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Supervisor’s Foreword

Quantum field theory (QFT) is a universal language to describe modern physics. Its
validity spans vast branches, such as particle physics, condensed matter physics,
statistical physics, mathematical physics, and string theory. In particle physics SU
(3) color gauge theory, quantum chromodynamics (QCD), describes strong inter-
actions among quarks and gluons, whereas SU(2) � U(1) unified gauge theory of
Glashow–Salam–Weinberg describes electroweak interactions of quarks and lep-
tons. These theories have been solidly confirmed by many experiments.

Although QFT is very powerful, we are far from fully understanding it partic-
ularly in the strong coupling regime. In many situations we rely on perturbation
analysis, but this misses many interesting and rich non-perturbative dynamics of
QFT. In the path-integral formulation of QFT it is quite difficult to conduct an exact
evaluation. How to conduct the path-integral exactly has been a long-standing
problem in QFT.

Recently there has been a significant development in solving this problem in
QFT with supersymmetry (SUSY). With a large enough amount of SUSY, a new
technique called the localization method can be developed with which one can
conduct the path-integral exactly by the analytical method. This opens up many
new directions. For example, by performing the path-integral exactly and evaluating
the partition functions of the two theories, one can establish the duality between
these two QFTs: nontrivial equivalence between (apparently) different theories.

Dr. Akinori Tanaka is an expert on this subject. Throughout his Ph.D. work, he
has mastered this localization technique and revealed many nontrivial aspects of
QFT from the exact results he obtained using the localization technique, and this
thesis is one such revelation. In this thesis, Akinori evaluated the superconformal
index on RP2 � S1 using the localization method and directly showed the duality
between the XYZ-model and supersymmetric quantum electrodynamics (SQED).
The thesis contains a transparent introduction of the subject with both physics and
mathematics backgrounds and will serve as a good introductory monograph for
researchers.
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It is my honor to introduce Akinori’s work for publication in the Springer Theses
series. His work was nominated as an Outstanding Physics Ph.D. Thesis of the
Fiscal Year 2014 by the Department of Physics, Graduate School of Science, Osaka
University.

Osaka, Japan Prof. Yutaka Hosotani
March 2016
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Chapter 1
Introduction and Summary

Quantum Field Theory (QFT) has been a useful and fundamental tool for
studying physics described by large number degrees of freedom, e.g. particle physics,
condensed matter physics. In particle physics, theory is typically described by
Lagrangian with Poincaré symmetry generated by translations and rotations in order
to make it compatible with special relativity.1 One of the generalizations of the
Poincaré symmetry, supersymmetry (SUSY), was discovered in 1971 in the context
of string theory [2–4]. After that, it was applied to the usual QFT in [5, 6]. The
study of SUSY gauge theories has been providing many interesting results including
various non-perturbative effects and un-expected relationships between physics and
mathematics since 1990’s [7–9]. SUSY has generator Q̂ with fermionic statistics.
One can show that the SUSY algebra is a unique extension of the Poincaré algebra
under the existence of a non-trivial S-matrix [10]. Without this condition, there is
another extension of the Poincaré symmetry called Conformal symmetry generated
by translations, rotations, dilatation and conformal boosts. The Conformal symmetry
naturally emerges at IR fixed points of renormalization group flow [11]. Around each
IR fixed point, there is no scale, and this scale invariance enhances to the Conformal
symmetry in many cases. See for example [12]. Once we start with supersymmetric
UV Lagrangian and flow it to IR regime with preserving supersymmetry, the sym-
metry of the IR theory is expected to be enhanced to Superconformal symmetry. The
possible superconformal algebras are classified in [13], and according to it, we can
define superconformal theories only within two, three, four, five and six dimensions.
Two-dimension is in a special case because the algebra becomes infinite dimen-
sional one, so three dimension is the lowest dimension with the finite dimensional
superconformal algebra, and we focus on the three-dimensional SUSY QFTs from
now on.

1See [1] for an explanation.
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2 1 Introduction and Summary

SUSY QFTs in three dimension have many interesting features. Our main
interest is a non-trivial duality among three-dimensional SUSY QFTs, called three-
dimensional mirror symmetry. It was originally proposed in [14] for N = 4 super-
symmetric case, and in [15] forN = 2 supersymmetric case. The simplest case of the
duality is an equivalence between the moduli space2 for Supersymmetric Quantum
ElectroDynamics (SQED) and the moduli space for a SUSY matter theory called
XYZ-model. A branch of the moduli space of SQED, so-called Coulomb branch is
deformed by the quantum effect [16] but the conjectured dual moduli space branch,
called Higgs branch is not because of the non-renormalization theorem [17, 18]. In
other words, quantum effect on one side is realized by classical effect on the other
side. This proposal is reformulated in the context of the string theory [19, 20], and
three-dimensional mirror symmetry was explained as one of the consequences of the
SL(2, Z) duality in type IIB superstring theory. In addition to it, this proposal has
been checked by utilizing the parity anomaly [15]. It is an analog of ’t Hooft anomaly
matching condition in four-dimensional duality [7].

There is another way to see an evidence of three-dimensional mirror symmetry.
For example, the following equality is expected.

ZXYZ = ZSQED, (1.1)

where Z represents the partition function for each theory. At a first glance, the exact
check for (1.1) looks difficult because of the existence of the interaction. Recently,
however, so-called supersymmetric localization techniques have been developed
within 2, 3, 4, 5 dimensional SUSY QFTs.3 The techniques provide us a way to
perform path integral calculations exactly even there are interactions. One of the
interesting features for these developments is that the techniques can be applied to
the theories on a curved space. The curved space, called manifold in mathemat-
ics, is not arbitrary because we should have a simple structure on the manifold
in order to define supersymmetry consistently. In three-dimension, the structure
has been identified to so-called almost integrable contact structure [40], and the
exact calculations were performed on manifolds with such structure, product space
S2 × S1 [28, 41–43], D2 × S1 [30, 33], three sphere S3 [27, 44–51] and its orbifold
S3/Z p [32]. In each case, the equality (1.1) has been verified by using mathematical
formulas.4 By the way, the supersymmetric partition functions on M2 × S1 where
M2 is a two-dimensional manifold is known to be equivalent to the following object

IM2

Theory(x,αa) = TrH(M2)

(
(−1)F̂ x ′{Q,Q†}x Ĥ+ ĵ3

∏
a

α f̂a
a

)
, (1.2)

2It corresponds to the space of possible vacuum expectation values.
3One can find results of the localization techniques for two-dimensional QFTs in [21–26], for three-
dimensional QFTs in [27–33] for four-dimensional QFTs in [34–36] for five-dimensional QFTs in
[37–39].
4The check or proof of the equality (1.1) by utilizing supersymmetric partition function on S2 × S1,
D2 × S1, S3 and S3/Z p can be found in [42, 43, 52], [30], [44] and [32] respectively.
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called SuperConformal Index (SCI). ĵ3 and f̂a are an orbital angular momentum
and flavor charges respectively. As reviewed in Chap.3, this quantity turns to be an
analog of usual thermal partition function. Therefore, the following equality which
is the counterpart of (1.1) is expected to be satisfied:

IM2

XYZ(x,α) = IM2

SQED

(
x,α−1

)
. (1.3)

As explained in Chap.4, thanks to the localization techniques, the structure of exact
SCI on S2 × S1 for SQED is realized by a summation over the Dirac monopoles
labelled by B ∈ Z . As reviewed in Appendix C.1, we have to combine these contri-
butions and utilize fancy mathematical formulas, Ramanujan’s summation formula
and quantum binomial formula, in order to deform its infinite summation to the SCI
of XYZ-model:

I S2

XYZ(x,α)
quantum binomial formula +←−−−−−−−−−−−−−−−−

Ramanujan’s summation formula
I S2

SQED

(
x,α−1) . (1.4)

This proof was originally performed in [52], and it provides an explicit evidence for
the three-dimensional mirror symmetry.

Our main results We get the following new results.

• We define a new SCI by using M2 = R P2 in (1.2).
• We derive formulas for the SCI based on localization for U (1) gauge theories.
• We observe the equality (1.3) and prove it in our context.

R P2 is called real projective plane. Topologically, one can construct this curved
surface by combining the Möbius strip and the hemisphere D2 along the boundary.
R P2 is not isomorphic to neither S2 nor D2. R P2 is an example for unorientable
manifold, and the field theory on it sounds somewhat exotic in usual sense. We
define SUSY gauge theories on R P2 × S1 by introducing sets of supersymmetric
parity condition on S2 × S1. The SCI for gauge theory on R P2 × S1 consists of
a summation over contributions of +holonomy sector and −holonomy sector, and
there is no infinitely many terms but just 2 terms, and differ from the SCI on S2 × S1.
The equality (1.3) is checked numerically in Chap.6, and we show its exact proof by
using quantum binomial formula and unnamed formula (7.1) in Appendix C.

I R P2

XYZ(x,α)
quantum binomial formula +←−−−−−−−−−−−−−−

un-named formula (7.1)
I R P2

SQED

(
x,α−1) . (1.5)

Compared with the proof of (1.4), we can observe that the agreement in (1.5) is
guaranteed not by the Ramanujan’s formula but another, un-named formula (7.1).
We can easily understand its difference because there is no Dirac monopole5 on
R P2 but ± holonomies as noted above. The use of the un-named formula (7.1) is an
algebraic representation of the ± holonomies. As one can see, the use of quantum

5Precisely speaking, similar object exists evenon R P2 [53].Wewill comment on it in the conclusion.
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binomial formula is in common. This is also easy to understand because as a common
factor, we haveWilson line phase along the thermal S1. The use of quantum binomial
formula is, therefore, an algebraic representation of the Wilson line phase along the
thermal S1.

The organization of this paper is as follows. In Chap.2, we review some basics of
the Quantum Mechanics (QM). This chapter is important because we calculate SCI
(1.2) by utilizing the method in Chap. 2. In Chap.3, we summarize some basic facts
on the three-dimensional N = 2 supersymmetry and review the supersymmetric
localization techniques. In Chap.4, we review the exact calculation for the SCI with
M2 = S2 by localization method from the many-body QM point of view. And in
Chap.5, we turn to the calculation with M2 = R P2 and get new results. Finally,
in Chap.6, we check the simplest three-dimensional mirror symmetry, equivalence
between XYZ-model and SQED numerically. If one wants to know how to prove it
analytically, see Appendix C. In Chap.7, we summarize this thesis and comment on
new results beyond this thesis.
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Chapter 2
Preliminary—Quantum Mechanics

This chapter is a preliminary chapter for forthcoming discussions. First, we briefly
review representation theories for boson and fermion. Second, we turn to consider
partition function

Z = Tr(e−β Ĥ ). (2.1)

Third, we generalize it by turning on an insertion of (−1)F̂ into the trace:

I = Tr
(
(−1)F̂ e−β Ĥ

)
. (2.2)

This quantity is called Witten index, a prototype of the superconformal index in
Chaps. 3–5. F̂ is fermion number operator which counts the number of fermionic
excitations. In the last section, we generalize it and the generalized index gives the
basis for Chap.3.

2.1 Representation Theory

We briefly review the basics of boson and fermion in QM.We emphasis the relation-
ship between operator formalism and path integral formalism for later use.

2.1.1 Boson

Classical prescription Bosonic Lagrangian typically takes the following form:

© Springer Science+Business Media Singapore 2016
A. Tanaka, Superconformal Index on RP2 × S1 and 3D Mirror Symmetry,
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Lb = 1

2
ẋ2 − V (x). (2.3)

As a next step, we define the conjugate momentum of x by

p = ∂Lb

∂ ẋ
. (2.4)

Then, the Hamiltonian is defined by the Legendre transformation of Lb:

Hb = pẋ − Lb

= 1

2
p2 + V (x). (2.5)

Canonical quantizationWe start with the representation of the bosonic algebra, i.e.
Heisenberg algebra:

[ p̂, x̂] = −i, (2.6)

where p̂ and x̂ are momentum and position operators respectively. In principle, we
do not need to stick on the definition of ± sign in (2.6) if we treat it in self consistent
way [1]. As a basis of the Hilbert space, we can take

|x〉 or |p〉. (2.7)

These states are defined by

x̂ |x〉 = x |x〉,
∫ +∞

−∞
dx |x〉〈x | = 1, (2.8)

p̂|p〉 = p|p〉,
∫ +∞

−∞
dp |p〉〈p| = 1. (2.9)

There are two important facts. First fact is that e−i p̂a generates translation of |x〉:

e−i p̂a|x〉 = |x + a〉. (2.10)

Second fact is that the explicit form of the inner product becomes as follows.1

〈p|x〉 = 1√
2π

e−i px . (2.11)

1The simplest way to derive this relation is to use the differential equation. For example,
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The constant of integration, 1√
2π
, is determined by requiring the orthonormality

condition 〈x ′|x〉 = δ(x − x ′).

2.1.2 Fermion

Classical prescription Fermionic Lagrangian typically takes the following form:

L f = iψ+ψ̇− − V (ψ±). (2.12)

Here we treat ψ+,ψ− as independent Grassmann numbers:

ψ2
+ = 0, ψ2

− = 0, ψ+ψ− = −ψ−ψ+. (2.13)

The left2 conjugate momentum of ψ− is defined by

�− = ∂

∂ψ̇−
L f . (2.14)

The Hamiltonian is defined by the Legendre transformation of L f :

Hf = �−ψ̇− − L f

= V (ψ±). (2.15)

Canonical quantization We start with the representation of the fermionic algebra,
i.e. Clifford algebra3:

{ψ̂+, ψ̂−} = +1. (2.16)

(Footnote 1 continued)

∂

∂x
〈p|x〉 = lim

a→0

〈p|x + a〉 − 〈p|x〉
a

= lim
a→0

〈p|e−i p̂a |x〉 − 〈p|x〉
a

= lim
a→0

e−i pa〈p|x〉 − 〈p|x〉
a

= −i p〈p|x〉.

2Because of the fermionic natures in (2.13), we have to be careful with the order of ψ+ and ψ−.
3In order to derive this relation from the usual canonical quantization method, considering Poisson
bracket is not enough. Instead of it, Dirac bracket is necessary.
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In contrast to the bosonic case, the sign in (2.16) is important to get the unitary
representation [1]. As an orthonormal basis of the Hilbert space, we can take

{
|0〉, |1〉

}
. (2.17)

The states |0〉, |1〉 are defined by

ψ̂−|0〉 = 0, ψ̂+|0〉 = |1〉,
ψ̂−|1〉 = |0〉, ψ̂+|1〉 = 0,

|0〉〈0| + |1〉〈1| = 1. (2.18)

One can regard |0〉 as a hole-state, and |1〉 as an occupied state. We cannot make
|2〉 := ψ+|1〉 because it is automatically zero. This is an algebraic representation of
the famous Pauli exclusion principle.

Coherent state basis In later discussions, we consider the path integral formalism.
In order to derive it, there is a more useful basis than the basis in (2.17), the coherent
state basis [2]:

|�〉 = e−�ψ̂+ |0〉, 〈�| = 〈0|e�ψ̂− . (2.19)

We should take � as a Grassmann valuable, therefore �2 = 0 and we get

|�〉 = (1 − �ψ̂+)|0〉. (2.20)

These states satisfy the following relations.

ψ̂−|�〉 = �|�〉, 〈�|ψ̂+ = 〈�|�. (2.21)

After a direct calculation, one can get the inner product formula

〈�+|�−〉 = e�+�− (2.22)

and the complete relation

∫
d�+d�−|�−〉e−�+�−〈�+| = 1. (2.23)
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2.2 Partition Function

One of the most important objects in QM is the partition function:

Z = Tr(e−β Ĥ ). (2.24)

It contains all informations of the energy spectra because we can extract each energy
eigenvalue by taking following procedure [3, 4]4:

1. Takingβ → ∞ of Z , then Z behaves e−βE0 where E0 is the ground state energy.

2. Subtracting e−βE0 from Z , and rename it Z1, and

takingβ → ∞ of Z1, then Z1, behaves e
−βE1 where E1 is the 1st exited state energy.

3. Repeating this procedure.

2.2.1 Boson Sector

Partition function of the bosonic degrees of freedom is described by the Hamiltonian
operator defined from (2.5):

Ĥ = Ĥb, Ĥb = 1

2
p̂2 + V (x̂). (2.25)

Harmonic oscillator The simplest example is

V (x̂) = 1

2
ω2 x̂2. (2.26)

In this case, as well known, once we define â and â† [5] so that

Ĥb = ω

(
â†â + 1

2

)
, (2.27)

and by constructing a basis

{
|0〉, |1〉, |2〉, . . .

}
, â|n〉 = √

n|n − 1〉, â†|n〉 = √
n + 1|n + 1〉, (2.28)

4This is valid if there is no degeneracy.
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then, we can diagonalize the Hamiltonian: Ĥb|n〉 = ω(n+ 1
2 )|n〉. By using this basis,

the partition function can be computed by utilizing the formula of power series

Tr(e−β Ĥb) =
∞∑
n=0

e−βω(n+ 1
2 )

= e− βω
2

1 − e−βω

= 1

2 sinh βω
2

. (2.29)

The zero energy which corresponds to n = 0 is often called Casimir energy.

Path integral formalism By Inserting the complete set (2.8) and (2.9) into the trace
in (2.24), we can re-express it as

Zb =
∫

x(0)=x(β)

⎛
⎝ ∏

t∈[0,β]
dx(t)

dp(t)

2π

⎞
⎠ e

− ∫ β
0 dt

(
i pẋ+ 1

2 p
2+V (x)

)

=
∫

x(0)=x(β)

⎛
⎝ ∏

t∈[0,β]

dx(t)√
2π

⎞
⎠ e

− ∫ β
0 dt

(
−1
2 x∂2

t x+V (x)

)
. (2.30)

Path integral description of harmonic oscillator We have the following action

−
∫ β

0
dt

(−1

2
x∂2

t x + V (x)
)

= −1

2

∫ β

0
dt x(−∂2

t + ω2)x . (2.31)

Thanks to the Gaussian integral formula in (A.13), we get

Zb = 1√
detx(0)=x(β)(−∂2

t + ω2)

. (2.32)

The “matrix” ∂t ’s eigenvectors are xn(t) = e
2πi
β nt

, n ∈ Z because

∂t xn(t) = 2πi

β
nxn(t). (2.33)

Therefore, we get the following representation of the determinant.

det
x(0)=x(β)

(−∂2
t + ω2) =

∞∏
n=−∞

( (2π)2

β2
n2 + ω2

)
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= ω2
[ ∞∏
n=1

( (2π)2

β2
n2 + ω2

)]2

=
[ ∞∏
n=1

2π

β
n
]4 × ω2

∞∏
n=1

(
1 + (βω)2

(2πn)2

)2
. (2.34)

Obviously, the first factor diverges. We regularize it by using zeta-function regular-
ization. (See Appendix A for ζ(0), ζ ′(0) values’ derivation.):

[ ∞∏
n=1

2π

β
n

]4

= exp

(
4

∞∑
n=1

log
2π

β
n

)
→ exp

(
4

[
−ζ ′(0) − ζ(0) log

β

2π

])

= exp

(
4

[
−(−1

2
log 2π) − (−1

2
) log

β

2π

])

= β2. (2.35)

Then, by using the infinite product formula (A.1), we get

(2.34) =
[
(βω)

∞∏
n=1

(
1 + (βω)2

(2πn)2

)]2 =
[
2 sinh

βω

2

]2
. (2.36)

It reproduces the result (2.29):

Zb = 1√
detx(0)=x(β)

(−∂2
t + ω2

) = 1

2 sinh βω
2

. (2.37)

2.2.2 Fermion Sector

Partition function of the fermionic degrees of freedom is described by the Hamil-
tonian operator defined from (2.15):

Ĥ = Ĥ f , Ĥ f = V (ψ̂±). (2.38)

Harmonic oscillator The simplest example is

V (ψ̂±) = ω

(
ψ̂+ψ̂− − 1

2

)
. (2.39)
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Then, the basis (2.17) diagonalizes this Hamiltonian:

Ĥ f |n〉 = ω

(
n − 1

2

)
|n〉, n = 0, 1. (2.40)

The partition function is, therefore,

Tr(e−β Ĥ f ) =
1∑

n=0

e−βω(n− 1
2 )

= e
βω
2 + e− βω

2

= 2 cosh
βω

2
. (2.41)

There are two important differences compared with the bosonic harmonic oscillator.

• The absolute value of Casimir energy is same but the sign is different.
• cosh function appears unlike the sinh in bosonic case.

As we will see later, if we insert (−1)ψ̂+ψ̂− into the trace, we get sinh not cosh.

Path integral formalism When we derive fermion’s path integral representation of
the partition function, we have to be careful with the periodicity as described below.
First, we re-express Tr in the partition function with coherent basis in (2.19):

Z f = Tr(e−β Ĥ f )

=
∫

d�+d�− e�+�−〈�+|e−βV (ψ̂+,ψ̂−)|�−〉. (2.42)

Second, we divide β into N pieces: ε = β
N , say N=2,

(2.42) =
∫

d�+d�−
∫

d�+d�− e�+�− 〈�+|e−εV (ψ̂+,ψ̂−)|�−〉e−�+�− 〈�+|e−εV (ψ̂+,ψ̂−)|�−〉

=
∫

d�+d�−
∫

d�+d�− e�+�−e−εV (�+,�−)〈�+|�−〉e−�+�− 〈�+|�−〉e−εV (�+,�−)

=
∫

d�+d�−
∫

d�+d�− e�+�−+�+�−−�+�−+�+�−e−εV (�+,�−)−εV (�+,�−). (2.43)

We rename fermionic valuables:

�+ = �2
+, �− = �2

−, �+ = �1
+, �− = �1

−, (2.44)

then we get

(2.43) =
∫

d�2
+d�2

−d�1
+d�1

− e�2+�1−+�2+�2−−�1+�2−+�1+�1−−εV (�2+,�2−)−εV (�1+,�1−).

(2.45)
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Now, we regard each �n± as �±(tn) = �n±, where tn = εn. In this N=2 case,

�2+�1− + �2+�2− − �1+�2− + �1+�1−
= �+(t2)

(
�−(t1)︸ ︷︷ ︸

�−(0)+ε�̇−(0)

+�−(t2)
)

− �+(t1)
(

�−(t2)︸ ︷︷ ︸
�−(t1)+ε�̇−(t1)

−�−(t1)
)

= �+(t2)
(
ε�̇−(0) + [

�−(0) + �−(t2)
]

︸ ︷︷ ︸
we have to make it zero.

)
− �+(t1)

(
ε�̇−(t1) + [

�−(t1) − �−(t1)︸ ︷︷ ︸
0

])

As we can see above, in order to drop the O(ε0) term, we have to take

�−(t2) = �−(β) = −�−(0). (2.46)

Therefore, corresponding fermionic fields �±(t) are anti-periodic5 under the trans-
lation t → t + β. Then, by using

�̇(0) = d

dt

∣∣∣
t=0

�(t) = − d

dt

∣∣∣
t=0

�(t + β) = −�̇(t2), (2.47)

and taking N→ ∞ limit, we arrive at

(2.45) =
∫

�±(0)=−�±(β)

⎛
⎝ ∏

t∈[0,β]
d�+(t)d�−(t)

⎞
⎠ e

− ∫ β
0 dt

(
�+�̇−+V (�+,�−)

)
.

(2.48)

Path integral description of harmonic oscillator For harmonic oscillator (2.39),

Tr(e−β Ĥ f ) =
∫

�±(0)=−�±(β)

⎛
⎝ ∏

t∈[0,β]
d�+(t)d�−(t)

⎞
⎠ e− ∫ β

0 dt �+(∂t+ω)�−

= det
�±(0)=−�±(β)

(∂t + ω). (2.49)

We used the Gaussian integral formula for fermionic variables (A.16). In this anti-

periodic sector, the eigenvectors of ∂t are ψn(t) = e
2πi
β (n− 1

2 )t with n ∈ Z . Therefore,

det
�±(0)=−�±(β)

(∂t + ω) =
∞∏

n=−∞

(
2πi

β
(n − 1

2
) + ω

)

=
∞∏
n=1

(
(2π)2

β2
(n − 1

2
)2 + ω2

)

5We have checked it only with �−, but we can understand the case for �+ in similar way.
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=
[ ∞∏
n=1

2π

β
(n − 1

2
)

]2

×
∞∏
n=1

(
1 + (βω)2

(2π[n − 1
2 ])2

)
. (2.50)

The first factor diverges, so we have to regularize it somehow. One might think that
the zeta-function regularization works, however in this case, we should be more
careful:

[ ∞∏
n=1

2π

β
(n − 1

2
)

]2

=
[ ∞∏
n=1

2π

β
n

]2

×
[ ∞∏
n=1

2π
β

(n − 1
2 )

2π
β
n

]2

=
[ ∞∏
n=1

2π

β
n

]2

×
[ ∞∏
n=1

π
β
(2n − 1)
π
β
(2n)

]2

=
[ ∞∏
n=1

2π

β
n

]2

︸ ︷︷ ︸
→β

×π

β
×

[ ∞∏
n=1

π
β
(2n − 1) × π

β
(2n + 1)

π2

β2 (2n)2

]

︸ ︷︷ ︸
2
π

→ 2, (2.51)

where we used Wallis’ formula. Another part of (2.50) can be calculated by using
infinite product formula for cosh (A.2):

∞∏
n=1

(
1 + (βω)2

(2π[n − 1
2 ])2

)
= cosh

βω

2
. (2.52)

Gathering all, we recover the result (2.41)

Tr(e−β Ĥ f ) = 2 cosh
βω

2
. (2.53)

2.3 Witten Index

As we have reviewed briefly, the partition function of the harmonic oscillator can be
calculated easily. However, once we turn on the cubic or more higher interaction, it is
difficult to perform the calculation explicitly. In addition to it, the naive zeta-function
regularization did not work in the fermionic sector as we have observed in previous
page. However, we can overcome such a situation by considering

I = Tr
(
(−1)F̂ e−β Ĥ

)
, where F̂ is a fermion number operator, (2.54)

instead of Z .
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Fermion number operator F̂ is an operator which counts the number of fermion
excitation, 0 or 1. Explicitly, we can write it in our previous notation as

F̂ = ψ̂+ψ̂−. (2.55)

As one can check,

(−1)F̂ =
{+1 bosonic state

−1 fermionic state
. (2.56)

Therefore, within only bosonic sector, I and Z are identical:

Ib = Trb
(
(−1)F̂ e−β Ĥb

)
= Trb(e

−β Ĥb) = Zb, (2.57)

and nothing different happens compared with the partition function. However, the
fermion sector’s behavior changes drastically.

2.3.1 Fermion Sector

Let us see what happens in the operator formalism first by using the harmonic oscil-
lator example.

Operator formalism We can get I for fermion sector just by inserting (−1)n into
the previous summation in (2.41) as

Tr
(
(−1)F̂ e−β Ĥ f

)
=

1∑
n=0

(−1)ne−βω(n− 1
2 )

= e
βω
2 − e− βω

2

= 2 sinh
βω

2
. (2.58)

Path integral formalism After a simple calculation, one can verify that

I = Tr
(
(−1)F̂ e−β Ĥ f

)

=
∫

d�+d�− e−�+�−〈�+|e−β Ĥ f �−〉. (2.59)

Compering with the partition function (2.42), one can see that the sign of the expo-
nential factor is different. This minus sign makes the fermionic fields �±(t) in the
path integral periodic under t → t + β. In summary,
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I f =
∫

�±(0)=�±(β)

(
d�+(t)d�−(t)

)
e
− ∫ β

0

(
�+∂t�−+V (�+,�−)

)
. (2.60)

In this case, we can recover the result (2.58) as follows.

Harminic oscillator

I f =
∫

�±(0)=�±(β)

(
d�+(t)d�−(t)

)
e− ∫ β

0 �+(∂t+ω)�−

= det
�±(0)=�±(β)

(∂t + ω)

=
∞∏

n=−∞

(2πi
β

n + ω
)

= ω

∞∏
n=1

(
(2πn)2

β2
+ ω2

)
. (2.61)

The same infinite product in the bosonic partition function (2.34) emerges. Therefore,
by repeating zeta-function regularization procedure, we arrive at

I f = 2 sinh
βω

2
. (2.62)

2.3.2 Supersymmetric Quantum Mechanics

What happens when we consider

I = Tr
(
(−1)F̂ e−β Ĥ

)
, (2.63)

with harmonic oscillator Hamiltonian Ĥ = Ĥb + Ĥ f ? The answer is extremely
simple;

I = Ib × I f
= Zb × I f

= 1

2 sinh βω
2

× 2 sinh
βω

2

= 1. (2.64)
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Note that if we turn on different frequencies ωb,ω f for boson and fermion
respectively, we get

I = sinh βω f

2

sinh βωb

2

, (2.65)

and it does depend on β. Therefore, the β independence is equivalent to the condition
ωb = ω f . It is strongly related to the concept of supersymmetry. In other words, the
Hamiltonian

Ĥ = ω

(
â†â + 1

2

)
+ ω

(
ψ̂+ψ̂− − 1

2

)
= ω(â†â + ψ̂+ψ̂−) (2.66)

defines supersymmetric quantummechanics. The physicalmeaning is also extremely
simple: the state |0〉 only contributes. This quantity is calledWitten index [6].We can
learn other facts of supersymmetry from this extremely simple example by defining

Q̂ := √
ω â†ψ̂−, Q̂† := √

ω âψ̂+. (2.67)

These operators are called supercharges which satisfy the following equation.

Ĥ = {Q̂, Q̂†}. (2.68)

By using this expression, the reason for β independence of Witten index becomes
clear because the differential of the index with respect to β becomes zero:

d

dβ
Tr(−1)F̂ e−β Ĥ = d

dβ
Tr(−1)F̂ e−β{Q̂,Q̂†}

= −Tr(−1)F̂ (Q̂ Q̂† + Q̂† Q̂)e−β{Q̂,Q̂†}

= −Tr(−1)F̂ (Q̂ Q̂† − Q̂ Q̂†)e−β{Q̂,Q̂†} = 0. (2.69)

We can construct a somewhat more non-trivial Hamiltonian (e.g. [6–8]) which con-
tains interaction terms. In such case, Witten index counts the number of degeneracy
of ground states, or more technically speaking, it counts the number of BPS states.

2.3.3 Generalized Index

In (2.69), we use the following facts:

[Ĥ , Q̂] = [Ĥ , Q̂†] = 0. (2.70)
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It means Q̂ and Q̂† generate symmetry of the system. Suppose there is another
generator Ĵ which commutes with the supercharges:

[Q̂, Ĵ ] = 0, [Q̂†, Ĵ ] = 0, (2.71)

then following trace

Tr
(
(−1)F̂ e−β{Q̂,Q̂†}e−iμ Ĵ

)
(2.72)

also does not depend on β. In Chap.3, we introduce the concept of SuperConformal
Index (SCI). SCI can be regarded such a generalized index. e−iμ Ĵ insertion makes
x(t) and �±(t) not periodic but “twisted”

x(t + β) = eiμJx x(t), �±(t + β) = eiμJψ�±(t), (2.73)

where Jx , Jψ are eigenvalues of Ĵ operator. The reason is as follows. For bosonic
degrees of freedom, (2.72) can be expressed

Tr
(
(−1)F̂ e−β{Q̂,Q̂†}e−iμ Ĵ

)
=

∫
dx〈x |(−1)F̂ e−β{Q̂,Q̂†}e−iμ Ĵ |x〉

=
∫

dx〈x |e−β Ĥ |e−iμJx x〉

=
∫

dxdpdx1〈x |e−(β−ε)Ĥ |x1〉 〈x1|e−εĤ |p〉︸ ︷︷ ︸
e−εH(x1 ,p)+i px1

〈p|e−iμJx x〉︸ ︷︷ ︸
e−i pe−iμJx x

,

(2.74)

and at the edge, we have

e−εH(x1,p)+i px1−i pe−iμJx x . (2.75)

In order to get rid of O(ε0) term,

+i px1 − i pe−iμJx x = i p(x1 − e−iμJx x)

= i p
(
x(t = ε) − e−iμJx x(t = β)

)

= i p
(
εẋ(0)+x(t = 0) − e−iμJx x(t = β)︸ ︷︷ ︸

we have to make it zero.

)
. (2.76)

This is the origin of the twisted boundary condition in (2.73).

http://dx.doi.org/10.1007/978-981-10-1398-0_3
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Chapter 3
Three-Dimensional Superconformal Index
on M2 × S1β

In this chapter, we review recent development on the three-dimensional
superconformal index (SCI)

IM2

Theory(x,αa) = TrH(M2)

(
(−1)F̂ x ′{Q,Q†}x Ĥ+ ĵ3

∏
a

α f̂a
a

)
, (3.1)

based on supersymmetric localization principle. In Sect. 3.1, we give the physical
meaning for the SCI, and represent it in the path integral formalism. In Sect. 3.2, we
turn to define supersymmetric actions onM2 × S1β whereβ corresponds to the inverse
temperature. In Sect. 3.3, we explain the supersymmetric localization principle. We
will perform the exact calculations in later chapters based on this technique.

3.1 Superconformal Index

First, we consider the physical meaning of the SCI in operator formalism. After that,
we turn to the path integral representation of SCI by quoting the results in Chap.2.

3.1.1 Operator Formalism Description

As one can find in [1–3], it is known that the following operators

Ĥ + ĵ3, f̂a, a = 1, . . . , N f (3.2)

© Springer Science+Business Media Singapore 2016
A. Tanaka, Superconformal Index on RP2 × S1 and 3D Mirror Symmetry,
Springer Theses, DOI 10.1007/978-981-10-1398-0_3
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commute with both of Q̂ and Q̂†, therefore, each operator can play a role of Ĵ in
(2.71) and the SCI (3.1) turns to be generalized index and does not depends on x ′. It
means that states which satisfy

{Q̂, Q̂†}|phys〉 = 0 ⇔ Q̂|phys〉 = 0 (3.3)

called BPS states [4, 5] only contribute to the SCI. Now, we define subspace of the
Hilbert space H:

HBPS :=
{
|phys〉 ∈ H

∣∣∣ Q̂|phys〉 = 0
}
. (3.4)

Then, we can rewrite SCI as follows

I(x,αa) = TrHBPS

(
(−1)F̂ x Ĥ+ ĵ3

∏
a

α f̂a
a

)
. (3.5)

For simplicity, we suppose here the index a runs for a = 1 only, and omit this index,
then SCI reduces to

I(x,α) = TrHBPS

(
(−1)F̂ x Ĥ+ ĵ3α f̂

)
. (3.6)

Ĥ + ĵ3 and f̂ are conserved charges so we can divide HBPS into more basic ingre-
dients

HBPS
J, f :=

{
|J, f 〉 ∈ HBPS

∣∣∣∣
(Ĥ + ĵ3)|J, f 〉 = J |J, f 〉
f̂ |J, f 〉 = f |J, f 〉

}
. (3.7)

Then, SCI can be represented by each Witten index of (J, f ) sector I(J, f ):

I(x,α) =
∑
J, f

x Jα f × TrHBPS
J, f

(−1)F̂
︸ ︷︷ ︸

I(J, f )

. (3.8)

Therefore, once we know the exact form of the I(x,α), we can extract the number
I(J, f ) by Taylor-expanding it around x = α = 0. Compared with the usual Witten
index I which provides us the number of degenerated “vacua” of whole Hilbert
space, SCI gives us finer informations of the theory because it provides us Witten
indices with fixed J, f , I(J, f ). Of course it is expected that the SCI (3.1) goes back to
the usual Witten index just by taking x = α = 1, so I = ∑

I(J, f ) should be satisfied
formally.

http://dx.doi.org/10.1007/978-981-10-1398-0_2
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3.1.2 Path Integral Description

In order to convert to the path integral description, it is useful to introduce parameters
β1,β2,β,μa as follows.

x ′ = e−β1 , x = e−β2 , αa = e−iμa , β = β1 + β2. (3.9)

By utilizing the N = 2 SUSY algebra [1–3, 6], we get the relation

{Q̂, Q̂†} = Ĥ + R̂ − ĵ3, (3.10)

where R̂ is called R-charge.1 Then we can rewrite the SCI as follows:

I(x,αa) = TrH
(
(−1)F̂ e−β Ĥ · e−β1(R̂− ĵ3)e−β2 ĵ3e− ∑

a iμa f̂a
)
. (3.11)

As we have already mentioned in Chap.2, the e−β Ĥ generates translation along the β

circle, (−1)F̂ makes all fields periodic, and other insertions e−β1(R̂− ĵ3)e−β2 ĵ3e
∑

a iμa f̂a

define twisted boundary condition for each field: (See also (2.73).)

x(t + β) = eβ1(R̂− ĵ3)eβ2 ĵ3e
∑

a iμa f̂a x(t), for boson, (3.12)

�±(t + β) = eβ1(R̂− ĵ3)eβ2 ĵ3e
∑

a iμa f̂a�±(t), for fermion. (3.13)

Therefore, by repeating the derivation of the path integral description of the Witten
index or generalized index, we arrive at the path integral definition:

I(x,αa) ∼
∫ ⎛

⎝ ∏
t∈[0,β]

dx(t)d�+(t)d�−(t)

⎞
⎠ e−Sb−S f , (3.14)

with conditions (3.12) and (3.13).

Toquantumfield theoryThe above explanation is almost correct, butmore precisely
speaking, we should add two spacial dimensions represented by xi (i = 1, 2) which
is a set of coordinates for certain two-dimensional manifold M2, and consider not
quantum mechanical degrees of freedom but quantum field theoretical degrees of
freedom:

x(t) → φ(xi , t), �+(t) → ψ(xi , t), �−(t) → ψ(xi , t). (3.15)

And of course the twisted boundary conditions (3.12) and (3.13) are lifted to

1We will assign R-charge to each field later. (See Table3.1.)

http://dx.doi.org/10.1007/978-981-10-1398-0_2
http://dx.doi.org/10.1007/978-981-10-1398-0_2
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φ(xi , t + β) = eβ1(R̂− ĵ3)eβ2 ĵ3e
∑

a iμa f̂aφ(xi , t), for bosons, (3.16)

ψ(xi , t + β) = eβ1(R̂− ĵ3)eβ2 ĵ3e
∑

a iμa f̂aψ(xi , t), for fermions. (3.17)

Finally, we get the path integral representation of SCI (3.1) as

I(x,αa) =
∫

b.c. (3.16) and (3.17)
DφDψDψ e−Sb−S f . (3.18)

3.2 Supersymmetric Field Theories on Curved Manifold
M2 × S1β

Let us begin to discuss the main part of this thesis. Our main interest is to calculate
SCI (3.1) by using the path integral (3.18) under the twisted boundary conditions
(3.16) and (3.17). To do so, it is useful to make the supersymmetry with the off-shell
formalism. We use so-called three-dimensional N = 2 supersymmetries. There are
two irreducible representations, called vector multiplet and matter multiplet. From
now on, we take two-dimensional manifold M2 as round sphere S2 or real projective
space RP2:

S2 : ds2M2 = dϑ2 + sin2 ϑdϕ2,

{
0 ≤ ϑ ≤ π
0 ≤ ϕ < 2π

, (3.19)

RP2 : ds2M2 = dϑ2 + sin2 ϑdϕ2,

⎧
⎨
⎩
0 ≤ ϑ ≤ π
0 ≤ ϕ < 2π
(ϑ,ϕ) ∼ (π − ϑ,π + ϕ)

. (3.20)

As one can see, the difference between S2 and RP2 is just the global information com-
ing from antipodal identification (ϑ,ϕ) ∼ (π − ϑ,π + ϕ). Therefore, once we can
construct a supersymmetry on S2, if its representation is based on local Lagrangian
description, we can project it into the theory on RP2. The projection might looks
trivial, however the life is not so simple. For example, in mathematical point of view,
we have the following 2nd homology groups

H2(S
2) = Z , H2(RP

2) = 0. (3.21)

This means that the classical gauge field on S2 is labeled by the 1st Chern number,
or equivalently monopole number. In addition to it, the fundamental groups are as
follows.

π1(S
2) = 0, π1(RP

2) = Z2. (3.22)
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This fact means that the classical gauge field on RP2 is labeled by the Z2-holonomy,
or equivalently (discretized) Wilson line phases.2

3.2.1 Our Convention for Spinors

We consider the following dreibein:

e1 = dϑ, e2 = sin ϑdϕ, e3 = dy. (3.23)

We use alphabetical indices a, b, c, . . . for the local Lorentz indices.

Covariant derivative The three-dimensional covariant derivative is defined by

∇μ = ∂μ + 1

4
ωab

μ Ĵab (3.24)

where ωab
μ is the spin connection computed from the dreibein (3.23),

dea + ωab ∧ eb = 0, ωba = −ωab, ωab = ωab
μ dxμ. (3.25)

Ĵab are Lorentz generators of the fields characterized by its spin:

spin 0 ⇒ Ĵab = 0,
spin 1/2 ⇒ Ĵab = γab,

spin 1 ⇒ (Ĵab)
c
d = 2(δacδbd − δbcδad),

(3.26)

where γab are antisymmetrized gamma matrices defined in (3.27).

Gamma matrices The gamma matrices γa are defined by the Pauli matrices

γ1 =
(
0 1
1 0

)
, γ2 =

(
0 −i
i 0

)
, γ3 =

(
1 0
0 −1

)
, γab = 1

2
(γaγb − γbγa).

(3.27)

Spinor bilinear Our convention is as follows. Let us denote generic spinors by ε, ε,
and λ. We take spinor bilinears as

ελ = (
ε1 ε2

) (
0 1

−1 0

) (
λ1

λ2

)
, εγaλ = (

ε1 ε2
) (

0 1
−1 0

)
γa

(
λ1

λ2

)
.

Using this convention, one can prove the following formulas:

2However, there is another possibility. See [7] for example. We will comment on it in the final
chapter.
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ελ = (−1)1+|ε|·|λ|λε, εγaλ = (−1)|ε|·|λ|λγaε, (γaε)λ = −εγaλ,

ε(ελ) + (−1)1+|ε|·|ε|ε(ελ) + (εε)λ = 0,
(−1)1+|ε|·|ε|ε(ελ) + 2(εε)λ + (−1)1+|λ|·|ε|(εγaλ)γaε = 0,

where |ε| means the spinor ε’s statistics such that |ε| = 0 for a bosonic ε and |ε| = 1
for a fermonic ε.

3.2.2 Killing Spinors

Now what we want to do is to construct SUSY QFTs on M2 × S1β with the metric

ds2 = ds2M2 + dt2. (3.28)

As well known, so-called superspace formalism is very useful to construct SUSY
theories on flat space [8]. However, the curved superspace formalism is still under
construction. (See [6, 9] for theories on two or three spheres.) So we take an ad-hoc
way here.3 In order to construct supersymmetry, it is necessary to construct so-called
Killing spinors [10]. With our metric (3.28) and dreibein (3.23), the following two
spinors

ε(ϑ,ϕ, y) = e
1
2 (y+iϕ)

(
cos ϑ

2

sin ϑ
2

)
, ε(ϑ,ϕ, y) = e

−1
2 (y+iϕ)

(
sin ϑ

2

cos ϑ
2

)
(3.29)

satisfy the following equations

∇με = 1

2
γμγ3ε, ∇με = −1

2
γμγ3ε. (3.30)

These spinors are Killing spinors in our case. In later discussion, we use these spinors
ε, ε as parameters of supersymmetry.

3.2.3 N = 2 Vector Multiplet

Vector multiplet is constructed from a gauge field Aμ, an adjoint scalar field σ, an
auxiliary field D, and adjoint 2-component spinors λ,λ:

V := (Aμ,σ, D | λ,λ). (3.31)

3There is a systematical way via supergravity theory [10]. We will not consider it here, but the result
is equivalent.
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N = 2 supersymmetry is defined as follows [11]:

δεAμ = − i

2
λγμε, δεAμ = − i

2
εγμλ, (3.32)

δεσ = +1

2
λε, δεσ = +1

2
ελ, (3.33)

δελ = 1

2
γμνεFμν − Dε + iγμεDμσ + 2i

3
σγμ∇με, δελ = 0, (3.34)

δελ = 0, δελ = 1

2
γμνεFμν + Dε − iγμεDμσ − 2i

3
σγμ∇με, (3.35)

δεD = + i

2
Dμλγμε − i

2
[λε,σ] + i

6
λγμ∇με, δεD = − i

2
εγμDμλ + i

2
[ελ,σ] − i

6
∇μεγμλ.

(3.36)

The covariant derivative Dμ is defined as

Dμ = ∇μ − i[Aμ, ◦]. (3.37)

One can verify the following algebraic structure:

{δε, δε} = 0, {δε, δε} = 0, (3.38)

{δε, δε}Aμ = ξν∂ν Aμ + ∂μξ
ν Aν + Dμ�, (3.39)

{δε, δε}σ = ξμ∂μσ + i[�,σ], (3.40)

{δε, δε}λ = ξμ∂μλ + 1

4
�μνγ

μνλ + i[�,λ] + αλ, (3.41)

{δε, δε}λ = ξμ∂μλ + 1

4
�μνγ

μνλ + i[�,λ] − αλ, (3.42)

{δε, δε}D = ξμ∂μD + i[�, D]. (3.43)

Equations (3.39)–(3.43) relations mean

{δε, δε} = δ
ξ
Translation + δ�

Rotation + δ�
Gauge transformation + δα

R-symmetry, (3.44)

where each parameter is defined as follows.

ξμ = iεγμε, (3.45)

�μν = ∇[μξν] + ξλω
μν
λ , (3.46)

� = −Aμξ
μ + σεε, (3.47)

α = i

3
(∇μεγ

με − εγμ∇με). (3.48)
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3.2.4 N = 2 Matter Multiplet

Matter multiplet is constructed from scalar fields φ,φ, spinor fields ψ,ψ, and
auxiliary fields F, F :

� := (φ, F | ψ), � := (φ, F | ψ). (3.49)

We can couple these fields to the vector multiplet (3.31) in supersymmetric way. In
addition to it, we can assign arbitrary conformal dimension, or equivalently R-charge
� to the matter multiplet (3.49). N = 2 supersymmetry is defined as follows [11]:

δεφ = 0, δεφ = εψ, (3.50)

δεφ = εψ, δεφ = 0, (3.51)

δεψ = iγμεDA
μ φ + iεσφ + 2�i

3
γμ∇με φ, δεψ = εF, (3.52)

δεψ = Fε, δεψ = iγμεDA
μ φ + iφσε + 2�i

3
φγμ∇με, (3.53)

δεF = ε(iγμDA
μ ψ − iσψ − iλφ) + i

3
(2� − 1)∇μεγ

μψ, δεF = 0, (3.54)

δεF = 0, δεF = ε(iγμDA
μ ψ − iψσ + iφλ) + i

3
(2� − 1)∇μεγ

μψ. (3.55)

We define the covariant derivative DA
μ as

DA
μ � = Dμ� − i Aμ�, DA

μ � = Dμ� + i�Aμ. (3.56)

One can verify the following relations:

{δε, δε} = 0, {δε, δε} = 0, (3.57)

{δε, δε}φ = ξμ∂μφ + i�φ − �αφ, (3.58)

{δε, δε}φ = ξμ∂μφ − iφ� + �αφ, (3.59)

{δε, δε}ψ = ξμ∂μψ + 1

4
�μνγ

μνψ + i�ψ + (1 − �)αψ, (3.60)

{δε, δε}ψ = ξμ∂μψ + 1

4
�μνγ

μνψ − iψ� + (� − 1)αψ, (3.61)

{δε, δε}F = ξμ∂μF + i�F + (2 − �)αF, (3.62)

{δε, δε}F = ξμ∂μF − i F� + (� − 2)αF . (3.63)

Of course, we can interpret these relations as the one in (3.44).
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3.2.5 SUSY Invariant Lagrangians

We summarize here the SUSY invariant Lagrangians which will be important in later
discussion of this thesis.

Supersymmetric Yang–Mills term This action is automatically SUSY invariant
because it can be rewrite as SYM = δεVV = δεṼV for certain VV , ṼV [12], and thanks
to the nilpotent natures of δε, δε (3.38).

SYM =
∫

d3x
√

g Tr
(

+ 1

2
FμνF

μν + D2 + Dμσ · Dμσ + ε3ρσσFρσ + σ2

+ iλγμDμλ − iλ[λ,σ] − i

2
λγ3λ

)
(3.64)

Supersymmatric matter kinetic term This action is automatically SUSY invariant
because of the fact that it can be rewrite as Smat = δεVM = δεṼM for certain VM , ṼM

[12], and thanks to the nilpotent natures of δε, δε (3.57).

Smat =
∫

d3x
√

g
(

− i(ψγμDA
μ ψ) + i(ψσψ) − iφ(λψ) − i(2� − 1)

2
(ψγ3ψ) + FF + i(ψλ)φ

+ DA
μ φDμ

Aφ + φσ2φ + iφDφ − (2� − 1)φDA
3 φ − �(2� − 1)

2
φφ + �

4
Rφφ

)

(3.65)

Superpotential term In order to construct this term systematically, for example,
superspace formalism [6, 9] is useful. We will use such term in later discussion,
however the result does not depends on this term thanks to the powerful calculation
method, localization. So we do not comment on them here.

3.3 Supersymmetric Localization Techniques

The mirror symmetry conjecture predicts an equivalence between two theories with
non-trivial interactions. Therefore, the exact check sounds difficult in usual sense.
However, a very powerful method had been introduced in [13] which provides an
exact calculation method for path integrals of interacting SUSY theories on flat
4d space. This method is called supersymmetric localization technique. After the
discovery of it, this technique had been extended to the SUSY theories on four-
sphere [14], three-sphere [11, 15, 16], and deformed spheres [17–19], and other
various dimensional manifolds.We utilize this method onM2 × S1β [3, 12, 20] which

give SCI.M2 represents two-sphere S2 or real projective plane RP2. The lower index
β corresponds to the inverse temperature. The localization technique is applicable if
there are
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A SUSY: δ, A functional: V,

A SUSY exact action: S = δV, such that

{
δS = 0
Sboson ≥ 0

.

Note that the actions defined in (3.64) and (3.65) satisfy this condition. Then, the
path integral

∫
DφDψ e−S[φ,ψ] (3.66)

can be computed from

I (t) =
∫

DφDψ e−t S[φ,ψ] (3.67)

because I (t) does not depend on t . One can derive this fact as follows.

d I (t)

dt
=

∫
DφDψ(−S) e−t S

=
∫

DφDψ(−δV) e−t S

= −
∫

DφDψ δ(Ve−t S) = 0. (3.68)

In order to perform the path integral (3.67), we can take the ultimate limit t → ∞
because I (t) does not depend on t! Then, the field configurations φ0,ψ0 which give

S[φ0,ψ0] = ∂S

∂φ
[φ0,ψ0] = ∂S

∂ψ
[φ0,ψ0] = 0, (3.69)

dominate. We call them locus. We can expand each field around the locus:

φ = φ0 + 1√
t
φ̃, ψ = ψ0 + 1√

t
ψ̃, (3.70)

then the action becomes

t S[φ,ψ] = 1

2
φ̃

∂S

∂φ∂φ
[φ0,ψ0]φ̃ + 1

2
ψ̃

∂S

∂ψ∂ψ
[φ0,ψ0]ψ̃

︸ ︷︷ ︸
:=S̃[φ0,ψ0;φ̃,ψ̃]

+O(t−1/2). (3.71)

By taking t → ∞, only the first two parts contribute. We define it as S̃[φ0,ψ0; φ̃, ψ̃].
After taking into account the cancellation of t in the measure DφDψ, the original
path integral can be calculated by summing up all Gaussian contributions around the
locus.
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∫

DφDψ e−S[φ,ψ] =
∑
φ0,ψ0

∫
Dφ̃Dψ̃ e−S̃[φ0,ψ0;φ̃,ψ̃]. (3.72)

Roughly speaking, this is the analog of the steepest decent method in usual integral
on complex plane. We will utilize this method, and perform the exact check of (1.3).
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Chapter 4
Localization Calculous of SCI with M2 = S2

In this chapter, we mainly review the calculations performed in [1–4]. If we consider
the U (1) gauge theory, the action (3.64) itself defines free theory. It may sound not
so interesting, however we can turn on the gauge coupling in matter action (3.65) like
usualQED, this is nontrivial theory.Oncewe consider non-abelian gauge group, there
are some different points in the argument, however the essence is same. Therefore,
we focus on the gauge theory with abelian gauge field from now on.

4.1 Vector Multiplet

Locus Now, let us remind that the Lagrangian (3.64), SUSY exact Lagrangian for
vector multiplet. One can easily check that the Lagrangian can be deformed to

LYM = FμFμ + D2 + iλγμDμλ − i

2
λγ3λ,

Fμ = 1

2
εμρσFρσ + ∂μσ + δ

μ
3σ. (4.1)

The bosonic terms are obviously positive definite. Therefore, we can use this action
as the S = δV term in (3.72), and the localization locus, which corresponds to the
pair of configurations φ0,ψ0 in (3.69), is determined by the following equations:

0 = Fμ = D, λ = λ = 0. (4.2)

We can solve this equation by taking

A = Amon + θ

β
dt, σ = − B

2
, (4.3)
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where Amon is defined as

Amon = B

2
(κ − cosϑ)dϕ, κ =

{+1 for 0 ≤ ϑ < π
−1 for 0 < ϑ ≤ π

. (4.4)

Thanks to the gauge symmetry, the parameters B, θ are constrained as1

B ∈ Z , θ ∈ [0, 2π]. (4.5)

As explained in the previous chapter, in the context of the supersymmetric localiza-
tion, we expand field V around the locus V0 which is parametrized by B, θ:

V = V0[B, θ] + 1√
t
Ṽ , where V0[B, θ] =

(
Amon + θ

β
dt,− B

2
, 0

∣∣∣0, 0
)

(4.6)

and Ṽ represents fluctuation. The original path integral should be organized by
the summation over B ∈ Z , integral over θ ∈ [0, 2π] and path integral over the
fluctuation Ṽ :

∫
DVe−SYM [V ] =

∑
B∈Z

∫ 2π

0

dθ

2π

∫
DṼ e−S̃Y M [Ṽ ]. (4.7)

Action for the fluctuation Ṽ We show here the action S̃Y M [Ṽ ] explicitly.

S̃boson =
∫

dt
∫

sin ϑdϑdϕ
(1
2
[∂μ Ãν − ∂ν Ãμ]2 + (∂μσ̃)2 + ε3μνσ̃[∂μ Ãν − ∂ν Ãμ] + σ̃2

)
,

(4.8)

S̃fermion =
∫

dt
∫

sin ϑdϑdϕ
(
i λ̃γμ∇μλ̃ − i

2
λ̃γ3λ̃

)
. (4.9)

For later use, we will omit ˜ from now on, and decompose the three-dimensional
gauge field Aμ to the S1β component Ay and 1-form on S2 A2 = Aϑdϑ + Aϕdϕ.
Then, the bosonic Lagrangian reduces to

∫
dy

∫ ⎛
⎝
A2

At

σ

⎞
⎠

T

∧ ∗2
⎛
⎝

− ∗2 d2 ∗2 d2 − ∂2
y ∂yd2 − ∗2 d2

∂y ∗2 d2∗2 − ∗2 d2 ∗2 d2 0
∗2d2 0 − ∗2 d2 ∗2 d2 − ∂2

y + 1

⎞
⎠

⎛
⎝
A2

At

σ

⎞
⎠ ,

(4.10)

where ∗2 is the Hodge star operator [5–7] on S2 defined by

1The reason for B ∈ Z is explained in the Appendix B. The condition for the θ can be also derived
by the gauge symmetry.
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∗21 = sin ϑdϑ ∧ dϕ, ∗2dϑ = sin ϑdϕ, ∗2dϕ = −dϑ, ∗2 sin ϑdϑ ∧ dϕ = 1,

(4.11)

and d2 is the exterior derivative along S2:

d2 = ∂

∂ϑ
dϑ + ∂

∂ϕ
dϕ. (4.12)

Gauge fixing procedure In order to calculate the path integral, even it is Gaussian,
gauge fixing procedure is necessary. In usual procedure, one introduces Fadeev–
Popov ghost fields, and construct BRST symmetry, etc. Here, we take simpler root
performed in [8–10]. The gauge orbit parametrized by a function η can be represented
by

Gauge mode:

(
A(η)

2

A(η)
y

)
:=

(
id2η
i∂yη

)
. (4.13)

It gives zero modes for the fluctuation integral. We have to get rid of the mode from
the path integral. It can be achieved by inserting

δ(A(η)). (4.14)

into the path integral. However, the precise insertion is

δ(η) (4.15)

where η is the generator of the gauge transformation mode in (4.13). The Fadeev–
Popovdeterminant is the factor recovering the discrepancybetween (4.14) and (4.15):

δ(η) = �FP δ(A(η)). (4.16)

The easiest way to calculate �FP is as follows.

1 =
∫

DA(η) e− 1
2 〈A(η),A(η)〉 = �FP

∫
Dη e− 1

2 〈A(η),A(η)〉

= �FP

∫
Dη e− 1

2 〈dη,dη〉

= �FP

∫
Dη e− 1

2 〈η,d†dη〉 (4.17)

where the inner product for the gauge fields is defined by

〈A, B〉 =
∫

dy
∫

sin ϑdϑdϕ AμBμ. (4.18)
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Now, the precise measure for the gauge theory is

�FP δ(A(η))DA(η)DA⊥ = �FP DA⊥, (4.19)

where A⊥ represents the modes perpendicular to the gauge mode A(η):

〈A⊥, A(η)〉 = 0. (4.20)

As such a mode, we can construct one parameter family A(ω) as follows.

(
A(ω)
2

A(ω)
y

)
:=

(
∂yd2ω
�0ω

)
, where �0 = − ∗2 d2 ∗2 d2. (4.21)

This mode gives Sboson = 1
2 〈A(ω), d†d A(ω)〉, so from (4.17), we get

∫
DA(ω) e−Sboson = 1

�FP
. (4.22)

Therefore, if we can identify the remaining modes which are perpendicular to both
of (4.13) and (4.21), we can forget the effect of �FP , and the modes are represented
as follows.

Ay = 0, ∗2d2 ∗2 A2 = 0. (4.23)

The second condition is equivalent to the Coulomb gauge condition

∇i A
i
2 = 0, (4.24)

where i runs for ϑ,ϕ. In summary, what we have to consider is the path integral over
(Ai ,σ | λ,λ) weighted by the following actions.

Sg f
boson =

∫
dy

∫ (
A2
σ

)T

∧ ∗2
(− ∗2 d2 ∗2 d2 − ∂2

y − ∗2 d2
∗2d2 − ∗2 d2 ∗2 d2 − ∂2

y + 1

) (
A2
σ

)
,

(4.25)

Sfermion =
∫

dy
∫

sin ϑdϑdϕ λ
(
iγi∇i + iγ3

(
∂y − 1

2

) )
λ, (4.26)

constrained by (4.24).
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4.1.1 QFT on S2 × S1β → QM on S1β

Now, we take the following eigenfunction expansion:

Ai (ϑ,ϕ, y) =
∞∑
j=1

j∑
m=− j

V i
jm(ϑ,ϕ)A jm(y), (4.27)

σ(ϑ,ϕ, y) =
∞∑
j=0

j∑
m=− j

Y jm(ϑ,ϕ)σ jm(y), (4.28)

λ(ϑ,ϕ, y) =
∞∑

j=1/2

j∑
m=− j

∑
ε

ϒ ε
jm(ϑ,ϕ)λε

jm(y), (4.29)

λ(ϑ,ϕ, y) =
∞∑

j=1/2

j∑
m=− j

∑
ε

ϒ ε
jm

†(ϑ,ϕ)λ
ε

jm(y), (4.30)

where V i
jm,Y jm, ϒ ε

jm are spherical harmonics with zero monopole B = 0 explained
in the Appendix B. Then, the actions (4.25) and (4.26) give many-body quantum
mechanics:

Sg f
boson =

∞∑
j=1

j∑
m=− j

∫
dy

(
A jm σ jm

) (
−∂2y + j ( j + 1)

√
j ( j + 1)√

j ( j + 1) −∂2y + j ( j + 1) + 1

) (
A jm
σ jm

)

+
∫

dt σ0(−∂2t + 1)σ0, (4.31)

Sfermion =
∞∑

j=1/2

j∑
m=− j

∫
dy

(
λ

−
jm λ

+
jm

) (
j + 1

2 i(∂y − 1
2 )

i(∂y − 1
2 ) −( j + 1

2 )

)(
λ−
jm

λ+
jm

)
(4.32)

The periodicity for each sector can be read from the definition of SCI (3.1) and
Table3.1, then, it becomes as follows.

A jm(t + β) = e−(β1−β2)m A jm(t), σ jm(t + β) = e−(β1−β2)mσ jm(t), (4.33)

λ
ε

jm(t + β) = e(−1−m)β1+mβ2λ
ε

jm(t), λε
jm(t + β) = e(+1−m)β1+mβ2λε

jm(t). (4.34)

We can calculate the contributions from bosons and fermions explicitly as follows.

http://dx.doi.org/10.1007/978-981-10-1398-0_3
http://dx.doi.org/10.1007/978-981-10-1398-0_3
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Bosonic part

∫
DA2Dσ e−Sg f

boson =
∫ ∏

t∈[0,β]

⎛
⎝dσ0(t)

∞∏
j=1

j∏
m=− j

d A jm(t)dσ jm(t)

⎞
⎠ e−Sg f

boson

=
∞∏

j̃=1

j̃−1∏

m̃=− j̃

1(
2 sinh

βω j̃ ,−m̃

2

)(
2 sinh

βω j̃ m̃

2

) , (4.35)

where

ω jm = β1 − β2

β
m + j. (4.36)

Note that the m̃ in resulting product runs for (− j̃) ∼ ( j̃−1) not (− j̃) ∼ ( j̃). One can

derive this results as follows. For simplicity let us denote (m̃, j̃) := ∏
n∈Z

([
2π
β
n +

i β1−β2

β
m̃

]2 + j̃2
)
, then the denominator of (4.35) is a square root of products of the

following towers:

(0, 1)

(∓1, 1),(0, 1)

(0, 2), (±1, 2)

(∓2, 2), (∓1, 2),(0, 2)

(0, 3), (±1, 3), (±, 2, 3)

(∓3, 3), (∓2, 3), (∓1, 3)(0, 3)

. . . (4.37)

Easily noticed, (−m̃, j̃) = (m̃, j̃), so we get the result after the zeta-function
regularization.

Fermionic part

∫
DλDλ e−Sfermion =

∫ ∏
t∈[0,β]

( ∞∏
j=1/2

j∏
m=− j

dλ
+
jm(t)dλ

−
jm(t)dλ+

jm(t)dλ−
jm(t)

)
e−Sfermion

=
∞∏

j̃=1

j̃−1∏

m̃=− j̃

(
2 sinh

βω j̃,−m̃

2

)(
2 sinh

βω j̃ m̃

2

)
, (4.38)

where ω jm is same one defined in (4.36). Therefore, (4.35) and (4.38) cancel out
each other, and we get trivial 1-loop determinant.
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∫
DA2DσDλDλ e−Sg f

boson−Sfermion

= 1. (4.39)

In a later chapter, we will see non-trivial contribution emerges when we consider the
theory not on S2 but RP2.

4.2 Matter Multiplet

First of all, the matter field in gauge theory is defined by assigning a certain
representation of the gauge group. WithU (1) gauge group, the matter representation
becomes the U (1) charge q ∈ Z in our situation as explained later.

Locus The matter Lagrangian (3.65) defines the trivial locus.

0 = φ = ψ = F, 0 = φ = ψ = F . (4.40)

So, there is no need for summation formatter sector. Andwe get the following actions
for the fluctuation fields.We omit˜and integrate out the auxiliary fields for simplicity.

Sboson =
∫

dt
∫

sin ϑdϑdϕ
(
DμφDμφ + (qB)2

22
φφ − (2� − 1)φDtφ − �(� − 1)φφ

)
,

(4.41)

Sfermion

∫
dt

∫
sin ϑdϑdϕ

(
− i(ψγμDμψ) − i

qB
2

(ψψ) − i(2� − 1)

2
(ψγ3ψ)

)
, (4.42)

where Dμ is the covariant derivative with respect to the locus gauge field (4.3):

Di = ∇i − iqAmon
i , (i = ϑ,ϕ) (4.43)

Dt = ∂t − iq
θ

β
. (4.44)

The charge q must be in integers in order to make the gauge transformation acting
on the matter fields as a single valued function.

4.2.1 QFT on S2 × S1β → QM on S1β

As performed in the previous section, we expand the component fields as follows:

φ(ϑ,ϕ, y) =
∞∑

j= |qB|
2

j∑
m=− j

Y |qB|
2 , jm(ϑ,ϕ)φ jm(t), (4.45)

http://dx.doi.org/10.1007/978-981-10-1398-0_3
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ψ(ϑ,ϕ, y) =
∞∑

j= |qB|
2 +1/2

j∑
m=− j

∑
ε

ϒε
|qB|
2 , jm

(ϑ,ϕ)ψε
jm(t) +

|qB|
2 −1/2∑

m=1/2− |qB|
2

ϒ0
|qB|
2 ,m

(ϑ,ϕ)ψ0
m(t),

(4.46)

φ(ϑ,ϕ, y) =
∞∑

j= |qB|
2

j∑
m=− j

Y ∗
|qB|
2 , jm

(ϑ,ϕ)φ jm(t), (4.47)

ψ(ϑ,ϕ, y) =
∞∑

j= |qB|
2 +1/2

j∑
m=− j

∑
ε

ϒε
|qB|
2 , jm

†(ϑ,ϕ)ψ
ε
jm(t) +

|qB|
2 −1/2∑

m=1/2− |qB|
2

ϒ0
|qB|
2 ,m

†(ϑ,ϕ)ψ
0
m(t),

(4.48)

where Yq, jm andϒ ε
q, jm are monopole harmonics explained in the Appendix B. Then,

the action (4.41) and (4.42) give many-body quantum mechanics:

Sboson =
∞∑

j= |qB|
2

j∑

m=− j

∫
dt φ jm ( j + � + Dt )( j + 1 − � − Dt )φ jm (4.49)

Sboson =
∞∑

j= |qB|
2 +1/2

j∑

m=− j

∫
dt

(
ψ

+
jm ψ

−
jm

)
⎛
⎜⎜⎝

−
√

(2 j+1)2−(qB)2

2 − i qB2 −iDt − i 2�−1
2

−iDt − i 2�−1
2 +

√
(2 j+1)2−(qB)2

2 − i qB2

⎞
⎟⎟⎠

(
ψ+
jm

ψ−
jm

)

− i
B

|B|

|qB|
2 −1/2∑

m=1/2− |qB|
2

∫
dt ψ

0
m

(
j + � + Dt

)
ψ0
m (4.50)

The periodicity for each factor can be read from the definition of SCI (3.1) and
Table3.1:

φ jm(t + β) = e(−�−m)β1+mβ2+iμφ jm(t) (4.51)

ψ jm(t + β) = e(−�+1−m)β1+mβ2+iμψ jm(t) (4.52)

Then contributions from bosons and fermions become as follows.

Bosonic part

∫
DφDφ e−Sboson =

∏

j≥ |qB|
2

j∏
m=− j

1(
2 sinh

βω1
jm

2

)(
2 sinh

βω2
jm

2

) , (4.53)

where

βω1
jm = −iqθ + ( j − m)β1 + ( j + � + m)β2 + iμ, (4.54)

βω2
jm = −iqθ − ( j + 1 + m)β1 − ( j + 1 − � − m)β2 + iμ. (4.55)

http://dx.doi.org/10.1007/978-981-10-1398-0_3
http://dx.doi.org/10.1007/978-981-10-1398-0_3
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Fermionic part

∫
DψDψ e−Sfermion =

∏

j̃≥ |qB|
2

( j̃−1∏

m̃=− j̃

2 sinh
βω1

j̃ m̃

2

)( j̃∏

m̃=− j̃−1

2 sinh
βω2

j̃ m̃

2

)
,

(4.56)

First term in fermion contribution looks similar to the first factors of bosonic contri-
bution in (4.53), but lacking the contribution ofm = j . So this fermionic contribution
cancels almost of the bosonic contributions in product containing ω1

jm . Second term
in fermionic part looks similar to the second factors in (4.53), there is contributions of
m̃ = − j̃ −1 in surplus. So this bosonic contribution cancels almost of the fermionic
contributions containing ω2

jm . Therefore, we get the following total contribution.

∫
DφDφDψDψ e−Sboson−Sfermion =

∏

j≥ |qB|
2

2 sinh
βω2

j,− j−1

2

2 sinh
βω1

j, j

2

. (4.57)

Another representation In later chapter, we will use more useful representation of
(4.57). We can shift the product with respect to j by defining

J = j − |qB|
2

, (4.58)

then

(4.57) =
∞∏
J=0

2 sinh
βω(J )

f

2

2 sinh βω(J )
b
2

, (4.59)

where we define βω(J )
f and βω(J )

b as follows

βω(J )
f = i(qθ − μ) + 2β2

(
J + 1 + |qB|

2
− �

2

)
, (4.60)

βω(J )
b = −i(qθ − μ) + 2β2

(
J + |qB|

2
+ �

2

)
. (4.61)

Herewe ignore the overall sign. Now, after simple deformations, we get the following
representation.

(
x (1−�)e−iqθα−1

) |qB|
2 (e−iqθα−1x2−�+|qB|; x2)∞

(eiqθα+1x�+|qB|; x2)∞ , (4.62)
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where (z, q)∞ is called quantum Pochhammer symbol or q-shifted factorial [11]
defined by

(A; q)∞ =
∞∏
J=0

(1 − Aq J ). (4.63)

We used zeta function regularization to get the prefactor here. As one can noticed
by comparing it to the calculation of free harmonic oscillator in Chap. 2, this part
corresponds to the Casimir energy of the many-body system.

4.3 Formulas

We summarize here formulas to get SCI of our SUSY theories on S2 × S1β .

4.3.1 Non Gauge Theory

In this case, we assume that there are 2N f dynamical fields,

�a = (φa, Fa|ψa), �a = (φa, Fa|ψa), a = 1, . . . , N f . (4.64)

We assign dimension �a and flavor charge f a to each multiplet, and consider the
following action:

S[�,�] =
N f∑
a=1

Sq=0
mat [�a,�a] + W [�] + W [�], (4.65)

where Sq=0
mat is the action (3.65) with q = 0. We can take arbitrary superpotential W .

The only restriction is that the flavor charge assignments have to preserve W . In this
case, the SCI can be obtained just by turning off the B and θ in (4.62) and taking
product over N f contributions:

I(x,α) =
N f∏
a=1

(α−f a x2−�a ; x2)∞
(α+f a x�a ; x2)∞ . (4.66)

http://dx.doi.org/10.1007/978-981-10-1398-0_2
http://dx.doi.org/10.1007/978-981-10-1398-0_3


4.3 Formulas 45

4.3.2 Gauge Theory

For simplicity, we consider single gauge field (vector multiplet):

V = (Aμ,σ, D|λ,λ). (4.67)

Of course, we can add charged matter multiplets:

�a = (φa, Fa|ψa), �a = (φa, Fa|ψa), a = 1, . . . , N f , (4.68)

with �a, f a and U (1) charges qa . We assume action as follows.

S[V ;�,�] = SYM [V ] +
N f∑
a=1

Sqa
mat [V ;�a,�a] + W [�] + W [�], (4.69)

where SYM is the action (3.64) with U (1) gauge group. See [1, 3] for more detail.
In this case, we should sum up B ∈ Z and integrate θ ∈ [0, 2π] weighted by N f

product of (4.62):

I(x,α) =
∑
B∈Z

∫ 2π

0

dθ

2π

N f∏
a=1

(
x (1−�a)e−iqaθα−f a

) |qa B|
2 (e−iqaθα−f a x2−�a+|qa B|; x2)∞

(eiqaθα+f a x�a+|qa B|; x2)∞ .

(4.70)
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Chapter 5
Localization Calculous of SCI
with M2 = RP2

In this chapter, we explain our main results on new SCI by taking M2 = RP2. The
curved space RP2 × S1β can be constructed from S2 × S1β by taking the identification

(π − ϑ,π + ϕ, y) ∼ (ϑ,ϕ, y). (5.1)

As same, a field on RP2 × S1β is defined by imposing boundary condition for the
field on S2 × S1β under (5.1), we will call it parity condition. However, we cannot
take arbitrary parity condition because most of them break the supersymmetry and
it spoils the validity for using supersymmetric localization techniques. Therefore,
we start our argument from the discussion of the possible supersymmetric parity
condition which preserves supersymmetry. This simple operation causes non-trivial
effects, for example, the localization locus for vector multiplet drastically changes,
and the resulting SCIs differ from the ones in Chap. 4.

5.1 Supersymmetric Parity Conditions

As studied in [1] in the context of two-dimensional supersymmetric field theory, we
can find supersymmetric parity conditions as follows. Our guiding principles are

• (parity)2 = (−1)F where F is the fermion number operator,
• SUSY exact Lagrangians, (3.64) and (3.65), must be invariant under the parity,
• Supersymmetries, δε and δε, must be consistent with the parity.

Let us comment on the second assumption. This requirement is too strong because
one should assume parity invariance of not (3.64) or (3.65) alone, but full Lagrangian,
e.g. (4.69). We will comment on this generic case in Chap.7.
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Vector multiplet We find a set of parity conditions for the vector multiplet as
follows.1

Aϑ(π − ϑ, π + ϕ, y) = −Aϑ(ϑ, ϕ, y), Aϕ,y(π − ϑ, π + ϕ, y) = +Aϕ,y(ϑ, ϕ, y),

σ(π − ϑ, π + ϕ, y) = −σ(ϑ, ϕ, y),

λ(π − ϑ, π + ϕ, y) = +iγ1λ(ϑ,ϕ, y), λ(π − ϑ, π + ϕ, y) = −iγ1λ(ϑ, ϕ, y),

D(π − ϑ, π + ϕ, y) = +D(ϑ, ϕ, y). (5.2)

One flavor matter multiplet The one flavor matter multiplet has two choices:

φ(π − ϑ,π + ϕ, y) = ±φ(ϑ,ϕ, y), φ(π − ϑ,π + ϕ, y) = ±φ(ϑ,ϕ, y),
ψ(π − ϑ,π + ϕ, y) = ∓iγ1ψ(ϑ,ϕ, y), ψ(π − ϑ,π + ϕ, y) = ±iγ1ψ(ϑ,ϕ, y),
F(π − ϑ,π + ϕ, y) = ±F(ϑ,ϕ, y), F(π − ϑ,π + ϕ, y) = ±F(ϑ,ϕ, y).

(5.3)

Many flavors matter multiplets We use a, b, . . . as flavor indices a = 1, . . . , N f ,
then

φa(π − ϑ,π + ϕ, y) =
N f∑
b=1

Mabφb(ϑ,ϕ, y), φa(π − ϑ, π + ϕ, y) =
N f∑
b=1

Nabφb(ϑ,ϕ, y),

ψa(π − ϑ, π + ϕ, y) = −iγ1

N f∑
b=1

Mabψb(ϑ,ϕ, y), ψa(π − ϑ, π + ϕ, y) = iγ1

N f∑
b=1

Nabψb(ϑ, ϕ, y),

Fa(π − ϑ,π + ϕ, y) =
N f∑
b=1

MabFb(ϑ, ϕ, y), Fa(π − ϑ, π + ϕ, y) =
N f∑
b=1

NabFb(ϑ,ϕ, y),

(5.4)

where (Mab)a,b=1,...,N f = M and (Nab)a,b=1,...,N f = N are N f × N f matrices con-
strained by

NTM = 1, M2 = N2 = 1. (5.5)

Comments on the parity condition Suppose we have a doublet and the parity
condition described by the 2 × 2 matrices

M = N =
(
0 1
1 0

)
, (5.6)

then we can lift its Lagrangian on RP2 × S1β to the one on S2 × S1β by defining a new
matter multiplet on S2 × S1β as

1There is another possible condition, but we will not explain it here. See [2] for more detail.
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�(ϑ,ϕ, y) =

⎧⎪⎨
⎪⎩

�1(ϑ,ϕ, y), ϑ ∈
[
0,

π

2

]

�2(ϑ,ϕ, y), ϑ ∈
[π

2
,π

] . (5.7)

The authors of [1] also commented on this fact. This is quite similar to the doubling
trick in string theory. In Chap. 6, we use such parity condition exactly in the context
of three-dimensional mirror symmetry.

5.2 Vector Multiplet

We focus on the gauge theory with abelian gauge field for simplicity as same as in
the previous chapter.

Locus Now, let us remind that the Lagrangian (3.64) again,

LYM = FμFμ + D2 + iλγμDμλ − i

2
λγ3λ,

Fμ = 1

2
εμρσFρσ + ∂μσ + δ

μ
3σ. (5.8)

The bosonic terms are obviously positive definite. Therefore, the localization locus
is determined by the following equations:

0 = Fμ = D. (5.9)

Note that we cannot take the Dirac monopole configuration Amon in (4.3) because it
breaks the parity condition (5.2). Instead of it, we can take the flat connection A(±)

flat
on RP2.

A = A(±)
flat + θ

β
dt, σ = 0, (5.10)

where A(±)
flat represents holonomies of RP2 along the non-contractible cycle [γ] �=

0 ∈ π1(RP2). It is also characterized by

ei
∮
γ A(±)

flat = ±1. (5.11)

The constraint on the parameter θ is invariant.

θ ∈ [0, 2π]. (5.12)

http://dx.doi.org/10.1007/978-981-10-1398-0_6
http://dx.doi.org/10.1007/978-981-10-1398-0_3
http://dx.doi.org/10.1007/978-981-10-1398-0_4
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As explained in the end of Chap. 3, in the context of the supersymmetric localization,
we expand field V around the locus V0 which is parametrized by ±1, θ:

V = V0[±1, θ] + 1√
t
Ṽ , where V0[±1, θ] =

(
A(±)
flat + θ

β
dt, 0, 0

∣∣∣0, 0
)

(5.13)

and Ṽ represents fluctuation. It means that the original path integral is composed
from the summation over ±1 and integration over θ ∈ [0, 2π], and path integral over
the fluctuation Ṽ :

∫
DVe−SYM [V ] =

∑
±1

∫ 2π

0

dθ

2π

∫
DṼ e−S̃Y M [Ṽ ]. (5.14)

Note that there is no monopole but ±1 holonomies, so the summation is not infinite
summation over the integers but constructed of just 2 terms,+1 sector and−1 sector.

5.2.1 QFT on RP2 × S1β → QM on S1β

The gauge fixing procedure in the previous chapter also works on RP2 × S1β , so we
can use the Lagrangians

Sg f
boson =

∫
dy

∫ (
A2
σ

)T
∧ ∗2

(
− ∗2 d2 ∗2 d2 − ∂2y − ∗2 d2

∗2d2 − ∗2 d2 ∗2 d2 − ∂2y + 1

) (
A2
σ

)
,

(5.15)

Sfermion =
∫

dy
∫

sin ϑdϑdϕ λ

(
iγi∇i + iγ3

(
∂y − 1

2

) )
λ, (5.16)

constrained by (4.24). One might think that the naive expansion of each field with
respect to the harmonics V i

jm, �ε
jm,Y jm works. However it is not. Precisely speaking,

the range of summation for j is constrained because of the parity condition (5.2). As
one can find in the Appendix of [1], each harmonics behaves as follows2:

Y jm(π − ϑ,π + ϕ) = (−1) j Y jm(ϑ,ϕ), (5.17)

�±
jm(π − ϑ,π + ϕ) = ∓i(−1) j−

1
2 γ1�

±
jm(ϑ,ϕ), (5.18)

Vjm(π − ϑ,π + ϕ) = (−1) j+1Vjm(ϑ,ϕ). (5.19)

2Our Vjm corresponds to C2
jm in their notation.

http://dx.doi.org/10.1007/978-981-10-1398-0_3
http://dx.doi.org/10.1007/978-981-10-1398-0_4
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We have no fermion zero mode, and we take eigenspinor � for a modified Dirac
operator −iγ3γiDi rather than ϒ for the Dirac operator −iγiDi . Vjm is the 1-form
constructed by (Vjm)ϑdϑ + (Vjm)ϕdϕ. The harmonics which preserves supersym-
metric parity conditions in (5.2) only contribute to the expansion as follows.

Ai (ϑ,ϕ, y) =
∑

j=2k+1
k≥0

j∑
m=− j

V i
jm(ϑ,ϕ)A jm(y), (5.20)

σ(ϑ,ϕ, y) =
∑

j=2k+1
k≥0

j∑
m=− j

Y jm(ϑ,ϕ)σ jm(y), (5.21)

λ(ϑ,ϕ, y) =
∑

j=2k+1/2
k≥0

j∑
m=− j

�−
jm(ϑ,ϕ)λ−

jm(y) +
∑

j=2k+3/2
k≥0

j∑
m=− j

�+
jm(ϑ,ϕ)λ+

jm(y),

(5.22)

λ(ϑ,ϕ, y) =
∑

j=2k+1/2
k≥0

j∑
m=− j

�
−
jm(ϑ,ϕ)λ

−
jm(y) +

∑
j=2k+3/2

k≥0

j∑
m=− j

�
+
jm(ϑ,ϕ)λ

+
jm(y).

(5.23)

Then, the actions (5.15) and (5.16) give many-body quantum mechanics defined by
the following actions:

Sg f
boson =

∑
j=2k+1
k≥0

j∑
m=− j

∫
dy

(
A jm σ jm

) (−∂2
y + j ( j + 1)

√
j ( j + 1)√

j ( j + 1) −∂2
y + j ( j + 1) + 1

) (
A jm

σ jm

)
,

(5.24)

Sfermion = i
∑

j=2k+1/2
k≥0

j∑
m=− j

∫
dy λ

−
jm

((
j + 1

2

)
+

(
∂t − 1

2

))
λ−
jm

+ i
∑

j=2k+3/2
k≥0

j∑
m=− j

∫
dy λ

+
jm

(
−

(
j + 1

2

)
+

(
∂t − 1

2

))
λ+
jm . (5.25)

The periodicity for each field can be read from the definition of SCI (3.1) and
Table3.1, then it becomes as

A jm(t + β) = e−(β1−β2)m A jm(t), σ jm(t + β) = e−(β1−β2)mσ jm(t) (5.26)

λ
ε

jm(t + β) = e(−1−m)β1+mβ2λ
ε

jm(t), λε
jm(t + β) = e(+1−m)β1+mβ2λε

jm(t).
(5.27)

Therefore, we get each contribution as follows.

http://dx.doi.org/10.1007/978-981-10-1398-0_3
http://dx.doi.org/10.1007/978-981-10-1398-0_3


52 5 Localization Calculous of SCI with M2 = RP2

Bosonic part

∫
DA2Dσ e−Sg f

boson =
∫ ∏

t∈[0,β]

( ∏
j=2k+1
k≥0

j∏
m=− j

d A jm(t)dσ jm(t)
)
e−Sg f

boson

=
∏

j=2k+1
k≥0

j∏
m=− j

1(
2 sinh ω jm

2

)(
2 sinh ω j+1,m

2

) , (5.28)

where

ω jm = β1 − β2

β
m + j. (5.29)

Fermionic part

∫
DλDλ e−Sfermion

=
∏

t∈[0,β]

⎛
⎜⎜⎝

∞∏
j=2k+1/2

k≥0

j∏
m=− j

dλ−
jm(t)dλ

−
jm(t)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∞∏
j=2k+3/2

k≥0

j∏
m=− j

dλ+
jm(t)dλ

+
jm(t)

⎞
⎟⎟⎠ e−Sfermion

=
∏

j=2k+1
k≥0

⎛
⎝

j∏
m=− j+1

2 sinh
βω jm

2

⎞
⎠

⎛
⎝

j∏
m=− j−1

2 sinh
βω j+1,m

2

⎞
⎠ . (5.30)

Note that, in contrast to the case of M2 = S2 (4.39), we get the following non-trivial
contribution even from the vector multiplet.

∫
DA2DσDλDλ e−Sg f

boson−Sfermion

=
∏

j=2k+1
k≥0

2 sinh βω j+1,−( j+1)

2

2 sinh βω j,− j

2

= x
1
4
(x4; x4)∞
(x2; x4)∞ . (5.31)

The Z2 action to boson is different from that of fermion because of the difference of
their spins. Therefore, the survived modes are different, and as a result, the complete
cancellation in (4.39) breaks up.

http://dx.doi.org/10.1007/978-981-10-1398-0_4
http://dx.doi.org/10.1007/978-981-10-1398-0_4
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5.3 Matter Multiplet

Locus The matter Lagrangian (3.65) defines the trivial field contents:

0 = φ = ψ = F, 0 = φ = ψ = F . (5.32)

Sboson =
∫

dt
∫

sin ϑdϑdϕ
(
DμφD

μφ − (2� − 1)φDtφ − �(� − 1)φφ
)
,

(5.33)

Sfermion =
∫

dt
∫

sin ϑdϑdϕ
(

− i(ψγμDμψ) − i(2� − 1)

2
(ψγ3ψ)

)
, (5.34)

where Dμ represent the covariant derivative with respect to the locus gauge field
(5.10):

Di = ∇i − iqAflat
i (i = ϑ,ϕ), (5.35)

Dt = Dt = ∂t − iq
θ

β
. (5.36)

5.3.1 QFT on RP2 × S1β → QM on S1β

Here, for simplicity, we focus on the following two cases.

One-flavor matter multiplet First, we treat the ei
∮
γ qAflat = +1 case in (5.3). In this

case, we have to restrict j as follows:

φ(ϑ, ϕ, y) =
∞∑
j=2k
k≥0

j∑
m=− j

ei
∫ x qAflatY jm (ϑ,ϕ)φ jm(t), (5.37)

ψ(ϑ, ϕ, y) =
∑

j=2k+1/2
k≥0

j∑
m=− j

ei
∫ x qAflat�+

jm (ϑ,ϕ)ψ+
jm(y) +

∑
j=2k+3/2

k≥0

j∑
m=− j

ei
∫ x qAflat�−

jm (ϑ,ϕ)ψ−
jm(y),

(5.38)

φ(ϑ, ϕ, y) =
∞∑
j=2k
k≥0

j∑
m=− j

e−i
∫ x qAflatY ∗

jm(ϑ,ϕ)φ jm (t), (5.39)

ψ(ϑ, ϕ, y) =
∑

j=2k+1/2
k≥0

j∑
m=− j

e−i
∫ x qAflat�

+
jm (ϑ,ϕ)ψ

+
jm (y) +

∑
j=2k+3/2

k≥0

j∑
m=− j

e−i
∫ x qAflat�

−
jm (ϑ,ϕ)ψ

−
jm (y),

(5.40)

http://dx.doi.org/10.1007/978-981-10-1398-0_3
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where Y jm and �±
jm are harmonices explained in the Appendix B. Then, each action

(5.33) and (5.34) gives many-body quantum mechanics:

Sboson =
∑
j=2k
k≥0

j∑
m=− j

∫
dt φ jm( j + � + Dt )( j + 1 − � − Dt )φ jm, (5.41)

Sboson = i
∑

j=2k+1/2
k≥0

j∑
m=− j

∫
dt ψ

+
jm

((
j + 1

2

)
−

(
Dt + 2� − 1

2

))
ψ+

jm

+ i
∑

j=2k+3/2
k≥0

j∑
m=− j

∫
dt ψ

−
jm

(
−

(
j + 1

2

)
−

(
Dt + 2� − 1

2

))
ψ−

jm .

(5.42)

The periodicities can be read from the definition of SCI (3.1) and Table3.1:

φ jm(t + β) = e(−�−m)β1+mβ2+iμφ jm(t) (5.43)

ψ jm(t + β) = e(−�+1−m)β1+mβ2+iμψ jm(t) (5.44)

Then each contribution becomes as follows.

Bosonic part

∫
DφDφ e−Sboson =

∫ ∏
t∈[0,β]

( ∏
j=2k
k≥0

j∏
m=− j

dφ jm(t)dφ jm(t)
)
e−Sboson

=
∏
j=2k
k≥0

j∏
m=− j

1(
2 sinh

βω1
jm

2

)(
2 sinh

βω2
jm

2

) , (5.45)

where

βω1
jm = −iqθ + ( j − m)β1 + ( j + � + m)β2 + iμ, (5.46)

βω2
jm = −iqθ − ( j + 1 + m)β1 − ( j + 1 − � − m)β2 + iμ. (5.47)

http://dx.doi.org/10.1007/978-981-10-1398-0_3
http://dx.doi.org/10.1007/978-981-10-1398-0_3
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Fermionic part

∫
DψDψ e−Sfermion

=
∫ ∏

t∈[0,β]

⎛
⎜⎜⎝

∏
j=2k+1/2

k≥0

j∏
m=− j

dψ
+
jm (t)dψ+

jm (t)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∏
j=2k+3/2

k≥0

j∏
m=− j

dψ
−
jm (t)dψ−

jm (t)

⎞
⎟⎟⎠ e−Sfermion

=
∏
j=2k
k≥0

j∏
m=− j−1

(
2 sinh

βω2
jm

2

)
×

∏
j=2k+2
k≥0

j−1∏
m=− j

(
2 sinh

βω1
jm

2

)
. (5.48)

Then, in total, we get

∫
DφDφDψDψ e−Sboson−Sfermion =

∏
j=2k
k≥0

2 sinh
βω1

j,− j−1

2

2 sinh
βω2

j, j

2

= x+ �−1
4 e+ i

4 qθα+ 1
4 f (e−iqθα− f x (2−�); x4)∞

(e+iqθα+ f x�; x4)∞ .

(5.49)

Now, we turn to the contribution for ei
∮
γ qAflat = −1 sector. The only difference is the

range for j in bosonic sector. After repeating similar procedure, we get the following
contribution.

∫
DφDφDψDψ e−Sboson−Sfermion = x− �−1

4 e− i
4 qθα− 1

4 f (e−iqθα− f x (4−�); x4)∞
(e+iqθα+ f x (2+�); x4)∞ .

(5.50)

Two-flavor matter multiplets with (5.6)-type parity matrix.
In this case, as we have noted in (5.7), we can construct one-flavor matter multiplet
on S2 × S1β with zero monopole, therefore we easily get the result from (4.62).

∫

RP2×S1β

[Dφ1Dφ1Dψ1Dψ1] [Dφ2Dφ2Dψ2Dψ2] e−Sboson1−Sfermion1−Sboson2−Sfermion2

=
∫

S2×S1β

DφDφDψDψ e−Sboson−Sfermion

= (e−iqθα− f x2−�; x2)∞
(eiqθα+ f x�; x2)∞ . (5.51)

http://dx.doi.org/10.1007/978-981-10-1398-0_4
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5.4 Formulas

We summarize here the formulas for making SCI of our SUSY theories on RP2 ×
S1β focusing on the theories composed by multiple of two types matter multiplets
discussed in previous section.

5.4.1 Non Gauge Theory

Let us turn on the following dynamical fields.

�a = (φa , Fa |ψa), �a = (φa , Fa |ψa), a = 1, . . . , N single
f with +1 in (5.1.2), (5.52)

�A
1,2 = (φA

1,2, F
A
1,2|ψA

1,2), �
A
1,2 = (φ

A
1,2, F

A
1,2|ψA

1,2), A = 1, . . . , Ndouble
f with (5.1.5) in (5.1.3).

(5.53)

We assign dimension �a,�A and flavor charge f a, f A to each multiplet, and con-
sider the following action:

S[�,�] =
N single

f∑
a=1

Sq=0
mat [�a,�a] +

N double
f∑
A=1

Sq=0
mat [�A

1,2,�
A
1,2] + W [�] + W [�],

(5.54)

where Sq=0
mat is the action (3.65) with q = 0. We can take arbitrary superpotential W

if it is invariant under the parity conditions. The flavor charge assignments f a, f A
have to preserve W . In this case, we get

I(x,α) =
N single

f∏
a=1

x+ �a−1
4 α+ 1

4 f a
(α− f a x (2−�a); x4)∞

(α+ f a x�a ; x4)∞

N double
f∏
A=1

(α− f A x (2−�A); x2)∞
(α+ f A x�A ; x2)∞

(5.55)

5.4.2 Gauge Theory

We consider the U (1) gauge theory with single gauge field (vector multiplet):

V = (Aμ,σ, D|λ,λ). (5.56)

http://dx.doi.org/10.1007/978-981-10-1398-0_3
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and the following matter singlets:

�a = (φa, Fa|ψa), �a = (φa, Fa|ψa), a = 1, . . . , N f with +1 in (5.1.2),

(5.57)

with �a, f a and U (1) charges qa . The action is

S[V ;�,�] = SYM [V ] +
N f∑
a=1

Sqa
mat [V ;�a,�a] + W [�] + W [�], (5.58)

where SYM is the action (3.64) with U (1) gauge group. See [3] for more detail. We
have to sum up all locus contributions. It means that we should sum up ± sector’s
contributions and integrate θ ∈ [0, 2π]. The formula is

I(x, α) =
∫ 2π

0

dθ

2π

N f∏
a=1

x+ �a−1
4 e+

i
4 qθα+ 1

4 f a (e−iqθα− f a x(2−�a ); x4)∞
(e+iqθα+ f a x�a ; x4)∞

× x
1
4

(x4; x4)∞
(x2; x4)∞

+
∫ 2π

0

dθ

2π

N f∏
a=1

x− �a−1
4 e−

i
4 qθα− 1

4 f a (e−iqθα− f a x(4−�a ); x4)∞
(e+iqθα+ f a x(2+�a ); x4)∞

× x
1
4

(x4; x4)∞
(x2; x4)∞ .

(5.59)
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Chapter 6
An Application: Three-Dimensional Abelian
Mirror Symmetry

In this chapter, we apply the exact results of SCI to the check of a conjectural duality
called three-dimensional mirror symmetry [1–3], duality between Supersymmetric
Quantum ElectroDynamics (SQED) and XYZ-model.

6.1 Duality Between SQED and XYZ-Model

First, let us survey each theory’s Lagrangian, global symmetries, etc.

6.1.1 XYZ-Model

Degrees of freedomThis is a non gauge theory constructed of threematter multiplets

X = (φX , FX , |ψX ), Y = (φY , FY , |ψY ), Z = (φZ , FZ , |ψZ ), +their conjugates.
(6.1)

Dimensions Each multiplet have the following dimensions controlled by �:

�X = �Y = 1 − �, �Z = 2�. (6.2)

Lagrangian Lagrangian contains superpotential term in the form of XY Z .

SXY Z [X, Y, Z ]
= Sq=0

mat [X ] + Sq=0
mat [Y ] + Sq=0

mat [Z ] +
∫

dx3(XY Z)|θθ +
∫

dx3(XY Z)|θθ (6.3)
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Global symmetries There are two global symmetries called U (1)V and U (1)A. We
denote here the corresponding flavor charges as f V , f A.

X Y Z
f V +1 −1 0
f A +1 +1 −2

(6.4)

Parameters of the vacuaAswell known, scalars can take vacuumexpectation values
(VEVs). In this case there are three scalars. Therefore, the parameters of the vacua
are the following three VEVs:

〈φX 〉, 〈φY 〉, 〈φZ 〉. (6.5)

6.1.2 SQED

Degrees of freedom This is a gauge theory constructed from one vector multiplet
and two charged matter multiplets.

V = (Aμ,σ, D|λ,λ), (6.6)

Q = (φQ, FQ, |ψQ), Q̃ = (φQ̃, FQ̃, |ψQ̃), +their conjugates. (6.7)

Q has a charge +1, and Q̃ has a charge −1 under the U (1) gauge symmetry.

Dimensions Each multiplet has the following dimensions:

�Q = �Q̃ = �. (6.8)

Dual photon In 3 dimension, degrees of freedom of the massless vector is equivalent
to that of a real scalar ρ through the following equation:

1

2
εμνρF

νρ = ∂μρ. (6.9)

The real scalar field ρ is called dual photon.

Lagrangian Lagrangian is as follows.

SSQED[V, Q, Q̃] = SYM [V ] + Sq=+1
mat [V ; Q] + Sq=−1

mat [V ; Q̃]. (6.10)

Global symmetries There are two global symmetries called U (1)J and U (1)A. We
denote here the corresponding flavor charges as f̃ J , f̃ A.
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eσ+iρ e−(σ+iρ) Q Q̃
f̃ J +1 −1 0 0
f̃ A 0 0 +1 +1

(6.11)

Parameters of the vacua The scalar VEV have to preserve the gauge symmetry, so
the meson field, the lowest component of Q̃Q is one of the good coordinates. The
other ones are eσ±iρ. Therefore, there are three relevant VEVs.

〈eσ+iρ〉, 〈e−(σ+iρ)〉, 〈φQ̃φQ〉. (6.12)

6.2 Check in M2 = S2 Case

At the beginning of the discovery of this duality, there were some indirect checks,
moduli space equivalence, parity anomaly matching, etc. [1, 2]. After the develop-
ments of the exact calculation based on localization techniques, we can see its duality
in the form of mathematical identity. For example, through the sphere partition func-
tion Z , the equivalence ZXY Z = ZSQED reduces to the identity [4, 5]

1

cosh p
2

=
∫ ∞

−∞
dx

eipx

cosh πx
. (6.13)

This is the Fourier transformation of the cosh−1 function. In this chapter, we review
recent developments of the precision check of the duality by using superconformal
index on S2 × S1β . In this chapter, for simplicity, we turn on only the fugacity for
U (1)A global symmetries.

6.2.1 SCI of XYZ-Model

According to the formula in (4.66) and the charge assignments in (6.4), we get

I�
XYZ(x,α) =

(
(α−1x (1+�); x2)∞
(α+1x (1−�); x2)∞

)2
(α+2x2(1−�); x2)∞

(α−2x2�; x2)∞ . (6.14)

For example, we can expand it with respect to x by taking spatial values for
� = 1/2,α = 1 as follows

I1/2
XYZ(x, 1) = 1 + 2x1/2 + 3x + 2x3/2 + x2 + 2x5/2 + 4x3 + 4x7/2 − 2x9/2 . . .

(6.15)

http://dx.doi.org/10.1007/978-981-10-1398-0_4
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This means that there are infinitely many BPS states (3.3) summarized as follows.

Ĥ + ĵ3 0 1/2 1 3/2 2 5/2 3 7/2 9/2 . . .

#b − # f in BPS states 1 2 3 2 1 2 4 4 −2 . . .
(6.16)

6.2.2 SCI of SQED

According to the formula (4.70) and the charge assignments in (6.11), we get1

I�
SQED(x,α−1)

=
∑
B∈Z

∫ 2π

0

dθ

2π

(
x (1−�)α

)|B| (e−iθαx2−�+|B|; x2)∞
(eiθα−1x�+|B|; x2)∞ × (eiθαx2−�+|B|; x2)∞

(e−iθα−1x�+|B|; x2)∞ .

(6.17)

By using mathematica, we can get numerical value for � = 1/2,α = 1 as follows:

I1/2
SQED(x, 1) = 1 + 2x1/2 + 3x + 2x3/2 + x2 + 2x5/2 + 4x3 + 4x7/2 − 2x9/2 + . . .

(6.18)

This looks in agreement with (6.15). In fact, one can find the analytic proof of

I�
XYZ(x,α) = I�

SQED(x,α−1), (6.19)

in Appendix C.1.

6.2.3 Check in M2 = RP2 Case

We can also check the duality through SCI on RP2 × S1β [6]. This case, we have
to identify supersymmetric parity conditions in each side. The hint for it is the
correspondence of the VEVs [2].

〈φX 〉 = 〈eσ+iρ〉, 〈φY 〉 = 〈e−(σ+iρ)〉, 〈φZ 〉 = 〈φQ̃φQ〉. (6.20)

Now, let us remind our parity conditions for component fields in vector multiplet
(5.2). As one can check,

σ + iρ → −(σ + iρ) (6.21)

1The reason for taking α−1 not α in (6.17) is that the sign of the conserved current for U (1)A is
reversed under the mirror symmetry [5].

http://dx.doi.org/10.1007/978-981-10-1398-0_3
http://dx.doi.org/10.1007/978-981-10-1398-0_4
http://dx.doi.org/10.1007/978-981-10-1398-0_5
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occurs under the antipodal identification (5.1). And we choose here the parity for
matter fields in SQED as

φQ → φQ, φQ̃ → φQ̃, (6.22)

then, (6.20) suggests the following parity conditions for XYZ-model:

φX � φY , φZ → φZ . (6.23)

The parity conditions (6.23)mean that themattermultiplets X andY form the doublet
with the parity matrix (5.6), and the matter multiplet Z is singlet under the antipodal
identification.2

SCI of XYZ-Model

According to the formula in (5.55) and the charge assignments in (6.4), we get

I�
XYZ(x,α) =

(
x+ 2�−1

4 α
−1
2

) (α2x2(1−�); x4)∞
(α−2x2�; x4)∞ × (α−1x (1+�); x2)∞

(αx (1−�); x2)∞ (6.24)

The spatial value for � = 1/2,α = 1 provides

I1/2XYZ(x, 1) = 1 + x1/2 + x + x5/2 + x3 − x4 + 2x5 + x11/2 − x6 − x13/2 + x7 + . . . .

(6.25)

This gives totally different contributions compared with (6.15).

SCI of SQED

According to the formula (5.59) and the charge assignments in (6.11), we get

I�
SQED(x, α−1)

=
∫ 2π

0

dθ

2π

(
x+ 2�−1

4 α
−1
2

) (e−iθαx(2−�); x4)∞
(eiθα−1x�; x4)∞

× (eiθαx(2−�); x4)∞
(e−iθα−1x�; x4)∞

× (x4; x4)∞
(x2; x4)∞

+
∫ 2π

0

dθ

2π

(
x− 2�−3

4 α
1
2
) (e−iθαx(4−�); x4)∞

(eiθα−1x(2+�); x4)∞
× (eiθαx(4−�); x4)∞

(e−iθα−1x(2+�); x4)∞
× (x4; x4)∞

(x2; x4)∞ .

(6.26)

This gives

I1/2
SQED(x, 1) = 1 + x1/2 + x + x5/2 + x3 − x4 + 2x5 + x11/2 − x6 − x13/2 + x7 + . . . (6.27)

The reader can find the exact proof for the equality in Appendix C.2.

2An another correspondence of parity conditions is discovered in [7].

http://dx.doi.org/10.1007/978-981-10-1398-0_5
http://dx.doi.org/10.1007/978-981-10-1398-0_5
http://dx.doi.org/10.1007/978-981-10-1398-0_5
http://dx.doi.org/10.1007/978-981-10-1398-0_5


64 6 An Application: Three-Dimensional Abelian Mirror Symmetry

References

1. K.A. Intriligator, N. Seiberg, Mirror symmetry in three-dimensional gauge theories. Phys. Lett.
B387, 513–519 (1996). arXiv:hep-th/9607207 [hep-th]

2. O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg, M. Strassler, Aspects of N =
2 supersymmetric gauge theories in three-dimensions. Nucl. Phys. B499, 67–99 (1997).
arXiv:hep-th/9703110 [hep-th]

3. A. Kapustin, M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories.
J. High Energy Phys. 9904, 021 (1999). arXiv:hep-th/9902033 [hep-th]

4. N. Hama, K. Hosomichi, S. Lee, Notes on SUSY gauge theories on three-sphere. J. High Energy
Phys. 1103, 127 (2011). arXiv:1012.3512 [hep-th]

5. A. Kapustin, B. Willett, Generalized superconformal index for three dimensional field theories.
arXiv:1106.2484 [hep-th]

6. A. Tanaka, H. Mori, T. Morita, Superconformal index on RP2 × S1 and mirror symmetry. Phys.
Rev. D 91, 105023 (2015). arXiv:1408.3371 [hep-th]

7. A. Tanaka, H. Mori, T. Morita, Abelian 3d mirror symmetry on RP2 × S1 with N f = 1. J. High
Energy Phys. 09, 154 (2015). arXiv:1505.07539 [hep-th]

http://arxiv.org/abs/hep-th/9607207
http://arxiv.org/abs/hep-th/9703110
http://arxiv.org/abs/hep-th/9902033
http://arxiv.org/abs/1012.3512
http://arxiv.org/abs/1106.2484
http://arxiv.org/abs/1408.3371
http://arxiv.org/abs/1505.07539


Chapter 7
Concluding Remarks

In this thesis, we performed exact calculations of the SCI based on the
supersymmetric localizationmethod.We considered supersymmetricQFTon S2×S1β
in Chap.4, on RP2 × S1β in Chap.5. By integrating out the degrees of freedom along
the 2-dimensional surface, we got many-body quantum mechanics. The families of
many particles coming from the reduction along the S2 are different from the ones
along the RP2. In this sense, we may be able to regard that the difference between
the SCI on S2 × S1β and the SCI on RP2 × S1β is the difference of the Hilbert space
H in (3.1). And we also applied these two SCI’s to check the conjectural duality,
three-dimensional mirror symmetry or equivalence between XYZ-model (6.3) and
SQED (6.10). As one can find in Appendix C, the equivalence can be recognized by
the uses of the mathematical formulas.

S2 × S1β case : •
⎧⎨
⎩
Ramanujan’s summation formula (C.7)

+
q-binomial formula (C.13)

RP2 × S1β case : • q-binomial formula (C.13)

Ramanujan’s summation formula is necessary for summing up all contributions
labelled by the monopole numbers B ∈ Z . And q-binomial formula is necessary
for conducting the residue integrals, so it comes from the integral over θ ∈ [0, 2π].
In later case, as one can notice, the following unnamed formulas are important.

(A; q)2l = (A; q2)l (Aq; q2)l , (A; q)2l+1 = (1 − A)(Aq; q2)l (Aq2; q2)l , for l ∈ N .

(7.1)

These formulas can be regarded as an algebraic representations of the ± holonomies
along RP2. In summary, in the context of themirror symmetry, there are the following
correspondences between algebraic mathematical formula and geometric physical
object.
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Ramanujan’s summation formula ⇔ Monopoles on S2, (7.2)

No name formulas in (7.1.1) ⇔ Holonomies along RP2, (7.3)

q-binomial formula ⇔ Holonomy along S1β . (7.4)

Thanks to the duality realized in such way, we can observe how the duality works in
mathematically rigorous way. Realizing QFT in such way provides us rigid under-
standings of QFT’s non-perturbative aspects, and conversely, the duality provides
unexpected relationships between different mathematical objects. Therefore, the
study of the dualities in quantum physics is fruitful and very interesting research
area.

One more comment As noted in Chap.5, there is different supersymmetric parity
conditions. This is as follows.

Aϑ(π − ϑ,π + ϕ, y) = +Aϑ(ϑ,ϕ, y), Aϕ,y(π − ϑ,π + ϕ, y) = −Aϕ,y(ϑ,ϕ, y),

σ(π − ϑ,π + ϕ, y) = +σ(ϑ,ϕ, y),

λ(π − ϑ,π + ϕ, y) = −iγ1λ(ϑ,ϕ, y), λ(π − ϑ,π + ϕ, y) = +iγ1λ(ϑ,ϕ, y),

D(π − ϑ,π + ϕ, y) = −D(ϑ,ϕ, y). (7.5)

This condition also preserves SUSY and U (1) Yang–Mills action (3.64). However,
it breaks the invariance of the following differential operator.

(∂ − i A)2, (7.6)

because under the above transformation, we get

(∂ − i A)2 → (∂ + i A)2. (7.7)

In order to overcome such problem, we have to turn on two matters with ± charges
respectively. We have such mattes in SQED, Q and Q̃, and in fact, we can observe
corresponding duality [1]. In addition, one can check mirror symmetry for multi-
flavored theory and inclusion of non-local operators [2].
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Appendix A
Mathematics for the Thesis

In this appendix, we summarize and derive some mathematical formulas which are
relevant in the thesis.

A.1 Trigonometric Functions

As well known, the trigonometric functions can be represented as infinite products:

sin πz = πz
∞∏
n=1

(
1 − z2

n2

)
, sinh πz = πz

∞∏
n=1

(
1 + z2

n2

)
(A.1.1)

cosπz =
∞∏
n=1

(
1 − z2

(n − 1
2 )

2

)
, cosh πz =

∞∏
n=1

(
1 + z2

(n − 1
2 )

2

)
. (A.1.2)

One interesting application is an infinite product formula for π:

1 = sin
π

2
= π

2

∞∏
n=1

(
1 − ( 12 )

2

n2

)
= π

2

∞∏
n=1

(
(2n)2 − 1

(2n)2

)

= π

2

∞∏
n=1

(
(2n − 1)(2n + 1)

(2n)2

)
. (A.1.3)

This is called Wallis’ formula.
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A.2 Zeta Function

We use the zeta function regularization throughout this thesis. This regularization
corresponds to introducing a cutoff to the UV momentum [1]. The zeta function is
defined by

ζ(s) =
∞∑
n=1

n−s for Re(s) > 1, (A.2.1)

and it is analytically continued to whole complex plane s ∈ C . One can try to
calculate particular value for fixed s by introducing UV cutoff for n. For example,

ζ(0) ∼
∞∑
n=1

1
0←ε←−

∞∑
n=1

e−εn

= e−ε

1 − e−ε
= 1

eε − 1
= 1

ε
(
1 + 1

2 ε + O(ε2)
)

= 1

ε

(
1 − 1

2
ε + O(ε2)

)
= 1

ε
− 1

2
+ O(ε), (A.2.2)

in this regularization, the “scale” for the cutoff corresponds to ε and UV limit is
ε → 0. Obviously, the divergent first term in (A.2.2) represents UV divergence.
Now we take the following renormalization:

ζ(0) ∼ lim
ε→0

[ ∞∑
n=1

e−εn − 1

ε

]
= −1

2
. (A.2.3)

In fact, it is known that this procedure reproduces the precise analytic continued
value for ζ(0).

The 1st derivative of zeta functionWewould like to derive the value for ζ ′(0) here.
By differentiating (A.2.1) with s, we can get

ζ ′(s) = −
∞∑
n=1

n−s log n. (A.2.4)

So the value for s = 0 may be

ζ ′(0) ∼ −
∞∑
n=1

log n = − log
∞∏
n=1

n. (A.2.5)

This divergence can be regularize by usingWallis’ formula and the regularized value
of ζ(0) as follows. 1st, by deforming Wallis’ formula,
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π

2
=

∞∏
n=1

(2n)2

(2n − 1)(2n + 1)
=

∞∏
n=1

(2n)4

(2n)2(2n − 1)(2n + 1)

=
( ∞∏
n=1

24
)( ∞∏

n=1

n

)4 ( ∞∏
n=1

1

(2n)(2n − 1)

)( ∞∏
n=1

1

(2n)(2n + 1)

)

=
(
24

∑∞
n=1 1

) ( ∞∏
n=1

n

)4 ( ∞∏
n=1

1

n

)( ∞∏
n=1

1

n

)

∼
(
24ζ(0)

)( ∞∏
n=1

n

)2

=
(
2−2

)( ∞∏
n=1

n
)2

, (A.2.6)

2nd, by taking √ , we arrive at

∞∏
n=1

n ∼ √
2π. (A.2.7)

Then, by substituting it to (A.2.5), we get

ζ ′(0) = −1

2
log 2π. (A.2.8)

This derivation is slightly dangerous but it is found in [2], and it gives correct answer.

A.3 Gaussian Integrals

The gaussian integral

∫ ∞

−∞
dx e− 1

2 x
2 = √

2π (A.3.1)

is the most important integral in this thesis. Here, we summarize basic facts of
Gaussian integrals of bosonic degrees of freedom xi and fermonic degrees of free-
dom ψi .

Bosonic Case

Real Gaussian :
∫ ∏

i

dxi√
2π

e− 1
2

∑
i j xi Mi j x j = 1√

det Mi j
(A.3.2)
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Complex Gaussian :
∫ ∏

i

dzid z̄i
2π

e− 1
2

∑
i j z̄i Mi j z j = 1

det Mi j
(A.3.3)

Fermionic Case

Real Gaussian :
∫ ∏

i

dψi e
− 1

2

∑
i j ψi Mi jψ j = √

det Mi j (A.3.4)

Complex Gaussian :
∫ ∏

i

dψi dψ̄i e
− 1

2

∑
i j ψ̄i Mi jψ j = det Mi j (A.3.5)
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Appendix B
Monopole Spherical Harmonics

As well known in the context of Schödinger equation for spherically symmetric
system, the spherical harmonics Y jm(ϑ,ϕ) diagonalizes the Laplacian on S2:

∇i∇ i Y jm(ϑ,ϕ) =
(

1

sin ϑ
∂ϑ sin ϑ∂ϑ + 1

sin2 ϑ
∂2

ϕ

)
Y jm(ϑ,ϕ)

= − j ( j + 1)Y jm(ϑ,ϕ). (B.0.1)

This is a consequence of the fact that the Laplacian ∇i∇ i on S2 can be regarded as
the squared orbital angular momentum 
L2. Here, let us remind the definition for the
orbital angular momentum operators:

L1 ± i L2 = eiϕ
(

± ∂ϑ + i cot ϑ∂ϕ

)
, L3 = −i∂ϕ. (B.0.2)

L1, L2, L3 satisfy the SU (2) algebra:

[L A, LB] = iεABC LC . (B.0.3)

The spectrum of −∇i∇ i = 
L2 = L2
1 + L2

2 + L2
3 is purely determined by this SU (2)

algebraic structure:


L2Y jm(ϑ,ϕ) = j ( j + 1)Y jm(ϑ,ϕ), (B.0.4)

L3Y jm(ϑ,ϕ) = mYjm(ϑ,ϕ). (B.0.5)

In this appendix, we review generalizations of this construction.

Monopole background Consider a background U (1) gauge field

Amon = B

2
(κ − cosϑ)dϕ, (B.0.6)

© Springer Science+Business Media Singapore 2016
A. Tanaka, Superconformal Index on RP2 × S1 and 3D Mirror Symmetry,
Springer Theses, DOI 10.1007/978-981-10-1398-0

71
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where κ is +1 when we take a coordinate patch around north pole; 0 ≤ ϑ < π, and
−1 when we take a coordinate patch around south pole; 0 < ϑ ≤ π. The gauge field
around north pole, say An , and the gauge field around south pole, say As are related
by the following gauge transformation:

An
mon = As

mon + ig−1dg, g = eBiϕ. (B.0.7)

Now, in order to define the gauge transformation g as single valued function on S2,
we have to take B ∈ Z . This is famous Dirac’s quantization condition for monopole
charge.

Monopole harmonics By using the background gauge field (B.0.6), we can gener-
alize the orbital angular momentum operators (B.0.2):

J1 ± i J2 = eiϕ
(

±∂ϑ + i cot ϑ(∂ϕ − i Aϕ) + B

2
sin ϑ

)
, J3 = −i∂ϕ ∓ B

2
.

(B.0.8)

One may wonder the physical meaning of this definition. It becomes clear when we
represent them by using x1 = r sin ϑ cosϕ, x2 = r sin ϑ sinϕ, x3 = r cosϑ:


J = 
r ×
(

− i 
∇ + 
Amon

)
+ B

2


r
r
. (B.0.9)


J is composed of orbital angular momentum under the background gauge field
(B.0.6) and the angular moment of the monopole itself. Note that the value for
Aϕ on north pole patch and south pole patch are different, so J1 ± J2 are not usual
differential operators. Precisely speaking, the operators (B.0.8) act on not functions
but sections of certain non-trivial vector bundle. These operators satisfy

[JA, JB] = iεABC JC . (B.0.10)

In the following sections, we briefly summarize the eigenstates for 
J 2, J3:


J 2| j,m〉 = j ( j + 1)| j,m〉, (B.0.11)

J3| j,m〉 = m| j,m〉, (B.0.12)

with spin 0, 1/2, 1, respectively. For later use,wedefinemonopole covariant derivative

Di := ∇i − i Amon
i , (B.0.13)

where ∇i is defined in (3.24), the usual covariant derivative with respect to the spin
connection.

http://dx.doi.org/10.1007/978-981-10-1398-0_3
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B.1 Scalar Harmonics YB
2 , jm

With a spin 0 scalar field, one can verify

DiD
i = −

(

J 2 − B2

22

)
. (B.1.1)

This fact means that we can diagonalize the monopole Laplacian DiD
i on S2 with

the state satisfying (B.0.11) and (B.0.12). Let us define the spin zero wave function
as Y B

2 , jm(ϑ,ϕ), then we get

DiD
i Y B

2 , jm(ϑ,ϕ) = −
(
j ( j + 1) − B2

22

)
Y B

2 , jm(ϑ,ϕ). (B.1.2)

By using well known argument of orthogonality based on integration by parts, we
can also derive

∫
sin ϑdϑdϕ Y ∗

B
2 , jm

(ϑ,ϕ)Y B
2 , j ′m ′(ϑ,ϕ) = δ j j ′δmm ′ . (B.1.3)

If and only if j ≥ | B2 |, Y B
2 , jm becomes normalizable. See [1] for more details.

B.2 Spinor Harmonics ϒ B
2 , jm,� B

2 , jm

Spin 1/2 monopole angular momentum operators satisfy the following relation.


J 2
spinor = −(γiDi )

2 − 1

4
+

(
B

2

)2

. (B.2.1)

Therefore, by taking square root of this eigenvalues,we can diagonalize themonopole
Dirac operator−iγiDi on S2 with the spin 1/2 state satisfying (B.0.11) and (B.0.12).

Eigenspinors for −iγiDi

As one can notice, there must be two modes:

−iγiDiϒ
±
B
2 , jm

(ϑ,ϕ) = ±μ j B
2
ϒ±

B
2 , jm

(ϑ,ϕ), μ j B
2

=
√

(2 j + 1)2 − B2

2
(B.2.2)

where the two modes are exchanged by the multiplication of γ3:

γ3ϒ
±
B
2 , jm

(ϑ,ϕ) = ϒ∓
B
2 , jm

(ϑ,ϕ). (B.2.3)
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And the normalizability requires j ≥ |B|
2 − 1

2 . When j = |B|
2 − 1

2 , we have one zero
mode:

− iγiDiϒ
0
B
2 , jm

(ϑ,ϕ) = 0, (B.2.4)

γ3ϒ
0
B
2 , jm

(ϑ,ϕ) = sign(B)ϒ0
B
2 , jm

(ϑ,ϕ). (B.2.5)

�
ε=±,0
B
2 , jm

(ϑ,ϕ) are orthonormal:

∫
sin ϑdϑdϕ ϒ ε

B
2 , jm

(ϑ,ϕ)†ϒ ε′
B
2 , j ′m ′(ϑ,ϕ) = δεε′

δ j j ′δmm ′ . (B.2.6)

See the appendix of [2] for more details.

Eigenspinors for −iγ3γiDi

One can construct eigenspjnors for −iγ3γiDi by taking

�±
B
2 , jm

(ϑ,ϕ) = (1 − iγ3)ϒ
±
B
2 , jm

(ϑ,ϕ). (B.2.7)

These spinors give following formula

−iγ3γ
iDi�

±
B
2 , jm

(ϑ,ϕ) = ±iμ j B
2
�±

B
2 , jm

(ϑ,ϕ) (B.2.8)

We define corresponding � as

∫
sin ϑdϑdϕ �

ε
B
2 , jm(ϑ,ϕ)γ3�

ε′
B
2 , j ′m ′(ϑ,ϕ) = δεε′

δ j j ′δmm ′ . (B.2.9)

B.3 Vector Harmonics V i
B
2 , jm

By repeating procedure similar to the case represented above, we can make vector
harmonics [3]. However it is somewhat complicated, so we would like to concentrate
on the case of

B = 0, ∇i V
i
jm(ϑ,ϕ) = 0. (B.3.1)

This vector satisfies the following formulas [4]:

∇1V
2
jm(ϑ,ϕ) − ∇2V

1
jm(ϑ,ϕ) = √

j ( j + 1)Y jm(ϑ,ϕ), (for j ≥ 1) (B.3.2)

∇1V
2
jm(ϑ,ϕ) − ∇2V

1
jm(ϑ,ϕ) = 0, (for j = −1). (B.3.3)
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When j = |B|
2 , the mode with (B.3.1) becomes zero. Orthonormality condition is

∫
sin ϑdϑdϕ V i

jm(ϑ,ϕ)V i
j ′m ′(ϑ,ϕ) = δ j j ′δmm ′ . (B.3.4)
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Appendix C
Proof of I�

XY Z = I�
SQED

C.1 M2 = S2 Case

The following argument is originally found by [1]. In order to calculate this complex
integral (6.17), it is useful to change the integration variable from θ to z = eiθ:

(6.17) =
∑
B∈Z

∮
dz

2πi z

(
x (1−�)α

)|B| (z−1αx2−�+|B|; x2)∞
(zα−1x�+|B|; x2)∞ × (zαx2−�+|B|; x2)∞

(z−1α−1x�+|B|; x2)∞ ,

(C.1.1)

then, the problem is which poles are chosen. We assume here that

|α−1x�+|B|| < 1. (C.1.2)

Then, the relevant residues are located at

zl = x2l+�+|B|α−1, l = 0, 1, 2, . . . (C.1.3)

and the integral becomes

(C.1.1) =
∑
B∈Z

∞∑
l=0

(
x (1−�)α

)|B| (α2x−2(l−1+�); x2)∞
(α−2x2(l+�+|B|); x2)∞

× (x2(1+l)+2|B|; x2)∞
(x2; x2)∞ × 1

(x−2l; x2)l , (C.1.4)

where (A; q)l = ∏l−1
n=0(1 − Aqn). Now, we can observe the following fact: the |B|

in the series (C.1.4) can be replaced by B [1, 2], and the following formula:
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(Ax2B; x2)∞ = (A; x2)∞
(A; x2)B , (C.1.5)

where (A; q)−l = ∏l
n=1(1 − Aq−n)−1 for l > 0. Then,

(C.1.4) =
∞∑
l=0

(α2x−2(l−1+�); x2)∞
(α−2x2(l+�); x2)∞

(x2(1+l); x2)∞
(x2; x2)∞

1

(x−2l; x2)l

×
∑
B∈Z

(
x (1−�)α

)B (α−2x2(l+�); x2)B
(x2(1+l); x2)B︸ ︷︷ ︸

1st key terms

, (C.1.6)

Now, we use the following formula in order to deform the 1st key terms :

Ramanujan’s summation formula [3]� �

∑
B∈Z

zB
(a, q)B

(b, q)B
= (q; q)∞( ba ; q)∞(az; q)∞(

q
az ; q)∞

(b; q)∞(
q
a ; q)∞(z; q)∞( b

az ; q)∞
(C.1.7)

� �
In our case (C.1.6),

q = x2, z =
(
x (1−�)α

)
, a = (α−2x2(l+�)), b = x2(1+l). (C.1.8)

Then,

1st key terms = (x2; x2)∞(α2x2(1−�); x2)∞(α−1x2l+�+1; x2)∞(αx1−�−2l; x2)∞
(x2(1+l); x2)∞(α2x−2(l+�−1); x2)∞(αx1−�; x2)∞(αx1−�; x2)∞ .

(C.1.9)

By substituting it into (C.1.6), we get

(C.1.6)

=
∞∑
l=0

(α2x−2(l−1+�); x2)∞
(α−2x2(l+�); x2)∞

(x2(1+l); x2)∞
(x2; x2)∞

1

(x−2l; x2)l

× (x2; x2)∞(α2x2(1−�); x2)∞(α−1x2l+�+1; x2)∞(αx1−�−2l; x2)∞
(x2(1+l); x2)∞(α2x−2(l+�−1); x2)∞(αx1−�; x2)∞(αx1−�; x2)∞

=
∞∑
l=0

(−1)l x−l(l+1)
(
α2x−2(−1+�)

)l
(α−2x2(−1+�)x2; x2)l(α2x−2(−1+�); x2)∞

(α−2x2�; x2)∞/(α−2x2�; x2)l
× 1

(−1)l x−l(l+1)(x2; x2)l
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×

(α2x2(1−�); x2)∞ (α−1x�+1; x2)∞
(α−1x�+1; x2)l (−1)l x−l(l+1)

(
αx1−�

)l

(α−1x�−1x2; x2)l(αx1−�; x2)∞
(−1)l x−l(l+1)

(
α2x−2(�−1)

)l
(α−2x2(�−1)x2; x2)l

(α2x−2(�−1); x2)∞(αx1−�; x2)∞(αx1−�; x2)∞
= (α2x−2(−1+�); x2)∞(α−1x�+1; x2)∞

(α−2x2�; x2)∞(αx1−�; x2)∞
∞∑
l=0

(α−2x2�; x2)l
(x2; x2)l

(
αx1−�

)l

︸ ︷︷ ︸
2nd key terms

(C.1.10)

Here, we used the following formulas.

(x−2l; x2)l = (−1)l x−2l(l+1)(x2; x2)l, (C.1.11)

(Ax−2l; x2)∞ = (−1)l x−2l(l+1)Al(A−1x2; x2)l(A; x2)∞ (C.1.12)

The final key is the following formula:
q-binomial formula [3]� �

∞∑
l=0

(A; q)l

(q; q)l
Z l = (AZ; q)∞

(Z; q)∞
(C.1.13)

� �
In our case, (C.1.10),

q = x2, A = α−2x2�, Z = αx1−�, (C.1.14)

so we get

2nd key terms = (α−1x1+�; x2)∞
(αx1−�; x2)∞ (C.1.15)

Substituting it into (C.1.10), we finally arrived at

(C.1.10) = (α2x−2(−1+�); x2)∞(α−1x�+1; x2)∞
(α−2x2�; x2)∞(αx1−�; x2)∞

(α−1x1+�; x2)∞
(αx1−�; x2)∞

=
( (α−1x1+�; x2)∞

(αx1−�; x2)∞
)2 (α2x2(1−�); x2)∞

(α−2x2�; x2)∞ . (C.1.16)

This is exactly identical to the SCI of XYZ-model (6.14).
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C.2 M2 = RP2 Case

The following argument is based on our original work [4]. In order to calculate this
complex integral (6.26), it is useful to change the integration variable from θ to
z, w = eiθ:

(6.26) =
∮

dz

2πi z

(
x+ 2�−1

4 α
−1
2

) (z−1αx (2−�); x4)∞
(zα−1x�; x4)∞ × (zαx (2−�); x4)∞

(z−1α−1x�; x4)∞
× (x4; x4)∞

(x2; x4)∞ +
∮

dw

2πi z

(
x− 2�−3

4 α
1
2

) (w−1αx (4−�); x4)∞
(wα−1x (2+�); x4)∞

× (wαx (4−�); x4)∞
(w−1α−1x (2+�); x4)∞ × (x4; x4)∞

(x2; x4)∞ . (C.2.1)

We take same assumption (C.1.2):

|α−1x�+|B|| < 1, B = 0, 2. (C.2.2)

Then, the relevant residues are

zl = α−1x�+4l , l = 0, 1, 2, . . . for upper integral in (C.2.1), (C.2.3)

wl = α−1x2+�+4l , l = 0, 1, 2, . . . for lower integral in (C.2.1). (C.2.4)

The residue integral becomes

(C.2.1)

=
∞∑
l=0

(
x+ 2�−1

4 α
−1
2

) (α2x(2−2�−4l); x4)∞
(α−2x2�+4l ; x4)∞ × (x(2+4l); x4)∞

(x4; x4)∞(x−4l ; x4)l
× (x4; x4)∞

(x2; x4)∞

+
∞∑
l=0

(
x− 2�−3

4 α
1
2
) (α2x(2−2�−4l); x4)∞

(α−2x(4+2�+4l); x4)∞
× (x(6+4l); x4)∞

(x4; x4)∞(x−4l ; x4)l
× (x4; x4)∞

(x2; x4)∞

=
∞∑
l=0

(
x+ 2�−1

4 α
−1
2

) (−1)l x−4l(l+1)
(
α2x(2−2�)

)l
(α−2x−(2−2�)x4; x4)l (α2x(2−2�); x4)∞

(α−2x2�; x4)∞/(α−2x2�; x4)l

× (x2; x4)∞/(x2; x4)l
(x4; x4)∞(−1)l x−4l(l+1)(x4; x4)l

× (x4; x4)∞
(x2; x4)∞

+
∞∑
l=0

(
x− 2�−3

4 α
1
2
) (−1)l x−4l(l+1)

(
α2x(2−2�)

)l
(α−2x−(2−2�)x4; x4)l (α2x(2−2�); x4)∞

(α−2x(4+2�); x4)∞/(α−2x(4+2�); x4)l

× (x6; x4)∞/(x6; x4)l
(x4; x4)∞(−1)l x−4l(l+1)(x4; x4)l

× (x4; x4)∞
(x2; x4)∞

=
(
x+ 2�−1

4 α
−1
2

) (α2x(2−2�); x4)∞
(α−2x2�; x4)∞

∞∑
l=0

(α−2x(2�+2); x4)l (α−2x2�; x4)l
(x2; x4)l (x4; x4)l

(
α2x(2−2�)

)l
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+
(
x− 2�−3

4 α
1
2
) (α2x(2−2�); x4)∞

(α−2x(4+2�); x4)∞
(x6; x4)∞
(x2; x4)∞

∞∑
l=0

(α−2x(2+2�); x4)l (α−2x(4+2�); x4)l
(x4; x4)l (x6; x4)l

×
(
α2x(2−2�)

)l
, (C.2.5)

where we used the following formulas.

(x−4l; x4)l = (−1)l x−4l(l+1)(x4; x4)l, (C.2.6)

(Ax−4l; x2)∞ = (−1)l x−4l(l+1)Al(A−1x4; x4)l(A; x4)∞. (C.2.7)

We can deform the pre factor of lower term in (C.2.5) as follows:

(
x− 2�−3

4 α
1
2

) (α2x (2−2�); x4)∞
(α−2x (4+2�); x4)∞

(x6; x4)∞
(x2; x4)∞

=
(
x+ 2�−1

4 α
−1
2

)
x− 4�−4

4 α1 (α2x (2−2�); x4)∞
(α−2x2�; x4)∞

(α−2x2�; x4)∞
(α−2x (4+2�); x4)∞

(x6; x4)∞
(x2; x4)∞

=
(
x+ 2�−1

4 α
−1
2

)
x1−�α1 (α2x (2−2�); x4)∞

(α−2x2�; x4)∞
(1 − α−2x2�)

1 − x2
. (C.2.8)

Then

(C.2.5)

=
(
x+ 2�−1

4 α
−1
2

) (α2x (2−2�); x4)∞
(α−2x2�; x4)∞

∞∑
l=0

[
(α−2x (2�+2); x4)l (α−2x2�; x4)l

(x2; x4)l (x4; x4)l
(
α2x (2−2�)

)l

+ (1 − α−2x2�)

1 − x2
(α−2x (2+2�); x4)l (α−2x (4+2�); x4)l

(x4; x4)l(x6; x4)l
(
α2x (2−2�)

)l]

=
(
x+ 2�−1

4 α
−1
2

) (α2x (2−2�); x4)∞
(α−2x2�; x4)∞

∞∑
l=0

[
(α−2x2�; x2)2l

(x2; x2)2l
(
αx (1−�)

)2l

+ (α−2x2�; x2)2l+1

(x2; x2)2l+1

(
αx (1−�)

)2l+1
]

=
(
x+ 2�−1

4 α
−1
2

) (α2x (2−2�); x4)∞
(α−2x2�; x4)∞

∞∑
k=0

[
(α−2x2�; x2)k

(x2; x2)k
(
αx (1−�)

)k]
. (C.2.9)

Here we used

(A; q)2l = (A; q2)l(Aq; q2)l, (A; q)2l+1 = (1 − A)(Aq; q2)l(Aq
2; q2)l .

(C.2.10)



82 Appendix C: Proof of I�
XY Z = I�

SQED

Now, we can use the q-binomial formula (C.1.13) :

∞∑
k=0

(A; q)k

(q; q)k
Zk = (AZ; q)∞

(Z; q)∞
, (C.2.11)

then we arrive at

(C.2.9) =
(
x+ 2�−1

4 α
−1
2

) (α2x (2−2�); x4)∞
(α−2x2�; x4)∞

(α−1x1+�; x2)∞
(αx1−�; x2)∞ . (C.2.12)

This is exactly (6.24).
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