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Preface

Origin More than a quarter of a century ago the senior author (JT) published a
book with Péter Érdi on the mathematical models of chemical reactions.1

Before and after writing that book (and having courses and seminars at
the Budapest University of Technology and Economics and at the Eötvös
Loránd University, Budapest) we realized that it is almost impossible to do
anything in the theory and applications of chemical kinetics without using
the computer, even if one is mainly interested in symbolic calculations.
Luckily, all three of the present authors learned and taught Mathematica
from relatively early on, cf. Szili and Tóth;2 therefore it was quite natural
to use this extremely powerful and providently designed language for our
purposes. From time to time we wrote codes to solve problems in reaction
kinetics, for the simulation of the usual stochastic model (what we have
started well before, in the beginning of the seventies of the last century3),
or for the decomposition of overall reactions4,5 or for biological modeling.6

As our programs started to be used by other people we realized that it would
be useful to make it available to a wider audience.
However, according to our experience, recent developments in the theory
of reaction kinetics, what may also be called formal reaction kinetics,
are known in the chemists’ and chemical engineers’ community much
less than optimal. Mathematicians are also not familiar enough with this
area full of interesting unsolved problems. Therefore, we tried to do the

1Érdi P, Tóth J (1989) Mathematical models of chemical reactions. Theory and applications of
deterministic and stochastic models. Princeton University Press, Princeton, NJ.
2Szili L, Tóth J (1996) Mathematics and Mathematica. ELTE Eötvös Kiadó, Budapest. http://www.
math.bme.hu/~jtoth/Mma/M_M_2008.pdf.
3Érdi P, Sipos T, Tóth J (1973) Stochastic simulation of complex chemical reactions by computer.
Magy Kém Foly 79(3):97–108.
4Papp D, Vizvári B (2006) Effective solution of linear Diophantine equation systems with an
application in chemistry. J Math Chem 39(1):15–31.
5Kovács K, Vizvári B, Riedel M, Tóth J (2004) Computer assisted study of the mechanism of the
permanganate/oxalic acid reaction. Phys Chem Chem Phys 6(6):1236–1242.
6Tóth J, Rospars JP (2005) Dynamic modelling of biochemical reactions with applications to signal
transduction: principles and tools using Mathematica. Biosystems 79:33–52.
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impossible: our book is aimed at beginners in the field with some knowledge
in introductory calculus, linear algebra, and stochastics who would like to
proceed very fast towards reading the original literature and also contribute
to the theory and apply it to more and more practical problems. At the same
time we are also providing a kind of user’s manual to our Mathematica
program package called ReactionKinetics, Version 1.0. The program
downloaded freely, and remarks and criticisms leading to Versions 2, 3 etc.
are welcome. We also show how the programs work in a CDF (Computable
Document Format) files readable by anybody using the freely downloadable
program CDFPlayer. One should not forget that the program Mathematica
is freely available for anyone having a Raspberry Pi computer (even if it
does not work as effectively as a paid version on a computer with larger
capacity). No deep knowledge of programming is needed; we are convinced
that well-written Mathematica programs are easy to read, and they are self-
explanatory.

Scope and Related Books Some of the readers might have noted a slight resem-
blance between the title of our book and that of an early Springer best seller,
a classic: Pólya, G. and Szegő, G. Aufgaben und Lehrsätze aus der Analysis,
(4th edition), Heidelberger Taschenbücher, Springer, (1970) (it would be
inappropriate to add this item to the reference list). This is not by pure
chance. This may be the only similarity of the authors with Pólya and Szegő:
we also wanted to collect as much material as possible from the research
literature and present it in unified form to teach the elements and to be
available for the researchers as well. This turned out to be a task harder than
anticipated in a period of explosive development of this branch of science
(after decades of sleeping at the end of last century). It may happen that
we do not give an exact reference when posing a problem; however, all the
papers we have taken problems from are included in the list of References.
We shall almost never give the proof of a theorem but we do try to give the
exact references pointing to the first occurrence.
Érdi and Tóth7 has been used by some readers as a textbook and has also
been the starting point of many research papers. Related to that book the
present one covers a narrower area, is deeper, is more based on the use of
computer, and contains much more figures. That is why we hope it will be
suitable for students even more and will give ideas for even more researchers.
Let us try to characterize a few related books to help the reader in orientation
and further reading. (As to the programs, they will be compared in Chap. 12
at the end of our book because by then the reader will have a certain
experience with our program and will also possess the necessary vocabulary.)

7Érdi P, Tóth J (1989) Mathematical models of chemical reactions. Theory and applications of
deterministic and stochastic models. Princeton University Press, Princeton, NJ.
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If you need more chemistry—including recipes of exotic reactions—you
might consult the books by Pilling and Seakins,8 Lente,9 Epstein and
Pojman,10 Scott,11 Temkin,12 or Espenson13 which are almost complemen-
tary to our book. Although the main interest of the author of Póta14 is
reaction kinetics, his book contains problems from many other areas of
mathematical chemistry as well.
The whole (application oriented) book by Érdi and Lente15 has been
dedicated to stochastic kinetics. The best source for numerical methods
needed to deal with problems of kinetics is Turányi and Tomlin.16 The
book by Marin and Yablonsky17 contains a very large number of concrete
examples fully analyzed, but its main goal is to try to rescue the “sinking
Atlantis of Soviet Science,” as the authors put it: they collect many valuable
results which can only be found in hardly accessible (and untranslated)
journals in Russian.

Purpose The book is aimed at chemists, engineers, and mathematicians interested in
the interdisciplinary field of formal reaction kinetics, an important subfield of
mathematical chemistry. Reaction kinetics studies the evolution of reacting
species; it can predict time-dependent and stationary behavior, and it can
provide a framework for collecting data economically. Hence, it is relevant
for everyone working in or studying chemistry, chemical engineering,
biochemistry, environmental chemistry, combustion, etc.
Let us say a few words about our package, which is used throughout and
taught also to the reader. In all the areas of chemistry where reaction kinetics
plays an essential role (biochemistry, combustion, pharmacokinetics, organic
and inorganic chemistry) the usual situation is that one has mechanisms, or

8Pilling MJ, Seakins PW (1995) Reaction kinetics. Oxford Science Publications, Oxford/New
York/Tokyo.
9Lente G (2015) Deterministic kinetics in chemistry and systems biology. The dynamics of
complex reaction networks. SpringerBriefs in molecular science. Springer, New York.
10Epstein I, Pojman J (1998) An introduction to nonlinear chemical dynamics: oscillations, waves,
patterns, and chaos. Topics in physical chemistry series. Oxford University Press, New York. http://
books.google.com/books?id=ci4MNrwSlo4C.
11Scott SK (1991, 1993, 1994) Chemical chaos. International series of monographs on chemistry,
vol 24. Oxford University Press, Oxford.
12Temkin ON (2012) Homogeneous catalysis with metal complexes: kinetic aspects and mecha-
nisms. Wiley, Chicester.
13Espenson JH (2002) Chemical kinetics and reaction mechanisms, 2nd edn. McGraw-Hill,
Singapore.
14Póta G (2006) Mathematical problems for chemistry students. Elsevier, Amsterdam.
15Érdi P, Lente G (2016) Stochastic chemical kinetics. Theory and (mostly) systems biological
applications. Springer series in synergetics. Springer, New York.
16Turányi T, Tomlin AS (2014) Analysis of kinetic reaction mechanisms. Springer, New York.
17Marin GB, Yablonsky GS (2012) Kinetics of chemical reactions. Decoding complexity. Wiley,
Weinheim.
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complex chemical reactions consisting of a large number of (elementary)
reaction steps, and of different chemical species. This situation generates the
need to do as much calculations automatically as possible. On the other side,
developments in formal reaction kinetics in the last three to four decades
made it possible to create tools to give this kind of help to the chemist. Taking
all this into consideration it is quite astonishing that so few general packages
in reaction kinetics exist. Our package has the following properties:

1. It is based on recent developments in formal reaction kinetics.
2. It has been written in a modern language, Mathematica (or Wolfram Lan-

guage, if you wish), using all the nice features and efficient tools of it.
3. It is of modular structure; therefore the present version can, should, and will

be further developed.
4. It includes stochastic simulation methods as well.

Plan After an introduction to time-independent, mainly combinatorial tools, the
book covers several mathematical and algorithmic aspects of continuous
time (deterministic and stochastic) models of chemical reactions. The book
combines the formal presentation of mathematical models and algorithms
with the demonstration of the applications using the symbolic and numerical
features of Mathematica. Each topic is introduced by elementary examples to
illustrate the relevant concepts. Then a review of the literature follows, also
covering the state of the art. Finally, both simple and real-world examples
are analyzed using our Mathematica implementation.

Related Disciplines and Intended Audience Within Different Areas

1. Mathematics: linear algebra, linear and integer programming, Diophantine
equations, polynomial ordinary differential equations, reaction diffusion equa-
tions, graph theory, continuous time discrete state Markov processes.

2. Chemistry: reaction kinetics, physical chemistry, chemical reaction network
theory.

3. Industry and technology: combustion, environmental issues, pharmacology.
4. Biology: biochemistry, drug design, enzymology, population biology, systems

biology.
5. Government: environmental issues, food or drug safety.

The primary audience will be MSc and PhD students in applied mathematics,
chemistry, biochemistry, chemical and environmental engineering. It might
also be a textbook for graduate-level courses on mathematical and physical
chemistry. We think that newcomers in the field might also learn from it,
playing with the programs, and the abundant literature may also help experts.
We do not claim that the whole book will be a mandatory text for all the
students in the above sciences; however, we are sure that some students from
all of the above disciplines will be interested.
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Beforethoughts and Afterthoughts We are going to work with clear mathematical
concepts, precise definitions, and theorems, nevertheless try to keep in mind
the potential applications. Furthermore, we do not want to cover all the areas
of reaction kinetics, only those which we know relatively well. We collect
and review the corresponding modern literature. Our programs can be used
to treat almost all important problems of homogeneous reaction kinetics,
both deterministic and stochastic. The nontrivial algorithms we use come
partially from our workshop.
The exercises and problems follow very closely the material exposed in the
chapters. They can be best used if the reader tries to solve them, and even if
(s)he is able to solve a problem, (s)he might learn methods or tricks from the
solution presented by us.

Budapest, Hungary János Tóth
Budapest, Hungary Attila László Nagy
Raleigh, USA Dávid Papp
March 25, 2018
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Acronyms and Symbols

The present list of abbreviations and symbols contains those notations which are
supposed to be generally known and not defined in the book.

1 A vector with all the components equal to 1, 1N ∈ R
N

|A| Number of elements (cardinality) of the set A
]a, b[ Open interval {x ∈ R|a < x < b} under the assumption that a, b ∈

R, a < b

B�(a) Open ball with radius � around the point a
B(A) With a statement A it is 1, if the statement is true, it is 0, if the

statement is false. Similar to the function Boole in Mathematica
C Set of all complex numbers
diag(v) A diagonal matrix with the components of the vector on the main

diagonal
Df Domain of the function f

∂Ω Boundary of the set Ω
∂nf Partial derivative function of the function f with respect to the nth

variable
en nth element of the standard basis
f |A Restriction of the function f onto the set A:

Df |A := Df ∩ A; ∀x ∈ Df |A : f |A(x) = f (x)

(f, g)(x) := (f (x), g(x)), for x ∈ Df ∩Dg

f ◦ g The composition of the functions f and g defined to be f (g(x)) for
those elements x ∈ Dg for which g(x) ∈ Df

Im(A) Image of the linear map A

Ker(A) Null space of the linear map A

M := {1, 2, . . . ,M}
N Set of all natural (here: positive integer) numbers
N0 Set of all nonnegative integers
N = {1, 2, . . . , N}
[n]r := n(n−1) . . . (n−r+1) with r ∈ N, FactorialPower or falling

factorial
rank(A) Rank of the matrix A

�(z) Real part of the complex number z ∈ C

R Set of all real numbers
xxiii



xxiv Acronyms and Symbols

R
N Set of all N-dimensional vectors with real numbers as components

(N ∈ N)

R
N×N Set of all N ×N matrices with real numbers as components (N ∈ N)

R
− Set of all negative real numbers

R
+ Set of all positive real numbers

R
+
0 Set of all nonnegative real numbers

R := {1, 2, . . . , R}
Rf Range of the function f

X � Y The matrix X− Y is positive semi-definite.
X � Y The matrix X− Y is positive definite.
Z Set of all integer numbers
δQ Characteristic or indicator function of the set Q; if Q = {m}, then one

simply writes δm. We had to use δl also for the deficiency of the lth

linkage class.
χQ Characteristic vector of the set Q; χQ := [

δq1 δq2 . . . δqK
]

if the
number of elements of Q is K .



1Introduction

As usual, introduction is the part of a book written and read last. Here the authors
expose what the reader will read (actually, have read). We are not going to be an
exception.

The structure of our book is as follows:
Part I treats reactions without models specifying time evolution. Thus, after

furnishing the scene, the questions of mass conservation and those of decomposition
of overall reactions are treated.

Part II deals with many aspects of the usual deterministic model of reaction
kinetics, such as the form, transient and stationary behavior of concentration vs.
time curves, and approximations of the induced kinetic differential equation.

Part III is dedicated to the most common stochastic model of reactions. This
model is neither microscopic nor macroscopic; it is sometimes referred to as
mesoscopic referring to the level of description.

Part IV is about the use of numerical methods in reaction kinetics (including
estimation problems), about a short history of software packages written for
kinetics, and also on the mathematical background to make our book self-contained.
Thus, these are certainly not unimportant questions.

There are a few areas really important for the chemical kineticists, such as move-
ments on potential surfaces, molecular dynamics, quantum chemical calculations,
statistical methods to evaluate kinetic experiments, etc. Some of the readers might
be more interested in exotic phenomena or in more details of Chemical Reaction
Network Theory. As to these topics, we must refer the reader to the literature.

Let us mention a few reviews and journals containing relevant material on
the mathematical theory of reaction kinetics: Aris (1969) was a starting point for
many researchers. Although not as many fields were covered, the review National
Research Council et al. (1995) may also be interesting, although the word “kinetics”
is only contained once in it. Of the journals we mention first the Journal of
Mathematical Chemistry and match (Communications in Mathematical and in
Computer Chemistry), both of which cover wide areas of mathematical chemistry.
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2 1 Introduction

Fig. 1.1 The logarithm of
the number of citations of
Horn and Jackson (1972) up
to a certain year. Note the
three phases: up to 1980 and
after 2002 and in between

Biomathematical journals or SIAM journals also contain papers relevant in this
field. Chemistry has an emphasis in journals such as International Journal of
Chemical Kinetics or Reaction Kinetics, Mechanisms, and Catalysis. The web page

https://reaction-networks.net/wiki/Mathematics_of_Reaction_Networks
also contains relevant information.

Authors more historically minded than us would write the book as a history
of continuous rediscoveries (nonnegativity, adjacency matrix, stochastic model of
compartmental systems, simulation of the stochastic model). We shall only make a
few remarks in passing these topics.

Let us finish this introduction with an illuminating figure showing the logarithm
of the total number of citations up to given years to the fundamental paper by Horn
and Jackson (1972) (Fig. 1.1).

1.1 Exercise or Problem

1.1 Find review papers or books to cover the “few areas” mentioned above.

(Solution: page 381.)
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Part I

The General Framework

First of all, one has to delineate the physical entity the models of which one is going
to deal with: this is a finite set of reaction steps taking place among a finite set
of chemical species. Most often we assume that the volume in which the reaction
steps take place is constant and so are the pressure and the temperature, as well.
Next, we give a very short introduction into the software tool: into Mathematica
(or Wolfram Language, if you prefer). It would be more appropriate to call this
part as a reminder for those who know something about this, because at least
a moderate level knowledge of the language is assumed. Part I ends with the
definitions and comparisons of different graphs assigned to reactions. These are
necessary preliminaries to the treatment of the dynamics of reactions in the chapters
to follow.
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Before turning to the formal theory of reaction kinetics, we meditate a bit about the
phenomenon we are interested in and also about the assumed circumstances.

2.1 Physical Assumptions

The stage is a vessel of constant volume (one might think of a reactor, a cell, a cell
compartment, a biological niche, an engine, a test tube, etc.) at a fixed temperature
and pressure, containing a finite number of chemical species. Among these species
a finite set of chemical reaction steps take place. We also suppose that mixing is
complete; therefore the concentration of the species is the same at all points in
the vessel. What we are interested in is the temporal change of the concentrations
of the species. It will turn out that several systems not obeying the restrictions
can also be put into the framework we use, i.e., in- and outflow, or reactions in a
continuously stirred tank reactor (usually abbreviated as CSTR), or some kinds of
transport processes, and even several phenomena in population biology including
the spread of epidemics, can formally be described by reaction steps. Some of the
restrictions will be alleviated below; see in Sect. 6.7.

2.2 The Standard Setting

Let us suppose that in the investigated vessel, a finite number M ∈ N of chemical
species (molecules, radicals, electrons, etc.) denoted by X(1),X(2), . . . ,X(M) is
present (indexed by the species set M := {1, 2, . . . ,M}) and among these species
a finite number R ∈ N of reaction steps

∑

m∈M
α(m, r)X(m) −→

∑

m∈M
β(m, r)X(m) (r ∈ R), (2.1)

© Springer Science+Business Media, LLC, part of Springer Nature 2018
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(usually identified with the set of reaction steps defined as R := {1, 2, . . . , R})
take place. We call (2.1) for a fixed r ∈ R a reaction step, and the reaction steps
together form a reaction. The nonnegative integer coefficients in (2.1) form the
matrices

α = (α(m, r))m∈M ;r∈R and β = (β(m, r))m∈M ;r∈R

of stoichiometric coefficients or molecularities expressing the molar proportions
of the species in a reaction step. The reactant complex vector of the rth
reaction step is the vector α(·, r) := [α(1, r) α(2, r) . . . α(M, r) ]	, its product
complex vector is the vector β(·, r) := [β(1, r) β(2, r) . . . β(M, r) ]	, and the
corresponding reaction step vector is the vector γ (·, r) := β(·, r) − α(·, r). The
rank of the stoichiometric matrix γ is usually denoted by S.

Remark 2.1 The case when the complex vector is the null vector is not excluded,
and the corresponding complex is the zero complex, or empty complex, it is
denoted by 0. If it is the reactant complex of a reaction step, then it is usually used to
describe inflow; if it is the product complex of a reaction step, then it is usually used
to describe outflow, thereby expanding the set of phenomena which can be treated
by the theory.

Definition 2.2 The stoichiometric subspace of the reaction (2.1) is the linear space

S := span {γ (·, r) | r ∈ R}. (2.2)

Thus, S is the dimension of S and also the rank of the stoichiometric matrix. One
can refer to it as to the number of independent reaction steps.

The formal linear combinations on the left and right sides of the reaction arrows
are the reactant complex and the product complex, respectively; together they
form the set of complexes; C := {α(·, r) | r ∈ R} ∪ {β(·, r) | r ∈ R}, the
cardinality of which will be denoted by N below: N := |C |. The matrix with the
complex vectors as columns is the complex matrix; it is usually denoted by Y ∈
N

M×N
0 .

It is quite natural to make a few restrictions on the matrices α,β, γ ; see, e.g.,
Deák et al. (1992, Sect. 2.1).

Conditions 1

1. All the species participate in at least one of the reaction steps.
2. In every reaction step, at least one of the species changes.
3. All the reaction steps are determined by the pair of its reactant and product

complexes.
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Remark 2.3

1. The last requirement may be too restrictive because if a reaction can proceed
through two different transition states (or this reaction step has two reaction
channels), as in the reaction

CH3CHOH∗ + O2 −−⇀↽−− HO2
∗ + CH3CHO

(Zádor et al. 2009), then one should duplicate this step to exactly represent the
mechanistic details of the reaction. However, when using any model (determin-
istic or stochastic) for the time evolution of the concentrations, the two steps will
be contracted (or, lumped) into one.

2. Sometimes we abbreviate reaction steps like A + X −−→ 2 X as X −−→ 2 X
saying that A is an external species the concentration change of which will
be neglected later. The reason of this might be that these species are present in
abundance; therefore their changes are very small during the time period we are
describing the process. Another way of wording is if one says that these species
form a pool. If we want to emphasize that X is not an external species, we may
use the term internal species. The first form of the reaction step (A+X −−→ 2 X)
may be called the genuine reaction step, while the second form (X −−→ 2 X)
will simply be called reaction step.

3. The presence of a species on both sides of a reaction step is not excluded as the
example X + Y −−→ 2 X shows. Neither from the dynamical point of view nor
from the point of view of stationary points can this reaction “be simplified” into
Y −−→ X.

4. The assumptions imply that the number of complexes is at least 2.
5. Mathematicians may not like that the complexes are formal linear combina-

tions. To make it quite correct (following Feinberg and Horn 1977, pp. 84–85), let
us consider the complex vectors as elements of the linear space of functionsRM .

The natural basis of this space consists of the characteristic functions δm of the
elements of the species set M . A function f ∈ R

M can then be represented as
f = ∑m∈M f (m)δm. Now, listen to the jump: when confusion seems unlikely,
we shall sometimes write X(m) instead of δm, particularly when an element of
R
M is displayed as a linear combination of the natural basis elements of RM ,

as, e.g., we write A1+A2 instead of δ1+δ2. This deliberate confusion of species
with the corresponding characteristic functions will permit a transition from the
rigorous mathematical definition of a reaction to its representation by a graph
with complexes as its vertices and reaction steps as its edges: the Feinberg–Horn–
Jackson graph (see Definition 3.1).

Definition 2.4 The molarity of a complex vector y = [
y1 y2 . . . yM

]	 ∈ C is
the sum of its stoichiometric coefficients

∑
m∈M ym. A complex is short, if its

molarity is not more than 2. The order of a reaction step is the molarity of its
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reactant complex, whereas the order of the reaction (2.1) is the maximum of the
orders of the reaction steps: max{∑m∈M α(m, r) | r ∈ R}.

Remark 2.5

1. Reactions of the order not more than two or even reactions only consisting
of short complexes are the most important ones, because in this case it is not
impossible to have a physical picture about a reaction step: it is the result of a
collision, and it is called in this context an elementary reaction. The probability
of triple collisions is considered to be low. Still, the quite common reaction
between nitric oxide and oxygen is of the third order; see Example 6.30. Another
case of including seemingly third order reactions is to consider third bodies in
combustion models. This is a usual trick to consider ambient effects formally
without a rigorous physical foundation.

2. Sometimes we use the quadruple 〈M ,R,α,β〉 to denote the reaction (2.1), and
we imply that all the three conditions formulated right now are fulfilled.

3. We might specify a further requirement based on the idea that independent
reactions can be treated separately: we might require that the reaction be
connected in the sense that its Volpert graph is connected; see Sect. 3.3.1).

We shall return more than once to the following examples.

Example 2.6 Consider the reversible simple bimolecular reaction

A+ B −−⇀↽−− C. (2.3)

Here we have

M = 3, R = 2, X(1) = A, X(2) = B, X(3) = C,

α =
⎡

⎣
1 0
1 0
0 1

⎤

⎦ , β =
⎡

⎣
0 1
0 1
1 0

⎤

⎦ ;

and Conditions 1 are obviously fulfilled. The stoichiometric subspace is one
dimensional (S = 1); it is generated by the vector [1 1 −1 ]	.

Cases where some or all the reaction steps are irreversible are also often used as
models: this is the viewpoint of the mathematician. A kineticists however might say
that all the reaction steps are theoretically reversible; in some cases we neglect one
from a pair of reactions and that is the case when we speak about irreversible steps:
they are nothing else than modeling tools.
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Example 2.7 The characteristic quantities of the irreversible Lotka–Volterra reac-
tion

X −−→ 2 X X+ Y −−→ 2 Y Y −−→ 0 (2.4)

are

M = 2, R = 3, α =
[

1 1 0
0 1 1

]
, β =

[
2 0 0
0 2 0

]
;

and Conditions 1 are obviously fulfilled again. The stoichiometric subspace is the
whole space R

2, thus S = 2.

A combustion application of the Lotka–Volterra reaction came from the fact that in the
case of a continuous supply of a gasoline–air mixture into the reactor (heated to certain
temperature), one can see periodic flashes of the cold flame (1500–2000 K) appearing with
a constant frequency. In this case the full combustion does not occur. The oxidation products
include aldehydes, organic peroxides, and other compounds. Some regularities have been
established for this process. In particular, the flash frequency increases with the increase of
oxygen concentration and temperature. In order to explain this effect, Frank-Kamenetskii
(1947) (see also Korobov and Ochkov 2011, Chap. 3) suggested the model with two external
species

A+ X −−→ 2 X X+ Y −−→ 2 Y Y −−→ B (2.5)

to describe oscillations in cold flames. In this interpretation A is the initial compound, B is
the product, X is the superoxide type molecules or radicals, and Y means the aldehyde-type
molecules or radicals. A recent analysis of the phenomenon has been given by Mints et al.
(1977).

As to oscillation, we shall return to this point in Chap. 8.

Example 2.8 An important model in combustion is the Robertson reaction; see
Robertson (1966) or Deuflhard and Bornemann (2002, p. 29):

A −−→ B 2 B −−→ B+ C −−→ A+ C, (2.6)

where M = 3, R = 3,X(1) = A,X(2) = B,X(3) = C, and

α =
⎡

⎣
1 0 0
0 2 1
0 0 1

⎤

⎦ , β =
⎡

⎣
0 0 1
1 1 0
0 1 1

⎤

⎦ , γ =
⎡

⎣
−1 0 1

1 −1 −1
0 1 0

⎤

⎦ , S = 2;

thus the reaction steps are not independent.
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Example 2.9 A basic model of enzyme kinetics is the Michaelis–Menten reaction;
see, e.g., Keleti (1986):

E+ S −−⇀↽−− C −−→ E+ P, (2.7)

where E is the enzyme molecule; S is its substrate, the species that the enzyme
transforms; C is a temporary complex of the enzyme with the substrate; and finally,
P is the product. The last step shows that the enzyme molecule is recovered at the
end of the reaction: it is a catalyst. The name “enzyme” denotes a catalyst being
a protein as to its chemical constitution. Here M = 4, R = 3,X(1) = E,X(2) =
S,X(3) = C,X(4) = P, and

α =

⎡

⎢
⎢
⎣

1 0 0
1 0 0
0 1 1
0 0 0

⎤

⎥
⎥
⎦ , β =

⎡

⎢
⎢
⎣

0 1 1
0 1 0
1 0 0
0 0 1

⎤

⎥
⎥
⎦ , γ =

⎡

⎢
⎢
⎣

−1 1 1
−1 1 0

1 −1 −1
0 0 1

⎤

⎥
⎥
⎦ , S = 2.

Sometimes the last step is also assumed to be reversible, but there is an infinite
number of further variations on this theme: some with more than one enzyme, some
with more than one substrate, one or more inhibitors may also be present, etc.; we
refer again to the book by Keleti (1986).

Probably the first reaction to describe combustion comes from Mole (1936). His
general model is

Example 2.10

X+ Y −−→ 2 X+ 2 Y X −−⇀↽−− 0 −−⇀↽−− Y, (2.8)

where M = 2, R = 5,X(1) = X,X(2) = Y, and

α =
[

1 1 0 0 0
1 0 0 1 0

]
, β =

[
2 0 1 0 0
2 0 0 0 1

]
.

He simplified this model to get one which is easier to treat:

2 X −−→ 3 X X −−⇀↽−− 0, (2.9)

where M = 1, R = 3,X(1) = X, and α = [ 2 1 0
]
,β = [3 0 1

]
. Actually, this

reaction is a version with an irreversible step of the Schlögl reaction Schlögl (1972)

2 X −−⇀↽−− 3 X X −−⇀↽−− 0. (2.10)
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Reactions of nitrogen oxides are equally important in atmospheric chemistry and
in combustion. An early model has been constructed by Ogg (1947):

Example 2.11

N2O5 −−⇀↽−− NO2+NO3 −−→ NO2+NO+O2 NO3+NO −−→ 2 NO2 (2.11)

where

M = 5, R= 4,X(1) = N2O5,X(2) = NO2,X(3) = NO3,X(4) = NO,X(5) = O2,

and

α =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 1 0
0 1 1 1
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, β =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0
1 0 1 2
1 0 0 0
0 0 1 0
0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 0
1 −1 0 2
1 −1 −1 −1
0 0 1 −1
0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, S = 3.

Next, we give a model to describe spontaneous formation of chirality; see Frank
(1953), Lente (2004), and Barabás et al. (2010).

Molecules containing a carbon atom with four different atoms or radicals attaching to it
(an asymmetric carbon atom) have the property that they rotate the plane of polarized light:
these are chiral objects, the two forms are enantiomers or optical isomers. It turns out that
almost all the amino acids in nature are left rotating, while sugars are right rotating. It is an
unsolved and very important problem of the origin of life where has this asymmetry called
chirality come from.

The starting point of all the models is the classical model of Frank:

Example 2.12

A −−→ R A −−→ S A+ R −−→ 2 R A+ S −−→ 2 S, (2.12)

where A is an asymmetric precursor, and R and S are two enantiomers of the same
composition, and M = 3, R = 4,X(1) = A,X(2) = R,X(3) = S, and

α =
⎡

⎣
1 1 1 1
0 0 1 0
0 0 0 1

⎤

⎦ , β =
⎡

⎣
0 0 0 0
1 0 2 0
0 1 0 2

⎤

⎦ .

Finally, we give an example where there is a negative stoichiometric coefficient
and also one which is not an integer. Later—in Chap. 6—we shall speak about the
problems which may or may not arise from such coefficients.
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Example 2.13 A recent version of the Oregonator to describe the Belousov–
Zhabotinsky (BZ) reaction has been provided by Turányi et al. (1993):

X+ Y −−→ 2 P Y+ A −−→ X+ P 2 X −−→ P+ A (2.13)

X+ A −−→ 2 X+ 2 Z X+ Z −−→ 0.5 X+ A Z+M −−→ Y− Z, (2.14)

where

X−−HBrO2, Y−−Br−, Z−−Ce4+,

A−−BrO3
−, P−−HOBr, M−−CH2(COOH)2 (malonic acid).

According to our definition (see page 6), the last one is not a reaction step. See,
however, Problem 2.1.

The Belousov–Zhabotinsky reaction is a chemical oscillator: a reaction with periodically
oscillating concentration of the species. It is also used as a chemical model of nonequi-
librium biological phenomena. The mathematical models of the Belousov–Zhabotinsky
reaction are of theoretical interest, as well. The short history of the reaction follows.
In the 1950s B. Belousov noted that in a mixture of potassium bromate, cerium(IV) sulfate,
malonic acid, and citric acid in dilute sulfuric acid, the ratio of concentration of the
cerium(IV) and cerium(III) ions oscillated, causing the color of the solution to periodically
change between a yellow solution and a colorless solution. This is due to the fact that the
cerium(IV) ions are reduced by malonic acid to cerium(III) ions, which are then oxidized
back to cerium(IV) ions by bromate(V) ions.
Belousov made two attempts to publish his finding but was rejected on the grounds that
he could not satisfactorily explain his results. His work was finally published in a less
respectable, not peer-reviewed journal.
In 1961 A. Zhabotinsky as a graduate student started to investigate the reaction in detail;
however, the results were still not widely known in the West until a conference in Prague in
1968.
Later, researchers realized that the Bray–Liebhafsky reaction discovered in 1921 (Bray
1921) and neglected in the decades to follow was the first oscillatory reaction to be known.
The Oregonator is the simplest realistic model of the chemical dynamics of the oscillatory
Belousov–Zhabotinsky reaction. It was devised by Field and Noyes working at the
University of Oregon (this is where the name “Oregonator” comes from) and is composed
of five reaction steps. This reaction is obtained by reduction of the complex chemical
mechanism of the Belousov–Zhabotinsky reaction suggested by Field, Kőrös, and Noyes
and referred to as the FKN mechanism. See also Turányi et al. (1993).

2.3 An Extremely Rapid Introduction toMathematica

Although we think that the reader has some experience with Mathematica and
we try to teach her or him on this basis, nevertheless here we are giving a very
short introduction to Mathematica itself. If needed, this can be completed with
the introductory videos offered by the program when Mathematica is loaded in,
and also with free Internet seminars, or even freely downloadable books, such as
Szili and Tóth (1999), etc., or favorites of the present authors, such as Gray (1994,
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1996, 1998) and Mangano (2010). For a deeper study, one can also turn to the thick
volumes (Trott 2006, 2007, 2013) or can use the recent introductions by the creator
of Mathematica himself, Wolfram (2015):

Although the idea of symbolic calculations (especially in the field of logics) goes back to
Leibniz, the first working programs only appeared in the sixties of the twentieth century.
Nowadays (although a few early systems are surviving) the best known general purpose
systems (able also to do numerical calculations) are Maple and Mathematica. Beyond the
structural advantages of Mathematica let us mention that it comes freely when buying the
Raspberry Pi computer. Other freely available systems which are worth mentioning are Sage
http://www.sagemath.org/ and the less known Spider:
http://peterwittek.com/spyder-closer-to-a-mathematica-alternative.html.

Mathematica essentially is a functional language that means that it does nothing
just evaluates expressions or calculates values of (multiple) function compositions.
However, a function might serve really complicated purposes, such as

JordanDecomposition, NMinimize, NonlinearModelFit

or InverseLaplaceTransform do. All the built-in functions start with capital
letters, like

Sin, ParametricNDSolve, Plot, FindClusters, Manipulate}.

We followed the same practice when defining our functions like

Concentrations, WeaklyReversibleQ, SimulationPlot.

As the above examples suggest, function names in Mathematica are usually full
English names without abbreviation (certainly with reasonable exceptions as, e.g.,
ArcTan, etc.). The arguments of the functions are put into [ ] brackets, like

Eigenvalues[{{a, b}, {c, d}}].

Parentheses like ( ) are only used to break the precedence rule or for grouping
terms.

A fundamental data type in Mathematica is the list; this is how, e.g., vectors and
matrices are represented: {a,b,a} denotes here the vector [a b a ], whereas

{{a, b}, {c, d}}

is the matrix—given as a list of lists (rows)—

[
a b

c d

]
. Note that in spite of the curly

brackets, lists in Mathematica are closer to vectors than to sets.
To write more complicated mathematical expressions, one might find the palettes

(see the top menu) really helpful.
Recently, the wording is that Mathematica is only one of the implementations of

Wolfram Language. For our purposes it is enough to know that it looks like and
works in the same way under any operation system. To evaluate an expression, one
has to press Shift+Enter or the Enter key of the numeric pad.

Actually, it is not, in the sense of the purist, a genuine functional language, rather
it is quite an opportunistic language: one can write programs in Mathematica in

http://www.sagemath.org/
http://peterwittek.com/spyder-closer-to-a-mathematica-alternative.html
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many styles or programming paradigms, as in the procedural style; term-rewriting
(rule-based) or logic programming also exist here, and one can also use the object-
oriented technique, and it is also possible to do parallel programming; therefore it
is a multiparadigm language.

2.3.1 How to Get Help?

How to get help in case of need? There are many possibilities. One can visit the
extremely rich Help item (including the Virtual Book and the Function Navigator) of
the menu at the top of your screen. Having selected a function name and pressing the
key F1 leads to the detailed help files containing examples, options, applications,
neat examples, etc. Another possibility is to type in either ?SocialMediaData
or ??SocialMediaData to learn how SocialMediaData works. Similarly,
?Parallel* or ?*ocat* may also provide interesting answers. Finally, if one is
interested in plotting functions, then ?*Plot* gives you a list of all the functions
with names containing the word Plot as a substring.

2.3.2 Where to Get aMathematica Function?

1. Thousands of functions are built into Mathematica; these are available immedi-
ately after the program has been loaded in.

2. Less often used functions, such as VariationalMethods or ANOVA can be
found in separate packages delivered together with the program. If one needs a
function of such a package, then she/he should load in the package, using either
the Get command, Get["SymbolicC‘"], or its short form «SymbolicC‘.
Another possibility is that the program makes available the function of a package
(without actually loading them into the memory). The function Needs has this
effect: Needs["ResonanceAbsorptionLines‘"].

3. Most of the topics (including packages) are covered by tutorials, as, e.g.,
http://reference.wolfram.com/language/CUDALink/tutorial/Overview.html.

4. A third source of functions is the packages made by users of Mathematica.
Some of these packages (as, e.g., SystemModeler) are sold either by Wolfram
Research Inc. or by another party (e.g., Optica), some can be found on the
Internet (e.g., ReplaceVariables), and some are accompanying papers or
books. Our package ReactionKinetics belongs to this last category.

2.4 First Stepswith the Package

The first thing is to download the package ReactionKinetics from the website
of the Publishing House. Then, let us start using it. As it is a separate package, you
need to read it in. Before doing so it is safe to restart Mathematica using Quit[].

http://reference.wolfram.com/language/CUDALink/tutorial/Overview.html
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It is quite common that you would like to have your input (data) and your results
in output files, and perhaps you would also put the ReactionKinetics.m file
in your working directory. Then, it may be useful to add your working directory to
the $Path by SetDirectory[NotebookDirectory[]]. Now we can read
in the package: Needs["ReactionKinetics‘"]. The result of this command
is threefold:

1. One can start using the functions of the package.
2. One receives two palettes making the use of it simpler.
3. One receives a message containing some administrative data.

At this point—using the ReactionKineticsPalette—we can define, e.g.,
the Robertson reaction as follows

robertson = {A -> B, 2 B -> B + C -> A + C}.

Then, ReactionsData[robertson]["species", M] gives the list and
the number (or cardinality) of species. Another possibility is to utilize the fact that
the Robertson reaction—being popular—is a built-in model; thus robertson2 =
GetReaction["Robertson"] may be our first step.

Let us see a more complex example. Suppose we are interested in some details
of the Lotka–Volterra reaction. The genuine reaction steps are obtained in the fol-
lowing way. lotkavolterra=GetReaction["Lotka-Volterra"] gives
you

A+ X −−→ 2 X X+ Y −−→ 2 Y B ←−− Y.

If you would like to know some characteristic data of the reaction taking into
consideration that A and B are external species, then you might ask this:

ReactionsData[{Lotka-Volterra}, {A, B}][α, β, γ, M, R].

Finally, in case you are interested in the capabilities of the program, you may get
a quick overview asking for Information["ReactionKinetics‘*"]. The
result will be a nicely formatted table of all the function names of the program acting
as links to their description. At the end of the book (in Sect. 12.10), we give a more
detailed description of the package.

In the final section of some of the chapters, we propose problems whose solutions
help the reader understand functions defined in our package and also to extend them.

2.5 Exercises and Problems

2.1 Construct a reaction with the same induced kinetic differential equation as the
model in Example 2.13.

(Solution: page 382.)
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2.2 Find Mathematica programs or packages on the Internet to investigate reaction
kinetics.

(Solution: page 382.)

2.3 Go to demonstrations.wolfram.com and have a look at demonstrations on
chemical kinetics.

(Solution: page 382.)
In all the problems below, suppose a reaction is given in the form of a list of

irreversible steps, and try to find and algorithm and a Mathematica code to solve the
problems.

2.4 How would you calculate the set of species and their number in the case of the
Robertson reaction?

(Solution: page 383.)

2.5 How would you calculate the set of reaction steps and their number in the case
of the reversible Lotka–Volterra reaction (i.e., in the reaction where all the steps are
supposed to be reversible)?

(Solution: page 383.)

2.6 Try to sketch a Mathematica algorithm for the calculation of the matrices α and
β in the case of the simple irreversible bimolecular reaction A + B −−→ C.

(Solution: page 383.)

2.7 Use the package to calculate the matrices α and β and the value of S in the case
of the ping-pong reaction (see Keleti 1986; Azizyan et al. 2013)

E+ S1 −−⇀↽−− ES1 −−⇀↽−− E∗S1 −−→ E∗ + P1

E∗ + S2 −−⇀↽−− E∗S2 −−⇀↽−− ES2 −−→ E+ P2.

An example of the ping-pong reaction is the action of chymotrypsin; if one uses the
following definitions, let S1 be p-nitrophenyl acetate and the first product P1 be p-
nitrophenolate. The second product P2 is the acetate ion. The action of chymotrypsin is
said to be a ping-pong reaction because the binding of the two substrates causes the enzyme
to switch back and forth between two states.

(Solution: page 384.)

http://www.demonstrations.wolfram.com
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3Graphs of Reactions

Since the pioneering work of Pólya (1937), it is obvious that graph theory is a very
useful tool for the chemist as well. Recently, the description of molecules with graphs and
calculation of their characteristics (they are called topological indices in this literature) to
predict activities or—more generally—their properties is the topic of a very large number
of papers, e.g., in the Journal of Mathematical Chemistry or in match (Communications
in Mathematical and in Computer Chemistry). It is astonishing that a review with a title
promising much more, (Ivanciuc and Balaban 1998) only knows this approach. We are
here interested just in the complementary set of graphs: those used in kinetics. It may be
worth mentioning that one of the first persons to systematically study the relationships
between different graphs and kinetics was Othmer (1981). Finally, we mention the work
by Kiss et al. (2017) which, in a certain sense, contains models which are more general than
ours: the authors deal with models where the particles (human beings or molecules) are
treated individually, and the interactions are described by models similar to the ones used
in reaction kinetics.

As to the terminology and fundamentals of graph theory, we propose a few
classics, Busacker and Saaty (1965), Harary (1969), Lovász (2007), and Øre (1962),
but the definitions and statements needed here have been collected in Sect. 13.5 of
the Appendix.

3.1 The Feinberg–Horn–Jackson Graph

Consider the reaction (2.1), and represent it by a directed graph constructed in the
following way.

Definition 3.1 Let the set of vertices (consisting of N elements) of the graph be
the complexes C , and let us draw an arrow from the complex y ∈ C to y′ ∈ C , if
y −→ y′ occurs among the reaction steps. The directed graph composed in this
way is the Feinberg–Horn–Jackson graph of the reaction. Weakly connected
components of the Feinberg–Horn–Jackson graph are also called linkage classes

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Tóth et al., Reaction Kinetics: Exercises, Programs and Theorems,
https://doi.org/10.1007/978-1-4939-8643-9_3
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here; their number will be denoted by L. Linkage classes are sometimes called
coarse linkage classes cf. Definition 3.18.

Remark 3.2 The Feinberg–Horn–Jackson graph being a directed graph can also be
considered as the graph of the relation “reacts to” within the set of complexes. This
relation is never reflexive, and in general it is neither symmetric nor transitive.

If the investigated reaction is given in the form of a list of reaction steps, say, it
is the model of the Belousov–Zhabotinsky reaction proposed by Györgyi and Field
(1991) (different from the one cited previously in Example 2.13):

H+ X+ Y −−→ 2 V A+ 2 H+ Y −−→ V+ X 2 X −−→ V
A+ H+ 1

2 X −−→ X+ Z X+ Z −−→ 1
2 X M+ Z −−→ Q

V+ Z −−→ Y V −−→ Y X −−→ 0
Y −−→ 0 Z −−→ 0 V −−→ 0

(3.1)
then the edges of its Feinberg–Horn–Jackson graph can be obtained as

ReactionsData[{"Belousov-Zhabotinsky"}]["fhjgraphedges"]

The result might make you disappointed, because it gives no figure. However, if one
needs the figure not the graph object, then it can be obtained in the following way:

ShowFHJGraph[{"Belousov-Zhabotinsky"},

DirectedEdges -> True, VertexLabeling -> True].

The result can be seen in Fig. 3.1.
Note that this reaction (similarly to Example 2.13) also does not fit into the theory

in the strict sense because some of the stoichiometric coefficients are fractions,
although here there are no negative stoichiometric coefficients.

Fig. 3.1 The
Feinberg–Horn–Jackson
graph of a model of the
Belousov–Zhabotinsky
reaction

Z
Y

0

V

2V

2X

V+X

Q M+Z

H+X+Y

X+Z

X

A+2H+Y

A+H+ –X
2

–X
2

V+Z
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An obvious statement follows.

Remark 3.3 The product of the complex matrix Y and the incidence matrix E (see
Definition 13.27) of the Feinberg–Horn–Jackson graph is the stoichiometric matrix
γ : YE = γ .

Let us illustrate the above remark on the example of the Robertson reaction.

Example 3.4 Here the complex matrix is

A B 2 B B+ C A+ C
A 1 0 0 0 1
B 0 1 2 1 0
C 0 0 0 1 1

, (3.2)

and the incidence matrix is

A −−→ B 2 B −−→ B+ C B+ C −−→ A+ C
A −1 0 0
B 1 0 0

2 B 0 −1 0
B+ C 0 1 −1
A+ C 0 0 1

, (3.3)

and finally, the stoichiometric matrix is

A −−→ B 2 B −−→ B+ C B+ C −−→ A+ C
A −1 0 1
B 1 −1 −1
C 0 1 0

, (3.4)

and the verification of the above equality is straightforward (as it is in the general
case).

3.1.1 Reversibility, Weak Reversibility

Definition 3.5 If together with the reaction step y −→ y′ the reaction step y′ −→ y
can also be found in the set of reaction steps, then this reaction step is said to be a
reversible reaction step. If all the reaction steps are reversible, then reaction (2.1)
is said to be a reversible reaction.
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Remark 3.6 Reversibility of a reaction is equivalent to saying that its Feinberg–
Horn–Jackson graph—as a relation—is symmetric. A generalization of reversibility
will also turn out to be important in many statements below.

Definition 3.7 Suppose that in the reaction (2.1) for all pairs of complexes y, y′ if
there is a series of reaction steps y −→ y1 −→ y2 −→ · · · −→ yj −→ y′, then
there is a series of reaction steps in the backward direction as well: y′ −→ z1 −→
z2 −→ · · · −→ zk −→ y. Then, the reaction is said to be weakly reversible.

Remark 3.8

1. Reversibility of a reaction obviously implies weak reversibility, whereas the
example of the irreversible triangle reaction in Fig. 3.2 shows that weak
reversibility does not imply reversibility.

2. Weak reversibility can also be reformulated in this way: all the directed edges of
the Feinberg–Horn–Jackson graph is an edge of at least one directed cycle.

3. Using again the relation theoretical terminology (cf. Appendix, Sect. 13.5), one
may say that a reaction is weakly reversible if its transitive closure is symmetric.
Transitive closure is obtained by starting from the Feinberg–Horn–Jackson graph
so that complexes y and y′ are connected if there is a series of reaction steps
leading from one to the other. If this new relation is symmetric, then there is
another series of reaction steps leading to the second complex from the first
one, as well. We may call the transitive closure of the Feinberg–Horn–Jackson
graph the graph of the “finally reacts to” relation (Fig. 3.3). When speaking
of the finally reacts to relation reflexivity is assumed. With all these we have
an equivalence relation where the equivalence classes are the vertices of the
linkage classes.

Fig. 3.2 The irreversible
triangle reaction is weakly
reversible

C B

A
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Fig. 3.3 The transitive closure of the Feinberg–Horn–Jackson graph of the model Equation (3.1)

3.1.2 (Generalized) Compartmental Systems

Now let us define special classes of reactions which play important roles in biolog-
ical applications (transport in the living body, pharmacokinetics, spatial movement
of populations) (Jacquez 1999; Brochot et al. 2005), and also in photochemistry
(Ohtani 2011).

Definition 3.9 The reaction in which the length of complexes is not more than one
is a compartmental system. It is a closed compartmental system, if it does not
contain the empty complex; it is half-open if it does contain the empty complex but
only as a product complex, i.e., if outflow is allowed, but inflow is excluded.

Remark 3.10 A large part of the literature uses the terms compartmental system and
first-order reaction as synonyms; however, according to our definitions (which seem
to be more distinguishing), neither the reaction X −−→ Y + Z nor the reaction
X −−→ 2 X is a compartmental system, although both of them are first-order
reactions.

Example 3.11 Measurements were made to find out the effect of additional surfac-
tant materials on the absorption of drugs modeled by salicylic acid (Rácz et al.
1977). To describe the process the simplest possible mathematical model, the
compartmental system (or consecutive reaction, if one uses the chemists’ term) was
used:

A −−→ B −−→ C,

where A represents the gastric juice, B is a lipoid barrier, and C is the intestinal
fluid.
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Slight generalizations of the above notions follow.

Definition 3.12 The reaction in which all the complexes contain not more than
one species (the length of support of the complexes is not more than one) is a
generalized compartmental system. It is a closed generalized compartmental
system, if it does not contain the empty complex; it is half-open if it does contain
the empty complex but only as a product complex.

Definition 3.13 The reaction in which all the complexes contain not more than
one species and no species occurs in more than one complex is a generalized
compartmental system in the narrow sense.

Closed, half-open, and open generalized compartmental systems in the narrow sense
can be defined in the same way as above.

Example 3.14 The reaction 3 Y ←−− 2 X −−→ 5 Y −−→ 4 X is a generalized
compartmental system, but not in the narrow sense.

3.1.3 Deficiency

Now we are in the position to define a notion of fundamental importance; see
Theorem 8.47.

Definition 3.15 The deficiency of the reaction (2.1) is defined to be δ := N−L−S,

with N as the number of complexes, L as the number of (weak) components of the
Feinberg–Horn–Jackson graph, and S as the rank of γ as given in Definition 2.2
(Fig. 3.4).

Theorem 3.16 The deficiency is a nonnegative integer for every reaction.

Proof Let us denote the matrix of complex vectors by Y and the incidence matrix
of the Feinberg–Horn–Jackson graph by E, and then the deficiency is the dimension
of dim(Ker(Y) ∩RE); see Feinberg (1972). ��

B+C A+C

AB

2B

Fig. 3.4 The Feinberg–Horn–Jackson graph of the Robertson reaction having deficiency δ = 5−
2− 2 = 1
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Theorem 3.17 If the complex vectors of a reaction (excluding the zero complex)
are independent, then the deficiency of the reaction is zero.

It is an empirical fact that most of the reactions in the classical textbooks on
chemistry have zero deficiency. What is more, within a small class of reactions
(those only consisting of three short complexes) the fact has been proven using
combinatorial methods by Horn (1973b), and it was conjectured to be true for
reactions with more complexes. However, reactions with many species and reaction
steps in biology (more specifically, in ion channel modeling, see Nagy and Tóth
2012) may have deficiencies different from zero, or even they may have very large
deficiencies in areas such as combustion theory (Tóth et al. 2015).

Let us return to Feinberg–Horn–Jackson graphs, and do not forget to visit
Sect. 13.5 of the Appendix in case of need.

Definition 3.18 Strongly connected components of the graph of the “finally reacts
to” relation are also called strong linkage classes of the Feinberg–Horn–Jackson
graph. Of these components the ones from which no reaction steps are leading out
are the terminal strong linkage classes (cf. Definition 3.1); their number will be
denoted by T .

Terminal strong linkage class is just another name for ergodic component (see
Definition 13.30) of the Feinberg–Horn–Jackson graph (Figs. 3.5 and 3.6).

Remark 3.19 Weak reversibility is equivalent to the property that each weak com-
ponent is strongly connected or that each strong linkage class is terminal. Although
for weakly reversible reactions the number T of the ergodic components of the
Feinberg–Horn–Jackson graph is the same as the number L of weak components
(linkage classes), this property is not sufficient to imply weak reversibility as simple
counterexamples can show.

D+E A+BF C G

H

2J

Fig. 3.5 The Feinberg–Horn–Jackson graph of a model from Feinberg and Horn (1977, p. 89)
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Fig. 3.6 Strong linkage
classes of the
Feinberg–Horn–Jackson
graph in Fig. 3.5 of which
lowermost one A + B −−⇀↽−− C
is not a terminal strong
linkage (ergodic) class. Note
also that here T = 2 > 1 = L

D+E

A+B

H

2J

F

C

G

3.2 The Volpert Graph

Another representation with some tradition mainly in the textbooks on biochemistry
has formally been given by Volpert and Hudyaev (1985, Chap. XII), and originally
by Volpert (1972) and recently by De Leenheer et al. (2006), Banaji and Craciun
(2010, 2009), and Donnell and Banaji (2013).

3.2.1 Definition of the Volpert Graph

Definition 3.20 Let the two vertex sets of a weighted directed bipartite graph be
the species index set M and the reaction step index set R, respectively; and let us
connect vertex m ∈M to vertex r ∈ R with an arc of weight α(m, r), if α(m, r) >

0, and connect vertex r to vertex m with an arc of weight β(m, r) if β(m, r) > 0.
The graph obtained in this way is the Volpert graph of the reaction (2.1).

The Volpert graph shows how many molecules of X(m) are needed to the rth
reaction step to take place and how many molecules of X(m) are produced in the rth
reaction step. In some areas of modeling, e.g., in computer science (but sometimes
in reaction kinetics, as well, see Goss and Peccoud 1998; De Leenheer et al. 2006;
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{O2, 0}

{C + O2 → CO2. ∞}
{HCI+ NaHCO3 → NaCI+CO2 + H20. ∞}

{NaCI. ∞}

{HCI. ∞}

{H2O. ∞}

{NaOH+ CO2 → NaHCO3. 0}

{NaHCO3. 1}

{NaOH. 0}

{C O2 . 0}
{C. ∞}

Fig. 3.7 The Volpert graph of a reaction proposed by Petri. All the weights are supposed to be
in unity. This graph does contain a directed cycle, while the Feinberg–Horn–Jackson graph of the
same reaction does not

Volpert 1972), directed bipartite graphs are called Petri nets. The name DSR graph
is also used (Banaji and Craciun 2009). However, in case of this terminology, it is
usual to assign a more active role to one of the sets of vertices than the role of
reaction steps (as a kind of transformation) are.

As the legend goes, Petri nets were invented in August 1939 by the German Carl
Adam Petri—at the age of 13—for the purpose of describing chemical processes,
such as those in Fig. 3.7. However, relationships between the properties of the Petri
net of a reaction and its behavior have first been established by Volpert, including the
obvious remark that given a weighted, directed bipartite graph, one can immediately
write down a reaction having the graph as its Volpert graph.

In the case of larger models, the Volpert graph can be quite large; see, e.g., in
Fig. 3.8 or in the figures of the electronic supplement of Tóth et al. (2015).

Remark 3.21 If a reaction is weakly reversible, or if it contains at least a single
reversible reaction step, then its Volpert graph contains a cycle: acyclicity of the
Volpert graph excludes both weak reversibility and the presence of reversible
reaction steps.
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H+
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Fig. 3.8 A larger Volpert graph of a model proposed by Clarke for the Belousov–Zhabotinsky
reaction, cited by Epstein and Pojman (1998, p. 100)

3.2.2 Indexing

Once we have a Volpert graph, we can assign indices to their vertices which will
be really useful later when deciding the acceptability of decompositions of overall
reactions in Chap. 5, when studying the behavior of the concentrations vs. time
functions around time zero (Theorem 9.1), or infinity (Theorem 8.54).

Definition 3.22 Let M0 ⊂ M be a subset of the species index set, called the
indices of initial species.

1. Elements of this set receive zero index:m ∈M0 implies i(m) = 0. Zero will also
be assigned to those reaction steps r for which all the reactant species are avail-
able: r ∈ R and (∀m ∈M (α(m, r) > 0 −→ i(m) = 0) implies i(r) = 0) .

2. By induction, suppose that the indices up to k ∈ N0 have been allotted.
Then, a species receives the index k + 1, if it has no index yet and if there
is a reaction step of index k producing it: ∃r ∈ R : (β(m, r) > 0 ∨
i(r) = k). A reaction step receives the index k + 1, if it has no index
yet and if all the species needed for it to take place are available: r ∈
R and (∀m ∈M : (α(m, r) > 0 ∧ i(m) ≤ k) implies i(r) := k) .

3. As the total number of vertices is finite, the algorithm ends after a finite number
of steps. Species and reaction steps without index at termination will receive an
index +∞.
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Remark 3.23

1. In the applications of the definition, the set of initial species is the set of those
species which have a strictly positive initial concentration.

2. The value of an index shows a kind of distance of a vertex from the initial
vertices; see Theorem 9.1.

3. If the index of a reaction step is zero, one, or two, then the reaction step may be
called primary, secondary, and tertiary (as they take place at level one, two, or
three).

3.3 Relationships Between the Feinberg–Horn–Jackson Graph
and the Volpert Graph

Different graphs have been defined by the representatives of the two major schools
in reaction kinetics. It is quite natural to look for relationships between these.

3.3.1 General Considerations

What does the assumption of connectivity mean? The fact that the Feinberg–
Horn–Jackson graph is disconnected only means that one has more than one
linkage classes. However, this does not exclude the presence of common species
in complexes belonging to different linkage classes.

If the Volpert graph consists of more than one component, then the species and
reaction steps belonging to a given connected component can be treated separately,
because these do not affect each other in any model. Therefore in most theoretical
investigations, one may assume that the Volpert graph is connected. In applications,
however, connectedness should be checked.

How is the fact that the Volpert graph is disconnected reflected in the form of the
Feinberg–Horn–Jackson graph?

Theorem 3.24 Suppose that the zero complex is not present among the complexes
of a reaction.

1. If the Volpert graph has L connected components, then the Feinberg–Horn–
Jackson graph has at least L linkage classes.

2. If the Feinberg–Horn–Jackson graph has L linkage classes and there are no
common species in the linkage classes, then the Volpert graph has exactly L

connected components.

Proof

1. Take two connected components of the Volpert graph. As they have neither
species nor reaction steps in common, the reaction steps cannot have common
complexes.
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2. Consider two linkage classes L1, L2 of the Feinberg–Horn–Jackson graph. As
each of them is connected from what we have just proved, it follows that they
correspond to the connected components V1, V2 of the Volpert graph. By the
assumption that there are no common species in L1, L2, the species vertex sets
of V1, V2 are disjoint. Hence V1 and V2 are not connected by any edge.

��

Example 3.25 Consider the reaction A −−→ 0 −−→ B. Then, L = 1 but the Volpert
graph consists of two components, showing the relevance of exclusion of the empty
complex in the above theorem.

Remark 3.26 The Feinberg–Horn–Jackson graph and the Volpert graph of a closed
generalized compartmental system in the narrow sense is essentially the same; see
Volpert and Hudyaev (1985, p. 609).

Indeed, take the Volpert graph of a compartmental system, and suppose it has the
following subgraph: X(m) −→ r −→ X(p). Then, this subgraph corresponds to the
following edge in the Feinberg–Horn–Jackson graph: X(m) −→ X(p). On the other
hand, if the reaction step r in the reaction is X(m) −→ X(p), then its Volpert graph
should contain the subgraph m −→ r −→ p. Cases where the empty complex is
also involved can be treated similarly. Almost exactly the same proof will do for
generalized compartmental systems.

3.3.2 The Species–Complex–Linkage Class Graph

This graph has been introduced by Schlosser and Feinberg (1994) and used
to investigate relationships between Feinberg–Horn–Jackson graphs and Volpert
graphs by Siegel and Chen (1995).

Definition 3.27 The species–complex–linkage class graph or S–C–L graph of
the mechanism (2.1) is a (undirected) bipartite graph with the following two vertex
sets: the species set and the set of linkage classes (weak components of the
Feinberg–Horn–Jackson graph). If a complex occurs among the complexes in the
linkage class Ll and contains the species X(m) with a nonzero coefficient, then an
edge is drawn which connects the points l and m. Furthermore the edge is labeled
with the complex (Fig. 3.9).

Here we only cite structural results by Siegel and Chen (1995)—of which the
second one is an explicit statement about the connection of the Feinberg–Horn–
Jackson graph and the Volpert graph—later, in Chap. 8 we shall mention results
bearing direct relevance on the transient behavior of the concentration time curves.

The proofs of the following theorems can be found in Siegel and Chen (1995,
pp. 487–489).
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Fig. 3.9 The S–C–L graph of the Robertson reaction

Theorem 3.28 If the S–C–L graph of a mechanism is acyclic, then the deficiency
of the mechanism is zero.

Theorem 3.29 If both the S–C–L graph and the Feinberg–Horn–Jackson graph of
a mechanism is acyclic, then its Volpert graph is acyclic, as well.

3.4 The Species Reaction Graph

Crăciun (2002) introduced and several authors (including Crăciun and Feinberg
2006, but see also Definition 3.20) used the concept species reaction graph. This
is exactly the same as the Volpert graph of the reaction. However, Volpert (1972)
in Theorem 8.54 only stated that acyclicity of this graph excludes periodicity
and multistability; the mentioned authors made a more detailed analysis of the
case when the Volpert graph does have cycles, and they made conclusions on
multistationarity and persistence from the types of cycles present in the Volpert
graph; see Theorem 8.63. One may say that this way they were able to rigorously
investigate the conjectures stated many years earlier by Thomas and King on the role
of types of cycles upon exotic behavior in another graph: the influence diagram; see
Chap. 8.
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3.5 The Complex Graph

As a tool in the investigation of “small” reactions (those with three short complexes),
another graph was introduced by Horn (1973a, p. 314).

Definition 3.30 Suppose the reaction (2.1) only consists of short complexes. Let
the vertices of the complex graph be the elements of the extended species index
set M0 := M ∪ {0}, and let us connect the vertices m,p ∈ M0 with an edge
in case X(m)+X(p) occurs among the complexes. (Here by definition X(0) is the
empty complex, X(m)+X(0) :=X(m) for all m ∈M0.) The vertices corresponding
to m ∈M are called species vertices, while the vertex corresponding to 0 is said to
be the root of the complex graph.

Definition 3.31 Consider two cycles and a path in the complex graph such that in
each cycle precisely one vertex is identical with one of the end vertices of the path
and that no other vertices are shared with between any two of the aforementioned
objects. The two cycles and the path are then said to form a dumbbell. The dumbbell
is odd, if both of its cycles are odd.

Example 3.32 Let us construct the complex graph of the model by Edelstein (1970)

X −−⇀↽−− 2 X X+ Y −−⇀↽−− Z −−⇀↽−− Y.

All the complexes are short, and they—X, 2 X, X + Y, Z, Y—can be represented
one after another as shown in Fig. 3.10.

Having the complex graphs of the complexes, one is able to put together the
complex graph of the whole reaction; see in Fig. 3.11.

Application of the complex graph will be shown in Theorem 8.51 in Chap. 8.
The graphs defined in the present chapter are useful to study the statics and

dynamics of the usual deterministic model. Other graphs also useful in this respect
can and will only be defined after having at hand the concept of the kinetic
differential equation in Chap. 8. Furthermore, other graphs will be defined and used
in Chap. 10 on the usual stochastic model of reactions.



3.5 The Complex Graph 33

X

Y

0

0

0 X

Y

Z

X

Fig. 3.10 Complex graphs of the individual complexes of the Edelstein model
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Fig. 3.11 Complex graph of the Edelstein model
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3.6 Exercises and Problems

Among the exercises and problems as usual, we propose a few problems whose
solution help the reader understand a few functions defined in the package.

In all the problems below, suppose a reaction is given in the form of a list of
irreversible steps.

3.1 Is this property equivalent to weak reversibility: all the vertices of the Feinberg–
Horn–Jackson graph are part of at least one directed cycle?

(Solution: page 384.)

3.2 Suppose you are given fhj, the Feinberg–Horn–Jackson graph of the reaction.
How do you check (by hand and by programs) if it is weakly reversible or not?

(Solution: page 384.)

3.3 How does one produce the tables in Example 3.4 using the program?

(Solution: page 384.)

3.4 Calculate the deficiency of the

1. Michaelis–Menten reaction,
2. Lotka–Volterra reaction,
3. Robertson reaction.

(Solution: page 385.)

3.5 Find cycles in the S–C–L graph of the (irreversible) Lotka–Volterra reaction,
thereby confirming that its deficiency cannot be zero.

(Solution: page 385.)

3.6 Prove that the deficiency of a reaction is zero if

1. the number of reaction steps R is 1;
2. the reaction is a compartmental system;
3. the reaction is a generalized compartmental system in the narrow sense.

(Solution: page 385.)
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3.7

1. Give one species reaction with positive deficiency
2. Give a first-order reaction with positive deficiency.
3. Give another example showing that a first-order reaction which is not a compart-

mental system may also have zero deficiency.

(Solution: page 386.)
Again, suppose that below a reaction is given in the form of a list of irreversible

steps, and try to find an algorithm and a Mathematica code to solve the problems.

3.8 Try to sketch a Mathematica algorithm for the calculation of

1. the set of complexes and their number;
2. the Feinberg–Horn–Jackson graph and
3. the Volpert graph;
4. the number of connected components L of the Feinberg–Horn–Jackson graph;
5. the deficiency.

The best idea might be to write the code for the small special cases we have had up
to now, the simple bimolecular reaction, the Robertson reaction, the Lotka–Volterra
reaction, etc.

(Solution: page 387.)

3.9 Find a simple version of the glyoxalate cycle on the web and draw its Volpert
graph.

(Solution: page 387.)

3.10 Consider the (oversimplified) model for the chlorination of methane:

Cl2 −−→ 2 Cl∗ CH4+Cl∗ −−→ ∗CH3+HCl ∗CH3+Cl2 −−→ CH3Cl+Cl∗

and let the set of initial species be M0 := {Cl2,CH4}. Calculate the Volpert indices
of all the species and reaction steps.

(Solution: page 388.)

3.11 Consider the same model as above, and now let the set of initial species be
M0 := {Cl∗,CH4}. Calculate the Volpert indices of all the species and reaction
steps.

(Solution: page 388.)
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3.12 Find a cycle in the S–C–L graph of the Petri reaction of Fig. 3.7.

(Solution: page 388.)

3.13 Find an example where the number of linkage classes is larger than the number
of the components of its S–C–L graph.

(Solution: page 388.)

3.14 Find an example where the Volpert graph is acyclic and the S–C–L graph is
not.

(Solution: page 388.)
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4Mass Conservation

This chapter studies the conservation relations admitted by a reaction, such as the
well-known mass-balance equation. After giving a number of characterizations of
mass conserving, producing, and consuming reactions, we show how to turn these
characterizations into algorithms that identify such reactions and their conservation
relations. These relations play an important role in the analysis of dynamic behavior,
as we shall see in Chap. 8, where we use them to restrict the possible trajectories.
This chapter is primarily based on the survey Deák et al. (1992) and on Schuster and
Höfer (1991).

There are two, seemingly rather different, approaches to formalize the intuitive
notion of mass conservation. On one hand, if we can assign (abstract) positive
“masses” or weights to each species (which may be different from their actual
physical mass) in such a way that the total weight of the reactants is equal to the
total weight of the products in each elementary step, then the total weight of all
constituents is clearly preserved throughout the reaction, regardless of its dynamics.
Similarly, if the weights we assign to the species are such that the weight of the
products exceeds the weight of the reactants in each step, then the reaction produces
mass. This approach is formalized below in Definition 4.2.

The second, somewhat less intuitive, approach to mass conservation considers
the effects of individual steps and makes no direct reference to mass. The idea is
that if at the end of a sequence of steps we have more of each species than we
initially had, the reaction is producing mass. Hence, we shall call a reaction mass
producing if such sequences exist. These two dual approaches are closely connected;
the connection is formally made in Theorems 4.25 and 4.27.

Finally, let us mention that the concepts in this chapter are connected with
stoichiometry. Mass conservation and kinetics may have a slightly different relation
as it can be seen in Sect. 8.5.2.1 of Chap. 8.
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4.1 Preliminaries: Necessary and Sufficient Conditions

Many model reactions do not adhere to the law of conservation of mass. Example 2.7
raises the question how to understand the first or the third step, because the first one
describes creation of mass, whereas the third one—with the empty complex on its
right-hand side—represents destruction of mass. Actually, such reaction steps are
abbreviations, as said above, so the first one is a shorthand for

A+ X −−→ 2 X, (4.1)

where A is an external species, i.e., a species with such a large concentration
which may be considered to be unchanged during the time interval we are interested
in. Such an external species may be water, a substrate present in large quantity,
nutrition, precursor, etc. It will turn out that the genuine reaction step (4.1) and the
original reaction step X −−→ 2 X behave in the same way in all of the models.

Allowing steps of the above type makes it possible to describe in- and outflow
using formal reaction steps.

Example 4.1 The reaction step 0 −−→ X with M = 1, R = 1,α = [0],β = [1]
describes inflow, while the reaction step X −−→ 0 where M = 1, R = 1,α =
[1],β = [0] describes outflow.

Intuitively, a reaction conserves mass if in each step the total mass on the two
sides of the step are equal, i.e., if there exists a componentwise positive vector ρ of
“masses” such that for all reaction steps r ∈ R, we have

∑

m∈M
ρ(m)α(m, r) =

∑

m∈M
ρ(m)β(m, r). (4.2)

The notions of mass producing and mass consuming reactions can be defined
analogously. We can reformulate these definitions more concisely using the stoi-
chiometric matrix γ = β − α.

Definition 4.2 Reaction (2.1) is mass conserving if

∃ ρ ∈ (R+)M satisfying ρ	γ = 0	. (4.3)

Definition 4.3 Reaction (2.1) is mass producing if

∃ ρ ∈ (R+)M satisfying ρ	γ � 0	, (4.4)

and it is strongly mass producing if

∃ ρ ∈ (R+)M satisfying ρ	γ > 0	. (4.5)
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Definition 4.4 Reaction (2.1) is mass consuming if

∃ ρ ∈ (R+)M satisfying ρ	γ � 0	, (4.6)

and it is strongly mass consuming if

∃ ρ ∈ (R+)M satisfying ρ	γ < 0	. (4.7)

Remark 4.5 If we want to be more precise, we shall use the terms stoichiomet-
rically mass conserving, mass producing, etc. for the notions introduced here to
distinguish them from the notion kinetically mass conserving, kinetically mass
producing, etc. (see Definition 8.33). The first concept is used more often; therefore
mass conserving will usually be meant as stoichiometrically mass conserving, and
we shall add the adjective kinetically in case there is a possibility of misunderstand-
ing.

Remark 4.6 “Mass conserving” could have also been differentiated into strong and
weak mass conserving for the cases when the existence of a positive, respectively,
nonnegative vector is assumed.

The strong notions clearly imply the corresponding unqualified properties, but not
the way around (Problem 4.1).

With a slight abuse of terms, we will identify the conservation relation with the
vector representing the relation; i.e., the vector ρ satisfying (4.3) will also be called
a conservation relation.

We also remark that, since conservation relations represent linear combinations
of concentrations that will turn out to remain constant (see Eq. (8.21)), they are also
linear first integrals (as opposed to nonlinear or quadratic first integrals) of the
kinetic differential equations; see Chap. 8.

It is not trivial to decide if a reaction is mass conserving or not. In fact, early
attempts to give simple linear algebraic characterizations of stoichiometric matrices
of mass conserving reactions failed. For instance, Ridler et al. (1977) proposed a
very simple method to recognize mass conserving reactions, but what they give is
in fact only a necessary (but not sufficient) condition, see Problem 4.4.

Using the definitions, characterizing mass conserving, producing, or consuming
reactions reduces to checking whether a system of linear equations and inequalities
has a solution. It is the presence of inequalities that make linear algebraic character-
ization difficult. The following simple observation helps in rewriting Definition 4.2
in a form that can be directly handled algorithmically.

Theorem 4.7 A reaction is mass conserving if and only if

max
λ∈R,ρ∈RM

{λ | ρ	γ = 0	,ρ ≥ λ1,ρ	1 = 1} > 0. (4.8)

Finding the maximum on the left-hand side of (4.8) is an example of a linear
programming or linear optimization problem (see Sect. 13.4 of the Appendix).
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In ReactionKinetics, the function MassConservationRelations
returns a set of conditions which hold among the components of the vector ρ in
the definition of mass conservation:

MassConservationRelations[{"Michaelis-Menten"}]

returns {ρE > 0, ρS > 0, ρC == ρE + ρS, ρP == ρS}. If the result is False,
then the reaction is not mass conserving.

The Lotka–Volterra reaction is mass conserving if one considers the genuine
reactions steps, and it is not mass conserving if the external species are discarded.

MassConservationRelations[{"Lotka-Volterra"}]

returns {ρA > 0, ρX == ρA, ρY == ρA, ρB == ρA}, while

MassConservationRelations[{"Lotka-Volterra"},

ExternalSpecies -> {"A", "B"}]

gives False.
Although GammaLeftNullSpace gives some of the first integrals, in some

cases it may happen to provide a strictly positive first integral, thereby showing that
the reaction is mass conserving. For example,

GammaLeftNullSpace[{"Triangle"},

{a0, b0, c0}, {a, b, c}]

gives {a + b + c == a0 + b0 + c0}. Adding reversed reaction steps does
not change the results, as it is shown by the fact that

GammaLeftNullspace[ToReversible[{"Triangle"}],

{a0, b0, c0}, {a, b, c}]

gives the same result. If one is only interested in the fact whether the reaction is
mass conserving or not, then one can use the function MQ (see Problem 4.3).

Analogs of Theorem 4.7 can be derived to characterize (strongly) mass producing
and consuming reactions as well. We show one example and leave the derivation of
the other three to the reader.

Theorem 4.8 A reaction is mass producing if and only if

max
μ∈(R+0 )M,λ∈R+0 ,ρ∈RM

{
λ | ρ	γ = μ	, 1	μ ≥ λ, ρ ≥ 1λ, 1	ρ = 1

}
> 0.

(4.9)

Example 4.9 Consider the Lotka–Volterra reaction from Example 2.4. As the
answer to MassConservationRelationshas shown, this reaction is not mass
conserving, the linear program (4.8)—in the present case

max

λ∈R,

⎡

⎣ρ1

ρ2

⎤

⎦∈R2

{λ | ρ1 = 0, ρ2−ρ1 = 0,−ρ2 = 0, ρ1 ≥ λ, ρ2 ≥ λ, ρ1+ρ2 = 1} > 0.

(4.10)
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—is infeasible, and the domain of the function (actually, ρ �→ λ(ρ)) is empty.
On the other hand, observe that—no matter what ρ is—the sum of the three

coordinates of ρ	γ is 0:

[
ρ1 ρ2

]
[

1 −1 0
0 1 −1

]
⎡

⎣
1
1
1

⎤

⎦ = ρ1 − ρ1 + ρ2 − ρ2 = 0, (4.11)

hence no ρ can satisfy any of the Eqs. (4.4)–(4.7). Consequently, the reaction
is neither mass producing nor mass consuming. Equation (4.11) is merely the
consequence of the fact that

[
1 −1 0
0 1 −1

]
⎡

⎣
1
1
1

⎤

⎦ =
[

0
0

]
. (4.12)

Example 4.10 The methanol–formic acid esterification

HCOOH+ CH3OH −−→ HCOOCH3 + H2O (4.13)

is clearly mass conserving, since the numbers of hydrogen, oxygen, and carbon
atoms are all preserved. Note, however, that the corresponding ρ vectors in
Definition 4.2 are

ρ	H =
[
2 4 4 2

]
, ρ	O =

[
2 1 2 1

]
, and ρ	C =

[
1 1 2 0

]
,

of which only two satisfy (4.3); ρC is not coordinatewise positive. Nevertheless,
a third conservation relation, independent from the first two, can be obtained by
taking, for example, ρC + ρH or ρC + ρO or by observing that the total number of

atomic constituents remains unchanged, hence ρ = ρC + ρH + ρO =
[
5 6 8 3

]	
is

also a conservation relation.
These are not the only (or even the simplest possible) conservation relations

of (4.13). Allowing, for the moment, zero coordinates, the vectors

ρ	COH =
[
1 0 1 0

]
, ρ	CH3

= [0 1 1 0
]
, and ρ	OH =

[
0 1 0 1

]
, (4.14)

which correspond to the conservation of the formyl, methyl, and hydroxyl groups,
form another collection of three linearly independent conservation relations, from
which we can obtain positive vectors by taking linear combinations of them with
positive coefficients, also the one

[
46 32 60 18

] = 46
[
1 0 1 0

]+ 14
[
0 1 1 0

]+ 18
[
0 1 0 1

]
,
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more familiar to the chemist. (To the mathematician, these are the corresponding
molecular weights.)

We can formalize our observation that the reaction (4.13) is “obviously” mass
conserving, because the atomic constituents are preserved. First, we need to define
what we mean by preservation of atomic constituents in a formal mechanism.

Definition 4.11 We say that the reaction (2.1) obeys the law of atomic balance if

1. its species are given by their atomic constituents A(1), . . . ,A(D) through the
(formal) linear combinations

X(m) = Z(1,m)A(1)+ . . .+ Z(D,m)A(D) ∀m ∈M ,

2. Z has no zero rows or columns, meaning that

• all of the atoms participate in at least one species, and
• all the species contain at least one atom, and

3. the matrix Z satisfies Zγ = 0 (∈ (N0)
D×R).

The matrix Z ∈ (N0)
D×M above is called the atomic matrix of the reaction.

Example 4.12 In Example 4.10 R = 1, M = 4, and each species consists of D = 3
constituents; if A(1) = H, A(2) = O, and A(3) = C, then the atomic matrix is

Z =
⎡

⎣
2 4 4 2
2 1 2 1
1 1 2 0

⎤

⎦ . We can see that Zγ =
⎡

⎣
0
0
0

⎤

⎦ , meaning that the number of each of

three atomic constituents is preserved in the reaction.

Example 4.13 How to do the same with the program? The nice table

Molecules

Atoms HCOOH CH3OH HCOOCH3 H2O

C 1 1 2 0

H 2 4 4 2

O 2 1 2 1

Charge 0 0 0 0

is obtained as the output to the input

ToAtomMatrix[{"HCOOH", "CH3OH", "HCOOCH3", "H2O"},

FormattedOutput -> True, Frame -> All].

To be sure we also check if the law of atomic balance holds:
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AtomConservingQ[{"HCOOH"+"CH3OH" -> "HCOOCH3"+"H2O"}].

The answer is a reassuring True. Let us note that the inverse of ToAtomMatrix
is FromAtomMatrix; try it.

Theorem 4.14 If a reaction obeys the law of atomic balance, then it is mass
conserving.

Proof The observation that the total number of atomic constituents is preserved
translates to the relation Zγ = 0. With the choice ρ := Z	1, the law of atomic
balance implies that ρ	γ = 1	Zγ = 0 and ρ ≥ 1 > 0, since each species has at
least one atomic constituent. ��

We remark that if the species have other, non-atomic constituents, charge in
particular, the above definition and theorem need to be extended carefully, as
negative charge translates to negative entries in the atomic matrix. On the other hand,
the total number of electrons will be both positive and preserved in the reaction.

Also note that in some complex reactions, in particular in biochemistry, the
precise structure of some of the macromolecules are unknown. This underlines
the importance of atom-free models which do not clearly obey the law of atomic
balance.

Example 4.10 raises a number of further questions: How many essentially
different conservation relations can we find for a mass conserving reaction? What
are the simplest ones? Can we characterize all of them? We will return to these
questions in Sect. 4.3.

We close this section with a few conditions that guarantee based on the structure
of a reaction that it is mass conserving, producing, or consuming. Let us start with
a simple observation.

Theorem 4.15 If a reaction is reversible, then it is neither mass producing nor mass
consuming.

Proof If for some reaction step r and weight vector ρ, we have ρ	γ (·, r) > 0, then
for the converse reaction r ′, we have ρ	γ (·, r ′) < 0 and vice versa. This rules out
both ρ	γ � 0	 and ρ	γ � 0	. ��

As a partial converse, we may consider reactions whose Volpert graph is acyclic:

Theorem 4.16 Consider a reaction with an acyclic Volpert graph. Then

• if none of the reactant complexes is empty, then the reaction is strongly mass
consuming;

• if none of the product complexes is empty, then the reaction is strongly mass
producing.
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We omit the proof, which can be found in Volpert and Hudyaev (1985, pp. 624–
626). On the other hand, the property of being mass conserving is preserved under
the reversion of reaction steps.

Example 4.17

• The reaction X + Y −−→ U Y + Z −−→ V taken from Volpert and Hudyaev
(1985, p. 627), has an acyclic Volpert graph, the empty complex is not present
among the reactant complexes, and it is therefore strongly mass consuming. One

can choose ρ = [
1 1 1 1 1

]	
to show the fulfilment of (4.7). Note that the

reaction is also (strongly) mass conserving; choose ρ = [
1 1 1 2 2

]	
to show

the fulfilment of (4.3). What is more, it is also strongly mass producing: choose

ρ = [1 1 1 3 3
]	
.

• The modified reaction 0 −−→ U X + Y −−→ U Y + Z −−→ V also has an
acyclic Volpert graph:

AcyclicVolpertGraphQ[{X + Y -> U, Y + Z -> V}]

and it is neither strongly mass consuming nor strongly mass conserving. It
is however weakly mass conserving; choose the nonnegative vector ρ =[
0 0 1 0 1

]
to show the fulfilment of (4.3).

• The modified reaction U −−→ 0 X + Y −−→ U Y + Z −−→ V also has
an acyclic Volpert graph, and it is neither strongly mass producing nor strongly
mass conserving.

• The examples suggest that the requirement of acyclicity is quite stringent.

Theorem 4.18 A reaction 〈M,R,α,β〉 is mass conserving if and only if the
reaction 〈M,R′,α,β〉 obtained by making every reaction step reversible is mass
conserving.

The following two theorems are from Deák et al. (1992).

Theorem 4.19 A generalized compartmental system in the narrow sense is mass
conserving if and only if it is closed.

Theorem 4.20 Consider a first-order reaction (2.1) with M = R ≥ 2 and α = IM .
This reaction is mass conserving if and only if, after an appropriate permutation of
the species, the matrix β has the structure

β =
[
P A
0 B

]
,

where β is a matrix with no zero columns, P is a J × J permutation matrix with
some 2 ≤ J ≤ M , and B is an upper triangular matrix with zeros in its diagonal
and the entries of A are arbitrary.
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Remark 4.21 The form of β means that the first J species are only transformed
into each other, and the species with indices J + 1, J + 2, . . . ,M only react to give
species with smaller indices, i.e., we have reaction steps of the following form:

X(m) −→ X(p) (m = 1, 2, . . . , J ; 1 ≤ p ≤ J ) (4.15)

X(q) −→
q−1∑

r=1

β(r, q)X(r) (q = J + 1, J + 2, . . . ,M). (4.16)

4.2 Mass Conservation and the Stoichiometric Subspace

Mass conserving can be described using less intuitive, more mathematical concepts.

4.2.1 The Stoichiometric Subspace and the Reaction Simplex

Using the notion of stoichiometric subspace (Definition 2.2), one can say, by
rephrasing Definition 4.2, that the reaction (2.1) is mass conserving if the orthogonal
complement of the stoichiometric subspace contains a positive vector. We will need
a further definition.

Definition 4.22 For every c0 ∈ (R+0 )M \ {0}, the set (c0 +S ) ∩ (R+0 )M is called
the reaction simplex of c0 or the stoichiometric compatibility class containing the
point c0. Furthermore, (c0 +S ) ∩ (R+)M is the positive reaction simplex.

A fundamental theoretical result by Horn and Jackson (1972) follows.

Theorem 4.23 A positive reaction simplex is bounded if and only if the reaction is
(stoichiometrically) mass conserving.

Proof

• Assume that the reaction simplex is given by c0 ∈ (R+)M. If the system is
mass conserving, then there exists ρ ∈ (R+)M orthogonal to S , meaning that
ρ	(x − c0) = 0 holds for all points x in the reaction simplex. This, however,
implies that

∑
m∈M ρmxm =: K > 0. Therefore (with ρmin := minm∈M ρm )

one has ρmin
∑

m∈M xm ≤ K implying 0 ≤ xm ≤ K
ρmin

, i.e., the reaction simplex
is bounded.

• If the simplex is bounded, then it must not contain a nonzero vector with
nonnegative coordinates. (If, on the contrary, there existed a nonzero vector
0 ≤ x ∈ S , then c0 + λx would also belong to the simplex for arbitrary
large positive λ leading to the contradiction with the fact that the simplex is
bounded.) Thus if S is bounded, then a nonnegative vector in S can only
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Fig. 4.1 Reaction simplexes of the reaction 2 X −−⇀↽−− Y (left) and that of the Ivanova reaction or
of the triangle reaction (right)

be the zero vector. By Theorem 13.22 (Tucker), it is known that there exist
nonnegative vectors in S and S 	, respectively, so that their sum has only
positive coordinates. In our case one of the vectors is necessarily zero; therefore
the other one only has positive coordinates, and it also belongs to S 	, as it is
required in the definition of mass conservation.

• Assume that there is a bounded reaction simplex. Then there exists a positive
vector in the orthogonal complement of S ; thus the first part of the proof shows
that every reaction simplex is bounded.

��

Thus, it is enough to check whether one of the simplexes is bounded or not
(Fig. 4.1).

Example 4.24 Considering the Lotka–Volterra reaction which is not mass conserv-
ing, one can see that all the reaction simplexes are the same unbounded set, the
whole first quadrant.

To motivate what follows, recall the last part of Example 4.9. We argued that the
reaction cannot be strongly mass producing (or consuming), that is, the vectors ρ

of (4.5) and (4.7) do not exist by showing that there exists a vector z satisfying
another linear system, namely, γ z = 0. This condition was sufficient (although not
necessary!) for the reaction to be neither strongly mass producing nor strongly mass
consuming. We shall generalize this idea and find similar conditions that are both
necessary and sufficient to characterize mass conserving, producing, and consuming
reactions. Claims of this type are known in the theory of convex polyhedra as
theorems of the alternative (connected to such names as Gyula Farkas and Erik
Ivar Fredholm), as they assert that one linear system has a solution precisely when
another one does not.
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There is a greater than simply grammatical distinction between characterizing some-
thing by the existence of a solution, rather than by the non-existence of a solution. If
ReactionKinetics, or anyone, gives us a solution to a linear system of inequalities,
we can plug that solution back into the inequalities to confirm that it is correct. But what if
we are told that there is no solution? How do we verify that this assertion is correct?

We remind the reader that Gyula Farkas (1847–1930) is known for Farkas’ lemma which is
used in linear programming and also for his work on linear inequalities. He had also worked
on the conditions of stability of thermodynamic equilibrium. Our talented young colleague
with the same name, Gyula Farkas (1972–2002), died at the very beginning of his career,
although he has already published almost 30 papers including a few ones on controllability
and observability of reactions, see Farkas (1998a, 1999, 1998b). His main interest was in
bifurcation theory and delay differential equations.

The mass conserving case is the easiest; the remaining cases are discussed in the
next section.

Theorem 4.25 A reaction is not mass conserving if and only if

∃ z ∈ R
R satisfying γ z � 0.

4.2.2 The Stoichiometric Cone

Evaluating the possible overall effect of a sequence of elementary steps, it is natural
to consider not only the stoichiometric subspace but also its subset that is given by
the nonnegative linear combinations of the columns of the stoichiometric matrix.

Definition 4.26 The stoichiometric cone of a reaction is the convex cone gener-
ated by the columns of its stoichiometric matrix, i.e., it is the set

K (γ ) =
{
∑

r∈R
λrγ (·, r)

∣
∣
∣
∣∣
λ1, . . . , λR ≥ 0

}

. (4.17)

The stoichiometric cone of the triangle reaction or that of the Ivanova reaction is
the whole first octant. In Fig. 4.2 two examples are shown.

Clearly, if in a sequence of elementary steps the quantity of each species
increases, the reaction should be considered strongly mass producing. The precise
characterization of strongly mass producing and consuming reactions using the
stoichiometric cone is slightly more convoluted.

Theorem 4.27 (Deák et al. (1992)) A reaction is not mass producing if and only if

∃ y � 0 satisfying y ∈ K (γ ) or ∃z > 0 satisfying γ z = 0.
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Fig. 4.2 The stoichiometric cone of the reaction X −−→ 2 Y X −−→ 3 X + Y and of the triangle
reaction

A reaction is not strongly mass producing if and only if

∃ y � 0 satisfying y ∈ K (γ ) or ∃z � 0 satisfying γ z = 0.

A reaction is not mass consuming if and only if

∃ y � 0 satisfying y ∈ K (γ ) or ∃z > 0 satisfying γ z = 0.

A reaction is not strongly mass consuming if and only if

∃ y � 0 satisfying y ∈ K (γ ) or ∃z � 0 satisfying γ z = 0.

The “or”s in the above characterizations are not exclusive, that is, both the asserted
y and z may exist simultaneously.

4.3 Finding Conservation Relations

In this section we answer the questions of how many such relations may exist and
how to find the simplest ones.

Equation (4.3) immediately gives an upper bound: since each ρ is from the
orthogonal complement of S , the number of linearly independent conservation
relations cannot exceed dim(S ⊥) = M − rank(γ ) by Remark 13.12. It is not hard
to see that this is the exact number for every mass conserving reaction.

Theorem 4.28 For every reaction the number of linearly independent conservation
relations is either 0 or M − rank(γ ).
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Proof Let us use the notation Q := M − rank(γ ). We can find a basis of S ⊥, that
is, vectors r1, . . . , rQ which satisfy r	q γ = 0 (q = 1, 2, . . . ,Q), by row reducing
the stoichiometric matrix. These basis vectors may or may not be coordinatewise
positive. If one of the vectors, say r1, is positive, then we can replace each rq by
ρq := r1+εrq with a small enough ε > 0 to obtain a new basis of S ⊥ that consists
of componentwise positive vectors. ��

The above proof, with some streamlining, can be turned into an algorithm (see
Problem 4.3) that finds M − rank(γ ) independent conservation relations if such a
collection exists. The first such relation (which plays the role of r1 in the proof)
can be found using Theorem 4.7. We can then extend {r1} to a complete basis
{r1, . . . , rQ} of S ⊥ and then construct {ρ1, . . . ,ρQ} following the proof.

As Example 4.10 demonstrates, some relations can be obtained by taking non-
negative linear combinations of simpler ones. To be able to talk meaningfully about
the “simplest” relations, we need to allow nonnegative coordinates in conservation
relations. For the remainder of this chapter, we say that a vector ρ is a nonnegative
mass conservation relation for a reaction if ρ � 0 and ρ	γ = 0	.

Observe that if ρ1 and ρ2 are two conservation relations, then by definition every
nonzero vector of the form ρ = λ1ρ1 + λ2ρ2 with λ1 ≥ 0 and λ1 ≥ 0 is also
a conservation relation. (Sets of vectors constructed this way are called convex
cones.) If both λi are nonzero, ρ can be decomposed into two “simpler” relations
ρ1 and ρ2. It can be shown that this way the notion of “simplest” conservation
relation is well-defined, moreover, that there always exists a unique finite collection
of simplest conservation relations.

Theorem 4.29 For every mass conserving reaction, there exist finitely many non-
negative conservation relations ρ1, . . . ,ρK such that every nonnegative conserva-
tion relation ρ can be written as ρ = ∑K

i=1 λiρi for some λ1, . . . , λK ≥ 0. The
smallest such collection is unique.

The unique smallest collection ρ1, . . . ,ρK is called the generator of the
conservation relations. It is possible that K > M−rank(γ ), in fact, the difference of
the two sides can be very large. Consequently, finding the generator may be a huge
undertaking for complex reactions with many (dozens or hundreds of) elementary
steps. This is in sharp contrast with the fact that it takes very little time to confirm
that the reaction is mass conserving and to find one conservation relation. Its
detailed discussion is beyond the scope of this book; we only mention that it is
an adaptation of the Fourier–Motzkin elimination algorithm from the theory of
convex polyhedra (Schrijver 1998, pp. 155–156).
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4.4 Exercises and Problems

4.1 Show by example that a mass producing reaction may not be strongly mass
producing and a mass consuming reaction may not be strongly mass consuming.

(Solution: page 388.)

4.2 Is it possible that a reaction is simultaneously strongly mass producing and
strongly mass consuming? (Note: it is not sufficient to argue that the same ρ cannot
satisfy both (4.5) and (4.7).)

(Solution: page 389.)

4.3 Use either the function Maximize or LinearProgramming to implement
a one-line Mathematica function that checks if a stoichiometric matrix corresponds
to a mass conserving reaction. Test it on the reaction

A −−→ 2 M+ N2 A+M −−→ CH4 + B 2 M −−→ C2H6

M+ B −−→ MED M+ A −−→ C M+ C −−→ TMH

(decomposition of azomethane from Smith and Missen 2003) and also on the
reaction A + B −−⇀↽−− C −−→ 2 D −−⇀↽−− B + E. Verify that the number of linearly
independent conservation relations is M − rank(γ ).

(Solution: page 389.)

4.4 This problem explores another simple necessary condition for a reaction to be
mass conserving.

1. Show that pivoting on the transpose of the stoichiometric matrix does not change
whether the reaction corresponding to the matrix is mass conserving or not.

2. Using this observation and the fact that the nonzero columns of the stoichiometric
matrix of a mass conserving reaction must have at least one negative and at least
one positive entry, Ridler et al. (1977) suggested the following procedure to test
if a reaction is mass conserving: find a row echelon form of γ	 by successive
pivoting, and verify before each pivot step if the row in which we are to pivot has
both a positive and a negative entry. If a row violating this condition is found in
the process, the reaction is not mass conserving. Use this test to verify that the
reaction

A −−⇀↽−− B −−⇀↽−− C −−⇀↽−− A+ 2 D

is not mass conserving.
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3. If the procedure terminates without finding a violating row, the test is inconclu-
sive, as the following example from Oliver (1980) shows:

A −−→ B+ D C −−→ A+ D C −−→ D.

Show that this reaction is not mass conserving, but it passes the above test.

(Solution: page 390.)

4.5 If the Volpert graph of a mechanism is acyclic, then the inequality

ρ	γ < 0 ∈ R
R (4.18)

has a positive solution.

(Solution: page 390.)

References

Deák J, Tóth J, Vizvári B (1992) Anyagmegmaradás összetett kémiai mechanizmusokban (Mass
conservation in complex chemical mechanisms). Alk Mat Lapok 16(1–2):73–97

Farkas G (1998a) Local controllability of reactions. J Math Chem 24:1–14
Farkas G (1998b) On local observability of chemical systems. J Math Chem 24:15–22
Farkas G (1999) Kinetic lumping schemes. Chem Eng Sci 54:3909–3915
Horn F, Jackson R (1972) General mass action kinetics. Arch Ratl Mech Anal 47:81–116
Oliver P (1980) Consistency of a set of chemical reactions. Int J Chem Kinet 12(8):509–517
Ridler GM, Ridler PF, Sheppard JG (1977) A systematic method of checking of systems of

chemical equations for mass balance. J Phys Chem 81(25):2435–2437
Schrijver A (1998) Theory of linear and integer programming. Wiley, Chichester
Schuster S, Höfer T (1991) Determining all extreme semi-positive conservation relations in

chemical reaction systems—a test criterion for conservativity. J Chem Soc Faraday Trans
87(16):2561–2566

Smith WR, Missen RW (2003) Mass conservation implications of a reaction mechanism. J Chem
Educ 80(7):833–838

Volpert AI, Hudyaev S (1985) Analyses in classes of discontinuous functions and equations of
mathematical physics. Martinus Nijhoff, Dordrecht. Russian original: 1975



5Decomposition of Reactions

5.1 The Problem: Construction via Deconstruction

Complex reactions occur via pathways of simple reaction steps. It is a fundamental
problem of stoichiometry that the overall (or global) reaction is measured, and
one would like to reconstruct the underlying network of simple (or elementary)
reaction steps. This is a very complex problem with no foolproof recipes for its
solution. Epstein and Pojman (1998) devote a chapter of their book to the “art
of constructing mechanisms”; in Sect. 5.3 they provide a nine-step procedure that
serves as a template for (re)constructing reactions with desired properties:

1. Assemble all relevant experimental data that the mechanism should be able to model.
The wider the range of phenomena and conditions, the more believable the mechanism
that explains them.

2. Identify the primary stoichiometry of the overall reaction and of any major component
processes.

3. Compile a list of chemically plausible species—reactants, products, and intermediates—
that are likely to be involved in the reaction.

4. Obtain all available thermodynamic data pertaining to these species.
5. Break down the overall reaction into component processes, consider the likely elemen-

tary steps in each of these processes, and examine the literature critically for kinetics
data relevant to as many of these processes and steps as can be found.

6. Use known rate constants wherever possible. If none exists, guess a value, or try to
isolate from the main reaction a smaller subset of reactions and determine their rate
laws.

7. Put all the thermodynamically plausible steps and the corresponding kinetics data
together to form a trial mechanism. Use analytic methods, for example, the steady-state
approximation, as well as chemical intuition, to derive a qualitative picture of how the
system works.

8. Use numerical methods, such as numerical integration and bifurcation analysis, to
simulate the experimental results. If serious discrepancies arise, consider the possibility
of missing steps, erroneous data, or false assumptions, and return to the previous steps
to reformulate the mechanism.

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Tóth et al., Reaction Kinetics: Exercises, Programs and Theorems,
https://doi.org/10.1007/978-1-4939-8643-9_5
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9. Continue to refine and improve the mechanism, testing it against all new experimental
results, particularly those carried out under conditions very different from those of the
data used to construct the mechanism. The greatest success of a mechanism is not to
give agreement with data already in hand, but to predict successfully the results of
experiments that have not yet been carried out.

The authors also show examples demonstrating how these principles can be applied
in practice.

Several steps of this process are purely mathematical or can be accelerated by
combinatorial considerations, utilizing the graphs of Chap. 3 and some additional
tools that will be developed in this chapter. A simplified template for the decompo-
sition of a reaction to elementary steps may consist of the following steps:

1. determine the combinatorially possible species and select the chemically accept-
able ones,

2. determine the combinatorially possible reaction steps, and select the chemically
acceptable ones,

3. find those decompositions of the given overall reaction which are combinatorially
feasible, and then select the chemically acceptable ones.

Besides these steps a number of related questions will be raised and answered
below, including methods to find the minimal cycles of a reaction.

The greatest difficulty in coming up with meaningful mechanisms is to incor-
porate in the procedure all domain-specific expertise, all available thermodynamic
data about the participating species, and experimental data about the mechanism
itself. A more reasonable goal is to provide a generous list of (perhaps implausible
or even impossible) solutions, all of which adhere to the basic conservation laws
(e.g. all reaction steps must conserve the atomic constituents and charge) and all
other combinatorial constraints imposed by the problem (e.g. all steps must be of
order at most two); and leave all further processing to the chemist. At this abstract
level, the last two steps of the above template are almost equivalent, as we shall see
immediately.

5.2 Reaction Steps and Decompositions

Suppose that a reaction step called the overall reaction is given, which we wish to
decompose to simpler (in some sense elementary) steps. We are also given a list of
species that are reactants, products, or possible intermediate species (in the chemical
sense) in the reaction. We assume that the atomic constituents of these species are
known or that at least the species are represented by constituents that are conserved
in every reaction step. There is no conceptual difference between the two forms of
this assumption, so we will assume that the species are given by an atomic matrix as
in Definition 4.11. Note that in this spirit charge is also considered to be an “atomic”
constituent.
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5.2.1 Constructing Elementary Reaction Steps

The definition of “elementary” steps varies, for our purposes we fix it the following
way.

Definition 5.1 A reaction step is said to be an elementary reaction step if it is of
order at most two.

Our first goal is to construct all elementary steps that might take place between a
set of species that are given by their atomic matrix. Thermodynamic considerations
are ignored in this search; instead, we are interested in finding all hypothetical steps
that obey the law of atomic (and charge) balance. (Recall Definition 4.11.)

Proposition 5.2 The number of possible reactant complexes of elementary steps is
limited to 2M + (M2

)
.

Proof The total number of all possible nonempty short complexes is the num-
ber of monomolecular complexes X(1),X(2), . . . ,X(M); plus the number of
homobimolecular complexes 2X(1), 2X(2), . . . , 2X(M); plus the number of the
heterobimolecular complexes X(1) + X(2), . . . ,X(M − 1) + X(M). The empty
complex is excluded if mass conservation is to be kept. ��

To generate all elementary steps, it suffices to find all possible product complexes
for each of these reactant complexes. A D-dimensional integer vector, the atomic
vector, describing the atomic structure of the complex is associated with each
reactant complex the same way as the column Z(·,m) of the atomic matrix
(Definition 4.11) corresponds to the mth species. If d is the atomic vector of
a reactant complex, then finding all product complexes amounts to finding all
(nonnegative integer) solutions x ∈ N

M
0 of the system of linear equations

Zx = d. (5.1)

To rule out solutions in which the same species appears on both sides (which may
be called a direct catalyst), we can modify the above equation by deleting those
columns of Z that correspond to the species of the reactant complex.

Equations like (5.1) are sometimes called linear Diophantine equations, where Diophan-
tine refers to the property that only nonnegative integer solutions are sought, after the Greek
mathematician Diophantus of Alexandria who was one of the first mathematicians to study
such equations.

Example 5.3 To determine the set of combinatorially feasible elementary reaction
steps between the six species {H,O2,OH,O,H2,H2O}, we need to solve 6 +
6 + (62

) = 27 systems of small linear Diophantine equations corresponding to
the 27 nonempty reactant complexes. Even this tiny problem has altogether 53
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solutions, although not without seeming redundancy: By our definition the reaction
step 2 O2 −−→ 4 O is an elementary reaction step, and will be among the solutions,
along with O2 −−→ 2 O. Note that these two steps are stoichiometrically equivalent,
although they are different from the point of view of kinetics.

Let us write down the equations and the solutions, e.g., for the reactant complex
OH + H2. If the first component of the atomic vectors corresponds to H and the

second one to O, then d =
[

3
1

]
, and Z =

[
1 0 1 0 2 2
0 2 1 1 0 1

]
; therefore Eq. (5.1) reads

as

x1 + x3 + 2x5 + 2x6 = 3, 2x2 + x3 + x4 + x6 = 1.

The general solution to this system is

x1 = 3− x3 − 2x5 − 2x6, x2 = 1

2
(1− x3 − x4 − x6).

Considering that each xi must be a nonnegative integer, the solutions can be easily
enumerated. We obtain five solutions,

[
1 0 0 0 0 1

]	
,
[
3 0 0 1 0 0

]	
,

[
1 0 0 1 1 0

]	 [
2 0 1 0 0 0

]	
,

[
0 0 1 0 1 0

]	
,

corresponding to the reaction steps

OH+ H2 −−→ H+ H2O OH+ H2 −−→ 3 H+ O OH+ H2 −−→ H+ O+ H2

OH+ H2 −−→ 2 H+ OH OH+ H2 −−→ OH+ H2

of which we may discard the last three on the basis that they are direct catalytic
steps (meaning here that the same species occurs on both sides). The fifth reaction
step also violates the second of Conditions 1 in Chap. 2 according to which at least
one species should change in each reaction step.

Ruling out direct catalytic steps means that we delete the columns of Z
corresponding to the species in the reactant complex; therefore the system modifies
to

x1 + 2x6 = 3, 2x2 + x4 + x6 = 1,

leading to the general solution x1 = 3 − 2x6, x2 = 1
2 (1 − x4 − x6), and to the

nonnegative integer solutions
[
1 0 0 1

]	
and

[
3 0 1 0

]	
, corresponding to the first

and second reaction steps above.
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Before discussing algorithms to systematically and efficiently enumerate the
solutions of these equations, we show that the decomposition of reactions is another
instance of the same general problem.

5.2.2 Decomposition of Overall Reactions to Elementary Steps

Take a nonempty short complex ywith atomic vector d. Then each solution x of (5.1)
determines an elementary reaction with reactant complex y; the corresponding
reaction vector is x − y ∈ Z

M . We can construct a reaction whose steps are the
elementary steps obtained in the previous section, and its stoichiometric matrix
γ has x − y as one of its columns. Suppose that altogether R elementary steps
were found for the given reactant complexes, and they are put as columns into the
matrix γ . A linear combination of these elementary steps, with coefficients z, is
a decomposition of the overall reaction obeying the law of atomic (and charge)
balance if and only if

γ z = b, z ∈ N
R
0 , (5.2)

where b ∈ Z
M is the reaction vector of the overall reaction. Again, we are primarily

interested in nonnegative integer solutions of this equations, although nonnegative
rational solutions also can be interpreted as decompositions. Hence, this is again a
linear Diophantine equation.

Example 5.4 Consider the overall reaction H + O2 + 3 H2 −−→ 3 H+ 2 H2O and
the set of elementary steps

H+ O2 −−→ O+ OH O+ H2 −−→ H+ OH OH+ H2 −−→ H+ H2O

2 H −−→ H2 H+ OH −−⇀↽−− H2O

The Eq. (5.2) takes the form

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

−1 1 1 −2 −1 1
−1 0 0 0 0 0

1 −1 0 0 0 0
1 1 −1 0 −1 1
0 −1 −1 1 0 0
0 0 1 0 1 −1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

z =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

2
−1

0
0
−3

2

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

.

The rows correspond to the species in the following order: H, O2, O, OH, H2,
H2O. Since γ (·, 5) + γ (·, 6) = 0, the equation has infinitely many nonnegative

integer solutions. However, the only minimal solution is z = [
1 1 2 0 0 0

]	
,
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corresponding to the decomposition

H+ O2 + 3 H2 −−→ 3 H+ 2 H2O =
1× H+ O2 −−→ O+ OH
1× O+ H2 −−→ H+ OH
2× OH+ H2 −−→ H+ H2O

.

Clearly, Eqs. (5.1) and (5.2) are of very similar form, yet, they possess very
different qualities. Note the following differences:

• In elementary step generation, multiple relatively small systems need to be
solved, all of which share the coefficient matrix, the atomic matrix, unless we
remove the columns corresponding to the reactant complex to avoid the reactant
species appearing as products. However, in decomposition a single large-scale
system is solved.

• In elementary step generation, all rows but the one corresponding to the electric
charge consist of nonnegative numbers; in decomposition every row and column
may contain entries of different sign.

• In elementary step generation, the number of solutions is always finite; in
decomposition it is often infinite.

Only the last claim is not immediate. To see that there are finitely many
elementary reaction steps, note that there are only finitely many reactant complexes,
and for each reactant complex, there are only finitely many product complexes with
the same atomic constituents. In more mathematical terms, if in Eq. (5.1) the mth
species satisfies

Z(·,m) ≥ 0 and Z(d,m) > 0 (5.3)

for some d ∈ {1, . . . ,D}, then 0 ≤ x(m) ≤ d(r)/Z(d,m), so the mth component
of every solution can be shown to be bounded. By the definition of the atomic matrix
Z, (5.3) holds for every species except possibly for the free electron. Obviously, if all
other components of every solution can be bounded, the number of free electrons can
also be bounded. Thus, the elementary reaction steps correspond to integer vectors
from a bounded set, proving that there are only finitely many of them.

Elaborating on the potentially infinite number of decompositions, if a sequence
of steps forms a cycle in which no species are generated or consumed, then that
sequence can be added to any decomposition an arbitrary number of times, leading
to an infinite number of different decompositions. A straightforward application of
Dickson’s lemma 13.15 yields that the converse is also true. For the purposes of this
section, we can formally define a cycle as a vector NR

0 � v �= 0 satisfying γ v = 0,
and with this notion we have the following lemma.
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Lemma 5.5 The number of decompositions is finite if and only if the elementary
reactions cannot form a cycle. Furthermore, the number of decompositions that do
not contain a cycle is always finite.

The lemma motivates two further problems related to decompositions: first, one
needs to be able to decide whether the elementary reactions can form cycles or not,
which amounts to the solution of a linear programming problem (See Sect. 5.3.1).
Second, if cycles do exist, the goal changes from generating all decompositions
to generating all minimal (i.e., cycle-free) decompositions and all minimal cycles
(i.e., cycles that cannot be expressed as a sum of two cycles), which brings us back
to linear Diophantine equations.

Another simple approach to limit the number of solutions is to impose an upper
bound on the number of elementary steps.

In the next section, we discuss algorithms for the solution of each of these
problems.

5.3 Solving Linear Diophantine Equations

The solution of linear Diophantine equations is very difficult (even finding a single
solution to such an equation is NP-hard), and no generally efficient polynomial
algorithm is known for it.

For some questions an algorithm can be found to provide an answer in time which is a
polynomial function of the size of the problem; these questions form the complexity class P.
For some questions an algorithm can be find to check in polynomial time in the size of the
input if an answer is good or bad; these questions form NP. One of the Millenium Problems
(the prize for the solution of which would be one million US dollars offered by the Clay
Mathematical Institute) is whether NP = P or NP �= P. A problem is NP-hard means that
it is at least as hard as the hardest problems in NP. More precisely, a problem is NP-hard
when every problem in NP can be reduced in polynomial time to it. As a consequence,
finding a polynomial algorithm to solve any NP-hard problem would give polynomial time
algorithms for all the problems in NP.

Rather than trying to advocate an all-purpose method, we present a few different
methods and indicate which one is expected to be the most effective when solving
different problems. (The methods we are to present were found to be sufficiently
fast for problems up to a few dozen species and few hundred elementary steps.)

5.3.1 Homogeneous Equations: FindingMinimal Cycles of a
Mechanism

There is a trivial infinite procedure to find all minimal solutions of a homogeneous
linear Diophantine equation or equivalently to find all minimal cycles of a reaction:
It consists of enumerating all sequences of steps of length one, two, etc., adding
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every possible step in every iteration to those sequences which do not yet contain a
cycle. In other words, if the equation is Ax = 0, we enumerate A(·, 1),A(·, 2), . . . ,
then 2A(·, 1),A(·, 1) + A(·, 2), . . . , and so on, each time adding another column
to each sum enumerated so far. Whenever a sum totalling the zero vector, i.e., a
sequence containing a new cycle is found, the cycle is saved, and the corresponding
search direction is discarded, as it may not contain further minimal cycles. The
main problem with this approach is that it may never terminate. The algorithm
of Contejean and Devie (1994) is a clever modification of this simple procedure
which is not only faster but also terminates after a finite number of iterations.
The geometric idea behind it is illustrated in Fig. 5.1. For algorithmically versatile
people, we show a simple (although not very efficient) Mathematica code:

MyContejeanDevie[A_] :=

Block[{P, Q, n = Length[A], B = {}},

P = IdentityMatrix[n];

While[P =!= {},

B = Union[B, Select[P, ZeroVectorQ[#.A] &]];

Q = Select[Complement[P, B], Function[p, And

@@(!ComponentwiseLessEqualQ[#, p]&/@B)]];

P = DeleteCases[Union@@Table[

If[(q.A).(A[[i]]) < 0,

q + UnitVector[n,i], Null], {q, Q}, {i,n}], Null];

]; B

]

Mathematica has essentially three structures to collect series of commands into a single
function, (called scoping constructs) these are Module, Block and With. The reason
we have used Block here is that it is usually faster than Module, and With has only
restricted capability (with some advantages in other cases.)

We omit the straightforward code of the function ZeroVectorQ (which tests
whether its argument is the zero vector). ComponentwiseLessEqualQ tests
whether its first argument is componentwise less than or equal to its second
argument:

ComponentwiseLessEqualQ[a_, b_]:=And @@ Thread[a <= b],

and UnitVector[n,i], which is the n-dimensional ith unit vector.
MyContejeanDevie[A] returns all minimal solutions of the homogeneous

system Ax = 0, x ∈ N
R
0 . Candidate sequences are kept in the list P; the minimal

solutions are collected in B. The key difference from the infinite procedure outlined
above is the condition (q.A).(A[[i]]) < 0: It means that during the search
we only take steps that turn back toward the origin (see Fig. 5.1). Obviously, if a
sequence can be extended so that it returns to the origin, then this extension must
contain at least one step in this direction, and without loss of generality, such a step
can be the next one. Consequently this method will certainly enumerate all solutions.
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Fig. 5.1 Illustration of the Contejean–Devie algorithm. In each iteration every sequence of steps
is extended by steps that turn back toward the origin

Theorem 5.6 (Contejean and Devie (1994)) The Contejean–Devie algorithm ter-
minates and returns the list of all minimal solutions of Ax = 0, x ∈ N

R
0 .

We omit the proof, as it is rather tedious. The difficult part is to show that the
algorithm terminates.

This algorithm can also be adapted to solve the inhomogeneous system Ax =
b, x ∈ N

R
0 . We simply replace A with A′ = [b A] and solve the system

A′x = 0 with the above algorithm, except that we never increase the first component
of the candidate solutions above 1. Papp and Vizvári (2006) suggested a further
improvement for the case when the length of the solution is bounded: If we are only
interested in solutions whose components sum to at most n, the set of “forbidden
directions” on Fig. 5.1 can be extended.

5.3.2 Enumerating Minimally Dependent Subsets

A problem related to finding minimal cycles is the following: given a matrix A,
find all (inclusionwise) minimal linearly dependent subsets (or simplexes) of its
columns. The most obvious application of this problem is the generation of reaction
steps: the minimal linearly dependent subsets of the columns of the atomic matrix
Z correspond to reaction steps with the smallest sets of species. Many of these steps
are expected to be elementary. Of course, this assumes that steps are reversible and
that they do not include direct catalysts.

In Szalkai (1997) a simple elementary method is proposed for the solution of
this problem. It relies on two observations: first, recognizing linearly dependent
and minimal linearly dependent subsets is easy using linear algebra (Problem 5.2).
Second, as we enumerate (some of) the subsets searching for solutions, linearly
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independent sets of vectors shall be extended by adding another vector, while
dependent ones, if they are not minimally dependent, should be shrunk by the
removal of a vector. Szalkai’s additional observation is that this can be done in a
systematic manner that does not even require that we maintain a set of candidate
solutions. It enumerates a subset of the vectors, taking obvious shortcuts in such
a way that no minimally dependent subset is avoided, yielding a very memory-
efficient algorithm.

Example 5.7 Consider the set of species {H, O2, OH, O, H2, H2O}, with the

corresponding atomic matrix Z =
[

1 0 1 0 2 2
0 2 1 1 0 1

]
. The set of columns of the matrix

Z has 63 nonempty subsets, 14 of which are minimal linearly dependent. To get
some intuition about how the algorithm works, let us follow the first couple of its
steps on this example.

1. We start by taking the set of species {H}, which is singleton, hence independent.
We add the next species, O2.

2. We have now {H, O2}. As its type is still independent, we add the next species,
OH.

3. We have now {H, O2, OH}. We determine its type, and we find that it is a simplex
(minimal linearly dependent); the corresponding reaction step is 2 H+ O2 −−⇀↽−−
2 OH.

Since this was a simplex subset, we proceed by replacing the last species with
the next one, O.

4. We have now {H, O2, O}. It is dependent, but not minimally. A somewhat
counterintuitive step follows: We do not drop a species from the dependent set,
but again we proceed by replacing the last species with the next one, H2. (We do
this until there are no more species left; see the next step.)

5. After a few steps identical to the previous one, the working set {H, O2, H2O}
is reached. We have found our second minimally linearly dependent subset; the
corresponding reaction step is 4 H+ O2 −−⇀↽−− 2 H2O.

6. Recall that H2O is the last species, hence we cannot proceed as before, by
replacing H2O with the next species. Hence, we drop H2O and replace the
previous species, O2, by its successor, OH.

7. We have now {H, OH}. It is independent, we add the next species, O.
8. We have now {H, OH, O}. We found our next minimal linearly dependent subset;

the corresponding reaction step is H + O −−⇀↽−− OH.

Carrying on this way, we find a total of 14 minimal linearly dependent subsets of
the six species. They correspond to the reactions
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OH −−⇀↽−− H + O O2 −−⇀↽−− 2 O H2O −−⇀↽−− O + H2

2 OH −−⇀↽−− H2 + O2 H2 −−⇀↽−− 2 H H2O −−⇀↽−− H + OH

2 OH −−⇀↽−− 2 H + O2 H2O −−⇀↽−− 2 H + O

2 OH −−⇀↽−− O + H2O 2 H2O −−⇀↽−− 4 H + O2

2 OH −−⇀↽−− 2 O + H2 2 H2O −−⇀↽−− 2 H2 + O2

4 OH −−⇀↽−− 2 H2O + O2 2 H2O −−⇀↽−− 2 OH + H2

5.3.3 Solving Linear Diophantine Equations Using Linear
Programming

We return to the problem of enumerating all solutions of a (nonhomogeneous) linear
Diophantine equation

Ax = b, x ≥ 0, x ∈ Z
R.

We assume that the number of solutions is finite, which is the case when we are
generating elementary steps from a given set of species or when we are enumerating
all decompositions of an overall reaction that consists of a bounded number of steps.

The algorithm presented here was proposed by Papp and Vizvári (2006). It first
determines the general solution of Ax = b, over the reals, in a parametric form.
Then taking into account the nonnegativity constraints and the integrality condition,
it enumerates the solutions. The method relies upon the following simple lemma.

Lemma 5.8 Let r = rank(A). Then the vector space of the solutions of the
homogeneous system Ax = 0 has a basis {b1,b2, . . . ,br } such that the matrix[
b1 b2 . . . br

]
has an r × r diagonal submatrix containing positive integers in the

diagonal.

If one particular solution of the inhomogeneous equation Ax = b is

p = [p1 p2 . . . pR

]	
, (pi ∈ Q),

then the general solution of this inhomogeneous equation can be written in the form

x = p+ b1a1 + . . .+ brar (ai ∈ R).

Now our task reduces to determining those vectors a = [a1 a2 . . . ar
]	

for which
each component of x is a nonnegative integer.

Assume that βi = (bi )i ∈ N is the positive integer component of bi mentioned
in the lemma (the diagonal element of the matrix consisting of the basis). Then the
ith component of x is xi = pi+βiai , which can only be an integer if ai is a rational
number of the form

(t − pi)/βi, t ∈ Z.
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If bounds on each of the xi are known, then only a finite number of possible
solutions remain to check. The bounds can be determined by linear programming:
The variables xi need to be minimized and maximized subject to all the linear
constraints we have on the solutions, including of course the equations Ax = b,
the nonnegativity constraints x ≥ 0, and the bound on the size of the solutions, if
we have one.

We shall call this algorithm the LP-based enumerative method.

A word on implementation: the number of candidate solutions in the rectangular box
determined by the lower and upper bounds on the xi is likely to be too high to enumerate
and test explicitly all of them, unless the problem is very small. A more efficient approach
is to first determine the bounds for one variable, say x1, only. Then for every possible
value of x1 determine separate bounds for x2, etc. This procedure can be implemented
in many different ways. The simplest possible implementation uses linear programming
twice in every iteration. The implementation can be made more efficient in several ways,
the details of most of them are beyond the scope of this book. In particular, advanced linear
programming software are capable of warmstarting, that is, accelerating the solution of
a linear program that is obtained by some small modification of an already solved linear
program. The LP-based enumerative method consists almost entirely of solving such linear
programs: problems involving the same constraints and only different objective functions,
and problems that are identical to earlier ones except that one of the previous variables has
its value fixed.

If the set of solutions is unbounded, then we can still use the LP-based
enumerative algorithm to obtain every solution not longer than some given constant.
Although there is no way to obtain only minimal solutions directly with this method,
it is possible to first bound the size of minimal solutions using Theorem 5.9 below,
then find all solutions up to that size, and then throw away the solutions that are not
minimal. We close our discussion on the LP-based enumerative method by showing
how the sizes of the minimal solutions can be bounded.

Theorem 5.9 Consider the homogeneous linear Diophantine equation Ax = 0
with r = rank(A). Let Dr be the minor of A of order r that has the largest absolute

value. Similarly, let D′r be the minor of order r + 1 of

[
1 . . .1
A

]
with the largest

absolute value. Then the following inequalities hold for every minimal solution m
of the homogeneous equation:

‖m‖1 ≤ (1+max
i
‖A(·, i)‖1)

r , (5.4)

‖m‖1 ≤ (n− r)|D′r |, (5.5)

‖m‖∞ ≤ (n− r)

(‖A‖1

r

)r

, (5.6)

‖m‖∞ ≤ (n− r)|Dr |. (5.7)
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The bound (5.7) is always sharper than (5.6), but the right-hand sides of (5.5)
and (5.7) are not computable in practice. For larger systems only the first and the
third bounds are easily computable. Note that this theorem yields a second proof of
the fact that the number of minimal solutions is finite.

5.3.4 Reducing the Search Space

The high computational cost of the enumeration algorithms means that efforts to
reduce the number of species and elementary steps both using thermodynamic
information and combinatorial considerations are worthwhile. In the remaining of
the section, we discuss a few approaches that help reducing the size of the problem.

5.3.4.1 Finding Unavoidable Steps
In the decomposition of overall reactions, there might be some elementary steps
which must take part in every decomposition. These steps can be subtracted from
the overall reaction, decreasing the size of the solutions. This is particularly useful
for solution methods that perform well on problems with small solutions, such as
the Contejean–Devie method. These elementary reactions and the number of times
they must take place in the decompositions can be found using linear programming.

For the rth reaction step (1 ≤ r ≤ R), consider the linear program

min
z∈RR

{zr | γ z = b, z ≥ 0}. (5.8)

Here b is the atomic vector of the overall reaction; the equality constraints are the
balance equations from (5.2). The optimal value of this linear program (rounded
up to the nearest integer) is a lower bound on the number of times the rth step
must take place in every decomposition of the overall reaction. This is a rather
fast method, as it only requires the solution of R linear programs. More advanced
linear programming techniques can further accelerate this approach, but that is again
beyond the scope of this book.

5.3.4.2 Eliminating Combinatorially Impossible Steps and Species
Using Linear Programming

Every decomposition method becomes faster if elementary steps that cannot take
part in any decomposition are eliminated. As a first filter, we should rule out as
many steps as possible based on chemical evidence, e.g., if they violate some
thermodynamical constraint. More mathematical approaches include the methods
presented in this paragraph and the next.

The approach used to bound the coefficients of the steps from below may be used
again. In order to get upper bounds on these coefficients, it suffices to simply change
the objective in (5.8) from the minimization of zr to the maximization of zr . If the
maximum is less than 1, we can eliminate the rth step. More sophisticated variants
of this idea were proposed by Kovács et al. (2004) and Papp and Vizvári (2006),
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which we outline next. The same ideas can be used to obtain decompositions as
well (see Sect. 5.3.5).

Given a subset of reaction steps R ′ ⊆ R, we may ask the question if there exists
a decomposition that has at least one step with index included in R ′. A sufficient
condition for an affirmative answer is given by the following lemma.

Lemma 5.10 Let b be the atomic vector of an overall reaction and R ′ ⊆ R be the
index set of a collection of elementary steps. Denote by χR ′ ∈ N

R the characteristic
vector of R ′, and consider the linear program

min
z∈RR

{χ	R ′z | γ z = b, z ≥ 0, χ	R ′z ≥ 1}. (5.9)

If this linear program has no feasible solution, then every decomposition of the
overall reaction uses exclusively steps whose indices are not in R ′.

Proof Suppose by contradiction that a decomposition with at least one step in R ′
exists. If z ≥ 0 is the corresponding vector, then γ z = b holds by definition,
furthermore yr ≥ 1 for at least one r ∈ R ′, ensuring χ	R ′z ≥ 1. Hence, this vector
z satisfies all the constraints of the linear program and makes the objective function
value at least 1. ��

This lemma can be used iteratively as follows. Starting with R ′ = R, use
Lemma 5.10 to verify if there may exist any decompositions at all. If the answer
is negative, stop, and return R ′ as the index set of steps we can eliminate, as they
cannot take part in any decomposition. If the lemma gives a positive answer, a
decomposition may exist involving those steps whose corresponding components
in the optimal solution z of (5.9) are positive. We cannot eliminate these steps, so
we remove them from R ′ and recourse, trying to find a decomposition involving
at least one step still included in R ′. We continue this until the set R ′ becomes
empty (and we conclude that no steps can be eliminated), or we find a nonempty
R ′ whose reactions cannot be involved in any decomposition. It is clear that this
procedure terminates after at most R iterations. Two Mathematica implementations
of this method are set as Problems 5.6 and 5.7 below. The function Omittable
takes b and γ and applies Lemma 5.10.

5.3.4.3 Eliminating Combinatorially Impossible Steps and Species
Using Volpert Indices

The previous algorithm does not take all combinatorial information into considera-
tion: It uses the balance equations, but it does not take into account what the initial
species are. Recall that a decomposition is chemically infeasible if any of its species
has zero concentration during the whole reaction and that by Theorems 8.6 and
8.14, a species has a constant zero concentration if and only if it gets infinite index
in the Volpert indexing procedure defined in Definition 3.22.
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Although the cited theorem talks about the indexing of the steps of a decompo-
sition that has already been found, with a slight modification, it can also be used to
identify species and reactions that cannot take part in any decomposition. All one
has to do is to consider all species and all elementary reactions as if they all took
part in a decomposition. There is no overall reaction, and in the indexing process, the
exact indices do not matter, only whether they are finite. After indexing the species
and the reaction steps, those with infinite index can be eliminated, as they cannot
take part in any decomposition.

Example 5.11 Recall Example 5.4. Regardless of the overall reaction, if OH and
H2O are the only species initially available (which correspond to the third and sixth
rows in the atomic matrix), then a cascade of deductions follows, corresponding to
the steps of the Volpert indexing process:

1. with only the initial species (who get index 0) being available, only one reaction
step may take place: H2O −−→ H + OH, producing one additional species, H.
Hence, this step gets index 0, and H gets index 1.

2. With H also available, two further reaction steps may take place: H + OH −−→
H2O, which does not yield any new species, and 2 H −−→ H2, produces a new
species: H2. Both of these steps get index 1; the species H2 gets index 2.

3. With H2 also available, yet another step may take place: OH + H2 −−→ H + H2O;
this step gets index 2. It does not produce any species that had not been indexed
already, hence all other reaction steps and species get an infinite index, and the
indexing process is over.

With these initial species, O and O2 cannot be produced by any sequence of reaction
steps, and hence they can be eliminated. Similarly, the first two reaction steps may
never occur, and they can be eliminated. This is how we get this result.

Row[VolpertIndexing[{"H" + "O2" -> "O" + "OH",

"O" + "H2" -> "H" + "OH",

"OH" + "H2" -> "H" + "H2O", 2 "H" -> "H2",

"H" + "OH" <=> "H2O"}, {"OH", "H2O"},

Verbose -> True]]

And the result is as follows:

Species Indices Reaction steps Indices
H2O 0 H2O −−→ H+ OH 0
OH 0 H+ OH −−→ H2O 1
H 1 2 H −−→ H2 1
H2 2 H2 + OH −−→ H+ H2O 2
O ∞ H2 + O −−→ H+ OH ∞
O2 ∞ H+ O2 −−→ O+ OH ∞

We invite the reader to try another set of initial species (Problem 5.5).
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5.3.5 Partial Enumeration

The algorithms of Sects. 5.3.1 and 5.3.3 have aimed at enumerating all solutions or
all minimal solutions of a linear Diophantine equation. Their running time may
be high, and it may also take time until they return even the first solution. We
revisit the idea of Sect. 5.3.4.2 and turn it into a heuristic to quickly generating some
decompositions. We may not find all (or a huge enough number of) decompositions
with this method, but whatever we find, we find it much faster than with the previous
algorithms.

Recall that a decomposition corresponds to a vector z satisfying the constraints
γ z = b, z ≥ 0, z ∈ Z

R . The first two constraints are linear equations and
inequalities; we can find vectors that satisfy them by solving a linear program:

min
z∈RR

{c	z | γ z = b, z ≥ 0}, (5.10)

with an arbitrary c ∈ R
R . If c ≥ 0, the linear program cannot be unbounded,

i.e., either there are no vectors z satisfying the constraints or the linear program
has an optimal solution. It can be shown that if the optimal solution exists, then
there exists a rational optimal solution with at most M nonzero components. (Linear
programming softwares typically return such a solution.) If the nonzero components
happen to be integers, then we have found a decomposition. Even if the solution is
noninteger, we can interpret it as a decomposition, as for an appropriate n ∈ N0, nz
is an integer, and it corresponds to a decomposition of n times the original reaction.

If the solution is not an integer, there exist techniques that help us find an integer solution
via the solution of a sequence of further linear programs; these algorithms belong to the
realm of integer programming, and are beyond the scope of this book.

The linear program (5.10) can find at most one decomposition. But since the
vector c is arbitrary, we can solve it for a variety of vectors, and some of them may
give a new decomposition.

We can also use the idea of Sect. 5.3.4.2 and introduce a further parameter: a
subset R ′ ⊆ R of reaction steps from which at least one step must take part in the
next decomposition. We can find such a decomposition by solving

min
z∈RR

{c	z | γ z = b, z ≥ 0, χ	S z ≥ 1}, (5.11)

and recourse after removing from S the index of every nonzero component of the
last optimal z, until the linear program becomes infeasible. Each iteration yields a
new decomposition (or a rational vector that we may or may not wish to interpret
as a decomposition). These (fractional) decompositions have the property that every
reaction step that may occur in a decomposition has a nonzero coefficient in at least
one of the decompositions found. We call such a collection of vectors a covering
decomposition set. Every cost vector c has an associated covering decomposition
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set, but different c’s may not yield different sets. By generating several of them, we
can rapidly obtain a number of decompositions. Unfortunately there does not seem
to be a way to systematically generate every decomposition this way.

To generate decompositions the function CoveringDecompositionSet (or
Decompositions) can also be used.

Example 5.12 The command

CoveringDecompositionSet[

{"O_2" + 2 "H_2" -> "H" + "H_2O"},

{"H" + "O_2" -> "O" + "OH",

"O" + "H_2" -> "H" + "OH",

2 "OH" + "H_2" -> "H" + "H_2O"},

ObjectiveFunction -> GreedySelection,

Verbose->True]

produces a decomposition.

5.3.6 Summary and Comparison of Algorithms

In elementary step generation, a number of small linear Diophantine equations need
to be solved, all of which have a finite number of solutions, which are all minimal. To
solve these equations, in principle we may use either the Contejean–Devie algorithm
or the LP-based enumerative method. As the solutions are typically very small, the
Contejean–Devie algorithm is suitable for most problems. It will run faster than the
LP-based enumerative method, whose bottleneck in these problems is likely to be
the solution of a large number of linear programs. There is hardly any point in using
the partial enumeration algorithm, as all solutions can be enumerated even for large
problems.

In decomposition problems the sizes of the solutions can be much larger. The
search space reduction methods of Sect. 5.3.4 are strongly recommended, although
keep in mind that the linear programming-based identification of unavoidable
and omittable reaction steps and species only accelerates the Contejean–Devie
algorithm; it does not help the LP-based enumerative method which incorporates
the same constraints in its LP formulation as the elimination algorithm. On the other
hand, both the Contejean–Devie and the LP-based enumerative method benefit from
the elimination of reaction steps and species using Volpert indexing.

The number of reaction steps in the decompositions can be bounded from below
using linear programming (Problem 5.8). This bound may also guide us in choosing
a suitable algorithm. If the smallest decomposition consists of K steps, then the
Contejean–Devie algorithm will enumerate all sequences of length K − 1 without
steps in forbidden directions, and the number of such sequences can be very large
unless K or R is small. In this case the LP-based enumerative method is the best
choice, followed by the variant of the Contejean–Devie method that enumerates
only solutions up to a given size.
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A real-life application of our methods was to obtain chemically acceptable
decompositions of the overall autocatalytic reaction of permanganate/oxalic acid
into elementary steps (see Kovács et al. 2004). As a chemical result, we obtained
mathematical justification of the well-known autocatalytic nature and of the less-
known crucial role of radical CO2−. By inspecting the obtained decompositions,
one can find reaction steps inaccessible to chemical intuition, and these point out
the direction of further experimental investigations.

5.4 Exercises and Problems

5.1 Using the species of Example 5.3, find the elementary steps starting from the
reactant complex H + H2O.

(Solution: page 391.)

5.2 Give a simple linear algebraic method to test whether a set of vectors is minimal
linearly dependent. Give a Mathematica implementation. It should not be more than
a single line.

(Solution: page 391.)

5.3 Write a Mathematica code for the algorithm by Szalkai described above. Use
Mathematica’s pattern matching mechanism and fixed-point mechanisms.

(Solution: page 392.)

5.4 (Szalkai (1997)) How many minimal linearly dependent subsets can we select
from the atomic vectors of the species CO, CO2, O2, H2, CH2O, CH3OH, C2H5OH,
(CH3)2CO, CH4, CH3CHO, H2O?

(Solution: page 392.)

5.5 Verify that in the mechanism of Example 5.11, no reaction steps or species can
be eliminated if the species initially available are {H, H2, O2}.

(Solution: page 392.)

5.6 Write a Mathematica code for the functionOmittable based on Lemma 5.10.

(Solution: page 393.)

5.7 The ReactionKinetics function Omittable (see p. 68) can be more
easily implemented using the CoveringDecompositionSet function intro-
duced in Sect. 5.3.5. How?
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(Solution: page 393.)

5.8 Set up a linear programming problem whose solution bounds from below the
number of reaction steps in the decompositions of an overall reaction.

(Solution: page 393.)
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Part II

The Continuous Time Continuous State
Deterministic Model

Different forms of the usual deterministic model: a (special kind of) polynomial
differential equation is introduced. The behavior of its stationary and transient
solutions are studied symbolically and numerically. Beyond the exact results
symbolic and numerical approximations are presented.



6The Induced Kinetic Differential Equation

6.1 Introduction

Our main interest here and in the next two chapters is in the (transient and longtime)
behavior of the trajectories of the induced kinetic differential equations of reactions.
Before dealing with this problem, we review the different forms of the induced
kinetic differential equation, because each of the individual forms has a special
advantage.

6.2 Heuristic Derivation of the Induced Kinetic Differential
Equation

Let us consider as an example the Robertson reaction (Robertson 1966):

A
k1−→B 2B

k2−→B+ C
k3−→A+ C. (6.1)

Let us denote the molar concentrations of the individual species by the correspond-
ing lowercase letters: a(t) := [A](t), b(t) := [B](t), c(t) := [C](t). As to the effect
of the first reaction step on the concentration a(t) in the “small” time interval ]t, t+
h[, one may assume that it is as follows: a(t+h) = a(t)−Φ(a(t), h)+ε(h)h, where
we try to choose the function Φ to be the simplest possible one, i.e. we assume it is
proportional to both the concentration a(t) and to the length h of the time interval,
and we denote the proportionality factor by k1, i.e. Φ(a(t), h) := k1a(t)h. The fact
that the length of the interval is small is reflected in two assumptions:

1. First, the concentration is “essentially the same” at the beginning and at the end
of the interval: in mathematical terms a is continuous; there is no jump in the
concentration.

© Springer Science+Business Media, LLC, part of Springer Nature 2018
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2. Second, the error ε(h)h of the approximation is so small that it tends to zero even
if divided by the length h of the interval when h tends to zero: lim0 ε = 0.

Proceeding in the same way, we get b(t+h) = b(t)+ k1a(t)h+ ε(h)h as the effect
of the first reaction step on concentration b(t), because the gain in b(t) is the same
as the loss in a(t).

How to calculate the effect of the second step? Had we the step B+D −−→ B+C
then an argument similar to that above would give the following relations:

b(t + h) = b(t)+ (1− 1)k2b(t)d(t)h+ ε(h)h

c(t + h) = c(t)+ (1− 0)k2b(t)d(t)h+ ε(h)h

d(t + h) = d(t)+ (0− 1)k2b(t)d(t)h+ ε(h)h.

Why? Because again we assumed that the changes of concentrations are propor-
tional to everything on what it may depend (taken a relatively simplistic point of
view). Therefore, it is a straightforward assumption that the step B+B −−→ B+C
causes the following changes:

b(t + h) = b(t)− k2b(t)b(t)h+ ε(h)h

c(t + h) = c(t)+ k2b(t)b(t)h+ ε(h)h.

Returning to the original full Robertson reaction, we get

a(t + h) = a(t)− k1a(t)h+ k3b(t)c(t)h+ ε(h)h

b(t + h) = b(t)+ k1a(t)h− k2b(t)
2h− k3b(t)c(t)h+ ε(h)h

c(t + h) = c(t)+ k2b(t)
2h+ ε(h)h.

Subtracting the first terms of the right-hand sides and dividing through by h, we get

a(t + h)− a(t)

h
= −k1a(t)+ k3b(t)c(t)+ ε(h)

b(t + h)− b(t)

h
= +k1a(t)− k2b(t)

2 − k3b(t)c(t)+ ε(h)

c(t + h)− c(t)

h
= +k2b(t)

2 + ε(h).

Tending to zero with h, the right-hand sides do have a limit (because of the
assumption lim0 ε = 0); therefore the left-hand sides should also have one, which
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can only be the derivative of the corresponding functions:

ȧ(t) = −k1a(t)+ k3b(t)c(t)

ḃ(t) = +k1a(t)− k2b(t)
2 − k3b(t)c(t)

ċ(t) = +k2b(t)
2,

or—with functions instead of function values—

ȧ = −k1a + k3bc ḃ = k1a − k2b
2 − k3bc ċ = k2b

2.

This is the induced kinetic differential equation of the Robertson reaction. It can
be obtained in the program as follows:

DeterministicModel[{"Robertson"}, {k1, k2, k3},

{a, b, c}]

To be more precise one should use different ε functions in the different equations—without
any additional gain.
Let us add a few words on the units of the rate coefficients. In order to have the same units
on both sides of the above equations k1 should have the unit time−1, whereas k2 and k3
should have the unit time−1mass−1volume.

This is the way how a chemist heuristically constructs a differential equation to
describe the time evolution of chemical species in reactions. Now we are going to
give formal definitions, and the reader should check on many examples to convince
herself/himself if the formal definition is leading to the result expected by the
chemist’s intuition. Finally, we remark that because the volume has been supposed
to be constant, we could have argued using mass instead of concentrations.

6.3 Equivalent Forms of the Induced Kinetic Differential
Equations

Different authors use different forms of the same general form of the induced
kinetic differential equation, but this fact will turn out to have more advantages
than disadvantages.

6.3.1 Reaction Steps Emphasized

Let us recapitulate the general form (2.1) of reactions here:

∑

m∈M
α(m, r)X(m) −→

∑

m∈M
β(m, r)X(m) (r ∈ R). (6.2)
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We want to formulate a system of ordinary differential equations as a model, but
this formulation if specialized to the Robertson example above will be a bit more
general.

Suppose that we are also given functions called kinetics (in the narrow sense,
as opposed to the name of the branch of science) wr ∈ C 1(RM,R+0 ), (r ∈ R)
corresponding to the rth reaction step with the following properties.

Conditions 2

1. If all the species needed to step r are available, then step r proceeds, i.e. if for
all m ∈M : α(m, r) > 0 implies cm > 0, then wr(c) > 0;

2. If at least one species needed to step r is missing, then step r does not take place,
i.e. if there exists m ∈M : α(m, r) > 0 and cm = 0, then wr(c) = 0.

Definition 6.1 With all the above definitions and assumptions, the usual contin-
uous time, continuous state deterministic model, the induced kinetic differential
equation of the reaction (2.1) is the autonomous ordinary differential equation

ċm(t) =
∑

r∈R
(β(m, r)− α(m, r))wr(c1(t), c2(t), . . . , cM(t)) (m ∈M ).

(6.3)

Let us introduce w := [w1 w2 . . . wR

]	
and c(t) := [c1(t) c2(t) . . . cM(t)

]	
; then

we can repeat the equations in vectorial form as

ċ(t) = (β − α) · w(c(t)) = γ ·w(c(t)). (6.4)

This equation is valid for all t ∈ R for which the solution can be defined. The
equation can also be written down for functions or in global form (as opposed to
the local form used in Eq. (6.4)) as

ċ = (β − α) · w ◦ c = γ · w ◦ c. (6.5)

(Here we use the ◦ sign to denote composition of functions; see the list of notations
on page xxiii.)

Remark 6.2

1. Equation (6.3) expresses a fundamental assumption of homogeneous reaction
kinetics: The effects of the different reaction steps on the concentration changes
of the species are independent of each other; the effects sum up (more precisely,
they are calculated as linear combinations with the differences of the stoichio-
metric coefficients as coefficients).
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2. One might say that (6.2) shows the reaction steps, some of which might come
from genuine reaction steps, i.e. from steps where external species of constant
concentration are also present. These are species which are present in such quan-
tities that they practically do not change during the reaction, e.g. water, solvent
or some precursors or substrates, etc. If one wants to emphasize the presence of
external species, then the expression internal species is used to name the entities
which are usually called species. The genuine reaction step may express a real
physical process, like collision. Consider the trypsin-catalyzed transformation
of trypsinogen described by Trypsin + Trypsinogen −−→ 2 Trypsin. Here
trypsinogen is in excess, and in any usual model, it might be considered as an
external species; therefore one can study instead of this genuine reaction step the
reaction step Trypsin −−→ 2 Trypsin. Let us note by passing that Trypsin here is
a direct catalyst.

3. In- and outflow can also be described by genuine reaction steps containing
external species, like A −−→ X and X −−→ A, which can be replaced in the
next step of modeling by 0 −−→ X and X −−→ 0, respectively.

Most of the models are formulated with a special form of the kinetics, with the
mass action form, in which the stoichiometric coefficients of the reactant complexes
play a special role.

Definition 6.3 Suppose that we are given positive numbers called reaction rate
coefficients kr ∈ R

+ where r ∈ R, corresponding to each reaction step, and
suppose the kinetics is defined in the following way:

wr(c) := krcα(·,r) (r ∈ R). (6.6)

(The definitions and properties of less frequent vectorial operations can be found in
Sect. 13.2 of the Appendix.) Then the kinetics is said to be of the mass action type.

Remark 6.4

1. Mass action kinetics possesses both properties of Conditions 2 (see Problem 6.3).
2. The induced kinetic differential equation of a reaction with mass action type

kinetics takes the following form:

ċm(t) =
∑

r∈R
(β(m, r)− α(m, r))kr

M∏

p=1

cp(t)
α(p,r) (m ∈M ), (6.7)

or in the global form using vectorial notations including the notation  for
Hadamard–Schur product (see again Sect. 13.2 of the Appendix)

ċ = (β − α) · k cα = γ · k cα, (6.8)
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with k := [k1 k2 . . . kR
]	

(see Problem 6.1). One can see more clearly the role
of pure monomials from the form

ċ = (γ · diag(k)) · cα. (6.9)

There are several ways to deduce the mass action form of the kinetics from
functional equations.

The aim of Garay (2004) is to characterize monomials of the form kr
∏M

p=1 c
α(p,r)
p by

a functional equation. He shows that under appropriate conditions (similar to but not
identical with those used here) the solution to the functional equation

w(c F)
w(c)

= Fr(c) (6.10)

is w(c) = kcr with positive real number k ∈ R
+ and with a vector of nonnegative

real numbers r ∈ (R+0 )M. Equation (6.10) is the result of heuristic application of Euler
discretisation of an obvious identity.

Tóth and Érdi (1978) on page 243 give a verbal description of the properties
which should naturally be obeyed by the reaction rates. Let us consider the
reaction X −−→ C, where C is an arbitrary complex. In this case it is quite
natural to assume that the reaction rate w of this step is nonnegative, monotone,
and additive in the concentration of X:

w(c1 + c2) = w(c1)+w(c2). (6.11)

The nontrivial solutions of this functional equation—the Cauchy equation—is
w(c) = kc. Problem 6.2 shows the solution of a more complicated case.

If one is interested in the factors in Eq. (6.8) separately, then the following construct
may be used.

gamma = ReactionsData[{"Lotka-Volterra"}, {"A","B"}][{γ }]
alpha = ReactionsData[{"Lotka-Volterra"}, {"A","B"}][{α}]
gamma.{k1, k2, k3} Times @@ ({x, y}^alpha).

At this point one cannot help adding a few more words about units. The con-
centration of the species is usually measured in the units mol dm−3, and time is
measured in seconds; therefore the unit one has on the left-hand side of (6.7) is
mol dm−3 s−1 (in general terms, mass volume−1 time−1.) As the stoichiometric
coefficients are pure numbers, terms kr

∏M
p=1 cp(t)

α(p,r) should also have the same

unit mol dm−3 s−1, but as the unit of
∏M

p=1 cp(t)
α(p,r) is

(
mol dm−3)

∑
p∈M α(p,r)

,

therefore to get a dimensionally correct equation, kr should have the unit

(
mol dm−3

)1−∑p∈M α(p,r)

s−1,
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or introducing the notation

o(r) :=
∑

p∈M
α(p, r) (6.12)

for the order of the rth reaction step (see Definition 2.4): (mol dm−3)1−o(r) s−1.

Specially, one has the following units.

Order of the
reaction step

Unit of the
reaction rate
coefficient

0 mol dm−3s−1

1 s−1

2 mol−1dm3 s−1

If a kinetics different from the mass action type is used, it is the responsibility
of the modeler (or the user of our programs) to choose the appropriate unit for the
reaction rate coefficients.

We shall return to the units when discussing the change of units in connection
with the stochastic model in Chap. 10. In very special cases, a change of unit might
also help decrease the stiffness of a model (see Problem 9.25).

6.3.2 Complexes Emphasized

In the form of the induced kinetic differential equation (6.3), one can see that a
reaction step vector γ (·, r) := β(·, r) − α(·, r), where r ∈ R, may correspond
to many different reaction steps. Therefore, an alternative description of the same
equation arises with the concepts defined here.

Definition 6.5

• The different complex vectors put into the columns of a matrix form the complex
matrix: Y := [y1 y2 . . . yN

]
.

• The complex index set is N := {1, 2, . . . , N}.
• The complex matrix defines a linear map from R

N, the species space, into R
M,

the complex space: Y : RN → R
M.

These names come from the fact that elements of the standard basis e1, e2, . . . , eM in
R

M correspond to the species, while elements of the standard basis f1, f2, . . . , fN in R
N

correspond to the complexes. The role of the linear map described by Y is to provide the
complex vectors by Yfn = yn ∈ R

M.
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As before, the state of the reaction at time t is characterized by the vector c(t) ∈
R

M of concentrations of the (internal) species. The complex corresponding to the
complex vector yn for all n ∈ N is denoted (as usual, see Chap. 2) by Cn. The rate
of the reaction step

Cq

rnq−−→ Cn (6.13)

only depends on the concentration vector. As pressure, volume, and temperature
are assumed to be constant, this rate is given by the function rnq ∈ C (RM,R+0 ).

(In this construction this function—the same as above, it is only the indexing what
differs—is called kinetics.) If the reaction (6.13) is not present, then for all c ∈
R

M : rnq(c) = 0 holds; furthermore, for all c ∈ R
M : rnn(c) = 0.

Further definitions follow.

Definition 6.6

• The reaction ratematrix at the concentration c ∈ R
M is the matrix with reaction

rates as entries: R(c) ∈ (R+0 )N×N .

• The creation rate of the complex Cn is
∑

q∈N
rnq(c) ∈ R

+
0 .

• The annihilation rate of the complex Cn is
∑

q∈N
rqn(c) ∈ R

+
0 .

• The formation rate of the complex Cn is
∑

q∈N
rnq(c)−

∑

q∈N
rqn(c) ∈ R,

• The complex formation vector is g(c) := (R(c)− R	(c))1N ∈ R
N .

• The species formation vector is

f(c) := Yg(c) =
∑

n∈N

∑

q∈N
rnq(c)(yn − yq)

=
∑

r∈R
(β(·, r)− α(·, r))wr(c) ∈ R

M, (6.14)

cf. Problem 6.8. The mth component of this vector gives the formation rate of
species X(m).

• In this formulation the kinetics is said to be of the mass action type, if

rnq(c) = knqcyq (6.15)

for some knq ∈ R
+
0 where n, q ∈ N . The number knq is said to be the

reaction rate coefficient of the reaction step (6.13); they are only positive for
the reaction steps (6.13) occurring among the reaction steps, and they comprise
the corresponding concentration products of external species, if needed.
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Example 6.7 Consider the genuine reaction steps of the reversible Lotka–Volterra
reaction

A+ X
κ1−−⇀↽−−
κ−1

2 X X+ Y
κ2−−⇀↽−−
κ−2

2 Y Y
κ3−−⇀↽−−
κ−3

B.

The part of the induced kinetic differential equation of this reaction for the
concentrations of X and Y reads as

ẋ = κ1ax − κ−1x
2 − κ2xy + κ−2y

2 ẏ = κ2xy − κ−2y
2 − κ3y + κ−3b.

Assuming that the concentration of A and B is constant, having the values a0 and
b0, respectively, one can introduce the reaction rate coefficients of the reaction steps
(as opposed to the genuine reaction steps) as follows:

k1 := κ1a0 k−1 := κ−1 k2 := κ2 k−2 := κ−2 k3 := κ3 k−3 := κ−3b0,

and with these the induced kinetic differential equation of the reaction

X
k1−−⇀↽−−

k−1
2 X X+ Y

k2−−⇀↽−−
k−2

2 Y Y
k3−−⇀↽−−

k−3
0

will be the same as the induced kinetic differential equation of the above reaction
consisting of genuine reaction steps.

Let us consider the reaction rate coefficients as entries in the matrix K ∈
(R+0 )N×N . For knq > 0, let us define the nonzero reaction step vector xnq :=
yn − yq corresponding to the reaction step (6.13), i.e., xnq is one of the columns of
the stoichiometric matrix γ . The notions stoichiometric space, mass conservation,
reaction simplex, and positive reaction simplex have all been defined before in
Chap. 4. Using the previous definitions and notations, we have the following
relations:

R(c) = Kdiag(cY) ∈ R
N×N , (6.16)

g(c) = (K− diag(K	1N))cY ∈ R
N, (6.17)

f(c) =
∑

n∈N

∑

q∈N
knqcy(q)xnq = Y(K− diag(K	1N))cY ∈ S , (6.18)

(where again Sect. 13.2 of the Appendix may help), and finally, the induced kinetic
differential equation of the reaction (6.13) in coordinates in the general case is

ċm(t) =
∑

n∈N

∑

q∈N
rnq(c(t))(ym

n − ym
q ), (6.19)
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(where ym
n is the mth component of the vector yn), or—using vectorial notations—

ċ(t) = f(c(t)) =
∑

n∈N

∑

q∈N
rnq(c(t))xnq . (6.20)

The equation can again be formulated in global form using the notation ◦ for the
composition of functions as

ċ = f ◦ c =
∑

n∈N

∑

q∈N
(rnq ◦ c)xnq . (6.21)

In case the kinetics is of the mass action type, these equations specialize into

ċm(t) =
∑

n∈N

∑

q∈N
knqc(t)yq (ym

n − ym
q ), (6.22)

or in the global form using vectorial notations

ċ =
∑

n∈N

∑

q∈N
knqcyq (yn − yq), (6.23)

or even more tersely

ċ = Y
(
K− diag(K	1N)

)
cY. (6.24)

Remark 6.8

• Equation (6.23) can be reformulated in a seemingly symmetric way

ċ =
∑

n∈N

∑

q∈N
yq(knqcyq − kqncyn),

which however contains many zero reaction rate coefficients.
• In general, to calculate the vector cY, calculations of N products of powers are

needed, whereas to calculate the vector cα, one needs to calculate only as many
products of powers as the number of different reactant complexes.

• The
(
K− diag(K	1N)

) ∈ R
N×N expression or sometime its negative has many

names in graph theory; it may be called Laplacian matrix, admittance matrix,
Kirchhoff matrix, or discrete Laplacian of the Feinberg–Horn–Jackson graph
with weights knq.
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6.3.3 Network Structure Emphasized

The form of the induced kinetic differential equation proposed by Othmer (1985)
is similar to (6.5) or (6.8) but is capable to express the network structure of the
reaction more explicitly. However, it was only Boros (2008, 2013) who was able to
fully parlay this form. Othmer introduces the incidence matrix E in the following
way.

Definition 6.9 The incidence matrix (or, more precisely, the vertex-edge inci-
dence matrix) E of the reaction (2.1) is an N × R matrix with entries Enr defined
as follows:

Enr :=
⎧
⎨

⎩

+1, if Cn is the product complex of reaction step r;
−1, if Cn is the reactant complex of reaction step r;
0, otherwise.

(6.25)

With this notation the induced kinetic differential equation of (2.1) in the general
case is

ċ = YEw ◦ c, (6.26)

and if specialized to the mass action case, one gets

ċ = YE(k cα). (6.27)

Example 6.10 Consider the Lotka–Volterra reaction

X
k1−−→ 2 X X+ Y

k2−−→ 2 Y Y
k3−−→ 0. (6.28)

In this case one has

Y =
[

1 2 1 0 0 0
0 0 1 2 1 0

]
, E =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, k =
⎡

⎣
k1

k2

k3

⎤

⎦ ,
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therefore the right-hand side of the induced kinetic differential equation is

YE(k cα) =
[

1 2 1 0 0 0
0 0 1 2 1 0

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

⎛

⎜
⎜
⎝

⎡

⎣
k1

k2

k3

⎤

⎦ c

⎡

⎣1 1 0
0 1 1

⎤

⎦

⎞

⎟
⎟
⎠

=
[

1 −1 0
0 1 −1

]⎡

⎣
k1x

k2xy

k3y

⎤

⎦ =
[
k1x − k2xy

k2xy − k3y,

]

as expected. Here, c =
[
x

y

]
.

Once we have Y and the reaction steps at hand, it is not difficult to construct the
incidence matrix E (see Problem 6.4).

6.3.4 Reaction Rate Coefficients Emphasized

Any form of the induced kinetic differential equation in the mass action case
suggests that the right-hand side is a linear function of the reaction rate coefficients.
First, we demonstrate this fact in the case of the Mole reaction (2.8). Its induced
kinetic differential equation (of the mass action type; if not said otherwise, we shall
always assume this) is as follows:

Example 6.11

ẋ = k1xy − k2x + k−2 ẏ = k1xy + k3 − k−3y. (6.29)

By heuristic inspection one can rewrite the right-hand side of the (6.29) in the
following way:

[
ẋ

ẏ

]
=
[
xy −x 1 0 0
xy 0 0 1 −y

]
·

⎡

⎢⎢
⎢
⎢
⎢
⎣

k1

k2

k−2

k3

k−3

⎤

⎥⎥
⎥
⎥
⎥
⎦

(6.30)

How to formalize this seemingly obvious factorization?
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Theorem 6.12 The species formation vector of the mechanism 〈M ,R,α,β,k〉
(endowed with mass action type kinetics) is the same as

⎡

⎢
⎢
⎢
⎣

γ (1, 1)cα(·,1) γ (1, 2)cα(·,2) . . . γ (1, R)cα(·,R)

γ (2, 1)cα(·,1) γ (2, 2)cα(·,2) . . . γ (2, R)cα(·,R)

...
...

...

γ (M, 1)cα(·,1) γ (M, 2)cα(·,2) . . . γ (M,R)cα(·,R)

⎤

⎥
⎥
⎥
⎦
·

⎡

⎢
⎢
⎢
⎣

k1

k2
...

kR

⎤

⎥
⎥
⎥
⎦

, (6.31)

or in vectorial form

γ diag(cα)k. (6.32)

Proof First, let us denote the right-hand side of the induced kinetic differential
equation (6.8) by f(c,k) and show that it is linear in its second argument. Indeed,

f(c,k1 + k2) = f(c,k1)+ f(c,k2) and ∀λ ∈ R : f(c, λk) = λf(c,k),

i.e. f(c, ·) : (R+0 )R −→ R
M is linear; therefore it can be written in the following

way:

f(c,k) = G(c)k. (6.33)

Second, the matrix of a linear operator in the standard basis can be determined in
such a way that one determines the images of the basis vectors:

G(c) = [f(c, e1) f(c, e2) . . . f(c, eR)
]
,

where e1, e2, . . . , eR ∈ (R+0 )R are the elements of the standard basis of RR. Hence
one obtains f(c, er ) = γ ·er cα (r ∈ R), which is the same as the rth component
of the coefficient matrix in (6.32) before k.

Although the above derivation is not without moral, an immediate proof comes
from the fact that k cα = diag(cα) · k(= diag(k) · cα). ��

How to calculate the coefficient matrix in (6.32) using the program? Here is an
example ending in the result True.

rhs[{k1_, k2_, k3_}] :=

RightHandSide[{"Lotka-Volterra"},

{k1, k2, k3}, {x, y},

ExternalSpecies -> {"A", "B"}]

G = Transpose[rhs /@ IdentityMatrix[3]];

rhs[{u, v, w}] == G.{u, v, w}
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The knowledge obtained here will turn out to be really useful when solving one of
the most important inverse problems: that of estimating the reaction rate coefficients
(see Chap. 11).

6.3.5 Evolution Equation for the Reaction Extent

The concept of the extent of reaction steps is often used in classical textbooks on
reaction kinetics, although without a general definition (Atkins and Paula 2013, p.
201). The extent of the rth reaction step expresses how often this reaction step has
taken place. (It will turn out that its stochastic counterpart is exactly the number
of reaction steps having occurred up to a given time.) The following form of the
induced kinetic differential equation c(t) = c(0) + γ

∫ t

0 w(c(s)) ds shows that this
is exactly

∫ t

0 w(c(s)) ds; therefore we introduce the formal definition.

Definition 6.13 The reaction extent is defined to be U(t) := ∫ t

0 w(c(s)) ds for all t
in the domain of the solution of the induced kinetic differential equation.

To have an evolution equation for the reaction extent, let us take the derivative of its
defining equality to get U̇(t) = w(c(t)) = w(c(0)+ γU(t)) to which one can add if
needed the initial condition U(0) = 0 ∈ R

R.

Let us see an example for the differential equation of the reaction extent.

{alpha, gamma} =

ReactionsData[{"Michaelis-Menten"}]["α", "γ"];

Thread[{u1’[t], u2’[t], u3’[t]} ==

{k1, k2, k3} Times @@ (({e0, s0, 0, 0}

+ gamma.{u1[t], u2[t], u3[t]})^alpha)]

The concept of reaction extent naturally appears in stochastic models as well (see
later in Sect. 10.2.2).

Finally, we mention that a code to deal with reactions should start with parsing,
with the translation of reaction steps into a (deterministic or stochastic) model, as
it was realized very early in the history of computer programs aimed at studying
reactions (see Chap. 12).

6.4 Usual Categorial Beliefs

Large classes of nonlinear differential equations have been defined by different
authors, and sometimes they are believed to incorporate the class of induced kinetic
differential equations. Here we show that this is not the case in general, even if we
restrict ourselves to the case of mass action type kinetics.
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6.4.1 Generalized Lotka–Volterra Systems

The classical authors of population dynamics, Lotka and Volterra, elaborated models
to describe oscillatory behavior of biological populations (see, e.g. Lotka 1925).
When oscillatory chemical reactions started to arouse interest, the Lotka–Volterra
model became a starting point that is why some mathematicians think that at
least the generalized Lotka–Volterra model is capable of describing induced kinetic
differential equations of—at least—second-order reactions. Let us investigate this
statement in detail.

Definition 6.14 The differential equation

ẋm = xm

⎛

⎝
∑

p∈M
ampxp + bm

⎞

⎠ (m ∈M ) (6.34)

or, shortly, ẋ = x  (Ax + b) is a generalized Lotka–Volterra system, if
M ∈ N; amp, bm ∈ R for m,p ∈ M . The amp entry of the community matrix
A expresses the effect of the pth species on the mth species, while the component
bm of the vector b expresses birth or death depending on whether it is positive or
negative.

The technical terms in the above definition reveal that generalized Lotka–Volterra
systems are mainly, although not exclusively, used in population dynamics.

Example 6.15 Obviously, neither the induced kinetic differential equation ċ = c3

of the reaction 3 X
1−−→ 4 X, nor the induced kinetic differential equation

ȧ = −k1a + k3bc ḃ = k1a − k2b
2 − k3bc ċ = −k2b

2

of the Robertson reaction, nor even the induced kinetic differential equation ċ = 1

of the reaction 0
1−−→ X is of the generalized Lotka–Volterra form. Still—

no wonder—that the induced kinetic differential equation of the Lotka–Volterra
reaction is a generalized Lotka–Volterra system.

It is not only that the class of kinetic differential equations is not a proper subset
of Lotka–Volterra systems, but the case is just the opposite: All Lotka–Volterra
systems are kinetic differential equations, because they contain no negative cross
effect (see Definition 6.24 below). One can even explicitly define a reaction having
Eq. (6.34) as its induced kinetic differential equation as follows:

Xm + Xp

amp−−→ ((1+ sign(amp))Xm + Xp Xm
bm−−→ (1 + sign(bm))Xm.
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Another direction of generalization of the Lotka-Volterra model has been introduced
and investigated by Farkas and Noszticzius (1985), Dancsó et al. (1991), and Boros
et al. (2017a,b).

6.4.2 Kolmogorov Systems

A possible generalization of Lotka–Volterra systems can be obtained when the
second factor on the right-hand side of (6.34) is not necessarily linear, just
an arbitrary continuously differentiable function; see, e.g., Hirsch et al. (2004),
pp. 246–253 (where one cannot find the name of Kolmogorov) or Sigmund
(2007).

Definition 6.16 The differential equation

ẋm = xm · gm ◦ x (m ∈M ) (6.35)

or, shortly, ẋ = x (g ◦ x) is a Kolmogorov system, where M ∈ N; gm ∈ C 1(RM)

for m ∈M and g = [g1 g2 · · · gM
]	
.

Example 6.17 Obviously, neither the induced kinetic differential equations of the
Example 6.15 nor the induced kinetic differential equation

ẋ = a + k1x
2y − bx − x ẏ = −k1x

2y + bx (6.36)

of the Brusselator by Prigogine and Lefever (1968)

0
a−−⇀↽−−
1

X 2 X+ Y
k1−−→ 3 X X

b−−→ Y

is a Kolmogorov system. The induced kinetic differential equation

ẋ = k1x
2y ẏ = k2xy

2

of the reaction 2 X + Y
k1−−→ 3 X + Y X + 2 Y

k2−−→ X + 3 Y is a Kolmogorov
equation which is not a Lotka–Volterra system.

Let us note that a Kolmogorov system with any polynomial f is the induced kinetic
differential equation of some reaction, because they cannot contain negative cross
effect (see Definition 6.24 below).
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6.4.3 Monotone Systems

Definition 6.18 The differential equation

ẋ = f ◦ x (6.37)

is a monotone system, Hirsch and Smith (2005, 2006) and Smith (1995, 2008), if
y0 ≤ z0 implies that

y(t) ≤ z(t) (t ∈ Dy ∩Dz), (6.38)

where y and z are solutions to (6.37) with initial conditions y(0) = y0 and z(0) =
z0, respectively.

Theorem 6.19 Equation (6.37) is monotone if and only if for all x ∈ Df , one has
that the off-diagonal elements of f′(x) are nonnegative (in other words f′(x) is a
Metzler-matrix).

It is easy to find induced kinetic differential equations having and also those
not having this property. The induced kinetic differential equations of first-order
reactions always are monotonous systems, because the coefficient matrix is a
Metzler-matrix as a consequence of the lack of negative cross effect.

Remark 6.20 Monotonicity above can be generalized as follows. In the Defini-
tion 6.18, y0 − x0 ∈ (R+0 )M implies y(t) − x(t) ∈ (R+0 )M. Instead of (R+0 )M

one can take another coneK ⊂ R
M to arrive at the definition of monotonicity with

respect to an arbitrary cone.
Banaji (2009) investigates the problem in this more general setting and provides

sufficient conditions to ensure monotonicity of the induced kinetic differential
equation of a reaction. The goal of the author is rather finding cones which a given
reaction preserves than to find reactions which preserve the most important cone,
the first orthant.

Remark 6.21 An important property of monotone systems is that if f(0) = 0, then
solutions starting from nonnegative initial vectors remain nonnegative throughout
their domain, cf. Theorem 8.6.

An induced kinetic differential equation is almost never a monotone system with
respect to the first orthant; consider, e.g., the induced kinetic differential equation of
the Lotka–Volterra reaction (see Problem 6.13). See however Problem 6.12.

Example 6.22 Suppose that in the reaction (De Leenheer et al. 2006)

C1 � C2 � · · ·� Cn � Cn+1 � · · ·� CN−1 � CN
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at least one of the complexes Cn is nontrivial, and each species is part of precisely
one complex. Then the induced kinetic differential equation of the reaction (with
mass action type kinetics or even with kinetics which is slightly more general) can
be transformed into a cooperative system, i.e., into a system belonging to a subclass
of monotone systems—with all the benefits of knowledge on monotone systems
relating longtime behavior (Smith 1995, 2008).

6.5 Polynomial and Kinetic Differential Equations

We learned the definition of an induced kinetic differential equation and we also
learned what it is not. Definitions are needed to exactly tell what it is.

6.5.1 Polynomial and Quasipolynomial Differential Equations

Definition 6.23 Let M ∈ N, and let Ω ⊂ R
M be a connected open set, f :

Ω −→ R
M be a function with the property, that all its coordinate functions fm

are polynomials of all its variables. (Cf. Problem 6.14.) Then,

ẋ = f ◦ x (6.39)

is said to be a polynomial differential equation, or a polynomial system for short.

Polynomial differential equations have the advantageous property that the Taylor
series of their solutions can explicitly be written down. Should one finish studying
(generalized) polynomial equations at this point, let alone kinetic differential
equations? Not at all, fortunately. First of all, the explicit solution gives one of the
solutions and says nothing about the domain of the solution. Truncating the Taylor
series, one is able to get quantitative information or even elaborate a numerical
method (Brenig et al. 1996), but it gives no information about the qualitative
properties (such as stability of equilibria, existence of periodic solutions, etc.).
Think of the fact that the Taylor series of the sine function does not immediately
show the periodicity of the function. Still, we think that this formula should deserve
more interest than it does up to the present.

Another area of investigation of the above mentioned authors (including A. Goriely, as well;
see e.g. Brenig and Goriely 1989) is to find appropriate forms of polynomial differential
equations. The earlier author Beklemisheva (1978) investigated the same class of models
with very similar tools. Generalized or quasi-polynomial systems have also been used for
control purposes by Magyar et al. (2008) and Szederkényi et al. (2005).
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6.5.2 The Absence of Negative Cross Effect

Definition 6.24 Consider the (6.39) polynomial system, and suppose that for all
m ∈M , the coordinate function fm has the property that its value at any argument
c ∈ R

M (after simplification) contains only terms with negative sign which do
depend on cm. Then the given polynomial system is said to have no negative cross
effect.

Example 6.25 The Lorenz equation

ẋ = σy − σx ẏ = �x −xz ż = xy − βz (6.40)

or the equation of the harmonic oscillator

ẋ = y ẏ = −x (6.41)

does have negative cross effect; the terms showing this are put in a box.

Example 6.26 The induced kinetic differential equation of the Lotka–Volterra
reaction (6.28)

ẋ = k1x − k2xy ẏ = k2xy − k3y (6.42)

has no negative cross effect, as all the terms with negative sign −k2xy,−k3y do
depend on the corresponding variable x and y, respectively.

How to check this property? We give two solutions.

CrossEffectQ[polyval_,vars_] :=

Module[{M = Length[vars]},

And @@ (Map[Not[Negative[#]&,

Flatten[MapThread[ReplaceAll,

{MonomialList[polyval, vars],

Thread[vars -> #]& /@

(1 - IdentityMatrix[M])}]]])].

And now let us use the newly defined function.

CrossEffectQ[{d, c - 4y x^2 + 5x y + 6z + 7w,

a x + 2y, -b x y}, {x, y, z, w}]

The answer is—as expected—depending on the signs of the parameters.

!Negative[d] && !Negative[c] && !Negative[a] &&

!Negative[-b].
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A more easily readable version leads to the same result.

CrossEffectQ2[polyval_, vars_] :=

Module[{M = Length[vars], L},

L[i_] := If[Head[polyval[[i]]] === Plus,

Apply[List, polyval[[i]]], {polyval[[i]]}]

/. MapThread[Rule, {vars,

ReplacePart[ConstantArray[1, M], {i} -> 0]}];

And @@ Map[# >=0&, Flatten[Table[L[i], {i, 1, M}]]]

]

Using this function for the same example

CrossEffectQ2[{d, c - 4y x^2 + 5x y + 6z + 7w,

a x + 2y, -b x y}, {x, y, z, w}]

we obtain the result

d >= 0 && c >= 0 && a >= 0 && -b >= 0.

Now we are in the position to characterize the induced kinetic differential equations’
reactions endowed with mass action type kinetics.

Theorem 6.27 (Hárs and Tóth (1979)) A polynomial system is the induced kinetic
differential equation of a reaction endowed with mass action type kinetics if and
only if it has no negative cross effects.

Proof First, we show that the induced kinetic differential equation of a reaction
endowed with mass action type kinetics cannot contain negative cross effect. Let us
consider the form (6.7), i.e.,

ċm(t) =
∑

r∈R
(β(m, r)− α(m, r))kr

M∏

p=1

cp(t)
α(p,r) (m ∈M ). (6.43)

If the term (β(m, r) − α(m, r))kr
∏M

p=1 cp(t)
α(p,r) has a negative sign, then

β(m, r) < α(m, r), and this inequality together with the fact that 0 ≤ β(m, r)

implies that 0 < α(m, r), i.e., the product
∏M

p=1 cp(t)
α(p,r) contains the factor

cm(t)α(m,r), where the exponent is strictly positive.
Second, suppose the right-hand side of the polynomial system

ẋ = Zxa, (6.44)

where Z ∈ R
M×R, a ∈ N

M×R
0 ,M,R ∈ N does not contain negative cross

effect, which means that Z(m, r) < 0 implies that a(m, r) ≥ 1, and let us show
that there is a reaction having the given polynomial system as its induced kinetic
differential equation. We construct the reaction steps and also give the reaction rate
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coefficients of the reaction which one may call the canonical realization of the
given polynomial system.

A term on the right-hand side of the mth equation which has a positive sign is of
the form

Z(m, r)
∏

p∈M
x
a(p,r)
p (6.45)

with Z(m, r) ∈ R
+. The reaction step a( · , r)

Z(m,r)−−−→ a( · , r)+ em contributes to the
induced kinetic differential equation with the single term (6.45) and nothing else.

A term on the right-hand side of the mth equation which has a negative sign is of
the form

Z(m, r)
∏

p∈M
x
a(p,r)
p (6.46)

with−Z(m, r) ∈ R
+ and a(m, r) ≥ 1. The reaction step a(·, r)

−Z(m,r)−−−−→ a(·, r)−em
contributes to the induced kinetic differential equation with the single term (6.46)
and nothing else. Thus we have constructed in an algorithmic way an inducing
reaction to the given polynomial system without negative cross effect. ��

A good review of our earlier results has been given by Chellaboina et al. (2009).
Applications of the above characterization have been given from and outside our
group, as well (see the later chapters).

As to the meaning of the theorem, one may put it also this way: A large subset
of polynomial equations are kinetic. In connection with this, we can mention the
paper by Kowalski (1993) asserting that practically all nonlinear systems in the
open first orthant can be formulated as kinetic differential equations. If one restricts
the investigations onto the open first orthant, one can also transform polynomial
differential equations into kinetic ones generalizing the idea of Samardzija et al.
(1989) given by Crăciun: One can multiply the right-hand sides with the product of
all the variables.

Let us also mention that Dickenstein and Millán (2011), Remark 2.1, is a good
paragraph on the different formulations of the induced kinetic differential equation
used by different authors.

6.5.3 Quadratic Right-Hand Sides

It is known that polynomial differential equations can be transformed via introduc-
tion of new variables into quadratic polynomial equations (Myung and Sagle 1992).
The advantage of this transformation is that polynomial differential equations with
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quadratic polynomials on their right-hand side can be investigated using methods of
nonassociative algebras (Markus 1960; Kaplan and Yorke 1979; Myung and Sagle
1992). The question obviously arises if starting from a kinetic differential equation,
is it possible to remain within this set when one applies such a transformation?

Theorem 6.28 (Halmschlager and Tóth (2004)) Given a kinetic differential equa-
tion of a mass action type mechanism, there exists a smooth transformation of the
variables in which the equation has a homogeneous quadratic polynomial without
negative cross effect as a right-hand side.

Proof Instead of giving a formal proof here (cf. Problems 6.16 and 6.17), we show
an example the steps of which can obviously be carried out in the general case, as
well.

Let us consider the induced kinetic differential equation

ẋ = a + x2y − (b + 1)x ẏ = bx − x2y, (6.47)

of the Brusselator 0
a−−→ X 2 X + Y

1−−→ 3 X X
b−−→ Y X

1−−→ 0, where
a, b ∈ R

+. Let z be such that ż = 0, z(0) = 1; then introducing the variables

ξ1 := x2 ξ2 := y2 ξ3 := z2

ξ4 := xy ξ5 := xz ξ6 := yz (6.48)

ξ7 := x ξ8 := y ξ9 := z

one gets the following system:

ξ̇1 = 2x(a + x2y − (b + 1)x) = 2aξ7ξ9 + 2ξ1ξ4 − 2(b + 1)ξ1ξ9

ξ̇2 = 2y(bx − x2y) = 2bξ7ξ8 − 2ξ1ξ2

ξ̇3 = 0 = 0
ξ̇4 = (a + x2y − (b + 1)x)y

+x(bx − x2y) = aξ8ξ9 + ξ1ξ2 − (b + 1)ξ4ξ9 + bξ2
7 − ξ1ξ4

ξ̇5 = (a + x2y − (b + 1)x)z = aξ2
9 + ξ1ξ6 − (b + 1)ξ5ξ9

ξ̇6 = (bx − x2y)z = bξ7ξ9 − ξ1ξ6

ξ̇7 = a + x2y − (b + 1)x = aξ2
9 + ξ1ξ8 − (b + 1)ξ7ξ9

ξ̇8 = bx − x2y = bξ7ξ9 − ξ1ξ8

ξ̇9 = 0 = 0.

��
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Remark 6.29 Allowing fractional or even negative stoichiometric coefficients might
be useful sometimes as in the model

ẋ = −k1xy + k2ay − 2k3x
2 + k4ax − 0.5k5xz (6.49)

ẏ = −k1xy − k2ay + k6mz (6.50)

ż = +2k4ax − k5xz− 2k6mz (6.51)

of a version of the Oregonator (Turányi et al. 1993)

X+ Y
k1−−→ P Y+ A

k2−−→ X+ P 2 X
k3−−→ P+ A (6.52)

X+ A
k4−−→ 2 X+ 2 Z X+ Z

k5−−→ 1/2X+ A Z+M
k6−−→ Y− Z (6.53)

(where X = HBrO2, Y = Br – , Z = Ce4
+, A = BrO3

– , P = HOBr, M = malonic acid)
of the Belousov–Zhabotinsky reaction. Still, the induced kinetic differential equa-
tion can be considered as the induced kinetic differential equation of a reaction
because the right-hand side contains no negative cross effect (see Problem 2.1).

In some cases, however, this may lead to the appearance of negative cross effects,

as the simplest possible example 0
1−−→ −X with the induced kinetic differential

equation ċ = −1 shows.

6.5.4 Examples

Let us see a few examples of reactions with different kinetics.

Example 6.30 (Mass Action Kinetics)

1. Decomposition of nitrogen penta-oxide follows a first-order reaction step.

N2O5
k−−→ 2 NO2 + 1

2
O2 w([N2O5], [NO2], [O2]) := k[N2O5].

2. Decomposition of ammonium nitrite in aqueous solution also follows a first-
order reaction step.

NH4NO2
k−−→ N2 + 2 H2O w([NH4NO2], [N2], [H2O]) := k[NH4NO2].

3. Decomposition of nitrogen peroxide follows a second-order reaction step.

2 NO2
k−−→ 2 NO+ O2 w([NO2], [NO], [O2]) := k[NO2]2.
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4. The reaction between nitric oxide and oxygen is a third-order reaction.

2 NO+ O2
k−−→ 2 NO2 w([NO], [O2], [NO2]) := k[NO]2[O2].

Example 6.31 (Non-mass Action Kinetics)

1. Although we have a second-order reaction, the rate being not of the mass action
type is a zeroth-order function of the relevant concentration. Ammonia (NH3)
gas decomposes over platinum catalyst to nitrogen gas (N2) and hydrogen gas
(H2).

2 NH3
Pt−−→ N2 + 3 H2 w([NH3], [N2], [H2]) := k.

2. Although we have a third-order reaction, the rate being not of the mass action
type is a second-order function of the relevant concentrations. Nitrogen dioxide
(NO2) gas reacts with fluorine gas (F2) to give nitrosyl fluoride.

2 NO2 + F2 −−→ 2 NO2F w([NO2], [F2], [NO2F]) := k[NO2][F2].

3. Although we have a second-order reaction, the rate being not of the mass action
type is a fractional order function of the relevant concentration. Hydrogen (H2)
gas reacts with bromine (Br2) gas to give hydrogen bromide vapor.

H2 + Br2 −−→ 2 HBr w([H2], [Br2], [HBr]) := k[H2][Br2]1/2.

4. Let us see another example of a reaction with a reaction rate of fractional order.

CH3CHO −−→ CH4 + CO w([CH3CHO], [CH4], [CO]) := k[CH3CHO]3/2.

5. In enzyme kinetics very often rational functions are used as rate functions, e.g.,

w(s) := k1e0s

KM + s

can be used as the rate of the reaction S −−→ P with positive constants
k1, e0,KM. The rate is positive if s is positive and zero if s = 0; thus
Conditions 2 are fulfilled.

6. The above special type of non-mass action kinetics, the Michaelis–Menten-type
(or Holling-type) kinetics, is often used in population biology (Hsu et al. 2001;
Kiss and Kovács 2008; Kiss and Tóth 2009; May 1974).
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7. The reaction H2 + Br2 −−→ 2 HBr is usually described in such a way that the
rate of production of HBr is given by the expression

k[H2][Br2]3/2

K[HBr] + [Br2] .

(Actually, this rate comes as a result of an approximation; see Problem 9.26.)
Again, this rate is zero, if either [H2] or [Br2] is zero, and is positive if both are
positive.

6.6 The Graphs of Element Fluxes

In this section we add a graph to the ones defined in Chap. 3, namely, graphs
useful in following the fluxes of the individual elements. Here we follow the clear
description by Turányi and Tomlin (2014), pp. 54–55; see also Turns (2000), pp.
165–168, and the original source by Revel et al. (1994) or the verbal description by
Orth et al. (2010). If the number of atoms is D ∈ N, then we shall altogether have
D graphs, one for each atom.

Let us consider the reaction (2.1) with arbitrary kinetics, X(m) = Z(1,m)A(1)+
· · · + Z(D,m)A(D) ∀m ∈ M , with the atoms A(1),A(2), . . . ,A(D) and
suppose also that the number of each atom is the same on the two sides of
the reaction steps, i.e., the reaction (2.1) obeys the law of atomic balance, i.e.,
Zγ = 0 ∈ N0

D×R (Definition 4.11). Let us construct a weighted directed graph
for the atom A(d), where d ∈ {1, 2, . . . ,D} in the following way. The vertices
of the graphs will be the species, and two species X(p) and X(q) are connected
with an arrow if there is a directed path from X(p) to X(q) of length two in
the Volpert graph of the reaction. (More explicitly, if X(q) is directly produced
from X(p), i.e., there is a reaction step r with the reactant complex containing the
species X(p) and the product complex containing X(q).) This arrow receives the
weight

Fluxd,r
p,q(t) := Z(d,p)α(p,r)Z(d,q)β(q,r)∑

m∈M Z(d,m)α(m,r)+∑m∈M Z(d,m)β(m,r))
wr(c(t)) (6.54)

(p, q ∈M ; d ∈ {1, 2, . . . ,D}; r ∈ R})

for times t ∈ Dc, i.e., in the domain of c.

Remark 6.32 Let us analyze this expression.

1. Following Turányi and Tomlin (2014) and differently from Revel et al. (1994),
we dropped the dot above the flux (which might have directly emphasized that
the flux is a velocity-type quantity).
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2. The numerator shows that the larger the flux is, the more atoms we have on both
sides of the reaction step. (The flux is proportional to these numbers.)

3. The denominator contains the total number of A(d) atoms on the two sides of
the rth reaction step.

4. The formula also shows that in case of reversible reaction steps, the weights
will be the same in both directions.

5. Fluxes of radicals can also be studied by the corresponding flux graph; however,
in this case it is the user (the chemist) who is to provide the coefficients of the
radicals in the individual species (or to form the generalized atomic matrix):
It cannot be calculated automatically from the numbers of the individual atoms
even if the constitution of the radical is given.

6. Note that the weights depend on the initial concentrations and also on the
reaction rates or—in case of mass action kinetics—on reaction rate coefficients.

7. The weights are time dependent as well; to calculate these the solution of
the induced kinetic differential equation is needed. However, if one is only
interested in the ratios of the atomic fluxes, then in some very special cases,
it may happen that wr(c(t)) is not needed (see Example 6.33 below).

8. The weights might also be time independent, if one calculates the reaction rates
at a stationary point, i.e., at a solution c∗ of f(c) = 0, cf. Definition 7.3.

9. If there are more than one reaction steps in which X(p) is transformed into
X(q), then the fluxes are to be summed up:

Fluxd
p,q(t) :=

∑

r∈R
Fluxd,r

p,q(t).

10. Suppose some of the reaction steps are reversible. In this case we have two
choices. We can proceed as usual to get the flux graphs. The second alternative
is that for all pairs of species connected with a directed path of length two in the
Volpert graph, we calculate the net flux, i.e., the differences of the fluxes in the
two directions, and we draw an arrow from X(p) to X(q) with the difference as
the weight in case this difference is positive and in the opposite direction if it is
negative. (In this case the weight will be the negative of the differences between
reaction rates.) As it may change sign during the reaction, the structure of the
graph may depend on time.

Example 6.33 Let us consider the methanol–formic acid esterification Exam-
ple (4.13):

HCOOH+ CH3OH −−→ HCOOCH3 + H2O, (6.55)

and suppose the reaction rate is given by the function w ∈ C 1(R4,R+0 ). Here we
have the R = 1 reaction steps among M = 4 species composed of D = 3 atoms.
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H2O H2O

CH3OH CH3OH CH3OH

HCOOH HCOOH HCOOH

HCOOCH HCOOCH HCOOCH

4/12 w (c(t))

1/4 w (c(t)) 1/6 w (c(t)) 4/6 w (c(t))

2/6 w (c(t))

2/6 w (c(t))

1/4 w (c(t))

8/12 w (c(t)) 8/12 w (c(t))

16/12 w (c(t))

Fig. 6.1 Fluxes of H, C, and O in the reaction (4.13)

The matrices of stoichiometric coefficients and the atomic matrix are

α =

⎡

⎢
⎢
⎣

1
1
0
0

⎤

⎥
⎥
⎦ , β =

⎡

⎢
⎢
⎣

0
0
1
1

⎤

⎥
⎥
⎦ , Z =

⎡

⎣
2 4 4 2
1 1 2 0
2 1 2 1

⎤

⎦ ,

if the species and atoms are numbered in the order of their appearance. Fulfilment
of obeying the law of atomic balance is shown by

Z · γ = Z · (β − α) =
⎡

⎣
0
0
0

⎤

⎦ .

As we have three atoms, we have also three graphs for element fluxes. (The total
number of H, C, and O atoms, respectively, is 6, 2, and 3.) All are shown in Fig. 6.1.
If one is only interested in the ratios of the fluxes, then the common factor w(c(t))
can be deleted from all the edges. This is not the case in more complicated examples
with more than one reaction step (see Sect. 6.8 of Exercises and Problems).

6.7 Temperature and Diffusion

In Chap. 2 we described restrictions as to the generality of the investigated models.
Here we add a few words on disregarded physical effects.

6.7.1 Temperature

Temperature dependence does not seem to be important practically when mod-
eling metabolic processes, but it is strongly needed in atmospheric chemistry and
combustion. (Theoretically it is important everywhere, because all the reaction steps
are either exothermic or endothermic: either requiring or producing heat.)
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Let us consider the simple first-order decomposition of a species, the con-
centration of which at time t is denoted by c(t), and assume that the reaction
rate coefficient k does depend on the temperature T , and this dependence can be
described by the Arrhenius form (Nagy and Turányi (2011); Tomlin et al. (1992),
Volpert and Hudyaev (1985), p. 611):

k(T ) = k0e
− A

RT , (6.56)

where the constants k0, A,R are as follows:

• k0 is the preexponential factor having a positive numerical value,
• A is the activation energy (in J/mol) of the reaction step having a positive

numerical value in general (although in exceptional cases it can also be negative),
• R = 8.314 J

mol·K is the universal gas constant.

Then the usual model to describe this process is

ċ(t) = −k0e
− A

RT (t) c(t) (6.57)

Ṫ (t) = k0e
− A

RT c(t)Q− a(T (t)− Ta), (6.58)

where the further constants Q,a, Ta are as follows:

• Q is the thermal effect: the ratio of the standard molar reaction step enthalpy
ΔH and the constant pressure heat capacity Cp, Turányi and Tomlin (2014), p.
11; having the unit K/mol and being positive, if the step is endothermic, and
negative, if the step is exothermic,

• a is the coefficient of heat transfer, reciprocal of the characteristic time of the
system, having the unit 1

s and being positive,
• Ta is the ambient temperature with the unit K.

Remark 6.34

• The first term in the second equation expresses the effect of reaction step on the
temperature of the ambience. If Q < 0, then the reaction step is exothermic:
Heat is absorbed from the surroundings. If Q > 0, then the reaction step is
endothermic: Heat is released into the surroundings.

• The second term describes Newton’s law of cooling: If the temperature of the
reaction vessel is higher than the ambient temperature, then it will cool down; if
it is lower, then it will warm up.

• Including temperature dependence in this form (or in a similar way in more
complicated cases) causes no problem in the numerical treatment, but only a
part of the theory we are going to explicate in the present book can directly be
applied for this situation.
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The left side of Fig. 6.2 shows that the decay is much faster in the case of
an endothermic reaction. The right-hand side shows that the temperature tends
to a constant value, but this is higher than the initial one in the case of an
endothermic reaction and lower than the initial one in the case of an exothermic
reaction.

The difference of concentrations with changing and constant (300 K) temperature
can be seen on Fig. 6.3. If the reaction is endothermic, then the concentration
is always smaller with changing temperature than with a constant temperature.
However, if the reaction is exothermic, then the concentration is always larger with
changing temperature than with a constant temperature.

Now, let us formulate the evolution equation for reactions involving temperature
effects. The kinetics is assumed to be of the mass action type; the temperature
dependence is allowed to be of the generalized Arrhenius type (see, e.g., Nagy

0.8
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400

300

20

Q = –100 Q = 600Q = –100 Q = 600

40 60 80

0.6

0.4

0.2

20 40 60 80
t t

c (t ) T (t )

Fig. 6.2 The change of concentration and temperature in a reaction described by (6.57) and (6.58)
with k0 = R = 1, A = 1000, a = 0; T (0) = 300, c(0) = 1 and different values of Q

0.1

20 40 60 80
t

Dc (t )

–0.1

–0.2

–0.3
T = 300 K

T is changing with time
–0.4

–0.5

Fig. 6.3 The difference of concentrations with changing and constant (300 K) temperature with
k0 = R = 1, A = 1000, a = 0; T (0) = 300, c(0) = 1, and different values of Q
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and Turányi 2011).

ċm(t) =
∑

r∈R
γ (m, r)k0

r T (t)nr e
− Ar

RT (t) c(t)α(·,r) (m ∈M )

Ṫ (t) = −
(
∑

r∈R

∑

m∈M
Qrk

0
r T (t)nr e

− Ar
RT (t)

)

− a(T (t)− Ta)

Here nr is a parameter usually obtained by fitting the generalized Arrhenius form to
time-dependent data on the reaction rate coefficient; all the other parameters have
similar meaning as above; if they have the index r, then they may be different for
different reaction steps.

The first term of the second equation expresses the fact that the reaction step
changes the temperature, whereas the second term describes Newton’s law of
cooling as a result of contact with the ambience.

6.7.2 Diffusion

Diffusion is simpler or more complicated, as you like. Most of our models are
concentrated variable models, to use the engineering term, expressing the fact that
spatial inhomogeneities are disregarded. From time to time, we shall also consider
diffusion, at least a special form of it: the one without cross-diffusion (see page 107).
These models are also known by the name distributed variable models as opposed
to concentrated variable models as, e.g., ordinary differential equations. The simple
first-order decomposition accompanied with diffusion is usually described with the
following distributed variable model which is the partial differential equation:

∂c(t, x)

∂t
= D

∂2c(t, x)

∂x2 − kc(t, x), (6.59)

where

• the positive real constant D is the diffusion coefficient with the unit m2

s ,

• x is the (here, one-dimensional) spatial variable,
• the positive real constant k is the reaction rate coefficient.

Remark 6.35

• To make the model well defined, some additional initial and/or boundary
conditions are also to be specified.

• Equations of the form similar to Eq. (6.59) are also used to describe spatiotem-
poral changes of temperature, as well, and they are also used in probability
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Fig. 6.4 Solution of (6.59)
with D = 1, k = 1, c(0, x) =
e−0.01x sin(8x), c(t, 0) =
0, c(t, π) = 0
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theory to describe the change of the probability density of some stochastic
processes.

• As to the general treatment of reaction-diffusion processes, mathematicians
prefer the book by Smoller (1983). More application oriented are the books by
Britton (1986) and Fife (1979).

Figure 6.4 shows the smoothing effect of diffusion: The initial waves die out very
soon, at around t = 0.04.

6.7.3 Temperature and Diffusion Together

An equation (of which the applicability should carefully be investigated in all cases)
unifying the effects of temperature and diffusion is

∂cm(t, x)
∂t

= DmΔcm(t, x)+
∑

r∈R
γ (m, r)kr0T (t, x)nr e−

Ar
RT (t,x) c(t, x)α(·,r),

(m ∈M )

∂T (t, x)
∂t

= λΔT (t, x)−
∑

r∈R
Qrk

r
0T (t, x)nr e−

Ar
RT (t,x) c(t, x)α(·,r),

where λ is the heat diffusion coefficient.
Note that mixing is not taken into consideration, and all the concentrations only

affect their own diffusion: Cross-diffusion is excluded.
Actually, the best solution would be to start from thermodynamic principles

and present models as special cases, systems with special constitutive relations.
However, it is not possible to find a generally accepted thermodynamic (as
opposed to thermostatic) theory including reactions and physical processes as well
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(cf. Érdi 1978; Keszei 2011; Kirkwood and Oppenheim 1961; Matolcsi 2005;
Rock 2013; Schubert 1976; Vándor 1952). This fact is the more/is even more
interesting if we realize that a reacting system should be by definition the object
of thermodynamics, because it is a kind of general (macroscopic) physical system
theory.

6.8 Exercises and Problems

6.1 Show the equivalence of Eqs. (6.7) and (6.8).

(Solution: page 393.)

6.2 Determine the form of the reaction rate of the reaction step X + Y + Z −−→ C
(where C is an arbitrary complex) assuming that it is a nonnegative, monotone, and
additive function of all the species concentrations present in the reactant complex.

(Solution: page 393.)

6.3 Prove that mass action kinetics possess both the properties of Condition 2.

(Solution: page 394.)

6.4 How do you construct the vertex-edge incidence matrix of a reaction?

(Solution: page 394.)

6.5 Show that with the notations of the present chapter YE = γ holds.

(Solution: page 394.)

6.6 Construct the adjacency matrix (also called vertex-incidence matrix) of the
Michaelis–Menten reaction by hand, and design a general algorithm or a Mathe-
matica code to calculate it.

(Solution: page 395.)

6.7 Find the third factor in Eq. (6.24) in the special case of (6.29).

(Solution: page 395.)
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6.8 Using the definition g(c) := (R(c) − R	(c))1N of the complex formation
vector, show that the two forms of the species formation vector f(c)—i.e., Yg(c)
and

∑

n∈N

∑

q∈N
rnq(c)(yn − yq)

—are the same.

(Solution: page 395.)

6.9 Calculate explicitely the coefficient matrix G in (6.33) standing before the
vector of rate coefficients.

(Solution: page 395.)

6.10 Show that the induced kinetic differential equation of the reaction in Fig. 6.5
is a generalized Lotka–Volterra system.

(Solution: page 396.)

6.11 Find a reaction with a Kolmogorov system as its induced kinetic differential
equation which is not a generalized Lotka–Volterra system.

(Solution: page 396.)

6.12 Show that the induced kinetic differential equation of the consecutive reaction

A
1−−→ B

1−−→ C is a monotone system.

(Solution: page 396.)

6.13 Show that the induced kinetic differential equation of the Lotka–Volterra
reaction is not a monotone system (with respect to the first orthant). Hint: Use the
fact of the existence of a nonlinear first integral.

(Solution: page 396.)

X + Y 2 X X 0 Y 2 Y
c b a e f

Fig. 6.5 A reaction with induced kinetic differential equation that is a generalized Lotka–Volterra
system
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6.14 Show that a function f = (f1, f2) : R2 −→ R
2 which is a polynomial in all

of its variables is a multivariate polynomial, i.e., it is of the form

fm(x) =
Gm∑

|k|=0

akx
k (m = 1, 2)

with appropriate integers Gm ∈ N0.

(Solution: page 398.)

6.15 Find the solution of the induced kinetic differential equation of the autocat-

alytic reaction 2 X
1−−→ 3 X in the form of a Taylor series.

(Solution: page 399.)

6.16 Try to find much less number of variables in which the induced kinetic dif-
ferential equation (6.47) of the Brusselator can be transformed into a homogeneous
quadratic differential equation which is also kinetic.

(Solution: page 399.)

6.17 Provide a constructive proof of Theorem 6.28.

(Solution: page 399.)

6.18 Using the program ReactionKinetics, show that the law of atomic
balance holds in the case of the methanol–formic acid reaction Eq. (4.13).

(Solution: page 400.)

6.19 Construct the flux graph of the radical OH in the reaction (4.13) assuming the
reaction rate is given by the function w.

(Solution: page 400.)

6.20 Construct the graphs of atomic fluxes for the reaction

H+O2
w1−−⇀↽−−w−1

OH+O O+H2
w2−−⇀↽−−w−2

OH+H OH+H2
w3−−⇀↽−−w−3

H+H2O (6.60)

and assuming the reaction rates as shown.

(Solution: page 400.)
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6.21 Show that no reaction containing only three complexes induces the differential
equation (8.28) with a, b, c > 0.

(Solution: page 400.)

6.22 Reproduce Fig. 6.2 by modifying the reaction from first-order decay to first-
order autocatalysis in Eqs. (6.57) and (6.58).

(Solution: page 402.)

6.23 Suppose the dth-order decay (d ∈ N0) d X −−→ 0 and the temperature change
of a reaction step is described by the following set of differential equations:

ċ = −e−
a
T bcd Ṫ = e−

a
T cd

(in accordance with (14.36), but the interaction with the neighborhood is neglected
and n = 0 is assumed), where the constants a, b are positive and their meaning can
be found out by comparison with the equations in Sect. 6.7.1. Find c ’as a function
of’ T , i.e., being interested in solutions for which RT ⊂ R

+. Show that there exists
a function C such that C ◦T = c. Find also the time behavior of c and T separately.

(Solution: page 403.)

6.9 Open Problems

1. Suppose an induced kinetic differential equation is of the Kolmogorov form.
Can we say something about the relevant characteristics (deficiency, number
of linkage classes, reversibility and weak reversibility, acyclicity of the Volpert
graph etc.) of the underlying reaction?

2. About the transformation leading to homogeneous quadratic kinetic polynomial
one also has a few questions.
a. Can the transform be specialized to be unique with some kinds of chemically

relevant restrictions?
b. What is the minimal number of new variables to arrive at a quadratic kinetic

equation? What freedom do we have in choosing the new variables?
c. How are the relevant characteristics (deficiency, number of linkage classes,

reversibility and weak reversibility, acyclicity of the Volpert graph etc.)
transformed?

d. Is it possible to get such a transform which can be realized by a reaction with
a prescribed property?

e. Can the above questions be answered numerically (e.g., using the methods
by Szederkényi and coworkers; see, e.g., Johnston et al. 2012a,b, 2013;
Szederkényi 2010; Szederkényi and Hangos 2011), or can they be answered



112 6 The Induced Kinetic Differential Equation

symbolically for any values of the parameters in the original induced kinetic
differential equation?

f. Suppose we have a statement about the qualitative or quantitative properties of
the transform. What consequences can be drawn about the original solutions
from this knowledge?

3. Which are the exact necessary and sufficient conditions to be inflicted on the
stoichiometric coefficients leading to a kinetic differential equation? (We have
seen that negative sign is not excluded.)

4. Delineate large classes of reactions having an induced kinetic differential
equation which is a generalized Lotka–Volterra system, a Kolmogorov system, a
monotone system.

5. Relations between the graph of element fluxes and the other graphs defined
earlier are to be investigated.
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7Stationary Points

7.1 Introduction

Constant solutions of the induced kinetic differential equation of a mechanism may
have no physical relevance at all. A minimal requirement is that they should be
nonnegative (see Example 7.4). In some cases one may be interested in strictly
positive stationary points. The next problem is if such a stationary point is unique in
some sense or not. One should like to know something about the stability properties
of a stationary point. These will be the topics of the next chapter. As a preparation
of these topics, however, we study structural properties of the underlying reaction
which are closely connected to stability, as well.

Let us start with formal definitions to fix the notation to be used below. Note that
we are dealing with mass action type kinetics if not said otherwise.

7.2 Stationary Points

Let us start with a general definition. Let M ∈ N, f ∈ C 1(T ,RM), where T ⊂ R
M

is a connected open set: a domain.

Definition 7.1 The point x∗ ∈ T is a stationary point of the differential equation
ẋ(t) = f(x(t)), if f(x∗) = 0 holds.

Remark 7.2

1. Although in the theory of differential equations, equilibrium is the word used
for this concept, we prefer using the expression “stationary point” in connection
with applications and also avoid using steady state because the expressions
“equilibrium” and “steady state” are heavily loaded with undefined and unwanted
connotations. Sometimes we use fixed point; this wording expresses the fact that
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a stationary point is the fixed point of the map x0 �→ Φ(t, x0) for all t ∈ R,

where Φ(t, x0) is the solution of a differential equation at time t which starts
from the initial point x0 ∈ T . The map Φ is also called the solution operator of
the differential equation.

2. A stationary point may be identified with a constant solution of the differential
equation.

Next, using the definitions and notations introduced in Chaps. 4 and 6, we
specialize the above definition for the case of induced kinetic differential equations
of reactions endowed with mass action type kinetics and introduce a few further
definitions. Before that, let us have another look at the right-hand side of the induced
kinetic differential equation (the species formation vector) of (2.1) assuming mass
action type kinetics. It can be written as follows:

f(c) = Y
(
R(c)− R(c)	

)
1N (7.1)

with the matrix of reaction rates R(c) := K · diag(cY) calculated from the matrix
K of the reaction rate coefficients in the usual way. Using the complex formation
vector

g(c) := (K− diag(K	1N))cY =
(
R(c)− R(c)	

)
1N, (7.2)

as well, we get for the species formation vector the following expression:

f(c) = Yg(c). (7.3)

Now we are in the position to introduce—step by step—a series of definitions
related to the mass action type mechanism defined by 〈M ,Y,K〉 (or, equivalently,
by 〈M ,R,α,β,k〉) following Horn and Jackson (1972).

Definition 7.3 The concentration c∗ ∈ R
M is a stationary point of the induced

kinetic differential equation ċ = f◦c if f(c∗) = 0 holds. The set of positive stationary
points will be denoted as

E := {c∗ ∈ (R+)M |f(c∗) = 0} = {c∗ ∈ (R+)M |g(c∗) ∈ Ker(Y)}.

7.3 Existence of Nonnegative and Positive Stationary Points

To illustrate the problem, let us mention first that if one has two, two-variable
quadratic polynomials and tries to find their roots by expressing one of them as
the function of the other and substituting the result into the other, then in general
one may arrive at a degree sixth polynomial and not at a quartic (degree fourth) one
as one might expect.
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The reason to be still optimistic is that a new tool to solve systems of polynomial equations
has been invented in the sixties of the last century by Buchberger (2001); Buchberger
and Winkler (1998): the Gröbner basis. It is known that a system of linear equations
Ax = b can be solved in such a way that the coefficient matrix A is transformed into, say,
upper triangular form, and then one solves the last equation containing a single variable,
then substitutes the result into the penultimate equation which turns by this substitution
into a one-variable equation which can easily be solved, etc. The theory of Gröbner basis
makes the same transformation possible for systems of polynomial equations, as well. This
surely cannot mean that higher than fourth order equations can symbolically be solved,
this procedure only provides a one-variable equation which can either symbolically or
numerically be solved, then the results can be substituted into the next equation reducing
it to a one variable equation again etc. Even if the numerical methods cannot be avoided
in complicated cases, the problems become much easier to handle. Problem 7.1 will show
how this procedure works.

No general theory on the existence and number of positive (respectively, nonneg-
ative) roots of multivariate polynomials seems to exist. There are some methods, like
the one by Pedersen et al. (1993), based on algebraic geometry, but usually they lead
to calculations with high costs. The method of semi-definite programming (see page
160) is also used in this area (Lasserre et al. 2008). No wonder that the first relevant
results in this direction come from people interested in reaction kinetics (Millán
2011; Millán et al. 2012).

Let us see a few special examples and general theorems on the existence of
stationary points.

Example 7.4

1. The reaction 0 −−→ X has no stationary point.

2. The mechanism 3 X
1/2−−⇀↽−−
1/2

X having the induced kinetic differential equation

ẋ = −x3 + x has three stationary points: −1, 0, 1.
3. The differential equation ẋ = xy+x+y+1 ẏ = 2(xy+x+y+1) is a kinetic

differential equation, and it has a unique stationary point: (−1,−1).

These examples show that neither the existence, nor the uniqueness, nor the
nonnegativity (positivity) of the stationary point(s) follow immediately from the
form of the induced kinetic differential equation of a reaction. One needs a few
general statements.

Theorem 7.5 (Wei (1962)) Stoichiometrically mass conserving reactions do have
nonnegative stationary points.

Proof The nonnegative reaction simplexes are closed and convex sets. If the
reaction is mass conserving, then they are also bounded by Theorem 4.23; thus
they are compact and convex sets. Choose the reaction simplex containing c0. The
solution operator Φ(t, ·) of the reaction in question maps this set into itself and is



118 7 Stationary Points

continuous; therefore according to Brouwer’s fixed-point theorem (Theorem 13.35
in the Appendix), it has a fixed point. ��

Remark 7.6

• Subconservativity is also enough to ensure the existence of a fixed point, although
in this case the positive reaction simplexes may be unbounded. The proof is left
to the reader as Problem 7.2.

• Mass conserving reactions do not necessarily obey a positive stationary point as
the example X −−→ Y shows. Note that while the stationary point of the induced

kinetic differential equation is
[

0 x∗
]	

with arbitrary x∗ ∈ R, the stationary

point of the corresponding initial value problem is
[

0 x0 + y0
]	

with arbitrary
x0, y0 ∈ R.

• A sufficient condition of positivity of the stationary point is given by Kaykobad
(1985) for the case of generalized Lotka–Volterra systems (see Sect. 6.4.1).

The good news is that the special form of the right-hand sides of induced kinetic
differential equations allows to have a few general statements on the existence of
stationary points.

Theorem 7.7 (Orlov and Rozonoer (1984b)) Reversible reactions have at least
one positive stationary point in each positive stoichiometric compatibility class.

The proof of the theorem is based on a series of lemmas and also on the first one of
two papers by Orlov and Rozonoer (1984a).

Simon (1995) investigated the M = 2 case in more details, beyond having as
a corollary the above statement he also proved that the trajectories of the induced
kinetic differential equation of a reversible reaction remain in a closed bounded set
bounded away from zero.

The question obviously arises whether it is possible to substitute reversibility
with weak reversibility. There exists a paper and a manuscript on the topics.

Theorem 7.8 (Boros (2013)) Weakly reversible deficiency one mechanisms have at
least one positive stationary point in each positive reaction simplex.

This theorem is probably true without the restriction to the deficiency one, as
the manuscript Deng et al. (2011) (which is has been rigorously proved by
Boros (2017) at the moment of closing the manuscript of this book) asserts:
Weakly reversible mechanisms have a positive stationary point in each positive
stoichiometric compatibility class.
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7.4 Uniqueness of Stationary Points

Uniqueness of the stationary point has to be defined carefully. The mechanism

2 X
k1−−⇀↽−−
k−1

Y has stationary points of the form
[
x∗ 2k1/k−1x

2∗
]	

of which those

with x∗ ≥ 0 are physically meaningful. However, it has a single stationary point

in all of the positive reaction simplexes
{[

x0 y0
]	 + λ

[
2 −1

]	 | λ ∈ R

}
∩ (R+)2,

as Fig. 7.1 shows. It means that typically it is not the induced kinetic differential
equation but the initial value problem describing the evolution of the reaction
which may determine the stationary point uniquely. This is the sense of uniqueness
we are interested in.

There are a lot of sufficient and necessary conditions of uniqueness; most of them
are closely related to the description of the transient behavior of the solutions of the
induced kinetic differential equation of a mechanism; therefore part of these topics
will be picked up again in the next chapter. Here we mention a few criteria and
counterexamples which are easy to understand and apply the concepts introduced
up to this point.

Fig. 7.1 Stationary points and positive reaction simplexes in the reaction 2 X
k1−−⇀↽−−
k−1

Y
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The example by Horn and Jackson (1972), p. 110, shows that even a mass
conserving reaction may have more than one stationary point in each positive
reaction simplex (see Problem 7.3).

Remark 7.9 Let us consider the form ċ = γ (k  cα) with the usual notations.
Then, an intermediate step toward calculating the stationary points might be to find
positive vectors in the right null space of γ which might be interpreted as stationary
rates of the reaction steps (steady-state flux rates). Obviously, c∗ ∈ R

M is a
stationary point if and only if w∗ := k cα∗ is a stationary rate. As the next step, one
may try to solve the equation w∗ := k cα∗—or, equivalently, ln(w∗k ) = α	 ln(c∗)—
for c∗.

Example 7.10 Consider the induced kinetic differential equation of the Lotka–
Volterra reaction (2.4) written in the form:

[
ẋ

ẏ

]
=
[

1 −1 0
0 1 −1

]
⎡

⎣
k1x

k2xy

k3y

⎤

⎦

Then, as the right null space of γ is generated by the vector
[
1 1 1

]	
, one has to

solve a
[
1 1 1

]	 = [k1x∗ k2x∗y∗ k3y∗
]	

to get x∗ = a/k1, x∗y∗ = a/k2, y∗ =
a/k3 which can only hold if a = k1k3/k2 leading to the known result: x∗ =
k3/k2, y∗ = k1/k2. Note that in this case the stationary point is independent from
the initial concentrations, cf. Sect. 7.10.

The method proposed in the previous example is delusory, as the next example
shows.

Example 7.11 Upon determining a basis of the kernel of γ , one sees that the
positive stationary flux rates of the induced kinetic differential equation of the

reaction 3 X
k3−−⇀↽−−
k2

2 X X
k1−−⇀↽−−
k0

0 are of the form p

⎡

⎢
⎢
⎣

1
0
0
1

⎤

⎥
⎥
⎦ + q

⎡

⎢
⎢
⎣

0
0
1
1

⎤

⎥
⎥
⎦ + r

⎡

⎢
⎢
⎣

0
1
0
−1

⎤

⎥
⎥
⎦

with p, q, r > 0, p + q > r . As the next step, one has to solve

⎡

⎢⎢
⎣

p

q

r

p + q − r

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

k3c
3∗

k2c
2∗

k1c∗
k0

⎤

⎥⎥
⎦ .

Eliminating the variables p, q, r from this system of equations, we arrive at the
original equation for the stationary points 0 = k3c

3∗ − k2c
2∗ + k1c∗ − k0.
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Schuster and Schuster (1991) gave an algorithm and a C program to find
the stationary reaction rates (in a slightly more general setting) together with a
biochemical example based on tools of convex analysis. The algorithm and the code
are modifications of those given for deciding mass conservation (Schuster and Höfer
1991). This can easily be understood if one considers that to prove stoichiometric
mass conservativity, one has to find positive vectors in the left null space of the
matrix γ ( see Chap. 4).

Póta and Stedman (1995) shows multistationarity in a realistic system: The
stationary behavior of a reaction describing the nitric acid-hydroxylamine reaction is
studied under conditions of a continuously fed stirred tank reactor and with kinetics
of not the mass action type. The authors show that the reaction has three positive
stationary states in an unbounded region of the feed concentration. As opposed to
this, in the example which can be seen in Fig. 7.2 (and in other cases in the literature,
as well), multistationarity could only be observed for a bounded region (interval) of
the parameters (Fig. 7.3).

It is also worth mentioning the paper by Shiu (2008) in which she has found
the smallest reaction showing multistationarity with respect to the number of
complexes, the number of connected components of the Feinberg–Horn–Jackson
graph the number of species, and the dimension of an invariant polyhedron. See
also the related papers by Joshi and Shiu (2015), Wilhelm (2009), and Mincheva
and Roussel (2007) and page 184.

Fig. 7.2 The
Feinberg–Horn–Jackson
graph of the Horn–Jackson
reaction admitting multiple
stationary states for
0 < ε < 1/6

X + 2Y

2X + Y

3Y

3X 1

1

e e
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Fig. 7.3 Multiple stationary points in all positive reaction simplexes for ε = 1/12 in the Horn–
Jackson reaction of Fig. 7.2

7.5 Stationary Points and First Integrals

Calculating the physically realistic stationary points of an induced kinetic differen-
tial equation is a multistep process. Once we have a candidate to be a stationary
point (solutions to f(c∗) = 0) which is also nonnegative, we should also check if
it is consistent with the first integrals of the induced kinetic differential equation.
Although we are aware of Wei’s theorem 7.5, in the general case, the situation is
more complicated.

Let us consider a few examples.

Example 7.12

1. The mere existence of a linear first integral does not imply the existence of a
positive stationary point as the example by Othmer (1985), p. 11, shows. The
reaction X −−→ 2 X + Y has a linear first integral: (x, y) �→ x − y, and
its stationary points are (0, y∗) with arbitrary y∗ ∈ R. (Let us mention that
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Othmer (1985) calls the linear first integrals kinematic invariants.) Note that
the first component of the solution of the induced kinetic differential equation
being t �→ x0e

t tends to infinity as t → +∞. This counterintuitive behavior
can also be found in the case of the very simple reaction X −−→ 2 X, as well:
The only stationary point is zero, but the solutions starting from a positive initial
concentration tend to infinity as t → +∞.

2. An even uglier example follows. The reaction 0 −−→ X + Y has a linear first
integral: (x, y) �→ x − y, and it has no stationary points at all.

3. It may happen (see Definition 8.33) that an induced kinetic differential equation
has a linear first integral which is not defined by an element of the left kernel
space of γ . If this is the case, then one has an (some) additional linear first
integral(s) to check.

4. The existence of nonlinear first integrals may help further narrow the set of
stationary points to physically acceptable cases. Consider the reaction given by
Volpert and Hudyaev (1985) in pp. 627–629:

X+ Y −−→ U Y+ Z −−→ V. (7.4)

A basis of the left null space of γ is
[
1 0 0 1 0

]
,
[
0 1 0 1 1

]
,
[
0 0 1 0 1

]
,

if the variables are taken in the order X, Y, Z, U, V. (Their sum is a positive
vector corresponding to the definition of stoichiometric mass conservation.)
Suppose that the initial concentrations are

[
x0 y0 z0 0 0

]
with x0, y0, z0 > 0;

and let us denote the coordinates of the stationary point by x∗, y∗, z∗, u∗, v∗. The
nonnegative stationary points corresponding to these first integrals are:

• if y∗ �= 0 it is
[
0 y0 − x0 − z0 0 x0 z0

]
assuming that x0 + z0 < y0,

• if y∗ = 0 they are
[
ξ 0 x0 − y0 + z0 − ξ x0 − ξ ξ − (x0 − y0)

]
with all

values of ξ satisfying max{0, x0− y0} ≤ ξ ≤ min{x0, x0− y0+ z0}. This can
only happen if x0 + z0 ≥ y0.

This is not the end of the story, because the induced kinetic differential equation

ẋ = −k1xy ẏ = −k1xy − k2yz ż = −k2yz u̇ = k1xy v̇ = k2yz

has a nonlinear first integral too in the open first orthant:
[
x y z u v

] �→
xk2/zk1 . (It is Problem 7.8 to verify this.) Therefore the value of ξ can uniquely
be determined from the requirement

(x∗)k2

(z∗)k1
= (ξ)k2

(x0 − y0 + z0 − ξ)k1
= (x0)

k2

(z0)k1
.

No other first integral (independent from those given) can exist. (Independence
of nonlinear functions is given in Definition 13.36.)

The function StationaryPoints only finds those nonnegative stationary points
which are consistent with the linear first integrals but not necessarily with the
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nonlinear ones; therefore all other restrictions should be explicitly taken into
consideration. When symbolic solutions are looked for, one may meet problems
originated in the complexity of the task.

7.6 Complex Balance

Nonnegative stationary points may have further advantageous properties from the
point of view of dynamic behavior. We go on with studying these properties, while
in the next chapter, we treat theorems utilizing these properties.

Definition 7.13 The mechanism is complex balanced at the positive stationary
point c∗ if

g(c∗) =
(
K− diag(K	1N)

)
cY∗ = 0 ∈ R

N (7.5)

holds, as well. The set of positive stationary points where the mechanism is complex
balanced will be denoted as C := {c ∈ (R+)M | g(c∗) = 0}. If the mechanism is
complex balanced at all positive stationary points, i.e., if E = C, then it is complex
balanced.

The name comes from the property that at a complex balanced stationary point
c∗, the creation rate and the annihilation rate of each complex are the same, i.e., for
all n ∈ N

∑
q∈N rnq(c∗) =∑q∈N rqn(c∗) holds, cf. (7.2).

Theorem 7.14 (Horn and Jackson (1972)) If a mechanism with mass action type
kinetics is complex balanced at a positive stationary state, then the mechanism is
complex balanced.

Theorem 7.15 (Horn (1972)) A reaction is complex balanced for any choice of
reaction rate coefficients if and only if it is weakly reversible and its deficiency is
zero.

Dickenstein and Millán (2011), Proposition 4, also give a necessary and sufficient
condition of complex balancing without needing to have a stationary state.

The paper by van der Schaft et al. (2015) provides a further necessary and
sufficient condition for complex balancing using algebraic graph theory which can
be checked constructively. (The reader may be interested in the series of papers
written by the group which can be found in the reference list of this paper.)

Example 7.16

• The example X
k1−−→ Y 2 Y

k2−−→ 2 X similar to the mechanisms treated by
Wegscheider (1901/1902) (and neither weakly reversible, nor of deficiency zero)
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shows that a mechanism may have a positive stationary point without being
complex balanced.

All the complexes are either only created or only annihilated; thus the
mechanism cannot be complex balanced. However, the points of the form
[
2k2c

√
k1c
]	

with arbitrary c ∈ R+0 are stationary points; they are positive
for c ∈ R

+. It is also true that all positive reaction simplexes contain exactly one
positive stationary point. See also Problem 7.5.

• The mechanism X
k1−−⇀↽−−
k−1

Y 2 Y
k2−−⇀↽−−
k−2

2 X is reversible, therefore it is also

weakly reversible, but its deficiency being 4 − 2 − 1 = 1, it cannot be complex
balanced for all choices of reaction rate coefficients. The rate of production
and that of annihilation of the complexes at stationary points is only equal if
(k1/k−1)

2 = k−2/k2. (Check it.)
• The irreversible triangle reaction is complex balanced. This can be shown

by using Theorem 7.15, since its deficiency is zero, and clearly it is weakly
reversible.

The most important consequence of complex balancing relating the stationary points
follows.

Theorem 7.17 If a mechanism is complex balanced, then there is exactly one
stationary point in each positive reaction simplex (stoichiometric compatibility
class).

Remark 7.18 A sufficient condition of complex balance has been given by Orlov
(1980), whereas a simple necessary condition is weak reversibility. Furthermore, a
sufficient and necessary condition in the case of mass action type kinetics is given
in Theorem 7.15.

7.7 The Complex Matrix and the Complex Formation Function

In order to enlighten the existence of stationary points, it is useful to study the
relationship between Ker(Y) and Rg (both subsets of R

N ) following Horn and
Jackson (1972). The logically possible relationships are as follows.

1. Ker(Y) ∩ g((R+)M) = ∅
2. Ker(Y) ∩ g((R+)M) = {0}
3. 0 �∈ Ker(Y) ∩ g((R+)M) �= ∅
4. {0} � Ker(Y) ∩ g((R+)M)

Examples follow.
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1. All three reactions: X −−→ 2 X and 0 −−→ X and X −−→ Y with whatever
reaction rate coefficients.

• First, Y = [
1 2
] ; therefore Ker(Y) = {a [2 −1

]	 | a ∈ R}, the vectors of
which include the zero vector and also vectors with components of different

sign and with a ratio 2 : −1. However, g(x) = kx
[−1 1

]	
, thus g(R+) =

{kx [−1 1
]	 |x ∈ R

+}, and therefore the intersection is empty.

• Second, Y = [0 1
] ; therefore Ker(Y) = {a [1 0

]	 | a ∈ R}, the vectors of
which are the vectors with zero as their second component. However, g(x) =
k
[−1 1

]	 ; thus g(R+) = {k [−1 1
]	} is a single vector with nonzero second

components; therefore the intersection is empty.

• Last, Y =
[

1 0
0 1

]
; therefore Ker(Y) = {0}. However, g(x, y) = k

[−x y
]	 ;

thus g(R+2
) only has vectors with components of different sign.

2. The irreversible triangle reaction, see in Fig. 3.2. Here Y =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ; therefore

Ker(Y) = {0}. However, g(x, y, z) = [
k3z− k1x k1x − k2y k2y − k3z

]	 ;
thus 0 ∈ Rg|

R+3 . (Remember the notation of restriction; see the notations on
page xxiii.)

3. The irreversible version of the Wegscheider reaction, (Wegscheider 1901/1902):

X
k1−−→ Y 2 Y

k2−−→ 2 X. Here

Y =
[

1 0 0 2
0 1 2 0

]
, therefore Ker(Y) = {[−2d −2c c d

]	 | c, d ∈ R},

Furthermore, g(x, y) = [−k1x k1x −k2y
2 k2y

2
]	

. Now let us find real numbers
c, d and positive numbers x, y so that

⎡

⎢
⎢
⎣

−2d
−2c

c

d

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−k1x

k1x

−k2y
2

k2y
2

⎤

⎥
⎥
⎦ .

Obviously, with fixed c < 0, the following cast will do: d := −c, x :=
−2c/k1, y := √−c/k2.

4. This cannot occur with mass action kinetics (see Horn and Jackson (1972)). An
example with no mass action kinetics has been taken from the cited paper as
Problem 7.7
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Remark 7.19 In the case of the triangle reaction and also of the reaction X −−→ Y
one has:

Ker(Y) = {0}, (7.6)

thus we can only have the first two cases here. If there is a positive stationary
point, then it must be complex balanced. Equation (7.6) is fulfilled if and only if
the complex vectors are linearly independent, what can only occur when M ≥ N .
Two important special cases are the closed compartmental system and the closed
generalized compartmental system in the narrow sense (see Chap. 3.). Let us also
mention that instead of complex balanced system, the expression toric dynamical
system is used in algebra (see, e.g., Craciun et al. 2009 and the references therein).

7.8 Detailed Balance

The next property is even more restrictive; therefore logically it should come here.
Historically however, this is the older concept.

7.8.1 A Short History

After such men as Maxwell and Boltzmann, and before Einstein, at the beginning of
the twentieth century, it was Wegscheider (1901/1902) who gave the formal kinetic
example in the left part of Fig. 7.4 to show that in some cases the existence of
a positive stationary state alone does not imply the equality of all the individual
forward and backward reaction rates in equilibrium: A relation (in this case
k1/k2 = k3/k4) should hold between the reaction rate coefficients to ensure this (see
Problem 7.12). Equalities of this kind will be called (and later exactly defined) as

k4

k4

k3

k2

k1

k3

k5 k1
k2

A

C

A+B

B A

2A

B

k6

Fig. 7.4 The Wegscheider reaction and the reversible triangle reaction
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spanning forest conditions below. Let us emphasize that violation of this equality
does not exclude the existence of a positive stationary state; it may exist and be
unique for all values of the reaction rate coefficients (see also Problem 7.12). A
similar statement holds for the reversible triangle reaction in Fig. 7.4. The necessary
and sufficient condition for the existence of such a positive stationary state for which
all the reaction steps have the same rate in the forward and backward direction
is now k1k3k5 = k2k4k6. Equalities of this kind will be called (and later exactly
defined) as circuit conditions below. Again, violation of this equality does not
exclude the existence of a positive stationary state; it may exist and be unique for all
values of the reaction rate coefficients (see the details in Problem 7.11).

These examples are qualitatively different from, e.g., the simple bimolecular
reaction which has the same stationary reaction rate in both directions no matter
what the values of the reaction rate coefficients are (see Problem 7.10).

A quarter of a century after Wegscheider, the authors Fowler and Milne (1925)
formulated in a very vague form a general principle called the principle of detailed
balance stating that in real thermodynamic equilibrium, all the subprocesses
(whatever they mean) should be in dynamic equilibrium (whatever this means)
separately in such a way that they do not stop but proceed with the same velocity
in both directions. Obviously, this also means that time is reversible at equilibrium;
that is why this property may also be called microscopic reversibility, although it
may be appropriate to reserve this expression for a similar property of the stochastic
model (see Chap. 10). A relatively complete summary of the early developments
was given by Tolman (1925).

The modern formulation of the principle accepted by IUPAC (Gold et al. 1997)
essentially means the same (given that the principle of charity is applied):

“The principle of microscopic reversibility at equilibrium states that, in a
system at equilibrium, any molecular process and the reverse of that process
occur, on the average, at the same rate.”

In addition, we note that in the present chapter, we only have in mind determinis-
tic models (surely not speaking of the general but vague formulation of Fowler and
Milne cited above). Turning to stochastic models, one possible approach is to check
the fulfilment of microscopic reversibility in the following way. Let us suppose we
have some measurements on a process, and present the data with reversed time;
finally use a statistical test to see if there is any difference. This is an absolutely
correct approach and has also been used in the field of channel modeling (Rothberg
and Magleby 2001). Another approach will be treated in Chap. 10, Sect. 10.5.2.

7.8.2 Rigorous Treatment of Detailed Balancing

A restriction on the positive stationary points even stricter than complex balancing
follows. We would like to formulate the concept in such a way that at a detailed
balanced stationary point (which can only exist in a reversible reaction), all pairs
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of reaction–antireaction step pairs proceed with the same rate in both directions. In
order to introduce the definitions, the general description of reactions will be slightly
modified to fit the case when all the reaction steps are reversible.

Definition 7.20 (Horn and Jackson (1972)) The mass action type induced kinetic
differential equation of the reversible mechanism

∑

m∈M
α(m,p)X(m) �

∑

m∈M
β(m,p)X(m) (p ∈P := {1, 2, . . . , P }) (7.7)

with P ∈ N pairs of reaction steps is

ċm(t) =
P∑

p=1

(β(m, p)− α(m,p))(kpc(t)α(·,p) − k−pc(t)β(·,p)) (7.8)

The mechanism is detailed balanced at the positive stationary point c∗ if for all
p ∈P

kpc
α(·,p)∗ = k−pc

β(·,p)∗ (7.9)

or

R(c∗)− R	(c∗) = K diag(cY∗ )− diag(cY∗ )K
	 = 0 (7.10)

holds. The set of positive stationary points where the mechanism is detailed
balanced will be denoted as

D := {c∗ ∈ (R+)M |R	(c∗) = R(c∗)}.
If the mechanism is detailed balanced at all positive stationary points (or, equiva-
lently, if D = C = E �= ∅), then it is detailed balanced.

Note that γ is an M × P matrix here, i.e., each reaction–antireaction pair is
represented by a single column.

Theorem 7.21 If a mechanism is detailed balanced at a positive stationary state
c∗, then there exists a single stationary point in each positive stoichiometric
compatibility class which is detailed balanced; thus, in special, the mechanism is
detailed balanced.

Proof We follow here Volpert and Hudyaev (1985), pp. 635–639. If S = M, then
there is a unique positive reaction simplex, the first orthant of the species space.
According to the assumption, γ	u = ln(κ) with

κ =
[

k1
k−1

k2
k−2
· · · kP

k−P

]
= [κ1 κ2 . . . κP

]
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has a solution u∗, and because γ is of full rank (consequently M ≤ R), this solution
is unique; thus c∗ = eu∗ should hold.

If S < M, then without restricting generality, one can assume that the first S rows
of γ	 are linearly independent. To have a (positive) detailed balanced stationary
point means that it is possible to solve the following system of equations:

∑

m∈M
γ (m, r)um = ln(κr ) (r = 1, 2, . . . , S) (7.11)

∑

m∈M
�r
meum =

∑

m∈M
�r
mc0,m (r = 1, 2, . . . ,M − S), (7.12)

where c0 =
[
c0,1 c0,2 . . . c0,M

]
is the fixed initial concentration and the vectors

�r = [�r
1 �r

2 · · · �r
M
]	 are linearly independent solutions of

�	γ = 0, (7.13)

i.e., (not necessarily positive) linear first integrals of the induced kinetic differential
equation. Equations (7.11) and (7.12) are individually solvable, because solvability
of (7.11) immediately follows from our assumption and because for all c such that
c ∈ (c0 +S ) ∩ (R+)M ln(c) is a solution to (7.12). We are looking for a common
solution.

If u0 is a particular solution to the inhomogeneous equation (7.11), then its
general solution can be written in the form

um(ξ ) = u0m +
M−S∑

r=1

ξr�
r
m (m ∈M ), (7.14)

or

u(ξ )− u0 = P	ξ , (7.15)

with arbitrary components ξ1, ξ2, . . . , ξM−S of ξ ∈ R
M−S . Here P(R−S)×M :=

(�r
m). Of this set of solutions, we shall select a solution to (7.12) and will show that

it is unique. To this purpose let us introduce the function

G(u) :=
∑

m∈M
(eum − cmum), (7.16)

where c is as above. The function G is bounded from below and lim|u|→+∞G(u) =
+∞. As ξ = (PP	)−1P(u(ξ ) − u0), one has that lim|ξ |→+∞ |u(ξ )| → +∞.
Therefore it is also true that lim|ξ |→+∞G(u(ξ )) = +∞. Thus the composite
function ξ �→ G(ξ ) := G(u(ξ )) restricted onto the solution set of (7.11) has a
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minimum at some point ξ0, where one has

0 = ∂G(ξ)

∂ξr
=
∑

m∈M

∂G

∂um

∂um

∂ξr
(7.17)

=
∑

m∈M
(eum(ξ) − cm)�r

m =
∑

m∈M
(�r

meum(ξ) − �r
mcm)), (7.18)

which means that (7.12) is fulfilled. Summing up, u(ξ0) defines a common solution
of (7.12) and (7.11).

To prove uniqueness, let us start from (7.17). This equation shows that any
common solution of (7.12) and (7.11) is determined by (7.14) at some stationary
point of the composition function G. The matrix whose elements are the second

derivatives ∂2G
∂ξr ∂ξs

=∑m∈M eum(ξ)�r
m�s

m (r, s = 1, 2, . . . , S−M) of this function
is positive definite, as for arbitrary η1, η2, . . . , ηM−S , we have

M−S∑

r,s=1

∂2G

∂ξr∂ξs
ηrηs =

∑

m∈M
eum(ξ)(

M−S∑

r=1

�r
mηr)

2 ≥ 0, (7.19)

and since the rows of the matrix P	 are linearly independent, equality can only hold
for η1 = 0, η2 = 0, . . . , ηM−S = 0. Therefore the function G is strictly convex;
thus it only has a single stationary point, a minimum, providing the unique common
solution of (7.12) and (7.11). ��

We are especially interested in reactions which are detailed balanced for some
choices of the reaction rate constants, and also in the restrictions upon the rate
constants which ensure detailed balancing. Problems 7.10–7.12 will show examples
for both cases. However, checking the condition by hand is not always easy to carry
out. General equivalent conditions are needed. Two approaches will be shown.

7.8.2.1 Conditions of Detailed Balancing: Circuits and Spanning Forests
A set of necessary and sufficient conditions have been formulated in the following
way by Feinberg (1989). Consider the reaction (7.7), and suppose first that we have
chosen an arbitrary spanning forest (see Definition 13.29) of the Feinberg–Horn–
Jackson graph. It is possible to find a set of P − (N − L) independent circuits
induced by the choice of the spanning forest. For each of these circuits, we write
an equation which asserts that the product of the rate constants in the clockwise
direction and the counterclockwise direction is equal. Thus we have P − (N − L)

equations: the circuit conditions.
Next, these equations are supplemented with the δ spanning forest conditions

as follows (where δ is the deficiency of the reaction). Suppose that the edges of
the spanning forest have been given an orientation. Then there are δ independent
nontrivial solutions to the vector equation

∑
i,j aij (yj − yi ) = 0, where the sum
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is taken for all reaction steps in the oriented spanning forest and yj − yi is the
corresponding reaction step vector. (Note the difference between the numbering of
the reaction step vectors when the complex vectors yn (n ∈ N ) are used or when
one uses the vectors γ (·, r).) With the aij coefficients obtained as solutions, the
spanning forest conditions are

∏
k
aij
ij = ∏

k
aij
j i , where kij are the corresponding

rate coefficients.
If all the widely accepted necessary conditions, the circuit conditions, are

complemented with the spanning forest conditions, then they form a set of necessary
and sufficient conditions for detailed balancing in mass action systems of arbitrary
complexity.

Theorem 7.22 (Feinberg) The reaction (7.7) is detailed balanced for all those
choices of the reaction rate constants which satisfy the P−(N−L) circuit conditions
and the δ spanning forest conditions.

Example 7.23 In the case of the reversible triangle reaction (Fig. 7.4), P = 3, N =
3, L = 1, therefore one has one circuit condition (expressing the equality of the
product of the reaction rate coefficients taken in two different directions), and as
δ = 0, no spanning forest conditions exist. In the case of the reversible Wegscheider
reaction (Fig. 7.4), P = 2, N = 4, L = 2, therefore one has no circuit condition,
and as δ = 1, one has a single spanning forest condition. To determine this, let us
take as a directed spanning forest the following reaction: A −−→ B A + B −−→
2 A. Then, one has to determine the solutions to the following system of equations:

a12

([
0
1

]
−
[

1
0

])
+ a34

([
2
0

]
−
[

1
1

])
= 0 ∈ R

2. (7.20)

The solution is (actually, the solutions are, as we have a homogeneous linear system)
a12 = a34; thus the spanning forest condition in this case is k1

1k
1
4 = k1

2k
1
3.

Remark 7.24 Unlucky as it may be, the circuit conditions are called spanning tree
method in Colquhoun et al. (2004).

Remark 7.25 There are three interesting special cases generalizing the examples.

1. For a reversible mass action reaction which has a deficiency zero, the circuit
conditions alone become necessary and sufficient for detailed balancing. The
reason why the circuit conditions were generally accepted as sufficient as well is
that a large majority of models are of zero deficiency. This case is exemplified by
the triangle reaction.

2. For networks with no nontrivial circuits, that is, in which there are just N − L

reaction pairs and so P − (N − L) = 0, the circuit conditions are vacuous.
Therefore, the spanning forest conditions alone are necessary and sufficient for
detailed balancing. The example by Wegscheider belongs to this category.
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3. Finally, if a reversible network is circuitless and has a deficiency of zero, both
the circuit conditions and the spanning forest conditions are vacuous. The system
is detailed balanced, regardless of the values of the rate constants. Such is a
compartmental system with no circuits in the FHJ-graph, the simple bimolecular
reaction or the ion channel model in Érdi and Ropolyi (1979).

Now we have learned that in the case of chemical reactions, the general principle
of detailed balancing can only hold if and only if both the spanning tree conditions
and the circuit conditions are fulfilled. However, it became a general belief among
people dealing with reaction kinetics (especially since Shear 1967) that the circuit
conditions alone are not only necessary but also sufficient for all kinds of reactions:
Wegscheider’s example proving the contrary was not known well enough. It was
Feinberg (1989) who gave the definitive solution of the problem in the area of
formal kinetics: He clearly formulated, proved, and applied the two easy-to-deal-
with sets of conditions which together make up a necessary and sufficient condition
of detailed balance (for the case of mass action kinetics). In other words, he
completed the known necessary condition (the circuit conditions)—which might
however be empty in some cases—with another condition (the spanning forest
conditions) making this sufficient, as well.

We have also seen above that the reason why the false belief is widespread is
that in case of reactions with deficiency zero, the circuit conditions alone are also
sufficient not only necessary, and most textbook examples have zero deficiency.

Neither the present authors, nor the above cited IUPAC document assert that
the principle should hold without any further assumptions; for us it is an important
hypothesis the fulfilment of which should be checked individually in each reaction
considered.

7.8.2.2 Application of the Fredholm’s Alternative Theorem
The advantage of Feinberg’s approach is that it identifies two separate conditions—
the circuit conditions and the spanning forest conditions—using graph theory.
However, there is another, simpler way to find necessary and sufficient conditions.
This approach has been formulated by Vlad and Ross (2009) and also by Joshi
(2015). Dickenstein and Millán (2011) gave the clearest formulation and presented
an unnecessarily complicated proof.

Theorem 7.26 The reaction (7.7) is detailed balanced if and only if with all the

elements a of the (right) kernel of γ one has κa = 1 with κ :=
[

k1
k−1

, k2
k−2

, . . . , kP
k−P

]	
.

Proof According to Theorem 13.19, the existence of a positive solution c∗ to
kpc∗α(·,p) = k−pc∗β(·,p) (p ∈P) or (what is the same) the existence of a solution
to γ	 ln(c∗) = ln(κ) is equivalent to the requirement that for all such vector a ∈ R

P

for which γ a = 0 holds, a	 ln(κ) = 0 should also hold. This, however, means that
κa = 1. ��
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Fig. 7.5 Circuit and
spanning forest conditions
both play a role
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Remark 7.27 The two approaches are compared by Dickenstein and Millán (2011),
Proposition 3, who show that Feinberg grouped these conditions more structurally
into two sets of conditions.

Example 7.28 Let us consider the (somewhat artificial, still useful) mechanism
compli Fig. 7.5.

The application of the following then gives one of the spanning trees of the
Feinberg–Horn–Jackson graph.

FindSpanningTree[ReactionsData[{compli}]["fhjgraphedges"]]

A spanning tree is C ←−− A −−→ B 2 A −−→ A + B. Making the spanning tree
boils down to two simple rules which can be formulated as follows. First, keep only
one of the reaction steps of the reversible step pairs; and second, discard one edge
of each circle in the resulting graph. These clearly lead to a forest, and since all the
complexes were kept, it spans the Feinberg–Horn–Jackson graph.

Let us use the first approach. As here P − (N − L) = 4− (5− 2) = 1, one has
a single circuit condition: k1k3k5 = k2k4k6. The deficiency is δ = N − L − S =
5 − 2 − 2 = 1; therefore one has a single spanning forest condition: k2k7 = k1k8.
The second approach requires to find two independent vectors in the right null space
of

γ =
⎡

⎣
−1 −1 0 1

1 1 −1 0
0 0 1 −1

⎤

⎦ which are

⎡

⎢⎢
⎣

1
0
1
1

⎤

⎥⎥
⎦ and

⎡

⎢⎢
⎣

−1
1
0
0

⎤

⎥⎥
⎦ .
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The first one gives k1
1k

0
7k

1
3k

1
5 = k1

2k
0
8k

1
4k

1
6, i.e., the circuit conditions, while the

second one gives k−1
1 k1

7k
0
3k

0
5 = k−1

2 k1
8k

0
4k

0
6, i.e., the spanning forest conditions.

The one line code

DetailedBalanced[complicated,

{k1, k2, k7, k8, k3, k4, k5, k6}]

provides the same result.

An interesting relationship has been found between detailed balance and complex
balance by Dickenstein and Millán (2011) as Theorem 1.1.

Theorem 7.29 (Dickenstein and Millán (2011)) If the circuit conditions are
satisfied in a reversible mechanism, then detailed balancing and complex balancing
are equivalent.

Remark 7.30

• The statement is a generalization of two other statements: If there are no cycles
in the undirected graph of a reversible reaction, then detailed balancing and
complex balancing coincide. If the deficiency of the reaction is zero, then the
circuit conditions alone imply detailed balancing.

• A mechanism may be complex balanced and not detailed balanced, as the
irreversible triangle reaction shows. Even if one takes the reversible triangle
reaction, it is unconditionally complex balanced, but to be detailed balanced,
it should also fulfil the circuit condition which in this case is that the product
of the reaction rate coefficients should be the same in both directions. Cf. also
Example 7.16 where another reversible reaction is shown which is conditionally
complex balanced and also Problem 8.13.

7.8.3 Applications

Examples taken from applications show that in realistic models the conditions may
be quite complicated, that is why the function DetailedBalancemay be useful.

7.8.3.1 Finding a Detailed Balanced Realization
The induced kinetic differential equation does not uniquely determine the inducing
mechanism; therefore it is a useful idea to look for a mechanism of simple structure
if a kinetic differential equation is given. To give a more specific example, let
us consider the following problem. Given a kinetic differential equation, find an
inducing mechanism which is reversible and detailed balanced and has a deficiency
zero. This can be done in some cases using the method by Szederkényi and Hangos
(2011) (see Problem 7.13). The topic is naturally connected to uniqueness questions
as well (see Sect. 11.5).
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7.8.3.2 Models of Ion Channels in Nerve Membranes
There is a difference in electric potential between the interior of nerve cells and
the interstitial liquid. An essential part of the system controlling the size of this
potential difference is the system of ion channels: pores made up from proteins
in the membranes through which different ions may be transported via active and
passive transport, thereby changing the potential difference in an appropriate way.

Recent papers on formal kinetic models of ion channel gating show that people
in this field think that the principle of detailed balance or microscopic reversibility
should hold. (However, some authors do not consider the principle of microscopic
reversibility indispensable, e.g., Naundorf et al. (2006), Supplementary Notes 2,
Figure 3SI(a), page 4, provides a channel model which is not even reversible,
let alone detailed balanced.) This may be supported either by an out of the
blue theoretical argument (they should obey the laws of thermodynamics) or by
a practical one (if the principle holds, one should measure less reaction rate
coefficients because one also has the constraints implied by the principle). The
second argument seems to be the more important one in the papers by Colquhoun
et al. (2004) and Burzomato et al. (2004). However, the principle is applied in an
imprecise way: First, only the necessary part consisting of the circuit conditions
is applied, and second, the models are formulated in a way that they do not obey
the principle of mass conservation. In the papers Nagy et al. (2009) and Nagy and
Tóth (2012) (note that A. L. Nagy and I. Nagy are different authors), the models are
transformed into mass conserving ones, and the full set of necessary and sufficient
conditions are applied. The main result is that in classes of models including all
the known ion channel examples are compartmental models; therefore they have
zero deficiency at the beginning, and being transformed into a mass conserving
model, they have no circuits; therefore one has only to test the spanning forest
conditions. It is not less interesting that the spanning forest conditions obtained
for the transformed models are literally the same as the circuit conditions for the
original models.

7.8.3.3 AModel for Hydrogen Combustion
Let us see how our program DetailedBalanced works in the case of a more
complicated example: in the field of combustion modeling, famous for working with
“large” models.

The reaction proposed by Kéromnès et al. (2013) to describe H2 combustion
contains 9 species and 21 pairs of reaction steps, together forming a reversible
reaction. In this reaction the necessary and sufficient conditions of detailed balance
are as follows:

k26k27k42 = k25k28k41, k4k13k39 = k3k14k40, k2k14k17 = k1k13k18,

k3k8k11 = k4k7k12, k2k4k5 = k1k3k6, k2k4k9k21 = k1k3k10k22,

k2k8k9k19 = k1k7k10k20, k2k9k14k15 = k1k10k13k16,

k2k8k9k13k23k
2
37 = k1k7k10k14k24k

2
38, k2k8k9k14k24k

2
35 = k1k7k10k13k23k

2
36,
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k1k8k10k13k24k
2
33 = k2k7k9k14k23k

2
34, k1k8k9k13k24k

2
29 = k2k7k10k14k23k

2
30,

k2k8k9k13k24k
2
25 = k1k7k10k14k23k

2
26, k2k

2
4k8k9k13k24k

2
31= k1k

2
3k7k10k14k23k

2
32.

7.9 Stationary Points and Symmetry

There is a nice uniform formulation of the introduced concepts (Horn and Jackson
1972, p. 93).

Let, as usual, M be the number of species and N the number of complexes in
a reaction, and let R(c) be the matrix of reaction rates at the concentration c so
that rnq(c) is the reaction rate of the reaction C(q) −−→ C(n). Let Λ be a function
which maps N × N matrices into some finite dimensional vector space, and let us
call the mechanism symmetric at c∗ ∈ (R+)M with respect to Λ, if Λ(R(c∗)) =
Λ(R	(c∗)) holds. The transposition of R physically corresponds to reversal of time,
since under this operation the rates of each reaction–antireaction pair are exchanged.
Thus if the mechanism is symmetric at c∗, then the value of Λ at this concentration
remains invariant under reversal of time.

1. If Λ(R(c∗)) := YR(c∗)1N, then the mechanism is symmetric at c∗ if and only if
c∗ is a positive stationary point.

2. If Λ(R(c∗)) := R(c∗)1N, then the mechanism is symmetric at c∗ if and only if
it is complex balanced at c∗.

3. If Λ(R(c∗)) := R(c∗), then the mechanism is symmetric at c∗ if and only if it is
detailed balanced at c∗.

Note that X �→ Λ(X) is linear function in all of the three cases and also that the
right-hand side of the induced kinetic differential equation is an antisymmetric
function of R(c); let this function be L, i.e., f(c) = L(R(c)). Then one has
L(R(c) + R	(c)) = 0 ∈ R

M for all concentrations, and Λ(R(c) + R	(c)) = 0
for those concentrations at which the mechanism is symmetric. We are not aware
of any continuation of this concept for the deterministic model. Note also that
the above formulation (which has some resemblance to dynamic symmetries, see
Sect. 8.9 below) has not used the fact that the concentration vector in question is a
stationary point. However, detailed balance and the kinship with the corresponding
notion in the case of the stochastic model (which one might like to call microscopic
reversibility to emphasize the difference) are straightforward. (See, e.g., Joshi
2015.)

Finally, let us mention that detailed balance has been extended by Gorban and
Yablonsky (2011) as a limiting case for cases when some of the reaction steps are
irreversible in such a way that irreversible reactions are represented as limits of
reversible steps.
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7.10 Absolute Concentration Robustness

Although here we treat a very special property of the stationary points, we dedicate
a separate section to absolute concentration robustness because of its importance.

The present section can be considered as another one on the delicate properties
of stationary points from formal viewpoint. If however one thinks of the possible
applications, it relates a kind of stability of some systems in the everyday sense of
the word. In this section we follow the Shinar and Feinberg (2010).

Let us start with two simple examples.

Example 7.31 The initial value problem to describe the simple reversible reaction

X
k1−−⇀↽−−

k−1
Y of deficiency zero being

ẋ = −k1x + k−1y, ẏ = k1x − k−1y, x(0) = x0, y(0) = y0

has the stationary points of the form ξ
[
k−1 k1

]	
with any ξ ∈ R. Of these stationary

points, the one reached from the initial point (x0, y0) (fitting to the first integral
[
x y
]	 �→ x + y) is (x0 + y0)

[
k−1

k−1+k1

k1
k−1+k1

]	
. This vector is always positive, if

x0 + y0 is positive (i.e., something has been present initially: a not too restrictive
assumption), and all its coordinates do depend on the value x0 + y0.

Example 7.32 The initial value problem of the reaction (an irreversible skeleton of
the Wegscheider reaction which can also be interpreted as the transformation of the
inactive form of a protein Y into the active form X)

X+ Y
k1−−→ 2 Y Y

k2−−→ X (7.21)

of deficiency one being

ẋ = −k1xy + k2y, ẏ = k1xy − k2y, x(0) = x0, y(0) = y0

has positive stationary points only if x0 + y0 > k2
k1
, and then the stationary point is

[
k2
k1

x0 + y0 − k2
k1

]	
.

In contrast to the previous example, the first coordinate of the stationary point is
independent of the total initial concentration of the species. This is the kind of
robustness or stability we are interested in here (Fig. 7.6).

Thus, here we are interested in mechanisms in which some concentrations are
protected against (even large) changes of the initial concentrations of the species.
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Fig. 7.6 The first component of the stationary point does not depend on the initial concentration
in case of the reaction (7.21)

Definition 7.33 A mechanism shows absolute concentration robustness for a
species if the concentration of that species is identical in every positive stationary
concentration.

A set of easy to apply sufficient conditions to ensure absolute concentration
robustness has been collected by Shinar and Feinberg (2010).

Theorem 7.34 Suppose a mechanism with deficiency one has a positive stationary
state. If the underlying reaction has two nonterminal complex vectors that only
differ in species Z, then the system shows absolute concentration robustness for
the species Z.

Remember, that the notions used here have been defined in Chap. 3, except
nonterminal complex which is a complex not in a terminal strong linkage class
(ergodic component). One may also need the Definition 13.30.

Remark 7.35

1. In Example 7.32 the nonterminal complexes are X + Y and Y; as they only
differ in X, the concentration of this species does not depend on the initial
concentrations.
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2. A mass conserving reaction with deficiency zero can never show absolute
concentration robustness (Shinar et al. 2009). In the case δ = 2, mechanisms with
and without absolute concentration robustness exist, as the supporting material
to Shinar and Feinberg (2010) shows.

3. With the theorem by Boros (2013) at hand, one would easily fall into a trap: If
weak reversibility together with deficiency one implies the existence of a positive
stationary point, then perhaps it would be enough to assume weak reversibility
instead of the existence of a positive stationary point. Alas, this is leading to
nowhere! Weak reversibility is equivalent to not having nonterminal nodes in the
Feinberg–Horn–Jackson graph; therefore a weakly reversible reaction can never
fulfil the last condition of Theorem 7.34.

4. The function AbsoluteConcentrationRobustness investigates if these
sufficient conditions hold in a mechanism or not. How does it work? To check
the conditions of the theorem, we need a program what we have not needed up
to now: We have to find the strong components of the Feinberg–Horn–Jackson
graph, select the nonterminal strong components, calculate the differences of all
the nonterminal complexes, and see if there is any consisting of a single species.

Shinar and Feinberg apply the theorem to biological systems which as exper-
imentally shown do show absolute concentration robustness. The first one is
the Escherichia coli EnvZ-Ompr system, where the phosphorylated form of the
response-regulator is the species with absolute concentration robustness. The second
one is the Escherichia coli IDHKP-IDH glyoxylate bypass regulation system.
Here the species showing absolute concentration robustness is IDH: the active,
unphosphorylated TCA cycle enzyme isocitrate dehydrogenase. (Let us note by
passing that the whole metabolic graph of the Escherichia coli can be found this
way:

ExampleData[{"NetworkGraph",

"MetabolicNetworkEscherichiaColi"}].)

The authors give a more detailed biological analysis and provide a useful reference
list of the problem in Shinar and Feinberg (2011). Another application of the theory
for a realistic biochemical problem and a Mathematica program to carry out the
calculations can be found in Dexter and Gunawardena (2013). More details on the
biological background can be found here: Kitano (2004), Barkai and Leibler (1997),
Blüthgen and Herzel (2003), and Ferrell (2002).

Another approach to robustness has been given by Li and Rabitz (2014) for
models used to describe gene networks. Let us also mention that robustness is
closely related to sensitivity: Shinar et al. (2009), Turányi (1990), and Turányi and
Tomlin (2014). Loosely speaking a model is robust if it is insensitive to changes of
such parameters as the initial concentration and reaction rate coefficients.

A case when the stationary point strongly depends on the parameters is shown as
Problem 7.19.

Finally, we mention that the connection between stationary points and oscillation
is much less simple as it is usually thought (see Tóth 1999).
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7.11 Exercises and Problems

7.1 Find the solutions of the system of polynomial equations

x(1− 2x + 3y + z) = 0, y(1+ 3x − 2y + z) = 0, z(2+ y − z) = 0

in such a way that transform the system into triangular form using the Mathematica
function GroebnerBasis and then find the roots of the system.

(Solution: page 403.)

7.2 Show that mass consuming reactions do have a nonnegative stationary point.

(Solution: page 404.)

7.3 Show that the Horn–Jackson reaction in Fig. 7.2 with 0 < ε < 1
6 has three

positive stationary points in each positive reaction simplexes.

(Solution: page 404.)

7.4 Redo the calculations on the reaction (7.4) using the programs.

(Solution: page 404.)

7.5 Find conditions on the reaction rate coefficients under which the reversible
mechanism

X
k1−−⇀↽−−

k−1
Y 2 X

k2−−⇀↽−−
k−2

2 Y. (7.22)

with the usual mass action type kinetics is complex balanced.

(Solution: page 405.)

7.6 If in a reversible mechanism with mass action kinetics, the number of species
and the number of reaction steps are the same (M = R) and the stoichiometric
matrix γ is not singular (invertible), then the mechanism has a unique positive
stationary point.

(Solution: page 405.)

7.7 Consider the reaction (7.22) with the reaction rates defined as follows:

w1(x, y) := x2, w−1(x, y) := y, w2(x, y) := x, w−2(x, y) := y2,
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and show that it has a positive stationary point at which it is complex balanced and
another one at which it is not.

(Solution: page 405.)

7.8 Verify that the function
[
x y z u v

]	 �→ xk2/zk1 is the first integral of the
induced kinetic differential equation

ẋ = −k1xy ẏ = −k1xy − k2yz ż = −k2yz u̇ = k1xy v̇ = k2yz

in the open first orthant. Show also that beyond this and the linear ones given above,
the equation has no other first integral, and the existing ones are independent.

(Solution: page 406.)

7.9 Can a reaction with the zero complex present have a positive stationary point?

(Solution: page 406.)

7.10 Show that the simple bimolecular reaction

A+ B
k1−−⇀↽−−

k−1
C (7.23)

is detailed balanced for any choice of the reaction rate coefficients.

(Solution: page 407.)

7.11 Prove that the reversible triangle reaction in Fig. 7.4 has a single positive
stationary point for all values of the reaction rate coefficients. Prove also that the
mechanism is detailed balanced at this stationary point if and only if k1k3k5 =
k2k4k6 holds.

(Solution: page 408.)

7.12 Prove that the reversible Wegscheider reaction in Fig. 7.4 has a single positive
stationary point for all values of the reaction rate coefficients. Prove also that the
mechanism is detailed balanced at this stationary point if and only if k1k4 = k2k3
holds.

(Solution: page 409.)

7.13 Show that the induced kinetic differential equation of the irreversible reaction

with deficiency one 3 Y
1−−→ 3 X

0.5−−→ 2 X + Y has the same induced kinetic
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differential equation as the reversible detailed balanced reaction 3 Y
1−−⇀↽−−

0.5
3 X with

deficiency zero.

(Solution: page 409.)

7.14 Find the nonnegative stationary points of the (irreversible) Lotka–Volterra
reaction (6.28). Find a nonlinear first integral in the open first quadrant and show
that the first integral takes its minimum at the positive stationary point.

(Solution: page 409.)

7.15 Do the same as in the Problem 7.14 above for the Ivanova reaction:

X+ Y
k1−−→ 2 Y Y+ Z

k2−−→ 2 Z Z+ X
k3−−→ 2 X. (7.24)

(Solution: page 410.)

7.16 Show that the Lotka–Volterra reaction has absolute concentration robustness
with respect to all the species.

(Solution: page 410.)

7.17 Show that the special case of the Oregonator in Fig. 7.7 has deficiency two;
still it has absolute concentration robustness with respect to all the species.

(Solution: page 410.)

k2

k1

k5

k4

k3

X+Y 0

Y X

ZfOregonator Y

2X+Z

2X

Fig. 7.7 A special case of the Oregonator
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I+EIP EIPI

EIP E+IE+IP

EIP+IP

Fig. 7.8 The Feinberg–Horn–Jackson graph of the IDHK-IDP reaction. Terminal complexes are
pink, nonterminal complexes are blue

7.18 Assuming that the IDHKP-IDH mechanism in Fig. 7.8 has a positive station-
ary state proves that it shows absolute concentration robustness with respect to the
species I (iodine).

(Solution: page 410.)

7.19 The dimensionless form of the induced kinetic differential equation of a
reaction is

ẋ = −xy + f (1− x) ẏ = xy + y

((
1− f2

f

)
y0 − y

)
+ (f − f2)y0 − fy.

(7.25)

Study the dependence of the x∗ component of the stationary state(s) on the
parameter f in the interval [e−3, e−1] when the other parameters are fixed as
follows.

1. f2 = 1/135 y0 = 10/27

2. f2 = 0.001 y0 = 0.25

3. f2 = 0.001 y0 = 0.29

(See Li and Li 1989 and also Póta 2006, p. 4, and Ganapathisubramanian and
Showalter 1984.)

(Solution: page 411.)

7.12 Open Problems

1. Kinetically mass conserving (see Definition 8.33) reactions are not necessarily

stoichiometrically mass conserving, as the example X
k−−→ 0 X

k−−→ 2 X
shows. Do they always have a nonnegative stationary point?
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2. Continuing the solution of Problem 7.6 shows the existence in all the remaining
cases reproducing the result by Orlov and Rozonoer (1984b) based on the form
of the induced kinetic differential equation.

3. Formulate a necessary and sufficient condition ensuring that the set of concen-
trations defining stationary flux rates are the same as the set of stationary states
(assuming nonnegativity or positivity in both cases).

4. Under what conditions is it possible to have absolute concentration robustness
with respect to all the species for reactions with δ ≤ 2?
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8Time-Dependent Behavior of the
Concentrations

8.1 Introduction

Finer details of the solutions of the induced kinetic differential equations of
reactions are investigated: we try to find out how the solutions (as functions of
time) and their projections onto the space of concentrations—the trajectories—
evolve. After establishing the assuring fact that the components of the concentration
vector always remain nonnegative, we state which ones remain strictly positive
and which ones stay strictly zero throughout their domain of existence. Next, the
domain of existence itself becomes the object of study: we look for conditions under
which the domain is bounded, meaning that the system “blows up” or has a finite
escape time—a common situation in combustion models. Afterward we delimit the
smallest set that the trajectories are confined to. It turns out that the trajectories not
only remain in the stoichiometric compatibility class corresponding to the initial
concentration vector, but they may not even leave the kinetic subspace, which is
in general a smaller subspace of the species space. The existence of nonlinear first
integrals may further restrict the set in which the trajectories can move. Then three
important theorems characterizing the time evolution of the concentrations follow:
one is about detailed balanced mechanisms, one is about reactions with acyclic
Volpert graphs, and in between comes the celebrated zero-deficiency theorem, a far-
reaching generalization of the classical statement on detailed balanced mechanisms
ensuring regular behavior, the behavior which is usually expected of a mechanism
by the chemist. Next, exotic behavior follows: conditions ensuring or excluding
oscillation, and also a few remarks on oligo-oscillation and chaos occurring in
reactions. The chapter closes with special topics such as symmetries of induced
kinetic differential equations and the graphs of element fluxes allowing a more
detailed insight into the evaluation of concentrations. Finally, as usual, a set of
solved and open problems follows.
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8.2 Well-Posedness

Before formulating more detailed statements about the solutions of induced kinetic
differential equations and their trajectories, we need a few fundamental statements.
At the beginning of the twentieth century, Jacques Hadamard formulated three
requirements important for problems of applied mathematics. These requirements
(altogether called well-posedness) are as follows:

• The problem should have a solution.
• The solution should be unique.
• It should continuously depend on parameters, in particular, on initial data.

We formulate below theorems expressing the fact that the initial value problems for
induced kinetic differential equations of mechanisms are well-posed problems.

Theorem 8.1 The induced kinetic differential equation (6.3) of any mechanism has
a unique solution once the initial value of the concentrations has been specified.

Proof The right-hand side of Eq. (6.3) is continuously differentiable; thus the
statement immediately follows from the Picard–Lindelöf Theorem 13.42. ��

Remark 8.2 The consequence of the theorem may not remain true if one has
reaction steps with fractional order, smaller than 1. To remain on the safe side, one
usually assumes that the stoichiometric coefficients of the reactant complexes can
be any nonnegative real number except those in the open interval ]0, 1[. In most
cases it is not a strict restriction to assume that they are integers.

Remark 8.3 The fact that the right-hand side depends on the parameters (mainly,
reaction rate coefficients) in continuously differentiable way together with continu-
ous differentiability of the right-hand side itself implies that the solutions are also
continuously differentiable functions of the parameters and the initial conditions
(Perko 1996, Section 2.3).

Example 8.4 As to the quantitative dependence on parameters, let us start with the
example of the irreversible Lotka–Volterra reaction, and let us write its induced
kinetic differential equation in the following form, explicitly expressing the depen-

dence of the variables on the vector of reaction rate coefficients k = [k1 k2 k3
]	 :

ẋ1(t,k) = k1x1(t,k)− k2x1(t,k)x2(t,k), (8.1)

ẋ2(t,k) = k2x1(t,k)x2(t,k)− k3x2(t,k). (8.2)
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Specifying the sensitivities (see (13.23)) sm,p(t,k) := ∂xm(t,k)
∂kp

for the case of
induced kinetic differential equations of reactions with mass-action type kinetics,
we have

ṡ1,1 = x1 + k1s1,1 − k2s1,1x2 − k2x1s2,1, (8.3)

ṡ2,1 = k2s1,1x2 + k2x1s2,1 − k3s2,1, (8.4)

ṡ1,2 = k1s1,2 − x1x2 − k2s1,2x2 − k2x1s2,2, (8.5)

ṡ2,2 = x1x2 + k2s1,2x2 + k2x1s2,2 − k3s2,2, (8.6)

ṡ1,3 = k1s1,3 − k2s1,3x2 − k2x1s2,3, (8.7)

ṡ2,3 = k2s1,3x2 + k2x1s2,3 − x2 − k3s2,3. (8.8)

(Problem 8.1 asks the reader to derive these equations in full generality.) Solving
the system (8.1)–(8.8) with the initial conditions

x1(0) = x1,0 ∈ R
+
0 , x2(0) = x2,0 ∈ R

+
0 ,

s1,1 = 0, s2,1 = 0, s1,2 = 0, s2,2 = 0, s1,3 = 0, s2,3 = 0

provides information on the (time-varying) effect of the individual reaction rate
coefficients on the concentrations. Note that this effect is depending on the actual
values of the reaction rate coefficients and also on the initial concentrations. Note
also that it is enough to solve, e.g., the four variable system (8.1)–(8.2), (8.5)–(8.6)
if one is only interested in the effect of k2.

One can proceed symbolically (without relying on numerical calculations) by

focusing on the stationary concentrations
[
k3/k2 k1/k2

]	
of the above reaction.

Upon substituting these into (8.3)–(8.8), one can see that at this point the sensitivity
equations simplify to

ṡ1,1 = k3/k2 − k3s2,1, ṡ2,1 = k1s1,1,

ṡ1,2 = −k1k3/k
2
2 − k3s2,2, ṡ2,2 = k1k3/k

2
2 + k1s1,2, (8.9)

ṡ1,3 = −k3s2,3, ṡ2,3 = k1s1,3 − k1/k2.

Let us concentrate on the effects of k1. This is expressed by

s1,1(t) =
√
k3/k1 sin

(√
k1k3t

)
/k2, s2,1(t) =

(
1− cos

(√
k1k3t

))
/k2

showing that at the beginning both effects are small, then, at time π/(2
√
k1k3) the

effect of k1 on the first variable is maximal. The effect on the second variable reaches
its maximum at time π/

√
k1k3, i.e., at the same time when the effect on the first

variable vanishes. Then the absolute value of the effect on the first variable starts
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The effect of k1 on the variables.
Stationary case

The effect of k1 on the variables.
Transient case
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Fig. 8.1 Sensitivities as a function in time in the stationary and transient cases

growing but becomes negative, etc. (see Fig. 8.1). The lower part of the figure shows
that the sensitivities in the transient case are growing with time. The treatment of
sensitivities in the case of oscillatory reactions needs more care (see Sipos-Szabó
et al. 2008; Zak et al. 2005).

The investigation of the trivial stationary concentration
[
0 0
]	

is left to the
reader (Problem 8.2).

Remark 8.5 It is worthwhile looking at Turányi and Tomlin (2014) who use a
series of different quantities derived from the sensitivity matrix to characterize the
parameter dependence of complicated mechanisms. (See also the earlier review
paper by Turányi 1990.) There it turns out that the usual way to calculate the
effect of the reaction rate coefficients in practice is to numerically approximate
the sensitivities. A nice application of sensitivity analysis is that large mechanisms
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can be reduced by excluding reaction steps with negligible or no effects (see, e.g.,
Turányi et al. 1993).

8.3 Nonnegativity

The meaning of the dependent variables in an induced kinetic differential equation
is concentration (or mass which is a constant multiple of it as volume is fixed); thus
it is a natural requirement for the solutions to be nonnegative for their whole domain
of existence. If this is a result of the model—as it will turn out to be the case—then
our belief in the model is further confirmed. Moreover, there is no need to assume
the invariance of the first orthant, let alone to prove it again and again for special
cases, as it so often happens in the literature.

In this section we summarize the results by Volpert (1972) in the special case
of mass-action kinetics, but the original paper is worth reading for its far-reaching
generalizations using only the qualitative properties of mass-action type kinetics.
(However, acknowledgment should be given to Müller-Herold (1975) who stated
and proved the statement below in the same generality starting from the Horn and
Jackson (1972) paper. Note that this work remained practically unnoticed.)

Theorem 8.6 Let us consider the reaction (2.1), and let the solution of its induced
kinetic differential equation (6.8) with the initial condition c(0) = c0 ∈ (R+)M be
defined on the interval J ⊂ R

+
0 . Then, for all t ∈ J : c(t) ∈ (R+)M .

Proof Suppose that the solution is defined on the interval J, but it is not always
positive, and let the first time when any of the coordinate functions (let it be cm)
turns zero be t0 ∈ J : cm(t0) = 0. Then we have for all p ∈ M and for all
t ∈ [0, t0[: cp(t) > 0. If for some r ∈ R we have γ (m, r) < 0, then α(m, r) > 0
should also hold. Using this fact one can rewrite the mth equation of the induced
kinetic differential equation (6.8) in the following way:

ċm(t) = cm(t)ϕ(t)+ ψ(t), (8.10)

where the continuous functions ϕ and ψ defined on J are as follows:

ϕ(t) :=
∑

r :γ (m,r)<0

γ (m, r)
wr(c(t))
cm(t)

and ψ(t) :=
∑

r :γ (m,r)≥0

γ (m, r)wr(c(t)).

Solving (8.10) as a linear differential equation gives

cm(t) = cm(0) exp

(∫ t

0
ϕ

)
+
∫ t

0
exp

(∫ t

u

ϕ

)
ψ(u) du, (t ∈ J )

showing that cm(t0) > 0, in contradiction with our assumption. ��
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Remark 8.7 Obviously, the conclusion remains true if a function g ∈ C (R, (R+0 )M)

(representing time-dependent input) is added to the right-hand side of the induced
kinetic differential equation.

Corollary 8.8 Let us consider the reaction (2.1), and let the solution of its induced
kinetic differential equation (6.8) with the initial condition c(0) = c0 ∈ (R+0 )M be
defined on the interval J ⊂ R

+
0 . Then, for all t ∈ J : c(t) ∈ (R+0 )M .

Proof Continuous dependence of the solutions of differential equations—see, e.g.,
Perko (1996), Section 2.3—on initial data and Theorem 8.6 implies the statement:
add a vector ε ∈ (R+)M to the nonnegative initial concentrations, apply the previous
theorem, and let ε tend to 0 ∈ R

M . ��

This corollary also follows from the fact that the velocity vector points into the
interior of the first orthant. However, to prove the above stricter theorem, one cannot
argue this way.

One can also formulate more precise statements about positivity of the coor-
dinates. The essence of the statements below is that the concentration of species
which can be produced from a given set of species initially present is positive for
all positive times, whereas the concentration of the other ones is zero for all positive
times. This also means that an initially positive concentration cannot turn into zero
in a finite time, (as opposed to the non-mass-action case, see Póta 2016), while an
initially zero concentration may turn positive. Let us introduce a formal definition
first.

Definition 8.9 An acyclic subgraph Γ of the Volpert graph of a reaction is a
reaction path, if it contains together with its vertices corresponding to the reaction
steps also all the edges pointing into the these vertices. A species is an initial species
if no edge belonging to Γ points into it. (In other words, its in-degree is zero.)

Example 8.10 In the reaction X + Y −−→ 0 U −−→ Z + Y, a reaction path is
the subgraph of the Volpert graph with all the edges except the one pointing from
the second reaction step to the species Z, because it contains together with all the
reaction steps all the edges pointing into them. The initial species of this reaction
path are X, Y, U.

Definition 8.11 Let ∅ �=M0 ⊂M be a nonempty set of species. Species X(m) is
said to be reachable from M0, if there exists a reaction path which contains X(m)
and has no other initial species than those in M0.

Now the reason why it was useful to introduce indices in Chap. 3 will be obvious
immediately. The following statement can be proved by induction on indices:

Lemma 8.12 The index of a species is finite if and only if it is reachable from the
set of species M0.
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The connection between indices and positivity follows. From now on let the set of
species M0 be defined as those with positive initial concentration:

M0 := {p ∈M |cp(0) > 0}.

Theorem 8.13 Suppose that the zero complex is not a reactant complex in the
reaction. Then for all species m ∈ M unreachable from M0 and for all t ∈ J

in the domain of existence of the solution cm(t) = 0.

A kind of pair of the above theorem follows.

Theorem 8.14 For all species m ∈M reachable from M0 and for all t ∈ J in the
domain of existence of the solution cm(t) > 0.

Remark 8.15 Obviously, the last theorem remains true if a possibly time-dependent
input is added to the right-hand side of the induced kinetic differential equation.
Both theorems above are obvious from the point of view of the chemist.

Example 8.16 The usual initial condition for the Michaelis–Menten reaction

E+ S −−⇀↽−− C −−→ E+ P

has the property that e(0) > 0, s(0) > 0, c(0) = p(0) = 0. Calculating the Volpert
indices using the corresponding function of ReactionKinetics

VolpertIndexing[

{"Michaelis-Menten"}, {"E", "S"}, Verbose -> True]

we get that all the species have a finite index; therefore all the concentrations are
positive for positive times. More generally, if either C or both of E and S are initially
present, this will again be the case; otherwise some of the species will become
unavailable. We can formulate this fact that the sets {E,S} and {C} are minimal
initial sets of species to produce positive concentrations, cf. page 209.

More complicated examples can be found in Kovács et al. (2004).

Remark 8.17 The absolute probabilities of a Markovian pure jump process (with
time-independent rates) in general (not only those of a reaction) behave in a similar
way: they remain either zero or positive for all positive times in their domain
(see, e.g., Remark 2.48 in Liggett 2010). This is a consequence of the above
theorems (only) in the case when the state space is finite, because in this case the
master equation may be considered the induced kinetic differential equation of a
compartmental system.
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8.4 Blowing Up

Some experience in the theory of differential equations causes us to be quite careful
speaking about a solution defined on the open interval J ⊂ R. The very simple

example of the simple second-order autocatalytic step 2 X
k−−→ 3 X shows that

one cannot neglect the investigation of the maximal solution (see Definition 13.43)
in the case of induced kinetic differential equations. Namely, the induced kinetic
differential equation of this reaction being ċ = kc2 can symbolically be solved (not
only by pen and paper but also using Concentrations) to give

[0, 1

kc(0)
[ � t �→ c(t) = c(0)

1− ktc(0)
, (8.11)

i.e., the concentration vs. time curve is only defined up to the time 1
kc(0) .

This phenomenon is called blowup (or blowing up) in the theory of differential
equations, but several other expressions are also used. In the theory of stochastic
processes, practically the same phenomenon is called finite escape time or first
infinity. We have to note that the problem is much more popular in the field
of partial differential equations and stochastic processes than in the field of
ordinary differential equations. If we remain within the framework of applications
in chemical kinetics, then we may also use the terms the onset of thermal runaway
or ignition.

The detailed analysis below is mainly based on the paper by Csikja and Tóth
(2007) and some references cited therein. Above we had to use a nonlinear example
(the model of a second-order reaction), because such a phenomenon cannot occur
in linear differential equations with constant coefficients (even less in the case of
induced kinetic differential equations of first-order reactions): the maximal solution
is always defined on the whole real line. In other words we have what is called
global existence. In the example above, we have a movable singularity, meaning
that the location of the singularity depends on the initial value (Fig. 8.2).

Fig. 8.2 Dependence of the
blow-up time on the initial
concentration in the reaction
2 X

2−−→ 3 X. The larger the
initial concentration c0 is, the
earlier the concentration
becomes infinity
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Definition 8.18 Let the solution of the initial value problem

ċ(t) = f(c(t)) c(0) = c0

(with f ∈ C 1(RM,RM), c0 ∈ R
M ) be J � t �→ ϕ(t, c0), where J ⊂ R is an open

interval containing 0. This solution is said to blow up (from the left) at t∗ ∈ R \J if
for all M ∈ R

+, there exists δ ∈ R
+ for which and for all t ∈ J such that t∗ − t < δ

the inequality ||ϕ(t, c0)|| ≥ M holds.

8.4.1 An Algebraic Method

As a first step, we present a sufficient condition for blowup, given by Getz and
Jacobson (1977). (The case when one has a single species can easily be treated (see
Problem 8.4).) Their method is based on an estimate using a corresponding scalar
equation.

Naturally, if a linear combination of the components blows up, then at least one
of the components should also blow up.

Let us consider the problem of blowing up with quadratic right-hand sides. Let
M ∈ N; A1,A2, . . . ,AM ∈ R

M×M ; b1,b2, . . . ,bM ∈ R
M ; c1, c2, . . . .cM ∈ R,

and consider the initial value problem

ẋm = x	Amx+ b	mx+ cm (m ∈M ), x(0) = x0, (8.12)

where one assumes (without the restriction of generality) that the matrices Am are
symmetric. Let us introduce

A(ω) :=
∑

m∈M
ωmAm b(ω) :=

∑

m∈M
ωmbm c(ω) :=

∑

m∈M
ωmcm (ω ∈ R

M)

Δ(ω) := λ(ω)

ω	ω
(b(ω)	A(ω)−1b(ω)− 4c(ω)) (ω ∈ R

M \ {0}), (8.13)

where λ(ω) ∈ R is the smallest eigenvalue of the matrix A(ω), and A(ω) will only
be used below when it is invertible. With these definitions the (slightly corrected)
main result of the mentioned authors is the following:

Theorem 8.19 (Getz and Jacobson (1977)) If there exists ω ∈ R
M such that A(ω)

is positive definite, then the solution to (8.12) blows up:

1. if Δ(ω) < 0, then for all x0 ∈ R
M ;

2. if Δ(ω) = 0, then for all x0 ∈ R
M fulfilling

ω	x0 > −1

2
ω	A(ω)−1b(ω);
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3. if Δ(ω) > 0, then for all x0 ∈ R
M fulfilling

ω	x0 > −1

2
ω	A(ω)−1b(ω)+

√
Δ(ω)ω	ω

2λ(ω)
.

The upper estimates for the blow-up time t∗ in the cases above are as follows:

1.

t∗ ≤ 2√−Δ(ω)

(
π

2
− arctan(2z(ω)λ(ω))√−Δ(ω)

)
,

2.

t∗ ≤ − ω	ω

λ(ω	x0 + ω	A−1b)
,

3.

t∗ ≤ 1√
Δ(ω)

ln

⎛

⎝
z(ω)+

√
Δ(ω)

2λ(ω)

z(ω)−
√
Δ(ω)

2λ(ω)

⎞

⎠ ,

with z(ω) := ω	(x0+ 1
2A(ω)−1b(ω))

ω	ω
.

Example 8.20 Let us try to show that the reaction

0
k1−−→ Y 2 X

k2−−→ X+ Y 2 Y
k3−−→ 3 X

blows up for some initial concentration vectors. The induced kinetic differential
equation of the reaction is ẋ = −k2x

2 + 3k3y
2 ẏ = k2x

2 − 2k3y
2 + k1; therefore

with the notation of Theorem 8.19, one has A1 =
[−k2 0

0 3k3

]
, A2 =

[
k2 0
0 −2k3

]
,

b1 = b2 = 0, c1 = 0, and c2 = k1. It is easy to find an ω satisfying Case 1 of
Theorem 8.19: ω = [3 4

]
is an example. Let us also fix the reaction rate coefficients

as k1 = 1, k2 = 2, and k3 = 3. Then λ(ω) = 2, c(ω) = 4, and Δ(ω) = −32/25;
thus the solutions blow up with any initial values x0, y0. For this fixed ω, one can
also apply the upper estimate of the blow-up time if one uses the values x0 = 1, y0 =
2:

t∗ <
2√

32/25

(
π

2
− arctan(44/25)√

32/25

)
≈ 1.12977.
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Plotting the result provided by

ReplaceAll @@ Concentrations[

{2X -> X + Y, 0 -> Y, 2Y -> 3X},

{2, 1, 3}, {1, 2}, {0, 2}]

shows that the blow-up time is around 0.771.
How to find the best vector ω in general? The matrix

A(ω) :=
[

2(ω2 − ω1) 0
0 3(3ω1 − 2ω2)

]

is positive definite if and only if 3
2ω1 > ω2 > ω1 (implying ω1 > 0); thus one has

to choose ω from the area defined by these two inequalities in such a way that the
upper estimate of t∗ be as small as possible. (Note that Δ(ω) = − 8

ω2
1+ω2

1
will be

negative for all such choices.)

A series of natural questions is formulated at the end of the chapter.
A numerical method follows for the detection of blowup in quadratic equations.

Case 1 of Theorem 8.19 can be considerably simplified for numerical methods.

Theorem 8.21 Case 1 of Theorem 8.19 holds if and only if there exists an ω ∈ R
M

satisfying

H(ω) :=
[

4c(ω) b(ω)	
b(ω) A(ω)

]
� I(M+1)×(M+1). (8.14)

Proof Clearly, Δ(ω) < 0 if and only if 4c(ω) − b(ω)	A(ω)−1b(ω) > 0. Using
Haynsworth’s theorem (Theorem 13.23), the latter inequality andA(ω) � 0 together
are equivalent to H(ω) � 0.

To complete the proof, observe that such an ω∗ exists if and only if there exists
one that satisfies H(ω∗) � I. Namely, suppose ω∗ ∈ R

M satisfies A(ω∗) � 0 and
H(ω∗) � 0, and let λ1 > 0 be the smallest eigenvalue of H(ω∗). Then for every
c > 0 : A(cω∗) � 0, and the smallest eigenvalue of H(cω∗)− I is cλ1 − 1. Hence,
for c ≥ 2/λ1, H(cω∗) � I holds. ��

If the condition of the above theorem does not hold, we can still find an ω

satisfying A(ω) � 0, or H(ω) � I. The minimization or maximization of Δ(ω),
however, seems to be difficult.

Constraints of the form A(ω) � B, where A is a fixed linear function of the
variable vector ω and B is a given matrix, are called linear matrix inequalities or
semi-definite constraints. The problem of finding an ω satisfying such inequalities,
or, more generally, the problem of finding sup{c	x |A(x) � B, x ∈ R

M } is called
a semi-definite optimization problem or semi-definite program. The similarity
between semi-definite programs and linear programs is not coincidental; semi-
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definite programs are generalizations of linear programming problems. There are
several efficient numerical algorithms (specialized interior-point methods) to solve
semi-definite programs, which we shall not discuss in this book. The reader inter-
ested in the topic is encouraged to consult the rather accessible survey Vandenberghe
and Boyd (1996) for a good introduction; Wolkowicz et al. (2000) is a considerably
more in-depth survey of the (nearly) state-of-the-art.

Example 8.22 As a continuation of Example 8.20, let us check inequality (8.14).
This reduces to

ω2 >
1

4k1
, ω2 > ω1 + 1

k2
, ω2 <

3

2
ω1 − 1

2k3
,

what can always be fulfilled (as the reader can convince herself/himself), no matter
what the value of the reaction rate coefficients are, i.e., there always exists an ω for
which Δ(ω) < 0, and thus the system blows up for every initial vector (including
nonnegative ones).

8.4.2 Transformations of Differential Equations

Transformation of kinetic differential equations is a recurrent theme. It turns out
that the transformations proposed by Beklemisheva (1978) may throw light on the
phenomenon of blowing up.

Every polynomial differential equation (6.39) can obviously be written in the
following form (see the special case of Example 8.25 on how the mapping
from (6.39) to (8.16) works):

ẋm = xm

⎛

⎝λm +
∑

r∈R
Amr

M∏

p=1

x
Bpr
p

⎞

⎠ (m ∈M ), (8.15)

or using the more compact notation reviewed in Chap. 13,

ẋ = x (λ+ AxB) (8.16)

where A ∈ R
M×R,B ∈ R

M×R,λ ∈ R
M . For polynomial equations the entries of

B are integers not smaller than−1; in what follows we relax these assumptions and
allow B to have arbitrary, even non-integer elements; thus Eq. (8.16) is not always
of the Kolmogorov form (see Definition 6.16).

Theorem 8.23 Let C ∈ R
M×M be a non-singular (invertible) matrix, and let

us introduce new variables with the definition y := xC
−1

. Then, Eq. (8.16) is
transformed into an equation of the same form but with the following parameters:

λ′ := (C−1)	λ A′ := (C−1)	A B′ := CB. (8.17)
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Proof First of all, we remind the reader that the operations in the theorem and
the proof are defined and treated in the Appendix. As y := xC

−1
implies (see the

Appendix) x = yC, one can use (14.61) to get

ẏ = (xC
−1
)· = xC

−1  
(
(C−1)	 ẋ

x

)
= y 

(
(C−1)	λ+ (C−1)	AyCB

)

meaning that for y one has an equation of the form Eq. (8.16) with the parameters
as given in Eq. (8.17). ��

Remark 8.24

• An immediate consequence of (8.17) is that the transformation has two invari-
ants: B	λ and B	A, because

B′	λ′ = B	λ, B′	A′ = B	A.

• A transformation of this form is sometimes called quasi-monomial transforma-
tion.

• Systems of the form (8.16) together with the given type of transformations have
also been used by Szederkényi et al. (2005) and earlier by Hernández-Bermejo
and Fairén (1995).

Let us consider special cases when this transformation leads to a simplified form,
which may also reveal if blowup occurs or not.

8.4.2.1 Decoupling
Suppose that M < R, and the rank of the matrix B ∈ R

M×R in Eq. (8.16) is M0 <

M, then there exist independent vectors:

vM0+1, vM0+2, . . . , vM ∈ R
M for which v	mB= 0	R (m=M0+1,M0+2, . . . ,M),

and we can choose C in the following way:

C :=

⎡

⎢
⎢
⎢
⎣

IM0 0M0×(M−M0)

v	M0+1

. . .

v	M

⎤

⎥
⎥
⎥
⎦

M×M

,

where IM0 is a M0 ×M0 unit matrix, and 0M0×(M−M0) is a zero matrix. (Note that
the first M0 rows are partitioned, while the last M −M0 rows are not.) In this case

we have B′ = CB =
[

BM0×R

0(M−M0)×R

]
, which means that the first M0 equations

will only contain the first M0 variables, and solving these one can substitute these
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variables into the last M −M0 equations to get a linear equation (with nonconstant
coefficients). This procedure is thus a special case of lumping (Tóth et al. 1997) and
has been applied in the special case of second-order reactions earlier (Tóth and Érdi
1978, pp. 290–295).

The explicit form of the transformed equations is

ẏm = ym

⎛

⎝λ′m +
m∑

j=1

A′mj

M0∏

p=1

y
Bpj
p

⎞

⎠ (m = 1, 2, . . . ,M0)

ẏm = ym

⎛

⎝λ′m +
m∑

j=1

A′mj

⎞

⎠ (m = M0 + 1,M0 + 2, . . . ,M).

The obtained system blows up if and only if its nonlinear part does.

8.4.2.2 Lotka–Volterra Form
In the very special case when M = R and B is invertible, an even more transparent
form can be obtained: a quadratic polynomial equation of the generalized Lotka–
Volterra form; see (6.34). Let us choose C := B−1; then λ′ = B	λ, A′ =
B	A, B′ = I show that these parameters are invariant for any further quasi-
monomial transformations, meaning that we have arrived at the simplest possible
form in a certain sense: any further transformation can only “distort” the simple
exponent of x. Note in particular that this transformation disposes of the negative
and non-integral exponents on the right-hand side of the equation. Another impor-
tant point is that the transformed equation is always a kinetic differential equation.
Let us consider an example.

Example 8.25 In the case of the equation

ẋ1 = x1

(

1− x
2/3
2

x2
3

)

, ẋ2 = x2

(

−1− 3x2/3
2

x2
3

+ x2

)

, ẋ3 = x3

(

2+ x2 + 5x1x
3
2

x1
3

)

we have

λ =
⎡

⎣
1
−1

2

⎤

⎦ , A =
⎡

⎣
−1 0 0
−3 1 0

0 1 5

⎤

⎦ , B =
⎡

⎣
0 0 1
2
3 1 3
−2 0 −1

⎤

⎦ , (8.18)

therefore

C := B−1 =
⎡

⎣
− 1

2 0 − 1
2

− 8
3 1 1

3
1 0 0

⎤

⎦ B	A =
⎡

⎣
−2 − 4

3 −10
−3 1 0
−10 2 −5

⎤

⎦ B	λ =
⎡

⎣
−5
−1
−4

⎤

⎦ .

(8.19)
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With these we get the Lotka–Volterra form of the equations:

ẏ1 = y1

(
−14

3
− 2y1 − 4

3
y2 − 10y3

)

ẏ2 = y2 (−1− 3y1 + y2)

ẏ3 = y3 (−4− 10y1 + 2y2 − 5y3) .

Remark 8.26

1. This method enables us to eliminate non-integer exponents. This implies that
the original equation may have not fulfilled the Lipschitz condition, whereas the
transformed one obeys it.

2. The transformed equation is always a kinetic differential equation, even if the
original was not one.

3. The authors Brenig and Goriely (1994) have carried out a systematic investiga-
tion on how to find an appropriate C matrix.

4. Beklemisheva (1978) always assumes the invertibility of B (which in the
case of reaction kinetic applications means that the reaction step vectors are
independent). Moreover, she only treats the case λ = 0.

Exclusion of the phenomena of blowing up is also a consequence of general
theorems of which we mention a few now. The solution of the induced kinetic
differential equation of

• a stoichiometrically subconservative (Problem 8.5), stoichiometrically mass-
conserving, or kinetically mass-conserving reaction;

• a detailed balanced mechanism (Theorem 8.45);
• a zero-deficiency reaction (Theorem 8.47);
• a reaction with acyclic Volpert graph (Theorem 8.54);
• a first-order reaction (being a linear differential equation)

does not blow up.
To close the topics of blowing up, we mention that Csikja and Tóth (2007)

initiated the use of Kovalevskaya exponents and Painlevé analysis for finding
movable singularities in induced kinetic differential equations.

8.5 First Integrals

The meaning and existence of (positive) linear first integrals have been studied
in Chap. 4 in detail: they usually represent mass conservation. The existence of a
positive linear first integral together with nonnegativity (Volpert 1972; Volpert and
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Hudyaev 1985) of the solutions implies that the complete solution of the kinetic
differential equation is defined on the whole real line (i.e., it does not blow up),
which is not necessarily the case for systems that are not (stoichiometrically) mass
conserving.

However, quadratic first integrals were almost neglected; therefore we dedicate a
few lines to them, as well.

We may reformulate the quest of first integrals as wanting to restrict even more
that part of the state space where the trajectories of an induced kinetic differential
equation can wander.

Definition 8.27 Let M ∈ N, f ∈ C 1(RM,RM), and consider the differential
equation ẋ = f ◦ x. The function ϕ ∈ C 1(RM,R) (or, functional, if one wants
to emphasize that it is a scalar-valued function) is said to be the first integral of the
given differential equation if for all solutions ξ of it one has ϕ(ξ (t)) = constant (t ∈
Dξ ).

8.5.1 Linear First Integrals

Let us start with the simplest case and try to find (homogeneous) linear functions
which are first integrals. Such a function can be identified with a vector in R

M .
Without restriction of generality, one can assume that a linear first integral is a
homogeneous linear function.

Recall the general mass-action type induced kinetic differential equation:

ċ = f ◦ c = (β − α) ·w ◦ c. (6.5)

By integrating this equation we get

c(t) = c0 + (β − α) ·
∫ t

0
w(c(s)) ds (8.20)

showing that the trajectories can only wander in the parallels of the stoichiometric
space or, more precisely, in its part lying in the first orthant: the nonnegative reaction
simplex. This formula also shows that for a mass-conserving reaction one has

�	c(t) = const(= �	c0). (8.21)

In some cases it may happen that an even narrower set may contain the trajectories.
Obviously, one can also state that the trajectories remain in the linear space spanned
by the range of the right-hand side,

S ∗ := span {Rf}, (8.22)
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which may justifiably have the name kinetic subspace. (Note that Rf itself is in
general not a linear space, cf. Problem 8.32.) The natural question (answered by
Feinberg and Horn 1977) is although trivially

S ∗ ⊂ S , (8.23)

under what condition can we have strict inclusion and when do we have equality
in (8.23)?

Theorem 8.28 (Feinberg and Horn (1977)) Let us consider a reaction endowed
with mass-action kinetics, and suppose that the Feinberg–Horn–Jackson graph has
L components and T ergodic components, and the deficiency of the mechanism is δ.

1. If T = L, then the stoichiometric subspace and the kinetic subspace coincide:
S = S ∗.

2. If T −L > δ, then the stoichiometric and the kinetic subspaces do not coincide:
S � S ∗.

Remark 8.29 Let us note that the numbers T and L only depend on the “reacts to”
relation and do not depend on the values of the stoichiometric coefficients (even less
on reaction rate coefficients).

Note that weakly reversible reactions satisfy T = L. (Theorem 3.8.)

Corollary 8.30 For every weakly reversible reactions (a fortiori for every
reversible reactions), the stoichiometric and kinetic subspaces coincide.

Corollary 8.31 For reactions of deficiency zero, the stoichiometric and kinetic
subspaces coincide if and only if each connected component contains precisely one
ergodic component.

Example 8.32 The reaction in Fig. 8.3 has {A+ B,C}, {D+ E,F}, and {G,H, 2 J}
as strong components (Definition 13.30), and {D+ E,F} and {G,H, 2 J} as ergodic
components (or terminal strong linkage classes). Our program calculates this result
in the following way:

2 J

H

G A + B D + EC F

Fig. 8.3 Reaction with more ergodic classes than linkage classes: 2 = T > L = 1



166 8 Time-Dependent Behavior of the Concentrations

Last /@ ReactionsData[

{H <=> 2J -> G <- A+B <=> C -> D+E <=> F, G -> H}]

["fhjterminalstronglyconnectedcomponents"]

Definition 8.33 A mechanism with f as the right-hand side of its induced kinetic
differential equation is said to be kinetically mass conserving if there exists a
vector � ∈ R

M with positive coordinates so that for all c ∈ (R+0 )M

�	 · f(c) = 0 (8.24)

holds.

Remark 8.34

• The concepts kinetically mass producing and kinetically mass consuming can
be defined in an analogous way.

• Stoichiometrically mass-conserving mechanisms are also kinetically mass con-
serving, and Problem 8.12 shows that the converse is not true.

8.5.2 Nonlinear First Integrals

It may also happen that a differential equation has a nonlinear function as its first
integral. The simplest case is that of quadratic functions.

8.5.2.1 Quadratic First Integrals
Here we try to determine classes of mass-action type kinetic differential equations
with the property of having a quadratic first integral. Since the introduction of
the name of first integral by E. Nöther in 1918, it turned out that first integrals may
help

• prove that the complete solution of the induced kinetic differential equation is
defined for all positive times (Volpert 1972, p. 586, Theorem 9);

• reduce the number of variables either by constructing an appropriate lumping
scheme (Li et al. 1994) or by simply eliminating some variables;

• apply the generalization of the Bendixson and Bendixson–Dulac criterion to
higher dimensional cases (Tóth 1987; Weber et al. 2010).

Our main tool to find such first integrals is simply the comparison of coefficients
of polynomials and the characterization of kinetic differential equations within
the class of polynomial ones (see Theorem 6.27). It is a very natural requirement
that a numerical method aimed at solving (6.3) should keep the total mass∑

m∈M �mcm(t) constant (independent of time) in case of a kinetically mass-
conserving reaction. There are some methods to have this property (see, e.g.,
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Bertolazzi 1996). A similar requirement is to keep other, e.g., quadratic first
integrals, which has also been shown for some methods by Rosenbaum (1977).

However, not much is known about equations, especially kinetic differential
equations with quadratic first integrals. Obviously, equations of mechanics, like that
of the standard harmonic oscillator x ′ = y y ′ = −x, may have quadratic first
integrals, ϕ(p, q) := p2 + q2 in this case, and here the meaning of the quadratic
first integral is the total mechanical energy.

We cite some of the statements on the existence and nonexistence of quadratic
first integrals from Nagy and Tóth (2014); the reader might consult the paper for
proofs and further details.

Let us start with the simplest case: when the candidate first integral is a sum of
squares, i.e., when one has a diagonal quadratic first integral.

Theorem 8.35 Let us consider the following system of differential equations

ẋm = Fm ◦ (x1, x2, . . . , xM), (m ∈M ) (8.25)

where the functions Fm are quadratic functions of the variables, that is,

Fm(x1, x2, . . . , xM) =
∑

p∈M
Am,px

2
p +

M∑

p=1
p �=m

Bm,pxmxp

+
M∑

p,q=1
p<q

p �=m,q �=m

Cm
p,qxpxq +

∑

p∈M
Dm,pxp + Em. (8.26)

Suppose that the system of differential equations is kinetic. The function

ϕ(x1, x2, . . . , xM) = a1x
2
1 + a2x

2
2 + · · · + aMx2

M

(with am > 0 for m ∈ M ) is a first integral for the above system if and only if the
functions Fm have the following form with Km,p ≥ 0:

Fm(x1, x2, . . . , xM) =
M∑

p=1
p �=m

apKm,px
2
p −

M∑

p=1
p �=m

apKp,mxmxp. (8.27)

Proof The function ϕ is a first integral for the system (8.25) if and only if its
derivative with respect to the system (its Lie derivative; see Definition 13.47) is
equal to zero. This fact can be expressed by the coefficients of the polynomials on
the right-hand side. Investigating the signs of the coefficients and using the absence
of negative cross effect, one arrives at the only part of the statement.

The proof of the if part is obvious. ��
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Example 8.36 Let M = 2 and suppose that ϕ(x, y) = x2 + y2. Then (8.27)
specializes to

ẋ = ay2 − bxy, ẏ = bx2 − axy (8.28)

which may be considered as the induced kinetic differential equation of the reaction

X
a←−− X+ Y

b−−→ Y 2 X
b−−→ 2 X+ Y 2 Y

a−−→ X+ 2 Y (8.29)

as the application of

RightHandSide[

{X <- X+Y -> Y, 2X -> 2X+Y, 2Y -> X+2Y}

,{a, b, b, a}, {x,y}]

gives: {a y2-b x y, b x2-a x y} . A typical trajectory is shown in
Fig. 8.4. Naturally arises the question if the differential equation (8.28) can be
represented with a mechanism only containing three complexes 2 X, 2 Y, and X +
Y. It can be easily shown that the answer is negative (see Problem 6.21).

1.5

1.0

0.5

0.0

0.0 0.5 1.0 1.5

Fig. 8.4 Trajectories of system (8.28) with a = 2, b = 3 starting from x(0) = 1, y(0) = 0
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X

b

e

a

af

c e

db
c

d

f

Y

Z

X + Y

2X + Y

2Y + Z X + 2Y

2X + Z

Y + 2ZX + 2Y 2 Z

2 X

2 Y

X + Z

Y + Z

Fig. 8.5 3D system with a quadratic first integral

Example 8.37 Let M = 3 and suppose that ϕ(x, y, z) = x2 + y2 + z2. Then (8.27)
specializes to

ẋ = ay2 + bz2 − cxy − exz

ẏ = cx2 + dz2 − axy − fyz (8.30)

ż = ex2 + fy2 − bxz− dyz

(with nonnegative coefficients a, b, c, d, e, f ) which may be considered as the
induced kinetic differential equation of the reaction shown in Fig. 8.5 as again the
application of RightHandSide verifies.

Corollary 8.38 As the divergence of the system (8.30) is−ax−bx−cy−dy−ez−
f z < 0 in the first orthant (if at least one of the coefficients is different from zero)
and the system has a first integral, (Tóth 1987, Theorem 3.3) (actually, a version of
K. R. Schneider’s theorem) implies that it has no periodic orbit in the first orthant.

A similar proof shows that (even weighted) sum of squares cannot be a first integral
if mass is conserved.

Theorem 8.39 Let us consider the differential equation (8.25) where the functions
Fm are of the form (8.26). Suppose that the differential equation is kinetic and
kinetically mass conserving. The function

ϕ(x1, x2, . . . , xM) = a1x
2
1 + a2x

2
2 + · · · + aMx2

M

(where am �= 0 for all m) is a first integral for the system (8.25), if and only if for
all m

Fm(x1, x2, . . . , xM) = 0.
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The paper Nagy and Tóth (2014) contains results also on more general quadratic
forms with and without the assumption of (kinetic) mass conservation. Let us only
cite a single example.

Example 8.40 If ϕ(x1, x2, y1, y2, z) = x2
1 + x2

2 − y2
1 − y2

2 is a first integral and the
vector of masses to be conserved is �x1 = �x2 = �y1 = �y2 = �z = 1, then the
system to have this first integral and conserving mass is (a, b, c, d ≥ 0):

ẋ1 = ay1z+ by2z ẋ2 = cy1z+ dy2z ẏ1 = ax1z + cx2z ẏ2 = bx1z+ dx2z

ż = −ẋ1 − ẋ2 − ẏ1 − ẏ2 (8.31)

A possible inducing reaction is the following:

X1 + Z
1−−→ aY1 + bY2 + X1 + (1− a − b)Z

X2 + Z
1−−→ cY1 + dY2 + X2 + (1− c − d)Z

Y1 + Z
1−−→ aX1 + cX2 + Y1 + (1− a − c)Z

Y2 + Z
1−−→ bX1 + dX2 + Y2 + (1− b − d)Z

Another possible reaction can be seen in Fig. 8.6. We have also investigated the case
in two dimensions when the first integral is a binary quadratic form.

Finally, let us mention that most of our statements can be obtained using
the package ReactionKinetics and by simple additional programs. Also,
previously (see page 95), we provided simple codes to check if negative cross effect
is present in a polynomial or not.

Fig. 8.6 Reaction system
for (8.31)

a

a c

c

d

d

b

b

X1 +Y1

X1 +Y2

X2 +Y2

X2 +Y1

X2 + Z

X1 + Z

Y1 + Z

Y2 + Z
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8.5.2.2 Further Forms
We may find to try other types of first integrals. Let us mention one simple, still
interesting result.

Theorem 8.41 Among the polynomial differential equations of the form

ẋ = ax2+ bxy+ cy2+ dx+ ey+f

ẏ =Ax2+Bxy+Cy2+Dx+Ey+F (8.32)

(defined in the positive quadrant) the only one having

ϕ(p, q) := p + q − ln(p)− ln(q)

as its first integral is

ẋ = bxy − bx ẏ = −bxy + by. (8.33)

Note that it is not assumed that (8.32) is a kinetic differential equation, and even if
it is assumed, in the result no restriction is made on the sign of b.

This result is very similar to the results leading uniquely to the Lotka–Volterra
model under different circumstances (see, e.g., Morales 1944; Hanusse 1972, 1973;
Tyson and Light 1973; Póta 1983; Tóth and Hárs 1986b; Schuman and Tóth 2003).
One might try to generalize this result to the multidimensional case.

Another form of interesting first integrals is a free energy-like function:

ϕ(c) :=
∑

m∈M
cm ln

(
cm

c0
m

)
,

which will turn out to be a useful Lyapunov function for broad classes of reactions
as we will see below. Gonzales-Gascon and Salas (2000) have systematically found
this type of first integrals (and other types, as well) for three-dimensional Lotka–
Volterra systems.

8.6 Invariant Sets

Invariance is a key concept; we shall meet it a few times in the book.
Suppose ϕ ∈ C 1(RM,R) is a first integral of the system

ẋ = f ◦ x x(0) = x0, (8.34)
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where f ∈ C 1(RM,RM). Then for all t ∈ Dx, one has ϕ(x(t)) = ϕ(x0), or ϕ(x(t))−
ϕ(x0) = 0, i.e., the set

Φ := {x ∈ R
M |ϕ(x)− ϕ(x0) = 0} (8.35)

is an invariant set of the system (8.34), meaning that solutions starting in Φ will
remain in Φ as far as they are defined. The fact that in the case of kinetic differential
equations solutions starting in (R+0 )M remain in this set shows that the existence
of an invariant set may not imply the existence of a nontrivial (time-independent)
first integral. Now we show a method to find invariant sets (which may also lead to
finding a first integral, if it exists) following Romanovski and Shafer (2009), Section
3.6 and Antonov et al. (2016). Other methods can be found in the papers cited in
Tóth et al. (1997).

Definition 8.42 The function H ∈ C 1(RM,R) is said to be a generalized
eigenfunction of the equation ẋ = f ◦ x if there exists a function ϕ ∈ C 1(RM,R)

such that

H ′(x)f(x) = ϕ(H(x)) x ∈ R
M (8.36)

holds.

Remark 8.43 If one introduces the linear operator C 1(RM,R) � H �→ AH :=
H ′f ∈ C (RM,R), then Eq. (8.36) can be written in the following way: AH =
ϕ ◦ H ; therefore, more precisely, H is a generalized eigenfunction of the operator
A (actually defined using f). We can use the name instead of scalar-valued functions
H for vector-valued functions in a similar meaning.

Theorem 8.44 Suppose that there exists H ∈ C 1(RM,R) and ϕ ∈ C 1(R,R) with
ϕ(0) = 0 such that Eq. (8.36) holds. Then the set Φ := {x ∈ R

M |H(x) = 0} is an
invariant set of (8.34).

Proof Let x0 ∈ Φ, i.e., H(x0) = 0. Consider the function h defined by h(t) :=
H(x(t)) (t ∈ Dx), where x is the solution of (8.34). Then,

h(0)=H(x(0)) = H(x0) = 0, h′(t) = H ′(x(t))f(x(t)) = ϕ(H(x(t)) = ϕ(h(t)).

However, the zero function is also a solution of the initial value problem

h′(t) = ϕ(h(t)) h(0) = 0

and because of uniqueness (see Appendix, Theorem 13.42), the function h must be
identical with the zero function. ��
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This theorem provides a constructive method to find invariant sets. For example, one
can specialize the condition in the following way:

H ′(x)f(x) = K(x)H(x) (x ∈ R
M) (8.37)

with a scalar-valued function K . In the case when f is a polynomial, we can look
for polynomials H and K with unknown coefficients fulfilling the above condition.
If H is linear, then the obtained invariant surface is an invariant plane. This is the
method used in Antonov et al. (2016).

It is easy to show that once we have polynomials Hi and Ki fulfilling (8.37)
(called Darboux polynomials and cofactors, respectively), then

∏
i H

λi

i is a first
integral of (8.34) if the constants λi fulfill

∑
i λiKi = 0. (Check it!)

8.7 Transient Behavior

Our main concern is the characterization of the time evolution of concentrations.
Earlier, in Chap. 7 we treated the stationary behavior; here we are interested in what
happens in intermediate times as opposed to long times. The expression “transient”
is also used here in the strict sense: not the initial, not the long-time behavior, and it
does not mean here ephemeral. We cite statements assuring “dull” behavior; when
all the concentrations tend to a fixed value, nothing interesting happens. In this case
we speak about regular behavior, because this is expected for almost all reactions
from the chemist.

It is more interesting when something unusual happens, when there exist more
than one stationary state, or periodic or chaotic solutions exist. These phenomena
are not only more exciting for the mathematician; they turned out to be extremely
important from the point of view of applications, especially in biology, in chemical
technology, and in other fields. Without an exact mathematical definition, we shall
refer to non-regular behavior as exotic.

8.7.1 Regular Behavior

Most of the chemists, especially those not so much involved in reaction kinetics,
have the following picture about the time evolution of reactions. All the concentra-
tions of the species tend to the unique positive stationary point in the stoichiometric
compatibility class (or positive reaction simplex) corresponding to the initial
concentration vector. The stationary point is (relatively asymptotically globally)
stable.

We may say that in these cases the reaction shows regular (or using the
terminology by Horn and Jackson 1972 quasi-thermodynamic) behavior.
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Such a widespread belief should either be rigorously proved within the frame-
work of a model or should be disproved by appropriate, chemically acceptable
counterexamples.

The last 50 years of formal reaction kinetics has seen results in both directions.
Since the late 1960s and early 1970s of the last century, it is a well-formulated
theorem that detailed balanced reactions show regular behavior.

Shear (1967) was the first to state the theorem, although he thought it to be
more general than it is, as shown by Higgins (1968). A few years later, Volpert
and Hudyaev (1985), p. 635, formulated and proved the statement rigorously,
mentioning early (1938) ideas by Zeldovich. One could also add the even earlier
approach by Boltzmann, although the last two authors used the concept in a
stochastic framework. However, detailed balance is similar but not exactly the same
in the two models; see, e.g., Joshi (2015) and Chap. 10.

Once we know that detailed balance implies regular behavior, one may wish to
have necessary and sufficient conditions for this property. These we have presented
in Sect. 7.8.2 and are used in our program as DetailedBalance (see the
examples in the mentioned subsection).

8.7.1.1 Time Evolution of Detailed Balanced Reactions
Theorem 8.45 Suppose that the reversible reaction (7.7) endowed with mass-
action type kinetics is detailed balanced at some positive stationary concentration
c∗ ∈ (R+)M . Then:

1. The solution t �→ c(t) of the induced kinetic differential equation of the
reaction with nonnegative initial concentrations c0 ∈ (R+0 )M is defined for all
nonnegative times and is also bounded.

2. The induced kinetic differential equation has no nontrivial nonnegative periodic
solutions.

3. The mechanism is detailed balanced.
4. The ω-limit set of the initial value problem consists of either a single (positive)

detailed balanced stationary point or of nonnegative stationary points fulfilling
the condition equation (7.9) (of detailed balancing).

5. (Positive) detailed balanced stationary points are stable and are relatively
asymptotically stable within the stoichiometric compatibility class within which
they reside.

Proof We give only a sketch of the proof. First of all, let us introduce the function:

F(c) := c	 (ln(c/c∗)− 1M) (8.38)

1. It can be shown that F(c(t)) ≤ F(c0) and this—together with nonnegativity of
the solutions—imply existence for all nonnegative times and boundedness.

2. Suppose a solution c with period T ∈ R
+ exists. Then, F(c(t)) = F(c(t +

T )) would hold which contradicts to the fact that F is strictly decreasing along
nonconstant solutions.
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3. For constant solutions c∗∗ ∈ (R+0 )M (stationary points), one should have

krc
α(·,r)∗∗ = k−rc

β(·,r)∗∗ meaning just the condition of detailed balance at the point
c∗∗.

4. This follows from the fact that F is bounded from below and decreasing along
the solutions; therefore limt→+∞ F(c(t)) exists.

5. Use the level sets of F .
��

Remark 8.46

1. The proof uses the fact that (a − b)(ln(a) − ln(b)) ≥ 0 and also continuous
dependence of the solutions on the parameters, cf. the proof of nonnegativity of
solutions (see Corollary 8.8 above).

2. F can be thought of as the free energy of the system.
3. Note that in the Volpert graph of a reversible reaction, each of the species is

vertices of a cycle, a property reminding to weak reversibility.

A far-reaching generalization of detailed balance is complex balance (see
Sect. 7.6). As Theorem 7.15 states, a simple-to-check sufficient condition of com-
plex balancing in the mass-action case is that the reaction is weakly reversible and
its deficiency is zero.

8.7.1.2 The Zero-Deficiency Theorem
One of the most important statements in the last 40 years of formal reaction kinetics
follows.

Theorem 8.47 Suppose that the deficiency of a reaction is zero. Then:

1. No nontrivial periodic solutions of the induced kinetic differential equation can
exist.

2. Furthermore,
a. If the reaction is not weakly reversible, then it cannot have a positive

stationary point, no matter what form the kinetics has.
b. If the reaction is weakly reversible and the kinetics is of the mass-action form,

then with any choice of positive rate constants (i.e., with any mechanism built
on the given reaction):
i. There exists in each positive stoichiometric compatibility class exactly one

positive stationary concentration.
ii. Each of the positive stationary concentrations is relatively asymptotically

stable relative to the stoichiometric compatibility class in which it resides.

Proof Instead of giving the proof, we provide a few links, because the whole proof
is quite long. A short introduction can be read in Feinberg (1980), and a sketch of the
proof is given in Feinberg (1977), whereas Feinberg (1979) gives all the technical



176 8 Time-Dependent Behavior of the Concentrations

details. Gunawardena (2003) gives a relatively short proof, which is enlightening
from many respects. Bamberger and Billette (1994) also give a short proof, and they
also state that the integral

∫ +∞
0 (c(t) − c∗)2 dt converges. Although only a part of

the theorem is proved, it has been done in a really short way by Boros (2013c). ��

Horn (1974) realized that complex balancing may only imply local (relative)
stability; still for 40 years, we had the Global Attractor Hypothesis asserting
that global stability also holds. This has been proved for the one linkage class case
by Anderson (2011), and by entirely new methods in the general case by Craciun
(2016) (see also http://www.sjsu.edu/people/matthew.johnston/GAC_Workshop/).
(Here we can only give a loose definition of attractor as a set of states, invariant
under the dynamics, toward which neighboring states approach in the long run.)

Uniqueness of the stationary state can be found in a larger class of reactions,
Feinberg (1980). We only cite the deficiency-one theorem without proof.

Theorem 8.48 Suppose that a weakly reversible reaction (endowed with mass-
action type kinetics) has L linkage classes, and suppose the lth linkage class has
a deficiency δl (l ∈ {1, 2, . . . , L}), and the deficiency of the full mechanism is δ. If
δl ≤ 1 (l ∈ {1, 2, . . . , L}) and

∑L
l=1 δl = δ holds, then for every set of reaction

rate coefficients, there exists exactly one positive stationary point in each reaction
simplex.

Remark 8.49

• A short proof of the deficiency-one theorem has been provided by Boros (2013b,
2012). His method was also capable of giving a necessary and sufficient condition
for the existence of an interior stationary point for reactions covered by the
deficiency-one theorem.

• Consider a zero-deficiency reaction with L linkage classes, containing Nl

complex in the lth linkage class which has deficiency δl for l = 1, 2, . . . , L.
If the deficiency of the reaction is zero, then, since

∑L
l=1 Sl ≥ S, via

0 = δ = N − L− S ≥
L∑

l=1

(Nl − 1− Sl) =
L∑

l=1

δl

implies that δl = 0 for all l = 1, 2, . . . , L. This shows that Theorem 8.48
subsumes zero-deficiency reactions, as well.

As an illustration consider the reaction in Fig. 8.7.
The concept of complex graph introduced by Horn (1973) and recalled here

from Definition 3.30 of Chap. 3 also contains important information on the time
evolution of the solution of the induced kinetic differential equation. Before that
one needs a definition.

http://www.sjsu.edu/people/matthew.johnston/GAC_Workshop/
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2 A1

2 A7

2 A3

d 2 =N–L–S=3–1–2=0 d 3 =N–L–S=2–1–1=0 

d 1 =N–L–S=5–1–3=1

A2

A6 A5

A1 + A4

A1 + A3

A3 + A5

A4

Fig. 8.7 Illustration of the Deficiency One Theorem 8.48. δ = N − L− S = 10 − 3− 6 = 1

Definition 8.50 A reaction is quasi-thermodynamic with respect to the concen-
tration a ∈ (R+)M if:

• c∗ ∈ (R+)M is a stationary concentration if and only if ln(c∗) − ln(a) ∈ S ⊥;
and

• for all c ∈ (R+)M :(ln(c)− ln(a)) · f(c) ≤ 0, with equality holding if and only if
c is a stationary point.

Theorem 8.51 If the complex graph (Definition 3.30) of a reaction only containing
three short complexes and endowed with mass-action kinetics does not contain an
even cycle or an odd dumbbell (recall Definition 3.31), then:

1. weak reversibility implies quasi-thermodynamic behavior;
2. violation of weak reversibility implies the nonexistence of positive steady states,

and violation of quasi-thermodynamic behavior.

Corollary 8.52 The complex graph of a weakly reversible mechanism only contain-
ing three short complexes endowed with mass-action kinetics must contain an even
cycle or an odd dumbbell if the induced kinetic differential equation of the reaction
is to admit one of the following:

1. an unstable stationary point,
2. two or more stationary points in one and the same positive reaction simplex,
3. nontrivial periodic solutions with positive coordinates.
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Example 8.53 The complex graph of the reversible—therefore weakly reversible—
reaction A + B −−⇀↽−− C being 0–3 1–2 fulfills the condition of Theorem 8.51;
therefore it is quasi-thermodynamic. (The reader may check this property directly
from the definition, as well.)

Finally, let us mention that considering reactions as flows in networks in the
sense of operations research proved to be useful in a simplified proof of the zero-
deficiency theorem and an extension of the deficiency-one theorem (Boros 2013c,a).

8.7.1.3 The Case of Acyclic Volpert Graphs
Theorem 8.54 Suppose that the Volpert graph of the reaction (2.1) is acyclic, and
assume that the reaction is endowed with mass-action type kinetics. Then:

1. The solution t �→ c(t) of the induced kinetic differential equation of the
mechanism with nonnegative initial concentrations is defined for all nonnegative
times and is also bounded.

2. The induced kinetic differential equation has no nontrivial nonnegative periodic
solutions.

3. There exists

lim
t→+∞ c(t) =: c∗, (8.39)

and it is a stationary point of the induced kinetic differential equation.
4. Each of the nonnegative stationary points of the induced kinetic differential

equation is a solution to the equation cα = 0 ∈ R
R .

5. There exists a constant K ∈ R
+, independent from the initial condition, such

that

∫ +∞

0
|ċm(t)| dt < K (8.40)

holds.

Proof

1. Let � > 0 ∈ R
M be the solution of �	γ < 0 (the existence of which has been

formulated as Problem 4.5); then along the solutions c of the induced kinetic
differential equation of the reaction, one has d

dt (�
	c(t)) ≤ 0; thus �	c(t) ≤

�	c(0) implies the statement.
2. If c is a nonconstant solution of the induced kinetic differential equation then for

some t ∈ R and r ∈ R : krc(t)α(·,r) > 0 (otherwise we had for all t ∈ R and r ∈
R : krc(t)α(·,r) = 0 implying that c(t) = c(0)). Thus, �	c(t) cannot be constant,
but if c is a periodic solution with period T ∈ R

+, then �	c(t) = �	c(t + T )

would also imply a contradiction.
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3. Along the solutions �	c(t) is decreasing and being also bounded from below,
limt→+∞ �	c(t) exists; thus for all r ∈ R : ∫ +∞0 krc(s)α(·,r) ds < +∞. The
fact that cm(t) = cm(0) +∑r∈R γ (m, r)

∫ t

0 krc(s)α(·,r) ds (8.39) holds implies
that c∗ is a stationary point.

4. If c∗ is a stationary point, then (�	γ )k · cα∗ = 0 implies that k · cα∗ = 0.
5. Let P be the M × M matrix of independent solutions to �	γ ≤ 0. Then the

components of d(t) := P c(t) are non-increasing functions of time; thus

∫ +∞

0
|ḋm(s)| ds =

∣
∣
∣∣

∫ +∞

0
ḋm(s) ds

∣
∣
∣∣ = dm(0)− dm(+∞) ≤ K1,

with some positive constant. As P is invertible, one can return to the original
variables via c(t) = P−1d(t) to get the required result.

��

Remark 8.55

• All the complexes in a weakly reversible reaction are vertices of a cycle of the
Feinberg–Horn–Jackson graph; in this sense the Feinberg–Horn–Jackson graph
contains many cycles. The theorem by Volpert relates reactions with no cycles at
all in the Volpert graph. Although the two graphs are different (but related; see
Sect. 3.3), these two theorems cover two extreme cases.

• Many textbook reactions are of deficiency zero; therefore the zero-deficiency
theorem has a wide scope. On the other hand, if a single reaction step is
reversible, then its Volpert graph is not acyclic; therefore the scope of Volpert’s
theorem is limited.

• As complex balancing is a far-reaching generalization of detailed balancing, the
zero-deficiency theorem represents a giant leap from the folkloristic statement
on detailed balanced reactions.

• An absolutely important (aesthetic or didactic, if you wish) property of the
main theorems ensuring regular behavior is that the conditions are formulated
in chemical terms, which means that they can be applied even by researchers
(say, chemists not interested in mathematical details) who would not listen to a
statement formulated in purely mathematical terms.

Remark 8.56 Here we mention that under very special circumstances (more pre-
cisely, for a small class of reactions), the Ljapunov exponent (characterizing the
exponential growth or decrease of the concentrations; see Definition 13.49) can be
calculated from the structure of the Volpert graph (Volpert and Hudyaev 1985, pp.
645–648). This is similar to the characterization of initial behavior in terms of the
Volpert indices (see Chap. 9).
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8.7.2 Exotic Behavior

Our main concern up to this point was to collect sufficient conditions to ensure
regular behavior, a behavior usually expected from a reaction by the chemist. How-
ever, in many respects, it is more interesting to have exotic behavior: oscillation,
multistability, multistationarity, or chaos. Interesting they are not only from the
mathematical point of view, but oscillatory behavior in a reaction may form the
basis of periodic behavior in biological systems of which one can find those with
different period: minutes, 1 day, 1 year, etc.; see Murray (2002), Winfree (2001),
Edelstein-Keshet (2005). Analogous expectations can be expressed in connection
with the other phenomena.

8.7.2.1 Oscillation: Absence or Presence of Periodic Solutions
In his famous 1900 lecture, D. Hilbert formulated as the second part of his XVIth
problem to find the number of limit cycles of two-variable polynomial differential
equations (see, e.g., Gaiko 2013). The last more than 100 hundred years have shown
that this is a very hard problem (see, e.g., Ye and Lo 1986). However, from the point
of view of applications, one would need even more: find the number of periodic
solutions of polynomial differential equations in any number of variables although
one would be content with the solution of the kinetic case, i.e., with a subclass of
quadratic or cubic polynomials only. Early attacks by Escher (1980, 1981) are worth
mentioning.

Let us turn to the history of oscillation from the chemical point of view. In a
classical chemical experiment, two colorless solutions are mixed, and at first there
is no visible reaction. After a certain time, the solution suddenly turns to dark blue.
In some variations the solution will repeatedly turn from colorless to blue and back
to colorless, until the reagents are depleted: an oscillatory reaction is obtained.
This suddenly ending reactions are called chemical clocks or clock reactions.
Examples of clock reactions are the Belousov–Zhabotinsky reaction, the Briggs–
Rauscher reaction, the Bray–Liebhafsky reaction, and the iodine clock reaction.
(Cf. Lente et al. 2007.) Chemical clocks are important from the point of view of
biological applications, as the chemical basis of biological clocks, and also from
the point of view of physics, because they are examples when it is not true that all
the concentrations tend to an asymptotically stable stationary state as it is generally
believed.

Especially when the experiments of Belousov (1958) became known—first,
through the work by Zhabotinsky (1964)—the question emerged what are the
structural conditions of the existence of periodic solutions in a kinetic differential
equation. (On the difference between structural and parametric conditions, see, e.g.,
Beck 1992, 1990.)

Necessary conditions to exclude the existence of periodic solutions can be found
in the classical central theorems on regular behavior in Sect. 8.7.1. Given a special
mechanism, one may also try to apply the theorem by Bendixson (Theorem 13.51).
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Example 8.57 Consider the reversible Wegscheider reaction in Fig. 7.4 with the
induced kinetic differential equation:

ẋ = −k1x + k−1y − 2k2x
2 + 2k−2y

2 = f ◦ (x, y)
ẏ = k1x − k−1y + 2k2x

2 − 2k−2y
2 = g ◦ (x, y).

In the first orthant, the divergence of the right-hand side being

∂1f (x, y)+ ∂2g(x, y) = −k1 − 4k2x − k−1 − 4k−2y < 0

the reaction cannot have a closed trajectory there.

The Bendixson theorem can also be used for other purposes.

Example 8.58 Consider the induced kinetic differential equation of the Lotka–
Volterra reaction ẋ = k1x − k2xy, ẏ = k2xy − k3y, and let us calculate the

divergence of the right-hand side: div(
[
k1x − k2xy k2xy − k3y

]	
) = k1 − k3 +

k2(x − y). As this expression is not of the constant sign, we cannot immediately
apply Theorem 13.51. However, we can say that if the induced kinetic differential
equation of the Lotka–Volterra reaction is to have closed trajectories in the first

quadrant, then they should cross the line {[x y
]	 ∈ R

2 | k1− k3+ k2(x−y) = 0}.
Using several Dulac functions, one can learn more and more about the location of
the possible closed trajectories.

A serious disadvantage of the Bendixson–Dulac theorem is that it is about planar
systems, and cannot easily and naturally be generalized to higher dimensional cases.
It may happen that a system can be reduced to a 2D system via first integrals, and
then one can apply the theorem (see, e.g., Tóth 1987).

Let us see a more powerful application of the Bendixson–Dulac theorem. It
turned out relatively early that the simplest possible model—admitting chemical
interpretation—that leads to oscillations is the Lotka–Volterra reaction. The
theorem below has first been given a complete proof by Póta (1983). Later,
an alternative proof based on the classification of polynomial vector fields and
promising some extensions has been produced by Schuman and Tóth (2003). The
earlier discussion by Tyson (1980) and Kádas and Othmer (1979b,a); Kádas and
Othmer (1980) is also worth studying.

Theorem 8.59 (Póta–Hanusse–Tyson–Light) Two-species second-order reac-
tions with short product complexes cannot have a limit cycle in (R+)2.
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Proof The induced kinetic differential equation of a second-order reaction among
two species is of the form

ẋ = −a1
11x

2 + a1
12xy + a1

22y
2 + b1

1x + b1
2y + c1 (8.41)

ẏ = a2
11x

2 + a2
12xy − a2

22y
2 + b2

1x + b2
2y + c2, (8.42)

where a1
22, b

1
2, c

1, a2
11, b

2
1, c

2 ≥ 0 (to exclude nonnegative cross effects) and as no
long complexes are present, one also has that a1

11 ≥ 0, a2
22 ≥ 0; furthermore (from

the same reason), of a1
12 and a2

12 not more than one can be positive. Let us choose
the Dulac function in the following way: (R+)2 � (x, y) �→ B(x, y) := 1

xy
and

calculate D := div(Bf) (with f the right-hand side of (8.41)–(8.42)) to get:

−
(
a1

11

y
+ a1

22y

x2 + b1
2

x2 +
c1

x2y
+ a2

11x

y2 + a2
22

x
+ b2

1

y2 +
c2

xy2

)

.

Assuming that (8.41)–(8.42) has a closed trajectory fully contained in a simply
connected open set, E ⊂ (R+)2 implies that for all (x, y) ∈ E : D(x, y) = 0;
thus a1

11 = a1
22 = b1

2 = c1 = a2
11 = a2

22 = b2
1 = c2 = 0; therefore our equation

simplifies to

ẋ = a1
12xy + b1

1x ẏ = a2
12xy + b2

2y. (8.43)

If any of the coefficient here is zero, then one of the derivatives is of the constant
sign excluding periodicity. Therefore one may assume that all the coefficients are
different from zero. If a1

12 and b1
1 (or a2

12 and b2
2) are of the same sign, again

the derivative of x (or the derivative of y) is of the constant sign. If sign(b1
1) =

sign(b2
2) = −sign(a1

12) = −sign(a2
12), then the (positive!) stationary point would

be a saddle (Problem 8.20) which cannot be surrounded by a closed orbit (Andronov
et al. 1973, pp. 205–219). Finally, the only systems left are

ẋ = b1
1x − a1

12xy ẏ = −b2
2y + a2

12xy (8.44)

and

ẋ = −b1
1x + a1

12xy ẏ = b2
2y − a2

12xy (8.45)

with positive coefficients only. But both of these are Lotka–Volterra models with
conservative oscillation (i.e., having a first integral; see Definition 8.27), i.e.,
without limit cycles. To completely agree with the usual form of the Lotka–Volterra
equation, one has to have the same coefficient before the (mixed) second-degree

terms xy. The substitution X := x, Y := a1
12

a2
12
y in (8.45) will achieve this. ��
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Remark 8.60

1. A consequence of the theorem is that among the two-species second-order
reactions, (practically) the only oscillatory reaction is the Lotka–Volterra model.
It is interesting that the same result is obtained if one starts from different
premises: if the linearized form of the Lotka–Volterra model is given, then the
simplest model with this linearized form is again the Lotka–Volterra model (see
Tóth and Hárs 1986b).

2. A case simpler to treat is known from the 1950s of the last century (see
Problem 8.19).

3. As conservative oscillation may only be stable but not asymptotically stable, it
is natural to look for models as simple as possible that have a limit cycle. Such
a model, the Brusselator, 0 −−⇀↽−− X −−→ Y 2 X + Y −−→ 3 X with a single
three-order reaction step, has been created by Prigogine and Lefever (1968) and
has become extremely popular. The existence of a periodic solution (without the
proof that it is a limit cycle) is shown in Problems 8.22 and 8.23.

4. Várdai and Tóth (2008) shows an animation how a Hopf bifurcation emerges in
the Brusselator model. Enjoy and modify it appropriately.

5. Escher (1981) contains chemical examples with two-species and second-order
reactions having even more than one limit cycles, but he allows long product
complexes, as well; thus his constructions are not in contradiction with the
statement of the theorem above.

As to the presence of periodic solutions or closed trajectories, we start with a
simple observation.

Example 8.61 The Lotka–Volterra model is a model with conservative oscillation
because it has a first integral. Consider ẋ = k1x − k2xy, ẏ = k2xy − k3y; then
obviously ϕ(x, y) := ln(xk3yk1) − k2x − k3y is a first integral; therefore the
trajectories remain on the level curves of this function which are closed curves.
How do we find this first integral? One may use the following (admittedly, ad hoc)
method. The equations imply (in the open first quadrant) ẋ

x
= k1 − k2y,

ẏ
y
=

k2x − k3. Now let us multiply the two equations to get ẋ
x
(k2x − k3) = (k1 − k2y)

ẏ
y

.
Taking the integral from 0 to t , one has k2x(t)−k3 ln(x(t))−k2x(0)+k3 ln(x(0)) =
k1 ln(y(t)) − k2y(t) − k1 ln(y(0)) + k2y(0) showing that ϕ above is really a first
integral of the Lotka–Volterra mechanism.

Let us finish with a final note on the application of Theorem 13.54. Textbooks
on differential equations usually apply this theorem to equations with negative cross
effects. Problem 8.22 shows a kinetic example.

Another fruitful tool is the Theorem 13.57 as it has been shown, e.g., by Hsü
(1976): He has rigorously shown that the Oregonator model of the Belousov–
Zhabotinsky mechanism has periodic solutions. Another application is shown in
Schneider et al. (1987) containing a kinetic differential equation modeling synaptic
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slow waves and having periodic solutions as a consequence of Theorem 13.57. The
interested reader might study the paper: it contains lengthy calculations. Application
of the Theorem 13.57 to the Brusselator is the topic of Problem 8.23.

More complicated systems may need a customized analysis.

Example 8.62 We encourage the reader to consult the paper by Kertész (1984)
containing a nice analysis of the Explodator defined by Noszticzius et al. (1984)

X −−→ β1 X X+ Y −−→ Z −−→ β2 Y Y −−→ 0 (β1, β2 > 1) (8.46)

an alternative to describe the Belousov–Zhabotinsky reaction with the following
properties:

1. In the open first orthant, it has a single unstable stationary point.
2. Its Jacobian has a negative real eigenvalue and two eigenvalues with positive

real parts (and with or without imaginary parts depending on the values of the
parameters).

3. A one-dimensional stable manifold corresponds to the negative eigenvalues (two
trajectories go into the stationary point).

4. All the other trajectories go to infinity in various ways.

The solution of Problem 8.15 is a good preparation to reading the paper.

It is also useful to know which are the simplest reactions still able to show
oscillations (Wilhelm and Heinrich 1995; Smith 2012; Tóth and Hárs 1986b), cf.
page 121.

Finally, we cite a necessary condition of periodicity and multistationarity from
Schlosser and Feinberg (1994).

Theorem 8.63 If the reaction (2.1) has either a periodic solution or multiple
stationary states in (R+)M, then its S-C-L graph is cyclic.

Proof Suppose the S-C-L graph is acyclic. Then by Theorem 3.28, the deficiency
of the reaction is zero; therefore—according to the zero-deficiency theorem (Theo-
rem 8.47)—the existence of positive multiple stationary states and periodic solutions
is excluded. ��

8.7.2.2 Oligo-Oscillation or Overshoot–Undershoot Phenomenon
Another interesting phenomenon which has also been observed experimentally,
e.g., by Rábai et al. (1979) and Murphy et al. (2005) is oligo-oscillation: this
happens when some of the concentration vs. time curves show multiple (usually
a finite number of) extrema. General statements on transient behavior of solutions
to differential equations are hard to obtain. We are in a lucky situation to have such
a general statement for a class of reactions.



8.7 Transient Behavior 185

Theorem 8.64 (Póta–Jost) If in a closed compartmental system of M compart-
ments with the deterministic model

ċ = Ac (8.47)

all the eigenvalues of A are real numbers, then none of the components of the
concentration vs. time function can have more than M − 2 strict local extrema.

Proof For a closed compartmental system, none of the eigenvalues can be positive,
and at least one of them is zero (Problem 8.18). Let us denote the different
eigenvalues by λ0 := 0, and λ1, λ2, . . . , λK with the multiplicities μ1, . . . , μK

where K ∈ N;∑K
k=1 μk = M − 1. Then the components of the concentration vs.

time functions are of the form

cm(t) = c∗m +
K∑

k=1

Pmk(t)e
λkt , (8.48)

where Pmk(t) are polynomials of degree μk − 1. Now let us apply the generalized
Higgins lemma 13.39 to the derivative of cm to get the result. (Actually, we do not
need the fact that the nonzero eigenvalues are negative.) ��

A trivial consequence of the theorem is the well-known statement: in the
consecutive reaction A −−→ B −−→ C, the concentration of the intermediate
species B cannot have more than one extremum. However, the above theorem
does not exclude that even compartmental systems might show quite interesting
behavior: some of the eigenvalues of the coefficient matrix may be complex, and—
as a consequence of this fact—some of the concentration vs. time curves may have
an infinite number of local extrema; see Problem 8.25.

Let us consider the reversible triangle reaction of Fig. 8.8. As the reaction is
a closed compartmental system, it is stoichiometrically mass conserving with the
vector � := (1, 1, 1)	, or—in plain English—the sum of the concentrations is
constant. Therefore, instead of the full induced kinetic differential equation, it is
enough to consider the differential equation:

ȧ = −(k1 + k−3 + k3)a + (k−1 − k3)b + k3(a0 + b0 + c0)

ḃ = (k1 − k−2)a − (k−1 + k−2 + k2)b + k−2(a0 + b0 + c0). (8.49)

Different sets of the reaction rate coefficients may lead to markedly different
qualitative behavior of the concentration vs. time curves; see Problems 8.24 and
8.25. However, so far as the eigenvalues are real, the concentration vs. time curves
cannot have more than one extrema.

It is much harder to get any result on nonlinear systems; therefore it may be
useful to see even a very special statement without proof; for the proof based on the
investigation of the trajectories, see Problem 8.17.
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Fig. 8.8 The reversible
triangle reaction C B

A

k 3
k –3 k –1

k –2

k 1

k 2

The reader may also be interested in Póta (1992) and Kordylewski et al. (1990).

8.7.2.3 Multistability andMultistationarity
Multistability is used in the more general sense (although not really correctly): it
means that a differential equation has multiple attractors/repellors (see page 176),
some of which may be stationary points, and others may be limit cycles or even
more complicated sets. One obvious example is obtained when one considers Hopf
bifurcation: as the parameter changes, a limit cycle may appear, but still one has a
stationary point (which may however lose its stability).

In case of multistationarity, the differential equation has multiple stationary
points. As the literature on these topics is growing intensively, we can only mention
a few results. First, let us see an example showing that although two-species
second-order reaction may not have periodic trajectories except the Lotka–Volterra
reactions, still they may have more than one stationary points, depending on the
values of the reaction rate coefficients.

Example 8.65 The kinetic differential equation

ẋ = y2 − 6x + 3y + 2 ẏ = x2 − y2 + 6x − 6y

has

[
1
1

]
and

[
2
2

]
as its stationary points and has no other positive stationary points.

An important special class of systems is the homogeneous continuous-flow stirred-
tank reactor (CFSTR) in which beyond the reaction steps, some of the species
are present in the feed stream and all of them are present in the effluent stream.
The in- and outflow can obviously be described by (formal) reaction steps of the
form 0 −−→ X and X −−→ 0. However, Feinberg and his students (see Schlosser
and Feinberg (1994) and the references therein) elaborated a theory using only
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the steps describing the chemical reactions. They introduced the S-C-L graph (see
Definition 3.27 and Theorem 8.63) and have shown that some characteristics of
this graph may provide information on the existence or nonexistence of multiple
stationary states. Theorem 8.63 cited above is only their simplest result; the
interested reader should consult the above papers for results and the cited references
for proofs.

Example 8.66 The S-C-L graph of the reaction in Fig. 8.9 shown in Fig. 8.10 does
not contain cycles; therefore no assignment of reaction rate coefficients (and no
addition of any kind of in- and outflow) can produce more than one positive
stationary states. Note that the reaction itself without in- and outflow has zero
deficiency: δ = 11 − 4 − 7 − 0 and is weakly reversible; therefore the reaction
itself is not capable to produce more than one stationary points, but the reaction,
if in- and outflows are added, has a large deficiency (actually, six). Let us remark
that the right-hand side of the induced kinetic differential equation only consists of
quadratic terms: it is a homogeneous quadratic polynomial, cf. Halmschlager and

K 2 B

2 E C

D

H

2 C

F

I + J

A + B

A + G

Fig. 8.9 A reaction with no multistationarity in CSFTR
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Fig. 8.10 S-C-L graph of the reaction (Fig. 8.9)

Tóth (2004). Note that much simpler reactions may admit more than one stationary
states (see, e.g., Problem 8.44).

Continuation of the work can be found in Craciun and Feinberg (2006, 2010).

8.7.2.4 Chaos
There is a lot of experimental and numerical evidence that chaos is present in
homogeneous kinetics; see, e.g., Epstein and Pojman (1998), Györgyi and Field
(1991), Scott (1991, 1993, 1994), and also the early models by Rössler (1976),
Willamowski and Rössler (1980). However, in this field—similar to other ones—
there are almost no rigorous results showing that any property characterizing chaos
such as the following appear in a given chemical model or in a class of models:

1. extreme sensitivity to initial data, or butterfly effect, making long-term
prediction impossible;

2. topological transitivity (or mixing): the system evolves in time so that any given
region or open set of its phase space will eventually be mapped so as to overlap
with any other given region;
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3. dense closed trajectories: every point in the phase space is approached arbitrar-
ily closely by periodic orbits;

4. presence of a strange attractor, typically having a fractal structure;
5. properties of the recurrence plot or of the Poincaré map.

One of the few exceptions is Huang and Yang (2006) who give a computer-
assisted proof of the existence of chaotic dynamics in a three-variable model of the
Belousov–Zhabotinsky reaction, the bromate–malonic acid–ferroin system. To do
this, they investigate the Poincaré map derived from the induced kinetic differential
equation of the reaction and show the existence of horseshoes.

Example 8.67 Ivanova (Volpert and Hudyaev 1985, p. 630) constructed a reaction
only consisting from bimolecular steps for which one can easily (Problem 8.45)
show that the trajectories are bounded, and numerical solutions suggest that the
solutions are neither periodic nor tending to a stable stationary point. The reaction
is as follows:

A+ B
100−−→ 2 B B+ C

660−−→ 2 C C+ A
600−−→ 2 A (8.50)

A+ D
100−−→ 2 D D+ E

660−−→ 2 E E+ A
360−−→ 2 A.

Let us have a look at the double loop in the Volpert graph of this seemingly chaotic
reaction. Note also that the right-hand side is a homogeneous quadratic polynomial
(Figs. 8.11 and 8.12).

Let us mention that Rössler (1976) was able to create a polynomial differential
equation with a single nonlinear term on the right-hand side showing chaotic
behavior numerically.

Fig. 8.11 Time evolution of the concentration of species A in the reaction (8.50) with the initial
vector (1, 2, 3, 4, 5)
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Fig. 8.12 Volpert graph of the reaction (8.50)

What we do have are some negative results. Fu and Heidel (1997) investigated
three-dimensional quadratic systems and were able to show for many of them that
they are unable to show chaotic behavior in any sense. Heidel and Fu (1999) have
also shown that most of the three-dimensional quadratic systems with a total of four
terms on the right-hand side of the equations and having a zero divergence (to avoid
misunderstanding we are not using the term conservative here) do not exhibit chaos.

Attempts have been made to connect the presence of chaos with the absence of
negative cross effects (Tóth and Hárs 1986a), also using the theory of algebraic
invariants of polynomial differential equations Halmschlager et al. (2003). Finally,
let us mention a kind of taming chaos: chaos control by Petrov et al. (1993).

8.8 The Influence Diagram

The effect of species onto each other can also be represented by an influence
diagram defined as follows:

Definition 8.68 The influence diagram of the mechanism 〈M ,R,α,β,k〉 at the
concentration c ∈ (R+0 )M is a directed graph with the species as vertices and with
edges pointing from vertex Xm to the point Xp. The edge has a positive sign at
a point t ∈ R

+
0 in the domain of the solution of the induced kinetic differential

equation if ∂mfp(c(t)) is positive, and it has a negative sign if ∂mfp(c(t)) is
negative; otherwise there is no edge between Xm and Xp. We may for short call
∂fp(c)
∂cm

the effect of species Xm onto the species Xp. The influence diagram is

uniform in a subset of (R+0 )M if it does not depend on the value of the concetration
vector c. Strong influence diagrams are those which are connected, uniform in
(R+0 )M, and in which all the vertices have at least one edge entering and leaving
them.

Then, King (1982) and Thomas (1978) discretize both time and the state space and
introduce Boolean graphs to describe the dynamics of a reaction in the state space
and formulate statements which from the pure mathematical viewpoint can only
be considered as conjectures supported by some examples. Recently, Domijan and
Pécou (2012) has proved a few theorems in this direction.
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Although this approach seems intuitively to be quite attractive and has many
biological applications (mainly in molecular genetics), they seem to be of limited
value in formal kinetics as there seems to exist no general theory making them
applicable to reactions in general.

Klee and van den Driessche (1977) proposed a method (see also Jeffries et al.
1987) to check sign stability of matrices, an extremely strong form of stability.
To establish this property, they introduced a graph which is actually the same as
the influence diagram. Coloring the vertices of this graph provides a tool to check
the sign stability of a matrix. This procedure is also useful to investigate linearized
forms of nonlinear systems, mainly in biology (see, e.g., Kiss and Kovács 2008;
Kiss and Tóth 2009). Here we only give the definition of sign stability because of
two reasons: first, this concept is important in many fields of applications; second,
its relevance in formal kinetics is a nice open problem.

Definition 8.69 The matrix A ∈ R
M×M is said to be sign stable, if all the matrices

B ∈ R
M×M with the same sign pattern are asymptotically stable in the sense that all

of their eigenvalues have a negative real part.

A characterization of sign stable matrices follows:

Theorem 8.70 The matrix A = (amp) ∈ R
M×M is sign stable if and only if the

following relations hold:

1. for all m ∈M : amm ≤ 0,
2. there exists m ∈M : amm < 0,
3. for all m,p ∈M so that m �= p : ampapm < 0,
4. for each sequence of k ≥ 3 different indices one has ampapi . . . aqrarm = 0,
5. det(A) �= 0.

As we have seen above, an important property of differential equations used to
model reactions cannot have negative cross effect (see Definition 6.24 in Chap. 6),
and this property directly excludes the third condition above in case of first-order
reactions.

8.9 Dynamic Symmetries

Earlier in Sect. 7.9, we have shown how different restrictions on the stationary points
can uniformly be formulated. Now we formulate restrictions on the right-hand sides
of differential equations in a similar way, cf. also Tóth and Érdi (1988) and Ronkin
(1977), p. 24.
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Definition 8.71

1. The system ẋ = f ◦ x is a gradient system, if there exists a function (called
potential) V ∈ C 2(RM,R) such that f = V ′, or equivalently, for all m,p ∈M
one has ∂pfm = ∂mfp, i.e., f′ = (f′)	 holds.

2. The system ẋ = f ◦ x is a Shahanshani gradient system , if (R+)M � x �→
f(x)
x is a gradient system, or equivalently for all x ∈ (R+)M one has

(
f(x)
x

)′ =
((

f(x)
x

)′)	
.

3. The system ẋ = u ◦ (x, y), ẏ = v ◦ (x, y) (with u, v ∈ C 1(R2M,RM))

is a Hamiltonian system, if the system with the right-hand side

[−v
u

]
is

a gradient system, or equivalently there exists a function called Hamiltonian
H ∈ C 2(R2M,R) such that u = ∂2H, v = −∂1H .

4. The system ẋ = u ◦ (x, y), ẏ = v ◦ (x, y) (with u, v ∈ C 1(R2M,RM)) is a
Cauchy–Riemann–Erugin system, if both the systems with the right-hand side[
v
u

]
and

[
u
−v
]

are gradient systems. In this case there exists an analytic function

F from C
M into C such that its real part is u and its imaginary part is v, both as

functions of x+ iy.

A common formulation of the above definitions can be given as follows. Let F :
C 1(RM,RM) −→ C 1(RM,RM) be an operator such that F (f)(x) ∈ R

M×M, and
let us suppose that

F (f)′(x) =F (f)′(x)	 (8.51)

holds. Then, ẋ = f ◦ x is a gradient system, if the requirement (8.51) holds with
F = id, and it is a Shahshahani gradient system if it holds with F (f) = f/ id. For

Hamiltonian systems let us use F (f) :=
[
0 − id

id 0

]
f, and for Cauchy–Riemann–

Erugin systems, we have two requirements, one with F1(f) :=
[
0 id

id 0

]
f and one

with F2(f) :=
[

id 0
0 − id

]
f.

Why is it good if a differential equation has any of the above forms? Because
there exists a lot of results on the qualitative behavior of the solutions of such
systems (see, e.g., Guckenheimer and Holmes 1983; Hirsch et al. 2004).
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Example 8.72 A short verification shows that the reaction 0
f−−→ X

2e−−⇀↽−−
2e

Y
F←−− 0

has as its induced kinetic differential equation the gradient system

ẋ = −2ex + 2ey + f ẏ = 2ex − 2ey + F

with V (x, y) := −e(x − y)2 + f x + Fy.

How relevant are these concepts from the point of view of formal kinetics? These
questions are to be studied and are formulated as open problems (page 209), because
there exist only a few simple (negative) results; see Problem 8.29 and one more
reassuring one which we cite now.

Theorem 8.73 Suppose that in a reaction for all reaction steps, either the reactant
complex vector is a multiple of the basis vectors or a sum of different basis vectors.
If the induced kinetic differential equation of such a reaction is a gradient system,
then one can have for no m ∈M a negative term in ∂fm

∂cp
, if p �= m.

Proof Suppose on the contrary that ∂fm
∂cp

with some p �= m contains terms with
negative sign, then fm should contain a term with negative sign: −g(c)cmcp,

where g(c) ∈ R
+
0 does depend neither on cp nor on cp. Thus, ∂fm

∂cp
= −g(c)cm,

consequently fp(c) = −g(c)c2
m/2 < 0 expressing negative cross effect which is

impossible. ��

Remark 8.74

1. One may say that in the definition of a gradient system, one has quantitative
requirements: equality of the corresponding coefficients of a given polynomial
differential equation. These requirements have qualitative implications concern-
ing the sign of some coefficients, and these are the facts to have immediate kinetic
consequences.

2. As the class of the reactions in the theorem subsume all second-order reactions
and many more, one may call them weakly realistic.

3. The property that none of the species cause the decrease of another one may be
formulated as the reaction being cross catalytic.

With all these concepts, Theorem 8.73 can be reformulated as follows:

Theorem 8.75 If the induced kinetic differential equation of a weakly realistic
reaction is a gradient system, then the canonical realization of the induced kinetic
differential equation is necessarily cross catalytic.
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8.10 Persistence

It is an important property of the induced kinetic differential equation of a reaction
if none of the concentration vs. time curves turn to zero during the entire course of
the reaction. (It is nonetheless important if a reaction is used as a model of some
biological phenomena: here persistence is just the opposite of extinction, i.e., it
means survival.) Therefore we are interested in structural conditions to ensure or
rule out that a reaction has this property. An early result on the topics is that by
Simon (1995). The authors Angeli (2010), Angeli et al. (2007, 2011) have a number
of results in this respect, mainly using the structure of the Volpert graph (which they
call Petri nets, similarly to Volpert’s papers in the early 1970s of the last century).

Let us consider the reaction (2.1):

∑

m∈M
α(m, r)X(m) −→

∑

m∈M
β(m, r)X(m) (r ∈ R). (8.52)

Definition 8.76 The reaction above is said to be persistent, if for all positive initial
conditions c(0) = c0 the solution c of the induced kinetic differential equation of
the reaction fulfills lim inft→+∞ cm(t) > 0 for every m.

Remark 8.77 Instead of positivity of c0, it is enough to require nonnegativity, if all
the species can be reached via reaction path from the initially positive species, cf.
Theorem 8.14.

Definition 8.78 A nonnegative vector � ∈ (R+0 )M for which �	γ = 0 is said to be
a weak mass.

Obviously, a reaction is mass conserving if it has a strictly positive weak mass
vector, in other words, if it has a weak mass vector whose support is the whole
index set M . The terminology is ours, and while it may not be perfect, we prefer
this to P -semiflow of Angeli et al. (2007, 2011), as the previous one fits more easily
to known concepts.

Definition 8.79 The nonempty subset M0 ⊂ M of the species is said to be a
siphon if ∀r ∈ R (∃m ∈M0 : β(m, r) > 0 −→ ∃p ∈M0 : α(p, r) > 0) , i.e., if
each reaction step that produces a species in M0 also has some species in M0 as
one of its reactant species.

The siphon is minimal if none of its proper subsets are siphons.

Theorem 8.80 (Angeli et al. (2007)) Suppose the reaction (2.1) is mass conserving
and each siphon contains the support of a weak mass. Then the network is persistent.

The papers by De Leenheer et al. (2006), Angeli et al. (2011) present sufficient
conditions for persistence for special classes of reactions.
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8.11 Controllability and Observability

Scientific (as opposed to engineering) approach means to understand what is going
on in a given, say, chemical system. The engineering approach is that one wants to
achieve something, e.g., maximize the yield, minimize the dangerous byproducts,
avoid blowing up, etc. All these mean that one wants to direct the course of a
reaction with some kinds of input so as to have an advantageous result. This is
the topic of controllability, a fundamental property of dynamical systems. There
are only a few papers containing results in this field; we give a very short review
based on the Introduction of Drexler and Tóth (2016).

The well-founded methods in control engineering are based on linear dynamical
systems; however the dynamics of chemical reactions is usually nonlinear. Control
and controllability of nonlinear systems is only available for a relatively small class
of systems and is more involved than control of systems with linear dynamics (see,
e.g., Isidori 1995).

Controllability of chemical reactions is usually analyzed using control theory
developed for linear systems, and the linear model is acquired by linearizing the
dynamics at an operating point. Reactions with a positive stationary point have been
analyzed this way by Farkas (1998a). Yuan et al. (2011b) treated the liquid-phase
catalytic oxidation of toluene to benzoic acid based on linearization at five different
operating points. Polymerization at several operating points was investigated by
Lewin and Bogle (1996). Amand et al. (2014) identified a linear model from
measurements to describe the time evolution and control of protein glycosylation.
Otero-Muras et al. (2008) analyzed the connection between the controllability and
the structure of chemical reactions.

Working at operating points however only gives local results. Controlling chem-
ical reactions is a key issue in chemical engineering science (see, e.g., Maya-Yescas
and Aguilar 2003), where control of nonlinear chemical reactors is considered. A
review of the topic can be found in Yuan et al. (2011a). To study nonlinear reactions,
Ervadi-Radhakrishnan and Voit (2005) suggested the application of Lie algebra rank
condition; however no general results were given.

Drexler and Tóth (2016) analyzed the Lie algebra of the vector fields related to
the reaction steps and used the Lie algebra rank condition to get global controlla-
bility results for chemical reactions. Reaction rate coefficients of the reaction steps
are considered as control inputs, and the lowest number of control inputs needed
to control the system is determined. The analysis is symbolical, as opposed to the
analysis done in the literature that is usually numerical. Chemical reactions are
shown to be controllable almost everywhere in this setting. The reaction steps whose
reaction rate coefficients need to be control inputs are also identified. Initializer
reaction steps are defined and proved that their reaction rate coefficients need to be
control inputs, which has already been shown by experiments on a polymerization
example. Consecutive reactions can be controlled with a single control input. In a
more recent manuscript, (Drexler et al. 2017) the control inputs are the temperature
of the reaction and the inflow rates of some species. The chemical reactions are



196 8 Time-Dependent Behavior of the Concentrations

strongly reachable on a subspace that has the same dimension as the dimension
of the stoichiometric subspace in every point except where the concentration of
reactant species is zero and that this result holds for reactions in continuously
stirred tank reactors as well. As an application, the controllability of the anode
and cathode reactions of a polymer electrolyte membrane fuel cell with the inflow
rates of hydrogen and oxygen being the control inputs is analyzed, and it has
been shown that by using the inflow rates as control inputs, the dimension of the
subspace on which the system is controllable can be greater than the number of
independent reaction steps. It turns out that it is not possible to strictly separate
the two approaches mentioned in the beginning of the present subsection. Already
in the very early history of control theory (or system theory), it turned out that
controllability is very closely related to the following problem of observability:
Given the present state of a system, is it possible to tell where did it come from?
(Note that the question where the system started if it is in a given state now may be
called scientific in the strict sense; still, it is treated—because of technical reasons—
parallel with controllability.) Here we only mention a few papers on the topics:
Farkas (1998b), Horváth (2002–2008), Horváth (2002) which we are expounding
later in Sect. 9.5.6.

8.12 Reaction–DiffusionModels

Some experimentalists interested in reaction kinetics claim that homogeneous reac-
tion kinetics is not interesting any more. We hope to have proved just the opposite
in the present book, especially with the open problems attached to the individual
chapters. One can say that taking into consideration spatial inhomogeneities is more
interesting as it means investigation of more complex systems. However, in this
book we can only dedicate a few pages to the problem, including links to the relevant
literature. First of all, the equation we use to describe diffusion and reaction is

∂cm(t,x)
∂t

= DmΔcm(t, x)+∑r∈R γ (m, r)krc(t, x)α(·,r) (8.53)

x ∈ Ω ⊂ R
K, m ∈M

where Dm ∈ R
+ are the diffusion coefficients of the individual species, K ∈ N is

the number of spatial dimensions, and Ω ⊂ R
K is an open connected set. Note that

no cross diffusion is taken into consideration: all the species only affect their own
diffusion. Usually one has to assume appropriate initial and boundary conditions to
have a well-posed problem; see Sect. 8.2.

A few classical books on the topics are as follows: Frank-Kamenetskii (1947),
Fife (1979), Britton (1986), the first one being more applications oriented while the
last two is about theory. The most popular book with mathematicians concentrating
on the case with a single species and a single spatial dimension has been written
by Smoller (1983). Another book for mathematicians on global stability is Rothe
(1984). Martin and his coworkers have written a series of mathematical papers
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(Hollis et al. 1987; Martin 1987) on reaction–diffusion systems of more complicated
type than (8.53). Below we only cite one of his earlier results from Martin (1987) on
the global uniform asymptotic stability of the stationary state. A random choice from
the numerical literature is Ladics (2007). Hollis (2004) gives the documentation
of a Mathematica program called ReactionDiffusionLab. Note that at the
moment the Mathematica function NDSolve can automatically solve reaction–
diffusion systems with first-order reactions only.

A few (again mathematical) papers have been dedicated to systems where
electric charges also play a role: Glitzky et al. (1996, 1994), Glitzky and Hünlich
(2000, 1997), Gröger (1992). An early result was provided by Volpert (1972)
who has shown that spatial discretization usually used to solve reaction–diffusion
equations numerically provides a system of ordinary differential equations which
can in themselves be considered to be the induced kinetic differential equation
of a (very large) reaction; therefore nice properties (such as, e.g., positivity) of
kinetic differential equations are automatically inherited. On the other side, results
by Volpert on stability for homogeneous kinetics have been generalized for the
reaction–diffusion case by Mincheva and Siegel (2004, 2007). The papers by
Shapiro and Horn (1979b,a) show how to apply results on homogeneous kinetics
to spatially distributed systems; no wonder that it contains results similar to those
by Volpert mentioned above. We do not have place here to describe the interesting
experimental and theoretical work by Á. Tóth and D. Horváth as seen in the
randomly selected papers Bohner et al. (2016), Tóth et al. (1996), and Horváth and
Tóth (1998) and the works also connected to nanoscience by Lagzi and coworkers,
e.g., Lagzi et al. (2010a,b).

8.12.1 Chemical Waves

In reaction–diffusion systems, concentrationwaves can propagate (see, e.g., Epstein
and Pojman 1998). Concentric chemical waves were observed in the Belousov–
Zhabotinsky reaction. If such waves are broken, spiral waves may appear.

Two-dimensional wave fronts can propagate in thicker layers of solution. Break-
ing such fronts results in formation of three-dimensional scroll waves. Concentric,
spiral, and scroll waves attracted much attention (Epstein and Pojman 1998).
Many other spatiotemporal patterns have been discovered in various Belousov–
Zhabotinsky reaction–diffusion systems (Nagy-Ungvárai et al. 1989). The paper by
Noszticzius et al. (1987) is the more interesting because it was the gel reactor in
which it was possible to find Turing instabilities (see below, page 198) a few years
later by Castets et al. (1990).

Here we show an extremely simple model of a chemical wave which can
symbolically be treated. More involved models are treated, e.g., in Tyson (1977).
Some of our readers might find the lecture notes by Póta (1996) quite useful.

Let us start with the autocatalytic reaction A+B
1−−→ 2 B and assume that it takes

place in a one-dimensional vessel where diffusion cannot be neglected. Then the
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reaction–diffusion equations (with the simplifying assumption that the two chemical
species have the same diffusion coefficients D) to describe the model are as follows:

∂0a(t, x) = D∂2
1a(t, x)− a(t, x)b(t, x) (8.54)

∂0b(t, x) = D∂2
1b(t, x)+ a(t, x)b(t, x) (8.55)

with the boundary conditions

a(0, x) = B(x ≤ 0)a0 (8.56)

b(0, x) = B(x > 0)a0. (8.57)

These equations imply that h(t, x) := a(t, x)+ b(t, x) obeys the equations:

∂0h(t, x) = D∂2
1h(t, x) h(0, x) = a0. (8.58)

The solution to this is h(t, x) = a0, and using this fact we get a single equation for
the function b:

∂0b(t, x) = D∂2
1b(t, x)+ (a0 − b(t, x))b(t, x). (8.59)

Now we are looking for solutions of (8.59) of the form b(t, x)/a0 = ϕ(x + ct),

because these solutions have the property that they are constant along lines in the
(t, x) plane that means they are wave solutions in a certain sense. Substituting this
form into (8.59) one gets

Dϕ′′ − cϕ′ + a0(1− ϕ)ϕ = 0 (8.60)

ϕ(−∞) = 0 ϕ(+∞) = 1. (8.61)

It turns out the wave velocities c for which the last boundary problem has a solution
are those for which c ≥ 2

√
D and experimentally measurable wave is obtained

with the value for which the equality holds. Now the problem has been simplified to
the solution (numerically) of the boundary value problem (8.60)–(8.61) and to the
comparison with measurements.

8.12.2 Turing Instability

From the large literature on Turing instability (Castets et al. 1990; Cavani and Farkas
1994; Dilao 2005; Herschkowitz-Kaufman 1975) and also (Edelstein-Keshet 2005;
Murray 2002; Epstein and Pojman 1998), we only cite a few.

Turing instability is a phenomenon (predicted by the same Turing who was also
a pioneer in computer science and a code breaker in the Second World War; see
Turing 1952) which is quite strange from the classical viewpoint: Here diffusion
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is the cause of (spatial) inhomogeneity contrary to the general expectation that
it should, in general, equilibrate inhomogeneities. The reason why Turing was
interested in this problem was that he tried to give a model of the formation of
the (asymmetric) embryo starting from a symmetric state. He constructed a system
which he considered a reaction–diffusion system (we are going to return to this
point below) in which there exists a stable homogeneous stationary state losing its
stability as a result of inhomogeneous perturbations.

The phenomenon has also been shown to exist in an experimental setup almost
40 years after Turing’s work. It was putting the CIMA reaction into the gel ring
reactor—designed by Noszticzius et al. (1987)—by DeKepper et al. (Castets et al.
1990) which is generally considered to have produced the long-sought-for result
first: the emergence of stationary patterns as a result of diffusion-driven instability.

Elementary arguments are enough to show that the presence of cross-inhibition
is a necessary condition of Turing instability, at least in the case of systems with
one, two, or three chemical species (Szili and Tóth 1997). This result implies that
the presence of higher-than-first-order reactions is a necessary condition of Turing
instability. The generalization of the statement for an arbitrary number of species
needs more refined tools (Szili and Tóth 1993) of which Martin (1987) is one of the
most important one.

Consider the reaction–diffusion equation (8.53) with initial conditions

cm(0, x) = c0
m(x) (x ∈ Ω) (8.62)

and either with fixed boundary conditions:

cm(t, x) = c∗m (x ∈ ∂Ω) (8.63)

or with zero flux conditions

∂ν(x)cm(t, x) = 0 (x ∈ ∂Ω) (8.64)

where ν(x) is the outer normal to ∂Ω at the point x ∈ Ω of the spatial domain
Ω where the reaction takes place. Suppose that the reaction without diffusion has
a nonnegative stationary state c∗, i.e., f(c∗) = 0. This stationary state is said to
be Turing unstable if it is an asymptotically stable stationary state of the reaction
without diffusion, but it is an unstable solution of the reaction–diffusion equation
with the initial condition (8.62) and either with the fixed boundary condition (8.63)
or with the zero flux condition (8.64).

Let r(A) := max{�(λ)|λ is an eigenvalue of A} be the spectral abscissa of the
matrix A. Obviously, if r(f′(c∗)) < 0, then c∗ is an asymptotically stable stationary
point of the homogeneous system. Let κk, k = 0, 1, 2, . . . be the eigenvalues of
the Laplace operator on the domain Ω, and suppose r(f′(c∗) + κkD) < 0 holds
for all eigenvalues κk of the Laplace operator. Then, according to Martin (1987),
c∗ is a globally uniformly asymptotically stable solution of the reaction–diffusion
equation.

We need another concept.
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Definition 8.81 The chemical species X(m) is said to cross-inhibit X(p) at the
concentration c, if ∂mfp(c) < 0 (Cf. Remark 8.74 and also Definition 8.68).

Obviously, for polynomial differential equations in general, the presence of negative
cross effect implies the presence of cross-inhibition, at least if the corresponding
term does depend at all on the corresponding variable cm. Kinetic differential
equations, however, are only able to show cross-inhibition. Now we are in the
position to formulate our result.

Theorem 8.82 The presence of cross-inhibition is a necessary condition of Turing
instability.

A simple consequence of this theorem is that Turing instability cannot appear in
a reaction with first-order reaction steps if the kinetics is of the mass-action type.

Let us make a remark on the example given by Turing (1952). Here the “reaction
terms” are as follows: ċ1 = 5c1 − 6c2 + 1 ċ2 = 6c1 − 7c2 + 1. As this system
contains negative cross effect, it cannot be the mass-action type induced kinetic
differential equation of any reaction; thus Turing’s example is nonkinetic and linear
(contrary to the view according to which it is kinetic and nonlinear).

Emergence of Turing patterns in fields outside chemistry can be found in the
papers by Cavani and Farkas (1994), Farkas (1995).

Finally, let us mention that good sources for the theory of waves and patterns are
Edelstein-Keshet (2005), Murray (2002).

8.13 Exercises and Problems

8.1 Calculate the sensitivity equations in full generality for mechanisms with mass-
action kinetics.

(Solution: page 411.)

8.2 What is the effect of the individual reaction rate coefficients on the trivial
stationary point of the Lotka–Volterra mechanism?

(Solution: page 411.)

8.3 Find a polynomial differential equation containing negative cross effect which
still can only have nonnegative solutions if started from the first orthant.

(Solution: page 412.)

8.4 Show that the solution of the induced kinetic differential equation of a single-
species mechanism may blow up for all positive initial concentrations if and only if
its right-hand side is a polynomial of order larger than or equal to two which has no
positive roots.
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(Solution: page 412.)

8.5 Show that the solutions of a mass-consuming reaction do not blow up.

(Solution: page 412.)
The use of the Mathematica function FindInstance might be very useful to

find the vector ω. We used the same function when constructing the examples.

8.6 Show that the solutions of the kinetic differential equation

ẋ = 1− x2/4+ 2y2 + z2/2, ẏ = x2 − y2, ż = −z2 (8.65)

blow up for any choice of the initial conditions.

(Solution: page 412.)

8.7 Show that the solutions of the (kinetic) differential equation

ẋ = −x2/2+ 2y2 + z2, ẏ = x2 − y2, ż = −z2 (8.66)

blow up for some choices of the initial conditions. Show also that the solutions blow
up for all x0, y0, z0 for which x0 ≥ 0, y0 ≥ 0, z0 ≥ 0, x0 + y0 + z0 > 0 holds.

(Solution: page 413.)

8.8 Show that the solutions of the kinetic differential equation

ẋ = −x − x2/2+ 2y2 + z2, ẏ = x2 − y2, ż = −z2 (8.67)

blow up for some choices of the initial conditions.

(Solution: page 413.)

8.9 Prove that in the reaction X
1−−→ Y

1−−→ 4 X, the unique stationary point is
[
0 0
]	
. Calculate limt→+∞ c(t).

(Solution: page 413.)

8.10 Find a reaction which is not weakly reversible; still the number of the
components of its Feinberg–Horn–Jackson graph is the same as that of its ergodic
components.
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(Solution: page 413.)

8.11 Show that T − L > 0 alone is not enough to ensure that the stoichiometric
subspace properly contains the kinetic subspace.

(Solution: page 413.)

8.12 Show that the reaction X
k−−→ Y X

1−−→ Z Y + Z
1−−→ 2 X (Feinberg

1987, p. 2266) is stoichiometrically mass conserving for all positive values of the

reaction rate coefficient k with the vector of masses �1 :=
[
1 1 1

]	
. However, if k =

1, it is kinetically mass conserving with the vector of masses �2 :=
[
2 1 3

]	
, i.e.,

�	2 ·
⎡

⎣
ẋ

ẏ

ż

⎤

⎦ = 0 holds with the solutions of the induced kinetic differential equation

of the reaction.

(Solution: page 414.)

8.13 Find an example showing that a reaction can be complex balanced for some
reaction rate coefficients even if it is either not weakly reversible or not of the zero
deficiency.

(Solution: page 414.)

8.14 Show that with appropriate parameters the induced kinetic differential equa-
tion of the autocatalator (Gray and Scott 1986)

P
k1−−→ A A+ 2 B

k2−−→ 3 B B
k3−−→ C, (8.68)

—where P and C are external species— has a periodic solution.

(Solution: page 415.)

8.15 Investigate the stationary points of the Explodator model of Example 8.62.

(Solution: page 416.)

8.16 Find the single positive stationary point of the reaction (8.50), and investigate
its stability.
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(Solution: page 416.)

8.17 The first component of the concentration vs. time function of the induced
kinetic differential equation of the reaction

Y
1−−→ 0

4−−⇀↽−−
1

X
1−−→ X+ Y

7−−→ 2 X

with the initial condition x(0) = 0, y(0) = 1 has exactly one strict local maximum.

(Solution: page 416.)

8.18 Consider the induced kinetic differential equation ċ = Ac of a closed
compartmental system. Prove that A does not have any positive real eigenvalues
but that at least one of its eigenvalues is zero.

(Solution: page 416.)

8.19 Prove a simplified version of Bautin’s theorem (Bautin 1954): the (Kol-
mogorov type or Lotka–Volterra type, if you like) differential equation

ẋ = x(ax + by + c) ẏ = y(Ax + By + C)

cannot have a limit cycle in the open first quadrant.

(Solution: page 417.)

8.20 Show that the positive stationary point of the equations ẋ = −bxy+dx ẏ =
−βxy+δy can only be a saddle if all the coefficients b, d, β, δ are of the same sign.

(Solution: page 417.)

8.21 Show that the modification of the Brusselator

0
a−−⇀↽−−
1

X
b−−→ Y 2 X+ Y

1−−→ 3 X X+ 2 Y
1−−→ Y

cannot have periodic solutions in the first orthant.

(Solution: page 417.)

8.22 By constructing a bounded closed positively invariant set and using Theo-
rem 13.54 show that the Brusselator has a periodic solution.
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(Solution: page 418.)

8.23 Verifying the conditions of the Theorem 13.57 shows that that the Brusselator
has a periodic solution.

(Solution: page 418.)

8.24 Show that the induced kinetic differential equation of the reversible triangle
reaction cannot have periodic solutions if any of the reaction rate coefficients is
positive.

(Solution: page 418.)

8.25 We follow the manuscript by Nagy et al. (2006). Consider the induced
kinetic differential equation of the triangle reaction of Fig. 8.8 with the initial
condition [A](0)=1, [B](0)=0, [C](0)=0 with three different sets of the reaction rate
coefficients:

I. k1 = k3 = k5 = 1 and k2 = k4 = k6 = 0;
II. k1 = k2 = k3 = k4 = k5 = k6 = 1;
III. k1 = 2 and k2 = k3 = k4 = k5 = k6 = 1.

Show that in Case I t �→ a(t) has an infinite number of strict local extrema. Case
II represents a detailed balanced reaction, and in this case t �→ a(t) has a single
maximum. Case III is not detailed balanced; still here t �→ a(t) has a single
maximum, as well (contrary to the statement of Alberty (2004) who—based on
erroneous numerical calculations—stated that the named function can have multiple
extrema).

(Solution: page 420.)

8.26 Show that the induced kinetic differential equation of the reaction in Fig. 8.13
is a gradient system.

(Solution: page 420.)

8.27 Show that the induced kinetic differential equation of the reaction in Fig. 8.14
is a Hamiltonian system.

(Solution: page 420).

8.28 Show that the induced kinetic differential equation of the reaction in Fig. 8.15
is a Cauchy–Riemann–Erugin system, and use this fact to symbolically solve its
induced kinetic differential equation.
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Fig. 8.13
Feinberg–Horn–Jackson
graph of a reaction having an
induced kinetic differential
equation which is a gradient
system

2X

2 Y

k2

k2 3 k2

3 X + 3 Y

 X +  Y

Fig. 8.14
Feinberg–Horn–Jackson
graph of a reaction having an
induced kinetic differential
equation which is a
Hamiltonian system
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2

1
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Fig. 8.15
Feinberg–Horn–Jackson
graph of a reaction having an
induced kinetic differential
equation which is a
Cauchy–Riemann–Erugin
system

2X 2 Y

2 k

k k

X +Y

0

(Solution: page 420.)

8.29 Find all the induced kinetic differential equations of second-order two-species
mass-conserving systems which are gradient systems, Hamiltonian sytems, or
Cauchy–Riemann–Erugin systems.
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(Solution: page 420.)

8.30 210Bi is known to decay to 210Po with a half-life of 5 days, and 210Po further
decays with a half-life of 138 days to 206Pb which is not radioactive. Suppose the
decay can be modeled by first-order kinetics. Suppose we are only given 210Bi at
the beginning. When does the quantity of 210Po reach its maximum? At what time
does the quantity of 206Pb reach half of its final value?

(Solution: page 421.)

8.31 Consult Tomlin et al. (1992), p. 110; or Turányi and Tomlin (2014) to
formulate a temperature-dependent model in the general case.

(Solution: page 422.)

8.32 Find Rf and S ∗ (see Eq. (8.22)) for the following reactions:

1. 2 X
k−−→ 3 X,

2. X
k1−−→ Y X

k2−−→ Z,

3. X
k1−−→ 2 X X+ Y

k2−−→ 2 Y Y
k3−−→ 0,

4. (see Johnston and Siegel 2011) Y
k1−−→ X

k2−−→ 0 ←−− 2 Y
k3−−→ 3 X (k2 �=

k3),

5. Y
k1←−− X

k2←−− 2 Y
k2−−→ 3 X.

(Solution: page 424.)

8.33 Under which conditions can it happen that the maxima of the concentrations
in the Lotka–Volterra reaction appear at the same time? What are the conditions that
the period of the two concentrations are the same?

(Solution: page 424.)

8.34 Why is it impossible to transform the equation of the harmonic oscilla-
tor (6.41) and the Lorenz equation (6.40) into Lotka–Volterra form using the method
of Example 8.25? Does the method work on the nonkinetic polynomial equation:

ẋ = xy2 ẏ = −x?

(Solution: page 424.)

8.35 An application of Corollary 8.52 shows that the complex graph of the
reversible Lotka–Volterra reaction does contain an odd dumbbell (actually, two):
a necessary condition to have nontrivial periodic solutions.
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(Solution: page 425.)

8.36 Show that the induced kinetic differential equation of no three-species second-
order reaction with a linear first integral can have a limit cycle in (R+)3.

(Solution: page 425.)

8.37 Show that the induced kinetic differential equation of all three-species second-
order reactions with the first integral ψ(x, y, z) := xyz is a generalized Lotka–
Volterra system.

(Solution: page 426.)

8.38 Show that all the coordinate hyperplanes are invariant sets of Kolmogorov
type equations.

(Solution: page 426.)

8.39 Show that the Wegscheider reaction has a single positive stationary concen-
tration vector in all the stoichiometric compatibility classes for any set of reaction
rate coefficients.

(Solution: page 426.)

8.40 Show that the reversible triangle reaction has a single positive stationary
concentration vector in all the stoichiometric compatibility classes for any set of
reaction rate coefficients.

(Solution: page 426.)

8.41 Calculate the total net flux for all the atoms in the reaction step:

CH3 + C3H7 −−→ C4H8 + H2. (8.69)

Turányi and Tomlin (2014)

(Solution: page 427.)

8.42 Calculate the total net flux for all the atoms in the Ogg reaction Ogg (1947)
(see Eq. (2.11)):

(Solution: page 427.)
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8.43 Find subsets of the first quadrant in which the Lotka–Volterra reaction

X
k1−−→ 2 X X+ Y

k2−−→ 2 Y Y
k3−−→ 0

is uniform.

(Solution: page 428.)

8.44 Using direct analysis of the induced kinetic differential equations, show that
A + B −−⇀↽−− 2 A and A + 2 B −−⇀↽−− 3 A cannot admit multiple stationary states if put
into a CSFTR, whereas 2 A + B −−⇀↽−− 3 A can (Schlosser and Feinberg 1994).

(Solution: page 429.)

8.45 Show that the trajectories of the reaction (8.50) are always bounded.

(Solution: page 430.)

8.14 Open Problems

1. In the sensitivity equations (8.3)–(8.8), there a few terms expressing negative
cross effect. Characterize those reactions for which the sensitivity equations are
kinetic.

2. Theorem 8.1 provided a sufficient condition to ensure the existence and
uniqueness of solutions of initial value problems for induced kinetic differential
equations. Is it possible to formulate a necessary and sufficient condition
in terms of the components of the reactant vectors in case of non-integer
stoichiometric coefficients (Cf. Remark 8.2)?

3. In connection with Theorem 8.19, the following questions arise.
(a) The theorem is formulated for polynomial differential equations, which

means that the lack of negative cross effect is not utilized.
(b) The theorem should also be reformulated in structural terms, i.e., in terms

understandable by the chemist.
(c) How to give a lower estimate for the blow-up time?
(d) How to select those components which tend to infinity?
(e) Which are the conditions for the matrices Am to ensure the existence of

ω such that A(ω) is positive definite? Certainly, we are mainly interested
in structural conditions with immediate chemical meaning, but numerical
methods for finding an appropriate vector ω are also of value. A trivial
sufficient condition for this is that all the matrices are semi-definite, and at
least one of them is definite.

(f) If there exists more than one such ω, how to choose among them to receive
the best estimate for the blow-up time?
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(g) From the practical point of view (of firemen, let us say), the most important
question is what is the “smallest, simplest” reaction step to be included to
prevent blowup?

4. We know which species becomes nonnegative or positive at all times of the
domain of existence of the concentration curves (Theorems 8.8 and 8.6),
and we also know that in a zero-deficiency reaction, some of the stationary
concentrations should be zero if the reaction is not weakly reversible. Which
conditions would be sufficient or necessary to ensure that a given species has a
zero stationary concentration?

5. Design an algorithm or give an easy-to-treat necessary and sufficient condition
to select minimal initial sets (see page 155) to produce positive concentrations.

6. Does (8.16) have any further invariants (except the trivial ones of the form
g(Bλ,BA)? More precisely, determine all the functions f ∈ C 1(RM ×R

M×R×
R

R×M,RK) (with some K ∈ N) for which the functional equation

f(λ,A,B) = f((C−1)	λ, (C−1)	A,CB) (8.70)

holds. Even identifying all multilinear invariants f might be interesting.
7. Find sufficient conditions under which a mass-action type mechanism is

kinetically mass conserving.
8. Give a general characterization of induced kinetic differential equations which

are also gradient systems, Hamiltonian systems, or Cauchy–Riemann–Erugin
systems.

9. How to choose the reaction rate coefficients and the initial concentrations
so as to have N − 2 local extrema in some/all species concentrations in a
compartmental system?

10. Is there any general criterion to ensure or exclude oligo-oscillation in higher-
order reactions?

11. Delineate large classes of reactions for which sign stability holds for the
linearized form of the induced kinetic differential equation.
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9Approximations of theModels

9.1 Introduction

Most of the induced kinetic differential equations of realistic models in kinetics
cannot be symbolically solved (if one disregards the Taylor-series solution, see
Brenig and Goriely 1994). Therefore one has to rely upon symbolic and numeric
approximations. When dealing with stoichiometry, one meets the problems of
linear algebra and linear (integer) programming. To determine the stationary points
of a reaction, one has to solve large systems of nonlinear equations. The most
important model we use is a system of ordinary differential equations which is
almost always a stiff one; therefore special numerical methods are needed. It may
also be useful to reduce the number of variables by lumping or by other techniques.
The induced kinetic differential equation of a reaction also has a series of good
properties: it only has nonnegative solutions, it may have linear or nonlinear first
integrals, and it may also have periodic solutions. Numerical methods preserving
these important properties are preferred. Some problems may best be formulated
in terms of differential algebraic equations; therefore special methods to solve such
equations are also needed. Some of these areas are shortly reviewed and illustrated
by examples. In the case of the stochastic model, some characteristics can only be
calculated approximately. Even simulating this model may be carried out faster, if
one uses an approximate method.

The approximation methods can be divided into two large groups. In one of
them, one is capable to formulate an approximation symbolically, i.e., to provide
an approximation applicable also to models which are not fully specialized in the
sense that it also contains some parameters (of which one may only know that
they are positive). In the other group, one can only approximate models which are
specialized up to the very last parameter. In these cases the effect of parameters can
only be studied if one also chooses some of the parameters systematically.

© Springer Science+Business Media, LLC, part of Springer Nature 2018
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9.2 Behavior at the Start

The first symbolic method helps tell the order of magnitude of the concentrations of
the species at the beginning of the process as a function of Volpert indices.

Let us consider the reaction 〈M ,R,α,β,k〉, and let M0 ⊂ M be a set of
species (to be interpreted below as species with positive initial concentrations).
Suppose the zero complex is not a reactant complex. We rely on the definitions
introduced in Sect. 3.22.

Theorem 9.1 For a species m ∈M \M0 reachable from M0 and having the index
κm

cm(t) = tκmdm(t) (9.1)

holds in a neighborhood [0, τ ] of zero with a continuous function dm ∈
C ([0, τ ],R).

Example 9.2

• In the Robertson reaction

A −−→ B 2 B −−→ B+ C −−→ A+ C

(if, as usual, M0 := {A,B}) one has that t �→ c(t)/t is continuous at zero, where
the concentration of C at time t is denoted by c(t), because the Volpert index of
the C is 1 as given by

First @ VolpertIndexing[

{A -> B, 2B -> B+C -> A+C}, {A, B}].

• Consider the Michaelis–Menten reaction E + S −−⇀↽−− C −−→ E + P, and let, as
usual, M0 := {E, S}. Then the theorem says that t �→ c(t)/t and t �→ p(t)/t2

are continuous at zero, where the concentration of C and P at time t is denoted
by c(t) and p(t), respectively, because the Volpert indices of the species are 0,
0, 1, 2:

VolpertIndexing[{"Michaelis-Menten"}, {"E", "S"}].

{{E -> 0, S -> 0, C -> 1, P -> 2},

{E+S -> C -> 0, C -> E+S -> 1, C -> E+P -> 1}}

Now we received the indices of the reaction steps, as well.

Remark 9.3

1. (9.1) formally is not true for unreachable species.
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2. (9.1) can be rephrased that the order of the solution is at least κm. The next
statement is that it is exactly κm in case of first-order reactions.

Theorem 9.4 Suppose that the reaction is of first order. Then, for a species m ∈
M \M0 reachable from M0 and having the index κm the concentration cm(t) has
order of zero equal to κm, i.e., one has dm(0) �= 0 in this case.

Example 9.5 Consider the consecutive reaction A −−→ B −−→ C, and let, as usual,
M0 := {A}. Then the theorem says that close enough to zero t �→ b(t)

t
and t �→ c(t)

t2

are continuous functions with nonzero values at zero, where the concentration of B
and C at time t is denoted by b(t) and c(t), respectively.

9.3 Behavior at the End: Omega-Limit Sets

Volpert and Ivanova (1987) offer the following procedure to determine the ω-
limit sets of trajectories of the solutions of induced kinetic differential equations:
Starting from the reaction, they construct another (simpler, “smaller”) reaction with
trajectories having the same ω-limit sets. First, we need a definition.

Definition 9.6 The reaction rate wr is said to be summable if for all bounded
solutions R+0 � t �→ c(t) of the induced kinetic differential equation

∫ +∞

0
wr(c(s)) ds < +∞ (9.2)

holds. Reaction step r is said to be summable if (9.2) holds for all reaction rates
which fulfil Conditions 2 and are constant, if the reactant complex is the zero
complex.

A simple sufficient condition of summability can be formulated, the proof of which
is given as the solution of Problem 9.2. The above authors also give an algorithm to
find all the summable reaction steps. First, consider all the species which occur in
at least one reactant complex but do not occur in any product complex. Discard the
reaction steps containing such species. Then, repeat the procedure. At the end, the
discarded steps will be exactly those which are summable.

The algorithm shows that in a circuit-free compartmental system (and also in a
circuit-free generalized compartmental system in the narrow sense), all the steps
are summable, whereas none of the reaction steps in the usual Michaelis–Menten
reaction, Lotka–Volterra reaction, or the reversible bimolecular reaction A + B −−⇀↽−−
C are summable. In the Robertson reaction, the rate of all the reaction steps turns
out to be summable.
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Definition 9.7 The ω-limit graph of a reaction is obtained from the Volpert graph
by discarding all the summable reaction steps together with the edges adjacent to
these.

Now the main assertion of the authors follows.

Theorem 9.8 Consider those solutions of the kinetic differential equation which
are defined for all nonnegative times and are bounded. The ω-limit set of these
solutions is a connected invariant set consisting of the trajectories of the reaction
having ω-limit graph as its Volpert graph.

In the same review paper, the authors also deal with the ω-limit set and stability
of stationary points on the boundary of the stoichiometric compatibility classes.
Another general statement on strict Lyapunov exponents follows.

Theorem 9.9 If limt→+∞ c(t) exists for the solution c of the induced kinetic
differential equation, then for all m ∈ M the strict Lyapunov exponent
limt→+∞ 1

t
ln |cm(t)| also exists.

The authors also cite an algorithm to calculate the strict Lyapunov exponent.

9.4 Transient Behavior: On the Quasi-Steady-StateHypothesis

Probably the oldest symbolic approximation method is the quasi-steady-state
hypothesis, or quasi-steady-state assumption, or using again another name: the
Bodenstein principle. The physical basis of this hypothesis is that in many
reactions, one or more of the species are produced and consumed much more
quickly than the others; therefore it is not a bad idea to consider the concentration
of the slowly varying species (the Bodenstein species) to be nearly constant.

The first reaction to be treated by this assumption was the Michaelis–Menten
reaction by Briggs and Haldane (1925) and by Michaelis and Menten (1913):

E+ S
k1−−⇀↽−−

k−1
C

k2−−→ E+ P, (9.3)

where E is an enzyme (a catalyst which is protein by composition), S is the material
to be transformed by the enzyme named substrate, C is a (temporary) enzyme-
substrate complex, and finally, P is the product, the “goal” of the reaction. In this
reaction it is the enzyme-substrate complex C which is supposed to be formed and
decomposed in a relatively fast way; therefore the concentration of this species is
supposed to be approximately constant.

In 1903, Henri found that enzyme reactions were initiated by a bond between the enzyme
and the substrate. His work was taken up by Michaelis and Menten (Michaelis and Menten
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1913) who investigated the kinetics of an enzymatic reaction mechanism, invertase, that
catalyzes the hydrolysis of sucrose into glucose and fructose. They proposed the above
model of the reaction. The specificity of enzyme action is explained in terms of the precise
fitting together of enzyme and substrate molecules: the lock and key hypothesis by Fischer.
Some years later a more precise formulation of the Michaelis–Menten equation was given
by Briggs and Haldane (1925). They pointed out that the Michaelis assumption that an
equilibrium exists between E, S, and C is not always justified and should be replaced by
the assumption that C is present not necessarily at equilibrium, but in a steady state. The
resulting equation is of the same form, but the Michaelis constant has a different meaning
with respect to the different rate constants. We do not follow the recent developments of
the topic; we only show how this argument can be made and has been made rigorous by
Heineken et al. (1967), Segel (1988) and Tzafriri and Edelman (2007) based on the singular
perturbation theory of Tikhonov (1952).

The usual treatment (actually proposed by Briggs and Haldane 1925) is that one
starts from the induced kinetic differential equation of the reaction (9.3):

ė = − k1es + k−1c + k2c ṡ = − k1es + k−1c

ċ = k1es − k−1c − k2c ṗ = k2c.
(9.4)

If one takes the usual initial conditions e(0) = e0, s(0) = s0, c(0) = p(0) = 0,
then the above system implies that

e(t)+ c(t) = e0 + c0 s(t)+ c(t)+ p(t) = s0, (9.5)

meaning that the total quantities of enzyme and substrate, respectively (no matter in
which form they are present, bounded, or free), are constant. An algorithmic way to
arrive at these linear first integrals—which does not rely on chemical intuition—is
obtained by calculating the stoichiometric matrix

γ =

⎡

⎢
⎢
⎣

−1 1 1
−1 1 0

1 −1 −1
0 0 1

⎤

⎥
⎥
⎦

and finding its left null space via solving the linear algebraic equation �	γ = 0, or

[
�1 �2 �3 �4

] ·

⎡

⎢⎢
⎣

−1 1 1
−1 1 0

1 −1 −1
0 0 1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0
0
0
0

⎤

⎥⎥
⎦ ,

and getting �1 + �2 = �3 �1 + �4 = �3. Two linearly independent solutions

can be obtained in many different ways, e.g., they are
[
1 0 1 0

]	
and

[
0 1 1 1

]	

corresponding to the linear combinations (9.5) above. Note that the generating
vectors of linear first integrals might be a larger set than the left null space of γ ,
see Theorem 8.28.
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By issuing the command GammaLeftNullSpace, we obtain another, but
equivalent, representation of the null space in question.

GammaLeftNullSpace[{mm}, {e0, s0, 0, 0}, {e, s, c, p}]

gives

{-e + p + s == -e0 + s0, c + e == e0}.

With these, (9.4) can be reduced to

ṡ = −k1s(e0 − c)+ k−1c ċ = k1s(e0 − c)− (k−1 + k2)c. (9.6)

Using the assumption that ċ = 0 one gets

c = k1e0s

k−1 + k2 + k1s
, (9.7)

and for the production rate of the product P:

ṗ = k2
k1e0s

k−1 + k2 + k1s
= k2e0s

KM + s
, where KM := k−1 + k2

k1

is the Michaelis constant.
If the usual assumption e0 $ s0 is made, then e(t) ≈ e0; therefore the (initial)

formation rate of P is approximately k2es
KM+s

.

This is the usual approach widespread among the chemists (see, e.g., Keleti
1986). But if one requires the concentration c in Eq. (9.7) to be really constant,
i.e., having zero derivative, then one arrives at the constant solution s = 0, c = 0

corresponding to the stationary point
[
e0 0 0 s0

]	
. (Check it.)

A more precise approach formulated in a more general setting is obtained in the
following way. Consider the differential equation

ẋ(t) = f (x(t), y(t)) ẏ(t) = g(x(t), y(t)) (9.8)

and suppose that the (algebraic) equation g(x∗, y∗) = 0 has a single solution for y∗
with any x∗, i.e., there exists a function ϕ such that g(x∗, ϕ(x∗)) = 0. The question
is if one uses the differential equation

ẋ(t) = f (x(t), ϕ(x(t))) (9.9)

to describe approximately the process obeying (9.8), is it a good approximation,
what is its error, etc. To make the thing even more complicated, we ask these types
of questions: Does the solution of (9.9) approximate the solution of

ẋ(t) = f (x(t), y(t)) εẏ(t) = g(x(t), y(t)) (9.10)

if ε is a small enough positive number? The small parameter ε is to counterbalance
the large values of ẏ(t), the rate of the fast variable.
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The mathematical tool called singular perturbation theory needed here has
been formulated by Tikhonov and his coworkers (Tikhonov 1952) and has first been
applied to the Michaelis–Menten reaction by a founding father of mathematical
chemistry, Rutherford Aris, and his coworkers (Heineken et al. 1967). Now after
such a long verbal introduction, we present the theory very shortly, based partially
on the following papers: Klonowski (1983), Segel (1988), Segel and Slemrod
(1989), Schnell and Maini (2003), Turányi et al. (1988), Turányi and Tóth (1992)
and Zachár (1998). We also mention that recently, combination of algebraic and
analytic tools opened a new approach (see, e.g., Goeke and Walcher 2014; Goeke
et al. 2015).

Let us start from ṡ = −k1s(e0 − c) + k−1c, ċ = k1s(e0 − c) − (k−1 + k2)c,
and let us introduce new (dimensionless) variables by

S := s

s0
, C := c

e0s0
s0+KM

, T := tk1e0.

Now the transformed equation is

S′ = −S(1− αC)+ β(1− α)C, (9.11)

μC′ = S(1 − αC)− (1− α)C, (9.12)

—with α := s0/(s0 +KM), β := k−1/(k−1 + k2), μ := e0/(s0 +KM)—where all
the terms are of the same magnitude. If μ is small (e0 $ s0 + KM ), then (9.12) is
close to

0 = S(1− αC)− (1− α)C. (9.13)

Now, instead of the two initial conditions S(0) = 1 and C(0) = 0, we have only the
freedom to choose S(0), and C(0) should be calculated from (9.13) to be 1. Now
we can apply Theorem 13.50, because its conditions are fulfilled. Here

ϕ(S) = S

1+ α(S − 1)
= S

αS + (1− α)
. (9.14)

There are a few practical problems with this kind of approach. First, in more
complicated reactions, ϕ cannot be easily calculated. Second, it is far from being
trivial which parameter (or parameter combination) can be chosen as small (see,
e.g., Segel 1988; Segel and Slemrod 1989 and also Goeke and Walcher 2014; Goeke
et al. 2015).

Nevertheless, let us substitute ϕ(S) into (9.11) for C to get

S′ = −S

(
1− α

S

1 + α(S − 1)

)
+ β(1− α)

S

1+ α(S − 1)
(9.15)

= − (α − 1)(β − 1)S

α(S − 1)+ 1
, (9.16)



224 9 Approximations of the Models

a separable equation which can easily be solved (although not explicitly) to get

− (1− α)(1 − β)T = α(S(T )− 1)+ (1− α) ln(S(T )). (9.17)

However, Mathematica gives the explicit solution in terms of the ProductLog
function—which is defined as giving the principal solution to the equation z =
wew—as

S(T ) = 1− α

α
ProductLog

(
α

1− α
eT (β−1)+ α

1−α

)
,

after some nonautomatic simplifications. The pair T �→ (S(T ), C(T )) is called
the outer solution. Now we try to approximate the behavior of the solution at the
beginning, and this will be the inner solution.

As a first step, the time will be rescaled by the parameter μ in such a way that
the time variable will be ϑ := T/μ. Then the equations will be transformed into

Ṡ = μ(−S(1− αC)+ βC(1− α))

Ċ = S(1− αC)− C(1− α).

If μ = 0, then Ṡ = 0; thus S(ϑ) = s0 = 1. Putting this into the second equation,
one gets Ċ = 1− C; thus C(ϑ) = 1− e−ϑ . The two approximations together with
the “exact” (numerically calculated) functions can be seen in Fig. 9.1.

9.5 Reduction of the Number of Variables by Lumping

Throughout the present chapter, we are showing methods for approximate sim-
plification of models of chemical kinetics. One family of such methods consists
of transformations of the models to simpler forms. Exact transformations have
been met elsewhere in the book (see, e.g., Sects. 6.5.3 and 8.4.2). A method to
approximate the solutions by reducing the number of variables has been shown in
the previous section. Here we add another useful approximate method.

A major problem with kinetic differential equations is the very large number
(dozens, hundreds, sometimes even thousands) of variables. This is especially so
with practical problems in the fields of combustion, metabolism, and atmospheric
chemistry. Therefore it may be useful from the numerical point of view if one is able
to use a model with much less variables. Furthermore, a model with a few number
of variables may also show much more clearly the essence of the phenomenon.

There are a lot of methods to reduce the number of (dependent) variables, the
best known being linear and nonlinear lumping originally initiated by Wei and Kuo
in the 1960s of the twentieth century (Wei and Kuo 1969; Kuo and Wei 1969).
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Fig. 9.1 Concentrations in the Michaelis–Menten reactions, exact and approximate. The parame-
ters are as follows: k1 = 40, k−1 = 5, k2 = 0.5, e(0) = 0.01, s(0) = 0.1, c(0) = p(0) = 0

Before going into details, let us mention that the same concept is known in other
fields of science as well, sometimes under different names, such as aggregation and
dynamic factor analysis in econometry, coarse graining in physics, etc.

Consider the equation

ẋ = f ◦ x (9.18)

with f ∈ C 1(RM,RM). Let M̂ ≤ M be a natural number, and let us try to find out if

there exists a function h ∈ C (RM × R
M̂) and a function f̂ ∈ C (RM̂ × R

M̂) so that
an autonomous differential equation

d

dt
x̂ = f̂ ◦ x̂ (9.19)

describes the time evolution of x̂ := h ◦ x.
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Definition 9.10 The function h above is said to be a (nonlinear) lumping function,
the Eq. (9.18) is (exactly) nonlinearly lumped to the lumped equation (9.19), or
Eq. (9.19) is expanded to Eq. (9.18).

Let us see an example why the problem is less trivial than it seems to be.

Example 9.11 Consider the differential equation

ẋ = ax + by ẏ = cx + dy. (9.20)

What can we say about the evolution of x+y? Is the time derivative of this function
a function of the sum itself, or, does there exist a function f̂ so that (x + y)̇ =
f̂ ◦ (x + y) holds? What we know is that (x + y)̇ = (a + c)x + (b + d)y, and the
right-hand side of this equation is only under very special circumstances a function
of x + y, namely, if and only if a + c = b + d (see Problem 9.9).

Now let us turn to general results.

9.5.1 Exact Linear Lumping of Linear Equations

The case when all of f,h and f̂ are linear functions (i.e., f(x) = Kx,h(x) =
Mx, f̂(x̂) = K̂x̂) was treated by Wei and Kuo (1969), pioneers of the topic. We
mention their basic results.

Theorem 9.12 The necessary and sufficient condition of exact linear lumpability
of the linear equation

ẋ = Kx (9.21)

with M ∈ R
M̂×M (where M̂ ≤ M) into the linear equation

d

dt
x̂ = K̂x̂ (9.22)

is that

MK = K̂M. (9.23)

holds.

Proof Let us calculate the time derivative of the transformed vector x̂ in two
different ways. As

d

dt
x̂ = K̂x̂ = K̂Mx and

d

dt
x̂ =Mẋ =MKx, (9.24)

the statement follows. ��
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Theorem 9.12 helps us check whether a given pair M and K̂ defines exact linear
lumping or not.

Example 9.13 In the case of Eq. (9.20)—assuming a + c = b + d—one has

K =
[
a b

c d

]
, M = [1 1

]
, K̂ = [a + c

]
,

and really, MK = K̂M.

Example 9.14 The question arises if it is possible at all to linearly lump Eq. (9.20)
to a single equation. In formulas this means that we are looking for numbers
m1,m2, k̂ ∈ R so that

[
m1 m2

]
[
a b

c d

]
= k̂

[
m1 m2

]
(9.25)

holds. But this means nothing else that the vector
[
m1 m2

]
should be a left

eigenvalue of the coefficient matrix and k̂ should be the corresponding eigenvalue.

One would like to find explicit representations of these linear mappings.

Theorem 9.15 Suppose that M is of the full rank, and the necessary and sufficient
condition (9.23) holds. Then K̂ can be calculated by the formula

K̂ =MKM	(MM	)−1. (9.26)

Proof A simple reformulation of (9.23) gives the statement. ��

Example 9.16 To continue our example, we have

K̂ = MKM	(MM	)−1 = [1 1
] [a b

c d

] [
1 1
]	 ([

1 1
] [

1 1
]	)−1

= 1

2

[
a + b + c + d

] = [a + c
] ∈ R

1×1.

Note that Theorem 9.15 above is valid in full generality, not only for deterministic
models of first-order reactions. The same is true for the next result which is a
generalization of Example 9.14.

Theorem 9.17 (Li and Rabitz (1989)) Linear differential equations can always be
exactly linearly lumped. Appropriate lumping matrices can be obtained via taking
some of the left eigenvectors of the coefficient matrix of the original differential
equation as row vectors.
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Proof The idea of the proof can be seen in Example 9.14. ��

It may easily happen (see Problem 9.14) that an induced kinetic differential equation
when exactly lumped does not remain kinetic. Therefore, it is useful to have
conditions to ensure that the lumped system is kinetic as well, in this case we say
that the lumping matrix is kinetic.

Theorem 9.18 (Farkas (1999)) A nonnegative lumping matrix is kinetic if and only
if it has a nonnegative generalized inverse. (See Definition 13.16.)

Example 9.19 The matrix M = [1 1
]

has a nonnegative generalized inverse M =
[
1/2 1/2

]	
(which is also a Moore–Penrose inverse); therefore M is a kinetic

lumping matrix (in case it is a lumping matrix at all).

The case when all the old species are transformed into exactly one new species (and
all the new species contains at least one old species) is called proper lumping. This
means that the columns of M are vectors of the standard basis, usually repeated a
few times.

Corollary 9.20 Proper lumping matrices are kinetic.

Proof IfM is a proper lumping matrix, thenMM	 is a diagonal matrix with positive
integers on its main diagonal; therefore its inverse is of the same form, a positive
definite diagonal matrix, and thus it fulfills the condition in Theorem 9.18. ��

Theorem 9.21 Suppose we have a closed compartmental system which is also
detailed balanced. Then, exactly lumping it with a proper lumping matrix, a
differential equation is obtained, which can be considered to be the induced kinetic
differential equation of a closed compartmental system which is detailed balanced.

Proof As in this case M is of the full rank, one can use the representation (9.26).
Direct calculation shows that the off-diagonal elements of K̂ are nonnegative, and
the diagonal elements are equal to the column sums. For the proof of inheritance of
detailed balance, see Wei and Kuo (1969). ��

Example 9.22 The reversible triangle reaction can exactly be lumped by M =[
1 0 0
0 1 1

]
if and only if k−1 = k3 holds, the lumped variables then are x̂ = x, ŷ =

y + z, and the lumped reaction is X̂
k1 + k−3−−−−−⇀↽−−−−−

k3
Ŷ. Detailed balancing in the original

reaction means k1k2k3 = k−1k−2k−3, which implies for the lumped reaction
k1k2 = k−2k−3, a condition which is vacuous here, because the lumped reaction
is independent of k2 and k−2 and is detailed balanced no matter what the value of
the reaction rate coefficients are.
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Fig. 9.2 A square reaction

k 4 k – 4

X

U Z

Y
k – 1

k –2 k 2

k 1

k – 3

k 3

Astonishing it may seem, a detailed balanced reaction can in some cases not be
properly lumped.

Example 9.23 Consider the square in Fig. 9.2, and let us try to apply M :=⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 1

⎤

⎦ as lumping matrix. Then the condition (9.23) implies that k−2 = k4 = 0;

thus the reaction is not even weakly reversible. Neither will the obtained three
species triangle reaction be a weakly reversible reaction, furthermore the lumped
reaction will not depend on the reaction rate coefficients k3 and k−3; this is quite
natural, because if one is going to lump Z and U into one species, then the traffic
between these to species is not relevant.

9.5.2 Exact Linear Lumping of Nonlinear Equations

Let us define exact linear lumping for autonomous differential equations in general.
Consider the Eq. (9.18) with f ∈ C (RM,RM). Let M̂ ≤ M be a natural number,

and let us try to find out, if there exists a matrix M ∈ R
M̂×M of full rank so that an

autonomous differential equation

d

dt
x̂ = f̂ ◦ x̂ (9.27)

describes the time evolution of x̂ :=Mx.
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Definition 9.24 The matrix M above is said to be a lumping matrix, the Eq. (9.18)
is (exactly) linearly lumped to the lumped equation of (9.27).

One can say that exact linear lumping can also serve as a model for the situations
in which instead of the individual concentrations of species, we can only measure
the sum, or more generally, the linear combination of the concentrations. Such is the
case, e.g., with methods of spectroscopy.

Exact linear lumping has been investigated by Li (1984) for the case of first- and
second-order reactions and extended by Li and Rabitz (1989) to the general case.
Practically, it is the derivative of the right-hand side what takes over the role of the
coefficient matrix of the linear case.

Theorem 9.25 (Li and Rabitz (1989)) With the above notations, the necessary and
sufficient condition of exact linear lumpability of (9.18) by the matrix M is that any
of the following equalities hold:

Mf(x) = Mf(MMx) (9.28)

Mf′(x) = Mf′(MMx)MM (9.29)

Mf′(x) = Mf′(MMx) (9.30)

with all the generalized inverses M of the matrix M for which MM = id
M̂

holds.

Theorem 9.26 (Li and Rabitz (1989)) Suppose f′(x) has a nontrivial invariant
subspace M , independent of x, and let the rows of M be the basis vectors of
M . If the matrix M obtained this way fulfils any of the necessary and sufficient
conditions (9.28), (9.29) and (9.30) and the eigenvalues of f′(x)	 and f′(MMx)	
are the same, then M is an exact lumping matrix.

Let us turn to exact nonlinear lumping, an obvious generalization of exact linear
lumping.

9.5.3 Exact Nonlinear Lumping of Nonlinear Equations

We make a few regularity assumptions to make the treatment simpler. Suppose that
all the functions are differentiable as many times as needed, they are defined on the
whole space, f(0) = 0, h(0) = 0, the function h is nondegenerate in the sense that
its coordinate functions are independent, and the solutions to all the initial value
problems below are defined for all nonnegative times (what is certainly the case for
the important class of mass conserving reactions).

Again, we start with a series of necessary and sufficient conditions of lumpability,
and then we formulate the connection between lumpability and the existence of first
integrals. Then the effect of lumping on the qualitative properties of the solutions is
treated. To describe the attempts to find nonlinear lumping functions would take too
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much space; thus the interested reader should consult the papers by Li, Rabitz, and
their coworkers.

Now we cite the most important statements in the form as they presented by Tóth
et al. (1997).

Theorem 9.27 Equation (9.18) can be lumped into (9.19) with the lumping function

h ∈ C 1(RM,RM̂ ) if and only if

h′f = f̂ ◦ h (9.31)

is fulfilled. Furthermore, the representation

f̂ = (h′f) ◦ h (9.32)

is also valid with any generalized (right) inverse h of the function h (i.e., h ◦ h =
id

RM̂ ).

Proof Let us calculate the derivative of the transformed quantity x̂ := h ◦ x in two
different ways.

d

dt
x̂ = d

dt
(h ◦ x) = (h′ ◦ x) · ẋ = (h′ ◦ x) · (f ◦ x) = (h′f) ◦ x

d

dt
x̂ = f̂ ◦ x̂ = f̂ ◦ (h ◦ x) = (f̂ ◦ h) ◦ x

Applying Lemma 13.34 shows that both formulas (9.31) and (9.32) follow. Inde-
pendence of the representation from the choice of the generalized inverse is shown
in Problem 9.8. ��

Now let us formulate a necessary and sufficient condition without using the
transformed right-hand side.

Theorem 9.28 Equation (9.18) can be lumped into (9.19) with the lumping function

h ∈ C 1(RM,RM̂ ) if and only if

h′f = h′ ◦ (h ◦ h) · f ◦ (h ◦ h) (9.33)

is fulfilled.

A necessary condition follows, showing that invariant sets (see Sect. 8.6) play an
important role here, as well.
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Theorem 9.29 If Eq. (9.18) can be lumped into (9.19) with the lumping function

h ∈ C 1(RM,RM̂ ), then the set h−1(0) = {x ∈ R
M |h(x) = 0} is an invariant set

of (9.18).

Proof The proof is the same as the proof of Theorem 8.44 but uses (9.31). ��

The next (necessary and sufficient) condition does not contain the generalized
inverse of h.

Theorem 9.30 Equation (9.18) can be lumped into (9.19) with the lumping function

h ∈ C 1(RM,RM̂ ) if and only if there exists a matrix valued function X : RM −→
R

M×L (L ≥ M − M̂) such that its value is of the rank M − M̂ at each argument
and

h′(x)X(x) = 0 (h′f′)′(x)X(x) = 0. (9.34)

In order to obtain the exact lumping functions, it is enough to find all the invariant
functions of (9.18) and choose those which also fulfil any of the necessary and
sufficient conditions (9.31), (9.33), or (9.34).

9.5.4 Construction of the Lumping Function

The problem with the exact construction is that it is equivalent to finding global
nonlinear first integrals, as we will see below.

Now we learn that an exact lumping function with values in the space R
M̂ is

the function of M̂ independent generalized eigenfunctions. (See Definition 8.42.) In
other words, to construct exact lumping functions means to construct generalized
eigenfunctions; this last problem however leads to the determination of global first
integrals, not an easy task to solve. Before that, we need another definition.

Definition 9.31 The generalized eigenfunction H ∈ C 1(RM,R) is a normed
generalized eigenfunction of the Eq. (9.18) (or, of the linear operator A defined
by AH := H ′f) if AH = 1 also holds.

In order to find the normed generalized eigenfunctions of the operator A , one
has to determine the M independent solutions to the quasilinear partial differential
equation AH = 1. To get those solutions, one has to find such a nontrivial solution
of the system of partial differential equations

AH = 1 Aφm = 0 (m = 1, 2, . . . ,M − 1) (9.35)

in which the functions φm (m = 1, 2, . . . ,M − 1) are independent.
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Theorem 9.32 (Li et al. (1994))

1. All the exact lumping functions h : RM −→ R
M̂ of (9.18) can be obtained as M̂

functions of M̂ independent normed generalized eigenfunctions of the operator
A .

2. Any M̂ functions of M̂ independent normed generalized eigenfunctions of the
operator A defines an exact lumping function of the Eq. (9.18).

If (9.18) can be lumped by the function h ∈ C 1(RM,RM̂ ) to the Eq. (9.19), then,
obviously A h = f̂ ◦ h. We can use this relation to determine h, since this means
that the generalized eigenfunctions are scalar-valued lumping functions with the
corresponding function f̂ providing the lumped right-hand side. The real problem
is that to know M normed generalized eigenfunctions is the same as to know one
normed generalized eigenfunction and M − 1 global first integrals, and no general
methods are known to find these in the general case. What we can do is that we
look for normed generalized eigenfunctions (i.e., lumping functions) within a class
of functions, e.g., polynomials. Choosing the class of linear functions reduces the
problem to that of linear lumping.

We do not cite here methods to find approximate nonlinear lumping; we only
mention that such a method can be based, e.g., on singular perturbation (Li et al.
1993) and has been applied to the irreversible Michaelis–Menten reaction with
the numerical data taken from the trypsin-catalyzed hydrolysis of the benzoyl-
L-arginine ethyl ester. This was an application of approximate lumping without
constraints. One may wish to leave some species unlumped, and this may be
expressed as a constraint. This method of constrained approximate nonlinear
lumping has been applied to the a combustion model of hydrogen in a closed
vessel. Another application of lumping to a physically based pharmacokinetic model
(PBPK) can be found in Brochot et al. (2005).

In Tóth et al. (1997) we have formulated a series of open problems. One of them
has been solved by the late Gyula Farkas (Farkas 1999); others are repeated below
in the section of Open Problem.

Let us also mention the papers on the connection between local and global
controllability and lumping by Farkas (1998a,b) and by Horváth (2002–2008).

9.5.5 Lumping and the Qualitative Properties of Solutions

Now let us investigate what an effect lumping has on the qualitative properties of
solutions. First, following Tóth et al. (1997), we formulate a few obvious statements.

Theorem 9.33 If f has the Lipschitz property and h is a nondegenerate lumping
function (Tóth et al. 1997, p. 1534), then the right-hand side defined by (9.32) also
has the Lipschitz property.
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Theorem 9.34 Exact linear lumping does not increase the degree of a polynomial
right-hand side.

Theorem 9.35 Under lumping, the image of

• a (positively) invariant set of the state space is a (positively) invariant set,
• a stationary point is a stationary point,
• a closed trajectory is a closed trajectory.

Let us see some unpleasant counterexamples.

Example 9.36

• Adding up the concentrations in the Ivanova reaction

X+ Y −−→ 2 Y Y+ Z −−→ 2 Z Z+ X −−→ 2 X

an induced kinetic differential equation is obtained having constant solutions
only.

• The induced kinetic differential equation of the reaction

X −−→ 2 X Y −−→ X+ 2 Y X −−→ X+ 2 Z Z −−→ Y+ Z

has solutions with monotonous coordinate functions, but lumping by the function
h(p, q, r) := (p−q, p−r) the (nonkinetic) differential equation of the harmonic
oscillator is obtained having only periodic solutions.

An easy consequence of the Lemma 13.18 is that at a stationary point which has
been obtained by lumping, all the eigenvalues of the Jacobian are eigenvalues of
the Jacobian of the original right-hand side. In case of linear lumping, the statement
remains valid for nonstationary points too, but this may not be so with nonlinear
lumping. Thus we have the following statements:

Theorem 9.37
• Sources and sinks are lumped into sources and sinks, respectively.
• If the stationary point of the original equation as a function of some parameter

is always hyperbolic in the sense that the corresponding eigenvalue never has
zero real part, then one cannot have Andronov–Hopf bifurcation in the lumped
equation.

• If one finds Andronov–Hopf bifurcation in the lumped equation when changing a
certain parameter, then the situation is the same in the original equation at the
corresponding value of the parameter.
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An asymptotically stable stationary point can be lumped into an unstable one. What
is more, lumping can produce blow-up (see Problem 9.16). We also have a positive
result.

Theorem 9.38 A solution of (9.18) which does not blow up is lumped into a
solution of (9.19) which does not blow up either. If a solution of the lumped system
blows, then it is the image of a blowing up solution.

Since our aim is to investigate the smaller system instead of the larger one, the most
important statements are those which start from the properties of the lumped system
and make conclusions about the properties of the original system. Such a statement
follows.

Theorem 9.39 If the lumped stationary point is (asymptotically) stable, then the
corresponding stationary point is relatively (asymptotically) stable.

The original concept of lumping has been extended to reaction-diffusion models
(Li and Rabitz 1991; Rózsa and Tóth 2004) and also time discrete models, both
deterministic and stochastic (Tóth et al. 1996; Iordache and Corbu 1987). Lumping
stochastic models is closely related to dynamic factor analysis (see, e.g., Bolla
2013; Bolla and Kurdyukova 2010; Forni et al. 2015).

9.5.6 Observability and Controllability and Lumping

One may also wish to know how controllability and observability change as a result
of lumping. The statements below by Horváth (2002–2008) and Horváth (2002)
solves this problem.

Theorem 9.40 Let us assume that (9.21) is exactly lumpable to (9.22) by M and
the linear system (9.21) is completely controllable. Then the lumped system (9.22)
is also completely controllable.

Problem 9.17 shows that complete controllability of the lumped system does not
imply complete controllability of the original one.

Theorem 9.41 Let us assume that (9.21) is exactly lumpable to (9.22) by M and
that for every eigenvalue λ of K holds that all partial multiplicities of λ are equal to
unity. Furthermore let us consider system (9.22) with the observation function

ŷ(t) = Ĉx̂(t). (9.36)

Then if the linear system (9.21) is completely observable with the observation
function y(t) = Cx(t), then the linear system (9.22), (9.36) is also completely
observable. (Here Ĉ ∈ R

p×k and Ĉ := CM̃	.)
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The main goal of Farkas (1998b) is to provide sufficient conditions to guarantee
local observability. Similarly, Farkas (1998a) gives sufficient conditions for local
controllability of reactions. Coxson (1984) establishes a relationship between
lumpability and observability of the lumped observation system for both finite and
infinite dimensional linear systems (continuous species).

9.6 Numerical Approximations

Problems of reaction kinetics are usually nontrivial from the computational point of
view. In the present chapter, we try to collect and present some of those we have
met during writing and using the package ReactionKinetics. What is left are
the problems of linear algebra and linear programming, the solution of nonlinear
equations, and finally, the most important one: the solution of systems of nonlinear
differential equations. The different methods of stochastic simulation will be treated
in Sect. 10.7.

One of the main advantages of implementing ReactionKinetics in a com-
puter algebra system such as Mathematica is that the underlying system provides us
with a usually reliable collection of numerical and symbolic computational toolset,
effectively hiding most of the computational difficulties. Therefore what we have
done, and propose to our readers to do, is to rely on the built-in numerical and
symbolic methods of Mathematica as long as they are efficient enough for your
purposes and accept the answers given by built-in functions as far as they are not
suspicious. (Mathematica also does some self-testing before returning solutions,
e.g., of ill-conditioned systems of linear equations, and gives a warning if there are
doubts about the correctness of the solutions.) If one thinks that something might
be wrong, then one might try to apply options, such as algorithm selection, of the
functions. If this does not help either, then one should turn to the literature and
to experts of numerical mathematics—but not before. To help this itinerary, we
formulated our code in such a way that the built-in options of the used Mathematica
functions are transferred to our functions. Let us see a graphical example. (A
numerical example will be shown in Sect. 9.6.4.)

We can use ShowFHJGraph[{"Triangle"}, {k1,k2,k3}] with only the
required arguments of our function ShowFHJGraph (see Fig. 9.3). However, if
we want to have a more informative figure, then we can utilize the fact that
ShowFHJGraph is based on GraphPlot and is able to use its options, as in
the next example:

ShowFHJGraph[{"Triangle"}, {k1, k2, k3},

DirectedEdges -> True, VertexLabeling -> All,

ImageSize->400,

StronglyConnectedComponentsColors->{Pink}],

(see Fig. 9.3). (Each optional argument but the last one is a built-in option of the
function GraphPlot. The last row contains an option which was introduced by
us. The options can be given in any order.)
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Fig. 9.3 Feinberg–Horn–Jackson graph of the triangle reaction without and with built-in options

After this short introduction, let us analyze the problems of the mentioned areas
as they arise in reaction kinetics in a more systematic way.

9.6.1 Numerical and Symbolic Linear Algebra

Symbolic and numerical problems of linear algebra recurrently arise; here we give
an example of calculating the stationary point of a compartmental model abbreviated
as jr and investigated by Ross (2008), p. 2136:

0 −−→ X1 −−⇀↽−− X2 −−⇀↽−− X3 −−⇀↽−− X4 −−⇀↽−− X5 −−⇀↽−− X6 −−⇀↽−− X7 −−⇀↽−− X8 −−→ 0.

Expression StationaryPoint[jr] gives the result symbolically (based upon
LinearSolve). We do not reproduce the result verbatim because of the length of
the formulae, but here is an equivalent symbolic form:

c∗i = k0

9−i∑

j=1

(∏8
l=10−j kl

) (∏8−j
l=i k−l

)

∏8
l=i kl

(i = 1, 2, . . . , 8).

The verification of this result can be done in the following way:

rhs=RightHandSide[

{0 -> X1 <=> X2 <=> X3 <=> X4 <=>

X5 <=> X6 <=> X7 <=> X8 -> 0},

Join[{k[0]}, Flatten[Transpose[{k /@ Range[7],

k /@ -Range[7]}]], {k[8]}], x /@ Range[8]];

rhs /. {x[i_] -> k[0] Sum[Product[k[l], {l, 10-j, 8}]

Product[k[-l], {l, i, 8-j}] / Product[k[l],

{l, i, 8}], {j, 1, 9-i}]} // Simplify
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The generalization of this claim is left to the reader. Let us note that the result
does not depend on the initial concentrations, i.e., this reaction shows absolute
concentration robustness (see Sect. 7.10), a fact which does not follow from
Theorem in Shinar and Feinberg (2010, p. 1390); because the deficiency of the
reaction is zero. A moral of this example may be that some symbolic results obtained
by computer may be useless.

For numerical linear algebra, Mathematica largely depends on extensions of
standard open-source libraries. In particular, an extended precision extension of
LAPACK is used for solving systems of linear equations, finding eigenvalues, and
computing matrix decompositions. At the time of writing this book, these libraries
are continuously maintained and incorporate state-of-the-art algorithms which also
exploit the structure and certain properties (such as definiteness) of the underlying
matrices. Therefore we use the built-in routines as a black box and expect that we
shall not encounter computational difficulties that originate in problems with the
numerical linear algebra routines.

9.6.2 Linear Programming

Some functions in the stoichiometric part of the package rely on linear program-
ming. Mass conservation relations can be found by solving linear programs (recall
Chap. 4), and some of the algorithms for the decomposition of overall reactions
into elementary steps also use linear programming, too (Chap. 5). We have not
encountered any serious problems during the development and use of our package,
hence only mention a couple of points briefly.

The main linear programming solver in Mathematica is an implementation of the
well-known simplex method. It is capable of both (extended precision) numerical
and symbolic calculations using rational arithmetic. This algorithm, with default
options, is expected to be sufficient for obtaining mass conservation relations and
also to be used in the algorithms of Sects. 5.3.4 and 5.3.5 when searching for
decompositions.

A particularly useful property of the simplex method is that when the linear
program has multiple optimal solutions, the simplex method returns a “sparser” one
(i.e., one with more zero components), than other algorithms, such as interior point
methods. This is particularly desirable for the partial enumeration of decompositions
discussed in Sect. 5.3.5, as it leads to both simpler decompositions and to a larger
number of decompositions. An interior point method for linear programming is also
implemented in Mathematica, but it is not used in ReactionKinetics.

For the linear programming-based enumeration of every decomposition pre-
sented in Sect. 5.3.3, another feature of the simplex method is very useful. In this
decomposition algorithm, a multitude of nearly identical linear programs are solved;
each is obtained by adding one constraint to one of the previously solved linear
programs. Linear programs obtained this way need to be solved “from scratch,” but
their solution can be accelerated using information gained during the solution of
the previous linear program, using an algorithm called the dual simplex method.
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At present, the linear programming solver in Mathematica does not support this
feature, although most industry standard linear programming solvers do.

It should also be mentioned that recently Mathematica’s built-in Reduce
function has been extended to handle the solution of linear Diophantine equations
and may be used to decompose reactions in the case when there are only finitely
many solutions. This can be done using the Method->"Reduce" option in
Decompositions. (Note that this method cannot be used to find only minimal
decompositions.)

9.6.3 Nonlinear Equations

As we mentioned in Chap. 7, the first step in finding the stationary points of an
induced kinetic differential equation is solving the equation f(c∗) = 0, where
f is the right-hand side of the induced kinetic differential equation of the given
reaction. Here f is a multivariate polynomial; thus we are interested in the roots
of a polynomial. Knowing the facts that

• finding the roots of two quadratic two variable polynomials leads to the solution
of a sixth-degree polynomial equation in one variable

• no general formula exists to express the roots of higher than fourth order one
variable polynomials,

suggests that the symbolic solution of this problem is formidable.

Example 9.42 Suppose that we have a (large) system of linear algebraic equations,
i.e., an equation for a multivariate linear polynomial, then the usual method
proposed by Gauss consists in transforming our equation into triangular form and
solving recursively each of the resulting equations, always for a single variable.
Thus, instead of the equation

−x + 3y + 3z = 2

3x + y + z = 4

2x − 2y + 3z = 10

one solves the equivalent triangular system

−x + 3y + 3z = 2

y + z = 1

5z = 10
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by first calculating z = 2 from the last equation, then using this knowledge to
calculate y = 1 − z = −1 from the penultimate one, and finally, one gets x =
−2+ 3y + 3z = −2− 3+ 6 = 1.

An important recent development initiated by Buchberger (2001) is that systems of
polynomial equations with finitely many solutions can also be triangularized.
(See also Lichtblau 1996.) This does not contradict the fact that the roots of
higher than fourth-order polynomials cannot be found symbolically in general. But
one can find the (finitely many) roots of the emerging one variable polynomial
either symbolically or numerically and substitute these roots one by one into
the penultimate, two-variable polynomial to get the possible values of the next
variable and continue in the same manner working backward until all solutions are
enumerated.

The key concept in obtaining the triangular form is that of the Gröbner basis.
Very loosely speaking, a Gröbner basis of a system of polynomials is another,
“equivalent” system with some favorable properties that make the solution of several
algebraic problems involving these polynomials (solving the corresponding system
of equations is only one of them) easier to solve. In Mathematica, Gröbner bases
can be obtained using the function GroebnerBasis, which is used also by other
Mathematica functions such as Solve, Reduce, Resolve, Eliminate,
and FindInstance for computations involving multivariate polynomials.

Let us see an example.

Example 9.43 The induced kinetic differential equation of the reaction

X −−→ 2 X X −−→ X+ Y −−→ Y 2 Y −−→ Y

is ẋ = x − xy, ẏ = x − y2; therefore to find the stationary points, one has to
solve the system of polynomial equations 0 = x − xy, 0 = x − y2. As

GroebnerBasis[{x - x y, x - y^2}, {x, y}]

gives

{-y^2 + y^3, x - y^2},

we can easily find the stationary points by first finding the (two) solutions of−y2+
y3 = 0 and substituting them into x − y2 = 0.

Gröbner bases are not unique and are not necessarily “triangular,” which is
shown by the fact that just by changing the order of the two variables and
computing GroebnerBasis[{x-x y, x-y2}, {y, x}], we get an entirely
different basis—in fact, even the number of polynomials of the bases and the degrees
of the polynomials are different. Of course, we get the same stationary points either
way, and these are the same as those what we would obtain by simply invoking

Reduce[{x - x y == 0, x - y^2 == 0}].
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Gröbner bases can sometimes be very difficult and time-consuming to compute
even for a small number of polynomials of degrees as low as three or four. See
Problem 9.7 for an example. The interested reader may find more information on
Gröbner bases in algebraic geometry textbooks, such as Cox et al. (2004).

9.6.4 Ordinary Differential Equations

We are usually interested in the solutions of the induced kinetic differential equation
of a reaction which can rarely be calculated symbolically using DSolve and more
often than not, numerically, using NDSolve.

9.6.4.1 Black Box Use
Take as an example, to illustrate the first case, the triangle reaction.

Concentrations[{Triangle},

{k1, k2, k3}, {a0, b0, c0}]

uses only DSolve (note that neither the time interval is given, and nor numerical
values are provided for the parameters). We do not care how the result is obtained;
we only use it.

9.6.4.2 Use of Built-in Options of Mathematica
When solving induced kinetic differential equations, first we try to use NDSolve
without any external intervention. If the result is not convincing or appropriate, then
we may try to use some of the built-in options of Mathematica similarly as we
have shown above. Let us consider a version of the Oregonator, a model for the
Belousov–Zhabotinsky reaction (Deuflhard and Bornemann 2002, p. 17–18):

BrO3
− + Br− 134/100−−−−→ HBrO2 HBrO2 + Br− 16×108−−−−→ P Ce(IV)

1−−→ Br−

HBrO2 + BrO3
− 8×103−−−→ Ce(IV)+ 2 HBrO2 2 HBrO2

4×107−−−→ P.

Figure 9.4 shows the concentration vs. time curve of HBrO2 without additional
options, only using the built-in function NDSolve:

cin = Concentrations[or={"A"+"Y" -> "X", "X"+"Y" -> "P",

"A"+"X" -> 2"X"+"Z", 2"X"->"P", "Z"->"Y"},

{134/100, 16*10^8, 8*10^3, 4*10^7, 1},

{5*10^(-1), 10^(-6), 10^(-8), 6*10^(-2), 10^(-4)},

{0, 100}, {a, y, x, p, z}];

Plot[Log[x[t]/.Last[cin]], {t, 0, 100}, PlotRange->All,

AxesLabel ->

(Style[#, Bold, 12]& /@ {"t", "x(t)"})]
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Fig. 9.4 Logarithm of the concentration of HBrO2 vs. time without and with options
[BrO3

−](0) = 5 × 10−1, [Br−](0) = 10−6, [HBrO2](0) = 10−8, [P](0) = 6 ×
10−2, [Ce(IV)](0) = 10−4

and also using a few options and changing the default values of some parameters

con = Concentrations[or,

{134/100, 16*10^8, 8*10^3, 4*10^7, 1},

{5*10}^(-1), 10^(-6), 10^(-8), 6*10^(-2), 10^(-4)},

{0,100}, {a, y, x, p, z},

Method -> "BDF", WorkingPrecision -> 32,

MaxSteps->10^6];

Plot[Log[x[t] /. Last[con]], {t, 0, 100},

PlotRange -> All,

AxesLabel ->

(Style[#, Bold, 12]& /@ {"t", "x(t)"})]

give a much more reliable result.
Let us note that Deuflhard and Bornemann (2002) had to be supplemented with

initial concentrations and time to be reproducible.
An early review on the requirements toward numerical methods and codes to be

applied in chemical kinetics has been presented by Dahlquist et al. (1982).

9.6.4.3 Stiffness
The phenomenon causing a numerical problem most often when solving induced
kinetic differential equations of reactions is stiffness. This means that there
are orders of magnitude differences between the rate of changes of different
concentrations. If this is the case, then a simple numerical method does not know
how to choose the step size. If it is too large, then fine changes in the fast variable
will be missed; if it is chosen to be too small, then the process of integration may
take very long time. This is the case especially with oscillatory reactions: when one
of the species concentrations is around its extremum with almost zero derivative,
the other one goes through the largest change (Fig. 9.5).

Stiffness originating in chemical kinetics urged mathematicians, first of them
Gear (1992) to devise numerical methods for solving such problems. Since then
many other methods have been introduced and are in use; one of them is the
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Fig. 9.5 Logarithm of the concentrations of HBrO2 (red) and Ce(IV) (line) vs. time (Deuflhard
and Bornemann 2002, pp. 17–18)

Backward Differentiation Formula (BDF) used above, which is particularly useful
for stiff differential equations and differential algebraic equations.

Darvishi et al. (2007) propose the variational iteration method to solve stiff
systems, and they also apply the method to solve the Rosenbrock model.

9.6.4.4 Numerical Methods Conserving Important Qualitative
Properties

Even the simplest kinetic differential equations can only be solved by numerical
methods; therefore the question if such a method is able to keep important
qualitative properties of the models arouse very early. It is always true that starting
from a nonnegative concentration vector, one can never have negative concentrations
later (see Theorem 8.6). In many cases the investigated reaction is mass conserving,
i.e., the induced kinetic differential equation of the reaction has a (positive) linear
first integral (see, e.g., Chap. 4). It may also happen that it has a first integral with
not necessarily positive coefficients (see Problem 9.18) or that it has a nonlinear
(e.g., quadratic or more complicated) first integral (see Sect. 8.5).

An obvious requirement from a numerical method is to keep as many of these
and similar properties as possible. Now we review some of the basic results.

First Integrals
As to keeping first integrals, numerical methods were constructed to keep linear
(Robertson and McCann 1969) and quadratic (Rosenbaum 1977; LaBudde and
Greenspan 1976) first integrals. A more recent review on general first integrals has
been given by Shampine (1986).

The first results in this field come from the 1970s of the last century, when
computers began to be applied in reaction kinetics.
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Definition 9.44 Let us consider the initial value problem

ẋ = f ◦ x x(0) = x0, (9.37)

with f ∈ C (RM,RM) and x0 ∈ R
M ; and suppose a numerical method provides a

sequence of approximations x1, x2, . . . , xn, . . . of the solution.

1. If x �→ ω	x is a linear first integral of the initial value problem (9.37) (where
ω ∈ R

M ), and for all n ∈ N : ω	xn = ω	x0, then the given numerical method
is said to be linearly conservative.

2. If x �→ x	Bx is a quadratic first integral (where B ∈ R
M×M is a positive

definite symmetric matrix), and for all n ∈ N : xn	Bxn = x	0 Bx0, then the
given numerical method is said to be quadratically conservative.

Problem 9.21 shows that the requirement of, say, linear conservativity in itself is not
enough to ensure that the approximations given by the numeric method are good in
any other sense.

The two fundamental statements were formulated by Rosenbaum (1977).

Theorem 9.45

1. (Variable step) linear multistep methods are linearly conservative.
2. (Variable step) Runge–Kutta methods are linearly conservative.

Let us recapitulate that the concept we met in Chap. 4 might be more precisely
called stoichiometrically mass conserving. This is different from the property
that a reaction is kinetically mass conserving (see Definition 8.33).

Remark 9.46

• A stoichiometrically mass conserving reaction is kinetically mass conserving, as
well.

• The induced kinetic differential equation of a kinetically mass conserving
reaction has a linear first integral.

None of the conversions is true; this fact is trivial in the second case; Problem 9.20
shows that it is neither true in the first one.

Let us remark in passing that although the existence of a first integral makes it
possible to reduce the number of variables by elimination, this may not necessarily
be a good idea from the numerical point of view. Also, elimination of a variable
using the quasi-steady-state hypothesis is not a good idea either: it may destroy
linear first integrals.

You may not think that all the numerical methods are linearly conservative:
Rosenbaum (1977) mentions a few nonconservative methods, as well.
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Positivity
Volpert’s Theorem 8.6 reassures us that none of the coordinate functions of the
solution to a kinetic differential equation can be negative at any positive time.
Interestingly, this important property has been started to be investigated not so
early in spite of its importance (Faragó and Komáromi 1990; Shampine 1986;
Shampine et al. 2005), but since then the investigations have been extended to partial
differential equations (of which parabolic ones are especially important as reaction
diffusion equations belong to this category) too (see Faragó 1996; Faragó and
Horváth 2001; Faragó and Komáromi 1990), but the first result again comes from
Volpert (1972) who has shown that the method of finite differences when applied to
the reaction diffusion equation leads to a formal reaction of higher dimension, and
thus one can again apply the abovementioned theorem to get nonnegativity of the
numerical approximation.

Horváth (1998, 2005) asked the question how large the step size can be in Runge–
Kutta methods so that the method still conserves positivity of the solutions. Other
authors like Bertolazzi (1996), Faragó (1996), and Karátson and Korotov (2009)
treat positivity and mass conservation of numerical methods, also applied for mass
action kinetics. Antonelli et al. (2009) analyze the impact of positivity and mass
conservation properties of a recent version of VODE—a stiff ordinary differential
equation solver using backward differentiation formulas—on the prediction of
ignition in numerical simulation in combustion. The property that solutions starting
in the first orthant do remain in the first orthant can be rephrased as the (positive)
invariance of the first orthant. Cheuh et al. (1977) put this question in a wider
perspective.

Further Relevant Properties to Keep
Another important qualitative property is the presence of a periodic solution, be it a
conservative oscillation as in the case of the Lotka–Volterra reaction or a limit cycle
as in the case of the Brusselator.

Some differential equations have the property that the volume of the phase space
is constant along the solutions (Quispel and Dyt 1998).

Ketcheson (2009) and Ketcheson et al. (2009) discuss the preservation of mono-
tonicity (here strong stability or monotonicity mean that some convex functional
of the solution is nonincreasing in time, dissimilarly from the meaning we have
used in Sect. 6.4.3). Hadjimichael et al. (2016) proves keeping a kind of stability
by numerical methods and Lóczi and Chávez (2009) is about bifurcation preserving
methods.

Skeel and Gear (1992) treat the question if the Hamiltonian structure of a
differential equation is kept by a numerical method or not. Such a method is termed
as symplectic. The problem how often an induced kinetic differential equation can
have a Hamiltonian structure has been raised by Tóth and Érdi (1988).
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9.6.5 Differential Algebraic Equations

The time evolution of a reaction is most often described by systems of ordinary
differential equations. However, it is often the case that the model consists of
differential equations and also some algebraic relations between the concentrations.
Then we have a differential algebraic equation system. We show two examples
how one may arrive at such a model.

Example 9.47 One of our favorite models, the Robertson reaction (see, e.g.,

Eq. (2.6)), is obviously mass conserving; one can take � = [
1 1 1

]	
. Therefore,

instead of solving the induced kinetic differential equation in the usual way, one
can add the equation a(t) + b(t) + c(t) = a(0) + b(0) + c(0) expressing mass
conservation and solve the emerging differential algebraic equation to get Fig. 9.6.
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0.1 100
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Fig. 9.6 Exact solution of the induced kinetic differential equation of the Robertson reaction, and
its solution as an algebraic differential equation. Parameters: k1 = 0.04, k−1 = 3 × 107, k2 =
104, a0 = 1, b0 = 0, c0 = 0
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Example 9.48 A usual simplification method to reduce the number of variables in
kinetic differential equations is obtained when one realizes that one of the variables
is changing much slowly and assumes its rate of change is zero. Let us consider the

Michaelis–Menten reaction: E+ S
k1−−⇀↽−−

k−1
C

k−2−−→ E + P having the induced kinetic

differential equation

ė = −k1es + k−1c + k−2c

ṡ = −k1es + k−1c

ċ = k1es − k−1c − k−2c

ṗ = k−2c

with the usual initial condition

e(0) = e0, s(0) = s0, c(0) = 0, p(0) = 0.

According to the usual assumption, the rate of change of the intermediate complex
C is so small that it can be considered to be zero (see more details in Sect. 9.4).
Here we only concentrate on the possibility that one can solve instead of the above
induced kinetic differential equation the following differential algebraic equations:

ė = −k1es + k−1c + k−2c (9.38)

ṡ = −k1es + k−1c (9.39)

0 = k1es − k−1c − k−2c (9.40)

ṗ = k−2c, (9.41)

and the results show similarity with the usual approximation. (The initial concentra-
tion of c should be chosen carefully when using (9.41).) All the data are taken from
(Heineken et al. 1967, Figure 1) (Fig. 9.7).

Finally, let us mention that the case when either the number of species or the
number of reaction steps is infinite may have either direct importance or can be used
as an approximation method. This is the case of continuous species or continuous
components and reaction steps, which may be useful in systems where the number
of species is extremely large (Aris 1989; Aris and Gavalas 1966) or if they can
really be only parameterized by a continuously changing parameter, e.g., by an angle
characterizing the form of the molecule (Érdi and Tóth 1989, pp. 78–79).
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Fig. 9.7 Solution of the induced kinetic differential equation of the Michaelis–Menten reaction
without approximation: red line, as an algebraic differential equation: dashed blue line. Parameters:
k1 = 1, k−1 = 0.625, k−2 = 0.375, e0 = 0.1, s0 = 1.0

9.7 Exercises and Problems

9.1 How can you estimate the order of the concentrations at the beginning for the
reversible bimolecular reaction?

(Solution: page 430)

9.2 Suppose that there exists � ∈ (R+0 )M for which �	γ ≤ 0 holds. Then all
reaction steps for which

∑
m∈M �mγ (m, r) < 0 holds is a summable reaction step.

(Solution: page 430)

9.3 Apply, if possible, the sufficient condition of summability in Problem 9.2 to the
Lotka–Volterra reaction, the simple reversible bimolecular reaction, the Michaelis–
Menten reaction, and the Robertson reaction.

(Solution: page 431)

9.4 Show that the stationary point
[
0 0
]	

of the Eq. (9.6) is an asymptotically stable
node.

(Solution: page 431)

9.5 Carry out the calculations shown for the case of the Michaelis–Menten model
for the much simpler reaction S −−⇀↽−− C −−→ P assuming that c(t)$ s(t).
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(Solution: page 431)

9.6 Find the symbolic solution of the Eq. (9.11) after substituting C from the
Eq. (9.14).

(Solution: page 431)

9.7 Determine the number of stationary points of the (kinetic) differential equation

ẋ = 2+ x − x2 + y2 ẏ = 3+ xy − y3 + xz ż = 2+ x3 − yz− z2

using Reduce, Solve, or NSolve, and also “manually”, using Gröbner bases.
Experiment with different options of the GroebnerBasis function.

(Solution: page 432)

9.8 Show that the representation (9.32) is independent of the choice of the
generalized inverse h.

(Solution: page 432)

9.9 Let a, b, c, d ∈ R. Show that the function R
2 � (x, y) �→ w(x, y) := (a +

c)x + (b + d)y ∈ R can be represented as a function R
2 � (x, y) �→ u(x, y) :=

v(x + y) ∈ R if and only if a + c = b + d.

(Solution: page 432)

9.10 Show that the constant eigenvalue of the matrix-valued function

R
2 � (x1, x2) �→

[
x1 + 2 x2

x1 x2 + 2

]
∈ R

2×2

has a nonconstant eigenvector, while its nonconstant eigenvalue corresponds to a
fixed, constant eigenvector.

(Solution: page 432)

9.11 Do the calculations supporting the statements in Examples 9.22 and 9.23.

(Solution: page 433)
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Fig. 9.8 A reversible
triangle reaction to lump
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9.12 Lump properly the reversible triangle reaction with the reaction rate coeffi-

cients as shown in Fig. 9.8 using M :=
[

1 1 0
0 0 1

]
, and calculate the coefficient matrix

of the lumped equation.

(Solution: page 434)

9.13 Consider the reaction

Xi

kji−−⇀↽−−
kij

Xj (i, j = 1, 2, 3, 4) (9.42)

with the assumption k41 = k42 = k43, and show that M :=
[

1 1 1 0
0 0 0 1

]
is an exact

lumping matrix, i.e., there exists κ, λ ∈ R
+ such that

ẏ1 = −κy1 + λy2 ẏ2 = κy1 − λy2; (9.43)

or, to put it another way, the reaction (9.42) can linearly be lumped into the reaction

Y1
κ−−⇀↽−−
λ

Y2. (9.44)

(Solution: page 434)

9.14 Find an induced kinetic differential equation which is transformed by linear
lumping into a differential equation which is not kinetic.
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(Solution: page 434)

9.15 Apply proper lumping to a first-order reaction with five species into one
having two species. Show that if the starting reaction was a closed, half-open, or
open compartmental system, so is the lumped system.

(Solution: page 435)

9.16 Show that an asymptotically stable stationary point may be lumped into an
unstable one, and what is more, a lumped system can blow up even if the original
did not have this property.

(Solution: page 435)

9.17 Show that although the system

ẋ = −kx + ky + u+ v ẏ = kx − 2ky + kz+ u ż = ky − kz+ u− v

is not completely controllable, still the lumped system

˙̂x = −k

2
x̂ + k

2
ŷ + 3u+ 2v ˙̂y = k

2
x̂ − k

2
ŷ + 3u− 2v

is completely controllable. (What is the lumping matrix?)

(Solution: page 436)

9.18 Construct a reaction with a nonpositive linear first integral.

(Solution: page 436)

9.19 The class of Runge–Kutta methods for solving the equation

ẋ = f ◦ x (9.45)

can be defined as follows (Frank 2008, Chapter 8):

Yi = xn +
s−1∑

j=1

aij f (Yj ) (i = 1, 2, . . . , s); xn+1 = xn + h

s∑

i=1

bif (Yi),

where s is the number of stages, bi are the weights, and aij are the internal
coefficients. Show that, if for all i, j = 1, 2, . . . , sbibj − biaij − bjaji = 0 holds,
then the method preserves the quadratic first integrals of (9.45).
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(Solution: page 436)

9.20 Find a positive vector with which the induced kinetic differential equation of
the reaction (Feinberg and Horn 1977, p. 89)

F −−⇀↽−− D+ E ←−− C −−⇀↽−− A+ B −−→ G −−→ H −−⇀↽−− 2 J −−→ G (9.46)

can be shown to be kinetically mass conserving; still with this vector the reaction
cannot be shown to be stoichiometrically mass conserving.

(Solution: page 437)

9.21 Show that the “numerical methods” for the initial value Problem (9.37)
defined below

1. xn+1 = xn, x0 = x0
2. xn+1 = xn − n · 106 · f(xn), x0 = x0

are linearly conservative.

(Solution: page 437)

9.22 Show that the Euler method when applied with a small enough step size keeps
the invariance of the first orthant.

(Solution: page 437)

9.23 Show that the stationary points of an autonomous differential equation are the
same as those obtained by the Euler method.

(Solution: page 437)

9.24 What happens with the oscillatory character of the harmonic oscillator

ẋ = y ẏ = −x

if one applies the Euler method?

(Solution: page 438)

9.25 The initial derivatives of the concentrations are six orders of magnitude
different from each other in the mass action type induced kinetic differential

equation of the reaction 0
106−−→ X, Y

1−−→ 0 if the units used are mol, dm3, and s.
What happens if one uses micromoles instead?
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(Solution: page 438)

9.26 Write down the mass action type induced kinetic differential equation of the
reaction

Br2
k1−−→ 2 Br, initialization (9.47)

H2 + Br
k2−−→ H+ HBr, propagation (9.48)

H+ Br2
k3−−→ Br+ HBr, propagation (9.49)

H+ HBr
k4−−→ H2 + Br, retardation (9.50)

2 Br
k5−−→ Br2, termination (9.51)

then assuming that the derivative of [Br] and [H] is zero, express the approximate
time derivative of [HBr]. This procedure is a kind of application of the quasi-steady-
state approximation (QSSA) to the rate of the overall reaction H2 + Br2 −−→
2 HBR, which can formally be obtained as the linear combination of the reaction
steps in (9.49) with the coefficients 1, 1, 1, 2 and 1 after eliminating the H and
Br radicals and keeping only one H2 and Br2 molecule on the left side and two
molecules of HBr on the right side.

(Solution: page 438)

9.8 Open Problems

1. It would be desirable to have a description of the behavior at infinite time in
chemical terms or in terms of the structure of the reaction.

2. How do you determine the minimal sets of species with initially positive
concentrations so that all the concentrations of the species become positive
during the course of the reaction?

3. How is the stability on the boundaries explained by Volpert and Ivanova (1987)
connected to the Global Attractor Hypothesis?

4. The first assumption of Theorem 9.4 is that the zero complex is not a reactant
complex. Is it essential? Can you give an example where this condition and the
consequence of the theorem equally fails?
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Part III

The Continuous Time Discrete State Stochastic
Model

The most often used continuous time discrete state stochastic model of reactions
will be discussed here. The treatment is—as far as possible—parallel with that of
the deterministic model.
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10.1 The Necessity of Stochastic Models

As we have seen in the previous chapters (see Chap. 6), the essence of the usual
deterministic model is that the effects of different reaction steps are translated into
the change of concentrations in time of species reacting with one another. With
the assumption that the species are in a well-stirred environment, this approach
gave a spatially “averaged” description, which proved to be adequate, e.g., when the
number of species is large. However, small systems (see Arányi and Tóth 1977; Érdi
and Tóth 1989, Chapter 5; Gadgil 2008; Grima et al. 2014; Lente 2010; Turner et al.
2004), or systems operating around an unstable stationary point (e.g., models of
chirality such as in Barabás et al. 2010; Lente 2004) are better described by models
which take into account:

• discrete state space for species, i.e., number of molecules, atoms, etc. are used
instead of concentrations,

• stochastic dynamics for the reaction steps.

In other words, we are going to take into account both the discrete and the random
characters of the reactions by keeping track of the number of reacting molecules.
This sort of approach has had sufficient attention in the recent decades as the
experiments and analytical techniques are being much more developed, e.g., there
are cases where it has become possible to measure individual molecules (Juette et al.
2014; Tóth and Érdi 1992; Arakelyan et al. 2004, 2005; Grima et al. 2014; Qian and
Elson 2002; Edman and Rigler 2000; Lee et al. 2010; Sakmann and Neher 1995;
English et al. 2006; Stoner 1993; Weiss 1999; English et al. 2006; Velonia et al.
2005; Turner et al. 2004).

The induced kinetic Markov process (the usual stochastic model for short) to be
introduced in the next section is expected to be valid in the mesoscopic scale, i.e.,
it forms a bridge between the macroscopic and microscopic models of reaction
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kinetics. On the observable mesoscopic level the—internal or external—fluctuations
can force us to reconsider the notion of acceptable agreements with experiments.
Randomness implies that along exactly the same circumstances, one can have differ-
ent results at the same time. It is also worth mentioning that this stochastic behavior
may or may not mean reproducibility: the experimenter measures different results
with seemingly the same circumstances (cf. Singer 1953; Nagypál and Epstein
1986, 1988; Lente 2010). If the distribution of the measurements (repeated many
times) is the same, then the experiment is reproducible in a more general sense. It
was rigorously proved that on a large spatial scale, the average behavior of the usual
stochastic model is close to that of the usual deterministic model as described in
Chap. 6. Nevertheless it can happen that

• the amplification of fluctuations measured on a small scale or
• the effect of compartmentalization, i.e., when a large system consists of many

small components that are weakly reacting with each other,

leads to observable macroscopic phenomena not captured by the induced kinetic
differential equation (6.3). It is also worth noting that if the experimental results are
interpreted within a stochastic framework, then statistical inference not possible
in the deterministic model may also be drawn from data (see Érdi and Ropolyi
1979; Yan and Hsu 2013; Érdi and Lente 2016, Section 3.9; Érdi and Tóth 1989,
Section 5.4 and further references therein).

Nowadays, deterministic models are still the most widespread ones in kinetics,
but there are an increasing number of well-established arguments both from
theoretical and practical sides why it is of importance to consider stochastic reaction
kinetic models. It should however be noticed that if one has an acceptable solution,
e.g., for the induced kinetic differential equation with micro- or even nanomoles of
different chemical species, then in many cases one does not need to worry about
stochastic models. In these cases the more complicated stochastic model would lead
to essentially the same results as the deterministic one, but at the price of much
more effort, not a good deal. However, there are arguably real, physicochemical
situations in which a deterministic model is insufficient to describe what is going
on. For illustration we outline examples from three research fields below. We refer
to the review Gadgil (2008) for further relevant examples.

In this chapter mainly direct problems are considered, i.e., given the compo-
nents, interactions, and parameters, the behavior of the corresponding model is
investigated. Modeling approaches for the inference of mechanisms from experi-
mental data, i.e., inverse problems, are tackled in Chap. 11.

We remind the reader that more recently Érdi and Lente (2016) and Anderson and
Kurtz (2015) have dedicated separate books to stochastic models of reactions. Since
the present book is aimed at capturing a wider audience, it is then hoped to be more
rigorous than that of the former one (at the price of less applications), while it is able
to treat much more applications than the latter one (although at a less rigorous level).
We propose the reader to consult these books, as well. Let us also mention from the
earlier literature the monographs by Gardiner (2010) and Van Kampen (2006).
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10.1.1 Biological Models, Enzyme Kinetics

The best thing for the reader interested in biological applications is to study Érdi
and Lente (2016) and Anderson and Kurtz (2015). The earlier book by Iosifescu
and Tăutu (1973) also contains a rich material. Here we only give a teaser.

The stochastic model of compartmental systems is often applied to describe
the movement of populations between different areas. It is equally suitable for
modeling the distribution of drugs or of compounds labeled with isotopes in the
human or animal body. The model itself has been solved in the sense that its absolute
probabilities have been calculated many times in the last 80 years; in every decade
a new author emerges stating that (s)he found the solution (see Érdi and Lente
2016, p. 78, or Leontovich 1935; Siegert 1949; Gans 1960; Krieger and Gans 1960;
Bartholomay 1958; Šolc 2002; Darvey and Staff 2004; Gadgil et al. 2005; Jahnke
and Huisinga 2007).

The stochastic model of the Michaelis–Menten reaction is not easy to deal with.
We shall see below that the problem is caused by the fact that one of the reaction
steps is of the order two. However, as one is usually interested in the case when
at the beginning of the reaction the number of enzyme molecules is much smaller
than that of the substrate molecules, it turned out to be a fruitful idea to calculate
all the quantities in the extreme case when one has a single enzyme molecule at the
beginning (Arányi and Tóth 1977). Many years later, the experimental techniques
made it possible to carry out measurements in this extreme case.

Signal processing in general and in particular in the olfactory system is a favorite
topic (Lánský and Rospars 1995; Pokora and Lánský 2008; Zhang et al. 2005). A
deterministic counterpart has numerically been investigated by Tóth and Rospars
(2005).

Gene expression is also frequently studied using models of stochastic kinetics
(see Li and Rabitz 2014; McAdams and Arkin 1997; Wadhwa et al. 2017; Samad
et al. 2005 and also Problem 10.1).

10.1.2 Chirality and the Asymmetric Autocatalysis

A chiral molecule is one that cannot be superimposed onto its mirror image. The
source of this effect is usually an asymmetric carbon atom. The molecule and its
mirror image are enantiomers. Enantiomers of the same composition rotate the
plane of the polarized light into opposite direction. Originally the direction of
rotation is denoted by the name right (R) and left (L) enantiomers, respectively.
An interesting and biologically relevant fact is that the amino acids present in
living beings are always of the L-type, whereas sugars are always of the R-type.
The major questions of the theory are where this asymmetry came from and if
it is once present how it is amplified. The biological significance of chirality
modeling has been realized as early as in the middle of the last century starting
from Frank (1953), though both modeling and experimental research have started
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to be very vivid since the discovery of the Soai reaction (Soai et al. 1995). This
reaction shows the possibility of finding circumstances under which asymmetric
molecules can emerge without the presence of any external source of asymmetry
(as, e.g., asymmetric crystals). As to the theoretical work: it turned out that the usual
stochastic model is much more appropriate to describe the spontaneous synthesis
of asymmetric molecules (Lente 2004, 2005), showing good agreement with the
experimental results. Barabás et al. (2010) presented a review on the deterministic
and stochastic models of emergence and amplification of chirality by mechanisms
such as asymmetric autocatalysis and absolute asymmetric synthesis.

10.1.3 Combustion

Randomness plays an important role in combustion processes, as well. Lai et al.
(2014) applied the usual stochastic model of chemical kinetics to the formation
of nanoparticles in combustion in order to characterize the growth of polycyclic
aromatic hydrocarbons (PAHs), important precursors of carbonaceous nanoparti-
cles and soot, in a premixed laminar benzene flame, using a concurrently developed
PAH growth chemical reaction mechanism, as well as an existing benzene oxidation
mechanism. The authors hope that the proposed method will benefit engineering
of novel combustion technologies to mitigate harmful emissions. Urzay et al.
(2014) address the influences of residual radical impurities on the computation
and experimental determination of ignition times in H2/O2 mixtures, in particular
the presence of H-atoms in the initial composition of the mixtures in shock tubes.
A stochastic Arrhenius model that describes the amount of H-radical impurities
in shock tubes is proposed to yield a probability density function for the residual
concentration of hydrogen radicals in standard shock tubes. The authors use a short
mechanism consisting of five reaction steps. The influence of uncertainties on the
ignition time is typically negligible compared to the effects of the uncertainties
induced by H-impurities when the short mechanism is used.

Global sensitivity analysis shows an increasing importance of the recombining
kinetics (see Turányi 1990; Turányi and Tomlin 2014). Simulations of homogeneous
ignition subject to Monte Carlo sampling of the concentration of impurities show
that the variabilities produced in ignition delays by the uncertainties in H-impurities
are comparable to the experimental data scatter and to the effects of typical
uncertainties of the test temperature when the Stanford chemical mechanism (Hong
et al. 2011) is used. The utilization of two other different chemical mechanisms,
namely, San Diego (CombustionResearch 2011) and GRI v3.0 (Smith et al. 2000),
yields variations in the ignition delays which are within the range of the uncertainties
induced by the H-impurities. Chibbaro and Minier (2014) describes stochastic
methods (mainly stochastic differential equations) to be applied in fluid mechanics
including applications in combustion.

Some authors investigate combustion processes from a viewpoint different
from the physicochemical one, e.g., Abbasi and Diwekar (2014) quantify the
inherent uncertainties in the biodiesel production process arising out of feedstock
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composition, operating and design parameters in the form of a probability distri-
bution function. Simulation results are evaluated to determine impact of the above
uncertainties on process efficiency and quality of biodiesel.

10.2 The Induced Kinetic Markov Process

In what follows we first give a heuristic derivation of the master equation of the
induced kinetic Markov process for a specific reaction. Next, in Sect. 10.2.2, we
precisely formulate what we mean by the induced kinetic Markov process. The
master equation can be thought of as the direct analogue of the induced kinetic
differential equation, but now, as opposed to Eq. (6.3), where we relied on the theory
of ordinary differential equations, we are going to deal with stochastic processes.

Roughly speaking, we consider a consistent set of time-dependent random
variables, a stochastic process, whose possible states are represented by the points of
the lattice N

M
0 , where M ∈ N denotes the total number of species (e.g., molecules,

atoms, particles, or charges). Throughout this chapter, if we do not say otherwise, we

use the column vector X(t) := [X1(t) X2(t) · · · XM(t)
]	 ∈ N

M
0 to denote the state

of the induced kinetic Markov process at time t . In particular, for m ∈M : Xm(t) is
the number of the mth species that is present at time t ≥ 0. Often it is assumed that
the initial state X(0) is fixed (or deterministically chosen), say X(0) = x0 ∈ N

M
0 .

10.2.1 Heuristic Derivation of theMaster Equation

Let us recall the Robertson reaction from Robertson (1966), i.e.,

A
ksto

1−−→ B 2 B
ksto

2−−→ B+ C
ksto

3−−→ A+ C,

where ksto
1 , ksto

2 , ksto
3 are positive real numbers. Assume now that we are capable of

keeping track of the number of individual species occurring in the previous reaction.

So let X(t) := [X1(t) X2(t) X3(t)
]	

be the number of species present in the system
at time t ≥ 0 of the species A, B, and C, respectively, where we initially drop x0 :=[
x0

1 x0
2 x0

3

]	 ∈ N
3
0 molecules of A,B, and C into the reaction vessel. Furthermore

let us denote by

px0,x(t) := P{X(t) = x |X(0) = x0}

the transition probability, i.e., the probability that starting X from x0, we have
x ∈ N

3
0 molecules of A,B, and C by time t ≥ 0. We are going to describe models

for the temporal evolution of these probabilities under certain restrictions.
Recalling Sect. 6.2, it is natural to assume that in the “small” time interval [t, t +

h[, the probability that the process X will jump to another state, i.e., one or more
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reaction steps will occur, is given by

P
{
X(t + h) = y |X(t) = x, (X(s))0≤s<t

}

= P
{
X(t + h) = y, one reaction step occurs in [t, t + h[ |X(t) = x, (X(s))0≤s<t

}

+ P
{
X(t + h) = y,more than one step occurs in [t, t + h[ |X(t) = x, (X(s))0≤s<t

}

=
R∑

r=1

B(y− x = γ (·, r)) · ϕr (x)h+ ε(h)h, (10.1)

where x �= y ∈ N
M
0 , ϕr : NM

0 → R
+
0 are given functions and the number of reaction

steps is now R = 3. Hence for r ∈ R, ϕr is assigned to the rth reaction step which
can be thought of as the “rate” at which the reaction step in question is going to be
executed. Note that the probability of occurring two or more reactions in a small
time interval of length h is of order ε(h)h, that is, negligible.

To be in full compliance with the law of total probability, we have that

P
{
X(t + h) = x |X(t) = x, (X(s))0≤s<t

} = 1−
R∑

r=1

ϕr(x)h+ ε(h)h. (10.2)

This reflects the case when no reaction has occurred in the time interval [t, t + h[.
The previous equations for the (transition) probabilities are supposed to be valid for
all sufficiently small but positive h’s. Let us make some remarks.

1. As opposed to the first remark after Eq. (6.2), now the state variable X(t) is not
continuous at every point; it is indeed a step function. The probability of X(t)

being at a particular state varies continuously with t by the assumptions from
above.

2. The right-hand sides of the above relations do not explicitly depend on t .
3. All the information for the propagation of the process X after some time t is

determined by its current state X(t) = x.
4. The technical term ε(h)h measures the error of approximation which is consid-

ered to be negligibly small even if h ↓ 0, that is, lim0 ε = 0.

At this point one may wish to specify the functions ϕr to be as simple as possible.
We make the choice

ϕ1(x) = ksto
1 x1B(x1 > 0),

ϕ2(x) = ksto
2 x2(x2 − 1)B(x2 > 1),

ϕ3(x) = ksto
3 x2x3B(x2 > 0, x3 > 0),

where x = [x1 x2 x3
]	 ∈ N

3
0. Recall that B(A) is 1 if statement A is true and is 0

otherwise.
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At the first and third reaction steps, ϕr coincide with their deterministic counter-
parts aside from the different units of quantities involved. One of the differences
came along at the second reaction step, where up to a scaling factor ϕ2 is
proportional to the binomial coefficient

(
x2
2

)
rather than to x2

2 which latter was used
in the case of the usual deterministic model. To put it another way, the “speed” of
the second reaction step, up to a constant factor, equals to the number of ways two
molecules of B can form up.

We also note that the units hence the magnitudes of proportionality factors
ksto

1 , ksto
2 , ksto

3 are different from that of deterministic counterparts. These are
discussed in Sect. 10.2.3 in more detail.

To obtain a system of ordinary differential equations for the probabilities, we
follow the lines of Sect. 6.2. By the law of total probability, we arrive at

px0,x(t + h)

=
R∑

r=1

P{X(t + h) = x |X(t) = x− γ (·, r)}P{X(t) = x− γ (·, r) |X(0) = x0}

+ P{X(t + h) = x |X(t) = x}P{X(t) = x |X(0) = x0} + ε(h)h

=
R∑

r=1

ϕr(x− γ (·, r))hpx0,x−γ (·,r)(t)+
(

1−
R∑

r=1

ϕr(x)h
)
px0,x(t)+ ε(h)h.

Regrouping and dividing the previous equation by h, we obtain

px0,x(t + h)− px0,x(t)

h

=
R∑

r=1

[
1

h
ϕr(x− γ (·, r))hpx0,x−γ (·,r)(t)− 1

h
ϕr(x)hpx0,x(t)

]
+ ε(h).

Since ϕr does not depend on h, the right-hand side of the previous display has a
limit as h ↓ 0 so does the left-hand side implying the differentiability of px0,x(·) for
all x0, x ∈ N

3
0. Thus

ṗx0,x(t) = ksto
1 (x1 + 1)B(x1 ≥ 0)px0,x−γ (·,1)(t)

+ ksto
2 (x2 + 1)x2B(x2 ≥ 1)px0,x−γ (·,2)(t)

+ ksto
3 (x2 + 1)x3B(x2 ≥ 0, x3 ≥ 1)px0,x−γ (·,3)(t)

− ksto
1 x1B(x1 > 0)px0,x(t)

− ksto
2 x2(x2 − 1)B(x2 > 1)px0,x(t)

− ksto
3 x2x3B(x2 > 0, x3 > 0)px0,x(t),
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where γ (·, 1) = [−1 1 0
]	

, γ (·, 2) = [−1 0 1
]	

, and γ (·, 3) = [
1 −1 0

]	
are

the reaction step vectors. This is called the master equation of the usual stochastic
model of the Robertson reaction (see the general form in Sect. 10.2.5). Notice that
for each given x0, the above is a finite system of constant coefficient linear ordinary
differential equations, but—as the number of equations can be very large—it is
much more complicated than the induced kinetic differential equation.

10.2.2 JumpMarkov Process with Stochastic Kinetics

Let us recapitulate the standard setting from (2.1), that is, a reaction is given by

∑

m∈M
α(m, r)X(m) −→

∑

m∈M
β(m, r)X(m) (r ∈ R), (10.3)

where X(m) denotes the mth species and the stoichiometric matrix γ is defined by
γ := β − α. Suppose that a nonnegative function λr : ZM → R

+
0 is assigned to

each reaction step r ∈ R. We require the following property to hold.

λr(x) > 0 if and only if x− α(·, r) ∈ N
M
0 , (10.4)

that is, in plain words, λr is positive if and only if there is enough species for the rth
reaction step to take place. This condition naturally guarantees for the process we
introduce below to keep the state space N

M
0 .

The functions (λr )r∈R fulfilling (10.4) are called the stochastic kinetics, not to
be confused with the same name used for the branch of the science. In the chemical
literature, λr are often called the propensity or the intensity functions.

Researchers on different fields often consider specific choices for the stochastic
kinetics that fit their scenarios. Now, let us discuss the most often used choice.
First, we call the ksto

r ∈ R
+ the stochastic reaction rate coefficient corresponding

to the rth reaction step. Then (using the definitions of vectorial operations in the
Appendix) we define the stochastic kinetics (λr )r∈R as

λr(x) := ksto
r α(·, r)!

(
x

α(·, r)
)
= κr

(
x

α(·, r)
)
, (10.5)

where r ∈ R, x ∈ N
M
0 , and κr = ksto

r α(·, r)!. With the Definition 13.7 of the falling
factorials, one can reformulate (10.5) as

λr(x) = ksto
r

[
x
]
α(·,r) = ksto

r

M∏

m=1

xm!
(xm − α(m, r))!B(xm ≥ α(m, r)). (10.6)
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One can easily check that condition (10.4) is fulfilled with this choice. We often
refer to the above-defined λr as the stochastic mass action type kinetics. It is also
called the Kurtz-type kinetics or combinatorial kinetics. Combinatorial kinetics
is easily accessible within Mathematica as

λr(x) = ksto
r Apply[Times, FactorialPower[x,α(·, r)].

Let us make some comments.

• The stochastic mass action type kinetics bear quite natural interpretations: for
r ∈ R, the right-hand side of (10.5) is proportional to the number of those
combinations of species in state x that can feed the rth reaction step. This reflects
the idea to be discussed in Sect. 10.2.4 that the species in the vessel are well-
stirred in the sense that they are equally likely to be at any location at any time.

• If the order of the rth reaction step is at most one, then the form of the stochastic
mass action type kinetics λr coincides with that of the deterministic one wr

(recall Eq. (6.6)).
• In general, the unit of the stochastic reaction rate coefficients can differ from that

of the deterministic counterparts used in the induced kinetic differential equation
(see Sect. 10.2.3).

Now, the Markov process assigned to (10.3) can be defined as follows.

Definition 10.1 The induced kinetic Markov process of reaction (10.3) endowed
with the stochastic kinetics (λr )r∈R is defined to be the continuous time, time-
homogeneous pure jump Markov process usually denoted as X, where

X(t) = [X1(t) X2(t) · · · XM(t)
]	

(t ∈ R
+
0 )

with state space NM
0 and infinitesimal generator G acting on a function f : ZM →

R in the following way:

(Gf )(x) :=
R∑

r=1

λr(x)
(
f (x+ γ (·, r))− f (x)

)
. (10.7)

In particular, the induced kinetic Markov process with stochastic mass action
type kinetics is defined to be the one with stochastic kinetics given in (10.6).

Using different approaches we are going to construct the above-defined process
in Sect. 10.2.6. We underline that for some stochastic kinetics, X might blow-up,
which phenomenon is going to be discussed in Sect. 10.3.6 below. In these cases
there exists a random time, which is finite with positive probability, at which one of
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the coordinates of X reaches the “cemetery” state, “∞”, and after the explosion, the
process ceases to exist by default.

The induced kinetic Markov process is a continuous time, discrete state space
stochastic model, a CDS) model (cf. Érdi and Tóth 1989, p. 19). Note that the class
of these does not coincide with major, well-known classes of stochastic processes
(see further details in Sect. 10.4).

The infinitesimal generator G can heuristically be viewed as a(n infinite) matrix
acting from R

N
M
0 to R

N
M
0 . Hence, with a slight overload of notation, the generator

G can be identified by the matrix
[
gxy
]
x,y∈NM

0
, where

gxy :=
{∑

r∈R,y−x=γ (·,r) λr (x), if x �= y;
−∑z∈NM

0 ,z�=x gxz, if x = y.
(10.8)

Roughly speaking, G describes how the probability of a potential change in states
should locally look like, that is,

P
{
X(t + h) = y |X(t) = x, (X(s))0≤s<t

} = gxy h+ ε(h)h

=
R∑

r=1

B(y− x = γ (·, r))λr (x)h+ ε(h)h,

(10.9)

where h is sufficiently small and x �= y ∈ N
M
0 . On the other hand, we also have that

P
{
X(t + h) = x |X(t) = x, (X(s))0≤s<t

} = 1+ gxx h+ ε(h)h

= 1−
R∑

r=1

λr (x)h+ ε(h)h. (10.10)

These local laws turn out to be quite useful in deriving the master equation. The
master equation is a general evolution equation for the probability law of X (see
later in Sect. 10.2.5), which has already been obtained from Eqs. (10.1) and (10.2)
for the Robertson reaction (cf. (10.9) and (10.10)).

Let us define the process (Υr(t))t≥0 for each r ∈ R that counts how many times
the rth reaction step has taken place until time t . Hence, the vector process Υ (t) :=
[
Υ1(t) Υ2(t) · · · ΥM(t)

]	
(t ≥ 0) is called the (stochastic) reaction extent of the

induced kinetic Markov process.
Equations (10.9) and (10.10) can be reformulated in terms of Υr as

P
{
Υr(t + h)− Υr(t) = 1 |X(t) = x, (X(s))0≤s<t

} = λr(x)h+ ε(h)h,

(10.11)
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P
{
Υr(t + h)− Υr(t) = 0 |X(t) = x, (X(s))0≤s<t

} = 1− λr(x)h+ ε(h)h,

(10.12)

and the probability that Υr increases by more than 1 in a small time interval of
length h given X(t) = x is of order ε(h)h. Note that for each r ∈ R: Υr

is a nonnegative valued, nondecreasing jump process, a counting process. The
deterministic analogue U of Υ was introduced in Sect. 6.3.5.

For stochastic mass action type kinetics, an analogue of the right-hand side of the
induced kinetic differential equation can be introduced (recall Eqs. (6.14) and (6.6))
with the help of the infinitesimal generator G, namely,

fsto(x) := (G id)(x) =
R∑

r=1

(β(·, r)− α(·, r))λr (x)

=
R∑

r=1

(β(·, r)− α(·, r))ksto
r [x]α(·,r), (10.13)

where G acts on id : NM
0 → R

M componentwise. The function fsto : NM
0 →

R
M gets its meaning later at the derivation of the master equation (see below in

Sect. 10.2.5).
Finally, we assume that the sample paths of the induced kinetic Markov process

are right-continuous having finite limits from the left. In particular, when the rth
reaction step takes place at time t , then X is updated so that X(t) = X(t−)+γ (·, r).

10.2.3 Conversion of Units

This short section explores the connection between the stochastic and deterministic
reaction rate coefficients. To differentiate the two, we have denoted the stochastic
ones by ksto

r as opposed to the deterministic ones being kr = kdet
r (r ∈ R).

Assume that among M different species, the reaction steps of (10.3) take place
in a vessel having a constant volume V ∈ R

+ [dm3]. In the usual deterministic

setting, the solution t �→ c(t) = [c1(t) c2(t) · · · cM(t)
]	 ∈ (R+0 )M of the induced

kinetic differential equation gives the concentration vs. time curves of each species,
that is, cm(t) is measured in mol dm−3, while the induced kinetic Markov process

X(t) = [
X1(t) X2(t) · · · XM(t)

]	 ∈ N
M
0 is dimensionless. This latter gives the

number of species X(m) for m ∈ M that is present at time t in the volume V .
Hence

[λr(X(t))] = sec−1 = [ċ(t)NAV ] = [wr(c(t))NAV ]

holds in units, where NA is the Avogadro constant (≈ 6.022 × 1023mol−1). Note
that [u] is the unit of quantity u.
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If the induced kinetic differential equation is endowed with mass action type
kinetics (6.7) and in a similar way the induced kinetic Markov process is considered
with stochastic mass action type kinetics (10.5), then the following equality holds
for the units of reaction rate coefficients

[ksto
r ] = [kdet

r (NAV )1−o(r)], (10.14)

where o(r) is the order of the rth reaction step (see Definition 2.4 and Eq. (6.12)). It
follows that ksto

r is measured in sec−1 regardless of the order of the reaction steps.
In particular, for first-order reactions Eq. (10.14) implies coincidence in units, i.e.,
[ksto

r ] = [kdet
r ].

Hereinafter, with a slight abuse of notation, we will make no distinction in
notation between the deterministic and stochastic reaction rate coefficients. Hence,
if it does not cause any confusion or ambiguity, the superscript of the stochastic
reaction rate coefficients is neglected.

10.2.4 More on the Underlying Assumptions

Moving one step backward, it can be investigated why the above-defined induced
kinetic Markov process is so natural to deal with. When one tries to understand
complex (bio)chemical or physical phenomena, experiments, which possibly exhibit
random behavior, may have several nice characteristics one may wish to build into
a mathematical model. Generally speaking, it is up to the modeler to take into
account all the relevant features his/her model should obey in order to explain the
experiments in good agreement. Let us formulate some of the most natural ones,
also pointing out the connections with the induced kinetic Markov process and the
induced kinetic differential equation.

Dynamics of the Process

1. The probability of the next reaction step to take place can be predicted from the
current information, and no information is needed about the process from the
past. That is, the process should have no memory.

2. If we know the state of the process at a particular time, then what we will see
thereafter is statistically the same as if we have just started the process. In other
words, the process should be time homogeneous.

3. There is no accumulation of reaction steps at any time. That is, the probability
that infinitely many reaction steps take place in a finite time interval is zero. The
number of reaction steps taking place in a finite time window can however be
arbitrarily large.
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How are These Properties Reflected in the Induced Kinetic Markov Process?
The first requirement simply follows from the fact that stochastic kinetics λr

(r ∈ R) only depend on the current state of the process. No delay or previous
state dependence in the kinetics λr . Although the usual deterministic model has no
memory either, there exist efforts to introduce this effect into models (see Atlan
and Weisbuch 1973; Lipták et al. 2017). Time homogeneity is explicitly stated in
Definition 10.1, but it also follows from the fact that λr are independent of t for
r ∈ R. Note that this is the direct analogue of the autonomousness of the induced
kinetic differential equation. Assumption on the accumulation does not easily come.
We may hope that in physically relevant cases, this property can easily be verified in
the mathematical model. However, we cannot avoid the effects of blow-up for some
choices of λr , even in the case of stochastic mass action type kinetics. We further
investigate this topic in Sect. 10.3.6.

State Space

1. The amounts of different species can be measured by discrete or continuous
variables.

2. The mixture of the species can be well-stirred (space homogeneity) or can be
spatially inhomogeneous.

How Are These Properties Reflected in the Induced Kinetic Markov Process?
The induced kinetic Markov process deals with discrete quantities by definition.
Spatial homogeneity is much simpler to start with since spatial inhomogeneity
would require the “spatial derivatives” of quantities involved; spatial inhomoge-
neous models are out of the scope of the present book.

10.2.5 Master Equation

The master equation as we have seen in a specific example (see Sect. 10.2.1)
describes the time-dependent probability of the process being in a state x ∈ N

M
0

starting from some x0 ∈ N
M
0 . Let us introduce the transition probabilities

associated with an induced kinetic Markov process X as

px0,x(t) := P{X(t) = x |X(0) = x0} (x ∈ N
M
0 ), (10.15)

where x0 ∈ N
M
0 is the initial state.



272 10 Stochastic Models

It is easy to see that p satisfies the following (Liggett 2010, Theorem 2.12):

1. for every t ≥ 0 and x0, x ∈ N
M
0 : 0 ≤ px0,x(t) ≤ 1;

2. for all t ≥ 0 and x0 ∈ N
M
0 :
∑

x∈NM
0
px0,x(t) ≤ 1; and

3. for all t, s ≥ 0, the Chapman–Kolmogorov equations hold, i.e.,

px0,x(t + s) =
∑

y∈NM
0

px0,y(t)py,x(s) (x0, x ∈ N
M
0 ).

In the sufficiently “small” time interval [t, t + h[, the two only ways for X to
reach x ∈ N

M
0 are the following:

1. the system was in a preceding state and then it jumps to x by a reaction step
(cf. (10.9));

2. the system stays in the same state; no reaction steps have taken place (cf. (10.10)).

This verbally formulated idea is embodied in a system of differential equations.

Theorem 10.2 (Master Equation) Let X be an induced kinetic Markov process
with stochastic kinetics λr . Then

ṗx0,x(t) =
R∑

r=1

(
λr (x− γ (·, r))px0,x−γ (·,r)(t)− λr(x)px0,x(t)

)
, (10.16)

for all x ∈ N
M
0 , so that X(0) = x0 is assumed to be deterministic.

Notice that Eq. (10.16) is a linear system of differential equations with con-
stant coefficients which possibly consist of infinitely many equations. Equa-
tion (10.16) can also be written in matrix form: ṗx0(t) = px0(t)G, where
px0(t) := [px0,x(t)]x∈NM

0
is a row vector, while G is the matrix representation

of the infinitesimal generator given in (10.8). Now, the formal solution to the
master equation can be written as px0(t) =“x0 exp(t G)”. This is why the generator
G deserved its name: it generates a one-parameter operator semigroup (for a
comprehensive monograph, see Ethier and Kurtz 2009, Chapters 1 and 4). If the
process X, starting from some x0 ∈ N

M
0 , can only patrol a finite set of NM

0 by the
reaction (10.3), then the number of equations involved in (10.16) is finite; hence
the matrix exponential is straightforward (see Sects. 10.2.7 and 10.3.1). In general,
however, much care is needed to be able to define at all the “exponential” of an
infinite matrix or more precisely of an operator; see the chapters mentioned in Ethier
and Kurtz (2009) and Chapter 3 of Liggett (2010) for further reading.
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Proof Pick a small h > 0 and then write

px0,x(t + h) =
∑

y∈NM
0

P{X(t + h) = x |X(t) = y}P{X(t) = y |X(0) = x0}

=
R∑

r=1

P{X(h) = x |X(0) = x− γ (·, r)}px0,x−γ (·,r)(t)

+ P{X(t + h) = x |X(t) = x}px0,x(t)+ ε(h)h

= h

R∑

r=1

λr (x− γ (·, r))px0,x−γ (·,r)(t)

+
(

1− h

R∑

r=1

λr (x)
)
px0,x(t)+ ε(h)h,

where we used the law of total probability, the memorylessness, and time homo-
geneity of X and (10.9) and (10.10) (ε is so small that lim0 ε = 0). Rearranging the
above equation, we arrive at

px0,x(t + h)− px0,x(t)

h
=

R∑

r=1

(
λr (x− γ (·, r))px0,x−γ (·,r)(t)− λr (x)px0,x(t)

)+ ε(h).

Finally, taking the limit h ↓ 0, we obtain the desired Eq. (10.16). ��

In many cases it is not possible to symbolically solve the master equation even
for relatively small systems as the number of possible states and that of coupled
differential equations easily becomes very large. Various computational techniques
including symbolical and numerical methods have been developed to calculate or
approximate the transition probabilities of the species as a function of time. For
further details, see Sect. 10.3.1. In ReactionKinetics MasterEquation
provides the master equation of a given reaction.

Let us summarize the general evolution equations for continuous time jump
Markov processes specialized for the case of the induced kinetic Markov process.

Theorem 10.3 (Kolmogorov’s Forward and Backward Equations) Consider
an induced kinetic Markov process X with stochastic kinetics (λr )r∈R , and as usual
let px,y(t) = P{X(t) = y |X(0) = x} be the transition probability. Then we have

ṗx,y(t) =
R∑

r=1

(
λr(y− γ (·, r))px,y−γ (·,r)(t)− λr (y)px,y(t)

)
, (10.17)
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ṗx,y(t) =
R∑

r=1

λr (x)
(
px+γ (·,r),y(t)− px,y(t)

)
, (10.18)

where px,y(0) = B(x = y) and x, y ∈ N
M
0 .

Proof The system of differential equations simply follows from the application of
the law of total probability taking into account (10.9) and (10.10) (for more details
see Liggett 2010, Chapter 2). ��

Notice that the master equation (10.16) is indeed Kolmogorov’s forward equa-
tion (10.17). What follows is a more general system of differential equations for the
expectation of an arbitrary function of X. This is also called the Dynkin’s formula
(cf. Øksendal 2003, Section 7.4).

Theorem 10.4 (Dynkin) Let a : NM
0 → R be any function for which

E
∣
∣λr(X(t))a(X(t))

∣
∣ < +∞

holds for all r ∈ R and t ∈ [0, T [ where T > 0 and X is an induced kinetic Markov
process with (general) stochastic kinetics (λr )r∈R . Then we have

d

dt
E
{
a(X(t)) |X(0) = x

}

=
R∑

r=1

E
{
λr(X(t))

(
a(X(t)+ γ (·, r))− a(X(t))

) |X(0) = x
}
. (10.19)

Proof Let h > 0 be sufficiently small and start with

E
{
a(X(t + h))− a(X(t)) |X(0) = x

}

=
∑

y∈NM
0

E
{
a(X(t + h))− a(y) |X(t) = y

}
P{X(t) = y |X(0) = x}

=
∑

y∈NM
0

R∑

r=1

λr(y)h · (a(y+ γ (·, r))− a(y))P{X(t) = y |X(0) = x} + ε(h)h

= h

R∑

r=1

E
{
λr(X(t))(a(X(t)+ γ (·, r))− a(X(t))) |X(0) = x

}+ ε(h)h,

where we used the memorylessness of X, the law of total probability twice,
and (10.9). Dividing the previous display by h and sending h to 0, we obtain the
desired Eq. (10.19). ��
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In particular, if we choose a to be the indicator function, i.e., a(x) = B(x = y)
(x ∈ N

M
0 ) for some fixed y ∈ N

M
0 , then Eq. (10.19) returns Kolmogorov’s forward

equation or, in other words, the master equation (10.16).
Theorem 10.4 enables us to deduce a system of differential equations for the first

moment or, more generally, any kind of moments of the induced kinetic Markov
process X. For explicit choices and further details, see Sect. 10.3.3.

10.2.6 Equivalent Representations of the Induced Kinetic Markov
Process

Recall the definition of induced kinetic Markov process from Sect. 10.2.2. The
present section focuses on different representations resulting in the same process.

10.2.6.1 Memorylessness Emphasized
Since the desired jump process should have no memory, the candidate for the
waiting time distribution is the exponential one. An exponentially distributed
random variable, say ξ , (and only this among continuous distributions) has the
property that P{ξ > s + t | ξ > t} = P{ξ > s} for all t, s > 0. This formula
expresses what is needed: the probability that one will have to wait at least (an
additional) time s for an event to happen (ξ > s) is the same as the conditional
probability given that one has already waited time t without anything happened
(i.e., ξ > s + t assuming that ξ > t). For further properties of the exponential
distribution, see Norris (1998, Section 2.3).

Now, consider a double sequence of nonnegative real numbers called the
transition rates, Q(x, y) (x, y ∈ N

M
0 ). Using the kinetics (λr )r∈R , one can define

Q as

Q(x, y) :=
R∑

r=1

B(y− x = γ (·, r))λr (x).

Notice that if the reaction step vectors (γ (·, r))r∈R are all different, then Q(x, y)
equals to λr(x) whenever x, y are chosen so that y − x = γ (·, r). In other words,
Q(x, y) expresses the aggregate rate at which the process will possibly jump from
state x ∈ N

M
0 to y ∈ N

M
0 . By using the infinitesimal generator G (see Eq. (10.8)),

one can write that Q(x, y) = gxy if x �= y ∈ N
M
0 . It follows that the total rate of

leaving state x ∈ N
M
0 is

Λ(x) :=
R∑

r=1

λr(x) =
∑

y∈NM
0

Q(x, y) (10.20)

for all x ∈ N
M
0 .
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How should the process X evolve in time?

Take a mutually independent collection of exponentially distributed random
variables (ξi)i∈N with unit mean. Assume that X initially is in state x ∈ N

M
0 ,

then the first jump is going to occur at time τ1 := 1
Λ(x) ξ1, and at that time the

process will jump to state N
M
0 � z1 �= x with probability Q(x, z1)/Λ(x).

Assume now that after n − 1 steps (n > 1) X is in state zn−1 at time τn−1. Then
the next jump is going to occur at time τn := τn−1 + 1

Λ(zn−1)
ξn, and X will jump

to state N
M
0 � zn �= zn−1 with probability Q(zn−1, zn)/Λ(zn−1).

From this construction it follows that X is a time-homogeneous pure jump
Markov process. Indeed, the construction suggests that one could separately handle
the jumps of X from the waiting times (or holding times) (τn−τn−1)n∈N (τ0 := 0).
The process (X̂(n) := X(τn))n∈N0 is a discrete-time Markov chain; in plain words,
if X̂ is in state x at n, it is then updated to (x+γ (·, r))r∈R in step n+1 according to
the probability distribution (λr (x)/Λ(x))r∈R . Note that the transitions of X̂ do not
depend on the length of the waiting time, but the waiting times do depend on which
state the process is in. The process X̂ is also called the embedded Markov chain
of X. We notice that this approach is the basis of direct simulation methods (see
those later in Sect. 10.7.1).

In the following we prove that the above construction is in correspondence with
the definition of the induced kinetic Markov proces. Indeed, we determine the joint
density function of the waiting time and jump distribution from Eqs. (10.9) and
(10.10). Start X from x ∈ N

M
0 , and let

qx(s) := P{first waiting time > s |X(0) = x}
= P{no reaction step takes place in [0, s] |X(0) = x}.

Let [s, s + h] be a “small” time interval and then

qx(s + h) = qx(s)P{no reaction step takes place in [s, s + h] |X(s) = x}
= qx(s)qx(h),

using the memorylessness and time homogeneity of X. Since qx(0) = 1, we have

qx(s + h)− qx(s)

h
= qx(s)

qx(h)− qx(0)

h
.

Taking the limit h ↓ 0 and recalling (10.10), we get the following initial value
problem for a separable differential equation

q̇x(s) = −qx(s)Λ(x) qx(0) = 1.
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It is not hard to see that the solution is qx(s) = exp{−Λ(x)s}; hence the (first)
waiting time is exponentially distributed with mean 1/Λ(x) provided that the
process was in state x ∈ N

M
0 . Because of time homogeneity, the only relevant

information for the next jump is the current state of the process; hence the density
function v of a reaction step occurring first at time s ≥ 0 is

v̇x(s) = d

ds
(1− qx(s)) = Λ(x) exp{−Λ(x)s}.

Putting the above together, the joint probability density function of the waiting time
and first jump is

P{X jumps first at t by the rth reaction step |X(0) = x} = λr(x)
Λ(x)

vx(t)

= λr(x) exp{−Λ(x)t},
where t ≥ 0 and r ∈ R, using the fact that the jump from x is independent of the
waiting time.

10.2.6.2 Reaction Steps Emphasized
Another approach becomes apparent when one focuses on how many and what types
of jumps (i.e., reaction steps) have taken place until t . It is obvious that the waiting
time is a continuous random variable (the distribution of which we calculated in the
previous section), but the number of reaction steps having taken place in [0, t] has
to be a discrete random variable.

Now, let us again build up the process X from exponential clocks using the
following approach. Take mutually independent sets of exponentially distributed
random variables (ξ

(i)
r )i∈N for each r ∈ R. Define recursively the sequence of

random reaction steps (r(n))n∈N as

r(n) := arg min
r∈R

{
ξ
(n)
r

λr

(
x0 +∑n−1

j=1 γ
(·, r(j)))

}
,

where n ∈ N and X(0) = x0 ∈ N
M
0 is fixed. In plain words, r(n) is the reaction step

executed in the nth step. Now, the total elapsed time until the nth step of X can be
defined as

τn :=
n∑

i=1

ξ
(i)

r(i)

λri

(
x0 +∑i−1

j=1 γ
(·, r(j))) .

Thus, the evolution of X is described by the following equation:

X(t) = x0 +
+∞∑

n=0

γ (·, r(n))B(τn ≤ t) = x0 +
R∑

r=1

γ (·, r)Υr(t).
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In the previous display, Υr(t) counts the occurrences of the rth reaction step up to
time t (see Eqs. (10.11) and (10.12)). The fact that Υr behaves as a counting process
with local intensity “λr(x)h” suggests that by using random time change arguments,
the induced kinetic Markov process X can be written in the following form:

X(t) = x0 +
R∑

r=1

γ (·, r)Pr

(∫ t

0
λr(X(s)) ds

)
, (10.21)

where (Pr )r∈R is a set of mutually independent unit rate Poisson processes.
Equation (10.21) is referred to as the Poisson representation of the induced kinetic
Markov process. Moreover, Eq. (10.21) for an unknown X uniquely determines an
induced kinetic Markov process up to time sup{t :∑r∈R Υr(t) < +∞}.

We underline that the distribution of Pr

( ∫ t

0 λr(X(s)) ds
)

is not necessarily
Poissonian. Let us consider two simple examples. For the simple linear inflow

0
k−−→ X, Eq. (10.21) tells that X(t) = x0+Υ (t) = x0+P(k · t), where stochastic

mass action type kinetics is assumed. Hence, Υ is a constant rate Poisson process;
it has a Poisson distribution with mean k · t . Second, consider the somewhat similar

reaction X
k−−→ 2 X and the corresponding induced kinetic Markov process with

stochastic mass action type kinetics. This latter one gives that X(t) = x0 + Υ (t) =
x0 +P

( ∫ t

0 kX(s) ds
)
. In particular,

P{Υ (t) ≥ n} = P
{ n∑

j=1

1

kj
ξj ≤ t

}
= (1− exp(−kt))n,

where t ≥ 0, n ∈ N0, and ξ ’s are mutually independent exponentially distributed
random variables with unit mean. So in this case, Υ (t) has a geometric distribution
with mean exp(kt).

The striking similarity between Eq. (10.21) and its deterministic counterpart
Eq. (8.20) is quite straightforward. The Poisson representation comes from Gardiner
and Chaturvedi (1977) and Kurtz (1978); see also Anderson and Kurtz (2015) and
further references therein for a rigorous treatment. We also notice that this approach
is the starting point of some approximate simulation methods to be discussed in
Sect. 10.7.2.

10.2.7 Structure of the State Space

Let us start with some notation. We define the discrete stoichiometric subspace as

Sd := S ∩ Z
M = span {γ (·, r) | r ∈ R} ∩ Z

M.
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The set of integer coordinate points of the reaction simplex (i.e., the stoichiometric
compatibility class) for an x0 ∈ N

M
0 is then (x0 +Sd ) ∩ N

M
0 . Shortly we also call

this set the discrete reaction simplex or equivalently the discrete stoichiometric
compatibility class.

Based on the Poisson representation (10.21), one can state the following.

Theorem 10.5 The trajectory of the induced kinetic Markov process X with
stochastic kinetics λr wanders in the nonnegative integer coordinate points of
the reaction simplex, i.e., X(t) ∈ (x0 + Sd) ∩ N

M
0 holds for every t ≥ 0 if

X(0) = x0 ∈ N
M
0 .

Note again the similarity between the previous theorem and the integrated form
of the induced kinetic differential equation (cf. Eq. (8.20)). Let us remark that for
mass-consuming and mass-conserving reactions, Theorem 10.5 implies that X stays
in a bounded domain of NM

0 . Furthermore, it is easy to see that for x0, y0 ∈ N
M
0 :

either (x0 + Sd ) ∩ N
M
0 = (y0 + Sd) ∩ N

M
0 or (x0 + Sd) ∩ (y0 + Sd) = ∅

holds. Hence, there exists a countable set of initial vectors x(1)0 , x(2)0 , . . . such that

(x(i)0 +Sd)∩(x(j)0 +Sd) = ∅ holds for i �= j ∈ N and N
M
0 = ∪i∈N(x(i)0 +Sd )∩NM

0 .
That is, for any initial vector x0 ∈ N

M
0 , there is a unique index i ∈ N such that X

will wander in (x(i)0 +Sd) ∩ N
M
0 � x0.

Now, let us recapitulate the standard classifications of the states of a countable
state space Markov process. We say that x ∈ N

M
0 is

• recurrent, if P{{t ≥ 0 : X(t) = x} is unbounded |X(0) = x} = 1;
• transient, if P{{t ≥ 0 : X(t) = x} is unbounded |X(0) = x} = 0.

The process X visits infinitely often its recurrent states, while the transient states
are those which are never visited after some time. Note that every state is either
recurrent or transient.

A state y ∈ N
M
0 is accessible from x ∈ N

M
0 if there exists a sequence

of reaction steps r1, r2, . . . , rb (b ∈ N) such that y = x + ∑b
k=1 γ (·, rk) and

λra

(
x + ∑a−1

k=1 γ (·, rk)
)

> 0 holds for all a ∈ {1, 2, . . . , b}. Equivalently, if
px,y(t) > 0 holds for some t > 0, then y is accessible from x. Two states
x �= y ∈ N

M
0 are said to be communicating if they are accessible from one another.

Now, the maximal sets of states U ⊂ N
M
0 whose states are communicating with

each other are the communicating classes. Hence, if U is a communicating class,
then for any two states x, y of U , there is a positive probability that starting X from
x it will reach y at some time. We say that the communicating class U is closed if
there is no y �∈ U which would be accessible from U . Otherwise, it is said to be
non-closed. In some contexts closed communicating classes are also referred to as
“irreducible components.”

It easily follows from the previous concepts that there exists a countable
collection (Uj )j∈N of (distinct) communicating classes for which:
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• ∪j∈NUj = N
M
0 such that Uj ∩ Uk = ∅ for j �= k ∈ N, i.e., (Uj )j∈N covers the

whole state space N
M
0 ; and

• for each j ∈ N: Uj consists of only one kind of states, i.e., the recurrence and
transience are class properties.

In other words, the communicating classes define a partition of the state space. Let
us name some extreme cases:

• When Uj consists of a single recurrent state, it is also called an absorbing state.
• If there exists only a single (necessarily closed) communicating class, then the

state space is called irreducible; otherwise it is said to be reducible.

Definition 10.6 We say that r ∈ R is an active reaction step on a closed
communicating class U of an induced kinetic Markov process if there is an x ∈ U

for which λr(x) > 0. The set of active reaction steps with respect to a closed
communicating class U of the stochastic model is denoted by RU . The complex
vectors of the reaction steps of RU are denoted by CU . RU can be empty, e.g.,
when U consists of a single state.

We say that a closed communicating class U of an induced kinetic Markov
process is positive if RU = R, i.e., when all the reaction steps of (10.3) are active
on U .

In connection with the stochastic model of reactions, let us discuss some
important consequences. Clearly, the identification of the communicating classes
of each set of the collection

(
(x(i)0 +Sd ) ∩N

M
0

)
i∈N classifies the whole state space

N
M
0 of X. It is of relevance when each of these sets (x(i)0 + Sd) ∩ N

M
0 can be

decomposed into closed communicating classes. When (x(i)0 +Sd )∩NM
0 is a single

(closed) communicating class, one can say thatX is irreducible relative to its discrete
reaction simplex. Recall Definition 3.7.

Theorem 10.7 If the reaction (10.3) is weakly reversible, then all the communi-
cating classes are closed. In particular, for each x0 ∈ N

M
0 , (x0 + Sd ) ∩ N

M
0 is a

collection of closed communicating classes.

Proof Let x, y be two states of the induced kinetic Markov process X. Assume that
y is accessible from x. It means that there is a chain of reaction steps r1, r2, . . . , rk
for some k ∈ N such that x + ∑k

i=1 γ (·, ri ) = y, and along the path of states

x +∑j

i=1 γ (·, ri ) ∈ N
M
0 , the intensity function λrj+1 takes on positive value for

every k − 1 ≥ j ∈ N0. Since the reaction (10.3) is weakly reversible, it follows
that there exists another sequence of reaction steps r ′1, r ′2, . . . , r ′k′ for some k′ ∈ N

such that y+∑k′
i=1 γ (·, r ′i ) = x and y+∑j

i=1 γ (·, r ′i ) ≥ α(·, r ′j+1) holds for every
k−1 ≥ j ∈ N0. Assumption (10.4) ensures that along this latter path, the intensities
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be positive, as well. This implies that x is accessible from y. We conclude that the
whole state space N

M
0 can be decomposed into closed communicating classes. ��

Based on the previous theorem, let us introduce the following notions:

Definition 10.8 We say that the state space N
M
0 of an induced kinetic Markov

process with some stochastic kinetics is essential if N
M
0 is the union of closed

communicating classes. If, apart from a finite number of states, NM
0 is covered by

the union of closed communicating classes, then it is said to be almost essential.

As we have seen, the state space of induced kinetic Markov processes of weakly
reversible reactions is essential. Now, let us show some examples. First, consider the
triangle reaction A −−→ B −−→ C −−→ A. The sets of integer coordinate points
of the reaction simplexes are the planes x0 +S = {(a, b, c) ∈ R

3 | a + b + c =
a0+ b0 + c0} for initial vectors x0 =

[
a0 b0 c0

]	 ∈ N
3
0 intersected by N

3
0. They are

disjoint once the initial vectors have different total sums. Hence, using the previous

notations, x(i)0 can be chosen as
[
i − 1 0 0

]	
(i ∈ N). Since the reaction is weakly

reversible, Theorem 10.7 applies. In particular, in this case each set (x(i)0 +Sd )∩NM
0

is a single (closed) communicating class.
Next, consider the reaction A −−→ 2 B −−→ 4 C −−→ A. Then

x0 +S = {(a, b, c) ∈ R
3 | a + b + c = a0 + b0/2+ c0/4},

where x0 =
[
a0 b0 c0

]	 ∈ N
3
0. The discrete stoichiometric compatibility classes are

the sets (x(i)0 +Sd)∩NM
0 , where x(i)0 is chosen to be

[
0 0 (i − 1)/4

]	
(i ∈ N). In this

case there exist discrete reaction simplexes which are decomposed into more than
one closed communicating classes. For instance the relation a0+b0/2+c0/4 = 5/4

includes four possible states:
[
1 0 1

]	
,
[
0 2 1

]	
,
[
0 0 5

]	
, and

[
0 1 3

]	
. The latter

one defines a single communicating class, while the former three form the other
closed communicating class. The first five (discrete) reaction simplexes are shown
in Fig. 10.1.

Finally, in Fig. 10.2 we show the state space and possible transitions of the Lotka–

Volterra reaction. The only absorbing state of the process (X(t), Y (t))t≥0 is
[
0 0
]	
.

The state
[
0 0
]	

is reached whenever Y first consumes X via the reaction step

X + Y −−→ 2 Y, and then Y dies out via Y −−→ 0. So let U1 = {[0 0
]	} be

the first (closed) communicating class which is recurrent. The positive orthant is

another class, i.e., U2 = {
[
i j
]	 | i, j ∈ N}. The remaining classes consist of single

transient states, namely, U1+2j = {
[
0 j
]	} and U2+2j = {

[
j 0
]	} (j ∈ N).

Tóth (1988a) and Tóth (1988b) started to investigate the structure of the state
space. More recently Paulevé et al. (2014) gave a thorough description of the
structure of the state space.
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Fig. 10.1 Discrete reaction
simplexes of the weakly
reversible reaction
A −−→ 2 B −−→ 4 C −−→ A
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10.3 Transient Behavior

In the following, we investigate the short-term behavior of the induced kinetic
Markov process.

10.3.1 Well-Posedness and Solutions of theMaster Equation

Consider the set of first-order differential equations of (10.16) with initial condition
px0,x(0) = B(x = x0) for x0, x ∈ N

M
0 . The induced kinetic Markov process X

we have constructed from scratch in Sect. 10.2.6 satisfies these equations. It is then
natural to ask whether there exists another solution to the initial value problem. The
next assertion is formulated in the case of induced kinetic Markov process based on
some general theorems from Norris (1998) and Liggett (2010).

Theorem 10.9 Assume that the process X we have constructed in Sect. 10.2.6 does
fulfill the following condition:

P
{ ∑

n∈N0

1

Λ(X(τn))
= +∞

∣
∣
∣
∣X(0) = x0

}
= 1
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Y
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k2xy
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X

Fig. 10.2 State space and the transitions of the stochastic model of the Lotka–Volterra reaction

for all x0 ∈ N
M
0 , where τn denote the successive times at which X changes:

X(τn−) �= X(τn) for n ∈ N. Then the following system of differential equations

d p̃x0,x

dt
(t) =

R∑

r=1

(
λr(x− γ (·, r))p̃x0,x−γ (·,r)(t)− λr (x)p̃x0,x(t)

)
(10.22)

for the unknown p̃x0,x(·) (x0, x ∈ N0) with initial condition p̃x0,x(0) = B(x = x0)

has a unique bounded solution that takes values in [0, 1]. This unique solution is the
transition probability function of X given by (10.15).

Note that if the discrete stoichiometric compatibility classes are bounded, then
Eq. (10.22) consists of finitely many first-order linear ordinary differential equa-
tions. Hence, its unique solution can be represented as a matrix exponential
(see (10.8)). However, when the discrete stoichiometric compatibility classes and λr

are both unbounded, then the solution to (10.22) may be not unique. Nonuniqueness
can be caused by the blow-up phenomenon which is discussed in Sect. 10.3.6.
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Once a system (10.16) is given, how can it be symbolically solved? One of the
available general tools is the method of Laplace transform. For given states x0, x ∈
N

M
0 , the Laplace transform of the transition probability function px0,x(·) can be

written as

Lx0,x(s) =
∫ +∞

0
exp(−s · t)px0,x(t) dt, (10.23)

where s > 0. Notice that Lx0,x(·) is a bounded continuous function on ]0,+∞[ for
each x0, x ∈ N

M
0 . Using L, the master equation (10.16) can be transformed into an

algebraic system of equations, namely,

Lx0,x(s) = spx0,x(0)+
R∑

r=1

(λr (x− γ (·, r))Lx0,x−γ (·,r)(s)− λr(x)Lx0,x(s))

(10.24)

for s > 0. Since px0,x(·) is a bounded, piecewise continuous function, it follows
from classical uniqueness theorems of the Laplace transforms that Lx0,x(·) uniquely
identifies px0,x(·). It also follows that if (10.16) has a unique solution (e.g., the
conditions of Theorem 10.9 hold), then so does the system (10.24). Hence the
solution can be obtained by first solving (10.24) and then applying an inverse
Laplace transform to get the transition probabilities.

The first exact solutions to these kinds of problems date back to Leontovich
(1935), where the general solutions to the master equation of first-order reactions
were given. Later, this result has recurrently appeared (see Gans 1960; Krieger and
Gans 1960; Matis and Hartley 1971; Bartis and Widom 1974; Darvey and Staff
2004; Gadgil et al. 2005).

Rényi (1954) applied the method of Laplace transform to obtain the explicit form
of transition probabilities of the induced kinetic Markov process with stochastic
mass action type kinetics of some specific second-order reactions. For a wider range
of reactions, Becker (1970, 1973a,b) also calculated the transition probabilities of
the stochastic models using, for instance, probability generating functions, which
we discuss in the upcoming Sect. 10.3.2. We mention that all these papers were
dealing with specific reactions and methods which rely on some symmetries and
subtle properties of the underlying models.

For the numerical solutions to the master equations, several strategies were
developed during the past decades. The basis of all of them is to somehow truncate
the state space and then to solve the truncated (hence finite) system of differential
equations by some numerical methods (see, e.g., Munsky and Khammash 2006).
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10.3.2 Probability Generating Function

The aim of this section is to transform the master equation into a more transparent
form which might possibly lead to symbolic solutions. Define

G(t, z) := E
{
zX(t) |X(0) = x0

} =
∑

x∈NM
0

px0,x(t)z
x (t ∈ R

+
0 , z ∈ D ⊂ R

M)

(10.25)

as the probability generating function of the induced kinetic Markov process X
at time t . Recall the definition of p from (10.15). The right-hand side of (10.25) is
uniformly convergent and defines an infinitely differentiable function for all t ≥ 0
inside the M-dimensional open set D :=]0, 1[M . This can be easily verified using
the Cauchy–Hadamard theorem (see the Appendix on page 371).

Now, one can deduce a partial differential equation for G as a straightforward
consequence of the master equation (10.16) (Tóth 1981, p. 90–91):

Ġ(t, z) =
∑

x∈NM
0

ṗx0,x(t)z
x

=
∑

x∈NM
0

R∑

r=1

(
λr (x− γ (·, r))px0,x−γ (·,r)(t)− λr(x)px0,x(t)

)
zx

=
R∑

r=1

∑

y∈NM
0

(
λr (y+ α(·, r))px0,y+α(·,r)(t)

)
zy
(
zβ(·,r) − zα(·,r))

=
R∑

r=1

(
zβ(·,r) − zα(·,r)) ∑

y∈NM
0

λr(y+ α(·, r))zypx0,y+α(·,r)(t).

The combinatorial form of stochastic mass action type kinetics λr , given in (10.6),
implies that

∂o(r) G

∂zα(·,r) (t, z) :=
∂o(r) G

∂z
α(1,r)
1 ∂z

α(2,r)
2 · · · ∂zα(m,r)

m

(t, z)

=
∑

y∈NM
0

[y+ α(·, r)]α(·,r)zypx0,y+α(·,r)(t)

= 1

kr

∑

y∈NM
0

λr (y+ α(·, r))px0,y+α(·,r)(t),
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where o(r) was defined in (6.12). Therefore G satisfies the following linear partial
differential equation

Ġ(t, z) =
R∑

r=1

kr
(
zβ(·,r) − zα(·,r)) ∂o(r) G

∂zα(·,r) (t, z), (10.26)

with the initial condition G(0, z) = zx0 (X(0) = x0, z ∈ [0, 1]M) and boundary
condition G(t, 1) = 1 (t ∈ R

+
0 ).

The order of Eq. (10.26) is always at least one because of the time derivative on
the right-hand side of it. For at least first-order reactions, the order of Eq. (10.26)
coincides with that of the considered reaction (10.3).

For the simple linear inflow 0
k−−→ X, we get Ġ(t, z) = k(z − 1)G(t, z), the

solution of which is G(t, z) = x0 exp(k · t (z − 1)). This probability generating
function uniquely identifies the Poisson distribution with mean k · t ; nothing weird
happened.

Now, if we are given a single second-order reaction step, then (10.26) becomes a
second-order partial differential equation. Even in this particular case, it is hopeless
to find the general solution to (10.26), or at least it is only known in some very
specific cases. When the reaction is of first order, the solution to (10.26) can be
obtained by using the method of characteristics. In particular, closed compartmental
systems are investigated in Problem 10.14. The functions

ProbabilityGeneratingFunctionEquation and

SolveProbabilityGeneratingFunctionEquation

of ReactionKinetics returns and tries to solve Eq. (10.26) of a given reaction,
respectively.

At the end of this section, we state an existence and uniqueness theorem for the
initial-boundary value problem of (10.26).

Theorem 10.10 Let α′ and β ′ be N
M ′×R′
0 matrices for some M ′, R′ ∈ N, and set

γ ′ := β ′ − α′. Assume that

1. for each integer 1 ≤ m′ ≤ M ′: if γ ′(m′, r ′) < 0, then α′(m′, r ′) > 0 for
1 ≤ r ′ ≤ R′;

2. there exists a � ∈ (R+)M ′
such that �	γ ′ ≤ 0	.

Now, consider the initial-boundary value problem

∂ G̃

∂t
(t, z) =

R′∑

r=1

k′r
(
zβ ′(·,r) − zα′(·,r)) ∂o(r) G̃

∂zα′(·,r) (t, z), (10.27)
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with positive numbers k′r (r = 1, 2, . . . , R′), where o(r) = ∑M ′
m=1 α′(m, r),

g(0, z) = zx0 for some x0 ∈ N
M
0 (z ∈ [0, 1]M) and g(t, 1) = 1 (t ∈ R

+
0 ). Then

there is a solution to the above problem which is unique among analytic solutions.

Proof Observe that the first condition ensures that there is no negative cross effect
(see also Definition 6.24 and Theorem 6.27). So one can set up a reaction which has
the appropriate matrices: α′,β ′, and γ ′. To this reaction one can assign the induced
kinetic Markov process X′ with stochastic mass action type kinetics and stochastic
reaction rate coefficients k′r . Define the probability generating function G of X′ as
in (10.25). Clearly, G is an analytic function and solves the initial-boundary value
problem of (10.27) as we have already proved it. So we are done with the existence
part. For uniqueness notice that by substituting the analytic form of G into (10.27),
we arrive at the master equation of X′. Finally, from Theorem 10.17 it follows that
there is a unique solution to the master equation provided that �	γ ′ ≤ 0, which
proves the uniqueness of G among analytic solutions. ��

Note that the previous theorem relied on the existence and uniqueness theorem of the
master equation. Hence, any conditions of Theorem 10.17 below imply uniqueness
for G once the nonexplosive behavior of X′ is ensured.

10.3.3 Moment Equations

In the following, we obtain differential equations for all the moments of the induced
kinetic Markov process X. By moment we mean the expectation of the monomial
(power products) or some simple polynomial formed from the components of the
induced kinetic Markov process X. We start with the first moments as these are the
simplest ones.

10.3.3.1 First Moment
The generating function G was a useful tool to obtain a partial differential equation
(see (10.26)) in which all the relevant information for the induced kinetic Markov
process X is contained. The aim of the present section is to find a system of ordinary
differential equations for the first moment of X.

The relation between the first moment of the components of X and the partial
derivatives of G is quite straightforward as

EXm(t) = ∂ G

∂zm
(t, 1), (10.28)

where em is the mth standard basis vector. Notice that

∂ G

∂zm
(t, z) =

∑

x∈NM
0

xmzx−empx0,x(t).
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Taking the limit z ↑ 1, we obtain (10.28). We then arrive at the following system of
differential equations:

d

dt
EXm(t) =

R∑

r=1

kr(β(m, r)− α(m, r))
∂o(r)G

∂zα(·,r) (t, 1) = E f sto
m (X(t)),

(10.29)

where m ∈M (recall (10.13)).

Theorem 10.11 Assume that the reaction (10.3) only consists of first-order reaction
steps. Then the equations for the first moments, i.e., Eq. (10.29), coincide with the
induced kinetic differential equation endowed with mass action type kinetics.

Proof If the reaction is of first order, then every reactant complex has a unit length;
hence the partial derivatives of G on the right-hand side of Eq. (10.29) simplify to
the expectation of the only reactant species that changes in the rth reaction step.
Hence, for first-order reactions, f of (6.14) and fsto of (10.13) are the same linear
functions but measured in different units. ��

Definition 10.12 Assuming mass action type kinetics, we say that the induced
kinetic Markov process X of some reaction is consistent in mean with respect to a
set of deterministic and stochastic reaction rate coefficients (kdet

r )r∈R and (ksto
r )r∈R ,

respectively, if the form of Eq. (10.29), i.e., the first moment equations of the process
X, coincides with that of the induced kinetic differential equation.

As we have just seen, first-order reactions are consistent in mean regardless of the
actual choices for reaction rate coefficients. For second- and higher-order reactions,
Eq. (10.29) involves higher-order moments and correlations between the number of
different species which is the topic of the next section. In these cases we can only
hope that some specific instances for reaction rate coefficients show consistency (see
Problem 10.7).

10.3.3.2 Higher-Order Moments
The technique we applied to the first moment in the previous section can also be
applied to get differential equations for higher-order moments as well. First, we
deduce identities for the combinatorial moments.

Let a = [a1 a2 · · · aM
]	 ∈ N

M
0 and ā = ∑m∈M am, and then the combinato-

rial moment with respect to a is defined by

E[X(t)]a = ∂āG

∂za
(t, 1). (10.30)
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The previous formula comes from the componentwise differentiation of the gener-
ating function G (10.25) (recall that [ · ]a denotes the falling factorial function; see
in (13.7)). Let us rewrite (10.29) in the following equivalent form

d

dt
EXm(t) =

R∑

r=1

kr
(
β(m, r)− α(m, r)

)
E[X(t)]α(·,r). (10.31)

The previous display also shows that higher-order moments may appear even in the
first moment equation. Using Eq. (10.26) we arrive at

d

dt
E[X(t)]a =

R∑

r=1

kr
∂a

∂za

[
(
zβ(·,r) − zα(·,r)) ∂o(r)G

∂zα(·,r)

]
(t, 1). (10.32)

This is often called the combinatorial moment equation corresponding to a ∈ N
M
0 .

Some instances follow. In order to get the covariance equations corresponding to
different pairs of species, we can set a = em + ep (m �= p) and

d

dt
Cov(Xm(t),Xp(t)) = d

dt
E
(
Xm(t)Xp(t)

) − d

dt

(
EXm(t)EXp(t)

)

= d

dt
E[X(t)]a − EXm(t)

d

dt
EXp(t)− EXp(t)

d

dt
EXm(t) =

=
R∑

r=1

kr(β(m, r)β(p, r)− α(m, r)α(p, r))E[X(t)]α(·,r)

+ kr(β(m, r)− α(m, r))E[X(t)]α(·,r)+ep
+ kr(β(p, r)− α(p, r))E[X(t)]α(·,r)+em
− EXm(t)kr (β(p, r)− α(p, r))E[X(t)]α(·,r)
− EXp(t)kr(β(m, r)− α(m, r))E[X(t)]α(·,r).

For the nth moment equation of the mth species, we can consider the combinatorial
moment equations corresponding to the vectors nem, (n − 1)em, . . . , 2em, em. It is
not hard to see that a finite linear combination of these equations gives us the desired
formula, namely,

d

dt
EXm(t)n =

n∑

k=0

S(n, k)
d

dt
E[X(t)]k em,
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where S(n, k) := {n
k
} = 1

k!
∑k

j=0(−1)k−j
(
k
j

)
jn denote the Stirling numbers of

the second kind (k = 0, 1, . . . , n and m ∈M ). For instance,

Xm(t)2 = [X(t)]2em + [X(t)]em,
Xm(t)3 = [X(t)]3em + 3[X(t)]2em + [X(t)]em,
Xm(t)3 = [X(t)]4em + 6[X(t)]3em + 7[X(t)]2em + [X(t)]em

and so on. One can deduce similar formulas for the central moments, as well.

10.3.3.3 Moment Closure Methods
The idea of moment closure techniques is to “close” the moment equations by
assuming some relations for the (higher order) moments of the underlying induced
kinetic Markov process X. The aim of these methods is to get a finite system of
differential equations hoping that the solutions to these provide good approxima-
tions to the moments of X. We list some of the most commonly used choices.
One can assume that no correlations are present among the species numbers, i.e.,
EXmXp = EXmEXp are assumed for every m �= p ∈M .

We can also suppose that either EX3 = 3EX2EX − 2(EX)3, or EX3 =
−2EX + 3EX2 + (EX)3, or the relation EX3 = (EX2/EX)3 holds. A random
variable having Gaussian, Poisson, or log-normal distribution fulfills these relations,
respectively. Any of the assumptions mentioned may or may not lead to a finite
system of differential equations for the moments. If one of the methods results in a
finite system, then it might be solved symbolically or by using numerical methods
(see Gillespie 2009 and further references therein). The reader is asked to apply one
of these methods in Problem 10.13. These methods often involve ad hoc techniques;
therefore in each case, one has to prove that the approximate moments are close to
the exact ones in some sense.

10.3.4 Conditional Velocity

First, we define certain local quantities, and we calculate them for the stochastic
model of reaction (10.3) following Érdi and Tóth (1976).

Definition 10.13 Let X be an induced kinetic Markov process, and let the nth
moment velocity Dn of X be defined as

Dn(x) = lim
h↓0

1

h
E
[
(X(h)− X(0))n |X(0) = x

]
. (10.33)

Note that the power of vectors in this section is understood as a tensorial product;
hence if a is a vector, then a2 is a matrix, a3 is a three-dimensional array, and so on.
The conditional velocity can be computed and one has the following.
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Theorem 10.14 If X is the induced kinetic Markov process of reaction (10.3) with
stochastic kinetics λr , then

Dn(x) =
R∑

r=1

γ (·, r)nλr (x). (10.34)

Proof Let h be a “small” number. Then, by Eq. (10.9), it follows that

E
[
(X(h)− X(0))n |X(0) = x

] =
R∑

r=1

γ (·, r)nλr (x)h+ ε(h)h.

Dividing by h and sending it to 0, we get the desired formula. ��

Some remarks follow. It is easy to see that D2(x) is a positive semidefinite matrix. It
is not positive definite when the dimension of the stoichiometric subspace is smaller
than the number of species (e.g., in the case of stoichiometrically mass-conserving
reactions). Using the conditional velocities, approximations to the master equation
as well as to the induced kinetic Markov process can be obtained (see further reading
in Gardiner (2010, Section 5–7), Van Kampen (2006), particularly the Kramers–
Moyal expansion and the Fokker–Planck equation).

10.3.5 Martingale Property

In this short section, we investigate the conditions for an induced kinetic Markov
process to be a martingale. For a time-homogeneous Markov process

Y = [Y1 Y2 · · · YM

]	 ∈ N
M
0

to be a supermartingale, martingale, or submartingale in the mth coordinate
variable, the following

E{Ym(t) |Y(0) = y} ≤ ym, E{Ym(t) |Y = y} = ym, or E{Ym(t) |Y(0) = y} ≥ ym

(10.35)

is required, respectively, to hold for all ym ∈ N0 and t ≥ 0 provided that E|Ym(t)| <
+∞, where y = [y1 y2 · · · yM

]	
. The definition and properties of martingales for

more general processes can be found, e.g., in Liggett (2010, Section 1.9).

Theorem 10.15 The mth coordinate process Xm of an induced kinetic Markov
process X is a supermartingale, martingale, or submartingale, respectively, in a
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discrete stoichiometric compatibility class (x0 +Sd ) ∩ N
M
0 for some x0 ∈ N

M
0 if

R∑

r=1

γ (m, r)λr (x) ≤ 0, = 0 or ≥ 0 (10.36)

holds for all x = [x1 x2 · · · xM
]	 ∈ (x0 +Sd) ∩ N

M
0 .

Proof For y ∈ (x0 +Sd ) ∩ N
M
0 , let

μm(y) :=
R∑

r=1

γ (m, r)λr (y).

Now, using the total law of probability, the memorylessness property of X, and
Eqs. (10.9) and (10.10) in that order, it follows that

E{Xm(s) |X(0) = x}
=

∑

y∈(x0+Sd )∩NM
0

E{Xm(s) |X(s − h) = y}P{X(s − h) = y |X(0) = x}

=
∑

y∈(x0+Sd )∩NM
0

(
ym +

R∑

r=1

γ (m, r)λr (y)h
)
P{X(s − h) = y |X(0) = x} + ε(h)h

= E{Xm(s − h) |X(0) = x}
+

∑

y∈(x0+Sd )∩NM
0

μm(y)hP{X(s − h) = y |X(0) = x} + ε(h)h,

where 0 < h is sufficiently small and x ∈ (x0 + Sd ) ∩ N
M
0 . By rearranging the

previous display, we get that

1

h
E{Xm(s)−Xm(s − h) |X(0) = x}

=
∑

y∈(x0+Sd )∩NM
0

μm(y)P{X(s − h) = y |X(0) = x} + ε(h).

Taking the limit as h→ 0, we finally arrive at the equality

d

ds
E{Xm(s) |X(0) = x} =

∑

y∈(x0+Sd)∩NM
0

μm(y)P{X(s) = y |X(0) = x}.
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In the cases of μm ≤ 0, μm = 0, and μm ≥ 0, it implies that

d

ds
E{Xm(s) |X(0) = x} ≤ 0, = 0, and ≥ 0,

for all x ∈ (x0 +Sd) ∩ N
M
0 , respectively. We can conclude that

−xm + E{Xm(t) |X(0) = x} =
∫ t

0

d

ds
E{Xm(s) |X(0) = x} ds ≤ 0, = 0 ≥ 0;

hence Xm is a supermartingale, martingale, or submartingale in the respective cases.

As an example, consider the induced kinetic Markov process X of the reaction

0
k1−−⇀↽−−

k−1
X

k2−−→ 2 X

endowed with stochastic mass action type kinetics. Note that for any choice of
stochastic reaction rate coefficients k1, k−1, k2, where at least one of them is
nonzero, it holds that (x0 +Sd ) ∩ N0 = N0 for any x0 ∈ N0. Then X is a

• supermartingale (in the strict sense), if k1 = 0 and k−1 > k2;
• martingale, if k1 = 0 and k−1 = k2;
• submartingale (in the strict sense), if k1 > 0 and k−1 ≤ k2.

10.3.6 Blowing Up

The blow-up phenomenon can also show up in induced kinetic Markov processes.
In the deterministic setting, blow-up can happen at a certain time when at least one
of the species concentration becomes “infinite” (Definition 8.18). Since we are now
dealing with stochastic processes, if blow-up is about to happen, its time might be
random. As usual, let (τn)n∈N0 with τ0 = 0 be the jump times, i.e, when X changes:
X(τn−) �= X(τn) for n ∈ N.

Definition 10.16 Let X be an induced kinetic Markov process endowed with some
stochastic kinetics, and let X(0) = x0 ∈ N

M
0 . We say that X blows up if

P
{
τ∞ := lim

n→+∞

n∑

i=1

(τi − τi−1) < +∞
}
> 0. (10.37)

If (10.37) holds we often say that X is explosive; otherwise, when P{τ∞ < +∞} =
0, it is said to be nonexplosive. The random variable τ∞ is called the explosion
time of X.



294 10 Stochastic Models

The next theorem from Gikhman and Skorokhod (2004b, p. 210) is articulated in
the case of induced kinetic Markov processes.

Theorem 10.17 The induced kinetic Markov process X started from X(0) = x0 ∈
N

M
0 is nonexplosive if and only if

P
{ +∞∑

n=0

1

Λ(X(τn))
= +∞

∣
∣∣
∣X(0) = x0

}
= 1. (10.38)

In particular, if

• the reaction (10.3) is mass consuming or mass conserving; or
• for each r ∈ R: the (general) stochastic kinetic function λr is bounded in N

M
0 ;

or
• X is recurrent for each x0,

then condition (10.38) holds; hence X is nonexplosive for every X(0) = x0 ∈ N
M
0 .

Let us start with a statement that excludes the blow-up for some reactions.

Theorem 10.18 The induced kinetic Markov process X of a first-order reaction
endowed with stochastic mass action type kinetics does not blow up for any X(0) =
x0 ∈ N

M
0 .

Proof Set γmax := maxm∈M ,r∈R |γ (m, r)| and ksto
max := maxr∈R{ksto

r }. As usual
let (ξi)i∈N be a mutually independent and exponentially distributed collection of
random variables. Define the jump times τ̄n of the process X̄ as

τ̄n =
n∑

i=1

1

ksto
max

(
x̄0 +Mγmax n

)ξi ,

where x̄0 = M maxm∈M {xm
0 }, xm

0 is the mth coordinate of the vector x0. Then X̄ is
defined as

X̄(t) = x̄0 +
+∞∑

n=0

γmax nB(τ̄n ≤ t) (t ≥ 0).

It is not hard to see that P{τ̄∞ <∞} = 0 from which it follows by Theorem 10.17
that X̄ does not blow up.

Recall Sect. 10.2.6 showing that the jump times of X can be given by τn =∑n
i=1

1
Λ(X(τi−1))

ξi . Note that from the assumption that the reaction is of first order,

it follows that Λ(x) ≤ ksto
maxM maxm∈M {xm} for all x ∈ N

M
0 .
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Since each species increases by at most γmax in each step of X, we get that τ̄n ≤
τn for all n ∈ N

M
0 and maxm∈M {Xm(t)} ≤ X̄(t) for all t ≥ 0. One can conclude

that X is defined for all times for every X(0) = x0 ∈ N
M
0 . ��

Before the main theorem, a simple but relevant example is shown to blow up
which enlightens the phenomenon in the stochastic setting. Let us consider the
single reaction step

2 X
ksto−−→ 3 X, (10.39)

and let X be the induced kinetic Markov process of it with stochastic mass action
type kinetics, i.e., λ1(x) = kstox(x − 1)B(x > 1). We show below that X blows up
provided that x0 > 1; in this case the expected explosion time is Eτ+∞ = 1

ksto(x0−1) ;
hence P{τ∞ < +∞} = 1.

Let us recall the first representation of X outlined in Sect. 10.2.6. Take a mutually
independent sequence of exponentially distributed random variables (ξi)i∈N with
unit mean. Since there is only one reaction step that can take place, X jumps into
state x0+n at time τn =∑n

i=1
1

λ1(x0+i−1) ξj after n steps, provided that 1 < x0 ∈ N0
and n ∈ N0. Note that for each i ∈ N:

E
1

λ1(x0 + i − 1)
ξi =

√

Var
(

1

λ1(x0 + i − 1)
ξi

)
= 1

ksto(x0 + i − 1)(x0 + i − 2)
;

hence

Eτn = 1

ksto

n∑

i=1

(
1

x0 + i − 2
− 1

x0 + i − 1

)
= 1

ksto(x0 − 1)
− 1

ksto(x0 + n− 1)
.

Taking the limit as n → +∞ and using Kolmogorov’s two-series theorem
(Feller 2008, Sections VIII.5, IX.9), one can conclude that limn→+∞ Eτn =
E limn→+∞ τn = Eτ∞ = 1

ksto(x0−1) < +∞, that is, τ∞ is almost surely finite.
It is worth comparing this result with the solution (8.11) of the induced kinetic

differential equation, also exhibiting the blow-up phenomenon. Moreover, the blow-
up time of the induced kinetic differential equation coincides with the expected
time of blow-up of the induced kinetic Markov process provided that the initial
concentration c0 and the (deterministic) reaction rate coefficient k = kdet are chosen
so that c0 = x0

NAV
(mol dm−3) and kdet = kstoNAV (1 − 1/x0) (mol−1 dm3 sec−1),

where V is the volume of the vessel and NA is Avogadro’s number.
In general, it can be shown that the induced kinetic Markov process endowed

with stochastic mass action type kinetics of a single reaction step aX −−→ bX,
where 2 ≤ a < b ∈ N, also blows up, if x0 ≥ a.



296 10 Stochastic Models

Fig. 10.3 The induced kinetic Markov process of reaction 0 −−→ Y, 2 X −−→ X + Y −−→
2 Y −−→ 3 X with stochastic mass action type kinetics starting from (0, 0) with stochastic reaction
rate coefficients ksto

1 = 5, ksto
2 = ksto

3 = 1, and ksto
4 = 0.2

Next, let us look at a much less trivial example. Consider the induced kinetic
Markov process with stochastic mass action type kinetics of the reaction

0
ksto

1−−→ Y 2 X
ksto

2−−→ X+ Y
ksto

3−−→ 2 Y
ksto

4−−→ 3 X.

Simulation suggests that this process also blows up. Figure 10.3 shows a sample path

of the induced kinetic Markov process
[
X(t) Y (t)

]	
for t ≥ 0. This was generated

by using the Simulation and SimulationPlot of ReactionKinetics
(see later in Sect. 10.7):

SimulationPlot[{0 -> Y, 2X -> X + Y -> 2Y -> 3X},

{5, 1, 1, 0.2}, {0, 0}, 2]

10.4 Usual Categorial Beliefs

Below, we go through on a selection of major classes of stochastic processes
showing examples and counterexamples of reactions (if necessary) for which the
corresponding induced kinetic Markov processes happen to belong or not belong
to that particular class, respectively. See Fig. 10.4 and for a similar characterization
Érdi and Tóth (1989), p. 143.

• Poisson process. The Poisson process (X(t))t≥0 with rate λ > 0 can be defined
as X(t) := sup{n ≥ 0 : ∑n

i=1 ξi ≤ λt} for t ≥ 0, where (ξi)i∈N is again
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Fig. 10.4 Classes of stochastic processes

a set of mutually independent and exponentially distributed random variables
with unit mean. It can be easily verified that in any finite interval, the points of
X(t) have Poisson distribution with mean λ × length of the interval and these
numbers are independent of each other for nonoverlapping intervals. We have
previously seen that in the chemical language, the Poisson process shows up

as the induced kinetic Markov process of the simple inflow 0
k−−→ X with

stochastic mass action type kinetics. In this case one can easily verify that the
transition probabilities describe a Poisson distribution. However, we underline
that the transition probabilities need not be Poissonian. For instance, considering
the outflow X −−→ 0, the induced kinetic Markov process stays in a bounded
domain; hence the distribution of (px0,x(t))x∈N0 cannot be Poissonian.

• Birth–death process. The birth–death processes correspond to those jump
processes on N

M
0 where the possible transitions are of only two types, “births” or

“deaths,” i.e., when one of the components of the vectorial process is increased
or decreased by one at a time, respectively. In chemical language this means
that the induced kinetic Markov processes of reactions that are made of the
reaction steps of type aX(m) −−→ bX(m) (a, b ∈ N0, b − a| ∈ {−1, 0, 1} and
m ∈ M ) correspond exactly to the birth–death processes. When two or more
reacting species are present in the system which undergo mutual changes by a
reaction step, then the induced kinetic Markov process is essentially different
from a birth–death process.

• Markov population process. This concept was introduced by Kingman (1969)
as a generalization of the birth–death processes in a way that any of the species
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can undergo a transformation resulting in another species, but still one unit of
change in the whole population size is allowed at once. This class is covered
by those induced kinetic Markov processes that correspond to reaction steps
consisting of the following type of reaction steps aX(m) −−→ bX(p) (a, b ∈ N0,
b − a ∈ {−1, 0, 1} and m,p ∈M ).

• Markov renewal process. While the waiting times of a Markov process are
always exponentially distributed, the Markov renewal process may have arbitrary
type of waiting time distribution. Let M be a discrete-time Markov chain, and let
(ξn)n∈N be a set of (arbitrary) random variables. Setting τn := ∑n

j=1 ξj , we say
that the joint process (Mn, τn)n∈N0 is a Markov renewal process if

P{ξn+1 ≤ t,Mn+1 = y | (M0, τ0), (M1, τ1), . . . , (Mn = x, τn)}
= P{ξn+1 ≤ t,Mn+1 = y |Mn = x}

holds for all n ∈ N, t ≥ 0 and states x, y; i.e., the current state of the
process being x contains all the relevant information for (M, S) from the past. In
particular, if (ξn)n∈N is a set of mutually independent and identically distributed
random variables and their distribution does not depend on (Mn)n∈N0 , then
(Mn, τn)n∈N0 is said to be a renewal process.

• Stationary process. We say that a stochastic process X is stationary if for all

s, t1, t2, . . . , tk ≥ 0 and k ∈ N the joint distributions of
[
X(t1) X(t2) · · · X(tk)

]	

and
[
X(t1 + s) X(t2 + s) · · · X(tk + s)

]	
are the same, i.e., the time shifts do

not alter the law of the process. In particular, X(t) has the same distribution for
all t ≥ 0.

An induced kinetic Markov process X started from some fixed x0 ∈ N
M
0 is

almost never a stationary process since the previous condition would imply the
relation X(t) ≡ x0 to hold for all t ≥ 0. If X started from one of its stationary
distributions (see Sect. 10.5), if any exists, then it would result in a stationary
process.

There also exists a weaker form of stationarity (wide-sense or covariance
stationarity), when we only require the expectation and autocovariance function
of the process (i.e., the covariance of X(t1) and X(t2)) to be invariant with
respect to time shifts (Gikhman and Skorokhod 2004a, p. 199). These weaker
properties are also strong enough to include only a minor subclass of induced
kinetic Markov processes.

• Martingale. We investigated the martingale property in Sect. 10.3.5. Now, let us
consider an example. The induced kinetic Markov process of reaction

X
k1−−→ Y X

k2−−→ 2 X+ Y Y
k3−−→ 0

endowed with stochastic mass action type kinetics satisfies conditions (10.36) for
the coordinate process (X(t))t≥0 if k1 ≥ k2, k1 = k2 or k1 ≤ k2. In these cases X
is a supermartingale, martingale, or submartingale, respectively. The coordinate
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process in species Y does not fall in either category. Finally, note that a single
reaction step is never a martingale.

• Queueing process. The main parameters of a queueing system are the following:
type of the arrival process (A) and that of the service time distribution (S), the
number of servers or channels (c), the number of places in the system (K), the
calling population (N), and the queue’s discipline (D). The processes A and S

can be general processes (even non-Markovian ones are allowed), c denotes the
number of servers to which customers can go, while K is the maximum number
of customers allowed in the system (including those that are being served).
Furthermore, N is the population from which customers arrive at the servers,
which can be infinite, as well, and D describes the priority how a server works,
e.g., in the first in—first out FIFO or the last in—first out LIFO cases, customers
are to be served in the same order or the reverse order how they arrived in,
respectively. Though much more general evolution rules can be attached to a
queueing system, one still has that the number of customers under service can
change by one at once. Hence the striking difference from the induced kinetic
Markov process is clear.

• Branching process. A branching process generally speaking describes a layered
process where starting from an individual, each ancestor from the previous gen-
eration produces offsprings. The random number of descendants then continues
to give birth to new offsprings. We can keep track of the size of the most
recent population or individuals can live through more than one generation (size-
dependent branching processes). More general, e.g., spatial, interactions among
different types of individuals can also be taken into account (see Mode 1971;
Athreya and Ney 2004). We note that one of the crucial questions in this area is
whether the individuals become extinct or they survive with positive probability.

10.5 Stationary Distributions

Long-term behavior is interesting from the applications point of view but usually
easier to treat from the mathematical point of view (see e.g. Kolmogoroff 1935;
Siegert 1949; Dambrine and Moreau 1981; Vellela and Qian 2007, 2009). Let us
start with some crucial definitions. Suppose we are given an induced kinetic Markov
process X with stochastic kinetics λr (see (10.6)).

Definition 10.19 The function π : NM
0 → [0, 1] is said to be a proper stationary

distribution of the induced kinetic Markov process X if the two conditions below
are satisfied:
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1.
∑

x∈NM
0
π(x) = 1, and

2. The balance equation

R∑

r=1

λr(x− γ (·, r)) π(x− γ (·, r)) = π(x)
R∑

r=1

λr(x), (10.40)

holds true for every x ∈ N
M
0 .

Note that the stationary distributions are exactly the constant (i.e., time independent)
solutions of the master equation (10.16). To determine all or some of the stationary
distributions of an induced kinetic Markov process is a formidable task in general.

In what follows some general facts are summarized about the stationary distribu-
tions based on Norris (1998, Chapter 3).

Theorem 10.20 Assume that X is an induced kinetic Markov process and U

is one of its closed communicating classes. Then the following statements are
equivalent:

• X is nonexplosive and has a stationary distribution π concentrated on U ,
• the states of U are positive recurrent, i.e., they are recurrent and the expected

return time from x to x ∈ U is finite.

In addition, if π is a stationary distribution, then

lim
t→+∞P{X(t) = x |X(0) = y} = π(x) (10.41)

holds for all x, y ∈ U , which is independent of the initial state y ∈ U .

The structure of stationary distributions for induced kinetic Markov processes
can drastically vary from reaction to reaction. In the case of the celebrated Lotka–
Volterra reaction, Reddy (1975) has showed that the only stationary distribution is

concentrated on the state
[
0 0
]	

, i.e., when both species die out. However, as the
next examples and theorems show, this can be considered as a rather degenerate
case. Let us continue with the first-order reaction

0
k2−−⇀↽−−
k1

X
k2−−→ 2 X

having specially chosen reaction rate coefficients k1 and k2. The induced kinetic
Markov process X with stochastic mass action type kinetics is nonexplosive for any
k1, k2 > 0 and x0 ≥ 0 by Theorem 10.18. The state space of the process, being
N0, is a single closed communicating class; hence X is irreducible. Note that the
reaction is not weakly reversible and has a deficiency δ = 3− 1− 1 = 1.
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The stationary balance equation (10.40) results in the following recurrence
relation:

k1(x + 1)π(x + 1)+ k2xπ(x − 1) = (k1x + k2x + k2)π(x),

where π(1)/π(0) = k2/k1 and x ∈ N0. The solution is given by

π(x) =
(

1− k2

k1

)(
k2

k1

)x

(x ∈ N0),

which is a proper stationary distribution if and only if k1 > k2. That is, π is a
geometric distribution for which the limit (10.41) also holds. The first moment
equation is d

dtEX(t) = k2 + (k2 − k1)EX(t); hence for k1 �= k2,

EX(t) = x0 exp(−(k1 − k2)t)+ k2

k1 − k2

(
1− exp(−(k1 − k2)t)

)
,

while for k1 = k2, EX(t) = x0 + k2t . That is, limt→+∞ EX(t) = +∞ for k1 ≤ k2.
This, rather dummy, example also provides a counterexample for the usual

categorial belief that the Poisson-type distributions should (always) be stationary.
Some conditions were given in Tóth and Török (1980), Tóth (1981), and Tóth et al.
(1983) under which the Poisson distribution is indeed stationary for the induced
kinetic Markov processes of a class of reactions. The next theorem shows in a
way the importance of complex balanced stationary points of the induced kinetic
differential equation and also gives the stationary distributions for the stochastic
model of reactions with mass action type kinetics.

Theorem 10.21 (Anderson et al. (2010)) Assume that the induced kinetic differ-
ential equation with mass action type kinetics of the reaction (10.3) is complex
balanced at c∗ ∈ R

M
0 . Then the induced kinetic Markov process of (10.3) with

stochastic mass action type kinetics has a product-form stationary distribution.
If the whole state space NM

0 is irreducible, then the unique stationary distribution
is given by

π(x) = cx∗
x! exp(−c∗) =

M∏

m=1

(cm)
xm∗

xm! exp(−(cm)∗), (10.42)

where x ∈ N
M
0 .

If NM
0 is reducible, then the unique stationary distributions πU concentrated on

the closed communicating classes is of the following form:

πU(x) = 1

ZU

cx∗
x! =

1

ZU

M∏

m=1

(cm)
xm∗

xm! , (10.43)

where x ∈ U ⊂ N
M
0 , πU(x) = 0 otherwise, and ZU is the normalizing constant.
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Let us make some comments.

• The existence of a complex balanced stationary point in the case of deterministic
model is ensured by Theorem 7.15. Hence, if the reaction (10.3) has a deficiency
zero, then the assumptions of the previous theorem hold if and only if the reaction
is weakly reversible. Note that if the reaction is weakly reversible, then by
Theorem 10.7 the state space only consists of closed communicating classes.

• Theorem 10.21 does not say that the stationary distribution should be Poisson.
For instance, in the case of weakly reversible closed compartmental systems
with a single linkage class, the stationary distribution is multinomial (see also
Problem 10.17).

• The previous theorem can slightly be generalized by considering more general
kinetics (cf. Anderson et al. 2010, Section 6).

Proof First, we check that π given in (10.42) satisfies Eq. (10.40). Taking into
account (10.6), it follows that

∑

r∈R
krc

−γ (·,r)∗
M∏

m=1

1

(xm − β(m, r))!B(xm ≥ β(m, r))

=
∑

r∈R
kr

M∏

m=1

1

(xm − α(m, r))!B(xm ≥ α(m, r)).

This equation is satisfied if for each complex vector v = [v1 v2 · · · vM
]	 ∈ C

∑

{r∈R:β(·,r)=v}
krcα(·,r)−v∗

M∏

m=1

1

(xm − vm)!B(xm ≥ vm)

=
∑

{r∈R:α(·,r)=v}
kr

M∏

m=1

1

(xm − vm)!B(xm ≥ vm), (10.44)

where the summations on the left-hand side and the right-hand side of (10.44) are
over all the reaction steps where the reactant complexes and product complexes
are v, respectively. Since x and v are fixed in the previous display, Eq. (10.44) is
equivalent to the complex balance equation of (7.5) (see Sect. 7.6).

The second part of the theorem, when N
M
0 is reducible, can be carried out along

the same line as the normalization of πU does not influence the corresponding
equations. ��
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Cappelletti and Wiuf (2016) asked whether the reverse of the previous statement
held. Under some restrictions on the state space, they managed to prove the
following.

Theorem 10.22 (Cappelletti and Wiuf (2016)) Let the state space N
M
0 of an

induced kinetic Markov process with some stochastic kinetics be almost essential.
Furthermore, let πU be given by (10.43) with some (kr)r∈R and some c∗ ∈ R

M+ for
every closed communicating class U . Now, πU is a stationary distribution for the
stochastic mass action type kinetics for all closed communicating class U ⊂ N

M
0

if and only if c∗ is a complex balanced stationary point of the induced kinetic
differential equation.

10.5.1 Stochastic Complex Balance

This section defines a concept for complex balance in the stochastic setting, which
can be considered as the stochastic analogue of the notion we have defined in
Sect. 7.6.

Definition 10.23 A stationary distribution πU of the induced kinetic Markov
process of reaction (10.3) is stochastically complex balanced on a closed com-
municating class U ⊂ N

M
0 if for every x ∈ U and complex vector v ∈ CU , it holds

that

∑

r∈RU

λ(x− γ (·, r))πU(x− γ (·, r))B(β(·, r) = v) =
∑

r∈RU

λr(x)πU (x)B(α(·, r) = v),

(10.45)

where RU denotes the active reaction steps on U and CU the corresponding
complexes (Definition 10.6).

Definition 10.24 The induced kinetic Markov process is said to be stochastically
complex balanced if there exists a complex balanced stationary distribution on a
positive closed communicating class.

Note that the positivity of closed communicating classes in the stochastic setting
plays the role of that of complex balance stationary points in the deterministic
setting. It turns out below that the above definitions tackle the right concept for
complex balance of the stochastic model as a statement similar to Theorem 7.15 can
be proved. First, a sort of consistency theorem follows.

Theorem 10.25 (Cappelletti and Wiuf (2016)) If the induced kinetic Markov
process endowed with stochastic mass action type kinetics is stochastically complex
balanced, then (10.3) is weakly reversible. Moreover, the induced kinetic differential
equation with mass action type kinetics is complex balanced in the sense of (7.5)
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if and only if the induced kinetic Markov process with stochastic mass action type
kinetics is stochastically complex balanced. If this is the case, then there is a unique
stationary distribution πU on every closed communicating class U of the state
space, where πU has the form (10.43).

This is an extension of the results by Anderson et al. (2010). Finally, the assertion
below is a direct consequence of Theorems 10.25 and 7.15.

Theorem 10.26 (Cappelletti and Wiuf (2016)) The induced kinetic Markov pro-
cess of reaction (10.3) endowed with stochastic mass action type kinetics is
stochastically complex balanced for any choice of (ksto

r )r∈R if and only if the
reaction in question is weakly reversible and its deficiency is zero.

10.5.2 Stochastic Detailed Balance

The meaning of “detailed balance” can vary from context to context. First, let
us outline the “usual” definition of detailed balance that frequently appears in
probability.

Definition 10.27 An induced kinetic Markov process X with transition rate func-
tion Q is said to be detailed balanced (or Markov chain detailed balanced) with
respect to a probability distribution π if

π(x)Q(x, y) = π(y)Q(y, x) (10.46)

holds for all x, y ∈ N
M
0 .

Note that the above definition is quite general; for instance, it does not assume
anything special for the underlying reaction (10.3). It is an easy consequence that if
X is Markov chain detailed balanced with respect to π , then π is also a stationary
distribution of X. Let us also mention that Kolmogorov’s criterion gives checkable
conditions for (general) Markov processes to be Markov chain detailed balanced
that can be found in Kelly (1979, Section 1.5) and Whittle (1986, Chapter 4). For
some reason, when (10.46) is satisfied, X is also said to be reversible with respect
to π in the probability literature.

A slightly more restrictive concept is due to Whittle (1975).

Definition 10.28 Let us assume that the reaction (10.3) is reversible. Then the
induced kinetic Markov process X is said to be microscopically reversible (or
stochastically detailed balanced in Whittle sense) if the rate of each forward
reaction step is equal to the rate of each backward reaction steps, that is, for all
x ∈ N

M
0 , it holds that

krλr (x) = k−rλ−r (x), (10.47)
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where the corresponding forward and backward reaction steps are now indexed by
r and −r , where r ∈ R, making the total number of reactions 2R.

At first glance the just-defined notion for detailed balance seems somehow different
from what we have defined in the deterministic setting (see Sect. 7.8). Indeed, the
(deterministic) detailed balance is equivalent to microscopic reversibility (Whittle
1986, Chapter 4), which is stated in the following.

Theorem 10.29 (Whittle) Assume that the reaction (10.3) is reversible. Then the
induced kinetic differential equation with mass action type kinetics (6.7) is detailed
balanced (see in Sect. 7.8.2) if and only if the induced kinetic Markov process with
stochastic mass action type kinetics is stochastically detailed balanced in Whittle
sense.

It is only left to explore the connection between Definitions 10.27 and 10.28. In
this direction Joshi (2015) proved the following.

Theorem 10.30 (Joshi (2015)) Let the reaction (10.3) be reversible and assume
mass action type kinetics for all the models. Then Whittle stochastic detailed
balance implies Markov chain detailed balance, but the converse is not true in
general. If the columns of the matrix γ are all different, then Whittle stochastic
detailed balance is equivalent to Markov chain detailed balance.

In Joshi (2015) a bunch of examples and counterexamples are also given for
demonstration. We pick only one showing that Markov chain detailed balance does

not imply microscopic reversibility in general. The γ of reaction 2 A
k1−−⇀↽−−

k−1
A +

B
k2−−⇀↽−−
k−2

2 B has two pairs of identical column vectors. In this case Markov chain

detailed balance holds regardless of how the reaction rate coefficients are chosen,
but for Whittle stochastic detailed balance, the condition k1k−2 = k2k−1 is needed.

10.6 Comparison of the Deterministic and Stochastic Models

In the previous sections, we dealt with the intrinsic properties of the usual stochastic
model of reactions. Here, it is shown that the properly scaled induced kinetic
Markov process converges in some sense to the solution of the induced kinetic
differential equation considering mass action type kinetics in both cases. Indeed, a
more general treatment of the convergence of Markov processes was done by Kurtz
(1970, 1972, 1976), which apply for much more Arnold and Theodosopulu (1980)
elaborated and proved several stochastic models for reactions in which diffusion,
that is, space inhomogeneity, is also present. More recently Mozgunov et al. (2017)
and Bibbona and Sirovich (2017) elaborated approximations to the induced kinetic
Markov process under some scaling.
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10.6.1 Classical Scaling

Let us consider the induced kinetic Markov process X with scaled stochastic mass
action type kinetics given as

λ(N)
r (x) := ksto

r (N)
[
x
]
α(·,r),

where N = NAV , NA is the Avogadro constant and V is the volume of the vessel
in which the considered reaction takes place (see (10.6) and Sect. 10.2.3). Now, set
ksto
r (N) to be kdet

r N1−o(r), and introduce the scaled quantity

C(N)(t) := 1

N
X(t) (t ≥ 0),

the unit of which is now mol dm−3. The initial state C(N)(0) = C(N)
0 is the integer

part of c0N divided by N , where c0 ∈ R is fixed. The next theorem is due to Th. G.
Kurtz.

Theorem 10.31 (Kurtz) Let X be an induced kinetic Markov process with stochas-
tic mass action type kinetics with the integer part of c0N as initial condition. Then
for every δ > 0, it holds that

lim
N→+∞P

{
sup

0≤s≤t

‖C(N)(s)− c(s)‖ > δ
} = 0, (10.48)

where c is the solution of the induced kinetic differential equation, where c(0) = c0.

Let us make some comments.

• Theorem 10.31 expresses a law of large numbers. In the scaling of the induced
kinetic Markov process X, both the number of species and volume tend to infinity
such that its ratio, the molarity, is constant. The limit of this machinery is also
called the thermodynamic limit (see Atkins and Paula 2013, Chapter 15).

• The theorem can be stated for more general processes as well (see for further
reading Ethier and Kurtz 2009; Anderson and Kurtz 2015).

Now, let us sketch the main idea behind Theorem 10.31 without going into the
technical details of proofs.

First, by using (6.6), observe that

λ(N)
r (x) = Nwr

(
c(N)

)+ ε

(
1

N

)
(10.49)

holds for all x ∈ N
M
0 , where c(N) = 1

N
x and ε(1/N) tends to 0 as N → +∞. Note

for first-order reactions that λ(N)
r (x) = Nwr(c(N)) (c(N)N = x).



10.6 Comparison of the Deterministic and Stochastic Models 307

It follows from the Poisson representation (10.21) that

C(N)(t) = C(N)
0 +

R∑

r=1

1

N
γ (·, r)Pr

(∫ t

0
λ(N)
r (X(s)) ds

)

= C(N)
0 +

R∑

r=1

1

N
γ (·, r)Pr

(
N

∫ t

0
wr

(
C(N)(s)

)
ds + tε

(
1

N

))

≈ c0 +
R∑

r=1

1

N
γ (·, r)Pr

(
N

∫ t

0
wr

(
C(N)(s)

)
ds

)
.

By centering the appropriate Poisson processes, i.e., setting

P̂r (t) :=Pr − t,

we get that

R∑

r=1

1

N
γ (·, r)Pr

(
N

∫ t

0
wr

(
C(N)(s)

)
ds

)

R∑

r=1

γ (·, r)
∫ t

0
wr

(
C(N)(s)

)
ds

+
R∑

r=1

γ (·, r)
(

1

N
P̂r

(
N

∫ t

0
wr

(
C(N)(s)

)
ds

))
.

The law of large numbers for Poisson processes implies that 1
N
P̂r (Nt) tends to

zero as N →+∞; thus

C(N)(t) ≈ c0 +
∫ t

0
f
(
C(N)(s)

)
ds = c0 +

R∑

r=1

∫ t

0
kdet
r γ (·, r)C(N)(s)α(·,r) ds,

which is roughly speaking the integrated form of the induced kinetic differential
equation (6.3), where f is the right-hand side of the induced kinetic differential
equation (Eq. (6.14)) and wr is the kinetic function in the deterministic setting
(Eq. (6.6)). In plain English, the limit limN→+∞ C(N)(t) is deterministic, and it
satisfies the ordinary differential equation ċ = f ◦ c with c(0) = c0.

So the deterministic limit of CN , being the solution of the induced kinetic
differential equation was heuristically deduced. One can as well investigate the
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fluctuations of C(N) around its average behavior as N → +∞. Since

1√
N
P̂r (Nt) = Pr (Nt)− Nt√

N

can be approximated by standard Brownian motions (Br (t))r∈R , the fluctuation
around c is given by the following formula:

C(N)(t) ≈ c(t)+ 1√
N
V(t),

for t ≥ 0 as N →+∞, where V is a Gaussian process satisfying

V(t) = V(0)+
∫ t

0
∇f(c(s))V(s) ds +

R∑

r=1

γ (·, r)Br

(∫ t

0
λr(c(s)) ds

)
,

provided that V(0) is normally distributed. For further details consult (Anderson and
Kurtz 2015, Chapter 4) and references therein.

10.6.2 Reaction Extent

Let us briefly discuss the reaction extent U defined in Sect. 6.3.5 and its connection
with Υ in the case of the induced kinetic Markov process (see Sect. 10.2.2). Define
the scaled (stochastic) reaction extent as

Υ (N)
r (t) = 1

N
Υ (t) = 1

N
Pr

(∫ t

0
λ(N)
r (X(s)) ds

)
(t ≥ 0),

Let [t, t + h] be a “small” time interval, and then

Υ (N)
r (t + h)− Υ (N)

r (t) = 1

N
Pr

(∫ t+h

t

λ(N)
r (X(s)) ds

)

≈ 1

N
Pr

(
N

∫ t+h

t

wr

(
C(N)(s)

)
ds + hε

(
1

N

))

≈
∫ t+h

t

wr

(
C(N)(s)

)
ds

≈ h · wr

(
C(N)(t)

)
ds

≈ h · wr

(
c0 +

R∑

r=1

γ (·, r)Υ (N)
r (t)

)
,
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where we first used (10.49), and then the fact that h is small hence with high
probability, none of the intensities will change in [t, t + h].

This heuristics suggests, which can be rigorously proved, that for every r ∈ R:
Υ (N)(t) has a limit as N → +∞, which is the (deterministic) reaction extent
U, defined in Sect. 6.3.5, and solves the initial value problem U̇ = wr(c0 + γU),
U(0) = 0 (see Kurtz 1972).

10.7 Stochastic Simulation

In what follows some simple and basic methods are going to be presented which
generate sample paths for the induced kinetic Markov processX endowed with some
stochastic kinetics. The basis of all these methods is the random (re)generation of
subsequent times when certain reaction steps are to be executed. Some simulation
methods were selected which can be casted into two groups: exact and approximate
ones.

In ReactionKinetics the following functions can be used to get
the results of a stochastic simulation for a given reaction: Simulation,
SimulationPlot, SimulationPlot2D etc. using various simulation
methods.

10.7.1 Direct Methods

Based on the constructions in the first part of Sect. 10.2.6, some simulation
algorithms can be designed.

10.7.1.1 Direct and First ReactionMethods
One of the simplest methods is the direct reaction method, first published in full
generality in Hárs (1976) and then in Gillespie (1977) (see also Érdi et al. 1973;
Sipos et al. 1974a,b; Weber and Celardin 1976; Goss and Peccoud 1998). The
methods in the rest of this section can be used to make this algorithm more efficient.
The steps of the direct reaction method (also called the SSA as the “Stochastic
Simulation Algorithm” or the Doob–Gillespie algorithm) are the following:

1. Initialization. Set x := x0 ∈ N
M
0 , t := 0, and let tmax > 0 be a fixed time.

2. while t ≤ tmax:
a. Let ξ be an exponentially distributed random variable with mean 1/Λ(x), then
b. the rth reaction step is chosen with probability λr(x)/Λ(x).
c. Update. Set x := x+ γ (·, r), t := t + ξ , and update the intensities.

If at some time the total intensity, being Λ(x), happens to be zero, then the
simulation stops: no more reaction step can be executed. Note that the above method
uses two random numbers per iteration, one is for the waiting time and another is
for the selection of the next reaction step.
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A variant of the previous method is called the first reaction method (see Gillespie
1977). As opposed to the direct reaction method, the following algorithm generates
R random times in each iteration from which the smallest one is chosen and the
corresponding reaction step is executed. Formally, the algorithm works as follows:

1. Initialization. Set x := x0 ∈ R
M , t := 0 and tmax > 0 be a fixed time.

2. while t ≤ tmax:
a. Let ξr be exponentially distributed random variables with mean 1/λr(x) for

r ∈ R.
b. Let rmin := arg minr∈R ξr .
c. Update. Set x := x+ γ (·, rmin), t := t + ξrmin , and update the intensities.

At first glance, the above two algorithms may seem different, but they provably
result in the same process (in distribution). We note that one of the bottlenecks of
the methods is that “too many” random numbers are being generated in each step
which can be cumbersome when the number of reaction steps is large.

10.7.1.2 Next ReactionMethod
Let us first define the dependency graph attached to a reaction (10.3).

Definition 10.32 The dependency graph G := (V ,E) is a directed graph on the set
of reaction steps R, i.e., V = R. A directed edge goes from ri ∈ R to rj ∈ R
(i.e., (ri , rj ) ∈ E) if and only if there is an m′ ∈ M such that γ (m′, ri ) �= 0 and
λrj (x) depends on the value of xm′ (for stochastic mass action type kinetics, it means
that α(m′, rj ) > 0). By default all the loops are included in E, that is, for r ∈ R,
(r, r) ∈ E.

So, in plain words, in a dependency graph, all those reaction step pairs (ri, rj ) are
connected with one another for which there is a species that changes in the ri th
reaction step and affects at the same time the intensity λrj of the rj th reaction step.
It is frequent that there are much more reaction steps than different species. In this
case it is typical that a reactant species changing by a reaction step only affects a
few other reaction steps; hence the dependencies result in a sparse graph.

The following algorithm is due to Gibson and Bruck (2000).

1. Initialization. Set x := x0 ∈ R
M , t := 0, and let tmax > 0 be a fixed time.

2. Generate the dependency graph G (see Definition 10.32).
3. Generate exponentially distributed random numbers ξr with mean 1/λr(x) for

r ∈ R, and let sr = ξr .
4. while t ≤ tmax:

(a) Set rmin := arg minr∈R sr , and let λold
r := λr(x) for r ∈ R.

(b) update
(i) Set x := x+ γ (·, rmin) and t := srmin .

(ii) For each edge (rmin, j) of the dependency graph G, do the following:
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(A) Update the λj , i.e., λnew
j := λj (x).

(B) If j �= rmin, then set sj := t + λold
j

λnew
j

(sj − t).

(C) If j = rmin, then generate ξ having exponential distribution with
mean 1/λnew

rmin
, and set srmin := t + ξ .

It may happen that λj∗ = 0 for some j∗ �= rmin. In this case as long as λj∗ = 0, sj∗
is set to be∞. Let t1 be the first time at which λj∗ becomes 0, and let t2 be the first
time at which λj∗ ceases to be 0. Let λold

j∗ be the last pre-0 intensity, and let λnew
j∗ be

the first post-0 intensity. Then set sj∗ := t2 + (sj∗ − t1)λ
old
j∗ /λ

new
j∗ .

The significant improvement made by Gibson and Bruck (2000) is that the above
method reduces the random number generations compared to the previous ones in
each iteration. Indeed, only the exponentially distributed ξ is regenerated at each
step. Note that the next reaction method works with absolute times as opposed to
the direct and first reaction methods, where relative times are being generated and
compared in each iteration. We also refer to Anderson (2007), in which a modified
version of the next reaction method was discussed.

Notice that in all the previous simulation methods, one can make use of the
dependency graph. Initially, all the intensities λr must be calculated, but in the
iterative steps, one can cut down on calculations that result in the same intensities.
After executing say the rth reaction step, only those intensities λj need to be updated
for which (r, j) is an edge of the dependency graph G of the corresponding reaction.

10.7.2 Approximate Methods

This section discusses the “tau-leaping” methods. In the past decade, the investiga-
tion of τ -leaping methods has become very vivid after D. T. Gillespie introduced the
first version of (explicit) τ -leaping methods in 2001 (see Gillespie 2001; Rathinam
et al. 2005). The only goal of this section is to outline the backbone of the τ -leaping
methods. At the heart of all of these methods, the leap condition lies, which, roughly
speaking, tells us when to execute the next reaction step.

Definition 10.33 (Leap Condition) Assume that the system is in state x at time t .
We say that a τ > 0 satisfies the leap condition if in the time interval [t, t + τ [,
no intensity function λr is likely to change its value by a significant amount, that is,
λr(x) remains roughly unchanged during [t, t + τ [ for all r ∈ R.

The Poisson representation (10.21) implies that for all h > 0 it holds that

X(t + h) = X(t)+
R∑

r=1

γ (·, r)Pr

(∫ t+h

t

λr (X(s)) ds

)
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provided that X(t) = x ∈ N
M
0 . Now, if h satisfies the leap condition, then

the number of times the rth reaction step occurs in [t, t + h[ follows a Poisson
distribution with mean and variance λr(x)h given that X(t) = x. Therefore one can
propagate the system as

X(t + h) = x+
R∑

r=1

γ (·, r)ζr ,

given that X(t) = x and ζr are mutually independent Poisson random variables
with mean λr(x)h. This is the explicit τ -leaping method. The general form of the
algorithm follows:

1. Initialization. Set x := x0 ∈ R
M , t := 0, and let tmax > 0 be a fixed time.

2. while t ≥ tmax:
(a) Choose τ so that it satisfies the leap condition.
(b) Generate random samples ζr according to Poisson distribution with mean

λr(x)τ for r ∈ R.
(c) Consider the following system of equations for the unknown y:

y = x+
R∑

r=1

γ (·, r)Tr (x, y, ζr). (10.50)

where Tr : NM
0 × N

M
0 × N→ R

+ is a predefined function. Let the solution
of (10.50) be y∗ with the components being rounded to the nearest integer
value.

(d) Update. Set x := y∗ and t := t + τ .

The main issue regarding the above method is the selection of an appropriate τ (step
size) in each iteration such that the leap condition holds; efficient step-size selection
was given by Gillespie and Petzold (2003) and Cao et al. (2006) (see also Anderson
2008). Another problem is that it might happen that “x” reaches negative population;
in this direction (Cao et al. 2005; Chatterjee et al. 2005) proposed methods to avoid
negative population during the simulation. By now there is an endless literature on
the methods and their various improvements.

We can specify the functions Tr in several ways. Let us mention a few:

• if Tr(x, y, ζ ) = ζr , we get the explicit τ -leaping method,
• if Tr(x, y, ζ ) = ζr + λr(y)τ − λr(x)τ , we get the implicit τ -leaping method,

finally
• if Tr(x, y, ζ ) = ζr+λr(y) τ2−λr(x) τ2 , we get the trapezoidal τ -leapingmethod,

where x, y ∈ N
M
0 , ζr ∈ N0 and r ∈ R. The implicit method of Rathinam et al.

(2003) is quite useful and is an improvement of the explicit one when, e.g., the
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system appears to be stiff. The numerical results of the trapezoidal scheme proposed
by Cao and Petzold (2005) show better results than the explicit and implicit τ -
leaping methods.

10.8 Exercises and Problems

10.1 Formulate the master equation and the generating function equation for the
stochastic model of the reaction

inactive gene −−⇀↽−− active gene −−→ messenger −−→ protein −−→ 0

messenger −−→ 0.

Try to symbolically solve the generating function equation by using Mathematica.

(Solution: page 439.)

10.2 Consider the radioactive decay model (linear outflow) X
k−−→ 0. Find

solutions to its master equation and determine the moment equations. Find all the
stationary distributions.

(Solution: page 439.)

10.3 Consider the reaction X + Y
k1−−→ 2 X X + Y

k2−−→ 2 Y. Write down its
master equation and the partial differential equation for the generating function.
Find all the stationary distributions. Show that the induced kinetic Markov process
is a submartingale (supermartingale) in species X if k1 ≥ k2 (k2 ≥ k1). (What
about Y?) The process is a martingale for both species X and Y if and only if k1 =
k2. Compare the results with the one obtained from the induced kinetic differential
equation.

(Solution: page 440.)

10.4 Write a one-line Mathematica code for the conversion of units based on
Sect. 10.2.3. Determine the units of the (deterministic and stochastic) reaction rate
coefficients for the Michaelis–Menten, Lotka–Volterra, Robertson reactions.

(Solution: page 441.)

10.5 Assume that the induced kinetic Markov processes of the following reactions
are endowed with stochastic mass action type kinetics: 0 −−→ X; 0 −−⇀↽−− X; X −−⇀↽−−
2 X and X + Y −−⇀↽−− 2 X X + Y −−⇀↽−− 2 Y. Find all the communicating classes and
classify the states. What are the stationary distributions?

(Solution: page 441.)
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10.6 Based on Sect. 10.3.2, write a Mathematica program that automatically
constructs the partial differential equation for the generating function and is trying
to solve it.

(Solution: page 441.)

10.7 Find a second-order reaction which is consistent in mean with respect to a set
of reaction rate coefficients.

(Solution: page 441.)

10.8 Show a stoichiometrically not mass-conserving reaction for which D2 is not
positive definite.

(Solution: page 442.)

10.9 Find stationary distributions for the following reactions:

• 0
k1−−→ X a X

k2−−⇀↽−−
k−2

(a − 1)X,

• X
k1−−⇀↽−−
k−1

2 X 0
k2−−⇀↽−−
k−2

Y.

where stochastic mass action type kinetics are assumed.

(Solution: page 442.)

10.10 Write a simple simulation program in Mathematica, based on the direct
reaction method.

(Solution: page 443.)

10.11 Assuming mass action type kinetics, write a short program that computes the
numeric solution of the induced kinetic differential equation and also simulates the
induced kinetic Markov process which is considered to be taking place in a certain
volume V (specified by the user).

(Solution: page 443.)

10.12 Consider the induced kinetic Markov process of the reaction

X+ Y
k1−−→ 2 X+ Y Y

k2−−→ 2 Y.

(Becker 1970).
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Using the generating function, determine the combinatorial moments E(X(X +
1) · · · (X+a−1)) (a ∈ N). For a given a ∈ N, prove that the corresponding moment
blows up if and only if a �= k2/k1. Particularly for

t ≥ 1

k2 − ak1
ln

(
k2

ak1

)
(10.51)

E(X(X+1) · · · (X+a−1)) = +∞. On the other hand, show that the induced kinetic
differential equation has a solution on the whole R+0 . This is a simple second-order
reaction where the deterministic and stochastic models show significant differences.

(Solution: page 443.)

10.13 Consider the induced kinetic Markov process with stochastic mass action

type kinetics of the second-order reaction X
k1−−⇀↽−−

k−1
2 X. Show that moment equations

are not closed. Write down the first two moment equations, and close the equations
by substituting the higher moments with one of the formulas of Sect. 10.3.3.3.

(Solution: page 444.)

10.14 Write up the partial differential equation for the generating function in the

case of the closed compartmental system: X(i)
kj i−−→ X(j ) where 1 ≤ i �= j ≤ M .

Can the general solution be given in a compact form?

(Solution: page 445.)

10.15 Consider the reaction X1
k21−−⇀↽−−
k12

X2. Can the transition probabilities of its

induced kinetic Markov process with stochastic mass action type kinetics be given

in explicit form? Outline these in the case of k12 = k21 = 1 and x0 =
[
1 1
]	

.

(Solution: page 445.)

10.16 Calculate D1, D2 for the closed compartmental system (also called the simple

consecutive reaction) X
k1−−→ Y

k2−−→ Z.

(Solution: page 446.)

10.17 Find all the stationary distributions of the induced kinetic Markov process
endowed with mass action type kinetics of a weakly reversible closed compartmen-
tal system with a single linkage class.

(Solution: page 446.)
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10.18 Write a short Mathematica code that symbolically solves Eq. (10.26) with
initial value and boundary conditions of the induced kinetic Markov process
endowed with mass action type kinetics of a closed compartmental system.

(Solution: page 446.)

10.9 Open Problems

1. Find necessary and sufficient conditions for an induced kinetic Markov process
endowed with stochastic mass action type kinetics to be nonexplosive (or
explosive) in terms of the α,β and the stochastic reaction rate coefficients
(ksto

r )r∈R .
2. Classify those induced kinetic Markov processes (with stochastic mass action

type kinetics) for which the supermartingale, martingale, or the submartingale
property holds.

3. Classify the stationary distributions of the induced kinetic Markov process of
mass-conserving second-order, third-order, etc. reactions.
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Iosifescu M, Tăutu P (1973) Stochastic processes and applications in biology and medicine. II.
Models. Editura Academiei, New York

Jahnke T, Huisinga W (2007) Solving the chemical master equation for monomolecular reaction
systems analytically. J Math Biol 54(1):1–26

Joshi B (2015) A detailed balanced reaction network is sufficient but not necessary for its Markov
chain to be detailed balanced. Discret Contin Dyn Syst Ser B 20(4):1077–1105

Juette MF, Terry DS, Wasserman MR, Zhou Z, Altman RB, Zheng Q, Blanchard SC (2014) The
bright future of single-molecule fluorescence imaging. Curr Opin Chem Biol 20:103–111

Kelly FP (1979) Reversibility and stochastic networks. Wiley, New York
Kingman JFC (1969) Markov population processes. J Appl Prob 6(1):1–18
Kolmogoroff A (1935) Zur Theorie der Markoffschen Ketten. Math Ann 112:155–160
Krieger IM, Gans PJ (1960) First-order stochastic processes. J Chem Phys 32(1):247–250
Kurtz TG (1970) Solutions of ordinary differential equations as limits of pure jump Markov

processes. J Appl Prob 7(1):49–58
Kurtz TG (1972) The relationship between stochastic and deterministic models for chemical

reactions. J Chem Phys 57(7):2976–2978
Kurtz TG (1976) Limit theorems and diffusion approximations for density dependent Markov

chains. In: Stochastic systems: modeling, identification and optimization, I. Springer, Berlin,
pp 67–78

Kurtz TG (1978) Strong approximation theorems for density dependent Markov chains. Stoch
Process Appl 6(3):223–240

Lai JYW, Elvati P, Violi A (2014) Stochastic atomistic simulation of polycyclic aromatic
hydrocarbon growth in combustion. Phys Chem Chem Phys 16:7969–7979

Lánský P, Rospars JP (1995) Ornstein–Uhlenbeck model neuron revisited. Biol Cybern 72(5):397–
406

Lee NK, Koh HR, Han KY, Lee J, Kim SK (2010) Single-molecule, real-time measurement of
enzyme kinetics by alternating-laser excitation fluorescence resonance energy transfer. Chem
Commun 46:4683–4685

Lente G (2004) Homogeneous chiral autocatalysis: a simple, purely stochastic kinetic model. J
Phys Chem A 108:9475–9478

Lente G (2005) Stochastic kinetic models of chiral autocatalysis: a general tool for the quantitative
interpretation of total asymmetric synthesis. J Phys Chem A 109(48):11058–11063

https://doi.org/10.1016/j.combustflame.2010.10.002
https://doi.org/10.1016/j.combustflame.2010.10.002


References 319

Lente G (2010) The role of stochastic models in interpreting the origins of biological chirality.
Symmetry 2(2):767–798

Leontovich MA (1935) Fundamental equations of the kinetic theory of gases from the point of
view of stochastic processes. Zhur Exper Teoret Fiz 5:211–231

Li G, Rabitz H (2014) Analysis of gene network robustness based on saturated fixed point
attractors. EURASIP J Bioinform Syst Biol 2014(1):4

Liggett TM (2010) Continuous time Markov processes: an introduction, vol 113. American
Mathematical Society, Providence.

Lipták G, Hangos KM, Pituk M, Szederkényi G (2017) Semistability of complex balanced kinetic
systems with arbitrary time delays. arXiv preprint arXiv:170405930

Matis JH, Hartley HO (1971) Stochastic compartmental analysis: model and least squares
estimation from time series data. Biometrics, pp 77–102

McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci
USA 94(3):814–819

Mode CJ (1971) Multitype branching processes: theory and applications, vol 34. American
Elsevier, New York.

Mozgunov P, Beccuti M, Horvath A, Jaki T, Sirovich R, Bibbona E (2017) A review of the
deterministic and diffusion approximations for stochastic chemical reaction networks. arXiv
preprint arXiv:171102567

Munsky B, Khammash M (2006) The finite state projection algorithm for the solution of the
chemical master equation. J Chem Phys 124(4):044, 104

Nagypál I, Epstein IR (1986) Fluctuations and stirring rate effects in the chlorite-thiosulphate
reaction. J Phys Chem 90:6285–6292

Nagypál I, Epstein IR (1988) Stochastic behaviour and stirring rate effects in the chlorite-iodide
reaction. J Chem Phys 89:6925–6928

Norris JR (1998) Markov chains. Cambridge University Press, Cambridge
Øksendal B (2003) Stochastic differential equations, 5th edn. Springer, Berlin
Paulevé L, Craciun G, Koeppl H (2014) Dynamical properties of discrete reaction networks. J

Math Biol 69(1):55–72
Pokora O, Lánský P (2008) Statistical approach in search for optimal signal in simple olfactory

neuronal models. Math Biosci 214(1–2):100–108
Qian H, Elson EL (2002) Single-molecule enzymology: stochastic Michaelis–Menten kinetics.

Biophys Chem 101:565–576
Rathinam M, Petzold LR, Cao Y, Gillespie DT (2003) Stiffness in stochastic chemically reacting

systems: the implicit tau-leaping method. J Phys Chem A 119(24):12,784, 11 pp
Rathinam M, Petzold LR, Cao Y, Gillespie DT (2005) Consistency and stability of tau-leaping

schemes for chemical reaction systems. Multiscale Model Simul 4(3):867–895
Reddy VTN (1975) On the existence of the steady state in the stochastic Volterra–Lotka model. J

Stat Phys 13(1):61–64
Rényi A (1954, in Hungarian) Treating chemical reactions using the theory of stochastic processes.

Magyar Tudományos Akadémia Alkalmazott Matematikai Intézetének Közleményei 2:83–101
Robertson HH (1966) In: Walsh JE (ed) The solution of a set of reaction rate equations, Thompson

Book, Toronto, pp 178–182
Sakmann B, Neher E (eds) (1995) Single-channel recording, 2nd edn. Plenum Press, New York
Samad HE, Khammash M, Petzold L, Gillespie D (2005) Stochastic modeling of gene regulatory

networks. Int J Robust Nonlinear Control 15:691–711
Siegert AJF (1949) On the approach to statistical equilibrium. Phys Rev 76(11):1708
Singer K (1953) Application of the theory of stochastic processes to the study of irreproducible

chemical reactions and nucleation processes. J R Stat Soc Ser B 15(1):92–106
Sipos T, Tóth J, Érdi P (1974a) Stochastic simulation of complex chemical reactions by digital

computer, I. The model. React Kinet Catal Lett 1(1):113–117
Sipos T, Tóth J, Érdi P (1974b) Stochastic simulation of complex chemical reactions by digital

computer, II. Applications. React Kinet Catal Lett 1(2):209–213



320 10 Stochastic Models

Smith G, Golden D, Frenklach M, Moriary N, Eiteneer B, Goldenberg M, Bowman C, Hanson
R, Song S, Gardiner W, Lissianski V, Qin Z (2000) Gri-mech 3.0. http://www.me.berkeley.edu/
gri_mech

Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of
enantiomeric excess of a chiral molecule. Nature 378:767–768

Šolc M (2002) Stochastic model of the n-stage reversible first-order reaction: relation between
the time of first passage to the most probable microstate and the mean equilibrium fluctuations
lifetime. Z Phys Chem 216(7):869–893

Stoner CD (1993) Quantitative determination of the steady state kinetics of multi-enzyme reactions
using the algebraic rate equations for the component single enzyme reactions. Biochem J
291(2):585–593

Tóth J (1981, in Hungarian) A formális reakciókinetika globális determinisztikus és sztochasztikus
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Part IV

Selected Addenda

This part is about the use of estimation methods in reaction kinetics, about a short
history of software packages written for kinetics and also on the mathematical
background helping the reader in reading the book without the need to ferret
about definitions and theorems in the internet or in textbooks on different fields
of mathematics.



11Inverse Problems

11.1 Direct and Inverse Problems

Previously (page 195) we mentioned about the difference in scientific and engineer-
ing approaches. Here we shall meet another opposition: that of the direct and inverse
problems.

A significant part of reaction kinetics and correspondingly the largest part of
our book is dedicated to direct problems. A direct problem is how the behavior
of the deterministic or stochastic model of a reaction or that of a completely
specified mechanism can be characterized either quantitatively or qualitatively. A
(theoretically important) direct problem is the characterization of the form of the
induced kinetic differential equations of reactions. Another one is obtained if given
the reaction steps we try to decide if it has an asymptotically stable stationary point,
multiple stationary points, a limit cycle, oligo-oscillation, or chaotic behavior. One
can ask if the stationary distribution of the stochastic model is unimodal, if the
(deterministic or stochastic) model blows up, etc.

It seems to be an exaggeration although it is hardly one that all the work
on direct problems is preparatory to inverse problems. Generally speaking the
solution of an inverse problem gives an answer to the question: What kind(s)
of models/mechanisms/reactions can be behind a given set of data? One may be
interested in qualitative answers, e.g., when looking for an oscillating reaction, or
one may look for quantitative answers, e.g., when one should like to know the
exact/approximate/estimated value of a reaction rate coefficient.

The inverse of the abovementioned theoretical direct problem is as follows: given
a polynomial differential equation, is there a reaction to induce it? This problem has
been solved in Theorem 6.27.

In reaction kinetics the most typical inverse problem in its simplest form is as
follows: given the concentration vs. time curves and assuming that the reaction
can be described by a mass action type deterministic model, how does an inducing
reaction look like, and what are the reaction rate coefficients? A more realistic task is

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Tóth et al., Reaction Kinetics: Exercises, Programs and Theorems,
https://doi.org/10.1007/978-1-4939-8643-9_11

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8643-9_11&domain=pdf
https://doi.org/10.1007/978-1-4939-8643-9_11


326 11 Inverse Problems

to have the concentration values at discrete time points only and—what is worse—
with errors added. Before formulating other problems, let us see how the simpler
version is solved by Mathematica.

11.2 Parameter Estimation

Suppose we know that the reaction is a simple in- and outflow: 0 −−⇀↽−− X. Let us
simulate values of concentrations with errors at discrete time points.

sol = First[ReplaceAll @@ Concentrations[{0 <=> X},

{0.33, 0.72}, {0.2}, {0, 20}]]

times=N[Range[0,100]/5]; SeedRandom[100];

data=Transpose[{times,

(sol /. t -> times) (1 + RandomReal[0.05, 101])}];

lp=ListPlot[data, PlotRange -> All]

We added a relatively large (5%) relative error and collected data at 100 time points.
These data will act as a series of measurements. The role of SeedRandom is that
the simulated results are the same no matter how many times we repeat them. This
is useful when one does not concentrate on the effect of randomness, but on the
algorithm using the data. The results can be seen in Fig. 11.1.

Let us define the model to be fitted using the memo function construct of
Mathematica.

model[a_?NumberQ, b_?NumberQ, c_?] := (model[a,b,c] =

First[x /. NDSolve[{x’[t] == a-b x[t], x[0]==c},

x, {t, 20}]]);

0.4

0.3

0.2

0.1

5 10 15

Fig. 11.1 Simulated data taken from the reaction 0
a−−⇀↽−−
b

X with a = 0.33, b = 0.72, x(0) = 0.2,

and 5% relative error
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Fig. 11.2 Fitted curve, original data, and residuals concerning reaction 0
a−−⇀↽−−
b

X

NonlinearModelFit is one of the built-in functions to do the parameter
estimation itself. It needs an initial estimate to start.

nlm = NonlinearModelFit[data, model[a, b, c][t],

{{a, 0.1}, {b, 0.1}, {c, 1}}, t]}

Let us visualize the goodness of fit by showing the original data, the fitted curve,
and also the residuals using

Row[{Show[

Plot[nlm[t], {t, 0, 20}, PlotRange -> All,

PlotStyle -> Directive[Red, Thickness[0.015]]],

data],

ListPlot[nlm["FitResiduals"], Filling -> Axis]}]

The result can be seen in Fig. 11.2.
The fact that the induced kinetic differential equation of the reaction can

explicitly be solved has not been used here. To emphasize this Concentrations
has solved the induced kinetic differential equation numerically.

Beyond having the estimates of the reaction rate coefficients one gets at the
same time quantitative measures of goodness, the list of which is produced by
nlm["Properties"]. The abundance of properties offered by the program may
be perplexing for almost all the users, except possibly those with an extremely good
background in statistics. Properties include

SingleDeletionVariances, MaxParameterEffectsCurvature,

MeanPredictionConfidenceIntervals, FitCurvatureTable,

StudentizedResiduals, AIC, BIC.

How is fitting done? Without knowing the exact details of the implementation
of the function NonlinearModelFit, the general approach can be found in
Chapter VIII of the classical book by Bard (1974) or in the more recent monographs
by Seber and Wild (2003) or by Weise (2009). One defines a function of the vector
p of the parameters, called objective function, the sum of squares of differences
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between measured and model values:

Q(p) :=
∑

ti∈times

(measured(ti)−model(ti ,p))2. (11.1)

Then, the global minimum of this function is looked for starting from an initial
estimate of the parameter vector p and using different strategies (steepest descent,
simplex method by Nelder and Mead, simulated annealing, etc.) to modify it.

In an appropriate (although very rare) setting one may be able to prove that a given
procedure converges, the convergence rate can be determined and it can be shown that the
limit is a statistically good estimate of the parameters. This is the case with the method by
Nagy (2011) based on an iterative computation of weighted empirical expectation values
and covariance matrices using random samples.

There are a lot of variations and a lot of problems here. As to the variations:

1. Instead of the sum of squares, absolute values or any even power of the
differences (between measured values and those obtained from a model) can be
used.

2. The terms in the sum may be multiplied by the values of a weight function
which takes into consideration the importance of the individual measurements.
(An often used weight function is the reciprocal of the estimated variance
which forces measurement points with the same relative error to have the same
importance.)

3. The independent variable in our examples is almost always one dimensional (as it
is time), but one can meet with multidimensional independent variables as well,
e.g., when reaction–diffusion models are treated (when one has time and one or
more spatial variables, see Problem 11.4).

4. Instead of concentrations it is only some featureswhat are known. These features
are global quantitative measures of the reaction, like flame velocity, time up to
ignition, period length of oscillation, etc. Then, the objective function is to be
redefined in terms of these quantities.

As to the problems:

1. In simple cases one may be given a straight line as the model, and the problem
left is only to find its tangent and intersection with the ordinate axis. This is the
case of an explicitly defined model. In reaction kinetics, however, the typical
case is when the model is implicitly defined, what we only know about it is that
it is a solution of a given differential equation.

2. If the model is linear in the independent variable(s) and the parameters (this is the
case of linear regression), then the problem is easy to solve from the numerical
point of view, and the results admit a clear statistical interpretation. If one only
assumes that it is linear in the parameters (e.g., polynomials are fitted), then easy
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numerical solvability subsists. If the model is nonlinear in the parameters, then
the area of arts opens: practice, endurance, and luck are needed to find physically
realistic parameters which also define a well-fitted model. It is the more so if the
model is implicitly given. Cf. Problem 11.3.

3. There is a rule of thumb, not a theorem: one should not try to estimate more
parameters than the square root of the number of the data. Having fitted a
model, the estimated covariance matrix of the parameters shows if the selected
parameters can be considered to be independent or not.

4. The global minimum of the objective function is needed, but the numerical
methods usually only provide local minima. (Cf. Singer et al. 2006.) Quite often,
the methods get stuck in a local valley of the surface defined by the objective
function. A good initial guess of the parameter values is usually a great help.
There are methods to find such a guess, see, e.g., Hangos and Tóth (1988) and
Kovács and Tóth (2007), based on the fact that the right-hand side of the induced
kinetic differential equation of a reaction endowed with mass action type kinetics
is linear in the parameters; see Eq. (6.32).

5. Physical (or chemical) restrictions should be taken into consideration on the
values of the parameters. This makes the problem of finding the minimum of the
objective function more complicated as one arrives at a minimization problem
with constraints. On the other side, these restrictions together with possible
chemical knowledge on a similar system may give some hint as how to choose
the initial estimate.

6. A nonlinear function may even not have a global minimum; see Problem 11.2.
7. The function NonlinearModelFit seems to have been designed to accept

scalar-valued data. However, this restriction can be bypassed; see Problems 11.4
and 11.5.

8. There are not enough measurements: the time points are not located densely
enough, or only some components of the concentration vector are measured.

9. The measurement error (or any other deviation from the values which can be
described by the model, e.g., biological variations) is too large.

10. It may happen that it is only possible to determine some combinations (functions)
of the parameters and not all of them individually; see Problem 11.7 and some
further details on page 333.

11. There are too many measurements. Then, one may calculate a moving average
of the data, or take their Fourier transform to get rid of large fluctuations, or even
form blocks of data and substitute whole blocks with averages.

11.3 Estimation in the Usual Stochastic Model

Knowing the behavior of the trajectories of the stochastic model of a reaction,
one can propose a heuristic algorithm to estimate the reaction rate coefficients, cf.
Billingsley (1961). The procedure will be shown on a very simple example.
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Example 11.1 Let us consider the reaction 0
k1−−⇀↽−−
k−1

X. Suppose we have many

measurements with particle number n1 ∈ N showing that the relative frequency of

the step 0
k1−−→ X is r1 ∈]0, 1[ and some further measurements with particle number

n2 ∈ N showing that the relative frequency of the step X
k−1−−→ 0 is r2 ∈]0, 1[.

Furthermore, suppose that at particle number n3 ∈ N, the average waiting time until
the next jump (reaction step) is 1/λ (λ ∈ R

+). Then, it seems to be evident to look
for the solutions of the following system of equations:

k1

k1 + k−1n1
= r1

k−1n2

k1 + k−1n2
= r2 k1 + k−1n3 = λ. (11.2)

Reordering this system one sees that it is a(n overdetermined) linear system for the
unknown reaction rate coefficients:

⎡

⎣
r1 − 1 r1n1

r2 (r2 − 1)n2

1 n3

⎤

⎦
[
k1

k−1

]
=
⎡

⎣
0
0
λ

⎤

⎦ . (11.3)

Assuming that det

[
r1 − 1 r1n1

r2 (r2 − 1)n2

]
= 0 and r2n3 �= (r2 − 1)n2 and r2n3 �=

(r2 − 1)n2 implies that

rank

⎡

⎣
r1 − 1 r1n1

r2 (r2 − 1)n2

1 n3

⎤

⎦ = rank

⎡

⎣
r1 − 1 r1n1 0
r2 (r2 − 1)n2 0
1 n3 λ

⎤

⎦ = 2,

therefore (11.3) has a solution; thus one gets the following estimates:

k̂1 = −λ
r1n1

r1(n3 − n1)− n3
k̂−1 = λ

r1 − 1

r1(n3 − n1)− n3
. (11.4)

The assumptions imply that the denominator is different from zero, and in this case it
can be directly checked that the estimators are positive, but in general the estimators
may happen to have —physically meaningless—negative values.

We must admit at the end that the solution of the algebraic (let alone statistical)
problems (the solution of some of them can be found in Billingsley 1961) can wait
until experimentalists will be able to measure individual particles in more generality
than at the moment; see Grima et al. (2014) and the relatively complete literature on
the possibility of these kinds of measurements cited by Lente (2013).
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11.4 Maximum Likelihood Estimates in a Stochastic Differential
Equation Setting

An approach to get statistically good estimates based upon a stochastic kinetic
model has been presented in Hangos and Tóth (1988). The starting point of the
model is the right-hand side written in the form of (6.32): γ diag(cα)k shows the
linear dependence of the right-hand side of induced kinetic differential equations on
the reaction rate coefficients. Then, a stochastic differential equation model may be
defined as follows:

dX(t) = γ diag(Xα)k dt + B(X(t))dw(t) (11.5)

whereX is the vector of particle numbers, k is the vector of reaction rate coefficients,
and B is a positive definite valued matrix function expressing local variance. If
B(X) = I, i.e., the local variance can be characterized with the identity matrix, then
the explicit form of the maximum likelihood estimate of the vector of reaction rate
coefficients can be shown to be

k̂ = 1

T

(
Δ(X(T ))	Δ(X(T ))

)−1
∫ T

0
Δ(X(t))	dX(t) (11.6)

with Δ(X) := γ diag(Xα). The fact that this estimate is a maximum likelihood
estimate means that it gives that value k̂ with which the actual measurements are
the most probable. The maximum likelihood estimates in general and in this case
too have advantageous statistical properties. The estimated value k̂ is normally
distributed with mean k and with the variance H and the Hessian matrix of the
objective function (which is here the likelihood function) with respect to k, also
called the information matrix when the length of the interval of observation T

tends to infinity.

Example 11.2 As the simplest illustration of the method described above, let us

consider the elementary reaction 0
k−−→ X. A short calculation shows that in this

case one has k̂ = X(T )−X(0)
T

, i.e., the estimate so well-known from many estimation
procedures is obtained. It is interesting to note that although the whole trajectory of
X is known (measured) on the interval [0, T ], it is only the initial value and the final
one that is utilized: this pair being a sufficient statistics.

Further examples and discussion can be found in Hangos and Tóth (1988) and see
also Kovács and Tóth (2007).

The interested reader will find many useful ideas and algorithms in the following
publications on parameter estimation: Bard (1974), Seber and Wild (2003), Singer
et al. (2006), and Turányi and Tomlin (2014). A series of sizeable case studies has
recently been studied by Villaverde et al. (2015).
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11.5 Identifiability and Uniqueness Questions

Estimation should not be the first step in the evaluation process of experimental
data. One should know in advance if it is possible to estimate a given reaction rate
coefficient from the data one has. This kind of investigation belongs to the field of
identifiability. Even if we restrict ourselves to the identifiability of reactions, we
have to face a vast literature; here we only present the results of a few important
papers.

Craciun and Pantea (2008) consider reactions with mass action type kinetics.
First, they show the following example for which the reaction rate constants are not
uniquely identifiable, even if we are given complete information on the dynamics of
concentrations for all chemical species. The right-hand sides of the induced kinetic
differential equation of both mechanisms are {−9cA0, 9cA0, 9cA0} as it is also shown
by

RightHandSide[{craciunpantea1}, {3, 3, 3}]

and

RightHandSide[{craciunpantea1}, {4, 4, 1}]

where craciunpantea1 is the reaction seen in Fig. 11.3. Then, the authors give
the obvious definition of identifiability as follows.

Definition 11.3 The reaction rate coefficients in the reaction 〈M ,R,α,β〉 are
unidentifiable if there exist k1 �= k2 > 0 so that for all c ∈ (R+0 )M

γ diag(cα)k1 = γ diag(cα)k2 (11.7)

holds. It is identifiable if it is not unidentifiable.

The authors provided a sufficient condition of identifiability.

Theorem 11.4 Fix a reactant complex vector. Suppose that all reaction step vectors
starting from this reactant complex vector are independent. If this is true for all
reactant complex vectors, then the reaction is identifiable.

In the example of Fig. 11.3, the reaction step vectors

⎡

⎣
−1

2
0

⎤

⎦ ,

⎡

⎣
−1

0
2

⎤

⎦ , and

⎡

⎣
−1

1
1

⎤

⎦

are dependent. However, necessity of the condition is not true (contrary to what the
authors believed); see Problem 11.10.

Corollary 11.5 Generalized compartmental systems (in the wide sense) are identi-
fiable.
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Fig. 11.3 Two mechanisms with identical dynamics

The idea of the paper by Santosa and Weitz (2011) is that among all the reactions
having the same right-hand side, they find the realization with the smallest possible
number of reaction steps given the concentration vs. time curves in a special case.
(The reader of that paper should be careful because of small errors.) Thus, it may be
considered as a kind of continuation of the paper by Craciun and Pantea (2008).

It may happen that it is impossible to determine the reaction rate coefficients
individually; still it is possible to determine some functions of them. An approach
using linear algebra and heuristics and starting from sensitivity analysis has been
presented by Vajda et al. (1985); see also in Turányi (1990) and Turányi and Tomlin
(2014). Analyzing the sensitivity matrix, it may be possible to find, e.g., that one
can only determine the ratio or the product of two reaction rate coefficients.

Sedoglavic (2001a,b) had a much more ambitious goal: the right-hand sides are
almost arbitrary with him, his model has input and output functions as well, and his
problem is which variables or parameters can be determined from the knowledge
of the output? To answer this question, he constructed a probabilistic algorithm
Sedoglavic (2001b) and wrote a Maple program. A typical result of his program
can be seen in the example below which may stimulate some readers to learn his
method. The model to be investigated is (Sedoglavic 2001a, p. 106):

Example 11.6

ẋ1 = c2
θ1(x6 − x1)u

θ2θ3
,

ẋ2 = (θ1 − θ6θ7)(x1 − x2)+ θ5(x3 − x2)

c3θ3(1− θ2)− θ8θ7
− θ4x2,

ẋ3 = θ5(x2 − x3)

c4θ9
,
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ẋ4 = θ6(x1 − x4)+ θ10(x5 − x4)

θ8
,

ẋ5 = θ10(x4 − x5)

θ11(1− θ8)
,

ẋ6 = c1θ6θ7(x4 − x2)+ θ1(x2 − x6)

θ2θ3
,

y1 = 55

100
θ12x1,

y2 = θ12

(
55

100
θ8x4 + θ11(1− θ8)x5

)
.

The consequences drawn are the parameters θ1, θ3, θ5, θ7, θ9, and θ12 and the vari-
ables x1, x2, x3, x4, x5, and x6 cannot be determined. The following transformation
leaves the vector field invariant:

x1 −→ λx1, x4 −→ λx4, θ1 −→ θ1/λ, θ7 −→ θ7/λ,

x2 −→ λx2, x5 −→ λx5, θ3 −→ θ3/λ, θ9 −→ θ9/λ,

x3 −→ λx3, x6 −→ λx6, θ5 −→ θ5/λ, θ12 −→ θ12/λ.

(11.8)

Papers by Meshkat, Di Stefano, and their coworkers also contain relevant
information on the topics: Meshkat et al. (2009, 2014) and Meshkat and Sullivant
(2014).

Another important definition follows from Craciun and Pantea (2008).

Definition 11.7 Reactions 〈M ,R1,α1,β1〉 and 〈M ,R2,α2,β2〉 are confound-
able if there exists reaction rate coefficients k1 and k2, respectively, such that the
corresponding right-hand sides are the same for all concentration vectors c ∈ R

M.

In other words, the reactions are confoundable if there exist two (not necessarily
different) vectors of reaction rate coefficients k1,k2 > 0 and stoichiometric
matrices γ 1, γ 2 so that for all c ∈ (R+0 )M

γ 1diag(cα1)k1 = γ 2diag(cα2)k2 (11.9)

holds.

Theorem 11.8 The two reactions 〈M ,R1,α,β1〉 and 〈M ,R2,α,β2〉 are con-
foundable if and only if the positive cones generated by the reaction step vectors
starting from the reactant complex vectors are not disjoint.

A kind of confoundability can easily be excluded. The mechanism

X+ Y
1−−→ 2 X X+ Y

1−−→ 2 Y
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can be added to any mechanism without changing its induced kinetic differential
equation, because

RightHandSide[{X + Y -> 2X, X + Y -> 2Y}, {1, 1}]

gives the zero vector. To use the introduced terminology, one can say that any
mechanism is confoundable with the one obtained by adding the above mechanism
to it.

A weakly reversible example of this type does not exist: (Tóth 1981, p. 48).

Theorem 11.9 The induced kinetic differential equation of a weakly reversible
reaction cannot be the zero polynomial.

Proof Let the induced kinetic differential equation of the mechanism in question be
ċ = f ◦ c. As S = span(Rf) and dim(S ) ≥ 1 (Feinberg and Horn 1977, p. 90), it
is impossible that span(Rf) only consists of the 0 vector. ��

If two reactions are confoundable, then it is a good idea to use the simpler
one or the one with a given property. This way an appropriate realization may
reveal properties which otherwise would be hidden. This idea led to a series of
papers mainly by Szederkényi, Johnston, Rudan, and his coauthors; see the list of
references.

Confoundability is closely related to macroequivalence introduced by Horn and
Jackson (1972, p. 111).

Definition 11.10 Mechanisms

〈M ,R1,α1,β1,k1〉 and 〈M ,R2,α2,β2,k2〉

are macroequivalent if the corresponding right-hand sides are the same for all
concentration vectors c ∈ (R+0 )M :

γ 1diag(cα1)k1 = γ 2diag(cα2)k2 (11.10)

holds.

This concept has slightly been generalized by Csercsik et al. (2012): a mechanism
is dynamically equivalent with a kinetic polynomial differential equation if its
induced kinetic differential equation is the given polynomial equation. With this
definition the authors proved the following theorem:

Theorem 11.11 Suppose the mechanism 〈M ,R,α,β,k〉 is of deficiency zero and
has a single ergodic class. Then no other mechanism with the same complexes is
dynamically equivalent with this mechanism.
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Let us note that the existence of a single ergodic class implies that the Feinberg–
Horn–Jackson graph consists of a single component (linkage class).

11.6 Inducing Reactions with Given Properties

Theorem 6.27 gives a characterization of kinetic differential equations within the
class of polynomial ones. This statement can also be considered as the solution of
an inverse problem, and what is more, it raises a series of other inverse problems;
see, e.g., Érdi and Tóth (1989, Section 4.7). One can automatically construct the
canonical representation (see the proof of the theorem) of a kinetic differential
equation; however, it would be desirable to find a realization which is either simple
in some sense or obeys some prescribed properties, e.g., the inducing reaction is
reversible, is weakly reversible, has a small deficiency, has as few complexes or
reaction steps as possible, has an acyclic Volpert graph etc. These problems also
raise uniqueness questions.

One of the early approaches to this problem was Tóth (1981, Theorem 9)
providing a necessary and sufficient condition that a generalized compartmental
system in the narrow sense (see Chap. 3) induces a given differential equation.

Theorem 11.12 Let M ∈ N;A ∈ R
M×M,Y ∈ N

M×M, andb ∈ (R+0 )M. The
differential equation

ẋ = AxY + b (11.11)

is the induced kinetic differential equation of a

1. closed
2. half open
3. open

generalized compartmental system in the narrow sense if and only if the following
relations hold: all the columns of Y are nonnegative multiples of different elements
of the standard basis: Y = [

y1e1 y2e2 . . . yMeM
] ; y1, y2, . . . , yM ∈ N0, ym �=

yp for m �= p; and

1. bi = 0; −amm, amp, βm := −∑M
p=1

apm
yp
∈ R

+
0 ; amm = βmym;

2. bi = 0; −amm, amp,−βm ∈ R
+
0 ; amm ≤ βmym, ∃m : amm < βmym;

3. −amm, amp,−βm ∈ R
+
0 ; amm ≤ βmym, ∃m : βmm > 0;

and throughout m,p ∈ {1, 2, . . . ,M},m �= p.

Proof The proof of the theorem comes from the comparison of coefficients. ��
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The usefulness of the theorem lies in the fact that it assigns a reaction of zero
deficiency to a differential equation, because generalized compartmental systems
in the narrow sense obviously have zero deficiency; see Theorem 3.17.

Example 11.13 Let us consider an example (Érdi and Tóth 1989, p. 71) leading to
an open problem. The equation ẋ = −x + 3y ẏ = 3x − y is not the induced
kinetic differential equation of a generalized compartmental system according to
Theorem 11.12 because β1 = β2 = −2 and −1 = amm ≤ βmym = −2 is false for
all m = 1, 2.

Thus, three complexes (X, Y, and 0) are not enough to induce the given differential
equation. However, four suffices, and what is more, it is possible to find an inducing
reaction of deficiency zero:

Y
1−−→ 3 X X

1−−→ 3 Y,

as

RightHandSide[{Y -> 3 X, X -> 3 Y}, {1, 1}, {x, y}]

gives the differential equation of the example. The example raises the question:
suppose the number of monomials on the right-hand side of a kinetic differential
equation is N. Does there exist an inducing reaction to this equation with not more
than (i.e., exactly) N (or N + 1) complexes?

Szederkényi et al. (2011) gave an effective method for the solution of classes of
similar problems by rewriting qualitative properties of reactions in terms of a mixed
integer linear programming (MILP, in short) problem. More specifically, they can
compute realizations with given properties.

One of the related theoretical results of central importance by Szederkényi (2010)
follows. His aim is to find the M ×N matrix of nonnegative integer components Y
and the N×N matrix of nonnegative componentsK given the product M = Y(K−
diag(K	)1). If this holds, he calls the pair (Y,K) a realization of the matrix M.

Definition 11.14 If the number of zeros in the above setting in K he has found
is minimal, then he has got a sparse realization,; if the number of zeros in K is
maximal, then he has got a dense realization.

The following properties of dense and sparse realizations of a given chemical
reaction network were proved. Suppose M is given.

Theorem 11.15

1. The Feinberg–Horn–Jackson graph of the dense realizations is unique.
2. The Feinberg–Horn–Jackson graph of any dynamically equivalent realization of

a mechanism is the subgraph of the Feinberg–Horn–Jackson graph of the dense
realization.
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3. The Feinberg–Horn–Jackson graph of a mechanism is unique if and only if the
Feinberg–Horn–Jackson graphs of the dense and sparse realizations of M are
identical.

The above results were extended to the case of dynamically equivalent constrained
realizations, where a subset of possible reactions is excluded from the network.
Here we give some further publications of the group: Rudan et al. (2013, 2014),
Johnston et al. (2012a,b,c), and Szederkényi et al. (2012)

Szederkényi et al. (2012) and Johnston et al. (2013) determine weakly reversible
realizations, while Szederkényi and Hangos (2011) provide reversible and detailed
balanced realizations. A related paper by Schuster and Schuster (1991) finds detailed
balanced subnetworks in reactions.

11.7 Exercises and Problems

11.1 Suppose you are given data (t1, x1), . . . , (tK, xK), and it is known that they
come from measurements fitting to a line passing over the origin. How would you
estimate the slope of the line so as to minimize the sum of squares of the differences
between measured data and those calculated from the fitted line?

(Solution: page 447)

11.2 Find a function with an infinite number of strict local minima and without a
strict global minimum.

(Solution: page 447)

11.3 Show on an example that the estimates of the parameters m and k of the
function t �→ m exp(kt) cannot be exactly calculated by taking the logarithm of
the function values and that of the data.

(Solution: page 447)

11.4 Generate data taken from the diffusion equation, and add to them a small error.
Estimate the diffusion coefficient from the simulated data.

(Solution: page 449)

11.5 NonlinearModelFit is originally designed for fitting the parameters of
a single (scalar-valued) function, which however may depend on more than one
variable, and the number of parameters may also be arbitrary. Try to tame the
function to fit the reaction rate coefficients of the Lotka–Volterra reaction given
that the concentration vs. time curves are measured with 5% relative error in
the time interval [0, 20] and that the original reaction rate coefficients are unity.
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Hint: Use the idea of characteristic function. The solution to the previous problem
may also help.

(Solution: page 449)

11.6 Apply the method of Sect. 11.4 to the estimation of the reaction X
k−−→ 2 X.

(Solution: page 450)

11.7 Suppose the concentration of X is measured for all times without error in the

reaction X
k1−−→ Y X

k2−−→ Z. Show that still one can only determine the sum of
the coefficients k1 and k2.

(Solution: page 450)

11.8 Find a pair of confoundable systems within the class of reversible (stoichio-
metrically) mass conserving second-order reactions.

(Solution: page 450)

11.9 Show that the induced kinetic differential equation of the two mechanisms in
Fig. 11.4 (taken from Csercsik et al. 2012) is the same, i.e., the mechanisms are
dynamically equivalent, although the deficiency of the first one is zero, whereas that
of the second is two.

(Solution: page 451)

11.10 Show that the induced kinetic differential equation of the mechanisms in
Fig. 11.5 (taken from Szederkényi 2009) is the same, i.e., the mechanisms are
dynamically equivalent with the same differential equation, or the corresponding
reactions are confoundable. Therefore no matter how exactly you measure the
concentration vs. time curves, you will be unable to choose between the two
mechanisms.

(Solution: page 451)

11.11 Show that the induced kinetic differential equation of the original mechanism
and that of its sparse and dense realizations in Fig. 11.6 (taken from Szederkényi
2010) is the same, i.e., the mechanisms are dynamically equivalent with the same
differential equation, or the corresponding reactions are confoundable. Therefore
no matter how exactly you measure the concentration vs. time curves, you will be
unable to choose between the three mechanisms.

(Solution: page 451)
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Fig. 11.4 Two mechanisms with identical dynamics: the Feinberg–Horn–Jackson graph of the
first one consists of two components

11.8 Open Problems

1. Which are the reactions for which the heuristic estimation procedure given in
Sect. 11.3 provides positive estimate for the reaction rate coefficients?

2. Can it be decided from the form of the differential equation that a realization with
a minimal number of complexes exists (even if the coefficients are parameters
and not numeric constants) as in the case of generalized compartmental systems
in the narrow sense? See Problem 6.21.

3. Could you find two reactions with the same induced kinetic differential equation
so that the reactions are mass conserving and only contain short complexes?

4. Is it possible to construct an example where the two confoundable reactions are
reversible, mass conserving, and second order?

5. What is the necessary and sufficient condition (in terms of the coefficients and
exponents) for a kinetic differential equation to be capable be induced by a
reaction containing the same number of complexes as the number of different
monomials on the right-hand side of the equation?

6. Can you find two mechanisms 〈M ,R1,α1,β1,k1〉 and 〈M ,R2,α2,β2,k2〉 so
that they are macroequivalent, i.e., their induced kinetic differential equation is
the same, but for some other vectors of the reaction rate coefficients, they are
not macroequivalent? This example would clearly show that confoundability is a
property of mechanisms and not that of reactions.
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7. Suppose the number of monomials on the right-hand side of a kinetic differential
equation is N. Does there exist an inducing reaction to this equation with not
more than (i.e., exactly) N (or N + 1) complexes?
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12Past, Present, and Future Programs for
Reaction Kinetics

12.1 Introduction

Even the smallest reactions have a deterministic model which is too complicated
to deal with pen and paper. (However, first, one should not forget about the
useful works by Rodiguin and Rodiguina (1964) and by Szabó (1969), and either
neglect the results obtained using the qualitative theory of differential equations,
e.g., by Kertész (1984), or Boros et al. (2017a,b), or by infinitely many other
authors.) Thus, one has to rely on computers. On the other hand, realizations of
stochastic models obtained by simulation are useful or even necessary when the
model is so simple as to have all the characteristics be calculated by hand. It is
very instructive how different of two realizations of such a reaction as X −−⇀↽−− Y
might be (see Fig. 12.1). A thorough investigation almost always needs numerical
methods of solving induced kinetic differential equations, of calculating stationary
points and the Jacobian of the right and sides, of calculating sensitivities, etc. The
developments of the theory started about 50 years ago also involve the tools of
discrete mathematics, but checking the conditions of a theorem again needs the use
of computers.

12.2 Early Endeavors

The mentioned difficulties were realized very early and were attacked even with
computers of small (looking back from today) capacities.

Garfinkel et al. (1970) is a very early review of computer applications, especially
in biochemical kinetics based on a 192-long reference list. Among the authors we
find B. Chance, a pioneer of the topic (and a gold medal winner in sailing at the
1952 Summer Olympics), who used mechanical and analogue computers before the
breakthrough of digital ones in the field of biochemistry. Even before the 1970s, it
was not rare to treat reactions with a few hundred steps and a few hundred species.
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Fig. 12.1 Two realizations of the stochastic model of X −−⇀↽−− Y with the same parameters and
initial conditions

We highly recommend the paper especially because of its rich reference list for
those interested in the historical development of the field. The paper also reviews
classical equilibrium calculations and also curve fitting methods. They also give a
detailed description of biochemical systems treated in this way—these pages are
surely of no present interest, because of the developments both in biochemistry and
computer science. Exotic phenomena such as oscillation are also mentioned. The
necessity to automatically transform the reaction steps into a differential equation
(called parsing) has also been perceived, and the problem of stiff equations
(see Sect. 9.6.4.3) has also been recognized (the method by Gear (1971) has been
published by that time). Importance of computers in teaching has also been realized
by the authors.
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A few early developments until 1974 are summarized by Hogg (1974) from
a relatively narrow perspective: he only used the Chemical Abstracts. The fact
that inter alia the general program by Érdi et al. (1973), Sipos et al. (1974a) to
approximately simulate the stochastic model of reactions with arbitrary complexity
has not been included shows that at those times one had not so many tools as today
to review the literature.

12.3 Investigation of Structural Properties

The development of programming languages paved the way for symbolic calcula-
tions and for treating discrete mathematical objects; therefore it became possible
to go beyond numerical calculations. Good reviews are Barnett (2002) and Barnett
et al. (2004) mainly dealing with symbolic calculations using the computer, and the
authors review work outside kinetics (including biochemistry) as well.

Most of the important results of the Feinberg School are incorporated into a
Toolbox by Ellison et al. (2011). It is intended to implement in Windows various
parts of Chemical Reaction Network Theory (CRNT for short) that have appeared in
the literature. The guide that comes with the program does provide some information
for newcomers. The theory behind the programs is developed by Martin Feinberg
himself and also his students and colleagues, such as Phillipp Ellison, Haixia Ji,
Paul Schlosser, Gheorghe Craciun, Guy Shinar, and others.

Version 1.X, written for the Microsoft DOS operating system, contained a
ChemLab component, which provided numerical solutions (and their graphical
display) for the differential equations that derive from mass action systems but was
mainly aimed at implementing the theory for networks of deficiencies zero and one.

Version 2.X is written for Windows, and it also extends the power of the
old Network Analyst component of Version 1.X, which was centered around
deficiency-oriented parts of Chemical Reaction Network Theory. It is able to decide
whether a network has the injectivity or concordance properties, important in
deciding whether a reaction has a single stationary point, or more (see the papers by
Banaji and Craciun 2010, 2009; Shinar and Feinberg 2012).

Donnell et al. (2014) describe the related package CoNtRol which is a CRNT
tool. It provides a new, fully open-source platform, currently coded in C, Java,
Octave, and PHP, to perform computations on reactions. The package has a web-
based front-end interfacing with a suite of modular tests, to which users may add
new tests in any language. With its array of features, CoNtRol complements existing
software tools.

The current functionality of CoNtRol includes a number of necessary and/or
sufficient structural tests for multiple equilibria, stable oscillation, convergence
to equilibria, and persistence, assuming mass action or more general kinetics.
In particular, the following are checked: sufficient conditions for convergence to
equilibria based on the theory of monotone dynamical systems (De Leenheer
et al. 2006; Angeli 2010; Donnell et al. 2014) conditions of the deficiency zero
and deficiency one theorems (Theorems 8.47 and 8.48), structural conditions for



348 12 Past, Present, and Future Programs for Reaction Kinetics

persistence (Angeli et al. 2007; Donnell and Banaji 2013) based on examining the
siphons (Definition 8.79) of the system, and a large number of sufficient/necessary
conditions for injectivity and absence of multistationarity gathered from the litera-
ture and developed by Banaji, Pantea, and others. The outputs are cross-referenced
to the documentation of CoNtRol, where each conclusion and its implications are
described in detail. Some of the multistationarity results of CoNtRol are similar
to those of the Chemical Reaction Network Toolbox. The program also draws the
Volpert graph of the reaction (see Sect. 3.2).

Tests for multistationarity of CRNs are also implemented in Maple by Feliu and
Wiuf (2013). Another program aimed at the same problem is GraTeLPy written by
Georg Walther and Matthew Hartley: https://pypi.python.org/pypi/GraTeLPy/.

The ERNEST Reaction Network Equilibria Study Toolbox (Soranzo and Altafini
2009) performs a detailed model analysis of the input reaction by determining
the basic system features and by using the Deficiency Zero or Deficiency One
Theorems. The toolbox is also capable of running the Deficiency One Algorithm
where applicable. However, both of the abovementioned toolboxes assume that
the structure of the analyzed network is a priori known; therefore they have no
functionality for examining dynamical equivalence. The software, implemented in
MATLAB, is available under the GNU GPL free software license from http://users.
isy.liu.se/en/rt/claal20/Publications/SoAl09.

It requires the MATLAB Optimization Toolbox.
The most recent and probably most useful page to find programs together with

references and theory (also concentrating on Chemical Reaction Network Theory)
is probably this: reaction-networks.net/wiki/List_of_references_by_topic.

12.4 Inverse Problems

The program to solve the large set of inverse problems treated by Szederkényi
and his coworkers is called The CRNreals toolbox. It is available at http://
www.iim.csic.es/~gingproc/CRNreals/ together with the associated documentation.
The toolbox runs under the popular MATLAB computational environment and
uses several free and commercial linear programming and mixed integer linear
programming solvers. Szederkényi et al. (2012) describe CRNreals as a toolbox
for distinguishability and identifiability analysis of biochemical reaction networks.

12.5 Numerical Treatment of Models

The two major problems fitting this category are the solution of the induced kinetic
differential equations and the estimation of reaction rate coefficients.

https://pypi.python.org/pypi/GraTeLPy/
http://users.isy.liu.se/en/rt/claal20/Publications/SoAl09
http://users.isy.liu.se/en/rt/claal20/Publications/SoAl09
reaction-networks.net/wiki/List_of_references_by_topic
http://www.iim.csic.es/~gingproc/CRNreals/
http://www.iim.csic.es/~gingproc/CRNreals/
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12.5.1 Solving Induced Kinetic Differential Equations

A general view, neglecting recent developments in formal reaction kinetics, is
that practically important reactions contain many elementary steps and species;
therefore their models can only be investigated by numerical methods. Therefore
it is quite useful that Deuflhard and Bornemann (2002) have collected programs to
numerically solve differential equations.

Korobov and Ochkov (2011) show how to use MathCad and Maple to solve
induced kinetic differential equations, without constructing automatically the equa-
tion itself in the general case. They treat a series of popular reactions like
Lotka–Volterra reaction, Brusselator, Belousov–Zhabotinsky reaction and, also
some reactions with time-dependent temperature but are not interested in structural
analysis of the reactions.

As mentioned above, ChemLab also solves induced kinetic differential equations.
CHEMSIMUL by Kirkegaard and Bjergbakke (2000) is another program to solve
induced kinetic differential equations.

12.5.2 Parameter Estimation and Sensitivity Analysis

An abundant list of programs and references on programs to numerically solve
induced kinetic differential equations and to analyze them from the point of view of
sensitivity analysis and to provide methods of parameter estimation can be found in
the recent book by Turányi and Tomlin (2014).

PottersWheel (http://www.potterswheel.de/index.html) is aimed at fitting models
simultaneously to multiple measurements and to discriminate competing hypothe-
ses. Those interested in fitting reaction rate coefficients to measured data should
certainly know the systematic collection of a few benchmark problems at the address
//bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-015-0144-4.

Predici (http://www.cit-wulkow.de/images/pdf/Broschueres/Predici11_Overview
.pdf) is a commercial product with polymerization as its main topic. Finally, we
mention that there exist a few (or, more than enough) other commercial programs
that know everything, but one cannot find out what this really means. We neglected
these programs.

12.6 Mathematica-Based Programs

The approach by Jemmer (1997) is general. He has constructed a package, which
parses an input file containing a set of chemical reactions, rate constants, source
and sink terms, and initial conditions. From this information the induced kinetic
differential equation is generated. The generality of the proposed protocol is
then demonstrated in both symbolic and numerical computations in the analysis
of organic reactions and oscillatory combustion reactions and chaotic behavior.

http://www.potterswheel.de/index.html
//bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-015-0144-4
http://www.cit-wulkow.de/images/pdf/Broschueres/Predici11_Overview.pdf
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Jemmer (1999) shows a series of examples taken from kinetics with transport
processes (advection and diffusion) which he numerically solves via discretization
using a previously developed program written in Mathematica. The applications
come from the fields of chromatography, bacterial population dynamics, polymer-
ization, and plasma chemistry. Using the capabilities of Mathematica he obtains
symbolic results, as well.

Another general program (also written in Mathematica and maintained by Igor
Klep, Karl Fredrickson and Bill Helton) is http://www.math.ucsd.edu/~chemcomp/
which is based on the paper by Craciun et al. (2008). The program has two parts,
one of them calculates the Jacobian of the right-hand side of the induced kinetic
differential equation, and also related quantities, whereas the second one calculates
the deficiency of the reaction. The main idea of the programs and the mentioned
paper is homotopy what in this context means that one calculates the number
of stationary points of a simple reaction and draws the consequence that another
less simple reaction has the same number of stationary points because the two
induced kinetic differential equations are embedded in a family of differential
equations the members of which are connected continuously by a parameter. The
BIOKMOD by Sánchez (2005) solves induced kinetic differential equations and
also fits parameters. We should certainly mention the work by Kyurkchiev et al.
(2016) here and also the book by Mulquiney and Kuchel (2003).

12.7 Programs for Teaching

Here and above we certainly do not provide a classification of the programs:
now we discuss some of them which have the speciality of having been written
in Mathematica. Our readers who are also users of Mathematica certainly have
discovered the short programs called demonstrations solving special problems
(including precursors of ReactionKinetics), e.g.:

• BriggsRauscherMechanismTheChemicalColorClock/
• DynamicBehaviorOfANonisothermalChemicalSystem/
• PharmacokineticModelling/
• HopfBifurcationInTheBrusselator/
• FeinbergHornJacksonGraph
• Volpert Graph
• DescriptiveReactionKinetics

or general problems of reaction kinetics such as

• topic.html?topic=Chemical+Kinetics&limit=200
• VolpertGraphOfChemicalReactions/

http://www.math.ucsd.edu/~chemcomp/
www.BriggsRauscherMechanismTheChemicalColorClock
www.DynamicBehaviorOfANonisothermalChemicalSystem
www.PharmacokineticModelling
www.HopfBifurcationInTheBrusselator
www.FeinbergHornJacksonGraph
www.VolpertGraph
www.DescriptiveReactionKinetics
www.topic.html?topic=Chemical+Kinetics&limit=200
www.VolpertGraphOfChemicalReactions
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(All the above uniform resource locators start with http://demonstrations.wolfram.
com/.)

The page http://www.chemie.unibas.ch/~huber/AllChemie/Reaktion1.html uses
Maple for the high school problem of stoichiometry: find the stoichiometric
coefficients in reaction steps when the atomic structure of the species is known.

Ferreira et al. (1999) used Mathematica for teaching purposes. They show some
oscillatory and chaotic reactions such as the Lotka reaction, the Lotka–Volterra
reaction, and a model of glycolysis. The aim of Francl (2000, 2004) is also teaching;
he uses Mathematica to numerically solve ordinary differential equations of models
like the Lotka–Volterra reaction.

12.8 Miscellanea

There are a lot of programs just to show the possibility of treating chemical kinetic
problems using this or that tool. Such a program is, e.g., LARKIN (Deuflhard et al.
1981), capable to automatically generate the right-hand sides of induced kinetic
differential equations.

Important early endeavor is seen in the papers by Holmes and Bell (1991, 1992)
who construct the induced kinetic differential equations of reactions, check mass
conservation, and find the stationary points with their programs written in Maple. A
kind of continuation can be found on the web site of Maplesoft

http://www.maplesoft.com/applications/view.aspx?SID=4711&view=html&L=G

by D. M. Maede. A few simple example reactions consisting of a single reaction step
are shown, their induced kinetic differential equations are solved symbolically and
numerically, and finally, concentration vs. time curves are also given. The induced
kinetic differential equations are constructed by hand and not automatically.

Huang and Yang (2006) represent a relatively new kind of application of
computers: they provide a computer-assisted rigorous proof of the existence of a
limit cycle and that of chaotic dynamics in a three-variable model of the Belousov–
Zhabotinsky reaction.

The group of Olaf Wolkenhauer regularly presents programs for treating deter-
ministic and stochastic models of reactions, although they call their field of interest
as Systems Biology. The best way to find useful codes is to search the word
“reaction” via http://www.sbi.uni-rostock.de/search/.

The CHEMKIN package by Kee et al. (1980) is originally comprised of two
major components. The interpreter is a FORTRAN code which is used to read a
symbolic description of an arbitrary, user-specified chemical reaction mechanism.
The output of the interpreter is a data file which forms a link to the gas-phase
subroutine library. This library is a collection of FORTRAN subroutines which
may be called to return thermodynamic properties, chemical production rates,
derivatives of thermodynamic properties, derivatives of chemical production rates,
or sensitivity parameters. Thermodynamic properties are stored in a thermodynamic
database. The database is in the same format as the one used in the NASA chemical

http://demonstrations.wolfram.com/
http://demonstrations.wolfram.com/
http://www.chemie.unibas.ch/~huber/AllChemie/Reaktion1.html
http://www.maplesoft.com/applications/view.aspx?SID=4711&view=html&L=G
http://www.sbi.uni-rostock.de/search/
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equilibrium code. Since 1998 CHEMKIN is maintained and developed by Reaction
Design (see http://www.reactiondesign.com). KINAL and KINALC developed by
T. Turányi and his group is a kind of continuation of CHEMKIN: it helps make a
more detailed analysis of mechanisms (see the book by Turányi and Tomlin (2014)
and also the page http://respecth.chem.elte.hu/respecth/index.php).

Kintecus (http://www.kintecus.com/) is dealing with combustion models numer-
ically.

Kinpy (https://code.google.com/p/kinpy/) is a source code generator for solving
induced kinetic differential equations in Python. Actually, it imports reaction steps
and produces automatically the initial value problem to be solved.

Chemical equilibrium calculations usually does not mean finding the stationary
point(s) of an induced kinetic differential equation, rather it means calculations
based on the definition of the equilibrium constant of a (single) reversible step.
Programs to do these kinds of calculations useful for high school students are in
abundance everywhere; let us only mention the one written by Akers and Goldberg
(2001).

Finally, we mention that Wikipedia seems to exclude reaction kinetics from
computational chemistry: http://en.wikipedia.org/wiki/Category:Computational_
chemistry_software.

12.9 Stochastic Simulation

Earlier, in Chap. 10, we treated different exact and approximate algorithms to
simulate the stochastic model of reactions. Here we only say a few words about
the history of simulations. Early papers, like (Schaad 1963; Lindblad and Degn
1967; Hanusse 1973), present algorithms that are based on discrete time, discrete
state stochastic models, sometimes based on ad hoc assumptions, and sometimes
the model is the discrete skeleton of the usual stochastic model, usually for very
simple special cases. The speciality of the papers Érdi et al. (1973) and Sipos et al.
(1974a,b) is that they produce the discrete skeleton, and the code has been written
in full generality. Rabinovitch (1969) is a paper popularizing the first attempts for
educational purposes. The thesis by Hárs (1976) seems to be the first one containing
a general algorithm based on the exact model.

12.10 Not aManual

Here we give some further technical help to the reader who wishes to use our
program ReactionKinetics. Before that we mention a few packages closest
to our one. The Mathematica based programs described by Kyurkchiev et al. (2016)
seem to have the same functions as our package although not all the details are given
in the paper.

http://www.reactiondesign.com
http://respecth.chem.elte.hu/respecth/index.php
http://www.kintecus.com/
https://code.google.com/p/kinpy/
http://en.wikipedia.org/wiki/Category:Computational_chemistry_software
http://en.wikipedia.org/wiki/Category:Computational_chemistry_software
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Now let us see the technical help to our package. First of all, you copy the file
ReactionKinetics.m into a directory where Mathematica can reach it. It may
be something like

Program Files\Wolfram Research\Mathematica\11.1\AddOns\Applications.

A not so nice solution may be to copy it into the directory where your working
notebook will be located. This is useful if you only try to use the program
temporarily.

Then, to remain on the safe side, you may start your new notebook either with
ClearAll["Global‘*"] or even with Quit[]. If you may need the program,
then use this: Get["ReactionKinetics‘"]).

Beyond some administrative data, two palettes will open via

OpenReactionKineticsPalette[ ]

helping enter signs (e.g., that of the stoichiometric matrix γ ) or many kinds of
reaction arrows like ←→. OpenReactionKineticsNames[ ] helps enter
names such as deficiency or atom.

Now you may be interested in the area covered by our program. Then ask for the
Names["ReactionKinetics‘*"] providing the names of functions, options,
etc., or invoke Information["ReactionKinetics‘*"]. Once you decided
that you would like to use a given function, you should like to know how to use
it. The usual methods for getting information work (and if not, let us know). For
example, the functionConcentrations returns the concentration-time curves of
each species using DSolve or NDSolve depending on the parametrization of the
function. All the necessary information can be obtained by ?Concentrations.
Another important functions are Simulation and SimulationPlot for which
?Simulation and ?SimulationPlot show how to use these functions.

It is also useful to know the list of Options[ShowFHJGraph]:

{ExternalSpecies -> { }, ComplexColors -> { },

PlotFunction -> "GraphPlot", Numbered -> False,

StronglyConnectedComponentsColors -> { }}

But, certainly, ?ShowFHJGraph should also work.
A large (and expanding, especially if you too help us) list of the reactions can

also be listed by Models, or in a more detailed way by Reactions. To use an
individual reaction, it is not enough to type its name; one should get it.

iva = GetReaction["Ivanova"]

Let us mention that mechanisms can be imported using CHEMKINInput from
CHEMKIN files, and it would be equally possible to use SBML (System Biology
Markup Language) format.

A typical function follows.

DeterministicModel[iva, {k1, k2, k3}, {x, y, z}]

Typical means that many functions take the reaction, the reaction rate coefficients
(in case of mass action kinetics), sometimes the initial concentrations, optionally
the names of concentrations if one would like to have her/his own notation.

www.ProgramFiles\WolframResearch\Mathematica\11.1\AddOns\Applications
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Plotting functions may need different kinds of data.

ShowVolpertGraph[{"Glyoxylate Cycle"},

DirectedEdges -> True, VertexLabeling -> True,

ImageSize -> 800, GraphLayout->"CircularEmbedding",

Numbered -> True]

One of the most important functions giving descriptions of structural characteristics
is ReactionsData. It is to be used this way.

ReactionsData[iva]["{γ }", "deficiency", "reactionsteporders",

"complexes"]

Do not be afraid of that part of the result which is a sparse matrix; you can also
obtain more familiar forms.

Through[{Normal, MatrixForm}[ReactionsData[iva]["{γ }"]]]

{{{−1, 0, 1}, {1,−1, 0}, {0, 1,−1}},
⎡

⎣
−1 0 1

1 −1 0
0 1 −1

⎤

⎦}

It is not a bad idea to use “X” as a notation for the species X, especially because
some of the letters are protected by the package; thus it is safer to avoid using the
letters c, z, P, etc.

12.11 Exercises and Problems

12.1 Download, try, modify, compare, and extend the programs mentioned in the
present chapter. If you find (or you yourself have written) an important one, please
let the authors know.

(Solution: page 451)

12.12 Open Problems

Problems
• Nowadays there are programs to numerically solve the induced kinetic

differential equations of mechanisms or simulate their stochastic model in
full generality. However, these programs are not capable treating temperature
and pressure changes, mainly because these effects are usually described by
ad hoc models. Thus, it would be desirable to have a program which is flexible
enough to take into consideration different circumstances even if they change
during the reaction.



12.12 Open Problems 355

• Another area where one does not have a general program is the field of
reaction-diffusion processes. One would need a program to numerically
treat mechanisms in general where reaction, convection, and diffusion are
considered and the volume is of arbitrary shape in a two- or three-dimensional
space. This goal can only be approached step by step as the capacity of
computers grows.

• The parameter estimation and sensitivity analysis programs which also
work well for homogeneous reactions (see, e.g., Turányi and Tomlin 2014)
should also be extended for these cases. It would be useful to find methods
to provide “good” initial estimates of the reaction rate coefficients automati-
cally.

• The theory of deterministic models including spatial effects (Mincheva and
Siegel 2004, 2007) and that of stochastic models (Anderson et al. 2010) is
undergoing an explosion in these years. The results should continuously be
built in into the programs.

Tools
• First of all, we have to emphasize again a few advantages of Mathematica (or,

Wolfram Language, if you prefer) from the point of view of the modeler. With
a huge inventory of powerful functions in all areas of mathematics and with
the possibility of using all the known programming paradigms (procedural,
functional, term-rewriting, list processing, etc.), it is possible to write a few
line codes to solve a problem of high complexity.

• There are a few novelties which are not exclusively characteristic of Mathe-
matica but can be well utilized within that environment. One is able to use the
cloud quite easily both for storage and calculations. The calculating power of
graphics cards can be utilized without the need of assembly level coding.
Many built-in functions of Mathematica support parallel computing (and
some of the calculations are done in parallel without the awareness of the
user).

• Recent versions have shown that even realistic problems in the field of solving
partial differential equations (on complicated domains in dimensions higher
than one) can successfully be attacked by NDSolve assuming only first-order
reaction steps. Thus, it is desirable to have a code which is able to numerically
solve reaction-diffusion equations with as many species as one likes in one,
two, and three spatial dimensions endowed with mass action type kinetics,
practically with no restrictions.

• And we do not know yet what quantum computing will be able to offer to
people involved in reaction kinetics.
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13Mathematical Background

13.1 Introduction

In order to make the book continuously readable but at the same time self-contained,
often used but less known fundamental concepts have been collected in this chapter.
These include linear algebra complemented with certain operations on vectors and
matrices such as the special Hadamard–Schur product, notions and basic properties
of directed and undirected graphs, a few theorems from advanced calculus, and
also fundamental statements from the theory of ordinary and partial differential
equations. Exercises and problems are not missing here either so as to make the
material more easy to digest.

The reader is asked to prove some of the statements, but in most cases we refer
to the literature.

13.2 Operations on Vectors andMatrices

Here we summarize the definitions and properties of some operations on vectors and
matrices which are not so often used but very important for the concise description
of reaction kinetics. The main source for this topic is Horn and Jackson (1972, pp.
90). In the following definitions, let M,N,R ∈ N.

Definition 13.1 The componentwise product or Hadamard product, also known
as the entrywise product and the Schur product of the matrices A = [amr ] ∈
R

M×R and B = [bmr ] ∈ R
M×R , is A B := [amrbmr ].

Note that now the Hadamard product of vectors has also been defined. Obviously,
the set R

M×R is a semigroup with this operation (and is a ring together with
addition), but one reason why it is not so popular in mathematics might be that
there are many zero divisors in this group: the product can often be zero without
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any of the factors being zero. However, the concept is very useful to concisely
express things both in mathematics and in program codes. Juxtaposition of two lists
in Mathematica is interpreted as this operation.

Definition 13.2 The componentwise ratio of the matrices A = [amr ] ∈ R
M×R

and B = [bmr ] ∈ (R+)M×R (again including the R = 1 case) is A
B :=

[
amr

bmr

]
.

We will also use componentwise exponentiation, logarithm, and powers.

Definition 13.3
1. The logarithm of the vector a = [a1 a2 · · · aM

]	 ∈ (R+)M is

ln(a) := [ln(a1) ln(a2) · · · ln(aM)
]	
. (13.1)

2. The exponential function of the vector
[
a1 a2 · · · aM

]	
is

exp(a) := [exp(a1) exp(a2) · · · exp(aM)
]	
. (13.2)

3. The power of the vector a = [
a1 a2 · · · aM

]	 ∈ (R+0 )M to the exponent

matrix (respectively, exponent vector) B =

⎡

⎢
⎢
⎣

b11 b12 . . . b1R

b21 b22 . . . b2R

. . .

bM1 bM2 . . . bMR

⎤

⎥
⎥
⎦ ∈ R

M×R

is the (column) vector aB :=

⎡

⎢
⎢⎢
⎣

∏M
m=1 a

bm1
m∏M

m=1 a
bm2
m

. . .
∏M

m=1 a
bmR
m

⎤

⎥
⎥⎥
⎦
∈ R

R.

4. In the definitions above, 00 is defined to be 1.

Logarithm and exponential function can also be defined for matrices entrywise.
Important properties of these operations, which we often use, are summarized in the
following theorems. They are all easily proved using the definitions.

In the following two theorems, let a,b, c ∈ R
M ;A,B ∈ R

M×R;C ∈
R

N×M ;D ∈ R
M×M.

Theorem 13.4
1. If a,b ∈ (R+)M, then

a.
(
b
a

)A = bA

aA
∈ (R+)R,

b. ln
(
b
a

)
= ln(b)− ln(a) ∈ R

M .
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2. If a ∈ (R+0 )M

a. aidM×M = a,
b. a0M×M = 1M.

3. If a ∈ (R+0 )M and A ∈ R
M×R, then

a. ln(ab) = b	 ln(a) ∈ R,

b. ln(aA) = A	 ln(a) ∈ R
R, and

c. exp(A	 ln(a)) = aA ∈ R
R.

4. If a ∈ (R+0 )M , B ∈ R
M×N , and C ∈ R

N×R, then (aB)C = aBC ∈ R
R.

5. If a,b ∈ (R+0 )M and A ∈ R
M×R, then

a. aB+C = aB  aC ∈ R
R, and more specifically,

b. a−A  aA = 1M, furthermore,
c. (a b)C = aC  bC ∈ R

R.

Theorem 13.5 If D ∈ R
M×M, det(D) �= 0 and a,b ∈ (R+)M , then aD = b implies

a = bD
−1
.

Theorem 13.6 Let J ⊂ R be an open interval, y ∈ C 1(J,RM), and let C ∈
R

M×M. Then the derivative of x := yC is as follows:

ẋ = diag(yC) · C	 · ẏ
y
= yC  

(
C	 · ẏ

y

)
= x 

(
C	 · ẏ

y

)
, (13.3)

consequently ẋ
x = C	 · ẏy .

Defining the stochastic model, we used modifications of the power function and
also extended it to the case of vectors. Extension of the factorial to vectors is also
necessary.

Definition 13.7
1. The factorial power of the vector x = (x1, x2, . . . , xM)	 ∈ N

M with the
exponent a = (a1, a2, . . . , aM)	 ∈ N

M is defined to be

[x]a :=
M∏

m=1

xm!
(xm − am)!B(xm ≥ am). (13.4)

In Mathematica Times @@ FactorialPower[x, a] is used to calculate the
expression [x]a .

2. The factorial of the vector x = (x1, x2, . . . , xM)	 ∈ N
M is defined to be

x! :=
M∏

m=1

xm!, (13.5)

or Times @@ Factorial[x].



362 13 Mathematical Background

3. The binomial coefficient x = (x1, x2, . . . , xM)	 ∈ N
M over a =

(a1, a2, . . . , aM)	 ∈ N
M is defined to be

(
x
a

)
:= x!

a!(x− a)! =
[x]a
a! . (13.6)

13.3 Linear Algebra

Definition 13.8 Let V be a linear space. Then, the maximal number of its
independent vectors is said to be the dimension of V , and it is denoted by dim(V ).

The dimension of the linear space spanned by the column vectors of a matrix A is
said to be the rank of the matrix, and it is denoted by rank(A).

Theorem 13.9 (Dimension Theorem) If A is a linear map from the linear space
U into the linear space V , then

dim(Ker(A))+ dim(Im(A)) = dim(U ). (13.7)

Definition 13.10 Let S ⊂ V be a subspace of a linear space V . Then, the
orthogonal complement denoted by S ⊥ consists of the vectors of V orthogonal
to all the vectors of the subspace S .

Remark 13.11 We also have the following statement:

Ker(A	) = (Im(A))⊥ Im(A	) = (Ker(A))⊥

Remark 13.12 An immediate consequence of Theorem 13.9 and of Remark 13.11
is the following fact: if S ⊂ R

M is the linear space spanned by the columns of the
matrix A ∈ R

M×R, then dim(S ⊥) = M − rank(A).

Definition 13.13 A row reduction or elementary row operation refers to one of
the following three operations:

1. Interchanging two rows of the matrix.
2. Multiplying a row of the matrix by a nonzero scalar.
3. Adding a constant multiple of a row to another row.

The result of a series of appropriately chosen elementary row operations can be a
row echelon matrix.
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Definition 13.14 A rectangular matrix is in row echelon form if it has the
following properties:

1. All rows containing only zeros are below all nonzero rows.
2. The first nonzero number (the leading entry) in each row is 1.
3. All entries in a column below a leading entry are zeros.

Lemma 13.15 (Dickson (1913)) Every set of vectors of natural numbers has
finitely many (componentwise) minimal elements.

Definition 13.16 Let M, M̂ ∈ N; M̂ ≤ M. Then the generalized inverse of a
matrix M ∈ R

M̂×M is a matrix M ∈ R
M×M̂ such that MMM = M holds. A

Moore–Penrose inverse (also called pseudoinverse) has three further properties:
MMM =M, (MM)	 =MM , and (MM)	 =MM.

Remark 13.17 Obviously, if M is of the full rank, then there exists a matrix M such
that

MM = id
M̂
, (13.8)

and this can be shown to be a Moore–Penrose inverse of M.

Lemma 13.18 Let M, M̂ ∈ N;M ≥ M̂, and A ∈ R
M̂×M̂ ,B ∈ R

M×M, and
suppose that the matrix M ∈ R

M̂×M is of the full rank. If

AM =MB, (13.9)

then all the eigenvalues of the matrix A are eigenvalues of the matrix B as well.

Proof Suppose M is of full rank. Then there exists M ∈ R
M×M̂ such that MM =

id
M̂

holds. We show that no λ ∈ C that is not an eigenvalue of B can be an eigenvalue
of A. This statement is equivalent to the original one.

If λ ∈ C is not an eigenvalue of B, then there exists (B−λ idM)−1. We show that
in this case there exists (A− λ id

M̂
)−1 as well. Furthermore, we explicitly give this

inverse as M(B− λ idM)−1M. Let us check this statement using (13.9)

(A− λ id
M̂
)M(B− λ idM)−1M = (AM− λM)((B− λ idM)−1M)

= (MB− λM)(B − λ idM)−1M

= M(B− λ idM)(B− λ idM)−1M =MM = id
M̂

.

��



364 13 Mathematical Background

13.3.1 Norms

Sometimes different norms of a vector m ∈ R
R are used. They are defined as

follows:

‖m‖1 :=
∑

r∈R
|mr | (13.10)

‖m‖p :=
(
∑

r∈R
|mr |p

)1/p

(13.11)

‖m‖∞ := max{|mr | | r ∈ R} (13.12)

13.3.2 Fredholm’s Theorem

Finally, we cite (a version of) the Fredholm alternative theorem of linear algebra.

Theorem 13.19 Let A ∈ R
M×R,b ∈ R

R. The system of linear equations

Ax = b (13.13)

has a solution if and only if

∀y : A	y = 0 −→ b	y = 0. (13.14)

Proof The proof can be seen as the solution to Problem 13.5. ��

Remark 13.20 We shall use the theorem in the above form. Let us give a reformu-
lation justifying the name alternative theorem. Either (13.13) or

A	y = 0 b	y = 0

has a solution.

13.4 Mathematical Programming

In its full generality, linear programming is the problem of finding the supremum
(or infimum) of a linear function over a set of vectors defined by linear equalities
and inequalities (collectively called constraints). Its most common form is

max
x∈Rn

{c	x | Ax ≤ b}, (13.15)
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where the matrix A ∈ R
m×n and the vectors b ∈ R

m and c ∈ R
n are given. Of

course, equality constraints can also be included (utilizing both ≤ and ≥), but non-
equality ( �=) constraints and strict inequalities (> or <) are not allowed, to avoid
the situation when the supremum is finite but is not attained at any x satisfying the
constraints. This is the reason why (4.3) had to be rewritten in the form of (4.8).
The use of max in (13.15) is still somewhat misleading, since the supremum may be
infinity, which is also not a maximum; nevertheless, this is the customary notation
in linear programming. In summary, a linear programming problem may have a
“solution” of three different kinds:

• We say that the problem (13.15) is infeasible if no x satisfies the constraints
Ax ≤ b; otherwise it is feasible.

• If (13.15) is feasible, the function x �→ c	x may still not be bounded from above
on the set {x |Ax ≤ b}. In this case we say that the problem is unbounded, and
we define the maximum to be +∞.

• If the problem is feasible but not unbounded, then there exists a vector x at which
the (finite) maximum is attained.

Remark 13.21 If one leaves the area of linear programming and uses standard
concepts of mathematical analysis, then the above few lines can be reformulated as
extremum problems. Let us suppose we are given two positive integers, m,n ∈ N,

a matrix A ∈ R
m×n, and two vectors b ∈ R

m, c ∈ R
n. Let us define the set

D := {x ∈ R
n|Ax ≤ b}.

1. If D = ∅, then no function can be defined on this set, and c plays no role at all
(therefore it is quite an illogical tradition to speak of the infeasibility of problem
(13.15).)

2. If D �= ∅, then let D � x �→ c(x) := c	x ∈ R be the definition of a restriction
of the linear function R

n � x �→ c	x ∈ R to the set D . The value of sup(c) may
either be +∞, then the problem (13.15) is unbounded, or it may have a finite
value. In the latter case, the supremum is a maximum (a fact not immediately
following from the continuity of the function c), i.e., there exists (at least) a
vector x∗ at which the supremum is taken.

We may if we wish to say in the infeasible case that the supremum of c is −∞.

In Mathematica, linear programming problems can be solved using the built-in
function LinearProgramming. Alternatively, one may use the general-purpose
Maximize function for symbolic optimization and either FindMaximum for local
or NMaximize for global numerical optimization. Note the difference between
their input formats and also between the outputs of these functions.
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Theorem 13.22 (Tucker) Let S be a subspace of a vector space R
M. Then there

exist vectors x, z ∈ R
M such that

x, z ∈ (R+0 )M, x ∈ S , z ∈ S ⊥ and x+ z ∈ (R+)M.

Theorem 13.23 (Haynsworth) Let M =
[

A B	
B C

]
be a symmetric matrix. Then

1. M � 0 if and only if both C � 0 and A− B	C−1B � 0.
2. If C � 0, then M � 0 if and only if A− B	C−1B � 0.

The matrix A− B	C−1B is called the Schur complement of C in M.

13.5 Graphs

Properties of reactions can often be deduced from their discrete or combinatorial
structure (which species take part in which reactions, etc.). This abstract structure is
most easily described in terms of graphs. Good introductory texts on graph theory
include (Harary 1969; Lovász 2007; Øre 1962).

Definition 13.24 A directed graph is an ordered pair G = (V ,E) of a finite
nonempty set of vertices V and a set E ⊂ V × V of ordered pairs of vertices,
called edges. Edges of the form (v, v) ∈ E are called loops.

Definition 13.25 A(n undirected) graph is an ordered pair G = (V ,E) of a finite
nonempty set of vertices V and a set of E ⊂ V × V of unordered pairs of vertices,
called edges. Edges of the form (v, v) ∈ E are called loops in the case of undirected
graphs as well.

Edges of directed graphs are often called arcs. Note that the only difference
between directed and undirected graphs is that edges have an orientation (a
“beginning” and an “end”).

Definition 13.26 In both directed and undirected graphs, vertices connected by an
edge are said to be adjacent. Edges with a common vertex are also called adjacent.
The adjacency matrix of the graph (V ,E) is a |V | × |V | matrix A with an entry
aij = 1, if (i, j) ∈ E; otherwise the entry aij is zero.

Obviously, in the case of undirected graphs, the adjacency matrix is symmetric and
redundant: all the edges are represented twice.

Definition 13.27 Vertices of an edge are said to be incident to the edge. The edge
(v,w) of an undirected graph connects the two vertices v and w, while the edge
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(v,w) of a directed graph begins at the vertex v and ends at the vertex w. The
incidence matrix E of the directed graph (V ,E) with no loops is a |V |×|E|matrix
with an entry

1. ive = −1, if edge e begins at vertex v, that is, if e = (v,w) for some w ∈ V ,
2. ive = 1, if edge e ends at vertex v, that is, if e = (w, v) for some w ∈ V ,
3. ive = 0 otherwise.

Naturally, every column of the incidence matrix contains precisely one +1 and one
−1 entry.

Definition 13.28 A subgraph of a graph G = (V ,E) is a graph (V ,E) such that
V ⊂ V and E ⊂ E hold. A spanning subgraph of G is a subgraph whose vertex
set is the same as that of G.

Definition 13.29 A finite sequence of edges e1, e2, . . . , ek is called a path connect-
ing the vertices e1 and ek if each pair of consecutive edges have a common vertex.
In the case of directed graphs, such a sequence of edges is called a directed path if
the beginning of each edge is the same as the end of its predecessor. A closed path,
i.e., one for which the first and the last edge has a common vertex, is called a cycle,
respectively, a directed cycle. An undirected graph without cycles is a forest; it is a
tree, if it is also connected (see Definition 13.30). A spanning forest is a spanning
subgraph which is a forest (Fig. 13.1).

Definition 13.30 An undirected graph is said to be connected if each pair of its
vertices is connected by a(n undirected) path. A directed graph is weakly connected
if disregarding the directions of its edges a connected undirected graph is obtained.
A(n inclusionwise) maximal connected subgraph of an undirected graph is said to
be a connected component of the graph. A directed graph is strongly connected if
each pair of its vertices is connected by a directed path. A(n inclusionwise) maximal
strongly connected subgraph of a directed graph is said to be a strong component

Fig. 13.1 An undirected graph with six vertices (left), along with one of its spanning trees (center)
and a spanning forest (right) with two components
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of the graph. Strong components of a directed graph from which no edge goes out
are called ergodic components.

The vertex sets of connected components of an undirected graph partition the
vertex set: each vertex belongs to precisely one component. The same holds for the
strong components of directed graphs. (See Problem 13.7.)

In some graphs of reactions, the vertices represent either species or reaction steps,
and edges only connect species to reactions. Graphs with such special structure are
bipartite graphs.

Definition 13.31 A directed bipartite graph is a directed graph (V ,E) whose
vertex set can be partitioned into two sets, V1 and V2, such that E ⊂ (V1 × V2) ∪
(V2×V1). Often, to signify the two classes of vertices, the notation G = (V1, V2, E)

is used for such graphs.

Since graphs can be considered as special binary relations on finite sets, the
standard terminology of relations can also be applied to graphs.

Definition 13.32 A directed or undirected graph (V ,E) is reflexive if for all
v ∈ V (v, v) ∈ E, i.e., the graphs contain all the possible loops. A directed graph
(V ,E) is symmetric if (v,w) ∈ E implies (w, v) ∈ E, i.e., if the reverse of
every edge is also present in the graph. It is called transitive, if for all pairs of
edges (v,w), (w, z) ∈ E, we also have (v, z) ∈ E. The transitive closure of the
directed graph (V ,E) is obtained in such a way that whenever there is a directed
path beginning in the vertex v and ending in the vertex w, then the edge (v,w) is
appended to the set of edges.

Theorem 13.33 The transitive closure of a directed graph is symmetric if and only
if all of its strong components are ergodic.

Proof See Problem 13.8. ��

13.6 Calculus

Here we review a few theorems which you may not have learned in first year
calculus.

Before calculus proper, we cite a trivial, still useful lemma from (Tóth et al. 1997,
p. 1533). Let K,M ∈ N.

Lemma 13.34 Suppose that

k ◦ x = l ◦ x

holds for the functions k, l : RM −→ R
K with some functions x : R −→ R

M for
which ∪xR(x) = R

M is true. Then k = l is also true.
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This lemma is usually used for all the solutions x of a differential equation with a
right-hand side defined on the whole RM .

Theorem 13.35 (Brouwer) Let M ∈ N, and let T ⊂ R
M be a closed, bounded,

and convex set, and f ∈ C (T ,RM). Then, there exists at least one point x∗ ∈ T

(called the fixed point of f) such that f(x∗) = x∗.

It turns out that the concepts of linear dependence and independence can be
extended from vectors to nonlinear functions. Let K,M ∈ N; 0 < K < M; a ∈
R

M,u ∈ C 1(B(a),RK), where B(a) ⊂ R
M is an open ball centered at a.

Definition 13.36 If rank(u′(a)) = K (implying that there exists a ball B1(a) ⊂
B(a) centered at a so that for all x ∈ B1(a) : rank(u′(x)) = K), then the coordinate
functions of u are said to be independent at the point a. If however there exists a
ball B2(a) ⊂ B(a) centered at a so that for all x ∈ B2(a) : rank(u′(x)) < K), then
the coordinate functions of u are said to be dependent at the point a.

Lemma 13.37 Let the coordinate functions of u be independent at the point a.
Then, there exists a function v ∈ C 1(B(a),RM−K) such that even the coordinate

functions of

[
u
v

]
are independent.

Proof If vK+1, vK+2, . . . , vM ∈ R
M are vectors independent from each other and

from the row vectors of u′(a), then with

vK+1(x) := v	K+1x, vK+2(x) := v	K+2x, . . . , vM(x) := v	Mx,

the function v(x) :=

⎡

⎢
⎢
⎢
⎣

vK+1(x)
vK+2(x)

...

vM(x)

⎤

⎥
⎥
⎥
⎦

is an appropriate completion to a nonlinear basis.

��

Now a theorem with many applications follows.

Theorem 13.38 Suppose that the coordinate functions of u are independent at

the point a, but the coordinate functions of

[
u
w

]
are dependent, where w ∈

C 1(B(a),R). Then there exists a function W ∈ C 1(Ru,R) such that

w(x) = W(u(x)) (x ∈ B(a)). (13.16)
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Proof Let us complete u to a nonlinear basis

[
u
v

]
with v ∈ C 1(B(a),RM−K), and

let

[
p
q

]
:=
[
u
v

]−1

,p ∈ C 1(RM,RK),q ∈ C 1(RM,RM−K).

First, we show that ∂2W̃ = 0, if W̃ := w ◦
[
p
q

]
. According to the definition of

the inverse, one has

[
u
v

]
◦
[
p
q

]
=

⎡

⎢⎢
⎣

u ◦
[
p
q

]

v ◦
[
p
q

]

⎤

⎥⎥
⎦ =

[
π

�

]
, (13.17)

where

R
M �

[
x
y

]
�→ π

([
x
y

])
:= x ∈ R

K, R
M �

[
x
y

]
�→ �

([
x
y

])
:= y ∈ R

M−K.

Upon taking the derivative of (13.17) with respect to the second (vectorial)
derivative, we arrive at

(
∂1u ◦

[
p
q

])
∂2p+

(
∂2u ◦

[
p
q

])
∂2q =

(
u′ ◦

[
p
q

])
∂2

[
p
q

]
= 0.

As u and w are dependent, there exists c ∈ R
K so that w′ = c	u′; thus

0 = c	
(
u′ ◦

[
p
q

])
∂2

[
p
q

]
=
(
w′ ◦

[
p
q

])
∂2

[
p
q

]
= ∂2w ◦

[
p
q

]
= ∂2W̃ ,

therefore W̃ does not depend on its second (vectorial) variable.

Second, with the well-defined function W(s) := W̃

([
s
t

])
(s ∈ Ru, t ∈

R
M−K), we have w(x) = W(u(x)) as required. ��

The following statement is a generalization of a lemma by Higgins (Póta 1981).

Theorem 13.39 (Higgins–Póta) Let k ∈ N; λ1, λ2, . . . , λk ∈ R be distinct real
numbers; and let P1, P2, . . . , Pk not identically zero polynomials of degree μ1 −
1, μ2 − 1, . . . , μk − 1 ∈ N0, respectively, with real coefficients. Then the function

R � t �→ g(t) := P1(t)e
λ1t + P2(t)e

λ2t + · · · + Pk(t)e
λkt (13.18)

has at most μ1 + μ2 + · · · + μk − 1 real zeros.
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Proof See Problem 13.13. ��

Definition 13.40 Let I ⊂ N
M be an arbitrary index set. Then the generating

function g associated to the sequence {cx}x∈I of real numbers is defined by the
following formula:

g(z) :=
∑

x∈I
cxzx (13.19)

where z ∈ C
M .

Clearly if |I | < +∞, then g is a multivariate polynomial. In the case when
|I | = +∞, it is not so obvious whether the right-hand side of Eq. (13.19) defines
a continuous (let alone differentiable) function in some region or not: this depends
on the behavior of the considered sequence {cx}x∈I and of course on what region of
C

M one would like to define the function g. A useful sufficient condition is given
by the Cauchy–Hadamard theorem.

Theorem 13.41 (Cauchy–Hadamard) Let c : N
M → R be a function (with

values interpreted as coefficients), and let us consider the formal multidimensional
power series

∑

0≤x∈NM

cx(z−a)x :=
∑

x1≥0,...,xM≥0

cx1,...,xM (z1−a1)
x1 · · · (zM−aM)xM . (13.20)

This series converges with radius of convergence � if and only if

lim|x|→+∞
|x|√|cx|�x = 1,

i.e., if z < �, then (13.20) converges, and if z ≥ � but z �= �, then (13.20) diverges.

13.7 Ordinary and Partial Differential Equations

Differential equations, both ordinary and partial ones, often arise in formal kinetics
both as models and as mathematical tools.

13.7.1 Existence, Uniqueness, and Continuous Dependence

Theorem 13.42 (Picard–Lindelöf) Let M ∈ N, suppose T ⊂ R
M is an open

connected set, and let f ∈ C 1(T ,RM), x0 ∈ R
M. Then, there exists a positive real
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number τ such that the initial value problem

ẋ(t) = f(x(t)) x(0) = x0. (13.21)

has a unique solution defined (at least) on the interval ] − τ, τ [.

Definition 13.43 The solution of the initial value problem (13.21) is said to be the
maximal solution if there is no solution which is a proper extension of it.

Theorem 13.44 Under the notations of Theorem 13.42, the solution of the initial
value problem (13.21) continuously depends on the initial value x0.

Continuous dependence also holds with respect to arbitrary parameters. One can
even proceed a step further beyond continuity.

Theorem 13.45 Suppose that M,P ∈ N and that T ⊂ R
M × R

P is an open
connected set; furthermore, let f ∈ C 1(T ,RM), x0 ∈ R

M, and let the solution of
the initial value problem

ẋ(t,p) = f(x(t,p),p) x(0,p) = x0 (13.22)

be denoted by ξ . Then its derivative (the sensitivity matrix) defined by σ (t,p) :=
∂ξ(t,p)

∂p exists and fulfils the following variational or sensitivity equations around
the solution t �→ ξ (t,p):

dσ (t,p)
dt

= ∂1f(ξ(t,p),p)σ (t,p)+ ∂2f(ξ(t,p),p). (13.23)

Remark 13.46 Note that the sensitivity equations are linear equations in general
with time-varying (solution-dependent) coefficients. They form a closed system of
differential equations together with the original equations in (13.22). The number of
sensitivity equations being M×P may be quite large. We also remark that part of the
literature uses the term “variational equations” and the other part uses “sensitivity
equations”; therefore some students may not realize the equality of these seemingly
two objects.

Definition 13.47 Consider Eq. (13.21), and suppose a function ϕ ∈ C 1(T ,R) is
given. Then, the Lie derivative of ϕ with respect to the differential equation in
(13.21) is the function ϕ′f ∈ C (T ,R).

13.7.2 Long Time Behavior

Definition 13.48 Let M ∈ N, and let T ⊂ R
M be a domain, f ∈ C 1(T ,RM), x0 ∈

T ; furthermore let the solution of the initial value problem (13.21) be R
+ � t �→
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ϕ(t, x0) ∈ R
M (i.e., we suppose it is defined for all t ∈ R

+). Then, y ∈ R
M is

said to be an ω-limit point of the point x0 if there exists a sequence (tn)n∈N of real
numbers tending to +∞ such that lim ϕ(tn, x0) = y. The set of all ω-limit points is
the ω-limit set of the point x0.

Definition 13.49 For the function f : R −→ R, the Lyapunov exponent λ(f ) is
defined to be

λ(f ) := lim
t→+∞

1

t
ln(|f (t)|) (13.24)

if this (finite or infinite) limit exists.

13.7.3 Singular Perturbation

To get approximate description of enzyme reactions (as, e.g., in Chap. 9) or, more
generally, reactions taking place on two time scales, we need the following theorem
by Tikhonov (1952):

Consider the system of the differential equations

ẋ(t) = f (x(t), y(t)), μẏ(t) = g(x(t), y(t)) (13.25)

and the corresponding degenerate system

ẋ(t) = f (x(t), y(t)), y(t) = ϕ(x(t)) (13.26)

where ϕ gives the (unique, isolated) solution to 0 = g(x, y), i.e., 0 = g(x, ϕ(x).

Theorem 13.50 With the above notations, if μ→ 0, then the solution of the system
(13.25) tends to the solution of (13.26).

Equation (13.25) is said to be a singularly perturbed equation.

13.7.4 Ruling Out Periodicity

There are a few general statements, mainly for two-dimensional systems which give
either sufficient or necessary conditions of the existence of periodic solutions of
differential equations. It is almost a general rule that sufficient conditions need more
work to check. Useful references for the topics are (Farkas 1994; Perko 1996; Tóth
and Simon 2005/2009).

The Bendixson–Dulac criterion below gives a sufficient condition for the nonex-
istence of periodic solutions of two-dimensional differential equations. Recall that
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a set E ⊂ R
2 is simply connected if every simple closed curve in E can be

continuously shrunk in E to a point in E. (Such sets “contain no holes.”)

Theorem 13.51 (Bendixson–Dulac) Let M ⊂ R
2 be a connected open set, f ∈

C 1(M,R2), and let E ⊂ M be a simply connected open set, B ∈ C 1(E,R+), such
a function with which D := div(Bf) does not change sign and is zero at most at the
points of a curve. Then,

ẋ = f ◦ x (13.27)

has no periodic solution fully contained in the set E.

Remark 13.52

• The difficulty of using Theorem 13.51 is that one needs to find an appropriate
function B. Problem 8.19 shows an example.

• Bendixson theorem is the special case of the above theorem when B(x, y) = 1.
• A multidimensional generalization with reaction kinetic applications can be

found in Tóth (1987).

13.7.5 Ensuring Periodicity

Results concerning the existence of periodic solutions for differential equations
are collected in this subsection. The first one is the, rather intuitive, assertion
that bounded solutions not approaching stationary points must approach a periodic
solution. For a formal statement, we need the following definition.

Definition 13.53 Let K ⊂ R
2 be a connected open set, f ∈ C 1(K,R2), and let

ϕ(t, x0) be the solution of the Eq. (13.27) at time t . The set L ⊂ K is said to be
a positively invariant set if for all x0 ∈ L and for all t ∈ R

+, it is also true that
ϕ(t, x0) ∈ L.

Theorem 13.54 (Poincaré–Bendixson) If L ⊂ K is a bounded and closed
positively invariant set of the Eq. (13.27) containing no stationary point, then L

does contain a closed trajectory.

When applying this theorem, the main task is to construct the positively invariant
set. Problem 8.22 shows how to do this. The next theorem can be used in
higher dimensions as well, but it also requires more calculations. The book by
Guckenheimer and Holmes (1983) is a good reference for the topic. Let us start
with definitions.
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Let M ∈ N; f ∈ C 1(RM,RM), and consider the differential equation

ẋ = f ◦ x. (13.28)

Definition 13.55 An isolated closed trajectory of Eq. (13.28) is said to be a limit
cycle.

Isolated here means that none of the trajectories starting from its neighborhood are
closed.

Definition 13.56 Equation (13.28) is said to show conservative oscillation, if it
has constant amplitude periodic solutions depending on the initial condition.

Theorem 13.57 (Andronov–Hopf) Let J ⊂ R be an open interval, f = (f, g) ∈
C 1(R2 × J,R2), and consider the differential equation

ẋ(t) = f(x(t), p) (p ∈ J ). (13.29)

Suppose that there is a parameter p0 ∈ J such that for all p close enough to p0,

the equation has a single stationary point x∗(p), and suppose that the Jacobian
f′(x∗(p), p) has a pair of complex eigenvalues λ1,2(p) = α(p) ± iβ(p) so that
α(p0) = 0 and β(p0) > 0. Furthermore, let us suppose that α′(p) �= 0 in a small
neighborhood of p0 and that

a := 1

16
(∂3

1f + ∂1∂
2
2f + ∂2

1 ∂2g + ∂3
2g) (13.30)

+ 1

16β(p0)
(∂1∂2f (∂2

1f + ∂2
2f )− ∂1∂2g(∂

2
1g + ∂2

2g)− ∂2
1f ∂2

1g + ∂2
2f ∂2

2g

is different from zero at the stationary point. Then, as p passes increasingly through
p0, the stationary point changes its stability: it becomes unstable if a(x∗(p0)) < 0,
and a unique stable limit cycle emerges from it.

13.7.6 First-Order Quasilinear Partial Differential Equations

Here we give a very short summary of the usual solution method of quasilinear
partial differential equations (Tóth and Simon 2005/2009, Section 9.2).

Let M ∈ N be a natural number, Ω ⊂ R
M+1 be a domain (:=an open and

connected set), f ∈ C (Ω,RM), h ∈ C (Ω,R), and let us introduce the following
notation:

If,h := {u ⊂ Ω |u is a function, Du is a domain, u is continuously differentiable}.
(13.31)
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The notation u ⊂ Ω shows that u is considered to be a (special) relation, i.e., u ⊂ Ω

is equivalent to saying that ∀x ∈ Du : (x, u(x)) ∈ Ω = Df = Dh.

It is easy to find such a subset of Ω which is not a function, or which is a function
but which is not defined on an open and connected set, or which is not differentiable.
The differential equation below will not be defined for such entities.

For an arbitrary element u ∈ If,h, one can form the expressions f(x, u(x)) and
h(x, u(x)) for all x ∈ Du, because (x, u(x)) ∈ Ω. Furthermore, the functions Ω �
x �→ f(x, u(x)) and Ω � x �→ h(x, u(x)) (shortly, the functions f ◦ (id, u) and
h ◦ (id, u)) are continuous. Therefore, one can raise the question whether the scalar
product of the derivative function of u with the function f ◦ (id, u) is equal to the
function h◦(id, u). In other words, does it hold for all x ∈ Du that u′(x)f(x, u(x)) =
h(x, u(x))? To formulate it in a more concise way, does the function u obey (u′f) ◦
(id, u) = h ◦ (id, u)? Now we can introduce a formal definition.

Definition 13.58 The map

If,h � u �→ (u′f) ◦ (id, u) = h ◦ (id, u) ∈ {True, False} (13.32)

is said to be a first-order quasilinear partial differential equation. The elements
of the set (of functions) If,h for which the map has a True value are called
solutions.

The solution of a quasilinear partial differential equation can be reduced to the
solution of a system of ordinary differential equations.

Definition 13.59 The characteristic differential equation of the partial differen-
tial equation (13.32) is the system

˙̃x = f ◦ (x̃, ũ) ˙̃u = h ◦ (x̃, ũ). (13.33)

The trajectories of the characteristic differential equation are called characteristic
curves.

Remark 13.60 The solution to (13.33) itself is a parametrization of the characteris-
tic curve. These parametrizations of curves in R

M+1 will be treated in a decomposed
way, in the form of (r, γ ). Thus, the range of the parametrization is a subset of
R

M × R. As we will see below, the solutions to (13.32) are constructed from
characteristic curves.

Theorem 13.61 The function ϕ ∈ If,h is a solution to (13.32) if and only if for all
x ∈ Dϕ , there exists a characteristic curve (r, γ ) for which r(0) = x and γ = ϕ ◦ r.

Let us mention that we have spoken about existence and construction of the
solutions but not a single word about their uniqueness.
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13.8 Exercises and Problems

13.1 Prove Theorem 13.5.

(Solution: page 451)

13.2 Prove Theorem 13.6.

(Solution: page 452)

13.3 How would you realize the vector operations in Mathematica?

(Solution: page 452)

13.4 Prove that the Hadamard product is commutative, associative, and distributive
over addition.

(Solution: page 452)

13.5 Prove Theorem 13.19.

(Solution: page 453)

13.6 Let E be the incidence matrix of the directed graph (V ,E), and let N := |V |.
Prove that 1N belongs to the left null space of E.

(Solution: page 453)

13.7 Prove that the vertex sets of the connected components of a graph form a
partition of the vertex set of the graph. Prove the same for the strong components of
directed graphs.

(Solution: page 453)

13.8 Prove the statement of the Theorem 13.33.

(Solution: page 453)

13.9 Suppose a graph is given as G. How do you check using Mathematica that it
is transitive? If it is not, how do you get its transitive closure?
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(Solution: page 453)

13.10 Construct a directed graph for which the number T of ergodic components
is larger than the number L of weak components.

(Solution: page 454)

13.11 Show that boundedness, closedness, and convexity are all relevant conditions
of the Brouwer’s theorem 13.35.

(Solution: page 454)

13.12 Let K,M ∈ N, 0 < K < M, and let u1,u2, . . . ,uK ∈ R
M be independent

vectors, and suppose v ∈ R
M is such that u1,u2, . . . ,uK, v are dependent. Show

that v can be expressed as a linear combination of u1,u2, . . . ,uK.

(Solution: page 454)

13.13 Prove Theorem 13.39 (the generalized Higgins lemma).

(Solution: page 455)

13.14 Calculate the sensitivity equation (13.23) around a stationary point ξ∗(p) of
(13.22).

(Solution: page 455)

13.15 Solve the partial differential equation of the generating function of the simple

inflow (or the Poisson process) 0
k1−−→ X:

∂0G(t, z) = k1(z− 1)G(t, z) G(0, z) = zD.

(Solution: page 455)

13.16 Solve the partial differential equation of the generating function of the simple

linear autocatalysis (or linear birth process) X
k1−−→ 2 X:

∂0G(t, z) = k1(z
2 − z)G(t, z) G(0, z) = zD.

(Solution: page 455)
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14Solutions

14.1 Introduction

1.1 The references we provide may not be the best and the most recent ones, still
they may give some help to the interested reader.

As to molecular dynamics, a starting point might be Kresse and Hafner (1993).
Eyring (2004) and Truhlar and Garrett (1980) are classical papers on the

transition state theory. Szabó and Ostlund (1996) were published multiple times
since the very first version from 1982.

Chapter VIII of the old classics Bard (1974) gives a good introduction into the
statistical methods to evaluate kinetic experiments. Weise (2009) is a good modern
reference, freely available on the net. A large part of the recent book by Turányi and
Tomlin (2014) is also dedicated to this topic.

Epstein and Pojman (1998) and Scott (1991, 1993, 1994) are about exotic
phenomena in reaction kinetics.

Interested in more details of Chemical Reaction Network Theory? Then the best
starting point is the web site of Feinberg’s group: http://www.crnt.osu.edu/home.
Then, scholar.google.com might help find papers who cite (possibly develop) the
papers by F. J. M. Horn, R. Jackson, and M. Feinberg.

Érdi and Lente (2016) and Van Kampen (2006) contain historical data on
stochastic kinetics. Most people dealing with deterministic kinetics seem to be
working separately; this situation only starts changing recently; we are not aware
of a history of this topics.

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Tóth et al., Reaction Kinetics: Exercises, Programs and Theorems,
https://doi.org/10.1007/978-1-4939-8643-9_14
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14.2 Preparations

2.1 If one extends the concept to reactions having also negative stoichiometric
coefficients, then the induced kinetic differential equation of Example 2.13 is

ẋ = −k1xy + k2ay − 2k3x
2 + k4ax − 0.5k5xz

ẏ = −k1xy − k2ay + k6mz

ż = +2k4ax − k5xz− 2k6mz

However, this is the same as the induced kinetic differential equation of the model

X+ Y
k1−−→ 2 P Y+ A

k2−−→ X+ P 2 X
k3−−→ P+ A

X+ A
k4−−→ 2 X+ 2 Z X+ Z

k5−−→ 0.5 X+ A Z+M
2k6−−→ 0.5 Y

only containing fractional stoichiometric coefficients but no negative ones. Hint:
Use DeterministicModel of the package.

2.2 One possible way is to ask Google about

Mathematica program reaction kinetics.

One of the problems with this method is that the word Mathematica appears in
some Latin journal names, e.g., Acta Mathematica, Acta Mathematica Hungarica,
and Helvetica Mathematica Acta.

2.3 Please, do not stay there too long; you are allowed to return there from time to
time!

Here we give solutions to the toy problems, and at the end, we shall show how
the program works on a larger, real-life reaction.

2.4 According to the assumption, the reaction is given in the form

robertson = {A -> B, 2B -> B + C -> A + C},

the full form of which is

List[Rule[A, B],

Rule[Times[2, B], Rule[Plus[B, C], Plus[A, C]]]].

Then, Union[Level[robertson, {-1}]] gives you the set of the species
and those stoichiometric coefficients which are different from 1. To get rid of the
second class, we might proceed this way.
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species = Cases[Union[Level[robertson, {-1}]],

Except[_Integer]]

The number of species, M is the cardinality of the species set:

M = Length[species].

Actually, this is beneath the command

ReactionsData[robertson]["M", "species"].

2.5 According to the assumption, the reaction is given in the form

revlv = {X <=> 2X, X + Y <=> 2Y, Y <=> 0},

the full form of which is

List[

LeftRightArrow[X, Times[2, X]],

LeftRightArrow[Plus[X, Y], Times[2, Y]],

LeftRightArrow[Y,0]

].

Then,

revlv /.

LeftRightArrow[a_, b_] -> {Rule[a, b], Rule[b, a]}

// Flatten // Union

gives you the set of the reaction steps as

{0 -> Y, X -> 2X, 2X -> X, Y -> 0, 2Y -> X + Y, X + Y -> 2Y}.

The number of reaction steps is the cardinality of this set: R=Length[steps].
Actually, this is beneath the command

ReactionsData[revlv]["R", "reactionsteps"].

Finally, let us mention that ToReversible["Lotka-Volterra"] gives the
reversible version of the irreversible Lotka–Volterra reaction.

2.6 Let bimol = {A + B -> C}. Then,

{α} = Transpose[List[Coefficient[bimol[[1, 1]], #]&

/@ {A, B, C}]]

{β} = Transpose[List[Coefficient[bimol[[1, 2]], #]&

/@ {A, B, C}]].

Actually, this is beneath the command ReactionsData[bimol][α,β].
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2.7 Having seen the solution of previous problems, the present one is easy to solve.

ReactionsData[{E + S1 <=> ES1 <=> E*S1 -> E* + P1,

E* + S2 <=> E*S2 <=> ES2 -> E + P2][{γ }]

Then, the result is obtained by MatrixRank[%].

14.3 Graphs of Reactions

3.1 The example in Fig. 14.1 shows that the requirement is not equivalent to weak
reversibility.

3.2 The immediate solution with the program is to use

WeaklyReversibleQ[reaction],

and in this case, it is enough to pass reaction to the function; the user does not
have the task of creating the Feinberg–Horn–Jackson graph. If one wants to use the
built-in function TransitiveClosureGraph, then she/he has to write another
function, say, SymmetricGraphQ, which may be defined as follows:

SymmetricGraphQ[g_] :=

(a = AdjacencyGraph[g]; a == Transpose[a])

3.3 One possible solution is that one constructs the Feinberg–Horn–Jackson graph:
rg = ReactionsData[{"Robertson"}]["fhjgraphedges"]. Next,

TableForm[IncidenceMatrix[rg],

TableHeadings -> {VertexList[rg], EdgeList[rg]},

TableAlignments -> Right]

does the job.

3.4

1. In the case of the Michaelis–Menten reaction, one has N = 3, L = 1, S = 2;
thus δ = 3− 1− 2 = 0.

A

B

C D

F

E

Fig. 14.1 A Feinberg–Horn–Jackson graph with all the vertices on at least one directed cycle
which, however, is not weakly reversible
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2. In the case of the Lotka–Volterra reaction, one has N = 6, L = 3, S = 2; thus
δ = 6 − 3 − 2 = 1. Note that the same result is obtained if the reverse reaction
step is added to some or all the reactions steps.

3. In the case of the Robertson reaction, one has N = 5, L = 2, S = 2; thus
δ = 5− 2− 2 = 1.

This is how one gets the above results using the line:

Map[ReactionsData[#]["deficiency"]&,

{{"Michaelis-Menten"}, {"Robertson"}}]

In the case of the Lotka–Volterra reaction, one should not forget to specify the
external species as follows:

ReactionsData[{"Lotka-Volterra"}, {"A", "B"}]

["deficiency"]

3.5 There are two edges between X and X −−→ 2 X via the complexes X and 2 X
and also between Y and X + Y −−→ 2 Y via the complexes X + Y and 2 Y.

3.6

1. If the number of reaction steps R is 1, then one has N = 2, L = 1, S = 1; thus
δ = 2− 1− 1 = 0.

2. Let the reaction be a compartmental system, and consider the lth linkage class.
Let the number of complex vectors in this linkage class be Nl, as they are
independent, except possibly the zero vector, Sl = Nl − 1; therefore δl =
Nl−1−Sl. For the whole compartmental system, one has N =∑Nl, S =∑ Sl;
therefore

∑
Nl − L−∑ Sl =∑ (Nl − 1− Sl) = 0.

3. The argument above holds for reactions where the complex vectors (except
possibly the zero vector) are independent, as in the case of generalized com-
partmental systems in the narrow sense or in the case when the complexes have
no common species (Siegel and Chen 1995, Lemma 5). Example 3.14 shows that
the statement does not hold for compartmental systems in the wide sense.

3.7

1. A one species reaction with positive deficiency is 0 −−→ X −−→ 2 X.
2. A first-order reaction with positive deficiency is X −−→ Z + X Y −−→ Z + Y

(N = 4, L = 2, S = 1, δ = 1).
3. A first-order reaction which is not a compartmental system still having zero

deficiency is X −−→ 2 X.

When other authors speak of first-order reactions, they actually mean compartmen-
tal systems, i.e., systems where all the complexes are not longer than one, not only
the reactant ones. A relevant difference is shown by the first example.
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In all the problems below, suppose a reaction is given in the form of a list of
irreversible steps as reaction, and try to find an algorithm and a Mathematica
code to solve the problems.

3.8

1. The set of complexes are

complexes[reaction_] := Union[Flatten[

Map[ReplaceAll[h_[x___] -> List[x]], reaction]]],

and their number is N = Length[%].
2. A nice form (although different from the one the program provides) of the

Feinberg–Horn–Jackson graph of the Lotka–Volterra reaction is obtained by

GraphPlot[

{"A" + "X" -> 2"X", "X" + "Y" -> 2"Y",

"Y" -> "B"}, DirectedEdges -> True,

VertexLabeling -> True].

3. We may assume that the list of species and that of reaction steps are known. A
graph has to be constructed with (weighted) directed edges using the condition if
a species is needed to or is produced in a given reaction step. This is a way how
to draw edges corresponding to the stoichiometric coefficients in the reactant
complexes.

Graph[DeleteCases[Flatten[Table[If[{α}[[m, r]] != 0,

Labeled[DirectedEdge[X[m], r], {α}[[m, r]]]],

{m, M}, {r, R}]], Null], VertexLabels -> "Name"]

Complete the code by adding the edges corresponding to the stoichiometric
coefficients in the product complexes.

4. The number of connected components L of the Feinberg–Horn–Jackson graph
may be calculated by

Length @ WeaklyConnectedComponents @ fhj,

if fhj is the Feinberg–Horn–Jackson graph of the reaction, e.g.,

Length[WeaklyConnectedComponents[Graph[

{"A" + "X" -> 2"X", "X" + "Y"-> 2"Y",

"B" -> "Y"}]]].

Alternatively, one can use our functions.

ReactionsData[

{"A" + "X" -> 2"X", "X" + "Y" -> 2"Y",

"B" -> "Y"}, {"A", "B"}]

["fhjweaklyconnectedcomponents"]
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The results are different, because our function takes into consideration the
external species.

5. To calculate the deficiency, we also need the rank of the matrix γ of the reaction
step vectors, which is MatrixRank[γ].

3.9 One possibility might be

glyoxalateshort =

{oxaloacetate + "acetyl-CoA" <=> citrate

<=> isocitrate <=> succinate + glyoxylate,

glyoxylate + "acetyl-CoA" <=> malate

<=> oxaloacetate}

If one uses appropriate options such as

ShowVolpertGraph[glyoxalateshort,

Numbered -> True, ImageSize -> 800

GraphLayout -> "CircularEmbedding"],

then Fig. 14.2 is obtained, which is similar to textbook figures.

3.10 In this case, M = {Cl2,Cl∗,CH4,
∗CH3,HCl,CH3Cl}. Then, in the first step,

species belonging to the initial set M0 := {Cl2,CH4} will be assigned the index 0,
and also reaction steps which can take place only using reactants from the set of the
initial species, thus, R0 := {Cl2 −−→ 2 Cl∗} receives also index 0. Next, species
being produced from reaction steps with index 0, i.e., species M1 := {Cl∗} will
receive index 1, and also reaction steps which can take place only using reactants

citrate

isocitrate

succinateglyoxylate

acetyl–CoA

malate

2

1

8

10

9

7

3

5

6

4

oxaloacetate

Fig. 14.2 A simplified version of the glyoxylate cycle as shown in textbooks on biochemistry
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with indices 0 or 1 will receive index 1. This means that the step

R1 := {CH4 + Cl∗ −−→ ∗CH3 + HCl}

receives index 1 as well. Next, species M2 := {∗CH3,HCl} receive index 2 as well.
Finally, reaction step R2 := {∗CH3 + Cl2 −−→ CH3Cl + Cl∗} receives index 2 as
well, and species M3 := {CH3Cl} receives index 3. There is no species or reaction
step with index +∞. Should you use the program, you would perhaps produce a
nice table by asking this:

VolpertIndexing[

{Cl2 -> 2Cl*, CH4 + Cl* -> *CH3 + HCl,

*CH3 + Cl2 -> CH3Cl + Cl*},

Cl2, CH4}, Verbose -> True]

3.11 As above, again M = {Cl2,Cl∗,CH4,
∗CH3,HCl,CH3Cl}. Then, in the first

step, species belonging to the ‘M0 := {Cl∗,CH4} will be assigned the zero index,
and also reaction steps which can take place only using reactants from the set of
the initial species, thus, R0 := {CH4 + Cl∗ −−→ ∗CH3 + HCl} receives also zero
index. Next, species being produced from reaction steps with index zero, i.e., species
M1 := {∗CH3,HCl}, will receive index 1, and also reaction steps which can take
place only using reactants with indices 0 or 1 would receive index 1. But there
is no such reaction step; the process of indexing stops; all the remaining species
and reaction steps receive the index +∞ : M+∞ := {Cl2,CH3Cl} R+∞ :=
{Cl2 −−→ 2 Cl∗, ∗CH3 + Cl2 −−→ CH3Cl+ Cl∗}.

3.12 A possible cycle is CO2-L3-NaHCO3-L2-CO2, showing that it is possible that
the deficiency of a reaction is zero; still there is a cycle in its S–C–L graph.

3.13 The S–C–L graph of the reaction X −−→ Y, 2 Y −−→ 2 X consists of a single
component, whereas the number of its linkage classes is 2.

3.14 As cyclicity of the Feinberg–Horn–Jackson graph implies the cyclicity of the
Volpert graph one should look for a reaction with acyclic Feinberg–Horn–Jackson
graph. It is easy to verify that the simple example X −−→ Y X + Y −−→ Z will
do. If you need a support, use

AcyclicGraphQ[Graph[{X -> Y, X + Y -> Z}]].

14.4 Mass Conservation

4.1 The reaction A −−⇀↽−− B is mass producing, but not strongly so. At the same
time, it is mass consuming, but not strongly so.
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4.2 A reaction is strongly mass producing and strongly mass consuming if there are
two different vectors ρ1 and ρ2 satisfying (4.5) and (4.7), respectively. The reaction
A −−→ B serves as a simple example that this is possible. This reaction is strongly
mass producing with the vector ρ1 = (1, 2)	 and strongly mass consuming with
ρ2 = (2, 1)	. More generally, Theorem 4.16 guarantees that if a reaction with
an acyclic Volpert graph does not have the empty complex among its reactant or
product complexes, then it is strongly mass producing and strongly mass consuming
at the same time.

4.3 A simple implementation may be the following:

MQ[gamma_,m_,r_] := Quiet[First[Maximize[{lambda,

Transpose[gamma].Array[rho[#]&, m]}]

== ConstantArray[0, r],

Thread[Array[rho[#]&, m]

>= lambda ConstantArray[1, m]],

Array[rho[#]&, m].ConstantArray[1, m]

== 1},

Join[Array[rho[#]&, m], {lambda}]]] > 0];

Both reactions are mass conserving.
The number of species is 9 (respectively, 5), rank(γ ) is 6 (respectively, 3), and the

number of independent mass conservation relations is 9− 6 = 3 (respectively, 5 −
3 = 2) as stated. They can be obtained using MassConservationRelations.

An alternative solution follows.

FindInstance[Join[Thread[Array[ρ[#]&, 9].ReactionsData[

{A -> 2M + N2, A + M -> CH4 + B,

2M -> C2H6, M + B -> MED,

M + A -> C, M + C -> TMH}

][γ] == 0],

Thread[Array[ρ[#]&, 9] > 0]],

Array[ρ[#]&, 9], Integers],

and similarly

FindInstance[Join[Thread[Array[ρ[#]&, 5].ReactionsData[

{A + B <=> C -> 2D <=> B + E}][γ] == 0],

Thread[Array[ρ[#]&, 5] > 0]],

Array[ρ[#]&, 5], Integers].

In both cases, one obtains a positive vector of masses.

4.4

1. Elementary row operations do not change the range space of a matrix; hence
pivoting on γ	 does not change the consistency of the system γ	ρ = 0.
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2. First, we can simplify the calculations by making the steps irreversible, using
Theorem 4.18. Pivoting on the γ	 of A −−→ B −−→ C −−→ A + 2 D, we get

γ	 =
⎡

⎣
−1 1 0 0

0 −1 1 0
1 0 −1 2

⎤

⎦ ∼
⎡

⎣
1 −1 0 0
0 −1 1 0
0 1 −1 2

⎤

⎦ ∼
⎡

⎣
1 −1 0 0
0 1 −1 0
0 0 0 2

⎤

⎦ ,

and before pivoting on the third row, we find that it violates the condition.
3. Pivoting on the γ	 of A −−→ B + D, C −−→ A + D, C −−→ D, we get

γ	 =
⎡

⎣
−1 1 0 1

1 0 −1 1
0 0 −1 1

⎤

⎦ ∼
⎡

⎣
1 −1 0 −1
0 1 −1 2
0 0 −1 1

⎤

⎦ ∼
⎡

⎣
1 −1 0 −1
0 1 −1 2
0 0 1 −1

⎤

⎦ ,

without encountering any violating rows. Note however that the reduced row
echelon form of this matrix is

γ	 ∼
⎡

⎣
1 0 0 0
0 1 0 1
0 0 1 −1

⎤

⎦ ,

with two violating rows, which proves that the reaction is not mass conserving.
Nevertheless, even this stronger necessary condition is insufficient, as the
example

γ	 =
⎡

⎣
1 0 0 −1 1 1
0 1 0 1 −1 1
0 0 1 1 1 −1

⎤

⎦ ,

shows. The corresponding reaction passes the test because γ	 is already in
reduced row echelon form, but it is not mass conserving, since the rows of γ	

sum to
[
1 1 1 1 1 1

]	
.

4.5 The scalar inequality

ρ	γ (·, r) = 0 (14.1)

can have at most M − 1 linearly independent solution for all r ∈ R; therefore for
all r ∈ R, there exists ρr ∈ R

M such that ρ	r γ (·, r) < 0 holds. Let us define with
arbitrary positive constants cr the vector ρ :=∑r∈R crρr ∈ R

M. This vector does
fulfill (4.18).
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14.5 Decomposition of Reactions

5.1 Since in this case again d = [
3 1
]	

, the product complexes are the same
as those given in the Example 5.3. The only step without direct catalysis is H +
H2O −−→ OH + H2.

5.2 The columns of a matrix form a minimal linearly dependent set if and only if
its null space is one dimensional, spanned by a vector with all nonzero components.
A one-line implementation that avoids the explicit use of local variables may be the
following (MLD stands for minimal linearly dependent):

MLD[M_] := Length[#]==1 && Min[Abs[#[[1]]]]>0 &

[NullSpace[Transpose[M]]]

5.3 A simple implementation might be the following:

DependenceType[A_, set_] :=

Switch[NullSpace[Transpose[A[[set]]]],

{ }, "I",

_?(Length[#] >= 2 ‖ Min[Abs[#]] == 0 &), "D",

_, "S"]

MDSIter[{{set_, type : Alternatives["U", "S", "I"]},

A_, m_, sol_}/; set === Range[First[set], m]]:=

{{set, type}, A, m, sol}

MDSIter[{{set_, "D"}, A_, m_, sol_}

/; set === Range[First[set], m]]:=

{{Delete[set, -2], "U"}, A, m, sol}

MDSIter[{{{T___, t_, m_}, type_}, A_, m_, sol_}]:=

{{{T, t+1}, "U"}, A, m, sol}

MDSIter[{{{T___, t_}, "I"}, A_, m_, sol_} /; t < m]:=

{{{T, t, t+1}, "U"}, A, m, sol}

MDSIter[{{{T___, t_}, "D"}, A_, m_, sol_} /; t < m]:=

{{{T, t+1}, "U"}, A, m, sol}

MDSIter[{{{T___, t_}, "S"}, A_, m_, sol_} /; t < m]:=

{{{T, t+1}, "U"}, A, m, sol}

MDSIter[{{set_, "U"}, A_, m_, sol_}]:=

(t = DependenceType[A, set]; {{set, t}, A, m,

If[t === "S", Append[sol, set], sol]})

MinimalDependentSubsets[A_] := Last[FixedPoint[MDSIter,

{{{1}, "U"}, A, Length[A] + 1, {}}]]

The algorithm maintains a data structure of the form

{{set, type}, A, m, sol},
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where A is the matrix whose rows are the vectors of interest (their number is m-1),
sol is a list containing all minimal dependent subsets found so far, and set is the
index set of the next subset to be tested. The value of type is

• "S" (for “simplex”) if set is known to be a minimal linearly dependent set,
• "I" if it is known to be independent,
• "D" if it is known to be linearly dependent but not minimal,
• is "U" for “unknown,” if it has not been tested yet.

A linear algebraic test to decide a set’s type is implemented in DependenceType.
The function MinimalDependentSubsets starts out with the singleton "1"
as the first set to be tested. Its type is "I" and naturally sol={}. The function
iteratively changes set by adding or removing a vector whenever it is found to be
independent or non-minimally dependent, until the last set is reached.

5.4 There are 213 minimally dependent subsets among the given species, as the
result of

Length[MinimalDependentSubsets[Most /@ Transpose[

ToAtomMatrix[szalkai][[2]]]]]

is 213, where szalkai is the list of the reaction steps given.

5.5 The Volpert indexing algorithm terminates in three iterations. The indices of
the species are 0, 0, 1, 1, 0, 2, the indices of the reaction steps are 0, 1, 1, 0, 1, 2.
Each species and reaction step has a finite index; therefore none of them can be
eliminated. Note that the atomic structure of the species plays no role here. Here is
how you get the result with the program.

VolpertIndexing[

{"H" + "O2" -> "O" + "OH", "O" + "H2" -> "H" + "OH",

"OH" + "H2" -> "H" + "H2O", 2 "H" -> "H2",

"H" + "OH" -> "H2O", "H2O" -> "H" + "OH"},

{"H", "H2", "O2"}]

5.6 A possible solution follows.

MyOmittable1[gamma_, b_] :=

Block[{m, r, zs, optval, optz},

{m, r} = Dimensions[gamma];

zs = Array[z, r];

1 - FixedPoint[Function[χ,

{optval, optz} = Minimize[{χ.zs,

And @@ Thread[gamma.zs == b] &&

And @@ Thread[zs >= 0] && χ.zs >= 1}, zs];

χ (1 - Boole[Thread[(zs /. optz)==0]])],

Array[1 &, r]]]
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5.7 A covering decomposition set corresponding to the entire reaction, that is,
R ′ = R, is a set of decompositions that contains every reaction step that may
take part in a decomposition. Hence, the omittable reaction steps are those reaction
steps that are not contained in any of the decompositions returned by the function
CoveringDecompositionSet:

MyOmittable2[gamma_, b_] :=

Complement[Range[Length[First[gamma]]],

Union[Last /@ Position[CoveringDecompositionSet

[b, gamma], _?Positive]]]

5.8 Using the notations of Sect. 5.2.2, if z is the vector corresponding to a decom-
position, then

∑R
i=1 zi is the number of reaction steps. Furthermore, z satisfies (5.2).

Hence, the optimal solution of the linear program minz∈RR {∑R
i=1 zi | γ z = b, z ≥

0} is a lower bound on the number of reaction steps in the decompositions of an
overall reaction. This lower bound is exact if the optimal solution to this problem is
an integer vector.

14.6 The Induced Kinetic Differential Equation

6.1 Let us start from Eq. (6.8). The factor k  cα is the componentwise product
of the vectors k and cα . The power cα is a vector of the rth component which
is
∏M

p=1 cp(t)
α(p,r); thus the rth component of the Hadamard–Schur product of

these two factors is kr
∏M

p=1 cp(t)
α(p,r). If the obtained Hadamard–Schur product

is multiplied by the matrix γ , one obviously gets the same expression as in Eq. (6.7).

6.2 The additivity assumption means that the following equations should hold

w(x1 + x2, y, z) = w(x1, y, z)+w(x2, y, z) (14.2)

w(x, y1 + y2, z) = w(x, y1, z)+w(x, y2, z) (14.3)

w(x, y, z1 + z2) = w(x, y, z1)+ w(x, y, z2). (14.4)

These equations imply that

w(x, y, z) = k(y, z)x = l(z, x)y = m(x, y)z.

Using (14.3), one can show that k(y, z) = κ(z)y. Using (14.4), one can show that
κ(z) = λz; thus w(x, y, z) = λxyz with λ > 0, if one should like to avoid the
three-variable zero function.

6.3 In the case of mass action kinetics, the reaction rate of the reaction step r

in Eq. (2.1) at the concentration vector c of the species being krcα(·,r) is positive
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if all the components cm of the vector c corresponding to the indices for which
α(m, r) > 0 is positive. If, however, any of the components cm of the vector c
corresponding to the indices for which α(m, r) > 0, is zero, then the product is
zero.

6.4 We give a general solution but illustrate it on the example of the Lotka–Volterra
reaction. One needs the complex vectors and the reaction steps.

{Y, r} = ReactionsData[{"Lotka-Volterra"},

{"A", "B"}]["complexes", "fhjgraphedges"]

Next, compare the columns of the complex matrix with the reactant and complex
vectors, and form a nice table.

TableForm[Boole[Outer[SameQ, Y, Last /@ r]]

-Boole[Outer[SameQ, Y, First /@ r]],

TableHeadings -> {Y, r},

TableAlignments -> {Right, Top}]

Using finally TeXForm[%] can be used to give a table, now without table headings.

−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 0

6.5 First of all:

Y ∈ N
M×N, E ∈ {−1, 0, 1}N×R, γ ∈ Z

M×R.

Also, (YE)mr = ∑N
n=1 YmnEnr , and this sum is just the stoichiometric coefficient

γ (m, r).

6.6 One has N = 3 complexes in this reaction: C = {E+ S,C,E + P} which can
be obtained in the following way.

Y = ReactionsData[{"Michaelis-Menten"}]["complexes"]

The reaction steps are as follows.

r = ReactionsData[{"Michaelis-Menten"}]["fhjgraphedges"]
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Now let us ask if a complex is the reactant or product complex of a reaction step.

gg[a_, b_] := Which[a===b[[1]], -1, a===b[[2]], 1, True, 0]

TableForm[Outer[gg, Y, r],

TableHeadings -> {Y, r},

TableAlignments -> {Right, Top}]

And finally, the pure table (without headings) is

⎡

⎣
−1 1 0

1 −1 −1
0 0 1

⎤

⎦ .

6.7 The reaction steps of the Mole reaction are

mole = GetReaction["Mole"]

Let us collect the complex vectors, and calculate the “pure monomials”

Times @@@ (Power[{x, y}, #]& /@

Union @ Flatten[Transpose /@ ReactionsData[mole]

[{α}, {β}], 1])

The result will be
{
1, y, x, xy, x2y2

}
, as expected.

6.8 Starting from the definition of the complex formation vector, one gets

Yg(c) = Y(R(c)− R	(c))1N

=
∑

n∈N
yn
∑

q∈N
(rnq(c)− rqn(c))

=
∑

n∈N

∑

q∈N
rnq(c)yn −

∑

n∈N

∑

q∈N
ynrqn(c)

=
∑

n∈N

∑

q∈N
rnq(c)yn −

∑

n∈N

∑

q∈N
yqrnq(c)

=
∑

n∈N

∑

q∈N
rnq(c)(yn − yq)

as stated. The equivalence of Eqs. (6.22) and (6.24) can be seen similarly.

6.9 In the general case, we can use the final formula (6.32):

{γ }.DiagonalMatrix[Times @@ c^{α}]

where α and γ can be calculated using ReactionsData. Multiply this matrix
with the vector of reaction rate coefficients to get the right-hand side of the induced
kinetic differential equation of any reaction.
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6.10 As the induced kinetic differential equation of the reaction in Fig. 6.5 is

ẋ = x(−a − bx + cy) ẏ = y(−e− cx − fy)

one can easily find the quantities in the definition of the generalized Lotka–Volterra
system.

6.11 An example which leads to a Kolmogorov system which is not of the general-
ized Lotka–Volterra form is given by the induced kinetic differential equation of the

reaction 2 X + Y
1−−→ X + 2 Y which is ẋ = −x2y = x(−xy) ẏ = x2y = y(xy),

a Kolmogorov system, and not a generalized Lotka–Volterra system. Such a second-
order reaction does not exists, why?

6.12 The solution to the induced kinetic differential equation ȧ = −a, ḃ = a −
b, ċ = b of the reaction A

1−−→ B
1−−→ C with the initial condition a(0) =

a0, b(0) = b0, c(0) = c0 is

a(t) = a0e
−t ,

b(t) = e−t (a0t + b0),

c(t) = a0 + b0 + c0 − e−t (a0t + a0 + b0) (t ∈ R
+).

This can be obtained using

ReplaceAll @@ Concentrations[{"A" -> "B -> "C"}, {1, 1},

{a0, b0, c0}, {a, b, c}, t].

If a1 > a0, b1 > b0, c1 > c0, then one has

0 < (a1 − a0)e
−t ,

0 < e−t ((a1 − a0)t + b1 − b0),

0 < (a1 − a0)(1− e−t (1+ t))+ (b1 − b0)(1− e−t )+ c1 − c0 (t ∈ R
+),

which shows that the given induced kinetic differential equation is a monotone
system.

6.13 The trajectories of the Lotka–Volterra reaction go along a closed curve
determined by the initial condition. Taking another initial condition which is larger
componentwise, one gets trajectories going along another closed curve which
contains the previous one; therefore the differences of the coordinate functions of
the solutions will not be of the constant sign: Actually they are periodic functions
taking on both negative and positive values; thus the Lotka–Volterra reaction is not
a monotone system; see Figs. 14.3 and 14.4. Is the reaction monotone with respect
to any other cone?
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Fig. 14.3 Trajectories of the irreversible Lotka–Volterra model with k1 = 1, k2 = 1, k3 = 1 and
with the initial conditions x(0) = 2, y(0) = 3 and x(0) = 4, y(0) = 5, respectively
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Fig. 14.4 Concentration differences in the irreversible Lotka–Volterra model with k1 = 1, k2 =
1, k3 = 1 when started from the initial conditions x(0) = 2, y(0) = 3 and x(0) = 4, y(0) = 5,
respectively

6.14 It follows from the hypothesis that f (x, y) =∑∞
n=0 an(y)x

n, where, for each
y, an(y) = 0 for all but finitely many n. Since R is not a countable union of finite
sets, there exists an integer N such that the set F := {y | an(y) = 0 for all n>N}
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is infinite. Denoting by ϕ1 the restriction of f to R× F, we have

ϕ1(x, y) =
N∑

n=0

an(y)x
n, (x, y) ∈ R× F. (14.5)

Choosing N + 1 distinct values x0, x1, . . . , xN , substituting them for x in (14.5),
and solving the resulting system of equations, we obtain

an(y) =
N∑

j=0

cjnϕ1(xj , y) (y ∈ F, n = 0, . . . , N), (14.6)

where the cjn are real constants. Thus, the function g, defined on R× R by

g(x, y) :=
N∑

n=0

N∑

j=0

cjnϕ1(xj , y)x
n, (14.7)

is a polynomial. Moreover, (14.5) and (14.6) show that for each x ′ ∈ R, the
polynomial f (x ′, y) − g(x ′, y) has a zero at each point of F and hence is equal
to zero for all y. For essentially the same proof of the general case, see Carroll
(1961).

6.15 The induced kinetic differential equation of the autocatalytic reaction 2 X
1−−→

3 X is ẋ = x2. Let us look for its solution in the form of a Taylor series:
x(t) =∑+∞

q=0 cq
tq

q! . Upon substitution this form into the induced kinetic differential

equation one gets for the coefficients cq = qc
q+1
0 (q = 1, 2, . . . ). Taking into the

consideration the initial condition x(0) = x0, one obtains

x(t) = c0 + c1t + c2
t2

2! + c3
t3

3! + . . .

= c0(1+ c0t + (c0t)
2 + (c0t)

3 + . . . )

= c0

1− c0t
= x0

1− x0t
.

The series is convergent for t < x0. This is the same result what we would obtain
by the usual method of integration or by using Concentrations. We emphasize
that although the method works in full generality, the domain of convergence should
be determined individually.

We show a solution by the program (Mathematica, not ReactionKinetics)
because the idea can be used in more complicated (nonpolynomial) cases too. First,
let x[t_] := Sum[ck tk/k!, {k, 0, 5}] + O[t]6. Then the coeffi-
cients can be obtained this way.

First @ Solve @ LogicalExpand[x’[t] == x[t]^2].
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6.16 Let z be defined by ż = 0 z(0) = 1, and let us introduce the following
variables:

ω0,0 := z ω0,1 := y ω1,0 := x ω1,1 := xy ω2,0 := x2.

Then we have the following homogeneous quadratic equations in the new variables:

ω̇0,0 = 0

ω̇0,1 = Bω1,0ω0,0 − ω2,0ω0,1

ω̇1,0 = Aω2
0,0 + ω1,0ω1,1 − (B + 1)ω0,0ω1,0

ω̇1,1 = Aω0,0ω0,1 + ω2
1,1 − (B + 1)ω0,0ω1,1

ω̇2,0 = 2Aω0,0ω1,0 + 2ω1,1ω2,0 − 2(B + 1)ω0,0ω2,0.

6.17 Let M ∈ N, P ∈ N0 and suppose the polynomial differential equation

ẋm =
∑

|α|≤P

am,αxα (m ∈M )

(where α ∈ N
M
0 , |α| :=∑m∈M αm) contains no negative cross effect, which means

that

α = [α1 α2 · · · αm−1 0 αm+1 · · · αM

]	
implies am,α ≥ 0. (14.8)

Let us introduce the following new variables

ωβ := xβ (β ∈ N
M
0 , |β| ≤ P − 1).

Then,

ω̇β =
∑

m∈M
βmxβ−em ∑

|α|≤P

am,αxα,

where em is the mth element of the standard basis.
If αm = 0, then am,α ≥ 0 because of (14.8), and then the mth term can be

replaced by the quadratic terms βm

∑
|α|≤P am,αωαωβ−em. As all the coefficients

here are nonnegative, the presence of negative cross effect is excluded. (Terms
where βm = 0 are missing, therefore the problem that ωβ−em is undefined causes no
problem.)

If αm > 0, then one can have the quadratic terms βm

∑
|α|≤P am,αωα−emωβ , and

as these terms form part of the right-hand side of ω̇β , and ωβ is present in each term,
the presence of negative cross effect is excluded again.
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Fig. 14.5 The flux of OH in
the reaction (4.13)

6.18 You may not know the name of the function to be used, find it this way:
?*Atom*. Then the solution is as follows.

AtomConservingQ[{"HCOOH"+"CH3OH" -> "HCOOCH3"+"H2O"}],

giving the answer True.

6.19 The reaction (4.13) is simple enough to set up the (generalized) atomic matrix
of the species as follows:

Z =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

HCOOH CH3OH HCOOCH3 H2O
H 1 0 1 1
O 0 0 1 0

CO 1 0 1 0
OH 1 1 0 1
CH3 0 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

. (14.9)

The flux of the hydroxyl can be seen on the very simple Fig. 14.5.

6.20 As all the steps are reversible, we have two choices: We can either construct
the flux graph with all the fluxes, or we can only draw a graph with net fluxes.
Start with the first one. A straightforward calculation gives the flux graphs for the
hydrogen and the oxygen atoms, respectively. Now instead of the two-way arrow
connecting H and OH, we draw a single arrow pointing from H to OH if W :=
(w1(c(t)) − w−1(c(t)))/2 + (w−3(c(t)) − w3(c(t)))/6 is positive with the weight
W, and an arrow in the opposite direction if the difference is negative, then the
weight will be −W. Thus, it will be a dynamic figure, changing with time, best
realized using Manipulate (Fig. 14.6).

6.21 The three complexes (assuming mass action kinetics) can only be 2 X, X + Y
and 2 Y. Construct the induced kinetic differential equation of the reversible triangle
reaction with these complexes as vertices, and compare the coefficients with those
of

x ′ = ay2 − bxy, y ′ = bx2 − axy (14.10)

an immediate contradiction arises with the fact that a, b, c > 0 should hold.

6.22 The usual model to describe this process is

ċ(t) = k0e
− A

RT (t) c(t) Ṫ (t) = −k0e
− A

RT c(t)Q
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Fig. 14.6 The flux of H and O atoms in the reaction (6.60)

with Q < 0. This system of equations can be solved usingParametricNDSolve:

ndstemp = ParametricNDSolve[

{c’[t] == E^{-1000/T[t]}c[t],

T’[t] == -Q E^{-1000/T[t]}c[t],

c[0] == 1, T[0] == 300}, {c, T}, {t, 0, 1000},

{Q}]

This is how, e.g., the concentration vs. time function can be plotted.

temperatureautoc = Plot[Evaluate[c[-100][t]/.ndstemp],

{t, 0, 50}, PlotStyle -> Directive[{Thick, Red}],

PlotRange -> All, AxesLabel ->

{Style["t", Italic, Bold, 16],

Style["c(t)", Italic, Bold, 16]},

PlotLegends -> Placed[{"Q = -100}, Above]]

And the result can be seen in Fig. 14.7.
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Fig. 14.7 The change of concentration and temperature in a reaction described by (6.57)–(6.58)
with k0 = R = 1, A = 1000, a = 0, T (0) = 300, c(0) = 1, and Q = −100 and Q = 600

6.23 The equation for the temperature shows that its derivative is never zero;
therefore the function T is strictly monotonous; thus it is invertible. Let us define
the function C by the formula C := c ◦ T −1; then one has C′ ◦ T Ṫ = ċ, or

C′(T ) = −b.

This gives the simple relation

C(T ) = −b(T − T0)+ c0, (14.11)

if the initial conditions are c(0) = c0 and T (0) = T0. To get an explicit form for the
function T , let us substitute (14.11) into the equation for T to get

Ṫ = e−
a
T (−b(T − T0)+ c0)

d .

This equation has the solution for d = 1

T (t) = ϕ−1

⎛

⎜
⎝−t −

Ei( a
T0
)− e

ab
bT0+c0 Ei

(
a
(

1
T0
− b

bT0+c0

))

b

⎞

⎟
⎠

with

ϕ(ϑ) :=
−Ei( a

ϑ
)+ e

ab
bT0+c0) Ei

(
a
(

1
ϑ
− b

bT0+c0

))

b
,

where Ei(z) := ∫ +∞
−z

e−t

t
dt . Let us remark that the function T �→ C(T ) can be

calculated even in the generalized Arrhenius case for decompositions of any order;
however, we do not see how the individual functions c and T can symbolically
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be determined in these more complicated cases. There is no hindrance to calculate
anything numerically.

14.7 Stationary Points

7.1 The result of

gb = GroebnerBasis[

{x(1-2x+3y+z), y(1+3x-2y+z), {z(2+y-z)}, {x, y, z}]

being

{
2z4 − 15z3 + 27z2 − 10z, yz− z2 + 2z,

2y3 + y2 − y − 4z2 + 8z, 3xz2 − 6xz− z3 + 7z2 − 10z,

3xy − 2y2 + y + z2 − 2z, 2x2 − xz− x − 2y2 + y + z2 − 2z
}
,

one can solve 2z4 − 15z3 + 27z2 − 10z = 0 for z to get z1 = 0, z2 = 1/2, z3 =
2, z4 = 5; then substitute the solutions into yz − z2 + 2z = 0 to find the values
of y1 = −2, y2 = −3/2, y3 = 0, y4 = 0; and finally one gets x1 = −3/2, x2 =
−1, x3 = 0, x4 = 1/2, x5 = 3/2; thus the solutions are

x∗ y∗ z∗
− 3

2 − 3
2

1
2

−1 −1 0
0 0 2
0 1

2 0
0 3 5
1
2 0 0
3
2 0 2
0 0 0

.

7.2 . First, a mass-consuming reaction

∑

m∈M
α(m, r)X(m)→

∑

m∈M
β(m, r)X(m) (r ∈ R)

can be transformed into a stoichiometrically mass conserving one by adding a
single dummy species, say Y, in the following way. Find a vector ρ showing that
the reaction is mass consuming. This means that for some reaction steps, one has∑

m∈M α(m, r)ρ(m) >
∑

m∈M β(m, r)ρ(m). Let us add as many molecules of
Y to the right sides of these reaction steps as missing from the equality, i.e., let
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the stoichiometric coefficient of the dummy species on the right-hand side of the
reaction step be

∑
m∈M α(m, r)ρ(m) −∑m∈M β(m, r)ρ(m). Then, adding 1 as

the last component of the mass vector ρ will show that the amended reaction will
be stoichiometrically mass conserving. Find its nonnegative stationary point and
discard the component of this stationary point corresponding to the species Y, and
you obtain a nonnegative stationary point of the original system. (The newly defined
stoichiometric coefficient may be assumed to be an integer, why?)

7.3

• The smart solution
As the induced kinetic differential equation of the Horn–Jackson reaction is

ẋ = −ẏ = (y − x)(2εx2 + (2ε − 1)xy + 2εy2),

the stationary points are for which either x∗ = y∗ or (2ε(x∗)2 + (2ε − 1)x∗y∗ +
2ε(y∗)2) = 0 holds. The investigation of this quadratic polynomial shows that
it has two additional positive real roots for 0 < ε < 1

6 ; thus there are three
stationary points in each positive reaction simplex; see Fig. 7.3.

• The routine solution
The less smart solution can be based upon the fact that the cubic equation y3 +
py + q = 0 has three real root if and only if p3

27 + q2

4 < 0. Use the fact that
ẋ + ẏ = 0 to reduce the equation for the stationary solution vector to a single
cubic equation, transform it into one without quadratic term, and then apply the
mentioned criteria for the existence of three real roots.

A final remark: Check it by linear stability analysis that the unique stationary state
(if we have only a single one) is relatively stable and if we have three stationary
states than the middle one is asymptotically stable and the other two are unstable.

7.4 This command will give those stationary points under different conditions
which fulfill linear first integrals:

Rest @ StationaryPoints[{X + Y -> U, Y + Z -> V},

{k1, k2}, {x0, y0, 0, z0, 0}, {x, y, u, z, v}]

7.5 Equality of the creation and annihilation rates of the complexes at the positive

stationary concentration vector
[
x∗ y∗

]	
is equivalent to writing y∗ = k1

k−1
x∗ =√

k2
k−2

x∗; thus the necessary condition of complex balancing is

k2
1k−2 = k2−1k2. (14.12)
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We show that it is sufficient as well. Suppose that (14.12) holds, then the equation
for the stationary point is as follows:

0 = −k1x∗ + k−1y∗ − 2k2x
2∗ + 2

k2k
2−1

k2
1

y2∗

= (−k1x∗ + k−1y∗)+ 2
k2

k2
1

(−k2
1x

2∗ + k2−1y
2∗)

= (−k1x∗ + k−1y∗)
(

1+ 2
k2

k2
1

(k1x∗ + k−1y∗)
)

,

and this can only hold if the first factor is zero, proving the first equality of complex
balancing. But this, together with stationarity, implies that the second equality also
holds.

7.6 The reaction is of the form

∑

m∈M
α(m, r)Xm

kr−−⇀↽−−
k−r

∑

m∈M
β(m, r)Xm (r ∈M )

with the induced kinetic differential equation: ċ = γ (k  cα − k−  cβ). The
stationary point(s) should fulfill γ (k cα∗ − k−  cβ∗ ) = 0 ∈ R

M or, equivalently,

k  cα∗ = k−  cβ∗ . This last equation can be reformulated as γ	 · ln c∗ = ln κ,

having a single solution which can be transformed back to show the existence of
a single positive stationary point (Erle 2000). Along this proof some nonnegative
solutions may have been lost. Note that in the case of M > P supposing that γ is of
the full rank, one obtains in a similar way the existence of positive stationary states
which however form an M − P parameter variety.

7.7 First of all, the given reaction rates fulfill Conditions 1 on page 6. Next, the
induced kinetic differential equation of the reaction is

ẋ = −x2 + y − 2x + 2y2 ẏ = x2 − y + 2x − 2y2,

and the complex formation vector is g(x, y) = [−x2 + y x2 − y −x + y2 x − y2
]	
.

That is,
[
1 1
]	 ∈ E ∩C and, e.g.,

[
2 (
√

65− 1)/4
]	 ∈ E \C. (More generally, all

the points of the form
[
x∗ 1

4

(√
8x2∗ + 16x∗ + 1− 1

)]
with 0 < x∗ �= 1 belong to

E \ C.)

7.8 Let us calculate the Lie derivative of the function
[
x y z u v

] �→ xk2

zk1
with

respect to the induced kinetic differential equation

ẋ = −k1xy ẏ = −k1xy − k2yz ż = −k2yz u̇ = k1xy v̇ = k2yz
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(i.e., the scalar product of the function and the right-hand side) to get zero in the
open first orthant. Independence follows from the fact that the matrix

⎡

⎢
⎢
⎢
⎣

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

k2x
k2−1

zk1
0 k1x

k2

zk1+1 0 0

⎤

⎥
⎥
⎥
⎦

is of the full rank.

7.9 Although the positive reaction simplexes are unbounded, the simple example
X −−⇀↽−− 0 shows that the presence of the zero complex does not prohibit the
existence of a (what is more, unique) positive stationary point. The example also
shows that even in the case when for all ρ > 0 one has ρ	γ �≤ 0, it is still possible
to have a positive stationary point.

7.10 If the vector
[
a∗ b∗ c∗

]
is a positive stationary point, then−k1a∗b∗ + k−1c∗ =

0 meaning that “all” the reaction pairs (the single one) proceed with the same rate in
both reactions; thus the reaction is detailed balanced. Furthermore, the deterministic
model of the reaction (7.23) is

ȧ = −k1ab + k−1c ḃ = −k1ab + k−1c ċ = k1ab − k−1c

a(0) = a0 b(0) = b0 c(0) = c0

which simplifies to

ȧ(t) = −k1a(t)(a(t)− a0 + b0)+ k−1(−a(t)+ a0 + c0)

= −k1a(t)
2 + (k1a0 − k1b0 − k−1)a(t)+ k−1(a0 + c0)

= −k−1

(
Ka(t)2 − (K(a0 − b0)− 1)a(t)− a0 − c0

)
(14.13)

with K := k1
k−1

.

If the reaction starts from nonnegative initial concentrations a0, b0, c0 for which
either a0, b0 > 0, or c0 > 0, the unique positive (relatively globally asymptotically
stable) stationary concentration

a∗ = 1

2K
(−1+K(a0 − b0)+ r)

b∗ = 1

2K
(−1+K(b0 − a0)+ r))

c∗ = 1

2K
(1+K(a0 + b0 + 2c0)− r),
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where

K := k1

k−1
, r :=

√
1+ 2K(a0 + b0 + 2c0)+K2(a0 − b0)2

will be attained, as, e.g., the explicit form of the solutions shows.

7.11 The induced kinetic differential equation of the reversible triangle reaction
being

ȧ = −k1a + k2b − k6a + k5c

ḃ = k1a − k2b − k3b + k4c

ċ = k3b − k4c + k6a − k5c

together with the mass conservation relation

a(t)+ b(t)+ c(t) = a0 + b0 + b0 =: m

implies that the unique, relatively asymptotically stable vector of positive stationary
concentrations—if at least one of the initial concentrations a0, b0, c0 is positive—
are as follows:

a∗ = m
A

A+ B + C
b∗ = m

B

A+ B + C
c∗ = m

C

A+ B + C
(14.14)

with

A := (k2 + k3)(k4 + k5)− k3k4

B := (k4 + k5)(k6 + k1)− k5k6

C := (k6 + k1)(k2 + k3)− k1k2.

Relative global asymptotic stability can either be seen from the explicit form of the
solution as given by

Concentrations[ToReversible["Triangle"], Array[k[#], 6],{a0, b0, c0}],

(not a royal way!) or by linear stability analysis of the two equations obtained by
reduction using mass conservation.

From now on the explicit form (14.14) of the stationary point will not be used in
the arguments. The fact that the reaction is detailed balanced at a positive stationary

point
[
a∗ b∗ c∗

]	
can be expressed as

k1a∗ = k2b∗ k3b∗ = k4c∗ k5c∗ = k6a∗. (14.15)
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Taking the product of these equalities and simplifying with the (positive) product,
a∗b∗c∗ implies that

k1k3k5 = k2k4k6 (14.16)

holds.
Conversely, suppose that (14.16) holds, and calculate the difference of the

reaction rates k1a∗ − k2b∗ with any stationary point. (The other equalities can be
investigated similarly.) As the stationary points fulfill the system of equations

0 = −k1a∗ + k2b∗ − k6a∗ + k5c∗ 0 = k1a∗ − k2b∗ − k3b∗ + k4c∗,

they can be expressed as a∗ = c∗(k2k4+k2k5+k3k5)
k1k3+k2k6+k3k6

, b∗ = c∗(k1k4+k1k5+k4k6)
k1k3+k2k6+k3k6

. Now
the difference, using the condition (14.16), is

k1
c∗(k2k4 + k2k5 + k3k5)

k1k3 + k2
k1k3k5
k2k4

+ k3
k1k3k5
k2k4

− k2
c∗(k1k4 + k1k5 + k4

k1k3k5
k2k4

)

k1k3 + k2
k1k3k5
k2k4

+ k3
k1k3k5
k2k4

= 0

Q.E.D.

7.12 The induced kinetic differential equation of the Wegscheider reaction being

ȧ = −k1a + k2b − k3a
2 + k4ab ḃ = k1a − k2b + k3a

2 − k4ab

—which simplifies to

ȧ = −k1a + k2(a0 + b0 − a)− k3a
2 + k4a(a0 + b0 − a)

= −(k3 + k4)a
2 − (k1 + k2 − k4(a0 + b0))a + k2(a0 + b0).

—together with the mass conservation relation a(t)+ b(t) = a0 + b0 =: m imply
that, unless all the initial concentrations are zero, the unique positive (relatively
asymptotically stable) stationary concentration vector is as follows:

a∗ = k1 + k2 − k4m− r

−2(k4 + k3)
b∗ = k1 + k2 + k4m+ 2k3m− r

2(k4 + k3)
(14.17)

with r :=
√
(k1 + k2 − k4m)2 + 4k2m(k3 + k4), assuming that k1 + k2 < k4m.

(Which is the sign to be changed in the opposite case?)
From now on the explicit form (14.17) of the stationary point will not be used in

the arguments. The fact that the reaction is detailed balanced at a positive stationary

point
[
a∗ b∗

]	
can be expressed as k1a∗ = k2b∗ k4b

2∗ = k3a∗b∗. Taking the
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product of these equalities and simplifying with the (positive) product, a∗b2∗ implies
that

k1k4 = k2k3 (14.18)

holds.
Conversely, suppose that (14.18) holds, and calculate the difference of the

reaction rates k1a∗ − k2b∗ with any stationary point. (The other equalities can be
investigated similarly.) As the stationary points fulfill the equation

0 = −k1a∗ + k2b∗ − k3a
2∗ − k4a∗b∗,

b∗ can be expressed as b∗ = a∗ k1−k3a∗
k2−k4a∗ . Now the difference, using the condi-

tion (14.18)

k1a∗ − k2a∗
k1 − k3a∗
k2 − k4a∗

= k1a∗ − k2a∗
k1 − k3a∗
k2 − k2k3

k1
a∗
= 0

Q.E.D.
In the second part, we have used a similar method to the one applied in the case

of the triangle reaction. However, there exists a simpler alternative here. As

−k1a∗ + k2b∗ − k3a
2∗ −

k2k3

k1
a∗b∗ = k1 + k3a∗

k1
(k2b∗ − k1a∗),

this expression can only be zero, if the second factor is zero.

7.13 Simple calculations (or the use of the function RightHandSide) show that
both has ẋ = −3x3 + 1.5y3 ẏ = 3x3 − 1.5y3 as its induced kinetic differential
equation. The second one has been obtained by Szederkényi and Hangos (2011) who
formulated a linear programming problem, the solution of which gives a complex
balanced or detailed balanced realization of a given kinetic differential equation.

7.14 As the induced kinetic differential equation of the Lotka–Volterra reaction is

ẋ = k1x− k2xy ẏ = k2xy− k3y, it has two nonnegative stationary points:
[
0 0
]	

and
[
k3/k2 k1/k2

]	
. A simple verification shows that a nonlinear first integral is

[
x y
]	 �→ k3 ln(x) + k1 ln(y) − k2x − k2y. Elementary calculations show that its

minimum is just the positive stationary point.

7.15 As the induced kinetic differential equation of the Ivanova reaction is

ẋ = x(−k1y + k3z) ẏ = y(k1x − k2z) ż = z(−k3x + k2y)
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it has two first integrals; the linear one is
[
x y z

] �→ x + y + z. This implies that

the unique positive stationary point is
[
x∗ y∗ z∗

] = x0+y0+z0
k1+k2+k3

[
k2 k3 k1

]
. It is on the

level set of the nonlinear first integral
[
x y z

] �→ xk2yk3zk1 if

k
k1
1 k

k2
2 k

k3
3

(
x0 + y0 + z0

k1 + k2 + k3

)k1+k2+k3

= x
k2
0 y

k3
0 z

k1
0

also holds.

7.16 The deficiency of the Lotka–Volterra reaction being 1, Theorem 7.34 can be
applied. The nonterminal complexes are as follows: X, X + Y, Y. The first two only
differs in Y; the second one only differs in X; thus both stationary concentrations
are independent from the initial ones.

An easy calculation also shows that the coordinates of the only positive stationary

point of the reaction being
[
k3
k2

k1
k2

]
are the same; no matter what the initial

conditions are, they only depend on the reaction rate coefficients.

7.17 The deficiency is δ = N − L − S = 8 − 3 − 3 = 2, thus one cannot apply
Theorem 7.34. However, the stationary points obey the equations

0 = k3x∗ − 2k4x
2∗ + k1y∗ − k2x∗y∗, 0 = −k1y∗ − k2x∗y∗ + 2k5z∗, 0 = k3x∗ − k5z∗.

First of all, z∗ = k3x∗
k5

, y∗ = 2k3x∗
k1+k2x∗ ; thus we can either have the trivial solution

or we can proceed to get positive solutions. As for x∗ we have a quadratic equation
containing none of the initial concentrations having a single positive solution; thus
all the components of all the nonnegative stationary points are independent of the
initial concentrations.

7.18 The deficiency calculated either by hand or by the functionReactionsData
turns out to be one. The nonterminal complexes EIp + I and EIp only differ in I;
therefore the mechanism shows absolute concentration robustness for the species I.
Could you prove that the mechanism does have a positive stationary point?

7.19 Upon solving 0 = −x∗y∗ + f (1 − x∗) for y∗ and substituting the result into
0 = x∗y∗ + y∗ ((1− f2/f )y0 − y∗)+ (f − f2)y0 − fy∗, the cubic equation

x3∗ − x2∗ + (f + (1− f2/f )y0)x∗ − f = 0 (14.19)

is obtained for y∗. The number of its real positive roots depends on the sign of the
coefficient (f + (1− f2/f )y0) of the first degree term: it can be one, two, or three
depending on the value of f if the value of other parameters is fixed. For studying
the parameter dependence, one may use the definitions as follows. Let
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lilipota[f2_, y0_, f_] :=

f x^3 - f x^2 + x(f^2 + (f - f2)y0) - f^2;

Manipulate[ParametricPlot[(XX[f2_, y0_, {ϕ}_] :=

x /. NSolve[lilipota[f2, y0, 10^{ϕ}] == 0, {x}];

Distribute[{{ϕ}, XX[f2, y0, {ϕ}]}, List]), {{ϕ},-3,-1},

PlotRange -> {{-3, -1}, {0, 1.2}}],

{{f2, 1/135}, 0.0009, 0.0075, 0.0001},

{{y0, 10/27}, 0.24, 0.38, 0.01}].

Cf. Li and Li (1989) and also Póta (2006, pp. 4, 83, 84). When manipulating,
figures of the form of a pitchfork, a mushroom, and also an isola will appear,
respectively. Now, you may start reproducing and manipulating the figures by
Ganapathisubramanian and Showalter (1984) as well.

14.8 Transient Behavior

8.1 Let the sensitivity matrix be S :=
[
∂cm
∂kr

]

M×R
. Then starting from ċ = γ ·

diag(cα) · k, one gets (check it using coordinates if you wish!)

Ṡ = γ · diag(cα)+ γ ·
(
cα  (α	 · S · diag(c)−1) k

)
. (14.20)

Note that this is an inhomogeneous linear differential equation for the sensitivities.
However, as the coefficients are time dependent, linearity does not imply that even
given the concentration vs. time curves, one can solve Eq. (14.20) symbolically. An
important exception is when the solution in question is a stationary solution: In that
case the coefficients are time independent. How does (14.20) simplify in the case of
compartmental systems?

8.2 Nil, namely, the sensitivity equations simplify to

ṡ11 = k1s11, ṡ21 = −k3s21

ṡ12 = k3s12, ṡ22 = −k3s22

ṡ13 = k1s13, ṡ23 = −k3s23

having constant zero solutions.

8.3 The right-hand side of the differential equation

ẋ = y2 −2yz + z2, ẏ = x − y, ż = x + y − z· (14.21)
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contains a negative cross effect where shown; still the vector on the right-hand side
always points into the interior of the first orthant.

8.4 The induced kinetic differential equation of a single species mechanism is of
the form

ċ = a0 + a1c + · · · + aR−1c
R−1 (14.22)

where R ∈ N \ {0}; a0 ∈ R
+
0 ; a1, . . . , aR−1 ∈ R. If R = 1, 2, then Eq. (14.22) is

linear; therefore its solutions cannot blow up. If R > 2 and the right-hand side has
no positive root, then the solution can be obtained from

ċ

a0 + a1c + · · · + aR−1cR−1
= 1

by integration:

∫ t

0

ċ(s)

a0 + a1c(s)+ · · · + aR−1c(s)
R−1

ds =
∫ c(t)

c(0)

1

a0 + a1c + · · · + aR−1c
R−1

dc = t .

Convergence of the integral when its upper limit tends to+∞ implies the statement.

8.5 Being mass consuming means that there is a positive vector ρ ∈ R
M such

that ρ	γ � 0	 holds. Nonnegativity of the concentration vs. time curves and the
integrated form of the induced kinetic differential equation together with the above
condition imply 0 ≤ ρ	c(t) = ρ	c(0) � 0, showing that all the concentrations are
bounded.

8.6 If one applies Theorem 8.19 with ω1 = 1, ω2 = 1, ω3 = 0, one has A(ω) =⎡

⎣
3/4 0 0
0 1 0
0 0 1/2

⎤

⎦ ,b(ω) = 0, c(ω) = 1, λ(ω) = 1/2,Δ(ω) = −1, which means that

the solutions of the Eq. (8.65) blow up for any choice of the initial conditions. One
can also apply Theorem 8.21, but (8.14) does not hold with the given components
of ω. However, with ω1 = 2, ω2 = 1, ω3 = 0, the inequality (8.14) does hold.

8.7 If one applies Theorem 8.19 with ω1 = 1, ω2 = 1, ω3 = 0, one has A(ω) =⎡

⎣
1/2 0 0
0 1 0
0 0 1

⎤

⎦ ,b(ω) = 0, c(ω) = 0, λ(ω) = 1/2,Δ(ω) = 0, which means that the

solutions of the Eq. (8.66) blow up for those choices of the initial concentrations
x0, y0, z0 for which x0 + y0 > 0 holds. Note that here any real value is allowed for
z0, and one of the two other initial values can also be negative as far as x0 + y0 > 0
holds.
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For arbitrary nonnegative initial values, we note first that the solutions are non-
negative. Using the differential equation and the inequality between the quadratic
and arithmetic means, we have

(x + y)· ≥ (x + y)· + ż = x2

2
+ y2 ≥ x2

2
+ y2

2
≥
(
x + y

2

)2

,

and the beginning and the end show that x+ y blows up under the given conditions.

8.8 If one applies Theorem 8.19 with ω1 = 1, ω2 = 1, ω3 = 0, one has A(ω) =⎡

⎣
1/2 0 0
0 1 0
0 0 1

⎤

⎦ ,b(ω) = [−1 0 0
]	

, c(ω) = 0, λ(ω) = 1/2,Δ(ω) = 1/2, which

means that the solutions of the Eq. (8.67) blow up for those choices of the initial
concentrations x0, y0, z0 for which x0 + y0 > 1+√2 holds.

After this series of problems, the reader might use ParametricNDSolve
to find initial values leading to blowup which are not covered by the mentioned
theorem.

8.9 The solution of the induced kinetic differential equation

ẋ = −x + 4y ẏ = x − y

with the initial concentration
[
x0 y0

]	
being

[
1/2e−3t ((1+ e4t )x0 + 2(−1+ e4t )y0)

1/4e−3t ((−1+ e4t )x0 + 2(1+ e4t )y0)

]

tends to
[+∞ +∞]	 as t → +∞. Note that this is not in contradiction with the

zero-deficiency theorem.

8.10 The simplest example is A −−→ B. However, Feinberg and Horn (1977) on
page 85 give an example with T = L = 2.

8.11 A simple example is 2 A ←−− A + B −−→ 2 B, with unequal reaction rate
coefficients. Here we have S = S ∗, T = 2, L = 1, δ = 1; thus T > L, but
T > L > δ does not hold.

8.12 The stoichiometric matrix of the reaction

X
k−−→ Y X

1−−→ Z Y+ Z
1−−→ 2 X
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is γ :=
⎡

⎣
−1 −1 2

1 0 −1
0 1 −1

⎤

⎦ ; therefore the only solution to ρ	γ = 0 is
[
1 1 1

]	
. The

induced kinetic differential equation of the reaction is

ẋ = −(k + 1)x + 2yz ẏ = kx − yz ż = x − yz.

If we are looking for numbers a, b, c such that aẋ + bẏ + cż = 0, then for the case
k �= 1, we shall only find the components of ρ above, but in the case of k = 1, any
triple for which 2a = b + c holds will do. Let us choose, e.g., a = 2, b = 1, c = 3.

8.13 Consider the reversible Lotka–Volterra reaction; it is weakly reversible, and
its deficiency is 1 as shown by

ReactionsData[ToReversible[lv]]["deficiency"]

The conditions that the reaction is complex balanced at the stationary point
[
x∗ y∗

]	

means that the stationary point can only be x∗ = k1
k−1

y∗ = k−3
k3

and k2
k1k−3
k−1k3

=
k−2

k2−3

k2
3

should also hold. (Actually, we arrived at the condition of detailed balance.)

Could you find a reaction which is not weakly reversible and is still complex
balanced for some reaction rate coefficients?

8.14 The induced kinetic differential equation of the reaction (8.68) is

ȧ(t) = k1p − k2a(t)b(t)
2 ḃ(t) = k2a(t)b(t)

2 − k3b(t) (14.23)

with k1, k2, k3, p ∈ R
+. We try to simplify Eq. (14.23) using a diagonal transfor-

mation of the variables (or change of units) introducing new variables by

τ := ϑt, x(τ ) := ξa(t), y(τ ) := ηb(t),

where the parameters ϑ, ξ, η ∈ R
+ will be determined later, in an appropriate way.

As

ξ ȧ(t) = x ′(τ )ϑ ηḃ(t) = y ′(τ )ϑ, (14.24)

in terms of the new variables, one has the following system:

x ′(τ ) = ξ

ϑ
(k1p − k2a(t)b(t)

2) = ξ

ϑ

(
k1p − k2

ξη2 x(τ)y(τ )
2
)

(14.25)

y ′(τ ) = η

ϑ
(k2a(t)b(t)

2 − k3b(t)) = η

ϑ

(
k2

ξη2 x(τ)y(τ )
2 − k3

η
y(τ)

)
. (14.26)
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Let us introduce μ := ξk1p
ϑ

, and let us choose the transformation parameters in the
following way:

ϑ := k3, ξ := η := √k2/k3,

then we have

x ′ = μ− xy2 y ′ = xy2 − y. (14.27)

Equation (14.27) is said to be the dimensionless from of Eq. (14.23). It clearly
shows that the qualitative behavior of the trajectories only depend on a single

(combined) parameter μ =
√
k2/k3k1p

k3
. The general theory and use of these kinds of

transformations are treated in textbooks on dimensional analysis, as, e.g., in Szirtes
(2007).

Let us turn to the investigation of stationary points. There is a unique positive
stationary point of (14.27):

[
x∗ y∗

] = [1/μ μ
]
. The eigenvalues of the Jacobian of

the right-hand side at the stationary point can be calculated from

∣∣
∣
∣
∣
−μ2 − λ(μ) −2 1

μ
μ

μ2 1− λ(μ)

∣∣
∣
∣
∣
= λ(μ)2 − λ(μ)(1− μ2)+ μ2 = 0,

and are

λ±(μ) = 1− μ2 ±√1− 6μ2 + μ4

2
.

The expression under the root sign is negative, if
√

2− 1 < μ <
√

2+ 1; therefore
in this interval, the eigenvalues are complex. Their real part is zero, if μ = 1. The

derivative of λ being −μ± −3μ+μ3√
1−6μ2+μ4

is different from zero (it is −1 ± i). Also,

using the notations of the Theorem 13.57, one has a = − 3
8 ; therefore the conditions

of the mentioned theorem hold; a stable limit cycle emerges as the parameter μ

crosses the value 1. Use Manipulate to follow this phenomenon.
Note that μ = 1 means that one has the following relationship between the

reaction rate coefficients and the input flow rate of the external species P: k2
1k2p

2 =
k2

3. Could you have similar consequences with xayb and yc instead of xy2 and y

with some restrictions on the exponents?

8.15 The induced kinetic differential equation of the reaction (8.46) (obtained either
by DeterministicModel or by hand) is

ẋ = k1(β1 − 1)x − k2xy

ẏ = −k2xy + β2k3z− k4y

ż = k2xy − k3z.



416 14 Solutions

Thus the coordinates of the unique positive stationary point are as follows (again,
either by hand—recommended—or using StationaryPoints):

x∗ = k4

k2(β2 − 1)
y∗ = k1(β1 − 1)

k2
z∗ = k1k4

k2k3

β1 − 1

β2 − 1
.

The origin is a stationary point as well. The Jacobian of the right-hand side is

⎡

⎣
k1(β1 − 1)− k2y −k2x 0

−k2y −k2x − k4 k2β3

k2y k2x −k3

⎤

⎦ .

This implies that two of the eigenvalues are positive, the third one is negative.

8.16 Using StationaryPoints gives you the stationary points of (8.50), of
which one can pick the single positive one. This calculation can also be carried out
by hand even with varying reaction rate coefficients to get

[
a∗ b∗ c∗ d∗ e∗

] =
[
a∗ k3

k2
a∗ k1

k2
a∗ k5

k6
a∗ k4

k5
a∗
]

where a∗ = a0+b0+c0+d0+e0

1+ k3
k2
+ k1

k2
+ k5

k6
+ k4

k5

. And the characteristic polynomial of the Jacobian is

of the form−λ(A+Bλ2+Cλ4) so that 0 < A < B < C and B2/4AC < 0; thus it
has a zero eigenvalue and four pure imaginary eigenvalues which means that linear
stability analysis is not enough to decide its stability.

Let the nth maximum on one of the components, say, x be ξn. It is instructive to
plotting ξn+1 as a function of xn and see that it is not random.

8.17 See Pintér and Hatvani (1977–1980).

8.18 Observe that 1	A = 0	. This shows that A is rank-deficient, so it has a

zero eigenvalue. The example

⎡

⎢
⎢
⎣

−1 1 0 0
1 −1 0 0
0 0 −2 2
0 0 2 −2

⎤

⎥
⎥
⎦ shows that multiplicity of zero

can also be larger than one. Moreover, as a closed compartmental system is mass
conserving, all the positive reaction simplexes are bounded, and the trajectories stay
in these bounded reaction simplexes. Had we have a single eigenvalue with positive
real parts, we could specify an initial concentration defining a solution which is
unbounded.

8.19 Let B(x, y) := 1
xy

and then D(x, y) := div(Bf)(x, y) = a
y
+ B

x
should

be zero; thus a = B = 0. If either b or A is zero, then x or y is monotonous.
Suppose none of them is zero, then the positive stationary point which can only
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be x∗ = −C
A
, y∗ = − c

b
should hold which also implies that C and A and c and

b, respectively, are of the opposite signs. The eigenvalues of the Jacobian at the
stationary point are ±√cC. If cC > 0, then the stationary point is a saddle, which
cannot be surrounded by a closed orbit. If cC < 0, then the stationary point is a
center, and we actually arrive at the Lotka–Volterra model.

8.20 The positive stationary point is x∗ = δ
β
, y∗ = d

b
. The Jacobian of the

right-hand side at the stationary point being

[
0 −b δ

β

−β d
b

0

]

has the real eigenvalues

±√dδ of the opposite sign, thus the stationary point is a saddle. It would have been
enough to require that d and δ is of the same sign, and b, β �= 0.

8.21 As the induced kinetic differential equation of the mechanism is

ẋ = a + x2y − (b + 1)x − xy2

ẏ = bx − x2y,

the divergence is 2xy − (b + 1)− y2 − x2 = −(b + 1)− (x + y)2 < 0; therefore
according to Theorem 13.51, the mechanism has no periodic solutions.

8.22 We follow the arguments of Ault and Holmgreen (2003). As the induced

kinetic differential equation of the Brusselator 0
1−−⇀↽−−
1

X
b−−→ Y 2 X+Y

a−−→ 3 X

is (6.47)

ẋ = 1− (b + 1)x + ax2y ẏ = bx − ax2y,

the unique stationary point is (x∗, y∗) = (1, b
a
). The Jacobian at the stationary point

is

[
b − 1 a

−b −a

]
. Both of the eigenvalues are positive if b > (1+√a)2; therefore in

this case—the only one we are considering here—the stationary point is an unstable
focus. Let us draw a sufficiently small circle around the unstable stationary point,
and then this circle will form the inner boundary of the bounded closed positively
invariant set: the trapping region. The outer boundary of the the trapping region will
be a pentagon; let us define all of its sides. First, let us introduce the notations:

R
2 � (p, q) �→ f (p, q) := 1− (b + 1)p + ap2q

R
2 � (p, q) �→ g(p, q) := bp − ap2q.

1. The trajectories cross the line {(p, q) ∈ (R+0 )2|p = 1
b+1 } inward, because in the

points of this line f (p, q) > 0.
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2. The subset {(p, q) ∈ R
+2|b − apq = 0} ⊂ {(p, q) ∈ R

+2|g(p, q) = 0} of the
y-nullcline and the vertical line defined above intersect each other at the point(

1
b+1 ,

b(b+1)
a

)
; therefore the trajectories cross the line

{(
p,

b(b + 1)

a

)
∈ (R+0 )2

∣∣
∣
∣p ∈

[
1

b + 1
,+∞

[}

inward.
3. If p > 1, then

(1, 1) · (f (p, q), g(p, q))	 = 1− (b+ 1)p+ ap2q + bp− ap2q = 1−p < 0,

thus a line section with the normal vector (1, 1) with abscissas larger than 1 will
also be appropriate as a part of the boundary, if we take the section from the
previously defined horizontal line section until the y-nullcline

{f (p, q) ∈ R
+2|b − apq = 0}.

4. The next line section is vertical, starting from the abovementioned intersection
point until the abscissa.

5. The final section is part of the abscissa which closes the boundary.

The details of the calculation can be followed in Fig. 14.8.

8.23 Let us fix the value of the parameter a, and consider b as a changing parameter.
The critical parameter value will obviously be b = a+1; here the eigenvalues of the
Jacobian are purely imaginary and different from zero: λ1,2(a + 1) = ±i

√
a; see

the solution of the previous problem. At the critical parameter value, the derivative
of the real part of the eigenvalue is different from zero: �(λ)′(a + 1) = 1

2 �= 0.
The Mathematica demonstration Várdai and Tóth (2008) shows how the limit

cycle emerges.

8.24 Let us calculate the divergence of the right-hand side of (8.49) to get
−(k1 + k2 + k3 + k4 + k5 + k6) < 0; thus the application of Bendixson–Dulac
Theorem 13.51 with the Dulac function B(a, b) := 1 implies that (8.49) cannot
have periodic solutions.

8.25

1. The eigenvalues of the coefficient matrix in case I are 0, −3−i
√

3
2 , −3+i

√
3

2 ;
therefore after a short calculation (e.g., using the function Concentrations),
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Fig. 14.8 All trajectories of the Brusselator go to the trap. Here a = 1, b = 2.5

we have

a(t) = 1

3

(

1+ 2e−3t/2 cos

(√
3t

2

))

and (using TrigFactor)

ȧ(t) = 2e−3t/2 cos(π/6+√3t/2)√
3

.

The last function has an infinite number of zeros. The explicit form of the
solutions also shows that the second derivative of a at times τ when ȧ(τ ) = 0—
being equal to −ċ(τ )—cannot be zero, which implies that the infinitely many
arguments are times where a shows a local extrema.

2. The lack of oscillations is a consequence of the Póta–Jost theorem (Theo-
rem 8.64), because the eigenvalues being −3,−3, 0 are real. Let us remark that
the reaction is detailed balanced, having the deficiency zero, and fulfilling the
circuit conditions (Feinberg 1989).

3. The reaction is not detailed balanced with this set of reaction rate coefficients.
However, as the eigenvalues of the coefficient matrix are the real numbers
−4,−3, 0, again one can apply the Póta–Jost theorem to get the result that none
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of the concentration vs. time curves can have more than 1 = 3 − 2 strict local
extrema.

8.26 The result of the line

SymmetricMatrixQ[D[RightHandSide[

{2X -> 3X + 3Y, 2Y -> 3X + 3Y, X + Y -> 3X + 3Y},

{k2, k2, 3 k2}, {x, y}], {{x, y}, 1}]]

being True shows the statement.

8.27 The result of the line

Div[RightHandSide[

{2X -> X + Y -> 2X + Y, X + Y -> 2Y -> 2X + Y},

{1, 3, 2, 1/2}, {x, y}], {x, y}]

being zero shows the statement.

8.28 Upon introducing the definition

rhs = RightHandSide[{2X -> X + Y -> 0, 2Y -> X + Y},

{k, 2k, k}, {x, y}],

the result of the expressions

Div[Reverse[rhs], {x, y}]

Div[{1, -1}rhs, {x, y}]

both being zero shows the statement. As

− kx2 − 2kxy + ky2 + i(kx2 − 2kxy − ky2) = k(i − 1)z2 (14.28)

with z := x + iy, the induced kinetic differential equation of the reaction can be
transformed into the equation for the complex valued function z as ż = k(i − 1)z2,

and the real and implicit part of its solution gives the concentration of x and y,

respectively.

x(t) = x0 + kt (x2
0 + y2

0 )

1+ 2kt (x0 + y0 + ktx2
0 + kty2

0)
(14.29)

y(t) = y0 + kt (x2
0 + y2

0 )

1+ 2kt (x0 + y0 + ktx2
0 + kty2

0)
(14.30)

8.29 Comparing the coefficients of the corresponding polynomials shows that in all
the three cases, it is only the zero polynomial which can occur as the right-hand side
of the corresponding induced kinetic differential equations.
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8.30 According to the assumption, the model to describe the reaction is as follows:

ḃ = −k1b ṗ = k1b − k2p l̇ = k2p

b(0) = 1 p(0) = 0 l(0) = 0,
(14.31)

where b, p, l denote the quantity of bismuth, polonium, and lead, respectively. The
reaction rate constants k can be calculated from the half-lives T from the equation

1

2
= c(t + T )

c(t)
= c(0)e−k(t+T )

c(0)e−kt
= e−kT

giving k = ln(2)
T

. (Note that the half-life does depend neither on the initial
concentration nor on the time of measurement.) Therefore

k1 = ln(2)

5
(≈ 0.139) k2 = ln(2)

138
(≈ 0.005).

Solving (14.31) gives

b(t) = e−k1t = 2−
t
5 (14.32)

p(t) = k1

k2 − k1
(e−k1t − e−k2t ) = −138

133
(2−

t
138 − 2−

t
5 ) (14.33)

l(t) = = k1(1− e−k2t )− k2(1− e−k1t )

k1 − k2
= 1− 138

133
2−

t
138 + 5

133
2−

t
5 . (14.34)

The derivative of p is zero at t∗ = ln(k1/k2)
k1−k2

(≈ 24.833), and it is easy to show that
this is a maximum, because the second derivative of p being

−k1k2

(
k1

k2

) k2
k2−k1

is negative. (Instead of calculating the derivative, one can also solve the equation
0 = ṗ = k1b − k2p.) As the final value of l, i.e., limt→+∞ l(t), is 1,
(in the long run, everything becomes lead), thus one has to solve the equation
k1(1−e−k2t )−k2(1−e−k1t )

k1−k2
= 1

2 what one can only do numerically to arrive at t∗∗ ≈
145.347. (Using the fact that k1 . k2, one can obtain an approximate symbolic
solution by using Taylor-series expansion. However, dozens of terms are needed to
get a good approximation with this method.)

8.31 The induced kinetic differential equation for the vector of concentrations now
has the form

ċ(t) =
∑

r∈R
γ (·, r)wr(c(t), T (t)), (14.35)
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Table 14.1 Constants in the temperature-dependent description of reactions of Eq. (14.36)

Notation Meaning Unit

ρ Mass density kg m−3

Cp Specific heat capacity at constant pressure J K−1 kg−1

ΔHr Standard specific enthalpy of reaction J kg−1

tres := pV
vRTa

residence time s

p Pressure Pa

R Universal gas constant J mol−1K−1

v Molar flow rate mol−1

χ Heat transfer coefficient W m−2 K−1

S Surface area m2

Ta Ambient temperature K

V Volume m3

and the time evolution equation for the temperature is

ρCpṪ (t) =
(
∑

r∈R
w(c(t), T (t))(−ΔHr)

)

−
(
ρCp

tres
+ χS

)
T (t)− T0

V
,

(14.36)

where the meaning of the parameters together with their units can be found in
Table 14.1.

8.32

1. Since f (c) = c2, we have Rf = R
+
0 (which is not even a linear space), and

S ∗ = R.

2. Here Rf is a one-dimensional linear space, whereas S = 2.

3. In this case f(c) =
[
k1c1 − k2c1c2

k2c1c2 − k3c2

]
. Let us characterize those real numbers a

and b for which f(c) =
[
a

b

]
can be solved. A short calculation shows that such

numbers should fulfill the inequality (k2(a + b)− k1k3)
2 ≥ 4bk1k2k3, which is

the outer part of a parabola; see Fig. 14.9. Finally, S ∗ = R
2.

4. Here f(c) =
[−k1c1 + k2c

2
2 + 3k3c

2
2

k1c1 − 2k2c
2
2 − 2k3c

2
2

]
; thus we wonder if

[−k1 k2 + 3k3

k1 −2(k2 + k3)

] [
c1

c2

]
=
[
a

b

]
(14.37)
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Fig. 14.9 The image of the right-hand side of the irreversible Lotka–Volterra model with k1 =
1, k2 = 1, k3 = 1

3

2

1

0

–1

3
k1=1, k2=2, k3=3 k1=1, k2=3, k3=2

2

1

0

–1
–3 –2 –1 0 1 2 3 –3 –2 –1 0 1 2 3

Fig. 14.10 The image of the right-hand side of the Johnston–Siegel model with k1 = 1, k2 =
2, k3 = 3 and k1 = 1, k2 = 3, k3 = 2

has a solution with a nonnegative second component: c2
2 = a+b

k3−k2
. (Note that the

determinant of the linear system (14.37) is not zero.) This is the case for half
planes; see Fig. 14.10. Finally, S ∗ = R

2.
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5. Here

Rf = S ∗ =
{
a

[−1
1

] ∣∣
∣
∣a ∈ R

}
,

because f(c) =
[−k1c1 + 4k2c

2
2

k1c1 − 4k2c
2
2

]
, and −k1c1 + 4k2c

2
2 can take any real values,

as it can be seen by substituting c2 = 0.

8.33 The assumption that the two concentration vs. time curves in the Lotka–
Volterra reaction take their maxima at the same time would imply that these two
functions have a zero derivative at the given time. This however contradicts to
the unique solvability of the induced kinetic differential equation of the reaction.
The periods of the two concentrations can never differ, as it can be seen from the
following form of the induced kinetic differential equation: ẋ

x
= k1 − k2y

ẏ
y
=

k2 − k3x.

8.34 In the case of the equation of the harmonic oscillator ẋ = y ẏ = −x,

the exponent matrix B =
[−1 1

1 −1

]
is not invertible. In the case of the Lorenz

equation (6.40), one has M = 3, R = 4; therefore the exponent matrix is not
even quadratic. In the case of the given polynomial equation, λ = 0 A =[

1 0
0 −1

]
B =

[−1 2
1 −1

]
. Thus, one can choose C = B−1 =

[
1 2
1 1

]
, and with

this choice, the Lotka–Volterra form of the equation is

Ẋ = X(−X − 2Y ) Ẏ = Y (X + Y ). (14.38)

Additional problem: Prove that there is no reaction with only three complexes which
has (14.38) as its induced kinetic differential equation.

8.35 We use the same procedure as in Example 3.32. All the complexes of the
reaction

0 −−⇀↽−− X X+ Y −−⇀↽−− 2 Y Y −−⇀↽−− 0

are short, and they—0, X, X + Y, 2 Y, Y—can be represented one after another as
shown in Fig. 14.11.

0 0 1 1 2 2 0 2

Fig. 14.11 Complex graphs of the individual complexes of the Lotka–Volterra reaction
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0 1 2

Fig. 14.12 Complex graph of the Lotka–Volterra reaction

Having the complex graphs of the complexes, one is able to put together the
complex graph of the whole reaction; see in Fig. 14.12. This figure contains two
odd dumbbells, in accordance with the possibility of existence of periodic solutions
as stated in the corollary.

8.36 Follow Póta (1985), who argues in a very similar way to Póta (1983). The
Dulac function is B(x, y, z) := 1

xyz
. The lengthy analysis reveals that the only

equation in three variables fulfilling the requirements and leading to oscillation can
only be

ẋ = −α1xy + α2zx ẏ = β1xy − β2yz ż = −γ1zx + γ2yz,

which is only slightly more general than the induced kinetic differential equation of
the Ivanova reaction X + Y −−→ 2 Y Y + Z −−→ 2 Z Z + X −−→ 2 X. Póta
(1985) also shows that if terms describing a continuously stirred tank reactor are
added to each of the starting equations, then periodic reactions are excluded. Finally,
let us mention that the paper relies on a theorem by Demidowitch which has later
been corrected, extended, and applied to some kinetic differential equations; see
Tóth (1987).

8.37 The induced kinetic differential equation of three species second-order
reactions is of the form

ẋ = a0 + a1x + a2y + a3z+ a4xy + a5yz+ a6xz+ a7x
2 + a8y

2 + a9z
2

ẏ = A0 + A1x + A2y + A3z+ A4xy + A5yz+ A6xz+ A7x
2 + A8y

2 + A9z
2

ż = α0 + α1x + α2y + α3z+ α4xy + α5yz+ α6xz+ α7x
2 + α8y

2 + α9z
2.

Assuming the fact that ψ(x, y, z) := xyz is a first integral means that

0 = yz(a0 + a1x + a2y + a3z + a4xy + a5yz+ a6xz+ a7x
2 + a8y

2 + a9z
2)

+ xz(A0 + A1x + A2y + A3z+ A4xy + A5yz + A6xz+ A7x
2 + A8y

2 + A9z
2)

+ xy(α0 + α1x + α2y + α3z+ α4xy + α5yz + α6xz + α7x
2 + α8y

2 + α9z
2).
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Comparing the coefficients leads to the form

ẋ = x(a1 + a4y + a6z+ a7x)

ẏ = y(A2 + A4x + A5z+ A8y)

ż = −z(a1 + A2 + y(a4 + A8)+ x(a4 + A7)+ z(a6 + A5))

showing that this equation is indeed a generalized Lotka–Volterra system.
With an appropriate choice of the coefficients, the Ivanova reaction can shown to

be a special case. Note that the absence of negative cross effect played no role here.

8.38 Consider the system (6.35). Then, simple substitution shows that (8.37) is
fulfilled with Hm(x) := xm with the corresponding cofactor km(x) := fm(x).

8.39 The induced kinetic differential equation of the Wegscheider reaction is ẋ =
−k1x + k−1y − k2x

2 + k−2xy ẏ = k1x − k−1y + k2x
2 − k−2xy. Given the

initial concentrations so that x(0) + y(0) = m, one has to solve the quation 0 =
−k1x+k−1(m−x)−k2x

2+k−2x(m−x). Analyzing this equation it turns out that
it always has a single positive solution for all possible positive values of the reaction
rate coefficients and m.

8.40 Instead of direct calculations, one can say that the reversible triangle reaction
has a deficiency zero, and it is weakly reversible; thus the zero-deficiency theorem
ensures the statement.

8.41 Carrying out the steps described in Sect. 6.6 for the H atoms, one has

Pair of species Flux rate of H molecules

CH3 −−→ C3H7 3/10× 7× 0 = 0

CH3 −−→ C4H8 3/10× 8× w = 2.4w

CH3 −−→ H2 3/10× 2× w = 0.6w

C3H7 −−→ CH3 7/10× 3× 0 = 0

C3H7 −−→ C4H8 7/10× 8× w = 5.6w

C3H7 −−→ H2 7/10× 2× w = 1.4w

Similarly, for the C atoms, one obtains

Pair of species Flux rate of C molecules

CH3 −−→ C3H7 1/4× 7× 0 = 0

CH3 −−→ C4H8 1/4× 4× w = w

CH3 −−→ H2 1/4× 0× w = 0

C3H7 −−→ CH3 3/4× 1× 0 = 0

C3H7 −−→ C4H8 3/4× 4× w = 3w

C3H7 −−→ H2 3/4× 0× w = 0
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NO2

NO2 O2

NO3

NO3

N2O5

N2O5

NO

NO

Fig. 14.13 The graph of N and O fluxes in the Ogg reaction (2.11). The thickness of the edges is
proportional to the fluxes in column 3 of Tables 14.2 and 14.3

Table 14.2 Flux rate of N molecules

Pair of species Flux rate of N molecules

N2O5 −−→ NO2 2/4 × 1× w1 = w1/2

N2O5 −−→ NO3 2/4 × 1× w1 = w1/2

NO2 −−→ N2O5 1/4 × 2× w−1 = w−1/2

NO2 −−→ NO 1/4 × 1× w2 = w2/4

NO2 −−→ NO2 1/4 × 1× w2 = w2

NO3 −−→ N2O5 1/4 × 2× w−1 = w−1/2

NO3 −−→ NO2 1/4 × 1× w2 = 1/4× 2× w3 = w2/4+ w3/2

NO3 −−→ NO 1/4 × 1× w2 = w2/4

NO −−→ NO2 1/4 × 2× w3 = w3/2

8.42 The reaction in question is as follows:

N2O5
k1−−⇀↽−−

k−1
NO2+NO3

k2−−→ NO2+NO+O2 NO3+NO
k3−−→ 2 NO2 (14.39)

Now one has to take into consideration all of the steps. Let us consider the flux of N
atoms first.

As to the O atoms, one gets Table 14.3.
Figure 14.13 shows the graphs of the element fluxes assuming that all the reaction

rate coefficients and concentrations are unity.

8.43 The deterministic model of the Lotka–Volterra reaction (as, e.g., given by the
function DeterministicModel) is

x ′ = k1x − k2xy y ′ = k2xy − k3y. (14.40)
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Table 14.3 Flux rate of O molecules

Pair of species Flux rate of O molecules

N2O5 −−→ NO2 5/10 × 2× w1 = w1

N2O5 −−→ NO3 5/10 × 3× w1 = 3w1/2

NO2 −−→ N2O5 2/10 × 5× w−1 = w−1

NO2 −−→ NO2 2/10 × 2× w2 = 2w2/5

NO2 −−→ NO 2/10 × 1× w2 = w2/5

NO2 −−→ O2 2/10 × 2× w2 = 2w2/5

NO3 −−→ N2O5 3/10 × 5× w−1 = 3w−1/5

NO3 −−→ NO2 3/10 × 2× w1 + 3/8× 4× w2 = 3w1/5+ 3w2/2

NO3 −−→ NO 3/10 × 1× w1 = 3w2/10

NO3 −−→ O2 3/10 × 2× w1 = 3w2/5

Fig. 14.14 Influence diagrams of the Lotka–Volterra reaction in different subdomains of the first
quadrant

As

f′(x, y) =
[
k1 − k2y −k2y

k2x k2x − k3

]
, (14.41)

the influence diagrams in the interior points of four domains determined by the
nullclines of the individual variables can be constructed as shown in Fig. 14.14.

8.44 In all three cases, we assume that the residence time in the reactor is ϑ, and
the concentrations in the feed are af , bf ∈ R

+.

• The induced kinetic differential equation of the reaction

A+ B
k1−−⇀↽−−

k−1
2 A A

1/ϑ−−⇀↽−−−
af/ϑ

0
bf/ϑ−−−⇀↽−−
1/ϑ

B

being

ȧ = k1ab − k1a
2 + (af − a)/ϑ ḃ = −k1ab+ k1a

2 + (bf − b)/ϑ,
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the stationary states a∗ and b∗ should obey b∗ = af + bf /a∗ and

0 = −k1a∗(af + bf − a∗)+ k−1a
2∗ + (a∗ − af )/ϑ =: P2(a∗).

The quadratic polynomial P2 is negative at 0 and has a positive leading
coefficient; therefore it cannot have two positive roots.

• A + 2 B
k1−−⇀↽−−
k−1

3 A A
1/ϑ−−−⇀↽−−−
af /ϑ

0
bf /ϑ−−−⇀↽−−−
1/ϑ

B

Now we have

ȧ = 2k1ab
2 − 2k1a

3 + (af − a)/ϑ ḃ = −2k1ab
2 + 2k1a

3 + (bf − b)/ϑ;

thus for a∗ one has

P3(a∗) := 2a3∗(−k1 + k−1)/ϑ
2 + 4a2∗k1(a

f + bf )/ϑ2

+a∗(−2k1(a
f + bf )2 + 1/ϑ)/ϑ2 − k2 = 0.

The assumption that P3(a∗) = p3(a∗ − λ1)(a∗ − λ2)(a∗ − λ3) holds with two
or three positive λs can easily be shown to contradict to the sign pattern of the
coefficients of P3.

• 2 A + B
k1−−⇀↽−−
k−1

3 A A
1/ϑ−−−⇀↽−−−
af /ϑ

0
bf /ϑ−−−⇀↽−−−
1/ϑ

B

A similar calculation as above leads for the first component of the stationary
state to a polynomial equation P3(a∗) = 0, such that the sign of the leading term
and that of the first-order term is positive, and the signs of the two other terms
are negative as follows:

P3(a∗) = p3a
3∗ − p2a

2∗ + p1a∗ − p0; (p0, p1, p2, p3 ∈ R
+).

It can be easily shown that such a polynomial can have three positive roots, e.g.,
in the case if p0 = 6, p1 = 11, p2 = 6, and p3 = 1. The simple problem
remains to show that the reaction rate coefficients, the feed concentrations, and
the residence time can be chosen so as to have the prescribed coefficients.

If one should like to map the part of the space of parameters k1, . . . , ϑ where
this can happen, one can apply the necessary and sufficient condition for a
cubic polynomial to have three positive roots which can be constructed from
the negativity of the discriminant and the Routh–Hurwitz criterion.

What happens if some of the feed concentrations are zero? Is it possible to have the
answer in some cases using the deficiency one theorem (Theorem 8.48)? One may
use DeterministicModel and StationaryPoints.
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8.45 Verify that

ψ1(c) :=
5∑

m=1

cm ψ2(c) :=
5∏

m=1

camm

(with a1 := k2k5, a2 := k3k5, a3 := k1k5, a4 := k2k6, a5 := k2k4) are first
integrals of the induced kinetic differential equation of the reaction (8.50); thus all
the trajectories stay in a bounded set as t → +∞.

14.9 Approximations of the Models

9.1 In the case of the reversible bimolecular reaction, one can either start from A, B,
or C.

VolpertIndexing[{"A" + "B" <=> "C"}, {"A", "B"}]

shows that c(t) = td(t) near the origin with a continuous function d, and

VolpertIndexing[{"A" + "B" <=> "C"}, {"C"}]

shows that a(t) = te(t) and b(t) = tf (t) near the origin with continuous functions
e and d .

9.2 If ρ	γ ≤ 0 holds with ρ ∈ (R+0 )M, then using the induced kinetic differential
equation of the reaction, one has

ρ	ċ = ρ	γ (w ◦ c) =
∑

r∈R
wr ◦ c

∑

m∈M
ρmγ (m, r) ≤ 0. (14.42)

Taking the integral of both sides, one gets

∑

r

∫ t

0
wr(c(s)) ds

∑

m

ρmγ (m, r) =
∑

m

ρmcm(t)−
∑

m

ρmcm(0) ≤ 0 (14.43)

showing the summability of all the reactions for which strong inequality holds. The
sufficient condition is obviously fulfilled if the reaction is strongly mass consuming;
see Eq. (4.7).

9.3 One has to find nonnegative solutions to ρ	γ ≤ 0 so that some of the
inequalities hold in the strict sense.

Lotka–Volterra reaction:
[
1 2 0

]	
is a solution with which the first two reaction

steps can be shown to be summable.
Reversible bimolecular reaction: The condition cannot be applied.
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Michaelis–Menten reaction:
[
2 2 4 1

]	
shows that the third step is summable.

Robertson reaction:
[
1 1 2

]	
is a solution with which the second reaction step

can be shown to be summable.

9.4 The Jacobian of the right-hand side of (9.6) is

[
−k1e0 + k1c k1s + k−1

k1e0 − k1c −k1s − (k−1 + k2)

]

.

Evaluated at the stationary point—at the origin—it is

[−k1e0 k−1

k1e0 −(k−1 + k2)

]
.

Finally, its characteristic equation λ2 + (k1e0+ k−1+ k2)λ+ k1k2e0 = 0 obviously
has two negative real solutions, implying that the origin is an asymptotically stable
node.

9.5 The induced kinetic differential equation of the reaction S −−⇀↽−− C −−→ P
is ṡ = −k1s + k−1c, ċ = k1s − (k−1 + k2)c, ṗ = k2c with the initial condition
s(0) = s0, c(0) = p(0) = 0. Assuming c $ s, the mass conservation relation
s+c+p = s0 can approximately be written as p ≈ s0−s; therefore |ṡ| = |ṗ|, which
means that k−1c − k1s ≈ k2c, implying that ċ ≈ 0. This last approximate equality
gives us c ≈ k1s

k−1+k2
, or ṗ ≈ k1k2s

k−1+k2
. This expression gives a simple approximation

of the product formation rate provided by the solution of the full induced kinetic
differential equation of the reaction.

9.6 The result of the substitution is

S′ = (1− α)(β − 1)S

1− α + αS
.

To find the symbolic solution, the best is to use DSolve which gives

S[t] -> (1− α)/αProductLog[α/(1 − α)Exp[t(β − 1)+C[1]/(1 − α)]].

The constant can also be determined, and finally one has (Schnell and Mendoza
1997)

S(t) = 1− α

α
W

(
α

1− α
s0e

αs0
1−α et (β−1)

)
,

where W is the same as the ProductLog function of Mathematica. The domain
of the obtained solution is to be investigated as soon as the values of the parameters
are given.

9.7 The simplest way to find the unique stationary point (that is also positive) is to
use NSolve. StationaryPoints which gives the same answer when you have
constructed an inducing reaction.
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It is hopeless to compute a Gröbner basis of this system without a computer. The
expression

GroebnerBasis[{2 + x - x^2 + y^2, 3 + x y - y^3 + x z,

2 + x^3 - y z - z^2}, {x, y, z}]

yields three polynomials of degrees 11 and 12, with coefficients having up to 25
digits. The univariate polynomial of the triangularized system is a polynomial in z,
and it has two real roots, but only one of them is nonnegative. (Mathematica cannot
give a closed form formula for the roots, but it can determine symbolically whether
they are real or nonnegative.) Plugging this number into the second equation, we can
determine the values of y: This time there is only one real root, and it is nonnegative.
(Again, there is no closed formula for this number, but it can be expressed as the
root of a degree-12 polynomial.) Finally, the correct values of x can be determined
by substituting the possible values of x and y into the third polynomial of the basis.
Again, there is only one real root x, and it is nonnegative.

The situation is the same with any permutation of the variables.

9.8 Let us suppose that h̃ is also a generalized inverse of h, i.e., h ◦ h̃ = id
RM̂ also

holds. Then,

(h′f) ◦ h = (h′f) ◦ h ◦ id
RM̂ = (h′f) ◦ h ◦ (h ◦ h̃) = (h′f) ◦ (h ◦ h) ◦ h̃

= (f̂ ◦ h) ◦ (h ◦ h) ◦ h̃ = (f̂ ◦ h) ◦ h̃ = (h′f) ◦ h̃

proves independence.

9.9 Instead of applying Theorem 13.38, we use a slightly different solution. Let us
introduce u := x + y and then (a + c)x + (b + d)y = (a + c)x + (b + d)(u− x).

The derivative of this expression with respect to x being (a + c)− (b + d) should
be zero.

9.10 An immediate calculation (possibly using Eigensystem) gives the eigen-

values 2 and x1 + x2 + 2 corresponding to the eigenvectors
[−x2 x1

]	
and

[
1 1
]	
,

respectively.

9.11

Triangle reaction The relevant quantities here are as follows:

K =
⎡

⎣
−(k1 + k−3) k−1 k3

k1 −(k−1 + k2) k−2

k−3 k2 −(k3 + k−2)

⎤

⎦ M =
[

1 0 0
0 1 1

]
,
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and the condition (9.23) for the unknown matrix K̂ =
[−a b

a −b

]
is now

[
−(k1 + k−3) k−1 k3

k1 + k−3 −k−1 −k3

]

=MK = K̂M =
[
−a b

a −b

][
1 0 0

0 1 1

]

=
[
−a b b

a −b −b

]

implying a = (k1 + k−3) b = k3 = k−1. (The last equality is necessary for
exact lumpability in this case.) The condition for detailed balancing in this zero-
deficiency case reduces to the single circuit condition : k1k2k3 = k−1k−2k−3.

This implies for the lumped system that k1k2 = k−2k−3, although the reaction
rate coefficients k2 and k−2 have no role in the lumped reaction.

Square reaction The relevant quantities here are as follows:

K =

⎡

⎢
⎢⎢
⎣

−(k1 + k−4) k−1 0 k4

k1 −(k−1 + k2) k−2 0

0 k2 −(k−2 + k3) k−3

k−4 0 k3 −(k4 + k−3)

⎤

⎥
⎥⎥
⎦

M =
⎡

⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 1

⎤

⎥
⎦ ,

and the condition (9.23) for the unknown matrix K̂ =
⎡

⎣
−d − g b c

d −b − h f

g h −c − f

⎤

⎦

is now
⎡

⎢
⎣
−(k1 + k−4) k−1 0 k4

k1 −(k−1 + k2) k−2 0

k−4 k2 −k−2 −k4

⎤

⎥
⎦ = MK = K̂M

=
⎡

⎢
⎣
−d − g b c c

d −b − h f f

g h −c − f −c − f

⎤

⎥
⎦

implying b = k−1, c = 0 = k4, d = k1, f = k−2 = 0, g = k−4, h = k2, .

The condition for detailed balancing in this zero-deficiency case would reduce to
the single circuit condition, but the original reaction is not even weakly reversible
and so is the lumped reaction.

9.12 As the coefficient matrix of the induced kinetic differential equation of the

reaction in Fig. 9.8 is K =
⎡

⎣
−13 2 4

3 −12 6
10 10 −10

⎤

⎦ , our task is to solve the equation
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(linear and overdetermined) in the new coefficients

MK =
[

1 1 0
0 0 1

]⎡

⎣
−13 2 4

3 −12 6
10 10 −10

⎤

⎦ =
[−10 −10 10

10 10 −10

]

=
[−k̂21 k̂12

k̂21 −k̂12

] [
1 1 0
0 0 1

]
=
[−k̂21 −k̂21 k̂12

k̂21 k̂21 −k̂2

]
= K̂M.

One reaction having the linear induced kinetic differential equation with the

coefficient matrix K̂ is Â(1)
10−−⇀↽−−
10

Â(2). We had to use this rather cautious wording

as we know that the reaction is not uniquely determined by its induced kinetic
differential equation; see Sect. 11.6. Check that more generally, the induced kinetic
differential equation of the reversible triangle reaction in Fig. 9.8 can be exactly
lumped with the above lumping matrix M if kCA = kCB holds and all the other
reaction rate coefficients are arbitrary.

9.13 The induced kinetic differential equation of the reaction (9.42) is

ẋ1 = −(k21 + k31 + k41)x1 + k12x2 + k13x3 + k14x4

ẋ2 = k21x1 − (k12 + k32 + k42)x2 + k23x3 + k24x4

ẋ3 = k31x1 + k32x2 − (k13 + k23 + k43)x3 + k34x4

ẋ4 = k41x1 + k42x2 + k43x3 − (k14 + k24 + k34)x4.

Let us introduce the notations κ := k41 = k42 = k43, λ := k14 + k24 + k34, and let

[
y1

y2

]
:=M

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦ ,

or, y1 := x1 + x2 + x3 and y2 := x4; then one has

ẏ1 = −κy1 + λy2 ẏ2 = κy1 − λy2; (14.44)

as stated. Note that one has for the initial conditions: y1(0) = x1(0)+x2(0)+x3(0)
and y2(0) = x4(0).

9.14 Let the induced kinetic differential equation be ċ = 1, and introduce ĉ = −c;
then the lumped differential equation is ĉ = −1 which is not kinetic.



14.9 Approximations of the Models 435

9.15 More precisely, we will show that the lumped differential equation can be
considered as the induced kinetic differential equation of a reaction of the mentioned
types. Let us start with the induced kinetic differential equation of five species

ẋ = Ax + ay + bz+ cu+ dv + ξ

ẏ = ex + By + f z+ gu+ hv + η

ż = ix + jy + Cz + ku+ lv + ζ

u̇ = mx + ny + oz+Du+ pv + υ

v̇ = qx + ry + sz+ tu+ Ev + ν

with all the coefficients—except possibly A,B,C,D,E—being nonnegative, and,
without restricting generality, let the proper lumping matrix be

M :=
[

1 1 0 0 0
0 0 1 1 1

]
. (14.45)

With the notation

K :=

⎡

⎢
⎢
⎢
⎢⎢
⎣

A a b c d

e B f g h

i j C k l

m n o D p

q r s t E

⎤

⎥
⎥
⎥
⎥⎥
⎦

, ϕ =

⎡

⎢
⎢
⎢
⎢⎢
⎣

ξ

η

ζ

υ

ν

⎤

⎥
⎥
⎥
⎥⎥
⎦

, (14.46)

we have that the off-diagonal elements of K are nonnegative, and ϕ ≥ 0.
Furthermore, in the case of a closed compartmental system, the diagonal elements
of K are equal to the negative of the column sums; in the case of half-open systems,
they are not more than the negative of the column sums. In both cases ϕ = 0. In
case of open compartmental systems, ϕ can also have positive components. Let us
calculate K̂ using the representation (9.26):

K̂ =
[ 1

2 (A+ B + a + e) 1
3 (b + c + d + f + g + h)

1
2 (i + j +m+ n+ q + r) 1

3 (C +D + E + k + l + o + p + s + t)

]
.

Furthermore, the transform of the constant term is ϕ̂ = [ξ + η ζ + υ + ν
]	
. These

formulas show the statement on the form of the lumped system.

9.16 Lump the reaction X
1−−→ 0 3 Y

1
3−−→ 0 with the function h(x, y) := −2y2

to obtain the deterministic model of the reaction 2 U −−→ 3 U.
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9.17 In the case of the original system, one has

rank

⎡

⎣
1 1 0 −k 0 k2

1 0 0 0 0 0
1 −1 0 k 0 −k2

⎤

⎦ = 2 < 3.

In the lumped system,

rank

[
3 2 0 −2k
3 −2 0 2k

]
= 2.

The lumping matrix is

[
2 1 0
0 1 2

]
.

9.18 The simple bimolecular reaction A + B −−⇀↽−− C has the linear first integrals

defined by ω1 :=
[
1 0 1

]	
, ω2 :=

[
1 −1 0

]	
of which the second one is not even a

nonnegative vector. However, the positive vector ω1 :=
[
1 1 2

]	
also defines a first

integral for the induced kinetic differential equation of the reaction.

9.19 See Frank (2008, Chapter 8).

9.20 Let us consider again the reaction in Fig. 14.15. Let all the reaction rate con-

stants be unity. Now we are going to show that the vector ρ = [2 1 4 4 5 2 2 1 1
]	

is orthogonal to the right-hand side of the induced kinetic differential equation

a′ = −2ab+ c b′ = −2ab+ c c′ = ab − 2c

d ′ = c − de + f e′ = −f + de f ′ = ab − g + j2

g′ = g − h+ j2 h′ = 2h− 4j2 j ′ = c + f − de

2J

H

G A + B C D + E F

Fig. 14.15 The Feinberg–Horn–Jackson graph of an example by (Feinberg and Horn 1977, page
89)
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of the reaction, but it is not orthogonal from the left to the matrix

γ =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6 7 8 9 10
A 0 0 0 1 −1 −1 0 0 0 0
B 0 0 0 1 −1 −1 0 0 0 0
C 0 0 −1 −1 1 0 0 0 0 0
D 1 −1 1 0 0 0 0 0 0 0
E −1 1 0 0 0 0 0 0 0 0
F 0 0 0 0 0 1 −1 0 0 1
G 0 0 0 0 0 0 1 −1 1 0
H 0 0 0 0 0 0 0 2 −2 −2
J 1 −1 1 0 0 0 0 0 0 0

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

(14.47)

of the elementary reaction vectors. Indeed, ρ	
[
a′ b′ c′ d ′ e′ f ′ g′ h′ j ′

]	 = 0,

and ρ	γ = [
0 0 1 −1 1 −1 0 0 0 0

]	 �= 0	. Use ReactionsData to check
the calculations. Let us mention that Problem 13.10 gives another, much simpler
example.

9.21 If the vector ω ∈ R
M defines a linear first integral for the (9.37), then one has

ω	f = 0; therefore by induction

1. ω	xn+1 = ω	xn = ω	x0,

2. ω	xn+1 = ω	(xn − n · 106 · f(xn)) = ω	xn = ω	x0,

respectively. Obviously, the sequences defined above can only be close to the
solution accidentally.

9.22 We restrict the problem for the autonomous scalar case. Furthermore, it is
enough to show that a single step of the method has the given property. Let f ∈
C 1(R,R), and let us suppose that the positive half line is an invariant set of the
differential equation y ′(x) = f (y(x)). It means that f (η) ≥ 0, if η > 0. The
solution starting from the point (ξ, η) with η > 0 is approximated on the interval
[ξ, ξ+h] (h > 0) by the Euler method as [ξ, ξ+h] � x �→ η+hf (η)(x−ξ) > 0.

9.23 Let f ∈ C 1(RM,RM), and let us suppose that y∗ is a stationary point of the
differential equation y′(x) = f(y(x)), i.e., 0 = f(y∗). The Euler method with a step
h ∈ R

+ gives y∗ + hf(y∗) = y∗.
Conversely, if y∗ + hf(y∗) = y∗ with a positive h, then f(y∗) = 0, or y∗ is a

stationary point of the differential equation.
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9.24 The Euler method in this case is x0 := x0, y
0 := y0; and xn+1 := xn +

hyn, yn+1 = yn − hxn. Then,

(xn+1)2 + (yn+1)2 = (xn + hyn)2 + (yn − hxn)2 = (1+ h2)((xn)2 + (yn)2)

meaning that the numerical approximation will take samples from an expanding
spiral.

9.25 The induced kinetic differential equation will be the same, but the reaction
rate of the first reaction becomes 106 μmol

dm3sec
in the new units; therefore the induced

kinetic differential equation ceases to be stiff any more.

9.26 The mass action type induced kinetic differential equation of the reac-
tion (9.49) is

˙[Br2] = −k1[Br2] − k3[H][Br2] + k5[Br]2 (14.48)

˙[Br] = 2k1[Br2] − k2[H2][Br] + k3[H][Br2] + k4[H][HBr] − 2k5[Br]2
(14.49)

˙[H2] = −k2[H2][Br] + k4[H][HBr] (14.50)

˙[H] = k2[H2][Br] − k3[H][Br2] − k4[H][HBr] (14.51)

˙[HBr] = k2[H2][Br] + k3[H][Br2] − k4[H][HBr]. (14.52)

Put 0 instead of the derivative in Eqs. (14.49) and (14.51), and solve the emerging
algebraic system to get

[Br]2 = k1

k5
[Br2] [H] = k2[H2]

k3[B2] + k4[HBr]

√
k1[Br2]

k5
.

Putting the second expression into ˙[HBr] = 2k3[H][Br2], one gets finally

˙[HBr] ≈ 2k2[H2]
[B2] + k4

k3
[HBr]

√
k1

k5
[Br2]3/2

as the approximate rate of the overall reaction H2 + Br2 −−→ 2 HBr.
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14.10 The Stochastic Model

10.1 The master equation is given by

MasterEquation[gene,

{λp1, λm1, λ2, λ3, γp, γm},

{t, x, y, u, v}, p].

The equation for the probability generating function is obtained similarly

ProbabilityGeneratingFunctionEquation[gene,

{λp1, λm1, λ2, λ3, γp, γm},

{t, z1, z2, z3, z4}].

The following command gives us the solution.

SolveProbabilityGeneratingFunctionEquation[gene,

{λp1, λm1, λ2, λ3, γp, γm},

{i0, a0, m0, p0}, Method -> "MatrixExponential"]

10.2 Let X(0) = x0 > 0 be fixed. The master equation of the outflow then
reads as ṗx(t) = kpx+1(t) − kpx(t), where k > 0, x ∈ N0 and px(0) =
B(x = x0). For the probability generating function G, one has Ġ(t, z) =
k(1 − z) ∂G

∂z
(t, z), where G(0, z) = zx0 and G(t, 1) = 1. This is a linear

partial differential equation; the method of characteristics (Theorem 13.61) yields
G(t, z) = (

(z − 1) exp(−kt) + 1
)x0 . Taylor-series expansion then results in

G(t, z) = ∑x0
x=0 px(t)z

x = ∑x0
x=0

(
x0
x

)
exp(−ktx)(1 − exp(−kt))x0−xzx ; hence

the transient probability distribution is binomial. From here the solutions to the
moment equations can be obtained from the appropriate moments of the binomial
distribution with parameters x0 and exp(−kt). For example, the first moment as
a function of time is E(X(t)) = x0 exp(−kt). Since the reaction is of the first
order, it is consistent in mean; hence the solution to its first moment equation
coincides with that of the induced kinetic differential equation. The second moment
is E(X(t)2) = x0(1+ (x0− 1) exp(−kt)) exp(−kt), and one can proceed similarly.
These formulas can be verified by putting them into the moment equations which is
left to the reader.

10.3 The master equation of the given reaction is

ṗ(t, x, y) = k1(x − 1)(y + 1)B(x ≥ 2, y ≥ 0)p(t, x − 1, y + 1)

+ k2(x + 1)(y − 1)B(x ≥ 0, y ≥ 2)p(t, x + 1, y − 1)

− (k1xy + k2xy)B(x ≥ 1, y ≥ 1)p(t, x, y).
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In this form it is rather a formidable task to find its solution. However, the partial
differential equation for the probability generating function reads as

Ġ(t, z1, z2) = (k1z1 − k2z2)(z1 − z2)
∂2G

∂z1∂z2
(t, z1, z2).

Though this latter equation has a more compact form, it is still sufficiently hard to
say anything about its solution. Note that the reaction is mass conserving, i.e., the
total mass of the two species remains constant. It implies that for the coordinate
processes, it also holds that X(t) + Y (t) = x0 + y0, that is, the change in the
number of molecules of the species X and Y takes place along a line segment in the
(closed) first quadrant, analogously to the deterministic setting. The internal states
of each line segment form a transient communicating class. The two end points of
the line segments are absorbing. In the chemical language, this means that starting
the process at any of the internal states, one of the species becomes extinct. Hence
the two stationary distributions are concentrated on one of the end points of the line
segment.

The fact that X and also Y are (sub or super)martingales comes from Theo-
rem 10.15.

Using the sole mass conservation relation, the induced kinetic differential
equation of this reaction translates to the equation

ẋ(t) = (k1 − k2)x(t)(x0 + y0 − x(t)), (14.53)

which is the well-known logistic equation (here x denotes the deterministic
concentration of the species X). If k1 = k2 then this has constant solutions, while
in the stochastic case, still a nontrivial martingale process arises. On the other hand,
if k1 > k2, the only asymptotically stable and unstable stationary points of the
reduced equation (14.53) are x∗ = x0 + y0 and x∗∗ = 0, respectively. (If k1 < k2,
0 is asymptotically stable and x0 + y0 is unstable.) This phenomenon appears in a
more delicate way in the stochastic model.

Notice that this reaction can be considered as a slightly modified version of the
Ehrenfest model (Ehrenfest and Ehrenfest 1907; Vincze 1964).

10.4 We invoke the formula (10.14) which describes the change of units between
the reaction rate coefficients. The Mathematica function

avogadronumber = UnitConvert[Quantity[1, "AvogadroConstant"]];

ksto[reactionstep_, kdet_, V_] :=

kdet(avogadronumber V)^

(1 - ReactionsData[{reactionstep}]

["reactionsteporders"])
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employs a transformation also on the values of the corresponding reaction rate
coefficients ksto and kdet. We only show the second application:

Inner[ksto[#1, #2, 10^{-12} "L"]&,

ReactionsData[{"Lotka-Volterra"},{"A","B"}][

"reactionsteps"],

{5("s")^{-1},

40"L"Quantity[1,("Moles")^{-1}]("s"){-1},

0.5("s")^{-1}}, List]

10.5 The states of a communicating class can reach one another with positive
probability. The reaction 0 −−→ X has communicating classes Uk = {k} for k ∈ N0.
All the classes are transient. On the other hand, making the reaction reversible, that
is, in the case of 0 −−⇀↽−− X, we only have a single communicating class, U0 = N0,

and this class is recurrent. Slightly more complicated version of the previous
reaction is X −−⇀↽−− 2 X. In this case when no molecules are present, the reaction
cannot proceed. Hence U0 = {0}, and U1 = N\{0} are the communicating classes.
Both involve recurrent states. Finally, the reaction X + Y −−⇀↽−− 2 X X + Y −−⇀↽−− 2 Y
involves infinitely many communicating classes: Uk+1 = {(i, j)|i + j = k} (for
k ≥ 2) in addition to U0 = {(0, 0)}, U1 = {(0, 1)} and U2 = {(1, 0)}. Also in these
cases, all the classes are recurrent.

10.6 The Mathematica function is

ProbabilityGeneratingFunctionEquation[

alpha_, beta_, rates_, vars_] :=

D[g @@ vars, First[vars]] ==

Total[rates MapThread[(Times @@ (Rest[vars]^#1) -

Times @@ (Rest[vars]^#2))*
Derivative[0, Sequence @@ #2][g] @@ vars&,

Transpose /@ {beta, alpha}]]

where vars is the user-given list of variables, e.g., vars={t,z1,z2} can be
given in the case of a two-species reaction. The first entry of this list is used as the
time variable. One can make attempts to solve the obtained equation in very special
cases using the built-in Mathematica function DSolve.

10.7 Consider the reaction X + Y −−→ 2 X X + Y −−→ 2 Y with the assumption
that the two reaction rate coefficients are the same for the deterministic and the
stochastic model as well. Then the induced kinetic differential equation of the
reaction is ẋ(t) = ẏ(t) = 0. It is also not hard to see that for the induced kinetic
Markov process (X, Y ), it holds that d

dtEX(t) = d
dtEY (t) = 0. It follows that the

process is consistent in mean with this choice of reaction rate coefficients. However,
as we have already noticed in Problem 10.3, (X, Y ) is a nontrivial process.
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10.8 Consider the reaction X + Y
k1−−→ 3 X + 3 Y which is not stoichiometrically

mass conserving. In this case γ (·, 1) = [
2 2
]	 ; hence D2((x, y)) = k1xy

[
4 4
4 4

]

which is a singular matrix for all x, y ∈ N.

10.9 Equation (10.40) has in the first case the following form

k1π(x − 1)+ k2[x − a]a π(x − a)+ k−2[x − a + 1]a−1 π(x − a + 1)

= π(x)
(
k1 + k2[x]a + k−2[x]a−1

)
,

where x ∈ N. The stationary distribution is Poissonian if and only if a = 1. In this
case the mean is (k1 + k−2)/k2.

The second example leads to two stationary distributions concentrated on the
two closed communicating classes of the process. The first one is the product of two
Poisson distributions, which can be written as

π(x, y) = B(x ≥ 1)
1

exp(k1/k−1)− 1

1

x!
(

k1

k−1

)x

×B(y ≥ 0) exp(−k2/k−2)
1

y!
(

k2

k−2

)y

(x ≥ 0, y ≥ 0),

while the second one is concentrated on 0× N0, that is,

π(x, y) =B(x = 0)B(y ≥ 0) exp(−k2/k−2)
1

y!
(

k2

k−2

)y

(x ≥ 0, y ≥ 0).

is also stationary.

10.10 First of all we need a function which calculates the propensity functions (λr ).

Propensity[X_, alpha_, rates_] := rates *
(Times @@ FactorialPower[X, #]& /@ Transpose[alpha]).

Now, the direct reaction method can be implemented by the following Mathematica
function.

DirectMethod[X0_, alpha_, beta_, rates_, maxiter_, maxtime_]

:= NestWhileList[(# + {RandomReal[

ExponentialDistribution[Lambda]], First[

RandomChoice[lambdas -> Transpose[beta - alpha],1]]

})&,

{0, X0}, (First[#] <= maxtime && (Lambda =

Total[lambdas = Propensity[Last[#], alpha, rates]])

> 0)&, 1, maxiter]
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10.11 One can use the function Concentrations and the solution of the
previous problem to compare the results.

10.12 Recall the definition of the generating function from (10.25), and further
define the function:

G̃a(t, z2) := ∂a (za−1
1 G)

∂za1
(t, 1, z2).

Using this function one can transform the original equation to a simpler one, which
becomes first order, namely,

˙̃Ga(t, z2) = (k2z2 − k2 + ak1)z2
∂ G̃a

∂z2
(t, z2),

with initial condition

G̃a(0, z2) = x0(x0 + 1) · · · (x0 + a − 1)zy0
2 , (X(0), Y (0)) = (x0, y0).

Using the method of characteristics, we can obtain the solution

G̃a(t, z2) = x0(x0+1) · · · (x0+a−1)

(
k2 − ak1

k2 + (k2 − ak1 − k2z2) exp((k2 − ak1)t)/z2

)y0

The required combinatorial moments are then obtained by substituting z2 = 1 into
the previous display. A careful examination of the denominator of the solution then
gives the bound (10.51).

The induced kinetic differential equation of the reaction is ẋ = k1xy and ẏ =
k2y, which implies that y(t) = y0 exp(k2t) and x(t) = x0 exp

(
y0k1(exp(k2t) −

1)/k2
)
, where t ≥ 0. In this case the absence of blow-up comes from the fact that the

reaction only contains a first-order autocatalysis. Note furthermore that E(Y (t)) =
y(t).

These and similar transformations on the generating function can be useful to
treat similar problems; see Becker (1973b) and Table 14.4.

10.13 Using the shorthand notation m1(t) := EX(t) and m2(t) := EX(t)2

(t ≥ 0), the first two moment equations of the induced kinetic Markov process
with stochastic mass action type kinetics are

ṁ1(t) = (k1 + k2)m1(t)− k2m2(t),

ṁ2(t) = (k1 − k2)m1(t)+ (2k1 + 3k2)m2(t)− 2k2 EX(t)3 .



444 14 Solutions

Table 14.4 Reactions treated by Dietz and Downton (1968), Becker (1970, 1973a,b)

Reaction steps

X ←−− 0 −−⇀↽−− Y ←−− X + Y

2 X2 ←−− X2 −−⇀↽−− 0 −−⇀↽−− X1 −−→ 2 X1 X1 + X2 −−→ X2

2 X2 ←−− X2 −−⇀↽−− 0 −−⇀↽−− X1 −−→ 2 X1 2 X1 + X2 ←−− X1 + X2 −−→ X2

X + Y −−→ Y −−→ 2 Y Y −−→ 0

X −−→ 2 X X + Y −−→ Y ←−− 0

X ←−− 0 −−⇀↽−− Y ←−− X + Y

X + Y1 −−→ Y1 −−→ 0 ←−− Y2 ←−− X + Y2

Xi + Y −−→ Y −−⇀↽−− 0

Xi + Yi −−→ Yi −−⇀↽−− 0 −−⇀↽−− Yi

This shows that the moment equations are not closed, since the third moment
appears on the right-hand side of the second equation. Using the program these
can be obtained by issuing the following commands:

MomentEquations[{X <=> 2X}, {1}, {k1, k2}]

MomentEquations[{X <=> 2X}, {2}, {k1, k2}]

Now, assuming that

EX(t)3 = EX(t)+ 3(EX(t))2 + (EX(t))3 (14.54)

and substituting it into the previous display, we arrive at

˙̃m1(t) = (k1 + k2)m̃1(t)− k2m̃2(t),

˙̃m2(t) = (k1 − 3k2)m̃1(t)− 6k2m̃1(t)
2 − 2k2m̃1(t)

3 + (2k1 + 3k2)m̃2(t),

(14.55)

where (m̃1, m̃2) denotes the functions which are hoped to approximate the solutions
of the original moment equations.

Now, this latter, Eq. (14.55), is a closed one and can be solved by NDSolve
numerically. Note that the only stationary distribution of the induced kinetic Markov
process with stochastic mass action type kinetics of the reaction X ←−→ 2 X is
the Poisson distribution with mean and variance k1/k2. One can check that the

stationary points of the Eq. (14.55) are
[
0 0
]	

and
[
k1/k2 k1/k2 + (k1/k2)

2
]	

in
agreement with the assumption (14.54) which the Poisson distribution makes exact.

10.14 For simplicity, assume that kii = 0 for all 1 ≤ i ≤ M . The partial differential
equation for the probability generating function G is

Ġ(t, z) =
∑

1≤i,j≤M

kij (zj − zi)
∂ G

∂zi
(t, z). (14.56)
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Using the method of characteristics, we are to determine those curves along which
G is constant. For this we should solve the following system of ordinary differential
equations:

ξ̇i (s) = −ξi(s)

M∑

j=1

kij +
M∑

j=1

kij ξj (s),

where ξi(0) = zi . Now, define the matrix A = [aij ]Mi,j=1, where aij = kij if i �= j

and aii = −∑M
j=1 kij , i.e., A = K − diag(K	1). Notice that A is actually the

infinitesimal generator matrix evaluated at x = 1. With this notation the previous

equation becomes more transparent, namely, ξ̇ = Aξ , where ξ = [ξ1 ξ2 · · · ξM
]	

.
The general solution to this first-order linear and homogeneous ordinary differential
equation is simply ξ (s) = exp(As)z for all s ≥ 0. Hence we obtained that
G(t, ξ(s)) = zx0 holds for all s, t ≥ 0. It then implies that

G(t, z) = ( exp(−At)z
)x0

is the (only) solution to (14.56) which satisfies the initial condition G(0, z) = zx0

and the boundary condition G(t, 1) ≡ 1. Note that in this case, G is a multivariate
polynomial.

10.15 The reaction in question is a closed compartmental system. Hence the results
of the previous problem can be applied. In the case of k12 = k21 = 1, it follows that

exp(−At) = exp(−t)

[
cosh(t) sinh(t)
sinh(t) cosh(t)

]
.

That is

G(t, z) = exp(−2t)

(
1

2

(
z2

1 + z2
2

)
sinh(2t)+ z1z2 cosh(2t)

)
, (14.57)

where we have taken into consideration that x0 =
[
1 1
]	

.

10.16 The first conditional moment velocity is

D1(x) =
⎡

⎣
−k1x

k1x − k2y

k2y

⎤

⎦ ,
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where x = [x y
]	

, while the second one is

D2(x) =
⎡

⎣
k1x −k1x 0
−k1x k1x + k2y −k2y

0 −k2y k2y

⎤

⎦ .

10.17 First, notice that a spanning tree of the Feinberg–Horn–Jackson graph of
a single linkage class closed compartmental system with M species has M − 1
edges, hence the rank of the stoichiometric matrix γ is M − 1. It follows that
ρ = [

1 1 · · · 1
]

is the only solution to ρ	γ = 0, which means that the only
mass conservation relation is the total number of species. On the other hand,
note that Theorem 3.17 implies that a compartmental system has deficiency zero.
Then using the weak reversibility condition together with Theorem 7.15, one can
apply Theorem 10.21. Hence, the only stationary distribution for the j th closed

communicating class Uj = {x =
[
x1 x2 · · · xM

]	 ∈ N
M
0 | x1+ x2+ · · · + xM = j }

(j ∈ N0) is the multinomial distribution

πUj (x) =
j !

x1!x2! · · · xM ! (c1)
x1∗ (c2)

x2∗ · · · (cM)xM∗ (x ∈ Uj),

where c∗ =
[
(c1)∗ · · · (cM)∗

]	
is the complex balanced stationary point of the

induced kinetic differential equation with mass action type kinetics.

10.18 Since each column vector of α and β is one of the standard base vectors,
it follows that the characteristic equation is a homogeneous linear system of
differential equations; hence we can use matrix exponential to obtain its solution.
In terms of Mathematica functions, one possible solution follows:

SolveCCSProbabilityGeneratingFunctionEquation

[alpha_,beta_,rratecoeffs_,init_] :=

Module[{zb, bb, Ab},

zb = Array[Subscript[z,#]&, Length[alpha]];

{bb, Ab} = CoefficientArrays[

alpha.(rratecoeffs*
MapThread[(Times@@(zb^#1)-Times@@(zb^#2))&,

Transpose /@ {beta, alpha}]), zb];

Times@@((MatrixExp[Ab t].zb)^init)

]
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14.11 Inverse Problems

11.1 Now the objective function is Q(m) := ∑K
k=1(mtk − xk)

2. The necessary
condition of the minimum is that Q′(m) = ∑K

k=1(mtk − xk)tk = m
∑K

k=1 t2
k −

∑K
k=1 xktk = 0 what can easily be solved for the estimate m̂ =

∑K
k=1 xktk∑K
k=1 t2

k

which

is always defined if one has at least one measurement at a time different from
zero. In order to check the usual sufficient condition, let us calculate the second
derivative, Q′′(m) = ∑K

k=1 t
2
k > 0 which shows (again using the abovementioned

slight restriction about the measurements) that the function Q has a minimum at m̂.

11.2 The function p �→ e−0.1p(2 + sin(p)) has an infinite number of minima
and maxima and has no global minimum. (When proving it, Mathematica might
be useful.) All its minima are positive, and they tend to zero as the location of the
minima tend to +∞. Some of the minima can numerically be calculated this way:

FindMinimum[Exp[-0.1p](2 + Sin[p]), {p, #}]& /@

Range[200].

The location of extrema can also be calculated symbolically, if not otherwise, using

Mathematica to get 2
(
kπ + arctan

(
1

12 (−1−√97)
))

(k ∈ Z).

Without “strict” the sin function would also solve the problem.

11.3 The simulated measurements may be obtained this way.

kk = 0.01; mm = 2.5; times = N[Range[0, 100]];

SeedRandom[37];

data = {#, mm Exp[-kk #]

(1+0.05 RandomVariate[NormalDistribution[]])}&

/@ times;

nlm = NonlinearModelFit[data, μ Exp[-κ t], {μ, κ}, t]

And nlm["BestFitParameters"] provides

{μ -> 2.47389, κ -> 0.00986956}.

Now let us use for fitting the logarithm of our “measurements”:

f[{t_, x_}] := {t, Log[x]}; logdata = Map[f, data];

lm = LinearModelFit[logdata, t, t]

And now the result is {0.908942, -0.00997263} which should be trans-
formed back to get Exp[0.908942]=2.4817] �=2.47389.

The difference, although small in this case in both the parameters, is existent.
With today’s computers one is not forced (not even allowed) to get a final estimate
of parameters this way. However, linearizations of this and similar kinds are very
useful to provide an initial estimate to start nonlinear estimation.



448 14 Solutions

11.4 One may do this. Let the initial mass distribution in the interval [0, 1] be
given by the function [0, 1] � x �→ f (x) := sin(2πx)2. In order to simulate
measurements, one has to solve the diffusion equation:

sol = ParametricNDSolveValue[{D[u[t, x], t] ==

d D[u[t, x], {x, 2}],

u[0, x] == f[x], u[t, 0] == f[0], u[t, 1] == f[1]},

u, {t, 0, 10}, {x, 0, 1}, {d}];

One gets simulated data by adding a small normally distributed noise to the discrete
sample taken from the solution of the diffusion equation. The exact value of the
diffusion coefficient is taken to be 0.0271.

data = Table[{t, x, sol[0.0271][t, x] +

RandomVariate[NormalDistribution[0, 0.07]]},

{t, 0, 10, 0.5}, {x, 0.1, 0.9, 0.1}];

The fitting starts from the initial estimate 0.01 of the diffusion coefficient.

nlm = NonlinearModelFit[Flatten[data, 1], sol[d][t, x],

{{d, 0.01}}, {t, x}]

nlm["BestFitParameters"] gives d -> 0.0261931, a value quite close
to the exact value. If one wants to see the data together with the measured values,
then one may do this.

Show[Plot3D[nlm[t, x], {t, 0, 10}, {x, 0, 1},

Mesh -> 40,

AxesLabel -> {"Time", "Space", "MassDensity"}],

Graphics3D[{Red, PointSize[Medium],

Point[Flatten[data, 1]]}]]

And the final result may look like Fig. 14.16.

Fig. 14.16 Mass density
measurements and fitted
surface
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Before and after fitting, one may wish to plot temporal or spatial sections of the
mass density u or even Animate or Manipulate them.

11.5 Simulation can again be done in the same way as in the simple case of X −−→
0 above:

predatorPrey = ParametricNDSolveValue[{

x’[t] == x[t] (α − β y[t]),

y’[t] == -y[t] (γ − δ x[t]),

x[0] == x0, y[0] == y0}, {x, y}, {t, -50, 100},

{α, β, γ , δ, x0, y0}];

data = Table[Prepend[

Through[predatorPrey[1, 1, 1, 1, 2, 3][t]]

(1 + 0.05 RandomReal[{-1, 1}]), t],

{t, 0, 20, 0.2}];

predata = Most /@ data;

preydata = {#[[1]], #[[3]]}& /@ data;

Now the main trick is the introduction of a two-variable function z which com-
presses the coordinate functions in itself: z(1, t) := x(t) z(2, t) := y(t), and with
this we rewrite the data in the following form:

indexedData =

Flatten[Function[{i},

Map[ {i, #[[1]], #[[i+1]]}&, data]] /@ Range[2], 1];

The model to be used for fitting is

model[{α}_?NumericQ, {β}_?NumericQ, {γ }_?NumericQ,

{δ}_?NumericQ, x0_?NumericQ, y0_?NumericQ]

[i_?NumericQ, t_?NumericQ]:=

Part[Through[predatorPrey[

{α}, {β}, {γ }, {δ}, x0, y0][t]], i]

When fitting, we provide some relatively good initial estimates of the parameters to
NonlinearModelFit.

nlm = NonlinearModelFit[indexedData,

model[{α}, {β}, {γ }, {δ}, x0, y0][i, t],

{{{α}, 1.5}, {{β}, 1.5}, {{γ }, 1.5},

{{δ}, 1.5}, {x0, 2.5}, {y0, 3.5}}, {i, t},

PrecisionGoal -> 4, AccuracyGoal -> 4]

And the results can be obtained as below and be seen in Fig. 14.17.

fit[i_, t_] = nlm["BestFit"];

nlm["ParameterTable"]

Alternatively, one can use Concentrations to get simulated data.
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Fig. 14.17 Fitted solution and trajectory and simulated data

Let us mention that the solution of the two problems above are due to our
colleague R. Csikja.

11.6 In this case the calculations lead to k̂ = X(T )2−X(0)2

2TX(T )2 . To heuristically judge
the goodness of this estimate, substitute the deterministic concentration of X into

the formula to get k̂ ≈ k e2kT−1
2kT . This expression tends to k if kT tends to zero.

11.7 Solving the induced kinetic differential equation of the reaction by hand or by
the program

Concentrations[{X -> Y, X -> Z}, {k1, k2},

{x0, y0, z0}, {x, y, z}, t][[2, 1]]

gives t �→ x(0)e−(k1+k2)t , and this function only depends on the sum of the two
reaction rate coefficients. The situation is more advantageous if one also measures
either t �→ y(t) or t �→ z(t) as well: In this case both reaction rate coefficients can
be calculated. This topic is treated in detail in the works Vajda and Rabitz (1994)
and Vajda and Várkonyi (1982). Denis-Vidal et al (2014) treats the problem for a
special combustion model.

11.8 A possible example is the pair (Tóth 1981, p. 49)

2 X
3−−⇀↽−−
3

X+ Y
2−−⇀↽−−
2

2 Y and X+ Y
1−−⇀↽−−
1

2 X
1−−⇀↽−−
1

2 Y

because their common induced kinetic differential equation is

ẋ = −ẏ = −3x2 + xy + 2y2.
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11.9 Simple calculation (or DeterministicModel) shows that the induced
kinetic differential equation of both mechanisms in Fig. 11.4 are

ẋ1 = −6x3
1x2 + 9x2

2 − 2x2
1x2 + x1 ẋ2 = +2x3

1x2 − 3x2
2 − 2x2

1x2 + x1

This is not in contradiction to Theorem 11.11 because the number of ergodic classes
in the first reaction is larger than 1.

11.10 One can use the program to verify that the right-hand sides are the same, both

RightHandSide[szeder1, Array[1&, 4], {x, y}]

RightHandSide[szeder2, {1, 1/10, 1/10, 19/10, 1/10, 1/10}, {x, y}]

lead to the same result: {-2x2,3x2}. The reaction

X+ Y
1−−→ 2 X X+ Y

1−−→ 2 Y

is mass conserving and second order. It can be added to any mass conserving second-
order reaction without effecting the induced kinetic differential equation.

11.11 Either by hand or by using DeterministicModel, one gets as the
induced kinetic differential equation of all the three mechanism as

ẋ = −3x2y3 + xy2 − xy + 3y2 ẏ = 2xy − 2x2y3.

14.12 Reaction Kinetic Programs

12.1 This is what we shall have been doing by the preparation of the next edition of
the book.

14.13 Mathematical Background

13.1 Since aD = b implies D	 log(a) = log(b), therefore log(a) =
(D	)−1 log(b) = (D−1)	 log(b) from which the statement follows.
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13.2 If y := xC
−1
, then x = yC = [yc·1 yc·2 · · · yc·M ]	 , and one has

ẋ =

⎡

⎢
⎢
⎢
⎢
⎣

c11ẏ1
yc·1
y1
+ c21ẏ2

yc·1
y2
+ · · · + cM1ẏM

yc·1
yM

c12ẏ1
yc·2
y1
+ c22ẏ2

yc·2
y2
+ · · · + cM2ẏM

yc·2
yM

· · ·
c1Mẏ1

yc·M
y1
+ c2Mẏ2

yc·M
y2
+ · · · + cMMẏM

yc·M
yM

⎤

⎥
⎥
⎥
⎥
⎦

(14.58)

=

⎡

⎢
⎢⎢
⎢
⎢
⎣

yc·1
(
c11
y1

ẏ1 + c21
y2

ẏ2 + · · · + cM1
yM

ẏM

)

yc·2
(
c12
y1

ẏ1 + c22
y2

ẏ2 + · · · + cM2
yM

ẏM

)

· · ·
yc·M

(
c1M
y1

ẏ1 + c2M
y2

ẏ2 + · · · + cMM

yM
ẏM

)

⎤

⎥
⎥⎥
⎥
⎥
⎦

(14.59)

=

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

yc·1
(
c·1
y

)	 · ẏ
yc·2
(
c·2
y

)	 · ẏ
· · ·

yc·M
(
c·M
y

)	 · ẏ

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

yc·1
(
c·1
y

)	

yc·2
(
c·2
y

)	

· · ·
yc·M

(
c·M
y

)	

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

· ẏ, (14.60)

thus

ẏ = y
yC
 (C)−1 · ẋ. (14.61)

13.3 Possible solutions follow.

power[a_?VectorQ, b_] := Times @@ (a^b)

a_?VectorQ b_?VectorQ} :=a b

div[a_?VectorQ, b_?VectorQ]} := a/b

log[a_?VectorQ] := Log[a]

exp[a_?VectorQ] := Exp[a]

Complete the programs with type and positivity checks. Then, try them to see that
they work when one thinks they should and they don’t otherwise.

13.4 Immediately follows from the definition.

13.5 Let us suppose first that Ax = b has a solution, and let y such that A	y = 0,
and calculate y	b :

y	b = y	Ax = x	A	y = 0.
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Second, let us suppose that ∀y : A	y = 0 implies b	y = 0. This, however, is
equivalent to saying that b lies within the space spanned by the rows of A	, or by
the columns of A, a necessary and sufficient condition for the solvability of Ax = b.

13.6 One has to prove that 1	NE = 0R, an immediate consequence of the fact that
all the columns of E contains exactly one entry 1 and exactly one entry−1.

13.7 Rephrasing what we need to prove, we want to show that the relation “being
in the same component” is an equivalence relation on the vertices for undirected
graphs and that the same holds for strong components of directed graphs. But this
is immediate from the definitions: If in an undirected graph u and v are connected
by a path, and v and w are also connected by a path, then the concatenation of these
paths is a path connecting u and w, so u and w are in the same component. The
argument is the same for directed paths and strong components.

13.8 Every ergodic component is a strong component; therefore all we need to show
is that every strong component is ergodic if and only if the transitive closure of the
graph is symmetric.

First, let us suppose that the transitive closure of a graph G is symmetric, i.e.,
that there is a path from a vertex v to u if and only if there is a path from u to v. This
means that for every edge (u,w) in G, there is a path connecting w and u; therefore,
w is in the same strong component as u. Hence, the strong component containing u

is ergodic. As the same holds for every vertex u, we have shown that every strong
component is ergodic. (Note that we have tacitly used the result of Problem 13.7,
namely, that every vertex u belongs to precisely one strong component.)

Conversely, suppose that every strong component is ergodic. Now if there
is a path from u to v, then u and v are in the same strong component (by
assumption), therefore there is a path connecting v to u. Hence, the transitive closure
is symmetric.

13.9 TransitiveClosureGraph[G] answers the second question. As to
the first one, one has two options. Either use SymmetricQ from the package
Combinatorica (be careful with this package as there is an overlap of its
functions and the built-in ones) or write a function of your own, e.g., like this:

weaklyreversibleQ[reaction_] := Module[{a},

a = AdjacencyMatrix[TransitiveClosureGraph[

ReactionsData[{reaction}]["fhjgraphedges"]]];

a == Transpose[a]]

Compare this with the function WeaklyReversibleQ of the package.

13.10 Consider the graph in Fig. 14.18. Here there are three strong components,
{1, 2, 3}, {4, 5}, and {6}, there is one weak component, this is the whole graph, and
the ergodic components are {1, 2, 3} and {6}; therefore the number L of the weak
components is smaller then the number T = 2 of ergodic components.
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Fig. 14.18 A directed graph with one weak component and two ergodic components

An even simpler example can also be given. Consider the Feinberg–Horn–
Jackson graph of the parallel reaction C ←−− A −−→ B. This graph has three strong
components (each vertex is a strong component by itself), only two of which are
ergodic because there are edges leaving {A}.) The corresponding undirected graph
has a single component, because the graph (in the undirected sense) is connected.

13.11

1. The function T := R � x �→ x + 1 is continuous, T is closed and convex, but
unbounded; T has no fixed points.

2. The function T :=] − 1, 1[� x �→ (x + 1)/2 is continuous, T is bounded and
convex, but not closed; T has no fixed points.

3. The annulus with the boundaries of the circles of radius 1 and 2 with the origin
as their centers in the plane is bounded and closed, but not convex. No nontrivial
rotation (although they are continuous) around the origin has any fixed points.

13.12 As u1,u2, . . . ,uK, v are dependent, there are real numbers c1, c2, . . . , cK,

cK+1 not all of which are zero such that c1u1 + c2u2 + · · · + cKuK + cK+1v = 0.
Since u1,u2, . . . ,uK are independent, cK+1 cannot be zero; thus v = − 1

cK+1
(c1u1+

c2u2 + · · · + cKuK).

13.13 We apply induction on k. The assertion holds if k = 1: This is equivalent
to the fundamental theorem of algebra. Now suppose that the claim is proven for a
fixed k̂ ≥ 1 and consider the case of k = k̂ + 1. We denote the number of zeros of a
function h by Z(h).

We invoke the following corollary of Rolle’s theorem: If a μ times differentiable
function h has Z(h) zeros, then its μth derivative h(μ) has at least Z(h) − μ zeros.
Applying this to the function h = t �→ g(t)e−λkt , which has the same number of
zeros as g, we obtain that Z(g) − μk = Z(h) − μk ≤ Z(h(μk)), and at the same
time, we have Z(h(μk)) ≤ μ1 + · · · + μk−1 − 1 by the inductive hypothesis, since
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h(μk) is also of the form (13.18) with k−1 terms. Rearranging the inequalities gives
Z(g) ≤∑k

i=1 μi − 1, completing the proof.

13.14 Simple substitution into Eq. (13.23) shows that now the sensitivity equations
form the inhomogeneous linear, constant coefficient equation (cf. Tóth et al 1997)

dσ (t,p)
dt

= ∂1f(ξ∗(p),p)σ (t,p)+ ∂2f(ξ∗(p),p)

which can even be explicitly solved if needed.

13.15 Actually, this is a separable (what is more: linear) ordinary differential
equation, the general solution to which is Mek1t (z−1). From the initial condition:
M = zD.

One can also calculate the generating function under the general (stochastic)
initial condition, i.e., under the condition G(0, z) = F(z). Then we have G(t, z) =
F(z)ek1t (z−1), i.e., the number of particles is the sum of a variable with the
initial distribution and a variable with Poisson distribution with the parameter k1t

independent from the first one.

13.16 This is a (first order) partial differential equation, the solution to which is(
z

z−ek1t (z−1)

)D
.

One can also calculate the generating function under the general (stochastic)
initial condition, i.e., under the condition G(0, z) = F(z). Then we have G(t, z) =
F
(

z

z−ek1t (z−1)

)
.
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Glossary

Here we give a short, informal description of terms which are precisely defined in
the text, but our use of which might be a slightly different from the general one.

circumstances Given a mechanism, physical quantities such as volume pressure
and temperature—these form together the circumstances—are usually fixed.

detailed balance This term is mainly used to express the corresponding property
in the deterministic model of reactions.

formal reaction kinetics The mathematical theory of deterministic and stochastic
kinetics as opposed to Chemical Reaction Network Theory which was up to
recent times understood as the theory of deterministic models.

kinetically mass conserving The reaction has this property if the induced kinetic
differential equation of it has a linear first integral with a positive coefficient
vector.

mechanism The reaction together with the kinetics and (the usually fixed) circum-
stances. In this book almost always mass action type kinetics is used.

microscopic reversibility This term is only used to express the corresponding
property in the stochastic model of reactions.

model We use this expression as loosely as usual; it may mean a reaction, a
mechanism, or an induced kinetic differential equation.

reaction Reaction (sometimes complex chemical reaction) is the set of reaction
steps kinetics, reaction rate coefficients, and circumstances excluded.

reaction step A single physical process, reversible reactions are represented as
pairs of (irreversible) reaction steps.

stoichiometrically mass conserving The reaction has this property if the orthogo-
nal complement of the stoichiometric space contains a positive vector.
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τ -leaping method, 311
explicit, 312
implicit, 312
trapezoidal, 312

ω-limit graph, 220
ω-limit point, 373
ω-limit set, 174, 219, 220, 373
P -semiflow, 194

absolute asymmetric synthesis, 262
absolute concentration robustness, 139, 238
acronyms, list of, xxiii
activation energy, 104
acyclic subgraph, 154
AcyclicVolpertGraphQ, 46
adjacency matrix, 108, 366
adjacent edges, 366
adjacent vertices, 366
admittance matrix, 86
aggregation, 225
AIC, 327
algebraic invariant, 190
alternative theorem, 48, 364
ambient temperature, 104, 422
annihilation rate, 84, 124
arc, 366
ArcTan, 13
Arrhenius form, 104

generalized, 106
Arrhenius model

stochastic, 262
asymmetric autocatalysis, 262
asymmetric crystal, 262
asymmetry, 261
atmospheric chemistry, 224
atomic balance, law of, 44, 57, 101
atomic matrix, 44

generalized, 102, 400
attractor, 176

autocatalysis, 261
asymmetric, 262

autonomous, 271

backward differentiation formula, 243
bacterial population, 350
basis, 7
Belousov–Zhabotinsky reaction, 12, 20, 99,

183, 241
BIC, 327
bimolecular reaction, 142, 406

reversible, 219
simple, 142, 406

binomial coefficient, 362
biological clock, 180
biological models, 261
biological transport process, 23
bipartite graph

directed, 368
weighted, 26

birth–death process, 297
Block, 62
blow-up, 156, 157, 267, 271, 283, 293
Bodenstein principle, 220
Bodenstein species, 220
boundary condition, 286
bounded, 174, 178
branching process, 299
Brouwer’s fixed point theorem, 118
Brownian motion, 308
Brusselator, 92, 98, 110, 245
butterfly effect, 188

canonical realization, 193
canonical realization of a polynomial system,

97
canonical representation, 336
Cases, 382
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catalyst, 10, 57, 58, 63, 81, 100, 195, 220, 391
direct, 57, 58, 63, 81, 391

Cauchy equation, 82
Cauchy–Hadamard theorem, 285, 371
Cauchy–Riemann–Erugin system, 192
CCD model, 80
CDS model, 268
cell, 136
change of units, 83, 414
channel, 136
characteristic curve, 376
characteristic differential equation, 376
characteristic time, 104
charge, 56
chemical clock, 180
chemical oscillator, 12
chemical reaction network theory, 347
CHEMKIN, 353
CHEMKINInput, 353
ChemLab, 347
chirality, 11, 259, 261
chiral molecule, 261
chromatography, 350
circuit condition, 128, 131, 135, 433
class

strong linkage, 25
terminal strong linkage, 25

ClearAll, 353
clock reaction, 180
closed communicating class, positive, 280
closed compartmental system, 23, 251, 435
closed generalized compartmental system, 24
closed trajectory, 189, 234, 375
cloud, 355
coarse graininig, 225
coarse linkage class, 20
coefficient of heat transfer, 104
cofactor, 173
cold flame, 9
collision, 8

triple, 8
combinatorial moment, 288
combinatorial moment equation, 289
combustion, 8, 10, 224, 262
communicating class

closed, 279
non-closed, 279

community matrix, 91
compact set, 117
compartmental model, 237
compartmental system, 23, 34, 127, 261, 385,

411
closed, 23, 251, 435
generalized, 24, 34, 127, 332, 336, 385

half-open, 23, 251, 435
open, 251, 435

complex, 6
balance stochastic, 303
balancing, 124
formation vector, 84
graph, 32, 176
index set, 83
matrix, 6, 21, 83
product, 87
reactant, 87
short, 25, 57
space, 83

component
connected, 367
ergodic, 25, 368
strong, 367

componentwise product, 359
computer assisted proof, 351
concentrated variable model, 106
Concentrations, 13, 353
concordance, 347
condition

circuit, 128
spanning forest, 128, 131

cone, 93
confoundable, 334
connected component, 19, 25, 367
connected graph, 367
consecutive reaction, 23, 219, 315
conservation of mass, 136
conservation relation, 41
conservative, 190

linearly, 244
oscillation, 182, 245, 375
quadratically, 244

consistent, mean, 288
constraints, 364
continuous component, 247
continuous-flow stirred-tank reactor, 186
continuously stirred tank reactor, 5, 196
continuous species, 236, 247
CoNtRol, 347
controllability, 195
controllable, 235

completely, 235
convex set, 117
cooling, 104
cooperative system, 94
counting process, 269
covering decomposition set, 70
CoveringDecompositionSet, 71
creation rate, 84, 124
CRNreals, 348
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CRNT, see chemical reaction network theory
cross catalytic reaction, 193
cross-diffusion, 107
cross effect, negative, 95, 190
CSFTR, see continuous flow stirred tank

reactor
CSTR, see continuously stirred tank reactor
curve fitting, 346
cycle, 61, 367

directed, 367

Darboux polynomials, 173
Decompositions, 71
deficiency, 24, 202, 238, 350, 414

zero, 335
deficiency-one theorem, 176
deficiency zero theorem, 413
degenerate system, 373
demonstration, 350
dense realization, 337
dependency graph, 310
detailed balance, 128, 129, 228, 304, 414, 433

Markov chain detailed balance, 304
microscopic reversibility, 304
Whittle stochastic detailed balance, 304

DetailedBalance, 135
DeterministicModel, 353, 427
diagonal quadratic first integral, 167
diagonal transformation, 414
differential algebraic equation, 246
differential equation

kinetic, 162
ordinary, 80
stiff, 242, 346

diffusion, 106
coefficient, 106
cross-, 107

dimension, 362
dimensionless, 223, 415
Diophantine equations, 57
Diophantus of Alexandria (cca. 200–cca. 284),

57
direct catalyst, 57, 58, 63, 81, 391
directed bipartite graph, 368

weighted, 26
directed cycle, 367
DirectedEdges, 386
directed graph, 366

bipartite, 368
directed path, 367
direct problem, 260, 325
direct reaction method, 309
discrete Laplacian, 86

distance, 29
distributed variable model, 106
domain, 115, 375
drug, 23
DSR graph, 27
dumbbell, 32
dynamically equivalent, 335
dynamical system, toric, 127
dynamic factor analysis, 225, 235

echelon form, 363
Edelstein model, 32
edge, 366
effect of species, 190
eigenfunction

generalized, 172
normed generalized, 232

Eigenvalues, 13
elementary reaction, 8
elementary reaction step, 57
elementary row operation, 362
Eliminate, 240
empty complex, 6, 30, 40
enantiomer, 11, 261
endothermic, 103, 104
enthalpy of reaction, standard specific, 422
entrywise product, 359
enzyme, 10, 220
enzyme kinetics, 10, 261
enzyme-substrate complex, 10, 220
epidemics, 5
equilibrium, 115
equivalence, 22
equivalent, macro-, 335
ergodic class, 335
ergodic component, 25, 139, 165, 368
escape time, 156
Escherichia coli, 140
estimate

initial, 447
maximum likelihood, 331

exact linear lumping, 230
exact nonlinear lumping, 226
Except, 382
exothermic, 103, 104
exotic behavior, 149, 180
exotic reactions, 346
expansion, 226
explicitly defined model, 328
Explodator, 184, 202, 415
external species, 7, 40, 81, 202
ExternalSpecies, 353
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factor analysis, dynamic, 225
factorial, 361
factorial power, xxiii, 361
FactorialPower, xxiii
falling factorial, xxiii
Farkas, Gyula (1847–1930), 48
fast variable, 222
feature, 328
Feinberg–Horn–Jackson graph, 19
FIFO, see first in—first out
“finally reacts to” relation, 22, 25
FindClusters, 13
FindInstance, 240
FindMaximum, 365
finite differences method, 245
finite escape time, 156
first infinity, 156
first in—first out, 299
first integral, 41, 164, 182

diagonal quadratic, 167
linear, 164, 243
nonlinear, 123
quadratic, 166

first order quasilinear partial differential
equation, 376

first order reaction, 23
FitCurvatureTable, 327
fixed point, 115, 369
fixed point theorem

Brouwer’s, 118
flame, cold, 9
flux, net, 102
focus, unstable, 417
forest, 367

spanning, 367
formal linear combination, 6, 7
formal power series, multidimensional, 371
formal rection kinetics, vii
formation rate, 84
FORTRAN, 351
fractal, 189
fractional stoichiometric coefficient, 99
Fredholm alternative theorem, 48
Fredholm, Erik Ivar (1866–1927), 48
FromAtomMatrix, 45
functional, 164

equation, 82
language, 13
programming, 355

fundamental assumption of homogeneous
reaction kinetics, 80

GammaLeftNullSpace, 42, 222
gas constant, universal, 104
gastric juice, 23
Gaussian process, 308
generalized Arrhenius form, 106
generalized compartmental system, 24, 332,

336, 385
closed, 24
half-open, 24
in the narrow sense, 24

generalized eigenfunction, 172
generalized Higgins lemma, 370, 378
generalized inverse, 230, 363
generalized Lotka–Volterra form, 162
generalized Lotka–Volterra system, 91, 109,

207, 426
generating function, 371
genuine reaction step, 7, 81, 85
Get, 14, 353
GetReaction, 15, 395
Global Attractor Hypothesis, 176, 253
global existence, 156
global form, 80
global minimum, 329
Glyoxalate Cycle, 354
Gröbner basis, 117, 240
gradient system, 192
graph, 366

complex, 32
connected, 367
directed, 366
directed weighted bipartite, 26
reflexive, 368
S-C-L, see graph species-complex-linkage

class
species-complex-linkage (S-C-L) class, 30
species reaction, 31
strongly connected, 367
symmetric, 368
transitive, 368
undirected, 366

graphics card, 355
GraphLayout, 354
GraphPlot, 386
GroebnerBasis, 141, 240

Hadamard product, 81, 359
half-life, 206
half-open compartmental system, 23, 251,

435
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half-open generalized compartmental system,
24

Hamiltonian, 192
structure, 245
system, 192

harmonic oscillator, 95
heat diffusion coefficient, 107
heat transfer coefficient, 104, 422
Hessian, 331
homogeneous quadratic polynomial, 98, 189
homogeneous quadratic right-hand side, 188
homotopy, 350
hyperbolic stationary point, 234

identifiability, 332
identifiable, 332
ignition, 156
implicitly defined model, 328
incidence matrix, 21, 87, 367
incident, 366
independence, functional, 369
independent functions, 369
independent reaction steps, 6
index, 28

topological, 19
induced kinetic differential equation, 79, 80
induced kinetic Markov process, 263, 267

blow-up, 267, 271, 283, 293
Chapman–Kolmogorov equations, 272
combinatorial kinetics, 267
embedded Markov chain, 276
explosion time, 268, 293
explosive, 293
holding times, 276
infinitesimal generator, 267
intensity, 266
Kolmogorov’s backward equation, 273
Kolmogorov’s forward equation, 273
Kurtz-type kinetics, 267
master equation, 266, 271
memorylessness, 270
non-explosive, 293
Poisson representation, 278
propensity, 266
spatial inhomogeneity, 271
stationary distribution, 299
stochastic kinetics, 266
stochastic mass action type kinetics, 267
stochastic reaction rate coefficient, 269
time homogeneous, 270
transition probability, 263, 271
transition rate, 275
waiting times, 276

induced Markov process, stochastic complex
balance, 303

inflow, 5, 6, 23, 40, 278, 286, 297
influence diagram, 31, 190

strong, 190
uniform, 190

Information, 353
information matrix, 331
initial condition, 286
initial estimate, 355, 447
initial set, minimal, 155, 209
initial species, 28, 154
initial value problem, 372
injectivity, 347
inner solution, 224
input, time dependent, 154, 155
integer programming, 70
internal species, 7, 81
intestinal fluid, 23
invariant

algebraic, 190
plane, 173
set, 172, 232, 234

positively, 374
InverseLaplaceTransform, 13
inverse problem, 90, 260, 325
ion channel, 136
irreversible reaction steps, 8
isola, 144, 411
isolated, 375
Ivanova, 353
Ivanova reaction, 143, 426

Jacobian, 350
JordanDecomposition, 13

kernel, 120
kinematic invariant, see linear first integral
kinetically mass conserving, 41, 166, 202, 209,

244
kinetically mass consuming, 166
kinetically mass producing, 41, 166
kinetic differential equation, 162

induced, 79
kinetic lumping matrix, 228
kinetics, 80, 84

mass action, 84
kinetic subspace, 165
Kirchhoff matrix, 86
Kolmogorov form, 160
Kolmogorov system, 92, 109
Kovalevskaya exponents, 163
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Laplace transform, 284
Laplacian matrix, 86
last in—first out, 299
law of atomic balance, 103
leap condition, 311
Length, 386
Level, 382
Lie algebra, 195
Lie algebra rank condition, 195
Lie derivative, 167, 372, 405
LIFO, see last in—first out
likelihood function, 331
limit cycle, 182, 245, 375

stable, 415
linear algebra, 237
linear combination, 80

formal, 6
linear Diophantine equations, 57
linear first integral, 164, 243
linear lumping, 224

exact, 230
linearly conservative, 244
linear matrix inequality, 159
linear optimization, see linear programming
linear programming, 41, 61, 238

dual simplex method, 238
simplex method, 238

LinearProgramming, 52, 365
linkage class, 19
lipoid barrier, 23
Lipschitz property, 233
list, 13
list processing, 355
Ljapunov exponent, 179
local form, 80
local minimum, 329
lock and key hypothesis, 221
logic programming, 14
logistic equation, 440
loop, 366
Lorenz equation, 95
Lotka–Volterra form, generalized, 162
Lotka–Volterra reaction, 91, 143, 181, 208,

219, 245, 338, 410, 427
Lotka–Volterra system, 118
LP-based enumerative method, 66
lumped equation, 226, 230
lumping, 7, 224

function, 226
linear, 224
matrix, 230

kinetic, 228
nonlinear, 224
proper, 228

Lyapunov exponent, 373
strict, 220

macroequivalent, 335
macroscopic, 259
Manipulate, 13
Maple, 333
Markov population process, 297
Markov process, 267
martingale, 291, 298
mass

action kinetics, 81, 84, 96, 108, 393
conservation, 136, 243
conserving, 40, 244

kinetically, 41, 166, 202, 209, 244
stoichiometrically, 41, 202, 244

consuming, 41, 403, 412
kinetically, 166
strongly, 41

density, 422
producing, 40

kinetically, 41, 166
stoichiometrically, 41
strongly, 40

weak, 194
MassConservationRelations, 42, 389
MasterEquation, 273
Mathematica, 355
matrix

positive definite, 244
sparse, 354

MatrixForm, 354
MatrixRank, 387
maximal solution, 156, 372
Maximize, 52, 365
maximum likelihood estimate, 331
MaxParameterEffectsCurvature, 327
MeanPredictionConfidence-

Intervals, 327
mechanism construction, 55
membrane, 136
memo function, 326
mesoscopic, 1, 259
metabolism, 224
method of finite differences, 245
Metzler-matrix, 93
Michaelis constant, 222
Michaelis–Menten reaction, 10, 218–220, 247
microscopic, 259
microscopic reversibility, 128, 137, 304
MILP, see mixed integer linear programming

problem
minimal cycle, 61
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minimal dependent subset, 63
minimal initial set, 155, 209
minimal siphon, 194
mixing, 188
model

explicitly defined, 328
implicitly defined, 328

Models, 353
Module, 62
molar flow rate, 422
molarity, 7
molecularity, 6
molecular weight, 44
moment, 287

closure methods, 290
combinatorial, 288
combinatorial moment equation, 289
covariance, 289
first, 287
velocity, 290

monotone system, 93, 109
Moore–Penrose inverse, 363
movable singularity, 156
MQ, 42, 52
multinomial distribution, 446
multistability, 186
multistationarity, 186
multivariate polynomial, 110, 371
mushroom, 144, 411

Names, 353
NDSolve, 197
Needs, 14
negative cross effect, 91, 92, 95, 96, 190, 193,

426
negative stoichiometric coefficient, 99
net flux, 102
network, 178
Network Analyst, 347
Newton’s law of cooling, 104
NMaximize, 365
NMinimize, 13
nonassociative algebras, 98
nonlinear equations, 239
nonlinear first integral, 123
nonlinear lumping, 224

exact, 226
NonlinearModelFit, 13, 327, 338
nonnegativity, 93, 243
nonterminal complex, 139
norm, 364
Normal, 354
normed generalized eigenfunction, 232

NP-hard, 61
null space, 120
numerical linear algebra, 237

objective function, 327, 331, 447
object oriented programming, 14
observability, 196
Ogg reaction, 427
oligo-oscillation, 184
Omittable, 68
open compartmental system, 251, 435
open problem, 337
OpenReactionKineticsNames[ ], 353
OpenReactionKineticsPalette[ ],

353
optical isomer, 11
order of the reaction, 8
order of the reaction step, 83
ordinary differential equation, 80

autonomous, 80
Oregonator, 12, 183, 241

modified, 99
orthant, 93
orthogonal complement, 362
oscillation, 9, 346

conservative, 245, 375
oscillatory reaction, 12, 180, 245
outer solution, 224
outflow, 5, 6, 23, 40, 297, 313
overall reaction, 253
oxidation, 9

package, 14
Painlevé analysis, 163
pairs of reaction steps, 129
parabolic partial differential equation, 245
parallel computing, 355
parallel programming, 14
parameter estimation, 355
parametric conditions, 180
ParametricNDSolve, 13
parsing, 90, 346
partial differential equation, 245

first order quasilinear, 376
parabolic, 245

path, 367
directed, 367

PBPK, see physically based pharmacokinetic
model

periodic, 9
periodic solution, 245
persistence, 194, 347
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Petri net, 27, 194
pharmacokinetics, 23
phase space, 245
photochemistry, 23
ping-pong reaction, 16
pitchfork, 144, 411
plasma chemistry, 350
Plot, 13
Poincaré map, 189
Poisson process, 278, 296
polymerization, 350
polynomial

differential equation, 94
homogeneous quadratic, 98, 189
system, 94, 96
time, 61

pool, 7
population, 23

biology, 5
dynamics, 350

positive definite, 244, 291
positively invariant set, 374
positive reaction simplex, 47
positive semidefinite, 291
potential, 192
precedence rule, 13
Predici, 349
prediction, 188
preexponential factor, 104
pressure, 354
primary reaction step, 29
principle of charity, 128
principle of detailed balance, 128
probability generating function, 285
ProbabilityGenerating

FunctionEquation, 286
procedural programming, 14, 355
product, 10, 220

complex, 6, 87
complex vector, 6
componentwise, 81
entrywise, 81
Hadamard, 81
Schur, 81

programming paradigm, 14, 355
proper lumping, 228
Properties, 327
protein, 220
pseudoinverse, 363
pure monomial, 82, 395

QSSA, see quasi-steady-state approximation
quadratically conservative, 244

quadratic first integral, 166
diagonal, 167

quadratic polynomial, homogeneous, 98
quantum computing, 355
quasi-monomial transformation, 161
quasi steady-state approximation, 220, 244,

253
quasi steady-state assumption, 220
quasi-thermodynamic, 173, 177
queueing process, 299

rank, 362
rank condition, Lie algebra, 195
reachable, 154
reactant complex, 6, 87
reactant complex vector, 6
reaction, 6

channels, 7
connected, 8
cross catalytic, 193
extent, 90

stochastic, 268
path, 154, 194
rate coefficient, 81, 84

stochastic, 266
rate matrix, 84
rate, summable, 219
simplex, 47, 117, 119, 122, 125, 129, 141,

164, 173, 176, 404, 406, 416
discrete, 279
positive, 47

step, 5–7
active, 280
genuine, 7, 81
reversible, 21
vector, 6, 83, 85

third order, 100
weakly realistic, 193
weakly reversible, 22

reaction-diffusion process, 355
ReactionKinetics, 42, 49
ReactionKineticsPalette, 15
Reactions, 353
ReactionsData, 354, 383
“reacts to” relation, 20
realization, 193, 337

canonical, 193
dense, 337
of a polynomial system

canonical, 97
sparse, 337

Reduce, 240
reflexive, 22, 368
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regular behavior, 149, 173, 174
relation, 368

equivalence, 22
reflexive, 22, 368
symmetric, 22, 368
transitive, 368

renewal process, 298
reproducibility, 260
residence time, 422
residual, 327
Resolve, 240
reversibility, microscopic, 128
reversible bimolecular reaction, 219
reversible reaction, 21, 128
reversible reaction step, 21
right-hand side, homogeneous quadratic, 188
ring, 359
Robertson reaction, 77, 91, 218, 219
robustness, 139, 140, 238
root, 32
Rosenbrock model, 243
row echelon form, 363
row reduction, 362
rule-based, 14
Runge–Kutta method, 251

saddle, 182, 417
SBML, see System Biology Markup Language
Schlögl reaction, 10
Schur complement, 366
Schur product, 81, 359
S-C-L graph, see species-complex-linkage

class (S-C-L) graph
secondary reaction step, 29
SeedRandom, 326
semi-definite constraint, 159
semi-definite optimization, see semi-definite

programming
semi-definite programming, 117, 159
semigroup, 359
sensitivity, 151

analysis, 140, 262, 333, 355
equations, 372
to initial data, 188
matrix, 372

set of reaction steps, 6
Shahanshani gradient system, 192
short complex, 7, 25, 57
ShowFHJGraph, 20, 353
sign stability, 191
simplex method, 238
simply connected set, 374
Simulation, 296, 309, 353

SimulationPlot, 13, 296, 309, 353
SimulationPlot2D, 309
Sin, 13
SingleDeletionVariances, 327
singular perturbation, 223, 373
siphon, 194, 348
smoothing effect of diffusion, 107
Soai reaction, 262
solution

maximal, 372
operator, 116

Solve, 240
SolveProbabilityGenerating

FunctionEquation, 286
spanning forest, 367
spanning forest condition, 128, 131
spanning subgraph, 367
spanning tree method, 132
sparse matrix, 354
sparse realization, 337
spatial inhomogeneity, 106
species, 5

external, 81
formation vector, 84
initial, 154
internal, 81
reaction graph, 31
set, 5
space, 83
vertex, 32

Species-Complex-Linkage Class (S-C-L)
graph, 30, 187

specific heat capacity, 422
spectroscopy, 230
stability, sign, 191
standard specific enthalpy of reaction, 422
state, 263

absorbing, 280
accessible, 279
initial, 263
recurrent, 279
transient, 279

state space, 278
almost essential, 281
communicating class, 279
essential, 281
irreducible, 280
reducible, 280

stationary point, 102, 115, 116, 234
hyperbolic, 234
unstable, 259

StationaryPoints, 416
stationary process, 298
stationary reaction rates, 120
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steady-state, 115
steady-state flux rate, 120
stiff differential equation, 242, 346
stiffness, 242, 346
Stirling numbers of the second kind, 290
stochastic simulation algorithm, 309
stochastically complex balanced, 303
stoichiometrically mass conserving, 41, 202,

244
stoichiometrically mass producing, 41
stoichiometric coefficient, 6

fractional, 99
negative, 99

stoichiometric compatibility class, 47, 125, 173
discrete, 279

stoichiometric cone, 49
stoichiometric matrix, 6, 21, 221
stoichiometric subspace, 6

discrete, 278
strange attractor, 189
strict Lyapunov exponent, 220
strong component, 165, 367
strong influence diagram, 190
strong linkage class, 25

terminal, 25
strongly connected component, 25
StronglyConnectedComponents

Colors, 353
strongly connected graph, 367
strongly mass consuming, 41
strongly mass producing, 40
structural conditions, 180
StudentizedResiduals, 327
subgraph, 367

acyclic, 154
spanning, 367

submartingale, 291
substrate, 10, 220
sufficient statistics, 331
summable reaction rate, 219
supermartingale, 291
symbols, list of, xxiii
SymmetricMatrixQ, 420
symmetric mechanism, 137
symmetric relation, 22
symplectic method, 245
system, small, 259
System Biology, 351
System Biology Markup Language, 353

temperature, 103, 354, 422
ambient, 104, 422

terminal strong linkage class, 25, 139

term-rewriting, 14, 355
tertiary reaction step, 29
theorem, alternative, 48
thermal runaway, 156
thermodynamic limit, 306
thermodynamics, 57, 107
third body, 8
third order reaction, 100
time dependent input, 154, 155
time reversal, 137
ToAtomMatrix, 44
Toolbox, 347
topological index, 19
topological transitivity, 188
toric dynamical system, 127
transformation, quasi-monomial, 161
transitive, 368
transitive closure, 22, 368
transport process, 5
trapping region, 417
tree, 367
triangle reaction, 22

unidentifiable, 332
uniform influence diagram, 190
Union, 382
units, 82
UnitVector, 62
universal gas constant, 104
unstable focus, 417

variational equations, 372
vertex, 366
vertex-edge incidence matrix, see incidence

matrix
vertex-incidence matrix, see adjacency matrix
VertexLabeling, 386
Volpert graph, 26, 31, 194, 348
volume, 422
volume of the phase space, 245

warmstarting, 66
weakly connected, 367
weakly connected component, 19
WeaklyConnectedComponents, 386
weakly realistic reaction, 193
weakly reversible, 22, 202, 414
WeaklyReversibleQ, 13, 384
weak mass, 194
Wegscheider reaction, 138, 426
weighted directed bipartite graph, 26
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weight function, 328
well-posed problem, 150, 196
well-stirred, 271
With, 62
Wolfram Language, 3, 13, 355

zero complex, 6
zero deficiency, 335
zero deficiency theorem, 413, 426
zero divisor, 359
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