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Preface

The Pacific Rim area is one of the key manufacturing sites in the world, and
applications of statistical thinking and methods for production engineering have
never been more important with big data. To address the need, a statistical
conference for production engineering was first proposed by Prof. George Tiao,
The University of Chicago, during his opening remarks at 2014 Joint Applied
Statistics Symposium of the International Chinese Statistical Association and
Korean International Statistical Society in Portland. The first conference was held at
Shanghai Center for Mathematical Sciences located in Fudan University in
December 2014. The main goal was to bring researchers and practitioners in
statistics and engineering from academe and industry to promote collaborations and
exchange the latest advancements in methodology and real-world challenges among
participants. Following the success of the first conference, the 2nd Pacific Rim
Statistical Conference for Production Engineering was held at Seoul National
University in December 2016. These proceedings present the selected papers based
on the presentations at the first and second Pacific Rim Statistical Conferences for
Production Engineering. We hope that this effort can stimulate further collabora-
tions between academe and industry in production engineering.

The conference series has become a major joint event of the International
Chinese Statistical Association and Korean International Statistical Society. We
welcome those who are interested in this endeavor to join the third conference that
will be held at National Tsing Hua University in Taiwan in 2018.

Portland, USA Dongseok Choi
Busan, Korea (Republic of) Daeheung Jang
Stanford, USA Tze Leung Lai
Seoul, Korea (Republic of) Youngjo Lee
Stanford, USA Ying Lu
Ann Arbor, USA Jun Ni
Madison, USA Peter Qian
Gainesville, USA Peihua Qiu
Chicago, USA George Tiao
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Chapter 1
Bottom-Up Estimation and Top-Down
Prediction: Solar Energy Prediction
Combining Information from Multiple
Sources

Youngdeok Hwang, Siyuan Lu and Jae-Kwang Kim

Abstract Accurately forecasting solar power using the data from multiple sources
is an important but challenging problem. Our goal is to combine two different physics
model forecasting outputs with real measurements from an automated monitoring
network so as to better predict solar power in a timely manner. To this end, we con-
sider a new approach of analyzing large-scale multilevel models for computational
efficiency. This approach features a division of the large-scale data set into smaller
ones with manageable sizes, based on their physical locations, and fit a local model
in each area. The local model estimates are then combined sequentially from the
specified multilevel models using our novel bottom-up approach for parameter esti-
mation. The prediction, on the other hand, is implemented in a top-down matter.
The proposed method is applied to the solar energy prediction problem for the US
Department of Energy’s SunShot Initiative.

1.1 Introduction

Solar energy’s contribution to the total energy mix is rapidly increasing. As the most
abundant form of renewable energy resource, solar electricity is projected to supply
14% of the total demand of Contiguous United States by 2030, and 27% by 2050,
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4 Y. Hwang et al.

respectively (Margolis et al. 2012). Having a high proportion of solar energy in the
electric grid, however, poses significant challenges because solar power generation
has inherent variability and uncertainty due to varying weather conditions (Denholm
and Margolis 2007; Ela et al. 2011). Moreover, the uncertainty of solar power often
obliges system operators to hold extra reserves of conventional power generation at
significant cost. Accurate forecasting of solar power can improve system reliability
and reduce reserve cost (Orwig et al. 2015; Zhang et al. 2015). Applying statistical
methods on the forecasts from these numerical models can significantly improve the
forecasting accuracy (Mathiesen and Kleissl 2011; Pelland et al. 2013).

Computermodels have advancedbeyond scientific research to becomean essential
part of industrial applications. Such expansions need a different methodological
focus. To take advantage of the availability of such computer models, matching the
model output with the historical observations is essential. This task is closely related
to model calibration (Gramacy et al. 2015; Wong et al. 2016) to choose the optimal
parameters for the computer model.

In thiswork,we consider a general framework to exploit the abundance of physical
model forecasting outputs and realmeasurements from an automatedmonitoring net-
work, usingmultilevel models. Ourmethod addresses the aforementioned challenges
for large-scale industrial applications. The proposed bottom-up approach has a com-
putational advantage over the existing Bayesian method in computation for parame-
ter estimation, because it does not rely on the Markov chain Monte Carlo (MCMC)
method. Our approach is a frequentist based on the Expectation-Maximization (EM)
algorithm.

1.2 Global Horizontal Irradiance

In this section, we describe our solar energy application and the overall problem. Our
goal is to improveGlobalHorizontal Irradiance (GHI) prediction over theContiguous
United States (CONUS). GHI is the total amount of shortwave radiation received
by a surface horizontal to the ground, which is the sum of Direct Normal Irradiance
(DNI, the amount of solar radiation received by a surface perpendicular to the rays
that come from the direction of the sun), Diffuse Horizontal Irradiance (DHI, the
amount received by a surface that has been diffused by the atmosphere), and ground-
reflected radiation.GHI forecast is ofmain interest of the participants in the electricity
market.

Tomonitor the GHI, sensors are located over CONUS. The collected observations
are obtained from the sensor locations marked on Fig. 1.1. The GHI readings are
recorded at 1,528 locations in 15-min intervals. Hence, the data size grows very
quickly; every day, thousands of additional observations are added. The data from
each site are separately stored in the database indexed by the site location. The
readings are obtained from various kinds of sensors, whichmay cause some potential
variability among different locations. In our application, we consider two models to
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Fig. 1.1 The map of the 1,528 monitoring network locations, marked by dots

forecast GHI: Short-Range Ensemble Forecast (SREF, Du and Tracton 2001) and
North American Mesoscale Forecast System (NAM, Skamarock et al. 2008). They
share a common overall trend; however, there are certain discrepancies between the
two model outputs. The model outputs are available at any location in a pre-specified
computational domain, which covers the entire CONUS. The model output is stored
at every hour, but can be matched with 15-min interval measurement data after post-
processing.

1.3 Model

In this section, we present the basic setup and our proposed method. A model with
three levels is considered in this paper, but the number of levels can be arbitrary.

1.3.1 Multilevel Model

Assume that the sensors are divided into H exhaustive and non-overlapping groups.
For group h, measurements are collected at nh sensors. From the i th sensor in group
h, the measurements yhi j are available, as well as the output from computer models
as the covariates xhi j , for j = 1, . . . , nhi . Information at sensor or group level, ch
and chi , is also available. Note that the covariates x are often more widely available
than yhi j ’s; in our application in Sect. 1.4, the computer model output is available not
only at monitoring sites but also everywhere in the spatial domain of interest. We
assume that nh can be relatively small while nhi is usually large, because managing
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Fig. 1.2 Overall description of the data storage and modeling structure, where the data are stored
separately for each site

the existing sensors and taking additional measurements from them usually do not
cost much, while deploying new monitoring sensors often causes considerable cost.

Figure1.2 shows the overall data storage and modeling structure of our proposed
method to achieve these goals. Our so-called bottom-up approach builds up a hier-
archy with the measurements by taking the following three steps.

The first step is summarization. There is no direct measurement for the kth level
model (k ≥ 2), so we use the observations from the lower level model to obtain a
‘measurement’ and construct an appropriate measurement model. The second step
is combination; we combine the measurement model and structural model to build
a prediction model using Bayes’ theorem. The third step is learning, in which we
estimate the parameters by using the EM algorithm. In the bottom-up approach, the
computation for each step uses a summary version to ease the storage of data and
spare the use of computer memory despite the large amount of data. In the subsection
below, we describe each step in detail.

1.3.2 Bottom-Up Estimation

In this section, we give a detailed description of the estimation procedure. First,
consider the level one and level two models,

yhi ∼ f1(yhi |xhi ; θhi ), (1.1)

θhi ∼ f2(θhi |chi ; ζh), (1.2)
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where yhi = (yhi1, . . . , yhinhi )
� and xhi = (x�

hi1, . . . , x
�
hinhi

)� are the observations
and covariates associated with the i th sensor in the hth group for the level one model,
respectively, and θhi is the parameter in the level one model. In (1.2), θhi is treated
as a random variable and linked to the unit-specific covariate chi and parameter ζh
in the level two model.

To estimate ζh in (1.2), we use the three-step approach discussed in Sect. 2.1. In
the summarization step, for each sensor, we treat (xhi , yhi ) as a single data set to
obtain the best estimator θ̂hi of θhi , a fixed parameter. Define g1(θ̂hi | θhi ) to be the
density of the sampling distribution of θ̂hi . This sampling distribution is used to build
a measurement error model, where θ̂hi is a measurement for the latent variable θhi ,
while (1.2) is a structural error model for θhi .

The sampling distribution g1(θ̂hi | θhi ) is combined with the level twomodel f2 to
obtain the marginal distribution of θ̂hi . Thus, the MLE of the level two parameter ζh
can be obtained by maximizing the log-likelihood derived from the marginal density
of θ̂hi . That is, we maximize

nh∑

i

log
∫

g1(θ̂hi | θhi ) f2(θhi | chi ; ζh)dθhi (1.3)

with respect to ζh , combining g1(θ̂hi | θhi ) with f2(θhi | chi ; ζh). The maximizer of
(1.3) can be obtained by

ζ̂h = argmax
ζh

nh∑

i=1

E

[
log{ f2(θhi | chi ; ζh)} | θ̂hi ; ζh

]
. (1.4)

Note that ζh is the parameter associated with the level two distribution, and (1.4)
aggregates the information associated with θ̂hi to estimate ζh .

To evaluate the conditional expectation in (1.4), we derive

p2(θhi | θ̂hi ; ζh) = g1(θ̂hi | θhi ) f2(θhi | chi ; ζh)∫
g1(θ̂hi | θhi ) f2(θhi | chi ; ζh)dθhi

. (1.5)

The level two model can be learned by the EM algorithm. Specifically, at the t th
iteration of EM, we update ζh by

ζ̂
(t)
h = argmax

ζh

nh∑

i=1

E

[
log { f2(θhi | chi ; ζh)} | θ̂hi ; ζh = ζ̂

(t−1)
h

]
, (1.6)

where the conditional expectation is with respect to the prediction model in (1.5)
evaluated at ζ̂ (t−1)

h , which is obtained from the previous iteration of the EMalgorithm.
When θ̂hi is the maximum likelihood estimator, we may use a normal approx-

imation for g1(θ̂hi | θhi ). Asymptotically, θ̂hi is a sufficient statistic for θhi and

http://dx.doi.org/10.1007/978-981-10-8168-2_2
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normally distributed with mean θhi and the estimated variance {I1hi (θhi )}−1, where
{I1hi (θhi )}−1 is the observed Fisher information derived from g1.

Once each ζ̂h is obtained, we can use {ζ̂h; h = 1, . . . , H} as the summary of
observations to estimate the parameters in the level three model. Let the level three
model be expressed as

ζh ∼ f3 (ζh |ch; ξ) , (1.7)

where ch are the covariates associated with group h and ξ is the parameter associated
with the level threemodel. Estimation can be done in a similar fashion to the level two
parameters. However, ζh is now treated as a latent variable, and ζ̂h as a measurement.
Similar to (1.3), we maximize

H∑

h=1

log
∫

g2(ζ̂h | ζh) f3 (ζh | ch; ξ) dζh (1.8)

with respect to ξ to obtain ξ̂ , where g2(ζ̂h | ζh) is the sampling distribution of ζ̂h ,
which is assumed to be normal. The EM algorithm can be applied by iteratively
solving

ξ̂ (t) = argmax
ξ

H∑

h=1

E

[
log { f3 (ζh | ch; ξ)} | ζ̂h; ξ = ξ̂ (t−1)

]
, (1.9)

where the conditional distribution is with respect to the distribution with density

p3(ζh | ζ̂h; ξ) = g2(ζ̂h | ζh) f3 (ζh | ch; ξ)
∫
g2(ζ̂h | ζh) f3 (ζh | ch; ξ) dζh

evaluated at ξ = ξ̂ (t−1). The level three model can be chosen flexibly depending on
the usage, as it was in the lower levels.

1.3.3 Top-Down Prediction

In this section, we describe the prediction procedure. In contrast to the bottom-up
approach of Sect. 1.3.2, the prediction is made in a top-down fashion.

To describe the top-down approach to prediction, consider the three-level models
in (1.1), (1.2), and (1.7). The bottom-up estimation in Sect. 1.3.2 provides a way of
estimating the parameters, θhi , ζh , and ξ by θ̂hi , ζ̂h , and ξ̂ , respectively, using EM
algorithm or maximizing the marginal likelihood.
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Our goal is to predict unobserved yhi j values from the above models using the
parameter estimates. The goal is to generate Monte Carlo samples of yhi j from

p(yhi j | xhi j ; θ̂hi , ζ̂h , ξ̂) =
∫ ∫

f1(yhi j | xhi j ; θhi )p2(θhi | ζh , θ̂hi , ζ̂h , ξ̂)p3(ζh | ζ̂h , ξ̂)dζhdθhi∫ ∫ ∫
f1(yhi j | xhi j ; θhi )p2(θhi | ζhi , θ̂hi , ζ̂h , ξ̂)p3(ζh | ζ̂h , ξ̂)dζhdθhi dyhi j

(1.10)
where p2(θhi | θ̂hi , ζh, ζ̂h, ξ̂) = p2(θhi | θ̂hi , ζh) and p3(ζh | ζ̂h, ξ̂) are the predictive
distribution of θhi and ζh , respectively.

To generate Monte Carlo samples from (1.10), we use the top-down approach.
We first compute the predicted values of ζh from the level three model,

p3(ζh | ζ̂h, ξ̂) = g2(ζ̂h | ζh) f3(ζh | ch; ξ̂)
∫
g2(ζ̂h | ζh) f3(ζh | ch; ξ̂)dζh

, (1.11)

where g2(ζ̂h | ζh) is the sampling distribution of ζ̂h . Also, given the Monte Carlo
sample ζ ∗

h obtained from (1.11), the predicted values of θhi are generated by (1.5).
The best prediction for yhi j is

ŷ∗
hi j = E3

[
E2

{
E1(yhi j | xhi j , θhi ) | θ̂hi ; ζh

}
| ζ̂h; ξ̂

]
(1.12)

where subscripts 3, 2, and 1 denote the expectation with respect to p3, p2, and f1,
respectively. Thus, while the bottom-up approach to parameter estimation starts with
taking the conditional expectation with respect to p1 and then moves on to p2, the
top-down approach to prediction starts with the generation of Monte Carlo samples
from p2 and then moves on to p1 and f1.

To estimate the mean-squared prediction error of ŷ∗
hi j given by Mhi j = E

{(ŷ∗
hi j − yhi j )2},we can use the parametric bootstrap approach (Hall andMaiti 2006;

Chatterjee et al. 2008). In the parametric bootstrap approach, we first generate boot-
strap samples of yhi j using the three-level model as follows:

1. Generate ζ
∗(b)
h from f3(ζh | ch; ξ̂), for b = 1, 2, . . . , B.

2. Generate θ
∗(b)
hi from f2(θhi | chi ; ζ

∗(b)
h ), for b = 1, 2, . . . , B.

3. Generate y∗(b)
hi j from f1(yhi j | xhi j ; θ

∗(b)
hi ), for b = 1, 2, . . . , B.

Once the bootstrap samples of Y∗(b) = {y∗(b)
hi j ; h = 1, 2, . . . , H ; i = 1, . . . , nh;

j = 1, . . . ,mhi } are obtained, we can treat them as the original samples and apply
the same estimation and prediction method to obtain the best predictor of yhi j . The
mean-squared prediction error (MSPE)Mhi j can also be computed from the bootstrap
sample. That is, we use

M̂hi j = E∗{(ŷ∗
hi j − yhi j )

2}

to estimate Mhi j , where E∗ denote the expectation with respect to the bootstrapping
mechanism.
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1.4 Prediction of Global Horizontal Irradiance

In this section, we give a detailed description of the available data and the model
that we use. We apply the proposed model and compare results to those of the
comparators.

1.4.1 Data Description

We use 15 days of data for our analysis (12/01/2014–12/15/2014). There are 1528
sites to monitor GHI, where the number of available data varies between 12 and 517
observations, and the total number of observations is 557,284. To borrow strength
from neighboring sites, we formed 50 groups that are spatially clustered by applying
theK-means algorithmon the geographic coordinates.We assume the sites belonging
to the same group are homogeneous. The number of sites in each group, nh , varies
between 10 and 59. Depending on the goal, one can use other grouping schemes
such as the distribution zone described in (Zhang et al. 2015). Calculated irradiance
is available at every 0.1 degree and is matched to the monitoring site location.

Since we are interested in the amount of irradiance, we first exclude zeros from
both observed measurements and computer model outputs for the analysis. Thus, all
values are positive and skewed to the right, and we used the logarithm transformation
for both predictors and responses. Hereinafter, all variables are assumed to be log-
transformed.

1.4.2 Model

This section presents the model that we used in the data analysis in detail. Let yhi j
be the j th measurement for the i th sensor in the hth group. Following the multilevel
modeling approach described in Sect. 1.3, we first assume that the measurement yhi j
follows

yhi j = xhi jθhi + ehi j , (1.13)

with a latent site-specific parameter θhi , where the covariates xhi j hasNAMandSREF
model output as predictors including an intercept term, and ehi j ∼ t (0, σ 2

hi , νhi ),
where σ 2

hi is scale parameter and νhi are the degree of freedom (Lange et al. 1989).
The degrees of freedom are assumed to be five in the analysis, but it also can

assumed to be unknown and estimated by the method of (Lange et al. 1989). Assume
that the level two model follows

θhi ∼ N (βh,Σh), (1.14)
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for some group-specific parameters βh = (βh1, . . . , βhp) and Σh . For further pre-
sentation, define the length H vector of j th coefficients of βh concatenated over H
groups

β( j) = (β1 j , . . . , βH j ),

and similarly define β̂( j). The subscript j is omitted hereinafter as we model each
parameter separately but in the same manner. To incorporate the spatial dependence
that may exist in the data, we assume that the level three model follows

β ∼ N (Fμ,Σ), (1.15)

where F is a pre-specified H by q model matrix, and μ is the mean parameter of
length q. In the analysis in Sect. 1.4.3, F is chosen to be 1, length H vector of 1’s
and a scalar μ. The spatial covariance Σ has its (k, l) th element

Σkl = cov(βk, βl) = τ 2 exp(−ρdkl),

where dkl is the distance between the groups. The distance between two groups is
defined to be the distance between the centroids of groups. The estimated spatial
effect for two coefficients is depicted in Fig. 1.3. Note that a group is formed by
collapsing several neighboring sites; hence, the number of groups is less than that
of sites. This also reduces the computational burden because the main computation
in our spatial model is associated with the number of spatial locations. Hence, it is
helpful to introduce the spatial components in the group level instead of the sensor
level to provide computational benefit.

Fig. 1.3 Spatial variation of the group-level coefficients from the second level for two computer
models, where the left panel shows the NAM model and the right panel the SREF model
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1.4.3 Results

This section presents the data analysis result. Under the linear regression model in
(1.13), the best prediction is ŷ∗

hi j in (1.12). We compared the multilevel approach
with two other modeling methods: (1) site-by-site model: fit a separate model for
each individual site; (2) global model: fit a single model for all sensor locations
using the aggregate data combining all sensors. To evaluate the prediction accuracy,
we conducted tenfold cross-validation. The data set is randomly partitioned into 10
subsamples. Of these 10 subsamples, one subsample was held out for validation,
while the remaining nine subsamples are used to fit the model and obtain predicted
values. The cross-validation process is repeated for each fold.

We considered two scenarios: (a) prediction made at observed sites and (b) pre-
diction made at new sites. For scenario (a), we partitioned the time point into ten
subperiods, while for (b) the sites into ten subregions.

We compare the accuracy of different methods by the root-mean-squared predic-
tion error (RMSPE), {N−1 ∑

j (yhi j − ŷhi j )2}1/2, with N being the size of the total
data set. Table1.1 presents the overall summary statistics for the accuracy of each
method, calculated from cross-validation. The standard deviation calculated over the
subsamples is in parentheses.

The rightmost column shows the overall accuracy. The global model suffers
because it cannot incorporate the site-specific variation. On the contrary, the site
model suffers from reliability issues for some sites because it does not use the
information from neighboring sites. The multilevel approach strikes a fine balance
between flexibility and stability. For a comprehensive comparison of each method,
we evaluate the accuracy measure divided by the number of available data points
for each site. As noted earlier, some stations may suffer from the data reliability
problem. As such, the available sample size can vary from station to station, which
affects the site-by-site model. When the prediction is made based on few available
samples due to the data reliability issues, the inference can be unstable, affecting the
accuracy of the prediction. The multilevel method can utilize information from other
sites belonging to the same group, so it is particularly beneficial for locations with
smaller sample sizes.

Table 1.1 Root-mean-squared prediction error comparison of the different modeling methods,
divided by the size of the training sample and overall

Training sample size

Method <200 ≥200 Overall

Multilevel 0.678 (0.129) 0.591 (0.052) 0.594 (0.055)

Site 1.344 (0.764) 0.593 (0.073) 0.632 (0.133)

Global 0.646 (0.038) 0.639 (0.009) 0.639 (0.009)
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1.5 Conclusion

With the advances in remote sensing and storage technology, data are now collected
over automatedmonitoring networks at an unprecedented scale.A simple yet efficient
modeling approach that can reliably handle such data is of great need.

In this paper, we have developed a general framework using amultilevel modeling
approach, which utilizes monitoring data collected to manage a large-scale system.
It is presented with a solar energy application, although it can be flexibly modified to
incorporate the data structure or overall goal. The computation can be automatedwith
deterministic criteria and be easily distributed. It has been shown that the method
can provide improved inference compared to naive approaches. Our methodology
can also be extended to incorporate discrete measurements.
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Chapter 2
The 62% Problems of SN Ratio and New
Conference Matrix for Optimization: To
Reduce Experiment Numbers and to Increase
Reliability for Optimization

Teruo Mori

Abstract Robust design has been widely adopted during product design to reduce
variation and improve quality. However, based on our survey of 171 published case
studies using the L18 orthogonal array in Japan, 62%of the signal-to-noise ratios (SN)
of the optimal design cases concluded from the main effects plots were worse than
the best combinations of the existing 18 runs of the L18 orthogonal array. This means
that current robust design based on SN ratios and the L18 cannot predict the optimal
conditions accurately and needs further work to improve the analytical prediction
accuracy and optimization efficiency. We will show the six causes of 62% problems.
Now, we have understood to face the serious problems like global warming, food
amounts for increasing population.We need faster andmore precisemethodology for
researching them, and it will be able to reduce experiment numbers and to increase
reliability using conference matrix.

2.1 Introduction

The job range of engineers’ assignments is wide and includes the basic research on
invention and newproduct development through the improvement of current products
and improvement of production processes, etc. They need tomeet development goals
and to find optimal conditions to reduce product and process performance variation
at the same time (Mori 2011, 2009, 1992).

It is too late to conduct the troubleshooting activities to change product design
or production conditions to resolve product defect issues after those products are
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manufactured and shipped to the market and to customers. It is common to use
the recall and warranty activities to resolve quality problem issues. Also, it will be
happened at a loss to customers. Of course, company guarantees the product and
service quality as top priority and is willing to take action to reduce customers’ loss
due to defective products (Mori 2014).

In this paper, we will review first the problems of the current robust design. Then,
we will show to expect the new conference matrix for optimization methods.

2.2 Verification Assessment to Confirm the Optimal
Condition to Exceed the Best of L18 Trials

After finding the optimal candidate condition, engineers will conduct experiments to
confirmandverify that the results of the optimal candidate condition are reproducible.
Table2.1 shows the SN ratio results (Mori 2013) (a) of the optimal conditions for 171
case studies to compare the best SN ratio values (b) of the L18 trials. One hundred
and six (62%) cases were a<b. Theoretically, the SN ratio results of (a) are as good
as or better than (b), because the optimal condition candidates (a) are chosen from
many more possible combinations of factor levels than (b).

Unfortunately, 62% of the optimal conditions of (a) are worse than the best values
of (b) as illustrated in Table2.1 (Japan Quality Engineering association 2003–2012).

Engineers who have been trained in statistical modeling of Taguchi may be sur-
prised at the “prediction uncertainty of the optimal design candidates” shown in
Table2.1. Then, they will be requested the more advanced mathematical analysis for
improving the prediction accuracy and reduce the uncertainty of the optimal design
solutions.

2.3 Investigating the Root Causes for 62% Problems

Assume that the mean of the output response is µ; and that the main effects of four
selected experimental factors (A, B, C, and D) are a, b, c, and d.

The interaction terms are expressed using a multiplication term such as ab,
ac,…abc…, and abcd for the four factors. Let the summation of experimental error
and measurement error be (e). The experimental output response (y) is expressed
with the mean value µ, main effects, a, b, c, and d, and the quadratic, interaction and
higher terms as shown here:

Experimental output response (Jeff Wu and Hamada 2009)
y = µ + a + b + c + d + aa + ab + ac + · · · + cd + abc + · · · + bcd +

abcd + (e)
= Mean value + main effects + quadratic + interaction effects + higher terms

+ error
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Table 2.1 Optimal condition comparison analysis

QES Total # of case studies # of case studies where (a<b)

2012 6 3

2011 9 6

2010 15 8

2009 7 6

2008 20 9

2007 14 9

2006 33 24

2005 23 11

2004 22 18

2003 22 12

Total 171 106

(%) 62.0

QES→ Japan quality engineering symposium

The optimal conditions (a) of Table2.1 are selected based on the level averages
which were calculated to divide the sum of response y with data numbers. The
response graphs are made with the level averages.

On the other hand, orthogonal array tables like L8, L9, L18 as the design matrix
have the linear effect structure, so that it will be expected that the response should
consist of linearity components. If the response has nonlinear effect, the response
graph will be shifted from the original by contaminating nonlinear effect. Nonlinear
effect will consist of quadratic, and interaction between factors and higher other
terms. We can estimate the nonlinear effects in the response with the empty column
of the orthogonal array table. So, we tried to look for the nonlinear effect from start
to finish of the robust process.

2.4 Causes Analysis for 62% Problems

We have done to analyze the causes of 62% problems related to nonlinear effects. We
finally detected six nonlinear effects at robust process on Fig. 2.1. It has the marked
1©– 6© on nonlinear in Fig. 2.1.
We will introduce 1©– 6© at Fig. 2.1 to explain the complex mathematics back-

ground to get contaminated with nonlinear effects.
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Combine the best levels  

Fig. 2.1 Six nonlinear effects on robust design process

2.5 Multiple Contamination of Six Type of Nonlinear Effect

Six types of nonlinear effects were separately investigated as the cause of 62%
problem. Actual optimum cases will be contaminated single or multiple of them. We
cannot detect the real causes individually if columns were filled with factors.

However if there were empty columns in orthogonal array tables, we can make a
diagnose the degree of contamination the with the empty column factor effects.

We selected the published typical three case studies with empty columns for SN
ratio. We showed Figs. 2.2(BGA), 2.3(circuit), 2.4(straw) (Tanabe 2016).

Fig. 2.2 BGA semiconductor structure

Fig. 2.3 Electro circuit case
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Fig. 2.4 Education training case

At Fig. 2.2 case, the empty column 8 is the largest effect. At Fig. 2.3, this case
has six factors, the empty column 8 is fourth largest factor, and it is at middle class
position. At Fig. 2.4, this case 3 factor and empty columns are 5 factors. The largest
empty column 4 is in second largest position. The empty columns effects might
be lower than the layouted columns. Those empty columns are gotten the multiple
contaminations of six nonlinear effects. We cannot ignore such six nonlinear effects
for contamination to other columns. The current robust design process will not be
reasonable for engineering subjects. At least, SN ratio and L18 should be replaced
the different way to get more reliability of optimization.

2.6 The New Design Matrix for the Next Generation

We started to create the new process to avoid six types of nonlinear effects for robust
design. L18 has been long time recommended as standard tool at current robust
design. Taguchi (1984) explored statistically the optimum condition like black box.
The current robust design was not supported that reason is to demand too much
experiment number like 108 at dynamic style. If statistician likes to recommend
directly catching the optimal solution itself, the trial number might be naturally
increased to avoid missing it. If a fisherman tries to catch a fish, he will select the
net as much as largest size with the finest mesh to fear failures.

The scientist now is shifting the investing philosophy to confirm the tendency of
factor effect to target in mix conditions with design matrix to make the less number
trials and higher reliability. The best deign matrix might be “conference matrix.”
Conference matrix C4 (2133) is the minimum number for three-level matrix with

Table 2.2 C4(2133) and
linear term of L9(34)
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linear term. We compare linear term with L9(34) in Table2.2. (*) is the sum of
product of columns to confirm the orthogonality (Tanaka 2016).

The new process may not use SN ratio with log conversion to avoid six nonlinear
effects, and we are testing to adapt the raw data themselves. It will be complete in
2017.

2.7 Conclusion

In this paper, author introduced 62% problems to the current robust design with L18

and SN ratio.
Based on author survey, 171 published case studies using the L18 orthogonal array

(OA) in Japan, and 62% of the signal-to-noise ratios (SN) of the optimal design cases
concluded from the main effects plots were worse than the best combinations of the
18 runs of the L18 orthogonal array.

Also, author detected six types of nonlinear effects.
1 : Interaction among factors: 2 : Log conversion for response
3 : Reciprocal structure of SN ratio: 4 : Diversion (S2) size of SN ratio
5 : Confounding type L18(2137): 6 : Geometric level average after log conversion.
Also, author is touching the conference matrix and new concept for new type

robust design.
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Chapter 3
Possible Clinical Use of Big Data: Personal
Brain Connectomics

Dong Soo Lee

Abstract The biggest data is brain imaging data, which waited for clinical use
during the last three decades. Topographic data interpretation prevailed for the first
two decades, and only during the last decade, connectivity or connectomics data
began to be analyzed properly. Owing to topological data interpretation and timely
introduction of likelihood method based on hierarchical generalized linear model,
we now foresee the clinical use of personal connectomics for classification and
prediction of disease prognosis for brain diseases without any clue by currently
available diagnostic methods.

3.1 Introduction

Big data and its handling require refined statistics for clinical application. Examples
are (1) physiological monitoring data which can be acquired using smartphone and
recently developed soft bioelectronics sensors (Park et al. 2015; Gao et al. 2016),
(2) genomics and epigenomics predicting individual’s disease predisposition (Rehm
et al. 2015) or guiding the N of 1 study using metagenomics (Lillie et al. 2011) or
pharmacogenomics for drug selection or avoidance (Relling et al. 2015), and (3)
brain connectivity data classifying and predicting the prognosis.

Use of lifelog physiological signals for clinical purposes mandates (1) the intro-
duction of data storage such as cloud and (2) easy mining of the valuable information
therein and (3) sleek input and output from the cloud storage. Cheaper and readily
availablemethods are now to be developed formulti-omics data to be used for clinical
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purposes. In contrast, clinical use of brain connectivity data needs a fresh viewpoint
other than mapping or graph representation of brain.

3.2 Use of Brain Images as Topography for Clinical
Decision

In order to use brain images for classification and prediction of brain diseases, which
are yet defined not on these images but only on the basis of psychopathology, sci-
entists had established statistical parametric mapping (SPM) to localize the regional
abnormality, and its significance was inferred by strict statistics (Lee et al. 2001).
SPM had been used to find the areas of abnormal activity in disease compared with
normal controls. The activity ranged from T1 density representing tissue density on
T1 MRI to glucose metabolism on fluorodeoxyglucose (FDG) PET. However, we
find mostly no abnormality on brain images even if we do refined topographical
analysis in many types of brain diseases. Examination of interregional connectivity
came to be considered as an alternative, and brain connectivity was defined as brain
graphs represented by the correlational activity of many brain regions (Lee et al.
2008).

3.3 Brain Graphs and Inherent Barrier Against Clinical
Use

Brain graphs consist of nodes (brain regions or voxels) and edges (connections).
Brain graphs were analyzed by the newly introduced method of algebraic topology,
especially persistent homology (Zomorodian and Carlsson 2005; Singh et al. 2008).
Graphs were filtered by simplicial chain complex filtration. Topological invariants
were looked for from this filtration, which yielded barcodes of Betti-0 (Lee et al.
2012). Betti-0 is counting the number of connected components and is looking at
the zero-dimensional topological invariant. Recently, this analysis went on to the
synthesis of information from multimodal measurements on T1 MRI and FDG PET,
which is called multidimensional persistent homology (Lee et al. 2017).

Brain connectivity data had long been analyzed by graph theory (Bullmore and
Sporns 2009; Rubinov et al. 2010). Both node and edge data were used for classi-
fication according to the classic graph theory (Mucha et al. 2010; Ahn et al. 2010).
However, the many parameters of graph theory could not easily elucidate the charac-
teristics of brain graphs, andmoreover the representative global and nodal parameters
could not be easily compared between diseased and healthy groups, notwithstanding
statistical inference. From sample data of two groups, single matrices represented
each group for their connectivity. Thus, the statistical inference should have been
performed against distribution of pseudorandom matrices acquired by permutation
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or bootstrapping of sample data as was used previously in the comparison of ten-
sor maps from population brain data (Thompson et al. 2000). This is in contrast to
the successful SPM application of finding regional abnormality using distribution
assumptions of Gaussian, chi-square, or F (Worsley et al. 2004). Previously when
the investigators used only the regional distribution to speculate connectivity based
on SPM analysis, they observed the distribution of regional activity and did statistical
inference to find the significant difference of functional connectivity between groups
(Worsley et al. 2005).

Scientific community moved on even to adopt Granger causality (Roebroeck et al.
2005). This was based on the vector autoregressive modeling and merged initial
structural equation modeling or path analysis which did not gain popular use, partly
because of the intimidating complexity of paths and the combination of plausible
components. Apparent arbitrariness to choose the variables which were to be put
into the models also prevented the propagation of usage when they tried to delineate
the disease-specific abnormality of causal connections.

3.4 Brain graphs’ Arbitrariness as a Bottleneck Against
Clinical Use

The connectivity data of the brain structural and functional images could then be con-
verted to interregional correlation matrices. Voxel-based matrix could yield dozens
of thousands rows and columns which should be sparsified with various methods
(Lee et al. 2011; Batson et al. 2013; Xie et al. 2017) to enhance the feasibility of data
handling. Thresholding was the easiest way to make the matrices sparse. Once the
adjacency matrix was acquired, the data were examined for visualization or compar-
ison with norms by taking these data mostly as binary matrices and sometimes as
weighted matrices. The choice of threshold and binary/weighted matrices was up to
the investigators. This arbitrariness was challenged to cause a critical problem in
analysis, as the investigators were changing thresholds, difference between diseased
and healthy groups was found significant in some but not in other thresholds (Bassett
et al. 2012). This arbitrariness was tried to be ameliorated by setting the number of
nodes, i.e., sparsity (Kim et al. 2014). However, any investigator can or will not find
the difference to their own will between their groups of interest and the controls.
This has been the serious cause of flaw, and we tried to solve this problem from the
root (Lee et al. 2012).
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3.5 Topological Framework as a Fundamental Solution to
the Above Problems

The solution of the problem of arbitrariness was derived from the idea that topo-
logical invariant might represent the characteristics of brain graph. This topological
concept is based upon persistent homology during the filtration of simplicial chain
complex. Modulus of image of the 1-higher dimensional boundary function over
kernel of its own dimension represented the topological invariant, which will make
a group changing its connected components according to the changing thresholds,
i.e., simplicial complex filtration. The changing number of connected components is
known to make a barcode as topological invariant of 0-dimension, Betti-0 (Lee et al.
2012).

The next problem was to define the summary matrix for the barcodes, and this
was easily done by producing single linkage matrix, which does not consider the
merged nodes as separate, which is basically the idea of topology. The uniqueness
of the brain graph different from others resides in the fact that brain nodes cannot
be shuffled and then the barcode should in fact be the dendrogram. Dendrogram and
barcode of persistent homology were exactly equivalent, and single linkage matrix
was the matrix representation of these two. Then we just needed to handle the single
linkage matrix for further analysis. In usual conditions, single linkage matrix is also
equivalent to minimum spanning tree (Lee et al. 2012). From disease and healthy
control groups, we now had single matrices and we needed to compare these two
single matrices with each other statistically.

3.6 Statistical Inference Using Pseudorandom Data
Generated by Permutation

The last problem was to develop the statistical inference methods for comparison of
global difference between single linkage matrices and for comparison of the local
difference yielding which edges were statistically significantly different. For find-
ing global difference between matrices, we adopted the metric such as Gromov–
Hausdorff distance (Lee et al. 2011), bottleneck distance, or Wasserstein distance.
Permutation of two groups of disease and controls could easily make 5,000 or 10,000
pseudorandom groups. The above distances were calculated using these pseudoran-
dom groups to make a distribution. The distances between the observed two groups
and the difference of these distances were compared with the distribution of the dif-
ferences of pseudorandom groups to designate p value of type I error. This method
was used in all the articles we published upon metabolic connectivity on FDG PET
(Lee et al. 2012, 2017; Choi et al. 2014; Im et al. 2016), T1 density connectivity on
T1 MRI (Kim et al. 2014), activation fMRI connectivity (Kim et al. 2015), source
power connectivity on magnetoencephalography (MEG) (Hahm et al. 2017), and so
on.
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3.7 Finding the Edges Explaining the Difference Between
Groups

Finding the edges of significant difference between disease (or activation) and control
(or baseline) groups was solved the same way that distribution of values of all the
cells in the single linkagematrices could be depicted, and thus, observed values of the
cells were compared with the edge value of 10,000 single linkagematrices calculated
using the permuted pseudorandom data. Bonferroni correction was impossible to
apply as the number of observation was too large (voxel number, source number, or
number of regions-of-interest). Type II error of not finding true positives was also a
concern. If we set the N nodes, and when we compared the values (FDG uptake on
PET, T1 density on T1 MRI, BOLD signal on fMRI, and power of specific time and
frequency onwavelet-transformedMEG signals at the sources), the node activity was
a vector (N × 1), however, when we considered connectivity, whichever the matrix,
either correlation, partial correlation, or single linkage matrix, was used for further
analysis, the data dimension rose to N × N matrix. What we were dealing with was
really matrix and not vector. The information in this matrix was a superposition of
edge information over the node values themselves, that is to say, one-dimensional.

Here, I would like to emphasize that the connection between N nodes are, if the
values of the nodes are not null, and also if the values of the edges are not null
for all the N nodes, the dimension will be N-dimensional. In reality the definition of
graph shall be based on the noise-filtered sparsified node and edge values of the brain
graph, we need to assume graph and subgraphs. I assume that brain is working as
a disjoint union of brain subgraphs dynamically changing along time. In this sense,
brain graph is now to be considered as a dynamic system, which has a regional
distribution and the connections thereof, but the dimension is N-dimension. What
we are observing is zero-dimensional (point data), one-dimensional (edges between
any two brain nodes), or two-dimensional (face of concurrently functionally activated
(FDG PET, activation fMRI or MEG) or structurally enlarged (T1 MRI) three brain
nodes). The latter is called 2-face, then edge is 1-face and the point is 0-face. 2-
face can have a hole, which is open or closed within the triangle. We can also
designate three-face of three-dimensional tetrahedron (strong connection between
4 nodes) and so on. This viewpoint is the core concept of simplicial complex in
homology of algebraic topology. We filtered our brain graph data and observed only
the topological invariants of 0-dimension, the connected components, i.e., point-
equivalent. We recently went on to observe hole using one-dimensional topological
invariant, Betti-1, and we could find the FDG uptake on PET, metabolic activity
of brain nodes were having the one-dimensional hole found in Alzheimer’s disease
while we were filtering the metabolic brain graph data (Lee et al. 2014). This was
expected, however, we did not expect the discovery that mild cognitive impairment
patients also had one-dimensional connectivity holes, though the numbers of holes
were smaller than Alzheimer’s disease.
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3.8 Further Problems and Plausible Solutions

Findingglobal differenceof connectivity of grain graphs and localizing thedifference-
causing edges between the normal (or controls) and disease groups are said to
be important, and statistical inference should have been performed. However, we
assumed arbitrarily again independence between nodes and set the threshold for find-
ing significant trustworthy edges that the data can allow us to find, at least several
edges making the difference between normal and disease. Generation of permuted
pseudorandom raw data was inevitable but it immediately limited the result of sta-
tistical inference only to the sample population. No matter how the method was
threshold-free in the beginning, we cannot be sure that our observation be applied to
the population.

3.9 Minimize FNDR of Significantly Different Connections
Based on H-Likelihood

To overcome this flaw, we tried and still trying to trim the confounding influence of
unrelated parameters. One is considering the spatial adjacency of the nodes of the
brain graph, and the other is appropriate modeling to reveal (or conceal) the true
positives (or false positives). The latter was solved first by Donghwan Lee and us
(Lee et al. 2015). They adopted the hierarchical general linear model (H-GLM) (Lee
et al. 2017a, b)-derived extended likelihood method to solve the modeling and the
minimization of false non-discovery rate (FNDR) while maintaining false discovery
rate (FDR) set a priori. The improvement of decreasing FNDR was validated by
the observation that hippocampal metabolic decrease was observed in wider area,
as expected, than that obtained by Benjamini–Hochberg FDR correction (Lee et al.
2015). However, this endeavor was about the distribution (zero-dimensional infor-
mation) of regional activity such as FDG uptake on PET, and not about the edge
information from these regional distribution of FDG uptake. The beauty of this
method was at the point that we did data-driven modeling simultaneously with the
discovery procedure. This endeavor let us decrease FNDR. But we also found that
the advantageous effect was only observed when the FNDR was in the moderate
range. The application of this method to the single linkage matrix is underway by
collaboration of myself, my group and Lee and Lee (2016).

The former might have been brain graph-specific problem. The gist was taking the
spatial adjacency into account. Lee and Lee (2016) successfully extended their prior
approach (Lee et al. 2015, 2017a, b) so that once the hidden Markov random field
took care of spatial adjacency of nodes in Euclidean space, it decreased marginal
FNDR down to 0.03 compared with 0.5 without adjacency consideration. This was
so impressive that I believe that the same consideration of spatial adjacency of the
participating nodes will decrease FNDR and thus yield the true-positive edges having
statistical significance to the full account. This extended likelihood method of mini-
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mizing FNDR while keeping FDR as smaller than a certain value such as 0.05 will
allow us find any edges of difference between groups. This endeavor is underway
too.

3.10 Prospects of Using Personal Connectomics Data for
Clinical Use

For clinical use of connectivity data characterizing each healthy or diseased subjects,
i.e., personal connectomics, we need to overcome the hurdle of group thinking.
As the data are to be statistically handled, we tended to merge the data from a
group of symptomatically homogeneous patients and understand the signature of a
specific condition or pathology. For personal connectomics, Kolmogorov-like test
for connectomics should now be established. In the beginning, as a stepping-stone
trial or as a leverage, individual PET/resting FMRI is the best option to delineate the
individualized connectivitymatrix such as single linkagematrix, and then in feedback
to the discovered group characteristics, personal connectomics will be interpreted
considering these groupcharacteristics as normsfinally tofindwhether that individual
belongs to this group.Deep learning approachmight help this endeavor.Classification
shall now be done on every available data. Thus, clinical use is on the horizon within
our reach.
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Chapter 4
The Real-Time Tracking and Alarming
the Early Neurological Deterioration Using
Continuous Blood Pressure Monitoring
in Patient with Acute Ischemic Stroke

Youngjo Lee, Maengseok Noh and Il Do Ha

Abstract In this paper, we develop a real-time prediction of END (Early Neuro-
logical Deterioration) using continuous BP (blood pressure) monitoring and clinical
parameters and propose to set up an alarming criterion before END. We identified
consecutive ischemic stroke patients hospitalized within 48 h of symptom onset from
a prospective stroke registry database. BP data during hospitalization were obtained
from the electric medical records. Probability of END at each time point of BP mea-
surement was estimated using a logistic model with covariates, which is derived from
two models for clinical information and BP parameters. Here, a model for clinical
information was fitted using logistic model with clinical characteristics of patients
to predict END. Amodel for BP was fitted using random effects models allowing for
temporal correlations at each time point of BP measurement with irregular intervals.
Prediction performance was evaluated by sensitivity and specificity. An alarm crite-
rion for a high probability of END at each time point was defined as being above a
cutoff point prior to 24 h.

4.1 Introduction

Approximately 30% of hospitalized patients due to acute ischemic stroke are placed
under the risk of Early Neurological Deterioration (END) at their hospital stay.
These events constitute serious and adverse problems, such as an extension of hos-
pitalization duration, an increasing demand for more resources, and an aggravation
of neurologic disability and death (Ois et al. 2008). As the prevention and timely
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Fig. 4.1 Real-time prediction model of END

intervention of such events would request an intensive monitoring by specifically
devoted team, it needs a prioritization of medical services to patients at high risk (Ay
et al. 2010).

The real-time risk stratification tool that predicts and alarms before ENDwould be
useful for delineating patients at high risk of acute stroke care system. This concept
has been developed for management of critically ill patients. That is, it is tracking
the patient’s condition by automated monitoring vital sign based on electric medical
records (EMRs) and is triggering the response when predetermined threshold is
reached (Roquer et al. 2008).

For the patients with acute ischemic stroke, real-time tracking of END probability
would be actualized by monitoring the individual risk assumptions with continuous
BP and known other risk factors. Since BP is associated with not only development
of END but also change of physiologic condition, its monitoring would be prompt
for tracking the patient (Jenkins et al. 2011).

As shown inFig. 4.1, in this study,wefirstly aim to develop the real-timeprediction
model of END using continuous tracking BP and baseline clinical parameters. Next,
we try to set up an alarming criterion to delineate patients at high risk before 12h of
END by analyzing the cumulating prediction values.

4.2 Methods

4.2.1 Subjects and Measurements

The subjects of studywere from the prospective stroke registry thatwas consecutively
enrolled in hospitalized patients diagnosed as ischemic stroke at Seoul National
University Bundang Hospital, Republic of Korea. Among them, patients arrived
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within 48h of symptom onset between April 2008 and March 2015 were selected.
Here we excluded the subjects whose BP was less than ten.

The demographics and administrative clinical information of subjects of study
were collected by reviewing the electric health recording (EHR) and registry
database. They consisted of baseline patient characteristics (i.e., age, sex, and vas-
cular risk factors such as hypertension, diabetes, hyperlipidemia, and atrial fibril-
lation) and index stroke characteristics ( i.e., baseline National Institute of Health
Stroke Scale (NIHSS) score, stroke subtypes, symptomatic steno-occlusion of cere-
bral artery, implementation of acute revascularization therapy or not, and result of
acute revascularization therapy).

Themeasurement ofBPwas regulated byphysician’s decision basedon the current
guideline and hospital routine. In general, BP was regularly measured every hour,
whichwas adjusted by conditions of patients using noninvasiveBPmonitoring device
or standard mercury sphygmomanometer on non-hemiparetic arm at supine position.
All BP information within 72h of hospital arrival was obtained from the EHR.

As a part of an institutional quality-of-care monitoring program for hospitalized
patients, neurologic deterioration was prospectively monitored and finally adjudi-
cated at regular meeting of stroke team constituted by experienced nurses and physi-
cians. Neurologic deterioration indicated one of the following: increase of more than
two points in the total NIHSS score, an increase of more than one point in the level of
consciousness or monitor items of NIHSS score, and a newly developed neurologic
symptom or sign within 72h of symptom onset. The END occurred within 3 days of
stroke onset was the primary outcome.

4.2.2 Statistical Model

The baseline prediction model was constructed using multivariate logistic regression
models with total subjects and predetermined subgroups:

log{pi/(1 − pi )} = xTi γ,

where pi is the probability for END using the i th patient’s covariates xi for base-
line clinical characteristics at admission and γ is a vector of regression parameters
corresponding to covariates xi . For joint modeling of mean and variance of SBP
(systolic BP) measurement yit at the t th time point of the i th patient, we consider
hierarchical generalized linear models (HGLMs) allowing for temporal correlations
with irregular intervals (Lee et al. 2017):

log(yit ) ∼ N (μi t , φi t ),

where

μi t = μ0 + v1i + v2t and log(φi t ) = log(φ0) + w1i + w2t .
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Here, v1i ∼ N (0, σ 2
v1

) and w1i ∼ N (0, σ 2
w1

) are random subject effects. Time effects
v2t and w2t are defined by r1 = A(ρ1)v2 and r2 = A(ρ2)w2, where A(ρ) = I −
K (ρ), the nonzero elements of K (ρ) are K j+1, j (ρ) = ρ/|t j+1 − t j |, and t j is the
measurement time after admission at the j th time point. Here, ρ1 and ρ2 are tempo-
ral correlations for the mean and variance, respectively. This model can be fitted by
using the hierarchical-likelihood approach (Lee and Nelder 1996, 2001).

After fitting of the two joint models above, the real-time prediction model for
END within 12h was developed. Let πi t be the probability of END within 12h at
the t th time point of i th patient. We consider the following logistic model:

log{πi t/(1 − πi t )} = β0 + β1 log( p̂i ) + β2 log(μ̂i t ) + β3 log(̂φi t ).

If a criterion πi t > δ was satisfied twice when the t th BP measurement of the i th
patient was observed, we predict this patient has high risk of END. The model
performances were tested by the area under receiver operating curve (AUROC) with
sensitivity and specificity.

4.3 Results

4.3.1 Subjects and Baseline Characteristics

Among1986 consecutive patients identified,we chose 1805 subjects for development
and validation model after excluding 181 subjects with unavailable BP data. Mean
age was 67.3 ± 13.0 years and male comprised 60.1%. During hospitalization, 331
patients (18.3%) experienced the END events. Median event time from hospital
arrival to END was 19 h (interquartile range, 6 to 41 h). The number of total BP
data is observed as approximately 220,000, so that each patient has average of 56
BP data.

4.3.2 Model Development and Alarming Criteria

The baseline prediction model was fitted with the following covariates xi : age, sex,
history of stroke, time to arrival (at hour), baseline NIHSS score, diabetes, initial glu-
cose level, atrial fibrillation, leukocyte count, stroke subtypes, recanalization therapy,
and location of symptomatic vessels. If we use only p̂i for the END prediction model
with β2 = β3 = 0, the model performance is evaluated as AUROC=0.703 with sen-
sitivity = 0.67 and specificity = 0.65.

Substituting the results of HGLM for BP into the prediction model leads to the
following fitted model:
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Fig. 4.2 Example of alarming criteria

log{π̂i t/(1 − π̂i t )} = −14.54(±0.64) + 4.13(±0.15) log( p̂i )

+2.09(±0.13) log(μ̂i t ) + 0.10(±0.021) log(̂φi t ).

The estimated effects of mean and variance of SBP are very statistically significant,
so that we observe the high mean and high variance of SBP are important risk factors
for predicting END.

As shown in Fig. 4.2, we predict END case at the t th SBP measurement if a crite-
rionπi t > 0.025was satisfied twice.With this alarming criteria,we could have 85.7%
of true alarming (sensitivity) and 13.2% of mis-alarming (1-specificity), followed by
AUROC = 0.810.
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Chapter 5
Condition Monitoring and Operational
Decision-Making in Modern Semiconductor
Manufacturing Systems

Dragan Djurdjanovic

Abstract Modern semiconductor manufacturing tools are often complex systems
of numerous interacting subsystems that operate in multiple physical domains and
often follow highly nonlinear distributed dynamics. In such systems, traditional con-
dition monitoring methods, which rely on a direct link between sensor readings and
the underlying condition of the system, cannot be used. Rather, one must acknowl-
edge that the available sensor readings are only stochastically related to the con-
dition of the monitored system, which therefore must be probabilistically inferred
from the sensors. This manuscript describes a recently proposed condition mon-
itoring method, based on characterizing the degradation process via a mixture of
operation-specific hidden Markov models (HMMs), with hidden states representing
the unobservable degradation states of the monitored system, while its observable
variables represent the available sensor readings. The new monitoring paradigm was
applied to monitoring of several tools operating in major semiconductor fabs over
many months, with orders of magnitude better performance than traditional, purely
signature-based approaches. The remainder of the paper focuses on describing how
Markovianmodels of degradation of flexiblemanufacturing equipment, such as those
utilized in modern semiconductor manufacturing, can be employed to concurrently
optimize the sequence of production operations and schedule preventive mainte-
nance for that machine. It will be shown that integrated decision-making in terms of
product sequencing and maintenance operations carries significant potential benefits
compared to themore traditional, fragmented decision-making. Themanuscript ends
with a brief summary of possible future research directions in process monitoring
and maintenance decision-making in semiconductor manufacturing.
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5.1 Introduction

In today’s competitive, customer-oriented market, companies must provide products
and services of the highest possible quality in order to attain and retain a favor-
able market position. Such pressures are particularly prevalent in semiconductor
manufacturing, where intense competition and short product life cycles necessitate
continuous innovation and maximal levels of efficiency (Semiconductor Industry
Association (SIA) 2015).

The vast majority of equipment maintenance in semiconductor manufacturing
today is either purely reactive (fixing or replacing equipment or its components after
a failure occurs) or proactive (assuming a certain level of performance degradation,
with no input from the equipment itself, and servicing equipment on a routine sched-
ule whether service is actually needed or not). Both scenarios are wasteful and result
in costly production or service downtimes. Even though it often seems that a system
fails suddenly, each piece of equipment usually goes through a measurable process
of degradation before it fails. With the advancement of semiconductor manufactur-
ing technology, the tools in both front-end and back-end operations are becoming
increasingly sensorized, with capabilities of collecting a substantial amount of data
during the process. Therefore, it is now possible to rapidly and accurately sense
performance indicators, and thus assess and predict system degradation states.

Under these circumstances, Condition-BasedMaintenance (CBM), based on sens-
ing and assessing the current and sometimes future degradation states of the target
system, emerges as an appropriate and efficient tool for achieving near-zero break-
down time through a significant reduction, and, when possible, elimination of down-
time due to process or machine failure (Lee et al. 2006, 2013; Djurdjanovic et al.
2003). It is documented that a well-implemented CBM system in a company can
save up to 20% of operational costs due to a number of benefits, such as Lee et al.
(2013):

• Improved machine availability and productivity due to a decrease in equipment
downtime

• Smaller production losses and waste because of the improved quality
• Reduced environmental footprint because of increased manufacturing efficiency
and reduced waste

• Decreased costs of maintenance due to the ability to perform non-intrusive main-
tenance operations synchronized with the production planning

• Cost savings due to improved resource efficiency, decreased spare parts inventory,
and maintenance personnel levels

• Improved decision-making with regards to scheduling and sampling

Considering the fact that semiconductor manufacturing is characterized by a rela-
tively high level of technology integration andhighly pronouncedneeds for optimized
production flow and quality control, potential savings in semiconductor manufactur-
ing could easily be even higher.Nevertheless, this research direction carries a plethora
of challenges unique to the semiconductor manufacturing discipline, which is why
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CBM and predictive maintenance efforts are only now gaining momentum in the
research and industrial community. This manuscript offers a brief overview of recent
key achievements in CBM research in semiconductor manufacturing, with the hope
that it could serve as a solid foundation for future endeavors in the advancement of
CBM in this area. The remainder of this chapter is organized as follows. Section5.2
briefly outlines the general concept of CBM and highlights some key challenges it
presents to the semiconductor industry. Section5.3 summarizes key achievements
in signal processing and feature extraction, while Sect. 5.4 briefly describes a novel
approach for condition modeling in highly complex systems where a direct relation
between sensor readings and the system condition could not be established, leading to
an innovative framework for fault detection, diagnosis and prediction in semiconduc-
tor manufacturing. Section5.5 offers recent results in operational decision-making
in semiconductors fab where simulation-based optimization coordinates condition-
based monitoring information with fab operations to yield system-level optimized
decisions. Section5.6 provides concluding thoughts and identifies some key areas
for future research in CBM for semiconductor manufacturing.

5.2 Condition-Based Maintenance Paradigm with Key
Relevant Challenges in Semiconductor Manufacturing

Condition-BasedMaintenance (CBM) can be seen as an integral process of seamless
transformation of raw data related to the equipment health and performance, into
information about equipment health, and further into decisions that need to be made
with respect to that equipment, as illustrated in Fig. 5.1.

Information about the health of any piece of equipment is obtained from the read-
ings of possibly multiple sensors mounted on that equipment. Often, situations exist
where sensor readings are augmented with historical knowledge about equipment
behavior, engineering models of phenomena occurring in the equipment, or human
expertise. Based on these sources of information, features relevant to equipment
health are extracted from sensor readings through various forms of sensory signal
processing and feature extraction. These features form behavior models of equip-
ment in different health states (normal behavior and different faulty behavior modes).
Those models may be in various forms, including a statistical form (distributions of
sensory signatures under normal or various faulty conditions), dynamicmodel (differ-
ential equations describing various health states of the equipment), and others. Based
on the models of normal and current equipment behavior, equipment health assess-
ment can be accomplished by quantitatively expressing the proximity of the currently
observed system behavior to the model describing its normal health state (e.g., fault
detection can be done in this manner). Similarly, the presence or absence of any fault
can be diagnosed through proximity of the model of the currently observed equip-
ment behavior to the behavior model corresponding to a specific fault (fault diag-
nosis). Finally, the temporal dynamics of signatures extracted from sensor readings
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Fig. 5.1 Illustration of the general concept of CBM

can be captured and extrapolated to predict their behavior in the future and thus pre-
dict likelihoods of various behavior modes for the equipment. Figure5.2 illustrates
the concepts of quantitative health assessment and diagnosis in CBMbased on simple
statistical models of various behavioral modes, while Fig. 5.3 illustrates the concept
performance prediction in CBM.

The concept of CBM has received significant attention in recent years, especially
in the case of sophisticated, expensive, and safety critical systems, such as man-
ufacturing equipment (Rao 1996; Funk and Jackobson 2005), computer networks
(Hofmeyr and Forrest 2000; Boukerche et al. 2004; Harmer et al. 2002; Dasgupta
and Gonzalez 2002; Yang et al. 2002; Hortos 2003), automotive (Cascio et al. 1999;
Marko et al. 1990; Crossman et al. 2003a, b; Hong et al. 2000) and aircraft engines
(Beniaminy and Joseph 2002; Gorinewsky et al. 2002; Kobayashi and Simon 2001;
Yan et al. 2005; Wegerich 2003, 2004). Such progress of CBM in general areas
of engineering represents an opportunity to adopt and/or adapt numerous existing
CBM methods to solve the diagnostic and prognostic problems in semiconductor
manufacturing. However, enabling the vision of CBM in semiconductor manufac-
turing requires tackling of some challenges that are very unique to the semiconductor
manufacturing industry. Those challenges are present in the stage of transformation
of data into information (in the functions of feature extraction, performance assess-
ment, and prediction), as well as in the stage of transformation of information into
decisions (in the function of maintenance and operations decision-making).

From the side of transforming data into information, key semiconductor manu-
facturing tools and systems are highly complex machines in which phenomena from
quantum physics, electro-mechanics, thermodynamics and fluidmechanics and other
domains concurrently play out in highly irregular geometries as patterns of circuitry
are successively produced with angstrom-level accuracy across a 300mm diameter
wafer. Traditional methods, based on time-domain or frequency-domain processing
of signals and purely statistical interpretation of data based on physical models or
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Fig. 5.2 Performance assessment & diagnosis through overlapping of signature distributions

previously seen patterns in the signals, often become utterly unfeasible in such an
environment, demanding radically different and innovative information extraction
methods.

From the perspective of operational decision-making, a typical fab is a highly
complex system of interconnected tools and often a vast mixture of products that
go through that system. Numerous random effects,1 as well as complex factory
dynamics of interactions between vast numbers of machines, many of which can
execute several different operations on different products, lead to a highly intractable
problem of synchronizing maintenance and production decisions in a fab. Tractable
assumptions about reliability distributions, availability of condition-related informa-
tion throughout the system, cycle times, inter-machine interactions, and other factors
which characterize a great majority of scholarly work are so far from reality in a typ-
ical fab environment that significantly new operational decision-making paradigms
are needed.

In the next few sections, some key recent accomplishments in advancing informa-
tion extraction from large amounts of densely sampled sensor data in a fab, as well
as system-level optimized operational decision-making in modern semiconductor
manufacturing environments, will be discussed.

1Random effects exist due to factors such as equipment condition, cycle times, in-process and final
product quality, effectiveness of maintenance interventions, availability of spare parts, supply and
demand.



46 D. Djurdjanovic

Fig. 5.3 Concept of feature-based performance prediction with prediction confidence intervals.
Model of behavior of feature vectors F(n)= [f1(n) f2(n)], n= 1, 2, . . .,N can be used to extrapolate
their behavior ahead in time and obtain l time steps ahead predictions for those feature vectors FN(l),
along with the associated uncertainties

5.3 Advances in Signal Processing and Extraction of
Informative Signatures from Sensors in Semiconductor
Manufacturing

A typical semiconductor fab contains hundreds of processing tools interconnected
with sophisticated material handling systems, with each of these machines instru-
mentedwith hundreds of sensors,which in turn emitmultiple data points each second.
In this deluge of data, nuggets of useful information about the underlying condition
of equipment are buried and extracting them is a major challenge. This section will
present several recent advances that enable extraction of useful condition-related
information from such data. First, examples of using advanced time–frequency signal
analysis to detect and characterize particle-generating features in a material handling
device, as well as to monitor slit valve performance in a chamber-based process tool,
will be presented. This will be followed by a brief description of a recently introduced
method for extraction of dynamics-inspired features from densely sampled signals
obtained from semiconductor manufacturing processes, and how such advanced sig-
natures can be used to improve virtual metrology for relevant processes.



5 Condition Monitoring and Operational Decision-Making … 47

5.3.1 Use of Cohen’s Class Time–Frequency Distributions for
Analysis of Signals in Semiconductor Manufacturing

Most signals in nature are highly non-stationary signals, with frequency content
varying over time. An aircraft engine transitioning from one regime of operation
into another emits non-stationary vibrations and sounds because excitation caused
by variable rotational speeds causes variations in the frequency contents of the sig-
nals. Most real-life signals, such as speech, music, machine tool vibration, acoustic
emission, are also non-stationary, which places strong emphasis on the need for
development and utilization of non-stationary signal analysis techniques, such as
wavelets or joint time–frequency analysis.

Most traditional time-domain or frequency-domain-based monitoring techniques
for monitoring of dynamic systems (bearings, gears, machine tools, engines, DC/AC
motors and drives, etc.) utilize stationary signal characterization methods, such
as time series modeling or Fourier domain analysis (modal and spectral analysis)
(Marple 1987). These methods assume that frequency content of the signal does not
change over time, smearing the information when various frequency components
appear or disappear in the signal. In simple terms, one is aware of what frequencies
exist in the signal, but not when they existed (Cohen 1995).

Figure5.4 depicts the inadequacy of applying stationary signal processing tech-
niques, such as Fourier transforms, to non-stationary signals such as simple frequency
hopping signals shown in Fig. 5.4. Fourier analysis is able to discern the three sinu-
soids present in the signals, but is unable to deduce when each one of those sinusoids
occurred. Therefore, when the order of sinusoids is altered, the Fourier analysis is
unable to detect this change, as indicated in the figure.

More recent work in monitoring and CBM focuses on applications based on
wavelet signal transforms (Burrus et al. 1998). Even though wavelet techniques
already seem to be a widely accepted method for signal processing and feature
extraction in the presence of non-stationary frequency varying signals (Du et al.
1995; Wang et al. 2001), advances in computing technology are slowly allowing a
more intensive use of signal processing and feature extraction tools based on the
Cohen’s class of joint, time–frequency distributions (Cohen 1995; Williams 1996;
Djurdjanovic et al. 2002). The origins of this powerful signal description can be traced
back to 1930s and advances in quantum physics in the work ofWigner (1932), where
he needed to calculate a joint distribution of a particle having a given position and
momentum.However, the position andmomentum in quantum physics are connected
through a Fourier transform, very much in the same way time and frequency contents
of a signal are connected in the signal processing theory. This was noticed by a
French engineer Ville (1948), who realized that the same approach could be utilized
to describe joint distributions of signal energy in both time and frequency.

The Reduced Interference Distribution (RID) time–frequency kernels, developed
in mid-1990s at the University of Michigan (Jeong andWilliams 1992; Jeong 1990),
represent a class of signal-independent, and therefore computationally less demand-
ing, time–frequency kernels that result in time–frequency distributions (TFDs)whose
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Fig. 5.4 Application of Fourier analysis on two frequency hopping signals

favorable mathematical properties include (Jeong and Williams 1992; Jeong 1990):
time-shift, frequency-shift and scale covariance properties, frequency and time mar-
ginal properties andinstantaneous frequency and group delay properties. In addi-
tion, RIDs have the property of suppressing the TFD cross-terms, which necessarily
exist whenever multi-component signals are processed. Cross-terms are sometimes
indistinguishable from the auto-terms and can hamper the time–frequency-based
signal interpretation and pattern recognition (Williams 1996; Djurdjanovic et al.
2002). Suppression of cross-terms is therefore a desirablemathematical property, and
RIDs achieve it in a signal-independent manner, which is computationally quicker to
accomplish than the signal-dependent suppression pursued, for example, in Baraniuk
and Jones (1993).

Figure5.5 shows the RID signal energy distribution of the same signals shown
in Fig. 5.4. One can readily distinguish the three sinusoids present in the signal, as
well as when those sinusoids existed. Figure5.6 shows applicability of joint time–
frequency signal analysis techniques to vibration signatures from a gearbox taken,
while gearbox was accelerating. Close observation of energy patterns in the time–
frequency plane indicates a series of energy “bumps” that occur closer and closer
together, and correspond to the mashing of gear teeth.

Vibrations associated with material handling devices are usually very non-
stationary, and utilization of Cohen’s class of time–frequency distributions for their
analysis carries significant potential benefits. This is especially true if one tries to hunt
for particle formation relevant signatures, since particle formation in semiconductor
manufacturing systems is an inherently transient, short-lived process that needs to
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Fig. 5.5 Reduced interference joint time–frequency distribution of the two frequency hopping
signals identical to those analyzed in Fig. 5.1

Gear teeth
mashing

Ac ce ler om
eter outp ut

Time [s]

Fig. 5.6 RID of gearbox vibrations emitted during acceleration of the gearbox

be temporally and spatially localized as well as possible. Stationary tools, such as
Fourier analysis, or tools with limitations in terms of temporal and frequency res-
olutions, such as wavelets, may not be able to reveal such minute details buried in
often noisy signals. Figure5.7 shows the binomial kernel-based RID time–frequency
distribution (Williams 1996) of vibrations collected during wafer travel on a mate-
rial handling system known to induce particle formation as wafers passed through
it. The strong time and frequency support properties allow one to localize particle-
generating features as “bumps” on the material handling guideways, as well as to
characterize them (determine their size). Note that after the vibration signals were
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Fig. 5.7 Binomial kernel-based reduced interference time–frequency distribution of vibrations col-
lected from a wafer traveling along a material handling system known to be generating particles as
wafers pass through it. Raw time series z(t) of vibrations is shown above the time–frequency distri-
bution, and instantaneous power of the vibrations |z(t)|2 is shown above it, while the corresponding
power spectral density |z(t)|2is shown on the right-hand side. Note that no numerical values are
reported because of the proprietary nature of the data

collected and analyzed as illustrated in Fig. 5.7, physical inspection of the material
handling system confirmed the existence and size of particle-generating features on
that system.

5.3.2 Extraction of Dynamics-Inspired Signatures from
Densely Sample Signals Obtained from Semiconductor
Manufacturing Tools

For decades, sensor readings from process tools in semiconductor manufacturing
were collected at very low sampling rates, often below 1Hz. This was sufficient
for process control when the underlying semiconductor technology did not require
exceptionally tight control and when competition among manufacturers was not as
strong as it is today. At such low sampling rates, process dynamics usually could
not be observed and therefore, practitioners and researchers focused on characteriz-
ing processes via statistical characteristics of the observed signals, including mean
values, standard deviations, peak-to-peak values, and occasionally even higher order
statistics such as skewness, kurtosis, and entropy. These characteristicswere obtained
for the entire signal or certain portions of it, as specified by user-defined windows,
often requiring significant heuristics of expert knowledge about the process and the
machine (for a good survey of sensory signal processing and feature extraction for
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1 Hz 

5 Hz 

Fig. 5.8 Illustration of significant new features visible at higher sampling grates.Note the additional
glitch-like stage in signal 1, as well as notably different transients visible in signal 2, when those
signals are sampled at 5Hz instead of more traditional 1Hz sampling

CBM in semiconductor manufacturing, one can refer to Chap.2 of the Ph.D. thesis
Yang 2011).

Nevertheless, driven by ever-tightening requirements on the process and product
tolerances and by the ever-increasing competition, in the last several years, we can
see a strong proliferation of higher sampling rates in modern fabs, reaching 10Hz
and above. At such rates, process dynamics are much more faithfully represented
in the signal transients and potentially significant information resides in these parts
of the signal, lending value to the ability to automatically and systematically mine
those dynamic signatures. Figure5.8 illustrates remarkable differences in time traces
of the same sensor readings obtained from a production tool, in a 300mm fab, when
sampling at 1Hz and at 5Hz.Unfortunately, advances in data collection and sampling
rates were not accompanied by adequate advances in the processing and utilization of
those data. Instead, traditionalmethods based on expert knowledge-basedwindowing
of signals and extraction of a plethora of statistics from those windows still remain
the predominant state-of-the-art technique in fabs today, as illustrated in plot (a) of
Fig. 5.9. Though occasionally effective, with 100s of thousands of such signals now
streaming out of a fab, such essentially manual approaches to signal parsing and
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Fig. 5.9 Plot a gives illustration of a traditional approach to parsing and extraction of feature
from signal waveforms in semiconductor manufacturing (based on process-related knowledge and
statistics-inspired features). Plot b illustrates the recently proposed automatic method for signal
parsing into steady-state and transient segments, with extraction of dynamics-inspired features from
the transient signal portions and statistics-inspired features from the steady-state signal portions
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extraction of informative features are completely unfeasible and effectively limit
one’s capabilities for fab-wide data mining for the information that is now available
with those high sampling rates.2

This significant gap is addressed in a recent paper which introduced a novel
methodology for automatic processing of densely sampled signals from semicon-
ductor manufacturing processes into a set of signatures that could be related to the
underlying process dynamics (Ul Haq et al. 2016). In that manuscript, the authors
propose an elaborate procedure that determines and utilizes noise levels and rates
of change (derivatives) of the signal to parse it into sections of steady-state and
transient behavior, as illustrated in plot (b) of Fig. 5.9 for the same signal shown
in plot (a). Based on that partitioning, traditional statistics-based features, such as
mean, standard deviation, kurtosis, skewness, and entropy, could be extracted from
the steady-state segments of the signal, while dynamics-based features, such as those
defined in IEEE standards (rise-times, overshoots, settling times, duration of tran-
sients) (IEEE Standard for Transitions, Pulses and Related Waveforms 2011), could
be extracted from the transient signal portions.

The usefulness of this enriched feature set augmentedwith dynamics-inspired sig-
natures was already illustrated in several applications. Figure5.10 illustrates superi-
ority of using the features fromUl Haq et al. (2016) for the purpose of tool matching.
It shows the most discerning sensory signatures that differentiate three chambers in a
thin-film deposition tool used in a major 300mm fab, as identified using Linear Dis-
criminant Analysis (LDA) (Duda 2001) on the standard feature set extracted using
a commercially available software (plot b), and via LDA applied on the augmented
feature set obtained using methods from Ul Haq et al. (2016) (plot c). Not only is
this separation much clearer when the augmented feature set is used, but the method
from Ul Haq et al. (2016) also enables one to clearly identify signal segment that
generated the most discerning feature (illustrated in plot a), which can be related to
a specific step in the process and then be used to remedy potential problems caused
by that mismatch.

Another example of superiority of the feature set obtained usingmethods proposed
in Ul Haq et al. (2016) can be seen in Fig. 5.11. It shows Root-Mean-Squared Errors
(RMSE) for several virtual metrology (VM) models constructed using traditional,
commercially available features, and the same models constructed using features
from Ul Haq et al. (2016). It is clearly visible in Fig. 5.11 that, regardless of what
VM model is used, the newly available features yield improvements in terms of VM
RMSE. In Ul Haq and Djurdjanovic (2017), a more thorough analysis of VMmodels
in several applications and in terms of several metrics was reported, with all studies
consistently pointing to the augmented feature set obtained using methods from Ul
Haq et al. (2016) yielding better information for the VMmodels, as compared to the
traditional features.

2Informal conversations by the author with several semiconductor manufacturing tool suppliers
reveal that they could easily provide chip-makers with even higher sampling rates. Nevertheless,
they are unable to see additional value in such high sampling rates because there are no ways to
extract additional value from such deluge of data. Effectively, the data avalanche would just become
more pronounced, potentially causing more harm than good.
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(c)

(b)(a)

Fig. 5.10 Matching of three chambers in a thin-film deposition tool used in a major 300mm fab.
Plot a shows all the raw signals used for tool matching. Plot b shows the Gaussian distributions fit
to the most discerning feature, as identified by LDA applied to the commercially available feature
set. Plot b shows the Gaussian distributions fit to the most discerning feature, as identified by LDA
applied to the augmented feature set obtained using methods described in Ul Haq et al. (2016).
Finally, the magenta ellipse in plot a shows the signal segment that generated the most discerning
feature obtained using the augmented feature set

Fig. 5.11 Root-Mean-Squared Errors (RMSE) for several virtual metrology (VM) models applied
to estimation of a critical dimension (CD) in an etch process used in a major 300mm fab. It
can be seen that regardless weather the Partial Least Squares (PLS) regression (Höskuldsson and
Hoskuldsson 1988), or Growing Structure Multiple Model System (GSMMS) (Bleakie and Djur-
djanovic 2016) or Multiple-PLS (M-PLS) (Ul Haq and Djurdjanovic 2017) model form is used
for VM, the augmented features yield lower RMSE compared to the traditional features. Note that
RMSEs were scaled due to the proprietary nature of the data
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5.4 Advances in Condition Modeling in Systems with
Partially Observable Conditions

Traditional approaches tomodeling of system condition inCBMare based on relating
some key informative sensory signatures, such as characteristic frequency of bearing
vibrations, root-mean-square value of acoustic emissions obtained from a machine
tool, with the condition of the underlying system (Lee et al. 2006). Based on that,
abnormal behavioral regimes (fault detection) could be accomplished by quantifying
and tracking departure of those signatures away fromwhere they reside during normal
behavioral regimes, faults could be diagnosed by matching the current behavior key
condition-related signatures with behaviors related to various faults, while prediction
of system condition could be accomplished by capturing and extrapolating temporal
dynamics of sensory signatures, as illustrated in Figs. 5.2 and 5.3 (Djurdjanovic et al.
2003).

Unfortunately, such a condition-modeling paradigm is unfeasible when we have
a highly complex system, such as plasma processes in various semiconductor man-
ufacturing tools (Hutchinson 2002). In such a system, sensors provide information
about the condition of a three-dimensional field, but only at discrete points. Thus,
even if more sensors can be installed, a full picture about the state of the monitored
system between the sensorized points can only be resolved using a highly detailed
model, describing the behavior of that field and its interactions with other surround-
ing subsystems. However, in semiconductor manufacturing, reliable and detailed
multi-physics models of an entire plasma-based tool, such as plasma-based etcher or
plasma-based deposition tool, do not exist yet. The inability to reliably deduce the
full condition of a distributed phenomenon (plasma) leads to situations in which two
machines may exhibit very similar sensory signatures, but their conditions are dra-
matically different—one may be operating normally, while the other one produces
poor products. Such situations are indeed encountered in semiconductor manufac-
turing industry and significantly hamper the adoption of the CBM paradigm in that
industry.

Instead, the intuitive relation between the sensor readings and the underlying
machine condition can be modeled probabilistically, by associating probabilities
of the various levels of system degradation with the observed signatures extracted
from the sensor readings. Figure5.12 illustrates this concept; any given vector of
sensory features could be associated with good or bad equipment condition, just
with different probabilities. More formally, condition of the monitored system can
be modeled using the concept of a hidden Markov model (HMM) (Rabiner 1989),
with observable variables of the HMM modeling the signatures extracted from the
sensors mounted on the monitored machine, while the hidden states of the HMM
model the conditions of that machine. Hence, the machine condition ends up being
modeled as a random process that is not directly observable, but is probabilistically
related to the available sensor readings (observable HMM variables).

The main challenge in such modeling of system conditions is the need to estimate
HMM parameters that describe the dynamics of state transitions and their stochastic



56 D. Djurdjanovic

Feature  f1 

F
ea

tu
re

 f
2 

(a) (b) 

Level 1 

P=0.7 

Level 2 

P=0.1 

Level 3 

P=0.1 

Level 4 

P=0.1 

Feature  f1 

F
ea

tu
re

 f
2 

Level 1 

P=0.1 

Level 2 

P=0.1 

Level 3 

P=0.1 

Level 4 

P=0.7 

Fig. 5.12 Illustration of HMM-based modeling of degradation dynamics in complex systems.
Actual degradation states are hidden and are probabilistically related to the observable variables
representing sensor readings obtained from the relevant equipment. Any given observable sensor
pattern could be related to any hidden condition of the system, but with different probabilities.
Condition monitoring is possible because some sensor signatures are more likely to be related to
“good conditions” (plot a), while some are more likely to be related to “bad conditions” (plot b)

relations with the observable variables, using only realizations of observable vari-
ables. Once those parameters are estimated, one can use such a model for detection
of abnormal system behaviors, diagnosis of reasons for such behavior, and predic-
tion of future system conditions. This is a highly multi-dimensional and multimodal
estimation problem, not amenable to traditional gradient-based searchmethods read-
ily available in the literature (Rabiner 1989). In Cholette and Djurdjanovic (2014),
a hybrid optimization relying on a Genetic Algorithm and gradient-based search
was proposed for HMM parameter estimation via maximization of the likelihood of
the observed symbols. Though significant improvements over the commonly used
Baum-Welch approach could be observed, the method did not offer estimates of
uncertainties in HMM parameter estimations and thus, model confidence was lack-
ing. This drawback was addressed in Zhang et al. (2016), where a Bayesian approach
to HMM parameter estimation was proposed, further improving the parameter esti-
mation, while naturally offering confidence information on the HMM parameter
estimates.

In both (Cholette and Djurdjanovic 2014; Zhang et al. 2016), the HMM-based
degradation modeling paradigm was applied to monitoring of thin-film deposition
process in a Plasma Enhanced Chemical Vapor Deposition (PECVD) tool operat-
ing in a major 300mm fab. A PECVD tool utilizes plasma to lower temperatures at
which thin films can be deposited onto silicon wafers. As illustrated in Fig. 5.13, it
is composed of a reaction chamber where a set of sapphire spheres hold the wafer
above the pedestal, Radio Frequency (RF) plasma generation system, gas delivery
system, pendulum valve that controls the chamber pressure, wafer load locks, and
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Fig. 5.13 Schematic representation of the PECVD tool considered in (Cholette and Djurdjanovic
2014; Zhang et al. (2016)), and of the sensor readings collected from it

a robotic arm to carry wafers to and from the tool. Load and tune capacitors form
matching networks that maximize the power delivered by the RF system to the cham-
ber. RF power characteristics, voltages above the load and tune capacitors, gas flows,
top plate, chamber and pedestal temperatures, chamber pressure and the pendulum
valve angle are all simultaneously collected at 10Hz sampling rate (this is order of
magnitude higher than standard data collection rates in modern 300mm fabs). In
addition, the valve switching times, and start and end times of all operations are also
recorded and aligned with signal traces from all tool systems. The data was contin-
uously collected in a fab for multiple months, along with relevant wafer metrology
and information about all maintenance actions done on the tool. It is obviously a
highly complex system in which quantummechanics, fluidics, thermodynamics, and
electromagnetic phenomena all occur and interact in an irregular geometry, leading
to immense difficulties when traditional Statistical Process Control (SPC) methods
are used for monitoring of the tool.3

It is therefore not a surprise that the HMM-based degradation model obtained
usingmethods from (Cholette andDjurdjanovic 2014;Zhang et al. 2016) significantly
outperforms the purelySPC-basedmonitoring. Figure5.14 (adapted fromZhanget al.
2016) shows Receiver Operating Characteristic (ROC) curves for fault detection
on the aforementioned PECVD tool data set, as obtained using an HMM-based
degradation model from Zhang et al. (2016), and Hotelling’s T2 statistics-based SPC

3The data set contained records of 4 fault events, 2 of which kept the tool down for more than
3weeks each due to difficulties in detecting the abnormal behaviors and finding their root causes.
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Fig. 5.14 Receiver Operating Characteristic (ROC) curves for fault detection on the PECVD data
set described in this chapter, as obtained using HMM-based degradation model obtained using
methods from Zhang et al. (2016), and using Hotelling’s T2 SPC chart (Montgomery 2013). Area
under the curve (AUC) for the HMM-based fault detection was 0.945, while AUC for the Hotelling
T2-based fault detection was 0.763. Note that ideal AUC is 1, while purely random fault detection
yields AUC of 0.5

chart (SPC charting method routinely utilized for multivariate process control in
semiconductor manufacturing and in other areas Montgomery 2013).

5.5 Advances in CBM-Based Operational Decision-Making
in Semiconductor Manufacturing

Any CBM solution is only as good as the ultimate decision one makes based on
that solution. Hence, operational decision-making based on diagnostic or prognostic
condition information obtained from the fab floor represents an integral part of CBM-
related research. As mentioned earlier, factory physics in a modern fab is highly
complex and intractable, which rendered most of the traditional decision-making
methods based on tractable assumptions on equipment reliability and interactions
between machines obsolete.

Recent dramatic advances in computational technology and ability to sense key
variables characterizing factory operations (Work in Progress—WIP levels, cycle
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Fig. 5.15 Illustration of simulation-based optimization of operations in manufacturing. System-
level cost effects of any candidate decision can be evaluated via multiple replications of discrete
event simulations, which can then be used by some metaheuristic to improve operational decisions
in the next iteration

times, machine availability status, as well as machine usage levels and age) led to
emergence and expansion of research in a fundamentally different direction. Namely,
we can see significant recent developments in simulation-based optimization of oper-
ations in semiconductor manufacturing, as well as in other areas (for a thorough
research survey of operational decision-making in semiconductor manufacturing,
with special emphasis on simulation-based optimization, see Chap.2 of the recent
Ph.D. thesis Celen 2016). New, faster computers and parallel computing capabil-
ities enable one to faithfully model the operations without the need for restrictive
assumptions, as well as to conduct multiple replications of system simulations and
thus evaluate uncertainties associated with any operational decision. This can then
be elegantly coupled with metaheuristic optimization methods, such as a Genetic
Algorithm, or Tabu search, to guide decisions to ever-improving system-level cost
effects, as illustrated in Fig. 5.15. Though such approaches do not guarantee opti-
mality (it is virtually impossible to even characterize optimality under such complex
models, let alone guarantee one could reach it), the very character of the simulations
and metaheuristics guarantees that over time, one would be improving the decisions,
while at the same time having confidence in the effects of those decisions (Celen
2016; Yang 2010).

Of particular interest for semiconductor manufacturing is the ability of such a par-
adigm to capture interactions between various operational domains in a fab, such as
maintenance schedules, production schedules and sequencing, product dispatching,
spare part logistics. Sophistication ofmaterial handling systems, as well as the ability
of most of the tools to execute various operations on various products within very
short time spans, makes these interactions in a semiconductor fab much more pro-
nounced than what we see in more traditional manufacturing, such as automotive or
petrochemical. On the other hand, ability to model such interactions facilitates con-
current decision-making in those domains, often leading to significant advantageous
cost effects of the resulting decisions.

The above-mentioned benefits come at the cost of greatly increased computa-
tional requirements, which is why a general method for fab-wide optimization of
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operations across all domains still does not exist. Nevertheless, several recent papers
did address optimization across multiple operational domains in a semiconductor
fab. In the domain of reliability-based maintenance decision-making, seminal works
by Sloan and Shantikumar offered an alluring framework for joint decision-making
in terms of maintenance and production operations (Sloan and Shanthikumar 2000,
2002), which was extended to simulation-based paradigm4 in Zhou et al. (2007).
The earliest such work in the context of CBM could be found in Li et al. (2007),
where dynamics of degradation states of the tool were modeled as perfectly observ-
able Markov chains, with maintenance triggering condition states determined for
different product types via discrete event simulations and a Genetic Algorithm-
based optimization. The authors report that using product type-dependent CBM
policies results in increased yields. However, they overlook the fact that degrada-
tion is an operation-dependent process and assume that each operation affects the
degradation of the equipment in the same way. That work was extended in Celen
andDjurdjanovic (2012) to amultiple-product/multiple-machinemanufacturing sys-
tem, with machine conditions and outgoing product quality degrading according to
operating mode-specific models, which better reflects the reality in typical semicon-
ductor fab. Finally, in Celen and Djurdjanovic (2015), the same simulation-based
optimization paradigm was applied to joint maintenance and product-sequencing
optimization in the same modeling framework proposed in Celen and Djurdjanovic
(2012).

Figure5.16 illustrates the target system considered in Celen and Djurdjanovic
(2012, 2015). It is a typical cluster tool frequency encountered in modern fabs, with
multiple production chambers and a material handling system that could deliver
workpieces (wafers) to any of those chambers at any given time. Each chamber ci
is assumed to be able to conduct several operations o j , and each product (wafer)
type is assumed to require a certain set of operations to be successfully completed
in sequence. Condition states of each chamber are assumed to degrade following
known operation and chamber-dependent unidirectional Markov chains, with each
state being associated with a known probability of completing each of the relevant
operations in that chamber (that probability drops with higher levels of degradation).
It is assumed that certain numbers of products of each type need to be completed
in a mission time T and a simulation-based method was devised to jointly opti-
mize operation and chamber-dependent maintenance triggering states (CBM policy)
and a sequence in which the wafers would be released into the system in a way
that optimized a customizable cost function rewarding production and penalizing
maintenance operations and system downtimes. This policy was combined with the
optimal dispatching policy from Li et al. (2007), where it was shown that at any given
time, an operation should be dispatched to the chamber (station) that has the highest
probability of completing it (this dispatching policy is also quite intuitive).

4Note that even though Zhou et al. (2007) did not explicitly address semiconductor manufacturing
per se, the underlying assumptions about the flexibility of the modeled system and availability of
WIP and machine usage information very much make that work highly relevant to semiconductor
manufacturing and less to other, more traditional, manufacturing domains.
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Fig. 5.16 Illustration of a cluster tool considered in Celen and Djurdjanovic (2012, 2015). Each
station is assumed to degrade following a station and operation-dependent Markovian chain of
condition states, with the probability of successful completion of any given operation in any given
station dropping with the progression of degradation states according to a known yield model.
Simulation-based optimization was used to concurrently optimize operation-specific and station-
specific maintenance triggering states (CBM policy) with the product sequencing (production
decision)

Figure5.17 is adapted from Celen and Djurdjanovic (2015) and shows percent-
age improvements in terms of system-level operating costs obtained for increasing
penalties for unmet production and increasing production goals when the integrated
maintenance and product-sequencing decision-making is implemented, as opposed
to when the traditional, fragmented decision-making is used (i.e., when product
sequence is determined based on some simple heuristic, after which CBM pol-
icy is optimized for that product sequence). It is part of an elaborate sensitivity
analysis conducted in Celen and Djurdjanovic (2015), which clearly shows that the
added decision-making capability within the integrated maintenance and production
decision-making framework becomes increasingly beneficial as production goals
become more acute (when the system needs to produce more products, or penalties
for unmet production are higher). This makes sense because, in the integrated frame-
work proposed in Celen and Djurdjanovic (2015), repair and replacement are not the
only actions one can take to fight degradation. Instead, one can reorder production
in a way that equipment downtimes due to maintenance can be scheduled at times
when they are less intrusive on the production, or when they are cheaper (holidays
or weekends).
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Fig. 5.17 Relative improvements yielded by the integrated maintenance and product-sequencing
decision-making framework proposed in Celen and Djurdjanovic (2015) for the generic cluster
tool shown in Fig. 5.16, as compared to the traditional operation independent CBM policy, and
the operation-dependent CBM policy proposed in Celen and Djurdjanovic (2012). Note that prod-
uct sequencing for the benchmark policies was obtained separately, by ad hoc grouping product
operations. It is visible that relative (percentage) improvements yielded by the integrated opera-
tional decision-making increase as production demands become more acute (as penalties for unmet
production and production goals become higher)

5.6 Concluding Thoughts

Semiconductor manufacturing of integrated circuits is arguably the most sophisti-
cated and fastest advancing area of high-volume manufacturing, which is why it is
laden with all sorts of research challenges. This manuscript offered some of the most
recent advances in all aspects of CBM transformation of data to information and fur-
ther into decisions in this domain. The main message that should be taken from this
text is thatmethods and solutions based on seventeenth- and eighteenth-centurymath-
ematics (Fourier, Bernoulli, Jacobi, Newton and others), regardless of how ingenious,
cannot always be counted on to solve twenty-first-century problems, such as those
encountered in modern fabs. Instead of emphasis on analytical tractability so dearly
needed in the olden days, novel directions should use novel computational tech-
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nologies to acknowledge and take into account the non-stationary and non-Gaussian
nature of signals emanating from sophisticated equipment we see today, model the
inherently stochastic relations between the available sensor readings and underly-
ing equipment conditions, understand and estimate uncertainties in models relating
sensor readings with equipment conditions and, finally, use those stochastic models
along with the associated uncertainties to synchronize information across various
portions of the plant into coherent, cost-effective decision. These decisions need to
be made with full understanding of the underlying factory physics and interactions
between various operational domains (maintenance, production, quality, logistics).
The author hopes that this manuscript clearly conveys the aforementioned message
and that the interested reader can see numerous avenues for advancing the state of
the art.

In the end, it is worth noting that any serious advancement in CBM methodolo-
gies and practices in semiconductor manufacturing cannot be done through isolated
university research. Truly impacting solutions require that novel methodological
advances that usually originate in universities and research institutes be coupled
with data and expertise from equipment suppliers, who understand the underlying
equipment physics, as well as the fabs who best understand how that equipment is
used. All results presented in this chapter came from such collaborations, and there
is clear need for such synergies to continue.
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Chapter 6
Multistage Manufacturing Processes:
Innovations in Statistical Modeling
and Inference

Hsiang-Ling Hsu, Ching-Kang Ing, Tze Leung Lai and Shu-Hui Yu

Abstract Modeling multistage manufacturing processes for fault detection and
diagnosis in modern production systems has emerged as a cutting-edge research
area at the interface of the engineering and statistical sciences. We give an overview
of the developments in this area and describe some recent innovations in statistical
modeling and inference associated with these developments.

6.1 Introduction

Modern production engineering typically involves multiple stages in the production
of an item, and each stage may involve multiple stations and equipments that can
be used in parallel to produce many items simultaneously. Modeling multistage
manufacturing processes (MMPs) for fault detection and diagnosis has emerged as
“a new area within the boundary of engineering and statistical” sciences, as noted
by Ding et al. (2002a) who point out the following developments and methods from
both sciences:

Dimensional quality, represented by product dimension variability, is one of the most crit-
ical challenges in industries which use multistage manufacturing processes . . . In general,
part fixturing, which determines the positions of parts during manufacturing (assembly or
machining), directly affects the dimensional quality of final products. . . . Recent advance-
ments in fixture design have resulted in significant improvement of fixturing accuracy and
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repeatability. Nevertheless, design-orientedmethodology alone cannot guarantee the desired
quality of the product due to the complexity and random nature of uncertainties and distur-
bances in manufacturing processes. Therefore, an effective method for detecting and diag-
nosing dimensional (multivariate) faults during production, based on in-line measurements,
is highly desirable. . . . Methodologies (from statistical science) include pattern recognition
of single (univariate) fixture fault through PCA and the identification of multiple simultane-
ous faults using estimation followed by statistical testing. . . . These diagnostics require the
pattern vectors to be obtained through off-line modeling . . . The modeling of pattern vectors
for all potential fixturing faults in MMP is much more challenging (than a fixture fault on a
single manufacturing station) due to the complex interrelations that exist between stations
. . . A process-level model is required to characterize such propagation and accumulation of
variation, and to relate the fixture variation to the dimension quality of the final product.

In Sect. 6.2, we review several developments in statistical modeling and inference
that have been applied or have potential applications to characterizing “propaga-
tion and accumulation of variation” in MMP. Recent developments in “estimation
followed by statistical testing” are addressed in Sect. 6.3, in which we summarize the
recent work by Ing et al. (2017) and Lai et al. (2017) in this area motivated by fault
diagnosis based on quality assurance test data in semiconductor device fabrication.
Section6.4 gives further discussion on fault detection and diagnosis in monitoring
multicomponent manufacturing systems with a large number of components as in
semiconductor device fabrication and on how these applications benefit from and in
turn also inspires innovations in statistical modeling and inference.

6.2 Overview of Statistical Models and Methods for MMPs

6.2.1 State-Space Model for In-Line Manufacturing Process

Figure1 of Ding et al. (2002a) and Fig. 3 of Zhou et al. (2004) display the framework
of fault diagnosis for a product produced by an MMP that consists of m stations. Let
xk denote the fixturing deviation at station k (xi = 0 if there is no deviation). The
linear state-space model

xk = Ak−1xk−1 + Bkuk + wk

yk = Ckxk + εk
(6.1)

is used to represent the propagation of deviation for what they call an in-line man-
ufacturing process. The term “in-line” stems from analogy to queueing networks in
which jobs departing from one station join a queue at another station. In the state
equation of (1) in which wk and εk are zero-mean random errors (disturbances),
Ak−1xk−1 represents the deviation transformation from station k − 1 to station k, uk

represents the fixturing deviation contributed by station k, and Bk is the input matrix
that depends on the fixture layout at the station. The measurement equation of (1)
relates the observation vector yk ∈ R

d to the unobserved state, but the observation
may be available only at some station k ∈ {1, . . . ,m}. The actual data for off-line
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diagnosis consist of a sample of n observed vectors yk,i (i ≤ nk) that are stacked
into a dnm × 1 vector Y , noting that n1 + · · · + nm = n. Some of the nk can be 0, as
in end-of-line sensing (for which measurements are only taken at station m, hence
n1 = · · · = nm−1 = 0) considered by Ding et al. (2002a). Zhou et al. (2004) rewrite
(1) for the nk observations at station k (with nk �= 0) as a linear mixedmodel (LMM):

yk,i =
k∑

j=1

γ k jμ j +
k∑

j=1

γ k j (u j,i − μ j ) +
k∑

j=1

βk jw j,i + εk,i , 1 ≤ i ≤ nk, (6.2)

where μ j = E(u j,i ), γ kk = CkBk , βkk = Ck , and for 1 ≤ j < k,

γ k j = Ck Ak−1 · · · A j B j , βk j = Ck Ak−1 · · · A j .

They assume known system matrices Ak , Bk , and Ck that are “determined by the
process/product design.” The unknown parameters of interest are the fixed effectsμ j

and the covariance matrices V j of the random effects u j,i − μ j associated with the
process faults. Assuming Gaussian errors in the state-space model (1) and therefore a
multivariate normal LMM for (2), they use MLE and restricted maximum likelihood
(REML) to estimate these parameters and other variance components. They also
suggest using minimum quadratic unbiased estimation (MINQUE) to reduce the
computational load. Letting μ = (μ�

1 , . . . ,μ�
m)�, they test the null hypothesis H0 :

μ� = 0 to identify a mean shift fault for the �th coordinate of the mean vector
μ, and H ′

0 : σ 2
� ≤ h� to identify the corresponding variance fault, where h� is the

tolerance for process variations. Asymptotic normality of the MLE μ̂� and σ̂ 2
� − h�

of the MLEs (or MINQUE test statistics) is used to determine critical values for
rejection. This is in the spirit of “estimation followed by statistical testing” that we
have cited in Sect. 1 from Ding et al. (2002a). The testing, however, is carried out
separately for each � without adjustments for multiple testing, presumably because
the large number of components in the vector μ discourages them from carrying out
Bonferroni-type corrections that may result in low power. In Sect. 6.3, we describe
some recent developments in post-selection multiple testing to address this issue.

6.2.2 Engineering-Driven Factor Analysis

Liu et al. (2008) rewrite (2) as Y = EY + Γ U + v, where v stacks
∑k

j=1 βk jw j,i +
εk,i into a dnm × 1 vector that corresponds to stacking the yk,i into Y , U likewise
stacks the random effects u j,i − μ j , and the matrix Γ basically aligns the γ k j to

yield the sums
∑k

j=1 γ k j (u j,i − μ j ) when it acts as a linear transformation of U .
Instead of specifying the γ k j (and thereforeΓ ) explicitly through the process/product
design, which may be challenging for complex MMPs, Liu et al. (2008) note that
the case of unspecified Γ falls in the preview of factor analysis. In factor analysis,
the estimated matrix Γ̂ whose entries are called factor loadings is unique only up to
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orthogonal transformations. The usual practice is to multiply Γ̂ by a suitably chosen
orthogonal matrix so that the factor loadings have some optimal statistical features;
an example is the popular varimax rotation thatmaximizes the sumof variances of the
squared loadings. Liu et al. (2008) point out, however, that the fault diagnosis problem
is about variation sources in key product characteristics, which are grouped to form
spatial pattern vectors (SPVs) that are illustrated in their Figs. 1 and 2. Instead of using
orthogonal rotations, their “engineering-driven factor analysis” uses oblique rotations
to estimate theSPVsof variation sources. This approachuses (a) information criterion
or minimum description length in information theory to select the number of factors,
followed by (b) engineering knowledge representation to specify spatial patterns
and an indicator matrix consisting of 1’s and 0’s that transforms the description
of an MMP into directional information of the SPVs of variation sources in key
product characteristics, and (c) evaluation of the oblique rotation matrix by solving
an optimization problem that achieves maximum agreement between the estimated
SPVs and the spatial patterns specified by engineering knowledge; see Sect. 3 of Liu
et al. (2008).

6.2.3 Stream of Variation: Modeling and Design to Reduce
Variation

Stream of Variation (SoV) methodologies, originally developed for automotive body
assembly, were extended to modeling and optimization problems related to the iden-
tification and reduction of sources of variation in MMPs in the 2000s. As noted by
Shi (2007, pp. 1–4), in the late 1980s, the in-line optical coordination measurement
machine (OCMM) was introduced at the end of an automotive body assembly line
to measure critical features of the auto-body assembly, using about 100 laser sensors
each of which targeted a critical feature. “The tremendous amount of in-line quality
data provided significant opportunities for more effective process control,” but “with
hundreds of quality attributes being measured,” using SPC techniques available at
that time would invariably detect some out-of-control conditions (which might be
false alarms) and how to react to these conditionswas a challenging problem“because
of the complexity of the process and time-consuming efforts in root-cause identifi-
cation.” Djurdjanovic and Ni (2004) give a review of the progress toward addressing
this problem in multistation machining systems and a new proposal, saying: “ The
selection of measurements in multistation machining systems is currently a slow
and error-prone process based on expert human knowledge.” They also propose
“systematic procedures for synthesizing measurement schemes that carry the most
information about the root causes of dimensional machining errors.” Their system-
atic procedures are based on the models described in Sect. 6.2.1 that enable “the use
of the achievements of linear control theory and multivariate statistics in formally
and systematically solving the problems related to optimal selection of measure-
ment in multistation machining systems.” In particular, Djurdjanovic and Ni (2001)
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have already used the rank of the regression matrix of a linearized SoV model con-
necting the measured workpiece errors and their root causes to define measurement
scheme diagnosability, and Ding et al. (2002b) have developed this concept further
for MMPs, introducing the notations of within-station, between-station, and over-
all diagnosability. Djurdjanovic and Ni (2004) also study the problem of SoV-based
measurement scheme synthesis (fusion), first using the heuristics for successivemea-
surement removal and then applying genetic algorithms for combinatorial optimiza-
tion to combine information from the data streams.

Diagnosability is basically related to the selection of measurements/sensors in
the SoV design. Chapter 12 of Shi (2007) gives an overview of optimal sensor
placement and distribution in multistation processes. It begins with and introduction
to coordinate measuring machines (CMMs) and OCMMs:

ACMMusually consists of a spatial frame that provides the coordinate reference, a mechan-
ical arm that can move along guided tracks, and a probe that retrieves coordinate information
when its tip touches the surface of a manufactured workpiece. One disadvantage of CMMs is
their low throughput performing the measurement job sequentially, . . . Recent innovations
in sensor technology have enabled manufacturers to distribute quality-assurance metrology
sensors in multistation manufacturing processes. . . . An OCMM replaces the mechanical
arm and the touch probe in a CMMwith an optical sensor unit that consists of a laser source
and two CCD (charge-coupled device) image sensors. The laser source sheds a beam on
the surface of a workpiece, and the CCD sensors detect the reflective laser beam. . . . It is
more affordable to deploy multiple optical sensor units and build more OCMM stations,
performing parallel measurement jobs of multiple product characteristics.

It then goes on to point out the importance of design of a sensor system for root-cause
diagnosis since “a poorly designed sensor system is likely to generate an extensive
amount of irrelevant or even conflicting information” that may not even meet the
diagnosability conditions. The sensor placement and distribution problem involves
how to distribute the sensors to the stations and the location of the sensors at the
individual stations. The distribution part can be rephrased as sensor allocation for
multistage product inspection to minimize overall cost, including inspection costs,
scrap or repair, and warranty costs (which include those caused by false alarm or
detection delay). However, “research on sensor distribution for multistation systems,
which considers the effectiveness of variation diagnosis, is very limited.” The sen-
sor placement problem can be approached via single-station sensing optimality; for
example, Wang and Nagarkar (1999) use a D-optimal criterion for sensor placement
in a single station and use Powell’s direct search method to solve for the optimum.

6.2.4 Integrated Quality and Reliability Analysis for MMPs

SoVmethodologies include also component reliability and product quality. The fail-
ure of a component leading to its downtime is called “component catastrophic fail-
ure,” and component reliability information includes not only the catastrophic failure
rate but also component degradation such as the wear rate. For product quality, the
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event that the manufactured products are out of specifications is of most concern.
The multivariate quality statistics of the incoming and outgoing workpieces at the
intermediate stations of an MMP, if available through system design, are also useful
for fault diagnosis. Chen et al. (2004), Chen and Jin (2005), and Chap.16 of Shi
(2007) describe an integrated approach to system analysis of quality and reliability
(QR) for MMPs. In particular, Shi (2007) says:

In an MMP, each station consists of multiple components. To simplify the problem, these
components are assumed to be in series: the catastrophic failure of any component may
lead to system catastrophic failure. In an MMP, the final product quality is affected by
the accumulation or stack-up of all variations generated at previous stations. Considering
the QR-Co-Effect at each station, the variation propagation in product quality leads to the
propagation of the interaction between the manufacturing-system component variability and
the product quality, which is called the QR-Chain effect.

Shi (2007, pp. 393–401) discusses some building blocks for a QR-Chain model
and how the model can be used to evaluate system reliability. The QR-chain model
makes the following assumptions on the model components:

• Component degradation is modeled by a discrete-time realization of a Gauss–
Markov process with constant variance and mean linearly dependent (with non-
negative slope) on the component degradation state.

• The number of operation cycles is treated as a discrete-time index.
• The conditional probability that a systemcomponent fails during the next operation
cycle given that it is working in the current cycle is assumed to be proportional to a
linear combination of the squared deviations of the product quality characteristics
from the target.

To elucidate the first two assumptions, suppose there are M product quality char-
acteristics y j (t), j = 1, . . . , M, with target value 0. Let ξ(t) ∈ R

p represent the
degradation state of the p system components, and let t1, t2, . . . be the times of the
operation cycles. Then, the QR-chain model is given by the linear Gaussian state-
space model

ξ(tk+1) = Pkξ(tk) + Gkεk

y j (tk) = η j + α�
j ξ(tk) + β�

j zk + ξ�(tk)Γ j zk, j = 1, . . . , M,
(6.3)

in which Pk and Gk are known matrices, εk are i.i.d. normal with mean 0 prior to
degradation and mean μ after degradation, zk is a vector of noise variables, and Γ j

is a matrix characterizing the interaction effects between ξ(tk) and zk .

6.2.5 Sequential Fault Detection and Diagnosis for MMPs

In their survey on statistical process control (SPC) for MMPs, Shi and Zhou (2009)
point out that it is critical not only to detect process changes but also to determine
the root causes of the changes and that “most conventional SPC techniques treat the
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multistage system as a whole and lack the capability to discriminate among changes
at different stages.” Indeed, the history of quality control began with acceptance
sampling and Shewhart’s control charts that use relatively simple univariate quality
characteristics, and their gradual adoption by manufacturing and other industries.
Multivariate quality control characteristics and more efficient statistical process con-
trol (SPC) schemes such as CUSUM and EWMA represented the next long phase of
sustained development, making use of advances in multivariate analysis and sequen-
tial analysis in the statistics literature. The past decade witnessed the emergence
of a new direction in quality control because of the availability of “big data” for
fault detection and diagnosis and because of contemporaneous developments in the
statistics literature on high-dimensional data analysis. As noted by Choi et al. (2006)
andWang and Jiang (2009) for multivariate and high-dimensional applications, only
a sparse subset of quality characteristics or other variables of interest undergoes
abnormal changes that lead to deviations from the state of statistical control. For-
ward stepwise variable selection, Lasso, adaptive Lasso, least angle regression, and
their variants feature prominently in the control charts proposed by Wang and Jiang
(2009), Zou and Qiu (2009), Capizzi and Masarotto (2011), and Jiang et al. (2012).
These works focus primarily onmonitoring changes in the mean vector of the quality
characteristics when a large covariance matrix has to be estimated.

For multicomponent systems, fault diagnosis after detection is of critical impor-
tance in determining appropriate corrective actions to restore the system to its normal
state. A Bayesian approach to fault diagnosis was developed by Tan and Shi (2012),
who modified the Bayes procedures introduced by George and McCulloch (1993,
1997) to identify promising subsets of predictors in linear regressionmodels. Tan and
Shi’s procedure is for diagnosis of mean shifts, identifying which means have shifted
and the directions of shifts in multivariate SPC. They useMarkov chain Monte Carlo
(or more precisely, Gibbs sampling) to implement the Bayesian approach. Earlier, Li
and Tsung (2009) applied multiple testing ideas to fault diagnosis in an adjusted She-
whart or CUSUM chart, but unlike the references cited in the preceding paragraph,
their procedure does not consider applications to high-dimensional data associated
with a large number of components.

In his recent survey of sequential fault detection and diagnosis in complex sys-
tems and quality control, target detection and classification from radar, navigation
system and network monitoring, Nikiforov (2016) describes the change detection
and diagnosis problem as “the generalization of the (classical) quickest change-point
detection problem to the case of M post-change hypotheses.” He assumes that for a
series of independent observations X1, X2, . . . , there exists a stopping time ν such
that the Xt have density function f0 for t < ν and f j for t ≥ ν, j = 1, . . . , M . Let
P j

ν denote such probability measure and E j
ν the corresponding expectation; the case

ν = ∞ is denoted by P∞. A detection–diagnosis rule is a pair (T, ĵ), in which T is a
stopping time signaling the occurrence of a change-point and ĵ is a terminal decision
rule identifying the type of change. Extending Lorden’s (1971) seminal work for the
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case M = 1, Nikiforov (2016) introduces the constraint on the average run length
(ARL) for false alarm and diagnosis:

E∞(T ) ≥ γ and E j
1(Tn(h)) ≥ γ for 1 ≤ h �= j ≤ M, (6.4)

in which (T1, ĵ1), (T2 − T1, ĵ2), . . . are i.i.d. copies of (T, ĵ) and n(h) = inf{i ≥
1 : ĵi = h}. Under this constraint, he derives an asymptotic lower bound for the
worst-worst-case detection–diagnosis delay

Ē(T ) = max
1≤ j≤M

sup
ν≥1

{ess sup E j
ν [(T − ν + 1)+|X1, . . . , Xν−1]}. (6.5)

He also develops asymptotically minimax procedures that attain an asymptotic lower
bound for (5) subject to the constraint (4) as γ → ∞ and uses maximal invariant
statistics to get around nuisance parameters in certain problems.

For the quick detection problem that corresponds to M = 1, Lai (1995, 1998) has
introduced an alternative optimality theory for sequential change-point detection via
a comprehensive theory of sequential hypothesis testing using sequential generalized
likelihood ratio (GLR) statistics. Whereas Lorden (1971) imposes the classical con-
straint E∞(T ) ≥ γ on the detection procedures under consideration, Lai replaces
this constraint by a constraint on the false alarm rate per unit time, which is also
called “maximal local probability of false alarm,” defined by

sup
ν≥1

P∞(ν ≤ T ≤ ν + m)/m ≤ α. (6.6)

The basic underlying idea is that for a stopping time T that has a geometric dis-
tribution, E∞(T ) = 1/P∞(T = 1) ∼ m/P∞(T ≤ m) as E∞(T ) → ∞, uniformly
in m = o(E∞T ). For a general class of window-limited GLR schemes, Lai (1995,
1998, 2001, 2004) has shown that

E∞(T ) ∼ m/P∞(T ≤ m) as Eθ (T ) ∼ γ → ∞

if m/ log γ → ∞ but logm = o(log γ ), not only when the Xt are independent but
also when {Xt } is an ergodic Markov chain on a general state space satisfying certain
assumptions under P∞. Moreover, for these rules in such settings, we also have
P∞(T ≤ m) ∼ supν≥1 P∞(ν ≤ T < ν + m). Lai (1995) proposes the constraint (6)
as an alternative to the ARL constraint E∞(T ) ≥ γ for the implementation of these
rules for change-point detection in stochastic systems. Besides noting the difficulties
in evaluating the ARL in complex systems for which Monte Carlo methods are
needed, Lai (1995) also points out that a long expected duration to false alarm in
the ARL constraint does not necessarily imply that the probability of having a false
alarm prior to some specified time m is small and that it is easy to construct T “with
a large mean γ and also having a high probability that T = 1.” Chakraborti et al.
(2001) also note that “the ARL loses much of its attractiveness as a typical summary
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if the distribution is skewed (as is often the case),” but explain why the ARL has
remained to be a popular measure of chart performance: “Two control charts are
often compared on the basis of out-of-control ARL, such that their in-control ARLs
are roughly the same. This parallels comparing two statistical tests on the basis of
power against some alternative hypothesis when they are roughly of the same size.”
Lai (1995) uses this hypothesis testing analogy to find better alternatives to the ARL
constraint on false alarm and to the out-of-control ARL as a measure of detection
delay.

Lai (2000) has extended this approach to the case of general M , thereby provid-
ing an alternative to Nikiforov’s constraint (4) on the ARL for false detection and
diagnosis. He first gives an equivalent representation of (4). Since the Xt are i.i.d.
under P j

1 , it follows from Wald’s equation that E j
1(Tn(h)) = E j

1(T )/P j
1 ( ĵ = h) and

therefore (4) can be rewritten as

E∞(T ) ≥ γ and max
1≤ j≤M

max
1≤h �= j≤M

P j
1 ( ĵ = h)/E j

1(T ) ≤ 1/γ. (6.7)

In addition, instead of the conventional ARL constraint in (4) and (7), he considers
the maximal local probability constraints on false detection and false diagnosis:

sup
ν≥1

P∞(ν ≤ T < ν + mα) ≤ αmα,

max
1≤ j≤M

sup
ν≥1

P j
ν (ν ≤ T < ν + mα, ĵ �= j) ≤ αmα. (6.8)

His approach to sequential detection and diagnosis starts with the theory of sequen-
tial multiple hypothesis testing and then converts asymptotically optimal sequential
testing procedures to corresponding detection–diagnosis rules.

The post-change hypotheses H1, . . . , HM considered byNikiforov (2016) and Lai
(2000) represent disjoint subsets of the parameter space so that the actual parameter
belongs to only one of them. This framework does not cover the setting of mul-
tiple data streams studied by Tartakovsky and Veeravalli (2008), Mei (2010) and
Xie and Siegmund (2013), who consider monitoring multiple streams of data in
applications like cyber network security systems, where only partial locations would
detect or be affected by the abrupt intrusion. In these multisensor problems, it is of
great importance to integrate information from all data streams and also identify the
anomaly from noisy observations. Suppose one observes independent X j,t for the
j th data streams at time t = 1, 2, . . ., with the number of streams being M . After an
unknown change-point ν, the distributions of the observations from some proportion
of the streams get changed.Hence, for the j th data stream, the density function of X j,t

is f j
0 for t < ν and is f j

1 for t ≥ ν. This leads to the null hypothesis Hj : f j
1 = f j

0
that the j th data stream is not among those data streams which change their distri-
butions at the change-point ν. Section6.4 will discuss some recent developments for
this problem.
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6.3 Post-selection Multiple Testing and Fault
Detection–Diagnosis

This section first reviews our recent work on root-cause identification following fault
detection in quality assurance (QA) testing in semiconductor device fabrication,
particularly the pivotal role played by a novel approach to post-selection multiple
testing in this work. It then describes further developments of this approach for
sequential fault detection and diagnosis for high-dimensional quality characteristics.

6.3.1 Fault Diagnosis from QA Test Data in Semiconductor
Fabrication

Semiconductor devices are fundamental to the electronics industry, and fabrication is
the process that converts semiconductingmaterials into devices or electronic products
based on the integrated circuits created in the process. Silicon is almost always used
as the semiconducting material, but other semiconducting compounds may also be
used for specific applications. The fabrication process involves multiple stages, the
first of which is growth of a large piece of crystalline semiconducting material called
an ingot. Ingots are then sawed into wafers whose thickness ranges from 0.5 to
1 mm. Subsequent stages include thermal and local oxidation, photolithography,
etching, dopant diffusion, ion implantation, and chemical–mechanical planarization
processes. After these stages, each wafer contains hundreds of dies (or chips). The
dies are separated by scribing and cleaving and then packaged for protection (Grout
2006). Modern semiconductor factories (known as “fabs” or fabrication facilities)
are organized into “workcells” so that all necessary equipment for completing a
given stage of the process is placed in the same room to reduce the chance of wafer
mishandling. The desiderata of an efficient semiconductor manufacturing process
are high yield and high throughput, thereby reducing the cost of production, besides
high quality. The throughput refers to the number of chips produced per unit time,
and yield is the proportion of functionally operational chips per wafer. Quality is
achieved by quality assurance (QA) testing after wafer packaging, in addition to
wafer testing prior to packaging.

A “barebone” version of wafer testing consists of wafer sorting, which is testing
individual dies on the wafer with a test equipment called a wafer prober, and a wafer
final test, which is functional testing at the completion of its production. When the
wafer prober is in contact with a die, the automated test equipment (ATE) software
applies tests on it involving current and voltage measurements in a short time. Failed
dies are not packaged, and this saves packaging cost. If a wafer has a large propor-
tion of failed dies, the whole wafer is discarded. There are many enhancements of
this barebone version besides new hardware/software developments in performing
wafer tests; see Grout (2006) and May and Spanos (2006) for a basic introduction
and the Proceedings of annual IEEE SW (SemiconductorWafer) Test Workshops for
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ongoing developments. In particular, May and Spanos (2006) describe (a) applica-
tions of multivariate statistical process control (SPC) with model-reference adapta-
tion, (b) applicability of intelligent supervisory control (using “intelligent modeling
techniques such as neural networks”), and (c) process and equipment diagnosis using
expert systems, neural networks, and algorithms for automation.

Instead of testing for eachwafer prior to its packaging, QA testing uses a sample of
the packagedwafers to test if the product actuallymeets the customers’ specifications
even though the production design already aims at meeting them. Although “micro-
testing” prior to packaging should have eliminated markedly defective chips and
wafers, the high-throughput and high-yield manufacturing process cannot afford to
check these specifications for individual wafers and defers “macro-testing” to QA
before delivery to the customers. Section4 of Ing et al. (2017) shows some wafer QA
test datasets and gives boxplots of the differences of the quality characteristicsYi from
the target value a, from a sample (X i ,Yi ), i = 1, . . . , n, of inspected wafers and the
vector of tools X i used to manufacture the i th wafer. Labeling all possible tools over
successive stages of the multistage wafer manufacturing process by j = 1, . . . , p,
xi j is defined as 1 or 0 according to whether tool j is used or not for the i th wafer.

Letting H0 denote the state of statistical control, we can write Yi = a + εi under
H0, where a = E0Yi and εi are independent with mean 0 and variance σ 2. The t-
statistic

√
n(Ȳ − a)/s can be used to test whether production is out of the state of

statistical control, where s2 = ∑n
i=1(Yi − Ȳ )/(n − 1). For root-cause identification

following fault detection, linear regression Yi − a = β�xi + εi is arguably the sim-
plest model as it corresponds to finding the smallest linear subspace of xi1, . . . , xip
in which EYi − a lies; this formulation is more general than finding the set of j’s for
which β j �= 0 because it allows multicolinearity among xi1, . . . , xip. In this model,
fault diagnosis is basically a problem of multiple testing on the parameter vector β

in the regression model

Yi − Ȳ = β�(xi − x̄) + εi − ε̄. (6.9)

Although xi typically has a large number of components in applications to multi-
stage wafer manufacturing processes, the unknown parameter vector β has certain
sparsity properties that make it estimable. The problem falls in the purview of (a)
variable selection and parameter estimation, together with (b) post-selectionmultiple
testing, in high-dimensional sparse linear models. To solve this problem, Ing et al.
(2017) have developed a new approach to multiple testing following a greedy for-
ward stepwise variable selection procedure, called the orthogonal greedy algorithm
(OGA), in high-dimensional sparse linear models. Particularly noteworthy for this
new approach is that it can maintain the family-wise error rate (FWER) or the over-
all type I error of mis-identifying a properly functioning tool as defective, whereas
previous methods fail to do so because of inadequate adjustment for post-selection
testing or a “spillover” of a relevant regressor on an irrelevant one due to their corre-
lations; see Sect. 3.1 and Sect. 5 of Ing et al. (2017). As will be discussed in Sect. 6.4,
their major innovation is a test-based variable selection method after the termina-
tion of OGA so that error rate guarantees are still applicable to multiple testing after
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variable selection, which is of basic importance inMMPs that involve a large number
of tools/equipment over multiple stages. Note that Zhou et al. (2004) also formu-
late fault diagnosis as testing multiple hypotheses concerning the fixed and random
effects in the linear mixed model (2) but do not control the FWER in testing these
multiple hypotheses, as we have pointed out in Sect. 6.2.1.

6.3.2 High-Dimensional Process Monitoring and Diagnosis

The preceding methodology for post-selection multiple testing has recently been
extended by Lai et al. (2017) to the problem of sequential fault detection and diag-
nosis for high-dimensional quality characteristics, providing a new and consider-
ably more efficient approach to the SPC problem in the big data era than those
reviewed in the first paragraph of Sect. 6.2.5. This new approach uses the same prin-
ciple, described in the fourth paragraph of Sect. 6.2.5, to derive an optimal sequential
change-point detection rule from a corresponding sequential test of some composite
null hypothesis. For the case of high-dimensional quality characteristics, one has a
large number of null hypotheses, one for each quality characteristic. In particular,
the fault detection–diagnosis problem in Sect. 6.3.1 involves the null hypotheses

H0 : E0(Yi ) = a, Hj : β j = 0 for L ≤ j ≤ p, (6.10)

in which H0 is associated with the state of statistical control and β j is the j th com-
ponent of the parameter vector β in the regression model (9).

Whereas Ing et al. (2017) have developed a new approach to testing the multiple
null hypotheses based on a sample {(X i ,Yi ), 1 ≤ i ≤ n} of fixed size n, the first
step of Lai et al. (2017) is to extend that approach to group sequential tests of the
p + 1 null hypotheses in (10). As we have already pointed out in Sect. 6.3.1 and
will explain further in Sect. 6.4, regression with more input variables than the sample
size requires variable selection to come up with a manageable set Ĵ (t) as stage t
with sample size nt . Because the set Ĵ (t) typically changes slowly with the sample
size, group sequential methods that only update variable selection and the associated
regression parameter estimates when the sample size reaches n1, n2, . . . , nT have to
be used in lieu of fully sequential methods that update whenever a new observation
is added to the sample, where T is the number of groups in the group sequential
procedure. The second step of Lai et al. (2017) proceeds as in the fourth paragraph of
Sect. 6.2.5, transforming the group sequential multiple hypothesis testing procedure
to a window-limited group sequential GLR fault detection–diagnosis rule.
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6.4 From High-Dimensional Statistical Innovations to
MMP and Back

As pointed out in the Abstract and Sect. 4 of Ing et al. (2017), our work in post-
selection multiple testing was “motivated by applications to root-cause identification
of faults” in semiconductor MMPs “that involve a large number of tools or equip-
ment at each stage.” In fact, the semiconductor company that introduced the fault
diagnosis problem to us had tried various high-dimensional regression methods to
fit the regression model (9) and found OGA introduced by Ing and Lai (2011) to
give results that it found most applicable to its data. This illustrates “from high-
dimensional statistical innovations to MMP” monitoring and diagnosis in the title of
this section. Other examples of this theme are SPC described in the first paragraph
of Sect. 6.2.5, which have led to the recent work of Lai et al. (2017) described in
Sect. 3.2.

The other part of the title—“and back” from MMP to statistical innovations—is
also illustrated by Ing et al. (2017), who were led by theMMP application to develop
a relatively complete theory of post-selection multiple testing in linear regression
models. This work has subsequently led to a more general theory that is applicable
to nonlinear and generalized linear models developed by Lai and Tsang (2017). Such
a theory not only broadens the applications to fault diagnosis of MMPs but is also
envisioned to help resolve the “irreproducibility/replication crisis” of contemporary
science. Because big data from complex experiments in modern science typically
require variable/hypothesis selection based on some sparsity principle to make the
problem feasible, there is contemporaneous awareness of irreproducible research
associated with invalid p-values in post-selection multiple testing; see the editorial
articles in The Economist (2013, Oct. 19),American Psychological Association (Oct.
2015), and Nature (Feb. 2016) on “unreliable research,” a “reproducible crisis,” and
“challenges in irreproducible research,” respectively.

Extension of these ideas from samples of fixed size to sequential samples
involves another level of multiplicity, namely repeated testing besides testing multi-
ple hypotheses. Big data not only result in data-dependent hypothesis/variable selec-
tion decisions as discussed above but also have computational issues that become
intractable if carried out sequentially over time. The work of Lai et al. (2017) aims at
resolving both fundamental issues and is therefore relevant to both parts of the title of
this section. A variant of that work is currently in progress and is related to sequen-
tial change-point detection and diagnosis for multiple (and in particular, numerous)
data streams. As noted in the last paragraph of Sect. 6.2.5, such data streams arise
not only from MMPs and multicomponent systems but also in monitoring large net-
works. The references cited in Sect. 6.2.5 consider the case of a fixed (and relatively
small) number M of data streams. We are currently working on the case M → ∞ as
α → 0, where α is the maximal local probability constraint on false detection and
false diagnosis, as in (8).
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Chapter 7
Recent Research in Dynamic Screening
System for Sequential Process Monitoring

Peihua Qiu and Lu You

Abstract Dynamic Screening problems arise from a variety of applications where
weneed to sequentiallymonitor the performanceof individuals to detect anymalfunc-
tion as early as possible. These applications have stimulated much recent research in
the literature, and a new methodology called dynamic screening system (DySS) has
been developed. By comparing the longitudinal performance of a given individual
with that of well-functioning individuals and by sequentially monitoring their differ-
ence, DySS can detect their significant difference early so that the potential damage
to the given individual can be avoided or reduced. This paper aims to introduce recent
research on DySS in different cases, including cases with univariate or multivariate
performance variables and cases with independent or correlated observations.

7.1 Introduction

Dynamic screening (DS) problems encompass a wide range of applications where
someperformance variables (e.g., variablesmeasuring the quality of a product, or risk
factors of a disease) need to be sequentially monitored for early detection of faults
and/or diseases. The DS problems are important because early detection of faults
and/or diseases can warrant timely interventions so that adverse consequences (e.g.,
airplane crashes, occurrence of stroke, or other deadly diseases) can be prevented or
detected at early stages.

To solve the DS problems, one simple method is to construct pointwise con-
fidence intervals of the mean performance variables from observed data of some
well-functioning individuals. Then, the longitudinal performance of a given indi-
vidual can be detected as abnormal if its observations of the performance vari-
ables are beyond the confidence intervals. In the longitudinal data analysis (LDA)
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literature, there has been some discussion about construction of such confidence
intervals (e.g., Ma et al. 2012; Yao et al. 2005; Zhao and Wu 2008). However, this
confidence interval approach cannotmonitor the given individual in a sequential way,
and thus the history data cannot be used efficiently by this approach. Another poten-
tial approach to handle theDS problems is related to statistical process control (SPC).
By a SPC control chart, we can sequentially monitor the longitudinal performance of
an individual (cf., Hawkins andOlwell 1998;Montgomery 2009; Qiu 2014). But, this
approach usually does not compare an individual with other individuals regarding
their longitudinal performance, and it usually assumes that the observation distri-
bution is unchanged over time when the longitudinal performance of an individual
is in-control (IC) or satisfactory, which is often invalid in the DS problems. As an
example, the distribution of our blood pressure readings would change when we get
older even in cases when we are healthy and do not have any serious cardiovascular
diseases. Therefore, both the confidence interval approach and the traditional SPC
charts cannot solve the DS problems effectively.

Motivated by the SHARe Framingham Heart study, Qiu and Xiang (2014) sug-
gested a so-called dynamic screening system (DySS) for solving the DS problem
in univariate cases. The DySS method combines the strengths of LDA and SPC
approaches by comparing the longitudinal performance of a given individual with
that of some well-functioning individuals and by sequentially monitoring their dif-
ference. This method is designed mainly for cases when observations at different
time points are independent. In recent several years, several alternative DySS meth-
ods have been proposed for cases when the observations at different time points
are correlated and when observations are multivariate. In the next two sections, we
will introduce these different versions of the DySS method in details. Some remarks
about certain future research problems on this topic will conclude the article in the
last section.

7.2 DySS Methods When Observations Are Independent

In this section, we introduce some recent DySS methods for cases when process
observations collected at different time points are assumed independent. Univariate
cases are discussed in Sect. 7.2.1, multivariate cases are discussed in Sect. 7.2.2, and
an improved version is discussed in Sect. 7.2.3.

7.2.1 Univariate Cases

Qiu and Xiang (2014) suggested the first DySS method for univariate cases. This
method was mainly discussed in cases when process observations collected at dif-
ferent time points were assumed independent, although correlated data cases were
also briefly discussed. The method consists of the following three steps:
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1. Estimate the regular longitudinal pattern of the performance variable y from an
observed longitudinal dataset of a group of m well-functioning individuals. This
dataset is called IC dataset hereafter.

2. For a new individual to monitoring, standardize his/her observations using the
estimated regular longitudinal pattern obtained in step 1.

3. Monitor the standardized observations of the new individual and give a signal as
soon as all available data suggest a significant shift in his/her longitudinal pattern
from the estimated regular pattern.

These three steps will be briefly described below.
Assume that the longitudinal observations of the m well-functioning individuals

included in the IC dataset follow the model

y(ti j ) = μ(ti j ) + σ(ti j )ε(ti j ), for j = 1, 2, . . . , ni , i = 1, 2, . . . ,m, (7.1)

where ti j ∈ [0, T ] are observation times, y(ti j ) is the j th observation of the i th
individual, μ(·) and σ 2(·) are the mean and variance functions of the performance
variable y(·), and ε(·) is the standardized noise with mean 0 and variance 1. Based on
the local pth-order polynomial kernel smoothing, Qiu and Xiang (2014) suggested
a four-step procedure for estimating μ(·) and σ 2(·) in model (7.1). Their estimators
are denoted as μ̂(·) and σ̂ 2(·), respectively.

For a given individual to monitor, assume that his/her observations are obtained
at times t∗j ∈ [0, T ], for j = 1, 2, . . .. When the performance of that individual is
IC, his/her observations should follow model (7.1). So, we define the standardized
observations of that individual as

ε̂(t∗j ) = y(t∗j ) − μ̂(t∗j )
σ̂ (t∗j )

, for j ≥ 1. (7.2)

When the performance of the given individual is IC, the standardized observations
{̂ε(t∗j ), j ≥ 1} should be independent of each other with the same mean 0 and the
same variance 1. If the longitudinal performance of that individual becomes out-of-
control (OC), e.g., his/her mean response starts to deviate from the IC mean function
μ(·), then this will be reflected in the distribution of the standardized observations.

Assume that we are interested in detecting an upward mean shift in the original
performance variable y for the given individual, then we can apply a conventional
control chart for detecting upward mean shifts to the standardized observations.
In Qiu and Xiang (2014), an upward cumulative sum (CUSUM) chart was selected.
This chart has the charting statistic defined as

C+
j = max(0,C+

j−1 + ε̂(t∗j ) − k), for j ≥ 1, (7.3)

where C+
0 = 0 and k > 0 is an allowance constant. Then, the chart gives a signal of

an upward mean shift when
C+

j > hC , (7.4)
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where hC > 0 is a control limit. For detecting a downward or arbitrary shift, a down-
ward or two-sided CUSUM chart can be used. For such CUSUM charts and other
alternative control charts that can also be considered here, read Chaps. 3–6 in the
book Qiu (2014).

The performance of a control chart, such as the one defined by (7.3)–(7.4), is
usually measured by the IC and OC average run lengths (ARLs). However, these
measures are appropriate only in caseswhen the observation times are equally spaced,
which is often invalid in the DS applications. To overcome that difficulty, Qiu and
Xiang (2014) suggested using the average time to signal (ATS)measure, described as
follows. Let ω be a basic time unit, which is the largest time unit that all observation
times are its integer multiples. Then, we define

n∗
j = t∗j /ω, for j = 1, 2, . . . ,

where n∗
0 = t∗0 = 0. For an individual whose longitudinal performance is IC, assume

that a signal is given at the sth observation time. Then, the expected value of n∗
s , (i.e.,

E(n∗
s )) is called the IC ATS, denoted as ATS0. Similarly, for an individual whose

longitudinal performance starts to deviate from the regular longitudinal pattern at
the time point τ , the value E(n∗

s |n∗
s ≥ τ) − τ is called OC ATS, denoted as ATS1.

Then, for the control chart (7.3)–(7.4), the value ofATS0 can be specified beforehand,
and the chart performs better for detecting a shift of a given size if its ATS1 value is
smaller. For the chart (7.3)–(7.4), the value k is often pre-specified, a large k value is
good for detecting large shifts, and a small k value is good for detecting small shifts.
Commonly used k values include 0.1, 0.2, 0.5, and 1.0. Once k is pre-specified, the
value of hC can be chosen such that a given value of ATS0 is reached.

7.2.2 Multivariate Cases

Qiu and Xiang (2015) proposed a multivariate DySS method. In multivariate cases,
we havemultiple performance variables that are included in the q-dimensional vector
y. In such cases, the model corresponding to the univariate model (7.1) becomes

y(ti j ) = μ(ti j ) + Σ1/2(ti j , ti j )ε(ti j ), for j = 1, 2, . . . , ni , i = 1, 2, . . . ,m,

where y(ti j ) = (y1(ti j ), y2(ti j ), . . . , yq(ti j ))′ is theq-dimensional observation at time
ti j , μ(ti j ) = (μ1(ti j ), μ2(ti j ), . . . , μq(ti j ))′ and Σ(ti j , ti j ) are the mean and covari-
ance matrix of y(ti j ), and ε(ti j ) = (ε1(ti j ), ε2(ti j ), . . . , εq(ti j ))′ is the q-dimensional
error term with mean 0 and variance Iq×q . By the estimation procedure proposed
in Xiang et al. (2013), we can obtain estimators of μ(t) and Σ(t, t) that are denoted
as μ̂(t) and ̂Σ(t, t), respectively.

For a new individual to monitor, assume that its observations are obtained at
t∗j ∈ [0, T ], for j ≥ 1. Then, similar to (7.2), his/her standardized observations are
defined as
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ε̂(t∗j ) = Σ−1/2(t∗j , t
∗
j )

[

y(t∗j ) − μ̂(t∗j )
]

.

Any mean shifts in y(t∗j ) will be reflected in ε̂(t∗j ) and we can use a multivariate
control chart to monitor {̂ε(t∗j )} in order to detect distributional shifts in {y(t∗j )}.

Qiu and Xiang (2015) adopted the multivariate exponentially weighted moving
average (MEWMA) chart for monitoring {̂ε(t∗j )}. The charting statistic of this chart
is

E j = λ̂ε(t∗j ) + (1 − λ)E j−1, for j ≥ 1,

where E0 = 0 and λ ∈ (0, 1] is a weighting parameter. It gives a signal when

E′
jΣ

−1
E j

E j > hE ,

where hE > 0 is a control limit, and ΣE j is the covariance matrix of E j . Since
Var(ε(t∗j )) is asymptotically Iq×q and observations at different time points are
assumed independent, ΣE j is approximately λ

2−λ
[1 − (1 − λ)2 j ]Iq×q , or λ

2−λ
Iq×q

when j is large. So, the above expression can be replaced by

2 − λ

λ[1 − (1 − λ)2 j ]E
′
jE j > hE ,

or 2−λ
λ
E′

jE j > hE for large values of j . When the dimensionality q is large, Qiu
and Xiang (2015) suggested using the multivariate control charts that was based on
variable selection and discussed in several papers, including Capizzi and Masarotto
(2011), Wang and Jiang (2009), Zou and Qiu (2009).

7.2.3 An Improved Version

As mentioned earlier, the observation times are often unequally spaced in the
DS problems. In the DySS methods described above, we have accommodated the
unequally spaced observation times in the performance evaluation metrics AT S0
and AT S1. However, the construction of the control charts (cf., (7.3)–(7.4)) has not
accommodated the unequally spaced observation times yet. To overcome this limita-
tion, Qiu et al. (2017) proposed a control chart that takes into account the unequally
spaced observation times in its construction, which is introduced below.

To detect mean shifts in the standardized observations {̂ε(t∗j ), j ≥ 1}, let us con-
sider the following hypothesis testing problem: for a given j ≥ 1,

H0 : με̂(t∗j ) = 0 versus Ha : με̂(t∗j ) = g(t∗j ) �= 0.

At the current time point j , let us consider the following local constant kernel esti-
mation procedure:
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argmin
a∈R

j
∑

�=1

[

ε̂(t∗� ) − a
]2

(1 − λ)t
∗
j −t∗� , (7.5)

where λ ∈ (0, 1] is a weighting parameter. The solution to a is the local constant
kernel estimator of g(t∗j ), which has the expression

ĝλ(t
∗
j ) =

∑ j
�=1 w�(t∗j )̂ε(t

∗
� )

∑ j
�=1 w�(t∗j )

,

where w�(t∗j ) = (1 − λ)t
∗
j −t∗� . In (7.5), we estimate g(t∗j ) using all observations col-

lected at or before the current time t∗j , they receive different weights at different time
points, and the weights exponentially decaywhen the related observation timesmove
away from t∗j . From the weight formula w�(t∗j ) = (1 − λ)t

∗
j −t∗� , it can be seen that

unequally spaced observation times have been taken into account.
By considering a weighted generalized likelihood ratio test (WGLR), if we define

QHa (t
∗
j ; λ) =

j
∑

�=1

[

ε̂(t∗� ) − ĝ(t∗j )
]2
w�(t

∗
j )

QH0(t
∗
j ; λ) =

j
∑

�=1

[

ε̂(t∗� )
]2
w�(t

∗
j ),

then the WGLR test statistic for testing hypotheses in (7.5) is

Wλ(t
∗
j ) = QH0(t

∗
j ; λ) − QHa (t

∗
j ; λ) =

j
∑

�=1

[

2 ε̂(t∗� ) − ĝ(t∗� )
]

ĝ(t∗� )w�(t
∗
j ).

A signal could be triggered at t∗j if Wλ(t∗j ) is large. By noticing the fact that the
sequence {(Wλ(t∗j ), ĝ(t

∗
j )), j = 1, 2, . . .} forms a two-dimensional Markov chain

given the design points, the test statistic Wλ(t∗j ) can be computed recursively in the
following way:

Wλ(t
∗
j ) = wj−1(t

∗
j )Wλ(t

∗
j−1) + [

2 ε̂(t∗j ) − ĝ(t∗j )
]

ĝ(t∗j ),

ĝ(t∗j ) = [

α j−1ĝ(t
∗
j−1) + ε̂(t∗j )

]

/α j ,

where α j = ∑ j
�=1 w�(t∗j ) = wj−1(t∗j )α j−1 + 1. Since the distribution of Wλ(t∗j ) is

changing over time, it usually requires a quite long time for it to reach a steady state.
Thus, the following standardized statistic would be preferred here:

W ∗
λ (t∗j ) = [Wλ(t

∗
j ) − Eλ(t

∗
j )]/

√

Vλ(t∗j ),
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where Eλ(t∗j ) and Vλ(t∗j ) are, respectively, the mean and variance of Wλ(t∗j ). A
recursive algorithm for calculating Eλ(t∗j ) and Vλ(t∗j ) can also be found in Qiu et al.
(2017). Then the chart gives a signal when

W ∗
λ (t∗j ) > hW ,

where hW > 0 is a control limit. Proper selection of the parameter λ and the compu-
tation of hW were discussed in Qiu et al. (2017).

7.3 DySS Methods When Observations Are Correlated

The DySS methods described in the previous section are for cases when process
observations are independent of each other. In cases when process observations are
correlated, they can still be used if their control limits are chosen properly from an IC
dataset using numerical approaches such as the bootstrap algorithms. However, they
may not be as effective as we would expect because the data correlation is not taken
into account in their construction. In this section, we introduce some recent DySS
methods proposed specifically for cases when process observations are correlated.

In model (7.1), assume that the covariance function of the longitudinal response
y(t) isV (s, t) = Cov(y(s), y(t)), for s, t ∈ [0, T ]. By the four-stepmodel estimation
procedure in Qiu and Xiang (2014), we can obtain an estimator of V (s, t) from an
IC dataset, denoted as ̂V (s, t). For a new individual to monitor, we assume that
his/her observations are obtained at times {t∗j , j = 1, 2, . . .}, as in Sect. 7.2. Instead
of monitoring the original observations {y(t∗j ), j = 1, 2, . . .}, Li and Qiu (2016)
suggested monitoring their decorrelated values as follows. Let t∗j be the current time
point. The covariancematrix of y j = (y(t∗1 ), y(t∗2 ), . . . , y(t∗j ))′ can then be estimated
by

̂Σ j, j =
⎛

⎜

⎝

̂V (t∗1 , t∗1 ) · · · ̂V (t∗1 , t∗j )
...

. . .
...

̂V (t∗j , t
∗
1 ) · · · ̂V (t∗j , t

∗
j )

⎞

⎟

⎠ .

By the Cholesky decomposition, we have

Φ j ̂Σ j, jΦ
′
j = D2

j ,

where Φ j is a j × j lower triangular matrix with all diagonal elements being 1, and
Dj = diag{d1, . . . , d j } is a diagonal matrix with all diagonal elements positive. Let
ε̂ j = ( ε̂(t∗1 ), . . . , ε̂(t∗j ))′ and ε̂(t∗� ) = y(t∗� ) − μ̂(t∗� ), for � = 1, 2, . . . , j . Then, if we

define e∗
j = D−1

j Φ j ε̂ j , we have Var(e∗
j ) = I j× j . The last element of e∗

j is denoted as
e∗(t∗j ). Then, values in the sequence {e∗(t∗1 ), e∗(t∗2 ), . . .} are uncorrelated with each
other, and they have the common mean 0 and the common variance 1. Li and Qiu
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(2016) suggested monitoring this sequence using a CUSUM chart. For instance, to
detect an upward mean shift in the original observations, we can use the CUSUM
chart

C+
j = max(0,C+

j−1 + e∗(t∗j ) − k),

where C+
0 = 0 and k > 0 is an allowance constant, and the chart gives a signal when

C+
j > h,

where h > 0 is a control limit. In Li and Qiu (2016), it has been shown that the data
decorrelation described above can be achieved by a recursive computation, which
can speed up the computation significantly.

The above data-decorrelation procedure has several limitations, including (i)
extensive computation when j is large because computation of a large inverse matrix
is involved at each time point, (ii) requirement of a relatively large data storage,
and (iii) attenuation of a possible process mean shift as a price to pay for obtain-
ing uncorrelated observations. To partially overcome these limitations, You and Qiu
(2017) proposed a modified version of the data-decorrelation procedure. The main
idea of the modified version is that instead of decorrelating all history data, we only
decorrelate a small portion of the history data observed after the previous time that
the related CUSUM chart restarts its charting statistic. Thus, the unnecessary decor-
relation for the majority portion of the history data is avoided in this algorithm. To
this end, You and Qiu (2017) used the concept of sprint length that was originally
defined in Chatterjee and Qiu (2009) as follows:

Tj =
{

0, if C+
j = 0,

k, if C+
j �= 0, . . . ,C+

j−k+1 �= 0,C+
j−k = 0.

Then, we only need to decorrelate the current residual ε̂(t∗j )with residuals within the
sprint length Tj of the current time point t∗j . It has been shown that the computation
of this modified version is much faster than that of the original method.

A multivariate extension of the data-decorrelation method discussed in Li and
Qiu (2016) was discussed in Li and Qiu (2017). Again, this multivariate data-
decorrelation method can be simplified using the sprint length idea described above,
which has not been discussed yet in the literature.

7.4 Conclusions

We have introduced some recent methodologies for solving the DS problems in dif-
ferent cases, including the ones with univariate or multivariate performance variables
and the ones with independent or correlated process observations. As the DS prob-
lems have broad applications in industries, public health, medical studies, and many
other areas, the introduced DySS methods should have a great potential to provide a
major statistical tool for properly handling these applications.
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The research topic on DySS is still new, and there are many open research prob-
lems. For instance, the classical performance measures for control charts, including
ARL and ATS (see the related discussions in Sect. 7.2), accommodate the signal
times well. But, they cannot reflect the overall false-positive and false-negative per-
formance of the DySS methods. On the other hand, the regular false-positive rate
(FPR) and false-negative rate (FNR) cannot accommodate the signal times well.
So, a new performance metric is needed for the DySS methods. Also, there could
be different covariates involved in the DS problems in practice. The existing DySS
methods discussed in this paper have not accommodated such covariates properly
yet.
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Chapter 8
Degradation Analysis with Measurement
Errors

Chien-Yu Peng and Hsueh-Fang Ai

Abstract The lifetime information for highly reliable products is usually assessed
by a degradation model. When there are measurement errors in monotonic degra-
dation paths, non-monotonic model assumption can lead to contradictions between
physical/chemical mechanisms and statistical explanations. To settle the contradic-
tion, this study presents an independent increment degradation-based process that
simultaneously considers the unit-to-unit variability, the within-unit variability, and
the measurement error in the degradation data. Several case studies show the flex-
ibility and applicability of the proposed models. This paper also uses a separation-
of-variables transformation with a quasi-Monte Carlo method to estimate the model
parameters. A degradation diagnostic is provided to evaluate the validity of model
assumptions.

8.1 Introduction

High-quality products are more frequently being designed with higher reliability and
developed in a relatively short period of time. Manufacturers must obtain the product
reliability quickly and efficiently with severe time constraints for internal reliability
tests. One difficulty with traditional life tests is the lack of sufficient failure-time
data to efficiently make inferences about a product’s lifetime. Under this situation,
if there are quality characteristics (QCs), whose degradation of physical character-
istics over time (referred to degradation paths) is related to product reliability, an
alternative option is the use of sufficient degradation data to accurately estimate
the product’s lifetime distribution. For a comprehensive discussion on degradation
models, see Nelson (1990), Meeker and Escobar (1998), and the references therein.
Other applications of degradation models are in case studies such as the error rates
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Fig. 8.1 Degradation paths
of LED data
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of magneto-optic data storage disks, the wear of brake pads, the shelf life of pharma-
ceuticals, the luminous flux of light bulbs, the resistance change of metal alloys, the
power loss of solar cells or power supplies, the voltage of a battery, the propagation of
crack size, the power output of integrated circuit devices, the corrosion in a chemical
container, the strength of an adhesive bond.

The transformed LED (light-emitting diode) data for an experiment described
by Hamada, Wilson, Reese, and Martz (2008, Exercise 8.1) is used as a motivating
example. LEDs are widely used in many areas (e.g., traffic signals and full-color
displays) because of their high reliability, high brightness, and low power consump-
tion. The QC of an LED device is its light intensity. The LED device is consid-
ered to have failed as the light intensity reaches a predefined critical degradation
level ω = 1.75. The primary objective of this experiment is to assess the lifetime
information for LEDs, such as the mean-time-to-failure (MTT F) or the q-quantile.
Figure8.1 shows a plot of the light intensity over 250h for nine tested units. Light
intensity values were recorded every 50 h. Table8.1 shows the degradation data in 50
h increments for each degradation path. The accuracy and precision of the product’s
lifetime estimation greatly depends on modeling the degradation paths. Describing
the failure-causing mechanism based on the additive accumulation of damage is par-
ticularly germane for the light intensity of LED devices. The cumulative damage can
be approximated as an independent increment process, and each random shock can
be seen as an independent increment in the degradation. See Singpurwalla (1995);
van Noortwijk (2009) for more details. The widely usedWiener, gamma, and inverse
Gaussian (IG) processes are the special cases of Lévy processes (Barndorff-Nielsen
et al. 2001). This approximation presents a physical interpretation of these stochastic
processes and provides an applicability to address realistic problems.

Generally speaking, the Gaussian process is usually used to characterize a non-
monotonic degradation path. For instance,Whitmore (1995) proposed aWiener diffu-
sion process subject to measurement error to model the declining gain of a transistor.
Doksum and Normand (1995) presented twoWiener degradation-based processes to
connect biomarker processes, event times, and covariates of interest. Peng (2015b)
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Table 8.1 Degradation data in 50-hour increment for LED data

Unit Inspection time interval (h)

Number 0–50 50–100 100–150 150–200 200–250

1 0.3005 0.2427 0.0985 0.1849 0.1834

2 0.4147 0.4748 0.7324 −0.1487 0.1942

3 0.5082 0.4855 0.3944 0.2097 0.1054

4 0.4340 0.4055 0.3301 0.2760 0.3771

5 0.6800 0.4080 0.2620 0.3530 0.8387

6 0.3848 0.3393 0.3231 0.2876 0.1384

7 0.3114 0.7200 0.3304 0.2360 0.0354

8 0.7664 0.4259 0.3404 0.2484 0.0416

9 0.7241 0.4268 0.5920 0.2614 1.0501

provided a comprehensive study of classification problems by using a Gaussian
mixture degradation-based process. Further applications using the Gaussian pro-
cess have been widely investigated by Doksum and Hóyland (1992), Whitmore and
Schenkelberg (1997), Padgett and Tomlinson (2004), Peng and Tseng (2013), and
the references given therein. However, when the degradation path is strictly mono-
tonic (e.g., increasing or decreasing), the gamma or IG process is commonly used
to fit strictly monotonic degradation paths. For example, Bagdonavičius and Nikulin
(2000) employed a gamma process with time-dependent explanatory variables as a
degradation model. Lawless and Crowder (2004) proposed a gamma process with
random effects and covariates to model the crack growth data. Further applications
based on the gamma process can be found in Singpurwalla (1995), Singpurwalla
(1997), Park and Padgett (2005), van Noortwijk (2009), Tsai et al. (2012), Peng and
Cheng (2016), and the references therein. When neither the Wiener nor the gamma
degradation-based processes adequately fit strictly monotonic degradation paths (see
Wang and Xu (2010), Ye and Chen (2014)), the IG process is an alternative degra-
dation model that can be used to represent the strictly monotonic degradation paths.
Peng (2015a) proposed an IG degradation-based processwith inverse normal-gamma
random effects and derived the corresponding lifetime distribution and its properties.

Figure8.1 shows that the Gaussian process is a suitable model to describe the
non-monotonic LED degradation path. However, in the literature, Fukuda (1991),
Chuang et al. (1997), and Yanagisawa and Kojima (2005) theoretically and empiri-
cally showed that the light intensity of an LED is strictly monotonic over time. The
assumption of a non-monotonic process can lead to contradictions between physi-
cal/chemical mechanisms and statistical explanations. Two common approaches are
used to reconcile the scenario in this work. Because there is only one negative incre-
ment for the second unit (red solid line in Fig. 8.1), which is shown in bold-faced
type in Table8.1, the abnormal measurement point may be an outlier. If the anomaly
is excluded from the degradation path, then the strictly monotonic processes can be
used to fit the remaining LED data without the suspected point. Otherwise, an alter-
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native method is to consider the measurement errors in a strictly monotonic process
for degradation modeling, whether the abnormal measurement point is removed or
not.

This study uses an independent increment degradation-based process (for strictly
monotonic and non-monotonic paths), which is defined in the following section,
as a general degradation model that provides a consistent interpretation between
physical/chemical mechanisms and statistical explanations. The general degradation
model simultaneously considers three sources of variation (i.e., unit-to-unit variabil-
ity,within-unit variability, andmeasurement error) in the degradation data. This study
uses a separation-of-variables transformation with a quasi-Monte Carlo method to
estimate themodel parameters and to develop procedures using a bootstrapmethod to
obtain confidence intervals for reliability assessment. Furthermore, model-selection
criterion and degradation diagnostic are provided to evaluate the validity of different
model assumptions. We use several case studies to illustrate the advantages (i.e.,
flexibility and applicability) of the proposed degradation models.

8.2 Independent Increment Degradation-Based Process

Let Y (t |ϑ) and L(t |ϑ) with t ≥ 0, respectively, denote the observed and true values
of the QC of a product at time t given the random effects ϑ , where ϑ denotes the
random effects to represent heterogeneity in the degradation paths of distinct units.
Assume that

Y (t |ϑ) = L(t |ϑ) + ε, (8.1)

where the measurement error ε follows a normal distribution with zero mean and
variance σ 2

ε (denoted by N (0, σ 2
ε )), assumed to be independent of the cross time;

an independent increment process {L(t |ϑ)|t ≥ 0} has the following properties: (i)
Pr{L(0|ϑ) = 0} = 1; (ii) L(t |ϑ) has independent increments, i.e., L(t2|ϑ) − L(t1|ϑ)

and L(t4|ϑ) − L(t3|ϑ) are independent for 0 ≤ t1 < t2 ≤ t3 < t4. Clearly, the orig-
inal Wiener, gamma, and IG processes are well-known and special cases of the
independent increment processes. In addition, the independent increment process,
the random effects ϑ , and the measurement error ε are assumed to be mutually inde-
pendent. For convenience, we call (8.1) an independent increment degradation-based
process, which can simultaneously consider the unit-to-unit variability (i.e., random
effects), the within-unit variability (i.e., stochastic process), and the measurement
error in the degradation data. Note that the assumption of independent increments is
not held for the (unconditional) independent increment degradation-based process
and this assumption is only used in the (conditional) stochastic process given the
random effects ϑ .
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For practical applications, we focus on the Wiener, gamma, and IG processes.
These common processes can be generalized further by incorporating random effects
to describe the unit-to-unit variability of products. The following stochastic processes
with random effects have been used as degradation models in many case studies:

L(t |Θ) = ΘΛ(t) + σWW (t), Θ ∼ N (η, σ 2
η ), (8.2)

L(t |β̃) ∼ G (α̃Λ(t), β̃), β̃−1 ∼ G (r̃ , s̃) (8.3)

and

L(t |μ, λ) ∼ IG (μΛ(t), λΛ(t)2), δ ≡ μ−1|λ ∼ N (ξ, σ 2
μ/λ), λ ∼ G (α, β),

(8.4)

where Θ , β̃, and (μ, λ)′ are the random effects for the Wiener, gamma, and IG
processes, respectively; Λ(·) is a given, strictly increasing function in time t with
Λ(0) = 0;σW is a diffusion coefficient;W (t) is the standardWiener process (denoted
by N (0, t)); the probability density functions (PDFs) of gamma distribution with
shape α and scale β (denoted by G (α, β)) and IG distribution with meanμ and shape
λ (denoted by IG (μ, λ)) are, respectively, given by

f (x) = xα−1

Γ (α)βα
exp(−x/β), x, α, β > 0,

and

f (x) =
√

λ

2πx3
exp

{
−λ(x − μ)2

2μ2x

}
, x, λ > 0, μ ∈ R.

The time-scale transformation functionΛ(t) represents the degradationmeasurement
of a physical/chemical characteristic over time such as tensile strength, hydrogena-
tion, galvanic action, and fatigue growth. Hence, the time-scale transformation func-
tion Λ(t) depends on the particular failure-causing mechanism that would directly
affect the subsequent performance of the product. The natural conjugate distribu-
tions for a specific degradation-based process are used as the random effects ϑ . The
assumption of the conjugate distribution not only leads the likelihood function of
degradation models to be mathematically tractable, but also provides a satisfactory
model fitting for degradation data. This feature can be seen as a computational con-
venience which shortens the computation time of the likelihood function involving
a multiple integral. In addition, similar to the assumptions in Lu and Meeker (1993)
and Peng (2015a), assume that Pr{Θ ≤ 0} for Wiener degradation-based processes
and Pr{δ ≤ 0} for IG degradation-based processes are negligible to avoid obtain-
ing negative degradation slopes. Incorporating the random effects into the time-scale
transformation functionΛ(t) or other distribution assumptions for the random effects
will be studied elsewhere.
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The Wiener degradation-based processes with different variation sources are
defined as follows:

MW
1 :

⎧⎨
⎩
Y (t |Θ) = L(t |Θ) + ε,

L(t |Θ) = ΘΛ(t) + σWW (t),
Θ ∼ N (η, σ 2

η ),

MW
2 :

{
Y (t) = L(t) + ε,

L(t) = ηΛ(t) + σWW (t),

MW
3 :

⎧⎨
⎩
Y (t |Θ) = L(t |Θ) + ε,

L(t |Θ) = ΘΛ(t),
Θ ∼ N (η, σ 2

η ),

MW
4 :

⎧⎨
⎩
Y (t |Θ) = L(t |Θ),

L(t |Θ) = ΘΛ(t) + σWW (t),
Θ ∼ N (η, σ 2

η ),

MW
5 :

{
Y (t) = L(t) + ε,

L(t) = ηΛ(t),
MW

6 :
{
Y (t) = L(t),
L(t) = ηΛ(t) + σWW (t).

The model MW
3 is a classical mixed-effect model for the Wiener degradation-based

process. For comparing the other degradation models, the traditional regression
model MW

5 is used as a benchmark. The extensions, MW
1 –MW

6 , have been used
as the degradation models in Doksum and Hóyland (1992), Doksum and Normand
(1995), Whitmore (1995), Peng and Tseng (2009), Cheng and Peng (2012), Si et al.
(2012), and Peng (2015b).

The gamma degradation-based processes with different variation sources are
defined as follows:

MG
1 :

{
Y (t |β̃) = L(t |β̃),

L(t |β̃) ∼ G (α̃Λ(t), β̃), β̃−1 ∼ G (r̃ , s̃),
MG

2 :
{
Y (t) = L(t),
L(t) ∼ G (α̃Λ(t), β̃),

MG
3 :

{
Y (t |β̃) = L(t |β̃) + ε,

L(t |β̃) ∼ G (α̃Λ(t), β̃), β̃−1 ∼ G (r̃ , s̃),
MG

4 :
{
Y (t) = L(t) + ε,

L(t) ∼ G (α̃Λ(t), β̃).

The gamma degradation-based processes, MG
1 –M

G
4 , include the models proposed

by Bagdonavičius and Nikulin (2000), Lawless and Crowder (2004), Kallen and van
Noortwijk (2005), Zhou et al. (2011), Tsai et al. (2012), and Lu et al. (2013) as
special cases.

The IG degradation-based processes with different variation sources are defined
as follows:

MIG
1 :

⎧⎨
⎩
Y (t |μ, λ) = L(t |μ, λ),

L(t |μ, λ) ∼ IG (μΛ(t), λΛ(t)2),
μ−1|λ ∼ N (ξ, σ 2

μ/λ), λ ∼ G (α, β),

MIG
2 :

⎧⎨
⎩
Y (t |λ) = L(t |λ),

L(t |λ) ∼ IG (μΛ(t), λΛ(t)2),
λ ∼ G (α, β),

MIG
3 :

⎧⎨
⎩
Y (t |μ) = L(t |μ),

L(t |μ) ∼ IG (μΛ(t), λΛ(t)2),
μ−1|λ ∼ N (ξ, σ 2

μ/λ),

MIG
4 :

{
Y (t) = L(t),
L(t) ∼ IG (μΛ(t), λΛ(t)2),

MIG
5 :

⎧⎨
⎩
Y (t |μ, λ) = L(t |μ, λ) + ε,

L(t |μ, λ) ∼ IG (μΛ(t), λΛ(t)2),
μ−1|λ ∼ N (ξ, σ 2

μ/λ), λ ∼ G (α, β),

MIG
6 :

⎧⎨
⎩
Y (t |λ) = L(t |λ) + ε,

L(t |λ) ∼ IG (μΛ(t), λΛ(t)2),
λ ∼ G (α, β),
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MIG
7 :

⎧⎨
⎩
Y (t |μ) = L(t |μ) + ε,

L(t |μ) ∼ IG (μΛ(t), λΛ(t)2),
μ−1|λ ∼ N (ξ, σ 2

μ/λ),

MIG
8 :

{
Y (t) = L(t) + ε,

L(t) ∼ IG (μΛ(t), λΛ(t)2).

Themodels proposed byWang andXu (2010), Ye andChen (2014), and Peng (2015a)
are the special cases of the IG degradation-based processes MIG

1 –MIG
8 .

The proposed degradation models MG
3 , M

IG
5 –MIG

8 are new, and they have not
been studied in the literature.

8.3 Lifetime Distribution

Let ω denote the critical level for the degradation path. The lifetime, T , of a product
can be defined as the first-passage-time (FPT) when the true degradation path L(t |ϑ)

crosses the critical level ω, i.e.,

T |ϑ = inf {t |L(t |ϑ) ≥ ω}.

Hence, the PDF, fT , of T is given by

fT (t) =
∫

�

fT |ϑ(t |ϑ) f (ϑ)dϑ,

where fT |ϑ (·|ϑ) denotes the conditional PDF of T given ϑ ; � denotes the support
of ϑ ; and f (ϑ) is a joint PDF of the random effects.

Note that the product’s q-quantile, t (q), can be computed by solving FT (t (q)) =
q, where FT (·) stands for the cumulative density function (CDF) of T . For the com-
monly usedWiener, gamma, and IG degradation-based processes, the corresponding
lifetime distributions can be obtained in the following examples.

Example 1 For theWiener degradation-basedprocesses, the lifetimedistributionT W
4

(TW
6 ) is the same as TW

1 (TW
2 ) with different parameter estimates. More precisely,

for degradation model MW
1 , we have ϑ = Θ . Using Theorem 3.1 of Di Nardo et al.

(2001), the conditional PDF of TW
1 given Θ , fT W

1 |Θ(t |Θ), satisfies the non-singular
second-kind Volterra integral equation

fT W
1 |Θ(t |Θ) = Ψ (t |0, 0) −

∫ t

0
fT W

1 |Θ(x |Θ)Ψ (t |x, ω)dx,

where

Ψ (t |x, y) =
{
ΘΛ̇(t) + ω − ΘΛ(t) − y + ΘΛ(x)

t − x

}
f (t |x, y),
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f (t |x, y) = 1√
2πσ 2

W (t − x)
exp

{
− (ω − ΘΛ(t) − y + ΘΛ(x))2

2σ 2
W (t − x)

}

and Λ̇(t) = dΛ(t)/dt . Furthermore, the PDF of TW
1 can be shown as

fT W
1

(t) = ησ 2
W (Λ̇(t)t − Λ(t)) + ω(σ 2

η Λ̇(t)Λ(t) + σ 2
W )√

2π(σ 2
η Λ(t)2 + σ 2

W t)3
exp

{
− (ω − ηΛ(t))2

2(σ 2
η Λ(t)2 + σ 2

W t)

}

−
∫ 1

0

∫ t

0
fT W

1 |Θ(x |η + σηΦ−1(z))Ψ (t |x, ω)dxdz,

where Φ(·) denotes the CDF of N (0, 1). Note that under specific conditions, Si
et al. (2012) dropped the integral term from the above equation to approximate the
PDF of the lifetime distribution.

Example 2 For the gamma degradation-based processes, the lifetime distribution
T G
3 (T G

4 ) is the same as T G
1 (T G

2 ) with different parameter estimates. For degradation
model MG

3 , we have ϑ = β̃. Following the same procedure of Tsai et al. (2012), the
CDF of the lifetime distribution T G

3 , FTG
3
(t), can be written in the form

FTG
3
(t) = B

(
1

s̃ω + 1
; r̃ , α̃Λ(t)

)
, (8.5)

where B(x; a, b) denotes the regularized (incomplete) beta function.

Example 3 For the IG degradation-based processes, the lifetime distribution T IG
5

(T IG
6 , T IG

7 , T IG
8 ) is the same as T IG

1 (T IG
2 , T IG

3 , T IG
4 ) with different parameter

estimates. For degradation model MIG
5 , we have ϑ = (μ, λ)′. From the equation (6)

of Peng (2015a), the CDF of the lifetime distribution T IG
5 , FT IG

5
(t), is given by

FT IG
5

(t) =
√

β

2π

Γ (α + 1/2)Λ(t)

Γ (α)

∫ ∞

ω

y−3/2(σ 2
μy + 1)−1/2

(
1 + β(ξ y − Λ(t))2

2y(σ 2
μy + 1)

)−(α+1/2)

dy.

(8.6)

To assess the lifetime information of products, the parameters in the independent
increment degradation-based process are needed to be estimated in practical appli-
cations. Hence, a quasi-Monte Carlo-type method is used to estimate these unknown
parameters in the following section. Afterward, the confidence intervals (CIs) of a
product’s lifetime information can be easily constructed by using the bias-corrected
percentile bootstrap method.
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8.4 Parameter Estimation and Confidence Intervals

8.4.1 Likelihood Function

Let θ be a columnvector of all the parameters to be estimated in the independent incre-
ment degradation-based process. Let Yi (ti, j |ϑ) and Li (ti, j |ϑ), respectively, denote
the observed and true degradation path of the i th unit at time ti, j given the random
effectsϑ with ti,0 = 0 for i = 1, . . . , n and j = 1, . . . ,mi , where n andmi denote the
number of sample size andmeasurements of the i th unit, respectively. Thismeans that
every degradation path can be observed at different inspection times. For simplicity,
let Y i = (Yi,1, . . . ,Yi,mi )

′, Yi, j = Yi (ti, j |ϑ) − Yi (ti, j−1|ϑ), Li = (Li,1, . . . , Li,mi )
′,

Li, j = Li (ti, j |ϑ) − Li (ti, j−1|ϑ), and εi = (εi,1, . . . , εi,mi )
′, where εi,1, . . . , εi,mi are

the measurement errors for the i th unit at times ti,1, . . . , ti,mi and are i.i.d. normal
distribution with zero mean and variance σ 2

ε . The observed increments Y i can be
written as

Y i = Li + ε̃i , (8.7)

where ε̃i = (ε̃i,1, . . . , ε̃i,mi )
′ ≡ Ciεi and Ci is a mi × mi lower bidiagonal matrix

with c j, j = 1 and ck,k−1 = −1 for k = 2, . . . ,mi . Note that ε̃i,1, . . . , ε̃i,mi are not
independent of each other since every ε̃i, j depends on ε̃i, j−1. By using the property
of independent increments, the likelihood function of θ for the i th degradation path
can be expressed as

li (θ) =
∫

�

∫
S i

mi∏
j=1

fLi, j (yi, j − ε̃i, j |ε̃i ,ϑ) f (ε̃i ) f (ϑ)dε̃idϑ, (8.8)

whereSi = {ε̃i ∈ R
mi | − ∞ < ε̃i, j < yi, j }; fLi, j (·) denotes the PDF of the indepen-

dent increment process; f (ε̃i ) is the PDF of the multivariate normal distribution with
mean vector 0 and covariance matrix σ 2

ε CiC ′
i (i.e., ε̃i ∼ Nmi (0, σ

2
ε CiC ′

i )). Hence,
the log-likelihood function of θ for the general degradation model is

L (θ) =
n∑

i=1

ln li (θ). (8.9)

Example 4 For degradation model MIG
5 with Λ(t) = tγ , we have ϑ = (μ, λ)′, θ =

(ξ, σμ, α, β, σε, γ )′ and

fLi, j (yi, j |ϑ) =
√√√√ λΛ2

i, j

2πy3i, j
exp

{
− λ

2yi, j

(
yi, j
μ

− Λi, j

)2
}

,
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where Λi, j = Λi (ti, j ) − Λi (ti, j−1). The joint PDF f (ϑ) is f (ϑ) = f (μ−1|λ) f (λ).
Hence, the log-likelihood function of θ for degradation model MIG

5 is given by
L (θ) = ∑n

i=1 ln li (θ), where

li (θ) =
∫ yi,1

−∞
· · ·

∫ yi,mi

−∞

Γ (α + mi/2)a
−(α+mi /2)
i

∏mi
j=1 Λi, j

Γ (α)(2π/β)mi /2
∏mi

j=1(yi, j − ε̃i, j )3/2
√
1 + σ 2

μ

∑mi
j=1(yi, j − ε̃i, j )

f (ε̃i )dε̃i .

(8.10)

and

ai = 1 + β(ξ 2 ∑mi
j=1(yi, j − ε̃i, j ) − 2ξΛ(ti,mi ) − Λ(ti,mi )

2σ 2
μ)

2(σ 2
μ

∑mi
j=1(yi, j − ε̃i, j ) + 1)

+ β

2

mi∑
j=1

Λ2
i, j

yi, j − ε̃i, j
.

8.4.2 Quasi-Monte Carlo-Type Integration

Generally speaking, there is no way to have a closed-form expression of maximum
likelihood estimates (MLEs) for each unknown parameter because of the multiple
integral in (8.8). The quasi-Monte Carlo integration method offers an alternative and
simpler framework for computing the MLEs of the unknown parameters. Therefore,
any numerical integration method can waste significant amounts of computational
effort due to the infinite integration limits. A separation-of-variables method devel-
oped by Genz (1992) is used to transform the original integral (8.8) into an integral
over a unit hypercube. For j = 1, . . . ,mi , first define the following three transfor-
mations

ε̃i, j = σε(zi, j − zi, j−1),

zi, j = Φ−1(xi, j )

and

xi, j = Φ(yi, j/σε + Φ−1(xi, j−1))wi, j ,

where zi,0 = wi,0 = 0 and xi,0 = 0.5. Applying the above transformations to li (θ) in
(8.8), the likelihood function li (θ) can then be written as

li (θ) =
∫

�

∫
[0,1]mi

gi (wi ;ϑ) f (ϑ)dwidϑ, (8.11)
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where

gi (wi ;ϑ) =
mi∏
j=1

fLi, j (yi, j − σεzi, j (wi ) + σεzi, j−1(wi )|ϑ)ei, j (wi ),

wi = (wi,1, . . . ,wi,mi )
′, zi,0(wi ) = 0, ei, j (wi ) = Φ(yi, j/σε + zi, j−1(wi )), and

zi, j (wi ) = Φ−1(ei, j (wi )wi, j ) for j = 1, . . . ,mi . These transformations have the
effect of flattening the surface of the original function and improving numerical
tractability. In particular, the first transformation can avoid the computational com-
plexity of the Cholesky decomposition, although the calculation in (8.8) can be
transformed into an easier computational problem if the variables are reordered in
the multiple integral. Note that when computing terms like gi (wi ;ϑ) for fLi, j , ei, j are
small, the value gi (wi ;ϑ) may be outside the range of double precision arithmetic.
Instead, one should use expressions like

gi (wi ;ϑ) = exp

⎛
⎝ mi∑

j=1

ln fLi, j (yi, j − σεzi, j (wi ) + σεzi, j−1(wi )|ϑ) + ln ei, j (wi )

⎞
⎠

to avoid the overflow problem.
We next use a periodized, randomized quasi-Monte Carlo (QMC) rule (Richtmyer

1951) to approximate (8.11) in the following form:

li (θ) ≈ l̄i (θ) = 1

N1

N1∑
k1=1

l(k1)i,N2
(θ),

with

l(k1)i,N2
(θ) = 1

2N2

N2∑
k2=1

gi (|2〈k2√p + w(k1)
i 〉 − 1i |; ϑ (k1)) + gi (1i − |2〈k2√p + w(k1)

i 〉 − 1i |; ϑ (k1))

(8.12)

where p = (2, 3, 5, . . . , pmi )
′ in which pk is the kth prime number; 1i is a col-

umn of 1’s having length mi ; 〈·〉 denotes the remainder mod 1; the sample points
w(k1)
i = (w(k1)

i,1 , . . . ,w(k1)
i,mi

)′ and ϑ (k1) are randomly generated from a uniform distribu-
tion between 0 and 1 and the random effects ϑ , respectively. Note that the antithetic
variates method is used replacing gi (wi ;ϑ) by (gi (wi ;ϑ) + gi (1i − wi ;ϑ))/2 for
variance reduction. The baker’s transformation (i.e., |2wi − 1i |) of periodization in
(8.12) provides O(N−2+ε

2 ) integration errors shown by Hickernell (2002) for ran-
domized lattice rules, where N ε

2 stands for ln(N2) to some power. The standard error
of randomly shifted QMC integration for each degradation path can be calculated by
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σ
QMC
i (θ) =

(
1

N1(N1 − 1)

N1∑
k1=1

(l(k1)i,N2
(θ) − l̄i (θ))2

)1/2

.

The relative error can be estimated by the coefficient of variation σ
QMC
i (θ)/l̄i (θ).

More details about lattice rules in general and the approach used here can be referred
to Sloan and Joe (1994),Hickernell (1998),Genz andBretz (2009), and the references
therein.

Finally, the MLE, θ̂ , of all unknown parameters can be found numerically by
maximizing the approximation of the log-likelihood function given above.

8.4.3 Bootstrap Confidence Intervals

The CDF estimate of the lifetime for the independent increment degradation-based
process can be easily constructed by substituting theMLE (θ̂) into the corresponding
formula provided in Sect. 8.2. However, the CI estimation by the usual asymptotic
normal likelihood methods is not easy to carry out because of the intractable Fisher’s
information matrix. Under this scenario, an attractive alternative is to use the bias-
corrected percentile bootstrap method (see Efron and Tibshirani (1993); Meeker
and Escobar (1998)). For illustrative purposes, we use the bias-corrected percentile
bootstrapmethod to compute the 100(1 − α∗)%CI for CDFof the degradationmodel
MIG

5 . The bootstrap algorithm is implemented with the following steps.

(i) Use the observed data (i.e., n sample paths) and the previous estimation proce-

dure to compute the MLEs θ̂
IG

5 of the degradation model MIG
5 .

(ii) Given the threshold ω, substitute the estimates θ̂
IG

5 into (8.6) giving F̂T IG
5

(t) =
FT IG

5
(t; θ̂

IG

5 ).
(iii) Generate a large number of bootstrap samples B (e.g., B = 2000) that mimic

the original sample and compute the corresponding bootstrap estimates F̂∗
T IG
5

(t)

according to the following steps.

(a) Generate, from θ̂
IG

5 , n simulated realizations of the random path parameters
μ∗
i , λ

∗
i and the measurement errors ε∗

i for i = 1, . . . , n. i.e.,

1

μ∗
i

∣∣∣∣λ∗
i ∼ N (ξ̂ , σ̂ 2

μ/λ∗
i ),

λ∗
i ∼ G (α̂, β̂),

ε∗
i ∼ Nmi (0i , σ̂

2
ε I i ),
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where δ∗
i = 1/μ∗

i and λ∗
i have the joint PDF f (δ∗

i , λ
∗
i ) = f (δ∗

i |λ∗
i ) f (δ

∗
i )

and 0i and I i denote a column of 0’s with length mi and an identity matrix
of order mi , respectively.

(b) Using the property of independent increments, (8.7), and the same sampling
scheme as in the original test, generate n simulated observed sample paths

Y ∗
i (ti, j |μ∗

i , λ
∗
i ) = L∗

i (ti, j |μ∗
i , λ

∗
i ) + ε∗

i, j

from

L∗
i (ti, j |μ∗

i , λ
∗
i ) ∼ IG (μ∗

i Λ̂(ti, j ), λ
∗
i Λ̂(ti, j )

2)

up to the test stopping time ti,mi , where i = 1, . . . , n and j = 1, . . . ,mi .
(c) Use the n simulated sample paths and the previous estimation procedure

to estimate parameters of the degradation model MIG
5 , giving the bootstrap

estimates θ̂
∗IG
5 .

(d) Given the threshold ω, substitute the estimates θ̂
∗IG
5 into (8.6) giving

F̂∗
T IG
5

(t)(= F∗
T IG
5

(t; θ̂
∗IG
5 )) at desired values of time t .

(iv) For each desired value of t , the bootstrap CI for FT IG
5

(t) of the degradation
model MIG

5 is computed using the following steps.

(a) Sort the B bootstrap estimates F̂∗
T IG
5 ,1

(t), . . . , F̂∗
T IG
5 ,B

(t) in increasing order

giving F̂∗
T IG
5 ,(b)

(t), b = 1, . . . , B.

(b) The lower and upper bounds of approximate 100(1 − α∗)% CI for FT IG
5

(t)
are [

FT IG
5

(t), FT IG
5

(t)
]

=
[
F̂∗
T IG
5 ,(l)(t), F̂∗

T IG
5 ,(u)

(t)
]
,

where

l = B × Φ(2Φ−1(p∗) + Φ−1(α∗/2)),

u = B × Φ(2Φ−1(p∗) + Φ−1(1 − α∗/2)),

and p∗ is the proportion of the B values of F̂∗
T IG
5

(t) that are less than F̂T IG
5

(t).

Note that l and u are chosen as the next lowest and next highest integers,
respectively.

8.5 Degradation Model with Explanatory Variables

When explanatory variables such as accelerating variables (e.g., humidity, volt-
age, temperature) are used in accelerated degradation tests (ADTs), the independent
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increment degradation-based processes incorporated with explanatory variables can
be used to make inferences of the product’s lifetime information more accurate.
The time-independent explanatory variables are only considered in this study. Let
xz = exp(X ′Z) stand for the explanatory variables for simplicity, where X and Z,
respectively, denote the vectors of explanatory variables and regression coefficients.
Without loss of generality, X ′Z without any constant term is used to avoid the non-
identifiable problem. An extension of the independent increment degradation-based
processes without explanatory variables in (8.2)–(8.4) to those with explanatory vari-
ables is considered as follows:

L(t |Θ) = ΘxzΛ(t) + σWW (t), Θ ∼ N (η, σ 2
η ), (8.13)

L(t |β̃) ∼ G (α̃xzΛ(t), β̃), β̃−1 ∼ G (r̃ , s̃) (8.14)

and

L(t |μ, λ) ∼ IG (μxzΛ(t), λΛ(t)2), δ ≡ μ−1|λ ∼ N (ξ, σ 2
μ/λ), λ ∼ G (α, β). (8.15)

The parametersΘ in (8.13), α̃ in (8.14), andμ in (8.15) are assumed to be dependent
on explanatory variables, and the other parameters are considered to be independent
of explanatory variables. This means that the explanatory variables can impact the
mean of degradation paths at different accelerated conditions. Clearly, setting xz = 1
means that there are no explanatory variables involved in the ADT model.

Example 5 The product’s lifetime distribution and the log-likelihood function for
the degradation model MIG

5 with explanatory variables can be easily obtained by
both replacing ξ with ξ/xz and σμ with σμ/xz in (8.6) and (8.10).

8.6 Case Applications

The independent increment degradation-based processes, MW
1 –MW

6 , MG
1 –M

G
4 and

MIG
1 –MIG

8 , are used to fit the degradation data. The Akaike information criterion
(i.e., AIC = −2L (θ̂) + 2r ) is adopted for the degradation model selection, where
L (θ̂) is the sample log-likelihood of the corresponding degradation model and r
represents the number of unknown parameters in θ . Smaller AIC values indicate that
the degradation model fits the data better. For the models MG

3 , M
G
4 , and MIG

5 –MIG
8 ,

the numbers N1 and N2 are indicated in the table heading of parameter estima-
tion to allow the maximization of the log-likelihood function to converge stably. The
likelihood-ratio (LR) test is performed to assess whether the measurement error term
is necessary for a specific dataset. Furthermore, the product’s lifetime information
(e.g., MTT F or q-quantile) and the corresponding CIs based on the selected degra-
dationmodel can be obtained by using the procedures in Sect. 3, where the number of
bootstrap samples is 2000. The Anderson–Darling test is used to diagnose whether
the selected degradation model is suitable to fit the degradation data.
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8.6.1 LED Data Revisited

The motivating example demonstrates the advantages of independent increment
degradation-based processes. For illustrative purposes, the widely used case Λ(t) =
tγ is used for modeling the degradation paths. Table8.2 gives the results for MLEs,
sample log-likelihoods, and AICs of the LED (complete) data. In Table8.2, some
AIC values are different to the others because the corresponding models with large
AIC values are unsuitable for fitting the LED (complete) data. For the Wiener
degradation-based process, models MW

4 and MW
6 without measurement errors are

substantially better than models MW
1 –MW

3 and MW
5 with measurement errors by

using the AIC for model selection. The monotonic processes with measurement
errors (i.e., MG

3 , MG
4 , MIG

5 –MIG
8 ) are substantially better than the Wiener (non-

monotonic) degradation-based processes (i.e.,MW
1 –MW

6 ) by using theAIC formodel
selection. The statistical analysis is in agreement with the material theory and empir-
ical experiments to determine the monotonic degradation path for the LED. The IG
degradation-based process, MIG

8 , is also suitable, and the sources of the variation are
both the measurement errors and the within-unit variability.

An alternative approach, as mentioned in the introduction, excludes an abnormal
measurement point in the LED data as incomplete data. The results for the MLEs,
the sample log-likelihoods, and the AICs for the LED (incomplete) data are listed in
Table8.3. Again, models MW

4 and MW
6 without measurement errors are substantially

better thanmodelsMW
1 –MW

3 andMW
5 withmeasurement errors,whether the anomaly

is excluded or not. Therefore, models MG
3 and MIG

5 –MIG
8 with measurement errors

are substantially better than models MG
1 and MIG

1 –MIG
4 without measurement errors

by using the AIC for model selection. Comparing model MG
3 (MG

4 ) with MG
1 (MG

2 )
using theLR test, there is no sufficient evidence to reject the hypothesis H0 : σε = 0 at
significance level 0.05. This reveals that themeasurement error term in themodelMG

3
(MG

4 ) is insignificant. Comparing model MIG
5 (MIG

6 –MIG
8 ) with MIG

1 (MIG
2 –MIG

4 )
using the LR test, there is sufficient evidence to reject the hypothesis H0 : σε = 0 at
significance level 0.05, and it shows that the measurement error term in model MIG

5
(MIG

6 –MIG
8 ) is necessary for the LED (incomplete) data. The IG degradation-based

process, MIG
8 , is a suitable model for modeling the LED (incomplete) data. This

means that there are still measurement errors in the LED (incomplete) data, even
though the observed degradation paths are monotonic.

A comparison of the Wiener degradation-based processes in Tables8.2 and 8.3
shows that removing the anomaly does not increase the corresponding log-likelihood.
This means that substantial data information can be lost when the anomaly is
removed. According to the AIC for model selection, the negative increment in the
second degradation path may be normal. The nonlinear Wiener process (with fixed
effects) without measurement errors, MW

6 in Table8.2, could fit the LED (com-
plete) data.WhenAIC is used for gamma/IG degradation-based processes (MG

3 ,M
G
4 ,

MIG
6 , and MIG

8 ), removing the anomaly increases the corresponding log-likelihood
and reduces the estimated measurement error σ̂ 2

ε . This means that the anomaly can
be excluded from the degradation data. The nonlinear gamma process (with fixed
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Table 8.4 MLEs, 95% CIs of MTT F IG
8 and t IG8 (q), where q = 0.05, 0.1, 0.5, 0.9, and 0.95 for

the LED (incomplete) data (N1 = 47, N2 = 105)

Degradation model (MIG
8 )

Lifetime MLE 95% bootstrap CI

MTT F IG
8 240.24 [187.89, 320.44]

t IG8 (0.05) 118.47 [ 68.18, 200.54]

t IG8 (0.10) 142.26 [ 89.34, 214.43]

t IG8 (0.50) 236.20 [183.94, 318.37]

t IG8 (0.90) 343.30 [273.18, 415.64]

t IG8 (0.95) 375.74 [292.28, 454.45]

effects) with measurement errors, MG
4 in Table8.2, and the nonlinear gamma process

(with fixed effects) without measurement errors, MG
2 in Table8.3, are also, respec-

tively, suitable for complete and incomplete LED data. For IG degradation-based
processes, the nonlinear IG process (with fixed effects) with measurement errors,
MIG

8 , is consistently chosen by using AIC in Tables8.2 and 8.3. Overall, the IG
degradation-based process, MIG

8 in Table8.3, is substantially better than the others
in terms of the AIC for the LED (complete or incomplete) data.

Using the estimated θ̂
IG

8 (under the degradation model MIG
8 withΛ(t) = tγ ), and

given the pre-fixed critical level (i.e.,ω = 1.75), Table8.4 lists values for M̂T T F
IG

8 ,
t̂ I G8 (q) (where q = 0.05, 0.1, 0.5, 0.9, and 0.95), and the corresponding 95% boot-
strap CIs. Figure8.2 shows its CDF estimate (solid line) and the corresponding point-
wise 95% bootstrap CIs (dashed lines) for model MIG

8 with Λ(t) = tγ . The pseudo-
failure-time (PFT) estimation is also estimated by Λ−1(ω/μ̃i ) for i = 1, . . . , n,
where μ̃i is the least squares estimate by fitting the i th degradation path. The PFTs
are the times when the fitted curves reach the critical levelω, and they are shownwith
black dots in Fig. 8.2. For goodness of fit, the p-value of the Anderson–Darling test

Fig. 8.2 Estimated
time-to-failure distribution of
the LED (incomplete) data,
using IG degradation-based
process MIG

8 with ω = 1.75
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for the model MIG
8 with Λ(t) = tγ is 0.58. This indicates that the ING degradation

model, MIG
8 , is suitable for fitting the LED (incomplete) data.

8.6.2 Laser Data

Since the laser data in Peng (2015a, Example 1) was analyzed and fitted using the
degradation models MW

1 –MW
6 , MG

1 , M
G
2 , and MIG

1 –MIG
4 with Λ(t) = t and xz = 1,

this study uses the proposed models, MG
3 , M

G
4 , and MIG

5 –MIG
8 with Λ(t) = t and

xz = 1, to determine whether there are measurement errors in the degradation paths.
The results for the MLEs, the sample log-likelihoods, and the AICs for the laser

data are summarized in Table8.5. A comparison of Table3 in Peng (2015a) and
Table8.5 shows that the monotonic processes (i.e., MG

1 –M
G
4 , MIG

1 –MIG
8 ) are sub-

stantially better than the Wiener degradation-based processes by using the AIC for
model selection. By using the LR test, the estimatedmeasurement errors σ̂ε are negli-
gible for themonotonic processes, whichmeans that there are nomeasurement errors
in the laser data. The IG degradation-based process, MIG

3 , is suitable, and there is
parametric variation in neither λ nor the measurement error ε in the laser data. The
remaining reliability assessment and goodness of fit can be found in Peng (2015a)
and are omitted here.

8.6.3 Carbon-Film Data

The following carbon-film data is taken from Meeker and Escobar (1998, Example
18.2, Table C.3). See Shiomi and Yanagisawa (1979), Suzuki et al. (1993) for more
details. The QC of a resistor is its resistance. The single accelerating variable is
temperature, and the Arrhenius reaction law is used as follows:

xz = exp

(
− 11605 × Ea

273.15 + temp

)
,

where temp and Ea denote temperature in degrees Celsius and an unknown activation
energy, respectively. Figure8.3a shows the accelerated degradation paths for carbon-
film resistors. Table8.6 records the increments for the accelerateddegradationdata for
each degradation path. The subject devices were tested at three levels of temperature
(i.e., 83◦C, 133◦C, and 173◦C). The respective sample sizes of the tested samples
at 83◦C, 133◦C, and 173◦C are 9, 10, and 10. The measurement times at the three
levels of temperature are the same at 0.452, 1.030, 4.341, and 8.084 (in thousands
of hours). The primary objective of these ADTs is to assess the lifetime information
for carbon-film resistors, such as the MTT F or the q-quantile at the normally used
operating temperature (e.g., 50◦C). For an individual resistor, the time-to-failure is
assumed to be the time when the true resistance is 5 (i.e.,ω = 5) more than the initial
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Fig. 8.3 Carbon-film data

resistance. Similar to the LED example, there is only one negative increment for the
26th unit (red solid line in Fig. 8.3a) in the 173◦C test, which is shown in bold-faced
type in Table8.6. The abnormal measurement point may be an outlier and has more
influence on the degradation model than others.

For illustrative purposes, the time-scale transformation functionΛ(t) = tγ is con-
sidered in the log-likelihood functions and model selections in this case. Table8.7
summarizes the results for the MLEs, the sample log-likelihoods, and the AICs for
the carbon-film (complete) data. For the Wiener degradation-based processes, mod-
els MW

1 , MW
3 , and MW

4 with the random effects are substantially better than the
other models by using the AIC for model selection. The proposed monotonic pro-
cesses (i.e., MG

3 , MG
4 and MIG

5 –MIG
8 ) in this paper have a smaller AIC than the

non-monotonic processes (i.e., MW
1 –MW

6 ). A comparison of the AICs shows that the
degradation model, MG

3 , with Λ(t) = tγ is suitable, and β̃ appears to vary in the
experiment with measurement errors. The degradation model, MG

3 , is clearly better
than the other degradation models (i.e., MIG

5 –MIG
8 and MW

1 –MW
6 ).

When the anomaly in the carbon-film (complete) data is excluded, the results for
theMLEs, the sample log-likelihoods, and the AICs for the carbon-film (incomplete)
data are shown in Table8.8. Again, models MW

1 , MW
3 , and MW

4 with the random
effects are substantially better than the othermodels,whether the anomaly is excluded
or not. Models MIG

5 –MIG
8 with measurement errors are substantially better than

modelsMIG
1 –MIG

4 withoutmeasurement errors by using theAIC formodel selection.
Comparing model MIG

5 (MIG
6 –MIG

8 ) with MIG
1 (MIG

2 –MIG
4 ) using the LR test,

there is sufficient evidence to reject the hypothesis H0 : σε = 0 at significance level
0.05, and it reveals that the measurement error term in model MIG

5 (MIG
6 –MIG

8 )
is necessary for the carbon-film (incomplete) data. This means that there are still
measurement errors in the carbon-film (incomplete) data, even though the observed
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Table 8.6 Increments of accelerated degradation data of carbon-film resistors

Unit Number Temperature (◦C) Inspection time interval (hours)

0–452 452–1030 1030–4341 4341–8084

1 8 0.28 0.04 0.06 0.24

2 0.22 0.02 0.02 0.12

3 0.41 0.05 0.08 0.27

4 0.25 0.04 0.03 0.16

5 0.25 0.01 0.16 0.15

6 0.32 0.04 0.09 0.13

7 0.36 0.05 0.11 0.18

8 0.24 0.04 0.06 0.21

9 0.33 0.07 0.04 0.41

10 133 0.40 0.07 0.25 0.33

11 0.88 0.31 0.87 1.09

12 0.53 0.11 0.35 0.61

13 0.47 0.15 0.38 0.50

14 0.57 0.18 0.51 0.77

15 0.55 0.12 0.42 0.70

16 0.78 0.18 0.52 0.79

17 0.83 0.29 0.84 1.33

18 0.64 0.16 0.43 0.61

19 0.55 0.19 0.55 0.74

20 173 0.87 0.42 1.33 1.82

21 1.25 0.63 1.66 1.69

22 2.64 1.14 3.23 4.11

23 0.98 0.38 1.30 1.76

24 1.62 0.72 1.48 2.32

25 1.59 0.82 1.05 3.29

26 2.29 −0.05 4.06 2.04

27 0.98 0.39 1.10 1.27

28 1.04 0.50 1.23 1.39

29 1.19 0.40 1.44 1.49

degradation paths are monotonic for the IG degradation-based processes. Therefore,
for the gamma degradation-based processes, the difference in the log-likelihood (or
using the LR test) between models MG

1 (MG
2 ) and MG

3 (MG
4 ) is insignificant, which

implies that there is no measurement error in the carbon-film (incomplete) data. The
gamma degradation-based process MG

1 is a suitable model for fitting the carbon-
film (incomplete) data. The removal of the abnormal measurement point seems to
screen out the measurement errors. This result is similar to the influential points in
regression analysis, in which the deletion of observations significantly affects the fit
of the regression model and the subsequent conclusions.
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Table 8.9 MLEs, 95%
bootstrap CIs of MTT FG

1 ,
and tG1 (q) where q = 0.05,
0.1, 0.5, 0.9, and 0.95 for the
carbon-film (incomplete) data

Degradation model (MG
1 )

with ω = 5 at 50 ◦C
Lifetime MLE 95% bootstrap CIs

MTT FG
1 8661.3 [3320.4, 23995.2]

tG1 (0.05) 2322.9 [733.0, 6210.7]

tG1 (0.10) 3074.8 [1075.2, 8202.3]

tG1 (0.50) 7427.2 [2784.3, 20063.1]

tG1 (0.90) 15785.3 [6064.7, 46220.0]

tG1 (0.95) 19192.1 [7223.3, 58309.1]

A comparison of the Wiener degradation-based processes in Tables8.7 and 8.8
shows that removing the anomaly increases the corresponding log-likelihood andpro-
ducesmore information about the data. According to theAIC formodel selection, the
negative increment in the 173◦C test may be an outlier and should be excluded from
the degradation path. The nonlinear Wiener process without measurement errors,
MW

4 in Table8.8, could fit the carbon-film (incomplete) data. When AIC is used
for gamma/IG degradation-based processes (MG

3 –M
G
4 /M

IG
5 –MIG

8 ), removing the
anomaly increases the corresponding log-likelihood and reduces the estimated mea-
surement error, σ̂ 2

ε . This means that the anomaly should be excluded. The nonlinear
gamma process (with random effects) with measurement errors, MG

3 in Table8.7,
and the nonlinear gamma process (with random effects) without measurement errors,
MG

1 in Table8.8, could also be, respectively, used for the complete and incomplete
ADT data. For IG degradation-based processes, the nonlinear IG process (with ran-
dom effects) with measurement errors, MIG

7 , is consistently chosen using the AIC in
Tables8.7 and 8.8. Overall, the gamma degradation-based process,MIG

1 in Table8.8,
is substantially better than the other models, in terms of the AIC for model selection
for the carbon-film (incomplete) data.

Fig. 8.4 CDF estimate of
the time-to-failure
distribution at 50◦C with
pointwise 85% and 95%
bootstrap CIs, based on the
carbon-film (incomplete)
data, using the degradation
model MG

1 with ω = 5
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Using the estimated θ̂
G

1 for model MG
1 with Λ(t) = tγ , and given the specified

threshold level (i.e., ω = 5) at 50◦C, Table8.9 summarizes values for M̂T T F
G

1 ,
t̂ G1 (q) (where q = 0.05, 0.1, 0.5, 0.9, and 0.95), and the corresponding 95%bootstrap
CIs. The wide CIs may be due to the large amount of extrapolation that is required
to estimate the lifetime information for ω = 5 at 50◦C. Figure8.3b plots the CDF
estimates (solid lines) and the PFTs (black dots) for model MG

1 with Λ(t) = tγ at
three levels of temperature. Figure8.4 shows theCDF estimate and the corresponding
pointwise 85 and 95% bootstrap bias-corrected percentile CIs at 50◦C. For goodness
of fit, the p-values of the Anderson–Darling test for the 83◦C, 133◦C, and 173◦C
tests are 0.08, 0.57, and 0.81, respectively. This demonstrates that the proposed ADT
model is suitable for modeling the carbon-film (incomplete) data.

8.7 Concluding Remarks

Unusual observations can reflect an incorrectly specified model, in which case
the observations may be rectified or deleted entirely. The independent increment
degradation-based process that is proposed in this paper arises naturally when degra-
dation paths that simultaneously consider the unit-to-unit variability, the within-unit
variability, and themeasurement error are necessary. The proposed degradationmod-
els MG

3 , M
IG
5 –MIG

8 are new and share the similar properties of the corresponding
models without measurement error (i.e., MG

1 , M
IG
1 –MIG

4 ). The assumption of the
natural conjugate distribution makes this process eminently suitable for degrada-
tion modeling and allows the proposed degradation model to be computationally
tractable. A separation-of-variables transformationwith a quasi-MonteCarlomethod
is provided to estimate the model parameters and to develop procedures based on a
bootstrap method to obtain CIs for reliability assessment. The LR test is performed
to assess whether the measurement error term is necessary for a specific dataset. In
addition, the AIC for model selection and the Anderson–Darling test for goodness
of fit are provided to evaluate the validity of different model assumptions.

Although the estimation procedure and numerical results are obtained based on
the independent increment degradation-based process, these assumptions are needed
to verify before using the proposed models. An extension of this work to a more
general model setting (such as Bayesian approach) will be studied in future research.
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Chapter 9
A Least Squares Method for Detecting
Multiple Change Points in a Univariate
Time Series

Kyu S. Hahn, Won Son, Hyungwon Choi and Johan Lim

Abstract Detecting and interpreting influential turning points in time series data is
a routine research question in many disciplines of applied social science research.
Here we propose a method for identifying important turning points in a univariate
time series. The most rudimentary methods are inadequate when the researcher lacks
preexisting expectations or hypotheses concerning where such turning points ought
to exist. Other alternatives are computationally intensive and dependent on strict
model assumptions. Our method is fused LASSO regression, a variant of regularized
least squares method, providing a convenient alternative for estimation and inference
of multiple change points under mild assumptions. We provide two examples to
illustrate the method in social science applications. First, we assessed the validity of
our method by reanalyzing the Greenback prices data used in (Willard et al. in Am
Econ Rev 86:1001–1017, 1996). We next used the method to identify major change
points in President Clinton’s approval ratings.
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9.1 Introduction

Inquiries about the changes in the state of matters are core research questions in
physical and social sciences alike. Social scientists recognize the notion of a turning
point because many important social theories are inspired by inquiries into structural
shifts in the historical trend. Intuitively, a turning point occurs when a series of
observations which had been moving in one direction reverses or changes its course
for some duration of time. In other words, turning points give rise to changes in
overall direction or regime in a determining fashion. Conceptually speaking, turning
points are best characterized as short, consequential shifts that redirect a process.
Mathematically, a turning point is a maximum or minimum point in some continuous
function, the point at which the slope of the function changes sign. This is often called
change points in the classical probability theory.

In sociology, the concept of turning point has permeated the literature for a long
time, with main application in studies of life course. In the life course literature, as
Elder (1985) argued, some events are conceived as real important turning points in
life as they redirect paths. According to this view, such turning points would interrupt
regular patterns and provide major insights in the life course literature. For example,
in analyzing criminal careers across individual lives, Sampson and Laub (2005)
argued that marriage was often a key turning point in the process of desistance from
crime and viewed marriage as a potential causal force in desistance that operates as
a dynamic, time-varying process through time.

Similar arguments have been echoed frequently in other disciplines. In politi-
cal science, turning points have been sought in studies of political realignment. For
example, Lasser (1985) defined realignments as fundamental shifts in the structure of
the party system, marked by changes in voting behavior and in the basic party attach-
ments of the voting citizens. In particular, the author defined critical realignments
as extraordinary upheavals in the flow of American electoral and policy history that
occur under conditions of abnormal and general crisis. The notion of turning points
has also formed the conceptual basis for developing theories concerning critical elec-
tions. (e.g., Key 1955; Burnham 1970; Clubb et al. 1981). First enunciated by Key
(1955), the theory of realigning elections suggested that certain critical elections
created sudden, massive shifts in the electorate, where a new governing coalition
installed which group would represent the majority for decades until the next critical
election. In light of this view, Burnham (1970) argued that critical elections were
marked by short, sharp reorganizations of the mass coalitional base of the major par-
ties which occurred at periodic intervals on the national level (page 10 of Burnham
1970).

In applied economics, studies of business cycles and other economic regularities
have led to widespread analysis of turning points (e.g., Chaffin and Talley 1989;
Zellner et al. 1991). For example, Zellner et al. (1991) employed two variants of an
autoregressive, leading indicator model to forecast turning points in the growth rates
of annual real output across 18 countries between 1974 and 1986. The authors also
employed Bayesian predictive densities to compute probabilities of downturns and



9 A Least Squares Method for Detecting Multiple Change … 127

upturns. It is worth noting that, in the history of science, revolution has also been a
central concept (see Kuhn 1970; Cohen 1985).

Conceptually, as described by Abbott (1997), a social process is organized into
trajectories. As the author described, here trajectories are considered inertial (and
enduring) variation without change where consistent causal regimes persist. In light
of this view, for example, a life course can be parsed into trajectories and transitions
Elder (1985). Trajectories are interdependent sequences of events in different areas
of life whereas transitions are radical shifts Elder (1985). In the current analysis, we
are interested in empirically finding these transitions. In short, a social process can
be viewed as a sequence of trajectories linked to one another via turning points.

It should be noted thatwhat constitutes a turning point is not necessarily the change
of sign. Instead, turning points involve the separation of smooth tracks by fairly
abrupt and diversionary moments Abbott (1997). In other words, as Abbott (1997)
explained, what characterizes the trajectories is their inertial quality. Turning points
endure large amounts of minor variation without any appreciable changes in overall
direction or regime. On the other hand, a true turning point can be distinguished
from a mere random episode or minor ripples because its separates long, enduring
segments in a series of observations.

Given this conceptual definition, how would one empirically identify a major
turning point? In practice, it is not easy to set an operational definition for this
intrinsically important concept. Where specific hypotheses are posited, the most
direct approach is to define a dummy variable that takes on 0 before an expected
change point and takes on 1 afterward. In this setting, the dummy variable can be
used to describe a mean shift. Accordingly, one could begin by assuming that the
turning point came in one point rather than some other point, fit a statistical model
with this period effect, and look at the proportion of the variability of outcome
explained by the dummy variable. However, if uncertainty prevails about precisely
when such turning points should be expected to occur, choosing potential candidates
for turning points becomes arbitrary.

There is also no shortage on the subject of detecting changes in the model param-
eters of a stochastic system in the statistical literature. Dating back more than a
few decades, Hinkley (1970) proposed a method for sequential hypothesis testing
where the authors attempted to determine potential change points based on a theo-
retically derived approximate distribution of test statistics. Siegmund (1986) focused
on detecting change points in a stochastic process, which required a rigorous approx-
imation of tail probabilities.

In light of our definition of a turning point, however, the existing approaches suffer
from various shortcomings.Many existing approaches are onlinemethods that search
for turning points in real time without having observed the ensuing data points (e.g.,
see Lai 2001 and references therein). As Abbott (1997) pointed out, however, that
turning point analysis is sensible only after when a new trajectory or system state is
clearly and entirely established. Accordingly, one must observe the entire series in
order to distinguish true turning points from random changes. To further elaborate on
this point, an undifferentiated smooth curve cannot be regarded as having a turning
point, although it might clearly involve long-term change. On the other hand, even
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if the slope of the function changes its sign in quick succession, their magnitudes
ought to be quite substantial to be considered as anything more than minor ripples in
a generally monotonic trend. In short, the so-called online methods are not suitable
for operationalizing tuning points as defined in most applied works.

Another problematic feature of existing approaches is that they assume that there
is only a single turning point in a given stochastic process. Accordingly, in order to
detect multiple turning points, one must apply the same procedure Yang and Kuo
(2001) recursively. This is because simultaneously searching multiple turning points
in a given time process can posit difficulties such as determination of the total number
of change points. Often many existing methods compare the fit of alternative models
differentially specifying the number and the location of turning points. In this setting,
the researcher must first make an assumption about the number of turning points in
the given process. In applied research, however, the number of turning points would
rarely be known to the researcher in advance. Accordingly, most of the existing
methods poorly operationalize turning points.

Finally, the lack of formal testing procedures often limits the ability of researchers
to account for the uncertainty associated with the process. In practice, the distinction
between trajectories and turning points will be less obvious. Most trajectories will
have few turnings, and the researcher could mistakenly ignore real structural changes
or mistake random variation for structural changes. On the other hand, if a model
is obtained after diagnostic tests are used to locate change points, conventional t-
statistics and p-values no longer reflect the underlying prior uncertainty about the
timing of structural shifts Western and Kleykamp (2004). For instance, Isaac and
Griffin (1989) attempted to detect structural instability with plots of regression coef-
ficients from a time window moving along the series. Currently, therefore, not many
existing methods provide a tool for locating change points that can also be easily
combined with a procedure for assessing uncertainties concerning their locations.

The Bayesian methods overcome many of these shortcomings. With increased
accessibility to Markov chain Monte Carlo methods as a computational aid in
Bayesian inference, many researchers have applied the so-called retrospective or
off-line approach to the change point problem. For example, Carlin et al. (1992)
first proposed a hierarchical model that completely characterized the distribution of
a single change point. Green (1995) devised a novel class of MCMC methods (or
samplers) for detecting multiple change points in a series of observations, provid-
ing a Bayesian solution to one of the key shortcomings of the existing methods.
Chib (1998) proposed a framework for hypothesis testing regarding multiple change
points further demonstrating the utility of the Bayesian framework for detecting turn-
ing points in a time process. Western and Kleykamp (2004) illustrated the utility of
the Bayesian framework for social science applications in their analysis of real wage
growth in 18 OECD countries from 1965 to 1992.

Nevertheless, the Bayesianmethods also have somewell-knownweaknesses. The
MCMCmethods for Bayesian inference are computationally intensive even with the
improved computer technology. Also, it is often hard to justify the convergence of
the MCMC sampler, which has to traverse an excessively large parameter space of
varying dimensions in the case of multiple change points. Perhaps most importantly,



9 A Least Squares Method for Detecting Multiple Change … 129

these methods rely on statistical concepts that remain unfamiliar or unacceptable to
many applied researchers.

For operationalizing turning points, the recently developed fused lasso (FL)
method offers many advantages over the existing methods (see Mammen and van de
Geer 1997; Tibshirani et al. 2005; Kim et al. 2009; Rinaldo 2009; Tibshirani 2014;
Li et al. 2017). To begin with, the FL method is built on the ideas underlying least
squares regression—a technique virtually all sociologists have become familiar with.
More specifically, the FL method is based on least squares regression with �1-norm
regularization, where regularization refers to the fact that the regression coefficients
are shrunken toward zero simultaneously. To be more specific, by the regularization
principle, for a given threshold λ, the shrunken mean estimates μ̄ j ’s are

μ̄ j = sgn(μ j )max(|μ j | − λ, 0), (9.1)

where sgn(x) is the sign function of x and μ j is the mean vector y j . Thus, Eq. (9.1)
has the effect of shrinking μ j to 0 if its absolute value is either smaller or greater
than the given threshold λ.

Regularization has attracted the interest of users because of its applicability to
automatic variable selection. Most notably, the least absolute shrinkage and selec-
tion operator (LASSO) proposed by Tibshirani (1996) is based on the regularization
principle and has been one of the most significant contributions to the variable selec-
tion problem in the past decade (also see Knight and Fu 2000; Leng et al. 2006; Zou
2006).

Applying this notion of regularization, we are interested in examining the change
in the difference between any two neighboring observations, Δ j+1 − Δ j , where
Δ j = μ j − μ j−1. The difference inΔ j of two neighboring observations equals each
other unless they are tuning points, and their difference is shrunken to zero. To
be more specific, for a given threshold λ, our method estimates the difference in
regression coefficients of two neighboring observations, Δ j+1 − Δ j , as

Δ j+1 − Δ j = sgn(Δ j+1 − Δ j )max(|Δ j+1 − Δ j | − λ, 0), (9.2)

where Δ j = μ j − μ j−1 and μ j is the mean of y j . Thus, trivial differences are sup-
pressed toward zero. In short, the above procedure disregards insignificant changes,
whereas the survivors of shrinkage can be considered important change points.
Accordingly, the end result can inform us of the optimal number of change points,
their exact locations, and statistical significance.

The FL method has a number of advantages over the alternative approaches.
First, the method detects multiple change points simultaneously, without the need
to iteratively search for one change point at a time. For applied work, this is an
important advantage over other alternatives since often applied data contain much
unknown sampling variation.

Second, the FL method is easy to implement. It relies on the simple least square
method with a tuning parameter, and also many efficient algorithms to compute
it are available (see Hoefling 2010; Tibshirani and Taylor 2011; Yu et al. 2015;
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Arnold and Tibshirani 2016; Lee et al. 2017). LASSO-type regression models have
become increasingly popular in many applied disciplines, making a wide range of
computer programs available for public use (see Tibshirani and Taylor 2011; Yu et al.
2015; Arnold and Tibshirani 2016). With this increased accessibility to the existing
computer software, the proposed estimation procedure can be easily implemented
with little extra programming efforts.

Last but not least, it relies on relatively mild assumptions. In applied works,
statistical inference is made under the circumstances that are quite discrepant from
the ideal large sampleworld, an assumption typicallymade in the advanced statistical
techniques designed for change point analysis. Accordingly, for example, despite its
elegance and practical convenience, the traditional cusum-statistic-based approach
(see Lai 2001 and references therein) can be problematic because it requires the
fixed probability specification based on strong model assumptions. In contrast, the
FL method is a least-square-based method and does not make a strong distributional
assumption on the data.

The remainder of this article is organized as follows. First, we detail the formu-
lation of our method and describe its properties. In order to illustrate its utility for
applied work, we apply the proposed method to detecting major trend change points
in the so-called Greenback prices during the US Civil War Willard et al. (1996).
Instead of specifying a list of dates a priori and testing for their importance, Willard
et al. (1996) compared the reactions of participants in financial markets to the signif-
icance the same events have been assigned by Civil War historians. We also applied
the method described here to analyzing President Clinton’s job approval ratings.

9.2 Method

There are at least two possible scenarios in which some of the mean parameters
can be grouped into common values in a time series setting. First, the first several
observations can be generated from a mean value up to a certain time point, while a
certain number of ensuing observations are generated from a different mean value.
Here the first group of observations can be used to infer their common mean value,
and the second group of observations can be used to infer their own common mean
value. Alternatively, the underlying mean value may keep increasing by a unit up to
a certain time point and turn downwards thereafter; it can also decrease for a specific
time period before changing its direction again. In this article, we focus on detecting
trend changes, or the second scenario described above.

To best illustrate the core idea underlying the proposed method, suppose that we
observe n observations, y1, y2, . . . , yn , from the underlyingmean valuesμ1, μ2, . . . ,

μn . Given these n parameters, if there exist no constraints in the relationship between
themean values, the best guess for eachmean parameter is the respective observation
itself.

A turning point is where the trend significantly changes. A trend in a univariate
time series is naturally defined by a change in the means of neighboring observations
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Δ j = μ j − μ j−1, whereμ j is themean of the j-th observation y j . Thus, as described
earlier, our method suppresses trivial differences toward zero. As stated earlier, in a
univariate time series, the unregularized estimate of μ j is y j itself. To detect major
turning points, we disregard insignificant changes by suppressing small Δ j+1 − Δ j

to 0. In short, the procedure trivializes insignificant changes, whereas the survivors
of shrinkage can be considered important turning points.

In practice, we solve the following �1-regularized least square problem:

Minimize
n∑

i=1

(yi − μi )
2 + λ

n−1∑

j=2

|Δ j+1 − Δ j |, (9.3)

whose solution shrinks Δ j+1 − Δ j toward to 0 yielding the result equivalent to the
estimate in (9.2). Here, the tuning parameter λ determines the number of change
points in a time series. If λ approaches ∞, all of the estimated Δ j+1 − Δ j ’s equal
0, and no turning points can be detected. On the other hand, if λ approaches 0, our
procedure estimates Δ j+1 − Δ j as (y j+1 − y j ) − (y j − y j−1), which would rarely
equal 0. In this case, nearly all data points would be classified as turning points.
Therefore, we solve Eq. (9.3) by solving its dual problem:

Minimize
n∑

i=1

(yi − μi )
2 subject to

n−1∑

j=2

|Δ j+1 − Δ j | ≤ s, (9.4)

where
∑n−1

j=2 |Δ j+1 − Δ j | = |(μ3 − μ2) − (μ2 − μ1)| + · · · + |(μn − μn−1) −
(μn−1 − μn−2)|.

In this formulation, the choice of the constraint s is crucial because it could
significantly influence the results. Although there is no rule set in stone, one could
improvise a reasonable approach for finding the optimal s. From the ways in which
the parameters are defined, the least squares error is bound to decrease toward the
error of an unconstrained least squares solution as we increase s. We thus search
for an optimal point s∗ such that the error reduction by a unit increase in s changes
rapidly before and after s∗, and it becomes stable in a minor scale after s∗. It also
requires a threshold, but this is often fairly clear when working with real data. Based
on our experiments, about 90% of the total error reduction from the fully constrained
model to fully unconstrained model is deemed reasonable. Figure9.1 presents trade-
off curves between the constraint and the residual sum of squares from our two
examples illustrating the method outlined in this manuscript. From these plots, one
can easily choose the optimal s for the given problem.

In order to assess the significance of potential change points detected by the non-
zeromean difference termdescribed earlier, a simple bootstrapmethod can be applied
to calculate their p-values. First let εi = yi − μi for all i = 1, 2, . . . , n denote the
residuals, and these residuals follow some unknown distribution F . One can iterate
the following procedure N times: (1) place prior probability 1/n on every residual εi
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Fig. 9.1 Least squares errors of estimated models with varying s. The left panel is the scree plot
for the Greenback price data in Willard et al. (1996). The right panel is that for Clinton’s approval
rate data

and sample with replacement to obtain ε̄(1) = (ε̄
(1)
1 , ε̄

(1)
2 , · · · , ε̄(1)

n ) from the original
observations; and (2) using y∗(1)

i = μ̂i + ε̄
(1)
i as a new observation for i where μ̂i

is the original fit of the mean parameters, refit the mean parameters. While holding
the optimal constraint s constant, reiterating (1) and (2) N times yields a bootstrap
distribution of the mean parameters.

Based on this empirically derived distribution, one may obtain the 95% pointwise
confidence interval of each mean parameter. In particular, keeping records of the
elements in the constraint (i.e., the first order or the second-order differences), a
given point is a turning point if the estimated mean differential in the original model
fit is greater than that in (1 − α)100% of the bootstrap samples. For example, for the
5% significance level with 1,000 bootstrap samples, time i is not a change point if
|μ̂(k)

i+2 − 2μ̂(k)
i+1 + μ̂

(k)
i | < |μ̂i+2 − 2μ̂i+1 + μ̂i | in more than 950 samples.1

9.3 Applications

9.3.1 Turning Points in the Greenback Prices During
the US Civil War

In our first example, using the prices of the so-called Greenback, we attempt to
determine the turning points in the US Civil War as viewed by people at the time.
Using data on the gold price of Greenbacks, Willard et al. (1996) compared the

1As a side note, another issue with using �1-norm penalty is that the estimation is biased. One way
to account for this potential bias is to identify the change points by shrinkage and refit the model
piecewise between change points under quadratic loss. In an engineering application, Chen et al.
(2001) adopted a similar idea in developing their basis pursuit technique. In our simple problem of
finding the jumps in a constant mean process, this amounts to computing numeric average of data
points.
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reactions of participants in financial markets to the significance the same events have
been assigned by CivilWar historians. Instead of specifying a list of dates a priori and
testing for their importance, the authors allowed the data to identify the important
dates and compared them to historians’ accounts.

In 1862, the USA issued an inconvertible currency called the Greenback. As
detailed in Willard et al. (1996), as the Union’s financial condition deteriorated in
1861, banks suspended the convertibility of their notes into gold suspecting amassive
outflow of gold. Likewise, the government suspended the right to convert Treasury
notes into specie. In early 1862, Congress authorized the government to issue an
inconvertible currency popularly called Greenbacks. Accordingly, the Greenbacks
represented promises to pay gold coin. However, the Greenback’s value depreciated
fromparwith the gold dollar, and a formalmarket for trading gold came into existence
shortly after the suspension of convertibility.

Many argue that the Greenback’s value reflected the expectation of future war
costs. People expected that they could convert their Greenbacks to gold dollars
one-for-one after the war. Accordingly, the price of a Greenback depended on its
expected value in gold dollars. Therefore, the more costly the war, the less likely that
this conversion would take place. In short, fluctuations in the Greenback prices can
be revealing of how contemporaries perceived the status of the war. Conceptually,
Willard et al. (1996) defined a break in the series as a shift in its mean value. Accord-
ing to the authors’ definition, the breaks in the price of Greenbacks series marked
the turning points of the war.

More specifically, adopting the approach of Banerjee et al. (1992), the authors
first estimated the following regression equation using data from the 100-day period
between 03/24/1862 and 07/19/1862:

ln pt = β0 +
12∑

i=1

βi ln pt−i + εt ,

where pt is the gold price of Greenbacks on day t , the β’s are parameters to be esti-
mated, and εt is a white noise error term. Subsequently, the authors calculated the
F-statistic associated with a test of the hypothesis that the coefficient on an omitted
dichotomous variable is zero after choosing the lag length of 12 days. The authors
repeated this procedure over and over, each time moving the 100-day window over
one day, until the entire period of the war has been covered. The authors sequen-
tially searched for peaks in the series of statistics, first picking the maximum and
eliminating the window around that date, then searching for the next peak.

The authors claimed to have detected seven turning points at which financial
markets reacted strongly. Of the seven turning points, the authors attributed two to
well-known historical events: (1) 09/23/1862 and (2) 07/06/1863.

The authors claimed that 09/23/1862 corresponded to a costly Union victory in
the battle at Antietam. As described in Willard et al. (1996), the battle itself cost so
many lives that it could lead people to revise upward their estimates of the war’s
future costs. Also, according to the authors, an equally likely cause of this structural
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break is the Emancipation Proclamation, which destroyed any hope for a peaceful
settlement to the war.2

The authors attributed 07/06/1863 to Gettysburg and Vicksburg. Gettysburg and
Vicksburg were clear and significant military victories for the Union. The authors
argued that, since news of these two battles reached the east at about the same time,
it was impossible to make any statistical distinctions between market reactions to the
two separate events.

The authors attributed three other structural breaks or to less prominent historical
events. First, 01/08/1863 was the day before the Congressional Ways and Means
Committee approved an increase in the supply of Greenbacks $300 million. The
authors argued that participants in financialmarkets viewed this proposal as an admis-
sion that the fiscal measures taken to that date were insufficient to meet the Union’s
needs. From this point of view, the proposal was a sign showing that the government
expected the war to be more expensive than anticipated.

07/12/1864 was the largest shift (in absolute value of the percent change) of the
entire war. On July 12, as described in Willard et al. (1996), after having approached
to within five miles of the White House, Jubal Early’s Army, partly in response to
the hasty arrival of Union reinforcements, retreated. According to the authors, to
the participants of the financial market, this marked the end of any serious threat
by the Confederacy. The authors also argued that there might have been financial
news as well. After Chase resigned as Treasury Secretary on 06/30/1864, William
P. Fessenden was appointed Chase’s replacement on July 1. Willard et al. (1996)
suspected that it was possible that some character of Fessenden may have caused
financial traders to evaluate the Greenback more highly.

The authors also classified 08/24/1864 as another turning point. Although no
major military news could be connected to this date, they speculated that the fall of
Fort Morgan may be a possible explanation.

Finally, the authors failed tomatch the remaining two turning pointswith anywell-
known historical events: (1) 08/27/1863 and (2) 03/08/1865. Willard et al. (1996)
noted that either most military news around these dates was insignificant or did not
match the direction of movement in the Greenback prices.

Our results agreewith someof thefindings inWillard et al. (1996) but also generate
some discrepancies. As described earlier, in order to assess the significance level of
potential change points, we relied on the bootstrap procedure described earlier. As
summarized in Table9.1, our analysis detected roughly 17 possible turning points.3

2According to the authors, although it did not go into effect until January 1, 1863, the actual structure
of the proclamation was a realistic threat since there could no longer be any doubts about Lincoln’s
willingness to tolerate slavery. This led people to raise the expected cost of the war.
3In some cases, our method identified clusters of dates as possible turning points. This is because,
with daily data, it is difficult to pinpoint a single date as a turning point in the entire series that
consists of over 1,200 days due to lack of information in a single data point. In such cases, therefore,
we regard the cluster of dates as one turning point affected by the same series of events. Likewise,
the bootstrapped probabilities associated with a single date are fused. Accordingly, for any given
time point t , it would be more appropriate to simultaneously consider the probabilities associated
with the surrounding dates.
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Table 9.1 Major change points in Greenback gold prices

Turning points Willard et al. (1996)

1 April 24, 1862

2 May 24, 1862

3 December 23, 1862

4 February 23, 1863* January 8, 1863

5 June 4, 1863

6 August 15, 1863* August 27, 1863

August 19, 1863* August 27, 1863

7 October 14, 1863

8 March 2, 1864

9 May 16, 1864

May 17, 1864

10 July 18, 1864* July 12, 1864

July 19, 1864* July 12, 1864

11 August 8, 1864* August 24, 1864

August 12, 1864* August 24, 1864

12 October 3, 1864

October 4, 1864

13 December 9, 1864

14 February 16, 1865* March 8, 1865

February 17, 1865* March 8, 1865

15 May 13, 1865

16 July 29, 1865

17 November 18, 1865

November 25, 1865

November 27, 1865

Figure9.2 presents the proportion in the bootstrapped samples of the second-order
differential that exceeds the fit of the original observation at each time point. The
constraint parameter was set at s = 7.5 (see Fig. 9.1), and it was the 90% error
reduction point as was explained in the previous section.

Our analysis classified 02/23/1863 as one of the most likely turning points. A
closer examination of the data reveals that sometime around January or February
of 1863, a turning point has occurred. The series remained fairly constant during
this period only with some localized fluctuation. Note that Willard et al. (1996) had
identified 01/08/1863 as a turning point. Although there is a fair amount discrepancy
between the two dates, given the shape of the series around this period, it is not clear
whether this should be regarded a turning point. We believe that 02/23/1863 is a
more reasonable choice.
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Fig. 9.2 Change points in Greenback gold prices

Our method also identified 08/15/1863 and 08/19/1863 as possible turning points;
to roughly estimate their significance, when combined the probabilities associated
with the two dates reached approximately 80%. A close look at the data reveals that
these two turning points closely correspond to one of the turning points identified
by Willard et al. (1996), 08/27/1863, although the authors were unable to match this
particular date with a well-known event.

Our method also identified a set of turning points in 1864. First, our analysis
classified July 18 and 19 as possible turning points. When combining the bootstrap
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probabilities associated with three dates surrounding these two consecutive dates
(i.e., from July 14 to 23), they reached approximately 93.4%, clearly indicating
that there was a turning point around these dates. These two dates roughly matched
one of the turning points identified by Willard et al. (1996), 07/12/1864. Likewise,
August 8 and 12 were also classified as possible turning points in 1864. These two
dates closely corresponded to another turning point (i.e., August 24) in Willard et al.
(1996) analysis.

Our method also identifiedmany other likely turning points overlooked inWillard
et al. (1996). First, 04/02/1862 and 05/24/1862 were classified as possible turning
points. A close examination of Fig. 9.2 reveals that the slope of the series changes
sharply around these two dates. TheGreenback prices seem to rise roughly until April
or May of 1862 but started declining thereafter for about a year until February of
1863. Accordingly, we believe that any reasonable method ought to uncover turning
points somewhere around these two dates. On the other hand, as described earlier,
Willard et al. (1996) method only identified 01/08/1863 as a turning point; Fig. 9.2,
however, reveals that the Greenback prices had already been declining for a while
by this date.

Between 1862 and 1863, there were a couple of other ambiguous dates that were
classified as possible turning points in our analysis. First, our method identified
12/23/1862 as a possible turning point. Towhat extent this date fits the profile of a true
turning point seems debatable however; although the rate of decline increases around
this date, it is not clear whether it should be regarded as a structural change since
the general trend seems to remain unaltered. Similarly, 06/04/1863 was classified as
a possible turning point. However, a closer look at the data reveals that it might be
appropriate to call this date only a minor ripple, not a structural change. Although
the rate of rise does seem to increase slightly around this date, its impact on the
existing upward trend seems unaffected. In short, borrowing Willard et al. (1996)
terminology, these two dates might be closer to being blurbs than true turning points.

The FLmethod also identified a few ambiguous dates in 1864. To begin, although
03/02/1864 was classified as a possible turning point in our analysis, Fig. 9.2 reveals
that it is likely to be a minor ripple. Likewise, our analysis showed that 10/03/1864,
10/04/1864, and 12/09/1864was also classified as a possible turning point. Indeed, as
shown in Fig. 9.2, the direction of the curve changed around these dates, and arguably
they could be regarded turning points. On the other hand, one might consider them
as minor ripples since the overall upward trend seems to remain unaltered despite
the existence of these local blurbs. The bootstrap probabilities associated with these
dates are fairly low by any standard.

Finally, the FL method also identified a few turning points in 1865. First,
07/29/1865 was classified as a possible turning point. Again, however, we believe
that it would be more appropriate to consider it a minor ripple. Indeed, the probabili-
ties associated with this date (and the surrounding dates) seem rather low to consider
it a major structural change. On the other hand, our method classified November 18,
25, and 27 as possible turning points. This indicates that our method suggests that
a major structural change has occurred sometime in November. Indeed, the trend
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seems to be changing around November of 1865. On the other hand, since the war
ended quickly after these dates, it is unclear whether they can be regarded major
turning points as shown by the bootstrap probabilities around this date.

9.3.2 President Clinton’s Job Approval

AsLawrence andBennett (2001) noted, in one of the great political ironies ofmodern
times, Bill Clinton weathered a year-long sexual and obstruction of justice scandal
and became only the second president in US history to be impeached, while main-
taining some of the most impressive public approval ratings of anymodern president.

Scandals have become such a strong influence on the way that Americans view
their political leaders that it has even been surmised that scandals are the primary
means of conflict within American politics (Williams 2000; Sabato 1991). The most
obvious effect of a presidential scandal would be a negative impact on presidential
approval because it would affect the president’s perceived integrity Greene (2001).
For President Clinton, however, no scandalous events seemed to have affected his job
approval. Most notably, his high approval during and after impeachment presented
a stronger challenge to the conventional models of presidential approval rating.

Many political scientists argue that the simplest explanation for Clinton’s contin-
uing popularity is probably the most compelling: to borrow the watchword from his
own 1992 campaign, the economy stupid. For example, public opinion scholar Zaller
(1998) argued that the public’s continued support for Clinton could be accounted for
by reference to three fundamental variables: peace, prosperity, and Clinton’s mod-
erate policy positions. Similarly, Jacobson (1999) argued that the public would have
reacted differently to the scandals if the economy had been in bad shape.

Others have cited another factor: The American public made another distinction
that proved to be crucial—a distinction between private and public matters Kagay
(1999). Especially concerning the Lewinsky scandal, most of the American public
classified Clinton’s sex scandal as being in the private zone (see Greene 2001).

In this subsection, to illustrate the FL method, we revisit Clinton’s job approval
rating. Our objective is to assess whether the president’s approval rating was vul-
nerable to various scandalous events. Most of previous analyses have been based on
several polls taken during the period immediately following a particular scandal. In
contrast, our approach provides a more comprehensive assessment of the connection
between Clinton’s job approval and scandalous events.

We use the Gallup Poll ratings of presidential popularity during the Clinton pres-
idency (01/1992 to 12/2000). These time series data have been used for almost all
relevant studies of presidential popularity, particularly because the Gallup Poll has a
high level of reliability since it regularly asks the identical question: “Do you approve
or disapprove of the way —— is handling his job as president?”

Since most relevant studies of presidential popularity used the month as a unit of
analysis, when the ratingswere collectedmore than once permonth,we chose the first
ratings observed in amonth (seeGronke andBrehm2002).Also, as suggested in other
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Table 9.2 Major change points in President Clinton’s job approval ratings

Date Events

June, 1993 A missile attack aimed at Iraq’s intelligence headquarters

January, 1994 Attorney General Janet Reno announcing the appointment of an
Independent Counsel to investigate Whitewater Development Corporation

November, 1994 Republicans’ landslide victory in the House

March, 1998 Former Clinton aide Kathleen Willey’s appearance on CBS’s 60min,
confirming the president made a sexual advance to her in the White House
in 1993

December, 1999 Clinton’s impeachment by the House of Representatives

studies, we discarded the first five observations in President Clinton’s presidency
because a president’s popularity typically starts off unusually high.

We use the least squares regression with a set of linear constraints by rewriting the
constraints in (9.4) as linear ones. That is, we apply shrinkage to the second-order
differences simultaneously in order to detect turning points in the trend. The choice
of this constraint matrix was guided by the observation that Clinton’s approval rating
generally climbed throughout his presidency, while a few scandalous events placed
his increasing popularity under scrutiny.

Figure9.2 shows the results obtained after applying the shrinkage estimation to
the monthly approval ratings. On the other hand, the time points at which the slope
alters are potential candidates for important change points. Table9.2 lists all the
turning points identified in our analysis.

As can be seen fromFig. 9.3, the firstmajor change point occurred in June of 1993.
On June 26, 1993, President Clinton ordered to launch amissile attack aimed at Iraq’s
intelligence headquarters in Baghdad in retaliation against an Iraqi plot to assassinate
President Bush. A major military action often becomes a critical turning point for
presidents’ popularity. Numerous studies (i.e., Parker 1995) have explored the impact
that international conflicts can have on public opinion, particularly focusing on the
rally effect that occurs early on in a conflict (e.g., Levy 1989; Russett 1990).

Our procedure identified January of 1994 as another change point in Clinton’s
job approval rating. On January 12, 1994, following President Clinton’s request,
AttorneyGeneral Janet Reno announced shewas appointing an Independent Counsel
to investigate Whitewater Development Corporation. The deposition was a first for
a sitting president and first lady. The outbreak of the so-called Whitewater Scandal
seemed to have a significant impact on Clinton’s job approval ratings.

November of 1994 was also identified as a significant change point. Republicans’
landslide victory in the House election might explain this finding. It created the first
GOP majority in forty years. As a side note, the 104-th Congress also selected Newt
Gingrich as Speaker. As the architect of the Contract with America, Gingrich became
Clinton’s principal political adversary.

Perhapsmost interestingly, ourmethod identifiedMarch of 1998 as amajor change
point in the president’s approval rating. This roughly corresponds to the height of the
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Fig. 9.3 Change points in Clinton’s job approval ratings
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Lewinsky scandal. Our interpretation is that, contrary to the view widely accepted by
many scholars, the Lewinsky scandal was a major turning point in public approval of
President Clinton. In January of 1998, Lewinsky’s name began surfacing in an Inter-
net gossip column, the Drudge Report, which mentioned rumors that the Newsweek
had decided to delay publishing a piece on Lewinsky and the alleged affair. Subse-
quently, several news organizations reported the alleged sexual relationship between
Lewinsky and Clinton. Toward the end of January, the president however declared
publicly that he had not had sexual relations with Monica Lewinsky and “never
told anybody to lie.” On March 15, however, former Clinton aide Kathleen Willey
appeared on CBS’ 60min, saying the president made a sexual advance to her in the
White House in 1993. Then, there was little doubt that Clinton was guilty as charged.

Finally,December of 1999was also identified as amajor change point. Clintonwas
impeached by the House of Representatives on a largely party-line vote. Republicans
acted despite considerable losses during mid-term elections the month before, which
most commentators expected would cool the GOP’s ardor for running Clinton out of
office.

9.4 Conclusion

Although social scientists are often interested in identifying important turning points
in time series data, the change point analysis has not become a popular data analysis
technique in social science disciplines. Themost rudimentarymethods are inadequate
when the researcher lacks preexisting expectations or hypotheses concerning where
such turning points ought to exist. Other alternatives are computationally intensive
and implementation of thesemethods require expert-level programming efforts.Also,
they are mostly based on strong model assumptions that are not representative of
acquired data. In addition, many applied social science researchers are unfamiliar
with the statistical concepts underlying these methods.

In this paper, we proposed a regression-based technique specifically designed for
identifying major change points in a univariate time series. Our least squares method
provides a useful alternative to the existing techniques as it is based on a concept that
most applied social science researchers have mastered. It is also easy to implement
and can be accompanied by a convenient inferential procedure.

To illustrate its utility in social science applications, we provided two applica-
tions. First, we reanalyzed Greenback prices data used in Willard et al. (1996). The
Greenback values can be used to assess how contemporaries view the status of the
US Civil War. Our results were partially consistent with the authors’ findings; but,
our method also identified a couple of turning points that had gone undetected by
the authors’ original analysis. We also applied the proposed technique to identifying
major change points in President Clinton’s approval ratings. Our method identified
many of the scandalous events during the Clinton presidency as major change points,
even though they had been previously thought as having trivial effects on the presi-
dent’s job approval rating.
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Chapter 10
Detecting the Change of Variance by Using
Conditional Distribution with Diverse
Copula Functions

Jong-Min Kim, Jaiwook Baik and Mitch Reller

Abstract We propose new method for detecting the change of variance by using
conditional distribution with diverse copula functions. We generate the conditional
asymmetric random transformed data by employing asymmetric copula function
and apply the conditional transformed data to the cumulative sum control (CUSUM)
statistics in order to detect the change point of conditional variance by measuring the
average run length (ARL) ofCUSUMcontrol charts by usingMonteCarlo simulation
method. We show that the ARLs of change point of conditional variance by CUSUM
are affected by the directional dependence by using the bivariate Gaussian copula
beta regression (Kim and Hwang 2017).

10.1 Introduction

The statistical process control chart was designed by Walter Shewhart at Bell Labo-
ratories in 1924. Since then, Shewhart control charts have been applied in many dif-
ferent fields: hospital infection control (Sellick 1993), prediction of business failures
(Theodossiou 1993), quality management of higher education (Mergen et al. 2000),
corroborating bribery (Charnes andGitlow1995), athletic performance improvement
(Clark and Clark 1997), and fault detection in NMOS fabrication (Lahman-Schalem
et al. 2002). Shewhart control charts can monitor the stability or capability of the
process by plotting an appropriate statistic on the graph and are easy to implement
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in manufacturing and service industries and good for detecting a large shift in the
parameter. But they do not detect small or moderate parameter shift since they do
not make use of previous observations when calculating statistic of interest for con-
trol. So Page (1954) developed cumulative sum (CUSUM) which is a time-weighted
control chart that displays the cumulative sums (CUSUMs) of the deviations of each
sample value from the target value.

Definition 1 CUSUM The standardized cumulative sum (CUSUM) control chart is
formed by plotting the quantity:

Zt = X t − μ̂0

σ̂X

, (10.1)

for each subgroup t and

SHt = max{Zt − k + SHt−1 , 0},
SLt = min{Zt + k + SLt−1, 0}.

whereμ0 is the in-control mean, X t is the average of the t-th sample, σ̂X is the known
(or estimated) standard deviation of the sample mean. The CUSUM chart is made
by plotting the values SHt and SLt against time; as long as the process remains in
control centered at μ0, the CUSUM plot will show variation in a random pattern
centered about zero. If the process mean shifts upward, the charted CUSUM points
will eventually drift upwards, and vice versa if the process mean decreases, (see
Montgomery (1996)).

In quality control, Verdier (2013) applied copulas to multivariate charts, Dok-
ouhaki and Noorossana (2013) proposed copula Markov CUSUM chart for mon-
itoring the bivariate autocorrelated binary observations, Long and Emura (2014)
proposed a control chart using copula-based Markov chain models, Emura (2015)
developed R routines for performing estimation and statistical process control under
copula-based time series models, and Busababodhin and Amphanthong (2016)
reviewed copula modeling for multivariate statistical process control.

Recently, Kim and Hwang (2017) proposed a copula directional dependence
method to explore a relationship between two financial time series based on two use-
fulmethods, theGaussian copulamarginal regression (GCMR)method byMasarotto
and Varin (2012) and the beta regression model by Guolo and Varin (2014).

The aim of the paper investigates howmuch the directional dependence effect can
influence on detecting the regime switching of variance by using copula directional
dependence method with employing the traditional Inclán and Tiao (1994) CUSUM.
We generate the conditional asymmetric random transformed data by employing
asymmetric copula functions and stochastic volatility model and apply the condi-
tional transformed data to the CUSUM so that we can evaluate the change point
analysis of conditional variance by measuring the ARL of CUSUM control charts
by using Monte Carlo simulation method.
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The remainder of this paper is organized as follows: Sect. 10.2 describes the copula
concepts, the directional dependence by copula, and the detection of change of the
variance by copula. Section10.3 is the illustrated example with a bivariate simulated
data. Finally, conclusions are presented in Sect. 10.4.

10.2 Copula Method

10.2.1 Copula

A copula is a multivariate uniform distribution representing a way of trying to extract
the dependence structure of the random variables from the joint distribution function.
It is a useful approach to understanding and modeling dependent random variables.
A copula is a multivariate distribution function defined on the unit [0, 1]n, with uni-
formly distributedmarginals. In this paper, we focus on a bivariate (two-dimensional)
copula, where n = 2. Sklar (1959) shows that any bivariate distribution function,
FXY (x, y), can be represented as a function of its marginal distribution of X and Y ,
FX (x) and FY (y), by using a two-dimensional copula C(·, ·). More specifically, the
copula may be written as

FXY (x, y) = C(FX (x),FY (y)) = C(u, v),

where u and v are the continuous empirical marginal distribution function FX (x) and
FY (y), respectively. Note that u and v have uniform distribution U (0, 1).

Therefore, the copula function represents how the function, FXY (x, y), is coupled
with its marginal distribution functions,FX (x) andFY (y). It also describes the depen-
dent mechanism between two random variables by eliminating the influence of the
marginals or any monotone transformation of the marginals.

Definition 3 A r-dimensional copula is a function C : [0, 1]r → [0, 1] with the fol-
lowing properties:

1. For all (u1, . . . , ur) ∈ [0, 1]r , C(u1, . . . , ur) = 0 if at least one coordinate of
(u1, . . . , ur) is 0,

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui, for all ui ∈ [0, 1], (i = 1, . . . , r),
3. C is r-increasing.

The n-dimensional random vector X = (X1, . . . ,Xn) is said to have a (non-
singular) multivariate Student-t distribution with ν degrees of freedom, mean vector
μ, and positive-definite dispersion or scatter matrix �, denoted X ∼ tn(ν, μ,�), if
its density is given by

f (x) = Γ
(

ν+n
2

)

Γ
(

ν
2

)√
(πν)n|�|

(
1 + (x − μ)

′
�−1(x − μ)

ν

)− ν+n
2

,
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Note that in this standard parameterisation cov(X ) = ν
ν−2� so that the covariance

matrix is not equal to � and is in fact only defined if ν > 2. Useful reference for the
multivariate t is Demarta and McNeil (2005).

The multivariate n-variate Clayton copula is:

CC(u1, u2, . . . , un) = ϕ−1

( n∑

i=1

ϕ(ui)

)
,

where ϕ is a function from [0, 1] to [0,∞) such that

(i) ϕ is a continuous strictly decreasing function,
(ii) ϕ(0) = ∞ and ϕ(1) = 0,
(iii) ϕ−1 is completely monotonic on [0,∞).

If the generator is given by ϕ(u) = u−θ − 1, then we get the multivariate n-variate
Clayton copula as follows:

CC(u1, u2, . . . , un) =
[ n∑

i=1

u−θ
i − n + 1

]−1/θ

with θ > 0

The multivariate n-variate Gumbel copula is given by

CG(u1, u2, . . . , un) = exp

{
−

[ n∑

i=1

(− ln ui)
θ

]1/θ}
with θ > 1.

The generator is given by ϕ(u) = (− ln(u))θ , and hence, ϕ−1(t) = exp(−t1/θ ); it is
completely monotonic if θ > 1 (Table10.1).

10.2.2 Directional Dependence by Copula

Guolo and Varin (2014) developed a marginal extension of the beta regression model
for time series analysis and the cumulative distribution function of a normal variable.

Table 10.1 Archimedean copula functions

Copula Copula function

FGM CFGM (u, v, θ) = uv + θuv(1 − u)(1 − v), θ ∈ (−1, 1]
Clayton CC(u, v, θ) = (

u−θ + v−θ − 1
)−1/θ

, θ ∈ (0,∞)

Frank CF (u, v, θ) = − 1
θ
log

[
1 + (e−θu−1)(e−θv−1)

e−θ −1

]
, θ ∈ R \ {0}

Gumbel CG(u, v, θ) = exp
[
− (

(− log u)θ + (− log v)θ
)1/θ]

, θ ≥ 1
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TheGuolo andVarin (2014)marginal beta regressionmodel exploited the probability
integral transformation to relate response Yt to covariates xt and to a standard normal
error εt . The probability integral transformation implies that Yt is marginally beta
distributed, Yt ∼ Beta(μt, κt). Kim and Hwang (2017) assume that Ut given Vt =
vt follows a beta distribution Beta(μt, κt) where μUt = E(Ut|vt). Kim and Hwang
(2017) obtain the dependence of the response Ut on the covariate vt by assuming a
logit model for the mean parameter, logit(μUt ) = xTt βx, where βx is a 2-dimensional
vector of coefficients.

logit(μUt ) = log

[
μUt

1 − μUt

]
= β0 + β1vt, where t = 1, . . . , n,

so that μUt = E(Ut|vt) = exp(β0+β1vt)
1+exp(β0+β1vt)

with the correlation matrix of the errors cor-
responding to the white noise process.

ρ2
Vt→Ut

= Var(E(Ut |vt))
Var(Ut)

= 12Var(μUt ) = 12σ 2
U .

Directional dependence of the response Ut on the covariates v1t, v2t, . . . , vkt is
obtained by assuming a logit model for the mean parameter, logit(μUt ) = xTt βx,
where βx is a k + 1-dimensional vector of coefficients,

logit(μUt ) = log

[
μUt

1 − μUt

]
= β0 +

k∑

k=1

βkvkt, where t = 1, . . . , n,

so that μUt = E(Ut|v1t, v2t, . . . , vkt) = exp(β0+∑k
k=1 βk vkt)

1+exp(β0+∑k
k=1 βk vkt)

.

ρ2
(V1t ,V2t ,...,Vkt)→Ut

= Var(E(Ut |v1t ,v2t ,...,vkt))
Var(Ut)

.

10.2.3 Detection of Change of Variance by Copula

By using direction dependence by copula, Kim and Hwang (2017), we can calculate
themultivariate directional dependencemeasures based on the order of combinations
of n-multivariate copula. In this research, we want to study howmuch the directional
dependence by copula can affect to detect regime shift in the variance by employing
the currently available methods of regime shift detection in the variance to exist in
quantitative finance, where the concept of stock market volatility is very important.
Since a change in the variance affects both themean and variance charts, the CUSUM
statistic for detecting these change points of variance has been much interested in
the last two decades.

One of the most popular among the CUSUM methods is the Iterated Cumulative
Sumof Squares (ICSS) algorithmdeveloped by Inclán andTiao (1994). Suppose {Xi},
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i = 1, 2, . . . , n is a series of independent, normally distributed randomvariables with
zero mean and variance σ 2. The ICSS by Inclán and Tiao (1994) for retrospective
detection of changes of variance is defined as

Dk = Ck

Cn
− k

n
, where k = 1, . . . , n,

so that Ck = ∑k
i=1 X

2
i . The algorithm consists of several steps, dividing time series

{Xi} into pieces and applying Dk to each of them iteratively.
In this research, we use diverse copula functions to generate the conditional trans-

formed data by using conditional distribution byArchimedean copula functions. First
of all, we want to explain how we perform the conditional transformed data by cop-
ulas. For illustration, Clayton Copula, Clayton (1978), is employed as follows:

Corollary 1 Using one of Archimedean copulae, Clayton Copula, is

CC(u1, u2, θ12) = (u−θ12
1 + u−θ12

2 − 1)−1/θ12 ,

for θ12 > 0, for two random variables X1 and X2, we can derive the conditional
distribution of X1 given X2, F1|2(X1|X2; θ12), as follows:

F1|2(X1|X2; θ12) = ∂CC(u1, u2, θ12)

∂u2
.

where u1 = F(X1) and u2 = F(X2).

Corollary 2 Suppose we have three random variables X1, X2, X3. Using one of
Archimedean copulae, Clayton Copula, by Corollary 1, we can derive the following
ones:

CC(u2, u3, θ23) = (u−θ23
2 + u−θ23

3 − 1)−1/θ23

and

F3|2(X3|X2; θ23) = ∂CC(u2, u3, θ23)

∂u2
,

where u2 = F(X2) and u3 = F(X3).

Since F1|2(X1|X2) and F3|2(X3|X2) are independent identically distributed as
U (0, 1), we can derive the conditional cumulative distribution function as follows:

F13|2(X1,X3|X2; θ13|2) = CC(F1|2(X1|X2; θ12),F3|2(X3|X2; θ23); θ13|2), (10.2)

where we denote u1|2 = F1|2(X1|X2; θ12) and u3|2 = F3|2(X3|X2; θ23).
We can derive the conditional distributions F1|23(X1|X2,X3; θ13|2), F2|13(X2|X1,

X3; θ12|3) and F3|12(X3|X1,X2; θ13|2) by Corollary 1 as follows:
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F1|23(X1|X2,X3; θ13|2) = ∂CC(u1|2, u3|2; θ13|2)
∂u3|2

,

where we denote u1|23 = F1|23(X1|X2,X3; θ13|2), likewise,

F2|13(X2|X1,X3; θ12|3) = ∂CC(u1|3, u2|3; θ12|3)
∂u1|3

,

where we denote u2|13 = F2|13(X2|X1,X3; θ12|3), and

F3|12(X3|X1,X2; θ13|2) = ∂CC(u1|2, u3|2; θ13|2)
∂u1|2

,

where we denote u3|12 = F3|12(X3|X1,X2; θ13|2).
Similarly, the conditional cumulative distribution functions for the multivariate

n-variate t-copula, Frank copula, and Gumbel copula can be derived by Corollary 2.
The procedure to estimate parameters of the copula for the conditional cumulative
distribution function can be summarized by:

Step 1 Uses the empirical CDF to transform the observations to uniform distribu-
tion data in [0, 1],

Step 2 The parameters θij, θjk of the joint CDF’s F(Xi,Xj) and F(Xj,Xk) are esti-
mated by the IFM method by Joe (1997),

Step 3 The conditional CDFs F(Xi|Xj; θ̂ij) and F(Xk |Xj; θ̂jk) are computed with
the estimates θ̂ij and θ̂jk ,

Step 4 The parameter θik|j of the CDF’s C(F(Xi|Xj),F(Xk |Xj)) are estimated by
the IFM method by Joe (1997),

Step 5 Compute ui|jk with ui, uj and uk by using Corollary 2.

By using this procedure, we obtain the copula-transformed conditional values
which we plug into CUSUM statistic for detecting the change of variance.

10.3 Simulation Study

The datasets in the area of finance usually do not follow the usual assumption of con-
stant variance. It is important to see how much the directional dependence can affect
the detection of the change of variance. So, we employ the Kim and Hwang (2017)
copula directional dependence for detecting the change of variance by CUSUM
statistic. By Corollary 2, we generate the copula-transformed conditional values
with simulation dataset and then use Monte Carlo method to compare the efficien-
cies of the different copula-transformed conditional values with the unconditional
values with CUSUM statistic according to the average run length (ARL).
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Table 10.2 Directional dependence of Gaussian copula beta regression model

Directional dependence Y → X X → Y

Var(E(X |Y ) 0.0495 0.0535

Var(X ) 0.0833 0.0833

ρ2
Y→X 0.5937 0.6421

Table 10.3 ARLs with asymmetric copula-simulated data with ρ = 0.8 where S is the number of
simulations and n is the size of data out of 8,888 simulated data

Y|X S = 1000 X|Y S = 1000 Estimate

n = 300 n = 700 n = 1000 n = 300 n = 700 n = 1000

CUSUM (Y) 150.83 356.77 497.93 CUSUM (X) 151.87 351.16 491.96

Clayton-
CUSUM

148.64 353.17 494.25 Clayton-
CUSUM

149.41 349.02 501.65 2.174

Frank-
CUSUM

149.90 347.01 495.39 Frank-
CUSUM

149.90 347.01 495.39 8.740

Gumbel-
CUSUM

150.01 361.00 501.25 Gumbel-
CUSUM

146.15 344.35 502.23 2.582

t-CUSUM 145.56 352.18 491.42 t-CUSUM 151.60 348.61 499.55 (0.831,
3.176)

For the simulation study, we use an asymmetric copula (Frank(5) × Gumbel(30))
simulated data with ρ = 0.8 with the verified directional dependence (see Kim and
Hwang (2017)). Table10.2 shows that the directional dependence of Y given X is
higher than the directional dependence ofX given Y . For the calculation of theARLs,
we collect the sample datasets (n = 300, 700 and 1000) one thousand times (S = 1000)
from total dataset size 8,888. Table10.3 shows that the ARLs of copula conditional
statistic of CUSUM in case of the Y given X and n = 1000 are more efficient than
the ARLs of unconditional statistic of CUSUM but the ARLs of copula conditional
statistics (CUSUM) in case of the X given Y and n = 1000 are not more efficient
than the ARLs of the unconditional statistic of CUSUM.We can see that there exists
a directional dependence effect to detect the change of variance. The values of the
ARLs when we apply Clayton copula, Frank tail dependence (no tail dependence)
t-copula (symmetric tail dependence)-based CUSUM to the simulated data in case
of the Y given X , are more efficient than the ARLs of Gumbel-copula statistics of
CUSUM.

From this observation, we can conclude that we need to consider the directional
dependence by copula for detecting the change of variance of a bivariate financial
data.
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10.4 Conclusion

Simulation study with the bivariate data proves that our newmethod for detecting the
change of variance by using conditional distribution with diverse copula functions is
more efficient than the current available unconditionalCUSUMstatisticwhenwe take
the directional dependence effect into consideration. It will be alsomore applicable to
themultivariate conditional directional dependencewith several conditional variables
in quantitative finance. In a future study, wewill construct the directional dependence
of high-order moments by using the new conditional control charts.

References

Busababodhin, P., & Amphanthong, P. (2016). Copula modelling for multivariate statistical process
control: A review. Communications for Statistical Applications and Methods, 23(6), 497–515.

Charnes, J. M., & Gitlow, H. (1995). Using control charts to corroborate bribery in Jai Alai. The
American Statistician, 49, 386–389.

Clark, T., & Clark, A. (1997). Continuous improvement on the free throw line. Quality Progress,
30, 78–80.

Clayton, D. G. (1978). Amodel for association in bivariate life tables and its application in epidemi-
ological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141–151.

Demarta, S., & McNeil, A. J. (2005). The t copula and related copulas. International statistical
review, 73(1), 111–129.

Dokouhaki, P., & Noorossana, R. (2013). A copula Markov CUSUM chart for monitoring the
bivariate auto-correlated binary observations. Quality and Reliability Engineering International,
29(6), 911–919.

Emura, T., Long, T.-H., & Sun, L.-H. (2015). R routines for performing estimation and statistical
process control under copula-based time seriesmodels.Communications in Statistics—Simulation
and Computation; In Press.

Guolo, A., & Varin, C. (2014). Beta regression for time series analysis of bounded data, with
application to Canada Google flu trends. The Annals of Applied Statistics, 8(1), 74–88.

Inclán, C., & Tiao, G. C. (1994). Use of cumulative sums of squares for retrospective detection of
changes of variance. Journal of the American Statistical Association, 89(427), 913–923.

Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC Press.
Kim, J.-M., &Hwang, S. (2017). Directional dependence via gaussian copula beta regressionmodel
with asymmetric GARCH Marginals. Communications in Statistics: Simulation and Computa-
tion, 46(10), 7639–7653.

Lahman-Schalem, S., Haimovitch, N., Shauly, E., & Daniel, R. (2002). MBPCA for fault detection
in NMOS fabrication. IEEE Transactions on Semiconductor Manufacturing, 15, 60–69.

Long, T.-H., & Emura, T. (2014). A control chart using copula-based markov chain models. Journal
of the Chinese Statistical Association, 52, 466–496.

Masarotto, G., & Varin, C. (2012). Gaussian copula marginal regression. Electronic Journal of
Statistics, 6, 1517–1549.

Mergen, E., Grant, D., & Widrick, M. (2000). Quality management applied to higher education.
Total Quality Management, 11, 345–352.

Montgomery, D. (1996). Introduction to statistical quality control. New York: Wiley.
Page, E. (1954). Continuous inspection scheme. Biometrika, 41, 100–115.
Sellick, J. J. (1993). The use of statistical process control charts in hospital epidemiology. Infection
Control and Hospital Epidemiology, 14, 649–656.



154 J.-M. Kim et al.

Sklar, A. (1959). Fonctions de repartition á n dimensions et leurs marges. Publications de l’Institut
de Statistique de L’Université de Paris, 8, 229–231.

Theodossiou, P. (1993). Predicting the shifts in the mean of a multivariate time series process: An
application to predicting business failures. Journal of the American Statistical Association, 88,
441–449.

Verdier, G. (2013). Application of copulas to multivariate charts. Journal of Statistical Planning
and Inference, 143, 2151–2159.



Chapter 11
Clustering Methods for Spherical Data:
An Overview and a New Generalization

Sungsu Kim and Ashis SenGupta

Abstract Recent advances in data acquisition technologies have led to massive
amount of data collected routinely in information sciences and technology, as well
as engineering sciences. In this big data era, a clustering analysis is a fundamen-
tal and crucial step in an attempt to explore structures and patterns in massive data
sets, where clustering objects (data) are represented as vectors. Often such high-
dimensional vectors are L2 normalized so that they lie on the surface of unit hyper-
sphere, transforming them into spherical data. Thus, clustering such data is equivalent
to grouping spherical data, where either cosine similarity or correlation is a desired
metric to identify similar observations, rather than Euclidean similarity metrics. In
this chapter, an overview of different clustering methods for spherical data in the
literature is presented. A model-based generalization for asymmetric spherical data
is also introduced.

11.1 Introduction

A cluster analysis refers to finding of natural groups (clusters) from a data set, when
little or nothing is known about the category structure. A cluster analysis divides data
into groups (clusters) that are meaningful, useful, or both. A data clustering belongs
to the core methods of data mining, in which one focuses on large data sets with
unknown underlying structure. One can broadly categorize clustering approaches to
be either model-based (parametric) or distance-based (nonparametric or prototype-
based).

In distance-based methods, a cluster is an aggregation of (data) objects in a multi-
dimensional space such that objects in a cluster are more similar to each other than to
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objects in other clusters, and the choice of a distance measure between two objects,
called similarity (or dissimilarity) measure, is one of the key issues. Most distance-
based methods for linear data are based on the K-means method, fuzzy C-means
clustering algorithm, which are called flat partitioning, or hierarchical method (John-
son andWichern 2008). Flat partitioning clustering algorithms have been recognized
to be more suitable as opposed to the hierarchical clustering schemes for process-
ing large data sets. In model-based methods, clusters represent different populations
existing in a data set. Hence, a mixture model is a way to perform a parametric
clustering analysis. Extensive details on mixture models for linear data are given
by Everitt and Hand (1981). However, compared to linear data, researches on both
distance-based and model-based clustering methods for spherical data are emerging
only recently. In the next section, we present an overview of clustering methods
for spherical data and an alternative model-based methods for asymmetric spherical
data.

11.2 What Is Spherical Clustering?

In this big data era, a clustering analysis is a fundamental and crucial step in an
attempt to explore structures and patterns in massive data sets, where clustering
objects (data) are represented as vectors. Often such high-dimensional vectors are L2
normalized so that they lie on the surface of unit hypersphere, transforming them into
spherical data. In spherical (directional) clustering (i.e., clustering of spherical data),
a set of data vectors is partitioned into groups, where the distance used to group the
vectors is the angle between them. That is, data vectors are grouped depending on
the direction into which they point, but the overall vector length does not influence
the clustering result. The goal of spherical clustering is thus to find a partition in
which clusters are made up of vectors that roughly point in the same direction. For
distance-based methods, cosine similarity, instead of Euclidean distance, is mostly
used, which measures the cosine of an angle formed by two vectors. For model-
based methods, popular mixture models such as a mixture of multivariate Gaussian
distributions are inadequate, and the use of a spherical distribution in amixturemodel
is required.

11.2.1 Applications of Spherical Clustering

Two main applications of spherical clustering are found in text mining and gene
expression analysis. In document clustering (or text mining), text documents are
grouped based on their features, often described in frequencies (counts) of words,
after removing stop words and word stemming operation. Using words as features,
text documents are often represented as high-dimensional and sparse vectors, a few
thousands dimensions, and a sparsity of 95–99% is typical. In order to remove the
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biases induced by different lengths of documents, the data are normalized to have
the unit length, ignoring overall lengths of documents. In other words, documents
with a similar composition but different lengths will be grouped together (Dhillon
and Modha 2001).

Gene expression profile data are usually represented by a matrix of expression
levels, with rows corresponding to genes and columns to conditions, experiments or
time points. Each row vector is the expression pattern of a particular gene across all
the conditions. Since the goal of gene expression clustering is to detect groups of
genes that exhibit similar expression patterns, the data are standardized so that genes
have mean zero and variance 1, removing the effect of magnitude of expression level
(Banerjee et al. 2005).

As a special case of spherical clustering, the spatial clustering is used for agricul-
tural insurance claims and earthquake occurrences (SenGupta 2016). Other applica-
tions of spherical clustering found in the literature include:

• fMRI, white matter supervoxel segmentation and brain imaging in biomedicine;
• spatial fading and blind speech segregation in signal processing;
• exoplanet data clustering in astrophysics;
• environmental pollution data in environmental sciences.

11.2.2 Distance-Based Methods

11.2.2.1 Similarity Measures in Spherical Clustering

Cosine similarity measure quantifies similarity between two spherical objects as
the cosine of the angle between vectors. Cosine similarity measure is one of the
most popular similarity measures performed in spherical clustering applications.
Cosine similarity measure is nonnegative and bounded between [0, 1], and Pearson
correlation is exactly cosine similarity measure when data are standardized to have
mean zero and variance 1.

The Jaccard coefficient, which is sometimes referred to as the Tanimoto coeffi-
cient, measures similarity as the intersection divided by the union of two objects and
ranges between 0 and 1. For text document, the Jaccard coefficient compares the sum
weight of shared terms to the sum weight of terms that are present in either of the
two documents but are not the shared terms.

In information theory-based clustering, a vector is considered as a probability
distribution of elements, and similarity of two vectors is measured as the distance
between two corresponding probability distributions. The Kullback Leibler diver-
gence (KL divergence), also called the relative entropy, is a widely applied measure
for evaluating the difference between two probability distributions. However, unlike
the previous similarity measures, the KL divergence is not symmetric; as a result,
the averaged KL divergence is used in the literature.
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11.2.2.2 Spherical K-means and Fuzzy C-direction Algorithms

When data lie on the unit circle, the circular distance between two objects is given
by cos(α1 − α2), where α1 and α2 are corresponding angles (Jammalamadaka and
SenGupta 2001). Generalizing the circular distance to unit hypersphere, cosine sim-
ilarity between two unit vectors, say y1 and y2, is defined to be the inner prod-
uct of y1 and y2, denoted < y1, y2 >. Suppose n spherical data points are sub-
ject to a classification into K groups. Spherical K-means algorithm minimizes∑K

k=1

∑n
i=1 μki < yi, pk >, where μki = 1 if yi belongs to cluster k (and otherwise

μki = 0), and pk denotes a prototype (cluster center) vector for cluster k. The opti-
mization process consists of alternating updates of the memberships and the cluster
centers. Given a set of data objects and a pre-specified number of clusters K , K clus-
ters are initialized. each one being the centroid of a cluster. The remaining objects
are then assigned to the cluster represented by the nearest or most similar centroid,
which is an updatingmembership step. Next, new centroids are re-computed for each
cluster and in turn all data objects are re-assigned based on the new centroids, which
is an updating cluster center step. These two steps iterate until a converged and fixed
solution is reached, where all data objects remain in the same cluster after an update
of centroids (Hornik et al. 2012).

It is known that for complex data sets containing overlapping clusters, fuzzy parti-
tions model the data better than their crisp counterparts. In fuzzy C-means clustering
algorithm for spherical data, each data point belongs to more than one cluster with
a different membership value (Kesemen et al. 2016). Fuzzy C-means algorithm for
spherical data uses the following criterion

min
B,M

K∑

k=1

n∑

i=1

νm
kid

2
ki, (11.1)

whereM is a matrix of fuzzy memberships denoted by νki and m > 1, B is a matrix
with centroid column vectors, and dki denotes a similarity measure between object i
and centroid k.

11.2.2.3 Issues Related to Distance-Based Methods

• The number of clusters needs to be provided.
• Different initialization of K clusters can produce difference clustering results.
• Convergence is local, and the globally optimal solution cannot be guaranteed.
Though, fuzzy C-means algorithm is less prone to local or sub-optimal solutions.

• Convergence is relatively slow in high dimension.
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11.2.3 Model-Based Methods: Mixture Models

Suppose a data set consists of n spherical objects (i.e., unit vectors) {y1, y2, . . . , yn} ∈
Sp−1 that one wants to divide into K homogeneous groups. Denoting by g(·) a
probability density function of Y , the mixture model is

g(y) =
K∑

k=1

πk f (y; θk), (11.2)

where πk (with
∑K

k=1 πk = 1), and f and θk represent mixing proportion, spheri-
cal density function, and parameter vector of kth mixture component, respectively.
Inferences of a mixture model cannot be directly done through the maximization
of the likelihood since group labels {z1, z2, . . . , zn} of n objects are unknown. The
set of pairs {(yi, zi)}ni=1 is usually referred to as the complete data set. The E-M
algorithm iteratively maximizes the conditional expectation of the complete log-
likelihood, beginning with initial values of θ(0). Each expectation (E) step computes
the expectation of the complete log-likelihood conditionally to the current value of
θ(q). Then, the maximization (M) step maximizes the expectation of the complete
log-likelihood over θ(q) to provide an update for θ , i.e., θ(q+1). Computations with
high-dimensional or large number of components can be quite demanding. In such
cases, Bayesian approaches can lead to significant computational savings and have
been quite popular.

11.2.3.1 Mixture of von Mises-Fisher Distributions

The most widely used mixture model is a mixture of von Mises-Fisher (vMF) dis-
tributions. The probability density function of vMF distribution is defined by

f (y|μ, κ) = cd (κ)eκμ′y, (11.3)

where μ is a mean vector, κ is a concentration parameter around μ, and cd denotes
the normalizing constant. It is not possible to directly estimate κ value in high-
dimensional data, and an asymptotic approximation is used. vMF distribution is
unimodal and symmetric with circular contours. Various contour shapes of vMF
distribution are shown in Fig. 11.1.

11.2.3.2 Score Matching Algorithm

While the E-M algorithm is most widely being used in a mixture modeling of spheri-
cal clustering, it requires an approximation of the normalizing constant of a spherical
probability distribution, for example, κ in case of vMF distribution. Alternatively,
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Fig. 11.1 Contour plots of von Mises-Fisher distribution

score matching algorithm (Rosenbaum and Rubin 1983) can be employed, which
does not require any knowledge about a normalizing constant. Let f (y;π) form
a canonical exponential family on a compact-oriented Riemannian manifold with
its density proportional to exp{π ′t(y)}, where π and t(y) denote vectors of natural
parameters and sufficient statistics, respectively. Then

π̂ = W−1
n dn, (11.4)

where Wn and dn are sample averages over n data points of wab = E{< ta, tb > (y)}
and dc = −E{�M tc(y)}, where <,> is the gradient inner product and �M is the
Laplace–Beltrami operator.

11.2.3.3 Connection Between Spherical K-means and Mixture of von
Mises-Fisher Distributions

Suppose the concentration parameters of all components in a mixture of von Mises-
Fisher distributions are equal and infinite, and mixing proportions (π ′

ks) are all equal
as well. Under these assumptions, the E-step reduces to assigning a data point to its
nearest cluster, where nearness is computed as cosine similarity between the point
and cluster representatives. Hence, spherical K-means is a special case of the vMF
mixture model.
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11.2.3.4 Issues Related to Model-Based Method

Some of the issues related to model-based methods include:

• curse of dimensionality;
• over-parameterizations in high dimension;
• observations are small compared to the number of variables;
• goodness-of-fit test is not available;
• sensitive to initial values for θ , which are usually given by a partitioning method
such as spherical K-means;

• vMF distribution is not suitable if shapes of clusters are not circular symmetric.

11.3 Alternative Model-Based Method: Spherical
Generalization of Asymmetric Circular Distributions

In this section, alternative spherical probability models are discussed, which are
suitable to model non-symmetric cluster shapes.

The probability density function of Kent distribution (Kent 1982) is defined by

f (y|ζ, κ) = Cκ exp
(
κ(ζ ′

1y) + β
[
(ζ ′

2y)
2 − (ζ ′

3y)
2
])

, (11.5)

where ζ1, ζ2, ζ3 are mean direction, major axis, and minor axis vectors, respectively,
κ, β are shape parameters, and Cκ denotes the normalizing constant. The density
has ellipse-like contours of constant probability density on the spherical surface.
For a high dimension, maximum likelihood estimation is problematic and moment
estimators are available (Peel et al. 2001).

By construction, the mixture of the Inverse Stereographic Projection of Multi-
variate Normal Distribution has the isodensity lines that are inverse stereographic
mappings of ellipsoids, which allows asymmetric contour shapes. The necessary and
sufficient condition for the density being unimodal is that the greatest eigenvalue of
the variance–covariance matrix is smaller than 1

2(p−1) , where p denotes the dimension
of a multivariate normal distribution used in the projection. There is no closed form
solution for μMLE (Dortet-Bernadet and Wicker 2008).

While mixture models using Kent distribution or inverse stereographic projection
of normal distributions are suitable for elongated clusters in the data, using their
elliptic contours, they will not perform well with clusters having shifted centers nor
non-convex clusters. Spherical generalizations of two asymmetric circular distribu-
tions found in the following sections provide more flexible model-based spherical
clustering.
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11.3.1 Spherical Generalization of GvM

When data lie in the unit circle, the generalized von Mises (GvM) density is given
by

f (θ) = exp(κ1 cos(θ − μ1) + κ2 cos 2(θ − μ2))
∫ π

−π
exp(κ1 cos(θ − μ1) + κ2 cos 2(θ − μ2))dθ

, (11.6)

where μ1, μ2 ∈ (−π, π ] are location parameters, and κ1, κ2 > 0 are shape param-
eters. GvM distribution is suitable for modeling asymmetric and bimodal circular
data, and an extended model of the von Mises (vM) distribution.

A spherical generalization of GvM distribution has the density given by

f (y|ζ, κ) = Cκ exp
(
κ(ζ ′

1y) + β
[
(ζ ′

2y)
2 − (ζ ′

3y)
2
])

, (11.7)

where ζ ’s are orientation vectors, κ, β are shape parameters, and Cκ denotes the
normalizing constant.

Various contour shapes shown in Fig. 11.2 suggest that a mixture model based
on spherical generalization of GvM distribution is appropriate for non-convex sym-
metric or asymmetric cluster shapes, as well as circular or elliptic symmetric cluster
shapes. The Kent distribution is a special case of (11.7), where ζ1, ζ2, and ζ3 are
constrained to be orthogonal.
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Fig. 11.2 Contour plots of spherical GvM distribution
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11.3.2 Spherical Generalization of GvM3

The three-parameter generalized von Mises(GvM3) density (Kim and SenGupta
2012) is given by

f (θ) = exp(κ1 cos(θ − μ) + κ2 sin 2(θ − μ))
∫ π

−π
exp(κ1 cos(θ − μ) + κ2 sin 2(θ − μ))dθ

, (11.8)

whereμ ∈ (−π, π ] is a location parameter, and κ1 > 0 and κ2 ∈ [−1, 1] are concen-
tration and skewness parameters, respectively. GvM3 distribution has an advantage
over GvMdistributionwith one less parameter and easier interpretation of the param-
eters.

A spherical generalization of GvM3 has the density given by

f (y|ζ, κ) = Cκ exp
(
κ(ζ ′

1y) + β
[
(ζ ′

2y)(ζ
′
3y)

])
, (11.9)

where ζ ’s are orientation vectors, κ, β are shape parameters, and Cκ denotes the
normalizing constant.

Various contour shapes shown in Fig. 11.3 suggest that a mixture model based on
spherical generalization of GvM3 distribution is appropriate for clusters with shifted
centers or clusters with a daughter cluster, as well as symmetric cluster shapes.
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Fig. 11.3 Contour plots of spherical GvM3 distribution
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11.4 Concluding Remarks

In this chapter, an overview of spherical clustering was presented, and more flexible
alternative model-based methods were discussed. The authors suggest our readers
to consider the alternative model-based methods found in this chapter when cluster
shapes in the data set seem to arise from populations which have neither circular
nor elliptic contours. On the other hand, it is possible to consider more flexible
alternative distance-based methods for asymmetric cluster shapes by developing
suitable similarity measures.
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Chapter 12
A Semiparametric Inverse Gaussian Model
and Inference for Survival Data

Sangbum Choi

Abstract This work focuses on a semiparametric analysis of survival and cure rate
modeling approach based on a latent failure process. In clinical and epidemiological
studies, a Wiener process with drift may represent a patient’s health status and a
clinical end point occurs when the process first reaches an adverse threshold state.
The first hitting time then follows an inverse Gaussian distribution. On the basis
of the improper inverse Gaussian distribution, we consider a process-based lifetime
model that allows for a positive probability of no event taking place in finite time.
Model flexibility is achieved by leaving a transformed time measure for disease
progression completely unspecified, and regression structures are incorporated into
the model by taking the acceleration factor and the threshold parameter as functions
of the covariates. When applied to experiments with a cure fraction, this model is
compatible with classical two-mixture or promotion time cure rate models. A case
study of stage III soft tissue sarcoma data is used as an illustration.

12.1 Introduction

Survival models with cure rates have been received much attention over the last
decade. A commonly used approach to facilitate a cure rate is by assuming that
the underlying population is a mixture of subjects with different levels of risk. The
population would be divided into two subpopulations such that a patient is either
cured with a probability of 1 − φ or has a proper latency survival function of S0(t)
with a probability of φ, which leads to a two-mixture model with an overall survival
function Spop(t) = (1 − φ) + φS0(t). Alternatively, one may use a promotion time
model that specifies Spop(t) = exp{−θF0(t)}, θ > 0, where F0(t) = 1 − S0(t).

In this work, we propose an alternative cure rate modeling approach based on
a latent failure process. Patients under study may experience deteriorating health
prior to failure or death. One may think of a stochastic process to characterize the
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deteriorating health of a patient by assuming that the process triggers the event of
interest when it first passes a critical threshold. Such process-basedmodels have been
well exploited in reliability analysis under the name of “degradation modeling” or
an “accelerated life model” to anticipate latent failure times (Doksum and Hoyland
1992; Lee and Whitmore 2006; Aalen et al. 2008). For example, a Wiener process
with drift may characterize a patient’s health status, resulting in an inverse Gaussian
(IG) distribution for a lifetime model.

12.2 Models and Methods

Let A(t) be a nondecreasing function. Consider a Wiener process W (t) with drift
coefficient −μA(t) and variance parameter A(t), for which W (0) = 0 and indepen-
dent increment �W (t) = W (t + �t) − W (t) has a normal distribution with mean
−μ�A(t) = −μ{A(t + �t) − A(t)} and variance�A(t).When the amount of health
depreciation reaches a critical level α, failure occurs. Let T denotes the failure time,
hence T = inf{t : W (t) ≥ α}. Themonotonicity ofW (t)may be achieved by regard-
ingW (t) as maxs≤t W (s), as their first times are the same. If μ ≤ 0,W (t) eventually
will reach the threshold with probability one. On the other hand, if μ > 0, W (t)
tends to drift away from the absorbing boundary and offers a positive probability of
avoiding failure

P(T > t) = P(W (t) < α) = IG(A(t);α,μ), (12.1)

where

IG(t;α,μ) = �

(
α + μt√

t

)
− e−2αμ�

(
−α − μt√

t

)
, (12.2)

and �(·) is the standard normal distribution function. Event time T in (12.1) has a
natural decomposition of the failure timeT = εT ∗ + (1 − ε)∞,whereT ∗ < ∞may
denote the failure time for a susceptible patient and ε indicates, by a value of 1 or 0,
whether the sample patient is susceptible or not. Likewise, distribution function (12.2)
can be written as a two-mixture model, P(T ≥ t) = (1 − φ) + φ · P(T ∗ ≥ t),where
φ = P(ε = 1) = e−2αμ. That is, theWiener process may not reach the boundary with
probability 1 − φ, representing nonsusceptible or “cured” patients. The underlying
distribution for T ∗ can be obtained by conditioning on the ultimate failure and is
given by P(T ∗ > t) = IG∗(A(t);α,μ), where

IG∗(t;α,μ) = �

(
α − μt√

t

)
− e2αμ�

(
−α + μt√

t

)
.

This is known as the inverse Gaussian (IG) distribution with respective mean and
variance, α/μ and α/μ3, which is a proper distribution function for the susceptible
or “non-cured” population in the sense that P(T ∗ = 0) = 1 and P(T ∗ = ∞) = 0.
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Let T̃ = min(T ,C) and δ = I(T ≤ C), andZ andX bevectors of time-independent
covariates related to disease progression. Also define the counting process N (t) =
δI(T̃ ≤ t) and the at-risk process Y (t) = I(T̃ ≥ t). The observations then consist of
(T̃i, δi,Zi,Xi), for i = 1, . . . , n, which are copies of (T̃ , δ,Z,X ). Following the idea
of (12.1), we seek to conduct a semiparametric analysis to assess the effects of Z
on T in the presence of nonsusceptible subjects. Specifically, we posit the survival
model for the associated failure times

Si(t|Zi) = P(Ti ≥ t|Zi) = Gα

[∫ t

0
Yi(s) exp{βTZi(s)}dA(s)

]
, (12.3)

whereGα(t) = IG(t;α, 1).Weneedμ = 1 formodel identificationwithAbeingnon-
parametric. Let
Z(t) = ∫ t

0 Y (s)eβT Z(s)dA(s). The IG-basedmodel (12.3) is obtained
from the level crossing of the degradation threshold at α by the nonhomogeneous
process W (t) = W0(
Z(t)), where W0(t) denotes a homogeneous Wiener process
with T0 = inf{t : W0(t) > α}. Under (12.3), the survival function levels off at the
tail, leading to a cured fraction

P(ε = 0|Zi) = lim
t→∞ Si(t|Zi) = 1 − e−2α.

Intuitively, for a large value of α, it is more difficult for the failure process to reach
the boundary, resulting in a high cure rate, and the corresponding hazard function
shows a high hazard rate early in time that decreases toward zero.

We propose a nonparametric maximum likelihood (ML) method for fitting model
(12.3). LetΩ = (α, β,A). Also, let us defineΨα = − logGα , ηα = (∂/∂t)Ψα ,ψα =
(∂/∂t) log ηα , and ϕα = (∂/∂α) log ηα . For ease of presentation, we use Ψi(t;Ω) to
denote Ψα{
i(t;β,A)}, where 
i(t;β,A) = ∫ t

0 Yi(s) exp{βTZi(s)}dA(s). We simi-
larly define ηi(t;Ω), ψi(t;Ω) and ϕi(t;Ω). By the usual counting process and its
associated martingale theory, Mi(t;Ω) = Ni(t) − ∫ t

0 dΨi(s;Ω), (i = 1, ..., n), are
martingale processes, where dΨi(t;Ω) = exp{βTZi(t)}ηi(t−;Ω)dA(t). Given this
specification, we can write the observed log-likelihood function for (12.3) as

l(Ω) =
n∑

i=1

[ ∫ τ

0
{βTZi(t)}dNi(t) +

∫ τ

0
log{ηi(t−;Ω)}dNi(t)

+
∫ τ

0
log{dA(t)}dNi(t) −

∫ τ

0
Yi(t)dΨi(t;Ω)

]
. (12.4)

Because the maximum of (12.4) does not exist if A(·) is restricted to be absolutely
continuous, we regard A as a nonincreasing step function and maximize (12.4) with
respect to (α, β, {dA}) by taking the jump size of A, denoted by dA, to be zero except
for the time at which an event occurs, as a discrete function for A leads to the largest
contribution to the likelihood.

Taking derivatives of (12.4) with respect to each component of Ω leads to score
process:



168 S. Choi

U (Ω) ≡ (Uα,U T
β , {UdA}T )T =

n∑
i=1

∫ τ

0

[
∂

∂Ω
log{dΨi(t;Ω)}

]
dMi(t;Ω).

The nonparametric ML estimator Ω̂ = (α̂, β̂, Â) is then defined as the solution to
equation U (Ω) = 0. Further, it follows from martingale theory that the observed
information matrix is approximated by

I (Ω) =
n∑

i=1

∫ τ

0

[
∂

∂Ω
log dΨi(t;Ω)

]⊗2

Yi(t)dΨi(t;Ω),

which can be used for inferences about Ω .

12.3 Data Example: Soft Tissue Sarcoma Data

Patients with a large (>5cm), deep, high-grade, soft tissue sarcoma (STS) of the
extremity are at significant risk for distant tumor recurrence and subsequent sarcoma-
related death. Cormier et al. (2004) retrospectively examined a cohort of 674 patients
with primary stage III STSwho were treated at two cancer centers in USA from 1984
to 1999. The primary treatment for these patients is surgical resection of the tumor.
The use of chemotherapy as adjuvant treatment, however, remains controversial:
Explanations have been lacking for the many inconsistencies encountered in the
literature that describe the effectiveness of chemotherapy on STS.

The data set is characterized by a considerable fraction of survivors.Of the patients
who received chemotherapy (and those who did not), 45.5% (39.3%) died of STS,
9.3% (9.2%) died of competing risks, and 45.2% (51.5%) were still alive at the
last study time. Here, death as a result of causes other than STS was treated as
censored, which was assumed to be independent of the event time. It turns out that
the twoKaplan–Meier curves crossed at about 2years after the initiation of treatment,
indicating a non-monotonic effect of chemotherapy on long-term survival as well as
a pronounced monotonic short-term effect. The observed effect of chemotherapy
seems to benefit patients early on, but disappears or is reversed in the longer term.

To apply the proposedmethods,we considered that the acceleration factor includes
Z = (chemotherapy, radiation, amputation, pathologic margin, tumor size), and the
threshold regression includes X = (1, chemotherapy). The results from these mod-
els are presented in Table12.1. It appears that the two classical models agree well
except for the intercepts, which is expected. Since all those semiparametric mod-
els contain the same number of parameters, the log-likelihoods may be translated
into Akaike information criterion (AIC) scores. Table12.1 shows that the IG model
achieved slightly higher likelihoods than the two classical methods, which favors the
proposed model. For the IG model, the coefficients associated with chemotherapy
are both negative, implying that treatment with chemotherapymay decelerate disease
progression early on, but eventually results in a lower cured proportion. Those effects
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Table 12.1 Estimates and standard errors in parentheses from fitting the inverse Gaussian cure rate
model, two-mixture cure rate model, and promotion time cure rate model to soft tissue sarcoma
data

Model Covariate Inverse Gaussian Classical models

Two-mixture Promotion time

Disease Chemotherapy
(y/n)

−1.251 (1.447) −0.206 (0.228) −0.394 (0.385)

Progress Radiation (y/n) −0.358 (0.135) −0.356 (0.161) −0.398 (0.174)

Amputation (y/n) 0.564 (0.208) 0.446 (0.245) 0.506 (0.267)

Pathologic
margin (+/−)

0.435 (0.159) 0.428 (0.189) 0.498 (0.205)

Tumor size
(10–15cm)

0.279 (0.133) 0.529 (0.166) 0.568 (0.178)

Tumor size
(≥15cm)

0.504 (0.165) 1.001 (0.200) 1.049 (0.218)

Threshold Intercept −1.030 (0.612) 0.714 (0.334) 0.135 (0.220)

Chemotherapy
(y/n)

−0.773 (1.433) 0.353 (0.453) 0.255 (0.296)

Log-likelihood −1999.2 −2005.4 −2004.9

may be tested via a likelihood-ratio test: P-values from the proposal for testing the
short-term and long-term effects of chemotherapy were 0.08 and 0.24, respectively;
whereas they were 0.55 and 0.60 for the two-mixture model. In either case, the effect
of chemotherapy appears to be insignificant at a 5% confidence level.

12.4 Discussion

In this work, we considered a new process-based lifetime model, based on the con-
cept that the event of interest occurs when the cumulative depreciation of health
first crosses a threshold. By considering a Wiener process that drifts away from the
threshold with a positive probability of avoiding failure, the inverse Gaussian distri-
bution naturally arises to account for mixed subpopulations that include cured and
uncured individuals. This model has parametric parsimony, which does not require
additional formats for the cure rate, and the semiparametric method further allows
for a plausible and comprehensive modeling structure that is particularly adequate in
large follow-up studies. It may be considered as an alternative to the more traditional
hazard-based approaches for cure rate modeling. Besides distributional considera-
tions, we employed a threshold regression scheme and developed a novel nonpara-
metric maximum likelihood estimation.
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