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Foreword

In his position as professor at the faculty of Electrical Engineering, Math-
ematics and Computer Science at the Delft University of Technology, Jan
van Noortwĳk had a simple goal: to apply mathematical modeling tech-
niques to problems in civil engineering. In particular, he aimed to make
advanced decision-theoretic models accessible to engineers in other fields
such as civil and mechanical engineering. Most of his work involved the
application of probability theory to problems in maintenance optimization
and the management of risks due to flooding. The inherent uncertainty in-
volved with the current and future state of structures and systems requires
a sound methodology for quantifying these uncertainties.

This book presents some of the latest developments in these areas by
leading researchers at academic institutions and practitioners in various
lines of work. The contributions will be presented during a one-day sympo-
sium on November 24, 2009 in Delft, the Netherlands. Both this book and
the symposium are a tribute to the legacy of professor Jan van Noortwĳk.

First and foremost we are indebted to the authors for their enthousiastic
response to the call for papers and the significant effort they have put into
finishing their contributions within a very short period of time. We extend
our appreciation to the scientific committee, being Tim Bedford, Christophe
Bérenguer, Rommert Dekker, Pieter van Gelder, Antoine Grall, Matthĳs
Kok, Tom Mazzuchi, Robin Nicolai, Martin Newby, and Hans van der Weide
for their swift reviews. We would also like to thank Ton Botterhuis and
Karolina Wojciechowska for additional reviewing and editing of a number
of contributions.

At the time of writing, the symposium has been made possible by the
organizing institutions, HKV Consultants and the Delft University of Tech-
nology, as well as the Nederlandse Vereniging voor Risicoanalyse en Bedrĳfs-
zekerheid (NVRB), Universiteitsfonds Delft, the Netherlands Organization
for Applied Scientific Research (TNO), and the organizing committee of the
7th International Probabilistic Workshop (November 25-26, 2009 in Delft).

The editors,
Maarten-Jan Kallen and Sebastian Kuniewski
Delft, September 23, 2009.

ix



This page intentionally left blank



Risk and Decision Analysis in Maintenance Optimization and Flood Management
M.J. Kallen and S.P. Kuniewski (Eds.)
IOS Press
c© 2009. The authors and IOS Press. All rights reserved.

The work of professor Jan van Noortwĳk (1961-2008):
an overview

Maarten-Jan Kallen
∗and Matthĳs Kok

– HKV Consultants, Lelystad, the Netherlands

Abstract. We give an overview of the research and publications
by professor Jan van Noortwĳk starting from his graduation at the
Delft University of Technology in 1989 up to his death on September
16, 2008. The goal of this overview is to list all of his scientific
publications and to put these in a historical perspective. We show
how his Ph.D. thesis was a stepping stone to the two primary fields in
which he did most of his later work: maintenance optimization and
the management of risks due to flooding.

1 THE FORMATIVE YEARS: 1988 TO 1995

In 1988 Jan was an undergraduate student at the Delft University of Tech-
nology. At that time, he was majoring in applied mathematics at the faculty
of Mathematics and Computer Science and working on his Master’s thesis
under the supervision of Roger Cooke. Rommert Dekker, now a professor
at the Erasmus University in Rotterdam but at that time working in the
department of Mathematics and Systems Engineering at the research lab-
oratorium of Royal Dutch/Shell in Amsterdam, approached Roger Cooke
with a problem they were having with a decision support system for main-
tenance optimization called PROMPT-II [1].

The PROMPT system was designed for optimal opportunity-based pre-
ventive maintenance. One problem was that the system used lifetime dis-
tributions requiring an amount of data which was unavailable at that time.
Their attempts at elicitation of this data using expert opinion among their
engineers resulted in many inconsistencies between estimates. During his
internship at Royal Dutch/Shell, where he was supervised by Rommert
Dekker and Thomas Mazzuchi, Jan van Noortwĳk developed methods to
elicit expert opinion on reliability data in a structured manner and to com-
bine these estimates into a consensus distribution for the lifetime of a com-
ponent. This research resulted in his Master’s thesis [2] with which he
graduated from the university in 1989. It also resulted in his first and most
cited publication in a scientific journal [3]. Another student of Roger Cooke,
∗corresponding author: HKV Consultants, P.O. Box 2120, 8203 AC Lelystad,

the Netherlands; telephone: +31-(0)320 294 256, fax: +31-(0)320 253 901, e-mail:
m.j.kallen@hkv.nl.
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René van Dorp, continued Jan’s work at Shell and implemented the elic-
itation procedure suggested by Jan. He also developed feedback for the
elicitation procedure, which included feedback for evaluating the optimal
maintenance interval given the elicited lifetime distribution [4].

Both Roger Cooke and Rommert Dekker suggested to Jan that he should
pursue a doctoral degree at the university, but Jan went to work for the Dr.
Neherlab in Leidschendam, which was the research laboratory of the Dutch
national telecommunications company. During the short period that he
worked there (up to August 1990), he co-authored one conference paper [5].
In September 1990, Jan returned to the university in Delft and became a
graduate student, initially with professor Freek Lootsma in the Operations
Research chair, but later with Roger Cooke whom became a professor in the
Risk Analysis and Decision Theory chair. Around this time, Matthĳs Kok
at Delft Hydraulics (now Deltares), and a former graduate student of prof.
Lootsma, was setting up a research program on the optimal maintenance
of hydraulic structures. After a meeting with Roger Cooke and Jan van
Noortwĳk, Matthĳs appointed Jan as a contractor. Jan held his position at
the university until June 1995 and obtained his doctoral degree on the 28th
of May in 1996 with his thesis Optimal maintenance decisions for hydraulic
structures under isotropic deterioration; see [6] and Figure 1.

Figure 1. the front cover of Jan van Noortwĳk’s Ph.D. thesis also known as the
‘little yellow book’ due to the bright yellow color of the cover.

The contract work for Delft Hydraulics provided a unique opportunity
for Jan to work on real life problems and almost every chapter from his
thesis was later published in a scientific journal. The four primary applica-
tions discussed in his thesis are: optimal sand nourishment decisions for the
Dutch coastline [7], optimal maintenance decisions for dykes [8], for berm
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breakwaters [9], and for the sea-bed protection of the Eastern-Scheldt storm
surge barrier [10]. The problem of optimally inspecting the block-mats of
the Eastern-Scheldt barrier was also the topic of a chapter in a book pub-
lished in conjunction with a workshop which was organized to celebrate his
Ph.D. thesis; see [11]. These mats prevent possible instability of the piers
in the barrier due to erosion and must be inspected periodically to check
for the presence of scour holes. Jan proposed a Poisson process for the ran-
dom occurrence of these scour holes and a gamma process for the stochastic
expansion of the size of the holes once they have appeared.

From a theoretical point of view, his most important contribution by his
the use of the gamma process to model uncertain deterioration over time.
His motiviation for this was not only the fact that the increments of this
particular stochastic process are non-negative, which makes the process of
deterioration monotonically increasing, but also that it could be charac-
terized by the only (subjective) information which is commonly available,
namely the limiting average rate of deterioration. This feature makes the
gamma process fit within the operational Bayesian approach advocated by
Max Mendel and Richard Barlow; see [12] and [13]. The basic thought be-
hind this approach is that any model should be designed such that prior
information need only be given over parameters with an operational mean-
ing. Jan visited Max and Dick as a visiting scholar at the University of
California at Berkeley in 1992 and this ultimately gave direction to the
mathematical aspects of his research [14]. These aspects are the topics of
the second and third chapter in Jan’s Ph.D. thesis.

In the second chapter of his Ph.D. thesis, Jan discusses a Bayesian
isotropic failure model which is based on two assumptions: (1) the order in
which the increments appear is irrelevant (i.e., they are exchangeable) and
(2) given the average amount of deterioration per unit time, the decision
maker is indifferent to the way this average is obtained (i.e., the amounts
of deterioration are 1-isotropic, which implies exchangeability). The latter
may also be stated as follows: all combinations leading to the same average
have the same degree of belief for the decision-maker. This chapter was
later published in the European Journal of Operations Research [15]. Note
that the assumption of 1-isotropic deterioration implies that the expected
amount of deterioration is linear in time. The third chapter in his Ph.D.
thesis characterizes the general gamma process in terms of sufficiency and
isotropy. This work was done together with Jolanta Misiewicz from the Uni-
versity of Zielona Gora in Poland, which was later published in the Journal
of Mathematical Sciences [16]. The ninth and last chapter of his thesis con-
tains the results of a follow-up on the research he did for his M.Sc. thesis and
which was reported in his first journal publication [3]. This chapter, which
was later published in the Journal of Quality in Maintenance Engineering
[17], proposes the use of the Dirichlet distribution as a discrete lifetime dis-
tribution, which can be used when experts give estimates of lifetimes in the
form of a histogram.
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Jan van Noortwĳk also wrote several reports for Delft Hydraulics. The
first was an inventory of problems for his research [18]. In 1991, Leo Klat-
ter from the Ministry of Transport, Public Works and Water Management
asked Matthĳs Kok to research how to optimally maintain parts of hydraulic
structures which were located below the waterline [19]. The report included
an analysis of the Eastern-Scheldt barrier, which would become one of the
real life applications in Jan’s thesis. In [20], Jan used the method of paired
comparisons to rank, amongst other variables, the various designs of the
bridge now known as the Erasmus bridge in Rotterdam. For each layout,
ship pilots (i.e., the experts), were asked whether it would be easier or more
difficult to navigate relative to the other layouts. However, his most im-
portant work for Delft Hydraulics would become the work he and Matthĳs
Kok did in 1994 for the Committee Flood Disaster Meuse, also known as
“Boertien-II”, which will be discussed in Section 5.

2 THE PROFESSIONAL CAREER: 1995 TO 2008

On September 1, 1995, Hans Hartong, Matthĳs Kok and Kees Vermeer
founded HKV Lĳn in water B.V. (English: HKV Consultants) in the city
of Lelystad in the Netherlands. One month later, Jan van Noortwĳk joined
them as their first employee. From this point on, his work would focus on
roughly two areas: maintenance optimization of man-made structures and
systems, and the assessment and management of risks related to natural
hazards such as coastal and fluvial flooding. This is best expressed by the
longstanding relationship with people at two divisions of the Directorate-
General for Public Works and Water Management, namely the Centre for
Public Works and the Centre for Water Management. A detailed account
of his achievements in both subject areas is the topic of Sections 4 and 5.

On May 1, 2000, at which time the company had grown to 36 employees,
Jan became the head of the newly formed Risk and Safety group. In the
Netherlands, he had quickly gained recognition by his peers as being a
leading expert in his field. Combined with the multitude of publications
detailing his pioneering work in both his areas of interest, this led to his
appointment as a part-time professor at the Delft University of Technology.
There, he would join professor Roger Cooke at the faculty of Electrical
Engineering, Mathematics and Computer Science as the head of the chair
Mathematical Aspects of Risk Analysis. On the day of his death, September
16, 2008, HKV Consultants had grown to 62 people and the Risk and Safety
group had grown from 8 to 16 members.

In the following sections, we describe the work of Jan van Noortwĳk
in three subject areas: uncertainty and sensitivity analysis, maintenance
optimization, and flood risk management.
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3 UNCERTAINTY AND SENSITIVITY ANALYSIS

Around the time that Jan was finishing his Ph.D. thesis and starting his
work at HKV Consultants, he worked on general developments in the theory
of uncertainty and sensitivity analysis. In particular, he was involved with
the development of a software tool called Uncertainty analysis with Cor-
relations (UNICORN) together with Roger Cooke at the Delft University
of Technology. He co-authored several papers related to this tool together
with Roger Cooke. In [21, 22] they discuss graphical methods for use in
uncertainty and sensitivity analyses. One of these methods is the use of
so-called cobweb plots for the visual display of correlated random variables.
These were used in their uncertainty analysis of the reliability of dike-ring
areas in the Netherlands [23].

4 MAINTENANCE OPTIMIZATION

Jan’s work in deterioration modeling and maintenance optimization was
largely influenced by his work for Leo Klatter and Jaap Bakker at the Centre
for Public Works and by his position as professor at the university in Delft.
The Centre for Public Works is essentially a knowledge centre for issues
regarding the management of important civil infrastructures, such as the
national roads, bridges, sluices, storm-surge barriers, etcetera. The two
subjects that Jan was most involved with, were the management of road
bridges and the maintenance of coating systems on steel structures. He
would complete several projects for the Centre, but he was also hired as a
contractor for a long period of time during which he spent about one day a
week at the offices of the Centre in Utrecht.

4.1 Lifetime-extending maintenance model

Together with Jaap Bakker and Andreas Heutink at the Centre for Public
Works and several colleagues at HKV, Jan developed the lifetime-extending
maintenance (LEM) model [24] and the inspection-validation model [25, 26].
The LEM model originated from a spreadsheet module for the calculation of
the net present value of future expenditures, which was made together with
Harry van der Graaf. Given the available information on the rate of deteri-
oration and the uncertainty in the expected lifetime of the object, the LEM
model can be used to balance the costs of lifetime-extending maintenance
versus complete replacements. It does so by comparing the life-cycle costs
of two maintenance policies: one with periodic (imperfect) repairs which
extend the lifetime of the object and one with only periodic replacements
which bring the object back to an as-good-as-new state. The inspection-
validation module can be used to update the deterioration process in the
LEM model, which is based on the gamma process, with information gained
by inspection of the state of the object.
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4.2 Bridge management and life-cycle costing
Most of his work for the Centre concerned the topic of bridge management.
Many of the bridges in the national road network of the Netherlands were
built in the late 1960’s and early 1970’s. As many of these structures require
significant maintenance and retrofitting after approximately 40 to 50 years,
the Centre expects that a large number of bridges will have to be main-
tained in the near future and that this would put severe pressure on the
already shrinking budget for the management of national infrastructures.
The challenge is therefore to prioritize maintenance actions and to commu-
nicate the necessity of large-scale repairs to policy makers and to the public.
Prioritization should be based on the principle of life-cycle costing (LCC),
as current decisions affect future maintenance requirements. In order to
apply this principle, it is necessary to have an estimate of the uncertain
lifetime of bridges. For this, Jan and Leo Klatter proposed to use a Weibull
distribution fitted to observed lifetimes of demolished bridges and censored
lifetimes of existing bridges [27, 28] (later published in Computers & Struc-
tures [29]). The censored observations of the lifetimes were incorporated by
using the left-truncated Weibull distribution.

With the information on the estimated lifetimes of bridges and the costs
of various types of repairs, they defined a decision-theoretic approach to
bridge management in the Netherlands [30, 31, 32, 33] (later published in
Structure and Infrastructure Engineering [34]). Jan also looked into the
application of the Life-Quality Index (LQI) for objectively assessing the in-
crease in the quality of life in the Netherlands as a result of bridge mainte-
nance [35]. Although this approach looked promising, it didn’t really catch
on in the bridge management community.

It is through his work for the Centre of Public Works that Jan met pro-
fessor Dan Frangopol at the International Conference on Structural Faults
and Repairs held in London in 1999, where they agreed to colaborate on
research in the area of maintenance modeling. In particular, they com-
pared the LEM model with the time-dependent reliability models developed
by Dan Frangopol and his co-workers; see [36], which was later published
in Probabilistic Engineering Mechanics [37]. In 2004, they published an
invited paper, together with Maarten-Jan Kallen, with a review of proba-
bilistic models for structural performance [38].

Maarten-Jan Kallen started his Ph.D. research under the supervision
of Jan van Noortwĳk in April 2003. Jan arranged for him to be an em-
ployee at HKV Consultants and to be hired as a consultant by the Centre
for Public Works. It is a typical example of his ability to connect scientific
research with business and it is reminiscent of the collaboration between
the university in Delft and Delft Hydraulics during his own Ph.D. research.
Before this time, Jan had already supervised Maarten-Jan during his M.Sc.
project, which applied the gamma process for modeling the deterioration in
pressure vessels used by the oil and gas industry. Companies which operate
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these types of vessels are increasingly turning to a more probabilistic ap-
proach, known as ‘Risk-Based Inspections’ (RBI), for planning their inspec-
tions. The main results of his M.Sc. thesis were published in a paper at the
ESREL conference in Maastricht, the Netherlands in 2003 [39], which later
appeared in a special issue of the journal Reliability Engineering and System
Safety [40]. Whereas these concerned the updating of the gamma process
with information obtained using imperfect inspections, they also presented
a paper, which considered multiple failure modes in the maintenance opti-
mization of these pressure vessels, at the joint ESREL and PSAM conference
in Berlin in 2004 [41]. This was not done by considering a bivariate dete-
rioration process, but by reformulating the probabilities of preventive and
corrective replacements due to at least one of these failure modes. This par-
ticular approach assumes that both degradation processes are independent.

The original idea for Maarten-Jan’s Ph.D. project was to apply the
gamma process for modeling bridge deterioration, but it soon became clear
that insufficient data was available for this purpose. The Centre did have a
database with data from visual inspections performed over a period of more
than 20 years. It is therefore that the focus of the research shifted to fitting
finite-state Markov processes to this data by use of appropriate methods
for estimating the rate of transitions between condition states. The results
of this research were published in papers at the ESREL conference held in
Poland in 2005 [42], the IABMAS conference held in Portugal in 2006 [43],
and in a special issue of the International Journal of Pressure Vessels and
Piping [44] for which the model was reformulated to fit into the context of
pressure vessels.

4.3 Sewer system management
Jan’s first Ph.D. student was Hans Korving, who performed his research
at HKV and at the section of Sanitary Engineering at the faculty of Civil
Engineering and Geosciences of the Delft University of Technology. His su-
pervisor there was prof. François Clement. Hans did his research towards
the probabilistic modeling of the hydraulic performance and the manage-
ment of the operational and structural condition of sewer systems. The
overall aim was to include uncertainties of various types when making de-
cision concerning the design, operation and maintenance of sewer systems
[45, 46]. They used Bayesian statistics to determine the return period of
combined sewer overflow (CSO) volumes, which is information that can be
used for the risk-based design of such systems [47, 48]. For the mainte-
nance and reliability modeling of sewer systems, they analysed failure data
of sewage pumps assuming a non-homogeneous Poisson process for the oc-
currence of failures [49]. They also proposed a Bayesian model for updating
prior knowledge on the condition state of sewer systems with the results of
visual inspections [50]. The work presented in this paper is related to the
work that Jan did for his M.Sc. thesis [2]. In the Netherlands, the condition
of sewer systems is classified in one of five states according to the provisions
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by the European norm NEN-EN-13508-2. If the likelihood of being in one
these states is represented by a multinomial distribution, then the Dirichlet
distribution may be used as a conjugate prior.

4.4 Corrosion modeling
In the publications [39, 40, 41] with Maarten-Jan Kallen, Jan van Noortwĳk
considered the thinning of steel walls due to corrosion and the process of
stress-corrosion cracking. Using a gamma process to model the uncertain
rate of thinning and cracking, they proposed a model which is updated
with the results of imperfect (i.e., inaccurate) inspections. At the Centre
for Public Works, Jan also considered problems related to corrosion of steel
structures. Using the LEM model, he compared different strategies for the
maintenance of the coating on the steel doors in the ‘Haringvliet’ storm-
surge barrier [51]. He also co-authored a survey on deterioration models for
corrosion modeling [52] together with Robin Nicolai and his Ph.D. supervi-
sor at the time, Rommert Dekker.

Jan also published a few papers together with another Ph.D. student,
Sebastian Kuniewski, whose research is sponsored by Shell Global Solutions
in Amsterdam. His research is primarily focused on corrosion modeling of
steel pipelines and vessels. In particular, they consider a form of sampling
inspection, which is performed when a complete inspection of the whole
surface of an object is not feasible. The information obtained from this
partial inspection is then used to estimate the distribution of the largest
defects in those areas which were not inspected [53, 54]. In a paper together
with a former M.Sc. student of Jan, Juliana López de la Cruz, they looked
at identifying clusters of pit corrosion in steel [55], based on a method to
assess the goodness-of-fit of a non-homogeneous Poisson point process.

4.5 Gamma processes and renewal theory
Jan van Noortwĳk is possibly best known for his work on the use of gamma
processes for the stochastic modeling of deterioration. Starting with his
Ph.D. thesis and ending with a survey of the application of gamma pro-
cesses in maintenance [56] (published in Reliability Engineering and System
Safety after his death in 2009), he published many papers in various subject
areas in which the gamma process was used to model continuous and mono-
tonically increasing processes of deterioration. Some variations included the
combined probability of failure due to wear and randomly occuring schocks
[57] (later published in a special issue of Reliability Engineering and Sys-
tem Safety [58]) and a bivariate gamma process to model two dependent
deterioration processes [59].

Many of these publications were co-authored by prof. Mahesh Pandey
from the University of Waterloo in Canada. Together with Hans van der
Weide from the Delft University of Technology, he travelled to Canada for
extended periods of time on several occasions, and they were in the process
of writing a book together. Together with Mahesh, Jan published several
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papers which were aimed at ‘promoting’ the use of the gamma process in
the area of civil engineering. At three different conferences, they presented
similar papers which highlighted the benefits of using the gamma process:
an IFIP working conference in 2003 [60] (Jan has also written a general
paper on the use of the gamma process for condition-based maintenance
optimization at an earlier IFIP conference [61]), the IABMAS conference in
2004 [62], and the ICOSSAR conference in 2005 [63]. Finally, the contents of
these papers were also published in Structure and Infrastructure Engineering
in 2009 [64].

Another topic Jan worked on together with Hans and Mahesh, is the use
of renewal theory in maintenance and reliability. In particular, they worked
on various forms of monetary discounting for comparing future streams of
expenditures based on their present value [65, 66, 67, 68]. This research fol-
lowed Jan’s work on cost-based criteria for maintenance decisions, in which
he also considered the variance of costs [69] (later published in Reliability
Engineering and System Safety [70]). In most cases, the policy with the low-
est expected costs is chosen, but these papers show that the costs of these
policies have the highest uncertainty (i.e., the largest variance) associated
with them. In [71] (later publised in Reliability Engineering and System
Safety [72] and used in [73]).

During his professional career, Jan van Noortwĳk became a respected
consultant and researcher in the area of maintenance optimization and re-
liability modeling. His authority in these subject areas is confirmed by his
position as professor at the Delft University of Technology, by his posi-
tion as lecturer at courses organized by the Foundation for Post Graduate
Education in Delft, and the numerous invited papers and articles for jour-
nals and encyclopedia. For the Wiley Encyclopedia of Statistics in Quality
and Reliability, he co-authored two articles: one on models for stochastic
deterioration [74] and one on maintenance optimization [75].

5 FLOOD RISK MANAGEMENT

Jan started his research in flood risk management in 1994 with an uncer-
tainty analysis of strategies to reduce the risk of flooding in the river Meuse.
This research was carried out in a Delft Hydraulics project for the Commit-
tee Flood Disaster Meuse [76]. It became the topic of the eighth chapter in
his Ph.D. thesis and it later also became a chapter in the book The prac-
tice of Bayesian Analysis [77]. The new idea of his approach was to use a
Bayesian approach for the assessment of the uncertainties in the expected
flood damage and the costs of the strategies. The most important uncer-
tainties were the river discharge, the flood damage given the discharge, the
downstream water levels along the Meuse given the discharge, and the costs
and benefits of decisions.

In one of his first projects at HKV, Jan derived the generalised gamma
distribution for modelling the uncertain size of peak discharges in the Rhine
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river [78]. This particular probability distribution has the advantage of
fitting well with the stage-discharge curve being an approximate power law
between water level and discharge [79].

In 1996, Jan made a big contribution in a study on the modeling of the
roughness of submerged vegetation [80]. A new, analytical, physics-based
model of the vertical flow velocity profile and the hydraulic roughness of
submerged vegetation was developed. Jan found an analytical solution to
the differential equation of the model, which was not known in the litera-
ture at that time and which opened a wide range of applications. Another
contribution in this area is the calibration of hydraulic models. Calibration
of these mathematical models is a time consuming process. This process
can be automated by function minimisation with the simplex algorithm. In
[81] it is described how Jan, together with two colleagues (Matthĳs Duits
and Anne Wĳbenga), contributed to this problem with an application to
one of the Dutch rivers.

The contributions of Jan in the field of flood risk management were
remarkable and included an amazing number of topics. In particular, he
covered both aspects of risk, namely the probability of occurrence and the
consequences of a flood event. In the following sections, an overview of his
contributions to both aspects is given.

5.1 The probability of occurrence of a flood
The main contribution of Jan van Noortwĳk in flood risk management has
been the use of Bayesian statistics. Jan has written nine papers about this
topic [79, 82, 83, 84, 85, 86, 87, 88, 89] and he also initiated a common
research program between HKV Consultants and the Ministry of Transport,
Public Works and Water Management, from 2000 to 2008. Program leader
on behalf of the Ministry was mr. Houcine Chbab. This research program
resulted in new Bayesian methods and a software program to apply these
methods in practice. One of the applications is the assessment of ‘design’
discharges of rivers, which represent the discharges with a given return
period (i.e., the reciprocal of the probability of exceedance). In the clas-
sical approach, statistical uncertainties are not taken into account. In the
Bayesian approach, the prior distribution represents information about the
uncertainty of the statistical parameters, and, using Bayes’ theorem, it can
be updated with the available data. So, rather than choosing one particular
probability distribution a priori, Jan proposed to fit various probability dis-
tributions to the observations and to attach weights to these distributions
according to how well they fit this data. So-called Bayes factors are used
to determine these weights. Another major contribution is his derivation of
non-informative Jeffrey’s priors for a large number of probability distribu-
tions. Data from many rivers (for example, the Rhine and Oder rivers) and
results of the Bayesian approach are included in the papers. An important
conclusion is that the design discharges increase when taking the statistical
uncertainties into account properly [88].
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Information on water levels and discharges is important in order to de-
termine the probability of the failure mode of ‘overtopping’ in which the
waterlevel exceeds the crest-level of a dike. In [90], a special Monte Carlo
method (directional sampling) was used to assess the probability of dike
failure due to the failure mechanism ‘uplifting and piping’. Dike failure due
to uplifting and piping is defined as the event in which the resistance (the
critical head) drops below the stress (the outer water level minus the inner
water level). Special attention was given to the spatial variation, since the
critical head is correlated over the length of a dike. The correlation is mod-
elled using a Markovian dependency structure. The paper shows results of
a dike section in the lower river area of the Netherlands.

5.2 The consequences of a flood
Jan also made extensive use of the methods developed by Roger Cooke in the
field of expert judgment. In his Master’s thesis, Jan elicited expert opinions
on reliability data in a structured manner. In 2005, he formulated a new
method for determining the time available for evacuation of a dike-ring area
by expert judgment [91]. This research was done together with HKV col-
league Anne Barendregt and two experts from the Ministry of PublicWorks
and Water Management: Stephanie Holterman and Marcel van der Doef.
They addressed the following problem. The possibilities open to preventive
evacuation because of a flood threat depend on the time available and the
time required for evacuation. If the time available for evacuation is less than
the time required, complete preventive evacuation of an area is not possible.
Because there are almost no observations on the time available, Jan and his
colleagues had to rely on expert opinions. It is remarkable that the results
of this study are still of value. It is widely recognized that the methodology
was sound, and that the expert elicitation was done with much care.

Together with Anne Barendregt, Stephanie Holterman and an M.Sc.
student from Delft, Regina Egorova, Jan published results on an effort to
quantify the uncertainty in flood damage estimation [92]. They considered
uncertainty in the maximum damage per object and the damage function.
Given the water level, the damage function gives the damage incurred as a
fraction of the maximum damage. The uncertainty in the damage function
was represented by a Beta distribution. Finally, they also considered the
effect of spatial dependence between the damages in a flooded area and they
applied the model to the Central-Holland dike-ring area.

5.3 Cost-benefit analysis of flood protection measures
The area of cost-benefit analysis of measures for flood protection was also
covered by Jan. In [8], he addressed the problem of how to achieve cost-
optimal dike heightening for which the sum of the initial cost of investment
and the future (discounted) cost of maintenance is minimal. Jan devel-
oped a maintenance model for dikes subject to uncertain crest-level decline.
On the basis of engineering knowledge, crest-level decline was modeled as
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a monotone stochastic process with expected decline being linear of non-
linear in time. For a particular unit of time, the increments are distributed
according to mixtures of exponentials. In a case study, the maintenance
decision model has been applied to the problem of heightening the Dutch
‘Oostmolendĳk’. In [57, 58], Jan addressed the time dependent reliability of
the Den Helder sea defence as stochastic processes of deteriorating resistance
and hydraulic load. Recently, Jan also addressed the cost-benefit method of
flood protection as a non-stationary control problem, as suggested by mr.
Carel Eigenraam of the Central Planning Office. Here, the benefits of a de-
cision are modeled as the present value of expected flood damage. Jan has
written two HKV reports about this optimization problem, and also guided
one of his M.Sc. students, Bastiaan Kuĳper, in this direction (this research
was recenty published as [93]). Unfortunately, he was unable to enrich the
scientific literature with more publications on this topic.
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In Schuëller and Kafka [102], pages 1475–1480.

[83] J. M. van Noortwĳk and P. H. A. J. M. van Gelder. Bayesian estimation
of quantiles for the purpose of flood prevention. In B. L. Edge, editor,
Proceedings of the 26th International Conference on Coastal Engineering,
Copenhagen, Denmark, 1998, pages 3529–2541, New York, 1999. American
Society of Civil Engineers (ASCE).

[84] E. H. Chbab, J. M. van Noortwĳk, and M. T. Duits. Bayesian frequency
analysis of extreme river discharges. In F. Toensmann and M. Koch, editors,
River Flood Defence: Proceedings of the International Symposium on Flood
Defence, Kassel, Germany, 2000, pages F51–F60, Kassel, 2000. Herkules
Verlag Kassel.

[85] E. H. Chbab, J. M. van Noortwĳk, and H. J. Kalk. Bayesian estimation of
extreme discharges. In M. Spreafico and R. Weingartner, editors, CHR Re-
port II-17, International Conference on Flood Estimation, March 6-8, 2002,
Berne, Switzerland, pages 285–294, Lelystad, 2002. International Commis-
sion for the Hydrology of the Rhine basin (CHR).

[86] J. M. van Noortwĳk, H. J. Kalk, and E. H. Chbab. Bayesian computation

18



The work of professor Jan van Noortwĳk (1961-2008): an overview

of design discharges. In T. Bedford and P. H. A. J. M. van Gelder, editors,
Proceedings of ESREL 2003 – European Safety and Reliability Conference
’03, 15-18 June 2003, Maastricht, The Netherlands, pages 1179–1187. Rot-
terdam: Balkema, 2003.

[87] J. M. van Noortwĳk, H. J. Kalk, M. T. Duits, and E. H. Chbab. Bayesian
statistics for flood prevention. Technical Report PR280, Ministry of Trans-
port, Public Works and Water Management, Institute for Inland Water
Management and Waste Water Treatment (RIZA), and HKV Consultants,
Lelystad, The Netherlands, 2003.

[88] J. M. van Noortwĳk, H. J. Kalk, M. T. Duits, and E. H. Chbab. The use of
Bayes factors for model selection in structural reliability. In Corotis et al.
[101].

[89] J. M. van Noortwĳk, H. J. Kalk, and E. H. Chbab. Bayesian estimation of
design loads. HERON, 49(2):189–205, 2004.

[90] J. M. van Noortwĳk, A. C. W. M. Vrouwenvelder, E. O. F. Calle, and
K. A. H. Slĳkhuis. Probability of dike failure due to uplifting and piping.
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On some elicitation procedures for distributions with
bounded support – with applications in PERT
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Abstract. The introduction of the Project Evaluation and Review
Technique (PERT) dates back to the 1960’s and has found wide appli-
cation since then in the planning of construction projects. Difficulties
with the interpretation of the parameters of the beta distribution let
Malcolm et al. [1] to suggest the classical expressions for the PERT
mean and variance for activity completion that follow from lower and
upper bound estimates a and b and a most likely estimate θ thereof.
The parameters of the beta distribution are next estimated via the
method of moments technique. Despite more recent papers still ques-
tioning the PERT mean and variance approach, their use is still preva-
lent in operations research and industrial engineering text books that
discuss these methods. In this paper an overview is presented of some
alternative approaches that have been suggested, including a recent
approach that allows for a direct model range estimation combined
with an indirect elicitation of bound and tail parameters of general-
ized trapezoidal uniform distributions describing activity uncertainty.
Utilizing an illustrative Monte Carlo analysis for the completion time
of an 18 node activity network, we shall demonstrate a difference
between project completion times that could result when requiring
experts to specify a single most likely estimate rather than allowing
for a modal range specification.

1 INTRODUCTION

The three parameter triangular distribution Triang(a, θ, b), with lower and
upper bounds a and b and most likely value θ, is one of the first continu-
ous distributions on the bounded range proposed back in 1755 by English
mathematician Thomas Simpson [2, 3]. It received special attention as late
as in the 1960’s, in the context of the PERT (see, e.g., Winston [4]) as an
alternative to the four-parameter beta distribution:

fT (t|a, b;α, β) = Γ(α + β)
Γ(α)Γ(β)

(t− a)α−1(b− t)β−1

(b− a)α+β−1 , (1)

∗corresponding author: Department of Engineering Management and Systems Engi-
neering, School of Engineering and Applied Science, The George Washington University,
1776 G Street, N.W., Washington D.C. 20052, U.S.A.; telephone: +1-(202) 994 6638, fax:
+1-(202) 994 0245, e-mail: dorpjr@gwu.edu.
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with a ≤ t ≤ b, α > 0, and β > 0. This distribution involves some difficulties
regarding the interpretation of its parameters α and β. As a result, Malcolm
et al. [1] suggested the following PERT mean and variance expressions

E[T ] = a + 4θ + b

6 , V ar[T ] = 1
36(b− a)2 (2)

where T is a random variable modeling activity completion time, a and b
being the lower and upper bound estimates and θ being a most like estimate
for T . The remaining beta parameters α and β in (1) are next obtained
from (2) utilizing the method of moments. Kamburowski [5] notes that:
“Despite the criticisms and the abundance of new estimates, the PERT
mean and variance (given by Equation (2) in this paper) can be found in
almost every textbook on OR/MS and P/OM, and are employed in much
project management software.”

The somewhat non-rigorous proposition (2) resulted in a vigorous debate
over 40 years ago (Clark [6], Grubbs [7], Moder and Rodgers [8]) regarding
its appropriateness and even serves as the topic of more recent papers (see,
e.g., Herreŕıas [9], Kamburowski [5], Herreŕıas et al. [10]). In a further
response to the criticism of (2), Herreŕıas [9] suggested substitution of

α = 1 + s(θ − a)/(b− a), β = 1 + s(b− θ)/(b− a), (3)

in (1) instead, where s > −1 and a < θ < b. This yields

E[T ] = a + sθ + b

s + 2 , V ar[T ] = (s + 1)(b− a)2 + s2(b− θ)(θ − a)
(s + 3)(s + 2)2 . (4)

Essentially, Herreŕıas [9] reparameterizes the beta probability density func-
tion (PDF) in Equation (1) by managing to express α and β in terms of
new parameters θ and s while retaining the lower and upper bounds a and
b. For s > 0 the beta PDF (1) is unimodal and for s = 0 it reduces to a
uniform distribution. Hence, Herreŕıas [9] designated s to be a confidence
parameter in the mode location θ such that higher values of s indicate a
higher confidence. Indeed, for s → ∞, the beta pdf converges to a single
point mass at θ. For −1 < s < 0, the beta PDF (11) is U-shaped which is
not consistent with θ being a most likely value.

As a further alternative to the beta PDF (1), Van Dorp and Kotz [11] gen-
eralized the Triang(a, θ, b) distribution to a two sided power TSP(a, θ, b, n)
distribution

fX(x|a, θ, b, n) = n

b− a
×
{(
x−a
θ−a

)n−1
, a < x ≤ θ,(

b−x
b−θ

)n−1
, θ ≤ x < b,

(5)

by the inclusion of an additional parameter n > 0 describing a power-
law behavior in both tails. For n = 2 and n = 1 the distribution (5)
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reduces to the Triang(a, θ, b) and Uniform[a, b] distributions, respectively.
The following expressions for the mean and the variance follow from (5):

E[X] = a + (n− 1)θ + b

n + 1 , V ar[X] = n(b− a)2 − 2(n− 1)(b− θ)(θ − a)
(n + 2)(n + 1)2 .

(6)
Interestingly, one immediately observes that by substituting n = s+1 in

(6), the beta mean value (4) and TSP mean value in (6) coincide. Moreover,
recalling that T ∼ Beta(a, b, α, β) given by (1) and X ∼ TSP (a,m, b, n)
given by (5) and observing that for s = 4 or n = 5 the mean values in
(4) and (6) agree and reduce to the PERT mean E[T ] in (2) as suggested
by Malcolm et al. back in 1959, one might indeed conclude that they were
lucky in this respect. However, observing that the variance in (4) for s = 4
is quite different from the PERT variance in (2), Malcolm et al. [1] were
after all not so lucky. Moreover, after some algebraic manipulations using
variances in (4) and (6) it follows that:

V ar[T ]− V ar[X] = (n− 1)(b− θ)(θ − a)
(n + 2)(n + 1) =

{
≤ 0, 0 ≤ n < 1,
> 0, n > 1.

(7)

Hence, in the unimodal domains of the TSP distribution (5), n > 1, and
the beta distributions (1), s > 0, with parameterization (3), the variance
of the TSP distribution is strictly less than the PERT variance modification
of Herreŕıas [9] given by (4). The result (7) is consistent with the TSP
distributions being more “peaked” than the beta distribution (see, e.g. Kotz
and Van Dorp [12]). Summarizing, given that an expert only provides lower
bounds a and b and most likely value m, additional alternatives are provided
in terms of the TSP(n) pdf’s (5), n �= 2, besides the existing beta and
triangular pdf options, and one is left to wonder which one of these to use,
perhaps extending the 50-year old controversy surrounding the use of (2).

The context of the controversy alluded to above deals with the larger
domain of distribution selection and parameter elicitation via expert judg-
ment, in particular those distributions with bounded support. In a recent
survey paper, a leading Bayesian statistician O’Hagan [13] explicitly men-
tions a need for advances in elicitation techniques for prior distributions in
Bayesian Analyses, but also acknowledges the importance of their devel-
opment for those areas where the elicited distribution cannot be combined
with evidence from data, because the expert opinion is essentially all the
available knowledge. Garthwaite, Kadana and O’Hagan [14] provide a com-
prehensive review on the topic of eliciting probability distributions dealing
with a wide variety of topics, such as e.g. the elicitation process, heuristics
and biases, fitting distributions to an expert’s summaries, expert calibra-
tion and group elicitation methods. Experts are, as a rule, classified into
two, usually unrelated, groups: 1) substantive experts (also known as tech-
nical experts or domain experts) who are knowledgeable about the subject
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matter at hand and 2) normative experts possessing knowledge of the ap-
propriate quantitative analysis techniques (see, e.g., De Wispelare et al. [15]
and Pulkkinen and Simola [16]). In the absence of data and in the context of
decision/simulation and uncertainty analyses, substantive experts are used
(often by necessity) to specify input distributions albeit directly or indi-
rectly with the aid of a normative expert. The topic of this paper deals
with fitting specific parametric distributions to a set of summaries elicited
from an expert.

In Section 2, we provide an overview of indirect elicitation procedures
for TSP PDF (5) parameters and their generalizations developed in Kotz
and Van Dorp [17], Van Dorp et al. [18] and Herreŕıas et al. [19]. Firstly,
we shall present an indirect elicitation procedure for the bound parameters
a, b and tail parameter n of TSP PDF’s (5). It has the specific advantage
of not requiring bounds elicitation whom may not fall within the realm of
expertise of a substantive expert. Next, we present the indirect elicitation
of both tail parameter of a generalization of TSP distribution allowing for
separate power law behavior in both tails. This procedure was presented in
Herreŕıas et al. [19], but does require the bounds a and b to be available.
We return to indirect bounds and power tail parameter elicitation for gen-
eralized trapezoidal uniform (GTU) distributions given lower and upper
quantile estimates and a modal range specification. A substantive expert
may be more comfortable with specifying a modal range rather than having
to specify a single point estimate as required in (2), (3) and (5). The GTU
elicitation procedure was developed in detail in Van Dorp et al. [18]. Finally,
in Section 3, we shall demonstrate via an illustrative Monte Carlo analysis
for the completion time of an 18 node activity network a potential difference
between project completion times that could result when requiring experts
to specify a single most likely estimate rather than allowing for a modal
range specification.

2 PARAMETER ELICITATION ALGORITHMS FOR TSP
DISTRIBUTIONS AND SOME GENERALIZATIONS

Let X ∼ TSP (Θ) with PDF (5), where Θ = {a, θ, b, n}. The main advantage
of the PDF (5) over the beta PDF (1) is that it has a closed form CDF
expressible using only elementary functions:

FX(x|Θ) =
{
θ−a
b−a

(
x−a
θ−a

)n
, for a < x < θ,

1− b−θb−a
(
b−x
b−θ

)n
, for θ ≤ x < b.

(8)

Suppose a lower and upper percentiles ap, br and most likely value θ for
X are pre-specified in a manner such that ap < θ < br. Kotz and Van
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Dorp [17] showed that a unique bounds a and b solution

a ≡ a{q(n)} = ap − θ n
√

p/q(n)
1− n

√
p/q(n)

, b ≡ b{q(n)} =
br − θ n

√
1−r

1−q(n)

1− n

√
1−r

1−q(n)

(9)

exists, given a value for the parameter n > 0, where q(n) = Pr(X < θ).
Herein we shall use the notation n

√
x = x1/n even when n > 0 is non-integer

valued. The unique value for Pr(X < θ) follows by solving for q(n) from
the equation

q(n) =
(θ − ap)

(
1− n

√
1−r

1−q(n)

)
(br − θ)

(
1− n

√
p
q(n)

)
+ (θ − ap)

(
1− n

√
1−r

1−q(n)

) , (10)

using a bisection method with starting interval [p, r]. When n ↓ 0,

q(n)→ q(0) = (θ − ap)/(br − ap) (11)

and when n→∞, q(n) converges to the unique solution q(∞) of the equa-
tion

q(∞)
q(0) log

{q(∞)
p

}
= 1− q(∞)

1− q(0) log
{1− q(∞)

1− r

}
. (12)

This equation, similar to q(n) in (10), may be solved for using a bisection
method with starting interval [p, r]. The PDF (5) itself, satisfying ap < θ <
br, converges to a Bernoulli distribution with point mass q(0) at ap when
n ↓ 0 and when n→∞ converges to an asymmetric Laplace distribution

fX(x|ap, θ, br) =

⎧⎨⎩ q(∞)AExp
{
−A(θ − x)

}
, x ≤ θ,

{1− q(∞)}BExp
{
−B(x− θ)

}
, x > θ,

(13)

where the coefficients A and B are

A =
log
{ q(∞)
p

}
θ − ap

and B =
log
{ 1−q(∞)

1−r
}

br − θ
. (14)

See also Kotz and Van Dorp [20].
Summarizing, the information ap < θ < br does not uniquely specify a

member within the TSP family. Kotz and Van Dorp [17] suggest the elicita-
tion of an additional quantile ap < xs < br to indirectly elicit the remaining
parameter n. They solve for a, b and n via an eight step algorithm. Its
details are provided in Kotz and Van Dorp [17] and a software implemen-
tation of this algorithm is available from the author upon request. Setting
a0.10 = 6.5, x0.80 = 10 1

4 , b0.90 = 11 1
2 and θ = 7 we have:

n ≈ 3.873, q(n) = 0.209, a{q(n)|n} ≈ 4.120, b{q(n)|n} ≈ 17.878. (15)

Figure 1 displays the TSP distribution with most likely value θ = 7 and
parameter values (15).
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2.1 GTSP parameter elicitation algorithm
Kotz and Van Dorp [12] briefly mentioned generalized GTSP (Θ) distribu-
tions with PDF

fX(x|Θ) = C(Θ)×
{(
x−a
θ−a

)m−1
, for a < x < θ,(

b−x
b−θ

)n−1
, for θ ≤ x < b,

(16)

where Θ = {a, θ, b,m, n} and

C(Θ) = mn

(θ − a)n + (b− θ)m. (17)

They reduce to TSP (Θ) PDF’s (5) when m = n and were studied in more
detail by Herreŕıas et al. [19]. Their CDF’s follow from (16) as:

FX(x|Θ) =
{
π(Θ)

(
x−a
θ−a

)m
, for a < x < θ,

1− [1− π(Θ)]
(
b−x
b−θ

)n
, for θ ≤ x < b.

(18)

where
π(Θ) = (θ − a)C(Θ)/m. (19)

To indirectly elicit the power parameters m and n, Herrerias et al. [19]
also suggest eliciting a lower quantile ap < θ and an upper quantile br > θ.
Similar to the PERT mean and variance (2), however, lower and upper
bounds a, b and a most likely estimate θ must have been directly pre-
elicited. The parameters m and n are next solved from the following set of
non-linear equations (the quantile constraints):{

F (ap|Θ) = π(Θ)
(ap−a
θ−a

)m = p,

F (br|Θ) = 1− [1− π(Θ)]
(
b−br
b−θ

)n = r.
(20)

Herrerias et al. [19] showed that the first (second) equation in (20) has
a unique solution m• for every fixed value of n > 0 and thus it defines
an implicit continuous function ξ(n) such that the parameter combination
{θ,m• = ξ(n), n} satisfies the first quantile constraint for all n > 0. This
unique solution m• may be solved for by employing a standard root finding
algorithm such as, e.g., the Newton-Raphson method (Press et al. [21]) or
a commercially available one such as, e.g., GoalSeek in Microsoft Excel.
Analogously, the second equation defines an implicit continuous function
ζ(m) such that the parameter combination (θ,m, n• = ζ(m)) satisfies the
second quantile constraint for all m > 0. By successively solving for the
lower and upper quantile constraint given a value for n or m, respectively,
an algorithm can be formulated that solves (20). Details are provided in
Herrerias et al. [19]. Setting a = 2, θ = 7, b = 15, a0.10 = 4 1

4 , and b0.90 = 11
in (20) yields the power parameters

m ≈ 1.883 and n ≈ 2.460. (21)
Figure 1 displays the GTSP distribution with lower and upper bounds a = 2
and b = 15, most likely value θ and the power parameter values (21).
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2.2 GTU parameter elicitation procedure
Van Dorp et al. [18] considered Generalized Trapezoidal Uniform (GTU)
distributions. Letting X ∼ GTU(Θ), where Θ = {a, θ1, θ2, b,m, n}, they
have for its pdf:

fX(x|Θ) = C(Θ)×

⎧⎪⎨⎪⎩
(
x−a
θ1−a

)m−1
, for a ≤ x < θ1,

1, for θ1 ≤ x < θ2,(
b−x
b−θ2

)n−1
, for θ2 ≤ x < b,

(22)

where the normalizing constant C(Θ) is given by

C(Θ) = mn

(θ1 − a)n + (θ2 − θ1)mn + (b− θ2)m. (23)

Defining stage probabilities π1 = Pr(X ≤ θ1), π2 = Pr(θ1 < X ≤ θ2), and
π3 = Pr(X > θ1), one obtains from (22) and (23):⎧⎪⎨⎪⎩

π1(Θ) = C(Θ)(θ1 − a)/m,

π2(Θ) = C(Θ)(θ2 − θ1),
π3(Θ) = C(Θ)(b− θ2)/n.

(24)

Utilizing the stage probabilities πi(Θ), i = 1, 2, 3, one obtains the following
convenient form for the CDF of (22)

FX(x|Θ) =

⎧⎪⎨⎪⎩
π1(Θ)

(
x−a
θ1−a

)m
, a ≤ x ≤ θ1,

π1(Θ) + π2(Θ) x−θ1
θ2−θ1

, θ1 < x ≤ θ2

1− π3(Θ)
(
b−x
b−θ2

)n
, θ2 < x ≤ b,

(25)

and for its quantile function

F−1
X (y|Θ) =

⎧⎪⎪⎨⎪⎪⎩
a + (b− a) m

√
y

π1(Θ) , 0 ≤ y ≤ π1(Θ),
b + (c− b)y−π1(Θ)

π2(Θ) , π1(Θ) < y ≤ 1− π3(Θ),
d− (d− c) n

√
1−y
π3(Θ) , 1− π3(Θ) < y ≤ 1.

(26)

The GTU(Θ) distributions reduce to trapezoidal distributions studied by
Pouliquen [22] by setting m = n = 2 to GTSP (Θ) distributions given by
(16) and (17) by setting θ1 = θ2, and to TSP (Θ) distributions given by (5)
by setting θ1 = θ2 = θ and m = n in (22) and (23).

It shall be assumed here that the lower and upper bound parameters a
and b and tail parameters m and n are unknown and that they need to be
determined from (i) a directly elicited modal range [θ1, θ2], (ii) the relative
likelihoods π2/π1 and π2/π3 (or their reciprocals), and (iii) a lower ap < θ1
and upper br > θ2 quantiles. The first (second) relative likelihood may be
elicited by asking how much more likely it is for X to be within its modal

27



van Dorp

range [θ1, θ2] than being less (larger) than it. Stage probabilities (24) πi,
i = 1, 2, 3, next follow with the restriction they must sum to 1. This manner
of elicitating of πi for i = 1, 2, 3 is analogous to the fixed interval elicitation
method mentioned in Garthwaite, Kadane and O’Hagan [14].
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Figure 1. PDF’s (a) and CDF’s (b) of TSP, GTSP and GTU distributions
with parameter settings (15), (21) and (29)

Van Dorp et al. [18] showed that a unique solution for the power pa-
rameters m and n may be obtained from the equations a∗(m) = ã(m) and
b∗(n) = b̃(n), respectively, where⎧⎪⎨⎪⎩

a∗(m) ≡ θ1 −mπ1
π2

(θ2 − θ1), ã(m) ≡ ap −
m
√
p/π1

1− m
√
p/π1

(θ1 − ap),

b∗(n) ≡ θ2 + nπ3
π2

(θ2 − θ1), b̃(n) ≡ br +
n
√

(1−r)/π3

1− n
√

(1−r)/π3
(br − θ2),

(27)

πi, with i = 1, 2, and 3, are given by (25), and provided⎧⎨⎩ap > b− ξ(c− b), where ξ = π1
π2

log
(
π1
p

)
> 0,

dr < c + ψ(c− b), where ψ = π3
π2

log
(
π3

1−r
)
> 0.

(28)

The equations a∗(m) = ã(m) and b∗(n) = b̃(n) may be solved for using a
standard root finding algorithm such as, e.g., the Newton-Raphson method
(Press et al. [21]) or a commercially available one such as, e.g., GoalSeek
in Microsoft Excel. No solution for power parameters m and n exist when
conditions in (28) are not met. After solving for m, the lower bound a
follows by substitution of m in a∗(m) or ã(m). Solving for the upperbound b
is analogous, but utilizes the expressions for b∗(n) or b̃(n). Setting [θ1, θ2] =
[7, 9], π2/π1 = 1/2, π2/π3 = 1/3, a0.10 = 3 3

4 and b0.90 = 15 in (27) yields
the tail and lower and upper bound parameters

m ≈ 1.423, n ≈ 1.546, a ≈ 1.306 and b ≈ 18.273. (29)

Figure 1 displays the GTU distribution with modal range [θ1, θ2] = [7, 9]
and parameter values (29). Please observe in Figure 1 that both TSP and
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GTSP distributions posses mode θ = 7, whereas the GTU distribution has
a modal range [7,9]. Quantile values for the TSP, GTSP and GTU examples
in this section are indicated in Figure 1b. Elicited modal (quantile) values
are indicated in Figure 1a (Figure 1b).

3 AN ILLUSTRATIVE ACTIVITY NETWORK EXAMPLE

We shall demonstrate via an illustrative Monte Carlo analysis for the com-
pletion time of an 18 node activity network from Taggart [23], depicted
in Figure 2, a potential difference between project completion times that
could result when requiring experts to specify a single most likely estimate
rather than allowing for a modal range specification. We shall assume that
lower and upper quantiles a0.10 and b0.90 in Table 1 have been elicited via
an expert judgment for each activity in the project network. We shall in-
vestigate four scenarios of mode specification for the activity durations in
the project network, keeping their lower and upper quantiles a0.10 and b0.90
fixed. In the first scenario “GTU” activity duration uncertainty is modeled
using a GTU distribution. The modal range [θ1, θ2] is specified in Table 1.
For all activities, a relative likelihood of 2.75 (1.25) is specified for the right
tail (left tail) as compared to the modal range [θ1, θ2]. From the relative
likelihoods it immediately follows that the lower bounds θ1 of the modal
ranges in Table 1 equal the first quartile (probability 1

4 ) of the activities,
whereas a 1

5 probability is specified throughout for the modal range [θ1, θ2].
Hence, the upper bounds θ2 of the modal ranges are the 45-th percentiles
of the activity durations and thus are strictly less than their median val-
ues. Moreover, all activity durations are right skewed (having a longer tail
towards the right). We solve for the lower and upper bounds a and b using
the procedure described in Section 2.2.

The next three scenarios involve limiting cases when activity duration
uncertainties are distributed as a two-sided power (TSP) distribution with
the PDF (5). Recall from Section 2 that Kotz and Van Dorp [17] have shown
that for every n > 1 in (5), a unique unimodal TSP distribution can be fitted
given a lower quantile a0.10, an upper quantile b0.90 and a most likely value
θ such that a0.10 < θ < b0.90. For n ↓ 1, the fitted TSP distribution reduces
to a uniform distribution with the bounds

a = 0.90a0.10 − 0.10b0.90
0.80 and b = 0.90b0.90 − 0.10a0.10

0.80 . (30)

We shall use bounds (30) for the second scenario designated “Uniform” com-
bined with the values for a0.10 and b0.90 in Table 1. The uniform distribution
with bounds (29) actually has the smallest variance amongst pdf’s (5) given
the constraint set by a0.10 < θ < b0.90 and their fixed values.

For n → ∞ and with specified values a0.10 < θ < b0.90, the TSP dis-
tribution (5) converges to an asymmetric Laplace distribution (13) with
parameters a0.10, θ, b0.90 and q(∞), where q(∞) is the limiting probability
of being less than the mode θ and the unique solution to Equation (12).
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Figure 2. Example project network from Taggart [23]

This asymmetric Laplace distribution has the largest variance amongst the
TSP distributions (5) given the constraint a0.10 < θ < d0.90 and their preset
values. Hence, for our third scenario “Laplace 1” we set θ = θ1, speci-
fied in Table 1, and use the values a0.10 and b0.90 in Table 1 to determine
the remaining parameter q(∞). Similarly, we obtain the fourth scenario
“Laplace 2” by setting θ = θ2. Note that our first two scenarios “GTU”
and “Uniform” are consistent with the mode specifications a0.10 < θ < b0.90
in the third and fourth scenarios “Laplace 1” and “Laplace 2”, respectively.
That is, in all the scenarios the activity durations have the lower and upper
quantiles a0.10 and b0.90 in common and a mode at θ = θ1 (θ = θ2) for the
third (fourth) scenario.

Now we shall generate the CDF of the completion time distribution of
the project presented in Figure 2 for each of these scenarios “GTU”, “Uni-
form”, “Laplace 1” and “Laplace 2” by employing the Monte Carlo tech-
nique (Vose [24]) involving 25,000 independent samples from the activity
durations and subsequently applying the critical path method (CPM) (see
e.g. Winston [4]). To avoid the occurence of negative activity durations in
the sampling routine as a result of the infinite support of the Laplace dis-
tributions, a negative sampled activity duration is set to be equal to zero.
Consequently, for each scenario we obtain an output sample of size 25000 for
the completion time of the project network in Figure 2 from which one can
empirically estimates its completion time distribution. The resulting CDF’s
for the four scenarios described above are depicted in Figure 3. Among the
scenario’s in Figure 3 only the scenario “Uniform” has symmetric activity
duration distributions. The activity durations of all other scenarios are all
right skewed with a mean value less than that of the same activity in the
“Uniform” scenario. This explains why the completion time distribution of
the “Uniform” scenario is located substantially to the right of all the other
scenarios. Moreover, as explained above, the variances of activity durations
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Activity name a0.10 θ1 θ2 b0.90
Shell: loft 22 25 28 41
Shell: Assemble 35 38 41 54
I.B.Piping: Layout 22 25 28 41
I.B.Piping: Fab. 6 8 10 19
I.B.Structure: Layout 22 25 28 41
I.B.Structure:Fab. 16 18 20 29
I.B.Structure:Assemb. 11 13 15 24
I.B.Structure:Install 6 8 10 19
Mach Fdn. Loft 26 29 32 45
Mach Fdn. Fabricate 31 34 37 50
Erect I.B. 28 31 34 47
Erect Foundation 6 8 10 19
Complete 3rd DK 4 6 8 17
Boiler: Install 7 9 11 20
Boiler: Test 9 11 13 22
Engine: Install 6 8 10 19
Engine: Finish 18 21 24 37
Final Test 14 17 20 33

Table 1. Data for modeling the uncertainty in activity durations for the project
network presented in Figure 2

in the “Uniform” scenario are smaller than those of the activities in the
other one. Thus it explains why its project completion time CDF is the
steepest.

The largest discrepancy between the CDF’s in Figure 3 occurs between
the “Uniform” and “Laplace 1” and equals ≈ 0.24 observed at ≈ 194 days.
Hence, certainly the specification of lower and upper quantiles a0.10 and
b0.90 and a most likely value θ seems to be insufficient to determine a PDF
in the family (5). Note that the project completion time CDF of the “GTU”
scenario in Figure 3 for the most part is sandwiched between those of the
“Laplace 1” and “Laplace 2” scenarios with a maximal difference of ≈ 0.04
(≈ 0.07) between its CDF and the “Laplace 1” (“Laplace 2”) CDF’s observed
at approximately 187 days (197 days).

Finally, note that in Figure 3 the project completion time of 149 days
following from the CPM using only the most likely values of θ1 in Table 1,
is represented by the bold vertical dashed line “CPM 1”. Similarly, a com-
pletion time of 171 days follows using only the most likely values of θ2 in
Table 1 is indicated by the bold “CPM 2” line. Since the values of θ1 are less
than the median for all 18 activities in Table 1 (in addition to having right
skewness), we observe from Figure 3 that the probability of achieving the
“CPM 1” completion time of 149 days is negligible. For the “CPM 2” com-
pletion time of 171 days these probabilities are less than ≈ 10% for all four
scenarios. Although the skewness of the activity distributions in Table 1
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Figure 3. Comparison of CDF’s of the completion times for the project in
Figure 2

may perhaps be somewhat inflated, a case could definitely be made that a
skewness towards the lower bound may appear in assessed activity time dis-
tributions in view of a potential motivational bias of the substantive expert.
These CPM results further reinforce the observation that in applications
uncertainty results ought to be communicated to decision makers.

4 CONCLUDING REMARKS

A discussion some 50 years ago about the appropriateness of using the PERT
mean and variance (2) utilizing either beta or triangular pdfs, was followed
by a concern by others some 20 years later or more (e.g. Selvidge [25]
and Keefer and Verdini [26]) regarding the elicitation of lower and upper
bounds a, b of a bounded uncertain phenomenon, since these typically do
not fall within the realm of experience of an substantive expert. When
instead eliciting a lower and upper quantiles ap and br and a most likely
value θ, however, even within the two-sided power (TSP) family of distribu-
tion with bounded support, infinitely many options exist that match these
constraints. Hence, one arrives at the conclusion that additional informa-
tion needs to elicited from the substantive expert for further uncertainty
distribution specification. In case of the TSP family of distributions, Kotz
and Van Dorp [17] suggested the elicitation of an additional quantile to
uniquely identify its lower and upper bounds a and b and power parameter
n. Even when relaxing the TSP PDF or PERT requirement of specifying
a single mode θ to allow for a modal range specification [θ1, θ2] of a gen-
eralized trapezoidal uniform (GTU) distributions, a lower quantile ap < θ1
and upper quantile br > θ2 specification is not a sufficient information to
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determine its lower and upper bounds a < ap and b > br and its power
parameters m and n > 0. Van Dorp et al. [18] suggest to elicit in addition
two relative likelihoods regarding the three stages of the GTU distribution
to solve for these parameters.

Summarizing, lower and upper bounds specification or lower and upper
quantiles specification combined with providing a single modal value, or even
a modal range, does not uniquely determine an uncertainty distribution.
In my opinion, this lack of specificity is one of the root causes regarding
the controversy alluded to in the introduction of this paper surrounding
the continued use of the PERT mean and variance (2) or other common
arguments amongst practitioners regarding whether to use beta, triangular
(or TSP) distributions to describe a bounded uncertain phenomena.
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Finding proper non-informative priors for regression
coefficients

H.R.N. van Erp
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Abstract. By using informational consistency requirements, Jaynes
(1968) derives the form of maximal non-informative priors for regres-
sion coefficients, to be uniform. However, this result does not tell us
what the limits of this uniform distribution should be. If we are faced
with a problem of model selection this information is an integral part
of the evidence, which is used to rank the various competing models.
In this paper, we give some guidelines for choosing a parsimoneous
proper uniform prior. It turns out that in order to construct such a
parsimoneous prior one only needs to assign a maximal length to the
dependent variable and minimal lengths to the independent variables,
together with their maximal correlations.

1 INTRODUCTION

It is a known fact that in problems of Bayesian model selection improper
priors may lead to biased conclusions. In this paper we first give a short
introduction to the procedure of Bayesian model selection. We then demon-
strate for a simple model selection problem, involving two regression mod-
els, how improper uniform priors for the regression coefficients will exclude
automatically the model with the most regression coefficients. Having es-
tablished the problematic nature of improper priors for this particular case
we proceed to derive a parsimoneous proper uniform prior for univariate
regression models, firstly, and then generalize this result to multivariate
regression models, secondly.

2 BAYESIAN MODEL SELECTION

We will give here a simple outline of the procedure of Bayesian model se-
lection. Let p (θ|I) be the prior of some parameter θ conditional on the
background information I. Let p (D|θ,M, I) be the probability of the data
D conditional on the value of parameter θ, the particular model M used,
and the background information I; the probability of the data is also known
∗corresponding author: Structural Hydraulic Engineering and Probabilistic De-

sign, Faculty of Civil Engineering and Geosciences, Delft University of Technology,
P.O. Box 5, 2600 Delft, the Netherlands; telephone: +31-(0)15 27 89448, e-mail:
h.r.n.vanerp@tudelft.nl
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as the likelihood of the parameter θ. Let p (θ|D,M, I) be the posterior dis-
tribution of the parameter θ conditional on the data D, the particular model
M used, and the background information I. We then have that

p (θ|D,M, I) = p (θ|I) p (D|θ,M, I)∫
p (θ|I) p (D|θ,M, I) dθ = p (θ|I) p (D|θ,M, I)

p (D|M, I) (1)

where
p (D|M, I) ≡

∫
p (θ|I) p (D|θ,M, I) dθ (2)

is the marginalized likelihood of the model M , also known as the evidence
of model M .

Say we have m different models, M1, . . . , Mm. Then we may compute
m different evidence values, p (D|Mj , I) for j = 1, . . . ,m. Let p (Mj |I) be
the prior of model Mj conditional on the background information I. Let
p (Mj |D, I) be the posterior distribution of the model Mj conditional on
the data D and the background information I. We then have that

p (Mj |D, I) = p (Mj |I) p (D|Mj , I)∑
p (Mj |I) p (D|Mj , I) . (3)

Note that if p (Mj |I) = p (Mk|I) for j �= k, we have that (3) reduces to

p (Mj |D, I) = p (D|Mj , I)∑
p (D|Mj , I) . (4)

Stated differently, if we assign equal prior probabilities to our different mod-
els, the posterior probabilities of these models reduce to their normalized
evidence values, that is, the models may be ranked by their respective evi-
dence values [1].

3 THE PROBLEM OF IMPROPER PRIORS IN MODEL
SELECTION

There is a long tradition of the use of improper uniform priors for regression
coefficients, that is, location parameters, in problems of parameter estima-
tion [2, 3, 4]. However, in problems of model comparison between competing
regression models one generally must take care not to use improper priors,
be they uniform or not, because this may introduce inverse infinities in the
evidence factors which may not cancel out if one proceeds to compute the
posterior probabilities of the respective models. We will demonstrate this
fact and its consequences below with a simple example in which we assign
variable uniform priors to the respective regression coefficients.

Suppose that we want to compare two regression models. Say,

Ma : y = x1β1 + ea, Mb : y = x1β1 + x2β2 + eb, (5)
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where ea = (ea1, . . . , eaN ), eb = (eb1, . . . , ebN ), and eaiẽbiÑ (0, σ) for i =
1, . . . , N , for some known value of σ. Let the independent priors of β1 and
β2 be given as

p (β1|I) = p (β2|I) = 1
2A,−A ≤ β1, β2 ≤ A. (6)

Let the likelihoods be given, respectively, as

p (y|β1, σ,Ma, I) = 1
(2πσ2)N/2 exp

[
− 1

2σ2 (y− x1β1)T (y− x1β1)
]

(7a)

p (y|β, σ,Mb, I) = 1
(2πσ2)N/2 exp

[
− 1

2σ2 (y−Xβ)T (y−Xβ)
]

(7b)

where X ≡ [x1 x2] and β ≡ [β1 β2]T . Combining the priors (6) with the
likelihoods (7), and integrating out the unknown β’s, β1 and β2, we get the
following two evidence values [4]:

p (y|σ,Ma, I) = 1
2AL1 (8a)

where L1 ≡ (2πσ2)−(N−1)/2 ‖x1‖ exp
[
− 1

2σ2 (y− x1β̂1)T (y− x1β̂1)
]

and β̂1 ≡
xT1 y

/
xT1 x1, and

p (y|σ,Mb, I) = 1
(2A)2L2 (8b)

where L2 ≡ (2πσ2)−(N−2)/2 ∣∣XTX∣∣1/2 exp
[
− 1

2σ2

(
y−Xβ̂

)T(y−Xβ̂
)]

, β̂ ≡(
XTX

)−1
XTy, and

∣∣XTX∣∣1/2 is the square of the determinant of the inner
product of the matrix X.

Now, if we assign equal prior probabilities to models Ma and Mb we may
subsitute the (8) into (4) and so get

p (Ma|y, σ, I) = L1
L1 + L2/2A, (9a)

p (Mb|y, σ, I) = L2/2A
L1 + L2/2A (9b)

Looking at (9) we see that assigning improper uniform priors, that is, let-
ting A → ∞ in (6), will make p (Ma|y, σ, I) → 1 and p (Mb|y, σ, I) → 0.
In Bayesian model selection of competing regression models care should be
taken not to take unnecessarily large values of A in (6), since this will pe-
nalize those regression models which carry the most regression coefficients.
In a limit of infinity, as (6) becomes improper, the regression model which
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has the least regression coefficients will always automatically be chosen over
any model which has more regression coefficients.

Note that if we are comparing models (5) we may use an improper prior
for the unknown parameter σ, since the inverse infinity introduced in doing
this is shared by both models and, thus, will be cancelled out if we compute
the posterior probabilities (9) of the respective regression models. Using an
improper prior for σ we may easily integrate out this unknown parameter
[4].

4 DERIVING PROPER UNIFORM PRIORS FOR THE
UNIVARIATE CASE

We have seen above that overly large priors penalize models which carry
more regression coefficients to the point of excluding them altogether in a
limit where these priors become improper. In problems of Bayesian model
selection parsimoneous proper priors for the regression coefficients should be
used. In what follows we derive the, trivial, limits of the univariate uniform
prior for a single regression coefficient. The extension to the multivariate
case, which we will give in the next paragraph, is based upon the basic idea
introduced here.

Say we wish to regress an dependent vector y upon an independent
vector x. Then, using matrix algebra, the regression coefficient β may be
computed as:

β = xTy
xTx = ‖x‖ · ‖y‖‖x‖2 cos θ = ‖y‖‖x‖ cos θ. (10)

By examining (10) we see that β must lie in the interval

‖y‖max
‖x‖min

(cos θ)min ≤ β ≤ ‖y‖max
‖x‖min

(cos θ)max . (11)

Since (cos θ)min = −1 and (cos θ)max = 1, interval (11) reduces to:

−‖y‖max
‖x‖min

≤ β ≤ ‖y‖max
‖x‖min

. (12)

So, knowing the prior minimal length of the predictor, ‖x‖min, and the prior
maximal length of the outcome variable, ‖y‖max, we may set the limits to
the possible values of β. It follows that the proper non-informative prior of
β must be the univariate uniform distribution with limits as given in (12):

p (β|I) = ‖x‖min
2 ‖y‖max

, −‖y‖max
‖x‖min

≤ β ≤ ‖y‖max
‖x‖min

(13)

Note that the prior (13) is a specific member of a more general familly of
uniform priors (6).
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5 DERIVING PROPER UNIFORM PRIORS FOR THE
MULTIVARIATE CASE

We now derive the limits of the multivariate uniform prior for k regression
coefficients. The basic idea used here is a generalization of the very simple
idea that was used to derive the limits for the univariate case. This gener-
alization will involve a transition from univariate line pieces to multivariate
ellipsoids.

Say we have k independent predictors x1,. . . ,xk , that is, xTi xj = 0 for
i �= j. Then we have that

βi = xTi y
xTi xi

= ‖y‖‖xi‖ cos θi, −π2 ≤ θi ≤ π

2 . (14)

Because of the independence of the k independent variables we have that
if one of the angles θi = 0, then θj = π/2 for j �= i. It follows that all the
possible values of βi must lie in an k-variate ellipsoid centered at the origin
and with respective axes of

ri = ‖y‖max
‖xi‖min

. (15)

If we substitute (15) in the identity for the volume of an k-variate ellipsoid

V = π

(
4
3

)k−2 k∏
i=1

ri. (16)

We find that

V = π

(
4
3

)k−2 ‖y‖kmax∏k
i=1 ‖xi‖min

. (17)

Let X ≡ [x1 · · · xk]. Then for k independent variables xi the product of
the norms is equivalent to the square root of the determinant of XTX, that
is,

k∏
i=1
‖xi‖ =

∣∣XTX∣∣1/2 , (18)

which is also the volume of the parallelepiped defined by the vectors x1, . . . ,
xk. Now in the case the k predictors x1, . . . , xk, are not independent, that
is, xTi xj �= 0 for i �= j, we can transform them to an orthogonal basis x̃1,
. . . , x̃k , and X̃ ≡ [x̃1 · · · x̃k], using the Gram-Schmidt orthogonalization
process [5]. Since the volume of the parallelepid is invariant under a change
of basis we have ∣∣X̃T X̃∣∣1/2 =

∣∣XTX∣∣1/2
. (19)

Thus substituting (19) into (18) we get, for both independent and dependent
predictors

V = π

(
4
3

)k−2 ‖y‖kmax

|XTX|1/2min
. (20)
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Now, if we wish to assign a proper uniform prior to the regression coefficients
β1, . . . , βk, we may use the inverse of (20), that is,

p (β1, . . . , βk|I) = 1
π

(
3
4

)k−2 ∣∣XTX∣∣1/2min

‖y‖kmax
, β1, . . . , βk ∈ Ellipsoid, (21)

where∣∣XTX∣∣1/2min =∣∣∣∣∣∣∣∣∣
1 (cosφ12)max · · · (cosφ1k)max

(cosφ12)max 1 · · · (cosφ2k)max
...

... . . . ...
(cosφ1k)max (cosφ2k)max · · · 1

∣∣∣∣∣∣∣∣∣
1/2

k∏
i=1
‖xi‖min, (22)

where cosφij is the correlation between xi and xj . Looking at (21) and (22),
we see that maximizing the area of our prior hypothesis is accomplished by
maximizing the length of the dependent variable y and minimizing the de-
terminant of the inner product of the matrix X, where the latter is accom-
plished by minimizing the lengths of the dependent variables x1,. . . ,xk and
maximizing the correlations cosφ12, . . . , cosφk−1,k between the dependent
variables.

6 DISCUSSION

By using informational consistency requirements Jaynes [3] derives the form
of maximal non-informative priors for location parameters, that is, regres-
sion coefficients, to be uniform. However, this result does not tell us what
the limits of this this uniform distribution should be, that is, what particu-
lar uniform distribution to use. Now, if we are just faced with a parameter
estimation problem these limits of the non-informative uniform prior are
irrelevant, since we may scale the product of the improper uniform prior
and the likelihood to one, thus obtaining a properly normalized posterior.
However, if we are faced with a problem of model selection the value of the
uniform prior is an integral part of the evidence, which is used to rank the
various competing models. We have given here some guidelines for choosing
a parsimoneous proper uniform prior. It has turned out that in order to
assign this prior one only needs to assign a maximal length to the depen-
dent variable y and minimal lengths to the independent variables x1, . . . ,
xk, together with their maximal correlations cosφ12, . . . , cosφk−1,k.
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APPENDIX:
Bayesian model selection, maximum likelihood selection, and
Occam factors

Having derived a suitable parsimoneous proper non-informative uniform
prior for the multivariate case, we now will take a closer look at the evidence
values which result from using this prior. We will also discuss the connec-
tion between Bayesian model comparison and classical maximum likelihood
model selection. To this end we will introduce the concept of the Occam
factor.

Suppose we wish the compute the evidence of a specific model M , with

M : y = Xβ + e, (23)

where e = (e1, . . . , eN ) and eiÑ (0, σ) for i = 1, . . . , N , and for some known
value of σ, then the corresponding likelihood (7b) is

p (y|X,β, σ,M) = 1
(2πσ2)N/2

exp
[
− (y−Xβ)T (y−Xβ)

2σ2

]
. (24)

Combining the likelihood (7b) with the derived proper non-informative prior
(21), we get the posterior

p (β|I) = 1
π

(
3
4

)k−2 ∣∣XTX∣∣1/2min

‖y‖kmax
, β ∈ Ellipsoid. (25)

For the regression coefficients β, we get the following multivariate distribu-
tion

p (y,β|X,σ,M) =(
3
4

)k−2 ∣∣XTX∣∣1/2min

π ‖y‖kmax

1
(2πσ2)N/2

exp
[
− (y−Xβ)T (y−Xβ)

2σ2

]
. (26)

Integrating out the k unknown parameters β we are left with the following
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marginal likelihood [4], that is, evidence value

p (y|X,σ,M) =
∫

p (y,β|X,σ,M) dβ

=
(

3
4

)k−2 ∣∣XTX∣∣1/2min

π ‖y‖kmax

1
(2πσ2)N/2

∫
exp

[
− (y−Xβ)T (y−Xβ)

2σ2

]
dβ

=
(

3
4

)k−2 ∣∣XTX∣∣1/2min

π ‖y‖kmax

(
2πσ2)k/2
|XTX|1/2

1
(2πσ2)N/2 exp

[
− (y−Xβ̂)T(y−Xβ̂)

2σ2

]
(27)

where β̂ ≡ (XTX)−1
XTy is the likelihood estimate of β. Examining (6),

we see that the evidence p (y|x, σ,M) may be deconstructed as

p (y|x, σ,M) = VPost.
VPrior

LBest, (28)

where LBestis the best fit likelihood

LBest = 1
(2πσ2)N/2

exp

⎡⎢⎣−
(

y−Xβ̂
)T (

y−Xβ̂
)

2σ2

⎤⎥⎦ . (29)

VPost. is the volume of the posterior accessible region [1],

VPost. =
(
2πσ2)k/2
|XTX|1/2

(30)

and VPrior is the volume of the prior accessible region

VPrior = ‖y‖kmax

|XTX|1/2
min

(
4
3

)k−2
· π. (31)

Note that the posterior accessible region VPost. is an ellipsoid centered
around the maximum likelihood estimates β̂ which lies inside the greater
ellipsoid VPrior of the prior accessible region centered at the origin. In
Bayesian literature the ratio VPost./VPrior is called the Occam factor. The
Occam factor is equal to the factor by which M ’s hypothesis space collapses
when the data arrive [1]. Looking at (28), we see that, in the specific case of
equal prior probabilities for the models, that is, (4), Bayesian model com-
parison becomes a simple extension of maximum likelihood model selection.
In the former the different models the best-fit likelihood values LBest times
their corresponding Occam factors VPost./VPrior are compared, while in the
latter only the best-fit likelihood values LBest are compared.
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Posterior predictions on river discharges
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Abstract. The late Jan van Noortwĳk (JvN) made valuable contri-
butions in many areas such as Reliability, Risk management, Mainte-
nance modelling, Applications to Decision theory and more. His con-
tributions to model river discharges for flood prevention (van Noortwĳk
et al., [1, 2] and others) are of interest to forecast river stream flow.
The posterior predictive densities for several distributions, which can
be considered as candidates to model river discharges, were derived
using Jeffreys prior. The Jeffreys prior was derived for these dis-
tributions by careful algebraic derivations of the Fisher information
matrix. The posterior predictive density is the way we believe to
follow for predicting future values once the best model is selected.
Van Noortwĳk et al. [1, 2] proposed Bayes weights for selecting the
best model. The advantage of the posterior predictions over sub-
stituting the estimates of the parameters in the quantile function is
discussed for a special case. A further application under regression
in the lognormal model with the Southern Oscillation Index (SOI) as
independent variable, is shown for the annual discharge of the Orange
River in South Africa. It implies the prediction of the SOI at least
one year ahead through an autoregressive time series.

1 INTRODUCTION

Van Noortwĳk et al. [1], [2] considered several distributions as possible
candidates to model river discharges to predict future floods. A Bayesian
approach was followed using the Jeffreys prior in each case. With careful
algebraic manipulations, he derived the Fisher information matrix for these
distributions, namely Exponential, Rayleigh, Normal, Lognormal, Weibull,
Gamma, Generalised Gamma, Inverted Gamma, Student t, Gumbel, Gen-
eralised Gompertz, Generalised Extreme Value, Pareto and Poisson dis-
tributions. Future river discharges were predicted through the posterior
predictive distribution, which were derived for the above cases and model
selection were discussed through the Bayes Factor. All these techniques can
be considered sound. The Bayes paradigm allows for other relevant sources
of information instead of only measured values, but if this information puts
too much weight on the posterior distribution, a non-informative prior such
∗corresponding author: Department of Mathematical Statistics and Actuarial Sci-

ence, University of the Free State, Bloemfontein 9301, South Africa; telephone: +27-
51 4012311, fax: +27-51 4442024 e-mail: deWaalDJ.SCI@ufs.ac.za
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as the Jeffreys which JvN used, can be a good choice. He followed the
Bayesian route to predict future values by deriving the posterior predicted
distribution for each of the above distributions. In Section 2, the difference
between the Bayesian predictive approach and the ’plug-in’ method where
the estimates of the parameters are just plug into the quantile function, is
discussed for the Exponential case. In Section 3 the lognormal is applied
for predicting river discharges. This is a case where the predictive posterior
distribution is log-t and numerical integration is necessary to obtain predic-
tive quantiles. In Section 4 the prediction of the Southern Oscillation Index
(SOI), which was introduced as a variable to improve on the predictions, is
discussed. Section 5 is devoted to a discussion on validating the predictions.

2 POSTERIOR PREDICTION

The advantages of the posterior predictive approach above the ’plug-in’
method were the quantile function is estimated, are considered through
simulating data from an exponential distribution. One big advantage is
that extremes may be scarce in the data, but can be predicted using the
Bayesian approach. The box plots shown in Figure 1 were drawn from 500
samples x1, ..., xn of sizes n = 5 and n = 10 from an exponential distribution
with location parameter λ = 10 and distribution function (df) given by

F (x) = 1− e−x/λ, x > 0. (1)

The box plots in Figure 1 (a and c) show the distribution of the estimated
quantiles from the quantile function

Q(p) = −λ log(1− p), 0 < p < 1. (2)

p is chosen as i/(n + 1), i = 1, ..., n and λ is estimated by λ̂ = 1
n

n∑
i=1

xi. By

plugging in the estimate of λ in 2, the estimate of the quantile function is
obtained and this is referred to as the ”plug-in” method. The box plots in
Figure 1 (b and d) are the posterior predictive distributions simulated from
the 500 samples. The posterior predictive quantile function is given by

QPRED(p) = nx̄{(1− p)−1/n − 1}. (3)

It follows that as n→∞, 3 approaches

QEST (p) = x̄ log(1− p). (4)

Equation 4 follows from the posterior predictive distribution function (van
Noortwĳk et al. , [2], page A− 4)

P (X > x0|x) =
(

1 + x0
nx̄

)−n
. (5)
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Equation 5 is the posterior predictive survival function exceeding a future
x0 and is recognised as that of a Generalised Pareto. The Jefrreys prior
π(λ) ∝ 1/λ, is used as the prior on λ. The posterior of λ becomes an
Inverse Gamma(n, nx̄).
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Figure 1. Boxplots comparing distributions of estimated quantiles (a, c) with
predicted quantiles (b, d) for different quantiles and sample sizes

We notice from the figures that the larger predictive quantiles show
much heavier tails and larger predicted values than the estimated quantiles.
This can cause severe under estimation especially for small sample sizes. As
the sample size increases, the predictive quantiles approach the estimated
quantiles. It is therefore advisable to take the predictive road always. In
many cases explicit expressions are not possible such as the above, but one
can always do simulations.

3 THE LOGNORMAL MODEL

We will now consider the prediction of the annual volume inflow into the
Gariep Dam from the discharges of the Orange River in South Africa. This
is important for ESKOM (main supplier of electricity in South Africa) to
be able to manage the generation of hydro power at the dam wall without
spilling water over the wall and to maximize their power generation through
the four turbines.

3.1 Orange River stream flow data
Figure 2 shows the annual volume discharges x = (xi, i = 1, ..., n = 37) of
the Orange river during 1971− 2007 in million m3.
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Figure 2. Annual volume inflow in million cubic meter to gariep Dam during
1971− 2007

The mean annual inflow is 6.7354 × 103 m3 and standard deviation
4.4652×103 m3. Assuming the annual inflows as independent, a lognormal,
LN(μ, σ), distribution is fitted due to the heavy tail indicated by the data.
The independence is assumed, since the autocorrelation between successive
years is quite small 0.04, and reaches a maximum of 0.4 if the lag is 11
years. The 11 year cycle corresponds to the sunspot cycle of 11 years which
is well known among Astronomers. (See Matlab demo [6] on Fast Fourier
Transforms). Fitting a LN to the data with μ̂ = 8.6094 and σ̂ = 0.6698, we
obtain a fairly good fit according to QQ-plots comparing predicted stream
flows with the observed shown in Figure 3. Van Noortwĳk et al. [2] dis-
cussed the use of Bayes factors to compare the fit of several models and to
select the best model. This will briefly be discussed in Section 3.2.

3.2 Model selection and Goodness of fit
Model selection

Comparing two models, the posterior odds can be written as the product
of the Bayes factor times the prior odds. To select the best model among k
specified models with equal prior weights, van Noortwĳk et al. [2] considered
the calculation of the posterior probability (refered to as the Bayes weights).
The model with the largest posterior probability is chosen as the best. The
derivation of the marginal density π(x|Mi) cannot be obtained explicitly in
many cases and numerical integration has to done. Van Noortwĳk et al.
[1, 2] put in effort to show that posterior weights can be used to decide
on the best model. They remarked that more than one model seems to fit
using goodness-of-fit tests and proposed the calculation of Bayes weights.
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In general, the lognormal is considered a good candidate for modeling river
discharges and therefore we choose the lognormal for modeling the stream
flow of the Orange river without considering other models.

Goodness of fit of the lognormal

To test the goodness of fit of the lognormal to data in Figure 2, we use
the predictive approach to predict a set of n observations and compare the
predicted with the observed data in a QQ-plot. Gelman et al., [3], page
69 and van Noortwĳk et al., [2]) showed that under the non informative
Jeffreys prior on μ and σ, namely

π(μ, σ) ∝ 1/σ, (6)

the posterior predictive distribution of Y = log(X0) becomes a t distribution
with n− 1 degrees of freedom and parameters

ȳ =
n∑
i=1

log xi/n. (7)

and

S2
y = (n + 1)2

n2

n∑
i=1

(log xi − ȳ)2. (8)

The df of a future X0 becomes

P (X0 < x0|x) = tn−1(log(x0)− ȳ)/Sy (9)

n = 37 observations were predicted using the t(n − 1, ȳ, Sy) after taking
the exponentials of the t-predictions and compare with the sorted original
observations in a QQ-plot. This was repeated 500 times and the smallest
correlation between the observed and predicted values were 0.8417. Repeat-
ing this by plugging in the estimates in the lognormal and calculating the
correlation between observed and estimated quantiles, the smallest correla-
tion of 0.7828 is obtained. The means of the correlations from these two
types of QQ-plots were both high although for the plug-in case there were
smaller correlations. We can therefore be quite satisfied that a lognormal
is a good choice. From the 500 predictions of the 37 years inflow, the mean
prediction is 6781.8× 106 m3 with 95% highest posterior density (hpd) re-
gion (1268×106, 23624×106). The maximum annual inflow observed during
the 37 years, is 22571× 106 and the minimum is 1244× 106. The observed
trend in the data appears to be quite possible from the predictions and is
not significant. To improve on these predictions, we looked for other vari-
ables that can be introduced into the model and discovered the Southern
Oscillation Index as a possible indicator. We will explore this further in the
next section.
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3.3 Introducing the SOI as an independent variable
The Southern Oscillation Index (SOI) which measures the difference in pres-
sure between Darwin and Tahiti is a well known indicator of rainfall in the
southern hemisphere. A number of studies were done on this phenomenon
and it is found to be an indicator of the rainfall in the Southern hemi-
sphere. We compare the annual volume of stream flow into the Gariep dam
with the SOI of October the corresponding to previous year. The annual
stream flow was correlated with different months and lags and October of
the corresponding to previous year was selected as the month, which has the
highest correlation with the year inflows. A linear regression for predicting
the inflow (Y) given the SOI of October (X) on the 37 years 1970 − 2006
is considered, namely E(Y ) = a + bX. The estimates of a and b are 6952.7
and 215.6 respectively. Substituting the X values (SOI) in the equation,
estimates of the stream flow are obtained which are shown in Figure 3 to-
gether with the true inflows. The correlation between the estimated and
true inflows is r = 0.5062. This is quite remarkable.
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Figure 3. Comparing true inflows (-) with estimated inflows (- -) using October
SOI of previous year

With this method, we can predict the annual volume of inflow for the
following year given the SOI for October the previous year. This implies
we have to predict the SOI for the next year. This will be addressed in
Section 4. The trend of the inflow volume over the 37 years 1970− 2006 is
showing a decrease (Figure 2) of 3287 million m3, it is 88 million m3 per
year. The mean annual inflow is 6735.4 million m3. To make a long term
prediction like 5 or 10 years ahead, ignoring the SOI, we can say that over
the next 5 years, the inflow on average will be 445 million m3 less and over
10 years 890 million m3 less. We indicated above that the SOI for October
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has an impact on the annual inflow Y . We will explore this relationship
further under the lognormal model with a regression on the SOI to see if we
can improve on the above model. Let y = Xβ + u where y = log(Y (n, 1)),
X = [1 · SOI(oct)](n, 2), β = [β1β2](2, 1), where 1 is a (n, 1) vector of
ones and the elements of u(n, 1) are distributed independently N(0, σ2). It
follows that the predictive density of a future ỹ(q, 1) given the corresponding
covariate matrix X̃(q, 2), is a multivariate tv distribution (Zellner, [4], pp
72−74) with v = n−2 degrees of freedom, mean X̃β and covariance matrix
v
v−2s

2(I − X̃M−1X̃ ′)−1, s2 = (y−Xβ̂)′(y−Xβ̂)/v and M = X ′X + X̃ ′X̃.
The model above can also be considered as hierarchical within a latent
process with Xβ + u a latent variable. (See Steinback et al., [5]). An
advantage of this approach is that the influence of the latent process on
model assumptions can be checked separately. Further posterior predictive
p-values can be used to test assumptions on different levels. We will however
not proceed with this further now. If q = 1, we predict one year ahead, then

ỹ − X̃β̂

s/
√

(1− X̃M−1X̃ ′)
∼ tv.

Looking at one year ahead, we can simulate t-values. Then T = exp(t) will
be the predicted values. If we repeat this simulation a number of times for
a given October SOI, we can calculate the median(T ) with lower and upper
quartiles. Repeating this simulation for varying SOI values, we are able to
construct a table, showing the predicted median inflow with lower and upper
quartiles for a given October SOI. From the inflow data for 1970 − 2006
and the SOI value for October of the previous year, we can now predict
the inflow for a year ahead. We calculated M = (38 − 17.3;−17.34395),
s = 0.5768 and β̂ = (8.6434, 0.0337). The number of degrees of freedom is
v = 37− 2 = 35. Suppose a positive index of 6 for October, then X̃ = [1; 6]
and the predictive t-values can be simulated. From say 1000 simulated
t-values, the median (or mean) can be calculated as the predictive value
together with quartiles or any hpd region. We found that for a SOI of 6,
we predicted an annual inflow of 6991 million m3. The prediction without
the SOI factor, was given in Section 3.2 as 6781 million m3. Notice that the
inter quartile range in the regression model is also much smaller. Figure 4
shows the predictions with the inter quartile range. Figure 5 shows a set
of simulated predictions given a SOI = 6 with a histogram of the predicted
values and Figure 6 shows box plots of the simulated predictions at different
SOI values ranging from −20 to 20. To predict say 5 years ahead, we need
to use the multivariate t model with predicted SOI values. We predicted
the observed 37 years inflows that we observed given the corresponding SOI
values and the predictions were almost similar to the predictions we made
one year ahead. The gain is so small that it is not worth to follow the
multivariate approach. There is a significant negative auto correlation of
−0.2255 found between a 2 year lag on the December SOI’s and a positive
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correlation of 0.5450 found between the December SOI’s and the October
SOI’s. To predict the October SOI values are therefore not a simple matter
and we have to dig into the literature on this issue further.
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Figure 4. Predicted annual median inflows (-) with upper and lower
quartiles (- -)

4 PREDICTING THE SOI

We observed in the previous section that the annual inflow prediction for
the next year can be improved by introducing the SOI for October of that
year. This means that we need to predict the SOI which is not that sim-
ple. There exists a vast literature on the SOI and models to predict the
SOI. Dr T Landscheidt, a expert on SOI, commented that the SOI can-
not be predicted more than 12 months ahead. Dr Wasyl Drosdowsky at
the Bureau of Meteorology Research Centre (BMRC) in Australia devel-
oped time series methods to project the SOI into the future. Dr Neville
Nicholls at BMRC is also an expert on SOI and his article in the web
site http://www.abc.net.au/science/slab/elnino/story.htm is worth
reading. The National Climatic Data Center (NOAA) in the USA is also a
valuable source of information on future SOI predictions. Their web site is
http://www.ncdc.noaa.gov/oa/climate/research/2008/

enso-monitoring.html.
According to their forecast, we can expect a mild positive index for Octo-
ber 2008. From Figure 5, it means we can expect an annual inflow of 6500
million m3 with quartiles (4300, 10000). Figure 7 shows the October SOI
index for the period 1876− 2007.

The SOI is affected by various climatic factors of which winds play an
important role. The sun spots which have a cycle of 11 years (see The
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Figure 5. A simulation of 5000 predicted inflows with SOI = 6 and a histogram
of simulated predictions with SOI = 6

Figure 6. Boxplots of 5000 simulated predictions from the log-t distribution for
different October SOI values ranging from −20 to 20 with steps of 2
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Figure 7. SOI of October 1876− 2007

MathWorks, [6], are also important indicators. Predicting the SOI monthly,
we investigated the monthly data using spectral techniques, but it turned
out to be not worth the effort to predict it due to too much noise. Our
results coincide with that of Mills [7] who discussed the prediction of the
North Atalantic Oscillation (NAO). He also came to the conclusion that
the monthly time series models investigated, explains less than 15% of the
variation in the NAO index. Salisbury and Chepachet [8] used the Empirical
Mode Decomposition (EMD) method and claims an improvement on SOI
predictions. Since we related the annual inflow to the October SOI, we are
only interested in predicting the October SOI. Applying a spectral analysis
on the last 56 years 1952 − 2007, and using 7 harmonics, we are able to
declare 64% of the variation. The reason why 56 years are taken, is that the
earlier SOI do not seem to be very reliable and therefore we consistently
use only 56 years of data. Figure 8 shows a strange phenomenon. The
correlation between the first 56 observed October SOI values and those
estimated from the Fourier series, indicated on the graph against 1931, is
below 0.5 and it stays fairly the same for the next consecutive 56 years
till 1955 and then we have a sudden drop to 0.33. From 1961 it gradually
increases till 0.8 in 2008. We therefore decided to stick to 56 years for the
forecasts. We will investigate the prediction of the SOI further.

5 VALIDATING PREDICTIONS

5.1 Validation of log-t predictions
To validate the predictions from the log-t model, we compare the true inflows
with the predicted for the years 1970− 2006 given the October SOI values.
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Figure 8. Correlations between SOI predictions for 1931− 2007 and the
observed based on the 56 previous years data

We managed to increase the correlation from 0.5062 (see Section 2.3) to
0.5441 with this model. A box plot of the predicted simulated distributions
is shown in Figure 9.

5.2 Validating the SOI predictions

Applying a spectral analysis on the last 56 years 1952− 2007, and using 7
harmonics, we are able to declare 64% of the variation. Figure 10 shows the
October SOI data with the estimated October SOI. A comparison of the
estimates with the data through a box plot, is shown in Figure 11. The first
column shows a distribution of the data, the second column the distribution
of the estimates. The predicted values for 2008 to 2012 are 4, −6, −3, 7
and 8 respectively.

5.3 Validating the inflow predictions one year ahead

We can now proceed to predict the inflows after predicting the SOI for Octo-
ber of the previous year with credibility intervals. Comparing the predicted
one year ahead with the true annual inflows and calculating the success rate
by expressing the number of times the true inflows falls between the lower
and upper values, we got 35%. This success rate is based on the accuracy
of the SOI predictions for October and will be further investigated. We
are still doing better with this method than applying the regression model
discussed in Section 2.3.
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Figure 9. Boxplots of the simulated predictions from the log-t for the years
1970− 2006 and the true annual inflows (-)

6 CONCLUSION

In conclusion: Jan van Noortwĳk was on the way to more useful contri-
butions in various fields and I know that it was his intention to publish
the work referred to in this presentation in book form. It is a pity that he
could not reach that goal. His section on model selection contains some new
ideas, some of which can be debated. One question is: How important is
the number of distributions that are considered as possible candidates for
modeling river discharges in the Bayesian weights? In this presentation only
one model, namely the lognormal, is selected and tested for acceptance as
an appropriate model. Once this obstacle is out of the way, the prediction
of future observations becomes the issue. It has been shown how important
it is to introduce additional information such as the SOI and how it is in-
troduced. From the predicted SOI values 1 to 5 years ahead, the inflows
can be predicted. For example, suppose the SOI for 2008 is 4 and therefore
from Figure 4, we get a predicted annual inflow for 2009 of approximately
6300 million m3. The confidence bounds are (4251, 9608). Matlab programs
were developed for making these predictions.
To summarize the findings:

1. An alternative to a regression model through fitting a time series
model is suggested by considering the annual volume of inflow. This
is modeled through a lognormal distribution under certain assump-
tions. From a Bayesian perspective, the predictive density is derived
and predictions on future annual inflows are made.
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Figure 10. October SOI data 1952− 2007 (.–) and estimates (*-) with
predictions for 2008− 2012

2. These predictions are improved by introducing the SOI for October of
the previous year as an independent variable in the regression model.

3. The prediction of the SOI needs to be investigated further. At this
stage a Fourier series is fitted.

4. The joint distribution of Inflow and October SOI has been considered
and gives further insight into the behavior of the variables. This will
be prepared for a future communication.
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The lessons of New Orleans
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Abstract. End of August 2005 the flood defences of New Orleans
were hit by hurricane Katrina. It quickly became apparent that they
could not withstand this force of nature. The three bowls of the city
were flooded. Over a thousand people lost their lives and the total
damage exceeded $20 billion US. What can we learn from this disas-
ter? Can the process of understanding be supported by mathematics?
Is it possible to draw conclusions with the help of mathematics that
can help to avoid a repeat of this tragedy?

Two years after the disaster no decision has been taken about the
required level of protection. This is a mathematical decision problem
where the increasing cost of protection is equated with the reduced
risk (probability × consequence) of flooding. Where the sum of the
cost of protection and the present value of the risk reaches a minimum,
the optimal level of protection is found. Along this line of reasoning
the level of flood protection of the Netherlands was decided in 1960.
However today some think that an insurance against the consequences
of flooding is to be preferred over spending money on a flood defence
system that will never be absolutely safe. Others judge it necessary
to prepare the evacuation in case of a flood because perfect safety
by flood protection is unattainable. Mathematics shows that both
options are probably no alternative to optimal prevention.

1 INTRODUCTION

End of August 2005 the flood defenses of New Orleans were hit by hurricane
Katrina. It quickly became apparent that they could not withstand this
force of nature. The three bowls of the city were flooded. Over a thousand
people lost their lives and the total damage exceeded $20 billion US.

What can we learn from this disaster? Can the probabilistic design
models that were developed in the last decades help to improve the insight?
The answer seems affirmative.

The simple lesson that a flood defense system is a series-system became
very clear. The weakest link decides the overall safety of the system. At
some places the defense was non-existent, so flooding was in fact a certainty
with an above average hurricane. Additionally, some parts were three feet
∗corresponding author: Hydraulic Engineering and Probabilistic Design Faculty of

Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5, 2600 Delft,
The Netherlands; telephone: +31-(0)15 27 85278, e-mail: j.k.vrijling@tudelft.nl
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short due to confusion about the datum. Finally, parts of the system were
pushed backwards and failed before the storm surge level reached the crest
of the wall.

Two years after the disaster no decision has been taken about the re-
quired level of protection. This is a decision problem where the increasing
cost of protection is equated with the reduced risk (probability x conse-
quence) of flooding. Where the sum of the cost of protection and the present
value of the risk reaches a minimum, the optimal level of protection is found.
The level of flood protection of the Netherlands was decided in 1960 on this
basis.

However today some think that an insurance against the consequences
of flooding is to be preferred over spending money on a flood defense system
that will never be absolutely safe. Others judge it necessary to prepare the
evacuation in case of a flood because perfect safety by flood protection is
unattainable. Probability theory shows that both options are generally no
alternative to optimal prevention.

2 THE FLOOD DEFENSE SYSTEM AS A SERIES-SYSTEM

The last decades probabilistic design methods instilled the awareness, that
the probability of exceedance of the design water level, the design frequency
or the reciprocal of the return period is not an accurate predictor of the
probability of flooding. Traditionally the dike crest exceeds the design water
level by some measure, thus the probability of overtopping is smaller than
the design frequency. But water logging may lead to slide planes through
the dike or piping may undermine the body of the dike, with sudden failure
as a consequence. Both are not accounted for in the design frequency. In
short there are more failure mechanisms that can lead to flooding of the
polder than overtopping (see Figure 1). Human failure could prohibit the
timely closure of sluices and gates before the high water. Moreover the
length of the dike ring has a considerable influence. A chain is as strong as
the weakest link. A single weak spot may determine the actual safety of the
dike ring (Figure 2).

The probabilistic approach aims to determine the probability of flooding
of a polder and to judge its acceptability in view of the consequences. As
a start the entire water defense system of the polder is studied. Typically
this system contains sea dikes, dunes, river levees, sluices, pumping stations,
high hills, etc. (Figure 2).

In principle the failure and breach of any of these elements leads to
flooding of the polder. The probability of flooding results thus from the
probabilities of failure of all these elements. Within a longer element e.g.
a dike of 2 km length, several independent sections can be discerned. Each
section may fail due to various failure mechanisms like overtopping, sliding,
piping, erosion of the protected outer slope, ship collision, bursting pipeline,
etc. The relation between the failure mechanisms in a section and the
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Figure 1. Failure modes of a dike; from [1]

unwanted consequence of inundation can be depicted with a fault tree as
shown in Figures 2 and 3 in which the following notation is used: Ri the
resistance of section I, e.g. h the height of the dike, B the width of the
dike or D the size of the revetment block and Si the solicitation, e.g. wl the
water levels and Hs the wave heights in front of the dike.

The failure probabilities of the mechanisms are calculated using the
methods of the modern reliability theory like Level III Monte Carlo, Level
II advanced first order second moment calculations (see [2, 3, 4, 5, 6] or Van
Gelder [7] for a complete overview).

The experience in New Orleans proved that other mechanisms than over-
topping contributes to the failure probability (ASCE [8]). Along the 17-th
Street Canal any sign of overtopping was lacking, but the flood pushed
the wall backwards due to failure of the sub-soil. At the London Avenue
Canal massive piping led to failure of the concrete floodwall without over-
topping. The protective sheet pile wall at the Ninth Ward was overtopped
and lost stability completely. The possibility to treat the human failure to
close for instance a sluice in conjunction with structural failure is seen as a
considerable advantage of the probabilistic approach (Fig. 4). Nowak and
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Collins [3] devote attention to this issue. In New Orleans only one of hun-
dred flood gates was left open. However other human errors in establishing
chart datum and in design contributed to the disaster.
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or

or

Figure 4. The sluice as a series system of failure modes

Correlations between failure modes and correlations between different
dike sections have to be taken into account. Techniques are described in
for instance Hohenbichler and Rackwitz [2]. In the reliability calculations
all uncertainties should be dealt with. Three classes are discerned. The
intrinsic uncertainty is characteristic for natural phenomena. Model uncer-
tainty describes the imperfection of the engineering models in predicting the
behaviour of river flows, dikes and structures. The comparison of predic-
tions and observations provides an estimate of this uncertainty. Statistical
uncertainty is caused by the lack of data. These data are used to estimate
the parameters of the probability distributions depicting the intrinsic un-
certainty. Because all uncertainties are included in the calculations of the
failure probability the latter is not singly a property of the physical reality
but also of the human knowledge of the system (Blockley [9], and Stewart
and Melchers [4]).

The result is that the safety of the dike system as expressed by the calcu-
lated probability of flooding can be improved by strengthening the weakest
dike but also by increasing our knowledge. The result of the calculated
probability of flooding of the polder is presented in Table1.

The last column of the table shows immediately which element or section
has the largest contribution to the probability of flooding of the polder
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Section Overtopping Piping Etc. Total
dike section 1.1 p1.1(overtop.) p1.1(piping) p1.1(etc.) p1.1(all)
dike section 1.2 p1.2(overtop.) p1.2(piping) p1.2(etc.) p1.2(all)
etc. . . . . . . . . . . . .
dune pdune(overtop.) pdune(piping) pdune(etc.) pdune(all)
sluice psluice(overtop.) psluice(piping) psluice(etc.) psluice(all)
total pall(overtop.) pall(piping) pall(etc.) pall(all)

Table 1. Table with the contributions to the overall probability of inundation

under study. Inspection of the related row reveals which mechanism will
most likely be the cause. Thus a sequence of measures can be defined which
at first will quickly improve the probability of flooding but later runs into
diminishing returns.

3 THE ACCEPTABLE PROBABILITY OF FAILURE

One of the tasks of human civilizations is to protect individual members
and groups to a certain extent against natural and man-made hazards. The
extent of the protection was in historic cases mostly decided after the occur-
rence of the hazard had shown the consequences. The modern probabilistic
approach aims to give protection when the risks are felt to be high. Risk
is defined as the probability of a disaster i.e. a flood related to the conse-
quences. As long as the modern approach is not firmly embedded in society,
the idea of acceptable risk may, just as in the old days, be quite suddenly
influenced by a single spectacular accident like the inundation of New Or-
leans or an incident like the non-calamitous threats of the Dutch river floods
of 1993 and 1995.

The estimation of the consequences of a flood constitutes a central ele-
ment in the modern approach. Most probably society will look to the total
damage caused by the occurrence of a flood (Vrĳling [10]). This comprises
a number of casualties, material and economic damage as well as the loss of
or harm to immaterial values like works of art and amenity. Also the loss of
trust in the water defence system is a serious, but difficult to gauge effect.
However for practical reasons the notion of risk in a societal context is often
reduced to the total number of casualties using a definition as: “the relation
between frequency and the number of people suffering from a specified level
of harm in a given population from the realization of specified hazards”. If
the specified level of harm is limited to loss of life, the societal risk may
be modelled by the frequency of exceedance curve of the number of deaths,
also called the FN-curve [10].

The consequence part of a risk can also be limited to the material dam-
age expressed in monetary terms as the Dutch Delta Committee did in
1960. It should be noted however, that the reduction of the consequences
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of an accident to the number of casualties or the economic damage may
not adequately model the public’s perception of the potential loss. The
schematisation clarifies the reasoning at the cost of accuracy.

The problem of the acceptable level of risk can be elegantly formulated
as an economic decision problem. The expenditure I for a safer system is
equated with the gain made by the decreasing present value of the risk. The
optimal level of safety indicated by Pf corresponds to the point of minimal
cost.

min(Q) = min(I(Pf ) + PV(Pf ·D)),
where:

Q = total cost
PV = present value operator
D = total damage given failure

If, despite ethical objections, the value of a human life is rated at d according
to [11], the amount of damage is increased to:

Pd|fi ·Ni · d + D,

where:
Ni = number of inhabitants in polder i

Pd|fi = probability of drowning given failure
This extension makes the damage an increasing function of the expected
number of deaths. The valuation of human life is chosen as the present
value of the nett national product per inhabitant. The advantage of tak-
ing the possible loss of lives into account in economic terms is that the
safety measures are affordable in the context of the national income (see
also Vrĳling and Van Gelder [11]).

Omitting the value of human life, the decision problem as formulated by
the Delta Committee [12, 13] is given below. The investment I(h) in the
protective dike system is given as a function of the crest level h by:

I(h) = I0 + I1(h− h0),

where:
I0 = initial cost
I1 = marginal cost
h0 = existing dike level

The annual probability of exceedance of the crest level of the dike is given
by an exponential distribution:

1− F (h) = e−
h−A
B .

The risk of inundation is equal to the probability of exceedance of the dike
crest times the damage D in case of inundation.

Risk = e−
(h−A)
B ·D.
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Because the risk occurs every year the present value of the risk over an
infinite period has to be taken into account:

PV(Risk) =
∞∑
i=1

e−
(h−A)
B

D

(1 + r)i =e−
(h−A)
B

D

r
,

where r is the discount rate. The total cost is the sum of the investment
and the present value of the remaining risk that is accepted;

TC(h) = I0 + I1(h− h0) + e−
(h−A)
B

D

r
.

Differentiating the total cost with respect to the decision variable h and
equating the derivative to 0 gives an elegant result

∂TC(h)
∂h

= I1 − 1
B
e−

(h−A)
B

D

r
= 0

p∗f = e−
(h−A)
B = I1Br

D

The last expression shows that the acceptable probability increases with the
marginal cost of dike construction, with the standard deviation of the storm
surge level B and the rate of interest. It decreases with the damage that
will occur in case of an inundation.
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Figure 5. The economically optimal crest level

The Delta Committee [12, 13] calculated an acceptable probability of
inundation for Central Holland in 1960 of 8×10-6 per year (Figure 5).
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Some approximating calculations performed by Dutch engineers [14] in
2006 indicated an optimal level of 0.2×10-3 per year for New Orleans. The
city was thought to be protected against a hurricane category 3 with a
return period of 30 to 100 years. The present system that was resurrected
after Katrina has the planned safety level of 1/100 per year.

The economic criterion presented above should be adopted as a basis for
the ‘technical’ advice to the political decision process. All information of
the risk assessment should be available in the political process.

4 THE SAFETY CHAIN

The last years experts in risk management stipulate that prevention of dis-
aster as provided by flood defense systems is inadequate, because the system
can fail as shown above. Therefore additional activities have to be under-
taken such as the planning and organization of evacuation, the mitigation
of damage in case of a disaster, insurance, etc.

In general terms the risk managers advocate the application of the
“safety chain” consisting of proaction, prevention, preparation, repression
and mitigation, recovery and learning. Proaction means to avoid the dan-
ger at all e.g. by not building a city in the Mississippi delta. Prevention
indicates the construction of structures that can withstand the force of the
rare threat and protect people and goods. Preparation points to planning
rescue and mitigation activities in advance. The dictum is: you cannot
plan a disaster but the risk management you can. Repression addresses the
actual rescue activities after the disaster has struck. Building waterproof
facilities or houses on piles that will sustain less damage in case of inun-
dation is indicated by mitigation. Also insuring the properties against the
consequences of an inundation falls in this category. Finally the damage
should be repaired and the society should be put on it’s feet again. This is
the recovery phase of risk management.

The risk management experts state that all links of the safety chain
have to be addressed by the responsible authorities. This is based on the
reasoning that a chain cannot function if an element is omitted. Closer
inspection of the safety chain however reveals that it is a parallel system of
multiple layers, that is at least as safe as the safest layer. Additionally it
should be noted, that that the effectiveness of resources spent in prevention
is most probably higher than on repression, because repression becomes only
effective after the disaster has occurred and the economic damage is a fact.
New Orleans has shown that people and movable property can be saved,
but fixed property is subjected to the force of the flood and all economic
processes are halted. If the evacuation and recovery expenditure would have
been directed at the improvement of the defences, the disaster might have
been avoided.

Insurance is a method of repressing the economic damage caused by an
uncertain event. The insured pays a insurance premium every year and the
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insurer is obliged to refund the main part of the damage if the uncertain
event occurs. The insurance premium will be at least equal to the expected
value of the loss, the risk. However the insurer must add an allowance for
transaction costs, risk aversion and profit. So generally the insurance pre-
mium is a factor g higher than the risk. This is especially true if the insured
risks are fully dependent, because then all insured are hit simultaneously.
This is the case in flood insurance contrary to car or fire insurance.

The model to find the economically optimal risk presented above is easy
to adapt for the case of insurance. Let us assume for the sake of simplicity
that the insurer covers all damage D in return for a premium that is g times
the risk:

Premium = e−
(h−A)
B · g ·D.

Now the total cost of prevention and insurance becomes

TC(h) = I0 + I1(h− h0) + e−
(h−A)
B · g ·D

r
.

Applying the same algebra as above the optimal probability of inundation
is reduced by a factor g and becomes:

p∗f = e−
(h−A)
B = I1Br

g ·D
The conclusion is that the safety of the flood defense should be increased

by a factor g and the defenses increased in strength if the damage is pri-
vately insured. So for a country like the Netherlands, where a flood will
without doubt mean a national disaster, that forces the government to help
the stricken people to repair their properties and the infrastructure, an in-
surance leads to increased cost without clear advantages. If the stricken
area is however a small part of a large country, that might be left to it’s
own devices in recovery, a flood insurance might be wise. Especially if the
country’s policies lean more towards individual responsibility than state
intervention. In the previous part the failure of the insurer was excluded.

It is also interesting to study the optimal division of resources over the
elements or layers of a parallel system as the safety chain. To keep it simple
the system is limited to two layers with failure probabilities p1 and p2. The
cost of each system is a linear function of the natural logarithms of the
respective failure probabilities pi (which is similar to the Delta Committee
case given above):

I(p1, p2) = I0 − I1 ln(p1)− I2 ln(p2).

The risk becomes
Risk = p1 · p2 ·D.

The total cost of investment and the present value of the risk equals

TC(p1, p2) = I0 − I1 ln(p1)− I2 ln(p2) + p1 · p2 · D
r
.
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− ln(p1)

− ln(p2)

−I1 ln(p1)

−I2 ln(p2)
Optimal

pf = p1 · p2

min(TC) = I0 + I1 ln(p1) + I2 ln(p2)

Figure 6. The economical optimization of a simple parallel system consisting of
two elements

Differentiation with respect to pi leads to a slightly more complicated result
because the minimum lies at the border:

p∗f = min
{I1r

D
,
I2r

D

}
.

According to this simple model only the layer with the lowest marginal cost
is applied, the other is omitted as shown in Figure 6.

In this simple example the opinion of the risk management experts that
all elements of the safety chain must be applied is refuted. Such an example
is of course no proof, but it is an indication that the safety chain model in
the simple interpretation gives no reliable guidance, because it is a parallel
system consisting of layers.

5 CONCLUSIONS

The mathematical risk approach has great advantages compared with the
present intuitive. The system of water defenses that is meant to prevent
flooding of areas important to mankind, comes at the centre of the anal-
ysis that is used as an illustration in this paper. A water defense system
is a series-system. The contribution of all elements of the system and of
all failure mechanisms of each element to the probability of flooding must
be calculated and clearly presented. The safety analysis should include
the probability of human failure in the management of the water defense
structures is especially attractive and important because human failure is
relatively likely. The length effect, meaning that a longer chain is likely to
have a weaker link, should be adequately accounted for. The experience in
New Orleans has shown, that a long flood defense has indeed weak elements
for various reasons. Human error in establishing the chart datum at some
locations caused some crest levels to be inadequate. Although some flood
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defenses were overtopped without structural failure, others failed more or
less immediately when overtopped. At a few locations however the defenses
failed without being overtopped. This proved the theoretical prediction
that other failure mechanisms contribute to the probability of inundation.
Specifically sliding of the 17-th Street Canal flood wall due to soil failure
and the undermining of the London Avenue Canal flood wall by piping are
vivid illustrations.

An approach was sketched to define the economical optimal level of risk.
This was indicated as the acceptable risk. The decision on the level of ac-
ceptable risk is a cost/benefit judgement, that must be made from societal
point of view. This mathematical optimum should be adopted as a basis for
the ‘technical’ advice to the political decision process. However all informa-
tion of the risk assessment should be available in the political process. A
decision that is political in nature, must be made democratically, because
many differing values have to be weighed. The economic optimisation shows
however that a fundamental reassessment of the acceptability of the flood
risks is justified if the economic activity in the protected areas has grown.

The application of the ‘safety chain’ consisting of proaction, prevention,
preparation, repression/mitigation, recovery and learning was explained and
analysed in some depth. It was observed that effectiveness of resources
spent in prevention is most probably higher than on repression, because
repression becomes only effective after the disaster has occurred and at
least the economic damage is a fact.

As an example of repression insurance was analysed. It appeared that in-
surance forces to a higher level of protection because the insurance premium
exceeds the risk by some factor. The total cost of prevention and private
insurance will increase compared to a state insurance. So in countries like
the Netherlands where a flood will be an national disaster, insuring flood
damage seems ill advised. A community that cannot count on national aid
in case of a disaster might be wise to opt for insurance.

Finally a parallel system of two layers was economically optimized under
the assumption that any level of safety could be reached at a cost that is a
linear function of the logarithm of the failure probability. It appeared that
the optimal investment was limited to one layer of protection, the layer with
the lower marginal cost. This refutes in some sense the quick conclusion of
the simple safety chain reasoning that every element should be addressed.

It is clear from the examples in this paper that the mathematical meth-
ods of risk analysis and probabilistic reasoning are great aids in the design
and the understanding modern safety systems.
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Abstract. This paper describes a new maintenance inspection
methodology called relative material loss (RML) used for approxi-
mating the material loss contribution on each plate side separating
two or more dissimilar marine environments. The new methodology
leverages actual “at sea” environmental and operational conditions by
defining relationships between the dissimilar environments and solv-
ing for the material loss on each plate side. The RML theory and a
case study using a sixty five year old in-service structure; a dry dock
caisson gate is presented.

1 INTRODUCTION

In 2009, the American Society of Civil Engineers (ASCE), estimated that the
United States must invest $2.2 Trillion over five years to refurbish its crum-
bling infrastructure. This is up from $1.6 Trillion reported in 2005 [1]. To
offset the staggering rising costs, infrastructure researchers are developing
maintenance optimization methodologies to support the growing demand
for service life extensions over expensive replacement strategies.

For example, the Dutch polders in the Netherlands rely on the safe and
reliable performance of its 2500 km of dykes, dams and barriers to protect
its citizens and low-lying cities from the North Sea. However, deterioration
mechanisms such as dyke settlement, subsoil consolidation, and relative sea-
level rise create a constant engineering challenge in order to maintain these
complex civil infrastructures [2]. Through the use of probabilistic modeling,
Dutch civil engineers have created optimization maintenance methodolo-
gies for the inspection and predicted maintenance of these critical national
structures [3]. For example, condition-based maintenance (CBM) models
utilize Gamma processes for modeling asset deterioration while Poisson
processes are employed to model service load events [4]. Degradation of
the asset occurs stochastically over time to a predetermined service level
∗corresponding author: Northrop Grumman Shipbuilding, 4101 Washington Av-

enue, Newport News, VA 23607, U.S.A.; telephone: +1-(757) 688 7469, e-mail:
ernsting@gwu.edu
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at which a maintenance action is required. Non-invasive inspections occur
at predetermined time intervals to determine remaining service life and al-
low ample time for maintenance planning and funding. The Dutch have
used the Gamma deterioration models to model paint deterioration on steel
structures, establish dyke heightening strategies, optimize sand nourishment
strategies, and predict severe long shore rock transport along berm break-
waters [2, 5, 6, 7].

2 RELATIVE MATERIAL LOSS

It has been suggested that marine corrosion modeling research lacks a frame-
work for analyzing material loss data and applying probabilistic corrosion
models [8]. Some research is conducted in laboratory environments un-
der controlled conditions [9], while others are conducted by taking actual
thickness measurements directly from in-service structures such as cargo
tankers [10]. This paper proposes a new maintenance inspection method-
ology that presents a new paradigm for researchers to apply probabilistic
prediction models. The methodology is based upon a new theory called
relative material loss, or RML [11, 12].

2.1 Definitions
Before describing the RML theory, the following definitions are presented:

Relative Material Loss – A maintenance inspection methodology for approx-
imating material loss contribution on each side of structural shell plating
subjected to dissimilar marine environments [11].

Material Loss Contribution – The amount of material loss on a structural
member that is attributable to the environment from which it exists. Ma-
terial loss contribution is designed by ce, where e corresponds to the envi-
ronment causing the material loss.

Relative Loss Equations – Mathematical relationships or equations defined
across various environmental boundaries (such as shell plating or sheet pil-
ing) and solved simultaneously to suggest solutions.

Laterally homogeneous – Environmental parameters causing material loss
are equivalent laterally on either side of a point within the environment.

Longitudinally heterogeneous – Environmental parameters causing material
loss are not equivalent longitudinally above or below a point within an
environment.

Environment – An environment wholly exists if a laterally homogeneous
and longitudinally heterogeneous condition exists.

2.2 RML Theory
Currently, ultrasonic measuring equipment can only determine total remain-
ing material across structural shell plating; the device cannot distinguish the
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amount of material loss contribution on each plate side. Relative material
loss (RML) theory leverages actual in-service environmental and operational
conditions and, by establishing relationships between them, suggests solu-
tions for otherwise indeterminate material loss variables. In much the same
manner as structural engineers use free body diagrams to isolate joints on a
truss to determine member forces, relative loss (RL) equations are defined
across various environmental boundaries (i.e. shell plating) and solved si-
multaneously to suggest solutions (or material loss contributions). In the
next section, the RML theory is developed using a series of cases that build
upon each other.

In the case where a single steel plate is immersed in a single, homoge-
neous environment, the calculation of the amount of material loss on each
plate side is straightforward. It is the measured total plate thickness loss (or
wastage) divided by 2. In the case where a single plate is subjected to two
dissimilar environments, such as with the shell plating of an above-ground
tank, the solution is indeterminate due to having two unknown variables
such that:

cA + cB = W, (1)

where cA and cB are the material losses on each side of a single plate sub-
jected to environments A and B and W is the measured total wastage across
the plate. However, a solution is possible if a second independent equation
in terms of unknown variables cA and cB can be defined, assumed or cal-
culated by other means. In the above-ground tank example, a reasonable
assumption is made that the exterior side receives periodic maintenance to
the extent that the material loss contribution is approximately zero com-
pared to its interior side, providing the second equation needed for the
solution. Therefore, an assumption is made that cB ≈ 0. Other means to
approximate cB include using deterministic formulas or probabilistic models
found in literature.

Figure 1 provides examples of structural systems exposed to three dis-
similar environments, A, B, and C. The cellular cofferdam retaining wall
(Figure 1a) is comprised of steel sheet piles. The cofferdam environments
consist of clay and gravel soil conditions under different hydrostatic con-
ditions and a marine atmospheric (sea air). The double hull tanker shell
plating (Figure 1b) is exposed to crude oil, confined ballast tank atmo-
spheric and seawater environments. The dry dock caisson gate shell plating
(Figure 1c) is exposed to brackish river water, ballast tank water and marine
atmospheric conditions.

The model for these examples is presented (see Figure 2). Two steel
plates 1 and 2 are exposed to three dissimilar environments A, B, and C.
Each steel plate has an original plate thickness, d0 and, over time, t, experi-
ence material thickness losses, cA, cB and cC , caused by their environments.
In the field, inspectors use ultrasonic devices to measure remaining plate
thicknesses, d1 and d2, on plates 1 and 2, respectively at time, t. Total
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Figure 1. Examples of structures that are exposed to dissimilar environments,
A, B and C

wastages, W1 and W2 at time, t, are calculated:

W1(t) = d01 − d1(t), (2)
W2(t) = d02 − d2(t). (3)

The original plate thicknesses d0 is based on actual and not nominal
thickness. However, the actual plate thickness is not often known. There-
fore, using the nominal plate thickness can frequently produce “negative”
wastage numbers, such that W < 0. If this occurs, then the plate should
be checked against its allowable manufacturers mill overage tolerance and
d0 calibrated accordingly. For example, using ASTM A6 [13].

Referring to Figure 2, material loss contributions cA(t) and cB(t) are ex-
pressed in terms of known wastages, W1(t) and W2(t) and unknown material
loss contributions cB(t) and cC(t) such that:

cA(t) = W1(t)− cB(t), (4)
cB(t) = W2(t)− cC(t). (5)

Due to high variability inherent with material loss data, it is appropri-
ate to represent material loss probabilistically in the form of a material loss
function [14]. Melchers [15] and Qin and Cui [16] utilize a generic mate-
rial loss function as a framework for calculating probabilistic material loss,
c(t,P ,E), as a function of time, t:

c(t,P ,E) = b(t,P ,E)× f(t,P ,E) + ε(t,P ,E), (6)

where f(t,P ,E) is the mean-value corrosion loss function; b(t,P ,E) is
a bias function; ε(t,P ,E) is a zero-mean uncertainty function such that
e(t,P ,E) ≈ N(0, s); E is a vector of environmental parameters that influ-
ence corrosion such as water temperature, dissolved oxygen, pH, pollutants,
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Figure 2. Steel plates 1 and 2 of original thicknesses d01 and d02 separating
three dissimilar environments, A, B and C and influencing material losses cA, cB

and cC over time, t

wave action, water velocity [17]. When the function is used on in-service
structures, a vector, P , is added to represent parameters that resist material
loss such as coatings and cathodic protection systems [16]. There are nu-
merous time-based corrosion prediction models found in the literature that
can be used to define f(t,P ,E) [16, 17, 18, 19, 20].

The bias function, b(t,P ,E), is multiplicative rather than additive for
it is used to calibrate f(t,P ,E) with c(t,P ,E). When an accurate model
for f(t,P ,E) exists, it exactly represents c(t,P ,E) and the bias function,
b(t,P ,E) is defined as unity [21]. Along with a well calibrated model,
careful inspection and sound sampling methodologies must be employed.
Assuming this condition where bias is unity, Eq. (6) is simplified:

c(t,P ,E) = f(t,P ,E) + ε(t,P ,E). (7)

2.3 Relative Loss Equations

With respect to Figure 2, Eqs. (4) and (5) are used to define the mean-
value corrosion loss functions, f(t,P ,E) used for this study. Therefore, the
following is given:

fA(t,P ,E) = W1(t)− cB(t,P ,E), (8)
fB(t,P ,E) = W1(t)− cC(t,P ,E). (9)
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Through substitution, the right-hand side of Eqs. (8) and (9) replace f(t,P ,
E) in Eq. (7) to generate two relative loss (RL) equations:

cA(t,P ,E) = W1(t)− cB(t,P ,E) + εB(t,P ,E), (10)
cB(t,P ,E) = W1(t)− cC(t,P ,E) + εC(t,P ,E). (11)

Subtracting Eqs. (10) and (11) and solving for cA(t,P ,E) yields:

cA(t,P ,E) = W1(t)−W2(t)+cC(t,P ,E)−εB(t,P ,E)+εC(t,P ,E). (12)

Notice that the material loss contribution, cB(t,P ,E) is irrelevant. The
relationships in Eqs. (2) and (3) are substituted for W1(t) and W2(t) in
Eq. (12) to account for the original plate thicknesses d01 and d02 , and re-
maining plate thicknesses d1(t) and d2(t):

cA(t,P ,E) = d01−d02+d2(t)−d1(t)−cC(t,P ,E)−εB(t,P ,E)+εC(t,P ,E).
(13)

Notice in cases where d01 = d02 , original plate thickness (and associated
actual mill tolerance) provides no additional information. Under this con-
dition, the RL equation simplifies:

cA(t,P ,E) = d2(t)− d1(t)− cC(t,P ,E) + εB(t,P ,E)− εC(t,P ,E). (14)

The relationship between the two zero-mean uncertainty functions εB(t,
P , E) and εC(t,P ,E) suggests that uncertainty is reduced if εB(t,P ,E) ≈
εC(t,P ,E). However, this suggestion violates the rules of second moment
algebra for variance [22]. Further research is warranted to explore the un-
certainty reduction suggestion within the context of relative material loss
theory since various modeling techniques can be employed. For the pur-
pose of this study, the uncertainty term will be designated as ε′(t,P ,E)
to indicate that uncertainty has changed and an assumption is made that
ε′(t,P ,E) is near zero.

cA(t,P ,E) = d2(t)− d1(t) + cC(t,P ,E) + ε′(t,P ,E). (15)

Eq. (15) is a specific relative loss (RL) equation for situations where two
steel plates are separating three dissimilar environments (as in the Figure
1 examples) and have the same original plate thickness. Simply stated, the
material loss contribution, cA(t,P ,E), is a function of the measured plate
thicknesses d1(t) and d2(t) of the two shell plates plus the material loss
contribution, cC(t,P ,E) plus all applicable uncertainty, ε′(t,P ,E).

It is important to note that a relationship exists between the two ex-
ternal (or opposing) sides plate surfaces are expressed in terms of the two
measured total plate thicknesses. This RL equation can be used either de-
terministically by plugging field data directly into the RL equation or prob-
abilistically using the corrosion prediction models found in the literature. If
cc(t) cannot be reasonably assumed, a value for cC(t) can be estimated from
empirical formulas found in literature or by defining another independent
RL equation.
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2.4 Laterally homogeneity and longitudinally heterogeneity
Assumption: the marine immersion environments are stratified such that
the conditions that cause material loss are laterally homogeneous and lon-
gitudinally heterogeneous (as per Section 2.1).

The assumption implies that in order for a single environment to ex-
ist, it must be laterally homogeneous and longitudinally heterogeneous. To
test for laterally homogeneity, a one-way analysis of variance (ANOVA)
test is performed on a collection of thickness measurements laterally subdi-
vided equally into two groups. Set the null hypothesis, as the two means of
the subdivided groups are equal and the alternative hypothesis, as the two
means are not equal. For the environments to be laterally homogeneous,
the null hypothesis must fail to reject. If the null hypothesis does not fail
to reject, then explore the possibility that another dissimilar environment
exists by repeating the test at various locations laterally along the structure.

Once lateral homogeneity is established, a test is performed to verify
longitudinal heterogeneity. To test for this, a one-way ANOVA test is per-
formed on a collection of thickness measurements longitudinally subdivided
into groups at each level of the structure. Set the null hypothesis as all
means of the subdivided groups at each level are equal and the alternative
hypothesis to at least one level is not equal. For the environments to be
longitudinally heterogeneous, at least one level will be significantly different,
causing the null hypothesis to reject [11].

3 DRY DOCK CAISSON GATE

A dry dock caisson gate is a floatable steel vessel that is submerged at
the free water end of a dry dock to seal the dock from the river (Figure
1c). As the dock is dewatered, hydrostatic forces from the riverside build
vertically along the caisson gate, pressing the gate against the concrete
abutment of the dry dock to form a watertight seal. The dry dock caisson
gate has recently been suggested as a unique new research platform for
studying in-service marine corrosion. This is due to its (1) controlled and
predictable marine environments and (2) recent increase in the regulatory
inspections [12].

3.1 Northrop Grumman Shipbuilding caisson gate
A caisson gate that services a dry dock at Northrop Grumman Shipbuilding
located near the mouth of the James River in Newport News, Virginia, USA
was used for RML theory validation. Shell plating thickness readings from a
recent NAVSEA inspection provide the platform for testing and validating
the relative material loss theory. At the time that the shell plating thickness
readings were taken in 2005, the caisson gate was 65 years old. The caisson
gate was routinely dry docked and overhauled approximately once every
8-10 years.

Ultrasonic pulse echo measurements were taken on the river and marine
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air shell plating of the caisson gate on a 2.4m grid pattern. Tests for laterally
homogeneity and longitudinally heterogeneity were performed as described
in section 2.4. The caisson gate environments are laterally homogeneous
for the null hypothesis failed to reject (α = 0.05). River Side: p-value =
0.421, Marine Air Side: p-value = 0.180. The caisson gate environments are
longitudinally heterogeneous for at least one level is significantly different,
causing the null hypothesis to reject (α = 0.05). River Side: p-value <
0.001, Marine Air Side: p-value < 0.001.

To describe existing material loss conditions deterministically and ac-
count for variability (i.e. 95% confidence intervals), a least squares regression
technique [23] is chosen over a spline technique. Using regression software,
ten polynomial regression models (PRM) are created at each caisson gate
level (A, B, C, D and E) and on each side (River and Marine Air) of the
caisson gate (see positions indicated in the lower right-hand corner of Figure
3). The order of the polynomial varied between models and was selected
based on the lowest p-value and maximum R-square (adjusted) values ob-
tainable through trial and error. Table 1 summarizes the R-squared and
p-values of the ten polynomial regression models.

PRM R2 Adjusted R2 ANOVA p-value
River-A 38.5 20.1 0.166
River-B 59.8 56.4 0.001
River-C no correlation, use mean
River-D 54.7 34.6 0.098
River-E 70.8 52.5 0.044
Air-A 89.8 77.8 0.013
Air-B 57.3 38.7 0.076
Air-C 46.0 36.2 0.034
Air-D 56.1 42.9 0.035
Air-E 77.6 67.6 0.005

Table 1. Polynomial Regression Models: R-Squared and p-values

The PRM’s are used to calculate the remaining plate thicknesses, d at
any given caisson gate frame location number, x. As an example, Figure 3
depicts the PRM for River Side, Level “D” [designated herein as fRiver,D(x)].
The thick solid line represents the fitted point estimate and the dashed line
represent the 95% upper and lower confidence intervals. To provide an inde-
pendent validation of the PRM model, a locally weighted estimated scatter
smoothing technique (LOWESS) is superimposed [24]. The goodness-of-fit
of the LOWESS models is performed by visually checking the residuals for
normality, autocorrelation and heteroscedasticity.
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Figure 3. Polynomial regression model using least squares

3.2 Relative Loss Profiles
Using relative loss Eq. (15), five RL equations are constructed substituting
the PRM functions for d1 and d2 at each caisson gate level. PRM solutions
for cRiver at each of the five levels are calculated for all x.

cRiver = fAir,n(x)− fRiver,n(x) + cAir, (16)

where:
fs,n(x) = polynomial regression models for either river side or ma-

rine air side, such that
s = “Air” or “River” side
n = level A, B, C, D or E
x = caisson gate frame location number (2, 3, 4, . . . , x, . . . ,

40, 41)
cRiver = Relative material loss contribution of river side exterior

plating
cAir = Relative material loss contribution of air side exterior

plating (assumption: cAir ≈ 0)

Since a deterministic approach was chosen for this case study, t, P , and
E are dropped from the RL equations. Also, since the exterior side of the
caisson gate is exposed to marine atmospheric conditions and assumed rou-
tinely maintained, an assumption is made that cAir ≈ 0. cB (inside ballast
tank) is calculated by subtracting cAir from the total measured material
loss, W2 (Eq. 3). The five RL equations are solved at each frame number
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location, x along the caisson gate shell plating from frame number location
2 to 41 and relative loss profiles created.

4 DISCUSSION

Figure 4 provides the total material loss profile along the riverside as mea-
sured in the field. The thick black line represents the mean value profile
of total material loss measured. The thin gray lines are vertical profiles
at each caisson gate frame number location, x and provide a “bootstrap”
approximate confidence interval of the point estimate. Note: since Figure
4 is only for illustrating total material loss vertically along the shell plating
and is not used in the RML equations, a simple piecewise linear function
was chosen.

Figure 4. Total material loss profile: river side

Figure 5 provides the relative material loss profile of the riverside ex-
terior shell plating. Again, the thin gray lines are vertical profiles at each
caisson gate frame number location, x and provide a “bootstrap” approxi-
mate confidence interval of the point estimate. Note again that inflection
points of the thin gray lines appear to correspond with anomalies with the
structure - change in shell plating orientation at elevation 22.2, horizontal
plate stiffeners at elevations 22.5 and 25.2, and top of ballast water at el-
evation 26.8. This suggests that RML could potentially be used to locate
structural anomalies hidden within structures and tanks.

The mean RML at each level is calculated and represented on Figure 5.
A triangle indicates the mean RML value for marine atmospheric at level A.
This correlates to the assumption made earlier that the contribution due
to marine atmospheric conditions is near zero. Fours dots indicate the
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Figure 5. Relative material loss profile: river side, exterior shell plating

mean RML values of the material loss contribution due to marine seawater
immersion at levels B, C, D, and E. Using a least squares technique, a fitted
curve is drawn between the four points with an R-Sq adjusted = 94.5%. The
curve has been shown to have a high correlation with the water dissolved
oxygen content (r-value=.925) and water temperature (r-value=.768). Also,
note the mean RML value at level E is near zero.

Figure 6 provides the relative material loss profile of the interior shell
plating. The ballast tank atmospheric condition is conducive to high humid-
ity and high temperature. The higher mean RML value at level A compared
to level B is contributable to (1) higher surface temperatures at level A due
to radiant heat from direct sun light and (2) increased time of wetness
(TOW) due to dew build up on the inside surface from fluctuating day-time
and night-time temperatures [25]. Comparing mean RML value at level A in
Figure 6 with the mean RML value at level A in Figure 5, it is suggested that
the majority of the material loss is occurring on the inside of the structure.
The ballast water trend between levels C and D in Figure 6 correlate well
with water dissolved oxygen content (r-value=.918) and water temperature
(r-value=.987).

Although the variability at level E is high, the mean RML value indicates
high material loss at this region. This is plausible for the concrete placed
in the region is original and 65 years old. The concrete as it ages will tend
to crack and develop fissures over its long life span and expose the inside
shell plating surface to salts and chlorides from the seawater ballast directly
above. Since the inspection of the inside, shell plate surface at level E is
difficult, RML proves to be a valuable methodology for future monitoring
in this region.
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Figure 6. Relative material loss profile: interior shell plating

The example given is specific to situations where two steel plates separate
three dissimilar environments such as the cellular cofferdam retaining wall,
double hull tanker shell plating and dry dock caisson gates in Figure 1. From
a general perspective, relative material loss theory can be applied to any
situation where n structures isolate n+1 dissimilar environments. However,
as n becomes large, additional RL relationships are needed to resolve the
indeterminacy problems.

5 CONCLUSION

This paper proposes a paradigm shift of corrosion and material loss research
and introduces a new maintenance inspection methodology called relative
material loss (or RML). Material loss contribution on each side of a plate
separating dissimilar marine environments is approximated by establishing
mathematical relationships between dissimilar environments using relative
loss (RL) equations and solving the equations simultaneously. RML can be
applied either (1) deterministically at any time to locate areas of unusual
degradation or (2) probabilistically using any of the time-based corrosion
prediction models found in the literature. The methodology was demon-
strated on a 65-year old marine structure; a dry dock caisson gate where
material loss profiles were created and shown to correlate closely with water
temperature and dissolved oxygen content. As the caisson gate is period-
ically inspected, new information can be introduced and the RML profiles
updated to erflect degradation as a function of time. Furthermore, by map-
ping material loss to environmental and operational parameters over ex-
tended periods of time, improved corrosion prediction models for in-service
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structures are possible. The potential use of RML on in-service structures
is far reaching and has potential applications on dry dock caisson gates,
ballast tanks, ship hull structures, bridge abutments, sheet pile cofferdams,
underground piping systems, storage tanks, offshore oil platforms and flood
control/sluice gates.
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Nonparametric predictive system reliability with all
subsystems consisting of one type of component

Frank P.A. Coolen
∗
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– Durham University, Durham, United Kingdom

Abstract. Recently we have presented nonparametric predictive
inference (NPI) for system reliability [1, 2], with specific attention
to redundancy allocation. Series systems were considered in which
each subsystem i is a ki-out-of-mi system. The different subsystems
were assumed to consist of different types of components, each type
having undergone prior success-failure testing. This work uses NPI for
Bernoulli variables [3], which enables prediction form future variables
based on n observations, without the need of a prior distribution. In
this paper, we present a generalization of these results by considering
multiple subsystems which all consist of one type of component, which
provides an important step to wider applicability of this approach.

1 INTRODUCTION

During recent decades, generalization of the standard theory of probabil-
ity, in which a single value is used to quantify uncertainty for a specific
event, by the use of lower and upper probabilities has become increasingly
popular, see [4] for an introductory overview from the perspective of reli-
ability theory and applications. The main idea is that, for an event A, a
lower probability P (A) and upper probability P (A) are specified, such that
0 ≤ P (A) ≤ P (A) ≤ 1, with classical precise probability appearing in the
special case with P (A) = P (A). Like precise probability, lower and upper
probabilities have different possible interpretations, including a subjective
interpretation in terms of buying prices for gambles. Informally, a lower
probability P (A) can be interpreted as reflecting the evidence in support
of event A, which makes focus on lower probability for system functioning
natural and attractive in reliability studies, we use this as the reliability
measure of interest throughout this paper. For completeness, however, we
also present the corresponding upper probability P (A), which can be in-
terpreted by considering that 1 − P (A) reflects the evidence against event
A, so in support of the complementary event Ac. The lower and upper
probabilities presented in this paper are naturally linked by the conjugacy
∗corresponding author: Department of Mathematical Sciences, Durham University,

Durham, DH1 3LE, England; telephone: +44-(0)191 334 3048, fax: +44-(0)191 334 3051,
e-mail: frank.coolen@durham.ac.uk
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property P (A) = 1− P (Ac) [5, 3].
For this paper it suffices to regard the lower and upper probabilities

as the optimal bounds for a probability that can be derived from limited
assumptions, indeed a major benefit of lower and upper probabilities for
statistical inference is that one does not need to make modelling assumptions
that are strong enough to derive precise probabilities. For the approach
presented in this paper, the main benefit is that predictive inference is
possible without the need to assume a prior probability distribution, as is
the case in Bayesian statistics.

Coolen [3] presented lower and upper probabilities for prediction of
Bernoulli random quantities, which have strong consistency properties within
the theory of interval probability [5]. These lower and upper probabilities
followed from an assumed underlying latent variable model, with future out-
comes of random quantities related to data by Hill’s assumption A(n) [6],
and they are part of a wider statistical methodology called ‘Nonparamet-
ric Predictive Inference’ (NPI) [5, 7]. In the NPI approach, uncertainty is
quantified by lower and upper probabilities, which can be regarded as opti-
mal bounds for probabilities based on relatively few assumptions. NPI is a
frequentist statistical approach which has strong consistency properties [5]
and compares favourably to so-called objective Bayesian methods [7]. Sev-
eral applications of NPI to problems in statistics, reliability and operations
research have been presented, for some references see [1, 7].

Coolen-Schrĳner et al. [1] considered NPI for system reliability, in partic-
ular for series systems with subsystem i a ki-out-of-mi system. Such systems
are common in practice, and can offer the important advantage of build-
ing in redundancy by increasing some mi to increase the system reliability.
Coolen-Schrĳner et al. [1] applied NPI for Bernoulli data to such systems,
with inferences on each subsystem i based on information from tests on ni
components, and the components tested assumed to be exchangeable with
the corresponding components to be used in that subsystem. Only situa-
tions where components and the system either function or not when called
upon were considered. They presented an attractive algorithm for optimal
redundancy allocation, with additional components added to subsystems
one at a time, which in their setting was proven to be optimal. Hence, NPI
for system reliability provides a tractable model, which greatly simplifies
optimisation problems involved with redundancy allocation. However, they
only proved this result for tests in which no components failed. MacPhee
et al. [2] generalized this result to redundancy allocation following tests in
which any number of components can have failed, a situation in which re-
dundancy plays possibly an even more important role than when testing
revealed no failures at all.

In Section 2, an overview of these recent results is given, including a
brief introduction to NPI for Bernoulli random quantities. These results are
generalized in Section 3 by allowing different ki-out-of-mi subsystems to
consist of components of the same type, which is an important step towards
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NPI for reliability of general systems. Examples in Sections 2 and 3 illustrate
the NPI lower and upper probabilities for system functioning. Section 4
concludes the paper with some discussion on the practical relevance of this
new theory and corresponding research challenges.

2 NPI FOR SYSTEM RELIABILITY

In this section, NPI for Bernoulli random quantities [3] is summarized, to-
gether with the key results for NPI for system reliability by Coolen-Schrĳner
et al. [1] and MacPhee et al. [2].

2.1 NPI for Bernoulli quantities
Suppose that there is a sequence of n + m exchangeable Bernoulli trials,
each with ‘success’ and ‘failure’ as possible outcomes, and data consisting
of s successes in n trials. Let Y n1 denote the random number of successes in
trials 1 to n, then a sufficient representation of the data for the inferences
considered is Y n1 = s, due to the assumed exchangeability of all trials. Let
Y n+m
n+1 denote the random number of successes in trials n+ 1 to n+m. Let

Rt = {r1, . . . , rt}, with 1 ≤ t ≤ m+ 1 and 0 ≤ r1 < r2 < . . . < rt ≤ m, and,
for ease of notation, define

(
s+r0
s

)
= 0. Then the NPI upper probability for

the event Y n+m
n+1 ∈ Rt, given data Y n1 = s, for s ∈ {0, . . . , n}, is

P (Y n+m
n+1 ∈ Rt|Y n1 = s) =

(
n + m

n

)−1
× · · ·

t∑
j=1

[(
s + rj

s

)
−
(
s + rj−1

s

)](
n− s + m− rj

n− s

)
.

The corresponding NPI lower probability is derived via the conjugacy prop-
erty

P (Y n+m
n+1 ∈ Rt|Y n1 = s) = 1− P (Y n+m

n+1 ∈ Rct |Y n1 = s)

where Rct = {0, 1, . . . ,m}\Rt.
Coolen [3] derived these NPI lower and upper probabilities through direct

counting arguments. The method uses the appropriate A(n) assumptions
[6] for inference on m future random quantities given n observations, and
a latent variable representation with Bernoulli quantities represented by
observations on the real line, with a threshold such that successes are to one
side and failures to the other side of the threshold. Under these assumptions,
the

(
n+m
n

)
different orderings of these observations, when not distinguishing

between the n observed values nor between the m future observations, are
all equally likely. For each such an ordering, the success-failure threshold
can be in any of the n+m+1 intervals of the partition of the real line created
by the n + m values of the latent variables, leading to n + m + 1 possible
combinations (s, r), with s successes in the n tests and r successes in the
m future observations. For such an ordering, these possible (s, r) can be
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represented as a path on the rectangular lattice from (0, 0) to (n,m) with
steps going either one to the right or one upwards. The

(
n+m
n

)
different

orderings, which are all equally likely, correspond to the
(
n+m
n

)
different

right-upwards paths from (0, 0) to (n,m), and hence the above NPI lower
and upper probabilities can also be derived by counting paths. To derive
the NPI lower probability P (Y n+m

n+1 ∈ Rt|Y n1 = s), one counts all such
paths which must go through points (s, r) with r ∈ Rt, so they do not
go through (s, l) for any l ∈ Rct . The corresponding NPI upper probability
P (Y n+m

n+1 ∈ Rt|Y n1 = s) is derived by counting all such paths that go through
at least one (s, r) with r ∈ Rt.

2.2 NPI for a k-out-of-m system
When considering a k-out-of-m system, the event Y n+m

n+1 ≥ k is of interest
as this corresponds to successful functioning of such a system, following n
tests of components that are exchangeable with the m components in the
system. Given data consisting of s successes from n components tested, the
NPI lower and upper probabilities for the event that the k-out-of-m system
functions successfully are denoted by P (m : k| n, s) and P (m : k| n, s),
respectively, and these follow from the NPI lower and upper probabilities
for Y n+m

n+1 ∈ Rt given above. For k ∈ {1, 2, . . . ,m} and 0 < s < n,

P (m : k| n, s) = P (Y n+m
n+1 ≥ k|Y n1 = s) =

(
n + m

n

)−1
× · · ·[(

s + k

s

)(
n− s + m− k

n− s

)
+

m∑
l=k+1

(
s + l − 1
s− 1

)(
n− s + m− l

n− s

)]

and, via the conjugacy property,

P (m : k| n, s) = P (Y n+m
n+1 ≥ k|Y n1 = s) = 1− P (Y n+m

n+1 ≤ k − 1|Y n1 = s)

= 1−
(
n + m

n

)−1
[
k−1∑
l=0

(
s + l − 1
s− 1

)(
n− s + m− l

n− s

)]
.

For m = 1, so considering a system consisting of just a single component,
the NPI upper and lower probabilities for the event that the system functions
successfully are

P (1 : 1| n, s) = P (Y n+1
n+1 = 1|Y n1 = s) = s + 1

n + 1 ,

P (1 : 1| n, s) = P (Y n+1
n+1 = 1|Y n1 = s) = s

n + 1 .

If the observed data are all successes, so s = n, or all failures, so s = 0, then
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the NPI upper probabilities are, for all k ∈ {1, . . . ,m},

P (m : k| n, n) = P (Y n+m
n+1 ≥ k|Y n1 = n) = 1,

P (m : k| n, 0) = P (Y n+m
n+1 ≥ k|Y n1 = 0) =

(
n + m− k

n

)(
n + m

n

)−1
,

and the NPI lower probabilities are, for all k ∈ {1, . . . ,m},

P (m : k| n, n) = P (Y n+m
n+1 ≥ k|Y n1 = n) = 1−

(
n + k − 1

n

)(
n + m

n

)−1
,

P (m : k| n, 0) = P (Y n+m
n+1 ≥ k|Y n1 = 0) = 0.

Example 1. Table 1 presents the NPI lower and upper probabilities for a
k-out-of-62 system, with k varying from 58 to 62, on the basis of tests of n
components that are exchangeable with the 62 components in the system,
and s components in the tests functioning successfully. If tests have revealed
no failures, so s = n, then the NPI upper probability of system functioning is
equal to 1, which reflects that such tests do not contain evidence against the
possibility that such components would always function. The corresponding
lower probabilities in these cases are increasing in the number of tests, if
the tests did not reveal any failures, which reflects the increasing evidence
in favour of at least k components out of 62 functioning in the system.
With relatively few tests performed, and many of the 62 components in
the system required to function, the effect of a failure in the tests on the
predicted system reliability is substantial. This example illustrates that
P (m : k| n, s) = P (m : k| n, s − 1), which generally holds for these NPI
lower and upper probabilities [1]. It is worth noticing the lower probability
P (62 : 62| 62, 62) = 0.5, which is actually precisely 1/2 and is the same as
would be derived if the whole 62-out-of-62 system were instead considered
to be a single unit, and if one exchangeable unit (hence also such a system)
had been tested and had been successful, as P (1 : 1| 1, 1) = 0.5.

We return to this example in Section 3 (Example 2), when instead of
a single k-out-of-62 system, we regard the system as consisting of two or
three ki-out-of-mi systems, with the mi’s summing up to 62. Although this
example is purely illustrative for the presented theory, the numbers chosen
are inspired by the Dutch Oosterscheldekering (Eastern-Scheldt storm surge
barrier), which is part of the Delta Works series of dams to protect the
Netherlands from flooding. This barrier consists of 62 steel doors, hence the
NPI lower and upper probabilities for successful functioning of the system
in this example could be interpreted as those for successful functioning of
this barrier on a single application, following test results of n doors. Of
course, this assumes exchangeability of the functioning of the individual
doors, which may not be deemed to be an appropriate assumption.

89



Coolen, Aboalkhair & MacPhee

k = 58 k = 59 k = 60 k = 61 k = 62
n s P P P P P P P P P P
1 1 0.079 1 0.063 1 0.048 1 0.032 1 0.016 1
2 2 0.151 1 0.122 1 0.092 1 0.062 1 0.031 1
3 3 0.217 1 0.176 1 0.134 1 0.091 1 0.046 1

2 0.021 0.217 0.014 0.176 0.008 0.134 0.004 0.091 0.001 0.046
5 5 0.330 1 0.272 1 0.211 1 0.145 1 0.075 1

4 0.060 0.330 0.041 0.272 0.025 0.211 0.013 0.145 0.005 0.075
10 10 0.538 1 0.458 1 0.367 1 0.260 1 0.139 1

9 0.192 0.538 0.139 0.458 0.090 0.367 0.049 0.260 0.018 0.139
8 0.051 0.192 0.032 0.139 0.017 0.090 0.007 0.049 0.002 0.018
7 0.011 0.051 0.006 0.032 0.003 0.017 0.001 0.007 0.000 0.002

20 20 0.763 1 0.681 1 0.573 1 0.431 1 0.244 1
30 30 0.868 1 0.800 1 0.699 1 0.548 1 0.326 1
50 50 0.952 1 0.910 1 0.834 1 0.696 1 0.446 1
60 60 0.969 1 0.936 1 0.872 1 0.744 1 0.492 1
62 62 0.971 1 0.941 1 0.878 1 0.752 1 0.500 1

100 100 0.993 1 0.980 1 0.946 1 0.855 1 0.617 1

Table 1. NPI lower and upper probabilities for a k-out-of-62 system

2.3 ki-out-of-mi subsystems in series configuration
Many systems consist of series configurations of N ≥ 2 independent sub-
systems, with subsystem i (i = 1, . . . , N) a ki-out-of-mi system consisting
of exchangeable components. Assume that, in relation to subsystem i, ni
components that are exchangeable with those to be used in the subsystem
have been tested, of which si functioned successfully. For the series system
to function, all its subsystems must function, and due to the assumed in-
dependence of the subsystems (which implies independence of components
in different subsystems), the NPI upper and lower probabilities for such a
series system to function are

P (m : k| n, s) =
∏N
i=1 P (mi : ki| ni, si),

P (m : k| n, s) =
∏N
i=1 P (mi : ki| ni, si),

where the notation with N -vectors m, k, n, s has been introduced to gen-
eralize earlier notation. Coolen-Schrĳner et al. [1] presented a powerful
algorithm for optimal redundancy allocation for such systems, that is how
best to assign additional components to subsystems (hence to increase the
number of components mi), for situations where the required numbers of
components that must function for the subsystems remains the same (ki).
They only considered such redundancy allocation after zero-failure testing
(so si = ni for all i = 1, . . . , N). MacPhee et al. [2] succeeded in generalizing
this algorithm to general test results. In these papers, the NPI lower proba-
bility for system functioning was used as the reliability measure. We do not
discuss the redundancy allocation algorithm in this paper, but will present
the NPI lower and upper probabilities for functioning of a system consist-
ing of multiple ki-out-of-mi subsystems in a series configuration, with all
subsystems consisting of the same type of component. This is an important
step towards developing NPI for reliability of general systems.
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3 MULTIPLE SUBSYSTEMS WITH ONE TYPE OF
COMPONENT

The results summarized in Section 2 need to be generalized in order to
develop the NPI framework for reliability of more general systems. As a
first important step, we consider how to deal with exchangeable components
appearing in different subsystems. Such components are exchangeable as
far as learning from test results is concerned, but they have different roles in
the overall system hence they must be distinguished. In the NPI approach,
the interdependence of the components to be used in the system is explicitly
taken into account, and we need to generalize the results by Coolen [3] for
the situation where the m future components belong to different subgroups,
with required numbers of successes specified per subgroup.

We present this generalization here for a series system consisting of two
subsystems, with subsystem i = 1, 2 a ki-out-of-mi system, and both these
subsystems consisting of the same type of component. As before, we assume
that n components which are exchangeable with the m1 and m2 components
in these subsystems have been tested, and that s of these functioned suc-
cessfully. This system will function if at least k1 of the m1 components in
subsystem 1 function, together with at least k2 of the m2 components in
subsystem 2. The NPI lower probability for this event is

P (m1 : k1,m2 : k2 | n, s) =
(
n + m1 + m2
n,m1,m2

)−1
× · · ·

m1∑
l1=k1

m2∑
l2=k2

(
s− 1 + l1 + l2
s− 1, l1, l2

)(
n− s + m1 − l1 + m2 − l2
n− s,m1 − l1,m2 − l2

)
and the corresponding NPI upper probability is

P (m1 : k1,m2 : k2 | n, s) =
(
n + m1 + m2
n,m1,m2

)−1
× · · ·[

m1∑
l1=k1

(
s + l1 + k2 − 1
s, l1, k2 − 1

)(
n− s + m1 − l1 + m2 − k2
n− s,m1 − l1,m2 − k2

)
+ · · ·

m2∑
l2=k2

(
s + k1 − 1 + l2
s, k1 − 1, l2

)(
n− s + m1 − k1 + m2 − l2
n− s,m1 − k1,m2 − l2

)
+ · · ·

m1∑
l1=k1

m2∑
l2=k2

(
s− 1 + l1 + l2
s− 1, l1, l2

)(
n− s + m1 − l1 + m2 − l2
n− s,m1 − l1,m2 − l2

)]
.

These NPI lower and upper probabilities are derived by counting paths
on the grid from (0, 0, 0) to (n,m1,m2), in a similar way as described in
Section 2. By the appropriate A(n) assumptions, all orderings of the n +
m1+m2 latent variables representing the n test observations and the m1 and
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m2 future random quantities are again equally likely, and each such ordering
can again be represented by a unique path from (0, 0, 0) to (n,m1,m2). The
above NPI lower probability follows by counting all paths which go through
(s, r1, r2) for r1 ≥ k1 and r2 ≥ k2 but not through any point (s, r1, r2)
with r1 less than k1 or with r2 less than k2, The corresponding NPI upper
probability follows by counting all such paths that go through at least one
point (s, r1, r2) with r1 ≥ k1 and r2 ≥ k2.

These results have been generalized to systems with L > 2 ki-out-of-mi
subsystems in a series configuration, by using similar counting arguments
on an L + 1-dimensional grid. Due to space limitations, the general results
will be presented elsewhere, together with more detailed justification of the
arguments underlying these NPI lower and upper probabilities. However, in
Example 2 we briefly illustrate a case related to that presented in Example
1 in Section 2, but with the system split up into two or three subsystems.
For this, we will use the following NPI lower and upper probabilities for
system functioning for the case with L = 3:

P (m1 : k1,m2 : k2,m3 : k3 | n, s) =
(
n+m1 +m2 +m3

n,m1,m2,m3

)−1

× · · ·
m1∑
l1=k1

m2∑
l2=k2

m3∑
l3=k3

(
s− 1 + l1 + l2 + l3
s− 1, l1, l2, l3

)(
n− s+m1 − l1 +m2 − l2 +m3 − l3
n− s,m1 − l1,m2 − l2,m3 − l3

)
,

P (m1 : k1,m2 : k2,m3 : k3 | n, s) =
(
n+m1 +m2 +m3

n,m1,m2,m3

)−1

× · · ·[
m2∑
l2=k2

m3∑
l3=k3

(
s+ k1 − 1 + l2 + l3
s, k1 − 1, l2, l3

)(
n− s+m1 − k1 +m2 − l2 +m3 − l3
n− s,m1 − k1,m2 − l2,m3 − l3

)
+

m1∑
l1=k1

m3∑
l3=k3

(
s+ l1 + k2 − 1 + l3
s, l1, k2 − 1, l3

)(
n− s+m1 − l1 +m2 − k2 +m3 − l3
n− s,m1 − l1,m2 − k2,m3 − l3

)
+

m1∑
l1=k1

m2∑
l2=k2

(
s+ l1 + l2 + k3 − 1
s, l1, l2, k3 − 1

)(
n− s+m1 − l1 +m2 − l2 +m3 − k3

n− s,m1 − l1,m2 − l2,m3 − k3

)
+

m1∑
l1=k1

m2∑
l2=k2

m3∑
l3=k3

(
s− 1 + l1 + l2 + l3
s− 1, l1, l2, l3

)(
n− s+m1 − l1 +m2 − l2 +m3 − l3
n− s,m1 − l1,m2 − l2,m3 − l3

)]
.

If testing revealed no failing components, so s = n, then these NPI upper
probabilities, for any number L of subsystems, are equal to 1 for all values
of mi and ki, which again reflects that such test data do not provide strong
evidence against the possibility that such components would never fail.

Example 2. We return to the situation described in Example 1, inspired
by the number of steel doors in the Oosterscheldekering. Actually, instead
of one line of 62 doors next to each other, the barrier consists of three
sections, with 15 steel doors in the northern section, 16 in the middle sec-
tion, and 31 in the southern section. Suppose now that the functioning of
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the barrier requires specific numbers of doors in each section to function.
While the assumption of exchangeability of the doors remains with regard
to the uncertainty of their functioning and the way in which we learn from
test data on similar doors, for the functioning of the system it is important
to distinguish the doors according to which section they are in. For this,
the theory in this section is suitable. First, let us suppose that the north-
ern and middle sections can be combined to one k1-out-of-31 subsystem,
with the southern section a separate k2-out-of-31 subsystem, and these two
subsystems form together the overall system in series configuration. Some
NPI lower and upper probabilities for functioning of the whole system are
presented in Table 2.

k1 = k2 = 29 k1 = 29, k2 = 30 k1 = k2 = 30 k1 = k2 = 31
n s P P P P P P P P
1 1 0.066 1 0.050 1 0.040 1 0.016 1
2 2 0.126 1 0.096 1 0.077 1 0.031 1
3 3 0.182 1 0.139 1 0.113 1 0.046 1

2 0.015 0.182 0.010 0.139 0.006 0.113 0.001 0.046
5 5 0.280 1 0.218 1 0.178 1 0.075 1

4 0.045 0.280 0.028 0.218 0.019 0.178 0.005 0.075
10 10 0.467 1 0.375 1 0.314 1 0.139 1

9 0.148 0.467 0.099 0.375 0.070 0.314 0.018 0.139
8 0.036 0.148 0.020 0.099 0.012 0.070 0.002 0.018
7 0.007 0.036 0.003 0.020 0.002 0.012 0.000 0.002

20 20 0.687 1 0.579 1 0.503 1 0.244 1
30 30 0.803 1 0.701 1 0.625 1 0.326 1
50 50 0.908 1 0.829 1 0.766 1 0.446 1
60 60 0.934 1 0.865 1 0.809 1 0.492 1
62 62 0.938 1 0.871 1 0.816 1 0.500 1

100 100 0.977 1 0.936 1 0.901 1 0.617 1

Table 2. NPI lower and upper probabilities with m1 = m2 = 31

Comparing Tables 1 and 2, it is clear that the lower and upper probabil-
ities in the final columns, where the system only functions if all components
function, are identical. This is logical, as in both cases it just means that,
after n components have been tested, the next m components must all func-
tion. The three other cases presented in Table 2 do not directly relate to
cases in Table 1, due to the different system configurations. Clearly, a 60-
out-of-62 system can function for more combinations of failing components
than two 30-out-of-31 subsystems in a series configuration, namely the for-
mer still functions if the two failing components happen to be in the same
subsystem corresponding to it, in which case the latter would not function
anymore. This explains why the entries (except those equal to 1) in Table
1 are greater than corresponding ones in Table 2, where we relate the cases
k = 60 with k1 = k2 = 30 and also k = 58 with k1 = k2 = 29.

Let us now consider the system of 62 components split up into three
subsystems, with m1 = 15, m2 = 16 and m3 = 31 components, inspired
by the three sections of the Oosterscheldekering. First, let us consider the
reliability of each of these three subsystems independently of each other, so
we consider each as a single k-out-of-m system. The NPI lower and upper
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probabilities for successful functioning of each of these systems individually,
based on s successfully functioning components in n tests, are given in Table
3, for the values k and m as indicated in the columns.

k = 15,m = 15 k = 16,m = 16 k = 30,m = 31 k = 31,m = 31
n s P P P P P P P P
1 1 0.063 1 0.059 1 0.063 1 0.031 1
2 2 0.118 1 0.111 1 0.119 1 0.061 1
3 3 0.167 1 0.158 1 0.171 1 0.088 1

2 0.020 0.167 0.018 0.158 0.016 0.171 0.005 0.088
5 5 0.250 1 0.238 1 0.262 1 0.139 1

4 0.053 0.250 0.048 0.238 0.045 0.262 0.016 0.139
10 10 0.400 1 0.385 1 0.433 1 0.244 1

9 0.150 0.400 0.138 0.385 0.142 0.433 0.055 0.244
8 0.052 0.15 0.046 0.138 0.039 0.142 0.011 0.055
7 0.017 0.052 0.014 0.046 0.009 0.039 0.002 0.011

20 20 0.571 1 0.556 1 0.635 1 0.392 1
30 30 0.667 1 0.651 1 0.746 1 0.492 1
50 50 0.769 1 0.758 1 0.856 1 0.617 1
60 60 0.800 1 0.789 1 0.886 1 0.659 1
62 62 0.805 1 0.795 1 0.891 1 0.667 1

100 100 0.870 1 0.862 1 0.945 1 0.763 1

Table 3. NPI lower and upper probabilities for k-out-of-m systems

These NPI lower and upper probabilities give an indication of the re-
liability of the individual subsystems considered, when considering them
independently of the other systems. It is crucial, however, that in the appli-
cation considered in this example, these subsystems consist of the same type
of component, for which only limited test information is available. Hence,
if it were known that one of these subsystems functions satisfactorily, let us
assume this would be the subsystem with m = 15 and assuming that this
would function only if k = 15, then for the next subsystem considered we
are more confident in the reliability of the components, as now in addition
to the test results for the n tested components it is known that a further
15 components all function satisfactorily. This has a substantial impact on
overall reliability when we combine the subsystems into a single system.

If one were to neglect the interdependence of the components in the
different subsystems, one would make the mistake of quantifying the sys-
tem’s reliability by multiplying the NPI lower and upper probabilities of
successful functioning of the subsystems, as briefly mentioned in Section
2 for independent subsystems. For example, consider the third column of
Table 2, involving a series system with two 30-out-of-31 subsystems on the
basis of s components functioning well out of n components tested. If we
would, instead, multiply the lower and upper probabilities for two individ-
ual 30-out-of-31 systems, based on the same test information, so effectively
we would take the squared values of the entries in the third column in Table
3, then the latter would lead to substantially smaller values for the lower
probability, and also for the upper probability for all cases where this is
not equal to one. To illustrate this important issue, assume that n = 10
components had been tested, of which s = 9 functioned successfully. The
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corresponding NPI lower and upper probabilities for successful functioning
of the series system with two 30-out-of-31 subsystems (Table 2, third col-
umn) are 0.070 and 0.314, respectively. If one would, mistakenly, neglect
the interdependence of these two subsystems, which use components of the
same type, and multiply the NPI lower and upper probabilities for the in-
dividual 30-out-of-31 subsystems (Table 3, third column), this would lead
to the values 0.1422 = 0.020 for the lower and 0.4332 = 0.187 for the upper
probability, which are substantially smaller than the correct values.

Let us now consider the 62-component system as consisting of three
subsystems in series structure, with m1 = 15, m2 = 16 and m3 = 31
components. Table 4 presents NPI lower and upper probabilities for some
situations reflecting satisfactory functioning of the whole system depending
on the specific numbers ki (i = 1, 2, 3) of components required to function
per subsystem.

(k1, k2, k3) : (14, 15, 30) (15, 16, 30) (15, 16, 31)
n s P P P P P P
1 1 0.045 1 0.024 1 0.016 1
2 2 0.087 1 0.047 1 0.031 1
3 3 0.127 1 0.069 1 0.046 1

2 0.008 0.127 0.003 0.069 0.001 0.046
5 5 0.197 1 0.110 1 0.075 1

4 0.024 0.197 0.009 0.110 0.005 0.075
10 10 0.345 1 0.200 1 0.139 1

9 0.085 0.345 0.033 0.200 0.018 0.139
8 0.016 0.085 0.005 0.033 0.002 0.018
7 0.003 0.016 0.001 0.005 0.000 0.002

20 20 0.542 1 0.337 1 0.244 1
30 30 0.664 1 0.437 1 0.326 1
50 50 0.799 1 0.571 1 0.446 1
60 60 0.838 1 0.618 1 0.492 1
62 62 0.844 1 0.626 1 0.500 1

100 100 0.919 1 0.736 1 0.617 1

Table 4. NPI lower and upper probabilities with m1 = 15,m2 = 16,m3 = 31

Again, if all 62 components need to function (ki = mi for all i), then
the NPI lower and upper probabilities are as in Tables 1 and 2 for the same
situation. Suppose that the whole system functions satisfactorily if in each
subsystem not more than one component fails, leading to the NPI lower and
upper probabilities in the first column of Table 4. If we had not separated
the two smallest subsystems, so instead had assumed that the whole system
consisted of two subsystems with m1 = m2 = 31, as considered at the
start of this example with corresponding NPI lower and upper probabilities
given in Table 2, and if we had allowed two failing components for the first
subsystem with m1 = 31 components, then (see column 2 in Table 2) the NPI
lower and upper probabilities (the latter if different from 1) would have been
larger than those with the three subsystems taken into account separately.
This is due to the fact that there would be more combinations of the failing
components included in the counts for the lower and upper probabilities
in Table 2, namely those with two failing components in one, and zero in
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the other, of the individual subsystems with 15 and 16 components. This
illustrates clearly that one must carefully define the requirements on the
subsystems in order for the overall system to function, which is of course
directly linked to the appropriate system structure.

Examples 1 and 2 clearly show the effect of increasing numbers of tests
on the system reliability. If all n components tested succeeded in their task,
so s = n, then the NPI lower probabilities increase as function of n, but the
rate of increase decreases. This is in line with intuition as it reflects that,
with all tests being successful, the positive effect of a further successful test
on the lower probability of system functioning decreases with increasing n.
This can also be used to set a minimum number of tests, assuming no failures
will be discovered, in order to meet a reliability requirement formulated as
a minimum value for the NPI lower probability of system functioning. This
is relevant in high-reliability testing, where failures in tests typically lead
to redesign of the units followed by a new stage of testing, and hence one
needs to determine how many zero-failure tests are required in order to
demonstrate reliability. Coolen and Coolen-Schrĳner [8, 9] present related
theory and methods from the perspectives of NPI and Bayesian statistics.

4 DISCUSSION

The NPI approach to system reliability is in early stages of development.
It provides a new method for statistical inference on system reliability on
the basis of limited information resulting from component testing. In the
reliability literature, system reliability is usually expressed as function of
failure probabilities for components, which are typically assumed to be
known. Under limited information, this will clearly not be the case, and
the proper inclusion of uncertainty about components’ failure probabilities
is rarely addressed. One cannot replace parameters representing such fail-
ure probabilities by estimates, as the system reliability function is typically
non-linear. More importantly, any such classical approach with parameters
representing components’ failure probabilities does not take into account
the interdependence of the components to be used in the system of interest.

One can use a Bayesian approach, expressing the system reliability via
a posterior predictive distribution, which will take care of this interdepen-
dence, but this requires the use of prior distributions for the parameters,
which adds further assumptions that may be hard to justify. This is particu-
larly clear when considering system reliability after zero-failure tests, where
Bayesian methods will typically lead to a probability of system functioning
that is less than one, while clearly the test data do not strongly suggest that
components might actually fail. The use of lower and upper probabilities in
reliability is attractive in such situations as the upper probability of system
functioning, given no test failures, can be equal to one (as the NPI upper
probabilities are), reflecting no evidence that things can go wrong. In such
cases, the corresponding lower probability may be of most use, as it re-
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flects the amount of evidence available in favour of system functioning, and
as it enables cautious inference which is often deemed appropriate in risk
analysis. The fact that the NPI lower and upper probabilities result from
combinatorial arguments, based only on an exchangeability assumption and
an underlying latent variable representation is also attractive.

This paper presents an important step in the development of NPI for
more complex system structures, as components of one type frequently occur
in different subsystems. The next challenge is development of NPI for k-
out-of-m systems which contain different types of components, which is not
straightforward due to the use of lower and upper probabilities. Although
the development of NPI for system reliability is still far from the point
where it can be applied to substantial practical systems, the results for small
systems clearly show the importance of such an approach which implicitly
takes limited information on component reliability into account.

In two recent papers [1, 2] a powerful optimal algorithm was presented
for redundancy allocation related to the NPI approach to reliability of sys-
tems consisting of independent ki-out-of-mi subsystems, each consisting of
a single type of component, which are different for different subsystems. A
myopic algorithm was proven to be optimal, and this algorithm is straight-
forward to implement and requires negligible computing time. Research is
currently ongoing to justify a similar algorithm for the scenario discussed
in this paper. Numerical examples indicate that a similarly attractive algo-
rithm will again be optimal, but proving this property is rather complicated.

NPI lower and upper probabilities for system reliability are based on
combinatorics, so the computation time will increase for more substantial
systems. However, there are no complex integrals involved (as e.g. is typ-
ically the case in Bayesian statistics), and as all sums are finite there are
no major difficulties. For large systems it may be required to consider ap-
proximations for the sums involved in deriving the NPI lower and upper
probabilities, but NPI is not yet developed to the stage where this has be-
come relevant. If more test data become available, updating the NPI lower
and upper probabilities occurs by calculating them again using all combined
information, there is no straightforward sequential updating algorithm avail-
able as is the case in Bayesian statistics. In fact, updating in NPI is explicitly
not the same as conditioning, see Augustin and Coolen [5] for more detailed
discussion of this important foundational aspect, together with consistency
results under updating for NPI for real-valued random quantities. The im-
precision, that is the difference between corresponding NPI upper and lower
probabilities, tends to decrease as a function of n and increase as a func-
tion of m, although the imprecision tends to become smaller for non-trivial
events if both the upper and lower probabilities get close to either zero or
to one. It will be of interest to study this in more detail, in particular as
imprecision seems to relate logically to the amount of information available
and to the number of future random quantities involved in the event of
interest.
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Although a nonparametric approach as presented in this paper is at-
tractive, it has obvious limitations. For example, if NPI were developed
further in order to take ageing of technical components into account, the
huge amount of data needed to describe the effects of ageing without the use
of a parametric model will make the approach of little practical value. One
of the main research challenges for NPI will be to combine it with partial
parametric modelling to model aspects of ageing using specific processes
[10]. This may lead to a novel semi-parametric approach that could be of
benefit to a wide range of applications. The use of lower and upper prob-
abilities in combination with stochastic processes is an exciting topic area
for future research, which has not attracted much attention so far.

The use of lower and upper probabilities is attractive for many problems
in reliability, as they can deal more explicitly with limited information.
Utkin and Coolen [4] present an introductory overview of many methods and
applications presented, mostly during the past decade. This also includes
references to other applications of NPI in reliability.
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Abstract. Prediction of the life-cycle performance of structural
systems must be accompanied with an efficient intervention planning
procedure that assures the safe upkeep of structures. Multi-criteria
optimization is an effective approach for conducting this procedure.
Life-cycle performance of structural systems is typically quantified by
means of performance indicators. The ability of the performance mea-
sures and their predictive models to accurately interpret and quantify
the effects of applying maintenance interventions is necessary. The
objective of this paper is to review recent advances in methods of
multi-criteria optimization of life-cycle performance of structural sys-
tems under uncertainty. Two approaches for finding optimum main-
tenance strategies for deteriorating structural systems through multi-
criteria optimization and using genetic algorithms are presented with
applications. These approaches use different problem formulations
and types of performance indicators.

1 INTRODUCTION

In their paper, the use of lifetime distributions in bridge maintenance and
replacement modelling, van Noortwĳk and Klatter [1] recognized the im-
portance of life-cycle analysis for the optimization of management of roads
and bridges. They also acknowledged that “to calculate the life-cycle cost,
information on the time and cost of bridge maintenance and replacement
is needed”. It is of evident necessity that proper modeling procedures are
implemented for the accurate prediction of the times of bridge maintenance
and replacement under uncertainty. Knowledge of these times establishes
the basis for optimizing the proper and most economical maintenance proce-
dures required. These times are typically assesed by means of performance
indicators. Accordingly, a maintenance optimization problem is formulated.
Tools for solving the optimization problem efficiently are needed. In the past
decade, the maintenance optimization problem has usually been formulated
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as a multi-criteria one, and the tool of choice for solving this optimization
problem has become the genetic algorithms.

In this paper, recent advances in methods of multi-criteria optimization
of life-cycle performance of structural systems under uncertainty are briefly
reviewed. Two approaches for finding optimum maintenance strategies for
deteriorating structural systems through multi-criteria optimization and us-
ing genetic algorithms are presented with applications. These approaches
use different problem formulations and types of performance indicators

2 PERFORMANCE INDICATORS

Upkeep of the safe structural performance is the primary goal of any main-
tenance procedure. By doing so, the service life of structures may, in fact,
be further prolonged. In order to keep track of the structural performance,
inidcators that represent different types of the structural performance are
developed and used as the main tool in deciding the timing of appliction of
maintenance [2]. In his paper, coauthered with Frangopol and Kallen [3],
van Noortwĳk reviewed different types of models for prediction of structural
performance. These models were classified as random-variable models, such
as the reliability index, the time-dependent reliability index, and the failure
rate; and stochastic process models such as the Markov decision processes
and the renewal models [3].

Because of the aleatory and epistemic uncertainties, structural reliabil-
ity has been a major decision factor throughout the life-cycle of engineering
structures. The reliability index was shown to be a good tool for prior-
itizing the maintenance actions [4]. Enright and Frangopol [5] have uti-
lized the cumulative-time probability of failure in maintenance planning.
Other reliability-oriented performance indices have also been implemented
in maintenance planning. For instance, Yang et al. [6, 7] have used life-
time functions that quantify the survivability and hazard rates of the struc-
tures. Other indicators, particularly the safety and condition indices have
heavily been used in life-cycle management and maintenance optimization
[8, 9, 10, 11]. Recently, Okasha and Frangopol [12] have pointed out the
importance of integrating the redundancy of structures as an additional
decision tool in the maintenance optimization process.

3 GENETIC ALGORITHMS

Inspired by evolutionary biology, genetic algorithms (GAs) have found their
way into a large number of optimization applications and the growing inter-
est in them continues. This is due to several advantages of GAs compared
to other methods for complex problems. It is enough to be able to evaluate
the objective functions for a given set of input parameters in order to solve
a certain optimization problem using GAs. In addition, GAs are especially
attractive in solving multi-criteria problems due to their ability of finding a
set of Pareto-optimal solutions in one run compared to conventional meth-
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ods that can only find one solution per run. In the past decade, GAs have
been the method of choice for solving multi-objective maintenance optimiza-
tion problems. In particular, a GA algorithm called non-dominated sorting
GA with controlled elitism, NSGA-II [13] has been the most widely used
algorithm for these applications.

This NSGA-II algorithm can be briefly described as follows. An ini-
tial (parent) population is randomly generated. Non-dominated sorting is
performed in order to provide a measure of fitness and locate the individ-
uals in fronts, where the first front is a potential Pareto-optimal. A set
of operations are performed next for a specified number of generations. In
each generation, binary tournament selection, cross-over and mutation are
performed to generate an offspring population that is combined with the
parent population and from which the best individuals are selected to pass
through the next generation.

4 MAINTENANCE OPTIMIZATION

In this paper, two distinct approaches for the multi-objective optimization
of maintenace are presented. These two approaches differ mainly in their
formulation, performance indicators used and target application they are
intended for, but are both solved using the NSGA algorithm. The perfor-
mance indices considered in the first approach are the instantaneous prob-
ability of system failure, redundancy, and life-cycle cost (LCC), whereas
in the second approach, they are the unavailability, redundancy, and LCC.
Both approaches are illustrated with examples.

4.1 Approach 1
The first maintenance optimization approach is applied to a five-bar truss
under a horizontal random load. The bars are grouped into the three groups
of equal areas A1, which includes the two vertical bars, A2 which includes
the horizontal bar, and A3 which includes the two diagonal bars.

A detailed description of the truss, the random variables and load and
resistance models can be found in Okasha and Frangopol [14]. The design
variables considered are a maintenance code M , (a binary variable with
three bits), and the application time variable t. Each bit of M represents
one of the three bar groups considered. Each group has its bars replaced if
the corresponding bit in M takes a value of 1 and not replaced if the value
is 0. The cost of replacing bar groups A1, A2 and A3 are assumed, respec-
tively, as $1800, $900, $2550. Constraints are imposed on the thresholds for
the instantanous probability of system failure and redundancy, and time of
application of the mainenance actions. Accordingly, the formulation of the
problem may be stated as follows:

Find:

• The time of application of maintenance: t, (1a)
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Figure 1. Pareto-optimal set for a five-bar truss (adapted from [14])

• The maintenance code: M , (1b)

To achieve the following three objectives:

• Minimize Pf(sys),max, (1c)

• Maximize RImin, (1d)

• Minimize LCC, (1e)

Subject to the constraints:

• Pf(sys),max ≤ Pf(sys),allowable, (1f)

• RImin ≥ RIallowable, (1g)

• 5 ≤ t ≤ 45 years, (1h)

where Pf(sys),max is the maximum (worst) value reached for the probabil-
ity of system failure throughout the service life, RImin is the minimum
(worst) value reached for the redundancy index throughout the service life,
Pf(sys),allowable is the allowable maximum probability of system failure, and
RIallowable is the allowable minimum redundancy index.

Figure 1 shows the Pareto-optimal set obtained. Projections of the re-
sults presented in Figure 1 in the bidimensional space are presented in Fig-
ure 2. Five solutions selected from the Pareto-optimal set in Figures 1 and
2 are investigated. The history profiles for reliability, redundancy, LCC and
bar areas associated with these five solutions are shown in Figure 3.
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Figure 2. Projections of the Pareto-optimal set for a five-bar truss in each of
the three bidimensional spaces (adapted from [14])

It is found that in Solution P1 replacing the horizontal and vertical bars
(groups 1 and 2) is enough to maintain the safety and redundancy of the
structure at this time, and thus, replacing the diagonal bars (group 3) is not
necessary and will only result in unnecessary expenses. The Pf(sys),max and
RImin values obtained by Solution P2 are the best that can be achieved with
M = [110], i.e. without replacing the diagonal bars. Solution P3 shows that
further improvement in Pf(sys),max cannot be achieved without replacing
all bars. For this reason a jump exists in the LCC from solutions P2 to P3
and the Pareto-optimal curve is discontinuous between these solutions. See
Okasha and Frangopol [14] for further details.

4.2 Approach 2
The second maintenance optimization approach is applied to the super-
structure of the Colorado Bridge E-17-AH. A detailed description of this
bridge can be found in [4]. The bridge has three spans of equal length.
The reinforced concrete slab is supported by nine standard-rolled, compact,
noncomposite steel girders [4]. As shown in Figure 4, the system failure is
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Figure 3. History profiles for: (a) area of vertical bars A1; (b) area of horizontal
bars A2 and; (c) area of diagonal bars A3 for selected optimum solutions

assumed to occur by the failure of any three adjacent girders or the deck.
In Figure 4, the deck is denoted as D and the girders 1, 2, ..., 9 are denoted
as G1, G2, ..., G9, respectively.

Four essential maintenance options are considered and the target ser-
vice life is 75 years. The essential maintenance actions and their associated
costs are [4]: Replace deck ($225, 600); Replace exterior girders ($229, 200);
Replace exterior girders and deck ($341, 800); and Replace superstructure
($487, 100). For preventive maintenance, silane treatment is considered for
maintaining the deck and re-painting is considered for maintaining the gird-
ers. The cost of silane treatment for the entire deck is assumed as $50, 000
and the cost of girder re-painting for all girders is assumed as $100, 000 [15].

An essential maintenance is applied at the time a performance threshold
is reached, where the type of maintenance applied is the one that provides
the lowest present cost per year of increase of service life [4]. Preventive
maintenance is applied based on the results of the optimization design vari-
ables. The design variables considered are: a continuous design variable
for the unavailability threshold Anth, a continuous design variable for the
redundancy threshold RIth, ten continuous design variables for the time of
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Figure 4. Series-parallel models of Bridge E-17-AH

application of the preventive maintenance of the deck Tdi (i = 1, 2, ..., 10),
an integer design variable for the number of applications of the preventive
maintenance for the deck Nd (where Nd = 0, 1, 2, ..., 10), ten continuous de-
sign variables for the time of application variables for the preventive main-
tenance of the girders Tgi (j = 1, 2, ..., 10); and an integer design variable
for the number of applications of the preventive maintenance for the girders
Ng (where Ng = 0, 1, 2, ..., 10). Constraints are imposed on the thresh-
olds for the unavailability and redundancy, and time of application of the
mainenance actions.

Accordingly, the formulation of the problem is stated as follows [15]:

Find: Anth, RIth, Tdi, Nd, Tgi, Ng to achieve the following three objec-
tives:

• Minimize Anmax, (2a)

• Maximize RImin, (2b)

• Minimize LCC, (2c)

Subject to the constraints:

• 10−1 ≤ Anth ≤ 10−3, (2d)

• 101 ≤ RIth ≤ 104, (2e)

• 2 ≤ Tmi ≤ 73, (2f)

• Tmi − Tmi−1 ≥ 2, (2g)

• Nd = 0, 1, 2, ..., 10, (2h)

• Ng = 0, 1, 2, ..., 10, (2i)
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where Anmax is the maximum (worst) value reached for the unavailabliity
throughout the service life, RImin the minimum (worst) value reached for
the redundancy index throughout the service life, and Tmi is the time of
maintenance application i, and i, j = 1, 2, ..., 10.

Figure 5. Pareto-optimal sets of for Bridge E-17-AH (adapted from [15])

The resulting three dimensional Pareto-optimal set of the optimization
problem is shown in Figure 5. Projections of this set in the bidimensional
space are presented in Figure 6. Each point in Figures 5 and 6 represents an
optimum maintenance plan. A choice among these solutions can be made
by decision makers based on their budgets and preferences. This choice
will be guided by the trends observed in the figures. For example, as the
unavailability is reduced and/or the redundancy is increased, the associated
LCC is increased. However, the increase in LCC is relatively higher with
reducing the unavailability than with increasing the redundancy.

It is clear from Figures 5 and 6 that the unavailability and redundancy
objectives are competing with the LCC objective. However, in most cases,
the unavailability and redundancy objectives are non-competing among each
other. In some cases, on the other hand, as shown in Figure 6c, some
solutions almost form a horizontal line in which the unavailability is reduced
while the redundancy remains the same, or even worsens.

Each point in the obtained Pareto-optimal set provides an optimal main-
tenance solution, in which a balance between the unavailability, redundancy
and LCC is achieved. Three representative solutions (S1, S2, S3) are se-
lected from the Pareto-optimal set shown in Figures 5 and 6 are presented as
examples of these maintenance solutions. Figure 7 shows (a) the schedules
of maintenance application and (b) the history profiles for the cumulative
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Figure 6. Projections of the Pareto-optimal set for Bridge E-17-AH in the
bidimensional spaces (adapted from [15])
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Figure 7. (a) Schedules of maintenance application and (b) the history profiles
for the cumulative present LCC for the selected solutions (adapted from [15])

present LCC associated with these selected solutions. Also, the history
profiles for the unavailability and redundancy are plot in Figures 8 and 9,
respectively. Solution S1 requires no applications of essential maintenance
over the lifespan of 75 years and keeps the unavailability below 10−1 and
redundancy above 101 with only two silane treatments (at years 45, and 65)
and two girder re-paintings (at years 41, and 68). Solution S2 requires two
superstructure replacements (at years 21, and 49) six girder re-paintings
(at years 9, 24, 30, 42, 55, and 65) and three silane treatments (at years
10, 36, and 52) to provide an availability of 10−1.77 and a redundancy of
103.98. The difference in the LCC between Solution S1 and Solution S2 is
significant.
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Figure 8. History profiles of unavailability for selected solutions (adapted
from [15])
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Figure 9. History profiles of redundancy for selected solutions (adapted
from [15])
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Solution S3 requires seven superstructure replacements (at years 9, 19,
28, 38, 47, 56, and 66) to provide an availability of 10−2.71 and a redundancy
of 104.91. Nevertheless, the improvement in unavailability and redundancy
compared to solution S2 requires over eight times the LCC of Solution S2.
Evidently, solving an optimization problem in this nature provides valuable
insight regarding the interaction among the different criteria considered and
helps decide an optimum maintenance schedule.

5 CONCLUSIONS

In this paper, recent advances in methods of multi-criteria optimization of
life-cycle performance of structural systems under uncertainty are reviewed.
Two approaches for finding optimum maintenance strategies for deteriorat-
ing structural systems through multi-criteria optimization and using genetic
algorithms are presented with applications. These approaches use differ-
ent problem formulations and types of performance indicators. Using an
appropriate formulation for the maintenance optimization problem, repre-
sentative performance measures, and an efficient tool for solving the opti-
mization problem, an economical and effective decision space of optimum
maintenance strategies can be obtained, from which decision makers are
able to decide their choice based on their preferences, budgets and quality
of solutions provided.
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Abstract. The aeration of the activated sludge tank of wastewa-
ter treatment plant (WWTP) Westpoort in Amsterdam (the Nether-
lands) has been optimised using model based control. Discharge limits
for the effluent of the treatment plant require total nitrogen (Ntot)
concentrations below 10 mg/l. Ntot levels are reduced using biolog-
ical nitrification-denitrification. This process is controlled by aera-
tion which consumes a lot of energy. In order to reduce energy, the
nitrification-denitrification process is optimised using a non linear re-
gression model for the ammonium (NH4) concentration. Simulation
results show that the total nitrogen concentration in the effluent can
be decreased with a lower oxygen concentration, thus consuming less
energy. Both nitrogen removal and energy consumption were reduced
with ten percent. Currently, the model based control (MBC) is im-
plemented in the actual process control.

1 INTRODUCTION

Recently, the Dutch water boards signed a long-term agreement with The
Ministry of Economic Affairs to improve the energy-efficiency of wastewater
treatment plants with at least 2% per year and 30% in ten years time. The
energy-efficiency coefficient is roughly the amount of removed waste divided
by the net energy consumption. Approximately half the energy consumption
of wastewater treatment plants is used for aeration of the activated sludge
tanks. Optimisation of the activated sludge process, therefore, is an effective
way to increase energy-efficiency.

In order to improve the energy-efficiency at wastewater treatment plant
(WWTP) Westpoort, a model based control algorithm for the aeration of
the activated sludge process has been designed and implemented at the
plant. WWTP Westpoort is a large wastewater treatment facility in Ams-
terdam (the Netherlands). The plant receives both communal and industrial
wastewater of about 400,000 i.e. (inhabitant equivalents) per year and has
an inflow of 50,000 m3 per day. Effluent discharge limits require Ntot con-
centrations below 10 mg/l and Ptot (total phosphorous) below 1 mg/l. In

∗Witteveen+Bos, P.O. Box 233, 7411 AE, Deventer, the Netherlands; telephone:
+31-(0)570 697466, e-mail: j.korving@witteveenbos.nl
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four parallel aerated activated sludge tanks, nitrogen and phosphorus are
removed biologically.

This paper discusses the optimisation of the nitrification-denitrification
process at WWTP Westpoort. In section 2, the principles of biological
wastewater treatment are explained. Section 3 describes the development
of the model in detail and explains how it is used for control. The re-
sults are presented and discussed in Section 4. Finally, the conclusions are
summarised in Section 5.

The aim of this paper is to show how model based control (MBC) can be
applied in wastewater treatment. As such, the emphasis is on the application
not on the theory behind it.

2 BIOLOGICAL WASTEWATER TREATMENT

Nitrogen and phosphorus are removed from wastewater by a mixture of
bacteria, also known as activated sludge. Figure 1 presents an outline of
the activated sludge process. Some of the bacteria require an oxygen-rich
environment to convert ammonium (NH4) into nitrate (NO3). Other bac-
teria convert nitrate to nitrogen gas (N2) which evaporates. These bacteria
prefer, however, a low-oxygen regime. Therefore, the activated sludge tank
is partially aerated. This process of nitrification and denitrification is del-
icate and the effectiveness depends on the amount of O2 that is added to
the water, the water temperature, the inflow of wastewater and the amount
of activated sludge.

Figure 1. Schematic of the activated sludge process

Experiments [1] have shown that, under stationary conditions for tem-
perature and flow, the dependence of Ntot (sum of NH4 and NO3) of O2
is close to parabolic. This implies that there is an optimal concentration
for O2. At the optimal concentration, the breakdown of nitrogen is most
efficient. Figure 2 shows that a set point lower than the optimal set point
for O2 gives more NH4, while a higher set point gives more NO3. However,
the trade-off is non linear. At the optimal concentration, the sum of NH4
and NO3 is minimal.

Whereas the experiments were done under static conditions, the reality
of the activated sludge process is far from static. In practice both flow and
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temperature vary. A higher temperature will speed up the conversion of
NH4 and NO3 by the bacteria and the curves will change such that the
optimum moves to a lower O2 level. A higher flow will increase the levels
of NH4 and more air is required.

Figure 2. Relationship between Ntot and O2 for stationary situations

3 MODEL BASED CONTROL

3.1 Original control strategy
Originally, the choice of the O2-set point is based on a decision matrix
(Table 1) and depends on the measurement of NH4 and NO3 in the activated
sludge tank. The table shows the control strategy for the tanks at WWTP
Westpoort.

High 4 mg NH4/l ↑↑ ↑↑ ↑
Acceptable ↑ 0 ↓
Low 1 mg NH4/l 0 ↓ ↓↓

Low 1 mg NO3/l Acceptable High 6 mg NO3/l

↑ 1 step up = 0.1 mg O2/l
↓ 1 step down = 0.1 mg O2/l

Table 1. Decision matrix for O2 set points

The results of control based on this matrix are good. A yearly average of
Ntot 6.6 mg/l and Ptot 0.7 mg/l is reached which is below discharge limits.
However, there is room for improvement, including a more stable process,
lower concentrations of Ntot and Ptot, and lower average O2 concentrations
in the activated sludge tank. Concurrently, the use of energy and chemicals
can be reduced.
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3.2 Optimisation goals for model based control
The goals of the optimisation of the activated sludge process are:

- better process;

- more stable process;

- cheaper process.

In order to reach these goals, model based control is introduced at WWTP
Westpoort. The application of the control algorithm is restricted to dry-
weather flow. Flow induced by rainfall simply requires maximal aeration
during the event, hence no smart control algorithm is required. About 90%
of the time the plant receives dry weather flow.

First,the removal of nitrogen is optimised. With an O2 set point closer
to the optimal value, the nitrogen is removed more efficiently. This leads
to lower concentrations in the effluent. With an optimised activated sludge
process, the WWTP is able to comply with more strict discharge limits in
the future without expensive plant modifications.

Due to daily variation of the flow, NH4 levels in the activated sludge tank
vary. Large oscillations in the concentration diminish removal efficiency.
Hence, the second goal is to flatten the peaks in the NH4 concentration.
This can be done by proactive control of the aeration. A model that can
predict the increase will start aeration earlier, thus flattening NH4 peaks.
This leads to less varying O2 set points and less maintenance of the O2
supply system.

The third goal is a side-effect of the previous two. Due to a more efficient
process, less air is needed to remove the same amount of NH4. Less aeration
means less energy consumption, hence lower cost. Due to a more stable
process the aeration beds need to be turned on and off less frequently, which
increases the lifetime and decreases the maintenance costs of the aeration
beds.

3.3 Data analysis
In order to construct the control model, measurement data from one of the
tanks of WWTP Westpoort is analysed. The available data comprise: acti-
vated sludge temperature, meteorological data, blower set points, logbooks
and process data, including NH4, PO4, air flow, NO3, O2, influent flow and
effluent flow.

The temperature of the activated sludge is determined by the air tem-
perature (long term) and the occurrence of rainfall events (short term).
During dry weather flow (dwf), the temperature is inversely proportional to
the influent flow. However, this variation is smaller than due to rainfall.

The influent flow is divided in a flow through the primary settling tank
and a bypass flow. For flows larger than 5,000 m3/h both parts are highly
correlated. The maximum dwf equals 4,500 m3/h. During dwf, the influent
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shows a daily pattern with a global minimum around 5 AM of 1,000 m3/h,
a rapidly increase to a global maximum of 4,000 m3/h at 12 AM and a local
maximum at 8 PM.

Two different control protocols for O2 set points are applied. The first
protocol is based on gradual changes, the second abrupt changes between
static minimum and maximum values of set points. The gradual protocol
results in less turbulent behaviour and more efficient performance in terms
of energy. O2 concentrations show a strong positive correlation (0.94) with
the set points indicating that the aeration protocol can follow the set points
very well.

NH4 concentrations are strongly related to the influent flow. At night,
nearly all NH4 is converted into NO3 (low influent flow). By day, however,
NH4 levels remain higher after nitrification. The NH4 concentration also
has a high positive correlation with rainfall.

NO3 concentrations at the end of the denitrification zone remain low
indicating that the denitrification process functions properly. NO3 concen-
trations at the end of the nitrification zone show a daily pattern similar to
the NH4 concentrations. NO3 concentrations at both locations show a lower
limit which is caused by the recirculation control.

Ntot concentrations (sum of NH4 and NO3) show a daily pattern with
large peaks during rainfall events resulting from an increase of NH4. These
concentrations correspond with the daily pattern of the influent flow. The
time lag between influent and Ntot equals approximately 3 hours. This is
caused by the mixing of influent in the activated sludge tank.

Unfortunately, the theoretical relationship between Ntot and O2 cannot
be derived from the measured dataset. First, the dataset does not include
all possible situations. Periods with low inflow, e.g. at night, predominantly
involve low O2 set points, whereas high O2 set points mainly occur during
periods with high inflow. Second, the dataset is dominated by situations
where the control algorithm operates at the minimum or maximum O2 set
point. Third, the measurements suffer from missing values and signal noise.
This significantly reduces the information content of the dataset. As a
result, the dataset has limitations for model based optimisation.

In order to overcome the limitations of the measurements, a synthetic
dataset is created using a calibrated model of the treatment plant. For
this purpose, the most important impacts (active sludge temperature (T)
and influent flow(Q)) and the control parameter (O2 set point) are varied.
Variations are based on gradients and ranges which are observed in reality.
Consequently, the model results include a proportional combination of all
possible situations (except for rainfall events). In addition, the synthetic
dataset does not suffer from missing values and signal noise.

3.4 Design of control model
A control model is developed which is based on the (theoretic) relation
between O2 and nitrogen. The model has to describe the process accurate
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enough. Otherwise, it cannot be used in a control loop. With a model that
fits the current state and accurately predicts the next state of the system
the optimal O2 set point can be determined. The model should reflect
the dynamic behaviour and find the optimal O2 set point under varying
conditions.

The state of art IAWQ model for activated sludge processes [2, 3], how-
ever, is too complex to be used in real-time control and requires input from
laboratory experiments. Therefore, a statistical process model is used that
allows for implementation on a PLC (programmable logic controller).

Linear regression models are unsuitable for model based control of the
aeration in the activated sludge tank because they cannot describe the com-
plete range of influent flows and active sludge temperatures. Consequently,
the possibilities of anticipating changes in these parameters are limited. In
addition, the underlying process is non linear and cannot be fully described
by a linear model.

Non linear regression models are more appropriate for model based con-
trol because they involve more physical relationships. Models predicting
NH4 concentrations give better results than Ntot and NO3. The curve for
NH4 is approximated with a hyperboloid which is based on the following
parameters: O2, temperature and flow.

The basis of the model is the inversely proportional relation between
NH4 and O2, as shown in Figure 2,

f(O2, β) = NH4 = 1
O2

.

In addition, two important impacts are included in the model: influent
flow and active sludge temperature. Consequently, the regression function
becomes,

f(O2, β) = NH4 = β1

(
β2(Q/1000)− T + β3

(O2 − β4)

)
+ β5,

where NH4 is the ammonium concentration (mg/l), β = (β1, . . . , β5)T is
the vector with unknown parameters, Q is the influent flow (m3/h), T is the
activated sludge temperature and O2 is the oxygen concentration (mg/l).

Since the regression function is non linear, there exists no explicit solu-
tion and an iterative method is needed. In order to estimate the parameter
vector β the Gauss-Newton algorithm is used starting with an initial esti-
mation of β. This estimation is improved using a linear approximation of
the regression function f(O2, β).

In contrast with the physical relationship between NH4 and O2, the
regression function has a vertical asymptote for O2 → β4. The solution to
this problem is omitting observations where the O2 set point is smaller than
X1. This does not result in loss of information because values smaller than
X1 are outside the actual control range of the algorithm. A unique solution
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can be found when X1 = 1.1 mg/l, irrespective of the initial estimation
of β. The results of the parameter estimation for different O2 ranges are
presented in Table 2.

Model O2 range (mg/l) β1 β2 β3 β4 β5 MSE
1 [1.1,4] 0.71 0.09 21.93 -0.44 -0.56 0.48
2 [1.1,5] 0.64 0.11 21.02 -0.56 -0.18 0.38
3 [1.1,6] 0.61 0.13 20.46 -0.62 0.01 0.31
4 [1.1,∞) 0.58 0.15 19.74 -0.68 0.22 0.23

Table 2. O2 ranges and parameter values of non linear models for NH4

The determination of the O2 set point is a trade-off between maximisa-
tion of treatment performance and minimisation of energy use. The former
can be translated into minimisation of the NH4 concentration in the effluent
which requires more aeration, the latter into minimisation of the aeration.

The ideal O2 set point is located in the bend of the NH4 curve (Figure 3).
The trade-off between the two goals can be described with the angle of the
tangent of the curve (α). The goal is to find the point p where the tangent
equals α. The corresponding O2 set point is X and the predicted NH4
concentration Y .

A larger value for α produces a steeper tangent. The corresponding O2
set point (X) is smaller and the resulting NH4 concentration (Y ) is larger.
A smaller value for α has the opposite effect. This means that larger values
for α give priority to minimisation of energy and smaller values for α to
minimisation of NH4.

Figure 3. Choice of set point for O2 based on tangent of NH4 curve
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4 RESULTS AND DISCUSSION

4.1 Model based control in SIMBA
The model based control algorithm has been tested using a SIMBA model
of WWTP Westpoort. SIMBA is a Matlab-Simulink implementation of the
IAWQ model and can be used for dynamic modelling of wastewater treat-
ment plants. Table 3 shows the results of the simulations with the different
models for NH4 in comparison with the original control strategy based on
the decision matrix. The results confirm that larger values for α save on aer-
ation (up to 10%) and have considerably lower O2 set points. The benefit,
however, becomes smaller with increasing values of a. In terms of treatment
performance α = 45o gives the best results for Ntot. Compared with the
decision matrix, performance is increased with 10%. Overall, model 4 gives
the best results in terms of aeration and treatment performance. Addition-
ally, treatment performance improves when activated sludge temperatures
are higher.

angle setpoint Q air Q air Ntot Ntot
(o) (mg/l) (m3/h) (%) (mg/l) (%)

Decision matrix - 3.35 154,942 100.0 5.98 100.0
Model 1 60 2.10 137,257 88.6 5.56 93.0
Model 2 60 2.05 137,310 88.6 5.61 93.9
Model 3 60 2.02 139,935 90.3 5.65 94.5
Model 4 60 1.99 136,644 88.2 5.69 95.3
Model 1 45 2.63 143,786 92.8 5.42 90.8
Model 2 45 2.53 142,100 91.7 5.39 90.1
Model 3 45 2.47 141,930 91.6 5.37 89.9
Model 4 45 2.40 140,584 90.7 5.36 89.6
Model 1 30 3.32 151,801 98.0 5.76 96.4
Model 2 30 3.15 149,436 96.4 5.67 94.8
Model 3 30 3.05 149,105 96.2 5.61 93.9
Model 4 30 2.94 148,874 96.1 5.54 92.7

Table 3. Simulation results of non linear regression models for NH4

4.2 Model based control in reality
Currently, the optimisation algorithm is implemented at WWTP West-
poort. As the reality at the plant differs from the SIMBA model, the
parameters of the model need to be adapted. The tuning of the param-
eters is done with a set of rules of a thumb. However, in practice it appears
to take some effort and time. Fortunately, the algorithm is robust and not
sensitive for sub-optimal parameters. Even then the model based control
performs well.

The model uses measurements of temperature and flow for the com-
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putation of the O2 set point. Both measurements are known to be very
robust. For both temperature and flow a time-moving average over half an
hour is used as model input. This is done for two reasons: response time
of the process (about half an hour) and filtering of high-frequent noise in
the measurement signal. If one of the measurements fails for more than five
minutes, the original decision matrix is used instead of the MBC algorithm.

Even though it is too early to draw final conclusions about the perfor-
mance of the model based control in practice, some preliminary results can
be shown. The MBC compared to the decision matrix gives

- considerably lower O2 set points (up to a factor of 2);

- more quiet behavior of the O2 set point;

- higher NH4 and lower NO3 concentrations.

A side-effect of the model based control appears to be a decrease in the
performance for PO4. However, the algorithm was not designed to control
PO4. The decreased performance might be caused by the fact that the
implementation and the tuning of the parameters took place during summer.
At high temperatures, the lower limit for O2 is determined by the removal
of PO4 instead of Ntot. A temporarily decreased angle (30o instead of 45o),
which leads to a higher level of O2, is sufficient to maintain the benefits of the
MBC and keep the levels of PO4 within the acceptable range. The results in
Table 3 show that with a lower angle the gain in energy and Ntot decreases.
However, the MBC performs better than the decision matrix. Because high
levels of PO4 occur mainly during high temperatures in summer, it is likely
that decreasing temperatures in autumn will allow the angle to be set back
to 45o.

4.3 Further development
A first improvement of the algorithm would be an extension with models
for NO3 and PO4. Consequently, the choice of the set point for O2 can
be made in a more sophisticated way than in the current model. At least
discharge limits for PO4 can be taken in account.

Second, uncertainty can be introduced in the model. The measurements
of flow, temperature, ammonium and nitrate have limited accuracy and
sometimes show irregular behaviour. A model that accounts for the inherent
uncertainty of measurements could distinguish between noise and signal and
react properly to sudden changes.

A third improvement would be an auto-adaptive model that changes the
parameters of the model based on observations for NH4, NO3 and PO4. The
advantage of an auto-adaptive model is the absence of the time-consuming
tuning period. Moreover, an adaptive model can deal more easily with
structural changes in influent quality or plant infrastructure.
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5 CONCLUSIONS

The objective of this paper is to describe the development and implementa-
tion of an optimisation algorithm for the nitrification-denitrification process
of an activated sludge tank at WWTP Westpoort. Since the state of art
IAWQ model for activated sludge processes is too complex and requires very
detailed input, a statistical model is used that allows for easy implementa-
tion on site.

The activated sludge process is optimised using a non linear regression
model for the NH4 concentration. This relatively simple model predicts NH4
based on O2, T and Q. These parameters represent very robust measure-
ments. The model can approximate the theoretical paraboloid curve which
describes the relationship between NH4 and O2 accurate enough. The model
has several advantages. It is simple, robust and not sensitive to parameter
settings.

Simulation results show that Ntot concentrations in the effluent can be
decreased at lower O2 set points. These findings are supported by the pre-
liminary results at the plant where the model based control is implemented.
Lower set points lead to considerable energy savings. The reduction in both
Ntot and energy consumption partly depends on the choice of the tangent of
the NH4 curve. With this angle the operator can emphasise either cost re-
duction or optimal removal of NH4. Overall, the simulations show that the
model based control reduces Ntot in the effluent with approximately 10%
during dry weather conditions and reduces energy consumption for aeration
with 5-10% depending on the angle in the optimisation algorithm.
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Abstract. This paper discusses the maintenance optimization of a
railway track, based on the observation of two dependent randomly
increasing deterioration indicators. These two indicators are mod-
elled through a bivariate Gamma process constructed by trivariate
reduction. Empirical and maximum likelihood estimators are given
for the process parameters and tested on simulated data. The EM
algorithm is used to compute the maximum likelihood estimators. A
bivariate Gamma process is then fitted to real data of railway track
deterioration. Preventive maintenance scheduling is studied, ensuring
that the railway track keeps a good quality with a high probability.
The results are compared to those based on both indicators taken
separately, and also on one single indicator (usually taken for current
track maintenance). The results based on the joined information are
proved to be safer than the other ones, which shows the interest of
the bivariate model.

1 INTRODUCTION

This paper is concerned with the maintenance optimization of a railway
track, based on the observation of two dependent randomly increasing de-
terioration indicators. The railway track is considered as deteriorated when
any of these two indicators is beyond a given threshold. The point of the
paper is the study of preventive maintenance scheduling, which must ensure
that, given some observations provided by inspection, the railway track will
remain serviceable until the next maintenance action with a high probabil-
ity.

Track maintenance is a very expensive task to accomplish. Consequently,
it is essential to carry out maintenance actions in an optimal way, while tak-
ing into account many parameters: safety and comfort levels to be guaran-
teed, available logistic means, . . . The earlier the deterioration is detected,
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Longitudinal levelling (NL) Transversal levelling (NT)

Figure 1. Levelling defects

the easier it is to schedule maintenance actions. The objective is therefore
to develop a good prediction model.

Deterioration of track geometry is characterized by the development of
different representative parameters like, for example, the levelling of the
track. Figure 1 shows the defects that are measured by two of these param-
eters: the longitudinal (NL) and transversal (NT) levelling indicators.

At the SNCF (French National Railways), track inspections are pro-
grammed annually on a national level. The interval between two inspec-
tions on high speed tracks is currently about two weeks, the inspections are
carried out by a modified high-speed train. The collected time series are
transformed into indicators that sum up the state of the track over each km.
These new indicators are referred to as synthesized Mauzin data. Numeric
Mauzin data are available since the opening of the French high-speed lines.

Usually, the synthesized Mauzin indicator of the longitudinal levelling
(NL indicator) is used for maintenance issues: thresholds are fixed for this
indicator in order to obtain a classification of the track condition and to fix
dates for maintenance operations. For example, an intervention should be
scheduled before the NL indicator exceeds 0.9.

Based on expert judgements, a Gamma process has been used in [1]
both to model the evolution of the NL indicator and to plan maintenance
actions. As noted by J.M. van Noortwĳk in his recent survey [2], this kind of
process is widely used in reliability studies (see also [3], [4] and [5]). Various
domains of applications exist, such as civil engineering ([6], [7]), highway
engineering [8] or railway engineering [9]. Gamma processes are also used
in other domains, such as finance [10] or risk analysis [11]. All these papers
use univariate Gamma processes.

In the present case, as the two indicators NL and NT are dependent, the
use of a bivariate model is required. For this purpose, different processes
might be used, such as Bessel [12] or Lévy processes [13]. In this paper,
the approach of F.A. Buĳs, J.W. Hall, J.M. van Noortwĳk and P.B. Say-
ers in [6] is used: a specific Lévy process called bivariate Gamma process
is considered. This process is constructed from three independent univari-
ate Gamma processes by trivariate reduction, and has univariate Gamma
processes as marginal processes.

It is the first time that both NL and NT indicators are used conjointly to
predict the optimal dates of maintenance actions. The objective is to analyse
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the correlation between the two processes and to determine in what circum-
stances this bivariate process allows a better prediction of the maintenance
times than the current univariate one, based only on the NL indicator.

The paper is organized in the following way: bivariate Gamma processes
are introduced in Section 2. Empirical and maximum likelihood estimators
for their parameters are provided in Section 3. An EM algorithm is pro-
posed to carry out the maximum likelihood estimation. Both methods are
tested on simulated data. Section 4 is devoted to the study of preventive
maintenance planning and to the comparison of the results based on the
bivariate and on the univariate models. Finally, a bivariate Gamma process
is fitted to real data of railway track deterioration in Section 5 and it is
shown that the preventive maintenance scheduling based on the two avail-
able deterioration indicators are clearly safer than those based on a single
one, or on both taken separately.

2 THE BIVARIATE GAMMA PROCESS

Recall that an univariate (homogeneous) Gamma process (Yt)t≥0 with pa-
rameters (α, b) ∈ R

∗2
+ is a process with independent increments such that

Yt is Gamma distributed Γ (αt, b) with probability density function (p.d.f.)

fαt,b (x) = bαt

Γ (αt)x
αt−1e−bx1R+ (x) ,

E (Yt) = αt
b , Var(Yt) = αt

b2 for all t > 0, and Y0 ≡ 0 (see [2] for more details).
Following [6], a bivariate Gamma process

(
Xt
)
t≥0 =

(
X

(1)
t , X

(2)
t

)
t≥0 is

constructed by trivariate reduction: starting from three independent uni-
variate Gamma processes

(
Y

(i)
t

)
t≥0 with parameters (αi, 1) for i ∈ {1, 2, 3}

and from b1 > 0, b2 > 0, one defines:

X
(1)
t =

(
Y

(1)
t + Y

(3)
t

)
/b1, and X

(2)
t =

(
Y

(2)
t + Y

(3)
t

)
/b2 for all t ≥ 0.

The process (Xt)t≥0 =
(
X

(1)
t , X

(2)
t

)
t≥0 is then a homogeneous process in

time with independent increments and it is a Lévy process. The marginal
processes of (Xt)t≥0 are univariate Gamma processes with respective pa-
rameters (ai, bi), where ai = αi + α3 for i = 1, 2.

For any bivariate Lévy process, the correlation coefficient ρXt of X
(1)
t

and X
(2)
t is known to be independent of t. For a bivariate Gamma process,

one obtains:
ρ = ρXt = α3√

a1a2

and
α1 = a1 − ρ

√
a1a2, α2 = a2 − ρ

√
a1a2, α3 = ρ

√
a1a2.

This entails
0 ≤ ρ ≤ ρmax = min (a1, a2)√

a1a2
. (1)
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See [14] section XI.3 for results on bivariate Gamma distributions.
This leads to two equivalent parameterizations of a bivariate Gamma

process: (α1, α2, α3, b1, b2) and (a1, a2, b1, b2, ρ).
With the parameterization (α1, α2, α3, b1, b2), the joint p.d.f. of Xt is:

gt (x1, x2)

= b1b2

∫ min(b1x1,b2x2)

0
fα1t,1 (b1x1 − x3) fα2t,1 (b2x2 − x3) fα3t,1 (x3) dx3,

= b1b2e
−b1x1−b2x2

Γ (α1t) Γ (α2t) Γ (α3t)
× · · ·

×
∫ min(b1x1,b2x2)

0
(b1x1 − x3)α1t−1 (b2x2 − x3)α2t−1

xα3t−1
3 e−x3 dx3. (2)

3 PARAMETER ESTIMATION

The data used for the parameter estimation are values of the process in-
crements for non overlapping time intervals on a single trajectory, and also
on different independent trajectories. The data can then be represented as(
Δtj ,ΔX

(1)
j (ω) ,ΔX

(2)
j (ω)

)
1≤j≤n where Δtj = tj−sj stands for a time in-

crement and ΔX
(i)
j = X

(i)
tj −X(i)

sj for the associated i-th marginal increment
(i = 1, 2). For different j, the random vectors

(
ΔX

(1)
j ,ΔX

(2)
j

)
are indepen-

dent, but not identically distributed. The random variable ΔX
(i)
j (i = 1, 2)

is Gamma distributed with parameters (ai Δtj , bi). The joint p.d.f. of the
random vector

(
ΔX

(1)
j ,ΔX

(2)
j

)
is equal to gΔtj (., .), with Δtj substituted

for t in (2). In the same way as for parameter estimation of a (univari-
ate) Gamma process, both empirical and maximum likelihood methods are
possible in the bivariate case.

3.1 Empirical estimators

Using E
(
ΔX

(i)
j

)
= ai
bi

Δtj and Var
(
ΔX

(i)
j

)
= ai
b2
i

Δtj for i = 1, 2 and for all
j, empirical estimators (â1, b̂1, â2, b̂2) of (a1, b1, a2, b2) are given in [7] and
[15], with:

âi

b̂i
=
∑n
j=1 ΔX

(i)
j

tn
and âi

b̂2
i

=
∑n
j=1

(
ΔX

(i)
j − âib̂iΔtj

)2

tn − 1
tn

∑n
j=1 (Δtj)2 , (3)

where we set tn =
∑n
j=1 Δtj . Using

Cov
(
ΔX

(1)
j ,ΔX

(2)
j

)
= ρ

√
a1a2

b1b2
Δtj ,
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a similar estimator ρ̂ may be given for ρ, with:

ρ̂

√
â1â2

b̂1b̂2
=
∑n
j=1

(
ΔX

(1)
j − â1

b̂1
Δtj

)(
ΔX

(2)
j − â2

b̂2
Δtj

)
tn − 1

tn

∑n
j=1 (Δtj)2

.
(4)

These estimators satisfy:

E

(
âi

b̂i

)
= ai

bi
, E

(
âi

b̂2
i

)
= ai

b2
i

, E

(
ρ̂

√
â1â2

b̂1b̂2

)
= ρ

√
a1a2

b1b2
.

If the time increments Δtj are equal, these estimators cöıncides with the
usual empirical estimators in the case of i.i.d. random variables.

3.2 Maximum likelihood estimators
The parameter estimation of an univariate Gamma process is usually done
by maximizing the likelihood function (see e.g. [1]). With this method,
estimators āi and b̄i (i = 1, 2) of the marginal parameters are computed by
solving the equations:

āi

b̄i
=
∑n
j=1 ΔX

(i)
j∑n

j=1 Δtj
and

( n∑
j=1

Δtj

)
× ln

(
āi

∑n
j=1 Δtj∑n
j=1 ΔX

(i)
j

)
+
n∑
j=1

Δtj

[
ln
(

ΔX
(i)
j

)
− ψ (āi Δtj)

]
= 0,

where
ψ (x) = Γ′ (x)

Γ (x) , Γ (x) =
∫ ∞

0
e−uux−1du

for all x > 0 (ψ is the Digamma function).
In order to estimate all the parameters of the bivariate process

(α1, α2, α3, b1, b2) (which are here prefered to (a1, b1, a2, b2, ρ)), the likeli-
hood function associated with the data

(
Δtj ,ΔX

(1)
j ,ΔX

(2)
j

)
1≤j≤n can be

written as L(α1, α2, α3, b1, b2) =
∏n
j=1 gΔtj (ΔX

(1)
j ,ΔX

(2)
j ). However, be-

cause of the expression of the function gt(., .), it seems complicated to op-
timize this likelihood function directly. An EM algorithm (see [16]) is then
used, considering

(
ΔY

(3)
j = Y

(3)
tj − Y

(3)
sj

)
1≤j≤n as hidden data. This proce-

dure is still too complicated to estimate all the five parameters and does not
work numerically. So, the procedure is restricted to the three parameters
(α1, α2, α3). For the parameters b1, b2, the values

(
b̄1, b̄2

)
computed using

the maximum likelihood method for each univariate marginal process are
taken.

In order to simplify the expressions, the values of the data
(
Δtj , ΔX

(1)
j ,

ΔX
(2)
j , ΔY

(3)
j

)
1≤j≤n are denoted by

(
tj , x

(1)
j , x

(2)
j , y

(3)
j

)
1≤j≤n, the associ-

ated n-dimensional random vectors by
(
X

(1)
, X

(2)
, Y

(3)) and the associated
n-dimensional data vectors by

(
x(1), x(2), y(3)).
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The joint p.d.f. of the random vector
(
X

(1)
t , X

(2)
t , Y

(3)
t

)
is equal to:

b1b2fα1t,1 (b1x1 − y3) fα2t,1 (b2x2 − y3) fα3t,1 (y3) =
b1b2e

−(b1x1+b2x2)

Γ (α1t) Γ (α2t) Γ (α3t)
(b1x1 − y3)α1t−1 (b2x2 − y3)α2t−1

yα3t−1
3 ey3 ,

with 0 ≤ y3 ≤ min (b1x1, b2x2), x1 > 0 and x2 > 0. Then, the log-likelihood
function Q

(
x̄(1), x̄(2), ȳ(3)) associated with the complete data

(
x(1), x(2), y(3))

is derived:

Q
(
x̄(1), x̄(2), ȳ(3)) = n (ln (b1) + ln (b2))− · · ·

n∑
j=1

(ln Γ (α1tj) + ln Γ (α2tj) + ln Γ (α3tj))− b1

n∑
j=1

x
(1)
j − · · ·

b2

n∑
j=1

x
(2)
j +

n∑
j=1

{
(α1tj − 1) ln

(
b1x

(1)
j − y

(3)
j

)
+ · · ·

(α2tj − 1) ln
(
b2x

(2)
j − y

(3)
j

)
+ (α3tj − 1) ln

(
y

(3)
j

)
+ y

(3)
j

}
.

For the EM algorithm, the conditional log-likelihood of the complete data
given the observed data is needed:

E
(
Q
(
X̄(1), X̄(2), Ȳ (3))|X̄(1) = x̄(1), X̄(2) = x̄(2))

= n (ln (b1) + ln (b2))− b1

n∑
j=1

x
(1)
j − b2

n∑
j=1

x
(2)
j + · · ·

n∑
j=1

{
((α1tj − 1) E

(
ln
(
b1x

(1)
j −ΔY

(3)
j

)|ΔX
(1)
j = x

(1)
j ,ΔX

(2)
j = x

(2)
j

)
+ (α2tj − 1) E

(
ln
(
b2x

(2)
j −ΔY

(3)
j

)|ΔX
(1)
j = x

(1)
j ,ΔX

(2)
j = x

(2)
j

)
+ (α3tj − 1) E

(
ln
(
ΔY

(3)
j

)|ΔX
(1)
j = x

(1)
j ,ΔX

(2)
j = x

(2)
j

)
+E

(
Y

(3)
j |ΔX

(1)
j = x

(1)
j ,ΔX

(2)
j = x

(2)
j

)}
−
n∑
j=1

(ln Γ (α1tj) + ln Γ (α2tj) + ln Γ (α3tj)) . (5)

Finally, the conditional density function of Y (3)
t given X

(1)
t = x1, X

(2)
t = x2

is equal to:

fα1t,1 (b1x1 − y3) fα2t,1 (b2x2 − y3) fα3t,1 (y3)∫min(b1x1,b2x2)
0 fα1t,1 (b1x1 − x3) fα2t,1 (b2x2 − x3) fα3t,1 (x3) dx3

= (b1x1 − y3)α1t−1 (b2x2 − y3)α2t−1
yα3t−1

3 ey3∫min(b1x1,b2x2)
0 (b1x1 − x3)α1t−1 (b2x2 − x3)α2t−1

xα3t−1
3 ex3 dx3

,
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where 0 ≤ y3 ≤ min (b1x1, b2x2), x1 > 0 and x2 > 0.
Step k of the EM algorithm consists of computing new parameter val-

ues (α(k+1)
1 , α

(k+1)
2 , α

(k+1)
3 ) given the current values (α(k)

1 , α
(k)
2 , α

(k)
3 ) in two

stages:

• stage 1: compute the conditional expectations in (5) using the current
set (α(k)

1 , α
(k)
2 , α

(k)
3 ) of parameters, with:

f1

(
j, α
k)
1 , α

(k)
2 , α

(k)
3

)
= E

(
ln
(
b̄1x̄

(1)
j − Ȳ

(3)
j

)
|X̄(1) = x̄

(1)
j , X̄(2) = x̄

(2)
j

)
,

f2

(
j, α
k)
1 , α

(k)
2 , α

(k)
3

)
= E

(
ln
(
b̄2x̄

(2)
j − Ȳ

(3)
j

)
|X̄(1) = x̄

(1)
j , X̄(2) = x̄

(2)
j

)
,

f3

(
j, α
k)
1 , α

(k)
2 , α

(k)
3

)
= E

(
ln
(
Ȳ

(3)
j

)
|X̄(1) = x̄

(1)
j , X̄(2) = x̄

(2)
j

)
,

h
(
α
k)
1 , α

(k)
2 , α

(k)
3

)
=
n∑
j=1

E

(
Ȳ

(3)
j |X̄(1) = x̄

(1)
j , X̄(2) = x̄

(2)
j

)
.

• stage 2: take for (α(k+1)
1 , α

(k+1)
2 , α

(k+1)
3 ) the values of (α1, α2, α3) that

maximize (5), which here becomes:

g
(
α1, α2, α3, α

(k)
1 , α

(k)
2 , α

(k)
3
)

= n
(
ln
(
b̄1
)

+ ln
(
b̄2
))− b̄1

n∑
j=1

x
(1)
j − b̄2

n∑
j=1

x
(2)
j

+
n∑
j=1

{
(α1tj − 1) f1

(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)

+ (α2tj − 1) f2
(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)

+ (α3tj − 1) f3
(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)}

−
n∑
j=1

(ln Γ (α1tj) + ln Γ (α2tj) + ln Γ (α3tj)) + h
(
α

(k)
1 , α

(k)
2 , α

(k)
3
)
.

The maximization in stage 2 is done by solving the following equation
with respect to αi:

∂g
(
α1, α2, α3, α

(k)
1 , α

(k)
2 , α

(k)
3
)

∂αi
=

n∑
j=1

tjfi
(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)− n∑

j=1
tjψ (αitj) = 0 (6)

for i = 1, 2, 3.
In the same way, it is possible to take the values

(
ā1, ā2, b̄1, b̄2

)
obtained

by maximum likelihood estimation on the univariate marginal processes
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for (a1, a2, b1, b2) and to estimate only the last parameter α3 by the EM
algorithm. In that case, α(k+1)

3 is the solution of the equation:

n∑
j=1

tj

{
f3
(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)− f1

(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)− · · ·

f2
(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)}− n∑

j=1
tj

{
ψ (α3tj)− ψ ((ā1 − α3)tj)− · · ·

ψ ((ā2 − α3)tj)
}

= 0.

3.3 Tests on simulated data
500 time increments (tj)1≤j≤500 are randomly chosen similar to the data
of track deterioration (the proposed methods will be used on these data in
Section 5). Then, 500 values of a bivariate Gamma process are simulated
corresponding to these time increments and with parameters a1 = 0.33, a2 =
0.035, b1 = 13.5, b2 = 20 and ρ = 0.5296. These parameter values have the
same order of magnitude than those observed for track deterioration studied
in Section 5. Three series of 500 data points are simulated independently.
Results of parameters estimation are given in Tables 1, 2 and 3, each corre-
sponding to a series of data. In these tables, one can find: the true values
in column 2, the empirical estimators in column 3, the univariate maxi-
mum likelihood estimators of a1, b1, a2, b2 in column 4, the EM estimator
of the three parameters a1, a2, ρ in column 5, using the parameters b̄1, b̄2
previously estimated by the univariate maximum likelihood method (from
column 4), and the second EM estimator of the parameter ρ in column 6,
using the estimated parameters ā1, b̄1, ā2, b̄2 from column 4.

The initial values for the EM algorithm are different for the three tables.
For Table 1, the EM algorithm has been initiated with α

(0)
1 = α

(0)
2 = 0.05

and α
(0)
3 = 0.15 ( a

(0)
1 = a

(0)
2 = 0.1 and ρ(0) = 0.75). For Tables 2 and 3,

α
(0)
1 = α

(0)
2 = α

(0)
3 = 0.01, and α

(0)
1 = 0.02, α(0)

2 = 0.01, α(0)
3 = 0.05 were

respectively taken.
Looking at the development of a(k)

i and ρ(k) along the different steps of
the EM algorithm, one may note that the parameters a

(k)
i stabilize more

quickly than the parameter ρ(k) (about 5 iterations for a
(k)
i and between 20

and 30 iterations for ρ(k)).

The conclusion of this section is that estimation of parameters (ai, bi) by
empirical and maximum likelihood methods give satisfactory results, with a
slight preference to maximum likelihood. Empirical estimators of ρ have a
good order of magnitude, but are sometimes not precise enough. Estimators
of ρ obtained by EM are always reasonable. The estimation of the three
parameters (α1, α2, α3) (column EM1) seems to give slightly better results
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True Empirical Univariate EM algorithm
values estimators max likelihood EM1 EM2

a1 0.0330 0.0348 0.0342 0.0347 −
b1 13.5 14.38 14.14 − −
a2 0.0350 0.0362 0.0357 0.0354 −
b2 20 20.58 20.25 − −
ρ 0.5296 0.5637 − 0.5231 0.5214

Table 1. Results for the first series of data.

True Empirical Univariate EM algorithm
values estimators max likelihood EM1 EM2

a1 0.0330 0.0315 0.0326 0.0328 −
b1 13.5 12.80 13.16 − −
a2 0.0350 0.0357 0.0361 0.0365 −
b2 20 20.25 20.54 − −
ρ 0.5296 0.5750 − 0.5272 0.5257

Table 2. Results for the second series of data.

than those of the estimation of the parameter α3 alone (column EM2). The
results obtained by the EM algorithm for parameters ai (column EM1) are
good, with a quality quite similar to those obtained by univariate maximum
likelihood estimation. Finally, the EM algorithm does not seem sensitive to
initial values, at least if the initial value of α3 is not too small.

4 PREVENTIVE MAINTENANCE PLANNING

A bivariate Gamma process Xt =
(
X

(1)
t , X

(2)
t

)
is now used to model the de-

velopment of two deterioration indicators of a system. We assume that there
exist (corrective) thresholds si (i = 1, 2) for each indicator, above which the
system is considered to be deteriorated. The system is not continuously
monitored but only inspected at time intervals, with a perfect observation
of the deterioration level. When one (or both) indicator(s) is observed to be
beyond its corrective threshold, an instantaneous maintenance action is un-
dertaken, which brings the system back to a better state, not necessarily as
good as new. When both indicators are observed to be below their correc-
tive thresholds or after a maintenance action, a new inspection is planned.
The time to next inspection (τ) must ensure with a high probability that
neither X

(1)
t nor X

(2)
t go beyond their corrective thresholds si before the

next inspection.
Let (x1, x2) ∈ [0, s1[×[0, s2[ be the observed deterioration level at some

inspection time, say at time t = 0 with no restriction. (If x1 ≥ s1 or x2 ≥ s2,
a maintenance action is immediately undertaken).

For i = 1, 2, let T (i) be the hitting time of the threshold si for the
marginal process

(
X

(i)
t

)
t≥0, with T (i) = inf

(
t > 0 : X(i)

t ≥ si
)
. Also, let

ε ∈]0, 1[ be some confidence level.
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True Empirical Univariate EM algorithm
values estimators max likelihood EM1 EM2

a1 0.0330 0.0297 0.0340 0.0343 −
b1 13.5 11.71 13.43 − −
a2 0.0350 0.0340 0.0385 0.0389 −
b2 20 18.79 21.28 − −
ρ 0.5296 0.5645 − 0.5060 0.5027

Table 3. Results for the third series of data.

a2 b2 x1 x2 ρmax τ(1) τ(2) τU τB (ρmax)
case 1 0.03 30 0.2 0.2 1 341.12 558.31 341.12 341.12
case 2 0.04 20 0.4 0.2 0.866 237.33 255.84 237.33 229.91

Table 4. Two different combinations of values for a2, b2, x1 and x2, and the
resulting ρmax, τ (1), τ (2), τU and τB (ρmax).

Different points of view are possible: in the first case, τ (i), i = 1, 2 is the
time to next inspection associated to the marginal process

(
X

(i)
t

)
t≥0, with

τ (i) = max
(
τ ≥ 0 such that Pxi

(
T (i) > τ

) ≥ 1− ε
)
,

where Pxi stands for the conditional probability given X
(i)
0 = xi. One then

gets: Pxi

(
T (i) > τ (i)) = 1− ε.

Without a bivariate model, a natural time to next inspection for the
system is:

τU = max
(
τ ≥ 0 s.t. Px1

(
T (1) > τ

) ≥ 1− ε and Px2

(
T (2) > τ

) ≥ 1− ε
)
,

= min
(
τ (1), τ (2)).

Using a bivariate Gamma process, the time to next inspection becomes:

τB = max
(
τ ≥ 0 such that P(x1,x2)

(
T (1) > τ, T (2) > τ

) ≥ 1− ε
)
.

The goal is to compare τU and τB , and more generally, to understand the
influence of the dependence between both components on τB . Using

Pxi

(
T (i) > t

)
= Pxi

(
X

(i)
t < si

)
= P0

(
X

(i)
t < si − xi

)
= Fait,bi (si − xi) ,

where Fait,bi (x) is the cumulative distribution function of the distribution
Γ (ait, bi), the real τ (i) is computed by solving the equation Faiτ(i),bi (si − xi) =
1− ε, for i = 1, 2, and τU = min

(
τ (1), τ (2)) is derived. Similarly,

P(x1,x2)
(
T (1) > t, T (2) > t

)
= P(0,0)

(
X

(1)
t < s1 − x1, X

(2)
t < s2 − x2

)
,

=
∫ s1−x1

0

∫ s2−x2

0
gt (y1, y2) dy1 dy2,

≡ Gt (s1 − x1, s2 − x2) ,
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Figure 2. τB with respect to ρ and τU , for the four cases of Table 4

where gt is the p.d.f. of Xt (see (2)). This provides τB by solving
GτB (s1 −x1, s2 − x2) = 1− ε.

With a1 = 0.03, b1 = 20, ε = 0.5 and s1 = s2 = 1, and different values
for a2, b2, x1 and x2, Table 4 gives the corresponding values for ρmax (as
provided by (1)) and the resulting τ (1), τ (2), τU and τB (ρmax). The value
of τB is plotted with respect to ρ in the Figures 2 for the two different cases
of Table 4, and the corresponding value of τU is indicated.

In both figures, one can observe that with all other parameters fixed, the
bivariate preventive time τB is an increasing function of ρ, such that τB ≤
τU . Also, both τB = τU and τB < τU are possible. The theoretical proof of
such results is not provided here because of the reduced size of the present
paper, but will be provided in a forthcomming one.

In conclusion to this section, one can see that using a bivariate model
instead of two separate univariate models generally shortens the time to next
inspection (τB ≤ τU ). This means that taking into account the dependence
between both components provides safer results. Also, the optimal time to
next inspection is increasing with dependence (τB increases with ρ), which
implies that the error made when considering separate models (τU ) is all the
more important the less the components are dependent. This also implies
that the safest attitude, in case of an unkown correlation, is to consider
both components as independent and chose τ = τ⊥, where

τ⊥ = max
(
τ ≥ 0 such that Px1

(
T (1) > τ

)
Px2

(
T (2) > τ

) ≥ 1− ε
)
.

5 APPLICATION TO TRACK MAINTENANCE

A bivariate Gamma process is now used to model the evolution of the two
track indicators NL and NT (see the Introduction) and times to next in-
spection are computed, as described in the previous section.
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Figure 3. τ (1), τ (2) and τB with respect to x2 with x1 = 0.4

Using univariate maximum likelihood and EM methods on data corre-
sponding to the Paris-Lyon high-speed line provide the estimations â1 =
0.0355, b̂1 = 19.19, â2 = 0.0387, b̂2 = 29.72, ρ̂ = 0.5262. Usual thresholds are
s1 = 0.9 for NL and s2 = 0.75 for NT. With these values, τ (1), τ (2) and τB

are plotted in Figure 3 with respect of x2 when x1 is fixed (x1 = 0.4). In
that case τ (1) = 150.

This figure shows that taking into account the single information x1 =
0.4 may lead to too late maintenance actions. As an example, if x2 =
0.4, one has τB = 134.7 (and τ (2) = 152.9). The preventive maintenance
action based only on NL is consequently scheduled 15 days too lately. If
x2 = 0.5, one obtains τB = 95.9 (τ (2) = 97.5) and the maintenance action is
undertaken 54 days too late. If x2 = 0.6, one obtains τB = 47.1 (τ (2)= 47.2)
and this is 103 days too late.

Concluding this section, one can finally observe that if x1 is not too close
to x2, the value τU = min

(
τ (1), τ (2)) seams reasonable for maintenance

scheduling (see Figure 3), contrary to the currently used τ (1), which may
entail large delay in its planning (more than 100 days in our example). If x1
is close to x2, the values of τU and τB have the same order of magnitude,
however with τU > τB , so that the preventive maintenance action is again
planned too lately (15 days in the example).

6 CONCLUSION

A bivariate Gamma process has been used to model the development of two
deterioration indicators. Different estimation methods have been proposed
for the parameters and tested on simulated data. Based on these tests, the
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best estimators seem provided by univariate likelihood maximization for the
marginal parameters and by an EM algorithm for the correlation coefficient.

Preventive maintenance scheduling has then been studied for a system
that deteriorates according to a bivariate Gamma process. In particular,
it has been shown that, given an observed bivariate deterioration level, the
optimal time to maintenance is increasing with dependence. It has been
proven that the optimal time to maintenance is always shorter when taking
into account the dependence between the two deterioration indicators than
when considering them separately (or only considering one of them).

Finally, a bivariate Gamma process has been used to study a real track
maintenance problem. The application shows that when both observed
deterioration indicators are close to each other, the bivariate process gives
safer results for maintenance scheduling than both univariate processes con-
sidered separately or one single univariate process, with the same order of
magnitude in each case however. When the observed deterioration indica-
tors are clearly different, considering one single univariate process as it is
done in current track maintenance, may lead to clearly unadaquate results.
This application to real data of railway track deterioration hence shows
the interest of a bivariate model for a correct definition of a maintenance
strategy.
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Abstract. This paper deals with the construction and optimisa-
tion of accurate condition-based maintenance policies for cumulative
deteriorating systems. In this context, the system condition behav-
ior can be influenced by different environmental factors which con-
tribute to increasing or reducing the degradation rate. The observed
condition can deviate from the expected condition if the degrada-
tion model does not embrace these environmental factors. Moreover,
if more information is available on the environment variations, the
maintenance decision framework should take advantage of this new
information and update the decision. The question is how shall we
model the decision framework for this? A gamma process-degradation
model with randomized parameters is proposed to model the influ-
ence of the random environment on the system behavior. An adaptive
maintenance policy is constructed which takes into account the envi-
ronmental changes. The mathematical framework is presented here
and a numerical experiment is conducted to highlight the benefit of
our approach.

1 INTRODUCTION

Many manufacturing processes or structural systems suffer increasing wear
with usage or age and are subject to random failures resulting from this dete-
rioration and most of them are maintained or repairable systems. Appropri-
ate maintenance actions such as inspection, local repair, and replacement
should be done to protect manufacturing processes or structural systems
from failure. However, the decisions depend on the quality of the model
which represents the system subject to time-dependent degradation. The
system modelling allows to have access to the “a priori”behavior of the sys-
tem in terms of probability occurrence. Time-dependent degradation can
be modelled in several ways [1]. In recent years, stochastic models with
a rich probabilistic structure and simple methods for statistical inference

∗corresponding author: IRCCyN, Ecole des Mines de Nantes, La chantrerie, 4 rue
Alfred Kastler, BP 20722, 44307 Nantes, France; telephone: +33-(0)2 51858312, fax:
+33-(0)2 51858349, e-mail: bruno.castanier@emn.fr
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(e.g. gamma process models) have emerged due to modern developments in
computational technology and the theory of stochastic processes.

The gamma process appears to be a very good candidate for degradation
models because the sample path of a gamma process embraces both minute
and large jumps [1, 2]. The degradation may develop in a very slow, invisible
fashion due to daily usage and at some points in time it may grow very
quickly when some traumatic event happen. Finally, the gamma processes
is more versatile than a random variable model for stationary degradation
processes [3], because it takes into account temporal uncertainty to better
model when the variability in degradation is high. A recent overview of the
gamma process in maintenance is given by Van Noortwĳk [4].

Maintenance decisions regarding the time and frequency of inspection,
repair and replacement are complicated by environmental uncertainty asso-
ciated with the degradation of systems. Although many stochastic models
of degradation with applications have been proposed [3], the impact of en-
vironmental uncertainty on maintenance optimisation has been lacking in
the engineering literature. For a deteriorating system, an age-based main-
tenance policy is easier to implement than a condition-based maintenance
policy (CBM), but CBM has proven its efficiency in terms of economic bene-
fits and also in terms of system safety performance [5]. When environmental
factors significantly impact the degradation of the system and this impact
can be captured, it could be of interest to propose adaptive CBM policies
as functions of the environmental variations [6, 7]. In their studies, [6, 7]
assume definitive changes in the deterioration process parameters after a
non-observable variation in the environment. Their model allows a shift to
a new policy when the environment is supposed to have evolved. In [1], the
changes are assumed to be reversible depend just on the stress level. The
random evolution of the environment is modelled by a 2-state, continuous-
time Markov chain and several policies allowing several shifts are proposed.
Nevertheless, we underline the difficulty of obtaining the associated criterion
and the applicability of such policies in the industrial context.

We develop in this work a new adaptive CBM framework for a dynamic
deteriorating system, which allows only one potential shift in policies if
the gap between expectation and observation is quite large. The direct
observable environmental-stress process is modelled by a 2-state continuous-
time Markov chain and the environmental impact on the system is modelled
by deteriorating speed variations. The shift to a new policy will be done if
the cumulative time elapsed in one environment becomes greater than an
optimized threshold.

The remainder of this paper is as follows. In Section 2, the failure process
and the relationship between deterioration level and stress covariate are
presented. Section 3 is devoted to the construction of the new maintenance
policy based on the system deterioration level and the stress variable to
benefit such information. In Section 4, the numerical resolution of the
cost criterion is briefly presented and a numerical example is proposed to
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highlight the benefit of the new policy. Section 5 will discuss different
extensions of this work.

2 DESCRIPTION OF THE FAILURE PROCESS

We consider a single-unit system subject to one failure mechanism evolving
in a stressful environment. This section is devoted to describing the system
failure process, the evolution of the stress and the relationship between
these two processes. The system failure presented here is the same as the
one presented in [1].

2.1 Stochastic deterioration model
The condition of the system at time t can be summarized by a scalar aging
variable Xt [1, 8, 9, 10] whose variance increases as the system deteriorates.
Xt can be the measure of a physical parameter linked to the resistance of
a structure (e.g., length of a crack). The initial state corresponds to a per-
fect working state, X0 = 0. The system fails when the aging variable is
greater than a predetermined threshold L. The threshold L can be seen as
a deterioration level which must not be exceeded for economical or security
reasons. Let us model the degradation process (Xt)(t≥0) by a stationary
gamma process where the increment of a degradation on a given time inter-
val δt is gamma distributed. The associated probability density function is
then:

fαδt,β(x) = 1
Γ(αδt)β

αδtxαδt−1e−βxI{x≥0}(x), (1)

where IA(x) = 1 if x ∈ A and 0 otherwise. We will not discuss here the
several statistical properties of the gamma distribution nor the accuracy of
the gamma process in the modelling of cumulative-deteriorating systems.
We refer the interested reader to the survey of the application of gamma
processes in maintenance [4] on the applicability of gamma processes in
maintenance optimisation for many civil engineering structures.

2.2 Stress process
Let us assume that the system is subject to an environmental stress that
can be external to the system (e.g., temperature, vibrations, . . . ) or a
direct consequence of the system operating mode (e.g., internal vibrations,
internal temperature, etc). We consider that the environmental condition
at time t can be summarized with a single binary covariate (Yt)(t≥0). We
assume that Yt is an indicator of the environmental evolution, i.e. it does
not model the environment but only indicates if the system is in a stressed
condition or not (Yt = 1 if the system is stressed and 0 otherwise). The time
intervals between successive state changes are exponentially distributed with
parameter λ0 (respectively, λ1) for the transit to the non-stressed state from
the stress state (respectively, stressed to non-stressed state). At each time
t ≥ 0, as the stressed state does not depend on the deterioration state, the
probability of being in the stressed state in the steady-state is 1−p = λ0

λ0+λ1
.
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2.3 Impact of the stress process on the system deterioration
If the system evolves in a stressful environment, let us consider that the
deterioration behavior can be impacted by this environment. We assume if
Yt = y (with y = 0 or 1), Xy(δt)˜Ga(α0e

γyδt, β) [11, 12] where γ measures
the influence of the covariate on the deterioration process.

Thus, we assume that the system is subject to an increase in the de-
terioration speed while it is under stress (i.e. while Yt = 1), then the
system deteriorates according to its nominal mode (while Yt = 0). The
parameters of the deterioration process when the system is non-stressed are
α0δt(α = α0) and β and when the system is under stress α1δt and β with
α1δt = α0e

γyδt.
In average, the mean of the shape parameter ᾱ is α0(1 + (1−p)(eγ −1))

and β can be estimated by using the maximum likelihood estimation. The
parameter γ > 0 is an acceleration factor and can be obtained with the
accelerated life testing method.

The model presented here is particularly adapted to an “internal” envi-
ronment linked to observable missions profiles. For example, we can consider
a motor which works according to its normal speed but it may be necessary
to increase the production and thus to increase the speed of the motor. The
time in the normal speed and in the accelerated speed is random, but it
is measurable. This model can also be used for modelling road degrada-
tion which is based on the proliferation and growth of cracks. Moreover,
environmental factors impact the road degradation, for example, extreme
temperatures tends to increase it and it is possible to know the average time
spent in extreme conditions.

Figure 1 sketches the different deterioration phases due to random evo-
lution of the environment.

3 DEFINITION AND EVALUATION OF THE
MAINTENANCE POLICY

In this section, two ways to integrate stress information in the decision
framework are evaluated. The first is a static one in the sense that the
decision rules are fixed. We will show that this policy, hereafter referred as
Policy 0, mimics the classical inspection/replacement CBM policy with the
stationary deterioration parameters (ᾱ, β). The second policy is a dynamic
one in the sense that the decision parameters can be updated according to
the environmental condition. In section 3.3 we derive the long-run average
maintenance cost per unit of time.

3.1 Structure of the static maintenance policy (Policy 0)
The cumulative deterioration level Xt is observed only through costly in-
spections. Let cix be the unitary inspection cost. Even if non-periodic
inspection strategies are optimal [3], a periodic strategy is proposed here.
The benefit of such an assumption is a reduced number of the decision
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Figure 1. Evolution of the deterioration process impacted by the stress process

parameters, and an easier implementation of the approach in an industrial
context. This inspection is assumed to be perfect in the sense that it reveals
the exact deterioration level Xt.

During an inspection, a replacement can take place to renew the system
if it is failed (corrective replacement) or to prevent the failure (preventive
replacement). We assume the unitary cost of a corrective replacement cc is
composed of all the direct and indirect costs incurred by this maintenance
action. Only the unitary unavailability cost cu multiplied by the time the
system is failed has to be added to cc. The decision rule for a preventive
replacement is the classical control limit rule: if ξ is the preventive replace-
ment threshold, a preventive replacement is performed during the inspection
on Xt if the deterioration level belongs to the interval (ξ, L). Let cp be the
preventive replacement cost (cp < cc).

Hence, the decision parameters which should be optimized in order to
minimize the long-run maintenance cost are:

• The inspection period τ0 which allows for balancing the cumulative
inspection cost, earlier detection and prevention of a failure;

• The preventive maintenance threshold ξ which reduces cost by the
prevention of a failure.

Finally, this approach corresponds to a classical maintenance policy taking
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the stationary parameters (ᾱ = α0(1 + (1− p)(eγ − 1)), β).
This maintenance policy is denoted Policy 0 hereafter. An illustration

of this maintenance policy is presented in Figure 2.

X(t)
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L

τ

preventive
replacement area

corrective
replacement area

Failure due to an
excessive
deterioration
level

τ τ τ τ τ

Figure 2. Evolution of the deterioration process and the stress process when
the system is maintained

3.2 Structure of the dynamic maintenance policy (Policy 1)
Previously, for the Policy 0, only the information given by the deterioration
level has been used, but it can be useful to adapt the decision for inspection
and replacement with the observed time elapsed in the different operating
conditions. In [1], we have investigated a panel of different CBM strategies
taking into account the stress information. The main conclusions are that
the updating of the decision according to the stress information should
be continuously monitored by a new parameter as a function of the time
proportion elapsed in the stressed state. Nevertheless, both optimisation
and industrial implementation of such approaches are not easy.

In this section we develop a model free from limits of the models proposed
in [1]. We propose a new maintenance policy (denoted Policy 1 hereafter)
which still offers the opportunity to adapt the decision function to the time
elapsed in the stress state. We still consider that the environment state
is continuously monitored, but the number of updatings is limited: only
one potential change is allowed in an inspection period. Both inspection
interval and preventive replacement threshold can be updated. Before the
description of the updating rule, let r(t) be the actual time elapsed in the
stressed state and r̄(t) the average of the time elapsed in the stressed state.
r(t) follows a k-Erlang law with parameter λr = 1

1−p = λ0+λ1
λ0

which leads
to a discretisation of the time. Let us denote r̄1(t) and r̄2(t) two decision
thresholds. The updating rule in the kth inspection interval, tl ∈ (tk−1, tk),
follows:

• while r(tl) ∈ (r̄1(tl), r̄2(tl)), the decision rule is based on the policy 0,
i.e (τ0, ξ);
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• if r(tl) < r1(tl), the (τ0, ξ) rule is immediately and definitively replaced
with (τ1, ξ). Hence, the inspection will be differ from tk+ τ0 to tk+ τ1
and a preventive replacement will be performed if Xtk+τ1 > ξ.

• if r(tl) > r2(tl), the (τ0, ξ) rule is immediately and definitively replaced
with (τ2, ξ).

After an inspection the next inspection planned is always planned τ0 units
of time later and is re-evaluated depending on r(t).

t

r(t)
r̄2(t)

r̄(t)

r̄1(t)

Figure 3. Evolution of the mean time elapsed in the stress state

3.3 Cost-based criterion for maintenance performance
evaluation

In the case of policy 0, the maintenance decision parameters τ0 and ξ should
be optimized in order to minimize the long-run maintenance cost, but the
cost criterion is obtained using the same reasoning as in the case of the dy-
namic maintenance policy. Thus, only the description of the cost evaluation
in this last case is developed. For the dynamic maintenance policy, all the
maintenance decision parameters are fixed (τ0, τ1, τ2, ξ), optimized with the
policy 0, and only the long-run maintenance cost needs to be estimated. By
using classical renewal arguments, see e.g. [8], the maintenance criterion
is expressed on a renewal cycle S defined by two consecutive replacements.
Hence, we have:

C̄∞(τ0, τ1, τ2, ξ) = lim
t→∞

C(t)
t

= E(C(S))
E(S) (2)

if C(.) is the cumulative cost function, S is the first replacement date and
C̄∞ is the expected long-run maintenance cost. Nevertheless the calculation
of these two expectations is not trivial in our case and we want to reduce
the interval of calculation to the semi-renewal cycle [0, T1], i.e. to a shorter
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interval (between two consecutive inspections). Therefore all the possible
trajectories on [0, T1] are only deterioration trajectories (which are char-
acterized by the Gamma law). The following result is proved for a semi-
regenerative process for which the embedded Markov chain has a unique
stationary probability distribution π:

C̄∞(τ0, τ1, τ2, ξ) = lim
t→∞

C(t)
t

= Eπ(C(T1))
Eπ(T1) (3)

In return for the simplifications induced, this result requires to prove
the existence of the stationary law of the Markov chain and to identify it.
This study is not developed in this paper but the reasoning is the same as
the one presented in [13].

The cost C(T1) is composed of the different inspections, replacements
and unavailability costs and is written:

C̄∞(τ0, τ1, τ2, ξ) =
cixEπ(Nix(T1)) + cp + (cc − cp)Pπ(XT1 > L) + cuEπ(Du(T1))

Eπ(T1) , (4)

where Nix(t) is the number of planned inspections before t and Du(t) the
unavailability time before t.

4 NUMERICAL RESULTS

4.1 Evaluation of the stationary law
In order to evaluate the stationary law of the semi-regenerative process, we
study the system evolution scenarios. We identify the possible trajectories
of the process conditionally to the deterioration level at the beginning of
a semi-renewal cycle (i.e. before the maintenance operation characterized
by the value y) in order to reach the value x at the end of the cycle (i.e.
before the maintenance operation). Between two consecutive inspections,
the deterioration law of the system is only a function of the accumulated
deterioration on this time interval. We identify six exclusive scenarios (in
the case of the dynamic maintenance policy) allowing to pass of y in x:

• scenario 1: A preventive or corrective replacement is performed (y ≥
ξ). After this maintenance, the system is new (z = 0) and the degra-
dation process law is given by:

– scenario 1.1: fτ0(x)P(∀tl, tl ∈ [0, τ1 − 1], r̄1(tl) < r(tl) < r̄2(tl))
– scenario 1-2: fτ1(x)P(∀tl, tl ∈ [0, τ1 − 1], r̄1(tl) ≥ r(tl))
– scenario 1-3: fτ2(x)P(∀tl, tl ∈ [0, τ1 − 1], r(tl) ≥ r̄2(tl))

• scenario 2: An inspection is performed without replacement (y < ξ).
After this action, the system degradation is unchanged z = y and the
degradation process law is given by:
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– scenario 2-1: fτ0(x − y)P(∀tl, tl ∈ [0, τ1 − 1], r̄1(tl) < r(tl) <
r̄2(tl))

– scenario 2-2: fτ1(x− y)P(∀tl, tl ∈ [0, τ1 − 1], r̄1(tl) ≥ r(tl))
– scenario 2-3: fτ2(x− y)P(∀tl, tl ∈ [0, τ1 − 1], r(tl) ≥ r̄2(tl))

By using the total probability law, we obtain the stationary density func-
tion of the evolution process on a semi-renewal cycle:

π(x) =
∫ +∞

ξ

π(y)dy
[
f (τ0)(x)(e−λrλ0 − e−λrλ1)τ1−1 + f (τ1)(x)e−λrλ1 . . .

τ1−2∑
i=1

(e−λrλ0 − e−λrλ1)i + f (τ2)(x)(1− e−λrλ0)
τ1−2∑
i=1

(e−λrλ0 − e−λrλ1)i
]
. . .

+
∫ ξ

0
π(y)

[
f (τ0)(x− y)(e−λrλ0 − e−λrλ1)τ1−1 + f (τ1)(x− y)e−λrλ1 . . .

τ1−2∑
i=1

(e−λrλ0 − e−λrλ1)i+ f (τ2)(x− y)(1− e−λrλ0)
τ1−2∑
i=1

(e−λrλ0 − e−λrλ1)i
]
dy

(5)

with

f (τ0)(x) = 1
Γ(ᾱ(τ0 + r(τ0)eγ))β

ᾱ(τ0+r(τ0)eγ)xᾱ(τ0+r(τ0)eγ)−1eβx

The stationary density function π (cf. Figure 4) is computed by numer-
ical integration. Hence, the long-run expected maintenance cost per unit of
time is numerically achievable.

4.2 Numerical example
This subsection is devoted to comparing the economic performance of the
two proposed policies. We arbitrarily fix the maintenance data and the
operations costs to the following values: the deterioration parameter α =
0.5, β = 20, γ = 2; the stress parameter, r̄(tl) = 0.666tl, r̄1(tl) = 0.6tl,
r̄2(tl) = 0.714tl, the failure level L = 2, the maintenance costs cc = 100,
cp = 20, cix = 5, cu = 50. For the Policy 0, the optimized value of the
inspection period is 18 when r̄(tl) = 0.666tl (respectively τ1∗ = 20 for
r̄1(tl) = 0.6tl and τ2∗ = 16 for r̄2(tl) = 0.714tl). The optimal cost obtained
with the static policy, the Policy 0, is 2.023 and the one obtained with the
Policy 1 is 1.915 which corresponds to a benefit of 5.333%. Policy 1 takes
the advantage here to propose an adaptive inspection interval to the real
proportion of time elapsed in the stress state. Even if this scheme is more
complicated to implement than the static one it improves the economical
performance.
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Figure 4. Stationary density function (histogram: the stationary density
function π obtained by simulations, curve: the stationary density function π

obtained numerically)

5 DISCUSSION

The main interest of this work is the construction and the evaluation of
maintenance policies for continuously deteriorating systems subject to en-
vironmental influence. Taking into account the environment makes the sys-
tem deterioration behavior dynamic. This is a common assumption in an
industrial context. The relationship between the system performance and
the associated operating environment has been modelled as an accelerator
factor for deterioration and as a binary variable. A cost criterion has been
numerically evaluated to highlight the performance of the different mainte-
nance strategies and the benefits to consider the opportunity to adapt the
current decision according to the history of the system.

Even if the last proposed structure for maintenance decision framework
has shown interesting performance, a lot of research remains to be done.
A sensitivity analysis when maintenance data varies should be performed.
Moreover, for the moment we fix r̄1(t) and r̄2(t) but it could be interest-
ing to optimise them in order to improve the economic benefits. Further-
more, in practice it is exceptional that the system deterioration level can
be measured directly and, very often, only information correlated at the
deterioration level is observable. It is thus necessary to develop conditional
maintenance policies for which the decision is taken from this imperfect,
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partial information. Several research tracks are possible. For example, hid-
den Markov processes can be adapted to model the indirectly observable
deterioration. It is also possible to consider that we observe a process corre-
lated in the deterioration process. In our case, we could take the stress, and
reconstruct the real state of the system from the observations before mak-
ing a decision of maintenance. Additionally, due to the model assumptions
in this paper, we propose a system for which the result if the system is in
the stressed state followed by a non-stressed state produces in average the
same degradation as the opposite (if the time elapsed in the stressed state
and in the non-stressed state are preserved). But for many systems this
reciprocity is not true, this assumption should be relaxed. Furthermore, it
could be interesting to transfer the lessons of the case known environment
with uncertainty to the case “non observable” environment and to compare
the estimation of the time elapsed in the stressed and non-stressed state to
the expectations.
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Derivation of a finite time expected cost model for a
condition-based maintenance program
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Abstract. The gamma process is a stochastic cumulative process
that can be used to model a time-variant uncertain process. Pro-
fessor van Noortwĳk’s research work played a key role in modeling
degradation by gamma process and making it popular in engineering
community. The maintenance optimization models mostly use the
renewal theorem to evaluate the asymptotic expected cost rate and
optimize the maintenance policy. However, many engineering projects
have relative short and finite time horizon in which the application of
the asymptotic formula becomes questionable. This paper presents a
finite time model for computing the expected maintenance cost and
investigates the suitability of the asymptotic cost rate formula.

1 INTRODUCTION

This paper considers the optimization of a condition-based maintenance
(CBM) of components that are subjected to gradual degradation, such as
material corrosion or creep. The theory of stochastic processes has provided
a valuable framework to model temporal uncertainty associated with degra-
dation. Since degradation in typical engineering components tends to be
monotonic and cumulative over time, cumulative stochastic processes have
been used to model the damage and predict reliability. The gamma process
is an example of a stochastic cumulative process with a simple mathematical
structure that provides an effective tool to model time-variant degradation.

Although the basic mathematical framework of the gamma process was
developed in early seventies, Professor van Noortwĳk should be given credit
for introducing this model to civil engineering community [1, 2, 3]. A com-
prehensive review of the gamma process model and its applications was
recently published by van Noortwĳk [4]. Gamma process has been applied
to model various types of degradation processes, such as creep in concrete
[5], recession of coastal cliffs [6], deterioration of coating on steel structures
[7], structural degradation [8] and wall thinning corrosion of pipes in nuclear
power plants [9].
∗corresponding author: Department of Civil and Environmental Engineering, Univer-

sity of Waterloo; 200 University Ave. West; Waterloo, ON, Canada N2L 3G1; telephone:
+1-519 888 4567 35858, fax: +1-519 888 4349, e-mail: mdpandey@uwaterloo.ca.
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The CBM policy considered on this paper involves periodic inspections
to quantify the amount of degradation, an indicator of the condition, at
different points in time. The component fails when degradation exceeds a
critical value, dF . Therefore it is desirable to make a preventive replacement
(PR) as the degradation reaches a limit, dP , which is less than dF . The cost
of replacement after failure (FR) is significantly higher than that associated
with PR due to lack of spares, long outage and sudden disruption of services.
So the objective of maintenance program is to determine the inspection
interval, T , and damage level for PR, dP , that would minimize the life cycle
cost of operative this component.

Several variations of the CBM policy have been discussed in the litera-
ture, depending on whether or not the inspection schedule is periodic, in-
spection tools are perfect, failure detection is immediate, or repair duration
is finite. Park [10] studied periodic CBM policy of a component subjected
to stochastic continuous degradation. Park’s model was extended in [11] by
considering a random preventive replacement level of the damage. These
two models assumed that failure is self-announced, i.e., an inspection is not
needed to detect the failure. The case in which failure could only be detected
through inspection was analyzed in [12]. Grall et al. [13] studied the case
in which inspection is non-periodic and the preventive level is fixed. The
case of imperfect inspection was analyzed by Kallen and van Noortwĳk [14].
Castanier et al. [15] studied a type of maintenance policy in which both
the future operation (replacement or imperfect repair) and the inspection
schedule depend on the current degradation.

In most of the literature, the criterion for optimizing CBM is based on
minimizing the expected cost per unit time, i.e., the cost rate. The compu-
tation of the cost rate is difficult as it involves computation of convolutions
of different probability distributions. The renewal theorem provides a sim-
ple alternative to compute long term or asymptotic value of the expected
cost rate [16, 17]. The asymptotic rate is the expected cost in one renewal
cycle divided by the expected duration of the renewal cycle. However, many
engineering projects have relatively short and finite time horizon in which
the applicability of asymptotic formula becomes questionable.

This paper presents a finite time model for evaluating the expected cost
associated with a periodic CBM policy. The solution approach is based
on formulating the expected cost as a generalized renewal equation and
the computations are done on high performance computers. The paper
presents a case study involving CBM of piping systems in a nuclear plant.
It is illustrated that the asymptotic formula over predicts the life cycle cost
as compared to that obtained from the proposed finite time model.

This paper is organized as follows. Section 2 briefly describes the station-
ary gamma process model. Section 3 formulates the periodic CBM policy.
The derivation of the proposed finite time cost model is presented in Sec-
tion 4. An illustrative example is given in Section 5 and conclusions are
summarized in Section 6.
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2 GAMMA PROCESS DEGRADATION MODEL

Let X(τ) denote the degradation at time τ after the renewal of the com-
ponent. X(0) = 0 and X(τ) increases with τ . The component fails when
X(τ) ≥ dF . We use compact notations to denote the following probabil-
ity terms: P{X(τ) ≤ x} = P (τ, x) and P{X(τ1) ≤ x1, X(τ2) ≤ x2} =
P (τ1, x1; τ2, x2), τ1 ≤ τ2.

The degradation process, X(τ), is modeled as a continuous stationary
gamma process, which is defined as follows. Recall that the probability
density function of a gamma distributed random variable, Z, is given by:

g(z|α, β) = 1
βαΓ(α)z

α−1e−z/β (1)

where α and β are the shape and scale parameters, respectively, and the
complete gamma function is denoted as Γ(u) =

∫∞
0 xu−1e−xdx. The cumu-

lative distribution function (CDF) of Z is [4]

G(z|α, β) = P{Z ≤ z} =
Γz/β(α)

Γ(α) , (2)

where Γv(u) =
∫ v

0 xu−1e−xdx is an incomplete gamma function. The gamma
process, X(τ), τ ≥ 0, has the following properties [4]:

1. X(0)=0 with probability one;

2. Increments over an interval Δτ are gamma distributed with scale αΔτ
and shape β, i.e., ΔX(Δτ)≡X(τ+Δτ)−X(τ) ∼ Ga(αΔτ, β); and

3. X(τ) has independent increments.

In case of gamma process, the following probability terms are introduced.

P (τ, x) = G(x |ατ, β), (3)

P (τ1, x1; τ2, x2) =
∫ x1

0
G
(
x2 − y

∣∣α(τ2 − τ1), β
)
g(y |ατ1, β)dy. (4)

The distribution of the component lifetime, A, can be obtained as

FA(a) = P{A ≤ a} = P{X(a) ≥ dF } = 1− ΓdF /β(αa)
Γ(αa) (5)

Given degradation inspection data, the shape and the scale parameters
of the gamma process can be estimated from the methods of maximum
likelihood, moments and the Bayesian statistics [18, 7, 4].
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3 CONDITION-BASED MAINTENANCE (CBM)

A component is inspected periodically at a constant time interval of T
and the amount of degradation X(τ) is measured. The component fails
when X(τ) > dF . The failure is immediately noticed and the component
is replaced promptly. The component can be preventively replaced if X(τ)
exceeds a pre-selected level of dP at the time of inspection (see Figure 1a).
Note that PR and FR denote preventive replacement and that upon failure,
respectively.

X

T

0
0

PR

(k-1)T kT2T τ

Fd

Pd

X

T

0
0

FR

(k+1)TkT2T τ

Fd

Pd

(a) (b)

Figure 1. Types of replacement: (a) preventive replacement and (b) failure
replacement

Let L be the length of the operation period and J be the type of re-
placement, J ∈ {PR,FR}. In case of J =PR, L is only a multiple of the
inspection interval T , i.e., T , 2T , · · · , kT , because PR only occurs at the
time of inspection. As shown in Figure 1a, the probability of PR at an
inspection time kT for any integer k can be evaluated as:

P{L=kT , J =PR} = P
{
X
(
(k−1)T

) ≤dP , dP < X(kT ) ≤dF
}

= P
(
(k−1)T, dP ; kT, dF

)− P
(
kT, dP

)
. (6)

Since the failure can take place at any time in between the inspection inter-
vals, the probability of failure replacement (FR) within an interval can be
evaluated as (see Figure 1b):

P{kT < L≤ kT +h , J =FR} = P
{
X(kT )≤dP , X(kT +h) >dF

}
= P

(
kT, dP

)− P
(
kT, dP ; kT +h, dF

)
. (7)

with 0 < h ≤ T .
Denote the probability of PR at any time of inspection as

qPR,k = P{L=kT , J =PR}, (8)

and the probability density function (PDF) of L when J =FR at τ =kT+h
as

qFR(τ) =
dP
{
kT < L≤ kT +h , J =FR

}
dh

. (9)
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The next step is to derive expected length of the renewal cycle, L. No
replacement before (kT+h) means X(kT )≤dP and X(kT+h)≤dF . Hence

P{L > kT+h} = P
(
kT, dP ; kT + h, dF

)
. (10)

Then the PDF of L at τ = kT + h can be given as

q(τ) = −dP{L > kT + h}
dh

(11)

and the expected value of L

E {L} =
∞∑
k=0

∫ T
0

P{L > kT+h}dh. (12)

The total life cycle cost includes costs of periodic inspections, preventive
and failure replacements. Denote the unit cost of PR, FR and inspection
by cPR, cFR, and cIN, respectively. Note that cPR�cFR is a common sense
assumption in any CBM policy. An operating cycle, L, ends with a PR or
FR, and the cost associated with any general cycle is denoted as c(L, J). For
any integer k and h, 0 < h ≤ T , total costs associated with cycles ending
with PR or FR are given as

c(kT,PR) = cPR + cINk, c(kT +h , FR) = cFR + cINk. (13)

The expected cost in one renewal cycle is computed as

E {c} =
∞∑
k=1

(cPR + cINk) qPR,k +
∞∑
k=0

∫ (k+1)T

kT

(cFR + cINk) qFR(τ)dτ. (14)

Note that Equations (12) and (14) can also be found in [10].

4 EVALUATION OF THE EXPECTED LIFE-CYCLE COST

Under the CBM policy, a series of pairs {Li, Ji}, i = 1, 2, · · · , cover the
planning horizon of the CBM policy. It is assumed that the lifetime of all
replacements are iid random variables and the time spent for replacement is
negligible. Let Sn be the chronological time of occurrence of nth replacement
and N(t) be the number of replacements up to time t. Then

Sn =
n∑
i=1

Li, N(t) = max
Sn≤t

n.

N(t) is a renewal process [16, 17] with renewal times {Sn}, n = 1, 2, · · · .
Denoting the cost of an ith renewal cycle as c(Li, Ji), the total cost up to t
can be written as

C(t) =
N(t)∑
i=1

c(Li, Ji) + cIN

⌊
t− SN(t)

T

⌋
, (15)
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where �∗� means the floor function. The last term in the right hand side is
the additional inspection cost in the interval

(
SN(t) , t

]
. Given the first pair

{L1, J1}={l, j}, if l<t, the conditional expected cost can be formulated as

E
{
C(t)

∣∣∣L1 = l, J1 =j
}

= E
{

Cost in (0, l] + Cost in (l, t]
∣∣∣L1 = l, J1 =j

}
= c(l, j) + E

{
C(t− l)

}
. (16)

If l>t, only inspection cost incurs in (0, t], such that
E
{
C(t)

∣∣L1 = l
}

= cIN �t/T � . (17)
Conditioned on three mutually exclusive cases: {L1≤ t, J1 = PR}, {L1≤ t,
J1 =FR}, and {L1>t}, E {C(t)} can be partitioned as follows

E
{
C(t)

}
=
	t/T
∑
k=1

E
{
C(t)

∣∣L1 =kT, J1 =PR
}
qPR, k + · · ·

	t/T
∑
k=0

∫
Δk

E
{
C(t)

∣∣L1 =τ, J1 =FR
}
qFR(τ)dτ + · · ·∫ ∞

t

E
{
C(t)

∣∣L1 =τ
}
q(τ)dτ (18)

where

Δk =
{(

kT, (k + 1)T
]
, for 0 ≤ k < �t/T �,( �t/T �T, t], for k = �t/T �, and

	t/T
⋃
k=0

Δk = (0, t].

Substituting Equations (13), (16) and (17) into Equation (18) gives

E
{
C(t)

}
=
	t/T
∑
k=1

[
(cPR + cINk) + E

{
C(t− kT )

}]
qPR, k + · · ·

	t/T
∑
k=0

∫
Δk

[(
cFR + cINk

)
+ E

{
C(t− τ)

}]
qFR(τ)dτ + cIN

⌊
t

T

⌋∫ ∞
t

q(τ)dτ (19)

Denoting E {C(t)} by U(t), Equation (19) can be simplified as

U(t) = G(t) +

⎡⎣	t/T
∑
k=0

U(t− kT )qPR, k +
∫ t

0
U(t− τ)qFR(τ)dτ

⎤⎦ , (20)

where

G(t) = cPR

	t/T
∑
k=1

qPR,k + cFR

∫ t
0
qFR(τ)dτ + · · ·

cIN

{ 	t/T
∑
k=1

k

[
qPR,k +

∫
Δk

qFR(τ)dτ
]

+ �t/T �
∫ ∞
t

q(τ)dτ
}
.
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Note that the PDF of L when J =PR can be written as

qPR(τ) =
∞∑
k=1

qPR,kδ(τ − kT ),

δ(∗) being the Dirac delta function, and q(τ) = qPR(τ)+qFR(τ). Equation
(20) can be rewritten in a more compact form as

U(t) = G(t) +
∫ t

0
U(t− τ)q(τ)dτ, (21)

Equation (21) is a generalized renewal equation, which can be solved for
U(t) with the initial condition U(0)=0. To compute U(t), the time horizon
is discretized in small intervals as v, 2v, · · · , and denoting t = nv, introduce
discrete variables Ui = U(iv), Gi = G(iv), and qi = q(iv), i = 1, 2, · · · , n.
Equation (21) can be re-written in a discrete form as

U0 = 0, Un = Gn +
n∑
i=1

Un−iqi, for n ≥ 1, (22)

from which U1, U2, · · · , can be computed in a recursive manner.
In case of an infinite time horizon (t → ∞), the expected asymptotic

cost rate converges to the ratio of the expected cost in one renewal interval
to the expected length of the renewal cycle, i.e.,

u∞ = E {c}
E {L} . (23)

E{c} and E{L} can be obtained from equations (12) and (14), respectively.
The expected cost over a time horizon t is then estimated as C∞ ≈ t× u∞.

5 EXAMPLE

Flow accelerated corrosion (FAC) degradation is common in the heat trans-
port piping system (PHTS) of nuclear power plants. The corrosion can be
modelled as a stochastic gamma process [9]. The objective is to evaluate the
life cycle cost associated with a condition-based maintenance of the piping
system. The following information is gathered from the inspection data [19].
The initial wall thickness of the pipe is 6.50 mm. The minimum required
wall thickness is 2.41 mm. The degradation level corresponding to failure
is thus dF = 3.09 mm. Using the inspection data regarding wall thickness
measurements in a sample, the parameters of the gamma process were es-
timated as α = 1.13/year and β = 0.0882 mm. The PDF of the lifetime
obtained from Equation (5) is plotted in Figure 2. The mean lifetime is
31.63 years and the standard deviation 5.24 years.

Cost data are specified in a relative scale as cIN = 0.1, cPR = 1, and
cFR =10. The preventive replacement level is chosen as dP =2.0 mm based
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Figure 2. PDF of the lifetime

on a regulatory requirement and the planning horizon is taken as t = 50
years.

The expected cost from finite time model is computed using equation
(21), and the asymptotic cost is a product of the asymptotic rate u∞ with
the length of the interval. u∞ was computed from Equation (23). The
variation of the total expected cost with respect to the inspection interval is
plotted in Figure 3. The finite time model results in the optimal inspection
interval of 9 years and corresponding minimum life cycle cost of 2.55 units.
The asymptotic formula results in an optimal inspection interval of 7 years
and the associated cost is 3.09 units, which is about 20% higher than that
calculated from the finite time formula. This is the difference in the cost
predicted by finite time and asymptotic formulas for one pipe section in
the plant. Given that the Canadian reactor design consists of 380 to 480
pipe sections, this cost differential for the entire reactor would be quite
large. This underscores the need for using the proposed finite time cost
computation model for safety critical infrastructure systems.

The mathematical formulation is quite versatile and it can be used to
optimize other parameters of the CBM plan. For example, the the damage
level corresponding to the preventive replacement level, dP , can be opti-
mized for a given inspection interval.

6 CONCLUSIONS

This paper presents the derivation of the expected life-cycle cost associated
with a periodic CBM policy in a finite time horizon. The degradation in
a component is modeled as stochastic gamma process. The derivation is
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Figure 3. Expected cost versus inspection interval over a 50 year period

based on formulating a generalized renewal equation for the expected cost
and computing convolutions using high performance computers.

The paper highlights the fact that the asymptotic expected cost can be
a rather crude approximation of the real cost in a finite time horizon. The
paper presents a case study involving CBM of piping systems in a nuclear
plant, which illustrates that the asymptotic formula over predicts the life
cycle cost by 20% as compared to that obtained from the proposed finite
time model. Given that a plan contains a large fleet of piping components,
the over prediction by asymptotic formula can be substantial, which paints
a pessimistic picture of the life cycle cost at the plant level. It is concluded
that the finite time model should be used for a realistic evaluation and
optimization of the CBM policy for safety critical infrastructure systems.
The formulation presented in the paper can be extended to other types of
maintenance policies.

Acknowledgments

We acknowledge financial support for this study provided by the Natural
Sciences and Engineering Research Council of Canada (NSERC) and the
University Network of Excellence in Nuclear Engineering (UNENE) through
an Industrial Research Chair program on Risk-Based Life Cycle Manage-
ment of Engineering Systems at the University of Waterloo.

Bibliography
[1] J. M. van Noortwĳk and P. H. A. J. M. van Gelder. Optimal maintenance

decisions for berm breakwaters. Structural Safety, 18(4):293–309, 1996.

157



Pandey & Cheng

[2] J. M. van Noortwĳk and H. E. Klatter. Optimal inspection decisions for
the block mats of the Eastern-Scheldt barrier. Reliability Engineering and
System Safety, 65:203–211, 1999.

[3] J. M. van Noortwĳk, J. A. M. van der Weide, M. J. Kallen, and M. D. Pandey.
Gamma process and peaks-over-threshold distributions for time-dependent
reliability. Reliability Engineering and System Safety, 92:1651–1658, 2007.

[4] J. M. van Noortwĳk. A survey of the application of gamma processes in
maintenance. Reliability Engineering and System Safety, 94:2–21, 2009.
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A discussion about historical developments in
stochastic modeling of wear

Hans van der Weide
∗ – Delft University of Technology, Delft, the Netherlands

and Mahesh D. Pandey – University of Waterloo, Waterloo, Canada

Abstract. In this paper we study models for cumulative damage
of a component caused by shocks occurring randomly in time, fol-
lowing a historical approach. The damage caused by a shock, is also
of random nature. A very well-known model is the compound re-
newal process, with the compound Poisson process as a special case.
These models play an important role in maintenance analysis and
cost calculations. In these models the times at which shocks occur
and the damage caused by the shock are assumed to be independent.
But very often this is not realistic, the damage will depend on the
time since the last shock, in some engineering applications it is even
a deterministic function of the time since the last shock. Also, the
results are often asymptotic. We will develop a model which allows
dependence between damage and time since the last shock. We will
calculate Laplace transforms of the interesting quantities and show
how these can be inverted to get probability distributions for finite
time horizons.

1 INTRODUCTION

In this paper we study models for cumulative damage of a component,
more in particular models that are time-dependent. The component fails
if the cumulative damage exceeds some critical threshold. The threshold
represents the resistance of the component, which is degrading in time. If
the degradation cannot be neglected and if we want to insert uncertainty,
the threshold has to be modelled as a stochastic process as well.

The first models of this type are studied in Mercer and Smith’s paper [1]
that was published in 1959. In this paper the authors introduce a stochastic
model for the wear of a conveyor belt. In the terminology of Mercer and
Smith, the damage is modelled by a one-dimensional random walk process in
which the steps are positive and occur randomly at mean rate m and such
that the sizes of the steps are independent with probability density f on
[0,∞). Basically, the authors derive a formula for the probability density of

∗corresponding author: Department of Applied Mathematics, Delft University
of Technology, P.O. Box 5301, NL-2600 GA Delft, The Netherlands; telephone:
+31-(0)15 27 87286, e-mail: j.a.m.vanderweide@tudelft.nl
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the time needed to reach a fixed barrier, as well as the asymptotic moments
of this time as the height of the barrier goes to infinity.

In a paper [2] dating from 1965, Morey gives a generalization of the
model of Mercer and Smith. He proposes to replace the Poisson process,
that was used to model the times at which damages occur, with a renewal
process and he calls his model a compound renewal process. Compound
renewal processes have been introduced by Smith in a survey paper [3]
published in 1958. Also, Morey proposes to use nonparametric models for
the jump size, such as distributions with monotone failure rate. In the
paper, bounds are derived for the mean and the variance of the first time
the total damage reaches a random barrier X. The second part of the paper
deals with the special case that the total damage is modelled as a compound
Poisson process in which jump-size has a Pólya-frequency density of order 2.
In this case it is shown that the hitting time of the barrier has an increasing
failure rate and a monotone likelihood ratio.

We will study the probability distribution and the moments of the first
time τh that the total damage exceeds some given threshold h. In Section 2
we discuss Mercer and Smith’s model. The explicit formula for all moments
of τh is new. Next, we characterize the probability distribution of τh via a
double Laplace transform, that can be transformed back numerically to get
the probability distribution. We also discuss the case where the wear is not
only caused by shocks, but also by a nearly continuous abrasion. In Section
3 we propose a model which is a generalization of a model introduced by
Morey [2], where we allow dependencies between the jumps and the inter-
occurrence times. The theoretical results about this model are not new.
They have been derived in more general form in the mathematical literature,
see the work of Shanthikumar and Sumita [4] and [5]. Our contributions
are the asymptotic properties for the moments of τh and the numerical
inversion of the formula for its double Laplace transform that can be used for
numerical inversion. We also show the importance of the assumption about
the dependence between time and damage by giving an example based on
the bivariate exponential distribution, see [6], Chapter 5.

2 MERCER AND SMITH’S MODEL

In their paper [1], Mercer and Smith present a model for the wear of con-
veyor belting. In modern terminology, the total damage is modelled by a
compound Poisson process {X(t) : t ≥ 0} with intensity λ = m and ran-
dom jump size with probability density f . So the times at which shocks
(belting damages) occur are modelled by a homogeneous Poisson process
N = {N(t) : t ≥ 0}, or stated otherwise, the times between consecutive
shocks are stochastically independent and exponentially distributed with
mean 1/m. Damage is only caused by the shocks. The severity of the
damage is stochastic and is modelled by an i.i.d. sequence of nonnegative
random variables (Yk), independent of the damage times process N . So,
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assuming that damage is additive and that the system does not recover, the
total damage at time t is given by

X(t) =
N(t)∑
k=1

Yk.

The belt is considered to be worn out completely if the total damage reaches
a certain level. Define, for a given, non-random damage level h > 0, the
first time that X exceeds this level by

τh = min{t ≥ 0 : X(t) > h},
and let ηk denote the total damage from the first k shocks

ηk = Y1 + · · ·+ Yk, k = 1, 2, . . .

As usual we define η0 ≡ 0. Since the process X has right continuous,
increasing sample paths,

τh ≤ t ⇐⇒ X(t) > h, (1)

and it follows from independence of the process N and the sequence (Yk)k≥1
that

P(τh > t) = P(X(t) ≤ h) = e−mt
∞∑
k=0

(mt)k
k! pk(h),

where, for k ≥ 0, pk(h) = P(ηk ≤ h). For practical purposes, the infinite
sum can be truncated. A rough upper bound for the error, if we approximate
P(τh > t) with the sum of the first n terms, is given by (mtp1(h))n+1/(n+1)!.

It follows from the expression for P(τh > t) that τh is a continuous
random variable with probability density function:

gh(t) = me−mt
∞∑
k=0

(mt)k
k! (pk(h)− pk+1(h))

= me−mt
∞∑
k=0

(mt)k
k! P(ηk ≤ h < ηk+1). (2)

The rth moment of τh (possibly infinite) is given by

E(τ rh) = r

∫ ∞
0

tr−1
P(τh > t) dt = r

mr

∞∑
k=0

(r + k − 1)!
k! pk(h).

To derive an alternative expression for the rth moment of τh, let Ñ be
the renewal process associated to the sequence (Yk)k≥1. Then

pk(h) = P(Y1 + . . . + Yk ≤ h) = P(Ñh ≥ k),
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and it follows that

E(τ rh) = r

mr

∞∑
k=0

(r + k − 1)!
k! P(Ñh ≥ k)

= r

mr

∞∑
k=0

(r + k − 1)!
k!

∞∑
i=k

P(Ñh = i)

= r

mr

∞∑
i=0

(
i∑
k=0

(r + k − 1)!
k!

)
P(Ñh = i)

= 1
mr

∞∑
i=0

(i + 1) · · · (i + r)P(Ñh = i)

= 1
mr

E
(
(Ñh + 1) · · · (Ñh + r)

)
.

So we have the following well-known elegant result for the moments of τh:

E(τ rh) = 1
mr

E
(
(Ñh + 1) · · · (Ñh + r)

)
, (3)

see Hameed and Proschan [7] or Marshall and Shaked [8]. Applying the Key
Renewal Theorem to the renewal process Ñ , see Chapter 8 in Tĳms [9], we
find asymptotic expansions of the first two moments of τh as h → ∞. Let
μk = E(Y k1 ). If μ2 <∞, then

lim
h→∞

(
E(τh)− h

mμ1

)
= μ2

2mμ2
1
. (4)

If μ3 <∞, then

lim
h→∞

(
E(τ2
h)−

{
1

m2μ2
1
h2 + 2μ2

m2μ3
1
h

})
= 9μ2

2 − 4μ1μ3

6m2μ4
1

. (5)

Since the sample paths of the cumulative damage process are right contin-
uous, we have X(τh) > h. Define the overshoot by γh = X(τh) − h. Note
that

γh =
Ñ(h)+1∑
i=0

Yi − h,

so the overshoot γh is the excess or residual life at time h of the renewal
process Ñ . It follows that

E(γh) = μ1(1 + M1(h))− h,

where M1(t) = E(Ñ(t)) is the renewal function associated to Ñ and

lim
h→∞

E(γh) = μ2
2μ1

,
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see Tĳms [9]. For the second moment we have the formula

E(γ2
h) = μ2

1M2(t) + (μ2 + μ2
1 − 2μ1t)M1(t) + t2 − 2μ1t,

where M2(t) = E(Ñ2(t)). Also the asymptotic expansions of the second
moment and the distribution function are well-known:

lim
h→∞

E(γ2
h) = μ3

3μ1
,

and
lim
h→∞

P(γh ≤ x) = 1
μ1

∫ x
0

(1− F (y)) dy, x ≥ 0.

An alternative way to characterize the probability distribution of τh is
via its Laplace transform.

E
(
e−uτh

)
=
∫ ∞

0
e−utgh(t) dt

=
∞∑
k=0

∫ ∞
0

me−(u+m)t (mt)k
k! P(ηk ≤ h < ηk+1) dt

=
∞∑
k=0

(
m

u + m

)k+1
P(ηk ≤ h < ηk+1).

This expression for the Laplace transform of τh is still not attractive to
find the probability distribution of τh, even not numerically. Since double
(or two-dimensional) Laplace transforms can be treated numerically without
problems, we take the Laplace transform with respect to the variable h as
well:∫ ∞

0
e−shE

(
e−uτh

)
dh

=
∞∑
k=0

(
m

u + m

)k+1 ∫ ∞
0

P(ηk ≤ h < ηk+1)e−sh dh. (6)

Here it is useful to use that P(ηk ≤ h < ηk+1) = pk(h)− pk+1(h). Now∫ ∞
0

pk(h)e−sh dh =
∫ ∞

0

∫ h
0

gk(x) dxe−sh dh = 1
s
{Lf (s)}k,

where gk is the density of ηk = Y1 + . . . + Yk and Lf (s) = E
(
e−sY1

)
the

Laplace transform of the jump height. It follows that∫ ∞
0

P(ηk ≤ h < ηk+1)e−sh dh = 1
s
{Lf (s)}k (1− Lf (s)) ,
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hence the double Laplace transform of τh is given by∫ ∞
0

e−shE
(
e−uτh

)
dh = m (1− Lf (s))

s {u + m (1− Lf (s))} . (7)

So the double Laplace transform is determined by the intensity m of the
Poisson process of the times at which the damages occur and the Laplace
transform of the severity of the damage. We continue with three examples.

2.1 Example
Let the jump-size be constant, Y ≡ d. The renewal process Ñ associated
with the jumps is then deterministic: Ñ(t) = k if kd ≤ t < (k + 1)d. So
Ñ(t) = �t/d�. It follows that

gh(t) = me−mt
∞∑
k=0

(mt)k
k! P(Ñ(h) = k) = me−mt

(mt)n
n! ,

where n = �h/d�. So the distribution of τh is a gamma distribution and

E(τ rh) = 1
mr

(r + n)!
n! , n = �h/d�.

2.2 Example
Let the jump-size distribution be exponential with parameter λ. Without
loss of generality we may assume that λ = 1. Then

pk(h) = P(Y1 + . . . + Yk ≤ h) =
∫ h

0
e−s

sk−1

(k − 1)! ds, k ≥ 1.

It follows by partial integration that

pk+1(h) = −e−hh
k

k! + pk(h), k ≥ 0,

so, the probability density of τh is given by

gh(t) = me−mt
∞∑
k=0

(mt)k
k! (pk(h)− pk+1(h))

= me−mt−h
∞∑
k=0

(hmt)k
(k!)2

= me−mt−hI0(2
√
hmt),

where I0 denotes the modified Bessel function of the first kind with series
expansion

I0(z) =
∞∑
k=0

( 1
4z

2)k

(k!)2 .
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The renewal process Ñ associated with the jump sizes is in this case a
homogeneous Poisson with intensity 1. It follows from formula (3) that

E(τh) = h + 1
m

and Var(τh) = 2h + 1
m2 .

Note that in this example μk = k! and it follows that

E(τh) = h

mμ1
+ μ2

2mμ2
1

and
E(τ2
h) = 1

m2μ2
1
h2 + 2μ2

m2μ3
1
h + 9μ2

2 − 4μ1μ3

6m2μ4
1

.

The first two moments of the overshoot γh = X(τh)− h are equal to

E(γh) = h + 1 and E(γ2
h) = h2 + 2h.

2.3 Example
Let the jump-size distribution be a gamma distribution Γ(β, 1), i. e.

f(y) = e−y
yβ−1

Γ(β) , y ≥ 0 and Lf (s) =
(

1
1 + s

)β
.

It follows that∫ ∞
0

E
(
e−uτh

)
e−sh dh =

m
(
(1 + s)β − 1

)
s {u(1 + s)β + m ((1 + s)β − 1)} .

Unfortunately, it is not possible to get a nice analytical expression for the
inverse of this double Laplace transform. We use methods from [10] for
numerical inversion of the double Laplace transform. In Figure 1 the prob-
ability density of τ1 is displayed for m = 1 and several values of β. For
β = 1, the jump-size distribution is exponential, see the last Example.

We conclude this Section with a discussion of the case of a moving bound-
ary. In their paper [1], Mercer and Smith discuss the case where the barrier
h is replaced by the moving barrier h− λt, where λ > 0 is a constant. The
term λt can be considered as the wear caused by nearly continuous abrasion.
It follows that the first time that this level is exceeded is now given by

τh,λ = min{t ≥ 0 : X(t) > h− λt}.

The analysis of the distribution of τh,λ in [1] is based on an approximation
of the wear caused by abrasion by adding to X(t) an independent Poisson
process with intensity m1 and jump-size distribution concentrated in x1.
Noting that the limit is the process λt if m1 →∞, x1 → 0 such that m1x1 →
λ, they use the result for Poisson processes with fixed barriers. Instead of
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Figure 1. Probability densities of τ1 for m = 1 and β = 1, β = 1/2 and β = 2
respectively.

this approach, we can calculate the two-dimensional Laplace transform of
τh,λ. It turns out that

P(τh,λ > t) = e−mt
∞∑
k=0

(mt)k
k! pk(h− λt),

and ∫ ∞
0

e−shE
(
e−uτh,λ

)
dh = λs + m(1− Lf (s))

s(u + λs + m(1− Lf (s)) .

This formula can be inverted numerically which will give us all the infor-
mation about the wear process that we need.

3 GENERALIZED MOREY MODEL

We discuss now a more general model, which is a generalization of a model
introduced by Richard C. Morey. In Mercer’s paper [1], the shocks occur ac-
cording to a homogeneous Poisson process. Morey proposes to use a renewal
process to describe the occurrence of the shocks. So the wear is modelled as
a so-called compound renewal process. Compound Poisson processes have
been introduced by W. L. Smith in [3]. Compound renewal processes are
extensively used as models in economical and actuarial applications.

Let 0 = S0 < S1 < S2 < . . . be the times at which shocks occur. We
will model these times as a renewal process. This means that the times Ti
between successive shocks, i.e.

Ti = Si − Si−1, i = 1, 2, . . . ,
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are independent and identically distributed, strictly positive random vari-
ables. The cumulative distribution function of the inter-occurrence times
Tj will be denoted by F. If F (x) = 1− e−mx is the cumulative distribution
function of the exponential distribution, we have the case discussed in [1].
For all t ≥ 0, we denote by N(t) the number of shocks during the time
interval [0, t], so

N(t) = max{j | Sj ≤ t}.
Let the damage occurring at time Sj be given by the random variable Yj .
We will assume that the sequence {(T, Y ), (Tj , Yj), j ≥ 1} of random vectors
is an i.i.d. sequence and we will denote the cumulative distribution function
of the random vector (T, Y ) by H :

H(x, y) = P(T ≤ x, Y ≤ y).

So the severity of the damage and the time since the last shock may be
dependent. Note that F (x) = H(x,+∞). Assuming additivity of damage
and no recovery, the total damage X(t) occurred during the time interval
[0, t] can now be expressed by the formula,

X(t) =
{ ∑N(t)

j=1 Yj if T1 ≤ t,

0 if T1 > t.
(8)

The process {X(t), t ≥ 0} is in the literature also known as a renewal reward
process, see [9].

Denote, as before, by τh the time at which the process X crosses for
the first time the level h > 0. Here it is in general not possible to give a
useful formula for the probability distribution of τh, so we try to calculate
the Laplace transform of τh. By partial integration and formula (1) we get

E(e−uτh) = 1−
∫ ∞

0
ue−utP(X(t) ≤ h) dt. (9)

To do anything with this formula, we need to know the probability P(X(t) ≤
h), which is the same as P(τh > t), the probability that we are trying to
find. Since in the case of a compound Poisson process it turned out to be
useful to consider the double Laplace transform, we will use here the same
approach. By partial integration,∫ ∞

0
e−shP(X(t) ≤ h) dh = 1

s
E

(
e−sX(t)

)
, (10)

Using (9) and (10), we get for the double Laplace transform∫ ∞
0

e−shE(e−uτh) dh =
∫ ∞

0
e−sh

(
1−

∫ ∞
0

ue−utP(X(t) ≤ h) dt
)

dh

= 1
s

{
1−

∫ ∞
0

ue−utE
(
e−sX(t)

)
dt

}
. (11)
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Denote the Laplace-Stieltjes transforms of F and H by LF and LH respec-
tively, i.e

LF (u) =
∫ ∞

0
e−ut dF (t) = E

(
e−uT

)
and

LH(u, s) =
∫ ∞

0

∫ ∞
0

e−ux−sy dH(x, y) = E
(
e−uT−sY

)
,

for all u, s ≥ 0. Then we have the following formula for the double Laplace
transform of τh.

Theorem 3.1 Let {X(t), t ≥ 0} be a renewal reward process. Then, for
u, s > 0, ∫ ∞

0
e−shE(e−uτh) dh = LF (u)− LH(u, s)

s(1− LH(u, s)) . (12)

Proof. We calculate the righthand side of formula (11). Conditioning on
the event {T1 = x,C1 = y} we get,

E[e−sX(t)] =
∫ ∞

0

∫ t
0

E

(
e−sX(t) | T1 = x,C1 = y

)
dH(x, y) + · · ·

+
∫ ∞

0

∫ ∞
t

E

(
e−sX(t) | T1 = x,C1 = y

)
dH(x, y)

=
∫ ∞

0

∫ t
0

E

(
e−s(y+X(t−x))

)
dH(x, y) + (1− F (t)). (13)

Multiplying the first term in the righthand side of formula (13) with ue−ut

and integrating with respect to t, we get∫ ∞
0

ue−ut
(∫ ∞

0

∫ t
0

E

(
e−s(y+X(t−x))

)
dH(x, y)

)
dt

=
∫ ∞

0

∫ ∞
0

e−sy
(∫ ∞
x

ue−utE
(
e−sX(t−x)

)
dt

)
dH(x, y)

=
∫ ∞

0

∫ ∞
0

e−ux−sy
(∫ ∞

0
ue−urE

(
e−sX(r)

)
dr

)
dH(x, y)

= LH(u, s)
∫ ∞

0
ue−utE

(
e−sX(t)

)
dt. (14)

Multiplying the second term in the righthand side of formula (13) with
ue−ut and integrating with respect to t, we get∫ ∞

0
ue−ut(1− F (t)) dt = 1− LF (u). (15)

So, multiplying the lefthand side of equation (13) with ue−ut and integrat-
ing with respect to t, and substituting the formulas (14) and (15) in the
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righthand side, we get∫ ∞
0

ue−utE
(
e−sX(t)

)
dt = LH(u, s)

∫ ∞
0

ue−utE
(
e−sX(t)

)
dt + 1− LF (u),

which implies that∫ ∞
0

ue−utE
(
e−sX(t)

)
dt = 1− LF (u)

1− LH(u, s) .

Substitution of this formula in equation (11) gives the result. �
Theorem 3.1 has been proven in more general form in Theorem 2.A1 in

Sumita and Shanthikumar [5].
As special cases consider where T and Y are independent with distribu-

tions F and G respectively. This is the model studied in Morey’s paper [2].
The model is in this case known as a compound renewal process, see Smith
[3]. ∫ ∞

0
e−shE(e−uτh) dh = LF (u)(1− LG(s))

s(1− LF (u)LG(s)) . (16)

If T and Y are independent with distributions F (x) = 1 − e−mx and G
respectively. Then

LF (u) = m

m + u

and ∫ ∞
0

e−shE(e−uτh) dh = m (1− LG(s))
s {u + m (1− LG(s))} , (17)

which is in agreement with the earlier derived formula (7).
Our results can also be applied in calculations for discounted life-cycle

costs. Here the random variables Yk represent the cost (notation Ck) of the
kth repair. An important special case is the case where the cost C = c(T )
is given as a (non-random) function of the time since the last repair. This
is the case that T and C are totally dependent. Here, the double integral
in the calculation of LH(u, s) reduces to a single integral:

LH(u, s) =
∫ ∞

0
e−ux−sc(x) dF (x).

3.1 Example
As an example of the application of Theorem 3.1, consider the case where
the shocks occur according to a homogeneous Poisson process with intensity
m and with exponentially distributed damage Y. We will use Marshall &
Olkin’s bivariate distribution to introduce a dependence structure between
the damage and the time since the last shock, see [11] and [6]. This bivariate
exponential distribution can be described as follows.

T = min(U, V ), Y = min(W,V ),
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where U, V,W are independent random variables with exponential distri-
butions with parameters λ, μ and ν respectively. It follows that the joint
survival probability of the pair (T, Y ) is

F̄ (x, y) = P(T > x, Y > y) = e−(λx−νy−μmax(x,y))

with exponential marginal distributions

P(T > x) = e−(λ+μ)x, P(Y > y) = e−(μ+ν)y.

This distribution is characterized among the bivariate distributions with
exponential marginal distributions by the following bivariate version of the
memoryless property:

P(T > x + z, Y > y + z | T > z, Y > z) = P(T > x, Y > y)

for all x ≥ 0, y ≥ 0, z ≥ 0. See [6], Chapter 5, where more information can
be found.

The Laplace transform of the random vector (T, Y ) is given by

LH(u, s) = E
(
e−uT−sY

)
= E

(∫ ∞
0

1[T,∞)(x)ue−ux dx
∫ ∞

0
1[Y,∞)(y)se−sy dy

)
=
∫ ∞

0

∫ ∞
0

use−ux−syP(T ≤ x, Y ≤ y) dxdy

= 1− u

λ + μ + u
− s

μ + ν + s

+ us(λ + 2μ + ν + u + s)
(λ + μ + u)(ν + μ + s)(λ + μ + ν + u + s) .

Substitution of this formula in (12) together with LF (u) = m/(m+u) yields
a formula for the double Laplace transform for the first hitting time of level
h. Using the results from [10] we can invert this double Laplace transform
to get the probability density of the first hitting time of a given level h. For
the dependent case it seems that the density f(t, h), given by

f(t, h) dt = P(τh ∈ dt)

is not differentiable at the point t = h, which causes problems for the
numerical Laplace inversion. Here we use the window-function 1− e−(x−h)

to smoothen this function.
Figure 2 contains the result of the calculation of the probability density

of τ1 for the case λ = μ = ν = 1. The histogram is obtained from 105

simulations of the process.
To compare this result with the probability density that we get if we

assume independence of the shock and the time since the last shock (i.e. μ =
0) we display, for λ = ν = 1, the probability density and a simulation of τ1
in Figure 3.
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Figure 2. Density (numerical Laplace inversion) and Histogram (simulation)
for the dependent case.
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Figure 3. Density (numerical Laplace inversion) and Histogram (simulation)
for the independent case.
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4 CONCLUDING REMARKS

The paper provides an overview of historical developments about stochastic
modeling degradation as compound point processes. The paper extends the
classical results to more general case and illustrates that modern methods
of computing the inverse of the Laplace transform can be applied to derive
the distribution of cumulative damage in a more general setting.
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