Farzad Hejazi • Tan Kar Chun

Steel Structures Design Based on Eurocode 3

Steel Structures Design Based on Eurocode 3

Farzad Hejazi • Tan Kar Chun

Steel Structures Design Based on Eurocode 3

Farzad Hejazi
Department of Civil Engineering
University Putra Malaysia
Selangor
Malaysia

Tan Kar Chun
Department of Civil Engineering
University Putra Malaysia
Selangor
Malaysia

Additional material to this book can be downloaded from http://extras.springer.com.
ISBN 978-981-10-8835-3 ISBN 978-981-10-8836-0 (eBook)
https://doi.org/10.1007/978-981-10-8836-0
Library of Congress Control Number: 2018934951
© Springer Nature Singapore Pte Ltd. 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. part of Springer Nature
The registered company address is: 152 Beach Road, \#21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Steel is a better construction material compared to concrete. There are several benefits from steel construction. First of all, steel construction helps to save time. Design of steel is simpler compared to concrete. Other than that, erection of steel is faster than concrete. Steel also has post-construction advantages over concrete, in which steel can be repaired easily without affecting other members, and it can be recycled after the building is demolished.

EC3 is a design standard of steel structure, which had been enforced in the year 2010. However, in Malaysia, the usage of EC3 is still uncommon. The main reason why these phenomena had occurred is most of the designers are still not familiar with EC3. Other than that, we can barely find any guideline or reference to aid us in the design of steel structure based on EC3.

This book is tailored to the needs of structural engineers who are seeking to become familiar with the design of steel structure based on EC3.

In this book, the design procedure based on EC3 is arranged in comprehensive flowcharts. For each step, detailed explanation and all the necessary table/equation will be provided. Other than that, examples also provided to show the proper way to perform design. This book also provides useful appendix, including universal sections and their properties, and general formula of shear force, maximum bending moment, and deflection for several selected loading condition. These appendices serve to give convenience to the designers when they are performing design.

This book also introduces a specially developed design-aiding program. This program can give the immediate result to the user after it receives inputs from the user. With this program, modeling is not required and the time consumed in design stage can be reduced.

Selangor, Malaysia

Farzad Hejazi
Tan Kar Chun

Contents

1 Introduction 1
1.1 General 1
1.2 Advantages of Steel Structure 2
1.3 Design Standard for Steel 3
1.4 I-Section 4
1.5 Steel Design Based on EC3 Program 5
2 Beam Design 7
2.1 Introduction 7
2.2 Design Procedure for a Laterally Restrained Beam 8
2.2.1 Design Flowchart for a Laterally Restrained Beam 12
2.2.2 Example 2-1 Design of a Laterally Restrained Beam 14
2.2.3 Example 2-2 Design of a Laterally Restrained Beam 21
2.2.4 Example 2-3 Design of a Laterally Restrained Beam 25
2.3 Design Procedure for a Laterally Unrestrained Beam 31
2.3.1 Design Flowchart for a Laterally Unrestrained Beam 36
2.3.2 Example 2-4 Design of a Laterally Unrestrained Beam 38
2.3.3 Example 2-5 Design of a Laterally Unrestrained Beam 40
2.3.4 Example 2-6 Design of a Laterally Unrestrained Beam 46
2.4 Exercise: Beam Design 53
3 Column Design 57
3.1 Introduction 57
3.2 Design Procedure for a Column 59
3.2.1 Design Flowchart for a Column 65
3.2.2 Example 3-1 Column Design 67
3.2.3 Example 3-2 Column Design 71
3.2.4 Example 3-3 Column Design 75
3.3 Exercise: Column Design 81
4 Connection Design 83
4.1 Introduction 83
4.2 Design Procedure for a Welded Connection 85
4.2.1 Design Flowchart for a Welded Connection 87
4.2.2 Example 4-1 Welded Connection Design 88
4.2.3 Example 4-2 Welded Connection Design 90
4.2.4 Example 4-3 Welded Connection Design 92
4.3 Design Procedure for a Bolted Connection 93
4.3.1 Design Flowchart for a Bolted Connection 96
4.3.2 Example 4-4 Bolted Connection Design 97
4.3.3 Example 4-5 Bolted Connection Design 101
4.3.4 Example 4-6 Bolted Connection Design 106
4.4 Exercise: Connection Design 109
Appendix 113
References 129

Chapter 1
 Introduction

1.1 General

Steel is a material commonly used in construction. In concrete structures, steel is mainly used as reinforcement to increase the resistance of the concrete member in the tension zone. In steel structures, steel is important because the structural members are constructed purely from structural steel.

Steel is an alloy of iron and carbon, with carbon contributing between 0.2 and 2% of the weight of steel. If the alloy contains less than 0.2% carbon, it is called wrought iron, which is soft and malleable. If the alloy contains more than 3% carbon, it is called cast iron, which is hard and brittle.

Structural steel is basically carbon steel, which is steel with controlled amounts of manganese, phosphorus, silicon, sulfur, and oxygen added. Carbon steel can be further categorized according to its carbon content: mild steel ($0.2-0.25 \%$ carbon), medium steel $(0.25 \%-0.45 \%)$, hard steel ($0.45-0.85 \%$), and spring steel ($0.85-$ 1.85%).

As steel is a construction material, designers must know its mechanical properties. The notable mechanical properties of steel are as follows:

- Modulus of elasticity, $E=210 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
- Shear modulus, $G=81 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
- Poisson's ratio, $v=0.3$

1.2 Advantages of Steel Structure

Figure 1.1 shows some of the advantages of steel over reinforced concrete in construction. The design of a steel structure is simpler than that of a concrete structure. In the design of a concrete structure, factors such as member dimension, diameter of steel bar, and concrete grade must be determined, all of which lead to uncertainty and variations in the design outcome. By contrast, the design of a steel structure is fundamentally based on standard sections, which reduces uncertainty and variations in the design outcome.

Another advantage of steel over concrete is that it can be constructed under all kinds of weather. Given that steel frames can be fabricated off-site, the effect of weather on the progress of the project is minimal. On the contrary, concrete frames are commonly cast on-site, where bad weather conditions can hinder the progress of the project.

Fig. 1.1 Advantages of steel in construction

The construction of a steel structure is also easy because it only employs the welding or bolting process. Therefore, construction can be finished in a short time. Fabrication of concrete, however, takes a long time because of the casting and curing process involved.

Both all-weather construction and ease of construction can efficiently reduce project duration, which is favorable for owners because they can generate profit as early as possible.

1.3 Design Standard for Steel

Eurocode 3 (EC3) is a design standard belonging to a set of harmonized technical rules called Eurocodes. Eurocodes were developed by the European Committee of Standardization to remove all design obstacles and harmonize technical specifications in European countries. In 2010, the previously implemented BS 5950 was superseded by EC3. The change in design standard was claimed to improve the construction industry because EC3 allows for a more economical design compared with BS 5950. In addition, the newly established EC3 is well arranged, less restrictive, and more logical compared with its predecessor.

The design under Eurocodes is based on a limit state. Limit-state designs have two types: ultimate limit state (ULS) and serviceability limit state (SLS).

ULS design is concerned with structural stability under the ultimate condition, whereas SLS design is concerned with structural function under normal use, occupant comfort, and building appearance. ULS and SLS designs can be carried out by applying different partial safety factors to a load, as shown in Table 1.1.

During the design stage, one of the most important tasks, and also the most difficult, is estimating the load to be applied to a structure. In design, load can be classified as dead load (DL) and live load (LL).

Table 1.1 Load combinations for ULS and SLS designs (BS EN 1990 Table NA.A1.2)

Load combination for ultimate limit state design	Load combination for serviceability limit state design
$1.35 G_{k}+1.5 Q_{k}$	$G_{k}+Q_{k}$
$1.35 G_{k}+1.5 W_{k}$	$G_{k}+W_{k}$
$1.00 G_{k}+1.5 W_{k}$	$G_{k}+Q_{k}+0.5 W_{k}$
$1.35 G_{k}+1.5 Q_{k}+0.75 W_{k}$	$G_{k}+Q_{k}+W_{k}$
$1.35 G_{k}+1.05 Q_{k}+1.5 W_{k}$	

DL is defined as a permanent action $\left(G_{k}\right)$ in Eurocodes, that is, the load permanently attached to a structure. Therefore, it is basically the self-weight of a material for either structural or architectural purposes.

LL is defined as a variable action $\left(Q_{k}\right)$ in Eurocodes, that is, the load induced from activities. It is mostly induced from human activities for most structures. In a bridge, for instance, traffic load is considered instead. In Eurocodes, the design values of LLs at different locations are provided.

Wind load (WL) is a type of LL. It is usually not considered except for tall buildings. This load is hugely dependent on the terrain and location where the building stands and the building height. Design values for WL can be obtained from the national standard instead of from Eurocodes.

After the load is estimated, the next step is to determine the load combination. Table 1.1 shows several options for load combinations for ULS and SLS.

1.4 I-Section

One of the most commonly used steel member sections is the I-section, also known as the universal section. Figure 1.2 shows the terminology and dimensions of an I-section.

Fig. 1.2 Terminology and dimension of an I-section

1.5 Steel Design Based on EC3 Program

An special program is developed for "Steel Design Based on EC3". The program can perform three types of design, which is design of beam, column and connection (Fig. 1.3).

This is a simple complementary program that gives quick result for design of beam, column and connection.

The program can be downloaded through the following link: http://extras.springer.com

In the main menu, one of the following options can be choose: "Design of Beam", "Design of Column (Simple Construction)" or "Design of Connection", and then click START to proceed.

For "Design of Beam" and "Design of Column (Simple Construction)", select the section to use before proceed to design.

- In order to design a beam, the structural analysis is required. By specifying the supports condition and length, the structural loading will be calculated. Then, this result will be used as design input, which will yield the section to use at the end.
- To design a column, column support condition, length and loading on each direction is required. Similarly, the program will determine the optimum section for the loading condition.
- Design of connection included bolted connection and welded connection. For bolted connection, parameter for components involved in construction of

Fig. 1.3 Main menu of steel design based on EC3 program
connection such as steel plate and bolt, as well as design load is required. The program will determine the number of bolt required for the considered condition. For welded connection, the steel plate parameter and design load are required as input, while the program will determine the welding length required for the considered condition.

The result generated from the program can be exported to Microsoft Excel worksheet format. The output file of the program can be implemented as design outcome.

Chapter 2
 Beam Design

2.1 Introduction

Beam is a structural member subjected to a transverse load, whose direction is perpendicular to the longitudinal axis $(x-x)$ of the beam. Thus, a beam is designed to resist the bending moment and shear force of the load. Generally, a beam is bent about its major axis ($y-y$) (Fig. 2.1).

Beams can be categorized into two types: primary and secondary. A primary beam supports a secondary beam and a slab while being supported only by a column. A secondary beam supports a slab while being supported by a primary beam or a column. Steel beams can also be categorized as laterally restrained and laterally unrestrained. Lateral rotation and deflection are not allowed for a laterally restrained beam. Figure 2.2 shows examples of laterally restrained beams.

By contrast, a laterally unrestrained beam is free to rotate and deflect laterally when load is applied. Any beam without restraints on its sides is categorized as a laterally unrestrained beam.

Fig. 2.1 Beam and its loading

Beam connected to slab through studs

Flange built in slab

Beam attached by secondary beams

Fig. 2.2 Examples of laterally restrained beams

Table 2.1 Nominal values of yield strength f_{y} and ultimate tensile strength f_{u} for hot-rolled structural steel (BS EN 1993-1-1:2005 Table 3.1)

Standard and steel grade (To BS EN 10025-2)	Nominal thickness of element, $t(\mathrm{~mm})$			
	$t \leq 40 \mathrm{~mm}$	$40 \mathrm{~mm}<t \leq 80 \mathrm{~mm}$		
	$f_{y}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$f_{u}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$f_{y}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$f_{u}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$
S235	235	360	215	360
S275	275	430	255	410
S355	355	490	335	470
S450	440	550	410	550

2.2 Design Procedure for a Laterally Restrained Beam

The design procedure for a laterally restrained beam is presented below.

1. Determine the support condition (i.e., pin, roller, or fixed at both ends of the beam).
2. Determine the DL and LL that act on the beam.
3. Choose the steel grade. Refer to BS 4 Part 12005 to choose the beam section for use in construction. A table for the universal beam section and its corresponding properties is provided in Appendix A. 2 (Table 2.1).
4. Perform a structural analysis to determine the maximum shear force $V_{E d}$ and bending moment $M_{E d}$ induced by loading. Prior to analysis, the partial safety factor for ULS (Table 1.1) is applied to the actions determined in Step 2, including the self-weight of the beam section.
5. Classify the beam section. For beams, check only the section class by using the criteria "outstand flange for rolled sections" and "web with neutral axis at mid-depth, rolled sections" (Table 2.2).
6. Determine shear resistance of the section. The shear area of the section needs to be determined beforehand. $\gamma_{M 0}$ should be set as 1.0.

$$
\begin{equation*}
V_{p l, R d}=\frac{A_{V}\left(f_{y} / \sqrt{3}\right)}{\gamma_{M 0}} \tag{2.1}
\end{equation*}
$$

where
A_{V} is shear area obtained from Step 6 (Table 2.3)
$f_{y} \quad$ is yield strength of steel obtained from Step 3
(BS EN 1993-1-1:2005 6.2.6(2))
7. Compare the design shear force on the structure and shear resistance of the section. If the shear resistance of the structure is insufficient, repeat Step 3 to choose a better section. Otherwise, proceed to Step 8.

Table 2.2 Maximum width-to-thickness ratio of the compression element (BS EN 1993-1-1:2005 Table 5.2)

Type of element	Class of element		
	Class 1	Class 2	Class 3
Outstand flange for rolled section	$c / t_{f} \leq 9 \varepsilon$	$c / t_{f} \leq 10 \varepsilon$	$c / t_{f} \leq 14 \varepsilon$
Web with neutral axis at mid depth, rolled sections	$c^{*} / t_{w} \leq 72 \varepsilon$	$c^{*} / t_{w} \leq 83 \varepsilon$	$c^{*} / t_{w} \leq 124 \varepsilon$
Web subject to compression, rolled sections	$c^{*} / t_{w} \leq 33 \varepsilon$	$c^{*} / t_{w} \leq 38 \varepsilon$	$c^{*} / t_{w} \leq 42 \varepsilon$
f_{y}	235	275	355
ε	1	0.92	0.81

Where t_{f} is thickness of flange by referring to Appendix A. 2
t_{w} is thickness of web by referring to Appendix A. 2
$c^{*}=d$ by referring to Appendix A. 2
$c=\left(b-t_{w}-2 r\right) / 2$

Table 2.3 Shear area, A_{V}, parameter descriptions (BS EN 1993-1-1:2005 6.2.6(3))

Type of member	Shear area, A_{V}
Rolled I and H sections, load parallel to web	$A-2 b t_{f}+\left(t_{w}+2 r\right) t_{f} \geq \eta h_{w} t_{w}$
Rolled channel sections, load parallel to web	$A-2 b t_{f}+\left(t_{w}+r\right) t_{f}$
Rolled rectangular hollow sections of uniform thickness, load parallel to depth	$A h /(b+h)$
Circular hollow sections and tubes of uniform thickness	$2 A / \pi$
Plates and solid bars	A

8. Check whether the section is classified as a plated member. This step is especially necessary for a built-up section because universal beam sections usually do not satisfy Eq. 2.2, in which case, Step 9 is skipped. Otherwise, the shear buckling resistance of the section should be determined according to BS EN 1993-1-5. η is set as 1.0.

$$
\begin{equation*}
\frac{h_{w}}{t_{w}}>72 \frac{\varepsilon}{\eta} \tag{2.2}
\end{equation*}
$$

where $h_{w}=d+2 r$
d is depth between fillets by referring to Appendix A. 2
r is root radius by referring to Appendix A. 2
t_{w} is thickness of web by referring to Appendix A. 2
$\varepsilon \quad$ is obtained from Step 5 (Table 2.2)
(BS EN 1993-1-1:2005 6.2.6(6))
9. Determine the shear buckling resistance according to BS EN 1993-1-5.
10. Determine the bending moment resistance of the section. Note that for a different section class, the section properties used are different.

$$
M_{C, R d}\left\{\begin{array}{l}
\frac{W_{p l} f_{y}}{\gamma_{M 0}}, \text { Class } 1 \text { and } 2 \text { sections } \tag{2.3}\\
\frac{W_{C, l, \text { min }} f_{y}}{\gamma_{y}}, \text { Class } 3 \text { sections } \\
\frac{W_{\text {cffomin }} f_{y}}{\gamma_{M 0}}, \text { Class } 4 \text { sections }
\end{array}\right.
$$

where

$$
\begin{array}{ll}
W_{p l} & \text { is plastic section modulus by referring to Appendix A. } 2 \\
W_{e l, \text { min }} & \text { is minimum elastic section modulus } \\
W_{e f f \text { min }} & \text { is minimum effective section modulus } \\
f_{y} & \text { is yield strength of steel obtained from Step } 3 \text { (Table 2.1) }
\end{array}
$$

(BS EN 1993-1-1:2005 6.2.5(2))
11. Compare the design bending moment of the structure and the bending moment resistance of the section. If the bending moment resistance of the structure is insufficient, repeat Step 3 to choose a better section. Otherwise, proceed to Step 12.
12. Refer to BS EN 1993-1-1:2005 6.2.8(2) to check the ratio of design shear force to shear resistance of the section. If the ratio is more than 0.5 , proceed to Step 13. Otherwise, proceed to Step 15 to continue with the design.
13. Determine the reduced bending moment resulting from the shear force. The formula for bending moment resistance remains unchanged, as shown in Eq. 2.3 , but the value of f_{y} is replaced by $f_{y r}$. Alternatively, reduced bending moment can be determined directly if the section has equal flanges.

$$
\begin{gathered}
f_{y r}=(1-\rho) f_{y} \\
\rho=\left\{\begin{array}{c}
\left(\frac{2 V_{E d}}{V_{P l, R d}}-1\right)^{2}, \text { generally } \\
\left(\frac{2 E_{d d}}{V_{p l, T, R d}}-1\right)^{2}, \text { with Torsion }
\end{array}\right.
\end{gathered}
$$

Alternatively,

$$
\begin{equation*}
M_{y, R d}=\frac{\left(W_{p l, y}-\frac{\rho A_{w}^{2}}{4 t_{w}}\right) f_{y}}{\gamma_{M 0}} \tag{2.4}
\end{equation*}
$$

where
$V_{E d} \quad$ is design shear force obtained from Step 4
$V_{p l, R d}$ is design shear resistance obtained from Step 6 (Eq. 2.1)
$V_{p l, T, R d}$ is design shear resistance that take torsion into account
$f_{y} \quad$ is yield strength of steel obtained from Step 3 (Table 2.1)
$W_{p l, y} \quad$ is plastic section modulus by referring to Appendix A. 2
$t_{w} \quad$ is thickness of web by referring to Appendix A. 2

$$
A_{w}=h_{w} t_{w} ; h_{w}=d+2 r
$$

d is depth between fillets by referring to Appendix A. 2
r is root radius by referring to Appendix A. 2
(BS EN 1993-1-1:2005 6.2.8(3), (4), (5))
14. Compare the design bending moment of the structure and the reduced bending moment resistance of the section. If the bending moment resistance of the structure is insufficient, repeat Step 3 to choose a better section. Otherwise, proceed to Step 15.
15. Determine the maximum deflection of the structure under the loading specified in Step 2. The load combination for this calculation should be any of those specified for the SLS design, as shown in Table 1.1.
16. Determine the allowable deflection of the structure (Table 2.4).

Table 2.4 Vertical deflection limit $\Delta_{\text {all }}$ (BS EN 1993-1-1:2005 NA2.23)

Design situation	Vertical deflection limit, $\Delta_{\text {all }}$
Cantilever	Length $/ 180$
Beams carrying plaster of other brittle finish	Length $/ 360$
Other beams (except purlins and sheeting rails	Length $/ 200$
Purlins and sheeting rails	To suit the characteristics of particular cladding

17. Compare the maximum deflection of the structure and the allowable deflection. If the deflection of the structure exceeds the allowable deflection, repeat Step 3 to choose a better section. Otherwise, proceed to Step 18.
18. Check whether the section is an overdesign by checking the ratio of design value to resistance for shear and bending and the ratio of maximum deflection to allowable deflection. If both ratios are less than 0.5 , repeat Step 3 and choose a smaller section to ensure optimum design.

2.2.1 Design Flowchart for a Laterally Restrained Beam

2.2.2 Example 2-1 Design of a Laterally Restrained Beam

Select the optimum section of a beam 5 m in length and subjected to a uniform load (Fig. 2.3). Use steel grade S235. Assume the beam is laterally restrained and sits on 100 mm bearings at each end. Take the self-weight of the beam into account.

Fig. 2.3 Example 2-1

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-1 unless otherwise stated	The beam is simply supported	
2		Permanent action, $\boldsymbol{G}_{\boldsymbol{k}}=\mathbf{5} \mathbf{~ k N} / \mathbf{m}$ Variable action, $\boldsymbol{Q}_{\boldsymbol{k}}=\mathbf{3} \mathbf{~ k N} / \mathbf{m}$	
3	Table 3.1	Steel grade $=\mathbf{S 2 3 5}$ Assume the thicknesses of web and flange are less than 40 mm : $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$
	BS 4 Part 12005	Randomly choose a beam section for the first trial: Select beam section $\mathbf{3 0 5} \times \mathbf{1 2 7} \times \mathbf{3 7}$ The properties of the section is as follows: Mass per meter $=37 \mathrm{~kg} / \mathrm{m}$ Depth of section, $D=304.4 \mathrm{~mm}$ Width of section, $b=123.4 \mathrm{~mm}$ Thickness of web, $t_{w}=7.1 \mathrm{~mm}$ Thickness of flange, $t_{f}=10.7 \mathrm{~mm}$ Root radius, $r=8.9 \mathrm{~mm}$ Depth between fillets, $d=265.2 \mathrm{~mm}$ Second moment of area about major (y - y) axis, I_{y} $=7171 \mathrm{~cm}^{4}$ Elastic modulus about major $\begin{aligned} & (y-y) \text { axis, } W_{e l, y} \\ & =471 \mathrm{~cm}^{3} \end{aligned}$ Plastic modulus about major $\begin{aligned} & (y-y) \text { axis, } W_{p l, y} \\ & =539 \mathrm{~cm}^{3} \end{aligned}$ Area of section, $A=47.2 \mathrm{~cm}^{2}$	
4		Self-weight of beam section $\begin{aligned} & =37 \mathrm{~kg} / \mathrm{m} \times 9.81 \mathrm{~N} / \mathrm{kg} \\ & =\mathbf{0 . 3 6} \mathbf{~ k N} / \mathbf{m} \end{aligned}$ For ULS, partial factor of safety for both permanent action and variable action selected are 1.35 and 1.5 respectively Ultimate load, $w_{\text {ult }}$ $\begin{aligned} & =1.35 G_{k}+1.5 Q_{k} \\ & =1.35(5+0.36)+1.5(3) \\ & =\mathbf{1 1 . 7 4} \mathbf{~ k N} / \mathbf{m} \end{aligned}$	Design $\text { load }=11.74 \mathrm{kN} / \mathrm{m}$
		For simply supported beam, $V_{E d}$ and $M_{E d}$ can be determined using equation below: $V_{E d}$ $=\frac{w_{u t L} L}{2}$ $=\frac{11.74 \times 5}{2}$ $=29.35 \mathrm{kN}$	$V_{E d}=29.35 \mathrm{kN}$
		$\begin{aligned} & M_{E d} \\ & =\frac{w_{u t L} L^{2}}{8} \\ & =\frac{11.74 \times 5^{2}}{8} \\ & =\mathbf{3 6 . 6 9} \mathbf{~ k N m} \end{aligned}$	$M_{E d}=36.69 \mathrm{kNm}$

(continued)

Step	Reference	Action/calculation	Conclusion
5	Table 5.2	Section classification: i. $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=1$ Class 1 ii. Rolled section, outstand flange: $\begin{aligned} c & =\frac{b-t_{w}-2 r}{2} \\ & =\frac{123.4-7.1-2(8.9)}{2} \\ & =49.25 \mathrm{~mm} \\ t_{f} & =10.7 \mathrm{~mm} \\ \frac{c}{t_{f}} & =\frac{49.25}{10.7}=4.60<9 \epsilon(=9) \end{aligned}$ Class 1 iii. Rolled section, web with neutral axis at mid depth: $\begin{aligned} c^{*} & =d \\ & =265.2 \mathrm{~mm} \\ t_{w} & =7.1 \mathrm{~mm} \\ \frac{c^{*}}{t_{w}} & =\frac{265.2}{7.1}=37.35<72 \epsilon(=72) \end{aligned}$ Class 1 Therefore, the section is class 1	Section class 1
6	6.2.6(3)	For I beam with load applied on flange, consider the case of rolled I sections with load parallel to web: Shear area, A_{v} $\begin{aligned} & =A-2 b t_{f}+\left(t_{w}+2 r\right) t_{f} \\ & =47.2 \times 10^{2}-2(123.4) \\ & (10.7)+(7.1+2(8.9))(10.7) \\ & =2345.67 \mathrm{~mm}^{2} \end{aligned}$	
	6.2.6(2)	$\begin{aligned} & V_{p l, R d}=\frac{A_{v}\left(f_{y} / \sqrt{3}\right)}{\gamma_{M 0}} \\ & =\frac{2345.67 \times 235}{\sqrt{3}} \\ & =\mathbf{3 1 8 . 2 5} \mathbf{~ k N} \end{aligned}$	$V_{p l, R d}=318.25 \mathrm{kN}$
7		$\frac{V_{E d}}{V_{p l, R d}}=\frac{29.35}{318.25}=0.09<1$ The shear resistance of the section is adequate	$\frac{V_{E d}}{V_{p l, R d}}=0.09$
8	6.2.6(6)	Check for shear buckling failure: $\begin{aligned} h_{w} & =d+2 r \\ & =265.2+2(8.9) \\ & =283 \mathrm{~mm} \\ t_{w} & =7.1 \mathrm{~mm} \\ \frac{h_{w}}{t_{w}} & =\frac{283}{7.1}=39.86<72 \frac{\epsilon}{\eta}(=72) \end{aligned}$ Shear buckling check is not required	
9		This step is skipped as shear buckling check is not required	
10	6.2.5(2)	For Class 1 section, Bending moment resistance, $M_{c, R d}=M_{p l}$, Rd $\begin{aligned} & =\frac{W_{p} f_{y}}{\gamma_{M 0}} \\ & =\frac{539 \times 10^{-6} \times 235 \times 10^{6}}{1} \\ & =\mathbf{1 2 6 . 6 7} \mathbf{~ k N m} \end{aligned}$	$M_{c, R d}=126.67 \mathrm{kNm}$

(continued)

Step	Reference	Action/calculation	Conclusion
11		$\frac{M_{E d}}{M_{c, R d}}=\frac{36.69}{126.67}=\mathbf{0 . 2 9}<1$ The bending resistance of the section is adequate	$\frac{M_{E d}}{M_{c, R d}}=0.29$
12	6.2.8(2)	Check for combination of shear and bending failure: $\frac{V_{E d}}{V_{p l, R d}}=\frac{29.35}{318.25}=\mathbf{0 . 0 9}<0.5$ Reduction in bending resistance is not required	
13		This step is skipped as reduction in bending resistance is not required	
14		This step is skipped as reduction in bending resistance is not required	
15		For SLS, partial factor of safety for both permanent action and variable action selected is 1.0 . Serviceability load, $w_{\text {ser }}$ $\begin{aligned} & =1.0 G_{k}+1.0 Q_{k} \\ & =1.0(5.36)+1.0(3) \\ & =8.36 \mathrm{kN} / \mathrm{m} \end{aligned}$ For simply supported beam, maximum deflection can be determined using equation below: Maximum deflection, $\Delta_{\max }$ $\begin{aligned} & =\frac{5 w L^{4}}{384 E I} \\ & =\frac{5 \times 8.36 \times 10^{3} \times 5^{4}}{384 \times 210 \times 10^{9} \times 7171 \times 10^{-8}} \\ & =4.52 \times 10^{-3} \mathrm{~m} \\ & =\mathbf{4 . 5 2} \mathbf{~ m m} \end{aligned}$	$\Delta_{\max }=4.52 \mathrm{~mm}$
16	NA2.23	Assume the beam carries plaster of other brittle finishes: Allowable deflection, $\Delta_{\text {all }}$ $\begin{aligned} & =\frac{L}{360} \\ & =\frac{5}{360} \\ & =0.01389 \mathrm{~m} \\ & =\mathbf{1 3 . 8 9} \mathbf{~ m m} \end{aligned}$	$\Delta_{\text {all }}=13.89 \mathrm{~mm}$
17		$\begin{aligned} & \frac{\Delta_{\max }}{\Delta_{\text {all }}}=\frac{4.52}{13.89}=\mathbf{0 . 3 3}<1 \\ & \text { The deflection is allowable } \end{aligned}$	$\frac{\Delta_{\max }}{\Delta_{\text {all }}}=0.33$
18		Check the following ratio: $\begin{aligned} & \frac{V_{E d}}{V_{p l, R d}}=\frac{29.35}{318.25}=\mathbf{0 . 0 9} \\ & \frac{M_{E d}}{M_{c, R d}}=\frac{36.69}{126.67}=\mathbf{0 . 2 9} \\ & \frac{\Delta_{\max }}{\Delta_{\text {all }}}=\frac{4.52}{13.89}=\mathbf{0 . 3 3} \end{aligned}$ All ratios are significantly small. Therefore, the beam section $305 \times 127 \times 37$ is not optimum	

Step 3 is repeated in the design process because the optimum section is required (Fig. 2.4).

Step	Reference	Action/calculation	Conclusion
3		Steel grade $=\mathbf{S 2 3 5}$ Assume the thicknesses of web and flange are less than 40 mm : $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$
	$\begin{aligned} & \text { BS 4 Part } \\ & 12005 \end{aligned}$	Select beam section $\mathbf{2 5 4} \times \mathbf{1 0 2} \times \mathbf{2 2}$ The properties of the section is as follows: Mass per meter $=22 \mathrm{~kg} / \mathrm{m}$ Depth of section, $D=254.0 \mathrm{~mm}$ Width of section, $b=101.6 \mathrm{~mm}$ Thickness of web, $t_{w}=5.7 \mathrm{~mm}$ Thickness of flange, $t_{f}=6.8 \mathrm{~mm}$ Root radius, $r=7.6 \mathrm{~mm}$ Depth between fillets, $d=225.2 \mathrm{~mm}$ Second moment of area about major ($y-y$) axis, I_{y} $=2841 \mathrm{~cm}^{4}$ Elastic modulus about major ($y-y$) axis, $W_{e l, y}$ $=224 \mathrm{~cm}^{3}$ Plastic modulus about major $(y-y)$ axis, $W_{p l, y}$ $=259 \mathrm{~cm}^{3}$ Area of section, $A=28.0 \mathrm{~cm}^{2}$	
4		Self-weight of beam section $\begin{aligned} & =22 \mathrm{~kg} / \mathrm{m} \times 9.81 \mathrm{~N} / \mathrm{kg} \\ & =\mathbf{0 . 2 2} \mathbf{k N} / \mathbf{m} \end{aligned}$	
		For ULS, partial factor of safety for both permanent action and variable action selected are 1.35 and 1.5 respectively. Ultimate load, $w_{u l t}$ $\begin{aligned} & =1.35 G_{k}+1.5 Q_{k} \\ & =1.35(5+0.22)+1.5(3) \\ & =\mathbf{1 1 . 5 5} \mathbf{k N} / \mathbf{m} \end{aligned}$	Design $\text { load }=11.55 \mathrm{kN} / \mathrm{m}$
		For simply supported beam, $V_{E d}$ and $M_{E d}$ can be determined using equation below: $\begin{aligned} & V_{E d} \\ & =\frac{w_{u l l} L}{2} \\ & =\frac{11.55 \times 5}{2} \\ & =\mathbf{2 8 . 8 8} \mathbf{~ k N} \end{aligned}$	$V_{E d}=28.88 \mathrm{kN}$
		$\begin{aligned} & M_{E d} \\ & =\frac{w_{u l t} L^{2}}{8} \\ & =\frac{11.55 \times 5^{2}}{8} \\ & =\mathbf{3 6 . 0 9} \mathbf{~ k N m} \end{aligned}$	$M_{E d}=36.09 \mathrm{kNm}$

(continued)

Step	Reference	Action/calculation	Conclusion
5	Table 5.2	Section classification: i. $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=1$ Class 1 ii. Rolled section, outstand flange: $\begin{aligned} c & =\frac{b-t_{w}-2 r}{2} \\ & =\frac{101.6-5.7-2(7.6)}{2} \\ & =40.35 \mathrm{~mm} \\ t_{f} & =6.8 \mathrm{~mm} \\ \frac{c}{t_{f}} & =\frac{40.35}{6.8}=5.93<9 \epsilon(=9) \end{aligned}$ Class 1 iii. Rolled section, web with neutral axis at mid depth: $\begin{aligned} c^{*} & =d \\ & =225.2 \mathrm{~mm} \\ t_{w} & =5.7 \mathrm{~mm} \\ \frac{c^{*}}{t_{w}} & =\frac{225.2}{5.7}=39.51<72 \epsilon(=72) \end{aligned}$ Class 1 Therefore, the section is class 1	Section class 1
6	6.2.6(3)	For I beam with load applied on flange, consider the case of rolled I sections with load parallel to web: Shear area, A_{v} $\begin{aligned} & =A-2 b t_{f}+\left(t_{w}+2 r\right) t_{f} \\ & =28 \times 10^{2}-2(101.6)(6.8)+(5.7+2(7.6))(6.8) \\ & =1560.36 \mathrm{~mm}^{2} \end{aligned}$	
	6.2.6(2)	$\begin{aligned} & V_{p l, R d}=\frac{A_{l}\left(f_{y} / \sqrt{3}\right)}{\gamma_{2}} \\ & =\frac{1560.36 \times 235}{\sqrt{3}} \\ & =\mathbf{2 1 1 . 7 1} \mathbf{~ k N} \end{aligned}$	$V_{p l, R d}=211.71 \mathrm{kN}$
7		$\frac{V_{E L}}{V_{p l, L_{d}}}=\frac{28.88}{211.71}=\mathbf{0 . 1 4}<1$ The shear resistance of the section is adequate	$\frac{V_{E d}}{V_{p l, L, d}}=0.14$
8	6.2.6(6)	Check for shear buckling failure: $\begin{aligned} h_{w} & =d+2 r \\ & =225.2+2(7.6) \\ & =240.4 \mathrm{~mm} \\ t_{w} & =5.7 \mathrm{~mm} \\ \frac{h_{w}}{t_{w}} & =\frac{240.4}{5.7}=42.18<72 \frac{\epsilon}{\eta}(=72) \end{aligned}$ Shear buckling check is not required	
9		This step is skipped as shear buckling check is not required	
10	6.2.5(2)	For Class 1 section, Bending moment resistance, $M_{c, R d}=M_{p l, R d}$ $\begin{aligned} & =\frac{W_{p l, f_{y}}}{\gamma_{M 0}} \\ & =\frac{259 \times 10^{-6} \times 235 \times 10^{6}}{1} \\ & =\mathbf{6 0 . 8 7} \mathbf{~ k N m} \end{aligned}$	$M_{c, R d}=60.87 \mathrm{kNm}$

(continued)

Step	Reference	Action/calculation	Conclusion
11		$\frac{M_{E d}}{M_{c R d}}=\frac{36.08}{60.87}=\mathbf{0 . 5 9}<1$ The bending resistance of the section is adequate	$\frac{M_{E d}}{M_{c \cdot d}}=0.59$
12	6.2.8(2)	Check for combination of shear and bending failure: $\frac{V_{E d}}{V_{p l, L d}}=\frac{28.88}{211.71}=\mathbf{0 . 1 4}<0.5$ Reduction in bending resistance is not required	
13		This step is skipped as reduction in bending resistance is not required	
14		This step is skipped as reduction in bending resistance is not required	
15		For SLS, partial factor of safety for both permanent action and variable action selected is 1.0 Serviceability load, $w_{\text {ser }}$ $\begin{aligned} & =1.0 G_{k}+1.0 Q_{k} \\ & =1.0(5.22)+1.0(3) \\ & =8.22 \mathrm{kN} / \mathrm{m} \end{aligned}$ For simply supported beam, maximum deflection can be determined using equation below: Maximum deflection, $\Delta_{\text {max }}$ $\begin{aligned} & =\frac{5 w L^{4}}{384 E I} \\ & =\frac{58.22 \times 10^{3} \times 5^{4}}{384 \times 210 \times 10^{\times 2841 \times 10^{-8}}} \\ & =0.01121 \mathrm{~m} \\ & =\mathbf{1 1 . 2 1} \mathbf{~ m m} \end{aligned}$	$\Delta_{\text {max }}=11.21 \mathrm{~mm}$
16	NA2.23	Assume the beam carries plaster of other brittle finishes, Allowable deflection, $\Delta_{\text {all }}$ $\begin{aligned} & =\frac{L}{360} \\ & =\frac{5}{360} \\ & =0.01389 \mathrm{~m} \\ & =\mathbf{1 3 . 8 9} \mathbf{~ m m} \end{aligned}$	$\Delta_{\text {all }}=13.89 \mathrm{~mm}$
17		$\frac{\Delta_{\text {max }}}{\Delta_{a l l}}=\frac{11.21}{13.89}=\mathbf{0 . 8 1}<1$ The deflection is allowable	$\frac{\Delta_{\text {max }}}{\Delta_{a l}}=0.81$
18		Check the following ratio: Although the value of $\frac{V_{E d}}{V_{p l, L d}}$ is significantly small, but the value of $\frac{M_{E d}}{M_{C, k d}}$ is greater than 0.5 and the value of $\frac{\Delta_{\text {axx }}}{\Delta_{a l l}}$ is approaching 1 . Therefore, the beam section $254 \times 102 \times 22$ is optimum	

Fig. 2.4 Result for Example 2-1 using steel design based on EC3 program

2.2.3 Example 2-2 Design of a Laterally Restrained Beam

Check the suitability of a $305 \times 102 \times 25$ section for a beam 7 m in length and subjected to a uniform load (Fig. 2.5). Use steel grade S235. Assume the beam is laterally restrained and sits on 100 mm bearings at each end. Take the self-weight of the beam into account (Fig. 2.6).

Fig. 2.5 Example 2-2

Fig. 2.6 Result for Example 2-2 using steel design based on EC3 program

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-1 unless otherwise stated	From figure, the beam is simply supported	
2		Permanent action, $\boldsymbol{G}_{\boldsymbol{k}}=\mathbf{3} \mathbf{k N} / \mathbf{m}$ Variable action, $\boldsymbol{Q}_{\boldsymbol{k}}=\mathbf{2} \mathbf{k N} / \mathbf{m}$	
3	Table 3.1	Steel grade $=\mathbf{S 2 3 5}$ Assume the thicknesses of web and flange are less than 40 mm : $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$
	BS 4 Part 12005	Try the following beam section: Select beam section $\mathbf{3 0 5} \times \mathbf{1 0 2} \times \mathbf{2 5}$ The properties of the section is as follows: Mass per meter $=24.8 \mathrm{~kg} / \mathrm{m}$ Depth of section, $D=305.1 \mathrm{~mm}$ Width of section, $b=101.6 \mathrm{~mm}$ Thickness of web, $t_{w}=5.8 \mathrm{~mm}$ Thickness of flange, $t_{f}=7.0 \mathrm{~mm}$ Root radius, $r=7.6 \mathrm{~mm}$ Depth between fillets, $d=275.9 \mathrm{~mm}$ Second moment of area about major ($y-y$) axis, $I y$ $=4455 \mathrm{~cm}^{4}$ Elastic modulus about major ($y-y$) axis, Wel, y $=292 \mathrm{~cm}^{3}$ Plastic modulus about major ($y-y$) axis, Wpl,y $=342 \mathrm{~cm}^{3}$ Area of section, $A=31.6 \mathrm{~cm}^{2}$	

(continued)

Step	Reference	Action/calculation	Conclusion
4		Self-weight of beam section $=24.8 \mathrm{~kg} / \mathrm{m} \times 9.81 \mathrm{~N} / \mathrm{kg}$ $=0.24 \mathrm{kN} / \mathrm{m}$ For ULS, partial factor of safety for both permanent action and variable action selected are 1.35 and 1.5 respectively Ultimate load, $w_{\text {ult }}$ $\begin{aligned} & =1.35 G_{k}+1.5 Q_{k} \\ & =1.35(3+0.24)+1.5(2) \\ & =\mathbf{7 . 3 7} \mathbf{~ k N} / \mathbf{m} \end{aligned}$	$\begin{aligned} & \text { Design } \\ & \text { load = } 7.37 \mathrm{kN} / \mathrm{m} \end{aligned}$
		For simply supported beam, $V_{E d}$ and $M_{E d}$ can be determined using equation below: $V_{E d}$ $\begin{aligned} & =\frac{w_{u l t} L}{2} \\ & =\frac{7.3 \times 7}{2} \\ & =\mathbf{2 5 . 8 2} \mathbf{~ k N} \end{aligned}$	$V_{E d}=25.82 \mathrm{kN}$
		$\begin{aligned} & M_{E d} \\ & =\frac{w_{u u L^{2}}^{8}}{8} \\ & =\frac{7.37 \times 7^{2}}{8} \\ & =\mathbf{4 5 . 1 4} \mathbf{~ k N m} \end{aligned}$	$M_{E d}=45.14 \mathrm{kNm}$
5	Table 5.2	Section classification: i. $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=1$ Class 1 ii. Rolled section, outstand flange: $\begin{aligned} c & =\frac{b-t_{v}-2 r}{2} \\ & =\frac{101.6-5.8-2(7.6)}{2} \\ & =40.30 \mathrm{~mm} \\ t_{f} & =7 \mathrm{~mm} \\ \frac{c}{t_{f}} & =\frac{40.30}{7}=5.76<9 \epsilon(=9) \end{aligned}$ Class 1 iii. Rolled section, web with neutral axis at mid depth: $\begin{aligned} c^{*} & =d \\ & =275.9 \mathrm{~mm} \\ t_{w} & =5.8 \mathrm{~mm} \\ \frac{c^{*}}{t_{w}} & =\frac{275.9}{5.8}=47.57<72 \epsilon(=72) \end{aligned}$ Class 1 Therefore, the section is class 1	Section class 1
6	6.2.6(3)	For I beam with load applied on flange, consider the case of rolled I sections with load parallel to web: Shear area, A_{v} $\begin{aligned} & =A-2 b t_{f}+\left(t_{w}+2 r\right) t_{f} \\ & =31.6 \times 10^{2}-2(101.6)(7)+(5.8+2(7.6))(7) \\ & =1884.60 \mathrm{~mm}^{2} \end{aligned}$	
	6.2.6(2)	$\begin{aligned} & V_{p l, R d}=\frac{A_{v}\left(f_{l} / \sqrt{3}\right)}{\gamma_{M 0}} \\ & =\frac{1884.60 \times 235}{\sqrt{3}} \\ & =\mathbf{2 5 5 . 7 0} \mathbf{~ k N} \end{aligned}$	$V_{p l, R d}=255.70 \mathrm{kN}$

(continued)

Step	Reference	Action/calculation	Conclusion
7		$\frac{V_{E d}}{V_{p l, R d}}=\frac{25.82}{255.70}=\mathbf{0 . 1 0}<1$ The shear resistance is adequate	$\frac{V_{E d}}{V_{p l, R d}}=0.10$
8	6.2.6(6)	Check for shear buckling failure: $\begin{aligned} h_{w} & =d+2 r \\ & =275.9+2(7.6) \\ & =291.1 \mathrm{~mm} \\ t_{w} & =5.8 \mathrm{~mm} \\ \frac{h_{w}}{t_{w}} & =\frac{291.1}{5.8}=50.19<72 \frac{\epsilon}{\eta}(=72) \end{aligned}$ Shear buckling check is not required	
9		This step is skipped as shear buckling check is not required	
10	6.2.5(2)	For Class 1 section, Bending moment resistance, $M_{c, R d}=M_{p l, R d}$ $\begin{aligned} & =\frac{W_{p} f_{y}}{\gamma_{M 0}} \\ & =\frac{342 \times 10^{-6} \times 235 \times 10^{6}}{1} \\ & =\mathbf{8 0 . 3 7} \mathbf{~ k N m} \end{aligned}$	$M_{c, R d}=80.37 \mathrm{kNm}$
11		$\begin{aligned} & \frac{M_{E d}}{M_{c, R d}}=\frac{45.14}{80.37}=\mathbf{0 . 5 6}<1 \\ & \text { The bending resistance of the section is adequate } \end{aligned}$	$\frac{M_{E d}}{M_{c, R d}}=0.56$
12	6.2.8(2)	Check for combination of shear and bending failure: $\frac{V_{E d}}{V_{p l, R d}}=\frac{25.82}{255.70}=0.10<0.5$ Reduction in bending resistance is not required	
13		This step is skipped as reduction in bending resistance is not required	
14		This step is skipped as reduction in bending resistance is not required	
15		For SLS, partial factor of safety or both permanent action and variable action selected is 1.0. Serviceability load, $w_{\text {ser }}$ $\begin{aligned} & =1.0 G_{k}+1.0 Q_{k} \\ & =1.0(3.24)+1.0(2) \\ & =5.24 \mathrm{kN} / \mathrm{m} \end{aligned}$ For simply supported beam, maximum deflection can be determined using equation below: Maximum deflection, $\Delta_{\max }$ $\begin{aligned} & =\frac{5 w L^{4}}{384 E I} \\ & =\frac{5 \times 5.24 \times 10^{3} \times 7^{4}}{384 \times 210 \times 10^{9} \times 4455 \times 10^{-8}} \\ & =0.01751 \mathrm{~m} \\ & =\mathbf{1 7 . 5 1 ~ m m} \end{aligned}$	$\Delta_{\text {max }}=17.51 \mathrm{~mm}$

(continued)

Step	Reference	Action/calculation	Conclusion
16	NA2.23	Assume the beam carries plaster of other brittle finishes, Allowable deflection, $\Delta_{\text {all }}$ $\begin{aligned} & =\frac{L}{360} \\ & =\frac{7}{360} \\ & =0.01944 \mathrm{~m} \\ & =\mathbf{1 9 . 4 4 \mathbf { ~ m m }} \end{aligned}$	$\Delta_{\text {all }}=19.44 \mathrm{~mm}$
17		$\frac{\Delta_{\max }}{\Delta_{\text {all }}}=\frac{17.51}{19.44}=\mathbf{0 . 9 0}<1$ The deflection is allowable	$\frac{\Delta_{\text {max }}}{\Delta_{a l l}}=0.90$
18		Check the following ratio: $\begin{aligned} & \frac{V_{E d}}{V_{p l, R d}}=\frac{25.82}{255.70}=\mathbf{0 . 1 0} \\ & \frac{M_{E d}}{M_{c, R d}}=\frac{45.14}{80.37}=\mathbf{0 . 5 6} \\ & \frac{\Delta_{\max }}{\Delta_{\text {all }}}=\frac{17.51}{19.44}=\mathbf{0 . 9 0} \end{aligned}$ The section is suitable for the condition. Other than that, the value of $\frac{\Delta_{\text {max }}}{\Delta_{\text {al }}}$ is approaching 1, while the value of $\frac{M_{E d}}{M_{c} \cdot R d}$ is 0.5 . Therefore, the beam section $305 \times 102 \times 25$ is optimum	

2.2.4 Example 2-3 Design of a Laterally Restrained Beam

Check the suitability of a $305 \times 102 \times 28$ section for the propped cantilever beam 8 m in length and subjected to a uniform load (Fig. 2.7). Use steel grade S235, and assume the beam is laterally restrained. Ignore the self-weight of the beam. If the said section is not suitable, briefly describe the action to be taken to make the section suitable for this condition.

Fig. 2.7 Example 2-3

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-1 unless otherwise stated	From figure, the support condition of beam is fixed-pinned	
2		Permanent action, $\boldsymbol{G}_{\boldsymbol{k}}=\mathbf{4} \mathbf{k N} / \mathbf{m}$ Variable action, $\boldsymbol{Q}_{\boldsymbol{k}}=\mathbf{5} \mathbf{k N} / \mathrm{m}$	
3	Table 3.1	Steel grade $=\mathbf{S 2 3 5}$ Assume the thicknesses of web and flange are less than 40 mm : $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$
	BS 4 Part 12005	Try the following beam section: Select beam section $\mathbf{3 0 5} \times \mathbf{1 0 2} \times \mathbf{2 8}$ The properties of the section is as follows: Mass per meter $=28.2 \mathrm{~kg} / \mathrm{m}$ Depth of section, $D=308.7 \mathrm{~mm}$ Width of section, $b=101.8 \mathrm{~mm}$ Thickness of web, $t_{w}=6.0 \mathrm{~mm}$ Thickness of flange, $t_{f}=8.8 \mathrm{~mm}$ Root radius, $r=7.6 \mathrm{~mm}$ Depth between fillets, $d=275.9 \mathrm{~mm}$ Second moment of area about major ($y-y$) axis, $I y$ $=5366 \mathrm{~cm}^{4}$ Elastic modulus about major ($y-y$) axis, Wel,y $=348 \mathrm{~cm}^{3}$ Plastic modulus about major (y-y) axis, Wpl,y $=403 \mathrm{~cm}^{3}$ Area of section, $A=35.9 \mathrm{~cm}^{2}$	
4		For ULS, partial factor of safety for both permanent action and variable action selected are 1.35 and 1.5 respectively Ultimate load, $w_{u l t}$ $\begin{aligned} & =1.35 G_{k}+1.5 Q_{k} \\ & =1.35(4)+1.5(5) \\ & =\mathbf{1 2 . 9 0} \mathbf{k N} / \mathbf{m} \end{aligned}$	Design $\text { load }=12.90 \mathrm{kN} / \mathrm{m}$
		For propped cantilever (beam with fixed-pinned support condition), $V_{E d}$ and $M_{E d}$ can be determined using equation below: $\begin{aligned} & V_{E d} \\ & =\frac{5 w_{w l t} L}{8} \\ & =\frac{5 \times 12.90 \times 8}{8} \\ & =\mathbf{6 4 . 5 0} \mathbf{~ k N} \end{aligned}$	$V_{E d}=64.50 \mathrm{kN}$

(continued)

Step	Reference	Action/calculation	Conclusion
		$\begin{aligned} & M_{E d} \\ & =\frac{w_{u L L} L^{2}}{8} \\ & =\frac{12.90 \times 8^{2}}{8.20} \\ & =\mathbf{1 0 3 . 2 0} \mathbf{~ k N m} \end{aligned}$	$M_{E d}=103.20 \mathrm{kNm}$
5	Table 5.2	Section classification: i. $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=1$ Class 1 ii. Rolled section, outstand flange: $\begin{aligned} c & =\frac{b-t_{v}-2 r}{2} \\ & =\frac{101.8-6-2(7.6)}{2} \\ & =40.3 \mathrm{~mm} \\ t_{f} & =8.8 \mathrm{~mm} \\ \frac{c}{t_{f}} & =\frac{40.3}{8.8}=4.58<9 \epsilon(=9) \end{aligned}$ Class 1 iii. Rolled section, web with neutral axis at mid depth: $\begin{aligned} & c^{*}=d \\ & \quad=275.9 \mathrm{~mm} \\ & t_{w}=6 \mathrm{~mm} \\ & \frac{c^{*}}{t_{w}}=\frac{275.9}{6}=45.98<72 \epsilon(=72) \end{aligned}$ Class 1 Therefore, the section is class 1	Section class 1
6	6.2.6(3)	For I beam with load applied on flange, consider the case of rolled I sections with load parallel to web: Shear area, A_{v} $\begin{aligned} & =A-2 b t_{f}+\left(t_{w}+2 r\right) t_{f} \\ & =35.9 \times 10^{2}-2(101.8) \\ & (8.8)+(6+2(7.6))(8.8) \\ & =1984.88 \mathrm{~mm}^{2} \end{aligned}$	
	6.2.6(2)	$\begin{aligned} & V_{p l, R d}=\frac{A_{v}\left(f_{f} / \sqrt{3}\right)}{V_{M 0}} \\ & =\frac{1984.88 \times 235}{\sqrt{3}} \\ & =\mathbf{2 6 9 . 3 0} \mathbf{~ k N} \end{aligned}$	$V_{p l, R d}=269.30 \mathrm{kN}$
7		$\frac{V_{E d}}{V_{P l, R d}}=\frac{64.50}{269.30}=\mathbf{0 . 2 4}<1$ The shear resistance is adequate	$\frac{V_{E d}}{V_{p l, R d}}=0.24$
8	6.2.6(6)	Check for shear buckling failure: $\begin{aligned} h_{w} & =d+2 r \\ & =275.9+2(7.6) \\ & =291.1 \mathrm{~mm} \\ t_{w} & =6 \mathrm{~mm} \\ \frac{h_{w}}{t_{w}} & \frac{291.1}{6}=48.52<72 \frac{\epsilon}{\eta}(=72) \end{aligned}$ Shear buckling check is not required	

(continued)

Step	Reference	Action/calculation	Conclusion
9		This step is skipped as shear buckling check is not required	
10	6.2.5(2)	For Class 1 section, Bending moment resistance, M_{c}, $\begin{aligned} & \mathrm{Rd}=\mathrm{M}_{\mathrm{pl}, \mathrm{Rd}} \\ & =\frac{W_{p} \mid{ }_{20}}{\gamma_{M 0}} \\ & =\frac{403 \times 10^{-6} \times 235 \times 10^{6}}{2} \\ & =\mathbf{9 4 . 7 1} \mathbf{~ k N m} \end{aligned}$	$M_{c, R d}=94.71 \mathrm{kNm}$
11		$\frac{M_{E d}}{M_{c k d}}=\frac{103.20}{94.71}=\mathbf{1 . 0 9}>1$ The bending resistance of the section is not adequate	$\frac{M_{E d}}{M_{c, R d}}=1.09$

The section specified is not suitable for the situation. Besides selecting a larger section, higher-grade steel such as grade S275 can be used.

Step	Reference	Action/calculation	Conclusion
3		Steel grade = S275 The thicknesses of web and flange are 6.0 mm and 8.8 mm , which are less than 40 mm $\boldsymbol{f}_{\boldsymbol{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
	$\begin{aligned} & \text { BS } 4 \text { Part } \\ & 12005 \end{aligned}$	Use beam section $\mathbf{3 0 5} \times \mathbf{1 0 2} \times \mathbf{2 8}$ The properties of the section is as follows: Mass per meter $=28.2 \mathrm{~kg} / \mathrm{m}$ Depth of section, $D=308.7 \mathrm{~mm}$ Width of section, $b=101.8 \mathrm{~mm}$ Thickness of web, $t_{w}=6.0 \mathrm{~mm}$ Thickness of flange, $t_{f}=8.8 \mathrm{~mm}$ Root radius, $r=7.6 \mathrm{~mm}$ Depth between fillets, $d=275.9 \mathrm{~mm}$ Second moment of area about major $(y-y)$ axis, Iy $=5366 \mathrm{~cm}^{4}$ Elastic modulus about major ($y-y$) axis, Wel, y $=348 \mathrm{~cm}^{3}$ Plastic modulus about major ($y-y$) axis, Wpl,y $=403 \mathrm{~cm}^{3}$ Area of section, $A=35.9 \mathrm{~cm}^{2}$	
4		From previous calculation, Ultimate load, $w_{\text {ult }}$ $=12.90 \mathrm{kN} / \mathrm{m}$	Design $\text { load }=12.90 \mathrm{kN} / \mathrm{m}$
		$\begin{aligned} & V_{E d} \\ & =\mathbf{6 4 . 5 0} \mathbf{~ k N} \end{aligned}$	$V_{E d}=64.50 \mathrm{kN}$
		$\begin{aligned} & M_{E d} \\ & =\mathbf{1 0 3 . 2 0} \mathbf{~ k N m} \end{aligned}$	$M_{E d}=103.20 \mathrm{kNm}$

(continued)

Step	Reference	Action/calculation	Conclusion
5	Table 3.1	Section classification: i. $f_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=0.92$ Class 2 ii. Rolled section, outstand flange: $\begin{aligned} c & =\frac{b-t_{v}-2 r}{2} \\ & =\frac{101.8-6-2(7.6)}{2} \\ & =40.3 \mathrm{~mm} \\ t_{f} & =8.8 \mathrm{~mm} \\ \frac{c}{t_{f}} & =\frac{40.3}{8.8}=4.58<9 \epsilon(=8.28) \end{aligned}$ Class 1 iii. Rolled section, web with neutral axis at mid depth: $\begin{aligned} & c^{*}=d \\ & \quad=275.9 \mathrm{~mm} \\ & t_{w}=6 \mathrm{~mm} \\ & \frac{c^{*}}{t_{w}}=\frac{275.9}{6}=45.98<72 \epsilon(=66.24) \end{aligned}$ Class 1 Therefore, the section is class 2	Section class 2
6	6.2.6(3)	For I beam with load applied on flange, consider the case of rolled I sections with load parallel to web: Shear area, A_{v} $\begin{aligned} & =A-2 b t_{f}+\left(t_{w}+2 r\right) t_{f} \\ & =35.9 \times 10^{2}-2(101.8)(8.8)+(6+2(7.6)) \\ & (8.8) \\ & =1984.88 \mathrm{~mm}^{2} \end{aligned}$	
	6.2.6(2)	$\begin{aligned} & V_{p l, R d}=\frac{A_{v}\left(f_{y} / \sqrt{3}\right)}{\gamma_{M 0}} \\ & =\frac{1984.88 \times 275}{\sqrt{3}} \\ & =\mathbf{3 1 5 . 1 4} \mathbf{~ k N} \end{aligned}$	$V_{p l, R d}=315.14 \mathrm{kN}$
7		$\begin{aligned} & \frac{V_{E d}}{V_{p l, R d}}=\frac{64.50}{315.14}=\mathbf{0 . 2 0}<1 \\ & \text { The shear resistance is adequate } \end{aligned}$	$\frac{V_{E d}}{V_{p l, k d}}=0.20$
8	6.2.6(6)	Check for shear buckling failure: $\begin{aligned} h_{w} & =d+2 r \\ & =275.9+2(7.6) \\ & =291.1 \mathrm{~mm} \\ t_{w} & =6 \mathrm{~mm} \\ \frac{h_{w}}{t_{w}} & =\frac{291.1}{6}=48.52<72 \frac{\epsilon}{\eta}(=72) \end{aligned}$ Shear buckling check is not required	

(continued)

Step	Reference	Action/calculation	Conclusion
9		This step is skipped as shear buckling check is not required	
10	6.2.5(2)	For Class 2 section, Bending moment resistance, $M_{c, R d}=M_{p l, R d}$ $\begin{aligned} & =\frac{W_{p l} f_{y}}{\gamma_{M 0}} \\ & =\frac{403 \times 10^{-6} \times 275 \times 10^{6}}{1} \\ & =\mathbf{1 1 0 . 8 3} \mathbf{~ k N m} \end{aligned}$	$M_{c, R d}=110.83 \mathrm{kNm}$
11		$\frac{M_{E d}}{M_{c, R d}}=\frac{103.20}{110.83}=\mathbf{0 . 9 3}<1$ The bending resistance of the section is adequate	$\frac{M_{E d}}{M_{c, R d}}=0.93$
12	6.2.8(2)	Check for combination of shear and bending failure: $\frac{V_{E d}}{V_{p l, R d}}=\frac{64.50}{315.14}=\mathbf{0 . 2 0}<0.5$ Reduction in bending resistance is not required	
13		This step is skipped as reduction in bending resistance is not required	
14		This step is skipped as reduction in bending resistance is not required	
15		For SLS, partial factor of safety or both permanent action and variable action selected is 1.0 . Serviceability load, $w_{\text {ser }}$ $\begin{aligned} & =1.0 G_{k}+1.0 Q_{k} \\ & =1.0(4)+1.0(5) \\ & =9 \mathrm{kN} / \mathrm{m} \end{aligned}$ For propped cantilever, maximum deflection can be determined using equation below: Maximum deflection, $\Delta_{\max }$ $\begin{aligned} & =\frac{w L^{4}}{185 E I} \\ & =\frac{9 \times 10^{3} \times 8^{4}}{185 \times 210 \times 10^{9} \times 5366 \times 10^{-8}} \\ & =0.01768 \mathrm{~m} \\ & =\mathbf{1 7 . 6 8 ~ m m} \end{aligned}$	$\Delta_{\text {max }}=17.68 \mathrm{~mm}$
16	NA2.23	Assume the beam carries plaster of other brittle finishes, Allowable deflection, $\Delta_{\text {all }}$ $\begin{aligned} & =\frac{L}{360} \\ & =\frac{8}{360} \\ & =0.02222 \mathrm{~m} \\ & =\mathbf{2 2 . 2 2} \mathbf{~ m m} \end{aligned}$	$\Delta_{\text {all }}=22.22 \mathrm{~mm}$

(continued)

Step	Reference	Action/calculation	Conclusion
17		$\frac{\Delta_{\text {max }}}{\Delta_{\text {al }}}=\frac{17.68}{22.22}=0.80<1$ The deflection is allowable	$\frac{\Delta_{\text {max }}}{\Delta_{\text {al }}}=0.80$
18		Check the following ratio: $\left\{\begin{array}{l} \frac{V_{E d}}{V_{\text {pl, }, d}}=\frac{64.50}{315.14}=\mathbf{0 . 2 0} \\ \frac{M_{E d}}{M_{c, R d}}=\frac{103.20}{110.83}=\mathbf{0 . 9 3} \\ \frac{\Delta_{\text {max }}}{\Delta_{\text {all }}}=\frac{17.68}{22.22}=\mathbf{0 . 8 0} \end{array}\right.$ By increase the steel grade, the beam section become adequate. The values of $\frac{M_{E d}}{M_{c, R d}}$ and $\frac{\Delta_{\text {max }}}{\Delta_{a l l}}$ are approaching 1 . Therefore, the beam section $305 \times 102 \times 28$ is optimum	

2.3 Design Procedure for a Laterally Unrestrained Beam

The design procedure for a laterally unrestrained beam is as follows:

1. Determine the support condition (i.e., pin, roller, or fixed at both ends of the beam).
2. Determine the DL and LL that act on the beam.
3. Choose the steel grade (refer to Table 2.1). Refer to BS 4 Part 12005 to choose the beam section for use in construction. A table for the universal beam section and its corresponding properties is provided in Appendix A.2.
4. Perform a structural analysis to determine the maximum shear force $V_{E d}$ and bending moment $M_{E d}$ induced by loading. Prior to the analysis, the partial safety factor for ULS (Table 1.1) is applied to the actions determined in Step 2, including the self-weight of the beam section.
5. Classify the beam section (refer to Table 2.2).
6. Determine the critical buckling moment using the equation below. The support condition influences the effective length of the member subjected to buckling, as shown in Table 2.5 (Refer to Appendix A. 2 for the section properties of the beam sections).

$$
\begin{equation*}
M_{c r}=\frac{\pi^{2} E I_{z}}{(K L)^{2}} \sqrt{\left(\frac{I_{w}}{I_{z}}+\frac{(K L)^{2} G I_{t}}{\pi^{2} E I_{z}}\right)} \tag{2.5}
\end{equation*}
$$

Table 2.5 Values of effective length factor K for different support conditions (BS5950: Part 1 4.7.10)

Support condition	Effective length factor, K
Fixed-fixed	0.7
Fixed-pinned	0.85
Pinned-pinned	1.0
Fixed-free	2.0

where
$E \quad$ is modulus of elasticity of steel $=210 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
I_{z} is second moment of area about $z-z$ axis by referring to Appendix A. 2
K is effective length factor obtained from Step 6 (Table 2.5)
L is length of beam
I_{w} is warping constant by referring to Appendix A. 2
G is shear modulus of steel $=81 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
I_{t} is torsional constant by referring to Appendix A. 2
(SN003b Access Steel document)
7. Determine the slenderness for lateral torsional buckling $\bar{\lambda}_{L T}$ using the equation below.

$$
\bar{\lambda}_{L T}=\left\{\begin{array}{l}
\sqrt{\frac{W_{p l, f_{y}}}{M_{c r}}}, \text { Class } 1 \text { and } 2 \text { sections } \tag{2.6}\\
\sqrt{\frac{W_{e l, f_{y} f_{y}}^{M_{c r}}}{}} \text { Class } 3 \text { sections } \\
\sqrt{\frac{W_{e f f, j}, f_{y}}{M_{c r}}}, \text { Class } 4 \text { sections }
\end{array}\right.
$$

where
$W_{p l, y}$ is plastic section modulus about $y-y$ axis by referring to Appendix A. 2
$W_{e l, y}$ is elastic section modulus about $y-y$ axis by referring to Appendix A. 2
$W_{\text {eff,y }}$ is effective section modulus about $y-y$ axis
$f_{y} \quad$ is yield strength of steel obtained from Step 3 (Table 2.1)
$M_{c r} \quad$ is critical buckling moment obtained from Step 6 (Eq. 2.5)
(BS EN 1993-1-1:2005 6.3.2.2(1))
8. Determine the imperfection factors for lateral-torsional buckling, $\alpha_{L T}$ and $\phi_{L T}$. These values may be determined using two approaches: general case approach, which is applicable to all section types, and rolled section approach, which is

Table 2.6 Values of the imperfection factor $\alpha_{L T}$ for different approaches (BS EN 1993-1-1:2005 Tables 6.3, 5.2, and 5.2)

Rolled I section "General case" approach Limit$\alpha_{L T}$			"Rolled section" approach	
$h / b \leq 2$	0.21	Limit	$\alpha_{L T}$	
$h / b>2$	0.34	$2<h / b \leq 2$	0.34	
		$h / b>3.1$	0.49	

Where h is depth of section by referring to Appendix A. 2 b is width of section by referring to Appendix A. 2
only applicable to rolled sections. The depth of the section is denoted by h. Both approaches may generate values with significant differences.

$$
\phi_{L T}=\left\{\begin{array}{c}
0.5\left[1+\alpha_{L T}\left(\bar{\lambda}_{L T}-0.2\right)+\bar{\lambda}_{L T}^{2}\right], " \text { General Case" approach } \tag{2.7}\\
0.5\left[1+\alpha_{L T}\left(\bar{\lambda}_{L T}-0.4\right)+0.75 \bar{\lambda}_{L T}^{2}\right], \text { "Rolled Section" approach }
\end{array}\right.
$$

where
$\alpha_{L T}$ is imperfection factor obtained from Step 8 (Table 2.6)
$\bar{\lambda}_{L T}$ is slenderness for lateral torsional buckling obtained from Step 7 (Eq. 2.6)
(BS EN 1993-1-1:2005 6.3.2.2(1) and 6.3.2.3(1))
9. Determine the lateral torsional buckling reduction factor $\chi_{L T}$. In case the rolled section approach is used, refer to Table 2.7.

$$
\chi_{L T}=\frac{1}{\phi_{L T}+\sqrt{\phi_{L T}^{2}-\bar{\lambda}_{L T}^{2}}}, \text { "General Case" approach }
$$

For "Rolled Section" approach

$$
\begin{align*}
\chi_{L T} & =\frac{1}{\phi_{L T}+\sqrt{\phi_{L T}^{2}-0.75 \bar{\lambda}_{L T}^{2}}}, \chi_{L T} \leq 1 \text { and } \chi_{L T} \leq \frac{1}{\bar{\lambda}_{L T}^{2}} \\
f & =1-0.5\left(1-K_{c}\right)\left[1-2\left(\bar{\lambda}_{L T}-0.8\right)^{2}\right] \leq 1 \tag{2.8}\\
\chi_{L T, \text { mod }} & =\frac{\chi_{L T}}{f} \leq 1
\end{align*}
$$

where
$\phi_{L T}$ is obtained from Step 8 (Eq. 2.7)
$\bar{\lambda}_{L T}$ is slenderness for lateral torsional buckling obtained from Step 7 (Eq. 2.6)
$K_{C} \quad$ is correlation factor for moment distribution obtained from Step 9 (Table 2.7)
(BS EN 1993-1-1:2005 6.3.2.2(1) and 6.3.2.3(1))
10. Determine the buckling moment resistance. When the rolled section approach is used in the previous steps, $\chi_{L T, \text { mod }}$ should be used instead of $\chi_{L T}$ in the following equation. $\gamma_{M 1}$ should be set as 1.0.

$$
M_{b, R d}=\left\{\begin{array}{l}
\chi_{L T} W_{\text {pl, },} \frac{f_{y}}{\gamma_{M 1}}, \text { Class } 1 \text { and } 2 \text { sections } \tag{2.9}\\
\chi_{L T} W_{\text {el, }, y} \frac{f_{y}}{\gamma_{M 1}}, \text { Class } 3 \text { sections } \\
\chi_{L T} W_{\text {eff }, y, y}^{\frac{f_{y}}{\gamma_{M 1}}, \text { Class } 4 \text { sections }}
\end{array}\right.
$$

Table 2.7 Correlation between moment distribution and K_{c} (BS EN 1993-1-1:2005 Table 6.6)

Where ψ is the ratio of moment at two ends
where
$W_{p l, y}$ is plastic section modulus about $y-y$ axis by referring to Appendix A. 2
$W_{e l, y}$ is elastic section modulus about y - y axis by referring to Appendix A. 2
$W_{\text {eff,y }}$ is effective section modulus about y - y axis
$f_{y} \quad$ is yield strength of steel obtained from Step 3 (Table 2.1)
$\chi_{L T} \quad$ is lateral torsional buckling reduction factor obtained from Step 9 (Eq. 2.8)
(BS EN 1993-1-1:2005 6.3.2.1(3))
11. Compare the design bending moment of the structure and the buckling moment resistance of the section. If the buckling moment resistance of the structure is insufficient, repeat Step 3 to choose a better section. Otherwise, proceed to Step 12.
12. Determine the shear resistance of the section by referring to Table 2.3 and Eq. 2.1.
13. Compare the design shear force on the structure and the shear resistance of the section. If the shear resistance of the structure is insufficient, repeat Step 3 to choose a better section. Otherwise, proceed to Step 14.
14. Determine the maximum deflection of the structure under the loading specified in Step 2. The load combination for this calculation should be any of those specified for the SLS design, as shown in Table 1.1.
15. Determine the allowable deflection of the structure by referring to Table 2.4.
16. Compare the maximum deflection and allowable deflection of the structure. If the deflection of the structure exceeds the allowable deflection, repeat Step 3 to choose a better section. Otherwise, proceed to Step 17.
17. Check whether the section is an overdesign by checking the ratio of design value to resistance for shear and bending and the ratio of maximum deflection to allowable deflection. If both ratios are less than 0.5 , repeat Step 3 and choose a smaller section to ensure optimum design.

2.3.1 Design Flowchart for a Laterally Unrestrained Beam

2.3.2 Example 2-4 Design of a Laterally Unrestrained Beam

Check the suitability of a $457 \times 191 \times 89$ section for a beam 10 m in length and subjected to a uniform load (Fig. 2.8). Use steel grade S235. Assume the beam is laterally unrestrained and sits on 100 mm bearings at each end. Ignore the self-weight of the beam. If the said section is not suitable, briefly describe the action to be taken to make the section suitable for this condition.

Fig. 2.8 Example 2-4

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-1 unless otherwise stated	From figure, the beam is simply supported	
2		Permanent action, $\boldsymbol{G}_{\boldsymbol{k}}=\mathbf{1 0} \mathbf{k N} / \mathbf{m}$ Variable action, $\boldsymbol{Q}_{\boldsymbol{k}}=\mathbf{5} \mathbf{~ k N} / \mathrm{m}$	
3	Table 3.1	Steel grade $=\mathbf{S 2 3 5}$ Assume the thicknesses of web and flange are less than 40 mm : $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$
	BS 4 Part 12005	Try the following beam section: Select beam section $\mathbf{4 5 7} \times \mathbf{1 9 1} \times \mathbf{8 9}$ The properties of the section is as follows: Mass per meter $=89.3 \mathrm{~kg} / \mathrm{m}$ Depth of section, $D=463.4 \mathrm{~mm}$ Width of section, $b=191.9 \mathrm{~mm}$ Thickness of web, $t_{w}=10.5 \mathrm{~mm}$ Thickness of flange, $t_{f}=17.7 \mathrm{~mm}$ Root radius, $r=10.2 \mathrm{~mm}$ Depth between fillets, $d=407.6 \mathrm{~mm}$ Second moment of area about major ($y-y$) axis, $I y$ $=41020 \mathrm{~cm}^{4}$ Second moment of area about minor ($z-z$) axis, $I z$ $=2089 \mathrm{~cm}^{4}$	

(continued)
(continued)

Step	Reference	Action/calculation	Conclusion
		Elastic modulus about major ($y-y$) axis, Wel, y $=1770 \mathrm{~cm}^{3}$ Plastic modulus about major (y - y) axis, Wpl,y $=2014 \mathrm{~cm}^{3}$ Warping constant, $I_{w}=1.04 \mathrm{dm}^{6}$ Torsional constant, $I_{t}=90.7 \mathrm{~cm}^{4}$ Area of section, $A=114 \mathrm{~cm}^{2}$	
4		For ULS, partial factor of safety for both permanent action and variable action selected are 1.35 and 1.5 respectively Ultimate load, $w_{u l t}$ $=1.35 G_{k}+1.5 Q_{k}$ $=1.35(10)+1.5(5)$ $=21.00 \mathrm{kN} / \mathrm{m}$	Design $\text { load }=21.00 \mathrm{kN} / \mathrm{m}$
		For simply supported beam, $V_{E d}$ and $M_{E d}$ can be determined using equation below: $V_{E d}$ $=\frac{w_{m L} L}{2}$ $=\frac{21 \times 10}{2}$ $=\mathbf{1 0 5 . 0 0} \mathbf{k N}$	$V_{E d}=105.00 \mathrm{kN}$
		$\begin{aligned} & M_{E d} \\ & =\frac{w_{u H L}{ }^{2}}{8} \\ & =\frac{21 \times 10^{2}}{8} \\ & =\mathbf{2 6 2 . 5 0} \mathbf{~ k N m} \end{aligned}$	$M_{E d}=262.50 \mathrm{kNm}$
5	Table 5.2	Section classification: i. $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=1$ Class 1 ii. Rolled section, outstand flange: $\begin{aligned} \mathrm{c} & =\frac{b-t_{w}-2 r}{2} \\ & =\frac{191.9-10.5-2(10.2)}{2} \\ & =80.50 \mathrm{~mm} \\ t_{f} & =17.7 \mathrm{~mm} \\ \frac{c}{t_{f}} & =\frac{80.50}{17.7}=4.55<9 \epsilon(=9) \end{aligned}$ Class 1 iii. Rolled section, web with neutral axis at mid depth: $\begin{aligned} c^{*} & =\mathrm{d} \\ & =407.6 \mathrm{~mm} \\ \mathrm{t}_{\mathrm{w}} & =10.5 \mathrm{~mm} \\ \frac{c^{*}}{t_{w}} & =\frac{407.6}{10.5}=38.82<72 \epsilon(=72) \end{aligned}$ Class 1 Therefore, the section is class 1	Section class 1
6	SN003b access steel document	Critical buckling resistance can be determined using equation below. For simply supported beam, effective length factor, K is taken as 1.0: $\begin{aligned} & M_{c r}=\frac{\pi^{2} E I_{z}}{(K L)^{2}} \sqrt{\left(\frac{I_{w}}{I_{z}}+\frac{(K L)^{2} G I_{t}}{\pi^{2} E I_{z}}\right)} \\ &=\frac{\pi^{2} \times 210 \times 10^{9} \times 2089 \times 10^{-8}}{(1.0 \times 10)^{2}} \\ & \times \sqrt{\left(\frac{1.04 \times 10^{-6}}{2089 \times 10^{-8}}+\frac{(1.0 \times 10)^{2} \times 81 \times 10^{9} \times 90.7 \times 10^{-8}}{\pi^{2} \times 210 \times 10^{9} \times 2089 \times 10^{-8}}\right)} \end{aligned}$	$M_{c r}=202.83 \mathrm{kNm}$

Step	Reference	Action/calculation	Conclusion
		$=202.83 \mathrm{kNm}$	
7	6.3.2.2(1)	For Class 1 section, slenderness for lateral torsional buckling can be determined using equation below: $\begin{aligned} \bar{\lambda}_{L T} & =\sqrt{\frac{W_{p l, y f_{y}}}{M_{c r}}} \\ & =\sqrt{\frac{2014 \times 10^{-6} \times 235 \times 10^{6}}{202.83 \times 10^{3}}} \\ & =\mathbf{1 . 5 3} \end{aligned}$	$\bar{\lambda}_{L T}=1.53$
8	Table 6.3 Table 6.4	$\frac{h}{b}=\frac{D}{b}=\frac{463.4}{191.9}=2.41$ Determine imperfection factor using "General Case" approach: $\begin{aligned} \frac{h}{b}= & 2.41>2 \\ \alpha_{L T} & =0.34 \\ \phi_{L T} & =0.5\left[1+\alpha_{L T}\left(\bar{\lambda}_{L T}-0.2\right)+\bar{\lambda}_{L T}^{2}\right] \\ & =0.5\left[1+0.34 \times(1.53-0.2)+(1.53)^{2}\right] \\ & =\mathbf{1 . 8 9} \end{aligned}$	$\phi_{L T}=1.89$
9	6.3.2.2(1)	Lateral torsional buckling reduction factor can be determined using equation below: $\begin{aligned} \chi_{L T} & =\frac{1}{\phi_{L T}+\sqrt{\phi_{L T}^{2}-\bar{\lambda}_{L T}^{2}}} \\ & =\frac{1}{1.89+\sqrt{(1.89)^{2}-(1.53)^{2}}} \\ & =\mathbf{0 . 3 3} \end{aligned}$	$\chi_{L T}=0.33$
10	6.3.2.1(3)	For Class 1 section, $\begin{aligned} M_{b, R d} & =\chi_{L T} W_{p l, y} \frac{f_{y}}{\gamma_{M 1}} \\ & =\frac{0.33 \times 2014 \times 10^{-6} \times 235 \times 10^{6}}{1.0} \\ & =\mathbf{1 5 6 . 1 8} \mathbf{~ k N m} \end{aligned}$	$M_{b, R d}=156.18 \mathrm{kNm}$
11		$\frac{M_{E d}}{M_{b, R d}}=\frac{262.50}{156.18}=1.68>1$ The bending resistance of the section is not adequate	$\frac{M_{E d}}{M_{b, R d}}=1.68$

The section specified is not suitable for the situation. Besides selecting a larger section, higher-grade steel may be selected or the buckling length of the beam may be reduced by providing a secondary beam or support at the mid-span of the beam (Fig. 2.9).

From the program, the optimum section for beam subjected to condition as specified in Example 2-4 is $533 \times 210 \times 122$. This section is obviously larger than proposed $457 \times 191 \times 89$ section. Therefore, the proposed section is inadequate.

2.3.3 Example 2-5 Design of a Laterally Unrestrained Beam

A secondary beam is connected to the mid-span of the primary beam by shear connection. The reaction force of the secondary beam is 30 kN . Select the optimum section for the primary beam 10 m in length (Fig. 2.10). Use steel grade S235.

Fig. 2.9 Result for Example 2-4 using steel design based on EC3 program

Assume the primary beam is laterally unrestrained and sits on 100 mm bearings at each end. Ignore the self-weight of the beam.

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-1 unless otherwise stated	From figure, the beam is simply supported	
2		Permanent action, $\boldsymbol{G}_{\boldsymbol{k}}=\mathbf{1 0} \mathbf{~ k N} / \mathbf{m}$ Variable action, $\boldsymbol{Q}_{\boldsymbol{k}}=\mathbf{5} \mathbf{k N} / \mathbf{m}$	
3	Table 3.1	Steel grade $=\mathbf{S 2 3 5}$ Assume the thicknesses of web and flange are less than 40 mm : $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$
	BS 4 Part 12005	Randomly choose a beam section for the first trial: Select beam section $\mathbf{4 5 7} \times \mathbf{1 9 1} \times \mathbf{8 9}$ The properties of the section is as follows: Mass per meter $=89.3 \mathrm{~kg} / \mathrm{m}$ Depth of section, $D=463.4 \mathrm{~mm}$ Width of section, $b=191.9 \mathrm{~mm}$ Thickness of web, $\mathrm{t}_{\mathrm{w}}=10.5 \mathrm{~mm}$ Thickness of flange, $t_{f}=17.7 \mathrm{~mm}$ Root radius, $\mathrm{r}=10.2 \mathrm{~mm}$ Depth between fillets, $\mathrm{d}=407.6 \mathrm{~mm}$ Second moment of area about major $(y-y) \text { axis, } I y$ $=41020 \mathrm{~cm}^{4}$ Second moment of area about minor $(z-z) \text { axis, } I z$ $=2089 \mathrm{~cm}^{4}$	

(continued)

Step	Reference	Action/calculation	Conclusion
		Elastic modulus about major ($y-y$) axis, Wel, y $=1770 \mathrm{~cm}^{3}$ Plastic modulus about major ($y-y$) axis, Wpl,y $=2014 \mathrm{~cm}^{3}$ Warping constant, $I_{w}=1.04 \mathrm{dm}^{6}$ Torsional constant, $\mathrm{I}_{\mathrm{t}}=90.7 \mathrm{~cm}^{4}$ Area of section, $\mathrm{A}=114 \mathrm{~cm}^{2}$	
4		For ULS, partial factor of safety for both permanent action and variable action selected are 1.35 and 1.5 respectively Uniformly distributed load, $w_{\text {ult }}$ $\begin{aligned} & =1.35 G_{k}+1.5 Q_{k} \\ & =1.35(10)+1.5(5) \\ & =\mathbf{2 1 . 0 0} \mathbf{k N} / \mathbf{m} \end{aligned}$	Design $\mathrm{load}=21.00 \mathrm{kN} / \mathrm{m}$
		By principle of superposition, $V_{E d}$ and $M_{E d}$ for simply supported beam can be determined using equation below: $\begin{aligned} & V_{E d} \\ & =\frac{w_{H H L}}{2}+\frac{R}{2} \\ & =\frac{21 \times 10}{2}+\frac{30}{2} \\ & =\mathbf{1 2 0 . 0 0} \mathbf{~ k N} \end{aligned}$	$V_{E d}=120.00 \mathrm{kN}$
		$\begin{aligned} & M_{E d} \\ & =\frac{w_{u I L} L^{2}}{8}+\frac{R L}{4} \\ & =\frac{21 \times 10^{2}}{8}+\frac{30 \times 10}{4} \\ & =\mathbf{3 3 7 . 5 0} \mathbf{~ k N m} \end{aligned}$	$M_{E d}=337.50 \mathrm{kNm}$
5	Table 5.2	Section classification: i. $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=1$ Class 1 ii. Rolled section, outstand flange: $\begin{aligned} c & =\frac{b-t_{w}-2 r}{2} \\ & =\frac{191.9-10.5-2(10.2)}{2} \\ & =80.50 \mathrm{~mm} \\ t_{f} & =17.7 \mathrm{~mm} \\ \frac{C}{t_{f}} & =\frac{80.50}{17.7}=4.55<9 \epsilon(=9) \end{aligned}$ Class 1 iii. Rolled section, web with neutral axis at mid depth: $\begin{aligned} c^{*} & =d \\ & =407.6 \mathrm{~mm} \\ t_{w} & =10.5 \mathrm{~mm} \\ \frac{c^{*}}{t_{w}} & =\frac{407.6}{10.5}=38.82<72 \epsilon(=72) \end{aligned}$ Class 1 Therefore, the section is class 1	Section class 1
6	SN003b access steel document	Critical buckling resistance can be determined using equation below. For simply supported beam, effective length factor, K is taken as 1.0 The addition of secondary beam divides the primary beam into 2 sections with length of 5 m each. The buckling length is hence reduced to 5 m $\begin{aligned} & M_{c r}=\frac{\pi^{2} E I_{z}}{(K L)^{2}} \sqrt{\left(\frac{I_{w}}{I_{z}}+\frac{(K L)^{2} G I_{t}}{\pi^{2} E I_{z}}\right)} \\ & \quad=\frac{\pi^{2} \times 210 \times 10^{9} \times 2089 \times 10^{-8}}{(1.0 \times 5)^{2}} \\ & \times \sqrt{\left(\frac{1.04 \times 10^{-6}}{2089 \times 10^{-8}}+\frac{(1.0 \times 5)^{2} \times 81 \times 10^{9} \times 90.7 \times 10^{-8}}{\pi^{2} \times 210 \times 10^{9} \times 2089 \times 10^{-8}}\right)} \\ & =\mathbf{5 2 5 . 8 8} \mathbf{~ k N m} \end{aligned}$	$M_{c r}=525.88 \mathrm{kNm}$

(continued)

Step	Reference	Action/calculation	Conclusion
7	6.3.2.2(1)	For Class 1 section, slenderness for lateral torsional buckling can be determined using equation below: $\begin{aligned} \bar{\lambda}_{L T} & =\sqrt{\frac{W_{p l, y, f_{y}}^{M_{c r}}}{}} \\ & =\sqrt{\frac{2014 \times 10^{-6} \times 235 \times 10^{6}}{525.88 \times 10^{3}}} \\ & =\mathbf{0 . 9 5} \end{aligned}$	$\bar{\lambda}_{L T}=0.95$
8	Table 6.3 Table 6.4	$\frac{h}{b}=\frac{D}{b}=\frac{463.4}{191.9}=2.41$ Determine imperfection factor using "General Case" approach: $\begin{aligned} \frac{h}{h}= & 2.41>2 \\ \alpha_{L T} & =0.34 \\ \phi_{L T} & =0.5\left[1+\alpha_{L T}\left(\bar{\lambda}_{L T}-0.2\right)+\bar{\lambda}_{L T}^{2}\right] \\ & =0.5\left[1+0.34 \times(0.95-0.2)+(0.95)^{2}\right] \\ & =\mathbf{1 . 0 8} \end{aligned}$	$\phi_{L T}=1.08$
9	6.3.2.2(1)	Lateral torsional buckling reduction factor can be determined using equation below: $\begin{aligned} \chi_{L T} & =\frac{1}{\phi_{L T}+\sqrt{\phi_{L T}^{2}-\bar{\lambda}_{L T}^{2}}} \\ & =\frac{1}{1.08+\sqrt{(1.08)^{2}-(0.95)^{2}}} \\ & =\mathbf{0 . 6 3} \end{aligned}$	$\chi_{L T}=0.63$
10	6.3.2.1(3)	For class 1 section, $\begin{aligned} M_{b, R d} & =\chi_{L T} W_{p l, y} \frac{f_{y}}{\gamma_{M 1}} \\ & =\frac{0.63 \times 2014 \times 10^{-6} \times 235 \times 10^{6}}{1.0} \\ & =\mathbf{2 9 8 . 1 7} \mathbf{~ k N m} \end{aligned}$	$M_{b, R d}=298.17 \mathrm{kNm}$
11		$\frac{M_{E d}}{M_{b, d d}}=\frac{337.50}{298.17}=\mathbf{1 . 1 3}>1$ The bending resistance of the section is not adequate	$\frac{M_{E d}}{M_{b, R d}}=1.13$

The section specified is not suitable for the situation. Select a larger section and repeat the design.

Step	Reference	Action/calculation	Conclusion		
3	Table 3.1	Steel grade $=\mathbf{S 2 3 5}$ Assume the thicknesses of web and flange are less than $40 \mathrm{~mm}:$ $f_{y}=\mathbf{2 3 5} \mathbf{N} / \mathbf{m m}^{2}$	$f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$		
	BS Part	Select beam section $\mathbf{5 3 3} \times \mathbf{2 1 0} \times \mathbf{1 0 1}$ The properties of the section is as follows: Mass per meter $=101 \mathrm{~kg} / \mathrm{m}$ Depth of section, $D=536.7 \mathrm{~mm}$ Width of section, $b=210 \mathrm{~mm}$ Thickness of web, $t_{w}=10.8 \mathrm{~mm}$ Thickness of flange, $t f=17.4 \mathrm{~mm}$ Root radius, $r=12.7 \mathrm{~mm}$ Depth between fillets, $d=476.5 \mathrm{~mm}$ Second moment of area about major $(y-y)$ axis, $I y$ $=61520 \mathrm{~cm}^{4}$ Second moment of area about minor $(z-z)$ axis, $I z$ $=2692 \mathrm{~cm}^{4}$			
Elastic modulus about major $(y-y)$ axis, Wel,y					
$=2292 \mathrm{~cm}^{3}$				\quad	
:---					

(continued)

Step	Reference	Action/calculation	Conclusion
		Plastic modulus about major ($y-y$) axis, Wpl,y $=2612 \mathrm{~cm}^{3}$ Warping constant, $I_{w}=1.81 \mathrm{dm}^{6}$ Torsional constant, $I_{t}=101 \mathrm{~cm}^{4}$ Area of section, $A=129 \mathrm{~cm}^{2}$	
4		From previous calculation: $\begin{aligned} & V_{E d} \\ & =\mathbf{1 2 0 . 0 0} \mathbf{k N} \end{aligned}$	$V_{E d}=120.00 \mathrm{kN}$
		$\begin{aligned} & M_{E d} \\ & =\mathbf{3 3 7 . 5 0} \mathbf{~ k N m} \end{aligned}$	$M_{E d}=337.50 \mathrm{kNm}$
5	Table 5.2	Section classification: i. $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=1$ Class 1 ii. Rolled section, outstand flange: $\begin{aligned} c & =\frac{b-t_{w}-2 r}{2} \\ & =\frac{210-10.8-2(12.7)}{2} \\ & =86.90 \mathrm{~mm} \\ t_{f} & =17.4 \mathrm{~mm} \\ \frac{c}{t_{f}} & =\frac{86.90}{17.4}=4.99<9 \epsilon(=9) \end{aligned}$ Class 1 iii. Rolled section, web with neutral axis at mid depth: $\begin{aligned} c^{*} & =d \\ & =476.5 \mathrm{~mm} \\ t_{w} & =10.8 \mathrm{~mm} \\ \frac{c^{*}}{t_{w}} & =\frac{47.5 .5}{10.8}=44.12<72 \epsilon(=72) \end{aligned}$ Class 1 Therefore, the section is class 1	Section class 1
6	SN003b access steel document	Critical buckling resistance can be determined using equation below. For simply supported beam, effective length factor, K is taken as 1.0: $\begin{aligned} & M_{c r}=\frac{\pi^{2} E I_{z}}{(K L)^{2}} \sqrt{\left(\frac{I_{w}}{I_{z}}+\frac{(K L)^{2} G I_{t}}{\pi^{2} E I_{z}}\right)} \\ &=\frac{\pi^{2} \times 210 \times 10^{9} \times 2692 \times 10^{-8}}{(1.0 \times 5)^{2}} \\ & \times \sqrt{\left(\frac{1.81 \times 10^{-6}}{26992 \times 10^{-8}}+\frac{(1.0 \times 5)^{2} \times 81 \times 11^{9} \times 101 \times 10^{-8}}{\pi^{2} \times 10 \times 10 \times 10^{9} \times 2692 \times 10^{-8}}\right)} \\ &=719.37 \mathrm{kNm} \end{aligned}$	$M_{c r}=719.37 \mathrm{kNm}$
7	6.3.2.2(1)	For Class 1 section, slenderness for lateral torsional buckling can be determined using equation below: $\begin{aligned} \bar{\lambda}_{L T} & =\sqrt{\frac{W_{p l, y} f_{y}}{M_{c r}}} \\ & =\sqrt{\frac{2612 \times 10^{-6} \times 235 \times 10^{6}}{719.37 \times 10^{3}}} \\ & =\mathbf{0 . 9 2} \end{aligned}$	$\bar{\lambda}_{L T}=0.92$
8	Table 6.3 Table 6.4	$\frac{h}{b}=\frac{D}{b}=\frac{536.7}{210}=2.56$ Determine imperfection factor using "General Case" approach: $\begin{aligned} & \frac{h}{b}=2.41>2 \\ & \alpha_{L T}=0.34 \\ & \begin{aligned} \phi_{L T} & =0.5\left[1+\alpha_{L T}\left(\bar{\lambda}_{L T}-0.2\right)+\bar{\lambda}_{L T}^{2}\right] \\ \quad & =0.5\left[1+0.34 \times(0.92-0.2)+(0.92)^{2}\right] \\ \quad & \mathbf{1 . 0 5} \end{aligned} \end{aligned}$	$\phi_{L T}=1.05$

(continued)
(continued)

Step	Reference	Action/calculation	Conclusion
9	6.3.2.2(1)	Lateral torsional buckling reduction factor can be determined using equation below: $\begin{aligned} \chi_{L T} & =\frac{1}{\phi_{L T}+\sqrt{\phi_{L T}^{2}-\bar{\lambda}_{L T}^{2}}} \\ & =\frac{1}{1.05+\sqrt{(1.05)^{2}-(0.92)^{2}}} \\ & =\mathbf{0 . 6 4} \end{aligned}$	$\chi_{L T}=0.64$
10	6.3.2.1(3)	For Class 1 section, $\begin{aligned} & M_{b, R d}=\chi_{L T} W_{p l, y} \frac{f_{y}}{\gamma_{M 1}} \\ &=\frac{0.64 \times 2692 \times 10^{-6} \times 235 \times 10^{6}}{1.0} \\ &=\mathbf{4 0 4 . 8 8} \mathbf{~ k N m} \end{aligned}$	$\begin{aligned} & M_{b,} \\ & R d=404.88 \mathrm{kNm} \end{aligned}$
11		$\frac{M_{C d}}{M_{b, d d}}=\frac{337.50}{404.88}=\mathbf{0 . 8 3}<1$ The bending resistance of the section is adequate	$\frac{M_{E d}}{M_{b, d d}}=0.83$
12	6.2.6(3)	For I beam with load applied on flange, consider the case of rolled I sections with load parallel to web: Shear area, A_{v} $\begin{aligned} & =A-2 b t_{f}+\left(t_{w}+2 r\right) t_{f} \\ & =129 \times 10^{2}-2(210)(17.4)+(10.8+2(12.7))(17.4) \\ & =6221.88 \mathrm{~mm}^{2} \end{aligned}$	
	6.2.6(2)	$\begin{aligned} & V_{p l, R d}=\frac{A_{v}\left(f_{f} / \sqrt{3}\right)}{V_{00}} \\ & =\frac{6221.88 \times 235}{\sqrt{3}} \\ & =\mathbf{8 4 4 . 1 7} \mathbf{~ k N} \end{aligned}$	$V_{p l, R d}=844.17 \mathrm{kN}$
13		$\frac{V_{E d}}{V_{P l, R d}}=\frac{120.00}{844.17}=\mathbf{0 . 1 4}<1$ The shear resistance is adequate	$\frac{V_{\text {Fd }}}{V_{p l / R d}}=0.14$
14		For SLS, partial factor of safety or both permanent action and variable action selected is 1.0 Serviceability load, $w_{\text {ser }}$ $\begin{aligned} & =1.0 G_{k}+1.0 Q_{k} \\ & =1.0(10)+1.0(5) \\ & =15 \mathrm{kN} / \mathrm{m} \end{aligned}$ By principle of superposition, maximum deflection of the illustrated simply supported beam can be determined using equation below: Maximum deflection, $\Delta_{\text {max }}$ $\begin{aligned} & =\frac{5 w L^{4}}{384 E I}+\frac{P L^{3}}{48 E I} \\ & =\frac{5 \times 15 \times 10^{3} \times 10^{4}}{384 \times 210 \times 10^{9} \times 61520 \times 10^{-8}}+\frac{30 \times 10^{3} \times 10^{3}}{48 \times 210 \times 10^{9} \times 61520 \times 10^{-8}} \\ & =0.01996 \mathrm{~m} \\ & =\mathbf{1 9 . 9 6} \mathbf{~ m m} \end{aligned}$	$\Delta_{\text {max }}=19.96 \mathrm{~mm}$
15	NA2.23	Assume the beam carries plaster of other brittle finishes, Allowable deflection, $\Delta_{\text {all }}$ $\begin{aligned} & =\frac{L}{360} \\ & =\frac{10}{360} \\ & =0.02777 \mathrm{~m} \\ & =\mathbf{2 7 . 7 7} \mathbf{~ m m} \end{aligned}$	$\Delta_{\text {all }}=27.77 \mathrm{~mm}$
16		$\frac{\Delta_{\text {max }}}{\Delta_{a l i}}=\frac{19.96}{27.77}=\mathbf{0 . 7 2}<1$ The deflection is allowable	$\frac{\Delta_{\text {max }}}{\Delta_{\text {al }}}=0.72$

(continued)
(continued)

Step	Reference	Action/calculation	Conclusion
17		Check the following ratio: 	$\frac{M_{E d}}{M_{b, R d}}=\frac{337.50}{404.88}=\mathbf{0 . 8 3}$
	$\frac{V_{E d}}{V_{p l, R d}}=\frac{120.00}{844.17}=\mathbf{0 . 1 4}$		
	$\Delta_{\text {max }}$ $\Delta_{a l l}$ $\frac{19.96}{27.77}=\mathbf{0 . 7 2}$ The values of $\frac{M_{E d}}{M_{b, R d}}$ and $\frac{\Delta_{\text {max }}}{\Delta_{\text {all }}}$ are more than 0.5. Therefore, the beam section $533 \times 210 \times 101$ is considered $\mathbf{o p t i m u m ~}$		

Fig. 2.10 Example 2-5

2.3.4 Example 2-6 Design of a Laterally Unrestrained Beam

Select the optimum section for a cantilever beam subjected to a uniform load (Fig. 2.11). Use steel grade S235 and take the self-weight of the beam into account.

Fig. 2.11 Example 2-6

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-1 unless otherwise stated	From figure, the support condition of beam is fixed-free	
2		Permanent action, $\boldsymbol{G}_{\boldsymbol{k}}=\mathbf{5} \mathbf{~ k N} / \mathbf{m}$ Variable action, $Q_{K}=\mathbf{3} \mathbf{k N} / \mathbf{m}$	
3	Table 3.1	Steel grade $=\mathbf{S 2 3 5}$ Assume the thicknesses of web and flange are less than 40 mm : $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$
	BS 4 Part 12005	Randomly choose a beam section for the first trial: Select beam section $\mathbf{2 5 4} \times \mathbf{1 4 6} \times \mathbf{3 7}$ The properties of the section is as follows: Mass per meter $=37 \mathrm{~kg} / \mathrm{m}$ Depth of section, $D=256 \mathrm{~mm}$ Width of section, $b=146.4 \mathrm{~mm}$ Thickness of web, $t_{w}=6.3 \mathrm{~mm}$ Thickness of flange, $t_{f}=10.9 \mathrm{~mm}$ Root radius, $r=7.6 \mathrm{~mm}$ Depth between fillets, $d=219 \mathrm{~mm}$ Second moment of area about major ($y-y$) axis, $I y$ $=5537 \mathrm{~cm}^{4}$ Second moment of area about minor $(z-z)$ axis, $I z$ $=571 \mathrm{~cm}^{4}$ Elastic modulus about major ($y-y$) axis, Wel, y $=433 \mathrm{~cm}^{3}$ Plastic modulus about major (y - y) axis, Wpl,y $=483 \mathrm{~cm}^{3}$ Warping constant, $I_{w}=0.086 \mathrm{dm}^{6}$ Torsional constant, $I_{t}=15.3 \mathrm{~cm}^{4}$ Area of section, $A=47.2 \mathrm{~cm}^{2}$	
4		Self-weight of beam section $\begin{aligned} & =37 \mathrm{~kg} / \mathrm{m} \times 9.81 \mathrm{~N} / \mathrm{kg} \\ & =\mathbf{0 . 3 6} \mathbf{~ k N} / \mathbf{m} \end{aligned}$ For ULS, partial factor of safety for both permanent action and variable action selected are 1.35 and 1.5 respectively Uniformly distributed load, $w_{\text {ult }}$ $\begin{aligned} & =1.35 G_{k}+1.5 Q_{k} \\ & =1.35(5+0.36)+1.5(3) \\ & =\mathbf{1 1 . 7 4} \mathbf{~ k N} / \mathbf{m} \end{aligned}$	Design load = $11.74 \mathrm{kN} / \mathrm{m}$
		For cantilever, $V_{E d}$ and $M_{E d}$ can be determined using equation below: $\begin{aligned} & V_{E d} \\ & =w_{\text {wlt } L} L \\ & =11.74 \times 3 \\ & =\mathbf{3 5 . 2 2} \mathbf{~ k N} \end{aligned}$	$V_{E d}=35.22 \mathrm{kN}$
		$\begin{aligned} & M_{E d} \\ & =\frac{w_{u t L^{2}}^{2}}{2} \\ & =\frac{11.74 \times 3^{2}}{2} \\ & =\mathbf{5 2 . 8 3} \mathbf{~ k N m} \end{aligned}$	$M_{E d}=52.83 \mathrm{kNm}$
5	Table 5.2	Section classification: i. $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=1$ Class 1	Section class 1

(continued)

Step	Reference	Action/calculation	Conclusion
		ii. Rolled section, outstand flange: $c=\frac{b-t_{w}-2 r}{2}$ $=\frac{146.4-6.3-2(7.6)}{2}$ $=62.45 \mathrm{~mm}$ $t_{f}=10.9 \mathrm{~mm}$	

(continued)

Step	Reference	Action/calculation	Conclusion
		Bending moment diagram for the beam is shown as below: 52.83 kNm The moment distribution is compared with the tabulated pattern. K_{C} is taken as $\frac{1}{1.33-0.33 \psi}$ Ratio of moment at two ends should between -1 and 1 . So, the numerator and denominator should be arranged accordingly to make the result falls within the range: $\begin{aligned} & \psi=\frac{0}{52.83}=0 \\ & K_{C}=\frac{1}{1.33-0.33 \times 0}=0.75 \\ & f=1-0.5\left(1-K_{C}\right)\left[1-2\left(\bar{\lambda}_{L T}-0.8\right)^{2}\right] \\ & \quad=1-0.5(1-0.75)\left[1-2(1.23-0.8)^{2}\right] \\ & \quad=0.92 \end{aligned}$ Lateral torsional buckling reduction factor can be determined using equation below: $\chi_{L T, \text { mod }}=\frac{\chi_{L T}}{f}=\frac{0.56}{0.92}=0.61$	
10	6.3.2.1(3)	For Class 1 section, $\begin{aligned} & M_{b, R d}=\chi_{L T} W_{p l, y} \frac{f_{y}}{\gamma_{M 1}} \\ &=\frac{0.61 \times 483 \times 10^{-6} \times 235 \times 10^{6}}{1.0} \\ &=\mathbf{6 9 . 2 4} \mathbf{~ k N m} \end{aligned}$	$M_{b, R d}=69.24 \mathrm{kNm}$
11		$\frac{M_{E}}{M_{b, R d}}=\frac{52.83}{69.24}=\mathbf{0 . 7 6}<1$ The bending resistance of the section is adequate	$\frac{M_{E d}}{M_{b, d d}}=0.76$
12	6.2.6(3)	For I beam with load applied on flange, consider the case of rolled I sections with load parallel to web: Shear area, A_{v} $\begin{aligned} & =A-2 b t_{f}+\left(t_{w}+2 r\right) t_{f} \\ & =47.2 \times 10^{2}-2(146.4)(10.9)+(6.3+2(7.6))(10.9) \\ & =1762.83 \mathrm{~mm}^{2} \end{aligned}$	
	6.2.6(2)	$\begin{aligned} & V_{p l, R d}=\frac{A_{v}\left(f_{v} / \sqrt{3}\right)}{\gamma_{M 0}} \\ & =\frac{1762.83 \times 235}{\sqrt{3}} \\ & =\mathbf{2 3 9 . 1 8} \mathbf{~ k N} \end{aligned}$	$V_{p l, R d}=239.18 \mathrm{kN}$
13		$\frac{V_{E d}}{V_{p l, R d}}=\frac{35.22}{239.18}=\mathbf{0 . 1 5}<1$ The shear resistance is adequate	$\frac{V_{E d}}{V_{p l, R d}}=0.15$
14		For SLS, partial factor of safety or both permanent action and variable action selected is 1.0 . Serviceability load, $w_{\text {ser }}$ $\begin{aligned} & =1.0 G_{k}+1.0 Q_{k} \\ & =1.0(5.36)+1.0(3) \\ & =8.36 \mathrm{kN} / \mathrm{m} \end{aligned}$ For cantilever, maximum deflection can be determined using equation below: $\begin{aligned} & =\frac{\mathrm{wL}^{4}}{8 E I} \\ & =\frac{8.36 \times 10^{3} \times 3^{4}}{8 \times 210 \times 10^{9} \times 5533^{37} \times 10^{-8}} \\ & =7.28 \times 10^{-3} \mathrm{~m} \\ & =\mathbf{7 . 2 8} \mathbf{~ m m} \end{aligned}$	$\Delta_{\text {max }}=7.28 \mathrm{~mm}$

(continued)

Step	Reference	Action/calculation	Conclusion
15	NA2.23	For cantilever beam, Allowable deflection, $\Delta_{\text {all }}$ $\begin{aligned} & =\frac{L}{180} \\ & =\frac{3}{180} \\ & =0.01667 \mathrm{~m} \\ & =\mathbf{1 6 . 6 7} \mathbf{~ m m} \end{aligned}$	$\Delta_{\text {all }}=16.67 \mathrm{~mm}$
16		$\frac{\Delta_{\text {max }}}{\Delta_{\text {all }}}=\frac{7.28}{16.67}=\mathbf{0 . 4 4}<1$ The deflection is allowable	$\frac{\Delta_{\text {max }}}{\Delta_{\text {all }}}=0.44$
17		Check the following ratio: $\begin{aligned} & \frac{M_{E d}}{M_{b, R d}}=\frac{52.83}{69.24}=\mathbf{0 . 7 6} \\ & \frac{V_{E d}}{V_{\text {Pl, } d}}=\frac{35.22}{239.18}=\mathbf{0 . 1 5} \\ & \frac{\Delta_{\text {max }}}{\Delta_{\text {all }}}=\frac{7.28}{16.67}=\mathbf{0 . 4 4} \end{aligned}$ The values of $\frac{M_{E d}}{M_{b, R d}}$ is more than 0.5 . Therefore, the beam section $254 \times 146 \times 37$ is adequate. However, a smaller beam section may be selected	

Step 3 is repeated to using a smaller section.

Step	Reference	Action/calculation	Conclusion
3	Table 3.1	Steel grade $=\mathbf{S 2 3 5}$ Assume the thicknesses of web and flange are less than 40 mm : $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$
	$\begin{aligned} & \text { BS } 4 \text { Part } 1 \\ & 2005 \end{aligned}$	Select beam section $\mathbf{2 5 4} \times \mathbf{1 4 6} \times \mathbf{3 1}$ The properties of the section is as follows: Mass per meter $=31.1 \mathrm{~kg} / \mathrm{m}$ Depth of section, $D=251.4 \mathrm{~mm}$ Width of section, $b=146.1 \mathrm{~mm}$ Thickness of web, $t_{w}=6.0 \mathrm{~mm}$ Thickness of flange, $t_{f}=8.6 \mathrm{~mm}$ Root radius, $r=7.6 \mathrm{~mm}$ Depth between fillets, $d=219.0 \mathrm{~mm}$ Second moment of area about major ($y-y$) axis, $I y$ $=4413 \mathrm{~cm}^{4}$ Second moment of area about minor $(z-z)$ axis, $I z$ $=448 \mathrm{~cm}^{4}$ Elastic modulus about major (y-y) axis, Wel,y $=351 \mathrm{~cm}^{3}$ Plastic modulus about major ($y-y$) axis, Wpl,y $=393 \mathrm{~cm}^{3}$ Warping constant, $I_{w}=0.066 \mathrm{dm}^{6}$ Torsional constant, $I_{t}=8.55 \mathrm{~cm}^{4}$ Area of section, $A=39.7 \mathrm{~cm}^{2}$	
4		Self-weight of beam section $=31.1 \mathrm{~kg} / \mathrm{m} \times 9.81 \mathrm{~N} / \mathrm{kg}$ $=0.31 \mathrm{kN} / \mathrm{m}$ For ULS, partial factor of safety for both permanent action and variable action selected are 1.35 and 1.5 respectively. Uniformly distributed load, $w_{\text {ult }}$ $\begin{aligned} & =1.35 G_{k}+1.5 Q_{k} \\ & =1.35(5+0.31)+1.5(3) \\ & =\mathbf{1 1 . 6 7} \mathbf{~ k N} / \mathbf{m} \end{aligned}$	$\begin{aligned} & \text { Design load = } \\ & 11.67 \mathrm{kN} / \mathrm{m} \end{aligned}$

(continued)

Step	Reference	Action/calculation	Conclusion
		For cantilever, $V_{E d}$ and $M_{E d}$ can be determined using equation below: $\begin{aligned} & V_{E d} \\ & =w_{\text {ult }} L \\ & =11.67 \times 3 \\ & =\mathbf{3 5 . 0 1} \mathbf{~ k N} \end{aligned}$	$V_{E d}=35.01 \mathrm{kN}$
		$\begin{aligned} & M_{E d} \\ & =\frac{w_{u w L} L^{2}}{} \\ & =\frac{11.67 \times 3^{2}}{2} \\ & =\mathbf{5 2 . 5 2} \mathbf{~ k N m} \end{aligned}$	$M_{E d}=52.52 \mathrm{kNm}$
5	Table 5.2	Section classification: i. $f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=1$ Class 1 ii. Rolled section, outstand flange: $\begin{aligned} c & =\frac{b-t_{w}-2 r}{2} \\ & =\frac{146.1-6.0-2(7.6)}{2} \\ & =62.45 \mathrm{~mm} \\ t_{f} & =8.6 \mathrm{~mm} \\ \frac{c}{t_{f}} & =\frac{62.45}{8.6}=7.26<9 \epsilon(=9) \end{aligned}$ Class 1 iii. Rolled section, web with neutral axis at mid depth: $\begin{aligned} c^{*} & =d \\ & =219.0 \mathrm{~mm} \\ t_{w} & =6.0 \mathrm{~mm} \\ \frac{c^{*}}{t_{w}} & =\frac{219.0}{6.0}=36.50<72 \epsilon(=72) \end{aligned}$ Class 1 Therefore, the section is class $\mathbf{1}$	Section class 1
6	SN003b access steel document	Critical buckling resistance can be determined using equation below. For cantilever, effective length factor, K is taken as 2.0 : $\begin{aligned} & M_{c r}=\frac{\pi^{2} E I_{z}}{(K L)^{2}} \sqrt{\left(\frac{I_{w}}{I_{z}}+\frac{(K L)^{2} G I_{t}}{\pi^{2} E I_{z}}\right)} \\ &=\frac{\pi^{2} \times 210 \times 10^{9} \times 448 \times 10^{-8}}{(2.0 \times 3)^{2}} \\ & \times \sqrt{\left(\frac{0.066 \times 10^{-6}}{448 \times 10^{-8}}+\frac{(2.0 \times 3)^{2} \times 81 \times 10^{9} \times 8.55 \times 10^{-8}}{\pi^{2} \times 210 \times 10^{9} \times 448 \times 10^{-8}}\right)} \\ &=\mathbf{5 2 . 6 0} \mathbf{~ k N m} \end{aligned}$	$M_{c r}=52.60 \mathrm{kNm}$
7	6.3.2.2(1)	For Class 1 section, slenderness for lateral torsional buckling can be determined using equation below: $\begin{aligned} \bar{\lambda}_{L T} & =\sqrt{\frac{W_{p l, y y} f_{y}}{M_{c r}}} \\ & =\sqrt{\frac{393 \times 10^{-6} \times 235 \times 10^{6}}{52.60 \times 10^{3}}} \\ & =\mathbf{1 . 3 3} \end{aligned}$	$\bar{\lambda}_{L T}=1.33$

(continued)

Step	Reference	Action/calculation	Conclusion
8	Table 6.3 Table 6.4	$\frac{h}{b}=\frac{D}{b}=\frac{251.4}{146.1}=1.7$ Determine imperfection factor using "Rolled Section" approach: $\frac{h}{b}=1.7<2$ Using "Rolled Section" approach, $\begin{aligned} \alpha_{L T} & =0.34 \\ \phi_{L T} & =0.5\left[1+\alpha_{L T}\left(\bar{\lambda}_{L T}-0.4\right)+0.75 \bar{\lambda}_{L T}^{2}\right] \\ & =0.5\left[1+0.34 \times(1.33-0.4)+0.75 \times(1.33)^{2}\right] \\ & =\mathbf{1 . 3 2} \end{aligned}$	$\phi_{L T}=1.32$
9	6.3.2.2(1)	Lateral torsional buckling reduction factor can be determined using equation below: $\begin{aligned} \chi_{L T} & =\frac{1}{\phi_{L T}+\sqrt{\phi_{L T}^{2}-0.75 \bar{\lambda}_{L T}^{2}}} \\ & =\frac{1}{1.32+\sqrt{(1.32)^{2}-0.75 \times(1.33)^{2}}} \\ & =0.51 \\ \frac{1}{\bar{\lambda}_{L T}^{2}} & =\frac{1}{1.33^{2}}=0.56>\chi_{L T}(=0.51) \end{aligned}$ Bending moment diagram for the beam is shown as below: The moment distribution is compared with the tabulated pattern. K_{C} is taken as $\frac{1}{1.33-0.33 \psi}$ Ratio of moment at two ends should between -1 to 1 . So, the numerator and denominator should be arranged accordingly to make the result falls within the range: $\begin{aligned} & \psi=\frac{0}{52.52}=0 \\ & K_{C}=\frac{1}{1.33-0.33 \times 0}=0.75 \\ & f=1-0.5\left(1-K_{C}\right)\left[1-2\left(\bar{\lambda}_{L T}-0.8\right)^{2}\right] \\ & \quad=1-0.5(1-0.75)\left[1-2(1.33-0.8)^{2}\right] \\ & \quad=0.95 \end{aligned}$ Lateral torsional buckling reduction factor can be determined using equation below: $\chi_{L T, \text { mod }}=\frac{\chi_{L T}}{f}=\frac{0.51}{0.95}=\mathbf{0 . 5 4}$	$\chi_{L T, \text { mod }}=0.54$
10	6.3.2.1(3)	For Class 1 section, $\begin{aligned} M_{b, R d} & =\chi_{L T} W_{p l, y} \frac{f_{y}}{\gamma_{M 1}} \\ & =\frac{0.54 \times 393 \times 10^{-6} \times 235 \times 10^{6}}{1.0} \\ & =\mathbf{4 9 . 8 7} \mathbf{~ k N m} \end{aligned}$	$M_{b, R d}=49.87 \mathrm{kNm}$
11		$\frac{M_{E}}{M_{b, R d}}=\frac{52.52}{49.87}=\mathbf{1 . 0 5}>1$ The bending resistance of the section is not adequate The beam section $254 \times 146 \times 31$ is found unsuitable. Therefore, the beam section selected for first trial, $254 \times 146 \times 37$ is concluded as an optimum section	$\frac{M_{E d}}{M_{b, d d}}=1.05$

2.4 Exercise: Beam Design

2-1 A secondary beam is connected to the primary beam by shear connection (Fig. 2.12). Select the optimum section for the primary beam. Use steel grade S235. Assume the primary beam is laterally unrestrained and sits on 100 mm bearings at each end. Ignore the self-weight of the beam.
2-2 Check the suitability of a $305 \times 165 \times 46$ section for the beam shown in Fig. 2.13. Use steel grade S275 and assume the beam is laterally unrestrained. Take the self-weight of the beam into account. Compare the bending moment resistances obtained when rolled section and the general case approaches are used.

Fig. 2.12 Question 2-1

Fig. 2.13 Question 2-2

Fig. 2.14 Question 2-3

Fig. 2.15 Question 2-4

Fig. 2.16 Question 2-5

2-3 Select the optimum section for the beam in Fig. 2.14. Use steel grade S235 and assume the beam is laterally restrained. Consider the self-weight of the beam.
2-4 Select the optimum section for the beam in Fig. 2.15. Use steel grade S235 and assume the beam is laterally restrained. Consider the self-weight of the beam.
2-5 Select the optimum section for the beam in Fig. 2.16. Use steel grade S275. Assume the primary beam is laterally unrestrained and sits on 100 mm bearings at each end. Ignore the self-weight of the beam.

Chapter 3
 Column Design

3.1 Introduction

Column is a structural member that supports beams and slabs by carrying their loads down to the foundation. The direction of its load is along the longitudinal axis $(x-x)$. Thus, column is primarily a compression member (Fig. 3.1).

Other than an axial load, a column may also be subjected to a bending moment. This bending moment is usually due to the eccentricity of the reaction force from the beam or the slab.

A column can be categorized either as short or slender based on the slenderness ratio. Slenderness ratio is the ratio of column length to its cross-sectional effective width. A high slenderness ratio indicates a slender column. A short column usually fails by crushing, whereas a slender column usually fails by buckling (Fig. 3.2).

In EC3, a column can be designed using a simplified approach. This approach, however, is only applicable to simple construction. The beam-column connection must be pinned, and the bending moment resulting from the eccentricity of the beam-column connection should be insignificant.

Fig. 3.1 Column and its loading

Fig. 3.2 Failure modes of columns

Table 3.1 Nominal values of yield strength f_{y} and ultimate tensile strength f_{u} of hot-rolled structural steel (BS EN 1993-1-1:2005 Table 3.1)

Standard and Steel Grade (To BS EN 10025-2)	Nominal Thickness of element, $\mathrm{t}(\mathrm{mm})$			
	$t \leq 40 \mathrm{~mm}$	$40 \mathrm{~mm}<t \leq 80 \mathrm{~mm}$		
	$f_{y}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$f_{u}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$f_{y}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$f_{u}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$
S235	235	360	215	360
S275	275	430	255	410
S355	355	490	335	470
S450	440	550	410	550

3.2 Design Procedure for a Column

The design procedure for a column is as follows:

1. Determine the support condition (i.e., pin, roller, or fixed at the base of the column).
2. Determine the reaction of the beams.
3. Choose the steel grade (refer to Table 3.1). Refer to BS 4 Part 12005 to choose the column section for use in construction. A table for the universal section commonly used for columns and their corresponding properties is provided in Appendix A.3.
4. Determine the design axial load and the design bending moments about the $y-y$ and $z-z$ axes. Design axial load is the summation of the total reaction (the design shear force of the beam) at the beam-column connection and the load applied to the column. The design bending moment about the $y-y$ and the $z-z$ axes is the moment induced by the eccentricity of the beam-column connection. In other words, ensuring that the shear force acting on the beam will act on the centroid of the column is difficult, and consequently, column bending will occur because of such eccentricity. The bending moment about the $y-y$ axis is induced by the beam connected to the column flange, and the bending moment about the $z-z$ axis is induced by the beam connected to the column web. The point at which shear force acts on the beam depends on the size of the bearing where the edges of the beam stand. Given that the moments induced by the opposite sides of the flange and the web about the same axis are in opposite directions, these moments will counter each other.
According to the SN005a-EN-EU Access Steel document, the beam reaction is assumed to act at 100 mm from the face of the column. Therefore, if the bearing size is not specified, the beam reaction can be assumed to be 100 mm .

$$
\begin{equation*}
N_{E d}=\sum_{i=1}^{n} V_{E d, i}+\text { load on column } \tag{3.1}
\end{equation*}
$$

where $V_{E d}$ is reaction of beams obtained from Step 2

$$
\begin{equation*}
M_{y, E d}=\text { Shear difference in } y-y \times\left(\frac{D}{2}+\text { bearing size }\right) \tag{3.2}
\end{equation*}
$$

where D is depth of column section by referring to Appendix A. 3

$$
\begin{equation*}
M_{z, E d}=\text { Shear difference in } z-z \times\left(\frac{t_{w}}{2}+\text { bearing size }\right) \tag{3.3}
\end{equation*}
$$

where t_{w} is thickness of web of column section by referring to Appendix A. 3
5. Classify the column section. To carry out the classification, check only under the criteria "outstand flange for rolled sections" and "web subject to compression, rolled sections" (Table 3.2).

Table 3.2 Maximum width-to-thickness ratio of the compression element (BS EN 1993-1-1:2005 Table 5.2)

Type of element	Class of element		
	Class 1	Class 2	Class 3
Outstand flange for rolled section	$c / t_{f} \leq 9 \varepsilon$	$c / t_{f} \leq 10 \varepsilon$	$c / t_{f} \leq 14 \varepsilon$
Web with neutral axis at mid depth, rolled sections	$c^{*} / t_{w} \leq 72 \varepsilon$	$c^{*} / t_{w} \leq 83 \varepsilon$	$c^{*} / t_{w} \leq 124 \varepsilon$
Web subject to compression, rolled sections	$c^{*} / t_{w} \leq 33 \varepsilon$	$c^{*} / t_{w} \leq 38 \varepsilon$	$c^{*} / t_{w} \leq 42 \varepsilon$
f_{y}	235	275	355
ε	1	0.92	0.81

Where t_{f} is thickness of flange by referring to Appendix A. 3
t_{w} is thickness of web by referring to Appendix A. 3
$c^{*}=d$ by referring to Appendix A. 2
$c=\left(b-t_{w}-2 r\right) / 2$
6. Determine the non-dimensional slenderness $\bar{\lambda}$. When the support conditions at the base of the column about the $y-y$ and $z-z$ axes are different, the non-dimensional slenderness for both the $y-y$ and $z-z$ axes should be considered. Otherwise, consider only the minor axis.

$$
\begin{equation*}
\bar{\lambda}=\frac{K L}{i} \times \frac{1}{\pi}\left(\sqrt{\frac{f_{y}}{E}}\right) \tag{3.4}
\end{equation*}
$$

where K is effective length factor obtained from Step 6 (Table 3.3)

Table 3.3 Values of the effective length factor K for different support conditions (BS5950: Part 1 4.7.10)

Support condition	Effective length factor, K
Fixed-Fixed	0.7
Fixed-Pinned	0.85
Pinned-Pinned	1.0
Fixed-Free	2.0

L is length of column
i is radius of gyration by referring to Appendix A. 3
f_{y} is yield strength of steel obtained from Step 3 (Table 3.1)
E is modulus of elasticity of steel $=210 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
(BS EN 1993-1-1:2005 6.3.1.3(1))
7. Determine Φ. Consider only the minor axis to determine the imperfection factors.

$$
\begin{equation*}
\phi=0.5\left[1+\alpha(\bar{\lambda}-0.2)+\bar{\lambda}^{2}\right] \tag{3.5}
\end{equation*}
$$

where h is depth of section by referring to Appendix A. 3
b is width of section by referring to Appendix A. 3
t_{f} is thickness of flange by referring to Appendix A. 3
α is imperfection factor obtained from Step 7 (Table 3.4)
$\bar{\lambda}$ is non-dimensional slenderness obtained from Step 6 (Eq. 3.4)
(BS EN 1993-1-1:2005 6.3.1.2(1))
Table 3.4 Values of the imperfection factor α for different section geometries (BS EN 1993-1-1:2005 Tables 6.1 and 6.2)

Limits		Buckling about axis	Imperfection factor, α
$\frac{h}{b} \geq 1.2$	$t_{f} \leq 40 \mathrm{~mm}$	$y-y$	0.21
		$z-z$	0.34
	$40 \mathrm{~mm}<t_{f} \leq 100 \mathrm{~mm}$	$y-y$	0.34
		$z-z$	0.49
$\frac{h}{b} \leq 1.2$	$t_{f} \leq 100 \mathrm{~mm}$	$y-y$	0.34
		$z-z$	0.49
	$t_{f}>100 \mathrm{~mm}$	$y-y$	0.76
		$z-z$	0.76

8. Determine the reduction factor χ.

$$
\begin{equation*}
\chi=\frac{1}{\phi+\sqrt{\phi^{2}-\bar{\lambda}^{2}}} \leq 1.0 \tag{3.6}
\end{equation*}
$$

where ϕ is obtained from Step 7 (Eq. 3.5)
λ is non-dimensional slenderness obtained from Step 6 (Eq. 3.4)
(BS EN 1993-1-1:2005 6.3.1.2(1))
9. Determine the buckling resistance of the column.

$$
N_{b, d}=\left\{\begin{array}{l}
\frac{\gamma A f_{y}}{\gamma_{1}}, \text { Class } 1,2 \text { and } 3 \text { sections } \tag{3.7}\\
\frac{\gamma A_{e f f} f_{y}}{\gamma_{M 1}}, \text { Class } 4 \text { sections }
\end{array}\right.
$$

where A is area of section by referring to Appendix A. 3
$A_{e f f}$ is effective area of section
f_{y} is yield strength of steel obtained from Step 3 (Table 3.1)
(BS EN 1993-1-1:2005 6.3.1.1(3))
10. Compare the design compression force and buckling resistance of the column. If the design compression force exceeds the design buckling resistance of the column, repeat Step 3 to choose a better section. Otherwise, proceed to Step 11.
11. Determine the critical buckling moment. The support condition influences the effective length of the member subjected to buckling (refer to Appendix A. 3 for the section properties of column sections and Table 3.3 for the values of K).

$$
\begin{equation*}
M_{c r}=\frac{\pi^{2} E I_{z}}{(K L)^{2}} \sqrt{\left(\frac{I_{w}}{I_{z}}+\frac{(K L)^{2} G I_{t}}{\pi^{2} E I_{z}}\right)} \tag{3.8}
\end{equation*}
$$

where E is modulus of elasticity of steel $=210 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
I_{z} is second moment of area about $z-z$ axis by referring to Appendix A. 3
K is effective length factor obtained from Step 6 (Table 3.3)
L is length of column
I_{w} is warping constant by referring to Appendix A. 3
G is shear modulus of steel $=81 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
I_{t} is torsional constant by referring to Appendix A. 3
(SN003b Access Steel document)
12. Determine the slenderness for lateral-torsional buckling $\bar{\lambda}_{L T}$.

$$
\bar{\lambda}_{L T}=\left\{\begin{array}{l}
\sqrt{\frac{W_{p l, s f_{y}}}{M_{M}}}, \text { Class } 1 \text { and } 2 \text { sections } \tag{3.9}\\
\sqrt{\frac{W_{c l, ~}, f_{y}}{M_{c r}}}, \text { Class } 3 \text { sections } \\
\sqrt{\frac{W_{e f f, j y}}{M_{c r}}}, \text { Class } 4 \text { sections }
\end{array}\right.
$$

where:
$W_{p l, y}$ is plastic section modulus about y - y axis by referring to Appendix A. 3
$W_{e l, y}$ is elastic section modulus about $y-y$ axis by referring to Appendix A. 3
$W_{e f f, y}$ is effective section modulus about y - y axis
f_{y} is yield strength of steel obtained from Step 3 (Table 3.1)
$M_{c r}$ is critical buckling moment obtained from Step 11 (Eq. 3.8)
(BS EN 1993-1-1:2005 6.3.2.2(1))

Table 3.5 Values of the imperfection factor $\alpha_{L T}$ for different approaches (BS EN 1993-1-1:2005 Tables 6.3 and 6.4)

Limit	$\alpha_{L T}$
$h / b \leq 2$	0.21
$h / b>2$	0.34
Where h is depth of section by referring to Appendix A.3	
b is width of section by referring to Appendix A.3	

13. Determine the imperfection factors for lateral-torsional buckling, $\alpha_{L T}$ and $\phi_{L T}$.

$$
\begin{equation*}
\phi_{L T}=0.5\left[1+\alpha_{L T}\left(\bar{\lambda}_{L T}-0.2\right)+\bar{\lambda}_{L T}^{2}\right] \tag{3.10}
\end{equation*}
$$

where $\alpha_{L T}$ is imperfection factor obtained from Step 13 (Table 3.5)
$\bar{\lambda}_{L T}$ is slenderness for lateral torsional buckling obtained from Step 12 (Eq. 3.9)
(BS EN 1993-1-1:2005 6.3.2.2(1))
14. Determine the lateral torsional buckling reduction factor $\chi_{L T}$.

$$
\begin{equation*}
\chi_{L T}=\frac{1}{\phi_{L T}+\sqrt{\phi_{L T}^{2}-\bar{\lambda}_{L T}^{2}}} \tag{3.11}
\end{equation*}
$$

where $\phi_{L T}$ is obtained from Step 13 (Eq. 3.10)
$\bar{\lambda}_{L T}$ is slenderness for lateral torsional buckling obtained from Step 12 (Eq. 3.9)
(BS EN 1993-1-1:2005 6.3.2.2(1))
15. Determine the buckling moment resistance.

$$
M_{b, R d}=\left\{\begin{array}{l}
\chi_{L T} W_{p l, y} \frac{f_{y}}{\gamma_{M 1}}, \text { Class } 1 \text { and } 2 \text { sections } \tag{3.12}\\
\chi_{L T} W_{e l, y} \frac{f_{y}}{\gamma_{M 1}}, \text { Class } 3 \text { sections } \\
\chi_{L T} W_{e f f, y} \frac{f_{y}}{\gamma_{M 1}}, \text { Class } 4 \text { sections }
\end{array}\right.
$$

where
$W_{p l, y}$ is plastic section modulus about $y-y$ axis by referring to Appendix A. 3 $W_{e l, y}$ is elastic section modulus about $y-y$ axis by referring to Appendix A. 3 $W_{e f f, y}$ is effective section modulus about $y-y$ axis f_{y} is yield strength of steel obtained from Step 3 (Table 3.1) $\chi_{L T}$ is lateral torsional buckling reduction factor obtained from Step 14 (Eq. 3.11)
(BS EN 1993-1-1:2005 6.3.2.1(3))
16. Compare the design bending moment of the structure and the buckling moment resistance of the section. If the buckling moment resistance of the structure is insufficient, repeat Step 3 to choose a better section. Otherwise, proceed to Step 17.
17. Determine the bending moment resistance about the $z-z$ axis.

$$
M_{z, d}=\left\{\begin{array}{l}
\frac{W_{p l, f_{z}}}{\gamma_{y}}, \text { Class } 1 \text { and } 2 \text { sections } \tag{3.13}\\
\frac{W_{c l, f_{y}}}{\gamma_{M 1}}, \text { Class } 3 \text { sections }
\end{array}\right.
$$

where
$W_{p l, z}$ is plastic section modulus about $z-z$ axis by referring to Appendix A. 3 $W_{e l, z}$ is elastic section modulus about $z-z$ axis by referring to Appendix A. 3 f_{y} is yield strength of steel obtained from Step 3 (Table 3.1)
(BS EN 1993-1-1:2005 6.2.5(2))
18. Refer to the SN048a-EN-GB Access Steel document to determine the combined ratio of the design load to the resistance of the column. If the ratio is greater than 1, repeat Step 3 to choose a better section. Otherwise, proceed to Step 19.

$$
\begin{equation*}
\frac{N_{E d}}{N_{b, R d}}+\frac{M_{y, E d}}{M_{b, R d}}+1.5 \frac{M_{z, E d}}{M_{z, R d}} \leq 1.0 \tag{3.14}
\end{equation*}
$$

where $\frac{N_{E d}}{N_{b, R d}}$ is ratio obtained from Step 10
$\frac{M_{y, E d}}{M_{b, R d}}$ is ratio obtained from Step 16
$M_{z, E d}$ is design bending moment about $z-z$ axis of column obtained from Step 4 (Eq. 3.3)
$M_{z . R d}$ is bending moment resistance about the $z-z$ axis obtained from Step 17 (Eq. 3.13)
(SN048b-EN-GB)
19. Check whether the section is an overdesign by checking the ratio obtained in Step 18. If the ratio is less than 0.5 , repeat Step 3 and choose a smaller section to ensure optimum design.

3.2.1 Design Flowchart for a Column

3.2.2 Example 3-1 Column Design

Design the 2 m-high column in Fig. 3.3 using the simplified approach. The connection between the column and the beams is pinned, and the bottom end of the column is rigidly connected. Beams A and B sit on 100 mm bearings at each end. The reactions of beams A and B are 100 and 50 kN respectively, while the ultimate load on the column is 10 kN . Steel grade S275 is used for the column (Fig. 3.4).

Fig. 3.3 Example 3-1

Fig. 3.4 Result for Example 3-1 using steel design based on EC3 program

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-1 unless otherwise stated	Support condition of the column is fixed-pinned	
2		Reaction for: beam $\mathrm{A}=100 \mathbf{k N}$ beam B = $\mathbf{5 0} \mathbf{~ k N}$	$\begin{aligned} & V_{E d, y-y}=100 \mathrm{kN} \\ & V_{E d, z-z} \\ & =50 \mathrm{kN} \end{aligned}$
3	Table 3.1	Steel grade $=\mathbf{S 2 7 5}$ Assume the thicknesses of web and flange are less than 40 mm : $f y=275 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
	BS 4 Part 12005	Randomly choose a column section for the first trial: Select column section $\mathbf{1 5 2} \times \mathbf{1 5 2} \times \mathbf{3 0}$ The properties of the section is as follows: Depth of section, $D=157.6 \mathrm{~mm}$ Width of section, $b=152.9 \mathrm{~mm}$ Thickness of web, $t_{w}=6.5 \mathrm{~mm}$ Thickness of flange, $t_{f}=9.4 \mathrm{~mm}$ Root radius, $r=7.6 \mathrm{~mm}$ Depth between fillets, $d=123.6 \mathrm{~mm}$ Second moment of area about major ($y-y$) axis, I_{y} $=1748 \mathrm{~cm}^{4}$ Second moment of area about minor (z-z) axis, I_{z} $=560 \mathrm{~cm}^{4}$ Radius of gyration about major ($y-y$) axis, i_{y} $=6.76 \mathrm{~cm}$ Radius of gyration about minor $(z-z)$ axis, i_{z} $=3.83 \mathrm{~cm}$ Elastic modulus about major (y - y) axis, $W_{e l, y}$ $=222 \mathrm{~cm}^{3}$ Elastic modulus about minor $(z-z)$ axis, $\mathrm{W}_{\mathrm{el}, \mathrm{z}}$ $=73.3 \mathrm{~cm}^{3}$	

(continued)
(continued)

Step	Reference	Action/calculation	Conclusion
		Plastic modulus about major ($y-y$) axis, $W_{p l, y}$ $=248 \mathrm{~cm}^{3}$ Plastic modulus about minor $(z-z)$ axis, $\mathrm{W}_{\mathrm{pl}, \mathrm{z}}$ $=112 \mathrm{~cm}^{3}$ Warping constant, $I_{w}=0.031 \mathrm{dm}^{6}$ Torsional constant, $I_{t}=10.5 \mathrm{~cm}^{4}$ Area of section, $A=38.3 \mathrm{~cm}^{2}$	
4		$\begin{aligned} & V_{E d, y-y}=100 \mathrm{kN} \\ & V_{E d, z-z}=50 \mathrm{kN} \\ & \text { Load on column }=10 \mathrm{kN} \\ & N_{E d} \\ & =\sum_{i=1}^{n} V_{E d, i}+\text { load on column } \\ & =100+50+10 \\ & =\mathbf{1 6 0 . 0 0} \mathbf{~ k N} \end{aligned}$	$N_{E d}=160.00 \mathrm{kN}$
		$M_{y, E d}$ and $M_{z, E d}$ can be calculated based on geometry of the column section, as they are induced by eccentricity of loads with respect to centroid of the said section. $\begin{aligned} & M_{y, E d} \\ & =\text { Shear difference in } y-y \times\left(\frac{D}{2}+\text { bearing size }\right) \\ & =100 \times\left(\frac{157.6 \times 10^{-3}}{2}+100 \times 10^{-3}\right) \\ & =\mathbf{1 7 . 8 8} \mathbf{~ k N m} \end{aligned}$	$M_{y, E d}=17.88 \mathrm{kNm}$
		$\begin{aligned} & M_{z, E d} \\ & =\text { Shear difference in } z-z \times\left(\frac{t_{w}}{2}+\text { bearing size }\right) \\ & =50 \times\left(\frac{6.5 \times 10^{-3}}{2}+100 \times 10^{-3}\right) \\ & =\mathbf{5 . 1 6} \mathbf{~ k N m} \end{aligned}$	$M_{z, E d}=5.16 \mathrm{kNm}$
5	Table 5.2	Section classification: i. $f_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=0.92$ Class 2 ii. Rolled section, outstand flange: $\begin{aligned} c & =\frac{b-t_{w}-2 r}{2} \\ & =\frac{152.9-6.5-2(7.6)}{2} \\ & =65.60 \mathrm{~mm} \\ t_{f} & =9.4 \mathrm{~mm} \\ \frac{c}{t_{f}} & =\frac{65.60}{9.4}=6.98<9 \epsilon(=8.28) \end{aligned}$ Class 1 iii. Rolled section, web subjected to compression: $\begin{aligned} c^{*} & =d \\ & =123.6 \mathrm{~mm} \\ t_{w} & =6.5 \mathrm{~mm} \\ \frac{c *}{t_{w}} & =\frac{123.6}{5.8}=19.02<33 \epsilon(=30.36) \end{aligned}$ Class 1 Therefore, the section is class 2	Section class 2
6	6.3.1.3(1)	Non-dimensional slenderness can be determined using equation below: $\begin{aligned} & \bar{\lambda}=\frac{L}{i} \times \frac{1}{\pi}\left(\sqrt{\frac{f_{y}}{E}}\right) \\ & =\frac{0.85 \times 2}{3.83 \times 10^{-2}} \times \frac{1}{\pi}\left(\sqrt{\frac{275 \times 10^{6}}{210 \times 10^{9}}}\right) \\ & =\mathbf{0 . 5 1} \end{aligned}$	$\bar{\lambda}=0.51$
7	Table 6.1 Table 6.2	$\begin{aligned} & \frac{h}{b}=\frac{D}{b}=\frac{157.6}{152.9}=1.03 \\ & t_{f}=9.4 \mathrm{~mm} \end{aligned}$ Determine imperfection factor by consider the following limits: $\frac{h}{b}<1.2, t_{f}<100 \mathrm{~mm}$ and buckling occurs about minor (z - z) axis: $\begin{aligned} & \alpha=0.49 \\ & \phi=0.5\left[1+\alpha(\bar{\lambda}-0.2)+\bar{\lambda}^{2}\right] \\ & =0.5\left[1+0.49 \times(0.51-0.2)+(0.51)^{2}\right] \\ & =\mathbf{0 . 7 1} \end{aligned}$	$\phi=0.71$

(continued)

Step	Reference	Action/calculation	Conclusion
8	6.3.1.2(1)	Reduction factor can be determined using equation below: $\begin{aligned} & \chi=\frac{1}{\phi+\sqrt{\phi^{2}-\bar{\lambda}^{2}}} \\ & =\frac{1}{0.71+\sqrt{(0.71)^{2}-(0.51)^{2}}} \\ & =\mathbf{0 . 8 3} \end{aligned}$	$\chi=0.83$
9	6.3.1.1(3)	For Class 2 section, $\begin{aligned} & N_{b, R d}=\frac{\gamma A f_{y}}{\gamma_{11}} \\ & =\frac{0.83 \times 38.3 \times 10^{-4} \times 275 \times 10^{6}}{1.0} \\ & =\mathbf{8 7 4 . 2 0} \mathbf{~ k N} \end{aligned}$	$N_{b, R d}=874.20 \mathrm{kN}$
10		$\frac{N_{E d}}{N_{b, k d}}=\frac{160.00}{874.20}=\mathbf{0 . 1 8}<\mathbf{1}$ The buckling resistance of the section is adequate	$\frac{N_{E d}}{N_{b, R d}}=0.18$
11	SN003b Access Steel Document	Critical buckling resistance can be determined using equation below. For pinned-fixed support condition, effective length factor, K is taken as 0.85 : $\begin{aligned} & M_{c r}=\frac{\pi^{2} E I_{z}}{(K L)^{2}} \sqrt{\left(\frac{I_{w}}{I_{z}}+\frac{(K L)^{2} G I_{t}}{\pi^{2} E I_{z}}\right)} \\ & =\frac{\pi^{2} \times 210 \times 10^{9} \times 560 \times 10^{-8}}{(0.85 \times 2)^{2}} \\ & \times \sqrt{\left(\frac{0.031 \times 10^{-6}}{560 \times 10^{-8}}+\frac{(0.85 \times 2)^{2} \times 81 \times 10^{9} \times 10.5 \times 10^{-8}}{\pi^{2} \times 210 \times 10^{9} \times 560 \times 10^{-8}}\right)} \\ & =\mathbf{3 5 1 . 3 5} \mathbf{~ k N m} \end{aligned}$	$M_{c r}=351.35 \mathrm{kNm}$
12	6.3.2.2(1)	For Class 2 section, slenderness for lateral torsional buckling can be determined using equation below: $\begin{aligned} & \bar{\lambda}_{L T}=\sqrt{\frac{W_{p l,} f_{y}}{M_{c r}}} \\ & =\sqrt{\frac{248 \times 10^{-6} \times 275 \times 10^{6}}{351.35 \times 10^{3}}} \\ & =\mathbf{0 . 4 4} \end{aligned}$	$\bar{\lambda}_{L T}=0.44$
13	Table 6.3 Table 6.4	$\frac{h}{b}=\frac{D}{b}=\frac{157.6}{152.9}=1.03$ Determine imperfection factor: $\begin{aligned} & \frac{h}{b}=1.03<2 \\ & \alpha_{L T}=0.21 \\ & \phi_{L T}=0.5\left[1+\alpha_{L T}\left(\bar{\lambda}_{L T}-0.2\right)+\bar{\lambda}_{L T}^{2}\right] \\ & =0.5\left[1+0.21 \times(0.44-0.2)+(0.44)^{2}\right] \\ & =\mathbf{0 . 6 2} \end{aligned}$	$\phi_{L T}=0.62$
14	6.3.2.2(1)	Lateral torsional buckling reduction factor can be determined using equation below: $\begin{aligned} & \chi_{L T}=\frac{1}{\phi_{L T}+\sqrt{\phi_{L T}^{2}-\bar{\lambda}_{L T}^{2}}} \\ & =\frac{1}{0.62+\sqrt{(0.62)^{2}-(0.44)^{2}}} \\ & =\mathbf{0 . 9 5} \end{aligned}$	$\chi_{L T}=0.95$
15	6.3.2.1(3)	For Class 2 section, $\begin{aligned} & M_{b, R d}=\chi_{L T} W_{p l, y} \frac{f_{y}}{\gamma_{1}} \\ & =\frac{0.95 \times 248 \times 10^{-6} \times 275 \times 10^{6}}{1.0} \\ & =\mathbf{6 4 . 7 9} \mathbf{~ k N m} \end{aligned}$	$M_{b, R d}=64.79 \mathrm{kNm}$
16		$\frac{M_{y, E d}}{M_{b, R d}}=\frac{17.88}{64.79}=\mathbf{0 . 2 8}<1$ The bending resistance of the section is adequate	$\frac{M_{y, E d}}{M_{b, R d}}=0.28$
17	6.2.5(2)	For Class 2 section, $\begin{aligned} & M_{z, R d}=\frac{W_{p l, ~} f_{y}}{\gamma_{M 1}} \\ & =\frac{112 \times 10^{-6} \times 275 \times 10^{6}}{1.0} \\ & =\mathbf{3 0 . 8 0} \mathbf{~ k N m} \end{aligned}$	$M_{z, R d}=30.80 \mathrm{kNm}$
18	$\begin{aligned} & \text { SN048b-EN-GB } \\ & \text { Access Steel } \\ & \text { Document } \end{aligned}$	Check ratio $\begin{aligned} & \frac{N_{E d}}{N_{b, R d}}+\frac{M_{y, E d}}{M_{b, R d}}+1.5 \frac{M_{z, E d}}{M_{z, R d}} \\ & =0.18+0.28+1.5\left(\frac{5.16}{30.80}\right) \\ & =\mathbf{0 . 7 1} \leq \mathbf{1} \end{aligned}$	$\frac{N_{E d}}{N_{b, R d}}+\frac{M_{v, E d}}{M_{b, R d}}+1.5 \frac{M_{z E d}}{M_{z, R d}}=0.71$
19		The ratio is 0.71 , which is less than 1 . Therefore, the column section $152 \times 152 \times 30$ is adequate	

3.2.3 Example 3-2 Column Design

Check the suitability of a $254 \times 254 \times 107$ section for the column in Fig. 3.5. Use steel grade S235. The connection between the column and beam is pinned, and the support condition for the base of the column is pinned and fixed about the $y-y$ and $z-z$ axes respectively (Fig. 3.6).

Fig. 3.5 Example 3-2

Fig. 3.6 Result for Example 3-2 using steel design based on EC3 program

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-1 unless otherwise stated	Support condition of the column is pinned-pinned about y - y axis and fixed-pinned about $z-z$ axis	
2		Reaction for: beam $\mathrm{A}=120 \mathrm{kN}$ beam $\mathrm{B}=\mathbf{8 0} \mathbf{~ k N}$	$\begin{aligned} & V_{E d y-y}=120 \mathrm{kN} \\ & V_{E d, z-z}=80 \mathrm{kN} \end{aligned}$
3	Table 3.1	Steel grade $=\mathbf{S 2 3 5}$ Assume the thicknesses of web and flange are less than 40 mm : $f y=235 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}$
	BS 4 Part 12005	Try the following column section: Select column section $\mathbf{2 5 4} \times \mathbf{2 5 4} \times \mathbf{1 0 7}$ The properties of the section is as follows: Depth of section, $D=266.7 \mathrm{~mm}$ Width of section, $b=258.8 \mathrm{~mm}$ Thickness of web, $t_{w}=12.8 \mathrm{~mm}$ Thickness of flange, $t_{f}=20.5 \mathrm{~mm}$ Root radius, $r=12.7 \mathrm{~mm}$ Depth between fillets, $d=200.3 \mathrm{~mm}$ Second moment of area about major ($y-y$) axis, I_{y} $=17510 \mathrm{~cm}^{4}$ Second moment of area about minor (z-z) axis, I_{z} $=5928 \mathrm{~cm}^{4}$ Radius of gyration about major ($y-y$) axis, i_{y} $=11.3 \mathrm{~cm}$ Radius of gyration about minor $(z-z)$ axis, i_{z} $=6.59 \mathrm{~cm}$ Elastic modulus about major ($y-y$) axis, $W_{e l, y}$ $=1313 \mathrm{~cm}^{3}$ Elastic modulus about minor $(z-z)$ axis, $\mathrm{W}_{\mathrm{el}, \mathrm{z}}$ $=458 \mathrm{~cm}^{3}$ Plastic modulus about major ($y-y$) axis, $W_{p l, y}$ $=1484 \mathrm{~cm}^{3}$ Plastic modulus about minor $(z-z)$ axis, $\mathrm{W}_{\mathrm{pl}, \mathrm{z}}$ $=697 \mathrm{~cm}^{3}$ Warping constant, $I_{w}=0.898 \mathrm{dm}^{6}$ Torsional constant, $I_{t}=172 \mathrm{~cm}^{4}$ Area of section, $A=136 \mathrm{~cm}^{2}$	
4		$\begin{aligned} & V_{E d, y-y}=120 \mathrm{kN} \\ & V_{E d, z-z}=80 \mathrm{kN} \\ & N_{E d} \\ & =\sum_{i=1}^{n} V_{E d, i} \\ & =120+80 \\ & =\mathbf{2 0 0 . 0 0} \mathbf{~ k N} \end{aligned}$	$N_{E d}=200.00 \mathrm{kN}$
		$M_{y, E d}$ and $M_{z, E d}$ can be calculated based on geometry of the column section, as they are induced by eccentricity of loads with respect to centroid of the said section $M_{y, E d}$ $=$ Shear difference in $y-y \times\left(\frac{D}{2}+\right.$ bearing size $)$ $=120 \times\left(\frac{266.7 \times 10^{-3}}{2}+100 \times 10^{-3}\right)$ $=\mathbf{2 8 . 0 0} \mathbf{~ k N m}$	$M_{y, E d}=28.00 \mathrm{kNm}$

(continued)

		$M_{z, E d}$ $=$ Shear difference in $z-z \times\left(\frac{t_{w}}{2}\right.$ $=80 \times\left(\frac{12.8 \times 10^{-3}}{2}+100 \times 10^{-3}\right)$	$M_{z, E d}=8.51 \mathrm{kNm}$
	$=\mathbf{8 . 5 1 \mathrm { kNm }}$		

(continued)
(continued)

9	6.3.1.1(3)	For Class 1 section, $\begin{aligned} & N_{b, R d}=\frac{\chi A f_{Y}}{\gamma_{M 1}} \\ & =\frac{0.81 \times 136 \times 10^{-4} \times 235 \times 10^{6}}{1.0} \\ & =\mathbf{2 5 8 8 . 7 6} \mathbf{~ k N} \end{aligned}$	$N_{b, R d}=2588.76 \mathrm{kN}$
10		$\frac{N_{E}}{N_{b}, \text { d }}=\frac{200.00}{2588.76}=\mathbf{0 . 0 8}<\mathbf{1}$ The buckling resistance of the section is adequate	$\frac{N_{E d}}{N_{b, R d}}=0.18$
11	SN003b Access Steel Document	Critical buckling resistance can be determined using equation below. Since the buckling is occurs about major ($y-y$) axis, support condition about y - y axis (pinned-pinned) is considered. In this case, effective length factor, K is taken as 1.0: $\begin{aligned} & M_{c r}=\frac{\pi^{2} E I_{z}}{(K L)^{2}} \sqrt{\left(\frac{I_{w}}{I_{z}}+\frac{(K L)^{2} G I_{t}}{\pi^{2} E I_{z}}\right)} \\ & =\frac{\pi^{2} \times 210 \times 10^{9} \times 5928 \times 10^{-8}}{(1.0 \times 4)^{2}} \\ & \times \sqrt{\left(\frac{0.898 \times 10^{-6}}{5928 \times 10^{-8}}+\frac{(1.0 \times 4)^{2} \times 81 \times 10^{9} \times 172 \times 10^{-8}}{\pi^{2} \times 210 \times 10^{9} \times 5928 \times 10^{-8}}\right)} \\ & =\mathbf{1 4 0 1 . 1 1 ~ k N m} \end{aligned}$	$M_{c r}=1401.11 \mathrm{kNm}$
12	6.3.2.2(1)	For Class 1 section, slenderness for lateral torsional buckling can be determined using equation below: $\begin{aligned} & \bar{\lambda}_{L T}=\sqrt{\frac{W_{p l, S} f_{v}}{M_{r}}} \\ & =\sqrt{\frac{1484 \times 10^{-6} \times 235 \times 10^{6}}{1401.11 \times 10^{3}}} \\ & =\mathbf{0 . 5 0} \end{aligned}$	$\bar{\lambda}_{L T}=0.50$
13	Table 6.3 Table 6.4	$\frac{h}{b}=\frac{D}{b}=\frac{266.7}{258.8}=1.03$ Determine imperfection factor: $\begin{aligned} & \frac{h}{b}=1.03<2 \\ & \alpha_{L T}=0.21 \\ & \phi_{L T}=0.5\left[1+\alpha_{L T}\left(\bar{\lambda}_{L T}-0.2\right)+\bar{\lambda}_{L T}^{2}\right] \\ & =0.5\left[1+0.21 \times(0.50-0.2)+(0.50)^{2}\right] \\ & =\mathbf{0 . 6 6} \end{aligned}$	$\phi_{L T}=0.66$
14	6.3.2.2(1)	Lateral torsional buckling reduction factor can be determined using equation below: $\begin{aligned} & \chi_{L T}=\frac{1}{\phi_{L T}+\sqrt{\phi_{L T}^{2}-\bar{\lambda}_{L T}^{2}}} \\ & =\frac{1}{0.66+\sqrt{(0.66)^{2}-(0.50)^{2}}} \\ & =\mathbf{0 . 9 2} \end{aligned}$	$\chi_{L T}=0.92$
15	6.3.2.1(3)	For Class 1 section, $\begin{aligned} & M_{b, R d}=\chi_{L T} W_{p l, y} \frac{f_{y}}{\gamma_{M 1}} \\ & =\frac{0.92 \times 1484 \times 10^{-6} \times 235 \times 10^{6}}{1.0} \\ & =\mathbf{3 2 0 . 8 4} \mathbf{~ k N m} \end{aligned}$	$M_{b, R d}=320.84 \mathrm{kNm}$
16		$\frac{M_{y, E d}}{M_{b, R d}}=\frac{28.00}{320.84}=0.09<1$ The bending resistance of the section is adequate	$\frac{M_{y, E d}}{M_{b, R d}}=0.09$
17	6.2.5(2)	For Class 1 section, $\begin{aligned} & M_{z, R d}=\frac{W_{p l, f} f_{y}}{\gamma_{M 1}} \\ & =\frac{697 \times 10^{-6} \times 235 \times 10^{6}}{1.0} \\ & =\mathbf{1 6 3 . 8 0} \mathbf{k N m} \end{aligned}$	$M_{z, R d}=163.80 \mathrm{kNm}$

(continued)

18	SN048b-EN-GB Access Steel Document	Check ratio $\begin{aligned} & \frac{N_{E d}}{N_{b, R d}}+\frac{M_{Y E d}}{M_{b, R d}}+1.5 \frac{M_{z E d}}{M_{z R d}} \\ & =0.07+0.09+1.5\left(\frac{8.51}{163.80}\right) \\ & =\mathbf{0 . 2 4} \leq \mathbf{1} \end{aligned}$	$\frac{N_{E d}}{N_{b, R d}}+\frac{M_{z, d}}{M_{b, R d}}+1.5 \frac{M_{z E d}}{M_{z d d}}=0.24$
19		The ratio is 0.24 , which is less than 0.5 . Therefore, the column section $254 \times 254 \times 107$ is adequate but not optimum	

From the program, the optimum section for beam subjected to condition as specified in Example 3.2 is $152 \times 152 \times 37$. This section is obviously smaller than proposed $254 \times 254 \times 107$ section. Therefore, the proposed section is adequate, but not considered as optimum.

3.2.4 Example 3-3 Column Design

Design the 5 m -high column in Fig. 3.7 using the simplified approach. The connections between the column and the beams and the bottom end of the column are pinned. The ultimate load on the column is 6 kN . Steel grade S275 is used for the column.

Beam D Reaction=50kN
Beam C Reaction=100
Beam A Reaction=100kN
Beam B Reaction=80kN

Fig. 3.7 Example 3-3

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-1 unless otherwise stated	Support condition of the column is pinned-pinned	
2		Reaction for: beam $\mathrm{A}=100 \mathrm{kN}$ beam $B=80 \mathbf{k N}$ beam $\mathrm{C}=100 \mathrm{kN}$ beam $\mathrm{D}=\mathbf{5 0} \mathbf{~ k N}$ $V_{E d, y-y}=100+100=\mathbf{2 0 0} \mathbf{~ k N}$ $V_{E d, z-z}=80+50=\mathbf{1 3 0} \mathbf{~ k N}$	$\begin{aligned} & V_{E d, y-y}=200 \mathrm{kN} \\ & V_{E d, z-z}=130 \mathrm{kN} \end{aligned}$
3	Table 3.1	Steel grade $=\mathbf{S} 275$ Assume the thicknesses of web and flange are less than 40 mm : $f y=275 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
	BS 4 Part 12005	Randomly choose a column section for the first trial: Select column section $\mathbf{2 0 3} \times \mathbf{2 0 3} \times \mathbf{4 6}$ The properties of the section is as follows: Depth of section, $D=203.2 \mathrm{~mm}$ Width of section, $b=203.6 \mathrm{~mm}$ Thickness of web, $t_{w}=7.2 \mathrm{~mm}$ Thickness of flange, $\mathrm{t}_{\mathrm{f}}=11.0 \mathrm{~mm}$ Root radius, $r=10.2 \mathrm{~mm}$ Depth between fillets, $d=160.8 \mathrm{~mm}$ Second moment of area about major (y - y) axis, I_{y} $=4568 \mathrm{~cm}^{4}$ Second moment of area about minor (z - z) axis, I_{z} $=1548 \mathrm{~cm}^{4}$ Radius of gyration about major ($y-y$) axis, i_{y} $=8.82 \mathrm{~cm}$ Radius of gyration about minor $(z-z)$ axis, i_{z} $=5.13 \mathrm{~cm}$ Elastic modulus about major ($y-y$) axis, $W_{e l, y}$ $=450 \mathrm{~cm}^{3}$ Elastic modulus about minor ($z-z$) axis, $\mathrm{W}_{\mathrm{el}, \mathrm{z}}$ $=152 \mathrm{~cm}^{3}$ Plastic modulus about major ($y-y$) axis, $W_{p l, y}$ $=497 \mathrm{~cm}^{3}$ Plastic modulus about minor $(z-z)$ axis, $\mathrm{W}_{\mathrm{pl}, \mathrm{z}}$ $=231 \mathrm{~cm}^{3}$ Warping constant, $I_{w}=0.143 \mathrm{dm}^{6}$ Torsional constant, $I_{t}=22.2 \mathrm{~cm}^{4}$ Area of section, $A=58.7 \mathrm{~cm}^{2}$	
4		$\begin{aligned} & V_{E d y-y}=200 \mathrm{kN} \\ & V_{E d, z-z}=130 \mathrm{kN} \\ & \text { Load on column }=6 \mathrm{kN} \\ & N_{E d} \\ & =\sum_{i=1}^{n} V_{E d, i}+\text { load on column } \\ & =200+130+6 \\ & =\mathbf{3 3 6 . 0 0} \mathbf{~ k N} \end{aligned}$	$N_{E d}=336.00 \mathrm{kN}$
		$M_{y, E d}$ and $M_{z, E d}$ can be calculated based on geometry of the column section, as they are induced by eccentricity of loads with respect to centroid of the said section $M_{y, E d}$ $=$ Shear difference in $y-y \times\left(\frac{D}{2}+\right.$ bearing size $)$ $=(100-100) \times\left(\frac{203.2 \times 10^{-3}}{2}+100 \times 10^{-3}\right)$ $=\mathbf{0} \mathbf{k N m}$	$M_{y, E d}=0 \mathrm{kNm}$

(continued)
(continued)

Step	Reference	Action/calculation	Conclusion
		$\begin{aligned} & M_{z, \text { Ed }} \\ & =\text { Shear difference in } z-z \times\left(\frac{t_{w}}{2}+\text { bearing size }\right) \\ & =(80-50) \times\left(\frac{7.2 \times 10^{-3}}{2}+100 \times 10^{-3}\right) \\ & =\mathbf{3 . 1 1} \mathbf{~ k N m} \end{aligned}$	$M_{z, E d}=3.11 \mathrm{kNm}$
5	Table 5.2	Section classification: i. $f_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=0.92$ Class 2 ii. Rolled section, outstand flange: $\begin{aligned} & c=\frac{b-t_{w}-2 r}{2} \\ & =\frac{203.6-7.2-2(10.2)}{2} \\ & =88 \mathrm{~mm} \\ & t_{f}=11 \mathrm{~mm} \\ & \frac{c}{t_{f}}=\frac{88}{11}=8<9 \epsilon(=8.28) \end{aligned}$ Class 1 iii. Rolled section, we subjected to compression: $\begin{aligned} & c^{*}=d \\ & =160.8 \mathrm{~mm} \\ & t_{w}=7.2 \mathrm{~mm} \\ & \frac{c *}{t_{w}}=\frac{160.8}{7.2}=22.33<33 \epsilon(=30.36) \end{aligned}$ Class 1 Therefore, the section is class 2	Section class 2
6	6.3.1.3(1)	Non-dimensional slenderness can be determined using equation below: $\begin{aligned} & \bar{\lambda}=\frac{K L}{i} \times \frac{1}{\pi}\left(\sqrt{\frac{f_{y}}{E}}\right) \\ & =\frac{1.0 \times 5}{5.13 \times 10^{-2}} \times \frac{1}{\pi}\left(\sqrt{\frac{275 \times 10^{6}}{210 \times 10^{9}}}\right) \\ & =\mathbf{1 . 1 2} \end{aligned}$	$\bar{\lambda}=1.12$
7	Table 6.1 Table 6.2	$\begin{aligned} & \frac{h}{b}=\frac{D}{b}=\frac{203.2}{203.6}=0.99 \\ & t_{f}=11 \mathrm{~mm} . \end{aligned}$ Determine imperfection factor by consider the following limits: $\frac{h}{b}<1.2, t_{f}<100 \mathrm{~mm}$ and buckling occurs about minor $(z-z)$ axis: $\begin{aligned} & \alpha=0.49 \\ & \phi=0.5\left[1+\alpha(\bar{\lambda}-0.2)+\bar{\lambda}^{2}\right] \\ & =0.5\left[1+0.49 \times(1.12-0.2)+(1.12)^{2}\right] \\ & =\mathbf{1 . 3 5} \end{aligned}$	$\phi=1.35$
8	6.3.1.2(1)	Reduction factor can be determined using equation below: $\begin{aligned} & \chi=\frac{1}{\phi+\sqrt{\phi^{2}-\overline{र ्}^{2}}} \\ & =\frac{1.35+\sqrt{1.35^{2}-1.12^{2}}}{1.38} \\ & =\mathbf{0 . 4 8} \end{aligned}$	$\chi=0.48$
9	6.3.1.1(3)	For Class 2 section, $\begin{aligned} & N_{b, R d}=\frac{\chi A f_{y}}{\gamma_{M 1}} \\ & =\frac{0.48 \times 58.7 \times 10^{-4} \times 275 \times 10^{6}}{} \\ & =\mathbf{7 7 4 . 8 4} \mathbf{~ k N} \end{aligned}$	$N_{b, R d}=774.84 \mathrm{kN}$
10		$\frac{N_{F d}}{N_{b, R d}}=\frac{336.00}{774.84}=\mathbf{0 . 4 3}<\mathbf{1}$ The buckling resistance of the section is adequate	$\frac{N_{E d}}{N_{b, R d}}=0.43$

(continued)

Step	Reference	Action/calculation	Conclusion
11		This step is skipped since $M_{y, E d}$ is 0	
12		This step is skipped since $M_{y, E d}$ is 0	
13		This step is skipped since $M_{y, E d}$ is 0	
14		This step is skipped since $M_{y, E d}$ is 0	
15		This step is skipped since $M_{y, E d}$ is 0	
16		This step is skipped since $M_{y, E d}$ is 0	
17	6.2.5(2)	For Class 2 section, $\begin{aligned} & M_{z, R d}=\frac{W_{p l, f f_{y}}}{V_{M 1}} \\ & =\frac{231 \times 10^{-6} \times 275 \times 10^{6}}{10.0} \\ & =\mathbf{6 3 . 5 3} \mathbf{~ k N m} \end{aligned}$	$M_{z, R d}=63.53 \mathrm{kNm}$
18	$\begin{aligned} & \text { SN048b-EN-GB } \\ & \text { Access Steel } \\ & \text { Document } \end{aligned}$	$\begin{aligned} & \text { Check ratio } \\ & \frac{N_{E d}}{N_{b, R d}}+\frac{M_{y, E d}}{M_{b, R d}}+1.5 \frac{M_{z E d}}{M_{\text {zed }}} \\ & =0.43+0+1.5\left(\frac{311}{63.53}\right) \\ & =\mathbf{0 . 5 0} \leq \mathbf{1} \end{aligned}$	$\frac{N_{E d}}{N_{b, R d}}+\frac{M_{y, E d}}{M_{b, R d}}+1.5 \frac{M_{z E d}}{M_{z R d}}=0.50$
19		The ratio is 0.50 , which is less than 1 . Therefore, the column section $203 \times 203 \times 46$ is adequate, but barely considered as optimum	

Step 3 should be repeated and a smaller column section should be chosen for optimum design (Fig. 3.8).

Fig. 3.8 Result for Example 3-3 using steel design based on EC3 program

Step	Reference	Action/calculation	Conclusion
3	Table 3.1	Steel grade = S275 Assume the thicknesses of web and flange are less than 40 mm : $f y=275 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
	BS 4 Part 12005	Select column section $\mathbf{1 5 2} \times \mathbf{1 5 2} \times \mathbf{3 7}$ The properties of the section is as follows: Depth of section, $D=161.8 \mathrm{~mm}$ Width of section, $b=154.4 \mathrm{~mm}$ Thickness of web, $t_{w}=8.0 \mathrm{~mm}$ Thickness of flange, $\mathrm{t}_{\mathrm{f}}=11.5 \mathrm{~mm}$ Root radius, $r=7.6 \mathrm{~mm}$ Depth between fillets, $d=123.6 \mathrm{~mm}$ Second moment of area about major $(y-y)$ axis, I_{y} $=2210 \mathrm{~cm}^{4}$ Second moment of area about minor ($z-z$) axis, I_{z} $=706 \mathrm{~cm}^{4}$ Radius of gyration about major $(y-y)$ axis, i_{y} $=6.71 \mathrm{~cm}$ Radius of gyration about minor ($z-z$) axis, i_{z} $=15.5 \mathrm{~cm}$ Elastic modulus about major ($y-y$) axis, $W_{e l, y}$ $=273 \mathrm{~cm}^{3}$ Elastic modulus about minor $(z-z)$ axis, $\mathrm{W}_{\mathrm{el}, \mathrm{z}}$ $=91.5 \mathrm{~cm}^{3}$ Plastic modulus about major ($y-y$) axis, $W_{p l, y}$ $=309 \mathrm{~cm}^{3}$ Plastic modulus about minor $(z-z)$ axis, $\mathrm{W}_{\mathrm{pl}, \mathrm{z}}$ $=140 \mathrm{~cm}^{3}$ Warping constant, $I_{w}=0.04 \mathrm{dm}^{6}$ Torsional constant, $I_{t}=19.2 \mathrm{~cm}^{4}$ Area of section, $A=47.1 \mathrm{~cm}^{2}$	
4		From previous calculation: $N_{E d}=336.00 \mathbf{~ k N}$	$N_{E d}=336.00 \mathrm{kN}$
		$M_{y, E d}$ and $M_{z, E d}$ needed to be calculated based on geometry of new column section, as they are induced by eccentricity of loads with respect to centroid of the said section $M_{y, E d}=\mathbf{0} \mathbf{~ k N m}$ since the moment induced by beam A and C cancel out each other	$M_{y, E d}=0 \mathrm{kNm}$
		$\begin{aligned} & M_{z, E d} \\ & =\text { Shear difference in } z-z \times\left(\frac{t_{w}}{2}+\text { bearing size }\right) \\ & =(80-50) \times\left(\frac{8 \times 10^{-3}}{2}+100 \times 10^{-3}\right) \\ & =\mathbf{3 . 1 2} \mathbf{~ k N m} \end{aligned}$	$M_{z, E d}=3.12 \mathrm{kNm}$
5	Table 5.2	Section classification: i. $f_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$ $\varepsilon=0.92$ Class 2 ii. Rolled section, outstand flange: $\begin{aligned} & c=\frac{b-t_{w}-2 r}{2} \\ & =\frac{154.4-8-2(7.6)}{2} \\ & =65.60 \mathrm{~mm} \\ & t_{f}=11.5 \mathrm{~mm} \end{aligned}$	Section class 2

(continued)

Step	Reference	Action/calculation	Conclusion
		$\frac{c}{t_{f}}=\frac{65.60}{11.5}=5.70<9 \epsilon(=8.28)$ Class 1 iii. Rolled section, web subjected to compression: $\begin{aligned} & c^{*}=d \\ & =123.6 \mathrm{~mm} \\ & t_{w}=8 \mathrm{~mm} \\ & \frac{c *}{t_{w}}=\frac{123.6}{8}=15.45<33 \epsilon(=30.36) \end{aligned}$ Class 1 Therefore, the section is class 2	
6	6.3.1.3(1)	Non-dimensional slenderness can be determined using equation below: $\begin{aligned} & \bar{\lambda}=\frac{K L}{i} \times \frac{1}{\pi}\left(\sqrt{\frac{f_{y}}{E}}\right) \\ & =\frac{1.0 \times 5}{3.87 \times 10^{-2}} \times \frac{1}{\pi}\left(\sqrt{\frac{275 \times 10^{6}}{210 \times 10^{9}}}\right) \\ & =\mathbf{1 . 4 9} \end{aligned}$	$\bar{\lambda}=1.49$
7	Table 6.1 Table 6.2	$\begin{aligned} & \frac{h}{b}=\frac{D}{b}=\frac{161.8}{154.4}=1.05 \\ & t_{f}=11.5 \mathrm{~mm}<100 \mathrm{~mm} \end{aligned}$ Determine imperfection factor by consider the following limits: $\frac{h}{b}<1.2, t_{f}<100 \mathrm{~mm}$ and buckling occurs about minor $(z-z)$ axis: $\begin{aligned} & \alpha=0.49 \\ & \phi=0.5\left[1+\alpha(\bar{\lambda}-0.2)+\bar{\lambda}^{2}\right] \\ & =0.5\left[1+0.49 \times(1.49-0.2)+(1.49)^{2}\right] \\ & =\mathbf{1 . 9 3} \end{aligned}$	$\phi=1.93$
8	6.3.1.2(1)	Reduction factor can be determined using equation below: $\begin{aligned} & \chi=\frac{1}{\phi+\sqrt{\phi^{2}-\bar{\lambda}^{2}}} \\ & =\frac{1}{1.93+\sqrt{1.93^{2}-1.49^{2}}} \\ & =\mathbf{0 . 3 2} \end{aligned}$	$\chi=0.32$
9	6.3.1.1(3)	For Class 2 section, $\begin{aligned} & N_{b, R d}=\frac{\chi A A_{y}}{\gamma_{M 1}} \\ & =\frac{0.32 \times 47.1 \times 10^{-4} \times 275 \times 10^{6}}{1.0} \\ & =\mathbf{4 1 4 . 4 8} \mathbf{~ k N} \end{aligned}$	$N_{b, R d}=414.48 \mathrm{kN}$
10		$\frac{N_{E d}}{N_{b, R d}}=\frac{336.00}{414.48}=\mathbf{0 . 8 1}<\mathbf{1}$ The buckling resistance of the section is adequate	$\frac{N_{E d}}{N_{b, R d}}=0.81$
11		This step is skipped since $M_{y, E d}$ is 0	
12		This step is skipped since $M_{y, E d}$ is 0	
13		This step is skipped since $M_{y, E d}$ is 0	
14		This step is skipped since $M_{y, E d}$ is 0	
15		This step is skipped since $M_{y, E d}$ is 0	
16		This step is skipped since $M_{y, E d}$ is 0	
17	6.2.5(2)	For Class 2 section, $\begin{aligned} & M_{z, R d}=\frac{W_{p l 2} f_{y}}{\gamma_{M 1}} \\ & =\frac{140 \times 10^{-6} \times 275 \times 10^{6}}{1.0} \\ & =\mathbf{3 8 . 5 0} \mathbf{~ k N m} \end{aligned}$	$M_{z, R d}=38.50 \mathrm{kNm}$

(continued)

Step	Reference	Action/calculation	Conclusion
18	SN048b-EN-GB	Check ratio	$\frac{N_{E d}}{N_{b, R d}}+\frac{M_{y, E d}}{M_{b, R d}}+1.5 \frac{M_{z, E d}}{M_{z, R d}}=0.93$
	Access Steel		
Document	$\frac{N_{E d}}{N_{b, R d}}+\frac{M_{y, E d}}{M_{b, R d}}+1.5 \frac{M_{z, E d}}{M_{Z_{2}, R d}}$ $=0.81+0+1.5\left(\frac{3.12}{3.50}\right)$ $=\mathbf{0 . 9 3} \leq \mathbf{1}$		
19		The ratio is 0.93, which is approaching to 1. Therefore, the section $152 \times 152 \times 37$ is optimum	

3.3 Exercise: Column Design

3-1 Design the 5 m-high column in Fig. 3.9 using the simplified approach. Use steel grade S235. The connection between the column and the beam is pinned, and the support condition for the base of the column is pinned and fixed about the y y and $z-z$ axes respectively. The ultimate load on the column is 10 kN .

3-2 Design the 5 m-high column in Fig. 3.9 by using the simplified approach. Use steel grade S275. The connections between the column and the beams and the bottom end of the column are pinned. The ultimate load on the column is 10 kN . Compare the result with that obtained in 3-1.

Fig. 3.9 Plan view for Questions 3-1 and 3-2

3-3 Design the 8 m-high column in Fig. 3.10 by using the simplified approach. Use steel grade S275. The connections between the column and the beams and the bottom end of column are pinned.

Fig. 3.10 Plan view for Question 3-3

Chapter 4 Connection Design

4.1 Introduction

Connection is a point where two or more different structural members meet. It is important in a frame because it holds all structural members in position and ensures that they behave as a frame. Some examples of connections are beam-beam, beamcolumn, beam-bracing, and built-up member. Figure 4.1 illustrates some common configurations of steel structure connections.

Connections in steel construction are classified into two common types: welded and bolted.

A welded connection joins two or more structural elements with melted metal. Either arc welding or stick welding may be employed to form a welded connection. Welded connections are generally classified into five types: fillet weld, fillet all-around weld, butt weld, plug weld, and flare groove weld. Figure 4.2 shows the differences among these weld types.

Bolted connection also joins two or more structural elements, but with the use of a fastener, which is secured with the mating of a screw thread, such as in a bolt and nut. Bolted connections have two types: shear connection and tension connection. The type of connection can be determined through the direction of the force acting on the fastener, as shown in Fig. 4.3.

Fig. 4.1 Common configurations of steel structure connection

Fig. 4.2 Types of welded connections

Fig. 4.3 Types of bolted connections

4.2 Design Procedure for a Welded Connection

The design procedure for a welded connection is as follows:

1. Determine the preliminary thickness of the steel welding plate.
2. Select the grade of the plate.
3. Determine the design force $N_{E d}$ at the joint. If the connection is to be established at the support, then the support reaction should be determined.
4. Determine the preliminary throat thickness a, which is usually defined as $\frac{\sqrt{2}}{2} \times$ welding side.
5. Determine the correlation factor β_{w}.
6. Determine the design weld shear strength. The value of $\gamma_{M 2}$ should be set to 1.25 .

$$
\begin{equation*}
f_{v w, d}=\frac{f_{u} / \sqrt{3}}{\beta_{w} \gamma_{M 2}} \tag{4.1}
\end{equation*}
$$

where f_{u} is ultimate tensile strength of steel obtained from Step 2 (Table 4.1) β_{w} is correlation factor obtained from Step 5 (Table 4.2)
(BS EN 1993-1-8:2005 4.5.3.3(3))
Table 4.1 Nominal values of yield strength f_{y} and ultimate tensile strength f_{u} of hot-rolled structural steel (BS EN 1993-1-1:2005 Table 3.1)

Standard and steel grade (To BS EN 10025-2)	Nominal thickness of element, $t(\mathrm{~mm})$			
	$t \leq 40 \mathrm{~mm}$	$40 \mathrm{~mm}<t \leq 80 \mathrm{~mm}$		
	$f_{y}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$f_{u}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$f_{y}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$f_{u}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$
S235	235	360	215	360
S275	275	430	255	410
S355	355	490	335	470
S450	440	550	410	550

Table 4.2 Values of the correlation factor β_{w} for various steel grades (BS EN 1993-1-8:2005 Table 4.1)

Steel grade	β_{w}
S235	0.8
S275	0.85
S355	0.9
S420	1.0
S460	1.0

7. Determine the weld resistance per length.

$$
\begin{equation*}
F_{w, E d}=f_{v w, d} a \tag{4.2}
\end{equation*}
$$

where $f_{v w, d}$ is design weld shear strength obtained from Step 6 (Eq. 4.1) a is throat thickness obtained from Step 4
(BS EN 1993-1-8:2005 4.5.3.3(2))
8. Determine the effective welding length by using the equation below. For the edge of a steel plate, the effective welding length is equal to the length of the edge minus $2 a$. Specifically, the total welding length should be at least $2 a$ more than the computed effective welding length, which depends on the welding pattern. Note that the number of welds manipulates the total welding length. The higher the number of welds, the greater the total welding length.

$$
\begin{equation*}
L=\frac{N_{E d}}{F_{w, E d}} \tag{4.3}
\end{equation*}
$$

where $N_{E d}$ is design force at joint obtained from Step 3 $F_{w, E d}$ is weld resistance per length obtained from Step 7 (Eq. 4.2)
(BS EN 1993-1-8:2005 4.5.3.3(1))
9. Determine the dimension of the steel plate that can provide sufficient welding length. The dimension of the steel plate depends on the number of welds set in Step 8.

4.2.1 Design Flowchart for a Welded Connection

4.2.2 Example 4-1 Welded Connection Design

Find the total welding length of the connection in Fig. 4.4. The load applied to the bracing is 500 kN . Use steel plate grade S 235 for the welding plate and the bracing member (Fig. 4.5).

Fig. 4.4 Example 4-1

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN stated	From figure above, the thickness of steel bracing member is $\mathbf{1 5} \mathbf{~ m m}$	$t=15 \mathrm{~mm}$
2	BS EN 1993-1-1 Table 3.1	Steel grade $=\mathbf{S 2 3 5}$ $t=15 \mathrm{~mm}<40 \mathrm{~mm}$ $f_{u}=\mathbf{3 6 0} \mathbf{~ N} / \mathbf{m m}^{2}$	$f_{u}=360 \mathrm{~N} /$ mm^{2}
3		Throat thickness, a $=\frac{\sqrt{2}}{2} \times$ welding side $=\frac{\sqrt{2}}{2} t$	$N_{E d}=500 \mathrm{kN}$
4		$=\frac{\sqrt{2}}{2} \times 15$ $=\mathbf{1 0 . 6} \mathbf{~ m m}$	$a=10.6 \mathrm{~mm}$
5	Table 3.1	For steel grade $=$ S235, $\beta_{w}=\mathbf{0 . 8}$	Design weld shear strength. $f_{v w, d}$
6	$4.5 .3 .3(3)$	$f_{v w, d}$	

(continued)

Step	Reference	Action/calculation	Conclusion
		$\begin{aligned} & =\frac{f_{u} / \sqrt{3}}{\beta_{w} \gamma_{M 2}} \\ & =\frac{360 / \sqrt{3}}{0.8 \times 1.25} \\ & =\mathbf{2 0 7 . 8} \mathbf{N} / \mathbf{m m}^{2} \end{aligned}$	
7	4.5.3.3(2)	$\begin{aligned} & \text { Weld resistance per length, } F_{w, E d} \\ & =f_{v w, d} a \\ & =207.8 \times 10.6 \\ & =\mathbf{2 . 2 0} \mathbf{~ k N} / \mathbf{m m} \end{aligned}$	$\begin{aligned} & F_{w, E d} \\ & =2.20 \mathrm{kN} / \mathrm{mm} \end{aligned}$
8	4.5.3.3(1)	Effective welding length, L $\begin{aligned} & =\frac{N_{E d}}{F_{w E d}} \\ & =\frac{500}{2.20} \\ & =\mathbf{2 2 7 . 2 7} \mathbf{~ m m} \end{aligned}$	$L=227.27 \mathrm{~mm}$
		From figure below, number of weld is $\mathbf{3}$ $\begin{aligned} L_{\text {tot }} & =L+\text { number of weld } \times 2 a \\ & =227.27+3 \times 2 \times 10.6 \\ & =290.87 \mathrm{~mm} \\ & =291 \mathrm{~mm} \end{aligned}$	$L_{\text {tot }}=291 \mathrm{~mm}$
9		From the dimension of bracing member in figure above, $\begin{aligned} & L_{1}=150 \mathrm{~mm} \\ & L_{2}=L_{3}=\frac{291-150}{2}=70.5 \mathrm{~mm} \end{aligned}$ The minimum welding length at two sides of bracing member is 70.5 mm	

Fig. 4.5 Result for Example 4-1 using steel design based on EC3 program

4.2.3 Example 4-2 Welded Connection Design

Check the suitability of a steel plate for welded connection, which will be established on the left side of the joint (Fig. 4.6). The grade of the steel plate is S235 and the thickness is 10 mm (Fig. 4.7).

Fig. 4.6 Example 4-2

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-8 unless otherwise stated	The thickness of steel plate is $\mathbf{1 0} \mathbf{~ m m}$	$t=10 \mathrm{~mm}$
2	BS EN 1993-1-1 Table 3.1	$\begin{aligned} & \text { Steel grade }=\mathbf{S 2 3 5} \\ & t=10 \mathrm{~mm}<40 \mathrm{~mm} \\ & f_{u}=\mathbf{3 6 0 ~ N} / \mathbf{m m}^{\mathbf{2}} \end{aligned}$	$\begin{aligned} & f_{u} \\ & =360 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$
3		$N_{E d}=\mathbf{5 0 0} \mathbf{~ k N}$	$N_{E d}=500 \mathrm{kN}$
4		Throat thickness, a $\begin{aligned} & =\frac{\sqrt{2}}{2} \times \text { welding side } \\ & =\frac{\sqrt{2}}{2} t \\ & =\frac{\sqrt{2}}{2} \times 10 \\ & =7.1 \mathrm{~mm} \end{aligned}$	$a=7.1 \mathrm{~mm}$
5	Table 4.1	For steel grade $=$ S235, $\beta_{w}=\mathbf{0 . 8}$	$\beta_{w}=0.8$
6	4.5.3.3(3)	Design weld shear strength. $f_{v w, d}$ $\begin{aligned} & =\frac{f_{u} / \sqrt{3}}{\beta_{w} \gamma_{M 2}} \\ & =\frac{360 / \sqrt{3}}{0.8 \times 1.25} \\ & =\mathbf{2 0 7 . 8} \mathbf{N} / \mathbf{m m}^{2} \end{aligned}$	$\begin{aligned} & f_{v w, d} \\ & =207.8 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$
7	4.5.3.3(2)	Weld resistance per length, $F_{w, E d}$ $\begin{aligned} & =f_{v w, d} a \\ & =207.8 \times 7.1 \\ & =\mathbf{1 . 4 8} \mathbf{~ k N} / \mathbf{m m} \end{aligned}$	$\begin{aligned} & F_{w, E d} \\ & =1.48 \mathrm{kN} / \mathrm{mm} \end{aligned}$
8	4.5.3.3(1)	Effective welding length, L $\begin{aligned} & =\frac{N_{E d}}{F_{w E d}} \\ & =\frac{500}{1.48} \\ & =\mathbf{3 3 7 . 8 4} \mathbf{~ m m} \end{aligned}$	$L=337.84 \mathrm{~mm}$
		From figure above, number of weld is $\mathbf{3}$ $\begin{aligned} L_{\text {tot }} & =L+\text { number of weld } \times 2 a \\ & =337.84+3 \times 2 \times 7.1 \\ & =380.44 \mathrm{~mm} \\ & =\mathbf{3 8 1} \mathbf{~ m m} \end{aligned}$	$L_{\text {tot }}=381 \mathrm{~mm}$
9		From the dimension of welding plate in figure above, the required welding length at two sides of steel plate $\begin{aligned} & =\frac{381-150}{2} \\ & =115.5 \mathrm{~mm} \end{aligned}$ The minimum welding length at two sides of steel plate is 115.5 mm . However, the available length at two sides of steel plate is only 90 mm . Therefore, the welding plate is not suitable	

Fig. 4.7 Result for Example 4-2 using steel design based on EC3 program

4.2.4 Example 4-3 Welded Connection Design

Determine the shear resistance of the fillet all-around weld in Fig. 4.8. A steel plate with a grade of S275 and a thickness of 20 mm is used.

Fig. 4.8 Example 4-3

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-8 unless otherwise stated	Thickness of steel plate is $\mathbf{2 0} \mathbf{~ m m}$ From the figure, welding side is $\mathbf{1 0} \mathbf{~ m m}$	$t=20 \mathrm{~mm}$ welding side $=10 \mathrm{~mm}$

(continued)

Step	Reference	Action/calculation	Conclusion
2	BS EN 1993-1-1 Table 3.1	$\begin{aligned} & \text { Steel grade }=\mathbf{S 2 7 5} \\ & t=20 \mathrm{~mm}<40 \mathrm{~mm} \\ & f_{u}=\mathbf{4 3 0} \mathbf{N} / \mathbf{m m}^{2} \end{aligned}$	$f_{u}=430 \mathrm{~N} / \mathrm{mm}^{2}$
3		This step is skipped as it is not applicable for the situation	
4		Throat thickness, a $\begin{aligned} & =\frac{\sqrt{2}}{2} \times \text { welding side } \\ & =\frac{\sqrt{2}}{2} t \\ & =\frac{\sqrt{2}}{2} \times 10 \\ & =7.1 \mathrm{~mm} \end{aligned}$	$a=7.1 \mathrm{~mm}$
5	Table 4.1	For steel grade $=$ S275, $\beta_{w}=\mathbf{0 . 8 5}$	$\beta_{w}=0.8$
6	4.5.3.3(3)	Design weld shear strength. $f_{v w, d}$ $\begin{aligned} & =\frac{f_{u} / \sqrt{3}}{\beta_{w} \gamma_{M 2}} \\ & =\frac{430 / \sqrt{3}}{0.85 \times 1.25} \\ & =\mathbf{2 3 3 . 7} \mathbf{~ N} / \mathbf{m m}^{2} \end{aligned}$	$\begin{aligned} & f_{v w, d} \\ & =233.7 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$
7	4.5.3.3(2)	$\begin{aligned} & \text { Weld resistance per length, } F_{w, E d} \\ & =f_{v w, d} a \\ & =233.7 \times 7.1 \\ & =\mathbf{1 . 6 5} \mathbf{~ k N} / \mathbf{m m} \end{aligned}$	$\begin{aligned} & F_{w, E d} \\ & =1.65 \mathrm{kN} / \mathrm{mm} \end{aligned}$
8	4.5.3.3(1)	Effective welding length, $L=\frac{N_{E L}}{F_{w E d}}$ Rearrange the equation: Weld resistance, $\mathrm{N}_{\mathrm{Ed}}=F_{w, E d} \times L$ Since both ends of the weld is closed, the effective welding length that can be provided is equal to the total welding length $\begin{aligned} N_{E d} & =1.65 \times \pi \times 80 \\ & =414.69 \mathrm{kN} \end{aligned}$	$N_{E d}=414.69 \mathrm{kN}$
9		This step is skipped as it is not applicable for the situation	

4.3 Design Procedure for a Bolted Connection

The design procedure for a bolted connection is as follows:

1. Determine the number of steel plates and their arrangement.
2. Determine the preliminary thickness of the steel plates.
3. Select the grade of the plate (refer to Table 4.1).

Table 4.3 Nominal values of yield strength $f_{y b}$ and ultimate tensile strength $f_{u b}$ of bolts (BS EN 1993-1-8:2005 Table 3.1)

Bolt class	4.6	4.8	5.6	5.8	6.8	8.8	10.9
$f_{y b}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	240	320	300	400	480	640	900
$f_{u b}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	400	400	500	500	600	800	1000

4. Select the bolt class and the bolt diameter. The diameter of a bolt hole d_{0} usually equals the bolt diameter plus 2 mm .
5. Determine the design force $N_{E d}$. If the connection is to be established at the support, then the support reaction should be determined.
6. Determine the spacing of bolts. The distances between rows of bolts arranged perpendicularly to the direction of the load are denoted by e_{1} and P_{1}, while the distances between rows of bolts arranged parallel to the direction of the load are denoted by e_{2} and P_{2}. The spacing must comply with the limit set in BS EN 1993-1-8. The value of t should be the minimum thickness between the two outermost steel plates.
7. Refer to Table 4.5 to determine the shear resistance per bolt. Next, determine the minimum number of bolts required to resist shear failure by dividing the design force based on the shear resistance per bolt.

Table 4.4 Minimum and maximum spacing, end distances and edge distances (BS EN 1993-1-8:2005 Table 3.3)

Distance and spacing	Minimum	Maximum		
		Structures made from steels conforming to EN10025 except to EN10025-5	Structures made from steel conforming to EN10025-5	
		Steel exposed to the weather or other corrosive influences	Steel not exposed to the weather or other corrosive influences	Steel used unprotected
End distance e_{1}	$1.2 d_{0}$	$4 t+40 \mathrm{~mm}$	Larger of $8 t$ or 125 mm	
Edge distance e_{2}	$1.2 d_{0}$	$4 t+40 \mathrm{~mm}$	Larger of $8 t$ or 125 mm	
Spacing p_{1}	$2.2 d_{0}$	Smaller of $14 t$ or 200 mm	Smaller of $14 t$ or 200 mm	Smaller of $14 t_{\text {min }}$ or 175 mm
Spacing $p_{1,0}$		Smaller of $14 t$ or 200 mm		
Spacing $p_{1, i}$		Smaller of $28 t$ or 200 mm		Smaller of $14 t_{\text {min }}$ or 175 mm
Spacing p_{2}	$2.4 d_{0}$	Smaller of $14 t$ or 200 mm	Smaller of $14 t$ or 200 mm	

Where d_{0} is diameter of bolt hole obtained from Step 4
t is minimum thickness between the two outermost steel plates obtained from Step 2

Table 4.5 Design resistance for individual fasteners subjected to shear and/or tension (BS EN 1993-1-8:2005 Table 3.4)
$\left.\begin{array}{l|l}\hline \text { Shear resistance per shear plane } & \begin{array}{l}F_{v, R d}=\frac{a_{a_{v} f_{u} A}}{\gamma_{M 2}} \\ \text { where }\end{array} \\ & \begin{array}{l}a_{v}=\left\{\begin{array}{c}0.5, \text { Bolt class } 4.8,5.8,6.8,10.9 \\ 0.6, \text { Bolt class } 4.6,5.6,8.8\end{array}\right. \\ A=\text { cross sectional area of bolt }\end{array} \\ \hline \text { Bearing resistance } & \begin{array}{l}F_{b, R d}=\frac{k_{1} a_{b} f_{u} d t}{\gamma_{M 2}} \\ \text { where (conservatively) }\end{array} \\ & a_{b}=\min \left\{\frac{e_{1}}{3 d_{0}} ; \frac{P_{1}}{3 d_{0}}-\frac{1}{4} ; \frac{f_{u b}}{f_{u}} ; 1.0\right\} \\ & k_{1}=\min \left\{2.8 \frac{e_{2}}{d_{0}}-1.7 ; 1.4 \frac{P_{2}}{d_{0}}-1.7 ; 2.5\right\}\end{array}\right]$

Where
$f_{u b}$ is ultimate tensile of bolt obtained from Step 4 (Table 4.3)
d is diameter of bolt obtained from Step 4
d_{0} is diameter of bolt hole obtained from Step 4
$e_{1}, p_{1}, e_{2}, p_{2}$ are spacing obtained from Step 6 (Table 4.4)
8. Refer to Table 4.5 to determine the bearing resistance per bolt. The value of t should be the minimum between the summations of the steel plate thicknesses in both directions. Next, determine the minimum number of bolts required to resist bearing failure by dividing the design force based on the bearing resistance per bolt.
9. Refer to Table 4.5 to determine the tension resistance per bolt. Next, determine the minimum number of bolts required to resist tensile failure by dividing the design force based on the tension resistance per bolt.
10. Determine the number of bolts required for the situation by selecting the maximum number of bolts required obtained in Steps 7, 8, and 9.
11. Check the ratio of design force to shear resistance, bearing resistance, and tension resistance based on the number of bolts obtained in Step 10.

4.3.1 Design Flowchart for a Bolted Connection

4.3.2 Example 4-4 Bolted Connection Design

Check the suitability of the bolt arrangement in Fig. 4.9 if the joint is designed to carry 100 kN . The diameter and the class of bolts are 20 mm and 10.9 respectively. The grade of the steel plate used is S235 (Fig. 4.10).

Fig. 4.9 Example 4-4

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-8 unless otherwise stated	Number of plate $=\mathbf{3}$, arranged in a way as shown in figure above	Number of plate $=3$
2		Thickness of each steel plate is as shown in figure above	$\begin{aligned} & t_{1}=6 \mathrm{~mm} \\ & t_{2}=7.1 \mathrm{~mm} \\ & t_{3}=6 \mathrm{~mm} \end{aligned}$
3	BS EN 1993-1-1 Table 3.1	Steel grade $=\mathbf{S} 235$ The thicknesses of steel plates are less than 40 mm $f_{u}=360 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{u}=360 \mathrm{~N} / \mathrm{mm}^{2}$
4	Table 3.1	Bolt class $=10.9, f_{u b}=1000 \mathrm{~N} / \mathrm{mm}^{2}$ Bolt diameter, $d=\mathbf{2 0} \mathbf{~ m m}$ Hole diameter, $d_{0}=20+2=\mathbf{2 2} \mathbf{~ m m}$	$\begin{aligned} & \text { Bolt class }=10.9 \\ & f_{u b} \\ & =1000 \mathrm{~N} / \mathrm{mm}^{2} \\ & d=20 \mathrm{~mm} \\ & d_{0}=22 \mathrm{~mm} \end{aligned}$
5		$N_{E d}=100 \mathrm{kN}$	$N_{E d}=100 \mathrm{kN}$
6	Table 3.3	Minimum spacing for: $\begin{aligned} & e_{1}=1.2 d_{0}=1.2 \times 22=\mathbf{2 6 . 4} \mathbf{~ m m} \\ & e_{2}=1.2 d_{0}=1.2 \times 22=\mathbf{2 6 . 4} \mathbf{~ m m} \\ & p_{1}=2.2 d_{0}=2.2 \times 22=\mathbf{4 8 . 4} \mathbf{~ m m} \\ & p_{2}=2.4 d_{0}=2.4 \times 22=\mathbf{5 2 . 8} \mathbf{~ m m} \end{aligned}$ Maximum spacing for: $\begin{aligned} & e_{1}=4 t+40=4 \times 6+40=\mathbf{6 4} \mathbf{~ m m} \\ & e_{2}=4 t+40=4 \times 6+40=\mathbf{6 4} \mathbf{~ m m} \\ & p_{1}=\min \{14 t ; 200\}=\min \{14 \times 6 ; 200\}=\mathbf{8 4} \mathbf{~ m m} \\ & p_{2}=\min \{14 t ; 200\}=\min \{14 \times 6 ; 200\}=\mathbf{8 4} \mathbf{~ m m} \end{aligned}$ Compare spacing given with respective upper and lower limit: $e_{1}: 26.4 \mathrm{~mm}<40 \mathrm{~mm}<64 \mathrm{~mm}$ $e_{2}: 26.4 \mathrm{~mm}<40 \mathrm{~mm}<64 \mathrm{~mm}$ $p_{1}: 48.4 \mathrm{~mm}<\mathbf{6 0} \mathbf{~ m m}<84 \mathrm{~mm}$ $p_{2}: 52.8 \mathrm{~mm}<\mathbf{6 0} \mathbf{~ m m}<84 \mathrm{~mm}$ \therefore The spacings set are adequate	$\begin{aligned} & e_{1}=40 \mathrm{~mm} \\ & e_{2}=40 \mathrm{~mm} \\ & p_{1}=60 \mathrm{~mm} \\ & p_{2}=60 \mathrm{~mm} \end{aligned}$
7	Table 3.4		Number of bolt $=5$

(continued)
(continued)

Step	Reference	Action/calculation	Conclusion
		From the figure, the number of bolt provided is $\mathbf{5}$ Therefore, determine the shear, bearing and tensile resistance of the bolted connection instead	
		For bolt class $10.9, a_{v}=\mathbf{0 . 5}$ For $d=20 \mathrm{~mm}$, $\begin{aligned} A & =\frac{\pi d^{2}}{4}=\frac{\pi \times 20^{2}}{4} \\ & =314.16 \mathrm{~mm}^{2} \end{aligned}$ $\begin{aligned} & \text { Number of shear plane } \\ & =\text { Number of plate }-1 \\ & =3-1 \\ & =\mathbf{2} \end{aligned}$ Individual shear resistance per shear plane, $F_{v, R d}$ $\begin{aligned} & =\frac{a_{v} f_{u b} A}{\gamma_{M 2}} \\ & =\frac{0.5 \times 1000 \times 314.16}{1.25} \\ & =125.66 \mathrm{kN} \\ & \text { Total } F_{v, R d} \\ & =\text { Individual } F_{v, R d} \times \text { shear plane } \times \text { bolt number } \\ & =125.66 \times 2 \times 5 \\ & =\mathbf{1 2 5 6 . 6} \mathbf{~ k N} \end{aligned}$	$F_{v, R d}=1256.6 \mathrm{kN}$
8	Table 3.4	Conservatively, $\begin{aligned} a_{b} & =\min \left\{\frac{e_{1}}{3 d_{0}} ; \frac{P_{1}}{3 d_{0}}-\frac{1}{4} ; \frac{f_{u b}}{f_{u}} ; 1.0\right\} \\ & =\min \left\{\frac{40}{3 \times 22} ; \frac{60}{3 \times 22}-\frac{1}{4} ; \frac{1000}{360} ; 1.0\right\} \\ & =\min \{0.61 ; 0.66 ; 2.78 ; 1.0\} \\ & =\mathbf{0 . 6 1} \\ k_{1} & =\min \left\{2.8 \frac{e_{2}}{d_{0}}-1.7 ; 1.4 \frac{P_{2}}{d_{0}}-1.7 ; 2.5\right\} \\ & =\min \left\{2.8 \times \frac{40}{22}-1.7 ; 1.4 \times \frac{60}{22}-1.7 ; 2.5\right\} \\ & =\min \{3.39 ; 2.12 ; 2.5\} \\ & =\mathbf{2 . 1 2} \end{aligned}$	$F_{b, R d}=264.3 \mathrm{kN}$

(continued)
(continued)

Step	Reference	Action/calculation	Conclusion
		Individual bearing resistance, $F_{b, R d}$ $\begin{aligned} & =\frac{k_{1} a_{b} f_{u} d t}{\gamma_{M 2}} \\ & =\frac{2.12 \times 0.61 \times 360 \times 20 \times 7.1}{1.25} \\ & =\mathbf{5 2 . 8 9} \mathbf{~ k N} \\ & \text { Total } F_{b, R d} \\ & =\text { Individual } F_{b, R d} \times \text { bolt number } \\ & =52.89 \times 5 \\ & =\mathbf{2 6 4 . 3} \mathbf{~ k N} \end{aligned}$	
9	Table 3.4	$\begin{aligned} & \text { Individual tension resistance, } F_{t, R d} \\ & =\frac{k_{2} f_{u b} A}{\gamma_{M 2}} \\ & =\frac{0.9 \times 1000 \times 314.16}{1.25} \\ & =\mathbf{2 2 6 . 2 0} \mathbf{~ k N} \\ & \text { Total } F_{t, R d} \\ & =\text { Individual } F_{t, R d} \times \text { bolt number } \\ & =226.20 \times 5 \\ & =\mathbf{1 1 3 1 . 0} \mathbf{~ k N} \end{aligned}$	$F_{t, R d}=1131.0 \mathrm{kN}$
10		This step is skipped as it is not applicable for the situation	
11		Check the following ratio: $\begin{aligned} & \frac{N_{E d}}{F_{v, R d}}=\frac{100}{1256.6}=\mathbf{0 . 0 8} \\ & \frac{N_{E d}}{F_{b, R d}}=\frac{100}{264.3}=\mathbf{0 . 3 8} \\ & \frac{N_{E d}}{F_{t, R d}}=\frac{100}{1131.0}=\mathbf{0 . 0 9} \end{aligned}$ None of these ratios exceed 0.5 . This means although the bolt arrangement can support the load, but it is considered over-design for this case	

From the program, it is found that with proposed parameters specified in Example 4-4, 2 bolts are sufficient to resist the design load. However, the number of bolt proposed in Example 4-4 is 5. This indicates the proposed bolt arrangement is overdesigned.

Fig. 4.10 Result for Example 4-4 using steel design based on EC3 program

4.3.3 Example 4-5 Bolted Connection Design

A shear splice is assigned at point B using bolts and a steel plate (Fig. 4.11). The dimension of the beam section is $254 \times 146 \times 37$, and steel grade S235 is used for

Bolted connection at B
Fig. 4.11 Example 4-5
the beam and the plate. A bolt of class 6.8 , which has a diameter of 12 mm , is used for the bolted connection. Determine the number of bolts required (Fig. 4.12).

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-8 unless otherwise stated	Consider web of beam as steel plate as well, number of steel plate $=\mathbf{2}$	Number of plate $=2$
2		Thickness of steel plates is $\mathbf{5} \mathbf{~ m m}$, while thickness of the beam web is $\mathbf{6 . 3} \mathbf{~ m m}$	$\begin{aligned} & t_{1}=5 \mathrm{~mm} \\ & t_{2}=6.3 \mathrm{~mm} \end{aligned}$
3	BS EN 1993-1-1 Table 3.1	Steel grade = S235 The thicknesses of steel plates and beam web are less than 40 mm : $f_{u}=360 \mathrm{~N} / \mathrm{mm}^{2}$	$f_{u}=360 \mathrm{~N} / \mathrm{mm}^{2}$
4	Table 3.1	Bolt class $=6.8, f_{u b}=\mathbf{6 0 0} \mathrm{N} / \mathrm{mm}^{2}$ Bolt diameter, $d=\mathbf{1 2} \mathbf{~ m m}$ Hole diameter, $d_{0}=12+2=\mathbf{1 4} \mathbf{~ m m}$	$\begin{aligned} & \text { Bolt class }=6.8 \\ & f_{u b}=600 \mathrm{~N} / \mathrm{mm}^{2} \\ & d=12 \mathrm{~mm} \\ & d_{0}=14 \mathrm{~mm} \\ & \hline \end{aligned}$
5		Consider span AB Self-weight of beam $\begin{aligned} & =37 \mathrm{~kg} / \mathrm{m} \times 9.81 \mathrm{~N} / \mathrm{kg} \\ & =\mathbf{0 . 3 6} \mathbf{~ k N} / \mathbf{m} \end{aligned}$ For ULS, partial factor of safety for both permanent action and variable action selected are 1.35 and 1.5 respectively Uniformly distributed load, $w_{\text {ult }}$ $\begin{aligned} & =1.35 G_{k}+1.5 Q_{k} \\ & =1.35(5+0.36)+1.5(4) \\ & =\mathbf{1 3 . 2 4} \mathbf{k N} / \mathbf{m} \end{aligned}$ By principle of superposition, $V_{E d}$ for simply supported beam (span AB) can be determined using equation below: $\begin{aligned} & V_{E d}(\text { at point B) } \\ & =\frac{w_{u l t} L}{2}+\frac{R}{2} \\ & =\frac{13.24 \times 6}{2}+\frac{40}{2} \\ & =59.72 \mathrm{kN} \end{aligned}$	$N_{E d}=59.72 \mathrm{kN}$

(continued)

Step	Reference	Action/calculation	Conclusion
		$N_{E d}=V_{E d}=\mathbf{5 9 . 7 2} \mathbf{~ k N}$	
6	Table 3.3	Minimum spacing for: $\begin{aligned} & e_{1}=1.2 d_{0}=1.2 \times 14=\mathbf{1 6 . 8} \mathbf{~ m m} \\ & e_{2}=1.2 d_{0}=1.2 \times 14=\mathbf{1 6 . 8} \mathbf{~ m m} \\ & p_{1}=2.2 d_{0}=2.2 \times 14=\mathbf{3 0 . 8} \mathbf{~ m m} \\ & p_{2}=2.4 d_{0}=2.4 \times 14=\mathbf{3 3 . 6} \mathbf{~ m m} \end{aligned}$ Maximum spacing for: $\begin{aligned} & e_{1}=4 t+40=4 \times 5+40=\mathbf{6 0} \mathbf{~ m m} \\ & e_{2}=4 t+40=4 \times 5+40=\mathbf{6 0} \mathbf{~ m m} \\ & p_{1}=\min \{14 t ; 200\}=\min \{14 \times 5 ; 200\}=\mathbf{7 0} \mathbf{~ m m} \\ & \mathrm{p}_{2}=\min \{14 t ; 200\}=\min \{14 \times 5 ; 200\}=\mathbf{7 0} \mathbf{~ m m} \end{aligned}$ Try following spacing: $\begin{aligned} & e_{1}=\mathbf{2 0} \mathrm{mm} \\ & e_{2}=20 \mathrm{~mm} \\ & p_{1}=40 \mathrm{~mm} \\ & p_{2}=\mathbf{4 0} \mathrm{mm} \end{aligned}$ The depth between fillet for $254 \times 146 \times 37$ beam section is 216 mm , while the vertical dimension of proposed steel plate for bolted connection is 2 $\left(e_{2}+p_{2}\right)$, which is 160 mm and it can fit between the fillet	$\begin{aligned} & e_{1}=20 \mathrm{~mm} \\ & e_{2}=20 \mathrm{~mm} \\ & p_{1}=40 \mathrm{~mm} \\ & p_{2}=40 \mathrm{~mm} \end{aligned}$
7	Table 3.4	For bolt class 6.8, $a_{v}=\mathbf{0 . 5}$ For $d=12 \mathrm{~mm}$, $\begin{aligned} A & =\frac{\pi d^{2}}{4}=\frac{\pi \times 12^{2}}{4} \\ & =\mathbf{1 1 3 . 1 0} \mathbf{m m}^{2} \end{aligned}$ Number of shear plane $=$ Number of plate -1 $=2-1$ $=1$ Individual shear resistance per shear plane, $F_{v, R d}$ $\begin{aligned} & =\frac{a_{v} f_{u b} A}{\gamma_{M 2}} \\ & =\frac{0.5 \times 600 \times 113.10}{1.25} \\ & =\mathbf{2 7 . 1 4} \mathbf{~ k N} \\ & F_{v, R d} \text { per bolt } \\ & =\text { Individual } F_{v, R d} \times \text { shear plane } \\ & =27.14 \times 1 \\ & =\mathbf{2 7 . 1 4} \mathrm{kN} \end{aligned}$	Number of bolt for shear resistance $=3$

(continued)

Step	Reference	Action/calculation	Conclusion
		Number of bolt required $\begin{aligned} & =\frac{N_{E d}}{F_{v, R d}} \\ & =\frac{59.72}{27.14} \\ & =2.2=\mathbf{3} \end{aligned}$	
8	Table 3.4	Conservatively, $\begin{aligned} a_{b} & =\min \left\{\frac{e_{1}}{3 d_{0}} ; \frac{P_{1}}{3 d_{0}}-\frac{1}{4} ; \frac{f_{u b}}{f_{u}} ; 1.0\right\} \\ & =\min \left\{\frac{20}{3 \times 14} ; \frac{40}{3 \times 14}-\frac{1}{4} ; \frac{600}{360} ; 1.0\right\} \\ & =\min \{0.48 ; 0.70 ; 1.67 ; 1.0\} \\ & =\mathbf{0 . 4 8} \\ k_{1} & =\min \left\{2.8 \frac{e_{2}}{d_{0}}-1.7 ; 1.4 \frac{P_{2}}{d_{0}}-1.7 ; 2.5\right\} \\ & =\min \left\{2.8 \times \frac{20}{14}-1.7 ; 1.4 \times \frac{40}{14}-1.7 ; 2.5\right\} \\ & =\min \{2.3 ; 2.3 ; 2.5\} \\ & =\mathbf{2 . 3} \end{aligned}$ Individual bearing resistance, $F_{b, R d}$ $\begin{aligned} & =\frac{k_{1} a_{b} f_{u} d t}{\gamma_{M 2}} \\ & =\frac{2.3 \times 0.48 \times 360 \times 12 \times 5}{1.25} \\ & =\mathbf{1 9 . 0 8} \mathbf{~ k N} \end{aligned}$ Number of bolt required $\begin{aligned} & =\frac{N_{E d}}{F_{b, R d}} \\ & =\frac{59.72}{19.08} \\ & =3.1=\mathbf{4} \end{aligned}$	Number of bolt for bearing resistance $=4$
9	Table 3.4	$\begin{aligned} & \text { Individual tension resistance, } F_{t, R d} \\ & =\frac{k_{2} f_{u b} A}{\gamma_{M 2}} \\ & =\frac{0.9 \times 600 \times 113.10}{1.25} \\ & =\mathbf{4 8 . 8 6} \mathbf{~ k N} \end{aligned}$	Number of bolt for tensile resistance $=2$

(continued)

Step	Reference	Action/calculation	Conclusion
		Number of bolt required $\begin{aligned} & =\frac{N_{E d}}{F_{t, R d}} \\ & =\frac{59.72}{48.86} \\ & =1.2=\mathbf{2} \end{aligned}$	
10		Number of bolt required $=\mathbf{4}$	Number of bolt $=4$
11		$\begin{aligned} & \text { Check the following ratio: } \\ & \frac{N_{E d}}{F_{v, R d}}=\frac{59.72}{27.14 \times 4}=0.55 \\ & \frac{N_{E d}}{F_{b, R d}}=\frac{59.72}{19.08 \times 4}=0.78 \\ & \frac{N_{E d}}{F_{t, R d}}=\frac{59.72}{48.86 \times 4}=0.31 \end{aligned}$	

Fig. 4.12 Result for Example 4-5 using steel design based on EC3 program

4.3.4 Example 4-6 Bolted Connection Design

Check the suitability of a $200 \mathrm{~mm} \times 500 \mathrm{~mm} \times 7 \mathrm{~mm}$ steel plate in establishing a bolted connection at a beam splice (Fig. 4.13). The steel grade is S 235 , the bolt class is 10.9 , and the bolt diameter is 24 mm . The beam web is 18.4 mm thick Fig. 4.14.

500 kN 【

Fig. 4.13 Example 4-6

Fig. 4.14 Result for Example 4-6 using steel design based on EC3 program

Step	Reference	Action/calculation	Conclusion
1	References are to BS EN 1993-1-8 unless otherwise stated	Consider web of beam as steel plate as well, number of steel plate $=\mathbf{3}$	Number of plate $=3$
2		Thickness of steel plates is $\mathbf{7} \mathbf{~ m m}$, while thickness of the beam web is $\mathbf{1 8 . 4} \mathbf{~ m m}$	$\begin{aligned} & t_{1}=7 \mathrm{~mm} \\ & t_{2}=18.4 \mathrm{~mm} \\ & t_{3}=7 \mathrm{~mm} \end{aligned}$
3	$\begin{aligned} & \text { BS EN } \\ & \text { 1993-1-1 } \\ & \text { Table 3.1 } \end{aligned}$	Steel grade $=\mathbf{S} 235$ The thicknesses of steel plates and web are less than 40 mm : $f_{u}=360 \mathrm{~N} / \mathrm{mm}^{2}$	$\begin{aligned} & f_{u} \\ & =360 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$
4	Table 3.1	Bolt class $=10.9, f_{u b}=1000 \mathrm{~N} / \mathrm{mm}^{2}$ Bolt diameter, $d=\mathbf{2 4} \mathbf{~ m m}$ Hole diameter, $d_{0}=24+2=\mathbf{2 6} \mathbf{~ m m}$	$\begin{aligned} & \text { Bolt } \\ & \text { class }=10.6 \\ & f_{u b} \\ & =1000 \mathrm{~N} / \mathrm{mm}^{2} \\ & d=24 \mathrm{~mm} \\ & d_{0}=26 \mathrm{~mm} \end{aligned}$
5		$N_{E d}=\mathbf{5 0 0} \mathbf{~ k N}$	$N_{E d}=500 \mathrm{kN}$
6	Table 3.3	Minimum spacing for: $\begin{aligned} & e_{1}=1.2 d_{0}=1.2 \times 26=\mathbf{3 1 . 2} \mathrm{mm} \\ & e_{2}=1.2 d_{0}=1.2 \times 26=\mathbf{3 1 . 2} \mathrm{mm} \\ & p_{1}=2.2 d_{0}=2.2 \times 26=\mathbf{5 7 . 2} \mathrm{mm} \\ & p_{2}=2.4 d_{0}=2.4 \times 26=\mathbf{6 2 . 4} \mathbf{~ m m} \end{aligned}$ Maximum spacing for: $\begin{aligned} & e_{1}=4 t+40=4 \times 7+40=\mathbf{6 8} \mathbf{~ m m} \\ & e_{2}=4 t+40=4 \times 7+40=\mathbf{6 8} \mathbf{~ m m} \\ & p_{1}=\min \{14 t ; 200\}=\min \{14 \times 7 ; 200\}=\mathbf{9 8} \mathbf{~ m m} \\ & p_{2}=\min \{14 t ; 200\}=\min \{14 \times 7 ; 200\}=\mathbf{9 8} \mathbf{~ m m} \end{aligned}$ Try following spacing: $\begin{aligned} & e_{1}=40 \mathrm{~mm} \\ & e_{2}=40 \mathrm{~mm} \\ & p_{1}=60 \mathrm{~mm} \\ & p_{2}=70 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & e_{1}=40 \mathrm{~mm} \\ & e_{2}=40 \mathrm{~mm} \\ & p_{1}=60 \mathrm{~mm} \\ & p_{2}=70 \mathrm{~mm} \end{aligned}$
7	Table 3.4	For bolt class 10.9, $a_{v}=\mathbf{0 . 5}$ For $d=24 \mathrm{~mm}$, $\begin{aligned} A & =\frac{\pi d^{2}}{4}=\frac{\pi \times 24^{2}}{4} \\ & =\mathbf{4 5 2} .40 \mathrm{~mm}^{2} \end{aligned}$ Number of shear plane $=$ Number of plate -1 $=3-1$	Number of bolt for shear resistance $=2$

(continued)

Step	Reference	Action/calculation	Conclusion
		$=2$ Individual shear resistance per shear plane, $F_{v, R d}$ $\begin{aligned} & =\frac{a_{v} f_{f u} A}{\gamma_{M 2}} \\ & =\frac{0.5 \times 1000 \times 452.40}{1.25} \\ & =180.96 \mathrm{kN} \\ & F_{v, R d} \text { per bolt } \\ & =\text { Individual } F_{v, R d} \times \text { shear plane } \\ & =180.96 \times 2 \\ & =\mathbf{3 6 1 . 9 2} \mathbf{~ k N} \end{aligned}$ Number of bolt required $\begin{aligned} & =\frac{N_{E d}}{F_{v, R d}} \\ & =\frac{500}{361.92} \\ & =1.4=\mathbf{2} \end{aligned}$	
8	Table 3.4	Conservatively, $\begin{aligned} a_{b} & =\min \left\{\frac{e_{1}}{3 d_{0}} ; \frac{P_{1}}{3 d_{0}}-\frac{1}{4} ; \frac{f_{u b}}{f_{u}} ; 1.0\right\} \\ & =\min \left\{\frac{40}{3 \times 26} ; \frac{60}{3 \times 26}-\frac{1}{4} ; \frac{1000}{360} ; 1.0\right\} \\ & =\min \{0.51 ; 0.52 ; 2.78 ; 1.0\} \\ & =\mathbf{0 . 5 1} \\ k_{1} & =\min \left\{2.8 \frac{e_{2}}{d_{0}}-1.7 ; 1.4 \frac{P_{2}}{d_{0}}-1.7 ; 2.5\right\} \\ & =\min \left\{2.8 \times \frac{40}{26}-1.7 ; 1.4 \times \frac{70}{26}-1.7 ; 2.5\right\} \\ & =\min \{2.6 ; 2.1 ; 2.5\} \\ & =\mathbf{2 . 1} \end{aligned}$ Individual bearing resistance, $F_{b, R d}$ $\begin{aligned} & =\frac{k_{1} a_{b} f_{u} d t}{\gamma_{M 2}} \\ & =\frac{2.1 \times 0.51 \times 360 \times 24 \times 14}{1.25} \\ & =\mathbf{1 0 3 . 6 4} \mathbf{~ k N} \end{aligned}$ Number of bolt required $\begin{aligned} & =\frac{N_{E d}}{F_{b, R d}} \\ & =\frac{500}{103.64} \\ & =4.8=\mathbf{5} \end{aligned}$	Number of bolt for bearing resistance $=5$
9	Table 3.4	Individual tension resistance, $F_{t, R d}$	

(continued)

Step	Reference	Action/calculation	Conclusion
		$\begin{aligned} & =\frac{k_{2} f_{u b} A}{\gamma_{M 2}} \\ & =\frac{0.9 \times 1000 \times 452.40}{1.25} \\ & =\mathbf{3 2 5 . 7 3} \mathbf{~ k N} \end{aligned}$ Number of bolt required $\begin{aligned} & =\frac{N_{E d}}{F_{t, R d}} \\ & =\frac{500}{325.73} \\ & =1.5=\mathbf{2} \end{aligned}$	Number of bolt for tensile resistance $=2$
10		Number of bolt required $=\mathbf{5}$	Number of bolt $=5$
11		Check the following ratio: $\begin{aligned} \frac{N_{E d}}{F_{v, R d}} & =\frac{500}{361.92 \times 5}=\mathbf{0 . 2 8} \\ \frac{N_{E d}}{F_{b, R d}} & =\frac{500}{103.64 \times 5}=\mathbf{0 . 9 6} \\ \frac{N_{E d}}{F_{t, R d}} & =\frac{500}{325.73 \times 5}=\mathbf{0 . 3 1} \end{aligned}$ The bolts can be arranged in the way as shown below: The minimum dimension of steel plate for such arrangement is $200 \mathrm{~mm} \times 440 \mathrm{~mm}$. Therefore, the steel plate suggested is suitable for this	

4.4 Exercise: Connection Design

4-1 Determine the minimum number of fillet welding sides required for the situation shown in Fig. 4.15. Steel grade S275 is used.

Fig. 4.15 Question 4-1

4-2 Determine the maximum resistance of the welded connection in the situation shown in Fig. 4.16. Steel grade S 235 is used. The thickness of the steel plate is 15 mm .

Fig. 4.16 Question 4-2

4-3 Determine the $\frac{N_{E d}}{F_{v, R d}}, \frac{N_{E d}}{F_{b, R d}}$, and $\frac{N_{E d}}{F_{t, R d}}$ ratios of the following bolted connection:

Design load	200 kN
Number of bolt	6
Bolt class	8.8
Diameter of bolt	20 mm

(continued)
(continued)

Design load	200 kN
Steel grade	S 235
Number of steel plate	3
Plate thickness	8 mm each
e_{1}	30 mm
p_{1}	50 mm
e_{2}	30 mm
p_{2}	60 mm

4-4 Determine the minimum size of the steel plate required to establish both welded and bolted connections if the force of the bracing member is 750 kN , as shown in Fig. 4.17. Steel grade S275 is used.

Fig. 4.17 Plan view and size view of connection, and section view of bracing member for Question 4-4

Appendix

See Tables A.1, A. 2 and A.3.
Table A. 1 General formula for maximum shear, bending moment and deflection for several loading conditions

Loading condition	Reactions	Bending moment	Deflection
	$R 1=R 2=\frac{w L}{2}$	$M_{\text {max }}=\frac{w L^{2}}{8}$	$\Delta_{\text {max }}=\frac{5 w L^{4}}{384 E I}$
	$R 1=R 2=\frac{P}{2}$	$M_{\text {max }}=\frac{P L}{4}$	$\Delta_{\text {max }}=\frac{P L^{3}}{48 E I}$
	$\begin{aligned} & R 1=\frac{P b}{L} \\ & R 2=\frac{P a}{L} \end{aligned}$	$M_{\text {max }}=\frac{P a b}{L}$	$\Delta_{\max }=\frac{\operatorname{Pab}(a+2 b) \sqrt{3 a(a+2 b)}}{27 E I L}$
	$R=w L$	$M_{\text {max }}=\frac{w L^{2}}{2}$	$\Delta_{\text {max }}=\frac{w L^{4}}{8 E I}$
	$R=P$	$M_{\text {max }}=P L$	$\Delta_{\text {max }}=\frac{P L^{3}}{3 E I}$
	$R=P$	$M_{\max }=P b$	$\Delta_{\text {max }}=\frac{P b^{2}}{6 E I}(3 L-b)$

Table A. 1 (continued)

Loading condition	Reactions	Bending moment	Deflection
	$\begin{aligned} & R 1=\frac{3 w L}{8} \\ & R 2=\frac{5 w L}{8} \end{aligned}$	$M_{\text {max }}=\frac{w L^{2}}{8}$	$\Delta_{\text {max }}=\frac{w L^{4}}{185 E I}$
	$\begin{aligned} & R 1=\frac{5 P}{16} \\ & R 2=\frac{11 P}{16} \end{aligned}$	$M_{\text {max }}=\frac{3 P L}{16}$	$\Delta_{\text {max }}=0.009317 \frac{P L^{3}}{E I}$
	$\begin{aligned} & R 1=\frac{P b^{2}}{2 L^{3}}(a+2 L) \\ & R 2=\frac{P a}{2 L^{3}}\left(3 L^{2}-a^{2}\right) \end{aligned}$	$\begin{aligned} & M_{1}(\text { at point of load })=R 1 a \\ & M_{2}(\text { at fixed end }) \\ & \quad=\frac{P a b}{2 L^{2}}(a+L) \end{aligned}$	$\begin{aligned} & \Delta_{\max }(\text { if } a<0.414 L) \\ & =\frac{P a}{3 E I} \frac{\left(L^{2}-a^{2}\right)^{3}}{\left(3 L^{2}-a^{2}\right)^{2}} \\ & \Delta_{\max }(\text { if } a>0.414 L) \\ & \quad=\frac{P a b^{2}}{6 E I} \sqrt{\frac{a}{2 L+a}} \end{aligned}$
	$R 1=R 2=\frac{w L}{2}$	$M_{\text {max }}=\frac{w L^{2}}{12}$	$\Delta_{\text {max }}=\frac{w L^{4}}{384 E I}$
	$R 1=R 2=\frac{P}{2}$	$M_{\text {max }}=\frac{P L}{8}$	$\Delta_{\text {max }}=\frac{P L^{3}}{192 E I}$
	$\begin{aligned} & R 1=\frac{P b^{2}}{L^{3}}(3 a+b) \\ & R 2=\frac{P a^{3}}{L^{3}}(a+3 b) \end{aligned}$	$\begin{aligned} & M_{1}(\text { left end })=\frac{P a b^{2}}{L^{2}} \\ & M_{2}(\text { right end })=\frac{P a^{2} b}{L^{2}} \end{aligned}$	$\Delta_{\text {max }}=\frac{2 P a^{3} b^{2}}{3 E l(3 a+b)^{2}}$

Table A. 2 Universal beam with sectional properties in EC notation (BS 4 Part 1 2005)

Designation	Mass per m	Depth of section	Width of section	Thickness		Root radius	Depth between fillets	Radius for local buckling		Second moment of area	
				Web	Flange			Flange	Web	Axis $y-y$	$\begin{array}{\|l\|} \text { Axis } \\ z-z \end{array}$
		D	b	t_{w}	t_{f}	r	d	$b / 2 t_{f}$	d / t_{w}	I_{y}	I_{z}
	kg/m	mm	mm	mm	mm	mm	mm			cm^{4}	cm^{4}
$127 \times 76 \times 13$	13	127	76	4	7.6	7.6	96.6	5	24.1	473	55.7
$152 \times 89 \times 16$	16	152.4	88.7	4.5	7.7	7.6	121.8	5.76	27.1	834	89.8
$178 \times 102 \times 19$	19	177.8	101.2	4.8	7.9	7.6	146.8	6.41	30.6	1356	137
$203 \times 102 \times 23$	23.1	203.2	101.8	5.4	9.3	7.6	169.4	5.47	31.4	2105	164
$203 \times 133 \times 25$	25.1	203.2	133.2	5.7	7.8	7.6	172.4	8.54	30.2	2340	308
$203 \times 133 \times 30$	30	206.8	133.9	6.4	9.6	7.6	172.4	6.97	26.9	2896	385
$254 \times 102 \times 22$	22	254	101.6	5.7	6.8	7.6	225.2	7.47	39.5	2841	119
$254 \times 102 \times 25$	25.2	257.2	101.9	6	8.4	7.6	225.2	6.07	37.5	3415	149
$254 \times 102 \times 28$	28.3	260.4	102.2	6.3	10	7.6	225.2	5.11	35.7	4005	179
$254 \times 146 \times 31$	31.1	251.4	146.1	6	8.6	7.6	219	8.49	36.5	4413	448
$254 \times 146 \times 37$	37	256	146.4	6.3	10.9	7.6	219	6.72	34.8	5537	571
$254 \times 146 \times 43$	43	259.6	147.3	7.2	12.7	7.6	219	5.8	30.4	6544	677
$305 \times 102 \times 25$	24.8	305.1	101.6	5.8	7	7.6	275.9	7.26	47.6	4455	123
$305 \times 102 \times 28$	28.2	308.7	101.8	6	8.8	7.6	275.9	5.78	46	5366	155
$305 \times 102 \times 33$	32.8	312.7	102.4	6.6	10.8	7.6	275.9	4.74	41.8	6501	194
$305 \times 127 \times 37$	37	304.4	123.4	7.1	10.7	8.9	265.2	5.77	37.4	7171	336
$305 \times 127 \times 42$	41.9	307.2	124.3	8	12.1	8.9	265.2	5.14	33.1	8196	389
$305 \times 127 \times 48$	48.1	311	125.3	9	14	8.9	265.2	4.47	29.5	9575	461

Table A. 2 (continued)

Designation	Mass per m	Depth of section	Width of section	Thickness		Root radius	Depth between fillets	Radius for local buckling		Second moment of area	
				Web	Flange			Flange	Web	$\begin{array}{\|l\|l} \hline \text { Axis } \\ y-y \end{array}$	$\begin{aligned} & \text { Axis } \\ & z-z \end{aligned}$
		D	b	t_{w}	t_{f}	r	d	$b / 2 t_{f}$	d / t_{w}	I_{y}	I_{z}
	kg/m	mm	mm	mm	mm	mm	mm			cm^{4}	cm^{4}
$305 \times 165 \times 40$	40.3	303.4	165	6	10.2	8.9	265.2	8.09	44.2	8503	764
$305 \times 165 \times 46$	46.1	306.6	165.7	6.7	11.8	8.9	265.2	7.02	39.6	9899	896
$305 \times 165 \times 54$	54	310.4	166.9	7.9	13.7	8.9	265.2	6.09	33.6	11,700	1063
$356 \times 127 \times 33$	33.1	349	125.4	6	8.5	10.2	311.6	7.38	51.9	8249	280
$356 \times 127 \times 39$	39.1	353.4	126	6.6	10.7	10.2	311.6	5.89	47.2	10,170	358
$356 \times 171 \times 45$	45	351.4	171.1	7	9.7	10.2	311.6	8.82	44.5	12,070	811
$356 \times 171 \times 51$	51	355	171.5	7.4	11.5	10.2	311.6	7.46	42.1	14,140	968
$356 \times 171 \times 57$	57	358	172.2	8.1	13	10.2	311.6	6.62	38.5	16,040	1108
$356 \times 171 \times 67$	67.1	363.4	173.2	9.1	15.7	10.2	311.6	5.52	34.2	19,460	1362
$406 \times 140 \times 39$	39	398	141.8	6.4	8.6	10.2	360.4	8.24	56.3	12,510	410
$406 \times 140 \times 46$	46	403.2	142.2	6.8	11.2	10.2	360.4	6.35	53	15,690	538
$406 \times 178 \times 54$	54.1	402.6	177.7	7.7	10.9	10.2	360.4	8.15	46.8	18,720	1021
$406 \times 178 \times 60$	60.1	406.4	177.9	7.9	12.8	10.2	360.4	6.95	45.6	21,600	1203
$406 \times 178 \times 67$	67.1	409.4	178.8	8.8	14.3	10.2	360.4	6.25	41	24,330	1365
$406 \times 178 \times 74$	74.2	412.8	179.5	9.5	16	10.2	360.4	5.61	37.9	27,310	1545
$457 \times 152 \times 52$	52.3	449.8	152.4	7.6	10.9	10.2	407.6	6.99	53.6	21,370	645
$457 \times 152 \times 60$	59.8	454.6	152.9	8.1	13.3	10.2	407.6	5.75	50.3	25,500	795
$457 \times 152 \times 67$	67.2	458	153.8	9	15	10.2	407.6	5.13	45.3	28,930	913

Table A. 2 (continued)

Designation	Mass per m	Depth of section	Width of section	Thickness		Root radius	Depth between fillets	Radius for local buckling		Second moment of area	
				Web	Flange			Flange	Web	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{array}{\|l} \text { Axis } \\ z-z \end{array}$
		D	b	t_{w}	t_{f}	r	d	$b / 2 t_{f}$	d / t_{w}	I_{y}	I_{z}
	kg/m	mm	mm	mm	mm	mm	mm			cm^{4}	cm^{4}
$457 \times 152 \times 74$	74.2	462	154.4	9.6	17	10.2	407.6	4.54	42.5	32,670	1047
$457 \times 152 \times 82$	82.1	465.8	155.3	10.5	18.9	10.2	407.6	4.11	38.8	36,590	1185
$457 \times 191 \times 67$	67.1	453.4	189.9	8.5	12.7	10.2	407.6	7.48	48	29,380	1452
$457 \times 191 \times 74$	74.3	457	190.4	9	14.5	10.2	407.6	6.57	45.3	33,320	1671
$457 \times 191 \times 82$	82	460	191.3	9.9	16	10.2	407.6	5.98	41.2	37,050	1871
$457 \times 191 \times 89$	89.3	463.4	191.9	10.5	17.7	10.2	407.6	5.42	38.8	41,020	2089
$457 \times 191 \times 98$	98.3	467.2	192.8	11.4	19.6	10.2	407.6	4.92	35.8	45,730	2347
$533 \times 210 \times 101$	101	536.7	210	10.8	17.4	12.7	476.5	6.03	44.1	61,520	2692
$533 \times 210 \times 109$	109	539.5	210.8	11.6	18.8	12.7	476.5	5.61	41.1	66,820	2943
$533 \times 210 \times 122$	122	544.5	211.9	12.7	21.3	12.7	476.5	4.97	37.5	76,040	3388
$533 \times 210 \times 82$	82.2	528.3	208.8	9.6	13.2	12.7	476.5	7.91	49.6	47,540	2007
$533 \times 210 \times 92$	92.14	533.1	209.3	10.1	15.6	12.7	476.5	6.71	47.2	55,230	2389
$610 \times 229 \times 101$	101.2	602.6	227.6	10.5	14.8	12.7	547.6	7.69	52.2	75,780	2915
$610 \times 229 \times 113$	113	607.6	228.2	11.1	17.3	12.7	547.6	6.6	49.3	87,320	3434
$610 \times 229 \times 125$	125.1	612.2	229	11.9	19.6	12.7	547.6	5.84	46	98,610	3932
$610 \times 229 \times 140$	139.9	617.2	230.2	13.1	22.1	12.7	547.6	5.21	41.8	111,800	4505
$610 \times 305 \times 149$	149.2	612.4	304.8	11.8	19.7	16.5	540	7.74	45.8	125,900	9308
$610 \times 305 \times 179$	179	620.2	307.1	14.1	23.6	16.5	540	6.51	38.3	153,000	11,410

Table A. 2 (continued)

Designation	Mass per m	Depth of section	Width of section	Thickness		Root radius	Depth between fillets	Radius for local buckling		Second moment of area	
				Web	Flange			Flange	Web	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & z-z \end{aligned}$
		D	b	t_{w}	t_{f}	r	d	$b / 2 t_{f}$	d / t_{w}	I_{y}	I_{z}
	kg/m	mm	mm	mm	mm	mm	mm			cm^{4}	cm^{4}
$610 \times 305 \times 238$	238.1	635.8	311.4	18.4	31.4	16.5	540	4.96	29.3	209,500	15,840
$686 \times 254 \times 125$	125.2	677.9	253	11.7	16.2	15.2	615.1	7.81	52.6	118,000	4383
$686 \times 254 \times 140$	140.1	683.5	253.7	12.4	19	15.2	615.1	6.68	49.6	136,300	5183
$686 \times 254 \times 152$	152.4	687.5	254.5	13.2	21	15.2	615.1	6.06	46.6	150,400	5784
$686 \times 254 \times 170$	170.2	692.9	255.8	14.5	23.7	15.2	615.1	5.4	42.4	170,300	6630
$762 \times 267 \times 134$	133.9	750	264.4	12	15.5	16.5	686	8.53	57.2	150,700	4788
$762 \times 267 \times 147$	146.9	754	265.2	12.8	17.5	16.5	686	7.58	53.6	168,500	5455
$762 \times 267 \times 173$	173	762.2	266.7	14.3	21.6	16.5	686	6.17	48	205,300	6850
$762 \times 267 \times 197$	196.8	769.8	268	15.6	25.4	16.5	686	5.28	44	240,000	8175
$838 \times 292 \times 176$	175.9	834.9	291.7	14	18.8	17.8	761.7	7.76	54.4	246,000	7799
$838 \times 292 \times 194$	193.8	840.7	292.4	14.7	21.7	17.8	761.7	6.74	51.8	279,200	9066
$838 \times 292 \times 226$	226.5	850.9	293.8	16.1	26.8	17.8	761.7	5.48	47.3	339,700	11,360
$914 \times 305 \times 201$	200.9	903	303.3	15.1	20.2	19.1	824.4	7.51	54.6	325,300	9423
$914 \times 305 \times 224$	224.2	910.4	304.1	15.9	23.9	19.1	824.4	6.36	51.8	376,400	11,240
$914 \times 305 \times 253$	253.4	918.4	305.5	17.3	27.9	19.1	824.4	5.47	47.7	436,300	13,300
$914 \times 305 \times 289$	289.1	926.6	307.7	19.5	32	19.1	824.4	4.81	42.3	504,200	15,600
$914 \times 419 \times 343$	343.3	911.8	418.5	19.4	32	24.1	799.6	6.54	41.2	625,800	39,160
$914 \times 419 \times 388$	388	921	420.5	21.4	36.6	24.1	799.6	5.74	37.4	719,600	45,440

Table A. 2 (continued)

Designation	Radius of gyration		Elastic modulus		Plastic modulus		Buckling parameter	Torsional index	Warping constant	Torsional constant	Area of section
	$\begin{array}{\|l} \hline \begin{array}{l} \text { Axis } \\ y-y \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Axis } \\ z-z \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Axis } \\ y-y \end{array}$	$\begin{aligned} & \text { Axis } \\ & z-z \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{array}{\|l} \text { Axis } \\ z-z \end{array}$					
	i_{y}	i_{z}	$W_{e l, y}$	$W_{e l, z}$	$W_{p l, y}$	$W_{p l, z}$	u	x	I_{w}	I_{t}	A
	cm	cm	cm^{3}	cm^{3}	cm^{3}	cm^{3}			dm^{6}	cm^{4}	cm^{2}
$127 \times 76 \times 13$	5.35	1.84	74.6	14.7	84.2	22.6	0.895	16.3	0.002	2.85	16.5
$152 \times 89 \times 16$	6.41	2.1	109	20.2	123	31.2	0.89	19.6	0.005	3.56	20.3
$178 \times 102 \times 19$	7.48	2.37	153	27	171	41.6	0.888	22.6	0.01	4.41	24.3
$203 \times 102 \times 23$	8.46	2.36	207	32.2	234	49.8	0.888	22.5	0.015	7.02	29.4
$203 \times 133 \times 25$	8.56	3.1	230	46.2	258	70.9	0.877	25.6	0.029	5.96	32
$203 \times 133 \times 30$	8.71	3.17	280	57.5	314	88.2	0.881	21.5	0.037	10.3	38.2
$254 \times 102 \times 22$	10.1	2.06	224	23.5	259	37.3	0.856	36.4	0.018	4.15	28
$254 \times 102 \times 25$	10.3	2.15	266	29.2	306	46	0.866	31.5	0.023	6.42	32
$254 \times 102 \times 28$	10.5	2.22	308	34.9	353	54.8	0.874	27.5	0.028	9.57	36.1
$254 \times 146 \times 31$	10.5	3.36	351	61.3	393	94.1	0.88	29.6	0.066	8.55	39.7
$254 \times 146 \times 37$	10.8	3.48	433	78	483	119	0.89	24.3	0.086	15.3	47.2
$254 \times 146 \times 43$	10.9	3.52	504	92	566	141	0.891	21.2	0.103	23.9	54.8
$305 \times 102 \times 25$	11.9	1.97	292	24.2	342	38.8	0.846	43.4	0.027	4.77	31.6
$305 \times 102 \times 28$	12.2	2.08	348	30.5	403	48.5	0.859	37.4	0.035	7.4	35.9
$305 \times 102 \times 33$	12.5	2.15	416	37.9	481	60	0.866	31.6	0.044	12.2	41.8
$305 \times 127 \times 37$	12.3	2.67	471	54.5	539	85.4	0.872	29.7	0.072	14.8	47.2
$305 \times 127 \times 42$	12.4	2.7	534	62.6	614	98.4	0.872	26.5	0.085	21.1	53.4
$305 \times 127 \times 48$	12.5	2.74	616	73.6	711	116	0.873	23.3	0.102	31.8	61.2
$305 \times 165 \times 40$	12.9	3.86	560	92.6	623	142	0.889	31	0.164	14.7	51.3

Table A. 2 (continued)

Designation	Radius of gyration		Elastic modulus		Plastic modulus		Buckling parameter	Torsional index	Warping constant	Torsional constant	Area of section
	$\begin{array}{\|l} \text { Axis } \\ y-y \end{array}$	$\begin{array}{\|l} \text { Axis } \\ z-z \end{array}$	$\begin{array}{\|l\|l} \text { Axis } \\ y-y \end{array}$	$\begin{aligned} & \text { Axis } \\ & z-z \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{array}{\|l} \hline \text { Axis } \\ z-z \end{array}$					
	i_{y}	i_{z}	$W_{e l, y}$	$W_{e l, z}$	$W_{p l, y}$	$W_{p l, z}$	u	x	I_{w}	I_{t}	A
	cm	cm	cm^{3}	cm^{3}	cm^{3}	cm^{3}			dm^{6}	cm^{4}	cm^{2}
$305 \times 165 \times 46$	13	3.9	646	108	720	166	0.891	27.1	0.195	22.2	58.7
$305 \times 165 \times 54$	13	3.93	754	127	846	196	0.889	23.6	0.234	34.8	68.8
$356 \times 127 \times 33$	14	2.58	473	44.7	543	70.3	0.863	42.2	0.081	8.79	42.1
$356 \times 127 \times 39$	14.3	2.68	576	56.8	659	89.1	0.871	35.2	0.105	15.1	49.8
$356 \times 171 \times 45$	14.5	3.76	687	94.8	775	147	0.874	36.8	0.237	15.8	57.3
$\underline{356 \times 171 \times 51}$	14.8	3.86	796	113	896	174	0.881	32.1	0.286	23.8	64.9
$\underline{356 \times 171 \times 57}$	14.9	3.91	896	129	1010	199	0.882	28.8	0.33	33.4	72.6
$356 \times 171 \times 67$	15.1	3.99	1071	157	1211	243	0.886	24.4	0.412	55.7	85.5
$406 \times 140 \times 39$	15.9	2.87	629	57.8	724	90.8	0.858	47.5	0.155	10.7	49.7
$\underline{406 \times 140 \times 46}$	16.4	3.03	778	75.7	888	118	0.871	38.9	0.207	19	58.6
$406 \times 178 \times 54$	16.5	3.85	930	115	1055	178	0.871	38.3	0.392	23.1	69
$406 \times 178 \times 60$	16.8	3.97	1063	135	1199	209	0.88	33.8	0.466	33.3	76.5
$406 \times 178 \times 67$	16.9	3.99	1189	153	1346	237	0.88	30.5	0.533	46.1	85.5
$406 \times 178 \times 74$	17	4.04	1323	172	1501	267	0.882	27.6	0.608	62.8	94.5
$457 \times 152 \times 52$	17.9	3.11	950	84.6	1096	133	0.859	43.9	0.311	21.4	66.6
$457 \times 152 \times 60$	18.3	3.23	1122	104	1287	163	0.868	37.5	0.387	33.8	76.2
$457 \times 152 \times 67$	18.4	3.27	1263	119	1453	187	0.869	33.6	0.448	47.7	85.6
$\underline{457 \times 152 \times 74}$	18.6	3.33	1414	136	1627	213	0.873	30.1	0.518	65.9	94.5
$457 \times 152 \times 82$	18.7	3.37	1571	153	1811	240	0.873	27.4	0.591	89.2	105

Table A. 2 (continued)

Designation	Radius of gyration		Elastic modulus		Plastic modulus		Buckling parameter	Torsional index	Warping constant	Torsional constant	Area of section
	$\begin{array}{\|l} \hline \text { Axis } \\ y-y \end{array}$	$\begin{aligned} & \text { Axis } \\ & z-z \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{array}{\|l} \text { Axis } \\ z-z \\ \hline \end{array}$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & z-z \\ & \hline \end{aligned}$					
	i_{y}	i_{z}	$W_{e l, y}$	$W_{e l, z}$	$W_{p l, y}$	$W_{p l, z}$	u	x	I_{w}	I_{t}	A
	cm	cm	cm^{3}	cm^{3}	cm^{3}	cm^{3}			dm^{6}	cm^{4}	cm^{2}
$\underline{457 \times 191 \times 67}$	18.5	4.12	1296	153	1471	237	0.872	37.9	0.705	37.1	85.5
$457 \times 191 \times 74$	18.8	4.2	1458	176	1653	272	0.877	33.9	0.818	51.8	94.6
$457 \times 191 \times 82$	18.8	4.23	1611	196	1831	304	0.877	30.9	0.922	69.2	104
$457 \times 191 \times 89$	19	4.29	1770	218	2014	338	0.88	28.3	1.04	90.7	114
$457 \times 191 \times 98$	19.1	4.33	1957	243	2232	379	0.881	25.7	1.18	121	125
$533 \times 210 \times 101$	21.9	4.57	2292	256	2612	399	0.874	33.2	1.81	101	129
$533 \times 210 \times 109$	21.9	4.6	2477	279	2828	436	0.875	30.9	1.99	126	139
$533 \times 210 \times 122$	22.1	4.67	2793	320	3196	500	0.877	27.6	2.32	178	155
$533 \times 210 \times 82$	21.3	4.38	1800	192	2059	300	0.864	41.6	1.33	51.5	105
$533 \times 210 \times 92$	21.7	4.51	2072	228	2360	356	0.872	36.5	1.6	75.7	117
$610 \times 229 \times 101$	24.2	4.75	2515	256	2881	400	0.864	43.1	2.52	77	129
$610 \times 229 \times 113$	24.6	4.88	2874	301	3281	469	0.87	38	2.99	111	144
$610 \times 229 \times 125$	24.9	4.97	3221	343	3676	535	0.873	34.1	3.45	154	159
$610 \times 229 \times 140$	25	5.03	3622	391	4142	611	0.875	30.6	3.99	216	178
$610 \times 305 \times 149$	25.7	7	4111	611	4594	937	0.886	32.7	8.17	200	190
$610 \times 305 \times 179$	25.9	7.07	4935	743	5547	1144	0.886	27.7	10.2	340	228
$610 \times 305 \times 238$	26.3	7.23	6589	1017	7486	1574	0.886	21.3	14.5	785	303
$686 \times 254 \times 125$	27.2	5.24	3481	346	3994	542	0.862	43.9	4.8	116	159
$686 \times 254 \times 140$	27.6	5.39	3987	409	4558	638	0.868	38.7	5.72	169	178

Table A. 2 (continued)

Designation	Radius of gyration		Elastic modulus		Plastic modulus		Buckling parameter	Torsional index	Warping constant	Torsional constant	Area of section
	Axis $y-y$	$\begin{aligned} & \text { Axis } \\ & z-z \end{aligned}$	Axis $y-y$	Axis $z-z$	Axis $y-y$	Axis $z-z$					
	i_{y}	i_{z}	$W_{e l, y}$	$W_{e l, z}$	$W_{p l, y}$	$W_{p l, z}$	u	x	I_{w}	I_{t}	A
	cm	cm	cm^{3}	cm^{3}	cm^{3}	cm^{3}			dm^{6}	cm^{4}	cm^{2}
$686 \times 254 \times 152$	27.8	5.46	4374	455	5000	710	0.871	35.5	6.42	220	194
$686 \times 254 \times 170$	28	5.53	4916	518	5631	811	0.872	31.8	7.42	308	217
$762 \times 267 \times 134$	29.7	5.3	4018	362	4644	570	0.854	49.8	6.46	119	171
$762 \times 267 \times 147$	30	5.4	4470	411	5156	647	0.858	45.2	7.4	159	187
$762 \times 267 \times 173$	30.5	5.58	5387	514	6198	807	0.864	38.1	9.39	267	220
$762 \times 267 \times 197$	30.9	5.71	6234	610	7167	959	0.869	33.2	11.3	404	251
$838 \times 292 \times 176$	33.1	5.9	5893	535	6808	842	0.856	46.5	13	221	224
$838 \times 292 \times 194$	33.6	6.06	6641	620	7640	974	0.862	41.6	15.2	306	247
$838 \times 292 \times 226$	34.3	6.27	7985	773	9155	1212	0.87	35	19.3	514	289
$914 \times 305 \times 201$	35.7	6.07	7204	621	8351	982	0.854	46.8	18.4	291	256
$914 \times 305 \times 224$	36.3	6.27	8269	739	9535	1163	0.861	41.3	22.1	422	286
$914 \times 305 \times 253$	36.8	6.42	9501	871	10,940	1371	0.866	36.2	26.4	626	323
$914 \times 305 \times 289$	37	6.51	10,880	1014	12,570	1601	0.867	31.9	31.2	926	368
$914 \times 419 \times 343$	37.8	9.46	13,730	1871	15,480	2890	0.883	30.1	75.8	1193	437
$914 \times 419 \times 388$	38.2	9.59	15,630	2161	17,670	3341	0.885	26.7	88.9	1734	494

Table A. 3 Universal column with sectional properties in EC notation (BS 4 Part 1 2005)

Designation	Mass per m	Depth of section	Width of section	Thickness		Root radius	Depth between fillets	Radius for local buckling		Second moment of area	
				Web	Flange			Flange	Web	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Axis } \\ z-z \end{array}$
		D	b	t_{w}	t_{f}	r	d	$b / 2 t_{f}$	d / t_{w}	I_{y}	I_{z}
	kg/m	mm	mm	mm	mm	mm	mm			cm^{4}	cm^{4}
$152 \times 152 \times 23$	23	152.4	152.2	5.8	6.8	7.6	123.6	11.2	21.3	1250	400
$152 \times 152 \times 30$	30	157.6	152.9	6.5	9.4	7.6	123.6	8.13	19	1748	560
$152 \times 152 \times 37$	37	161.8	154.4	8	11.5	7.6	123.6	6.71	15.5	2210	706
$203 \times 203 \times 46$	46.1	203.2	203.6	7.2	11	10.2	160.8	9.25	22.3	4568	1548
$203 \times 203 \times 52$	52	206.2	204.3	7.9	12.5	10.2	160.8	8.17	20.4	5259	1778
$203 \times 203 \times 60$	60	209.6	205.8	9.4	14.2	10.2	160.8	7.25	17.1	6125	2065
$203 \times 203 \times 71$	71	215.8	206.4	10	17.3	10.2	160.8	5.97	16.1	7618	2537
$203 \times 203 \times 86$	86.1	222.2	209.1	12.7	20.5	10.2	160.8	5.1	12.7	9449	3127
$254 \times 254 \times 107$	107.1	266.7	258.8	12.8	20.5	12.7	200.3	6.31	15.6	17,510	5928
$254 \times 254 \times 132$	132	276.3	261.3	15.3	25.3	12.7	200.3	5.16	13.1	22,530	7531
$254 \times 254 \times 167$	167.1	289.1	265.2	19.2	31.7	12.7	200.3	4.18	10.4	30,000	9870
$254 \times 254 \times 73$	73.1	254.1	254.6	8.6	14.2	12.7	200.3	8.96	23.3	11,410	3908
$254 \times 254 \times 89$	88.9	260.3	256.3	10.3	17.3	12.7	200.3	7.41	19.4	14,270	4857
$305 \times 305 \times 118$	117.9	314.5	307.4	12	18.7	15.2	246.7	8.22	20.6	27,670	9059
$305 \times 305 \times 137$	136.9	320.5	309.2	13.8	21.7	15.2	246.7	7.12	17.9	32,810	10,700
$305 \times 305 \times 158$	158.1	327.1	311.2	15.8	25	15.2	246.7	6.22	15.6	38,750	12,570
$305 \times 305 \times 198$	198.1	339.9	314.5	19.1	31.4	15.2	246.7	5.01	12.9	50,900	16,300
$305 \times 305 \times 240$	240	352.5	318.4	23	37.7	15.2	246.7	4.22	10.7	64,200	20,310
$305 \times 305 \times 283$	282.9	365.3	322.2	26.8	44.1	15.2	246.7	3.65	9.21	78,870	24,630
$305 \times 305 \times 97$	96.9	307.9	305.3	9.9	15.4	15.2	246.7	9.91	24.9	22,250	7308
$356 \times 368 \times 129$	129	355.6	368.6	10.4	17.5	15.2	290.2	10.5	27.9	40,250	14,610

Table A. 3 (continued)

Designation	Mass per m	Depth of section			Width of section		Thickness		Root radius	Depth between fillets	Radius for local buckling		Second moment of area			
					Web	Flange		Flange		Web	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & z-z \\ & \hline \end{aligned}$				
		D					b		t_{w}	t_{f}	r	d	$b / 2 t_{f}$	d / t_{w}	I_{y}	I_{z}
	kg/m	mm			mm		mm	mm	mm	mm			cm^{4}	cm^{4}		
$356 \times 368 \times 153$	152.9	362			370.5		12.3	20.7	15.2	290.2	8.95	23.6	48,590	17,550		
$356 \times 368 \times 177$	177	368.2			372.6		14.4	23.8	15.2	290.2	7.83	20.2	57,120	20,530		
$356 \times 368 \times 202$	201.9	374.6			374.7		16.5	27	15.2	290.2	6.94	17.6	66,260	23,690		
$356 \times 406 \times 235$	235.1	381			394.8		18.4	30.2	15.2	290.2	6.54	15.8	79,080	30,990		
$356 \times 406 \times 287$	287.1	393.6			399		22.6	36.5	15.2	290.2	5.47	12.8	99,880	38,680		
$356 \times 406 \times 340$	339.9	406.4			403		26.6	42.9	15.2	290.2	4.7	10.9	122,500	46,850		
$356 \times 406 \times 393$	393	419			407		30.6	49.2	15.2	290.2	4.14	9.48	146,600	55,370		
$356 \times 406 \times 467$	467	436.6			412.2		35.8	58	15.2	290.2	3.55	8.11	183,000	67,830		
$356 \times 406 \times 551$	551	455.6			418.5		42.1	67.5	15.2	290.2	3.1	6.89	226,900	82,670		
$356 \times 406 \times 634$	633.9	474.6			424		47.6	77	15.2	290.2	2.75	6.1	274,800	98,130		
Designation	Radius of gyration			Elastic modulus			Plastic modulus		Buckling parameter	Torsional Index	Warping constant		orsional nstant	Area of section		
	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & z-z \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline \text { Axis } \\ y-y \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \text { Axis } \\ z-z \end{array}$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Axis } \\ z-z \end{array}$								
	i_{y}	i_{z}		$W_{e l, y}$		$W_{e l, z}$	$W_{p l, ~}$	$W_{p l, z}$	u	x	I_{w}	I_{t}		A		
	cm	cm		cm^{3}		cm^{3}	cm^{3}	cm^{3}			dm^{6}			cm^{2}		
$152 \times 152 \times 23$	6.54	3.7		164		52.6	182	80.2	0.84	20.7	0.021			29.2		
$152 \times 152 \times 30$	6.76	3.83	3.83 22	222		73.3	248	112	0.849	16	0.031			38.3		
$152 \times 152 \times 37$	6.85	3.87	3.87 27	273		91.5	309	140	0.848	13.3	0.04			47.1		
$203 \times 203 \times 46$	8.82	5.13	13 450	450		152	497	231	0.847	17.7	0.143			58.7		
$203 \times 203 \times 52$	8.91	5.18	18 5	510		174	567	264	0.848	15.8	0.167			66.3		

Table A. 3 (continued)

Designation	Radius of gyration		Elastic modulus		Plastic modulus		Buckling parameter	Torsional Index	Warping constant	Torsional constant	Area of section
	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & z-z \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & z-z \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & z-z \end{aligned}$					
	i_{y}	i_{z}	$W_{e l, y}$	$W_{e l, z}$	$W_{p l, y}$	$W_{p l, z}$	u	x	I_{w}	I_{t}	A
	cm	cm	cm^{3}	cm^{3}	cm^{3}	cm^{3}			dm^{6}	cm^{4}	cm^{2}
$203 \times 203 \times 60$	8.96	5.2	584	201	656	305	0.846	14.1	0.197	47.2	76.4
$203 \times 203 \times 71$	9.18	5.3	706	246	799	374	0.853	11.9	0.25	80.2	90.4
$203 \times 203 \times 86$	9.28	5.34	850	299	977	456	0.85	10.2	0.318	137	110
$\underline{254 \times 254 \times 107}$	11.3	6.59	1313	458	1484	697	0.848	12.4	0.898	172	136
$254 \times 254 \times 132$	11.6	6.69	1631	576	1869	878	0.85	10.3	1.19	319	168
$254 \times 254 \times 167$	11.9	6.81	2075	744	2424	1137	0.851	8.49	1.63	626	213
$254 \times 254 \times 73$	11.1	6.48	898	307	992	465	0.849	17.3	0.562	57.6	93.1
$254 \times 254 \times 89$	11.2	6.55	1096	379	1224	575	0.85	14.5	0.717	102	113
$305 \times 305 \times 118$	13.6	7.77	1760	589	1958	895	0.85	16.2	1.98	161	150
$305 \times 305 \times 137$	13.7	7.83	2048	692	2297	1053	0.851	14.2	2.39	249	174
$305 \times 305 \times 158$	13.9	7.9	2369	808	2680	1230	0.851	12.5	2.87	378	201
$\underline{305 \times 305 \times 198}$	14.2	8.04	2995	1037	3440	1581	0.854	10.2	3.88	734	252
$305 \times 305 \times 240$	14.5	8.15	3643	1276	4247	1951	0.854	8.74	5.03	1271	306
$305 \times 305 \times 283$	14.8	8.27	4318	1529	5105	2342	0.855	7.65	6.35	2034	360
$305 \times 305 \times 97$	13.4	7.69	1445	479	1592	726	0.85	19.3	1.56	91.2	123
$356 \times 368 \times 129$	15.6	9.43	2264	793	2479	1199	0.844	19.9	4.18	153	164
$356 \times 368 \times 153$	15.8	9.49	2684	948	2965	1435	0.844	17	5.11	251	195
$356 \times 368 \times 177$	15.9	9.54	3103	1102	3455	1671	0.844	15	6.09	381	226
$356 \times 368 \times 202$	16.1	9.6	3538	1264	3972	1920	0.844	13.4	7.16	558	257

Table A. 3 (continued)

Designation	Radius of gyration		Elastic modulus		Plastic modulus		Buckling parameter	Torsional Index	Warping constant	Torsional constant	Area of section
	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	Axis $z-z$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	Axis $z-z$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	Axis $z-z$					
	i_{y}	i_{z}	$W_{e l, y}$	$W_{e l, z}$	$W_{p l, y}$	$W_{p l, z}$	u	x	I_{w}	I_{t}	A
	cm	cm	cm^{3}	cm^{3}	cm^{3}	cm^{3}			dm^{6}	cm^{4}	cm^{2}
$356 \times 406 \times 235$	16.3	10.2	4151	1570	4687	2383	0.834	12.1	9.54	812	299
$356 \times 406 \times 287$	16.5	10.3	5075	1939	5812	2949	0.835	10.2	12.3	1441	366
$356 \times 406 \times 340$	16.8	10.4	6031	2325	6999	3544	0.836	8.85	15.5	2343	433
$356 \times 406 \times 393$	17.1	10.5	6998	2721	8222	4154	0.837	7.86	18.9	3545	501
$356 \times 406 \times 467$	17.5	10.7	8383	3291	10,000	5034	0.839	6.86	24.3	5809	595
$356 \times 406 \times 551$	18	10.9	9962	3951	12,080	6058	0.841	6.05	31.1	9240	702
$356 \times 406 \times 634$	18.4	11	11,580	4629	14,240	7108	0.843	5.46	38.8	13,720	808

References

British Standard Institution. (2000). BS 5950: Structural use of steelwork in building—part 1: Code of practice for design-rolled and welded sections. London.
British Standard Institution. (2004). BS EN 10025 Hot rolled products of structural steels—part 2: Technical delivery conditions for non-alloy structural steels. London.
British Standard Institution. (2005a). BS EN 1993 Eurocode 3: Design of steel structurespart 1-1: General rules and rules for buildings. London.
British Standard Institution. (2005b). BS EN 1993 Eurocode 3: Design of steel structurespart 1-8: Design of joints. London.
British Standard Institution. (2005c). NA to BS EN 1990UK National Annex for Eurocode: Basis of structural design. London.
British Standard Institution. (2005d). BS 4Structural steel sections-part 1: Specification for hot-rolled sections. London.
British Standard Institution. (2008). NA to BS EN 1993 UK National Annex to Eurocode 3: Design of steel structures-part 1-1: General rules and rules for buildings. London.
NCCI: Elastic critical moment for lateral torsional buckling. SN003b.doc. Access Steel.
NCCI: Determination of moments on columns in simple construction. SN005a-EN-EU.doc. Access Steel.
NCCI: Verification of columns in simple construction-a simplified interaction criterion. SN048b-EN-GB.doc. Access Steel.

Further Reading

Arya, C. (2009). Design of structural elements: Concrete, steelwork, masonry and timber design to British Standards and Eurocodes (3rd ed.). New York: Taylor \& Francis.
Brettle, M. E., \& Brown, D. G. (Eds.). (2009). Steel building design: Worked examples for students in accordance with Eurocodes and the UK National Annexes. Berkshire: The Steel Construction Institution.
Gardner, L., \& Nethercot, D. (2011). Designer's guide to Eurocodes 3: Design of steel buildings EN 1993-1-1, -1-3 and -1-8 (2nd ed.). London: ICE Publishing.

