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Preface

Bitterness is one of the most interesting and least studied/understood of all the
human tastes. It produces aversive reactions because it was originally associated
with the plant source being poisonous. In fact, it was considered a defence mech-
anism for avoiding the ingestion of such harmful substances so that early human
survival was based on the knowledge and ability to discriminate between edible
plants particularly those with potentially harmful effects. With the advent of mod-
ern technology our understanding of bitterness is far more sophisticated and that we
now know that not all bitter compounds are poisonous. In fact there are many foods
in which bitterness is quite acceptable such as in some cheeses and beverages. In
this book we have attempted to provide a comprehensive review of bitterness, from
the novel genes in humans responsible for the expression of bitterness to methods
used to remove or reduce bitterness in functional foods and nutraceuticals.

The book is organized into four sections. The first section covers the biology of
bitterness perception with chapter 1 discussing the biochemistry of the 25 human
bitter taste receptors of the TAS2R gene family. Chapter 2 examines the physio-
logical aspects of bitterness while chapter 3 discusses human bitterness from an
evolutionary perspective.

Section II covers the chemistry of bitterness with chapter 4 detailing those sec-
ondary plant metabolites responsible for the bitterness of selected fruits and vegeta-
bles. The compounds responsible for the bitterness of such beverages as tea, coffee,
cocoa, wine and cider are reviewed in chapter 5, whereas ‘food protein-derived
bitter peptides’ is the subject of chapter 6.

The analysis of bitterness, both sensory and chemical, is detailed in section III.
Chapter 7 is a comprehensive review of sensory methods for assessing the bitter-
ness of foods and beverages while chapter 8 is focused on the application of mass
spectrometry for identifying bitter compounds. The final chapter in this section,
chapter 9, discusses the ability of the electronic tongue to analyze bitterness and its
correlation with sensory analysis.

The final section, section IV, covers the physical and chemical methods avail-
able for removing or masking bitterness in functional foods and nutraceuticals.
The recent development of bitter blockers is also discussed as it provides a healthy
alternative to adding sugar or salt for masking bitterness.

We hope this book will provide useful information to food scientists as well as
those working in the food and flavor industries. We are grateful to colleagues from
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xvi Preface

around the world for their important contributions to this book and acknowledge
the excellent editorial assistance provided by the staff of Wiley.

Michel Aliani and Michael N. A. Eskin
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1 Biochemistry of Human Bitter Taste
Receptors

Jasbir Upadhyaya, Nisha Singh, Raj Bhullar, and
Prashen Chelikani

1.1 INTRODUCTION

The gustatory system has been selected during evolution to detect nutritive and
beneficial compounds as well as harmful substances. Humans, and probably other
mammals, can taste many compounds but distinguish between five basic tastes
which are sweet, bitter, sour, salt and umami. Sour and salt tastes are thought to
be perceived via cation channels (Heck et al., 1984; Kinnamon et al., 1988; Ugawa
et al., 1998). In contrast, sensation of bitter, sweet and umami tastes is initiated
by the interaction of taste molecules with G protein-coupled receptors (GPCRs)
(Adler et al., 2000; Gilbertson et al., 2000; Sainz et al., 2001). Bitter taste, among
all tastes, is believed to have evolved as a central warning signal against the inges-
tion of potentially toxic substances. The molecular events in the perception of taste
start at the apical surface of taste receptor cells (TRCs) found in taste buds in the
mouth. Taste buds are found in taste papillae located on the tongue, the palate, and
to a lesser extent the epiglottis, pharynx and larynx, and each taste bud is formed
of 50-100 TRCs (Lalonde and Eglitis, 1961; Miller, 1986; Brouwer and Wiersma,
1978). The interaction of tastants with taste receptors, located in the membrane
of TRCs, initiates signaling cascades which are transmitted to the brain through
sensory afferents and perceived as taste (Chen et al., 2011).

1.2 BITTER TASTE RECEPTORS: T2Rs

In humans, bitter taste is perceived by 25 members of the GPCR superfamily,
referred to as T2Rs, which are 291 to 334 amino acids long (Adler et al., 2000,
Chandrashekar et al., 2000, Matsunami et al., 2000). These taste receptors, dis-
covered a little more than a decade ago, encode for intronless genes which are
referred to as TAS2Rs. The HUGO gene nomenclature of TAS2R is used wherever
the gene is mentioned. Except for the TAS2R1 gene, which is localized on chro-
mosome 5p, all other TAS2Rs are organized in the genome in clusters on human
chromosomes 7q and 12p, and are genetically linked to loci that influence bitter
perception (Conte et al., 2002). Additionally, there are a large number of TAS2R

Bitterness: Perception, Chemistry and Food Processing, First Edition. Edited by Michel Aliani & Michael N. A. Eskin.
Published 2017 © 2017 by John Wiley & Sons, Inc. and the Institute of Food Technologists.
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pseudogenes and more than 80 single nucleotide polymorphisms (SNPs) among
individual TAS2R genes (Conte et al., 2002; Kim et al., 2005). The classification
of T2Rs within the GPCR family is unclear, with some describing them as a sepa-
rate family (Horn et al., 2003), whereas other classification systems have grouped
them with the frizzled receptors (Fredriksson et al., 2003). The International Union
of Basic and Clinical Pharmacology (IUPHAR) list Frizzled receptors as a separate
GPCR family, Class F, and this class does not include T2Rs (Sharman et al., 2013).
T2Rs are relatively divergent, showing ∼25–90% amino acid identity (Adler et al.,
2000; Matsunami et al., 2000). This variability corresponds well with an ability to
interact with chemically diverse ligands associated with bitter tastes. A single bitter
compound is capable of activating multiple T2Rs and each T2R can be activated by
multiple bitter compounds (Meyerhof et al., 2010). Like all GPCRs, T2Rs contain
seven transmembranes (TMs), three extracellular loops (ECLs) and three intracel-
lular loops (ICLs), with a short extracellular N- and an intracellular C-terminus
(Fig. 1.1). The other class of taste GPCRs, which codes for sweet and umami recep-
tors (T1Rs), belongs to the class C GPCR family (Lagerstrom and Schioth, 2008).
Sweet and umami tastes are mediated by three GPCRs that combine to form two
heterodimeric receptors, T1R1/T1R3 for umami and T1R2/T1R3 for sweet-tasting
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Figure 1.1 Predicted secondary structure model of the bitter taste receptor T2R4. The
coding region is 299 amino acids long, has a short extracellular N-terminus, three extra-
cellular loops, seven transmembrane (TM1-TM7) helices, three intracellular loops and a short
C-terminus.
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compounds (Li et al., 2002; Nelson et al., 2001, 2002; Zhao et al., 2003). In con-
trast to the short N-terminus of T2Rs, T1Rs are characterized by a long N-terminus,
also known as Venus flytrap, which forms the primary or orthosteric ligand binding
site (Pin et al., 2003). Differences in ligand specificity between species has been
reported for the sweet and umami receptors (Xu et al., 2004; Li et al., 2002; Nelson
et al., 2002). Human T1R1/T1R3 specifically responds to L-Glu, whereas mouse
T1R1/T1R3 responds more strongly to other L-amino acids than to L-Glu. In a
recent study, the residues in the extracellular Venus flytrap domain of T1R1 which
are crucial for amino acid recognition in the human- and mouse-type responses
were identified (Toda et al., 2013). In contrast to the low amino acid identity in
the N- and C-termini and the ECLs, sequence conservation is more in the TMs and
ICLs of T2Rs. The TMs and ECLs are the predicted regions of ligand binding in
T2Rs and ICLs are the regions for G-protein interaction (Adler et al., 2000).

1.3 T2R SIGNAL TRANSDUCTION

Long before the discovery of T2Rs, the involvement of taste-specific Gα protein,
Gα-gustducin, in bitter receptor mediated transduction mechanism was demon-
strated (Wong et al., 1996). The generation of α-gustducin knock-out mice resulted
in dramatic reduction of their bitter tasting abilities. Moreover, T2Rs were shown
to functionally couple to transducin (He et al., 2002) in vivo as well as to other
Gi/Go proteins in vitro (Ozeck et al., 2004). The mechanism involved in the per-
ception of bitter taste and the second messengers or other downstream components
of T2R signaling pathway were also known before the T2Rs were discovered in
2000 (Kurihara et al., 1994; Spielman et al., 1996; Chandrashekar et al., 2000). A
cation channel, transient receptor potential melastatin subtype 5 channel (TRPM5),
was found coexpressed with other taste signaling molecules in taste tissue (Perez
et al., 2002).

The canonical T2R signal transduction pathway is described below. The bind-
ing of a bitter-tasting compound, also referred to as an agonist, on the extracellular
surface of a T2R causes conformational changes in the receptor, and this in turn
activates the heterotrimeric G-protein complex, α-gustducin, β1/3 and γ13 on the
intracellular surface of the receptor. The βγ-subunits activate the enzyme phospho-
lipase Cβ2 (PLC β2) which hydrolyzes inositol phospholipid (PIP2) resulting in
the production of 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). Generation of
IP3 activates IP3 receptors on the membrane of endoplasmic reticulum (ER), thus
opening the calcium release channels and causing transient increase in intracellular
calcium. This opens the monovalent selective TRPM5 channels, leading to sodium
influx, membrane depolarization and thus release of ATP as a neurotransmitter to
activate the gustatory afferents (Finger et al., 2005) (Fig. 1.2). Gα-gustducin acti-
vates phosphodiesterases (PDEs) which lead to a reduction in cAMP production
(McLaughlin et al., 1992; Spielman, 1998).
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Figure 1.2 Bitter taste signaling pathway (IP3 pathway) Abbreviations: PLCβ2, phospholi-
pase C β2; PIP2, phospatidyl-inositol-biphosphate; DAG, diacylglycerol; IP3, inositol triphos-
phate; ER, endoplasmic reticulum; Ca2+, calcium; Na+, sodium.

1.4 BITTER TASTE PERCEPTION AND T2R
POLYMORPHISMS

The sensitivity of humans to the perception of some bitter compounds varies
greatly (Bartoshuk, 2000a, 2000b). This variable bitter taste perception is the
best-known example of genetic variation in oral sensation. A vast number of struc-
turally diverse compounds elicit bitter taste in humans and many bitter substances
can be detected at concentrations roughly 1000-fold lower than substances that
stimulate other basic tastes (Meyerhof, 2005). Studies on the genetics of taste
perception for phenylthiocarbamide (PTC) began in the early 1930s with the
accidental finding by A. L. Fox that crystals of PTC tasted very bitter to some
people but not to others (Fox, 1932). Thus, 6-n-propyl-2-thiouracil (PROP) and
PTC, which share thiocyanate (N—C=S) moiety, taste bitter to some people but
are tasteless to others (Fox, 1932).

Sensitivity to PTC/PROP is an inherited trait, and PROP sensitivity was linked
with lower acceptability of other bitter compounds and lower reported liking for
some bitter foods. Based on the detection thresholds for PTC/PROP solutions, peo-
ple were categorized into supertasters, tasters and non-tasters. Similarly, inbred
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mouse strains differ in their ability to detect certain bitter taste stimuli, such as
sucrose octaacetate (SOA) and cycloheximide. Genetic studies in humans have
demonstrated that the ability to detect PROP is determined by a locus on chro-
mosome 5p15 (Reed et al., 1999).

How humans respond to different bitter tasting compounds is an important
question in the field of bitter taste research. Missense mutations were found in
the sequences of T2R5 in mouse strains deficient to cycloheximide sensitivity
(Chandrashekar et al., 2000). These genetic variants, found in bitter-insensitive
mouse strains, also were less responsive in cell-based assays compared with alleles
from bitter-sensitive strains. This demonstrated that alleles of a taste receptor can
change both behavioral and cellular responses to bitter compounds. A similar
discovery was made in humans when naturally occurring alleles of the TAS2R38
gene, which is localized to chromosome 7q, were reported to be responsible for
individual differences in the ability of humans to taste PTC and PROP (Mennella
et al., 2005). Three polymorphic variants in T2R38 (proline or alanine at position
49, alanine or valine at position 262, and valine or isoleucine at position 296) gave
rise to five common haplotypes that accounted for 55-85% of the variance in PTC
sensitivity (Bufe et al., 2005). The taster haplotype or PROP-sensitive individuals
possess one or two dominant alleles (proline-alanine-valine; PAV/PAV), or
PAV/AVI (alanine-valine-isoleucine), whereas insensitive individuals are recessive
for the trait, AVI/AVI (Bufe et al., 2005). The ability to taste PTC/PROP may
protect against cigarette smoking and has also been linked to decreased alcohol
consumption (Cannon et al., 2005; Duffy et al., 2004).

Until recently, TAS2R38 was considered the only bitter taste gene that exhibits
prominent phenotypic variation in humans. But variation in bitter receptor sequence
is not confined to the TAS2R38 locus. Human TAS2Rs have more genetic varia-
tion within and between populations than do most other genes (Kim et al., 2005).
One possible explanation is that genes adapt to local conditions especially to the
bitter toxins in food. SNPs in some other TAS2R genes have recently been iden-
tified. For example, a missense mutation in the TAS2R16 gene, which encodes
the β-glucopyranoside receptor or T2R16, reduces sensitivity of the receptor to
bitter-taste stimuli which has been associated with risk for alcohol dependence
(Bufe et al., 2002; Wang et al., 2007). Polymorphism in the TAS2R43 gene allele
makes people very sensitive to bitterness of the natural plant compounds aloin and
aristolochic acid (Pronin et al., 2007). TAS2R43 and TAS2R44 gene alleles are
also related to the bitterness perception of artificial sweetener, saccharin. Recently
an SNP in the cluster of T2Rs on chromosome 12, which contributes to the varia-
tion in human bitterness perception of caffeine, was identified (Ledda et al., 2014).
Thus, it seems likely that the examination of multiple taste phenotypes might pro-
vide a more complete understanding of human eating behavior than a single taste
phenotype.
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1.5 LIGAND BINDING AND ACTIVATION
MECHANISMS OF T2Rs

Bitter compounds are not only numerous but also structurally diverse. They include
hydroxy fatty acids, peptides, amino acids, amines, N-heterocyclic compounds,
ureas, thioureas, carbamides, esters, lactones, phenols, alkaloids, glycosides and
many more. In contrast, only 25 T2Rs have been identified, raising the question
as to how the vast array of bitter compounds can be detected by such a limited
number of receptors. While many T2Rs remain poorly characterized, the ligand
specificity of several T2Rs was explored in the past decade (Chandrashekar et al.,
2000; Bufe et al., 2002, Kim et al., 2003; Behrens et al., 2004; Kuhn et al., 2004;
Pronin et al., 2004; Brockhoff et al., 2007; Sainz et al., 2007; Dotson et al., 2008;
Maehashi et al., 2008; Upadhyaya et al., 2010; Meyerhof et al., 2010). Whereas
some receptors recognize only a single or few compounds, others respond to
multiple compounds. The affinity of T2Rs for their respective bitter ligands is low,
with EC50 values in the high micromolar to low millimolar range (Meyerhof et al.,
2010). Thus, bitter compounds activate various T2Rs in different concentration
ranges, differences usually being in the range of 10- to 100-fold. However, knowl-
edge of the structural determinants of T2Rs is crucial to provide insights into the
molecular basis of bitter sensing and to design new taste modifiers. Molecular
modeling and site-directed mutagenesis studies were pursued to characterize the
ligand-binding pocket of some T2Rs. The 3D structure of T2R38, also referred
to as the PTC receptor, was predicted using computational method MembStruk
and homology modeling (Floriano et al., 2006). Hierdock and ScanBindSite
computational tools were then used to generate models of PTC bound to T2R38 to
predict the binding site and binding energy. According to these models, PTC binds
at a site distant from the variant amino acids P49A, A262V and V296I (Floriano
et al., 2006). It is also suggested that the inability of humans to taste PTC is
due to a failure of G-protein activation rather than decreased binding affinity of
the receptor for PTC. This study emphasizes the role of TM6 and TM7 in PTC
receptor function. The introduction of bulkier side chains in the nontaster variant
alters the packing of TMs 6 and 7, which might render the movement of TM6
more difficult (Biarnes et al., 2010). A recent study predicted the 3D structure of
T2R38 using BiHelix and SuperBiHelix Monte Carlo methods (Tan et al., 2012).
This study suggests that the residue 262 is involved in interhelical hydrogen bond
network which stabilizes the receptor in tasters (hTAS2R38PAV, hTAS2R38AAI,
and hTAS2R38PVV), but not in the non-tasters (hTAS2R38AVI) (Tan et al., 2012).

In a study by Pronin et al., chimeric receptors for T2R43 and T2R44
were generated in an effort to identify the residues involved in ligand recog-
nition (Pronin et al., 2004). T2R43 is activated by 6-nitrosaccharin and
N-isopropyl-2-methyl-5-nitrobenzenesulfonamide (IMNB), a bitter derivative of
saccharin. Whereas, T2R44 is activated by denatonium and 6-nitrosaccharin. The
amino acid sequences of T2R43 and T2R44 are 89% identical and 15 of the 34
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amino acid differences among them are concentrated in ECL1 and ECL2, while
ECL3 is completely conserved. T2R43 and T2R44 chimeras were generated
by swapping their ECLs–1 and –2. There are only four amino acid differences
between T2R43 and T2R44 in ECL1. Functional studies revealed that ECL1 is
very important for receptor activation, as replacing these residues of T2R43 with
those of T2R44 is sufficient to render T2R43 insensitive to IMNB. On the other
hand, replacing both ECL1 and ECL2 in T2R43 with T2R44 loops eliminated
most of the activation by 6-nitrosaccharin. Recently, ligand docking simulations
and functional analysis using point mutants of T2R16 were performed to identify
binding sites of the receptor to β-glucopyranosides (Sakurai et al., 2010). Seven
amino acid residues in TMs 3, 5 and 6 were involved in ligand recognition. Amino
acid residues Glu86, Trp94 and Gln177 were involved in salicin recognition,
whereas His181 and hydrophobic residues, Phe93, Phe240 and Ile243 likely
contributed to formation of the binding site. With the generation of chimeric and
mutant receptors, followed by functional analysis, the amino acid residues critical
for the activation of T2R46, T2R43 and T2R31 were identified (Brockhoff et al.,
2010). The construction of receptor chimeras demonstrated that agonist selectivity
was predominantly determined by TM7 region of the receptors. Exchange of
two residues within TM7 between T2R46, activated by strychnine, and T2R31,
activated by aristolochic acid, was sufficient to invert the agonist selectivity.

Fermentation of protein-rich foods results in the formation of bitter pep-
tides, which are responsible for the bitter taste of fermented food. Bitter casein
digests were able to activate T2R1, T2R4, T2R14 and T2R16 in a heterologous
expression system (Maehashi et al., 2008). Two bitter dipeptides, Gly-Phe
(glycine-phenylalanine) and Gly-Leu (glycine-leucine), activated T2R1 more
strongly, whereas they evoked no or weak responses in other receptors. The ability
of bitter di- and tri-peptides to activate T2R1 was tested further (Upadhyaya et al.,
2010). Results revealed that bitter tri-peptides also activated T2R1 and were more
potent than the tested di-peptides. Among all the tested peptides, Phe-Phe-Phe
(phenylalanine-phenylalanine-phenylalanine) activated T2R1-expressing cells the
most, at concentrations of 0.125–1 mM that humans also perceive as bitter, with
an EC50 value of 370 μM. Phe-Phe-Phe consists of hydrophobic amino acids and
the bitter taste of a peptide is more apparent when the hydrophobic amino acid
is located at the C-terminus. For the tri-peptides, the middle amino acid residue
is considered more important than both the C- and N-terminal amino acids (Wu
and Aluko, 2007). In addition, some peptides with ACE (angiotensin-converting
enzyme)-inhibitory activity were also able to activate T2R1. Homology modeling
and docking studies showed that amino acid residues from TMs 1-3, TM 7 and
from ECL1 and ECL2 contributed in forming the ligand binding pocket of T2R1
for the peptide ligands (Upadhyaya et al., 2010). In another study of T2R1, molec-
ular modeling and site-directed mutagenesis studies revealed that two asparagines,
Asn66 and the highly conserved Asn24, are important for dextromethorphan
(DXM)-induced receptor signaling (Singh et al., 2011). Asn24 plays a crucial
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role in receptor activation by mediating a hydrogen-bond network connecting
TM1-TM2-TM7, whereas Asn66 is essential for bonding to DXM. There is a
unique signature sequence of T2Rs, the LXXSL motif. It plays a predominantly
structural role in stabilizing the helical conformation of TM5 at the cytoplasmic
end and a functional role by influencing the conformation of ICL3. Replacement
of the conserved residues in this motif with bulky β-branched amino acids results
in protein misfolding and/or non-functional receptor (Singh et al., 2011).

Recently, the role of ICL3 in quinine-mediated activation of bitter taste receptor
T2R4 was demonstrated using alanine scan mutagenesis (Pydi et al., 2013). ICL3 of
T2R4 consists of 23 amino acid residues which were mutated to alanine. Only 14 of
the 23 mutants displayed quinine-induced signaling in a concentration-dependent
manner. Three mutants, Q216A, T230A and V234A, showed an increased
response to quinine. Six mutants, R213A, Q219A, K220A, Q229A, E231A and
H233A, showed no detectable or statistically significant increase in intracellular
calcium mobilization, suggesting that they may have an important role in receptor
activation. Whereas mutants I215A, F225A and P228A displayed altered receptor
activation and/or defective ligand binding. Some mutants showed statistically
significant basal signaling or constitutive activity. H214A, which is present in 24
of the 25 human T2Rs, showed the highest constitutive activity (i.e., in the absence
of agonist). A recent study identified a conserved KLK/R motif in the C-terminus
of T2Rs. This KLK motif was suggested to perform a critical functional role
involving trafficking and activation in T2R4 (Upadhyaya et al., 2015).

1.6 NUTRIGENOMICS OF TASTE

The PROP phenotype serves as a general marker for bitterness perception which
influences general food preferences and dietary behavior with subsequent links to
body weight and chronic disease risk. Strong bitter taste is closely associated with
the presence of toxins and is aversive. However, moderate bitter taste is appealing
and expected in a variety of foods including beer, wine, chocolates and many
cheeses. Fischer and colleagues noted that PTC tasters tended to manifest a thin and
angular body type, whereas non-tasters tended to have generous body proportions
(Fischer et al., 1966). Studies in overweight middle-aged women have provided
convincing evidence linking PROP status with body weight (Goldstein et al.,
2005). Goldstein et al. showed that non-taster women were heavier than supertaster
women by ∼6 BMI (body mass index) units. Anatomical evidence demonstrates
that individuals who differ in taste sensitivity to PTC/PROP also differ in the
density of fungiform taste papillae on the anterior surface of tongue (Bartoshuk
et al., 1994; Essick et al., 2003; Tepper and Nurse, 1997). Non-tasters have the
lowest density of fungiform papillae, whereas supertasters have the highest density.

Isothiocyanates, the breakdown products of glucosinolates that are widely dis-
tributed in plants, interfere with the uptake of iodine by the thyroid gland, leading
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to goiter, and cretinism in its extreme form. Although iodine deficiency is the
primary cause of this disease, goitrogens in the food supply can play a contributing
role particularly when dietary iodine is low. It was shown that a large percentage of
athyroidic cretins in a clinical population in the United States were PTC non-tasters
(Shepard, 1961). Investigation of the role of PROP status in children’s selection
and consumption of vegetables showed that non-taster children consumed more
bitter vegetables overall than taster children (Bell and Tepper, 2006). PROP status
has also been linked to sweet taste preference in children. Taster preschool children
showed greater preferences for sweets than non-taster children (Keller and Tepper,
2004). The perception of oral irritation from capsaicin (chili pepper), cinnamalde-
hyde (from cinnamon), and carbonation is influenced by PROP sensitivity (Karrer
and Bartoshuk, 1991; Prescott and Swain-Campbell, 2000; Prescott et al., 2004).
Individual differences in fat perception have been linked to PROP taster status and
taste bud density. A study in college students revealed that medium and supertasters
reliably discriminated a high-fat from a low-fat dressing, whereas non-tasters
could not distinguish the two samples (Tepper and Nurse, 1997). Study by Keller
and coworkers in preschool children demonstrated that this phenotype might have
greater influence on preferences for fats in females than males (Keller et al., 2002).
Discretionary fat intake did not differ between taster and non-taster boys.

Few studies have examined associations between PROP status and disease risk,
though the data addressing this issue is scarce. No associations were reported
between T2R38 polymorphisms and cardiovascular risk in the elderly women or
between PROP status and lipid profiles in the breast cancer patients (Timpson
et al., 2005; Drewnowski et al., 2007). However, a modest association between
greater sensitivity to PROP and a higher number of colon polyps was found in
older men undergoing routine screening for colon pathology (Basson et al., 2005).

Dental caries is the most common chronic disease of childhood that is neither
self-limiting nor amenable to short-term pharmacological management (Edelstein
and Douglass, 1995). Effective dentistry requires early identification of children at
higher risk for caries so they may receive early and intense preventive intervention.
The individual differences in PROP sensitivity have been linked to dental caries and
can be used as an important tool to determine the taster status in relation to caries
experience in children (Rupesh and Nayak, 2006; Verma et al., 2006; Pidamale
et al., 2012; Hedge and Sharma, 2008). A comprehensive review of the role of
diet and dental caries reaffirmed that sucrose is the most important dietary item
associated with dental caries (Habibian et al., 2001). Non-taster children may have
higher concentration and frequencies of sugar intake compared to children who are
medium or supertasters and are therefore more susceptible to dental caries (Anliker
et al., 1991). Whereas supertasters and medium tasters are more likely to avoid
sweet food, thus making them less prone to dental decay. Streptococcus mutans
levels were also shown to increase from tasters to non-tasters, thus placing them at
higher risk of developing caries (Verma et al., 2006).
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1.7 BITTER TASTE BLOCKERS

The sense of taste has a significant impact on food selection, nutrition and
health. It is, therefore, highly desirable to modulate bitter taste perception and
bitter taste receptors so that beneficial food and medicines may be rendered
more palatable. In addition to having an important role in food and nutraceu-
tical industries, bitter taste blockers could be beneficial as chemical probes
to examine the role of T2R function in gustatory and non-gustatory tissues.
The T2R antagonist, GIV3727, was able to inhibit the activation of T2R44 by
saccharin and acesulfame-K (Slack et al., 2010). This compound also inhibited
five additional T2Rs, including the closely related T2R43. It appears the –COOH
moiety is essential for antagonist activity of GIV3727 since replacement of
this group with an ester or corresponding alcohol abolished its activity. Two
residues in TM7 are important for antagonist activity in T2R43/T2R44. Shortly
after this study, probenecid, an approved inhibitor of Multidrug Resistance
Protein 1 (MRP1) transporter, was shown to inhibit T2R16, T2R38 and T2R43
in a non-competetive (allosteric) mechanism (Greene et al., 2011). And, two
natural sesquiterpene lactones from edible plants, 3β-Hydroxydihydrocostunolide
(3HDC) and 3β-Hydroxypelenolide (3HP), were identified which blocked the
responses of T2R46 receptor (Brockhoff et al., 2011). Besides T2R46, 3HDC
also inhibited T2R30 and T2R40, and 3HP inhibited T2R30, T2R43 and T2R44.
Recent studies characterized few novel bitter blockers, γ-aminobutyric acid
(GABA), abscisic acid and Na,Na-bis(carboxymethyl)-L-lysine (BCML). These
acted as competitive inhibitors of quinine-activated human T2R4, sharing the same
orthosteric site as agonist quinine (Pydi et al., 2014, Pydi et al., 2015). Though
there is a vast number of bitter agonists known for T2Rs, the knowledge of bitter
taste blockers or T2R antagonists and inverse agonists is limited. Hence there is
an urgent need to discover more natural or synthetic blockers for T2Rs to increase
the consumption of healthy bitter foods and for drug compliance.

1.8 EXPRESSION OF T2Rs IN EXTRAORAL TISSUES

With the molecular identification of taste GPCRs, it has become clear that taste
signaling is not limited to taste buds, but occurs in many extraoral tissues and
has additional functions apart from taste. Shortly after the discovery of T2Rs
in taste tissue, their expression was demonstrated in the gastrointestinal tract
(GIT) and enteroendocrine STC-1 cells of rodents and humans (Wu et al., 2002;
Rozengurt, 2006), where they are involved in the chemosensation of nutrients.
Gα-gustducin and Gα-transducin were also expressed in these tissues, suggesting
that a taste-sensing mechanism may also exist in the GIT. Addition of bitter
compounds like denatonium, PTC, PROP, caffeine and cycloheximide to STC-1
cell cultures promoted rapid [Ca2+]i responses (Wu et al., 2002; Masuho et al.,
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2005). In addition, activation of T2Rs stimulated the secretion of hunger hormone
ghrelin (Janssen et al., 2011) via the gustatory G-protein, α-gustducin.

In the airway epithelium, expression of T2Rs was revealed in chemosen-
sory receptor cells of the nasal epithelium and in ciliated epithelial cells
(Shah et al., 2009; Tizzano et al., 2011; Masuho et al., 2005). Application of
bitter substances to the nasal epithelium activated the trigeminal nerve and elicited
protective reflexes like apnea to prevent inhalation of bacteria further into the
respiratory system or sneezing and coughing to expel bacteria from the nasal
cavity. Exposure of T2Rs in motile cilia of human airway epithelial cells with bitter
compounds stimulated ciliary beat frequency (Shah et al., 2009), thus initiating
a defensive mechanical mechanism to eliminate the offending compound. In the
human airway smooth muscle (ASM), T2Rs lead to ASM relaxation and bron-
chodilation (Deshpande et al., 2010). Bitter tastants like denatonium, saccharin
and chloroquine caused relaxation of mouse isolated ASM preparations, and
dilation of airways that was three-fold greater than the presently used β-agonists.
This relaxation by T2Rs was due to increased [Ca2+]i that was suggested to activate
large conductance potassium channels (BKCa) and result in hyperpolarization of
the cell membrane. Additional studies showed that bronchodilatory effects of T2R
agonists were not impeded by β2-AR desensitization (An et al., 2012). These
findings have reinforced the role of T2Rs as potential novel targets in asthma phar-
macotherapy. Expression of the 25 human TAS2Rs was revealed in the pulmonary
artery smooth muscle cells where they are functional and activated by bitter com-
pounds (Upadhyaya et al., 2014). This study suggests that T2Rs in the vasculature
might be involved in regulating the vascular tone (Upadhyaya et al., 2014).

Regulation of the mucosal innate defense of human and mouse upper respi-
ratory epithelium by activation of T2R38 was recently demonstrated (Lee et al.,
2012, 2014). Gram-negative respiratory pathogens like Pseudomonas aeruginosa
produce acyl-homoserine lactones (AHLs) as signals for their population density
(quorum sensing). AHLs are chemically related to bitter sesquiterpene lactones and
activate T2R38 in upper respiratory epithelium. Receptor activation causes calcium
and nitric oxide (NO) signaling resulting in stimulation of mucociliary clearance,
the major physical respiratory defense against inhaled pathogens. Genetic varia-
tion in T2R38 has also been linked to individual differences in susceptibility to
respiratory infection.

1.9 CONCLUSION

With the deorphanization of T2Rs, studies of the mechanisms of their interaction
with bitter agonists have started revealing how these receptors are able to sense such
a vast array of bitter compounds. Knowledge of their ligand bound structure would
further help in the identification or design of taste modulators like bitter blockers.
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T2R blockers could have widespread utility in antioxidant and/or nutrient-fortified
food and beverages, and in pharmaceutical and nutraceutical industry.

Elucidation of the biochemistry of bitter taste signal transduction plays an
important role in understanding how humans perceive bitter taste. The next step
includes deciphering how the taste signal is terminated. A study by Robinette et al.
has demonstrated a 30% desensitization of T2R function with quinine pretreatment
and subsequent exposure in airway smooth muscle (Robinett et al., 2011). Another
study, using molecular and pharmacological techniques, showed that T2R4 does
not get internalized upon agonist exposure (Upadhyaya et al., 2016). Instead,
treatment with bitter compound quinine caused a two-fold increase in surface
expression of T2R4 which was Brefeldin A-sensitive. Quinine pretreatment led to
a reduction in subsequent calcium responses to 35± 5% compared to the control
untreated cells. This study thus, discovered a novel pharmacochaperone role of
quinine and provides insights into the possible mechanism of T2R desensitization
(Upadhyaya et al., 2016). However, data of T2R desensitization is very scarce, and
the potential molecular mechanisms involved in desensitization like receptor inter-
nalization, phosphorylation by the respective kinases, β-arrestin binding, leading
to uncoupling of receptor-G protein complex, remain poorly characterized. Before
the introduction of T2Rs as novel therapeutic targets, it is very crucial that their
desensitization mechanisms be probed in detail. T2Rs have a low affinity for their
respective ligands. In recent studies, T2R agonists were used at a concentration
50-100 times higher than β-agonists (An et al., 2012; Pulkkinen et al., 2012).
Thus, elucidation of the signaling mechanisms utilized downstream of T2Rs, may
allow the synthesis of more specific and potent bitter compounds and/or blockers.
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2 Physiological Aspects of Bitterness
Maik Behrens and Wolfgang Meyerhof

2.1 INTRODUCTION

The sense of taste guides the ingestive behavior of animals towards the consump-
tion of energy-rich food free of potentially harmful substances. The caloric content
of food is detected by sweet and umami sensors, the saltiness indicates the presence
of important electrolytes, whereas sour and bitter detection facilitates cautionary
responses to avoid the involuntary uptake of spoiled, unripe or toxic food items.
Among these five basic taste qualities bitter taste is most complex both in terms of
the number of bitter substances and the number of bitter taste receptors.

As the bitterness perception in humans, the genetics of bitter taste receptors,
and the chemistry of bitterness are discussed in other chapters of this book, the
present article will start with a description of the anatomical structures underly-
ing bitter taste perception. We then will briefly elaborate on the signal transduction
cascade found in bitter taste receptor cells. A larger section is devoted to the gus-
tatory expression pattern of bitter taste receptor genes in the oral cavity and the
question whether mammals might be able to discriminate between different bitter
stimuli. The last section then summarizes the literature on the detection of bitter
taste receptor gene expression in non-gustatory systems and the potential functional
implications that these extra-oral TAS2Rs may have.

2.2 ANATOMY

The detection of taste stimuli in mammals is facilitated by sensory cells of epithe-
lial origin located in the oral cavity. These cells reside in specialized morphological
structures on the tongue surface, the nasoincisor ducts, the soft palate, epiglottis,
larynx, and pharynx. Three types of taste papillae on the tongue surface housing
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these sensory cells can be distinguished. The morphologically simplest form of gus-
tatory papillae, the fungiform papillae, are distributed over the apical two-thirds of
the tongue surface. The foliate and vallate papillae are more complex structures
residing on the posterior tongue symmetrically on both sides and the center of the
tongue, respectively. In contrast to the fungiform papillae the latter types of gus-
tatory papillae are directly connected to the flow of saliva secreted from minor
salivary glands into the trench-like structures of these papillae (Miller, 1995).

Within these gustatory structures taste cells are combined to groups of ∼100
cells, the taste buds, which represent the functional units for taste detection in
the oral cavity (Miller, 1995). Within the taste bud distinct cell types have been
described based on their ultrastructural and cytological features. The type I cells,
which are also known as “dark cells”, are elongated cells with an electron-dense
cytoplasm. It is believed that type I cells act as supporting cells fulfilling glia-like
functions in the taste bud. Type II cells or “light cells” also exhibit an elongated
shape, however, their cytoplasm appears electron-lucent. The type II cells act as
taste receptor cells. The type III cells share structural similarities with type II
cells, however, their electron-microscopic staining properties place them between
“light” and “dark” cells (hence they are also known as “intermediate” cells). In
contrast to type I and type II cells, type III cells, also known as presynaptic cells,
form synapses with afferent nerve fibers (DeFazio et al., 2006). In addition to
these cell types basal cells (also known as type IV cells) of spherical shape are
located at the basis of the taste bud. Basal cells are thought to represent stem cells,
which have the capacity to replace the short-lived cell populations in the taste bud
(Beidler and Smallman, 1965). While the classification of taste cells into the above
mentioned cell types is still used to date, molecular markers or physiological
properties have largely replaced ultrastructural and cytological features for cate-
gorization purposes. Briefly, type I cells are frequently classified by the expression
of marker proteins associated with neurotransmitter clearance such as GLAST
(Glutamate-Aspartate-Transporter) or NTPDase2 (an ecto-ATPase), type II cells
by the expression of taste signaling molecules like taste 1 and taste 2 receptors,
heterotrimeric G protein constituents such as α-gustducin, phospholipase Cβ2,
and TRPM5 and type III cells by enzymes required for neurotransmitter synthesis
(e.g., the glutamate decarboxylase GAD67 or aromatic L-amino acid decarboxy-
lase AADC) and components of synaptic transmission (SNAP25) (for a recent
review see (Chaudhari and Roper, 2010)).

Each taste bud possesses a single apical pore region, which is oriented towards
the oral cavity and contains the microvilli of the taste receptor cells. This pore
region represents the contact point between the tastants present in the food pulp
and the taste receptor molecules located on the microvilli. As taste bud cells do
not represent neurons, but secondary sensory cells of epithelial origin, the taste
information is transmitted to the brain via afferent nerve fibers entering the taste
bud from the basal side.
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Branches of three cranial nerves contact different gustatory areas within the oral
cavity to collect and transmit taste information. The fungiform papillae of the api-
cal tongue and the soft palate receive afferent input from the VII. cranial nerve via
the chorda tympani and the greater superficial petrosal branch, respectively. The
foliate and vallate papillae of the posterior tongue are connected with afferents of
the glossopharyngeal nerve (IX. cranial nerve), whereas the X. cranial nerve inner-
vates epiglottal and laryngeal taste buds. The taste information from the various
gustatory areas is first transmitted into the nucleus tractus solitarius (NTS) of the
brain stem. Within the NTS taste information is connected with the generation of
basic somatic reflexes such as salivation, swallowing or gag reflexes. From the NTS
taste information is transmitted to the parvicellular portion of the ventroposterome-
dial nucleus of thalamus (gustatory thalamus). Next, the gustatory information is
received by the insular/opercular cortex (primary gustatory cortex) and further, the
orbitofrontal cortex (secondary gustatory cortex).

2.3 TASTE SIGNAL TRANSDUCTION

The bitter taste receptor cells harbor in addition to the bitter taste receptors the
components required for subsequent signal amplification (Fig. 2.1). These include
the subunits of heteromeric G proteins. The first identified and most prominent
molecule involved in taste signal transduction is the G protein subunit α-gustducin
(McLaughlin et al., 1992). Although its critical involvement in the transduction
of G protein-coupled taste receptor mediated signals, including bitter signals, has
been shown already many years ago by experiments with α-gustducin knock-out
mice (Wong et al., 1996), other Gα-subunits such as α-transducin (Ruiz-Avila
et al., 1995), Gαi- (Asano-Miyoshi et al., 2000; Kusakabe et al., 2000), Gαs-
(Kusakabe et al., 2000) and Gαq-proteins (Kusakabe et al., 1998; Tizzano et al.,
2008) have been identified in taste tissues and participate in bitter signaling.
The other dominant components of the heterotrimeric complex are Gβ3 and
Gγ13 (Huang et al., 1999; Rossler et al., 2000). Activation of the heterotrimeric
G protein complex by tastants binding to a bitter taste receptor facilitates the
exchange of α-gustducin-bound GDP for GTP and the subsequent dissociation
into α-gustducin-GTP and Gβ3γ13. Gβ3γ13 in turn activates phospholipase Cβ2
(Zhang et al., 2003) resulting in the generation of inositol-1,4,5-trisphosphate
(Hwang et al., 1990). This second messenger molecule leads to the activation
of the IP3-receptor type 3 (Clapp et al., 2001; Hisatsune et al., 2007; Miyoshi
et al., 2001) residing in the membrane of the endoplasmatic reticulum, which in
turn causes a rise in intracellular calcium ion levels (Akabas et al., 1988). The
calcium ions bind to the transient receptor potential channel M5 (Perez et al.,
2002; Zhang et al., 2003) facilitating the influx of cations depolarizing the cells.
The cellular depolarization finally triggers the release of the neurotransmitter ATP
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Figure 2.1 Signal transduction in bitter taste receptor cells. The bitter taste receptor (here
shown as a seven transmembrane domain glycoprotein) transmits its activation via het-
erotrimeric G proteins (consisting of α-, β-, and γ-subunits). After the dissociation of the G
protein complex, the βγ-subunits induce the turnover of phosphatidylinositol-4,5-bisphosphate
leading to the generation of diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP3) by the
activity of phospholipase Cβ2. The IP3 triggers the release of calcium ions (Ca2+) from intra-
cellular stores via activation of the type III IP3-receptor (IP3R). Increasing intracellular calcium
ion levels in turn result in the opening of the cation channel TRPM5 leading to depolarization
and subsequent release of the neurotransmitter ATP (not shown).

through the ion channel CALHM1 (Taruno et al., 2013), or connexin/pannexin
type hemichannels (Huang et al., 2007; Romanov et al., 2007).

2.4 GUSTATORY BITTER TASTE RECEPTOR GENE
EXPRESSION

Numerous studies have investigated the expression of the various taste receptor
genes in gustatory tissues. Over the years, spearheaded by the laboratory of Charles
Zuker, it became clear that for each of the five basic taste qualities specific popu-
lations of sensory cells exist that are devoted to detect stimuli of only one taste
quality. The population of sweet receptor cells expresses the TAS1R2 and TAS1R3
genes coding for the two subunits of the sweet taste receptor. The umami-sensing
cells also express the TAS1R3 gene which is coding for the common subunit of
both, sweet and umami receptors, but specifically express the TAS1R1 gene. The
population of bitter taste receptor cells was shown to exclusively express TAS2R
genes. All of the above mentioned taste receptor genes code for G protein-coupled
receptors (GPCRs) which share common intracellular effector molecules occurring
in type II taste receptor cells. Hence, type II cells represent the sweet, umami, and
bitter taste receptor cells within taste buds.
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Recently, it was demonstrated that a subset of cells expressing the α-subunit of
the epithelial sodium channel respond selectively to low concentrations of sodium
chloride and hence represent the salt taste specific population (Chandrashekar et al.,
2010). Although the determination of the exact identity of these cells requires fur-
ther clarification, it was clearly demonstrated that the population of salt-sensitive
cells is distinct from taste bud cells devoted to the other taste qualities.

Also sour taste cells represent a unique cell population within the taste bud
characterized by the expression of polycystic-kidney-disease-like ion channel 2
L 1 (PKD2L1), a molecule that has been suspected to be an integral part of the
still unidentified sour taste receptor (Huang et al., 2006; Ishimaru et al., 2006;
LopezJimenez et al., 2006). It has been demonstrated that type III cells represent
the sour responsive cells (Huang et al., 2008, 2009).

Among the taste receptor cells the bitter sensitive cells are special because they
express numerous taste receptor molecules. Already at the time-point of the discov-
ery of bitter taste receptor genes, expression studies were performed, resulting in
controversial interpretations of the results. Whereas one study concluded that each
mouse bitter taste receptor cell expresses nearly the full complement of Tas2r genes
and hence, a rather uniform population of bitter taste receptor cells exist (Adler
et al., 2000), another study found a lesser degree of overlap among Tas2rs suggest-
ing a heterogeneous bitter taste receptor cell population (Matsunami et al., 2000).
These controversial observations have very important implications for bitter taste
physiology. A uniform population of bitter taste receptor cells that co-expresses all
bitter taste receptor genes would preclude the possibility to discriminate among dif-
ferent bitter compounds because the peripheral sensor cells would act as universal
bitter sensors being sensitive to all bitter stimuli. In marked contrast, a heteroge-
neous population of bitter taste receptor cells characterized by cells that express
distinct subsets of bitter taste receptor genes would constitute a prerequisite for
bitter compound discrimination. Not surprisingly, this important point has been
addressed by a number of previous studies. An important contribution to solve
this issue has been a functional study from the Roper laboratory (Caicedo and
Roper, 2001). Performing calcium-imaging analyses with five prototypical bitter
stimuli on lingual slices the authors observed that the majority of bitter responsive
cells in rat foliate papillae responded only to one or two of five prototypical bit-
ter stimuli. Whereas few rat bitter taste receptor cells were activated by three and
even four of the bitter stimuli, not a single cell responded to all five bitter com-
pounds clearly demonstrating the heterogeneous response properties for this cell
population. A similar study performed on individual mouse fungiform taste cells
observed also different response patterns among bitter responsive cells, however,
the diversity was less pronounced (Yoshida et al., 2009). On the contrary, an elegant
series of experiments using transgenic expression of the essential signaling com-
ponent PLCβ2 under the control three different bitter taste receptor gene promoters
resulted in each case in the rescue of the bitter tasting abilities in bitter taste-blind
PLCβ2-knock-out mice (Mueller et al., 2005). The fact that the three bitter taste
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receptor gene promoters were able to drive the expression of PLCβ2 in a sufficient
number of bitter taste receptor cells to restore the responsiveness for several proto-
typical bitter compounds confirmed a significant overlap in Tas2r gene expression.
Obviously, the population of bitter taste receptor cells in rodents is, on the one
hand sufficiently heterogeneous to allow individual response characteristics of sin-
gle cells, on the other hand sufficiently homogeneous to have prevented apparent
bitter tasting deficits in the mouse models generated by Mueller and colleagues. In
fact, another study performed in human gustatory tissue would be compatible with
both of the above mentioned experimental outcomes (Behrens et al., 2007). The
study monitored the expression pattern of all 25 functional human TAS2R genes
in circumvallate papillae by in situ hybridization experiments. It was shown that
the 25 TAS2R genes are expressed with different frequencies and at apparent dif-
ferent expression levels in bitter taste receptor cells pointing to a heterogenous cell
population in human. By double-labeling in situ hybridization the authors demon-
strated directly that selected pairs of TAS2Rs can occur in the same cells as well
as in separate cells. This observation would be in full agreement with a function-
ally heterogeneous bitter taste receptor cell population as reported by Caicedo and
Roper (Caicedo and Roper, 2001). In this study (Behrens et al., 2007) the authors
estimated that on average 4 to 11 TAS2R genes are co-expressed in any given bitter
taste receptor cells, which would not exclude the experimental result as reported
by Mueller et al. (Mueller et al., 2005) if coordinate gene regulation is assumed,
even though not a single taste receptor cell in the oral cavity may express an identi-
cal repertoire of TAS2R genes. Because specific antisera for the detection of bitter
receptor protein was lacking in the early years of bitter research, most data concern-
ing the expression of bitter taste receptor genes were obtained by analyzing mRNA.
This, however, does not allow investigating the subcellular localization of receptor
protein in their natural environment, the bitter taste receptor cell. The recent avail-
ability of a specific commercial antiserum raised against human TAS2R38 allowed
the analysis of this receptor in human circumvallate papillae (Behrens et al., 2012).
Somewhat surprisingly, this receptor showed a rather equal distribution along the
cellular membrane compartment suggesting no particular enrichment at the apical
side of bitter taste receptor cells (Fig. 2.2).

While a heterogeneous population of bitter taste receptor cells is an indispens-
able prerequisite for a potential discrimination between different bitter stimuli,
other criteria have to be fulfilled as well. Firstly, the activation pattern of the bitter
taste receptor cells evoked by an individual bitter stimulus has to reach the central
nervous system without converging already peripherally. Secondly, the response
properties of bitter taste receptor cells should remain somewhat stable despite the
rapid turnover rate of type II cells to allow the “specialization” of the corresponding
afferent nerve fibers. While at present it is completely unknown whether the latter
applies, some data concerning the transmission of bitter information into the brain
exist. Indeed, single fiber recordings of rat chorda tympani and glossopharyngeal
nerve fibers upon stimulation with various bitter compounds revealed individual
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Figure 2.2 Bitter taste receptor expression in human circumvallate papillae. Cross-section
through a human circumvallate papillae stained with antibodies specific for the human bitter
taste receptor TAS2R38. Note that within each taste bud several cells express TAS2R38 (white).
The taste buds are circled for easier visibility.

response patterns (Dahl et al., 1997). The differential activation of these peripheral
neurons by different oral bitter stimuli seems to be relayed to the brain stem as
also NTS neurons respond non-uniformly to oral stimulation with different bitter
compounds (Geran and Travers, 2006; Wilson et al., 2012).

Also the next station of gustatory processing in rodents, the parabrachial nucleus
(PBN), contains neurons responding to oral stimulation with different bitter sub-
stances in a non-uniform fashion (Geran and Travers, 2009). Although the response
pattern of thalamic neurons upon gustatory stimulation has not been analyzed using
a variety of different bitter stimuli and only few neurons (9%) exhibit unimodal
activation by tastants (Verhagen et al., 2003), the presence of a gustotopic map of
taste qualities in the primary taste cortex of mice allows to pick up the trace of bit-
ter response patterns again (Chen et al., 2011). Using an in vivo calcium imaging
approach to monitor cortical fields receiving gustatory input from thalamic neurons
it was demonstrated that separate areas of the primary gustatory cortex are devoted
to the processing of sweet, umami, salty, and bitter information. Sequential oral
stimulations with the three bitter substances cycloheximide, denatonium, and qui-
nine resulted in largely overlapping, yet somewhat distinct, activation patterns. As
similar results were seen upon three repetitive stimulations with always the same
bitter substance, these experiments remain inconclusive with respect to a possible
discrimination among different bitter compounds.

A conclusive answer to the question of whether discrimination of bitter sub-
stances is possible or not must ultimately come from human psychophysical exper-
iments and behavioral animal studies; however, so far, controversial results have
been obtained. Whereas one study reported that rats fail to discriminate between
the two intensity-matched ionic bitter stimuli denatonium and quinine (Spector and
Kopka, 2002) other studies suggested that rodents respond differently to ionic bit-
ter stimuli compared with non-ionic bitter compounds (Brasser et al., 2005; Frank
et al., 2004).
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2.5 EXTRAGUSTATORY BITTER TASTE RECEPTORS

An interesting development in taste research during the recent years has been the
identification of G protein-coupled taste receptor gene expression in a steadily
increasing number of non-gustatory tissues. This applies to bitter taste receptors
as well (Fig. 2.3), which have been identified in brain (Ansoleaga et al., 2013;
Dehkordi et al., 2012; Garcia-Esparcia et al., 2013; Singh et al., 2011), respiratory
tract (for a recent review see (Tizzano and Finger, 2013)), heart (Foster et al., 2013),
gastrointestinal tract (for a recent review see (Behrens and Meyerhof, 2011)), male
reproductive system (Li and Zhou, 2012; Voigt et al., 2012; Xu et al., 2013), bone
marrow stromal and vascular smooth muscle cells (Lund et al., 2013).

Figure 2.3 Bitter taste receptor gene expression throughout the human body. Tissues
reported to express bitter taste receptor genes in human or other mammals are labeled in
red. Note that large parts of the respiratory tract and the alimentary canal express bitter taste
receptor genes. Additional sites of expression are brain, heart, urinary bladder and testes.
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While the putative physiological roles of bitter taste receptors in some of the
extraoral tissues are currently unknown, for the respiratory and gastrointestinal sys-
tems different functions have been proposed. Within the nasal epithelium and the
upper respiratory tract bitter taste receptor gene expression is restricted to solitary
chemosensory cells (SCC) (Finger et al., 2003). Stimulation of mouse nasal SCCs
with bitter substances mediates a depression of the respiratory rate, which may be
important to minimize inhalation of potentially harmful xenobiotics. Recently, it
was shown that bacterial quorum sensing molecules such as acyl-homoserine lac-
tones are capable to activate nasal SCCs suggesting a role in anti-bacterial defense
mechanisms (Sbarbati et al., 2009; Tizzano et al., 2010). This function of nasally
expressed bitter taste receptors seems to be conserved as the presence of TAS2R
expressing SCCs has recently been confirmed in human sinonasal mucosa (Barham
et al., 2013). However, bitter taste receptor expression is not restricted to SCCs also
ciliated cells in the upper (Lee et al., 2012) and lower (Shah et al., 2009) respiratory
tract have been shown to possess these receptors. Intriguingly, stimulation of these
cells with bitter compounds resulted in changes in their ciliary beat frequency indi-
cating a potential involvement in the clearing of airway epithelia (Shah et al., 2009).
Lee and colleagues suggested the involvement of human TAS2R38 expressed in
ciliated cells as sensor for bacterial quorum sensing molecules. Indeed, it was
shown that this receptor is activated by acyl-homoserine lactones and that the acti-
vation led to elevated ciliary beat frequency as well as direct antibacterial effects.
Strikingly, individuals harboring the non-functional variant of the TAS2R38 gene,
which occurs with high frequency in the human population, show a higher inci-
dence of sinonasal bacterial infections (Lee et al., 2012). In agreement with the
human data it was shown that also the mouse nasal immune system responds to
acyl-homoserine lactones and that this response is dependent on the taste signaling
components PLCβ2 and TRPM5, but not α-gustducin (Lee et al., 2014). Some-
what counterintuitively, bitter substances were shown to act on smooth muscle cells
of human airways as powerful dilators of the bronchi and may hence represent
potential drugs for the treatment of obstructive lung diseases (Deshpande et al.,
2010). Further studies confirmed the bronchodilatory effect of bitter compounds
although contrasting evidence on the signal transduction mechanism was presented
(Zhang et al., 2013). The recent finding that TAS2R gene expression is upregulated
in children with therapy-resistant asthma (Orsmark-Pietras et al., 2013) suggests
that bitter substance may indeed represent putative alternative treatment options for
some patients.

Along with members of the TAS1R gene family (e.g., Dyer et al., 2005) bitter
taste receptor genes were detected in various tissues of the gastrointestinal system
(Wu et al., 2002). With respect to putative functional roles bitter taste receptor
may fulfill in the alimentary canal, the absence of critical data has so far prevented
that a conclusive picture emerged: 1.) Since many bitter substances are able to
evoke profound pharmacological effects in the absence of bitter taste receptors,
physiological activities observed in animal experiments per se are not a proof of
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bitter receptor signaling. 2.) For obvious reasons, most intervention studies were
performed in rodent models, however, in contrast to human TAS2Rs the pharmaco-
logical properties of rodent bitter taste receptors are largely unknown. 3.) The lack
of specific antisera raised against bitter taste receptors has for a long time prevented
the identification of gastrointestinal cell types which would have been necessary
to extrapolate putative functions from known cellular properties. Thus far in situ
evidence for bitter taste expression was only provided for enteroendocrine L-cells
using a non-validated antiserum against mouse Tas2r138 (Jeon et al., 2008) as
well as for a subset of colonic goblet cells, which were visualized using a Tas2r131
knock-in mouse model (Prandi et al., 2013). Thus far, the evidence concerning
bitter taste receptor functions in gastrointestinal tissues point in two somewhat
different directions: The modulation of metabolic parameters via the activation of
endocrine cells and physiological reactions directed to limit ingestion/exposure to
potentially harmful bitter substances consistent with the role of bitter taste receptors
in the oral cavity. A considerable number of studies on bitter substance mediated
signaling in gastrointestinal tissues have used immortalized human and rodent
cell lines of gastrointestinal origins. These, mostly enteroendocrine cell lines were
shown by PCR only to express several bitter taste receptors as well as taste-related
signaling molecules. Stimulation of such cell lines with bitter compounds resulted
in the release of peptide hormones which are expected to directly or indirectly
modulate the metabolism of the organism if a similar activation occurs in vivo. One
of these cell lines that frequently were used to investigate bitter substance mediated
signaling are NCI-H716 cells, a model for human enteroendocrine L-cells. These
cells produce the incretin hormone GLP-1 that triggers pancreatic insulin secretion
to facilitate reduction of circulating blood glucose. It was shown that these cells
indeed respond to stimulation with bitter compounds with elevated intracellular
calcium ion levels (Rozengurt et al., 2006) as well as with GLP-1 release
(Dotson et al., 2008). It should, however, been noted that these cells are also
equipped with the sweet taste receptor and that stimulation with sweet substances
similarly triggers GLP-1 secretion (Jang et al., 2007). Nevertheless, Dotson and
colleagues reported an association between TAS2R9 genotype and glucose/insulin
homeostasis in a human cohort study (Dotson et al., 2008). The majority of
studies on the gastrointestinal activity of bitter substances rather point to defense
mechanisms against the (over-)ingestion of potentially harmful bitter compounds.
One such mechanism would be a delayed emptying of the gastric content, which
would reduce the total amount of putatively harmful food being ingested. Whereas
in human studies contrasting evidence was revealed (Little et al., 2009; Wicks
et al., 2005), Glendinning and colleagues demonstrated that intragastric infusion
of the bitter substance denatonium reduced the speed of gastric emptying in rats
significantly. Similarly, the administration of a mixture of bitter substances into
the stomach of mice induced a delayed reduction in the speed of gastric emptying
as well as a reduced food intake, although the short-term effect, an elevated food
intake, which was likely caused by ghrelin secretion, appears counterintuitive
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(Janssen et al., 2011). Further distal, in the small intestine evidence has been
provided that the activation of mouse bitter taste receptors regulate the expression
of the xenobiotic transporter ABCB1 via a mechanism that involves the secretion
of cholecystokinin (CCK) (Jeon et al., 2011). Finally, bitter signaling in human
and rodent colon is believed to elicit ion and fluid secretion into the lumen, a
process that would help to flush out harmful colonic content (Kaji et al., 2009).

2.6 OUTLOOK

The identification of bitter taste receptors in non-gustatory tissues has created some
confusion about the general physiological role of these proteins. While some of
the new information that have arisen from studies in non-gustatory TAS2R gene
expression sites are fully compatible with a role in defense mechanisms against the
uptake of toxic substances and hence, fit with their predicted gustatory function,
other data appear to contradict such “unifying” hypotheses. The fact that bitter taste
receptors protect the airways of mammals against inhalation of toxins or bacterial
infections is difficult to reconcile with observations indicating that some bitter com-
pounds may cause bronchodilation and therefore, could help, for example, asthma
patients to improve breathing. Similarly, why should a bitter receptor on the tongue
elicit rejective responses, but if activated further down along the alimentary canal
facilitate important metabolic adjustments? What are the ligands for bitter taste
receptors expressed in tissues that are not even exposed to the outside world such
as brain, heart or testes?

It seems likely that convincing answers to these questions will require a lot of
work, will take a long time before becoming available, and will likely associate
individual bitter taste receptor genes with specific functions which cannot be gen-
eralized to the entire receptor family.
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3 Bitterness Perception in Humans: An
Evolutionary Perspective

Hui Yang and Peng Shi

Humans have five primary taste sensations: sweetness, sourness, saltiness, bitter-
ness and umami (Kinnamon & Cummings, 1992; Lindemann, 1996; Chaudhari
et al., 2000). Among them, bitterness perception is regarded as a warning sensation
to avoid poison intake, because poisonous compounds existing in nature usually
taste bitter to humans (Glendinning, 1994). Bitterness perception induces aversive
reactions thus helps prevent the ingestion of potential toxins. In vertebrates, bitter-
ness perception is initiated by bitter tastants binding to a group of G protein-coupled
receptors called bitter taste receptors (Tas2Rs). The number of Tas2Rs varies enor-
mously among different species, ranging from no functional gene in dolphin to∼50
in frog (Li & Zhang, 2013). The variability of Tas2R gene numbers among species is
not well explained, though various hypotheses have been proposed. The major the-
ory hypothesized that vertebrates Tas2R gene repertoires were shaped by their food
preferences, for example, herbivores tend to have more Tas2R genes because there
are more potential toxic compounds in plants tissues than in animal tissues (Shi
& Zhang, 2006; Li & Zhang, 2013). Meanwhile, recent functional data (Meyerhof
et al., 2010) raised the possibility that broader tuning property of each receptor may
compensate for the small repertoire of Tas2Rs. Despite the interspecific gene num-
ber variation, individuals within a population could exhibit sensitivity discrepancy
to certain bitter tastants. For example, it has long been observed that some peo-
ple taste a chemical compound called phenylthiocarbamide (PTC) as bitter, while
others observed no taste (Fox, 1932). In the last decade, knowledge about the genet-
ics and mechanisms of bitter taste perception has been extended rapidly. Here, we
review the general features of the evolution of Tas2R genes and the advances in their
functional studies. We discuss about the factors that may impact on bitter taste abil-
ity and the genetical basis of tasteblindness and its origination. With those, we try
to provide a more comprehensive understanding of the bitter taste perception from
an evolutionary view.

Bitterness: Perception, Chemistry and Food Processing, First Edition. Edited by Michel Aliani & Michael N. A. Eskin.
Published 2017 © 2017 by John Wiley & Sons, Inc. and the Institute of Food Technologists.
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3.1 BITTER TASTE RECEPTORS - A GROUP OF G
PROTEIN-COUPLED RECEPTOR (GPCR) MEMBERS

Bitter taste transduction starts with the interaction between bitter tastants and bit-
ter taste receptors which are expressed by the cells reside in the taste buds on the
papillae of the tongue (Hoon et al., 1999). Taste information is then passed through
via a series of signal transduction cascades and finally reaches the brain. There-
fore, bitter taste receptors act as the first and the most crucial component in bitter
signal transduction pathway. In vertebrates, bitter taste receptors are ∼300 amino
acids in length and encoded by a single-exon coding region of Tas2R genes (Adler
et al., 2000; Matsunami et al., 2000). They belong to the G protein-coupled recep-
tors (GPCRs), which are characterized by seven transmembrane α-helical regions,
a short extracellular N-terminus, and an intracellular C-terminus. Although being
structurally like the vomeronasal receptor type 1 (V1R), Tas2Rs share no sequence
similarity with V1Rs. Furthermore, the classification of Tas2Rs in GPCR super-
family is still unclear. Some placed them in the Class A GPCRs (Temussi, 2009),
whereas others described them as non-Class A members (Singh et al., 2011), either
as a putative separate family (Horn et al., 2003; Isberg et al., 2014) or grouped with
the frizzled receptors (Fredriksson et al., 2003).

Tas2R genes form a diverse gene family. They share 30–70% overall sequence
identity among themselves. Meanwhile, they contain highly conserved motifs in
the first, second, third and last transmembrane regions (Adler et al., 2000). Detailed
investigation of the role of 15 conserved residues in the transmembrane region by
amino acid replacement revealed that replacement of Asn–662.65 and Asn–241.50

led to significant agonist-induced signaling loss (Singh et al., 2011), suggesting
the essential roles in receptor activation played by the transmembrane domains.
On the other hand, the most divergent segments of Tas2Rs locate in the extracel-
lular regions, where the amino acid residues are more variable. It is presumed to
reflect the wide spectrum of Tas2Rs to recognize bitter substances because extra-
cellular regions are supposed to be the potential sites where bitter ligands bind to
and interact with the receptors (Adler et al., 2000; Gilbertson et al., 2000).

3.2 Tas2R GENE FAMILY - A HIGHLY DIVERSE FAMILY
IN VERTEBRATES

Since first identified in year 2000, Tas2R gene repertoires have been described in
more than 50 vertebrate genomes, including mammals, birds, reptiles, amphibians
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and fishes (Shi & Zhang, 2006; Dong et al., 2009; Li & Zhang, 2013). Interest-
ingly, the number of Tas2R genes varies greatly among these species, with the
smallest of zero functional gene in dolphin and the largest of 51 in frog (Fig. 3.1)
(Li & Zhang, 2013). Except these two extrema, most mammals investigated have
15–30 intact Tas2R genes and non-mammal vertebrates usually possess less than
10 intact Tas2R genes. Because bitter taste receptors detect potential toxins, the
number of Tas2R genes is generally regarded to reflect the importance to recognize
bitter substances for each species, which in turn correlates with species-specific diet
preferences. Based on current comparative genomics data, the Tas2R gene number
distribution in vertebrates appears to be positively correlated with the variety of
bitter poisons each species may encounter in its living environment (Shi & Zhang,
2006; Li & Zhang, 2013). Herbivores and omnivores tend to have larger Tas2R
gene family size, probably because their diets contain larger fraction of plants. In
contrast, carnivores possess smaller number of Tas2R genes, which is consistent
with the fact that animal tissues contain less toxic compounds than plant tissues
do. These observations support the hypothesis that dietary preferences shaped the
diverse Tas2R gene family repertoires (Shi & Zhang, 2006; Li & Zhang, 2013).

Although the diet-driven hypothesis can explain Tas2R diversity in general,
unmatched observations still exist. For instance, birds belong to omnivores,
whereas they have an extremely small size of two to three intact Tas2R genes
(Fig. 3.1). The question then emerges whether bitter taste is not so important in
birds or smaller size of Tas2R gene family can be compensated by broader tuning
property of individual receptor. Functional screening of human Tas2Rs with
various natural or synthetic bitter chemicals revealed that bitter taste receptors
could be roughly divided into broadly, narrowly and intermediately tuned groups.
For example, hTas2R3 and hTas2R5 responded only to single compound while
hTas2R14 responded to 33 out of 104 tested chemicals. Other hTas2Rs could be
activated by a variety of bitter compounds in-between (Meyerhof et al., 2010).
Such tuning property raises the possibility that broader tuning of individual
receptors might compensate for the small size of Tas2R gene repertoires, that is,
if birds Tas2Rs exhibit wider tuning spectra of each member, it is still possible for
them to recognize equal or similar size of bitter compounds as other animals do.
Indeed, recent functional assay testing with birds Tas2Rs demonstrated the broad
tuning property of chicken Tas2Rs, supporting the compensation theory (Behrens
et al., 2014). This would become a good supplement to the diet-driven hypothesis.
When more tuning breadth data are collected in the future, we could expect a
better understanding of Tas2R function.
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Figure 3.1 The Tas2R gene repertoires in vertebrates. Dietary information and the number of Tas2R genes are shown after each
species name. The scale beneath the phylogeny indicates the divergence time and the one below the bars indicates the total number of Tas2R
genes (intact, partial and pseudogenes) in each species. (Modified from Li & Zhang, 2013).
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Figure 3.1 (Continued)
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3.3 THE EVOLUTION OF Tas2R GENE FAMILY
IN VERTEBRATES

Tas2R repertoires vary enormously among species, it is thus intriguing to find out
whether they had common ancestors and how they evolved over time. A study on
human and mouse Tas2Rs revealed that a portion of Tas2R genes show one-to-one
orthologous pairing, while the others group as species-specific clusters (Shi et al.,
2003). Evolutionary analyses found that the one-to-one orthologous genes were
subject to strong selective constraints, suggesting that these genes play a basic
role in bitter perception, probably detecting bitter compounds that are common
to a wide range of animals. On the contrary, the species-specific gene clusters
evolved rapidly and exhibit high diversity, indicating their roles in recognizing
special bitter compounds each species encountered in its given environment
(Shi et al., 2003). Subsequent researches with extensive species also support the
common-and-specialized structure in Tas2R gene phylogeny (Go, 2006; Shi &
Zhang, 2006; Li & Zhang, 2013), agreeing with previous hypothesis.

Recent evolutionary analysis of Tas2R genes in 54 vertebrates suggests that the
major division of Tas2R genes occurred between fishes and tetrapods. While fishes,
frog and lizard possess several basal lineages, birds, turtle and all mammalian
Tas2R genes seem to originate from only one basal lineage (Li & Zhang, 2013).
Gene number estimation in ancestral species using the reconciled-tree method
inferred that the ancestral size of Tas2R gene repertoire was less than 10, no matter
in the common ancestor of tetrapods or that of mammals (Li & Zhang, 2013).
Comparing to contemporary Tas2R gene repertoires, in addition to the consider-
ably high percentage of pseudogenes (Fig. 3.1), it is obvious that birth-and-death
process was prevalent throughout vertebrate Tas2R gene evolution, resembling
the evolutionary pattern in other chemosensory gene families (Nei et al., 2008;
Shi & Zhang, 2009). Notably, dramatic gene expansion occurred in the branches
leading to frog, lizard and several mammals including guinea pig, microbat and
the common ancestor of mouse and rat; meanwhile, massive gene losses were
observed in the branches leading to dolphin and manatee (Li & Zhang, 2013).
Overall, gene gain and loss predominated Tas2R gene evolution and shaped the
contemporary gene repertoires. However, the reasons underlying such expansions
and contractions are not fully understood. Except for factors mentioned above,
such as diet preference and receptor tuning breadth, other factors may also impact
the evolution of Tas2R gene repertoires. Recently, a study raised the possibility
that feeding behavior may influence Tas2R repertoire as well. The way dolphins
swallow food without chewing is probably related to their Tas2R genes loss
because they need no taste under such specialized feeding approach (Jiang et al.,
2012). Thus, factors impacting Tas2R gene evolution seem more complex than
previously thought. Extensive efforts are needed in future works to provide a
comprehensive understanding of Tas2R diversity.
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3.4 DIVERSE SELECTIVE FORCES DROVE
THE EVOLUTION OF Tas2R GENES IN PRIMATES

As the close relatives of humans, nonhuman primates attracted much attention
in biological researches, including bitter perception studies. Several groups
investigated the patterns of molecular evolution of Tas2R genes in a variety of
primate species and revealed that these genes were under more relaxed functional
constraints in primates than in rodents, despite less gene number in primates
(Parry et al., 2004; Wang et al., 2004; Fischer et al., 2005; Go et al., 2005). It was
reflected by the higher proportion of pseudogenes in primates (27–41%) than in
mice (17%) (Fischer et al., 2005; Go et al., 2005; Li & Zhang, 2013). In addition,
repeated lineage-specific pseudogenizations were observed among primate species
(Go et al., 2005), consistent with the functional constraints relaxation. Estimates
of per site nonsynonymous to synonymous substitution rates (dN/dS) in Tas2R
genes, which reflect sequence variability driven by selective pressures, exhibited
higher values in primate species than in rodents (Wang et al., 2004; Fischer et al.,
2005; Go et al., 2005), indicating primates Tas2R gene sequences could change
more freely than rodents Tas2Rs do. Even within primates, the mean dN/dS
ratio for Tas2R genes (0.93) is higher than the average for genes in primates
(0.21) (Fischer et al., 2005), showing higher variability of Tas2R genes. These
evidences further support that looser selective forces acted on primates Tas2R
genes.

Beside the interspecific variation survey, Tas2R gene polymorphism was also
investigated in human and chimpanzee populations (Wang et al., 2004; Sugawara
et al., 2011; Hayakawa et al., 2012). Analyses with all 25 functional Tas2R genes
in 22 human individuals from diverse geographic origins show signals of neutral
evolution, for example, equal levels of synonymous and nonsynonymous polymor-
phisms, equal rates of synonymous and nonsynonymous substitutions irrespective
of functional domains division. Moreover, segregation of non-functional alleles in
populations and fixation of pseudogenes in the species were observed. These all
suggest that human Tas2R genes lacked selective constraints during their evolution
(Wang et al., 2004). Later survey of the sequence variations in all 28 putative
functional Tas2R genes in 46 western chimpanzees showed high nucleotide diver-
sity as well (Sugawara et al., 2011). In general, nucleotide diversity per site (π)
is 0.8 × 10−3 and Watterson’s θ per site is 0.6 × 10−3 in chimpanzees (Sugawara
et al., 2011), alike those of 1.2 × 10−3 and 1.1 × 10−3 in humans, respectively
(Wang et al., 2004), suggesting similar selective constraints relaxation occurred
in chimpanzee evolution. However, most western chimpanzees had two or three
more functional genes than humans, though the number of functional genes varied
among chimpanzee individuals (Sugawara et al., 2011), indicating relatively
weaker relaxation acted on chimpanzees than on humans. Combined all above
data, it is most likely that the functional relaxation operated in two steps: it first
started early in the ancestry of humans and chimpanzees and then strengthened in
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the human lineage along recently (Wang et al., 2004). The most direct explanation
for this is that humans and chimpanzees reduced their needs for bitter taste because
of the diet change. Consistently, human diet changed about 2 million years ago
(MYA) with increase of meat and decrease of plants, which reduced the number of
bitter poisons humans might intake. On the other hand, meat accounts for 2–13%
of chimpanzee diet but is never found in other great apes’ diets, which also reduces
the potential of toxins intake in chimpanzees (Wang et al., 2004). This explains the
common selective pressure relaxation in both humans and chimpanzees. Specifi-
cally for humans, a computer simulation estimated the rate of pseudogenization in
human Tas2R genes and deduced that the human-specific fixation of pseudogenes
occurred 0.75 MY ago, which is in accordance with the time when controlled
use of fire was started (∼0.8 MYA). Because cooking significantly detoxifies
poisonous food, it probably triggered the reinforced relaxation on human Tas2R
genes and led to current observations (Wang et al., 2004).

Relaxation of selective constraints acts as a double-edged sword. Lesser
constraints enable more nonsynonymous substitutions in Tas2R genes to accu-
mulate, which in turn could diminish or lose their original function. On the other
hand, diversified amino acid sequences increase the potential to recognize novel
bitter ligands, extending the ability to taste a broader range of bitter substances
(Sugawara et al., 2011). The observed high level of sequence diversity of Tas2R
genes in human and chimpanzee populations therefore might lead to correspond-
ingly high polymorphisms in bitter taste perception. Indeed, differential bitter
taste sensations among individuals have long been observed and reported (Fox,
1932; Fischer et al., 1961; Glanville & Kaplan, 1965), and associations between
Tas2R variants and bitter sensations have been identified (Hayes et al., 2011).
As a result, the taster-and-nontaster phenotypes were connected with the Tas2R
molecular genotypes, which enables us to further dissect the mechanism of bitter
taste perception at the molecular level.

Although the relaxation was observed in general among Tas2R genes in primates,
refined inspections on certain gene member discovered various forces played a role
during Tas2R evolution. An examination of selective signatures on Tas2R38 gene
among 40 primate species uncovered relatively high nonsynonymous substitution
rate (ω=dN/dS=0.6) but significantly lower than expected under neutral evolution,
suggesting that purifying selection was the major constraint shaping the structure
of this gene (Wooding, 2011). Furthermore, investigations in African populations
showed high level of rare nonsynonymous variants in Tas2R38 gene, which were
probably arisen by recent diversifying selection (Campbell et al., 2012), and posi-
tive selection in Tas2R16 gene, indicating local adaptation (Campbell et al., 2013).
These results combined to suggest that Tas2R genes have undergone complex selec-
tive forces during primates evolution. Subsequent analyses with more Tas2R gene
members in larger sample size would scrutinize the various selective pressures and
their roles in Tas2R gene evolution.
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3.5 GENETICAL BASIS OF TASTEBLINDNESS –
HUMAN PTC PERCEPTION AS AN EXAMPLE

The discovery of individual bitter taste perceptive variations in human could be
traced back to as early as year 1931 in a laboratory incident. When Dr. A. L. Fox
was pouring phenylthiocarbamide (PTC, a fine crystalline powder) into a bottle
he accidentally released some in the air. A colleague nearby complained about the
bitter taste of the dust, but Dr. Fox could taste nothing. From this starting point,
Dr. Fox investigated a large number of people and found that PTC taste sensitivity
variance did exist among individuals regardless of age, gender or race. Most people
fall into one of the two categories: tasters who taste PTC as extensive bitter even
at very low concentrations, and nontasters who observe no taste of the compound
unless at extremely high concentrations (Fox, 1932). The finding caught much
attention in the academic community. In the following decade, thousands of
samples were tested by several groups and the nontaster frequency was estimated
ranging from 13% to 63% with an average of ∼50% (reviewed in Wooding, 2006).
In addition, intensive efforts were made, trying to explain the phenomenon and find
out the mechanism underlying the distinct sensitivities. However, little progress
was made on this aspect until the identification of bitter taste receptors (Hoon et al.,
1999; Adler et al., 2000; Chandrashekar et al., 2000). The discovery of Tas2R
gene family provided targets to study the genetics of PTC sensation. Association
studies conducted by two groups separately revealed that the variation of Tas2R38
gene accounts for 50–80% PTC perceptive variance (Drayna et al., 2003; Kim
et al., 2003). In addition, both in vitro functional assay (Bufe et al., 2005) and 3D
structural modeling (Tan et al., 2012) confirmed the binding of PTC and activation
of Tas2R38. Consistently, two major haplotypes are responsible for the taster and
nontaster phenotypes, respectively. Notably, the frequencies of these two haplo-
types in human populations fit well with the frequencies estimated from phenotype
data (Guo & Reed, 2001; Wooding et al., 2004). Thus, the PTC tasteblindness
seems to be well explained by the nontaster haplotype of Tas2R38 gene.

Close comparison of the major PTC taster and nontaster haplotypes showed only
three amino acids differences between each other (Drayna et al., 2003; Kim et al.,
2003; Wooding et al., 2004). Particularly, there are no premature stop codons or
frameshifts to disrupt the ORF in the nontaster allele. In addition, the responses
to PTC of those haplotypes intermediate to the taster and nontaster haplotypes
were attenuated but not completely eliminated (Bufe et al., 2005), suggesting that
the nontaster allele is not a pseudogene. Further, a study found divergent taste
responses to the fruits of Antidesma bunius and what fascinated people was that
all subjects who tasted antidesma berries as bitter were PTC nontasters, whereas
no antidesma responders were found in all PTC tasters (Henkin & Gillis, 1977). A
possibility is therefore emerging based on these evidences that the PTC nontaster
allele is not null and may respond to some compounds other than PTC (Wooding,
2006). Recent screening of all human Tas2Rs with 104 natural and synthetic bitter
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chemicals confirmed that hTas2R38 responds to a series of agonists (Meyerhof
et al., 2010). However, the corresponding ligands repertoires between taster and
nontaster haplotypes remain largely unknown. As functional data accumulated, it
would be answered in the future.

3.6 PTC TASTEBLINDNESS IN HUMANS
AND CHIMPANZEES - SHARED PHENOTYPE
RESULTED FROM UNSHARED GENOTYPES

Interestingly, behavioral test performed in chimpanzees showed PTC taster and
nontaster variations as well, and the proportions are similar to those in human
populations, respectively (Fisher et al., 1939). It is curious to find out whether the
perceptive variances originated before human and chimpanzee split. With the iden-
tification of Tas2R38 as the major determinant of PTC perception, it is possible to
attack this problem by examining the evolutionary pattern of this molecule.

The patterns of Tas2R38 DNA sequence variation have been surveyed in several
geographically diverse human populations from Africa, Asia, Europe and North
America (Wooding et al., 2004; Campbell et al., 2012). The results revealed that
nucleotide diversity of Tas2R38 gene is strikingly higher than expected while levels
of differentiation are lower than average for humans, indicating balancing selection
has maintained the common haplotype variation in human populations (Wooding
et al., 2004). Additionally, novel rare nonsynonymous polymorphisms recently
arisen only in Africans were identified, suggesting recent selective pressures also
shaped the unusually high level of rare nonsynonymous variants in Africans. These
data indicate that human Tas2R38 gene underwent complex evolution that while
ancient balancing selection maintained common haplotype variation across global
populations, recent selection raised the frequencies of rare variants in Africans
(Campbell et al., 2012).

Tas2R38 gene sequence variations were also investigated in various non-human
primates. A study with 40 species representing all major primate taxa revealed
extensive variation at Tas2R38 locus (Wooding, 2011), indicating high level
of polymorphism of this gene in general. Specifically, sequence analyses in a
chimpanzee population discovered two common Tas2R38 alleles that associated
with PTC sensitivity, which is in accordance with the behavioral experiments
(Wooding, 2006). However, unlike human taster/nontaster alleles which are dis-
tinguished by three nonsynonymous substitutions, the chimpanzee taster/nontaster
alleles differ by a mutation at the initiation codon, making a change from ATG
to AGG in the nontaster allele. The alteration results in a truncated polypeptide,
which does not respond to PTC in vitro (Wooding, 2006). Taken together, these
findings demonstrate that although humans and chimpanzees show similar taste
responses to PTC as tasters and nontasters, and even they both maintained
two common alleles responsible for the distinct sensitivities, respectively, the
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underlying molecular mechanisms are totally different in these two species. The
nontaster alleles seem to evolve independently in human and chimpanzee, that is,
while human allele exhibits three amino acids substitutions, the chimpanzee allele
appears to be a null (Wooding, 2006). Recently, PTC nontaster Japanese macaques
were observed and their Tas2R38 nontaster allele was identified with an ATG to
ACG change at the initiation codon, which is like neither that in humans nor that
in chimpanzees, suggesting that the nontaster allele variations arose at least three
times independently in primates (Suzuki et al., 2010).

3.7 CLOSING REMARKS

Since the behavioral bitter taste sensitivity variants were observed eight decades
ago, especially since the bitter taste receptor genes were identified, rapid progresses
have been made to understand the physiology and genetics of bitter perception.
Nonetheless, the details remain largely unknown. For example, distinct bitter sen-
sitivity variation and highly diverse Tas2R gene repertoires were observed but the
precise mechanism underlying it keeps elusive. Beneficial from the explosion of
genome sequencing data, extensive Tas2R gene sequences from widely distributed
non-model species could be compared and analyzed. Wider species selection pro-
vides more chances to find sequence alterations and their possible impact on the
receptor function could be speculated when the evolutionary history and eco-factors
of each species are taken into account. As an example, the evolutionary view was
proved to be useful in explaining PTC tasteblindness. With this guidance and the
improved in vitro functional assay, scientific hypotheses could be proposed and
tested feasibly. As such data accumulated in the future, it is expected that more
underlying the diversification of bitter taste receptors would be disclosed, and we
will step further in exploring the mysterious field of taste perception field.
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4.1 INTRODUCTION

Fruits and vegetables are essential for balanced diets and are valuable sources of
nutrients as well as secondary plant metabolites referred to as phytonutriceuticals
or phytonutrients (Barratt-Fornell & Drewnowski, 2002; Hounsome et al., 2008;
Dias & Ortiz, 2012). Plants produce a vast and diverse assortment of over 45,000
secondary metabolites that can be divided into four major groups: phenolic and
polyphenolic compounds, terpenes, alkaloids and sulfur compounds (Crozier,
2003; Saltmarsh et al., 2003; Hounsome et al., 2008). Diets rich in vegetables
and fruits have been linked with lower rates of chronic diseases (Beecher, 1999;
Dinehart et al., 2006; Steevens et al., 2011). In many countries consumption of at
least five portions of fruits and vegetables a day are recommended in programs such
as “five a day” following the recommendations of the World Health Organization
(WHO). In spite of these recommendations consumption of vegetables and fruit
often remains insufficient (Drewnowski & Gomez-Carneros, 2000; Guenther et al.,
2006; Peltzer & Pengpid, 2012). Many people dislike eating vegetables or some
fruits because of their bitterness (Duffy et al., 2010; Andreeva et al., 2013; Sharafi
et al., 2013; Garcia-Burgos & Zamora, 2015). In particular, children show pref-
erences for sweeter foods and aversions to bitter vegetables (Drewnowski, 1997;
Steiner et al., 2001; Zeinstra et al., 2010; Bai et al., 2014; Feeney et al., 2014). The
taste of fruits and vegetables determines how well they are liked or accepted as part
of the diet (Cox et al., 2012). One particular concern is that bitterness is generally
linked with dietary danger (Glendinning, 1994; Barratt-Fornell & Drewnowski,
2002). Thus the sense of taste has evolved in which humans and animals have
become alerted to the bitter taste of food toxins and as a result carefully avoid
ingestion of these harmful foods (Tepper, 2008; Reed et al., 2010). Bitter threshold
concentrations of toxic compounds, however, are not always lower than their
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toxicity thresholds while non-toxic compounds may taste bitter but are harmless
(Glendinning, 1994). Furthermore, not all poisons are bitter (Reed et al., 2010).

Humans are generally very sensitive to bitterness and can detect bitter
compounds at much lower concentrations compared to compounds with other
basic tastes. Furthermore, bitter perception is highly individual (Meyerhof, 2005;
Garcia-Burgos & Zamora, 2015). More than eight decades ago, Fox (1932) discov-
ered that phenylthiocarbamide (PTC) was tasteless to about 30% of individuals and
moderate-to-intensely bitter to the majority of individuals. Since then many studies
have been carried out using PTC and since the 1960s investigated perception of
bitterness and its heritability in a related compound 6-n-propylthiouracil (PROP)
(Bufe et al., 2005). Furthermore, an investigation of heritability and genetic
covariation of sensitivity to PROP and other bitter compounds suggested that their
perception is influenced by several sets of genes (Delwiche et al., 2001; Drayna,
2005; Hansen et al., 2006; Tepper, 2008). PROP sensitivity explained that the
variability in vegetable preference and intake was due on the different sensitivities
to bitterness. In addition a quinine marker explained variability in vegetable
preference and intake via vegetable bitterness and sweetness (Dinehart et al.,
2006; Mennella et al., 2005). Some experiments showed that PROP bitterness
ratings were specific markers for vegetable glucosinolates but did not correlate
with bitterness for other bitter compounds (Bufe et al., 2005; Hansen et al., 2006).

For many compounds of plant origin, bitterness prediction based on
their molecular structure is limited. Models were proposed based on the
Shallenberger-Acree-Kier nomenclature (Shallenberger & Acree, 1971; Belitz &
Wieser, 1985; Roy, 1992; Kubo, 1994; Acree & Lindley, 2008) which gave insight
into possible interactions of compounds with bitter taste receptors but showed that
sensory evaluation was required to determine bitterness of a compound. However,
relationships between chemical structure and taste indicated that sweet and bitter
taste were closely related (Maga, 1990; Roy, 1992; Walters, 1996). Based on this,
a number of studies were conducted to find ways to inhibit or reduce bitterness.
It has long been known that the use of sugar, non-nutritive sweeteners or fat and
other ingredients such as sodium salts or trisodium citrate can reduce or mask
bitterness in a variety of foods (Roy, 1990; 1992; Breslin & Beauchamp, 1997;
Napoleone et al., 2007; Capaldi & Privitera, 2008; Ley, 2008; Wilkie et al.,
2013). A recent study by Sharafi et al. (2013) investigated the masking effect of
sodium acetate, sodium chloride and aspartame on the bitterness of asparagus,
Brussel sprouts and kale. They found that masking vegetable bitterness depended
on vegetable type and taste phenotype. It appeared that masking bitterness with
mainly sweeteners could suppress bitterness and increase acceptance if they were
matched to perceived vegetable bitterness or to self-reported vegetable disliking.
Similar findings were reported in a study determining suppression of bitterness
in vegetables by sodium chloride (Wilkie et al., 2014). Furthermore, the authors
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pointed out that sodium chloride might interact fundamentally differently with a
full food matrix than it does with quinine hydrochloride or other bitter compounds
studied in water, thus limiting generalizability of chemical suppression studies.

Many secondary bitter plant metabolites provide resistance against insects,
fungi, bacteria, thus they may be considered ‘natural pesticides’. In some cases
they are present constitutively but some increase of their concentrations or
even their formation can be observed in response to infections, wounding or
environmental stress. Hence, the amounts found in vegetables and fruit are influ-
enced by variety, growing conditions (temperature, water supply, fertilisation),
development stage, harvesting date/ripeness, year, and geographical location as
well as postharvest factors such as storage, preparation (peeling) and processing
operations (Seljasen et al., 2001; Kjellenberg et al., 2010; Rouphael et al., 2012;
Tiwari & Cummins, 2013). For a long time debittering of plant foods was a major
concern of agriculture and the food industry. Selective breeding out of bitter
compounds or their removal during processing has resulted in low amounts of
bitter compounds in current plant foods (Fenwick et al., 1990; Drewnowski et al.,
2001; Dias & Ortiz, 2012). More recently, many positive health effects have been
associated with bitter secondary metabolites which promoted engineering plant
foods with enhanced concentrations of phytonutrients (Farnham et al., 1999; Dias
& Ortiz, 2012; Qian et al., 2015). Drewnowski et al. (2000), however, pointed
out that good taste and good health may be incompatible as it relates to the bitter
secondary metabolites. Sun et al. (2006) proposed genetically modifying plant
foods by functional expression of the taste modifying protein miraculin (Kurihara
& Beidler, 1968; Theerasilp & Kurihara, 1988). Miraculin modifies a sour taste
into a sweet taste. There are other naturally occurring taste modifying proteins
as well as sweet proteins identified including thaumatin, monellin, mabinalin,
pentadin, brazzein and curculin (Van der Wel et al., 1989; Yamashita et al.,
1990; Liu et al.,1993; Ming & Hellekant, 1994). All of them have been cloned,
sequenced and many of these proteins have been expressed in foreign hosts (Gibbs
et al.,1996; Faus, 2000). Sweetness could be increased in plant foods, as shown by
Sun et al. (2006) with transgenic lettuce. Whether perceived bitterness in plants
containing bitter compounds could be suppressed or masked in this way remains
to be determined.

One of the first reviews on the bitterness in foods was published in 1990 edited
by Rouseff encompassing the current state of knowledge of bitterness in foods and
beverages. A subsequent excellent review “Bitter taste, phytonutrients, and the
consumer” published in 2000 by Drewnowski and Gomez-Carneros lists the bit-
ter components in foods and points out the dilemma between the beneficial effects
of bitter phytonutrients on health and their incompatibility with consumer accep-
tance. The data from both reviews are compiled in Table 4.1 together with data
from studies covering years 2000 to 2015.
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4.2 FRUITS

Fruits are normally dominated by the sweetness of sugars and tartness of organic
acids (Legua et al., 2014). In some fruits, such as citrus, berries, apples and in
products such as wine, cider and some fruit juices bitterness has been reported.
Phenolic compounds are the most common bitterness causing components in
fruits. Furthermore, phenolics also contribute to astringency in berries as well as in
wine and apple ciders (Arnold et al., 1980; Lea, 1990; Robichaud & Noble, 1990;
Noble, 1994; Peleg et al., 1999; Laaksonen et al., 2010, 2013; Laaksonen, 2011;
Jimenez-Garcia et al., 2013). Astringency is a tactile sensation often confused with
bitterness (Lea & Arnold, 1978; Arnold et al., 1980; Cerf-Ducastel et al., 2001;
Bajec & Pickering, 2008). It includes, according to Singleton and Esau (1969), the
“dry-mouth” feeling, puckering or roughing sensation attributed to the interactions
of phenolics with proteins of the mouth. Phenolics such as gallic acid, catechin
and tannic acid all show increasing bitterness as well as astringency with higher
concentrations (Arnold et al., 1980; Robichaud & Noble, 1990). Furthermore,
astringency generally increases with molecular weight while bitterness peaks
with tetramers (Arnold et al., 1980; Lea, 1990). However, during ripening, fruit
astringency decreases as flavonoids polymerize to sensory inactive compounds
(Joslyn & Goldstein, 1964). In aged wine the loss of astringency results from
polymerization and precipitation of the astringent flavonoids (Singleton & Noble,
1976; Lea, 1990). Most investigations on astringency are concerned with wine,
apple cider and some berries and their juices (Laaksonen et al., 2013). Astringency
and bitterness are both considered negative sensory factors so that phenolics
may therefore negatively affect pleasantness of food (Lesschaeve & Noble, 2005;
Laaksonen et al., 2013). In mature fruits, however, bitterness as well as astringency
are rarely found as the highest concentrations of bitter and astringent compounds
generally occur in immature fruits (Rouseff, 1990). Consequently in ripe desert
apples bitterness and astringency are absent with the exception of those apples
showing symptoms of bitter pit, a physiological disorder caused by Ca-deficiency
(Dart, 2004). Exceptions are “bittersweet” cider apples which show a bitter taste
and are especially grown in England and France for cider production (Lea, 1990).

4.2.1 Flavonoids, flavonols and limonoid aglycones in
grapefruit, orange and lemons

Bitterness in citrus fruit is usually found in the juices and seldom, with a few
exceptions, in intact, mature and healthy fruits. The compounds responsible for
bitterness fall into two different classes and include limonoids and flavanone
neohesperidosides (Rouseff & Matthews, 1984; Hasegawa & Maier, 1990;
Rouseff, 1990). The limonoids include two bitter compounds limonin and nomilin
(Dea et al., 2013). Both of these components develop gradually in the juices of
oranges, grapefruit, lemons and other citrus varieties after extraction (Fig. 4.1).
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Figure 4.1 Delayed bitterness in citrus, formation of Limonin derived from Nomilin via
Limoneic acid A-ring lactone (Hasegawa and Maier, 1990). Reproduced with permission of
Elsevier.

The precursor of these compounds is the nonbitter limonoate A-ring lactone which
is gradually converted to the bitter components. This process is called “delayed
bitterness” (Hasegawa & Maier, 1990; Yusof et al., 1990). The concentrations of
limonin and nomilin in orange fruits of Hunaglongbin-infected trees can reach
levels four times as high as the level normally present in healthy fruits (Baldwin
et al., 2010; Plotto et al., 2010). The threshold levels of limonin and nomilin were
first reported at concentrations of about 6 mg L−1 (Hasegawa & Maier, 1990).
More recently, recognition thresholds in orange juice were reported by Dea et al.
(2013) to be 4.7 and 2.6 mg L−1 for limonin and nomilin, respectively. The same
authors found synergistic effects between limonin and nomilin in juices of fruits
harvested from Hunaglongbin-infected trees. Adding nomilin at a subthreshold
level of 2 mg L−1, decreased limonin threshold to 2.6 mg L−1. In the same study
they showed that addition of sucrose, but not citric acid, decreased the perception
of bitterness induced by limonin and nomilin in orange juice.

The flavanone neohesperidoside naringin (Fig. 4.2) imparts desirable bit-
terness to grapefruits but undesirable characteristics to such citrus cultivars
as oranges and mandarins. Consequently bitterness has been under positive
and negative selection and breeding for many years (Frydman et al., 2013).
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Figure 4.2 Flavanone neohesperidoside Naringin inducing bitterness in grapefruit and
other citrus (Puri, 1990). Reproduced with permission of Elsevier.

Naringin levels found in grapefruits averaged 170 mg kg−1 edible fruit
(Peterson et al., 2006a). In lemons naringin levels were much lower at
1.8 mg kg−1 while in limes no naringin was detected. Sour oranges and
tangelos contain 188 mg kg−1 and 56 mg kg−1 naringin, respectively and are
slightly bitter. Sour oranges are usually used for production of marmalades
and not eaten raw. In sweet oranges naringin amounted for only 1.7 mg kg−1

(Peterson et al., 2006b). The detection threshold for naringin in water is 20 ppm
but there is a wide range of sensitivity among tasters (Guadagni et al., 1973).
According to Puri (1990) grapefruit juice containing 300 to 500 ppm naringin
has a characteristic, desirable bitterness. Juices containing more than 700 ppm
naringin, however, are considered too bitter by most consumers.

4.2.2 Cyanogenic glycoside in apricot, almonds and
other species

Cyanogenic glycosides are secondary plant metabolites composed of a cyanogenic
aglycone (hydroxynitriles) and from one or up to three sugar moieties (mostly
glucose). The hydroxynitriles are derived from the five amino acids tyrosine,
phenylalanine, valine, leucine and isoleucine (Ballhorn, 2011). The number of
cyanogenic glycoside containing plant species is over 3000 belonging to families
such as Fabaceae, Rosaceae, Linaceae, Compositae and others (Vetter, 2000; Bak
et al., 2006; Mazza & Cottrell, 2008; Ballhorn, 2011; Cervellati et al., 2012).
Important in terms of bitterness are amygdalin (a disaccharide) and prunasin
(a monosaccharide), they are cyanogenic glycosides found in bitter almonds, bitter
apricot kernels, and kernels of apples, cherries, plums, and peaches as well as in
seeds of flax, lima bean, cycas plants and in other plant foods (Mazza & Cottrell,
2008; Barceloux, 2009; Bolarinwa et al., 2014). Cyanogenic glycosides are the
chemical defense systems of plants against pathogens, insects and herbivores.



�

� �

�

Fruits and Vegetables 61

CH

C

OGluGlu

N

Amygdalin

− Gluc

1

CH

C

OGlu

N

Prunasin

CH

C

HO

N

Mandelonitrile

3

CHO

− Gluc
2

Benzaldehyde

+
H C N

Hydrogen cyanide

Figure 4.3 Cyanogenic glycosides amygdalin and prunasin and release of glucose,
benzaldehyd and HCN (Balhorn, 2011). Reproduced with permission of Elsevier.

Intact amygdalin and purasin are not toxic but when plant tissues containing
cyanogenic glycosides are damaged enzymatic hydrolysis occurs producing
glucose, benzaldehyde and highly toxic hydrogen cyanide (HCN) (Fig. 4.3).
Following consumption of food containing cyanogenic glycosides, HCN may also
be generated by the action of enzymes from the gut microflora (Carter et al., 1980).
The toxicity of HCN is mainly due to its inhibition of the mitochondrial respiration
pathway (Ballhorn et al., 2009). Amygdalin levels in sweet, semi sweet and in
bitter almonds range from 0 –900 mg kg −1, 0 – 3000 mg kg−1 and 300 – 68500 mg
kg−1, respectively (Wirthensohn et al., 2008; Bolarinwa et al., 2014). Thus
amygdalin and HCN can be used as indicators of the presence of bitter almonds in
shipments of sweet almonds (Toomey et al., 2012) or discrimination of almonds
with respect to their bitterness (Borràs et al., 2014). According to Ballhorn et al.
(2009) cyanide toxicity levels for humans range from 0.5 to 3.5 mg kg−1 body
weight. Bitter almonds can contain up to 5% amygdalin that corresponds to about
0.3% HCN or according to Ballhorn (2011) to about 1 mg HCN per seed. Based on
this 10-15 bitter almond seeds are considered lethal for children or 50–60 seeds for
adults. Sweet almonds contain much lower amounts of amygdalin, however, up to
2% of sweet almonds are bitter and contain amygdalin in comparable amounts to
bitter almonds (Ballhorn, 2011). Other prunus species like apricot kernels contain
on average 9100–36,600 mg kg−1 amygdalin depending on the cultivar. In bitter
apricot kernels, amygdalin levels are very high and may reach 55 g kg−1 (Femenia
et al., 1995; Hayta & Alpaslan, 2011; Bolarinwa et al., 2014). In a rather special
berry, the Saskatoon berry (Amelanchier alnifolia Nutt.) native to the southern
Yukon and Northwest Territories, the Canadian prairies and the northern plains of
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the United States, amygdalin contents range from 6.6–129.2 mg kg−1 (Mazza &
Cottrell, 2008). The authors indicated that to suffer intoxication an adult person
(80 kg) would have to ingest about 9.6 kg of fresh berries whereas a child (25 kg)
would have to ingest about 3 kg of fresh berries of the varieties having the higher
cyanogens content assuming of course that there is a 100% hydrolysis of the
glycosides rather than any other metabolic fate. However, cyanide poisonings
are rare but the correct diagnosis is often delayed until patients are hospitalized
(Shragg et al., 1982; Geller et al., 2006). Health promoting effects of amygdalin
were popularized as a cancer cure but clinical trials did not support these claims
(Miller et al., 1981; Milazzo et al., 2011).

Bitterness of almonds or apricot kernels was highly and significantly correlated
with their amygdalin content (Femenia et al., 1995; Sánchez-Pérez et al., 2008;
Wirthensohn et al., 2008; Borràs et al., 2014). However, it is through the enzy-
matic breakdown of amygdalin that benzaldehyde and HCN are liberated producing
the bitter taste (Wirthensohn et al., 2008; Barceloux, 2009; Cervellati et al., 2012;
Bolarinwa et al., 2014; Borràs et al., 2014). Benzaldehyde is bitter but also elicits
almond like aroma (Belitz et al., 2009). The odor threshold level of benzaldehyde
in water is reported to be 0.35 mg L−1 (Belitz et al., 2009).

Sweet almonds and apricot kernels as well as bitter types are all nutrient-dense
foods and potentially valuable sources of proteins and lipids (Femenia et al., 1995;
King et al., 2008; Erdogan-Orhan & Kartal, 2011; Hayta & Alpaslan, 2011; Yada
et al., 2011). Utilization of bitter almonds as well as of bitter apricot kernels as
food products is restricted because of bitterness and toxicity of HCN. Apricot pits
and hence kernels the major by-products of fruit processing are discarded. Ker-
nel bitterness or the content of amygdalin in almonds as well as in apricot kernels
seems to be a monogenetic recessive trait (Sánchez-Pérez et al., 2008, 2010, 2012;
Negri et al., 2008; Wirthensohn et al., 2008). However, studies indicated that the
cyanoglucoside content of seeds is linked to five genes involved in their biosyn-
thesis, transport and catabolism (Negri et al., 2008; Sanchez-Perez et al., 2008;
Cervellati et al., 2012). Studies aimed at identifying the quantitative trait loci (QTL)
in apricots (Cervellati et al., 2012) may lead to the development and cultivation of
apricot cultivars with sweet seeds and thus increase marketability of this by-product
of fruit processing.

4.3 VEGETABLES

4.3.1 Brussels sprouts, cabbage, cauliflower,
turnips/Swedes and collards and kale:
glucosinolates/isothiocyanates and phenolics

Glucosinolates (Fig. 4.4) and their breakdown products have been associated with
the bitterness in many vegetables of the Brassica genus such as broccoli, Brussels
sprouts, cabbage, cauliflower, Chinese cabbage, turnips/Swedes, collards, kale and
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Figure 4.4 Glucosinolates in Brassica (Fenwick et al., 1990). Reproduced with permission
of Elsevier.

others (VanEtten et al., 1979; Fenwick et al., 1983a; Bedford, 1989; van Doorn
et al., 1998; Mithen, 2001; Baik et al., 2003; Schonhof et al., 2004; Zabaras
et al., 2013; Lee et al., 2014; Park et al., 2014; Qian et al., 2015). Bitter effects
are attributed to sinigrin, gluconapin and progoitrin, respectively its breakdown
product goitrin and also glucobrassicin and neoglucobrassicin (Fenwick et al.,
1983a,b; Zabaras et al., 2013). Studies on Brussels sprouts by Fenwick et al.
(1983a) indicated a strong association between bitterness and the presence of
sinigrin and progoitrin. However, it was pointed out that sinigrin was bitter per
se. The bitterness of progoitrin was associated with its decomposition product
goitrin which is formed when plants are damaged (e.g., by chewing): progoitrin
reacts with myrosinase and goitrin as well as other breakdown products are
formed (Wooding et al., 2010). Goitrin is structurally similar to PROP and PTC.
Thus perception of goitrin and hence taste responses to vegetables containing
goitrin seem to vary individually and might be associated to genetic mutations
in the TAS2R38 gene (Sandell & Breslin, 2006; Wooding et al., 2010; Behrens
et al., 2013). The distribution of taste thresholds for PTC, PROP and goitrin vary
substantially from person to person as observed by Wooding et al. (2010). They
found that the magnitude of differences between the highest and lowest observed
thresholds was 8196x for PTC, 256x for PROP and 64x for goitrin, whereas for
salicin it was only 16x. This suggests that the variation in perceived bitterness of
Brassica vegetables was to some extent attributable to goitrin but additionally to
other factors as well (Wooding et al., 2010). Furthermore, the levels and type of
glucosinolates vary greatly in different Brassica vegetables and cultivars (Fenwick
et al., 1983a; Chin et al., 1996; Rosa et al., 1996; Hansen et al., 1997; van
Doorn et al., 1998; Engel et al.., 2002; Schonhof et al., 2004; Lee et al., 2014;
Mølmann et al., 2015). Thus in some vegetables the content of glucosinolates
may not reach bitter threshold levels. For example, sinigrin concentrations in
white cabbage ranged, according to Drewnowski and Gomez-Carneros (2000),
from 70 to 410 mg kg−1 and goitrin concentrations from 10 to 80 mg kg−1. The
bitterness thresholds for goitrin and sinigrin were reported by Fenwick et al.
(1983a) to be 1.2 mg ml−1 and 10.6 mg ml−1, respectively. The same authors
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reported that the multiple correlations between bitterness and the combined
effects of progoitrin, gluconapin, sinigrin and glucobrassicin were 0.90, which
explained 82% of the variation in bitterness score in Brussels sprouts. However,
it is important to consider that masking effects of sucrose and other sugars in
Brassica vegetables occur (Lawless, 1979; Calvino et al., 1990; Keast & Breslin,
2002; Sharafi et al., 2013). The lack of acceptance of vegetables due to bitterness
may thus be reduced by the additional sweet taste, which could be a positive
factor in increasing their acceptance (Beck et al., 2014). Several studies showed
that most consumers prefer Brassica vegetables with low content of bitter tasting
glycosides and high sucrose content to bitter and strong tasting vegetables (van
Doorn et al., 1998; Drewnowski et al., 2000; Schonhof et al., 2004; Dinehart et al.,
2006).

Controversial aspects are linked to the nutritional effects of glucosinolates
and their breakdown products. Goitrogenic and antinutritional effects were first
been observed in rabbits in 1930 by Webster and Chesney which were designated
‘cabbage’ goiter. Overconsumption of glucosinolate-rich food may inhibit thyroid
peroxidase and synthesis of thyroid hormone (Gaitan, 1990; Rider et al., 1992;
Fahey et al., 2001; Hounsome et al., 2008) and may lead to goiter. While iodine
deficiency is the primary cause (Tepper, 2008), goitrogen-rich food may also
promote goiter. Thus far there are no reports of deleterious health effects of
glucosinolates in humans consuming normal amounts of Brassica vegetables
(Vanderpas, 2006; Verkerk et al., 2009; Wooding et al., 2010). However, glu-
cosinolates and their breakdown products exhibit cytotoxic and genotoxic effects
(Musk et al., 1995; Rouzaud et al., 2004; Volden et al., 2008). High intakes of
cruciferous vegetables have also been associated with lower risks of different
types of cancer (van Poppel et al.,1999; Stan et al., 2008; Steevens et al., 2011).

In some recent studies the relationship between glucosinolates and bitter taste
has been questioned. Accordingly, other components such as phenolics may
contribute substantially to bitterness in Brassica and many other vegetables
(Drewnowski & Gomez-Carneros, 2000; Baik et al., 2003; Padilla et al., 2007;
Kreutzmann et al., 2008b; Doerr et al., 2009; Wooding et al., 2010; Lim &
Padmanabhan, 2013; Zabaras et al., 2013). Studies on broccoli and cauliflower
reported feruloyl/sinapoyl gentibiosides and a large number of simple and complex
flavanoid glycosides containing kaempferol and quercitin as the main agylcones
(Cartea et al., 2010; Zabaras et al., 2013). Furthermore, several compounds
acylated with sinapic, ferulic, caffeic and p-coumaric acids were found in
Brassica vegetables (Llorach et al., 2003; Vallejo et al., 2004). Activation of
human bitter taste receptors by different phenolic compounds were analysed by
Soares et al. (2013) who found a significant contribution by phenolic compounds
to the bitterness of fruits, vegetables and derived products even in very low
concentrations.
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4.3.2 Carrots: 6-Methoxymellein, polyacetylenes and
phenolic acids

Carrots (Daucus carota L.) are among the best liked root vegetables and one
of the predominant vegetables grown in many countries (Hoehn et al., 2003;
U.S. Census Bureau, 2012). A multitude of volatile and non-volatile compounds
determines the flavor of carrots (Brückner, 2008; Jones, 2008). Sweetness is
generally the most attractive requirement demanded by consumer for acceptable
sensory quality. Whereas bitterness is considered an undesirable taste of carrots
and is rejected by most consumers (Hoehn et al., 2003; Kreutzmann et al., 2007,
2008a; Kramer et al., 2012b). A multiplicity of compounds may be causing
bitter taste in carrots, including some amino acids (Chen et al., 2014), phenolics,
terpenoids, and polyacetylenes (Kreutzmann et al., 2008a, 2008b; Schmiech
et al., 2008). 3-Methyl-6-methoxy-8-hydoxy-3,4-dihydroisocoumarin, named
6-methoxymellein (6-MM) (Fig. 4.5), was the first phenolic compound associated
with the bitter taste of carrots (Sondheimer, 1957). 6-MM was identified as
a phytoalexin by Condon and Kuc in 1960. Since then it has been demons-
trated that carrot roots synthesize 6-MM under stress conditions caused by fungal
pathogens but also by wounding and exposure to ethylene. Further studies showed
that 6-MM is usually only detected in minor amounts in freshly harvested carrots
which are much lower than sensory just noticeable levels (Carlton et al., 1961;
Mercier et al., 1994; Chalutz et al., 1969; Louarn et al., 2012; Crespo et al., 2012).
In particular, exposure to ethylene during storage stimulates respiration and leads
to formation of 6-MM formation via the acetate-malonic acid pathway and not the
shikimic acid pathway as for other phenolic compounds (Sarkar & Phan, 1975,
1979; Lafuente et al., 1996; Talcott & Howard 1999a; Fan et al., 2000; Fan &
Mattheis, 2000; Seljasen et al., 2000; Heredia & Cisneros-Zevallos, 2009; Kramer
et al., 2012b). The production of 6-MM can be blocked by inhibiting ethylene
action using 1-methylcyclopropene (1-MCP) (Fan et al., 2000; Kramer et al.,
2012b). Sensory just noticeable levels of 6-MM ranged according to Talcott and
Howard (1999b) from 48 to 71 mg kg−1 in strained carrots and 94 mg kg−1 exerted
bitter taste in spiked carrot puree. A bitter taste detection threshold of 20 mg kg−1

O

CH3O

OH O

Figure 4.5 The phenolic bitter compound 3-Methyl-6-methoxy-8-hydoxy-3,4-dihydroisocou-
marin named 6-Methoxymellein (6-MM) in carrots (Czepa and Hofmann 2003). Reproduced
with permission of American Chemical Society.
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in water was later found for 6-MM (Czepa & Hofmann, 2003). However, several
authors pointed out that the high sugar content to some extent could mask the
bitterness perception of 6-MM and other bitter compounds in carrots (Simon et al.,
1980, 1982; Seljasen et al., 2000; Hoehn et al., 2003; Kreutzmann et al., 2008b)
thus sensory noticeable levels in carrots may substantially exceed those found in
water. Investigations on spatial distribution of 6-MM (Talcott & Howard, 1999b;
Czepa & Hofmann, 2004) revealed that 70–80% of 6-MM was found in the peel
(3 mm layer) and thus bitterness may substantially be reduced by peeling carrots.

Several other phenolics may also contribute to bitterness in carrots. The main
phenolic acid, chlorogenic acid (5-caffeoylquinic acid) can constitute up to
60% of the total phenolics (Alasalvar et al., 2001; Kreutzmann et al., 2008b).
According to Kreutzmann et al. (2008b), however, a di-caffeic derivative together
with falcarindiol (FaDOH), a polyacetylene were highly related to bitterness in
contrast to other potentially bitter compounds. Polyacetylenes such as Falcarinol
(FaOH), falcarindiol (FaDOH) and falcarindiol 3-acetate (FaDOAc) are the main
polyacetylenes found in carrots (Fig. 4.6). Their contribution to bitterness was
first postulated by Czepa and Hofmann (2003, 2004). They found that the bitter
detection threshold for FaDOH in water was 10 mg kg−1, for FaOH 20 mg kg−1

and for FaDOAc 60 mg kg−1. According to Czepa and Hofmann (2003) fresh
carrots contained 41–45 mg kg−1 FaDOH. To estimate the contribution of FaDOH
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Figure 4.6 Polyacetylenes (Falcarinols) in carrot and other Apiaceae food plants (Czepa
and Hofmann, 2003, Christenen and Brandt, 2006).
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to the bitterness of carrots they calculated the bitter activity value (BAV) or the
taste activity value (TAV) which is the ratio of compound content in carrots and
its detection threshold. BAV above the value one indicate contribution towards
bitterness. The same authors reported that the FaDOH concentration increased
during storage to 87 mg kg−1, corresponding to a BAV of 9. In a subsequent study,
Czepa and Hofmann (2004) determined the falcarinols in eleven different carrot
cultivars. FaOH concentrations ranged from 5.2 to 30.9 mg kg−1 corresponding
to BAV’s of 0.25–1.5, FaDOH concentrations ranged from 16.2 to 84.3 mg kg−1

corresponding to BAV’s of 1.6–8.4 and FaDOAc concentrations ranged from 8.8
to 40.8 mg kg−1 corresponding to BAV’s of .02–0.7. This study confirmed that
FaDOH contributed to bitterness of all cultivars whereas FaOH and FaDOAc
concentrations did not usually reach threshold values as indicated by BAV’s below
1 indicating insignificant contribution to bitterness. In addition it was shown that
some cultivars produced higher amounts of polyacetylenes than others (Metzger &
Barnes, 2009). This was confirmed in other studies reporting on effects of cultivar,
geographical location, growing conditions, state of development, storage as well
as processing on polyacetylene concentrations in carrots (Kidmose et al., 2004;
Baranska et al., 2005; Kjellenberg et al., 2010; Koidis et al., 2012; Kramer et al.
2012a,b; Aguiló-Aguayo et al., 2014; Koidis et al., 2015).

In light of processing and use of carrots it is important to consider the spatial
distribution of polyacetylenes, as observed for 6-MM levels varies in the roots.
FaDOH concentrations in the phloem were double to those found in the xylem. In
addition the upper end contained higher concentrations of FaDOH than the lower
end. Thus peeling and removing the upper green parts decreased FaDOH concen-
trations by about 50% and diminishes bitterness of carrots (Czepa & Hofmann,
2004; Kreutzmann et al., 2008b). In carrots and other Apiaceae food plants such
as celery, fennel, parsnip, parsley and others, the polyacetylenes are formed from
oleic acid by dehydrogenations and β-oxidation leading to FaOH and further to
FaDOH and FaDOAc (Hansen & Boll, 1986; Zidorn et al., 2005; Christensen &
Brandt, 2006; Rawson et al., 2013a).

Polyacetylenes in plants provide resistance or act as defence systems against
fungi, bacteria and insects. In addition, it is very important to note that these bitter
compounds may promote some health benefits in humans such as the anti-cancer
effects of carrots (Hansen & Boll, 1986; Brandt & Christensen, 2000; Christensen
& Brandt, 2006; Tan et al., 2014). However, polyacetylenes are toxic to humans if
consumed in high amounts. Fortunately, the beneficial effects are only observed at
low concentrations as found in carrots and parsnips (Kuklev et al., 2013; Rawson
et al., 2013a). Thus, as Kreutzmann et al. (2008b) pointed out, in-depth knowl-
edge is required to improve health promoting effects and sensory quality of carrots
simultaneously. Investigations of bitterness suggest that high sugar content may
mask the bitter perception of carrots (Roy, 1990; Hoehn et al., 2003; Kreutzmann
et al., 2008b; Kramer et al., 2012b). Interactions between other taste compounds
and bitter compounds as well as interactions between bitter compounds determine
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sensory quality of carrots in a complex way and remain to be elucidated in future
investigations (Soares et al., 2013; Wilkie & Capaldi Phillips, 2014; Suess et al.,
2015).

4.3.3 Potatoes, tomatoes and other Solanum species:
glycoalkaloids

Glycoalkaloids are nitrogen-containing compounds that are produced in veg-
etables of the Solanaceae family including potatoes, tomatoes, eggplants, and
peppers (Cárdenas et al., 2015). Bitterness in potatoes is mainly attributable to
glycoalkaloids such as α-solanine, α-chaconine and β2-chaconine (Fig. 4.7). The
solanine contents of most commercial potato varieties range from 20 to 220 mg
kg−1 but are usually less than 120 mg kg−1 (Zarzecka et al., 2013). Glycoalkaloids
concentrations are 3 to 10 times greater in the peel than in the flesh. Thus peeling
reduces possible solanine contents substantially. Variations of solanine levels
are mostly attributable to differences in variety of tubers. In addition growing
conditions including use of pesticides (Hajslová et al., 2005; Zarzecka et al.,
2013) and storage conditions may influence solanine concentrations. It is well
documented that it is daylight exposure of potato tubers in the field, during
storage, or on the store shelf or at home promoting greening as a consequence
of chlorophyll synthesis but also synthesis of glycoalkaloids such as solanine.
Solanine concentrations in light exposed tubers may reach 1800 mg kg−1 peel
(Cantwell, 1996; Percival & Dixon, 1996; Percival et al., 1996; Pavlista, 2001).
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Figure 4.7 Glycoalkaloids in potato: α-solanine, α-chaconine and β2-chaconine (Fenwick
et al., 1990).
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Figure 4.8 Glycoalkaloid Tomatin in tomato (Fenwick et al., 1990).

This level exceeds the 200 mg kg−1 which is generally recognised as safe for
human consumption (Health Canada, 2010). The toxicity of solanine is related to
its inhibitory effects on cholinesterase preventing the breakdown of acetylcholine
in the human body (Montario, 2015). In addition, potatoes with glycoalkaloid
levels exceeding 100 mg kg−1 taste bitter and potatoes exceeding levels of
140 mg kg−1 exhibit a bitter and burning taste. This must be expected since the
bitterness threshold levels in 0.02% lactic acid solution of α-solanine, α-chaconine
and β2-chaconine are 63 mg kg−1, 16 mg kg−1and 16 mg kg−1, respectively
(Zitnak & Filadelfi, 1985; Fenwick et al., 1990). However, low concentrations of
glycoalkaloids may improve the taste of potatoes (Valkonen et al., 1996).

Tomatine (Fig. 4.8) is the main glycoalkaloid found in immature green tomatoes
(Kozukue & Friedman, 2003; Kozukue et al., 2004; Tohge et al., 2014). Its bitter-
ness threshold is 20 mg kg−1 (Fenwick et al., 1990). During ripening tomatine is
enzymatically degraded so that bitterness is absent in ripe red tomatoes. Appre-
hensions regarding genetically modified tomato lines such as the delayed ripening
line 1345-5 that degradation of solanine was hampered by the genetic modification
proved unfounded since genetic modification affects only ACC synthesis which
plays a key role in ethylene formation (Health Canada, 2010).

Glycoalkaloids in Solanacea species have evolved to protect plants against
predators and pathogens including bacteria, fungi, viruses, insects and animals
(Valkonen et al., 1996; Mulatu et al., 2006; Ito et al., 2007; Neilson et al.,
2013; Zarzecka et al., 2013). Tomatidine the aglycone of tomatine has been
shown to exhibit antibacterial properties against Staphylococcus aureus a highly
antibiotic resistant human pathogen (Chagnon et al., 2014) and inhibitory effects
of human cancer cells (Friedman et al., 2009). Thus breeding and biotechnological
methodologies will probably be directed towards a reduction of glycoalkaloids
in table potatoes but to increased contents of glycoalkaloids in disease resistant
potato types and other Solanacea for other uses such as uses in pharmaceutical
industry (Valkonen et al., 1996).
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4.4 FUTURE PROGRESS

The chemistry of bitter plant food compounds is a multifaceted subject area. Cur-
rently there is no common and reliable concept regarding the relationship between
chemical structure and bitterness of compounds. Fruit and vegetable consumption
is often insufficient because of an aversion to bitterness. Formerly, bitterness was
generally linked with dietary danger and thus breeding and growing management of
fruits and vegetables aimed at reducing bitter and often toxic compounds. Positive
health effects of bitter components and secondary plant metabolites were only rec-
ognized in the last few decades. Progress in elucidating the genetics of bitter taste
receptors lead to better understanding of bitter perception. Further studies concern-
ing interactions between bitterness and other tastes may show new possibilities to
mask bitterness and thereby increasing vegetable acceptance. Deeper insights gen-
erated in the last few decades encompassing the subject area bitterness lays the basis
for new approaches and opportunities in the future to elucidate bitterness chemistry
and its perception and possible reduction in fruits and vegetables.
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5 Bitterness in Beverages
Ayyappan A. Aachary and Michael N. A. Eskin

5.1 INTRODUCTION

The world consumption of beverages continues to increase annually. A number of
these beverages contain bitter components that make them unique yet still quite
acceptable by many consumers. Hot tea still remains the most popular beverage
worldwide and accounts for around 21% of all beverages consumed. Other popular
beverages with bitter flavors include hot coffee, hot cocoa or chocolate, beer, wine
and cider. This chapter will discuss those compounds responsible for bitterness in
these beverages.

5.2 BITTERNESS IN TEA

Next to water, tea remains the second most popular beverage in the world with
China and India accounting for close to 60% of world production. The three major
categories of tea, based on their manufacture, are unfermented green tea, partially
fermented Oolong tea, and completely fermented black tea (Mihara et al., 2004;
Bhattacharyya et al., 2007). About 78% of total tea production is focused on black
tea that is consumed primarily in Western countries (Kraujalytė et al., 2016).
Oolong and green teas are very popular in India and China, although they are
starting to make inroads in Western countries.

The presence of high levels of catechins, particularly in green tea, is responsible
for bitterness while polymerized catechins, theaflavins and thearubigins, contribute
to the quality of fermented black tea (Hilton & Ellis, 1972). HPLC detection of
catechins and caffeine successfully differentiated between green and black teas
(Fernández et al., 2000). Around 3% of catechins in some green teas is contributed
by (-)-epigallocatechin gallate (EGCG) and (-)-epigallocatechin (EGC) compared
to much lower levels of (-)- epicatechingallate (ECG), the main catechin in black
tea samples. Caffeine ranged from 1-3.5% but was higher in the instant teas. A later
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study by Lee and Lee (2008) reported a much higher content of EGCG and caffeine
in green tea extracts which ranged from 0.30-2.04 and 0.85-10.22 mg/g, respec-
tively. This compared to the corresponding levels of 0.24-0.32 and 1.01-5.26 mg/g
for EGCG and caffeine in black tea extracts, respectively.

The four major catechins in green tea, (−)–epicatechin (EC), ECG, EGC
and EGCG all contribute to its bitterness, and astringency (Fig. 5.1) (Narukawa
et al., 2011). These researchers evaluated bitterness of green tea catechins using a
cell-based assay with the human taste receptor hTAS2R39. The strongest response
to bitter taste htAS2R39 was observed for ECG, followed by ECGC. Increasing
the content of catechins in green tea, especially ECG, directly correlated with the
taste intensity that ultimately reduced its palatability. These observations were
later confirmed with mouse behavioral assays and taste sensor analysis with the
greater bitter intensity of ECG or EGCG in humans attributed to the presence
of galloyl groups. This could explain why both EC and EGC elicited weaker
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Figure 5.1 Major catechins of green tea (Narukawa et al., 2011) Reproduced with
permission of Elsevier.
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bitterness intensity. A recent study by Yamazaki et al. (2013) examined the effect
of green tea catechins on 25 human bitter-taste receptors (TAS2Rs). They found
that, in addition to the bitter receptor hTAS2R39, hTA2SR14 also responded to
green tea catechins. Of the catechins studied, however, only ECG and EGCG
activated htA2SR14 as it was not activated by either EC or EGC.

A spectrum of compounds including phenolics, purine alkaloids, nucleotides,
amino acids, organic acids, ions, and sugars determine the taste attributes of
green tea (Yu et al., 2014; Wang & Ruan, 2009; Liang et al., 2008). Next to tea
polyphenols, caffeine, a purine alkaloid, is the main contributor to tea bitterness.
Generally the non-volatile compounds of green tea are the major source of
bitterness. However these compounds have different bitter taste transduction
pathways.

A bitter-taste-receptor-independent activation of bitter taste was observed
previously with caffeine (Rosenzweig et al., 1999). Green tea also contains a
few compounds with umami qualities such as guanylic acid (GMP) and inosinic
acid (IMP). Approximately one-half of the total amino acids in green tea are
contributed by a non-proteinogenic unique amino acid namely L-theanine
(5-N-ethyl-l-glutamine), which imparts sweet, brothy and umami characteristics to
green tea (Juneja et al., 1999). A recent sensory study pointed to the contribution
of EGCG, caffeine and L-glutamic acid to the taste of ready-to-drink green tea.
While the first two compounds elicited a bitter taste, L-glutamic acid contributed
its characteristic umami taste (Yu et al., 2014).

5.3 BITTERNESS IN COFFEE

Coffee consumption is extremely popular in developed countries where it accounts
for over 70% of global consumption. Recent research has shown that caffeine,
5-hydroxymethyl-2-furanaldehyde, furfuryl alcohol, diketopiperazines, pyrazines,
and trigonelline are the potential candidates for bitterness in coffee. The roasting
of coffee beans results in a spectrum of volatile key odorants and non-volatile bit-
ter compounds in coffee (Semmelroch & Grosch, 1995, 1996, Mayer et al., 2000;
Frank et al., 2006, 2007, 2008; Blumberg et al., 2010) (Scheme 5.1). Information
available on the latter group of molecules, however, is still incomplete. The trans-
esterification, epimerization, and lactonisation of non-bitter caffeoylquinic acids
(3-O-, 4-O-, and 5-O-) during coffee roasting generate caffeoyl quinides (Clif-
ford, 1979; Frank et al., 2006, 2008; Blumberg et al., 2010). These are highly
bitter tasting compounds which are also generated from dicaffeoylquinic acids,
during toasting. The formation of 4-vinylcatechol from corresponding lactones
of caffeoylquinic acids have also been reported. Interestingly, oligomerization of
4-vinylcatechol generated a group of polyhydroxylated phenylindans with harsh
and lingering bitter taste attributes (Blumberg et al., 2010; Frank et al., 2007).
Blumberg et al. (2010) also studied the importance of roasting time and temperature
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Scheme 5.1 Bitter lactones identified in coffee. 5-0-caffeoyl-muco-γ-quinide (2),
3-0-caffeoyl-γ-quinide (3), 4-0-caffeoyl-muco-γ-quinide (4), 5-0-caffeoyl-epi-δ-quinide (5),
and 4-0-caffeoyl-γ-quinide (6), as well as the novel 3-0-caffeoyl-epi-γ-quinide (7) formed upon
thermal treatment (30 min., 230∘C) of 5-0-caffeoylquinic acid (1) (Frank et al., 2006).

on the stability of bitter precursors; 4-O-caffeoyl quinic acid, 5-O-caffeoyl quinic
acid and 3-O-caffeoyl quinic acid and on the formation of bitter compounds.

Degradation of O-caffeoylquinic acids also generates a family of hydroxy-
benzenes (di/tri), such as hydroxyhydroquinone, pyrogallol, 4-methylcatechol,
catechol, and 4-ethylcatechol (Tressl et al., 1978; Clifford, 1979, Haffenden &
Yaylayan, 2005; Lang et al., 2006). Bitterness in coffee is also provided by certain
products of Maillard-type and caramelization reactions of carbohydrates such as
5-(hydroxymethyl)furan-2-aldehyde (Richards, 1956; Belitz, 1977; Antal et al.,
1990; Lewkowski, 2001; Moon & Shibamoto, 2009). Furfuryl alcohol, another
furan derivative, also adds to coffee’s bitterness (Shibamoto et al., 1981). There is
no data, however, on whether these compounds act as transient intermediates for
the production of bitter taste compounds in coffee during roasting.

Most of the bitter taste compounds in coffee are prone to oxidation and are
highly unstable, which makes it difficult to identify them based on fractionation. A
synthetic-constructive strategy followed by Kreppenhofer et al. (2011), however,
provided new information. Thermal treatment of binary mixtures of a furan
derivative and di/ trihydroxybenzene generated (furan-2-yl) methylated benzene
diols and triols with their bitter threshold assessed using a sensory panel. Krep-
penhofer et al. (2011) was able to identify new categories of bitter compounds
from roasted coffee including 4-(furan-2-ylmethyl)benzene-1,2,3-triol, 4-(furan-2-
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ylmethyl)benzene-1,2-diol, 3-(furan-2-ylmethyl)-6-methylbenzene-1,2-diol and
4-(furan-2-ylmethyl)-5-methylbenzene-1,2-diol (Scheme 5.2).

Coffee alkaloids (caffeine and trigonelline) are not the primary elicitors of
bitter taste in coffee as roasting-generated compounds such as furfurylalcohol,
5-hydroxymethyl-2-furancarboxaldehyde, pyrazines and 2,5-diketopiperazines
were more responsible for this attribute (Belitz, 1977; Chen, 1979; Shibamoto
et al., 1981; Ginz & Engelhardt, 2000). Quinic acid, produced by thermal
degradation of chlorogenic acids, exhibited an aspirin-like bitter taste with
a threshold level of 10 ppm. Its concentration is far higher than this level in
roasted coffee, indicating its contribution to bitterness (Maga & Katz, 1978;
McCamey et al., 1990). Rizzi et al. (2004) provided evidence for the degradation
of O-caffeoylquinic acids which might also contribute to the bitter taste of roasted
coffee.

As discussed earlier, roasting converts the non-bitter 5-O-caffeoylquinic acid
into various bitter-tasting chlorogenic acid lactones. These compounds include
5-O-caffeoyl-epi-δ-quinide, 3-O-caffeoyl-γ-quinide, 5-O-caffeoyl-muco-γ-quinide,
4-O-caffeoyl-γ-quinide, and 4-O-caffeoyl-muco-γ-quinide (Frank et al.,
2006). Other bitter taste molecules formed during roasting of coffee include
4-O-feruloyl-γ-quinide, 3-O-feruloyl-γ-quinide, 3,5-O-dicaffeoyl-epi-δ-quinide,
3,4-O-dicaffeoyl-γ-quinide, and 4,5-O-dicaffeoyl-muco-γ-quinide (Scheme 5.1).
The bitter threshold levels of these compounds vary depending upon on their
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structure. Frank et al. (2008) later identified a previously unknown bitter com-
pound in coffee, namely 3-O-caffeoyl-epi-γ-quinide, which exhibited a low bitter
recognition threshold of 19.5 ppm. The data reported so far in the literature is
rather contradictory, as the molecular nature of the key bitter tasting compounds
in coffees is still unclear. Lang et al. (2015) recently isolated and identified
furokaurane glucoside mozambioside, a highly polar, bitter-tasting subfraction
during sensory-guided fractionation of a roasted coffee beverage. The bitter taste
threshold of furokaurane glucoside mozambioside was 60(±10)μmol/L. Arabica
coffee beans proved a rich source ranging from 396-1188 nmol/g mozambioside
compared to only trace amounts (<5 nmol/g) detected in the corresponding
Robusta coffee beans. The impact of roasting on the level of mozambioside,
however, still remains to be examined.

5.4 BITTERNESS IN COCOA/HOT CHOCOLATE

The two major steps in the primary processing of the cocoa beans, fermentation and
drying, are responsible for the development of most of the flavor precursors. Micro-
bial fermentation of cocoa pulp as well as enzymatic degradation of carbohydrates,
proteins and polyphenols of cocoa beans contribute to flavor development. The role
of endogenous enzymes in flavor development is also very significant in the case of
cocoa. (Ziegleder, 1991; Jinap et al., 1995; Wood & Lass, 2008). Polyphenol com-
pounds and alkaloids both contribute to the astringency and bitterness of cocoa. The
major alkaloids of cocoa are caffeine, methylxanthines, and theobromine, while
the important polyphenols include proanthocyanidins and flavan-3-ols (epicatechin
and catechin) (Jinap et al., 1995; Ziegleder, 1991; Misnawi et al., 2003; Wollgast
& Anklam, 2000). A 30% and 20% reduction of alkaloids and polyphenols dur-
ing the microbial fermentation of cocoa beans results in a significant reduction in
bitterness and astringency.

The formation of flavor precursors during roasting of dried, deshelled cocoa
beans or nibs, impart characteristics chocolate flavors (Ziegleder, 1991; Ziegleder
& Biehl, 1988). However, the type of cocoa beans, processing time and tempera-
ture, fermentation method and its parameters (pH, temperature, etc.) significantly
affect the flavor characteristics (Meyer & Biehl, 1989; Biehl et al., 1985, 1990;
Baker et al., 1994; Hansen et al., 1998; Hashim et al., 1998a,b; de Brito et al.,
2000, Wollgast & Anklam, 2000).

The major compounds involved in the astringent taste of cocoa are flavan-3-ol
group, anthocyanins, hydrolyzable tannins and condensed tannins (Bate-Smith,
1973; Haslam & Lilley, 1988). During fermentation the astringency is reduced due
to oxidation of flavan-3-ol and tannins, followed by their increased polymerization
and complexation with proteins (Bonvehi & Coll, 2000). To better understand
and evaluate the bitterness during the roasting of cocoa beans, the typical aroma
of cocoa develops through Maillard-type reactions (Mohr et al., 1976; Barel
et al., 1985; Hoskin & Dimick, 1994; Jinap et al., 1998; Puziah et al., 1998).
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If the fermentation of cocoa beans is incomplete, roasting will not develop the
chocolate flavor, but increase astringency and bitterness (Biehl & Voigt, 1996;
Puziah et al., 1998). The (-)-epicatechin content (3,3’,4’,5,7-pentahydroxyflavan)
of unfermented Forastero cocoa beans was reported to account for approximately
35% of the total polyphenols (Forsyth, 1952; Forsyth & Quesnel, 1963). Using
HPLC, Kim and Keeny (1984) showed that the (-) epicatechin content of different
varieties of cocoa beans ranged from 21.89-43.27 mg/g of the defatted cocoa
bean samples. Experimental microwave and sun drying of beans after harvest was
attributed for the lower (-) epicatechin content (21.89 mg/g in defatted cocoa beans)
of Trinidad-Jamaican beans. Kim and Keeny (1984) also reported a much lower
concentration of (-)-epicatechin, ranging from 2-10 mg/g in the corresponding
fermented defatted cocoa beans. As discussed previously, polyphenols contribute
more to the development of astringency and bitterness than any other endogenous
compounds (Bonvehi & Coll, 2000; Luna et al., 2002).

5.5 BITTERNESS IN BEER

Beer, a fermented beverage brewed from malt, is produced by brewing and fermen-
tation of starches and sugar (primarily sucrose). Most beer is flavored with hops
in which bitterness is an important factor contributing to its acceptance. The hop
plant (Humulus lupulus) is the most important herb used in the brewing industry
(Mudura et al., 2008, Mudura & Coldea, 2015). Its contribution to the bitterness of
beer results in a more balanced and satiating palate to the final product (Malowicki
& Shellhammer, 2005). The golden colored resinous lupulins-granules of hop plant
flowers have bitter taste and preservative attributes, which help to produce a fine
quality beer (Sakamoto, 2003). Hop acids can be α-acids or β-acids, which make
the characteristics of hop resins more complex (de Keukeleire, 1999). These acids
do not exhibit any bitter taste and are poorly soluble in water. Depending up on the
growing conditions and the variety of hop plant, the concentration of α-acids may
vary between 2-15% (Bamforth, 2000).

Three important analogues of hop α-acids, humulone, cohumulone, and adhu-
mulone were characterized, along with the minor α-acids posthumulone and pre-
humulone (Jaskula et al., 2007). They vary structurally due mainly to differences
in the side chains (Bamforth, 2000). Kolpin (2010) reported that the amount of the
α-acid portion of resins from various hop varieties with cohumulone, and humulone
contributing the major portion (20-50%) followed by adhumulone (15%). While a
higher level of α-acids was reported in wort, beer exhibited only lower levels of
α-acids (Haseleu et al., 2010), possibly because of the thermal isomerization of the
α-acids to the iso-α-acids during the wort boiling process (de Keukeleire, 1999).
Generally the percentage conversion of α-acids to iso-α-acids never goes beyond
50% and at the same time only about 25% of the original bittering potential survives
in the beer (Bamforth, 2000) (Fig. 5.2).
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et al., 2013).

In terms of pKa values, the iso-α-acids are more acidic (pH∼3) than hop acids
(pH∼5.5) and therefore iso-α-acids exhibit a better solubility in lager beers (pH
4.2-4.4) which results in intense bitterness (de Keukeleire et al., 1992; Huvaere
et al., 2004a). In addition, iso-α-acids contribute to beer stability (Bamforth &
Kanauchi, 2003; Ferreira et al., 2005; Blanco et al., 2006) owing to their stereoiso-
meric and hydrophobic properties. The stereoisomerism of iso-α-acid resulted from
the spatial arrangement of the prenyl side chain at C5 and the tertiary alcohol func-
tion at C4 (de Cooman et al., 2000). The trans-isomer of isohumulones is the major
isohumulones in the beer foam compared to its cis-isomer because of its higher
hydrophobic potential (Kappler et al., 2010a,b).

Spoilage due to microbial action and as a result haze formation were the two
important factors that defined the quality of beer. It was reported that iso-α-acids
result in significant microbiological stability of beer (Sakamoto, 2003; Vaughan
et al., 2005; Suzuki et al., 2006; Blanco et al., 2007, Van Cleemput et al., 2009;
Hazelwood et al., 2010), as well as beneficial health effects (Yajima et al., 2004;
Shimuraa et al., 2005; Obara et al., 2009). The reduction in aroma and bitterness
from storage-induced reactions has a great consequence on the shelf-stability of
beers by the formation of off-flavor compounds (Pozdrik et al., 2006; Vanderhaegen
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et al., 2006). Those compounds are mainly the products of two important reactions
such as photodegradation and radical-assisted oxidation of iso-α-acids (Burns et al.,
2001; Huvaere et al., 2004b). Research on nonvolatile off-taste development in
beer, however, is scarce. The major consequences of such reactions are long-lasting,
lingering, and harsh bitterness of beer (King & Duineveld, 1999; de Cooman et al.,
2000). Data on such off-flavour developments at the molecular level is still not
available.

Even though the iso-α-acids formation best fit to a first-order reaction, the rate
constants for the trans-isomers are much lower than cis-isomers. This difference
is more obvious at higher temperatures (∼100 ∘C) and is possibly attributed to
relatively higher activation energy for cis-isomer formation ((Malowicki & Shell-
hammer, 2006; Jaskula et al., 2008). Thermodynamic stability of cis-isomer is also
explained with respect to its lower Gibbs’ free energy (Hughes, 2006) and minimal
electrostatic interactions due to its special arrangement of side chains at C4 and C5
on opposite sides of the five-membered ring (Jaskula et al., 2007).

In beer, various iso-α-acids are present in the following order: cis/trans-
isohumulone (43%) > cis/trans-isocohumulone (39%) > cis/trans-isoadhumulone
(16.5%) (Intelmann et al., 2009). The initial trans/cis ratio of freshly brewed beer
is ∼0.4, however this ratio changes during storage, possibly due to the higher
stability of cis-isomers, which in turn results in changes in flavor and taste (de
Keukeleire, 1999; Intelmann et al., 2009; Nimubona, 2010).

About 80% of the bitter taste of beers is attributed to the high concentrations of
iso-α-acids (15-100 mg/L) as their sensory threshold detection is much lower than
this concentration (5mg/L) (de Keukeleire et al., 1992; Baxter & Hughes, 2001;
Heyerick et al., 2003). A comparison of the bitterness of cis and trans isomers of
isohumolones found that cis-isohumolones had a significantly stronger bitter taste
than the trans-isomers. In addition, the iscohumolones were significantly less bitter
than the corresponding isohumolones (Hughes & Simpson, 1996; Hughes, 2000;
Kappler et al., 2010 a,b).

Even though, the spectrophotometric detection of beer bitterness at 275 nm
results in an approximate idea of beer bitterness (Analytica EBC, 1997), the
most accurate methods involve chromatographic methods such as HPLC, which
helps to identify and quantify specific bittering agents (Kappler et al., 2010a).
A polypyrrole sensor array based electronic tongue was used to estimate the bitter
intensity of beer with the results in line with the iso-α-acid content of various beer
samples examined by HPLC (Arrieta et al., 2010).

A gradual reduction in the intensity of bitterness and increase in sweetness dur-
ing storage was observed in all beer types (Dalgliesh, 1977). Pangborn et al. (1977)
compared the bitterness and degree of liking of commercial lagers with the chem-
ical analysis of bitterness units (BU) when stored at different temperatures up to
132 days. BU units represent the amount of iso-alpha acids in beer and are now
referred to as International Bitter Units (IBU) or European Bitter Units (EBU).



�

� �

�

92 Bitterness: Perception, Chemistry and Food Processing

Using a trained panel, BU values decreased over time and temperature of stor-
age while temperature did not affect sensory bitterness which only decreased with
storage time (Pangborn et al., 1977; McMurrough & Byrne, 1992). Oxidation of
isohumulones during beer storage at 37 ∘C for 10 days was reported by Kaneda
et al. (1992) where the reduction was accelerated by hydrogen peroxide and iron
ions. When the beer was stored at 40 ∘C for 156 days, Walters et al. (1997) reported
a 71% reduction of total iso-α-acids, however in the control beer samples stored
at 25∘C such changes in iso-α-acids content were not observed. Iso-α-acids at a
range of 20-40 mg/L is generally considered to be bitter (Crombecq, 1995) while
a bitterness range of 17.5-25 EBU was found to be preferred by a sensory panel
when lager beer was prepared without hops, but added with mixtures of isohu-
mulone/isoadhumulone/isocohumulone (Collin et al., 1994). Cepicka et al. (1992)
made time–intensity measurements to understand temporal aspects of flavor per-
ception that would be lost in traditional scaling of bitterness, but without much
success. Previously, Pangborn et al. (1983) used a chart-recorder TI method and
Hughes and Simpson (1994) used computerized-TI measurements to study the bit-
terness of beer.

To minimize degradation of iso-α-acids during the storage of beer requires
good brewing practices that ensure oxygen levels in beer are as low as pos-
sible (<100 mg/L). This can be achieved by minimizing the accumulation of
oxygen during filling (Stewart, 2004). In addition, packaging in brown bottles
is essential so that visible light (300-500 nm) cannot penetrate and trigger the
photodegradation of iso-α-acids by riboflavin (vitamin B2) (Caballero et al.,
2012).

5.6 BITTERNESS IN WINE

A recent paper by Atero et al. (2015) indicated the unanimity among health pro-
fessionals regarding the beneficial effects of moderate wine consumption by indi-
viduals suffering from diabetes, osteoporosis, cardiovascular disease, neurological
diseases and longevity. Flavanol polymers such as proanthocyanidins or condensed
tannins greatly influence bitterness and astringency of wine (Lea & Arnold, 1978;
Fischer & Noble, 1994). The fermentation process leaches out these compounds
from the grape seeds and skins into red wine (Gawel et al., 2001).

Assessment of wine sensory properties is made more difficult by the confusion
between the sour and bitter taste and the sensation of astringency (Lee & Lawless,
1991). In addition, the presence of other basic substances also affects the perception
of astringency (Brannan et al., 2001). Many physical and chemical properties are
involved in the complex mechanisms that elicit astringency and bitterness. In addi-
tion to the content of proanthocyanidin, the degree of polymerization, and extent of
galloylation also contribute to bitterness and astringency (Noble, 1994; Vidal et al.,
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2003, 2004). Other factors which contribute to bitterness and astringency percep-
tion in wine include the pH, level of ethanol and viscosity (Ishikawa & Noble, 1995;
Kallithraka et al., 1997; DeMiglio et al., 2002).

Ethanol content in wine is one of the major contributing factors of bitterness
(Mattes & DiMeglio, 2001; Fontoin et al., 2008). However, noting that few param-
eters of model wine solutions influence bitterness, it cannot be excluded that some
other molecules are involved in the perception of the bitterness of red wines (Bran-
nan et al., 2001). In red wine, tannin composition and concentration are of course
important, but are insufficient to totally explain the variation of astringency and bit-
terness perception which are also influenced by the external physiochemical factors
and other compounds (polysaccharides, peptides, ions, volatile compounds, etc.).
Ethanol content and pH have a greater role in modifying astringency and bitterness
of wine (Fontoin et al., 2008). However, more research is needed in this direction
to confirm the effects of ethanol in the astringency and bitterness of wine.

Irrespective of being bitter, some of these compounds do not contribute to bit-
ter taste of wine. For example, the amount of tyramine and tyrosol in wine is not
present at sufficient levels needed to elicit bitterness (Singleton & Esau, 1969). A
high threshold value of many of these compounds incuding esculin (a bitter gly-
coside) is the reason for their inability to affect bitterness. This is also the case for
the addition of caffeic acid derivatives, caffeoyl tartaric acid and 2-S-glutathionyl
caffeoyltartaric acid, when added at levels normally present in wine they did not
affect the overall bitterness (Verette et al., 1988). Addition of caffeic acid and its
gallic ester, chlorogenic acid, to wine also failed to produce a detectable bitter taste
(Verette et al., 1988; Nagel et al., 1987).

While flavonols impart bitterness to wine, the higher molecular weight
flavonoids contribute to astringency, which is a tactile sensation rather than a taste
recognized by taste receptors. Other constituents affecting the taste perception
of flavonols, such as lowering of pH and subsequent increase in astringency
or increased level of ethanol and subsequent reduction in bitterness. In grapes
and wines, catechin and epicatechin monomers and their polymers contribute to
bitterness. These flavonoids are generally found as polymers with eight or more
monomeric untis in older wines, while their presence in the younger wines are
restricted to dimeric or trimeric form (Ribereau-Gayon, 1972). Kallithraka et al.
(1997) reported that high concentrations of (-)-epicatechin were more bitter than
(+)-catechin. These results were in agreement with that reported by Thorngate
and Noble (1995) who attributed this to the higher lipophilicity of (-)-epicatechin.
In addition, hydroxybenzoic and hydroxycinnamic acids provide a puckering and
velvety astringency (Hufnagel & Hofmann, 2008). Previously it was reported that
the monomeric flavan-3-ols, procyanidin dimers and trimers contribute largely
to astringency, however, this is now being contradicted (Hufnagel & Hofmann,
2008).

Aroma, flavor and mouthfeel are all interlinked. The aroma substance retention
by catechin showed that changes in polyphenol content caused a reduction in aroma
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compounds (Dufour & Bayonove, 1999). This was attributed to the molecular com-
plexation, which in turn related to the structure of the phenolics. Consequently
fruity/floral aromas tend to decrease with increase in polyphenol content (Goldner
et al., 2011). Changes in astringency and flavour characteristics were also observed
following the addition of a grape seed extract to wines (Cliff et al., 2012).

5.7 BITTERNESS IN CIDER

Cider or apple wine is a popular alcoholic beverage in Europe, North America and
Australia. Because apples are a predominant crop in China, cider is also becoming
a promising segment in the fruit industry. The four major groups of phenolic com-
pounds present in cider, a fermented product of apple juice, are chlorogenic and
p-coumaric acids, phenolic acids, dihydrochalcones, catechins and procyanidins
(Fig. 5.3). Dihydrochalcones mainly include phloretin xyloglucoside and phlo-
ridizin. Both catechins and procyanidins together form the flavan-3-ols of cider.
In the context of preparing cider, the content of polyphenols is important as it
influences (1) the color of final product and (2) the balance between bitterness to
astringency. One of the factors determining the colloidal stability of cider is the
content of polyphenols. They are part of alcoholic and malolactic fermentations
and exhibit antimicrobial activity as well as in the development of cider aroma.

The important contribution by polyphenols to the color, bitterness and astrin-
gency of cider led to an examination of the impact that different apple varieties
have on phenolic compounds and sensory properties of cider. Rickstina-Dolge and
coworkers (2014) fermented 12 different apple varieties with Saccharomyces cerre-
visiae yeast ‘71B-1122’ for the production cider in the Faculty of Food Technology
at Latvia University of Agriculture. Significant differences (p<0.05) in bitterness
and astringency were observed among apple samples particularly in ciders made
from crab apple varieties Riku and Hyslop. Crab apples were highest in total phe-
nol content with chlorogenic and caffeic acids the dominating polyphenols in all
cider samples. The sensory properties of the finished cider product depended on
the physiological composition of the apples used. They concluded that to produce
a quality cider product required selecting those apple varieties with an intensive
aroma such as the desert apple Suksis and moderate astringency from crab apple
varieties as Riku and Hyslop.

The polymeric procyanidins are the main contributors for bitterness and astrin-
gency of cider. However, another bitter compound present in cider, phloridzin, is
present at too low concentrations to elicit bitterness or astringency characteristics
(Lea & Timberlake, 1974; Lea & Arnold, 1978). The bitterness of cider is also
contributed by heterofermentative lactic microbiota such as Lactobacillus species.
The lactic acid bacteria in cider utilize the residual fructose, glycerol, and lactic
acid as carbon sources, resulting in changes in ropiness, acetification and bitterness
(Dueñas et al., 1994, 1995).
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Figure 5.3 Phenolics in cider.

Ye and coworkers (2014) found significant changes in the content of polyphe-
nols and organic acids, which increased during fermentation, many of the other
polyphenols, including chlorogenic acid, (-)-epicatechin, and phloridzin decreased
by different degrees. Such changes would impact the final flavor of the cider
including bitterness. With the exception of protocatechuic acid, which increased
during fermentation, many of the other polyphenols, including chlorogenic acid,
(-)-epicatechin, and phloridzin decreased by different degrees. Such changes



�

� �

�

96 Bitterness: Perception, Chemistry and Food Processing

would impact the final flavor of the cider including bitterness. Because of the
popularity of French cider, Symoneaux et al. (2014a) investigated the impact of
degree of polymerization and concentration of procyanidins (or tannins) on the
sensory properties of a cider model (a water solution of ethanol, fructose and malic
acid). Polyphenols contributed to both the astringency and bitterness of both cider
and wine but in cider the phenolic compounds are less polymerized compared to
wine. Examination of 90 ciders by Le Quere and coworkers (2006) confirmed that
the procyanidins were smaller with an average degree of polymerization ranging
between 1.61 to 3.69. This contrasted with wine procyanidins where the average
degree of polymerization ranged from 1.8 to 13 (Monogas et al., 2003; Chira et al.,
2011; Kassara & Kennedy, 2011). Using 15 trained panelists, Symoneaux and
coworkers (2014a) found that different concentrations of four purified procyanidin
fractions modified the bitterness, astringency, sweetness and sourness charac-
teristics of the cider model. In the presence of a high concentration of medium
procyanidins (a pentamer, DP5) the cider model was much more bitter compared
to the model containing a high degree of polymerization (DP) procyanidins. This
was consistent with early work by Lea and Arnold (1978) who also reported
greater bitterness in the presence of shorter (tetrameric) procyanidins. Symoneaux
et al. (2014b) then used a fractional factorial design to study the impact on the
sweetness, sourness, bitterness and astringency of the cider model by the degree of
procyanidin polymerization and its interactions with fructose, ethanol and acidity.
The largest increase in bitterness and astringency was observed in the presence
of 750 mg/L of procyanidin tetramers and pentamers with no effect on either
sweetness or sourness. These researchers suggested that further work is needed to
examine the behavior of different polymerization (DP) products of procyanidins
in real cider.
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6 Structural Characteristics of Food
Protein-Derived Bitter Peptides

Rotimi E. Aluko

6.1 INTRODUCTION

The abundance of food proteins, especially from plant sources has made them
a good source of substrates for enzymatic conversion into more functional or
nutritive products. Protein hydrolysis is carried out for several purposes but
one of the most important reasons is the need to provide amino acids in short
peptide chains (usually <20 residues) as a means of increasing absorption from
the gastrointestinal tract. In this form, the short-chain peptides can be used to
formulate nutritious foods for children and elderly people with impaired digestion.
Enzymatic hydrolysis is also a preferred method to reduce allergenicity of
food proteins because the process cleaves and destroys epitopes. Recently, the
rapid growth of the functional foods and nutraceuticals industry has involved
development of enzymatic food protein digests (protein hydrolysates) that contain
bioactive short-chain peptides. These bioactive peptides have been proposed as
natural therapeutic alternatives to drugs for the effective management of metabolic
disorders such as hypertension, diabetes, obesity and even cancer. While protein
hydrolysis can be tailored to yield peptides with desired functional or bioactive
properties, the taste properties are difficult to control. The most encountered
taste attribute of enzymatic protein hydrolysates is bitterness, which can lead
to reduced consumer acceptability of formulated food products. But natural
products can also develop bitter peptides as a result of food processing or during
cheese ripening. For example, cheese taste can be influenced by proteolysis
that produces certain peptides and amino acids. It has been established that
cheese bitterness, which could be considered as a principal defect is mainly
as a result of the release of hydrophobic peptides during manufacture or aging
(McSweeney, 1997; Fallico et al., 2005; Taborda et al., 2008). Previous reports
have confirmed the linear relationship between amount of β-casein-derived
peptides from f193-209 and bitterness intensity of aged cheddar cheese
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(Broadbent et al., 2002; Singh et al., 2010; Karametsi et al., 2014). Soeryapranata
et al. (2002) showed that this relationship was dependent on length of aging; a
longer period gave stronger bitterness intensity (Fig. 6.1). Cheese is very prone to
bitter taste development because of various factors such as the production of extra-
cellular proteinases by indigenous milk microflora (e.g., Pseudomonas), which
can lead to extensive proteolysis during storage or ripening (Hicks et al., 1986).
Moreover during cheese manufacture, bacteriophage proliferation or antibiotics in
the milk can reduce starter cell numbers, which lowers lactococcal and associated
bitter peptide-degrading peptidases levels (Sullivan et al., 1973; McSweeney,
1997). Other factors involved in cheese curd bitter flavor development include the
use of certain bitterness-promoting starter cultures, chymosin retention, pH, and
low salt content (McSweeney, 1997). For example, a starter culture consisting of
Lactococcus lactis ssp. lactis S3 produced bitter ripened cheese, whereas Lacto-
coccus lactis ssp. cremoris S1 and Lactococcus lactis ssp. cremoris S2 produced
non-bitter cheeses even after 6 months of ripening (Broadbent et al., 1998). A
starter culture that contained Lactococcus lactis ssp. lactis and Lactococcus lactis
ssp. cremoris produced a Cheddar cheese that had higher bitterness intensity than
a similar cheese made with the same microorganism but with added Lactobacillus
(Borsting et al., 2012). However, Lactococcus lactis ssp. lactis 527 may be another
alternative starter culture microbe since it was very effective in degrading the bitter
heptapeptide (Gly-Pro-Phe-Pro-Ile-Ile-Val) released from β-casein during cheese
making or ripening (Shimamura et al., 2009). Reduced peptide bitterness intensity
has been associated with two endopeptidases present in Lactobacillus helveticus
CNRZ32, a bacterium strain used commercially as an adjunct to reduce bitterness
in Cheddar and Gouda cheeses (Sridhar et al., 2005; Borsting et al., 2012). The
genes that encode these L. helveticus proteases have been cloned and could be
incorporated into the genome of Lactococcus lactis as a means of providing a
more effective means of producing cheeses with lower levels of bitter peptides.
The effect of chymosin is due to its ability to hydrolyze β-casein, which contains
several bitter peptide sequences while pH affects protease activity (Exterkate
et al., 1995). Plasmin-dependent proteolysis of β-casein does not occur at pH <5.4
but increases in the pH 5.4-6.0 range while for chymosin, the release of bitter
peptides from β-casein is highest at pH 6.0 (Larsson et al., 2006). But the source
of chymosin is also important; for example, bovine chymosin produced peptides
with stronger bitterness intensity than camel chymosin (Borsting et al., 2012).
The lactococcal cell envelope associated proteinase (CEP) also acts on β-casein
to generate bitter peptides in an environment of low salt content. Moreover, the
peptides generated are resistant to further proteolysis by chymosin and CEP
(Exterkate et al., 1995), which leads to accumulation of these bitterness factors.
High salt content is therefore, desirable not only to inhibit CEP activity but to
enhance protein aggregation, which prevents their hydrolysis to bitter peptides
(McSweeney, 1997). Broadbent et al. (2002) showed that lactococcal strains that
produced group ‘h’ CEP was associated with most intense bitterness of Cheddar
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Figure 6.1 Correlation between bitterness intensity of cheese and β-casein f193-209 con-
centration in the aqueous extract of cheese at 180 days (◾) and 270 days (◽). Reprinted with
permission from Soeryapranata et al. (2002). Copyright 2015 American Chemical Society.

cheese. Therefore, CEP negative or those that produce group ‘a’ or ‘e’ proteases
could be developed as starter cultures for producing cheeses with low levels of
bitter peptides. However, high salt content can lead to low water activity that
limits enzymatic activity of bitter peptide-degrading peptidases, which promotes
bitter taste intensity in the cheese (Fallico et al., 2005). It has also been shown
that partial replacement of whole milk with milk protein concentrate can reduce
residual levels of chymosin and plasmin in the cheese curd, which limits secondary
proteolysis (responsible for bitter peptide production) during storage and favours
production of cheese with low bitterness intensity (Shakeel-Ur-Rehman et al.,
2003). Bitterness attribute of cheese is also dependent on storage period because
of the potential for continuous proteolysis, which leads to increased bitterness
intensity as ripening or shelf life increases (Gomez et al., 1997).

Generally, most proteins have no bitter taste but upon proteolysis by appropri-
ate enzymes, the resultant protein hydrolysates usually develop various degrees of
bitterness intensity. Rye and wheat flours were hydrolyzed with a protease (coro-
lase) or with several carbohydrases; only the protein digest had bitter taste, which
confirms the role of peptides in determining bitterness intensity of hydrolysates
(Heinio et al., 2012). Bitterness of protein hydrolysates is dependent on several
factors such as enzyme type, degree of hydrolysis, substrate protein and dura-
tion of hydrolysis. For example, extensive protein hydrolysis will produce protein
hydrolysates with smaller size and potentially peptides with higher bitter intensity
than limited hydrolysis. This is because taste is a contact attribute and small size
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peptides are more likely to be able to interact with bitter receptors when compared
to bigger peptides. Casein hydrolysate prepared with Bacillus protease had higher
contents of low molecular weight (<10 kDa) and hydrophobic peptides and will
likely possess stronger bitterness intensity than the hydrolysate from bromelain
hydrolysis with lower contents of these peptides (Gallagher et al., 1994). Pro-
tein hydrolysates are also prepared through microbial fermentation of protein-rich
foods, especially milk and soybeans. These fermented foods may contain peptides
that impart some degree of bitterness, which depends on the fermenting microor-
ganism. Milk was fermented with various yeast isolates and then subjected to bit-
terness testing. Clavispora lusitaniae KL4 produced the bitterest fermented milk
while Pichia kudriavzevii KL84A and Torulaspora delbrueckii KL66A produced
the least bitter product (Chaves-Lopez et al., 2012).

There are two main approaches at reducing the bitterness intensity of food
protein hydrolysates. First, the choice of protease is important because certain
enzymes produce highly bitter protein hydrolysates while others produce less
bitter hydrolysates. For example, Humiski and Aluko (2007) showed that papain,
α-chymotrypsin, and trypsin produced protein hydrolysates with reduced bitter-
ness when compared to flavourzyme and alcalase. Kodera et al. (2006) showed
that protease D3 obtained from germinating soybean cotyledons could be used to
produce soybean and casein hydrolysates with reduced bitterness intensity when
compared to other proteases such as trypsin, subtilisin and thermolysin. Second,
once the protein hydrolysate has been produced, bitterness can be reduced by
passing the product through a hydrophobic column or by using an exopeptidase
to perform additional hydrolysis (Cheung et al., 2015). The principle involved
for the column separation is that most bitter peptides contain highly hydrophobic
amino acids (Ishibashi et al., 1987a,b; Matoba & Hata, 1972; Lee & Warthesen
1996; Gomez et al., 1997; Wu & Aluko, 2007) and will bind to a non-polar matrix,
while the unbound less hydrophobic peptides will flow through and be collected
as a less bitter product (Helbig et al., 1980; Ma et al., 1983). For the exopeptidase
treatment, the enzyme action leads to sequential removal of hydrophobic amino
acids that may be present at the terminal ends (Arai et al., 1970a,b; Fujimaki
et al., 1970). Carboxypeptidase A seems to be most commonly used since it
removes amino acids from the C-terminal end that determines the bitterness
intensity of some peptides (Arai et al., 1970a). A reduction in the amount of
hydrophobic amino acids present in the peptide, especially at the C-terminal
will lead to the production of a less bitter hydrolysate. However, application of
these debittering methods may lead to inactivation or reduced peptide potency
since the removed amino acids may be critical for imparting bioactive effects. In
the following sections, structural characteristics and detailed methods for bitter
peptide preparation, characterization and taste modification are discussed.
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6.2 BITTER PEPTIDES PREPARATION AND TASTE
EVALUATION

Dairy products have been the most characterized for bitter peptides and cheese is a
common starting material for bitter peptides isolation. This is because during aging,
casein is slowly hydrolyzed by active proteases that are present in the cheese to
form various peptides some of which have bitter taste attributes. Due to their small
sizes (usually <15 amino acid residues) several bitter peptides are soluble in aque-
ous solvents and can be extracted from cheese by simply blending with water (Lee
& Warthesen, 1996; Toelstede & Hofmann, 2008a). The water extract can then be
subjected to liquid chromatography-tandem mass spectrometry quantification and
identification of peptides (Toelstede & Hofmann, 2008a). Or the water extract can
be centrifuged, the top lipid-containing layer removed and the aqueous supernatant
filtered through various devices to remove large sized peptides. For example, after
filtering through glass wool, an aqueous cheese extract was separated into different
molecular weight peptides using ultrafiltration membranes with 500 or 3000 Da
molecular weight cut-offs (Lee & Warthesen, 1996). To determine bitterness inten-
sity, a trained human sensory evaluation panel can be used during which the peptide
taste is compared with that of a standard bitter compound. Typical standard solu-
tions used for determining peptide bitterness intensity or taste attributes include
MgSO4, salicin, caffeine, and quinine sulfate (Humiski & Aluko, 2007; Singh
et al., 2005; Toelstede & Hofmann, 2008a; Karametsi et al., 2014). For example, a
human sensory panel was used to evaluate the three cheese extract peptide fractions;
the smallest size peptide fraction (<500 Da) had the least bitterness intensity when
compared to the 500-3000 Da and >3000 Da fractions (Lee & Warthesen, 1996).
Similarly, early eluting fractions (big size peptides) from Sephadex G25 column
had a linear relationship with bitterness score (Sorensen et al., 1996). The results
suggest that longer peptide chains with higher numbers of amino acids provided
the basis for higher bitterness intensity of peptides. The 500-3000 and >3000 Da
fractions were each subsequently fractionated on a C18 column using the principle
of reverse-phase HPLC; collected fractions were evaluated for bitterness intensity
by the human sensory panel. In general, the fractions that eluted early, especially
within the first 5 min had the highest bitterness intensity when compared to frac-
tions that eluted at later time periods (Lee & Warthesen, 1996). Since a hydrophobic
column was used, the early eluting fraction will be highly hydrophilic and this was
confirmed by showing that main amino acid was glutamic/glutamine. The HPLC
fractions also contained low levels of hydrophobic amino acids such as leucine,
valine and isoleucine but were virtually devoid of the aromatic amino acids, pheny-
lalanine and tyrosine. The results suggest that contrary to some reports, hydrophilic
amino acids can also impart bitter taste; however, it is possible that they are present
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in peptide sequences as combinations with hydrophobic amino acids. For example,
hydrophilic amino acid-containing peptides such as Ala-Asp-Glu, Glu-Glu-Asn,
and Glu-Pro-Ala-Asp have been shown to be present in bitter fractions of food
protein hydrolysates (Maehashi et al., 1999).

6.3 ROLE OF AMINO ACID COMPOSITION
AND POSITION ARRANGEMENT
IN DETERMINING PEPTIDE BITTERNESS
INTENSITY

6.3.1 Relationship between peptide hydrophobicity
and bitterness intensity

Peptide bitterness has been attributed mainly to the net hydrophobicity rather than
any particular amino acid sequence (Ney, 1979). But as will be discussed below,
bitterness intensity of a peptide is also dependent on the type(s) of amino acids
present at the N- and C-terminals. The mean hydrophobicity of peptide is repre-
sented as ‘Q’ and can be calculated using the following equation (McSweeney,
1997):

∑
Δft∕n where Δft is side chain hydrophobicity (free energy of transfer,

Δft) and n = number of amino acid residues on the peptide chain. According to Ney
(1979), peptides with molecular weight less than 10 kDa and Q <1300 calories per
residue should not have bitter taste. However, peptides with sizes up to 6 kDa and
Q >1400 calories per residue will most likely have a bitter taste. This principle was
aptly demonstrated for rapeseed protein hydrolysates fractions; the less bitter RP55
had a Q of 1466 while the bitterest RP85 had 1673, which indicates some direct
relationship between hydrophobicity and peptide bitterness (Zhang et al., 2007).

But Q value alone does not determine peptide bitterness because in a bitter
Camembert cheese for example, most of the bitter peptides were concentrated in
the 0.4-1.0 kDa size range though peptides within the 1.0-2.8 kDa range were
also detected but in minor concentrations (Engel et al., 2001). Aubes-Dufau et al.
(1995) also showed that bitterness intensity of peptic hemoglobin hydrolysates was
influenced by molecular size; the >10 kDa fraction had no bitter taste, 5-10 kDa
was slightly bitter while the 0.5-5 kDa had a very bitter taste. A similar result was
obtained by Cho et al. (2004) who showed that bitterness intensity increased with
decrease in peptide size to 2-3 kDa but smaller peptides (<1 kDa) had weak inten-
sity. Most peptides that are bigger than 6 kDa will have no bitter taste even if the
Q value >1400 calories per residue. Apart from the Q value, bitterness intensity of
a peptide is also dependent on location of hydrophobic amino acids on the peptide
chain (amino acid sequence). For example, three bitter peptides that were isolated
from cheddar cheese had Q values <1400, which shows that amino acid sequence
also plays an important role in determining peptide bitterness intensity (Lee et al.,
1996). The three peptides contained Pro residues within the chain in addition to
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Arg, Val, or Leu at the N- or C-terminals; these features have been shown to be
common structural components of bitter peptides (Fujimaki et al., 1968; Otagiri
et al., 1985; Shinoda et al., 1985; Ishibashi et al., 1987a; Kukman et al., 1995). Kim
and Li-Chan (2006) suggested that the presence of bulky hydrophobic amino acids
at the C-terminal and bulky positively charged residues at the N-terminal enhance
bitterness intensity of peptides. Other workers proposed that for di- and tripeptides,
bitterness intensity is potentiated by the presence of hydrophobic amino acids at the
C-terminal and the presence of an adjacent amino acid with a bulky group (Wu &
Aluko, 2007). Several peptides isolated from Gouda cheese also had no strict rela-
tionship between Q value and bitterness intensity. This is evident in the data which
showed that Ile-Pro-Pro-Leu with highest Q value of 2658 had a threshold value
of >6 mM, whereas Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-Asn-Ser with a Q value of
1688 had the lowest threshold value of 0.05 mM (Toelstede & Hofman, 2008b).
There was also no direct relationship between Q values and bitterness intensity of
soy protein hydrolysate peptide fractions (Cho et al., 2004).

6.3.2 Influence of peptide chain length and N- or
C-terminal amino acid residue

One of the earliest reports on bitter peptides identified the amino acid sequence
of seven pepsin hydrolyzed fragments from soybean protein as follows: Gly-Leu,
Leu-Phe, Ser-Lys-Gly-Leu, Leu-Lys, Phe-Ile/Leu-Gln-Gly-Val, Arg-Leu-Leu, and
Arg-Leu (Fujimaki et al., 1968). A common structural feature of these peptides
is the presence of Leu at the C- or N-terminal of six of them, which indicated
the important contribution of hydrophobic amino acids, especially Leu to peptide
bitterness. Arai et al. (1970b) also showed that for the Tyr-Phe-Leu tripeptide,
removal of Tyr resulted in a dipeptide (Phe-Leu) that has similar bitterness inten-
sity. In contrast Leu removal gave a dipeptide (Tyr-Phe) that was less bitter than
Tyr-Phe-Leu, which supports the role of Leu in potentiating peptide bitterness.
Even though Phe-Ile/Leu-Gln-Gly-Val does not have Leu at the C- or N-terminal,
the presence of hydrophobic residues in the form of Phe and Val at these positions
may have contributed to giving the peptide a bitter taste. Another bitter peptide
with amino acid sequence pyrrolidone carboxyl-Gly-Ser-Ala-Ile-Phe-Val-Leu and
containing leucine at the C-terminal was also identified from the peptic digest of
soybean hydrolysate (Yamashita et al., 1969). These authors showed that bitterness
intensity of a mixture of the component amino acids was lower than the mea-
sured bitterness intensity for pyrrolidone carboxyl-Gly-Ser-Ala-Ile-Phe-Val-Leu.
The results implied that amino acid polymerization can lead to increased bitterness
of the resultant peptide probably as a result of the synergistic cooperative effect of
the component bitter amino acids. Therefore, Yamashita et al. (1969) demonstrated
the principle that extensive proteolysis to reduce peptide chain length can be an
effective method to reduce peptide bitterness. In addition to potential synergistic
effects, other researchers showed that the presence of amino or carboxyl groups in
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Table 6.1 Bitterness intensity of peptides (X-X)
and equivalent free amino acid mixtures (X+X).

Sample
Threshold
value (mM)

Leu + Leu 20.0
Leu-Leu 3.7
Leu + Phe 15
Leu-Phe 1.3
Phe-Leu 1.3
Phe + Phe 7.0
Phe-Phe 0.6

Adapted from Matoba and Hata (1972).

free amino acids contributes to weakening of bitterness intensity. It was reported
that free tyrosine or phenylalanine has less bitterness intensity when compared to
the phenylalanine where amino and carboxyl groups have been modified by acety-
lation and esterification, respectively (Matoba et al., 1970). A previous report also
indicated that esterification of the C-terminal carboxylic group was more effec-
tive in reducing peptide bitterness intensity when compare to acetylation of the
N-terminal amino group (Arai et al., 1970b). Based on these early works, it would
seem that the C-terminal amino acids are major determinants of peptide bitterness
intensity. Therefore, polymerization of the amino acids to form peptide chains leads
to elimination of several of these amino or carboxyl groups and is a major con-
tributing factor for the higher bitterness intensity of peptides when compared to
a mixture of amino acids (Matoba et al., 1970; Matoba & Hata, 1972). Table 6.1
compares the bitterness intensity of peptides and their equivalent free amino acid
mixtures. This principle was well demonstrated by work of Otagiri et al. (1985),
which showed that the dipeptides Arg-Arg and/or Pro-Pro had about three times the
bitterness intensity of a mixtures of the free amino acid forms Arg and Pro. Sim-
ilarly Phe-Phe and Phe-Phe-Phe had 15 and 100 times, respectively the bitterness
intensity of the free amino acid form of Phe.

Three bitter peptides have been reported from a tryptic hydrolysate of casein with
amino acid sequences of Gly-Pro-Phe-Pro-Val-Ile, Phe-Phe-Val-Ala-Pro-Phe-Pro-
Glu-Val-Phe-Gly-Lys, and Phe-Ala-Leu-Pro-Gln-Tyr-Leu-Lys (Matoba et al.,
1970). These peptides also contain hydrophobic amino acid residues either
at the N- or C-terminal, which supports the theory that amino acid position
contributes to peptide bitterness intensity. A subsequent work used Bacillus
subtilis alkaline protease to hydrolyze dairy casein followed by isolation of a
bitter peptide, which was identified as Arg-Gly-Pro-Pro-Phe-Ile-Val (Minamiura
et al., 1972). Structure-function experiments showed that the bitterness intensity
of Arg-Gly-Pro-Pro-Phe-Ile-Val was due to the core Gly-Pro-Pro-Phe sequence.



�

� �

�

Structural Characteristics of Food Protein-Derived Bitter Peptides 113

This is because enzymatic removal of N-terminal Arg residue or the C-terminal
Ile-Val residues did not affect peptide bitterness intensity. However, cleavage
of Arg-Gly by treatment with an amino peptidase resulted in a loss of peptide
bitterness intensity (Minamiura et al., 1972). The dipeptide Arg-Gly had higher
bitterness intensity than Gly-Arg, which indicates that presence of Arg at the
N-terminal was more important than when present at the C-terminal (Otagiri et al.,
1985). Same pattern of results were reported for the dipeptide Arg-Pro, which has
stronger bitterness intensity than peptides that contain only Arg or Pro. Reversing
the amino acid sequence to form Pro-Arg led to reduced bitterness intensity,
which confirms that the N-terminal Arg residue is an important determinant of
bitterness intensity of dipeptides that contain Arg. Replacing the N-terminal Arg
with another basic amino acid such as Lys still produced a bitter peptide but with
a reduced intensity when compared to dipeptides with Arg at the N-terminal.
Interesting, the tripeptide Arg-Gly-Pro, which contains an inserted Gly residue has
less bitterness intensity than Arg-Pro but Gly-Pro-Arg or Pro-Arg-Gly maintained
similar intensity as Arg-Pro. Thus it was suggested that in addition to Arg being
present at the N-terminal, close proximity of Arg and Pro is required for potenti-
ating bitterness intensity. Increasing the distance between these two amino acids
by insertion of another amino acid produces unfavorable alignment that reduces
bitterness intensity. In contrast, the dipeptide Pro-Gly has sweet taste attributes,
whereas Gly-Pro is bitter, which indicates that the presence of Pro at the C-terminal
contributes to bitterness intensity of this peptide; similarly, Phe-Gly had higher
bitterness intensity than Gly-Phe. For peptides with three or more amino acid
residues, bitterness intensity is influenced by synergistic effects, whereby higher
numbers of certain residues and location at the C-terminal enhances bitterness
(Otagiri et al., 1985). This synergistic effect seems to be relevant when the
amino acids are Phe, Pro, Arg, Leu, Ile, and Tyr whose multiplicity on a peptide
chain and presence at the C-terminal increases bitterness intensity. This was
illustrated with synthetic peptides where Arg-Pro-Phe-Phe, Arg-Arg-Pro-Phe-Phe,
Arg-Arg-Pro-Pro-Phe-Phe, and Arg-Arg-Pro-Pro-Pro-Phe-Phe had 30, 50, 143,
and 500 times the bitterness of caffeine (Otagiri et al., 1985). A recent work
also showed that stimulation of human taste receptors was directly related to the
number of amino acid residues on the peptide chain (Kohl et al., 2013).

6.3.3 Amino acid type and position on peptide chain
The importance of amino acid sequence in determining peptide bitterness was
further studied using various synthetic equivalents of β-casein fragments. The
synthetic octapeptide Arg-Gly-Pro-Phe-Phe-Ile-Ile-Val has an extremely bitter
taste that is 250 times that of caffeine and a threshold value of 0.004 mM
(Shinoda et al., 1985). Another β-casein peptide sequence, the highly hydrophobic
hexapeptide Pro-Val-Leu-Gly-Pro-Val-Thr had twice the bitterness intensity
of caffeine. The decapeptide Pro-Val-Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val had
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similar bitterness intensity as Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val (Shinoda et al.,
1985), which suggests that the N-terminal Pro-Val dipeptide sequence has
minimal contribution to bitterness intensity of the decapeptide. The tetrade-
capeptide Pro-Val-Leu-Gly-Pro-Val-Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val essentially
consists of two separate bitter peptide sequences (Pro-Val-Leu-Gly-Pro-Val
and Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val) but its bitterness intensity (0.015 mM
threshold value) is lower than that of Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val (Shin-
oda et al., 1985). Moreover, when the amino acid sequence was reversed to
form Val-Ile-Ile-Pro-Phe-Pro-Gly-Arg, the bitterness intensity was reduced
with a threshold value of 0.14 mM when compared to 0.004 mM for
Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val, which confirms the importance of amino
acid sequence for this peptide (Shinoda et al., 1985). In contrast, the hep-
tapeptide Arg-Gly-Pro-Phe-Pro-Ile-Val had a threshold value of 0.11 mM,
which is similar to the value obtained for the reversed sequence peptide
Val-Ile-Pro-Phe-Pro-Gly-Arg (0.07 mM). Thus, the bitterness intensity depends
not only on the sequence but for some peptides, the type of amino acids is
an important determinant. Removal of the C-terminal Arg residue produced
a heptapeptide Val-Ile-Ile-Pro-Phe-Pro-Gly with half the bitterness intensity
(0.26 mM threshold value) of Val-Ile-Ile-Pro-Phe-Pro-Gly-Arg. The importance
of the N-terminal Arg residue was confirmed by showing that the hexapeptide
Pro-Phe-Pro-Ile-Ile-Val with a threshold value of 0.13 mM has less bitterness
intensity than Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val (0.004 mM). Since the roles of
amino acid position and sequence seem important in determining bitterness
intensity of peptides, circular dichroism was performed to elucidate effects of
spatial structure. It was shown that peptides with similar bitterness intensity
(Arg-Gly-Pro-Phe-Pro-Ile-Val and Val-Ile-Pro-Phe-Pro-Gly-Arg) tended to have
similar secondary structure. In contrast, peptides that differ in bitterness intensity
(Val-Ile-Ile-Pro-Phe-Pro-Gly-Arg and Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val) showed
differences in secondary structure (Shinoda et al., 1985). The authors concluded
that the bitterness intensity of these β-casein peptide fragments was positively
related to the presence of positively charged as well as hydrophobic amino acids. A
recent work showed that all the bitter peptides isolated from aged Cheddar cheese
contained a hydrophobic amino acid (Val, Pro, Ile, or Phe) at the C-terminal,
including Gly-Pro-Val-Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val, which had the strongest
bitterness intensity (Karametsi et al., 2014).

Additional information on the structure-bitterness relationship of peptides
was provided through the use of synthetic Pro-Phe-Pro-Gly-Pro-Ile-Pro and
Tyr-Pro-Phe-Pro-Gly-Pro-Ile bitter peptides (β-casein fragments commonly
found in cheese bitter fractions) as well as their amino acid substituted equiv-
alents. Reductions in peptide chain length led to decreased bitterness with
Pro-Phe-Pro-Gly-Pro-Ile, Pro-Gly-Pro-Ile-Pro and Pro-Ile-Pro having threshold
values of 0.44, 0.80 and 1.40 mM, respectively when compared to 0.25 mM
for Pro-Phe-Pro-Gly-Pro-Ile (Shinoda et al., 1986c). Thus, synergistic effects
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of multiple hydrophobic amino acids seem to be responsible for the intense
bitterness of Pro-Phe-Pro-Gly-Pro-Ile. Substitution of Gly for Phe and Ile
to form a Pro-Gly-Pro-Gly-Pro-Gly peptide resulted in substantial increase
in threshold value to 2.5 mM, which suggests that amino acid hydropho-
bic chains are critical determinant of bitterness intensity for this peptide.
Tyr-Pro-Phe-Pro-Gly-Pro-Ile had a bitterness threshold value of 0.16 but removal
of the N-terminal Tyr residue led to an increase to 0.44 mM and production of a
less bitter Pro-Phe-Pro-Gly-Pro-Ile (Shinoda et al., 1986c). But the N-terminal
Pro-Phe-Pro fragment had similar (0.4 mM threshold value) bitterness intensity
as Pro-Phe-Pro-Gly-Pro-Ile. In contrast Phe-Pro, Pro-Phe and Tyr-Pro peptides
had threshold values of 1.5, 38.0, and 19.0 mM, respectively when compared to
Tyr-Pro-Phe (0.4 mM), which provides evidence that the more hydrophobic Tyr
residue has stronger contributions than Pro to peptide bitterness intensity. From
the results of Shinoda et al. (1986c) it seems that peptides containing Gly and
Pro residues may have practical use in formulating food products with decreased
bitterness intensity.

Another β-casein peptide fragment (Val-Val-Val-Pro-Pro-Phe-Leu) was also
used for structure-bitterness studies and the results showed that Arg residue at the
N-terminal potentiates bitterness intensity more than bulky or hydrophobic amino
acids (Shinoda et al., 1986b). The heptapeptide Val-Val-Val-Pro-Pro-Phe-Leu had
a bitterness threshold value of 0.14 mM, which increased to 0.38, 3.75, 4.5, and
25 mM for peptides Val-Val-Val-Pro-Pro-Phe-Leu-Gln-Pro, Val-Val-Val-Pro-Pro,
Val-Val-Val, and Val-Val, respectively. The results confirm earlier reports that
longer peptide chains of amino acids with hydrophobic side groups have stronger
bitterness intensities than shorter chains of similar amino acid composition. The
importance of amino acid sequence was further demonstrated when it was shown
that peptide Val-Gly had no detectable bitterness threshold but Gly-Val had a
value of 4.5 mM (Shinoda et al., 1986b). Also important is the position of an
amino acid with a hydrophobic side group because Val-Gly-Gly and Gly-Val-Gly
had no detectable bitterness threshold but Gly-Gly-Val still had a weak value
of 38.0 mM. To demonstrate role of amino acid side group in potentiating
peptide bitterness, the Val-Val-Val-Pro-Pro-Phe-Leu peptide was compared to
Arg-Gly-Pro-Pro-Phe-Ile, which replaced the bulky hydrophobic Val groups with
Arg (positively charged) and Gly (no side group). Peptide Arg-Gly-Pro-Pro-Phe-Ile
had a bitterness threshold value of 0.025 mM when compared to the 0.14 mM for
Val-Val-Val-Pro-Pro-Phe-Leu and 1.5 mM for Phe-Ile; thus the positively charged
amino acid potentiates bitterness intensity better than the bulky group. However, a
peptide chain length of hydrophobic amino acids was again confirmed as critical
structural feature for stronger bitterness intensity because Arg-Gly had a 10.0 mM
threshold value when compared to the 0.025 mM for Arg-Gly-Pro-Pro-Phe-Ile
(Shinoda et al., 1986b).

The role for Leu in potentiating bitterness intensity was further explored using
a series of synthetic peptides that contained only Leu or in combination with Gly.
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L-Leu alone has a bitterness threshold of 20 mM, which is 20 times less than that
of caffeine; interestingly, D-Leu has a sweet taste with a threshold value of 6 mM
(Ishibashi et al., 1987a). The methyl ester form of L-Leu has a bitterness inten-
sity that is six times greater than that of free Leu, which is consistent with other
reports that presence of free carboxylic groups reduces bitterness intensity. This
principle is exemplified by the observation that Leu-Leu has a bitterness thresh-
old of 2.5 mM when compared to the 20 mM for L-Leu. Increasing the number of
Leu residues to 3 (tripeptide) and 4 (tetrapeptide) led to bitterness threshold val-
ues of 1.2 and 0.6, respectively, which also suggests synergistic effects (Ishibashi
et al., 1987a). Since free Gly has a sweet taste but not a bitter taste and Gly dipep-
tide is tasteless, this amino acid was used as a spacer to study the effect of Leu
position on bitterness intensity of various peptides. As expected, incorporation of
Gly into Leu dipeptides did not have any substantial effect on bitterness thresh-
old because Leu-Gly and Gly-Leu had similar values as Leu only (Ishibashi et al.,
1987a). Combination of Leu with other amino acids showed that the dipeptides
with Phe or N-terminal Ile had bitterness threshold values of <2 mM. When the
Ile was at the C-terminal or when Leu was combined with Val in either posi-
tion, bitterness was reduced and threshold value increased to ≥4.0 mM. The HCl
form of dipeptides that contain Leu and Asp acid at the N-terminal were very
bitter with bitterness threshold values of <2 mM. The HCl salts of Leu and Glu
dipeptides also had bitterness threshold values of <2 mM, irrespective of amino
acid position. In contrast, dipeptides of Leu with Gly had weak bitterness inten-
sities with threshold values 20 or 25 mM, irrespective of the amino acid position
or isomeric form of Gly and Leu. However, for tripeptides, the presence of Leu
residues and their position on the peptide chain had substantial effects on bitter-
ness intensity. A tripeptide containing only Gly (Gly-Gly-Gly) had no detectable
taste but replacement of the N-terminal Gly with Leu to form Leu-Gly-Gly pro-
duced a peptide with a weak bitterness threshold value of 75 mM. When the middle
or C-terminal Gly was replaced with Leu to form Gly-Leu-Gly or Gly-Gly-Leu,
the bitterness threshold decreased substantially to 10 mM. Replacement of two
Gly residues with Leu to form Leu-Leu-Gly, Leu-Gly-Leu and Gly-Leu-Leu pro-
duced peptides with bitterness threshold values of 5, 5, and 1.5 mM, respectively
(Ishibashi et al., 1987a). For tetra- and pentapeptides, all the amino acid com-
binations produced peptides with bitterness threshold values of ≥13 mM, with
the exception of when the Leu was at the C-terminal end. Thus the tetrapeptide
Gly-Gly-Gly-Leu and pentapeptide Gly-Gly-Gly-Gly-Leu had bitterness thresh-
old values of 4.5 and 2.2 mM, respectively, which are very close to the 1.2 mM
value for Leu tripeptide (Leu-Leu-Leu). Therefore, the C-terminal position seems
to be the major determinant of the bitterness intensity of Leu-containing peptides.
This hypothesis is supported by the work of Spellman et al. (2005) who isolated a
bitter peptide (Val-Glu-Glu-Leu-Lys-Pro-Thr-Pro-Glu-Gly-Asp-Leu-Glu-Ile-Leu)
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from whey protein hydrolysate. The peptide, which is characterized by the pres-
ence of Leu at the C-terminal end, had a linear positive relationship with bitterness
intensity of the whey protein hydrolysate.

Bitterness intensity of Phe and Tyr containing peptides has also been studied
to demonstrate role of amino acid type and position. This is because of previous
reports that have implicated aromatic amino acids as one of the main primary deter-
minants of peptide bitterness intensity. For example, the bitter taste fraction from
Manchego cheese extract was due to the presence of Phe, Tyr and Trp (Taborda
et al., 2008). L-Phe has a bitter taste with threshold value of 20 mM, whereas D-Phe
is very sweet with a threshold value of 2.2 mM (Ishibashi et al., 1987b). Just as
observed for leucine, the amino acid isomeric form did not affect bitterness inten-
sity of dipeptides that consist of only Phe. Bitterness intensity of Phe-containing
dipeptides was shown to be independent of amino acid position with Gly-Phe,
Phe-Leu, and Ile-Phe having threshold values of 1.2, 1.5, and 1.5 mM, respectively
(Ono et al., 1988). But bitterness intensity increased substantially for a Phe only
tripeptide (Phe-Phe-Phe), which had a threshold value of 0.2 mM. Ligand binding
tests showed Phe-Phe-Phe as the strongest T2R activator (Fig. 6.2) with an EC50
(effective concentration that caused 50% activation) of 0.37 mM when compared to
7.2-7.4 mM for the Phe-containing dipeptides (Upadhyaya et al., 2010). The results
suggest that a higher hydrophobicity of the Phe tripeptide may have enhanced inter-
action with the T2R receptor, which led to stronger bitterness intensity when com-
pared to the less hydrophobic dipeptides. However, unlike Leu, L-Phe dipeptides
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Figure 6.2 Relative activation rates of T2R1 in response to different peptides calculated
based on their EC50 values. All values were normalized to the EC50 value of FFF. Adapted
from Upadhyaya et al. (2010) with permission. Copyright 2015 Elsevier B.V.
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with Gly had higher bitterness intensity but the threshold value is dependent on
amino acid position. Phe at the C-terminal Gly-Phe has bitterness threshold value
of 1.2 mM, which is similar to that of Phe-Phe but lower than the 6.0 mM value for
Phe-Gly (Ishibashi et al., 1987b). Therefore, similar to the Leu peptides, the pres-
ence of Phe at the C-terminal seems to be a critical determinant of bitterness inten-
sity of the dipeptides. Similar results were also obtained for tripeptides where it was
shown that the peptide containing Phe only had the lowest bitterness threshold value
of 0.2 mM and peptides with Phe at the C-terminal had lowest threshold values than
those with Phe at the N-terminal. Peptide bitterness intensity increased as the num-
ber of Phe residues in the tripeptides was increased. In contrast to Phe, other results
suggest that the number of Tyr in a peptide was more important than the position in
potentiating bitterness intensity. For example, Tyr-Gly and Gly-Tyr had similar bit-
terness threshold value of 3.0 mM, which decreased to 2.3 mM when both residues
were tyrosine (Tyr-Tyr). For tripeptides, Tyr in the middle position (Gly-Tyr-Gly)
had the least bitterness intensity with a threshold value of 19 mM when com-
pared to Tyr-Gly-Gly (2.3 mM), Gly-Gly-Tyr (1.5 mM), Tyr-Tyr-Gly (0.6 mM),
Tyr-Gly-Tyr (0.8 mM), Gly-Tyr-Tyr (0.4 mM) and Tyr-Tyr-Tyr (0.2 mM); there was
a slight tendency towards higher bitterness intensity when Tyr was at the C-terminal
(Ishibashi et al., 1987b).

The structure-bitterness taste properties of Asn-Ala-Leu-Pro-Glu, a strongly
bitter peptide isolated from soybean 11S glycinin has also been studied. This
peptide has a hydrophocity index of 980 cal/mol (Kim et al., 2008), which is
less than the minimum 1400 cal/mol suggested for bitter peptides (Ney, 1979).
Therefore, amino acid sequence of the peptide seems to be a more important
determinant of bitterness intensity than the hydrophobicity. This peptide lacks a
basic amino acid residue at the N-terminal while the C-terminal does not contain
hydrophobic residues, which are the structural features that have been proposed
for bitter peptides (Shinoda et al., 1987). When the C-terminal Glu was replaced
with aspartic acid (Asn-Ala-Leu-Pro-Asp), there was no change in hydrophobicity
index but the peptide lost bitterness taste and became sour or astringent (Kim
et al., 2008). Replacement of Glu with arginine (Asn-Ala-Leu-Pro-Arg) led to
increased hydrophobicity (1130 cal/mol) but bitterness intensity was reduced as
evident by the higher minimum response threshold (MRT) value of 0.420 mM
when compared to the 0.074 mM for Asn-Ala-Leu-Pro-Glu. Similarly, when the
C-terminal Glu was replaced with serine (Asn-Ala-Leu-Pro-Ser), hydrophobicity
decreased to 920 cal/mol while MRT increased to 0.250 mM, which means
higher bitterness intensity when compared to Asn-Ala-Leu-Pro-Arg. In contrast,
replacement of the C-terminal Glu with leucine (Asn-Ala-Leu-Pro-Leu) and
tryptophan (Asn-Ala-Leu-Pro-Trp) led to increased hydrophobicity while MRT
values were 0.149 and 0.105 mM, respectively. Thus since all the peptides contain
the core hydrophobic Ala-Leu-Pro sequence, difference in bitterness intensity
must be due to spatial arrangement of the amino acid residues. It has been postu-
lated that proximity of the N-terminal C=O groups to hydrophobic regions may



�

� �

�

Structural Characteristics of Food Protein-Derived Bitter Peptides 119

contribute to bitterness intensity (Kim et al., 2008). Using computer simulations,
the strongly bitter peptides (Asn-Ala-Leu-Pro-Glu, Asn-Ala-Leu-Pro-Trp, and
Asn-Ala-Leu-Pro-Leu) had similar spatial structure, especially distance between
the N-terminal C=O groups and hydrophobic regions (Kim et al., 2008). However,
the less bitter peptides (Asn-Ala-Leu-Pro-Arg and Asn-Ala-Leu-Pro-Ser) had
similar spatial structure that showed longer distances between the N-terminal
C=O groups and hydrophobic regions when compared to the intensely bitter
Asn-Ala-Leu-Pro-Glu. Table 6.2 contains several amino acid sequences as
examples of the structure-function properties discussed for bitter peptides.

6.3.4 Influence of amino acid isomeric configuration
Peptide bitterness intensity has also been shown to be strongly influenced by
amino acid configuration in terms of the L- and D-stereoisomers. For example, the
hexapeptide Arg-Arg-Pro-Pro-Phe-Phe with all amino acids in the L-configuration
had a bitterness threshold value of 0.007 mM, which is similar to the 0.006 mM
obtained for same peptide sequence but with C-2 Phe in the D-configuration
(Shinoda et al., 1986a). However, when both the Phe residues or the C-terminal
Phe were switched to the D-configuration the threshold value was increased
to 0.03 or 0.04 mM, respectively. Thus, the L-configuration of the C-terminal
Phe residue seems to be critical for potentiating bitterness of this hexapeptide.
Secondary structure measurement showed that the two Arg-Arg-Pro-Pro-Phe-Phe
peptides with C-terminal Phe residue in the L-configuration had a positive peak in
the 215-220 nm, which is different from Arg-Arg-Pro-Pro-Phe-Phe peptides with
C-terminal Phe residue in the D-configuration (Shinoda et al., 1986a). Therefore,
the similarity in the spatial structure of peptides with similar bitterness intensity is
consistent with a previous work (Shinoda et al., 1985) and suggests that secondary
structure conformation may be an important determinant. Even though D-Leu
has a sweet taste, a dipeptide containing two D-Leu amino acids has an intense
bitter taste with a threshold value of 2.5 mM, which is the same as dipeptides
that contain two L-Leu residues or a combination of one L-Leu with one D-Leu,
irrespective of the position.

6.4 PEPTIDE DEBITTERING METHODS

6.4.1 Peptide complexation
Activated carbon is highly hydrophobic and will form strong interactions with
equally hydrophobic peptides. For example, a 5% (w/v) corn gluten hydrolysate
solution was stirred with 10% activated carbon for 2 h, which was followed by
filtration through a Whatman #2 paper or centrifugation at 3,000 x g for 15 min.
Filtration and centrifugation protocols serve to remove the activated carbon (along
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Table 6.2 Structure-taste properties of typical bitter peptides.

Amino acid sequence
Threshold
value (mM) References

Arg-Arg 8.000 Otagiri et al., 1985
Arg-Arg-Arg 4.000 Otagiri et al., 1985
Pro-Pro 4.500 Otagiri et al., 1985
Pro-Pro-Pro 2.000 Otagiri et al., 1985
Arg-Pro 0.800 Otagiri et al., 1985
Pro-Arg 3.000 Otagiri et al., 1985
Arg-Gly 0.130 Otagiri et al., 1985
Gly-Arg 100 Otagiri et al., 1985
Arg-Pro-Phe-Phe 0.040 Otagiri et al., 1985
Arg-Arg-Pro-Phe-Phe 0.020 Otagiri et al., 1985
Arg-Arg-Pro-Pro-Phe-Phe 0.007 Otagiri et al., 1985
Arg-Arg-Pro-Pro-Pro-Phe-Phe-Phe 0.002 Otagiri et al., 1985
Pro-Phe-Pro-Ile-Ile-Val 0.130 Shinoda et al., 1985
Pro-Val-Leu-Gly-Pro-Val 0.500 Shinoda et al., 1985
Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val 0.004 Shinoda et al., 1985
Pro-Val-Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val 0.004 Shinoda et al., 1985
Tyr-Pro-Phe-Pro-Gly-Pro-Ile 0.160 Shinoda et al., 1986c
Pro-Phe-Pro-Gly-Pro-Ile-Pro 0.250 Shinoda et al., 1986c
Pro-Phe-Pro-Gly-Pro-Ile 0.440 Shinoda et al., 1986c
Tyr-Pro-Phe 0.400 Shinoda et al., 1986c
Pro-Phe-Pro 0.400 Shinoda et al., 1986c
Pro-Val-Leu-Gly-Pro-Val 0.500 Shinoda et al., 1986c
Val-Val 25.00 Shinoda et al., 1986b
Val-Gly 0.000 Shinoda et al., 1986b
Gly-Val 4.500 Shinoda et al., 1986b
Val-Val-Val 4.500 Shinoda et al., 1986b
Val-Val-Val-Pro-Pro 3.750 Shinoda et al., 1986b
Val-Val-Val-Pro-Pro-Phe-Leu 0.140 Shinoda et al., 1986b
Val-Val-Val-Pro-Pro-Phe-Leu-Gln-Pro 0.380 Shinoda et al., 1986b
Leu-Leu-Leu 1.200 Ishibashi et al., 1987a
Leu-Leu-Gly 5.000 Ishibashi et al., 1987a
Gly-Leu-Gly 10.00 Ishibashi et al., 1987a
Leu-Gly-Gly 75.00 Ishibashi et al., 1987a
Gly-Leu-Leu 1.500 Ishibashi et al., 1987a

(continued)
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Table 6.2 (Continued)

Amino acid sequence
Threshold
value (mM) References

Leu-Leu-Leu-Leu 0.600 Ishibashi et al., 1987a
Asp-Ile-Lys-Gln-Met 6.000 Toelstede & Hofman, 2008
Glu-Ile-Val-Pro-Asn 0.430 Toelstede & Hofman, 2008
Met-Ile 0.420 Toelstede & Hofman, 2008
Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-Asn-Ser 0.050 Toelstede & Hofman, 2008
Leu-Val-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-Asn 0.080 Toelstede & Hofman, 2008
Gly-Pro-Val-Arg-Gly-Pro-Phe-Pro 1.180 Toelstede & Hofman, 2008
Tyr-Pro-Phe-Pro-Gly-ProIle-Pro-Asn 0.230 Toelstede & Hofman, 2008

with bound bitter peptides) from solution. The obtained filtrate or supernatant was
shown to possess reduced bitterness intensity when compared to the untreated con-
trol solution (Suh et al., 2000). However, the authors showed that effectiveness of
the debittering process was highly dependent on the type of hydrophobic matrix
used for complexation and hydrolytic specificity of the protease. Bitterness inten-
sity of the hydrolysates was shown to have positive correlation with peptide surface
hydrophobicity, which confirms contribution of hydrophobic amino acids. A skim
milk protein hydrolysate was also shown to be successfully debittered using acti-
vated carbon; sensory evaluation showed that a beverage containing 10% of the
treated hydrolysate was as acceptable as regular orange juice but apple juice was
preferred (Helbig et al., 1980). In a follow-up work, it was shown that the debittered
milk protein hydrolysate had reduced contents of Phe and Tyr, which may have
contributed to the reduced bitterness after activated carbon treatment (Ma et al.,
1983).

Complexation with cyclodextrin (CD) has also been used to reduce bitterness
of protein hydrolysates. CD is ideally suited for complex formation because its
hydrophobic cavity can form strong interactions with hydrophobic bitter peptides,
which become sequestered and unable to interact with bitter taste receptors during
oral consumption. A 5% aqueous solution of an alcalase digest of soybean protein
was mixed with 3 or 5% (w/v) CD and then subjected to sensory evaluation by a
6-member human taste panel (Linde et al., 2010). Their results showed that the bit-
terness intensity of the soybean protein hydrolysate containing 3% (w/v) CD was
about 50% less than the untreated sample. When the CD level was increased to
5% (w/v), bitterness intensity of the soybean protein hydrolysate was reduced by
90%. Complexation strength of CD may be increased at acidic pH values where
the peptides carry no ionic charges and would interact better with the hydropho-
bic CD core. Cold temperature may also enhance CD complexation with peptides
since there is decreased molecular vibration which reduces potential disruption
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of the CD-peptide complexes (Linde et al., 2010). The advantages of acidic and
cold environments make CD a good choice to formulate non-bitter or weakly bitter
soft drinks and juices that are formulated with protein hydrolysates. Since the CD
sequesters mostly the hydrophobic peptides, the remaining peptides will be rich in
hydrophilic (and likely acidic) peptides. Coupled with the acidic pH of these bever-
ages, the use of CD may allow incorporation of higher levels of peptides, especially
to achieve therapeutic levels such as for antihypertensive and antioxidant effects.

6.4.2 Hydrophobic column adsorption
Since several bitter peptides have been shown to consist of hydrophobic amino
acid residues, passage of a bitter peptide mixture through a hydrophobic column
could enable separation of the hydrophobic peptides to produce a more hydrophilic
peptide mixture with reduced bitterness intensity. A bitter casein hydrolysate was
passed through a C8 or C18 column followed by elution with water to collect
unbound hydrophilic peptide fractions as the debittered product (Lin et al.,
1997a,b). The column was then regenerated by washing with absolute ethanol
to remove bound bitter peptides. A phenolic resin column was also used and the
bitter casein hydrolysate passed through; the effluent collected before appearance
of the highest peak at 280 nm was collected as the debittered fraction (Lin et al.,
1997a,b). Results showed that the C18 column and the phenolic resin column were
the most effective in removing a broad range of hydrophobic peptides, whereas
the C8 column removed mostly the strongly hydrophobic peptides. Amino acid
composition also showed reductions in contents of Phe, Pro and Tyr in debittered
fractions collected from the C18 and phenolic resin columns. But the phenolic
resin column had a poorer yield of non-bitter peptides because it removed both
hydrophobic and hydrophilic peptides. In contrast the C18 column seem to work
best by producing a higher yield of non-bitter peptides since it binds mostly
hydrophobic peptides. Overall, the C8 column products still retained bitterness
attributes whereas the C18 and phenolic resin products had reduced bitterness
intensities. Lin et al. (1997a,b) reported optimized conditions for the use of C18
adsorption columns to dibitter protein hydrolysates. Their results showed that a
column diameter-to-height ratio of 1.33-5.0 coupled with a linear flow rate of
200-400 cm/h and feed concentration of up to 30% (w/v) had a debittered protein
hydrolysate yield of up to 72% and was effective up to 70 debittering cycles.

A macroporous adsorption resin was used to separate whey protein hydrolysate
(WPH) into various peptide fractions that were then evaluated for bitterness inten-
sity. An aqueous WPH solution (2 mg/ml, pH 6.5) was pumped through a glass
column (500 ml capacity) packed with styrene-based macroporous resin followed
by washing with water (Cheison et al., 2007). The adsorbed peptides were then
eluted stepwise with 20, 40, and 75% (v/v) alcohol to give three fractions (F1, F2,
and F3, respectively), which were then analyzed for amino acid composition and
bitterness intensity. The contents of hydrophobic amino acids for F1, F2, and F3
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were 27, 37, and 46%, respectively, which was directly correlated to the bitterness
intensity. The F1 had no detectable bitter taste while F2 had some bitter but F3
had a very bitter taste. Therefore, F1 and F2 fractions contain peptides that may be
used to formulate products with reduced or zero bitterness intensity. Moreover, a
previous work has shown that acidic pH or acidic peptides could suppress human
bitter taste receptor and mask the bitterness taste of foods (Sakurai et al., 2009).

6.4.3 Enzyme treatment
Most bitter peptides contain amino acid residues at the N- or C-terminal positions
and this locations have been shown by many researchers to potentiate peptide bit-
terness (Matoba & Hata 1972; Otagiri et al., 1985; Ishibashi et al., 1987a,b). In
addition, peptide chain length seems to be directly related to bitterness intensity
(Ishibashi et al., 1987a,b). Therefore, application of exopeptidases could provide
an effective means of reducing the amount of hydrophobic amino acids at the
peptide chain terminals while at the same time result in reduced chain length.
Arai et al. (1970a) and Fujimaki et al. (1970) performed batch treatments of soy-
bean protein hydrolysates with carboxypeptidase A (removes amino acids from
the peptide C-terminal) to reduce bitterness intensity. In one of the experiments,
the carboxypeptidase A-treated soybean hydrolysate solution was dialyzed against
water for 48 h at 5 ∘C, which allowed separation of the cleaved free amino acids
from the debittered peptides (Arai et al., 1970a). Wheat carboxypeptidase treat-
ment was also shown to be effective in reducing bitterness intensity of casein with
an inverse relationship between amount of released hydrophobic amino acids and
bitterness intensity of the product (Umetsu et al., 1983). A serine carboxypepti-
dase extracted from the Japanese common squid hepatopancreas was shown to be
effective in eliminating the bitterness taste of a soybean digest prepared by pepsin
digestion (Komai et al., 2007). In contrast, the serine carboxypeptidase was not
efficient in reducing bitterness intensity of tryptic digest of casein or peptic digest
of corn. Therefore, the efficiency of some carboxypeptidases may be dependent
on the amino acids involved in peptide bond formation. For example, the serine
carboxypeptidase had the highest rate of hydrolysis when the peptide bond is the
Phe-Leu type but low rates for Phe-Pro, Gly-Val, Gly-Phe, Gly-Met and Gly-Leu
(Komai et al., 2007). Gly-Pro, Gly-Lys and Pro-Pro were resistant to hydrolysis by
the serine carboxypeptidase.

A casein hydrolysate was treated with an aminopeptidase, which removes
amino acids from the peptide N-terminal (Minagawa et al., 1989). Hydrolysis
with aminopeptidase was carried out at pH 8.5 and 60 ∘C followed by sample
evaluation for amino acid release up to 20 h. The results showed that Phe, Ala,
Val, Tyr and Leu were the most released amino acids, which could account for
the decreased or eliminated bitterness intensity of these protein hydrolysates. This
is because peptide bitterness intensity is highly potentiated by the presence of
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hydrophobic amino acids. Bitter peptide fractions were collected by passing a
pepsin digest of casein through Sephadex G-15; the fractions were then treated
for 3 h with aminopeptidase II isolated from Penicillium caseicolum (Matsuoka
et al., 1991). Amino acid analysis showed that bitterness intensity was inversely
related to level of cleaved amino acids, which were mainly Thr, Ser, Leu, Met,
Phe, and Lys. A similar work also showed that an aminopeptidase N obtained
from Lactococcus lactis could degrade a bitter tryptic β-casein digest to give
a product with reduced bitterness and peptides with reduced hydrophobicity
(Tan et al., 1993). Interestingly, most of the non-bitter peptides were resistant to
hydrolysis by the aminopeptidase N and overall, the bitter score was shown to
be inversely related to incubation time, which indicates gradual degradation of
the bitter peptides. A similar work used Aeromonas caviae aminopeptidase but
found higher debittering activity with soybean protein hydrolysates than casein
hydrolysate (Izawa et al., 1997). Over 76% of the released free amino acids
consisted of hydrophobic residues such as Phe, Tyr, Val, Ile, and Leu, which led
to decreased peptide hydrophobicity and hence decreased bitterness intensity. The
lower debittering efficacy against casein hydrolysate was believed to be due to
the presence of several proline residues in the casein peptides. This is because
the A. caviae aminopeptidase cannot remove amino acids that are adjacent to
proline, which leads to fractional accumulation of bitter proline-rich peptides
(Izawa et al., 1997). A recent work showed that for a thermolysin whey protein
hydrolysate, exopeptidase treatment was a more effective debittering method than
aminopeptidase treatment (Cheung et al., 2015). Therefore, choice of enzyme
treatment will depend on the protein hydrolysate substrate and it may be necessary
to test various debittering exopeptidases in order to determine the most effective.

Bitter peptides have been shown to consist of several proline (Pro) residues;
Pro-Pro peptide bond is believed to be resistant to hydrolysis by most endopro-
teases, which could lead to accumulation of such peptides and increased bitterness
intensity of the food product (Edens et al., 2005). Therefore, the use peptidases such
as prolyl endoprotease that have specificity for the Pro-Pro bond could enhance
degradation of bitter peptides and reduce bitterness intensity of food products.
A bitter casein hydrolysate obtained by treatment with thermolysin or subtilisin
was subjected to proteolysis by a proline-specific protease that was isolated from
Aspergillus niger. Human sensory evaluation of the hydrolysates showed a high
bitterness intensity score of 4 for the thermolysin or subtilisin hydrolysate. In con-
trast, incubation of the thermolysin and subtilisin hydrolysates with A. niger prolyl
endoprotease led to a low bitterness score of 1, which confirms debittering ability
(Edens et al., 2005). HPLC analysis of the prolyl endoprotease digest showed a
substantial decrease in the hydrophobic peptides fraction, which was attributed
to hydrolysis of the Pro-Pro bonds in the thermolysin and subtilisin hydrolysates.
The decreased bitterness intensity of the prolyl endoprotease digests was attributed
to decreased hydrophobicity that resulted from peptide degradation through
hydrolysis of Pro-Pro peptide bonds.
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6.5 CONCLUSIONS

Recent advances in the functional foods and nutraceuticals industry have led to
increased production of protein hydrolysates for potential use as therapeutic agents.
Associated with these protein hydrolysates is the presence of bitter peptides, which
can have a negative influence on the taste and consumer acceptance of formu-
lated foods. Therefore, there is need for additional research that will discover new
proteases to produce non-bitter bioactive protein hydrolysates. Research is also
required to produce novel bitter taste blockers to be used in suppressing bitter-
ness properties of bioactive protein hydrolysates such that therapeutic uses can
be achieved. These approaches are critical in producing next generation of pro-
tein hydrolysastes because current methods that involve complexation or exopep-
tidases are likely to inactivate bioactive peptides, which will prevent therapeutic
use. Cheese is another food product that has the intrinsic problem of developing
bitter peptides during manufacture or aging. Future research activities should build
upon current knowledge of bacteria cultures that do not produce bitter peptides.
Advances in bacteria biotechnology can lead to identification of species that can
suppress bitter peptides formation during cheese aging, which will allow produc-
tion of cheese products (especially Cheddar) with reduced bitter taste and enhanced
eating quality.
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7 Sensory Evaluation Techniques for
Detecting and Quantifying Bitterness
in Food and Beverages

Donna Ryland, Erin Goldberg, and Michel Aliani

7.1 SCREENING METHODS

The ability of subjects to detect bitterness at a level that will be high enough to
detect in food and beverage products is critical. Humans vary in their sensitivities
toward bitterness as well as other compounds. Screening tools have been developed
for this purpose. In many studies, researchers will initially screen for bitterness
perception prior to recruitment for further sensory analysis. After the screening
process, panelists used in this capacity are certainly not representative of a normal
population wherein bitterness perception can differ greatly. At the same time, it
is a useful tool to determine subtle differences between bitter products that some
consumers cannot perceive, and it is inherent to test these products in those who
are sensitive to bitterness and who it would ultimately affect. Bitterness sensitivity
can be determined with triangle tests, a method that presents two blank samples
with one sample containing the bitter stimuli. The bitter stimuli can be set at levels
appropriate for the product being studied. Seo, Lee and Baek (2008) used this
method for selecting 10 panelists to evaluate the bitterness in enzyme hydrolyzed
soy protein isolates. Information was provided by Kranz et al. (2010) regarding
performance levels required by panelists in order to participate in the sensory test-
ing. Caffeine was among other solutions containing stimulants for the four basic
tastes, and astringency that were presented in low concentrations.

Panelists needed to correctly identify at least 7 of the 10 solutions including at
least one of the two containing caffeine. Secondly panelists were presented with
aqueous samples containing 30 and 60 mg of the polyphenol solution contained
in the olive leaf extract under study. Panelists with correct responses regarding
the presence of bitterness and its ranking were allowed to proceed to further sen-
sory studies. These screening methods are detailed in ISO standard methods ISO
4120 (2004) for triangle testing and, ISO 8587 (1998) for ranking. The ability to
taste PROP, a bitter compound, is one way to determine that potential subjects can
perceive this tastant. Whether it is related to an individual’s ability to perceive
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bitterness in other compounds or food matrices and at what level is difficult to
determine. Kobue-Lekalake, Taylor, & de Kock, (2012) used this as part of their
criteria for panelist participation but it is not noted as a common screening tool.

In addition to sensitivity of bitterness, other things need to be considered for
successful sensory evaluation by human subjects. Subjects participated in a very
thorough screening process for the study of the sensory characteristics of honey,
including bitterness perception (González, Lorenzo & Perez, 2010). The first part
included information gathered on age, gender (to maintain a panel with equal male
and female numbers), health, motivation, performance in acuity testing, interest,
and availability for at least 80% or more of the scheduled sessions. For subjects
who passed part one, further selection was made according to specified standards
(ISO 8586:1, 1993) which included performance in discrimination (paired com-
parison, triangle and rank testing) and descriptive flavor profile analysis. Scaling
exercises were conducted for quantitative response scales (ISO 4121, 2003) and
estimation of percentage of shaded portions for geometrical designs. Penci et al.
(2013) used eight screening criteria in their study of the relationship between sen-
sory, and chemical and physical parameters of pistachio nuts as follows: no food
allergies, nonsmokers, complete natural dentition, aged 18 to 64 years, consume
nuts, availability for sessions, interest, verbal communication skills regarding sam-
pling. Other researchers conducted acuity testing to determine sensitivities to basic
tastes (Heiniö et al., 2012; Kreutzmann, Christensen & Edelenbos, 2008). Interest
and availability may be the only criteria sought in the screening process (Fontoin
et al., 2008; Saenz-Navajas et al., 2010).

Another type of selection criteria is to recruit those based on their experience.
The experience could be in overall sensory testing (Yousfi, Cayuela & Garcia,
2008), tasting a wide variety of food products for a long period of time that
is, >2000 hours (Miller & Chambers, 2013), the specific product being tested
(Sokolowsky & Fischer, 2012) and experience with the test method being
employed (Esti et al., 2009). This would also be the case when using experts for
panelists (Chira & Teissedre, 2013). Inarejos-Garcia et al. (2009) used panelists
that had been trained by the International Olive Oil Council another form of
screening. The many variations in selection criteria reflect objectives of the study.

7.2 TEST METHODS

Several studies utilize a trained, expert and/or consumer panel to evaluate bitterness
in food and beverages. It is important that consumer panels be used to determine any
possible differences in food and beverages, which could affect their palatability and
acceptability. This is extremely critical in functional food development, as func-
tional ingredients tend to decrease palatability, and many nutritious compounds are
inherently bitter, like polyphenols. The completion of a consumer panel should be
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the first step in analyzing bitter food products. Thereafter, if differences in accept-
ability are found, the use of trained panels can be used to further understand the
specific attributes in such products.

Based on principles outlined in Frank, Ottinger, & Hoffman (2001) taste dilution
analysis (TD) uses a series of samples that are diluted to determine the threshold of
tastants. This is particularly useful for compounds like bitterness that have very low
thresholds. The dilution factor was calculated as the taste difference between the
diluted fraction that could just be detected, and two blanks. Thus a higher dilu-
tion factor means the compound is detected in lower levels. Seo, Lee, & Baek
(2008) used this technique to determine the bitterness of the degree of hydroly-
sis over time for six selected enzymes which could be used in soy protein isolate
hydrolysates. This method has an element of screening to it as enzymes with high
TD factors would exhibit high bitterness intensity and low detection threshold. Of
the six enzymes tested Flavourzyme showed a TD factor of 0 which would warrant
further investigation of this enzyme for reduction of bitterness in soy protein iso-
lates. Frank, Ottinger, & Hoffman (2001) studied the thermal reactions that produce
bitter taste. They concluded that quinizolate had a very low detection threshold and
a very high TD factor compared to other compounds studied including caffeine and
quinine hydrochloride.

Ranking as its name suggests is a method whereby a group of samples is placed
in order from least to most bitter for example. Sums of the rankings are compared
for the samples and non-parametric statistics applied to check for significance.
Koprivnjak et al. (2009) used this method to determine which level of phospholipid
to include in olive oil in order to decrease bitterness perception.

Quantitative Descriptive Analysis (QDA) provides a sensory description of the
product expressed in numerical format. Bitter taste is a component in many food
products and ingredients. The ability to quantify the level allows for correlation
with other measures such as chemical composition and consumer acceptability.
Decreasing the bitterness in a food matrix can alter the perception of other tastes
and flavor as well. The effect can only be determined by measuring all of the exist-
ing product attributes. The QDA method (Stone, Bleibaum & Thomas, 2012) is
measurement of sensory attribute intensities by a small group of individuals (10
to 12) that have been screened for particular abilities and characteristics. Develop-
ment of the product sensory descriptors and definitions, use of the intensity scale,
and protocols regarding sample handling and testing procedures are facilitated by
a group leader during training sessions. Length of training varies depending on
the study objective and can be done intensively by running a number of sessions
over a short period of time, or spread over a longer period of time with sessions
held intermittently. Screening of panelists and selecting those with specific abil-
ity such as low bitterness threshold for caffeine aqueous solutions can decrease
training time. Selecting those with prior experience with the particular test method
and/or product category can also lead to shorter training time as documented by
Le Berre et al. (2013) who selected panelists with years of experience that were
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screened and had experience with the time intensity method. Bitterness was the
only attribute measured. On the other hand, Penci et al. (2013) trained panelists for
a complete sensory description of pistachio nuts during 24 sessions of two hours
each spanning a three-month period.

Once training is complete attribute intensities are evaluated individually at
personal workstations. This feature is the basic difference between QDA and
the traditional flavor profiling sensory method whereby the group of trained
individuals reaches consensus regarding the attribute intensities of food products
(Keane, 1992).

The relation between bitter taste and phenolic compounds was studied in eight
carrot genotypes (Kreutzmann, Christensen, & Edelenbos, 2008). A 10-member
panel was used that was screened on basic taste, odor detection and color vision
and also their ability to communicate the descriptions of sensory attributes as noted
in the ISO 8586-1:1993 standard. Six attributes including bitterness were agreed
on and defined by the group. An unstructured 15-point line scale was used to mark
intensities from low (0) to high (15). Bitterness intensity for the cultivars ranged
from 2.1 to 10.4 on the 15 cm scale but no information was given regarding the
association between bitter amounts and the scale value. Some phenolic compounds
were correlated with bitterness but not the one in the highest amount, which was
present in amounts greater than detection level. This could possibly be due to a
masking effect by high sugar levels.

The effect of roasting and salting methods on the sensory, and physical and
chemical parameters of pistachio nuts was studied by Penci et al. (2013). Eight
screening criteria for the 12 panelists included no food allergies, nonsmokers, com-
plete natural dentition, aged 18 to 64 years, consume nuts, availability for sessions,
interest, verbal communication skills regarding sampling. Two aroma attributes,
four basic tastes, and texture and appearance attributes were defined during the
training period and evaluated using a 10 cm unstructured scale from 0 to 10. All of
the mean values for bitterness were less than 1 on the 10 cm scale. A value of 1.2 on
the scale corresponded to the bitter taste of a 0.05% caffeine solution. From prin-
cipal component analysis it was determined that drying of the nuts was associated
with higher bitterness compared to roasting.

The QDA method has been used extensively for quantitating bitterness in a vari-
ety of food products with some alterations. In some cases a partial description of the
product is analyzed. Bitterness was one of two attributes that were deemed impor-
tant attributes of Pilsner beer samples (Da Silva et al., 2012). Fifteen volunteers
took part in a 5-day training period where they learned the low level of bitterness
(diluted beer with an undisclosed amount of deionized water) 1 on a 9-point scale
and full-scale bitterness (undiluted beer spiked with an undisclosed amount of caf-
feine) 9 on the 9-point scale. The resulting bitterness scores for the 32 beers tested
ranged from 2.1 to 8.4, which the authors concluded would provide a good sam-
ple set for correlational data from headspace solid phase microextraction – gas
chromatography with mass spectrophotometric detection.
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Sanchez-Molinero & Arnau (2010) used QDA to determine bitterness intensity
of dry cured ham varying in the type of atmosphere in the packaging. Selection
and training of the six panelists was done according to ASTM and ISO method-
ologies. They had at least 10 years of experience in the evaluation of dry cured
hams. Bitterness was defined as the taste perceived from caffeine and L-tryptophan
and measured on a 10 cm non-structured scale from 0 (absence) to 10 (maximum
intensity). Samples stored 289 days with reduced oxygen atmosphere in the pack-
aging resulted in significantly higher bitterness (2.0 on the 10 cm scale) compared
to samples stored 289 days with air or 214 days with air and 75 days with reduced
oxygen. Bitterness perception again was not related to the measurement scale with
a specified amount of caffeine or tryptophan.

Scaling methods used to measure bitterness intensity include 0 = low and 15 =
high on an unstructured 15-point scale (Kreutzmann, Christensen, & Edelenbos,
2008); 0 = absence of bitterness and 10 = maximum intensity on a non-structured
scale (Sanchez-Molinero & Arnau, 2010); 0 to 10 cm from non-bitter to extremely
bitter (Kranz et al., 2010); 0 = lowest intensity; 10 = highest intensity on a con-
tinuous non structured (Heiniö et al., 2012); 0 = not noticeable to 10 cm = very
strong (Sokolowsky & Fischer, 2012); 9-point scale where 1 = none, 5 = definite,
9 = pronounced (Agrawal & Hassan, 2007); 7-point scale (Chira & Teissedre,
2013); and a 6-point scale where 0 = no perception; 1 = scarce; 2 = light; 3 =
middle; 4 = strong; 5 = intense (Koprivnjak et al., 2009). It appears that the 0 to
10 scale is most common. The analysis for the majority of these results is based on
calculation of a mean value of the intensity scores for each panelist. It was noted
however that Inarejos-Garcia et al. (2009) used the median score for the analysis of
data collected from a 10 cm non-structured scale. Generally panelists are asked to
make two to three evaluations of the same samples on different days. Measures are
deemed to be continuous and thus analysis of variance is performed to determine
treatment differences followed by multiple comparison testing such as Tukey HSD,
Duncan multiple range, Student-Newman-Keuls, and Fisher LSD.

General Labeled Magnitude Scale is another method suitable for measuring bit-
terness. Briefly the scale is a ratio scale that can be used to quantify taste in all forms
and quantities. The vertical scale from 0 to 100 was developed using geometric
means of magnitude estimates of six verbal descriptors. 1.5 = barely detectable;
6 = weak; 17 = moderate; 35 = strong, 52 = very strong and 100 = strongest
imaginable (Green, Shaffer, & Gilmore, 1993). Keast (2008) used this method for
evaluating the effect of four compounds – sodium gluconate, zinc lactate, sucrose
and milk fat on the bitterness of caffeine. Sodium gluconate was the only compound
that did not reduce bitterness perception of caffeine.

Time intensity methodology emphasizes the importance of bitterness duration
and sample bitterness intensities at specified intervals or as a continuous tracking
during the time frame associated with perception from the time the sample is placed
in the mouth until the bitterness perception is gone which could be well beyond the
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point of swallowing. Various measures can be taken to provide a continuum of
bitterness perception (Lawless & Heymann, 2010).

Le Berre et al. (2013) measured bitterness of theobromine, a bitter compound in
cacao, during consumption of chocolate ice cream and 4 minutes after swallowing.
Panelists were coordinated for number and size of bites (6 bites every 45 sec) fol-
lowed by swallowing (4.5 min from start) and tracking of bitterness for a total test
time of 10 minutes. Three measurements were taken – total area under the curve
for the bitterness perception for the whole product over the total time of evalua-
tion; the point over this period where bitterness peaked; the time where bitterness
was no longer perceived. A more complete understanding of the bitter perception
is provided as time passes.

Dual Attribute Time Intensity, first documented by Duizer, Bloom, & Findlay
(1997), measured sweetness and peppermint flavor in chewing gum simultaneously
over time. Advantages of the dual attribute over the single attribute method were
reduction in testing time by half and additional information regarding interactions
of the two attributes. Recognizing that bitterness and astringency are lingering
sensations Kobue-Lekalake, Taylor & de Kock., (2012) used dual attribute time
intensity for sorghum infusion analysis. The panelists participated in a previous
study and completed an additional 10 hours of training to be familiarized with the
time intensity method. Proficiency using the measuring scale for each one of the
attributes was completed before the task of evaluating two attributes was under-
taken. A line scale with 10 markings was labeled ‘none’ at 0 and ‘extreme’ at 100.

Bitterness was measured on a vertical line and astringency on a horizontal line.
The panelist moved the ’marker’ diagonally to the right as intensity increased and
moved it to the left as the intensity decreased. Instructions for panelists were to
hold the sample in the mouth while swirling for 15 seconds and to expectorate the
sample. Bitterness and astringency were evaluated as soon as the sample entered
the mouth and continued for 90 seconds. Significant differences between the tannin
and tannin free sorghum infusions were similar between the maximum bitterness
intensity and the one time bitterness evaluation of the original study. Bitterness
maximum intensity appeared before the astringency maximum. In addition, the
more bitter the sample the more astringent it was. The duration of bitterness and
astringency attributes varied by individual.

Temporal Dominance of Sensations (TDS) records the perception of up to 10
sensory attributes in the same product over time. Whatever is perceived as dom-
inant at the time is selected from the predetermined list and is recorded with the
corresponding intensity (Pineau et al., 2009).

Meillon, Urbano, & Schlich (2009) used this method to determine the effect of
decreased alcohol content in red wines. Complete flavor profiling was done first to
determine the attributes followed by TDS. Some products that were not found to
be significantly different with profiling were found different for the TDS method
including a decrease in bitterness due to astringency and a decrease in bitter due to
an increase in fruity sensations.
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More than one test method may be employed to satisfy the objectives of the
study. In the study by Heiniö et al. (2012) subjects first took part in a Difference from
Control sensory test. Samples of rye flour/water suspensions treated with enzymes
were compared to a reference or control sample where samples higher in bitterness
than the control could be assigned values up to +5 (clearly more bitter than control)
and those lower in bitterness than the control assigned a value of −5 (clearly less
bitter than control) with points between. Samples with bitterness greater than the
control were quantified using QDA along with five other flavor attributes. It was
found that the formation of small peptides as a result of enzymatic reaction con-
tributed to the bitter flavor of the rye suspensions, information that will be critical
for the development of healthy foods containing rye.

Esti et al. (2009) used both QDA and time intensity analysis to determine the
relationship between bitterness and pungency of extra virgin olive oil containing
different levels of phenolic compounds. At the lower levels of bitterness and pun-
gency results from time intensity yielded differences in samples not found from
QDA results.

Bitterness of white wine was studied using three sensory methods QDA, time
intensity and temporal analysis (Sokolosky & Fischer, 2012). From the quantitative
descriptive analysis of 28 different wines, 13 were selected for duration studies as
they showed a variety of flavors as well as a range in bitterness. It was determined
that information from all of the three methods was useful in characterization of the
bitterness attribute for the wines.

Bitterness detection, recognition and increase in bitterness in smoothies with
different levels of polyphenol from olive leaf extract was completed by 11 pan-
elists who had detected bitterness in one or both of the following solutions: caffeine
(30 mg/100mL) and tannin (30 mg/100 mL) (Kranz et al., 2010). The sample was
selected that was clearly bitter to test the effect of three different bitter masking
agents. Subjects were asked to rank bitterness of smoothies that contained a bit-
ter masking agent at increasing concentrations so that ideally the samples with
increased levels of masking agent would be ranked lower for bitterness than those
without the agent. As ranking only provides information regarding ordering of
the samples for bitterness further sensory analysis was done to determine sam-
ple bitterness levels from non-bitter (0) to extremely bitter (10) on the 10 cm line
scale. Sodium cyclamate in smoothies reduced bitterness significantly compared
to sodium chloride which actually was perceived as more bitter than the smoothie
with no masking agent.

7.3 TECHNIQUES TO MAXIMIZE BITTERNESS
PERCEPTION

General panelist requests for palate preparation prior to testing include the request
to refrain from eating, drinking, chewing gum or smoking 1 hour prior to sensory
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evaluation (Keast, 2008; Sun et al., 2011). In addition, specific protocols to increase
sensitivity to bitterness perception due to bitter compounds having a lingering sen-
sation include no coffee one hour prior to testing (Sokolowsky & Fischer, 2012;
Kranz et al., 2010). To block interfering volatile perception, nose clips were applied
to enhance the ability to detect bitter taste of bread crumb and crust (Bin et al., 2012)
and chocolate and coffee (Keast, 2008). Expectoration may be encouraged (Miller
& Chambers, 2013; Heiniö et al., 2012) to facilitate cleansing of the palate between
samples and to avoid carry over from the previous sample (Lawless & Heymann,
2010). Time between samples also is advised to refresh the palate of bitterness and
prepare for future tasting. Heiniö et al. (2012) requested a one minute wait time
for samples containing rye, two minutes between samples was implemented for
dry white wine (Sokolosky & Fischer, 2012) and, four minutes was requested for
sorghum infusions (Kobue-Lekalake, Taylor & de Kock., 2012).

Palate cleansers after sample ingestion are also documented to mitigate the
effects of lingering bitter taste in addition to preventing adaptation to a particular
tastant which could affect intensity ratings of other tastants being evaluated. A
wide variety of palate cleansers both singly and in combination are noted for
various food products. Raw carrot and deionized water were used for sorghum
infusions (Kobue-Lekalake, Taylor & de Kock., 2012); still water and unsalted
crackers for dry white wine (Sokolosky & Fischer, 2012) and bread crust and
crumb (Bin et al., 2012); spring water for lentil sprouts (Troszynska et al., 2011);
odorless water and green apple for pistachio nuts (Penci et al., 2013); a selection of
one of the following four items to be used consistently for black walnuts-deionized
reverse osmosis water, baby carrots, mozzarella cheese, skinless cucumber slices
(Miller & Chambers, 2013); apple, crisp bread and water for virgin olive oil
(Koprivnjak et al., 2009); apple and water for olive oil (Garcia-Mesa et al., 2008);
tap water and unsalted crackers for olive leaf fortified fruit smoothies (Kranz et al.,
2010); warm water for ice cream (Esti et al., 2009); and deionized water for bitter
solutions (Keast, 2008) and tannin extracts (Fontoin et al., 2008). The effectiveness
of palate cleansers for cream cheese with increasing levels of caffeine was studied
by Johnson & Vickers (2004). No differences were found in bitterness detection
or residual mouth buildup for water, rinsing with water six times, carrot, cracker,
cream cheese, or nothing. Sparkling water reduced bitterness perception for all
of the samples compared to the other cleansers. They postulated that perhaps the
activity of rinsing helped to reset the mental function for preparation for the next
sample rather than the rinse agent itself.

7.4 USE OF STANDARDS

The majority of food products being tested for bitterness include beer, tea (black,
oolong, yerba), vegetable oils (olive), nuts (peanuts, walnuts), cocoa products
(nibs, liquor, chocolate), dairy (yogurt, UHT milk, ultrapasteurized milk, cheese),
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meat (chicken, pork), wine (red, white), various vegetables (carrots), and func-
tional beverages, among others. With the wide variety of bitter products being
tested for, which contain a variety of bitter compounds, in lies the predicament
of standardization of standards used in training sessions. Typical standards used
in research for this purpose include solutions of caffeine, quinine sulfate, quinine
chloride, quinine dihydrochloride, L-tryptophan, glycyl-L-leucine and catechin.
Concentrations of such standards also vary depending on the food or beverage
being tested. In addition, reference standards of very bitter foods, typically that
are being tested, are also used in many trials. For instance, in a sensory panel
conducted in Jinap, Jamilah, and Nazamid (2004), in which various cocoa liquors
were being tested, a very bitter Ghanaian cocoa liquor was used as the bitter
standard to demonstrate this attribute. Of course, there are a variety of compounds
and ingredients that are bitter, and the standard chosen is highly dependent on
the food products that are being tested. For instance, in a trial testing wines
rich in catechins, catechins (bitter) will likely be chosen as a reference standard
over caffeine. There is also a certain amount of variation in concentration of
reference solutions, or the strength of bitterness that these reference standards
have. This variation will impact the conclusions that can be drawn from such
studies, especially when differing methodologies are used, and comparing studies
can be quite difficult because of this.

In some cases, bitter products may pose health problems if consumed. Many of
the earlier sensory panels used quinine solutions as bitterness standards; however,
concern over the potential of serious health problems, including possibility of death
caused the United States Food and Drug Administration to ban over-the-counter
quinine in 1994. However, many sensory panels continued to use quinine as stan-
dards in the early 2000s. The possibility that certain standards or ingredients may
be deemed unacceptable for use in the future impacts the consistency of sensory
testing across time.

7.5 CONCLUSION

The presence of bitterness in food products significantly affects consumer accept-
ability, which can result in a decrease in consuming products that benefit human
health, which are typically bitter in taste. In order to detect and quantify bitter-
ness, a number of sensory methods are available to test for bitterness of foods
and beverages: taste dilution analysis, ranking, quantitative descriptive analysis,
time intensity among others. Depending on the product being tested and the objec-
tive, the method of testing will change, as will the use of certain bitter compounds
used as standards in trained panels. Sensory evaluation of bitterness is and will
continue to be increasingly important with the creation of novel functional food
products.
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8 Analysis of Bitterness Compounds
by Mass Spectrometry

Geraldine Dowling

8.1 INTRODUCTION

The sensation of bitterness caused by “bitter compounds” can be equated with
dietary danger. In nature, microbiological fermentation products, hydrolysed pro-
teins, plant-derived alkaloids and other toxins usually have a bitter taste. Plant based
foods are very diverse and foods such as beans and peas, potatoes, yams, cabbage,
pumpkins, cucumbers, lettuce, spinach and kale contain bitter compounds. Due to
the wide distribution of plant based bitter toxins, efforts to develop less bitter cul-
tivars of common plant foods may have been conducted primarily based on their
safety concerns rather than their taste. It has been the ultimate goal of science to
explain how so many structurally unrelated compounds can give rise to a bitter
taste. There are a wide variety of bitter compounds that can impart bitter taste. Bit-
ter tasting compounds (bitter agonists) can be present in a multitude of foods not
just plant based foods and consumer products. Although in some cases these com-
pounds can also contribute to the formation of desirable sensory attributes with a
specific contribution to their characteristic taste (e.g., caffeine in tea or coffee, qui-
nine in bitter-lemon drinks or bitter compounds such as humulones or iso-α-acids
obtained from hop in beer), in most cases, the presence of these compounds lower
food values as bitterness can be considered an undesirable sensory attribute in some
foods.

Several bitter compounds in foods have been associated with health benefits.
Certain virgin olive oils have very beneficial health effects. Studies have shown
consumers have preferences for olive oils with low or moderate levels of bitter-
ness (Mateos et al., 2004). Chemopreventive phytonutrients are naturally present
in plant foods and can beneficially improve human health. During food production
and food processing, methods are developed to enhance and preserve these phy-
tonutrients. In addition, functional foods are created by adding phytonutrients to
foods at high concentration levels. It is well known that a number of phytonutri-
ents such as phenolic compounds, flavonoids, terpenes and glucosinolates are bitter
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or astringent (Drewnowski & Gomez-Carneros, 2000). This causes difficulties in
enrichment because consumers mostly do not tolerate the bitter taste in food.

Therefore, strategies are needed to understand the unpleasant taste of bitter com-
pounds. There is also a need to develop and identify bitter taste masking substances.
Sensory methods are usually performed to identify bitter taste masking compounds,
that is, by equating the taste of a mixture of bitter tasting compound and bitter antag-
onist with the taste of the bitter compound alone, and by screening in the presence
of a bitter compound with/without a bitter antagonist. Sensory screening is both
time and work consuming and generally performed on toxicologically harmless
compounds. Determination of bitter compounds by means of sensory evaluation
techniques using human panels and instrumental counterparts such as the elec-
tronic tongue are described in Chapters 10 and 11, respectively. The development
of quantitative chemical analysis methods for potential bitter compounds in differ-
ent foods, combined with sensory analysis is necessary to identify key compounds
responsible for bitterness.

Rapid screening methods such as immunoassays or conventional high per-
formance liquid chromatography (HPLC) or gas chromatography (GC) in
combination with a variety of detectors are useful tools in modern laboratories but
technologies are rapidly evolving. Nowadays, analytical instruments which gained
substantial ground in food testing are the hyphenated techniques of GC-MS and
LC-MS. Over a number of years, the strategies adopted to determine trace levels
of compounds in food has changed dramatically moving away from the use of GC
with various detectors to the sensitivity and specificity offered by mass spectrom-
etry (MS). The combination of MS with either liquid chromatography (LC) or GC
has been well recognized and recommended for quantitative and semi-quantitative
screening. The technique of GC-MS is suitable for the analysis of volatile and
semi-volatile bitter compounds and for compounds that can be derivatized in order
to increase their thermal stability and/or volatility. The combination of the GC
with the MS technique utilizing electron impact ionization (EI) gives rise to a
high chromatographic resolution with detection in a targeted way, thus allowing
bitter compound quantitation and the identification of non-targeted or “unknown”
screening approaches in a single sample. The advantages of using EI are that it
is highly reproducible when compared to other ionisation techniques and less
affected by ion suppression. The consistent generation of fragmentation patterns
in EI allows the development of spectral libraries and the searching of established
libraries such as NIST (n.d.) to identify specific components.

LC-MS is particularly suitable for the analysis of non-volatile compounds or
compounds that are thermally unstable and not suitable for GC-MS. In the analy-
sis of bitter compounds with a wide range of polarities within a food matrix both
techniques are complementary. LC-MS has clear advantages over more conven-
tional techniques such as HPLC or GC-MS with reduced sample preparation and
analysis time, higher sensitivity and specificity. In recent years the advances in
LC-MS technology have meant that instruments are capable of reaching even lower
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concentrations in biological samples previously not detectable. There are some con-
cerns when utilising LC-MS technology; however, such as the unavailability of
standard spectral libraries (i.e., NIST), thus the analysis of unknown compounds
is much more challenging compared with data obtained from GC-MS. In addition,
the presence of matrix effects can hinder LC-MS analysis.

However, the recent advances in both LC and MS have given rise to highly
sophisticated and powerful instrumentation for sensitive detection. In addition, the
innovations made in chromatography allow for more rapid, highly efficient LC sep-
arations (Guillarme et al., 2010; Nunez et al., 2012), thus allowing opportunities
to analyse ionic and polar compounds (Li et al., 2008; McCalley, 2010; West et al.,
2010).

Different ionization techniques can be utilized in the practice of LC-MS but
electrospray ionization (Yamashita & Fenn, 1984) remains one of the widespread
ionization techniques employed for the determination of chemical constituents
in food by LC-MS. The use of atmospheric pressure chemical ionization (APCI)
(Bruins, 1991) for the analysis of ingredients in food (Santini et al., 2009;
Kaklamanos et al., 2009) seems to be much less popular than ESI. This could
be due to the improvements in source and probe design for ESI which has not
yet been paralleled in APCI. In retrospect, the most important change in the past
decade has been on the increase in the variety of mass analyzers for LC-MS
and how these innovations have affected the approaches undertaken to monitor
compounds of wide ranging polarity in a wide variety of scientific disciplines.
The use of LC-MS in food analysis can have important advantages in the analysis
of bitter compounds due to the high separation power of MS as identification and
confirmation strategy. In addition, LC-MS has the ability to cover a wider range
of compounds in a greater variety of matrices using a combination of targeted and
non-targeted data collecting approaches.

In other disciplines, LC-MS has become a routine analytical tool and a
mainstream technique for the detection of a wide range of polar and non-volatile
compounds not compatible with GC analysis. Likewise, its application to the anal-
ysis of bitter compounds which are mostly non-volatile compounds dispersed in
a large variety of food matrices could be very useful. A wide variety of substances
require estimation which are non-volatile and a bitter tasting compound could be
in a range of diverse foods or food additive/supplement ingredient, nutraceutical
ingredients or pharmaceutical substances or formulation.

LC-MS may therefore be considered an extremely beneficial tool in determina-
tion of potential bitter compounds. This chapter will provide an overview of LC-MS
considerations and its use as a powerful technique applied to non-volatile bitter
compounds.

The most widely used ionization techniques in LC-MS analyses are electro-
spray ionization (ESI), (Dole et al., 1968; Aleksandrove et al., 1984; Horning
et al., 1973) atmospheric pressure chemical ionization (APCI) (Horning et al.,
1974; Robb et al., 2000) and atmospheric pressure photoionization (APPI)
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(Syage et al., 2000; Niessen, 2006). These techniques provide user friendly
coupling of the LC to a mass spectrometer. Due to the complexity of the ion-
ization process and many factors that affect mass spectrometric sensitivity and
chromatographic performance, obtaining optimal LC-MS conditions is not an easy
task. As a highly sensitive method, LC-MS is considered an important analytical
technique suitable for the analysis of bitter compounds which can also help to
provide structural information of the analyte in a range of complex biological
matrices. The choice of mobile phase solvents for bitter compound ionization can
be further complicated because solvents do not often provide optimal retention
time and resolution in the chromatography approach undertaken. Often a com-
promise must be made with selection of solvent in order to achieve sufficient
ionization and chromatographic efficiencies when choosing this technique for test
compounds. These techniques provide stable performance, good repeatability and
high sensitivity. The applicability of ESI, APCI and APPI is different (Ma et al.,
2012). ESI can be used for small polar organic molecules and is the most widely
used API technique, and therefore, this chapter will focus on its use in LC-MS
analysis of bitter compounds in a range of biological matrices. Although ESI is the
most widely used ionization technique and has significant advantages in analysis
of bitter compounds in food, a disadvantage of ESI is that the ionization can be
poor for non-polar organic compounds. In general, APCI and APPI can be utilized
for non-polar organic compounds.

In addition to the ionization mode used as a part of an LC-MS methodology,
the LC separation method plays a major role on the sensitivity and the selectivity
of compounds. The most commonly used approach is reverse phase LC; however,
other techniques such as ion pair, ion exchange, affinity and size exclusion chro-
matography have also been adopted for use. The chemistry, length and diameter
of analytical columns used in LC-MS methods have an important impact on the
separation efficiency. The 100 to 200 mm long with internal diameter of 3-4.6 mm
analytical columns are widely used. Shorter columns with similar internal diameter
may be used with reduced analysis time compared to longer counterparts. High sep-
aration power and sensitivity can be achieved using capillary columns with internal
diameter of 0.05–0.3 mm, but the analysis can be time consuming.

Ultra high performance liquid chromatography (UHPLC) columns and a mono-
lithic column can provide good chromatographic resolution with a shorter analysis
time. Ma et al. (2012) evaluated the use of different columns (Gemini C18 or the
Synergy RP) and mobile phases (e.g., water-acetonitrile and water-methanol) for
the determination of constituents in dietary supplements containing bitter melon
and the best results were obtained using Synergy RP column with water:acetonitrile
and 10 mM ammonium formate and 1% formic acid. The 1% formic acid is a
higher than would be expected concentration for LC-MS however was necessary
in the analysis of compounds in bitter melon. Kenny et al. (2013) developed a
quantitative UPLC-MS method for the determination of phenolic compounds in
fenugreek seeds and bitter melon. The column utilized was a Waters Acquity UPLC
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HSS T3 (2.1mm x 100 mm, 1.8 μm) with a gradient of mobile phase consisting of
acetonitrile, formic acid and water.

The coupling of various technologies in LC-MS gives a wide variety of options
for the analysis of bitter compounds. However, it should be noted that the appro-
priate implementation of LC-MS in a laboratory requires educated personnel and
significant resources.

8.2 OVERVIEW OF LC-MS

8.2.1 Electrospray ionisation
Electrospray was presented as a method of ionization and an analytical technique
four decades ago after Dole and co-workers (1968) studied the ionization mecha-
nism by ion mobility spectrometry. In addition, another research group (Yamashita
& Fenn, 1984) successfully combined ESI and MS. A further group identified that
ESI would be suitable for large biomolecules and their study was rewarded a Nobel
prize in chemistry in 2002 (Meng et al., 1988; Mann et al., 1989). In ESI a com-
pound will be dissolved in LC effluent and channeled through a small capillary
which is set to a high voltage usually (3-5 kV). Due to the high electrostatic field
at the tip of the capillary negative counter ions (when positive ions are encoun-
tered) move away from the liquid surface towards the wall of the capillary where
they are neutralized and the positive ions drift downfield towards the liquid front.
The results are the formation of a liquid cone, so-called a Taylor cone (Taylor,
1964). The positive ions drift towards the surface of the liquid. When the elec-
trostatic repulsion at the surface devastates the surface tension of the liquid at the
cone tip, the jet breaks apart and small electrically charged droplets are formed.
The droplets subsequently migrate towards the interface plate in the API source
and while transitioning through the source the surface area of the droplet starts to
reduce due to evaporation of the solvent in the droplet. Furthermore, the charge
density at the surface increases. A set radius within the droplet is reached called
the Rayleigh limit (Rayleigh, 1982). Consequently, the charge density at the surface
becomes elevated and the repulsion forces on the surface exceed the surface ten-
sion of the droplet (Gomez & Tang, 1994). Ultimately a charged smaller droplet
is formed and the procedure is repeated until the droplet size is small enough to
obtain gas phase ions. The generation of gas phase ions has been proposed by
two models namely the charge residue model (Dole et al., 1968; Schmelzeisen
et al., 1989) and the ion evaporation model (Iribarne & Thomson, 1976; Thomson
& Iribarne, 1979). The theory behind the electrospray ionization process is out-
lined in more detail in other reviews (Kebarle & Ho, 1997; Bruins, 1998; Cole,
2000; Kebarle, 2000). It is necessary in both principles that the test compound is
already in the liquid phase. During the process of electrospray ionization, not only
charged compounds in the gas phase are generated, but also charged eluent species
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at a high concentration are obtained from solvents and additives and can act as
reagent ions in gas-phase ion-molecule reactions. Charged eluent molecules can be
deprotonated or protonated solvent or additive molecules which can ionize neutral
compounds present in the gas-phase by proton transfer reactions. It should be noted
that the overall process of ESI is extremely complex with a variety of parameters
requiring consideration such as volatility, surface tension, viscosity, conductivity,
ionic strength, dielectric constant, electrolyte concentration and pH. Gas phase ion
molecule reactions influence the ionization process also and the signal intensity.
Other factors like chemical and physical properties of the compound including pKa,
hydrophobicity, surface activity, ion solvent, ion energy, proton affinity and param-
eters such as solvent flow rate, temperature and ESI voltage also are equally impor-
tant. The choice of LC mobile phase is hindered in LC-ESI/MS/MS as only polar
solvents and volatile additives can be used in practice and the ESI response and LC
separation efficiency must be finely tuned.

8.2.2 Solvents
Ma et al. (2012) optomized the LC-ESI-MS/MS conditions of five cucurbitane-type
triterpene and triterpene glycoside in bitter melon. Individual standards were
injected with different buffers in ESI and APCI in both positive and negative
modes. ESI in positive mode with 10 mM ammonium formate and 1% formic acid
buffer gave suitable sensitivity.

The conductivity of solvent must be sufficient in order to achieve high sensitivity
and good stability. Solvents of choice for ESI vary from polar to medium polar with
the most common combination being water and acetonitrile. Organic solvents such
as methanol, acetonitrile and dichloromethane are better solvents for ESI compared
to water alone (Kostiainen & Bruins, 1996). A comprehensive discussion on solvent
use in ESI is outlined in various literature (Kostiainen & Bruins, 1996; Kebarle &
Tang, 1993; Zhou & Cook, 2000; Cole et al., 1993; Hiraoka & Kudaka, 1992).

The majority of LC-ESI/MS based strategies in literature across a variety of dis-
ciplines have been carried out by reverse phase LC with a non-polar C18 or C8
bonded silica stationary phases (Hemström & Irgum, 2006). The mobile phase is
generally water and organic modifier and is a balance between obtaining satisfac-
tory chromatographic performance and ESI sensitivity. (Straub & Voyksner, 1993;
Dams et al., 2002; Needham et al., 2000). Organic modifiers most widely utilized
are methanol and acetonitrile in LC-ESI/MS. Methanol has been shown to offer
better ESI efficiency than acetonitrile (Temesi & Law, 1999) and better peak shape
(McCalley, 1996) but it is compound specific.

8.2.3 Additives
In the analysis of ginsenosides (Zhao et al., 2013), ammonia, water, formic acid
and ammonium chloride were tested in order to enhance the ionisation and to
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improve the collision induced dissociation (CID) efficiency in mass spectrometry.
The fragmentation of the 15 ginsenosides tested depended on the nature of additives
utilized and the most abundant fragment ions were obtained when 0.02% formic
acid was added to the mobile phase. 0.1 mm ammonium chloride was an additive
that enhanced the sensitivities and dynamic range for the tested compounds as well
as the precision; however, fewer fragment ions were observed. They concluded
that 0.01 mM ammonium chloride was the best mobile phase additive for quantita-
tive analysis and 0.02% formic acid and 0.02% acetic acid were the most suitable
ones for qualitative analysis. It is worth noting that the composition of the mobile
phase might not be suitable for other compounds and studies should be performed
for specialist bitterness compounds as an ideal composition of the mobile phase is
compound dependent (Zhao et al., 2013).

The resolution and reproducibility in LC mobile phases are generally improved
by addition of additives and buffers. The concentration of the additives, their chem-
ical properties as well as their pH values have significant effects on analyte response
in ESI. The majority of additives and buffers used in LC is not compatible with
ESI MS/MS. Non-volatile buffers such as phosphate and borate cause increased
background signal, signal suppression and rapid contamination of the ion source
resulting in reduced sensitivity and stability. Strong acids such as trifluoroacetic
acid (TFA) are commonly used as ion pairing agents in the LC analysis of molecules
such as peptides and proteins but may cause significant signal suppressions in ESI
(Eshragi & Chowdhury, 1993; Appel et al., 1995; Kuhlmann et al., 1995). The
most widely used reagents in the LC-MS analysis of polar compounds tends to
be formic acid, ammonium hydroxide, ammonium acetate and ammonium formate
(Gao et al., 2005). In practical terms the additive concentration should not exceed
10 mM otherwise it might suppress the ionization and reduce the sensitivity for
the tested compounds. Additives present in LC mobile phases at concentrations of
100 mM can be too high for ESI.

8.2.4 pH
Improved sensitivity in ESI can be achieved by adjusting the pH of the liquid phase
in which the compound is ionized. This can be achieved by pH adjustment to an
acidic mobile phase (two pH units below pKa of the analyte) for basic analytes
such as amines and to basic conditions for acidic analytes such as carboxylic acids
and phenols (two pH units above pKa of the analyte) (Zhou et al., 1990). Good
chromatographic performance in reverse-phase LC is achieved by altering the pH
so that acidic or basic analytes are altered in the mobile phase. Alternatively, sat-
isfactory chromatographic performance can be achieved if the mobile phase has
sufficient interaction between the hydrophobic moiety of the compound and the
reverse phase material. Another approach is to alter the pH so that the compound
is not ionized in the mobile phase.
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8.2.5 Adduct formation
Ma et al. (2012) studied cucurbitane-type and triterpene glycosides in bitter melon
in positive ESI mode with 10 mM ammonium formate and 1% formic acid which
provided adequate sensitivities for the corresponding [M+NH4]+ adduct ions.
Sodium or lithium salts have been used in literature to improve the ionization
and repeatability of compounds such as trichothecenes (Dall’Asta et al., 2004),
carbohydrates (Dall’Asta et al., 2004; Guignard et al., 2005; Assam & Glish, 1997;
Harvey, 2000) and lipids. Chloride, formate and acetate anions were utilized in
negative ion mode to promote the formation of adducts ([M+Cl]-, [M+HCOO]-,
[M+CH3COO]-) for analytes that do not easily undergo deprotonation (Zhu &
Cole, 2000). In reality, only very low concentrations of salts (below 0.1 mM) are
added to facilitate ionization in ESI via adduct ion formation as significant con-
centrations may lead to strong background interference and rapid contamination
of the source. The influence of the above parameters on APCI and APPI have been
summarized previously (Kostianen & Kauppila, 2009).

Neutral compounds that are polar cannot be ionised by protonation or deproto-
nation in liquid phase but can be ionized by adduct formation, examples can be
with ammonium, lithium, sodium in positive ion mode ([M+Na]+, [M+Li]+ and
with chloride, acetate or formate ions in negative mode ([M+Cl]−, ([M+HCOO]− ,
([M+CH3 COO]−. The use of buffers such as ammonium acetate, ammonium
formate and ammonium hydroxide can result in an ammonium adduct formation
instead of the protonated molecule. This phenomenon is common for compounds
having a proton affinity close to ammonia. Adducts of sodium [M+Na]+ can be
generated in addition to [M+H}+ ions since sodium is always in the mobile phase
at concentrations ranging from 0.01-0.1 mM due to sample vial derived impurities
and LC solvents. The relative abundance of the [M+Na]+ may vary, thus reducing
the precision of the analysis. The formation of sodium adducts can be reduced by
adding formic acid to the eluent post-column.

8.2.6 Ion-Pairing and ion exchange
In reverse-phase, LC-ESI/MS ion-pairing can be used to improve the retention and
resolution of polar ionic compounds. Generally, in the analysis of basic compounds,
volatile ion pairing solvents such as pentafluoropropanoic acid (PFPA), trifluorobu-
tanoic acid (HFBA) and TFA have commonly been used in the analysis of these
polar compounds (Appfel et al., 1995; Gustavsson et al., 2001; Petritis et al., 2002;
McCalley, 2004; Häkkinen et al., 2007). In the analysis of compounds the use of
ion-pairing LC-MS/MS has been limited to date possibly due to the challenges
cited above. Relatively stable ion-pairs with basic compounds can be formed thus
reducing secondary interactions with free silanols on the stationary phase which
could result in poor chromatography. It is important to note that acidic ion-pairing
agents can suppress ionization as outlined in the use of fluorinated carboxylic acid
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as ion-pairing agents at concentrations of a few mM where shown to decrease
the ESI signal by 30-89% compared to the intensity of the signal with formic
acid-ammonium formate buffer (Gustavsson et al., 2001). For instance the use of
TFA is controversial as it can cause a suppression effect in LC-ESI-MS (Eshragi
& Chowdhury, 1993; Kuhlmann et al., 1995; Mirza & Chat, 1994). Formic acid is
generally preferred. As formic acid provides satisfactory chromatographic perfor-
mance without suppression, it has been more utilized in LC-ESI/MS.

8.3 DATA ACQUISITION IN LC-MS

LC-MS provides a multitude of data. analysis that can be performed by acquiring
the data in a targeted compound screening approach and/or a non-targeted com-
pound (retrospective) screening approach.

8.3.1 Targeted compound screening
LC-MS instruments which have a triple quadrupole analyser, operated in selected
reaction monitoring (SRM) mode, achieve the selectivity and sensitivity necessary
in this monitoring. The approach is widely used for targeted multi-component
determination of constituents in food. The fast monitoring of numerous transitions
is easily achievable with good sensitivity and precision thus allowing rapid method
development covering a wider array of compounds with wide-ranging polarities.
The ability to monitor a wider range of compounds is made possible due to
retention-time window based SRM acquisition of data. The instrument users must
only enter the masses and the retention times for each SRM and peak width and/or
data points across the peak. Subsequently, the software sets acquisition windows
for each SRM transition for each compound yet to elute.

8.3.2 Non-targeted compound (retrospective) screening
In the non-targeted compound (retrospective) screening approach no pre-
programming of masses is required thus the selectivity is provided by the high
mass resolving power. The benefits of non-targeted analysis are that it provides
greater scope than a targeted approach. For instance, monitoring can be extended
to certain metabolites or other transformation products where no reference
standards are available. It is important to note that all LC-MS instruments can
carry out full spectral acquisition but not all can attain sufficient sensitivity in
this mode for non-target analysis. Approaches for evaluating data obtained from
non-targeted acquisition using HRMS have been developed using two different
processes: exact mass filtering and searching databases relating to molecular
formulae. This approach concentrates more on detectability rather than reaching
unequivocal confirmatory criteria. To be useful, these data handling processes
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must be automated and quick; however, there is a need for powerful computing
power and data management/storage. In addition, the data processing is more
time consuming than data traditionally required with LC-MS analyses using
QQQ analysers. Molecular formulae databases containing information on exact
mass and isotopic patterns are generally developed in-house but are available
commercially or via the internet. If information on retention time is available then
the search window can be narrowed. A ‘hitlist’ is generated as a result of the search
with or without a chromatographic peak. Utilising orbitrap technology (Alder
et al., 2011) or when TOF analysers are in use, more careful optimization of the
accurate-mass window tolerances (generally 2–50 ppm) is necessary to ensure
adequate selectivity as resolving power varies considerably between instrument
types (Mezcua et al., 2009). If too narrow a search mass window is chosen around
the exact mass this can cause loss of signal when the measured mass lies outside
of the defined tolerance, the result is false negatives are obtained (Hird, 2008).

The use of advanced and powerful techniques like HRMS for acquiring full scan
data is advantageous. This technique facilitates exact mass analysis of both MS and
MS/MS ions, therefore allowing the detection of many compounds in a single sam-
ple thus providing useful information to identify the structures of test compounds.
Statistical methods can then be carried out to select a list of molecular compounds
whose levels are significantly altered in a test sample versus a control sample. The
compounds are subjected to precursor ion (PI) scans in order to obtain MS/MS
data. The MS/MS data in conjunction with the PIs and the retention times are uti-
lized to obtain structural information. Another possibility is to obtain the MS/MS
data “on the fly” by either data independent acquisition (DIA) or data dependent
acquisition (DDA). DDA involves a survey scan followed by MS/MS acquisition.
The MS during survey scan automatically selects PI above an abundance thresh-
old and this triggers the instrument to start fragmentation of the PIs followed by
subsequent MS/MS fragmentation of the product ions. In the case of DIA all ions
within the m/z window are subjected to fragmentation instead of choosing a par-
ticular PI. Xu et al. (2013) developed a LC-QTOF-MS method for the analysis of
phenolic compounds in liquorice. This group used a combination of data indepen-
dent and data dependent acquisition. Fifteen flavonoids and one triterpenoid were
investigated. The combined use of DIA and DDA in the study provided accurate
and specific MS/MS spectra for co-eluting peaks. Dorta et al. (2014) identified 30
phenolic compounds including gallates, gallatannins, flavonoids, xanthones, ben-
zophenones, gallic acid and derivatives from the peels and seeds of three mango
varieties. The group processed the MS and MS/MS spectra acquired through Mass
Hunter Work station software (version B.04.00, Agilent Technologies, Waldbronn,
Germany) which gave a list of feasible elemental molecular formulas utilising the
Generate Molecular Formula editor due to the accurate mass and isotopic pattern.
The molecular formula obtained with the highest percentage score would give an
indication that there is a closer familiarity between the formula generated by the
software and the real molecular formula of the compound. There are two other
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factors that affect the overall correlation score which are the mass accuracy of
the observed fragment ions and the overall percentage of fragment ion intensity
that might be explained by substructures (Agilent Mass Hunter Molecular Struc-
ture Correlator Software). Other tools that were utilized in the study to identify
the unknown phenolic compounds in order to interpret the observed MS/MS spec-
tra were those available in the literature or in a online database such as Chem-
Spider, Mass Bank, METLIN, LIPID MAPS, MetaboAnalyst, Spectral Database
for Organic Compounds. A comparison of the mass spectral data and the chro-
matographic behavior generated utilising authentic standards was performed when
available.

8.3.3 Ion annotation
This is a strategy to identify a group of ions likely to originate from the same com-
pound. In LC-MS-based compound analysis there is potential for a compound to be
shown as numerous peaks in LC-MS data with m/z values at similar retention times
due to adducts, isotopes and neutral loss fragments. It is important that the scan rate
on the mass spectrometer is appropriately set so enough data points are acquired to
define the points across the chromatographic peak. The ions obtained from the same
compound share similar shaped elution profiles which can be shown by extracted
ion chromatograms (EIC). Therefore, ion annotation can be achieved by grouping
similar elution profiles together thus allowing compound identification.

Zhang et al. (2014) developed a new LC-MS data processing platform for
metabolite compound feature extraction and annotation called MET-COFEA for
use in metabolomics. This software can detect and compartmentalize relevant
chromatographic peak features for each test compound based on the retention
time and peak shape criteria and then annotate the relationship between each
peak’s identified m/z values with the appropriate test compound molecular
mass. MET-COFEA integrates with a number of innovative algorithms such
as mass trace based EIC extraction, compound associated peak annotation and
compound alignment. In the study when MET-COFEA was compared with
numerous open-source software such as MAVEN the software achieved superior
performance in analysis of chromatographic peaks. The advantage of the soft-
ware as a tool in LC-MS data analysis is the capability to significantly reduce the
number of possible compound candidates in library searching and also improve
compound quantification accuracy. This data processing approach could be used
for the analysis of bitter compounds by LC-MS in the future.

8.3.4 Mass-based identification
In ion annotation, the peaks are grouped together and the monoisotopic exact
masses can be calculated based on mass difference of the isotopes/adducts
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from their monoisotopic neutral forms. The masses calculated are subsequently
compared against commercial databases. Bitter compounds having molecular
mass within a pre-specified tolerance of the query are retrieved from the database.
Generally, mass-based identification does not allow for identification of unique
compounds. Automated LC-MS system performance software is available in other
fields (Xu & Freitas, 2009). Analysis of MS/MS spectra of the ions is carried out
and results from the mass based identification can further be investigated through
the following steps.

8.3.5 Spectral interpretation
Spectral interpretation identifies the possible structure or sub-structure of an
unknown molecular ion by comparing its MS/MS data with hypothetical spectra
predicted through, for example, insilico fragmentation approaches. There are
two well-known ways to predict fragmentation ions of a given molecule. One
approach is to use a rule-based predictor which utilizes fragmentation patterns
collected from the literature. Predictors available are, for example, Mass Frontier
(High Chem, LtD). These software programs are commercially available. The
advantage of a rule-based approach is its potentially high specificity. However, it is
important to note that the particular fragment ion cannot be predicted if a particular
fragmentation rule is not included in the database. Other insilico fragmentation
tools such as MetFrag TM are also available (Wolf et al., 2010).

Such software programs generate a list of possible fragments through combina-
tional disconnection of chemical bonds. The internal energy of each cleaved bond
is calculated. This approach does not require any type of knowledge base and there-
fore reduces the often time consuming data collection step and avoids possible bias
from a limited set of fragmentation rules. After the hypothetical MS/MS spectra
is generated, and the insilico fragmentation is compared against the experimen-
tal database to calculate a similarity score the results are ranked accordingly. Some
caution should be undertaken, however, as the prediction of low-resolution electron
ionization is found to exhibit bias towards certain categories of structures depend-
ing on the program setting. More work needs to be carried out to improve this and
it is expected that high resolution mass spectrometry spectrum data might be in a
position to achieve this in the future.

8.3.6 Spectral matching
Spectra matching mimics manual verification of the compounds identification
using the MS/MS spectrum. Instead of acquiring the MS/MS spectrum of a
standard each time, previously acquired MS/MS spectra from standards are
amalgamated into a spectral library and compared with test sample spectra. An
appropriate scoring mechanism measures the similarity between two MS/MS
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spectra. If spectra are extremely similar then this represents the same compound.
There have been several spectra matching approaches for spectra obtained from
GC-MS and LC-MS. The majority of the algorithms calculate the similarity
between the query spectrum and the library spectra by treating the two spectra
as vectors. A substantial difficulty with MS/MS spectra matching is that the
acquired spectra depend significantly on the machines used and the acquisition
settings utilised. One approach to overcome this is to expand the spectral libraries
under different experimental settings (different experimental settings or collision
energy conditions or design improved scoring functions by considering expanded
aspects of spectra being similar). A further limitation of spectral matching is the
minimal coverage in spectral libraries of metabolites. This can be difficult in
fields like metabolomics or new designer drugs in forensic toxicology where no
information on metabolism is available. In bitterness analysis if a new component
is found and no information is available a similar problem exists. Yu et al.,
(2013) expressed some difficulties with database building and matching as some
compounds can share the same molecular composition hence m/z ratio. Without
additional information, one cannot identify a one-to-one correspondence between
the identified features and compounds. As extra information becomes available
the potential of each feature could be reduced and the corresponding database
entered can be split based on parameters such as retention time.

8.3.7 Compound identification
Compound identification in particular structural elucidation should be performed
vigilantly. Various computational approaches can be used to prioritize assumed
identifications. If the availability of authentic standards is limited then it will be
necessary to identify via prioritizing assumed identifications so efforts can focus
on the likely candidates. However, it is important to note that in order to verify the
identity of the unknown compound it is vital to obtain an authentic standard and
inject on the same instrument with a test biological sample in order to compare
MS/MS spectra and retention times. It should be noted that for some compounds,
it is not enough to generate only a MS/MS spectra in order to identify the com-
pound uniquely. In this situation, MS3 or MS4 is required in order to obtain further
fragmentation information from the desired test compounds. The ability to per-
form MS3 and subsequent fragmentation of a compound can only be achieved on
the ion trap mass spectrometer, for example, linear ion trap (LIT) can give frag-
mentation of precursor ions and fragment ions. The importance of MSn is that it
allows the elucidation of very similar molecules and more confidence in compound
identification. The QTRAP is an ideal analytical platform for class-targeted bitter
compound analysis as the structure-specific precursor ion (PI) (Wen et al., 2008;
Sandra et al., 2004), neutral loss (NL) (Scholz et al., 2005), or multiple reaction
monitoring (MRM) (Wagner et al., 2007; Steimer & Sjöberg, 2011) can be uti-
lized as a survey scan to trigger sensitive enhanced product ion (EPI) spectra so
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that qualitative results can be obtained within the run time of the chromatographic
analysis for the reliable characterization of low-level compounds. Within the range
of different scanning modes MRM is often the most favoured due to its superior sen-
sitivity, selectivity and wide linear range (Wagner et al., 2007; Steimer & Sjöberg,
2011; Yao et al., 2008).

The application of LC-MS to several bitter compounds in various foods is
described in next section.

8.4 LC-MS APPLICATION OF BITTERNESS
COMPOUNDS

One of the aims in bitter compound analysis is the quantitation of test compounds
in order to evaluate changes in response to experimental conditions. Bitter com-
pound quantitation will be discussed in relation to common LC-MS analysers such
as triple quadrupole selected reaction monitoring (SRM), ion trap and full-scan
HRLC-MS-based analysis.

8.4.1 Bitter compound quantitation by triple
quadrupole and selected ion monitoring

In the triple quadrupole instrument the precursor ion is selected in the first
quadrupole (Q1MS) and is dissociated into fragment ions in the collision cell
(Q2MS) and only a specific fragment ion (daughter ion) is selected in the third
quadrupole (Q3M3). This ion selection method is called selected reaction moni-
toring (SRM) and is affected by molecular weight and specific to the structure of
the selected compound. SRM can identify the real concentration through absolute
quantitation by correlating signal intensities in calibration curve with spiked stable
isotope labeled analogues. This method has been utilized for over three decades
(Baty & Robinson, 1977).

Ding et al. (2006) developed a reverse phase LC-ESI method for determina-
tion of bilobalide, ginkgolides A, B, C, quercetin, kaempferol, isorhamnetin, rutin
hydrate, quercetin-3-β-D-glucoside and quercetin hydrate in Ginkgo biloba. The
sensitivity of different mass spectrometry modes (full scan, selected ion monitor-
ing (SIM) and selected reaction monitoring (SRM) were compared and quantitation
were achieved with/without internal standard. Quantitation in the method was per-
formed using negative mode ESI-MS in selected ion monitoring (SIM) mode. In
SIM mode, a mass window of 0.5 Da was utilized in order to specify the ion mon-
itored during SRM scanning mode and the same window was utilized for both the
precursor ion and the product ion selection. The study showed that in most cases
the signals obtained in full-scan mode were comparable except in the case of the
signals obtained for bilobalide, ginkgolide, quercetin-3-β-D-glucoside. Theoreti-
cally, SRM analysis should result in significantly better sensitivity by reducing the



�

� �

�

Analysis of Bitterness Compounds by Mass Spectrometry 175

background noise in the mass spectrometer but this was not the case in this study.
The authors expressed the unexpected outcome may have been due to the use of
an ion trap analyser for acquiring SIM and SRM data in the study as the ion trap
performs MS/MS analysis in a single space over time rather than between differ-
ent mass analysers (as in triple quadrupole instruments) and therefore a potential
sensitivity loss.

In triple quadrupole analysis, effective sample preparation and chromatographic
separation are important, but no single liquid chromatography method or sample
preparation method is capable of separating or purifying all classes of bitter com-
pounds. More research needs to be carried out to improve LC separation capabilities
in order to detect bitter compounds in a variety of food matrices.

Regardless of the development of LC-SRM/MS/MS in targeted bitter compound
analysis, there are a number of disadvantages that limit its application for bitter
compound analysis. Firstly, a pre-defined SRM transitions can lack the flexibility
of using a different product ions for quantitation which can be affected by cross
talk among substances with the same structures and masses (same retention times
and fragment ions) or subject to interference with endogenous isobaric interfer-
ences from matrix. In order to overcome this, other major product ions which are
unique to the tested bitter compound should be chosen in the SRM. There are
some software tools in MS data acquisition available which have the function to
“scramble” transitions with identical product ions to avoid monitoring these tran-
sitions one after the other. Tools are also available which increase the inter channel
delay between each SRM transition in order to give enough time for the colli-
sion cell to empty prior to loading ions for the next SRM transition. In addition,
providing chromatographic resolution of bitter compounds prior to MS detection
provides a further solution. In SRM, most ions are filtered out with loss of ions and
therefore qualitative information which is necessary for identification or structural
elucidation of bitter compounds.

This limits the use of triple quadrupole (QQQ) for targeted analysis based on full
scan MS/MS. The triple quadrupole SRM quantitative method is limited also then
to compounds already tuned for by the instrument and omits information relating
to other compounds present in the sample as are invisible due to the specificity of
the target analysis. Another point to note is that certain analytes have non-specific
transitions that are common for matrix interference (e.g., neutral loss of H2O or
CO2). This compromises the targeted approach and causes inaccurate quantita-
tion. Targeted quantitation of theobromine and caffeine was achieved using a triple
quadrupole MS/MS in electrospray positive ionization operated in multiple reac-
tion mode. 13C isotopically labeled caffeine standard was included as internal stan-
dard in order to improve accuracy and precision (Ptolemy et al., 2010). Hofte et al.
(1998) described a negative mode LC-ESI/MS/MS application for analysis of six
major bitter acids in extracted hop. The fragmentation under negative ESI condi-
tions occurred. It was not sufficient in the study that only one product ion was moni-
tored and would not be sufficient to confirm unequivocally the structural difference
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of the homologs and analogs (Hofte et al., 1998). Zhang et al. (2004) characterised
bitter acids in crude hop using high- performance liquid chromatography tandem
mass spectrometry. Structural information was obtained by collision-induced dis-
sociation (CID). Analysis of the fragmentation patterns of the major α and β- bitter
acids was undertaken and minor bitter acids were detected using selected reaction
monitoring (SRM) utilising a qualitatively relevant selected precursor-product ion
transition for each bitter acid in a single LC run. Utilising LC-MS/MS in this way,
six minor bitter acids, including “adprelupulone” were identified for the first time
(Zhang et al., 2004).

More recently in the literature developments in LC provide highly resolved
peaks with a narrow peak width. Higher resolution combined with narrower peaks
provide a challenge for mass spectrometers. The compatibility of the acquisition
rate of mass spectrometer (dwell time for SRM transitions) with chromatographic
elution in a short time period is complicated as accurate quantitation by LC-MS
requires a minimum number of data points across a peak (>20). An inadequate
number of data points results in poor peak resolution and affects the sensitivity of
the SRM. A study by Ortega et al. (2010) involved developing an ultra-performance
liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method to
quantify procyanidins, monomers to oligomers, alkaloids, theobromine and
caffeine in cocoa samples. This study reported a comprehensive comparison
with an HPLC method in terms of speed, sensitivity, selectivity, peak efficiency,
linearity, reproducibility, detection limits and quantification limits. The results
showed that UPLC-MS/MS methodology allowed detection of procyanidins at low
concentration levels in short time, that is, less than 12.5 mins (Ortega et al., 2010).
A rapid quantitative and qualitative method was developed for 17 phenolic acids in
different beverages utilising UHPLC coupled with tandem mass spectrometry. The
compounds were detected in MRM mode and quantified using internal standards
of deuterium labeled 4-hydroxybenzoic (2,3,5,6-D4) and salicylic (3,4,5,6-D4)
acids [88] (Gruz et al., 2008).

A mass spectrometer instrument with higher acquisition speed (e.g., LIT) and
high-mass resolution can be an additional aid for simultaneous quantitation of
targeted bitter compounds and identification of non-target bitter compounds. A
3D-ion-trap MS with unit–mass resolution can provide reasonable quantitative
results by extracting selected ions from full-scan data. It is important to note that
the sensitivity of such a quantitative approach is not comparable with true SRM
and selectivity in addition is reduced in scope (Zhang et al., 2009).

A recent evaluation between LC-LIT-MS and LC-QQQ-MS identified that QQQ
based LC-SRM-MS/MS methods are better options for analysis of small molecules
in relation to limit of detection, lower limit of quantification and precision (Dai &
Herman, 2010).
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8.4.2 Quantitation of bitter compounds by LC-IT-MS
and LC-HRMS

The triple quadrupole LIT hybrid instrument is designed so the manufacturer uses
the Q3 analyser simultaneously as quadruple and LIT. The LIT has a fast-duty
cycle allowing full scan on product ions. The mass spectrometer gives the same
proficiencies of neutral loss (NL), scanning, PI scanning and SRM acquisition
compared with triple quadrupole for unknown metabolite screening and known
metabolite quantitation. The QTRAP can, in addition, trigger a survey scan to
trigger information-dependent acquisition (IDA) of enhanced product ion (EPI)
spectra. MRM to EPI spectra [MRM] is used by for SRM and provides better
selectivity and more sensitivity than NL-EPI and PI-EPI (Wen et al., 2008; Zheng
et al., 2007). The MRM to EPI can be set up to monitor up to 100 SRM tran-
sitions and also maintain the qualitative performance of SRM methods without
significant loss of sensitivity. The advantage of utilising MS/MS spectra gener-
ated from MRM-EPI is in the identification of false-positive peaks displayed in
the SRM ion chromatograms. There the QTRAP can be a suitable alternative to
triple quadrupole SRM methodology as allows simultaneous quantitation of bitter
compounds and verification of their identities by MS/MS. Yan et al. (2014) per-
formed a generic MRM based strategy for flavonoids profiling in plants using a
hybrid triple quadrupole linear ion trap (QTRAP) mass spectrometer. The strategy
adopted the four following steps: (1) preliminary profiling of major aglycones by
MRM triggering an EPI scan, (MRM-EPI) (2) glycones were profiled by precur-
sor ion-triggered EPI scan (PI-EPI) of major aglycones, (3) aglycones profiling by
combining MRM-EPI and neutral loss triggered EPI (NL-EPI) scan (NL-EPI) of
major glycone and (4) in-depth flavonoids profiling by MRM-EPI with elaborated
MRM transitions. As the group incorporated MRM, PI and NL scanning as a pos-
sible strategy, the approach not only makes full use of the sensitivity of MRM but
also surmounts the obstacles of limited compound coverage and low throughput.
The mass spectrometer used in the study was a QTRAP 4000. Recently, a newer
model was introduced (QTRAP 6500) which gives a 30- to 40-fold better sensi-
tivity with a much faster scanning speed thus allowing PI-EPI/NL-EPI scans or
500-800 MRM transitions in one injection. Other authors used QLIT technology
to monitor anthocyanins in red cabbage (Arapitsas et al., 2008).

HRLC-MS encompasses FT-MS (eg FT-ICR and Orbitrap), TOF, QTOF
provide MS detection and provide solutions to the limitations in SRM analysis.
HRLC-MS especially FT-MS in full-scan mode can identify virtually a limitless
number of bitter compounds in a biological sample due to the high resolving
power, high mass accuracy and the broad dynamic range. Faraq et al. (2012) stud-
ied 13 hop cultivars in Humulus lupulus analysed by nulear magnetic resonance
(NMR), LC-MS and fourier transform ion cyclotron resonance (FTICR)-MS
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in parallel. Under experimental conditions the group identified 46 metabolites
including 18 bitter acids, 12 flavonoids, 3 terpenes, 3 fatty acids and 2 sugars.
Hop bitter acids studied were alicyclic phenolic acids categorized as α acids
(humulone, cohumulone and adhumulone) and β acids (lupulone, colupulone
and adlupulone). One difficulty of FTMS was the lack of quantification and the
necessity of acquiring spectra in both positive and negative mode in order to
obtain comprehensive fingerprints of samples. In addition, the technique could not
distinguish between constitutional isomers such as humulone and adhumulone.
Regueiro et al. (2014) analysed tannins, flavonoids and phenolic acids in walnuts
using LC coupled to LIT-orbitrap mass spectrometer and 120 compounds were
identified on the basis of their retention times, accurate mass measurements and
subsequent mass fragmentation data or by comparing with reference substances
within the literature. The group reported the presence of eight polyphenols that
have never been reported in walnuts such as malabathrin A, stenophyllanin
C, eucalbanin A, cornusiin B, heterophyllin E, pterocarinin B, reginin A and
alienanin B. Diaz et al. (2013) developed a UHPLC –LTQ-Orbitrap method for
determination of non-anthocyanin flavonoids quantification in Euterpe oleracea
juice.

Current HRLCMS allow rapid scan rates allowing the acquisition of an appropri-
ate number of data points across a chromatographic peak and utilizes EICs for accu-
rate quantitation by centering a narrow mass window on the theoretical m/z value of
the analyte. This strategy for quantitation avoids pre-selection of SRM transitions
for target compounds and offers identification of non-targeted compounds at the
same time. The hybrid configuration in HRMS (e.g., LIT-FT-ICR, LTQ-Orbitrap of
QTOF) gives information-dependent MS/MS acquisition on full-scan product-ion
spectra to assistance in the confirmation of compound characteristics.

FT-MS orbitrap-based mass spectrometers and FT-ICR offer high-mass resolu-
tion and mass accuracy (e.g., above 1,000000 FWHM at m/z 400 and sub-ppm for
FT-ICR, 100,000 FWHM at m/z 400 and 1-2 ppm for Orbitrap (Cortes-Franciso
et al., 2011). The advantage of HRLC-MS is the high resolving power facilitates
bitter compound identification as accurate mass measurements help to determine
the elemental formula and high mass resolution generate an exact isotopic pattern.
The advantages of FT-MS are useful to eliminate some ‘putative identification’
with similar mono-isotopic mass but different isotopic distributions. Such instru-
ments also allow the quantitation of bitter compounds using EICs by centering the
narrow mass window on the theoretical m/z value of target analyte and excluding
overlapping isobaric signals, whereas the mass accuracy is maintained through-
out the acquisition (Junot et al., 2010; Kamleh et al., 2008; Koulman et al., 2009;
MacIntyre et al., 2011; Abello et al., 2008).

In HRLC-MS untargeted quantitative approaches to the analysis of bitter
compounds a wide amount of efforts have been made in order to improve sample
preparation techniques, improve LC separation prior to LC-MS detection and
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improve sensitivity which expands the array of bitterness compounds that can be
analysed and further improves quantitation.

LC separation developments similar to SRM based experiments have been made
in LC-HRMS quantitative bitter compound analysis (using a number of different
column chemistries in a number of LC platforms in order to achieve monitoring of
a broad range of compounds with wide ranging polarities).

An analytical platform such as FT-ICR presents extremely high mass accuracy
and high resolving power. However, it is not widely used in monitoring of bitter
compounds because its costs are high, it is difficult to maintain and it is complicated
to couple with LC compared to Orbitrap and TOF mass spectrometers (e.g., 15000
FWHM at m/z 400 and 5 -10 ppm for TOF) (Junot et al., 2010).

In recent years, Orbitrap-focused HRLC-MS has become more prevalent in order
to perform a more integrated qualitative and quantitative analysis in the full-scan
mode. In the early days the Orbitrap suffered from reduced acquisition speeds
in MS/MS scans, limited dynamic range and limited sensitivity. In recent times
modern Orbitrap instruments such as the Benchtop Exactive Orbitrap have shown
more feasible advantages in relation to cost, sensitivity and mass accuracy and lin-
ear dynamic range (Koulman et al., 2009; Bateman et al., 2009; Clasquin et al.,
2010). Lopez-Gutierrez et al.. (2014) reported an UHPLC single-stage orbitrap
high-resolution mass spectrometer method for the determination of isoflavones,
but in addition, phytochemicals such as favones, flavonols, flavanones and pheno-
lic acids were detected and quantified. Work was undertaken by Quifer-Rada et al.
(2015) to characterize beer polyphenols by ESI hybrid linear ion trap quadrupole
orbitrap mass spectrometry with confirmation by MS2 (Quifer-Rada et al., 2015).

In the literature there are limited papers that report bitter compounds using TOF-
or QTOF-based quantitative MS. In recent times with the advancement of TOF
technology this could expand exponentially and be further alternative for the anal-
ysis of bitter compounds. The limited dynamic range in typical TOF instruments
relying on TDC detectors has been improved by analog-to-digital converter tech-
nology. Tremendous improvements have been made in mass resolution and mass
accuracy of TOF. At present, 40,000 in resolution FWHM m/z 922 and accuracy of
< 1 ppm in TOF are available (Stroh et al., 2007). Haseleu et al. (2009) screened for
bitter compounds in wort boiling using LC-TOF from hop-derived precursors. The
group identified that the bitterness of ethanolic hop extract containing the β-acids
was enhanced upon boiling. In addition, the study identified previously unreported
bitter-tasting colupulone degradation products (Haseleu et al., 2009).

State of the art QTOF instruments (e.g., Agilent 6540 Ultra High Definition
Accurate Mass QTOF) allows both accurate mass measurements for compound
confirmation and molecular formula generation, but in addition, provide accurate
isotope ratios. These options allow users to reduce down the list of possible molec-
ular formulas and increase confidence in the results allowing these instruments
to compete with the Orbitrap technology. Bondia-Pons et al. (2014) presented
a non-targeted LC-QTOF-MS metabolite profiling showing the diversity of
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flavonoid and phenolic derivatives in Goji berries. The group identified that
Mongolian Goji berries were particularly rich in flavonoids and phenolic acids.
Identified flavonoids were quercetin, isorhamnetin derivatives rutin and narcissin
respectively (Bondia-Pons et al., 2014). Fabani et al. (2013) studied the chemical
profile, mineral content and antioxidant activities of three cultivars of Pistachio
(Pistacia vera cv Kerman). The total phenolic content flavonoids and anthocyanins
were measured. LC-ESI-QTOF-MS was utilised in the study. Gallic acid and
(+)- catechin were present in higher amounts, however, in addition, the study
reported the presence of myricetin, isoquercitrin and a dimer of prostaglandin for
the first time in pistachio. Confirmation of the identity of these compounds and
ions monitored were shown in the paper by Fabani et al. (2013).

A review by Krauss et al. (2010) of each type of major mass analyser discusses
overall performance in quantitative analysis of small molecules with detailed
evaluations on dynamic range, sensitivity, resolving power and mass accuracy.
The specifications in the paper apply to the majority of instruments, however,
furthermore, newer mass spectrometers can achieve better performance of dynamic
range and sensitivity. It has been reported that the Applied Biosystems Sciex Triple
TOF 5600 has an equivalent dynamic range and limit of quantitation to triple
quadrupole instruments. In addition, the sensitivity of each mass analyzer depends
on the ionization capabilities of the compound in the ion source. In addition, mass
spectrometers can provide higher resolution and mass accuracy depending on the
m/z range and scan speed of the specific instrument.

Additional comparison studies (Lu et al., 2008; Kreutzmann et al., 2007;
Drewnowski & Gomez-Carneros, 2000) are noted elsewhere. In general, the QQQ
SRM-based approach to bitter compound detection and quantitation gives superior
results in parameters such as linear dynamic range and sensitivity. However,
there are HRLC-MS instruments available with high mass accuracy that gives
comparable results. In addition, HRLC-MS gives favorable results in untargeted
quantitative studies.

8.5 CHALLENGES AND FUTURE PERSPECTIVES

Application of the same analytical method to potential bitter compounds in differ-
ent food matrices is a formidable task. Indeed, even within a particular food group
such as vegetables, the peel or the main part of the vegetable can be an analyti-
cal challenge. The reason for this is that substances can be distributed in different
parts of plant leaves which may require different extraction methods compared
to the plant root. In the identification of bitter compounds in carrots, Kreutzman
et al. (2007)showed that falcarindiol and di-caffeic acid derivative were highly
related to bitterness in comparison to falcarinol. The falcarindiol and di-caffeic
acid derivative were mainly present in the peel, whereas the falcarinol was more
evenly distributed in the root.
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Potentially, different food matrices will require significant modification of the
sample preparation procedures for similar compounds which is time consuming.
This is primarily due to the presence of varying matrix components and the wide
variety of high and low molecular weight compounds with a wide range of polar-
ities. This poses a challenge in method development and quantification. Another
feature for consideration is that sporadic bitterness can occur when a foodstuff such
as a vegetable is exposed to stress during growing, harvesting, transportation, stor-
age and processing. At these various stages the ability to develop and apply rapid
monitoring methods to quantify bitter compounds is highly advantageous.

There are a number of issues that need to be considered in order to utilize LC-MS
in bitter compound analysis. The quality of the MS spectrum is of vital importance
for confirmation but can be affected by the analytical platform used and the collision
energy. It is vital to spend necessary time developing experimental conditions for
generation of good-quality spectra.

A list of compounds and the analytical methods employed for their determina-
tion is provided in Table 8.1.

8.6 OPTIMISATION OF MASS SPECTRA PARAMETERS

This is a vital stage for recording useful and desired spectra. Some modern LC-MS
instruments have the capability of collision energy ramping, as well as auto polar-
ity switching which can be investigated to obtain maximum information in a single
LC-MS injection. A challenge during MS runs is utilising atmospheric pressure
ionization sources as adduct peaks can be encountered of molecular ions with
sodium (+22 Da), potassium (+38 Da) and/or ammonium (+17 Da) in positive ion
mode or in negative ion mode can obtain chloride (+36 Da), acetate (+60 Da) and
formate (+46 Da). Buffer solutions like triethylamine (+101 Da) or water (+18 Da)
can also be identified in spectrum. Adducts can be a challenge if present but addi-
tionally can be exploited to identify molecular ion peak. For instance a study by
Singh et al. (2012), the total ion count (TIC) of two peaks were present in spectrum
of a compound that had a acetate moiety in the structure). Their mass difference
was equivalent to 60 Da, indicating that either formation of acetate adducts or frag-
ment was yielded upon neutral loss of acetic acid. Subsequently the same sample
was analyzed in formate buffer. A higher mass ion appeared with a difference of
46 Da due to formic acid adduct. This identified that the appearance of higher mass
ion was the molecular ion peak. It can be challenging but very important to evaluate
spectra for adducts and optomise instrument parameters in spectra acquisition in
bitter compound detection.

8.7 RECORDING OF MSn PROFILE

In MSn experiments the fragments generated are captured one by one, held in
a trap and fragmented further yielding information on the presence or absence



�

� �

�

182 Bitterness: Perception, Chemistry and Food Processing

Table 8.1 The list of compounds and the analytical methods employed for their
determination in various foods.

Compounds Method Source Reference

Bilobalide, ginkgolides A,
B, C, quercetin,
kaempferol, isorhamnetin,
rutin hydrate,
quercetin-3-β-D-glucoside
and quercetin hydrate

LC-MS; ESI− Ginkgo
biloba

Ding et al.
(2006)

Theobromine and caffeine LC- MS/MS
ESI+

Saliva,
plasma and
urine

Ptolemy et al.
(2010)

Cohumulone, humulone,
adhumulone, colupulone,
lupulone and adlupulone

LC-MS/MS
ESI−

Hop Hofte et al.
(1998)

major α and β- bitter acids
six minor bitter acids,
adprelupulone*

LC-MS/MS
ESI

Hop Zhang et al.
(2004)

(-)-Epicatechin, (+)-catechin,
theobromine and caffeine

UPLC-MS/MS
ESI +/−

Cocoa Ortega et al.
(2010)

Gallic acid,
3,5-dihydroxybenzoic
acid, protocatechuic acid,
chlorogenic acid, gentistic
acid, 4-hydroxybenzoic
acid, caffeic acid, vanillic
acid, syringic acid,
3-hydroxybenzoic acid,
4-coumaric acid, sinapic
acid, ferulic acid,
3-cournaric acid,
2-coumaric acid, salicylic
acid and trans-cinnamic
acid

UPLC-MS/MS
ESI −

White wine,
grapefruit
juice and
green tea
infusion.

Gruz et al.
(2008)

cyanidin,glucoside,
triglucoside, sophoroside,
caffeoyl,feruloyl,
coumaroyl,sinapoyl,
glucopyranosyl, benzenoyl,
oxaloyl succinoyl.

QTRAP Linear
Ion Trap MS
ESI +

Red
cabbage

Arapitsas et al.
(2008)
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Table 8.1 (Continued)

Compounds Method Source Reference

Adlupulone, adhumulone,
humulone, lupulone,
cohumulone, α-humulene,
xantholhumol, β-glucose,
myracene*

LC-MS/MS,
NMR,
FTICR-MS
ESI +/−

13 hop
cultivars

Faraq et al.
(2012)

Tannins, flavonoids and
phenolic acids* and the
following polyphenols that
have never been reported
in walnuts: malabathrin A,
stenophyllanin C,
eucalbanin A, cornusin B,
heterophyllin E,
pterocarinin B, reginin A
and alienanin B.

Linear ion
trap-orbitrap
MS
ESI −

Walnuts Regueiro et al.
(2014)

(+)-Catechin, rutin,
Isovitexin, quercetin,
chrysoeriol, luteolin,
eriodictyol, homoorientin,
orietin,
kaempferol-3-rutinoside,
quercetin-3-glucoside and
(+)-dihydrokaempferol

UHPLC
–LTQ-Orbitrap
ESI −

Euterpe
oleracea
juice

Diaz et al.
(2013)

Naringenin, isokuranetin,
biochanin, hesperidin,
gentisin, syringic acid,
sinapic acid, eriodictyol,
daidzin,
apigenin-7-o-glucoside,
ferulic acid, sakuranetin,
vitexin, glycitin,
luteolin-7-o-glucoside,
luteolin-4-glucoside*

UHPLC
orbitrap MS
ESI +/−

Soy based
nutraceuti-
cal products
(tablets and
capsules)

Lopez-
Gutierrez et al.
(2014)

4-hydroxybenzoic,caffeic
acid,catechin,
epicatechin,chlorogenic,
ferulic acid,
kaempferol-Oglucoside,
p-coumaric acid,
protocatechuic acid,
quercetin-3-O-glucoside,
sinapic and vanillic acids

LC-orbitrap MS
ESI −

Beer Quifer-Rada
et al. (2015)

(continued)
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Table 8.1 (Continued)

Compounds Method Source Reference

Colupulone, lupulone,
xanthohumol, cohulupone,
humulone, adlupulone,
adhumulone,
nortricyclocolupone*

LC-TOF-MS
ESI −

Wort Haseleu et al.
(2009)

Dicaffeoylquinic acid,
kaempferol glucoside,
isohamnetin, myristic acid,
chlorogenic acid, citric
acid, quercetin*

LC-QTOF-MS
ESI −

Goji berries Bondia-Pons
et al. (2014)

Gallic acid, (+)- catechin,
myricetin, isoquercitrin,
eriodictyol,
cyaniding-o-galactoside*

LC-ESQTOF-MS
ESI +/−

Pistachio Fabani et al.
(2013)

Quinic acid,
3-caffeoylquinic acid,
caffeic acid,
4-caffeoylquinic acid,
ferulic acid, p-coumaric
acid, 6-methoxymellin,
falcarinol*

LC-MS
ESI –
APCI +/-

Carrots Kreutzman
et al. (2007)

• More compounds mentioned in publication but not mentioned in the table; see cited reference for
further information.

• ESI= Electrospray ionisation
• APCI = Atmospheric Pressure Chemical Ionisation

of connectivity of each observed fragment. It should be understood that online
tandem mass studies beyond MS2 may not always be possible especially if con-
centration is low or fragments of interest have low relative abundance. In practical
terms this would require recording more data within the same timeframe as the
bitter compound is not in the source for sustained period of time thus less number
of data points will be obtained leading to loss in sensitivity. This can be possi-
bly resolved through multiple injections or data dependent analysis where specific
transition(s) can be targeted using SRM or MRM mode. It is sensible to initially
propose fragmentation pathways of an unknown bitter compound based on HR-MS
data collected under collision energy ramping (where available).

In addition, the automated generation of spectra can be achieved which can
improve method development and sample throughput for bitter compounds.
The heterogeneity of spectral data provides a significant problem for the active
usage of spectral libraries. In certain studies promising results showed a degree
of reproducibility of MS/MS spectra using different instruments from different
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laboratories (Oberacher et al., 2009). There is a need to carefully design
experiments so appropriate spectral algorithms can be achieved which will aid
compound identification times.

8.8 CHALLENGES IN THE COLLECTION OF HRMS
DATA

Calculation of the molecular formula for precursors, fragments and losses can be
difficult in bitter compound analysis. Some HRMS instruments are available with
errors as low as 1 ppm. This is maintained throughout the analysis by use of cal-
ibrants and external control of temperature. In some instruments a calibrant can
be added. The benefit is that calibrants with different masses can be added at the
place where the analyte of interest is resolved. Some HRMS instruments utilise a
lock mass where a single calibrant is continuously introduced throughout the time
the mass spectrum is being acquired. This approach has been stated to give much
higher accuracy without strict temperature control. The challenge with using this
approach is that sometimes the calibrant can occasionally suppress ionization, or
interfere with bitter compound ions of close exact mass. In addition, the abundance
of the calibrant may not always match with that of the analyte and if the mass
is significantly different from the analyte the same accuracy may not be extrap-
olated throughout the range. An interesting discussion on practices using HRMS
equipment is previously discussed (Bristow, 2006; Webb et al., 2004). Another con-
sideration is upon acquiring HRLCMS data, molecular formula are generated for
the parent, fragments and neutral losses. During this calculation it is important to
be aware of the charge and that the correct value is fed into elemental composition
calculator (see related query in references). Singh et al. (2012) stated that feeding
0 against 1 as the value of charge leads to a difference of 0.00055 Da (055 mmu) in
theoretical mass value equivalent to the mass of one electron. This could possibly
lead to the rejection of possible elemental composition due to falling outside of the
predefined tolerance of error, defined as the difference between experimental accu-
rate and theoretical exact mass value. Evaluating isotopic abundances of peaks of
interest and mass fragments can also be challenging. Certain instrumental parame-
ters affect the isotopic abundance ratio. Structures containing chlorine and sulphur,
combined isotopic abundance with contribution due to sulfur could be minimal
compared to chlorine and instrument parameters could have overwhelming influ-
ence and results might be misleading unless other HRMS data is considered. In
order to address this compare the theoretical and observed values against a refer-
ence compound.

Other considerations such as incomplete collection of qualitative information
such as using a single tool and not a combination can be a challenge in already
acquired data. An example of this would be using a TOF instrument but collecting
only molecular ion data but not fragmentation data (Dongre et al., 2009).
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The identification of unknown compounds in HRLCMS can take a significant
amount of resources. The most reliable way to identify an unknown compound
unmistakably with confidence is to make a comparison between retention time, its
fragmentation spectrum and its mass with those of authentic standards. It has been
outlined in the literature that obtaining two independent measurements analysed
under identical experimental conditions are necessary to identify the compound
(Sumner et al., 2007).

It is vitally important with LC-MS data of bitter compounds to evaluate results
against the published literature with respect to completeness and correctness of
mass fragmentation patterns to ensure that incorrect structure is not assigned. It
is not uncommon in other fields to have indicated the elucidation of a test com-
pound merely based on the mass difference from parent ion without looking at the
characteristic isotopic abundance which indicated the presence of a chlorine atom.
An example of this is in the case of clopidogrel as its identification was elucidated
merely on mass difference from ion but the characteristic isotopic abundance was
overlooked which indicated a chlorine atom. Later another group identified this
mistake and suggested the correct structure (Danikiewicz & Swist, 2007). In correct
interpretation of raw data can also occur. It is vitally important that in-depth litera-
ture search and at times there can be necessity of advanced 2D-NMR experiments
is carried out to minimize the risk of wrongly establishing structure.

A number of computational tools are available which help to prioritize the num-
ber of possible compounds possibly present in a sample thus improving sample
handling time. The collation of knowledge of bitter compounds can be significant
challenges for developing computational tools due to the fact that information can
be available from numerous different sources and the spectra for example can be
collected under different experimental conditions.

In silico fragmentation patterns aids the deduction of the compound during spec-
tra interpretation. If the MS/MS spectra of different bitter compounds are available
in different databases with spectral libraries then MS/MS spectra obtained from
experimental samples are compared with library spectra to identify the bitter com-
pound. This strategy does not give the same unambiguous confirmation as achieved
with authentic standards, however, it employs important guidance for the deter-
mination of bitter compounds because it helps to reduce the number of possible
substances that require investigation.

Generally, there is a need to develop better in-silico fragmentation models also
in order to identify complex ion molecular interactions encountered in compound
fragmentation. With the improvement of the specificity of these models they will
assist with the identification of unknown bitter compounds when no spectral library
coverage is available.

In general, the identification of a compound using a mass only gives limited
information about the elemental composition of bitter compound and possible
structure of the metabolite which can rarely give definite identification of the bitter
compound. Adducts, isotopes and fragments of the same bitter compound should
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be initially identified. In addition, evaluation of the isotopic pattern of the MS
spectrum a more confident interpretation of the elemental composition but still
with limited knowledge about its structures particularly when there are isomers.

It is important to note that bitter compound metabolites would not exist alone
but within certain context such as metabolic pathways and the integration of such
contextual information would be extremely beneficial to reduce ambiguity.

8.9 CONCLUSIONS

LC-MS has secured a major role in bitter compound analysis due to its high selec-
tivity, sensitivity, precision and accuracy. The choice of ionization mode has a
significant effect on the results that are obtained. Some bitter compounds are ion-
ized more efficiently in one ionization mode or polarity while some compounds
show higher efficiency in a different mode. Electrospray ionization is the preferred
ionization mode and generally spectra are obtained in positive and negative mode.
The selection of the ionization mode will have a significant effect. To date there are
studies using a combination of UPLC with different mass spectrometry analysers.
LC-MS is an extremely versatile technology and can be used with several differ-
ent modes or MS analyses in bitter compound research. The standardization of
data obtained is a difficulty as a result and so bitter compound researchers should
ensure that experiments are not designed where they are carried out on different
instruments and stay with the same instrumental configuration. Bitter compound
study experimenters should pay careful attention prior to performing experiments
to include the number of samples to ensure statistical significance with the methods
of sample handling and the selection of technology. It is good practice to per-
form a pilot study to identify possible sources of error particularly in the case of
plant tissue samples or food matrices under study. Such difficulties as formation
of emulsions during extraction can reduce precision of results. It is also important
in LC-MS method development to be wary of solvents, vials, filters or tubing as
these may introduce contaminants such as surfactants causing major interference
in MS detection. Sample stability is another important consideration. In the devel-
opment of non-targeted LC-MS methods for bitter compounds the length of the
analytical run is also an important consideration. Factors such as the stability of
the column, the potential contamination of the ion source and the stability of the
samples in the autosampler are vital. It is essential that the retention time repeatabil-
ity is within acceptable ranges. In the case of scheduled MRM experiments of bitter
compound, it is essential that MS/MS transitions are not monitored in the wrong
timeframe or information on test bitter compounds can be lost. It is also important
to consider putting protocols in place that can identify possible instrument failures
in bitter compound analysis using LC-MS. A widely used practice is quality con-
trol (QC) samples. These samples are analysed a number of times throughout the
batch and assessed against certain criteria to check validity of the measurements
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(e.g., repeatability of bitter compound peak areas and retention times). It is required
that a few injections of the QC sample at the beginning of the analytical run is
performed to ensure correct “conditioning” or that the equilibration phase is satis-
factory for bitter compound analysis prior to running the LC-MS system.

LC-MS-based bitter compound analysis will progress rapidly in the next years
and LC-MS will become the key analytical methodology to aid this. There is great
potential in the food chemistry field due to the ever increasing capabilities and tech-
nological advancements in chromatography and mass spectrometry. It is important
to note that LC-MS platforms generate a huge amount of data and as the informatics
field advances this field will be equally highly important. Maximizing the efficiency
of advanced tools in informatics made available by LC-MS vendors for data min-
ing will be vital for researchers of bitter compounds. There will also be a need for
accepted reporting schemes and harmonization of method validation approaches
in the measurement of bitter compounds by LC-MS. An important consideration
in bitter compound analysis is the incorporation during validation, of studies to
identify matrix effects especially when working in electrospray ionisation mode.

Associated health benefits of bitter compounds in food is highly important in
today’s society. During both food production and food processing it is beneficial
to ascertain the benefits to the consumer. Methods to detect bitter compounds in
high and low concentrations are essential. LC-MS is perfectly positioned within
the current technological revolution as a powerful tool for the future investigation
of established and novel bitter compounds.
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9 Evaluation of Bitterness by the
Electronic Tongue: Correlation
between Sensory Tests and
Instrumental Methods

Michel Aliani, Ala’a Eideh, Fatemeh Ramezani
Kapourchali, Rehab Alharbi, and Ronak Fahmi

9.1 INTRODUCTION

A range of analytical tools are available for studying the nature and compounds
imparting bitterness in foods including sensory evaluation (see Chapter 7) and
instrumental methods such as chromatography and mass spectrometry based tech-
niques (see Chapter 8). While sensory studies are important for correlating the
sensory characteristics of compounds identified by instrumental analyses they are
costly and time-consuming and impractical for monitoring changes, such as bit-
terness, during the production of foods and beverages. This chapter will discuss
the importance of the electronic tongue as an invaluable rapid and reliable tool for
assessing the bitterness of foods and beverages.

9.2 THE ELECTRONIC TONGUE

Human physiology, as it relates to taste perception, has inspired scientists to create
an effective tool “the so called electronic tongue” that can measure and compare
tastes. Electronic tongues are simply devices designed to analyze taste in a similar
way the human tongue analyzes taste. The principal role of the electronic tongue
is to analyze different compounds dissolved in a solution using an array of low
selective, nonspecific chemical sensors paired with a chemometric tool for data
analysis (Di Natalea et al., 2000). It can be also defined as a multisensor device
devoted to analyze complex composition samples by recognizing their characteris-
tic properties (Ciosek & Wroblewski, 2007). The electronic tongue is composed of
various selective arrays of chemical sensors serving as tools to obtain the signals
and transferring them to computer software with an advanced mathematical system
for processing the data and generating results (Ghasemi-Varnamkhasti, Mohtasebi
& Siadat, 2010). The following is a detailed description of its two essential
components:
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9.2.1 Sensor arrays
Sensor arrays are selected based on the chemical nature of the samples of choice to
be examined. There are different types of sensor arrays such as the optical sensors
and biochemical sensors, which include potentiometric, voltammetric and impedi-
metric sensors. Each of these sensors has different characteristics, advantages and
disadvantages as follows.

a. Potentiometric sensors: In 1993, the first electronic tongue system (which
was a typical model of a potentiometric sensor) was designed in Japan by
Kiyoshi Toko and his co-workers. Toko, a professor of information science
and electrical engineering at Kyushu University, created a taste sensor based
on artificial lipid membranes and called it “taste sensor” (Rudnitskaya,
Rocha, Legin, Pereira & Marques, 2010). The main principal of this method
is using lipids as the main material to transform chemical information into
electrical signals (Kobayashi et al., 2010; Tahara & Toko, 2013). This type
of the electronic tongue system is the most widely used, particularly the
ion selective electrodes (ISEs) (Escuder-Gilabert & Peris, 2010). The old
version of this system was able to detect the five main tastes: salty, sweet,
acid, bitter and umami. The improved version is used in food quality control,
beverage classifications and in environmental analysis (Codinachs et al.,
2008). The main advantages of potentiometric the electronic tongue are their
well-knowing operation protocols, low cost and easy to set up fabrications,
also the sensors in this system are selective to various species. However,
the adsorption of solution components and the temperature dependence
in this system affect membrane potential, which are considered the main
disadvantages. Controlling the temperature and washing the electrodes can
minimize these factors (Escuder-Gilabert & Peris, 2010; Tahara & Toko,
2013).

b. Voltammetric sensors: Another widely used model uses electrochemical
sensors. These devices are used in food and beverage classifications and mix-
ture quantifications of oxidizing substances (Del Valle, 2012). This type of
electronic tongue consists of four working electrodes made of the platinum,
rhodium, metals gold, silver metal, silver chloride electrode (Ag/AgCl) as a
reference electrode and a stainless steel counter electrode (Ciosek & Wrob-
lewski, 2007). In this device, the current between the encounter electrode and
the metal working electrode is measured when a voltage pulse between the
reference electrode and the working electrode is applied. A chain of pulses
can be formed to extract as much of a possible information from the solution
(Ciosek & Wroblewski, 2007). According to several studies, this technique
in the electronic tongue is preferable in multicomponent measurements
due to their low detection limits, high selectivity and several methods of
measurements. Moreover, the ability to modify the electrode surface with
several chemosensitive materials makes the sensors more sensitive and selec-
tive towards a various species (Del Valle, 2012). However, the temperature
dependence and the drift caused by the large surface shift in sensors limits the
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applicability of this system. To overcome the drift in the electrode read-
ing, a cleaning process and mechanical polishing can be performed
(Escuder-Gilabert & Peris, 2010).

c. Impedimetric electronic tongues: This system has been mainly used in
detecting the basic tastes of food and beverages especially mineral water
due to its high sensitivity (Escuder-Gilabert & Peris, 2010). The main
parts of this system are one coated interdigitated electrode with differ-
ent chemosensitive substances and another bare interdigitated electrode
deposited by different methods of Langmuir–Blodgett technique. In contrast
to other sensors system, this technique does not require a reference electrode
(Escuder-Gilabert & Peris, 2010; Kumar et al., 2012).

d. Optical sensors: This system is employed mainly for biomedical analysis and
some food analysis. Optical electronic tongues offer several methods of oper-
ation such as absorbance, reflectance, and fluorescence (Di Natalea et al.,
2000; Escuder-Gilabert & Peris, 2010). This technique is applied when the
analysis with electrochemical sensors is difficult or not feasible. However,
sensor preparation, signal interference and durability are all factors limiting
the use of this technique (Jain, Panchal, Pradhan, Patel & Pasha, 2010).

9.2.2 Data processing
Signal processing is one of the important aspects of the electronic tongue. To
analyze the data from sensor arrays, several pattern recognition approaches are
applied, primarily artificial neural networks (ANN) and principal component
analysis (PCA). Also, multivariate calibration approaches use the primarily partial
least square regression (PLS) and ANN (Di Natalea et al., 2000; Escuder-Gilabert
& Peris, 2010). These advanced mathematical signal processing techniques help in
analyzing the response of the sensor array because the result is very complex and
cannot be described by theoretical mathematic equations (Ciosek & Wroblewski,
2007); however, advanced mathematical methods cannot improve or alter the
results (Jain et al., 2010).

The electronic tongue system has been widely applied in food and flavor evalu-
ation; sometimes it is paired with the electronic nose to provide wider complemen-
tary taste analysis information. The electronic tongue is a useful tool of great benefit
when human panelists are not applicable. By understanding the structure of the dif-
ferent types of the electronic tongue systems, the applications, uses, advantages and
disadvantages are to follow.

9.3 THE ELECTRONIC TONGUE AND FOOD
PRODUCTION

Electronic tongues are analytical instruments patterned after the biological sen-
sory system, mainly the sense of taste in human, as a new method to discriminate
between complex samples. Recent research indicates that the electronic tongue was
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first applied to the food industry but has since found application in nutraceuticals,
herbal medicines, pharmaceuticals, safety, environmental monitoring and medical
diagnostics (Woertz et al., 2011).

A taste sensing system can predict whether the raw food ingredients or the fin-
ished food products are fresh or rotten. The accuracy of the e-tongue has shown it to
be a simple, rapid and inexpensive way to assess the shelf-life time and freshness of
foods, a hot topic of concern for marketing foods over a long time period (Gil et al.,
2008). Moreover, the electronic tongue is considered a perfect method to monitor
continually the changes occurring during the processing of food products such as
fermentation (Claire Turner, 2003; Peris & Escuder-Gilabert, 2013). These devices
can be applied as a quality control tool for such foods as milk, tea, beer and wine
(Ciosek et al., 2006; Palit et al., 2010; Parra et al., 2006; Rudnitskaya et al., 2009).
The applications of the electronic tongue for detection of compounds such as gluten
in the foods for special dietary use (Miyanaga et al., 2003) or unwanted ingredi-
ents such as copper, cadmium and iron in wine are also very beneficial (Simões da
Costa et al., 2014). In terms of the food industry, quantitative and qualitative anal-
ysis of food products can also be done using the electronic tongue. Sensors used
in electronic tongues do not need any information about ingredients in samples as
they use a number of non-specific, ion selective and low-selective chemical sensors
with wide capability, high sensitivity and stability (Hruskar et al., 2010; Martina
et al., 2007; Di Natalea et al., 2000).

Nowadays, taste as a quality characteristic of food products plays a pivotal role in
the different aspects of the food industry. A rapid response to the changing tastes of
consumers is of primary importance to a modern and sustainable food industry. To
meet such demands, minimal sample preparation and economical (cost effective)
and prompt analysis of food are required.

The main methods for food analysis are either subjective or objective. Subjective
approaches are sensory evaluation techniques using human panels to assess the sen-
sory characteristics of foods. This approach is considered the gold standard by the
food industry (Hruskar et al., 2010). Artificial tongues mimic the human sensory
response to food (Martina et al., 2007). The different types of electronic tongues
commercially available have shown acceptable results that correlate with human
organoleptic scores (Escuder-Gilabert & Peris, 2010; Pein et al., 2013) and are
capable of predicting human taste panel scores. For example, electronic tongues
can be used to reduce or replace the subjective methods of sensory analysis and
distinguish the different gustatory sensations of sourness, saltiness, umami taste
(Japanese term for deliciousness), sweetness and bitterness. This is particularly
advantageous as human taste panels are expensive and time-consuming with the
possible toxicity of samples being a problem for tasting (Cram et al., 2009; Davies
& Tuleu, 2008). Moreover, the variability in the physiological and physical condi-
tions of evaluators as well as their preference can affect the result of test panels,
despite the fact that they are highly trained for this purpose (Cram et al., 2009). In
contrast, artificial sensors are easy-to-use tools that can be repeated as needed as
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they are unaffected by adaptation and side effects associated with the evaluation of
samples such as human fatigue or cramp (Escuder-Gilabert & Peris, 2010; Smyth
& Cozzolino, 2013). Taste sensors are applicable for analyzing a wide range of
taste and toxic samples (Kirsanov et al., 2014).

Artificial sensors can mimic the taste in the food, as well as “olfaction”. They
are developed to recognize all kinds of dissolved compounds in the food includ-
ing volatile compounds that cause odor after evaporation. Due to such properties,
they are more sensitive than the natural senses to search for substances in food
that are undetectable by humans (Legin et al., 2002). In conclusion, these devices
can and are being used to evaluate the different amounts of ingredients in foods
(Gallardo, Alegret & Del Valle, 2005). Further research combining the electronic
tongue systems with other available artificial sense technologies, such as the elec-
tronic nose, will better replicate the human sensing system with more reliable and
precise results.

A wide range of methodologies are available to quantify and characterize
food compounds physically and chemically using non-subjective techniques.
Moreover, they can also assess the taste, aroma, texture and color and provide
an overall sensory evaluation of the food. Although the results of these methods
are accurate and reliable, they are time-consuming. A particular drawback to
the existing objective measurements is that they are not cost effective since
they require very expensive equipment (Escuder-Gilabert & Peris, 2010; Smyth
& Cozzolino, 2013). Many of these quantitative methods are destructive and
cannot be applied in situ or as monitoring devices, which is further disadvantage
of the non-subjective techniques. Association between sensory evaluation and
measured food characteristics cannot be achieved by analytical chemistry (Smyth
& Cozzolino, 2013). A particular advantage of the electronic tongues is that
they are environmentally friendly methods. They provide quick screening tools
to assess food quality parameters. This device can be used as an in-line and
at-line process analyzer generating rapid and low cost results using a small
sample size and minimum sample preparation. The release and persistence of
compounds in vivo when foods are eaten or drunk, cannot be evaluated by sensory
evaluation (Newman et al.., 2014; Smyth & Cozzolino, 2013). The advantage
of the electronic tongue over the other objective methods, including animal
models, is that the results will be more representative of the human taste sensation
(Anand et al., 2007).

9.4 ELECTRONIC TONGUE AND BITTERNESS

An interesting application of the electronic tongue is in characterizing bitterness
(Choi et al., 2014). The development of bitterness can result in the loss of quality
in the food product leading to economic losses. Therefore, it would of great value
to be able to monitor its development throughout the food processing operation and
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production. A great advantage of using the electronic tongue for detecting bitter-
ness is its ability to evaluate taste masking efficacy without requiring sensory test
using human subjects (Choi et al., 2014). From epidemiological evidence, in vivo
and in vitro and clinical trial data suggest that bitter phytonutrients have disease pre-
vention and health enhancement benefits (Shahidi, 2004). However, market studies
showed that consumers select food on the basis of their taste and not for nutritional
value or health benefits (Drewnowski & Gomez-Carneros, 2000). The production
of food products that are tasty and healthy is a challenge unless you can get rid of
unwanted bitter tastes or any off-flavors present. With the electronic tongue system
you are able to quantify changes in bitter intensity in the presence of bitter mask-
ing compounds to obtain the best taste (Newman et al., 2014; Takagi et al., 2001).
Consequently it is very promising method for detecting bitterness in food products.

Bitterness is generally considered an undesirable taste by most consumers so
that extensive research has been undertaken for ways to reduce the compounds
responsible in our foods. A wide range of physical, chemical and biochemical meth-
ods are available for measuring specific compounds eliciting bitterness in food
products (Gil et al., 2008). Analytical methods for evaluating bitter compounds
include such chromatographic methods as HPLC (Jaskula, Goiris, De Rouck, Aerts
& De Cooman, 2007) and gas chromatography (GC) that has been used for a long
time (Verzele, Vanluche, & Vandyck, 1973). Multivariate data analysis can then be
applied for evaluating bitterness. Uni-point measurement on a statistical basis is the
most common technique used to describe bitter taste during descriptive analysis in
which information related to temporal course of bitter taste is not prepared. More-
over, the evaluation is not directed at the time of changing bitterness in a dramatic
way. Time-intensity (TI) method is a less frequently applied technique that rates
bitterness intensity during the period of perception and evaluates the added bitter
compounds in products. The multidimensional technique temporal dominance of
sensations (TDS) is the most recently advanced approach that is used to evaluate
bitterness in alcohol-reduced red wines (Martina et al., 2007). In Taste dilution
analysis (TDA), HPLC fractionates the taste extract and serial dilutions determine
the taste threshold of the fractions (Frank, Ottinger & Hofmann, 2001).

The lower specificity to bitterness and the high cost of such techniques would
hinder their use as promising tools for bitterness analysis.

9.5 EVALUATING BITTERNESS IN FOOD PRODUCTS
USING ELECTRONIC TONGUES

Electronic tongues for bitterness evaluation have been successfully approved for
various bitter drugs, such as H1-antihistamines (Ito et al., 2013), quinine hydrochlo-
ride (Uchida et al., 2001) and different antibiotics (Sadrieh et al., 2005; Uchida
et al., 2001). Besides the pharmaceutical industry, bitter taste evaluation using such
systems has attracted considerable attention in the food industry over the past few
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years. Since a basic taste such as bitterness plays an essential role in determining the
palatability and consumer acceptance of many food items research has been under-
taken in this field on various foods and beverages; such as beer, wine, olive oil, tonic
water and fruit juices (Baldwin, Bai, Plotto & Dea, 2011; Ciosek & Wroblewski,
2007; Escuder-Gilabert & Peris, 2010). Table 9.1 summarizes the main features of
some of those studies.

One of the most important quality parameters in beer is bitterness, which is
mainly caused by the formation of soluble iso-α-acids in hops (Verzele & De
Keukeleire, 1992). Several studies have reported the application of electronic
tongue systems to assess the bitter taste in beer. In a study conducted by Rud-
nitskaya et al. (2009), 50 Belgian and Dutch beers were evaluated for different
sensory attributes including bitter intensity using a potentiometric electronic
tongue. Principal component analysis (PCA) was applied to evaluate the capability
of sensor’s array with the data compared to the human sensory using a canonical
correlation analysis (CCA). The results indicated that the electronic tongue
system was an efficient tool for the fast screening and prediction of different taste
attributes in beer including bitterness.

The capability of the same electronic tongue with 18 potentiometric sensors for
the quantification of bitterness in the Belgian and Dutch beer samples was exam-
ined in the aqueous solutions of isomerizing hop extract. The electronic tongue
sensors demonstrated an acceptable sensitivity to isomerized hop extract with good
prediction ability for bitter taste in different beer samples. The electronic tongue
system also proved its effectiveness in predicting other physicochemical parameters
such as real extract, alcohol and polyphenol contents (Polshin et al., 2010).

In the same context, an electronic tongue with an array of electroactive con-
ducting polymers was developed by Arrieta et al. (2010) to generate mathematical
models to predict the content of iso-α-acids and the alcoholic strength in commer-
cial beers. Partial least square regression (PLS2) was used to construct the predic-
tion models. To compare data high performance liquid chromatography (HPLC)
analysis wasn conducted to quantify the iso-α-acids content. According to these
results, building a mathematical model to predict the content of iso-α-acids and
ethyl alcohol in commercial beers appeared feasible using the voltammetric elec-
tronic tongue.

A similar study on a different food product by Rudnitskaya et al. (2009) exam-
ined the relation between the intensity of bitter taste and the concentrations of
phenolic compounds such as catechin, epicatechin, gallic and caffeic acids and
quercetin in red wines. A set of 39 single cultivar Pinotage wines, including 13
samples with medium to high bitterness were analyzed using an electronic tongue
with potentiometric chemical sensors. The data from electronic tongue system were
analyzed using the partial least squares discriminate analysis (PLS-DA) regression
model. The pH of wine samples was adjusted to 7 before measurement because the
system’s array of sensors showed sensitivity to the majority of the studied phenolic
compounds at that pH level. This proved to be a rapid analytical tool for assessing
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the bitter taste of wines, as potentiometric electronic tongue systems were able to
discriminate between bitter and control wines and also predict bitterness intensity
with high accuracy.

A similar study was conducted by Legin et al.(2003) for recognition, quantita-
tive analysis and flavor assessment of Italian red wines. Twenty samples of Barbera
d’Asti and 36 samples of Gutturnio wine were analyzed using an electronic tongue
with a sensor array of 23 potentiometric cross-sensitive chemical sensors. The
electronic tongue system was efficient in determining the concentration of sulphur
dioxide, glycerol and polyphenols in different wine samples, with an average pre-
diction error less than 12%. It was also capable to predict human sensory scores
with high precision (13% and 8% for Barbera d’Asti wines and Gutturnio wines,
respectively).

Apart from beer and wine samples, the electronic tongue has been used for
determining taste compounds in other foodstuffs such as olive oil. The latter is an
example for a food in which bitterness may serve a quality feature in some grades.
An electronic tongue with an array of chemically modified voltammetric electrodes
was developed by Rodríguez-Méndez et al.(2008), to investigate the content of phe-
nolic compounds, the main compounds responsible for the bitter taste in extra vir-
gin olive oils. The mentioned electrodes contained electroactive materials such as
phthalocyanines and conducting polymers. Partial least square discriminate analy-
sis (PLS-DA) was conducted to interpret the relationships between voltammograms
and the sensory or chemical analysis data. High correlations (PLS, R2

> 0.99) were
obtained and proved that the array of sensors presented could be used as a promising
analytical device for predicting the polyphenolic content and the bitterness index
of extra virgin olive oils.

The bitterness and pungency of virgin olive oil using electronic tongues was
also reported by Busch et al.(2006) in which two amperometric enzyme-based
biosensors (employing tyrosinase or peroxidase) were used. The study assessed the
feasibility of using enzyme-based biosensors as rapid analytical tools for the predic-
tion of sensory properties of virgin olive oil (a premium quality grade of olive oil).
The feasibility of the biosensors was assessed by measuring a set of samples and
comparing the results with data obtained by the reference HPLC method and panel
sensory scores. Their results showed that enzyme-based biosensors were capable
of successfully analyzing the total content of phenolics in virgin olive oils.

A combination of an electronic nose, electronic tongue and an electronic eye
were applied all together to characterize the bitter taste intensity of 25 extra virgin
olive oils from three different varieties. Analyzing the data by PCA indicated that
combining the electronic tongue with other artificial sense technologies increased
the discrimination efficiency significantly. Partial least squares-discriminate anal-
ysis showed good correlations (PLSDA, R2

> 0.9) between the electronic tongue
data and the polyphenolic content and the bitterness index which was scored by a
human panel taste for various olive oil samples (Apetrei et al., 2010).
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The application of electronic tongues for determining taste causing compounds
in beverages was reported by Sun et al. (2008). Using a piezoelectric quartz crystal
sensor array based on molecularly imprinted polymer coating they determined the
content of quinine and saccharine in bitter drinks such as tonic water. In comparison
to the sensory panel scores, the electronic tongue sensor array showed a satisfactory
repeatability and a high sensitivity for detecting the change in bitter tats of tonic
water at practical concentrations.

Electronic tongues can also be applied to tonic water as well as fruit juices.
Ding and co-workers (2010) used an Astree electronic tongue to determine the
bitterness index of six sweet orange juices from Citrus sinensis Osbeck variety.
Their results indicated a positive correlation between the limonin compounds of the
sweet oranges with the relative bitterness value measured by the electronic tongue
system.

9.6 CONCLUSION

Human perception of bitter taste varies widely due to such factors as genetic
makeup, age, health status, and other environmental factors. It is important to be
able to satisfy individual taste preferences and needs in an era of individualized
medicine, nutrition and every product that directly affects human health. To reach
that level of efficiency requires firstly developing sensors capable of detecting
difference in bitterness perception in different products among individual. Sec-
ondly, the need to develop rapid, non-invasive technologies to analyze bitterness
in foods with the electronic tongue. Artificial sense technologies such as “the
electronic tongue systems” have been successfully developed and utilized as rapid
analytical tools for qualitative and quantitative evaluation of bitter compounds
and bitter tastes in various food products and beverages is promising. Depending
on the type of the chemical sensors, the electronic tongue can be a used to
classify of a wide range of food items especially those which are known for
their bitterness preferences by consumers such as coffee, cocoa, tea and related
products. The rapid developments in this field have been quite remarkable with
further developments and improvements expected in the near future.
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10.1 INTRODUCTION

Bitterness is the most complex and poorly understood of the five basic tastes
(sweet, salty, sour, umami, bitter) (Drewnowski, 2001) due to the large number and
diversity of T2R bitter receptors (Ley et al., 2008). It is believed that bitterness was
an evolutionary mechanism designed to warn humans against ingesting potentially
harmful substances (Rodgers et al., 2006). However, in certain products such as
coffee and beer (see Chapter 5), a small amount of bitterness is acceptable and even
considered desirable (Drewnowski, 2001; Rodgers et al., 2006). Nevertheless,
for most food products, bitterness is unacceptable, rendering these products
unpalatable.

Numerous compounds are responsible for producing bitter tastes in foods. These
include amino acids, peptides (in fermented products), esters, lactones, phenols,
polyphenols (in plants such as spinach, kale, mustard greens, radicchio, cabbage
and Brussels sprouts), flavonoids, terpenes, caffeine (in tea, coffee and cocoa),
organic and inorganic salts and saccharin (Drewnowski, 2001; Maehashi & Huang,
2009). Thus, determining which compound or mixture of compounds is responsible
for bitterness in specific foods is an extremely complex task. In addition, many of
these bitter compounds are considered healthful due to their high antioxidant poten-
tial, making them beneficial ingredients for use in ‘functional foods’. Functional
foods may appear conventional, but when consumed go beyond their normal con-
tribution to nutrition by also providing health benefits, such as disease prevention
(Milner, 1999). Bitterness could decrease compliance and consumption of func-
tional foods in clinical trials, therefore, it is crucial that it be removed or reduced
to ensure these foods are similar, if not superior, to conventional foods in terms of
palatability and acceptance. Controlling bitterness of foods could also potentially
reduce overall food waste. In general, there are three approaches to suppressing
bitterness; physiochemical interactions in a food or beverage matrix, oral periph-
eral physiological interactions with receptor cells (e.g., via receptor inhibitors),

Bitterness: Perception, Chemistry and Food Processing, First Edition. Edited by Michel Aliani & Michael N. A. Eskin.
Published 2017 © 2017 by John Wiley & Sons, Inc. and the Institute of Food Technologists.
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and central cognitive mixture suppression (e.g., via taste to taste and taste to aroma
interactions) (Keast, 2008).

This chapter focuses on recent advances in masking or reducing bitterness for
the development of functional foods, including temperature treatment, alteration of
physical or chemical characteristics, addition of bitter masking agents as well as the
use of bitter blockers (Table 10.1). The mechanism behind bitterness perception or
the physical methods of bitterness reduction, such as microencapsulation or spray
drying, will not be discussed.

10.2 REDUCING AND REMOVING BITTER
COMPONENTS

10.2.1 Physical methods
10.2.1.1 Temperature treatment

Subjecting foods to different temperature treatments has been found to reduce the
presence of bitterness in some foods. For example, Bhandari and Kawabata (2005)
subjected wild yam (Dioscorea spp.) to boiling, baking and pressure cooking in
an attempt to reduce bitterness caused by the presence of furanoid norditerpenes
(diosbulbins A and B). Boiling proved to be the most effective cooking method for
reducing bitterness in wild yams, although the other methods still reduced bitter-
ness to some degree.

Heat treatment was also found to reduce bitterness caused by phenolic com-
pounds in olive oils. García and colleagues (2001) reported that heating olives at
30, 40, 45 and 50∘C for 24 hours or at 40∘C for 24, 48, and 72 hours, effectively
reduced bitterness in olive oil samples compared to samples heated at 40∘C for 2
hours. While the heat treatment did not affect the acidity or oxidative stability of
the olive oil (García et al., 2001), there was a reported decrease in phenolic content.

Alternatively, studies examining the effects of cold temperature on olive oil
yielded positive results in reducing bitterness. Storage of olive oil at 5∘C effec-
tively reduced the bitterness of olive oil but was time dependent. The length of
storage time varied from 2 to 8 weeks depending on the type of olive used in each
sample of oil (Yousfi et al., 2008). Bett-Garber and colleagues (2011) found that
fresh-cut cantaloupes stored at 4∘C had the lowest intensity for off-flavors including
bitterness, followed by the samples at 10∘C, and the samples held at 4∘C for 24 h
before a temperature increase to 10∘C. The samples held at 4∘C for 48 h before
a change to 10∘C had the highest intensity of off-flavors. They found that cold
storage temperature changes seem to enhance processes that produce off-flavors
(rancid, musty and bitter) that could be the result of amino acid breakdown and/or
cell wall leakage.
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Overall, temperature fluctuations should be avoided and a constant cool tempera-
ture should be maintained. The use of cold storage is likely to be favorable over heat
treatment to minimize the degradation of beneficial compounds; however, further
research is needed to determine optimal temperature treatment. Additionally, some
beneficial compounds are known to increase with exposure to heat treatment, as in
the case of canolol in the oil fractions of toasted canola seeds and meals (Mayeng-
bam et al., 2013). It is apparent that the effectiveness of any temperature treatment
is product-specific, and general recommendations are unclear at this time without
further research.

10.2.1.2 Ion exchange and adsorbent resins

Bitter phenolic compounds are routinely adsorbed to resins, trapped on polymers,
precipitated, extracted with solvents, or converted to non-bitter compounds
(Drewnowski & Gomez-Carneros, 2000).

A recent study by Kola and colleagues (2010), compared the effectiveness
of two ion exchange and adsorbent resins (Amberlite XAD-16HP and Dowex
Optipore L285) on removing bitterness in orange juice. They found that both
agents effectively reduced the bitterness of the terpene limonin in orange juice;
however, Dowex caused alterations to the acidity, thereby decreasing the soluble
solids content and increasing the pH value. On the other hand, Amberlite did
not alter the quality characteristics of orange juices and therefore may be the
recommended adsorbent resin for the beverage.

10.2.1.3 Extraction with sub-critical water

Miyashita and Etoh (2013) showed that sub-critical water extraction (SWE) was
very effective in removing catechins from green tea. While catechins are known for
their health-promoting effects they are highly bitter and astringent. Hydrothermal
and pressurized extraction techniques as well as SWE were all shown to effectively
extract over 300 mg of catechins per 100 mL of green tea extracts. Unlike the other
techniques, SWE is considered to be more environmentally friendly as it only uses
standard water and requires low temperature and pressure. In addition to reduc-
ing bitterness and astringency, SWE was the only technique to retain the original
fragrance of the green tea extract.

10.2.2 Chemical methods
10.2.2.1 Fermentation

To reduce bitterness, researchers have also attempted to alter the physical and
chemical structure of the compounds responsible for the bitterness. For example,
Bertoldi and colleagues (2004) reduced the bitterness of dark tuna meat using
lactic acid fermentation with Lactobacillus Casei subsp. Casei ATCC 393 in the
presence of varying levels of glucose and sodium. They observed that fermentation



�

� �

�

Methods for Removing Bitterness 225

increased the level of lactic acid, which effectively reduced bitterness in tuna.
Higher glucose levels were shown to enhance fermentation while higher sodium
levels suppressed fermentation. These researchers also reported an inverse rela-
tionship between the increase in pH of tuna and the decrease in bitterness, possibly
due to the enzymatic action on amino acids and hydrophobic peptides during
fermentation or because the acidity masked the bitterness. However, researchers
examining the effect of physical alterations on the phenolic content of red wine
concluded that changes in pH had no effect on bitterness. They did find that
increasing tartaric acid concentration slightly decreased bitterness perception
in red wines whereas increasing ethanol content increased bitterness perception
(Fontoin et al., 2008). The conflicting results from these studies (Bertoldi et al.,
2004; Fontoin et al., 2008) demonstrated that the food matrix is critical in
bitterness development, perception and masking.

10.2.2.2 Aging and polymerization of phenols

Aging of wine reduces bitterness because phenols continue to polymerize and even-
tually precipitate. Young red wines sold without being aged sometimes have high
residual sugar concentrations (1–3%) to reduce bitterness. Sugar has also been
added to wines to reduce bitter taste (Noble, 1998).

Cravotto and colleagues (2005) isolated bitter compounds from artichoke
leaves (cynaropicrin and grosheimin) by subjecting them to microwave irradiation.
This resulted in chemical alterations of these compounds including esterification
and opening of the lactone ring. They found that the increased presence of
oxygenated polar groups, opening of the lactone ring and probably the reduction
of exomethylenes resulted in reduction of bitterness for these compounds.

10.2.2.3 Alkalization

Taste dilution analysis (TDA) of roasted cocoa nibs showed that in addition to alka-
loids (theobromine and caffeine), a series of bitter tasting 2,5-diketopiperazines and
monomeric and oligomeric flavan-3-ols, were key inducers of bitterness in con-
sumed roasted beans (Stark et al., 2005, 2006; Stark & Hofmann, 2005). Stark
and Hofmann (2006) subsequently demonstrated, for the first time that alkaliza-
tion of cocoa induced the non-enzymatic C-glycosylation of flavan-3-ols to form
flavan-3-ol-C-glycosides. These newly formed C-glycosides modified the bitter
taste profile by decreasing the bitter taste intensity of the alkalized cocoa pow-
der. The ability of C-glycosides to suppress bitterness was recently confirmed by
Zhang and colleagues (2014) who subjected catechins to 200∘C for 15 minutes in
low moisture Maillard models composed of glycine (gly) and a reducing sugar
(D-glucose, D-xylose or D-galactose). Using isotopic labeling techniques, they
identified eight reaction products including six flavan-3-ol-spiro-C-glycosides. Of
these spiro products, one was found to significantly suppress the bitterness of a
caffeine solution. The concern with many of these techniques is that they may
also reduce the beneficial effects associated with such compounds as polyphenols.
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Therefore, in order to not compromise the nutrition of the food of interest, mask-
ing of bitterness through the addition of ingredients may be a better alternative for
developing functional foods.

10.2.3 Masking techniques
10.2.3.1 Flavorings

Taste “masking” occurs when the perceived sensory signal is overridden with a
competing sensory signal (Thorngate, 1997). Ideally, non-bitter and agreeable
tastes will dominate (Sun-Waterhouse & Wadhwa, 2013) when masking tech-
niques are utilized. For example, without the citrus flavor in grapefruit juice, the
bitterness of naringin and limonin would render it unpalatable (Szejtli & Szente,
2005). Similarly, the taste of caffeine in cola beverages is overwhelmed by high
doses of sucrose, sweeteners and acid (Ley et al., 2008).

Aliani and colleagues (2011) incorporated ground brown flaxseed, rich in antiox-
idants, omega-3 fatty acids and lignans into muffins (17%) and snack bars (32%)
and used a trained sensory panel to determine aroma and flavor attributes. The
control snack bars contained stabilized bran and toasted wheat germ while the con-
trol muffins were made with whole-wheat flour. Orange cranberry, gingerbread
raisin and cappuccino chocolate flavorings were used in the snack bars, whereas
orange cranberry and apple spice flavorings were used in the muffins. The bit-
ter attribute was strongly related to grain/flax flavor, as depicted in bi-plots from
principal component analysis (PCA). Both the orange cranberry and apple spice
muffin formulations with flaxseed had significantly higher bitter taste compared
to the non-flax muffin. The snack bars containing flax with the orange cranberry
and cappuccino chocolate chip flavorings had significantly higher bitter taste while
the bitter intensity for the flax and non-flax gingerbread raisin snack bar was not
significant. The authors attributed this effect to the gingerbread raisin flavoring,
which may have naturally imparted bitterness to the non-flax bar, as it was higher
than for the non-flax bars with the other two flavorings. Because the bitterness
rating was still quite low on the unstructured 15-centimeter line scale, Aliani and
colleagues (2011) suggested that the use of flavorings where a small amount of bit-
terness is expected (in ginger, for example) may reduce the bitterness effect caused
by the addition of flax. This data showed that none of the flavorings completely
masked bitterness, although expectations of bitterness before consuming the sam-
ple influenced perception, and in turn, acceptance of the food product. While both
ingredients in the cappuccino chocolate flavor were expected to impart bitter taste
to some degree, they could not significantly reduce the bitterness caused by flax. In
contrast, the addition of the gingerbread raisin flavoring did reduce the bitterness
of flax. Thus, certain ingredients worked better than others but the exact reason for
this is not fully understood.

Ares and colleagues (2009) used a trained sensory panel to determine bitter-
ness in antioxidant extracts of two native South-American plants, Achyrocline
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satureioides and Baccharis trimera with added sucrose, sucralose, polydextrose
or milk (0 or 3.2% fat). All four ingredients were effective in reducing the
bitterness of these antioxidant extracts and the concentration of polyphenols
in each antioxidant extract examined. The authors explained the reduction of
bitterness by considering the mutual suppression of bitterness and sweetness
due to a central cognitive effect (Calvino & Garrido, 1991; Keast & Breslin,
2003). One of the mechanisms suggested by Keast (2008) for the reduction of
bitterness by milk was the migration of polyphenolic compounds to the lipid
phase. However, Ares and colleagues (2009) challenged this theory as both
0% and 3.2% fat milk showed the same reduction of bitterness. Therefore, the
effect could be attributed to milk proteins, which may complex with polyphe-
nolic compounds yielding them insoluble or at least making the compounds
incapable of interacting with the taste receptors (Keast, 2008). Further expla-
nation for polydextrose as an effective bitterness suppressant was potentially
due to an increase in viscosity and hydrogen bonds with polyphenols (Plug &
Haring, 1993).

Kranz and colleagues (2010) fortified fruit smoothies with olive leaf extract
(OLE), and added sodium cyclamate, sodium chloride or sucrose to mask
bitterness. Using a trained panel to determine sensory differences, only sucrose
significantly masked the bitterness of OLE in smoothies. While sodium cyclamate
appeared to reduce bitterness, increasing its concentration did not lead to a strong
reduction of bitterness, as observed for sucrose. The results of the scale test indi-
cated that OLE polyphenol concentrations above the sensory detection threshold
could be partly reduced by sodium cyclamate (39.9% bitterness reduction) and
sucrose (24.9% bitterness reduction). Addition of sodium chloride could not
mask bitterness, in fact, a slight increase of bitterness was observed when sodium
chloride was added. Therefore, these results suggest that sodium cyclamate should
be preferred for bitterness masking since it was the most effective, and does
not contribute to additional calories like sucrose. Despite this finding, sucrose
may be preferred due to potential health concerns related to cyclamate consump-
tion. The U.S. Food and Drug Administration banned the use of cyclamate in
1970 following incidences of bladder cancer (Sharma & Lewis, 2010). Kranz
and colleagues (2010) suggested that the increased sweetness impression of
the smoothies may have interfered with bitterness perception because human
signal transduction pathways for sweetness are opposed to bitterness pathways
(Kinnamon & Margolskee, 1996). One methodological difference between this
study and the studies by Aliani and colleagues (2011) and Ares and colleagues
(2009) is the use of an unstructured line scale to determine sensory differences.
Kranz and colleagues (2010) used ranking and scale tests with the panelists
selected based on their ability to perceive bitterness. Because panelists were
not randomly chosen, the findings of this study may not be applicable to all
populations, since bitterness sensitivity and perception among individuals vary
widely.
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10.2.3.2 Amino acids

Mukai and colleagues (2004) tested the enteral solution Aminoleban EN improved
formulations with increased particle size branched-chain amino acids (BCAA)
L-isoleucine, L-leucine and L-valine with added flavors. Fruit flavor was deemed
the most effective followed by pineapple and apple flavors. Coffee and green tea
did not change perception, probably because of their already bitter nature. The
combination of sweetness and sourness decreased bitterness, potentially due to the
citric acid content.

10.2.3.3 Aroma additions

It is possible to manipulate bitterness perception through use of aroma additions
because much of what is perceived as taste is influenced by the aroma of food
(i.e., flavor). Mukai and colleagues (2007) used a 5-point rating scale for panelists
to define sensory attributes and found that strawberry, apple and vanilla aromas
evoked an image of sweetness, which contributed to the bitterness inhibition of
BCAA solutions. Earlier research from Mukai and colleagues (2004) found similar
results where green tea and coffee aromas did not have this effect. Additionally,
the strawberry aroma, which evoked an image of both sweetness and sourness was
particularly successful in inhibiting bitterness, more so than either vanilla (which
also evoked both sweetness and sourness although the sourness intensity was lower)
or apple (which did not evoke sourness at all). Based on results from both studies
the evocation of both sweetness and sourness by an aroma and/or flavor is necessary
for effective bitterness suppression. Of course, this is in a simple beverage matrix
and results may not be transferable to other food products.

In another example of a simple matrix, Ishizaka and colleagues (2008)
attempted to suppress the bitterness of prednisolone powder (PP), a drug used
in the treatment of respiratory and renal failure and nephritis, by inclusion of PP
into various commercial beverages. The authors found that as the intensity of
sweetness, sourness and saltiness increased, bitterness decreased. Exclusively sour
or salty agents were unable to improve palatability while agents that are very sweet
and also contain some sourness and a little saltiness improved palatability the
most. They concluded that the addition of sweetness to acidic beverages was the
most effective way of suppressing the bitterness of PP. These results agreed with
the findings of Mukai and colleagues (2007) where they determined that a small
amount of sourness added to a predominantly sweet product could effectively
suppress bitterness. While Mukai and colleagues (2007) demonstrated how aroma
can affect perception of bitter flavor, Ishizaka and colleagues (2008) only examined
taste. Interestingly, they reported a negative effect of milk, finding that it reduced
palatability and increased bitterness which is contrary to that reported by Ares
and colleagues (2009). Although, both studies used different measurement scales
to determine bitterness, a different result may have been found if Ishizaka et al.
(2008) had used a 10-centimeter unstructured line scale. Despite this, Ishizaka and
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colleagues (2008) also found that coffee milk and condensed milk significantly
reduced bitterness. These conflicting results demonstrate that bitterness perception
can be largely influenced by food matrix, as shown in previous studies. Contrary to
findings by Ares and colleagues (2009) that 0 and 3.2% milk fat had no difference
in bitterness, Madsen and Ardü (2001) found that bitterness masking in cheese
was greater with a higher fat content. Once again, matrix and product differences
are vast and must be explored further.

Bechoff (2014) tested Hibiscus (Hibiscus sabdariffa L.) beverages and found
that the concentration of polyphenols was significantly correlated to bitter taste.
This observation was in agreement with that reported by Jaegar and colleagues
(2009) and Lawless and colleagues (2012). The bitter taste was significantly more
pronounced in infusions compared to syrups, and bitter taste was negatively asso-
ciated with total sugars, which suggest that addition of sugar would be masking
bitter taste. In another study, Jaeger and colleagues (2009) found that panelists tast-
ing beverages containing polyphenols from berry fruit and/or cocoa responded well
to increasing levels of sucrose; however, there was no perceived bitterness differ-
ence between beverages with 7% and 10.5% added sucrose. The point at which the
reduction of bitterness has reached a plateau is critical for food developers to not
overuse calorically dense ingredients like sucrose.

Often the presence of limonin and nomilin caused by Huanglongbing (HLB)
infected fruit can contribute to bitterness in orange juice. Therefore, Dea and col-
leagues (2013) tested whether sucrose or citric acid could reduce bitterness. They
found that only sucrose could mask it, which is commonly used in industry but
poses other problems as a less healthful product. A potentially good alternative to
using sucrose is a combination approach using an artificial sweetener and an aroma
attribute. Tárrega and colleagues (2012) found that sucralose and vanilla aroma
decreased bitterness caused by triterpenoid peptides found in ginseng-enriched
milk, but not enough to be significant. As suggested by Tamamoto and colleagues
(2010), and in agreement with Aliani and colleagues (2011), more congruent or
related flavors such as chocolate, citrus and coffee would be more effective. The
reason for this is because of their inherent bitterness which garners a certain level
of acceptance. Even cyclodextrins, which form complexes with bitter molecules,
would be equally effective. In fact, cyclodextrin dissolves flavonoids and subse-
quently masks the bitter taste of citrus juice, while maintaining the bioactivity of
the flavonoids (Drewnowski & Gomez-Carneros, 2000). Gaudette and Pickering
(2012a) found that sweeteners (sucrose and Rebaudioside A) used in combination
with ß-cyclodextrin effectively reduced the bitterness of (+)-catechin. Rebau-
dioside A was equally as effective as sucrose. Central cognitive mechanism,
from sweetness, and a physiological effect from β-cyclodextrin encapsulating
(+)-catechin, was consistent with the reduction in bitterness observed with zinc
sulfate and sodium-cyclamate (Keast & Breslin, 2005).
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10.2.3.4 Gluconate and acetate

Gluconate and acetate are examples of sodium salts low in perceived salty taste
found to be successful at masking bitterness (Keast et al., 2001, 2004). Sodium
gluconate added to a quinine-hydrogen chloride solution effectively reduced bit-
terness, but not in caffeine or naringin solutions, possibly due to a depression in
gustatory nerve activity (Narukawa et al., 2012). Gluconate, although effective in
quinine type bitterness, may not be feasible for a range of compounds due to its
specificity. A benefit of using gluconate is its promotion of Lactobacillus bifidus
growth which may improve gut health. Sodium salts in conjunction with L-arginine
have also been used to reduce peptide bitterness (Ogawa et al., 2004). In a differ-
ent food product, Sharafi and colleagues (2013) found that aspartame misted onto
vegetables (kale, Brussels sprouts and asparagus) was more effective in reducing
bitterness compared to sodium acetate or sodium chloride. This demonstrated that
a sweetener could be used to sufficiently reduce bitterness, while not contributing
to a sweet taste.

10.2.3.5 Lipids: phospholipids and fatty acids

Koprivnjak and colleagues (2009) examined the potential of phospholipids to atten-
uate the pronounced bitterness associated with the high content of hydrophilic
phenolic compounds in virgin olive oil (VOO). The addition of granular soy lecithin
in the range of 5-10 g/kg significantly increased sweetness and decreased bitterness
with only slight changes in olive fruit and green odor notes. The treated oil; how-
ever, could not be sold as natural VOO but as a functional food. Nevertheless, the
authors pointed out the need to study the impact of added phospholipids on the
shelf life of the product.

The potential use of fatty acids as masking agents was recently reported by
Homma and colleagues (2012). They identified these compounds in a natural white
mold cheese called Baraka, and were found to be capable of masking bitterness.
Using sensory tests, they reported a close relationship between masking activity
and the high free fatty acid content of Baraka cheese. This was the first study
reporting the bitter masking properties of free fatty acids. Based on their results
it appeared that oleic acid effectively masked bitterness by complexation with the
bitter compounds.

10.2.3.6 Zinc, lactate, and acetate

Keast (2008) reported that the addition of zinc lactate to caffeine products such
as coffee and chocolate was effective in reducing the bitterness. An earlier study
by Keast and Breslin (2005) examined the effect of zinc sulfate on various bit-
ter compounds including tetralone (responsible for bitterness in beer) and several
pharmaceutical compounds. They discovered that zinc sulfate reduced the bitter-
ness in tetralone, quinine-hydrogen chloride (anti-malarial drug), and denatonium
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but had no effect on pseudoephedrine (stimulant), sucrose octa-actetate (acetylated
derivative of sucrose) and dextromethorphan (antitussive drug).

Jensen and colleagues (2001) tested various masking agents to effectively reduce
bitterness imparted by adding 3% or 4% sodium lactate (SL) or potassium lactate
(PL) to ground chicken breast. They determined that PL imparted more bitterness
compared to SL, and the higher concentration was higher in bitterness. Of all the
masking agents tested (sucrose, dextrose, lactitol, sorbitol or lysine), they found
that bitterness was decreased when 1% sucrose or lactitol was used in SL samples.
It should also be noted that sweetness did not increase along with a subsequent
bitterness decrease, suggesting that sweeteners like sucrose can be used without
affecting the overall sensory profile.

The studies described have demonstrated that masking of bitterness through
ingredient addition is important in functional food development and by far the most
practical method because it does not compromise the bioactive components in the
food product. A concern with masking is that although addition of substances such
as sucrose is quite effective at masking bitterness, its use in larger amounts can
decrease the total nutritional value of the food as well as increasing its glycemic
index. Therefore, masking techniques using safe, non-caloric ingredients are essen-
tial. Also, there is a clear potential for the use of aroma compounds to reduce
bitterness perception, which may reduce the need for undesirable ingredients such
as sucrose. Aroma addition in combination with smaller amounts of sweeteners and
sour ingredients may also prove to be effective.

It is also important that masking agents be used in appropriate applications so as
to not change the overall flavor profile of the particular food. As an example, using
high amounts of sucrose to mask bitterness in a savory dish is just as unacceptable
as using sodium chloride in a sweet dessert.

10.2.4 Bitter blockers
Recent studies have highlighted the potential of bitter blockers as a healthier alter-
native to adding sugar and salt and are capable of reducing bitterness of phenols and
caffeine. Overcoming the unpleasant bitter flavors associated with many medica-
tions could increase compliance as well as the acceptance of bitter-tasting healthy
and functional foods. Five bitter blockers with different efficacies have so far been
published (Slack et al., 2010; Brockoff et al., 2011; Grene et al., 2011; Roland
et al., 2014).

Binello and colleagues (2004) synthesized several bitter-taste blockers by
covalently bonding cyclodextrins (CDs) with chitosans via succinyl or maleyl
bridges. The chitosan-cyclodextrin adducts (β and γ-CDs chitosans) were then
investigated for their ability to reduce the bitterness of caffeine and natural bitter
extracts (artichoke leaves, aloe and gentian). Twelve trained panelists reported
that β-CD-chitosan exhibited the greatest efficacy by significantly decreasing
bitterness.
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Gaudette and Pickering (2012b) later examined the ability of five bitter
inhibiting compounds, β-cyclodextrin (β-CYCLO), homoeriodictyol sodium salt
(HED), zinc sulphate monohydrate (ZnSO4), magnesium sulphate (MgSO4) and
carboxymethylcellulose sodium salt (CMC) on the bitterness of (+)-catechin and
caffeine. Using 12 trained panelists, β-CYCLO and HED were the most effective
in reducing bitterness of (+)-catechin compared to the other bitter blockers.
However, only HED proved effective in reducing the bitterness of caffeine.
Nevertheless, irrespective of the different formulations considerable bitterness still
remained.

Further work by Gaudette and Pickering (2012a) examined the ability of two
bitter blockers, β-CYCLO and HED, two sweeteners, sucrose and Rebaudioside
A, and two odorants, vanillin and black tea aroma, to reduce the bitterness and
astringency of (+)-catechin. Compared with the other treatments, a combination
of sweetener and β-CYCLO was most effective in decreasing bitterness and astrin-
gency and together could be used in formulations of functional foods. The sweet-
ener, Rebaudioside A was as effective as sucrose in inhibiting bitterness and could
replace sucrose in low and non-sugar food and beverage products suitable for those
with diabetes. The addition of odorants; however, had no effect on either the bit-
terness or astringency of (+)-catechin.

Certain peptides elicit a bitter taste, as discussed in Chapter 6, which is reflected
by their amino acid composition and their ability to activate the bitter taste recep-
tors. Maehashi and colleagues (2009) showed that bitter peptides, as well as other
bitter compounds, activate the human bitter receptors hTAS2Rs. Not all peptides
are bitter; however, as umami peptides have been reported to attenuate bitterness.
As discussed earlier in this chapter, both sugar and salt can suppress bitterness. The
ability of umami to interact with other tastes can also result in the suppression of bit-
terness (Arai et al., 1973; Noguchi et al., 1975; Kemp & Beauchamp, 1994; Tokita
& Boughter, 2012). In addition to monosodium glutamate (MSG), umami-active
acidic oligopeptides, glutamic acid (Glu)-aspartic acid (Asp), Glu-Glu, Glu-Serine
(Ser), and Glu-Glu-Glu, were shown over 40 years ago, long before the estab-
lishment of umami, to suppress the bitterness of protein hydrolysate (Arai et al.,
1972, 1973). A recent study by Kim and colleagues (2015) determined whether
such umami peptides suppressed bitterness by inhibiting the binding of the bitter
ligand to the human taste receptor, hTAS2R16. Five soybean derived umami pep-
tides, Glu-Asp, Glu-Glu, Glu-Ser, Asp-Glu-Ser, and Glu-Gly-Ser, were examined
for their ability to suppress the bitterness of salicin in an ionized calcium flux sig-
naling assay using human hTAS2R16-expressing cells. All five peptides markedly
reduced the response to the bitter taste receptor (hTAS2R16) by salicin. Of all the
peptides examined, Glu-Glu proved to be the strongest inhibitor and was even more
effective than probenecid, a known hTAS2R16 antagonist. This is the first study
that clearly established the interaction between bitter and umami taste at the taste
receptor level.
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Pydi and colleagues (2014) elucidated the ligand binding pocket of the human
bitter taste receptor T2R4. They found that the binding of T2R4 to its agonist
quinine involved seven amino acids located in the extracellular side of transmem-
brane 3 (TM3), TM4, extracellular loop 2 (ECL2) and ECL3. As a result, they
screened a number of amino acid derivatives including, L-ornithine β-alanine (OA)
and γ-amino butyric acid (GABA), for their ability to bind T2R4. Since Ley (2008)
suggested OA could mask the bitter taste of potassium salt and GABA the bitter
taste of quinine, caffeine, coca and chocolate, Pydi and colleagues (2014) hypoth-
esized that these amino acid derivatives may act at the receptor level as T2R block-
ers. Two novel bitter blockers GABA and Na, Na-Bis(carboxymethyl)-L-lysine
(BMCL) were identified with respective IC50 values of 3.2±0.3 and 59±18 nM.
Pharmacological characterization using T2R-CAMs showed GABA acted as an
antagonist while BMCL acted as an inverse agonist on T2R4. Both shared the
same orthostatic site in T2R4 as the agonist quinine and involved signature residues
Ala90 and Lys270. The authors point out the tremendous potential of these bitter
blockers for eliminating the bitter taste of healthful foods.

During the screening of extracts from selected plants native to Ohio, Li and
colleagues (2014) obtained a chloroform-soluble extract from Canada Goldenrod
(Solidago canadensis) with hTAS2R31 antagonistic activity. Further characteri-
zation of the extract resulted in identification of a new labdane diterpenoid, sol-
idagol, together with six known terpenoids and a triterpenoid. Of these compounds,
3β-acetoxycopalic acid, the first member of the labdane diterpene class, was found
to exhibit inhibitory activity against hTAS2R31 activation. Thus S. canadensis
could be a good source for the development of bitterness-masking agents.

10.3 CONCLUSION

Eliminating bitterness is of great interest and value to the food industry. As
demonstrated in this chapter, bitterness is complex. The perception of bitterness
varies enormously between individuals while the compounds responsible for
bitterness in food are numerous and varied. Researchers have successfully
identified methods for masking and reducing bitterness in products but have yet
to establish a universal or gold standard method for eliminating bitter compounds.
Additionally, because many healthful compounds are bitter, and small amounts
of bitterness can be considered desirable in many cases. Some methods have
only been tested on a few compounds and the effects of these methods on
other bitter compounds have not yet been established. More positively, some
methods have been useful for masking or reducing some bitter compounds
while having little or no effect. The most commonly used techniques for mod-
ifying bitterness in functional food systems were reviewed by Gaudette and
Pickering (2013). It is evident that further research is needed to identify new
and effective ways of masking or reducing bitterness in complex food matrices.
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Additionally, the method of bitterness suppression must be scrutinized to ensure
the compound(s) present in the functional foods will not decrease its perception
of healthfulness by consumers (i.e., artificial sweeteners, sugar and salt is of
concern). It is likely that a combination of techniques to decrease bitterness would
ensure the best possible outcome by addressing various aspects of bitterness
perception. Ideally, the most promising formulation should be simple, economical,
involve the fewest steps possible, have no effect on nutrient bioactivity and/or
bioavailability and use techniques in which safety and efficacy have been clearly
demonstrated.
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TAS2R38, 7–8, 26, 27, 29, 44–45, 63
T2R4, 233
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