-Civita Tensor

[Problem 7.4] Derive the following formulas (i)-(vi) using the Levi-Civita tensor.
(A,B,C,D refer to vectors, and φ to a scalar.)

(i) (A × B) · (C × D) = (A · C) (B · D) − (A · D) (B · C)

(ii) ∇ × (∇ × A) = ∇ (∇ · A) − ∇2A

(iii) ∇ · (∇ × A) = 0

(iv) ∇ × (∇φ) = 0

(v) ∇ · (A × B) = B · (∇ × A) − A · (∇ × B)

(vi) ∇ × (A × B) = A (∇ · B) + (B · ∇) A − B (∇ · A) − (A · ∇) B



194 7 Quadrupole Contributions from Interface and Bulk

The formulas (i)-(vi) are derived as follows. Here we employ the Einstein’s
convention of contraction.

(i) (A × B) · (C × D) = εijkAjBkεilmClDm

= (
δjlδkm − δjmδkl

)
AjBkClDm = AjBkCjDk − AjBkCkDj

= (A · C) (B · D) − (A · D) (B · C)

(ii) [∇ × (∇ × A)]i = εijk∂j [∇ × A]k = εijk∂j (εklm∂lAm)

= εijkεlmk∂j ∂lAm = (
δilδjm − δimδjl

)
∂j ∂lAm = ∂j ∂iAj − ∂j ∂jAi

= ∂i (∇ · A) − ∇2Ai

(iii) ∇ · (∇ × A) = ∂i

(
εijk∂jAk

) = εijk∂i∂jAk = 0
(
∵ εijk∂i∂jAk = −εjik∂i∂jAk = 0

)

(iv) [∇ × (∇φ)]i = εijk∂j (∂kφ) = εijk∂j ∂kφ = 0

(v) ∇ · (A × B) = ∂i

(
εijkAjBk

)

= εijk(∂iAj )Bk + εijkAj (∂iBk) = Bkεkij ∂iAj − Ajεjik∂iBk

= B · (∇ × A) − A · (∇ × B)

(vi) [∇ × (A × B)]i = εijk∂j [A × B]k = εijk∂j (εklmAlBm)

= (δilδjm − δimδjl)∂jAlBm = ∂jAiBj − ∂jAjBi

= Ai (∇ · B) + (B · ∇) A − Bi (∇ · A) − (A · ∇) Bi

Appendix

A.1 Physical Meaning of χ IQB

Among the four terms of nonlinear susceptibility summarized in Fig. 7.5, χ IQB

may be difficult to understand intuitively. It arises from the integral of nonlinear
polarization over the interface region in Sect. 7.2.3, though it is a pure bulk property.
The χ IQB term is known to have significant contribution in some SFG spectra
[12, 13]. Here we explain its origin and physical meaning in an illustrative manner.

As we discussed in Sect. 7.2.3, the χ IQB term in Eq. (7.30) originates from the
integral of quadrupole over the interface. Accordingly, we consider the situation in
Fig. 7.6 that the induced quadrupole is distributed over the whole interface system,
and evaluate the net polarization of interface P I in Eq. (7.26) by integrating the
dipole polarization over the interface region from z = zb to ∞. The lower bound z =
zb is arbitrarily chosen in the bulk region so that the integral encompasses the whole
interface region. In this integral of polarization, the distributed quadrupole comes
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Fig. 7.6 (Left) Schematic
picture of the quadrupole
(Qzz) distribution in the
interface system, where the
lower bound of the integral
z = zb is shown by red line.
(Right) Divided quadrupole
moments (Qyz, Qzz) by the
threshold z = zb bring net
dipole moments (μy , μz) in
the integral region z > zb

z
0

Qzz

Qyz

z

y > 0

z > 0

y

zb

into play at the lower bound z = zb. The molecules located across the threshold
z = zb partially contribute to the integral, since the divided quadrupole moments
Qyz and Qzz bring net dipole moments μy and μz, respectively, in the integral of
P I . The contribution necessarily arises from the uniformly distributed quadrupole,
irrespective of the location of the threshold z = zb. We note that this mechanism is
essentially common to the role of quadrupole on the surface potential [22].

The integral of quadrupole contributions could be understood without resorting
to the arbitrary threshold of zb. This mechanism of χ IQB is related to the infinite
summation of oscillating terms. A quadrupole is regarded as a pair of antiparallel
dipoles, as illustrated in Fig. 7.6. Thus the sum of all quadrupole contributions
becomes equivalent to the infinite summation of a pair of antiparallel dipoles,
(μ − μ) + (μ − μ) + (μ − μ) + · · · , where each pair (μ − μ) corresponds to
a quadrupole moment. This infinite summation could be defined on the basis of
Abel summability [9],

(μ − μ) + (μ − μ) + · · · =
∞∑

n=0

μ (−1)n = lim
x→−1+0

μ

1 + x
= μ

2
,

which yields a net dipole contribution. The above definition of this infinite sum can
be obtained by using a proper convergence factor. Such oscillating sum elucidates
the χ IQB contribution to the net dipole P I . We will encounter the analogous
mechanism in the NaOH aqueous solution surface in Sect. 9.3.

A.2 Levi-Civita Antisymmetric Tensor

The Levi-Civita antisymmetric tensor εijk is defined as follows.

εijk =
⎧
⎨

⎩

1 (ijk = xyz, yzx, zxy) ,

−1 (ijk = yxz, zyx, xzy) ,

0 (otherwise) .

(7.132)

This symbol is quite convenient when manipulating various formulas in the vector
analysis.
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Using the Levi-Civita symbols thus defined, the vector product is represented in
the following form,

[B × C]i = εijkBjCk.

In this section of Appendix we employ the Einstein’s convention of contraction,
and omit the summation symbol

∑
over i, j , or k.5 The rotation of a vector is

represented in a similar way, [∇ × C]i = εijk∂jCk . The scalar triple product is
given by A · (B × C) = εijkAiBjCk .

The Levi-Civita tensor satisfies the following contraction formulas,

εijkεpqk = δipδjq − δiqδjp, (7.133)

εijkεpjk = 2δip, (7.134)

εijkεijk = 6. (7.135)

Proof εijk in Eq. (7.132) is expressed using a set of orthonormal vectors
{ex, ey, ez} as

εijk =
∣∣∣∣∣∣

(ex · ei ) (ex · ej ) (ex · ek)

(ey · ei ) (ey · ej ) (ey · ek)

(ez · ei ) (ez · ej ) (ez · ek)

∣∣∣∣∣∣
≡ | U(xyz, ijk) | . (7.136)

Therefore,

εijkεpqr = | U(xyz, ijk) | · | U(xyz, pqr) | =
∣∣∣ U(xyz, ijk)T

∣∣∣ · | U(xyz, pqr) |
= | U(ijk, pqr) |

=
∣∣∣∣∣∣

δip δiq δir

δjp δjq δjr

δkp δkq δkr

∣∣∣∣∣∣

= δir (δjpδkq − δjqδkp) − δjr (δipδkq − δiqδkp) + δkr (δipδjq − δiqδjp).

Equations (7.133), (7.134), (7.135) are proved by taking the contraction.

εijkεpqk = δik(δjpδkq − δjqδkp) − δjk(δipδkq − δiqδkp) + δkk(δipδjq − δiqδjp)

= δiqδjp − δipδjq − δjqδip + δjpδiq + 3(δipδjq − δiqδjp)

= δipδjq − δiqδjp, (7.133)

5Therefore, εijkBjCk ≡
∑

j,k

εijkBjCk .
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εijkεpjk = δipδjj − δij δjp = 3δip − δip = 2δip, (7.134)

εijkεijk = 2δii = 6. (7.135)

��
These Eqs. (7.133), (7.134), (7.135), particularly Eq. (7.133), are extensively

utilized in manipulating vector formulas. For example, the vector triple product is
rearranged as follows,

[A × (B × C)]i = εijkAj [B × C]k = εijkAj (εklmBlCm)

= εijkεlmkAjBlCm = (δilδjm − δimδjl)AjBlCm = AjBiCj − AjBjCi

= Bi(A · C) − Ci(A · B),

where we have employed the permutation relation, εklm = εlmk , and Eq. (7.133) in
the above derivation.

[Problem 7.4] Derive the following formulas (i)–(vi) using the Levi-Civita tensor
(see Sect. 7.6.4). (A,B,C,D refer to vectors, and φ to a scalar.)

(i) (A × B) · (C × D) = (A · C) (B · D) − (A · D) (B · C)

(ii) ∇ × (∇ × A) = ∇ (∇ · A) − ∇2A

(iii) ∇ · (∇ × A) = 0

(iv) ∇ × (∇φ) = 0

(v) ∇ · (A × B) = B · (∇ × A) − A · (∇ × B)

(vi) ∇ × (A × B) = A (∇ · B) + (B · ∇) A − B (∇ · A) − (A · ∇) B

The Levi-Civita tensor is invariant under rotation of the coordinates,

DipDjqDkr εpqr = εijk, (7.137)

where D is the rotational matrix in Eq. (3.43). This feature will be utilized in
Chap. 8.

Proof Consider a rotational matrix D that converts a set of orthonormal vectors
{ex, ey, ez} to {ex′ , ey′ , ez′ },

⎛

⎝
ex′
ey′
ez′

⎞

⎠ = D

⎛

⎝
ex

ey

ez

⎞

⎠ .
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Then the following relation is proved using the unitary character of D (|D| = 1)
and Eq. (7.136),

εijk = | U(xyz, ijk) | =
∣∣∣DT U(x′y′z′, ijk)

∣∣∣ = ∣∣ U(x′y′z′, ijk)
∣∣ .

Suppose that pqr denote x′, y′, z′ while ijk denote x, y, z, the following equation
is derived.

DipDjqDkrεpqr = DipDjqDkr

∣∣ U(x′y′z′, pqr)
∣∣ = ∣∣ U(x′y′z′, ijk)

∣∣

= | U(xyz, ijk) | = εijk. (7.137)

��

A.3 Definition of Bulk Polarization

In Chap. 7 the bulk polarization P B
G is defined by Eq. (7.36),

P B
G,p = i

∫ 0

−∞
dz
∑

q,r,s

{
χD1,β

pqrs (�, ω1, ω2)k
β
T ,s(ω1) + χD2,β

pqrs (�, ω1, ω2)k
β
T ,s(ω2)

−χQ,β
pqrs(�, ω1, ω2)

(
k
β
T ,s(ω1) + k

β
T ,s(ω2)

)}

· f β
p (�)f β

q (ω1)f
β
r (ω2)LI,q(ω1)LI,r (ω2)E

α
I,q(ω1)E

α
I,r (ω2)

· exp
[
i
(
k
β
T ,z(ω1) + k

β
T ,z(ω2) − k

β
G,z(�)

)
z
]
, (7.36)

which is consistent to Refs. [21] and [17], while a slightly different expression P B
G

′

is found in Refs. [11] and [5]. In this Appendix, we clarify the difference between
the two expressions.

Some other literature [5, 11] employs a different expression, P B
G

′
, for the bulk

polarization,

P B
G,p

′ = i

∫ 0

−∞
dz
∑

q,r,s

{
χD1,β

pqrs (�, ω1, ω2)k
β
T ,s(ω1) + χD2,β

pqrs (�, ω1, ω2)k
β
T ,s(ω2)

−χQ,β
pqrs(�, ω1, ω2)k

β
G,s(�)

}

· f β
p (�)f β

q (ω1)f
β
r (ω2)LI,q(ω1)LI,r (ω2)E

α
I,q(ω1)E

α
I,r (ω2)

· exp
[
i
(
k
β
T ,z(ω1) + k

β
T ,z(ω2) − k

β
G,z(�)

)
z
]
. (7.138)
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We notice a slight but significant difference; the third term of the integrand in

Eq. (7.36) is −χ
Q,β
pqrs(�, ω1, ω2)

(
k
β
T ,s(ω1) + k

β
T ,s(ω2)

)
, while that in Eq. (7.138)

is −χ
Q,β
pqrs(�, ω1, ω2)k

β
G,s(�).

We could interpret that P B′
G in Eq. (7.138) involves both the bulk polarization P B

G

and a part of interfacial polarization attributed to χ IQB. Equation (7.28) shows that
the part of interfacial polarization P I attributed to χ IQB is

P
IQB
p =

∑

q,r

χ
IQB
pqr (�, ω1, ω2)LI,q (ω1)LI,r (ω2)Eα

I,q (ω1)Eα
I,r (ω2)

=
∑

q,r

χ
Q,β
pqrz(�, ω1, ω2)f

β
p (�)f

β
q (ω1)f

β
r (ω2)LI,q (ω1)LI,r (ω2)Eα

I,q (ω1)Eα
I,r (ω2)

= i

∫ 0

−∞
dz

∑

q,r,s

δsz

(
k
β
T ,s

(ω1) + k
β
T ,s

(ω2) − k
β
G,s

(�)
)

χ
Q,β
pqrz(�, ω1, ω2)

· f
β
p (�)f

β
q (ω1)f

β
r (ω2)LI,q (ω1)LI,r (ω2)Eα

I,q (ω1)Eα
I,r (ω2)

· exp
[
i
(
k
β
T ,z

(ω1) + k
β
T ,z

(ω2) − k
β
G,z

(�)
)

z
]
, (7.139)

where the form of χ IQB in Eq. (7.30) has been adopted in the above formula.
Therefore, we can readily see the following relation,

P B
G,p + P IQB

p = P B
G,p

′
. (7.140)

Although either definition for the bulk polarization could be used in principle,
we recommend P B

G in Eq. (7.36) to describe the bulk polarization for the following
reasons. First, P B

G is a well defined quantity with respect to the choice of origin
as described in Sect. 7.4, and can be separately detected from the other terms by
experimental measurements. Second, P B

G allows for distinguishing χ IQB and χB.
We have argued in Chap. 7 and Figure 7.5 that χ IQB and χB have different physical
meanings and different dependence on the optical geometry. The role of χ IQB

has been increasingly recognized in the SFG spectroscopy [12, 13]. The former
definition is convenient to examine the effects of χ IQB and χB separately.
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Chapter 8
Other Topics

Abstract This chapter introduces some recent topics in the SFG spectroscopy,
particularly the χ(3) effect for the charged interfaces and the chiral applications
of SFG spectroscopy. The significance of χ(3) effect is now recognized in the SFG
and SHG spectra when interfaces are charged, such as the electrolyte interfaces
and charged solid-liquid interfaces. Understanding of this effect is indispensable to
analyze the spectra of these systems. Chiral application of the SFG spectroscopy has
been also advanced recently, though chiral systems are known to be SFG active for
long time. It could offer a new probe technique of chiral species at interfaces. The
present chapter discuss basic features of chiral applications, which are somewhat
different from the features of ordinary applications to interfaces.

Keywords χ(3) effect · Surface charge · Chiral SFG

Recent development of SFG spectroscopy has brought new areas of applications
as interface probe. Here we treat some recent topics in the SFG spectroscopy.
Section 8.1 deals with the “χ(3) effect”, which is pertinent to liquids in contact
to charged substrates, such as charged solid (membrane)-liquid interfaces and
electrode-solution interfaces. The χ(3) effect could have substantial contributions to
the SFG/SHG spectra from these charged interfaces. It becomes an additional source
of SFG/SHG, and could compete with the intrinsic signal from the interface. Precise
understanding of this effect is critical to interpret the SFG/SHG spectra of charged
interfaces. Section 8.2 treats chiral applications of SFG spectroscopy. The SFG is
allowed in chiral systems in principle, as the inversion symmetry is broken. Actually
the SFG as well as SHG from non-centrosymmetric materials is widely utilized in
optical conversion devices. However, applications of SFG as a spectroscopic tool of
probing chiral species have been relatively less explored. Recently the SFG/SHG
could be utilized as a chiral probe at interfaces. The present section summarizes
fundamental features of chiral SFG/SHG spectroscopy.
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8.1 χ(3) Effect at Charged Interfaces

In the SFG or SHG spectra from liquids at charged interfaces, another mechanism of
SFG/SHG emission arises besides the usual one, called “χ(3) effect”. The charge at
interface generates static electric field E that penetrates into the interface and bulk
of the liquid, and thereby induces additional nonlinear polarization in the liquid. In
such cases, the induced polarization of sum frequency � = ω1 +ω2 by two incident
light fields of frequencies ω1 and ω2 is represented as follows,

P (2)
p (�) =

x∼z∑

q,r

χ(2)
pqr (�, ω1, ω2)Eq(ω1)Er(ω2)

+
x∼z∑

q,r,s

χ(3)
pqrs(�, ω1, ω2, 0)Eq(ω1)Er(ω2)Es(0), (8.1)

where Es(0) denotes the static electric field. This formula (8.1) is considered to be
an extension of Eq. (1.4) in Chap. 1, and the additional second term of Eq. (8.1)
refers to the χ(3) effect.1 In what follows, we formulate the SFG spectroscopy
without losing generality, as SHG is a special case of SFG.

The χ(3) effect in SHG spectroscopy was pointed out by Eisenthal and co-
workers in silica-water interface with varying pH [23]. They discovered that the
intensity of SHG signal from water strongly depends on the pH. Figure 8.1
demonstrates that the SHG signal is remarkably enhanced with increasing pH of
the solution. The silica surface contains silanol groups (−SiOH) which undergo
acid-base equilibrium, −SiOH � −SiO−, and thus negative charge density at the
silica surface increases with increasing pH. They argued that the SHG signal clearly
correlates with the charge density, which is indicative of the χ(3) effect as we will
discuss below. Since then the χ(3) effect has been intensively investigated in SHG
and SFG for a variety of aqueous solutions in contact with charged interfaces [7–
9, 12, 15, 18, 25]. In this section we clarify the fundamental properties and roles of
the χ(3) effect in SFG/SHG spectroscopy.

8.1.1 Properties of χ(3) Tensor

First, we notice that the χ
(3)
pqrs in Eq. (8.1) is a fourth-rank tensor. Consequently,

χ(3) is not necessarily zero (allowed) in an isotropic matter for symmetry reason,
whereas the third-rank tensor of χ(2) is inevitably zero (forbidden). This important
property of χ(3) is intuitively understood by inspecting the role of χ(3) in Eq. (8.1).

1Note that P (2) in Eq. (8.1) includes the third-order polarization of χ(3). We use the notation P (2)

for the SFG source polarization to show the correspondence to Eq. (1.4).
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Fig. 8.1 Observed SHG signal from silica-water interface as a function of pH [23]. (Reprinted
from Ref. [23], Copyright 1992, with permission from Elsevier)

The sum-frequency polarization in Eq. (8.1) is represented in the following form,

P (2)
p (�) =

∑

q,r

[
χ(2)

pqr +
∑

s

χ(3)
pqrsEs(0)

]
Eq(ω1)Er(ω2), (8.2)

where the quantity in the bracket corresponds to the SFG source term of χ(2)

including the static field E(0). Accordingly, χ(3) is represented with the derivative
of χ(2) with respect to the field E(0),

χ(3)
pqrs(�, ω1, ω2, 0) =

(
∂χ

(2)
pqr (�, ω1, ω2)

∂Es(0)

)

E(0)=0

. (8.3)

Equation (8.3) indicates that χ(3) accounts for the induced SFG/SHG by the static
electric field. The field-induced SFG/SHG is allowed in an isotropic media, since the
imposed field E(0) would break the isotropy of the system and thereby induce the
SFG/SHG response. In charged solid-liquid interfaces, the SFG/SHG signal from
χ(3) stems from the liquid region as long as the electrostatic field penetrates into the
place. The length of the region is comparable to the Debye screening length, which
could be larger than the molecular scale as we discuss later.

Second issue is the microscopic origin of χ(3). As we mentioned above, χ(3)

in Eq. (8.3) is understood as the perturbation on χ(2) by the field. Microscopic
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origin of the perturbation can be twofold, orientational and electronic mechanisms.
The former, orientational mechanism of χ(3) means that the static electric field
perturbs the orientational structure of molecules and thereby changes the χ(2) of
that material. The latter, electronic mechanism means that the electronic state of
the material has the intrinsic third-order response to the electric fields. Relative
significance of the two mechanisms in χ(3) may depend on the system in question. In
liquid water or dilute aqueous solutions, the orientational mechanism is confirmed
to be dominant in χ(3) by direct computation of the two mechanisms [16].

Third issue is the distinction of the χ(3) effect from the quadrupole terms
discussed in Chap. 7. Both the χ(3) in the present chapter and the quadrupole
terms are fourth-rank tensors and thus allowed in isotropic bulk media, though their
mechanisms are fully distinct. The χ(3) effect arises only when the electrostatic
field is imposed on the system, while the quadrupole contributions are present in the
SFG/SHG even in a system under no electrostatic field. If we take account of the
quadrupole contributions in Eqs. (8.2) and (8.3), the χ(2) in these equations should
be replaced with the extended susceptibility χ

(2)
qG in Eq. (7.50) that includes both the

dipole and quadrupole contributions.
The χ(3) formula of Eq. (8.3) allows for straightforward calculation of the χ(3)

tensor by adopting the computational methods of χ(2) in Chap. 4. One can calculate
χ(2) of a system with imposing a finite electrostatic field E(0), and take the
derivative of the calculated χ(2) with respect to the applied electrostatic field. Such
MD calculation of χ(3) is conducted using isotropic bulk systems which are free
from interfaces [16]. The calculated derivative of χ(2) derives the pure χ(3) term as
a bulk property, since the isotropic systems are essentially free from the intrinsic
χ(2). Calculated result of χ(3) for liquid water is shown in Fig. 8.2b, and compared
with the intrinsic χ(2) for water surface in panel (a).
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Fig. 8.2 Calculated χ
(2)
yyz spectrum (panel a) [14] and χ

(3)
yyzz (panel b) [16] of liquid water. Both

panels are obtained using the same CRK model of water. Their real and imaginary parts are
shown in blue and red, respectively. (Reprinted with permission from Ref. [14]; Copyright 2009,
American Institute of Physics. Reproduced from Ref. [16] with permission from the PCCP Owner
Societies)
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8.1.2 Role of χ(3) in Electrolyte Solution

Then we discuss the χ(3) effect in electrolyte solutions near solid-liquid interfaces.
In the conventional picture of electrochemistry, the structure of electrolyte solutions
near a solid (or electrode) surface consists of the contact (Stern) layer and the diffuse
(Guoy-Chapman) layer [2, 3]. The former indicates the region of a few monolayers
at the solid-liquid interface, where specific interfacial structure, such as specific
adsorption, is constructed. The latter, diffuse layer extends to the solution over the
Debye screening length, where the counter ions of charged surface are distributed
and the net electric field is penetrated. The χ(3) signal arises from the diffuse layer
of electrolyte solution, while the contact layer is considered to be the source of
interface-specific SFG/SHG signal by χ(2). Here we formulate the χ(3) contribution
from the diffuse layer based on the Gouy-Chapman theory [1–3].

Guoy-Chapman theory Suppose the normal coordinate z to the solid-liquid
interface. The interface is located at z = 0 and has charge density σ per unit area,
while the electrolyte solution with dielectric constant ε is extended in z < 0. (See
the scheme of Fig. 1.2 or Fig. 8.3, where the medium α is regarded as solid and the
medium β as the solution.2) The electrolyte in the solution consists of Ni kinds of
ions of charge Zi and number density ni (i = 1, · · · , Ni). The static electric field
Ez(0; z) is generated in the diffuse layer of solution along the z axis, and is related
to the electrostatic potential �(z) at z by

Ez(0; z) = −d�(z)

dz
or �(z) = −

∫ z

−∞
Ez(0; z)dz, (8.4)

where the origin of the potential is set in the bulk liquid, �(z → −∞) = 0.

Fig. 8.3 Definition of
parameters used for the
surface SFG. The subscripts
f = 1, 2, 3 denote the two
incident lights and SFG,
respectively. e.g.
kα

1I = kα
I (ω1),

kα
2R = kα

R(ω2), θα
3R = θα

R(�).
(Same as Fig. 7.1 in Chap. 7)

k
k

k k
k

k k

k

3R
3R

3T

1I 1I 1R

1T

2I 2I
2R

2T

x

z

2This convention is taken so as to be consistent to Chaps. 2 and 7, where the medium β (z < 0) is
the source of polarization.
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[Problem 8.1] Using the above notations and the Poisson-Boltzmann equation,
derive the following formula of the electric field Ez(0; z) in z ≤ 0,

Ez(0; z)2 =
(

d�(z)

dz

)2

= 8πkBT

ε

Ni∑

i=1

ni

{
exp

(
−Zie�(z)

kBT

)
− 1

}
. (8.5)

In a case of Z : Z electrolyte solution (Ni = 2, Z1 = −Z2 = Z, n1 = n2 = n),
show that Eq. (8.5) is simplified to be

Ez(0; z) = −d�(z)

dz
= −

√
32πkBT n

ε
sinh

(
Ze�(z)

2kBT

)
. (8.6)

(Hint) Note that �(z) is related to the charge density ρ(z) by the one-dimensional
Poisson equation,

d2�(z)

dz2 = −4π

ε
ρ(z), (8.7)

while ρ(z) is assumed to be given by the Boltzmann distribution of ions,

ρ(z) =
Ni∑

i=1

Zieni exp

(
−Zie�(z)

kBT

)
. (8.8)

Coupled solution of Eqs. (8.7) and (8.8) leads to Eq. (8.5).

Surface charge and potential Using the static electric field Ez(0; z) in the diffuse
layer, the χ(3) contribution to the SFG/SHG signal is estimated by integrating it
over the z coordinate. The following formulas are analogous with those for the bulk
quadrupole in Chap. 7, in the sense that the overall contributions from deep region
(z � 0) are estimated by integration.

The nonlinear polarization per unit area P S is given by integrating Eq. (8.2)
along z,

P S
p =

∫ 0

−∞
dz
∑

q,r

[
χ(2)

pqr + χ(3)
pqrzEz(0)

]
Eq(ω1)Er(ω2)

≈
∑

q,r

∫ 0

−∞
dz
[
χ(2)

pqrδ(z − 0−) + χ(3)
pqrsEz(0; z)

]
Eq(ω1)Er(ω2)

≈
∑

q,r

[
χ(2)

pqr − χ(3)
pqrs�(0)

]
Eq(ω1)Er(ω2). (8.9)
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In the final expression of Eq. (8.9), χ(2) is defined as the second-order susceptibility
per unit area, and χ(3) as the third-order susceptibility per unit volume. Since χ(3)

is a bulk property, the definition per unit volume is feasible for a uniform material.

Equation (8.9) includes the surface potential �(0) = −
∫ 0

−∞
Ez(0; z)dz, which

affects the relative amplitude of χ(3)�(0) term to χ(2).3

The surface potential �(0) is related to the surface charge density σ . By applying
the Gauss divergence theorem (see Sect. 2.1.2) to the solid-liquid interface, where
the surface charge σ is located and the electric field E (or electric displacement D)
is along the z direction, one leads to

4πσ = −εEz(0; z = 0−).

In the case of Z:Z electrolyte solution, the result of Guoy-Chapman theory in
Eq. (8.6) is further applied to the above equation to obtain

σ =
√

2kBT nε

π
sinh

(
Ze�(0)

2kBT

)
(8.10)

or

�(0) = 2kBT

Ze
sinh−1

(√
π

2kBT nε
σ

)
. (8.11)

Therefore, the surface charge density σ gives rise to the surface potential �(0), and
thereby the χ(3) signal of SFG/SHG in Eq. (8.9).

Phase factor In the derivation of Eq. (8.9), we have simply integrated Eq. (8.2) with
omitting the phase of light electric fields. The validity of this treatment depends on
the thickness of the range that the static electric field Ez(0; z) penetrates. If the
range of Ez(0; z) is sufficiently shorter than the wavelengths of incident or emitted
light fields, their phase factors are regarded as constant over the integral range of z

and therefore can be neglected. Otherwise we need to explicitly take account of the
phase factors in the integral of Eq. (8.9) [11, 19, 25]. We discuss this issue here, and
provide the modified formula if necessary.

We first examine the range of static electric field Ez(0; z) based on the Guoy-
Chapman theory. Equation (8.6) for the Z : Z electrolyte solution can be
analytically solved for �(z). This Eq. (8.6) is modified to

d

dz

{
tanh

(
Ze�(z)

4kBT

)}
= 1

rD
tanh

(
Ze�(z)

4kBT

)
,

where

rD =
√

εkBT

8πZ2e2n
(8.12)

3The original literature of Eisenthal et al. [23] adopted a positive sign to �(0) in Eq. (8.9). This
difference stems from definition of the direction of z axis.
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Table 8.1 Estimated Debye
length rD in Eq. (8.12) for 1:1
electrolyte solutions with
varying concentration.
T = 298.15 K and ε = 78.5
are employed. (Note that this
estimate assumes unit activity
coefficient)

Concentration
Debye
length

1 M 3.0 Å

0.1 M 9.6 Å

0.01 M (10 mM) 3.0 nm

0.001 M (1 mM) 9.6 nm

0.0001 M (0.1 mM) 30 nm

is called the Debye length for the Z : Z electrolyte solution. The solution of �(z) is

�(z) = 4kBT

Ze
tanh−1

{
tanh

(
Ze�(0)

4kBT

)
exp

(
z

rD

)}
(z ≤ 0). (8.13)

In a sufficiently dilute solution where Ze�(0)/4kBT � 1, this equation is
linearized using tanh x ≈ x (x � 1) to be

�(z) � �(0) exp

(
z

rD

)
(z ≤ 0). (8.14)

Equations (8.13) or (8.14) indicates that the range of electrostatic field is determined
by the Debye length rD . We roughly estimate the spatial scale of rD for 1:1
electrolyte solutions with varying concentration in Table 8.1. The table shows that
the Debye length increases with lower concentration.

Then we derive the formula of χ(3) contribution with explicitly considering the
phase factors. Here we consider the SFG geometry in Fig. 8.3, where the incident
lights emit from the medium α (z > 0) and polarization is generated in β (z < 0).
And we use the same notations for other geometric properties as those defined in
Chap. 7. With considering the phase factors, the nonlinear polarization per unit area
P S in Eq. (8.9) is modified to

P S
p =

∫ 0

−∞
dz exp

(
−ik

β
G,z(�)z

)∑

q,r

[
χ(2)

pqrδ(z − 0−) + χ(3)
pqrzEz(0; z)

]

· LI,q(ω1)LI,r (ω2)E
α
I,q(ω1)E

α
I,r (ω2) exp

(
ik

β
T ,z(ω1)z

)
exp

(
ik

β
T ,z(ω2)z

)
.

(8.15)

The derivation of this equation is in parallel with that of Eqs. (7.35) and (7.36) in
Chap. 7. In this equation, k

β
G,z(�) is the z component of the SFG wavevector in

medium β (z < 0) in the propagating direction G (G = T for transmission and R

for reflection). Eα
I (ωf ) is the incident electric field in medium α at frequency ωf

(f = 1, 2), and LI (ωf ) is the optical factor in Eqs. (5.29) and (5.30) to convert the
incident light to transmission one. (Note that the local field factors in Eq. (7.36) are
incorporated in χ(2) and χ(3).)
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Equation (8.15) is integrated over z,

P S
p =

∑

q,r

[
χ(2)

pqr+χ(3)
pqrz

∫ 0

−∞
dzEz(0; z) exp

{
i(k

β
T ,z(ω1)+k

β
T ,z(ω2)−k

β
G,z(�))z

}]

· LI,q(ω1)LI,r (ω2)E
α
I,q(ω1)E

α
I,r (ω2). (8.16)

The χ(3) term including the z integral in Eq. (8.16) is further simplified as follows.

(χ(3) term) = χ(3)
pqrz

∫ 0

−∞
dz Ez(0; z) exp

{
i(k

β
T ,z(ω1) + k

β
T ,z(ω2) − k

β
G,z(�))z

}

= χ(3)
pqrz

∫ 0

−∞
dz

(
−d�(z)

dz

)
exp

(
iz

lG

)

= χ(3)
pqrz

{
−�(0) + i

lG

∫ 0

−∞
dz �(z) exp

(
iz

lG

)}
, (8.17)

where lG = 1/(k
β
T ,z(ω1) + k

β
T ,z(ω2) − k

β
G,z(�)) is the coherence length in the

direction G in Eq. (7.37). In the dilute solution where �(z) is expressed with
Eq. (8.14),

(χ(3) term) � χ(3)
pqrz

{
−�(0) + i

lG

∫ 0

−∞
dz �(0) exp

(
z

rD

)
exp

(
iz

lG

)}

= −χ(3)
pqrz�(0)

1

1 + i
rD

lG

. (8.18)

The result of Eq. (8.18) deviates from −χ
(3)
pqrz�(0) when the condition of rD � lG

breaks down. This indicates that the phase factor in χ(3) contribution becomes
significant in dilute solutions where the Debye length rD is comparable to the
coherent length lG of SFG.

8.1.3 Calibrating χ(3) Effect in SFG Spectra

Attempts to estimate the χ(3) contribution in observed SFG/SHG spectra of charged
interfaces have been done experimentally and theoretically. Experimental estimate
of χ(3) requires decomposition of observed signal into χ(2) and χ(3) contributions.
The decomposition was performed by changing ionic strength (concentration) of the
electrolyte solution, with an assumption that the changing ionic strength affects the
surface potential �(0) but does not affect χ(2) from the interface layer [25]. Though
the validity of such assumption should be carefully examined, the results of χ(3)

are generally consistent to the direct calculation of χ(3) shown in Fig. 8.2b, which
supports the validity of the estimate.
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Fig. 8.4 (Left panel) calculated Im[χ(2)] spectrum (black) and the intrinsic spectrum after
calibrating χ(3) (purple) for charged α-quartz/H2O interface [16]. (Right panel) experimentally
observed Im[χ(2)] spectra for silica glass/HOD solution with varying pH [18]. (Reprinted with the
permission from Ref. [18]; Copyright 2016 American Chemical Society)

One of the important concerns is the relative amplitude of χ(2) and χ(3)�(0) in
Eq. (8.9), which depends on the surface potential �(0). This estimate can be carried
out with the calculated χ(2) and χ(3) spectra on the same footing, using the same
time correlation function formula and the common molecular model, in Fig. 8.2. The
MD results show that the amplitudes of |χ(2)| and |χ(3)�(0)| in the O–H stretching
region of liquid water become comparable at �(0) ∼ 0.02 V [16]. Quantitative
accuracy of this estimate may have some room for improvement, but this estimate
provides the rough idea on the relative amplitudes between |χ(2)| and |χ(3)�(0)|.
In ordinary silica surfaces in contact with basic solutions, �(0) can be the order
of 0.1 V, where the χ(3)�(0) contribution becomes comparable to or outweighs
the χ(2) contribution in observed SFG spectra. In electrode-solution surfaces with
controlling surface potential, χ(3)�(0) can readily be a dominant contribution.

Another concern is to extract the intrinsic χ(2) spectra related to the interfacial
structure from the observed SFG spectra by calibrating the χ(3) contribution. Since
the χ(3) is a bulk property and its spectra are known, its contribution can be
subtracted from an observed (calculated) SFG spectrum from charged surface. Such
attempt is feasible by MD simulation. Figure 8.4 shows that SFG spectrum of
charged silica-water interface with and without the calibration of χ(3) signal. The
intrinsic χ(2) spectrum after calibrating χ(3) contribution clearly exhibits the bands
assigned to hydrogen-bonding O–H to surface silanol [16]. The intrinsic Im[χ(2)]
spectrum after the calibration is similar to experimentally observed Im[χ(2)]
spectrum in acid solution where surface silanol is not deprotonated [18].

8.2 Chiral Elements of χ(2)

The present section discusses the applications of SFG spectroscopy to chiral
systems. Chirality is another source of SFG in addition to the interface, since both
are pertinent to the lack of inversion symmetry, the necessary condition for the SFG
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to be dipole allowed. In the preceding chapters we have focused on the SFG response
from interfaces. Chiral materials were known to be SFG active in 1960s [10], though
the chiral vibrational SFG spectroscopy has not been fully explored until recently,
mainly because the chiral response is weak in ordinary conditions. However, there
is a promising avenue to exploit both the interface and chiral sensitivities in future
SFG spectroscopy. In what follows, we summarize fundamental features of SFG
from chiral systems, which are somewhat distinct from the features of SFG from
the interfaces [5, 13].

8.2.1 Symmetry

For a chiral system, the inversion or reflection operation changes its chirality.
Accordingly, the χ (2) elements associated to chiral properties should not be invariant
by the inversion or reflection. The above reasoning from the symmetry requirement
leads to the fact that the following six elements of χ

(2)
pqr could be pertinent to the

chirality:

χ(2)
xyz, χ(2)

xzy, χ(2)
yxz, χ(2)

yzx, χ(2)
zxy, χ(2)

zyx . (8.19)

This is a general conclusion for third-rank tensor properties. Any other tensor
elements χ

(2)
pqr than in Eq. (8.19) miss either of x, y or z in the suffixes pqr . For

example, χ
(2)
zxx does not have y in the suffixes zxx. We can readiy understand that

those other tensor elements χ
(2)
pqr except for those in Eq. (8.19) do not satisfy the

symmetry requirement of inversion or reflection. For example, let us consider the
element χ

(2)
zxx . It is responsible to the second-order polarization P

(2)
z (�) induced by

Ex(ω1) and Ex(ω2),

P (2)
z (�) = χ(2)

zxx(�,ω1, ω2)Ex(ω1)Ex(ω2).

This equation can never be associated to the chirality. If we operate the reflection at
the plane perpendicular to the y axis, the vector elements of P

(2)
z , Ex(ω1), Ex(ω2)

are unaffected. Consequently, the χ
(2)
zxx should not change to satisfy the relation,

which means that χ
(2)
zxx is not a chiral property. The same argument holds for the

other elements of χ
(2)
pqr except for the above six elements.

Some of the six χ (2) elements in Eq. (8.19) may be related when the material
has a certain spatial symmetry. We treat here two cases, (i) isotropic bulk and (ii)
interface of C∞ symmetry.

(i) Istropic bulk In the case of an isotropic material, the following relations hold
for the six elements,

χ(2)
xyz = −χ(2)

xzy = −χ(2)
yxz = χ(2)

yzx = χ(2)
zxy = −χ(2)

zyx

(
≡ χ

(2)
chiral

)
. (8.20)
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These relations are readily confirmed from the fact that χ (2) for an isotropic material
should be invariant by arbitrary rotation around an arbitrary axis. For example, if we
rotate the system by 90◦ around the z axis, the coordinates should change as follows.

x → y, y → −x, z → z (rotation around z).

Accordingly, χ
(2)
xyz = −χ

(2)
yxz is required in order that the rotation does not affect

the material properties. The similar argument holds to derive the other relations in
Eq. (8.20).

Equation (8.20) has one independent variable, χ
(2)
chiral. It is given by the average,

χ
(2)
chiral = 1

6

x∼z∑

p,q,r

εpqrχ
(2)
pqr , (8.21)

where εpqr is the Levi-Civita antisymmetric tensor (see Appendix A.2),

εpqr =
⎧
⎨

⎩

1 (pqr = xyz, yzx, zxy),

−1 (pqr = yxz, zyx, xzy),

0 (otherwise).
(7.132)

Equation (8.21) clarifies the invariance of χ
(2)
chiral to arbitrary rotation, since the Levi-

Civita tensor is invariant as shown in Eq. (7.137) in Appendix A.2. Therefore, the
expression of Eq. (8.21) is valid for the molecule-fixed coordinates as well.

(ii) Interface Then, we consider the situation that the chiral material forms an
interface of C∞ symmetry.

[Problem 8.2] Suppose a chiral interface system of azimuthal C∞ symmetry. What
relations are required among the six χ (2) elements of chiral origin in Eq. (8.19)?

In a chiral system with interface, the nonvanishing χ (2) elements of this system
are attributed to either interface or chiral origin. We find from Sect. 3.3.3 and
Problem 8.2 that the χ

(2)
pqr elements of chiral origin are distinct from the χ

(2)
pqr

elements of interface origin. The nonvanishing elements of χ
(2)
pqr are summarized

below.

• χ (2) of interface origin (achiral)—

χ(2)
xxz = χ(2)

yyz, χ(2)
xzx = χ(2)

yzy, χ(2)
zxx = χ(2)

zyy, χ(2)
zzz. (3.48)

• χ (2) of chiral origin—

χ(2)
xyz = −χ(2)

yxz, χ(2)
xzy = −χ(2)

yzx, χ(2)
zxy = −χ(2)

zyx . (8.22)
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These tensor elements are related to the following polarization combinations of sum
frequency, visible and infrared fields, as discussed in Sect. 3.3.3.

• χ (2) of interface origin (achiral)—SSP, SPS, PSS, PPP

• χ (2) of chiral origin—SPP, PSP, PPS
(8.23)

The above polarization combinations are mutually exclusive, which allows for
distinguishing the SFG signals of chiral origin and of interface origin by choosing
proper polarization combinations. The selection rules in Eq. (8.23) are valid for
whether the chiral χ(2) elements actually originate from the isotropic bulk (8.20) or
from the interface (8.22). The SFG spectroscopy is capable of detecting the chiral
signal in background-free condition. This feature of SFG as a chiral probe is in
contrast to other chiral probe techniques based on difference spectra by different
circular polarizations, such as circular dichroism and Raman optical activity.

8.2.2 Intensity

The χ (2) elements of chiral origin are also represented in the perturbation and time
dependent formulas in Chap. 3 in the same manner with those of interface origin.
Therefore, the computational methods of chiral SFG signals are common with those
of interface SFG described in the preceding chapters. However, there are some
differences to describe the χ (2) elements for chiral SFG.

The χ (2) of chiral origin also consists of the vibrationally resonant and nonreso-
nant terms in Eq. (3.33), χ (2) = χ (2),res + χ (2),nonres. In the case of isotropic bulk,
χ

(2)
chiral in Eq. (8.21) is accordingly given by

χ
(2)
chiral = χ

(2),res
chiral + χ

(2),nonres
chiral = 1

6

x∼z∑

p,q,r

εpqr

(
χ(2),res

pqr + χ(2),nornes
pqr

)
, (8.21)

where χ
(2),res
chiral and χ

(2),nonres
chiral are represented from Eqs. (3.36) and (3.38), respec-

tively, to be

χ
(2),res
chiral (�,ω1, ω2) = 1

6

x∼z∑

p,q,r

εpqrχ
(2),res
pqr

= − 1

6h̄

x∼z∑

p,q,r

εpqr

∑

g,m

(
ρ(0)

g − ρ(0)
m

) 〈
g|αpq(�)|m〉 〈m|μr |g〉

ω2 − ωmg + i�mg

= − 1

6h̄

∑

g,m

(
ρ(0)

g −ρ(0)
m

) 1

ω2−ωmg+i�mg

[
〈g| {αyz(�)−αzy(�)

} |m〉〈m|μx |g〉

+〈g| {αzx(�)−αxz(�)} |m〉〈m|μy |g〉+〈g| {αxy(�)−αyx(�)
} |m〉〈m|μz|g〉

]

(8.24)
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and

χ
(2),nonres
chiral = 1

6

x∼z∑

p,q,r

εpqrχ
(2),nonres
pqr

= − 1

6h̄

x∼z∑

p,q,r

εpqr

∑

g,m

(
ρ(0)

g − ρ(0)
m

) 〈
g|αpr(�)|m〉

〈
m|μq |g〉

ω1 − ωmg + i�mg

= 1

6h̄

∑

g,m

(
ρ(0)

g − ρ(0)
m

) 1

ω1 − ωmg + i�mg

[
〈g| {αyz(�) − αzy(�)

} |m〉〈m|μx |g〉

+〈g| {αzx(�)−αxz(�)} |m〉〈m|μy |g〉+〈g| {αxy(�)−αyx(�)
} |m〉〈m|μz|g〉

]
.

(8.25)

The above formulas of Eqs. (8.24) and (8.25) include the antisymmetric components
of the Raman tensor

{
αpq − αqp

}
. Therefore, the isotropic average χ

(2)
chiral in

Eq. (8.21) should vanish if the Raman tensor is symmetric. The antisymmetric
components of the Raman tensor is generally minor in electronically off-resonant
conditions, as discussed in Sect. A.3. This is the main reason why the chiral SFG has
not been fully exploited for a long time, though it is allowed for symmetry reason.
We also notice in passing that Eqs. (8.24) and (8.25) lead to χ

(2),res
chiral = −χ

(2),nonres
chiral

for ω1 = ω2. This indicates that SHG yield no signal from isotropic bulk materials.4

However, the intensity of chiral SFG signals is remarkably augmented when
� becomes close to the electronic resonant condition [4, 6]. This is because the
antisymmetric components of the Raman tensor become signficantly strong in
electronically resonant or near-resonant conditions. Figure 8.5 displays an example
of chiral SFG spectra from R-1,1’-bi-2-naphtol with varying sum-frequency photon
energy h̄� [4]. These spectra demonstrate that the intensity of chiral SFG signal is
augmented by 105 in the near resonance condition with an electronic excited state.
Such remarkable enhancement makes the chiral SFG a practically useful tool to
detect chiral vibrational spectra with monolayer sensitivity.

8.2.3 Future Development

The vibrational SFG spectroscopy of chiral probe has many applications, particu-
larly to biological molecules. It could attain monolayer sensitivity to detect chiral
species. Yan et al. argued that the chiral SFG could have interface selectivity in
the electronically off-resonant conditions that the chiral signal from isotropic bulk
vanishes [26].

4Note that the SHG from chiral interface is allowed [17, 24].
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Fig. 8.5 Chiral (SPP) spectra
from R-1,1’-bi-2-naphtol
solution in acetone with
varying sum-frequency
photon energy (h̄� = 3.70,
3.65, 3.59, 2.51 eV from top
to the bottom). The baselines
are vertically shifted for
clarity, and the 2.51 eV
spectrum is multiplied by
105. (Reprinted with
permission from Ref. [4].
Copyright 2003 by American
Physical Society.)
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Another promising direction of chiral SFG is to combine the heterodyne
measurement [20–22]. The heterodyne measurement can expand the applicability
of chiral SFG. First, it allows for distinguishing enantiomers from the sign of the
Im[χ(2)] amplitude. It is advantageous over conventional intensity measurement to
detect small signals by amplifying weak signals with a local oscillator, while the
conventional measurement detects the square of the small amplitude. Therefore,
the heterodyne measurement allows for detecting the chiral signal in ordinary con-
ditions of electronically off-resonance without resort to electronic and vibrational
double resonance conditions.

In summary, the SFG spectroscopy is capable of detecting the signal of chiral
origin selectively by choosing proper combination of polarizations. The chiral
signal from isotropic bulk should be vanishingly small in electronically off-resonant
condition, but its intensity is remarkably enhanced in the electronically (near)
resonant condition. The chiral SFG signal from the surface is possibly allowed even
in the electronically off-resonant condition, which offers an intriguing possibility of
interface-specific chiral probe technique. The heterodyne measurement will greatly
expand the range of detection and application of chiral SFG spectroscopy.

8.3 Solutions to Problems

8.3.1 Guoy-Chapman Theory

[Problem 8.1] Using the above notations and the Poisson-Boltzmann equation,
derive the following formula of the electric field Ez(0; z) in z ≤ 0,

Ez(0; z)2 =
(

d�(z)

dz

)2

= 8πkBT

ε

Ni∑

i=1

ni

{
exp

(
−Zie�(z)

kBT

)
− 1

}
. (8.5)
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In a case of Z : Z electrolyte solution (Ni = 2, Z1 = −Z2 = Z, n1 = n2 = n),
show that Eq. (8.5) is simplified to be

Ez(0; z) = −d�(z)

dz
= −

√
32πkBT n

ε
sinh

(
Ze�(z)

2kBT

)
. (8.6)

(Hint) Note that �(z) is related to the charge density ρ(z) by the one-dimensional
Poisson equation,

d2�(z)

dz2 = −4π

ε
ρ(z), (8.7)

while ρ(z) is assumed to be given by the Boltzmann distribution of ions,

ρ(z) =
Ni∑

i=1

Zieni exp

(
−Zie�(z)

kBT

)
. (8.8)

Coupled solution of Eqs. (8.7) and (8.8) leads to Eq. (8.5).

Equations (8.7) and (8.8) are analytically solved as follows. d2�/dz2 in Eq. (8.7)
is represented using Ez = −d�/dz by

d2�

dz2
= − d

dz
Ez(0; z) = −dEz

d�

d�

dz
= dEz

d�
Ez = 1

2

d

d�
E2

z ,

using a functional relation of � and z. Therefore, the equation to be solved is

1

2

d

d�
E2

z = −4π

ε

Ni∑

i=1

Zieni exp

(
−Zie�

kBT

)
. (8.26)

By integrating Eq. (8.26) from � = 0 to � (or z = −∞ to z),

1

2

{
Ez(0; z)2 − Ez(0; z = −∞)

}
= 1

2
Ez(0; z)2

=4π

ε

⎡

⎣
Ni∑

i=1

kBT ni exp

(
−Zie�

kBT

)⎤

⎦
�

�=0

=4π

ε

Ni∑

i=1

kBT ni

{
exp

(
−Zie�

kBT

)
− 1

}
,

where the boundary condition Ez(0; z → −∞) = 0 is used. The above relation
leads to Eq. (8.5).

In the case of Z : Z electrolyte solution, Eq. (8.5) is further simplified. By
assuming Ni = 2, Z1 = −Z2 = Z, n1 = n2 = n, Eq. (8.5) becomes
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Ez(0; z)2 = 8πkBT

ε
n

{
exp

(
−Ze�

kBT

)
+ exp

(
Ze�

kBT

)
− 2

}

= 8πkBT

ε
n

{
2 sinh

(
Ze�

2kBT

)}2

and thus by taking the square root to obtain Eq. (8.6). The minus sign of Eq. (8.6)
is determined to satisfy the boundary condition, �(z → −∞) = 0, since this
condition requires Ez = −d�/dz < 0 if �(z) > 0, or Ez = −d�/dz > 0 if
�(z) < 0.

8.3.2 Chiral χ(2) Components

[Problem 8.2] Suppose a chiral interface system of azimuthal C∞ symmetry. What
relations are required among the six χ (2) elements of chiral origin in Eq. (8.19)?

For a system of C∞ symmetry, the χ(2) property should be invariant by arbitrary
rotation around the normal axis z. For example, if we rotate the coordinate system
by 90◦ around the z axis, the coordinates should change as

x → y, y → −x, z → z

Therefore, the following three conditions should hold among the chiral components,

χ(2)
xyz = −χ(2)

yxz, χ(2)
xzy = −χ(2)

yzx, χ(2)
zxy = −χ(2)

zyx . (8.22)
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Chapter 9
Applications: Aqueous Interfaces

Abstract This chapter presents recent applications of the computational SFG
analysis for aqueous interfaces. Aqueous interfaces are relevant to a variety of
fields in chemistry and engineering, and have been extensively investigated by
SFG spectroscopy. Nevertheless, their hydrogen-bonding network and complicated
vibrational coupling hinder simple intuitive interpretation of the observed spectra.
The aid of MD simulation to analyze the complicated SFG spectra is actually
quite powerful. This chapter introduces the results of analysis for various aqueous
interfaces led by the author’s group and others, including water, ice, electrolyte
aqueous solutions, water-oil and water-membrane interfaces.

Keywords O–H stretching · Vibrational coupling · Interface thickness · Ion
segregation · Electric double layer

Water and aqueous interfaces have been extensively studied by the SFG spec-
troscopy, and computational analysis of their SFG spectra has been particularly
developed [32, 36, 61, 76, 96]. Water has its characteristic three-dimensional
network structure of hydrogen bonds, and the hydrogen-bond structure gives rise
to a number of peculiar properties of liquid water [3, 39]. Therefore, it is an
intriguing issue to understand the hydrogen-bonding structure of water surface, and
to reveal the structural difference from that of bulk water and its implications [44].
The interface structure is of fundamental importance to interfacial properties and
heterogeneous reactions at water surface.

One important advantage of applying the SFG spectroscopy to aqueous interfaces
is the availability of the O–H stretching vibrational band. The O–H stretching band
in 3000–3800 cm−1 region is fairly easy to measure technically by SFG spec-
troscopy, and its frequency and intensity are sensitive indicators of the hydrogen-
bond strength. Selective detection of the O–H stretching band of interfacial water
provides quite useful information on the interfacial structure of water.

On the other hand, SFG spectra of aqueous interfaces pose a challenge to
interpretation. The O–H stretching vibration of water involves various kinds of
vibrational couplings, both intramolecular and intermolecular, which complicate the
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spectral assignment. Just as an example, two equivalent O–H vibrations of a single
isolated water molecule are coupled and split into symmetric and antisymmetric
vibrational modes, which have orthogonal transition dipole moments. Therefore,
the single water molecule exhibits two different directions of transition moments.
We could not determine the orientation of the molecule from the observed direction
of transition moment unless we know the character of the vibrational mode. In
condensed phase, the water O–H moieties are coupled by the hydrogen bonds,
and consequently the vibrational modes are delocalized among intermolecular O–H
moieties. Such delocalized vibrations are often beyond our intuitive understanding.
To properly assign the observed O–H vibrations in relation to the interface structure,
theoretical analysis is particularly required.

Here we summarize the current status of the theoretical analysis of SFG spectra
of water and aqueous interfaces. We discuss the surfaces of liquid water, ice, and
electrolyte solutions. Besides the air-aqueous interfaces, liquid/liquid (water/oil)
and water/monolayer interfaces are also treated. The knowledge described below
should be regarded as fundamentals for future progress. In this chapter, we discuss
the SFG spectra of O–H stretching region in the SSP polarization, the most
commonly employed geometry, unless otherwise noted.

9.1 Water Surface

The vibrational spectra of water surface have been computationally analyzed by
a number of researchers [4, 10, 13, 29, 52, 56, 57, 62, 73, 74, 80, 81, 103, 110].
Here we briefly show some basic information of water surface derived from the
computational analysis of the SFG spectra.

Historical perspective The SFG spectrum of water surface in the O–H stretching
region was first reported by Shen and co-workers [14], and subsequently studied
by other groups including Shultz and Richmond [88, 94] in the pioneer stage of
SFG spectroscopy. Since then the water surface is one of the most intensively
studied surfaces by SFG [9, 93]. The spectral shape has been shown in Fig. 1.1
in Chap. 1, which apparently consists of two bands, a sharp band at 3700 cm−1 and
a broad one at 3000∼3600 cm−1. We note that the spectral lineshapes reported in
early period [14, 88, 94] were noticeably different from each other. This problem
of disagreement has been resolved by the progress of spectroscopy, and Fig. 1.1 is
currently considered to be the established intensity spectrum of liquid water in the
O–H stretching region.

First MD calculation of the water SFG spectrum was carried out by Morita and
Hynes on the basis of the energy representation in Sect. 4.1 [57]. The calculated
SFG spectrum of water surface reproduced the two-band structure in the O–H
stretching region. The computation predicted the Im[χ(2)] spectrum that the sharp
band at 3700 cm−1 has a positive amplitude of Im[χ(2)] while the broad band at
3000∼3600 cm−1 has a negative sign (see Figs. 8.2a and 9.1). As we have argued in
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Sect. 4.2, the sign of the Im[χ(2)] spectrum in the SSP polarization is indicative
of the orientation of the transition dipole for the O–H stretching vibration. The
positive sign at 3700 cm−1 indicates upward O–H orientation with H pointing
to the vapor, while the negative sign at 3000∼3600 cm−1 implies downward
O–H orientation. Subsequently the phase-sensitive or heterodyne-detected SFG
measurement confirmed the band shape of the Im[χ(2)] spectrum [40, 66, 105].1

The prediction of the Im[χ(2)] spectral features is the first successful demonstration
of the computational analysis in the SFG spectroscopy.

Thickness of surface sensitivity One important and general concern in the SFG
spectroscopy is to find the depth of detection in the interface region. As we have
argued in Chap. 1, the SFG is sensitive to the interface where the inversion symmetry
is broken. The SFG-active region of interface may depend on the system in question.
In molecular liquids such as water, the broken symmetry arises from anisotropic
molecular orientation near the interface, whereas the bulk material has random and
isotropic orientation. The MD simulation is able to investigate molecular orientation
with varying depth, and thereby answer the question about the spatial origin of
surface sensitivity.

The detected depth by SFG spectroscopy can be readily examined with MD
simulation. As illustrated in Fig. 9.1, we introduce a depth coordinate ẑ which is
normal to the interface and that the interface is located at ẑ ≈ 0. We tentatively
set a region at the surface z > zthres, and calculate a χ(2) spectrum of the
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Fig. 9.1 MD analysis of surface thickness in SFG spectroscopy. (Left panel a) density profile
of water surface as a function of ẑ in blue. The varying surface regions ẑ > zthres are shown with
orange bars. (Right panel b) convergence behavior of calculated Im[χ(2)] spectrum with expanding
the interface region ẑ > zthres [57]. (Reprinted from Ref. [57], Copyright 2012, with permission
from Elsevier)

1Early phase-sensitive SFG experiments reported a positive tail of Im[χ(2)] at around 3000 cm−1

region [40, 66, 105]. That feature is considered to be an artifact of phase calibration at present
[67, 114].
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system in that restricted region. This calculation is feasible by MD simulation. By
gradually lowering the threshold zthres and expanding that region, we can observe
the convergence behavior of the calculated χ(2). Figure 9.1 shows the results of such
analysis. The figure tells us that the positive band at 3700 cm−1 originates from the
region of ẑ > −3 Å, since the band amplitude reaches the convergence up to the
region. This result evidences that this positive band at 3700 cm−1 comes from the
top monolayer of the water surface, again supporting the free O–H exposed to the
air. On the other hand, the negative band at 3000∼3600 cm−1 converges at about
ẑ > −9 Å, indicating that the band of hydrogen-bonded O–H is attributed to a few
top monolayers of the water surface. This analysis confirms the remarkably acute
selectivity of SFG spectroscopy in the monolayer scale.

Analysis of hydrogen-bonded O–H band: The broad band at 3000∼3600 cm−1

is attributed to hydrogen-bonded O–H, due to the substantial red shift of frequency.
However, further detailed assignment of this band has invoked a number of studies
and often confusions. As seen in the experimental SFG spectrum of water (left panel
of Fig. 1.1), this broad band appears to have two sub-bands, one at about 3200 cm−1

and the other at about 3400 cm−1. The two sub-bands are often called “ice-like” and
“liquid-like” bands, respectively, in analogy with these spectra of the corresponding
bulk materials. The O–H band at 3200 cm−1 is obviously seen in the infrared and
Raman spectra of ice [79], while the band at 3400 cm−1 is seen in liquid water
[16]. However, the physical origin of these two sub-bands in the SFG spectrum is
still controversial. An intuitive understanding of the two sub-bands comes from the
picture that the water surface is a mixture of ice-like water and liquid-like water.
This idea of two-state mixture model has a long history in bulk water [16], though
there is no consensus to support this idea with microscopic investigation by MD
simulation or other means.

Bonn and co-workers proposed an alternative assignment of the two-band
structure that the two sub-bands are due to Fermi splitting of O–H stretching
vibrational states by the H–O–H bending overtone [98, 99]. Their argument is
supported by the experiment of H-D isotope dilution. By replacing H2O with HOD,
they observed that the two sub-bands merge into one. This implies that the two-band
structure should originates from vibrational coupling rather than the structure, since
the isotope dilution little affects on the structure of nuclei.

As we argued in the beginning of this chapter, a main challenge in analyzing O–
H vibration stems from extensive intra- and inter-molecular vibrational couplings,
which delocalize the O–H vibrations and complicates the relation to the molecular
orientation. To disentangle the O–H vibrations, the H-D isotope dilution offers
a useful means. The isotope dilution preserves the structure of nuclei, while it
effectively eliminates the intra- and inter-molecular couplings among nearby O–
H bonds. Therefore, the observed spectrum approaches that of assembly of isolated
O–H bonds in dilute conditions, and the ideal picture about the relation of O–H
orientation and Im[χ(2)] in Sect. 4.2.1 becomes increasingly reliable in the spectral
analysis.
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The two sub-bands at 3200 and 3400 cm−1 are widely seen in the O–H bands
of a variety of aqueous systems, though they exhibits varying spectral lineshapes
and relative intensities. These O–H band shapes of various aqueous systems are
likely influenced by inhomogeneous species as well as vibrational couplings.
Previous time-resolved SFG measurements confirmed that the O–H band includes
comparable homogeneous and inhomogeneous widths[8, 25, 51]. Comprehensive
understanding of those band shapes is one of the principal aims of the further SFG
analysis of water surface.

Bend vibration Most SFG studies on water surface have dealt with the O–H
stretching vibrations. The O–H stretching vibration is easy to measure and provides
rich information on hydrogen-bonding environment, whereas the spectral analysis is
complicated. There are some attempts to analyze other modes of the SFG spectrum,
such as bend and libration [46, 60, 64, 75]. Here we discuss the bend mode in the
SFG spectrum of water.

The SFG measurement of the bend band was first carried out by Benderskii
and co-workers [108], and subsequently the heterodyne measurement of the bend
band was reported by Kundu et al. [47]. The measured Im[χ(2)] spectrum revealed
a positive band over the bend frequency region, though a previous simulation
by Nagata et al. had predicted a bipolar shape of the Im[χ(2)] band [60]. The
qualitative disagreement between the simulation and experiment was elucidated
by further theoretical analysis [47], concluding that the bend band of SFG is
actually dominated by the χ IQB term of bulk quadrupole origin discussed in Chap. 7.
The sign of Im[χ(2)] in the bend region is therefore insensitive to the molecular
orientation at surface.

We note in passing that the role of quadrupole contribution on SFG spectra was
also found in benzene [45, 50], as discussed in Sect. 10.2. Systematic investigation
of the quadrupole effect on various systems is desired.

9.2 Ice Surface

The structure of ice surface has been drawing wide attention for more than a
century. Faraday suggested premelting of ice surface [15] below the freezing
temperature, and subsequently a number of experiments using optical, magnetic
or electrical means confirmed that the premelting layer is developed in several tens
of nanometers at about T � −10 ◦C [79]. The SFG spectroscopy is powerful to
selectively probe the microscopic hydrogen bonding environment at the ice surface.
The experimental SFG spectrum of ice Ih basal surface is shown in Fig. 9.2. We
notice the remarkably intense band at about 3200 cm−1 in the ice spectrum, much
stronger than that of the water spectrum. The intensity further augments with
lowering temperature [19, 113]. The origin of this remarkable band is understood
with the help of MD analysis.
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Fig. 9.2 (a, b) Schematic pictures of basal face of ice surface [71], where red and white symbols
denote oxygen and hydrogen, and the bilayers are labeled with B1, B2, . . . , in order from the
topmost layer to the bulk. In the magnified picture (b), upward and downward hydrogens of
bilayer-stitching hydrogen bonds are colored in green and blue, respectively. (c, d) Experimental
ice spectrum of SSP polarization at 232 K [113]. The inset (d) compares the ice and water spectra.
(Reprinted with permission from Ref. [113]. Copyright 2001 by American Physical Society)

The intense band and its temperature dependence of the ice surface were
reproduced by MD simulation [31, 35] using QM/MM calculation instead of the
classical polarizable MD simulation. These authors found that the band intensity at
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3200 cm−1 is substantially augmented by the charge transfer, and accordingly the
classical model that omits the charge transfer effect could not sufficiently reproduce
the remarkable intensity. The band intensity is sensitive to the local disorder of the
tetrahedral ice structure as well as the charge transfer. The ordered ice structure
facilitates delocalized O–H vibrations, which couple with the charge transfer and
augment the band intensity. The large temperature dependence of the band intensity
is elucidated with the sensitivity to the local disorder.

The intense band is mainly attributed to the bilayer-stitching O–H vibrations
between the first (B1) and second (B2) bilayers of the ice surface in Fig. 9.2b.
By looking at the panel (b), one may think that the signals from the upward O–
H (green) and downward O–H (blue) vibrations should cancel each other in the
ideal ice lattice. However, the MD analysis showed that the upward and downward
O–H bonds between B1 and B2 layers are actually inequivalent because of more
structural disorder in the B1 bilayer than that in B2, and the broken symmetry near
the surface causes the strong SFG signal [71]. The larger disorder in the B1 layer is
indicative of the surface premelting in the atomic level, and the premelting develops
toward deeper bilayers with increasing temperature [92].

The above interpretation of the intense SFG band should be examined in
comparison with experimental measurement of the Im[χ(2)] spectrum. However,
experimentally reported lineshapes of the Im[χ(2)] spectrum are under serious
controversy at present [68, 71, 97], though those of the SFG intensity spectrum
agree. Otsuki et al. [71] and Smit et al. [97] reported a negative main band
of the Im[χ(2)] spectrum, which is in accord with previous theoretical studies
[11, 31, 35, 112], whereas Nojima et al. [68] experimentally reported a positive band.
This problem of Im[χ(2)] spectrum should be resolved to establish the spectrum.
There remain some important issues to be elucidated in relation to the SFG spectrum
of ice, including the proton ordering near the ice surface [68, 102, 112] and the
contribution of bulk signal in SFG [95, 112].

9.3 Electrolyte Solution Surfaces

Understanding of electrolyte aqueous solution surfaces has been remarkably
advanced in this century [43, 89, 115]. In early days of the twentieth century,
people believed that water surface is generally void of ions, on the basis of surface
tension measurements [21, 84] and the theory of dielectrics [70]. This picture
appears to be consistent to intuitive idea that ions prefer to be strongly hydrated
in the interior of bulk rather than to expose themselves to the air. This intuitive
picture was challenged in 2001 with MD simulation by Jungwirth and Tobias
[42]. They predicted that some anions, such as I− or Br−, rather prefer to be
exposed to the air as shown in Fig. 9.3. This prediction stimulated experimental
studies of electrolyte solution surfaces by various means, including SFG, SHG and
photoelectron spectroscopies [43, 72, 77]. The SFG spectroscopy played one of
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Fig. 9.3 MD snapshots (left) and density profiles (right) of NaX (X = F, Cl, Br, I) aqueous solution
surfaces [42]. (Reprinted with the permission from Ref. [42]. Copyright 2001 American Chemical
Society)

the leading roles to unveil the surface structures in combination with MD analysis
[18, 32, 36, 41]. Such studies became a prototype of close collaboration of SFG
experiment and MD simulation. Here we focus on the findings brought by the MD
analysis of SFG spectroscopy.
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9.3.1 Halide Ions: Surface Segregation

The MD simulation predicts the order of surface preference to be I− > Br− >

Cl− > F−, indicating that larger anions (e.g. I−) exhibit surface preference while
smaller ones (F−) are buried into the bulk liquid (see Fig. 9.3). In response to the MD
prediction, SFG measurements of NaX (X = F−, Cl−, Br−, I−) aqueous solutions
were carried out in 2004 by Liu et al. [49] and Raymond et al. [85]. While the
two groups reported analogous spectra of NaX solutions, their interpretations were
contradictory about the essential issue whether the observed SFG spectra support
the surface preference of I− and Br−. This ambiguity clearly indicates the need of
MD analysis to draw definite interpretation from the SFG spectra.

The MD simulation of NaI solution predicts the surface preference of I−, and
also reproduces the perturbed SFG spectrum of NaI solution from that of pure
water. The role of NaI on the spectral perturbation is manifested in the Im[χ(2)]
spectrum more clearly than the intensity spectrum (∼ |χ(2)|2). Figure 9.4a shows the
Im[χ(2)] spectrum of NaI solution [40], where the amplitude of Im[χ(2)] is shifted
to the positive direction compared to that of the pure water in 3100∼3500 cm−1,
and the perturbed Im[χ(2)] spectrum is well reproduced by the MD simulation in
Fig. 9.4b [28].
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Fig. 9.4 (a) Experimental Im[χ(2)] (SSP) spectra of 2 M NaI solution (red) and pure water (black)
[40], (b) Calculated Im[χ(2)] spectra [28] by Eq. (5.27), and (b′) the inset shows the self parts
by Eq. (5.27′). (c) Dipole-dipole correlation schemes of I− and water at surface. μz − μz (SSP)
cancels the Im[χ(2)] amplitude, while μy − μy (SPS) augments. (Reprinted with permission from
Ref. [40]; Copyright 2008 by American Physical Society. Reprinted with the permission from
Ref. [28]; Copyright 2007 American Chemical Society)
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Electric double layer The perturbation of electrolyte on the surface structure
and SFG spectra is generally understood by the electric double layer picture, as
illustrated in Fig. 9.5. This idea was applied to the SFG analysis by Shultz and
co-workers [94], and has been widely utilized as a basic picture for qualitative
understanding of spectral perturbation. In the case of NaI solution, the I− anion
comes closer to the surface than the Na+ cation, and thus these ions form an electric
double layer near the surface with an upward electric field (left panel of Fig. 9.5).
Consequently the water molecules in the double layer orient their dipole upward,
which gives rise to the positive perturbation on the Im[χ(2)] spectra. In fact, the
positive perturbation of Im[χ(2)] was observed by experiment and MD simulation,
indicative of the surface preference of I− more than Na+. On the other hand, if
cations comes closer to the surface than anions, a reverse electric double layer
should be formed and result in negative perturbation on Im[χ(2)] (right panel).
We will see such examples in other electrolyte solutions, including HCl solution
[26, 36].

This fundamental picture of spectral perturbation is widely valid for electrolyte
solution surfaces, since the electric double layer is generally formed at electrified
interfaces. Previous MD studies have shown that even a small charge separation
of ions causes sensitive perturbation on the SFG spectra [23, 38]. We occasionally
encounter SFG spectra of electrolyte solutions which are not readily interpreted with
this picture. Such exceptional cases offer further specific insight into the spectra and
structure, as we find some examples below.
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Validity of χ(2) ≈ N · α(2): In the above paragraph we argued that the positive
perturbation of Im[χ(2)] is indicative of the surface preference of I− more than
Na+. When we evaluate the perturbation on the spectral amplitude quantitatively,
further insight is obtained into the mechanism of SFG spectra for electrolyte solution
surfaces. The amplitude of χ(2) is conventionally presented with Eq. (3.41),

χ(2)
pqr ≈

N∑

l=1

α
(2)
l,pqr = N · α

(2)
pqr , (3.41)

on the basis of an assumption that the nonlinear susceptibility χ (2) is the sum of
hyperpolarizabilities α(2) of constituent molecules. Equation (3.41) implies that
χ (2) is governed by two factors, number density N and orientational order α(2).
The electric double layer orients the water molecules, as illustrated in Fig. 9.5, and

thus enhances the orientational average α
(2)
pqr . This interpretation is qualitatively in

accord with the above picture of electric double layer.
However, the actual enhancement of the χ(2) amplitude is significantly smaller

than that predicted by Eq. (3.41) in the SSP polarization. χ(2) is expressed by
Eq. (5.27),

χ(2),res
pqr (�,ω1, ω2) = iω2

kBT

∫ ∞

0
dt
〈
Aeff,pq(t)Mr(0)

〉
exp(iω2t), (5.27)

where

Aeff,pq(t) =
N∑

l=1

αeff,pq(l, t) Mr(0) =
N∑

m=1

μeff,r (m, 0). (5.28)

On the other hand, Eq. (3.41) represents the χ (2) as the sum of molecular hyperpo-
larizabilities α

(2)
l , and accordingly corresponds to

χ(2),res
pqr (�,ω1, ω2)≈

N∑

l=1

α
(2)
l,pqr=

N∑

l=1

iω2

kBT

∫ ∞

0
dt
〈
αeff,pq(l, t)μeff,r (l, 0)

〉
exp(iω2t)

(5.27′)

in the form of time correlation function. We notice that Eq. (5.27′) includes only the
self correlation (l = m) of Eq. (5.27). Equation (5.27′) should be regarded as an
approximation of Eq. (5.27) by omitting the intermolecular correlation (l 	= m).

The calculated Im[χ(2)] spectra of NaI solution by Eqs. (5.27) and (5.27′) are
compared in panels (b) and (b′) of Fig. 9.4, respectively. The perturbation of NaI
(red lines) from pure water (black) exhibits noticeable differences in the two panels.
The self correlation of Im[χ(2)] spectrum in panel (b′) exhibits a remarkable positive
amplitude (red line), because of the orientational order of water molecules induced
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by the electric double layer. However, the Im[χ(2)] amplitude of NaI (red line)
in panel (b) shows a rather modest perturbation to the positive direction. The
difference between (b) and (b′) indicates that Eq. (5.27′) or Eq. (3.41) overestimates
the positive perturbation on χ(2). The deviation is obviously attributed to the cross
correlation among neighbor molecules (l 	= m) in Eq. (5.27). The cross correlation is
illustrated in Fig. 9.4c in the case of SSP polarization, where the z-component dipole
is relevant through the χ

(2)
yyz element (see Eq. (3.49)). In the NaI solution surface,

the induced z-component dipoles of different molecules tend to correlate anti-
parallel, which thereby suppresses the total amplitude of dipole. This correlation
effect becomes obvious in SFG spectra including surface-active and very polarizable
species, such as I−.

SPS polarization The SPS spectra of aqueous systems could provide comple-
mentary information to the SSP spectra. However, the SPS spectra have been less
explored than SSP, because the signal intensity is generally weak and the analysis
is less intuitive. The SPS spectra are associated to the χ

(2)
yzy element, which involves

the y-component dipole. Since the relevant dipole is parallel to the interface, the
mechanism of SPS spectra is not interpreted in terms of up/down dipole orientation
of surface species. To understand the SPS spectra even in qualitative sense, the MD
analysis is often required.

In the SPS polarization, the correlation effect discussed above has an opposite
influence on the χ(2) amplitude, as illustrated in Fig. 9.4c. In contrast to the z-
component dipole in SSP, the induced y-component dipoles in SPS tend to correlate
parallel in the electric double layer and thus enhance the total χ(2) amplitude
for the SPS polarization. The constructive effect of dipole correlation in the SPS
case has been demonstrated by MD calculation and consistently elucidated the
experimental spectrum [28]. The SPS spectrum of NaI solution provides another
decisive evidence for the electric double layer formation by Na+ and I−.

9.3.2 Buried Ions: F−, SO2−
4

In contrast to the ions in the preceding subsection, some other ions are repelled from
the water surface and buried, in accord with the traditional picture of interfacial ions.
MD simulation predicts that F− and SO2−

4 are typical examples of such buried ions.
One may expect that such buried electrolytes little perturb the surface structure,
since these ions do not penetrate into the topmost layer. Yet the SFG spectroscopy
can report perturbed SFG spectra for some of these electrolyte solutions, which
implies the water surface is still perturbed by the ions. The mechanism of spectral
perturbation and surface structure are elucidated with the help of MD analysis.

Figure 9.6a shows the computational [23] and experimental [17, 49] SFG spectra
of NaF and Na2SO4 solutions. We find that the NaF (blue) and Na2SO4 (red)
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Fig. 9.6 (a) SFG spectra of 0.016 mole fraction (≈0.9 M) NaF (blue) and 1M Na2SO4 (red)
solutions in comparison with that of pure water (black). Upper panels are calculated results [23],
while lower panels are experimental [17, 49]. (b) Density profiles of ions and water along the depth
coordinate ẑ. The density of each species is normalized with that in the bulk. (c) 〈cos θ〉 profiles
of water orientation for pure water (gray), Na2SO4 (red) and NaF solutions (blue). The definition
of the tilt angle θ is illustrated in the inset. (Reprinted with the permission from Refs. [17, 23, 49].
Copyright 2012, 2004, 2005 American Chemical Society)

solution spectra are noticeably different. NaF little perturbs the SFG spectrum of
neat water (black), whereas Na2SO4 obviously enhances the SFG intensity. These
differences illustrate that specific effects on the surface are present among such
buried ions. The reason of the spectral difference is understood as follows.
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Panels (b) and (c) show the calculated density profiles and water orientation,
respectively, of the NaF and Na2SO4 solution surfaces. The density profiles in
(b) confirm that all the present ions of Na+, F− and SO2−

4 are repelled from
the topmost layer of the surface. By comparing the density profiles of NaF and
Na2SO4 solutions in panel (b), we find that the NaF solution (left) exhibits almost
overlapping profiles of Na+ and F− ions, whereas the Na2SO4 solution (right)
shows slight but significant difference in the Na+ and SO2−

4 profiles. In the Na2SO4

solution, SO2−
4 is more repelled from the surface than Na+, arguably because SO2−

4
is a divalent ion. Consequently, charge separation between Na+ and SO2−

4 generates
an electric double layer in a deep region by a few monolayers from the surface
(ẑ ∼ −5 Å).

The effect of electric double layer in the Na2SO4 solution is manifested in the
orientational profile of water in panel (c). This panel displays the 〈cos θ〉 profile as
a function of the depth coordinate ẑ, where θ is the tilt angle of the water dipole
from the surface normal. Near the Gibbs dividing surface of water (ẑ ≈ 0 Å), all
the 〈cos θ〉 profiles of pure water (black), Na2SO4 solution (red), and NaF solution
(blue) show negative and nearly identical shapes. This feature means that the water
orientation of the top layer is little perturbed by the buried ions. However, we see a
negative 〈cos θ〉 region in a deeper region ẑ ≈ −5 ∼ −10 Å for the Na2SO4 solution
(red dashed). This feature is a consequence of the electric double layer of Na+ and
SO2−

4 formed in that region. Further MD analysis confirmed that the enhanced SFG
intensity in the Na2SO4 solution originates from the perturbed water orientation of
the negative 〈cos θ〉 in that deep region, and the perturbed Im[χ(2)] band of Na2SO4
solution was confirmed by the heterodyne detected SFG measurement [107].

In summary, the SFG signals of water originate from the surface region where
the isotropic orientation is broken, and the electric double layer formation of
electrolytes is a typical cause to perturb the water orientation. The above cases
of NaF and Na2SO4 solutions exemplify that the SFG spectroscopy is sensitive to
the perturbed water orientation induced by slight charge separation, even when the
charge separation arises from a somewhat deep region from the topmost layer. The
perturbed SFG spectra of electrolyte solutions may reflect the structural change in a
deeper region than the topmost layer of the water surface.

9.3.3 Acid

In the surface of acid solutions, the excess hydronium (H3O+) cations preferentially
reside on the topmost surface of water. This microscopic behavior was predicted
by MD simulation [58, 78]. It has been long known experimentally that the
surface tension of acid solutions becomes smaller than that of neat water [84],
implying a positive surface excess from the thermodynamic view. The relation to
the microscopic surface structure of acid solutions and their SFG spectra is analyzed
in the following.
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Fig. 9.7 SFG spectra and orientation for acid solution surfaces. (a) calculated SFG spectra of pure
water (black), 1.1 M HCl (blue) and 1.1M HI (red) [26]. The inset shows the experimental spectra
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Refs. [26, 58]. Copyright 2007, 2005 American Chemical Society)

HCl, HI (strong acid) solution surfaces Figure 9.7 displays the calculated and
experimental SFG spectra of strong acid solutions, HCl and HI [26, 58].2 The SFG
spectra of acid solutions are generally characterized with two features: (i) reduced
intensity of the free O–H band at about 3700 cm−1 and (ii) enhanced intensity of
hydrogen-bonding O–H, particularly in 3200 cm−1 region. These characters are
consistently elucidated by the MD analysis of SFG spectra.

(i) The amplitude of the free O–H band is reduced in the acid solutions,
essentially because the H3O+ covers the water surface and decreases the density
of free O–H at the topmost layer. (ii) The increased intensity of hydrogen-bonding
O–H band is understood from the electric double layer picture. As illustrated in
the right panel of Fig. 9.5, the H3O+ layer at the topmost surface and the counter
anions located below form an electric double layer. The double layer orients the
water molecules toward the bulk liquid, resulting in negative perturbation on 〈cos θ〉.
This pertubation augments the negative 〈cos θ〉 at water surface, since the pure water
surface has intrinsic negative 〈cos θ〉 orientation at the top layer ẑ = −3 ∼ 0 Å
(see right panel of Fig. 9.7). Therefore, the enhanced water orientation of negative
〈cos θ〉 by the acid perturbation augments the negative Im[χ(2)] amplitude and the
SFG intensity in the hydrogen-bonded O–H frequency region.

H2SO4 solution surface Sulfuric acid solution surface is relevant to heterogeneous
atmospheric chemistry, as it is the main chemical component of sulfate aerosols,
ubiquitously present in troposphere and stratosphere. The SFG measurement of
sulfuric acid solution was performed in early stage of SFG spectroscopy [2, 83].
The observed spectra showed that the SFG intensity decreases in concentrated

2Note that the present MD simulation employed the point polarizable model [27] instead of CRK.
Therefore, the spectra and structure may not coincide with those of the CRK model in other parts.
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solutions (mole fraction x � 0.2) and the whole O–H band eventually vanishes with
increasing x. This behavior posed confusing interpretations for the surface structure.

This system poses an additional challenge in interpretation besides the strong
acid solutions discussed above. Sulfuric acid undergoes two-step ionization:

H2SO4
pKa1←−→ HSO−

4
pKa2←−→ SO2−

4 . (9.1)

The first ionization is considered to be strong enough (pKa1 � 0), whereas the
second ionization (pKa2 � 1.9 [20]) is not as strong as the first one. In such cases
that the acid dissociation is not complete, the local composition of the ion species
at the interface could be different from that in the bulk, since the interface is a less
polar environment than the bulk. The ion dissociation at interface may be sensitive
to the depth or other conditions, and coupled to the interface structure and SFG
spectra. These uncertainties make such surfaces challenging to understand. The
collaboration of SFG spectra and MD analysis can provide valuable information
on the surface structure and ion composition.

Since we could not determine the local ion composition a priori, we assumed
typical cases (a–c) about acid dissociation (9.1), where

(a) Same pKa1,2 in Eq. (9.1) holds for surface as well, (HSO−
4 dominant, SO2−

4
present)

(b) Second ionization is suppressed at surface (pKa2 � 0), (no SO2−
4 )

(c) First ionization is also suppressed (pKa1 � 0), (only neutral H2SO4)

and predicted the SFG spectra in each case by MD simulation. Figure 9.8 displays
the MD results in comparison with the experiments [2, 33] to see whether the
experimental features in O–H and S–O bands are consistently reproduced by MD
predictions. We first find that case (a) would lead to excessively strong hydrogen
bonding O–H signal, arguably because the presence of divalent anions (SO2−

4 )
too much augments the electric double layer. Therefore, case (a) is not likely to
be the proper case. On the other hand, case (c) shows the main S–O band at
1150 cm−1 in the SSP spectrum, which is assigned to the neutral H2SO4, while
the experimental main S–O band as well as cases (a) and (b) arises at 1050 cm−1

from HSO−
4 . Therefore, case (c) is not the proper case either. The combination of

SFG measurement and MD simulation thereby conclude that the first dissociation is
facile at the surface, whereas the second dissociation to form SO2−

4 is substantially
more suppressed at the surface than in the bulk [30, 33, 53].

9.3.4 Base

The surface preference of hydroxide (OH−) anion remains a controversial and active
issue both theoretically and experimentally [1]. Previous MD simulation studies
reported different conclusions about its surface preference, which arguably depend
on the methods and conditions. Direct experimental measurement of surface OH−
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ciation, discussed in the text. Shadowed panels show obviously inconsistent spectra with
experiments. (Reproduced from Ref. [33] with permission from the PCCP Owner Societies.
Reprinted with the permission from Ref. [2]; Copyright 1997 American Chemical Society.)
(∗)Top right panel shows experimental S–O spectra for 0.29x solution

species is also challenging. What information can be extracted from the SFG spectra
of basic solutions [104, 106]? Here we summarize the implications drawn from the
MD analysis of the Im[χ(2)] spectrum.
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Figure 9.9 displays the calculated and experimental Im[χ(2)] spectrum of
NaOH solution in comparison with that of neat water. The Im[χ(2)] spectrum of
NaOH solution shows remarkable features of perturbation. The Im[χ(2)] band at
3300–3600 cm−1 shifts to the positive direction, whereas the Im[χ(2)] band at 3000–
3200 cm−1 to negative [106]. These opposite perturbations in different frequency
regions are not interpreted with the electric double layer picture, and imply some
other mechanism beyond the double layer picture.

The MD simulation of NaOH solution reproduces the opposite perturbations,
and elucidates the whole mechanisms by analyzing the perturbed spectrum [24].
To summarize the mechanisms, the electric double layer formed between OH− and
Na+ brings the positive perturbation to the main O–H stretching band at 3300–
3600 cm−1, since OH− comes slightly closer to the surface than Na+. On the other
hand, the negative perturbation at 3000–3200 cm−1 originates from the water in the
first solvation shell (FSS) of OH−, as we discuss below.

This contribution of FSS is general in the electrolyte solutions, and we briefly
explain the mechanism in Fig. 9.10. In a case of an anion, the FSS includes water
molecules that orient their dipoles toward the anion, as illustrated in panel (a),
and consequently the upward and downward orientations co-exist in the whole
FSS. When the ions with their FSS are distributed in the surface region (panel
(b)), the net contribution of the topmost, downward contribution remains while the
other contributions cancel each other. This mechanism is common with the χ IQB

mechanism of the quadrupole contribution in Chap. 7 (see detailed discussion in
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Appendix A.1).3 We note that the FSS is regarded to form a quadrupole with a pair
of opposite dipoles.

The mechanism of FSS is clearly manifested in OH−, since the FSS component
appears in a particularly low-frequency region at 3000–3200 cm−1 and is separated
from the main O–H band. From the above discussion, we can readily understand
that the FSS of anions have generally negative Im[χ(2)] contributions while the FSS
of cations have positive Im[χ(2)] contribution. The feature of the FSS evidences
that the OH− anions retain the first solvation shell and do not preferentially expose
themselves at the surface.

9.4 Oil/Water Interfaces

Oil/water interfaces are relevant to various phenomena, such as micelle formation,
extraction, membrane transport, sensors, and phase transfer catalysis. Microscopic
understanding of oil/water interfaces has been pursued with various experimental

3One may wonder that the net dipole in the FSS cancel and thus no signal is generated. Even though
one considers the FSS of an ion as a quadrupole consisting of opposite dipoles, as illustrated
in Fig. 9.10b, the net negative contribution still remains at an arbitrary threshold ẑthres. This
mechanism is same with the χ IQB term of the quadrupole contribution in Appendix A.1.
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techniques [48, 55] as well as MD simulation [5, 6, 12, 82]. A main challenge of
investigating oil/water interfaces lies in difficulties of selective detection of inter-
facial molecules with sufficient spatial resolution. The interface-sensitive nonlinear
spectroscopy is able to probe buried oil/water interfaces with excellent selectivity
as long as it is accessible by light. The SHG was applied to reveal detailed
polarity environment in the vicinity of the liquid-liquid interfaces [100, 101]. The
collaboration of vibrational SFG spectroscopy and MD analysis is powerful to reveal
the details of the oil/water interfaces.

Typical and fundamental examples of oil/water interfaces were studied by
Richmond and co-workers [55, 109, 111]. Figure 9.11a shows the SFG spectra of
carbon tetrachloride (CCl4)/water and 1,2-dichloroethane (DCE)/water interfaces
in comparison to that of air/water interface. We find that the CCl4/water spectrum
retains the two-band structure that resembles air/water, while the spectrum of
DCE/water interface becomes structureless and weaker. The apparent spectral
difference may allow various interpretations. The MD analysis can clarify the
interpretation of the spectra in relation to the structure of oil/water interfaces.
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The MD simulation of the SFG spectra was performed [34], which well
reproduced the distinct SFG spectra of CCl4/water and DCE/water interfaces.
The MD simulation allows for direction observation of interfacial water structure.
However, the MD showed rather similar structure of interfacial water at CCl4 and
DCE in terms of the density profile or orientation of water molecules, irrespective
of the apparently distinct SFG spectra reproduced. The mechanism of the noticeable
spectral differences becomes clearer in the calculated Im[χ(2)] spectra in Fig. 9.11b.
Comparing the Im[χ(2)] spectra of the two oil/water interfaces, we find that the
spectra in the H-bonding region below 3600 cm−1 not much different, which is
consistent to the direct MD observation that the density and orientation of surface
water are analogous at CCl4/water and DCE/water interfaces. However, we find that
the free O–H band in 3600–3700 cm−1 is particularly suppressed in the DCE/water
interface.

The perturbation on the free O–H band is understood in the following manner.
The free O–H of water at oil/water interface actually interacts with adjacent oil
molecules, as illustrated in Fig. 9.11c. The “free” O–H at DCE/water interface is
more perturbed than that at CCl4/water because of larger polarity of DCE than
CCl4. As a consequence, the positive Im[χ(2)] band of “free” O–H is substantially
red shifted and broadened for the DCE/water interface, as evidenced in Fig. 9.11d.
The red-shifted free O–H band of DCE/water interface overlaps with the negative
Im[χ(2)] band of the H-bonding O–H, and cancel the intensity. The apparent spectral
difference between CCl4/water and DCE/water interfaces is attributed to the local
interaction of water and oil molecules at the interfaces, rather than qualitatively
distinct structure of molecular orientation.

9.5 Water at Monolayers

Amphiphilic molecules tend to form various self assembled structures in/on water,
such as Langmuir monolayer, micelle and lipid bilayers. Such structures generally
include interfaces of water and amphiphilic molecules, and their interfaces govern
the stability of these structures. The interfaces of phospholipid membranes have
been drawing particular attention by SFG spectroscopy [41], as the lipid membranes
define the boundary of cells, control mass transport, and thereby play vital roles of
living functions [7, 63]. A number of MD studies in relation to the SFG spectroscopy
have been performed to aim at selective detection and understanding of water struc-
ture in contact with those amphiphilic monolayers [37, 38, 59, 69, 86, 87, 90, 91].

One of the basic concepts of the water structure is the flip-flop model of water
orientation in Fig. 9.12. The orientational structure of water molecules is determined
by the net charges of the monolayer molecules. When the monolayer molecules are
negatively charged, such as sodium dodecyl sulfate (SDS, C12H25SO−

4 · Na+), the
water molecules take upward orientation and leads to positive Im[χ(2)] band. On the
other hand, if the monolayer is positively charged, such as cetyltrimethylammonium
bromide (CTAB, C16H33N+(CH3)3 · Br−), the water takes downward orientation
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Im[χ(2)] spectrum changes its sign [65]. (Reprinted with permission from Ref. [65]. Copyright
2009, American Institute of Physics)

and shows negative Im[χ(2)] band. The reversal of the Im[χ(2)] band of water O–H
stretching is experimentally verified in Fig. 9.12 [65]. We notice that this mechanism
is essentially common with the electric double layer picture in Fig. 9.5.

In a case that the amphiphilic molecules are neutral, the SFG spectra of water
interface are not amenable to the simple flip-flop model. Biological membranes
include various neutral but zwitterionic phospholipid molecules, such as phos-
phatidylcholine (POPC) and dipalmitoylphosphatidylcholine (DPPC). Figure 9.13
displays an illustration of the water/POPC interface (left panel) and the experimental
[54] and calculated [37] Im[χ(2)] spectra (right). The polar head group of POPC
includes a positively charged choline (−N+(CH3)3) and a negatively charged
phosphate (−PO−

4 ), which form a zwitterionic molecule. The experimental Im[χ(2)]
spectrum of the water/POPC interface shows a positive main band at 3300 cm−1

and a positive minor band at 3580 cm−1. Another, related experimental Im[χ(2)]
spectrum of water/DPPC also shows a quite similar lineshape [22]. The MD analysis
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revealed that the main positive band at 3300 cm−1 is assigned to the water molecules
between the choline and phosphate groups, labeled “NP”. The positive sign of this
“NP” band is understood from the electric double layer of the charged groups. The
minor band at 3580 cm−1 is attributed to the water molecules penetrating to the
ester group, labeled “NPO”. This O–H band is located in a higher frequency region
due to weaker hydrogen-bonding environment. The water molecules attached to the
choline group, labeled “N”, do not show up clearly in the Im[χ(2)] spectrum, but
they contribute to the dip between the two positive bands.
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Chapter 10
Applications: Organic Interfaces

Abstract Interfaces of organic species offer enormous opportunities to be studied
by SFG spectroscopy. In this chapter we introduce recent advances of computational
analysis of SFG in the organic interfaces. Here we mainly deal with the C–
H vibrations, as they are ubiquitously seen in organic species and have been
most widely investigated by the SFG spectroscopy to date. We discuss molecular
modeling of organic species, and then unified assignment method of alkyl C–
H stretching of SFG spectra in comparison with IR and Raman spectra. Related
topics revealed by the SFG analysis are also discussed, including SFG from
centrosymmetric molecules, quadrupole contribution, and polarization analysis of
molecular orientation.

Keywords C–H stretching · Alkyl groups · Polarization analysis

Interfaces of organic molecules include surfaces of various organic solvents, films
and polymers. These interfaces are relevant to many applications, such as mem-
branes, batteries, adhesion, wetting, tribology, etc. The organic interfaces are often
buried to form liquid-liquid or solid-liquid interfaces. The SFG spectroscopy has
large potential to selectively investigate various chemical species and their structure
at those interfaces. Among various vibrational bands of organic molecules, the C–H
stretching vibrations have been most intensively measured by SFG spectroscopy to
date, since the first vibrational SFG measurement in 1987 [14]. This is because the
C–H stretching vibrations show generally strong intensity and are technically easy
to measure, in addition to that they are ubiquitously included in organic species.
Besides the C–H stretching, other vibrations have been investigated, such as C=O
and C ≡ N stretching bands, by SFG spectroscopy [3, 20, 27, 30, 33, 37, 40].

The SFG spectra of organic interfaces have their own challenge to theoretical
analysis, which is different from that of O–H band of aqueous systems in Chap. 9.
First, the organic interfaces include variety of chemical species and vibrations,
and the theoretical analysis has to accurately describe these variety of species
and interfaces. Reliability of MD calculations capable of reproducing the various
SFG spectra is an integral requisite of the theoretical analysis. This requirement is
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essentially an issue of molecular modeling for the SFG calculations, and the general
theory of polarization in Chap. 6 is particularly valuable for this requirement.
Second, even the C–H bands of organic species are actually quite complicated and
challenging to the analysis of SFG spectra. General formulas of C–H vibrations in
the SFG spectroscopy have been proposed by Hirose and co-workers in early SFG
theory [11, 12], and sophisticated by Wang and co-workers [7, 32]. These formulas
are useful to characterize the SFG signals of the C–H band in various polarizations.
A remaining issue in the theoretical analysis is to advance the MD simulation toward
reproducing and even predicting the observed SFG spectra of organic interfaces.

The MD analysis aims at elucidating observed SFG spectra of various species
using realistic molecular properties of constituent species. Theoretical analysis of
organic SFG spectra has been relatively less developed in comparison to those
of aqueous systems at present. The reliable theoretical support is definitely called
for in practical interpretation of SFG spectra of organic species, particularly when
examples of related infrared or Raman vibrational spectra do not offer a useful
clue to help understanding the spectral features of SFG. This chapter summarizes
the basis of theoretical SFG analysis of organic interfaces with the help of MD
simulation.

10.1 C–H Bands of Alkyl Groups

The C–H vibrational band of alkyl groups appears in 2800–3000 cm−1 range, and
has been one of the most common targets in the SFG measurement to date, as
well as the O-H band of aqueous systems. The C–H band is ubiquitous in organic
molecules, and its band shapes offer detailed information on the interface. Precise
theoretical analysis of the C–H band is particularly beneficial to the application of
SFG spectroscopy.

10.1.1 C–H Modes

Conventional assignment of the C–H band is performed in comparison with the
infrared and Raman spectra of the corresponding C–H vibrations. The components
in the C–H band are usually assigned with the notations in Fig. 10.1. In a methyl
(CH3–) group, the symmetric and asymmetric C–H vibrations are labeled with r+
and r−, respectively. The asymmetric vibration consists of two modes, classified
into in-plane (r−

IP) and out-of-plane (r+
OP) modes. In a methylene (–CH2–) group,

the symmetric and asymmetric C–H vibrations are labeled with d+ and d−,
respectively. These C–H stretching modes are generally close to the overtone or
combination of bending modes, and thus often split by the Fermi resonance. The
satellite modes of the Fermi resonace are labeled with FR, such as r+

FR and d+
FR.
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The C–H band of alkyl groups is complicated to interpret, essentially because
that frequency range is congested with a number of overlapping components, i.e.

(a) different functional groups, such as methyl (CH3–) and methylene (–CH2–).
(b) different modes, such as symmetric and asymmetric stretching. These modes

are often split by the Fermi resonance.
(c) different conformers, such as trans and gauche of alkyl chains.

One principal aim of the theoretical analysis is to disentangle the observed/calculated
C–H band into these components and to establish the spectral assignment. The
computational SFG analysis of C–H vibrations has been developed toward that aim.
We briefly summarize the insight from the computational analysis below, in the case
of C–H bands of methanol and ethanol, two smallest alcohols including methyl and
methylene groups. Application to the species with longer alkyl chains is in progress.

10.1.2 Modeling of C–H

First we briefly discuss the importance of molecular modeling, as it is a critical
factor of the SFG analysis. The computational SFG analysis requires two aspects
of molecular modeling, (i) force field and (ii) polarization properties. The former
requirement (i) is commonly relevant to all MD simulations, while the latter (ii) is
specific to the SFG calculation. The charge response kernel (CRK) theory in Chap. 6
allows for general description of the (ii) polarization properties with retaining its
ab initio quality. The universal modeling method is useful to the C–H vibrations
as well.

A remaining challenge lies in the modeling of (i) force field of C–H stretching,
particularly the intramolecular force field. The most challenging issue is to incor-
porate the Fermi resonance, since the Fermi resonance is essentially a quantum
mechanical phenomenon and not straightforwardly compatible with classical MD
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simulation.1 Full quantum molecular dynamics to allow for resonances is not
feasible in most cases of condense phase simulation. One practical solution of
this problem is to exploit the quantum-classical analogy of resonance phenomena
[16]. Both classical and quantum mechanics can describe resonance phenomena
of vibrations in a qualitatively analogous manner, that an anharmonic coupling
Hamiltonian brings about significant mode mixing of nearly degenerate fundamen-
tal and overtone. However, the classical and quantum mechanics do not result in
the same extent of resonance mode mixing [16]. Therefore, one can reasonably
reproduce or mimic the Fermi resonance in the classical mechanics by using an
effective coupling Hamiltonian including a quantum correction, so that the results
of the resonance mixing by the classical mechanics are in accord with those by
the quantum mechanics. This treatment of quantum correction is valid as long as we
reproduce the features of Fermi resonance in the vibrational spectra by classical MD
simulation. The following analysis of the Fermi resonance is based on the treatment.

10.1.3 Methanol C–H Vibrations

Methanol is the smallest alcohol containing only one methyl group, and the
vibrational spectra of C–H band have been experimentally studied by SFG as well as
infrared and Raman. The SFG spectrum in SSP polarization shows two components
of C–H band in Fig. 10.2a, a major low-frequency one at ∼2830 cm−1 and a minor
high-frequency one at ∼2950 cm−1. It is noteworthy that similar two-band structure
of the C–H band is also seen in the infrared and Raman spectra of liquid methanol
as well, and the assignment of the structure has been argued to date [2, 4, 24, 29].
The widely accepted assignment of the two-band structure is distinct between the
infrared and Raman spectra. The two bands in the IR spectrum are mostly assigned
to the symmetric and asymmetric C–H stretching modes [2], whereas those in
the Raman spectrum to the symmetric C–H stretching and the counterpart of its
Fermi resonance [24, 29]. The different assignments of infrared and Raman spectra
brought about confusion in the assignment of the SFG spectrum. This is a typical
example that straightforward analogy to infrared or Raman spectra is not useful to
interpret SFG spectra.

Band structure The MD analysis provides definite assignment of the SFG spec-
trum on a common basis to the infrared and Raman spectra, with also elucidating
differences among three vibrational spectroscopies [16, 17]. The basic picture of
vibrational levels of methanol is summarized in Fig. 10.2b. The C–H symmetric
stretching of methyl ν3 interact with bending overtone 2ν5 and is split by the Fermi
resonance, while the C–H asymmetric stretching ν2, ν9 overlap with the higher-
frequency component of the Fermi splitting in the frequency domain. This scheme
is common among the three vibrational spectroscopies in the case of methanol.

1The validity of classical mechanics to treat vibrational dynamics of molecules is based on the
equivalence of quantum and classical descriptions of harmonic oscillators [1]. The Fermi resonance
that stems from anharmonic coupling is essentially beyond the classical mechanics.
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Fig. 10.2 (a) Calculated SFG intensity spectrum of liquid methanol surface [17], while the inset
shows the experimental spectrum [24]. (b) Energy levels of C–H stretching modes of methanol.
(c) Calculated Im[χ(2)] spectra. The black line is the original spectrum, while the red dashed
line is the result of EPSA where the ν2,9 frequencies are tentatively blue shifted to disentangle the
overlap. (Reprinted with permission from Ref. [17]; Copyright 2011, American Institute of Physics.
Reprinted with the permission from Ref. [24]; Copyright 2003 American Chemical Society)

The different assignments stem from difference in relative intensities of the over-
lapping bands: the asymmetric stretching (r−) and the high-frequency component
of the Fermi resonance (r+

FR). In the IR spectrum, the apparent high-frequency band
is assigned to the asymmetric C–H stretching (r−) since its intensity exceeds that
of the Fermi resonance. On the other hand, the apparently same band of the Raman
spectrum is assigned it to the Fermi resonance (r+

FR) since the Raman intensity of
asymmetric stretching is negligibly small. In the SFG spectrum, the asymmetric
C–H stretching and the Fermi resonance overlap in the Im[χ(2)] amplitude with
opposite signs, though the net sign of Im[χ(2)] is governed by the Fermi resonance.
Therefore, the high-frequency component of SFG spectrum should be essentially
assigned to the Fermi resonance, though the asymmetric stretching has substantial
contribution to this component in a destructive manner.

Empirical parameter shift analysis (EPSA) This assignment is demonstrated by
the empirical parameter shift analysis (EPSA). Figure 10.2c shows the calculated
Im[χ(2)] spectrum, where both components of the two-band structure have negative
sign. This is because the ν3 mode (methyl symmetric C–H stretching) shows a
negative amplitude when the methyl group points to the vapor, as we discussed in
Sect. 4.2.2 and Fig. 3.2, and the Fermi splitting of the ν3 mode distributes its negative



252 10 Applications: Organic Interfaces

amplitude to both components. As a result, the calculated Im[χ(2)] spectrum does
not apparently show the ν2,9 modes. However, if we tentatively augmented the force
constant of the ν2,9 modes with the other conditions intact, the MD simulation would
yield the Im[χ(2)] spectrum with the red dashed line. This is a “thought experiment”,
feasible with MD simulation. Then a positive band of the asymmetric stretching
modes emerges and moves to the blue, and consequently the positive band is
separated from the original high-frequency negative component.2 We also find that
the original negative component at ∼2950 cm−1 increases its negative amplitude
after the asymetric modes are separated out. This EPSA result of Panel (c) manifests
the spectral overlap of the asymmetric stretching and the Fermi component depicted
in Panel (b).

10.1.4 Ethanol C–H Vibrations

Ethanol contains both methyl and methylene groups, and also has trans and gauche
conformers. Therefore, ethanol is a simplest model to incorporate all the compli-
cating factors (a)–(c) in the alkyl C–H vibrations mentioned in Sect. 10.1.1; (a)
different functional groups, (b) vibrational modes, (c) conformational isomers. An
intensive experimental analysis of the ethanol C–H vibrations has been performed
by Gan et al. [6, 8], who separated the methyl and methylene vibrations using
normal and partially deuterated ethanol species, i.e. CH3CH2OH, CH3CD2OH,
CD3CH2OH. The latter two species allow us to focus on the methyl and methylene
C–H vibrations, respectively, in the ethanol molecule. The comprehensive set
of experimental SFG spectra of ethanol, including the different isotopes and
polarization combinations, were analyzed by the MD simulation with extending the
above modeling of methanol.

MD calculation of liquid ethanol can reproduce and elucidate the C–H vibrational
spectra of infrared, Raman and SFG in a unified manner [34, 35]. One of the
important findings is that the trans and gauche conformers show rather different
spectral components in the SFG spectra. In particular, methylene C–H vibrations
near a gauche defect show a distinct feature in the vibrational SFG spectra. Accurate
modeling of ethanol C–H vibrations is a significant step toward general simulation
of alkyl molecules.

2The asymmetric C–H stretching mode has a positive amplitude when the molecule is tilted, as
illustrated in Fig. 10.2c.
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10.2 Benzene: SFG from Centrosymmetric Molecules

The SFG of benzene poses an intriguing issue. The liquid benzene surface generates
intense C–H signal in the SFG spectrum, although each benzene molecule is cen-
trosymmetric and thus it should have null hyperpolarizability [13, 25]. Elucidating
the SFG mechanism of liquid benzene is pertinent to the fundamental mechanism
of SFG and symmetry breaking.

First, let us recall the SFG from other ordinary non-centrosymmetric molecules,
as we discussed in Sect. 3.3. These molecules have finite non-zero hyperpolariz-
abilities, and nevertheless the susceptibility of their bulk materials vanishes. This
is because the molecular orientation is random and isotropic in the bulk, so that
the contributions of hyperpolarizabilities cancel each other by taking the statistical
average. On the other hand, the susceptibility of their interfaces is not necessarily
zero due to anisotropic molecular orientation. However, such typical scenario for
the SFG activity of interfaces does not elucidate the SFG signal from benzene,
because the benzene itself has no hyperpolarizability regardless of its orientation.
Consequently, there remain two possible scenarios in order to elucidate the SFG of
benzene:

(i) symmetry breaking: the symmetry of benzene molecules is broken at the
inhomogeneous environment at the interface so that the SFG becomes allowed
there.

(ii) quadrupole: the quadrupole mechanism of SFG is invoked beyond the conven-
tional dipole mechanism.

The MD simulation was fully utilized to examine these mechanisms [18], and found
that both mechanisms are actually involved in the SFG from liquid benzene.

Regarding (i) symmetry breaking, the benzene molecule has six equivalent C–H
groups, whose vibrations are degenerated in the zero-th order approximation. The
C–H groups construct the normal modes of C–H stretching under the D6h symmetry
of benzene (i.e. ν2 (A1g), ν7 (E2g), ν13 (B1u), and ν20 (E1u)), and these normal
modes have nearly degenerate frequencies. Therefore, these C–H normal modes can
be readily mixed each other by a small external perturbation. At the surface of liquid
benzene, the nonuniform solvation environment acts as the perturbation to break
the symmetry of the C–H modes. This mechanism implies that a centrosymmetric
molecule can readily become SFG active at interface. Figure 10.3a shows the
calculated result of Im[χ(2)] spectrum (red line) of benzene by the standard time
correlation function formula of Eq. (5.27). The Im[χ(2)] spectrum shows a bipolar
band at about 3100 cm−1 region. The positive and negative components are
attributed to the upward and downward local C–H modes. These local modes are
slightly split in frequency due to the distinct solvation environments.

(ii) The quadrupole mechanism turned out to be also significant in the SFG
spectrum of benzene. The MD analysis was applied to examine all possible
quadrupole contributions discussed in Chap. 7, and consequently revealed that the
χ IQB term has a particularly large contribution. Figure 10.3a shows the Im[χ IQB]



254 10 Applications: Organic Interfaces

0

 3000  3050  3100  3150

(A) Im [ ](2)

Calc.

0

1

2

3

4

 2800  2900  3000  3100  3200

(a
rb

. u
ni

t)
Exp.

| |(2) 2

Frequency (cm   )-1

dipole

quadrupole

yyz (B) SFG intensity
(a

rb
. u

ni
t)

Fig. 10.3 (a) Calculated Im[χ(2)] spectrum of benzene surface. The red line denotes the χ ID

(dipole) term, while the blue line the χ IQB term. The local modes to generate the bipolar band
of χ ID are also depicted. (b) Calculated SFG intensity spectrum (upper panel) [18] and the
experimental one (lower panel) [13]. (Reprinted with the permission from Ref. [18]; Copyright
2012 American Chemical Society. Reproduced from Ref. [13] by permission of The Royal Society
of Chemistry)

spectrum with a blue line in the same scale, which has an almost comparable
amplitude to the dipole term (red line). The χ IQB term is a bulk property and
thus reflects the vibration in the bulk phase. Its spectral shape is analogous to
the infrared spectrum of bulk liquid. By considering both mechanisms (i) and (ii),
the experimental SFG intensity spectrum is successfully elucidated in Fig. 10.3b.
We find that the satellite band of C–H stretching at ∼3030 cm−1 is of quadrupole
character.

10.3 Molecular Orientation and Polarization Analysis

Molecular orientation at interfaces is one of the principal properties to characterize
microscopic structure of interfaces. In principle, the interface structure is distinct
from the bulk in terms of anisotropic molecular orientation. Therefore, molecular
orientation at interfaces has been widely discussed by SFG spectroscopy. The
SFG spectroscopy is able to investigate molecular orientation by the analysis of
polarization, as we discussed in Sects. 3.3 and 4.2, and has been applied to the
orientation of alkyl groups.
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The procedure of polarization analysis is simply summarized into two steps as
follows.

SFG
spectra

(i)−−→

ratios of
(2) elements

(ii)−−→

molecular
orientation

Essentially, the experimental measurements evaluate the ratios of different χ(2) ten-
sor elements, such as B = χ

(2)
yyz/χ

(2)
yzy and C = χ

(2)
zzz/χ

(2)
yyz. There are some methods

for the step (i) to evaluate the ratios of χ(2) elements experimentally. A simple way
is to compare the relative intensities of relevant polarization combinations. More
sophisticated methods using interference of different polarizations have been also
developed and utilized [5, 9, 10, 23, 30, 32, 38]. In any events, the obtained tensor
elements in step (i) have to be analyzed in order to derive the microscopic molecular
orientation. The theory of the analysis in the step (ii) is also an integral part of the
polarization analysis of orientation, and we have depicted the theoretical procedure
(ii) to derive the molecular orientation from the ratios of tensor elements in Sect. 4.2.
The present section focuses on the analysis step (ii), and further examines the
procedure.

When we apply the theoretical procedure (ii) to actual interfaces, it often requires
some assumptions on microscopic properties of the systems. As we discuss in the
following, the reliability of these assumptions may have significant influences on the
results of molecular orientation. The MD simulation can help clarifying the relation
between the tensor elements and the microscopic molecular orientation without
resort to those assumptions, and help examining the reliability of the assumptions
involved in the polarization analysis. In this section the polarization analysis of the
methyl group is examined with two examples, methanol and acetonitrile, with the
help of MD simulation.

10.3.1 Methanol

The SFG band of the methyl symmetric stretching has been discussed in Sect. 10.1.
As illustrated in Fig. 10.2, the C–H band consists of the low-frequency component at
∼2830 cm−1 and high-frequency one at ∼2950 cm−1, and the former is attributed to
the methyl symmetric stretching, while the latter is a mixture of the Fermi splitting
and the antisymmetric stretching. Therefore, the intensity of the former component
becomes an index of methyl symmetric C–H stretching, which could be governed
by the number density of methyl groups at interface and their orientation.

The experimental intensity of methyl symmetric stretching (ss) band shows an
intriguing behavior when the methanol is diluted with water. In the methanol/water
mixture solutions, the SFG intensity of this band shows a turn-over behavior as
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Fig. 10.4 (Left) Relative amplitude of methyl symmetric stretching band of the SSP-polarized
SFG spectra for methanol/water mixture solutions as a function of the mole fraction of methanol x

[31]. Schematic pictures of methanol distribution at the surface are also shown. (Right) Probability
distribution P(cos θ) of the methyl tilt angle θ with varying x [15]. The holizontal dashed line
at P = 1 denotes the fully random orientation. (Reprinted with the permission from Ref. [15].
Copyright 2015 American Chemical Society)

a function of the mole fraction of methanol x, as shown in Fig. 10.4 [31]. This
turn-over behavior is also reproduced by the MD simulation of SFG spectra for
methanol/water solutions [15]. The MD simulation elucidated this behavior by two
step mechanisms. In the low x region (a) the initial increase is understood with
increasing number density of methanol at the surface, whereas in the high x region
(b) the decreasing amplitude is attributed to the randomized orientation of surface
methanol.

Sung et al. [31] also carried out the polarization analysis of the methanol/water
mixture solutions, and found that the ratio of tensor elements C = χ

(2)
zzz/χ

(2)
yyz is

nearly invariant over the entire range of x. This experimental finding would have
been interpreted by the ordinary theoretical analysis of polarization in Sect. 4.2 that
the molecular orientation is also invariant over x. However, this conclusion appears
contrary to the picture of (b) randomized orientation mentioned above. The MD
simulation allows us to calculate the ratio C as well, and actually reproduced the
nearly constant C over x, irrespective of the randomized orientation in the high x

region [15].
The MD simulation of the present systems offers an instructive insight into the

polarization analysis. The reason to solve this apparent inconsistency between the
experimental tensor element ratio and the MD result of orientation lies in the wide
distribution of the tilt angle θ of methyl groups at the surface, as shown in the right
panel of Fig. 10.4. The MD simulation shows a quite wide probability distribution
of cos θ at the surface, which approaches to random orientation with increasing
x. Such orientational distributions in Fig. 10.4 are not well approximated with a
delta function or a Gaussian. The orientational distribution is found to be one of the
crucial assumptions in the polarization analysis. The information on the distribution
with the aid of MD simulation will help improving the reliability of the polarization
analysis [15, 28].
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10.3.2 Acetonitrile

Acetonitrile CH3CN is an excellent model molecule to clarify the relation between
the orientation and polarization, since it is a rod-like molecule with C3v symmetry.
Accordingly, the molecular orientation is readily described with the tilt angle θ , as
discussed in Sect. 4.2.2. The experimental polarization analysis of acetonitrile in
aqueous solutions was carried out by a number of groups so far [19, 28, 30, 39, 41],
though their results of orientation appear inconsistent. Zhang et al. [39, 41] reported
that the tilt angle θ of the methyl group of acetonitrile changes abruptly with
increasing mole fraction of acetonitrile x at x � 0.07, whereas Kim et al. [19]
concluded that the orientation changes gradually with increasing x. Shultz et al. [30]
and Saito et al. [28] reported nearly invariant orientation over x. These intriguing
discrepancies should be resolved with the help of reliable theoretical analysis
of polarization and orientation, and the MD simulation has been performed in
collaboration with experimental measurement [28].

The MD simulation reproduced neary invariant orientation, and thus supported
the recent conclusion by Shultz and Saito. The reason for discrepancies from the
former previous studies is not clear at present, though the polarization analysis of
acetonitrile may suffer from very weak SPS signal. (The recent experiments [28,
30] adopted the polarization angle null method to circumvent this problem.) The
MD simulation of the polarization analysis revealed two significant problems in the
quantitative accuracy. One issue is the orientational distribution, as we discussed in
the case of methanol above. Caution should be required to apply the polarization
analysis to an interface with an unknown distribution of orientation, particularly to
liquid interfaces.

Another critical issue is the appropriate value of R,

R =
(
∂αξξ /∂q1

)
(
∂αζζ /∂q1

) =
(
∂αηη/∂q1

)
(
∂αζζ /∂q1

) , (4.10)

which is used in the theoretical analysis. The estimation of R appears to have
considerable confusions so far. Shultz adopted R = 0.58 while Zhang used R = 2.3
in their previous studies. Table 10.1 results in R = 0.2967/0.3731 = 0.80 from
the density functional theory (B3LYP/aug-cc-pVTZ) calculation. The value of R

is often estimated experimentally from the Raman depolarization ratio of the bulk
sample [21, 22, 26]. However, the Raman depolarization ratio allows dual solutions
of R, and thus could not determine whether R > 1 or R < 1 by itself. From a
simplified geometric argument (see illustration in Table 10.1), each methyl C–H
bond of an acetonitrile molecule forms ϕ ≈ 70.5◦ (= cos−1(1/3)) from the ζ axis
in the ideal tetrahedral geometry. Therefore, if each C–H bond possesses a Raman
tensor component along the bond, the sum of three C–H bond polarizabilities should
yield the ratio R to be

R ≈ sin2 ϕ + (− 1
2 sin ϕ)2 + (− 1

2 sin ϕ)2

3 cos2 ϕ
= 1

2
tan2 ϕ ≈ 4. (10.1)
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Table 10.1 Calculated derivatives of dipole ∂μr ′/∂q1 and polarizability ∂αp′q ′/∂q1 of acetonitrile
by B3LYP/aug-cc-pVTZ [28]. Units: atomic units. q1 denotes the normal mode coordinate of C–
H symmetric stretching defined for the stretching direction with unit reduced mass. Right picture
illustrate the configuration of acetonitrile in the molecule-fixed coordinates (ξ, η, ζ ). (Same as
Table 4.2 in Chap. 4)

∂μr /∂q1 r = ξ η ζ

0 0 -0.005970

∂αp q /∂q1 q = ξ η ζ

p = ξ 0.2967 0 0
η 0 0.2967 0
ζ 0 0 0.3731

C

C

HH
H

N

Table 10.2 Calculated ratios
R in Eq. (4.10) for CH3X
molecules by
B3LYP/aug-cc-pVTZ [28]

CH3X Rb

CH3H 2.1

CH3CHa
3 1.2

CH3F 1.8

CH3Cl 0.94

CH3Br 0.79

CH3CN 0.80
aStaggered ethane
bThe normal mode coordinate q1
in Eq. (4.10) is assumed to be the
symmetry adopted natural inter-
nal coordinate for the methyl
symmetric stretching

All the ambiguities in R mentioned above cast large uncertainty in the estimated
orientation from the polarization ratio B or C by Eqs. (4.14) or (4.15). The
polarization analysis should be based on sufficiently accurate quantum chemical
calculations of R unless a direct experimental value is available. The calculated
value of R = 0.80 is smaller than unity, which is not in accord with the simple
geometric estimate of Eq. (10.1) [36].

The quantum chemical calculations of related molecules showed that the R value
of the methyl symmetric stretching is actually sensitive to the adjacent functional
group X of the methyl group. Table 10.2 summarizes the calculated R values for
various CH3X molecules (X = H, CH3, F, Cl, Br, CN). The electronically soft CN
group reduces the R value due to the hyperconjugation of CH and CN π orbitals.
Accurate evaluation of the R value that could depend on molecular species is of
critical importance in the polarization analysis.
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Chapter 11
Summary

Abstract The present chapter summarizes the outline of the theory of SFG
spectroscopy described in this book, including the fundamental and detailed theory
of χ (2) and application of computational SFG analysis for realistic interfaces.
This chapter also shows future directions of the SFG spectroscopy, which will be
greatly facilitated in collaboration of experimental advances and the computational
analysis. Theoretical interpretation with the aid of reliable computation will be
increasingly important in the future of the surface nonlinear spectroscopy.

Keywords Fundamental theory of χ (2) · Modeling of polarization · Future
directions

In this book, fundamental theory of the surface nonlinear spectroscopy and related
principles are presented. The principal aim is toward comprehensive understanding
of the vibrational SFG spectroscopy through close collaboration of experimental
measurement and theoretical analysis. Here we briefly summarize the outline of the
theory described in this book.

11.1 Outline of Theory

The theory of SFG consists of both macroscopic and microscopic aspects of the
surface nonlinear spectroscopy, which were treated in Chaps. 2 and 3, respectively.
The macroscopic aspect in Chap. 2 deals with the electromagnetic processes in
which the nonlinear polarization is induced at the interface and thereby emits the
radiation of sum frequency. On the other hand, the microscopic aspect in Chap. 3
defines material properties of the interface related to the nonlinear response.

Furthermore, Chap. 4 provides the microscopic formulations of the frequency-
dependent nonlinear susceptibility of the interface χ (2)(�, ω1, ω2) by two routes, on
the basis of the energy representation and the time-dependent representation. These
two routes of formulations allow for calculating χ (2)(�, ω1, ω2) by molecular
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simulation. In applying these formulas of χ (2) to realistic interfaces, accurate
treatment of electronic polarization and intermolecular couplings in the interface
systems are of critical importance to provide reliable interpretation of the observed
spectra. Therefore, the theory and modeling of these polarization properties were
discussed in Chaps. 5 and 6. The knowledge summarized in Chaps. 4, 5 and 6 forms
the necessary foundation of the computational analysis of SFG spectra.

Chapters 7 and 8 treat some advanced topics of SFG theory. We argued the
quadrupole contributions to the SFG and SHG processes in Chap. 7 in details, which
arise from the bulk region as well as from the interface. Chapter 8 discussed some
other topics of SFG, including the χ(3) effect and chiral applications of the SFG
spectroscopy.

The theory and principles presented in this book not only provide the formal
framework of the surface nonlinear spectroscopy, but allow us to understand
experimentally observed SFG spectra from the molecular viewpoints of electronic
properties and structure of the interfaces. Chapters 9 and 10 introduced some
applications of the computational analysis pioneered by the author’s group to aque-
ous and organic interfaces. These examples become prototypes of computational
analysis of SFG spectroscopy for further applications. The theoretical analysis in
combination of quantum chemical calculations and molecular dynamics simulations
is growing to become a powerful means to interpret the experimental spectra.

11.2 Future Directions

The applications of computational analysis of SFG are currently expanding, with
various modeling methods besides the CRK model [1, 4, 5, 12]. The future
computational analysis will cover a variety of interfaces treated by experimental
SFG measurement. These applications should include

• surfaces of water and aqueous solutions (water, ice, electrolyte solutions, etc.)
• liquid-liquid interfaces (water-oil, etc.)
• electrochemical interfaces (solution-electrode)
• molecules adsorbed on solid surfaces
• polymer surfaces
• Langmuir and Langmuir-Blodgett films, self-assemble monolayers
• biomolecules—cell membranes
• environmental interfaces—aerosol surface, water-mineral interface

...

The advance of theory is stimulated by the advance of experimental methods.
Experimental techniques of surface nonlinear spectroscopy have been remarkably
sophisticated since the first report of SFG spectrum. Just for example, the advance-
ment of the heterodyne detected SFG provides experimental information of real
(Re[χ (2)]) and imaginary (Im[χ (2)]) parts of the χ (2) spectra, and allows unam-
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biguous comparison with the calculated χ (2) spectra. This progress has indeed a
substantial impact on the collaboration of experiment and theory. We have discussed
a number of such examples in the preceding chapters. Recent advancements of the
experimental techniques worth noting should include

• heterodyne SFG
• time-resolved SFG, 2D-SFG
• high-resolution SFG
• sophisticated analysis of polarization
• chiral SFG
• double resonance SFG
• SFG microscope, imaging
• SFG scattering

...

These advancements have been achieved by the efforts of various experimental
researchers. We could not detail these aspects in this book. Interested readers in
these experimental aspects should refer to a recent excellent textbook by Shen [10]
and the references therein.

In the future advances of SFG spectroscopy, one of the largest challenges lies
in the unambiguous and comprehensive analysis of observed spectra. Although it is
widely recognized that the SFG spectroscopy involves rich microscopic information
on interfaces, it is not often straightforward to carry out precise assignment at
the molecular level. Current experimental analysis of the observed spectra largely
depends on empirical spectral fitting for assignment of band structure, though such
empirical fitting suffers from large ambiguities and fitted bands are often hard to
be interpreted. Reliable analysis methods with sound theoretical basis will help
exploiting the potential of the surface nonlinear spectroscopy. In the next stage
of analysis, detailed comparison of the spectra with molecular simulation will
be widely utilized. Collaboration of experiment and theory will be of increasing
importance in the surface nonlinear spectroscopy [2, 3, 6–9, 11, 13].
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