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Foreword

Experiment is essential to scientific and industrial areas. How do we conduct
experiments so as to lessen the number of trials while still achieving effective
results? In order to solve this frequently encountered problem, there exists a special
technique called experimental design. The better the design, the more effective the
results.

In the 1960s, Prof. Loo-Keng Hua introduced J. Kiefer’s method, the “golden
ratio optimization method,” in China, also known as the Fibonacci method. This
method and orthogonal design which were popularly used in industry promoted by
Chinese mathematical statisticians are the two types of experimental designs. After
these methods became popular, many technicians and scientists used them and
made a series of achievements, resulting in huge social and economic benefits. With
the development of science and technology, these two methods were not enough.
The golden ratio optimization method is the best method to deal with a single
variable, assuming the real problem has only one interesting factor. However, this
situation is almost impossible. This is why we only consider one most important
factor and fix the others. Therefore, the golden ratio optimization method is not a
very accurate approximation method. Orthogonal design is based on Latin square
theory and group theory and can be used to do multifactor experiments.
Consequently, the number of trials is greatly reduced for all combinations of dif-
ferent levels of factors. However, for some industrial or expensive scientific
experiments, the number of trials is still too high and cannot be facilitated.

In 1978, due to the need for missile designs, a military unit proposed a
five-factor experiment, where the level of every factor should be higher than 18 and
the total number of trials should be not larger than 50. Neither the golden ratio
optimization method nor orthogonal design could be applied. Several years before
1978, Prof. Kai-Tai Fang asked me about an approximate calculation of a multiple
integration problem. I introduced him to use the number-theoretical methods for
solving that problem, which inspired him to think of using number-theoretical
methods in the design of the problem. After a few months of research, we put
forward a new type of experimental designs that is known as uniform design. This
method had been successfully applied to the design of missiles. After our article
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was published in the early 1980s, uniform design has been widely applied in China
and has resulted in a series of gratifying achievements.

Uniform design belongs to the quasi-Monte Carlo methods or number-
theoretical methods, developed for over 60 years. When the calculation of a sin-
gle variable problem (the original problem) is generalized to a multivariable
problem, the calculation complexity is often related to the number of variables.
Even if computational technology advances greatly, this method is still impossible
in application. Ulam and Von Neumann proposed the Monte Carlo method (i.e.,
statistical stimulation) in the 1950s. The general idea of this method is to put an
analysis problem into a probability problem with the same solution and then use a
statistical simulation to deal with the latter. This solves some difficult analysis,
including the approximate calculation of multiple definite integrals. The key to the
Monte Carlo method is to find a set of random numbers to serve as a statistical
simulation sample. Thus, the accuracy of this method lies in the uniformity and
independence of random numbers.

In the late 1950s, some mathematicians tried to use deterministic methods to find
evenly distributed points in space in order to replace the random numbers used in
the Monte Carlo method. The set of points that had been found was by using
number theory. According to the measure defined by Weyl, the uniformity (of a
uniform design) is good, but the independence is relatively poor. By using these
points to replace the random numbers used in the Monte Carlo method, we usually
get more precise results. This kind of method is called a quasi-Monte Carlo method,
or the number-theoretical method. Mathematicians successfully applied this method
into approximate numerical calculations for multiple integrals.

In statistics, pseudo-random numbers can be regarded as representative points
of the uniform distribution (in cubed units). Numerical integration requires a large
sample, but uniform design just uses small samples. Since the sample is more
uniform than orthogonal designs, it is preferred for settling the experiment. Of
course, when seeking a small sample, the method of seeking a large sample can be
used as a reference.

Uniform design is only one of the applications of the number-theoretical method,
which is also widely used in other areas, such as the establishment of multiple
interpolation formulas, the approximate solutions of systems of some integrals or
differential equations, the global extremes of the functions, the approximate rep-
resentation points for some multivariate distributions, and some problems for sta-
tistical inference, such as multivariate normality test and the sphericity test.

When the Monte Carlo method was first discovered in the late 1950s,
Prof. Loo-Keng Hua initiated and led a study of this method in China. Loo-Keng
Hua and his pioneering results were summarized in our monograph titled
“Applications of Number Theory to Numerical Analysis” published in Springer-
Verlag Science Press in 1981. These results are one of the important backgrounds
and reference materials for my work with Prof. Kai-Tai Fang.

I have worked with Prof. Kai-Tai Fang for nearly 40 years. As a mathematician
and a statistician with long-term valuable experience in popularizing mathematical
statistics in Chinese industrial sector, he has excellent insight and experience in
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applied mathematics. He always provided valuable research questions and possible
ways to solve the problem in a timely manner. Our cooperation has been pleasant
and fruitful, and the results were summarized in our monograph “Number-Theoretic
Methods in Statistics” published by Chapman and Hall in 1994.

This book focuses on the theory and application of uniform designs, but also
includes many latest results in the past 20 years. I strongly believe that this book
will be important for further development and application of uniform designs.
I would like to take this opportunity to wish the book success.

Beijing, China Yuan Wang
Academician of Chinese Academy

of Sciences
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Preface

The purpose of this book is to introduce theory, methodology, and applications
of the Uniform experimental design. The uniform experimental design can be
regarded as a fractional factorial design with model uncertainty, a space-filling
design for computer experiments, a robust design against the model specification, a
supersaturated design and can be applied to experiments with mixtures. The book
provides necessary knowledge for the reader who is interested in developing theory
of the uniform experimental design.

The experimental design is extremely useful in multifactor experiments and has
played an important role in industry, high tech, sciences and various fields.
Experimental design is a branch of statistics with a long history. It involves rich
methodologies and various designs. Comprehensive reviews for various kinds of
designs can be found in Handbook of Statistics, Vol. 13, edited by S. Ghosh and
C. R. Rao.

Most of the traditional experimental designs, like fractional factorial designs and
optimum designs, have their own statistical models. The model for a factorial plan
wants to estimate the main effects of the factors and some interactions among the
factors. The optimum design considers a regression model with some unknown
parameters to be estimated. However, the experimenter may not know the under-
lying model in many case studies. How to choose experimental points on the
domain when the underlying model is unknown is a challenging problem. The
natural idea is to spread experimental points uniformly distributed on the domain.
A design that chooses experimental points uniformly scattered on the domain is
called uniform experimental design or uniform design for simplicity. The uniform
design was proposed in 1980 by Fang and Wang (Fang 1980; Wang and Fang
1981) and has been widely used for thousands of industrial experiments with model
unknown.

Computer experiments are for simulations of physical phenomena which are
governed by a set of equations including linear, nonlinear, ordinary, and partial
differential equations or by several softwares. There is no analytic formula to
describe the phenomena. The so-called space-filling design becomes a key part of
computer simulation. In fact, the uniform design is one of the space-filling designs.
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Computer experiment is a hot topic in the past decades. It involves two parts: design
and modeling. The book focuses on the theory of construction of uniform designs
and connections among the uniform design, orthogonal array, combinatorial design,
supersaturated design, and experiments with mixtures. There are many useful
techniques in the literature, such as polynomial regression models, Kriging models,
wavelets, Bayesian approaches, neural networks as well as various methods for
variable selection. This book gives a brief introduction to some of these methods;
the reader can refer to Fang et al. (2006) for details of these methods.

There are many other space-filling designs among which the Latin hypercube
sampling has been widely used. Santner et al. (2003) and Fang et al. (2006) give the
details of the Latin hypercube sampling.

The book involves eight chapters. Chapter 1 gives an introduction to various
experiments and their models. The reader can easily understand the key idea and
method of the uniform experimental design from a demo experiment. Many basic
concepts are also reviewed. Chapter 2 concerns with various measures of unifor-
mity and introduces their definitions, computational formula, and properties. Many
useful lower bounds are derived. There are two chapters for the construction of
uniform designs. Chapter 3 focuses on the deterministic approach while Chap. 4 on
numerical optimization approach. Various useful modeling techniques are briefly
recommended in Chap. 5. The uniformity has played an important role not only for
construction of uniform designs, but also for many other designs such as factorial
plans, block designs, and supersaturated designs. Chapters 6 and 7 present a
detailed description on the usefulness of the uniformity. Chapter 8 introduces
design and modeling for experiments with mixtures.

The book can be used as a textbook for postgraduate level and as a reference
book for scientists and engineers who have been implementing experiments often.
We have taught partial contents of the book for our undergraduate students and our
postgraduate students.

We sincerely thank our coauthors for their significant contribution to the
development of the uniform design, who are Profs. Yuan Wang in the Chinese
Academy of Science, Fred Hickernell in the Illinois Institute of Technology,
Dennis K. J. Lin in the Pennsylvania State University, R. Mukerjee in Indian
Institute of Management Calcatta, P. Winker in Justus-Liebig-Universität Giessen,
C. X. Ma in the State University of New York at Buffalo, H. Xu in University of
California, Los Angeles, and K. Chatterjee in Visva-Bharati University. Many
thanks to Profs. Z. H. Yang, R. C. Zhang, J. X. Yin, R. Z. Li, L. Y. Chan, J. X. Pan,
R. X. Yue, M. Y. Xie, Y. Tang, G. N. Ge, Y. Z. Liang, E. Liski, G. L. Tian,
J. H. Ning, J. F. Yang, F. S. Sun, A. J. Zhang, Z. J. Ou, and A. M. Elsawah for
successful collaboration and their encouragement. We particularly thank Prof.
K. Chatterjee who spent so much time to read our manuscript and to give valuable
useful comments.

The first author would thank several Hong Kong UGC research grants,
BNU-HKBU UIC grant R201409, and the Zhuhai Premier Discipline Grant for
partial support. The second author would thank the National Natural Science
Foundation of China (Grant Nos. 11431006 and 11771220), National Ten
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Thousand Talents Program, Tianjin Development Program for Innovation and
Entrepreneurship, and Tianjin “131” Talents Program. The third author would
thank the National Natural Science Foundation of China (Grant Nos. 11271147 and
11471136) and the self-determined research funds of CCNU from the college’s
basic research and operation of MOE (CCNU16A02012 and CCNU16JYKX013).
The last author would thank the National Natural Science Foundation of China
(Grant Nos. 11471229 and 11871288) and Fundamental Research Funds for the
Central Universities (2013SCU04A43). The authorship is listed in alphabetic order.

Zhuhai/Beijing, China Kai-Tai Fang
Tianjin, China Min-Qian Liu
Wuhan, China Hong Qin
Tianjin, China Yong-Dao Zhou
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Chapter 1
Introduction

Experimental design is an important branch of statistics. This chapter concerns with
experiments in various fields and indicates their importance, purpose, type of exper-
iments, statistical models, and related designs. Section 1.1 demonstrates several
experiments for different purposes and characteristics. This section also presents
discussion on two popular types of experiments: (1) physical experiments and (2)
computer experiments. Basic terminologies used in experimental design are intro-
duced in Sect. 1.2. Various kinds of experimental designs based on different kinds
of statistical models are introduced in Sect. 1.3. They involve the factorial design
under ANOVA model, the optimum design under linear regression model, and the
uniform design under model uncertainty (or nonparametric regression model). There
are many criteria for assessing fractional factorial designs, among which the mini-
mum aberration criterion has been widely used. Section 1.4 gives a brief introduction
to this concept and its extensions. Section 1.5 shows the implementation of the uni-
form design for a multifactor experiment. Readers are recommended to read this
chapter carefully so that they can understand the methodology of uniform design
and will easily follow the remaining contents of the book.

1.1 Experiments

Scientific experiments are of essential importance for exploring nature. Experiments
are performed almost everywhere, usually the purpose of discovering something
about a particular process/system. Experiments are often implemented in agriculture,
industry, natural sciences, and high-tech. The purpose of an experiment in industrial
and chemical engineering is

© Springer Nature Singapore Pte Ltd. and Science Press 2018
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• To increase process yields;
• To improve the quality of the products, such as to reduce variability and increase
reliability;
• To reduce the development time; or/and
• To reduce the overall costs.

In natural sciences and high-tech, the purpose of an experiment would be accom-
modated in different tasks:
• To evaluate the material alternatives;
• To screen and select the design parameters;
• To determine the values of the key product parameters which have an impact on
product performance;
• To evaluate the effects and the interactions of the factors; or/and
• To explore the relationships between factors and responses.

How to find a good design for a specific experiment is an important research area
in statistics as most experiments involve random errors. Design and modeling for
experiments are a branch of statistics and have been playing an important role in the
development of sciences and new techniques.

1.1.1 Examples

Let us present some motivating examples of experiments. We omit the details in the
following experiments so that readers may concentrate on the problems and related
methodology we are going to introduce.

Example 1.1.1 In a chemical experiment, the experimenter wishes to explore the
relationship between the composition of a chemical material (x) and its strength
(y) by an experiment. Suppose that the underlying relationship shown in Fig. 1.1
is unknown. How does one design an experiment to find an approximate model
(or metamodel) to describe the desired relationship. In this experiment, the chemical
composition is called a factor and the strength is called a response. A natural idea for
this experiment is to choose several values of the composition, x1, . . . , xn say, to con-
duct experiments at these values, and measure the corresponding strengths, denoted
by y1, . . . , yn . Various modeling techniques applied to the data (x1, y1), . . . , (xn, yn)
can result in different metamodels, among which the experimenter can choose a suit-
able one. The choice of experimental points, x1, . . . , xn , and modeling techniques
are important issues.

Example 1.1.2 This experiment is a typical situation in chemical engineering
encountered by the first author in Nanjing in 1972. For increasing the yield (y),
three controllable variables varied for study. They are
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Fig. 1.1 Underlying
nonlinear model
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A: The temperature of the reaction;
B: The time allowed for the reaction; and
C : The alkali percentage.

The varied intervals of these variables are chosen to be

A : 80 oC–90 oC; B : 90min–150min; C : 5%–7%,

respectively. From experience, it is known that there are no interactions among the
three factors. There may have a nonlinear relationship between the yield y and the
factors. How do we find a design for this experiment? In the literature, a facto-
rial experiment for multiple factors is recommended. Sections 1.3.1 and 1.3.2 will
introduce this kind of designs.

Example 1.1.3 This is a real case study introduced by Fang and Chan (2006). Accel-
erated stress testing is an important method in studying the lifetime of systems. As a
result of advancement in technology, the lifetimes of products are increasing, and as
new products emerge quickly, their life cycles are decreasing. Manufacturers need
to quickly determine the lifetimes of new products and launch them into the market
before another new generation of products emerges. In many cases, it is not viable
to determine the lifetimes of products by testing them under normal operating con-
ditions. Instead, accelerated stress testing is commonly used, in which products are
tested under high-stress physical conditions. The median times to failure of the prod-
ucts are extrapolated from the data obtained using lifetime models. Many different
models, such as the Arrhenius model, inverse power rule model, the proportional
hazards model, have been proposed based on physical or statistical considerations.
Readers may refer to Elsayed (1996) for an introduction of accelerated stress test-
ing. An experimental design is needed to choose the environmental parameters of the
accelerated stress test. Three factors are considered as voltage V (Volts), temperature
T (Kelvin), and relative humidity H (%). The response is its median time to failure
t that is given by
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t = aV−bec/T e−dH ,

where a, b, c, d are known constants to be determined. The median time to failure
t0 of an electronic device under the normal operating condition has to be determined
under accelerated stress testing. The experimenter wants to explore the model via an
experiment. The uniform design was used for this case study.

Example 1.1.4 In an environmental study, an experimenter wishes to conduct a
quantitative risk assessment of toxic chemicals present and their interactions. Six
chemicals are considered: cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni),
chromium (Cr), and lead (Pb). The experimenter varies the concentration of each
chemical in the experiment in order to determine how the concentration affects toxi-
city. Unfortunately, the underlying model between the response and the six chemical
concentrations is unknown. One wants to find a metamodel to the true one by an
experiment. Clearly, the range for each chemical concentration should be substan-
tial. The experimenter might choose the following concentrations for each chemical

0.01, 0.05, 0.1, 0.2, 0.4, 0.8, 1, 2, 4, 5, 8, 10, 12, 14, 16, 18, and 20.

Given these 17 levels, there are 176 = 24, 137, 569, almost 24million, concentration-
combinations! It is impossible to conduct an experiment for each concentration-
combination. A good experimental design can choose a small number of represen-
tative concentration-combinations that still yield a reliable result. Fang and Wang
(1994) and Fang et al. (2006) discussed the issues of design and modeling for this
experiment in details.

Example 1.1.5 The reversible chemical reaction is a class of important basic reac-
tions in chemistry and chemical engineering. Traditionally, chemists used the deter-
ministic methods to obtain the kinetic rate constants, according to the characteristic
of a chemical reaction. Chemists often used the techniques that make a large excess
of some reactants involved in reaction, so that their concentration changes can be
negligible. Thus, simple relation among the reactants and products is obtained. The
chemical kinetics is modeled by a linear system of 11 differential equations:

h j (x, t) = g j (η, x, t), j = 1, . . . , 11, (1.1.1)

where x is a set of rate constants, the inputs to the system. A solution to (1.1.1)
can be obtained numerically for any input x by the use of 11 differential equations
solver, yielding concentrations of five chemical species at a reaction time of 7 × 10−4

seconds. One might be interested in finding a closed-form approximate model that is
much simpler than the original one. Atkinson et al. (1998) discussed the possibility
of applying D-optimal designs to the kinetics of reversible chemical reaction.

Example 1.1.6 Many products are formed by mixing two or more ingredients
together. For making a coffee cake, the ingredients are: X1 (flour), X2 (water),
X3 (sugar), X4 (vegetable shortening), X5 (flaked coconut), X6 (salt), X7 (yeast),
X8 (emulsifiers), X9 (calcium propionate), X10 (coffee powder), and X11 (liquid
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flavoring). Choosing a suitable percentage for each ingredient requires much rich
experience. However, if the cooker does not have any experience, a design of exper-
iment with mixtures is helpful. Note that the percentages of the above 11 ingredients
must satisfy x1 + · · · + x11 = 1 and xi � 0, i = 1, . . . , 11. These restrictions imply
that the related design of experiments is quite different from the above experiments
and is called experiment with mixtures. Besides the constraints already mentioned,
there may be other upper and lower bounds on the amounts of certain ingredients,
i.e., ai � xi � bi , i = 1, . . . , 11. For instance, the water and flour in the coffee cake
making experiment are major ingredients, and the amount of salt should be less than
1%, and the quantities of other ingredients should be very small. Such an experiment
is called an experiment with restricted mixtures which has been useful in developing
new materials.

A design of n runs for mixtures of s ingredients is a set of n points in the domain

T s = {(x1, . . . , xs) : x j � 0, j = 1, . . . , s, x1 + · · · + xs = 1}. (1.1.2)

Due to the constrain x1 + · · · + xs = 1, to find a design for experimentswithmixtures
is quite different from experiments without any constrains on the factors.

Example 1.1.7 (Robot arm) A robot is an electromechanical machine that is guided
by a computer program. A new branch of robot technology involves design, con-
struction, operation, and computer system.

The movement trajectory of a robot arm is frequently used as an illustrative exam-
ple for computer experiments (see Fang et al. 2006). Consider a robot arm with m
segments. The shoulder of the arm is fixed at the origin in the (u, v)-plane. The
segments of this arm have lengths L j , j = 1, . . . ,m. The first segment is at angle
θ1 with respect to the horizontal coordinate axis of the plane. For k = 2, . . . ,m,
segment k makes angle θk with segment k − 1. The end of the robot arm is at

{
u = ∑m

j=1 L j cos(
∑ j

k=1 θk),

v = ∑m
j=1 L j sin(

∑ j
k=1 θk),

(1.1.3)

and the response y is the distance y = √
u2 + v2 from the end of the arm to the origin

expressed as a function of 2m variables θ j ∈ [0, 2π] and L j ∈ [0, 1]. Ho (2001) gave
an approximation model y = g(θ1, θ2, θ3, L1, L2, L3) for the robot arm with three
segments.

1.1.2 Experimental Characteristics

In the previous subsection, we list several experiments. Each experiment has its own
purpose and characteristic. Example 1.1.1 wants to explore a nonlinear relationship
between the composition of a chemical material and its strength. It is a one-factor
experiment with model uncertainty. Example 1.1.2 is a multifactor experiment and
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needs a efficient design to explore the relationship between the response and the
factors. Some prior knowledge provided in Example 1.1.2 (no interactions among
the factors) is very useful. Example 1.1.3 wants to explore the nonlinear relationship
between the response t and three factors V, T, H , and to choose the environmen-
tal parameters of the accelerated stress test. The goal of Example 1.1.4 is crucial.
The relationships between the response and the six chemicals are complicated, and
the underlying model is unknown. Example 1.1.5 is from chemistry and chemical
engineering. Atkinson et al. (1998) discussed the possibility of applying D-optimal
designs to the kinetics of reversible chemical reaction when the underlying model
is known. However, the D-optimal design is not robust against the model change.
Xu et al. (2000) considered three different kinds of designs for this chemical reac-
tion and compared their performance. They concluded that the uniform design is
robust for this experiment. Many products are formed by mixtures of several ingre-
dients. Experiments with mixtures have played an important role in various fields
such as chemical engineering, rubber industry, material and pharmaceutical engi-
neering. Example 1.1.6 is such an experiment. Example 1.1.7 is related to computer
experiments, where the underlyingmodel is known, but too complicated. One wishes
to use a metamodel to approximate the true model. Design and modeling for com-
puter experiments are a rapidly growing area and have been widely used in system
engineering.

A good experimental design should minimize the number of runs to acquire as
much information as possible. Experimental design is a branch of statistics and
has a long history. The experimental design has been playing an important role in
development of sciences and new techniques, especially in development of high-
tech. It involves rich methodologies and various designs. Comprehensive reviews
for various kinds of designs can be found in Handbook of Statistics, Vol. 13, edited
by S. Ghosh and C.R. Rao, Handbook of Statistics, Vol. 22: Statistics in Industry,
edited byR. Khattree andC.R. Rao, as well as inHandbook of Design and Analysis of
Experiments, edited by A. Dean,M.Morris, J. Stufken and D. Bingham. Historically,
in the natural sciences, some fundamental laws of nature have only been discovered
or verified empirically through carefully designed experiments. The information and
testing conjectures through these experiments may lead to the birth of a new branch
of science. Developments in life sciences have frequently arisen in this manner. A
classical example is Mendel’s genetic model now well known to the high school
students.

The experimental design is extremely useful in many multifactor experiments.
From the above examples, we find that experiments, especially in high-tech applica-
tions, have one or more of the following characteristics:

• Multiple factors;
• Nonlinear relationship between the factors and the response;
• Experimental region is large or very large so that the number of levels for the

factors cannot be too small;
• The underlying model is unknown;
• Experiments can be simulated in computer.
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Weneed some newdesigns that can treat experimentswith the above complexities.
There are many designs that can meet the above requirements, and the uniform
experimental design or the uniform design is one of such designs.

1.1.3 Type of Experiments

Experiments can be classified under various considerations. For example,
I. The number of factors

• Single-factor experiments;
• Multifactor experiments.

II. The number of responses
• Single response;
• Multiple responses;
• Functional response.

III. Constraint condition
• No constraint experiment: The choice of the levels of every factor is indepen-

dent;
• Experiments with constraints: The choice of the levels of every factor depends

on other factors, for example, experiments with mixtures.
IV. The underlying model

• Known;
• Unknown.

V. Operating environment
• Physical experiments; and
• Computer experiments.

Let us give more words on the last classification.

A. Physical Experiments

Traditionally, an experiment is implemented in a laboratory, in a factory, or in an
agricultural field. This is called a physical experiment or an actual experiment, where
the experimenter physically carried out the experiment. There always exist random
errors in physical experiments so that we might obtain different outputs under the
identical experimental environment. Existence of random errors creates complexity
in data analysis and modeling. Therefore, the experimenter may choose one or few
factors in the experiment so that it is easy to explore the relationship between the
output and inputs or propose some powerful statistical experimental designs.

Statistical approach to design experiments is usually based on a statistical model.
A good design is an optimal one to the underlying statistical model. There are many
designs for physical experiments, among which the fractional factorial design that
is based on an ANOVA model and the optimum regression design (optimum design
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for short) that is based on a regression model are most popular in practice. The cor-
responding models involve some unknown parameters such as main effects, inter-
actions, regression coefficients, and variance of random errors. A good design can
provide unbiased estimators of the parameters with smaller or even the smallest
variance–covariance matrix under a certain sense. Orthogonal arrays and various
optimal designs are such popularly used designs. Useful concepts in physical experi-
ments and basic knowledge on the orthogonal array and the optimal design are given
in the next section.

The orthogonal design and optimum regression design assume the underlying
model is known except for some parameters in the model. However, the underlying
model is unknown in most of the experiments. One wishes to find a metamodel based
on experiments. The uniform design is one of the most popular designs.

B. Computer Experiments

Computer experiments and/or computer simulations have beenwidely used for study-
ing physical phenomena in various fields of industry, system engineering, and others
becausemany physical processes/phenomena are difficult or even impossible to study
by conventional experimental methods. Computer models are often used to describe
complicated physical phenomena encountered in science and engineering. These
phenomena are often governed by a set of equations, including linear, nonlinear,
ordinary, and partial differential equations. The equations are often too difficult to
be solved simultaneously in a short time, but can be by a computer modeling pro-
gram. These programs, due to the number and complexity of the equations, may have
long running times, making their use difficult for comprehensive scientific investi-
gation. Santner et al. (2003) indicated “Many physical processes are difficult or even
impossible to study by conventional experimental methods. As computing power has
increasing, it has become possible to model some of these processes by sophisticated
computer code.”

In the past decades, computer experiments or simulation experiments become a hot
topic in statistics and engineering. The underlyingmodel in a computer experiment is
deterministic and given, but is too complicated to be managed and analyzed. One of
the goals of computer experiments is first to find an approximate model (metamodel)
that is much simpler than the true one. Simulation experiments study the underlying
process by simulating the behavior of the process on a computer. The underlying
model in a simulation experiment is also deterministic and given, but errors on the
inputs are considered.

The computer experiment has played its role as an artificial means for simulating a
physical environment so that experiments canbe implemented virtually, if such exper-
iments are not performed physically for some reasons. Many scientific researches
involve modeling complicated physical phenomena using the mathematical model

y = f (x1, . . . , xs) = f (x), x = (x1, . . . , xs)
′ ∈ T, (1.1.4)



1.1 Experiments 9

Fig. 1.2 Computer
experiments input

...
xs

x1

system y = g(x) y output

metamodel ŷ = ĝ(x)

where x consists of the input variables, x′ is the transpose of x, y is the output vari-
able, the function f may not have an analytic formula, and T is the input variable
space. Model (1.1.4) may be regarded as a solution of a set of equations, including
linear, nonlinear, ordinary, and/or partial differential equations, and it is often impos-
sible to obtain an analytic solution for the equations or even impossible to study by
conventional experimental methods. Engineers or scientists make use of the models
to perform various tasks and decisions making by interrogating the model to pre-
dict behavior of systems under different input variable settings. Hence, the model
plays a crucial role in scientific investigation and engineering design. However, in
many situations, it is very expensive or time-consuming to conduct physical exper-
iments in order to fully understand the relationship between response y and inputs
x j ’s. Alternatively, scientists and engineers use computer simulation to explore the
relationship. Thus, metamodels become very important to investigate complicated
physical phenomena. One of the goals of computer experiments is first to find a good
metamodel that is much simpler than the true one (Cf. Fig. 1.2) by simulating the
behavior of the device/process on a computer. Due to the number and complexity of
the equations, these programs require special designs.

1.2 Basic Terminologies Used

This section reviews some basic terminologies used in experimental designs. Let us
see a typical example.

Example 1.2.1 In a chemical experiment for increasing the yield, three controllable
variables are varied for study. They are:

A (or x1): The type of raw materials;
B (or x2): The amount of pyridine;
C (or x3): The duration of the reaction.

Ranges of these variables are chosen to be {m1,m2,m3}, [10, 28], and [0.5, 3.5],
respectively. The following values for each variable are selected for experiments:

A: The type of raw materials: m1,m2,m3;
B: The amount of pyridine (in ml): 10, 19, 28;
C : The time length of reaction (in hours): 0.5, 1.5, 2.5, 3.5.

Factor: A controllable variable that is of interest in the experiment. Factors
are denoted by A, B, . . . or x1, x2, . . . according to convenience. In Example 1.2.1,
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the type of raw materials, the amount of pyridine, and the duration of reaction are
factors. A factor may be quantitative or qualitative. A quantitative factor is one
whose values can be measured on a numerical scale and fall in an interval, e.g.,
temperature, pressure, ratio of two raw materials, reaction time. A qualitative factor
is one which is measured categorically, such as education levels, types of material,
gender. A qualitative factor is also called a categorical factor or indicator factor. In
this example, the factor A is qualitative while the factors B and C are quantitative.
In computer experiments, the factors are sometimes called input variables.

Environmental and nuisance variables: The variables that are not studied in
the experiment and are generally controlled at their pre-decided values are called
environmental variables. Environmental variables are not regarded as factors. With
reference to Example 1.2.1, the amounts of other chemicals, the pressure, etc., are
examples of environment variables.

The variables that cannot be controlled at all are treated as nuisance variables. In
most agriculture experiments, the weather cannot be controlled and may create some
noise variables. The season is considered as a nuisance variable in many physical
experiments.

Experimental domain: The spacewhere the factors take their values. In Example
1.2.1, the experimental domain is the Cartesian product {m1,m2,m3} × [10, 28] ×
[0.5, 3.5]. We shall use X to denote the experimental domain that is a subset of
Rs , where s is the number of the factors. In the development of new products or
procedures, it is better to choose a larger domain so that the experimenter may
have a better chance of finding the desired result. For experiments in a production
environment, smaller experimental domain is recommended for safety.

Levels: The specific values at which a factor is tested. Denote by A1, A2, . . .

the levels of the factor A. In Example 1.2.1, the levels of the reaction time are
C1 = 0.5,C2 = 1.5,C3 = 2.5, andC4 = 3.5, and the levels of the type of rawmate-
rials are A1 = m1, A2 = m2, and A3 = m3. Usually, the experimenter chooses an
experimental domain first and then he chooses levels for each factor.

Level-combination: A possible combination of levels of the factors. With refer-
ence to Example 1.2.1, (m2, 10, 2.5) and (m1, 28, 0.5) are two level-combinations.
A level-combination is also called a treatment combination. A level-combination can
be considered as a point in the experimental domain X .

Run or trial: The implementation of a level-combination in the experimental
environment. Throughout the book, we use the symbol “n” to denote the number of
runs in an experiment.

Design: A set of level-combinations or a set of points in the experimental domain
X . A design of an experiment with n runs and s factors is often denoted by P =
{x1, . . . , xn} where x j ∈ X or U = (ui j ) : n × s where the rows of U are transpose
of x1, . . . , xn , respectively. For simplicity, sometimes a design P = {x1, . . . , xn}
can be regarded as a matrix U.

Response: The result of a run, depending on the purpose of the experiment.
The response or output of an experiment could be qualitative or quantitative. The
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response of the experiment considered in Example 1.2.1 is the yield.We always use y
for the response. It is very common that there are several responses corresponding to
one single run. Such experiments are called experiments withmultiple responses. The
response, for example, in chemical, biology, andmedical studies, can be a curve, such
as a chemical fingerprint or DNA fingerprint. A curve response is called functional
response.

Random error: The variability of the response due to uncontrollable (nuisance)
variables in a run of the experiment. In general, it is not necessary to obtain the
same result in two runs for the identical level-combination due to a random error.
Industrial experiments always involve randomerrors.Whenwe repeat the experiment
under the same experimental environment, called repeated experiments or duplicated
experiments, we may get different results due to random errors. The random error
can often be assumed to be distributed as a normal distribution, N (0,σ2), in most
experiments. The varianceσ2 measuresmagnitude of the random error. The existence
of random error necessitates more complex designs and modeling.

Interaction of the factors: Suppose two factors A and B are considered in an
experiment. If the change in response due to a change in the levels of any of the
factors remains invariant at all levels of the other factor, we say that there is no
interaction between A and B. Otherwise, we say there is an interaction between A
and B. In a similar way, we can define interaction amongmore factors. How to define
and estimate the interaction of the factors is an important issue. Some discussion on
this concept is given in the next section.

The following gives some useful concepts in algebra that will be used in our book.

Hadamard matrix: A Hadamard matrix H of order n is an n × n matrix with
entries 1 and −1, which satisfies HHT = nI . It is known that n is necessarily 1, 2,
or a multiple of four. The Hadamard matrix plays an important role in the coding
theory and experimental designs.

Hadamardproduct orDot product: TheHadamard product of two n × mmatri-
ces A = (ai j ) and B = (bi j ) is an n × m matrix whose (i, j)th entry is ai j bi j for each
ordered pair (i, j).

A · B =
⎛
⎜⎝
a11b11 · · · a1mb1m

...
...

an1bn1 · · · anmbnm

⎞
⎟⎠ . (1.2.1)

The Hadamard product is also called dot product in the literature.

Hamming distance: The Hamming distance between two strings with the same
length is the number of positions at which the corresponding symbols are different.
For example, two strings (a, f, t, e, r) and ( f, f, b, r, r) have Hamming distance 3;
two runs (2, 1, 2, 3) and (2, 2, 3, 1) in L9(34) have Hamming distance 3.

Kronecker product: The Kronecker product of two matrices A = (ai j ) of n × p
and B = (bkl) of m × q is an nm × pq matrix defined as
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A ⊗ B = (ai j B) =
⎛
⎜⎝
a11B · · · a1mB

...
...

an1B · · · anmB

⎞
⎟⎠ . (1.2.2)

Cartesian product: In mathematics, a Cartesian product is a mathematical oper-
ation which returns a set (or product set or simply product) from multiple sets. For
example, the Cartesian product ofA = {a1, . . . , am} and B = {b1, . . . , bn} is the set

A × B = {(a, b) : a ∈ A, b ∈ B}. (1.2.3)

More generally, a Cartesian product of n sets, also known as an n-fold Cartesian
product, can be represented by an array of n dimensions, where each element is an
n-tuple.

Modulo operation: In this book, the concept of the modulo operation is in a
special sense. Let m and n are two positive integers. It is easy to see that m can be
expressed as

m = qn + r, (1.2.4)

where q is the quotient and r is the remainder of m divided by n. When m � n, we
have q = 0 and r = m; whenm > n, q is a positive integer and 0 � r < n.We define
m(mod n) = r . Clearly, the range ofm(mod n) is {0, 1, . . . , n − 1}. In experimental
design, the modulo operation is modified as m(˜mod n) = r , if r > 0; otherwise,
m(˜mod n) = n if r = 0.

1.3 Statistical Models

Each experiment has its own goal. A specific statistical model with some unknown
parameters may be used for fitting the relationship between the response and the
factors for the experiment. As mentioned earlier, there are two types of experiments:
(1) The underline model involves a number of unknown parameters even though the
model is known, and (2) The true model is not known.

When the underlying model is known, some optimality (or criterion) is raised for
measuring estimation of the parameters.Wewish to find an experimental design such
that its data can give the best estimation of the parameters under the optimality. There
are various statistical designs each based on its specific goal model. A comprehensive
introduction to these designs can be referred toHandbook of Statistics, Vol. 13 edited
by Ghosh and Rao (1996) and Handbook of Design and Analysis of Experiments
edited by Dean et al. (2015).

We use the following example to demonstrate the application of statistical models
with respect to different types of designs.
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Example 1.1.1 (Continuity) Suppose that the experimenter chooses the experimental
domain as X = [0.4, 1] for his professional knowledge and the number of runs to
be 12 from their financial budget. There are several statistical approaches to make a
design for this experiment. Each approach focuses on its own statistical model. The
following subsections introduce ANOVAmodels that are based on factorial designs;
regression models based on optimum designs; nonparametric regression models that
motivated uniform designs.

1.3.1 Factorial Designs and ANOVA Models

A factorial design is a set of level-combinations, and one of the main purposes of the
experiment is to estimate main effects and some interactions of the factors. Factorial
designs have been widely used in various kind of experiments. Let us give a brief
introduction to the factorial design.

A. One-Factor Experiments

For Example 1.1.1, a factorial design suggests to observe the response at several
compositions of the chemical material, x1, . . . , xq , that are called levels as indicated
in the previous section. For each xi , we repeat experiment ni times and related
responses are denoted by yi1, . . . , yini . Figure 1.3 shows a case of q = 4, and n1 =
n2 = n3 = n4 = 3. A statistical model

yi j = μi + εi j , i = 1, . . . , q, j = 1, . . . , ni , (1.3.1)

is considered, where μi is the true value y at x = xi , denoted by y(xi ), and εi j are
random errors that are independently identically distributed according to a normal
distribution N (0,σ2) with unknown σ2 > 0. Let μ be the overall mean of y over
x1, . . . , xq . Then, the mean μi can be decomposed into μi = αi + μ, where αi is
called the main effect of y at xi and they satisfy α1 + · · · + αq = 0. Model (1.3.1)
now can be expressed as

yi j = μ + αi + εi j , i = 1, . . . , q, j = 1, . . . , ni . (1.3.2)

The main effects measure the influence of factor A to the response. If some αi �= 0,
the factor A is said to have significant influence to the response y. The least squares
estimation has been used for μ,α1, . . . ,αq−1, and the analysis of variances gives
unbiased estimate of σ2 and F test. Therefore, the model (1.3.2) is called ANOVA
model.

B. Two-Factor Experiments

For a two-factor experiment, its ANOVA model may involve the overall mean, main
effects, and interactions between the factors. Suppose that Factor A chooses q1 levels
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Fig. 1.3 A factorial design
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A1, . . . , Aq1 and Factor B chooses q2 levels B1, . . . , Bq2 in a factorial experiment,
respectively. For each level-combination, we repeat the experiment r (r � 1) times.
The statistical model of this experiment is expressed as

yi jk = μ + αi + β j + (αβ)i j + εi jk, (1.3.3)

i = 1, . . . , q1; j = 1, . . . , q2; k = 1, . . . , r,

where
yi jk is the kth response at the level-combination Ai B j ,
μ is the overall mean,
αi is the main effect of factor A at Ai ,
β j is the main effect of factor B at Bj ,
(αβ)i j is the interaction of factors A and B at the level-combination Ai B j ,
εi jk is random error in the kth experiment at Ai B j . Usually, we assume that εi jk

are i.i.d., εi jk ∼ N (0,σ2) with unknown σ2.
The main effects and interactions in the model satisfy

α1 + · · · + αq1 = 0;β1 + · · · + βq2 = 0;
q1∑
i=1

(αβ)i j = 0, j = 1, . . . , q2;
q2∑
j=1

(αβ)i j = 0, i = 1, . . . , q1.

So the number of linearly independent main effects of A is q1 − 1, the number
of linearly independent main effects of B is q2 − 1, and the number of linearly
independent interactions of A × B is (q1 − 1)(q2 − 1). Here, q1 − 1, q2 − 1, and
(q1 − 1)(q2 − 1) are called degrees of freedom of A, B and A × B, respectively, in
the ANOVA. This model also can be expressed as
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yi jk = μi j + εi jk

where μi j is the mean of y at Ai B j . Rewrite

μi j = μ + (μi. − μ) + (μ. j − μ) + (μi j − μi. − μ. j + μ), (1.3.4)

whereμi. is themean of y at Ai andμ. j themean of y at Bj . The above decomposition
implies that

αi = μi. − μ, β j = μ. j − μ, (αβ)i j = μi j − μi. − μ. j + μ. (1.3.5)

The least squares estimators of these parameters are given by

μ̂ = ȳ,

α̂i = ȳi. − ȳ, μ̂i. = ȳi.,

β̂ j = ȳ. j − ȳ, μ̂. j = ȳ. j ,

̂(αβ)i j = ȳi j − ȳi. − ȳ. j + ȳ, μ̂i j = ȳi j ,

where
ȳi j is the average response at the combined level Ai B j ,
ȳi. is the average response at the level Ai ,
ȳ. j is the average response at the level Bj ,
ȳ is the total average response,

and ε̂i jk = yi jk − ȳi j are residuals.

C. Experiments with More Factors

An experiment with three factors A, B, andC may involve main effects of A, B, and
C , two-factor interactions A × B, A × C , and B × C , and three-factor interaction
A × B × C . Suppose that factor A has q1 levels, factor B has q2 levels, and factor c
has q3 levels. Suppose the underlying model is

yi jkt = μ + αi + β j + γk + (αβ)i j + (αγ)ik + (βγ) jk

+ (αβγ)i jk + εi jkt , (1.3.6)

i = 1, . . . , q1; j = 1, . . . , q2; k = 1, . . . , q3, t = 1, . . . , r,

in which the main effects of A, B, and C have q1 − 1, q2 − 1, q3 − 1 degrees of
freedom, respectively; their two-factor effects have (q1 − 1)(q2 − 1), (q1 − 1)(q3 −
1), and (q2 − 1)(q3 − 1)degrees of freedom, respectively; the interaction A × B × C
has (q1 − 1)(q2 − 1)(q3 − 1) degrees of freedom. If we need to estimate all the above
main effects and interactions, the number of runs is at least q1q2q3 + 1 as we also
need to estimate the variance of error, σ2. In general, for an experiment of s factors
each having q1, . . . , qs levels, respectively, if youwant to consider all ofmain effects,



16 1 Introduction

Table 1.1 Number of unknown parameters

Number of factors, s 1 2 3 4 5 6 7 8

Linear (q = 2) 2 4 8 16 32 64 128 256

Quadratic (q = 3) 3 9 27 81 243 729 2187 6561

Cubic (q = 4) 4 16 64 256 1024 4096 16384 65536

two-factor interactions, three-factor interactions, . . ., s-factor interactions, the total
number of parameters to be estimated is

∏s
i=1 qi + 1 that increases exponentially

when (s, q1, . . . , qs) increases. In this case, a full factorial design is recommended.

Definition 1.3.1 A full factorial design or complete design is a factorial design that
requires all the level-combinations of the factors to appear equally often.

One advantageof the full factorial design is thatwecan estimate all themain effects
and interactions among the factors. However, the number of parameters (main effects
and interactions) in a full factorial design increases exponentially as the number of
factors increases. For example, there are 15626 = 56 + 1 unknown parameters to be
estimated in an experiment of six factors each having five levels. If a full factorial
design is employed, the minimum number of runs is at least 15626 including to
estimate σ2. On the other hand, the number of runs should be a multiple of 15625
that is too much for a physical experiment. Table 1.1 shows the number of unknown
parameters in various ANOVA models.

1.3.2 Fractional Factorial Designs

Do we need a model that involves so many unknown parameters in an experiment
with multiple factors? By the experience, experimenters believe the following two
principles:

Sparsity principle: The number of relatively important effects/interactions in a
factorial design is small.

Hierarchical ordering principle: Lower-order effects are more likely to be
important than higher-order effects; main effects are more likely to be important
than interactions; and effects of the same order are likely to be equally important.

Considering the above two principles, the number of unknown parameters can be
significantly reduced. For example, for an experiment of s factors each having q lev-
els, there are s(q − 1)main effects and 1

2 s(s − 1)(q − 1)2 two-factor interactions. If
the high-order interactions can be ignored, the total number of unknown parameters
reduces from qs to s(q − 1)[1 + 1

2 (s − 1)(q − 1)] + 1.When some two-factor inter-
actions lack significance, the number of unknown parameters can be further reduced.
Based on this consideration, a subset of the full factorial design is employed, and
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Table 1.2 Orthogonal design
L8(27)

No 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

it is called a fractional factorial design (FFD for simplicity). The reader can refer
to Dey and Mukerjee (1999) for the details and references therein. Some notations
often appear in the literature, such as 2s−k denotes an FFD of s two-level factors
with the number of runs of n = 2s−k . This design is called a 1/2k fraction of the 2s

design. Similarly, notation 3s−k denotes for an FFD of s factors each having three
levels with n = 3s−k runs.

For the use of FFD, the experimenter needs to have some prior knowledge about
which main effects and interactions are significant. A design that can estimate all the
unknown parameters of the model is called estimable, otherwise called inestimable.
For the latter one, some main effects and interactions will be confounded. This
phenomenon is called aliasing.

A good fractional factorial design with a limited number of runs can allow us
to estimate all of the main effects and interactions of interest and can allow non-
interesting parameters to be confounded. Themost popular fractional factorial design
is the so-called orthogonal array.

Definition 1.3.2 An orthogonal array (OA) of strength t with n runs and s factors,
denoted by OA(n, s, q, r), is an FFD where any subdesign of n runs and m (m � r )
factors each having q levels is a full design.

Orthogonal arrays of strength two have been extensively used for planning exper-
iments in various fields (cf. Hedayat et al. 1999). Orthogonal arrays can be expressed
as a table. A general definition is given by:

Definition 1.3.3 An n × s matrix, denoted by Ln(q1 × · · · × qs) with entries
1, 2, . . . , q j at the j th column, is called an orthogonal design (OD) table, if it satisfies:

(1) Each entry in each column appears equally often.
(2) Each entry-combination in any two columns appears equally often.

Obviously, the condition (2) implies the condition (1).When some qi are the same,
the table Ln(q1 × · · · × qs) is denotedby Ln(q

r1
1 × · · · × qrmm )where r1 + · · · + rm =

s and by Ln(qs) if all qi = q. Two examples are given in Tables 1.2 and 1.3.
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Table 1.3 Orthogonal design
L8(4 × 24)

No 1 2 3 4 5

1 1 1 1 1 1

2 1 2 2 2 2

3 2 1 1 2 2

4 2 2 2 1 1

5 3 1 2 1 2

6 3 2 1 2 1

7 4 1 2 2 1

8 4 2 1 1 2

Definition 1.3.4 Saturated design. An orthogonal design Ln(qs) is called satu-
rated if n, q, and s satisfy n − 1 = s(q − 1). More general, an orthogonal design
Ln(q1 . . . , qs) is called saturated if n − 1 = ∑s

j=1(q j − 1).

The designs L9(34), L8(27), and L8(4 × 24) are saturated. The design L18(37) is
not saturated as (3 − 1) × 7 = 14 < 17 = (18 − 1), but the design L18(2 × 37) is
still unsaturated. A saturated design cannot be inserted by any column such that the
new design is still orthogonal.

The uniform design can be regarded as a kind of fractional factorial designs with
model unknown.

Definition 1.3.5 Uniform design table. An n × s matrix, denoted byUn(q1 × · · · ×
qs)with entries 1, 2, . . . , q j at the j th column, is called a uniform design (UD) table,
if it satisfies:

(1) Each entry in each column appears equally often.
(2) The n experimental points decided by Un(q1 × · · · × qs) are uniformly scat-

tered on the experimental domain in a certain sense.

When some qi are the same, the design table Un(q1 × · · · × qs) is denoted by
Un(q

r1
1 × · · · × qrmm ) where r1 + · · · + rm = s and by Un(qs) if all qi = q.

The uniform design is based on a nonparametric regression model

y = f (x1, . . . , xs) + ε, (1.3.7)

where the true model f (·) is unknown, (x1, . . . , xs) are an experimental point on
the domain, and ε is random error. The main purpose of the uniform design is to
find a metamodel to approximate the true model f (·). It is easy to see that there is
essential difference between the orthogonal design and the uniform design. But these
two kinds of design tables are based on so-called U-type designs.

Definition 1.3.6 A U-type design, denoted by U (n; q1 × · · · × qs), is an n × s
matrix with entries {1, . . . , q j } at the j th columns such that {1, . . . , q j } appear in this
columnequally often.When someq j are equal,we denote it byU (n; qr11 × · · · × qrmm )

with r1 + · · · + rm = s. When all q ′
j s are equal to q, we write U (n; qs) and
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the corresponding design is called symmetric, otherwise asymmetric or U-type
design with mixed levels. Let U(n; q1 × · · · × qs) be the set of all U-type designs
U (n; q1 × · · · × qs). Similarly, we have notations U(qr11 × · · · × qrmm ) and U(n; qs).

From the definition of U-type design, it immediately follows that each q j will be
divisible by n. Let U = (ui j ) be a U-type design in U(n; q1 × · · · × qs). Make the
transformation

xi j = ui j − 0.5

q j
, i = 1, . . . , n, j = 1, . . . , s, (1.3.8)

and denote Xu = (xi j ). Xu is then called the induced matrix of U . The n rows of the
matrix Xu are n points on [0, 1]s .

The second condition in Definition 1.3.5 requires that the chosen n experimental
points are uniformly scattered on the experimental domain in a certain sense. To
achieve this, we need some uniformity measures. Most measures of uniformity are
defined on [0, 1]s in the literature. Chapter 2 will introduce various discrepancies
as uniformity measures. Each discrepancy defines uniformity of a U-type design U
through its induced matrix by

D(U) = D(Xu). (1.3.9)

Definition 1.3.7 A design U ∈ U(n; q1 × · · · × qs) is called a Uniform design
under the measure D if

D(U) = min
V∈U(n;q1×···×qs )

D(V ),

and U is denoted by Un(q1 × · · · × qs).

Tables 1.4 and 1.5 give UD tables U12(124) and U6(32 × 2), respectively.
For a given (n, q, s), the corresponding uniform design is not unique as each

discrepancy is invariant by permuting rows and columns of the design table (Fig. 1.4).

Definition 1.3.8 Two U-type designs are called equivalent if one can be obtained
from another by permuting rows and/or columns.

We shall not distinguish equivalent uniform designs. For a given uniform design
table Un(qs), by permuting rows and columns of the design we can obtain n!s!
equivalent designs. Chapters 3 and 4will discuss the construction of uniform designs,
where we search only one of the equivalent uniform designs.

1.3.3 Linear Regression Models

Kiefer (1959) initiated research on statistical design under a specific regression
model. Suppose the experimenter has prior knowledge about the underlying model
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Table 1.4 U12(124) No 1 2 3 4

1 1 10 4 7

2 2 5 11 3

3 3 1 7 9

4 4 6 1 5

5 5 11 10 11

6 6 9 8 1

7 7 4 5 12

8 8 2 3 2

9 9 7 12 8

10 10 12 6 4

11 11 8 2 10

12 12 3 9 6

Table 1.5 U6(32 × 2) No 1 2 3

1 1 1 1

2 2 1 2

3 3 2 1

4 1 2 2

5 2 3 1

6 3 3 2

between the response and the factors x = (x1, . . . , xs) which is stated below:

y(x) = β1g1(x) + · · · + βmgm(x) + ε, (1.3.10)

where x = (x1, . . . , xs) ∈ X ,X is the experimental domain in Rs , functions g1, . . . ,
gm are known, β1, . . . ,βm are unknown parameters, and ε is the random error with
E(ε) = 0 and Var(ε) = σ2. The model (1.3.10) is linear in β’s and involves many
useful models, such as a simple linear model

y = β0 + β1x1 + · · · + βs xs + ε, (1.3.11)

a quadratic model

y = β0 +
s∑

i=1

βi xi +
∑

1�i� j�s

βi j xi x j + ε, (1.3.12)
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Fig. 1.4 Scatter plots of any two columns for U12(124)

and a centered quadratic model

y = β0 +
s∑

i=1

βi (xi − x̄i ) +
∑

1�i� j�s

βi j (xi − x̄i )(x j − x̄ j ) + ε, (1.3.13)

where x̄i is the sample mean of xi . Note that functions g j can be nonlinear in x, such
as exp(− 1

2 xi ), log(x j ), 1/(10 + xi x j ). Suppose that one wants to employ model
(1.3.10) to fit a data set P = {x1, . . . , xn} ∈ X , the model can be expressed as

y = Gβ + ε, (1.3.14)

where

G =
⎡
⎢⎣

g1(x1) · · · gm(x1)
...

...

g1(xn) · · · gm(xn)

⎤
⎥⎦ , β =

⎡
⎢⎣

β1
...

βm

⎤
⎥⎦ , ε =

⎡
⎢⎣

ε1
...

εn

⎤
⎥⎦ , (1.3.15)
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where ε1, . . . , εn are random errors. The data can be expressed as an n × s matrix

X =
⎡
⎢⎣
x11 · · · x1s
...

...

xn1 · · · xns

⎤
⎥⎦ =

⎡
⎢⎣
x′
1
...

x′
n

⎤
⎥⎦ .

Thematrix X is called designmatrix. Thematrix G, combiningmodel and data infor-
mation, is called structurematrix, andM = M(P) = 1

nG
′G informationmatrix. The

least squares estimator of β and its covariance matrix are given by

β̂ = (GTG)−1GT y,Cov(β̂) = σ2

n
M−1. (1.3.16)

Clearly, we wish Cov(β̂) to be as small as possible in a certain sense that implies to
maximize M(P) with respect to P . As M is an m × m matrix, a more convenient
way is to find a scale function of M as a criterion, denoted by φ(M(P)), and a
corresponding φ-optimal design that maximizes φ(M) over the design space. Many
criteria have been proposed, such as

1. D-optimality: Maximize the determinant of M. In the multivariate analysis,
the determinant of the covariance matrix is called the generalized variance. The
D-optimality is equivalent to minimize the volume of the confidence ellipsoid
(β − β̂)′M(β − β̂) � a2 for any a2 > 0.

2. A-optimality: Minimize the trace of M−1, which is equivalent to minimize the
sum of variances of β̂1, . . . , β̂m , where β̂ = (β̂1, . . . , β̂m)′.

3. E-optimality: Minimize the largest eigenvalue of M−1, or minimize the value
max||α||=1 Var(α′β̂).

4. G-optimality: Minimize the maximum variance of the predicted response over
the domain. Let ŷ(x) be the prediction of the response at x ∈ X , i.e., ŷ(x) =∑m

j=1 β̂ jg j (x). Then, the variance of ŷ(x) is given by

Var(ŷ(x)) = σ2

n
g(x)′M−1g(x), (1.3.17)

where

g(x) = (g1(x), . . . , gm(x))′. (1.3.18)

The G-optimality minimizes the value maxx∈X g(x)′M−1g(x).

The concepts of “determinant,” “trace,” and “eigenvalue” of a matrix can be found in
textbooks on linear algebra. The reader can find more optimalities and related theory
in Atkinson and Donev (1992) and Pukelsheim (1993).

An optimal design is the best design if the underlying model is known. Optimal
designs have many attractive properties, but they have lack of robustness against the
model specification. When the true model is known, it may have some difficulty to
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find the corresponding optimal designs very often. When the underlying model is
unknown, optimal designs may have a poor performance. Therefore, the optimum
regression design is not robust.

The D-optimum design can improve the accuracy of the estimates since it mini-
mizes the content of the confidence region of the estimated parameters. However, as
the authors pointed out, the D-optimum design has the following problem. Because
of nonlinearity of the kinetic model, the D-optimum design is only locally optimal in
this case. In other words, it depends on the prior chosen parameters. If the initial val-
ues of the parameters to be estimated are not located close to the true one, the results
may be not good. But in practice, we often know little about the kinetic parameters of
an unfamiliar chemical reaction. Therefore, choosing appropriate initial parameters
is really a problem that the D-optimum design should face. Naturally, one wants to
seek other experimental methods that are non-sensitive to the location of the initial
values of the parameters and can also obtain the parameters with satisfactory accu-
racy. Xu et al. (2000) considered the D-optimal design (DOD), orthogonal design
(OD), and uniform designs (UD) for this chemical reaction and compared their per-
formance. For nonlinear model, for example, the model from kinetics of a chemical
reaction, two or three levels for each factor seem to be too few to characterize it, while
the UD has an advantage that it can offer as many levels as you need for the factors
with only a little increment of experimental runs. Heuristically, the UD is especially
suitable for nonlinear model. Thus, it is expected to give better performance in the
estimation of parameters of the kinetic model of a reversible reaction.

1.3.4 Nonparametric Regression Models

When the experimenter does not have any prior knowledge about the underlying
model and wants to explore relationships between the response y and the factors
(x1, . . . , xs), in this case, a nonparametric regression model

y(x) = f (x) + ε = f (x1, . . . , xs) + ε, (1.3.19)

can be employed, where function f is unknown, and the random error ε has E(ε) = 0
and Var(ε) = σ2 with unknown σ2. We want to estimate y(x) at each x. A natural
thought is to spread experimental points uniformly on the experimental domain. This
idea created terminologies: “space-filling design” that involves “uniform design” and
“Latin hypercube sampling” (its definition can refer to Definition 2.1.1).
Let us see an example to show the above three kinds of designs for the same problem.

Example 1.3.1 (Weibull growth model) In a biological experiment, we wish to
explore relationship between the growth time (x) and the response (y). Suppose that
the underlying model

y = y(x) = 1 − e−2x2 , x ∈ [0, 2], (1.3.20)
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Fig. 1.5 Weibull growth
curve model
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is unknown. Figure 1.5 gives a plot of the growth curve. Note that random error will
effect the response y. For this experiment, the underlying model becomes

y = y(x) = 1 − e−2x2 + ε, x ∈ [0, 2], (1.3.21)

where random error ε ∼ N (0,σ2) with unknown σ2. Figure 1.6 shows plots of a
factorial design, where four levels are chosen. The experiment repeats three times at
each level. By this design, we can estimate the overall mean μ and the main effects
x at these four levels as well as the variance σ2. If the quadratic regression model
below is chosen by the analyst of the experiment

y(x) = β0 + β1x + β2x
2 + ε, (1.3.22)

the corresponding D-optimal design is presented in Fig. 1.7, where the dash line is
the fitting curve. We can see that the fitting is not well, as model (1.3.22) is far away
from the true model. If we choose a cubic regression model and employ the related
D-optimal design, the corresponding result will bemuch better. So the optimal design
does not have the robustness against model changes. A uniform designwith 12 runs is
shown in Fig. 1.8, where the dash line is the fitting curve by a polynomial regression
model. We can see that the fitting is well except in small intervals around 0 and 2.We
emphasize again that modeling is a very important and difficult issue in experiments
under model uncertainty.

Fig. 1.6 Factorial design
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Fig. 1.7 Optimal design
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Fig. 1.8 Uniform design
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1.3.5 Robustness of Regression Models

In practice, the underlying model is very often not completely known due to com-
plexity of the problem. It is desirable that the design chosen in some way should
be robust against small deviations from the assumed model. That is, a small change
in the underlying model or in observations should cause only a small change in the
performance of a statistical procedure. The common deviations may be from:

(a) The assumed model is not correct or not complete correct.
(b) The random error is not from the assumed distribution (e.g., a normal distri-

bution).
(c) The variance of the random error is not constant over the experimental domain.
(d) There are wild observations (outliers).

A good experimental design should be robust against small deviations from (a)
to (d). A design with a such property is called as a robust design. As robustness may
have a quite different class of alternatives, a solution of robust designs depends on
the specific class of alternatives. Huber (1975), Box and Draper (1959), Marcus and
Sacks (1978), Li and Notz (1982), Wiens (1990, 1991, 1992), Yue and Hickernell
(1999), and Xie and Fang (2000) gave a comprehensive studies on robustness of
experimental designs and robust designs. In this book, we focus on the robustness
against changes of the model; in particular, we consider the following case.

If the experimenter knows the underlyingmodel is close to a linearmodel, a robust
regression model
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y(x) = β1 f1(x) + · · · + βm fm(x) + h(x) + ε, (1.3.23)

can be considered, where h(x) denotes the departure of the model (1.3.10) from the
true model. When function h belongs to some class of functions, we wish to find
a design such that we can obtain the best estimators for β1, . . . ,βm under a certain
sense. For example, we define a loss function can consider the worst case and the
average loss. It has been shown that the uniform design is a robust design against
model changes.

Before giving introduction to theory of the uniform design, we will give a real
case study for experiments with model uncertainty in Sect. 1.5.

1.4 Word-Length Pattern: Resolution and Minimum
Aberration

A criterion for assessing designs on the design space U is a function of U and is
denoted by φ(U). Each criterion has its own specification from statistical inference
or other consideration. Sometimes a criterion can be a vector (φ1(U), . . . ,φm(U))

with nonnegative components. Now, wemeet a problem on how to ordering two non-
negative vectors x = (x1, . . . , xm) and y = (y1, . . . , ym) in R

m+. Here, we introduce
two methods in the literature.

1.4.1 Ordering

(a) Dictionary ordering: Sequentially comparing x1 and y1, x2 and y2, . . . by
the following way: We write x � y if x1 < y1; otherwise if x1 = y1 and x2 < y2;
otherwise if xi = yi , i = 1, 2 and x3 < y3;. . . ; otherwise if xi = yi , i = 1, . . . ,m −
1 and xm < ym . More compact statement is given by: We write x � y if there exists
a k, 1 � k � m such that xi = yi for i < k and xk < yk ; write x |= y if xi � yi , 1 �
i � m. Note that “x |= y” implies “x = y” or “x � y”. Here, the relation “|=” and
“�” can be regarded as “�” and “<” in classical algebra, respectively.

(b) Majorization ordering: Let us now briefly review the majorization theory
(seeMarshall andOlkin 1979). For any positive constant c, define a set of nonnegative
vectors

Xc = {x = (x1, . . . , xm) : x ∈ R

m
+,

m∑
i=1

xi = c}.

For a nonnegative vector x ∈ Xc, denote its increasing order statistics by x(1) �
x(2) � · · · � x(m). For any x, y ∈ Xc, we say x ismajorized by y and write x 	 y if
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k∑
r=1

x(r) �
k∑

r=1

y(r), k = 1, 2, . . . ,m. (1.4.1)

If there exists at least one strict inequality
∑k

r=1 x(r) >
∑k

r=1 y(r) for some k, wewrite
x ≺ y strictly. A real-valued function � on R

m+ is called Schur-convex if �(x) �
�( y) for every pair x, y ∈ R

m+ with x 	 y. Necessarily, �(x) is symmetric in its
arguments, i.e., invariant under permutating x1, . . . , xm . We are mainly interested in
the following separable separable convex class of Schur-convex functions

�(x) =
m∑

r=1

ψ(xr ), ψ is convex on R+ (1.4.2)

as well as their monotonic mapping g(�(x)) for some g. The following is important
for finding some lower bounds of a criterion.

Lemma 1.4.1 The vector x̄ = (c/m, . . . , c/m) belongs the set Xc and is the small-
est under majorization ordering, i.e., x̄ 	 x for any x ∈ Xc. For any Schur-convex
function �, we have �(x̄) � �(x) and �(x̄) is a lower bound of the �-criterion.

For applying the above theory to experimental design, assume that x in Xc is an
integer vector. If c/m is an integer, the lower bond obtained in Lemma 1.4.1 is tight,
otherwise is not attachable. By Lemma 5.2.1 of Dey and Mukerjee (1999), we can
obtain a lower bound for the latter case. Let θ and f be the integral part and fractional
part of c/m, respectively, and let

x̃ ≡ (θ, . . . , θ︸ ︷︷ ︸
m(1− f )

, θ + 1, . . . , θ + 1︸ ︷︷ ︸
m f

)′.

Lemma 1.4.2 Under the above notation, we have x̄ 	 x̃ 	 x. Any separable convex
function

∑m
r=1 ψ(xr ) on the domain Xc has a tight lower bound

m(1 − f )ψ(θ) + m f ψ(θ + 1). (1.4.3)

When c/m is an integer, the above lower bound reduces into mψ(θ).

Zhang et al. (2005) used the above theory to find some good lower bounds.

1.4.2 Defining Relation

There are many criteria for fractional factorial designs; for example, see Dey and
Mukerjee (1999) and Wu and Hamada (2009). A regular fractional is determined by
its defining relation. Let us see a typical example. Consider a two-level experiment
involving four factors, denoted by A, B,C, D, by using the orthogonal design table
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Table 1.6 Orthogonal design
L8(27)

No I 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1

2 1 1 1 1 −1 −1 −1 −1

3 1 1 −1 −1 1 1 −1 −1

4 1 1 −1 −1 −1 −1 1 1

5 1 −1 1 −1 1 −1 1 −1

6 1 −1 1 −1 −1 1 −1 1

7 1 −1 −1 1 1 −1 −1 1

8 1 −1 −1 1 −1 1 1 −1

L8(27) listed in the last seven columns of Table 1.6, where two levels are marked as
−1 and 1 (− and + for short) and factors A, B,C, D are put on columns 1, 2, 4, and
7. Let us add one more column, I , with all elements one into Table L8(27) that is put
into the first column of Table 1.6. This table has the following interesting facts:

• Except for column I , each column has an equal number of plus and minus signs.
• The sum of the dot product of any two columns is zero.
• Column I multiplying times any column leaves that column unchanged.
• The dot product of any two columns yields a column in the table.

For example, 12 = 3, 57 = 2, 34 = 7; here, 12 means the dot product 1 · 2, and
others are similar.

• The dot product of columns 1, 2, 4, and 7 is column I and denote this fact by
I = 1247. This fact can also be expressed as I = ABCD ifwe put factors A, B,C, D
on columns 1, 2, 3, 4, respectively. Here, ABCD is called the generator of this
particular fraction and I = ABCD is called the defining relation.

• To dot product A to both sides of I = ABCD results in A = BCD. Similarly,
we have

A = BCD, B = ACD, C = ABD, D = ABC (1.4.4)

AB = CD, AC = BD, AD = BC (1.4.5)

that means main effect A is aliased with interaction BCD, interaction AB is aliased
with CD, etc. It can be seen that all the aliasing relations can be obtained by the
defining relation I = ABCD. If all the interactions of order three can be ignored,
the relations in (1.4.4) become

AB = CD, AC = BD, AD = BC.

In this case, all the main effects can be estimated, and all the interactions of order
are confounded each other.
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1.4.3 Word-Length Pattern and Resolution

Many designs are determined by more than one defining relations. Let us see an
example.

Example 1.4.1 Consider a 25−2 FFD in Table 1.7. A 2s−k FFD is a fractional factorial
design with n = 2s−k runs and k factors each having two levels. From the rule of dot
product, we find the following relations

4 = 12, 5 = 13. (1.4.6)

These relations imply

I = 124 = 135 = 2345 (1.4.7)

that are defining relations of the design. The relation I = 2345 can be obtained
by relations I = 124 and I = 135. From these defining relations, all the aliasing
relations are as follows

1 = 24 = 35 = 12345

2 = 14 = 345 = 1235

3 = 15 = 245 = 1234

4 = 12 = 235 = 1345

5 = 13 = 234 = 1245.

Assume that a 2s−k FFD, U , is determined by k defining relations, or defin-
ing words, where a word consists of letters which stand for the factors denoted by
1, 2, . . . , s or A, B, . . .. The number of letters in a word is its word-length, and the
group formed by the k defining words is called the defining contrast subgroup. The
group consists of 2k − 1 words plus the identity element I .

Table 1.7 A 25−2 FFD No 1 2 3 4 5

1 1 1 1 1 1

2 1 1 −1 1 −1

3 1 −1 1 −1 1

4 1 −1 −1 −1 −1

5 −1 1 1 1 −1

6 −1 1 −1 1 1

7 −1 −1 1 −1 −1

8 −1 −1 −1 −1 1
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Let Ai (U) be the number of words with word-length i in the defining contrast
subgroup of design U . The vector

W (U) = (A1(U), . . . , As(U)) (1.4.8)

is called word-length pattern of U . The word-length pattern of a design U indicates
its statistical inference ability. The resolution of U proposed by Box and Hunter
(1961a, b) is defined to be the smallest t with positive At (U). Resolution III and IV
designs are more useful in practice:

Resolution III designs: No main effects are aliased with any other main effect,
but main effects are aliased with two-factor interactions and two-factor interactions
may be aliased with each other.

Resolution IV designs: No main effect is aliased with any other main effect or
with any two-factor interaction, but two-factor interactions may be aliased with each
other.

Example 1.4.2 A 23−1 design with defining relation I = 123 is of resolution III
with W = (0, 0, 1); a 24−1 design with defining relation I = 1234 is of resolution
IV withW = (0, 0, 0, 1); and design in Example 1.4.1 is of resolution III withW =
(0, 0, 2, 1, 0).

Example 1.4.3 Two 25−1 orthogonal designs, denoted byU1 andU2, with respective
defining relations

U1 : I = 4567 = 12346 = 12357

U2 : I = 1236 = 1457 = 234567

They have the same resolution IV, but they have different word-length patterns

W (U1) = (0, 0, 0, 1, 2, 0, 0), W (U2) = (0, 0, 0, 2, 0, 1, 0).

Therefore,U1 has a less aberration thanU2. In fact, there are three pairs of two-factor
interactions being confounded, i.e., 45 = 67, 46 = 57, 47 = 56 by using U1, but
there are six pairs of two-factor interactions being confounded, i.e., 12 = 36, 13 =
26, 16 = 23, 14 = 57, 15 = 47, 17 = 45, by using U2. However, we need more
mathematical criteria, one of which is the minimum aberration criterion.

1.4.4 Minimum Aberration Criterion and Its Extension

The minimum aberration criterion, proposed by Fries and Hunter (1980), has been
popularly used for regular factorial designs. It is also defined based on the word-
length pattern. We omit its definition here as its general version will be given below.
The minimum aberration criterion assumes the effect hierarchy principle. It tends to
minimize the contamination of non-negligible interactions sequentially from low to
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high dimensions.Many authors have studied on findingminimum aberration designs,
for example, Cheng and Mukerjee (1998), Fang and Mukerjee (2000), Mukerjee and
Wu (2001), and Cheng and Tang (2005).

Recently, the definition of generalized aberration for non-regular designs has
become an hot research topic. Tang and Deng (1999) suggested a minimu G2-
aberration criterion for non-regular two-level designs; Xu and Wu (2001) and Ma
and Fang (2001) independently proposed the generalized word-length pattern and
related criteria. Other important works on this direction include Deng and Tang
(2002), Cheng et al. (2002), Ye (2003), and Fang and Zhang (2004).

According to Xu and Wu (2001), consider the ANOVA model

y = α01n + X (1)α1 + · · · + X (s)αs + ε,

where y is the vector of n observations, 1n is the n-vector of ones, α0 is the intercept,
α j is the vector of all j-factor interactions, X ( j) is the matrix of contrast coefficients
for α j and ε are the vectors of independent random errors. For a U (n; q1, . . . , qs)
design, P , let X ( j) = (x j

ik) be the matrix consisting of all j-factor contrast coeffi-
cients, for j = 0, . . . , s.

Definition 1.4.1 Define

A j (P) = n−2
∑
k

∣∣∣∣∣
n∑

i=1

x j
ik

∣∣∣∣∣
2

. (1.4.9)

The vectorW (P) = (A1(P), . . . , As(P)) is called the generalized word-length pat-
tern

This definition is picked up from Xu and Wu (2001). Then, the resolution of P
is the smallest j with positive A j (P) in W (P). Let U1 and U2 be two designs and
t be the smallest integer such that At (U1) �= At (U2). Then, U1 is said to have less
generalized aberration than U2 if At (U1) < At (U2). A design U is said to have
generalized minimum aberration (GMA) if no other design in the design space has
less generalized aberration than it.

Note that for a U-type design U ∈ U(n; qs), based on the coding theory, Ma
and Fang (2001) proposed another definition of generalized word-length pattern,
denoted byW g(U) = {Ag

1(U), . . . , Ag
s (U)}, and the corresponding generalized min-

imum aberration (GMA) criterion. Since for a U-type design U ∈ U(n; qs), in fact

Ag
j (U) = A j (U)/(q − 1), for j = 1, . . . , s,

we omit the details for this criterion here.
For the generalized word-length pattern, we have the following facts:

1. A j (U) reduces to the A j (U) in (1.4.8) for any regular fractional design U .
2. A j (U) � 0 for any design U and 1 � j � s.
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3. A1(U) = 0 for any U-type design.
4. A j (U) = 0 for j = 1, . . . , t if U is an orthogonal array of strength t .

1.5 Implementation of Uniform Designs for Multifactor
Experiments

In this section, a general procedure of implementation of uniform design for physical
experiments under model uncertainty is given. A demonstration example for the use
of the uniformdesign is represented. This experimentwas carried out byZeng (1994);
later, Fang (2002) used this case study for the demonstration purpose. We reorganize
the above material in this section.

The following steps give a general guideline for multifactor industrial/laboratory
experiments:

Step 1. Choose factors and experimental domain, and determine suitable number
of levels for each factor.

Step 2. Choose a suitable UD table to accommodate the number of factors and the
corresponding levels. This can be easily done by visiting the UD Web or by a
computer software.

Step 3. From the uniform design table, randomly determine the run order of exper-
iments and conduct the experiments.

Step 4. Fit the data set by one or few suitable models. Regression analysis, neural
networks, wavelets, multivariate splines, and empirical Kriging models are useful
in modeling.

Step 5. Knowledge discovery from the built model. For example, we want to find
the “best” combination of the factor values thatmaximizes/minimizes the response
and verify the claim with further experiments.

Step 6. Further investigation: From the up-to-date information obtained in the data
analysis, some additional experiments may be necessary.

Next, we describe these procedures step by step via a chemical engineering exam-
ple.

Example 1.5.1 A chemical experiment is conducted in order to find the best setup
to increase the yield.

Four factors, the amount of formaldehyde (x1), the reaction temperature (x2),
the reaction time (x3), and the amount of potassium carbolic acid (x4), are under
consideration. The response variable is designated as the yield (y). The experimental
domain is chosen to be X = [1.0, 5.4] × [5, 60] × [1.0, 6.5] × [15, 70] and each
factor takes 12 levels in this domain. The factors and levels are listed in Table 1.8.

Choose a UD table of the form Un(124). Assign each factor for a column of
the table such that the four factors occupy different columns. The 12 levels marked
by 1, 2, . . . , 12 are transformed into the real levels for each factor. It results in a
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Table 1.8 Factors and levels

Factor Unit Level

x1, the amount of formaldehyde mol 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, 3.8,

4.2, 4.6, 5.0, 5.4

x2, the reaction temperature hour 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60

x3, the reaction time hour 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0,

5.5, 6.0, 6.5

x4, the amount of potassium carbolic acid ml 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70

Table 1.9 U12(124) and related design

No. of runs x1 x2 x3 x4 y

5 1.0 (1) 50 (10) 2.5 (4) 45 (7) 0.0795

6 1.4 (2) 25 (5) 6.0 (11) 25 (3) 0.0118

10 1.8 (3) 5 (1) 4.0 (7) 55 (9) 0.0109

7 2.2 (4) 30 (6) 1.0 (1) 35 (5) 0.0991

11 2.6 (5) 55 (11) 5.5 (10) 65 (11) 0.1266

9 3.0 (6) 45 (9) 4.5 (8) 15 (1) 0.0717

8 3.4 (7) 20 (4) 3.0 (5) 70 (12) 0.1319

3 3.8 (8) 10 (2) 2.0 (3) 20 (2) 0.0900

2 4.2 (9) 35 (7) 6.5 (12) 50 (8) 0.1739

4 4.6 (10) 60 (12) 3.5 (6) 30 (4) 0.1176

1 5.0 (11) 40 (8) 1.5 (2) 60 (10) 0.1836∗

12 5.4 (12) 15 (3) 5.0 (9) 40 (6) 0.1424

design listed in Table 1.9. For simplicity, we tentatively just use “the table” for
Table 1.9. Randomize the order of these 12 level-combinations and list the order
of runs in the first column of the table, implement 12 experiments according to the
level-combinations in the table, and record the corresponding yield y in the very last
column of the table, where the value marked by ∗ is the maximum.

Choosing a goodmetamodel will be very useful for various purpose, especially for
finding a good level-combination of the four factors with the largest yield. The latter
is the major goal of the data analysis in this experiment. The best result among the
12 responses is y1 = 18.36% at x1 = 5.0, x2 = 40, x3 = 1.5, and x4 = 60. This can
be served as a benchmark. Note that these 12 runs represent for 124 = 20736 level-
combinations or represent for any level-combination in the experimental domain.
There is a high chance to find another level-combination that corresponds to a higher
yield than y1 = 18.36%. For this task, if we can find a metamodel to approximate
the true one, we may find a good level-combination corresponding a higher yield.

Due to lack of knowledge about the underlying model, a nonparametric regres-
sion model (1.3.19) is considered. There are many ways to search a good meta-
model. The reader can refer to Fang et al. (2006) for a comprehensive review. For
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experiments with more factors, it is popular to consider a set of basis of functions,
{B0(x), B1(x), . . .} and a maximal model of interest,

ĝ(x) = β1B1(x) + β2B2(x) + . . . + ε. (1.5.1)

Then by techniques for variable selection one of submodel of (1.5.1) will be used
as a metamodel. In this example, we consider only linear and quadratic regression
models. At first, let us try the first-order regression model of the form

E(y) = β0 + β1x1 + β2x2 + β3x3 + β4x4

as it is simple. Based on the data in Table 1.9, it turns out

ŷ = −0.0533 + 0.0281x1 + 0.0010x2 − 0.0035x3 + 0.0011x4. (1.5.2)

Its ANOVA table is shown in Table 1.10. From the ANOVA table, we find that the
model (1.5.2) involves an insignificant term “x3” with p-value 0.4962. We have
to remove this term from the model. By the backward elimination techniques in
regression analysis (see Miller (2002), for example), the resulting model turns out
to be

ŷ = 0.0107 + 0.0289x1

with R2 = 57.68% and s2 = 0.0014. This model is not consistent with the experi-
ence of the experimenter as there are three factors not being involved in the model.
Therefore, a more flexible second-order quadratic regression of the form, as another
maximal model of interest,

E(y) = β0 +
4∑

i=1

βi xi +
∑
i� j

βi j xi x j (1.5.3)

is considered. Here, the number of unknown parameters is greater than the number
of runs and this model is inestimable. However, this model provides a base and some
submodel may fit the purpose of the experiment well. The remaining study is going
to find a submodel of (1.5.3) as a metamodel. With MAXR, a technique of selection
of variables, we find a good subset model to be

ŷ = 0.0446 + 0.0029x2 − 0.0260x3 + 0.0071x1x3
+ 0.000036x2x4 − 0.000054x22 (1.5.4)

with R2 = 97.43% and s2 = 0.0001. The corresponding ANOVA table is shown in
Table 1.11.

Statistical diagnostics are useful for checking metamodels. A regression model is
usually under a certain assumption (normality, constant variance, etc). But sometimes
the assumptions are in doubt. Therefore, we need statistical diagnostics to check the
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Table 1.10 ANOVA table for model (1.5.2)

Table 1.11 ANOVA table for model (1.5.4)

assumptions. For example, is themodel correct? are there any outliers? is the variance
constant? and is the error normally distributed? If some assumption fails, we have to
make somemodification. The reader can find some basic knowledge of the statistical
diagnostics in Mayers (1990) or Cook (1986). By some statistical diagnostics, we
conclude model (1.5.4) is acceptable. We omit the details.

In the literature, the centered quadratic regression model of the form

E(y) = β0 +
4∑

i=1

βi (xi − x̄i ) +
∑
i� j

βi j (xi − x̄i )(x j − x̄ j ), (1.5.5)

is also suggested for a maximal model of interest, where x̄i is the sample mean of
xi . In this data set, x̄1 = 3.2, x̄2 = 32.5, x̄3 = 3.75, and x̄4 = 42.5. Once again, by
using some model selection technique, the final model is
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Table 1.12 ANOVA table for model (1.5.6)

ŷ = 0.1277 + 0.0281(x1 − 3.2) + 0.000937(x2 − 32.5) + 0.00114(x4 − 42.5)

+ 0.00058(x3 − 3.75)(x4 − 42.5) − 0.000082(x2 − 32.5)2 (1.5.6)

with R2 = 97.05% and s2 = 0.0002. The corresponding ANOVA table is given in
Table 1.12.

The metamodels (1.5.4) and (1.5.6) can be used to predict response at any point of
the experimental domain. It also can be used for searching the “best” combination of
the factor values.Maximize y with respect to xi , i = 1, . . . , 4 undermodels (1.5.4) or
(1.5.6), respectively, over the domainX given in Step 1, that is to find x∗

i , i = 1, . . . , 4
such that

ŷ(x∗
1 , x

∗
2 , x

∗
3 , x

∗
4 ) = max

X
ŷ(x1, x2, x3, x4),

where ŷ(x1, x2, x3, x4) is givenby (1.5.4) or (1.5.6), respectively.Byanyoptimization
algorithm, it is easily found that under model (1.5.4), x∗

1 = 5.4, x∗
2 = 50.2, x∗

3 = 1,
x∗
4 = 70 and the corresponding response ŷ(5.4, 50.2, 1, 70) = 19.3% is the max-
imum; and under model (1.5.6), x∗

1 = 5.4, x∗
2 = 43.9, x∗

3 = 6.5, x∗
4 = 70 and the

corresponding response ŷ(5.4, 43.9, 6.5, 70) = 26.5% is the maximum. It looks that
model (1.5.6) is better, but it needs some additional experiments to judgewhichmeta-
model is really better.

As two optimal points x∗
1 = (5.4, 50.2, 1, 70) and x∗

2 = (5.4, 43.9, 6.5, 70) do
not appear in the plan (Table 1.9), some additional experiments are necessary. A
simplest way is to implement m runs at these two optimal points x∗

1 and x∗
2 and to

compare their mean yield. In this experiment, the experimenter implemented three
runs at x∗

1 and x∗
2 and found that the mean of y is 20.1% at x∗

1 and 26.3% at x∗
2,

respectively. Thus, we prefer (1.5.6), the centered quadratic regression model, as our
final metamodel.
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Note that both metamodels recommend x1 = 5.4 and x4 = 70. This fact implies
that we should consider increasing upper bounds of the experimental levels for x1 and
x4. The experimenter should consider a further investigation and arrange a consequent
experiment.

1.6 Applications of the Uniform Design

A design that chooses experimental points uniformly scattered on the domain is
called uniform experimental design, or uniform design for simplicity. The uniform
design was proposed in 1980 by Fang and Wang (cf. Fang 1980 and Wang and Fang
1981) and has been widely used for thousands of physical and computer experiments
with model uncertainty. In the literature, the uniform design can be utilized as

• A fractional factorial design with model unknown;
• A space-filling design for computer experiments;
• A robust design against the model specification;
• A design of experiments with mixtures;
• A supersaturated design.
Supersaturated designs are factorial designs in which the number of main effects

and/or interactions is greater than the number of runs. Such designs are often called
screening designs. Many authors appreciate the advantages of the uniform design for

• More choices of designs to the users;
• Designs have been tabulated;
• Both factorial and computer experiments can be applied to;
• Less information of the underlying model can be accepted.
There are various connections of the uniform design with other designs such as

the fractional factorial design including the orthogonal array, supersaturated design,
robust design, combinatorial design, and code theory. A number of uniform design
tables can be found on the Web

http://www.math.hkbu.edu.hk/UniformDesign, or http://web.stat.nankai.edu.cn/
cms-ud/.

Exercises

1.1

Compare the physical experiment and the computer experiment and list their differ-
ence.

1.2

What are metamodels in computer experiments? Give some requirements for meta-
models.

http://www.math.hkbu.edu.hk/UniformDesign
http://web.stat.nankai.edu.cn/cms-ud/
http://web.stat.nankai.edu.cn/cms-ud/
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1.3

In an experiment, there are many variables in general. Give the difference between
variable and factor in experimental design. Give some examples for quantitative fac-
tors and quantitative factors. What is the difference between environmental variables
and nuisance variables?

1.4

Consider model for the one-factor experiment and its statistical model (1.3.1)

yi j = μ j + εi j , j = 1, . . . , q, i = 1, . . . , n j ,

where εi j are i.i.d. distributed as N (0,σ2). Let n = n1 + · · · + nq be the number of
runs. This model can be expressed as a linear model y = Xβ + ε.

(1) Write down y, X,β in details.

(2) Find X ′X and X ′ y.

(3) Find the distributions of yi j and y.

1.5

Model in the previous exercise can be expressed as (1.3.2), i.e.,

yi j = μ + α j + εi j , j = 1, . . . , q, i = 1, . . . , n j .

(1) Express this model as a linear model y = Xβ + ε, and give y, X,β in details.
(2) Let SSE = ∑q

i=1

∑r
j=1(yi j − ȳi )2 be the error sum of squares, where n1 =

· · · = nq = r . Prove E[SSE ] = q(r − 1)σ2.

1.6

For a two-factor experiment, its ANOVA model is given by (1.3.3), i.e.,

yi jk = μ + αi + β j + (αβ)i j + εi jk,

i = 1, . . . , q1; j = 1, . . . , q2; k = 1, . . . , r,

with constraints

α1 + · · · + αq1 = 0;β1 + · · · + βq2 = 0;
q1∑
i=1

(αβ)i j = 0, j = 1, . . . , q2;
q2∑
j=1

(αβ)i j = 0, i = 1, . . . , q1.

Prove
(1) When q1 = q2 = 2, there is one linearly independent interaction among

{(αβ)11, (αβ)12, (αβ)21, (αβ)22}.



Exercises 39

(2) There are (q1 − 1)(q2 − 2) linearly independent interactions among {(αβ)i j ,

i = 1, 2; j = 1, . . . , qi }.
1.7

Consider the following model of a three-factor experiment

yi jk = μ + αi + β j + γk + (βγ) jk + εi jk, i = 1, 2, 3, j = 1, 2, 3, k = 1, 2,

where A, B,C are the factors,
yi jk is the response at A = Ai , B = Bj and C = Ck ,
μ is the overall mean,
αi is the main effect of the factor A at the level Ai ,
β j is the main effect of the factor B at the level Bj ,
γk is the main effect of the factor C at the level Ck ,
(βγ) jk is the interaction of B and C at Bj and Ck ,
εi jk is random error at the experiment with A = Ai , B = Bj and C = Ck , and

εi jk ∼ N (0,σ2).
Answer the following questions:
(a) Give constrains on αi ,β j , γk, and (βγ) jk . Howmany independent parameters

among αi ,β j , γk, and (βγ) jk?
(b) Express this model as of the form y = Xβ + ε where β is formed by inde-

pendent parameters discussed in question a) and indicate y, X,β, and ε.
(c) Give the degrees of freedom for the sum of squares: SSA, SSB, SSC , SSB×C ,

SSE , and SST .
(d) Give formulas for SSA, SSB, SSC , SSB×C , SSE , and SST .

1.8

The concept “orthogonality” has been appeared in different fields. Answer the fol-
lowing questions:

(1) Give definition for two line segments in Rd be orthogonal.
(2) Give definition for two planes be orthogonal.
(3) Give definition for two linear spaces be orthogonal.
(4) Let X be the matrix of the orthogonal design table L9(34). Denote by Li , i =

1, 2, 3, 4 the linear subspace generated by the i th column of X ; denote by Li j , 1 �
i < j � 4 the linear subspace generated by the i th and j th columns of X . Prove that
Li and L j are orthogonal if i �= j and L12 and L34 are orthogonal.

1.9

Give the word-length pattern and resolution for the following designs:
(a) A design 26−2 with defining relations I = ABCE = BCDF ;
(b) A design 27−2 with defining relations I = ABCDF = ABDEG;
(c) A design 27−3 with defining relations I = ABCE = BCDF = ACDG.
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1.10

Answer the following questions:

1. There is a command “hadamard” to generate a Hadamard matrix of order n. Use
this command to find a Hadamard matrix of order 8 by which we can obtain
L8(27).

2. If H is a Hadamard matrix, then −H is a Hadamard matrix.
3. If H is a Hadamard matrix, let

V =
[
H −H
H H

]
.

Prove that V is a Hadamard matrix.

1.11

Calculate the Hamming distances between any two different runs designed by L9(34)
below. Give your finding and conjecture.

No 1 2 3 4
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

1.12

In economics, the so-called Lorenz curve is a graphical representation of the distri-
bution of income. Give a review on the Lorenz curve and relationship between the
Lorenz curve and the majorization theory.
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Chapter 2
Uniformity Criteria

Motivated by the overall mean model and the famous Koksma–Hlawka inequality,
the main idea of uniform experimental design is to scatter the experimental design
points uniformly over the experimental domain. In this regard, uniformity measures
constitute the main concept of the uniform experimental design. Discrepancy is a
measure which is defined as the deviation between the empirical and the theoreti-
cal uniform distribution. Therefore, discrepancy is a measure of uniformity which
provides a way of construction of uniform designs. However, there are several dis-
crepancies under different considerations. This chapter introduces the definitions
and derives lower bounds for different discrepancies, which can be used to construct
uniform designs.

Section 2.1 introduces the overall mean model and the Koksma–Hlawka inequal-
ity. Sections2.1–2.5 give the definitions and properties of different discrepancies
including star discrepancy, centered L2-discrepancy, wrap-around L2-discrepancy,
mixture discrepancy, discrete discrepancy, and Lee discrepancy. Most of them can
be defined by the tool of reproducing kernel Hilbert space. In Sect. 2.6, the lower
bounds of different discrepancies are given, which can be used as a benchmark for
searching uniform designs.

2.1 Overall Mean Model

Assume

y = f (x) (2.1.1)

be the true model of a system on a domain X , where x = (x1, . . . , xs) are vari-
ables/factors and y is response. Very often, we can assume the domain to be a
hypercube [a1, b1] × · · · × [as, bs]. Without loss of any generality, we can assume
that the hypercube is the unit hypercube Cs = [0, 1]s = [0, 1] × · · · × [0, 1]. Let
© Springer Nature Singapore Pte Ltd. and Science Press 2018
K.-T. Fang et al., Theory and Application of Uniform
Experimental Designs, Lecture Notes in Statistics 221,
https://doi.org/10.1007/978-981-13-2041-5_2
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P = {x1, . . . , xn} be a set of n design points on Cs . One important issue is to esti-
mate the true model f (x) based on P by some metamodel

ŷ = g(x). (2.1.2)

There are many alternative metamodels in general, how to find a criterion to assess
the metamodel becomes an important problem. One may consider the overall mean
model, which aims at finding the best estimator of the overall mean of y, that is

E(y) =
∫

Cs

f (x)dx. (2.1.3)

This means that the most preliminary aim of the design P is to obtain the best
estimator of the overall mean of y in a certain sense. To estimate E(y), a natural idea
is to use the sample mean of P

ȳ(P) = 1

n

n∑
i=1

yi , (2.1.4)

where yi = f (xi ), i = 1, . . . , n. Given the number of design points n, one may
search a set P with n points on X to minimize the difference

diff-mean = |ȳ(P) − E(y)|. (2.1.5)

There are two types of methods to choose P: stochastic approach and deterministic
approach. The main idea of stochastic approach is to find a design P such that the
sample mean ȳ(P) is an unbiased or asymptotically unbiased estimator of E(y) and
has the smallest possible estimation variance. On the other hand, the deterministic
approach aims at finding a sampling scenario so that the difference in (2.1.5) can be
as small as possible.

The simplest stochastic approach is the Monte Carlo method, where the n design
points in P are independent samples from U (Cs), the uniform distribution on Cs ,
and the corresponding sample mean ȳ(P) is an unbiased estimator of E(y) with
the estimation variance Var( f (x))/n, where random variable x follows the uniform
distribution on Cs . From the central limited theorem, the difference

|ȳ(P) − E(y)| � 1.96
√
Var( f (x))/n,

with 95% confidence. However, the estimation variance Var( f (x))/n is too large
for many cases and should be reduced. Latin hypercube sampling (LHS), proposed
by McKay et al. (1979), has been widely used to reduce the estimation variance. Its
main idea is to randomly choose x1, . . . , xn such that they are dependent and have
the same marginal distribution. The construction method of LHS is to divide the
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domain Cs of each xk into n strata with equal marginal probability 1/n and sample
once from each stratum. The more detailed definition is given as follows:

Definition 2.1.1 Let X = [0, 1]s be the experimental domain and U be the set of a
grid of ns equally spaced points on X . In fact, the set of U is all the U-type designs,
U (n, ns) each column being a permutation of 1/(2n), 3/(2n), . . . , (2n − 1)/(2n).
A Latin hypercube design (LHD) or a midpoint Latin hypercube sampling (MLHS)
is a random sample on U , or equivalent, it is a U-type design U (n, ns) each column
being a random permutation of 1/(2n), 3/(2n), . . . , (2n − 1)/(2n).

Let P = {x1, . . . , xn} be a Latin hypercube design. For each x j , there is a sub-
cube, denoted byCx j , with side-length 1/n and center x j . Let y j be a random sample
on Cx j , and the set { y1, . . . , yn} is called a Latin hypercube sampling (LHS).

McKay et al. (1979) showed that the covariance between any twopoints is negative
if f (x) is monotonic in each variable xk . Denote the sample mean of the responses of
the LHS be ȳLHS. Stein (1987) and Owen (1992) found an expression for the variance
of ȳLHS and showed that

Var(ȳLHS) = Var( f (x))

n
− c

n
+ o

(
1

n

)
,

where c is a positive constant. This indicates that the estimation variance is smaller
than that of Monte Carlo method. However, it was also shown that LHS does not
reach the smallest possible variance for the samplemean.Manymodifications of LHS
have been proposed to improve performance of LHS, such as orthogonal array-based
Latin hypercube design proposed by Tang (1993), and a comprehensive discussion
can be found in Koehler and Owen (1996).

The deterministic approach is another widely usedway tominimize the difference
in (2.1.5). The famous Koksma–Hlawka inequality in quasi-Monte Carlo method
shows that

|ȳ(P) − E(y)| � V ( f )D∗(P), (2.1.6)

where V ( f ) is the total variation of the function f in the sense of Hardy and Krause
(see Niederreiter 1992 and Hua and Wang 1981) and D∗(P) is the star discrepancy
of P , which does not depend on f . Section 2.2 will give its definition and detailed
discussion. The upper bound in Koksma–Hlawka inequality (2.1.6) is tight in some
cases. Given the function f and the experimental domain, V ( f ) remains invariant. If
V ( f ) is bounded in the experimental domain, then one may choose P with n design
points on Cs such that its star discrepancy D∗(P) is as small as possible and that we
can minimize the upper bound of the difference in (2.1.5).

The star discrepancy, proposed by Weyl (1916), is a popularly used measure
of uniformity in quasi-Monte Carlo methods. The lower the star discrepancy, the
better will be the uniformity of the set of points under consideration. Then, from
the Koksma–Hlawka inequality, one may find a set of n points uniformly scattered
on Cs , which is called a uniform design (UD), proposed by Fang (1980) and Fang
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and Wang (1981). The uniform design is robust against model specification. For
example, if two functions f1(x) and f2(x) have the same total variation, then the
uniform design indicates that the difference in (2.1.5) for the two functions has the
same upper bound.

Note that both LHS and UD are motivated by the over mean model. The best
design for the over mean model may be not enough to estimate the true model f (x)

over Cs . Fortunately, both LHS and UD are space-filling designs, which have a good
performance not only for estimation of the overall mean but also for finding a good
approximate model.

2.2 Star Discrepancy

The star discrepancy, proposed byWeyl (1916), is a widely used uniformity measure
in the uniform design and quasi-Monte Carlo method. It is defined to measure the
difference between the uniform probability distribution on Cs and the empirical
distribution function of a set of n points in Cs .

2.2.1 Definition

For any x = (x1, . . . , xs) ∈ Cs , let F(x) be the distribution function of uniform
distribution on Cs , i.e.,

F(x) =
{

x1 . . . xs, if 0 � xi � 1, i = 1, . . . , s
0, otherwise.

(2.2.1)

Let FP(x) be the empirical distribution function corresponding to the design P =
{x1, . . . , xn}, xi ∈ Cs , i.e.,

FP(x) = 1

n

n∑
i=1

1[xi ,∞)(x), (2.2.2)

where xi = (xi1, . . . , xis),∞ = (∞, . . . ,∞), 1[xi ,∞)(x) is the indicator function,
whose value equals 1 if x ∈ [xi ,∞), otherwise 0, and [xi ,∞) = [xi1,∞) × · · · ×
[xis,∞).

Definition 2.2.1 The star L p-discrepancy of a design P is defined as the L p-norm
of the difference between FP(x) and F(x), i.e.,

D∗
p(P) =‖ FP(x) − F(x) ‖p=

{∫
Cs

|FP(x) − F(x)|p dx
}1/p

. (2.2.3)
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From geometric point view, the empirical distribution can be represented by
FP(x) = N (P ∩ [0, x))/n, where N (P ∩ [0, x)) is the number of points ofP falling
in the rectangle [0, x) = [0, x1) × · · · × [0, xs). The uniform probability distribution
F(x) is the volume of the rectangle [0, x), denoted as vol([0, x)). Then, the star L p-
discrepancy in (2.2.3) can be expressed as

D∗
p(P) =

{∫
Cs

∣∣∣∣N (P ∩ [0, x))

n
− vol([0, x))

∣∣∣∣
p

dx
}1/p

. (2.2.4)

The most useful value of p is p = ∞ and p = 2.
(1) When p = ∞, the star L∞-discrepancy, simplified by star discrepancy, can

be expressed as

D∗(P) = sup
x∈Cs

∣∣∣∣N (P ∩ [0, x))

n
− vol([0, x))

∣∣∣∣ , (2.2.5)

which is known as the Kolmogorov–Smirnov statistic in goodness-of-fit testing. The
star discrepancy plays an important role in quasi-Monte Carlo methods as well as
in the field of statistics, but it cannot be computed in polynomial time (Winker and
Fang 1997).

(2) When p = 2, Warnock (1972) showed that the star L2-discrepancy has a
simple formula

[D∗
2(P)]2 =

(
1

3

)2

− 2

n

n∑
i=1

s∏
j=1

(1 − x2
i j )

2

+ 1

n2

n∑
i,l=1

s∏
j=1

[1 − max(xi j , xl j )], (2.2.6)

and its computational complexity is O(n2s). The star L2-discrepancy is known as
the Cramér–Von Mises goodness-of-fit statistic (D’Agostino and Stephens 1986).
However, when p �= 2, the star L p-discrepancy does not have explicit expression.

Define the local discrepancy function by

disc∗(x) = N (P ∩ [0, x))

n
− vol([0, x)), (2.2.7)

which is the difference between the uniform probability distribution function and
empirical distribution function at the point x. Then, the star L p-discrepancy is

D∗
p(P) = ∥∥disc∗∥∥

p =
{{∫

Cs |disc∗(x)|p dx
}1/p

, 1 � p < ∞,

supx∈Cs |disc∗(x)| , p = ∞,
(2.2.8)
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Fig. 2.1 Two designs and their corresponding local discrepancy functions

which can be considered as the average local discrepancy function under L p-norm
on Cs if p < ∞ and as the supremum of the absolute of local discrepancy function
if p = ∞. Figure 2.1 shows two designs and their corresponding local discrep-
ancy functions on Cs . For example, when x = (0.5, 0.36), disc∗(x) = 1/7 − 0.5 ×
0.36 = −0.0371 for design 1 and disc∗(x) = 3/7 − 0.5 × 0.36 = 0.2486 for design
2. It seems that the first design is more uniform than the second one, as well as the
fluctuation of local discrepancy function.

2.2.2 Properties

For an n-run design P = {x1, . . . , xn} on Cs , define X = [x1, . . . , xn]T be a n × s
designmatrix, where xi = (xi1, . . . , xis)

T , i = 1, . . . , n. For any type of discrepancy
D, let D(P) = D(X). A reasonable measure of uniformity should satisfy:
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C1 Invariant under permuting factors and/or runs. It is obvious that the per-
mutation of factors and/or runs does not change the property of the design.
Accordingly, the uniformity measure should not be changed when the factors
and/or runs are permuted. Let P : n × n and Q : s × s be two permutation
matrices, i.e., their elements are zeroes or ones, with exactly one 1 in each row
and column. A discrepancy D is called permutation invariant if D satisfies

D(PX Q) = D(X) for any design matrix X .

Here, multiplication by P permutes the runs, andmultiplication by Q permutes
the factors.

C2 Invariant under the coordinates rotation or reflection. Intuitively, the uni-
formity of a design should remain unchanged, when a design is rotated around
one coordinate or reflected. Let Qθ be an s × s rotationmatrix in xi − x j plane.
For example, the clockwise rotation θ degree matrix in x1 − x2 plane is

Qθ =

⎛
⎜⎜⎜⎜⎜⎝

cos θ − sin θ
sin θ cos θ

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎠

. (2.2.9)

Then, rotating the design X in xi − x j plane can be expressed as

Xθ = (X − 0.5)Qθ + 0.5, (2.2.10)

where for a matrix A = (ai j ), the matrix A ± 0.5 = (ai j ± 0.5). A rotation-
invariant discrepancy is one that satisfies

D(Xθ) = D(X), for θ = π/2,π, 3π/2, and any design X .

Moreover, define the reflection of the designP through plane x j = 1/2 passing
through the center of the domain as

Pref, j = {(xi1, . . . , xi, j−1, 1 − xi j , xi, j+1, . . . , xis)
T : i = 1, . . . , n}.

The reflection-invariant discrepancy requests

D(Pref, j ) = D(P), ∀ j = 1, . . . , s, for any design P.

It is easily known that both rotating xi − x j plane with clockwise π/2,π or
3π/2 angle and reflecting the experimental domain [0, 1]s through the plane
x j = 1/2 give the same experimental domain. Rotation-invariant discrepancy
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and reflection-invariant discrepancy require that these rotation and reflection
do not change the value of uniformity criterion.

C3 Measure the projection uniformity. According to the hierarchical ordering
principle in Sect. 1.3.2, lower-order effects are more likely to be important
than higher-order effects, and effects of the same order are equally likely to
be important. We need to consider uniformity of the design projected on each
coordinator for the main effect estimation, uniformity of the design on xi − x j

plane for estimation of interaction between factor i and factor j , and so on.
A good uniformity criterion should measure not only uniformity of P on Cs

but also projection uniformity of P on Cu , where u is a non-empty subset of
{1, . . . , s}.

C4 Have some geometric meaning. The uniform design has its own geometric
meaning, and thus uniformity criterion should also process some geometric
meaning.

C5 Easy to compute. Given a uniformity criterion, it is not an easy job to search
a uniform design under the uniformity criterion. Usually, some optimization
algorithms are employed to find a uniform design. In the searching procedure,
the criterion value of each design must be computed a lot of time, and it is
better that the uniformity criterion can be computed in polynomial time of the
number of runs n.

C6 Satisfy Koksma–Hlawka inequality. The inequality (2.1.6) provides a major
support of the uniform design, and thus each uniformity criterion should satisfy
this requirement.

Now, consider the properties of the star discrepancy in (2.2.5) and the star L2-
discrepancy in (2.2.6). It is well known that both the discrepancies satisfy C1, C4,
and C6. With reference to the other criteria, we have the following comments.

For C2. Neither the star discrepancy nor the star L2-discrepancy satisfies C2. This
is because when one rotates or reflects the design P , the values of the
two discrepancies may be changed. The reason for the change is that
the origin 0 plays a special role in defining the star L p-discrepancy by
anchoring the box [0, x). For illustration, one example is shown for the
star discrepancy. Consider to rotate and reflect a two-dimensional design
in Cs with the clockwise rotation matrix Qθ in (2.2.9)

Qθ =
(
cos θ − sin θ
sin θ cos θ

)
, θ = π/2,π, 3π/2,

and reflection axial x1 = 1/2 and x2 = 1/2. Figure 2.2 shows that rotat-
ing and reflecting a design can change the star discrepancy, i.e., the star
discrepancy is neither a rotation invariant nor a reflection invariant. Note
that the star discrepancy of the rotated design in Fig. 2.2b equals that of
the reflected design in Fig. 2.2e. Moreover, the star discrepancies of the
designs in Fig. 2.2d, f are also equal, since these designs can be obtained
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Fig. 2.2 Star discrepancy of a design and the designs after clockwise rotation and reflection

from reflecting one design through the line y = x to other. The star L2-
discrepancy has a similar property.

For C3. The star L p-discrepancy does not measure uniformity well for projection
designs with less factors except p = ∞, i.e., the star discrepancy satisfies
C3, while the star L2-discrepancy does not. From the definition (2.2.8),
the local discrepancy function disc∗(x) of the star L p-discrepancy ignores
the low-dimensional subregion when p < ∞.
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Let u ⊆ {1, . . . , s} be a set indexing factors of interest and [0, 1]u be the
corresponding experimental domain. Define the local discrepancy func-
tion restricted to only the factors indexed by u to be

disc∗
u(x) � disc∗ (xu, 1) , (2.2.11)

where xu denotes the projection of x onto [0, 1]u and disc∗(x) is defined in
(2.2.7). For example, for x = (x1, . . . , xs), (xu, 1) = (1, x2, 1)when s =
3 and u = {2}; and (xu, 1) = (x1, 1, x3, 1) when s = 4 and u = {1, 3}.
Note that disc∗

∅(x) = 0. The star L p-discrepancy of a design restricted
to the factors indexed by u is written as D∗

p,u(P) = ∥∥disc∗
u

∥∥
p . The star

discrepancy satisfies

D∗(P) = sup
u

D∗
∞,u(P).

Then, the projection uniformity is already considered by star discrepancy.
For C5. The star L2-discrepancy has an explicit expression, while the star discrep-

ancy does not have, and thus only the star L2-discrepancy satisfies C5.
For computing the value of star discrepancy, one at least needs to com-
pute the limiting values of |disc∗(x)| as x approaches points in the set
{0, 1, x11, . . . , xn1} × · · · × {0, 1, x1s, . . . , xns} from all possible direc-
tions, since the local discrepancy is a piecewise multi-linear function of
x, as depicted in Fig. 2.1. This requires O(ns) operations (Winker and
Fang 1997), which is prohibitive even for a moderate number of factors.
However, it has been observed that if such ns design points for x are not
enough, then one needs more points to compute the approximate value of
star discrepancy. Efficient calculation of the star discrepancy has been dis-
cussed for one factor (Niederreiter 1973), two factors (Clerk 1986), small
numbers of factors with s � 10, n � 100 (Bundschuh and Zhu 1993), and
large n (Winker and Fang 1997).

In summary, the star discrepancy satisfies C1, C3, C4, and C6, while the star L2-
discrepancy satisfies C1, C4, C5, and C6. Moreover, for star L p-discrepancy with
p �= 2, there is no explicit expression, and it also cannot measure the projection uni-
formity, i.e., it only satisfies C1, C4 and C6. Next section will give some generalized
discrepancies to overcome the shortcoming of star L p-discrepancy.

2.3 Generalized L2-Discrepancy

To overcome the shortcomings of star L p-discrepancy mentioned in the last section,
some generalized L2-discrepancy proposed by Hickernell (1998a, b) and Zhou et al.
(2013) is given in this section.
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Since the star L2-discrepancy has an explicit expression, the generalized discrep-
ancy prefers to use the L2-norm. However, the star L2-discrepancy fails to measure
the projection uniformity, and a generalized discrepancy should measure the unifor-
mity for any projection intervals (one dimension), rectangles (two or higher dimen-
sions). Moreover, the origin 0 plays a key role in computing star L p-discrepancy and
results in some unreasonable phenomenon, and then a generalized discrepancy may
eliminate the effect of the origin 0 such that every corner point of the unit cube plays
the same role as the origin 0.

2.3.1 Definition

Let P be a design with n runs and s-factors on Cs . Denote {1 : s} = {1, . . . , s}, and
let u ⊂ {1 : s} be the set used for indexing the factors of interest, [0, 1]u be the unit
cube in the coordinates indexed by u, xu = (x j ) j∈u be the projection of x onto [0, 1]u ,
and Pu be the projection of the design P onto [0, 1]u . Denote Ru(xu) ⊆ [0, 1]u to be
a pre-defined region for all xu ∈ [0, 1]u . The region Ru(xu) will be given at the end
of this subsection. Define local projection discrepancy for the factors indexed by u
as

discR
u (xu) = Vol(Ru(xu)) − |Pu ∩ Ru(xu)|

n
, (2.3.1)

which may be considered as a function of xu . The L2-norm of discR
u is defined as

∥∥discR
u

∥∥
2 =

{∫
[0,1]u

∣∣discR
u (xu)

∣∣2 dxu

}1/2

=
{∫

[0,1]u

∣∣discR
u (xu)

∣∣2 dx
}1/2

.

A generalized L2-discrepancy is defined in terms of all of these local projection
discrepancies as follows:

DR
2 (P) =

∥∥∥(∥∥discR
u

∥∥
2

)
u⊆{1:s}

∥∥∥
2

=
⎧⎨
⎩

∑
u⊆{1:s}

∫
[0,1]u

∣∣discR
u (xu)

∣∣2 dxu

⎫⎬
⎭

1/2

=
⎧⎨
⎩
∫

[0,1]s

∑
u⊆{1:s}

∣∣discR
u (xu)

∣∣2 dx
⎫⎬
⎭

1/2

. (2.3.2)

Surely, the generalized L2-discrepancy in (2.3.2) considers the projection uniformity
and satisfies the criterion C3. When the number of factors increases from s to s̃, the
discrepancy may increase since it contains additional contributions from

∥∥discR
u

∥∥
2

for all u having a non-empty intersection with {(s + 1) : s̃}.
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Moreover, to satisfy C4, the definition of Ru(xu) should have some geomet-
ric interpretation. Different definitions of Ru(xu) in (2.3.1) give different gener-
alized discrepancies. Hickernell (1998a, b) proposed a family of generalized L2-
discrepancies, and among them the centered L2-discrepancy (CD) and wrap-around
L2-discrepancy (WD) have been widely used in theoretical study and practical appli-
cations. Zhou et al. (2013) pointed out that CD andWD also have some shortcomings
and proposed a new discrepancy, known as mixture discrepancy (MD). In the fol-
lowing subsections, a detailed introduction of various definitions of Ru(xu) and the
expressions of CD, WD, and MD are given.

2.3.2 Centered L2-Discrepancy

Denote the 2s vertices of the unit cube [0, 1]s by the set {0, 1}s . For every point
x ∈ [0, 1]s , let ax ∈ {0, 1}s denote the vertex closest to x, i.e., ax = (ax1 , . . . , axs )

is defined by ax j = 0 for 0 � x j � 1/2 and ax j = 1 for 1/2 < x j � 1. For any pro-
jection u ⊂ {1 : s}, let axu be the vertex in the unit cube [0, 1]u which is closest to
xu . Define RC

u (xu) be the hyperrectangle between the points axu and xu .
For any two points x, y ∈ [0, 1]s , let J (x, y) denote the hypercube containing

the points between x and y, i.e.,

J (x, y) = {(t1, . . . , ts) : min(x j , y j ) � t j � max(x j , y j ) ∀ j = 1, . . . , s}.

If all the elements of x are less than or equal to the corresponding elements in y, then
J (x, y) = [x, y]. For centered L2-discrepancy, define RC

u (xu) = J (axu , xu). For
example, when u = {1, 2}, the unit cube [0, 1]2 is split into four square cells. Corner
points of each cell involve one corner point of the original unit cube, the central
point (1/2, 1/2), and others. Then, axu and xu are the two diagonal vertexes of the
corresponding rectangle region RC

u (xu). A plot of the local projection discrepancy
of CD for u = {1, 2} is given in Fig. 2.3.

The local projection discrepancy in (2.3.1) becomes

discC
u (xu) = Vol(RC

u (xu)) −
∣∣Pu ∩ RC

u (xu)
∣∣

n

= Vol(J (axu , xu)) −
∣∣Pu ∩ J (axu , xu)

∣∣
n

. (2.3.3)

From (2.3.2), the centered L2-discrepancy becomes

CD(P) =
∥∥∥(∥∥discC

u

∥∥
2

)
u⊆{1:s}

∥∥∥
2
.

Hickernell (1998b) showed that the centered L2-discrepancy possesses a convenient
formula for computation:
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Fig. 2.3 RC{1,2}(x) (shaded) used to define the centered discrepancy

CD(P) =
⎧⎨
⎩
(
13

12

)s

− 2

n

n∑
i=1

s∏
j=1

(
1 + 1

2

∣∣xi j − 0.5
∣∣ − 1

2

∣∣xi j − 0.5
∣∣2
)

+ 1

n2

n∑
i,k=1

s∏
j=1

(
1 + 1

2

∣∣xi j − 0.5
∣∣ + 1

2

∣∣xk j − 0.5
∣∣ − 1

2

∣∣xi j − xk j

∣∣
)⎫⎬
⎭

1/2

.

(2.3.4)

Obviously, CD satisfies the criteriaC1,C3,C4, andC5. Since the region RC
u (xu) treats

the function of 2s corner points as same as the origin 0, the reflection and rotation
of the design P do not change the CD-value, i.e., CD is a rotation- and reflection-
invariant discrepancy which implies CD satisfiesC2. Hickernell (1998b) showed that
CD also satisfies Koksma–Hlawka inequality (C6), where the total variation of the
function should be modified.



56 2 Uniformity Criteria

2.3.3 Wrap-around L2-Discrepancy

Both the star L p-discrepancy and the centered L2-discrepancy require one or more
corner points of the unit cube in definition of Ru(xu). A natural extension for the
pre-defined region in the definition of generalized discrepancy (2.3.1) is to fall inside
of the unit cube and not to involve any corner point of the unit cube, which leads to
the so-called unanchored discrepancy in the literature. Then, the pre-defined region
can be chosen as a rectangle determined by two points x1 and x2 in [0, 1]u . Moreover,
for satisfying the property C2, we can wrap the unit cube for each coordinate.

Consider the unit cube like a torus, i.e., x j = 0 and x j = 1 are treated as the same
point. Let the region RW

u ( yu, xu) and the local discrepancy function be

RW
j (y j , x j ) =

{ [y j , x j ], y j � x j ,

[0, x j ] ∪ [y j , 1], x j < y j ,

RW
u ( yu, xu) =

⊗
j∈u

RW
j (y j , x j ),

discW
u ( yu, xu) = Vol(RW

u ( yu, xu)) −
∣∣P ∩ RW

u ( yu, xu)
∣∣

n
, (2.3.5)

where
⊗

denotes for the Kronecker product. Figure 2.4 shows a plot of some regions
RW

u ( yu, xu), where the two shaded rectangles are treated as one region.
Since the region has a wrap-around property, the corresponding discrepancy is

called as wrap-around L2-discrepancy. From (2.3.2), the WD is defined as

WD(P) =
(∑

u⊆{1:s}
∫
[0,1]2u

∣∣discW
u ( yu, xu)

∣∣2 dxud yu

)1/2
.
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Fig. 2.4 RW{1,2}( y, x) (shaded) in wrap-around L2-discrepancy
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The expression of the squared WD-value can be written as (Hickernell 1998a)

WD2(P) = −
(
4

3

)s
+ 1

n2

n∑
i,k=1

s∏
j=1

[
3

2
− ∣∣xi j − xk j

∣∣ + ∣∣xi j − xk j
∣∣2
]

. (2.3.6)

It is easy to check that WD satisfies the criteria C1, C3, C4, and C5. Since the
wrap-around property of WD eliminates the effect of origin 0, the criterion C2 is
also satisfied, i.e., WD is also a rotation- and reflection-invariant discrepancy. Hick-
ernell (1998a) showed that WD satisfies the criterion C6, where the total variation in
Koksma–Hlawka inequality needs some modification.

2.3.4 Some Discussion on CD and WD

We have shown that CD and WD satisfy criteria C1, . . . , C6. As a consequence,
CD and WD are widely used for the construction of uniform designs. Most existing
uniform designs are obtained under CD or WD.

However, the uniformity criterion CD may derive some result which violates the
intuitive view.

Example 2.3.1 Consider two designs U (24, 33) below

X1 =
⎡
⎣1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 1 1 1 2 2 3 3 3
1 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 3 2 3 1 2 3

⎤
⎦

T

and

X2 =
⎡
⎣1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
1 1 1 2 2 3 3 3 1 1 2 2 2 2 3 3 1 1 1 2 2 3 3 3
1 2 3 1 3 1 2 3 1 3 2 2 2 2 1 3 1 2 3 1 3 1 2 3

⎤
⎦

T

,

where AT denotes the transpose of thematrix A. Consider the three-level three-factor
full design with 27 runs. We also consider all its 24-run subdesigns without repeat
point. There are total

(27
24

) = 2925 such subdesigns.Here, X1 is the designwith lowest
CD or WD among these subdesigns and is the U-type design without repeat point.
X2 is from the list as the uniform design under CD on theWeb site http://www.math.
hkbu.edu.hk/UniformDesign/. The design X2 is more uniform than X1 under CD as

CD2(X1) = 0.032779, CD2(X2) = 0.032586.

But WD2(X1) = 0.100852, WD2(X2) = 0.101732, i.e., X1 is more uniform than
X2 under WD. This example shows that the uniform design may be different under

http://www.math.hkbu.edu.hk/UniformDesign/
http://www.math.hkbu.edu.hk/UniformDesign/
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Table 2.1 Mean and standard deviation of r for the best design P ′
1

s 10 20 30 40 50 60 70 80 90 100

P ′
1: r̄ 0.974 0.894 0.775 0.660 0.569 0.495 0.440 0.390 0.352 0.320

(std) (0.005) (0.005) (0.005) (0.003) (0.003) (0.005) (0.002) (0.000) (0.004) (0.000)

different discrepancies. Moreover, the center point (2 2 2) repeats 4 times in X2. In
computer experiments, the repeated point does not carry any additional information.
It is reasonable to require that there is no repeat point in computer experiments.
From this example, Zhou et al. (2013) pointed out that CD does not care much about
points located in the center region according to the definition of RC

u (xu). They were
concerned with the behavior of CD in high-dimensional cases and pointed out that
CD is not suitable as a discrepancy in such scenarios.

Consider an experiment to test the dimensionality effect on CD. Let P ′
0 =

{x1, . . . , xn} be a set of n points in the unit hypercube Cs generated by the mid-
point Latin hypercube sampling (see Fang et al. 2006a). Let

Y(r) = { y j = r(x j − m) + m, j = 1, . . . , n}, (2.3.7)

where m = 1
21s is the center point of Cs and 0 < r < 1. When the ratio r decreases

from 1 to 0, point y j from x j converges to m along the direction between x j and m.
Minimize CD-value of Y(r) with respect to r on 0 < r � 1 and let P ′

1 be the Y(r)

with the minimum CD-value. The average mean of r , r̄ say, and the average standard
deviation of the ratio r ofP ′

1, from 100 midpoint Latin hypercube samples, are listed
in Table 2.1.

Table 2.1 shows that when the number of dimensions increases from 10 to 100, the
mean of the ratio, r̄ forP ′

1, significantly decreases and the standard deviation of r for
P ′
1 also decreases to zero. For a more intuitive view, for s = 10, 40, 70, 100, a point

set P ′
0 is generated by midpoint Latin hypercube sampling (see Fang et al. 2006a),

and the first two-dimensional projection of P ′
0 and the corresponding P ′

1 are shown
in Fig. 2.5, which shows that the ratio r of P ′

1 under CD decreases with the increase
of the number of factors s. There are

(s
2

)
such projection plots, but they give the same

conclusion. Moreover, for a sample of P ′
0 when s = 100, the CD-values of P ′

0 and
P ′
1 are, respectively, 56411746.8 and 2962.0, which means P ′

1 is more uniform than
P ′
0. Therefore, with the increase in the number of factors, more design points are set

near the center point m and are more uniform under CD. We can conclude that CD
prefers points close to the center m. In other words, as a criterion of uniformity, CD
has a significant dimensionality effect. Therefore, CD is not suitable for assessing
the uniformity of a set of points, especially when the number of dimensions is large.

Fang andMa (2001b) pointed out that a location shift of a one-dimensional design
does not change its WD. Furthermore, from the expression of WD in (2.3.6), it
is easily seen that any level shift in (2.3.8) does not change the WD-value. This
flexibility may result in some unreasonable results. Figure 2.6 gives four designs that
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Fig. 2.5 Scale ratio r for a different number of factors under CD. Here ‘.’ and ‘∗’, respectively,
denote the first two-dimensional projections of P ′

0 and P ′
1

have the same WD-value, but D1 is more uniform by intuition. This indicates that
WD is not sensitive about a level shift of one or more factors. Therefore, we need to
add more criteria for measures of uniformity below.

C7 Sensitivity on a shift for one or more dimensions. The uniformity criterion
D is sensitive to small point shift on the design, i.e., some shift may change the
D-value.
Consider all the points of P to be shifted as

P ′ = {(xi1 + a1, . . . , xis + as)
T (mod1), i = 1, . . . , n}, (2.3.8)

for some a j ∈ [0, 1), j = 1, 2, . . . , s, where the operator (mod 1) means that
each element of the i th point modulo 1, which guarantees the design points of
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Fig. 2.6 Four designs constructed by level shift have the same WD-value

P ′ fall in [0, 1]u . Note that this criterion does not require that the discrepancy D
must be changed for any a j ∈ [0, 1), j = 1, 2, . . . , s.

C8 Less curse of dimensionality. It is known that many problems have quite dif-
ferent behaviors between low- and high-dimensional cases, i.e., the same problem
from a lower-dimensional case to the corresponding higher-dimensional casemay
have significant variant of behavior. This phenomenon is called curse of dimen-
sionality. Many uniformity criteria are strongly related to the volume, and then
the behavior of their criteria in high-dimensional cases should be studied. It is
required that each point on the unit cube plays the same role.

Let us look at the star L p-discrepancy and check whether they satisfy C7 and C8.

For C7. When the design points are shifted for one or more dimensions in (2.3.8),
the value N (P ∩ [0, x]) in the definition (2.2.4) or (2.2.5) may be changed for
given x, as well as the value of star discrepancy or star L2-discrepancy. Then, the
two discrepancies are sensitive on a shift for one or more dimensions.

For C8. The star L p-discrepancy has some unreasonable phenomenon in high-
dimensional case. For example, the uniform design with one run under the star
discrepancy takes the form P = {(z, . . . , z)}, where z satisfies zs + z − 1 = 0.
Then, z = 1/2 when s = 1; z = (

√
5 − 1)/2 when s = 2; and z tends to 1 when
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the number of factors increases. However, in intuitive view, the uniform design
with one run should be located at the center ofCs . The reason for suchphenomenon
is that the origin 0 plays the special role in L p-discrepancy.

For CD, it is shown that CD does not satisfy C8 according to Fig. 2.5 and Table
2.1. But, the CD satisfies C7. For example, consider the X1 in Example 2.3.1. Let
U = (X1 − 0.5)/3 be the induced matrix. Let (a1, a2, a3) = (0.1, 0, 0) in (2.3.8),
i.e., we only shift the first dimension. Then, the squared CD-value of the resulted
design is 0.0443, which is different with that of U .

For WD, we showed that it does not satisfy C7 since the WD-value does not
change for any a1, . . . , as in (2.3.8). For C8, consider the same experiment as that
in Table2.1. It shows that the best ratio r for WD is much close to 1, and then WD
may have less curse of dimensionality in this sense.

2.3.5 Mixture Discrepancy

AlthoughWDandCDovercomemost of the shortcomings of the star L p-discrepancy,
CD does not satisfy the criterion C8 and WD does not satisfy the criterion C7. It is
thus required to find some new uniformity criterion which can satisfy all the eight
requests C1–C8. Since WD and CD have many goodnesses, one may want to keep
their goodness and avoid their shortcomings. A natural idea is to develop a criterion
through mixing WD and CD measure in some way.

As we know, the definition of the region Ru(x) determines the property of the
corresponding discrepancy, and then it is reasonable to get a better Ru(x) from some
modifications of that of CDandWD.The discrepancy proposed byZhou et al. (2013),
called asmixture discrepancy, satisfies this requirement. The definition of RW

j (xi , yi )

for WD only considers whether xi is larger than yi or not, and does not care about
the distance between xi and yi . However, it is more reasonable to define R(xu) as a
larger region, i.e., the difference between the empirical and uniform distributions on
a larger region is considered. Thus, one may modify the definition of RW

u (xu, yu) in
WD as follows,

RM
1 (xi , yi ) =

{ [min(xi , yi ),max(xi , yi )], |xi − yi | � 1
2 ,

[0,min(xi , yi )] ∪ [max(xi , yi ), 1], |xi − yi | < 1
2 ,

RM
1 (xu, yu) = ⊗i∈u RM

1 (xi , yi ). (2.3.9)

Moreover, the region RC
u (xu) for CD only considers a small part of [0,1] and ignores

the center region. Then, one may modify RC
u (xu) as follows

RM
2 (xi ) =

{ [xi , 1], xi � 1
2 ,[0, xi ], xi > 1
2 ,

RM
2 (xu) = ⊗i∈u RM

2 (xi ), (2.3.10)
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Fig. 2.7 Illustration of RM
1 (x, y) in two-dimensional case

which includes the center point of every dimension. Figures2.7 and 2.8 give some
illustrations of RM

1 (x, y) and RM
2 (x) in two-dimensional case, where the area

of RM
1 (x, y) is larger than 1/4, while the area of RW (x, y) in wrap-around L2-

discrepancy is often less than 1/4. The points in C2 may have the same probability
to be counted in RM

1 (x, y), and the center region is always counted in RM
2 (x).

It can be shown that the discrepancy with respect to RM
1 (xu, yu) also has the

special characteristic as that of WD, i.e., when one shifts the points in P0 with one
direction (a1, . . . , as), the value of its correspondingdiscrepancy remains unchanged.
Similarly, RM

2 (x)may paymore attention to the center region. Therefore, it is reason-
able to combine the two aspects together, which may retain the good properties and
overcome the unreasonable phenomena. The simplest way is to define the RM (x j , y j )

as follows:
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Fig. 2.8 Illustration of RM
2 (x) in two-dimensional case

RM(xi , y j ) = 1

2
RM
1 (xi , y j ) + 1

2
RM
2 (xi ), (2.3.11)

RM(xu, yu) = ⊗i∈u RM(x j , y j ),

discM
u (xu, yu) = 1

2

(
Vol(RM

1 (xu, yu)) −
∣∣P ∩ RM

1 (xu, yu)
∣∣

n

)

+ 1

2

(
Vol(RM

2 (xu)) −
∣∣P ∩ RM

2 (xu)
∣∣

n

)
, (2.3.12)

For a set of pointsP = {x1, . . . , xn} onCs , Zhou et al. (2013) derived the expression
of MD as follows.
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Table 2.2 Properties for some commonly used discrepancies

Criteria L p(p �= 2) L2 L∞ C D W D M D

C1
√ √ √ √ √ √

C2 − − − √ √ √
C3 − − √ √ √ √
C4

√ √ √ √ √ √
C5 − √ − √ √ √
C6

√ √ √ √ √ √
C7

√ √ √ √ − √
C8 − − − − √ √

MD2(P) =
(
19

12

)s

− 2

n

n∑
i=1

s∏
j=1

(
5

3
− 1

4
|xi j − 1

2
| − 1

4
|xi j − 1

2
|2
)

+ 1

n2

n∑
i=1

n∑
k=1

s∏
j=1

(
15

8
− 1

4
|xi j − 1

2
| − 1

4
|xk j − 1

2
|

−3

4
|xi j − xk j | + 1

2
|xi j − xk j |2

)
. (2.3.13)

It can be easily shown thatMDsatisfiesC1,C3, C4, C5, andC7. Since the definition
of RM(xu, yu) eliminates the special role of the origin 0 and treats the 2s vertices to
be the same role, MD satisfies C2. For example, from (2.3.13), the MD-value does
not change for the reflection transformation x ′

i = 1 − xi . According to Zhou et al.
(2013), the MD can also be defined from the kernel function (see Sect. 2.4 for the
details). Hence, it also satisfies Koksma–Hlawka inequality (2.1.6), as well as the
criterion C6; see Hickernell (1998a). For C8, considering the same experiment as
that in Table 2.1, it can also be shown that the best ratio r for MD is much close to
1, and then MD does not have curse of dimensionality in this sense. Therefore, MD
satisfies all of the eight criteria C1 − C8 and may be a better uniformity criterion
than star L p-discrepancy, CD and WD. In summary, the properties of the commonly
used discrepancies star L p-discrepancy, CD, WD, and MD are listed in Table 2.2.

2.4 Reproducing Kernel for Discrepancies

The analytical expressions for the computation of the generalized L2-discrepancies
for CD, WD, and MD are provided in the last preceding section without any proof.
In this section, we introduce the tool of reproducing kernel Hilbert space and give
the procedure to derive the analytical expression for the computation of these dis-
crepancies.

Let X be an experimental domain on Rs and K(z, t) be a real-valued function
defined on X 2 = X × X satisfying two properties: (i) symmetric,
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K(zt) = K(t, z), ∀zt ∈ X ,

and (ii) nonnegative definite,
n∑

i,k=1

ciK(zi , zk)ck � 0, ∀zi ∈ X ,

and ci are real numbers. Such function K(·, ·) is called a kernel function. Let W be
the space of real-valued functions on X with the kernel function K as follows:

W =
{

F(x) :
∫
X 2

K(zt)dF(z)d F(t) < ∞
}

. (2.4.1)

Define the inner product of two arbitrary functions F, G ∈ W as

〈F, G〉W =
∫
X 2

K(x, y)dF(x)dG( y). (2.4.2)

The norm ‖·‖W is induced from ‖F‖W = [〈F, F〉W ]1/2 for any function F ∈ W .
Then,W is a Hilbert space of real-valued functions on X and 〈F, G〉W is also finite
according to the Cauchy–Schwarz inequality. If the kernel function K satisfies the
following property

{K(·, x) ∈ W, ∀ x ∈ X ,

F(x) = 〈K(·, x), F〉W , ∀ F ∈ W, x ∈ X ,
(2.4.3)

then this kernel is called a reproducing kernel forW andW is called a reproducing
kernel Hilbert space. The Moore–Aronszajn theorem (Aronszajn 1950) showed that
for any given kernel function K, there is a Hilbert space of functions on X such that
K is a reproducing kernel.

Using the tool of reproducing kernel Hilbert space, one can define the L2-
discrepancy for measuring uniformity of a design. LetX be an experimental domain,
F be the uniform distribution function on X , and FP be the empirical distribution
function of a design P = {x1, . . . , xn} on X .

Definition 2.4.1 A discrepancy for measuring uniformity of P is defined as

D(P,K) = ‖F − FP‖W , (2.4.4)

where W is defined in (2.4.1).

The discrepancy in (2.4.4) measures the difference between F and FP , which
is determined by the kernel function K. A kernel function K derives a type of dis-
crepancy. Expanding out the integrals in (2.4.4) yields an expression resembling the
computational formula of the discrepancy:
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D2(P,K) = 〈F − FP , F − FP〉W
=
∫
X 2

K(t, z)d(F − FP)(t)d(F − FP)(z)

=
∫
X 2

K(t, z) dF(t)dF(z) − 2

n

n∑
i=1

∫
X
K(t, xi ) dF(t)

+ 1

n2

n∑
i=1

n∑
k=1

K(xi , xk). (2.4.5)

When the levels of each of the s-factors can be set independently, the experimental
domainX can be chosen as the unit hypercube [0, 1]u . In this case, d F(t) = d t , and
the discrepancy with respect to K is as follows.

D2(P,K) =
∫

[0,1]2s

K(t, z) dtdz − 2

n

n∑
i=1

∫
[0,1]s

K(t, xi ) dt

+ 1

n2

n∑
i=1

n∑
k=1

K(xi , xk). (2.4.6)

Given a pre-defined region Ru(x), it can determine a reproducing kernel K, as
well as the corresponding L2-discrepancy.

Theorem 2.4.1 The generalized L2-discrepancy in (2.3.2) can be defined in the form
(2.4.4), and its kernel function K can be expressed by

KR(t, z) =
∑

u⊆{1:s}
KR

u (tu, zu), (2.4.7)

where

KR
u (tu, zu) =

∫
[0,1]u

1Ru(x)(tu)1Ru(x)(zu) dx. (2.4.8)

Proof From (2.3.1), the local projection discrepancy can be rewritten in terms of the
integral of the index function of the set Ru(x):

discR
u (xu) = Vol(Ru(x)) − |Pu ∩ Ru(x)|

n

=
∫

[0,1]u

1Ru(x)(tu) dF(t) −
∫

[0,1]u

1Ru(x)(tu) dFP(t)

=
∫

[0,1]u

1Ru(x)(tu) d(F − FP)(t),

where F and FP are the uniform distribution function and empirical distribution
function of the design P , respectively, and t = (t1, . . . , ts) and tu = (t j ) j∈u are the
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projection of t onto [0, 1]u . This implies that the squared L2-norm of the local
projection discrepancy is

∥∥discR
u

∥∥2
2 =

∫
[0,1]u

∣∣discR
u (xu)

∣∣2 dx

=
∫

[0,1]u

∫
[0,1]2s

1Ru(x)(tu)1Ru(x)(zu)

× d(F − FP)(t)d(F − FP)(z) dx

=
∫

[0,1]2s

∫
[0,1]u

1Ru(x)(tu)1Ru(x)(zu)

× dx d(F − FP)(t)d(F − FP)(z)

=
∫

[0,1]2s

Ku(tu, zu) d(F − FP)(t)d(F − FP)(z),

where KR
u (tu, zu) = ∫

[0,1]u 1Ru(x)(tu)1Ru(x)(zu) dx, as shown in (2.4.8). Then, the
generalized L2-discrepancy in (2.3.2) can be rewritten as follows.

DR
2 (P) =

∥∥∥(∥∥discR
u

∥∥
2

)
u⊆{1:s}

∥∥∥
2

=
⎧⎨
⎩

∑
u⊆{1:s}

∫
[0,1]2s

KR
u (tu, zu) d(F − FP)(t)d(F − FP)(z)

⎫⎬
⎭

1/2

=
⎧⎨
⎩
∫

[0,1]2s

∑
u⊆{1:s}

KR
u (tu, zu) d(F − FP)(t)d(F − FP)(z)

⎫⎬
⎭

1/2

=
{∫

[0,1]2s

KR(t, z) d(F − FP)(t)d(F − FP)(z)
}1/2

,

whereKR(t, z) = ∑
u⊆{1:s} KR

u (tu, zu), as shown in (2.4.7). Then, Ru(x) determines
the function KR

u (tu, zu) in (2.4.8), which determines the expression of generalized
L2-discrepancy. The proof is finished.

Given a pre-defined region Ru(x), it may need more requirement of kernel func-
tion KR(t, z) for calculating the analytic expression of the corresponding discrep-
ancy, especially for WD, CD, and MD. Usually, the kernel function is assumed as a
separated kernel, i.e.,

K(t, z) =
s∏

j=1

K j (t j , z j ), for any t, z ∈ X . (2.4.9)

The separated kernel can be obtained when the s-factor experimental domain is a
Cartesian product of marginal domains, i.e., X = X1 × · · · × Xs (refer Sect. 1.2).
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Actually, the function KR(t, z) in (2.4.7) is a separated kernel function, since the
region Ru(xu) is a Cartesian product of marginal domains, and the kernel function
KR

u also has a product form:

KR
u (tu, zu) =

∏
j∈u

K̃R
1 (t j , z j ),

where

K̃R
1 (t j , z j ) =

∫ 1

0
1R j (x)(t j )1R j (x)(z j ) dx, (2.4.10a)

if the one-factor region R1(x) is only determined by one point, and

K̃R
1 (t j , z j ) =

∫ 1

0

∫ 1

0
1R j (x,y)(t j )1R j (x,y)(z j ) dxdy, (2.4.10b)

if the one-factor region R1(x, y) is determined by two points. Then, by the binomial
theorem the kernel function KR defined in (2.4.7) is also of product form:

KR(t, z) =
s∏

j=1

[1 + K̃R
1 (t j , z j )]. (2.4.11)

Therefore, given a region Ru(xu) or Ru(xu, yu), one can obtain K̃R
1 (t j , z j ) from

(2.4.10) and substitute the product form of (2.4.11) into (2.4.6) to yield the ana-
lytic formula of the corresponding discrepancy. For example, the kernel functions
corresponding to the measures CD, WD, and MD are given as follows.

(a) CD. According to the region RC
u (xu) defined in last section, the K̃C

1 (t j , z j ) and
KC(t, z) are as follows.

K̃C
1 (t j , z j ) =

∫ 1

0
1RC

j (x)(t j )1RC
j (x)(z j ) dx

=

⎧⎪⎨
⎪⎩
1/2 − max(t j , z j ), t j , z j � 1/2,

min(t j , z j ) − 1/2, 1/2 < t j , z j ,

0, otherwise,

= 1

2

∣∣∣∣t j − 1

2

∣∣∣∣ + 1

2

∣∣∣∣z j − 1

2

∣∣∣∣ − 1

2

∣∣t j − z j

∣∣ ,

KC(t, z) =
s∏

j=1

[
1 + 1

2

∣∣∣∣t j − 1

2

∣∣∣∣ + 1

2

∣∣∣∣z j − 1

2

∣∣∣∣ − 1

2

∣∣t j − z j

∣∣
]

. (2.4.12)

(b) WD. The K̃W
1 (t j , z j ) and KW (t, z) are as follows.
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K̃W
1 (t j , z j ) =

∫ 1

0

∫ 1

0
1RW

j (x,y)(t j )1RW
j (x,y)(z j ) dxdy

= 1

2
− ∣∣t j − z j

∣∣ + ∣∣t j − z j

∣∣2 ,

KW (t, z) =
s∏

j=1

[
3

2
− ∣∣t j − z j

∣∣ + ∣∣t j − z j

∣∣2
]

. (2.4.13)

(c) MD. According to (2.3.11), let

k1
j (z j , t j ) =

∫ 1

0

∫ 1

0
1RM

1 (x j ,y j )
(z j )1RM

1 (x j ,y j )
(t j )dx j dy j

= 3

4
− |z j − t j | + |z j − t j |2,

k2
j (z j , t j ) =

∫ 1

0
1RM

2 (x j )
(z j )1RM

2 (x j )
(t j )dx j

= 1 − 1

2
|z j − 1

2
| − 1

2
|t j − 1

2
| − 1

2
|z j − t j |,

then the K̃M
1 (t, z) and KM(t, z) are as follows.

K̃M
1 (t, z) = 1

2
k1

j (z j , t j ) + 1

2
k2

j (z j , t j )

= 7

8
− 1

4
|xi j − 1

2
| − 1

4
|xk j − 1

2
| − 3

4
|xi j − xk j | + 1

2
|xi j − xk j |2,

KM(t, z) =
s∏

j=1

[
15

8
− 1

4
|xi j − 1

2
| − 1

4
|xk j − 1

2
|

−3

4
|xi j − xk j | + 1

2
|xi j − xk j |2

]
.

Then, the corresponding analytic formulas of CD,WD, andMD are shown in (2.3.4),
(2.3.6), and (2.3.13), respectively.

From the kernel functions of CD, WD, and MD, the corresponding expressions
can be obtained by (2.4.6). Hickernell (1998a) gave other type of discrepancies such
as full star discrepancy, symmetrical discrepancy, and unanchored discrepancy. Their
discrepancies can also be defined by kernel functions.

Note that the CD, WD, and MD are defined on a unit hypercube. In practical
application, one may consider the discrepancy on other experimental domain X
such as simplex and hypersphere. Let R(x) be a pre-decided region on X and P
be a design on X . Suppose the volume of X is finite, i.e., Vol(X ) < ∞. The local
discrepancy function is
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discR(x) = Vol(R(x))

Vol(X )
− |P ∩ R(x)|

n

=
∫
X
1R(x)(t) dF(t) −

∫
X
1R(x)(t) dFP(t)

=
∫
X
1R(x)(t) d(F − FP)(t), (2.4.14)

where F is the uniformdistribution function onX and FP is the empirical distribution
function of the designP . This implies that the squared L2-normof the local projection
discrepancy is

∥∥discR
∥∥2
2 =

∫
X

∣∣discR(x)
∣∣2 dx

=
∫
X

∫
X 2

1R(x)(t)1R(x)(z)d(F − FP)(t)d(F − FP)(z) dx

=
∫
X 2

∫
X
1R(x)(t)1R(x)(z)dx d(F − FP)(t)d(F − FP)(z)

=
∫
X 2

K(t, z) d(F − FP)(t)d(F − FP)(z), (2.4.15)

where the function K : X 2 → R is defined by

K(t, z) =
∫
X
1R(x)(t)1R(x)(z) dx. (2.4.16)

Then, the generalized L2-discrepancy in general region X can be shown as that in
(2.4.5). Usually, the general region X cannot be separated and the kernel K also
cannot be separated.

2.5 Discrepancies for Finite Numbers of Levels

In previous sections, the experimental domain X is assumed to be continuous, such
as the unit cube [0, 1]s . However, inmany physical or practical situations, it prefers to
have an experimental domain with a finite number of levels. For example, categorical
factors have only a few levels and quantitative factors may also choose a few levels
because of convenience of experiments. Especially, in fractional factorial designs, the
number of levels of each factor j is finite, labeled τ1, . . . , τq j . Then, the experimental
domain for an s-factor fractional factorial design may be written as a Cartesian
product

X = X1 × · · · × Xs, where X j = {τ1, . . . , τq j }. (2.5.1)
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It is called an asymmetrical design if at least two factors have different numbers of
levels and symmetrical design if q1 = · · · = qs = q. Then, it is requested to give
some discrepancies for experimental domain with finite candidates directly. Hicker-
nell and Liu (2002), Liu and Hickernell (2002) and Fang et al. (2003a) considered
a discrepancy, called discrete discrepancy or categorical discrepancy, and Zhou
et al. (2008) proposed Lee discrepancy for finite numbers of levels. The discrete
discrepancy is better for two-level designs, and the Lee discrepancy can be used for
multi-level designs.

2.5.1 Discrete Discrepancy

For a fractional factorial design P = {x1, . . . , xn} with n runs and s-factors, define
the function δik(P) as the coincidence number of the i th and kth runs:

δik(P) = δ(xi , xk) =
s∑

j=1

δxi j xk j , (2.5.2)

where δt z denotes the Kronecker delta function, i.e., δt z = 1 if t = z and δt z = 0
otherwise. Note that s − δik(P) is the Hamming distance between the i th and kth
runs, which is defined as the number of positions where these two points differ.

According to (2.4.6), one can define a kernel function to obtain the corre-
sponding discrepancy. The kernel function K of discrete discrepancy (DD) is
defined as

K(t, z) =
s∏

j=1

K j (t j , z j ), (2.5.3)

where

K j (t, z) = aδt z b1−δt z =
{

a if t = z,

b if t �= z,
, − a/(q − 1) < b < a, (2.5.4)

and the condition −a/(q − 1) < b < a ensures that K j is positive definite. There-
fore,K(t, z) = aδ(t,z)bs−δ(t,z). From (2.4.6), it is easy to obtain the expression of DD
as

DD2(P) = −
s∏

j=1

[
a + (q j − 1)b

q j

]
+ 1

n2

n∑
i,k=1

aδik (P)bs−δik (P). (2.5.5)

Then, we have

DD2(P) = −
s∏

j=1

[
a + (q j − 1)b

q j

]
+ as

n
+ 2

n2

∑
1�i<k�n

aδik (P)bs−δik (P). (2.5.6)
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From (2.5.6), it can be seen that one would like to make the coincidence numbers of
different runs, δik(P), as small as possible since a > b. This means that a uniform
design under DD spreads the runs out so that they are as dissimilar as possible.

For symmetrical designs, q1 = · · · = qs = q, the expression of DD in (2.5.6)
reduces to

DD2(P) = −
[

a + (q − 1)b

q

]s

+ as

n
+ 2bs

n2

∑
1�i<k�n

(a

b

)δik (P)

. (2.5.7)

For two-level design P , which appears in most of the fractional factorial design
literature, this discrepancy becomes

DD2(P) = −
(

a + b

2

)s

+ as

n
+ 2bs

n2

∑
1�i<k�n

(a

b

)δik (P)

. (2.5.8)

From (2.5.8), it is shown that the discrete discrepancy of the two-level design P can
be expressed as function of their Hamming distances. Moreover, one can prove that
the CD, WD, and MD defined in Sect. 2.3 can also be expressed as function of their
Hamming distances, which is left as an exercise.

The DD makes no assumptions about the order of the levels, τ1, τ2, . . . , τ j , say.
This means that the discrepancy in (2.5.5) remains invariant under any arbitrary
permutation of the levels, which is not held for the discrepancies defined on Cs such
as CD, WD, and MD. Thus, the discrete discrepancy may be termed a categorical
discrepancy because it makes sense for categorical factors.

Since DD is based on Hamming distances, it may not be effective in constructing
uniformdesignswithmulti-levels. For example, consider the followingU-type design
U (10; 59)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 5 5 3 4 3 3 1 1
5 1 4 3 1 2 5 2 2
5 3 2 1 4 4 2 4 4
3 5 1 2 5 2 2 3 3
3 2 5 4 3 1 1 2 4
4 3 4 5 2 5 1 3 1
4 4 3 1 5 1 4 1 2
2 2 3 5 1 4 3 5 3
2 4 1 4 2 3 5 4 5
1 1 2 2 3 5 4 5 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a uniform design under the DD (see Fang et al. 2002). The WD-value of
this design is 1.5442. Now, suppose we exchange the levels 1 and 5 of the first factor.
TheWD-value of this new design is 1.5417 which is smaller than the original design.
This illustrative example recommends that the discrete discrepancy is not suitable
for constructing uniform designs with multi-level quantitative factors.
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2.5.2 Lee Discrepancy

As we pointed out that the Hamming distance does not take into account the absolute
distance between the levels of a factor, the same is true for the Lee distance, which
has been widely used in coding theory (see Roth 2006, for example). For x, y ∈
Zq = {1, . . . , q}, the Lee distance between x and y is defined by

Lee(x, y) = min{|x − y|, q − |x − y|}.

For example, if q = 4, then Lee(1, 2) = Lee(2, 3) = Lee(3, 4) = Lee(4, 1) = 1
and Lee(1, 3) = Lee(2, 4) = 2. It is clear that Lee distance involves a wrap-around
function.

Then, from Lee distance, we define a kernel function as

K j (t, z) = 1 − min{|t − z|, 1 − |t − z|}, (2.5.9a)

K(t, z) =
s∏

j=1

K j (t j , z j ), for any t, z ∈ X . (2.5.9b)

The discrepancy with this kernel function is called as Lee discrepancy (LD), which
can be regarded as an extension of the discrete discrepancy. The expression of Lee
discrepancy for symmetrical and asymmetrical designs is derived as follows.

First, consider symmetrical designs. Let U(n; qs) be the set of all the U -type
symmetrical designs with n runs, s-factors, and each column equally often takes
values from a set of q integers, labeled as 1, . . . , q. For any design U = (ui j ) ∈
U(n; qs), its experimental domain is {1, . . . , q}s , which comprises all possible level-
combinations of the s-factors. By mapping:

xi j = 2ui j − 1

2q
, i = 1, . . . , n; j = 1, . . . , s, (2.5.10)

the n runs ofU are transformed into n points in [0, 1]s , and denote the corresponding
design as X = (xi j ). Then, the experimental domain becomesX = { 1

2q , . . . ,
2q−1
2q }s .

For convenience, define

αk
i j = min{|xik − x jk |, 1 − |xik − x jk |}, (2.5.11)

then the squared LD for odd q and even q are given by

LD2
odd(U) = 1

n
−
(
3

4
+ 1

4q2

)s

+ 2

n2

n−1∑
i=1

n∑
j=i+1

s∏
k=1

(1 − αk
i j ). (2.5.12a)
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and

LD2
even(U) = 1

n
−
(
3

4

)s

+ 2

n2

n−1∑
i=1

n∑
j=i+1

s∏
k=1

(1 − αk
i j ). (2.5.12b)

respectively. Note that the Lee discrepancy of the design U is calculated through X ,
the induced matrix of U , and MD(U) = MD(X).

Next, consider the expression of LD for U -type asymmetrical designs U (n; q1 ×
· · · × qs) (see Definition 1.3.6). If some qi ’s are equal, we denote the asymmetri-
cal design by U (n; qs1

1 , . . . , qst
t ), where s = ∑t

i=1 si . Denote U(n; q1 × · · · × qs)

and U(n; qs1
1 × · · · × qst

t ) respectively be all of the designs U (n; q1 × · · · × qs) and
U (n; qs1

1 × · · · × qst
t ). Without loss of any generality, we assume that the levels

q1, . . . , qr are odd and qr+1, . . . , qt are even, where 0 � r � t , r = 0 means all of
the levels are even, and r = t means the levels are all odd. For each factor j , by
mapping:

f : l → (2l − 1)/(2qi ), l = 1, . . . , qi , (2.5.13)

the n runs ofU are transformed into n points in [0, 1]s , and denote the corresponding
design as X = (xi j ). Then, the squared Lee discrepancy of U ∈ U(n; qs1

1 , . . . , qst
t )

can be expressed by

LD2(U) = 1

n
−
(
3

4

)∑t
i=r+1 si r∏

i=1

(
3

4
+ 1

4q2
i

)si

+ 2

n2

n−1∑
i=1

n∑
j=i+1

s∏
k=1

(1 − αk
i j ),

(2.5.14)

where αk
i j is defined in (2.5.11).

For distinguishing the difference between multi-levels, Lee distance is better than
Hamming distance, and then Lee discrepancy is better than discrete discrepancy for
multi-level designs. In next section,we provide lower bounds of different discrepancy
measures.

2.6 Lower Bounds of Discrepancies

In the last section, we explained in detail that the discrepancy plays an important
role in measuring the uniformity of designs. In this regard, we introduced several
useful discrepancies. The issue of lower bounds for discrepancies has been much
considered. Many authors have invested much effort in finding some lower bounds
for different discrepancies. It is well known that the lower bounds for discrepancy
can be used as a benchmark not only in searching for uniform designs but also in
helping to validate that some good designs are in fact uniform. A design whose
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discrepancy value achieves a strict lower bound is a uniform design with respect to
this discrepancy. The word ‘strict’ means the lower bound can be reached in some
cases. In this section, we will provide some important results in this direction. For
convenience, we first introduce the results about two-level designs and then those
about high-level and mixed-level designs. We focus on the popular discrepancies,
such as CD, WD, MD, DD, and LD.

For ease in reference, we now briefly describe notations and preliminaries. Let
D(n; q1 × · · · × qs) be a n × s matrix with entries {1, . . . , q j } at the j th columns.
When some q j are equal, we denote it by D(n; qr1

1 × · · · × qrm
m )with r1 + · · · + rm =

s and by D(n; qs) when all q j ’s are equal to q. LetD(n; q1 × · · · × qs) be the set of
all designs D(n; q1 × · · · × qs). Similarly, we have notationsD(qr1

1 × · · · × qrm
m ) and

D(n; qs). In some cases, the lower bounds are obtained under the U-type constraint,
i.e., the design set may be, respectively, changed fromD(n; q1 × · · · × qs),D(qr1

1 ×
· · · × qrm

m ), andD(n; qs) into U(n; q1 × · · · × qs), U(qr1
1 × · · · × qrm

m ) and U(n; qs),
which are defined in Definition 1.3.6.

A typical treatment combination of a design P ∈ D(n; qs) is represented as x =
(x1, x2, . . . , xs), where x j ∈ {0, . . . , q − 1}, 1 � j � s. LetV∗ be the set of all N (=
qs) treatment combinations written in the lexicographic order. For any x ∈ V∗ and
P ∈ D(n; qs), let yP(x) be the number of times the treatment combination x occurs
in P and yP be the N × 1 vector with elements yP(x) arranged in the lexicographic
order.

Let Iq and 1q respectively be the q × q identity matrix and the q × 1 vector with
all elements unity. Define

L(0) = 1T
q , L(1) = Iq , Jq = 1q1T

q . (2.6.1)

The t-fold Kronecker products of 1q , Iq , and Jq will, henceforth, be denoted by
1(t)

q , I (t)
q , and J (t)

q , respectively. Let � be the set of all binary q tuples. For any
u = (u1, u2, . . . , us) ∈ �, define the matrix

G(u) =
s⊗

j=1

L(u j ). (2.6.2)

It is to be noted that G(x) is of order q
∑

j u j × N . Here, the symbol
⊗

represents
the Kronecker product.

For every m columns of P ∈ D(n; qs), (Pl1 ,Pl2 , . . . ,Plm ), define

Bl1...lm (P) =
∑

α1,...,αm

(
n(l1...lm )

α1...αm
− n/qm

)2
,

where n(l1...lm )
α1...αm

is the number of runs in which (Pl1 ,Pl2 , . . . ,Plm ) takes the level com-
bination (α1, . . . ,αm), and the summation is taken over all qm level-combinations. If
Bl1...lm (d) = 0, the subdesign formed by the columns (dl1 , dl2 , . . . , dlm ) is an orthog-
onal array of strength m. Furthermore, define
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Bm(P) =
∑

1�l1<···<lm�s

Bl1...lm (P)/

(
s

m

)
(2.6.3)

for 1 � m � s. It is evident that Bm(P) = 0 if and only ifP ∈ D(n; qs) is an orthogo-
nal arrayof strengthm. Consequently, Bm(P)measures the closeness to orthogonality
of strength m of P .

2.6.1 Lower Bounds of the Centered L2-Discrepancy

The work of Fang and Mukerjee (2000) on regular fractions with two levels was
a first attempt toward providing a lower bound for CD. Later, many works have
been studied along this direction. For regular two-level U-type designs, Fang and
Mukerjee (2000) gave the following lower bound.

Theorem 2.6.1 Let P be any fraction, involving n = 2s−k runs, of a 2s factorial.
Then, CD2(P) � L B(1)

C D, where

L B(1)
C D =

(
13

12

)s

− 2

(
35

32

)s

+
s−k∑
r=0

(
s

r

)
1

8r
+ 1

n

s∑
r=s−k+1

1

4r
.

Proof Define B0 = 1
4 I2 + J2, and Bs is the s-fold Kronecker products of B0. It is

easy to check that Bs = ∑
u∈�

1
4
∑

u j
G(u)T G(u). Therefore,

yT
P Bs yP =

∑
u∈�

1

4
∑

u j
yT
PG(u)T G(u) yP . (2.6.4)

For every u ∈ �, the vector yT
P is of the order 2

∑
u j × 1; furthermore, the elements of

yT
P are integers with sum ns−k . Therefore, yT

PG(u)T G(u) yP � n2/2
∑

u j if
∑

u j �
s − k, and yT

PG(u)T G(u) yP � n if
∑

u j > s − k. By (2.6.4), we have

yT
P Bs yP � n2

[
s−k∑
r=0

(
s

r

)
1

8r
+ 1

n

s∑
r=s−k+1

1

4r

]
. (2.6.5)

Note that

CD2(P) =
(
13

12

)s

− 2

(
35

32

)s

+ 1

n2
yT
P Bs yP . (2.6.6)

The proof completes from (2.6.5) and (2.6.6).

Observe that the lower bound is attained in Theorem 2.6.1 if and only if the 2s−k

runs in P form a two-symbol orthogonal array of strength s − k. Since such an
orthogonal array is often nonexistent, the lower bound is also often non-attainable.
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Fang et al. (2002) extended the result in Theorem 2.6.1 to non-regular two-level
fractional factorials and gave a lower bound of CD, which can be applied to both
regular and non-regular fractions.

Theorem 2.6.2 Let P ∈ D(n; 2s), then CD2(P) � L B(2)
C D, where

L B(2)
C D =

(
13

12

)s

− 2

(
35

32

)s

+ 1

n2

s∑
r=0

(
s

r

)
1

4r
[n fr + zr ( fr + 1)], (2.6.7)

fr is the largest integer contained in n/2r and zr = n − 2r fr . In particular, if n =
2s−k (1 � k � s − 1), then CD2(P) � L B(1)

C D.

Proof Let �r be the set of � consisting of those binary s-tuples which have exactly
r elements of u unity. From (2.6.4), we have

yT
P Bs yP =

s∑
r=0

1

4i

{∑
u∈�r

yT
PG(u)T G(u) yP

}
. (2.6.8)

Note that for every u ∈ �r , the elements of the order 2r × 1 vector yT
P are nonneg-

ative integers with sum n. Hence,

yT
PG(u)T G(u) yP � f 2r (2r − zr ) + ( fr + 1)2zr = n fr + zr ( fr + 1),

and L B(2)
C D follows from (2.6.6) and (2.6.8).

Moreover, if n = 2s−k , then fr = n/2r , zr = 0 for r � s − k and fr = 0, zr = n
for r > s − k. From (2.6.7), we know that CD2(P) � L B(1)

C D holds. The proof is
complete.

In order to improve the result in Theorem 2.6.2, Fang et al. (2003b) found the CD-
value of P can be reexpressed from two aspects: One is related to the distribution of
all the level-combinations among columns of P , and the other is based on Hamming
distances between any two runs of P . These new representations allow to obtain two
kinds of lower bounds for U-type designs. We state them as the following theorem.

Theorem 2.6.3 Let P ∈ U(n; 2s), then CD2(P) � max{L B(c)
C D, L B(r)

C D}, where

L B(c)
C D =

(
13

12

)s

− 2

(
35

32

)s

+
(
9

8

)s

+ 1

n2

s∑
r=1

1

4r

(
s

r

)
sn,r,2

(
1 − sn,r,2

2r

)
(2.6.9)

and

L B(r)
C D =

(
13

12

)s

− 2

(
35

32

)s

+ 1

n

(
5

4

)s

+ n − 1

n

(
5

4

)λ

, (2.6.10)

where sn,r,2 is the remainder at division of n by 2r (n mod 2r ) and λ = s(n −
2)/[2(n − 1)].
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Proof Following Fang et al. (2003b), we know

CD2(P) =
(
13

12

)s

− 2

(
35

32

)s

+
(
9

8

)s

+ 1

n2

s∑
r=1

1

4r

(
s

r

)
Br (P) (2.6.11)

=
(
13

12

)s

− 2

(
35

32

)s

+ 1

n2

s∑
i=1

s∑
j=1

(
5

4

)δi j (P)

. (2.6.12)

Let n = t2m + sn,r,2, where t is a nonnegative integer. For every r columns
(Pl1 ,Pl2 , . . . ,Plr ) of P ∈ D(n; qs), according to the definition of Bl1...lr (P), we
can see that Bl1...lr (P) is minimized if there are sn,r,2 level-combinations that occur
t + 1 times, while the other 2r − sn,r,2 level-combinations that occur t times in the
n rows. The minimum is

sn,r,2

(
1 − sn,r,2

2r

)2 + (2r − sn,r,2)
(
− sn,r,2

2r

)2 = sn,r,2

(
1 − sn,r,2

2r

)
.

Thus, Br (P) � sn,r,2
(
1 − sn,r,2

2r

)
. By (2.6.11), we obtain the lower bound L B(c)

C D in
(2.6.9).

To prove the lower bound L B(r)
C D , we define a random variable Y which is uni-

formly distributed on the set {δi j (P), 1 � i �= j � n}. Define a convex function
f (y) = (

5
4

)y
, and then we have E(Y ) = λ. Thus, by Jenssen’s inequality, we obtain

E[ f (Y )] = 1

n(n − 1)

∑
1�i �= j�n

(
5

4

)δi j (P)

� f [E(Y )] =
(
5

4

)λ

.

Noting that δi i (P) = s, we obtain the lower bound L B(r)
C D in (2.6.10) from (2.6.12).

The proof is complete.

Note that in order to attend the lower bound in (2.6.10), λ must be an integer and
all Hamming distances between any two distinct runs ofP are equal. However, many
two-level designs do not meet these requirements. Hence, Chatterjee et al. (2012a)
gave the following improved lower bound for U-type designs.

Theorem 2.6.4 Let P ∈ U(n; 2s), then CD2(P) � L B(3)
C D, where

L B(3)
C D =

(
13

12

)s

− 2

(
35

32

)s

+ 1

n

(
5

4

)s

+ 1

n2

(
5

4

)w (
p + 5

4
q

)
, (2.6.13)

p + q = n(n − 1), pw + q(w + 1) = n(n − 2)s/2, w is the largest integer con-
tained in s(n − 2)/[2(n − 1)].
Lemma 2.6.1 (Chatterjee et al. 2012a) For any U-type design P ∈ U(n; 2s) and
any integer l, we have
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n∑
i=1

n∑
j (�=i)=1

[δi j (P)]l � pwl + q(w + 1)l . (2.6.14)

Proof of Theorem 2.6.4 From (2.6.12), we get

CD2(P) =
(
13

12

)s

− 2

(
35

32

)s

+ 1

n

(
5

4

)s

+ 1

n2

n∑
i=1

n∑
j (�=i)=1

eδi j (P)

=
(
13

12

)s

− 2

(
35

32

)s

+ 1

n

(
5

4

)m

+ 1

n2

n∑
i=1

n∑
j (�=i)=1

∞∑
l=0

αl[δi j (P)]l

l! ,

where α = ln(5/4). Now, from Lemma 2.6.1, we get

CD2(P) �
(
13

12

)s

− 2

(
35

32

)s

+ 1

n

(
4

5

)s

+ p

n2

∞∑
l=0

αlwl

l! + q

n2

∞∑
l=0

αl(w + 1)l

l!

=
(
13

12

)s

− 2

(
35

32

)s

+ 1

n

(
5

4

)s

+ p

n2
eαw + q

n2
eα(w+1)

=
(
13

12

)s

− 2

(
35

32

)s

+ 1

n

(
5

4

)s

+ p

n2

(
5

4

)w

+ q

n2

(
5

4

)w+1

.

The proof is finished.

Figure 2.9 displays the difference among L B(c)
C D , L B(r)

C D , and L B(3)
C D . It is noted

that none of them can dominate others for all combination of the number of runs
n and of factors s. Generally, L B(3)

C D is better than others for small n and large s,
which means L B(3)

C D is more suitable for evaluating the uniformity of saturated or
supersaturated designs. For large n and small s, L B(c)

C D is better than others.
For high-level design, there is some difficulty to obtain the lower bound of CD.

This is because we need to check the roots of some function and make sure that the
root is unique. Fang et al. (2006b) found some lower bounds of CD forP ∈ D(n; 3s)

andP ∈ D(n; 4s), respectively. Elsawah and Qin (2014) improved the result in Fang
et al. (2006b) and gave a sharper lower bound of CD for P ∈ D(n; 4s). The reader
can find the details in their papers.

For mixed-level designs, Chatterjee et al. (2005) initiated a research and reported
some new lower bounds for CD for a set of asymmetric fractional factorialsD(n; p ×
2s), where p � 3.

2.6.2 Lower Bounds of the Wrap-around L2-Discrepancy

For two-level designs, Fang et al. (2002) initiated a research and obtained the follow-
ing lower bound of WD, which can be applied to regular and non-regular fractions.
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Fig. 2.9 Comparison among L B(c)
C D , L B(r)

C D , and L B(3)
C D

Theorem 2.6.5 Let P ∈ D(n; 2s), then WD2(P) � L B(21)
W D, where

L B(21)
W D = −

(
4

3

)s

+ 1

n2

(
5

4

)s s∑
r=0

(
s

r

)
1

5r
[n fr + zr ( fr + 1)], (2.6.15)

fr and zr are defined in Theorem 2.6.2. In particular, if n = 2s−k (1 � k � s − 1),
then WD2(P) � L B(22)

W D, where

L B(22)
W D = −

(
4

3

)s

+
(
5

4

)s s−k∑
r=0

(
s

r

)
1

10r
+ 1

n

(
5

4

)s s∑
r=s−k+1

(
s

r

)
1

5r
.

Proof Note that

WD2(P) = −
(
4

3

)s

+ 1

n2
yT
P Ds yP , (2.6.16)

where Ds is the s-fold Kronecker products of 1
4 I2 + 5

4 J2. Being along lines of the

proof of Theorem 2.6.2, we can obtain the lower bound L B(21)
W D .

The lower bounds in Theorem 2.6.5 are often non-attainable and, therefore, con-
servative. In order to improve the lower bounds in Theorem 2.6.5, Fang et al. (2003b)
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Fig. 2.10 Comparison among L B(2c)
W D , L B(2r)

W D , and L B(23)
W D

and Chatterjee et al. (2012a) gave new lower bounds of WD for U-type designs,
respectively. We summarize them as the following theorem.

Theorem 2.6.6 Let P ∈ U(n; 2s), then

WD2(P) � max
{

L B(2c)
W D, L B(2r)

W D, L B(23)
W D

}
,

where

L B(2c)
W D =

(
11

8

)s

−
(
4

3

)s

+ 1

n2

(
5

4

)s s∑
r=1

1

5r

(
s

r

)
sn,r,2

(
1 − sn,r,2

2r

)
,

L B(2r)
W D = −

(
4

3

)s

+ 1

n

(
3

2

)s

+ n − 1

n

(
5

4

)s (6

5

)λ

, (2.6.17)

and

L B(23)
W D = −

(
4

3

)s

+ 1

n

(
3

2

)s

+ 1

n2

(
5

4

)s
[

p

(
6

5

)w

+ q

(
6

5

)w+1
]

. (2.6.18)
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Here, sn,r,2 and λ are defined in Theorem 2.6.3, and p, q, and w are defined in
Theorem 2.6.4.

Proof Following Fang et al. (2003b), we know

WD2(P) =
(
11

8

)s

−
(
4

3

)s

+ 1

n2

s∑
r=1

1

5r

(
s

r

)
Br (P) (2.6.19)

= −
(
4

3

)s

+ 1

n2

(
5

4

)s s∑
i=1

s∑
j=1

(
6

5

)δi j (P)

. (2.6.20)

Following similar arguments in the proofs of Theorems 2.6.3 and 2.6.4, we can obtain
the lower bounds L B(2c)

W D , L B(2r)
W D , and L B(23)

W D . The theorem is proved.

Figure 2.10 shows that L B(23)
W D is better than L B(2c)

W D and L B(2r)
W D for small n and

large s and L B(2c)
W D is better than others for large n and small s.

For three-level designs, Fang et al. (2002) gave the following lower bound ofWD.

Theorem 2.6.7 Let P ∈ D(n; 3s), then WD2(P) � L B(31)
W D, where

L B(31)
W D = −

(
4

3

)s

+ 1

n2

(
23

18

)s s∑
r=0

(
s

r

)(
4

23

)r

[ngr + zr (gr + 1)], (2.6.21)

gr is the largest integer contained in n/3r and tr = n − 3r fr . In particular, if n = 3s−k

(1 � k � s − 1), then WD2(P) � L B(32)
W D, where

L B(32)
W D = −

(
4

3

)s

+
(
23

18

)s s−k∑
r=0

(
s

r

)(
4

69

)r

+ 1

n

(
23

18

)s s∑
r=s−k+1

(
s

r

)(
4

23

)r

.

Proof Note that

WD2(P) = −
(
4

3

)s

+ 1

n2
yT
P Qs yP , (2.6.22)

where Qs is the s-fold Kronecker products of 2
9 I3 + 23

18 J3. Being along lines of the
proof of Theorem 2.6.2, we can complete the proof.

Similarly, the lower bounds in Theorem 2.6.7 are often non-attainable and, there-
fore, conservative. In order to improve the lower bounds in Theorem 2.6.7, Fang et al.
(2003b) and Zhang et al. (2015) gave new lower bounds of WD for U-type designs,
respectively. We summarize them as the following theorem.

Theorem 2.6.8 Let P ∈ U(n; 3s) and �3 = − (
4
3

)s + 1
n

(
3
2

)s
, then

WD2(P) � max
{

L B(3c)
W D, L B(3r)

W D, L B(33)
W D

}
,
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where

L B(3c)
W D = −

(
4

3

)s

+
(
73

54

)s

+ 1

n2

(
23

18

)s s∑
r=1

(
4

23

)r (s

r

)
sn,r,3

(
1 − sn,r,3

3r

)
,

L B(3r)
W D = �3 + n − 1

n

(
23

18

)s (27

23

)λ

(2.6.23)

and

L B(33)
W D = �3 + 1

n2

(
23

18

)s
[

p

(
27

23

)w

+ q

(
27

23

)w+1
]

. (2.6.24)

Here, sn,r,3 is the remainder at division of n by 3r (n mod 3r ), λ = s(n − 3)/[3(n −
1)], p + q = n(n − 1), pw + q(w + 1) = n(n − 3)s/3, and w is the largest integer
contained in λ.

Proof From Fang et al. (2003b), we know

WD2(P) = −
(
4

3

)s

+
(
73

54

)s

+ 1

n2

(
23

18

)s s∑
r=1

(
4

23

)r (s

r

)
Br (P) (2.6.25)

= −
(
4

3

)s

+ 1

n2

(
23

18

)s s∑
i=1

s∑
j=1

(
27

23

)δi j (P)

. (2.6.26)

Following similar arguments in the proofs of Theorems 2.6.3 and 2.6.4, we can obtain
the lower bounds L B(3c)

W D , L B(3r)
W D , and L B(33)

W D . The theorem is proved.

Figure 2.11 also shows that L B(33)
W D is better than L B(3c)

W D and L B(3r)
W D for small n

and large s and L B(3c)
W D is better than others for large n and small s.

For q-level designs, where q is a positive integer, Fang et al. (2005) proposed a
lower bound of WD for U-type designs. From the analytical expression of equation
(2.3.6), it is easy to see that WD2(P) is only a function of products of αk

i j ≡ |xil −
x jl |(1 − |xil − x jl |) (i, j = 1, . . . , n, i �= j and k = 1, . . . , s). For a U-type design
P ∈ D(n; qs), when q is even,α-values can only take q/2 + 1 possible values, i.e., 0,
2(2q − 2)/(4q2), 4(2q − 4)/(4q2), . . . , q2/(4q2); when q is odd,α-values can only
take (q + 1)/2 possible values, i.e., 0, 2(2q − 2)/(4q2), 4(2q − 4)/(4q2), . . . , (q −
1)(q + 1)/(4q2). Table2.3 gives the distribution of α-values over the set {αk

i j : 1 �
i < j � n, 1 � k � s} for both even and odd q.

Theorem 2.6.9 Let P ∈ U(n; qs), then when q is even, WD2(P) � L B(even)
W D , where

L B(even)
W D = �3 + n − 1

n

(
3

2

) s(n−q)

q(n−1)
(
5

4

) sn
q(n−1)

q/2−1∏
i=1

[
3

2
− 2i(2q − 2i)

4q2

] 2sn
q(n−1)

;
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Fig. 2.11 Comparison among L B(3c)
W D , L B(3r)

W D , and L B(33)
W D

when q is odd, WD2(P) � L B(odd)
W D , where

L B(odd)
W D = �3 + n − 1

n

(
3

2

) s(n−q)

q(n−1)
(
5

4

) sn
q(n−1)

(q−1)/2∏
i=1

[
3

2
− 2i(2q − 2i)

q2

] 2sn
q(n−1)

.

Proof ByEq. (2.3.6), to minimizeWD2(P) for a given designP ∈ U(n; qs) is equiv-
alent to minimizing

∑
1�i �= j�n

∏s
k=1(

3
2 − αk

i j ) with respect to αk
i j . From Table 2.3,

we know that for given (n, q, s), the distributions of α-values are the same, so∏
1�i �= j�n

∏s
k=1(

3
2 − αk

i j ) is a constant and
3
2 − αk

i j > 0. Based on the geometric and
arithmetic mean inequality, [W D(d(γ))]2 arrives at its minimum if all

∏s
lk1(

3
2 − αk

i j )

are the same for 1 � i �= j � n. The expression of the lower bound of [W D(d(γ))]2
is straightforward according to Table2.3, which completes the proof.

When q = 2, 3, the lower bounds in Theorem 2.6.9 are equivalent to L B(2r)
W D in

(2.6.17) and L B(3r)
W D in (2.6.23), respectively.

For mixed-level designs, Chatterjee et al. (2005) initiated a research on the deriva-
tion of lower bounds of WD for factorials with two and three mixed levels. Note that
optimal asymmetrical factorials with two and three mixed levels are most demanded
in practice, so an accurate lower bound for WD-value of this kind of asymmetrical
factorials is valuable.
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Table 2.3 Distributions of
α-values of a P ∈ D(n; qs)

q even q odd

α-values Number α-values Number

0 sn(n−q)
2q 0 sn(n−q)

2q
2(2q−2)

4q2
sn2
q

2(2q−2)
4q2

sn2
q

· · · · · · · · · · · ·
(q−2)(q+2)

4q2
sn2
q

(q−3)(q+3))
4q2

sn2
q

q2

4q2
sn(n−q)

2q
(q−1)(q+1)

4q2
sn(n−q)

2q

Theorem 2.6.10 Let P ∈ D(n; 2s1 × 3s2), then

WD2(P) � L B(1)
W D,

where

L B(1)
W D = −

(
4

3

)s1+s2

+ 1

n2

(
5

4

)s1 (23

18

)s2 s1∑
i=0

s2∑
j=0

(
s1
i

)(
s2
j

)(
1

5

)i ( 4

23

) j

θi j ,

(2.6.27)

θi j = ngi j + li j (gi j + 1), gi j is the largest integer contained in n/(2i3 j ), li j = n −
hi jgi j , 0 � i � s1, 0 � j � s2.

The proof of Theorem 2.6.10 is similar to Theorem 2.6.2. When s1 = 0 or s2 = 0,
the lower bound in Theorem 2.6.10 is equivalent to L B(31)

W D in (2.6.21) or L B(21)
W D in

(2.6.15).
For general mixed-level U-type designs, Zhou and Ning (2008) obtained some

lower bounds of WD for U-type design P ∈ U(n; qs1
1 × · · · × qsm

m ). Without loss of
generality, we assume that the numbers of levels q1, . . . , qt are odd and qt+1, . . . , qm

are even, where 0 � t � s, t = 0 means all of the levels are even, and t = s means
the levels are all odd.

Theorem 2.6.11 Let P ∈ U(n; qs1
1 × · · · × qsm

m ), s = s1 + · · · + sm, and �4 =
− (

4
3

)s + 1
n

(
3
2

)s
, then

WD2(P) � L B(3)
W D,

where

L B(3)
W D = �4 + n − 1

n

(
3

2

)∑m
r=1

sr (n−qr )

qr (n−1)
(
5

4

) n
n−1

∑m
r=t+1

sr
qr

×
t∏

r=1

(qr −1)/2∏
i=1

[
3

2
− 2i(2qr − 2i)

4q2
r

] 2sr n
qr (n−1)
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×
m∏

r=t+1

qr /2−1∏
i=1

[
3

2
− 2i(2qr − 2i)

4q2
r

] 2sr n
qr (n−1)

.

The proof of Theorem 2.6.11 is similar to Theorem 2.6.9.When q1 = · · · = qm =
q, the lower bound in Theorem 2.6.11 is equivalent to the lower bound in Theorem
2.6.9.

2.6.3 Lower Bounds of Mixture Discrepancy

For two-level designs, Zhou et al. (2013) proposed a lower bound of MD as in the
following theorem.

Theorem 2.6.12 Let P ∈ U(n; 2s), then MD2(P) � L B(2:1)
M D , where

L B(2:1)
M D =

(
19

12

)s

− 2

(
305

192

)s

+
(
39

24

)s

+ 1

n2

(
3

2

)s s∑
r=1

(
s

r

)
sn,r,2

6r

(
1 − sn,r,2

2r

)

where sn,r,2 is defined in Theorem 2.6.3.

Proof From Zhou et al. (2013), we know

MD2(P) =
(
19

12

)s

− 2

(
305

192

)s

+
(
39

24

)s

+ 1

n2

(
3

2

)s s∑
r=1

1

6r

(
s

r

)
Br (P).

Following similar arguments in the proof of Theorem 2.6.3, we can obtain the lower
bound L B(2:1)

M D . The theorem is proved.

In order to reach the lower bound L B(2:1)
M D , a two-level orthogonal design P is

required. Clearly, this requirement does not valid in more general situations. More-
over, even when the two-level design P is orthogonal, the lower bound L B(2:1)

M D may
not be tight. Therefore, Ke et al. (2015) gave the following improved lower bound.

Theorem 2.6.13 Let P ∈ U(n; 2s) and λ be defined in Theorem 2.6.3. When λ is
an integer, then MD2(P) � L B(2:2)

M D , where

L B(2:2)
M D =

(
19

12

)s

− 2

(
305

192

)s

+ 1

n

(
7

4

)s

+ n

n − 1

(
3

2

)s (7

6

)λ

.

Proof From Ke et al. (2015), we know

MD2(P) =
(
19

12

)s

− 2

(
305

192

)s

+
(
39

24

)s

+ 1

n2

(
3

2

)s s∑
i=1

s∑
j=1

(
7

6

)δi j (P)

.

(2.6.28)
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Following similar arguments in the proof of Theorem 2.6.3, we can obtain the lower
bound L B(2:1)

M D . The theorem is proved.

The lower bound L B(2:2)
M D can be achieved if and only if δik(P) = λ, for all i �= k,

where δik(P) appears in (2.5.2). When λ is not an integer, the lower bound L B(2:2)
M D is

not achievable. Elsawah and Qin (2015) proposed the following lower bound, which
is more useful and sharper than L B(2:1)

M D and L B(2:2)
M D .

Theorem 2.6.14 Let P ∈ U(n; 2s), then MD2(P) � L B(2:3)
M D , where

L B(2:3)
M D =

(
19

12

)s

− 2

(
305

192

)s

+ 1

n

(
7

4

)s

+ 1

n2

(
3

2

)s (7

6

)w (
p + 7

6
q

)
,

where p, q, and w are defined in Theorem 2.6.4.

Lemma 2.6.2 (Elsawah and Qin 2015) Suppose
∑n

i=1 zi = c and zi ’s are nonneg-
ative, and then for any integer l, we have

n∑
i=1

l zi � lw(α + βl),

where α and β are integers such that α + β = n, αw + β(w + 1) = c and w is the
largest integer contained in c/n.

Proof of Theorem 2.6.14 Note that for any design P ∈ D(n; 2s),

n∑
i=1

n∑
j (�=i)=1

δi j (P) = ns(n − 2)/2

is a constant. From Lemma 2.6.2, it is straightforward to show

s∑
i=1

s∑
j (�=i)=1

(
7

6

)δi j (P)

�
(
7

6

)w (
p + 7

6
q

)
. (2.6.29)

Combining (2.6.28) and (2.6.28), the proof is completed.

Figure 2.11 shows that L B(2:3)
M D is better than L B(2:1)

M D for small n and large s and,
meanwhile, better than L B(2:2)

M D for large n and small s, and L B(2:2)
M D is better than

L B(2:1)
M D for small n and large s (Fig. 2.12).
For a three-level design P ∈ D(n; 3s), let ϕ be the largest integer contained in

2s/3, nϕ = (ϕ + 1)n − 2ns/3 and ϕ0 = ln( 2
3n )+sln( 9

8 )

ln( 42
41 )

. Ke et al. (2015) obtained the

following lower bound of MD2(P) for U-type design P ∈ U(n; 3s).
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Fig. 2.12 Comparison among L B(2:1)
M D , L B(2:2)

M D , and L B(2:3)
M D

Theorem 2.6.15 For any P ∈ U(n; 3s), if ϕ0 � ϕ, then MD2(P) � L B(3:1)
M D , where

L B(3:1)
M D =

(
19

12

)s

− 2

n

(
5

3

)s
[

nϕ

(
14

15

)ϕ

+ (n − nϕ)

(
14

15

)ϕ+1
]

+ 1

n2

(
15

8

)s
[

nϕ

(
41

45

)ϕ

+ (n − nϕ)

(
41

45

)ϕ+1
]

+ n − 1

n

(
15

8

)s

êδ

and

δ̂ = 2s(n − 3)

9(n − 1)
ln

(
41

45

)
+ 4sn

9(n − 1)
ln

(
23

27

)
+ 2sn

9(n − 1)
ln

(
103

135

)
.

Proof Define γi = ∣∣{i : xik �= 1
2 }
∣∣, γ(1)

i j = ∣∣{(i, j) : xik = x jk = 1
6 or 5

6 }
∣∣, γ(2)

i j =∣∣{(i, j) : (xik, x jk) ∈ {( 16 , 1
2 ), (

1
2 ,

5
6 )}}

∣∣, γ(3)
i j = ∣∣{(i, j) : (xik, x jk) = ( 16 ,

5
6 )}

∣∣. From
(2.3.13), we have

MD2(P) =
(
19

12

)s

− 2

n

(
5

3

)s n∑
i=1

(
14

15

)γi

+ 1

n2

(
15

8

)s n∑
i=1

(
41

45

)γi

+ 1

n2

(
15

8

)s s∑
i=1

s∑
j (�=i)=1

(
41

45

)γ(1)
i j
(
23

27

)γ(2)
i j
(
103

135

)γ(3)
i j

. (2.6.30)
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Define g(γ1, . . . , γn) = − 2
n

(
5
3

)s ∑n
i=1

(
14
15

)γi + 1
n2

(
15
8

)s ∑n
i=1

(
41
45

)γi . It is easy to
check that if ϕ0 � ϕ, then the lower bound of g(γ1, . . . , γn) can be achieved, and

g(γ1, . . . , γn) = � − 2

n

(
5

3

)s
[

nϕ

(
14

15

)ϕ

+ (n − nϕ)

(
14

15

)ϕ+1
]

+ 1

n2

(
15

8

)s
[

nϕ

(
41

45

)ϕ

+ (n − nϕ)

(
41

45

)ϕ+1
]

. (2.6.31)

Similar to the proof of L B(r)
C D in (2.6.3), we can obtain

s∑
i=1

s∑
j (�=i)=1

(
41

45

)γ(1)
i j
(
23

27

)γ(2)
i j
(
103

135

)γ(3)
i j

� n(n − 1)êδ. (2.6.32)

Combining (2.6.30), (2.6.31), and (2.6.32), the proof is completed.
For any designP ∈ D(n; 3s), define f3(x) = 4

41

(
41
24

)s ( 45
41

)x − n
7

(
14
9

)s ( 15
14

)x
, n =

3t , a1 = ln( 158 ) + 2ln( 4124 ), a2 = ln( 10372 ) + 2ln( 11572 ), ζ1 = st (t − 1), ζ2 = 2st2, ψ
is the largest integer contained in s/3, p3 + q3 = n, p3ψ + q3(ψ + 1) = st , and
ζ = a1ζ1 + a2ζ2. Elsawah and Qin (2015) gave the following another lower bound
of MD2(P) for U-type design P ∈ U(n; 3s).

Theorem 2.6.16 For any P ∈ U(n; 3s), if f3(ψ) � f3(0), then MD2(P) � L B(3:2)
M D ,

where

L B(3:2)
M D =

(
19

12

)s

− 2

n

(
14

9

)s (15

14

)ψ (
p3 + 15

14
q3

)

+ 1

n2

(
41

24

)s (45

41

)ψ (
p3 + 45

41
q3

)
+ n − 1

n
e

ζ
n(n−1) .

Proof Define 
i j = ∣∣{(i, j) : (xik, x jk) ∈ {( 16 , 1
2 ), (

1
2 ,

5
6 ), (

1
2 ,

1
6 ), (

5
6 ,

1
2 )}}

∣∣, τi j =∣∣{(i, j) : xik = x jk) �= 1
2 }
∣∣, σi j = ∣∣{(i, j) : (xik, x jk) ∈ {( 16 , 5

6 ), (
5
6 ,

1
6 )}}

∣∣, λi j

= ∣∣{(i, j) : xik = x jk) = 1
2 }
∣∣. From (2.3.13), we have

MD2(P) =
(
19

12

)s

− 2

n

(
14

9

)s n∑
i=1

(
15

14

)λi i

+ 1

n2

(
41

24

)s n∑
i=1

(
45

41

)λi i

+ 1

n2

s∑
i=1

s∑
j (�=i)=1

(
15

8

)λi j
(
41

24

)τi j
(
115

72

)
i j
(
103

72

)σi j

. (2.6.33)

Following similar arguments in the proof of Theorem 2.6.15, the theorem is proved.

Note that the lower bound in Theorem 2.6.16 is sharper than the lower bound
in Theorem 2.6.15. When s/3 is an integer, i.e., h = s/3, then lower bound L B(3:2)

M D
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becomes
(
19
12

)s − 2
(
14
9

)s ( 15
14

)h + 1
n

(
41
24

)s ( 45
41

)h + n−1
n e

ζ
n(n−1) . Figure 2.11 shows that

L B(3:2)
M D is better than L B(3:1)

M D for large s.
Similarly, for any design P ∈ D(n; 4s), define f4(x) = − 144n

1181

(
1181
768

)s ( 1253
1181

)x +
2
27

(
27
16

)s ( 29
27

)x
, n = 4θ, b1 = ln( 5332 ) + ln( 4532 ) + 2ln( 32 ) + 2ln( 5132 ), b2 = ln( 2716 ) +

2ln( 2916 ), η1 = 2sθ2, η2 = 2sθ(θ − 1), ω is the largest integer contained in s/2, p4 +
q4 = n, p4ω + q4(ω + 1) = 2sθ, and η = b1η1 + b2η2. Elsawah andQin (2015) pro-
posed the following lower bound of MD2(P) for P ∈ U(n; 4s).

Theorem 2.6.17 For any U-type design P ∈ U(n; 4s) , if f4(ω) � f4(0), then
MD2(P) � L B(4:1)

M D , where

L B(4:1)
M D =

(
19

12

)s

− 2

n

(
1181

768

)s (1253

1181

)ω (
p4 + 1253

1181
q4

)

+ 1

n2

(
27

16

)s (29

27

)ω (
p4 + 29

27
q4

)
+ n − 1

n
e

η
n(n−1) .

The proof is similar to that of Theorems 2.6.16 and 2.6.17. For details, ones can
refer to Elsawah and Qin (2015). In particular, when s/2 is an integer, i.e., ω =
s/2, then lower bound L B(4:1)

M D becomes
(
19
12

)s − 2
(
1181
768

)s ( 1253
1181

)ω + 1
n

(
27
16

)s ( 29
27

)ω +
n−1

n e
η

n(n−1) .

For any asymmetrical designP ∈ D(n; 2s1 × 3s2), let a3 = ln
(
7
6

)
, ζ∗

1 = 1
9 s2n(n

− 3), ζ∗
2 = 2

9 s2n2, ζ∗
3 = 1

2 s1n(n − 2),μ be the largest integer contained in s2/3, p5 +
q5 = n, p5μ + q5(μ + 1) = ns2

3 and ζ∗ = a1ζ
∗
1 + a2ζ

∗
2 + a3ζ

∗
3 , where a1 and a2 are

defined in Theorem 2.6.16. Define f23(x) = 4
41

(
7
4

)s1 ( 41
24

)s2 ( 45
41

)x − n
7

(
305
192

)s1 ( 14
9

)s2(
15
14

)x
. Recently, Elsawah and Qin (2016) obtained the following lower bound of

MD2(P) for P ∈ U(n; 2s1 × 3s2).

Theorem 2.6.18 For any U-type design P ∈ U(n; 2s1 × 3s2), if f23(μ) � f23(0),
then MD2(P) � L B(23:1)

M D , where

L B(23:1)
M D =

(
19

12

)s1+s2

− 2

n

(
305

192

)s1 (14

9

)s2 (15

14

)μ (
p5 + 15

14
q5

)

+ 1

n2

(
7

4

)s1 (41

24

)s2 (45

41

)μ (
p5 + 45

41
q5

)
+ n − 1

n

(
3

2

)s1

e
ζ∗

n(n−1) .

The proof is similar to that of Theorem 2.6.16. For details, ones can refer
to Elsawah and Qin (2016). When s2/3 is an integer, i.e., μ = s2/3, then lower
bound L B(23:1)

M D becomes
(
19
12

)s1+s2 − 2
(
305
192

)s1 ( 14
9

)s2 ( 15
14

)μ + 1
n

(
7
4

)s1 ( 41
24

)s2 ( 45
41

)μ +
n−1

n

(
3
2

)s1 e
ζ∗

n(n−1) .When s1 = 0 or s2 = 0, the lower bound in Theorem 2.6.18 is equiv-

alent to L B(3:2)
M D in Theorem 2.6.16 or L B(2:3)

M D in Theorem 2.6.14.
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2.6.4 Lower Bounds of Discrete Discrepancy

For discrete discrepancy, Fang et al. (2003a) firstly gave the following lower bound
of DD(P) for U-type design P ∈ U(n; q1 × · · · × qs).

Theorem 2.6.19 Let P ∈ U(n; q1 × · · · × qs), then

DD2(P) � L B(1)
DD,

where

L B(1)
DD = −

s∏
j=1

[
a + (q j − 1)b

q j

]
+ as

n
+ n − 1

n
bs
(a

b

)λ

,

and the lower bound L B(1)
DD can be achieved if and only if λ = ∑s

j=1(n/q j − 1)/(n −
1) is a positive integer and δik(P) = λ, for all i �= k.

Proof It is easy to check that for P ∈ D(n; q1 × · · · × qs),
∑n

i=1

∑n
j=1 δi j (P) =∑s

i=1
n2

qi
, i.e.,

∑
1�i< j�n δi j (P) = ∑s

i=1
n2

qi
− ns is a constant. Let P∗ ∈ D(n; q1 ×

· · · × qs), and δi j (P∗) = λ for i �= j . In view of theory ofmajorization, we know that
(δ12(P), . . . , δ1n(P), δ23(P), . . . , δ2n(P), . . . , δ(n−1)n(P)) is majorized by
(δ12(P∗), . . . , δ1n(P∗), δ23(P∗), . . . , δ2n(P∗), . . . , δ(n−1)n(P∗)). Noting that
DD2(P) in (2.5.6) is a Schur-concave function of the vector (δ12(P), . . . , δ1n(P),

δ23(P), . . . , δ2n(P), . . . , δ(n−1)n(P)), we haveDD2(P) � [DD(P∗)]2, i.e., DD2(P)

� L B(1)
DD .

Whenλ = ∑s
j=1(n/q j − 1)/(n − 1) is not a positive integer,Qin andFang (2004)

obtained the following lower bound of L D2(P) and gave a necessary and sufficient
condition for a design P ∈ U(n; q1 × · · · × qs) reaching to this lower bound.

Theorem 2.6.20 Let P ∈ U(n; q1 × · · · × qs), then

DD2(P) � L B(2)
DD,

where

L B(2)
DD = −

s∏
j=1

[
a + (q j − 1)b

q j

]
+ as

n
+ (n − 1)[b(γ + 1 − λ) + a(λ − γ)bs

nb

(a

b

)γ

and γ is the integer part of λ. The lower bound L B(2)
DD can be achieved if and only

if for any ith run of P , among the (n − 1) values of δik(P), for i �= k, there are
(n − 1)(γ + 1 − λ) with the value γ and (n − 1)(λ − γ) with the value γ + 1.

Proof Let P∗ ∈ D(n; q1 × · · · × qs), and among the n(n − 1) values of δi j (P∗) for
i �= j , there are n(n − 1)(γ + 1 − λ) with the value γ and n(n − 1)(λ − γ) with
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the value γ + 1. It is easy to see that (δ12(P), . . . , δ1n(P), δ23(P), . . . , δ2n(P), . . . ,

δ(n−1)n(P)) is majorized by (δ12(P∗), . . . , δ1n(P∗), δ23(P∗), . . . , δ2n(P∗), . . . ,
δ(n−1)n(P∗)). Following the proof of Theorem 2.6.19, the proof is completed.

Note that the lower bound L B(2)
DD or L B(1)

DD is based on the Hamming distance
for rows of P . Hence, L B(2)

DD or L B(1)
DD is more useful for assessing nearly saturated

orthogonal arrays or supersaturated designs.
When q1 = · · · = qs = q, from the above theorem, we have the following result.

Theorem 2.6.21 Let P ∈ U(n; qs), then

DD2(P) � L B(3)
DD,

where

L B(3)
DD = −

[
a + (q − 1)b

q

]s

+ as

n
+ (n − 1)[b(γ + 1 − λ) + a(λ − γ)bs

nb

(a

b

)γ

,

λ = s(n − q)/[q(n − 1)] and γ is the integer part of λ.

Based on the column balance of P , Qin and Li (2006) gave the following another
lower bound of DD(P).

Theorem 2.6.22 Let P ∈ D(n; qs), then

DD2(P) � L B(4)
DD,

where

L B(4)
DD = bs

n2

s∑
i=1

(
s

i

)(
a − b

b

)i

Rn,i,q

(
1 − Rn,i,q

qi

)
,

Rn,i,q is the residual of n(mod qi ).

Proof Note that

DD2(P) = bs

n2

s∑
i=1

s∑
j=1

(
s

i

)(
a − b

b

)i

Bi (P).

Following the proof of Theorem 2.6.3, the proof is completed.
It is clear that L B(4)

DD is sharper than L B(3)
DD , which is useful for assessing the

uniformity of an orthogonal array.
For 1 � j � s, let ω j be the largest integer contained in n/q j , θ j = n − q jω j

and θ∗
j = nω j + θ j (1 + ω j ). Chatterjee and Qin (2008) gave the following improved

lower bound of DD(P) for P ∈ D(n; qs).
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Theorem 2.6.23 Let P ∈ D(n; qs), then

DD2(P) � L B(5)
DD,

where

L B(5)
DD = −

[
a + (q − 1)b

q

]s

+ bs + bs

n2

s∑
i=1

(
s

i

)(
a − b

b

)i

θ∗
j .

Proof It is easy to check that

DD2(P) = −
[

a + (q − 1)b

q

]s

+ 1

n2
yT
P Ms yP ,

where Ms is the s-fold Kronecker products of (a − b)I s + b J s . Following the proof
of Theorem 2.6.2, the proof is completed.

Following Qin and Fang (2004), for any design P ∈ D(n; qs), we know that the
following equations hold:
(I) When q = 2, a = 5/4, and b = 1,

DD2(P) = CD2(P) + 2

(
35

32

)s

−
(
13

12

)s

−
(
9

8

)s

;

(II) When q = 2, a = 3/2, and b = 5/4,

DD2(P) = WD2(P) +
(
4

3

)s

−
(
11

8

)s

;

(III) When q = 3, a = 3/2, and b = 23/18,

DD2(P) = WD2(P) +
(
4

3

)s

−
(
73

54

)s

.

It is easy to check that when q = 2, if a = 5/4 and b = 1, then the lower bound
L B(3)

DD in Theorem 2.6.21, the lower bound L B(4)
DD in Theorem 2.6.22, and the lower

bound L B(5)
DD in Theorem2.6.23 are, respectively, the lower bound L B(r)

C D in Theorem
2.6.3, the lower bound L B(c)

C D in Theorem 2.6.3, and the lower bound L B(2)
C D in

Theorem 2.6.2; if a = 3/2 and b = 5/4, then the lower bound L B(3)
DD in Theorem

2.6.21, the lower bound L B(4)
DD in Theorem 2.6.22, and the lower bound L B(5)

DD in
Theorem 2.6.23 are, respectively, the lower bound L B(2r)

W D in Theorem 2.6.6, the
lower bound L B(2c)

W D in Theorem 2.6.6, and the lower bound L B(21)
W D in Theorem

2.6.5, and when q = 3, if a = 3/2 and b = 23/18, then the lower bound L B(3)
DD in

Theorem 2.6.21, the lower bound L B(4)
DD in Theorem 2.6.22, and the lower bound
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L B(5)
DD in Theorem 2.6.23 are equivalent to the lower bound L B(3r)

W D in Theorem 2.6.8,
the lower bound L B(3c)

W D in Theorem 2.6.8, and the lower bound L B(31)
W D in Theorem

2.6.7, respectively.

2.6.5 Lower Bounds of Lee Discrepancy

For q-level U-type designs, where q is a positive integer, Zhou et al. (2008) firstly
proposed a lower bound of LD as the following theorem.

Theorem 2.6.24 LetP ∈ U(n; qs), then when q is even, LD2(P) � L B(even)
L D , where

L B(even)
L D = 1

n
−
(
3

4

)s

+ n − 1

n

(
1

2

) ns
q(n−1)

[
q/2−1∏

i=1

q + 2i

2q

] 2sn
q(n−1)

;

when q is odd, LD2(P) � L B(odd)
L D , where

L B(odd)
L D = 1

n
−
(
3

4
+ 1

4q2

)s

+ n − 1

n

[
(q−1)/2∏

i=1

q + 2i − 1

2q

] 2sn
q(n−1)

.

The proof of Theorem 2.6.24 is similar to Theorem 2.6.9.
When q = 2, 3, the lower bounds in Theorem 2.6.24 are given in the following

theorem.

Theorem 2.6.25 Let P ∈ U(n; qs), then when q = 2, LD2(P) � L B(21)
L D , where

L B(21)
L D = 1

n
−
(
3

4

)s

+ n − 1

n

(
1

2

) ns
2(n−1)

;

when q = 3, LD2(P) � L B(31)
L D , where

L B(31)
L D = 1

n
−
(
7

9

)s

+ n − 1

n

(
2

3

) 2sn
3(n−1)

.

When q = 2, 3, Zou et al. (2009) gave the following improved lower bounds,
which are sharper than the lower bounds in Theorem 2.6.25.

Theorem 2.6.26 Let P ∈ D(n; qs) be U-type, then when q = 2, LD2(P) � L B(22)
L D ,

where

L B(22)
L D = −

(
3

4

)s

+ 1

2sn2

s∑
r=0

(
s

r

)
[n fr + zr ( fr + 1)],



2.6 Lower Bounds of Discrepancies 95

fr and zr are defined in Theorem 2.6.2; when q = 3, LD2(P) � L B(32)
L D , where

L B(32)
L D = −

(
7

9

)s

+ 1

3sn2

s∑
r=0

(
s

r

)
2s−r [ngr + tr (gr + 1)],

gr and tr are defined in Theorem 2.6.7.

Proof Note that for q = 2,

LD2(P) = −
(
3

4

)s

+ 1

n2
yT
P L(2)

s yP

and for q = 3,

LD2(P) = −
(
7

9

)s

+ 1

n2
yT
P L(3)

s yP ,

where L(2)
s and L(3)

s are the s-fold Kronecker products of 1
2 (I2 + J2) and 1

3 I3 +
2
3 J3, respectively. Being along the lines of the proof of Theorem 2.6.3, the proof is
completed.

From Fig. 2.13, we know that L B(21)
L D , L B(31)

L D is better than L B(22)
L D , L B(32)

L D , respec-
tively, for small s (Fig. 2.14).

For general mixed-level U-type designs, Zhou et al. (2008) obtained some
lower bounds of LD for P ∈ U(n; qs1

1 × · · · × qsm
m ), where q1, . . . , qt are odd and

qt+1, . . . , qm are even, where 0 � t � s.

Theorem 2.6.27 Let P ∈ U(n; qs1
1 × · · · × qsm

m ), then

LD2(P) � L B(3)
L D,

Fig. 2.13 Comparison
between L B(3:1)

M D and L B(3:2)
M D
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Fig. 2.14 Comparison between L B(21)
L D and L B(22)

L D , between L B(31)
L D and L B(32)

L D

where

L B(3)
L D =�5 + n − 1

n

(
1

2

)∑m
r=t+1

nsr
qr (n−1)

t∏
r=1

⎡
⎣(qr −1)/2∏

j=1

qr + 2 j − 1

2qr

⎤
⎦

2sr n
qr (n−1)

×
m∏

r=t+1

⎡
⎣qr /2−1∏

j=1

qr + 2 j

2qr

⎤
⎦

2sr n
qr (n−1)

,

and �5 = 1
n − (

4
3

)∑m
j=t+1 s j ∏t

j=1

(
3
4 + 1

4q2
j

)s j

.

The proof of Theorem 2.6.27 is similar to Theorem 2.6.9.
When q1 = · · · = qm = q, the lower bound in Theorem 2.6.27 is equivalent to the

lower bound in Theorem 2.6.24.When q1 = · · · = qt = 3 and qt+1 = · · · = qm = 2,
then we can get the following theorem.

Theorem 2.6.28 Let P ∈ U(n; 2s1 × 3s2), then

LD2(P) � 1

n
−
(
3

4

)s1 (7

9

)s2

+ n − 1

n

(
1

2

) ns1
2(n−1)

(
2

3

) 2ns2
3(n−1)

.

For asymmetrical factorials with two and three levels, Chatterjee et al. (2012b)
also obtain the following lower bound, which is more useful and sharper than the
lower bound in Theorem 2.6.28.

Theorem 2.6.29 Let P ∈ D(n; 2s1 × 3s2), then

LD2(P) � −
(
3

4

)s1 (7

9

)s2

+ 1

n2

(
1

2

)s1 (2

3

)s2 s1∑
i=0

s2∑
j=0

(
s1
i

)(
s2
j

)(
1

2

) j

θi j ,

where θi j is defined in Theorem 2.6.10.

The proof of Theorem2.6.29 is similar to Theorem2.6.2.
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Exercises

2.1

For a one-factor experiment (s = 1), prove that the n-run design with minimum
L∞-star discrepancy is the following set of evenly spaced points:

P =
{

1

2n
,
3

2n
, . . . ,

2n − 1

2n

}
.

2.2

Prove that a minimum star discrepancy one-run design takes the form
P = {(z, . . . , z)} for z satisfying zs + z − 1 = 0.

2.3

Let P = {xk = (xk1, . . . , xks), k = 1, . . . , n} be a set of n points on the unit cube
Cs = [0, 1]s . The wrap-around L2-discrepancy can be calculated by

(W D(P))2 = −
(
4

3

)s

+ 1

n2

(
3

2

)s n∑
k=1

n∑
l=1

(
5

6

)dH (k,l)

,

where dH (k, l) is the Hamming distance between xk and xl .
Prove that W D2(D1) = W D2(D2) if D1 and D2 are equivalent. Two U-type

designs are called equivalent if one can be obtained from the other by (i) exchanging
rows or/and (ii) exchanging columns.

2.4

Compare the uniformity of the following two designs under WD, CD, and MD:

X1 =

⎡
⎢⎢⎢⎢⎣

3/4 3/4 3/4
3/4 3/4 3/4
3/4 1/4 3/4
3/4 3/4 1/4
1/4 3/4 1/4

⎤
⎥⎥⎥⎥⎦ , X2 =

⎡
⎢⎢⎢⎢⎣

1/4 1/4 1/4
1/4 3/4 3/4
3/4 1/4 1/4
3/4 3/4 1/4
1/4 3/4 1/4

⎤
⎥⎥⎥⎥⎦ .

2.5

Write a MATLAB code for calculating W D(P), C D(P), M D(P), where P is a
design on the domain [0, 1]s with n runs and s-factors. Apply your own code to the
two designs in Example2.3.1.

2.6

Prove that the CD, WD, and MD defined in Sect. 2.3 can be expressed as function of
their Hamming distances.
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2.7

Consider the following four designs.

P5−1 P5−2 P5−3 P5−4

1 2 1 2 1 5 1 1
2 4 2 5 2 1 2 5
3 1 3 3 3 4 3 4
4 3 4 1 4 2 4 3
5 5 5 4 5 3 5 2

Calculate the corresponding star discrepancy, CD, WD, MD, and LD for each
design, and show your conclusion.

2.8

The inequality between arithmetic mean and geometric mean has been known and
is useful for deriving some lower bounds. Prove this inequality stated as follows:

Let a1, . . . , am be m nonnegative numbers, and then

ā ≡ 1

m

m∑
i=1

ai �
[

m∏
i=1

a j

]1/m

≡ āg,

where ā is the arithmetic mean and āg is the geometric mean of a1, . . . , am . The
above equality holds if and only if all the ai ’s are the same.

2.9

For easily understanding the so-called curse of dimensionality, let us study on the
volume of the ball in Rn . A ball of radius r with the center at the origin in Rn can be
expressed as

Bn(r) = {x : xT x = x2
1 + · · · + x2

n � r2}.

It is known that the volume of B3(r) is 4
3πr3. In general,

Vol(Bn(r)) = πn/2

�( n
2 + 1)

rn.

Intuitively, one may think that the volume of Bn(r) becomes larger and larger. For
the unit ball, its volume increases in the first five dimensions, but decreases as n tends
to infinity. Study the behavior of the volume of Bn(r) as n increases.

2.10

What is the Cauchy–Schwarz inequality in the linear inner product space? Give a
proof. From the literature, find more applications of the Cauchy–Schwarz inequality.

2.11

Prove Theorems 2.6.27 and 2.6.29.
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Chapter 3
Construction of Uniform
Designs—Deterministic Methods

In this chapter and the following chapters, the different construction methods for
uniform design tables are given. Typically, there are three approaches of constructing
uniform design tables:

(i) Quasi-Monte Carlo methods;
(ii) Combinatorial methods;
(iii) Numerical search.

The first two approaches are discussed in this chapter, and the last one will be pre-
sented in the next chapter. Uniform design tables have been collected on the Web
site http://www.math.hkbu.edu.hk/UniformDesign/ and http://web.stat.nankai.edu.
cn/cms-ud/.

The first section of this chapter provides a rather general explanation about many
aspects of construction of uniformdesigns andgives a brief reviewon the construction
of uniform designs for one-factor and multifactor experiments. It will be shown that
the uniform design for a one-factor experiment can be obtained in closed form.
For multifactor experiment, Sect. 3.2.1 shows that there is an essential complexity
in constructing uniform designs. Quasi-Monte Carlo methods provide some useful
constructionmethods formultifactor uniformdesigns.Among the quasi-MonteCarlo
methods, the good lattice point method and its extensions are introduced in Sects. 3.3
and 3.4. Section3.5 gives the linear permutation method, and Sect. 3.6 gives the
combinatorial construction methods for uniform designs.

© Springer Nature Singapore Pte Ltd. and Science Press 2018
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3.1 Uniform Design Tables

For practical use, one needs uniform designs for various sizes. There are two ways
to find the required uniform designs: (1) from the database where many uniform
designs have obtained by the literature; (2) from a directly computational search with
computer software help. In this section, some important issues for constructing uni-
formdesign tables are introduced. Some theoretical results for one-factor experiments
are also given.

3.1.1 Background of Uniform Design Tables

For constructinguniformdesigns, it shoulddetermine several important issues such as
experimental parameters, experimental domain, uniformity criterion, and candidate
designs.

Experimental parameters. The parameters include the number of runs n, the num-
ber of factors s.

Experimental domain. There are several types of experimental domain, X :

(a) A hypercube: X = [a1, b1] × [a2, b2] × · · · × [as, bs] (see Cartesian product
in (1.2.3)), and there is no constrain among the factors. Without loss of generality,
one can use a linear transformationmapping the hypercube into the unit hypercube
[0, 1]s ;
(b) A simplex: In experiments with mixtures, the experimental domain X is

T s = {(x1, . . . , xs) : x j � 0, j = 1, . . . , s, x1 + · · · + xs = 1}, (3.1.1)

or

T s(a, b) =
{

(x1, . . . , xs) : 0 < ai � xi � bi < 1, i = 1, . . . , s,
s∑

i=1

xi = 1

}
,

where a = (a1, . . . , as) and b = (b1, . . . , bs).
(c) A set of lattice points: If the factors are categorical and whose levels are
q1, . . . , qs for the s-factors, then the experimental domain becomes

X = {1, . . . , q1} × · · · × {1, . . . , qs}, (3.1.2a)

or the domain with q levels per factor,

X = {1, . . . , q}s . (3.1.2b)
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Note that all of these s-factor domains are the Cartesian product of one-factor
domains.

Uniformity criterion When the experimental domain isCs , there are several mea-
sures of uniformity discussed in the previous chapter. In this book, we shall choose
the centered L2-discrepancy (CD) in Sect. 2.3.2, the wrap-around L2-discrepancy
in Sect. 2.3.3, the mixture discrepancy in Sect. 2.3.5, and the discrete discrepancy
or Lee discrepancy as defined in Sect. 2.5 for the finite-level domain in (3.1.2).
When the experimental domain is a simplex, how to choose a measure of unifor-
mity is not easy. Chapter8 will discuss this problem.

Candidate designs LetD(n;Cs) be a set of n points on the experimental domain
Cs . For a given discrepancy, denoted by D, a uniform design with n runs on the
experimental domain Cs is a design on D(n;Cs) with the smallest discrepancy
D. Here,D(n;Cs) is the set of candidate designs. Surely, the number of candidate
designs is infinite and it is difficult to find the best one under a given uniformity
criterion D.
For reducing the number of candidate designs, one may restrict the designs on lat-
tice points. Assume that each factor has n levels, the number of total lattice points
is ns . Denote D(n; ns) be a design formed by n points from the ns lattice points.
Denote by D(n; ns) the set of all D(n; ns). The number of candidate designs in
D(n; ns) is (nsn ) or nsn if the repeated point is not permitted or permitted, respec-
tively.
Obviously, the number of candidate designs inD(n; ns) is too huge to afford even
formoderaten and s. Then, it should reduce thenumber of candidate designs again.
In the literature, it was shown that the U-type property is a reasonable requirement
for uniform designs. A U-type design U (n; ns) is defined in Definition 1.3.6. It
corresponds to a n × s matrix X such that each column is a permutation of the n
levels, which are { 2i−1

2n , i = 1, . . . , n} traditionally. Denote by U(n; ns) the set of
all U (n; ns). The number of candidate designs in U(n; ns) is (n!)s .
The number of levels is less than n for many practical applications. For s-
factor cases each having levels q1, . . . , qs , respectively, the total number of lat-
tice points is N = q1 . . . qs . From Definition 1.3.6, a candidate design is a U-
type U (n; q1, . . . , qs). If q1 = · · · = qs = q, the corresponding design is called
as symmetrical design, otherwise asymmetrical design. Denote by U(n; q1 ×
· · · × qs) the set of all U (n; q1 × · · · × qs). The number of candidate designs

in U(n; q1 × · · · × qs) is
∏s

i=1

[(n
qi

)(n−qi
qi

) · · · (2qiqi

)]
, which is much smaller than

that of U(n; ns). In summary, the candidate designs can be reduced as follows.

D(n;Cs) =⇒ D(n; ns) =⇒ U(n; ns) =⇒ U(n; q1 × · · · × qs) (3.1.3)

If some qi ’s are equal, we denote the asymmetrical U-type design by U (n; qs1
1 ×

· · · × qsm
m ), where s = ∑m

i=1 si . Denote byU(n; qs1
1 × · · · × qsm

m ) andU(n; qs) the
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X lft 0 0.5 1 Xctr 0 0.5 1

Xext 0 0.5 1 Xmis 0 0.5 1

Fig. 3.1 Four different mappings of U = (1, 2, 3, 4)T given by (3.1.4) for q = 4

set of all U (n; qs1
1 × · · · × qsm

m ) and U (n; qs), respectively. For simplicity, some-
times we denote the set of candidate designs by U when the experimental domain
is for a general case.

Design table. A design P = {x1, . . . , xn} ⊂ [0, 1]s can be denoted as a n × s
matrix, X , whose n rows, xT

1 , . . . , xT
n correspond to the n runs of the design. To

emphasize the matrix notation, X is called design matrix.

According to the discussion of the candidate in (3.1.3) for searching the uniform
designs, one can limit the design space on U(n; qs) or U(n; q1 × · · · × qs) for sym-
metrical or asymmetrical designs, respectively. Then, for practical application, the
experimental parameters can be described as follows.

Experimental parameters. The parameters include the number of runs n, the
number of factors s, and the number of levels for each factor q1, . . . , qs .

If the experimental domain is a hyperrectangle X = [a1, b1]×, . . . , [as, bs]. By a
linear transformation, the domainX maps intoCs . Suppose that one wants to employ
a uniform design table Un(qs) for determination of design points. There are several
ways to map one-factor domains {1, . . . , q} into [0, 1] as follows:

Left: x = (u − 1)/q, u = 1, . . . , q, (3.1.4a)

Centered: x = (u − 1/2)/q, u = 1, . . . , q, (3.1.4b)

Endpoints: x = (u − 1)/(q − 1), u = 1, . . . , q, (3.1.4c)

Missing Endpoints: x = u/(q + 1), u = 1, . . . , q. (3.1.4d)

Let U = (1, 2, 3, 4)T be a design table for one-factor design with four runs
having four levels. Figure 3.1 shows the corresponding design points on [0, 1]
by four transformations. The design X lft = (0, 1/4, 1/2, 3/4)T has evenly spaced
points shifted to the left. The design Xctr = (1/8, 3/8, 5/8, 7/8)T has evenly spaced
points, centered in the intervals [(i − 1)/4, i/4] for i = 1, . . . , 4. The design Xext =
(0, 1/3, 2/3, 1)T preserves even spacing of the points, but pushes the endpoints to
the extremes of the experimental domain. The design Xmis = (1/5, 2/5, 3/5, 4/5)T

is like Xext but without the extreme endpoints. Inmost practice, the centeredmapping
x = (u − 1/2)/q, u = 1, . . . , q has been widely used.

Example 3.1.1 To explain the relative advantages of the four different mappings in
(3.1.4), consider the example of studying the period of a simple pendulum as a func-
tion of its amplitude. One plans to measure the period at several different amplitudes
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and model the dependency of the response (period) on the factor (amplitude). The
experimental domain is [0◦, 180◦], with 0◦ corresponding to the pendulum start-
ing straight down at rest and 180◦ corresponding to the pendulum starting straight
up. Four designs with four runs each derived from U = (1, 2, 3, 4)T , the mapping
(3.1.4), and a scaling to map [0, 1] to [0◦, 180◦] are given as follows:

X lft = (0◦, 45◦, 90◦, 135◦)T , (3.1.5a)

Xctr = (22.5◦, 67.5◦, 112.5◦, 157.5◦)T (3.1.5b)

Xext = (0◦, 60◦, 120◦, 180◦)T , (3.1.5c)

Xmis = (36◦, 72◦, 108◦, 144◦)T . (3.1.5d)

Next subsection will show that the centered mapping (3.1.4b) is a more popular
choice. By such mapping, a design matrix U for n runs and s factors is transformed
column by column (factor by factor), to obtain a design X (or XU for emphasizing
U) in the domain [0, 1]s . A similar transformation can be applied to asymmetrical
designs.

Definition 3.1.1 For any designU ∈ U(n; q1 × · · · × qs), by the mapping f : u →
(2u − 1)/(2qi ), u = 1, . . . , qi for the i th column, i = 1, . . . , s, the resulting design
matrix X is called the induced matrix of U . We define D(U) = D(X).

The transformation mentioned in Definition 3.1.1 is one to one.

Example 3.1.2 Given a U-type symmetrical design, U (12, 124) below

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 10 4 7
2 5 11 3
3 1 7 9
4 6 1 5
5 11 10 11
6 9 8 1
7 4 5 12
8 2 3 2
9 7 12 8
10 12 6 4
11 8 2 10
12 3 9 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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the corresponding induced matrix is

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/24 19/24 7/24 13/24
3/24 9/24 21/24 5/24
5/24 1/24 13/24 17/24
7/24 11/24 1/24 9/24
9/24 21/24 19/24 21/24
11/24 17/24 15/24 1/24
13/24 7/24 9/24 23/24
15/24 3/24 5/24 3/24
17/24 13/24 23/24 15/24
19/24 23/24 11/24 7/24
21/24 15/24 3/24 19/24
23/24 5/24 17/24 11/24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.042 0.792 0.292 0.542
0.125 0.375 0.875 0.208
0.208 0.042 0.542 0.708
0.292 0.458 0.042 0.375
0.375 0.875 0.792 0.875
0.458 0.708 0.625 0.042
0.542 0.292 0.375 0.958
0.625 0.125 0.208 0.125
0.708 0.542 0.958 0.625
0.792 0.958 0.458 0.292
0.875 0.625 0.125 0.792
0.958 0.208 0.708 0.458

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The squared discrepancy values are CD2(X) = 0.0114,WD2(X) = 0.0339, and
MD2(X) = 0.0386, respectively. Then, the discrepancy of U is equal to that of X
according to Definition 3.1.1.

Definition 3.1.2 Given a candidate design space U , a design P∗ is called a uniform
design if it minimizes the predetermined discrepancy measure D on U , i.e.,

D(P∗) = min
P∈U

D(P). (3.1.6)

Typically, the design spaceU is chosen asD(n;Cs) or theU-type designsU(n; qs)

or U(n; q1 × · · · × qs). A uniform design on U(n; qs) is denoted byUn(qs), while a
uniform design on U(n; q1 × · · · × qs) is denoted by Un(q1 × · · · × qs). A uniform
design can be a tabular notation that is similar as the notation for orthogonal designs
and is called uniform design table.

Theminimizationproblem (3.1.6) alwayshasmany solutionswhen s > 1, because
reordering the runs or the factors of a design keeps the discrepancy value unchanged
due to the criterion C1. Also, many discrepancies are invariant to reflections of the
design points through the center of the domain. Designs with the same discrepancy
are called equivalent designs. Efficient search algorithms for uniform designs should
avoid as much as possible evaluating the discrepancies of designs that are equivalent
to those already considered.

A design that approximately solves the minimization problem (3.1.6) is called a
low discrepancy design or a nearly uniform design. It should be mentioned that many
designs used in the literature are nearly uniform designs. Because the optimization
problem is often extremely difficult to solve exactly, nearly uniform designs are
typically accepted as uniform designs.
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3.1.2 One-Factor Uniform Designs

The canonical experimental domain for one-factor experiments with a continuous
range of levels is [0, 1]. In this subsection, it is shown that the uniform designs
under centered L2-discrepancy, wrap-around L2-discrepancy, mixture discrepancy,
and star discrepancy, can be analytically given.

Theorem 3.1.1 Let the candidate space of one-factor designs be D(n; [0, 1]). The
one-factor uniform designs under different uniformity criteria are as follows.

(a) (Fang and Wang 1994) The design

X∗ =
(

1

2n
,
3

2n
, . . . ,

2n − 1

2n

)T

. (3.1.7)

is the unique uniform design over [0,1] under the star discrepancy, whose value
D∗(X∗) = 1/(2n).

(b) (Fang et al. 2002c) The design in (3.1.7) is also the unique uniform design
over [0, 1] under the centered L2-discrepancy and the squared CD-value
CD2(X∗) = 1/(12n2).

(c) (Fang and Ma 2001a) The design

Xδ =
(

δ

n
,
1 + δ

n
, . . . ,

n − 1 + δ

n

)T

(3.1.8)

is a uniform design over [0, 1] under the wrap-around L2-discrepancy for any
real number δ ∈ [0, 1] and the squared WD-value WD2(Xδ) = 1/(6n2).

(d) (Zhou et al. 2013) The design in (3.1.7) is also the unique uniform design over
[0, 1] under the mixture discrepancy and the squared MD-value MD2(X∗) =
1/(8n2).

Proof We only prove the assertion (d). The proofs of the assertions (b) and (c) are
similar, and the proof of Theorem 3.1.1(a) can be seen in Fang and Wang (1994),
pp. 16–17. Let P = {x1, x2, . . . , xn} be a set on [0, 1]. Without loss of generality,
suppose x1 � x2 � · · · � xn and let yk = xk − 1/2, k = 1, 2, . . . , n. Then, we have

MD2(P)

= 19

12
− 2

n

n∑
k=1

(
5

3
− |yk |

4
− |yk |2

4

)

+ 1

n2

n∑
k=1

n∑
j=1

(
15

8
− |yk |

4
− |y j |

4
− 3|yk − y j |

4
− |yk − y j |2

2

)

= 19

12
+ 1

n2

n∑
k=1

n∑
j=1

[(
15

8
− |yk |

4
− |y j |

4
− 3|yk − y j |

4
− |yk − y j |2

2

)



108 3 Construction of Uniform Designs—Deterministic Methods

−
(
5

3
− |yk |

4
− |yk |2

4

)
−
(
5

3
− |y j |

4
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)2
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.

Thus, MD2(P) achieves its minimum if and only if yk = 2k−1−n
2n , i.e., if and only if

xk = 2k−1
2n , k = 1, 2, . . . , n. The proof is completed.

Theorem 3.1.1(a), (b), and (d) provide a justification for the centered mapping in
(3.1.4b) with q = n, i.e., under this mapping, the one-factor U-type design with n
runs,U = (1, . . . , n)T , minimizes the CD,MD, or star discrepancy. However, Theo-
rem 3.1.1(c) shows that the wrap-around L2-discrepancy has minimum discrepancy
for a whole family of shifted points with equal spacing in between them. The design
matrix Xδ in this theorem corresponds to the centered mapping of the one-factor U-
type designwithn runs,U = (1, . . . , n)T , for δ = 1/2. The leftmapping corresponds
to δ = 0. Theorem 3.1.1 also shows that when one chooses different discrepancies
the corresponding uniform designs may be different.

The centered mapping is often chosen because the one-factor design Xctr has the
smallest centered L2-discrepancy and mixture discrepancy as well as wrap-around
L2-discrepancy for all possible four-level designs. A disadvantage of the design
arising from centered mapping is that the values of the levels may not be nice round
numbers. This may be an inconvenience to the experimentalist. For example, Xctr

here has levels that are fractions of a degree, whereas the other designs above that
are an integer number of degrees.

The design X lft has minimum wrap-around L2-discrepancy, but not minimum
centered L2-discrepancy or mixture discrepancy.

The design Xext samples the extreme values of the factor. The advantage is that
in fitting a model one need not extrapolate, only interpolate. Also, the values of the
levels in applications may be nice round numbers. A disadvantage of Xext is that
in some applications the experiment cannot be performed for extreme values of the
factors. In the pendulum Example 3.1.1, it is physically impossible to measure the
period for amplitudes 0◦ and 180◦, which are infinite.
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The design Xmis is similar to Xext in that in practice the levels tend to be nice
round numbers. However, Xmis leaves out both extremes of the experimental domain
to avoid the problem of having level-combinations where the experiment cannot be
physically performed.

Designs X lft and Xctr are both special cases of an equidistant design with a shift
δ/n, as given in (3.1.8). This is called a shifted design. The case δ = 0 corresponds
to X lft, and Xctr corresponds to δ = 1/2. Recall that the shifted design has minimum
centered L2-discrepancy and mixture discrepancy for a shift of 1/2 and a minimum
wrap-around L2-discrepancy for any shift.

Choosing δ to be a uniform random number removes the bias in a design. This
means, for example, that the expected value of the samplemean of a function sampled
at the random design points equals the average value of the function. This is virtually
never the case if the design is chosen deterministically. A disadvantage of an arbitrary
shift δ is that the resulting design has levels that are not simple round numbers.
This may be inconvenient for laboratory experiments, but should be no problem for
computer experiments.

3.2 Uniform Designs with Multiple Factors

Whereas Theorem 3.1.1 gives the one-factor uniform design, there is no extension of
this theorem to the case of more than one factor. In this subsection, the complexity of
construction and representingmethod for designswithmultiple factors are discussed.

3.2.1 Complexity of the Construction

Section3.1.1 pointed out complexity for construction of uniformdesignwithmultiple
factors. First of all, the canonical design space D(n; [0, 1]s) is too complicated and
the discrepancy is in general a multimodal function on the space of D(n; [0, 1]s),
whichmakes traditional optimizationmethods infeasible. To overcome this difficulty,
the candidate set of designs considered is often chosen to be some well-structured
subset of all possible designs. Flowchart (3.1.3) recommends to employ U-type
designs, U(n; q1 × · · · × qs) or U(n; qs), as design space.

Definition 3.1.2 shows that to find a uniform design is an optimization problem

D(P∗) = min
P∈U

D(P), (3.2.1)

i.e., (3.1.6), where U is a candidate design space. There are two approaches:
(A) Theoretical Approach. With reference to one-factor experiment, the last

section provides uniform designs under different discrepancies based on theoretical
approach. For multifactor experiments, there are some theoretical methods for gen-
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erating uniform designs. In the next section, we shall introduce the good lattice point
method (glpm for short) that was proposed by Korobov (1959) who is an expert in the
number theory. He gave some theoretical justification to this method and a number
of NT-nets for practical use. The glpm is the first theoretical method used for the con-
struction of lower discrepancy sets of points and has a strong impact in quasi-Monte
Carlo methods as well as in the construction of uniform design. Another approach
is to establish connection between the combinatorial design and the uniform design.
Section 3.6 will introduce the combinatorial design approach that applies the theory
of the combinatorial design to construct uniform designs.

(B) Numerical optimization approach. So far, most of the existing uniform
designs are obtained by numerical optimization approach. Note that the traditional
optimization algorithms are useless for finding uniform designs. If we consider
D(n; [0, 1]s) as the design space, it is an optimization problem in Rns . There are
many local minimal points of the objective function D in (3.1.6) on the domain
U = D(n; [0, 1]s). Even n and s are moderate, it is difficult to reach the global
optimum design with the minimum discrepancy. For the two-dimensional case, the
authors of this book found that it is not easy to find a uniform design with size n > 10
by computer software using the traditional optimization algorithm. Both of the glpm
and optimization approach suggest to reduce the design space. As we mentioned in
flowchart (3.1.3), the U-type designs are recommended.

Example 3.2.1 Let us demonstrate some comparisons between the uniform designs
on the domainD(n; [0, 1]2) and onU (n, n2) for 2 � n � 13. Tables 3.1 and 3.2 give
more justifications and display uniform designs under centered L2-discrepancy for
two factorswith n � 13 runs onU-typeU(n; n2) and onD(n; [0, 1]2), and denoted as
U∗ and U∗

0, respectively. These uniform U-type designsU∗ are displayed in Fig. 3.2.
For simplicity of presentation, we give the design tables for the U-type designs U∗,
whose discrepancies are calculated from the corresponding induced matrices, X∗,
defined inDefinition 3.1.1. Similarly, the discrepancies ofU∗

0 are also calculated from
the corresponding induced matrices, X∗

0 = (U∗
0 − 0.5)/n. It is easy to see that two

kinds of uniform designs and their centered L2-discrepancies are close to each other.
It is reasonable to restrict searching uniform designs in the design space U(n; ns).
Moreover, U-type designs have the advantage of evenly spaced levels, which is more
convenient for the experimentalist.

3.2.2 Remarks

From now on, we choose U-type designs as our design space. Note that the U-type
design space is a discrete point set in Rns . As a consequence, there is no contin-
uous concept as well as derivatives of the objective function, and the traditional
optimization methods are useless. It needs new optimization technique for (3.2.1).
The heuristic global optimization methods are recommended to find nearly uniform
designs on the candidate design set. There are many heuristic global optimization
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Table 3.1 Comparisons of two-factor uniform designs on different domains
Number of runs, n U∗ on U(n; n2) U∗

0 on D(n; [0, 1]2)
ui1 ui2 Discrepancy ui1 ui2 Discrepancy

2 1 2 6.228 × 10−2 1.062 1.938 5.989 × 10−2

2 1 1.938 1.062

3 1 2 2.958 × 10−2 1.000 2.000 2.884 × 10−2

2 1 2.000 1.000
3 3 2.910 2.911

4 1 3 1.626 × 10−2 1.033 2.992 1.619 × 10−2

2 1 2.008 1.033
3 4 2.992 3.967
4 2 3.967 2.008

5 1 4 1.105 × 10−2 1.055 3.986 1.094 × 10−2

2 1 2.014 1.055
3 3 3.000 3.000
4 5 3.985 4.945
5 2 4.945 2.015

6 1 4 7.628 × 10−3 1.021 4.010 7.612 × 10−3

2 2 1.985 1.986
3 6 2.990 5.978
4 1 4.010 1.022
5 5 5.015 5.014
6 3 5.978 2.989

7 1 3 5.824 × 10−3 1.036 3.039 5.782 × 10−3

2 6 1.991 6.009
3 1 3.039 1.036
4 4 4.000 4.000
5 7 4.961 6.963
6 2 6.009 1.991
7 5 6.963 4.961

8 1 3 4.475 × 10−3 1.053 2.976 4.456 × 10−3

2 7 1.996 7.005
3 5 3.019 4.987
4 1 3.980 1.017
5 8 5.019 7.983
6 4 5.980 4.013
7 2 7.004 1.996
8 6 7.947 6.023

9 1 4 3.583 × 10−3 1.029 4.011 3.575 × 10−3

2 7 1.983 7.001
3 2 2.999 1.983
4 9 4.010 8.971
5 5 5.000 5.000
6 1 5.990 1.028
7 8 7.001 8.017
8 3 8.017 2.999
9 6 8.971 5.990
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Table 3.2 Comparisons of two-factor uniform designs on different domains
Number of runs, n U∗ on U(n; n2) U∗

0 on D(n; [0, 1]s)
ui1 ui2 Discrepancy ui1 ui2 Discrepancy

10 1 8 2.953 × 10−3 1.072 8.031 2.937 × 10−3

2 2 2.004 2.002
3 6 3.014 5.996
4 4 4.003 4.002
5 10 4.974 9.986
6 1 6.026 1.011
7 7 6.997 6.999
8 5 7.984 5.005
9 9 8.996 8.996

10 3 9.928 2.970

11 1 7 2.467 × 10−3 1.022 6.973 2.453 × 10−3

2 2 2.006 2.007
3 10 2.983 10.011
4 4 4.011 4.010
5 9 5.046 8.970
6 5 6.000 5.000
7 1 7.048 1.024
8 11 8.022 10.949
9 6 8.999 5.962

10 3 10.013 2.990
11 8 10.950 8.022

12 1 6 2.076 × 10−3 1.018 5.973 2.065 × 10−3

2 10 1.994 10.055
3 2 2.946 1.993
4 8 3.997 8.014
5 4 4.987 3.997
6 12 5.972 11.988
7 1 7.027 1.012
8 9 8.014 9.004
9 5 9.004 4.987

10 11 10.054 11.008
11 3 11.007 2.945
12 7 11.988 7.028

13 1 6 1.747 × 10−3 1.016 6.007 1.744 × 10−3

2 11 1.995 11.024
3 2 2.975 1.994
4 9 4.002 8.979
5 4 5.021 4.002
6 13 6.007 12.980
7 7 7.000 7.000
8 1 7.992 1.017
9 10 8.979 9.998

10 5 9.997 5.020
11 12 11.024 12.005
12 3 12.005 2.976
13 8 12.979 7.992
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Fig. 3.2 Two-factor uniform U-type designs

algorithms, such as the threshold-accepting algorithm, simulated annealing, genetic
algorithms. Following such strategies means that the design found may not have an
absolute minimum discrepancy. However, this seems a small price to pay for making
the problem of constructing designs tractable. Designs constructed in this manner are
still called uniform designs even though they may not attain the absolute minimum
discrepancy.

There are several important considerations involved in both theoretical and numer-
ical optimization approaches.

i. One must identify good candidate sets of designs to consider. U-type designs
and certain subsets of U-type designs are suitable choices.

ii. Reordering the runs and/or the factors of a design keeps the discrepancy
unchanged. Also, many discrepancies are invariant to reflections of the design
points through the center of the domain. The designs in the candidate set must
be coded so that equivalent designs can be recognized.

iii. A good search algorithm must be developed to search a better design on the
candidate set. There is no best algorithm for all the cases. To choose a good
algorithm depends on the size of the candidate set. It can be an exhaustive search
for a small candidate set. For larger candidate sets, onemay use a random search,
such as the threshold-accepting algorithm or an evolutionary algorithm. Some-
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times good designs are obtained by the projection of low discrepancy designs or
selecting some points from them.

iv. Although a uniform design commonly has as many levels per factor as runs, the
number of runs per factor is sometimes chosen to be a smaller more manageable
number in physical experiments. This complicates the coding process and search
algorithm somewhat.

The following remarks are useful for understanding some problems/treatments in
the construction of uniform designs.

Remark 1 Many different types of discrepancies are described in Chap.2. Fortu-
nately, the choice of discrepancy does not affect the choice of design in a dramatic
way. Designs with small discrepancy relative to other designs for one kernel tend
to have relatively small discrepancy for other kernels as well. In this chapter, the
centered L2-discrepancy is often used to discriminate between designs.

Although the particular choice of discrepancy does not influence the construction
of designs too much, there is an important trade-off between having uniformity when
considering a few factors at a time versus many factors at a time. The scaling of the
parameters in the definition of the kernel can give higher weight to the former or the
latter case. The designs constructed here are based on a common assumption that
model terms involving the interaction of a few factors are more important than those
involving many factors.

Remark 2 Laboratory experiments typically require only a modest number of runs,
say in the tens, whereas some computer experiments can require thousands or mil-
lions of runs. Although the candidate sets for both types of experimental designs
may be similarly constructed, the method for choosing the most uniform design is
typically different. For smaller numbers of runs, it is worth to try to find a design
with the absolute minimum discrepancy as location for each run is important. For
large numbers of runs, the measure of uniformity is typically chosen to be efficient to
compute, and one may narrow the search to a small subset of the original candidate
set of designs.

Remark 3 It is easily known that the uniform design based on U-type designs may
not be the uniform design in D(n; [0, 1]s). Usually, the minimum discrepancy over
U-type designs is very close to the discrepancy of the uniform design inD(n; [0, 1]s).

The cardinality in the U-type design set U(n; ns) is (n!)s . Without loss of gener-
ality, let the first column of design be (1, . . . , n)T . Then, the cardinality decreases
to (n!)s−1. If (n!)s−1 is affordable, one can use the enumeration method to find the
uniform U-type design; otherwise, one needs to further reduce the design space. One
approach is to reduce the complexity of the design space. Historically, the glpm is
the first method in this approach. Next section will give an introduction to glpm and
some new development.
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3.3 Good Lattice Point Method and Its Modifications

The good lattice point method has been widely used in quasi-Monte Carlo methods.
The glpm was proposed by Korobov (1959) for numerical evaluation of multivariate
integrals. Further developments were discussed in Hua and Wang (1981), Shaw
(1988), and Fang and Wang (1994). In this section, we start with the introduction of
glpm and then its modifications.

3.3.1 Good Lattice Point Method

Let X1 and X2 be two designs. If X1 can be obtained from the permutation of rows
and/or columns of X2, then X1 and X2 are equivalent to each other. For given n and s,
there are at most (n!)s−1 non-inequivalentU (n; ns) designs inU(n; ns) if we account
equivalent U-type designs to be one. However, even for a moderate number of runs,
factors, and levels per factor, the number of possible designs can be astronomical.
We have to further reduce the complexity of the design space again. Fang (1980) and
Fang and Wang (1981) pioneered the application of good lattice point method for
the construction of uniform designs.

The purpose of the glpm is to generate a proper subset of U(n; ns). The key
procedure of the glpm is to generate the first row of a U-type design, called as
generating vector. Denote this row by h = (h1, . . . , hs). Then, the j th column of
the design can be obtained by

h j = (h j , 2h j , . . . , nh j )
T (˜mod n), (3.3.1)

where operator˜mod is the special modulo operation defined in Sect. 1.2. This modifi-
cation of the modulo operator will be used in the part related to the glpm. Obviously,
each h should satisfy:

(a) hi is a positive integer and hi < n, i = 1, . . . , s.
(b) Each h j is a permutation of {1, 2, . . . , n}.
(c) h’s are distinct, so we can assume that 1 � h1 < h2 · · · < hs < n.
(d) The matrix of [h1, . . . , hs] has a rank of s.

Note that h j = (h j , 2h j , . . . , nh j )
T (˜mod n) may be formed by a permutation

of {1, 2, . . . , n} or not. For example, when n = 8, h2 = 2, and h3 = 3 we have
two generated columns as follows: (h2, 2h2, . . . , 8h2) = (2, 4, 6, 8, 2, 4, 6, 8) and
(h3, 2h3, . . . , 8h3) = (3, 6, 1, 4, 7, 2, 5, 8), respectively. The second one is formed
by a permutation of {1, 2, . . . , 8} while the first one is not. The necessary and suffi-
cient condition to ensure the condition (b) is that the greatest common divisor of n
and h is one, i.e., gcd(n, h)=1. Thus, we can choose h1 = 1 in most cases.

Let m be the number of h j ’s satisfying the above conditions (a)–(c). From the
number theory, it is known that m = φ(n), where φ(·) is the Euler function (see Hua
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and Wang 1981) that is defined as follows. For each positive integer n, there is a
unique prime decomposition n = pr11 . . . prtt , where p1, . . . , pt are different primes
and r1, . . . , rt are positive integers. Then, the Euler function is given by

φ(n) = n

(
1 − 1

p1

)
· · ·
(
1 − 1

pt

)
. (3.3.2)

When n is a prime, it is easy to see φ(n) = n − 1. For example, φ(31) = 30 as
31 is a prime. The prime decomposition of 30 is 30 = 2 × 3 × 5 and φ(30) =
30(1 − 1/2)(1 − 1/3)(1 − 1/5) = 8. When s > m = φ(n), we cannot obtain a U-
type design of U (n; ns) by the glpm. When s < m, there are possible

(m
s

)
U-type

designs of U (n; ns). But some of these U-type designs may have a rank less than s.
Denote the candidate set of positive integers

Hn = {h : h < n, the greatest common divisor of n and h is one}.

If h ∈ Hn , then n − h ∈ Hn . It is easy to see that the columns, denoted by hh and
hn−h , generated by h and n − h, have hh + hn−h = (n, . . . , n, 2n)′. Moreover, if
h̃ ∈ Hn and h̃ is not equal to h or n − h, then hh + hn−h = hh̃ + hn−h̃ . Therefore,
the elements {h, n − h, h̃, n − h̃} cannot be all in a generating vector; otherwise, the
design matrix will be singular. Therefore, the number of possible columns generated
by glpm is limited to

k(n) = φ(n)/2 + 1, (3.3.3)

which means that at most one pair {h, n − h} is permitted in the generating vector.
Let 1 = h1 < h2 < · · · < hφ(n)/2 inHn . Among theφ(n)/2 pairs {hi , n − hi }, i =

1, . . . ,φ(n)/2, we randomly choose one pair {hi , n − hi } and randomly choose one
element in each of the other φ(n)/2 − 1 pairs to form the k(n) elements in the
candidate of generating vector such that the corresponding design has full column
rank. There are 2φ(n)/2−1φ(n)/2 such choices, and for each choice we can get

(k(n)

s

)
U-type designs. Then, there are at most φ(n)2φ(n)/2−2

(k(n)

s

)
U-type designs that form

the design space, denoted by Gn,s . The cardinality of Gn,s is much less than the
cardinality of the space U(n; ns). This is an advantage of the glpm. A design with
the lowest discrepancy on this space is a nearly uniform design. Then, the algorithm
of glpm is given as follows:

Algorithm 3.3.1 (Good Lattice Point Method)

Step 1. Find the candidate set of positive integers Hn . If s � k(n), go to Step 2;
otherwise, we fail to generate a nearly uniform design by the method.

Step 2. Let h(t) = (ht1, . . . , hts) be the t th set of s distinct elements of Hn and
generate a n × s matrix U (t) = (u(t)

i j ) where u(t)
i j = iht j (˜mod n). Denote

U (t) by U(n, h(t)), where h(t) is the generating vector of the U (t). Denote
by Gn,s the set of all such matrices U(n, h(t)) with rank s.
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Step 3. Find a generating vector h∗ such that its corresponding U(n, h∗) has the
smallest pre-decided discrepancy over the set Gn,s . This U(n, h∗) is a
(nearly) uniform design Un(ns).

A designU generated by the glpm is also called a good lattice point set. In fact, we
can further reduce the computation complexity of the glpm by the following facts:

(a) For any integer h if there exists h∗ such that hh∗ = 1 (mod n), then h∗ is called
as inverse of h (mod n) and may be denoted as h−1. If h−1 exists, it can be easy to
show that h−1 ∈ Hn if and only if h ∈ Hn .

(b) For each generating vector h = (h1, . . . , hs), where h1 < · · · < hs , if h1 	= 1,
the first column h1 = (h1, 2h1, . . . , nh1) (˜mod n) is formed by a permutation of
{1, 2, . . . , n}. Then,we cando the rowpermutation such that thefirst columnbecomes
(1, 2, . . . , n)T . Then, the permuted design is another glp set with generating vector
h̃ = h−1

1 (h1, h2, . . . , hs) ≡ (1, h̃2, . . . , h̃s)(˜mod n). Since the row permutation does
not change the discrepancy value, the two glp sets are equivalent to each other. Then,
let h1 = 1 and we only need to determine the values of {h2, . . . , hs}. Therefore, we
only need to compare

(
φ(n)−1
s−1

)
glp sets.

(c) Fibonacci sequence. For two-factor experiments, there exists an analytic con-
struction for lattice designs with low discrepancy. Consider the Fibonacci sequence,
1, 1, 2, 3, 5, 8, . . . , defined by F0 = F1 = 1, and Fm = Fm−1 + Fm−2,m = 2, 3, . . ..
The choice n = Fm and h = (1, Fm−1)

T gives a low discrepancy lattice design as
m → ∞ (Hua and Wang 1981, Section 4.8).

Table 3.3 gives the “best” generating vectors for 4 � n � 31 and s � 5 that is
modified from P. 98 of Fang and Ma (2001b), according to the limitation of number
of factors in (3.3.3) and the reader can easily to find the corresponding uniform design
tables.

3.3.2 The Leave-One-Out glpm

In some cases such as s > k(n), the candidate set belonging to Hn is not enough to
generate a glp set with full column rank. However, if k(n + 1) is larger than s, one
can consider the leave one out glpm. Let us look at the following illustrative example.

Example 3.3.1 For n = 12, the cardinality of the set of H12 = {1, 5, 7, 11} is 4,
and k(12) = 3 by (3.3.3). It is impossible to construct a nearly uniform design
U12(12s), s > 3 by the glpm in Algorithm 3.3.1. However, note that

H13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Select s elements fromH13, and obtain a U-type designsU (13; 13s) by the glpm, and
its last row is a vector (13, . . . , 13). Deleting this row, the remaining 12 × s matrix
gives a U-type U (12; 12s). Comparing all such designs, we can obtain a nearly
uniform design U12(12s). This modification may be called leave-one-out glpm.
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Table 3.3 The generating vectors under CD

n s = 2 s = 3 s = 4 s = 5

4 (1 3)

5 (1 2) (1 2 3)

6 (1 5)

7 (1 3) (1 2 3) (1 2 3 5)

8 (1 5) (1 3 5)

9 (1 4) (1 4 7) (1 2 4 7)

10 (1 3) (1 3 7)

11 (1 7) (1 5 7) (1 2 5 7) (1 2 3 5 7)

12 (1 5) (1 5 7)

13 (1 5) (1 4 6) (1 4 5 11) (1 3 4 5 11)

14 (1 9) (1 9 11) (1 3 5 13)

15 (1 11) (1 4 7) (1 4 7 13) (1 2 4 7 13)

16 (1 7) (1 5 9) (1 5 9 13) (1 3 5 9 13)

17 (1 10) (1 4 10) (1 4 5 14) (1 4 10 14 15)

18 (1 7) (1 7 13) (1 5 7 13)

19 (1 8) (1 6 8) (1 6 8 14) (1 6 8 14 15)

20 (1 9) (1 9 13) (1 9 13 17) (1 3 7 11 19)

21 (1 13) (1 4 5) (1 5 8 19) (1 4 10 13 16)

22 (1 13) (1 5 13) (1 5 7 13) (1 3 5 7 13)

23 (1 9) (1 7 18) (1 7 18 20) (1 4 7 17 18)

24 (1 17) (1 11 17) (1 11 17 19) (1 5 7 13 23)

25 (1 11) (1 6 16) (1 6 11 16) (1 6 11 16 21)

26 (1 11) (1 11 17) (1 5 11 17) (1 3 5 11 17)

27 (1 16) (1 8 10) (1 8 20 22) (1 8 20 22 23)

28 (1 11) (1 9 11) (1 9 11 15) (1 9 11 15 23)

29 (1 18) (1 9 17) (1 8 17 18) (1 7 16 20 24)

30 (1 19) (1 17 19) (1 17 19 23) (1 7 11 13 29)

31 (1 22) (1 18 24) (1 6 14 22) (1 6 13 20 27)

The procedure of the leave-one-out glpm is as follows.

Algorithm 3.3.2 (Leave-one-out glpm)

Step 1. If s � φ(n + 1)/2, go to Step 2; otherwise, we fail to generate a nearly
uniform design by the method.

Step 2. To find Hn+1 for given n, denote its elements by h∗ = (h∗
1, . . . , h

∗
m). By

use of the method in (3.3.1) to obtain a (n + 1) × m matrix U(n + 1, h∗).
Step 3. Delete the last row of U(n + 1, h∗) to form a n × m matrix H . Select s

columns of H to form a U-type design U (n; ns) with rank s. Denote by
Ln,s the set of all such U-type designs.

Step 4. Choose the one with the smallest discrepancy in Ln,s as a nearly uniform
design Un(ns).
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It is easily known that the (n + 1)th row of U(n + 1, h∗) is (n + 1, . . . , n + 1).
After deleting this row, each column of H is a permutation of (1, . . . , n)T . If there
are two elements h1i and h1 j in the first row of H such that h1i + h1 j = n + 1, then
the i th column hi and the j th column h j in H are fully negatively correlated since
hi + h j = (n + 1)1n . Then, if s > φ(n + 1)/2, there exist at least two columns in
H that are fully negatively correlated (for more detail, see Yuan et al. 2017). This is
the reason that we judge the condition s � φ(n + 1)/2 in the Step 1 of Algorithm
3.3.2. When φ(n + 1) > φ(n), for example n is an even, the number of possible
designs by leave-one-out glpm may be larger than that of the glpm. For example,
let n = 36, s = 4. The number of possible glp sets is at most

(
φ(36)−1
4−1

) = 165. The
corresponding generating vector of the glpm is (1, 7, 11, 17), and its squared CD-
value is 0.0029. On the other hand, the number of possible designs by leave-one-out
glpm is at most

(
φ(36+1)−1

4−1

) = 6545, which is much larger than the former. Then,
the resulted design by leave-one-out glpm may be more uniform. In the case with
n = 36, s = 4, the generating vector of the leave-one-out glpm is (1, 6, 27, 29) for
n + 1 level, and the corresponding squared CD-value is 0.0023.

Example 3.3.2 (Example 3.3.1 continues) Consider the construction of the uniform
designU12(125) by the leave-one-out glpm. From the discussion of the procedure of
glpm in the last subsection, let the element h1 = 1 in the generating vector. Then,
we choose other four elements in the generating vector from the set {2, 3, . . . , 12}.
There exist

(11
4

) = 330 different generating vectors. Among them, the generating
vector (1 3 4 5 7) is the best one. The matrix H and the nearly uniform design
U12(125) are as follows.

H U12(125)
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5
2 4 6 8 10 12 1 3 5 7 9 11 2 4 6 8 10
3 6 9 12 2 5 8 11 1 4 7 10 3 6 9 12 2
4 8 12 3 7 11 2 6 10 1 5 9 4 8 12 3 7
5 10 2 7 12 4 9 1 6 11 3 8 5 10 2 7 12
6 12 5 11 4 10 3 9 2 8 1 7 6 12 5 11 4
7 1 8 2 9 3 10 4 11 5 12 6 7 1 8 2 9
8 3 11 6 1 9 4 12 7 2 10 5 8 3 11 6 1
9 5 1 10 6 2 11 7 3 12 8 4 9 5 1 10 6
10 7 4 1 11 8 5 2 12 9 6 3 10 7 4 1 11
11 9 7 5 3 1 12 10 8 6 4 2 11 9 7 5 3
12 11 10 9 8 7 6 5 4 3 2 1 12 11 10 9 8

Table 3.4 shows the CD-value of two methods and related generating vector in
bracket for the case n = 12. It is clear that the leave-one-out glpm can improve the
original glpm, i.e., the designs constructed by the leave-one-out glpm have less dis-
crepancy value. Table 3.5 gives the generating vectors for 4 � n � 31 and s � 5
by the leave-one-out glpm which is modified from P. 99 of Fang and Ma (2001b)
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Table 3.4 CD-value and generating vector of two methods for n = 12

Method s = 2 s = 3 s = 4 s = 5

glmp 0.0506 0.1112

(1, 5) (1, 5, 7)

Leave one out 0.0458 0.0782 0.1211 0.1656

glmp (1, 5) (1, 3, 4) (1, 2, 3, 5) (1, 2, 3, 4, 5)

Table 3.5 The generating vectors for 4 � n � 31 and s � 5 by the leave-one-out glpm

n s = 2 s = 3 s = 4 s = 5

4 (1 2)

6 (1 2) (1 2 3)

7 (1 3)

8 (1 2) (1 2 4)

9 (1 3) (1 3 7) (1 3 7 9)

10 (1 3) (1 2 3) (1 2 3 4) (1 2 3 4 5)

11 (1 5)

12 (1 5) (1 3 4) (1 2 3 5) (1 2 3 4 5)

13 (1 3) (1 3 5)

14 (1 4) (1 2 4) (1 2 4 7)

15 (1 7) (1 3 5) (1 3 5 7)

16 (1 5) (1 3 5) (1 3 4 5) (1 2 3 5 8)

17 (1 5) (1 5 7)

18 (1 7) (1 7 8) (1 3 4 5) (1 2 5 6 8)

19 (1 9) (1 3 7) (1 3 7 9)

20 (1 8) (1 4 5) (1 2 5 8) (1 2 4 5 8)

21 (1 5) (1 3 5) (1 3 5 7) (1 3 5 7 9)

22 (1 7) (1 4 10) (1 4 5 7) (1 3 4 5 7)

23 (1 7) (1 5 7) (1 5 7 11)

24 (1 7) (1 4 11) (1 4 6 9) (1 4 6 9 11)

25 (1 7) (1 3 7) (1 3 5 7) (1 3 5 7 9)

26 (1 8) (1 8 10) (1 4 5 7) (1 2 5 7 8)

27 (1 5) (1 3 5) (1 3 5 11) (1 3 5 9 11)

28 (1 12) (1 8 12) (1 8 9 12) (1 4 5 7 13)

29 (1 11) (1 7 11) (1 7 11 13)

30 (1 12) (1 7 9) (1 4 13 14) (1 4 5 6 14)

31 (1 7) (1 7 9) (1 7 9 15) (1 3 5 11 13)

according to the limitation of the number of factors. Fang and Wang (1981), Fang
and Li (1995) and Fang and Ma (2001b) showed that many nearly uniform designs
obtained by this way have lower discrepancy than the corresponding designs gener-
ated by directly using Algorithm 3.3.1 for many n.
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3.3.3 Good Lattice Point with Power Generator

The good lattice point methodwith the best generating vector can be time-consuming
even for moderate n and s. Korobov (1959) proposed generating vectors of the
form h = (1, h, h2, . . . , hs−1) (mod n), where gcd(n, h j )=1 ( j = 1, . . . , s − 1) and
h < n. He showed that the discrepancy is asymptotically small for good choices of h
andprimen, and this formhas beenusedbyFang (1980),WangandFang (1981), Fang
and Hickernell (1995) in searching low discrepancy designs. Thus, the glpm with
a power generator is recommend, which has a very lower computation complexity.
Denote the set constructed by good lattice point method with a power generator be
pglp set. For given positive integer pair (n, s), we can generate a (nearly) uniform
design Un(ns) by the following algorithm:

Algorithm 3.3.3 (Good Lattice Point Method with Power Generator)

Step 1. Find the candidate set of positive integers

An,s = {a : a < n, gcd(a, n) = 1, anda, a2, . . . , as(˜modn) are distinct}.

If the set An,s is nonempty, go to Step 2; otherwise, we fail to generate a
nearly uniform design by the method.

Step 2. From each a ∈ An,s , construct a U-type design Ua = (uai j ) as follows:

uai j = ia j−1 (˜mod n), i = 1, . . . , n; j = 1, . . . , s.

Step 3. Find a a∗ ∈ An,s such that Ua∗ has the smallest pre-decided discrepancy
over all possible Ua’s with respect to a. This Ua∗ is a (nearly) uniform
design Un(ns).

For each positive integer a < n, if the greatest common divisor of n and a is
one, then the greatest common divisor of n and ai is also one for any nonnegative
integer i , and the j th column of Ua is a permutation of {1, . . . , n}. According to the
limitation that a and n are coprime in the definition An,s , the cardinality of An,s ,
denoted by |An,s |, should not be larger than φ(n). For a prime n, it is shown that
|An,s | = φ(φ(n)) = φ(n − 1) when s = n − 1 and |An,s | falls in [φ(n − 1), n − 1]
when s < n − 1.

For example, φ(31) = 30 and φ(30) = 8. So the cardinality of A31,5 is in
[φ(φ(31)), 31 − 1] = [8, 30]. The numerical calculation shows that the cardinality
of A31,5 equals to 26. In step 3, we need to compare only 26 U-type design can-
didates if we choose n = 31. Many uniform designs were generated by the above
method, for example, Fang (1980) and Fang and Ma (2001b). The leave-one-out
method can be applied to the glpmwith power generator. Fang and Li (1995) showed
that many nearly uniform designs obtained by this way have lower discrepancy than
the corresponding designs generated by directly using Algorithm 3.3.3.

In the literature, Hua and Wang (1981), for example, showed that the best order
of the star discrepancy of U-type design generated by the glpm is O(n−1(log n)s−1)
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and the best order of the star discrepancy of U-type design generated by the glpm
with power generating vector is

O(n−1(log n)s−1 log(log n))

which is slightly worse than O(n−1(log n)s−1). This gives a justification to the glpm
with power generator.

3.4 The Cutting Method

Suppose that we want to obtain a uniform designUn(ns), where n is not a prime. For
small s, the design can be generated by the glpm, but it may have a poor uniformity;
while for large s, the good lattice point method fails to generate such a design, as
the maximum number of factors is less than φ(n)/2 + 1 if the uniform design is
generated by the glpm.

Ma and Fang (2004) suggested the cutting method to generateUn(ns) for any n by
cutting a larger uniform design. The key idea of the cutting method is as follows. Let
U p be a uniform design Up(ps), where n < p or n � p and p or p + 1 is a prime,
and let Pp be its induced design. Let Q be a proper subset of [0, 1]u such that there
are n points of Pp fell on Q, and let Pn denote these n points. From the theory of
quasi-Monte Carlo methods, it is clear that the points in Pn are uniformly scattered
overQ. Particularly, we can choose a suitable rectangle inCs such that there are exact
n points of Pp falling in this rectangle. These n points will form a (nearly) uniform
design by some linear transformations. Figure 3.3 provides an illustrative example,
where p = 47, n = 8, and s = 2. Choosing suitable rectangle such that the number
of runs in the rectangle equals n = 8, and we reset the levels of these runs and obtain
a U-type design with n levels. One can move the rectangle to find the design with
best uniformity. It should be mentioned that the rectangle has wrap-around property.
In fact, the cutting method can be carried out directly on U p as given below.

Algorithm 3.4.1 (Cutting Method)

Step 1. Initial design. For given (n, s), find a Up(ps), where p 
 n and p or
p + 1 is a prime, denote it by U p = (ui j ), and call it the initial design.

Step 2. Row sorting. For l = 1, . . . , s, reorder rows of U p according to its lth
column such that the elements in this column are ordered from 1 to p, and
denote the reordered matrix by U (l)

p = (u(l)
k j ).

Step 3. Cutting. For m = 1, . . . , p, let U (l,m)
p = (u(l,m)

k j ), where

u(l,m)
k j =

⎧⎪⎪⎨
⎪⎪⎩
u(l)
k+m−n−1, j , m > n, k = 1, . . . , n,

u(l)
k j , m � n, k = 1, . . . ,m − 1,

u(l)
k+p−n, j , m � n, k = m, . . . , n,

j = 1, . . . , s.



3.4 The Cutting Method 123

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(a) (b)

Fig. 3.3 Illustration of cutting method

Step 4. New design space. Relabel elements of each column of U (l,m)
p by 1, 2,

. . . , n according to the magnitude of these elements. The resulted matrix
becomes a U-type design U (n, ns) and is denoted by U (l,m). We have ps
such U-type designs.

Step 5. Output design. For a given measure of uniformity D, compare ps designs
U (l,m) obtained in the previous step and choose the one with the smallest
D-value. That one is a nearly uniform design Un(ns).

In Step 1, the glpm is often used to obtain a good initial design if its complexity
is affordable; otherwise, the glpm with power generator is considered since it is the
fastest way to give a good initial U-type design. Now, let us see an example for
illustration.

Example 3.4.1 (Construction of U8(83)) Consider the nearly uniform design
U47(473) obtained by the glpm as an initial design. The generating vector is
(1, 18, 26), and the initial design is

U47 =
⎛
⎝ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
18 36 7 25 43 14 32 3 21 39 10 28 46 17 35 6 24 42 13 31 2 20 38 9
26 5 31 10 36 15 41 20 46 25 4 30 9 35 14 40 19 45 24 3 29 8 34 13

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
27 45 16 34 5 23 41 12 30 1 19 37 8 26 44 15 33 4 22 40 11 29 47
39 18 44 23 2 28 7 33 12 38 17 43 22 1 27 6 32 11 37 16 42 21 47

⎞
⎠

T

.

The centered L2-discrepancy of U47 is 6.57 × 10−4. Consider to generate U8(83)
from the U47. One can choose eight successive runs according to its first, second,
and third factors. By this consideration, we have 47 choices of eight successive runs
according to each factor; thus, there are 141 = 47 ∗ 3 such choices, i.e., U (l,m)

p for
l = 1, 2, 3 and m = 1, . . . , 47, each of which results a U-type design U (l,m) after
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relabeling the elements in each column. Among these 141 U-type designs, the one
with the smallest CD is U (3,9), i.e., l = 3,m = 9. First reorder the initial design
according to its third column, we obtain

U (3)
47 =

⎛
⎝38 29 20 11 2 40 31 22 13 4 42 33 24 15 6 44 35 26 17 8 46 37 28 19
26 5 31 10 36 15 41 20 46 25 4 30 9 35 14 40 19 45 24 3 29 8 34 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

10 1 39 30 21 12 3 41 32 23 14 5 43 34 25 16 7 45 36 27 18 9 47
39 18 44 23 2 28 7 33 12 38 17 43 22 1 27 6 32 11 37 16 42 21 47
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

⎞
⎠

T

.

then we get

U (3,9)
p =

⎛
⎝38 29 20 11 2 40 31 22
26 5 31 10 36 15 41 20
1 2 3 4 5 6 7 8

⎞
⎠ ,

and transfer it into a U-type design

U (3,9) =
⎛
⎝ 7 5 3 2 1 8 6 4
5 1 6 2 7 3 8 4
1 2 3 4 5 6 7 8

⎞
⎠ ,

which is a nearly uniform design U8(83) . The CD-value of U (3,9) is 0.0129. For
n = 8, s = 3, the CD of the design obtained by the glpm is 0.0132. The U8(83)
obtained by the cutting method is better than that by glpm.

The cutting method has several advantages: (i) Given one initial design Up(ps),
one can findmany nearly uniform designsUn(ns) for n < p ; (ii) the designs obtained
by the cutting method may have better uniformity than those directly generated by
the good lattice point method; (iii) the performance of the cutting method does not
depend on specific measure of uniformity. Interested readers are referred to Ma and
Fang (2004) for more examples and comparisons for the cutting method.

3.5 Linear Level Permutation Method

The design space generated by the glpm is a subset of U-type designs U(n, qs)

for given (n, s, q). It may find some ways to improve its performance of uniformity.
Tang et al. (2012) showed that the level permutation technique can improve the space-
filling property of regular designs. Zhou and Xu (2015) showed that the linear level
permutation of good lattice point set can also improve its space-filling property. As a
special type of uniform designs, good lattice point sets can also be used in computer
experiments, which are becoming increasingly popular for researchers to investigate
complex systems (Sacks et al. 1989; Santner et al. 2003; Fang et al. 2006a). Large
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designs are needed for computer experiments; for example,Morris (1991) considered
many simulation models involving hundreds of factors. Good lattice point sets can
be used for large design. In this section, the linear level permutation technique is
considered for improving space-filling property of glp sets under discrepancy and
maximin distance.

Johnson et al. (1990) proposed to use maxmin or minimax distance to measure
the space-filling property for a design. For each U ∈ D(n; qs), denote the q levels
be 0, 1, . . . , q − 1. Define dp(x, y) = ∑s

i=1 |xi − yi |p, p � 1, as the L p-distance of
any two rows x = (x1, . . . , xs) and y = (y1, . . . , ys) inU . When p = 1, the distance
is the rectangular distance, and when p > 1, the L p-distance is the pth power of the
traditional L p-norm. Define the L p-distance of the design U to be

dp(U) = min{dp(x, y) : x 	= y, x, y are rows of U}. (3.5.1)

Johnson et al. (1990) suggested to use max dp(U), the maximin distance criterion,
to measure the space-filling property for U .

Definition 3.5.1 For an integer q � 2, a designU with s factors each having q levels
and qs−k runs is called as a regular qs−k design ifU can be constructed as the product
of a q(s−k) full factorial design M on Zq = {0, 1, . . . , q − 1} and a generator matrix
G, i.e.,

U = MG (mod q). (3.5.2)

Here, we define the regular qs−k design by this way in order to consider distances
between different runs in a regular design. For example, consider q = 3, s = 4, k =
2, and M, G, and U are as follows,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, G =
(
1 0 1 1
0 1 1 2

)
,U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As shown in Tang et al. (2012) and Zhou and Xu (2014), permuting levels for one
or more factors do not change the essence of orthogonality of a design, but it can
change its geometrical structure and space-filling properties. For regular designs, we
consider linear level permutations over Zq = {0, 1, . . . , q − 1} which have a simple
form. Given a regular qs−k design U and an s × 1 vector u, let

Uu = U + u = {x + u (mod q) : x for each row of U} (3.5.3)
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be a new design after a linear level permutation of U over Zq , where

x + u (mod q) = {x1 + u1 (mod q), . . . , xs + us (mod q)}.

When considering all possible linear level permutations, it is sufficient to con-
sider permuting the k-dependent columns and keep the (s − k)-independent columns
unchanged. Here, the independent columns means that there is no column which can
be obtained from the linear combination of other columns by modulo q. Without loss
of generality, we can assume that the first (s − k) columns of a regular qs−k design
are independent columns, i.e., the first (s − k) columns form a full factorial. For a
regular design, we have the following result regarding the L p-distance.

Theorem 3.5.1 For a regular qs−k design U over Zq , a linear level permutation
does not decrease the L p-distance, i.e., dp(Uu) � dp(U), where Uu is defined in
(3.5.3).

The proof of Theorem 3.5.1 can be seen in Zhou and Xu (2015). Theorem 3.5.1
shows that a linear level permutationmay improve the space-filling property under the
maximin distance criterion. There exist designs such that any linear level permutation
neither increases nor decrease the L p-distance. For example, it can be checked that
for any regular 3s−1 design, s � 10, any linear level permutation does not change its
L p-distance.

According to the definition of regular design in (3.5.2), a good lattice point set
U can be constructed from a regular design by replacing 0 with n. Specifically, let
U0 be a regular design whose generator matrix is h and the independent column is
M = (0, 1, . . . , n − 1)T , i.e.,

U0 = Mh (mod n). (3.5.4)

We obtain a good lattice point set U by replacing the first row (0, . . . , 0) in U0 with
the row (n, . . . , n). Thus, good lattice point sets can be treated as a special class of
regular designs, although the elements of a good lattice point set are defined over
the set {1, . . . , n}, which differs from the definition of a regular design in Definition
3.5.1, where elements are from {0, 1, . . . , n − 1}. Section 1.2 is referred for more
clarification.

The replacement of 0 with n changes the geometrical structure and statistical
properties of the design; nevertheless, the following result shows that the L p-distance
remains the same.

Corollary 3.5.1 The good lattice point set U and the regular design U0 in (3.5.4)
have the same L p-distance.

Proof For any nonzero row x = (x1, . . . , xn) ∈ U0, there exists an integer c ∈
{1, . . . , n − 1} such that x = ch (mod n). Then, z = (n − c)h = (n − x1, . . . , n −
xn) (mod n) is a row inU . The L p-distance between x and the row vector (0, . . . , 0)
is equal to the L p-distance between z and the row vector (n, . . . , n). Since the other
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n − 1 design points are same in U and U0 and the n − 1 L p-distances between the
point (0, . . . , 0) and the other n − 1 points have same distribution as the n − 1 L p-
distances between the point (n, . . . , n) and the other n − 1 points, then replacing 0
with n in U0 does not change the L p-distance. The proof is finished.

Consider the linear level permutation (3.5.3) for a good lattice point set but replace
0 with n in the permuted design. From Theorem 3.5.1, any linear level permutation
of U0 in (3.5.4) does not decrease the L1-distance. Similar to Theorem 3.5.1, we
have the following result for good lattice point sets.

Proposition 3.5.1 Let U be a n × s good lattice point set. Any linear level permu-
tation of U does not decrease the L1-distance, i.e., d1(Uu) � d1(U), where Uu is
defined in (3.5.3) with 0 replaced by n.

Example 3.5.1 Let n = 7 and s = 6. Using generator vector h = (1, . . . , 6), we
obtain a good lattice point set

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
5 3 1 6 4 2
6 5 4 3 2 1
7 7 7 7 7 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with d1(U) = 12.Without loss of generality, consider all linear level permutations of
the last five dependent columns of U . Among the 16,807 permuted designs, 16,167
designs have the same L1-distance as U , and 640 designs have L1-distance 13.
For example, using the linear permuting vector u = (0, 4, 1, 5, 2, 6), we obtain the
design

Uu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 6 4 2 7 5
2 1 7 6 5 4
3 3 3 3 3 3
4 5 6 7 1 2
5 7 2 4 6 1
6 2 5 1 4 7
7 4 1 5 2 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with d1(Uu) = 13. Note thatUu is equivalent to the design U + 3 (mod 7), i.e., they
have same design points. Moreover, U + 5 (mod 7) also has L1-distance 13.

Proposition 3.5.1 shows that a linear level permutation can increase the L1-
distance. Usually, the improvement of maximin distance derives the improvement of
uniformity, i.e., the discrepancy may be decreased. However, finding the best linear
level permutation is not an easy task when n and s are large. Example 3.5.1 suggests
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that we can look at some special linear level permutations. Specifically, we consider
simple linear level permutations U + i (mod n) for i = 1, . . . , n − 1, which may
lead to better space-filling designs.

Example 3.5.2 Let n =37 and s =36. The L1-distance and centered L2-discrepancy
of the corresponding glp setU are 342 and 1200.89, respectively. Consider the simple
linear level permutations U + i (˜mod n) for i = 1, . . . , n − 1. Among the permuted
designs, denote U∗

1 and U∗
2 be the design with smallest L1-distance and the design

with smallest CD-value, respectively. Then, the L1-distance and CD-value of U ∗
1 ,

respectively, are 408and203.9, and the L1-distance andCD-valueofU ∗
2 , respectively,

are 342 and61.48. Then, theCD-value is decreased significantly, and the simple linear
level permutation improves the space-filling property. On the other hand, one can
generate K = 104 permuting vectors randomly and get K linear permuted designs.
Among the K designs, the L1-distance and CD-value of U ∗

1 , respectively, are 376
and 79.15, and the L1-distance and CD-value ofU ∗

2 , respectively, are 358 and 63.34.
Sum up the above results

Dp(U) = 342,CD(U) = 1200.89,

Dp(U∗
1) = 408,CD(U∗

1) = 203.9,

Dp(U∗
2) = 342,CD(U∗

2) = 61.48,

Dp(U∗
1) = 376,CD(U∗

1) = 79.15, among K designs

Dp(U∗
2) = 358,CD(U∗

2) = 63.34, among K designs.

Clearly, the space-filling property including uniformity and maximin distance is also
improved.

Example 3.5.3 Let n =89 and s =24.Consider to generate the initial designU by the
glpmwith power generator. The generating element is a = 33 and the corresponding
squared CD-value is 3.4302. Using the permuting vector

u = (0 20 25 64 45 7 82 8 9 31 87 1 12 62 13 49 37 10 55 33 32 52 41 81 ),

one obtains a designUu with squared CD-value 1.7146, which is much less than that
of U . Then, the linear level permutation can improve the uniformity.

Examples 3.5.1–3.5.3 show that the simple linear level permutation U + i
(mod n) is useful. Moreover, with the increase in the number of randomly permuted
vectors K , one can find design with better space-filling property.

Good lattice point sets are easy to generate, and we have shown that a linear
level permutation can increase the minimum distance, which often improves the
uniformity. An interesting question is to find good or best linear level permutations
that maximize theminimum distance. For a small design, we can perform all possible
linear level permutations. Complete search becomes infeasible when the numbers of
runs and factors are large. One simple method is to randomly perform some linear
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level permutations and choose the best one. Another is to use a stochastic algorithm
such as simulation annealing or threshold accepting to find an optimal linear level
permutation, which is shown in the next chapter.

3.6 Combinatorial Construction Methods

In this section, we mainly employ the discrete discrepancy introduced in Sect. 2.5.1
as the uniformity measure. If we can find a design that can achieve the lower bound
of the discrete discrepancy, this design is a uniform design under the discrete dis-
crepancy. Some tight lower bounds for the discrete discrepancy have been presented
in Sect. 2.6.4; thus, we only need to develop theories for finding some methods for
constructing designs that can achieve the lower bounds.

Sections3.6.1 and 3.6.2 focus on the construction of uniform design from com-
binatorial designs. Connection between uniform designs and uniformly resolvable
designs is derived, and several construction approaches are introduced in these
two subsections. Section3.6.3 discusses the construction from saturated orthogonal
arrays. The last section covers some further results, including results on projection
uniformity and nearly U-type designs.

3.6.1 Connection Between Uniform Designs and Uniformly
Resolvable Designs

Application of combinatorial designs in the area of statistical design of experiments
and in the theory of error-correcting codes is quite rich. Moreover, in recent years,
this application is found in experimental and theoretical computer science, com-
munications, cryptography, and networking. In this regard, mention may be made
to Colbourn et al. (1999). In this and subsequent subsections, we focus on a new
application of combinatorial design theory in experimental design theory, i.e., con-
structing uniform designs from uniformly resolvable incomplete block designs. First,
let us introduce some knowledge related to uniformly resolvable designs and show
their relation with uniform designs.

A block is a set of relatively homogeneous experimental conditions. For example,
an experiment in a chemical processmay require two equipment. There perhaps exists
a systematic difference between the equipment. If we are not specially interested in
the effect of two equipment, the equipment can be regarded as a nuisance variable.
In this experiment, each equipment would form a block, because the variability of
the experimental conditions within equipment would be expected to be smaller than
the variability between equipment.

Example 3.6.1 In a medical experiment, the experimenter wants to compare five
drugs. For each drug, ten mice are used and one needs 50 mice. We should concern
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with the variability of the mice in this experiment. It is better that 50 mice are from
the same parents as there are less variability among mice in the same family. It is
more difficult to do so. Instead, one may consider to choose ten families of mice from
each one can choose five mice. Here, every five mice from the same family form a
block. There are ten blocks in this experiment.

Definition 3.6.1 (Block design) Suppose n treatments are arranged into b blocks,
such that the j th block contains k j experimental units and the i th treatment appears
si times in the entire design, i = 1, . . . , n; j = 1, . . . , b.

1. A block design that does not have all the treatments in each block is called
incomplete.

2. A block design is said to be equireplicate if si = s for all i .
3. A block design is said to be proper if k j = k for all j .
4. A block design is said to be binary if every treatment appears in each block at

most once.

Note that the notations of n and s have been previously used as the number of runs
and factors, and this is consistent as we can see from our subsequent discussion.
Equireplicate, proper and binary incomplete block designs have receivedmuch atten-
tion among block designs, and the most widely used one is the balanced incomplete
block design (BIBD, for short).

Definition 3.6.2 An equireplicate, proper, and binary incomplete block design is
called a balanced incomplete block design, denoted by BIBD(n, b, s, k,λ), if it
satisfies that every pair of treatments occurs altogether in exact λ blocks.

It is easy to see that the five parameters satisfy the following two relations:

ns = bk and λ(n − 1) = s(k − 1). (3.6.1)

Hence, we can write a BIBD with the three parameters n, k,λ as BIBD(n, k,λ).

Definition 3.6.3 A block design is said to be resolvable if its blocks can be parti-
tioned into parallel classes, each of which consists of a set of blocks that partition
all the treatments. A parallel class is uniform if every block in the parallel class is
of the same size.

It is obvious that a resolvable block design is also equireplicate and binary. A
resolvable BIBD(n, k,λ) is denoted by RBIBD(n, k,λ).

LetA be a subset containing the different values of the block sizes,R be amultiset
with |R| = |A|, where |A| denotes the cardinality of the set A.

Definition 3.6.4 Suppose that for each k ∈ A there corresponds a positive rk ∈ R
such that there are exactly rk parallel classes of block size k. We use URBD(n,A,R)

to denote a resolvable incomplete block design with uniform parallel classes.
A URBD(n,A,R) with the property that every pair of treatments occurs in exactly
λ blocks is called a uniformly resolvable design (URD) and denoted by URD(n,A,

λ,R).
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For a URD with A = {k1, . . . , kl}, and R = {r1, . . . , rl}, it is obviously that

λ(n − 1) =
l∑

i=1

ri (ki − 1). (3.6.2)

For a thorough discussion of block designs and the general background on design
theory, the reader may refer to Caliński and Kageyama (2000) and Beth et al. (1999).
For the self-completeness of the contents and for reading convenience, in the fol-
lowing there are some overlapping examples and discussion with Section 3.5 of the
book by Fang et al. (2006a). Let us see an example of URD.

Example 3.6.2 (A URD(6, {3, 2}, 1, {1, 3})) Suppose that n = 6 treatments are
arranged into b = 11 blocks of size k j from A = {3, 2} (i.e., k1 = 3, k2 = 2), such
that each treatment appears in exactly four parallel classes, which are denoted by
P1, P2, P3 and P4, and shown below (in each parallel class, a {· · · } represents a
block).

P1 = {{1, 2, 3}, {4, 5, 6}};
P2 = {{1, 4}, {2, 5}, {3, 6}};
P3 = {{3, 5}, {1, 6}, {2, 4}};
P4 = {{2, 6}, {3, 4}, {1, 5}}.

Note that every pair of treatments occurs in exactly λ = 1 block, so it is a
URD(6, {3, 2}, 1, {1, 3}).

We now establish the relationship between U-type designs and URDs. To illus-
trate this, suppose that there exists a URD(n,A,λ,R). For convenience, let 1, . . . , n
denote the n treatments, let A = {n/q1, . . . , n/qs}, R = {1, . . . , 1}, and Pj denote
the parallel class of block size n/q j , j = 1, . . . , s. Then, a U-type design U ∈
U(n; q1, . . . , qs) can be constructed as follows.

Algorithm 3.6.1 (URD–UD)

Step 1. Assign a natural order 1, . . . , q j to the q j blocks in each parallel class Pj

( j = 1, . . . , s).
Step 2. For each Pj , construct aq j -level column u j = (ui j ) as follows: Setui j = u,

if treatment i is contained in the uth block of Pj , u = 1, . . . , q j .
Step 3. Combine the s columns constructed from Pj for j = 1, . . . , s to form a

U-type design U ∈ U(n; q1, . . . , qs).
From this method, it is easy to note that the number of coincidences between

any two distinct rows ui and u j of U is just the number of blocks in which the
pair of treatments i and j appears together; thus, it is a constant λ, where λ =
(
∑s

j=1
n
q j

− s)/(n − 1) from (3.6.2). According to Theorem 2.6.19, the resulting
designU is a uniform designUn(q1, . . . , qs) under the discrete discrepancy criterion.
Theorem 3.6.1 gives a summary of the above explanation.
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Now, let us take the URD(6, {3, 2}, 1, {1, 3}) given in Example 3.6.2 for an illus-
tration.

Example 3.6.3 (An U6(2133)) From the four parallel classes of the URD(6, {3, 2},
1, {1, 3}) given in Example 3.6.2, four columns of U can be constructed as follows.
In P1, there are two blocks {1, 2, 3} and {4, 5, 6}. We put “1” in the cells located in
rows 1, 2, and 3 of the first column ofU and “2” in the cells located in rows 4, 5, and
6 of that column; thus, we obtain one two-level column of U . Similarly, from P2, we
put “1” in the cells located in rows 1 and 4 of the second column of U , “2” and “3”
in the cells located in rows 2, 5 and 3, 6 of that column, respectively. One three-level
column of U is thus generated. In this way, four columns are then constructed from
these four parallel classes, which form a U-type design U as follows:

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 2 3
1 2 3 1
1 3 1 2
2 1 3 2
2 2 1 3
2 3 2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and it is easy to check that U is a U6(2133).

On the contrary, given a uniform design with constant number of coincidences
between any two rows, we can construct a URD. Let U be such a uniform design
Un(q1, . . . , qs), the construction method can be carried out as follows:

Algorithm 3.6.2

Step 1. For each column u j ofU , construct a parallel class consisting of q j disjoint
blocks each of size n/q j as follows: If the i th element of u j takes the uth
level, then let the uth block contain i , i = 1, . . . , n; u = 1, . . . , q j .

Step 2. For j = 1, . . . , s, joining the s parallel classes constructed in Step 1
together results a URBD(n,A,R), where A = {n/q1, . . . , n/qs} and
R = {1, . . . , 1}.

Because U has a constant number of coincidences between any two rows, it is
easy to verify that the resulting URBD(n,A,R) is a URD(n,A,λ,R) with λ =
(
∑s

j=1 n/q j − s)/(n − 1).
Note that Liu andFang (2005) studied the uniformity of a certain kind of resolvable

incomplete block designs and proposed amethod for constructing such uniformblock
designs. In fact, their uniform block designs are just the URDs here, and the above
method is the one they proposed.

Formally, we have the following theorem which plays an important role in the
above construction methods.

Theorem 3.6.1 Under the discrete discrepancy, there exists a Un(q
r1
1 . . . qrll ) design

U with δi j (U) = δ for all1 � i 	= j � n if andonly if there exists aURD(n,A, δ,R),
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where A = {n/q1, . . . , n/ql}, R = {r1, . . . , rl}, and δ = [∑l
j=1 r j (n/q j − 1)]/

(n − 1).

The equivalence between a URD(n,A, δ,R) and a Un(q
r1
1 . . . qrll ) with constant

number of coincidences between any two rows has been illustrated in Example 3.6.3.
It is easy to see that there are some advantages of this approach to the construction
of uniform designs:

1. We can find many uniform designs without any computational search.
2. The method can construct both symmetric and asymmetric uniform designs.
3. The method can be employed to generate supersaturated uniform designs. The

latter will be introduced in Chap.7.

In a factorial design, two columns are called fully aliased if one column can be
obtained from another by permuting levels. For given (n, s, q), we also hope that
any two columns of the resulting uniform design are not fully aliased, because one
cannot use two fully aliased columns to accommodate two different factors. Hence
when constructing a uniform design in U(n; qs), we need to limit the number of any
of the q2 level-combinations between any two distinct columns and to avoid fully
aliased columns. We shall always keep this remark in the construction of uniform
designs, especially via combinatorial designs.

Before closing this subsection, let us now illustrate another example to construct
a uniform design from a URD.

Example 3.6.4 Suppose we have a URD(12, {2, 3}, 1, {5, 3}) with the treatment set
V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and the eight parallel classes below:

P1 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}};
P2 = {{1, 3}, {2, 4}, {5, 7}, {6, 8}, {9, 11}, {10, 12}};
P3 = {{1, 4}, {2, 3}, {5, 8}, {6, 7}, {9, 12}, {10, 11}};
P4 = {{1, 7}, {2, 8}, {3, 12}, {4, 9}, {5, 10}, {6, 11}};
P5 = {{3, 5}, {4, 6}, {1, 10}, {2, 11}, {7, 12}, {8, 9}};
P6 = {{1, 5, 9}, {2, 6, 10}, {3, 7, 11}, {4, 8, 12}};
P7 = {{1, 6, 12}, {2, 7, 9}, {3, 8, 10}, {4, 5, 11}};
P8 = {{1, 8, 11}, {2, 5, 12}, {3, 6, 9}, {4, 7, 10}}.

Thorough Algorithm 3.6.1, a U12(6543), which is shown in Table 3.6, can be con-
structed from this URD. On the contrary, we can also form the corresponding
URD(12, {2, 3}, 1, {5, 3}) from this U12(6543) following Algorithm 3.6.2.

3.6.2 Construction Approaches via Combinatorics

Algorithm 3.6.1 and Theorem 3.6.1 ensure that we can construct uniform designs
fromURDs, and the latter have been studied extensively in combinatorial design the-
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Table 3.6 An U12(6543)

Row 1 2 3 4 5 6 7 8

1 1 1 1 1 3 1 1 1

2 1 2 2 2 4 2 2 2

3 2 1 2 3 1 3 3 3

4 2 2 1 4 2 4 4 4

5 3 3 3 5 1 1 4 2

6 3 4 4 6 2 2 1 3

7 4 3 4 1 5 3 2 4

8 4 4 3 2 6 4 3 1

9 5 5 5 4 6 1 2 3

10 5 6 6 5 3 2 3 4

11 6 5 6 6 4 3 4 1

12 6 6 5 3 5 4 1 2

ory. This subsection will introduce several kinds of combinatorial designs (most of
which can reduce to URDs) and employ them to construct uniform designs through
Algorithm 3.6.1. Examples will be given to illustrate these block designs. A–E intro-
duce the approaches for constructing symmetrical uniform designs, and F–H for
asymmetrical cases. Besides these approaches discussed in the following subsec-
tions, there are some miscellaneous known results on the existence of URDs; readers
can refer to Fang et al. (2001, 2004a) and the references therein for these results.

A. Construction via Resolvable Balanced Incomplete Block Designs

From the definition of RBIBD introduced in the above subsection, we know that
an RBIBD(n, k,λ) is in fact a special URD(n,A,λ,R) with A = {k} and R =
{s}, where s = λ(n − 1)/(k − 1) from (3.6.1). Thus, RBIBDs can be employed to
construct symmetrical uniform designs, Un((

n
k )

s)’s; see Fang et al. (2002b, 2003a,
2004a) for the details. These works generalized the results of Nguyen (1996) and
Liu and Zhang (2000). Their results can be summarized as the following theorem.

Theorem 3.6.2 Suppose that the discrete discrepancy is employed as the measure
of uniformity. The following Un(qs) can be constructed by Algorithm 3.6.1, where
n,m, k are positive integers and their values depend on the corresponding situation.

(a) If n = 2m is even, then a Un(mk(n−1)) exists, where k ia a positive integer.
(b) If n = 6m + 3, then a Un((2m + 1)

n−1
2 ) exists.

(c) If n = 3m and n 	= 6, then a Un(mn−1) exists.
(d) If n = 12m + 4, then a Un((3m + 1)

n−1
3 ) exists.

(e) If n = 4m, then a Un(mn−1) exists.
(f) If n = 6m and n 	= 174, 240, then a Un(mn−1) exists.
(g) If n = 6m, then a Un(m2(n−1)) exists.
(h) If n = 20m + 5 and n 	= 45, 225, 345, 465, 645, then a Un((m + 1)

n−1
4 ) exists.

(i) If n = 5m and n 	= 10, 15, 70, 90, 135, 160, 190, 195, then a Un(mn−1) exists.
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Table 3.7 An RBIBD(10, 2, 1)

P1 P2 P3 P4 P5 P6 P7 P8 P9

b j
1 {1, 10} {2, 10} {4, 9} {3, 7} {2, 8} {5, 7} {5, 6} {1, 7} {1, 6}

b j
2 {8, 9} {5, 8} {3, 10} {4, 10} {6, 9} {2, 4} {3, 4} {2, 5} {2, 7}

b j
3 {4, 5} {3, 6} {7, 8} {1, 2} {5, 10} {1, 9} {1, 8} {4, 6} {4, 8}

b j
4 {6, 7} {7, 9} {2, 6} {5, 9} {1, 3} {3, 8} {7, 10} {3, 9} {3, 5}

b j
5 {2, 3} {1, 4} {1, 5} {6, 8} {4, 7} {6, 10} {2, 9} {8, 10} {9, 10}

b j
i : i th block in the j th parallel class.

Table 3.8 A U10(59) derived from Table 3.7

Row 1 2 3 4 5 6 7 8 9

1 1 5 5 3 4 3 3 1 1

2 5 1 4 3 1 2 5 2 2

3 5 3 2 1 4 4 2 4 4

4 3 5 1 2 5 2 2 3 3

5 3 2 5 4 3 1 1 2 4

6 4 3 4 5 2 5 1 3 1

7 4 4 3 1 5 1 4 1 2

8 2 2 3 5 1 4 3 5 3

9 2 4 1 4 2 3 5 4 5

10 1 1 2 2 3 5 4 5 5

Tables 3.7 and 3.8 show us an example of RBIBD and the corresponding uniform
design.

B. Construction via Room Squares

The “roomsquare” is an important concept used in combinatorial design theory. For a
comprehensive introduction, reference can be made to Colbourn and Dinita (1996).
Fang et al. (2002a) applied it to the construction of symmetrical supersaturated
designs, which are in fact uniform designs. Now, let us give the following definition.

Definition 3.6.5 Let V be a set of n elements (treatments). A room square of side
n − 1 (on treatment set V) is an (n − 1) × (n − 1) array, F , which satisfies the
following properties:

1. Every cell of F either is empty or contains an unordered pair of treatments
from V .

2. Each treatment of V occurs once in each row and column of F .
3. Every unordered pair of treatments occurs in precisely one cell of F .

Table 3.9 illustrates a room square of side 7. From this table and Definition 3.6.5,
it can be easily observed that if we take the unordered pair of treatments as blocks,
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Table 3.9 A room square of side 7

81 26 57 34

45 82 37 61

72 56 83 41

13 67 84 52

63 24 71 85

74 35 12 86

15 46 23 87

Table 3.10 Uniform designs derived from Table 3.9

Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 4 4 1 3 3 1 1 3 4 3 3 2 2

2 2 2 1 4 2 3 3 3 1 3 1 3 4 3

3 4 3 3 1 1 2 3 4 3 1 4 1 4 1

4 4 1 4 3 2 1 2 2 4 3 2 4 2 1

5 3 1 2 4 4 2 1 2 2 4 4 2 1 3

6 2 4 2 2 1 4 2 4 2 2 1 4 3 2

7 3 3 1 2 3 1 4 3 4 2 3 1 1 4

8 1 2 3 3 4 4 4 1 1 1 2 2 3 4

then the blocks from each row of a room square of side n − 1 form a parallel class,
and the resulting n − 1 parallel classes form an RBIBD(n, 2, 1). Similarly, another
RBIBD(n, 2, 1) can be obtained when regarding each column of the room square as
a parallel class. And joining these two RBIBD together, we have an RBIBD(n, 2, 2).
Thus, we have

Theorem 3.6.3 Given a room square of side n − 1, two RBIBD(n, 2, 1)’s and one
RBIBD(n, 2, 2) can be obtained, and hence, two Un((

n
2 )

n−1)’s and one Un((
n
2 )

2n−2)

can be constructed through Algorithm 3.6.1, and there are no fully aliased columns
in these uniform designs.

Table 3.10 illustrates two uniform designsU8(47) and one uniform designU8(414)
(listed as columns 1, . . . , 7, columns 8, . . . , 14 and columns 1, . . . , 14, respectively)
constructed from the room square in Table 3.9. More results on this approach can be
found in Fang et al. (2002a).

C. Construction via Resolvable Packing Designs

The resolvable packing design has been extensively studied in combinatorial design
theory. Fang et al. (2004c) established a strong link between resolvable packing
designs and supersaturated designs and employed such designs to construct super-
saturated designs. In fact, the supersaturated designs constructed by their method are
uniform designs under the discrete discrepancy. Now, let us introduce some concepts
related to packing designs.
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Table 3.11 A resolvable
2-(6, 2, 1) packing design

V {1, 2, 3, 4, 5, 6}

B P1 P2 P3 P4 P5

b j
1 {1, 2} {1, 3} {1, 4} {1, 5} {1, 6}

b j
2 {3, 4} {2, 5} {2, 6} {2, 4} {2, 3}

b j
3 {5, 6} {4, 6} {3, 5} {3, 6} {4, 5}

b j
i : i th block in the j th parallel class.

Table 3.12 U6(35) derived
from Table 3.11

Row 1 2 3 4 5

1 1 1 1 1 1

2 1 2 2 2 2

3 2 1 3 3 2

4 2 3 1 2 3

5 3 2 3 1 3

6 3 3 2 3 1

Definition 3.6.6 Let n � p � t . A t-(n, p, 1) packing design is a pair (V,B), where
V is a set of n elements (treatments) and B is a collection of p-element subsets
of V (blocks), such that every t-element subset of V occurs in at most one block
of B. The packing number N (n, p, t) is the maximum number of blocks in any
t-(n, p, 1) packing design. And a t-(n, p, 1) packing design (V,B) is optimal if
|B| = N (n, p, t).

For more discussions about packing designs, refer to Stinson (1996). In particular,
Stinson (1996) showed that

Lemma 3.6.1 (Theorem 33.5 of Stinson 1996) The packing number has the follow-
ing upper limit

N (n, p, t) �
⌊
n

p

⌊
n − 1

p − 1
· · ·
⌊
n − t + 1

p − t + 1

⌋⌋⌋
,

where �x� denotes the integer part of x.
From Definition 3.6.6, it is easy to see that, given a resolvable packing design, a

U-type design can be constructed following Algorithm 3.6.1. Table 3.11 provides
us a resolvable 2-(6, 2, 1) packing design (V,B), where V = {1, 2, 3, 4, 5, 6}, B is
partitioned into five parallel classes, each of which consists of three disjoint blocks
of size 2, and every unordered pair of elements occurs in exactly one block ofB. Note
that this design is an optimal 2-(6, 2, 1) packing design, because B contains all the
different blocks of size 2 and adding one more block, e.g. {k, l}, to B will cause pair
{k, l} appearing in two blocks ofB. Table 3.12 gives us the U-type design constructed
from this resolvable optimal packing design. In fact, it is a uniform design U6(35).
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However in general, the property of constant number of coincidences between any
two rows of the resulting U-type designs is not ensured, as we are uncertain whether
every pair of treatments occurs in the same number of blocks of the packing design.
A natural question arises about the uniformity of the U-type deigns constructed from
resolvable packing designs and other properties of such U-type designs. To answer
these questions, let us first give a definition of largest frequency.

Definition 3.6.7 Let U(n; qs; r) be a subset of U(n; qs) such that for each design
in U(n; qs; r), any of the q2 level-combinations in any two columns appears at most
r times. The number r is called the largest frequency of the design.

From Definitions 3.6.6 and 3.6.7, Fang et al. (2004c) obtained the following
connection between designs in U(n; qs; r) and resolvable packing designs.

Theorem 3.6.4 The existence of a design in U(n; qs; r), where 2 � p = n/q �
q and 1 � r < p, is equivalent to the existence of a resolvable (r + 1)-(n, p, 1)
packing design with s parallel classes.

With this connection and the known result on the upper bound of the packing
number N (n, p, t) in Lemma 3.6.1, Fang et al. (2004c) gave the upper bound of the
number of columns, s, of the resulting design in U(n; qs; r).
Theorem 3.6.5 For given (n, q, r) satisfying 2 � p = n/q � q and 1 � r < p, the
upper bound of s is given by

s �
⌊
n − 1

p − 1

⌊
n − 2

p − 2
· · ·
⌊
n − r

p − r

⌋⌋⌋
,

where �x� denotes the integer part of x.
Note that for any design in U(n; qs; 1), the number of coincidences between any

two rows is at most one. Then from Theorems 2.6.20, 3.6.4, and 3.6.5, we have

Theorem 3.6.6 For 2 � p = n/q � q and s � �(n − 1)/(p − 1)�, any designU ∈
U(n; qs; 1) is a Un(qs) and can be constructed from resolvable 2-(n, p, 1) packing
designs.

This theorem tells us that any design in U(n; qs; 1) is uniform regardless of
whether s achieves the upper bound given in Theorems 3.6.5 or not. When s achieves
the upper bound, the corresponding resolvable packing design is optimal.

D. Construction via Large Sets of Kirkman Triple Systems

The large set of Kirkman triple systems is an important concept in combinatorial
design theory (see Stinson 1991) which can be regarded as a kind of resolvable
optimal packing design and can be used to construct uniform designs in U(n; qs; 2).
Definition 3.6.8 A Steiner triple system of order n, denoted by STS(n), is a pair
(V,B), where V is a set containing n elements (treatments) and B is a collection of
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Table 3.13 An LKTS(9)

V {1, 2, 3, 4, 5, 6, 7, 8, 9}
Pi
1 Pi

2 Pi
3 Pi

4

B1 {{124}{356}{789}} {{257}{468}{139}} {{347}{158}{269}} {{167}{238}{459}}

B2 {{235}{467}{189}} {{361}{578}{249}} {{451}{268}{379}} {{271}{348}{569}}

B3 {{346}{571}{289}} {{472}{618}{359}} {{562}{378}{419}} {{312}{458}{679}}

B4 {{457}{612}{389}} {{513}{728}{469}} {{673}{418}{529}} {{423}{568}{719}}

B5 {{561}{723}{489}} {{624}{138}{579}} {{714}{528}{639}} {{534}{678}{129}}

B6 {{672}{134}{589}} {{735}{248}{619}} {{125}{638}{749}} {{645}{718}{239}}

B7 {{713}{245}{689}} {{146}{358}{729}} {{236}{748}{159}} {{756}{128}{349}}

Note: {124} represents the block {1, 2, 4} etc.

three-element subsets of V , called triples or blocks, such that every unordered pair of
V appears in exactly one block. IfB is resolvable, we call the STS(n) aKirkman triple
system, which is denoted by KTS(n). A large set of KTS(n), denoted by LKTS(n),
is a collection of (n − 2) pairwise disjoint KTS(n)’s on the same set V .

Note that from this definition, a KTS(n) is in fact a resolvable optimal 2-(n, 3, 1)
packing design. In such a design, there are exactly n(n − 1)/6 triples which contain
all the

(n
2

)
unordered pairs, and all the triples are partitioned into (n − 1)/2 parallel

classes. As an LKTS(n) contains all the
(n
3

) = (n − 2)[n(n − 1)/6] different triples
of V , it is a resolvable optimal 3-(n, 3, 1) packing design. It can be also observed
that a KTS(n) is an RBIBD(n, 3, 1), and an LKTS(n) is an RBIBD(n, 3, n − 2),
which is formed by the (n − 2) RBIBD(n, 3, 1)’s. In this case, q = n/3 is a positive
integer. Hence, from the discussions in the above subsections, we have

Theorem 3.6.7 Given an LKTS(n) (n � 9), let q = n/3 and m = (n − 1)/2, then

1. (n − 2)Un(qm)’s in U(n; qm; 1) and one Un(q(n−2)m) in U(n; q(n−2)m; 2) can be
constructed through Algorithm 3.6.1.

2. The number of columns in the Un(q(n−2)m) or any of the Un(qm)’s attains the
upper bound given in Theorem 3.6.5.

3. For 1 < l < n − 2, a Un(qlm) in U(n; qlm; 2) can be formed by any l of the
Un(qm)’s, and here2 is the smallest value of r forU(n; qs; r), for given (n, q, s) =
(n, n/3, lm).

Tables 3.13 and 3.14 provide us an example of an LKTS(9) and the corresponding
uniform designs. There are seven parts each having four columns in theU9(328) given
in Table 3.14. This design has the following properties:

(a) Each part is an L9(34), i.e., r = 1.
(b) For any l = 2, . . . , 7, the design formed by the first 4l columns is aU9(34l)with

the largest frequency r = 2.
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Table 3.14 U9(34s)(1 � s � 7) derived from Table 3.13
Row 1 2 3 4 5 6 7

1 1 3 2 1 3 1 1 1 2 2 3 1 2 1 2 3 1 2 1 3 2 3 1 2 1 1 3 2

2 1 1 3 2 1 3 2 1 3 1 1 1 2 2 3 1 2 1 2 3 1 2 1 3 2 3 1 2

3 2 3 1 2 1 1 3 2 1 3 2 1 3 1 1 1 2 2 3 1 2 1 2 3 1 2 1 3

4 1 2 1 3 2 3 1 2 1 1 3 2 1 3 2 1 3 1 1 1 2 2 3 1 2 1 2 3

5 2 1 2 3 1 2 1 3 2 3 1 2 1 1 3 2 1 3 2 1 3 1 1 1 2 2 3 1

6 2 2 3 1 2 1 2 3 1 2 1 3 2 3 1 2 1 1 3 2 1 3 2 1 3 1 1 1

7 3 1 1 1 2 2 3 1 2 1 2 3 1 2 1 3 2 3 1 2 1 1 3 2 1 3 2 1

8 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2

9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(c) For given (n, q, r) = (9, 3, 2), the largest value of s is 28, which is attained by
this U9(328).

(d) For given (n, q, s) = (9, 3, 4l), l = 2, . . . , 7, the smallest value of r is 2 which
is attained by the U9(34l).

Note that these designs are all uniform designs. This is a magic result! Fang
et al. (2004c) further showed that under some other criteria, e.g. E( fNOD ) that will
be defined in Sect. 7.2, these designs have a slightly better performance than that
obtained by Yamada et al. (1999) and Fang et al. (2000) through numerical searches.
More detailed results on the designs derived from the resolvable packing designs and
LKTS can be found in Fang et al. (2004c).

E. Construction via Super-Simple Resolvable t-designs

Super-simple resolvable t-designs can also be used to generate uniform designs in
U(n; qs; r). Let us introduce some concepts of resolvable t-designs.

Definition 3.6.9 A t-design, denoted by Sλ(t, k, n), is an ordered pair (V,B), where
V is a set of n elements (treatments) and B is a collection of
k-subsets of V , called blocks, such that every t-subset of V is contained in exactly λ
blocks of B. When t = 2, a Sλ(t, k, n) is just a balanced incomplete block design.
An Sλ(t, k, n) is called simple if it contains no repeated blocks. A simple Sλ(t, k, n)

is called super-simple if no two blocks have more than two points in common. A
resolvable Sλ(t, k, n) is denoted by RSλ(t, k, n).

The reader can refer to Beth et al. (1999) for more discussions about super-simple
Sλ(t, k, n). From this definition, we can see that an S1(2, k, n), an S1(3, 4, n) and a
simple Sλ(2, 3, n) are all super-simple. Also, based on what have been discussed in
Sect. 3.6.1, Fang et al. (2004b) established the following link.

Theorem 3.6.8 The existence of a design in U(n; qs) with λ coincidences among
any t distinct rows is equivalent to the existence of an RSλ(t, n/q, n) with s parallel
classes.
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Furthermore, if we use a super-simple RSλ(2, k, n) to construct aU (n; qs) design,
it is easy to see that the largest frequency of the resulting U (n; qs) is 2, i.e., this
design is in U(n; qs; 2). Fang et al. (2004b) obtained the following result.

Theorem 3.6.9

1. The existence of a design in U(n; qs; 2) is equivalent to the existence of a super-
simple RSλ(2, n/q, n) with s parallel classes, where λ = s(n − q)/(q(n − 1)).

2. Given a super-simple RSλ(2, k, n), the design in U(n; qs; 2) constructed through
Algorithm 3.6.1 is a uniform design and has no fully aliased columns.

Example 3.6.5 shows us a super-simple RS2(2, 3, 12) and the uniform design
generated from it for illustration. More results can be found in Fang et al. (2004b),
for example, a RS2(2, 3, 9), a RS1(3, 4, 16) and the corresponding U9(38; 2),
U16(435; 2), respectively.
Example 3.6.5 For n = 12, V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and one given
parallel class P1, which contains four blocks b11 = {1, 2, 4}, b12 = {3, 6, 8}, b13 =
{5, 9, 10}, and b14 = {7, 11, 12}. Applying the permutation group generated by
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)(12) to this parallel class, then 11 parallel classes are
obtained each containing four blocks. For example, based on the permutation group
generated by (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)(12), adding one to each element of P1
results the parallel classes P2 = {{2, 3, 5}, {4, 7, 9}, {6, 10, 11}, {8, 1, 12}}. Every
unordered pair of V appears in exactly two blocks, and any triple of V appears in at
most one parallel class. So a super-simple RS2(2, 3, 12) is formed which is shown
in Table 3.15. From this super-simple RS2(2, 3, 12), a uniform design U12(411; 2)
is obtained by Algorithm 3.6.1 and is listed in Table 3.15 also. Extension of this
example to the general case is straightforward.

F. Construction via Resolvable Group Divisible Designs

Fang et al. (2001) employed resolvable group divisible designs (RGDDs) for con-
structing both symmetrical and asymmetrical (mixed-level) uniform designs.

Definition 3.6.10 Let k and g be positive integers, and let n be a multiple of g. A
group divisible design of index one, order n, and type gn/g , denoted by k-GDD(gn/g),
is a triple (V,G,B), where

1. V is a set of n treatments.
2. G is a partition of V into groups of size g.
3. B is a family of blocks of V , such that each block is of size k.
4. Every pair of treatments occurs in exactly one block or group, but not both.

If the blocks of a GDD can be partitioned into parallel classes, the GDD is then called
a resolvable GDD, denoted by k-RGDD(gn/g). Obviously when g = 1, a k-RGDD
is in fact a RBIBD(n, k, 1).

Example 3.6.6 Start from the URD(6, {3, 2}, 1, {1, 3}) in Example 3.6.2 and take

V = {1, 2, 3, 4, 5, 6}, G = P1 and B =
4⋃

i=2
Pi , we can get a 2-RGDD(32).
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Table 3.15 A U12(411; 2) and the corresponding simple RS2(2, 3, 12)
Row 1 2 3 4 5 6 7 8 9 10 11

1 1 4 3 3 2 4 2 3 1 2 1

2 1 1 4 3 3 2 4 2 3 1 2

3 2 1 1 4 3 3 2 4 2 3 1

4 1 2 1 1 4 3 3 2 4 2 3

5 3 1 2 1 1 4 3 3 2 4 2

6 2 3 1 2 1 1 4 3 3 2 4

7 4 2 3 1 2 1 1 4 3 3 2

8 2 4 2 3 1 2 1 1 4 3 3

9 3 2 4 2 3 1 2 1 1 4 3

10 3 3 2 4 2 3 1 2 1 1 4

11 4 3 3 2 4 2 3 1 2 1 1

12 4 4 4 4 4 4 4 4 4 4 4

B P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

b j
1 {124} {235} {346} {457} {568} {679} {78t0} {89t1} {9t01} {t0t12} {t113}

b j
2 {368} {479} {58t0} {69t1} {7t01} {8t12} {913} {t024} {t135} {146} {257}

b j
3 {59t0} {6t0t1} {7t11} {812} {923} {t034} {t145} {156} {267} {378} {489}

b j
4 {7t1t2} {81t2} {92t2} {t03t2} {t14t2} {15t2} {26t2} {37t2} {48t2} {59t2} {6t0t2}

b j
i : i th block in the j th parallel class; ti : 10 + i , for i = 0, 1, 2.

Suppose (V,G,B) is a k-RGDD(gn/g). Let B∗ = G⋃B, then B∗ can be regarded
as a block design, where the groups of G just form a uniform parallel class with
block size g. From the definition of GDD, we can see that every pair of elements
of V occurs in exactly one block of B∗. Thus from the resolvability and uniformity
of the original RGDD, the block design B∗ is a URD and can be used to generate
a uniform design. Fang et al. (2001) gave the following theorem and a lot of new
uniform/supersaturated designs.

Theorem 3.6.10 If there exists a k-RGDD(gn/g), then there exists a URD(n,

{g, k}, 1, {1, rk}), where rk = (n − g)/(k − 1); as a result, there exists a Un((
n
g
)
1

( nk )
n−g
k−1 ).

G. Construction via Latin Squares

Latin squares are playing an important role in experimental design over a very long
time. Here, we employ Latin squares to construct k-RGDD(gk) designs as well as
uniform designs. Now, let us review the definition of Latin square.

Definition 3.6.11 A g × g matrix with g symbols as its elements is called a Latin
square of order g, denoted by L = (Li j ), if each symbol appears in each row as well
as each column once and only once.We call this property a Latin property. Two Latin
squares are said to be orthogonal if their superposition yields g2 different ordered
pair. A set of Latin squares is called a set of pairwise orthogonal Latin squares if
any pair of which are orthogonal.
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Table 3.16 Two orthogonal
Latin squares of order 4

No. 1 No. 2

8 6 7 5 9 11 12 10

5 7 6 8 11 9 10 12

6 8 5 7 12 10 9 11

7 5 8 6 10 12 11 9

Let N (g) denote the maximum number of pairwise orthogonal Latin squares of
order g. For the known results on N (g), the reader can refer to Colbourn and Dinita
(1996). Fang et al. (2001) showed that

Theorem 3.6.11 If N (g) � k − 1, then there exists a k-RGDD(gk); thus, we have
a Ukg(k1gg) with n = kg runs and g + 1 factors one having k levels and the other g
factors having g levels.

Let us see an example of constructing an RGDD and a uniform design from
pairwise orthogonal Latin squares.

Example 3.6.7 Take the two orthogonal Latin squares of order 4 shown in Table 3.16
as an example; we may construct a 3-RGDD(43) (V,G,B) as follows. Here, V =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, G = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}},
B =

4⋃
i=1

Pi and

P1 = {{1, 8, 9}, {2, 6, 11}, {3, 7, 12}, {4, 5, 10}};
P2 = {{1, 5, 11}, {2, 7, 9}, {3, 6, 10}, {4, 8, 12}};
P3 = {{1, 6, 12}, {2, 8, 10}, {3, 5, 9}, {4, 7, 11}};
P4 = {{1, 7, 10}, {2, 5, 12}, {3, 8, 11}, {4, 6, 9}}.

From this RGDD, a U12(3144) can be constructed as shown in Table 3.17.

Table 3.17 A U12(3144) Row 1 2 3 4 5

1 1 1 1 1 1

2 1 2 2 2 2

3 1 3 3 3 3

4 1 4 4 4 4

5 2 4 1 3 2

6 2 2 3 1 4

7 2 3 2 4 1

8 2 1 4 2 3

9 3 1 2 3 4

10 3 4 3 2 1

11 3 2 1 4 3

12 3 3 4 1 2
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H. Construction via Resolvable Partially Pairwise Balanced Designs

Fang et al. (2006b) proposed to employ the resolvable partially pairwise balanced
design for constructinguniformdesignswith the property that theHammingdistances
between any two rows differ by at most one. First, let us review some related
terminologies.

Definition 3.6.12 Let V be a set of n treatments and B be a family of blocks of V
with sizes from a set A, such that every pair of distinct treatments occurs exactly
in λ1 or λ2 blocks. This design is called a partially pairwise balanced design of
order n, with block size setA, and is denoted by (n,A;λ1,λ2)-PPBD. A resolvable
PPBD with mutually distinct and uniform parallel classes is denoted by R̃PPBD (cf.
Definition 3.6.3).

When λ1 = λ2, an R̃PPBD is a URD with mutually distinct parallel classes. It
should be emphasized that for given parameters n, A = {k1, . . . , kl}, λ1 and λ2, the
number of parallel classes of an (n,A;λ1,λ2)-R̃PPBD is not a constant, but depends
on its construction. In view of this, when an R̃PPBD contains ri parallel classes of
block size ki (i = 1, . . . , l), we say that it is of class type kr11 . . . krll .

Example 3.6.8 Suppose V = {1, . . . , 8}. Let λ1 = 2, λ2 = 1, andA = {4, 2}. Then,
the following blocks form a (8, {4, 2}; 2, 1)-R̃PPBD with class type 4421.

{1, 3, 5, 7}, {2, 4, 6, 8},
{1, 3, 6, 8}, {2, 4, 5, 7},
{1, 4, 5, 8}, {2, 3, 6, 7},
{1, 4, 6, 7}, {2, 3, 5, 8},

{1, 2}, {3, 4}, {5, 6}, {7, 8}.

Following Algorithm 3.6.1, given an R̃PPBD, a U-type design can be generated,
and it can be easily seen that the resulting design has its numbers of coincidences
between any two rows taking only two values λ1 and λ2. Thus based on Theorems
2.6.20, we have

Theorem 3.6.12 Given an (n, {k1, . . . , kl};λ1,λ2)-R̃PPBD of class type kr11 . . . krll
satisfying the condition |λ1 − λ2| � 1, then a uniform design Un((

n
k1

)r1 · · · ( n
kl
)rl )

can be derived through Algorithm 3.6.1, and there are no fully aliased columns in
this uniform design.

Example 3.6.9 Applying Algorithm 3.6.1 to the R̃PPBD shown in Example 3.6.8,
we obtain a uniform design U8(2441) shown below. It is interesting to note that this
design is indeed an asymmetrical orthogonal array of strength 2.
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Row 1 2 3 4 5
1 1 1 1 1 1
2 2 2 2 2 1
3 1 1 2 2 2
4 2 2 1 1 2
5 1 2 1 2 3
6 2 1 2 1 3
7 1 2 2 1 4
8 2 1 1 2 4

3.6.3 Construction Approach via Saturated Orthogonal
Arrays

Saturated orthogonal arrays have some interesting properties that can be used for the
construction of supersaturated and uniform designs. Lin (1993) provided a method
for constructing two-level supersaturated designs of size (n, s) = (2t, 4t − 2) using
a half fraction of a Hadamard matrix (HFHM, for short), where a Hadamard matrix,
H , of order n is an n × nmatrixwith elements 1 and−1,which satisfies H ′H = n In .
Later, Cheng (1997) gave a theoretical justification ofHFHM.The following theorem
plays an important role in this constructionmethod, and its extension formore general
cases can be found in Fang et al. (2003b).

Theorem 3.6.13 Suppose U is a saturated orthogonal array Ln(qs), where
Case (i) q is a prime power, n = qt , s = (n − 1)/(q − 1) and t � 2, or
Case (ii) q = 2, n = 4t , s = 4t − 1 and t � 1,
then the Hamming distances between different rows are equal to qt−1 in Case (i) or
2t in Case (ii). That is, the design is a uniform design under the discrete discrepancy.

TheHadamardmatrices are saturated orthogonal arrayswith parameters satisfying
Case (ii) of Theorem 3.6.13. Fang et al. (2003b) generalized theHFHMmethod to the
fractions of saturated orthogonal arrays (FSOA, for short) method, for constructing
asymmetrical uniform designs from saturated orthogonal arrays. The FSOA method
is presented as follows:

Algorithm 3.6.3 (FSOA method)

Step 1. Let U be a saturated orthogonal array of strength 2. Choose a column of
U , say the kth column (k), and split the total n rows of U into q groups,
such that group i has all the n/q = qt−1 level i’s in column (k). We call
this column (k) the branching column.

Step 2. Given p (2 � p < q), taking any p groups results in an asymmetrical
supersaturated designU (pqt−1; p1qs−1) to examine one p-level factor on
the branching column and (s − 1) q-level factors on other columns.
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Table 3.18 Uniform designs derived from L16(45) (using 1 as the branching column)

U12(3144) U8(2144) Row 1 2 3 4 5

1 1 1 1 1 1 1

2 2 1 2 2 2 2

3 3 1 3 3 3 3

4 4 1 4 4 4 4

5 1 5 2 1 2 3 4

6 2 6 2 2 1 4 3

7 3 7 2 3 4 1 2

8 4 8 2 4 3 2 1

5 9 3 1 3 4 2

6 10 3 2 4 3 1

7 11 3 3 1 2 4

8 12 3 4 2 1 3

9 13 4 1 4 2 3

10 14 4 2 3 1 4

11 15 4 3 2 4 1

12 16 4 4 1 3 2

The resulting supersaturated designs are uniform designs, as shown in Theorem
3.6.13.Now, let us take the saturated orthogonal array L16(45) shown inTable 3.18 for
an illustration. If we take column (1) as the branching column, then the total n = 16
rows can be split into q = 4 groups, i.e., rows 1–4, 5–8, 9–12, and 13–16. Any three
groups of rows can be used to form an asymmetrical supersaturated designU12(3144)
to examine one 3-level factor and four 4-level factors, e.g., rows 1–8 and 13–16.
Similarly, any twogroups of rows can be used to forman asymmetrical supersaturated
design U8(2144), to examine one 2-level factor and four 4-level factors, e.g., rows
5–12. In Table 3.18, we give two such designs whose designs are entitled U12(3144)
and U8(2144), respectively.

As for the properties of the constructed designs, Fang et al. (2003b) obtained the
following result.

Theorem 3.6.14 The asymmetrical supersaturated designs obtained by the FSOA
method described above are uniform designs, i.e., Upqt−1(p1qs−1)’s, and the p (2 �
p < q)-level factor is orthogonal to those q-level factors, no matter which column
is selected as the branching column and which groups are selected. Moreover, there
are no fully aliased factors in these uniform designs.

Saturated orthogonal arrays of strength 2 are available in many design books,
such as Hedayat et al. (1999). The examples cited in this book can be found at http://
neilsloane.com/oadir/. So based on the FSOAmethod, many uniform designs can be
obtained from the saturated orthogonal arrays with parameters satisfying Case (i) of
Theorem 3.6.13.

http://neilsloane.com/oadir/
http://neilsloane.com/oadir/
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3.6.4 Further Results

In the above subsections, wemainly discussed the construction of uniform designs in
terms of the discrete discrepancy (2.5.6), and most of the generated designs achieve
the lower bound given in Theorem 2.6.19. Based on Theorem 2.6.20, removing any
column from or adding a level-balanced column to any of these uniform designs
still results a uniform design, as the numbers of coincidences between any two rows
of the design thus obtained differ by at most one. From (2.5.6), we see that this
discrepancy regards factors with different levels of the same importance. While the
discrete discrepancy (2.5.6) and projection discrepancy (6.5.3) consider different
weights for factors with different levels, here we will provide some results on two-
dimensional projection uniform designs under the projection discrepancy (6.5.3) by
taking j = 2 and γ = 1.

Note that all the uniformdesignsUn(qs) discussed above are constructed based on
U-type designs and thus require the number of experimental runs n to be a multiple
of the number of factor levels q. In this subsection, we will also provide some results
on nearly U-type designs and uniform designs when n is not divisible by q.

A. Two-Dimensional Projection Uniform Designs

For a factorial design P = {x1, . . . , xn} with n runs and s factors, and some weights
wk > 0, let

δwi j (P) =
s∑

k=1

wkδxik x jk . (3.6.3)

δwi j (P) is a generalization of (2.5.2) and is called the weighted coincidence number
between two rows xi and x j . Let

δ =
s∑

k=1

wk(n/qk − 1)/(n − 1), and

� =
{

s∑
k=1

wkδ
(k) : δ(k) = 0, 1, for k = 1, . . . ,m

}
.

Among the values in �, let δL and δU be the two nearest ones to δ, satisfying
δL � δ < δU . Then, based on the majorization theory (Marshall and Olkin 1979) and
the connections between the projection uniformity in terms of (6.5.3) and some other
criteria (i.e., the generalized minimum aberration, minimummoment aberration, and
minimum χ2 criterion), Liu et al. (2006) obtained the following lower bound for the
two-dimensional projection discrepancy.

Theorem 3.6.15 Suppose the weights wk = λqk for 1 � k � m, then for any
U (n; q1 . . . qs) design U , the [D(2)(U;K)]2 in (6.5.3) with γ = 1 satisfies
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[D(2)(U;K)]2 � n − 1

2nλ2

{
(δU + δL)δ − δUδL

}

−1

2

⎧⎨
⎩s(s − 1) +

s∑
k=1

qk − 1

n

(
s∑

k=1

qk

)2
⎫⎬
⎭ .

The equality holds if and only if for any i , among the (n − 1) values of δw1i (U), . . .,
δw(i−1)i (U), δwi(i+1)(U), . . . , δwin(U), there are (n − 1) δU−δ

δU−δL
with the value δL and

(n − 1) δ−δL
δU−δL

with the value δU .

We should notice that most of the designs achieving the lower bound provided
above are supersaturated designs, and all those symmetrical designs obtained in
Sect. 3.6.2 with constant number of coincidences between any two rows are also
optimal according to D(2)(U;K).

Theorem 3.6.15 provides a condition when the lower bounds can be achieved. For
some values of (n, s, q1, . . . , qs), these lower bounds are attainable. For example,
when U is a saturated OA(n; q1, . . . , qs; 2), they are attained, as δ(U) = (λ(s −
1), . . . ,λ(s − 1)) (Mukerjee and Wu 1995). Based on this fact, Li et al. (2004)
extended the FSOA method introduced in Algorithm 3.6.3 to the construction of
χ2(U)-optimal asymmetrical supersaturated designs and studied the properties of the
resulting designs. Based on the connection between D(2)(U;K) and χ2(U) (see, Liu
et al. 2006), the designs constructed from their methods are also uniform according
to D(2)(U;K).

Another paper concerning the constructionof asymmetrical supersaturateddesigns
is due to Fang et al. (2004a), as just introduced in Sect. 3.6.2. From Fang et al.
(2004a)’s concluding remarks, we know that all their designs are of one coincidence
position between any two distinct rows. Also, we can see that most of their designs
are of the form U (n; p1qs−1). For U (n; p1qs−1) designs, Liu et al. (2006) had the
following result.

Theorem 3.6.16 Let U be a U (n; p1qs−1) design, where p � q and n/p + (s −
1)n/q − s = n − 1. If there exists exactly one coincidence position between any two
distinct rows of U , then U is optimal according to D(2)(U;K).

Hence from this theorem, we can easily have the conclusion that the uniform
designs Un(p1qs−1) with p � q obtained in Sect. 3.6.2 are still uniform according
to D(2)(U;K).

The column juxtaposition method can also be used to construct asymmetrical
uniform designs. From Li et al. (2004) and Liu et al. (2006), we have

Corollary 3.6.1 Let Uk for 1 � k � l be balanced designs with the same number
of runs. If the natural weights wk = λqk for k = 1, . . . ,m are assumed, and the
weighted coincidence numbers between any two distinct rows are constant for each
design Uk , then U = (U1, . . . ,U l) is optimal according to D(2)(U;K).

Based on this corollary, many uniform designs according to D(2)(U;K) can be
constructed, not only from saturated orthogonal arrays of strength 2, but also from
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designs with the given property as shown in the corollary, such as the designs due to
Liu and Zhang (2000), Fang et al. (2000), and those introduced in Sects. 3.6.2 and
3.6.3.

B. Nearly U-Type Designs and Uniform Designs

When n is not divisible by q, let n = qt + r (0 < r < q). In this case, we arrange the
design U so that q − r levels occur t times, while the remaining r values occur t + 1
times in each column of U . This guarantees every level appears in each column of
U as equally as possible. Such a design is called a nearly U-type design and denoted
by NU(n, qs) (Fang et al. 2004d). For completeness, we admit r = 0. An NU(n, qs)

with n = qt is just a U-type design.
For the discrete discrepancy (2.5.7), Fang et al. (2004d) obtained the following

lower bound which generalized the one given in Theorem 2.6.19.

Theorem 3.6.17 Let n, s, and q be positive integers and n = qt + r , 0 � r � q − 1.
Let U be a fractional factorial design of n runs and s q-level factors. Suppose
u = st (n−q+r)

n(n−1) and λ = �u�. Then for the discrete discrepancy (2.5.7)

[DD(U)]2 � −
(
a + (q − 1)b

q

)s

+ as

n

+bs(n − 1)

n

[
(λ + 1 − μ)

(a
b

)λ + (μ − λ)
(a
b

)λ+1
]

(3.6.4)

and the lower bound of DD(U) on the right-hand side of (3.6.4) can be achieved if
and only if all the δi j (U)’s defined in (2.5.2) for i 	= j take the same value λ, or take
only two values λ and λ + 1.

Now we call an NU(n; qs) a uniform design under DD(U), also denoted by
Un(qs), if it’s discrepancy DD(U) achieves the minimum value among all such
NU(n; qs)’s. Obviously, a design U whose [DD(U)]2 value equals to the lower
bound in (3.6.4) is a uniform design.

Fang et al. (2004d) further developed a link between such uniform designs and
resolvable packings and coverings in combinatorial design theory. Through resolv-
able packings and coverings without identical parallel classes, many infinite classes
of new uniform designs were then produced. Readers can refer to Fang et al. (2004d)
for the detailed results.

Exercises

3.1

For the case of n = 8, s = 2, give the design space D(8;C2),D(8; , 82),U(8; 82)
and U(8; 2 × 4).
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3.2

Transfer the designU in Example 3.1.2 into X l f t , Xctr , Xext and Xmis inC4, respec-
tively.CalculateWD,CD, andMDfor these four designs inC4.Are these four designs
equivalent?

3.3

Give necessary conditions for a uniform design table Un(ns).

3.4

By the use of the Fibonacci sequence introduced in Sect. 3.3.1, construct U (n; n2)
for n = 5, 8, 13 and compare their CD-values with designs in Tables 3.1 and 3.2.

3.5

Suppose an experiment has three factors, temperature, pressure, and reaction time,
and the ranges are [50, 100] ◦C, [3, 5] atm and [10, 25]min, respectively. Then,
the experimental domain X = [50, 80] × [3, 6] × [10, 25]. Suppose each factor has
four levels. Two possible choices of design matrices Z1 and Z2 and their mapping
to [0, 1]2 are as follows:

Z1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

60 6 25
70 6 15
60 3 15
80 5 20
50 5 10
70 3 25
80 4 10
50 4 20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒ X1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3333 1 1
0.6667 1 0.3333
0.3333 0 0.3333

1 0.6667 0.6667
0 0.6667 0

0.6667 0 1
1 0.3333 0
0 0.3333 0.6667

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Z2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

61.25 5.625 23.125
68.75 5.625 15.625
61.25 3.375 15.625
76.25 4.875 19.375
53.75 4.875 11.875
68.75 3.375 23.125
76.25 4.125 11.875
53.75 4.125 19.375

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒ X2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.375 0.875 0.875
0.625 0.875 0.375
0.375 0.125 0.375
0.875 0.625 0.625
0.125 0.625 0.125
0.625 0.125 0.875
0.875 0.375 0.125
0.125 0.375 0.625

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Answer the following questions:

(1) Compare designs Z1 and Z2 and give your comments.
(2) For obtaining X1 and X2, one mapping includes 0 and 1, but another does not

involve 0 and 1. Find the formulae that use for the two mappings.

3.6

Find the Euler function φ(n) for n = 8, 9, 10, 14, 15 and the corresponding gener-
ating vectors Hn .
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3.7

Give three cases satisfying φ(n) > φ(n + 1). In these cases, the leave-one-out glpm
is not worth to be recommended.

3.8

Give the cardinality of G8,2. Under the discrepancy MD, put designs of G8,2 into
groups such that designs in the same group are equivalent and designs in different
group have different MD-values.

3.9

For given (n, s), find the cardinality of An,s for n = 11, s = 2, 3, 4, 5; and n = 30,
s = 2, 3, 4, 5, where

An,s = {a : a < n, gcd(a j , n) = 1, j = 1, . . . , s − 1; 1, a, a2, . . . , as−1(˜mod n)

are distinct each other}.

3.10

By use of the design U47(473), construct a nearly uniform design U8(83) under MD
by the cutting method.

3.11

Let n = 47 and s = 46. Find the L1-distance and MD of the corresponding glp set
U . Moreover, consider the simple linear level permutations U + i (˜mod n) and give
your conclusion.

3.12

A Latin square of order n is an n × n matrix filled with n different symbols, each
symbol in each row/column appears once and only once.

(1) Give a Latin square for order 3 and order 4.
(2) Find the definition for the concept of orthogonal Latin squares.
(3) Find the way to use orthogonal Latin squares to the construction of an orthog-

onal designs Ln2(nn−1).
(4) Sudoku puzzle such that the final 9 × 9 matrix to be a Latin square. Fill the

following Sudoku puzzle:
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9 4 2 8 3
5 7 4 9

6 2 7 1 9 5
8 9 2 7 3 1 4
1 6 4 9
4 7 8 5
5 4 3 8 2

8 5 9
8 9 2 6 1
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Chapter 4
Construction of Uniform
Designs—Algorithmic Optimization
Methods

In the previous chapter, the deterministic methods such as good lattice point
method and its modifications were introduced. Generally, most existing uniform
designs are obtained by numerical search on the U-type design space U(n; ns) or
U(n; q1, . . . , qs). This chapter introduces some powerful optimization methods and
related algorithms for generating uniform designs. Especially, two stochastic opti-
mization methods, threshold-accepting method and integer programming problem
method, will be given in details in Sects. 4.2 and 4.3, respectively.

4.1 Numerical Search for Uniform Designs

From the definition of uniform design in Definition 3.1.2, the optimization problem
in construction of n-run uniform designs for given uniformity criterion D is to find
a design P∗ ∈ D(n; Cs) such that

D(P∗) = min
P∈D(n;Cs )

D(P), (4.1.1)

where D(n; Cs) = {{x1, . . . , xn}, xi ∈ Cs, i = 1, . . . , n}. It seems that the tradi-
tional optimization such as theGauss–Newtonmethod can be applied to this problem.

Recall the mathematical optimization problem. Let f (x) = f (x1, . . . , xm) be a
continuous function on a set X . One wants to find x∗ ∈ X such that

f (x∗) = min
x∈X

f (x), (4.1.2)

where x∗ is called the minimum point and f (x∗) the minimal f -value on X . The
function f is called, variously, an objective function or a loss function. Typically, X

© Springer Nature Singapore Pte Ltd. and Science Press 2018
K.-T. Fang et al., Theory and Application of Uniform
Experimental Designs, Lecture Notes in Statistics 221,
https://doi.org/10.1007/978-981-13-2041-5_4

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2041-5_4&domain=pdf


156 4 Construction of Uniform Designs—Algorithmic Optimization Methods

is some subset of the Euclidean space Rm and called the search domain or search
space; the points ofX are called candidate solutions or feasible solutions. Often there
are some constraints that the elements of X have to be satisfied. A local minimum
xlocal ∈ X satisfies

f (xlocal) � f (x), for any x satisfying ||x − xlocal || � δ, and some δ > 0.

When there is only one local minimum in the search domain X , there are many
powerful algorithms. Among those algorithms, the Gauss–Newton method has been
widely used. It starts from an initial point x0 ∈ X and iteratively finds the value
of the variables which minimize the objective function. Denote xc = x0. For each
iteration, one needs to calculate derivatives of the function f and then choose a new
point xnew ∈ X . If f (xnew) < f (xc), let xnew replace xc and go to next iteration.We
end the iteration process when xnew = xc. However, the Gauss–Newtonmethod only
provides a localminimal solution if the objective function f has several localminima.
The optimization problem (3.2.1) for searching uniform designs always has many
local minima. For any optimization problem, we have to estimate computational
complexity of the problem. FromWikipedia, the free encyclopedia, “A computational
problem is understood to be a task that is in principle amenable to being solved
by a computer, which is equivalent to stating that the problem may be solved by
mechanical application of mathematical steps, such as an algorithm.”

For finding a uniform design presented in (4.1.1), there are some serious difficul-
ties:

(1) The high-dimensional problem. It is a ns-optimization problem that is too high
for minimization when n and s are moderate (see Sect. 3.2.1).

(2) Domain candidate. The number of candidates of the domain is infinite.
(3) Multiple local minima. There are many local minima.

Due to these difficulties to find a uniform design Un(ns) is an NP-hard problem,
where NP stands for “non-deterministic polynomial time.” It is widely suspected
that there are no polynomial-time algorithms for NP-hard problems. Therefore, we
have to reduce the design space, for example, to U-type design set U(n; ns), or more
generally, toU(n; q1, . . . , qs), where each design has n runs and s factors each having
q j levels. For simplicity, denoteU as theU-type design spaceU(n; q1, . . . , qs). Then,
the optimization problem of construction of uniform designs in (4.1.1) is reduced to
find a design P∗ ∈ U such that

D(P∗) = min
P∈U

D(P). (4.1.3)

Here, the discrepancy can be the centered L2-discrepancy (CD), wrap-around L2-
discrepancy (WD), mixture discrepancy (MD), or others. The minimization problem
in (4.1.3) is still a challenging problem as there are several difficulties stated below:

• The design space is not a compact area, and the traditional optimization methods
are useless as there is no continuous concept aswell as derivatives.Weneedmodern
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optimization techniques, among which many stochastic optimization algorithms
are recommended.

• The number of candidates in this design space increases exponentially in both n
and s. Searching a uniform design on U is an NP-hard problem.

• Arbitrarily permuting the order of the runs or the order of the factors does not
change the discrepancy. Thus, the uniform design is not unique.

• The discrepancy as the objective function is a multi-modal function with many
local minima that are not global minima. It leads to difficulty how to make a
termination rule in the algorithm.

• When a xnew attains the lower bound of the objective function (refer to Sect. 2.6),
the process will be terminated. However, to find a tight lower bound of the dis-
crepancy is an open problem in most cases. A lower bound is called tight if it is
attainable; otherwise, it is called conservative.

Agood search algorithm for uniformdesignsmust face the challenges listed above.
In the literature, many stochastic optimization algorithms, such as the simulated
annealing algorithm (Kirkpatrick et al. 1983; Morris and Mitchell 1995), stochastic
evolutionary (Jin et al. 2005), threshold-accepting heuristic method (Dueck and
Scheuer 1990; Winker and Fang 1998; Fang et al. 2002, 2003, 2005, 2006b), and
integer programming method (Fang and Ma 2001b; Zhou et al. 2013) had been
proposed to construct uniform designs.

The general procedure of the stochastic optimization algorithms for construction
of uniform designs is as follows. Choose an initial design U0 as the current design
Uc; find another design Unew in the neighborhood of the current design U c, if the
acceptance criterion is satisfied, let the current design Uc replace by Unew; continue
this procedure until some stopping rule is satisfied. Then, a stochastic optimization
algorithm may be described in terms of the following general framework.

Algorithm 4.1.1 (Framework for Constructing Uniform Designs)

Input. Give n, the number of runs, s, the number of factors, U , the design space (a
set of candidate pool of designs) and a discrepancy D(·) as the objective function in
optimization.

Step 1. Initialization. Choose an initial design U0 ∈ U , and let U c = U0.
Step 2. Evaluation and Iteration. Choose a new design, denoted by Unew, in the

neighborhood ofUc ⊂ U . Compare discrepancy values betweenUnew and
U c and decide whether to replace the current design Uc with Unew. If yes,
repeat this step, otherwise jump to some new design as Uc by a given
jumping rule.

Step 3. Termination. If the jumping rule is terminated, the current designUc in the
set U has sufficiently good uniformity, then output the design and stop.

Each step in this framework can be implemented in different ways, depending
on the complexity of the design space and structure of the chosen discrepancy, the
qualities desired for a design, and the computational time. For example, the design
space can be the set of design with n runs and s factors or its subset. The discrepancy
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can chooseWD, CD, MD, or others. The initial design can be randomly chosen from
the design space or a design with a good quality. There are many ways for defining
a neighborhood of a design in U and switching from the current design to some
new design. There are different jumping rules to jump out from a local minimum.
The various ways of implementing each step are discussed below. For the sake of
efficiency, there may be a reordering or relabeling of the steps in some cases that
differs from that of Algorithm 4.1.1.

Moreover, the lower bounds of the chosen discrepancy are useful in Algorithm
4.1.1, since we stop the iteration process as soon as the discrepancy of the new design
in the iteration process attains the lower bound. Some lower bounds of WD, CD, and
MD are given in Sect. 2.6.

4.2 Threshold-Accepting Method

The threshold-accepting (TA) method is a powerful optimization algorithm for con-
structing uniform designs. It was proposed by Dueck and Scheuer (1990). Winker
and Fang (1997)were the first to use the TA algorithm to quasi-Monte Carlomethods,
especially to evaluate the star discrepancy. Late they obtained U-type designs with
lower star discrepancy (Winker and Fang 1998). Fang et al. (2000) applied the TA
algorithm for several types of L2-discrepancies and pointed out that many existing
orthogonal designs can be obtained by TA under CD or WD. Fang et al. (2002) gave
a comprehensive study on the Latin hypercube sampling and provided some useful
information in numerical search for uniform designs. Based on this information, they
modified the TA algorithm and applied it for finding uniform designs under CD. Fang
et al. (2003) further used TA under both the CD and WD. Recent studies can refer
to Fang et al. (2005), Fang et al. (2006b), and Zhou and Fang (2013), where the TA
algorithm was used to construct uniform designs with large size. In this section, we
introduce the methodology of the TA algorithm.

TAalgorithm can be used for the discrete optimization problem. Several key issues
of the TA algorithm for searching uniform designs are as follow:

Objective. The TA tackles the optimization problem

min
U∈U

D(U), (4.2.1)

where U is a subset of the set of all U-type designs U(n; q1, . . . , qs), and D is a
specified measure of uniformity, such as CD or MD.

Figure 4.1 presents a flowchart of the TA implementation for minimizing the
discrepancy of uniform designs on the design space U . Various modifications can
refer to the above literature. A designP ∈ U can be expressed as a n × s matrixU =
(ui j ), ui j ∈ [0, 1]. In the text of this book, both U and P denote a design depending
on expression convenience. Some concepts in the TA algorithm are explained as
follows.
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NoExit i I
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Yes ∇D τi

compute ∇D := D(Unew) − D(U c)

choose Unew ∈ U in the
given neighborhood of U c

Initialize j = 1
Initialize I, J, τi
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Fig. 4.1 Threshold-accepting algorithm for finding uniform designs

Initial designs. The initial design U0 can be randomly chosen from the design
space U , or be chosen by the good lattice point method, or some known design in U
with a lower discrepancy.

For the design spaceU(n, qs) or U(n, q1, . . . , qs), s < n, one can choose a design
U (n; ns) and then this design can be transferred into U (n; qs) by the pseudo-level
transformation (Fang et al. 2006a):

{(i − 1)n/q + 1, . . . , in/q} → i, i = 1, . . . , q, (4.2.2a)

or

{(i − 1)r j + 1, . . . , ir j } → i, i = 1, . . . , q j , (4.2.2b)

for symmetrical design or asymmetrical designs, respectively, where q j is the number
of level of the j th factor, r j = n/q j .

Threshold and Replacement rule. The threshold value τ is a nonnegative num-
ber and is getting smaller during the iterations. The traditional local search (LS)
algorithm leads the objective function to get smaller and decides to replace the
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current design U c by Unew if ∇D = D(Unew) − D(Uc) � 0. The LS algorithm is
easy to stick at a local minimum discrepancy design that might be far from the
global minimum discrepancy designs. TA algorithm uses alternative rule: The cur-
rent design U c is replaced by Unew if ∇D = D(Unew) − D(Uc) � τ , where τ � 0.
When τ > 0, it gives a chance to let the iteration process jumping out from a local
minimum. When τ is not small, the iteration process likes a random walk; when
τ is smaller, the iteration process can move only on a small neighborhood of Uc;
and when τ = 0, the iteration process will end at the local minimum that is in the
neighborhood of Uc. The definition of the neighborhood of U ∈ U is pre-decided
and is discussed late.

The threshold can affect the result significantly. In the literature, onemight choose
a suitable positive integer I and determines a series of thresholds τ1 > τ2 > · · · >
τI−1 > τ

I
= 0. In the iteration I = i circle if ∇D > τi and j < J , a new design

is randomly chosen from the neighborhood of Uc and let j := j + 1. Usually, the
number of out circles I should bemuch less than the number of inner circles J . Please
refer to Fig. 4.1 for the role of I and J . The choices of I and J depend on size of the
design. In the literature, it was suggested that I ∈ [10, 100] and J ∈ [104, 105]when
the number of runs n � 1000, and I and J may increase as n increases (Winker and
Fang 1997; Zhou and Fang 2013). For example, one can choose I = 10, J = 105

when n � 100 and I = 100, J = 105 when n � 300. For obtaining suitable I and
J , one can do some empirical study in advance.

For designing a threshold sequence [τ1, . . . , τI ], a set of M designs are randomly
generated from U . Then, calculate their objective function values and the range
(denoted by R) of these M-values. Denote the largest and the smallest objective
function values by Dmax and Dmin, respectively, and R = Dmax − Dmin. The first
threshold (τ1) is set as a fractionα (0 < α < 1) of R. The remaining I − 1 thresholds
are usually determined by iteration formula τi = f (τi−1), and f (·) is a linear function
or other functions, for example,

τi = I − i

I
τi−1, i = 2, . . . , I. (4.2.3)

One can choose several α-values in advance and compare their performance, and
then, choose a better one.

Another way to determine τ1 is to choose a design U in U randomly and also
generate N designs U j in the neighborhood ofU randomly. Calculate N differences
∇D j = D(U j ) − D(U), and draw an empirical distribution of these ∇D j ’s, denote
by F1. Then, τ1 can be chosen as the t percentile of F1, where t is less than 5 for
example.

Neighborhood. The design space is a finite set and there is no continuity concept
for the objective function. Therefore, the neighborhood concept was proposed for
replacement of the continuity. Two designs in the same neighborhood should be close
to each other in a certain sense of the design structure. LetUc be a designmatrix inU .
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The definition of neighborhoodsN (U c) has to take into account several conditions.
First, as already pointed out above, N (Uc) ⊂ U and each Unew ∈ N (U c) should
also be a U-type design. Second, in order to impose a real “local” structure, the
designsU c and those inN (U c) should not differ too much. Third, the computational
complexity of the algorithm depends to a large extent on calculating ∇D, i.e., the
difference in the objective function when moving from Uc to Unew. Thus, if ∇D can
be obtainedwithout calculatingUnew fromscratch, a significant speedupmight result.
All three requirements can be easily fulfilled by selecting one or more columns of
Uc and exchanging two elements within each selected column. For example, one can
randomly choose one column of Uc, randomly choose two elements in this column,
and exchange these two elements to form a new design. All these new designs form
a neighborhood of Uc

N1(Uc) = {U : by exchanging two elements in any one column of Uc}.

Of course, one can define a larger neighborhood. For example,

N2(Uc) = {U : by exchanging two elements in any two columns of Uc}.

Winker and Fang (1997) gave a discussion on the choice of the neighborhood size.
The larger size of the neighborhood we define, the more freedom we choose Unew.

In fact, a neighborhood is a small perturbation of Uc in most TA algorithm ver-
sions. Unlike the pre-decided neighborhood N1(Uc) or N2(U c) where the column
is randomly chosen, Fang et al. (2005) proposed two other ways of choosing a new
design.

1. “maximal and minimal distances of row pairs” method. Denote by (xi1, xi2) and
(x j1, x j2) the respective row pairs with maximal and minimal distances for the
current design Uc; here, the distance can be chosen as the L p-distance or other
distances. We randomly select a row xi from xi1 or xi2 and a row x j from x j1 or
x j2 . Then, randomly select a column k. If the kth element, xik , in the row xi is not
equal to x jk , the kth element in the row x j , then exchange xik and x jk to obtain a
new design Unew.

2. “single row with maximal and minimal sum of distances” method. Denote di j =
d(xi , x j ), where d(·, ·) is a pre-decided distance. Denote by the row x i and row x j

the respective rowswithmaximal andminimal distances for the current designU c.
This means

∑

t �=i
dti is maximal and

∑

t �= j
dt j is minimal among

∑

t �=k
dtk, k = 1, . . . , s.

Now, randomly select a column k. If xik , the kth element in the row xi , is not
equal to x jk , the kth element in the row x j , then exchange xik and x jk to obtain a
new design Unew.

Each method has its own advantages. Compared with “maximal and minimal dis-
tances of row pairs”method, “single row with maximal and minimal sum of distances”
method is expected to accelerate the searching more, while the former method can
provide more chances of jumping out from a local minimal status. The main idea of
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Fig. 4.2 The trace of the TA process

randomly using these two preselection methods to determine the neighborhood for
each iteration is both to accelerate the speed and to jump out from a local minimal
status. Moreover, experiments also show that when a single preselection method is
used, the result will always be worse.

Trace plot. The trace plot is useful to find the iteration process behavior. It shows
the objective function value in each iteration step. An example is provided in Fig. 4.2,
where the x-axis stands for the number of iterations and the corresponding y-axis
indicates the MD-value ofUc at the current stage. From Fig. 4.2, we can observe that
the MD-value starts with a period of random walk and then shrink suddenly toward
to the optimum after a number of iterations. Figure 4.3 is the tract plot for the same
problem with different parameters I, J , and τi ’s. The reader can find their different
iteration process behavior.

Historical optimum reversion. When U0 is a good design with lower discrep-
ancy, TA may deliver a Uopt worse than U0. This problem happens because TA
always encourages the current design Uc to jump out of a local optimum if the cur-
rent threshold τ value is not small. To overcome this difficulty, Fang et al. (2016)
proposed a new mechanism called the historical optimum reversion. This mecha-
nism allows the current design Uc to return to the historical optimal design of TA at
certain moments. For example, we embed a “judgement ” before the iterations under
each threshold value change. That is, if we choose MD as the objective function,
once the threshold value changes in TA, a comparison will be made immediately on
MD(Uc) and MD(Uh), where Uh is the historical optimal design of TA (when TA
has multiple historical optimal designs, Uh is assigned to one of them randomly). If
MD(Uc) > MD(Uh), we will let Uc = Uh and proceed the ensuing iterations.
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Fig. 4.3 The traces of the TA process by different parameters

Phases in TA algorithm. The initial design U0 affects the quality of output
design. One way is randomly choose m initial designs and run TA m times. The best
output among the m output designs is recommended as the output UD. Alternative
suggestion for an initial design is to choose a design with lower discrepancy as initial
design. Based on this idea, we utilize TA with several phases. In the first phase, we
use the traditional TA to find an output design that is recorded as U1. In the second
phase, we set this U1 as the new initial design and utilize TA again with modified
settings to phase 1. A new output, U2, can be obtained. Then, use U2 as the initial
design for the third phase with a similar procedure. So on and so forth, we stop
the process and deliver the final optimal design Uk at the end of the kth phase if
MD(Uk)−MD(Uk−1) = 0. Usually, to ensure the convergency of this strategy, the
α values for determining the thresholds in each phases, denoted as [α1, . . . ,αk],
should be set in a descending manner.

Example 4.2.1 Suppose that one wants to find a uniform design table U27(313) on
the design spaceU(27; 313). An initial designU0 is randomly chosen from the design
space and its MD(U0) = 75.61. Consider to use TA by phases to optimize U0 again.
In this case, we embed the two adjustments to TA, i.e., historical optimum reversion
and multiple phases. The setting in this example is chosen by I = 20, J = 5000,
[α1, . . . ,α5] = [0.15 0.016 0.01 0.002 0.0005]. This setting has the same I and J
inputs as the TA in phase 1. The threshold sequence is adapted from (4.2.3). Dur-
ing the TA process, one obtained the optimal design from each phase, denoted as
[Ua

1 · · ·Ua
5]. The output design Ua

opt = Ua
5 with MD(Ua

opt ) = 64.1888. This result
significantly out performs the best outcome (MD(U2) = 64.3689) in phase 2. Figure
4.4 presents the trace plot of the TA process. The effectiveness of two adjustments
(historical optimum reversion and multiple phases in TA algorithm) is very intuitive
from Fig. 4.4. On the one hand, in phases 2 and 3, the historical optimum reversion
mechanism eliminates the variation of the process. Although Uc may evacuate from
their good initial designs, adjusted TA allows the current design to retrieve its his-
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Fig. 4.4 MD trace plot of Example 4.2.1 by the adjusted TA

torical optimum from time to time. This mechanism prevents TA from abandoning
the best local structure it once obtained. Because every threshold sequences end up
with value 0, this algorithm also guarantees the output design has a good uniformity
in each phase. For phase 1, since the MD of U0 is relatively large, it behoves TA to
involve more effective iterations for optimization. We observe that Uc in phases 4
and 5 stays in its optimal design and does not make any change.

Iteration formulae. The discrepancy commonly used to differentiate designs is
as the objective function in the TA process. In each iteration, one needs to calculate
D(Unew). Because D(Unew) is in the neighborhood N (U c), it should have a close
relationship of the computational formula between D(Unew) and D(Uc). If we can
find some iteration formula from D(Uc) to D(Unew), we can save computing time
for D(Unew). For different discrepancies, there are different formulae.

(A) Iteration Formula for the Centered L2-Discrepancy

Jin et al. (2005) proposed a simple way to evaluating the centered CD. Let Uc =
(uik) be the current design, X = (xik) its reduced design matrix, and Z = (zik) the
corresponding centered design matrix, where zik = xik − 0.5. Let C = (ci j ) be a
symmetrical matrix, whose elements are:

ci j =
⎧
⎨

⎩

1
n2

∏s
k=1

1
2 (2 + |zik | + |z jk | − |zik − z jk |), if i �= j;

1
n2

∏s
k=1(1 + |zik |) − 2

n

∏s
k=1

(
1 + 1

2 |zik | − 1
2 z2ik

)
, otherwise.

It can be verified that

[CD(Uc)]2 =
(
13

12

)2

+
n∑

i=1

n∑

j=1

ci j .

For any 1 � t � n and t �= i, j , let
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γ(i, j, k, t) = 2 + |z jk | + |ztk | − |z jk − ztk |
2 + |zik | + |ztk | − |zik − ztk | .

After an exchange of xik and x jk , the square CD-value of the new design Unew is
given by

[CD(Unew)]2 = [CD(Uc)]2 + ∇(CD),

where

∇(CD) = c∗
i i − cii + c∗

j j − c j j + 2
n∑

t=1,t �=i, j

(c∗
i t − cit + c∗

j t − c jt )

and c∗
i t = γ(i, j, k, t)cit , c∗

j t = c jt/γ(i, j, k, t). By the above iteration formula, the
computational complexity is about O(n). Fang et al. (2006b) suggested a different
iteration formula from the above ones.

(B) Iteration Formula for the Wrap-Around L2-Discrepancy

For WD, it also exists some iteration formula. Denote

αk
i j ≡ |xik − x jk |(1 − |xik − x jk |),

δi j =
s∑

k=1

ln

(
3

2
− αk

i j

)

, i, j = 1, . . . , n, i �= j, k = 1, . . . , s.

Then, theWDcan be expressed in terms of the sumof eδi j ’s.And for a single exchange
of two elements in the selected column, there are altogether 2(n − 2) distances (δi j ’s)
updated. Suppose the kth elements in rows xi and x j are exchanged, then for any
row xt other than xi or x j , the distances of row pair (xi , xt ) and row pair (x j , xt )
will be changed. Denote δ̃ti and δ̃t j as the new distances between row pair (xi , xt )
and row pair (x j , xt ); then,

δ̃i t = δi t + ln(3/2 − αk
j t ) − ln(3/2 − αk

i t );

δ̃ j t = δ j t + ln(3/2 − αk
i t ) − ln(3/2 − αk

j t ).

The objective function change is given as

∇(WD) = 2

n2

∑

t �=i, j

(
eδ̃i t − eδi t + eδ̃ j t − eδ j t

)
.

Moreover, the iteration formula for MD is similar to that of CD. We leave it as an
exercise for reader.

Jumping rule. The search process may stick at a local minimum design. Many
existing stochastic optimization algorithms, such as the simulated annealing algo-
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rithm (Kirkpatrick et al. (1983)) and the stochastic evolutionary algorithm (Jin et al.
(2005)), use some rules for jumping out from a current local minimum. There are
different considerations for jumping out. The TA algorithm in Fig. 4.1 employs a
series of thresholds τr for jumping out. When τr is large, it is easy to jump out from
a local minimum design. Fang et al. (2006b) suggested some jumping rules into the
TA algorithm and proposed so-called balance-pursuit heuristic algorithm.

Moreover, the lower bounds of a pre-decided discrepancy, given in Sect. 2.6, are
useful in the TA algorithm, i.e., the algorithm may stop when the discrepancy of the
design Unew arrives the lower bound. Algorithm 4.2.1 provides the pseudo-code for
the TA implementation sketched by Fang et al. (2003).

Algorithm 4.2.1 (Pseudo-code for Threshold Accepting)

1: Initialize I , J and the sequence of thresholds τi , i = 1, 2, . . . , I
2: Generate starting design U0 ∈ U(n; qs) and let
3: for i = 1 to I do
4: for j = 1 to J do
5: Generate U1 ∈ N (U0) (neighbor of U0)
6: if D(U1) arrives the lower bound, stop the iteration
7: elseif D(U1) < D(U0) + τi then
8: U0 = U1
9: end if
10: end for
11: end for

Essentially, the TA heuristic is a refined local search algorithm operating on the
set of U -type designs U(n; qs) for given n, q, and s. The algorithm starts with a
randomly generated U -type design U0 and proceeds by iterating local search steps.
Each search step consists in choosing aU -type designU1 in the neighborhood of the
current design and to compare the discrepancy of both designs. In contrast to a simple
local search algorithm, the new design is not only accepted if its discrepancy is lower
than the one of the current design, but also if it is not too much higher. The extent to
which such a worsening is accepted is defined by the threshold sequence (τr ), which
typically decreases to zero with the number of iterations reaching a preset maximum,
i.e., at the beginning of a run of the algorithm, comparatively large increases of the
discrepancy are accepted when moving from U0 to U1, while toward the end of a
run, only local improvements are accepted.

4.3 Construction Method Based on Quadratic Form

For searching a uniform design under a given discrepancy, one can consider the
property of the expression of the discrepancy. In this section, it is shown that
the discrepancy defined by the reproducing kernel in (2.4.6) can be expressed by
the quadratic form. Searching uniform design then becomes a quadratic zero-one
integer programming problem, and the integer programming problem method is
used for solving such problem.
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4.3.1 Quadratic Forms of Discrepancies

The generalized L2-discrepancies such as CD, WD, MD, and LD in Sects. 2.3 and
2.5 are defined by the reproducing kernel in (2.4.6). Their computational formulae
can be expressed as the following unified form

constant + 1

n2

N∑

i=1

N∑

j=1

m∏

k=1

f (dik, d jk, qk) − 2

n

N∑

i=1

m∏

k=1

g(dik, qk),

where f (·, ·, ·) and g(·, ·) are different types of functions according to different
discrepancies.

Let Vqi = {1, 2, . . . , qi } and N = q1 . . . qs . Their cartesian product Vs = Vq1 ×
· · · × Vqs . For a U-type design P ∈ U(n; q1, . . . , qs), let n(i1, . . . , is) denote the
number of times that the point (i1, . . . , is) occurs in P . Then, the design P can be
uniquely determined by the column vector of length N given by

yP = (n(i1, . . . , is))(i1,...,is )∈V s , (4.3.1)

where all (i1, . . . , is) points inVs are arranged in the lexicographical order. yP is also
called as the frequency vector (Fang and Ma 2001b; Zhou et al. 2012). For example,
when q = 2 and s = 3, the elements of the frequency vector will be n(1, 1, 1),
n(1, 1, 2), n(1, 2, 1), n(1, 2, 2), n(2, 1, 1), n(2, 1, 2), n(2, 2, 1), and n(2, 2, 2). In
particular, a full factorial U (N ; q1, . . . , qs) design corresponds to yP = 1N , where
1N is the N -vector of ones. Now, we can write

N∑

i=1

N∑

j=1

m∏

k=1

f (dik, d jk, qk)

=
∑

(i1,...,is )∈V s

∑

( j1,..., js )∈V s

n(i1, . . . , is) n( j1, . . . , js)
m∏

k=1

f (ik, jk, qk)

and
N∑

i=1

m∏

k=1

g(dik, qk) =
∑

(i1,...,is )∈V s

n(i1, . . . , is)

m∏

k=1

g(ik, qk).

The squared discrepancies CD2(P), WD2(P), and MD2(P) can then be written as
quadratic forms of yP .

Lemma 4.3.1 For a design P ∈ D(n; q1, . . . , qs), we have

WD2(P) = −
(
4

3

)s

+ 1

n2
yT
PW yP , (4.3.2)
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CD2(P) =
(
13

12

)s

− 2

n
cT yP + 1

n2
yT
PC yP , (4.3.3)

and

MD2(P) =
(
19

12

)s

− 2

n
mT y + 1

n2
yT
PM yP , (4.3.4)

where W = W 1 ⊗ · · · ⊗ W s , W k = (wk
i j ),

wk
i j = 1.5 − |i − j |(qk − |i − j |)/q2

k ,

c = c1 ⊗ · · · ⊗ cs , ck = (ck
1, . . . , ck

qk
)T , C = C1 ⊗ · · · ⊗ Cs , Ck = (ck

i j ),

ck
i = 1 + |2i − 1 − qk |/(4qk) − |2i − 1 − qk |2/(8q2

k ),

ck
i j = 1 + |2i − 1 − qk |/(4qk) + |2 j − 1 − qk |/(4qk) − |i − j |/(2qk),

m = m1 ⊗ m2 ⊗ · · · ⊗ ms,mk = (mk
1, . . . ,mk

qk
), M = M1 ⊗ M2 ⊗ · · · ⊗ Ms ,

Mk = (mk
i j ),

mk
i = 5

3
− 1

4

∣
∣
∣
∣
2i − 1 − qk

2qk

∣
∣
∣
∣ − 1

4

∣
∣
∣
∣
2i − 1 − qk

2qk

∣
∣
∣
∣

2

,

mk
i j = 15

8
− 1

4

∣
∣
∣
∣
2i − 1 − qk

2qk

∣
∣
∣
∣ − 1

4

∣
∣
∣
∣
2 j − 1 − qk

2qk

∣
∣
∣
∣ − 3

4

∣
∣
∣
∣
i − j

qk

∣
∣
∣
∣ + 1

2

∣
∣
∣
∣
i − j

qk

∣
∣
∣
∣

2

,

i, j = 1, . . . , qk, k = 1, . . . , s, and ⊗ is the Kronecker product.

It should be mentioned that the expressions of WD2(P) were introduced by Fang
andMa (2001b), the expressions of CD2(P)were presented in Fang and Qin (2003),
and the expression of MD2(P) were given in Chen et al. (2015).

4.3.2 Complementary Design Theory

A full factorial design U (N ; q1, . . . , qs) with N = q1 . . . qs can be split into two
subdesigns according to the design points, P and P , with n runs and N − n runs,
respectively. One is called the complementary design of the other. Denote Zt =
{0, 1, 2, . . . , t} and Z N

t = Zt × · · · × Zt . Then, yP ∈ Z N
1 means every element of

yP is 0 or 1, and yP = 1N − yP . It is worth to investigate the relationship between
the discrepancy of P and that of its complementary design P . In this subsection,
these relationships under the uniformity criteria CD, WD, and MD are given. Such
theoretical results can be used for the construction of uniform designs with a large
number of runs through the corresponding complementary designs, which have a
small number of runs.
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Based on Lemma 4.3.1, the relationships between the discrepancies of design P
and its complementary design P were obtained by Jiang and Ai (2014) and Chen
et al. (2015). The results are summarized in the following theorem.

Theorem 4.3.1 For any design P ∈ D(n; q1 . . . qs), the discrepancies of design P
and its complementary design P have the following relationships

WD2(P) = −
(
4

3

)s

+ 2n − N

n2

s∏

k=1

(
4qk

3
+ 1

6qk

)

+ (N − n)2

n2

[

WD2(P) +
(
4

3

)s]

, (4.3.5)

CD2(P) =
(
13

12

)s

+ 1

n2

(
1T

NC1N − 2ncT 1N
)

+ 1

n2

[

−2 yT
P(C1N − N c) + (N − n)2

(

CD2(P) −
(
13

12

)s)]

,

(4.3.6)

MD2(P) =
(
19

12

)s

+ 1

n2

(
1T

N M1N − 2nmT 1N
)

+ 1

n2

(

−2 yT
P(M1N − Nm) + (N − n)2

(

MD2(P) −
(
19

12

)s))

,

(4.3.7)

where C , c, M, and m are defined in Lemma 4.3.1.

Proof We only prove the result for MD and the proof for other two discrepancies
are similar. Since yP = 1N − yP , from (4.3.4) we have

MD2(P) =
(
19

12

)s

− 2

n
mT (1N − yP) + 1

n2

(
1N − yP

)T
M

(
1N − yP

)

=
(
19

12

)s

− 2

n
mT 1N + 2

n
mT yP

+ 1

n2

(
1T

N M1N − 2 yT
PM1N + yT

PM yP
)
, (4.3.8)

MD2(P) =
(
19

12

)s

− 2

N − n
mT yP + 1

(N − n)2
yT
PM yP . (4.3.9)

Combine (4.3.8) and (4.3.9), the result in (4.3.7) can be easily obtained. The proof
is finished.

Note that the designP in Theorem 4.3.1 is not necessary a U-type design. Accord-
ing to the relationships (4.3.5)–(4.3.7) in Theorem 4.3.1, the rules for determining a
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uniform designP under the discrepancymeasures through its complementary design
can be easily obtained.

Theorem 4.3.2 For a design P in D(n; q1, . . . , qs),

(1) the design P is a uniform design under WD if and only if its complementary
design P is a uniform design under WD on D(N − n, q1, . . . , qs).

(2) if the term yT
P(C1N − N c) is a constant for all designs on D(n; q1, . . . , qs),

then a design P is a uniform design under CD if and only if its complementary
design P is a uniform design under CD on D(N − n, q1, . . . , qs).

(3) if the term yT
P(M1N − Nm) is a constant, the design P is a uniform design

under MD on D(n; q1 . . . qs) if and only if its complementary design P is a
uniform design under MD on D(N − n; q1, . . . , qs).

The proof of Theorem 4.3.2 is obvious, and we omit it. Comparing with Theorem
4.3.2(1) for WD, the additional condition that yT

P(C1N − N c) or yT
P(M1N − Nm)

is a constant is needed inTheorem4.3.2(2) forCDorTheorem4.3.2(3) forMD.How-
ever, we can find some special cases that the additional condition may be satisfied.
Then, we obtain the following two corollaries.

Corollary 4.3.1 Under the discrepancy measure CD, if one of the following condi-
tions satisfies

(1) the levels q1, . . . , qs are all odd,
(2) s = 2,
(3) q1 = · · · = qs−1 = 2,

a design P is a uniform design in D(n; q1, . . . , qs) if and only if its complementary
design P is a uniform design in D(N − n, q1, . . . , qs).

Proof We should prove that yT
P(C1N − N c) is a constant for these cases. It can be

easily verified that

Ck1qk − qkck = 1

8qk
1qk I{qk is even} for k = 1, . . . , s,

where I{·} is the indicator function.
(1) Note that when q1, . . . , qm are all odd, Ck1qk = qkck , for k = 1, . . . , s. Then,

we have C1N = N c and yT
P(C1N − N c) = 0 is a constant.

(2) When s = 2, we have

C1N − N c

=
(

q1c1 + 1

8q1
1q1 I{q1 is even}

)

⊗
(

q2c2 + 1

8q2
1q2 I{q2 is even}

)

− N c

= q2

8q1
1q1 ⊗ c2 I{q1 is even} + q1

8q2
c1 ⊗ 1q2 I{q2 is even}

+ 1

64q1q2
1N I{both q1 and q2 are even}.
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Since yT
D1N = n, yT

D(1q1 ⊗ c2) and yT
D(c1 ⊗ 1q2) are all constants for all designs in

D(n; q1, q2), then yT
P(C1N − N c) is a constant.

(3) When qk = 2, and ck = 35
3212 for k = 1, . . . , s − 1, we have c = (

35
32

)s−1
12s−1

⊗ cs . Moreover, Ck12 = 9
412 for k = 1, . . . , s − 1 and Cs1qs − qscs = 1

8qs
1qs

I{qs is even}. Then,

C1N − N c =
((

9

4

)s−1

12s−1

)

⊗ (Cs1qs ) − N c

=
(

qs

(
9

4

)s−1

− N

(
35

32

)s−1
)

12s−1 ⊗ cs +
(
9

4

)s−1 1

8qs
1N I{qs is even}.

Since yT
D1N = n and yT

D(12s−1 ⊗ cs) is a constant for all designs in D(n, 2s−1qs),
then yT

P(C1N − N c) is a constant. The proof is complete.

Consider the discrepancy measure MD.WhenP ∈ D(n; 2s), from the definitions
of M and m in Theorem 4.3.2, it is obvious that

M1N − Nm =
[(

13

4

)s

−
(
305

96

)s]

1N ,

then yT
P(M1N − Nm) =

[(
13
4

)s − (
305
96

)s
]
yT
P1N = (N − n)

[(
13
4

)s − (
305
96

)s
]
is a

constant. As a consequence, we have the following result.

Corollary 4.3.2 When n < N = 2s , a design P is a uniform design under MD on
D(n; 2s) if and only if its complementary design P is a uniform design under MD
on D(N − n; 2s).

Moreover, when the number of levels is larger than 2, it also can obtain uniform
designs or nearly uniform designs through the complementary design theory. Then,
the computation complexity for search uniform design with a large number of runs
can be reduced significantly. The following example shows that suchmethod is useful
to find the uniform designs especially for designs with large size.

The condition that the term yT
P(C1N − N c) or yT

P(M1N − Nm) is a constant in
Theorem 4.3.2 is a sufficient condition such that a design is the uniform design if and
only if its complementary design is the uniform design. However, the complementary
design theory is also useful even such condition is not satisfied. Here has an example.

Example 4.3.1 Let n = 6, q = 3 and s = 3. Consider to construct uniform design
U6(33) as well as the U21(33). Choose six different points among the 33-full factorial
design to form the designs, i.e., the design space isD(6; 33) with no repeated design
point. Among the

(27
6

) = 296,010 possible designs, the following design

P =
⎛

⎝
1 1 2 2 3 3
1 2 2 3 1 3
1 3 2 1 2 3

⎞

⎠

T
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is a uniform design with the minimum MD-value 0.1219. Then, the corresponding
complementary designP can be obtained by deleting the six points ofP in the 33-full
factorial design, and its MD-value is 0.1097. It can be checked that among all the
296,010 possible designs with 21 different points from the 33-full factorial design,
the MD-value of P is the minimum, which means P is also the uniform design in
the design space D(21; 33) with no repeated point.

The complementary design theory is powerful to construct uniform designP with
large number of runs n when n is close to N , the number of runs of full factorial
design. The construction procedure is as follows.

Step 1 Given the parameters n, q1, . . . , qs , construct the uniform design P with
N − n runs by some algorithm.

Step 2 Obtain P through the complementary design P .

For example, when N = 56 and n = N − 10, it is convenient to construct the (nearly)
uniform design U10(56) through the TA algorithm, and then, the (nearly) uniform
design UN−10(56) can also be easily obtained by the complementary design theory.

4.3.3 Optimal Frequency Vector

According to the quadratic forms of different discrepancies in Sect. 4.3.1, searching
a uniform design can be regarded as a quadratic integer programming problem.
Note that the theory of optimization including convex optimization and quadratic
integer programming has been rapidly developed in the past decades (see Boyd and
Vandenberghe 2004). In this subsection, applications of some efficient algorithms in
the quadratic integer programming for construction of uniform designs are given.

First, we give a brief introduction to quadratic programming, convex quadratic
programming, semidefinite programming, and integer programming. An optimiza-
tion program can be described as follows.

min f0( y)
s.t. fi ( y) � 0, i = 1, . . . , t,

hi ( y) = 0, i = 1, . . . , p.
(4.3.10)

We want to find an optimizing variable y ∈ Rm that minimizes the objective func-
tion f0( y) among all y that satisfy the inequality constraints given in (4.3.10). The
function f0 : Rm → R is also called cost function. The functions fi : Rm → R and
hi : Rm → R are called the inequality constraint functions and the equality con-
straint functions, respectively. When t = p = 0, we say the problem (4.3.10) to be
unconstrained.

When f0, . . . , ft are convex functions, and hi ( y) = aT
i y − bi , i = 1, . . . , p, the

problem (4.3.10) becomes a convex optimization problem. The convex optimization
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problem is called a quadratic program (QP) if the objective function f0 is (con-
vex) quadratic, and the constraint functions are linear. A quadratic program can be
expressed in the form

min f0( y) = 1
2 y

T Q y + cT y
s.t. G y ≤ h,

Ay = b.
(4.3.11)

where Q ∈ Rm×m is a symmetric real matrix, c ∈ Rm, h ∈ Rt , b ∈ R p, G ∈ Rt×m ,
A ∈ R p×m , and the notation G y � h means that every entry of the vector G y is
less than or equal to the corresponding entry of the vector h. If Q is a symmetric
positive-semidefinite matrix, the quadratic programming problem (4.3.11) is called
the semidefinite quadratic programming. For solving the QP in (4.3.11), a variety
of methods are commonly used, including subgradient methods (Shor 1985), bundle
methods (Hiriart-Urruty and Lemaréchal 1993), interior point methods (Boyd and
Vandenberghe2004), and the ellipsoidmethod (Shor 1991). If thematrix Q is positive
definite, the ellipsoid method solves the problem in polynomial time (Kozlov et al.
1979). If Q is indefinite, then the problem QP is NP-hard, even if Q has only one
negative eigenvalue, the problem is NP-hard (Pardalos and Vavasis 1991).

In many applications, each element of the vector y should be chosen from the
discrete set {0, 1}, and the constraints in the quadratic programming problem (4.3.11)
become y = (y1, . . . , ym) ∈ {0, 1}m , i.e., yi ∈ {0, 1}. Here, we consider the follow-
ing special quadratic programming problem

min f0( y) = yT Q y
s.t. y ∈ {0, 1}m .

(4.3.12)

Such a formulation (4.3.12) is called an unconstrained binary quadratic program-
ming problem. This problem is also known as the unconstrained quadratic bivalent
programming problem or the unconstrained quadratic zero-one programming prob-
lem. In many cases, we may add the constraint that the summation of the values of
the elements of y equals some constant n, i.e.,

min f0( y) = yT Q y
s.t. 1T y = n, y ∈ {0, 1}m,

(4.3.13)

where 1 = (1, . . . , 1)T . Iasemidis et al. (2001) showed that the quadratic binary pro-
gramming problem (4.3.13) can be reduced to problem (4.3.12). Since the constraint
in problem (4.3.12) is not convex, the quadratic binary programming problem is not
a convex optimization problem and the complexity of solving such problem is also
NP-hard. One has to use some optimization algorithms to search the solution.

Now, consider construction of uniform designs for given parameters q1, . . . , qs

and n. Based on the formula (4.3.2), the problem of constructing a uniform design
Un(q1, · · · , qs) underWD can be formulated as the following optimization problem:
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{
min f0( y) = − (

4
3

)s + 1
n2 yT W y

s.t. 1T
N y = n, y ∈ Z N+ ,

(4.3.14)

where Z N+ = Z+ × · · · × Z+, Z+ = {0, 1, 2, . . .}, N = q1 . . . qs , and y = (y1, . . . ,
yN )

T ∈ Z N+ means yi ∈ Z+. Actually, from the constraint 1T
N y = n and y ∈ Z N+ , we

can reduce the range Z N+ to Z N
n , where Zn = {0, 1, 2, . . . , n}. Thus, the problem

(4.3.14) is equivalent to the following optimization problem:

{
min f1( y) = yT W y
s.t. 1T

N y = n, y ∈ Z N
n .

(4.3.15)

The problem (4.3.15) is an integer programming problem and is not a convex opti-
mization problem. It was shown that the integer programming problem is a NP-hard
problem,while convex optimization problem can be solved in polynomial time (Boyd
and Vandenberghe 2004). If the constraint y ∈ Z N

n is relaxed, we have the following
convex optimization problem

{
min f2( y) = yT W y
s.t. 1T

N y = n.
(4.3.16)

Problem (4.3.16) is a special convex quadratic programming, i.e., a semidefinite
programming. Therefore, we can use the theory of convex optimization to solve
problem (4.3.16). Especially, we have the following result.

Theorem 4.3.3 The minimizer of problem (4.3.16) is

y∗ = n

N
1N , (4.3.17)

where N = q1 . . . qs.

Proof It is well known that the Lagrangian associated with the problem (4.3.16) is

L( y,λ) = yT W y + λ(1T y − n) = yT W y + λ1T y − λn, (4.3.18)

where λ ∈ R is the Lagrange multiplier associated with the constraint 1T y = n. The
Lagrange dual function can be obtained as follows:

g(λ) = inf
y

L( y,λ) = inf
y

(
yT W y + λ1T y

) − λn. (4.3.19)

Derivate the Eq. (4.3.18) with respect to y, and let the derivative be zero, and we
have

ŷ = −1

2
λW−11. (4.3.20)

Thus



4.3 Construction Method Based on Quadratic Form 175

g(λ) = −1

4
λ21T W−11 − λn, (4.3.21)

which gives a lower bound of the optimal value y∗ of the optimization problem
(4.3.16). And the Lagrange dual problem associated with the problem (4.3.16)
becomes

max g(λ). (4.3.22)

Let d∗ and p∗ be respective the optimal value of problem (4.3.16) and the Lagrange
dual problem (4.3.22), respectively. Since the problem (4.3.16) is a semidefinite
programming, the optimal duality gap is zero, which means d∗ = p∗ (see Boyd and
Vandenberghe 2004, p. 226) From (4.3.21), the maximizer of problem (4.3.22) is

λ∗ = − 2n

1T W−11
. (4.3.23)

Substituting (4.3.23) into (4.3.20), we have

ŷ = −1

2
(W−11)

(

− 2n

1T W−11

)

. (4.3.24)

Moreover, it can be easily checked that

⎧
⎨

⎩

W k1qk =
(
4qk

3 + 1
6qk

)
1qk , W1N = ∏s

k=1

(
4qk

3 + 1
6qk

)
1N ,

W−1
k 1qk =

(
4qk

3 + 1
6qk

)−1
1qk , W

−11N = ∏s
k=1

(
4qk

3 + 1
6qk

)−1
1N .

Then, we obtain the minimizer y∗ = n
N 1N , which completes the proof.

The results in Theorem 4.3.3 for symmetrical and asymmetrical designs under
WD are from Fang and Ma (2001a) and Zhou et al. (2012), respectively. According
to Theorem 4.3.3, usually the optimal design P associated with y∗ is not an exact
design. However, a full design with n = k N and y = k1N for some positive integer
k is a uniform design under WD.

Corollary 4.3.3 When n = k N, N = q1 . . . qs and k is a positive integer, the full
design P ∈ U(n; q1, . . . , qs) is the uniform design under WD and its squared WD
is

WD2(P) =
s∏

i=1

(
4

3
+ 1

6q2
i

)

−
(
4

3

)s

.

Next consider the MD. For given n and q1, . . . , qs , based on the formula (4.3.4),
the problem of constructing uniform design can be formulated as the following
optimization problem when the constant

(
19
12

)s
is ignored:
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{
min − 2

n m
T y + 1

n2 yT M y,

s.t. 1T
N y = n, y ∈ Z N

n .
(4.3.25)

If the constraint y ∈ Z N
n is relaxed and the objective function times n2, we obtain

the following convex optimization problem

{
min yT M y − 2nmT y,
s.t. 1T

N y = n.
(4.3.26)

which is a special semidefinite programming problem. We have the following result.

Theorem 4.3.4 For given n and q1, . . . , qs, the minimizer of optimization problem
(4.3.26) is

y∗ = n

(

M−1m + 1 − mT M−11N

1T
N M−11N

M−11N

)

. (4.3.27)

where m and M are defined in Lemma 4.3.1.

The proof of Theorem 4.3.4 can be found in Chen et al. (2015). From Theorem
4.3.4, the elements of the optimal vector y∗ seems not equal to each other. However,
when q1 = · · · = qs = 2, the elements mk

i = 305/192, and mk
i j = 7/4 if i = j , 3/2

otherwise. Then,

mk = (305/192, 305/192),

Mk =
[
7/4 3/2
3/2 7/4

]

, M−1
k =

[
28/13 −24/13

−24/13 28/13

]

.

Here, the notations mk
i ,mk

i j ,mk , and Mk are defined in Lemma 4.3.1. Moreover,
according to the property of the operator Kronecker product

(B ⊗ B)−1 = B−1 ⊗ B−1, (B ⊗ B)(b ⊗ b) = Bb ⊗ Bb,

(B ⊗ B)12k = B1k ⊗ B1k,

then M−1m = (
305
634

)s
1N , M−11N = (

4
13

)s
1N and y∗ = n

N 1N . Then, we have the
following result.

Corollary 4.3.4 The uniform design under MD inD(n; 2s) has the frequency vector
y∗ = n

N 1N , where N = 2s . Moreover, the two-level full factorial design is the uniform
design under MD.

Ma et al. (2003) first showed some similar result under CD, and for details, one
can refer to their paper.
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4.3.4 Integer Programming Problem Method

The construction of a uniform design U (n; q1 . . . qs) can be regarded as an opti-
mization problem (4.3.15) that can be relaxed into (4.3.16). Theorem 4.3.3 gives the
solution y∗ = n

N 1N , where N = q1 . . . qs . However, the corresponding design with
optimal frequency vector is not an exact design when n < N . It needs some algo-
rithms to construct uniform designs when n < N . In this subsection, we consider the
construction of uniform design by the integer programming problem method.

Without loss of any generality, consider theWD as the uniformity measure. Since
n < N and the uniform design requires the design points scatter on the domain as
uniformity as possible, the constraint 1T

N y = n can be changed as y ∈ {0, 1}N ,where
y ∈ {0, 1}N means that each element of y, yi ∈ {0, 1}. Then, the quadratic integer
programming problem (4.3.15) with a linear constraint can be transformed as the
following unconstrained optimization problem (see Iasemidis et al. 2001):

{
min yT W y + K (W)(1T

N y − n)2

s.t. y ∈ {0, 1}N ,
(4.3.28)

where K (W) = 2
∑N

i=1

∑N
j=1 |wi j | + 1, and W = (wi j ) is defined in Lemma 4.3.1.

Furthermore, because of the property y2i = yi , we can rewrite the problem (4.3.28)
as follows:

{
min yT Q0 y + K (W)n2

s.t. y ∈ {0, 1}N ,
(4.3.29)

where Q0 = W + K (W)1N1T
N − 2K (W)N iN is a symmetric matrix. Note that the

value of K (W) is large inmost cases and the elements of Q0 are also large. It is better
to divide the objective function by K (W) and remove the constant K (W)n2, and
problem (4.3.29) can be rewritten as the following unconstrained quadratic problem:

{
min f ( y) = yT Q y
s.t. y ∈ {0, 1}N ,

(4.3.30)

where Q = Q0/K (W) is a nonnegative definite matrix.
It is well known that the unconstrained zero-one quadratic programming prob-

lem (4.3.30) does not have analytic solution and is an NP-hard problem when N
increases. For solving such problem, many methods were proposed in the literature,
such as some trajectory methods including Tabu search (Beasley 1998; Palubeckis
2004) and simulated annealing (Beasley 1998; Katayama and Narihisa 2001), some
population-based methods including scatter search (Amini et al. 1999) and evolu-
tionary algorithms (Merz and Freisleben 1999; Merz and Katayama 2004), and other
local search heuristics (Merz and Freisleben 2002). More details about these heuris-
tics can refer toGilli andWinkler (2009). Katayama andNarihisa (2001) presented an
SA-based heuristic to test on publicly available benchmark instances of size ranging
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from 500 to 2500 variables and compared them with other heuristics. Computational
results indicate that this SA leads to high-quality solutions with a short cpu times.
For solving this problem, Merz and Freisleben (2002) proposed a greedy heuristic
and two local search algorithms: 1-opt local search and k-opt local search.

Zhou et al. (2012) proposed an algorithm called SA-based integer programming
method (SA-IPM) to solve the special zero-one quadratic programming problem for
constructing uniform designs. SA-IPM combines SA-based heuristic and 1-opt local
search with the best improvement move strategy. Its pseudo-code can be seen in
Algorithm 4.3.1.

Algorithm 4.3.1 (SA-based integer programming method)

1: Initialize I, J, Tinit , T f , Tr ;
2: Generate an initial random solution y0 ∈ {0, 1}N ;
3: for i = 1 : I
4: Set y = y0, T = Tinit , ct=0;
5: Calculate gains gk of y for all k in {1, . . . , N };
6: while ct< J ;
7: Set ct=ct+1;
8: for t=1:N
9: Find j with g j = mink gk ;
10: If g j < 0, then set ct=0 and y j = 1 − y j (and update all gains gi );
11: Otherwise, random choose k ∈ {1, . . . , N }, set yk = 1 − yk with

probability e−gt /T (and update all gains gi );
12: end
13: Set T = T f × T ;
14: end
15: If the design with respect to y reaches its lower bound, return y;
16: Otherwise, set y0 = y, Tinit = Tr × Tinit ;
17: end
18: Return y;

In the above pseudo-code parameters I, J , and Tinit represent the number of
time of annealing process, the termination conditional number at each iteration, and
the initial temperature, respectively. Parameters T f , Tr ∈ (0, 1) are two temperature
reduction rates. Usually, the initial values of the parameters in Algorithm 4.3.1 are set
by some preliminary test, which is considered to have a trade-off between the quality
of the resulted design and computer running time. Zhou et al. (2012) suggested
that Tinit = 1/q, where q is the number of levels, J = 10 and the ratio T f = 0.99,
I = 10, Tr = 0.9 if N < 500, and I = 2, Tr = 0.8 if N � 500.

Define a neighbor of current solution y = (y1, . . . , yN ) as

{ yi = (y1, . . . , yi−1, 1 − yi , yi+1, . . . , yN ), i = 1, . . . , N },

so the hamming distance between yi and y is equal to 1. Define the gain gi =
f ( yi ) − f ( y), where f (·) is the objective function in problem (4.3.30), and gi < 0
means yi is a good neighbor; otherwise, it is a bad one. According to Merz and
Freisleben (2002), the gain gi can be calculated by
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gi = qii (ȳi − yi ) + 2
m∑

k=1,k �=i

qki yk(ȳi − yi ), (4.3.31)

where ȳi = 1 − yi , qki is the (k, i)-element of the matrix Q in problem (4.3.30).
The gain gi can be calculated in a linear time of N , but all gains of neighbors must
be calculated in O(N 2) times. However, the gains gi do not have to be recalculated
each time. Assuming that all gi for a current solution have been calculated and the
bit k is flipped, we can compute the new gain gn

i efficiently with the formula:

gn
i =

{−gi , if i = k,
gi + 2qik(ȳi − yi )(ȳk − yk), otherwise,

(4.3.32)

and the update gains can be performed in a linear time. Step (9:) includes a local
search for the best improvement, which is different from the classical SA. It is
possible in step (10:) that there are different j satisfied g j = mini gi . In this case, we
randomly choose one bit to flip. In steps (10:) and (11:), all gains gi can be updated
by using (4.3.32). Moreover, if the lower bound in step (10:) is reached, the process is
terminated. The lower bound of design under WD can be seen in Fang et al. (2005),
Zhou et al. (2008).

Zhou et al. (2012) showed that the Algorithm 4.3.1 is powerful for searching
(nearly) uniform designs when n < N . For example, when N < 3200, the algo-
rithm can deliver designs with lower computational complexity and lower WD value
compared with many existing construction methods. Therefore, SA-IPM is suitable
to construct designs with a large number of runs and the total number of level-
combinations to be below several thousands, e.g., n > 200 and N < 3200. Note that
as N increases, the computational complexity of SA-IPM increases exponentially.
For other uniformity criteria, one can use the SA-based integer programming problem
method similarly.

Exercises

4.1

The Gauss–Newton method in optimization has been widely used in various fields.
Let f (x) be a function on X . One wants to find a x∗ ∈ X such that f (x∗) =
maxx∈X f (x). List the conditions on f (x) and X for applying the Gauss–Newton
method for this optimal problem.

When the objective function f (x) has several local maxima, how to apply the
Gauss–Newton method to find the global maximum?

4.2

Give a brief introduction to the following in optimization methodology: Convex
programming, linear programming, quadratic programming, integer programming,
nonlinear programming, and stochastic programming.
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4.3

Let P be a design below with eight runs and 4 two-level factors.

Row 1 2 3 4
1 1 1 1 1
2 2 2 2 2
3 1 1 2 2
4 2 2 1 1
5 1 2 1 2
6 2 1 2 1
7 1 2 2 1
8 2 1 1 2

Give the vector yP defined in (4.3.1).

4.4

Write a MATLAB code for the TA Algorithm 4.2.1. The code gives the choice of the
discrepancy (WD, CD, or MD) to the user and provides the trace plot. Apply your
own code to find nearly uniform designs U9(34),U16(45),U18(37), and U25(56).

4.5

Give the iteration formula for MD.

4.6

Write aMATLAB code for the SA-based integer programmingmethod in Sect. 4.3.4.
Apply your own code to find nearly uniform designs U9(34), U45(34), U20(54),
U200(54),U12(45), and U600(45).

4.7

Suppose one wants to construct a uniform design Un(ns). The so-called forward
construction method is a natural idea. The first column can be chosen as u1 =
(1, 2 . . . , n)T . The second column u2 is a permutation of {1, 2, . . . , n} such that
u2 �= u1 and [u1, u2] have the minimum discrepancy among all n! − 1 permutations.
The third column u3 is a permutation of {1, 2, . . . , n} such that u3 �= u1, u3 �= u2,
and [u1, u2, u3] have theminimumdiscrepancy among all n! − 2 permutations. Con-
tinue this procedure until we have s columns. A similar idea can be used for the
construction of Un(qs).

Write a MATLAB code for construction of U9(93),U9(34), and U8(27).
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Chapter 5
Modeling Techniques

Let y = f (x) = f (x1, . . . , xs) be the true model of a system where X1, . . . , Xs are
factors that take values (x1, . . . , xs) on a domain X , and y is response. For physical
experiments with model unknown, the true model f (·) is unknown and for computer
experiments the function f (·) is known, but it may have no an analytic formula. We
are requested to find a metamodel ŷ = g(x) with a high quality to approximate the
true model in a certain sense. How to find a metamodel is a challenging problem.
This chapter gives a brief introduction to various modeling techniques such as radial
basis function, polynomial regression model, spline and Fourier model, wavelets
basis and Kriging models in applications by the use of uniform designs. Readers can
find more discussion on modeling methods in Eubank (1988), Wahba (1990), Hastie
et al. (2001), and Fang et al. (2006).

When the true model is unknown, the statistician G.E.P. Box argued that “all
models arewrong; but someare useful.”Amodelingmethod is a procedure for finding
a high-quality metamodel that approximates the true model well over the domainX .
A good metamodel should have less computation complexity and be easy to explore
relationship between the factors and the response or between the input variables and
the output. Chen et al. (2006) said that “A mathematical model surrogate of system
performance, to approximate the relationship between system performance and the
design parameters.” Our experiences also believe that there are only a few active
factors in the model. There are various kinds of modeling techniques. Section 5.1
introduces the modeling technique by basis functions which can be used to analyze
the data of physical experiments and computer experiments. Section 5.2 considers the
Kriging models which are popularly used for data of computer experiments. Section
5.3 gives an example to show the usefulness of uniform designs.
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K.-T. Fang et al., Theory and Application of Uniform
Experimental Designs, Lecture Notes in Statistics 221,
https://doi.org/10.1007/978-981-13-2041-5_5

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2041-5_5&domain=pdf
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5.1 Basis Functions

Many modeling methods are based on a set of specific bases. Let

{B1(x), B2(x), . . .}, x ∈ X

be a set of basis functions defined on the experimental domainX . Here, the functions
Bi (x), i = 1, 2, . . . , are known. Ametamodel g is a submodel of the maximal model
of the interest,

g(x) = β1B1(x) + β2B2(x) + · · · + βm Bm(x), (5.1.1)

where β j ’s are unknown coefficients to be estimated and m can be finite or infinite.
The polynomial basis, spline basis, and wavelets basis are popularly used in practical
application. In this section, we introduce the application of these basis functions for
modeling.

5.1.1 Polynomial Regression Models

The polynomial regression model has been widely used for modeling. The one-
dimensional polynomial basis with order k is

1, x, x2, . . . , xk,

and the centered polynomial basis is

1, (x − x̄), (x − x̄)2, . . . , (x − x̄)k,

where x̄ is the sample mean of x . Sometimes, the centered polynomial basis is more
useful than the polynomial basis. Consider the modeling for Example 1.1.1.

Example 5.1.1 (Example1.1.1 continued) The experimenter wants to explore the
relationship between the strength (y) and the amount of the chemical material (x)
by an experiment. Obviously, it is not enough if one observes only at two or three
different x-values, the latter are still called levels similar to that in factorial design.
Suppose the number of levels is decided to be 12. The equal distance points on [0.4,
1] are x = 0.4250, 0.4750, 0.5250, 0.5750, 0.6250, 0.6750, 0.7250, 0.7750, 0.8250,
0.8750, 0.9250, 0.9750. The replication at each x-value is chosen as two times, and
the corresponding strengths are denoted by yk1, yk2, k = 1, . . . , 12 and are list in
Table 5.1.
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Table 5.1 One-factor UD
and related responses

No x yk1 yk2

1 0.4250 1.2066 1.5996

2 0.4750 1.8433 0.9938

3 0.5250 1.4580 1.1150

4 0.5750 2.0226 1.9433

5 0.6250 2.1987 2.1855

6 0.6750 2.8344 3.3655

7 0.7250 3.4903 3.5215

8 0.7750 3.1198 3.6166

9 0.8250 3.7632 3.0041

10 0.8750 1.6193 2.1473

11 0.9250 0.8490 1.3500

12 0.9750 0.1136 0.8764

From the plot of y against x in Fig. 5.1, it is clear that the simple linear model
y = β0 + β1x + ε is not suitable. There are many alternatives for the metamodels,
for example, we can employ a polynomial regression model

y = β0 + β1x + β2x
2 + · · · + βk x

k + ε (5.1.2)

with some suitable order k.More often one considers centered polynomial regression
model

y = β0 + β1(x − x̄) + β2(x − x̄)2 + · · · + βk(x − x̄)k + ε. (5.1.3)

The fitting models by the centered polynomial regression models of order 5 and
order 6 are shown in Fig. 5.1, respectively. The ANOVA table of the latter is given

0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

True
Order 5

0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

True
Order 6

Fig. 5.1 Polynomial regressions of orders 5 and 6
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Table 5.2 ANOVA of the polynomial regression of order 6

Source Df Sum of square Mean square F-value Pr>F

Model 6 22.3939 3.7323 27.8322 <0.0001

Lack of fit 5 0.5861 0.1172 0.8740 0.5266

Error 12 1.6090 0.1341

Total 23 24.5889

in Table 5.2. In this table, the lack of fit test is implemented since there are 12
repeated points (For the lack of fit test, the reader can refer to some textbooks,
such as Myers 1990.) If the lack of fit test is insignificant, the current model can
be accepted as a metamodel; otherwise, we should try another model. For our case
the test is insignificant, and so the polynomial model of order 6 can be used as a
metamodel. The estimator of σ̂2 now can combine the two sums of squares “lack
of fit” and “error”: σ̂2 = (0.5861 + 1.6090)/(5 + 12) = 0.1291. The model test is
significant, which means the model can fit the data very well. However, from the
plots in Fig. 5.1 it is clear that this metamodel can be further improved as the fitting
is not so good in the neighborhoods of 0.4 and 1, respectively.

For multi-dimensional cases, a polynomial regression model is based on spe-
cial basis functions xr11 . . . xrss , where r1, . . . , rs are nonnegative integers. Low-order
polynomials such as the first-order regression model

E(y) = β0 + β1x1 + · · · + βs xs, (5.1.4)

the quadratic regression model

E(y) = β0 +
s∑

i=1

βi xi +
s∑

i� j

βi j xi x j , (5.1.5)

and the centered quadratic regression model

E(y) = β0 +
s∑

i=1

βi (xi − x̄i ) +
s∑

i� j

βi j (xi − x̄i )(x j − x̄ j ) (5.1.6)

are recommended, where x̄i is the sample mean of xi .
In the presence of high-order polynomials, we face two problems: (1) the num-

ber of polynomial basis functions dramatically increases with the number of factors
and the degree of polynomial; (2) the polynomial basis may cause the collinearity
problem, i.e., there are high correlations among regressors. In such situations, orthog-
onal polynomial models are recommended to overcome the difficulty arising out of
the presence of multi-collinearity. The orthogonal regression model for one-factor
experiment is well known. For multi-factor case, the corresponding model can be
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E(y) = α0 +
s∑

i=1

αiφi (xi ) +
s∑

i� j

αi jφi (xi )φ j (x j ), (5.1.7)

where φ j (u)’s satisfy

∫ 1

0
φ j (u) du = 0,

∫ 1

0
φ2

j (u) du = 1, and
∫ 1

0
φ j (u)φk(u) du = 0, for j �= k.

The univariate orthogonal polynomials over [0,1] can be constructed using Leg-
endre polynomials over [−1/2, 1/2] by a location transformation. The first few
Legendre polynomials are:

φ0(u) = 1,

φ1(u) = √
12(u − 1/2),

φ2(u) = √
180

{
(u − 1/2)2 − 1

12

}
,

φ3(u) = √
2800

{
(u − 1/2)3 − 3

20
(u − 1/2)

}
,

φ4(u) = 210

{
(u − 1/2)4 − 3

14
(u − 1/2)2 + 3

560

}
,

φ5(u) = 252
√
11

{
(u − 1/2)5 − 5

18
(u − 1/2)3 + 5

336
(u − 1/2)

}
,

φ6(u) = 924
√
13

{
(u − 1/2)6 − 15

44
(u − 1/2)4 + 5

176
(u − 1/2)2 − 5

14,784

}
.

These orthogonal polynomials together with their tensor products

�r1,...,rs (x) =
s∏

j=1

φr j (x j ),

can be easily used to construct an orthogonal polynomial basis in an experimental
domainX . Let B0(x) ≡ �0,...,0(x) = 1, and any finite set of function�r1,...,rs (x) can
serve to define the basis function.

Fourier basis functions are well-known orthogonal basis functions. When the
response y is a periodic function of the factors, Fourier regression models are useful.
Riccomango et al. (1997) gave a comprehensive study on this basis. It is well known
that

1, cos(2πx), sin(2πx), . . . , cos(2kπx), sin(2kπx), . . . ,

form an orthogonal basis for a functional space over [0, 1]. In practice, the following
Fourier regression model is recommended:
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E(y) = β0 +
s∑

i=1

m∑

j=1

{αi j cos(2 jπxi ) + βi j sin(2 jπxi )}.

When there are some interactions, the two-factor complete model is

E(y) = θ0 + √
2

m1∑

r=1

[sin(2πr x1)β1,r + cos(2πr x1)γ1,r ]

+ √
2

m2∑

s=1

[sin(2πsx2)β2,s + cos(2πsx2)γ2,s]

+ 2
m1∑

r=1

m2∑

s=1

[sin(2πr x1) sin(2πsx2)θr,s + sin(2πr x1) cos(2πsx2)λr,s

+ cos(2πr x1) sin(2πsx2)τr,s + cos(2πr x1) cos(2πsx2)φr,s],

where m1 and m2 are orders of the Fourier regression model, β1,r , γ1,r , β2,s, γ2,s,
θr,s,λr,s, τr,s,φr,s’s are unknown coefficients. Riccomango et al. (1997) pointed out
that if you choose a suitable design, it will be D-optimal under the above models.
Shi et al. (2001) proposed the so-called FOUND algorithm, by which we can find
many D-optimal designs. For more discussions, the reader can refer to Xie et al.
(2007).

5.1.2 Spline Basis

Each item in the polynomial basis gives inference to the whole domain X . When the
function g(x) is flat in some area of X , but fluctuates in other area of X , it may be
difficult for the polynomial regression model to model such a function. We wish to
have a basis in which some items appear only in a special area ofX . For example, the
term I (a � x � b) disappears outside of [a, b], where I (·) is the indicator function
and the term (x − a)+ disappear in [−∞, a], where

x+ =
{
x, if x > 0;
0, otherwise.

For one-factor case, if we can choose predecided knots κ1, . . . ,κm , a power spline
basis has the following general form:

1, x, x2, . . . , x p, (x − κ1)
p
+, . . . , (x − κm)

p
+. (5.1.8)

The most widely used orders are p � 5. Hastie et al. (2001) said that “It is claimed
that cubic spline are the lowest-order spline for which the knot-discontinuity is not
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visible to the human eye.” Certainly, the cubicmodelwith p = 3 is useful in practical
applications.

Spline basis functions for multi-factor experiments are constructed by using the
method of tensor product. It is common to standardize the x-variables first such that
the ranges for all x-variables are the same, for example [0, 1]. Then take the same
knots for each x-variables. For given fixed knots κ1, . . . ,κm , denote

S0(u) = 1, S1(u) = u, . . . , Sp(u) = u p,

Sp+1(u) = (u − κ1)
p
+, . . . , Sp+m(u) = (u − κm)

p
+.

Then an s-dimensional tensor product basis function over x = (x1, . . . , xs)′ is

Br1,...,rs (x) =
s∏

j=0

Sr j (x j ). (5.1.9)

It is easy to see that B0,...,0(x) = 1, and any finite set of functions Br1,...,rs (x),
0 � r1, . . . , rs � m + p can form a basis function. However, the tensor product
method increases the number of basis functions exponentially as the dimension s
increases. Friedman (1991) proposed the so-calledmultivariate adaptive regression
splines (MARS). In MARS, the number of basis functions and the knot locations are
adaptively determined by the data. Friedman (1991) presented a thorough discus-
sions on MARS and gave an algorithm to create spline basis functions for MARS.
Readers can refer to this paper for details.

5.1.3 Wavelets Basis

Wavelets bases have been widely used in numerical analysis and wavelet shrinkage
methods in nonparametric regression (see Daubechies 1992; Chui 1992; Antoniadis
and Oppenheim 1995). The latter has been often used in modeling for experimental
data. In practice, the most widely used wavelet shrinkage method is the Donoho–
Johnstone’s VisuShrink procedure (see Donoho and Johnstone 1994; Donoho et al.
1995).

The definition of thewavelets basis is as follows.Letφ andψ denote the orthogonal
father and mother wavelet functions. Assume that ψ has r vanishing moments and
φ satisfies

∫
φ(x)dx = 1. Define

φ jk(x) = 2 j/2φ(2 j x − k), ψ jk(x) = 2 j/2ψ(2 j x − k). (5.1.10)

The set {φ jk(x),ψ jk(x)} constitutes an orthogonal basis on L2([0, 1]), the set of
square-integrable functions on [0, 1]. This basis has an associated exact orthogonal
discrete wavelet transform that transforms data into wavelet coefficient domain. For
a given g ∈ L2([0, 1])), it can be expanded into a wavelet series
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g(x) =
2 j0∑

k=1

a j0kφ j0k(x) +
∞∑

j= j0

2 j∑

k=1

b jkψ jk(x), (5.1.11)

where

a jk =
∫

g(x)φ jk(x)dx, b jk =
∫

g(x)ψ jk(x)dx .

Wavelet transform decomposes a function into different resolution components. In
(5.1.11), a j0k are the coefficients at the coarsest level. They represent the gross struc-
ture of the function g, while b jk are the wavelet coefficients that represent finer
and finer structures of the function g as the resolution level j increases. The wavelet
basis transforms i.i.d. Gaussian noise to i.i.d. Gaussian noise and is norm-preserving.
This nice property allows us to transform the problem in the function domain into a
problem in the sequence domain of the wavelet coefficients. The reader can refer to
Brown and Cai (1997) and Cai and Brown (1998) for a systematic introduction.

The so-called least interpolating polynomials proposed by De Boor and Bon
(1990) are other examples of metamodels in base function (5.1.1), where the Bj (x)

terms are polynomial, determined by the locations of the design points. The method
favors low-degree terms over higher-degree terms. Several authors pointed out poor
behavior of the method, and therefore, we omit the details.

5.1.4 Radial Basis Functions

A radial symmetrical function has the following form

φ(x) = φ(x1, . . . , xs) = r(||x||), (5.1.12)

where ||x|| is the Euclidean norm of x and function r is given. Various spherical den-
sity distributions, like multivariate normal, mixtures of normal, uniform distribution
on a ball in Rs , symmetrical Kotz-type, symmetrical multivariate types II and VII
including multivariate t- and multivariate Cauchy distributions (Fang et al. 1990),
give us a large range of model candidates. Radial basis functions were proposed by
Hardy (1971) and developed by Dyn et al. (1986) and Powell (1987). A radial basis
function is a linear combination of radially symmetrical functions. An extension of
(5.1.12) is

K (||x − xi ||/θ), i = 1, . . . , n, (5.1.13)

where x1, . . . , xn are design points, K (·) is a kernel function, and θ is a smoothing
parameter. A metamodel is suggested to have the form of
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g(x) = μ +
n∑

j=1

β j K (||x − xi ||/θ). (5.1.14)

There are several popular choices of basis functions such as

Linear K (z) = z
Cubic K (z) = z3

Thin plate spline K (z) = z2 log z
Gaussian K (z) = exp(−z2)

A number of modifications to the exact interpolation have been proposed. For
a detailed introduction and discussion, one can refer to Section 5.6.3 of Fang et al.
(2006).

5.1.5 Selection of Variables

There are so many functions in a function base as the number of factors increases.
When a metamodel involves so many items, it will cost

• Collinearity: There are high correlations among variables.
• Sparsity: The number of observations is relatively small comparedwith the number
of variables.

• The curse of dimensionality: Many methods cannot be implemented due to com-
putational complexity.

Therefore, we have to choose a subset of the basis functions and need techniques of
variable selections. There are a lot of methods in this direction, such as

• forward selection;
• backward elimination;
• stepwise regression;
• the best subset;
• principal component regression;
• partial least squares regression;
• penalized likelihood approaches;
• Bayesian approach.

This is a hot research area, and we do not want to give any discussion here. The
reader can easily find many references in the literature.

5.2 Modeling Techniques: Kriging Models

In the previous section, we consider the maximal model as of the form
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y(xk) =
m∑

i=1

βi Bi (xk) + εk, (5.2.1)

where εk, k = 1, . . . , n, are i.i.d. with mean zero and variance σ̂2. In many case
studies, the i.i.d. assumption on the error cannot be accepted. A natural modification
to the above model is given by

y(x) =
m∑

i=1

βi Bi (x) + z(x), x ∈ X , (5.2.2)

where z(x) is a random function of x. For physical experiments, we treat z as a white
noise (see Definition 5.2.1 below) corresponding to measurement error. In computer
experiments, however, there is no measurement error, and z(x) is then systematic
departure from the given linear model.

There are many choices of z(x), for example, assume that z(x) is a white noise or
z(x) is a Gaussian random function. On the other hand, from the characteristics of
computer experiments there is no random error in the experiments. We should have
ŷ(xk) = y(xk), k = 1, . . . , n, where ŷ(xk) is the estimator of y(xk) by the chosen
metamodel. This requires that the metamodel predicts the response at any x ∈ X
essentially by an interpolation among the experimental (training) data.

The so-called Kriging model or spatial correlation model, motivated in the field
of geostatistics, is a modeling method that can fit the above requirements. The word
“Kriging” is synonymous with optimal spatial prediction. It has been named after a
South Africanmining engineer with the nameKrige, who first popularized stochastic
methods for spatial predictions (Krige 1951). His work was furthered in the early
1970s by authors such as Matheron (1971) and formed the foundation for an entire
field of study now known as geostatistics, see for example, Cressie (1993, 1997) and
Goovaerts (1997). The Kriging models have been utilized in modeling for computer
experiments. There are a lot of studies on this direction, for example, the reader can
refer to Sacks et al. (1989a, b) and Welch et al. (1992) for a comprehensive review.
Stein (1999) gave a more general theory on Kriging model.

5.2.1 Models

Definition 5.2.1 Let y(x)be a stochastic process on the domainX ⊂ Rs .We say that
y(x) is a Gaussian random function if for any m > 1 and any choice of x1, . . . , xm
in X , the vector (y(x1), . . . , y(xm)) follows a multivariate normal distribution with
the covariance function

Cov(y(xi ), y(x j )) = σ̂2R(xi , x j ),
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where σ̂2 > 0 is the unknown variance and R(·, ·) is the correlation function. When
the latter depends on xi and x j only through xi − x j , the Gaussian random function
y(x) is called stationary. In this case, the correlation function is denoted by R(·). For
a stationary Gaussian random function, if the correlation function satisfies R(0) = 1
and R(a) = 0, a �= 0, the corresponding Gaussian random function is called a white
noise.

Gaussian random functions are determined by their mean function, μ(x) =
E(y(x)) and their covariance function Cov(x1, x2) = Cov(y(x1), y(x2)).

Definition 5.2.2 A Kriging model is expressed as

y(x) =
m∑

i=1

βi hi (x) + z(x), (5.2.3)

where h j (x)’s are known functions, β j ’s are unknown coefficients to be estimated,
and z(x) is a stationary random function with mean E(z(x)) = 0 and covariance

Cov(z(xi ), z(x j )) = σ̂2
z R(xi − x j ),

where σ̂2
z is the unknown variance and the correlation function R is given. The part of∑m

i=1 βi hi (x) is called the parametric item. When the parametric item is a constant,
say μ, the model reduces to

y(x) = μ + z(x) (5.2.4)

and is said to be the ordinaryKrigingmodel, which has beenwidely used inmodeling.

In the literature, the power exponential correlation function

R(xi , xk) =
s∏

j=1

R j (xi j , xk j ) =
s∏

j=1

exp(−θ j |xi j − xk j |γ j ), (5.2.5)

has been widely used, where θ j ≥ 0 are unknown parameters and 0 � γ j � 2 are
given. Let d j = xi j − xk j . More choices of the function R j (d j ) are

• EXP: exp(−θ j |d j |);
• Guass: exp(−θ j d2

j );

• LIN: max{0, 1 − θ j |d j |};
• Spline: 1 − 3ξ2j + 2ξ3j , ξ j = min{1, θ j |d j |};
• Matérn family:

1

�(ν)2ν−1

(
2
√

ν|d j |
θ j

)ν

Kν

(
2
√

ν|d j |
θ j

)
, (5.2.6)
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where θ j are unknown parameters, ν > 0 and Kν(·) is the modified Bessel function
of order ν whose definition can be found in Wikipedia, the free encyclopedia. Let
β = (β1, β2, . . . , βm)′ and covariance’s parameters σ2

z , θ = (θ1, θ2, . . . , θs), the
smoothing parameter vector. As with all choices of the correlation function, the
function goes to zero as the distance between xi and xk increases. This shows that
the influence of a sampled data point on the point to be predicted becomes weaker
as their separation distance increases. The magnitude of θ dictates how quickly the
influence deteriorates. For large values of θ, only the data points that are very near
to each other are well correlated. For small values of θ, the points further away still
influence the point to be predicted because they are still well correlated. Very often
we choose θ1 = · · · = θs = θ that is called the width of the Gaussian kernel. The
parameter γ j is ameasure of smoothness. The response becomes increasingly smooth
as the values of γ j ’s increase. One should also note the interpolating behavior of the
correlation function. Because R(xi , xi ) = 1, the predictor will go exactly through
any measured data point.

5.2.2 Estimation

For a given data set {(yi , xi ), i = 1, . . . , n}, we need to estimate all the unknown
parameters β, σ̂2

z and θ in the model. For estimating these unknown param-
eters, the unbiased linear predictor ŷ(x) = c(x)T y is favorable, where c(x) =
(c1(x), . . . , cn(x))T is a constant vector, y = (y1, . . . , yn)T is the response vector of
the data and ŷ is the fitting result. In the literature, it is preferred to use the following
linear predictor:

Definition 5.2.3 (a) A predictor ŷ(x) of y(x) is a linear predictor if it has the form
ŷ(x) = ∑n

i=1 ci (x)yi .

(b) A predictor ŷ(x) is an unbiased predictor if E{ŷ(x)} = E{y(x)}.
(c) A predictor ŷ(x) is the best linear unbiased predictor (BLUP) if it has the

minimum mean square prediction error (MSPE), MSPE(ŷ) = E{ŷ(x) − y(x)}2,
among all linear unbiased predictors.

The BLUP is given by

ŷ(x) = hT (x)β̂ + vT (x)V−1( y − Hβ̂), (5.2.7)

where

h(x) = (h1(x), . . . , hm(x))T : m × 1,

H = (h j (xi )) : n × m,

V = (Cov(z(xi ), z(x j ))) : n × n,

v(x) = (Cov(z(x), z(x1)), . . . ,Cov(z(x), z(xn)))T : n × 1,
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and
β̂ = [HTV−1H]−1HV−1 y,

which is the generalized least squares estimate of β. The MSPE of ŷ(x) is

MSPE(ŷ(x)) = σ̂2
z − (hT (x), vT (x))

(
0 HT

H V

)−1 (
h(x)

v(x)

)
.

Let r(x) = v(x)/σ̂2
z and R = V/σ̂2

z . Now the MSPE can be expressed as

MSPE(ŷ(x)) = σ̂2
z

[
1 − (hT (x), rT (x))

(
0 HT

H R

)−1 (
h(x)

r(x)

)]
. (5.2.8)

The maximum likelihood estimator of σ̂2
z is

σ̂2
z = 1

n
( y − Hβ̂)T R−1( y − Hβ̂).

Note that the above estimates involve the unknown parameters θ. One way for esti-
mating θ is to minimize MSPE(ŷ(x)) with respect to θ. The reader can refer to
Sacks et al. (1989a), Miller and Frenklach (1983) and Santner et al. (2003) for a
detailed discussion and some examples.

5.2.3 Maximum Likelihood Estimation

If the Kriging model is considered, the maximum likelihood method could be an
alternative approach for the estimation ofβ, σ̂2

z andθ. For emphasizing the parameter
θ, denote R = R(θ). In this case, the density of y is given by

(2πσ̂2
z )

−n/2|R(θ)|−1/2 exp

{
− 1

2σ̂2
z

( y − Hβ)T R(θ)−1( y − Hβ)

}
. (5.2.9)

The log-likelihood function of the data, after dropping a constant, equals

l(β,σ2
z ,θ) = −n

2
log(σ2

z ) − 1

2
log |R(θ)| − 1

2σ2
z

( y − Hβ)T R(θ)−1( y − Hβ).
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Maximizing the log-likelihood function yields the maximum likelihood estima-
tors of (β,σ2

z ,θ). In practice, simultaneous maximization over (β,σ2
z ,θ) has some

technical difficulty. It has been empirically observed that the prediction based on the
simultaneous maximization over (β,σ2

z ,θ) performs almost the same as that rely-
ing on the estimation of β and (σ2

z ,θ) separately. This is consistent with the above
theoretical analysis. In practice, we may estimate β and (σ2

z ,θ) iteratively in the
following way:

Step 1: Initial value of θ. For choosing a good initial value of θ = θ0, it needs
some additional information. In fact, it is clear that a good initial value for β is the
least squares estimator. This is equivalent to setting the initial value of θ to be 0. We
might to choose θ0 = 0.

Step 2: The maximum likelihood estimator of β. For a given θ0, the maximum
likelihood estimator of β is

β̂0 = (HT R−1(θ0)H)−1HT R−1(θ0) y. (5.2.10)

Step 3: Estimation of σ̂2
z . The maximum likelihood estimator of σ̂2

z for a given
θ0 is given by

σ̂2
z = n−1( y − Hβ̂0)

T R−1(θ0)( y − Hβ̂0), (5.2.11)

which is a biased estimator for σ̂2
z .

Step 4: Estimation of θ. The maximum likelihood estimator for θ does not have
a closed form. Newton–Raphson algorithm or Fisher score algorithm may be used
to search for the solution. Find a solution as a new θ0 and go back to Step 2. Iterate
Step 2 to Step 4 until it converges.

5.2.4 Parametric Empirical Kriging

Let ei be the unit column vector with 1 at the i th coordinate and 0 otherwise. When
x is the i th observation xi , from (5.2.7) we have

ŷ(xi ) = hT (xi )β + vT (xi )V−1( y − Hβ)

= hT (xi )β + eTi ( y − Hβ) = yi ,

which indicates that Kriging predictor interpolates the data. This property is suitable
for modeling data from computer experiments where there is no random error, but
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is not good for data from physical experiments. Therefore, the so-called parametric
empirical Kriging model is suggested for physical experiment data analysis (Sacks
et al. 1989a). Some details can be found in Appendix C of Santner et al. (2003). Let

y(x) =
m∑

i=1

βi hi (x) + z(x) + ε(x) = hT (x)β + z(x) + ε(x), (5.2.12)

where h(x),β and z(x) have the same meaning and assumptions as before, ε(x)

denotes the random error at x with mean zero and variance σ̂2. We always assume
that ε(x) and z(x) are uncorrelated and ε(x) is a white noise (see Definition 5.2.1).
Let v(x) = z(x) + ε(x). Obviously, v(x) is a Gaussian random function with mean
zero and covariance function

�v = σ̂2
z R(θ) + σ̂2I = σ̂2

z

[
R(θ) + σ̂2

σ̂2
z

I
]

= σ̂2
z R̃(θ,α),

where α = σ̂2/σ̂2
z , R(θ) is the correlation function of z(x) with unknown parameter

vector θ, and

R̃(θ,α) = R(θ) + σ̂2

σ̂2
z

I = R(θ) + αI,

with I being the identity matrix. Use R̃(θ,α) instead of R(θ) in (5.2.9), although
R̃(θ,α) is not a correlation matrix now,�v = σ̂2

z R̃(θ,α) is a covariance matrix. We
can still apply the above procedure for estimating parameters (β, σ̂2

z ,θ,α), where
R̃(θ,α) involves unknown parameters θ andα. Thenmaximum likelihood estimator
of σ̂2 can be obtained by σ̂2 = α̂σ̂2

z .
There is a MATLAB Kriging toolbox, called DACE, that can help us to carry out

the above calculations.

5.2.5 Examples and Discussion

This subsection applies the Kriging method to some examples that were studied
before. First, let us continue to discuss the modeling for Example 1.1.1 by the
parametric empirical Kriging.

Example 5.2.1 (Examples 1.1.1 and 5.1.1 continued) In Sect. 1.1, we have employed
polynomial regression models for fitting the data. Consider a simple model

y(x) = β0 + β1x + z(x) + ε(x), (5.2.13)

where ε(x) is a white noise with mean zero and variance σ̂2, z(x) is a Gaussian
random function with zero mean function and covariance function σ̂2

z R(θ), and
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Fig. 5.2 Data in Example 1.1.1 fitted by Kriging model and parametric empirical Kriging model

R(d) = exp(−θd2).

The maximum likelihood estimates are β̂0 = −0.3411, β̂1 = −0.2599, θ̂ = 1.000,
α̂ = 0.1768, σ̂2

z = 0.6626, and σ̂2 = ασ̂2
z = 0.1171. The latter is consistent with our

previous estimation, σ̂2 = 0.1291 under the ANOVA model discussed in Example
5.1.1. Figure 5.2 shows that the parametric empirical Krigingmodel (the dashed line)
has a perfect fitting. Figure 5.2 also shows the fitting by the Kriging model

y(x) = β0 + β1x + z(x),

Obviously, the latter (dashed line with star) is not good as the empirical Kriging
model.

Example 5.2.2 (Example 1.5.1 continued) Apply the parametric empirical Kriging
method to Example 1.5.1. According to the discussions in Example 1.5.1, we con-
sider the following three models:

y(x) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + z(x) + ε(x), (5.2.14)

y(x) = β0 + β1x2 + β2x3 + β3x1x3 + β4x2x4

+ β5x
2
2 + z(x) + ε(x), (5.2.15)

y(x) = β0 + β1(x1 − x̄1) + β2(x2 − x̄2) + β3(x4 − x̄4)

+ β4(x3 − x̄3)(x4 − x̄4) + β5(x2 − x̄2)
2 + z(x) + ε(x). (5.2.16)
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The estimates of the parameters are given as follows:

Model (5.2.14):
β̂ = (−0.0019, 0.7378, 0.3147,−0.1118, 0.3737),
θ̂ = (0.8620, 0.4418, 1.5232, 0.3715),
σ̂2
z = 0.00024831, and σ̂2 = 0.00023053.

Model (5.2.15):
β̂ = (−0.0043, 0.9900,−0.8630, 1.0699, 0.6673,−1.2060),
θ̂ = (0.6771, 0.8524, 1.000, 1.000, 1.000),
σ̂2
z = 0.000037869, and σ̂2 = 0.000037869.

Model (5.2.16):
β̂ = (0.0011, 0.7354, 0.3092, 0.3697, 0.00058,−0.000082),
θ̂ = (0.2726, 0.2500, 1.2968, 0.2838,−0.4125),
σ̂2
z = 0.000043704, and σ̂2 = 0.00003675.

Table 5.3, where Model (1), Model (2), and Model (3), respectively, represent
Model (5.2.14), Model (5.2.15), and Model (5.2.16), shows the fitting values of the
responses and related residuals. From these results, we observe:

• Model (5.2.14) has larger absolute values of residuals and the largest variances
of σ̂2

z and σ̂2 among the three models.
•The last twomodels provide estimates, σ̂2

z and σ̂2, at the same level, respectively,
and are smaller than that under model (5.2.14). These results are consisted with the
results obtained in Example 1.5.1.

Table 5.3 Fitting values of y and related residuals in Example 1.5.1 under the three models

Observations Model (1) ŷ Model (1)
ei

Model (2) ŷ Model (2)
ei

Model (3) ŷ Model (3)
ei

0.1836 0.1859 −0.0023 0.1790 0.0046 0.1810 0.0026

0.1739 0.1540 0.0199 0.1707 0.0032 0.1758 −0.0019

0.0900 0.0850 0.0050 0.0827 0.0073 0.0851 0.0049

0.1176 0.1358 −0.0182 0.1154 0.0022 0.1180 −0.0004

0.0795 0.0731 0.0064 0.0850 −0.0055 0.0699 0.0096

0.0118 0.0145 −0.0027 0.0101 0.0017 0.0168 −0.0050

0.0991 0.0873 0.0118 0.1056 −0.0065 0.0995 −0.0004

0.1319 0.1301 0.0018 0.1289 0.0030 0.1303 0.0016

0.0717 0.0725 −0.0008 0.0706 0.0011 0.0743 −0.0026

0.0109 0.0303 −0.0194 0.0131 −0.0022 0.0134 −0.0025

0.1266 0.1279 −0.0013 0.1276 −0.0010 0.1322 −0.0056

0.1424 0.1426 −0.0002 0.1504 −0.0080 0.1429 −0.0005
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• Delete z(x) from Model (5.2.14) and denote the resulting model by Model
(5.2.140). Similarly, we have Model (5.2.150) and Model (5.2.160). We find the
parametric empirical Kriging Model (5.2.14) has a smaller value of the estimated
error variance, σ̂2, than Model (5.2.140) has. It shows that the parametric empirical
Kriging model can improve the fitting. Similar results can be found for other two
models (5.2.15) and (5.2.16).

• The parametric item in model (5.2.12) is important. Many existing modeling
techniques can be used for selecting the parametric item.

5.3 A Case Study on Environmental Data—Model Selection

Example 1.1.4 introduces an environmental problem in order to determine the amount
of concentration of the six metals affects toxicity. Environmentalists believe that
contents of some metal elements in water would directly affect human health. It
is of interest to study the association between the mortality of some kind cell of
mice and contents of six metals: Cadmium (Cd), Copper (Cu), Zinc (Zn), Nickel
(Ni), Chromium (Cr), and Lead (Pb). An experiment was conducted by a uniform
design U17(176) (see the left portion of Table 5.4) as all the metals vary 17 levels.
For each design point, three experiments were conducted, the outputs (mortalities)
are depicted in Table 5.4 (the data are adopted from Fang and Wang 1994), from
which it can be seen that the mortality in the last row corresponding to the highest
level-combination of the contents of metals is higher than the others. This implies
that the contents of metals may affect themortality. After conducting the experiments
and collecting the data, the investigator has to analyze the data in order to understand
how the mortality associates with the levels of metal contents.

Note that the ratio of the maximum to minimum of contents of six metals is 2000.
The standardized procedure is necessary. Let x1, . . . , x6 denote the standardized vari-
ables of Cd, Cu, Zn, Ni, Cr, and Pb, respectively. Thus, x1 = (Cd − 6.5624)/7.0656,
where 6.5624 and 7.0656, respectively, are the sample mean and sample standard
deviation for the factor Cd and similar for other five variables. Moreover, for the
three outputs of each run, let y be the mean of the three responses.

Fang and Wang (1994) employed stepwise regression for modeling and gave the
following metamodel

ŷ = 32.68 + 5.03 log(x1) + 3.48 log(x2) + 2.03 log(x4) + 0.55(log(x2))
2

−0.63(log(x3))
2 + 0.94(log(x4))

2 + 0.53 log(x1) log(x2)

−0.70 log(x1) log(x5) + 0.92 log(x2) log(x6),

where they took the logarithm for all the six variables as the ranges they varied are
too large. We found that the stepwise regression for this data is very unstable; that is,
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Table 5.4 Environmental experiments and related mortalities by a uniform design

Cd Cu Zn Ni Cr Pb Y1 Y2 Y3

0.01 0.2 0.8 5.0 14.0 16.0 19.95 17.6 18.22

0.05 2.0 10.0 0.1 8.0 12.0 22.09 22.85 22.62

0.1 10.0 0.01 12.0 2.0 8.0 31.74 32.79 32.87

0.2 18.0 1.0 0.8 0.4 4.0 39.37 40.65 37.87

0.4 0.1 12.0 18.0 0.05 1.0 31.90 31.18 33.75

0.8 1.0 0.05 4.0 18.0 0.4 31.14 30.66 31.18

1.0 8.0 2.0 0.05 12.0 0.1 39.81 39.61 40.80

2.0 16.0 14.0 10.0 5.0 0.01 42.48 41.86 43.79

4.0 0.05 0.1 0.4 1.0 18.0 24.97 24.65 25.05

5.0 0.8 4.0 16.0 0.2 14.0 50.29 51.22 50.54

8.0 5.0 16.0 2.0 0.01 10.0 60.71 60.43 59.69

10.0 14.0 0.2 0.01 16.0 5.0 67.01 71.99 67.12

12.0 0.01 5.0 8.0 10.0 2.0 32.77 30.86 33.70

14.0 0.4 18.0 0.2 4.0 0.8 29.94 28.68 30.66

16.0 4.0 0.4 14.0 0.8 0.2 67.87 69.25 67.04

18.0 12.0 8.0 1.0 0.1 0.05 55.56 55.28 56.52

20.0 20.0 20.0 20.0 20.0 20.0 79.57 79.43 78.48

the final model is very sensitive to F-value that is for choosing variables or deleting
variables. This phenomena have often happened in the use of stepwise regression.
Another technique via penalized least squares, called SCAD, was proposed by Fan
and Li (2001). The AIC and BIC are a special case of their approach. The reader can
find the details of the theory and algorithm of the method in Fan and Li (2001).

All linear terms, quadratic terms, and interactions between the linear terms are
chosen as x variables in the linear model. Thus, including an intercept term, there
are 28 predictors in the model. The model is over-fitted because totally there are
only 17 level-combinations in this experiment. Thus, variable selection is necessary.
The SCAD variable selection procedure is applied for this data set. The estimated
coefficients of x variables (rather than the original scale of contents) are depicted in
Table 5.5. A total of 12 variables are included in the final model (comparing with
t0.005(38) = 2.7116). All selected variables are very statistically significant. From
Table 5.5, it can be seen that the effect of Cd is quadratic, the positive effect of Cu
and Ni is linear, in addition, Cu & Cr and Ni & Cr have negative interactions. Cr
has a negative effect; further, Cr has negative interactions with Cu, Zn, and Ni,
respectively. The effect of Zn is quadratic. Finally, Pb has a positive linear and
quadratic effect. Moreover, Pb and Zn have a positive interaction.

We now try to apply parametric empirical Kriging models to this data set. Con-
sidered four models, where the first one is the simply linear model, the second one
is parametric empirical Kriging model with the simply linear parametric item, the
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Table 5.5 Estimates,
standard errors and t-value

X -variable Estimate Standard
error

|t |

Intercept 36.4539 0.5841 62.4086

Cd 14.9491 0.2944 50.7713

Cu 12.8761 0.2411 53.4060

Ni 0.9776 0.2510 3.8950

Cr −7.2696 0.2474 29.3900

Pb 4.0646 0.2832 14.3536

Cd2 −6.2869 0.3624 17.3480

Zn2 2.8666 0.3274 8.7554

Pb2 9.2251 0.4158 22.1856

Cu*Cr −1.6788 0.3171 5.2945

Zn*Cr −6.2955 0.3306 19.0401

Zn*Pb 11.9110 0.2672 44.5708

Ni*Cr −11.3896 0.4303 26.4680

third one has been recommended by Li (2002), and the last one combines the third
and parametric empirical Kriging model.

y(x) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + ε(x), (5.3.1)

y(x) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5
+ β6x6 + z(x) + ε(x), (5.3.2)

y(x) = β0 + β1x1 + β2x2 + β3x4 + β4x5 + β5x6 + β6x
2
1 + β7x

2
3

+ β8x
2
6 + β9x2x5 + β10x3x5 + β11x3x6 + β12x4x5 + ε(x), (5.3.3)

y(x) = β0 + β1x1 + β2x2 + β3x4 + β4x5 + β5x6 + β6x
2
1 + β7x

2
3 + β8x

2
6

+ β9x2x5 + β10x3x5 + β11x3x6 + β12x4x5 + z(x) + ε(x), (5.3.4)

where x1 ∼ x6 are standardized. Estimates of the unknown parameters in models
(5.3.1) and (5.3.2) are given in Table 5.6, and the fitting values of y and related resid-
uals are listed in Table 5.7. For models (5.3.3) and (5.3.4), the results are presented
in Tables 5.8 and 5.9, respectively. From the above results, we might to address some
conclusions:

The experiment was duplicated three times, and an estimate of the variance the
pure random error can be obtained by

σ̂2 = 1

2 × 17

17∑

i=1

3∑

j=1

(yi j − ȳi )
2 = 1.2324.
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Table 5.6 Estimates of
models (5.3.1) and (5.3.2)

Model (5.3.1) Model (5.3.2) Model (5.3.2)

X -variable β̂ β̂ θ̂

constant 42.8639 −0.0394

x1 10.7108 0.6758 0.0010

x2 8.1125 0.3747 0.3200

x3 −2.1168 −0.1278 4.0637

x4 3.8514 0.2418 2.3702

x5 −0.3443 0.0111 0.0864

x6 0.3579 0.0562 0.9406

σ2
z 123.2917

σ2 1.1071

Table 5.7 Fitting values of y
and related residuals under
models (5.3.1) and (5.3.2)

ȳ Model
(5.3.1) ŷ

Model
(5.3.1) ei

Model
(5.3.2) ŷ

Model
(5.3.2) ei

18.5900 26.6164 −8.0264 18.6129 −0.0229

22.5200 23.4063 −0.8863 22.5214 −0.0014

32.4667 42.2368 −9.7701 32.4939 −0.0273

39.2967 45.0475 −5.7509 39.3332 −0.0365

32.2767 30.7434 1.5333 32.2691 0.0076

30.9933 27.4271 3.5662 30.9871 0.0062

40.0733 33.3073 6.7660 40.0573 0.0161

42.7100 46.1736 −3.4636 42.7081 0.0019

24.8900 30.9297 −6.0397 24.9044 −0.0144

50.6833 40.4781 10.2052 50.6551 0.0282

60.2767 38.4284 21.8483 60.2051 0.0715

68.7067 54.4104 14.2963 68.6476 0.0591

32.4433 44.4368 −11.9935 32.4846 −0.0412

29.7600 40.0015 −10.2415 29.7992 −0.0392

68.0533 60.0874 7.9659 68.0277 0.0256

55.7867 62.9681 −7.1814 55.8050 −0.0183

79.1600 81.9878 −2.8278 79.1751 −0.0151

MSE 9.2695 0.0316

Estimator of σ2 is 1.1071 under the model (5.3.2) and is 0.9140 under the model
(5.3.4), respectively. Both are close to the estimator of the variance of the pure random
error, 1.2324.

The parametric empirical models (5.3.2) have the smallest MSE-value among the
four models. It is sure that the parametric empirical model may improve fitting if the
parametric item is good. Both models of (5.3.3) and (5.3.4) have the same level of
MSE-value, but they have larger MSE values than model (5.3.2). It indicates that
how to choose a good parametric item is not easy and is an open problem.
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Table 5.8 Estimates of models (5.3.3) and (5.3.4)

Model (5.3.3) Model (5.3.4) Model (5.3.4)

X -variable β̂ β̂ θ̂

constant 36.4538 −0.0006

x1 14.9491 0.8330 0.0064

x2 12.8760 0.7175 0.0043

x4 0.9776 0.0545 0.0029

x5 −7.2695 −0.4051 0.0019

x6 4.0644 0.2265 0.0013

x21 −6.2869 −0.3292 0.0010

x23 2.8666 0.1501 0.0010

x26 9.2251 0.4830 0.0010

x2x5 −1.6788 −0.1098 0.0010

x3x5 −6.2954 −0.4131 0.0010

x3x6 11.9109 0.7777 0.0010

x4x5 −11.3897 −0.7473 0.0010

σ2
z 0.7192

σ2 0.9140

Table 5.9 Fitting values of y and related residuals under models (5.3.3) and (5.3.4)

ȳ Model (5.3.3) ŷ Model (5.3.3) ei Model (5.3.4) ŷ Model (5.3.4) ei

18.5900 18.1872 0.4028 18.1876 0.4024

22.5200 22.0938 0.4262 22.0941 0.4259

32.4667 33.0771 −0.6104 33.0767 −0.6100

39.2967 39.1439 0.1528 39.1439 0.1527

32.2767 32.1827 0.0939 32.1828 0.0938

30.9933 31.5229 −0.5296 31.5223 −0.5290

40.0733 40.0871 −0.0138 40.0872 −0.0139

42.7100 42.3616 0.3484 42.3619 0.3481

24.8900 25.1529 −0.2629 25.1528 −0.2628

50.6833 50.9327 −0.2494 50.9322 −0.2489

60.2767 60.1480 0.1287 60.1482 0.1285

68.7067 68.7445 −0.0378 68.7445 −0.0378

32.4433 32.3263 0.1170 32.3265 0.1168

29.7600 29.8031 −0.0431 29.8030 −0.0430

68.0533 67.6520 0.4013 67.6525 0.4008

55.7867 56.0953 −0.3087 56.0950 −0.3083

79.1600 79.1755 −0.0155 79.1754 −0.0154

MSE 0.3041 0.3038
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There are many other modeling techniques, such as Bayesian approach including
Bayesian Gaussian Kriging model, neural networks, local polynomial regression.
The reader can refer to Fang et al. (2006).

Exercises

5.1

Suppose the response y and factor x have the following underlying relationship

y = f (x) + e = 1 − e−x2 + ε, ε ∼ N (0, 0.12), x ∈ [0, 3],

but the experimenter does not know thismodel and he/shewants to find an approxima-
tion model to the real one by experiments. Therefore, he/she considers four designs
as follows:

D3 = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2},
D4 =

{
1

4
,
1

4
,
1

4
,
3

4
,
3

4
,
3

4
,
5

4
,
5

4
,
5

4
,
7

4
,
7

4
,
7

4
,

}
,

D6 =
{
1

6
,
1

6
,
3

6
,
3

6
,
5

6
,
5

6
,
7

6
,
7

6
,
9

6
,
9

6
,
11

6
,
11

6

}
,

D12 =
{
1

12
,
3

12
,
5

12
,
7

12
,
9

12
,
11

12
,
13

12
,
15

12
,
17

12
,
19

12
,
21

12
,
23

12

}
.

Implement the following steps:

1. Plot the function
y = f (x) = 1 − e−x2 , x ∈ [0, 3].

2. Generate a data set for each design by the statistical simulation.
3. Find a suitable regression model and related ANOVA table for each data set. Plot

the fitting models.
4. Randomly generate N = 1000 points x1, . . . , x1000 and calculate themean square

error (MSE) defined by

MSE = 1

N

N∑

i=1

(yi − ŷi )
2

for each model, where ŷi is the estimated value of yi under the model.
5. According to the plots, MSE and SSE , give your conclusions based on your

comparisons among the above models.
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5.2

For comparing different kinds of designs andmodeling techniques in computer exper-
iments, there is a popularway to consider several case studies. Themodels are known.
Choose several designs like the orthogonal design (OD), Latin hypercube sampling
(LHS), uniform design (UD), and modeling techniques. Then compare all design-
modeling combinations.

Suppose that the following models are given. Please consider three kinds of
designs OD, UD, and LHS (with n = 16, 25, 29, 64) and modeling techniques:
the quadratic regression models, a power spline basis with the following gen-
eral form of 1, x, x2, . . . , x p, (x − κ1)

p
+, . . . , (x − κm)

p
+ in (5.1.8), a Kriging model

y(x) = ∑m
i=1 βi hi (x) + z(x) defined in Definition 5.2.2 and artificial neural net-

work. Give your comparisons for all possible design-modeling combinations.
Model 1:

Y = ln(x1) × (sin(x2) + 4)

ex3
+ ln(x1)e

x3 (5.3.5)

where the ranges of the independent variables are x1 : [0.1, 10], x2 : [−π/2,π/2],
and x3 : [0, 1], respectively.

Model 2:

Y = −
[
2 exp

{
−1

2
(x21 + (x2 − 4))2

}

+ exp

{
−1

2
((x1 − 4)2 + x22

4

}
+ exp

{
−1

2

(
(x1 + 4)2

4
+ x22

)}]
(5.3.6)

where the ranges of the independent variables are x1 : [−10, 7], x2 : [−6, 7], respec-
tively.

Model 3:

Y = 10(x2 − x21 )
2 + (1 − x1)

2 + 9(x4 − x23 ) + (1 − x3)
2

+1.01[(x2 − 1)2 + (x4 − 1)2] + 1.98(x2 − 1)(x4 − 1)2 (5.3.7)

where the ranges of the independent variables are xi : [−2, 2], i = 1, 2, 3, 4.
Model 4:

Y =
4∑

k=1

[100(xk+1 − x2k )
2 + (1 − xk)

2], (5.3.8)

where the ranges of the independent variables are xi : [−2, 2], i = 1, . . . , 5.

5.3

Example 1.1.7 is a good platform for comparing various design-modeling combina-
tions. Let y be the distance from the endof the arm to the origin expressed as a function
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of 2m variables θ j ∈ [0, 2π] and L j ∈ [0, 1], where y = √
u2 + v2 and (u, v) are

defined in (1.1.3). Consider three kinds of designs OD, UD, and LHS and three
kinds of metamodel: polynomial regression model, Kriging model, and empirical
Kriging model. Give your comparisons for possible design-modeling combinations
with m = 2 and m = 3, respectively.
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Chapter 6
Connections Between Uniformity
and Other Design Criteria

Most experimental designs, such as simple random design, random block design,
Latin square design, fractional factorial design (FFD, for short), optimal design,
and robust design are concerned with randomness, balance between factors and
levels of each factor, orthogonality, efficiency, and robustness. From the previous
chapters, we see that the uniformity has played an important role in the evaluation
and construction of uniform designs. In this chapter, we shall show that uniformity
is intimately connected with many other design criteria.

6.1 Uniformity and Isomorphism

Let D(n; qs) be a factorial design of n runs and s factors each having q levels. The
orthogonal designs Ln(qs) are special cases of factorial designs. See Sect. 1.3.2 for
the basic knowledge of factorial designs.

Definition 6.1.1 Two factorial designs are called isomorphic if one can be obtained
from the other by relabeling the factors, reordering the runs, or switching the levels
of factors.

Two isomorphic designs are considered to be equivalent because they share the
same statistical properties in a classical ANOVA model. It is important to identify
design isomorphism in practice.

Example 6.1.1 Suppose that there are 5 two-level factors in an experiment and the
experimenter wants to arrange this experiment by the Plackett and Burman design
L12(211). We need to choose a subdesign of five columns from L12(211) such that
it has the best statistical property in a certain sense. Unfortunately, the Plackett and

© Springer Nature Singapore Pte Ltd. and Science Press 2018
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Table 6.1 Two non-isomorphic L12(211) designs

No L12 − 5.1 L12 − 5.2

1 1 1 2 1 1 1 1 2 1 1

2 2 1 1 2 2 2 1 1 2 1

3 1 2 1 1 2 1 2 1 1 2

4 2 1 2 1 2 2 1 2 1 1

5 2 2 1 2 1 2 2 1 2 1

6 2 2 2 1 1 2 2 2 1 2

7 1 2 2 2 1 1 2 2 2 1

8 1 1 2 2 2 1 1 2 2 2

9 1 1 1 2 1 1 1 1 2 2

10 2 1 1 1 1 2 1 1 1 2

11 1 2 1 1 2 1 2 1 1 1

12 2 2 2 2 2 2 2 2 2 2

Burman design is non-regular and we cannot use the minimum aberration criterion
(see Sect. 1.4.4) to choose such a design. Therefore, Lin and Draper (1992) sorted the(11
5

) = 462 subdesigns into two non-isomorphic subclass, denoted by L12 − 5.1 and
L12 − 5.2, respectively. There are 66 designs belonging to the group L12 − 5.1,
while there are 396 designs belonging to the group L12 − 5.2. Table6.1 shows
two representative non-isomorphic subdesigns of L12(25), one with a repeat-run
pair and the other without any repeat-run pair. From the geometric viewpoint, they
prefer the L12 − 5.1 as it has one more degree of freedom than the L12 − 5.2. For
identifying two D(n; qs) designs, a complete search compares n!(q!)ss! designs from
the definition of isomorphism. For example, to see if two orthogonal L12(25) designs
are isomorphic requires 12!5!25 ≈ 1.8394 × 1012 comparisons. Can we reduce the
complexity of the computation?

It is easy to find some necessary conditions for detecting non-isomorphic designs:

• two isomorphic designs have the same generalized word-length pattern.
• two isomorphic designs have the same letter pattern (cf. Draper andMitchell 1968
for the details);

• two isomorphic designs have the same distribution of Hamming distances between
any two distinct rows.

By Definition1.4.1, the generalized word-length patterns for the designs L12 −
5.1 and L12 − 5.2 are

(0, 0, 10/9, 5/9, 0) and (0, 0, 10/9, 5/9, 4/9),

respectively. Both the designs have the resolution III, but L12 − 5.1 has less gener-
alized aberration than L12 − 5.2; hence, they are not isomorphic.
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However, two designs having the same word-length pattern may be non-
isomorphic. Draper and Mitchell (1968) gave two L512(212) orthogonal designs
which have identical word-length patterns, but are not isomorphic.

Draper andMitchell (1970) gave amore sensitive criterion for isomorphism, called
“letter pattern comparison,” and tabulated 1024-run designs of resolution 6. Let ai j
be the number of words of length j in which letter i appears in a regular design U
and Ua = (ai j ) be the letter pattern matrix of U . They conjectured that two designs
U1 and U2 are isomorphic if and only if Ua

1 = PUa
2, where P is a permutation

matrix. Obviously, two designs having identical letter pattern matrices necessarily
have identical word-length patterns. Chen and Lin (1991) gave two non-isomorphic
designs 231−15 with identical letter patternmatrices and thus showed that the criterion
“letter pattern matrix” is not sufficient for design isomorphism. Note that both the
generalized word-length pattern and letter pattern matrix are not easy to calculate
and can be applied only to factorial designs with smaller sizes.

Clark and Dean (2001) gave a sufficient and necessary condition for isomorphism
of designs. Let H = (di j ) be the Hamming distance matrix of a design U , where di j
is the Hamming distance of the i th and j th runs of U . Their method is based on the
following fact:

Lemma 6.1.1 LetU1 andU2 be two D(n; qs) designs. ThenU1 andU2 are isomor-
phic if and only if there exist an n × n permutation R and a permutation {c1, . . . , cs}
of {1, . . . , s} such that for p = 1, . . . , s

H {1,...,p}
U1

= RH
{c1,...,cp}
U2

RT ,

where H
{c1,...,cp}
U is the Hamming distance matrix of the design formed by columns

{c1, . . . , cp} of design U .

This clevermethod is invariant under the permutations of levels, but the complexity
here makes the calculation intractable.

It can be easily found that two isomorphic U-type designs with two levels have the
same CD-value; two isomorphic U-type designs with two/three levels have the same
WD-value; and two U-type designs with q levels have the same discrete discrep-
ancy. For the two above subdesigns L12 − 5.1 and L12 − 5.2, they have CD-value
of 0.166541 and 0.166527, respectively. It is clear that they are non-isomorphic.
However, sometimes two designs have the same discrepancy value, but they are
non-isomorphic. In this case, the projection discrepancies of the subdesigns are very
useful.

Definition 6.1.2 For a given D(n; qs) design U and k (1 � k � s), there are
(s
k

)

D(n; qk) subdesigns. Let D be a discrepancy for measuring uniformity. The D-
values of these subdesigns form a distribution, denoted by Fk

D(U), that is called the
k-marginal D-value distribution of U .

The notations Fk
WD(U), Fk

CD(U), and Fk
MD(U) are taken when D is WD,CD,

or MD, respectively. Ma et al. (2001) proposed the following uniformity criterion
for isomorphism (UCI):
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Lemma 6.1.2 The necessary conditions for two D(n; 2s) designs U1 and U2 to be
isomorphic are

(a) they have the same CD2-value.
(b) they have the same distribution Fk

CD(U1) = Fk
CD(U2) for 1 � k < s.

Based on this lemma, they proposed the following algorithm, called NIU algo-
rithm, for detecting non-isomorphic D(n; 2s) designs. Let U1 and U2 be two such
designs.

Algorithm 6.1.1 (NIU Algorithm)

Step 1. CompareCD(U1) andCD(U2), and ifCD(U1) �= CD(U2), we conclude
U1 and U2 are not isomorphic and terminate the process, otherwise go to
step 2.

Step 2. For k = 1, s − 1, 2, s − 2, . . . , �s/2�, s − �s/2� where �x� denotes the
largest integer that is smaller than x , compare Fk

CD(U1) and Fk
CD(U2),

and if Fk
CD(U1) �= Fk

CD(U2), we conclude U1 and U2 are not isomorphic
and terminate the process; otherwise, this step goes to the next k-value.

For example, we apply this algorithm to two L32768(231) designs studied by Chen
and Lin (1991). The process indicates that the two designs have the same CD =
4.279; all the k-dimensional subdesigns have the sameCD-value for k = 1, 30, 2, 29,
but F28

CD(U1) �= F28
CD(U2). It turns out that two designs are not isomorphic by imple-

menting only a few steps of the algorithm. It shows that theNIU algorithm is powerful
in detecting non-isomorphic designs.

The above idea and algorithm can be extended to detect factorial designs with
higher levels (see, Ma et al. 2001) and to investigate the design projection properties
(see, Lin and Draper 1992).

Let us consider the problem of detecting non-isomorphic D(n; qs) with q > 2
designs. For a D(n; qs) design U , let

E j (U) = 1

n
card{(i, k)|dH (ui , uk) = j}, (6.1.1)

where card(A) is the cardinality of the set A, dH (ui , uk) is the Hamming distance
between two runs ui and uk . The vector (E0(U), . . . , Es(U)) is called the distance
distribution of U . Denote

Ba(U) =
s∑

i=1

Ei (U)ai

as the distance enumerator of U (Roman 1992, p. 226) and a is a positive number.
For a two-level design D, Ma et al. (2001) showed that

(CD(D))2 = 1

n

(
5

4

)s

B4/5(D) − 2

(
35

32

)s

+
(
13

12

)s
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which provides a link between the distance enumerator and uniformity. In fact, the
UCI (refer to Lemma6.1.2) is equivalent to the measure Ba(U) with a = 4/5 for
two-level designs. Thismeasure can naturally be used for high-level factorial designs.
Given k (1 � k � s), the distribution of Ba-values over all k-dimensional projection
subdesigns is denoted by FBa,k (U). We now can have an NIU version for the high-
level designs. As the parameter a is a predetermined value, we omit a from the
notation for simplicity.

Algorithm 6.1.2 (NIU Algorithm for High-level Designs)

Step 1. Comparing B(U1) and B(U2), if B(U1) �= B2(U2), we conclude U1 and
U2 are not isomorphic and terminate the process. Otherwise, go to step 2.

Step 2. For k = 1, s − 1, 2, s − 2, . . . , �s/2�, s − �s/2�, compare FBk (U1) and
FBk (U2). If FBk (U1) �= FBk (U2), we conclude U1 and U2 are not iso-
morphic and terminate the process; otherwise, this step goes to the next
k-value.

For a simple illustration, consider the four L18(37) in Table6.2 from the literature.
Taking a = 4/5, for example, the four designs have the same distance enumerator
6.685248. However, the distributions of distance enumerator of all six-dimensional
projection designs are different as indicated in Table6.3. Therefore, we conclude that
Designs (a), (c), and (d) are non-isomorphic. Note that an exhaustive comparison
indicates that Designs (a) and (b) are indeed isomorphic. From our experience, we
prefer to choose an irrational number as the parameter a.

Table 6.2 Four L18(37) designs

No (a) (b) (c) (d)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 2 1 3 1 2 1 3 1 2

2 1 2 2 2 2 2 2 1 1 2 3 2 3 1 1 3 1 1 2 1 2 1 1 2 3 1 3 1

3 1 3 3 3 3 3 3 1 2 1 3 3 2 2 1 1 2 3 2 2 3 2 2 2 3 2 1 3

4 2 1 1 2 2 3 3 1 2 3 2 1 3 3 1 3 2 3 1 3 1 1 2 3 1 1 2 2

5 2 2 2 3 3 1 1 1 3 2 2 3 1 3 1 1 3 2 3 3 2 3 1 3 1 2 3 3

6 2 3 3 1 1 2 2 1 3 3 1 2 2 2 1 2 3 2 1 1 3 1 2 1 1 2 1 1

7 3 1 2 1 3 2 3 2 1 1 2 3 3 2 2 1 1 3 1 1 2 1 3 2 2 2 3 2

8 3 2 3 2 1 3 1 2 1 3 3 1 2 3 2 2 1 3 3 3 3 2 3 1 1 3 3 1

9 3 3 1 3 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 3 2 2 2 1

10 1 1 3 3 2 2 1 2 2 3 1 3 1 1 2 3 2 2 3 1 1 3 3 1 3 2 2 2

11 1 2 1 1 3 3 2 2 3 1 3 2 1 3 2 1 3 1 1 2 1 3 2 2 2 3 2 1

12 1 3 2 2 1 1 3 2 3 2 1 1 3 2 2 3 3 1 2 3 3 1 3 3 2 3 1 3

13 2 1 2 3 1 3 2 3 1 2 1 3 2 3 3 1 1 2 2 3 1 2 2 3 3 3 3 2

14 2 2 3 1 2 1 3 3 1 3 2 2 1 2 3 3 1 2 1 2 3 3 3 3 3 1 1 1

15 2 3 1 2 3 2 1 3 2 1 1 2 3 3 3 1 2 1 3 1 3 1 1 1 3 3 2 3

16 3 1 3 2 3 1 2 3 2 2 3 1 1 2 3 2 2 1 1 3 2 2 1 1 2 1 1 2

17 3 2 1 3 1 2 3 3 3 1 2 1 2 1 3 2 3 3 2 1 1 3 2 1 2 1 3 3

18 3 3 2 1 2 3 1 3 3 3 3 3 3 1 3 3 3 3 3 2 2 2 3 2 1 1 2 3
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Table 6.3 FB6 ’s for four L18(37) designs

B(a) freq. B(b) freq. B(c) freq. B(d) freq.

7.6683 1 7.6683 1 7.6719 1 7.6737 3

7.6765 6 7.6765 6 7.6747 2 7.6765 4

7.6765 4

There is a close relationship between the two-level orthogonal designs and
Hadamard matrices. A Hadamard matrix H of side n is an n × n matrix with every
entry either 1 or −1, which satisfies that HHT = n In . Two Hadamard matrices are
called equivalent if one can be obtained from the other by some sequence of row &
column permutations & negations. The Hadamard matrix has played an important
role in construction of experimental designs, code theory, and others. To identify the
equivalence of two Hadamard matrices by a complete search is an NP-hard problem,
when n increases. There is a unique equivalence class of Hadamard matrices of each
order 1, 2, 4, 8, and 12.

Fang and Ge (2004) proposed a powerful algorithm that can easily detect inequiv-
alent Hadamard matrices based on the sequence of symmetric Hamming distances.
They found that there are at least 382 inequivalent classes for Hadamard matrices of
order 36.

6.2 Uniformity and Orthogonality

Orthogonality has played an important role in experimental design and may have a
different meaning. In this section “orthogonality” is under the sense of the orthogonal
array. For example, the orthogonal array of strength two requires a good balance
between levels of each factor and between level-combinations of any two factors;
in other words, it requires one- and two-dimensional projection uniformity. The
uniform design usually concerns with one-dimensional projection and s-dimensional
uniformity. These two kinds of designs should have some relationships, as will be
mentioned in this section and in Sect. 6.4.

By a numerical search, Fang and Winker (1998) and Fang et al. (2000) found
that many uniform designs with a small number of runs, such as U4(23),U8(27),
U12(211),U16(215), U9(34),U12(3 × 23), U16(45),U16(4 × 212), U18(2 × 37), and
U25(56) are also orthogonal designs under CD. This fact shows that many exist-
ing orthogonal designs are also uniform designs under CD and can be found by
a numerical search. They conjectured that any orthogonal design is a uniform
design under a certain discrepancy. Under CD, Ma et al. (2003) gave a study on
this conjecture. Consider a set of lattice points P = {xk, k = 1, . . . , n} ∈ D(n; qs).
Denote by n(i1, . . . , is) the number of runs at the level-combination (i1, . . . , is) in
P . Section4.3.1 expressed the squared CD(P) as a quadratic form of yP in (4.3.3).
When q1 = · · · = qs , the formula (4.3.3) reduces to
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[CD(P)]2 =
(
13

12

)s

− 2

n
cT y + 1

n2
yTC y, (6.2.1)

where y(P) (or y for short) is a qs-vector with elements n(i1, . . . , is) arranged
lexicographically, c0 = (c1, . . . , cq)′, C0 = (ci j , i, j = 1, . . . , q), c = ⊗sc0, C =
⊗sC0, ⊗ is the Kronecker product,

ci = 1 +
∣∣∣∣
2i − 1 − q

4q

∣∣∣∣−
(2i − 1 − q)2

8q2
, and

ci j = 1 +
∣∣∣
∣
2i − 1 − q

4q

∣∣∣
∣+

∣∣∣
∣
2 j − 1 − q

4q

∣∣∣
∣−

∣∣∣
∣
i − j

2q

∣∣∣
∣ .

This lemma has been useful in theoretical studies. A design is called complete (or
full) if all the level-combinations of the factors appear equally often. Any complete
design is an orthogonal array, and the corresponding vector of integers y(P) is a
multiple of 1. For any factorial design P ∈ D(n; qs), y(P)/n can be regarded as a
measure over qs level-combinations. Therefore, we can extend y to be a qs-vector
with positive values and constraint yT 1 = n. Under the above notation, Ma et al.
(2003) obtained the following results.

Theorem 6.2.1 Let P ∈ D(n; qs) be a set of n lattice points. Then,
(1) when q = 2 or q is odd, P minimizes CD(P) over D(n; qs) if and only if

y(P) = (n/qs)1;
(2) when q is even (but not 2), P minimizes CD(P) over D(n; qs) if and only if

y(P) = n

qs
⊗s

⎛

⎜⎜
⎜
⎝

1q/2−1

1 − 1
4(4q+1)

1 − 1
4(4q+1)

1q/2−1

⎞

⎟⎟
⎟
⎠

+ n
1 − (1 − 1

2q(4q+1) )
s

2s
⊗s

⎛

⎜
⎜
⎝

0q/2−1

1
1

0q/2−1

⎞

⎟
⎟
⎠ ,

where ⊗ is the Kronecker product;
(3) when q is even (but not 2) and P ∈ U(n; qs), P minimizes CD(P) over

U(n; qs) if and only if

y(P) = nC−1c− n

[
1TC−1c

1TC−11

(
1 − s(8q2 + 2q)

8q2 + 2q − 1

)
+ s − 1

1TC−11

]
C−11

−n

q

(1TC−1
0 c0)s−1 − 1

(1TC−1
0 1)s−1

s∑

i=1

(C−1
0 1)i−1 ⊗ 1 ⊗ (C−1

0 1)i−1.

Especially, for s = 1, 2, we have y(P) = (n/qs)1.

For detailed proof, one can refer to Ma et al. (2003). Theorem6.2.1 shows that
the complete design is the uniform design under CD, and the conjecture is true when
the design P is complete. They also showed that the conjecture is true if q = 2 and
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n = 2s−1; the latter is not a complete design. The conjecture in the case of even q is
more complicated. For example, when q = 4 and s = 2, the n(i, j)’s of the uniform
design are given by

N ≡ (n(i, j)) = n

16

⎛

⎜
⎜⎜⎜
⎝

1 67
68

67
68 1

67
68

70
68

70
68

67
68

67
68

70
68

70
68

67
68

1 67
68

67
68 1

⎞

⎟
⎟⎟⎟
⎠

.

All the elements of N are close to n
16 . As the objective function in (6.2.1) is a

continuous function of y, the optimum y-value is a design in D(n; qs) that has the
smallest distance to N . Such a solution is Ln(45), when n is a divisor of 16 and is
not too large. This fact indicates that the conjecture is not always true when q is even
and CD is employed as the uniformity measure.

When a lattice design P is not complete, does the conjecture still hold? Note that
[CD(P)]2 = ∑

u �=∅ Iu(P)2, where Iu(P) = I|u|(Pu), Pu is the projection of P onto
Cu , and

Iu(P)2 =
∫

Cu

(
N (Pu, Jxu )

n
− Vol(Jxu )

)2

dxu .

Define a new measure of uniformity as

[CL2,t (P)]2 =
∑

0<|u|�t

Iu(P)2,

Ma et al. (2003) proved the following theorem.

Theorem 6.2.2 A uniform design Un(qs) under CL2,t , where t < s, n is a multiple
of qt and q equals 2 or q is odd, is an orthogonal array OA(n; qs; t), if the latter
exists.

Liu (2002) gave a study on this conjecture by the use of the discrete discrepancy
(Sect. 2.5.1) as the measure of uniformity. Liu (2002) and Fang et al. (2003) showed
that symmetrical saturated orthogonal arrays are uniform designs in terms of the
discrete discrepancies. While, from the results of Li et al. (2004) and Liu et al.
(2006), we know that asymmetrical saturated orthogonal arrays are also the most
uniform ones according to the two-dimensional projection discrepancy defined by
(6.5.3) for j = 2. Tang (2005) in his Ph.D. thesis gave a further discussion on this
conjecture.

From a different angle to the above study, Fang et al. (2002) proposed another
measure for non-orthogonality. For a design P ∈ D(n; qs), y(P) is the same as
before, a qs-vector. Let v = qs in the following discussion. Let e and I denote,
respectively, the q × 1 vector with all elements unity and the q × q identity matrix.
Obvious J = eeT . Let � be the set of binary s-tuples with entries 0 or 1. Denote
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L(0) = q−1 J, L(1) = I − q−1 J, G(0) = eT , G(1) = I . (6.2.2)

The t-fold Kronecker products of e, I , and J will be denoted by e(t), I (t), and J (t),
respectively. For any x = x1 · · · xs ∈ �, define the matrices

W(x) = L(x1) ⊗ · · · ⊗ L(xs), H(x) = G(x1) ⊗ · · · ⊗ G(xs), (6.2.3)

which are of orders v × v and q
∑

xi × v, respectively. Here ⊗ is the Kronecker
product. For 0 � i � s, let �i be the subset of � consisting of those binary s-tuples
which have exactly i elements unity. Also, let �∗ = � − �0 be the set of nonnull
members of �. By (6.2.2) and (6.2.3), the matrices W (x), for x ∈ �∗, add up to
I (s) − v−1 J (s). Hence

y(P)T {I (s) − v−1 J (s)} y(P) =
∑

x∈�∗
y(P)TW(x) y(P). (6.2.4)

It is easy to see that the matrices W(x) are idempotent and W(x)W( y) = O for
each x �= y. Thus, the right-hand side of (6.2.4) gives an orthogonal partitioning
of the left-hand side which can be further interpreted as follows. Define the s fac-
tors by F1, . . . , Fs . For any x = x1 · · · xs ∈ �∗, let F(x) represent the interaction
Fx1 · · · Fxs ; as usual, a one-factor interaction is a main effect. Consider now a hypo-
thetical full factorial where each of the v = qs level-combinations appears exactly
once. If the v × 1 vector of lexicographically arranged observations arising from
such a hypothetical full factorial equals y(P), then by (6.2.2) and (6.2.3), the sum
of squares due to interaction F(x) is given by

SS(x) = y(P)TW(x) y(P). (6.2.5)

Thus, (6.2.4) is an analysis of variance decomposition. From (6.2.5), it follows that
the design P is represented by an orthogonal array of strength t (1 � t � s) if and
only if SS(x) (= y(P)TW(x) y(P)) vanishes for every x ∈ �1

⋃ · · ·⋃�t . Hence,
writing

Bi (P) =
∑

x∈�i

y(P)TW(x) y(P), 1 � i � s, (6.2.6)

the departure of P from being represented by an orthogonal array of strength t can
be measured by

∑t
i=1 Bi (P). Thus, B1(d) measures the departure of P from an

orthogonal array of strength unity, B2(d) is the additional amount needed to measure
the departure of P from an orthogonal array of strength two, and so on. In other
words, the quantities B1(P), . . . , Bs(P) capture the departure of P from orthogonal
array of progressively higher strengths. Therefore, in order to ensure proximity to
orthogonal array of successively higher strengths, one should choose P so as to
minimize B1(P), B2(P), . . . sequentially. This resembles what one does under the
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criterion of minimum aberration for regular fractions. Fang et al. (2002) showed that
for a regular fraction P with n = qs−p runs

Bi (P) = n2(q − 1)

qs
Ai (P), 1 � i � s, (6.2.7)

where (A1(P), . . . , As(P)) is the word-length pattern of P . This result exhibits a
connection between aberration and orthogonality for regular fractions. In Sect. 6.4,
we will introduced some connections between aberration and uniformity. Then, by
(6.2.7), we can establish some connections between orthogonality and uniformity.
For details, one can refer to Fang et al. (2002).

6.3 Uniformity and Confounding

Two isomorphic factorial designs have been considered to be equivalent in the sense
that they have the same statistical performance in ANOVA model. However, two
isomorphic designs may have different uniformity. For example, the two L9(34)
designs in Table6.4, denoted by U1 and U2, are isomorphic to each other, but their
CD-values are 0.050059 and 0.0493645, respectively. U1 can be easily found in the
literature, while the second one was obtained by minimizing CD over the class of
U(9; 34) (see Fang and Winker 1998). Suppose that there are three factors A, B, and
C each having three levels in an experiment. We can choose any three columns from
U1 or U2 for the factors. Denote the designs formed by the first three columns of
U1 and U2 by P1 and P2, respectively. Denote the linear and quadratic main effects
of A by Al and Aq , respectively (similarly, for the notations Bl , Bq ,Cl and Cq ).
The interaction A × B between A and B, if it exists, can be split into four terms
Al Bl , Al Bq , Aq Bl , and Aq Bq (Fang and Ma 2000; Box and Draper 1987, pp. 236–
239). When there are interactions A × B, A × C and B × C in the experiment, it is

Table 6.4 Two L9(34) designs

No U1 U2

1 1 1 1 1 1 1 1 2

2 1 2 2 2 1 2 3 1

3 1 3 3 3 1 3 2 3

4 2 1 2 3 2 1 3 3

5 2 2 3 1 2 2 2 2

6 2 3 1 2 2 3 1 1

7 3 1 3 2 3 1 2 1

8 3 2 1 3 3 2 1 3

9 3 3 2 1 3 3 3 2
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Table 6.5 A uniform minimum aberration design UL27(313) under MD

No 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 2 2 2 3 2 1 2 3 1 3 3 1

2 2 2 3 2 3 3 2 3 1 3 2 2 3

3 2 2 1 2 3 1 3 1 2 2 1 1 2

4 2 3 2 3 1 2 3 3 2 1 2 2 2

5 2 3 3 3 1 3 2 2 3 2 1 1 1

6 2 3 1 3 1 1 1 1 1 3 3 3 3

7 2 1 2 1 2 2 3 2 1 3 1 1 3

8 2 1 3 1 2 3 1 3 2 2 3 3 2

9 2 1 1 1 2 1 2 1 3 1 2 2 1

10 3 2 2 1 1 3 3 1 1 2 3 2 1

11 3 2 3 1 1 1 1 2 2 1 2 1 3

12 3 2 1 1 1 2 2 3 3 3 1 3 2

13 3 3 2 2 2 3 2 1 2 1 1 3 3

14 3 3 3 2 2 1 3 2 3 3 3 2 2

15 3 3 1 2 2 2 1 3 1 2 2 1 1

16 3 1 2 3 3 3 1 1 3 3 2 1 2

17 3 1 3 3 3 1 3 3 1 1 1 3 1

18 3 1 1 3 3 2 2 2 2 2 3 2 3

19 1 2 2 3 2 1 1 3 3 2 1 2 3

20 1 2 3 3 2 2 2 1 1 1 3 1 2

21 1 2 1 3 2 3 3 2 2 3 2 3 1

22 1 3 2 1 3 1 2 2 1 2 2 3 2

23 1 3 3 1 3 2 1 1 2 3 1 2 1

24 1 3 1 1 3 3 3 3 3 1 3 1 3

25 1 1 2 2 1 1 2 3 2 3 3 1 1

26 1 1 3 2 1 2 3 1 3 2 2 3 3

27 1 1 1 2 1 3 1 2 1 1 1 2 2

impossible to separate the true interactions from the main effects. For the use of P2,
the confounding situations are given by the alias statements:

Al = 0.5BlCq + 0.5BqCl,

Aq = 1.5BlCl − 0.5BqCq ,

Bl = 0.5AlCq + 0.5AqCl,

Bq = 1.5AlCl − 0.5AqCq ,

Cl = 0.5Al Bq + 0.5Aq Bl,

Cq = 1.5Al Bl − 0.5Aq Bq .
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On the other hand, with the use of P1, the alias statements are

Al = −0.75BlCl − 0.25BlCq + 0.25BqCl − 0.25BqCq ,

Aq = 0.75BlCl − 0.75BlCq + 0.75BqCl + 0.25BqCq ,

Bl = −0.75AlCl − 0.25AlCq + 0.25AqCl − 0.25AqCq ,

Bq = 0.75AlCl − 0.75AlCq + 0.75AqCl + 0.25AqCq ,

Cl = −0.75Al Bl + 0.25Al Bq + 0.25Aq Bl + 0.25Aq Bq ,

Cq = −0.75Al Bl − 0.75Al Bq − 0.75Aq Bl + 0.25Aq Bq .

If the higher-order interactions Al Bq , Aq Bl, Aq Bq , . . . , BqCq can be ignored, the
alias statements for P2 become

P2 :
⎧
⎨

⎩

Aq = 1.5BlCl ,

Bq = 1.5AlCl ,

Cq = 1.5Al Bl .

In this case, we can estimate all the linear effects Al, Bl , and Cl without any con-
founding. While, the alias statements for P1 become

P1 :
⎧
⎨

⎩

Al = −0.75BlCl , Aq = 0.75BlCl,

Bl = −0.75AlCl , Bq = 0.75AlCl,

Cl = −0.75Al Bl , Cq = −0.75Al Bl .

In this case, the main effects are all confounded with the interactions. Obviously,
design P2 is better than P1 in the sense of confounding. There are four choices of
choosing three columns fromU1 or U2. It can be shown that there is only one choice
from U1 that has the same confounding situation to P2 and the rest three choices
have the same confounding situation to P1. On the other hand, all the four choices
from U2 have the same confounding situation to P2. We thus conclude that U2 is
better than U1 in the sense of confounding. From this example, Fang and Ma (2000)
proposed the following concept.

Definition 6.3.1 For given (n, q, s), an orthogonal design Ln(qs) is called an uni-
formly orthogonal design and is denoted byULn(qs) if it has the smallest CD-value
over all such orthogonal designs.

Obviously, one might choose other measures of uniformity to replace the CD in
Definition6.3.1. Several uniformly orthogonal designs for q > 2 are obtained in Fang
and Winker (1998). Properties of these designs are yet to be studied. Hickernell and
Liu (2002) used the reproducing kernel approach and showed that the uniformdesigns
limit the effects of aliasing to yield reasonable efficiency and robustness together.
Recently, Tang et al. (2012) proposed the level permutation technique (see Sect. 3.5)
and the concept of the uniform minimum aberration (UMA) design. They obtained
a UMA U27(313) under CD. Later, Fang et al. (2016) found a UMA UL27(313)
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under MD with MD(UL27) = 62.8011, that is presented in Table6.5. This design
is an orthogonal array of strength two. The first m columns of UL27 are minimum
aberration designs, where m = 4, 5, 6, 10, 11, 12, 13.

6.4 Uniformity and Aberration

Two important criteria, namely resolution and minimum aberration are based on the
word-length pattern (see Sect. 1.4. for their definitions). These criteria were appar-
ently unrelated with the uniformity criterion until Fang and Mukerjee (2000) found
a connection between the uniformity and the aberration for regular fractions of two-
level factorials. The main result they obtained is presented as follows:

Theorem 6.4.1 Let U be a regular fraction of a 2s factorial involving n = 2s−p

runs. Then,

CD2(U) =
(
13

12

)s

− 2

(
35

32

)s

+
(
9

8

)s
{

1 +
s∑

i=1

Ai (U)

9i

}

, (6.4.1)

where (A1(U), . . . , As(U)) is the word-length pattern of U .

From this relation, we can see that the minimum aberration and the uniformity
measured by CD are almost equivalent for the regular factorial 2s−p. For comparing
two designs U1 and U2 via their CD-values, it is equivalent to compare

∑s
i=1

Ai (U1)

9i

and
∑s

i=1
Ai (U2)

9i . If design U1 has a resolution (say t) that is higher than U2 has (say
t ′), we have

s∑

i=1

Ai (U1)

9i
=

s∑

i=t

Ai (U1)

9i
, and

s∑

i=1

Ai (U2)

9i
=

s∑

i=t ′

Ai (U2)

9i
=

t−1∑

i=t ′

Ai (U2)

9i
+

s∑

i=t

Ai (U2)

9i
.

It is easy to see that U1 is more likely to have a smaller CD-value than U2 since
the coefficient of Ai (·) in Ai (·)/9i decreases exponentially with i . Dr. C. X. Ma has
checked all two-level regular designs in the catalogue given by Chen et al. (1993)
and found that both CD and minimum aberration recommend the same designs.

The connection (6.4.1) in Theorem6.4.1 holds for the regular two-level case.
There have been some extensions of this result in the past years. Ma and Fang (2001)
extended this connection to general two-level fractional designs under CD, WD, and
symmetric L2-discrepancy, and to general three-level designs under WD. Fang and
Ma (2002) extended this connection to regular fraction 3s−1 designs and found that
there existed essential difficulties to find more general results under CD. With the
help of indicator function, Ye (2003) and Sun et al. (2011) showed that (6.4.1) holds
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for all two-level factorial designs, regular or non-regular, with or without replicates,
and Sun et al. (2011) further extended Theorem6.4.1 to both general two-level and
three-level factorial designs under WD. The following theorem shows their results.

Theorem 6.4.2 For any P ∈ D(n; qs)(q = 2 or 3),

WD2(P) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
(
4

3

)s

+
(
11

8

)s
[

1 +
s∑

r=1

Ar (P)

11r

]

, if q = 2,

−
(
4

3

)s

+
(
73

54

)s
[

1 +
s∑

r=1

(
4

73

)r

Ar (P)

]

, if q = 3,

(6.4.2)

where (A1(P), . . . , As(P)) is the generalized word-length pattern of P defined in
(1.4.9).

The proof of Theorem6.4.2 is based on the quadratic form of WD2(P) in (4.3.2)
for q1 = · · · = qs , the generalized word-length pattern redefined by Cheng and Ye
(2004) and somematrix computations. The details are omitted here; interested readers
please refer to Sun et al. (2011).

Note that these connections under WD are consistent with that of Ma and Fang
(2001) in terms of the generalizedword-length pattern (Ag

1(P), . . . , Ag
s (P)), but they

only proved the result of q = 2 for the regular case, not for the general case. Several
examples discussed by Ma and Fang (2001) show that the connections can signifi-
cantly reduce the complexity of the computation for comparing factorial designs and
also provide a way for searching minimum aberration designs by uniformity.

From Theorems6.4.1 and 6.4.2, we notice that the coefficient of Ar (P) in
[WD(P)])2 or [CD(P)]2 decreases exponentially with r , so the design with less
aberration tends to have smaller [WD(P)]2 or [CD(P)]2. Uniform designs under
[WD(P)]2 or [CD(P)]2 and GMA designs are strongly related to each other. In
fact, Sun et al. (2011) obtained the following theorem, which shows some conditions
under which [WD(P)]2 or [CD(P)]2 agrees with GMA.

Theorem 6.4.3 (i) Suppose P1,P2 ∈ D(n; qs), k is some constant and [k Ar (Pi )]
are all integers for r = 1, . . . , s, i = 1, 2, then

(1) if q = 2 and max{k Ar (Pi ), r = 1, . . . , s, i = 1, 2} � 8, then [CD(P1)]2
< [CD(P2)]2 is equivalent to P1 having less aberration than P2;

(2) if q = 2 and max{k Ar (Pi ), r = 1, . . . , s, i = 1, 2} � 10, then [WD(P1)]2
< [WD(P2)]2 is equivalent to P1 having less aberration than P2;

(3) if q = 3 andmax{k Ar (Pi ), r = 1, . . . , s, i = 1, 2} � 69/4, then [WD(P1)]2 <

[WD(P2)]2 is equivalent to P1 having less aberration than P2.

(ii) Suppose P1,P2 ∈ D(n; qs) and there exists a positive integer t such that
Ar (P1) = Ar (P2) for r < t and At (P1) � At (P2) − 1, then

(1) if q = 2 and max{Ar (Pi ), r = 1, . . . , s, i = 1, 2} � 8, then [CD(P1)]2
< [CD(P2)]2;
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(2) if q = 2 and max{Ar (Pi ), r = 1, . . . , s, i = 1, 2} � 10, then [WD(P1)]2 <

[WD(P2)]2;
(3) if q = 3 and max{Ar (Pi ), r = 1, . . . , s, i = 1, 2} � 69/4, then [WD(P1)]2 <

[WD(P2)]2.
The proof of Theorem6.4.3 is similar to that of Theorem6.4.5, i.e., it follows

directly from (6.4.1), (6.4.2) and the following lemma.

Lemma 6.4.1 Suppose ai and bi are all nonnegative numbers and ai , bi � m − 1,
for i = 0, . . . , k.

(i) If ak � bk − 1, then
∑k

i=0 aim
i <

∑k
i=0 bim

i .

(ii) If ai and bi are integers with ak �= bk, then
∑k

i=0 aim
i <

∑k
i=0 bim

i if and only
if ak < bk.

proof (i) can be proved from

k∑

i=0

aim
i = akm

k +
k−1∑

i=0

aim
i � akm

k + (m − 1)
k−1∑

i=0

mi

= akm
k + mk − 1 < bkm

k �
k∑

i=0

bim
i .

And (ii) follows from (i) directly. Thus, the conclusion is true.

If the uniformity is measured by the discrete discrepancy defined in (2.5.7), Qin
and Fang (2004) obtained the following connection between uniformity and GMA.

Theorem 6.4.4 For any P ∈ D(n; qs),

[DD(P)]2 =
(
a + (q − 1)b

q

)s s∑

j=1

(
a − b

a + (q − 1)b

) j

A j (P),

where DD(P) and A j (P) are defined in (2.5.7) and (1.4.9), respectively.

From this connection, we can see that the coefficient of A j (P) in DD(P)

decreases exponentially with j , and we anticipate that designs which keep A j (P)

small for small values of j , that are those having less aberration, should behave well
in terms of uniformity in the sense of keeping DD(P) small. This shows that uni-
form designs under the discrete discrepancy and GMAdesigns are strongly related to
each other and provides a justification for the criterion of GMA by consideration of
uniformity measured by the discrete discrepancy. Theorem6.4.4 also shows us that
the minimum discrete discrepancy (2.5.7) does not completely agree with the GMA
criterion. When are those two criteria equivalent to each other? Sun et al. (2011)
obtained Theorem6.4.4 in a bit more intuitive way and provided a condition for their
equivalency in the following theorem.
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Theorem 6.4.5 Suppose P1 and P2 are two designs from D(n; qs), both of which
have no replicates. If

a + (q − 1)b

a − b
− 1 = qb

a − b
� n(qs − n),

then the fact that [DD(P1)]2 < [DD(P2)]2 is equivalent toP1 having less aberration
than P2.

proof From the proof of Theorem 2 in Hickernell and Liu (2002), we have

Ar (P) = 1

n2
∑

|u|=r

n∑

i,k=1

∏

l∈u
(−1 + qδail akl ), (6.4.3)

where u is a subset of {1, . . . , s}, |u| denotes the cardinality of u, and P = (ai j );
thus, n2Ar (P) is an integer. In addition, from Theorem 4.1 of Cheng and Ye (2004),
we know that for any P ∈ D(n; qs) without replicates,

s∑

r=1

Ar (P) = qs

n
− 1.

So for any r , n2Ar (P) � n(qs − n). Thus from Theorem6.4.4 and Lemma6.4.1, the
conclusion can be reached easily.

From this theorem,we know that if orthogonal designs L(n; qs)without replicates
exist and qb/(a − b) � n(qs − n), then the uniform design under

([DD(P)]2) is an
orthogonal design and has GMA among all designs in D(n; qs) without replicates.
From Lemma6.4.1, Sun et al. (2011) further provided some conditions under which
the minimum discrete discrepancy agrees with GMA:

Theorem 6.4.6 (i) Suppose P1,P2 ∈ D(n; qs) and [k Ar (Pi )] are all integers
for r = 1, . . . , s, and i = 1, 2, where k is some constant. If qb/(a − b)
� max{k Ar (Pi ), r = 1, . . . , s, i = 1, 2}, then ([DD(P1)]2 < [DD(P2)]2

)
is equiv-

alent to P1 having less aberration than P2.
(ii) Suppose P1 and P2 are two regular designs from D(n; qs). If qb/(a − b) �

max{Ar (Pi ), r = 1, . . . , s, i = 1, 2}, then ([DD(P1)]2 < [DD(P2)]2
)
is equivalent

to P1 having less aberration than P2.
(iii) SupposeP1,P2 ∈ D(n; qs). If qb/(a − b) � max{Ar (Pi ), r = 1, . . . , s, i =

1, 2} and there exists a positive integer t such that Ar (P1) = Ar (P2) for r <

t and At (P1) � At (P2) − 1, then
([DD(P1)]2 < [DD(P2)]2

)
.

Besides, Hickernell and Liu (2002) also showed that GMA designs and uniform
designs are equivalent in a certain limit, seeTheorem6.5.2 inSect. 6.5.1 for this result.
The connection between projection uniformity and aberration was also studied by
Hickernell and Liu (2002) and Fang and Qin (2004), please refer to Sect. 6.5 for the
details.
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Next, consider the relationship between any uniformity criterion and the GMA
criterion for any level design. Let (n, qs)-design be a design of n runs, s factors and q
levels. For an (n, qs)−designP , when considering all q! possible level permutations
for every factor, we obtain (q!)s combinatorially isomorphic designs. Denote the set
of these designs asH(P). Because reordering the rows or columns does not change
the geometrical structure and statistical properties of a design, there is no need to
consider row or column permutations. For an n-point design P = {x1, . . . , xn} and
a nonnegative function F(xi , x j ) � 0, define

φ(P) = 1

n2

n∑

i, j=1

F(xi , x j ). (6.4.4)

Call φ(P) as a space-filling measure of P with respect to F . All designs in H(P)

share the same GWP but may have different φ(P). We can compute φ(P) for each
design, as well as the average value, denoted by φ̄(P), of all designs inH(P). More
precisely, define

φ̄(P) = 1

(q!)s
∑

P ′∈H(P)

φ(P ′). (6.4.5)

The following result shows that the average value φ̄(P) in (6.4.5) can be expressed
as a linear combination of GWP for a wide class of space-filling measures.

Lemma 6.4.2 Suppose F(xi , x j ) = ∏s
k=1 f (xik, x jk) and f (·, ·) satisfies

{
f (x, x) + f (y, y) > f (x, y) + f (y, x),
f (x, y) � 0, for any x �= y, x, y ∈ [0, 1]. (6.4.6)

For an (n, qs)−design P ,

φ̄(P) =
(
c1(c2 + q − 1)

q2(q − 1)

)s s∑

i=0

(
c2 − 1

c2 + q − 1

)i

Ai (P), (6.4.7)

where c1 = ∑q−1
k=0

∑
l �=k f (k, l) and c2 = (q − 1)

∑q−1
k=0 f (k, k)/c1.

The conditions of F(·, ·) in Lemma6.4.2 are nonrestrictive and satisfied by many
commonly used discrepancies and other measures. The requirement (6.4.6) makes
c2 > 1 so that the coefficient of Ai (P) in (6.4.7) decreases geometrically as i
increases. As a result, when all level permutations are considered, φ̄(P) tends to
agree with the GMA criterion. Tang et al. (2012) and Tang and Xu (2013) showed
that the average CD-value is a linear function of the GWP, when all level permuta-
tions are considered. Here we generalize their results for any discrepancy defined by
a reproducing kernel.
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Note that we can express the discrepancy in (2.4.6) as a space-filling measure
defined in (6.4.4) with

F(xi , x j ) = K(xi , x j ) − K1(xi ) − K1(x j ) + K2, (6.4.8)

where K1(x) = ∫
X K(x, y)dFu( y) and K2 = ∫

X 2 K(x, y)dFu(x)dFu( y) is a con-
stant. In other words, any discrepancy defined by the reproducing kernel method is
a special space-filling measure.

Commonly used reproducing kernels for discrepancies in the literature are defined
on X = [0, 1]s and have a multiplicative form

K(x, y) =
s∏

k=1

f (xk, yk), (6.4.9)

where f (x, y) is defined on [0, 1]2. Then, the corresponding discrepancy in (2.4.6)
can be expressed by

D2(P,K) = K2 − 2

n

n∑

i=1

s∏

k=1

f1(xik) + 1

n2

n∑

i, j=1

s∏

k=1

f (xik, x jk), (6.4.10)

where f1(x) = ∫ 1
0 f (x, y)dy. The various kernel functions are as follows:

(i) for CD, f (x, y) = 1 + (|x − 0.5| + |y − 0.5| − |x − y|)/2;
(ii) for WD, f (x, y) = 1.5 − |x − y| + |x − y|2;
(iii) for MD, f (x, y) = 15/8 − |x − 0.5|/4 − |y − 0.5|/4 − 3|x − y|/4 + |x −

y|2/2;
(iv) for Lee discrepancy, f (x, y) = 1 − min{|x − y|, 1 − |x − y|}.
Now we consider level permutations of any given fractional factorial design P

and calculate the average discrepancy of all permuted designs, denoted by D(P,K).
For any row xi of P , when one considers all level permutations, each s−tuple in Zs

q
occurs ((q − 1)!)s times. Then,

∑

P ′∈H(P)

n∑

i=1

s∏

k=1

f1(xik) =
n∑

i=1

∑

P ′∈H(P)

s∏

k=1

f1(xik)

= n

(

(q − 1)!
q−1∑

k=0

f1(k)

)s

, (6.4.11)

which is a constant. From Lemma6.4.2, (6.4.10) and (6.4.11), Zhou and Xu (2014)
obtained the following result.

Theorem 6.4.7 Suppose thatK(x, y) = ∏s
k=1 f (xk, yk)and f (·, ·) satisfies (6.4.6).

For an (n, qs)−design P , when all level permutations of P are considered,
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D(P,K) = K0 +
(
c1(c2 + q − 1)

q2(q − 1)

)s s∑

i=0

(
c2 − 1

c2 + q − 1

)i

Ai (P), (6.4.12)

where K0 = K2 − 2
(∑q−1

k=0 f1((k + 0.5)/q)/q
)s

is a constant, K2 and f1(·) are,

respectively, defined in (6.4.8) and (6.4.10), c1 = ∑q−1
k=0

∑
l �=k f ((k + 0.5)/q, (l +

0.5)/q), and c2 = (q − 1)
∑q−1

k=0 f ((k + 0.5)/q, (k + 0.5)/q)/c1.

From Theorem6.4.7, for any discrepancy defined by a reproducing kernel satis-
fying (6.4.6), the average discrepancy is a linear combination of GWP under all level
permutations, and the commonly used discrepancies such as WD and CD satisfy
the condition (6.4.6). For example, from the kernel of WD, we have K2 = (4/3)s ,∑q−1

k=0 f1((k + 0.5)/q)/q = 4/3, c1 = ∑q−1
k=0

∑
l �=k

(
1.5 − |k − l|/q + |k − l|2/q2

)

= (q − 1)(8q − 1)/6, and c2 = 9q/(8q − 1) > 1. Then, for the average WD-value,
we have

WD(P) = −
(
4

3

)s

+
(
8q2 + 1

6q2

)s s∑

i=0

(
q + 1

8q2 + 1

)i

Ai (P). (6.4.13)

Especially, when q = 2, all level permuted designs have the same WD value since
WD is invariant under coordinate rotation; therefore, Eq. (6.4.13) shows the exact
relationship between GWP and WD for two-level designs. When q = 3, Tang et al.
(2012) showed that we need only to consider linear level permutations when com-
puting φ̄(P), then based on the expression of WD in (2.3.6), any linear level permu-
tation does not change the WD-value, which means that Eq. (6.4.13) also shows the
exact relationship between GWP and WD for three-level designs. In other words,
Eq. (6.4.13) includes the result of WD for two- and three-level designs in Ma and
Fang (2001). Similarly, applying Theorem6.4.7 to CD, we obtain the relationship
between average CD and GWP, which was reported by Fang and Mukerjee (2000),
Ma and Fang (2001), Tang et al. (2012), and Tang and Xu (2013) for two-, three-,
and multi-level designs, respectively. Moreover, Theorem 6.4.7 includes the results
on Lee discrepancy for two- and three-level designs in Zhou et al. (2008) and the
result onMD for two-level designs in Zhou at al. (2013). In summary, Theorem6.4.7
gives a unified result for any type of discrepancy defined by a reproducing kernel.

Before ending this section, we should note that Sun et al. (2011) investigated the
close relationships in Theorems6.4.2 and 6.4.4 by expressing WD in the quadratic
form of (4.3.2) and the discrete discrepancy in the quadratic form of

[DD(P)]2 = −
[
a + (q − 1)b

q

]s
+ bs

n2
yT Ds y,

where y is the same as in (6.2.1), Ds = ⊗sD0, D0 = (di j ), and di j = a/b, if i =
j and 1 otherwise, i, j = 0, . . . , q − 1. Those expressions of the discrepancies in the
quadratic forms of the indicator functions are useful for us to find optimal designs
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under each of the criteria. In fact, in order to find a design minimizing the quadratic
term like yTB y, we need to only solve

{
min
y

yTB y,

s.t. yT 1 = n, yi = 0, . . . , n.
(6.4.14)

One such approach is provided in Sun et al. (2009), and many optimal designs under
GMA as well as a uniformity criterion are tabulated there. For more approaches for
solving the problem like (6.4.14), please refer to Sect. 4.3.

6.5 Projection Uniformity and Related Criteria

Although many criteria were proposed for comparing U-type designs, none of these
criteria can directly distinguish non-isomorphic saturated designs. Definition and
related discussion on the isomorphism have been given in Sect. 6.1. LetP be a design
of n runs and s factors. There aremany subdesigns, s subdesigns for one-factor exper-
iments,

(s
2

)
subdesigns for two-factor experiments, and so on. A specific criterion can

measure all these subdesigns, and the related values are called its projection pattern.
We can use the distribution or the vector of these projection values as a tool to dis-
tinguish the underlying designs. Hickernell and Liu (2002) proposed the projection
discrepancy pattern and related criteria, Fang and Qin (2004) suggested a different
uniformity pattern and related criteria for two-level factorials, and Fang and Zhang
(2004) suggested the minimum aberration majorization based on the majorization
theory and projection aberration. This section will give a brief introduction to these
approaches.

6.5.1 Projection Discrepancy Pattern and Related Criteria

This subsection introduces projection discrepancy pattern and related criteria pro-
posed by Hickernell and Liu (2002).

A discrepancy can be defined as a norm with a specific kernel (see Defini-
tion2.4.4). To define the projection discrepancy pattern, we restrict ourselves to the
case where the experimental domain, X , is a Cartesian product of one-dimensional
domains, i.e.,X = X1 × · · · × Xs . Suppose the reproducing kernelK is a product of
one-dimensional kernels, i.e.,K = ∏s

j=1 K j with reproducing kernelK j = 1 + K̂ j .
Let S denote the set {1, . . . , s}, and u be any subset of S. Let xu denote the ele-
ments of the vector x indexed by the elements of u, and Xu denote the Cartesian
product of X j with j ∈ u. Let P = {x1, . . . , xn} denote a design with n points on
the domain X , and Pu denote the projection of P into the domain Xu . One would
normally desire that for small |u|, the projections Pu would be good designs on the
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Xu . This is the motivation behind the definitions of resolution (p. 385, Box et al.
1978) and aberration (Fries and Hunter 1980). The discrepancy, as defined above,
does not necessarily guarantee this, but one may defined an aberration in terms of the
pieces of the squared discrepancy. Now let us recall the corresponding definitions
due to Hickernell and Liu (2002). They showed that the reproducing kernel K may
be written as

K(x,w) =
s∏

j=1

K j (x j , w j ) =
∑

∅⊆u⊆S
K̂u(xu,wu), (6.5.1a)

K̂u(xu,wu) =
∏

j∈u
K̂ j (x j , w j ). (6.5.1b)

Note that K̂∅ = 1 by convention.

Example 6.5.1 Suppose that the j th factor has q j levels, i.e., X j = {0, 1, . . . , q j −
1}, for j = 1, . . . , s, and the reproducing kernel is defined by

K j (x, w) = 1 + γ(−1 + q jδxw).

Then, one can identify

K̂u(xu,wu) = γ|u|∏

j∈u
(−1 + q jδx jw j ).

For kernels of the form (6.5.1), one may write

D2(P;K) =
∑

∅⊂u⊆S
D2(Pu; K̂u) =

s∑

j=1

D2
( j)(P;K), where (6.5.2a)

D2
( j)(P;K) =

∑

|u|= j

D2(Pu; K̂u). (6.5.2b)

Since K̂∅ = 1, it follows that D(P; K̂∅) = 0.

Definition 6.5.1 Suppose thatX = X1 × · · · × Xs , and that the reproducing kernel,
K, is of the form (6.5.1). The projection discrepancy pattern (PDP) is defined as the
s-vector

PD(P;K) = (D(1)(P;K), . . . , D(s)(P;K)).

The dictionary ordering can be used for comparing any two designs P, P̃ ⊆
X , one says that P has better projection uniformity than P̃ , or equivalently,
PD(P;K) < PD(P̃;K), if and only if the first (from the left) nonzero component
of PD(P;K) − PD(P̃;K) is negative. If t = min{ j : D( j)(P;K) > 0}, then P is
said to have uniformity resolution t . A design is said to have minimum projection
uniformity (MPU) if no other design has better projection uniformity than it.
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For Example6.5.1, the D2
( j)(P;K) is given by

D2
( j)(P;K) = γ j

n2
∑

|u|= j

n∑

i,k=1

∏

l∈u
(−1 + ql δxil xkl ). (6.5.3)

Definition6.5.1 does not assume that the design is a regular fractional factorial design
(FFD, for short) or even that each factor has a finite number of levels. It only assumes
that the experimental domain is a Cartesian product of one-factor domains, and that
the reproducing kernel is product of one-dimensional kernels.

For the special case of (6.5.3), Definition6.5.1 reduces to the GMA proposed by
Xu and Wu (2001), as shown below by Hickernell and Liu (2002).

Theorem 6.5.1 For the case where the components of PDP are given by (6.5.3), the
resulting MPU as given in Definition6.5.1 is equivalent to the GMA defined by Xu
and Wu (2001), i.e.,

γ− j D2
( j)(P;K) = A j (P), for j = 1, . . . , s.

For the case of two-level designs, the MPU defined here is equivalent to the minimum
G2-aberration of Tang and Deng (1999).

Some comments are in order regarding the parameter γ that enters into the defi-
nition of the discrepancy. This parameter has no effect when comparing the PDPs of
different designs. Thus, as far as the PDP is concerned, one might as well set γ = 1.
By doing so, Liu et al. (2006) investigated the connections amongMPU, GMA,mini-
mummoment aberration (Xu 2003), andminimum χ2 criterion (Liu et al. 2006). The
connections provide strong statistical justification for each of them. Some general
optimality results are developed, which not only unify several results, but also are
useful for constructing asymmetrical supersaturated designs.

However, the value ofγ does affect the comparisonof the discrepancies of different
designs. Recall from (6.5.2) that the squared discrepancy is a sum of the D2

( j)(P;K),

and note that if each K̂ j has a leading factor of γ, then D2
( j)(P;K) has a leading factor

ofγ j . A larger value ofγ gives a relatively heavierweight to the D2
( j)(P;K)with large

j and implies a preference for better uniformity in the high-dimensional projections
of P , whereas a small value of γ implies a preference for better uniformity in the
low-dimensional projections of P . Thus, comparing the aberration of two designs
is equivalent to comparing their discrepancies for vanishing γ, as is explained by
Hickernell and Liu (2002) in the following theorem whose proof is straightforward.

Theorem 6.5.2 Suppose that the reproducing kernel is of the form (6.5.1), and that
K̂ j has a leading coefficient γ. For a fixed number of experiments, n, letPa be a GMA
design, and t be its resolution. For any γ > 0, let Pγ denote a minimum discrepancy
design. Then, if one assumes that D(Pa;K) > 0, it follows that

lim
γ↓0 D(Pγ;K)/D(Pa;K) = 1, lim

γ↓0 D( j)(Pγ;K) = D( j)(Pa;K) ( j = 1, . . . , t).
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6.5.2 Uniformity Pattern and Related Criteria

For U-type designs with two levels, Fang and Qin (2004) suggested the uniformity
pattern and related criteria. Let P be a U (n, 2s). For convenience, we consider only
CD and its uniformity pattern. Let u be any subset of S and the subdesign of P is
denoted by Pu . Its CD is written as CD2,u(P). It is easy to find

[CD2,u(P)]2 =
(

1

12

)|u|
− 3|u|

25|u|−1
+ 1

n22|u| E0(Pu), (6.5.4)

where E0(Pu) is the first component of the distance distribution of the subdesign Pu

(see (6.1.1)). Let

[Ii (P)]2 =
∑

|u|=i

[CL2,u(P)]2,

which measures the overall uniformity of P on i-subdimension. Obviously, CD(P)

has the decomposition [CL2(P)]2 = ∑s
i=1[Ii (P)]2. From (6.5.4), it is evident that

P has strength t if and only if for 1 � j � t

[I j (P)]2 =
(
s

j

)[(
1

12

) j

− 3 j

25 j−1
+ 1

8 j

]

,

and

[It+1(P)]2 >

(
s

t + 1

)[(
1

12

)t+1

− 3t+1

25(t+1)−1
+ 1

8(t+1)

]

.

Definition 6.5.2 Define

Ui (P) = [Ii (P)]2 −
(
s

i

)[(
1

12

)i

− 3i

25i−1
+ 1

8i

]

, 1 � i � s. (6.5.5)

The vector (U1(P), . . . ,Us(P)) is called a uniformity pattern (UP, for short) of
design P .

Then, the MPU criterion based on this pattern can be defined similarly as in
Definition6.5.1.

Fang and Qin (2004) gave the following theorems, where the second one builds
an analytic relationship between {Ui (P)} and {Ai (P)}.
Theorem 6.5.3 SupposeP ∈ U(n; 2s), thenP with strength t if and only ifU j (P) =
0, 1 � j � t and Ut+1(P) �= 0.
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Theorem 6.5.4 Suppose P ∈ P(n; 2s). For any 1 � i � s, the U j ’s and A j ’s are
linearly related through the following equations

Ui (P) = 1

8i

i∑

v=1

(
s − v

s − i

)
Av(P), (6.5.6)

and

Ai (P) =
i∑

v=1

(−1)i−v

(
s − v

i − v

)
8vUv(P). (6.5.7)

Note that the leading coefficient 1
8i
(s−v

s−i

)
in (6.5.6) is positive. It is clear that

sequentially minimizing Ui (P) for i = 1, . . . , s is equivalent to sequentially mini-
mizing Ai (P) for i = 1, . . . , s. Therefore, for two-level designs, the MPU criterion
coincides with the GMA criterion. In particular, a two-level design has GMA if and
only if it has MPU.

There is much more work on the connection between MPU and other criteria. For
two-level designs, Zhang and Qin (2006) showed that MPU criterion, V-criterion
proposed by Tang (2001) and nearest balance criterion proposed by Fang et al. (2003)
are mutually equivalent, and the popular E(s2)-optimality is a special case of MPU.
Qin et al. (2011) also found that MPU criterion is a good surrogate for the design
efficiency criterion proposed by Cheng et al. (2002). For multi-level designs, Qin
et al. (2012) discussed the issue of MPU based on the discrete discrepancy proposed
in Qin and Fang (2004) and provided connection betweenMPU and other optimality
criteria.

6.6 Majorization Framework

Let U be an n × s design in U . A criterion for assessing designs on U can use
a function φ(U) or a vector (φ1(U), . . . ,φm(U)). The world-length pattern is an
example of using avector.How to compare two suchvectors?Section1.4.1 introduces
two ordering ways: the dictionary ordering and majorization ordering. This section
concerns with two different vector functions: pairwise coincidence and generalized
word-length pattern under the majorization ordering.

6.6.1 Based on Pairwise Coincidence Vector

Let δik(U) be the pairwise coincidence (PC) between runs ui and uk in the design
matrix U = (ui j ). Obviously, the coincidence between rows ui and uk (see (2.5.2)
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has δik(U) = s − dH
ik (U), where dH

ik (U) is the Hamming distance between runs ui

and uk . Let δ(U) = (δ1, δ2, . . . , δm)′ be the PC vector of δik(U) for 1 � i < k � n
such that δik corresponds to the element δn(i−1)+k−i(i+1)/2, where m = n(n − 1)/2,
i.e.,

δ(U) = (δ12(U), . . . , δ1n(U), δ23(U), . . . , δ2n(U), . . . , δ(n−1)n(U)). (6.6.1)

We call two designs PC-different if their PC-vectors cannot be exchanged by per-
mutation. The PC-sum

∑m
r=1 δr = ∑

i<k

∑s
j=1 δui j uk j keeps invariant in any U-type

design, by observing that 1 +∑
k �=i δui j uk j = n/q for any i, j .

Lemma 6.6.1 For any U ∈ U(n, qs), its PC-sum is ns
2 ( nq − 1).

Based on the decision theory, majorization theory, and Lemma6.6.1, Zhang et al.
(2005) proposed a general framework for U-type designs via their PC vectors.

If we chooses some suitable Schur-convex function �(δ(U)) (�(x)

= ∑m
r=1 ψ(xr ), where ψ is convex on R+, please refer to Sect. 1.4.1), the function

�(δ(U)) can be used as a criterion for comparing two U-type designs in U(n, qs).

Definition 6.6.1 In the design space U = U(n, qs) define

1. Admissibility: we say design U1 is better than U2 if δ(U1) ≺ δ(U2). A design
U is inadmissible if there exists a design U∗ such that δ(U∗) ≺ δ(U). A design
which is not inadmissible is called admissible.

2. Majorant: If there exists a design U such that

δ(U) � δ(U∗), for any U∗ ∈ U ,

we call U a majorum design in the space U .
3. Schur-convex optimality: For a predefined Schur-convex kernel function �(·) on

Rm+ , a design U is called Schur-�-optimal with respect to �(·)

�(δ(U)) � �(δ(U∗)), for any U∗ ∈ U .

The three parts in the above definition can be divided hierarchically into two stages
of investigation, namely stringent majorization check and flexible Schur-convex com-
parison. At the first stage, for competing designs inU , compute their PC vectors with
elements sorted in increasing order. Compare the cumulative summations in the sense
of majorization ordering (1.4.1). By Definition6.6.1, any inadmissible design should
be prohibited for experimentation; the majorant design(s) if it exists is the winner
and absolutely recommended; otherwise, we go to the second stage for comparing
admissible designs. The first stage is stringent since majorization requires strong
conditions between PC vectors. At the second stage, specify a convex kernel and
compute the Schur-� value for each admissible design. Since the above Schur-�
criterion is single-valued, all the designs are pairwise comparable and able to be
rank-ordered. For different specific purposes, it is very flexible to predefine kernels,
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as long as they are convex functions. The above two stages are based on the following
theory.

Theorem 6.6.1 For two designs U1,U2 ∈ U(n, qs), δ(U1) � δ(U2) if and only if
�(δ(U1)) � �(δ(U2)) for every Schur-convex kernel �(·).

Zhang et al. (2005) illustrated the ideas with an example and some toy convex
kernels. Their example demonstrates both stringency and flexibility of majorization
framework for assessing designs. Formally, they have the following main theorem to
characterize the necessary and sufficient conditions between majorant designs and
Schur-� optimum designs.

Zhang et al. (2005) found that many existing criteria, including the discrete dis-
crepancy,WD for the case of q = 2, 3 and CD for the case of q = 2, can be expressed
as a separable convex function, i.e., a Schur-� function with the form (1.4.2). This
fact can be extended to many criteria, such as E(s2), Ave(χ2), and Ave( f 2) used in
supersaturated design (refer to Chap. 7). Therefore, Zhang et al. (2005) proposed a
united approach to find a tight lower bound for a separable convex function.

Consider the PC-mean of any U-type design U ∈ U(n; qs), which is a constant
δ̄ = s(n−q)

q(n−1) by Lemma 6.6.1. Now we can apply Lemmas1.4.1 and 1.4.2 into the
vector set of δ(U) on U . For integer-valued δ(U) with length m, let

δ ≡ (δ̄, . . . , δ̄︸ ︷︷ ︸
m

)′ and δ̃ ≡ (θ, . . . , θ︸ ︷︷ ︸
m(1− f )

, θ + 1, . . . , θ + 1︸ ︷︷ ︸
m f

)′,

where θ and f are the integral part and fractional part of δ̄, respectively. It is clear
that δ � δ̃ � δ, where δ̃ reduces to δ when f = 0.

Theorem 6.6.2 A U-type design is majorant if and only if it is Schur-optimum w.r.t
every convex kernel. For any well-defined Schur-ψ criterion, it has a lower bound
m(1 − f )ψ(θ) + m f ψ(θ + 1).

In the proof of the above theorem, Lemma 5.2.1 in Dey and Mukerjee (1999)
plays an important role. Zhang et al. (2005) also discussed how to choose suitable
kernels for investigating the orthogonality, aberration, and uniformity properties of
designs. Some new criteria are also proposed.

6.6.2 Minimum Aberration Majorization

In the previous subsection, themajorization framework based on the PC-vector shows
its perfect performance for comparing U-type designs. However, any good criterion
may meet difficulty for some cases. For example, the Hamming distance of any two
rows of a saturated orthogonal design Ln(qs) is n/q (see Mukerjee and Wu 1995
and Definition 1.3.4). Therefore, PC-vector and the majorization framework cannot
distinguish non-isomorphism saturated orthogonal designs, because they have the
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same PC-vector. Two designs are called isomorphic if one can be obtained from the
other by relabeling factors, reordering the runs or switching the levels of the factors. A
famous example is about L16(215). There are five non-isomorphic L16(215) designs,
denoted by HM16.1 to HM16.5 according to the order given by Hall (1961). We list
the first twoHM16.1 andHM16.2 below,where two levels are 0 and1. Several authors
were interested in how to distinguish them, as well as their subdesigns. Sun and
Wu (1993) defined the word-length pattern through the incomplete defining contrast
subgroup and studied algebraic structure of these five designs. Lin and Draper (1995)
considered the pure geometric projection patterns of these five designs up to the lower
dimension 5. Fang and Zhang (2004) proposed a so-called minimum aberration
majorization criterion for this purpose. For each subdesign of L16(2p), p � 15 of
a given L16(215), we can calculate its generalized word-length pattern (GWP) (cf.
Sect. 1.4). For a given p, there are Np = (s

p

)
subdesigns. A natural idea is to consider

the average projection GWP of all Np subdesigns. Fang and Zhang (2004) found that
the average projection GWPs for non-isomorphic saturated designs are coincident
and that the average projection GWP can be expressed in terms of the overall GWP,
i.e., all designs in Ln(qs) (either non-saturated or saturated) have the same average
projection GWP, provided that they have the same overall GWP.

HM16.1 =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 0 1 1 0 0 1 1 0
1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 1 0 1 0 1 0 1 1 0 1 0
1 0 0 0 0 1 1 0 0 1 1 1 1 0 0
0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠
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and

HM16.2 =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 1 0 1 0 1 1 0
1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 1 0 0 1 1 0 0 1 0 1
1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 1 1 0 0 1 0 1 1 0 0 1
1 0 0 0 0 1 1 0 0 1 1 1 1 0 0
0 0 1 0 1 0 1 0 1 1 0 1 0 1 0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

,

Let us take an example of HM16.2 in L16(215) and p = 5 for illustrating the dis-
tribution of projection GWP. There are 3003 = (15

5

)
subdesigns with nine differ-

ent GWPs: 1056 subdesigns with GWP (0, 0, 1, 0, 0), 384 subdesigns with GWP
(0, 0, 0, 1, 0), etc. In fact, the average projection GWP of HM16.2 coincides with
that of HM16.i, i = 1, 3, 4, 5. By writing GWP together with the corresponding fre-
quency, we sort 3003 five-dimension projection GWPs of HM16.2 by the dictionary
ordering |= in Sect. 1.4.1 as follows:

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

0 0 1 0 0 1056
0 0 0 1 0 384

0 0 1
2

1
2 0 576

0 0 3
2

1
2 0 288

0 0 0 0 1 72

0 0 1
4

1
2

1
4 192

0 0 2 1 0 99
0 0 1 1 0 144
0 0 3

4 0 1
4 192

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

⇒

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

0 0 0 0 1 72
0 0 0 1 0 384

0 0 1
4

1
2

1
4 192

0 0 1
2

1
2 0 576

0 0 3
4 0 1

4 192

0 0 1 0 0 1056
0 0 1 1 0 144
0 0 3

2
1
2 0 288

0 0 2 1 0 99

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

Now we can define the new concept “projection GWP distribution” as follows:

Definition 6.6.2 For a saturated design Ln(qs), its p-dimension (1 � p � s) pro-
jection GWP distribution is defined by the distribution of generalized word-length
patterns of its Np = (s

p

)
projection designs. Symbolically, we write it as an ordered

statistic �p =
{
W[i]

}Np

i=1
, where W[i] |= W[ j] whenever i � j .
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Let P1 and P2 be two non-isomorphic saturated Ln(qs) designs. Fang and Zhang
(2004) showed that

Np∑

i=1

W[i](P1) =
Np∑

i=1

W[i](P2). (6.6.2)

This fact gives us a possibility to apply the majorization theory to compare non-
isomorphic saturated designs, and we can similarly define the majorization relation
between �p(P1) and �p(P2).

Definition 6.6.3 (Minimum Aberration Majorization) For saturated designs P1 and
P2 ∈ Ln(qs) and p (1 � p � s), we sayP1 has less aberration majorization thanP2

and write

�p(P1)
α� �p(P2) (or �p(P1)

α� �p(P2) if �p(P1) �= �p(P2)) (6.6.3)

if and only if

t∑

i=1

W[i](P1) |=
t∑

i=1

W[i](P2), t = 1, 2, . . . , Np − 1. (6.6.4)

A saturated designP∗ is said to be of minimum aberration majorization (MAM) if no

designs have less aberration majorization than it. Furthermore, if �p(P1)
α� �p(P2)

for all p = 1, . . . , s with at least one strict majorization relationship
α�, we say that

P1 dominates P2 globally under the MAM criterion and write P1
α� P2.

The MAM criterion concerns the capacity of less aberration in all subdesigns. If

P1
α� P2, for any m p-dimensional subdesigns, where 1 � m � Np, p = 1, . . . , s,

we can find m subdesigns of P1 such that the average GWP of these m subdesigns
has less generalized aberration than the average GWP of any m subdesigns of P2.
The MAM criterion can be used for detecting non-isomorphism of the designs. For
two designs P1 and P2 in Ln(qs), they have the same �p for all p = 1, . . . , s if they

are isomorphic. If there is p such that �p(P1)
α� �p(P2), it indicates that they are

non-isomorphic. By applying theMAMcriterion to the five L16(215) non-isomorphic
designs, Fang and Zhang (2004) found

HM16.1
α� HM16.2

α� HM16.3
α�
{
HM16.4
HM16.5

.

and found that HM16.4 and HM16.5 have the same projection GWP distributions at
low dimensions p = 1, . . . , 5 and high dimensions p = 8, . . . , 15, while different
at p = 6, 7, 8 and 9. There is no clear majorization relationship between HM16.4
and HM16.5.
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Exercises

6.1

Prove that the following two designs, D1 and D2, are isomorphic

D1 =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

1 1 1
1 −1 1
1 1 −1

−1 −1 −1
−1 1 −1
−1 −1 1

⎤

⎥⎥⎥⎥
⎥⎥
⎦

D2 =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

−1 −1 −1
1 −1 −1

−1 1 −1
1 1 1

−1 1 1
1 −1 1

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.

Indicate that these designs belong to:
(i) U-type design; (ii) orthogonal design; (iii) fractional factorial design.

6.2

Denote by U9(34) all the possible orthogonal designs L9(34) with levels 1, 2 and 3.
Answer the following questions:

(1) Show that all these designs in U9(34) form only one isomorphic group.
(2) Calculate WD, CD and MD for all designs in U9(34). Give your conclusion.
(3) Table6.4 list two designs L9(34), where U2 was obtained by minimizing CD

on U9(34). The U2 is called uniformly orthogonal design under CD. Find uniformly
orthogonal design under MD/WD.

(4) Calculate the discrete discrepancy for all designs in U9(34). Give your con-
clusion.

(5) Give a discussion on two concepts: the uniformly orthogonal design and uni-
form minimum aberration design.

(6) Calculate the projection discrepancy pattern defined in Definition6.5.1.

6.3

Calculate the uniform pattern (refer to Definition6.5.2) for all subdesigns L8(25) of
L8(27) in Table1.3.2.

6.4

Table6.5 gives a uniform minimum aberration design UL27(313) under MD. This
design involves several uniform minimum aberration subdesigns UL27(3s) for
s < 13 under MD. Give two such subdesigns for s = 6 and s = 10 with detailed
calculation, respectively.

6.5

There are five non-isomorphic L16(215) designs. This chapter lists two of them. Give
other three from the literature.
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6.6

There are two non-isomorphic L27(313) designs (refer to Fang and Zhang 2004).
Apply Algorithm6.1.2 to detect their non-isomorphism.

6.7

Table6.2 list four orthogonal designs L18(37). Ma and Fang (2001) pointed out that
there are at least three non-isomorphic L18(37) designs. Furthermore, Evangelaras
et al. (2007) confirmed that there exist exactly three non-isomorphic three-level
orthogonal arrays with 18 runs and 7 columns. They obtained several minimum
aberration subdesigns L18(3s), s � 7. List these minimum aberration subdesigns as
many as possible.
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Chapter 7
Applications of Uniformity in Other
Design Types

From the previous chapter, we see that there exist close relationships between
uniformity and several other design criteria. In this chapter, we will show that the
uniformity is also a useful criterion in some classical designs, such as block design,
supersaturated design, Latin hypercube design and so on.

7.1 Uniformity in Block Designs

Block design is an important kind of experimental design. Its basic ideas come from
agricultural and biological experiments. But now the applications of these ideas are
found in many areas of sciences and engineering. The most widely used one is the
balanced incomplete block design (BIBD, see Definition3.6.2). Another important
one is the resolvable incomplete block design (RIBD, for short). See Sect. 3.6.1 for
some basic knowledge of block designs. For a thorough discussion of block designs,
refer to Dey (1986).

As we know, the definitions in block designs reflect some “balance” among the
treatments, the block, or the parallel class. This kind of balance is easy to be accepted
intuitively. While in existing works on block designs, the criterion of balance was
introduced from the estimation point of view. In fact, the balance criterion can be
regarded as a kind of uniformity. Liu and Chan (2004) and Liu and Fang (2005)
studied the uniformity of block designs and obtained some satisfactory results.

7.1.1 Uniformity in BIBDs

A BIBD can be characterized by the balanced arrangement of its design points.
Liu and Chan (2004) investigated incomplete block designs from the perspective
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of uniformity. They used the discrete discrepancy defined in Sect. 2.5.1 to prove
theoretically that BIBDs are the most uniform ones among all equireplicate, proper,
and binary.

Suppose n treatments are arranged in s blocks, such that the j th block contains
t j experimental units and the i th treatment appears ri times in the entire design,
i = 1, . . . , n; j = 1, . . . , s. Let Z = (z ji )n×s be the incidence matrix of the design,
where z ji is the number of times that the i th treatment appears in the j th block.
Following Definition3.6.1 for block design, we denote an equireplicate (i.e., ri = r ),
proper (i.e., t j = t), and binary (i.e., z ji = 1 or 0) incomplete block design by
IB(n, s, r, t). Regard the s blocks as s-factors each having two levels, 0 and 1, and
regard the allocation of each treatment to these s blocks as a point with elements
0 and 1, where 1 means that this treatment appears in the corresponding block and
0 means it does not. Then, the n points of an IB(n, s, r, t) just correspond to the n
rows of the incidence matrix Z. For the kernel defined by (2.5.3) and (2.5.4), Liu
and Chan (2004) showed that the squared discrete discrepancy of Z is

DD2(Z) = −
(
a + b

2

)s

+ as

n
+ as

n2

(
b

a

)2r n∑
i, j=1, j �=i

(a
b

)2n11i j
, (7.1.1)

where n11i j is the number of blocks in which the pair of treatments i and j appear
together. Based on expression (7.1.1), Liu and Chan (2004) further obtained the
following theorem.

Theorem 7.1.1 Let Z be the incidence matrix of an IB(n, s, r, t). Then,

DD2(Z) � −
(
a + b

2

)s

+ as

n
+ n − 1

n
as

(
b

a

)2r−2λ

, (7.1.2)

where λ = r(t − 1)/(n − 1), and the lower bound of DD2(Z) on the right-hand
side of (7.1.2) can be achieved if and only if λ is a positive integer and every pair of
treatments appears in altogether λ blocks, i.e., the design is a BIBD(n, s, r, t,λ).

Theorem7.1.1 shows that for a BIBD(n, s, r, t,λ), the lower bound of DD2(Z)
is attained, and thus BIBD(n, s, r, t,λ)’s are the most uniform ones among all
IB(n, s, r, t)’s. This is an important characteristic of BIB designs in terms of unifor-
mity.

7.1.2 Uniformity in PRIBDs

Furthermore, Liu and Fang (2005) considered equireplicate and binary incomplete
block designs and did not care whether they are proper or not. If a block design is
resolvable (see Definition 3.6.3), it is obvious that the design is also equireplicate and
binary. Let t = (t1, t2, . . . , ts)′, and RIB(n, s, r, t, Z) denote a resolvable incomplete
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block design (RIBD, for simplicity). In particular, for an RIBD(n, s, r, t, Z), if each
parallel class is proper, i.e., in the i th (1 � i � r ) parallel class, there are qi blocks
each of size n/qi , then the design is called a PRIBD, denoted by PRIBD(n, s, r, t, Z).
Here, q1, . . . , qr are positive divisors of n. Liu and Fang (2005) obtained a sufficient
and necessary condition under which a PRIBD is the most uniform one in the sense
of the discrete discrepancy in (2.5.8).

Theorem 7.1.2 For a PRIBD(n, s, r, t, Z), we have

DD2(Z) � −
(
a + b

2

)s

+ as

n
+ n − 1

n
as

(
b

a

)2r−2λ

, (7.1.3)

where λ = (
∑r

k=1 n/qk − r)/(n − 1), and the lower bound of DD2(Z) on the right-
hand side of (7.1.3) can be achieved if and only if λ is a positive integer and every
pair of treatments appears altogether in λ blocks.

Based on this theorem, we call a PRIBD(n, s, r, t, Z) a uniform PRIBD if its
DD2(Z) achieves the lower bound in (7.1.3). In such a uniform PRIBD, every pair of
treatments appears altogether in the same number of blocks, which means that there
exists some “balance” among the treatments. In fact, if a uniform PRIBD is also
proper, i.e., qi = q (say), for all 1 � i � r , then we can easily have the following
conclusion.

Corollary 7.1.1 If a uniform PRIBD(n, s, r, t,λ) is proper, then it is a resolvable
BIBD(n, rq, r, n/q,λ), where ti = n/q for all 1 � i � s, and λ = r(n/q −1)/(n−
1).

From this corollary, the criterion “balance” can be regarded as a kind of uniformity.
Liu and Fang (2005) further showed that for a uniform PRIBD, all elementary

treatment contrasts are estimable, so are those among block effects. They also pro-
posed a construction approach for uniform PRIBDs via a kind of U-type designs.
This approach sets up a strong link between U-type designs and PRIBDs.

All these results confirm our judgment that the “balance” criterion can be
regarded as a kind of uniformity. Note that these results are obtained in the sense
of the discrete discrepancy in (2.5.8), but they also hold for any of the reflection-
invariant L2-discrepancies proposed by Hickernell (1998a, b), any of the four
discrepancies due to Hickernell (1998a, b), i.e., the centered L2-discrepancy, wrap-
around L2-discrepancy, symmetric L2-discrepancy, and unanchored L2-discrepancy;
see Sect. 2.3 for the definitions and expressions of the former two.

7.1.3 Uniformity in POTBs

Main effects plans (MEPs) occupy an important position in many industrial exper-
iments when interest lies only in the main effects, assuming that all interactions
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Table 7.1 Two 3323 POTBs A dummy block factor D1 D2

F1 F2 F3 F1 F2 F3

Batch 1 0 0 0 0 0 1

0 1 1 0 1 0

1 0 1 2 0 0

1 1 0 2 1 1

Batch 2 1 1 1 2 1 0

1 2 2 2 2 2

2 1 2 1 1 2

2 2 1 1 2 0

Batch 3 2 2 2 1 2 2

2 0 0 1 0 1

0 2 0 0 2 1

0 0 2 0 0 2

between factors are negligible. An orthogonal MEP permits the estimation of all
main effects of a factorial arrangement without correlation. The only problem with
an orthogonal MEP is that the plan often requires a large number of runs. Thus,
many alternative approaches can be found in the literature such as nearly orthogonal
arrays (e.g., Wang and Wu 1992; Ma et al. 2000), MEPs with blocks (e.g., Mukerjee
et al. 2002), MEPs in which the treatment factors are pairwise orthogonal through
the block factor (Bose and Bagchi 2007; Bagchi 2010). Among them, Bagchi (2010)
obtained saturated plans orthogonal through the block factor (POTBs) for an s3m23m

experiment. Recently, Chen et al. (2015) presented direct as well as recursive con-
structions for asymmetrical saturated POTBs.

A 3323 POTB with three-level columns, denoted by D1, is listed in Table7.1.
Design D2 in Table7.1 is obtained by level permutations of factor F1 (map (0, 1, 2)
to (0, 2, 1)) and factor F3 (map (0, 1, 2) to (1, 0, 2)). Note that the run size of a POTB
is much smaller than the one of an orthogonal MEP. In such plans, the s-level factors
are non-orthogonal to the block factor but are pairwise orthogonal through the block
factor.

Consider a plan D for an experiment with factors F1, F2, . . . (possibly including
a block factor L) at s-level on N runs. Let an N × s matrix XF1 denote the incidence
matrix of factor F1, in which the (u, i)th entry is 1 if in the uth run factor F1 is set at
level i and 0 otherwise. For two factors F1 and F2, the incidence matrix is denoted
by MF1F2 , where the (i, j)th entry is the number of runs in which F1 is set at level
i and F2 is set at level j . Factors F1 and F2 are said to be orthogonal through the
block factor if the following condition satisfies,

MF1LMLF2 = kMF1F2 , (7.1.4)
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where k is the block size. Hence, design D is said to be a plan orthogonal through
the block factor (POTB) if every pair of factors of D is orthogonal through the block
factor.

Chen et al. (2015) investigated the relationship between level permutation and
POTB and obtained the following theorem.

Theorem 7.1.3 If D1 is a POTB and D2 is obtained by any level permutations of
factors of D1, then D2 is also a POTB.

Chen et al. (2015) further used a modified optimization algorithm below to search
uniform or nearly uniform s3m23m POTBs under level permutation, where CD is
used as the uniformity measure. Noted that searching for all (s!)m level permuted
designs (denote the set of all these designs as P(D)) becomes an NP-hard problem
as s or m increases. In Chen et al. (2015), the implementation (with the number
of iterations being τ = 10,000) was done in R program on a personal computer
with Intel Core(TM) i5-3230M Duo CPU 2.6GHz and 4 GB memory. And the most
complex case of constructing uniform POTBs took only a few minutes to complete.

Algorithm. Pseudo code for prototype local search heuristic
1. Initialize τ (number of iterations)
2. Initialize δ (impairment threshold) and c0 ∈ (0.1, 0.25)
3. Generate an initial s3m23m POTB D by Algorithm 1 in
(Chen et al., 2015) and let Dmin = Dc = D

4. for i = 1 to τ do
5. Generate a new design Dnew ∈ P(D) based on Dc

6. Compute ∇ = CD2(Dnew) − CD2(Dc) and generate c
(c ∼ U (0, 1))

7. if (∇ < 0) or (∇ < δ and c < c0) then let Dc = Dnew

8. if CD2(Dc) < CD2(Dmin) then let Dmin = Dc

9. end for

Remark 7.1 In the above algorithm, there are two major differences between the
algorithm in Fang et al. (2006) and the current one. The first difference is the input
starting design Dc. Instead of randomly generating a U-type design as the starting
design, the current algorithm chooses a POTB first. The second difference is the
definition of neighbor P(D) to current solution. A normal TA algorithm exchanges
twodistinct elementswithin the samecolumns,whileChen et al. (2015) exchanged all
elements of two distinct levels within the same column as done in Tang et al. (2012).

7.2 Uniformity in Supersaturated Designs

The supersaturated design (SSD, for short) is a fractional factorial design whose run
size is insufficient for estimating all the main effects represented by the columns
of the design matrix. In industrial and scientific experiments, especially in their
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preliminary stages, very often there are a large number of factors to be studied and
the run size is limited because of expensive costs. However, in many situations only
a few factors are believed to have significant effects. Under this assumption of effect
sparsity, SSDs can be effectively used to identify the dominant factors.

7.2.1 Uniformity in Two-Level SSDs

Most studies on SSDs have focused on the two-level case. Booth and Cox (1962),
in the first systematic construction of SSDs, proposed the E(s2) criterion, which is a
measure of non-orthogonality under the assumption that only two out of the m factors
are active. After Booth and Cox (1962), there was not much work on the subject of
SSDs until Lin (1993). Other early work focusing on constructions of E(s2)-optimal
SSDs includes, e.g., Nguyen (1996); Cheng et al. (1997); Tang and Wu (1997); Liu
and Zhang (2000); Butler et al. (2001); Liu and Dean (2004); Bulutoglu and Cheng
(2004), andmore references on E(s2)-optimal SSDs can be found in the review paper
Georgiou (2014).

LetU ∈ U(n; 2m); when n < m+1, the design is a two-level SSD. The commonly
used E(s2) criterion for comparing SSD is

E(s2) = 2

m(m − 1)

∑
1�i< j�m

s2i j ,

where si j is the (i, j)th entry of XT X . Liu and Hickernell (2002) studied the
connection between E(s2)-optimality and minimum discrepancy in two-level SSDs.
They defined the discrete discrepancy by taking a = 1 + β and b = 1 + βρ (β >

0,−1 � ρ < 1) in (2.5.4) for q = 2 and showed that for two-level factorial designs
both the E(s2) and the discrete discrepancy can be expressed in terms of theHamming
distances (or the coincidence numbers) between any two runs of the design. These
expressions in terms of Hamming distances lead to lower bounds for E(s2) and the
discrete discrepancy. It is interesting to note that if a design U can attain one of these
lower bounds, then it attains both of them. In other words, an E(s2)-optimal design
is also uniform (minimal discrepancy) in terms of this discrete discrepancy. They
further showed that in what cases these lower bounds can be achieved, even though
the discrete discrepancy is not equivalent to the E(s2) criterion.

Theorem 7.2.1 Let U be a two-level design with n runs and m factors, where each
column has the same number of ±1 elements. Suppose that ρβ > −1 and that
m = c(n−1)+e for e = −1, 0 or 1. Also, suppose that either (a) n is a multiple of 4
and there exists an n×n Hadamard matrix, or (b) c is even and there exists a 2n×2n
Hadamard matrix. Then, the lower bounds of E(s2) and the discrete discrepancy can
be attained.
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Moreover, the discrete discrepancy is a more general and thus more flexible crite-
rion than E(s2). For example, E(s2) ignores possible interactions of more than one
factor. However, the discrete discrepancy includes interactions of all possible orders,
and their importance may be increased or decreased by changing the value of β in
the definition of the discrete discrepancy.

7.2.2 Uniformity in Mixed-Level SSDs

Two-level SSDs can be used for screening the factors in simple linear models. When
the relationship between a set of factors and a response is nonlinear or approximated
by a polynomial response surface model, designs with multi-level and mixed-level
are often required, e.g., to exploring nonlinear effects of the factors. In the past two
decades, the study of SSDs with multi-level and mixed-level has also raised great
attention; see, for example, Sun et al. (2011); Liu and Liu (2011, 2012, 2013);
Chen et al. (2013); Georgiou (2014) and the references therein. It is clear that all
SSDs cannot be completely orthogonal among columns of the design. The block
orthogonality (meaning that columns of the design are grouped as blocks and columns
in each block are orthogonal) has been considered bymany authors. Fang et al. (2000)
proposed away that collapses a uniformdesign to anorthogonal array for constructing
multi-level SSDs.

There are many criteria, such as aveχ2 (Yamada and Lin 1999), χ2(D) (Yamada
and Matsui 2002), E( fNOD ) (Fang et al. 2003), minimum moment aberration (Xu
2003), and minimum χ2 (Liu et al. 2006) for comparing multi-level and mixed-level
SSDs in the literature. In particular, for a design U ∈ U(n; q1 × · · · × qm), the
E( fNOD ) criterion is defined as minimizing

E( fNOD ) =
∑

1�i< j�m

f i j
NOD

/(
m

2

)
, (7.2.1)

where

f i j
NOD

=
qi∑
u=1

q j∑
v=1

(
n(i j)uv − n

qiq j

)2

,

n(i j)uv is the number of (u, v)-pairs in the i th and j columns, and n/(qiq j ) stands for the
average frequency of level-combinations in this pair of columns. Here, the subscript
NOD stands for non-orthogonality of the design. It is obvious that E( fNOD ) = 0
for an orthogonal array. Fang et al. (2003) proved that the E(s2) and aveχ2 criteria
are in fact special cases of the E( fNOD ) criterion, and obtained a lower bound for
E( fNOD )which can serve as a benchmark of design optimality. They also studied the
connection between the discrete discrepancy (2.5.6) and E( fNOD ). Fang et al. (2004a)
provided the following lower bound and the sufficient and necessary condition to
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achieve it for E( fNOD ), which includes the bound and condition of Fang et al. (2003)
as a special case.

Theorem 7.2.2 Let U ∈ U(n; q1 × · · · × qm), then

E( fNOD ) � n(n − 1)

m(m − 1)

[
(γ + 1 − λ)(λ − γ) + λ2

] + C(n, q1, . . . , qm), (7.2.2)

where C(n, q1, . . . , qm) = nm
m−1 − 1

m(m−1)

(∑m
i=1

n2

qi
+ ∑

1�i �= j�m
n2

qi q j

)
, λ, γ and the

sufficient and necessary conditions for the lower bound to be achieved are the same
as those of Theorem 2.6.20.

Based on these two papers’ results, we have

Theorem 7.2.3 Let U be a U-type design, and if the difference among all the Ham-
ming distances between any two different rows of U does not exceed one, then U is
both a uniform design in terms of the discrete discrepancy (2.5.6) and an E( fNOD )-
optimal design.

This theorem generalizes the result obtained by Liu and Hickernell (2002) for
two-level case. And it leads to a strong relation between E( fNOD ) optimality and
uniformity measured by the discrete discrepancy (2.5.6) of any SSD. The uniformity
of E(s2)- and aveχ2-optimal SSDs can be obtained directly based on this theorem,
as special cases of SSDs with equal-level factors.

Fang et al. (2003) and Fang et al. (2004a) also proposed ways for constructing
E( fNOD )-optimal as well as uniform SSDs with mixed levels. And more uniform
SSDs under the discrete discrepancy (2.5.6) have been obtained by the combinatorial
approaches. See Sect. 3.6 for the details of these approaches. All these studies show
that the uniformity plays an important role in evaluating and constructing SSDs.

7.3 Uniformity in Sliced Latin Hypercube Designs

Recently, computer experiments with both quantitative and qualitative factors have
raised increasing interests. To suit such a computer experiment, Qian et al. (2012) first
proposed a generalmethod for constructing sliced Latin hypercube designs (SLHDs).
An m × q matrix is called a Latin hypercube design (LHD), denoted by L(m, q), if
each of its q columns includesm equally spaced levels, say 1, . . . ,m. An n×q matrix
S is called an SLHD with s slices, denoted by SL(n, q, s), if S is an L(n, q) and can
be partitioned into s slices each of which is an L(m, q) with m = n/s after the n
levels are collapsed to m equally spaced levels according to �i/s� for level i , where
�a� means the smallest integer greater than or equal to a. SLHDs inherit the good
property of LHDs, i.e., they possess maximum stratification in any one dimension as
well as their slices. Further studies on SLHDs include some constructions ensuring
good projection in more than one dimension or orthogonality between columns, i.e.,
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Yang et al. (2013), Huang et al. (2014), Cao and Liu (2015), Yang et al. (2016) and
Wang et al. (2017) proposed methods to construct orthogonal and nearly orthogonal
SLHDs, Yin et al. (2014) constructed SLHDs with an attractive low-dimensional
stratification via orthogonal arrays (OAs), and Yang et al. (2014) obtained SLHDs
based on resolvable orthogonal arrays (ROAs) and then highly improved the unifor-
mity of the resulting designs with respect to the centered L2-discrepancy criterion.

There is a disadvantage of SLHDs that remains to be addressed: SLHDs usually
do not possess a good uniformity over the experimental region. Such a disadvantage
goes against the space-filling principle and is undesirable for computer experiments.
AlthoughYang et al. (2014) considered such a problem, the existence of their designs
depends heavily on the existence of the resolvable orthogonal arrays, whose numbers
of runs and factors are constrained.

Note that in applications of computer experiments with both qualitative and quan-
titative factors, each slice of an SLHD corresponds to one level-combination of the
qualitative factors. Thus, the design points under each level-combination of the qual-
itative factors should spread evenly over the experimental region when the response
surfaces at different level-combinations of the qualitative factors are similar (see
Huang et al. 2016). However, there is no one-to-one correspondence between the
uniformity of a whole SLHD and that of its slices. In order to avoid the possible
inconsistency between the uniformity of the whole design and that of its slices,
recently Chen et al. (2016) proposed a new optimization criterion by combining the
twouniformitymeasures of thewhole design and its slices. The design obtained under
such a combinedmeasure, called a uniform sliced Latin hypercube design (USLHD),
not only has good uniformity in terms of the whole design but also spreads the points
of each slice evenly over the experimental region.

7.3.1 A Combined Uniformity Measure

Chen et al. (2016) used the centered L2-discrepancy (CD) for evaluating the unifor-
mity of SLHDs. For an SLHD D = (DT

(1), . . . , D
T
(s))

T , let CD(D) and CD(D(i)) be
the CD-values of D and D(i), respectively, where D(1), . . . , D(s) are the s slices of
D. A combined uniformity measure can be of the following form:

CD(D, ξ) = ξCD(D) + (1 − ξ) s

√√√√ s∏
i=1

CD(D(i)), (7.3.1)

where 0 � ξ � 1 is a real weighting parameter and s

√∏s
i=1 CD(D(i)) is the geo-

metric mean of CD(D(i))’s. Note that CD(D) and CD(D(i))’s may have different
magnitudes, which may bring unfair comparison for the two kinds of uniformity and
difficulty for determining the proper value of ξ. Instead of directly using the CD-
values as in (7.3.1), one needs a measure that not only has the same magnitude order
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for the whole design and its slices but also can reflect the uniformity of designs. For
this purpose, Chen et al. (2016) introduced the uniformity efficiency (U-efficiency
for short) of D, which is defined as

EU (D) = CD(U )

CD(D)
, (7.3.2)

whereU is a uniform design with the same parameters as D under the CD.Many uni-
form designs can be found onWeb site http://dst.uic.edu.hk/en/isci/uniform-design/
uniform-design-tables. It is clear that 0 < EU (D) � 1, and EU (D) has the same
order as EU (D(i))’s, where EU (D) and EU (D(i))’s are the U-efficiencies of D and
D(i) for i = 1, . . . , s, respectively. The proposed combined uniformity measure is
then of the following form:

EU (D,ω) = ωEU (D) + (1 − ω) s

√√√√ s∏
i=1

EU (D(i)), (7.3.3)

where 0 � ω � 1. Since CD(U ) is fixed, so the larger EU (D) is, the smaller the
CD(D) is. Thus for a fixed ω, the objective is to find a design D∗ ∈ D such that

EU (D
∗,ω) = max

D∈D
(EU (D,ω)). (7.3.4)

Here, D∗ is called a USLHD. Optimization algorithms for finding a D∗ are given in
next subsection.

7.3.2 Optimization Algorithms

As a stepping stone to USLHDs, the neighbor of an SLHD is an important concept
whichwill be used in the proposed optimization procedure. LetD be the set consisting
of all the SL(n, q, s)’s, then a neighbor of an SLHD D0 ∈ D can be constructed by
the following algorithm (Chen et al. 2016).

Algorithm 7.3.1

Step 1. Randomly choose one column of D0, and then from each slice of this col-
umn, choose one element such that these s elements, say a1, . . . , as , are
“equal” in the sense that �a1/s� = · · · = �as/s�.

Step 2. Randomly choose two elements among a1, . . . , as , say ai1 and ai2 , and
exchange their positions in the column.

Step 3. Randomly choose one of ai1 and ai2 , say ai1 , and select an element from
the same column in the same slice of ai1 , say b1 (b1 �= ai1), exchange their
positions.

http://dst.uic.edu.hk/en/isci/uniform-design/uniform-design-tables
http://dst.uic.edu.hk/en/isci/uniform-design/uniform-design-tables
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The resulting design is one neighbor of D0. It is obvious that such an exchanging
procedure does not change the sliced structure of an SLHD. This is necessary for a
design to be a neighbor of an SLHD.

To search USLHDs, Chen et al. (2016) used the threshold-accepting (TA) algo-
rithm (see Sect. 4.2). The step-by-step guidelines for the proposed optimization algo-
rithm are given as follows.

Algorithm 7.3.2

Step 1. Give n, q, s, ω, randomly generate an SL(n, q, s) as the initial design
D0 using the method in Qian et al. (2012), and calculate EU (D0,ω). Set a
non-positive sequence of threshold parameters T1 < · · · < TL = 0. Denote
the iteration number by I under each Tl for l = 1, . . . , L . Set two indexes
l = 1, i = 1.

Step 2. Randomly construct a neighbor of D0 by Algorithm7.3.1, denoted by Dc,
and calculate EU (Dc,ω).

Step 3. If EU (Dc,ω) − EU (D0,ω) � Tl , replace D0 by Dc; else leave D0

unchanged.
Step 4. Update i = i + 1, if i � I , go to Step 2.
Step 5. Update l = l + 1, if l � L , reset i = 1, and go to Step 2; else output

Dbest = D0.

Remark 7.2 Setting the sequence of T1, . . . , TL is a critical step. Several candidate
sequences can be tried, and the one that can bring a quicker convergence and a more
remarkable improvement is adopted.

The design obtained by Algorithm7.3.2 is called a USLHD in terms of the com-
bined uniformity with weight ω, denoted byUSL(n, q, s,ω). It jointly considers the
uniformity of the whole SLHD and that of its slices, so the design points of both the
whole design and each slice are distributed evenly over the experimental region.

The resulting design Dbest may be locally optimal depending on the selection of
initial design. Hence, it is strongly recommended to run the algorithm a number of
times with different initial designs and then select the best one among the result-
ing designs. Moreover, for an SL(n, q, s), determining what a particular value ω0

should be assigned to ω so that theUSL(n, q, s,ω0) is the most effective one among
SL(n, q, s,ω)’s is another important issue. This will be discussed next.

7.3.3 Determination of the Weight ω

From (7.3.3) and (7.3.4), as ω decreases from 1 to 0, EU (D∗) decreases, while
s

√∏s
i=1 EU (D∗

(i)) increases, where D∗
(1), . . . , D

∗
(s) are the s slices of D

∗. For such a

trade-off, it is appropriate to avoid a low EU (D∗). So, Chen et al. (2016) imposed

a lower threshold lu on EU (D∗), meanwhile maximizing s

√∏s
i=1 EU (D∗

(i)), and this

leads to the following multi-objective optimization problem
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max
ω

s

√√√√ s∏
i=1

EU (D∗
(i)), subject to EU (D

∗) � lu . (7.3.5)

To solve (7.3.5), Chen et al. (2016) introduced a tool called “ω-trace”, which plots

EU (D∗) and s

√∏s
i=1 EU (D∗

(i)) as functions of ω. For convenience, Chen et al. (2016)

took a sequence of values {0, 0.05, 0.1, . . . , 1} for ω. As ω decreases from 1 to 0,
EU (D∗) will decrease to the lower threshold lu at some ω0, and at the same time,
s

√∏s
i=1 EU (D∗

(i)) takes the maximum value among all the ω’s at which EU (D∗) is
larger than lu . That is, ω0 is just the value of ω we are looking for. The following is
an illustrative example due to Chen et al. (2016).

Example 7.3.1 Suppose S0 is a randomly generated SL(18, 3, 3), and then we carry
out Algorithm7.3.2 with 21 values of ω from 0 to 1 by 0.05 to search for the desired
design, i.e., ωi = 0.05(i − 1) for i = 1, . . . , 21. In the algorithm, set the threshold
parameters T1, . . . , T11 to be Ti = −10−5 + 10−6(i − 1) for i = 1, . . . , 11. For each
ωi , we obtain a USL(18, 3, 3,ωi ), denoted by Si for i = 1, . . . , 21, and compute

EU (Si ) and 3

√∏3
j=1 EU (Si( j)), where Si( j) for j = 1, 2, 3 are the three slices of Si .

To obtain the U-efficiencies, the CD-values of the corresponding uniform designs
U18(183) andU6(63), which are 0.0506 and 0.1365, respectively, can be found from

the above Web site. Then, EU (Si ) and 3

√∏3
j=1 EU (Si( j)) for i = 1, . . . , 21 can

be computed through (7.3.2). Now, we plot the “ω-trace,” which is presented in
Fig. 7.1. As for the lower threshold of the U-efficiency for the whole design, we take
the upper five percent quartile of the U-efficiencies of 10,000 randomly generated
SL(18, 3, 3)’s, which is 0.7314, i.e., lu = 0.7314. Such a threshold can ensure that
the obtainedUSL(18, 3, 3,ω) has a CD smaller than about 95% randomly generated
SL(18, 3, 3)’s when considering the uniformity of the whole design. From Fig. 7.1,
we find that as ω decreases to 0.45, the lower threshold has been reached, and thus
we can assign ω = 0.45 for this example.

Remark 7.3 Taking the upper five percent quartile of the U-efficiencies of a large
number of randomly generated SL(n, q, s)’s as the lower threshold of the U-
efficiency of the whole design is not the essence, and some other values can also
be taken according to the user’s need, such as the upper two percent quartile, which
can ensure that the obtained USLHD has a CD smaller than about 98% of the ran-
domly generated SL(n, q, s)’s when considering the uniformity of the whole design.

Remark 7.4 From Fig. 7.1, we find that the lower threshold of the U-efficiency of
the whole design is reached coincidentally at ω = ω10 = 0.45, which is just among
the initial values taken for ω, i.e., ω1, . . . ,ω21, in Example7.3.1. In general, Chen
et al. (2016) suggested taking ω to be the smallest value among the initial ωi ’s that
are larger than the one at which the lower bound lu is reached. To obtain a USLHD
for any given size, Chen et al. (2016) suggested 0.5 for ω if we cannot afford so much
computational burden to determine the value of ω. In fact, the case of ω = 0.5 gives
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Fig. 7.1 Plot of “ω-trace,” where the broken line with “◦” corresponds to the U-efficiencies of the
whole designs; the broken line with “∗” corresponds to the geometric means of the U-efficiencies
of the slices

approximately equal importance to both the uniformity of the whole design and that
of its slices, which appears to be a fair choice.

Chen et al. (2016) further provided two simulated examples to illustrate the per-
formance of USLHDswhen used for building Gaussian process models for computer
experiments with both quantitative and qualitative factors. The simulations indicated
that USLHDs with better uniformity in terms of whole design tend to have better
performance when the real response functions have big differences from each other,
and USLHDs with better uniformity in terms of slices probably result in smaller
root mean square prediction errors (RMSPEs) when the real response functions are
similar to each other. Thus, Chen et al. (2016) suggested adopting ω = 0.5 for the
sake of robust application since the real response functions are usually unknown.

7.4 Uniformity Under Errors in the Level Values

When the experiments are carried out in practice, the actually performed factor-level
values may be accompanied by errors; see, for example, Box (1963) and Draper and
Beggs (1971). Consider the design U (6; 65) in Table7.2, obtainable from the Web
site http://www.math.hkbu.edu.hk/UniformDesign/ for uniform designs. The WD2-
value of the design is 0.2030. When the factor level values are contaminated with
errors, the actually performed factor levels become u′

ik = uik + εik , with εik being
the random error. Consider the bounded support uniform distribution for the errors,

http://www.math.hkbu.edu.hk/UniformDesign/
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Table 7.2 A U (6; 65) design Run 1 2 3 4 5

1 3 1 6 5 4

2 5 2 2 2 5

3 6 5 3 6 3

4 4 4 5 1 1

5 2 6 4 3 6

6 1 3 1 4 2

Table 7.3 A U (6; 65) design
under errors of
Unif(−1/3, 1/3)

Run 1 2 3 4 5

1 2.6644 0.5613 5.8923 4.7964 3.4486

2 4.9332 1.5265 1.7120 1.7475 4.9865

3 5.8811 4.5608 2.5803 5.8632 2.5143

4 3.7633 3.6894 4.8018 0.9712 0.5016

5 1.8786 5.8181 3.6977 2.6817 5.9172

6 0.7735 2.5395 0.6299 3.9201 1.8249

namely εik ∼ i.i.d. Unif(−τ , τ ). Then, the actually performed design with τ = 1/3
may be as in Table7.3, the WD2-value of which is 0.2182, as compared to 0.2030 of
the original WD2.

Yang et al. (2010) studied the design uniformity when the factor-level values are
contaminated with random errors. They first considered the WD-values for designs
with errors in all factors and then investigated the cases in which errors only occur in
some factors. Finally, they applied the results to the construction of uniform designs.

For any U (n; ns) design U , when the factor levels are contaminated with uni-
formly distributed errors, it becomes Z = U + ε, where ε = (εik) with εik ∼
i.i.d. Unif(−τ , τ ). In this case, the value of WD2 for the resulting design Z becomes

WD2(Z) = −
(
4

3

)s

+ 1

n2

n∑
i=1

n∑
j=1

s∏
k=1

(
3

2
− |xik − x jk + δik − δ jk | + |xik − x jk + δik − δ jk |2

)
,

where δik(= εik/n) ∼ i.i.d. Unif(−a, a) with a = τ/n. Let BZ (n, s, a) =
E(WD2(Z)−WD2(U)) represent the expected difference between the WD2-values
for design Z and for design U . Yang et al. (2010) had the following result.

Theorem 7.4.1 For a U (n; ns) design U , with a < 1/(2n), we have

(i)
n − 1

n

(
5

4

)s s∑
k=1

(
s

k

) (
8

15
a2

)k

< BZ (n, s, a) <
n − 1

n

(
3

2

)s s∑
k=1

(
s

k

) (
4

9
a2

)k

.

(ii) For any fixed n and s, BZ (n, s, a) is an increasing function of a.
(iii) For any fixed n and a, BZ (n, s, a) is an increasing function of s.

Theorem7.4.1 shows how the discrepancies of designs with and without errors in
their level values will differ. It is shown that designs with errors are on average less
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Fig. 7.2 Plots of (a) BZ against τ and (b) RR against τ for the design in Table7.2

uniform than those without any error. Furthermore, the larger the error, the larger the
expectedWDvalue for the designwill be. For example, Fig. 7.2 displays the result for
the uniform design in Table7.2. The middle curve of Fig. 7.2a shows the relationship
between the values of BZ (n, s, a) and τ . Here, Yang et al. (2010) took themean value
of 100 replications for each τ as BZ (n, s, a) in the simulation. The upper and lower
curves are the upper and lower bounds for BZ (n, s, a), respectively. To illustrate
the magnitude of BZ (n, s, a), Yang et al. (2010) defined the relative ratio (RR) of
this expected difference to WD2(U) as RR = BZ (n, s, a)/WD2(U). A larger RR
value implies that the uniformity discrepancy changesmore significantly. Figure7.2b
shows how RR varies, as τ increases. It is shown that the uniformity discrepancy
is robust if the errors are relatively small (e.g., τ < 0.2). Here, robustness refers to
a situation when the expected change of discrepancies between the original design
(without error) and the contaminated design (with errors) is rather insignificant.

Yang et al. (2010) further generalized the results to the case when errors only
occur in some but not all factors. Without loss of generality, they assumed the first
s1-factors have errors in their levels and the true design matrix is Y = U + ε, where
ε = (εik) with εik ∼ i.i.d. Unif(−τ , τ ) for k � s1 and εik = 0 for k > s1. The value
of WD2 for design Y then becomes

WD2(Y) = −
(
4

3

)s

+ 1

n2

n∑
i=1

n∑
j=1

[
s∏

k=s1+1

(
3

2
− |xik − x jk | + |xik − x jk |2

)]

·
[

s1∏
k=1

(
3

2
− |xik − x jk + δik − δ jk | + |xik − x jk + δik − δ jk |2

)]
,

where δik = εik/qk for k = 1, . . . , s1. And they had the following theorem.
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Theorem 7.4.2 For a U (n; ns) design U , let BY (n, s, a, s1) = E(WD2(Y) −
WD2(U)), then

(i)
n − 1

n

(
5

4

)s s1∑
k=1

(
s1
k

)(
8

15
a2

)k

< BY (n, s, a, s1) <
n − 1

n

(
3

2

)s s1∑
k=1

(
s1
k

)

(
4

9
a2

)k

;

(ii) For any fixed n, s and s1, BY (n, s, a, s1) will increase as the value a increases.
(iii) For any fixed n, s and a, BY (n, s, a, s1)will increase as s1, the number of factors

with errors, increases.

The theorem shows that the fewer factors with errors and/or the smaller the errors
are, the better the WD uniformity is. The results in Theorems7.4.1 and 7.4.2 indi-
cate that if the errors are relatively small, the traditional uniform designs are rather
robust. Also, the results can be used in the construction of uniform designs. There
are two conventional frameworks for construction of uniform designs on [0, 1]s . The
traditional one, called lattice sampling (Patterson 1954), is to select experimental
points from the centers of grids, namely xik = (uik − 1/2)/n, for 1 � i � n and
1 � k � s. The other one, called Latin hypercube sampling (McKay et al. 1979), is
to select experimental points randomly within the grids, namely x̃ik = (uik − εik)/n,
where εik ∼ i.i.d. Unif(0, 1) for 1 � i � n and 1 � k � s. These two frameworks
have been generalized to orthogonal arrays for space fillings by Owen (1992b). Fang
et al. (2002) proved that lattice sampling minimizes the WD discrepancy on [0, 1]
for one dimension (s = 1). Theorem7.4.1(ii) extends their result to indicate that this
is also true in expectation for higher dimensions (s � 2).

Note that, the above results are based on the WD as the measure of uniformity. In
fact, a similar study has been applied to other discrepancies, including the centered
L2-discrepancy. The results are similar to Theorems7.4.1 and 7.4.2.

Though only uniform random errors are considered, it can be shown that the main
results of Theorems7.4.1 and 7.4.2 also hold for other random error structures, such
as normal and beta distributions. This can be theoretically derived for the normal
distribution and via simulation for the beta distribution. For the normal distribution,
because of its unbounded support, it ismore appropriate to adopt the truncated normal
random errors for which the truncation points are chosen in a way to ensure that all
design points will stay within the unit cube.

Exercises

7.1

Consider the resolvable incomplete block design given in Example 3.6.2.

(1) Write down its incidence matrix Z = (z ji )6×11.
(2) From this Z, what relationships among the z ji , ri , and t j for i = 1, . . . , 6, j =

1, . . . , 11 can you find?
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(3) Let nlhi j be the number of (l, h)-pairs in the two rows zi and z j of Z, then what
relationships among nlhi j ’s can you find?

(4) Generalize the findings in (2) and (3) to a general RIB(n, s, r, t, Z).

7.2

Show that the expression in (7.1.1) also holds for an RIB(n, s, r, t, Z). Then based
on this expression, prove that (7.1.3) is true.

7.3

Let δi j be the number of coincidences between the i th and j th runs of design U ∈
U(n; q1 × · · · × qm), and express the E( fNOD ) in (7.2.1) in terms of δi j ’s.

7.4

Suppose A, B, and C are three SL(12, 2, 2)’s as shown below:

A =
(
11 8 1 6 4 10 7 12 3 2 9 5
1 3 11 7 9 6 4 2 8 10 12 5

)T

,

B =
(

9 1 5 8 12 4 2 3 10 11 7 6
10 4 6 8 11 2 9 12 5 1 7 3

)T

and

C =
(

1 7 12 4 9 6 5 10 2 8 3 11
10 12 7 1 3 6 5 4 9 11 2 8

)T

.

(1) Calculate the CD-values of A, B, and C .
(2) Calculate the combined CD-values of A, B, and C in (7.3.1) by setting ξ = 0.5.
(3) Give the scatter plots of A, B, and C .
(4) From (1), (2), and (3), what can you find on the designs’ whole uniformity,

combined uniformity, and the relationship between the uniformity of a whole
SLHD and that of its slices?

7.5

Consider the two designs given in Tables7.2 and 7.3.

(1) Which design is the better one in terms of the CD-value?
(2) Set τ = 0.1, 0.2, 0.3, 0.4, for each τ , generate 50U (6; 65) designs under errors

of Unif(−τ , τ ), and compute themean of the CD-values of these 50 replications.
What can you find based on these mean values in terms of different τ and the
CD-value of the U (6; 65) in Table7.2?
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Chapter 8
Uniform Design for Experiments
with Mixtures

This chapter introduces uniform design and modeling for experiments with
mixtures and for experiments with restricted mixtures. Firstly, some designs for
experiments with mixtures including the Scheffé simplex-lattice, simplex-centroid
designs, and axial designs are introduced. Secondly, the uniform design of exper-
iments with mixtures and the corresponding uniformity criteria are introduced.
Finally, various modeling techniques for designs with mixtures are given.

8.1 Introduction to Design with Mixture

Many products are formed by mixing several ingredients together, for example, the
building construction concrete consists of sand, water, and one or more types of
cement. The manufacturer or experimenter who is responsible for mixing the ingre-
dients may be interesting in the hardness or compression strength of the concrete,
where the hardness is a function of the percentages of cement, sand, and water in the
mix. Designs for deciding how tomix the ingredients are called experimental designs
with mixtures that have played an important role in various fields such as chemical
engineering, rubber industry, material, and pharmaceutical engineering. Here, we
rewrite Example 1.1.6 as follows.

Example 8.1.1 There are 11 components in a coffee bread: flour, water, sugar, veg-
etable shortening, flaked coconut, salt, yeast, emulsifier, calcium propionate, coffee
powder, and liquid flavor. Choosing a suitable percentage for each ingredient to let
the bread to have good taste needs a design of experiments with mixtures on T 11

which is defined in (8.1.1).

Assume the number of factors be s, and the ith ingredient be xi, i = 1, · · · , s.
Then, the experimental domain is the simplex

© Springer Nature Singapore Pte Ltd. and Science Press 2018
K.-T. Fang et al., Theory and Application of Uniform
Experimental Designs, Lecture Notes in Statistics 221,
https://doi.org/10.1007/978-981-13-2041-5_8
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Ts = {(x1, . . . , xs) : xj � 0, j = 1, . . . , s, x1 + · · · + xs = 1}. (8.1.1)

A design of n runs for mixtures of s ingredients is a set of n points in the domain
Ts. Due to the constraint x1 + · · · + xs = 1, to find a design for experiments with
mixtures is quite different from the factorial design where there is no constraints on
the factors.

However, in most experiments with mixtures, some constraints have to be placed
on the ingredients. For example, in making a coffee bread in Example 8.1.1, water
and flour should be the major ingredients while sugar, salt, and others have a small
percentage. The most popular constraints are 0 � ai � xi � bi � 1, i = 1, . . . , s, or
0 � a � x � b � 1 where a = (a1, . . . , as), x = (x1, . . . , xs), b = (b1, . . . , bs) and
0 and 1 are vectors of 0’s and 1’s, respectively. Then, the experimental domain
becomes

Ts(a, b) =
{
x : 0 � a � x � b � 1,

s∑
i=1

xi = 1

}
, (8.1.2)

which is a partial region of the entire simplex factor space. More general (multiple-
component) constraints are of the form

dk �
s∑

i=1

akixi � ek , k = 1, . . . ,m. (8.1.3)

The designs on Ts(a, b) are called as experimental designs with restricted mixtures,
which will be discussed in Sect. 8.2.3.

The following problem demonstrates the need of a space-filling design in the
domain Ts(a, b) and had been studied by Piepel et al. (1993), Piepel et al. (2002),
and Borkowski and Piepel (2009).

Example 8.1.2 TheWaste Treatment and Immobilization Plant (WTP) is being con-
structed on the Hanford site near Richland,Washington. TheWTPwill produce glass
waste forms to immobilize high-level waste (HLW) and low-activity waste (LAW)
fractions of nuclear waste currently in large, underground storage tanks. The HLW
and LAW glass must meet requirements associated with waste loading, chemical
durability, processing, and other properties. The strategy to meet the requirements
involves generating an experimental design, making the experimental design glasses
in the laboratory, measuring the glass properties of interest, and developing property-
composition models to use before and during WTP operations.

Prior to generating an experimental design, glass scientists want to (i) identify the
components that may significantly affect glass properties of interest and (ii) define
the experimental glass composition region of interest (Table8.1). A region is selected
to include glasses that are acceptable as well as somewhat unacceptable with respect
to various requirements. Then, the experimental data collected at design points in
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the region provide for developing models that can adequately predict whether glass
properties will be acceptable or unacceptable.

In this chapter, we will discuss both the designs with mixtures on the entire
simplex factor space and the designs of experimentswith restrictedmixtures. The first
design with mixtures suggested by Scheffé (1958) is the simplex-lattice design based
on a quadratic regression model. Scheffé (1963) proposed the so-called simplex-
centroid design. A lot of designs have been proposed in the past. Cornell (2002,
2011) and references therein gave a comprehensive review on designs of experiments
with mixtures. Chan (2000) gave a review on optimal designs for experiments with
mixtures.

8.1.1 Some Types of Designs with Mixtures

In this subsection, we introduce some types of designs with mixtures such as
the simplex-lattice design, simplex-centroid design, axial design, and Scheffé type
design.

(a) Simplex-Lattice Design

To represent the response surface on the entire simplex region, a natural choice for
a design is to spread the design points evenly on the whole simplex factor space.

Table 8.1 Components and
their lower and upper limits in
Example 8.1.2

No. Component Lower limit (ai) Upper limit (bi)

1 SiO2 0.38 0.53

2 B2O3 0.05 0.14

3 Na2O 0.04 0.15

4 Fe2O3 0.08 0.14

5 ZrO2 0.00 0.06

6 MnO 0.00 0.05

7 SrO 0.00 0.05

8 Al2O3 0.04 0.085

9 Li2O 0.02 0.06

10 CdO 0.0005 0.015

11 Spike 0.0015 0.015

12 NiO 0.001 0.01

13 Tl2O3 0.0002 0.002

14 Sb2O3 0.0002 0.002

15 SeO2 0.0002 0.002

16 Other 0.042 0.042



266 8 Uniform Design for Experiments with Mixtures

Suppose that the experiments with mixtures has s components. Letm be a positive
integer and suppose that each component takes (m + 1) equally spaced places from
0 to 1, i.e.,

xi = 0, 1/m, 2/m, . . . , 1, for i = 1, . . . , s. (8.1.4)

A s-ingredient simplex-lattice is denoted by {s,m} which has
(s+m−1

m

)
design

points, i.e., it consists of all possible combinations of the components under
the constraint x1 + · · · + xs = 1, and each component is an element from the set
{0, 1/m, 2/m, . . . , 1}. For example, when s = 3, the simplex-lattice {s,m} is as fol-
lows:

m = 1 : 3 design points (1, 0, 0), (0, 1, 0), (0, 0, 1);
m = 2 : 6 design points (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/2, 1/2, 0), (1/2, 0, 1/2), (0,

1/2, 1/2);
m = 3 : 10 design points (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/3, 2/3, 0), (1/3, 0, 2/3), (0,

1/3, 2/3), (2/3, 1/3, 0), (2/3, 0, 1/3), (0, 2/3, 1/3) (1/3, 1/3, 1/3).

The {3, 2} and {3, 3} simplex-lattice designs are shown in Fig. 8.1. It can be seen that
many points locate at the boundary of the simplex factor space.

(b) Simplex-Centroid Design

In an s-component simplex-centroid design, the design points form as follows:

• s points correspond to the permutations of (1, 0, 0, . . . , 0),
• (s2) points correspond to the permutations of (1/2, 1/2, 0, . . . , 0),
• (s3) points correspond to the permutations of (1/3, 1/3, 1/3, 0, . . . , 0),
• . . . ,

• the centroid point (1/s, . . . , 1/s).

Then, the total number of design points is 2s − 1. For example, when s = 3, the
design points are (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2,
1/2), and (1/3, 1/3, 1/3). Comparing the {3, 2} simplex-lattice design in Fig. 8.1a, the

(a) {3, 2} design (b) {3, 3} design

Fig. 8.1 {3, 2} and {3, 3} simplex-lattice designs
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Fig. 8.2 Axial design on T 3

simplex-centroid design has one more design point, i.e., the centroid point. It can be
seen that most of the design points of simplex-centroid design are positioned on the
boundaries (vertices, edges, faces, etc.) of the simplex factor space.

However, there are some weaknesses of the simplex-lattice design and simplex-
centroid design. For example, these designs do not provide many choices of designs
for the user and there are so many points at the boundary of Ts. The experiment
is often impossible for many chemical experiments if a component has zero value,
and the boundary experimental points are meaningless in that case. To overcome
such disadvantage, the axial design may be a suitable choice. The axial design is a
type of designs with mixtures whose design points are located on the inner region of
simplex factor space. Another natural way is to keep the pattern of original design
and to contract the boundary points toward the centroid of Ts such as the Scheffé
type designs proposed by Fang and Wang (1994).

(c) Axial Design

The line segment joining a vertex of the simplex Ts with its centroid (1/s, . . . , 1/s) is
called an axis. The distance between the centroid point and each vertex is

√
(s − 1)/s.

Let d be a positive number such that 0 < d <
√

(s − 1)/s. The experimental points
of the axial design are s points on the s axes such that each point to the centroid has
the same distance d . Then each point of axial design locates at the inner region of
the simplex factor space. Figure 8.2 shows one axial design with s = 3. Different d
obtains different axial design, and the optimal d can be determined by some criteria
which will be discussed in the next section.

(d) Scheffé Type Design

Fang and Wang (1994) proposed the contraction method for construction of Scheffé
type designs. The key idea is to keep the pattern of original design and to contract
the boundary points toward the centroid of Ts.

We now illustrate the method by an example of simplex-lattice design {3, 3}.
Suppose that the original design is shown by Fig. 8.1b. Let a be a number which will
be determined later. Then we move the three vertices as follows:
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Fig. 8.3 Scheffé type design

(1, 0, 0) ⇒
(
1 − 1

a
,
1

2a
,
1

2a

)
,

(0, 1, 0) ⇒
( 1
2a

, 1 − 1

a
,
1

2a

)
,

(0, 0, 1) ⇒
( 1
2a

,
1

2a
, 1 − 1

a

)
,

and the other boundary and interior points can be easily computed; see Fig. 8.3. One
wishes to find a suitable number a under a certain criterion.

8.1.2 Criteria for Designs with Mixtures

In axial design andScheffé type design, one needs to determine the optimal parameter.
In this subsection, some criteria under distance and uniformity are given.

Fang and Wang (1994) proposed the so-called F-discrepancy, but it is not easy to
compute. Therefore, they suggested to use themean Square Distance (MSD) (MSD)
criterion for assessing the quality of the designs. Recently, Borkowski and Piepel
(2009) considered the root mean square distance (RMSD), the average distance
(AD), and the maximum Distance (MD) (MD) as criteria. Let X be an experimental
region. It can be Ts defined in (8.1.1) or Ts(a, b) defined in (8.1.2), or others. Let
P = {x1, . . . , xn} be a design on X and the random vector x follow the uniform
distribution on X . The above criteria are defined as follows:

Mean square distance and root mean square distance:

MSD(P) = E[d2(x,P)], (8.1.5)

where d(x,P) = min1� j�n d(x, xj), and RMSD(P) = √
MSD(P).

Average distance:

AD(P) = E[d(x,P)]. (8.1.6)
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Maximum distance:

MD(P) = max
x

d(x,P). (8.1.7)

Under these criteria, one may minimize the value to find a best design. When
these criteria cannot be easily computed, we can use a Monte Carlo simulation to
find an approximated value. Let z1, . . . , zN be a random sample of size N from the
uniform distribution on X . Then we can use

MSD(P) = 1

N

N∑
k=1

d2(zk ,P),

AD(P) = 1

N

N∑
k=1

d(zk ,P),

MD(P) = max
1�k�N

d(zk ,P).

to estimate the above criteria. It is not easy to generate the random sample on Ts

directly. Fang and Wang (1994) applied contraction method to the simplex-lattice
{3, 3} and the simplex-centroid design with s = 3 for the construction of the Scheffé
type designs. Under the MSD criterion, the best a-value in the contraction method
defined in the Sect. 8.1.1 can be obtained. Their results are given in Table 8.2, which
shows that the contraction method can decrease the MSD-value of these designs.
Recently, Prescott (2008) gave another way to construct Scheffé type designs by
placing lower and upper bounds on some or all of the ingredients, i.e., ai � xi �
bi, i = 1, . . . , s. We omit the detailed procedure here.

One of the disadvantages of Scheffé and Scheffé type designs is that the numbers
of experimental points of the designs are restricted, i.e., the number of experimental
points is of the type

(s+m−1
m

)
in the simplex-lattice design, and of the form 2s − 1 in

the simplex-centroid design. In most chemical or industrial experiments, wemeet the
requirement that the number of experiments is considerably flexible, and therefore
Wang and Fang (1990) proposed a so-called uniformdesign for experiments withmix-
tures (UDEM) or simply called as uniform mixture design (UMD) by Borkowski and
Piepel (2009), to seek experimental points to be uniformly scattered in the domainTs.

Table 8.2 MSD for Scheffé and Scheffé type designs

Design MSD of
Scheffé design

MSD of Scheffé
type design

a-value

Simplex-lattice {3, 3} 0.03087 0.01568 4.836

Simplex-centroid 0.05553 0.02296 3.761
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Wang and Fang (1990) proposed the transformation method to generate random
sample from the uniform distribution on Ts. Let y = (y1, . . . , ys−1) follow the uni-
form distribution on the (s − 1)-dimensional unit hypercube [0, 1]s−1. Let

⎧⎪⎨
⎪⎩
zi =
(
1 − y

1
s−i

i

)∏i−1
j=1 y

1
s−j

j , i = 1, . . . , s − 1,

zs =∏s−1
j=1 y

1
s−j

j .

(8.1.8)

Then z = (z1, . . . , zs) follows the uniform distribution on Ts. Such transformation
method can be used to construct uniform mixture designs on Ts, i.e., one firstly
constructs the uniform design on [0, 1]s−1 and then obtains the n-point design with
mixtures on Ts by (8.1.8). For measuring uniformity of the designs with mixtures,
the corresponding discrepancy may be given. The discrepancies discussed in Chap. 2
cannot be used directly for designs with mixtures. Section 8.2 will discuss the uni-
formity criteria and the construction method of uniform designs of experiments with
mixtures.

8.2 Uniform Designs of Experiments with Mixtures

In this section, an introduction to the methodology of the uniform design of exper-
iments with mixtures without and with constraints is given. For simplicity, we may
call uniform designs of experiments with mixtures by uniform mixture designs.

8.2.1 Discrepancy for Designs with Mixtures

For constructing uniform design of experiments with mixtures, the uniformity cri-
terion should be given first. There are two types of uniformity criteria, indirect and
direct methods.

One indirect method for measuring the uniformity of designs with mixtures is to
measure the uniformity of the corresponding design on the hypercube Cs−1 by the
transformation (8.1.8). Assume P = {x1, . . . , xn} be a n-point set on the simplex
Ts, and P0 = { y1, . . . , yn} be the corresponding point set on Cs−1 by the inverse
transformation of (8.1.8). Then we define the discrepancy of P be equal to D(P0),
where D(·) can be chosen as any type of discrepancy in Chap.2. Then, one can
choose a uniform design P0 on Cs−1 and obtain the design P by the transformation
(8.1.8). However, the indirect method may not measure the uniformity of designs
with mixtures accurately, i.e., the design P on Ts may be not a uniform design when
P0 is the uniform design on Cs−1.

Ning et al. (2011b) proposed another uniformity criterion,DM2-discrepancy , for
measuring the uniformity of designs with mixtures. TheDM2-discrepancy is defined
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Fig. 8.4 Neighborhood
RM (x) of x in space T 3

RM (x)

x

directly on the region Ts. This discrepancy can be considered as an extension of
L2-star discrepancy from the hypercube to simplex.

Let P = {x1, xs, . . . , xn} be the n-point set on Ts. Denote the mixture design
matrix of P with n runs and s factors be as follows:

P =

⎡
⎢⎢⎢⎢⎣
x11 x12 · · · · · · x1s
x21 x22 · · · · · · x2s
...

...
...

...
...

xn1 xn2 · · · · · · xns

⎤
⎥⎥⎥⎥⎦ = (z1, . . . , zs), (8.2.1)

where zi, i = 1, 2, . . . , s, is the ith column of P . The DM2-discrepancy for designs
with mixtures is defined as following:

DM2(P) =
[∫

Ts

∣∣∣∣Vol(RM (x))
Vol(Ts)

− N (P,RM (x))
n

∣∣∣∣
2

dx

]1/2
, (8.2.2)

where Vol(A) is the volume of the region A, N (P,RM (x)) is the number of points
of P falling in RM (x), and the region RM (x) for any x ∈ Ts is defined as follows:

RM (x) = {t = (t1, . . . , ts) : t ∈ Tsand ti ≤ xi, i = 2, 3, . . . , s}. (8.2.3)

When s = 3, RM (x) is showed in Fig. 8.4.
For obtaining the computational formulas of DM2-discrepancy, the tool of repro-

ducing kernel Hilbert space defined in Chap. 2 can also be used. From the expression
of kernel function (2.4.16), we have

K(z, t) =
∫
Ts

1RM (x)(z)1RM (x)(t)dx

=
√
s

(s − 1)!

[
max

(
1 −

s∑
i=2

max(zi, ti), 0

)]s−1

. (8.2.4)
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The detailed proof of (8.2.4) can be found in the Appendix A of Ning et al. (2011b).
Denote Fu(t) be the uniform distribution on Ts. The density function of uniform
distribution on Ts be

fu(t) = F ′
u(t) =

{
1/Vol(Ts), t ∈ Ts,

0, otherwise.

Substituting the density function and Eq. (8.2.4) into (2.4.15), we can get a compu-
tational formula of DM2-discrepancy as follows:

DM2(P) =
{∫

Ts×Ts

K(z, t)dFu(z)dFu(t)

−2

n

n∑
i=1

∫
Ts

K(zi, t)dFu(t) + 1

n2

n∑
i=1,k=1

K(zi, tk)

⎫⎬
⎭

1/2

=
( √

s

(s − 1)!
) 1

2

⎧⎨
⎩Cn,s − 2(s − 1)!

n

n∑
i=1

∑
(τ2,...,τs)∈{0,1}s−1

aτ · (xi1)
τ1 ·

s∏
j=2

x
τj
ij

+ 1

n2

n∑
i=1,k=1

⎛
⎝max

⎛
⎝1 −

s∑
j=2

max(xij, xkj), 0

⎞
⎠
⎞
⎠

s−1⎫⎬
⎭

1/2

, (8.2.5)

where {0, 1}s−1 = {(t1, . . . , ts−1) : ti = 0 or 1}, Cn,s = ((s−1)!)32s−1

(2(s−1))!
s−2∏
k=0

(2s+k−1)
,

aτ = (s−1)!
(2(s−1)−∑ τi)! and τ1 = 2(s − 1) −∑s

2 τj.
The proof of (8.2.5) was given in Appendix B of Ning et al. (2011b). Using the

formula (8.2.5), we can calculate the discrepancy value for any design with mixtures.
And the explicit computational formula of the discrepancy is very useful for searching
uniform mixture designs.

From the formula (8.2.5), it can be seen that theDM2-discrepancy has the follow-
ing property.

• For any mixture design matrix P in (8.2.1), the value of DM2 is invariant under
the row permutations.

• For any mixture design matrix P , the value of DM2 is almost invariant about col-
umn permutations. For any permutation {i2, i3, . . . , is} of {2, 3, . . . , s}, denote the
column permuted mixture design matrix P ′ = (z1, zi2 , . . . , zis), then DM2(P) =
DM2(P ′).

The above property of DM2-discrepancy shows that it does not lose any infor-
mation for reordering the experimental points under this discrepancy. This property
is useful in the practice since randomization is applied to the allocation of units to
treatments.
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8.2.2 Construction Methods for Uniform Mixture Design

A uniform design of experiments with s-ingredient mixtures is a set of points that are
uniformly scattered on the domain Ts. The transformation method based on (8.1.8)
for construction of such uniform designs is as following steps:

Algorithm 8.2.1 (Transformation method for uniform mixture designs)

Step 1. Choose a uniform design Un(ns−1), U = (uki).
Step 2. Calculate cki = (uki − 0.5)/n, then

C = {ck = (ck1, . . . , ck,s−1), k = 1, . . . , n}

is a UD on Cs−1.
Step 3. Calculate

⎧⎪⎨
⎪⎩
xki =
(
1 − c

1
s−i

ki

)∏i−1
j=1 c

1
s−j

kj , j = 1, . . . , s − 1,

xks =∏s−1
j=1 c

1
s−j

kj , k = 1, . . . , n.
(8.2.6)

Then P = {xk = (xk1, . . . , xks), k = 1, . . . , n} is a uniform design on Ts.

In Step 1 of Algorithm 8.2.1, the uniform design on the (s − 1)-dimensional
uniform design can be obtained by the construction methods in Chaps. 3 and 4, such
as the good lattice pointmethodor threshold-accepting algorithm.The transformation
method is an indirect method for construction of uniformmixture designs. Usually, it
can obtain designs with good uniformity.More important, the transformationmethod
is simple to use.

Example 8.2.1 Give a UMD for n = 11, s = 3.
The first two columns of Table 8.3 forms a U11(112), U1. The corresponding

C = (cki), where cki = (Uki − 0.5)/11 is a UD on [0, 1]2. Formula (8.2.6) for s = 3
has a simpler form as follows

⎧⎨
⎩
xk1 = 1 − √

ck1,
xk2 = √

ck1(1 − ck2),
xk3 = √

ck1ck2,
k = 1, . . . , n. (8.2.7)

The corresponding design with mixture P1 on T 3 is listed in the next three columns
of Table 8.3 and their plot is given by Fig. 8.5a. The material of this example is from
Fang and Ma (2001).

Let C1 and C2 be two designs on Cs−1, and P1 and P2 be the two designs with
mixture on Ts by the transformation method, respectively. Since the transformation
method is an indirect method, it may occur some unreasonable phenomena. For
example, although the designs C1 is more uniform than C2 on Cs−1, the P2 is more
uniform than P1 on Ts.
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(a) design P1 (b) design P2

Fig. 8.5 Two designs with mixtures on T 3

Example 8.2.2 (Example8.2.1Continuity) Consider the two designs P1 and P2 in
Table 8.3. The corresponding C1 and C2 on C2, P1 and P2 on T 3 are also shown.
The design points of P2 are plotted in Fig. 8.5b. It can be calculated that the mixture
discrepancies of C1 and C2 are 0.0692 and 0.0695, respectively. Then, C1 is more
uniform than C2. However, the DM2-discrepancies of P1 and P2, respectively, are
0.0486 and 0.0453, i.e., P2 is more uniform than P1 under DM2-discrepancy. From
Fig. 8.5, it also can be seen that P2 is more uniform in the intuitive view.

From Example 8.2.2, the transformation method may be not the best choice for
searching a uniformmixture design. One can consider some direct methods to seek a
uniformmixture design. Usually, we can employ some stochastic optimizationmeth-
ods such as the simulated annealing algorithm and the threshold-accepting algorithm
under some uniformity criterion, such as the DM2-discrepancy.

Ning et al. (2011a) considered a direct approach to construct uniform design
for mixture experiments. The approach is based on the numerical method NTLBG
algorithm and can be applied to search uniform designs on the simplex or other
experimental region. The NTLBG algorithm was proposed by Fang et al. (1994),
which combined the number-theoretical method and the LBG algorithm proposed
by Linde et al. (1980) to generate the representative points for elliptically contoured
distributions. The detailed procedure of the NTLBG algorithm for searching n-run
uniform mixture designs on Ts is shown as follows.

Algorithm 8.2.2 (NTLBG algorithm for uniform mixture designs)

Step 1. For given the number of runs, n and the number of factors, s, choose a pos-
itive integerN >> n. Generate aN -run uniform designPN = {t1, . . . , tN }
by the transformation method in Algorithm 8.2.1 as a training sample on
Ts.

Step 2. Randomly generate n points on the experimental region Ts and take it as the
initial designP0 = {x1, . . . , xn}. Calculate the uniformity criterionD(P0).

Step 3. Partition the training sample P into n subsets, i.e.,
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Pxi =
{
tk : d(tk , xi) = min

xj∈P0

d(tk , xj)
}

for each xi ∈ P0, i = 1, . . . , n.
Step 4. Calculate the sample mean of Pxi

x̄i = 1

Ni

∑
tj∈Pxi

tj,

where Ni is the cardinal number of Pxi . Take Pnew = {x̄1, . . . , x̄s} as the
new design and calculate the uniformity criteria D(Pnew).

Step 5. If D(P0) − D(Pnew) > α > 0 (α is given small number in advance), set
P0 = Pnew and repeat Steps 3–5. Otherwise, stop the algorithm and take
Pnew as the finial design.

Some explanations of the Algorithm 8.2.2 are shown as follows. In the Step 1, the
number N should be much larger than n. In the Step 2, one can also generate a n-run
set by Algorithm 8.2.1 as the initial design. The uniform criterion can be chosen as
theDM2-discrepancy,mean square distance, average distance, ormaximumdistance.
In the Step 3, the partition {Px, x ∈ P0} have two properties: (1)⋃x∈P0

Px = Ts. (2)
Pxi

⋂
Pxj = ∅ for any i �= j. Ning et al. (2011a) showed that the NTLBG algorithm

is powerful to construct uniform designs with mixture.

8.2.3 Uniform Design with Restricted Mixtures

In Example 8.1.1, there are 11 components in a coffee bread, but water and flour
should be the major ingredients while sugar, salt, and others have a small percentage.
More constraints are needed, for example, 0 � ai � xi � b1 � 1, i = 1, . . . , s, or
0 � a � x � b � 1where a = (a1, . . . , as), b = (b1, . . . , bs) and 0 and 1 are vectors
of 0’s and 1’s, respectively. The experimental domain becomes Ts(a, b) denoted in
(8.1.2). It can be easily shown that the domain Ts(a, b) is not empty if and only if

a ≡
n∑

i=1

ai < 1 <

n∑
i=1

bi ≡ b. (8.2.8)

The above condition may involve some superfluous constraints that can be removed
by the following operation:

ai := max(ai, bi + 1 − b), bi := min(bi, ai + 1 − a). (8.2.9)

Then, for the ith ingredient, its lower bound and upper bound are the updated ai and
bi by (8.2.9), respectively.
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In this subsection, we consider the construction method for uniform design with
restricted mixtures on Ts(a, b). Wang and Fang (1996) applied the transformation
method for the construction of uniform designs on Ts(a, b), but their method cannot
obtain a good design, especially when some di = bi − ai are very small. Lately, in
order to overcome the disadvantage of the transformation method, Fang and Yang
(2000) employed the conditional method to establish an alternative method. More
discussions of conditional method can be seen in Johnson (1988).

Let x = (X1, . . . ,Xs) follow the uniform distribution on Ts(a, b). The conditional
method is based on the facts:

(a) The marginal distribution of Xi can be analytically expressed in a simple form;
(b) The conditional distribution of X1, . . . ,Xs−1 for given Xs = x∗

s is the uniform
distribution on Ts(a∗, b∗), where a∗ and b∗ can be easily calculated.

Let us introduce some key formulas for the above (a) and (b). Let F(x1, . . . , xs)
be a multivariate distribution function of (X1, . . . ,Xs). The conditional method in
Monte Carlo methods for generating a sample from this distribution is based on the
following formula:

F(x1, . . . , xs) = Fs(xs)Fs−1(xs−1|xs) · · ·F1(x1|x2, . . . , xs),

where Fs(xs) is the marginal distribution of Xs, Fs−1(xs−1|xs) is the conditional dis-
tribution of Xs−1 given Xs = xs, Fs−2(xs−2|xs−1, xs) is the conditional distribution of
Xs−2 given Xs−1 = xs−1,Xs = xs, and so on. The conditional method for generating
a sample from F(x1, . . . , xs) follows the following steps:

Step 1. Generating a sample, xs, from the population distribution Fs(xs).
Step 2. Generating a sample, xs−1, from the conditional distribution Fs−1(xs−1|xs),

where xs is the sample generated in Step 1.
Step 3. Generating a sample, xs−k , from the conditional distribution Fs−k(xs−k |xs,

. . . ,xs−k+1), where xs, . . . , xs−k+1 are obtained in the previous steps, k =
2, . . . , s − 1.

Step 4. Deliver x = (x1, . . . , xs).

Obviously, implementing the conditional method requires
(1) There is an analytic formula of F1,F2, . . . ,Fs.
(2) It is easy to generate a sample from Fs(xs), Fs−1(xs−1|xs), . . . ,

F1(x1|x2, . . . , xs).
Applying the conditional method to generate a sample from the uniform distribu-

tion on the simplex Ts is based on the following results:
(A) The marginal distribution of Xs is given by

Fs(x) =
∫ x

0
(s − 1)(1 − y)s−2dy = 1 − (1 − x)s−1.

(B) Transformation. Let u2, . . . , us be s − 1 random numbers, i.e., they are i.i.d.
U(0,1). Set
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xs = 1 − (1 − us)
1

s−1 ,

xs−i = {1 − (1 − us−i)
1

s−i−1 }
⎛
⎝1 −

i−1∑
j=0

xs−j

⎞
⎠ , i = 1, . . . , s − 2,

x1 = 1 −
s∑

i=2

xi.

Then (x1, . . . , xs) is a sample from U (Ts) and (x2, . . . , xs) uniformly distributed on
Sn−1 = {x : x ∈ Rs+,

∑s
i=1 xi � 1}.

(C) The conditional distribution F(x1, . . . , xs−1|xs) is the uniform distribution on
the region

Ts−1(1 − xs) = {(x1, . . . , xs−1) : 0 � xj � 1 − xs,
j = 1, . . . , s − 1, x1 + · · · + xs−1 = 1 − xs}.

These properties imply that we can iterate the above (A), (B), and (C) for
F(x1, . . . , xs−1|xs) to find the conditional distribution Fs−1(xs−1|xs). Moreover, the
distribution of F(x1, . . . , xs−2|xs, xs−1) is also the uniform distribution on

Ts−2(1 − xs − xs−1) = {(x1, . . . , xs−2) : 0 � xj � 1 − xs − xs−1,

j = 1, . . . , s − 2, x1 + · · · + xs−2 = 1 − xs−1 − xs}.
The above process can be iterated until to find F1(x1|x2, . . . , xs).

If x follows the uniform distribution on Ts(a, b), the above theory andmethod can
also be applied. Let b∗ = (b − a)/(1 − a), and y = (Y1, . . . ,Ys) = (x − a)/(1 − a)
where a is defined in (8.2.8). Then y follows the uniform distribution on Ts(0, b∗).
Without loss of generality, we can assume a = 0. Then we only need to focus on
generation of samples from the uniform distribution on Ts(0, b). It can be found that
the marginal distribution of Ys is

FYs(y)=
P(ds � Xs � y)

P(ds � Xs � bs)
=

⎧⎪⎪⎨
⎪⎪⎩
1, y � bs,
(1 − ds)s−1 − (1 − y)s−1

(1 − ds)s−1 − (1 − bs)s−1
, ds � y � bs,

0, y � ds,

where ds = max(0, 1 + bs − b). Let u followU (0, 1). From the inverse transforma-
tion method in Monte Carlo method, it is easy to know that

ys ≡ F−1
Ys

(u) = 1 − [u(1 − bs)
s−1 + (1 − u)(1 − ds)

s−1]1/(s−1)

is a random sample from FYs(y). For a given Ys = ys, the conditional distribu-
tion of (Y1, . . . ,Ys−1) is the uniform distribution on Ts−1(0, b(1)), where b(1) =
(b1, . . . , bs−1)/(1 − ys). Then apply the above method to the uniform distribution on
Ts−1(0, b(1)).
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Let

�s = 1,�k = 1 −
s∑

i=k+1

yi, k = s − 1, . . . , 2,

dk = max

{
ak/�k , 1 −

k−1∑
i=1

bi/�k

}
, k = s, s − 1, . . . , 2,

�k = max

{
bk/�k , 1 −

k−1∑
i=1

ai/�i

}
, k = s, s − 1, . . . , 2,

G(u, d , b, c, k) = c{1 − [u(1 − b)k + (1 − u)(1 − d)k ]1/k}.

If we generate s − 1 random numbers u2, . . . , us from U (0, 1) and denote

xk = G(uk , dk ,�k ,�k , k − 1), k = s, s − 1, . . . , 2,

x1 = 1 −
s∑

k=2

xk ,

then x = (x1, . . . , xs) is a sample from the uniformdistribution onTs(a, b). The proof
can be seen in Fang and Yang (2000). Then, the construction of uniform design with
restricted mixtures on Ts(a, b) can be seen as follows.

Algorithm 8.2.3 (Conditional method for UD with restricted mixtures)

Step 1. Choose a uniform design Un(ns−1) and denote it by U = (uij);
Step 2. Calculate

tij = uij − 0.5

n
, i = 1, . . . , n, j = 1, . . . , s − 1;

Step 3. For each i, apply the above step to find (ti1, . . . , ti,s−1) as u2, . . . , us and to
calculate

xik = G(tik , dk ,�k ,�k , k − 1), k = s, s − 2, . . . , 2,

xi1 = 1 −
s∑

k=2

xk .

Then {xi = (xi1, . . . , xis), i = 1, . . . , n} is a UD on Ts(a, b).

Example 8.2.3 This example is from Fang (2002). In a pharmaceutical study, the
task is to dissolve a slightly polar drug in a mixture of water and two cosolvents,
ethanol and propylene glycol for increasing the drug’s solubility. The experimenter
was of interest to knowwhether and where a maximum exists in the solubility profile
of the drug in the mixture of solvents. The response measured is the vapor pressure
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Table 8.4 Design and
responses in Example 8.2.3

No. x1 x2 x3 y

1 0.12296 0.11323 0.76381 31.5042

2 0.35453 0.04379 0.60168 51.5640

3 0.24176 0.36565 0.39259 30.0888

4 0.26535 0.47616 0.25849 28.9297

5 0.05914 0.41827 0.52258 21.5290

6 0.55981 0.07786 0.36233 56.6437

7 0.52303 0.22904 0.24793 44.9973

8 0.20319 0.18860 0.60821 36.6152

9 0.11576 0.54129 0.34296 20.3480

10 0.40656 0.15008 0.44336 45.6282

11 0.14105 0.27173 0.58723 30.8623

12 0.33631 0.31707 0.34662 37.0407

(y) (mm Hg). The three factors ethanol (x1), propylene glycol (x2), and water (x3)
were chosen on the domain

T 3(a, b) = {x = (x1, x2, x3) : 0.0463 � x1 � 0.7188,

0.0272 � x2 � 0.5776, 0.2272 � x3 � 0.9265, x1 + x2 + x3 = 1}.

Choose n = 12 for this experiment with restricted mixtures on T 3(a, b). The 12
points and the corresponding responses are shown in Table 8.4.

A real-life case study is given by Jing et al. (2007) who applied the method
introduced in this section to the laccase production from trametes versicolor by solid
fermentation. They chose a U15(54) table for the experiment. More details can be
seen in the original paper.

8.2.4 Uniform Design on Irregular region

In someexperimentswithmixtures, there aremore constraints among the components
x1, . . . , xs and the corresponding experimental domain may be irregular region in Rs.

Example 8.2.4 Consider the problem in Borkowski and Piepel (2009). Three com-
ponents x1, x2, and x3 are needed for generating some product, and they have con-
straints:

0.1 � x1 � 0.7, 0 � x2 � 0.8, 0.1 � x3 � 0.6 and x1 − x2 � 0.

The corresponding experimental region, denoted by S, can be seen in Fig. 8.6a,
i.e., the area formed by sequentially linking the points C,D,E,F,G, and the equi-
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Fig. 8.6 Illustration for Example 8.2.4: a the experimental region S (i.e., the region enclosed by
points C,D,E,F,G), b the image of S after the mapping (i.e., the region enclosed by points
C1,D1,E1,F1,G1)

lateral triangle with the vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) refers to the sim-
plexT 3 = {(x1, x2, x3)|x1 + x2 + x3 = 1, xi � 0}. For the two-dimensional S, we can
transform it into R2 by using the isometric transformation, which will be shown in
this subsection. Figure 8.6b shows the image of S by using the isometric transforma-
tion, denoted by S1, i.e., the region enclosed by the pointsC1,D1,E1,F1,G1, and the
vertices of the simplex T 3, respectively, become (0, 0), (

√
2, 0) and (

√
2/2,

√
6/2)

through the mapping.

A. Uniformity Measure

For measuring the uniformity of the designs on the irregular region S, the DM2-
discrepancy introduced in the last subsection is not suitable, and the distance criteria
such asmean square distance, average distance, andmaximumdistance, respectively,
in (8.1.5)–(8.1.7) may be used. However, those distance criteria do not have explicit
expressions. Chuang and Hung (2010) proposed the central composite discrepancy
(CCD) to measure the uniformity of the designs on S.

For any fixed point x = (x1, . . . , xs) in S, the (s − 1)-dimensional hyperplane
which is perpendicular to the ith axis can chop the ith axis into two parts, i.e.,
(−∞, xi] and (xi,+∞), through the point x, where i = 1, . . . , s. Then the region S
can be divided into 2s small grids by the s hyperplanes referred to above, denoted
by S1(x), . . . , S2s(x), with point x being the center of them. Let P denote a n-point
design on S. The CCD of P is defined by

CCDp(n,P) =
{

1

V (S)

∫
S

1

2s

2s∑
t=1

∣∣∣∣N (St(x),P)

n
− V (St(x))

V (S)

∣∣∣∣
p

dx

}1/p
, (8.2.10)

where p > 0, N (St(x),P) denotes the number of points of P falling into St(x), and
V (St(x)) and V (S) denote the volumes of St(x) and S, respectively. Apparently, a
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small CCDp(n,P)-value implies a relatively uniform design. Denote Z(n) as the set
composed of all the n-point designs on S. The uniform design on S with a given run
size n, P∗, is defined by

P∗ = arg min
P∈Z(n)

CCDp(n,P).

The positive value p in (8.2.10) is often equal to 2, as similar as that in CD, WD, and
MD for the designs on hypercubes. In a practical application, the volumes V (St(x))
andV (S)maybedifficult to compute, aswell as the integral in the regionS. Therefore,
the region S is often discretized into N points (N � n), and the CCDp(n,P)-value
in (8.2.10) can be approximately calculated through the following expression:

CCD2(n,P) ≈
{
1

N

N∑
i=1

1

2s

2s∑
t=1

∣∣∣∣N (St(xi),P)

n
− N (St(xi))

N

∣∣∣∣
2
}1/2

. (8.2.11)

TheN points can be chosen as the nearlyN -point uniform design or the lattice points
on S.

B. Construction Methods

It is not easy to construct uniform designs on the irregular region S under a given uni-
formity criterion such as CCD. There are some construction methods in the literature
such as the switching algorithm (Chuang and Hung 2010) and the discrete particle
swarm optimization (Chen et al. 2014). Moreover, Liu and Liu (2016) proposed
a construction method of uniform designs for mixture experiments with complex
constraints.

Chuang and Hung (2010) showed that the switching algorithm has less iteration
times and quicker convergence speed saves time dramatically compared with the
exhaustive search, and the designs obtained via such algorithm are extremely close
to the uniform designs. The procedure of switching algorithm is as follows.

Algorithm 8.2.4 (Switching Algorithm)

Step 1. Choose N -point nearly uniform design P = {x1, . . . , xN } on S, where N �
n.

Step 2. Arbitrary choose n points in P as the initial current design “Cdesign,” for
example, choose Cdesign = {x1, . . . , xn}; set the iteration counter i = 0 and
the next design Ndesign = Cdesign.

Step 3. While i = 0 or Ndesign �= Cdesign
set i = i + 1, Cdesign=Ndesign;
for j = 1 to n do

let x∗ = argminx∈P\Ndesign CCDp(n, {x}⋃Ndesign\{xj});
if CCDp(n, {x∗}⋃Ndesign\{xj}) � CCDp(n,Ndesign)

set Ndesign = {x∗}⋃Ndesign\{xj};
end if
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end for
end while.

Step 4. Export Cdesign, CCDp(n,Cdesign) and i.

In Step 1 of Algorithm 8.2.4, a larger number of points N means that a more
uniform final design will be obtained but under a more time-consuming process.
Usually, we choose N such that N/n > 5. In the Step 3 of Algorithm 8.2.4, the
notation Ndesign\{xj} means that the point {xj} is deleted from the design Ndesign.
The CCD-value of the designs can be calculated by the approximate expression in
(8.2.11). The Algorithm 8.2.4 is a local searching algorithm and can be used for any
irregular region S on Rs.

Additionally, Liu and Liu (2016) proposed a construction method when the irreg-
ular region S is a partial region of simplex, i.e.,

S =
{
x = (x1, . . . , xs)|

s∑
i=1

xi = 1, xi � 0, fj(x) � 0, j = 1, . . . , t

}
, (8.2.12)

where fj(x) can be linear or nonlinear function. For example, the constraints in
Example 8.2.4 can be rewritten by some linear inequalities fj(x) � 0, j = 1, . . . , t.

The constructionmethodbyLiu andLiu (2016) is based on some transformation of
the simplexTs. It is known that the simplexTs can be transformed into the hyperplane
H = {(z1, . . . , zs)|zs = 0} with its shape and size invariant via the mapping

M : z = [x − (1, 0, . . . , 0)]Q, (8.2.13)

where x ∈ Ts, z ∈ H and Q is the orthogonal matrix coming from the matrix QR

decomposition
(

−11×(s−1)

Is−1

)
= Q
(
R(s−1)×(s−1)

01×(s−1)

)
, with Is−1 being a unity matrix of order

s − 1, R(s−1)×(s−1) being an upper triangular matrix, −11×(s−1) and 01×(s−1), respec-
tively, being the (s − 1)-dimensional row vector whose elements are −1 and 0. The
geometry formed by any subset of the simplex Ts is identical with its image in H
through the mapping M . The inverse mapping of M can be written as

M−1 : x = zQ′ + (1, 0, . . . , 0), (8.2.14)

where z ∈ M (Ts) and x ∈ Ts.
Under the CCD criterion, the construction method by Liu and Liu (2016) for

nearly uniform designs (NUD) for mixture experiments on the region in (8.2.12) is
as follows.

Algorithm 8.2.5 (Constructing uniform designs on T s)

Step 1 Let S denote the experimental region of a mixture experiment with some
constraints, as defined in (8.2.12).
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step 2. Transform S into Rs−1 through the mappingM in (8.2.13). Denote the image
after the transformation as S1.

step 3. Given the run size n, search the NUD in S1 under the CCD criterion by the
switching algorithm in Algorithm 8.2.4.

step 4. Transform the points of the NUD into the simplex Ts, by the inversemapping
M−1 in (8.2.14), to obtain the final NUD in S.

An advantage of the Algorithm 8.2.5 is that it can deal with mixture experiments
with any complex constraints, e.g., the functions fi(x), i = 1, . . . , t, can be nonlinear.

Example 8.2.5 (Example 8.2.4Continues) Use the Algorithm 8.2.5 to construct the
(nearly) uniform design on the irregular region S. Let n = 21. It needs to obtain the
orthogonal matrix Q in the mapping M in (8.2.13). According to the QR decompo-
sition, we have⎛

⎝−1 −1
1 0
0 1

⎞
⎠ = Q3×3

(
R2×2

01×2

)

=
⎛
⎝−√

2/2 −√
6/6

√
3/3√

2/2 −√
6/6

√
3/3

0
√
6/3

√
3/3

⎞
⎠
⎛
⎝

√
2

√
2/2

0
√
6/2

0 0

⎞
⎠ ,

then the mapping and its inverse mapping can be expressed as

M : z = [x − (1, 0, 0)]
⎛
⎝−√

2/2 −√
6/6

√
3/3√

2/2 −√
6/6

√
3/3

0
√
6/3

√
3/3

⎞
⎠ , and

M−1 : x = z

⎛
⎝−√

2/2
√
2/2 0

−√
6/6 −√

6/6
√
6/3√

3/3
√
3/3

√
3/3

⎞
⎠+ (1, 0, 0),

respectively.
By the mapping M , we transform the region S to S1 in R2, as shown in Fig. 8.6b.

We divide the rectangle [0,√2] × [0,√6/2] into 30 × 30 small grids with the same
size, take all the center points of these grids, and keep the ones just falling into S1.
There are 128 points in the continuous region S1. Let N = 128. For the given run
size n = 21, the NUD obtained by the switching algorithm in Algorithm 8.2.4 on S1
is shown in Fig. 8.7a, and the corresponding NUD on S by Algorithm 8.2.5 is drawn
in Fig. 8.7b. It can be seen that the design points are uniformly scattered on S.
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Fig. 8.7 Uniform design for Example 8.2.4: a the NUD with n = 21 in the image of S, S1 and b
the final NUD with n = 21 in S

8.3 Modeling Technique for Designs with Mixtures

The first-order model

E(y) = β0 +
s∑

i=1

βixi, (8.3.1)

the second-order model

E(y) = β0 +
s∑

i=1

βixi +
s∑

i=1

βiix
2
i +

s∑
i<j

βijxixj, (8.3.2)

and the centered second-order model

E(y) = β0 +
s∑

i=1

βixi +
s∑

i=1

βii(xi − x̄i)
2 +

s∑
i<j

βij(xi − x̄i)(xj − x̄j), (8.3.3)

are popularly used on hypercube. These polynomial regression models are also often
employed as suitable response surface model for experiments with mixtures. More-
over, according to the constraint x1 + · · · + xs = 1 for experimental design with
mixtures, the first-order model (8.3.1) becomes

E(y) = β0

s∑
i=1

xi +
s∑

i=1

βixi =
s∑

i=1

β∗
i xi, (8.3.4)

where β∗
i = β0 + βi, i = 1, . . . , s. For the second-order model (8.3.2), since∑s

i=1 xi = 1 and x2i = xi(1 −∑j �=i xj), we have
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E(y) = β0

s∑
i=1

xi +
s∑

i=1

βixi +
s∑

i=1

βiixi

⎛
⎝1 −
∑
j �=i

xj

⎞
⎠+

s∑
i<j

βijxixj

=
s∑

i=1

(β0 + βi + βii)xi −
s∑

i=1

βiixi
∑
j �=i

xj +
s∑
i<j

βijxixj

=
s∑

i=1

β∗
i xi +

s∑
i<j

β∗
ij xixj, (8.3.5)

where β∗
i = β0 + βi + βii and β∗

ij = βij − βii − βjj. Similarly, the third-order model
can be rewritten as

E(y) =
s∑

i=1

β∗
i xi +

s∑
i<j

β∗
ij xixj +

s∑
i<j

δijxixj(xi − xj) +
s∑

i<j<k

β∗
ijkxixjxk . (8.3.6)

Note that the models (8.3.4)–(8.3.6) do not include the intercept term, quadratic
term or cubic term, and these models are called as the Scheffé’s polynomial mod-
els or canonical form of the polynomial. Optimal design theory can be applied to
these Scheffé’s polynomial models. A comprehensive review for optimal design for
experiments with mixture can refer to Chan (2000).

According to the constraint x1 + · · · + xs = 1, then xs = 1 − x1 − · · · − xs−1 and
we can delete the factor xs in the models (8.3.1)–(8.3.3), i.e., the following models
can be fitted to the s-factor design with mixtures

E(y) = β0 +
s−1∑
i=1

βixi, (8.3.7)

E(y) = β0 +
s−1∑
i=1

βixi +
s−1∑
i=1

βiix
2
i +

s−1∑
i<j

βijxixj, (8.3.8)

E(y) = β0 +
s−1∑
i=1

βixi +
s−1∑
i=1

βii(xi − x̄i)
2 +

s−1∑
i<j

βij(xi − x̄i)(xj − x̄j). (8.3.9)

The following example exhibits newproblems inmodeling for data of experiments
with mixtures. More detailed discussion can refer to Cornell (2002).

Example 8.3.1 Choose three metals x1, x2, x3 in a new material for investigation. A
UD U15(152) was employed for the design. The design and related responses are
listed in Table 8.5, where there list only x1 and x2 as x1 + x2 + x3 = 1.With the same
reason, fitting regression models to the data involve only x1 and x2. By the use of
selection of variables, the model
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Table 8.5 Design and responses

No. x1 x2 y No. x1 x2 y

1 0.81743 0.10346 8.2256 9 0.24723 0.17565 10.1362

2 0.68377 0.05271 8.7794 10 0.20418 0.76930 9.3760

3 0.59175 0.36742 9.5115 11 0.16334 0.25100 10.2772

4 0.51695 0.17712 9.5619 12 0.12440 0.55454 9.8652

5 0.45228 0.41992 9.9145 13 0.08713 0.09129 10.1022

6 0.39447 0.02018 9.5526 14 0.05132 0.79057 9.1792

7 0.34172 0.32914 9.9481 15 0.01681 0.42605 9.9565

8 0.29289 0.49497 10.1241

10

10 10.3

10.5

10.57

10.59

Fig. 8.8 Contour plot of (8.3.10)

ŷ =10.472 − 1.20(x1 − 0.3324) − 3.475(x1 − 0.3324)2

− 3.333(x2 − 0.3349)2 + 2.322(x1 − 0.3324)(x2 − 0.3349) (8.3.10)

with R = 0.9887, σ̂ = 0.07 is recommended. The model shows that there is an inter-
action between x1 and x2. Its contours are shown in Fig. 8.8. Note that due to the
constraint x1 + x2 + x3 = 1, the metal x3 does not appear in the model (8.3.10) that
is not convenience in the practice. There are a lot of discussions in Cornell (2002) to
solve this problem.

Example 8.3.1 considers the modeling technique for the data of design with mix-
tures. Next two examples consider the modeling technique for the data of design
with restricted mixtures.

Example 8.3.2 (Example 8.2.3 Continuity) For the data in Table 8.4, the underlying
model between the response and factors is unknown. The major goal here is to
establish a suitable model. The best result among the 12 responses is y6 = 56.6437
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mm Hg, which can be served as a benchmark. We wish to know whether there is any
level-combination to produce a better vapor pressure.

The First-Order Linear Regression Model

The simplest model is the first-order regression. Based on the data in Table 8.4, we
have model

ŷ = −2.4344 + 79.7565x1 + 36.4051x3,

with R2 = 96.87% and s2 = 4.9638. Statistical diagnostics based on the ANOVA,
residual plot, normal plot, and partial residual plots indicate that this model is not
satisfactory. Therefore, we consider the more complicated second-order quadratic
regression model.

Quadratic Regression Model

With model selection technique, we find a metamodel

ŷ = 22.6130 − 11.3570x2 + 112.205x1x3 + 38.0345x21, (8.3.11)

with R2 = 99.17% and s2 = 1.4747. The corresponding ANOVA table is shown in
Table 8.6. Statistical diagnostics, the residual plot, and normal plot are shown in
Figs. 8.9 and 8.10, which indicate that the model (8.3.11) is acceptable. Maximizing
y with respect to xi, i = 1, 2, 3 under models (8.3.11) on the domain T 3(a, b), we
find that max ŷ = 62.4414 at x1 = 0.7188, x2 = 0.0272, x3 = 0.2540.

Centered Quadratic Regression Model

Next, we consider the second-order centered quadratic regressionmodel. Once again,
by using model selection techniques, a metamodel is

Table 8.6 ANOVA table for metamodel (8.3.11)
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Fig. 8.9 Residual plot for
metamodel (8.3.11)

Fig. 8.10 Normal plot for
metamodel (8.3.11)

ŷ = 37.3126 + 84.6285(x1 − 0.2775) + 40.9079(x3 − 0.4565)

+84.0939(x1 − 0.2775)(x3 − 0.4565), (8.3.12)

with R2 = 98.94% and s2 = 1.8969. The corresponding ANOVA table is shown in
Table 8.7. The residual plot and normal plot are shown in Figures 8.11–8.12. Simi-
larly, these plots indicate that the model (8.3.12) is also acceptable. Then we maxi-
mize y with respect to xi, i = 1, 2, 3 under models (8.3.12) on the domain T 3(a, b)
and find that max ŷ = 59.2179 at the same point to that of model (8.3.11), i.e.,
x1 = 0.7188, x2 = 0.0272, x3 = 0.2540.

By some additional experiments at the ingredient-combination x1 = 0.7188, x2 =
0.0272, x3 = 0.2540, the average of vapor pressure is 61.75. From the viewpoint
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Table 8.7 ANOVA table for metamodel (8.3.12)

Fig. 8.11 Residual plot for
metamodel (8.3.12)

of optimization and prediction, we prefer metamodel (8.3.11) as our last model.
Figure8.13 shows contours of the metamodel (8.3.11).

The following example adopted from Tang et al. (2004)) shows applications of
the uniform design with mixtures in product formation in the cement manufacturing
industry.

Example 8.3.3 Cement matrix grouting material has been commonly used in the
construction industry, since it has high durability and high strength. The material is
non-toxic, non-polluting, and relatively low in cost. However, there are some dis-
advantages of ordinary cement matrix grouting material, such as low stability, low
workability, and low water retentivity. This is especially true when the water/cement
ratio is high. For overcoming these shortcomings, there are some experience as fol-
lows: The presence of appropriate additives can improve the quality of this grouting
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Fig. 8.12 Normal plot for
metamodel (8.3.12)

Fig. 8.13 Contours of
metamodel (8.3.11)

material; inorganic materials such as silica fume will increase the strength, water
retentivity, and stickiness of the mixture, and reduce segregation; organic materials
such as carboxyl methyl cellulose (CMC) will increase the stickiness of the mixture
and thus reduce segregation; flyash will increase the workability of the mixture. As
flyash is an industrial waste from thermal power stations, making use of it will help
protect the environment. The engineer has to determine how much should each of
these additives be added so that a cost-effective grouting material of good quality
can be formed.

Four controllable factors denoted by x1, x2, x3, and x4 were chosen: percentages
of flyash, silica fume, CMC, and cement. Experience suggested to consider ranges
of the three factors in percentages to be:

5 � x1 � 20, 1 � x2 � 2.4, 0.3 � x3 � 1.0.

Because of the constraint x1 + x2 + x3 + x4 = 100, the amount of cement x4 should
lie within the range 76.6 � x4 � 93.7. The objectives of this experiment were to
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minimize the coefficient of bleeding BL (at water/cement ratio of 0.6) and maximize
the compressive strength R28 (at water/cement ration of 0.8) which is measured
twenty-eight days after the cement mixture has set.

A uniform design table U16(16 × 82) was used for a design, and two quadratic
models are separately chosen for the two responses

BL = 3.337x1 − 341.3x3 + 0.3655x4 + 2.998x1x3 − 0.04575x1x4
+5.512x2x3 − 0.0561x2x4 + 3.323x3x4, (8.3.13)

R28 = −6.694x1 + 3.435x2 − 4824x3 − 0.5854x1x2 + 50.49x1x3
+0.0858x1x4 + 61.29x2x3 + 48.53x3x4. (8.3.14)

Tang et al. (2004) gave more discussion on behavior of BL and R28 and an optimal
material cost was obtained. The authors concluded “Factorial designs and orthogonal
arrays have been widely used in design of industrial experiments. When the number
of factors is large or the numbers of levels of the factors are large, these designs
require a large number of runs, which may not be possible to achieve in practice
because of various constraints. In such a case, the uniform design is an excellent
alternative that can be used for the experiments.”

Exercises

8.1

Give experimental points of the simplex-lattice designs {3, 3}, {4, 3} and their plots
by the use of MATLAB or other software.

8.2

The domain T 3 is an equilateral triangular with side-length
√
2, denoted by V 2, say.

Therefore, any point (z1, z2) on V 2 corresponds to a point (x1, x2, x3) on T 3. Choose
a new coordinate system on V 2 and give the mapping rule of (x1, x2, x3) ⇒ (z1, z2).

8.3

Suppose we choose a uniform design U7(72) as follows:
Construct a uniformdesignonT 3 = {(x1, x2, x3) : xi > 0, i = 1, 2, 3, x1 + x2 + x3 =
1.} with 7 runs by using the translation method based on the given U7(72).

8.4

Let n = 17.

(1) Randomly choose n points on [0, 1]2 to form the designD1 and calculate its
mixture discrepancy.

(2) Use the translation method to obtain the design D2 on T 3. Calculate the
mean square distance, average distance, maximum distance of D2.
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No. 1 2
1 1 5
2 2 2
3 3 7
4 4 4
5 5 1
6 6 6
7 7 3

Repeat Steps (1)–(2) m times, compare their results, and give your conclusion.

8.5

Let n = 17. Use the NTLBG algorithm to construct the uniform mixture designs on
T 3.

8.6

For the designs with restricted mixtures, prove the restriction in (8.2.8).

8.7

Consider the three factors in Example 8.2.3. Use the conditional method to construct
a 17-run uniform design with restricted mixtures.

8.8

Consider the design region

S2 = {(x1, x2, x3)|x1 + x2 + x3 = 1, x21 + x22 � 0.36, xi � 0}.

Under the uniformity criterion CCD, use the switching algorithm in Algorithm 8.2.4
to construct a 15-point uniform design on S2.

8.9

To explore the influence of component compatibility changes on antipyretic effect of
MaxingShigandecoction, the uniformdesign of experimentswithmixtureswas used.
Ephedrae Herba (x1/g), Armeniacae Semen Amarum (x2/g), Glycyrrhizae Radix et
Rhizoma Preparata CumMelle (x3/g), and Gypsum Fibrosum (x4/g) were considered
as 4 factors. The originally used treatment in hospitals is (6, 6, 6, 24), and the total
weight is 42g, and the response, the heat inhibition rate after 6h, denoted by y(%), is
equal to 52.19%. For investigating the reasonableness of the original treatment and
finding better treatment, the researcher designed 12 different allocated proportions
of Maxing Shigan decoction. The total weight of the four factors are kept to 42g,
and the corresponding design points and the response are as follows.

Analyze the data, compare the result of the original treatment, and give your
conclusion.
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No. x1(g) x2(g) x3(g) x4(g) y
1 3.15 25.12 12.02 1.72 41.97
2 17.1 19.82 2.33 2.75 36.13
3 21 2.32 3.89 14.79 28.47
4 1.83 15.57 7.17 17.42 52.92
5 0.59 6.56 18.88 15.97 53.28
6 11.71 16.46 1.73 12.1 29.93
7 14.15 5.83 21.1 0.92 16.79
8 6.09 2.32 26.59 7 29.1
9 7.76 15.75 11.56 6.93 49.64
10 4.56 9.88 1.15 26.41 56.75
11 9.62 0.68 11.89 19.81 52.19
12 27.44 4.7 6.98 2.88 10.53

8.10

In an experiment for Chinese medicinal material, five components are considered
and the restricted ranges of the components x1 ∼ x5 are 10%∼60%, 10% ∼60%,
30%∼60%, 10%∼12%, 10%∼ 12%, respectively. The average yield (g) and survival
rate (%) are two responses and denoted by y1 and y2.
Analyze the data and find the optimal components.

No. x1(%) x2(%) x3(%) x4(%) x5(%) y1 y2
1 15.66 36.69 45.31 0.98 1.36 284.5 44.44
2 33.89 16.77 41.14 1.66 6.53 356.8 44.44
3 19.77 19.03 57.39 1.69 2.11 337.9 88.89
4 36.21 13.36 32.77 8.28 9.37 463.8 100
5 47.08 16.54 33.83 1.28 1.27 326.3 66.66
6 15.57 39.57 35.26 0.65 8.95 454.3 100
7 20.95 33.3 35.23 4.42 6.1 359.1 88.89
8 38.23 14.16 45.3 1.45 0.85 381.4 55.56
9 40.21 16.78 33.03 0.68 9.3 446 55.56
10 17.32 18.97 52.68 0.97 10.05 433.3 77.78
11 18.57 16.08 54.43 9.88 1.04 342.7 66.67
12 31.03 28.74 33.45 5.66 1.12 374 55.56
13 15.96 40.91 32.56 9.72 0.85 397 44.44
14 13.05 34.97 33.66 9.27 9.05 416 88.89
15 14 14.02 52.72 9.33 9.92 475.9 100
16 14.72 33.72 42.64 7.91 1.01 290 22.22
17 32.14 32.36 33.02 0.6 1.88 317.4 88.89
18 40.5 13.49 36.32 9.03 0.66 349.8 44.44
19 26.26 20.98 38.29 8.7 5.77 474.25 44.44
20 15.57 48.33 33.9 1.14 1.06 0 0
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