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Preface 

If you want to achieve something, if you want to write a book, 
paint a picture, be sure the center of your existence is somewhere 

else and that it’s solidly grounded; only then will you be able to 
keep your cool and laugh at the attacks that are bound to come.” 

P. Feyerabend 

This is a book about interdisciplinary public health reasoning and epidemic mod-
elling, in general, and the study of the infamous 14th century AD Black Death dis-
aster, in particular.  We focus on the intellectual context in which epidemic model-
ling takes place, in a way that accounts for the present-day interdisciplinary and 
multicultural trends in scientific inquiry.  Like most scientific fields, public health 
research defines itself based on knowledge, which raises serious epistemic and 
cognitive issues.  Therefore, we maintain that for public health modellers to func-
tion in an often complex environment, they should be aware of the divergent con-
ceptions of knowledge and the technological changes that these imply, the multi-
ple sources of information commonly available and their reliability, the different 
styles of thinking adopted by the disciplines involved, and the importance of de-
veloping sound interdisciplinary knowledge integration skills.   

A unique feature of the book is that it takes the reader through all four major 
phases of interdisciplinary inquiry: adequate conceptualization (in terms of meta-
phors, methodology, epistemic rules, and argumentation modes), rigorous formu-
lation (involving sophisticated mathematical models), substantive interpretation 
(by means of correspondence principles between form and meaning), and innova-
tive implementation (using advanced systems technology and multi-sourced real 
world databases). 

If the interdisciplinary effort is going to succeed, it must be based on critical in-
telligence and take place at a research grassroots level rather than at an institution-
alized level.  Critical intelligence and new ideas cannot be developed in accor-
dance with the dictates of an institution or the established “elite” that is usually 
behind it.  Instead, some level of detachment is necessary to allow creativity to 
flourish and to gain a new perspective.  A case in point is that, despite pompous 
institutional announcements, genuinely interdisciplinary environmental health re-
search is often confused with cosmetic pseudo-interdisciplinarity that has a super-
ficial and ad hoc interdisciplinary character, allowing disciplinary business to pro-
ceed as usual. 

In view of the above considerations, our discussion of a synthetic public health 
paradigm and its implementation in the case of the Black Death epidemic is by no 



VIII       Preface 

means “the complete story”.  It is rather “a call for research” in the field of disease 
modelling that ought to include new ways of thinking and interdisciplinary per-
spectives.  Our research approach in this book is to open possibilities for consid-
eration.  The proposed theses and ideas are launched for exploration, and we do 
not pretend that we have demonstrated decisively that they are the best ones pos-
sible.  In a similar vein, our criticism of existing paradigms and competing ap-
proaches is not intended to refute them conclusively.  Rather its goal is to open 
scientific space in which new perspectives and ideas concerning a synthetic epis-
temic paradigm can breathe and grow.   

The research presented in this book was supported in part by a grant from the 
National Institute of Environmental Health Sciences1.  We are grateful to NIEHS, 
although one should not necessarily hold the institute responsible for the views 
expressed in the book.  We are indebted to Mr. Christopher Windolph for his edi-
torial acumen.  He did a superb job, and if the text does not possess an Apollonian 
perfection of form, it is due to the interdisciplinary nature of the subject and the 
limitations of the authors.  We also express our appreciation to Dr. Alexander 
Kolovos for reviewing the final copy of the book and Mr. Ulrich Schirov for his 
voluntary research on Black Death at his state of Mecklenburg-Vorpommern 
(Germany). 

We would like to thank Drs. Jiu-Chiuan Chen and John Chasteen for their 
valuable comments and criticism.  The criticism is welcomed and not feared, be-
cause one should be assured that the centers of our gravities are outside our pro-
fessions.  More to the point, every researcher must possess enough reserves of 
humor.  Let us not forget that in life and in scientific inquiry there are significant 
parallels between the Ha-ha! and the Aha! experience.  In the end, some subjects 
are so serious that one can only joke about them. 

George Christakos January 2005 
Ricardo A. Olea 
Marc L. Serre 
Hwa-Lung Yu 
Lin-Lin Wang 

                                                            
1 NIEHS Grant No. P42 ES05948 
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Note: 

The following notation is used throughout the book: 

• Section A denotes section A of the same chapter. 
• Section II.A denotes section A of Chapter II.  This notation is used when we refer to a 

section that is from within a different chapter. 
• Fig. 3 denotes the 3rd figure of the same chapter. 
• Fig. II.3 denotes the 3rd figure of Chapter II.  This notation is used when we refer to a 

figure that is from within a different chapter. 
• Table 3 denotes the 3rd table of the same chapter. 
• Table II.3 denotes the 3rd table of Chapter II.  This notation is used when we refer to 

a table that is from within a different chapter. 
• Eq. (3) denotes the 3rd equation of the same chapter. 
• Eq. (II.3) denotes the 3rd equation of Chapter II.  This notation is used when we refer 

to an equation that is from within a different chapter. 
• Ziegler (1969: 127-128) denotes that the reader is referred to pages 127-128 of Ziegler 

(1969). 



Chapter I – Toward an Interdisciplinary 
Methodology 

 “Lacking the role of criticism, science would be reduced  
to a witches' sabbath of adventurous ideas.” 

E. Mach 
 

A.  Concerning the Current Paradigm—In Search of 
Bohemians 

Public health is viewed as the science and practice of protecting and improving 
the health of a human population, as by preventive medicine, health education, 
control of communicable diseases, application of sanitary measures, and monitor-
ing of environmental hazards.  Within this framework, the term "epidemic" is usu-
ally applied to the occurrence and space-time evolution of a disease (infectious or 
non-infectious) in a human population.  Generally speaking, the aims of epidemic 
modelling are to understand, control, and when possible prevent the distribution of 
disease in the population.  Epidemic modelling may address questions related to 
the factors that influence or determine this distribution, including the cause of the 
disease (genetic trait, environmental exposure, life style, etc.).  In the case of envi-
ronmental effects, epidemic modelling is closely related to human exposure-health 
impact research.  Another group of questions may be concerned with the rate of 
disease transmission within the population, the geographical evolution of the epi-
demic, a description of the contact process, or the distribution of mortality and 
other epidemic variables1.    

In certain circumstances, a temporal distinction could be made between epi-
demic modelling occurring before the event (when certain measures may be taken 
to avoid a disastrous outbreak), during the event (in which case, there is the possi-
bility of “on-line” intervention, effective containment of the epidemic, etc.), and 
after the event (in which case, understanding the space-time distribution character-

                                                             
1 While “epidemic" focuses on phenomena in the distribution of disease in space-time, 

"epidemiologic" refers to things pertaining to the study of such phenomena.  Today the 
discipline of epidemiology is often understood to include the study of non-epidemic dis-
eases, so things that are epidemiologic could pertain to epidemiology without pertaining 
to epidemics (Savitz, 2004). 
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istics of the specific disease can provide valuable knowledge concerning future 
outbreaks of the disease or about other kinds of epidemics). 

For modelling purposes, epidemics may be categorized in different ways.  One 
categorization distinguishes between two kinds of epidemics of communicable 
disease (Haggett, 2000: 11-12):  (a) The propagated epidemic, which results from 
the chain transmission of some infectious agent.  Transmission may occur directly 
from person-to-person (e.g., measles), or indirectly via an intermediate vector 
(e.g., malaria) or a microparasite.  In some situations, transmission takes place 
through humans (e.g., typhus fever), whereas in some others the parasite survival 
is independent of man (e.g., bubonic plague).  (b) The common-vehicle epidemic 
that is due to the dissemination of a causative agent.  The epidemic may result 
from a group of individuals being infected from a common medium (e.g., water or 
food) that has been contaminated by a disease-causing organism (see, e.g., the 
cases of cholera and typhoid).  In fact, as a result of the emerging environmental 
pollution problems and their health effects, many epidemiologic techniques have 
been extended and applied to study the effects on human population health of 
physical, chemical, and biological agents within the environment.  This effort led 
to the development of the discipline of environmental epidemiology (e.g., Terrac-
ini, 1992; Moeller, 1997).  By examining specified populations exposed to a vari-
ety of ambient environments, the general goal of environmental epidemiology is to 
investigate exogenous determinants of disease distributions and clarify the rela-
tionships between physical, chemical, or biological factors and human health. 

Discussions of the current paradigm2 of epidemiology can be found, e.g., in 
Gordis (1996), Rothman and Greenland (1998), and Rothman (2002).  Basically, 
this paradigm provides little motivation for directing research toward seeking ba-
sic knowledge.  Instead, it encourages research activities that are built mainly on 
the discipline’s empirical basis.  Its focus is technical practices rather than theo-
retical achievements3.  Moreover, part of the difficulty of the current epidemi-
ologic paradigm is that it persists in talking about modern interdisciplinary prob-
lems in an outmoded vocabulary.  These are crucial elements of the current 
paradigm, because they may indicate a culture that equates intellectual debate with 
the banal exchange of technical opinions.  Such a paradigm, of course, may be the 
influence of a predominantly anti-intellectual climate characterizing many institu-
tional and social environments nowadays (see, e.g., Furedi, 2004, and references 
therein).  Intellectuals, people who wonder (i.e., practice theoretical thinking, 
search for meaning and truth, seek to improve the ways of scientific reasoning, 
and try to build new concepts and models), are often considered pariahs and ir-

                                                             
2 Generally, the term "paradigm" is used to describe a particular way of looking at things.  

The paradigm includes a set of theories, techniques, applications, and instrumentation 
together (Christakos et al., 2002: 13). 

3 Unfortunately, as many junior faculty members will admit, those who are proactively ac-
cepting the “brute force” application of new technologies in epidemiologic problems are 
much more likely to get federal research support than those who are interested in a theo-
retical type of work. 
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relevant.  Thus, it is hardly surprising that theoretical modelling in epidemiology 
and public health often falls victim to this climate.  

In the current paradigm, public health data gathering and processing avoids fac-
ing the fact that innovative experimentation and observation are theory laden, i.e., 
they are not possible without strong theoretical support and interaction between 
different modes of reasoning.  This was a hard-learned lesson in a recent case of 
grossly inaccurate health effect estimates that resulted from the “brute force” im-
plementation of commercial statistical packages without a deeper understanding of 
the underlying assumptions and theoretical parameters (see, Knight, 2002; Revkin, 
2002).  As a matter of fact, it is theoretical knowledge--and not just observation or 
data gathering--that distinguishes humans from other animals and that is responsi-
ble for major advances in the history of mankind (Tomkinson, 1999).  Given the 
strong historical evidence about these matters, it is safe to predict that a continuing 
backlash against intellectuals cannot be without repercussions in the future of epi-
demiology and public health, among other fields. 

The gap between data gathering and theoretical thinking is, indeed, widening4.  
In his study of the plague in 17th century AD Italy, Cipolla (1981: 14) maintains, 
“Paradoxically as it may sound, the lesson of history is that all too often people 
find it easier to manipulate the facts to fit their theories than to adapt their theories 
to the facts observed”.  In "Epidemiology Faces Its Limits", Gary Taubes warned 
that modern epidemiology was reaching a crisis point and was in danger of be-
coming a "pathological science" because it had devolved into a data dredging ex-
ercise, mindlessly searching an ever-expanding pool of danger for marginally sig-
nificant associations unpredicted by any a priori hypothesis (Taubes, 1995).  Also, 
Phillips et al. (2004) emphasized the need for greater perspective and innovation 
in epidemiology, pointing out that “the desire for new information means that the 
health science literature is overwhelmingly devoted to reporting new findings, 
leaving little opportunity to improve the quality of the science” and that “current 
discussions of advanced statistical methods, the nature of random error, sensitivity 
analysis and uncertainty quantification, and proper interpretation of results, to 
name just a few, show that most current epidemiologic research uses methodol-
ogy5 in need of improvement”.  

In view of the profound asymmetries of the current paradigm, new ways of 
thinking are needed to establish an improved public health methodology based on 

                                                             
4 It seems that data gathering often seeks isolation, avoiding interaction not only with theo-

retical knowledge but with crucial developments in different disciplines as well.  
Moreover, it is not uncommon that the inability of data gathering to produce the neces-
sary experimental results lies behind an institutionalized agenda aiming at preventing 
theoretical thinking from developing improved models that could lead to deeper under-
standing of the epidemic system and the associated human health risks.  This agenda 
may serve someone-sometime-somewhere, but it is profoundly against scientific pro-
gress in the global effort to fight disease. 

5 In general, methodology refers to concepts and ideas about when and how to use various 

methods to develop knowledge and solve problems, and about what each method really 

means (underlying conceptions, presumptions, normative rules, reasoning modes, etc.); 

(see, Christakos et al., 2002: 189). 
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genuine interdisciplinary interactions and intellectual exchanges.  Indeed, we now 
have the opportunity to study infectious and other onset diseases in a more sub-
stantive and rigorous manner.  The following is a brief summary of certain signifi-
cant limitations of the current epidemic paradigm that a new methodology should 
take into consideration in the new Conceptual Age6: 

 

a. Little attention has been given to the interdisciplinary nature of epidemic re-
search and development.  In this manner, important sources of knowledge 
available in the physical and life disciplines are ignored at the cost of pro-
foundly inadequate epidemic and human exposure studies.  The status quo of 
disciplinary attitudes needs to change in the current epidemic research para-
digm so that interdisciplinary knowledge integration becomes a genuine scien-
tific inquiry and not a cosmetic process having a superficial and ad hoc inter-
disciplinary character allowing disciplinary business to go on as usual.   

b. The fundamental spatiotemporal character of an epidemic under conditions of 
uncertainty has been mostly neglected.  Intrinsically spatiotemporal phenom-
ena, like disease propagation, are often modelled with “aspatial” and “aspatio-
temporal” theories.  Mathematically rigorous and epidemically meaningful 
stochastic tools (e.g., spatiotemporal random field theory) have been ignored 
in favor of deterministic methods and classical statistics techniques that ne-
glect vital cross-correlations and laws of change on space-time manifolds7.  
This neglect has resulted in unsatisfactory analyses of major issues such as 
space-time prediction of disease distribution, epidemic explanation, and causa-
tion.  Holmes (1997: 111), e.g., poses the plausible question:  “A key question 
is to what extent do we lose insight or are quantitatively misled by modeling 
the intrinsically spatial process of disease spread with nonspatial theory”.  In 
the present book we go beyond that and argue that the process is fundamen-
tally spatiotemporal, i.e., it develops within a composite space-time domain. 

c. The solution of mathematical models of epidemics has been viewed as a 
purely ontologic affair that focuses on abstract and dry formulas, whereas cru-
cial factors—such as modes of perception and reasoning, and their integra-
tion—are neglected.  Thus, what the current perspective is missing is that these 
models are imperfect constructs of the human mind, often they do not account 
for essential site-specific knowledge, and they constitute an uncertain repre-
sentation of reality.  Since public health research defines itself based on 

                                                             
6 We are certainly aware of the difficulties that such a view will be probably confronted 

with.  The majority of professional scientists are strongly committed to the paradigm of 
their subject.  But, as Ziman (1991: 90) maintains, “…there is a price to pay for this 
commitment.  Each generation of scientists gives too much credence to its own para-
digm.  By his education, and by participation in ‘normal science’, the average research 
worker is heavily indoctrinated and finds great difficulty in facing the possibility that his 
world picture might be wrong”. 

7 Although the discussion focuses on infectious diseases and acute onset diseases following 
point exposures, even chronic disease modelling (e.g., childhood leukemia) could bene-
fit considerably from stochastic space-time analysis (say, advanced clustering tech-
niques). 
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knowledge, the solution of an epidemic model is likely to be more realistic if 
its derivation invokes epistemic cognition8 notions and insights concerning the 
validity and legitimacy of knowledge (e.g., what are the “grounds of knowl-
edge”, what the mind considers to be the goal of a solution of a public health 
problem, or how it reaches this solution).  Also, since the solution of an epi-
demic model often refers to the future, it should account for the fact that the 
future is accessible neither observationally nor physically, but only cognitively 
(the future is ontologically nonexistent).    

d. In many cases of public health research, the emphasis is solely on data gather-
ing9 (experimental, observational, surveillance, etc.) and the black-box opera-
tion of the techniques/instruments employed for this purpose, without any ap-
preciation of the kind of substantive theoretical modelling that underlies these 
techniques/instruments and gives voice to the data.  In fact, there is nothing in-
spiring or intellectually satisfying in the flood of undigested data, mistaken for 
knowledge in the current paradigm10.  Public health researchers become data 
managers (and guardians), and in order to work efficiently, they often use tools 
that they do not understand.  Naturally, issues linked to the question of the re-
liability of the generated information naturally arise in this context.  Moreover, 
in epidemic sciences with little theoretical modelling basis, the indetermina-
tion principle11 can cause considerable problems.    

 
An in depth study of the above limitations of the current epidemic paradigm 

could potentially produce a paradigm change in certain constructive ways.  In 
view of this possibility, we find it reasonable and timely that the goal of the pre-
sent book be twofold: 

 

i. Bring to the fore a significant challenge in public health research, namely, the 
possibility of developing a synthetic epidemic paradigm (SEP) that provides 
an integrated methodology able to account for the major issues a-d above in a 
mathematically tractable and epidemiologically thoughtful fashion.  Key con-
cepts and tools are needed to open new areas of epidemiology to detailed un-
derstanding in an integrated manner.  The SEP should play a creative role in 

                                                             
8 The term “epistemic” refers to the construction of models of the processes (perceptual, in-

tellectual and linguistic) by which knowledge and understanding are achieved and com-
municated.  In the epistemic cognition framework, the contribution of cognition is to 
identify basic knowledge-assimilation, belief-forming and problem-solving processes, 
which are then examined by means of the evaluative standards of epistemology.  The 
meaning of these terms will be clarified further in subsequent sections. 

9 Data gathering but not sharing might be closer to the mark (see, also, Section B.a below). 
10 Unfortunately, the dictum that “data do not speak for themselves, and when they do they 

tell different stories, depending on the audience” has gone unnoticed in these cases.  Di-
rectly relevant to the Black Death study of this book, is the remark of a medieval 
scholar: "Medieval data are like children; they do not talk to strangers." 

11 Indetermination principle:  Every set of data can be associated, in principle, with an infi-
nite number of possibilities.  Thus, sound theoretical modelling is needed to eliminate all 
but a few meaningful choices. 
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this context, containing novel ideas as well as concrete suggestions on how ex-
isting ideas fit into new frameworks.   

ii. Implement SEP in the case of the major 14th century AD Black Death epidemic.  
Although this epidemic has been a major disaster in human history (in terms of 
the mortality it caused and the speed with which it spread), and as such has 
been discussed extensively in the literature, neither rigorous modelling of its 
main epidemic features nor systematic mapping of its space-time evolution ex-
ist  (including mortality maps,  space-time  correlation functions,  areal spread 
and epidemic velocities).  The SEP can produce useable models of the way the 
epidemic propagated through geographical space and time.  Since Black Death 
had grave societal, public health, and financial effects (Fig. 1), the study of 
these models can offer valuable insight about these effects, as well as about 
similar effects of potential contemporary epidemics12. 

 

 

Figure 1. One of the effects of the Black Death epidemic was the frequent use of extremely 
morbid imagery in art.  Death incarnate made many appearances in paintings of the period, 
like the apocalyptic composition of Pieter Bruegel's “The Triumph of Death”.  Death--a 
skeletal figure on an emaciated horse at the center of the painting--is the leveler.  Its legions 
and horsemen--all skeletons--drive humanity toward the final trapdoor (Roberts-Jones and 
Roberts-Jones, 2002).   

                                                             
12 Today, many experts believe that the majority of infectious diseases have not gone away, 
but lie in wait until their chance comes.  The re-emergence of Black Death several times 
in the past is an example of this situation. 
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But before we start our long promenade through the methodological and em-
pirical affairs of public health interdisciplinarity, we briefly introduce our readers 
to some technological, intuitive, intellectual, and philosophical features that 
should be incorporated into an SEP. 
A main characteristic of SEP should be the innovative description of the com-

posite geographical and temporal distribution of a disease (propagation character-
istics, space-time correlation structure, etc.).  The description should be the prod-
uct of a sound theory of knowledge rather than an ad hoc combination of purely 
empirical techniques (pattern fitting, etc.).  This kind of description can generate 
valuable information that would optimally allow containing the epidemic spread 
(by means of control strategies, infection breaks, isolation, or eradication), assess-
ing potential socioeconomic effects, etc.  Furthermore, in the case of environ-
mental epidemiology, the adequate description of the geographical and temporal 
distribution of the exposures (toxic chemicals, radioactive materials, etc.) to which 
the population has been subjected is a crucial component of any modelling study.  
As Moeller (1997: 39) has pointed out, “Regardless of the complexity, valid envi-
ronmental monitoring measurements and accurate estimates of exposures are es-
sential if confidence is to be placed in the associations that are developed between 

exposures and observed adverse consequences to human health.” 

Another characteristic of SEP is that it should be flexible and versatile.  It could 
rely directly on measurable infection parameters, environmental quantities and 
health variables (incident rate, mortality, contaminant concentration, infection 
agent and path, etc.) and the models relating them; it may utilize a group of epis-
temic vectors drawn from interdisciplinary areas of human thought and experi-
ence; or it may involve a complete causal chain based on a certain course of 
events.  In the latter case, the chain may start with ambient sources of environ-
mental risk (e.g., contaminated water or air pollution), followed by population ex-
posure to environmental risk factors and health damage, which can result in an 
epidemic13.   

The SEP focus should not be limited to the implementation of computational 
technologies (informatics, sophisticated numerical schemes, etc.) with experimen-
tal techniques.  The use of these valuable technologies should not be a cut-and-dry 
subject but an intellectual effort in a conceptually sound and creative background 
context.  Sound interdisciplinary knowledge is the result of the careful integration 
of the underlying concepts and critical reasoning modes, and not merely the inte-
gration of the vast sequences of numbers generated by the computational tech-
nologies14.  In a similar vein, SEP should seek a balance between form and sub-
stance that accounts for the facts that humans can develop sophisticated formal 
tools because they possess very effective capabilities to construct meaning and 

                                                             
13 In this case, the SEP description of the epidemic would depend on the environmental 
chain of events that precedes it. 

14 Noticeably, recent publications (e.g., Kanehisa, 2000) emphasize the critical role of con-
ceptual links between different disciplines toward understanding basic principles of life 
vs. informatics technologies that merely cope with the vast amount of data generated by 
the genome projects.   
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that the correlation of form and meaning is a highly desirable feature of creative 
thinking. 

When disciplinary boundaries are successfully crossed, new arrangements are 
emerging.  The SEP could confront the challenge by adopting a change from the 
traditional view of a human health community consisting merely of experts with 
their technological tools and specialist interpretations, to a new view of a commu-
nity possessing an epistemic culture that is certainly run on expert processes and 
systems epitomized by science, but which is also structured into various areas of 
life and their concepts of theory and practice.  This raises the issue of the transi-
tion of the contemporary public health community to a knowledge community, of 
which epistemic culture is a structural feature.  One of the real consequences of 
such a culture underlying SEP is that it would be preferable to debate about hy-
potheses before debating about results.  It is a common practice that different 
teams of public health scientists are brought together at the final stage of their re-
search projects in order to debate their results and attempt an “after the event” dia-
logue that focuses mostly on rhetoric and has little effect on scientific progress15.  
On the contrary, in the SEP context these research groups will have to debate their 
hypotheses and resolve the relevant issues (theoretical, experimental, institutional, 
social, etc.) at the early research stages. 
As we mentioned in the Preface of this book, our discussion of the SEP and its 

application in the Black Death situation is by no means “the complete story”.  It 
should be rather viewed as “a call for research” in the field of public health re-
search, in general, and epidemic modelling, in particular, which should include 
novel ways of thinking and rational interdisciplinary perspectives.  As a matter of 
fact, the above considerations seem to point toward the creation of a Bohemian 
style of an epidemic modeller16.  According to the Bohemian Manifesto (Stover, 
2004; 11):  “Bohemians start movements.  They break the rules, set the trends.  
Bohemians change thinking and sometimes they write manifestos.  Bohemians 
cross cultures and integrate mantras, philosophies, substances and clothing seam-
lessly into everyday life.  Bohemians tenderly and violently create new work and 
change paradigms.”  What could be closer to the mark in the emerging Conceptual 
Age? 

                                                             
15 This kind of a “dialogue” is certain to fail, as the aftermath of the World Trade Center 

(WTC) disaster amply demonstrated (Dalton, 2003):  Two groups of researchers came to 
diametrically opposing conclusions concerning how much of the lower Manhattan pollu-
tion could be ascribed to the WTC-generated plume and how much was native.  Typi-
cally, such cases are characterized by: (i) the lack of understanding of the different sci-
entific theories underlying the instruments used, thus leading to contradictory 
interpretations of the measurements obtained; (ii) the unwillingness to share information 
obtained by the different groups at the early stages of the research; and (iii) the subse-
quent absence of constructive criticism, knowledge reliability assessment, and method-
ology evaluation (all of which constitute violations of fundamental principles of scien-
tific reasoning).  Issues such as i-iii should have been dealt with at an early stage of the 
WTC study and not at the late stage of presenting the final results. 

16 This would be a Ha-ha! or an Aha! moment. 
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B.  Methodological and Empirical Issues of 
Interdisciplinary Epidemic Research 

In the context of scientific development, public health scientists try to make sense 
of the real world by developing a set of mental frameworks about it.  A fundamen-
tal constituent of such an effort is the establishment of an adequate methodology, 
i.e., a coherent step-by-step procedure for thinking critically about scientific de-
velopment and acting upon it.  Methodological standards act like teachers: they 
give marks to one’s epidemiologic theories.  Although a considerable deal of ad 
hoc interdisciplinary activity may be happening on an everyday basis (e.g., in the 
form of complimentary health professions and skills within a common space, part-
nerships, or as a management tool), no systematic methodological framework ex-
ists for integrated epidemic modelling in a realistic space-time domain under con-
ditions of multi-sourced uncertainty.  As a result, even with a group comprised of 
the best experts, there is no guarantee for a successful public health outcome (i.e., 
the sum total of competencies is not necessarily competence).  Edward Bender, an 
expert on artificial intelligence, notices (Bender, 2000: 192), “One approach to in-
accurate estimates is to consult several experts and then create a reasonable com-
promise based on their estimates”.17   

In the meantime, the number of interdisciplinary research cases continues to 
grow at an increasing pace.  The need to develop integration frameworks incorpo-
rating individual- and population-level dynamics of a disease, as well as within-
host dynamics, has been emphasized in recent studies (Grenfell et al., 2004).  Pan-
els of experts acknowledge that the environment plays a contributing role in the 
etiology of most diseases (e.g., reproductive, immune competence, pulmo-
nary/cardiovascular, cancer, or neurodevelopment), and urge that (DHHS, 2003), 
“the long-term improvement of public health requires an interdisciplinary ap-
proach that integrates biomedical, geochemical and engineering sciences.”  While 
numerous techniques of cluster detection exist in the epidemiologic literature, a 
sound interdisciplinary methodology is not yet available (Millikan, 2004).  The 
need for an interdisciplinary approach in the context of the genome project is em-
phasized by Kanehisa (2000: 19-23):  “The genome certainly contains the infor-
mation on the building blocks, but it is premature to assume that the genome also 
contains the information on how to connect or relate the building blocks… the in-
formation in the genome is not sufficient to make up life… The ultimate objective 
of post-genome informatics is therefore to unite life and matter and to establish a 
grand-unification theory of the physical and biological worlds”.  Decision-makers 
who need to combine information from different disciplines agree that “there is no 
commonly accepted methodology for combining multiple expert judgments” 
(Webster, 2003: 4).  The National Institute of Health proposed its Roadmap initia-

                                                             
17 Many speak of the growing problem of experts who are no longer able to understand one 

another and communicate effectively.  Disciplinary territoriality, ignorance of basic 
findings in scientific domains other than one’s own, and occasional arrogance, all con-
tribute to this lack of understanding between experts. 
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tive in 2003 as “an integrated vision to deepen our understanding of biology, 
stimulate interdisciplinary18 research teams, and reshape clinical research to accel-
erate medical discovery and improve people's health.”  At the same time, the de-
velopment of a genuinely interdisciplinary public health approach is necessary, 
especially since information processing sciences give rise to new objects of study, 
new instruments of collective practices, and new forms of human interactions 
(Web forums, etc.), which challenge disciplinary boundaries.  In his book How 
Scientists Explain Disease, Paul Thagard studies the three major kinds of explana-
tions of the development of scientific knowledge--logical, cognitive, and social19--
and comes out in favor of the view that health scientists will have to bring these 
three schemas together to form an integrated explanation of scientific change 
(Thagard, 1999: 4): “But we can appreciate science as a product of individual 
minds and as a product of complex social organizations.  Not only can we see 
cognitive and social explanations as providing complementary accounts of differ-
ent aspects of science, but we can also look for ways of integrating those explana-
tions, bringing them together into a common approach.” 
As far as Black Death is concerned, the interdisciplinarity of the various infor-

mation sources (documents, accounts, reports, etc.) has been noticed, although its 
impact has not been adequately assessed (Bleukx, 1995: 72).  This is not a small 
matter, since the case of Black Death is unique in the sense that it deeply affected 
life at all levels--social, economic, demographic, political, religious, and artistic. 

a.  Quis Custodiet Ipsos Custodies? 

We have already said that the development of an SEP aiming at the integration of 
different life support fields across space-time for public health purposes will have 
to deal with the salient methodological and empirical aspects of interdisciplinary 
sciences.  But the outcome is certainly worth the effort, in our view.  A broadly 
conceived SEP would bring data and explanation into a coherent whole, merge 
cross-disciplinary dynamics and logics of inquiry, and offer opportunities for 
space-time epidemic prediction, infection risk assessment, health policy and dam-
age control.  E.g., in order to identify infectious agents and toxicants, assess fac-
tors that may affect their transmission, transport, and bioavailability, and deter-
mine the critical pathways resulting in exposures to human populations, SEP 
needs to rely on a synthesis of methods and tools utilized by biomedical, ecologi-
cal, toxicological, and biological specialties.  Although SEP provides an integrated 
public health modelling methodology that is generally applicable, for illustration 
                                                             
18 Although in this initiative interdisciplinarity seems to be conceived as the integration of 
data and techniques from different disciplines rather than conceptual frameworks and 
thinking modes. 

19 According to logical explanations, new knowledge derives logically from previous 
knowledge; for cognitive explanations the growth of knowledge derives from the mental 
structures and procedures of scientists; and in social explanations factors such as the or-
ganization, power relations, social connections and interests of scientists are used to ex-
plain scientific change. 
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purposes its implementation in this book involves the specific case of the Black 
Death epidemic.  This epidemic has been studied in the past by different disci-
plines, which have missed important parts of the picture and did not come together 
to form a coherent whole. 

Naturally, the development of an SEP should reside on organized connected-
ness between the various scientific disciplines involved in a public health study.  
Many names have been given to the making (or finding) of such connections: in-
tegration, organization, patterning, development of schemata.  These connections 
may apply to processes, objects, symbols, ideas, and actions.  Moreover, the SEP 
requires the consideration of certain conceptual and technical products (e.g., mod-
els, algorithms and computer codes, and experimental techniques) developed dur-
ing cross-disciplinary research.  In this respect, the study of the elements that con-
tribute to the segregation of science into isolated units called disciplines can 
provide valuable guidance in one’s effort to successfully integrate these units in 
the human health context.  The SEP should also account for the fact that most of 
the public health processes and disease variables involved in cross-disciplinary in-
tegration vary across space and time.  In addition to efficiently coordinating events 
and processes, the space-time domain of SEP may provide the means for estab-
lishing connections between different disciplines. 

Besides, the need for a close collaboration between theory and experi-
ment/observation is an inescapable necessity.  By arbitrarily isolating phenomena 
for experimentation, one seeks to give them a beginning and an end.  Yet phenom-
ena are no more isolated in nature than are notes isolated in a melody, which is 
why theoretical modelling is the soul of science.  When theory and experi-
ment/observation are well-balanced and work in concert, progress is made by 
means of an public health research program that manages careful shifts from em-
pirical investigation to explanatory theory, from ontologic description to epistemic 
interpretation, and from epidemic prediction to confirmatory evidence.  In the end, 
the question "Quis custodiet ipsos custodies”20 has a deeper meaning in the context 
of a scientific inquiry aiming at a realistic representation of the epidemic system 
that can best serve the needs of public health.  The current public health paradigm 
that allows the practice of “data gathering but not sharing” serves neither the ulti-
mate goals of scientific research nor the long-term interests of the public that fi-
nances it.  The institutional encouragement of a misguided experimental culture 
that systematically avoids any constructive criticism by means of theoretical think-
ing and critical intelligence should be reconsidered.    

Data sharing and scientific criticism can drastically prevent the data gathering 
process from heading into a blind alley.  As Lewis Thomas has remarked (Tho-
mas, 1995: 91): “If the funds for a particular research project are coming in over 
his head in cascades, the scientist may be misled into thinking that he is on to a 
good thing, no matter what his data show…  If he is in possession of sophisticated 
instruments of great power, and if he is being assured that whatever other new in-
struments he can think of will be delivered to the door of his laboratory tomorrow, 
he may find it difficult to stop himself on a dead road of inquiry, even if he knows 

                                                             
20 "Who will observe the observers?" 
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it to be dead.  I have long believed that there is no scientist alive whose career 
could not be terminated by an enemy, if the enemy were capable of increasing the 
laboratory’s budget by ten fold or any-fold overnight and, as well, assuring access 
immediately to any instrument within reach of the victim’s imagination”.  If Tho-
mas is right, there seem to be cases in which the research administration and bu-
reaucracy system seriously corrupt scientific inquiry. 

The rush to collect data before the phenomenon is sufficiently understood is the 
approach of Deweyan pragmatism, which seems to be a dominant worldview in 
modern America.  For Dewey’s pragmatism, human action precedes the invention 
of human forms of thought needed to satisfy the needs of the action.  In this case, 
reality is expected to adapt itself accordingly (of course, there is no historical evi-
dence that reality has made any such commitment to pragmatists--on the contrary).  
Besides, pragmatists would be surprised how hard it can often be to translate an 
action into an idea.  Deweyan pragmatism is strongly opposed by the Aristotelian 
worldview.  For Aristotle, human thought always precedes human action:  first 
grasping the appropriate facts of reality in an adequate thought mode, on the basis 
of which the goals and the necessary course of action are set.   

The main objectives of SEP should include the development of integrated epi-
demic systems21 for innovative problem solving and inquiry, and the advancement 
of public health interdisciplinary efforts to join communities of scholars from a 
range of disciplines.  The SEP, of course, assumes that practicing scientists and 
scholars and public health research administrators are interested in creating and 
working in environments that help researchers traverse intellectual, cultural, and 
organizational boundaries.  Remarkably, rather obvious connections with other 
disciplines are not always adequately appreciated in the context of an epidemic 
study.  Human exposure-health effects is one of these disciplines.  The linkage be-
tween epidemiology and human exposure-health effects is undoubtedly very 
strong, especially when the cause of the disease is environmental exposure22.  As a 
matter of fact, serious challenges emerge from attempts to link epidemiology-
relevant research taking place in a range of scientific disciplines.  One of the chief 
issues is that researchers from different fields approach health problems with dif-
ferent conceptual tools and methodological orientations.  No systematic frame-
work exists to synthesize the diverse reasoning modes and knowledge sources of 
scientists working, e.g., in the fields of infection analysis, environmental transport, 
contaminant bioavailability, physiological compartmental systems, biochemical 
transformations, demography dynamics, and population risk assessment, in a way 
that is more than juxtaposition, more than laying one discipline along side another.  
At the same time, important notions, such as “exposure”, may not be well under-

                                                             
21 Generally, a system is viewed as a collection of related elements organized according to a 

plan and forming a unity.  In the case of epidemics, the system may include the infection 
agents, the exposure pattern, the population (infecteds, susceptibles, removed, etc.), the 
medium within which an epidemic may propagate, lines of infection, contact processes, 
as well as their relations and interdependencies in a space-time domain. 

22 In some cases, this strong linkage makes the two disciplines essentially indistinguishable 
(Haining, 2003). 
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stood (conceptually and operationally), or their meaning may differ from one dis-
cipline to another.  In the end, one should not forget that what can count more in 
these cases is integration of concepts rather than data. 

Concerning the public’s preparation for future epidemics, a serious effort is 
dedicated to combining and communicating information from different disciplines 
to decision-makers.  Such an effort gives rise to a number of challenges, as well.  
Due to other non-epidemiologic factors at play (economic growth, technological 
change, climate variations, etc.), one cannot rely only on past disease data to pre-
dict future epidemic distributions; decision-making can be aided by calculating 
how epidemic uncertainties change with new interdisciplinary knowledge and how 
they impact potential choices; although certain types of epidemiologic data are of-
ten too sparse, valuable information can be transferred from other disciplines, as-
suming that adequate techniques become available for this purpose; biases exist in 
the way the human brain forms judgments under conditions of uncertainty, and 
these biases may be of different kinds depending on the discipline; and there is 
currently no established methodology for combining multiple expert judgments, 
especially when these come from various disciplines. 

The above are some of the interdisciplinarity issues that deserve to be studied in 
a wider SEP context.  Such a study can potentially produce a paradigm change in 
certain ways.  Next, with the reader’s permission, we will make a modest attempt 
to investigate a few of these ways.    

b.  Crossing Disciplinary Boundaries 

As already mentioned, a number of cases exist in public health, in particular, and 
in life sciences in general, in which researchers have been actively engaged in en-
deavors that take them across disciplinary boundaries (e.g., White et al., 1998; 
Christakos and Vyas, 1998; Pennington et al., 2001; Pybus et al., 2001; Serre et 
al., 2003; BenMap, 2003; Law et al., 2004).  In special circumstances, it may be 
possible to apply a kind of an isolation condition claiming that the properties of 
the components of the structured whole can be identified by studying them when 
they are not incorporated into the structured whole.  Their behavior in the struc-
tured whole can be then derived from this condition plus statements describing the 
organized structure in which they are bound and the prevailing epidemic condi-
tions.  In the most interesting situations, however, a connection condition applies, 
in that it is impossible to understand how the components function when bound 
into structured wholes by simply studying their properties in an isolation condi-
tion23.  These situations are ripe for investigation by those interested in the process 
of interdisciplinary public health inquiry. 

                                                             
23 The paramount importance of the connection condition is also demonstrated in the case 

of the genome project.  As was mentioned above, while the genome contains the infor-
mation on the building blocks of life, it is unlikely that it contains the information on 
how to connect or relate the building blocks. 
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It is a well-known fact that major scientific progress often comes from re-
searchers who have crossed conventional disciplinary boundaries, and who had no 
established authority in the particular discipline.  Generally, cognitive reasons that 
motivate crossing disciplinary boundaries include the recognition that either the 
public health problem of interest cannot be adequately studied within one disci-
pline, or the problem requires--by its nature--the synthesis of knowledge sources 
from different scientific disciplines.  Epidemic prediction across space-time, e.g., 
entails blending information from the fields of mathematics, systems engineering, 
molecular biology, toxicology, climate change, and demography (Christakos and 
Hristopulos, 1998).  Also, Pybus et al. (2001) developed a model that builds a 
bridge between the disciplines of population genetics and mathematical epidemi-
ology by using pathogen gene sequences to infer the population dynamic history 
of an infectious disease.  Several other examples can be found in the relevant lit-
erature. 
Albert Einstein famously said, “The significant problems we face cannot be 

solved at the same level of thinking we were at when we created them”.  Indeed, 
the reader may agree that, it is not unusual to find out that a public health problem 
cannot be solved with the same kind of thinking that gave rise to that problem.  
Therefore, of considerable interest is the development of a paradigm that merges 
intellectual discourse, ideas, and techniques from different disciplines to produce a 
new structure, which shows the influence of the ancestor ideas without being a 
mere “cut-and-paste” combination.  In this context, adequate human health as-
sessment is not achieved solely from knowledge of its component parts--it will 
emerge from the integrated whole.   Subsequently, what one seeks from the inte-
grated whole is sound epistemic ideals that can be expressed in terms of mathe-
matical equations for theoretical modelling and applied technology purposes.  
More to the point, the SEP involves four major phases--adequate conceptualiza-
tion, rigorous formulation, substantive interpretation, and innovative implementa-
tion--and every one of these phases requires a group effort of experts from differ-
ent disciplines who share the integration goal of SEP24. 

c.  Inter- and Intra- 

If the development of SEP is going to produce rigorous rules for the integrated 
modelling of knowledge from different disciplines and levels of organization, it 
must rely on an adequate understanding of scientific intradisciplinarity and inter-
disciplinarity in an epidemic assessment context.  One should point out that:    
 
• Intradisciplinarity usually refers to integration activities between sub-fields of 

the same domain (e.g., genetic and molecular epidemiology; or obstetrics, gy-

naecology, and paediatrics). 

                                                             
24 While they will not be discussed in due detail in this book, we are aware that when at-

tempts to cross the disciplinary boundaries are successful, important sociological and 
political arrangements are emerging as well (Latour, 1988, Thagard, 1999). 
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• Interdisciplinarity involves the synthesis of different scientific domains (e.g., 
physics, cognitive science, toxicology, systems theory, and epidemiology).  

 
It is worth noticing that, while intradisciplinarity is a rather familiar precept 

among most scientists, interdisciplinarity is not always a clearly understood and 
widely accepted concept.  As a matter of fact, it is not uncommon for scientists to 
refer to the latter when what they really mean is the former.    

First, for epidemic modelling purposes interdisciplinarity should not be viewed 
in the same context as the so-called unification of science, which refers to the py-
ramidal hierarchy that reduces one domain of science to another, seeking the unity 
of science and searching for the ultimate scientific truth (Galison and Stump, 
1993).  While many scientists oppose the idea of unification (for a variety of sci-
entific, social, political, and economic reasons), the vast majority of them support 
the cooperation of different domains of inquiry. 

Second, one may distinguish between interdisciplinarity producing a new disci-
pline (e.g., biochemistry) and interdisciplinarity involving the continuing interac-
tion of a variety of disciplines without leading to a separate discipline (e.g., evolu-
tionary biology).  In the former case a group of individuals coming together from 
different disciplines feed into the same research enterprise, whereas in the latter 
case individuals are able to successfully develop cross-disciplinary programs 
through their own research efforts (Bechtel, 1986).   

Third, a distinction must be made between interdisciplinarity viewed as a 
merely practical activity happening on an everyday basis (e.g., studying the com-
ponents of structured whole in isolation and applying arbitrary combinations to 
yield the final result) and interdisciplinarity considered for scientific research pur-
poses.  Interdisciplinarity is considered valid and even necessary in the context of 
pressing practical public health problems that need attention from experts from a 
variety of scientific fields to be dealt with effectively.  For scientific research pur-
poses, however, interdisciplinarity is usually handled with considerable caution.  
E.g., some scientists often argue that their discipline is either too incomplete or too 
non-reductively autonomous to be blended with another one.  On the other hand, 
nothing will ever be attempted if all possible objections must be first overcome.    

Fourth, genuinely interdisciplinary and innovative epidemic research should not 
be confused with cosmetic inderdisciplinarity, the latter having a superficial and 
ad hoc interdisciplinary character allowing disciplinary business to proceed as 
usual at the cheap price of some interdisciplinary rhetoric.  E.g., the lack of genu-
ine interdisciplinarity has often led to human exposure research that is based on 
poor interaction with physical sciences, even when it is obvious that the latter play 
a vital role in the causal chain leading to the disease.    

d.  The Interdisciplinarity Argument of SEP 

Public health scientists have long struggled with conceptual and methodological 
issues occurring when the enormous variation of environmental data is juxtaposed 
with the biological, kinetic and infection processes leading to the generation and 
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spread of an epidemic across space-time.  It seems natural that in the SEP context 
the interdisciplinarity argument is three-fold:   
 
(a) On occasion, it is a fruitful approach to look at one discipline through the 

lens of another, thus revealing similar, analogical, or conflicting patterns be-
tween them.  E.g., by using differential equations theory, epidemiologists 
may represent the disease distribution in an exposed population.  Or by using 
models from stochastic physics, toxicologists can predict the fate of toxicants 
in the human body and make useful epidemiologic inferences.    

(b) The network of interacting disciplines of space-time epidemiology should be 
holistic, i.e. considered as a whole.  E.g., the biological and physiological 
characteristics of human populations must be blended with the physical, 
chemical, and biological properties of environmental media to obtain a better 
understanding of the factors that increase the risk of a disease becoming an 
epidemic.    

 (c) While disciplinary research concerns one level of reality, interdisciplinarity 
concerns the dynamics engendered by the action of several levels of reality at 
once.  E.g., part of the task in achieving epidemic synthesis is to bring to-
gether analyses at different physical, biomedical, and demographic levels to 
provide a coherent account of a potential epidemic and to assess the factors 
that can improve scientists’ ability to control an outbreak once it has begun.   

 
Beyond the three-fold argumentation, an adequate SEP should account for the 

two processes operating in parallel:   
 
(i) One aiming at increasing what we know (by means of experimentation, ob-

servation, surveys, computer simulation, theorization, etc.).    
 (ii) One aiming at rectifying the logical geography of the knowledge that we al-

ready possess.  In this context one must be able to talk sense with concepts as 
well as to talk sense about them (i.e., to know by practice how to operate with 
concepts inside familiar fields, and to also be able to state the logical rela-
tions governing their use).    

 
Bringing together diverse teams of scientists for brainstorming plays a crucial 

role in implementing the threefold epidemic argument and the two parallel proc-
esses above.  Through collaboration, consensus building, regular and open com-
munication, and expanding roles across discipline boundaries, the SEP team 
members could plan and provide synthetic epidemic science. 

e.  Integrating Modes of Reasoning 

Reasoning plays a vital role in all forms of human activities.  Nothing expresses 
the power of reason to transfigure human suffering better than a sentence from the 
classic French novel La Princesse De Clèves:  “I told him that as long as his suf-
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fering had had limits, I had approved of it and shared it; but that I would pity him 
no longer if he gave way to despair and lost his reason.”25 

It could be a constructive approach, indeed, that the SEP views interdisciplinar-
ity as a reasoning process that entails rigorously formulated logical and cognitive 
mechanisms (scientific argumentation modes, conceptual metaphors, epistemic 
principles, mathematical techniques, etc.) in a composite space-time manifold (in 
which space and time are intimately connected).  This proposition contrasts previ-
ous views of interdisciplinarity, such as the ad hoc multidisciplinary activity pre-
cept (i.e., studying the components of structured whole in isolation and applying 
arbitrary combinations to yield the final result), and the unification of science 
metaphysical construct (i.e., in the sense of the unity of science and search for sci-
entific truth).  Instead, the SEP should refer to a higher-level synthesis process, 
which defines the means, or the way of working and acting, that produces holistic, 
integrative knowledge.   

The interdisciplinary genre of public health research is problem-centered, par-
ticipatory, and could involve multiple stakeholders.  SEP should contribute, e.g., 
to the emergence of a cognitive science of human health that involves the applica-
tion of the science of the mind to epidemiologic ideas and methods.  At the center 
of this effort is learning to think about thinking in an interdisciplinary arena.  More 
to the point, the SEP will be confronted with different modes of reasoning (or 
styles of scientific thinking) including:    
 
 - The Taxonomic - The Analogical - The Mathematical 
 - The Statistical - The Experimental 
 

While being well aware that epidemic assessments resulting from each one of 
these different modes of reasoning are not necessarily consistent with each other 
(e.g., an epidemic assessment may be valid in terms of taxonomic but invalid in 
terms of analogical reasoning), SEP should nevertheless seek an appropriate inte-
gration of the component modes.  By focusing on integrated modelling in the 
methodological sense, the term “integration” covers possible links that can be de-
veloped between different physical and life science disciplines, i.e., SEP will be 
viewed as disunified but interconnected seeking integrated (theoretical and em-
pirical) links and laws.  In this manner the SEP can include, e.g., many biological 
characteristics that link exposure with dose and subsequent disease.    

f.  The Role of Uncertainty 

We cannot think of a better introduction to this section than by quoting Sir Arthur 
Eddington (1958: 1):  “If ‘to know’ means ‘to be certain of’, the term is of little 
use to those who wish to be undogmatic.”  Indeed, for a variety of reasons dis-

                                                             
25 “Je luis dis que tant que son affliction avait eu des bornes, je l’avais approuvée, et que j’y 

étais entré; mais que je ne le plaindrais plus s’il s’abandonnait au désespoir et s’il perdait 
la raison” (Lafayette, 1980: 150). 
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cussed elsewhere (Christakos and Hristopulos, 1998; Christakos, 2001, 2003a), 
there is not logical certainty in public health sciences.  Instead, uncertainty charac-
terizes a plethora of phenomena, such as the space-time distribution of toxicants or 
the precise molecular effects of environmental factors in relation to the DNA of 
genes. The future spread and threat to human populations of known pathogens 
(linked, e.g., to malaria and AIDS) are highly uncertain, as is the case with yet to 
be discovered pathogens.  Considerable uncertainty also characterizes the trans-
mission process of pathogens among humans, their adaptability, the links between 
pathogen evolution and epidemic processes (within and among hosts), and the po-
tential to infect humans of pathogens found in animals (Grenfell et al., 2004). 

Despite the crucial role that the term “uncertainty” plays in public health sci-
ences, no clear insight is available that accounts for its essential conceptual and 
technical features associated with various scales and levels of organization (e.g., 
Wimsatt, 1976).  In the view of many, it is the “model concept” that is the main 
source of uncertainty26, whereas others are concerned with uncertainty introduced 
by empirical relationships.  Actually, most of the natural variables and biomedical 
systems involved in cross-disciplinary integration are connected and vary in syn-
ergy across space and time, rather than being isolated and space-time separable, as 
is often assumed.  The concept of synergy has connotations that may determine 
the meaning of uncertainty associated with the epidemic system.  In view of the 
above considerations, one of the SEP priorities is to examine an integrated uncer-
tainty framework through which cross-disciplinary epidemic research can proceed, 
uncertainty sources (conceptual, empirical, etc.) can be meaningfully interpreted 
and taken into account with rigor, and valid predictions can be made across space-
time.  In fact, how to develop and implement efficiently such an integrated uncer-
tainty framework is one of the most important outstanding questions in current 
public health modelling, one that involves deep and challenging conceptual and 
methodological issues. 

On occasion, exposure studies have used the organization inherent in determi-
nistic mathematics to represent and predict the behavior of rather simple physical 
systems, but this approach has basically failed to provide predictive models in life 
sciences.  Instead, the SEP view is that one cannot underestimate the importance 
of uncertainty in health studies, for its consequences transcend the domains of the 
two most significant constituents of scientific development: explanation and pre-
diction.  When uncertainty describes a state of incomplete knowledge (due, e.g., to 
poor understanding of the integrated behavior of bioavailability across disciplines, 
the factors affecting host susceptibility, intra- and inter-subject variability, bio-
logical noise, or mixtures of chemicals acting in synergy) it can serve an inspira-
tional purpose, for it makes it possible to study the role of human conceptualiza-
tion in creating empirical knowledge across different life support disciplines.  
Hence, the SEP view is that the rigorous study of epidemic systems should be 
based on the power of the stochastic mathematical theory (Chapter II) that ac-
counts for various sources of uncertainty emerging from cross-disciplinary inte-

                                                             
26  E.g., uncertainty due to inadequate model structure (conceptualization) may be far more 
detrimental to its predictive ability than parameter and data uncertainty. 
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gration in composite space-time manifolds.  In stochastic theory, the physical and 
life variables of an epidemic system (exposure concentration, fate and transport, 
incidence rate, mortality, infecteds, susceptibles, etc.) are represented in terms of 
spatiotemporal random fields (S/TRF) in the sense of Christakos and Hristopulos 

(1998).  Briefly, a S/TRF       X ( p)  is a collection of possible realizations   x  for the 
distribution of the field at space-time points       p = (s, t) , where the vector s denotes 
spatial location and the scalar t time (the realizations x are asumed to be consistent 
with the data available).  The uncertainty inherent in the determination of the 
space-time structure of the epidemic variables of interest is taken into considera-
tion by S/TRF theory in a rigorous mathematical manner.  E.g., stochastic charac-
terization of       X ( p)  is provided by the probability density function (pdf) 

  
f

KB
, 

where the subscript KB denotes the knowledge base used to construct the pdf.  
The 

  
f

KB
 describes the comparative likelihoods of the various realizations and not 

the certain occurrence of a specific realization.  Accordingly, the pdf unit is prob-
ability per realization unit.  Further discussion of S/TRF follows in Section II.C.    

Stochastic theory accounts in an integrative manner for uncertainty sources and 
variations arising from multiplicative interactions between factors like imprecision 
of assays, inter-individual fluctuations in uptake rates, elimination rates, biotrans-
formation, and repairs among persons.  Interdisciplinary uncertainty analysis is 
also crucial in comprehending the mechanisms whereby toxicants induce adverse 
health effects.  By focusing on scientific reasoning processes and cognitive ma-
chineries of knowledge integration, distinct features of the theoretical models, em-
pirical approaches, instrumentations and institutional contexts of the disciplines 
involved in human health studies can be revealed, complex nonlinear interactions 
can be dissected and analyzed, and a solution of the epidemic problem can be 
sought that provides a good fit to the cognitive description of the real system in-
corporating all relevant knowledge sources and associated uncertainties. 

g.  Epistemic Cognition 

Since not all information generated during a scientific study is necessarily correct, 
recourse to epistemic standards evaluating the “grounds of information” is un-

avoidable, in most cases27.  Thus, the role of epistemology in scientific inquiry is 
often linked to the question of information reliability.  Cognition, on the other 

hand, is concerned with the mechanisms of acquiring knowledge, including per-

ception, intuition, and reasoning.  It focuses on mental processes that include 

thinking, learning, judging, and problem solving28.  In view of the above, another 
potentially significant departure of SEP from the traditional epidemic paradigm is 
                                                             
27 “Very practically, in matters of life and death, our grounds for decision and action may 

eventually depend on understanding what science can tell us, and how far it is to be be-
lieved” (Ziman, 1991: 2). 

28 For those readers seeking a detailed presentation of topics like epistemology, cognition, 
and styles of scientific thinking, good references are Goldman (1986), Harre (2002), and 
Keller (2002). 
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the thesis that an epistemic cognition solution (which assumes that the relevant 
models describe incomplete knowledge about the epidemic and focuses on cogni-
tive mechanisms) can lead to more adequate results than the conventional on-
tologic solution (which assumes that the models describe nature as is and focuses 
on form manipulations).  In the epistemic cognition framework, the contribution 
of cognition is to identify basic knowledge-assimilation, belief-forming, and prob-
lem-solving processes, which are then examined by means of the evaluative stan-
dards of epistemology.  Scientific thinking is viewed as a critical process that is as 

objective as possible, has a deep appreciation of the various sources of uncer-

tainty, and is versatile enough to change commonly held views and established be-

liefs as new ideas and evidence call previous views and beliefs into question. 
In many public health situations, form manipulations and technical operations 

by themselves will not suffice (as was noticed before, their mathematical organi-
zation structure has been of limited use in life sciences).  Often, there is neither a 
good cognitive reason why a formal fit will be the best representation of the public 
health data available (even if the fit looks perfect in some “technical” sense) nor 
any evidence that human minds operate in this way.  This situation is, in part, due 
to the fact that in reality one is hardly ever dealing with an ideal epidemic situa-
tion in which all health and physical inputs are perfectly known, the models avail-
able constitute an exact representation of the system under consideration, and 
there are no serious sources of uncertainty present.  Unfortunately, these important 
considerations have escaped the attention of many epidemic modellers.  In 
mathematical epidemiology (e.g., Daniels, 1995; Diekmann and Heesterbeek, 
2000) the analysis focuses on deriving ontologic solutions for closed systems that 
merely satisfy a set of mathematical equations in the purely technical sense men-
tioned above, thus ignoring the facts that these equations, abstract and dry, provide 
an incomplete representation of reality and are imperfect constructs of the human 
mind.29  Since all models in physical and life sciences are constructs of the mind, 
their solution is likely to be more realistic if its derivation invokes open systems 
and epistemic cognition notions (e.g., what the mind considers to be the goal of 
the solution, or how it produces an optimal solution under conditions of uncer-
tainty).  It is in an improved understanding of our mental relations to nature that 
the permanent contribution of the epistemic solution is to be found30. 

To confront these challenges, the SEP proposes to set up a powerful and versa-
tile quantitative public health framework that accounts for clear scientific intui-
tions, represents multi-scale uncertainties and variabilities that transcend the disci-
plinary knowledge sources involved, accounts for toxicants acting in synergy, and 
is capable of extracting and generalizing critical principles of the epistemic cogni-
tion process.  Several proposals could be made regarding a set of adequate SEP 
principles.  Two of the principles that can potentially play an important role are:   

                                                             
29 Genetics researchers, e.g., are aware of the fact that so much emphasis is often placed on 

the solution of ontologic models that they are eclipsing careful consideration of what the 
organism is actually doing and what its goals are (Cherfas, 1986). 

30 Metaphorically speaking, the matter is “not only to learn to dance, but to learn to judge 
who is a better dancer”. 
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(i) Teleologic principle applied at the interdisciplinary core knowledge level (i.e., 

the knowledge processing level that includes scientific theories, physical and 
biological laws, statistical relationships, etc., from scientific fields relevant to 
the system of interest).    

(ii) Adaptation principle applied at the specificatory level (i.e., the knowledge 
processing level that consists of case-specific details about the system, like 
hard exposure data, uncertain infection agents, experimental toxicogenomics 
variables, and secondary biomedical information).   

 
Both the “teleologic” and the “adaptation” principles are viewed by SEP in an 

epistemic cognition sense rather than as ontologic and evolutionary concepts, re-
spectively, which is the case in the traditional approach.  Epistemic cognition may 

be interested about the unrefined, everyday practices of the laymen as well as the 

refined, highly specialized methods of the scientists and engineers.  In this sense, 

it involves the entire range of our intellectual efforts to understand our environ-

ment and make meaningful predictions about future health risks.  After all, what-

ever meaning one assigns to the term “solution” of a public health problem, the 

term has far-reaching implications for one’s knowledge of the public health situa-

tion and, thus, a strong epistemic element.    
An attraction of the epistemic cognition component of SEP lies in perceiving 

the conceptual structure of the subject.  In addition, it guarantees the consistency 
between the formal part (mathematical theory, statistical techniques, etc.) and the 
interpretive part (biophysical interpretation of mathematical terms, goal-based 
cognitive processes, justifications of formal toxicogenomics assumptions, and 
testable genetic arguments and infection hypotheses)31.  On theoretical grounds, 
public health scientists may prefer, e.g., that the SEP includes an epidemic theory 
that spans disciplines rather than several theories related by a derivation relation.   
A constant interplay between theory and data (including data from modern 

technologies, such as genomics and proteomics) could occur in the SEP, where the 
former plays a central role in illuminating the latter.  Theory will also provide us 
with a means of epidemic assessment and with space-time prediction not directly 
suggested by compilations of data.  Several remarkable issues can be investigated 
in the SEP framework, such as the case that biomarkers can potentially control for 
the different exposure routes and give a true integrated measure of exposure, tak-
ing into consideration that time constants for biomarkers range from minutes to 
years and are subject to inter-individual factors related to uptake, elimination, 
damage and repair, and thus add additional layers of complexity.  Experimental 
and field studies at these different layers will be integrated with abstract mathe-
matical accounts offered by theoreticians (systems analysis, stochastics, multivari-
able mathematics, fields theory, etc.) and with computational tools provided by the 
technologists.  The SEP is made operational by specification and elaboration.  As 
we shall see in the following sections, the principles i and ii above offer interest-

                                                             
31 See also Section II.B.a. 



22      Chapter I – Toward an Interdisciplinary Methodology 

ing suggestions about how to proceed with the mathematical analysis and establish 
an integrated operational SEP approach32. 

C.  Conceptual Components of SEP 

In this section we turn our attention to the three main conceptual components of 
SEP.  The discussion involves some abstraction that can actually make things 
more transparent and simpler, and it can also lead to powerful quantitative tools.   

a.  Theoretical Construct 

Consider an epidemic system representing a public health situation.  In SEP, the 
solution of the system in uncertain space-time environments is neither a fixed nor 
an absolute matter in the ontologic sense.  Instead, an adequate solution has no in-
dependent status of its own, but is the theoretical construct of the epistemic cogni-
tion process as described in the previous section.  This line of thought elicits the 
first thesis, as follows: 
 

Epistemic Thesis:  The intellectual process leading to the solution of an 

epidemic system should be viewed as the theoretical construct of epis-

temic cognition.   

 
Indeed, the solution of such a system should follow certain rules of reasoning.  

But these rules are, in the final analysis, propositions about one’s epistemic cogni-
tion process.  The reasoning rules leading to a solution in uncertain space-time 
domains do not constitute an independent ontologic entity, but they are rather im-
plicit in the epistemic cognition process that enforces them.  It is actually an aid in 
the search for knowledge about epidemics and their public health consequences to 
understand the nature of knowledge we seek, which is an epistemic task.  Accord-
ing to critical conceptualism (Christakos, 2003a), concepts and knowledge sources 
are linked by sound reasoning to provide rational support to scientific modelling.  
Conceptual difficulty is directly related to logical complexity (Feldman, 2000), in 
which case a lucid logical structure could be essential in the solution of the epi-
demic problem, as well.  Remarkably, the epistemic cognition schema is more 
general than the logical one, because it involves representations and procedures 
(diagrams, visual images, mental metaphors, etc.) that may be not found in formal 
logic.  The mental tools of epistemic cognition can also explain the discovery of 

                                                             
32 It is worth noticing that the SEP could be conceived as dealing with the integration of 

epistemic cultures, and not only with the integration of interdisciplinary knowledge 
sources.  At present, however, the mathematical formulation of the epidemic problem is 
mainly concerned with the latter. 
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new concepts and offer solid support to assumptions concerning the epidemic sys-
tem. 

If one continues to indulge the traditional habit of regarding the ontologic ap-
proach as absolute and independent of any cognitive influences, one may miss the 
opportunity to look at the frontiers of scientific research (cognitive science, system 
theories, stochastics, neurosciences, epistemology, etc.) for a better understanding 
of the epidemic solution process or for the means of real-world validation and re-
finement.    

b.  Knowledge Bases: General and Specificatory 

Knowledge is a relationship between the knower and the known (e.g., knowledge 
may denote a mental state that bears a specific relationship to some feature of the 
world).  The acquisition, categorization and processing of the various types of 
knowledge available to humans are major issues in public health.  Thus, a speci-
fied type of knowledge is often intimately linked with the method used to acquire 
it from a relevant source (e.g., physical knowledge is the kind of knowledge ac-
quired by the methods of physical science).  The existence of a plethora of distinct 
information sources and data (physical, biological, demographic, etc.) to be ac-
counted for during an epidemic assessment process makes it plausible to catego-
rize them in terms of knowledge bases (KB), as follows: 

 
Categorization Thesis:  One can distinguish between two major catego-
ries of knowledge, viz. the general or core KB (  G ) and the specificatory 
or site-specific KB (  S ). 
 

This is a fundamental SEP thesis that may need some additional interpretation 
and justification. In neurosciences, one of the three major properties of cortical 
memory in humans is the “invariant” representation, which refers to the fact that 
the human brain preserves the core knowledge of the world (mutatis mutandis, the 

  G -KB of the Categorization Thesis), independent of the specific details (  S -KB).  
As Hawkins (2004) points out, memories are stored in a form that captures the es-
sence of relationships.  Then, a human understands the world by finding invariant 
structures on the basis of its stored knowledge.  However, this invariant structure 
alone is not sufficient to use as a basis for making predictions.  In order to make 
predictions the brain must blend knowledge of the invariant structure (vis-à-vis, 

  G -KB) with specific details about the situation under consideration (  S -KB).  
Similarly, the distinction between general and site-specific KB may find consider-
able support in sociobiological studies, which have demonstrated that at a very 
fundamental level the goal of human behavior is to distinguish between sensory 
data (  S ) and stored knowledge (  G ) of the structure of the world, and then to use 
them to generate motor responses that are adaptive, i.e., they seek high inclusive 
fitness for an organism (Wilson, 1975).  Furthermore, the Categorization Thesis 
may find an interesting metaphor in the field of modern evolutionary epistemol-
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ogy33.  Indeed, both Darwinian evolutionary theory and traditional epistemology 
are accounts of the growth of knowledge.  Evolution is itself a knowledge process 
in which information regarding the environment is incorporated in surviving or-
ganisms through the adaptation process (Radnitzky and Bartley, 1993).  Two 
kinds of knowledge are assumed in an evolutionary epistemology context:  En-
dosomatic knowledge, as incarnated in organisms through adaptation (correspond-
ing to   G -KB); and exosomatic knowledge, as encoded in new experiences with 
the environment (  S -KB).  In the former case there is an increasing fit or adapta-
tion between the organism and the environment when its stored templates model 
stable features of the environment, whereas in the latter case there is an increasing 
fit between theory and fact.  In the evolutionary epistemology context,   G -KB is 
combined with   S -KB in an appropriate manner--in evolutionary epistemology 
terms this means that the two kinds of knowledge are adaptationally continuous.   

What KB will be synthesized to solve a public health problem is contingent on 

the nature of the solution as well as the current stage of development of the vari-

ous disciplines involved.  Since our focus is the realm of quantitative public health 
science, the Categorization Thesis is mostly concerned with KB that can be ex-
pressed in mathematical terms.  The   G -KB may include human constructs like 

scientific theories, physical and biological laws, and primitive equations devel-

oped in various disciplines of physical and life sciences.  The   S -KB consists of 

site-specific details of the real-world epidemic system, like hard data, uncertain 

observations, and secondary information sources. The   G -KB refers to all those in-

formation sources that are relevant to the public health situation under considera-

tion but their domain of application far transcends the specified situation.  The   S -

KB, on the other hand, refers solely to the specified epidemic system. The union 

of these two major KB is often denoted by   K , which is the total KB available re-

garding the epidemic system, i.e.   K = G S . 

 
Example C.1.  The variety and diversity of the disciplines involved in an epi-
demic study can be quite astonishing.  In the historic case of Black Death, inte-
grated epidemic modelling involves knowledge bases from quite a few different 
disciplines and levels of organization, such as:  
 
 Epidemiology Zoology History Linguistics 
 Public Health Entomology Literature Sociology 
 Geography Biology Arts Economics 
 Demography Genetics Religion Politics 
 Agronomy   
 
Clearly, in the case of the Black Death epidemic other sources of insight must be 
sought in addition to those generated by scientific techniques.  In Chapter III we 
visit the various interdisciplinary information sources above in considerable detail. 

                                                             
33 In simple terms, evolutionary epistemology is concerned with the study and understand-

ing of knowledge through the use of evolutionary theory. 
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c.  Knowledge Synthesis 

We are now ready to focus on the third main conceptual component of SEP.  In 
view of the above considerations, it would be reasonable to use an adaptive ap-
proach, in the sense that it provides a good fit to the cognitive description of the 
real-world epidemic system and accounts for all relevant knowledge sources (  G - 

and S -KB) and their associated uncertainties.  In accordance to what has been 

said in more than one places of the preceding text, the crux of this view is that the 

SEP solution to the epidemic problem cannot be achieved solely from knowledge 

of its parts--it emerges from the integrated whole itself.  This insight leads to the 

following fundamental thesis, from a methodological viewpoint: 

 
Synthesis Thesis:  The study of an epidemic system is reducible to a 
knowledge synthesis problem. 

 

This thesis resides on organized connectedness between the various elements in-
volved.  In the SEP context, we consider the meaning of such a connectedness that 
is conferred by what might be described as operational or functional connected-
ness.  This is the kind of connectedness that elevates a collection of parts into a 
functioning whole--i.e. a whole capable of functioning.  In other words, the SEP 

solution to an epidemic problem evolves out of knowledge synthesis principles, 

the latter understood in a cognitive sense subject to epistemic standards.   

 
Example C.2.  A simple but sufficiently instructive knowledge synthesis situa-
tion may be the following.  In the circumstances shown in Fig. 2 the   G -KB con-
sists of: (i) the light travels in straight lines, and (ii) the laws of trigonometry.  The 
  S -KB includes: (a) the wall casts a shadow     s = 40  meters long, and (b) the angle 
of the sun’s elevation is   = 26.6  degrees.  A rather straightforward synthesis of 
the two KB allows one to predict that the wall’s height is     h = 20  meters. 
 

Sun

h

Wall

Shadow
s

 

Figure 2. A case of knowledge synthesis leading to valid predictions. 
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Without question, in real world epidemics the situation is much more compli-
cated than the example of Fig. 2--although remarkably some of the basic princi-
ples remain the same.  The real world KB are more sophisticated, there are various 
forms of uncertainty involved, a probabilistic assessment of the epidemic system 
is sought, etc.  Nevertheless, taking into consideration the preceding theses, the 
mathematical formulation of knowledge synthesis involves teleologic (in the hu-
man teleology or teleology of reason sense) and adaptation (in the human cogni-
tion sense) principles, which can embrace diverse phenomena and interdiscipli-
nary descriptions in a single scheme, as follows:    

    

G
T
   PFG

S

 

 
 

  

A
   PFK  (1) 

At this point, our aim is to give an abstract yet informative representation of the 
conceptual SEP components in terms of Eq. (1).  The   T  and   A  denote the 
teleologic and the adaptation principles, respectively; the former operates on the 

  G -KB, whereas the latter involves the   S -KB (these two KB refer to all relevant 
interdisciplinary variables across space-time under conditions of uncertainty); 

    
PFG is a probability function derived teleologically from the   G -KB, and 

    
PFK  is a 

probability function that updates 
    
PFG  in view of     A (S) .  The 

    
PFK  accounts for 

the total   K –KB,   K = G S , and constitutes the final outcome of the knowledge 
synthesis process.   

To some of our readers Eq. (1) may seem as a strange-looking equation that 
stares at the reader like a hieroglyph.  It will acquire, however, significant mean-
ing when a more detailed mathematical analysis is attempted in Section II.D and 

following chapters.  Indeed, the conceptual scheme underlying Eq. (1) is both 
meaningful and powerful.  It can integrate all relevant public health information 
sources, generate a collection of rigorous formulas, and provide useful insight.  
We are not only concerned with utilizing these formulas (in terms of mathematical 
techniques, computer libraries, etc.), but also with the meaning we can attach to 
them.  This meaning is intimately connected with the human mind and its cogni-
tive powers, and is not necessarily an ontologic feature of the real world. 

D.  Epidemic Causality as an Interdisciplinary Affair 

a.  The Chain Concept 

In an integrated public health situation, a central role is often played by the con-
cept of epidemic causality or causation34.  This concept links potential causal fac-
tors (infectious agents, environmental exposures, etc.) and the resulting health ef-
                                                             
34 Relevant terms in epidemiology are “etiology” or “aetiology”. 
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fects (mortality, incidence rate, etc.)  One can clearly distinguish between causa-
tion at the individual level and causation at the population level (large scale), 
which is the main interest of most epidemic studies.  There are at least two expres-
sions of the epidemic causation concept, as follows: 

 
• An expression is the typical disease transmission chain, in which the group 

of hosts is exposed to an environment carrying the disease-causing organ-
ism; then this group transmits the organism to other hosts, and the process 
continues eventually leading to an epidemic (e.g., Anderson and May, 
1995).   

• Another expression is the environmental causal chain (Buringh, 2002).  
This chain involves a complete course of events, starting with a variety of 
ambient sources (generating emissions, transformations, and dispersions), 
followed by ambient concentrations and levels of exposure which, in turn, 
lead to personal exposures and body burden (by way of pharmacodynamics-
toxicokinetics) and which, eventually, can cause significant physiological 
changes and possibly a serious epidemic.   

 
In both the disease transmission and the environmental chains the underlying 

process is basically interdisciplinary.  Furthermore, in many causality studies, an-
other important factor is the so-called confounding.  Loosely speaking, confound-
ing refers to the confusion or mixing of various (possibly interdisciplinary) effects.  
Confounding is an important parameter in the determination of a disease causa-
tion, in the sense that it can mix the main cause of the disease with some other ef-
fects.  In environmental epidemiology, confounding may refer to a situation in 
which a measure of the effect of an exposure on risk is distorted because of the as-
sociation of the exposure with other factors that influence the outcome of interest 
(Last, 1995: 35).  

b.  Some Important Features 

There are fundamental differences (conceptual and technical) between the existing 
views about causality.  As a matter of fact, any adequate causation analysis should 
seek answers to a long list of questions.  Critical conceptual and methodological 
questions include the following: 

 
• Is disease causality logical or physical?   
• Does disease causality links events, facts, or processes?   
• Is epidemic causality a mechanistic (efficient) or a teleologic (final) type 

of causation. 
• What is the conceptual distinction between theoretical and empirical prob-

ability in public health. 
• Should an epidemic causality approach use the epistemic, the ontologic, or 

the modal conception of scientific explanation?   



28      Chapter I – Toward an Interdisciplinary Methodology 

• Are the causal laws of nature more basic than the causal relations between 
events?  

• Under what conditions can prediction serve as causal explanation of dis-
eases?   

• What is the relationship between causal and non-causal state of affairs? 
 
Among a plethora of decisive technical questions concerning disease causality 

are the ones listed below: 
 

• How meaningful are the causal inference checklists and statistical tech-
niques?   

• What part of the environment might be to blame for carrying an infectious 
agent?   

• Which are the different exposure factors causing/influencing an infection?  
Are these factors interrelated?   

• Which are the possible confounding factors, and how is it possible to ad-
just for them? 

• Under what conditions does a contact lead to transmission, and which is 
the contact process?    

• What are the relevant contributions of multi-causality, strength of a cause, 
interaction between causes, sum of attributable functions, and induction 
time? 

 
In this section we will be limited to a very brief discussion of some of the 

above considerations35.  Some scholars view disease causality as a mental (logical) 
construct, whereas some others suggest that it is an objective part of the structure 
of the real world (see, e.g., Mackie, 1974).  A group of health scientists (e.g., 
Aickin, 2002; and references therein) have suggested that epidemic causation can 
be analysed in terms of necessary and/or sufficient conditions.  While Mellor 
(1995: xi) maintains that “causation links not events but facts”, Aickin (2002: 13) 
agrees with Mackie that “causation is a relationship that holds between events”.  
On the other hand, Salmon (1998: 16) proposed to us “to focus our attention on 
processes instead of events (or facts)”.   
Epistemic conception views causal explanations as arguments (i.e., mental con-

structs), ontologic conception sees explanations as fitting in to patterns and regu-
larities of the real world, and modal conception assumes that causal explanations 
show that what did happen had to happen (see, e.g., Hempel and Oppenheim, 
1948; Scriven, 1975; Mellor, 1995).  In life sciences, in general, there are cases in 
which one is talking about efficient causation (i.e., having a rather mechanistic 
character) vs. teleologic causation (i.e., involving reference to purposes), see Allen 
et al. (1998).   
A conceptual distinction between two different effective uses of probability in 

public health sciences could be as follows:  a theoretical definition of probability 

                                                             
35  The interested reader is encouraged to study the original references and form his/her own 

view of the causality problem. 
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at the level of individuals, and an empirical definition at the population level.  The 
former involves a theoretical meaning enrooted in its epistemic context, whereas 
the latter has a practical meaning expressing results of observations, surveys, etc.  

Methodologically, causality has been associated with explanation and predic-
tion.  In most cases, indeed, to explain a disease is to find its cause.  There are, 
however, some other situations in which the concepts of explanation and causation 
can have different ranges of applicability (e.g., one may explain the spread of an 
epidemic in non-causal space-time terms).  Nevertheless, while not all explana-
tions in public health sciences are causal, in most cases knowledge of the relevant 
causal relations can help us explain important phenomena and gain a better under-
standing of the epidemic system. 

The situation is not so clear as far as the relationship between causal explana-
tion and prediction is concerned.  It seems rather appropriate to bring to the fore 
the often asymmetric character of this relationship, as follows.  In some cases, it is 
true that the same KB that generates sound predictions may be used to produce 
meaningful causal explanations of the phenomenon.  E.g., suppose that epidemi-
ologists predict the spread of a disease on the basis of knowledge about the envi-
ronmental conditions, and these predictions turn out to be correct.  Obviously, 
some argue, the same environmental knowledge that was used to predict the 
spread of disease before it happened, will serve to explain the same event after it 
has happened.  Anyone with a soul can feel the elegance of this obvious symme-
try.  But the problem with the obvious is that it sometimes can make one overlook 
the evidence.  Indeed, as it turns out, the symmetric character of the relationship 
between causal explanation and prediction is not always the case.  In fact, there 
are situations in which the KB that serve to predict a phenomenon (before it oc-
curs) may not be able to explain it as well (after it has occurred). 

 

Example D.1.  Let us revisit the case of Fig. 2.  As we saw, the   G - and   S -KB 
available made it possible to predict that the wall’s height is     h = 20  meters.  How-
ever, these KB cannot provide an explanation of it.  Instead, a plausible causal ex-
planation would be that the wall was built to be 20 meters high, which is inde-
pendent of the   G - and   S -KB above. 

 
Some efforts have been made to apply a list of causation criteria discussed in 

Hill (1965), although with limited success36.  As a consequence, many epidemi-
ologists have concluded that the causation problem cannot be solved simply by 
means of causal inference checklists or statistical techniques (e.g., Rothman, 2002: 
15).   
As it turned out to be the case, an efficient detection of potential confounders 

should study the exposure variables causing or merely influencing an infection, 
assess if and how these factors are related with the potential confounders, charac-
terize the nature of the relationship in a causality context, etc.  At the individual 
level, a definite proof of the actual cause of the disease is a task that should in-
                                                             
36 This checklist is essentially based on certain philosophical considerations of causality 

suggested by Hume and Mill. 
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volve the scientific study of the biological characteristics of the disease, among 
other things37.  According to Thagard (1999) the causal explanations of many dis-
eases may fall under a set of basic patterns or organized schemas.  This different 
kind of unification may be necessary, since health science is not like physical sci-
ence, in which a set of mathematical equations and the associated boundary/initial 
conditions in many cases can provide unified causal explanations for a consider-
able variety of phenomena.   

 
Example D.2.  Fig. 3 outlines the causal explanations of infectious (germ), non-
infectious (nutritional), and molecular (multifactorial) diseases.  The germ theory 
suggests that some diseases are caused by microorganisms (e.g., cholera and tu-
berculosis).  Other diseases are caused by vitamin deficiencies (beriberi, rickets, 
etc.).  Yet a large variety of multifactorial diseases may be caused by the interac-
tion of inherited genes and environmental factors (e.g., cancer).  More involved 
molecular genetics schemes of causal explanation are also used, such as the fol-
lowing (Thagard, 1999: 28):  genes encoded in DNA DNA specifies RNA syn-
thesis RNA specifies polypeptides synthesis forming proteins mutations pro-
ducing DNA changes mutated DNA altering protein production abnormal 
functioning of the individual symptoms and disease.  E.g., a mechanism has 
been identified by which smoking causes lung cancer (benzo[a]pyrene produces 
mutations in the tumor suppresser gene p53, etc.; Denissenko et al., 1996). 
 

In most public health circumstances the determination of causation is, indeed, a 
very important but technically difficult problem38.  Large scale epidemic model-
ling cannot offer, in general, a definite proof of the actual cause of the disease, al-
though on occasion it could provide valuable clues regarding the possible cause of 
a disease (suggesting causal hypotheses, etc.).  In principle, the concept of causa-
tion in an epidemiologic context involves the study of a multitude of factors,  such 
 

          Germs                            Nutrients              Genes       Environmental factors
(Bacterium, virus, etc.)  

 Infection                          Deficiency                          Interaction

Symptoms      Disease      Symptoms      Disease      Symptoms      Disease  

Figure 3.  Examples of causal explanation schemes for germ, nutritional, and multifactorial 
diseases.  

                                                             
37 See, e.g., Schulte and Perera (1993). 
38 Certainly, not a problem to be solved by means of a “causal pie” approach (Rothman, 

2002: 9ff). 
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as: the combined action of several processes contributing to the cause-effect 
mechanism (certain of these processes may lie outside the boundaries of epidemi-
ology)39; the characterization of cause-effect in association with populations rather 
than individuals; the space-time domain of causation; and the underlying scientific 
reasoning providing a mental representation of causality that is consistent with 
real world evidence. 

c.  A Brief Categorization of Causality Approaches 

By way of a summary, a critical study of epidemic causality should take into con-
sideration four important theoretical characteristics of the causation concept: de-
terministic causation (effects are completely determined by causes) vs. indeter-
ministic causation (effects are not completely determined by causes, e.g., they are 
characterized as stochastic); and mechanistic causation (efficient causes are in-
volved) vs. teleologic causation (final causes are involved).  Different epidemic 
causation approaches involve different combinations of these characteristics.  Be-
low we briefly discuss some examples of such approaches. 

Deductive-Nomological Approach 

This is an essentially deterministic view of epidemic causality according to which 
the causal explanation of an effect is obtained by means of valid deductive argu-
ments (Hempel and Oppenheim, 1948).  This kind of an explanation would be 
possible only if all the relevant mechanistic laws (physical, biological, etc.) link-
ing exposure and health effect were perfectly known for each individual in the 
population.  Although very desirable, such an approach is very rarely materialized 
in public health practice.  Other kinds of difficulties also exist.  According to the 
deductive-nomological approach, explanation and prediction are symmetric proc-
esses.  However, as we saw above (Example D.1), this is not always the case in 
real world applications.  Also, in some other cases causal explanations rest on 
mechanisms that may be insufficient to warrant prediction.  A thorough discussion 
of the serious hidden difficulties of the deductive-nomological approach can be 
found, e.g., in Salmon (1998). 

Thus, although in theory the highest level of causal order is certainly offered by 
the traditional determinism, due to the serious problems of the deterministic ap-
proach (insufficient knowledge, complex mechanisms at work, luck of empirical 
support at the population level, etc.), the majority of modern epidemic studies fo-
cus on indeterministic interpretations of causality. 

Inductive-Statistical Approach 

This is an indeterministic approach that replaces the deductive-nomological con-
cept by a scheme in which causality is manifested in terms of an almost perfect 

                                                             
39 Some factors may cause things, whereas some others may merely affect them. 
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statistical correlation between exposure and effect.  Clearly, the inductive-
statistical approach is not free of some serious complications.  One problem with 
correlation-based approaches is that, while correlation is a symmetric relation 
(e.g., if cigarette smoking is correlated with cancer, then cancer is correlated with 
smoking as well), causation is basically non-symmetric (e.g., the fact that cigarette 
smoking causes cancer does not imply that cancer causes smoking).  It is worth-
noticing that, while statisticians favor Fisher’s randomized experiment as the main 
approach to causal inference, this approach has serious problems when applied to 
life science problems.  E.g., Shipley (2000: 14) suggests that, “the randomized ex-
periment is unsuited to much of biological research”.  Another important issue is 
the relationship between causality referred to single events (aleatory causality) and 
causality related to populations of events (property causality), see Galavotti et al. 
(2001).   
Another variant of the inductive-statistical approach seeks to determine associa-

tions by comparing separate maps of health effects and environmental exposures 
across geographic areas or over time, using multivariate statistics to establish cor-
relations between health effects and exposures.  There are certain problems with 
this technique as well (e.g., several cases are reported in the scientific literature in 
which the technique led to incorrect conclusions; Krewski et al., 1989).   

Difficulties with the previous techniques have led to the development of im-
proved procedures that establish a more drastic break with the deductive-
nomological concept, as follows. 

Probabilistic Conditioning Approach 

In a certain context, this indeterministic approach replaces the notion of statistical 
inference with that of statistical relevance (Suppes, 1970).  The approach assumes 
that the presence, or the introduction, of a genuine cause (exposure or infection) 
must make the occurrence of its health effect more likely than if it had not been 
present.  This means that this approach associates the causes and the health effects 
with a probability distribution, which is the most complete information attainable.  
Then, the approach is formalized in terms of conditional probabilities (e.g., the 
probability of the effect given the occurrence of the specified exposure or infec-
tion is greater than the probability of the effect given that the exposure or infection 
did not occur).  Some of the fundamental difficulties of the probabilistic-
conditioning approach are discussed in Dupre (1993). 
An interesting variant that has received considerable attention in recent years is 

the so-called Bayesian network method (sometimes also called causal network 
method).  The network consists of a structural component that represents causal 
relationships and a probabilistic component that assess the strength of these rela-
tionships.  A detailed presentation of the method and its range of potential applica-
tions can be found in Pearl (2000). 
A rigorous application of the probabilistic conditioning approach generally 

should account for important factors, such as the different causally relevant con-
texts in which an exposure or infection may occur, physical and biological con-
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nections between events and facts, intermediate causes, and the different paths that 
may link an exposure or infection to an effect. 

Integrative Prediction Approach 

This is a stochastic approach that differs from the previous ones in certain subtle 
ways.  Firstly, it assumes that causation is an interdisciplinary affair that can be 
adequately studied as an integrated knowledge process (Christakos and Hristopu-
los, 1998; Christakos, 2001).  It is well known that a causal mechanism often in-
volves the combined action of several component causes.  The human mind seeks 
to construct a cause-effect model that integrates the component causes associated 
with different disciplines and scientific fields in order to reach a sound conclusion 
regarding causation.   

Secondly, the cognitive meaning of causation lies in its potential for improved 
integrative prediction.  This kind of prediction combines logical and natural laws, 
and assumes that the existence of a cause-effect association should lead to more 
accurate disease predictions when information about both (a) the potential causal 
factors (physical, ecological, environmental, etc.) and (b) the health effects (dis-
ease distribution, epidemic observations, etc.) is integrated than when only health 
effect data is used (see, Example D.3 below).   
Knowledge integration is a crucial factor that distinguishes this approach from 

some previous causality methods based on predictability.  Indeed, integrative pre-
diction does not have certain of the difficulties of these methods (such as, the ef-
fects of the possible explanation/prediction asymmetry in the deductive-
nomological method).  Another important feature of this approach is that predic-
tion is understood as a product of human teleology (teleology of reason), in which 
case prediction is likely to be more realistic if it is derived via a theory of knowl-
edge.  By blending physical, ecological, and biological measurements of potential 
causes with general and specificatory epidemic features of the effects in a space-
time manifold, prediction accounts for various sources of uncertain knowledge, as 
well as for inter- and intra-subject variations of the specified populations.  In view 
of the above considerations, epidemic causality is not merely a relation between a 
potential causal factor and a health effect, but a knowledge synthesis process in-
volving potential causal factors40, health effects, and a specified population 
(which, in a public health context, usually refers to a group of representative re-
ceptors).    
 
Example D.3.  This example is from a study by Christakos and Serre (2000).  
Let the S/TRF X p  denote cold temperature exposure (in oF ) and D p  denote 

death rate (in deaths per 100,000 people per day) in the state of North Carolina.  
An integrative prediction measure of the X p - D p  association is as follows: 

                                                             
40 Depending on its form, a potential cause may be described in terms of information con-
cerning its biological features, level, duration, frequency, contact process, and a set of 
possibly interrelated factors (e.g., acting in synergy). 
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DX = (EDX ED ) /ED  (in %), where EDX  is the death rate prediction error based 
on D p  and X p  data, and ED  is the death rate prediction error based on D p  data 

only41.  In Fig. 4a the DX  is plotted as a function of time (days) for the 1996 win-
ter season ( EDX  and ED  are spatial prediction error averages over North Caro-
lina).  The DX  is consistently negative, which according to the integrative predic-
tion theory above supports a X p - D p  association during this time period.  The 

DX  magnitude is indicative of the strength of the X p - D p  association; as is 

shown in Fig. 4a the association is of varying magnitude in time.  In Fig. 4b the 
spatial distribution of the X p - D p  association at the population level is repre- 

sented by the DX  map (in this case, the EDX   and ED  are  temporal prediction er- 
 

 
 
Figure 4. (a) Time profile and (b) spatial map of DX  (in %); winter of 1996.  

                                                             
41 Space-time predictions and prediction errors can be calculated using random field tech-

niques, see Chapter II. 
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ror averages calculated for each one of the state counties).  The map of Fig. 4b 
shows a stronger X p - D p  association in the mountainous area (south-west part of 

North Carolina), whereas a weaker association occurs at the eastern part of the 
state (near the ocean) and, also, in the urban area near the city of Charlotte (south-
central part of the state).  These geographical differences may be due to two fac-
tors: the moderating influence of the ocean on cold temperatures (less fluctuations 
and milder cold temperature peaks), which probably explains the weaker effect of 
the latter along the coastline; the living conditions (exposure to cold temperature 
is usually higher in mountainous, rural areas, than in urban areas near large cities, 
due to the impact of environmental conditions, transportation, etc.).  Next, a pos-
sible con-founder Pp  was been identified, viz. PM10  exposure (particulate matter 

is a possible confounding factor as it may have causal associations with D p  while 

being correlated with X p  data).  To incorporate this confounding effect in the 

analysis we let DXP = (EDXP EDP ) /ED  (in %), where EDXP  is the death rate pre-
diction error based on the combination of D p , Pp , and X p  data, and EDP  is the 

death rate prediction error based on D p  and Pp  data only.  The DXP  measures the 

improvement in D p  predictability from knowledge of X p  when the confounding 

effect of Pp  has been removed.  Then, by comparing DXP  vs. DX  one can assess 

the importance of Pp  in the X p - D p  causal association42.  The DXP , which ac-

counts for the composite X p - D p - Pp  distributions, is plotted in Fig. 5a vs. time.  

Also plotted in the same figure is the DX  (which did not account for the con-
founding effect of Pp ).  These plots show that accounting for the potential con-

founder PM10  results only in a slightly different strength in the reported associa-
tion between the X p - D p  distributions for the winter period (the DXP  and DX  

values show small differences).  Moreover, the spatial DXP  map, plotted in Fig. 
5b, is almost identical to that obtained for DX  (Fig. 4b).  Both Figs. 5a and b 
seem to support the view that knowledge of the PM10  distribution does not have a 
significant confounding effect on the association between cold temperature expo-
sure and death rate distributions in space-time. 
 

We conclude this section by suggesting that a serious interdisciplinary research 
effort is needed to comprehend the “Tower of Babel” character of epidemic causa-
tion.  Any adequate causality analysis should seek answers to long lists of ques-
tions that may span a variety of scientific disciplines and could account for multi-
sourced knowledge in a rigorous integrative manner. 

                                                             
42 The same approach may serve to evaluate competing causal theories by means of predic-

tion accuracy at a set of critical observation points. 
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Figure 5. (a) Time profiles of DX , DXP  and (b) spatial map of DXP  (%); winter season.   

E.  Focusing on Black Death 

In The Grand Inquisitor the cardinal warned his prisoner (Dostoevsky, 2003: 10), 
“For the secret of man’s being is not only to live but to have something to live 
for.”  For most of the people living in Europe during the times of Black Death, 
neither of the above seemed to be an option. 

a.  Lunch with Friends and Dinner with Ancestors 

Perhaps, one of the most imaginative and at the same time succinct descriptions of 
the severity and the terrible speed with which Black Death struck its victims is that 
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of the famous Italian writer Boccaccio:  “The victims of Black Death often ate 
lunch with their friends and dinner with their ancestors in Paradise”.  Also, “La 
Danse Macabre” (or the “Dance of Death”) is a late-medieval allegory on the uni-
versality of death that was produced under the impact of the Black Death epi-
demic.  It was expressed in the form of woodcuts, paintings, or frescos in 
churches, which usually consisted of the personified Death leading a row of danc-
ing figures from all walks of life to the grave (Fig. 6).  These images reminded 
people of how fragile their lives were and, also, how vain the glories of earthly life 
were.  Before we proceed with the details of our Black Death study, it may be in- 
structive to briefly review the situation in Europe by the time of arrival of Black 
Death. 

Several changes in 14th century AD Europe were driven by a climatic change 
called the “Little Ice age” that brought to the continent wetter and colder weather 
(Gottfried, 1983: 23-24).  The change resulted in bad crops, thus paving the way 
for famine.  The situation was most critical between 1309 and 1325.  The crisis re-
sulted in a debilitated population that saw unprecedented levels of massive mortal-
ity (which, nevertheless, paled in comparison to the Black Death mortality that 
was to follow).  Some scholars have argued that several of the survivors of the 
famines were ill prepared to fight a serious disease like Black Death because their 
bodies received improper nutrition at a critical stage of childhood development.  
Another cause contributing to the high mortality of Black Death was certainly the 
state of  medical science,  which at the time  was far from having  a correct  under- 
 

 

Figure 6. An image of “La Danse Macabre” by Hans Holbein.  It shows Death leading a 
row of dancing figures (typically a king, pope, monk, youngster, beautiful girl, all in skele-
ton-state). 
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standing of human physiology and disease etiology, even for the simplest of dis-
eases.  The result was inadequate treatments.  Moreover, the living and sanitary 
conditions were favorable for the transmission of diseases.  Houses of ordinary 
people were crowded (Fig. II.5); their floors were dirty; the quarters were shared 
with all kinds of animals; bathing was rare; and the water supply was frequently 
drawn from contaminated sources.  Streets were narrow, without pavement, serv-
ing simultaneously as roads, sewers, and unsanitary fills for refuse and dead ani-
mals.  The plague crisis proved to be instrumental for cities to start enforcing 
some minimum public sanitary codes. 

The study of the Black Death epidemic of 1347-51 in Europe has regained con-
siderable interest nowadays (Naphy and Spicer, 2000; Cantor, 2001; Cohn, 2002a 
and b; Wheelis, 2002; de Hahn, 2002; Orent, 2004; Scott and Duncan, 2004).  
Since Black Death had grave consequences (societal, public health, and financial), 
a quantitative understanding of the epidemic distribution characteristics across 
space-time can offer valuable insight regarding these consequences, as well as 
about similar situations with potential contemporary epidemics.  Furthermore, 
several experts argue that the plague was a virus similar to AIDS and Ebola that 
has only lain dormant, waiting to emerge again--perhaps in another form (Scott 
and Duncan, 2004).  Taking into consideration the periodic occurrence of plagues 
throughout history, these researchers predict its inevitable re-emergence sometime 
in the future, transformed by mass mobility and bioterrorism into an even more 
devastating killer.  Scott and Duncan (2004) also maintain that the explosive in-
crease of adventure traveling to exotic places is increasing the exposure of people 
to high biodiversity environments that in the past have been the source of serious 
diseases. 

One should admit that modellers can be spoiled by data abundance: waiting un-
til vast amounts of data become available, hoping to make the application of 
mathematical techniques a rather trivial procedure.  However, genuine scientific 
progress often depends on the scientist’s choice to develop creative theories and 
models in view of limited and highly uncertain information, rather than to proceed 
in a routine fashion by collecting large amounts of data and then applying mathe-
matical techniques mechanically43.  In view of the above considerations, we will 
restrain from rhapsodizing on the matter, apart from noticing that we selected 
Black Death as the main SEP case study specifically to consider a hard nut to 
crack.  Indeed, any attempt to model the Black Death epidemic is seriously limited 
by the fact that most of the evidence lies far in the past.  Hence, unlike modern 
epidemic databases, which often include a significant amount of hard scientific 
evidence and can readily use a host of modern tools44, the Black Death databases 
lack any of the above, instead being fundamentally historical.  These databases are 
notoriously uncertain, inherently heterogeneous, and usually based on indirect ac-

                                                             
43 Not to mention that in several applications a huge collection of data must be confronted, 

little of which is really relevant to the problem.  In these cases theoretical modelling can 
be a valuable tool in the effort to find meaningful patterns that will make sense out of 
shapeless heaps of data. 

44 See, e.g., Schulte and Perera (1993). 
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counts and information sources that are limited and highly variable across space-
time (see, also, Sections III.C and D).  Nevertheless, these limitations of historical 
databases constitute a challenge for the SEP theory and technology to demonstrate 
their intellectual value and practical usefulness--and this challenge must be treated 
very seriously.   

b.  Limitations of Previous Studies and Advantages of SEP 

Being one of the worst in history, the Black Death epidemic has been extensively 
studied from demographic, anthropological, epidemiological, historical, etc., per-
spectives (Creighton, 1891; Gasquet 1893; Sticker, 1908; Deaux, 1969; Ziegler, 
1969; Gottfried, 1983; Twigg, 1984; Kohn, 1995; Hirshleifer, 1996; Scott and 
Duncan 2001, 2004; Cohn, 2002a and b; Benedictow, 2004).  However, as far as 
we know, no systematic analysis and mapping of the spatiotemporal evolution of 
the epidemic exists, let alone one based on sophisticated stochastic mathematics 
and methodological principles of interdisciplinary integration.  The reasons for 
this scarcity may be linked to a variety of factors, including the serious uncertainty 
of the available databases (which makes a conventional deterministic analysis ex-
tremely difficult or even impossible), the mathematical difficulties associated with 
the study of the complex spatiotemporal distribution of the disease, an insufficient 
appreciation of the interdisciplinary nature of the problem45, the lack of suffi-
ciently precise hypotheses about the spread of the epidemic suitable for expression 
in quantitative terms, and the aspatial/aspatiotemporal tradition of most bio-
mathematical and epidemiological works. 
Although the need for a rigorous space-time representation of the Black Death 

epidemic has been acknowledged in a number of past and recent publications 
(e.g., Wood et al., 2003), currently there exist neither models successfully incor-
porating explicit space and time components into Black Death studies nor tech-
niques that account for integrated geographical-temporal variations, uncertainty 
sources, individual- and population-level dynamics in a mathematically tractable 
manner (Cliff, 1995; Scott and Duncan, 2001).   

In this book we suggest the implementation of SEP as an adequate response to 
these needs, especially given the plethora of uncertainty sources involved in the 
predominantly historical Black Death databases available.  More to the point, SEP 
possesses a battery of sophisticated stochastic techniques to efficiently assess the 
spatiotemporal characteristics of the Black Death distribution (correlations be-
tween spatial and temporal mortality structures, heterogeneity patterns, large-scale 
trends connected with the disease, etc.) and generate substantive predictions in a 
dynamic manner that accounts for the various uncertainty sources and spatiotem-
poral characteristics of the epidemic. 

                                                             
45 Even though the interdisciplinary character of the disease has not gone unnoticed in some 

previous studies (e.g., Bleukx, 1995: 72), nevertheless, it has not been adequately con-
sidered. 
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A study of the Black Death epidemic based on sound methodological principles 
and rigorous mathematical modelling could shed light on certain important aspects 
of the epidemic (e.g., transmission and spread of the infectious disease, space-time 
course and life-cycle of the epidemic).  Such a study may also provide some in-
sight concerning Black Death aspects that are currently under debate, such as the 
cause of the epidemic (Cohn, 2002a).  Furthermore, as already mentioned, it is 
conceivable that by understanding the serious Black Death effects in a geographi-
cal-temporal context (societal, financial, etc.), valuable insight can be gained re-
garding similar effects of potential contemporary epidemics (e.g., AIDS and 
Ebola) or biological warfare. 

It was stressed that interdisciplinarity is valid and even inescapable in the con-
text of public health problems that need experts from a variety of fields of knowl-
edge in order to be dealt with effectively.  Accordingly, the epidemic modelling of 
Black Death as viewed in this work is based on the integrated modelling of 
knowledge from different disciplines and levels of organization (see Example C.1 
above).  Note that the Black Death epidemic has also played an important role in 
the evolution of many of these disciplines46.  While disciplinary research concerns 
one level of reality, cross-disciplinary modelling concerns the dynamics engen-
dered by the action of several levels of reality at once (e.g., bringing together in-
formation at different experiential levels, from a variety of sources to provide a 
coherent account of the Black Death epidemic). 

The integration methodology may need to be confronted with different modes 
of reasoning (Section B.e above).  In this context, the term “integration” covers 
possible forms of relationship that can be developed between different disciplines, 
i.e., SEP will seek integrated links between the various information sources.  Rig-
orous spatiotemporal Black Death epidemic representation and mapping requires 
the consideration of certain conceptual and technical tools developed in the SEP 
context (e.g., spatiotemporal models, prediction algorithms, and mapping technol-
ogy).  These technical tools provide powerful and efficient means for rectifying 
the logical geography of the Black Death knowledge available and for extracting 
and generalizing critical principles of the epidemic propagation process.  The SEP 
tools also provide the means of summarizing, modelling, and visualizing the dif-
ferences between digital representations of Black Death epidemic patterns and 
variations. 
A considerable part of the current epidemic state of knowledge about Black 

Death is summarized in the map of Fig. III.1 (Chapter III).  This map serves to 
emphasize the following:   
 
• A rather poor time resolution is displayed.  Our study aims at improving it by 

one order of magnitude and go from a resolution of semesters to a resolution of 
months.    

• Nothing has been mapped beyond the plot of Fig. III.1.  E.g., there are no maps 

of mortality at any scale.    

                                                             
46 Some examples are discussed in Chapter III. 
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• Salient space and time cross-correlations and interdisciplinary dependencies 

have not been taken into consideration in the existing epidemic analyses of 

Black Death.    

• There exist serious discrepancies regarding the nature of the Black Death epi-

demic.    
 
Being aware of the above limitations of previous modelling efforts, among the 

realizable objectives of the present Black Death study were the following: 
 
(a) Using state of the art electronic bibliographical research to exhaust sources of 

published material about the Black Death epidemic.  This endeavor is compli-
cated by the interdisciplinary nature of the epidemic data sources that is behind 
the dispersion of information in books, websites, and papers, which is far 
higher than the dispersion for other topics.   

 (b) Creating a database with current knowledge about population and mortality.  
This database should guide future research by our SEP group or others and 
point to information bases suspected to be in error.    

 (c) Preparing, for the first time, detailed geographical-temporal maps of monthly 
mortality, infected areal propagation, etc., thus providing the powerful means 
for representing critical features of the dynamics of the epidemic.    

 (d) Deriving and representing visually important parameters and characteristics of 
the epidemic’s evolution across space and time (centroid paths, epidemic ve-
locities, elasticity index etc.).    

 (e) Anticipating that more serious efforts will be compensated along the way lead-
ing to unexpected insight about the disease.  Initial objectives may be linked 
with our research findings (quantitative determination of space-time correla-
tions between urban population and duration of the epidemic, stochastic gen-
eralization of conventional epidemic models in a composite space-time do-
main under conditions of uncertainty, etc.).    

 (f) Carefully analyzing any findings of the present space-time modelling effort 
that could potentially throw some light on the long-lasting controversy about 
the nature and the origins of the Black Death epidemic.  Making comparisons 
between the spatiotemporal characteristics of the Black Death and the bubonic 
plague, thus contributing to the debate concerning the nature of Black Death: 
bacterial or viral47. 

 
The generation of new ideas and critical attitudes should go hand by hand in a 

new paradigm.  In the following chapters we will make an effort to communicate 
to our readers what we view as the two major strengths of SEP in the context of 
the Black Death study: 

 
• Its conceptual strength, which lies in its emphasis on intellectual work and 
creativity (which are the background context of critical thinking, reliable 

                                                             
47 The main issues of this debate are discussed in Section III.B. 
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knowledge, and the integration of ideas) rather than on merely gathering infor-
mation and applying it mechanically 48. 

• Its technical strength, which lies in its organized attempt to understand the 
space-time evolution of the Black Death disease in considerable detail based on 
uncertain city-level data49 generated from a variety of interdisciplinary informa-
tion sources. 

 
The powerful combination of the above two elements provides SEP with sig-

nificant advantages over previous public health approaches.  While epidemiologic 
statistics, e.g., focuses mainly on the uncertainty of the disease data and parameter 
values, SEP accounts for this kind of uncertainty as well as for the uncertainty re-
sulting from the structure (conceptual and mathematical) of the models represent-
ing the epidemic system.  This is a serious issue.  In many cases, inadequate model 
structure (conceptualization) has far more important consequences in the predic-
tion of disease distribution across space-time than data or parameter uncertainty.  
Also, SEP accounts for the critical space-time dependence of mortality values--
which classical statistics assumes to be independent--and it possesses powerful 
techniques that allow it to generate substantive predictions of the relevant disease 
variables.  As a result, SEP can process content-rich information about the epi-
demic system.  This information cannot be conveyed by statistics, because the 
form of the latter excludes the content of the former. 

                                                             
48 Hofstadter (1986: 526) remarked:  “People like Mozart are held to be somehow divinely 

inspired, to have magical insights for which they could no more be expected or be able 
to account for than spiders for the wondrous webs they weave.  It is all felt to be some-
how too deep down, too hidden, too occult a gift, to be mechanical in any sense.  Crea-
tivity, in fact, is perhaps one of the last refuges of the soul.” 

49  I.e., population, numbers of deaths, and epidemic duration. 
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"... a probability is a reputable proposition ...  A 
probability is that which happens for the most part." 

                                                                   Aristotle 

A.  Why Stochastics? 

Albert Camus expressed, with great clarity, the role of uncertainty in our lives 
(Camus, 1970: 230-231): “we can name things only with uncertainty, and our 
words become certain only when they cease to refer to actual things”.  Uncer-
tainty, in its various forms, is at the center of many scientific investigations and 
debates.  Indeed, in the last few decades scientists have moved from seeing nature 
as inherently stable and deterministic to viewing it as uncertain, subject to unex-
pected shifts and changes, which can suddenly create huge opportunities for the 
prepared and sometimes fatal threats for the slow movers1.  The issue of uncer-
tainty and its consequences transcend the domains of the two most significant con-
stituents of scientific development:  explanation and prediction.  Therefore, no se-
rious public health scientist can afford to ignore uncertainty without paying a 
price.  Sooner or later one will have to devise the necessary tools (strategies, heu-
ristics, and technologies) to deal with uncertainty as adequately as possible.   
As we shall see in the remaining of the present section, uncertainty is an inte-

gral part of one’s critical thinking process.  Epidemic models often start with a de-
scription of the relevant parameters (incidence rate, mortality rate, susceptibles, 
migration rate, etc.).  Uncertainty can enter these models because parameters vary 
in unpredictable ways.  Moreover, public health research in SEP is concerned with 
a variety of issues, including the possible origin of an infectious disease outbreak 
and the conditions that led to the epidemic, the geographical shape and extent of 
the epidemic, its temporal evolution features, and ways to control it.  Uncertainty 
assessment plays a vital role in the study of all these issues.   

                                                             
1   Naturally, nobody wants to be left behind as far as uncertainty assessment and its conse-

quences are concerned.  “As we know, there are known knowns--there are things we 
know we know.  We also know there are known unknowns--that is to say we know there 
are some things we do not know.  But there are also unknown unknowns, the ones we 
don't know we don't know.  And it is the latter category that tend to be the difficult 
ones,” as was maintained by D. Rumsfeld (US Defense Secretary) during a 2004 news 
briefing. 
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We argue that stochastic theory provides the most solid theoretical background 
and useable set of tools for studying uncertainty and its consequences in public 
health science.  As a matter of fact, when it comes to Black Death the information 
sources in existence today about the epidemic of 1347-51 are notoriously scarce 
and uncertain (see, e.g., Twigg, 1984; Scott and Duncan, 2001; Cohn, 2002b), 
which makes a stochastic approach to the problem most appropriate.  In view of 
the considerable uncertainties and variations, stochastic modelling suggests that 
one should give up the futile attempts to make exact (deterministic) predictions in 
favor of conditional (stochastic) predictions of epidemics (see also Chapter V).  
Here the meaning of the term “conditional” is that the predictions generated by 
stochastic theory are conditioned on a number of factors:  the space-time variation 
features of the disease spread, the conceptual and technical uncertainty associated 
with epidemic modelling, the knowledge bases available, the prediction accuracy 
sought, the objectives of the study, etc.  Celebrated early stochastic modelling ap-
proaches in sciences include Maxwell's and Boltzmann's development of the ki-
netic theory of gases (1860 and 1896), Planck's derivation of the radiation law 
(1900), Gibbs' formulation of statistical mechanics (1901), Einstein's and 
Langevin's analyses of Brownian motion (1905 and 1908), Taylor's and von Kar-
man's theories of turbulent motion (1921 and 1937), and Heisenberg's and Born's 
approaches to modern quantum mechanics (1925 and 1926)2. 

Before proceeding any further with the presentation of stochastic theory, let us 
first spend a little more time thinking about its main concern, i.e. uncertainty, in a 
public health modelling context. 

a.  Thinking About Uncertainty—Public Health Reasoning Modes 

In his epic poem Satyricon3 the ancient Roman author Caius Petronius (Petronius 
Arbiter) wrote: “suam habet fortuna rationem”, i.e., “chance has its reason”.  From 
a modern public health perspective this implies that thinking about uncertainty and 
its consequences involves a particular mode of reasoning.  With this is mind, our 
introduction to stochastic theory focuses on the subject of public health reasoning 
modes under conditions of uncertainty.    

It is customary to start with a brief review of the most commonly encountered 
interpretations of uncertainty.  Some public health policy studies assume a purely 
subjective interpretation of uncertainty and associate it with preferences, subjec-
tive decisions, beliefs, and linguistic imprecision (Morgan and Henrion, 1990).  In 
the case of a potentially harmful exposure, e.g., the permitted maximum exposure 
level is considered as a decision variable that has no true value.  From a more 
pragmatic point of view, in the eyes of many practicing public health scientists the 
uncertainty encountered in real-world situations should be described as a technical 
notion linked with measurement errors, heterogeneous data bases, erratic fluctua-

                                                             
2 Interesting reviews of these historic stochastic modelling works may be found in Beran 

(1968), Gardiner (1990), and Sklar (1993). 
3 See, Allinson (1930). 
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tions of the underlying processes, etc. (a discussion of possible sources of uncer-
tainty and their estimation in practice can be found in Taylor, 1982).  As a conse-
quence, it should not come as a surprise that most common definitions of uncer-
tainty are technical.  Coleman and Steele (1999: 4), e.g., define uncertainty as "an 
estimate of experimental error".  In our view, however, a sound public health 
model should go beyond these common uses of the uncertainty concept.  Uncer-
tainty is of far greater importance in scientific thought than merely a technical no-
tion reflecting error measurements and observation biases or a subjective kind of a 
variable associated with decisions and preferences.  This thesis may invite debates 
on a number of issues.  E.g., some readers may ask whether the uncertainty we are 
dealing with in public health sciences is really a concept or a belief (Section A.b 
below).  Many researchers support the notion of conceptual uncertainty, i.e., un-
certainty related to model structure.  The issue of epistemic vs. ontologic uncer-
tainty arises in several public health problems (Section A.d).  Another major issue 
is how important is conceptual uncertainty vs. data uncertainty (Section A.c).  
Also, under what conditions inferences concerning the origin, propagation or eti-
ology of a disease can be considered as logically sound and scientifically mean-
ingful?  It is this kind of questions that immediately brings on the table some seri-
ous knowledge-theoretic issues.  Therefore, it is worth going through a brief yet 
critical review of the meanings of terms such as "sound reasoning", "concept", 
"belief", and “model”, especially in the light of the present investigation of public 
health uncertainties.  Understanding these terms can be very helpful in scientific 
communications and in scientific consensual determination of health risk under 
conditions of uncertainty4.  For instructional purposes, in this section we focus on 
reasoning, postponing until the next section an explicit consideration of the terms 
concept, belief, and model. 

The vital role of the thinking process in scientific inquiry is underlying Ein-
stein’s famous statement: “I want to know how God created this world.  I am not 
interested in this or that phenomenon, in the spectrum of this or that element.  I 
want to know His thoughts; the rest are details.”  Generally, reasoning is a thought 
process that involves arguments (e.g., Tomassi, 1999; Shand, 2000).  An argument 
is a mental construction that starts with specific premises or hypotheses (assump-
tions, epidemic laws, data, facts, etc.) and develops certain conclusions or conse-
quences (predictions, evaluations, new laws, etc.).  An argument, in turn, involves 
statements, i.e., the kind of sentences that make definite factual claims.  There is a 
list of so-called indicator words, which point out which part of the argument is the 
premises and which the conclusions.  E.g., words like "therefore", "thus", "hence", 
"so", "consequently", and "it follows that" indicate the beginning of conclusions.  
On the other hand, words like "assuming that", "if", "because", "since" and "by 
virtue of" indicate the beginning of premises.  An epidemic argument may be con-
cerned with a number of things, e.g., it could be for or against a specific thesis or 
it may lead to a novel result.  In evaluating an argument, one is basically interested 
in two elements: (i) Are the premises true? (ii) Assuming that the premises are 

                                                             
4 See, e.g., Klim McPherson’s commentary on “epidemiology on trial-confessions of an ex-

pert witness” (McPherson, 2002: 889-890). 
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true, what kind of support do they offer to the conclusion?  Although element i is 
not the business of logic, it is of great concern in scientific reasoning.  Element ii, 
on the other hand, is definitely the business of logic. 

On Valid Reasoning 

Valid argument is an argument in which one cannot have epidemiologically true 
premises followed by wrong conclusions.  In practice, individual public health ar-
guments are considered valid when they are instances of valid forms of argument.  
Three classical valid argument-forms are shown in Table 1.  The word "possible" 
in the title of Table 1 is meant to emphasize that, e.g., true premises and true con-
clusion is not enough to have a valid argument; it must also hold that to assert the 
premises and deny the conclusion would involve a contradiction (i.e., it will be 
logically inconsistent).  Generally, for public health purposes it is customarily to 
assume the existence of two kinds of reasoning: 

 
 (i) Deductive reasoning, i.e. reasoning from the general to the particular or less 

general.  It evaluates the arguments on the basis of validity (it allows only 
valid arguments).  In this case, the premises, if they were true, guarantee the 
truth of the conclusion.  

 (ii) Inductive reasoning, i.e. reasoning from the particular to the general.  It 
evaluates the arguments on the basis of probability (it allows invalid argu-
ments that are, though, highly probable arguments on the basis of the prem-
ises).  In this case, the premises, if they were true, make probable the truth of 
the conclusion. 

 
In the case of deduction, the conclusion asserts no more information than is as-

serted in the premises, whereas in the case of induction, the conclusion goes be-
yond, i.e. "amplifies", the content of premises.  In other words, deductive reason-
ing is defined in a very precise way:  it is the kind of reasoning in which it is 
logically impossible for the premises to be true and the conclusion false.  Gener-

ally, every variety of acceptable reasoning that is not deductive may be considered 

as inductive.  These include all forms of argument in which the conclusion does 

not follow necessarily from the premises, as in valid deductive reasoning, but in-

stead is inferred as likely.  Inductive reasoning assures us that the conclusion is 

likely, but not that it is certain.  Inductive reasoning analyzes risky arguments us-

ing probabilistic statements.  
Let H  and C  denote, respectively, the hypothesis (antecedent) and the conclu-

sion (consequence) of an argument.  Table 2 displays certain rules of reasoning, 
which involve the following logical operators:   

 

Table 1. Possible valid argument forms 

 

 

(a)  True premises  - True conclusion 

(b)  False premises - False conclusion 

(c)  False premises - True conclusion 
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Table 2. A summary of reasoning rules. 

Deductive Rules Inductive Rules 

H C

¬C

¬H

 

Modus 

Tollens, 

MT 

H C

C

It is likely that  H  is valid

 

Partial 

Confirmation, 

PC 

H C

H

C

 

Modus 

Ponens, 

MP 

H C

¬H

It is likely that  ¬C  is true

 

Partial 

Rejection, 

PR 

 

H C1

C1 C2

M

Cn 1 Cn

H Cn

 

Hypothetical 

Syllogism, 

HS 

 

i ai ,bi   i =1,2,...,N 1

N aN

It is likely that N bN

 

Analogy, 

An 

H C

¬H

C

 

Disjunctive 

Syllogism, 

DS 

 

ai    
ai A

(i =1,2,...,N )

 
 
 

It is likely that A

  

Simple Enu-

meration, SE 

H

C

H C

 

Conjunction, 

Co 

 

Si   
 Si
 (i =1,2,...,N )

 
 
 

It is likely that 

 

Statistical 

Generalization, 

SG 

(H1 C1) (H2 C2 )

H1 H2

C1 C2

 

Constructive 

Dilemma, 

CD 
 

C  follows  H

It is likely that  H  

    is the cause of C

 

Causal 

Generalization, 

CG 

H C

H (H C)
 

Absorption, 

A 

 Appeal to Authority, AtA 

H

H C
 

Addition, 

Add 

 Appeal to Utility, AtU 

H C

H
 

Simplification, 

Si 

 Appeal to Experience, AtE 

H C

¬H C

C

 

Excluded 

Middle, 

EM 

 

H C

H ¬C

¬H

 

Contradiction, 

Co 

 

A

a A

a

 

Direct 

Generalization, 

DG 
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• Negation, which is represented by the symbol “¬”.  E.g.   ¬H  represents the 
negation of hypothesis   H , which means that it is not the case that   H  is true. 

• Conjunction, represented by the symbol “ ”.  E.g., the   H C  means that both 
  H  and   C  are true. 

• Disjunction, represented by the symbol “ ”.  E.g., the   H C  means that either 
  H  or   C  is true. 

• Implication, represented by the symbol “ ”.  E.g., the   H C  means that if 
  H  is true then   C  is true.  What is asserted by implication is precisely that 

    ¬(H ¬C) , i.e. it is not the case that   H  and not   C . 
 
Yet another logical operator--not shown in Table 2, but which will play a role 

in the following--is: 
 

• Equivalence, represented by the symbol “ ”.  E.g., the   H C  means that   H  
is true if and only if   C  is true.  Equivalence is a strong logical operator that 
means the same thing as “    (H C) (C H ) ”. 

 
Furthermore, the symbol “ ” means “therefore” (or “as a result of the above”).  

The MT (see Table 2) is a deductive rule that denotes the disconfirmation of a hy-
pothesis, whereas MP denotes the confirmation of a consequence.  The HS is ex-
tremely useful in public health inferences.  This kind of argumentation, i.e. creat-
ing and following through a chain of conditional thoughts linked together logically 
by hypothetical syllogism, is a very common form of reasoning in public health 
situations.  The EM-rule is based on Aristotle’s law of the excluded middle: 

    H (¬H )  is always true.  The Co rule is based on the simple fact that the conse-
quence   C  cannot be both true and false; hence the hypothesis H  is false or, 
equivalently,   ¬H  is true.  The DG refers to elements as members of a set.  The 
symbol “ ” denotes that whatever is on the right of the vertical line has the 

property on the left of the line.  E.g., 
  

a  denotes that the element   a  has the 

property ; a,b  implies that both elements   a  and b  have the property ; 

etc.    A  is a set of elements to which   a  belongs.  
Inductive reasoning by generalization is a reasoning operation of paramount 

importance in scientific reasoning, as well as one that can be a source of serious 
errors.  A typical case of generalization is the SG rule of Table 2 ( Si  denotes sub-
classes of the larger class .).  The AtA is the kind of reasoning relying on the 
views expressed by an authority in the field (e.g., Dr. Watson’s views on DNA re-
search).  AtU is the reasoning that relies on the fact that the suggested reasoning 
works (e.g., analytical or numerical approximations to complex mathematical 
problems).  Finally, AtE is based on the experience of recognized experts in the 
field of interest. 

The reasoning rules are indispensable in the case of contemporary Black Death 
evidence (Sections III.C and D), in which the epidemic modeller needs to extract 
and evaluate complex and important arguments found in chronicles, accounts, re-
ports, etc.  Next we discuss a few illustrative examples from the Black Death ex-
perience aiming at illustrating some of the reasoning rules of Table 2. 
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Example A.1.  Detractors of the bubonic plague theory of Black Death (Section 
III.B.d) use the deductive MT rule to promote their views.  Let   H =Black Death is 
bubonic plague, and C =Y. pestis is found on skeletons of Black Death victims.  It 
is known that the bacillus Y. pestis is a characteristic of bubonic plague, in which 
case H C  makes sense.  However, since ¬C  is valid (based on experimental 
findings of the Oxford University researchers5), the   ¬H  must be valid according 
to MT, i.e., it is not the case that H  is true.   

 
Example A.2.  Proponents of the bubonic plague theory of Black Death (Section 
III.B.d) use the inductive PC syllogism.  Let H  be as in Example A.1 above, and 
  C = clinical symptoms of Black Death and bubonic plague are the same.  Then, it 
is likely that   H  is valid.  One could also argue that, if   C  is true then the probabil-
ity of   H  is larger than that of   ¬H , i.e.     P[H ] > P[¬H ] 0 .    
 
Example A.3.  In our study of the contemporary evidence, we often employ SG 

rules (Table 2).  For illustration, consider the case of the city of Lübeck (Ger-

many), in which =death rate due to Black Death is roughly 1 in 3; S1 = sub-

population of property owners in Lübeck; S2 = subpopulation of city clerks in 

Lübeck; S3 = subpopulation of city councilors in Lübeck; =population of about 

25,000 residents in Lübeck.  Then, there is a reasonably high probability that the 

population death rate in Lübeck was roughly 1 in 3 (see, also, Section III.C.b). 

 
Public health argumentation is often a combination of the rules of Table 2.  For 

illustration, consider the following situation.    
 

Example A.4.  Assume that     H C1,     C1 C2, and     ¬C2.  The question is 
whether under these conditions the hypothesis   H  is valid.  By using the HS and 

MT rules of Table 2 we obtain the following deductive reasoning mode: 

    

H C1

C1 C2

 
 
 

HS
   H C2  

¬C2

 

 
 

 
 

MT
   ¬H ;  i.e., the   ¬H  is valid. 

 
The careful study of reasoning sometimes reveals certain fallacies.  Some of the 

most well known are listed in Table 3.  The AtC leads to a reasoning mode that 
makes no deductive sense.  I.e., we can never deduce that a hypothesis is true by 
showing that some consequence following from it is true, or even that several con-

sequences that follow from it are true.  In these cases, it only makes sense to use 

the PC inductive reasoning form.  SiG implies that if certain elements 
  
a

i
 of   A  

have the property , then  all  elements  of   A   do have this property;  this form of  

                                                             
5 See, Section III.B.d. 
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Table 3. Fallacies of reasoning. 

Deductive Fallacies Inductive Fallacies 

H C

C

H

   

Affirming the 

Consequent, 

AtC 

ai    ai A   (i =1,2,...,N )

A
 

Simple 

Generalization, 

SiG 

H C

¬H

¬C

 

Denying the 

Antecedent, 

DtA 
  

C  follows  H

H  is the cause of C
  

Causal 

Generalization, 

CG 

  H and ¬H  Inconsistency, 

Inc 
  

Regularity :  xi   (i =1,2,...,N )

Regularity :  xN+1

 
Projectible 

Regularity, 

PR 

 
induction is not necessarily true.  In these cases one can use the probabilistic SE 

form (Table 2), instead.  Inductive generalization has some serious problems in the 

context of prediction, such as the famous Hume’s riddle of induction, which un-

derlies the PR fallacy: prediction should be based on projection of data regularity 

into the future (i.e., a regularity established on the basis of the data 
  
x

i
, 

    i = 1,2, ..., N , is supposed to be projectible to future values, such that     xN +1).  The 

problem, however, is that there is no definite rule to determine which regularities 

induction considers to be projectible in the future.  Indeed, naive characterization 

of generalization as a system that projects observed data regularities in the future 

is pointless unless we can say which regularities it projects.  Let us consider a few 

examples. 

 

Example A.5.  The detractors of the bubonic plague explanation of Black Death 
(Section III.B.c) on occasion use the AtC syllogism to attack its proponents: let 
  H =Black Death is bubonic plague, and   C =clinical symptoms of Black Death and 
bubonic plague are the same; even if   C  is true (which may be questionable), it is 
a mistake to conclude with certainty that   H  is true.    
 
Example A.6.  We are given the dataset 

  
x

i
= i  (    i = 1,2, ...,100 ) and we want to 

predict the future value     x101.  Obviously, one model that fits all data values is 

  
x

i
= i  (    i = 1,2, ...,100 ), in which case the prediction is     x101 = 101.  But it may be 

PR fallacy to accept this result.  Indeed, another model that fits the data equally 

well is 
    
x

i
= (i j

j=1

100 )+ i, which predicts x101 = 100!+101 9.3 10157
>>101, i.e. 

a much larger number than the first model’s prediction.  Induction offers no defi-

nite rules to choose between the two models above.  In a similar vein, the state-
ment that inductive logic presupposes the uniformity of nature is equally pointless 
unless we are able to say in what respects nature is presupposed to be uniform.  
Induction-based prediction models are problematic when a record event beyond 
past experience occurs--a problem that vexes experience-based models. 
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The Role of Probability 

We already pointed out the role of probability in inductive reasoning.  Probability 
may be used, e.g., in most inductive rules in Table 2 in order to quantify the like-
lihood of the arguments involved.  When probability assessments are made under 
conditions of incomplete knowledge, the resultant probability is a measure of 
one’s ignorance, in which case the probability is called epistemic (see, also, Ex-
ample A.16 below).  Deduction is a different story.  It must be stressed that, in 
theory, deductive reasoning assumes that the premises are true.  In real-world pub-

lic health applications, however, one may be not able to verify beyond any doubt 
the truth of the premises6.  Therefore, we maintain that it makes sense to consider 
the probability of a deductive argument.  This may sound like a strange proposal, 
for most people are accustomed to probability being a feature of inductive reason-
ing.  Probability formulations, however, are possible in the case of deductive rea-
soning as well, when it is applied in real world public health situations.  In fact, on 
the basis of this postulate a detailed theory of stochastic deduction has been de-
veloped by Christakos (2002a and b) with a wide range of applications in life sci-
ences.  This proves that in the modern public health paradigm the research and de-
velopment efforts do not need to be guided only by what is available “off the 
shelf” but by careful and innovative theoretical considerations, as well. 

These matters are of considerable interest in public health research and devel-
opment.  As far as space-time epidemic modelling is concerned, one may distin-
guish between two modes of uncertain reasoning, as follows:  

 
 (a) Statistical induction. 
 (b) Stochastic deduction.   
 
A remarkable difference exists between statistical induction in the form of a 

Bayesian conditional (bc, symbolized by “ ”), which belongs to mode a above, 

vs. stochastic deduction in the form of a non-Bayesian conditional (e.g., material 
conditional, mc, symbolized by the implication operator “ ”; and material bi-
conditional, mb, symbolized by the equivalence operator “ ”), which belongs to 
mode b above (see, also the stochastic theory of epidemics in Sections C.b, D.c, 
and IV.D).  As before, consider a hypothesis   H  and a conclusion   C .  The corre-
sponding probability functions are defined as follows7. 

 

                                                             
6 The reason for this limitation is intimately linked to the problem of reliability of knowl-

edge. 
7 For a mathematical introduction to inductive and deductive probabilities, see also Chris-

takos (2002a) and Christakos et al. (2002). 
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Inductive Conditional Probability: 

 
    
P(C H ) = P(H C) / P(H ) , (1) 

 
Deductive (Material) Conditional Probability: 

    P(H C) = 1 P(H ) + P(H C) , (2) 

 
Deductive (Material) Bi-Conditional Probability: 

    P(H C) = 2P(H C) + 1 P(H ) P(C ) . (3) 

 
In all three cases above, the probability functions do not determine what will 

happen, they only provide information about the comparative likelihoods of what 
might happen.  However, while the non-Bayesian conditionals (2) and (3) are 
based on a reasoning that investigates which scenarios linking the events under 
consideration are epidemiologically possible at the specific hierarchical and/or or-
ganizational level, the Bayesian conditional (1) concentrates on an explicitly sta-
tistical reasoning regardless of any such epidemic scenarios.  The issue may be il-
lustrated by means of some simple examples. 

 
Example A.7.  To clarify the statistical reasoning involved in the various modes 
of conditionalization consider a set of 52 water samples brought in the laboratory 
for testing.  Only 4 of these samples are over-contaminated, i.e., the contamination 
exceeds a specific threshold and can be harmful to human receptors.  Assuming 
that the samples are selected at random, let   H =The first sample is over-
contaminated, and   C = The second sample will be over-contaminated.  It is easily 
seen that, 

    
P(H ) = P(C) = 1

13
 and 

    
P(H C) = 4

52
3
51

.  The bc, mc, and mb prob-  

abilities are calculated as follows: 
    
P(C H ) = 4

52
3
51

( 4
52

) 1 0.059 ; P(H C) =  

1 1
13 + 4

52
3
51 0.928 ; and 

    
P(H C)= 2 4

52
3
51

+ 1 1
13

1
13

0.86 , respec-

tively.  As should be expected for random selection situations, the purely statisti-
cal nature of the bc probability seems to be the most intuitive. 

 
Example A.8.  A different situation arises in this example.  Consider the events, 
  H =An individual has been exposed to an agent that 93% of the time is infectious, 
and   C = The individual has been infected.  Assume that the following a priori 
probabilities are assigned to the relevant events     P(H ) = P(C) = 0.3 ; and 

    P(H C) = 0.001, reflecting the fact that, a priori, there may exist reasons other 
than   H  for the occurrence of   C .  The bc probability is 

    
P(C H ) = 0.001

0.3
0.003 << P(C) = 0.3 , which implies that the fact that   H  occurred 

does not provide any evidence for   C .  This is clearly counter-intuitive.  On the 
other hand, P(H C) = 1 0.3+ 0.001 0.701> P(C) = 0.3 . The mc analysis im-
plies that on non-Bayesian principles,   H  does provide considerable evidence for 
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  C .  This result is consistent with the existing knowledge.  Indeed, the use of the 
mc concept makes sense here, since, by definition, it calculates the probability that 
"it is not the case that   H  occurs and   C  does not occur", which is what we study in 
this example.  Finally, P(H C) = 2 0.001+1 2 0.3 0.402 > P(C) = 0.3.  
The mb probability demonstrates the fact that the mb includes the scenarios that 
"both   H  and   C  occur" and "both   H  and   C  do not occur", whereas it ignores the 
scenario that "  H  does not occur but   C  still occurs", which was taken into account 
by the mc.  If the last scenario is a public health possibility, it may be more appro-
priate to choose the mc approach in the situation studied in this example.  If it is 
not, then the mb may be preferred.   

 
These two examples support the view that there is not a unique knowledge-

based conditional that is universally valid.  Instead, the choice of a conditional de-
pends on the public health characteristics of the situation, rather than merely on 
purely statistical arguments8.  As we saw in Examples A.7 and A.8 above, the cal-
culus of probability teaches us how to manipulate probabilities in a formal man-
ner, but it does not give us a definite answer as to what these probabilities corre-
spond operationally.  Nevertheless, in public health applications we may need to 
assign an operational meaning to assertions such as “the probability of hypothesis 
  H  concerning an epistemic system is 0.3”.  A possible operational meaning of 
this kind of assertion could be that we assign a probability to an element of our 
description of the epidemic system rather than to an element of the system itself.  
To express this epistemic interpretation of probability in formal terms we often 
use the subscript “KB”, i.e.     PKB

(H ) = 0.3 in the above case, which denotes the 
knowledge base utilized to generate the probability value 0.3 concerning the oc-
currence of   H  (see, also, Section I.C.b).  In some cases, we may be able to pro-
vide an operational meaning to this assertion by generating on a computer a large 
number of numerical simulations that are compatible with the KB about the epi-
demic system and finding that the proportion of realizations in which   H  occurs is 
equal to 0.3. 

On Sound Reasoning and Inference 

Sound (or good) public health reasoning requires one more feature for the argu-
ments involved, that of true premises--e.g., in Table 1 above only the argument 
form a is sound.  The difference between valid and sound (or good) arguments is 
subtle and can have severe consequences in epidemic inquiry.  Similar is the case 
with Black Death: many differences of opinion are concerned with the accuracy of 
the premises rather than with the validity of the logical structure involved.   

 

Example A.9.  To demonstrate the matter, one may refer to the etiology of the 
plague in 17th century AD Italy in terms of “venomous atoms” and “miasmatic air” 
(see, e.g., Ayliffe and English, 2003).  The etiologic system developed by the 

                                                             
8 This salient issue is revisited in Section III below. 
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Renaissance doctors was logically valid but not sound, in the sense described 
above, and therefore it turned out to be epidemically meaningless9. 

 
Without delving into further details, deductively sound public health reasoning 

is the thought process that starts from true premises and derives conclusions on 
the basis of valid arguments, whereas inductively sound epidemic reasoning is the 
thought process that starts from true premises and derives conclusions on the basis 
of probable arguments.  While the study of the principles of reasoning is the do-
main of logic, the study of the principles of sound reasoning requires knowledge 
of the relevant science, as well.  Clearly, inductive reasoning can never attain the 
high standards of deduction.  Inductive reasoning relies considerably on experi-
ence, which is often a hard teacher: it gives the test first, and the lesson afterwards.  
Nevertheless, inductive reasoning can be very valuable in public health studies.  In 
certain epidemiologic situations, e.g., induction in terms of statistical modelling 
may be attainable in practice (e.g., Clayton and Hills, 1993).  These issues can be 
further clarified by means of an example. 

 
Example A.10.  As we saw in Example A.1 above, detractors of the bubonic 
plague theory of Black Death used the deductive MT syllogism that is based on the 
belief that the following premise is not valid: “Y. pestis is found on skeletons of 
Black Death victims”.  This belief was based on the experimental findings of a 
British team of researchers.  On the other hand, proponents of the theory use the 
same H  and C  as in Example A.1 but employ, instead, the inductive PC syllo-
gism, which is based on the belief that the above premise is valid.  The validity of 
the premise--which is critical in the PC syllogism--is supported by the experimen-
tal findings of a French team of researchers (Section III.B.d).  There are two im-
portant points here:  The first is that in both kinds of syllogism the validity or not 
of the premise is not a matter of logic but of experimental science (biology, etc.); 
the second is that, regardless of the experimental validity of the premise or not, 
MT is a logically stronger kind of syllogism than PC.    
 

One may need to assess an existing hypothesis in the light of the emerging in-
terdisciplinary evidence (physical, ecological, historical, demographic, epidemi-
ologic, etc.).  As we see in the following example, Black Death modelling often 
encounters situations in which the testing of a hypothesis may involve evidence 
from different disciplines. 
 
Example A.11.  In Section V.C.b we want to test the existing hypothesis 
  H =The pre-plague population of Florence was about twice that of Bologna.  The 
available evidence includes: (1) In both cities the area inside the city walls was 
approximately the same: 420 ha. (2) There were no dwellings adjacent to the city 
walls. (3) Duration of epidemic in both cities was 8 months. (4) Pre-plague popu-
lation of Bologna was 40,000 residents. (5) Duration and population are linked 

                                                             
9 One should not laugh too much with the Renaissance doctors.  Mutatis mutandis, similar 

reasoning styles are not so rare even nowadays. 
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through Eq. (IV.1).  In this case, the hypothesis   H  is contradicted by the evidence 
(1)-(5) and, thus, needs to be revised.   
 
At the heart of sound public health reasoning is the kind of a thought process 

called inference.  This is the thought process whereby one passes from the prem-
ises to the conclusions, on the grounds that if the former are true then the latter 
may be or must be true, as well.  In other words, the essence of inference is the 
justification of terms like "therefore", "thus", "hence", "consequently", "it follows 
that", etc., which connect premises with conclusions.  In this sense, inferences 
may be of a deductive or an inductive form, depending on whether they are asso-
ciated with deductive or inductive reasoning.  Typically, scientific inference in-
volves both the logical construction of the epidemic system and several non-
logical factors (e.g., system content and context).  In view of the above considera-
tions, it is not enough to understand the data, facts, concepts, and beliefs making 
up the premises, but one must also understand how these premises are combined 
by means of inference to lead to novel and interesting results and accurate predic-
tions about future events associated with an epidemic.  Facts, concepts, and beliefs 
in themselves may be of limited value in epidemic reasoning; only when they are 
linked in terms of inference they do obtain rational force. 

By way of a summary, one can hardly overestimate the importance of the ar-
gumentation modes and styles of reasoning under conditions of uncertainty, for 
they form an essential part of the background intellectual context of public health 
inquiry.  Argumentation modes and styles of reasoning have two roles: 
 
•  They are indispensable concepts and tools of the scientific inference (detective 

work10) that an epidemic modeller needs to perform when it comes to handling 
historical evidence of infectious diseases (i.e., uncertain evidence that lies far in 
the past), such as in the case of the Black Death epidemic during Middle Ages 
(Sections III.C and V.C).   

• They are at the heart of the mathematical formulation of random field models, 
which provide the necessary means for studying the space-time distribution of 
infectious diseases and epidemic outbreaks (Sections B.b and C).    

 
In view of these considerations, the claim made by a certain epidemiology 

school that “…we need epidemiologic discipline to prevent our inferences from 
going astray” (Rothman, 2002: vii) rather trivializes and obscures the real issue.  
In fact, it is not the isolated epidemiologic discipline (with its often outmoded 
concepts, vocabulary, and tools) that can prevent inferences from failing, but 
rather the intellectual process based on integration of knowledge from different 
disciplines (including epidemiology) guided by sound epistemic principles and 
scientific reasoning modes that can achieve such an important task.  Unfortu-

                                                             
10 A public health researcher, in general, and an epidemic modeller, in particular, often may 

find themselves in the position of a detective, such as Sherlock Holmes, only things usu-
ally do not look so “elementary”, as was the case with the great detective.  See, also, 
Section V.C.b. 
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nately, the current epidemiologic paradigm lacks these crucial elements and, 
hence, it is an inadequate one in need of immediate replacement. 

b.  Thinking About Uncertainty—Concepts, Beliefs, and Models 

On Concepts 

A concept is a basic mental structure.  This structure acquires its meaning on the 
basis of its function or use or role in thought processes (Harman, 1999).  Gener-
ally, concepts have a function in reasoning that is relevant to their content, which, 
in turn, may depend on connections with perception and inference (e.g., a funda-
mental cognitive role of concepts is to serve as a bridge between perceptions and 
actions).  However, cognition is often dominated by other more indirect modes 
that are not triggered by perception alone, i.e., the concepts have a function in rea-
soning and acting that can be independent of perception (Gardenfors, 2000).  Con-
cepts have a direct relation with human creativity; according to Hofstadter (1986: 
528), “Having creativity is an automatic consequence of having the proper repre-
sentation of concepts in mind”. 

It is not uncommon to allow words to guide our thinking, instead of using lan-
guage to express our thoughts consciously and critically.  Becoming conscious of 
the meaning of words is not as straightforward as learning a factual subject such as 
biology.  The analysis of concepts teaches us how to avoid certain pitfalls of lan-
guage that can be dangerous if we are not aware of them.  Scientific concepts, in 
particular, require a definition based on actual or thought experiments11. The color 
"red", e.g., is a perceptual concept that describes a specific characteristic of a per-
son, say, the color of his face.  In addition, on the basis of the "redness" concept, 
one could also make some interesting inferences.  From his "red" colored face one 
may infer, e.g., that a person experiences high fever.  In fact, several concepts in 
modern science possess only an inferential function (this is the case, e.g., of the 
theoretical concept "electron").   

For illustration, in Fig. 1 we consider some basic epidemic concepts associated 
with the different stages in the evolution of an infectious disease transmitted per-
son-to-person (such as measles or chickenpox):  incubation period (the time be-
tween a person’s infection and the appearance of the first symptoms), infectious 
period (the time during which a person can transmit the disease to others), and la-
tent period (time between infection of a person and his becoming infectious).  
Concepts such as the above are at the heart of epidemic science.  Also, epidemi-
ologic laws may describe an infinite set of possible events in a concise way, using 
a small number of such concepts.  Moreover, one of the most significant benefits 
of theoretical concepts is that they allow new predictions.   Finally, the analysis  of 

                                                             
11 Heisenberg, e.g., pictured a microscope that did not exist, but it could be constructed in 

principle. He then imagined using this microscope to see an electron and to measure its 
position.  He found that the electron's position and momentum did indeed obey the un-
certainty relation he had derived mathematically. 
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        of  
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      or  

    Dead

Latent 

Period

Infectious 

   Period  

Figure 1. Different stages in the evolution of an infection disease transmitted person-to-

person (reproduced from Scott and Duncan, 2004: 141). 

concepts can cultivate the important skill of how to communicate.   

On Beliefs 

Probably, most people would agree with the following definition of what consti-
tutes a belief:  A belief is a state of thought that involves concepts organized in a 
certain way.  E.g., without the concepts of "homogeneity", "stationarity", and 
"space ", a public health scientist cannot form the belief that "the space-time dis-
tribution of influenza in the state of California is spatially homogeneous".   Macin-
tyre et al. (2002) have expressed certain beliefs concerning the “place effects” on 
health in industrial countries.  It is possible that a belief formed within the context 
of the Newtonian conceptual framework of absolute place and time will be fun-
damentally different than a belief established within Einstein’s framework of rela-
tive place-time.   

Wilson (1963) argues plausibly that there may exist numerous possible beliefs 
regarding a situation.  Some of these beliefs may be  erroneous or useless,  even if  
they have a certain content and use meaningful concepts.  The belief, e.g., that the 
earth is flat involves meaningful concepts, but it is nevertheless incorrect and of 
no practical use whatsoever.  It is, therefore, worth emphasizing that the content of 
a belief does not derive from its own role in reasoning, but rather from its uses of 
the concepts it exercises12.    

Furthermore, according to Einstein, the advancement of sciences depends on 
the development of concepts that extend intuition into realms beyond daily life, 
beliefs, and raw experiences.  All this points towards the thesis that concepts play 
the primary role in public health reasoning involving uncertainty, and not merely 

                                                             
12 When thinking about concepts, one of the oldest and yet most powerful examples that 
comes to mind is the concept of the "wheel", which was first conceived as a mental 
structure by our ancestors several thousands years ago.  The "wheel" was not just a be-
lief shared by a group of people and opposed by some others, but a powerful new con-
cept that changed the history of human kind.  Perhaps, some people appreciated its im-
portance more than others who were thus left behind, or it was used by different people 
in different ways, but the conceptual image of "wheel" was clear to everybody. 
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the various possible beliefs in which those concepts could occur13.  A fundamental 

element of the problem of epidemic prediction, e.g., is to decide which concepts to 

use in inductive generalizations across space-time.    

On Models and Model Selection 

When asked to summarize his creative process, Peter Ilich Tchaikovsky remarked 
(Garden and Gotteri, 1993: 299): “It’s only by persistent hard work that I’ve fi-
nally reached the stage where the form in my compositions more or less corre-
sponds to the content.”  Similarly, formal tools (mathematical equations and cal-
culations) should not be used uncritically, but always in accord with a well defined 
and rich in content contextual background.   
Like all kinds of models, public health models ought to be built around con-

cepts.  As it turns out, the conceptual model can be one of the main contributors of 
uncertainty in scientific studies.  Although the role of mathematics is very impor-
tant in modelling, one must learn not only how to use mathematics but also when 
to use it.  Once the conceptual framework for an epidemic situation has been es-
tablished, theories in the form of mathematical equations can be proposed and 
tested.  These mathematical equations may provide powerful concise expressions 
to reasoning rules of the form presented in Table 2 above. 

 

Example A.12.  Consider the simple population exposure-response equation 
(Christakos and Hristopulos, 1998: 76),  

  
H

P
= E

c, (4) 

where 
  
H

P
 is the population health effect,   E  is the exposure, and  and   c are em-

pirical coefficients.  For simplicity, let     c = 1 (linear case) and   = 0.5; then Eq. 
(4) is a concise expression for statements expressed by the equivalence reasoning 
rule, as follows   

      

E = 0.00 H
P

= 0.00

E = 0.10 H
P

= 0.05

E = 0.50 H
P

= 0.25

           M

 

 

 
 

 

 
 

 

(5) 

in suitable units.  I.e., in this case each value of   E  is a necessary and sufficient 
condition for a unique value of 

  
H

P
.   

 

                                                             
13 This being the case with the predominant role of concept vs. belief in scientific reason-

ing, the claim made by a certain school of statistical thought that reasoning is belief re-
vision, the latter being simply a matter of changing probability distributions in light of 
new evidence independently of any conceptual structure considerations (e.g., Bernardo 
and Smith, 1994), could be problematic. 
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The formulation of laws of nature in terms of mathematical equations may have 
more than one interpretation14.  Consider, e.g., a law that is mathematically repre-
sented by the model (    i = 1,2, ..., N ) 

  L[X i ]= 0 , (6) 

where 
  
X

i
 (    i = 1,2, ..., N ) are variables (physical, biological, epidemic, etc.) and 

    L[ ]  is a suitable operator (algebraic, differential, etc.).  One can think of law (6) 
in two ways: 

 

(i) As an interactive relationship between the variables 
  
X

i
.  The law (6) is in-

terpreted as expressing a proportionality relationship between the variables, 
in which case one can ask questions of the basic forms "to what factors is     X1 

related" or "to what extent is     X1 interacting with 
  
X

j
 (    j = 2, ..., N )." 

(ii) As a cause-effect association between the variables 
  
X

i
.  The law (6) is inter-

preted as expressing the sequence of 
  
X

i
, in which case one can ask questions 

of the form "what variable is the cause of which variable" or "what causes 

    X1". 
  

In some cases the interpretation ii may be more problematic yet more informa-
tive than the interpretation i.  For demonstration, it is best to use some examples 
from general physical sciences, as follows. 

 

Example A.13.  Consider Newton's second law:   F = ma  (m denotes the mass of 
an object and   a  its acceleration, and   F  is the force applied on the object).  Ac-
cording to the interpretation i, the law simply states that for a given   m ,   a  is 
proportional to   F .  According to the interpretation ii, however, the law states that 
if a known force   F  is applied to a given mass   m , it will cause that mass to change 
its state of motion in a specified way.  Interpretation i is certainly shorter and less 
ambiguous than interpretation ii, but the latter offers more information about the 
kind of physical associations involved and their consequences.  Furthermore, cau-
sality (Section I.D) may function in both directions.  Consider Boyle's law for a 
given mass of gas, at a constant temperature:   PV = constant   (  P  is the absolute 
pressure and   V  is the volume of the gas).  According to interpretation ii, the law 
states that changes in   P  cause contractions and expansions, but also that changes 
in   V  cause compressions or refractions.  According to interpretation i, on the other 
hand, the law simply states that   P  is inversely proportional to   V . 

 
In theory, the choice of considering an epidemic model is critical, because it in-

cludes salient conceptual issues, such as which particular biological, physical, and 
demographic processes are included in the model, which are the underlying as-
sumptions and mechanisms, what is the conception of the space-time environ-

                                                             
14 See, also, the distinction between formal and interpretive components considered in Sec-

tion B.a later in this chapter; and the discussion on form vs. substance in Section I.A. 
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ment, what connections can be established between different domains, etc.  In the 
case of environmental epidemiology, Christakos and Hristopulos (1998: Chapter 
VIII) have considered a number of models in a stochastic context, including multi-
compartmental toxicokinetics, population exposure-response relationships, and 
health damage indicators.   

The conventional solution of a mathematical model often does not suffice in 
real world situations.  On occasion, epidemic modelling may not be as straight-
forward as one might expect it to be, in which case caution must be exercised.  
This is demonstrated in the case of model selection.  In practice, SEP may be con-
fronted with epidemic models of varying complexity (e.g., Anderson and May, 
1995; Mollison, 1995), in which case the choice of the most appropriate model for 
the situation depends on a number of factors including the availability of good 
quality data for parameter estimation, the resulting prediction accuracy, and the in-
tended use of the model.  Complex models, e.g., usually offer a better representa-
tion of uncertainty and better prediction for cleaner data.  Simpler yet epidemi-
cally meaningful models may yield more accurate predictions in case of rather 
noisy data15.   
A criterion used by a large class of model selection approaches is the accuracy 

of the predictions obtained on the basis of each model (Walters, 1986):  among a 
series of candidate models, a particular model is chosen, which leads to the most 
accurate predictions of the epidemic variables of interest.  However, in some situa-
tions the choice of the appropriate model may depend on the choice of the disease 
variable to be predicted.  Such a situation is described in the following example. 

 
Example A.14.  For illustration purposes, let us consider a controlled (simu-

lated) environment in which two models 
  
M

q
 (    q = 1,2 ) are available for the epi-

demic system under consideration.  Predictions are obtained in terms of the dis-
ease variables 

      
X

i,s  (    i = 1,2 ), where the vector       s = (s1, s2)  denotes coordinates 

within a spatial domain   D .  The actual (true) realizations of the two variables over 

  D  are assumed known and are denoted by 
  
x

i

a  (    i = 1,2 ), whereas the predicted re-

alizations generated by the models     M1 and     M 2 are denoted by     xi

1 and     xi

2, respec-

tively.  Given the 
  
x

i

a  and 
  
x

i

q  (    q = 1,2 ), the prediction errors 
    
e

x, i

q
= x

i

a
x

i

q  

(    i, q = 1,2 ) between the actual and the predicted realizations (generated by each 
one of the two epidemic models) were calculated.  Then, the spatial distributions 

of the relative errors 
    

e
x, i

= e
x, i

1
e

x, i

2  (    i = 1,2 ) over   D  were plotted in Fig. 2.  

Clearly 
    

e
x, i

< 0  (    i = 1,2 ) throughout   D  and, hence, model     M1 should be se-

lected.  But we are not done yet.  Next, assume that the initial variables 
      
X

i,s  of the  

 

                                                             
15 Gauch (1993) has argued that in certain circumstances models can be more accurate than 

the data used to build them, for they are capable of amplifying hidden patterns and ig-
noring noise. 
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 (a) (b) 

Figure 2. Relative predictive errors for the two models: (a) 
    

e
x,1, and (b) 

    
e

x, 2. 

 
 (a) (b) 

Figure 3. Relative predictive errors for the two models: (a) 
    

e
y,1, and (b) 

    
e

y, 2. 

same disease system are related to another set of disease variables Yi,s  via the rela-

tionships  

Y1,s = 6.93 X1,s + 4.04 X2,s

Y2,s = 12.12 X1,s + 6.93X2,s

 
 
 
. (7) 

The new errors 
    
e

y, i

q
= y

i

a
y

i

q  ( i,q = 1,2) between the actual and predicted realiza-

tions generated  by the two models  were calculated, and  the spatial distributions 
of the relative errors ey ,i = ey ,i

1 ey ,i
2  (    i = 1,2 ) over   D  are plotted in Fig. 3.  

Clearly 
    

e
y, i

> 0  (    i = 1,2 ) throughout   D  and, hence, model     M 2 should be se-

lected in this case.  By way of a summary, predictions in terms of the variables 

      
X

i,s  ( i = 1,2 ) suggest that model     M1 is the better representation of the real epi-
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demic system, whereas predictions in terms of the variables Yi,s  (    i = 1,2 ) favor 

model     M 2.  Therefore, one should be aware that there may exist cases in which 
the selection of a model representing an epidemic system may not be uniquely de-
termined by means of the predictions generated.  In this sense, our choice of a 
model might need to be associated with our preference for a specific group of pre-
dicted variables.  This is a rather open research problem, worthy of further inves-
tigation. 

c.  Questions of Concepts and Questions of Facts 

In scientific inquiry it is essential to distinguish questions of concept from ques-
tions of fact.  The question, e.g., "Is the West Nile virus epidemic likely to spread 
all over the world?" is a question of fact.  The relevant evidence consists of facts 
about the Nile virus and about the world.  Of course, we may not be able to give a 
definite answer to the question, but this is not due to any doubt we may have about 
the concepts involved.  It is rather due to our inability to predict which way the 
facts point, or because the facts available are incomplete and inconclusive.  On the 
other hand, the question "Is the West Nile virus epidemic adequately described by 
a random field?"16 is a question of concept.  Indeed, this question asks us to evalu-
ate whether the Nile virus distribution fits or not into the random field concept.  
To answer the question we need to examine the epidemic characteristics of the 
West Nile virus distribution in space and time and compare them with the theo-
retical  features of the random field in order to decide whether they are compatible 
or not.  This may be a decision that depends on the interpretation of the random 
field concept we select, on our understanding of the Nile virus spatiotemporal 
variation, on the level of the relevant hierarchy, etc.  Hence, questions of concept 
are distinguished from questions of facts.  In the former, issues of meaning, use, 
and function arise and are at the center of the answers, whereas in the latter, 
thought processes provide answers on the basis of existing facts.   

It goes without saying that, despite their fundamental differences, both types of 
questions are important in public health research and closely dependent on each 
other.  A sense of symmetry is desirable here.  While fact gathering (by observa-
tion and experimentation) is an indispensable component of scientific develop-
ment, trying to understand uncertainty on the basis of observed facts alone will not 
get us far.  It would reduce uncertainty evaluation to merely observation error 
analysis, lacking any explanatory or predictive power.  All the public health facts 
are not of equal value, and we must have a hypothesis or a theoretical model to 
guide our error analysis, obtain the necessary insight about the existing uncertain-
ties, integrate the various experimental results to obtain a holistic picture of the 
situation, and make credible predictions17.  Also, we must always keep in mind 
                                                             
16 The random field concept and its central role in the uncertainty analysis of epidemics are 
discussed in the following Section B. 

17 “With different instrumentation, people see different stuff.  Any one individual data set 
gives a picture, but it’s not the whole picture” was one of the critical assessments of the 
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that a central element of scientific interdisciplinarity is integration of concepts 
rather than of data (the latter being merely numbers that obtain meaning in the 
context of a sound theory).  Actually, since observations are “theory laden”, they 
will be interpreted differently after a change of paradigm takes place that involves 
new concepts.  Thagard (1999) refers to several scientific revolutions (in physics, 
biology, and psychology) to demonstrate the importance of concepts and concep-
tual changes in the development of scientific knowledge.  Remarkably, in many of 
these revolutions the new concepts were based mainly on thought experiments and 
visual imagery abstracted from the world of sense perceptions. 

More often than not, one's answer to a question of fact, may well depend on 
one's previous answer to a relevant question of concept.  The way we conceptually 
conceive physical occurrences or facts of nature tempers the way we evaluate 
these occurences or facts.   The way we look at, e.g., a set of tissue data depends 
on our relevant concept of tissue.  Predictions of space-time distributions of Black 
Death mortality using modern stochastics, which involves a physical theory-
dependent conceptual framework, can lead to more accurate and informative re-
sults than using the classical statistics framework, which is based on a theory-free 
interpretation of facts.  Another historical example may be instructive here.   

 

Example A.15.  Tycho Brahe, a great astronomer of his time, had collected a set 
of superb observations concerning planetary positions.  Although a very good 
gatherer of facts, he was lacking the necessary theoretical concepts that would al-
low him to make good use of his data and build a reasonable set of celestial laws 
(e.g., despite his excellent collection of facts, his poor conceptual formulation led 
to nonsensical conclusions).  This task (and glory) was thus left to Johannes Ke-
pler, who later derived and proved an adequate conceptual model of planetary mo-
tion using Brahe's data.  Therefore, adequate answers to questions of concept may 
need to be given before meaningful answers to questions of facts can be obtained. 
 

In most cases it is important to establish a sound conceptual understanding of 
the public health problem before gathering relevant facts by means of surveys, 
computational and experimental investigations, etc.  This is the view advocated by 
the old dictum, "One really understands a problem when he can conceptually 
guess the answer before he does the calculations or performs the experiments".  
We will not go that far.  We will argue, however, that conceptual understanding 
focuses on the really important aspects of the phenomenon and puts aside com-
plexities that are completely beside the point18.  Hence, the mathematical details 
are often secondary to the conceptual framework and logic of scientific inquiry.  It 
is the understanding of the conceptual framework and principles, not the calcula-
tion, which is the primary issue in public health studies, as well.  Mollison (1995: 

                                                                                                                                            
situation concerning population health effects due to the World Trade Center disaster 
(Dalton, 2003). 

18 When Galileo, e.g., was trying to understand the fundamentals of objects in motion, he 
knew that the key issue was to conceptualize how objects fall through a vacuum, ignor-
ing wind effects and other details. 
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17) is probably right to maintain that “The fundamental aim is to help understand-
ing of the relation between assumptions and the related dynamics: because without 
such understanding even a model which fits [epidemic] data perfectly can be of no 
scientific value”.  In fact, in many cases, no new mathematical tools are involved, 
but it is rather the novel and innovative way in which old tools are combined that 
can lead to a new conceptual framework.  Furthermore, a new conceptual frame-

work may point to new kinds of facts that need to be gathered via innovative ex-

perimentation. 
Uncertainty in concept formation will be reflected into a corresponding uncer-

tainty in experimental results.  An adequate representation of the uncertainty re-
lated to proposed concepts can improve the accuracy of the facts gathered through 
experimentation; similarly, a meaningful calculation of the uncertainty of the ex-
perimental facts can offer valuable information in our representation of the uncer-
tainty of the corresponding concepts.  This twofold argument is summarized as 
follows: concept-related uncertainty and fact-related uncertainty are closely linked 
and can enlighten each other. 

The conclusion one draws from the preceding discussion is that critical think-
ing systems based on the close interaction between concepts and experimental fact 
may be more valuable in public health research and development than belief-based 
systems.  In many cases, the latter are not concerned with scientific evidence ex-
cept as it supports the belief.  Also, belief is often associated with common sense, 
which frequently has been proven naive and inappropriate for extending our 
knowledge.  Miller (1996) gives a fascinating account of historical incidents 
where common sense-based belief had pointed to the wrong direction.  The theory 
of probability, in particular, is a field in which common sense has been frequently 
proven wrong.  Time and again, rigorous mathematical calculations have led to re-
sults that were completely unexpected on the basis of common sense.    

d.  Epistemic and Ontologic Concepts 

A major classification of public health concepts can be drawn in terms of epis-
temic (knowledge-theoretic) vs. ontologic considerations.  While the latter is di-
rectly concerned about nature, the former rather focuses on information about na-
ture (Weil, 1978).  Traditionally, causal relationships have been considered to be 
ontologic, describing objective (physical, biological, etc.) constraints in our world 
(see, also, Section I.D).  Probabilistic relationships, on the other hand, are epis-
temic, reflecting either the particular KB situation or the nature of the problem 
considered.  The former case is concerned with a lack of detailed information, 
whereas the latter case is associated with the kind of public health problem we 
wish to solve.  The probabilistic interpretation is necessary, e.g., when one seeks 
information about the mortality rate of NC hospital patients in the first 3 hours af-
ter the removal of one kidney rather than when one seeks to predict whether Mr. 
Karpenisiotis, whose kidney has just been removed in an NC hospital, will survive 
the next 3 hours.    
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To put it in a slightly different way, the properties of an ontologic concept are 
determined by nature itself.  An epistemic concept, on the other hand, can possess 
whatever properties we decide to give it (often subject to the condition that the re-
sults of any calculations involving the concept agree with experiments).  Analysis 
in terms of epistemic vs. ontologic concepts can lead to strikingly different an-
swers to questions of facts.  The long-standing quantum mechanics debate is a 
case in point.  Looking at the same facts, Bohr's evaluation in terms of epistemic 
concepts implies that quantum mechanics is a complete theory, whereas Einstein's 
analysis in terms of ontologic concepts concludes that quantum mechanics is an 
incomplete theory (D'Espagnat, 1995).   

In the context of the above distinction, uncertainty characterizing a public 

health system can be seen both as an epistemic concept describing one's state of 
incomplete knowledge regarding the system and an ontologic concept that reflects 
certain objective aspects of reality.  The following simple example (modified from 
Jaynes, 1989) is quite instructive in this respect.   
 
Example A.16.  A population consists of M  members possessing a specific 
gene G  that makes them susceptible to a deadly disease, and N M  members 
who do not possess the gene G .  If members are selected at random for testing, 
and Ri  denotes that a G  member was selected on the i-th draw, then the uncer-
tainty about R1 is expressed by the probability function P(R1) = M N .  If we 
know that a G  member was selected at the first draw, the uncertainty of the sec-
ond draw is represented by the conditional probability function 
P(R2 R1) = (M 1) (N 1) , which expresses a kind of ontologic causal influence 

of R1 on R2 .  Suppose now that we are told that a G  member was selected on the 
second draw.  Then, given that the second draw cannot have a physical influence 
on the first, an ontologic interpretation of the situation would require that 
P(R1 R2 ) = P(R1 ).  On the other hand, although R2  cannot affect R1 in an on-

tologic (physical) sense, an epistemic interpretation of the situation will imply that 
knowledge of R2  does affect our inferences about R1.  Hence, the uncertainty 

about R1 should be expressed by P(R1 R2 ) = P(R2 R1)  in epistemic terms.   

 
As a consequence, whether uncertainty is viewed from an epistemic or an on-

tologic standpoint can affect the outcomes of the analysis of the epidemic system 
in question.  Of course, this thesis begs the question:  when should an epistemic 
vs. an ontologic concept of uncertainty be used?  The answer to this question may 
depend on the hierarchical level of the analysis (see next section), the nature of the 
data available, the role of the observer (in modern science, e.g., it is often the epis-

temic aspect of observations that is of importance), and the cognitive accessibility 

of future events (which are, otherwise, physically and observationally inaccessi-

ble).   
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In the end, public health scientists may find themselves acting as a kind of ap-
plied philosophers19.  The interdisciplinary, multi-cultural, and multi-objective na-
ture of the world could leave them no choice.  Indeed, regardless of how technical 
or formal their research may be, they will always need to gain intellectual access 
to issues such as the nature and reliability of knowledge, the conception of reality, 
the reasoning mode, and the underlying methodological assumptions. 

e.  Conceptual Hierarchies 

The conception of a hierarchy is vital in many thought processes and intellectual 
mechanisms.  It may be instructive to start with a few examples of conceptual hi-
erarchies commonly encountered in science: 

 

    (i)  Hierarchy of biological scales, from the microscopic scale (e.g., atoms) to 
the macroscopic scale of everyday life (e.g., humans).   

    (ii)  Hierarchy of animal types, from super-types (e.g., animal) to sub-types (e.g., 
horse).  

(iii)  Hierarchy of disease explanations, from infectious disease (bacterial and vi-
ral) to molecular-genetics (e.g., multifactorial).  

 

Viewed from the angle of similar hierarchies, many of the concepts characteriz-
ing an epidemic system are not absolute.  Occasionally we may do better if we 
view public health uncertainty within the context of a certain conceptual hierar-
chy.  At the macroscopic level (hierarchy i), e.g., uncertainty may be viewed as an 
epistemic concept describing one's state of incomplete knowledge regarding a 
situation, whereas at the quantum level uncertainty may be seen as an ontologic 
concept that describes certain objective aspects of reality20.  The following exam-
ple is also instructive.   
 
Example A.17.  While at the level of independent clinical trials an interpretation 
of data uncertainty in terms of frequencies seems to be adequate in many cases, at 
the level of epidemic processes that vary in space and time the same interpretation 
proves to be clearly inadequate, and a different theory-laden interpretation of un-
certainty is needed.  Furthermore, evaluating uncertainty on the basis of a reduc-
tionist approach (i.e., understanding the whole by learning about an hierarchy of 
its parts) has been very successful in the study of physical phenomena, whereas 

                                                             
19  In his discussion of disease causation, Rothman (2002: 15-16) points out that, “How do 

we go about determining whether a given relationship is causal?  Some scientists refer to 
checklists for causal inference, and others focus on complicated statistical approaches, 
but the answer to this question is not to be found either in checklists or is statistical 
methods.  The question itself is tantamount to asking how we apply the scientific method 
to epidemiologic research.  This question leads directly to the philosophy of science.” 

20  The latter is the meaning of Heisenberg's uncertainty principle, at least in the context of 
the Copenhagen interpretation. 
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uncertainty evaluation on the basis of a teleologic approach (i.e., understanding an 
organism by learning about the purpose of its hierarchy of morphological and be-
havioral traits) may be more appropriate for certain biological phenomena21.    

 
The preceding analysis leads to the conclusion that the proper interpretation of 

uncertainty concerning a phenomenon (biological, epidemic, demographic, physi-
cal, etc.) may depend on the level of the hierarchy that the phenomenon is associ-
ated with.  Often, it may be the scale of observation that creates the phenomenon.  
E.g., change in scale has consequences in most functions of living organisms 
(Schmidt-Nielsen, 1999).  There exist biologic situations in which the study of 
humans can only be performed over a certain range of coarse scales, whereas an 
organism looks completely different seen through a microscope when individual 
cells become visible.   

 
Example A.18.  In Table 4, different human exposure scales are used to classify 
variables, such as space, time, age, exposure level, and health effects.   

 
In epidemic investigations, an interesting situation of the hierarchy of scales is 

the so-called “change-of-scale effect”, which has to do with the different degrees 
of disease variation associated with the same type of observation when the area 
within which the observation takes places changes (e.g., from state to county to 
city, etc.; Christakos et al., 2002; Choi et al., 2003).  The implications of this ef-
fect in the case of Black Death are discussed in Section III.D.e.  Also, in Section 
IV.B.a we introduce a scaling law which links the duration of the epidemic with 
the population scale (expressed in terms of the pre-plague city size).   This kind of 
laws are usually expressed in the form of descriptive equations that can reveal 
connections that otherwise may remain obscure and can generate estimates of 
essential disease variables.   

In light of the above considerations, a distinction between the concepts of un-
certainty and space-time variability is usually called upon in scientific applica-
tions.  In particular, the epistemic interpretation of uncertainty at the macroscopic 
level of our everyday lives (based on insufficient knowledge, incomplete understa- 

 

Variable Scale 

Space m Km  

Time msec years  

Age young old  

Exposure micro macro  

Health effect local global  

Table 4. Examples of 
scale variations in human 

exposure studies. 

                                                             
21 For a fascinating discussion of the revival of Aristotle's teleologic approach in life sci-

ences the reader is referred to Allen et al. (1998). 
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nding, inadequate cognition processes, etc.) distinguishes it from natural variabil-
ity, which is rather an ontologic concept describing the actual space-time distribu-
tion of a real-world phenomenon (e.g., the distribution of ozone exposure values 
across space and time).  Despite this distinction, however, we often need to resort 
to an epistemic representation of the natural variability in terms of uncertainty 
concepts due to our incomplete state of knowledge and inadequate data sets. 

B.  On Stochastic Modelling 

a.  Formal and Interpretive Components 

Traditional public health studies mostly relied on standardized mortality ratio, life 
tables, and Mantel-Haenszel methods, among others.  A defining feature of mod-
ern epidemiology was the more sophisticated use of quantitative methods (Susser 
1985), which have been employed by public health researchers to relate the fre-
quencies of diseases to the distribution of exposure and to control the potential 
confounding in non-experimental data (e.g., by comparing two standardized mor-
tality ratios, by stratified tabular analyses).  The introduction of statistical models 
into epidemiologic studies appealed to many researchers, mainly because of its 
considerable capacity to “statistically” adjust for multiple potential confounders 
(Rothman and Greenland, 1998).  Advancement in computation and the availabil-
ity of statistical software made statistical model-based inference more pervasive in 
epidemiologic research since the 1980s (Chen, 2005)22.  However, many research-
ers have realized that real-world epidemic problems are much more complex to be 
handled by purely statistical methods.  Speaking after the 1968 epidemic of Hong 
Kong flu, the epidemiologist Alexander Langmuir remarked, “Influenza predic-
tions are like weather forecasts”.  If this is the case, a logical implication is that the 
appropriate mathematical tools to be used in the study of such epidemics are sto-
chastic tools similar to those used in weather forecasting (random field models, 
stochastic differential equations, variational techniques, etc.).  Indeed, in our view 
stochastic modelling is the primary conceptual and operational apparatus for 
studying fundamental uncertainties of the type happening in public health re-
search, in general, and epidemics, in particular.   

Beyond an initial view that the term stochastic modelling is associated with the 
study of uncertainty in public health situations, at a more substantial level percep-
tions regarding stochastic modelling's uses are not as uniform as one might think.  
This should not come as a surprise, in view of the interdisciplinary nature of sci-
ence.  Depending on the application considered, one may refer to stochastic mod-
els as environmental, weather forecasting, epidemiologic, genetic, ecological, etc.  
Nevertheless, a common factor in all these cases is that stochastic modelling is 
                                                             
22 Air pollution studies are typical examples in which statistical software tools has been ap-

plied to address public health issues (unfortunately, not always without some serious 
problems; see Knight, 2002, and Revkin, 2002). 
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concerned with the mathematically rigorous and scientifically meaningful repre-
sentation, explanation, and prediction of natural and life systems in uncertain envi-
ronments (such uncertainties may be due to measurement errors, heterogeneous 
data bases, erratic fluctuations in the space-time variation of the underlying proc-
esses, insufficient knowledge, etc.).    

In such a framework, the main goal of stochastic modelling may be to provide a 
realistic epidemic situation with spatiotemporal continuity and internal consis-
tency.  To achieve such a goal, stochastic modelling relies on the powerful blend-
ing of two essential components:   

 

    (i)  A formal component that focuses on mathematical structure, logical process, 
and sophisticated theoretical representation. 

    (ii)  An interpretive component concerned with applying the formal part in real-
world situations, including the epidemiological content of mathematical 
structure, the physical meaning of specific observation methods, and the 
connections to other empirical phenomena. 

 

Formal stochastic modelling deals with a large variety of mathematical topics, 
including random fields, probability theory, stochastic differential and integral 
equations, statistics, space-time geometries, logical reasoning under conditions of 
uncertainty, optimal estimation, and multi-objective optimization theories, among 
others.  The challenge of applying sophisticated stochastic modelling in public 
health sciences is often not in the formal component itself, but in the appropriate-
ness of the application and the validity of the interpretive component that goes be-
yond mathematics into the realms of logic, physical and biological knowledge, 
and empirical observation.  Interpretation issues are relevant when one needs to 
establish correspondence rules (also called, operational or duality rules) between 
the disease variables and the formal mathematics that describe them, to measure 
and test the formal structure, or to justify certain methodological steps23.  On the 
other hand, the adequate interpretation of experimental or survey data and the de-
sign of new experiments in component ii depend on the sophisticated theoretical 
analysis of the epidemic structure in component i that is consistent with the data. 

The fruitful interaction of formal and interpretive investigations plays a crucial 
role in the successful application of stochastic modelling in public health sciences.  
The essential connection between the formal and the interpretive components of 
stochastic modelling has been astonishingly productive, in both ways: formal 
techniques have generated the means for understanding public health phenomena, 
like epidemics, beyond sense perceptions; and interpretive investigations have 
produced new and more powerful formal techniques.  In fact, stochastic epidemic 
modelling differs significantly from the classical statistics approach in this respect: 
the former is founded on laws (physical, biological, etc.), phenomenological rep-
resentations and scientific reasoning, whereas the latter mainly uses formal tech-
niques of pattern fitting (trend projection, regression analysis, sampling theory, 

                                                             
23 That is not to imply that the two components are totally independent, or merely linked by 

the correspondence rules.  Instead, they form an integrated whole. 
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etc.).  This remarkable feature of stochastic modelling enhances its scientific con-
tent and makes it a central force in the study of such diverse phenomena as con-
taminant transport in environmental media, turbulence, ionospheric scattering and 
electromagnetic wave propagation through the atmosphere, large-scale phenomena 
associated with disease and mortality, embryonal formative processes, and organic 
molecules organizing themselves into organisms of increasing complexity through 
random chemical processes.    

Most public health phenomena and epidemic systems governed by mathemati-
cal equations include situations that need to be treated from a stochastic modelling 
viewpoint (e.g., Bailey, 1957; Mollison, 1995).  In situations involving uncertain 
elements and random fluctuations, stochastic modelling formally casts the govern-
ing epidemic equations into a stochastic form that may involve random field reali-
zations, probability distributions, or space-time moments.  As a consequence of 
their biological basis, these stochastic equations provide public health scientists 
with the means for generating sound scientific inferences, as opposed to merely 
statistical inferences24.   

b.  An Outline 

An outline of the main stages of stochastic modelling is given in Fig. 4.  Stochas-
tic modelling in a public health context relies on the interaction between its formal 
and interpretive components, and involves a combination of interdisciplinary ele-
ments.  Briefly, the main stages are as follows: (a) A hard core of fundamental 
concepts, constitutive hypotheses, and theoretical representations in terms of sto-
chastic theory. (b) A set of auxiliary tools (model parameters, assumptions, corre-
spondence or duality rules, etc.) linking formal theory with the observed public 
health phenomenon. (c) A heuristic (i.e., a group of guidelines for choosing auxil-
iary tools), which with the help of mathematical techniques, offer interpretations, 
explanations, and predictions about the real world public health situation.  The 
methodology is successful when these explanations and predictions are corrobo-
rated.  If they are refuted (e.g., falsified), one may need to go back to stage b and 
choose another set of auxiliary tools. 

Fig. 4 offers a useful perpsective for describing the structure of scientific 
knowledge and the processes that advance it.  Some important features include:   

 

• Its operational character expressed by the dictum, "what one does determines 
what one means".  In this context, concepts and tools acquire meaning from the 
operations we perform with them. 

• Its corroboration property, which is materialized in terms of concise reports 
evaluating the stochastic modelling methodology.   

 

                                                             
24 In terms of minimum variance, bias, efficiency, estimation, and confidence tests, etc.; 

Bury (1975).  An interesting discussion of scientific vs. statistical inferences may be 
found in the little known book by Wang (1993: 160) 
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Figure 4. Outline of the main stochastic modelling stages. 

• Its progressive character, i.e., the revised tools in stage b successfully anticipate 
previously refuted predictions, lead to novel results, etc.  Space-time predic-
tions may be deductions from generalizations (e.g., law statements) and singu-
lar statements (data or "circumstances"). 
 
Let us now briefly focus on the issues of explanation and prediction.  A lot of 

what is going on in epidemic studies today has to do with ad hoc explanation. Ac-
cording to stochastic modelling, however, what does the explaining must be richer 
in content than the situation to be explained.  In this sense, stochastic methodology 
is Aristotelian rather than Deweyan (see, also, Section I.B.a).  Most studies of sci-
entific methodology emphasize the salient role of prediction (expressed in terms 
of testable auxiliary tools) in conjunction with hypothesis making and model 
building.  Epidemic predictions may be empirical generalizations based on unex-
plained correlations (e.g., statistical forecasting techniques), or theoretical predic-
tions based on the knowledge of laws (physical, biological, demographic, etc.).  In 
several situations epidemic predictions are uncertain and lack the desired level of 
accuracy, in which case rigorous stochastic analysis can increase the accuracy of 
these predictions by continuously improving our understanding of the uncertain-
ties involved.  As a matter of fact, when considered in the appropriate context the 
determining role of prediction in human affairs can hardly be overestimated.  
Modern neuroscience, e.g., strongly emphasizes the importance of prediction:  as 
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we saw above (Section I.C.b), human brains make predictions on an everyday ba-
sis by integrating general or core knowledge (of the invariant structure stored in 
memory) with specificatory or site-specific knowledge (highly specific inputs and 
recent details).  According to Hawkins (2004), prediction is the primary function 
of the neocortex, and the foundation of intelligence.  If one seeks to understand 
what creativity is, how to make intelligent choices in any scientific field or in eve-
ryday activities, and even how to build intelligent machines, one must compre-
hend the nature of these predictions and how the cortex makes them.  In the SEP 
context, predictions are visualized by means of space-time maps.  The generation 
of these maps relies on the sound theoretical support provided by stochastic theory 
as well as the modern technological facilities supplied by temporal geographical 
information systems (Section E below).  At this point, it may appropriate to re-
mind the reader of the possibly asymmetric character of the relationship between 
explanation and prediction described in Section I.D. 

In the SEP context, the stochastic modelling methodology outlined in Fig. 4 
should be viewed as a continuously evolving project rather than a dogmatic, time-
less, and unchanging framework.  We would like to emphasize that the goal of the 
project is not to reject or suppress all novel forms of public health knowledge just 
because they do not happen to conform to its current framework or are subversive 
to the project's basic commitments, whatever they may happen to be.  On the con-
trary, new viewpoints should be always considered when they offer objective op-
portunities for development and scientific growth.  Skepticism and critical think-
ing, as well as open-mindedness, must be exercised tirelessly by the stochastic 
epidemic modeller in order to decide whether new evidence makes it necessary to 
have a shift in the current conception of stochastic modelling or to resist meaning-
less interventions to the project that are devoid of any scientific substance. 

C.  Theory of Spatiotemporal Random Fields (S/TRF) 

a.  Basic Notions 

At a basic modelling level, accurate representation of the epidemic patterns across 
space and time relies on the adequate characterization of the distibutions of the 
relevant variables (e.g., variation of susceptibles or infecteds in the space-time 
domain), as well as the adequate processing of the uncertain information available 
regarding the essential parameters of the epidemic25.  If such issues are not ade-
quately addressed, erroneous public health decisions could be made having poten-
tially serious consequences.  The strong spatial element characterizing many epi-
demiologic concepts has not been unnoticed.  Holmes (1997: 111), e.g., argues 
that:  “It is obvious to any observer of epidemics that the spread of disease is un-

                                                             
25 This includes cases in which inaccurate results are obtained due to poor computational 

programming of the mathematical techniques employed. 
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avoidably spatial.  Disease moves from individual to individual following the 
network of contacts between individuals within a population”.  We would like to 
go beyond that and claim that such a spread is essentially spatiotemporal, i.e., it 
propagates in a composite space-time manner.  This being the case, stochastic the-
ory comes to the rescue and proposes a powerful solution in terms of the spatio-
temporal random field (S/TRF) model.  For a rigorous mathematical discussion of 
the classical S/TRF theory in a life sciences context, the reader is referred to 
Christakos and Hristopulos (1998).  Moreover, more recent conceptual formula-
tions of S/TRF in terms of deductive logic can be found in Christakos (2002a)26.  
Here we restrict ourselves to a rather basic introduction to the S/TRF model and 
make the necessary connections with the public health phenomena it represents.   
Let       p = (s , t)  be a point in the space-time domain (  s  denotes the spatial loca-

tion and   t  the time instant under consideration).  A S/TRF model, 
      
X p = X s ,t , is 

viewed as the collection of all epidemically possible realizations of the phenome-
non we seek to represent mathematically.  The multiplicity of realizations allows 
S/TRF to account for the uncertainty sources and, at the same time, to adequately 
represent the spatiotemporal variation of a disease.  These realizations have an 
epistemic quality: they do not correspond merely to all possible ways an epidemic 
system can be represented logically, but rather to the ways that are consistent with 
the known properties of the system (i.e., known by the modeller’s brain).  Hence, 
the S/TRF theory can produce disease distribution models that are mathematically 
rigorous and tractable while, at the same time, they are geographically and epide-
miologically plausible.  From a stochastic theory point of view, the S/TRF model 
is fully characterized by its probability density function (pdf), 

  
f

KB
, which is gen-

erally defined as    

      
P

KB
[x1 X p1

x1 + dx1, x2 X p2
x2 + dx2, ... ] = f

KB
(x1, x2, ...) dx1 dx2...  (8) 

where the subscript KB denotes the knowledge base utilized to construct the pdf 
(KB =   G ,   S  or   K =G S ;  Section I.C.b).  By means of Eq. (8), the 

  
f

KB
 as-

signs probabilities to different 
    
X p -realizations and may involve multiple space-

time points.  The S/TRF (8) has many conceptual layers and salient features that 
tell a long story that all epidemiologists should be aware of:    

 

(a) The model assumes a composite space-time manifold, i.e., it considers space 
and time as an integrated whole rather than as separate entities.    

(b) It can incorporate spatiotemporal cross-correlations and interdependencies of 
the disease distribution, as well as laws of epidemic spread (e.g., expressed 
in terms of algebraic or differential equations).  

(c) It is of immediate relevance to models that are mathematically rigorous and 
tractable while, at the same time, they are geographically and epidemiologi-
cally plausible.   

                                                             
26 While the fundamental element of propositional logic is the proposition (Section A 

above), the fundamental element of the deductive S/TRF formulation is the stochastic 
event; for more details see references. 
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(d) It is capable of generating informative maps enabling the determination of 
several important characteristics of the disease as it moves from one geo-
graphical region to another, such as the direction and speed of epidemic 
spread, prevailing trends and patterns, as well as the relative significance of 
the different disease components. 

 
These features of the S/TRF will eventually reveal themselves during the proc-

ess of studying the Black Death epidemic in the following sections and chapters.  
At this point we would like to point out some important aspects of the S/TRF 
model that are sometimes misunderstood.  When representing a public health phe-
nomenon in terms of a S/TRF model we attribute to it a random character but, 
also, an equally important structural character.  This is acknowledged, e.g., by the 
fact that a realization is allowed only if it is consistent with the knowledge avail-
able regarding the public health phenomenon the S/TRF represents--this is some-
times called the S/TRF conditionalization property.  Conditionalization accounts 
for mathematical theories of large-scale phenomena as well as for purely empirical 
descriptions.  Clearly, not all realizations of the S/TRF are equally probable.  De-
pending on the underlying mechanisms, some realizations are more probable than 
others, and this is reflected in the pdf of the S/TRF, Eq. (8) above.   

 
Example C.1.  Consider the case of individuals organizing themselves into 
communities of increasing complexity through random processes of spatiotempo-
ral movement and interaction.  The possible arrangements of individuals into 
complex societies are realizations of an S/TRF with varying probabilities of occur-
rence.  These probabilities depend on the characteristics of the interacting indi-
viduals and the laws that govern their dynamics.   
 

The S/TRF model allows a rigorous characterization of complex epidemic vari-
ability and uncertain effects, and generates predictive space-time maps.  Depend-
ing on the situation, random field representations of disease distribution can be 
combined with other types of information, such as environmental exposure con-
centration, frequency and duration, population density, lines of infection, contact 
processes, etc., in order to analyze sensitivity and assess the features of the epi-
demic.  Random field models have led to considerable advances in the analysis 
and mapping of composite space-time heterogeneities, which are used in real 
world public health situations.  For illustration purposes, in the following section 
we use the S/TRF theory to represent a few basic epidemic variables of the Black 
Death situation.    

b.  Expressing Black Death Uncertainty in Terms of S/TRF 

As we saw above, the stochastic modelling of an epidemic such as Black Death 
starts by introducing a prime methodological assumption: the relevant disease 
variables will be mathematically represented as S/TRF.  Mortality generally refers 
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to the proportion of a population that dies during a specific time period27.  Mortal-
ity distribution across space and time is represented by the S/TRF M p = M s ,t .  

This is a very important methodological step since, as it has been emphasized in 
the Black Death literature (e.g., Wood et al., 2003), the Black Death mortality dis-
tribution is heterogeneous in space and time and, hence, the spatiotemporal ran-
dom field theory is a most appropriate mathematical tool to handle this situation.  
As a matter of fact, most epidemic-related events are functions of space and time, 
i.e., they take place at some geographical location at a specified time, and they 
vary from one space-time point to another.  Typically, the random field 

      
M s ,t  is 

mathematically described by the pdf 
  
f

KB
, which assigns probabilities to the vari-

ous possible mortality realizations, 
    
m

s,t , across space-time, see Eq. (8) above28.  

Loosely speaking, the S/TRF model frees data of their classical duty of determin-
ing directly mortality values at future times and allows them instead to determine 
the probability of these values.   
 
Example C.2.  For illustration purposes, let us consider the case of monthly mor-

tality data or other proxies.  Given the various uncertainties in the preparation of 

these sources of information, when we finally obtain a mortality value, say 18%, 

the number is likely to differ from the actual value, which we may never know.  

We would be surprised if the real value was, say, 60%, but we cannot disregard 

15.6% or 20.9%.  Practical situations like this are best handled in terms of stochas-

tic theory.  In contrast to a deterministic variable, which can only take a single 

value, random fields allow consideration of a range of values.   Even better, the 

likelihood of each one of these values being the correct one does not have to be 

the same (every value can have a different probability of being the correct an-

swer)29.  Variations in the probability of delivering the correct answer define the 

shape of the pdf 
  
f

KB
.  There is a large number of possibilities regarding the shape 

of the pdf--SEP modelling is not restricted to any specific shape of the pdf. 

 

The mortality S/TRF may be associated with different kinds of conditional 
probabilities, Eqs. (1)-(3) above.  These probabilities are of particular interest 
when the S/TRF is implemented in a cause-effect context (see, also, the argument 
forms in Section A.a and the adaptation principles in Section D.c).  Let 

  
F

KB
 de-

note the cumulative distribution function (cdf).  Then, the    

      
P

KB
(M  s ,  t 

M s ,t ) = F
KB

(ms ,t , m  s ,  t 
)F

KB

1 (ms ,t ) , (9) 

                                                             
27 For the mortality definition used in Black Death modelling, see Eq. (III.1). 
28 As we will see in subsequent chapters, in view of the knowledge categorization thesis 

(Section I.C.b), the pdf may be also written as   fG  or   fS  to denote the fact that it has been 

constructed on the basis of the   G -KB or the   S -KB, respectively. 
29 These probabilities are important in a decision-making context.  E.g., information on 

low-probability high-consequence epidemic events allows public health managers to 
better assess their decisions. 
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P

KB
(M s ,t M  s ,  t 

) = 1 F
KB

(ms ,t ) + F
KB

(ms ,t , m  s ,  t 
)  (10) 

and 

      
P

KB
(M s ,t M  s ,  t 

) = 1 F
KB

(ms ,t ) F
KB

(m  s ,  t 
) + 2F

KB
(ms ,t , m  s ,  t 

)  (11) 

are the statistical conditional, material conditional, and material bi-conditional 
probability functions, respectively; as before, KB =   G ,   S , or   K = G S .  

For all practical public health purposes, space-time heterogeneity can be de-
scribed in terms of (i) the mortality mean function (the bar denotes stochastic ex-
pectation)    

M s ,t = dms ,t ms ,t fKB (ms ,t ) , (12) 

at each space-time point       p = (s , t) , (ii) the mortality covariance function,  

cM;s  s ,t  t = ˜ M s ,t ˜ M  s ,  t = dms ,t dm  s ,  t (ms ,t M s ,t )(m  s ,  t M  s ,  t ) fKB (ms ,t ,m  s ,  t )  (13) 

between pairs of points       p = (s , t)  and  p = (  s ,  t ) , where  

˜ M s,t = M s,t M s ,t , (14) 

are mortality fluctuations, and (iii) the mortality semivariogram function    

M ;s  s ,t  t = 1
2 M s ,tM  s ,  t = 1

2 dms ,t dm  s ,  t (ms ,t m  s ,  t )2 fKB (ms ,t ,m  s ,  t ) . (15) 

The M s ,t  represents structural trends of mortality, whereas the cM;s  s ,t  t  and 

M ;s  s ,t  t  express space-time mortality dependence.  This dependence is an inher-

ent feature of mortality variation across geographical space and during different 
times.  There exist, in fact, different forms of dependence that lead to distinct co-
variance shapes (specific covariance models of mortality are discussed in Section 

IV.B.c).  The mortality variance,     M

2 , is obtained from Eq. (13) if we let   s =  s  
and   t =  t , in which case we get 

M
2

= ˜ M s ,t
2

= dms ,t (ms ,t M s ,t )2 fKB (ms ,t ) . (16) 

Because it can investigate the different forms of space-time correlation that are al-
lowed by the epidemic data and core knowledge available, the 

      
M s,t  model can 

provide multiple permissible realizations (scenarios) and can also characterize 
their likelihood of occurrence.    
 
Example C.3.  For an illustration of the above formulas, consider the simple case 

of one soft (interval   I ; i.e.,     m1 I ) mortality datum at point       p1 = (s1, t1 )  and one 

mapping point       pk
= (s

k
, t

k
) at which a mortality prediction is sought.  First, only 

means (12) and variances (16) are assumed to constitute the general KB (i.e., no 

space-time mortality correlations are considered), in which case the   G-based pdf 
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is given by 
      fG (m1,mk ) = e

0+ 1m1+ kmk + 2m1
2

+ 3mk

2

, where 
  i

 (    i = 0,1,2,3, k ) are func-

tions of the known means and variances (in fact, they can be calculated in terms of 

the BME technique, see Section E.b below).  The statistical conditional (sc) pdf is 

given by30  

      
fG (mk m1) = e

0+ kmk + 3mk

2

dm1 e
1m1+ 2m1

2

= fG (mk ). (17) 

From Eq. (17), the sc mode estimate of the S/TRF at point 
    pk

 is the solution of 
 

      
dfG (mk ) dmk

mk=mk,mode (sc)
= 0 , (18) 

which gives 
    
mk,mode(sc) =

k
/ 2 3 .  The material biconditional (mb) pdf, on the 

other hand, is given by    

      
fK ( mk ) = (2 A 1) 1[2 A fG (mk m1) fG (mk )], (19) 

where 
      
A = d

I
m1 fG (m1) .  Eqs. (17) and (19) yield 

      
f

~

K ( mk ) = fG (mk m1) , leading 

to the estimate 
    
mk,mode(mb) = mk,mode(sc) , in this case.  Things are different if the 

space-time correlation term     m1 m
k
 is included in the   G-based pdf, i.e., 

      fG (m1,mk ) = e
0+ 1m1+ kmk + 2m1

2
+ 3mk

2
+ 4m1mk .  Then,   

      
fG (mk m1) = A

1
B(mk ) fG (mk ) , (20) 

where 
    
B(mk ) = [ dm1 e

1m1+ 2m1
2

+ 4m1mk ] 1
d

I
m1 e

1m1+ 2m1
2

+ 4m1mk .  As a conse-

quence, the sc mortality estimate at point 
    pk

  is the solution of    

  
fG (mk ) dB(mk ) dmk + B(mk ) dfG (mk ) dmk mk =mk,mode (sc)

= 0 . (21) 

Furthermore, for the mb density we get 

      fK ( mk ) = (2 A 1) 1[2 B(mk ) 1] fG (mk ) , (22) 

which differs from the sc (19);  and the mb mode estimate at point 
    pk

 is the solu-

tion of  

                                                             
30 The normalization condition 

      dm1 dm
k

fG (m1,mk ) = 1 implies that 

    
dm

k
e

kmk + 3mk

2

=  
    
(e 0

dm1 e
1m1+ 2m1

2

) 1 .  By definition (Christakos, 2000), 

      
fG (mk m1) = e

0+ kmk + 3mk

2

dm1I
e

1m1+ 2m1
2

 In view of the normalization condi-

tion,
    
(e 0

dm1I
e

1m1+ 2m1
2

dm
k

e
kmk + 3mk

2

) 1  reduces to Eq. (17). 
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fG(mk )dB(mk ) dmk + B(mk )dfG (mk ) dmk

1
2 dfG(mk ) dmk mk=mk,mode(mb)

= 0

. 

(23) 

By comparing the last equation with Eq. (21), we conclude that the mb-estimate is, 
generally, different than the sc-estimate in the case that space-time correlation is 
taken into account. 

 
When implemented in the context of the Black Death epidemic, the S/TRF 

model should involve a number of critical empirical parameters, such as:   
 

  s , Duration of epidemic in a community residing at geographical location   s . 

      
Ts,o , Beginning of the epidemic. 

      
Ts, f

, Ending of the epidemic (clearly, 
      s

= Ts, f
Ts,o). 

, Serial generation time or serial interval (i.e., mean time interval between 
acquiring the disease to being able to transmit it). 

    K s , Average number of adequate contacts per individual per  (the value of 

    K s  will depend on the typical lifestyle characteristics of the susceptibles; 
see, e.g., Fig. 5).  

      
Ps,0 , Population size at location   s  at the beginning of epidemic (time     t = 0). 

    Gs , Cumulative number of fatalities throughout the epidemic. 

  
f , Empirical Black Death conversion factor to convert from number of in-

fecteds to number of deaths. 
 

 

Figure 5. Typical lifestyle in an ordinary house in the village of Gerneham (UK) on a cold 
winter’s morning in the year 1328 (Sancha, 1982). 
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In view of the above parameters, we assume that   t = k  (    k = 0,1,2,... ;  is 
typically measured in days or months).   Let 

      
I s,(k+1)  and 

      
Es,(k+1)  be two  S/TRF 

that represent, respectively, infecteds (number of infected cases) and susceptibles 
(number of susceptible cases) between   t = k  and     t = (k +1) .  The urban popula-
tion size 

      
Ps,0  is measured in thousands of residents, and is such that 

      
Es,0 = Ps,0 .  

The epidemic duration s  at geographical location   s  is measured in months.  The 
number of deaths between   t = k  and     t = (k +1)  is also a S/TRF given by  

      
Ds,(k+1) = f I s,(k+1) , (24) 

where the factor 
  
f  expresses the proportion of fatalities among infecteds.  The se-

rial generation of 
    
D

s,(k+1)  values depends on five parameters: , 
    K s ,   

f , 
      
Ps,0 , 

and 
      
I s,  (the number of infected cases between     t = 0  and   t = ).  In light of the 

above considerations, we can also express mortality at each geographical location 
  s  and time period     t = (k +1)  as follows  

      
M s,(k+1) = Ds,(k+1) / Ps,k , (25) 

where 
      
Ps,k  (  > 0) is the population at   t = k .   

Essential space-time variability features of the disease parameters above are 
treated by S/TRF modelling in an integrated manner that accounts for non-linear 
geographical trends, temporal non-stationarity, random spatial fluctuations, and 
their cross-effects in epidemic propagation.  S/TRF models can study large-scale 
population phenomena related to social and public health measures that may be 
proposed or applied.  Since the book is concerned with the Black Death epidemic, 
our S/TRF analysis focuses on disease variables directly related to this study.  
However, the reader should be aware that the same analysis applies to any other 
epidemic variable or system.   

D.  Mathematical Formulation of the SEP Principles 

In order to construct a rigorous and useable SEP, it does not suffice to have a clear 
conception of the goal.  We must also develop a formal viewpoint that will suffi-
ciently restrict an otherwise large variety of possibilities.  Several suggestions 
usually exist concerning the development of such a formal framework in public 
health science that involves no logical paradoxes.  The formal framework is made 
operational by specification and elaboration, and it consists of various models de-
pending on the situation.  By no means can one claim “one model fits them all”31.  
Remarkably, the exposition of the main elements of this framework involves some 
abstraction that can actually make things more transparent and simple, and it also 
leads to powerful quantitative tools.   

                                                             
31 In view of considerable uncertainty, these models are often of a stochastic nature. 
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a.  The SEP Stages:  Structural, Site-specific, and Integration 

Since theoretical SEP considers adaptation in an epistemic cognition sense rather 
than in a natural evolution sense (Section I.C), it is reasonable to associate   G - and 

  S -KB with distinct stages of the SEP process.  As a matter of fact, the boundary 
lines between   G - and   S -KB should also be the boundary lines between the corre-
sponding cognitive stages of knowledge acquisition, integration, and processing 
that lead to the solution of the public health problem.  Briefly, this chain of rea-
soning distinguishes between the following epistemic cognition stages: 

 
• Structural stage:  It transforms the cross-disciplinary   G -KB into a set of struc-

tural equations that are solved teleologically for the corresponding probability 
model.  In the teleology of thinking, integrated human health modelling starts 
by seeking quantitative solutions possessing high information content to ex-
press the interdisciplinary core knowledge available.  In other words, we seek 
to maximize the information produced by our mental construction of the epi-
demic system.   

• Specificatory stage:  It examines the   S -KB and represents it in a form suitable 
for quantitative analysis and processing.  The building blocks of reality are 
“throbs” of experience--experiential representations.  In real world public 
health situations, e.g., a significant part of this experience is characterized by 
considerable uncertainty.  As a result, the experiential representation is trans-
formed into operational forms with the help of stochastic concepts and compu-
tational schemes. 

• Integration stage:  It blends the results of the previous stages, thus leading to 
the final solution in terms of an integration probability model.  In other words, 
the core solution of the structural stage above is subsequently “adapted” (pro-
gressively modified) in order to account for the specificatory knowledge avail-
able and give better performance in its cognitive environment.   
 
More specifically, the probability models at the structural and the integration 

stages are expressed in terms of the structural pdf (
  
fG ) and the integration pdf 

(
  
f

K
), respectively32.  The preceding structural solution (

  
fG ) is “adapted” at the in-

tegration stage in order to account for the   S -KB of the specificatory stage, thus 
evoking the final solution (

  
f

K
).  The solution to an epidemic problem, e.g., 

evolves out of SEP principles, the latter understood in a cognitive sense subject to 
epistemic standards.  More to the point, the SEP involves a teleologic action prin-
ciple   T  at the structural stage and an adaptation principle   A  at the integration 

                                                             
32 The pdf 

  
fG  and 

  
fK  are linked to the probability functions 

  
PFG  and 

  
PFK , respectively, 

of Eq. (I.1). 
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stage33.  Teleologic thinking is at the heart of several important scientific deve- 
lopments.  Modern neurobiologists argue that in order to understand the relation-

ship between human behavior and the biological brain, one must first understand 

the goal of that behavior (Glimcher, 2004).  In behavioral ecology, a working 

premise is that animals generate efficient solutions to the problems their environ-

ments present in order to maximize the rate at which their genes are propagated 

(Krebs and Davies, 1991).  Next, we discuss the SEP stages in more detail.   

b.  Teleologic Formulas:  Maximum Expected Information Functions  

Transformation in the structural stage is expressed in a formal way via a teleologic 
solution of the structural   G -equations.  At this point, we must distinguish between 
the human teleology of SEP and the traditional natural teleology that assumes that 
material events are moving to an inevitable and discernible end (in which case 
common criticisms addressed at natural teleology clearly do not apply in human 
teleology).  We may recall that in the traditional (Aristotelian) teleology of nature, 
a solution is sought in terms of a final cause expressed by an action principle.  
Well-known action principles considered in this sense include Aristotle's principle 
of minimum potential energy, Fermat's principle of least time, and Hamilton's 
principle of stationary principal function (Christodoulou, 1999).  On the contrary, 
what is at issue in SEP is teleology of reason rather than natural teleology.  Ac-
cording to human teleology, people behave for the sake of goals, purposes, and in-
tentions rather than solely in response to impulsions of efficient causation.  In the 
epistemic cognition context, science is about information rather than about ulti-
mate reality (which is the ontologic view).  As a consequence, the SEP employs a 
goal-based action principle   T : the principle of maximum expected information.  
We seek to maximize the information offered by our mental construction (i.e., the 
solution

    
fG ), in which case information is the means connecting reality and human 

brain, helping the latter shape our understanding of the former.  E.g., the teleologic 
principle can merge toxicokinetics with multistage models of cancer formation to 
link biomarkers of exposure to cancer risks, in a manner such that the information 
offered by the resulting model is maximized.  Random field-based techniques can 
properly transform the general KB into a set of   G -equations.  A detailed review of 
these techniques is found in Christakos (2000) and Christakos et al. (2002).  For 
illustration, consider the following example. 
 
Example D.1.  Table 5 gives an example of   G -equations in the case of an envi-

ronmental  exposure law  representing  advection-reaction fields along a river; 
    
X p  

                                                             
33 As was mentioned in Section I.B.g, both “teleologic action” and “adaptation” are viewed 

as epistemic cognition concepts rather than as an ontologic and an evolutionary concept, 
respectively. 
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Table 5.    G –equations of the environmental exposure law, ( t +a1 s ) Xp +a2 Xp = 0 . 

  dxi dx  i fG =1 

 dxi dx  i xi ( ti
+a1 si

+a2) fG = 0  

 dxi dx  i xi
2 ( ti

+a1 si
+ 2a2) fG = 0  

dxi dx  i xi x  i ( ti
+a1 si

+a2 ) fG = 0  

  M 

Table 6.    G –equations of the modified Kermack-McKendrick law of communicable dis-

ease: t Xp = p Xp , t Yp = p Xp Yp ,  t Zp = Yp . 

  dxi dyi dzi fG =1 

  dxi dyi dzi xi ( t + i ) fG = 0  

dxi dyi dzi [yi ( t + ) i xi ] fG = 0  

dxi dyi dzi (zi t yi ) fG = 0  

              M  

 
denotes pollutant concentration at each space-time point p ,   a1 is the flow veloc-

ity, and   a2  is the reaction rate constant (Kolovos et al., 2002).  In Table 6 (see, 
also, Christakos et al., 2002: 43) we set up the G -equations linked to the modified 
Kermack- McKendrick law of communicable disease, where the random fields 

 
X p ,   Yp , and 

 
Z p  denote the proportions of susceptible, infected, and resistant (i.e., 

immune) individuals, respectively ( p  is a weighted function of the number of in-

fecteds within a contact radius of a susceptible individual;  denotes the rate at 
which individuals recover and become immune, whereas  expresses the rate at 
which susceptible individuals become infected). 

 
Several other interesting situations of KB representation can be found in the 

relevant literature.  Some useful references are the following: 
 

• Beran (1968) discussed in detail methods that can be used to determine the G -
equations from the corresponding laws (Navier-Stokes law, continuity and en-
ergy principles, turbulence laws, etc.).   

• Serre and Christakos (1999) derived G -equations associated with the hydro-
geologic Darcy’s law.    

• Christakos and Kolovos (1999) used G -equations involving exposure-
response-population damage models (see, also, Example D.4 below). 

• Serre et al. (2003) considered multistage carcinogenesis models with variable 
repair rates (see, also, Example D.5).    

• In Christakos et al. (2004), the G -equations accounted for empirical laws of 
tropospheric ozone distribution in space-time.    
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It is worth noticing that space-time covariance or semivariogram models asso-
ciated with public health systems can be also expressed in terms of   G -equations.  
These models are instrumental in understanding epidemic heterogeneities, assess-
ing crucial correlations and laws of change, and explaining critical mechanisms 
and dependencies in a spatiotemporal manifold, which are factors that play an im-
portant role in disease propagation.  A critical investigation of broad classes of 
space-time covariance models that are adequate for homogeneous/stationary as 
well as for non-homogeneous/non-stationary disease data is presented in Kolovos 
et al. (2004).  These classes include non-separable spatiotemporal covariance and 
semivariogram models that are derived from epidemiologic laws or health effect 
relationships (in the form of differential equations, dynamic rules, etc.), spectral 
functions, and generalized representations.  A detailed exposition of various of 
these models is given in Section IV.B.c. 

Information is not a property of the epidemic system itself, but it is rather re-
lated to what we know about this system.  I.e., information is not an absolute prop-
erty of the epidemic system, but relational.  The information concept may be de-
scribed in various, equally meaningful, ways.  In our view, one of the most 
appealing ones is presented in the following example in terms of one’s ignorance 
concerning a future event. 

 
Example D.2.  Assume that the actual--but unknown to us--mortality value at the 
point p = (s, t)  of the disease system is M p = 5%.  From an epistemic standpoint, 

the pdf model 
    
fG ( 5%) expresses our degree of expectation concerning the value 

M p = 5% given the available   G -KB.  If 
    
fG ( 5%) is initially considered to be 

small and later we found out that M p = 5% , we could say that our ignorance was 

large.  Thus, it makes sense to use the monotonically decreasing function 

  
log fG

1(5%) as a measure of our ignorance about the value M p = 5% (log de-

notes the logarithm to any arbitrary base)34.  In fact, we can consider two distinct 
states of ignorance:  (a) Before the event (i.e., when we do not know the actual 
M p  value), in which case our expected ignorance concerning all possible M p  

values is given by 

  
IgnoranceBefore = log fG

1
= dm p fG (m p )log fG

1(m p ) . (26) 

(b) After the event (i.e., when we find out that M p = 5%), at which point our ig-

norance35  is IgnoranceAfter = 0.   Therefore,  the  information  associated  with  the 

                                                             
34 The logarithmic expression satisfies several important properties (it is zero when the 

probability is one; it obeys additivity requirements; when, for technical reasons, prob-
abilities are very small, it is more convenient to work with logarithms, etc.; Aczel and 
Daroczy, 1975).  

35 Note that after the event the probability is 
  
PG [M p = 5%] = 1 and 

  
PG [M p 5%] = 0. 
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model may be expressed as the decrease in ignorance expressed by 

  
IgnoranceBefore IgnoranceAfter = log fG

1 .  I.e., information could be meaningfully 

defined by Eq. (26). 
 
Generally, the shape of the pdf 

  
fG  depends on the information measure used in 

the mathematical formulation of the teleologic principle   T .  Christakos et al. 
(2002) have suggested Shannon and Fisher information-based formulations of the 
principle   T  in an uncertain space-time domain.  In the Shannon case, the solution 
of the   G -equations with respect to 

  
fG  seeks to maximize the information con-

tained in the structural pdf.  As we saw above, a formal way to represent the ex-
pected information is in terms of Eq. (26), which is also called the entropy func-

tion 
      
EG = log ( fG

-1).  In this case, the principle can be written mathematically as    

      
T : max fG

[log ( fG
-1)], (27) 

in a space-time environment.  Another 
  
EG -case is the so-called Fisherian infor-

mation that involves Fisher’s function 
    
[

ii log ( fG )]2 , but is not considered here.  

In light of Eq. (27), the issue is not reality itself (the meaning of which escapes 
our cognitive powers, anyway), but the available information about reality, quanti-
fied in terms of probabilities.  Thus, information could be viewed as the means 
that connects objective reality with the human brain, helping the latter shape our 
understanding of the former.  The 

    
fG

-1  is inversely proportional to the number of 

X p  realizations consistent with the KB available, which implies that the smaller 

the number of realizations allowed by the model 
  
fG , the larger the amount of in-

formation it provides (or, equivalently, the smaller our ignorance).  This is essen-
tially, the insight provided by the principle (27) above.    

c.  Adaptation Formulas:  Statistical Induction and Stochastic 
Deduction  

Depending on the public health situation, a large variety of interdisciplinary in-
formation sources (  S -KB) would become available to the modeller.  The case of 
the Black Death epidemic is of special interest, for it includes surviving contem-
porary evidence from a variety of sources including hospital records, letters, 
edicts, financial transactions, ecclesiastical records, court rolls, chronicles, tax 
documents, etc. (for a detailed presentation, see Section III.C of the next chapter). 

Several operational techniques (encoding, probablification, fuzzification, etc.) 
can be used to express   S -KB into useful forms (Christakos, 2000).  In addition to 
hard data (exact evidence), uncertain site-specific information may be available in 
various soft data forms (interval data, probability functions, etc.) about an epi-
demic variable 

    
X p  (infecteds, mortality, etc.).   
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x j I  

  
f

S
(x j )  

  
P

S
[g(x j )] 

  
P

S
[g(x j , x  j )] 

Table 7. Formulations of the soft   S -KB. 

 
Example D.3.  Some examples of site-specific information are presented in Ta-
ble 7 (I is an interval of possible 

  
x

j
-values,   fS  is a site-specific pdf, 

    PS  denotes a 

probability operator, and 
  
g  is an empirical function relating field values between 

specified space-time points).  Other interesting examples of   S -KB include remote 

sensing and satellite-based data, simulations, and secondary information (Chris-

takos et al., 2004).  Kovitz and Christakos (2004a) introduced efficient operational 

techniques for incorporating   S -KB in the form of fuzzy data. 

 

In epistemic cognition terms, the 
  
fS  of the specificatory stage is viewed as the 

site-specific knowledge environment of the structural solution 
    
fG .  In the integra-

tion stage, the structural solution is progressively modified through application of 
an adaptation rule   A  to yield an updated pdf model 

    
fK  that is consistent with the 

  S -KB of the specificatory stage, i.e., 

      A :  fK (X p ) = fG (X p \ S ), (28) 

where the symbol “  \” denotes an epistemic adaptation formalism that can be ex-
pressed in terms of conditionals, such as follows:   

 

(i) Natural conditional involves a causal connection between 
    
X p  and 

    
X  p , i.e., 

the conditional is valid if and only if 
    
X p  causally implies 

    
X  p  by means of a 

physical or biologic law (e.g., the \  is associated with a law of nature).   
(ii) Logical conditional asserts that the 

    
X p  logically implies 

    
X  p , i.e., the condi-

tional issues from the nature of the entities involved and is not necessarily 
beholden by the laws of nature (e.g., the “  \” means “ ” or “ ”; see, Sec-
tion C.b above).  These conditionals are sometimes referred to as stochastic 
deductive adaptation schemes.    

(iii) Statistical conditional based on the assumption that the occurrence of 
    
X p  

provides statistical evidence for the occurrence of 
    
X  p , without necessarily 

involving any physical or logical connection between them (e.g.,   \  = |, 
where the “  |” denotes “statistical/Bayesian conditional”).  These conditionals 
are also known as statistical inductive adaptation schemes. 

 

Consideration of the different operational forms i-iii above is needed because of 
the different nature of the environmental, ecological, disease, etc. processes con-
tributing to an epidemic situation (some of these processes are causal, whereas 
some others are the products of logical schemes).  Furthermore, one may need to 
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integrate models designed to operate at different geographical and temporal scales.  
In our view, the introduction of the “stochastic” element in the deductive adapta-
tion of group ii is justified on the basis of the fact that in the purely deductive 
scheme there is no room for the “surprises” that nature has to offer (e.g., underly-
ing mechanisms that differ from those we initially assumed as valid, uncertainty in 
initial and/or boundary conditions).  These “surprises” are very important compo-
nents of scientific inquiry and are taken into consideration seriously by SEP. 

Once the 
    
fK  is known, different kinds of solutions in the form of field realiza-

tions across space-time can be generated to account for the relationships among 
the three SEP stages above in a space-time domain (e.g., Section E.b).  Various 
real world SEP applications can be found in the relevant literature36.    

d.  An Integrated Human Exposure Framework 

Exposure analysis and mapping of spatiotemporal pollutants in relation to their 
health effects are important challenges facing  public health research,  in general, 
and environmental epidemiology, in particular.  Stochastic modelling starts with 
exposure distributions (often producing the input to toxicokinetics laws) that are 
linked to exposure-response (health effect) models which, in turn, are integrated 
with relationships describing how population health damage is distributed across 
space and time.   In view of the SEP analysis discussed in Sections D.a-c above, 
the main steps of integrated human exposure modelling are briefly outlined in Ta-
ble 8.  For illustration, two successful real world applications of the approach are 
reviewed in the following examples. 

 
Example D.4.  Christakos and Kolovos (1999) proposed a framework to study 
the impact of spatiotemporal ozone exposure distributions on the health of human 
populations in eastern US37.  In light of the approach in Table 8, mathematical 
models were used expressing functional relationships between ozone exposure 
E(p)  [in ppm] at each space-time point p = (s, t); toxicokinetics models of bur-
den B(p)  on target organs and tissues of a receptor at   p  [in ppm]38; health effect 
(response)  H(p)   [e.g.,  in frequency  of  pulmonary  function  decrements];  and 

population damage indicator (p) [number of receptors affected per     km
2].  

These models, which offer a meaningful representation of the processes that affect 

human exposure, are summarized in Table 9, where  
t = d e(s, )

0

t
,  is the  

                                                             
36 See, e.g., Christakos and Hristopulos, 1998; Christakos and Vyas, 1998; Christakos et al., 

2002; Kolovos et al., 2002; Serre et al., 2003; Christakos and Kolovos, 1999; Christakos 
and Serre, 2000; Bogaert and D’Or, 2002; D’Or and Bogaert, 2003; Law et al., 2004; 
Christakos et al., 2004; Douaik et al., 2004; and references therein. 

37 The framework, however, is very general and can be used to study various other applica-
tions of environmental epidemiology. 

38 Assuming that the uptake rate is proportional to the exposure concentration. 
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Table 8. An outline of the integrated human exposure modelling. 

 

    

Exposure - Burden Model

Burden - Response Model

Response Population Damage Model

 

 
 

 
 

T (G )
    fG

                 
Interdisciplinary Data Bases 

(Hard and Soft)

 
 
 
  

        
    fS

 

 

 
 
 
 

 

 
 
 
 

A (S )
     fK  

Table 9. Mathematical models of integrated human exposure. 

Exposure-Burden 

(Toxicokinetics) 

B( p) =

d  t (s,  t )E(s,  t )
0

t
exp( t +  t ),

    during exposure  (t t0 )

B(s,t0)exp( t ),   after exposure  (t > t0)

 

 

 
 

 

 
 

 

Burden-Response H( p) = (p)Bc ( p)  

Response-Population 

Damage 
( p) = (s)

1
d  s (s  s ,t)

(s )
H (s  s ,t)  

 
absorption rate and 

  e
 the removal rate coefficient of the receptor, (p)  and c are 

empirical exposure-response coefficients,  (s)  is the region of interest  at time  t, 
and (p)  is the density of receptors in the neighborhood of .  In Fig. 6 we plot 

the semivariograms of the ozone exposure and burden profiles, E ( )  and     B
( ) , 

respectively, at various geographical locations.  The rate coefficient e  or the 
half-life39 T1/2 = 0.693/ e  are useful tools to describe how ozone exposure vari-
ability affects burden levels in the body.  Remarkably, when e 1.0  the exposure 
and burden semivariograms show very similar behaviors.  But they start to exhibit 
significant differences in their shapes when e 0.35 .  Thus, the smaller the 

  e
 is 

(or, the larger the     T1/ 2  is), the less affected is the burden by changes in exposure 
(e.g., the longer it takes the burden to decrease when exposure ends, or to reach a 
steady-state when exposure is stable).  For e 1.0 , burden follows the daily ex-
posure variations well and it is, therefore, a very good indicator of the exposure 
conditions.  For e 0.35 , exposure fluctuations constitute a rather poor indicator 
of the burden levels in the body (note the differences in magnitude between bur-
den profiles).  The shape of the semivariograms at the origin and at large distances 
is  of  particular  importance  for  it provides information about the behavior of the 

                                                             
39 Which is equal to the time required for burden to be reduced to 50% of its original value 

after uptake. 
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Figure 6. Semivariograms of ozone exposure and burden profiles (different 
  e

) at certain 

geographical locations considered in Christakos and Kolovos (1999). 
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actual exposure and burden profiles.  While a quadratic shape of the semivari-
ogram at the origin implies a rather smooth temporal variation (as is the case, e.g., 
with     e

= 0.06 ), a linear shape indicates a more irregular variation exhibiting  

significant fluctuations  (    e
= 0.35 and 1.0).  An asymptotic behavior at large  dis-

tance  denotes a  rather  stationary profile  fluctuating  around  a  constant mean 
( e = 0.35  and 1.0), but a linear shape implies a non-stationary profile with tem-
poral trends ( e = 0.06 ).  The ozone data set included 1228 monitoring stations 
east of 95 degrees west longitude and north of 25 degrees north latitude.  The bur-
den-response model in Table 9 is assumed valid for any receptor that belongs to a 
specific cohort (i.e., a group of individuals with similar time/activity profiles).  In 
addition to the burden on the target organs, a number of cohort-related factors can 
potentially affect  and c  including the exposure duration, the activities of the re-
ceptors during exposure, pre-existing conditions, biological or physiological char-
acteristics,  and age group of the receptors.  In view of the considerable uncer-
tainty implied by all the above factors, stochastic modelling represents certain 
variables in terms of random fields40.  The health damage indicator, , for the 
eastern US geographical region can be calculated at any geographical location and 
time period.  E.g., consider the New York City and Philadelphia areas with 
c = 0.5  and 1.5 , i.e., both sublinear and supralinear exposure-response curves are 
used.  Furthermore, it is assumed that  is randomly varying in the intervals 
1.63± 0.05 (sublinear model) and 7.25 ± 0.25  (supralinear model).  For illustra-
tion, the calculated  values at the New York City and Philadelphia areas are 
tabulated in Table 10.  Note the considerable effect of the different burden-health 
response curves assumed.  Interpreted with judgment (i.e., keeping in mind the as-
sumptions made concerning the exposure, biological, and health response parame-
ters, the cohort characteristics, etc.), the  values can offer useful insight regard-
ing the possible population damage due to ozone exposure.  In fact, one can 
generate various  maps associated with different ozone exposure distributions 
and cohort characteristics.  With the help of such maps, geographical areas where 
exposure has the highest probability to cause adverse health effects on the local 
population can be detected.  Also, detailed space-time maps of exposure and bur-
den can be generated (see, Christakos and Kolovos, 1999).  Then, the sequence of 
maps--exposure, burden, and population health damage--provide the means to 
consider human exposure as a spatiotemporal system, by looking at the whole pic-
ture, not just certain isolated parts.  
 
Example D.5.  Serre et al. (2003) studied the lifetime population damage due to 
groundwater Arsenic ( As ) exposure in Bangladesh.  The interdisciplinary mathe-
matical models used are summarized in Table 11; E(p)  is the As  concentration 
[in g /L] at each space-time point p = (s, t); H(p)  is the health effect (response) 
expressed  in  terms  of  the  lifetime  probability  of  a  receptor  at    p   to  develop 

                                                             
40 Stochastic analysis may involve the pdf of each one of the above cohort factors, thus 

generating a set of possible values for  and c .  These pdf may be obtained from field 

studies and/or the relevant literature 
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Table 10. Health damage indicator values on July 20, 1995 for representative receptors 
(number of receptors affected per km2 ). 

Burden-Response  

coefficients 

New York City area Philadelphia  

area 

Background re-

gion 

c = 0.5

=1.63± 0.05
 300 < <1500  200 < < 700  <100  

c =1.5

= 7.25 ± 0.25
 60 < < 200  40 < <100  < 20  

Table 11. Mathematical models of interdisciplinary environmental epidemiology. 

Exposure-Response (Lin-

ear/Empirical) 

H( p) = PB + k E(p)  

Exposure-Response 

(Nonlinear/Mechanistic) 

H( p) = N t (t = life expectancy)

dNn(t)

dt
= kni Nn (t)+[0.015 7 10 4E(p)0.3]Ni (t)

dNi (t)

dt
= kni Nn(t) [0.015 7 10 4E( p)0.3]Ni (t)

kitNi (t)+M Ni (t)

dN t (t)

dt
= kit Ni (t)

 

Response-Population 

Damage 

( p) = (p)[HB + H As(p)]  

  
bladder cancer.  Two exposure-response models were used: An empirical (linear) 

model, where   k =   3.5 10 5

    [ g / L] 1 is a constant calculated by fitting the model 
to the data of  Morales et al. (2000); 

  
P

B
 = 0.005 is  the background bladder  can-

cer  probability  not  depending  on As   as  a  causing  factor.   And  a (nonlinear) 
model41, where     N n

(t) ,     N i
(t) , and     N t

(t)  are the numbers of normal, initiated, and 

tumor cells, respectively, at time t; 
  
k

ni
and 

  
k

it
 are the rates of transition from nor-

mal to initiated cells, and initiated to tumor cells, respectively (in probability T 1 
units); k r = 0.015 7 10 4 E(p)0.3  is the repair rate from initiated to normal cells 

( probability T 1);  M  is the net growth rate for the pool of initiated cells  (in 

probability T 1  units)42.  Fig. 7 depicts a map of the distribution of the popula-

tion damage indicator (p) [in number of people per     km
2 with a lifetime bladder 

cancer  development expectancy];      ( p) is the geographical density  of re-ceptors; 

  
H

B
 and     H As

(p)  refer, respectively, to population damage due to background 
bladder  cancer  and  due  to  the  health  effect  caused  by  to  the  presence of  As 

                                                             
41 Based on a multistage carcinogenesis approach due to Moolgavkar et al. (1990). 
42 M  refers to mitosis (cell division), therefore the total number of cells naturally increases 

with time. 
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(a) 

(b) 

Figure 7. Maps of ( p)  in Bangladesh for (a) the linear exposure-response model, and (b) 
the nonlinear (multistage carcinogenesis) model. 
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in drinking water.  The maps identify areas in Bangladesh where it was estimated 

that as many as 45 lifetime cancer incidents are expected to occur per     km
2 

(roughly corresponding to 3 incidents every 4 years for a life span of 58 years).  
Such maps are very useful for the public health planner and policy maker, for they 
allow, e.g., to estimate the cost of treatment of population damage due to a par-
ticular health effect. 

 
By way of a summary, the SEP can offer a multi-level, cross-discipline hu-

man exposure framework that allows the consideration of hierarchical causal rela-
tions among the natural processes and the public health systems of the various dis-
ciplines involved (e.g., a KB about gene mutations can offer information regarding 
causes leading to population changes).  Interdisciplinary learning is often viewed 
as a logic of discovery and as a means of communication between the different 
realms of knowledge (without, necessarily, leading to a new discipline).  The fact 
that there are many different disciplines of knowledge entails a diversity of ap-
proaches, none of which can claim to incorporate all the others.  The idea of inter-
disciplinarity proposed in SEP does not necessarily mean a search for a lower 
common multiple or a highest common factor (which is the case of science unifi-
cation).  It is rather concerned with the entire epistemic space within which the 
separate kinds of knowledge are deployed like so many paths through the un-
known.  Loosely speaking, one would suggest that the SEP supports a picture of 
public health science like a quilt rather than a pyramid.  In such a framework, the 
aim of the discussion of the SEP and its application in real world situations is to 
open possibilities for consideration.  In some cases, certain new views and theses 
concerning public health reasoning and epidemic modelling are suggested in an at-
tempt to launch them for exploration, without claiming that they are necessarily 
the best possible ones.  Any occasional criticism of previous views and ap-
proaches is not necessarily intended to refute them conclusively, merely to clear 
scientific space in which newly proposed views can breathe and grow. 

E.  The Role of Temporal Geographical Information 
Systems (TGIS) 

a.  Epidemics and Human Geography 

The close ties of epidemic modelling with human geography have been studied 
extensively in Peter Haggett’s work (see, e.g., Haggett, 2000; and references 
therein).  Furthermore, Christakos et al. (2002) have explored some of these ties in 
the context of temporal geographical information systems (TGIS).  In the case of 
Black Death, scholars have suggested a link between the severity of the plague 
and geography; e.g., Black Death hit harder the ports and large cities along trade 
routes, mountainous areas had lower mortality than the valleys and plains, etc. 
(see, Section III.D).  
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Figure 8. Three kinds of geographical diffusion of epidemics: (i) relocation, (ii) expansion, 
and (iii) combined relocation-expansion (modified from Haggett, 2000). 

There is no doubt that human geography concepts and TGIS technology tools 
can be very helpful in a variety of epidemic modelling problems, including the lo-
cation of the possible origin of an infectious disease outbreak and the conditions 
that led to the epidemic, the geographical shape and extent of the epidemic, its 
temporal evolution features, as well as ways to control the epidemic.  In this sec-
tion, we limit ourselves to a rather brief description of certain close relationships 
between human geography and epidemic modelling.  As it turns out, several geo-
graphical concepts and techniques can be used in the study of epidemics.   

Of particular usefulness in the description of the spatiotemporal propagation of 
a certain class of epidemics are the concepts of (i) relocation, (ii) expansion, and 
(iii) combined relocation-expansion diffusion (also known as advection, diffusion, 
and advection-diffusion, respectively; Fig. 8).  Case i is characterized by a spatial 
spread process in which the epidemic leaves one area to move to another, whereas 
in case ii the disease occupies new areas without leaving the previous ones.  In 
case iii one observes a blending of cases i and ii.  The spatial spread process of the 
Black Death epidemic involves a combination of the above cases (see, Chapter V). 
Another important epidemic issue to which human geography can throw some 

light is the question of the spatial and historical  (temporal) origin of a disease.   In 
many cases, including Black Death, the answer to the question lies far in the past, 
which may create some serious problems.  The human geography’s approach for 
determining the origins of an epidemic disease is essentially based on (a) deduc-
tive locational principles that can help identify candidate regions, and (b) the use 
of maps as hypotheses.  The interested reader is refereed to Haggett (2000) for a 
more detailed discussion of this approach. 

Diseases also spread within an environmental space-time manifold, meaning 
that the environmental features of the specified geographical/temporal domain can 
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influence the  origins and the  propagation of an epidemic disease.  Environmental 
changes that can affect the epidemic usually are related to: the demography of the 
host population (growth, relocation, etc.); the land use (agricultural, forest, water, 
etc.); the global warming and related effects (higher temperatures would favor the 
endemic area expansion of certain diseases43, the rapid replication of food-
poisoning organisms, etc.); the increased geographical mobility in the human 
population (traveling public may be exposed to new diseases, migration of popula-
tions characterized by new genetic characteristics, etc.). 

Unlike traditional epidemiologic research, which was mostly descriptive in na-
ture, the majority of epidemiologic studies conducted since the 1970s have been 
characterized by a shift in the level of analysis from the population to the individ-
ual (e.g., Pearce 1996).  This shift reflected not only the pervasive views of indi-
vidual risk factors on disease causation, but also the refined conceptualization and 
methodological advancement in designing epidemiologic research (e.g. case-
control studies).  Ecological studies, for which the unit of observation and analysis 
is at the ecological level (e.g. workplace, zip-code area, or county), were often re-
garded as old-fashioned and methodologically less rigorous.  However, since the 
1990s there has been a gradual return of ecological studies.  A few forces have 
contributed to this noticeable resurfacing of the population perspective (Chen, 
2005).  Among the most important is the increasing application of TGIS tools to 
public health research and practice (Christakos et al., 2002; Ricketts 2003), the 
public’s attention to health disparity (Kawachi and Kennedy 2002), the availabil-
ity of aggregated environmental and survey data linkable to population health data 
(Brooks et al., 2000; Jorgenson 2001; Nuckols et al., 2004), and emerging public 
health needs (e.g. re-emerging infectious diseases, disease surveillance to identify 
threats of bioterrorism;  see, Pavlin et al., 2003).  At present, however, there is no 
unified approach to an improved ecological inference.  SEP-based TGIS may offer 
a promising approach in this regard.  E.g., it might be used in individual-level 
studies, including the spatiotemporal modelling of a point process where a point 
represents multi-dimensional individual attributes, etc.    

b. TGIS Technology and the BME Technique 

TGIS technology plays a vital role in public health research and practice.  To ap-
ply a rigorous stochastic modelling and epidemic prediction procedure, TGIS re-
lies on the powerful theory and tools of SEP.  There are a number of such tools.  
For illustration, Fig. 9 presents some of the various interdisciplinary integration 

techniques that are implemented by TGIS technology.  The theoretical underpin-

nings of these techniques are combinations of the teleologic and adaptation SEP 

principles, which provide TGIS with the theoretical means to consider different in-

formation measures and conditionalization rules, whenever the emerging condi-

tions make it appropriate.  
 

                                                             
43 Such as malaria, leishmaniasis, and arboviral infections. 
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Figure 9. TGIS techniques. B=Bayesian, F=Fisherian, M=Maximum, E=Entropy, 
Mc=Material conditional, Mb=Material biconditional. 

Although there exist a variety of theoretical and computational options, the in-
formation measure and conditionalization rule used by the Bayesian Maximum En-
tropy (BME) technique possess important analytical and computational virtues. As 
a consequence, BME is the most developed and popular SEP technique, at the 
moment (see, Christakos et al., 2002). 

BME has several appealing features, indeed, its analytical and computational 
properties are well understood, and it has been applied in a variety of real world 
situations with considerable success.  More to the point, BME is based on a pow-
erful and versatile approach, which:    

 
• Accounts rigorously for the uncertainty features of the epidemic system in a 
composite space-time domain.    

• Imposes no restriction on the shape of the probability distributions and the form 
of the predictor (non-Gaussian disease distributions and non-linear epidemic 
predictors are automatically incorporated).    

• Allows the consideration of multiple-point stochastic moments of the disease 
variables across space-time.    

• Derives several previous techniques of epidemic modelling (e.g., statistical re-
gression) as its limited cases.     

• Incorporates databases that are not necessarily disease variables, thus resulting 
to the consideration of additional information sources. 

 
Due to space limitations, for a detailed description of the mathematical BME 

theory, the relevant TGIS software, as well as the potential applications of the 
method, the reader is referred to Christakos (2000), Christakos et al. (2002, 2004) 
and references therein.  Here we are limited to a brief description of the main steps 
of formal BME modelling and prediction.  In particular, we illustrate these steps in 
terms of the mortality distribution, 

      
M p = M s ,t ; but the approach is much more 

general and can consider several epidemic variables simultaneously.  We are con-
cerned with the prediction of the 

    
M p  distribution at a network of nodes   pk  on a 

space-time grid, given core knowledge about the entire mortality domain and a set 
of site-specific data         mdata = (m1, ..., m

n
)  at geographical/temporal points 
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      pdata = ( p1, ..., p
n
) 44.  In the stochastic theory context, one seeks to derive the pdf, 

        fK (mk ) , that characterizes 
    
M p  at every node of the mapping grid in light of the 

total epidemic-relevant knowledge available.  The BME steps are briefly summa-
rized below: 

 

Step (i):  The general KB is expressed in terms of mathematical   G -equations 
involving the corresponding pdf   fG  (KB=  G , in this case) and a set of functions 

  
g  so that (    = 1, .., N ) 

  G[g , fG ]= 0 . (29) 

The 
  
g  are properly chosen to express the general KB considered in the epidemic 

system.  Various examples of Eq. (29) can be found in the relevant literature.  In 
applications in which theoretical and/or empirical equations in terms of 

    
M p  mo-

ments are available, Eq. (29) reduces to  (    = 1, .., N ) 

        g ( pmap) = dmmap g (mmap) fG (mmap)  (30) 

where 
      pmap = ( pdata , pk )and 

      mmap = (mdata , mk ) .  By convention,     g0 = g 0 = 1 

(normalization constraint), and the total number   N  of equations is such that mor-
tality moments are included that involve all the grid points 

    
p

i
pmap  of the map.  

E.g., in the special case that the   G-KB includes the mean functions 
    
M pi

= M
i
 

and the covariance functions 
      
c

M
( p

i
, p

j
)  throughout the space-time domain of the 

epidemic, the selected 
  
g -functions are shown in Table 12. 

 
Step (ii): For BME, the teleologic principle   T  of choice is the expected in-

formation maximization in light of the   G-KB.  The information measure assumed 
is that of Shannon (extended in the space-time manifold), in which case the solu-
tion of Eq. (27) has the general maximum entropy form 

        fG ( map) = e
0+

T
g

, (31) 

Table 12. Examples of a   G -KB. 

  G  g  g  

Mean functions mi  Mi  

Covariance functions (mi Mi )(m j M j )  cM ( pi ,p j ) 

 

                                                             
44 At the points pk , either we have no observations at all, or the available data are consid-

erably uncertain and cannot be used as reliable predictions of the actual M p  values at 

these points. 
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where     g = { g ; = 1, ..., N}  is a vector of the 
  
g -functions, and =  

{ ; = 1,...,N} is a vector of coefficients associated with g .  The  includes 
functions of the space-time coordinates and will be determined in the following 
step, whereas   0 is a coefficient that accounts for the normalization constraint, 

    g0 = 1. 
 
Step     (iii) :  Substitute Eq. (31) into (30) and solve for coefficients .  Insert 

these coefficients back into Eq. (31) to find the exact form of the   G-based model 

    fG  of the mortality 
    
M p  distribution. 

 
Step     (iv) :  The   S-KB may consist of hard 

    
M p  data at a set of points 

    pi
 

(    i = 1, ...,
h
), and soft (uncertain or secondary) data at another set of points 

    pi
 

(    i =
h

+ 1, ..., n), i.e.,   

    
S :

mhard = (m1,...,m h
)

msoft = (m
h +1,...,m n )

 
 
  

, (32) 

such that     mdata = (mhard , msoft ) .  Soft mortality data     msoft  may be expressed in 
terms of intervals of varying lengths and probabilistic functions of arbitrary shapes 
(e.g., Table 7).   
 

Step     (v) :  The   G-based model   fG  is adapted through application of the opera-

tional Bayesian conditionalization (  bc) rule to yield the integration pdf that is 
consistent with the   S-KB available, as follows: 

        
fK
bc(mk ) = A

1
d S (msoft )D

fG (mmap) , (33) 

where   KB = K = G S ,   A  is a normalization parameter independent of   mk , and 

the forms of the operator   S  and the domain   D  depend on the types of hard and 
soft data considered in the context of the epidemic problem of interest.  For illus-
tration, some examples are given in Table 13.   This step essentially completes the 
central part of the procedure45.  The following steps are concerned with the deriva-

tion of particular mortality predictors and the associated accuracy from 
        fK

bc(mk ) . 

 
Step     (vi):  From Eq. (33) we select the appropriate mortality predictions, 

    
ˆ m k , 

across space-time, depending on the goals of the study.  The BMEmode prediction 
(34) in Table 14, e.g.,  represents the  most probable 

    
M p  realization, whereas the 

BMEmean (35) minimizes the mean squared prediction error.  Other forms of 
    
M p  

                                                             
45 The underlying methodology is considerably versatile.  In the case of MbME, e.g., Eq. 

(33) can be replaced by     fK
mb(mk ) =(2A 1) 1[2AfK

bc(mk ) fG(mk )]; etc. 
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Table 13. Examples of   S  and   D  (
    FS  denotes a cumulative distribution function derived 

on the basis of the   S -KB). 

  S    S  D  

  
msoft I = (I

h +1,...,In )   
  
msoft  I  

      P[msoft ] = FS( )      FS(msoft )  I  

      P[msoft ,mk k ] = FS ( , k )     FS(msoft ,mk )  I Ik  

Table 14. Examples of space-time predictions 
  

ˆ m k . 

BMEmode  
    
ˆ m k ,mode :   max

mk
fK

bc(mk )  (34) 

BMEmean  
    

ˆ m k ,mean = dmk mk fK
bc(mk )  (35) 

 
prediction can be derived so that they optimize an objective function.  The pre-
dicted  mortality values 

    
ˆ m k   are used to create  informative  spatiotemporal maps, 

which can be scientifically interpreted to provide a useful picture of reality and 
generate science-based decisions.  
 

Step     (vii) :  Because of the inherent randomness of the 
    
M p  distribution and 

data inaccuracies, we can use pdf (33) to obtain an uncertainty assessment of the 

    
ˆ m k  values.  A popular accuracy measure is the prediction error standard (std) 

deviation of 
    fK

bc , viz. 
        K ( p

k
) = [ dmk (mk M k )2

fK
bc(mk )]1/ 2 , which is calcu-

lated at each map grid point of the epidemic domain.  Other accuracy measures 
(including confidence intervals and sets) can be also calculated (Christakos et al., 
2002).    

 

The interdisciplinary analysis of an epidemic system may involve several 
space-time variables (physical, biologic, ecologic, demographic, epidemic, etc.), 
X i,p  ( i = 1,...,l ).  E.g., X1,p = M p , X2,p = I p , etc.  In this case, the BME technique 

is expressed in terms of the vector S/TRF  

X p = [X1,p ,...,X l ,p ]T
, (36) 

and the corresponding cross-covariances are  

cXiX j
( p,  p ) = [X i ,p X i,p ][X j ,  p X j ,  p ], (37) 

i, j = 1,...,l ; see, vector BME in Christakos (2000: Chapter 9).  The vectorial for-
mulation can be also used to incorporate the study of cause-effect associations, in-
cluding confounding variables (Section I.D).  The X i,p  may denote exposures, co-

horts (age, sex, previous health status, etc.), life-styles, and social conditions, all 
acting in synergy to produce the specified health effect (e.g., exposure X1,p  could 

be the triggering factor that completes a causal chain leading to the effect, while 
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variables X2,p ,...,X i,p  may constitute the standing conditions that allow the effect 

to be triggered). 
Noticeably, the conceptual structure of BME is more than mathematical struc-

ture.  It confronts the questions:  When do we use the mathematics and what are 
we saying about the interpretation of the equations?  It is in this pursuit--the pur-
suit of meaning--that both the difficulty and the pleasure lie.  On implementation 

grounds, the computer programs of TGIS (BMElib, SANlib, etc.46) can generate 
detailed space-time disease maps that adequately assess the spatiotemporal charac-
teristics of the Black Death epidemic (correlations between space and time mortal-
ity distributions, heterogeneity patterns, large-scale trends connected with disease, 
etc.).  BME allows the integration of knowledge from different disciplines and 
levels of organization (see, e.g., Section I.C.b), and the underlying mathematics 
involve a set of versatile S/TRF models.    

c. Some Salient Differences Between BME and Classical Techniques 

There are several salient distinctions between the BME technique above and other 
techniques based on Bayesian rules and/or maximum entropy principles (e.g., 
Skilling, 1989; Jaynes, 2003).  Indeed, as was pointed out by Christakos (2002b) 
there are significant differences (both in structure and function) between the stan-
dard Bayesian formulation and the operational formulation proposed by BME.  
Standard bc is based on the classical Bayesian formalism for updating the prior 
(original) probability Po (M p)  using the evidence provided by a database   S , thus 

leading to the posterior (new) probability Pn (M p)  as follows (e.g., Starck et al., 

1998: 92),  

  Pn (M p ) = Po (M p ) [Po
1(S)Po ( SM p )] (38) 

where the   Po (SM p ) and   Po (S) 0  are traditionally called the likelihood and the 

dataset probability, respectively.  Eq. (38) offers a "decompositional" formulation 
of the posterior probability in which prior probability is the probability of M p  be-

fore the dataset is observed, dataset probability is the probability of observing   S , 
and likelihood is the probability of   S  when M p  is true.  This formulation is 

commonly found in logical probability theory (e.g., Jaynes, 2003: 253) and in 
modern statistical learning from data (Cherkassky and Mulier, 1998).  On the 
other hand, in several classical statistics references (e.g., Edwards, 1972) the like-
lihood is denoted as 

  
l(M p S)  so that 

  
Pn (M p ) Po (M p )l(M p S)  is the expression 

traditionally used in place of Eq. (38).  For a classical Bayesian, induction is just 

                                                             
46 The reader is encouraged to visit the website of the Center for the Integrated Study of the 

Environment (UNC) at http://www.sph.unc.edu/envr/cise where these programs can be 
found and used. 
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the process of modifying the Po (M p ) assessment by conditionalizing on   S  via 

(38); e.g., Rosenkrantz (1977)47.   
Standard Bayesian methods, which basically establish evidential relevance, 

have been used in a variety of applications (see references above).  The prior and 
dataset probabilities as well as the likelihood must be calculated before the stan-
dard bc formulation (38) can be used.  In most applications, such a calculation is a 
rather difficult task.  Indeed, the dataset is often the only KB considered in formu-
lation (38) and the calculation of the prior probability and likelihood functions is 
made possible only with the help of some rather restrictive assumptions.  Prior 
probability, e.g., is usually assumed to have a Gaussian shape and the likelihood 
cannot be calculated without making certain strong assumptions about the under-
lying probability distributions (all elements of   S  are assumed independent, a con-
venient model relating   S  and M p  is considered with additive deviations, the sta-

tistics of the deviations must be known a priori, etc.).  Moreover, Eq. (38) assumes 
both that   S  is a certainty once it is acquired and that it is all the information that is 
acquired.  These assumptions have been questioned on theoretical as well as on 
practical grounds by Jeffrey (1965) and others.  In addition, Lewis (1976) has ar-
gued that standard bc can lead to certain triviality results.  Shortcomings of formu-
lation (38) in some environmental applications have been presented in Caselton 
and Luo (1992), although the Dempster-Shafer belief theory proposed in the same 
reference as an alternative to (38) is quite problematic when applied to environ-
mental situations48.  According to Vapnik (2000), a significant weakness of the 
standard bc formulation (38) in the context of statistical learning theory is that it is 
restricted to the case where the set of functions of the learning machine coincides 
with the set of problems that the machine has to solve.  Finally, Mahner and 
Bunge (1997) point out that the interpretation of Eq. (38) in factual terms is not 
always a straightforward affair.  E.g., in several cases the 

  
Pn (M p ) = Po (M p S) 

measures the probability that the phenomenon will undergo the transition from 
state   S  to state M p .  But the problem is that the   Po (SM p ) , which in formulation 

(38) refers to the probability of the reverse process " M p  to   S ", has no meaning, 

because the reverse process may not occur in certain phenomena.  Therefore, in 
such cases the use of Eq. (38) makes no sense. 

The standard definition (38) above suggests one possible way to express condi-
tionalization of the random field-related event M p  on the event   S .  This defini-

tion is based on statistical reasoning and is not generally connected with causality 
or deductive validity (Glymour, 1981).  In many applications,   S  and M p  belong 

to the same disease variable and, hence, they could be considered as causally con-
nected through an epidemic law.  This being the case, the problem is that the 
purely evidential character of standard bc is not able to express such a law in an 

                                                             
47 As is well known, standard bc has no direct connection with causality. 
48 Very restrictive requirements are imposed for modelling prior information such as the n-

monotonicity of the lower probabilities, inference relies on sampling information alone, 
a limited group of single parameter distributions is often considered, etc. 



E.  The Role of Temporal Geographical Information Systems (TGIS)      101 

epidemiologically and geographically consistent manner.  A satisfactory solution 
offered by BME is in terms of the operational bc, which does not involve the 
standard formulation (38), but instead the bc probability is expressed in terms of 
(physical, biological, epidemiologic, etc.) knowledge-based operators.  More spe-
cifically, an operational bc of M p  has been proposed by Christakos (2000) as fol-

lows 

    
PK
bc (M p ) = A 1 d

m p
d S (m soft )I

fG(mdata , ) , (39) 

which yields the pdf (33) above.  Clearly, the notation introduced in Eq. (39) has a 
special meaning that differs from the standard meaning of Eq. (38):  The subscript 
"  G " denotes that the probability model   PG  and the pdf   fG  of the epidemic system 

have been constructed taking into account the general KB, whereas the subscript 
"  K " denotes that the probability model is updated (conditionalized) on the site-

specific knowledge   S , which may be uncertain.  The symbol " " does not stand 

for anything by itself, but it has a meaning in a conditional probability context.  
The site-specific KB,   S , is responsible for the different functional forms of   PG  

and   PK
bc .  Eq. (39) avoids the "decompositional" formulation of Eq. (38) in favor 

of a direct application of adaptational probability in scientific (physical, biologic, 
etc.) terms.  Another difference is that while Po (M p ) is the prior probability in 

formulation (38), in the operational bc formulation a similar role is played by 

  PG(M p ) .  In standard bc practice, the Po (M p ) is often assessed by means of ques-

tionable subjective-probability techniques (Dickey and Chen, 1985; West, 1988).  
Walters’ view concerning such subjective judgments is that (Walters, 1986: 170), 
“Too often they are based not on real physical constraints or past experience with 
other systems, but instead on accumulated folklore (wishful thinking) and earlier 
application of inappropriate estimation methods…”  As a result, such approaches 
often lead to circular reasoning.  On the contrary, in operational bc practice the 

  PG(M p )  is estimated by scientific knowledge-based methods involving epistemi-

cally sound information measures, and scientifically meaningful laws and theories.  
Therefore, the operational formulation has considerable interpretive power by ex-
pressing specific assertions about the empirical world in terms of the KB it assimi-
lates and integrates in the SEP context49.   
 

F.  The Man and the Hammer 

The American philosopher and psychologist Abraham Maslow commented: “If the 

only tool you have is a hammer, you tend to see every problem as a nail.”  To 
avoid such a rather embarrassing situation, public health modellers must operate in 

                                                             
49 For a more detailed discussion of the important difference between BME and classical 

techniques, the reader is referred to Christakos (2002b). 
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an intellectual environment and possess a wide selection of substantive tools.  
Such tools have been reviewed in the present chapter, and several references have 
been given for the interested reader who wishes to pursue further the theoretical 
and/or applied study of these tools.    

We made an effort to evaluate the methodological viewpoint that public health 
modelling should be compatible with general principles of epistemic cognition and 
knowledge synthesis, which, if false, would impact scientific reasoning in funda-
mental ways.  If the general principles are correct, the proposed modelling ap-
proach has to be correct as well.  This allows considerable confidence in the cor-
rectness of the approach.    

We hope that it has been demonstrated that the SEP provides both a variety of 
fundamental theories and models and a collection of powerful and versatile tech-
nologies.  Their application in the case of the Black Death epidemic is the subject 
of the following chapters.    



Chapter III - Black Death:  The Background 

"The medievalist who has to do with records finds  
that he needs more than common sense and diligence  

to extract their meaning.  Records, like the little  
children of long ago, only speak when they are spoken to,  

and they will not talk to strangers." 
                                                                       C. Cheney 

A.  Introduction 

The deep and long-lasting effect that Black Death had in the daily life, culture, and 
economy of Europe during the period 1347-51 AD has lured scholars from various 
disciplines who studied the Black Death from different perspectives, thus contrib-
uting to a bibliography that covers disciplines as diverse as history, art, medicine, 
ecology, economics, and law (e.g., Eamon, 1997).  This book makes an attempt to 
advance the understanding of salient spatiotemporal features of the epidemic dis-
tribution under conditions of uncertainty.  We intend to achieve this goal by means 
of four consecutive steps: 
 
• Collecting information from a wide range of interdisciplinary sources and un-
derstanding its structure, which means understanding the ways information can 
be true.   

• Converting multi-sourced evidence across geographical space to general and 
site-specific KB, including mortality values with 1-month resolution at each lo-
cality of interest.    

• Studying the composite space-time mortality distributions in terms of the sto-
chastic theory concepts and tools of SEP. 

• Using modern TGIS technology to process the mortality KB and displaying the 
findings in the forms of substantive space-time maps and other forms of visual 
representation. 
 
To achieve this multifold objective it was imperative to secure interdisciplinary 

data in a form that could be handled in a quantitative manner.  There was neither 
the time nor the financial resources to implement an ab initio kind of an approach, 
i.e., starting directly from the original sources.  Hence, the development of the 
necessary Black Death KB required data acquisition that involved meticulous bib-
liographical research, which made use of databases comprising conventional pub-
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lications and the latest in electronic searches of the Internet.  There was some 
doubt about the feasibility of the project at the outset given the scarcity and pro-
verbial uncertainty of the data, but in the event of a success, the relevance of the 
results was assured.  Also, to be engaged in rigorous inquiry, one must be capable 
of handling uncertainty, and must be ready to change his mind as newer research 
questions previous interpretations of the evidence.  Therefore, the poor quality, 

uncertainty, and limited availability of direct information sources were incentives 

in our case rather than liabilities.  We wanted to find ways to improve our under-
standing of the devastating epidemic, not to use the difficulties as an excuse to 
dismiss the whole idea.  We realized that medieval research is an endless yet me-
thodical quest, often leading to provisional and inconclusive results, because most 
information sources, in addition to being uncertain, more or less are related to each 
other1.  We sought to develop a creative program of research rather than to offer a 
finished body of knowledge, while keeping in mind that man is always ahead of 
perfect knowledge in his demands for urging solutions to problems.  It is in this 

spirit that we decided to implement some of the SEP concepts and techniques of 

modern public health research (e.g., reasoning modes, stochastic theory, and TGIS 

technology, including the BMElib) in a real yet highly non-trivial space-time data 

set, uncertain enough not to be adequately handled by other techniques and com-

puter packages available for modelling and mapping spatial or spatiotemporal 

phenomena.  That was the challenge. 

At the time we decided to study the Black Death epidemic in a systematic man-
ner, all previous studies that had been concerned with important modelling aspects 
of the epidemic (spatiotemporal dynamics of the disease, mapping, etc.) were 
shown to be inadequate.  Our new findings have further confirmed our initial 
evaluation of the situation.  It is noteworthy that with regards to the mapping of 
the propagation of the epidemic, several publications merely included slight modi-
fications of the map of Fig. 1, which appeared for the first time 40 years ago.  Fig. 

2 is a variant of the previous map in which the emphasis is on its gradient.  Re-

cently, Benedictow (2004) merged the two types of maps, added some color, and 

in the process he reduced the contour interval to 1 year.  Among the several Black 

Death publications, the books by Biraben (1975) and Benedictow (2004) are the 

two ones that have particularly focused on spatiotemporal aspects of the epidemic.  

Biraben did a pioneering historical research, indeed, that included not only the 

plague of 1347-53 AD, but also the numerous infectations that followed for more 

than three centuries and are considered as successive visitations of the same dis-
ease.  Benedictow (2004), on the other hand, expanded the number of locations in 
which information about the date of the outbreak was available to about 320 lo-
calities, and provided a better coverage of issues related to death rate caused by 
the plague.  However, information may have been misinterpreted or ignored in the 
process, leading to a biased account of the actual Black Death situation (e.g., sys-
tematic disregard of information reporting low values of mortality results in higher 
averages than those comprising all reliable sources).  No much else is available 

                                                             
1 In the sense of relationism rather than relativism. 
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regarding the quantitative Black Death modelling and mapping across space and 
time. 

In our view, the scope and detail of the SEP-based data acquisition and stochas-
tic modelling are superior to those of previous studies.  Below we provide a list of 
initial assertions to support this claim.  In particular:   
 
• Acquisition of multi-sourced information relevant to Black Death is guided by 

theoretical modelling (data collection is part of an operational scheme capable 
of producing monthly mortality values, space-time dependence is taken into 
consideration, information sources are categorized according to methodological 
standards, internal consistency requirements are satisfied, etc.).   

• Richer KB are constructed by collecting significantly more information about 
the spatiotemporal mortality of the 1347-51 Black Death, including the devel-
opment of a database that includes 531 places.   

• More attention is paid to the fairly neglected issue of the ending date of the epi-
demic at an infected locality.  This allows us, at the same time, to obtain a bet-
ter assessment of the duration of the epidemic. 

• Demographic data is considered an integral part of the study, hence doubling 
the parameters of interest from two (epidemic start and mortality) to four (epi-
demic start and end, mortality, and population). 

• We use epidemic models and improved data gathering to systematically down-
scale global mortality2 figures to monthly values.  This is a level of detail that 
prior to our study was available almost exclusively for the English counties.    

• The collection and processing of multi-sourced evidence are designed in a way 
that permits the preparation of several types of useable space-time maps and 
plots (the maps describe different aspects of mortality, each type of map com-
prising a set of 40 monthly displays; the plots summarize global aspects of 
Black Death, such as its propagation speed, rate of areal expansion, and the av-
erage monthly mortality throughout Europe)3. 

 
From a methodological perspective, the developments in this chapter are sum-

marized in Fig. 3.  Multi-sourced contemporary evidence about Black Death is 
transformed into a mortality information base that can be examined and processed 
with the help of sophisticated quantitative techniques.  The information base will 
include city-level data on population, numbers of deaths, and epidemic duration.  
There is, of course, plenty of work involved in passing from the beginning of the 
arrow in Fig. 3 to its ending.  In the following sections of this chapter we will de-
scribe in considerable detail the numerous sources of information we had to ana-
lyze and evaluate--decipher may be a more appropriate word--in order to generate 
the required mortality KB across space and time.  Deciphering is a fundamental 
element of epidemic  reasoning.  In some cases, e.g., one  could see that something  

                                                             
2 Global mortality refers to the total death rate from the beginning to the end of the epi-
demic. 

3 Which is a considerable improvement over previous studies that summarized their find-
ings in terms of one map or no map at all. 
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Figure 1. Contours of the epidemic front sweeping Europe from 1347 to 1351 (Langer, 
1964). 

was wrong with the medieval evidence available, but, lacking any understanding 
of how this kind of evidence was built, one could not say what it was.  In many 
cases, the detection of logical contradictions is a valuable tool of epidemic reason-
ing that can effectively eliminate inadequate hypotheses and poorly developed 
premises.  Moreover, mathematical sensitivity analysis can be very helpful in 
some cases of information acquisition and processing by providing a deeper un-
derstanding of the connections between the various sources of evidence and the 
epidemic variable of interest (e.g., which piece of evidence is an important con-
tributing factor in deriving accurate mortality maps in a space-time context). 
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Figure 2. Spreading of the Black Death showing direction of propagation (Vasold, 
1991:47). 

 

Before we proceed with the systematic study of the interdisciplinary contempo-
rary sources and their mathematical modelling under conditions of uncertainty 
(Sections C-E), in the following Section B we take a walk among the main ele-
ments of the major controversy concerning the epidemiologic nature and charac-
teristics of the 14th century Black Death. 

 

  

Multi -Sourced 

Black Death Evidence 

 
 
 

Interdisciplinary

Mortality KB

 
 
 

 

Figure 3. Developments in the present chapter from a modelling perspective (KB=knowl-
edge base). 
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B.  The Controversy About the Epidemiologic Nature of 
Black Death 

a.  Symptoms 

Accounts from chroniclers, medical surgeons, and people thanking the Saints for 
miraculous recovery from the pest, offer a description of the typical symptoms of 
the notorious epidemic, presently known as the Black Death (Herlihy, 1997: 
Chapter 1;  Scott and Duncan, 2004).  By way of a summary, these symptoms can 
be described as follows:   

 

• Formation of buboes in different parts of the body up to the size of a hen egg, 
particularly in the groins, armpits, and neck.  There is no consensus as to the 
number of buboes per sick person.  Based on testimonies from miraculous 
cures, Cohn (2002b: Appendix I) is of the opinion that the buboes were few in 
number.  This, however, may be a biased account valid only for survivors of the 
plague.  Buboes were painful inflamed lymphatic nodes that sometimes were 
opened to alleviate the suffering and increase the likelihood of survival (Fig. 4), 
but no cure really worked effectively.  People displaying solely buboes had the 
best chance of survival, especially after the fifth day of displaying the symp-
toms; yet, somehow surprisingly, the mortality rate was still in the order of 
60%. 

 

Figure 4. Piercing of a 
bubo depicted in a 1482 
print from Nuremberg. 
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• Coughing of blood as a result of severe gangrenous inflammation of throat and 
lungs.  This form of the disease was 100% lethal.  Death usually came two days 
after showing symptoms. 

• Darkish blotches, or “tokens,” produced by subcutaneous hemorrhages and skin 
lesions in the form of skin eruptions covering large areas of the body.  This 
form was also lethal within hours of showing symptoms and has been associ-
ated with the development of the term Black Death during the 18th century AD.  
Locally the epidemic received different names in the various languages and dia-
lects (Reichborn-Kjennerud, 1948).  Magna pestilencia and magna mortalitas4 
were the most common names among English chroniclers (Bleukx, 1995). 
 
There is consensus that the above symptoms plus prostration, high fever, and 

unbearable stench from any matter exuding the body were different manifesta-
tions of the same disease.  Combinations abound in terms of displaying more than 
one symptom simultaneously or in the prevalence of one form over the other 
throughout the course of the epidemic at a certain geographical locality.  Take, 
e.g., the case of Avignon, which at the time of the plague was the residence of the 
Pope5.  The head surgeon Guy de Chauliac (Fig. 5), who examined local victims, 
claimed that the plague started in the blood coughing form that was eventually re-
placed by the bubonic form.  It is important to point out that none of these symp-
toms, not even the buboes, are unique to Black Death (e.g., syphilis, gonorrhea, 
and tuberculosis may include buboes among their symptoms). 

 

 

Figure 5. Guy the Chauliac (c.1300-
1368), the most eminent surgeon of 
the Middle Ages, physician to three 
popes in Avignon, eyewitness to an 
equal number of plague outbreaks, 
and author of Chirurgia Magna, a 

medical textbook published in 1361 
that dealt extensively with Black 

Death and remained a standard refer-
ence for three centuries (Biraben, 

1987: 185). 
 

                                                             
4 Great Pestilence and Great Mortality, respectively. 
5 This is a time period centuries before the Reformation, and the Pope is a more powerful 

authority. 
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b.  Contemporary Explanations 

Contemporaries were not short of disease explanations, but all have been dis-
carded as fantastic and devoid of scientific merit:  

 
• God’s punishments for sins. 
• The plague was part of an apocalyptic event preceding the second coming of 

Jesus Christ. 
• Planetary alignment of Saturn, Jupiter, and Mars. 
• Rain of fire in an area between China and Iran. 
• Great earthquakes in the Far East resulting in release of toxic substances to the 

atmosphere. 
• A battle between the sun and the sea in the Indian Ocean. 
 

In addition to the religious explanations, one cannot escape noticing a tendency 
to locate the source of devastation in the Far East and to enumerate events result-
ing in a corruption of the air.  

c.  Modern Etiology 

In 1855, an epidemic of bubonic plague started to rage in southern China.  Two 
teams of scientists eventually went to Hong Kong in 1894 to study the epidemic 
and try preventing its spreading.  They succeeded in the former purpose, but still 
the plague spread to India.  The first team was a Japanese commission headed by 
pathologist Shibasaburo Kitasato, a disciple of Robert Koch.  The Swiss microbi-
ologist Alexander Yersin, a student of Louis Pasteur, headed the second team. 
Within days, both groups were able to observe the bacillus now known as Yersina 
pestis (Y. pestis), a tribute to Yersin’s more accurate report (Yersin, 1894).  The 
next important laboratory results were those of M. Ogata, published in 1897, and 
those of P. L. Simonds, published in 1898, on the basis of which they independ-
ently launched the hypothesis that bubonic plague was a disease transmitted by 
fleas.  Yet it took another 10 years of laboratory and field experimentation, pri-
marily in India and Australia, to confirm the suspicion (Hirst, 1953: Chapter 7).  
About 10% of infected fleas develop esophagus and gizzard blockage by highly 
abnormal reproduction of the bacteria after sucking blood from infected rats.  The 
result is biting at a higher than normal rate because the blockage makes them hun-
gry since the blood cannot reach the intestines for digestion.  The bubonic plague 
mechanism also requires at least one species of rodents that is resistant to the bac-
teria and another one that is not.  The resistant rodents are responsible for keeping 
the disease endemic by hosting the infested fleas.  The infection is passed from 
fleas to the victims by the blocked fleas that regurgitate infected blood at biting.  
As the sensitive rodents are infected, they die.  The fleas, facing a shortage of their 
favorite host, move on to people, thus triggering the epidemic.  Hence, bubonic 
plague is not a disease transmitted person-to-person, but one transmitted by fleas 
facing decreases in the rat population.    
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Gasquet (1893: 80) made the comment, a year ahead of Yersin’s discovery, that 
the Black Death “would appear to have been some form of the ordinary Eastern or 
bubonic plague,” thus proving that the extrapolation that Black Death was bubonic 
plague predates Yersin’s first step on cracking the bubonic plague mechanism.  
Gasquet (1908: viii) was also the first Black Death scholar to accept the then re-
cent findings about the epidemiology of the bubonic plague when he pointed out, 
in the preface of the second edition of his Black Death book, the analogy between 
the cause of malaria, transmitted by the bite of infested mosquitoes, and the 
propagation of bubonic plague by the bite of infested rat fleas.  Having previously 
accepted that Black Death was bubonic plague, Gasquet initiated the blaming of 
rats and fleas for the Black Death epidemic, a dogma that would go unchallenged 
for decades. 

There is one more remarkable fact about Black Death.  Although the Black 
Death caught Europe by surprise, there have been previous outbreaks displaying 
similar symptoms.  The earliest ones are mentioned in the Bible.  Then there are 
descriptions of a form of plague that went around Athens from 430 BC to 427 BC, 
and more recently there was a longer epidemic—the Justinian plague—that devas-
tated the Roman Empire from 541 AD to 700 AD (Scott and Duncan, 2004: 233-
237).  Early 20th century extrapolations of previous occurrences of bubonic plague 
included the Justinian plague, which became the 1st Pandemic, making the Black 
Death the 2nd Pandemic, whereas the one starting in China in the 1850s came to 
be the 3rd Pandemic.  Thus, the bubonic plague became a kind of a “universal” 
explanation for a series of previous disasters.  This is not so surprising, given that 
all-explanatory theories have an irresistible effect on the human mind. 

d.  Discrepancies 

The bubonic plague theory of Black Death was accepted without serious opposi-
tion by a community of scholars consisting mostly of experts in Black Death as-
pects other than epidemiology.  This is a remarkable fact, indeed, which may be 
partially explained in terms of the available evidence being mainly of a historical 
kind (referring to the distant past) rather in the form epidemiologists are accus-
tomed to working with.  The first scientist to come up with certain objections was 
the British bacteriologist J. F. D. Shrewsbury, who published in 1970 a detailed 
account of the 2nd Pandemic in the UK.  Interestingly, Shrewsbury objected ac-
counts of high mortality based on the notion that, given the population density of 
UK in the late Middle Ages, bubonic plague could not have been able to produce 
the death rates mentioned by the chroniclers, especially in the countryside.  
Shrewsbury stood by the bubonic plague theory and concluded, instead, that most 
contemporary accounts were gross exaggerations (Morris, 1971).  The inconsis-
tency between population density and mortality was later pursued by the English 
zoologist Graham Twigg.  In 1984, Twigg published the first book objecting to the 
bubonic plague theory.  In recent years, Samuel K. Cohn, Jr. (2002a and b), David 
Herlihy (1997), and Susan Scott and Christopher Duncan (2001, 2004) have 
joined the ranks of the “heretics”, so to speak. 
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In the meantime, Ole Benedictow (2004) remains a leading defender of the bu-
bonic plague interpretation of the epidemic.  He and others basically claim that: 
 
• The clinical symptoms of Black Death and bubonic plague are the same.    
• There was a well-established black rat population in Europe, including Scandi-

navia.    
• The epidemic propagation was facilitated by the transportation of infested fleas 

in commodities such as wheat. 
• Y. pestis DNA found in the teeth of bodies buried in the cities of Marseille and 

Provence (France) prove that the same bacteria that produces bubonic plague 
was responsible for the outburst of the Black Death.  Ancient and modern DNA 
sequences differed by at most a single base pair. 

 
On the other hand, detractors of the bubonic plague as the cause of Black Death 

have counter argued that: 
 
• Clinical symptoms are not unique; several diseases have similar external symp-

toms.  Also some scholars (e.g. Cohn, 2002b: Chapter 4) allege significant phe-
nomenological differences (different kinds of fevers, buboes, etc.). 

• As Shrewsbury (1970) and Twigg (1984) have claimed, the rat population of 
Europe has never been dense and diverse enough to sustain a pandemic lasting 
for more than three centuries.    

• Epidemic propagation through infected fleas traveling long distances hidden in 
commodities such as wool or grain (rather than attached to rats) is of minimal 
importance, if any. 

• What was previously considered to be final evidence in support of the Y. pestis 
theory--tooth pulp tissue taken from a 14th century plague cemetery in 
Montpellier containing Y. pestis DNA--was never confirmed in any other ceme-
tery.  French tooth samples were probably contaminated by improper laboratory 
procedures, thus invalidating the DNA test.  Noticeably, there were cases of 
true bubonic plague in the area.  Moreover, in September 2003, researchers 
from Oxford University (UK) revealed the results of tests made on 121 teeth 
from 66 skeletons found in 14th century mass graves.  The remains showed no 
genetic trace of Y. pestis, and the researchers suggested that the Montpellier 
study might have been flawed (Gilbert et al., 2004)6. 

 
As the above were not enough, the detractors of the bubonic plague theory of 

Black Death have added a myriad of other contradictions, including the following: 

 
• There is not a single account of rats dying prior to any of the repeated visita-

tions of Black Death to thousands of places between 1347 and 1670.  On the 

                                                             
6 "We cannot rule out Y. pestis as the cause of the Black Death," says Alan Cooper, head of 

the Ancient Biomolecules Centre at Oxford University (UK), whose team did the latest 
work.  "But right now there is no molecular evidence for it." 
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contrary, epizootics were common during the modern pandemic in China and 
India.    

• Temperatures are simply too cold for fleas in northern Europe to be responsible 
for flares of bubonic plague.    

• Iceland suffered two Black Death epidemics in the 1400s, despite freezing tem-
peratures and a complete lack of rodents on the island.    

• Black Death advanced at rates up to 5 km/day during a pre-Industrial Revolu-
tion era without trains or steamboats.  Modern bubonic plague is famous for its 
slow propagation, which has been documented to be as slow as 15 meters/week. 

• There is no evidence of any resistant rodent species available in England or 
continental Europe during the Black Death period to establish a buffer epizootic 
through the metapopulation.  A pre-infected rodent population throughout 
Europe would have been a prerequisite for the rapid spread of the Black Death. 

• There is no comparison of the mortality rates of untreated patients.  There are 
numerous documented cases of Black Death decimating half or more of the 
population of a city.  The bubonic plague has a death rate one order of magni-
tude smaller than Black Death.  Mortality is related to incubation period.  The 
bubonic plague has an incubation period of 2-8 days and Black Death about 32 
days. 

• Endemic bubonic plague is essentially a rural disease because it is an infection 
of rodents.  Black Death, in contrast, struck indiscriminately in the countryside 
and in the cities. 

• Chroniclers consistently talked about Black Death being a contagious disease to 
the point that, starting in the 15th century AD, affluent families found effective 
protection by isolating themselves in the countryside. 

• Black Death rarely hit a locality two years running, at least in epidemic propor-
tions, and the interval separating plagues ranged between 5 and 15 years.  By 
contrast, once modern plague flares up, it remains for the next 8-40 years (as in 
the case of India), with regular yearly bouts, before mysteriously disappearing. 

 
Nevertheless, the detractors of the bubonic plague etiology of Black Death have 

been slow in coming up with constructive explanations of the disease cause.  
Shrewsbury (1970: 124-125) partly discarded bubonic plague by suggesting that 
many of the casualties may have been cases of typhus.  Twigg (1984: 221) was the 
first scholar to deny bubonic plague any role in the 14th century AD epidemic and 
he blamed anthrax, instead.  In a similar vein, the historian Norman F. Cantor 
(2001) suggested that Black Death might have been a combination of pandemics 
including a form of anthrax.  Included in the evidence he cites are reported disease 
symptoms not in keeping with the known effects of either bubonic or pneumonic 
plague; the discovery of anthrax spores in a plague pit in Scotland, and the fact 
that meat from infected cattle was known to have been sold in many rural English 
areas prior to the onset of the plague.  Nevertheless, none of the above explana-
tions received wide acceptance.   

In their latest book, Scott and Duncan (2004) have come up with the notion that 
Black Death was an infectious disease transmitted person-to-person.  Given the 
symptoms, they called it hemorrhagic plague.  There have not been reported cases 
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of the disease since 1670, which may imply that it has vanished or is dormant.  
The closest contemporary disease would be ebola.  Based primarily on a detailed 
study of the epidemic at Penrith (UK) during the time period 1597-1598, Scott and 
Duncan managed to estimate specific values for the stages of the disease, as fol-
lows (see, also, Fig. II.1): 
 
• Latent period before the sick person is contagious: 10 to 12 days. 
• Period when the sick person is apparently normal but can transmit the disease:  

20-22 days. 
• Average time period between developing symptoms and death: 5 days. 

 
Scott and Duncan (2004: 161) are confident that this disease is the same as the 

plague of 1347-51, despite the elapsed time of more than two centuries. Scott and 
Duncan (2004: 185-186), however, do not deny that while Black Death7 devas-
tated Europe during 1347-1670, there were occasional epidemics of bubonic 
plague8 in Mediterranean ports.  They were necessarily brief, because they were 
extinguished once all the local rodents had died.  These localized, sporadic, and 
short-lasting epidemics of bubonic plague were of no significance in comparison 
with the terrible mortality and suffering that people had to endure from Black 
Death, but they have added to the confusion.  Fifty years after the Black Death had 
completely disappeared from Europe, the Mediterranean port of Marseille suffered 
from a major bubonic plague epidemic that has been well documented.   

There is no question that the controversy concerning the epidemiologic nature 
of Black Death is of considerable importance for the reasons mentioned in various 
parts of this book as well as in the relevant literature.  In Chapter V we discuss the 
two opposing views in the light of the findings of spatiotemporal stochastic SEP 
analysis.   

C.  Interdisciplinary Sources 

A primary objective of the study is to analyze the spatiotemporal evolution of the 
Black Death epidemic.  Considering the availability of interdisciplinary informa-
tion, the area of interest was restricted to the portion of Europe west of meridian 
19E and south of parallel 65N.  Chronologically the epidemic was active in this 
region between October 1347 and the beginning of 1351.  Before we proceed with 
our review of the interdisciplinary sources, some modelling decisions need to be 
made as follows.   

The city was selected as the minimum unit of study.  In most cities, the epi-
demic lasted for less than a year.  Hence, any attempt to observe the local evolu-
tion of the disease requires a smaller sampling interval in time.  Because daily re-
cords are almost non-existent, we decided that a month unit was a realistic 

                                                             
7 Or major pest as the Italians called it. 
8 Minor pest. 
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compromise.  We, also, had to decide about the main epidemic variable of interest.  
The mapping accuracy of any such variable depends on spatiotempotal continuity; 
the higher the continuity, the more reliable the map.  During Black Death, cities 
had populations up to 100,000 residents.  Counts of fatalities, therefore, were ex-
pected to vary over several orders of magnitude.  To smooth out the variability in 
death counts and to eliminate the influence that the city size by itself may have 
had on the counting of fatalities, we decided to make the monthly mortality rate 
the epidemic variable of our interest.  Mortality was defined as the number of 
plague casualties during a calendar month divided by the number of resident at the 
beginning of the month.  I.e.,  

  

Mortality =
Number of Deaths During a Month due to Plague

Number of Residents at Beginning of Month
102

 (1) 

(e.g., Last, 1995: 43).  Whenever possible, Eq. (1) refers to cause-specific mortal-
ity, whereas in some other cases it refers to crude mortality.  The reader may recall 
that a methodological postulate was made in Section II.C.b to represent mortality 
mathematically as a S/TRF, 

      
M s ,t .  This postulate allows the efficient modelling of 

the multi-sourced uncertainty in its various forms.  Another methodological as-
sumption is that mortality among the laity is a case of mortality without replace-
ment.  If one ignores the possibility of migrations and the influence of births dur-
ing the plague, the monthly population mortality is not equal to the monthly 
fatalities divided by the initial population, but to the plague fatalities divided by 
the residents alive at the beginning of the month.   
 
Example C.1.  For numerical illustration, the example in Table 1 demonstrates 
the various  steps leading to the  calculation of  monthly mortality  values at Givry 
(France).  In Section IV.C.a we will present mathematical techniques for con-
structing the mortality pdf at any geographical location and time period on the ba-
sis of these values.  Unfortunately, the calculation of population mortality directly 
from death databases as in  Givry is by far the  most rare case.   As we will see be- 

Table 1. Calculation of monthly population mortality at Givry (France), assuming 
Ps,0 = 2,000  residents,     B = 3 residents/month is the background number of deaths (i.e., due 
to causes other than plague), To = July 28, 1348 and Tf = November 15, 1348. 

Month 

 

 

Deaths 

 

    (a)  

Deaths minus 

background 

    (b) = (a) 3 

Prior 

month 

survivors 

    (c)  

Standardized fa-

talities, % 

    100(b) / 2000 

Monthly 

mortality 

    100(b) /(c)  

First 87 84 2,000 4.2 4.2 

Second 308 305 1,913 15.8 15.9 

Third 180 177 1,605 8.9 11.0 

Fourth 42 39 1,425 2.0 2.7 

Total 617 605 30.9  
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low, in the vast majority of localities, mortality had to be calculated indirectly 
from a variety of surviving contemporary evidence sources. 
 

Many researchers find it convenient to generally distinguish between two ma-
jor categories of epidemic-related information sources:   
 

(a) Modern epidemic database: relies on a battery of techniques for de-
termining the nature of the infectious agent and the possible con-
taminant source (in-situ examination of the infected, access to blood 
samples and other tissues, tracing the lines of infection, estimating its 
potential lethality, etc.). 

(b) Historical epidemic database: based on evidence that lies far in the 
past and is characterized by the limited, highly variable across space-
time, and mostly uncertain amount of relevant information that has 
been recorded and preserved.   

 
In view of the preceding discussion, the Black Death knowledge base belongs 

mainly to case b above (see, Sections A, B, and D and most of the present Section 
C), although some modern models are used as well (see, e.g., Section C.e).  For a 
comprehensive summary of the Black Death databases and contemporary 
sources which were produced from our systematic investigation of the mat-
ter the reader is referred to Appendix A.  There is, indeed, a considerable amount 
of effort behind the construction of the tables of Appendix A.  In some cases, our 
scrutinizing search of the contemporary sources might have reminded one of Co-
lumbus attending the sea current carrying exotic plants, animal carcasses, and 
finely carved wooden objects, on the basis of which he visualized the far off and 
yet unknown land from which these objects came.  Theoretical constructs were 
subsequently used to help classify or organize contemporary sources, integrate 
them, and translate them into meaningful mortality values.   

With the above salient issues in mind, let us now proceed to review the main 
features of the interdisciplinary Black Death sources.  The reasoning modes dis-
cussed in Section II.A (deductive and inductive patterns of argumentation, 
analogical reasoning, etc.) were explicitly or implicitly implemented as tools of 
detective work.  Principles of logic were used, e.g. in the analysis, synthesis, and 
transformation of the contemporary evidence in Appendix A.  Indeed, the deduc-
tive mode of reasoning has been used to eliminate alternative hypotheses about the 
Black Death characteristics (e.g., beginning or ending of the epidemic) by means 
of disjunctive arguments.  Detecting logical contradictions in the available records 
or documents is an effective method of eliminating inadequate arguments and 
data.  Mathematical sensitivity analysis is another useful tool that provides quanti-
tative evaluations of linkages between various kinds of evidence and the disease 
variable under consideration.  On occasion, the inductive mode has served to con-
firm the validity of a hypothesis (e.g., about the duration of the epidemic) on the 
grounds that some of its consequences are proved to be true.  The reader may have 
noticed that we suggested using rules of reason to study the Middle Ages a his-
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torical epoch that has been characterized as an “era of unreason”, an “age of su-
perstition”, and “times of dark forces” (i.e., the very opposites of reason). 

a.  Surviving Contemporary Evidence 

Initially, information of various kinds about the Black Death casualties was col-
lected at 531 places (for details, see Appendix A).  At no place was the informa-
tion directly available in the form of mortality values.  In some cases, the informa-
tion was too imprecise or incomplete to be of use, so the database was reduced to 
359 localities.  Some pre-processing was necessary for the close to 2,000 monthly 
mortality values that we ended up coding, starting from a variety of information 
sources.  Preparing mortality data was not a trivial task, but we anticipated that (as 
a matter of fact, it was part of the challenge, as was previously mentioned).  The 
often poor quality, limited availability, and multi-sourced character of the data 
were incentives, in our case, rather than liabilities.   

When data are scarce and multi-sourced but one can make use of fuzzy evi-
dence with the help of the modern stochastic techniques available, any piece of in-
formation counts.   In our case, in a way, 100% of the data were uncertain if one 
considers only the values above zero.  According to various authors (e.g., Scott 
and Duncan, 2004: 45), Black Death never came back to  infect the same place 
twice, shortly  after  the  end of a period of infection.  The epidemic did recur in 
the same place, but in the course of decades and not immediately.  For example, in 
most of Europe, e.g., after the visitation of 1347-51, the next epidemic came in 
1361-62.  For all practical purposes, this means that after determining the begin-
ning and the end of the epidemic at a geographical location, one can be sure that 
the values of cause-specific mortality immediately before and after the devastation 
are exactly equal to zero; they are hard data for space-time modelling purposes.  
Yet, all the non-zero values during the visitation of the plague turned out to be soft 
data with varying degrees of uncertainty. 
A census in the modern sense of the word had not been established by the mid-

14th century AD; neither had printing been invented.  Hence, there were not news-
papers for the accurate preservation of major daily events.  Most people were illit-
erate, the main exception being the clergy and the nobility.  There were wide-
spread rumors (about the disease, its causes, and its effects) based mainly on 
superstition and poor assessment of the real events, and, as it often happens in 
these cases, nothing was so firmly believed as what was least known.  Much mold 
has grown in these six centuries, let alone wars, floods, and fires, all of which 
have taken a heavy toll on the scarce material that may have ever been prepared 
concerning Black Death casualties.  This being the case with the geopolitical envi-
ronment of the time, the main sources of surviving material are: 
 
• Ecclesiastical records.  Perhaps, these are the most numerous and accurate re-
cords, prepared at a time when the Catholic Church ruled the western Christian 
world. The records are most numerous in UK and Spain, but do not deal with 
the fatalities of the entire community; instead, they are concerned with re-
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placements of benefited clergy9.  A typical record contains the name of the new 
priest, the name of the person he was replacing, and the date of the appoint-
ment.  Not exactly the death certificate needed for a mortality study, not even 
an indication that the vacancy was due to death.  We will return to this subject 
in Section D.b.  For illustration purposes, Fig. 6 summarizes the data in the case 
of the diocese of Barcelona (Spain).   

• Parish records.  Black Death scholars have found churches at four locations 
that indeed kept a record of fatalities among the parishioners, three of them in 
the French speaking world: the parishes of Bremen (Germany), the Saint-Nizier 
Church in Lyon (France), the parish of Saint Maurice in Switzerland, and the 
parish of Givry in Burgogne (France; Fig. 7).  They are by far the most reliable 
and detailed records, some of them having a 1-day resolution.  The only miss-
ing piece of information that keeps these places at a minimal soft data status (in 
the sense of Section II.D.c) is precise information about the total population.  
Unfortunately, the Saint-Nizier records stop in the middle of the plague.  Nev-
ertheless, these records certainly provide some of the most accurate accounts of 
the local effects of Black Death.  

• Testaments.  Last wills from notaries and hospitals are, within the precision 
limits of the Black Death studies, another good source of information.  Like ec-
clesiastical records, their limitation is that  they represent a  minimal and biased 
segment of the population.  In the case of testaments, it is expected that only af-
fluent adults had any reasons to make arrangements in case of death.  Consider-
ing that there were recoveries and people kept passing away from reasons other 
than the plague during the time of Black Death, a will was not necessarily a 
proof of pestilence death.  Given prompt  death after the development of plague 

 

Figure 6. Temporal distribution of ecclesiastical appointments in the diocese of Barcelona 
during Black Death (Gyug, 1983: 388). 

                                                             
9 Benefited clergy were high officials and senior priests who received compensation from 

the church for their services. 
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Figure 7. Two pages of pa-
rochial records at Givry 

(France) containing the date 
of death of epidemic victims 

(Gillot-Voisin, 1982: 18). 
 

 
signs, the obvious lag between disease detection and actual death is not an im-
portant issue, in this case.  The fact that a background can be commonly estab-
lished (referring to the monthly number of wills under normal conditions) im-
proves data reliability and makes it plausible for the SEP concepts and methods 
to consider cause-specific mortality calculations (Fig. 8). 
 

 

Figure 8. Number of 
last wills in the city of 
Bologna during 1348.  

Testaments in De-
cember and prior to 

May denote the 
monthly number of 
wills under normal 

conditions, and serve 
as the background 

(Cohn, 2002b: 149). 
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• Tax records.  Like ecclesiastical records, tax records are more numerous in 
England, followed by Spain and France.  Two of the English records are par-
ticularly important, both of them being indirectly connected to France: the Do-
mesday Book and the Poll Tax of 1377.  Twenty years after the Normans con-
quered England, King William decided that he needed to have a good idea 
about the wealth around his new territories.  He sent out inspectors to assess 
every single property in the kingdom.  The survey was later used to determine 
tax payments, for which there was no appeal; the owners were “doomed”.  The 
assessments provide today two books that can be used to estimate the popula-
tion of England in 1086, even though in a strict sense the survey is closer to a 
census of affluent heads of households.  Almost 300 years later, the English 
Parliament decided that the most fair way to collect funds in order to continue 
the Hundred Years War against France was to impose a tax of 4 pence on every 
man or woman 14 years of age or older.  Such payment records are closer to  
being  a  real  census  and,  in addition,  they  were  collected  at  a  time  that  is 
much closer to the Black Death occurrence, thus providing population estimates 
that constitute a useful source of information for SEP mortality calculations.  
The matter is discussed further in Section D.g below. 

• Court rolls.  The English feudal system is rich in another type of documents, 
called court rolls.  They are the minutes of local court sessions regulating life in 
the rural villages.  Although the cases are mostly related to breakings of the 
law, a fair amount of business is relevant to Black Death because they deal with 
death dues (heriots) and transfers of property after the passing away of tenants.  
In the England of the late Middle Ages, it has been estimated that approxi-
mately 90% of the population lived in the countryside, where most of the land 
was either the property of the king, the nobility, or the church.  Life was regu-
lated by well-established contracts that were obeyed by the time of the 1347-51 
Black Death.  Peasants had to pay to the landlord a levy usually proportional to 
the size of the lot.  Upon the tenant’s death, the family had to make a payment 
to the landlord, the heriot, which sometimes was not in cash but in kind, such as 
the family’s best cow.  Courts were in session several times a year depending 
on the amount of business, a frequency that goes well with the one-month reso-
lution of our mortality data.  Uncertainty about the extrapolation of tenant mor-
tality to the rest of the community remains a problem similar to the significance 
of other sources of information.  

• Chronicles.  Contemporary accounts, though rare, do exist.  Over the years, 
however, scholars have learned to use chroniclers’ testimonies with caution 
(Coulton, 1929: Chapter 2).  When Giovanni Villani declares that the popula-
tion of Florence right before the Black Death epidemic was 90,000 residents 
and Giovanni Boccaccio writes that 100,000 people died, at least one of the two 
must be terribly wrong.  One explanation for the frequent inaccuracies of 
chroniclers is that many times they wrote the accounts years after the event, of-
ten without  being  eyewitnesses  to it  (see, e.g., Fig. 9).   Other explanations 
include deliberate misinterpretations and sheer carelessness (Cheney, 1956: 14-
15).  In view  of  the above considerations, chronicles were used with caution in 
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Figure 9. The Nüremberg Chronicle 
included this Black Death account, 
written and printed during the 15th-

century (Naphy and Spicer, 2000: 34). 
 

 
mortality calculations (cross-validation with other information sources is a ne-
cessity). 

• Donations to the church.  Considering that a vast majority of the population be-
lieved that most likely Black Death was a divine punishment for people’s sins, 
the parishioners suddenly became generous with the church as a way to buy 
back absolution as the plague was approaching.  Remarkably, Benedictow 
(2004: 175-176) came up with a history of the Black Death outbreak in Sweden 
based almost exclusively on an analysis of the abnormal increases on church 
donations.   

• Financial transactions.  Perpignan (France) offers unique records that have 
been used to date the outbreak and the end of Black Death epidemic.  The city 
had an important Jewish community largely devoted to money lending, which 
was a common Jewish practice throughout Europe.  Transactions occurred at a 
normal pace of 24 transactions per month during the first quarter of 1348.  Sub-
sequently, 8 transactions were registered during the first 11 days of April but 
only 3 for the rest of the month, whereas no more transactions took place until 
August 12 (Ziegler, 1969: 65).  The most logical explanation for this gap is the 
raging of Black Death.  Indeed, this explanation fits well with independent ad-
ditional evidence for southern France. 

• Passing away of famous people.  Death of ordinary people goes without expla-
nation or notice.  Yet death of nobility or other influential persons goes into the 
annals of history, usually due to the writings of several authors.  Although, in 
general, a single death is not sufficient evidence to determine the beginning or 
the end of an epidemic, it, nevertheless, serves as a point of reference for fur-
ther investigation concerning the pestilence’s evolution.  One of the most re-
markable examples is that of Princess Joan de la Tour of England.  Engaged to 
Prince Pedro of Castile, the bride started a trip to Spain in the summer of 1348 
escorted by a large group of people.  The trip considered a stop for provisions 
in Bordeaux (at the time in the hands of England, as part of its initial success in 
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the Hundred Years War).  They arrived in Bordeaux in early August of the 
same year, where the mayor informed them that the plague was causing serious 
trouble in the city.  The princess and her entourage did not pay attention to the 
mayor’s warning and went for a short stay at a castle overlooking the port.  
Within days, members of the party fell sick and died of the plague.  Princess 
Joan died on September 2 (Cantor, 2001: Chapter 3).    

• Letters.  Accounts of the plague are preserved in personal or open letters narrat-
ing developments or sending warnings about its coming.  Petrarch, the famous 
Italian poet, endured the plague in Verona, lamenting the mortality, especially 
after the death of his beloved Laura, most likely of plague, in Avignon in 1348, 
at exactly the same hour and the same day of April 6 that he had met her 21 
years before (Ziegler, 1969: 65).    

• Edicts.  Authorities facing the effects of the Black Death produced numerous 
documents that today are useful to study reactions and assess fatalities.  López 
de Meneses (1956), e.g., published a large collection of documents related to 
the Black Death that were prepared during the reign of King Pedro IV of Ara-
gon.    

• Guild records.  The urban skilled workers of the Middle Ages were grouped in 
guilds, ordinarily powerful and well organized.  The records of the guilds in 
Hamburg (Germany), e.g., allow us to know today that 12 of 34 master bakers 
and 18 of 40 butchers died from the plague.    

• Hospital records.  Some hospitals kept records of deceased personnel and pa-
tients, records that are significant in the presence of information about mortality 
during normal times.  In Bruges (Belgium), e.g., 10 clerks died during the sec-
ond semester of 1349, while the average rate for the following two years was 
less than 2.    

• New cemeteries.  Several communities run out of room in their cemeteries for 
burying the dead.  Cemeteries were the property of the church.  Enlargement of 
a cemetery or approval of a new one required special paperwork, which today 
can be used as an indication of high mortality.  Given the high level of mortal-
ity, several places in Europe decided to bury plague victims in mass graves 
(Fig. 10). 

• Tombstones.  Jews in Toledo continued to bury family members in the tradi-
tional way, writing on the tombstones the death date and in some instances 
specifying that the cause was plague (León, 1977: 334). 

• Abnormal increases in adoptions.  Benedictow (2004: 115) has used abnormal 
increases in adoptions as a sign of the plague raging the city of Ghent in the 
summer of 1349. 
 

It is worth-noticing that a significant proportion of the data we have collected for 
the purpose of our modelling study appears in recent publications without indicat-
ing the information source.  A rather typical example is the monumental work of 
Biraben (1975).  While the original source most likely is one of those listed above,  
there is much work that remains to be done in terms of source identification and 
reliability.  Next we examine a number of issues of concern in the context of 
multi-sourced information assessment and processing.   
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Figure 10. Detail of mass burial grave of victims of the plague during 1349, East Smith-
field, just south of the Tower of London, UK (Kelly, 2003: Plate 20).  Excavation took 
place between June 1986 and June 1988. 

b.  Reliability of Contemporary Sources 

We have assigned special emphasis on the fact that the reliability of the available 
information is a major point in question with a strong epistemic component (Sec-
tion I.B.g).   A relevant question is the use of language in the chronicles and other 
written evidential sources.  We know only by means of words.  If they are proven 
useless, then we are blinded.  There will always be a primary question about the 
value of the words the chroniclers use.  Ideally, one would like to know when 
chroniclers’ language is truth or falsehood, i.e., when they deliberately exaggerate 
to impress their readers and when their language is false at the very moment when 
they think they are telling the truth.  Yet another issue is the consideration of nu-
merical data.  Some scholars have argued that numerical data from the Middle 
Ages are so corrupted and fragmentary that they do not deserve much attention.  
Serious problems with data of even more recent vintages are indeed unsatisfactory 
by modern standards of measurement and sampling.  Most values were not even 
collected for the purposes for which they are used today.  Also, there are errors in 
copying, reporting, and enumerating.  Yet, it is the wrong decision to discard them 
completely.  Spatiotemporal stochastic theory and statistical analysis offer today 
powerful enough tools, ones that have been developed exactly for the purpose of 
handling information that is known to be of poor quality.  Indeed, we rather agree 
with Ohlin (1966: 69), who emphasized:  “To abandon the scraps of quantitative 
insight into the past merely on the grounds of general suspicion would be as fool-
ish as to regard them as wholly accurate.  The question at all times must be how 
great the uncertainty is and how seriously it affects the conclusions at stake.  In the 
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statistical, as in any empirical study of the world, ‘a reasonable probability is the 
only certainty’ ”.  Interestingly, in some cases a mathematical sensitivity analysis 
may demonstrate that the uncertainty concerning a contemporary piece of infor-
mation has little effect in the final modelling outcome.   

When it comes to mortality observations by chroniclers, Turner (1988: 19) has 
compared contemporary writers to modern reporters who often tend to purposely 
exaggerate the case of an extreme example in an effort to come up with a more 
sensational story.  Shrewsbury (1970: 72) has gone even further suspecting that 
there was an element of competition and pride among the chroniclers, which moti-
vated them to exaggerate in order to show to their readers that the event they nar-
rated was more outrageous than those narrated by their competitors. This may well 
be the case of Lübeck (Germany), as follows. 
 
Example C.2.  In Lübeck (Germany) some chroniclers described a state of com-
plete hysteria in the streets and about 90,000 casualties by the time the plague was 
over.  Independent assessments give Lübeck a population of about 25,000 resi-
dents on the eve of the Black Death outbreak, and there are more credible but par-
tial accounts reporting the passing away of 11 of the 30 city councilors, 2 out of 
the 5 town clerks and 27% of the property owners--roughly a death rate of 1 in 3.  
Therefore, most likely the actual casualties were in the order of 9,000 instead of 
90,000. 

 
Experts in the field have offered different explanations for this type of blunder, 

some of which are as follows: 
 

• Large numbers should not be interpreted literarily.  Instead of saying just that 
“many people died”, chroniclers tended to pick any number that they thought 
was large enough to portray an image to the public, without trying to imply that 
there was some actual counting of fatalities.  In these cases, it is the impression, 
not the number, that counts (Coulton, 1929: 29; Gottfried, 1983: 68).  This 
problem with the overestimation of the numbers of victims has contributed to 
our decision to select mortality rates rather than the total number of casualties 
as our modelling variable of interest.  Indeed, it was easier for a chronicler to 
make a reasonably accurate statement based on the proportion of neighbors 
killed by the plague in his surroundings than to come up with a figure for the 
total number of fatalities in a large city. 

• Lack of scientific method and interest.  Chroniclers were not used to gathering 
information in the field.  Most of them were clerks spending a comfortable life 
close to the nobility, often preferring to rely on informants and hearsay without 
checking the facts.  The main focus of chroniclers was to exalt military victo-
ries, a fairly different business than preparing long and detailed accounts about 
the misery of peasants (Benedictow, 2004: 207). 

• There is the confusion caused by Roman numbers in use at the time.  Even the 
simplest arithmetic operation is much harder to perform with Roman numbers 
than with the present decimal system of Arab numerals (Coulton, 1929: 29-30). 
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• Most assumed blunders may not be real blunders.  In modern history one finds 
considerable changes in attitude concerning the Black Death mortality esti-
mates.  For a long period of time, the prevalent view was that mortality was 
high, as much as 35-45% (Ziegler, 1969: 230-231).  Gasquet (1908: 135) com-
mented that although the accounts of the Black Death horrors are hard to be-
lieve when read individually, they become more credible when one notices the 
remarkable coincidences in descriptions by chroniclers from distant places who 
had no way of communicating with each other.  Russell (1948) and especially 
Shrewsbury (1970) claimed that contemporaries inflated the English mortality 
figures considerably.  Shrewsbury (1970: 123) went on to postulate no more 
than 5% mortality for England.  Today, the tendency is for the vindication of 
chroniclers.  Benedictow (2004: 383) may have gone too far.  He put his em-
phasis on places with high mortality but ignored others with low mortality, thus 
reaching an overall death rate of 60% for Europe. 

 
When systematic error is likely to be significant and the sources are contradic-

tory, it becomes important to use some kind of logical cross-validation (using, 
e.g., the reasoning rules of Tables II.2 and II.3), check original sources, get a 
deeper understanding of the underlying assumptions, and investigate the guess-
work behind some of the numbers10.  When gathering data for this study, we never 
ceased recording evidence at a given locality by assuming that there was enough 
information already.  In this way, by the end of the information acquisition stage 

of the SEP method we collected approximately 2,500 typed literal transcriptions 

making more than 300 pages of text.  When the time came to use the information 
bases, a systematic search for redundancies and logical inconsistencies was em-
ployed to discard questionable data and rigorously assess the reliability of the re-
sulting mortality values.  In the event of agreement among the produced numbers, 
our general tendency was to quote the original source, the first author to publish 
the original data, or the scholar who was most knowledgeable about the specific 
region (see AtA inductive rule in Table II.2).  In France, e.g., we relied more on 
the word of Biraben than that of Benedictow, but the opposite happened in the 
case of Scandinavia. 

c.  Concerns About Time Accuracy 

The official Julian calendar was only one of many devices available to keep track 
of time during the Black Death era (Tuchman 1978: xv).  This calendar is behind 
by 10 days relative to its successor, nowadays Gregorian calendar introduced by 
Pope Gregory XIII in 1582 to take care of shifting in seasons because the rotation 
of earth does not take exactly 365.25 days.  More common in the 14th century 
Europe was to keep track of time referring events to the day of crowning of the 
reign king; or in the case of the Julian calendar, it was employed only to keep 

                                                             
10 In some cases, the final choice seemed to offer all the advantages of “honest theft” over 

“dishonest toil”; but it might be that "honest theft" is one’s only option in these cases. 
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track of the year, because instead on going by months or days the predominant 
practice was to name the saint of the day or the nearest church feast (Cheney 
1996).  This latter practice was valid particularly for vague events as is the begin-
ning or the end of a plague.  Local variations on these practices plus the fact that 
the year started on the moving feast of Easter have added to the existing confusion 
among scholars even to nowadays. 

 
Example C.3.  Givry (Bourgogne, France) has one of the best kept records of 
casualties during the Black Death period, with a 1-day resolution.  Table 2 sum-
marizes the entries during the days of the epidemic.  As is the case in other places, 

the link to Black Death casualties is no more than a good presumption based on 

the absolutely abnormal number of casualties and the timing of the event.  There 

are no annotations stating the cause of death.  During normal times, there were 2-3 

deaths a month.   Hence, July is already an  abnormal month.  But, when exactly 

was the first passing away due to Black Death?  Was it on July 17, i.e., the first 

day with deaths in consecutive days?  Was it July 5 or 22, when there were 2 

deaths in one day?  Was it July 18 when the fatalities exceeded the background?  

Or was it on August 6, which marks the beginning of daily casualties?  Yet, Bira-

ben (1975: 74) believes that the plague started on July 28.  Determining the end of 

the epidemic presents similar difficulties.   

 

In other less organized communities or in cities larger than Givry, most likely 
the first Black Death casualties went undetected.  Presumably, what we know to-
day as the beginning of the epidemic would be the equivalent of August 8 in 
Givry, when things clearly went out of control, or even the feast of the Ascension 
of The Blessed Virgin Mary (August 15), the first religious holiday after the be-
ginning of the crisis.  Yet, considering our modelling decision to study mortality at 
the monthly level, all inaccuracies mentioned in this section are effectively blurred 
by the sampling frequency of the study. 

In some cases, there are disagreements within and between cities that may be 
related to the same causes but go beyond a discrepancy of a few days.  Two classic 
examples are the cities of London and Mühldorf. 
 
Example C.4.  The chronicler of the monastery of Bermondsey dated the begin-
ning of the plague in London at the feast of Saint Michael (September 29, 1349), 
while clerk Robert the Avesbury at the service of the Canterbury archbishop de-
clared that the pest arrived in London close to the feast of All Saints Day (No-
vember 1) of the same year. 
 
Example C.5.  The city of Mühldorf (Bavaria, Germany) offers a good example 

of dating not matching regional data.  The Annals of Mühldorf reported that the 

plague arrived in town on June 29, 1348.  The problem with this date is twofold:  

Our investigation found that Trent (Italy) was the closest infested place, 360 km to 

the south (on the other side of the Alps), where the plague had started on June 2, 
and no other place in Bavaria suffered from Black Death that year.  Biraben (1975: 
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92) suggests that either the disease was not Black Death or that there is an error of 
one year in the dating, which should read June 29, 1349 instead. 

Table 2. Daily number of fatalities in Givry during the plague year of 1348 (Gras, 1939: 
305-306). 

 July August September October November 

1   6 7 3 

2  4 9 6 4 

3  4 8 7 3 

4  1 8 7 4 

5 2  4 8  

6  2 6 7 2 

7  1 15 6 1 

8  7 3 6  

9  5 11 4 4 

10  3 24 4 3 

11  1 7 7 2 

12  1 10 9 1 

13  4 15 3  

14  5 10 14  

15  3 14 5 5 

16  3 11 5  

17 1 4 17 4  

18 1 1 8 8  

19  5 6 6 3 

20  2 3 7  

21  4 17 3  

22 2 3 6 2  

23  6 11 5  

24  2 16 4  

25  2 7 4  

26  6 16 2  

27  3 12 3  

28 3 8 5 1  

29 2 4 10 3  

30  6 7   

31  10    6    

Total 11 110 302 168 35 
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d.  Notorious Inconsistencies in Outbreak Dating 

Of the several factors that have contributed to the perplexing situation with me-
dieval data, surely one is the existence of inconsistencies in outbreak dating.  The 
case of Mühldorf (Example C.5) is one of the most complex cases.  A second 
chronicle from Matsee maintained that on September 29, 1348 there were 1400 
plague casualties in Mühldorf.  The number of fatalities is most likely another one 
of those examples in which the number of dead people is larger than the town 
population.  In this case, a logical analysis of the evidence convinced us that 
Mühldorf, along with the rest of southern Bavaria, was struck by Black Death dur-
ing the summer of 1349. 

In addition to London, Marseille is another city with multiple dates assigned to 
the beginning of the plague.  Biraben (1975: 91) makes a reference clearly stating 
that the pest was already raging the Rifle-Rafle street by November 1, 1347.  
Gasquet (1908: 39), on the other hand, maintains that Black Death did not start in 
Marseille until the beginning of 1348.  Finally, Verlinden (1938: 116) suggested 
an intermediate position that the plague started during Christmas of 1347.  In the 
absence of clear evidence one way or the other, we simply took the middle road 
(Verlinden’s suggestion).   

The beginning of the plague in Copenhagen (island of Zealand) has been as-
signed even more dates.  Biraben (1975: 78-80), denoting insecurity, provides 
three dates.  The first one is November 25, 1348, which he marks with a question 
mark.  Then comes January 1349, and he ends up suggesting July 1350 for the is-
land of Zealand.  Fössel (1987: 6) postulates January of 1349, without giving any 
sources.  Benedictow (2004: 164), based on just 3 donations annotated in the An-
niversary Book of Our Lady’s of Copenhagen, favours the summer of 1350 as the 
time when the Black Death reached Copenhagen, basically agreeing with the latest of 
Biraben’s dates.  Benedictow (2004: 163) reinforces his opinion on the basis of 
equally shaky donation evidence during October-November 1350 at Roskilde (which 
is located only 30 km west of Copenhagen).  It is hard to come up with a definitive 
date for Copenhagen, as there are other places in northern Germany for which Bira-
ben (1975: 78-80) provides two dates for the beginning of the plague.  In Schleswig 
and Holstein (Germany), the beginning of the plague has been placed during July-
August 1349 as well as during January-March 1350.  Considering the opinion of 
Scott and Duncan (2004: 45) that the plague never came back to infect the same place 
twice during the same outbreak, the period 1347-51 in our case, one has to discard 
one of these dates.  We ended up discarding the 1349 date.  Nevertheless, this is an 
area that definitely needs further research of its original sources. 
A similar situation exists with The Netherlands.  Biraben (1975: 77) has Foswert 

(Friesland) as the only place in the country where Black Death started during 1349.  
This dating makes a big difference, because in this case Friesland was the source of 
infection for the rest of the country.  Other authors (e.g., Blockmans, 1980: 843) 
maintain that the country, and specifically Friesland, were struck by Black Death 
in 1350 and 1351, thus reverting the flow and having the Black Death coming 
from Germany and infecting Friesland last, rather than the other way around.  Ei-
ther point of view is weak.  The case calls for additional research. 
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Germany is a country short in data and rich in contradictions11.  Hoeniger 
(1882: 25) found that the Chronica Sampetrinum states that Black Death reached 
Erfurt (Thuringia) on July 25, 1350.  Biraben (1975: 77) changed the date to Janu-
ary-March, 1350, offering no source.  We decided to use the earliest dating. 
As was mentioned before, the detection of contradictions and inconsistencies in 

the writings of scholars can help eliminate possible dates.  The city of Limburg is 
a typical example.  Black Death started in Mainz (Germany) during July or 
August, 1349 (Biraben 1975: 77).  The Chronicle of Limburg mentions that in the 
summer of 1349 the plague moved to Limburg (state of Hesse), about 50 km north 
of Mainz.  Biraben (1975: 77), however, has Limburg listed among the places re-
ceiving Black Death during January-March 1350, which contradicts his own claim 
that the plague reached the Hesse during July-August 1349.  Under these circum-
stances, we used the 1349 dating, despite Benedictow’s “skepticism about the 
chronicler’s horizon of knowledge and interest” (Benedictow, 2004: 194). 

Biraben (1975) supplemented his magnificent Black Death account for Europe 
with a valuable update for France (Biraben, 1987).  However, this supplemental 
book chapter presents some inconsistencies between the text and a color map 
summarizing the findings.  These inconsistencies are shown in Table 3.  More to 
the point,  the map shows Black Death reaching the Givry area during July-
September 1349.  The city is either not displayed on the map or is placed at the 
wrong location, since none of the cities are labeled.  We have seen in Table 2 that 
Black Death started in Givry during July-August of 1348.  In Table 3 we also pre-
sent our final choices of dates.   
According to the site http://membres, the plague was at Quimper, Bretagne 

(France) between November 1348 and January 1349.  Biraben (1987: 179) main-
tains that Black Death started in January of 1349.  Neither party cites the sources.  
We gave the benefit of the doubt to the local and much more recent reference. 

In a groundbreaking study, Ubieto (1975) considerably advanced the under-
standing of Black Death spread in Spain with his bold use of ecclesiastical re-
cords.  On the basis of appointments of benefited bishops, he postulated that the 
predecessor had died of plague, to which he added the general knowledge that it 
took  1-6  months  of  paperwork  to renew  the  appointment.  Benedictow  missed 

Table 3. Inconsistencies concerning the beginning of the Black Death epidemic in some lo-
cations in France (Biraben, 1987). 

City Beginning in Text Beginning in Map Our Choice 

Abbeville, Somme April 1349 July-September 1349 April 1349 

Amiens, Somme January 1349 April-June 1349 January 1349 

Auch, Gers May, 1348 July-September 1348 May, 1348 

Beaune, Côte d’Or April 1349 July-September 1349 April 1349 

Paray-le-Monial, 

Saône-et-Loire 

April 1349 July-September 1349 April 1349 

                                                             
11 Unlike Italy, which, among the countries with abundant information, is the one with the 

smallest number of inconsistencies, a fact attributed to its good chroniclers. 
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the delay element and, instead, he used the appointment dates as the dates of the 
bishops deaths.  E.g., a new bishop for Cádiz was actually appointed on May 25, 
1348.  Nevertheless, Benedictow (2004: 82) wrongly assumed that the diseased 
bishop passed away “around June 1 or a few days later.”  Our own investigation of 
the matter (which included resorting to the original papers) concluded that these 
mistakes were probably due to translation problems.  Valdeón and Martin (1996: 
84) have objected Ubieto’s findings primarily on the grounds that there is no evi-
dence that any of the bishops who passed away in 1348-49 did so because of 
Black Death.   We have found, however,  a good fitting between these  appoint-
ments and the raging of Black Death, assuming that the deaths took place 1-6 
months before the appointment of a successor.  

Ubieto’s research has been instrumental in the study of the Black Death front 
that radiated from the city of Santiago de Compostela (Galicia), which is a famous 
Catholic center of pilgrimage in Spain.  There was a bishop appointment for San-
tiago on June 14, 1348, and another one for Tuy, to the south, four days later.  
Benedictow (2004: 82) wrongly assumed that “the bishop of Santiago is men-
tioned alive for the last time on 14 June”.  He credits the information to Ubieto, 
which is a mistake, again probably due to the poor translation of Ubieto’s work.  
Valdeón and Martin (1996: 84) strongly support the view that Black Death did not 
reach Galicia until after these appointments, most likely in October of 1348. 
Amasuno (1996: 64), following Ubieto, suggests that Santiago de Compostela 

was visited by Black Death between March and July of 1348; then the plague 
spread to the south, reaching Coimbra (Portugal) on September 29, 1348, which 
seems a reasonable conclusion.  The only problem is that Braga and Lamego (Por-
tugal), half way between Santiago and Coimbra, had Black Death later.  Ubieto 
(1975: 64) postulated that Black Death was in Lamego y Braga between January 
and May, 1349. 
Another place with contradictory information is Seville.  The bishop died dur-

ing the second semester of 1348, being replaced in January 28, 1349.  Ubieto 
(1975: 63), making an exception, clearly states that this appointment does not fit 
other data, a fact that would have allowed one to use the Seville appointment as an 
indication of the death of the previous bishop from the plague.  Collantes (1977: 
154) places the Black Death in Seville during 1349-50.  Velásquez y Sánchez has 
Black Death reaching Seville in 1350 (Amasuno 1996: 70), but Phillips (1998: 49-
50) emphatically declares that all forms of the Black Death disaster ended in the 
peninsula by March of 1350. 

The websites http://www.ayto-puertollano.es/ and http://centros6.pntic.mec.es/ 
have Puertollano, Ciudad Real (Spain) suffering the effects of Black Death in the 
summer of 1348.  Ubieto, however, maintained that the geographical regions in 
the sector defined by the imaginary lines going from Coimbra to Soria and from 
Soria to Valencia had Black Death beginning after the winter of 1348-49.  Taken 
into account the above considerations, we concluded that Black Death was in 
Puertollano during the summer of 1349.   

Crowland Abbey was about 10 km northwest of Cambridge (UK) in the diocese 
of Ely.  Black Death was in the diocese of Ely between March and December of 
1349 (Aberth, 1995: 279-280).  The court rolls of October 1348 report 11 fatali-
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ties, which Benedictow (2004: 133) considered as the onset of Black Death.  Yet, 
at the December session of the court there was no report of deaths at any of the 
manors--the beginning of massive casualties is reported in the May 21, 1349 ses-
sion.  We have linked this generalized mortality with the beginning of the Black 
Death epidemic in the spring of 1349 and have assigned the October deaths to 
other causes. 

Hoeniger (1882: 17) talks of evidence for the outbreak of Black Death at Rut-
wil, near Lucerne (Switzerland) on July 29, 1349.  Biraben (1975: 77) reports 
March 1349 as the beginning of Black Death at both places.  Given Biraben’s con-
sistency on the subject, we adopted his view, even though the 4-month delay 
seems to be in agreement with other regional information. 

Concerning Geneva (Switzerland), we did not follow Biraben (1975: 75) who 
offers no source for his dating of the beginning of the outbreak in January of 1349.  
Working with testaments, Andenmatten and Morerod (1987) have reliably dated 
the duration of the epidemic from August 10 to October 11, 1348.  This was our 
choice, as well. 
Gasquet (1893: 63) states that Black Death reached Dissentis, Grisons (Switzer-

land) from northern Italy through the St. Gotthard Pass, and from there went 
northeast (down the Rhine river) to reach Pfäfers in May of 1349.  Benedictow 
(2004: 119-120) has reservations about this sequence of events.  He claims that the 
epidemic reached northern Italy in the summer of 1348, believing that there was 
not enough time for the plague to cross either the St. Bernard or the St. Gotthard 
pass and reach Dissentis by October-November 1348, which is the onset time sug-
gested by Biraben (1975: 75) and Fössel (1987).  Benedictow is tempted to sug-
gest yet another case of misdating by one year, indicating that an October-
November 1349 outbreak in Dissentis would be a better match to an infection 
from Engelberg to the northwest.  Yet Benedictow himself rejects such a possibil-
ity a few sentences later when he remarks that Engelberg is at the foot of impass-
able mountains where the pestilence found a dead end.  Benedictow has Pfäffers 
infected from Austria to the east, where Back Death reached in the fall of 1348.  
We followed Sticker (1908: 56), who dated the outbreak at Dissentis in December 
of 1348, and we left it to SEP space-time modelling to figure out the route of the 
Black Death on its way to Pfäffers (see the maps in Chapter V).    

e.  Epidemic Modelling 

A salient interdisciplinary issue is the use of epidemic models (see, also, Section 
II.D.b).  There exist numerous epidemic models in the modern literature that are 
mathematical representations of empirical or theoretical knowledge concerning the 
transmission of infectious disease (see, e.g., Anderson and May, 1995; Daley and 
Gani, 2001).  Despite complications (some of which are discussed in other chap-
ters of this book), mathematical models can provide valuable insight into the dy-
namics of the disease, predict its course with reasonable accuracy if used within an 
adequate methodological framework, and help policy makers to make useful deci-
sions about a plethora of public health issues.   
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The majority of epidemic models are currently deterministic (they deal with 
conveniently closed systems having a limited number of theoretically definable 
units with properties that do not change as the thinking proceeds, etc.).  However, 
due to a number of critical issues (in reality one is dealing with incompletely 
known open systems, characterized by the uncertainty of their parameters, obser-
vation inaccuracies, etc.), it is widely acknowledged that stochastic models of 
open systems offer much more adequate representations of an epidemic distribu-
tion across space and time.  The predominant role of stochastics in the description 
of real-world phenomena is reflected in Einstein’s views on the subject: “as far as 

the laws of mathematics refer to reality, they are not certain; and so far as they are 

certain they do not refer to reality.”  In a similar vein, stochastics creates the con-
text that gives meaning to the various kinds of uncertain medieval data and con-
verts them into useable knowledge.    

Due to the mainly historical nature of the evidence about Black Death, employ-
ing epidemic models is far from being a straightforward mathematical exercise.  
Nevertheless, modelling based on sound theoretical and empirical underpinnings 
is vital for epidemic studies to be valid and reliable, and for the generated predic-
tions to be substantive, they should possess a meaningful cognitive basis.  We 

must not forget, that a cornerstone of the current modelling efforts is the decision 

to time mortality every month.  Although English ecclesiastical records are rich in 

data with such a resolution, they are by far the exception.  Most other places at 

best have some mortality for the overall period of infection.  Therefore, we de-

cided to extend the well-known epidemic model of Lowell J. Reed and Wade H. 

Frost (Maia, 1952; Scott and Duncan, 2001) to develop a satisfactory S/TRF-

based methodology capable of downscaling global mortality figures into a se-

quence of monthly mortality values.  The generalized model is stochastic and its 

parameters are distributed across space and time.  We will revisit this important 

matter in Section IV.B.b, in which a detailed mathematical exposition of the Reed-

Frost model suitably extended in a composite space-time manifold will be pro-

vided.    

D.  Data Processing and Interpretation Issues 

a.  Medieval Data are Like Children 

The eminent historian Christopher Cheney commented, "It is an English habit to 
distrust method—still more, methodology—and English historians like to claim 
‘amateur status’.  But the medievalist who has to do with records finds that he 
needs more than common sense and diligence to extract their meaning.  Records, 
like the little children of long ago, only speak when they are spoken to, and they 
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will not talk to strangers."12  In other words, the data talk only to those who have 
an adequate conceptual background and contextual expertise to understand them.  
Common sense approaches will not suffice, because they are often self-limited, 
proceed from an uninformed basis, lack context, and rely on unspoken assump-
tions.  In this sense, Cheney’s comment is crucial for appreciating the important 
role of theoretical modelling in the interpretation of medieval records.  

The situation described above clearly implies that Black Death modelling has to 
use interdisciplinary data collection techniques and rigorous knowledge synthesis 
rules in order to adequately interpret and process contemporary evidence; evaluate 
a wide range of more recent sources, including experts in the corresponding fields; 
and offer a meaningful assessment of the associated uncertainties.  As was men-
tioned above, principles of logic are used as tools of detective work, e.g., for ap-
praising arguments, interpreting evidence, and creating chains of reasoning.  In 
this sense, one of the most important detective tools is generalization.  The epi-
demic modeller should be aware, however, that generalization is like a double-
faced Janus13--a critical operation of creative thinking and, at the same time, a po-
tentially serious source of errors.  Also, since each word used in a record, account, 
chronicle, etc., means different things to different people in different contexts, we 
must carefully seek out an author’s intended meaning, search for contradictions 
and inconsistencies, etc. 

b.  Time Series Deconvolution and Compensation Based on 
Ecclesiastical Appointments 

As we mentioned in a previous section, ecclesiastical paperwork has left one of 
the most reliable documents for the study of Black Death mortality.  The informa-
tion is in the form of a list of appointments of benefited clergy.  What would be 
more useful for our modelling purposes is a list that dates the passing away of all 
priests who died of plague.  This section deals with differences between the two 
types of lists and its relevance in the temporal analysis of mortality.  First of all, 
not all appointments were to replace plague victims.  Appointments also took 
place because: 
 
• The pay depended both on the merit and the wealth of the community.  Priests 

had enough mobility to accept more advantageous positions in terms of bene-
fits, proximity to family, or working conditions.    

• People kept dying of other causes during the Black Death.    
• Some priests stayed in the same place, but were reappointed to new responsi-
bilities.    

• In some cases priests simply retired. 

                                                             
12 Cheney (1956: 11).  The reader may see a close association of this comment with the ear-

lier one: “the data do not speak for themselves…” (Section I.A). 
13 Janus is the Roman god of gates and doors, beginnings and endings, and hence repre-

sented with a double-faced head, each looking in opposite directions. 
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There are also examples of benefited clergy who died while temporarily work-

ing at a different parish, a situation that would distort the statistics if not taken into 
consideration properly.  Moreover, there was the problem of a delay in the search 
procedure and the bureaucratic process culminating with the appointment.  The 
first step was to issue a notification to the patron of the benefice, who then had the 
privilege to look for a replacement.  Under normal circumstances, there may have 
been candidates waiting for an opening.  If not, a search was necessary, a chore 
commonly delegated to an assistant.  Once a suitable replacement was found, it 
took several days to go through the formalities and ceremonies proper to the bene-
fice.  Finally, the bishop communicated the good news to the candidate, who 
promised obedience to the bishop.  The annotations that we have today were re-
corded in the bishop’s official register at the time of institution.  Appointments 
suffered additional delays if the bishop himself happened to die (Fig. 11). 

Wood et al. (2003) have studied the bishop’s register of the Coventry and Lich-
field diocese, a register that is unique in the sense that it lists both the date of death 
and the institution.  Dividing the records by archdeaconry, the authors were able to 
establish 5 subpopulations of acceptable sizes.  They noticed increasing delays in 
the appointments as the plague went on, an effect that is diagrammatically dis-
played in Fig. 12 for the case of a constant rate of variation.  The authors, how-
ever, noted differences in the distribution shapes for appointments vs. deaths that 
suggested a variable rate of change.  This is a mathematically more complicated 
problem than  the simple deconvolution  required to  correct an increasing  lag at a  

 
Figure 11. Death checkmates 
a bishop, St. Andrew’s 
Church, Norwich (Platt, 
1996: 161). 
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Figure 12. Hypothetical distribution of deaths--dashed line; and appointments--continuous 
line (reconstructed from Wood et al., 2003: 436). 

constant rate.  Lag variability among archdeaconries was high, suggesting that 
personal factors (such as the diligence of the bishop) overrode any other consid-
erations.  Under those circumstances, the authors came to the conclusion that was 
not possible to extrapolate the experience of Coventry and Lichfield to other 
places.  Wood et al. (2003), however, found mean and median lags that are close 
to one month, i.e., in agreement with the older rule of thumb of correcting a lag in 

institution: subtract one month from the date of the annotation in order to obtain 

the date of death.  Note that Church regulations allowed bishops six months to ap-

point a replacement to a vacated benefit.   

Not even the most detailed registers mention the cause of death.  Therefore, 
even after eliminating all institutions not related to fatalities, there is a still a small 
margin of error.  Nevertheless, this margin can be minimized by considering fa-
talities in the same bishop’s record before or after the plague, or both.  Time shift-
ing plus subtraction of this background mortality should provide of fairly accurate 
temporal distribution of mortality for any group of benefited priests, such as the 
ones in Fig. 13.    

Considering that we are interested in mortality rates rather than total numbers 
of fatalities, we also need to know the total number of benefits.  This information 
is available for all dioceses, thus the conversion is not a problem.  Considering 
that priests were replaced as they passed away, as a first approximation the popu-
lation size was assumed constant.  The delays, however, made the exact number of 
benefited clergy on duty slightly smaller (by an amount that is not possible to cal-
culate as long as there is no information about the temporal variation of delays in 
appointments).  The approximation of keeping  the  number of benefits equal to its 
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Figure 13.  Benefited clergy mortality of Black Death during 1349 at the archdeaconries of 
the diocese of Coventry and Lichfield: Derby (dashed-dotted line), Stafford (dashed line), 
Coventry (thin continuous line), Chester (thick continuous line), Salop (dotted line); recon-
structed from Wood et al. (2003: 443). 

initial value has, in theory, the effect of producing conservative mortality values.  
In practice, the underestimation helps to compensate for the unknown number of 
institutions due to causes other than plague deaths.  

 
Example D.1.  For numerical illustration, Table 4 demonstrates the procedure 
that was followed in order to calculate the monthly mortality of benefited clergy 
for the diocese of Bath and Wells. 

 
According to the plan outlined in Fig. 3, there is one more critical step: to es-

tablish a relationship between the benefited clergy mortality and that of the popu-
lation at large, which will allow us to transfer the benefited clergy mortality data 
into monthly population mortality values.  These two sections of the population 
have clear differences that can tilt the transfer function in either direction.  In par-
ticular, factors favoring higher benefited clergy mortality than the rest of the 
population are: 
 
• Assistance to the ill and administration of the last rites should have exposed the 
benefited clergy to epidemics more than the laity. 

• The average age of benefited priests was higher than that of the general popula-
tion. 
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Table 4. Calculation of monthly mortality of benefited clergy for the diocese of Bath and 
Wells based on institution according to de Hahn (2002: 83).  Background=3 institutions per 
month (Gasquet, 1908: 192); number of benefits=475 (Ziegler, 1969: 128). 

Date of  

Appointment 

    (a)  

Number of  

Appointments 

    (b)  

Appointments – 

Background 

    (c) = (b) 3 

Monthly  

mortality 

    
(d) =

100 (c)

475
 

Date of 

Death 

    (e) = (a) 1 

November, 

1348 

9 6 1.3 October, 

1348 

December 32 29 6.1 November 

January, 1349 47 44 9.2 December 

February 43 40 8.4 January, 

1349 

March 36 33 7.0 February 

April 40 37 7.8 March 

May 36 33 7.0 April 

June 7 4 0.8 May 

Total 250 226 47.6  

 
On the other hand, factors in favor of a lower mortality among benefited clergy 

than among populations at large would be the following: 
 

• Exposure was much lower than generally presumed because a disproportionate 
part of the dangerous work was passed to lower ranking priests.  Benefited 
clergy tended to concentrate on bureaucratic work in the comfort and isolation 
of their offices.  

• Benefited clergy were well fed and protected against the consequences of crop 
failures, thus having stronger immune systems. 

• Frequently, servants attended and nursed benefited clergy in case of poor 
health.  When the plague broke among laity, sometimes there was nobody left 
either able or daring to feed and nurse the sick. 

 
Yet, other factors that are in dispute or that could very well turn out to be ir-

relevant are the following: 
 
• Benefited priests were all males.  Studies on difference on mortality by sex are 

inconclusive for lack of good data.  Hence, as particular as this difference is, it 
is hard to say if it influenced clergy mortality one way or the other.    

• Better housing.  It has long been assumed that priests had better living condi-
tions than ordinary people.  Some recent archaeological excavations have put 
this claim in doubt. 
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The relevance of the above factors also depends on the nature of Black Death 

(bubonic vs. hemorrhagic).  If Black Death was indeed transmitted by fleas, then 
housing conditions are of paramount importance.  In the case it was a viral infec-
tion, contacting people is a more important factor than housing or working condi-
tions.  In the midst of all these arguments, we have found that Philip Ziegler 
(1969: 128) has been the only one to quantify the uncertainty: “No final answer to 
this conundrum [the representativity of ecclesiastical records] will ever be forth-
coming.  But it would be reasonable to state as a general rule that the proportion of 
benefited clergy who died in any given diocese could not possibly have been 
much smaller than the corresponding figure for the laity and is unlikely to have 
been very much bigger.  Arbitrary limits of 10% less [mortality among benefited 
clergy] and 25% more [mortality among benefited clergy] seem to provide a rea-
sonable bracket within which the correct figure must be encompassed.”  Taking 
into account the above considerations, in Section IV.C.b we will develop a rigor-
ous quantitative method for transferring benefited clergy mortality to probability 
distributions of the mortality of the population at large. 

c.  Parameter Tabulation 

As is described in Section D.a, one is dealing with numerous interdisciplinary in-
formation sources.  For illustration purposes Appendix A tabulates the various 
sources used14.  On the basis of these tables, a number of useful inferences are 
drawn about essential parameters of the Black Death epidemic such as 

    Gs ,   s , 

      
Ts ,o , 

      
Ts , f

, , 
    K s ,       

I s ,
15.  As was mentioned in previous sections, these inferences 

were derived with the help of valid combinations of reasoning modes (e.g., we ar-
gued each case by presenting grounds of reasons for accepting some conclusion 
starting from the information sources tabulated in Appendix A).  More to the 
point, an adequate space-time modelling of the epidemic should take into consid-
eration the following summary data concerning Black Death: 

 (a) In some epidemic cases the observables are the 
  s

 and 
    Gs  (a typical example 

is Wycombe, UK).  In several other places only the beginning of the epi-
demic, 

      
Ts ,o , was recorded, whereas the ending, 

      
Ts , f

, remained unknown 

(Biraben, 1975: 103).  In addition, there is significant knowledge about the 
exact or, at least, the order of magnitude of 

      
Ps ,0  across Europe on the eve of 

the Black Death epidemic. 

                                                             
14 The tables in Appendix A constitute a useful summary of more than 300 excerpts of 

notes collected during our bibliographical search of the Black Death epidemic, although 
this tabulation lacks the anecdotal details, etc. of the original notes. 

15 These parameters have already been defined in Section II.C.b. 
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(b) In a smaller number of cases the observables are 
      
Ts ,o ,     Gs , and 

      
Ps ,0  (e.g., 

Piacenza, Italy).  And in an even smaller number of cases the observables are 

      
Ts ,o ,       Ts , f

, 
    Gs , and 

      
Ps ,0  (e.g., Canterbury, UK).    

(c) The basic incremental time unit in the present Black Death study is one 
month.  Very few places have monthly itemizations of data.  In the vast ma-
jority of locations, we have at best a single number, 

    Gs , to summarize the re-
duction in the population from beginning to the end of the epidemic (say, 
50%).    

 
A few examples may throw some light on these issues, which are essential from 

a modelling standpoint. 
 

Example D.2. Values for 
    Gs ,   s

, , 
    K s ,       I s , , and   f  are displayed in the sum-

mary Table 5.  As soon as the 
    Gs  and   s  values are known at a geographical lo-

cation s , the corresponding values of , 
    K s ,       I s , , and   f  can be found from Ta-

ble 5.  Note that Appendix B includes a detailed list of the values of the above 
epidemic parameters.  These values are calculated at all geographical localities 
throughout Europe in which the generation of monthly mortalities was required as 
part of the SEP modelling and space-time mapping process.  In this sense, Table 6 
is merely a summary of Appendix B containing only a small number of examples 
of places associated with a given duration and overall mortality16.  Some geo-
graphical localities required spatial interpolation of the global mortality values.  In 

Section IV.C.b we will discuss specific numerical examples.    

d.  Mortality in Germany 

Germany was at the time of the Black Death epidemic part of the Holy Roman 
Empire (see map in Fig. 1), consisting of a loose conglomerate of cities and feudal 
territories.   The instability  of  institutions  and  mainly  the  weak authority of the 
emperor may have something to do with the scarce number of Black Death docu-
ments that are available today. 

The lack of German data is particularly true in the case of population mortality.  
Nevertheless, we realized that we could take advantage of another information 
source; Fig. 14 reproduces a map of degree of land desertion during the late Mid-
dle Ages constructed by Abel (1965).  Abandonment of villages and farming land 
took place in Germany during a long period of time for a variety of reasons, of 
which the plague of 1349-51 was an important one.  Admittedly, the plague’s con-
tribution is impossible to quantify precisely.  Other causes were wars, fires, earth-
quakes, floods, geotechnical reasons, fertility of the land, as well as other visita-
tions of the plague.  As far as the last factor is concerned, however, it is well 
documented  that  no  other  epidemic  was  as  devastating as the Black Death epi- 

                                                             
16 In Chapter IV we discuss the steps leading to the preparation of Tables 5 and 6. 
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Table 5. Values of the parameters 
    
K s ,       

I s, , and 
  
f  (in all cases, 

      
Ps,0 = 100  and = 20). 

Duration of epidemic, 
  s

, in months Mor-

tality, 

% 
3 4 5 6 7 8 9 10 

5  4, 5, 

0.051 

      

10  4, 5, 

0.1 

4, 5, 

0.102 

     

15  4, 4, 

0.153 

3, 7, 

0.158 

2, 6, 

0.182 

    

20  4, 5, 

0.203 

  2.2, 3, 

0.233 

   

25 6, 10, 

0.251 

4, 5, 

0.254 

3, 7, 

0.263 

2.5, 6.5,

0.275 

2.2, 3,

0.291 

1.7, 7.5, 

0.336 

  

30 6, 10, 

0.301 

4, 5, 

0.305 

3, 7, 

0.316 

    1.4, 5.5,  

0.505 

35 6, 10, 

0.351 

4, 5, 

0.356 

3, 5, 

0.369 

2.7, 6.5,

0.377 

2.3, 2.4,

0.4 

2, 3, 

0.421 

1.5, 5, 

0.506 

 

40 6, 10, 

0.401 

4, 6, 

0.407 

3, 6.5, 

0.421 

2.5, 6.5,

0.44 

2.2, 3, 

0.466 

2, 3, 

0.49 

1.6, 5, 

0.578 

1.4, 5, 

0.673 

45 6, 10, 

0.451 

4, 6, 

0.457 

3.3, 5, 

0.467 

2.3, 7, 

0.51 

2.3, 3, 

0.524 

2, 3, 

0.551 

1.6, 5, 

0.65 

1.45, 5, 

0.728 

50 6, 10, 

0.501 

4, 5, 

0.508 

3, 6, 

0.527 

2.3, 7, 

0.566 

2.3, 3, 

0.571 

2, 3, 

0.601 

1.8, 3, 

0.659 

 

55   3, 6, 

0.579 

 2.3, 3, 

0.628 

   

60   3, 6, 

0.632 

2.5, 6, 

0.661 

2.3, 3, 

0.685 

   

 
demic of 1349-51.  In  Table 7 we give a list of all the geographical locations 
throughout Germany where we managed to find mortality data, their correspond-
ing desertion values, and the ratio between the two.  An analysis of Table 7 pro-
duced a triangular probability distribution for the scaling factor in Germany (the 
scaling factor is defined as the ratio mortality/desertion), which is plotted in Fig. 
15 (see, also, the mathematical  analysis of Section IV.C.b).  More specifically, at 
geographical places without a mortality value, rather than estimating a value from 
those highly scattered places with mortality data, we decided to use the continuous 
coverage of the land desertion map to produce a desertion value.  This value was 
then scaled by a factor generated from the triangular distribution with a minimum 
of 0.3, a mode of 1.2, and a maximum of 3.317.   

 

                                                             
17 See Section IV.C.b for a detailed explanation of the mathematical techniques imple-

mented for this purpose. 
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Table 6. Examples of places with different duration of Black Death and overall mortality. 

Duration of epidemic, months Morta- 

lity, % 3 4 5 6 7 8 9 10 

5  Os-

nabrück 

      

10  Minden Nurem-

berg 

     

15  Mau- 

bege 

Kon-

tanz 

Lille     

20  Passau   Mainz    

25 Hamar Hano- 

ver 

Tour-

nai 

Angers Reims Bruges   

30 Cam-

prodón 

Mo-

rella 

Calais     Ghent 

35 Quim-

per 

Borja Bada-

józ 

León Evora Forez Pisa  

40 Villa-

lobos 

Santes-

teban 

Basel Béziers Cádiz Anjou Toledo Seville 

45 Pto. 

Llano 

Alès Braga Málaga Rouen Naples Lund Gra-

nada 

50 Ste. 

Marie 

Nîmes Arles Ca-

gliari 

Sardi-

nia 

Flo-

rence 

Co-

logne 

 

55   Albi  Avig-

non 

   

60   Tra-

pani 

Estella Mar-

seille 

   

e.  Aggregation and Scale Effects 

In dealing with the Coventry and Lichfield diocese (UK), Wood et al. (2003) ob-
served that by downscaling the diocese to its archdeaconries resulted in a reduc-
tion of the infection period for the different archdeaconries.  The epidemic stayed 
in the diocese for about 8 months, but at the individual archdeaconries the duration 
time was 5-7 months.  This finding can be explained in terms of the time that it 
took for Black Death to move from one place to another.  The actual ground speed 
for Black Death ranged from less than 1 km/day to 5 km/day (Biraben, 1975: 90; 
Andenmatten and Morerod, 1987: 31).  For a given ground speed, the disease du-
ration in a large region depends on the urban mixture, topography, size, shape, and 
orientation of the region relative to the direction of the plague propagation.  The 
effect of a decreasing geographical area on the disease duration is always to make 
it shorter.  On the other hand, the effect that a decreasing study area has on mortal-
ity is more complex.  This is demonstrated with the help of the following numeri-
cal example.   
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Figure 14. Land desertion map in Germany and Poland during the late Middle Ages (Abel 
1965: 520).  Title (translated from German): The Wustungen during the late Middle Age 
across the German territory (shown within the 1937 boundaries).  Legend: Fraction of land 
desertion-Importance of the Wustungen: 0-19, not significant; 10-19, weak; 20-39, me-
dium; greater than 40, high; blank, no information.  

Table 7. German cities with mortality values and the corresponding land desertion values 
during the 1349 Black Death epidemic. 

City Mortality, % Desertion, % Mortality / Desertion 

Bremen 50 15 3.3 

Erfurt 40 40 1 

Frankfurt 20 20 1 

Güstrow 28 30 1 

Hamburg 55 20 2.75 

Lübeck 40 30 1.33 

Lüneburg 36 15 2.4 

Magdeburg 53 45 1.2 

Nüremberg 10 30 0.33 

Parchim 40 30 1.33 
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Figure 15. The histogram 
of the scaling factor de-

fined as the ratio mortal-
ity/desertion (Germany). 

 
Example D.3.  Fig. 16 describes the situation in the county of Durham, UK.  
While the mortality for the study area (consisting of 28 townships) was 50%, the 
mortality for individual townships varied from 21% to 78% (Lomas, 1989).  The 
increase in the range of values is nothing new in the stochastic analysis of spatio-
temporal data (Christakos et al., 2002; Choi et al., 2003).  It is often called the 
“change-of-scale effect”18 and has to do with the different degrees of disease vari-
ability associated with the same type of observation when the area within which 
the observation takes places changes (from county to township in the case of this 
example).   
 

Generally, the process of inferring the epidemic variation at small scales from 
that at a large scale is called downscaling and does not have a unique solution.  At 
most, one can prepare realizations of an epidemic random field having the same 
moments  as the observed data.   A general rule is that the smaller the scale, the hi- 
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Figure 16. Black Death 
mortality rate for 28 parishes 

in eastern and central Durham 
county, UK (Lomas, 1989). 

 

                                                             
18 See also Section II.A.e on Conceptual Hierarchies. 
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gher the variability; thus the lower the continuity.  Shrewsbury (1970) provides 
numerous examples of extreme mortality variations at the parish level throughout 
the English dioceses. 

To increase the data resolution, we followed the example of Wood et al. (2003) 
in downscaling dioceses to archdeaconries whenever possible.  We were particu-
larly pleased with our use of the information collected by Thompson (1911 and 
1914) to downscale the two largest English dioceses of York and Lincoln, a pro-
cedure that we have not seen performed before.  We were unable to go beyond the 
archdeaconry level for several reasons.  One is that the existing publications rarely 
presented archdeaconry data downscaled to the parish level.  Should that informa-
tion were available, the samplings would be too small to be reliable.  Thus, the po-
tential of breaking ecclesiastical data for Black Death studies stops at the level of 
the archdeaconry.  Archdeaconry data were used only for England, where they are 
the best source displaying a continuous coverage, despite the problems mentioned 
in Section D.b.  Discarding ecclesiastical records for reasons of scale inconsis-
tency would have resulted in the loss of most of the direct monthly mortality in-
formation provided by these records. 
Given the need to use every available piece of reliable information available, 

we employed a combination of observation scales.  In most cases the scale is the 
city, whereas in some others it is a province, an archdeaconry, or a diocese.  Cer-
tain archdeaconries in UK have data both for the archdeaconry and for some man-
ors.  In those cases, we usually considered the more representative archdeaconry 
data (Appendix A); the manor information was employed only to verify its consis-
tency with the archdeaconry data. 

f.  Correlation Between City Size and Epidemic Duration 

It was clear from the outset of data collection that there are more documents dat-
ing the beginning of the plague than its ending (Biraben, 1975: 103).  In Italy, e.g., 
we found that at only 1 in 3 cities an ending date for the plague is available.  Our 
interest to assess the epidemic duration arose from the need to estimate these miss-
ing ending dates. 

The local duration of Black Death is one of the many aspects of the epidemic 
that remains poorly known, more than six and a half centuries later.  At the sim-
plest level, some authors consider a fixed time for the duration of the epidemic, 
such as a little more than 2 months (Guilleré, 1984: 111), or 2-3 months (Chédev-
ille, 1983: 131), or 3 months (Ubieto, 1975:53), or about 8 months (Scott and 
Duncan, 2004: 28).  Tuchman (1978: 93) claims that, except for the larger cities, 
the pestilence generally lasted 4-6 months.  Familiarization with the databases and 
the application of critical reasoning brought us to the conclusion that there was a 
connection, indeed, between the duration of the epidemic and the population size 
of the place under consideration.  The number of cities in which information for 
both the population size and the duration of the epidemic was available ended up 
being approximately 1 in 10.  These cities are displayed in Table 8.  Interestingly, 
as we shall see in Section IV.B.a  later in the book,  a careful statistical analysis of  
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Table 8. Cities with data for both pre-plague population and duration of Black Death. 

Austria Vienna   

Belgium Bruges   

Avignon Caen Givry 

Lille Lyon Marseille 

Millau Paris Perpignan 

Reims Rouen Ste Marie Laumont 

France 

Strasbourg Toulouse  

Erfurt Frankfurt-am-Main Lübeck 
Germany 

Magdeburg   

Ireland Dublin   

Arezzo Bologna Florence 

Naples Orvieto Padua 

Parma Perugia Pisa 
Italy 

Reggio d’Emilia Siena Venice 

Almería Barcelona Girona 

Murcia Seu d’Urgell Tarragona 

Teruel Valencia Vic 
Spain 

Villalobos Zaragoza  

Bristol Cambridge Canterbury 

Cuxham Fingreth London 
United 

Kingdom 
Ruthin Walsham  

 
the quantitative information associated with Table 8 reveals that the population 
size and the duration of the epidemic at a populated place are related by means of 
a scaling law. 

g.  Demographic Uncertainty 

For reasons to be explained in detail in Chapter IV, the population size became an 
important part of SEP modelling.  As with almost any medieval aspect that one 
wants to quantify, demography is full of uncertainties resulting from the fact that 
the counting of people in the modern sense of a census did not start for another 
century after the Black Death epidemic of 1347-51.  Consequently, similar to 
other medieval variables of interest, what is available most of the time are proxies 
that one can use with caution to infer values about what we really want to know, 
such as the population of a port.  Most common sources of information about me-
dieval population during the Black Death era are: 
 
• Direct references to the number of residents.   
• Tax records.  Prior to the preparation of censuses, the vast majority of counting 

of residents was done for the very profitable purpose of collecting taxes.  
Scholars have developed over time methods to try to derive counts of total 
numbers of residents starting from these tax sources that, in general, are the 
most comprehensive available. 
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• An assortment of sources that, even though originally not going into records for 
the purpose of counting people, have been scaled to provide useable assess-
ments of contemporary populations. 

 
Knowing that actual counts of all residents never took place in the 14th century 

AD, even direct values have to be used with caution because what we have today 
are at best educated guesses (although, often they are not explicitly mentioned as 
such).  E.g., when a chronicler said that the population of Dublin on the eve of the 
Black Death was 14,000 residents (Kelly 2001: 95), the actual figure could have 
been 10,533 or 15,859.  We will never know, of course, but at least we should be 
aware of the uncertainty.  The mere mention of a round number should be taken as 
a warning that there was no actual population counting behind the figure.  All 
numbers must be scrutinized.  If possible, one should try to clarify some techni-
calities.  Points of eternal contention among medieval demographics are:  

 
• the counting or omission of children and beggars;  
• for large cities, the counting inside the wall only, or including families in 

the contiguous vicinity, too; and  
• strict urban counting, or including those in the surrounding countryside as 

well. 
 
There are numerous indirect sources that can be employed to derive population 

estimates starting from numbers that sometimes have nothing to do with people.  
These estimates can be recent or contemporary.  Merchant and chronicler Gio-
vanni Villani, e.g., is credited with having derived estimates of the pre-plague 
Florence population based on his familiarity with business transactions (Day, 
2002).  Scholars have made several remarks about this otherwise ingenious 
method.  Villani reported a daily wheat consumption of 140 modia in Florence 
around 1338, which is an amount that has been challenged to start with.  The sec-
ond reservation, common to all indirect methods, has to do with the accuracy of 
the scaling factor that he used to translate a volume of wheat, as is 140 modia, to 
mouths to feed.  A common practice to rate cities was their capacity for contribut-
ing men to bear arms, a capacity that can be used to estimate populations when 
only the conscription is known.  Creighton (1891: 126), e.g., used the conscription 
for Bodmin, England, to come up with an estimate of 3,000-4,000 residents based 
on the conscription and population for neighboring Gloucester, Hereford, and 
Shrewsbury.  Other indirect sources include the number of baptisms, also used to 
estimate the Florence population (Day, 2002), and the number of weddings at 
Givry (Biraben, 1975: 160). 

Tax records are particularly abundant for medieval England and in moderate 
numbers for Spain and France.  England has several of these records both from be-
fore and after the Black Death period, but the most reliable and complete ones are 
the Domesday Book of 1086 and the Tax Poll of 1377, which were levied differ-
ently.  The purpose of the Tax Poll of 1377 was to raise funds to continue the 
Hundred Years War against France.  Parliament wanted to diffuse the load from 
the nobility, so lords went for a widespread tax, imposing a mandatory 4 pence 
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contribution from every man or women older than 13 years of age.  Experts have 
been trying to convert the tax records into population counts for a long time.  The 
first source of uncertainty is the inaccuracy of the records themselves, comprising 
a mixture of lost records, illegal appropriation by collectors, and evasion.  All 
these factors are difficult to assess.  However, if ignored, they lead to calculations 
biased toward low population estimates.  Guesses for evasion range between 5-
25% (Titow, 1969:68).  The other factors are considered of secondary importance 
and normally are not even entered into the calculations. 

Having corrected the tax records, the next task is to add the minors.  Russell 
(1948: 143) is of the opinion that minors below 14 years of age were one-third of 
the total population; others see this estimate only as a minimum boundary, with 
the real proportion going as high as 45% (Postan, 1972: 30).  For all these reasons, 
one reaches the conclusion that the total English population in 1377 was 1.58 to 
1.81 times the number of taxpayers.  The hardest part of the calculations is still 
ahead:  the conversion from the 1377 Tax Poll to pre-plague population.  Such a 
calculation is presumed to be able to estimate the population growth during nor-
mal years, and the effects of four rounds of plague: the major outbreaks of 1347-
51 and 1361-62, plus the less catastrophic epidemics of 1369 and 1374.  Here we 
face the common situation of medieval studies being capable, in theory, to account 
for a factor but having no data to actually perform the calculations.  The only way 
to proceed ahead is in terms of educated guesswork, which in this case calls for an 
estimate of the net population shrinkage during the 30 years before the 1377 Tax 
Poll.  The reductions most commonly mentioned are between 40% and 60%, im-
plying a grand scaling factor of 2.8-4.53 to convert 1377 Tax Poll residents to 
1347 residents in the same area. 

Though important to Black Death studies, the 1377 Tax Poll is a very particular 
form of taxation.  More commonly levies were based on counts of households, 
which typically included husband and wife, their children, some elderly parent or 
relative, and servants in the case of the most affluent.  Calculations here are 
slightly simpler, involving a conversion factor from families to family members, 
and time extrapolation if the records significantly differ in date from the beginning 
of the Black Death.  Post-plague extrapolation is always more difficult, because it 
involves considering mortality from the Black Death plus other causes if the gap is 
larger than a decade (in a similar manner as that described for the 1377 English 
Tax Poll).  On the contrary, pre-plague corrections of population estimates after 
the year 1300 are minor or unnecessary, since Europe suffered from global wars, 
floods, and famines that tended to cancel out the normal rate of population growth 
(Tuchman 1978).  Concerning the scaling factor (from number of households to 
number of people), demographers like to use slightly different numbers depending 
on spatiotemporal considerations and urban or rural conditions.  Factors com-
monly vary between 3.5 and 5, and, contrary to other situations, they are based on 
data such as the counting in Fig. 17.  

Some scholars can become frustrated with all these uncertainties associated 
with efforts to quantify medieval affairs, causing them to denounce the calcula-
tions as worthless (Postan, 1972: 30).   We are definitely in the opposite camp, as-
sured  that  the  situation  is  less  chaotic  than  it  might  look  at  first  glance, and  
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Figure 17. Number of resident per household for the Jewish community of Aix-en-
Provence, France, in 1341 (Baratier, 1961: 60). 

certainly within the realm of stochastic modelling to produce useful results.  After 
all, for modelling purposes what we mostly need is rather the order of magnitude 
of the populations of interest, that is, whether it was a hamlet with a few houses, a 
modest village with a few hundred people, a town with a few thousand residents, 
or a major cathedral city.  As we will see in Chapter V, e.g., considering that the 
population of a city was either 2,000 or 4,000 residents--a 100% discrepancy--will 
only have an 8% impact in the duration of the epidemic, which is the epidemic 
variable of interest, in this case.  

h.  Other Possible Correlations, Links, and Dependencies 

Success in relating city size to Black Death duration has opened the possibility to 
further advance medieval studies through multivariate regression modelling.  In 
the past, certain remarks had been made linking mortality to several factors.  Re-
grettably, we were not able to quantitatively study most of these remarks due to 
lack of data, contradictory remarks or, most frequently, both.  In one case, how-
ever, some very interesting quantitative inferences were made as follows.   

The plot of Fig. 18a reveals that in the case of the modern bubonic plague, the 
smaller the city, the more severe the mortality.  Fig. 18b, on the other hand, dis-
plays a city size vs. mortality plot for 86 of the 14th century European cities in-
cluded in Appendix A in which reliable information was available for both vari-
ables.  The second plot is nothing like the first one: it shows a distinct absence of 
correlation between city size and mortality.  In fact, the influence of city size has 
been cast in a different way by trying to investigate differences in Black Death 
mortality between urban centers and the countryside.  We have not yet found any 
data  for a  documented opinion.   There are  no data  about  Black Death mortality  
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Figure 18. Disease and 
city size (a) Fluctuation 

of modern bubonic 
plague mortality in In-

dia vs. city size 
(Hankin, 1905: 56). (b) 

Fluctuation of mortality 
during the 1347-51 

Black Death epidemic 
at 86 European cities. 

 

 
among peasants living outside organized communities in rural districts.  If one is 
willing to assume that small villages in Fig. 18b had similar death rates as the true 
countryside (in the sense of people living in non-organized communities), our 
conclusion would be that Black Death swept indiscriminately into both rural areas 
and urban centers.  This result agrees with the opinion of some scholars (e.g., 
Creighton, 1891: 135; Baratier, 1961: 111-112; Wills, 1997: 64; Naphy and 
Spicer, 2000: 41) and contradicts the assertion that Black Death was more of an 
urban epidemic (e.g., Titow, 1969: 69; Shrewsbury, 1970: 109; Weyl, 1975: 247; 
Martin et al., 1991: 595).  Yet, there is a third group of researchers who assume a 
higher mortality in the countryside than in the cities (e.g., Davies, 1924: 199).  



150      Chapter III - Black Death:  The Background 

This may be a rather distorted vision influenced either by the kind of tendency 
displayed in Fig. 18a for modern bubonic plague or by an arbitrary comparison be-
tween places as far apart as Lovain and Sardinia (Kelly, 2001: 17). 

Scholars have also tried to find a link between the severity of the plague and 
geography.  Phillips (1998: 52), among others, argued that Black Death hit harder 
the ports and large cities along trade routes.  Here, again, the generalization is 
logically valid at a regional level at best, in our view.  Examples and counterex-
amples abound, making it impossible to reach any definite conclusion.  In Italy, 
e.g., the port of Genoa had a mortality of about 35%, which is higher than that of 
inland Verona (45%) but lower than that of the even further east port of Venice 
(60%).  While ports and trade centers were in many cases the focal point of the 
beginning of the epidemic in a region, once the plague had propagated, there is no 
evidence that receiving the epidemic first made it more virulent.  Other scholars 
have promoted the view that mountainous areas had lower mortality than the val-
leys and plains (Cabrillana, 1968: 247; Latreille, 1975: 112-113; Kelly, 2001: 37), 
yet Gelting (1991: 8) has prepared a study showing that people in the mountains of 
Savoy were hit as hard as or harder than those in other locations in France.  San-
tamaria (1969: 123), studying the Black Death in Majorca, concluded that mortal-
ity was proportionally higher in the mountainous area of the island than along the 
coast.  In terms of the topography, we were limited to the information provided by 
Biraben (1987: 179), who maintained that the high mountain regions of the 
Pyrenees and the Alps were never affected by the plague, most likely for the obvi-
ous reason that nobody lives there to this day.  The discussion above summarizes 
the topographical feedback used in SEP modelling. 
Another topic of inconclusive debates has been the relationship between mor-

tality and social status.  Most scholars seem to agree that the poor suffered more 
than the rich, but the contention seems to be an extrapolation on the basis of the 
general observation that, throughout history, poor housing, sanitary conditions, 
and nutrition resulted in higher exposure to diseases.  This remark looks more like 
a plausible statement rather than an independent scientific conclusion derived 
from the analysis of real Black Death data.  In UK, e.g., Ecclestone (1999: 27) was 
surprised to observe that the mortality among poor peasants at Glastonbury (57%), 
was approximately the same as that reported for the wealthy tenants at neighbor-
ing Halesowen (46%).  The contemporary chronicler Gilles Li Muisis, however, 
claimed that at Tournai the Black Death mortality was particularly high among the 
affluent and the powerful (Orent 2004: 129), and so does Bean (1982: 29) for Eng-
lish landowners.    

Medieval information systematically ignores children and rarely includes 
women.  This biased nature of the data has been a serious obstacle toward investi-
gating any differences in death rates in terms of gender and age.  The main find-
ings are valid for England.  Charles Creighton (1891) made the counterintuitive 
remark that “it was mostly the young and the strong who were cut off, the aged 
and weakly being commonly spared,” but he does not back up his statement with 
data.  On the other hand, Ohlin (1966: 79) and Cohn (2002b: 48) did not observe 
any age discrimination, nor did Razi (1980: 103-104) saw gender playing any role. 
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Cohn (2002b: 126) claims that the unusual virulence of the Black Death epi-
demic that started in Europe during 1347 left no room for special conditions.  The 
effect was massive and indiscriminate, making no exception to factors such as 
personal hygiene, health, age, sex, or social class.   

Stochastic modelling can be very helpful in the investigation of dependences 
between Black Death mortality and the various contemporary evidence sources.  
The existence of such dependences can be critical in generating informative mor-
tality predictions, assessing the epidemic spread across space-time, etc.  A possi-
ble situation is described in the following example. 

 
Example D.4.  Assume that the available evidence consists of a database   S  
(land desertion data, exposure measurements, etc.) at a set of space-time points 

    pi
 

(    i = 1,2, ..., N ).  A plausible measure of the predictability of mortality 
    
M p  at a 

point p  (
    p

i
) from the database   S  may be the difference 

  
P[M p S ] P[M p ].  

Multiplying the difference by   P[S ] yields 
  
P[M p ,S ] P[M p ]P[S ].  In this sense, 

the predictability of 
    
M p  from   S  is a measure of the stochastic dependence of 

    
M p  

and   S .  E.g., if the difference is zero--meaning that 
    
M p  and   S  are stochastically 

independent--
    
M p  is unpredictable on the basis of the database   S .  In this case, 

the database is useless for mortality prediction purposes.  If, on the other hand, the 
difference is non-zero, 

    
M p  and   S  are stochastically dependent and the former is 

predictable on the basis of the latter.  This stochastic dependence may be linked to 
some natural dependence that is an inherent feature of mortality variation. 

E.  Si non è Vero, è Molto Ben Trovato 

The mid-1300s AD were difficult times in a variety of ways (Gottfried, 1983; 
Kelly, 2003).  Europe was inhabited by far fewer people than presently, who very 
rarely moved away from their hometowns, and life moved at a slower pace.  Su-
perstition played an important role in local communities (people were taught that 
diseases were punishment from God, etc.), poor hygiene conditions were common, 
and there were very few medical advances made during this period in history.  The 
Hundred Years War began in 1337 and lasted about 120 years, despite the name.  
There was a great famine in Europe from 1315 to 1317.  The economy spiraled 
downward and banks collapsed in the first few decades of the 1300s.  The Catho-
lic Church was already a powerful institution and served as the unifying force be-
tween many small kingdoms--as a center of learning, but also as a force of oppres-
sion.  The Church gave standards on the levels of sexual sin, as well.  Sex, it was 
taught, was a necessary (for reproductive reasons) evil introduced to humanity by 
the Devil19.  It was in such an environment that Black Death arrived in Europe.   

                                                             
19 Diverse views have been expressed about this historical epoch, including characteriza-

tions such as “an age of superstition”, “times of barbarism”, and an “era of unreason”.  
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In the previous sections of this chapter, we described the numerous sources of 
information we had to evaluate in order to generate the required mortality KB.  
The SEP aims at giving a logical and systematic account of historical Black Death 
sources20, and at enabling us to predict from past experience to new circumstances.  
In doing so, we were reminded that scientific inquiry demands an element of crea-
tivity and an element of faith.  Creativity comes in working up the appropriate 
SEP concepts and models (Chapters I and II) to associate with the multi-sourced 
evidence of the present chapter.  Faith comes in thinking that these concepts and 
models, when shown to be useful or successful in some way, bear a relation to 
what one may call epidemic reality, as described in terms of the multi-sourced 
evidence.  With regards to SEP, therefore, we are hopeful that “si non è vero, è 
molto ben trovato”21. 

Medieval studies are not alone in the pursuit of the distant and uncertain events 
that took place several centuries ago.  By far, they are not even the most remote 
and distant events.  The realm of archaeology is still a human activity, but dealing 
with events that happened in the order of thousands of years ago.  Geologists and 
astronomers have developed their disciples around the pursuit of knowledge to-
ward the dawn of time, billions of years ago.  The odds against obtaining any in-
formation that distant are phenomenal, but at the same time, the fascination of 
learning anything about the universe in general and our planet in particular are 
also of such paramount significance that many still devote their lives to advance 
these sciences of the impossible.  The likelihood of obtaining any information 
about the distant past is miniscule, and when found, the significance and inaccu-
racy of any speck of evidence may disappoint most scholars used to dealing with 
the precision, accessibility, and repetitiveness of, say, mass spectrometry.  The 
scarcity and uncertainty of geological data make progress in the discipline slow 
and subject to change.  On the other hand, despite the difficulties, it is undeniable 
that geology has made progress in the understanding of what has been happening 
from millions of years ago to now.  Patient observation, careful verification of 
facts for consistency, and modelling based on critical thinking have been some of 
the crucial tools of success. 

The SEP models constitute the formal basis for extracting and evaluating the 
main characteristics of epidemic distribution and generating informative predic-
tions across space and time.  These models need not be mathematical, but mathe-
matics is one of the most powerful and general methods of reasoning that we pos-
sess.  Therefore, in this chapter we attempted to secure data--wherever possible--
in a form that can be handled mathematically.  The last task is furthered in Chap-
ters IV and V. 

                                                                                                                                            
The Austrian writer Karl Kraus went as far as to maintain that “Mankind became hys-
terical in the Middle Ages because it poorly repressed the sexual impressions of its 
Greek boyhood”. 

20 E.g., many of the tables presented in this chapter demonstrated that useful data can be 
produced by thinking things through--i.e. by using intellectual frameworks (reasoning 
modes, modelling, etc.) to organize and process contemporary evidence. 

21  “Even if it is not reality, it is a good invention” (Giordano Bruno). 



Chapter IV - Mathematical Formulation of the 
Knowledge Bases 

" The real truths are those that can be invented.” 
                                                             K. Kraus 

A. Introduction 

What we can measure, we can know.  This precept has been recast as a formal 
mathematical statement.  The weight of thought is in the words; the mathematics 
and its symbols enable one to probe the consequences of the thought.  Thus, al-
though this chapter deals mainly with the formal component of epidemic model-
ling (i.e., the mathematical formulation of the Black Death multi-sourced data-
bases), the blending of form with content, theoretical with interpretive analysis, 
and conceptual with applied work will continue to be prominent and unavoidable.  
Robert Frost provides a picturesque description of this kind of blending in his 
poem To a Thinker (Lathem, 1979: 325-326, lines 10-14):   
 

“ From form to content and back to form 
   From norm to crazy and back to norm 
   From bound to free and back to bound 
   From sound to sense and back to sound 
   So back and forth.  It almost scares 
   A man the way things come in pairs. ” 

 
In Chapter II we proposed that the modelling of the Black Death epidemic 

starts by introducing a first methodological assumption: the relevant disease pa-
rameters will be mathematically represented as S/TRF.  Indeed, the information 
sources in existence today about the Black Death epidemic of 1347-51 AD are no-
toriously scarce and uncertain (Twigg, 1984; Scott and Duncan, 2001; Cohn, 
2002a and b), which makes a stochastics approach to the problem most appropri-
ate.  As we saw in Chapter II, to understand stochastics we need to add to our lan-
guage as well as to our imagination.  The spatiotemporal random field (S/TRF) 
representing disease variables is a field of possibility, not a real field.  It describes 
the probable structure of a disease variable in space-time, not its actual structure.  
It implicitly requires the consideration of that which probably does not exist in or-
der to explain that which actually exists (but is unknown).  The mind of any sen-
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tient epidemic modeller should be capable of reaching into alternate realizations of 
reality and deriving conclusions about that reality. 
Although the interdisciplinary structure of the various knowledge sources rele-

vant to Black Death has not gone unnoticed, it has not been taken into considera-
tion in previous studies of the epidemic1.  Hence, a subsequent methodological as-
sumption is the epistemic-based distinction between two major categories of 
interdisciplinary knowledge concerning the Black Death situation: the general 
knowledge base (  G -KB) that is discussed in Section B below, and the specifica-
tory knowledge base (  S -KB) that is the topic of the following Section C2.  The un-
ion of these two major KB is denoted by   K , which is the total KB available re-
garding the Black Death epidemic.  The   G -KB may include human constructs like 
scientific theories, empirical laws, and relationships developed in various disci-
plines that are relevant to the Black Death epidemic.  The   S -KB, on the other 
hand, consists of case-specific details (linked to the specified geographical area, 
time period, and human culture).  This includes contemporary (but often highly 
uncertain) written records and a plethora of secondary information sources about 
Black Death (see, also, our discussion in Chapter III).   

To put things in perspective for our readers, it may be helpful to provide a brief 
outline of the material considered in this chapter (Fig. 1).  The mortality KB are 
viewed from several different angles: mathematically, logically, statistically, com-
paratively, etc.  The   G -formulated knowledge includes space-time covariance 
functions,  epidemic  models,  and city size-epidemic duration laws; the   S  base 
involves  probability functions  of various  forms  and  shapes  (Gaussian and non- 
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Figure 1. An outline of the process leading to the mathematical formulation of the interdis-
ciplinary Black Death knowledge bases (KB).  This figure is a continuation of Fig. III.3. 

                                                             
1 In his treatise on Black Death, Bleukx (1995: 72) commented: “With this introduction I 

want to point out many problems of interpretation that arise when this issue is ap-
proached in a critical way.  I have only discussed a few of them, some of which have 
hardly ever been taken into consideration, and certainly not on an interdisciplinary 
level.” 

2 Under certain circumstances, one may draw an instructive parallel between the general vs. 
specificatory KB and the knowing by the mind (Latin scire) vs. knowing by the senses 
(Latin noscere), as discussed in Plotkin (1997).  Knowing by the senses is knowledge of 
events that are temporally coincident with the act of knowing.  Knowing by the mind, 
whether it is understood by invoking memory or thought or both (in this context, it in-
cludes logic and mathematics) refers to knowledge that is removed in time from the ac-
tual or possible experience of what is known. 
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Gaussian, etc.).  As we saw in Section II.E.b, the   G -KB will be used to generate 

the pdf model 
  
fG , whereas the   S -coded data will be used to update 

  
fG , thus lead-

ing to the final model of the Black Death mortality,
  
fK , across space and time 

(  K = G S ).  Chapter V demonstrates how the various KB in Fig. 1 can be ex-

ploited by means of BME to yield a wealth of information in the form of 
  
fK . 

B.  Mathematical Formulation of the General Knowledge 
Base 

In the present Black Death study, the   G -KB refers to knowledge that is relevant to 
the epidemic system under consideration, but its domain of application may far 
transcend the specified situation.  Which kind of general knowledge elements will 
be synthesized to solve the Black Death epidemic problem should be contingent 
on the nature of the solution as well as on the status of the various knowledge dis-
ciplines involved and their relations.   

The   G -KB of this section includes conceptual systems on the basis of which 
the Black Death datasets may be acquired, tabulated, and analyzed.  As Carlo 

Cipolla highlighted in his treatise on plague, “Man cannot grasp new facts without 

reference to some existing concepts, and these concepts inevitably modify the 

kinds of facts he sees and how he sees them… The most induction-addicted inves-

tigator never starts from a tabula rasa” (Cipolla, 1981: 9).  The covariance con-
cept, e.g., expresses space-time mortality dependence.  Since this dependence is 
implicit in any mortality dataset, it makes sense to look at the dataset with refer-
ence to the covariance concept, which provides the means to formalize mortality 
dependence in a convenient quantitative form.  Theoretical covariance models are 
then constructed on the basis of the general knowledge about the epidemic (e.g., a 
class of epidemics is generally characterized by advancing wave-form covariance 
models; Section B.c below).  With this in mind, we can now proceed with our dis-
cussion of certain of the main components of the Black Death   G -KB.   

a.  A General Scaling Law Between City Size and Epidemic Duration 

A valuable piece of information in the context of the   G -KB is available in the 
form of a general scaling law between urban population at the beginning of the 
Black Death epidemic and its duration (Figs. 2), as follows: 

s = 3.031+ 0.132Ps,0  (1) 

where   s  denotes the duration of the epidemic (in months) and 
      
Ps ,0  denotes urban 

population (in thousands of residents) immediately before the start of Black Death 
at each geographical location s.  The correlation coefficient is 0.97.   In  Fig. 2  the 
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Figure 2. A scaling 
law of Black Death 
duration vs. pre-plague 
city size, (a) linear 
scale, (b) semiloga-
rithmic scale. 
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scaling law is plotted in both a linear and a logarithmic population scale for better 
appreciation of the excellent fit  for the entire range city size values.  The equation 
is assumed valid for 

 
Ps ,0 0.2 , the minimum size for which we have data.  Ex-
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trapolation of the line below the population point 
      
Ps ,0 = 0.2  should be avoided for 

epidemic reasons (e.g., on the basis of the minimum population required for an 
epidemic to occur), as well as for reasons having to do with the structure of the 
scaling equations: although very helpful in interpolation, one should be careful 
when using them for extrapolating purposes, for the constraints are unknown when 
one goes beyond the range of available data (Schmidt-Nielsen, 1999:  29). 

The subtraction or addition of points e.g. ignoring the three cities with the 
largest population leaves Eq. (1) essentially unchanged, a sign of stability (Olea 
and Christakos, 2005).  The regression is also fairly stable to variations in popula-
tion size, which is good when there is some uncertainty in the population and the 
dependable variable of interest is epidemic duration.  E.g., discrepancy in the 
population of a city between 2,000 to 4,000 residents--a hypothetical 100% fluc-
tuation--will only have an 8% impact in the duration of the epidemic.  As one 
might expect, the duration   s  increases with increasing city size.  The fact that it 
increases linearly is an interesting and, perhaps, less-anticipated finding.  A sig-
nificant increase in the number of residents certainly implies more susceptibles in 
danger of being infected.  Yet, the duration of the epidemic has been shown in 
practice and through the use of models (Scott and Duncan, 2001) to depend on the 
number of contacts, 

    K s , as well.  Therefore, while our results are not counterintui-
tive, they do not offer an immediate etiologic explanation of the rate of increase of 
epidemic duration with population size.  Due to uncertainty, the variables in Eq. 
(1) are represented in terms of random fields (Section II.C).  In addition to 

      
Ps ,0  

and 
    K s , the serial generation of monthly 

  s
 values depends on three parameters: 

, 
      
I s , , and f (these parameters have been defined in Section II.C.b). 

Scaling equations (or the equivalent graphic regression lines) are convenient 
and useful tools in life sciences.  Eq. (1) is a product of the careful analysis and 
theoretical interpolation of the data in Table III.8, which are highly atypical, in the 
sense that they lack the serious uncertainties of other records--with the exception 
of Florence, Paris, and London.  Other than tax records, information also comes 
primarily from reliable chroniclers, and in the case of UK, mainly from ecclesias-
tical records and court rolls, which on average are the most reliable sources.  Sev-
eral cases demonstrating the empirical usefulness of the scaling law in the Black 
Death modelling and space-time mapping are discussed in Section V.C.b.   

b.  An Extended Reed-Frost Model for Increasing the Resolution of 
the Mortality Data 

There is no shortage of epidemic models (e.g., Anderson and May, 1995; Molli-
son, 1995).  Most of these models are mathematical representations of empirical or 
theoretical knowledge concerning the transmission of infectious disease.  In many 
cases they are based on re-interpretations of models that have been used in other 
scientific disciplines.  In the SEP context, epidemic models are considered as pri-
mary components of the   G -KB with reference to geographical regions of Europe.  
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Since a central decision was to time mortality every month, we needed an epi-

demic model that was adequate for this purpose.  Hence, we extended the original 

Reed-Frost model (Maia, 1952) in a S/TRF context that was then used to tempo-

rally downscale global mortality (e.g., a 50%, global mortality is downscaled into 

a sequence of monthly values, say 4, 10.7, 22.9, 23.7, 8.7, 2.2, and 0.3). 

Epidemics are generally characterized by a first stage during which the number 
of infecteds increases, followed by a stage with a decreasing number of cases until 
the process dies out due to exhaustion of susceptibles.  While some generaliza-
tions of the original Reed-Frost model can be found in the literature (e.g., Picard 
and Lefevre, 1990), the stochastic behavior of the model in a composite space-
time manifold has not been investigated3.  In the latter case, the original Reed-
Frost model can be expressed as (    k = 0, 1, 2, ...) 

      
I s ,(k+1) = Es ,k (1 q

I s ,k )  (2) 

where  is the total latent period plus half the infectious period, also called serial 
generation time, 

      
I s ,k  is the infecteds field (number of infected cases) at location s 

and time   t = k , Es,k  is the susceptibles field (number of susceptible cases) at 

location s and time   t = k , and q is the probability of any given person to avoid 
contact with another person at   t = k .  This probability is given by 

q = 1 K s (Ps ,0 1) 1 , (3) 

where 
    K s  is the average number of contacts at location s during time   t = k , and 

      
Ps ,0  is the initial (    t = 0) population size at location s. 

Note that Eq. (2) depends on four parameters, , q  (or 
    K s),       Ps ,0 , and 

      
I s ,  (the 

number of infecteds between     t = 0 and   t = ), which give the model flexibility to 
adapt to different diseases and population characteristics.  We extended model (2) 

to make it reflect death rate rather than infecteds.  The susceptibles field Es,k  is  

      
Es ,k = Ps ,0 I s ,k

T  (4) 

(    k = 0, 1, 2, ...), Is ,k
T

= Is , jj=1

k .  By inserting Eq. (4) into (2), the latter becomes  

      
I s ,(k+1) = (Ps ,0 I s ,k

T )(1 q
I s ,k )  (5) 

We have that 
      
Ds ,k = f I s ,k  and 

      
Ps ,k = Ps ,0 Ds ,k

T , where Ds ,k
T

= Ds , jj=1

k  and 

  f  is the proportion of fatalities among the infecteds.  Then Eq. (5) is written as  

                                                             
3 Despite their sophistication, many mathematical models seem to disregard the fact that in 

real world situations the epidemic variables are fundamentally spatiotemporal.  Interest-
ingly, little explanation for this omission is given in the mathematical epidemiology lit-
erature, even when sincere apologies are expressed on occasion, for less serious inade-
quacies of the proposed models (see, Diekmann and Heesterbeek, 2000: xi-xvi). 
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Ds,(k+1) = ( f Ps ,0 Ds,k
T )(1 q

Ds ,k / f
) . (6) 

and, as a consequence, mortality 
      
M s ,(k+1) = Ds ,(k+1) / Ps ,k  at     t = (k + 1)  is an 

S/TRF that can be expressed as   

      
M s ,(k+1) = f (Ps ,0 I s ,k

T )(Ps ,0 f I s ,k
T ) 1(1 q

I s ,k ) , (7) 

Note that now the model depends on a fifth parameter:   f .  Eq. (7) is the so-called 
extended Reed-Frost (ERF) model.  Eq. (7) can be expressed as a function of the 5 
initial parameters ( ,   f ,   q ,       Ps ,0 ,       I s , ), i.e., 

    
M

s,(k+1) = Funct( , f , q, P
s,0, I

s, ) .  

For illustration, a few terms of the last expression are as follows:    

    
M

s,2 = f (P
s,0 I

s, )(1 q
Is, )(P

s,0 f I
s, ) 1, 

    

M
s,3 = f (P

s,0 I
s, )q

Is, (1 q
( Ps,0 Is, )(1 q

Is, )
)

[P
s,0(1 f (1 q

Is, )) f I
s, q

Is, ] 1; etc .

 

The explicit consideration of both the geographical location s and the time t is 
an important difference of the ERF vs. the original Reed-Frost model.  The value 
of 

    K s  (and, hence, of q) may change as a function of the location, depending on 
the community and the occasion under consideration.  The theory behind the ERF 
model (7) is based on the assumption that the rise and fall of the epidemic depends 
on the number of susceptibles available and their depletion, due to infection or 
death, to a subliminal level or complete exhaustion.  The ERF model accounts for 
composite space-time variations of mortality and their dependencies on other dis-
ease characteristics (population distribution, infected cases, etc.) as well as for im-
portant sources of uncertainty linked to a large-scale epidemic such as Black 
Death (which was not the case with the original model).  Unlike the original RF 
model, the ERF model can include influences between different geographical lo-
cations in terms of space-time correlation functions.  Model (7) is used to increase 
the resolution of the Black Death data. The model has the capability to decompose 
mortality into a period as short as the serial interval . 

Because the 
    
I

s, , 
    K s , and f are initial inputs to the ERF model, which may dif-

fer with geographical location s (e.g., when the locations are characterized by dif-
ferent 

    Gs  and   s ), a practical way to use the ERF model is by selecting the val-

ues of these 3 parameters in a way that the observables (i.e.,   s  and 
    Gs ) of the 

Black Death epidemic are reproduced at each s.  As was mentioned before, the 

value of 
    K s  (and, hence, of q) may change, and initial estimates of the  value are 

obtained on the basis of the knowledge available concerning the epidemic.  It has 

been shown (Scott and Duncan, 2001) that, increasing the assumed number of 

contacts 
    K s  markedly reduces the duration of the Black Death epidemic, a fact 

that could introduce an additional uncertainty element in our analysis.  However, 
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because in all cases considered here the duration of the epidemic is given, the 

value of 
    K s  is determined accordingly (although it differs from one geographical 

area to the other), thus reducing considerably this element of uncertainty.    

One of the difficulties with the analytical treatment of the plague based on Eq. 
(7) is that the mortality field, 

      
M s ,(k+1) , is a non-linear function of the correspond-

ing infecteds field, 
      
I s ,k . A straightforward solution to this problem is the lineari-

zation of Eq. (7) for easier application of the model in other aspects of the study.  
Some interesting formulas are derived if we define mortality as  

      
M s ,(k+1) = Ds ,(k+1) / Es ,k = f I s ,(k+1) / Es ,k , (8) 

      
Es ,k > 0 , i.e., ignoring any immune cases.  This is a reasonable assumption, since 

at that time Black Death was a new disease.  E.g., Scott and Duncan (2004: 207) 
maintained that, “…almost everyone who made effective contact with an infec-
tious person caught the disease and died.  The reason for this was because nobody 
had been exposed to the disease before.”  Then, Eq. (7) reduces to a simpler ex-
pression of the space-time distribution of Black Death mortality, as follows 

M s ,(k+1) = f (1 q
Is,k ). (9a) 

Note that the initial population Ps,0  does not appear explicitly in Eq. (9).  Eq. (9a) 

can be also written in a recursive form in terms of mortality 

M s ,(k+1) = f (1 q
f 1Es,(k 1) Ms,k ) . (9b) 

Linearization of Eq. (9a) leads to the following ERF model  

(10a) 
M s,(k+1) f

(logq)Is,k ,                     M s,(k+1) < 0.3 f

0.41(logq)Is,k + 0.177,   M s,(k+1) 0.3 f ,

 
 
 

 

(10b) 

which suggests that the mortality at time     t = (k + 1)  is a linear function of the in-
fecteds at the previous time   t = k .  In Fig. 3 we plot an example of 

    
M

s,(k+1)  vs. 

    
I

s,k  for both the non-linear model (9a) and its linearized version (10), assuming 

f = 0.8.  This numerical comparison illustrates the good fit between the non-

linear and the linearized ERF models.  The good behavior of the model (10) is also 

demonstrated in real-world situations--see Section C.b and Fig. 24 below.    

In some cases, it is useful to examine how changes in Is ,k  may affect M s ,(k+1)  

by means of the elasticity indicator of the latter with respect to the former, i.e., 

  M
= (dM s,(k+1) /dIs,k )(M s,(k+1) / Is ,k ) 1

= dlogM s,(k+1) /dlogIs ,k  (11) 

In view of Eq. (9a), definition (11) yields  

  M
= ( logq)qIs ,k Is ,k /(q

Is ,k 1) = [(M s ,(k+1) f ) /M s ,(k+1) ]log(1 M s ,(k+1) / f ) (12) 
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Figure 3. Plot of the non-linear 
ERF model (solid line) and the 
linearized ERF model (dashed 

line) vs. the number of infected 
cases (    f = 0.8 ). 

 

 
Elasticity 

  M
 is an indicator that measures the ratio of the fractional change in 

    
M

s,(k+1)  over the fractional change in 
    
I

s,k .  Eq. (12) shows that when it is ex-

pressed as a function of infecteds, the 
  M

 depends on q (probability of no contact).  

But the 
  M

 is independent of q when it is expressed as a function of mortality.  

For illustration, 
  M

 vs. 
    
I

s,k  is plotted in Fig. 4a.  As might have been expected, 

as q increases (i.e., the probability of contact decreases), a change in the number 
of infecteds yields a smaller increase in mortality.  In Fig. 4b we plot 

  M
 vs. mor-

tality, assuming various   f  values throughout 14th century Europe.  Using such 
plots in combination with the Black Death mortality maps of Chapter V allows 
one to obtain new maps of the corresponding 

  M
 distribution across space-time.  

These maps could offer another useful description of the geography and temporal 
evolution of disease dynamics.  E.g., the larger the 

  M
, the smaller the fractional 

increase in infecteds required to yield a specified fractional increase in mortality. 

c.  Space-Time Correlations of Mortality Distributions 

Though stochastics (Chapter II) provides us with rather abstract notions, it is by no 
means “art pour l’art”.  On the contrary, these are of fundamental importance in 

developing applied epidemic systems.  Such notions include the mean,       M s ,t , and 

the covariance 
    
c

M ;r,  (
    
r = s  s  and 

  
= t  t ) of the mortality S/TRF 

    
M

s,t , 

which were mathematically defined in Section II.C.b4.  In other words, inherent to 
the mortality space-time distribution are relationships seeking a form, which is 
materialized in terms of the theoretical mean and covariance functions. 
 

                                                             
4 The reader may recall, e.g., that covariance is the quantitative representation of the idea of 

space-time dependence, which has roots with multiple branches that extend to diverse 
scientific fields. 
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(a) 

 

Figure 4.  Mortality 
elasticity indicators as a 
function of (a) infecteds 
(b) mortality. 

 

(b) 

 

Theoretical Models and Their Interpretation 

S/TRF theory offers rich classes of theoretical covariance models to represent de-
pendence of Black Death mortality across space-time.  Theoretical covariances are 
part of the   G -KB.  One important class of covariance models is as follows  

    
c

M ;r, = [0.7a1e
3r b1 + 0.3a2e

3r b2 ][0.01a3e
3 b3 + 0.99a4(1 b4

2)e
c

2 2

] , (13) 

where 
  
a

i
 and 

  
b

i
 (    i = 1, ..., 4) are coefficients to be determined from the mortality 

dataset.  Eq. (13) is a space-time separable covariance model, i.e., it is the product 
of purely spatial and purely temporal components: 

    
c

M ;r, = c
M ;r c

M ; .  In Fig. 5 we 

plot a three-dimensional perspective of the theoretical model (13), which offers a 
very good fit to the data available, as well.  Concerning certain technical issues 
(space-time covariance fitting, parameter estimation, etc.), the reader is refereed to 
Christakos et al. (2002) and references therein.  Each 

    
c

M ;r,  value estimates the 

dependence between  Black Death  mortalities at geographical distance   r  and time 
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Figure 5. Three-dimensional 

representations of the mortality 

covariance model in space-time. 
 

 

 

 
lag --larger 

    
c

M ;r,  values generally imply stronger mortality dependence)--in 

which case the plot of Fig. 5 offers a powerful visualization about how this de-
pendence changes across space and time.  One may observe a decreasing shape of 
the covariance and a strengthening of the dependency at certain space-time lags.  
Differences in correlation strength along space vs. time are also evident.  The 
closer to zero is the 

    
c

M ;r, , the more dissimilar are the mortality values across 

space-time.  Some spatial and temporal components of the mortality covariance 
(13) are plotted in Fig. 6 (experimental and model).  The correlation between mor-
tality values falls with increasing space and time lags, although in different fash-
ions (e.g., the drop is faster along space than along time lags).  For a fixed time lag 

the exponential drop of the covariance values may imply that similar mortality 

levels could be found in different geographical areas of Europe.  Thus, the covari-

ance plots help epidemiologists to comprehend the nature and extent of the effect 

that neighboring mortality values have on each other.  These plots also reflect a 

number of peaks of the Black Death epidemic.  The behavior of the covariance at 

the origin (small space and time lags) implies a smoother variation of mortality in 

time than  along  space.  Also,  the  covariance  range  indicates  the  predictability 
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Figure 6. Spatial and temporal components of the separable mortality covariance. 

horizon of the process, i.e. the space-time distances for which predictions can be 

made.  A non-separable model is considered next. 

Due to the advancing waveform of the epidemic, another plausible covariance 
model could be of the form 

    
c

M ;r, = c
M ;r+ v .  This model can be associated with 

mortality waves M s,t = M s+vt  traveling at speed v .  Covariance models of this type 

have been proposed by Kolovos et al. (2004), as follows 

(14a) 

(14b) 

    

c
M ;r+ v =

e
r+ v a

e
(r+ v )2 a

2

[1+ (r + v )2 / w
2] / 2

e
r+ v a

 

 

 
 

 

 
 

 

(14c) 

where ,   w , and   a  are empirical parameters calculated from the data.  Some ex-
amples of the spatial and temporal components of the mortality covariances (14) 
are plotted in Figs. 7-12 (experimental and model).  These Black Death mortality 
covariances have been calculated along different geographical directions ( = 0 , 
  / 4,   / 2 , and   3 / 4  is the angle between East and the estimation direction, 
whereas   = 0.495  is the angle between East and the disease propagation direc-
tion).  The symbols “ ”, “ ”, and “+” denote the experimental values.  The lines 
denote the fitted model: solid line ( ), dashed line ( ), and dotted-dashed line (+).  
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Figure 7. Spatial components of mortality covariance (14a)--experimental and model; 

    v = 800,   = 0.495 ,     a0 = 100 ,     a45 = a90 = 200, and     a135 = 180.   

 
 

Figure 8. Temporal components of mortality covariance (14a)--experimental and model; 
  v , ,     a0 ,     a45 ,     a90 ,     a135 are the same as in Fig. 7.   
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Figure 9. Spatial components of the mortality covariance (14b)--experimental and model; 

    v = 800,   = 0.495 ,     a0 = 100,     a45 = 180,     a90 = 280,     a135 = 250. 

 
 

Figure 10. Temporal components of the mortality covariance (14b)--experimental and 

model;   v , ,     a0 ,     a45 ,     a90 ,     a135 are the same as in Fig. 9. 
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Figure 11. Spatial components of the mortality covariance (14c)--experimental and model; 

    v = 800,   = 0.495 ,     w = 100,   = 0.5,     a0 = 100,     a45 = a90 = a135 = 250. 

 
 

Figure 12. Temporal components of the mortality covariance (14c)--experimental and 

model;   v , ,     a0 ,     a45 ,     a90 ,     a135 are the same as in Fig. 11. 
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Notice the different shapes of the theoretical mortality covariances (14) and the 
varying fits to the experimental covariances--which means that different models 
can be used for different epidemic directions and time periods.  This flexibility is a 
considerable advantage of the class of models (14). 

Continuously Distributed and Clustered Spatial Data Sets 

If needed, efficient algorithms exist for the practical estimation of the theoretical 
covariance models above in both cases of data sets: 
 

(a) Continuously distributed in space.  Covariance estimators are available 
for spatially homogeneous/temporarily stationary as well as for spatially nonho-
mogeneous/temporarily nonstationary disease variables (Christakos and Hris-
topoulos, 1998; Kolovos et al., 2004). 

(b) Clustered in space.  In this case, a coefficient of variation of the dimen-
sionless spatial density of the point pattern of sample locations is introduced as a 
metric of the degree of clusteredness of the data set; then a modified form of the 
covariance estimator is used that incorporates declustering weights and proposes a 
scheme for estimating the declustering weights based on zones of proximity 
(Kovitz and Christakos, 2004b). 

ERF-Based Models 

Another advantage of the linearized ERF model (10) is that the temporal mortality 
mean, variance, and covariance can be expressed as linear functions of the infec-
tion statistics at any geographical location s, i.e., 

(15a) 
M s,(k+1) f

(logq)Is,k ,                     M s,(k+1) < 0.3 f

0.41(logq)Is,k + 0.177,    M s,(k+1) 0.3 f ,

 

 
 

  
 

(15b) 

(which means that the expected mortality at time     t = (k + 1)  is a linear function 
of the infection mean at time   t = k ), and  

(16a) 
M s,(k+1)

2 f 2
(log q)2 Is,k

2 ,           M s,(k+1) < 0.3 f

0.168(log q)2 Is,k
2 0.145(logq)Is,k + 0.031,  M s,(k+1) > 0.3 f

 

 
 

  
 

(16b) 

(17a) 

(17b) 
M s,(k+1) M s,(k+1) f 2

(log q)2 Is,k Is,(k+1)  , if M s,(k+1) ,M s,(k+2) < 0.3 f

0.41(log q)2 Is,k Is,(k+1) 0.177(logq)Is,k ,

if M s,(k+1) < 0.3 f ,M s,(k+2) 0.3 f

0.17(log q)2 Is,k Is,(k+1) 0.073(log q)(Is,k + Is,(k+1) )

            + 0.031,        if M s,(k+1) ,M s,(k+2) 0.3 f .

 

 

 
 
 

 

 
 
 

 

(17c) 
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For visualization purposes, Eqs. (15) and (17) are plotted in Fig. 13 (assuming 

    q = 0.99  and     f = 0.4).  One notices a cyclic relationship between the mortality 
and the infection statistics, which is due to the fact that the infecteds field initially 
increases and then decreases with time (this is, in fact, a typical behavior of the in-
fecteds field observed at geographical locations throughout the 14th century 
Europe).   

The cross-covariance function of the mortality and infecteds fields is ex-
pressed as 

M s,(k+1) Is,k f
(logq)Is,k

2 , M s,(k+1) < 0.3 f

0.41(logq)Is,k
2

+ 0.177Is,k , M s,(k+1) 0.3 f

 

 
 

  
 (18) 

Interestingly, Eq. (18) implies that the dependence between mortality and infect-
eds at two different times     t = (k + 1)  and   t = k  can be expressed in terms of the 
infecteds variance at time   t = k .  In a similar manner, mortality covariances can 
be derived between any pair of geographical locations, s  and  s , in terms of in-
fecteds mean and covariance, as follows 

(19a) 

(19b) 

(19c) 
M s,(k+1) M  s ,(k+1) f 2

(logq)2 Is,k I  s ,k ,    if M s,(k+1) , M  s ,(k+1) < 0.3 f

0.41(log q)2 Is,k I  s ,k 0.177 logq Is,k ,

     if M s,(k+1) < 0.3 f , M  s ,(k+1) 0.3 f

0.41(log q)2 Is,k I  s ,k 0.177 logq I  s ,k ,

     if M s,(k+1) 0.3 f , M  s ,(k+1) < 0.3 f

0.17(log q)2 Is,k I  s ,k 0.073 logq(Is,k + I  s ,k )+ 0.031,

     if M s,(k+1) , M  s ,(k+1) 0.3 f

 

 

 
 
 
 
 

 

 
 
 
 
 

 

(19d) 

Higher order and multiple-point mortality correlation functions across space-time 
can be derived as well.    

Other Classes of Space-Time Models 

In Table 1 we present a summary of several rich classes of space-time correlation 
models       cX

= c
X

( p,  p )  for an S/TRF       X ( p) .  These models can be useful in pub-
lic health research and disease modelling studies, including the Black Death epi-
demic.  Time and space limitations did not allow us to test all models of Table 1 in 
the case of Black Death, which would be an interesting future research topic.  
Various methods have been used to generate the models of Table 1, including dif-
ferential equations, spectral densities, dynamic rules, and linear superposition of 
permissible  covariance  models.   A  more  detailed  mathematical  presentation of 
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Figure 13. Plots of 
temporal: (a) mortal-
ity mean vs. mean of 
infected cases; and 
(b) mortality covari-
ance vs. covariance of 
infecteds 
(    q = 0.99 ,    f = 0.4 ). 

 

(a) 

 

 

(b) 

 
 
these methods can be found in Christakos (1992, 2000), Christakos and Hristopu-
los (1998), and Kolovos et al. (2004).  Spatially homogeneous/temporally station-
ary and non-homogeneous/non-stationary covariance models are included in Table 
1. There are several possibilities regarding the way these covariance models can 
be used in public health practice, as follows:   
 
i. Public health scientists may have at their disposal a well-established set of re-

lationships to work with.  In human exposure analysis, e.g., environmental 
laws in the form of mathematical equations are often available.  Thus, if these 
equations are solved (exactly or to some approximation), the solution should 
definitely be used in the definition of the covariance model.5  

ii. Epidemic laws may not be known completely, but some guidance regarding 
the functional dependence of the covariance can be gained from approximate 
empirical laws, which can be expressed either in terms of alge-
braic/differential equations or in terms of algorithmic rules that aim to emu-
late the real world epidemic system.    

                                                             
5 In some cases, this may lead to exact specification of the covariance model parameters in 

terms of functions that can be determined from the available data. 
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Table 1. A summary of space-time covariance models in   R
n

T  (continues).6 
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 Table 1. A summary of space-time covariance models in   R
n
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iii. Even if knowledge of the specific disease distribution law is unavailable, co-

variance models derived from general laws can be used as potential candi-
dates, in which case their parameters are estimated from data sets.7 Then, ap-
propriate techniques can be used to decide among the possible candidates.   

 
For illustration, some of the models in Table 1 are plotted in Figs. 14-19.  In the 

end, it is the public health modeller who will decide which approach to follow, 
since each approach has its own merits and domain of applicability.  The models 
in Table 1 are non-separable, in general, and cover a wide range of space-time 
correlation scenarios, which can be used to represent the variability of public 
health systems across space and time.   It is interesting to investigate the properties 
(short-range and asymptotic behavior, shape of the covariance function, etc.) of 
these models in the context of the specific epidemic problem of interest and assess 

the space-time dependence for various model parameter values.  As can be seen in 

Figs. 14-19, the different mathematical functions lead to distinct features.  Hence, 

the visual representation of the covariance models is very helpful in selecting the 

appropriate model for the specific epidemic situation.  Among the noticeable fea-
tures of the covariance plots in Fig. 14C and D is the presence of “hole effects”, 
mainly, along the space direction.  The shape of the covariance in Fig. 15 changes 
with the n- and  values.  Clearly, the same is true for the correlation ranges and 
the behavior near the space-time origin.  A comparison of the sets A, B and C, D 

in Fig. 16 shows that one covariance decreases as a function of spatial distance 

more quickly than it does as a function of temporal distance, whereas the other 

covariance exhibits the reverse behavior.  In Fig. 17  the covariance declines faster 

                                                             
7 In the same manner that so-called “standard” models are employed to represent epidemic 
covariance functions. 
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Figure 14. Top row shows covariance plots in    R

2
T  (A) and     R

3
T  (B) for selected   b 

values.  The bottom row shows covariance plots in     R 2
T  (C, D) for     b = 2 . 

 
Figure 15. Plots of space-time covariance models: (A)     R

2
T , (B)     R

3
T ; (C)     R

2
T , 

(D)     R
3

T  for selected  values. 
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Figure 16. Plots of the covariance models in the     R

1
T  (plots A and B), and in     R

3
T   

domain (plots C and D) for various values of the ratio     /c . 

 
Figure 17. Covariance models in     R

2
T  (top row) and in     R

3
T  (bottom row) for 

varying values of the parameters  and   c. 
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Figure 18. Covariance models in   R

n
T  for selected combinations of the parameters   z , , 

and . (A)     z = 0.845 ,   = 0.454 ,   = 0.35; (B)     z = 0.385 ,   = 0.615 ,   = 0.35; 
(C)     z = 0.615 ,   = 1.396 ,   = 1.05. 
 

along the time direction than along the space direction.  In Fig. 18, a range of   z - 

and -values is assumed and the  is derived on the basis of the corresponding 

permissibility conditions.  The covariance in Fig. 19 depends on the space-time 

coordinates of both points p  and  p , and not just on the space and time distances 

between the two points (this model may be nonhomogeneous/nonstationary due to 

a number of reasons, including the boundary and initial condition effects).     

d.  Space-Time Mortality PDF With Reference to the G-KB 

On the basis of Eqs. (15)-(19), the BME technique (Section II.E.b) can generate 
the pdf of the mortality field across space-time, thus enabling the determination of 
several important characteristics of the epidemic, such as the direction and speed 
of disease spread, prevailing trends and patterns, and the relative significance of 
the different epidemic components.  In light of Eqs. (9a) and (15)-(18), BME for-
mally expresses the mortality pdf as follows 

  

fG (ms ,(k+1) ,ms ,(k+2) ) = exp[ 0 + 1ms ,(k+1) + 2 log(ms ,(k+1) )+ 3 log(ms ,(k+2) )

+ 4ms ,(k+1)
2

+ 5 log(ms ,(k+1) )2
+ 6 ms ,(k+2) log(ms ,(k+1) )+ 7 log(ms ,(k+1)

+ms ,(k+2) )+ 8 (ms ,(k+1) ms ,(k+2) )] ,

 
(20) 
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(A) 

(B) 

Figure 19. (a) Plots of covariance model in     R
1

T  with     L = 1 and (A)     D = 0.01 , (B) 
    D = 0.05 . 

where i  (    i = 0,1, ...,8 ) are coefficients expressing the relative weight of certain 
functions of the mortality values across space-time (the form of the functions de-
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pends on the epidemic models, space-time correlations, Black Death databases, 
and other knowledge sources considered); as usual, the subscript   G  denotes that 
the pdf has been produced on the basis of a general KB.  The vector of coefficients 

= { i; i = 0,1,...,8} are parameters to be calculated from the solution of the so-
called BME system of equations (for details, see Christakos et al., 2002: 35).  The 
solution  is substituted back into Eq. (20) to obtain the shapes of the different 

    
fG  across space and time (see, Section II.E.b).   

For numerical illustration, in Fig. 20 we plot an example of a bivariate mortal-
ity pdf, 

  
fG  (for     f = 0.5,     q = 0.85).  The 

    
fG , which does not necessarily have a 

Gaussian form, offers a stochastic characterization of the mortality distribution; it 
allows the calculation of parameters like the joint probability of occurrence of the 
mortality values 

    
M

s,(k+1)  and 
    
M

s,(k+ 2) , the most probable mortality value, quan-

tiles, etc. 

C.  Coding the Specificatory Knowledge Base 

An epidemic concept is synonymous with the corresponding set of operations and 
assumptions by which it is determined.  This is the case with the concept of Black 
Death mortality, as well.  The operations leading to the calculation of monthly 
mortality values at each space-time point p  were often based on the assumption 

that each one of them is random with a specified pdf,       fS (m) --see, Fig. 21; as 
usual, the subscript   S  denotes that the pdf is constructed using site-specific KB.  
The   S -KB refers solely to the specified Black Death epidemic situation deter-
mined contextually (geographically, temporally, disciplinary,  etc. ).  The series of 

 

Figure 20. An example of a BME-derived bivariate mortality pdf 
  
fG (ms,(k+1) ,ms,(k+2) ) . 
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s

t

 

Figure 21. An illustration of mortality pdf       f S (m)  across space-time. 

pdf in Fig. 21 structurally belong to the S/TRF representing mortality distribution 
across space-time.  The S/TRF definition includes simultaneously all pdf that are 
considered spatiotemporally interconnected.  The S/TRF governing rules are con-
sistent--the realizations are the confluence of agreements concerning what is logi-
cally and epidemically consistent.  Also, the S/TRF model allows for the existence 
of the so-called observation-effect: actualization of a specific potentiality (mortal-
ity realization), when a specific set of observations becomes available.  

In SEP, the systematic collection and analysis of multi-sourced information was 
a critical part of a process aiming at increasing our understanding of the space-
time characteristics of the Black Death epidemic distribution.  In Table 2 we list 
the database locations where various kinds of data were available.  In accordance 
with the epistemic  approach  discussed in previous  chapters, the significance  of 
the  data  depends on the way the human brain extracts meaning from them.  
Therefore, the data were properly evaluated (see, also, Chapter III), and depending 
on the situation (information reliability, minimal time uncertainty sources, down-
scaling considerations,  valid inferences,  and spatiotemporal  variability), a deci-
sion was made to use the data that were available at a certain number of geo-
graphical locations and ignore the data available at others (Appendix A).  The 
minimum time information for a place to be entered into the SEP modelling data-
base consisted of the beginning of the epidemic, its end, or some event occurring 
during the outbreak.  Dates such as September 29, 1348, September 1348, or fall 
of 1348 qualified a place for entering the database.  Just mentioning outbreak dur-
ing 1348 was considered too vague information to be of any value.  If the place of 
plague interest had too many conflicting dates, such as Copenhagen, it was ig-
nored.  When information was available for both the town and its region, e.g., as 
was the case with Cuxham and Oxfordshire (UK), the better documented of the 
two was used.  
As was discussed in previous chapters, important information sources concern-

ing the spread of the epidemic include contemporaneous written records and the 
land topography of the infected region under consideration (e.g., the epidemic was 
absent in many mountainous areas).  It was also mentioned with due emphasis that 



C.  Coding the Specificatory Knowledge Base      179 

Table 2. Number of locations in the database where information was available. 

Country Used Not used Total 
Austria 7 1 8 
Belgium 8 5 13 
Croatia 3 0 3 
Czech Republic 1 1 2 
Denmark 4 2 6 
France 92 27 119 
Germany 35 8 43 
Gibraltar 1 0 1 
Ireland 13 7 20 
Italy 43 6 49 
Norway 15 1 16 
Poland 2 2 4 
Portugal 6 8 14 
Spain 50 24 74 
Sweden 10 1 11 
Switzerland 18 2 20 
The Netherlands 4 1 5 
United Kingdom 47 76 124 
Total 359 172 531 

 
contemporaneous written records of the Black Death epidemic are scattered and 
scarce.  As a result, in the context of the TGIS technology, a considerable amount 
of effort was dedicated to the acquisition, evaluation, and taxonomy of the infor-
mation sources, and the subsequent formulation of the associated   S -KB.  The 
specification of the pdf,       fS (m) , across space and time is made possible with the 
help of the multi-sourced Black Death evidential support that has been outlined in 
Chapter III (and described in more detail in Appendix A).  Depending on the dis-
cipline that generated the Black Death data, these pdf can be constructed using a 
variety of techniques.  A few of these techniques are reviewed below. 

a.  Direct Techniques 

The TGIS technology used by the SEP requires spatiotemporal input about epi-
demic casualties.  The region of interest is Western Europe and the time period of 
concern is September 1347 to June 1351.  As regards TGIS coding, each record is 
a vector of size 8: name, latitude, longitude, month, year, and three parameters to 
specify monthly mortality and its uncertainty.  These parameters include: a code to 
indicate the type of distribution (spare place, monthly mortality, land desertion, or 
priest mortality); and two parameters for the distribution, e.g., the mean and the 
variance of a normal probability law (if the place was spared, the parameters were 
ignored).  Information about casualties is scarce, usually of unknown accuracy, 
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and never in the form of monthly death rates relative to the local population at the 
beginning of the month.  Hence, all mortality values had to be calculated from in-
terdisciplinary information sources (Chapter III), the most favorable of them being 
records of monthly fatalities and population size (at the beginning or the end of the 
epidemic), which allow the straightforward calculation of monthly mortalities at 
every locality of interest.  For numerical illustration, Table III.1 demonstrated the 
steps involved in the derivation of monthly mortality values at the city of Givry 
(France).  The next step is the calculation of the mortality pdf, 

  
fS (m) , from the 

preceding temporal mortality distributions.   
The step-by-step procedure is outlined in Fig. 22.  At each geographical locality 

s  of interest we blend various interdisciplinary sources to generate monthly mor-
tality values (such as those in Table III.1)--see box (a).  From these values we 
construct the temporal mortality distribution, see box (b).  At each time tk  the cor-
responding mortality random field is stochastically characterized by a pdf—see 
box (c).  This pdf, say 

  
fS (m) = fS (m; s,tk ) , is assumed to have a mean equal to 

the calculated value of the temporal mortality distribution at tk  and a standard 
(std) deviation8 proportional to the mean.  In practical applications we considered 
three levels of uncertainty, as follows: 
 
• Minimal uncertainty:  There is a reasonable amount of information about all the 

assumptions and values that are part of the calculations resulting in a monthly 
mortality value or a proxy.  In this case, the std deviation--i.e. the square root of 
the variance--was assumed to be equal to 0.05 mean.    

• Medium uncertainty:  At least one parameter is not known, typically the global 
mortality 

    Gs , which may require borrowing a value from a neighboring place 
or using a global value for the specified region.  In this case we set the std de-
viation equal to 0.1 mean.   

• Maximum uncertainty:  A minimum amount of information is available about 
the locality of interest, typically the date of the beginning of the epidemic, 

      
Ts ,o , 

 
 

Interdiscipli-

nary sources

 t

   M s ,t

 t

   M s ,t

 tk

    f S (m;s,t
k
)

(a)

(b) (c)

(d)

  f S

 

Figure 22. Direct generation of mortality pdf. 

                                                             
8 Which expresses the uncertainty associated with the mortality value. 
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and the population size, 
      
Ps ,o .  In such cases, the std deviation was taken to be 

equal to 0.2 mean.   
 

The reader may appreciate an illustration of the above procedure involving em-
pirical techniques with the help of a few numerical examples.  An important mod-
elling  element that these  examples,  as well as  the  ones which  will follow,  can 
help demonstrate is that, in order to mitigate our ignorance concerning certain as-
pects of the Black Death mortality distribution  we must ask substantive questions, 
collect adequate information, and use the appropriate reasoning mode that will al-
low us to gain valuable insight and meaning.    
 

Example C.1.  Consider the city of Givry (France).  Givry is one of the very few 
places in which there is information about the population level at the beginning of 
the epidemic and rather detailed accounts of all the deaths within the city bounda-
ries9.  According to the preceding discussion about uncertainty levels, the std de-

viation of mortality values was set equal to 0.05 mean, i.e., 
      M

(s , t) = 0.05 M s ,t .  

In this case, Table 3 presents the steps that lead to the calculation of the mortality 
pdf across space-time (notice that the values in Table 3 are the ones that are coded 

into the TGIS/BMElib computer library; Section II.E.b).  It is noteworthy that sto-

chastic theory (Chapter II) allows the mortality pdf to have an arbitrary shape.  

However, in most localities the data available indicated a symmetric shape for 

  
fS (m) , in which case a Gaussian pdf model was usually assumed at the specifica-

tory stage.    
 
Example C.2.  This example is concerned with the trivial case of an epidemic-
free region.  E.g., the high elevations of the European continent never experienced  
 

Mortality, 
      
M s,t   

Month 
Pdf, 

    
fS  Mean,   M  Std. Dev., 

  M
 

August Gaussian 4.2 0.2 

September Gaussian 15.9 0.8 

October Gaussian 11.0 0.3 

November Gaussian 2.7 0.1 
 

Table 3. Mortality pdf for 
Givry in 1348 (France; 

longitude=4.750 degrees, 
latitude = 46.783 degrees, 

  
T

o
=August 1, 1348). 

 

 
Month Mortality, 

      
M s,t  

January 0 
 

Table 4. Mortality for a high Maritime Alps 
mount in 1348 (longitude=7.2 degrees, lati-

tude=44.05 degrees). 
 

                                                             
9 For more historical details about the case of Givry the reader may want to review Chapter 

III and references therein. 
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the Black Death, because of the lack of population in place to be infected.  SEP 
modelling restricted these cases to the Pyrenees region between France and Spain, 
and the Alps area from France to Austria.  Table 4 depicts the trivial coding of 
mortality for one mount along the French Alps.   

 
In all epidemic-free cases encountered, a utility computational algorithm auto-

matically prepared the  corresponding information bases for subsequent insertion 
into the TGIS computer library.   Note that plague-free locations were not the on-
lyones to have mortality equal to zero in the computer coding.  Considering that 
there existed a single infection period during the 1347-51 outbreak of the epidemic 
(Scott and Duncan 2004: 45), every infected place was plague-free  before and af-
ter this period.  E.g., in Givry (Example C.1 above), there was no infection prior to 
the month of August and after the month of November of the year 1348. 

b.  Indirect Techniques 

One of the advantages of the TGIS software is that it can readily process interdis-
ciplinary   S -KB in the form of probability distributions, interval data, fuzzy sets, 
etc.  In Chapter III it was pointed out that many of the Black Death information 
sources do not include monthly mortality data.  Instead, some evidence is available 
in terms of total population or global mortality, some sources involves ecclesiasti-
cal records, some other databases involve land desertion rates, etc.  Below we con-
sider several representative situations of using ERF modelling to generate monthly 
mortality distributions, as well as transferring information about land desertion 
and clergy mortality into monthly population mortality in a spatiotemporal do-
main.    

ERF-Based Techniques 

In Black Death studies one can take advantage of the logical links that tie theoreti-
cal models to observations in order to gain valuable insight about the epidemic.  
Here we use these links to illustrate the implementation of the ERF models in the 
Black Death study to generate mortality pdf, 

  
fS (m) , across space and time.  Once 

more the step-by-step procedure is outlined in Fig. 23.  The only difference with 
Fig. 22 is box (a), i.e., instead of calculating the monthly mortality values directly 
from the interdisciplinary evidence, we generate them with the help of ERF mod-
els.  It should be noticed that the relevance of the ERF model within the data 
preparation is its capability to decompose global mortality into its monthly com-
ponents, in the context of the mortality pdf generation process of Fig. 23. 

First, we will use ERF models to generate mortality distributions—see box (b)-
-and to demonstrate the very good agreement between the linear ERF model of 
Eq. (9a) and the non-linear model of Eq. (10).  In addition, an excellent fitting of 
both models to the mortality data was observed.  In  Fig. 24a  we look again  at the 
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ERF Model

 t

   M s ,t

 t

   M s ,t

 tk

    f S (m;s,t
k
)(a)

(b) (c)

(d)

  f S

 

Figure 23. An outline of the procedure generating mortality pdf using ERF models. 

case of Givry (France).  The reason we consider Givry this time is that it can help 
us demonstrate that the ERF models can generate values of monthly mortality in 
close agreement with the actual ones.  Let us be more specific.  Givry has the ad-
vantage--as far as SEP modelling is concerned--of being the only city in Europe 
for which we obtained daily accounts of plague fatalities (Table III.2)--as we saw 
above, from these accounts one can prepare a realistic plot of monthly mortalities 
using 1-month periods starting on July 28, 1348 (Table III.1).  This means that 
Givry does not really need the ERF models to derive monthly values of mortality.  
We run the models only to show that they can generate values of monthly mortal-
ity in close agreement with the actual ones.  Of the five ERF model parameters, 
only two of them are known, in this case: the serial generation time = 20  days 
was conveniently selected as a round up number close to the 22 days that charac-
terize the hemorrhagic plague (Scott and Duncan, 2001: 30); and the pre-plague 
population has been estimated at 

 
P

s,0 = 2000  residents.  The other three parame-

ters (
 
I s , ,  

K s , and f ) were determined by trial and error.  The models’ fitting to 

the data, see Fig. 24a, is remarkable.  The agreement between models (9a) and 
(10) is so good that it is hard to distinguish between the two curves.  Fig. 24b ad-
dresses another common situation:  unknown pre-plague population, 

 
Ps ,0 .  This 

figure shows the results obtained running the ERF model for the same city of 
Givry, this time ignoring the actual estimated population and using an arbitrary 
value of 100 residents.  We could have used another city for which we really do 
not know the actual Ps ,0 , but, again, we did not do it because Givry offers the pos-

sibility of comparing synthetic results to actual data.  Once more, there is excellent 
agreement between the linear and non-linear ERF models and between them and 
the real data.  As was expected, a drop in the population by a factor of 20 (relative 
to the case in Fig. 24a) resulted in a drop of the number of infecteds during the 
first period, I s , , by the same factor, i.e. from 115 to 115/ 20 = 5.7 .  The other pa-

rameters remained the same (
 
K s = 3.9  and f = 0.315).  Because we are not inter-

ested in actual number of fatalities but in mortality rates per 100 residents, this is 
an important practical result that allows to considerably extent the applicability of 
the models even if the actual city population is unknown.  As a whole, Fig. 24 
brings to mind one of the characteristics of conditional modeling:  usually there is 
a large combination of parameters to be considered.  For  convenience, we decided  
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(a) 

 

Figure 24. Modelling 
of Black Death 
monthly mortality 
distribution at Givry, 
France: (a) using the 
actual population 

      
Ps,0 = 2000  residents; 

(b) ignoring the real 
population and using 
an arbitrary reference 
value 

      
Ps,0 = 100  resi-

dents.  The dashed 
line denotes the ac-
tual data, the solid 
line the prediction by 
the non-linear ERF 
model, and the dotted 
line the prediction by 
the linearized ERF 
model. 

 
(b) 

 
 
to use a standardized population of 100 residents for all places even if we knew 
their actual populations.  We also set the serial generation number,   = 20  days, 
thus leaving three parameters to satisfy two constraints: the parameters are 

    
I

s, , 

    K s , and   f ; and the constraints are 
  s

 and 
  
G

s
.  The under-determined problem 

was solved each time by keeping the solution that led to an approximately sym-
metric monthly mortality distribution (the symmetric choice is in agreement with 
existing knowledge bases).  The fact that SEP modelling is interested in the shape 
of the curve and not in the particular combination of the parameters producing 
equivalent distributions has played to our advantage. 

Since, as was demonstrated above, the ERF modelling produces very good re-
sults for the box (b) of the procedure outlined in Fig. 23, we applied it to other lo-
calities that suffered from the Black Death epidemic to produce informative 
monthly mortality distributions, such as those in Fig. 24.  In the following exam-
ple additional insight is gained in terms of the disease situations in the cities of 
Piacenza (Italy) and Jérica (Spain).  In this example we proceed beyond box (b) to 
boxes (c) and (d) of the procedure. 
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Example C.3.  In the case of Piacenza (Italy), the available information is 

      
Ts ,o  

(July 1348), 
    Gs  (33%), and Ps,o  (about 20,000 residents).  Following the steps de-

scribed in Fig. 25, the plague duration   s  was estimated by employing the scaling 

law of Eq. (1), and then the   s  and 
    Gs  were used to condition the solution of the 

ERF models to generate the Black Death temporal mortality distribution displayed 

in Fig. 26.  This last figure corresponds to the box (b) of the procedure in Fig. 23.  

Next, the boxes (c) and (d) of Fig. 23 correspond to the generation of the pdf, 

  
fS (m) , in Table 5 for each month.  A medium degree of uncertainty was as-

sumed--which is used in the calculation of the mortality pdf 
  
fS (m)  from the tem-

poral mortality distributions above (see last two columns in Table 5).  At time t  
the corresponding pdf is Gaussian with a mean equal to the calculated value of the 
temporal mortality distribution at time t  and a std deviation (expressing the uncer-
tainty associated with the value) proportional to the mean. 
 

In the preparation of the entire database we did not run the ERF model for 
every single location.  By rounding the duration to whole months and the mortality 
to multiples of 5%, the combination of possible (

  s
, 

  
G

s
) pairs was reduced to the 

finite number of cases listed in Table III.5.  Mortalities for all other places were 
assumed equal  to  those  with the  same combination  of  (

  s
, 

  
G

s
) values.   In this 

 

SL
s

ERF
 
Ts ,o Gs P

s ,0

t

 
M s ,t

 

Figure 25. Procedure leading to the generation of monthly mortality values at a given local-
ity; SL=scaling law of Eq. (1). 

Figure 26. Modelling of 
Black Death temporal mor-

tality distribution in 
Piacenza, Italy.  The solid 

line denotes the prediction by 
the non-linear ERF model 

and the dotted line the pre-
diction by the linearized ERF 

model. 
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Table 5. Database code for Piacenza, Italy in 1348 using ERF parameters       K s = 2.7 , 

      
I s, = 6.5, and     f = 0.377  and medium degree of uncertainty. 

Mortality, 
      
M s,t   

Month 
Pdf, 

    
fS  Mean,   M  Std. Dev., 

  M
 

July Gaussian 5.3 0.5 

August Gaussian 13.8 1.4 

September Gaussian 15.4 1.5 

October Gaussian 5.3 0.5 

November Gaussian 0.5 0.1 

December Gaussian 0.1 0.1 

 
case, we favored simplicity (combined with epidemic consistency) over purposely  
preparing slightly different histograms satisfying no particular requirements 10. 
 
Example C.4.  While Givry (France) was the closest to ideal case for mortality 
modelling purposes, the city of Jérica (Spain) was at the other end of the spectrum, 
offering the minimum amount of information.  What follows is a discussion of the 
reasoning process that led to the preparation of Table 6.  The minimal information 
required for coding a place into the SEP database was to have a time reference 
with a precision of at least one season.  Such is the case of Jérica where according 

to Ubieto (1997: 85) the plague arrived in October of 1348 (
      
Ts ,o ).  For SEP mod-

elling purposes, coding at any place lacking monthly mortality values requires in-

formation about the parameters  
      
Ps ,0  and  

    Gs .  Jérica  was  a provincial  city, defi- 

nitely not found in the comprehensive list of http://scholar, which includes locali-
ties with at least 15,000 residents.  Nevertheless, assuming a population of 

      
Ps ,0 = 

15,000 people for Jérica, the implementation of the SEP scaling law of Eq. (1) 
predicted that Black Death lasted   3.025+ 0.132 15 5 months.  On the other 
hand, by comparison to other cities in the area, most likely Jérica had a population 
of at least 

      
Ps ,0 = 500 residents.  For such a population, the scaling law predicted 

that Black Death lasted   3.025+ 0.132 0.5 3.1 months.  Hence, a plague dura-
tion of     s = 4  months cannot be far from the truth, given the scattering in the re-
gression scheme.  Jérica was at the time part of the Kingdom of Aragon, for which 
Gottfried (1983: 52) gives a global mortality of 

    Gs = 30% (from the beginning to 

end of the epidemic).  Having values for the parameters 
  s

 and 
  
G

s
, we can now 

make use of  the  ERF  model  to generate monthly mortality values.  According to 

                                                             
10 In fact, we take simplicity into consideration always in a subordinate way to beauty. 
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Table 6. Database code for Jérica in 1348 and 1349 (Spain; longitude=-0.600 degrees, lati-
tude=39.945 degrees) 

Mortality, 
      
M s,t   

Month 
Pdf, 

    
fS  Mean,   M  Std. Dev., 

  M
 

October, 1348 Gaussian 4.0 0.8 

November Gaussian 16.4 3.9 

December Gaussian 17.1 3.4 

January, 1349 Gaussian 2.3 0.5 

 
Table III.5, the values of the remaining three parameters required by the model are 

    Ks
= 4 , 

    
I

s, = 5 , and     f = 0.305.  Under these conditions, the predicted monthly 

mortality values are 4.0, 16.4, 17.1, and 2.3.  Note that Jérica is definitely a place 
characterized by the highest uncertainty level, which, according to Section C.a 
above, implies that the std deviation for the Gaussian model of uncertainty should 
be   0.2 mean.  The procedure above is summarized in Table 6, which is the cod-
ing actually inserted into the BMElib.  Other localities throughout Europe that 
possess more than the minimal temporal information required fewer calculations 
to derive the mortality pdf,       fS (m) .  Note, also, that if the epidemic duration is 

given, information about 
      
Ps ,0  becomes immaterial, and the use of Eq. (1) turns out 

to be unnecessary. 

The Case of Ecclesiastical Records 

We consider the important case in which specificatory information is available in 
the form of ecclesiastical records linked to the Black Death epidemic.  More spe-
cifically, let 

      
C s ,t  be the space-time random field representing benefited clergy 

mortality in the region of interest.  Assume that the pdf of 
      
C s ,t ,     fC

(c) , is Gaussian 

with given mean and std. deviation, i.e.     fC
(c) ~ N (C,

C
) .  On the basis of the 

literature (e.g., Ziegler, 1969: 127-128) and our own study of the available infor-
mation, a conversion factor from clergy mortality to general population mortality 
was derived that is expressed as a random variable uniformly distributed between 
the values 0.75 and 1.1.  Hence, the pdf of the regional population mortality 

      
M s ,t  

given 
      
C s ,t  is 

  
fS (m c) = 1

0.35c  (when     0.75c m 1.1c ), and   = 0 (otherwise).  In 

this case, the integral  

      
fS (m) = dc

m / 1.1

m / 0.75
f
C

(c) fS (m c) = 1
0.35

dc
m / 1.1

m / 0.75
N (C,

C
) / c  (21) 
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will be the monthly mortality pdf sought at each point       p = (s , t)  in the spatiotem-
poral manifold under consideration.  Next, let us study a specific numerical exam-
ple involving an important set of ecclesiastical records. 
 
Example C.5.  In this example we consider the ecclesiastical mortality situation 

in Bath and Wells (UK)11.  In Section III.D.b we discussed the precious informa-

tion left to posterity by the English Church, and in Table III.4 we summarized the 
technical procedure generating mortality values for the benefited clergy.  In light 
of this information, we assessed the uncertainty level in the calculation of the 

clergy mortality rates as minimal, i.e. 
      M

(s , t) = 0.05 M s ,t  (with a minimum value 

of 0.1%).  In this case, the steps leading to the calculation of the clergy mortality 
pdf,     fC

(c) , at various times are conveniently tabulated in Table 7 and plotted in 
Fig. 27 for the month of April.  In the same figure we plotted the population mor- 
tality pdf, 

  
fS (m) , which was calculated with the help of Eq. (21). 

The Case of Land Desertion 

This is primarily the case of land desertion data in Germany associated with the 
epidemic.  In particular, let 

      
As ,t  be the percentage of deserted area (cultivated land 

and villages) at the geographical region s during the month  t.   The  
      
As ,t   is  a  

random  field  that  obeys  a  Gaussian  law,      f A
(c) ~ N ( A,

A
) , whereas the ratio 

Table 7. Clergy mortality for the diocese of Bath and Wells in 1348 and 1349 (UK; longi-
tude= -2.859 degrees, latitude= 51.060 degrees). 

Clergy mortality, 
      
C s,t   

Month 
 Pdf, 

  
f
C

 Mean,   C  Std. Dev., 
  C

 

October, 1348 Gaussian      1.3         0.1 

November, 1348 Gaussian      6.1         0.3 

December, 1348 Gaussian      9.2         0.5 

January, 1349 Gaussian      8.4         0.4 

February, 1349 Gaussian      7.0         0.4 

March, 1349 Gaussian      7.8         0.4 

April, 1349 Gaussian      7.0         0.4 

May, 1349 Gaussian      0.8         0.1 

                                                             
11 Again, for more historical details about the case of Bath and Wells the reader is referred 

to Chapter III. 
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Figure 27. Mortality at the
diocese of Bath and Wells 
(UK) in April 1349.  The

solid line denotes the
population mortality pdf 

    
fS  of Eq. (21), and the

dashed line the ecclesiasti-
cal mortality pdf 

  
f
C

 for

the same month (see Table
7).

 

 

      
R = M s ,t / As ,t  follows an asymmetric triangular distribution,     T(l, h, u) , which is 

assumed space-time independent (Fig. 28) with a pdf of the form    

    

f
R

(r) =
(r l) /(h l), l r h

(u r) /(u h), h < r u,

 
 
  

(22) 

where     = 2 /(u l) .  As a result, the pdf of 
      
M s ,t  is given by    

      

fS (m) = ( 2
A

) 1{ dx e
(m / x A )2 / 2 A

2

(x l) [(h l)x] 1

l

h

+ dx e
(m / x A )2 / 2 A

2

(u x)[(u h)x] 1

h

u

}

 (23) 

which is a useful analytical formula that generates mortality pdf at any space-time 
point p = (s,t) .  For illustration, Eq. (23) is implemented in the case of the follow-
ing numerical example. 
 
Example C.6.  This is the land desertion case of Erfurt (Germany).  As was dis-
cussed in Section III.D.d, we employed land desertion as a proxy variable to com-
pensate for the less abundant information about Black Death mortality in Ger-
many.  Table 8  presents the results of the  ERF  modelling process  that was based 
 

 u
 h  l  

Figure 28. The pdf of the ratio R.  
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Table 8. Land desertion for the city of Erfurt in 1350 and 1351 (Germany; longi-
tude=11.045 degrees, latitude=50.796 degrees). 

Land Desertion, 
      
As,t   

Month 
Pdf, 

  
f

A
 Mean,   A  Std. Dev., 

  A
 

August, 1350 Gaussian 2.9 0.3 

September Gaussian 7.9 0.8 

October Gaussian 14.9 1.5 

November Gaussian 15.1 1.5 

December Gaussian 5.9 0.6 

January, 1351 Gaussian 1.7 0.2 

February Gaussian 0.3 0.1 

 

Figure 29. Erfurt, Germany (Oc-
tober, 1350). Land desertion pdf--
dashed line (Gaussian with mean 
15% and std. deviation 1.5%).  
Population    mortality pdf accord-
ing to Eq. (23)--solid line (non-
Gaussian). 

 

 

on the following assumptions:  the epidemic lasted about 7 months contributing to 
a land desertion of 40%, and the level of uncertainty was ranked as medium, i.e. 

      M
(s , t) = 0.1 M s ,t  (with a minimum value of 0.1%).  Just as in the case of eccle-

siastical mortality, the land desertion values in Table 8 require transformation to 
population mortality values.  This transformation is done with the help of Eqs. 
(22) and (23), which made possible the calculation of the population mortality pdf, 

  
fS (m) , across space and time.  An example is shown in Fig. 29.  Note that while 

the original land desertion pdf is Gaussian, the resulting mortality pdf is clearly 
non-Gaussian.   

 
Plots like the one of Fig. 29 were produced at all places in Germany where val-

ues of global mortality 
  
G

s
 were not available. 
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D.  Some Thoughts on the SEP Integration of Black Death 
Concepts and Data 

As we maintained in Section A, the   G -formulated knowledge (conceptual, ab-

stract, core, etc.) will be used to generate the pdf model 
  
fG  (Section B), whereas 

the   S -coded evidence (instrument- or survey-based etc.; Section C) will be used 
to update 

  
fG , thus leading to the final pdf model of the Black Death mortality, 

  
fK , across space and time (  K = G S ), see Chaper V.  Although treated sepa-

rately, from the SEP perspective the two major Black Death knowledge bases (  G  
and   S ) form an integrated whole12.  In Section II.A we argued that the prime fo-
cus of scientific interdisciplinarity is to integrate concepts and not merely 
data the latter being numbers that obtain meaning in the context of a sound the-
ory.  Staying close to the multi-sourced data, without at the same time having a 
clear theoretical picture of the situation, would give the impression that we try to 
be as ad hoc as possible13.  Rather, our goal is to go as far beyond the Black Death 
evidential base as cognitively possible.  In our view, an epidemiologist should be 
close to particulars, but not too close to miss seeing their overall importance.  Fur-
thermore, we are well aware of the fact that the observers have a significant role to 
play in the process of observation.  This is called the “observer’s effect” and its 
consequences are often recognized not only by the observers but by the observed, 
as well14.    

The paradigm choice can have significant consequences in the study of the 
Black Death epidemic.  As Cipolla (1981: 9) in his study of the plague in Italy has 
warned us, “Actually, if the prevalent paradigm is totally alien to the reality under 
scrutiny, the investigator may not even notice what passes before his eyes; … if 
the investigator does take notice of the phenomenon, he may be induced to discard 
it as irrelevant.”  The SEP is a paradigm that seeks to prepare the public health 
modeller to notice and appreciate essential entities associated with the disease dis-
tribution (space-time disease variation, mortality dependence, general vs. specifi-
catory data sources, etc.).  Methodology is the core element of the paradigm that 
underlies all research efforts, whereas the various technical tools are ancillary and 
may vary, depending on the situation.  E.g., while statistical tools are useful in a 
variety of technical ways (calculating the center and spread of data distributions, 

                                                             
12 The integration of ideas and instruments plays a dominant role in creative music compo-

sition, as well.  In the words of Peter Ilich Tchaikovsky:  “So I conceive the musical idea 
and its orchestration simultaneously.  Consequently, when I was writing the Scherzo of 
our symphony, I imagined it exactly as you heard it.  It is unthinkable played any other 
way than pizzicato” (Garden and Gotteri, 1993: 200). 

13 At the additional risk of blurring the line between thought and routine. 
14 Remarkably, the observed have testified the sometimes dramatic feelings their experienc-

ing of the “observer’s effect” has generated.  Merata Mita (1989: 30), e.g., maintained 
that, “We have a history of people putting Maori under a microscope in the same way a 
scientist looks at an insect.  The ones doing the looking are giving themselves the power 
to define.” 
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evaluating relationships between different datasets, assessing how closely the data 
conform to an ideal statistical law, etc.), they cannot generate scientific meaning 
(e.g., they cannot interpret the data physically and derive logical conclusions as to 
their substance).  The latter is the task of the SEP methodology, which evaluates 
the various epidemic databases, arranges them in logical relationships, contrives 
an approach to manifest the meaning behind the databases, and generates results 
that improve our understanding of the epidemic. 

The SEP theories and models should be judged by what they do, by the kind of 
further thinking they engender, not by their conformity to some excessively sim-
ple-minded version of common sense.  Thus, the debate is not whether theorizing 
of this sort is philosophically legitimate, but whether it is useful, whether it can 
bring enlightenment to our thinking about Black Death rather than confusion.    
 
 



Chapter V - Spatiotemporal Mapping of the 
Epidemic 

"We had taken it for granted that maps were faithful 
reflections of reality; but we were somehow amazed 

when reality turned out to be true to the maps." 
J.N. Wilford 

A.  Maps of the Epidemic, Their Interpretation and 
Findings 

a.  General Comments  

Predicting the course and geographical spread of an infectious disease by means of 
space-time mapping is critical in any effort to understand some of the disease’s 
main characteristics, to generate scientific hypotheses about the disease, and to 
control it.  Indeed, a large part of “what can be known” about an epidemic distri-
bution is precisely what can be seen on a map (topographical relations, disease 
correlations across space-time, propagation velocity, etc.), which is a kind of vis-
ual language for epidemic sciences.  A general SEP was outlined in Chapter I that 
established a methodological framework of public health research and epidemic 
modelling in combined space-time domains.  According to this framework, formal 
rules and tools can be used efficiently in map generation only when content is 
taken into consideration, a network of cross-checking techniques can be imple-
mented that lead to collective reliability, map interpretation depends on the logical 
mind, reasoning skills, and objectivity of the public health researcher, etc.    

Henry Poincare maintained that, “predictable facts can only be probable”.  In 
view of uncertainty, stochastic theory (Chapter II) suggests that one should give 
up the futile attempts to make exact (deterministic) predictions in favor of condi-
tional (stochastic) predictions of epidemics.  The predictions generated by stochas-
tic theory are conditioned by a number of factors:  the interdisciplinary knowledge 
bases available (Chapter III), the space-time heterogeneity characteristics of the 
disease distribution (Chapter IV), the conceptual and technical uncertainty associ-
ated with epidemic modelling, the prediction accuracy sought, and the objectives 
of the study.  Thus, SEP provides public health scientists not only with informa-
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tive spatiotemporal maps, but also with a sound theory and a mode of reasoning 
that are essential for scientific map-making and validation of contradictory data.   
As we saw in previous chapters, our data search has revealed numerous con-

temporaneous sources of the Black Death epidemic, many of which are scattered 
and scarce.  Also, these records are drawn from a variety of disciplines.  Thus, a 
considerable amount of our effort was dedicated in the acquisition, evaluation, and 
taxonomy of these information sources, and the subsequent formulation of the cor-
responding BME functions of the TGIS technology.  In the case of Black Death, 
the transformation of the multi-sourced databases into a quantitative form by the 
SEP techniques led to the creation of the following (see also Figure IV.1): 
 
(i)  Empirical laws of disease variables (e.g., the scaling law of Section IV.B.a), 

which can help us to assess the validity of hypotheses about the nature of the 
epidemic, especially in situations characterized by a considerable lack of in-
formation.   

(ii) Epidemic models with properties that can be precisely mathematically ana-
lyzed (e.g., the ERF model of Section IV.B.b). 

(iii) Correlation functions that express the structural patterns and dependencies of 
disease variables across space and time (e.g., the functions of Section 
IV.B.c). 

(iv) Tabulations of multi-sourced information concerning essential parameters of 
the disease distribution (e.g., the Tables of Section III.D.c and Appendix B).   

(v) Plots of probability functions that integrate interdisciplinary knowledge 
sources and offer a good fit to the site-specific database at each geographical 
region and time interval of interest (e.g., the mortality probability plots of 
Section IV.C.b). 

 
In the SEP context, Fig. 1 below is a continuation of Fig. IV.1.  As was pointed 

out in previous chapters, the procedure of Fig. 1 has many salient conceptual and 
operational layers that, when unmasked, tell a long and interesting story1.  For 
epidemic-related theories to be most useful in the   G -KB context, they need not 
only to be evaluated but also to be updated and refined with site-specific informa-
tion (  S -KB).  In this sense, a distinction is made between appropriate theory re-
finement and ad hoc adjustments based on inadequate patchwork.  Epidemic 
predictions are visualized by means of highly informative, science-based maps, 

      
M s ,t , in a composite space-time manifold.  The generation of these maps relies on 

a powerful combination  of  sound theoretical  support provided by stochastic the-
ory (Section II.A-D) with modern technological facilities supplied by TGIS (Sec-
tion II.E).  The mathematical notation of the stochastic SEP theory allows us, 
while doing the practical calculations, to focus on the meaning of the theory.  This 
brings out its conceptual poetry: the romance and fascination are preserved while 
one learns the formal mathematics of the subject.   

                                                             
1 The reader may find it interesting to compare the procedure of Fig. 1 with that of Fig. II.6 

used in environmental epidemiology applications. 
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Figure 1. An outline of the procedure leading to space-time maps of Black Death mortality 
(see, also, Fig. IV.1). 

Generally, space-time mapping is concerned with the geographical shape and 
extent of the epidemic, its temporal evolution, the possible origin of an infectious 
disease outbreak, the conditions that led to the epidemic, and suggesting ways to 
control the epidemic2.  In such a context, epidemic maps should be seen as rigor-
ous representations aiming at informing us as objectively as possible (convey sci-
entific knowledge, discover patterns, offer clues, etc.), rather than as images aim-
ing at affecting us sentimentally (inflicting terror, hatred, sorrow, etc.).  The 
generated maps may also depend on the objectives of the study.  E.g., some maps 
are designed to emphasize highly localized differences in the disease distribution, 
the goal of some others is to show only broad space-time patterns, whereas the 
motivation of yet another group of maps could be to offer information regarding 
disease etiology.  In many cases, more information can be extracted from a map 
than is needed to construct it.  Another significant practical advantage of space-
time maps is that they bring the results of sophisticated modelling within easy 
reach of epidemiologists with little or no mathematical experience.   

b.  Mortality Maps  

One way to assess a disease burden is through the number of deaths it causes 
across space-time, i.e., the mortality approach3.  Mortality maps produced by 
BME can enable the determination of several useful characteristics of Black Death 
(e.g., direction and velocity of epidemic spread, prevailing trends and patterns, and 
relative significance of the different epidemic system components).  

The BME technique of SEP (Section II.E.b) was employed to prepare the set of 
maps in Fig. 2, using the knowledge bases (KB) we constructed with the help of 
the methods discussed in Chapters III and IV.  The BMElib software of TGIS 
scans  these interdisciplinary  KB seeking out  patterns  that can  be  projected into  

                                                             
2 As we discuss in previous chapters, space-time mapping may not offer, generally, a defi-

nite proof of the actual cause of the epidemic.  In certain circumstances, however, it 
could offer valuable clues in this respect. 

3 Other ways of assessing disease burden also exist, such as in terms of prevalence or in 
terms of disability caused by a disease, but are not considered here. 
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Figure 2. Selected space-time maps for Black Death percentage of monthly mortality 
(continues). 

space-time in the most efficient manner possible.  The complete set includes 40 
monthly mortality maps from October 1347 to January of 1351.  Due to space 

limitations, in Fig. 2 we show only a small subset of the available maps4.  For de-
tails about a locality, the reader is referred to Appendix A.   

                                                             
4  The reader is invited to visit the website http://www.unc.edu/depts/case/BlackDeath/ for a 
complete set of maps and color animations of Black Death distribution features. 
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Figure 2. Selected space-time maps for Black Death percentage of monthly mortality (con-
cludes). 

To our knowledge, Fig. 2 presents the first systematic space-time maps of 
Black Death mortality during the 1347-51 epidemic.  These maps make possible a 
deeper understanding of the role of space in the mortality of the epidemic and the 
fluctuation patterns over time.  Note that BME can generate the pdf     fK

bc (mk ) at 

each space-time point pk  across Europe, see Eq. (II.33), which provides a com-
plete stochastic characterization of mortality.  The mortality values (%) in the 
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maps of Fig. 2 are the BMEmean estimates, 
  
ˆ m k ,mean (pk ) , see Eq. (II.35).  An as-

sessment of the accuracy of these estimates is provided by the associated estima-

tion error standard deviation,   K ( pk ), defined in Section E.II.b.  Given the 

    fK
bc (mk ) , other kinds of mortality estimates can be derived, as well; see, e.g., Ta-

ble II.13.  The specific set of maps in Fig. 2 shows the mortality distributions 

when the probability that mortality exceeds the 0.001% threshold is greater than 

0.65.  Several alternative sets of maps can be constructed by choosing different 

mortality and probability thresholds.  These different choices allow one to study 

different space-time features of the Black Death epidemic and can have certain 

advantages in showing structure more clearly than previous methods of epidemic 

representation.  In addition, the BME features above demonstrate the technical 
versatility of the general SEP approach. 

There are interesting developments to analyze and observe at the national and 
regional levels of the epidemic distribution.  The maps show that mortality moved 
throughout Europe in the form of a “wave” or “cloud” of varying intensity and 
size, depending on the geographical location.  The disease visited almost the entire 
European continent with devastating results (note, e.g., the high mortality levels).  
Most of the regions of Europe that were not devastated by Black Death were unin-
habited areas (due to topography, high mountains, etc.).  The territories initially 
infected covered most of the warmer and drier climates in the south of Europe.  
Maps like those in Fig. 2 could enlighten certain issues, such as the differences in 

mortality from one region to another, the possible origins of the epidemic, its vari-

ous fronts throughout Europe, its duration and strength, etc.  Next, with the help of 

the maps of Fig. 2 we make some interesting observations regarding the Black 

Death evolution characteristics in specific regions of Europe. 

In Italy the epidemic started in Sicily in October 1347 (the very first region in 
Europe).  By the beginning of 1348 it had spread to several Italian ports.  The epi-
demic reached its peak during the summer of 1348, moving to Austria and Swit-
zerland.  The Black Death epidemic disappeared in Italy early in April 1349.    

From Austria the epidemic moved to Germany and the Czech Republic (Fall 
1349).  In Austria the epidemic ended in October 1349.    

In Scandinavia, the epidemic started in April 1349 (port of Oslo), and then 
moved in all directions.  The Black Death ended in Scandinavia in 1351. 

In France the epidemic originated at the port of Marseille in December 1347.  It 
then moved in all directions.  Another front of the epidemic started independently 
in the northern part of France in June 1348 (at the same time the epidemic made 
its appearance at some southern English ports).  By July 1348 the two well-
established fronts in France were moving in opposite directions and they met each 
other in November 1348.  After that the epidemic weakened considerably during 
the winter (it almost disappeared), only to reappear during the following summer 
along the borders with Belgium (May 1349) and with Switzerland (June 1349; at 
about the same time the epidemic entered Germany).  In France the epidemic dis-
appeared in April 1350.    

In the Iberia Peninsula the first Black Death front appeared in April 1348 
(Balearic Islands).  An eastern front of the epidemic came from France in May 
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1348.  At the same time a third front started in the northwestern part of Spain 
(Santiago de Compostela; presumably from pilgrims), which then moved south 
into Portugal.  The three fronts eventually met in central Spain around October 
1348.  Then the epidemic almost disappeared during winter, but it gained consid-
erable strength the following summer, starting in the Granada region.  The epi-
demic ended early 1350. 
Germany was hit from different directions.  Black Death started at the border 

with Austria in July 1348 but then disappeared, so that Germany was essentially 
epidemic-free until June 1349.  At this time the epidemic entered Germany from 
three points:  the borders with France, Austria, and Switzerland.  These fronts 
eventually were reinforced by a front that entered Germany via Luxemburg in 
early 1350.  Then the epidemic moved east, north, and west (it entered the Nether-
lands in June 1350).  In Germany, Black Death ended after January of 1351. 

In the British Islands, Black Death first appeared in southern ports in June 
1348, and then moved north.  It disappeared in March 1350.  In Ireland, the epi-
demic started in August 1348 in the eastern part of the country.  It subsequently 
moved west and then disappeared in March 1350. 
At this point it is worth re-emphasizing that the construction of the maps in 

Fig. 2 (as well as those that will follow) was made possible because of an impor-
tant property of stochastic spatiotemporal theory that is not shared by “classical 
statistics”: Stochastic theory rigorously accounts for the critical space-time de-
pendence of mortality values--which classical statistics assumes to be independ-
ent--and it possesses powerful techniques that allow it to generate substantive 
mortality predictions across space and time.  The fact that these realistic maps of 
mortality distribution could be generated by stochastic spatiotemporal theory but 
not by classical statistics amply demonstrates the superiority of the former over 
the latter in this kind of epidemic situations.  Noticeably, during the last few dec-
ades, the main function of the so-called “spatial statistics” discipline has been to 
translate spatial dependence models developed in other fields (physics, engineer-
ing, forestry, meteorology, geostatistics, atmospheric sciences, etc.) into the lan-
guage of classical statistics.  Performed in relative isolation, this kind of transla-
tion had several rather restrictive consequences: focusing on purely statistical data 
processing and ignoring several important physical knowledge sources and rea-
soning modes; seeking to fit data to some ideal form of a statistical model; empha-
sizing form over substance; etc.  Only recently there is some evidence that the spa-
tial statistics discipline is realizing the drawbacks of this approach and is making 
an effort to walk “the well traveled road”, to slightly paraphrase Robert Frost’s 
well-known poem5. 

c.  Epidemic Elasticity Maps 

Among the types of maps that can be useful for epidemic risk analysis purposes 
are the epidemic  elasticity maps.  Elasticity  

  M
  is an indicator  that measures the  

                                                             
5 Frost (1967: 223). 
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Figure 3. Spatiotemporal variation of the elasticity of the Black Death (continues). 

ratio of the fractional increase in mortality, 
    
M

s,(k+1) , over the fractional increase 

in the number of infecteds, 
    
I

s,k ; by definition, elasticity is a non-linear function 

of mortality and it also depends on the geographical factor f  (see, Section 
IV.B.b).   

For numerical illustration, direct implementation of Eq. (IV.12) led to the gen-
eration of some representative  

  M
 maps in Fig. 3 using the mortality values in the 
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Figure 3. Spatiotemporal variation of the elasticity of the Black Death (concludes). 

maps of Fig. 2 and the f  values calculated in Appendix B (these values vary geo-
graphically throughout the 14th century Europe).  These maps offer an additional 
description of the geography and temporal evolution of Black Death dynamics in a 
epidemic risk assessment context:  the larger the 

  M
, the smaller the fractional in-

crease in infecteds required to yield a specified fractional increase in mortality; the 

same  increase in  the number of infecteds led to  larger mortality increases  in cer-  
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Figure 4. Total geographical area infected by Black Death at different times denoted in 
black.  Blank areas denote no infection or insufficient data for estimation (continues). 

tain areas than in some others (due to different f  values, etc.).  It is noteworthy 
that the applied results of Fig. 3 are in agreement with the theory of Section 
IV.B.b.  Consider the following example.  In Appendix B we find that in the vast 
majority of localities f  is greater than 0.3 and in view of the mortality values in 
Fig. 2, the theoretical plots of Fig. IV.4b predict that the Black Death elasticity 
values should be between 0.85 and 1.0 across space-time, which is exactly the 
case with the elasticity estimates in the maps of Fig. 3.   
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Figure 4. Total geographical area infected by Black Death at different times denoted in 
black.  Blank areas denote no infection or insufficient data for estimation (concludes). 

d.  Maps of the Geographical Evolution of the Epidemic  

In Fig. 4 we plot a series of representative maps of the epidemic spread across 
space and time.  From a stochastic theory standpoint, the maps are maximally in-
formative with respect to the general knowledge considered and accurate with re-
spect to the total knowledge.  With the exception of certain uninhabited areas, 
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Black Death moved throughout the entire continent at a rather fast pace (given the 
transportation means, etc., of the time).  We notice certain differences between the 
epidemic spread maps of Fig. 4 and some related maps existing in the Black Death 
literature (Benedictow, 2004).  The maps of Fig. 4, e.g., depict areas that had 
never been infected, which the previous maps did not detect.  A more detailed dis-
cussion of Fig. 4 is presented in Section C below. 
As was mentioned in Section II.E.b, the SEP techniques used to generate the 

Black Death maps of the present chapter impose no restriction on the shape of the 
underlying probability densities or the form of the predictors employed (non-
Gaussian distributions of any shape and non-linear predictors are automatically in-
corporated); these are powerful techniques that can produce substantive predic-

tions by integrating many different kinds of knowledge (e.g., physical laws, bio-

logical equations, and epidemic relationships) and datasets that are not necessarily 

epidemic variables (hard, soft, and uncertain data that are relevant to the exposure 

chain or the transmission of an  infectious agent, etc.);  they can consider multiple-

point moments across space-time; and they are very general, deriving previous 

techniques (spatial regression, kriging, etc.) as their limited cases.  Also, due to its 

underlying epistemic features, SEP mapping is based not only on the knowledge 

bases themselves but on the understanding of what it means to gain knowledge as 

well.  The above constitute considerable additional advantages of the SEP tech-

niques over interpolation schemes (spatial statistics, neural networks, etc.) and sta-

tistical model-based methods (in terms of likelihood models involving Poisson 

processes, etc.), random effects, and mixture representations (for a review of these 

methods, see Arlinghaus, 1995; Lawson et al., 1999; Haining, 2003). 

e.  Infected Area and its Temporal Change  

A measure of the geographical propagation of the Black Death epidemic is the to-
tal area T (t)  [in km2] of all geographic regions that were infected at least once 
prior to time t.  The curve showing the total infected area T (t)  vs. time t is, by 
definition, strictly increasing with time t, as it represents the cumulative surface 
area of the monthly newly infected area N (t) , which is the surface area of all re-
gions that are newly infected in month t.  In Fig. 5 we plot both the square root of 
the total area T (t) , i.e. T (t)1 2 [in km], as well as the square root of the monthly 

newly infected area, i.e. N (t)1 2  [in km].  Conceptually, the plots of T (t)1 2 and 

N (t)1 2  are curves describing the propagation mechanism of the epidemic, which, 
as explained in Section II.E.a, may occur by relocation, expansion, and combined 
relocation-expansion diffusion.  The contagious spread of the disease involved di-
rect contact between infecteds and susceptibles.  This was a process that was 

strongly influenced by certain rather anticipated factors.  Nearby regions, e.g., had 

a much higher probability of infecteds-susceptibles contact than remote regions.  

On the basis of Fig. 5, it was calculated that the total infected area T (t)  initially 
increased as a function of t 4 , and it started to slow down after the first 15 months.  
In Fig. 6  we plot the derivative dT (t) dt  (in km2 /month ) as  a function of time t  
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Figure 5. Plots of the 
square root of total in-
fected area and newly 
infected area vs. time 
after the beginning of 

the epidemic in October 
1347. 

 

 

Figure 6. Plot of the de-
rivative of the total in-

fected area vs. time after 
the beginning of epi-

demic in October 1347. 

 

 

 

(month), which offers information about the velocity of the epidemic propagation 
or spread over time (e.g., the largest increase in the infected area occurred during 
October 1348).  Both Figs. 5 and 6 show that minimum values of the epidemic 
variables above occurred during winters. 

f.  Some Comparisons With Bubonic Plague  

By contrast, the preliminary results we have obtained indicate that the bubonic 
plague in modern India moved at a slower pace than the 14th century Black Death 
(Fig. 7).  For a more precise comparison of the space-time distributional character- 
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Figure 7. Propaga-
tion of the modern 
bubonic plague in 
India (adapted  
from Plague Re-
search Commis-
sion, 1912). 
 

 
 

 
istics of bubonic plague vs. Black Death, we prepared Fig. 8 that offers a visuali-
zation of the initial rate of variation of T (t)1 2 [in km] in the case of the modern 
bubonic plague in India (essentially, the plot represents the peaks of the waves of 
increasing height in time).  The discrepancy is significant, as the total infected 
area T (t)  in Fig. 8 increased only with t 2  instead of t 4 , as was the case with 
Black Death (Fig. 5). 
Another important space-time epidemic measure is the geographical extent of 

the Black Death disease, i.e. the area A(t)  [in km2] infected by the epidemic on a 
given month t.  Clearly A(t) N (t) , because the area A(t)  includes both the 
newly infected area N (t)  as well as the area that remained infected from the prior 
months.  In other words, while N (t)  describes only the propagation mechanism of 
an epidemic, A(t)  is a space-time measure describing the combined effect of both 
propagation and re-infection mechanisms (by re-infection we mean the continua-
tion of the previous month’s infection, or a re-emergence from a prior infection in 
the same area).  By jointly displaying in  Fig. 9  the geographical  extent of  the in- 
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Figure 8. Plots of the square root of total infected area [ T (t)1 2  in km] versus time during 
the initial stages of the bubonic plague in India. 

 

Figure 9. Geographical extent of infected area A(t) (in     km
2) at any given time for the 

Black Death (plain line) and for the bubonic plague in India (dotted line). 

fected area A(t)  for the Black Death and the bubonic plague, we uncover two 
more important differences between the 14th century Black Death epidemic and 
the modern bubonic plague in India.  Clearly, both diseases show strong seasonali-
ties.  However, while Black Death casualties slow down during the cold months of 
winter, bubonic plague fatalities in modern India were minimal to none during the 
dry and hot months of April-August (Hirst, 1953: 262-263).  Bubonic plague 
started in Mumbai (Bombay) in August of 1896.  Moreover, after the first summer 
Black Death reached a global maximum that was followed by maxima of decreas-
ing levels, whereas bubonic plague kept reaching new heights during the initial 
years of the epidemic. 
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Figure 10. Time trajectory of the geographical centroid for various epidemic wave fronts 
(continues). 

B.  Wave Propagation 

Space-time maps are important components of the scientific knowledge cycle that 
enable information to be moved, processed, and displayed.  This procedure is par-
ticularly  critical   in  the  context  of  modern   research  where  Internet  networks  
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Figure 10. Time trajectory of the geographical centroid for various epidemic wave fronts 
(concludes). 

provide powerful means for multi-disciplined information to be readily transferred 
and exposed to a vast audience worldwide. 
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a.  Evolution of the Epidemic Centroid  

The arrows in the maps of Fig. 10 depict the evolution of the centroid of the Black 
Death epidemic.  Each centroid is defined as the centre of the geographical area 
covered by the epidemic at a given time (as shown in Fig. 4).  Clearly there are 
several centroids of the infected areas corresponding to distinct wave fronts of the 
Black Death disease.  By connecting the centroids of each area, one can follow the 
temporal changes in the geographical location of the epidemic wave-front and, 
thus, obtain an idea of the velocity of the epidemic (direction and speed).  It is in-
teresting to notice differences in the trajectories of the various disease centroids.  
Some trajectories move independently in time, whereas others come to life, as it 

were, only after two or more of the previous trajectories meet at some location in 

time.  Certain trajectories have a simpler local structure (e.g., the one in Ireland), 

whereas others (e.g., the ones in France) have more complicated oscillating struc-

tures that extend into different countries.    

Finally, in Fig. 11 we plot the mean centroid velocity (that is, the average of the 
velocities of the various centroids along all different directions throughout 
Europe) as a function of time.  This plot clearly provides some insight concerning 
the mean velocity of the spread of the Black Death epidemic throughout Europe.  
This insight is also demonstrated by the fact that there is a general agreement be-
tween the temporal variation of the mean centroid velocity in Fig. 11 and that of 
the infected area expansion velocity of Fig. 6. 

b.  Visualization in Terms of Mortality Distributions  

By means of space-time mapping the multi-sourced Black Death databases are in-
terpreted, in the sense that they are transformed into units of insight and acumen. 
The maps in Fig. 12 present the evolution of the monthly mortality distribution 
along the direction of the wave propagation.  Some interesting observations can be 

Figure 11. Mean 
centroid speed vs. 
time after the begin-
ning of the epidemic 
in October 1347. 
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   (a)      (b) 

Figure 12. Mortality distributions along the direction of wave front propagation, in per-
centage (continues). 

readily made.  The mortality distributions generated by the SPE models moved 
like “waves” or “clouds” with varying speeds throughout Europe.  Also, the distri-
butions have various sizes and shapes depending on the geographical locality, dis-
tance from the epidemic focal point, etc.  Some of these distributions are multi-
modal, and their shape can be affected by the fact that they are associated with 
epidemic trajectories that come to life only after two or more of the previous tra-

jectories have met at some location in time.  In most cases the epidemic peaks tend 
to decrease with time.  Also, notice that the shapes of the mortality distributions in 
Fig. 12 are, in general, similar to those obtained by means of ERF modelling (Sec-
tion IV. C), an observation that further demonstrates the internal consistency of 
the SEP approach.  

In Fig. 13 we plot the areal-averaged monthly mortality M t  vs. time t.  The M t  
values were obtained for every month t taking the numerical average of mortalities 
at all geographical locations throughout Europe for the same month.  The M t  plot  
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 (c) (d) 

Figure 12. Mortality distributions along the direction of wave front propagation, in  per-
centage (concludes). 

shows an exponential kind of decrease as a function of time t, which is a novel but 

plausible result. 

As was anticipated, the preceding maps and plots amply demonstrate that 
SEP’s strength lies in its theoretically rigorous and technically sound approach 
toward understanding the space-time evolution of the disease in considerable de-
tail and in a stochastic fashion.  The approach is based mainly on uncertain city-
level data  (population, numbers of deaths, epidemic duration, etc.), which are 
properly generated from a variety of interdisciplinary Black Death sources.    
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Figure 13. The 
areal-averaged 

monthly mortality 
(%) vs. time after 
the beginning of 
the epidemic in 

October 1347 
(months). 

 

 

C.  Space-Time Inference 

There are several forms of human communication--some as old as the cave 
paintings of Altamira.  As already mentioned, mapping is an important form of 
communication.  Remarkably, the way the maps are generated and interpreted can 
have a strong influence on the kind of ideas we can express, which then become 
the essential content of a space-time epidemic culture.  SEP modelling includes 
sophisticated mapping techniques and technologies that allow public health 
scientists to convey valuable space-time information and exchange powerful 
messages.  These substantive objectives cannot be achieved by epidemiologic 
statistics alone.  The form of the latter excludes the content of the former6. 

a.  Epidemic Maps From a Historical Evidence Perspective  

What follows is a critical review of the main SEP modelling results of the previ-
ous sections in the light of historical evidence (uncertain contemporary interdisci-
plinary sources that lie far in the past).  Public health reasoning modes, like the 
deductive syllogisms and inductive patterns of Section II.A, constitute the theo-
retical background of the space-time inferences attempted  in  this  section.   Infor- 

                                                             
6 In the same way, e.g., that the smoke signals technology cannot be used to convey phi-

losophical arguments. 
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mation can be made more informative by rearranging it in ways that facilitate its 
use in inference.  The inductive patterns considered include both reasoning by 
analogy and by generalization, which also underlie hypothesis testing and evi-
dence interpretation.  In several cases the inferences are empirical rather than for-
mal, i.e., they are not content-free but depend on taking into consideration multi-
sourced databases.  From an inferential standpoint, it is often expedient to reduce 
the main issue to a series of logical sub-issues that, when resolved, will resolve the 
main issue. 

Italy 

According to the notary Gabrielle de’ Mussis and others, the port of Messina (Sic-
ily, Italy) was the first European city to be visited by Black Death early in October 
of 1347 (see map in Fig. 2a).   As recorded by de’ Mussis,  the  appearance  of  the 
plague followed the docking of 12 galleys carrying merchants and sailors fleeing 
from the city of Caffa by the Black Sea7.  While the incident of the galleys’ arrival  
is indisputable at the moment, certain elements of de’ Mussis’ account have been 
questioned in recent years8.  First, it has been discarded that de’ Mussis was trav-
eling in one of the galleys, thus stripping the story of an important eye-witnessing 
element.  De’ Mussis was a resident of Piacenza, where he apparently wrote what 
he heard about the case (Fig. 14).  This must have happened shortly after the inci-
dent, because he died in 1356  (Wheelis, 2002: 972).  Benedictow (2004: 70) dis- 
putes the reported number of galleys9, whereas Scott and Duncan (2004: 230-231) 
do not discard the possibility of a merely coincidental timing of the outbreak with 
the arrival of the galleys.  These scholars also maintain that Black Death may have 
come from another place in the Middle East.  They even consider the possibility 
that the plague’s origin was in Ethiopia (Fig. 15) rather than in Mongolia or China, 
as is usually claimed.  Hence, our investigation of the matter led to the conclusion 
that so far the only one of de’ Mussis’ claims still remaining unchallenged is early 
October 1347 as the date of the beginning of Black Death in Europe--perhaps, 
give or take a few days.  Remarkably, this is the only piece of information of any 
relevance to the SEP modelling and space-time mapping of the preceding sections. 
Legend has it that the galleys, after they were expelled from Messina, continued 
their  deadly visitation  in  at  least  two  more ports:  Genoa and Marseille.  At the  

                                                             
7 The region was known to be suffering from an epidemic with symptoms similar to Black 

Death.  Today Caffa is known as Feodosiya (Ukraine). 
8 This is not an unusual situation with eye-witnesses.  As Aristotle remarked (Doody, 2002: 

44): “But people notice different things, and much talking confuses the eyes”. 
9 He maintains, “One should disregard the number of galleys that conform to the set of 

magical or mythological numbers of which medieval people were so fond and which 
they preferred over tedious and vulgar empirical observations”. 
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Figure 14. First page of de’ 
Mussis’ account included in a 
1367 compilation of historical 

and geographical accounts.  
The original manuscript is lost 

(Wheelis, 2002: 972). 
 

 
beginning of 1348, Pisa and Venice were also infected, the latter most likely from 
plague sources unrelated to Messina.  Milan and Venice, both major cities with 
approximately 100,000 residents each, swiftly implemented sanitary practices to 
contain the epidemic, although with varying success.  Milan was the first city to 
start isolating entire families once a member developed Black Death symptoms.  
Despite the cruelty of the measure, it proved rather effective (e.g., mortality was 
limited to about 15%) and, as a consequence, it served as a model for other places 
during subsequent outbreaks.  Venice, despite its fragmented geographical distri-
bution, completely failed to contain the impact of the disease, instead ending with 
one of the highest mortalities in the continent.  Measures that were taken included 
delays in the admission of ships to the lagoon, and the designation of uninhabited 
islands as cemeteries in which the dead were buried at least 1.5 meters below the 
surface.  Delaying the docking of ships coming from infected areas gave birth to a 
practice universally called quarantine, after the forty (quaranta) days that eventu-
ally were established as the minimum safety period to ensure that the ship was 
plague-free.  It is noteworthy that proponents of the viral infection theory have 
used the quarantine length as evidence supporting the 37 days postulated as the 
average period between the infection point and the death of the victim (Scott and 
Duncan, 2004: 162).  Figs. 2c and 4c support the view that the Black Death epi-
demic in Italy is believed to have reached its highest level during the summer 
months of 1348.  Although in Europe, in general, and in Italy, in particular, there 
was no way to verify who infected whom,  further  spreading  seems to have taken  
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Figure 15. Black Death may share with the human race its origin in Great Rift Valley of 
Africa (Scott and Duncan, 2004: 231). 

place primarily through overland traveling, starting at the main focal points of the 
epidemic and then propagating outward as a kind of a chain reaction.  This was the 
case with most geographical regions of Europe. 

From Genoa and Venice the plague propagated in all directions.  As is shown in 
Fig. 10c, it moved southeast via Tuscany and northwest via Calabria.   We con-
sider the scarcity of data in southern Italy to be the result of poor chronicling and 
preservation rather than a result of the area being plague-free.  Outside mainland 
Italy, the plague passed to Austria and Switzerland (Figs. 4d and 10d).  Majorca 
and the islands of Corsica and Sardinia may have received the plague from main-
land Italy too.  All these paths of the plague are clearly displayed in the SEP maps 
derived in the previous sections. 

Croatia 

The ancient port of Ragusa (which today is known as the city of Dubrovnik in the 
young Republic of Croatia) was at the time controlled by the Republic of Venice.  
Ragusa most likely was another one of those places directly infected from sources 
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outside of the European continent.  Not much is written in the literature about the 
place as regards the spatiotemporal propagation of Black Death.  SEP modelling 
(e.g., Fig. 2b) shows that the plague spread inland.    

France 

Black Death visited almost every single corner of the country (Figs. 4f-h).  The 
highest virulence occurred in the warmer and drier southern part of the country.  
Evidential sources seem to indicate that the plague spared a few more places in 
addition to the uninhabited mountainous areas in the Pyrenees and the Alps.  
Documented evidence indicates normal mortality during the entire year of 1348 at 
Carpentras in Provence (Dubled, 1969: 20), the Béarn districts (Tucoo-Chala, 
1951: 84), and an area east of Calais (Scott and Duncan, 2001: 87).  This kind of 
evidence has convinced these scholars that Black Death spared the above areas 
during 1347-51.  Identifying areas that escaped Black Death is more difficult than 
it may seem at first glance, because it was a common practice in those times to de-
stroy evidence of the effects of the plague (Higounet-Nadal, 1978: 146).  There-
fore, we came to the conclusion that one cannot infer with certainty that the epi-
demic spared a geographical region on the basis of the fact that the plague was not 
mentioned in that region during the period 1347-51.  Instead, the documentation of 
normal levels of labor demand and prices constitutes more conclusive inductive 
evidence for drawing any inferences concerning a region escaping the plague. 

France was the most populous and one of the most prosperous territories of 
Europe at the time.  Its population, within its present borders, must have been ap-
proximately 25 million people (Ziegler, 1969: 63).  The position of the king within 
the societal system was supreme.  Both the feudal lords and the clergy had been 
shorn of much of their power, and a real sense of national unity was developing.  
By 1309 the Pope had moved to Avignon, to the delight of the French people 
(Deaux, 1969: 96-98), although Avignon was not part of France until 1791.  All 
scholars agree that Marseille was the first place to be visited by the plague, within 
the geographical region of what is today’s France (this is shown in the map of Fig. 
2b).  Marseille was by far the most lethal infection focal point in the entire conti-
nent.  Noticeably, it was from Marseille that the epidemic moved to the rest of the 
country and eventually throughout the rest of Europe--with the exception of most 
of Spain, Italy, and certain regions directly north of Italy.  This is a conclusion that 
can be derived directly from the maps of Figs. 2, 4, and 10. 

Not taking into account areas around the English Channel, evidence supports 
the view that the plague was spread by means of overland traveling.  During the 
first semester of 1348, starting from Marseille the Black Death epidemic propa-
gated in all directions.  To make things worst, during the summer a second front 
opened in the north (this event is clearly detected by the map of Fig. 4c).  Our 
analysis demonstrated that at the beginning of the summer the plague made its ap-
pearance in Saint Marie Laumont in Calvados, in Rouen, and most likely at the 
Channel Islands.  However, according to our modelling calculations, it was too 
early for the plague to have come overland from the south.  Other than these three 
places, nothing else points to further leapfrogging of the plague due to rapid 
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propagation by sea.  Most likely, the initial infection in places on both sides of the 
English Channel must have come from ships traveling from ports already infected 
during the spring, such as those along the Mediterranean coast or Galicia (north-
west Spain). 

Space-time SEP mapping shows that both epidemic fronts eventually collided 
at the Loire Valley during the fall of 1348 and continued toward Germany and 
Belgium to the east and northeast, respectively (see the epidemic paths in the map 
of Fig. 10d).  Remarkably, the front that moved northeast from Paris toward Bel-
gium showed a systematically low virulence (Figs. 2f and 4f).  It eventually died 
out completely when it reached Belgium, which explains why territories further 
northeast (in what is today The Netherlands) escaped the ravage of plague tempo-
rarily. 

Our inferential analysis of minor inconsistencies concerning the beginnings of 
the epidemic in the five locations studied by Biraben (1987) consistently sup-
ported the choice of the earlier of his two dates (see, also, Table III.2).  In order to 
confirm our findings beyond any doubt, it would be necessary to obtain additional 
plague-related information at places like Centre (southwest of Paris) and Bour-
gogne (southeast of Paris).  The latter was simply too uncertain to be used in mor-
tality estimation, thus resulting in a blank area (see Fig. 4f).   

Iberia Peninsula 

Like Italy, the Iberian peninsula had the characteristic of Black Death originating 
at several focal points.  At the time, the country was divided into four kingdoms: 
Castile, Aragon, Navarra, and Granada (Kagay and Vann, 1998: 1).  As is shown 
in Fig. 10d there were at least three points of entry (the map representation is in 
remarkable agreement with the discussion in Gottfried, 1983: 51).  Firstly, and 
probably most importantly in our view, merchant ships from Italy may have 
brought Black Death to the Balearic Islands and then to the major ports of the west 
coast, Barcelona and Valencia.  Secondly, just as Mecca was visited early on by 
Muslim pilgrims coming from areas ravaged by Black Death, the plague seems to 
have moved to the northwestern corner of Spain by Christian pilgrims who wished 
to temper the Lord’s wrath by visiting St. Jacob’s shrine in Santiago de Compos-
tela (Phillips, 1998: 49).  Thirdly, the plague must have come from the north, 
across the Pyrenees, to the Basque-speaking villages.  Finally, it is likely that the 
south (particularly Almeria and the Muslin Kingdom of Granada) was infected 
from North Africa (Gottfried, 1983: 51). 

The occurrence of plague in Santiago de Compostela is a controversial claim 
supported by a limited amount of evidence.  The claim is based primarily on the 
abnormal mortality of bishops during 1348-49, which Ubieto (1975) attributes to 
the plague.  From an inferential viewpoint, the central role of Santiago de Com-
postela derives from the combination of timing, the importance of the city, and the 
need to explain the indisputable fact of plague making its appearance in Coimbra 
(Portugal) on September 29, 1348.  Geographically, Coimbra is located inland 
hundreds of kilometers west of the two closest infected areas, Aragon and Valen-
cia.  Logically, the plague’s presence in Coimbra requires a source of infection 
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from some port along the east cost of the peninsula.  Our SEP modeling is in 
agreement with the times proposed by Ubieto at several places in the northwest.  
The modeling is also consistent with the plague ravaging the Spanish province of 
Zamora in October of 1348.  Vaca Lorenzo (1990), fifteen years after the publica-
tion of Ubieto’s seminal work, found plague evidence in the village of Villalobos.  
Note that this evidence has nothing to do with deaths of benefited clergy.   

It seems plausible to assume that the plague spread in several different direc-
tions in Spain because of the multiplicity of its focal points.  This is easily seen 
from a visual inspection of the maps in Figs. 2 and 10.  While the 1347-51 Black 
Death is characterized by a general propagation direction from south to north, Por-
tugal has the peculiarity of being the only present-day country that had the plague 
moving primarily from north to south (Figs. 2c, d, and e).   

The Valencia and Barcelona fronts merged early (June of 1348;  Fig. 4c).  Four 
months later they merged with the waves from Almeria and Santiago to form a 
single U-shape front extending all the way from Lisbon to Navarra to Almeria 
(Fig. 4d).  By then, the central plains and Andalusia were doomed.  The devasta-
tion of the peninsula was completed during 1349.  Most of the cities and villages 
in Spain suffered more or less severely. 

Austria 

In Austria the plague came from Italy (Figs. 2, 4, and 10), most likely through the 
Brenner Pass, late in the summer of 1348, according to records found in Marien-
berg (western Austria).  It took a year for the plague to reach the eastern section of 
the country and infect the capital city of Vienna, where it raged out of control.  
With a population of about 20,000 residents, the chroniclers have mentioned that 
900 people were dying daily during the worse days of the plague (Ziegler, 1969: 
84).  Yet, nothing compares to the situation at Neuberg in the southwest part of the 
country, where the local population was assaulted simultaneously by the plague 
and by wolves coming from the mountains (Deux, 1969: 112). 
As is depicted in Fig. 4e, the plague front passed from Austria to Bavaria and 

Bohemia, where the severity of the pestilence was rather mild.  Eventually, the 
German front merged with another front coming from France and continued north, 
along the Rhine valley (Fig. 10f).  Most likely, the forests served as a barrier that 
prevented the front from traveling into northern Bavaria and Thuringia.  Unfortu-
nately, the plague’s sparing of the territories north of Regensburg was only tempo-
rary--Black Death eventually arrived in these territories from a different direction.  
Not much is known beyond Bohemia.  As was mentioned above, however, lack of 
documentation cannot be used as a proof that the plague did not propagate beyond 
Bohemia. 

Switzerland 

At the time of the Black Death epidemic, most of present-day Switzerland was 
under the rule of the Holy Roman Empire.  Switzerland had the Black Death first 
coming from France (Fig. 2c).  Geneva was the point of entry in August of 1348.  
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From there, it propagated along two directions.  Moving up the Rhone River, the 
plague was at Sion in March of 1349 (Sion is the highest locality along the valley 
with documented evidence).  In its propagation parallel to the Jura Mountains, the 
epidemic reached Zurich in October of 1349 (Fig. 2e).  Shortly after, the French 
wave merged with the wave moving down the Rhine river and the combined front 
passed to Germany (Fig. 10g). 

Bellinzona in Ticino had the plague starting in the fall of 1348 (Fig. 4d).  If one 
agrees with Sticker (1908:56), the disease reached Dissentis (Grisons), on the 
other side of the Lepontine Alps, by December of the same year.  Dissentis is on 
the upper valley of the Rhine river, thus once there, it was not difficult for the 
plague to travel downstream all the way to Lake Constance, where it arrived in the 
fall of 1349.  On its way to Lake Constance, the plague infected cities such as 
Pfäffers and St. Gallen, for which we have found well-documented evidence. 

The cities of Engelberg and Dissentis offer a good example of how effectively 
natural barriers could sometimes restrain the propagation of the plague.  These cit-
ies are on opposite sides of the Glarner Alps.  In Dissentis the plague started in 
December of 1348, coming from Italy to the south.  Interestingly, although they 
are only 40 km apart, Engelberg was never infected by Dissentis.  Indeed, our 
analysis shows that Engelberg did not have problems with the plague until Sep-
tember of 1349, when it came from France through Lucerne (Figs.  4e and 10e). 
Apparently, despite Switzerland having the most rugged terrain in Europe, the 

Black Death reached almost every inhabited region of the country, resulting in an 
average mortality of about 40%.  This mortality level lies in the middle range of 
death rates reported for the rest of Europe. 

United Kingdom 

The UK does not have insurmountable natural barriers to serve as obstacles to the 
propagation of Black Death, which reached every corner of the UK.  Not surpris-
ingly, the epidemic was initiated in the south of the country and progressed inexo-
rably northward through the British island. 

Curiously, in the case of the UK most of the Black Death timing controversy 
concerns the early stages of the epidemic.  The maps (Figs. 2, 4, and 10) were pre-
pared assuming an initial outbreak at Weymouth (June 23, 1348), and that the epi-
demic arrived in London on September 29, 1348.  These assumptions have a direct 
effect on subsequent inferences concerning the geographical source of infection, 
spread distribution, etc.  Contrary to the opinion of several scholars, we decided to 
discard the most popular explanation that the plague initially reached the UK from 
the northern and northwestern French territories controlled by the English, as part 
of their initial success during the Hundred Years War.  With the exception of the 
Channel Islands, all other places had the plague later:  Calais (December, 1348), 
Bordeaux (August, 1348).  We inferred that both sides of the English Channel 
must have received the plague from Mediterranean ports or from Galicia in north-
west Spain, the only places along the European coast to have plague in the spring 
of 1348.  Once the epidemic had started in the UK, our modelling shows further 
infection from France (Fig. 10e).  Aside from this issue concerning the origin of 
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the infection, the UK has one of the best regional databases that prove that the 
plague first reached the entire south coast of England and then moved north stead-
ily (Fig. 4d, e, and f).  As far as Wales is concerned, the information is minimal 
and goes back to the research of Rees (1920).    

Nothing is known about the effects of the plague in Northern Ireland, and little 
is known about what happened in Scotland, other than that the plague was intro-
duced by soldiers returning from combat in England.  Our modelling of the mor-
tality space-time distribution in Northern Ireland is rather a theoretical extrapola-
tion, which is not supported by local databases. 

Republic of Ireland 

Not much was known about Black Death in the Republic of Ireland, until the re-
cent research work by Maria Kelly (2001 and 2003).  Her work is an encouraging 
example of how much a dedicated research effort can achieve in advancing epi-
demic knowledge, proving once more that data sources are far from exhausted.  
Using Kelly’s findings, SEP modelling generated plots showing a clear plague 
front sweeping from east to west (see Fig. 10f).    

Scandinavia 

Knowledge about the effects of Black Death in northern Europe is fairly sketchy 
and contradictory.  As a matter of fact, there is not a single piece of information 
about mortality for any locality in Sweden or Denmark.  The only data for the en-
tire region is a mortality of 50% for the port of Oslo that we found on the Inter-
net10.  Similar is the case with the duration of the epidemic.  We only found dates 
for the end of the epidemic in two Norwegian villages:  Hamar (Benedictow, 
2004: 150) and Sandsvær (Benedictow, 1992: 99).   

Despite such fragmentary information, we were able to model the evolution of 
the epidemic across space-time.  More specifically, after discarding an assumed 
start in January of 1349 in Copenhagen, we followed the suggestion of Benedic-
tow (2004: 153) to declare the port of Oslo as the first infection point (April 
1349), relegating to second place the rather more conventional choice of Bergen 
(Benedictow, 2004: 220-221).  The accounts about the spreading of the plague 
have the ingredients of a legend rather than a historical fact.  Legend has it that 
Black Death started in Bergen, following the discovery that all sailors on board a 
ship that drifted into the harbour were dead.  Some scholars date the event in June 
of 1348 (e.g., Biraben, 1975: 80), but Benedictow shifted it to August of the same 
year.  In any case, there is not enough information to support one view over the 
other.  In Norway, the general progression of the Black Death epidemic was from 
south to north, with most of the country been visited by the plague before the end 
of 1349 (see the map in Fig. 4f). 

From Norway, Black Death passed to Sweden (Fig. 4f and 10f).  Based primar-
ily on church donations, Benedictow has collected data showing that the southern 
                                                             
10 See http://www.lonelyplanet.com. 
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part of the country was swept from northwest to southeast, mostly during the year 
1350.  There is absolutely no data in the geographical area north of Uppsala. 

The limited data available indicate that in Denmark the plague began in the 
summer of 1350.  In view of this timing, the SEP modelling indicated that the 
plague came, once more, from the south, in this case from Germany.  It should be 
noticed that we discarded the view that the epidemic in Copenhagen started in 
early 1349.  We found it rather peculiar that there is no evidence of plague in any 
other place in the region shortly thereafter, thus implying that the Black Death 
plague was contained completely to Copenhagen.  In the end, a decision was made 
not to enter Copenhagen in the BME database.  Instead, following the view of 
Biraben (1975: 80), we coded information sources that assign the beginning of 
plague to Zealand Island in July of 1350.  This is an indirect way to infer that the 
pestilence was in Copenhagen during the summer of 1350, since Copenhagen is in 
the Zealand Island. 

Germany 

In Germany the plague arrived overland from an area that today includes three dif-
ferent countries--Austria, Switzerland, and France.  At the time, Germany and 
most of Switzerland and Austria were part of the Holy Roman Empire.  In the 
summer of 1349, Black Death entered southern Germany by means of two fronts 
that arrived almost simultaneously.  One came into Baden-Würtemberg from 
France to the west and the other entered Bavaria from Austria to the east (see Fig. 
4e).  Both fronts merged and the combined wave proceeded down the Rhine river 
(Fig. 10g). 

SEP modelling revealed that in November of 1349 a wave from Switzerland 
reached Konstance in Baden-Würtemberg.  This third front went nowhere, which 
is in agreement with the “no re-infection rule”:  given that the rest of the territory 
already had Black Death, there was no “virgin” population to suffer from the 
plague. 

With further reinforcements from France, the Rhine front of Black Death left 
the valley at the beginning of 1350 and went on to infect northern Germany, even-
tually passing also into The Netherlands and Denmark.  Within Germany, the 
wave moved east along the Baltic coast, and after making a clockwise move it 
went back toward the south to reach the Thuringia and northern Bavaria regions, 
which had escaped the plague the previous year (see Fig. 10g). 

Low Countries 

The history of Black Death’s spread through Belgium and The Netherlands has 
some interesting peculiarities.  At the time, Belgium was a prosperous region hav-
ing several of the characteristics of Tuscany, such as flourishing trade and large 
cities.  Yet, unlike northern Italy, mortality in Belgium was the lowest among the 
present-day countries, with about 20% mortality at most.  Another peculiarity is 
that the plague did not proceed into the virgin regions of The Netherlands. 
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There are two possible scenarios concerning the plague in The Netherlands.  
Biraben (1975: 77) has a plague focal point in Friesland, starting in December of 
1349.  Nobody has reported plague passing to another nearby city, whereas De-
venter was the next outbreak, six months later.  For this reason, we agreed with 
Blockmans (1980:843) that the plague in Friesland did not start until the end of 
1350.  Under this assumption, the SEP model predicted that the plague came to 
The Netherlands from Germany (see map in Fig. 10h).    

b.  More Detective Work 

Because of the historical nature and multi-sourced features of much of the infor-
mation about Black Death (it involves a variety of human activities, historical 
events, and time periods), it is not uncommon for epidemic modellers to perform 
extensive detective work using the methods of logic and the mathematical model-
ling tools to their avail (Sections II.A and III.C).  The detective work involves 
conditional thoughts, i.e. thoughts that we assert to be true on the condition that 
some premises are true or will turn out to be true.  In many circumstances, the 
content and context can affect the mode of thinking employed by the detective 
process (a thinking mode can be contextualized considerably by one’s prior in-
formation and belief, the multi-sourced evidence may permit several empirical in-
ferences to be drawn that can be used to assess an explanation based on hypotheti-
cal thinking, etc.).  Let us consider a few representative examples of detective 
work in the fashion described above.   
 
Example C.1.  From a logical viewpoint, the duration of the epidemic in a region 
consisting of several villages should be longer than the duration of the epidemic in 
a large city with the same population as the region.  Since the population is dis-
persed in several places, it seems logical that it takes extra time for the disease to 
move from place to place.  The calculated ground speed of Black Death was in the 
range of 0.7-5.0 km/day (Biraben, 1975: 90; Andenmatten and Morerod, 1987: 
31).  For a given ground speed, the Black Death duration in a large region also de-
pended on the urban mixture, topography, size, shape, and orientation of the re-
gion relative to the direction of the plague propagation.  E.g., this was the case of 
Saint Maurice, in the Valais canton of Switzerland.  On the eve of the plague, the 
parish had a population estimated at approximately 1300 residents.  If the popula-
tion had been concentrated at the village, the Black Death outbreak should have 
lasted no more than 5 months.  But only 40% of the people lived at the larger vil-
lage of Saint Maurice.  About 45% of the population was dispersed in other 
smaller villages, 37% in the mountains and 8% in the valley, while there is no in-
formation for the remaining 15%.  Pasche (1998: 127-129) has carefully docu-
mented the plague lasting 8 months in the parish, with the second month of the 
epidemic (February of 1349) being the worst month, accounting for 27% of all fa-
talities.  Our analysis came to the conclusion that the case of Saint Maurice is in 
clear agreement with observations by Woods et al. (2003: 437) concerning the ag-
gregation at the English archdioceses of Coventry and Lichfield.    
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Example C.2.  If one is certain about the duration of the epidemic in a geo-
graphical region, the SEP scaling law introduced by Eq. (IV.1) can be used in a 
reverse manner to determine town populations.  Let us investigate the case of three 
of the largest European cities on the eve of the Black Death plague: Paris, London, 
and Florence:    

 

• Medievalists have never been able to come to agreement in deciding the popu-
lation size of Paris right before the Black Death epidemic.  Estimates range 
from 80,000 to 200,000 residents (Bardet and Dupâquier, 1997: 176).  There is, 
nonetheless, better agreement in assessing the duration of the Black Death epi-
demic to be close to a year and a half (Deaux, 1969: 105; Mollat, 1977: 505).  
Under those circumstances, the scaling law predicts that the population of Paris 
should have been closer to 80,000 residents than to 200,000 residents.    

• Florence is another interesting case.  There is not much disagreement about the 
duration of the epidemic, which is said to have lasted 8 months at most (Bira-
ben, 1975: 77 and 103; Cohn, 2002: 167-168).  This duration was typical of cit-
ies between 40,000-50,000 residents, such as the neighboring cities of Bologna 
and Pisa.  The city size, though, is in contradiction with this prediction, with es-
timates of at least 90,000 residents coming from none other than the reputable 
Giovanni Villani.  Our detective work led to the conclusion that Villani was 
misled by his sources, which were primarily based on the number of bread tick-
ets issued during the famine of April 1347 (Ziegler, 1969:51-52)11.  The scaling 
law gives Florence a pre-plague population of about 45,000 residents, a finding 
that is in agreement with the view that Florence reached a maximum population 
of 60,000 in 1300 (Chandler et al., 1987: 16-18), which during the next 47 
years dropped by 25-50% (Gottfried, 1983:46).  In an effort to have an inde-
pendent assessment of the population of Florence, we compared its topography 
with that of Bologna.  In 1333, the city of Florence completed construction of 
its sixth and last city wall, which had a perimeter of 8.5 km enclosing an area of 
430 hectares12.  On the other hand, the wall of the city of Bologna, the third and 
most recent, had a perimeter of 7.8 km and an enclosed area of 410 hectares13.  
It was started and completed at about the same time as that of Florence and, as 
is shown in Fig. 16, neither city had dwellings outside the newly finished walls.  
We regard as highly unlikely that two cities with similar characteristics, in the 

same part of the country, with the same duration of the Black Death epidemic 

and almost identical urban areas, would have had greatly different populations.  

In our opinion, the value of the population for Florence derived from the scal-

ing law is correct: on the verge of the plague, Florence had about the same 

population as Bologna (i.e., 40,000 residents or 10% more at most). 

                                                             
11 Apparently, corruption was rampant during the distribution of bread tickets, giving the 

impression that Florence was a larger city than it actually was, an impression that is re-
inforced by the 100,000 casualties reported by Boccaccio (Deaux, 1969: 85). 

12 See website:  http//www.aboutflorence.com. 
13 The calculations were made using the map available at the website: 

http//urp.comune.bologna.it 
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(a) 

 

(b) 

Figure 16.  The 14th 
century walls of the city 

of (a) Florence and (b) 
Bologna.  None of the 

maps show any popula-
tion outside the newly 

constructed walls. 
 

 
• The opposite is the case of London.  The Black Death plague is repeatedly and 

fairly consistently reported to have lasted in London at least as long as it did in 
Venice and Paris (Ziegler, 1969: 156-157; Cohn, 2002b: 142).  Yet, the domi-
nant view is that the population of London was 50,000 residents (Gottfried, 
1983: 64), in  which case  the  50,000 fatalities claimed by the chroniclers (Brit- 
nell, 1994: 199) is a gross exaggeration.  Our investigation seems to support the 
dissenting view  of the London historian Derek Keene (1984: 20) that the popu-
lation of London in 1300 was 100,000 or more residents, thus making the 
50,000 casualties more likely14.   

 
In general, the scaling law is a convenient and rigorous way to bring consis-

tency to reported values for population size and epidemic duration.  Note that in 
all three cases discussed above (Paris, London, and Florence), our results coin-
cided with existing opinions of other scholars; our findings did not produce unex-
pected new figures.  I.e., the detective work in these Black Death cases involves 
the diligent following up of clues aiming at confirming and filling in the details of 
a picture whose broad outline is suspected or anticipated. 

 

                                                             
14 Keene based his conclusion on irregularities he discovered in subleasing and occupancy 

that created a ghost population. 
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Example C.3.  Another interesting case was that of Bordeaux (France), for it al-
lows a number of inferences to be drawn about the epidemic distribution.  Castile 
became a coveted ally of England after the outbreak of the Hundred Years War 
between England and France in 1337.  In 1348, a marriage was in the making as 
part of  an Anglo-Castilian alliance  (Russell, 1955: Chapter 1).   It was the mar-
riage of Princess Joan de la Tour to Prince Pedro.  The event is described in detail 
in Cantor (2001: Chapter 3).  Joan was the 15-year-old daughter of King Edward 
III of England and her fiancée was the heir to the Castilian throne15.  Three impor-
tant events mentioned by Cantor and others are relevant to the study of Black 
Death: 

 

• The Princess Joan arrived at Bordeaux with a numerous entourage in early 
August of 1348. 

• The Princess’s advisor and former royal chancellor Robert Bourchier died on 
August 20, 1348. 

• The Princess herself died on September 2 of the same year. 
 

These events lead to some rather interesting inferences motivated by some sys-
tematic historical detective work.   

The first inference has to do with the beginning of the plague in Bordeaux.  By 
early 1348, European authorities had started to follow closely the plague’s pro-
gress to try to cope with it.  It is safe to assume that the royal court in London was 
not aware of the plague in Bordeaux when the Princess left home by mid-July, 
otherwise they would have made alternative plans for the trip.  At that time, a trip 
from London should have taken about 20-25 days, depending on conditions such 
as the average sailing speed (which was 40-50 km/day).  Thus, knowledge about 
the Bordeaux situation in England was essentially reduced to what happened in 
Bordeaux 20-25 days earlier.  Considering such speed for communications, we 
can draw a first conclusion:  Bordeaux was free of plague by the end of June 1348. 
This finding is in agreement with the majority of scholars who claim that the epi-
demic started there in July or August (Renouard, 1965: 363; Deaux, 1969: 104; 
Ziegler, 1969: 64; Biraben, 1975: 74; Gottfried, 1983: 49).   

The second inference has to do with the source of the UK infection.  A start of 
the epidemic in Bordeaux no earlier than July would have been simultaneous or 
slightly later than the outbreak in the UK (see Table 1), thus making Bordeaux an 
unlikely source of infection for the UK.    

The third inference has to do with the nature of the plague.  Within days of 
Princess Joan’s arrival at Bordeaux, members of her  traveling party  fell sick  and 
died.  Advisor Bourchier was one of the first to pass away.  If we assume that 
these people were infected in Bordeaux,  an  approximate  period  of  two weeks is  

                                                             
15 Less than two years after the engagement, Pedro started to reign as Peter I of Castile--The 

Cruel.  He succeeded his father King Alfonso XI, who was a plague victim at Gibraltar 
in March 26, 1350. 
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Table 1:  Start of Black Death in UK according to various sources (Horrox, 1995: 62-64). 

Date Place Source 

23 June 1348 Weymouth Gray Friars of Lynn Chronicle 

24 June 1348 Bristol Monk Ranulphus Higden 

7 July 1348 Weymouth Eulogioun Historiarum 

1 August 1348 Dorset Co. Robert de Avesbury 

1 August 1348 Bristol Anominalle Chronicle 

 
too short a time to die of the hemorrhagic plague, which according to Scott and 
Duncan (2004: 162) had a 37-day period from infection to death.  About  the  only 

possibility in favor of the hemorrhagic theory, in this case, would be that infection 
occurred before the Princess departed the UK.  This possibility would require that 
at least some members of the Princess’s royal delegation spent time at an infected 
port in the southern UK at the beginning of July, because London did not have the 
plague at that time.  However, we have found no further historical information 
about the beginning of Joan’s fateful trip.    

 
As the above examples show, Black Death inference involves both the logical 

structure of the epidemic system and various other factors (problem context and 
content, etc.) as well. 

c.  Topography and Modelling Parameters 

Another important element of the   S -KB is the topography of the geographical re-
gion within which the epidemic propagated.  As the Black Death infected areas 
expand at a certain rate, the associated mortality may increase as a function of the 
area size.  This relationship between area-mortality can be interrupted by the re-
gional topography; e.g., the epidemic front can run into a topographic barrier, 
which can then change its direction or terminate its spread.  One of the most re-
markable examples comes from Engelberg and Dissentis in central Switzerland.  
The villages are only 40 km apart, but because those are 40 km of tall mountains, 
Black Death came first to Dissentis from Italy to the south in December of 1348 
(Sticker, 1908: 56) and moved northeast, downstream along the Rhine, reaching as 
far as Germany within the next ten months, but not to Engelberg.  On a map, 
Engelberg seems close to Dissentis, but the two cities do not connect by roads.  
Engelberg was not ravaged by the pestilence until September of 1349 (Fossel, 
1987: 9), when the epidemic came from France to the west.  A different example 
was considered in the previous section, in which we used a description of the cit-
ies of Florence and Bologna to obtain evidential support for our population esti-
mates.   
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d.  Fowl or Fish? 

Marcel Proust once commented: “The real voyage of discovery often consists not 
in seeking new landscapes, but in having new eyes”.  In the case of Black Death, 
using the “eyes” of SEP modelling and space-time mapping, convincing evidence 
is obtained that the Great Pestilence and the bubonic plague exhibit certain signifi-
cant differences in their spatiotemporal structure. 
An initial interesting result was obtained during the preparation of the data.  It 

refers to the good agreement between fatalities predicted by the extended Reed-
Frost (ERF) model and the actual mortality data.  Previously, Scott and Duncan 
(2001) had employed the original  Reed-Frost model in their analysis of the differ-
ent visitations of the plague in the UK.  Fig. 17 presents mortality distributions for 
the city of Givry in Bourgogne (France) obtained by the present approach.  As was 
shown in Table III.2, this city has the extraordinary feature of having preserved 
daily records of fatalities during the Black Death period.  The good agreement be-
tween the actual fatalities and the predictions of the mathematical ERF model of-
fers some indication that the plague presumably satisfied the assumptions of the 
model (e.g., the disease propagates at a fixed contagion rate, people are responsi-
ble for the transmission, and the disease ends with the exhaustion of susceptibles).  
Note that in contrast to Fig. IV.23a the mortality period in Fig. 17 was reduced to 

=20 days intervals, same as the serial generation number, which is the minimum 
interval possible.  The reduction of the interval from a month to 20 days was done 
in order to have as many mortality values as possible, in an effort to strain the 
ERF fitting to the limit.  One cannot escape noticing that this mechanism is much 
simpler than the elaborate cycle of bubonic plague involving resistant rodents, 
rats, blocked fleas, and people.  In the view of Scott and Duncan (2001: 29) the 
Reed-Frost model can only explain simple infectious diseases and cannot repre-
sent infections with multiple hosts, such as the bubonic plague. 
According to the evidence gained in India, modern bubonic plague is a rural 

disease hitting harder  the small villages  in the countryside  (Fig. III.18a).   On the 
 

Figure 17. Progression of 
Black Death at Givry 
(France) from July 28 to 
November 15, 1348. Actual 
fatalities (solid line); ERF 
model prediction 
( Ps,0 = 2000 , = 20 , Ks = 3, 
Is , =140 , and f = 0.32 ; 
dashed line). 
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other hand, our findings related to city size and mortality during the Black Death 
epidemic (Fig. III.18b) reveal no correlation between city size and mortality, thus 
supporting the view of a majority of scholars that Black Death was a devastating 
epidemic that indiscriminately attacked large urban centers and the countryside 
(Creighton, 1891: 135; Baratier, 1961: 111-112; Naphy and Spicer, 2000: 41).  We 
did find, however, a considerable positive correlation between city size and dura-
tion (Fig. IV.2).  For any given size, there is a margin of error of plus or minus 
two months, but cities with markedly different sizes definitely had different dura-
tion:  3-5 months for the smallest villages, 5-9 months for medium cities, and 
longer than a year for the few large cities with more than 70,000 residents.  This 
difference in duration has an interesting effect on monthly mortality.   Let us con- 
sider two different cities with about the same mortality, say 60%.  Venice (Italy) 
and  the manor of Cuxham (UK)  had this level of overall mortality rate, but while 
Venice had a population of over 100,000 residents and the plague lasted for 18 
months, Cuxham had a population of 200 residents and the epidemic lasted only 3 
months.  This means that 60% of the population in Venice died during a time pe-
riod that was 6 times longer than in Cuxham.  As a result, Venice never reached 
the high monthly mortality levels of Cuxham:  the epidemic modelling indicates 
that the worst monthly mortality at Cuxhan was 35% vs. only 12% in Venice.  
Obviously, these values are percentages of the surviving population and do not 
mean that more people died during Cuxhan’s worst month than during any time 
period in Venice.  E.g., 35% of 200 residents (=70 fatalities per month) is a much 
smaller number in absolute terms than 12% of 100,000 residents (=12,000 fatali-
ties), but it is far more pervasive, most likely affecting every single family in Cux-
ham during the same month. 
According to the SEP maps, Black Death moved swiftly across space and time.  

The systematic advance of the epidemic front indicates that the epidemic passed 
from one location to the next without skipping intermediate territory.  Only occa-
sionally a new focus appeared away from infected areas, suggesting potential leap-
frogging of the epidemic mostly by sea.  This was, e.g., the case of the start of the 
epidemic in the English Channel area, in which case the closest infected region 
was 400 km away in central France.  Similar is the case of the beginning of Black 
Death outbreak in Oslo, where the next closest outbreak occurred in the UK, on 
the other side of the North Sea.  Yet, for the majority of Europe, most of the 
spread took place because of overland traveling (occasionally assisted by river 
navigation, not necessarily downstream).  Previous studies have calculated epi-
demic propagation velocities of 0.66-5 km/day based on the distance between the 
infected city and the infecting city16 (Biraben, 1975: 90; Andenmatten and More-
rod, 1987: 31).  The above range is in agreement with the global propagation ve-
locities we derived from the SEP mortality maps, which showed velocity fluctua-
tions mainly around 1.5-6 km/day (Figs. 11 and 13).  Remarkably, this range of 
values for the propagation velocity is an order of magnitude faster than the propa-
gation velocity of modern bubonic plague overland.  E.g., it took 28 years for the 
bubonic plague to cover the distance from Kunming, Yunnan, to Hong Kong 

                                                             
16 I.e., the city that was the source of infection for the infected city. 
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(Scott and Duncan, 2001: 49-50), which implies a propagation velocity of 2 
km/month.  In India it took bubonic plague the entire time period 1897-1902 to 
cover the 500 miles from Bombay to Nagpur, that is, it traveled with a speed of 10 
km/month.  Also, while in the case of Black Death initially the square root of 
newly infected area increased proportionally to the 4th power of time, the bubonic 
plague increased only proportionally to the 2nd power of time. 

Previous mapping was limited to depicting the location of the leading edge of 
the epidemic front (Fig. III.1).  By displaying the geographical propagation of the 
epidemic at one-month intervals, the SEP maps allow one to observe its duration 
at any geographical region.  This reveals another marked difference between 
Black Death and bubonic plague: with the exception of the largest cities, Black 
Death stayed at any given place for less than a year.  A characteristic of the bu-
bonic plague, on the other hand, is that it often stayed in the same locality for sev-
eral years with pauses during wintertime. 

The maps of Fig. 2 offer yet another way of portraying the extraordinary viru-
lence of Black Death.  During the first year, with an entire virgin continent ahead 
of it, the plague advanced at an accelerated pace that peaked in October of 1348, 
when it infected a quarter of a million km2 in one month (Fig. 6).  This initial ex-
pansion is higher than the known rate for any other infection.  From then on, with 
less than half of western Europe remaining to be infected, the epidemic expanded 
at a decreasing pace, eventually dying out by the beginning of 1351 with the ex-
haustion of new places to infect.  Europe did not have an appearance of a new 
plague with Black Death characteristics until 1361-62.  Not re-infecting the same 
place for years after the end of an outbreak is another special characteristic of 
Black Death (Scott and Duncan, 2004: 45), one that was implicitly taken into ac-
count in the preparation of the SEP maps.  By contrast, the modern bubonic plague 
of India reappeared at the same locality every year for several decades. 

There is also a seasonal variation superimposed over the long-term trends in the 
mortality variation of infected areas.  The fact that Black Death was more wide-
spread during the summer has been acknowledged early on by the chroniclers, but 
some scholars seem to have exaggerated its effect by declaring a complete halt in 
the course of the plague during the winters (e.g., Benedictow, 1992: 94; Herlihy, 
1997: 25).  This possibility would make more sense if the bubonic plague theory is 
adopted, in which case the winter situation is explained in terms of the decreasing 
activity of fleas during this period.  Moreover, the complete disappearance of the 
plague for a season is not possible if a person-to-person transmission is taking 
place, simply because such a long pause would result in the disappearance of the 
infecteds that are needed to continue the transmission of the disease.  Figs. 2 and 4 
show clear seasonality, particularly starting after the first winter, but without the 
epidemic coming to a complete halt (Fig. 6).  The number of places experiencing 
the epidemic was reduced, but in some of the places still having it, the most severe 
mortality sometimes took place in the middle of winter; see, e.g., Avignon 
(Ziegler, 1969: 66), Bath and Wells diocese (De Hahn, 2002: 83), Marseille 
(Michaud, 1998: 408), Murcia (Torres, 1981: 10-14), and Saint Maurice (Pasche, 
1998: 127-129).    
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The global mortality calculated on the basis of the systematic space-time map-
ping of Fig. 2 generates monthly mortality rates mostly in the range of 3-6% per 
month.  Notice that in India the bubonic plague during the period 1900-1950 did 
not exceed 0.4% per year (Scott and Duncan, 2001: 75), which is another signifi-
cant difference between Black Death and bubonic plague. 

Based on their own findings, Scott and Duncan (2004) have postulated a viral 
nature of the Black Death epidemic that they have called hemorrhagic plague.  
The significance of the matter was discussed in Section III.B.c.  A critical tempo-
ral aspect of hemorrhagic plague as postulated by Scott and Duncan (2004: 162) is 
that the period from infection to death was on average 37 days.  Without explana-
tions, this long incubation period does not fit well with certain accounts alleging 
fatalities occurring shortly after healthy people came in contact with infected indi-
viduals.  The most classic of these accounts is chronologically related to the be-
ginning of the epidemic in Messina.  In particular, the account of chronicler de’ 
Mussis states that:  “As it happened, among those who escaped from Caffa by boat 
were a few sailors who had been infected with the poisonous disease.  Some boats 
were bound to Genoa, others went to Venice and to other Christian areas.  When 
the sailors reached these places and mixed with the people there, it was as if they 
had brought evil spirits with them: every city, every settlement, every place was 
poisoned by the contagious pestilence, and their inhabitants, both men and 
women, died within a few days.”  Scott and Duncan (2004: 229-230) have ad-
dressed the issue by declaring that the plague had arrived in Messina before the ar-
rival of the galleys, early enough to incubate and to go into full swing by the time 
the galleys arrived.  The population, partly ignorant of the situation and partly in 
need of a scapegoat, blamed the sailors for the outbreak of the epidemic.  The tim-
ing was a mere coincidence; the sailors had nothing to do with the outbreak. 

Nobody seems to have addressed, however, the case of Princess Joan de la Tour 
of England, which refers to the opposite situation: healthy people coming to an in-
fected area.  She arrived at Bordeaux from the UK on her way to Spain in order to 
marry the heir to the throne of Castile.  This important Black Death event was re-
ported in Cantor (2001: 45-47).  He also mentioned hundreds of dead people with 
plague symptoms lying on the docks and streets by the time the healthy Princess 
Joan and her escorts arrived.  Against the warnings of the mayor of Bordeaux, the 
party decided to have a break and went to stay at a castle, where very soon many 
of them started to feel sick.  Being ignorant of the severity of the situation, they 
did not flee.  Joan saw the party becoming decimated within two weeks of arrival, 
until eventually she died as well.  The infection of members of Joan’s entourage 
before departing the UK is the only way to explain her death as a result of the 
hemorrhagic plague scenario advocated by Scott and Duncan (2004: 161-163).  If 
this is the case, she would not have been the only royal to catch the plague in one 
place and die in another.  Aragon’s Queen Leonor felt sick while traveling from 
Zaragoza to Valencia.  The entourage had to stop in Jérica because of her deterio-
rating condition, where she died within a few days.  Although Jérica had the pesti-
lence at the time, chronicles make clear that she already arrived sick, thus elimi-
nating the possibility that Jérica played any part in the death of the queen. 
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Over the years, a number of scholars have come up with serious objections 
against the bubonic plague theory (see Section III.B.c).  Their proposals are radi-
cally different than the bubonic plague etiology, which has been the prevailing 
view during the last century.  In recent years these “heretic” (so to speak) propos-
als have been supported by new evidence.  One of the most damaging pieces of 
evidence against the bubonic plague theory was recently announced: tests made on 
teeth from skeletons found in 14th century mass graves showed no genetic trace of 
the Y. pestis associated with bubonic plague (see, also, Section III.B.c).  In light of 
the aforementioned considerations, this chapter’s contribution to the debate may 
be summarized as follows:  
 
• The findings of advanced stochastic modelling and spatiotemporal mapping 

support the view that Black Death was a different kind of epidemic than bu-
bonic plague.   

• No damaging hard evidence has been found against the new proposals concern-

ing the Black Death etiology.   

 
In the context of the Black Death project, we saw ourselves as scientists work-

ing on problems rather than in disciplines.  This implied various types of boundary 
crossing as well as moving between theory, computation, and implementation.  
We processed the rather scant evidence and uncertain information sources avail-

able in an efficient manner using state of the art technology, and we focused on 
the substantive modelling of the space-time distribution and propagation charac-
teristics of the Great Pestilence, without delving into its biological etiology.  Nev-

ertheless, the results we obtained do not support the theory that Black Death was, 

in fact, bubonic plague--a conclusive proof of this theory has not yet been offered. 
 
 



Chapter VI - Epea Pteroenta 

"S'il peut y avoir la moindre chance d'atteindre l'oreille de l'autre,   
ce n'est qu'en donnant le plus de tranchant possible à son propos.   
Voilà pourquoi le trait est ici accentué.  Les temps heureux ou l'on  

pourrait s'en dispenser, où l'on pourrait éviter l'outrance et faire  
dans la sobriété, ne sont pas encore venus."1 

G. Anders 

A. What to do With the Philistines? 

As the title of this last chapter we have chosen the Homeric phrase Epea 
Pteroenta2.  Indeed, in this chapter certain thoughts are shared and comments are 
made that are discussed among many public health researchers, but are not always 
expressed in writing (see discussion in Christakos, 2004).  As a matter of fact, 
some of these thoughts and comments have already appeared in an explicit or im-
plicit form in the arguments and methods presented in the previous chapters, in 
which case the present chapter may serve as a kind of poetic summary in the Ho-
meric tradition.    

There is an influential “elite” in public health education and institutionalized 
research nowadays, that regards the content of scientific culture with indifference.  
Rather, the focus of this philistine3 elite is to use scientific culture to achieve ob-
jectives quite separate from that culture’s inner content.  Aspiration for knowledge 
and the pursuit of the truth are not high on the priority list of such elites.  Knowl-
edge is increasingly viewed as the product of a technical process, rather than as 
the product of human intellectual effort.  In many public health fields, the philis-
tine agenda promoted unconscious research that has rarely lead to more than sim-
ply confirming what was already known.  Phillips et al. (2004) maintain: “Given 
the resources expended by the health science research enterprise, epidemiology 
                                                             
1 "If there can be the slightest chance to reach the ear of the other, it is only by giving the 

most abrasive edge in one’s discourse.  For this reason the issue is pronounced here.  
Happy times when we could exempt ourselves from doing so, when we could avoid ex-
cess and make things in sobriety, did not come yet." 

2 “Winged words” (meaningful words spoken, uttered, or flying from one person to an-
other); a favorite, immortal Homeric phrase (Homer-Iliad: 1-201). 

3 Here, we expand upon the term “philistine”--as used in Frank Furedi's recent work 
(Furedi, 2004)--to denote a person guided by materialism, who is disdainful of intellec-
tual or artistic values. 
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(which we define broadly, including both population health and clinical research, 
and covering biological, behavioral, and economic dimensions) is characterized by 
remarkably little innovation, let alone critical review of existing dogma.  The out-
puts of the science have increased to a torrent; research to improve the quality of 
the science is a trickle”; and “It is troubling that we plow ahead with billions of 
dollars worth of research every year while making minimal effort to answer fun-
damental questions about what that research is really telling us.  Epidemiology is 
far too important to our society to be treated as an exercise in uncritically follow-
ing existing formulae.”  After many years of research, several areas of epidemiol-
ogy are still in a state characterized by the following: (a) the scientific issues are 
very subtle and complex, (b) the necessary observations and measurements are 
difficult to acquire and share4 and they are often misinterpreted, and (c) there is no 
substantial theoretical content within which to work.  Public health philistines may 
be the last to realize the importance of theoretical modelling.  Remarkably, even 
researchers in the business world have emphasized that “our society, to a greater 
degree than before, will require people who have the skills and the competency to 
develop theories/models” (Arbnor and Bjerke, 1997: xxi).   

Philistines despise intelligence, because they cannot bear their doubts.  Thus, 
the struggle for research support is in its essence a struggle of vested interests and 
forces, not of arguments.  Matters of friendship, politics, and power (which should 
be irrelevant) enter into the decision-making process concerning research priori-
ties and financial support.  Afraid that it may have to share influence and re-
sources, the philistine elite strongly opposes an interdisciplinary approach to epi-
demic research.  Under the philistine influence, mainstream public health research 
appears as an expensive fraud in the eyes of its critics.  In the view of these critics, 
some of the most important public health research issues today are not related so 
much to the availability of research funds as to their improper handling by the 
elite.  The same critics increasingly argue that in certain public health areas, there 
is a shortage of people in a position to generate innovative approaches to impor-
tant research problems, rather than there being shortage of funds.  If the criticism 
is valid, then one wonders whether it is the heavy price we have to pay for the sys-
tematic persecution of scientific excellence over the years, and its subsequent re-
placement with political or professional correctness in their various forms.  Given 
the circumstances, Lewis Thomas’ suggestion is particularly relevant (Thomas, 
1995: 151): “It is time to develop a new group of professional thinkers, perhaps a 
somewhat larger group than the working scientists, who can create a discipline of 
scientific criticism.  Science needs critics of this sort, but the public at large needs 
them more urgently.” 

The situation is no brighter in higher public health education.  What is often of-
fered in our public health schools today is training rather than education.  The dif-
ference is obvious--training is learning how to perform a job, whereas education is 
learning how to learn.  Education traditionally promotes critical thinking skills, 
whereas training focuses upon learning how to perform a job and obtain uniform 
predictable behavior from trainees, without the necessity of their understanding 

                                                             
4   Due to a variety of scientific, social, political, etc. reasons. 
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why they should act in the prescribed manner5.  In reality the latter is of limited 
value because it may lead to jobs in the near future, but it cheats the student out of 
long-term benefits.  In a dynamic culture, where technical knowledge and fashion-
able views are raised up and overthrown many times in the course of one's career, 
the ability to think critically is of far greater importance than the ability to regurgi-
tate fashionable tools that are of value today but obsolete tomorrow6.  Further-
more, most public health textbooks and courses do not address salient interdisci-
plinary, multicultural, and multiparadigmatic trends at all.  As a result, students 
are not adequately prepared to fit their work into an intellectual discourse that 
would allow them to appreciate the essence of these trends and act accordingly. 
Education should be a living reality in a conscious attempt to improve their ability 
to comprehend the process of learning, produce and develop knowledge, and un-
derstand what the knowledge they have acquired really is knowledge about.  Lack-
ing this critical element of education, public health students will tend to bear the 
brunt of change rather than anticipate and participate in how change happens.   

In today’s chaotic world, indeed public health scientists have certain important 
tasks: to obtain an improved understanding of the environment and its health ef-
fects in order to improve the chances of protecting people’s health, avoiding epi-
demic disasters, and aiding decision makers in producing sustainable policies.  
The fact that an understanding of the environment may require a synthetic view of 

the nature of things is not a new idea in scientific inquiry.  Ruelle (1991: 4) has 

commented, “The great Isaac Newton characteristically shared his efforts among 

mathematics, physics, alchemy, theology, and the study of history in relation to 

the prophesies”.  Knowledge integration requires understanding the relevant con-
text and content, and an ability to look across different scientific fields to see what 
matters most, rather than merely borrowing specifics from these fields.  Remarka-
bly, in every new tool we create, an idea is embedded that may go beyond the 
function of the tool itself7.  In the end, it is all a matter of conscientious choice--to 
operate in a creative way, synthesizing, analyzing, and transforming knowledge--
or to surrender to the philistine way by moving through life in a routine fashion, 
content merely to gather information and apply it mechanically.    

For their views to retain credibility, it is critical that public health scientists 

consistently employ the epistemic method to study the nature of their intellectual 

                                                             
5   For those among our readers who would prefer a more picturesque representation of the 

matter, the following quote by Jay Cross (1994: 62) may be appropriate:  “If your 16 
year-old daughter told you that she was going to take a sex education course at high 
school, you may be pleased.  What if she announced she was going to take part in some 
sex training at school?  Would that elicit the same response?” 

6  This problematic situation is not limited to public health education.  As Steven J. Bartlett 
remarks in his essay Barbarians at the Door (Bartlett, 1993: 296):  “The international 
emphasis on vocational education is a regressive change that marks the reestablishment 
of a primitive view of man and of a fundamentally barbaric attitude concerning the pur-
poses of living.” 

7   E.g., the invention of eyeglasses not only improved defective vision but also promoted 
the idea that humans do not need to accept as final the restrictions imposed on them by 
nature. 
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frame, assess the reliability of the generated knowledge, and offer norms for scien-
tific behavior.  The production of high quality public health research and educa-
tion depends on the scientist’s ability to manage the issues that reach deeper into 
the methodological roots of knowledge.  The richer one’s conceptual knowledge, 
relative to the health system at hand, the greater the chance of performing crea-
tively.  The “just look and see” approach of traditional epidemiology should be re-
jected in favor of one that assigns deeper meaning to the close interaction between 
observation and theory.  Alternative modes of thinking about public health issues 
can lead to unique blends of perspective and innovative solutions.  Often the path 
to problem solving is manifold and variable rather than fixed and singular.  The 
situation described in the above lines constitutes a vital element of interdiscipli-
nary public health research and development in the emerging Conceptual Age.   

Furthermore, the study of epidemics is characterized by considerable uncer-
tainty in various interdisciplinary forms, which present serious conceptual and 
empirical challenges, and the particular area of mathematics most useful for deal-
ing with these challenges is stochastics.  Indeed, stochastics possesses the strong 
epistemic underpinnings and conceptual context that make it able to integrate in-
terdisciplinary laws of change in a mathematically rigorous and epidemiologically 
meaningful manner; account for space-time dependencies of epidemic systems; 
and interpret and transform interdisciplinary information sources.  These crucial 
issues are usually neglected by classical statistics, which is why substantive maps 

of epidemic systems can be generated by stochastics but not by classical statistics.  

In a similar vein, the role of conventional statistics in epidemiology is sometimes 
undermined by the fact that it merely focuses on formal techniques (pattern fitting, 

etc.) and does not pay sufficient attention to substantive issues.  The manipulation 
of form in terms of statistical techniques has become such a powerful dogma in 
epidemiology that research is often viewed as merely a matter of doing such ma-
nipulations.  But form is not substance, in the same way Achilles’ armor was not 
Achilles himself, thus leading to the well-known tragic outcome (Iliad, Book 

XVI): “Standing over his fallen foe, Hector mockingly tells the dying Patroclos 

that the armor of Achilles has not protected him and that he will never again assail 

Troy's walls”. 
Yet another very special task of public health scientists is that of occasionally 

swimming against the tide, i.e., supporting new ideas even if doing so is unfash-
ionable and professionally incorrect.  New ideas may indicate an intellectual need 
that the ruling ideology cannot satisfy, often associated with the fact that estab-
lished dogmas are outdated and do not serve any purpose other than to prolong the 
status quo.  Despite the efforts of the philistines, the ultimate goal of scientific 
reasoning will always be the search for truth and knowledge, and this often in-
volves the creation of new ideas and paradigms.  Of course, one should not un-
critically accept any idea that is presented as new.  Some views have the glamour 
and allure of novelty, but when it comes time to tell the sober truth, they seem 
merely quixotic--long on flash and panache, but short on good sense.  Thus, any 
new idea must go through a critical evaluation stage, and the same should be the 
case with the old ideas that have become dogmas.  Indeed, for intellectuals--who 
live for ideas rather than off ideas (Coser, 1965: viii)--what distinguishes science 
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from most other intellectual activities is the critical attitude towards its most cher-
ished ideas.  The criticism of ideas is an essential ingredient of public health rea-
soning, perhaps second in importance only to the generation of new ideas.  It 
would be encouraging if an increasing number of public health scientists decided 
to openly criticize many of the existing dogmas and to fight the widespread ten-
dency to follow the lead of some ruling fashion, whether the current epidemi-
ologic paradigm, a public health tradition, or an influential science a la mode8.  
The intellectual pressure that constructive criticism could exert would force the es-
tablished elites to examine their ideas and positions for their weaknesses and com-
placencies, which could open the way to new and fruitful definitions, creative con-
jectures and postulates, and innovative tools and methods, and it may even lead to 
a much needed paradigm change.  This is especially true in light of the consider-
able changes in the intellectual and social background underway nowadays.   

B.  The Oedipus State and Epidemic Warning Systems 

In real world situations, every kind of prediction is conditioned, to a larger or a 
smaller degree, by interactions and decisions that can affect the prediction.  This is 
true in public health research, as well.  Depending on the adequate assessment of 
the situation, and the timely action taken, the hazardous consequences of epidemic 
predictions could be limited or even eliminated.  Unfortunately, this is not always 
the case.  Occasionally, public health scientists predicting future epidemics find 
themselves in a so-called “Oedipus state”--named after the ancient Greek king 
who, despite becoming aware of his tragic future, was unable to change it9.  Of 
course, like most major issues in life, public awareness about the dangers of dis-
eases may be represented metaphorically as the familiar double-faced Janus.  In-
creasing public awareness about the dangers of diseases is an appropriate ap-
proach, but there are also situations in which public awareness campaigns about 
potential epidemic outbreaks have led to an irrational framework for dealing with 
the disease, rather than a rational one. 

It is in such Janusian circumstances that this book’s primary suggestion should 
be considered:  Rather than serving a philistine agenda, developing the back-
ground context of intellectual work and creativity would provide a fair assessment 
of potentially serious future epidemics--and would help public health scientists 
make a stronger case to authorities and to the public, when doing so is justifiable.  

                                                             
8 On occasion, one may have to go against his own followers.  "Moi, je ne suis pas Marx-

ist," Karl Marx once claimed in an effort to emphasize that he was not restricted by the 
boundaries of his own theory (in fact, some of the boundaries were developed by his fol-
lowers and not Marx himself).  Undoubtedly, it takes a lot of courage and intellectual 
depth to make such a statement, not to be a slave of one's own construct, not to be dedi-
cated "soul-and-body" to a paradigm--in brief, not to take oneself too seriously.  
Philistines have a lot to learn from Marx, indeed. 

9 The “Oedipus state” should not to be confused with the “Oedipus syndrome,” to which 
Sigmund Freud assigned a certain sexual interpretation. 
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By focusing on methodological issues and how they can affect decision-making, 
epidemic risk analysis possesses a strong cultural element as well.   

In the case of the infamous Black Death epidemic discussed in the book, the 
synthetic epidemic paradigm (SEP) managed to produce useable maps of the ways 
the epidemic propagated through geographical space and time.  These maps can 
help one discover an underlying coherence in disease distribution that was buried 
within reams of contemporary evidence that had so far defied quantitative under-
standing.  We studied important epidemic aspects by adapting our methods of sci-
entific inquiry to the breadth and complexity of contemporary evidence.  We de-
veloped well-constructed scientific arguments on the basis of reliable knowledge 
and sound logical reasoning.  We used stochastic methods that allowed us to ex-
hibit considerable receptivity to different kinds of historical data and make judg-
ments under conditions of uncertainty rather than giving up due to incomplete 
knowledge about an epidemic issue.  Since Black Death had grave societal, public 
health, and financial effects, the study of these maps can offer valuable insight 
into these effects, as well as into similar effects that could result from potential 
contemporary epidemics.   

Just as this book demonstrated to be the case with Black Death, we now have 

the opportunity to study infectious and other onset diseases as well, in a more in-

formative manner.  This leaves plenty still required with regards to the intellectual 

background of public health discourse.  There is, e.g., a need for sufficiently pre-

cise hypotheses concerning the spread of disease suitable for expression in 

mathematical terms.  Team members will need to grasp the overall public health 

situation and strive for conceptual synthesis, which means that interdisciplinary 

work requires broadly educated researchers.  These researchers should consider a 

wider perspective in their work that would allow them to change working modes 

depending on the epidemic aspect they are studying.  Moreover, a lot of what is 

going on in public health studies today has to do with ad hoc explanations.  If an 

epidemic explanation is going to be meaningful, however, the theory that does the 

explaining must be richer in content than the situation to be explained.  This is yet 

another point that seems to escape the Philistines.  Instead, their focus is mainly on 

the kind of uninspiring research vividly described in Lakatosian terms:  give 
someone $ 2 million to set sail from the UK to follow in Darwin's path, and then 
find out he vomited somewhere in the Indian Ocean.    

SEP models can study large-scale population phenomena related to social and 

public health measures, which may then be proposed or applied, and, together 

with TGIS technology, they could build an Epidemic Warning System (EWS) of-

fering powerful visual simulations of the expected effects of potential epidemics, 

at local or global space-time scales.  The EWS can enable boundary crossing and 

knowledge integration across sciences, it can improve communication and the dis-

tribution of information units within institutions, and by using sophisticated com-

putational tools it can bring to life multi-sourced databases and interdisciplinary 

theories.  In this manner, EWS-generated spatiotemporal simulations can ade-

quately represent the various possible scenarios of epidemic effects, assess the 

significance of the relevant disease variables and parameters, and allow adequate 

planning and preparation to deal efficiently with the consequences of the epidemic 
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on the population and the infrastructure.  Furthermore, a properly developed EWS 

has the power to go beyond its original context into new ones, where it can find 

unexpected uses.  The visualization power of spatiotemporal maps and the embed-

ded epistemology can help people organize their minds and integrate their experi-

ences of the world, and in doing so, they can influence public health decision mak-

ing in myriad forms.   

C.  There is no Rest for the Wicked 

One thing is certain nowadays:  a rapidly changing world is both challenging old 
paradigms and generating new ones to meet the emerging realities.  In this book 
we made an attempt to articulate as clearly as possible some critical standards 
concerning a synthetic epidemic paradigm for public health research purposes.  
We cannot imagine a fairer destiny than that this effort should simply point the 
way toward an improved and more comprehensive paradigm.  With regards to in-
stitutionalized research administration, one can always hope that someday a deci-
sion will be made to become more objective and to extend its “inner circle” be-
yond members of the philistine elite10.  Listening to the opening theme of 
Beethoven’s Fifth Symphony might be helpful in this respect11.   
Although our discussion of interdisciplinary matters was made in a constructive 

spirit and with the best of intentions, some of the views expressed in the book may 
become the targets of attack by some.  Interdisciplinary work is likely to upset 
everyone.  Indeed, this is the fate of those who, not recognizing themselves in any 
of the most widespread disciplinary solutions to a public health problem, seek to 
synthesize elements deriving from the various proposals and end up drawing the 
wrath of all.  What makes, however, the interdisciplinary quest so inviting is pre-
cisely this attempt to find a balance between divergent or even opposing propos-
als, to draw out and combine that which is plausible in each one of them.   

On the other hand, we have no problem with such attacks, as long as they are 

carried out by the right people.  Even vilification when done by the right people 

                                                             
10 Sad as it is, the “elite” phenomenon is not limited to public health affairs.  As is empha-

sized in a recent article in The Economist (2005: 23-24):  “Everywhere you look in mod-
ern America--in the Hollywood Hills or the canyons of Wall Street, in the Nashville re-
cording studios or the clapboard houses of Cambridge, Massachusetts--you see elites 
mastering the art of perpetuating themselves.  America is increasingly looking like im-
perial Britain, with dynastic ties proliferating, social circles interlocking, mechanisms of 
social exclusion strengthening and a gap widening between the people who make the 
decisions and shape the culture and the vast majority of ordinary working stiffs… The 
students in America’s places of higher education are increasingly becoming an oligarchy 
tempered by racial preferences.  This is sad in itself, but even sadder when you consider 
the extraordinary role that the same universities--particularly Conant’s Harvard--played 
in promoting meritocracy in the first half of the 20th century.” 

11 Thus Fate knocks on the door" are the noticeable words applied by Beethoven to the 
opening theme of the Fifth Symphony. 
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can make one's reputation rise12.  Not to mention that we possess a capacity for de-
tached amusement, which in most cases enables us to ignore unfair critics' ha-
rangues and complaints and to see that their arguments are bound to fail in the 
end.  We have a certain robustness of spirit and do not take criticism personally.  
More to the point, we can distinguish between knife wounds and fleabites that are 
harmless13.  If we have confidence in our own hearts that certain of our proposals 
are right, we do not need public affirmation of their rightness.  On the other hand, 

there are Black Death issues about which we had doubts before our decision to 

study the epidemic was made and about which we continue to have doubts after-

wards.  In this case, the criticism can be particularly enlightening.  Of course, 
there is always the possibility that we will be treated like the kabbalists, who de-
spite their startling and even provoking ideas aroused relatively little opposition14.   

Have we been emotional?  Perhaps.  Even so, though, we can still hope that in 

the end the present book may serve to demonstrate that scientific reasoning and 

emotion can work together to deliver a studious product.  After all, life is an effort 

that deserves a better cause.    

 

                                                             
12 This comment should be read in the spirit of Samuel Taylor Coleridge’s remark:  “No 

mind is thoroughly well organized that is deficient in a sense of humor.” 
13 Unless, of course, these are Black Death fleas. 
14 See De Arte Cabalistica by Johannes Reuchlin (1517). 
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"You have to start somewhere.  You make an
assumption and explore the consequences."

                                                     Democritus

Appendix A.  Annotated Black Death Data Summary

Tables in this appendix summarize relevant information about the Black Death of
1347-51 in Europe.  Places in italics denote a geographical area larger than a city,
e.g. Bohemia or Catalonia.  Those locations marked with an asterisk (*) were not
used in the preparations of the maps in Chapter V, such as Braunau* (Austria).  If
the date is omitted in the pre-plague population column, the number of residents
relates to a date no more than ten years before the outbreak of the pestilence.

We have limited to include in the tables only the information that according to
our studies is the most accurate.  In case of multiple authors supporting a value or
date, mostly we have limited to one reference for the sake of conciseness in an ef-
fort to avoid cluttering the tables.  The following is a list of references that directly
or indirectly helped us to shape the information in the tables despite not being ref-
erenced directly: Barron (1995); Brothen (1996); Bur (1987); Courtenay (1980);
Desportes (1983); Dobson (2000); Falsini (1971-72); Favreau (1985); Fournée
(1978); Fryde (1978); Giblin (1995); Gyug (1994); Herlihy (1965); Higounet-
Nadal (1965); Hubscher (1986); Jenks (1977); Keene (1995); Kent (1985); Le
Moigne (1986); Livet and Rapp (1987); López (1965); Macary (1972); Nohl
(1999); Parentin (1974); Prevenier (1983); Russell (1966); Ruiz (1998); Simpson
(1905); Sivéry (1965); Trenchs (1972); Trenchs (1980); Ubieto (1967); Valdeón
(1981); Vasold (2003); Verlinden (1971); Wetzstein (1996); Williamson (1957).

a. Austria

Austria received the epidemic wave that started in Venice (http://encarta).  From
Austria the epidemic continue its spreading into neighboring territories with de-
creased intensity.
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Place
Pre-plague
Population

Start End Mortality

Braunau*
HighHoeniger 1882:15-

16

Eggenburg
Summer
1349Biraben 1975:83

Marienberg
Priest died September 13,
1348 Klein 1960:95

Neuberg
September 29,
1348Benedictow

2004:182

April 12,
1349Benedictow

2004:182

Especially fero-
ciousZiegler 1969:84

Pongau
November 11,
1348Klein 1960:114

Upper
Inntal

Late Fall
1348Benedictow

2004:182

Vienna
22,000Chandler

1987:16-18
April 12,
1349Gasquet 1908:74

Sept. 29,
1349Gasquet 1908:74 33-66%Ziegler 1969:84

Villach
January,
1349Biraben 1975:77

b. Belgium

The Black Death came to Belgium from France.  The epidemic reached a dead end
in Belgium and had a mild intensity despite advanced urban development similar
to northern Italy, where the pestilence had devastating consequences.

Place
Pre-plague
population

Start End Mortality

Antwerp*
15,000-
22,000http://scholar

20-25%Naphy

and Spicer 2000:38-39

Ath
Summer of
1349Benedictow 2004:113

16%Blockmans

1980:837

Brabant*
LowDespy

1977:209

Bruges 42,000Bardet and Dupâquier

1997:412
May, 1349Blockmans

1980:838

Decem-
ber, 1349
Nicholas

1992:266

20-25%Gottfried

1983:57

Brussels*
20-25%Gottfried

1983:57

Flanders*
16-25%Nicholas

1992:266

Ghent
64,000Bardet and Dupâquier

1997:412
July, 1349Kowalewsky

1911:261
20-25%Gottfried

1983:57
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Place
Pre-plague
population

Start End Mortality

Liège 22,000Chandler 1987:16-18
Escaped the
diseaseScott and

Duncan 2001:87

Lovain
SparedKelly

2001:17

Maubeuge*
24%Blockmans

1980:837

Mons July, 1349Biraben 1975:77

Tournai
19,000 in 1400Chandler

1987:18 July, 1349Biraben 1975:77

Ypres
30,000Bardet and Dupâquier

1997:412
July, 1349Kowalewsky

1911:261
20-25%Gottfried

1983:57

c. Croatia

The disease either came from outside Europe or from the Republic of Venice,
which controlled the area at the time.

Place
Pre-plague
population

Start End Mortality

Dubrovnic January 13, 1348Deaux 1969:85

Istria August, 1348Benedictow 2004:182

Split December, 1347Benedictow 2004:72

d. Czech Republic

The epidemic came to current Czech Republic from Austria.

Place
Pre-plague
population

Start End Mortality

Bohemia Late in Fall of 1349Gasquet 1908:75 10%Gottfried

1983:68

Moravia* 1350Biraben 1975:77

e. Denmark

There is great uncertainty about the beginning of the plague in Denmark.  The
Chronicle of Zealand mentions that “a pestilence ravaged the country” in 1348,
and that, in 1349, “there was a great mortality in Denmark” Benedictow
(2004:159).  Some scholars have shifted the outbreaks by one year and others have
even discarded the first one.
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Place
Pre-plague
population

Start End Mortality

Aalborg
July, 1350Biraben

1975:80

Bornholm 7,000http://home3 1349http://home3 1350http://home3 50%http://home3

Copenhagen*

Jan., 1349Biraben

1975:80

Early 1349Fössel

1987:6

Sept.,
1350Benedictow

2004:164

Ribe
Late summer or
early autumn,
1350http:www.hum

Donations to ca-
thedral starting
June 1350 [0 3 6
1 1 0];
background: 1.7
per yearBenedictow

2004:161:163

Roskilde*
Late summer or
early autumn,
1350http:www.hum

Donations to ca-
thedral starting
Oct. 1350 [1 5];
background: 1.4
per yearBenedictow

2004:163

Zealand
Island

July, 1350Biraben

1975:80

f. France

Marseille was by far the most lethal focus of infection among all places where the
Black Death was first started.  From Marseille the epidemic moved to the rest of
the country and eventually through the rest of the continent, with the exception of
Italy, areas directly north of Italy and most of Spain (Smail 1996:11).

France and Italy are supposed to have the highest mortality in the whole Europe
(http://ragz-international), which may be a real fact or just the result of better
documentation than the rest of continental Europe.

Place
Pre-plague
population

Start End Mortality

Abbeville
April, 1349Biraben

1987:1980

Agen
May, 1348Biraben

1987:178

Aix-en-
Provence

6,000
Baratier 1961:128

December, 1347
Biraben 1987:178 45%Baratier

1961:128-129
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Place
Pre-plague
population

Start End Mortality

Albi
July 8, 1348Biget

1983:92 55%Prat 1952:17

Alès
July-September
1348Biraben 1987:179

Amiens
January,
1349Biraben 1987:179

After winter
1348-1349De

Calonne 1976:273

HighZiegler

1969:80

Angers
22,000 in
1300Chandler

1987:17

November 30,
1348Biraben 1987:179

25%Lebrun

1975:35

Angoumois
September,
1348Biraben 1987:179

Anjou
November 30,
1348Biraben 1987:179

End of
1349Landais

1997:123

Arbois
April, 1349Biraben

1987:180

Arles
17,000 in
1300Chandler

1987:16-17

January,
1348Biraben 1987:178

HighDeaux

1969:96

Arras
20,000 in
1300Chandler

1987:17

SparedCohn

2002b:180

Artois*
Lowhttp://

www.artehistoria

Auch
May, 1348Biraben

1987:178

Aurillac
October-
December
1348Biraben 1987:179

Auvergne*
500,000 in
1328Audisio

1968b:344

April, 1348Biraben

1987:178

Auxerre* 1348http://perso

Avignon
30,000-
38,000Gagnière et

al. 1979:212-213

January,
1348Biraben 1975:91

July,
1348Vasold

1991:43

At least
50%Scott and

Duncan 2004:24

Bayeux
October,
1348Désert 1981:76

Bayonne* 1348Biraben 1975:74

Béarn
Partially
sparedTucoo-Chala

1951:84

Beaune
April, 1349Biraben

1987:180

Beauvais
1348Ganiage 1987:60
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Place
Pre-plague
population

Start End Mortality

Besançon
May, 1349Biraben

1975:76

After Sep-
tember,
1348Cohn

2002b:181

Béziers
20,000 in
1200Chandler

1987:16

February,
1348Biraben 1987:178

Not before
August 1348
Biraben 1974:506

High mortal-
itySagnes 1986:137

Bigorre*
50,000 in
1328Berthe 1976:39

June 29,
1348Berthe 1976:51

April 12,
1349
Berthe 1976:51

50-67%Berthe

1976:51

Blois*
5,000Denis

1988:55
1348http://

www.ac-orleans-tours

Bordeaux
30,000Chandler

1987:16-18
August,
1348Prosperi 2000:45

40%Gottfried

1983:49

Bourg-en-
Bresse

April, 1349Biraben

1987:180

Bourges* 1348Meslé 1983:147

Buis-les-
Baronnies

April-June
1348Biraben 1987:179

Burgundy*
July, 1348Ziegler

1969:65

Cadenet
January-March
1348Biraben 1987-179

Caen
20,000Chandler

1987:17-18
October 1348Jouet

1972:272
January
1349Jouet 1972:272

40-50%Gottfried

1983:55

Choices of
burial place,
starting in
Sept., 1348 [0
4 9 2 1 0]Jouet

1972:272

Cajarc*
50%Clavaud

1995:62

Calais
December,
1348Biraben 1987:179

Carcassonne
March,
1348Biraben 1987:178

May,
1348Guilaine and

Fabre 1984:96

40%Gottfried

1983:49

Carpentras
SparedDubled

1969:20

Castellane
October-
December 1348
Biraben 1987:179

Castres*
10,000Wolff

1967:239

57% between
1347 and
1373
Wolff 1967:239
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Place
Pre-plague
population

Start End Mortality

Châlons-en-
Champagne

July-September
1349Biraben 1987:179

Chambéry
October-
December 1348
Biraben 1987:179

Chartres*
1348Chédeville

1983:131

Châteauroux
October-
December
1348Biraben 1987:179

Colmar
June, 1349Biraben

1987:180

Corsica
December,
1347Biraben 1987:178

67%http://

ragz-international

Coutances
Peaked in November and lingered
through the winter. Cohn 2002b:180-181

Die
May 1348Biraben

1987:178

Digne
2,000 Baratier

1961:128

October-
December
1348Biraben 1987:179

41%Baratier

1961:128-129

Dijon
18,000Chandler

1987:17
July-September,
1349Biraben 1987:180

Douai
SparedCohn

2002b:179-180

Draguignan
2,000 in
1316Baratier

1961:150

May, 1348Biraben

1987:178

Forez
August
1348Audisio 1968a:261

April,
1349Dupâquier et

al. 1988:319

Fresnois-
la-Montagne

October,
1349Noël 1995:741

10-25%Noël

1995:748

Ganges*
53%Gottfried

1983:51

Givry
2,000-2,200
Biraben 1987:188

28 July 1348
Biraben 1975:161

19 November
1348Biraben

1975:161

30%Biraben

1975:157-160

Fatalities,
starting in
July, 1348
[11 110 302
168 35] with
background
of 2.5Biraben

1975:157-160

Grasse
4,000Baratier

1961:65
May, 1348Biraben

1987:178
46%Baratier

1961:65



248 Appendices

Place
Pre-plague
population

Start End Mortality

La Châtre
October-
December
1348Biraben 1987:179

1349http://

www.chez

Languedoc*
50-70%Gottfried

1983:51

Laon*
Highhttp://www.

hyw.com/books/history/

Plague.htm

Lexy
October,
1349Noël 1995:741

10-25%Noël

1995:748

Lille
16,000-
18,000Trenand

1970:200

August 1349Aubry

1983:338

Beginning of
1350Aubry

1983:338

MinimalTrenand

1970:368-369

Limoges*
October-
December
1348Biraben 1987:179

Moderate
mortalityPérouas

1989:105

Limousin
September,
1348Biraben 1987:179

Limoux* 1348Biraben 1975:74

Luz-Saint-
Sauveur

June 29,
1348Berthe 1976:51

Lyon
35,000Chandler

1987:17-18
April 1348Biraben

1987:178

October
1348Biraben

1975:103

30-40%Latreille

1975:112-113

Malaucène
April-June
1348Biraben 1987-179

Manosque* 1348http//:www.geocities.com/jmdesbois

Marseilles
20,000-25000
by 1300Baratier

1961:66

November 1,
1947Biraben1975:91;
January
1348Smail 1996:13

May,
1348Michaud

1998:408

50-60%Gottfried

1983:49

Wills, starting
January 1348
[3 13 23 5 5
0] Michaud 1998:408

Marsillargues*
1,000Gottfried

1983:51
50%Gottfried

1983:51

Maubeuge
April-June
1349Biraben 1987:179

Maurienne
May 1348Gelting

1991:21-23
45%Gelting

1991:38

Metz
25,000Trenand

1970:200
December,
1349Biraben 1987:180

Millau
4,000 after the
plagueCohn

2002b:155

May 1348Cohn

2002b:149
Sept. 1348Cohn

2002b:149

40%Lucenet 1985:91

Wills, starting
in April, 1348
[0 2 23 86 32
3 0]Cohn 2002b:149
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Place
Pre-plague
population

Start End Mortality

Montauban
April, 1348Biraben

1987:178
40%Gottfried

1983:49

Montbéliard
May, 1349Biraben

1975:76

Montpellier
February,
1348Biraben 1987:178

After May,
1348Reyerson

1978:261

At least
50%Deaux 1969:95

Moustiers*
2,500Baratier

1961:128 1348Biraben 1975:74 67%Baratier

1961:128-129

Nancy
October-
December
1349Biraben 1987:179

Narbonne
25,000-30,000
Gottfried 1983:49

March,
1348Biraben 1975:74

40%Gottfried

1983:49

Navarrenx
July-September
1348Biraben 1987:179

50%Tucoo-Chala

1951:83

Nîmes
January-March
1348Biraben 1987:179

Nyons
April-June
1348Biraben 1987:179

Orleans
35,000Chandler

1987:17

October-
December
1348Biraben 1987:179

Paray-le-
Monial

April, 1349Biraben

1987:180

Paris
80,000-
200,000Bardet and

Dupâquier 1997:176

End of August,
1348Mollat 1971:151

Winter 1349-
1350Mollat

1977:505

Périgord
August,
1348Biraben 1987:179

Pernes* 1348Biraben 1975:74

Perpignan
12,000-15,000
Gottfried 1983:49

12 April
1348Ziegler 1969:65

12 August
1348Ziegler

1969:65

50-70%Emery

1967:616-619

Pia
May, 1348Cohn

2002b:159
July, 1348Cohn

2002b:159

Poitou
October
1348Biraben 1987:179

50 %Lucenet

1985:91

Poligny
April, 1349Biraben

1987:180

Prades*
100% of the
officialsShirk

1984:34

Puget-
Théniers*

1348Biraben 1975:74

Quimper
November, 1348
http://membres.lycos.fr

January, 1349
http://membres.lycos.fr
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Place
Pre-plague
population

Start End Mortality

Reims
15,000Chandler

1987:17
April 1349Desportes

1979:545

Oct.
1349Desportes

1979:547

25%Desportes

1979:549

Revel
April-June 1348
Biraben 1987-179

Roanne
July-September
1348Biraben 1987-179

Rodez
5,000 in
1328Dupâquier et al.

1988:322

May, 1348Biraben

1987:178

Rouen
30,000-
40,000Mollat

1979:79

Beginning of
summer 1348Bois

1984:289

Dec. 1348 Bois

1984:289
40-50%Gottfried

1983:55

Saint-Bertin* 1349Delmaire 1981:48

Saint Denis
August,
1348Biraben 1975:74

30%Bourderon and

Peretti 1988:125

Saint-Etienne
July-September
1348Biraben 1987-179

Saint-Flour
April, 1348Biraben

1987:178
34%Lucent

1985:91

Saint-Pierre-
de-Soucy*

50%Ziegler

1969:81

Sainte Marie
Laumont

800Ziegler 1969:80 July, 1348Ziegler

1969:80

September,
1348
Ziegler 1969:80

50%Corzine

1997:43

Saintes-
Maries-
de-la-Mer*

55–58%Bene-

dictow 2004:314

Salins
May, 1349Biraben

1975:76

Savoy*
1348Guichonnet

1973:468
50%Guichonnet

1973:468

Strasbourg
16,000Chandler

1987:17-18
8 July 1349Fössel

1987:9
October
1349Fössel 1987:10

Tarbes 3,500Berthe 1976:55 May, 1348Biraben

1987:178 50%Berthe 1976:51

Toulon
2,000Baratier

1961:65
April 1348Biraben

1987:178
High mortal-
ityAgulhon 1980:32

Toulouse
30,000-
40,000Bardet and

Dupâquier 1997:176

April 1348Wolff

1974:184

After July and
August, 1348,
which were
the worse
monthsLavigne

1971:415

High mortal-
ityHenneman

1968:414

Tulle
October-
December
1348Biraben 1987:179

Highhttp://membres
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Place
Pre-plague
population

Start End Mortality

Ugine*
1,300Benedictow

2004:318
53%Benedictow

2004:318

Uzerche* 1348Biraben 1975:74

Valenciennes
June, 1349Biraben

1975:76

Verdun
October-
December
1349Biraben 1987:179

g. Germany

By the time the Black Death began penetrating into the present German bounda-
ries, the country was surrounded by infested territories.  Germany received the
epidemic from all direction except from the East.

The mortality rates vary widely, 10% in some areas, 70% in others.  Overall
mortality was lower than in northern Europe or the Mediterranean Sea
(http://cternus).  Firm statistics are few and far between and, where they do exist,
are often hard to reconcile with each other (Ziegler 1969:86).  In the scarcity of
mortality data, we have used as proxy the rate of desertion of rural villages and
cultivated land during the Later Middle Ages.

Place
Pre-plague
population

Start End Mortality

Ausburg
Summer,
1349Biraben

1975:83

25%
desertionAbel

1965:520

Baden-Baden
July-August,
1349Biraben

1975:75

40%
desertionAbel

1965:520

Bielefeld
Early
1350Fössel 1987:11

10%
desertionAbel

1965:520

Borau
June 3,
1350Biraben

1975:77

At least 40%
desertionAbel

1965:520

Braunschweig
Early
1350Fössel 1987:11

At least 40%
desertionAbel

1965:520

Bremen
12,000-
15,000
Gottfried 1983:68

May,
1350Biraben

1975:77

50-67% mortal-
ityGottfried 1983:68

20% desertion
Abel 1965:520
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Place
Pre-plague
population

Start End Mortality

Cologne
50,000Kelly

2003:28

December 18,
1349Biraben

1975:77

35%
desertionAbel

1965:520

Erfurt
30,000Chandler

1987:16-18
25 July
1350Fössel 1987:11

2 February,
1351Fössel

1987:11

At least 40%
desertionAbel

1965:520

Frankfurt-am-Main
11,616 in
1387Bardet and

Dupâquier 1997:196

22 July
1349Gasquet

1908:75

2 February
1349Gasquet

908:75

20%
desertionAbel

1965:520

Frankfurt-an-der-
Oder*

1351Benedictow

2004:219

20%
desertionAbel

1965:520

Güstrow
About
8,000Boll

1855:Ch. 1

Fall, 1350Boll

1855:Ch. 1
1351Boll

1855:Ch. 1

At most 30%
mortalityBoll

1855:Ch.1

30% deser-
tionAbel 1965:520

Halberstadt
May,
1350Biraben

1975:77

53% desertion
Bardet and Dupâquier

1997:195

Hamburg
10,000 Vasold

1991:57

May,
1350Biraben

1975:77

50-66% mortal-
ityVasold 1991:57

Hanover
May,
1350Biraben

1975:77

30%
desertionAbel

1965:520

Harz*
53% desertion
Bardet and Dupâquier

1999:195

Hesse*
July-August,
1349Biraben

1975:75

44% desertion
Bardet and Dupâquier

1997:195

Holstein*

July-August,
1349 or Janu-
ary-March,
1350Biraben

1975:75

66% mortali-
tyDeaux 1969:113

Kiel
Authorization for new ceme-
tery on June 24, 1350Benedictow

2004:198

30%
desertionAbel

1965:520

Kontanz
November,
1349Biraben

1975:77

15%
desertionAbel

1965:520

Landshut*
High mortality-
Hoeniger 1882:15-16
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Place
Pre-plague
population

Start End Mortality

Limburg-am-
Lahn

Summer,
1349Benedictow

2004:194

44% desertionBardet

and Dupâquier 1997:195

Lübeck
22,000
Chandler 1987:17-18

May 1350
Cohn 2002b:182

October
1350Cohn

2002b:182

27% mortality
among property
ownersGottfried 1983:68

Number of wills,
starting in April,
1350 [2 10 2 27 35
15 8 0] Cohn 2002b:182

30% desertionAbel

1965:520

Lüneburg*
Early 1350Fössel

1987:11

36% mortalityBulst

1979:53

20% desertionAbel

1965:520

Magdeburg
15,000Chandler

1987:17-18
16 May
1350Fössel 1987:11

29 Sept.
1350Fössel

1987:11

50% mortalityCar-

pentier 1962:1065

53% desertionBardet

and Dupâquier 1997:195

Mainz
24,000Chandler

1987:16-17
July-August,
1349Biraben 1975:75

20% desertionAbel

1965:520

Minden
January-
March,
1350Biraben 1975:77

10% desertionAbel

1965:520

Mühldorf
June 29,
1349Benedictow

2004:189

15% desertionAbel

1965:520

Munich*
High mortalityHoe-

niger 1882:15-16

Münster
May, 1350Biraben

1975:77

High mortality-
Gottfried 1983:68

5% desertionAbel

1965:520

Nuremberg
15,000-
20,000Gottfried

1983:68

July-
September,
1350Biraben 1975:77

10% mortality-
Gottfried 1983:68

30% desertionAbel

1965:520

Osnabrück
January-
March,
1350Biraben 1975:77

5% desertion
Abel 1965:520

Paderborn
January-
March,
1350Biraben 1975:77

At least 40% de-
sertionAbel 1965:520



254 Appendices

Place
Pre-plague
population

Start End Mortality

Parchim
About 8,000
Boll 1855:Ch. 1

Fall, 1350Boll

1855:Ch. 1
1351Boll

1855:Ch. 1

At most 40%Boll

1855:Ch. 1

30% desertionAbel

1965:520

Passau
Summer,
1349Biraben 1975:83

20% desertionAbel

1965:520

Pomerania*
67% mortality Deaux

1969:113

Regensburg
July 25,
1349Fössel 1987:8

20% desertionAbel

1965:520

Rostock
July-
September,
1350Biraben 1975:77

30% desertionAbel

1965:520

Schleswig
January,
1350Fössel 1987:6

30% desertionAbel

1965:520

Stralsund
July-
September,
1350Biraben 1975:77

30% desertion
Abel 1965:520

Trier
December 18,
1349Biraben 1975:77

30% desertionAbel

1965:520

Ulm
Late summer,
1349Benedictow

2004:190

40% desertionAbel

1965:520

Wismar
July-
September,
1350Biraben 1975:77

42% mortalityBira-

ben 1975:175

30% desertionAbel

1965:520

Würtzburg
July-
September,
1350Biraben 1975:77

30% desertionAbel

1965:520

h. Gibraltar

Place
Pre-plague
population

Start End Mortality

Gibraltar
July, 1349Ubieto

1997:85

Not before
king Alfonso
XI death,
March 26,
1350Amasuno

1996:64-65
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i. Ireland

There is still much that is obscure about the course of the Black Death in Ireland.
We cannot even be sure where it came from.  The most likely source is England,
but it could well have come directly from Gascogny or one of the ports of Brittany
(Ziegler 1969:195-196).

The most commonly accepted general guide for the mortality in the larger
towns and ports of the east and south controlled by the English settlers is 40-50%
(Kelly 2001:97), while the native Irish, living in the mountains and uplands, suf-
fered less severely (Kelly 2001:37).

Place
Pre-plague
population

Start End Mortality

Cashel*
Infected at an undetermined
timeKelly 2001:35

Clonmel*
Infected at an undetermined
timeKelly 2001:35

Cork*
Infected at an undetermined
timeKelly 2001:35 40-50%Kelly 2001:97

Dalkey*
August,
1348Biraben

1975:78

Drogheda
August,
1348Biraben

1975:78
40-50%Kelly 2001:97

Dublin
25,000Chandler

1987:16-17

August,
1348Kelly

2001:34

January,
1349Kelly

2003:62
50%Kelly 2001:95

Dundalk
September of
1348Biraben

1975:78

Ennis
November 1,
1349Kelly

2001:35-36

Ferns
The Bishop of Ferns died in
October 1348Kelly 2001:112

Kildare
Late in
1348Kelly

2001:34

Kilkeny
Dec. 25,
1348Kelly

2001:35
50%http://library.thinkquest

Limerick
Nov. 1,
1349Kelly

2001:35

Louth*
Late in
1348Kelly

2001:34
HighKelly 2001:69
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Place
Pre-plague
population

Start End Mortality

Mayo*
1350Kelly

2001:37

Meath
December,
1348Kelly

2001:34

After the
bishop died
in July,
1349
Kelly 2001:35

HighKelly 2001:69

Moylurg
December,
1349Kelly

2001:36

Nenagh
August,
1349Biraben

1975:80

New Rose*
Infested at an undetermined
timeKelly 2001:35 40-50%Kelly 2001:97

Waterford
Prior of the monastery of St
Catherine’s died of plague
in June, 1349.Kelly 2001:35

40-50%Kelly 2001:97

Youghal* 40%http://tyntescastle

j. Italy

The prevailing view is that the Italians brought the Black Death to their country in
their merchant boats trading with areas in the Middle East and Ukraine, thus
starting the epidemic in Europe (Wheelis 2002).  On average, at the time, Italy and
Belgium were the two countries with the most extensive urban development (Gott-
fried 1983:57; Turner 1988:25).  Along with France, Italy seems to have had the
highest mortality rates (Scott and Duncan 2004:24).  Apparently, fatalities were at
least 3 million people (http://www.hyw.com/books/history/Black_De.htm).

Place
Pre-plague
population

Start End Mortality

Agri-
gento

10,000-11,000 Gi-

natempo and Sandri 1990:192
October,
1347Biraben 1975:74

Ancona
20,000-30,000 Gi-

natempo and Sandri 1990:148
May, 1348Biraben

1975:74

Arezzo
17,000-18,000 Gi-

natempo and Sandri 1990:148
April, 1348Cohn

2002b:156

September,
1348Cohn

2002b:156

Testaments,
starting March
1348 [0 2 5 25 11
7 3 0] Cohn 2002b:156

Bari
12,000-14,000 Gi-

natempo and Sandri 1990:190

March
1348http://

historymedren

Bobbio*
HighScott and Duncan

2004:18
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Place
Pre-plague
population

Start End Mortality

Bologna
40,000Ginatempo and

Sandri 1990:85
March,
1348Biraben 1975:74

Nov. 1348Cohn

2002b:149

35 to 40% Wray

1993:55

Testaments,
starting March,
1348 [25 30 80
330 455 185 70
46 30 7]
Cohn 2002b:149

Cagliari
10,000-
13,000Ginatempo and

Sandri 1990:192

May,
1348Biraben

1975:103

Catania
October,
1347Marks1971:54

April,
1348Marks1971:54 100%McGowen 1995:19

Cesena
6,640 in
1371Ginatempo and

Sandri 1990:87

June 1,
1348http://www.shsu

Elba
Island

December,
1347Biraben 1975:74

Faenza
7,704 in
1371Ginatempo and

Sandri 1990:87

June, 1348Del

Panta 1980:112

Ferrara
12,000-15,000 in
1310Ginatempo and

Sandri 1990:86

July, 1348
Biraben 1975:74

Florence

100,000Carmichael

1997:62

45,000Chandler

1987:16-18; Gottfried

1983:46

March,
1348http://ides0100

October, 1348
http://ides0100 45-75%Kohn 1995:252

Friuli
August, 1348Del

Panta 1980:112

Genoa
60,000-
65,000Epstein 1996:213

December
1347Vasold 1991:41

30% to 40%Gottfried

1983:43

Lucca
20,000-
30,000Ginatempo and

Sandri 1990:148

February,
1348Biraben 1975:74 39%Biraben 1975:175

Messina
15,000-
22,000http://scholar

Oct., 1347Wheelis

2002:971
Nearly 50%Biel

1989:27

Milan*
100,000Bardet and

Dupâquier 1997:176 1348Cantú 1999:120 15%Kelly 2001:18

Modena
18,000-20,000 in
1306Ginatempo and San-

dri 1990:86

March,
1348Biraben 1975:74

Naples
40,000Chandler

1987:16-18
May, 1348Biraben

1975:74

December,
1348Cohn

2002b:141
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Place
Pre-plague
population

Start End Mortality

Orvieto
14,000-
17,000Ginatempo and

Sandri 1990:148

May 1,
1348Biraben 1975:74

September 7,
1348Carpentier

1993:145
50%Ziegler 1969:52

Padua
27,000-30,000 in
1281Ginatempo and San-

dri 1990:82

April,
1348Biraben 1975:74

September,
1348Biraben

1975:103

67%
Scott and Duncan

2004:17

Parma
20,000Chandler 1987:18;

http://scholar
June 20,
1348Biraben 1975:74

December,
1348Biraben

1975:103
LowZiegler 1969:62

Perugia
23,000-28,000 Gi-

natempo and Sandri

1990:148

April 8,
1348Cohn 2002b:141

August,
1348Cohn

2002b:141

Testaments,
starting in March,
1348 [0 2 1 40 24
9 0]Cohn 2002b:141

Piacenza
15,000-22,000
http://scholar; Chandler

1987:16-18

July, 1348Biraben

1975:74 33%Nasalli 1973:18

Piombino
April,
1348Biraben 1975:74

Pisa 40,000Gottfried 1983:43
January,
1348Carpentier

1993:116

September,
1348Biraben

1975:103

30-40%Gottfried

1983:43

Pistoia 24,000Gottfried 1983:44 May, 1348Ziegler

1969:55

October
1348Chiappelli

1887:4
40%Gottfried 1983:44

Prato
10,559Herlihy and

Klapisch-Zuber 1978:168
Peacked in June-July, 1348Fiumi

1968:85 40%Gottfried 1983:43

Pusteria
October,
1348Benedictow

2004:182

Reggio
d’Emilia

12,000 in
1315Ginatempo and

Sandri 1990:86

June 20,
1348Biraben 1975:74

December,
1348Biraben

1975:103

Reggio di
Calabria

At most 4,000-
5,000Ginatempo and

Sandri 1990:191

December,
1347Del Panta

1980:111

Rimini
8,960 in
1371Ginatempo and

Sandri 1990:87

June, 1348Cohn

2002b:141
November 1,
1348Cohn

2002b:141
67%Sticker 1908:55

Rome
15,000-22,000
http://scholar

August,
1348Biraben 1975:74

San
Gimigni-
ano*

7,600-8,500 in
1332Day 2002:126 58%Ziegler 1969:52

San
Giorio*

700Comba 1977a:75 46%Comba 1977a:75
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Place
Pre-plague
population

Start End Mortality

Sardinia
December,
1347Biraben 1975:74

Sicily*
October,
1347Davis 1986:460

April 1348Davis

1986:460 75%http://www.mrkland

Siena 25,000Bowsky 1964:5 April,
1348Biraben 1975:74

Oct.,
1348Biraben

1975:103
51%Bowsky 1964:18

Syracuse
10,000-12,000
Ginatempo and Sandri

1990:192

October,
1347Biraben 1975:74

HighScott and Duncan

2004:14

Trapani
15,000-
16,000Ginatempo and

Sandri 1990:192

October,
1347Biraben 1975:74

Completely de-
populatedScott and

Duncan 2004:14

Trent
5,000 in
1335Ginatempo and

Sandri 1990:92

June 2,
1348Biraben 1975:92

83%Ginatempo and San-

dri 1990:91

Turin
3,500-
4,500Ginatempo and

Sandri 1990:65

November 11,
1348Comba 1977b:55

33%Ginatempo and San-

dri 1990:65

Tuscany*
2,000,000Herlihy

1997:31
Very hard
hithttp://4thmoon

Varese

October or
November
1348Del Panta

1980:112

Venice
110,000-
120,000Mueller

1980:94

December,
1347Naphy and

Spicer 2000:25

May, 1349 Na-

phy and Spicer 2000:25 60% Gottfried 1983:48

Ven-
timiglia

April, 1348Del

Panta 1980:112

Verona
40,000Del Panta et al.

1996:55
End May,
1348Biraben 1975:74

45%Del Panta et al.

1996:55

Vintschgau
September
1348Benedictow

2004:181

k. Norway

Possibly there were at least two independent introductions of the pestilence in
Norway, one in the East county, with Oslo as the likely point of entrance, and an-
other in Bergen on the western coast (Benedictow 1992:100).  From Norway the
disease moved toward the remainder of Scandinavia.

Norway’s high mortality, cold weather and low population density has been a
focal point of contention against the possibility that the Black Death was an earlier
case of the modern bubonic plague (Scott and Duncan 2001:357).
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Place
Pre-plague
population

Start End Mortality

Agder
October,
1349Benedictow1992:97

Bergen
August,
1349Benedictow 2004:156

Hamar
September 8,
1349Benedictow 2004:150

November 1,
1349Benedictow 2004:150

Idd
August,
1349Benedictow1992:90

Lom
November,
1349Benedictow1992:96

Oslo
April, 1349Benedictow

2004:153
50%http://www.

lonelyplanet

Sandsvær
December 16,
1349Benedictow1992:99

99%
Benedictow1992:99

Stavanger
January,
1350Benedictow1992:90

Telemark*
December,
1349Biraben 1975:80

Tinn
December,
1349Benedictow1992:97

Tønsberg
November 2,
1349Benedictow 1992:99

Toten
September,
1349Benedictow 2004:152

Trondheim
Archbishop died from plague by middle
of October 1349Benedictow1992:101

Upper Eiker
May-June,
1349Benedictow 2004:150

Vågå
October,
1349Benedictow1992:97

Valdres
October,
1349Benedictow1992:97

l. Poland

The disease started at the Hansiatic League cities trading with other ports to the
west.

Place
Pre-plague
population

Start End Mortality

Elblag* Summer of 1350Biraben 1975:80

Gdansk Summer of 1350Sticker 1908:67

Malbork* Summer of 1350Biraben 1975:80

Torun
End summer of 1350Fössel

1987:6
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m. Portugal

Unfortunately there is little information about Portugal, particularly in the south,
as well as the neighbouring region of Spanish Extremadura.

Place
Pre-plague
population

Start End Mortality

Beira*
Fall 1348http://pwp.netcabo.pt 33-50%

http://pwp.netcabo.pt

Braga Archbishop died on Dec. 22, 1348Ubieto

1975: 48
High mortali-
tyMattoso 1997:284

Bragança* High mortali-
tyMartín et al. 1991:595

Buarcos* Decimated
http://figueira

Caminha* High mortali-
tySerrão 1981b:75

Coimbra
25,000 in
1200Chandler

1987:16

Sept. 29, 1348Rau

1967:331
High mortali-
tyMattoso 1997:284

Evora 1349Biraben 1975:77

Lasted more
than a year
Verlinden 1838:110.
Ended before
March,
1350Phillips 1998:50

Figueira da
Foz*

Decimated
http://figueira

Lamego
Bishop died in 1349 and replacement
started on July 27, 1349 Ubieto 1975:64

Lisbon
35,000 in
1300 Chandler

1987:16-18

Sept. 1348Martín et al.

1991:595
High mortality-
Martín et al. 1991:595

Porto* 1348http://www.cedofeita

Santarém*
Highly de-
populatedSerrão

1981b:75

Silves
Fray Álvaro Peláez died in December
1349Serrão 1981a:515; http://www.coaat-se

Close to being
depopulatedSerrão

1981b:75

Valença*
End of 1348Amasuno

1996:66
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n. Spain

Like Italy, Iberia suffered the misfortune of receiving the Black Death from dispa-
rate sources.  At the time, the country was divided in four kingdoms: Castille,
Aragon, Navarra, and Granada (Kagay and Vann, 1998:1)  There were at least
three avenues of entry (Gottfried 1983:51).  First, and probably most important,
merchant ships from Italy brought the Black Death to the Balearic Islands and
then to the major ports of the west coast, Barcelona and Valencia.  Second, in the
same way as Mecca attracted pilgrims from areas ravaged by the Black Death in
the Muslim world and was visited early, the Black Death undoubtedly performed
the remarkable feat of leaping to the north-western corner of Spain helped by pil-
grims who were shocked by the Lord’s awesome epidemic punishment and
wished to temper his wrath by performing a pilgrimage to the shrine of St Jacob in
Santiago de Compostela (Phillips, 1998:49).  Third, it came from the north, across
the Pyrenees to the Basque-speaking villages.  Finally, it is likely that the south,
particularly the Muslin Kingdom of Granada, was infected from North Africa
(Gottfried 1983:51).

Most of the cities and villages in Spain suffered more or less severely, and the
sickness appears to have lingered longer here than in most other countries
(Gasquet 1908:67).  The mortality seems to have been less in Spain though than in
Italy, and about as considerable as in France (http://ragz-international).

Place
Pre-plague
population

Start End Mortality

Almería
25,000Chandler

1987:17-18
May 30, 1348Ubieto

1975:54

Shortly after be-
ginning of Febru-
ary, 1349Ubieto

1975:55

50%http://www.agpa

Almudévar
Before Sept. 27,
1348Ubieto 1975: 57

Aragón* 30%Gottfried 1983:52

Arjona*
High mortality
Rodríguez 1978:139

Asturias
October,
1348Amasuno 1996:64

Badajoz
1348http://

enciclopedia

New bishop on
May 25, 1349Ubieto

1975:64

Baeza*
High mortality
Rodríguez 1978:139

Balearic
Islands*

End of March or
beginning of
April, 1348López

1959:336

August, 1348López

1959:342-344

Deaths and ap-
pointments,
starting March,
1348 [1 1 1 11 4
5] López 1959:342-344
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Place
Pre-plague
population

Start End Mortality

Barcelona

50,000Gottfried

1983:44

42,000Biraben

1975:216

May 2,
1348Biraben 1975:216

February,
1349Gyug

1983:388

Benefited
clergy mortal-
ity:
62%Benedictow

2004:278

Population
mortality:
36%Biraben

1975:216

Clergy ap-
pointments,
benefices mi-
nus devolu-
tions, starting
March, 1348
[1 0 10 15 65
42 8 9 15 12 7
4 8 1] Utterback

1988:428

Testaments
starting in
April, 1348 [6
39 55 7 1 3 1
2] Gunzberg 1989:24

Bayona*
End of
1348Amasuno

1996:66

Berga
Sept.,
1348Biraben 1975:75

High mortali-
tyCabrillana 1965:493

Borja
Raging on Oct.
6, 1348Ubieto

1975:58

Cádiz
New bishop on May 25,
1349Ubieto 1975:64

Calatayud

September,
1348Biraben 1975:75

Before October
25, 1348Ubieto

1975:59

Camprodón
Mid June,
1348Guilleré

1984:106

End August,
1348Guilleré

1984:106

Cardona* 1348Galera 1994:72

Cartagena
New bishop on July 24,
1349Ubieto 1975:64

Castellón 2,000Doñate 1969:29 0%Doñate 1969:31
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Place
Pre-plague
population

Start End Mortality

Castile*
20-25%Gottfried

1983:52

Catalonia*
365,000 in
1359Smith 1944:497

30%Gottfried

1983:52

Cerdanya
April, 1348Ubieto

1975: 50

Córdoba
40,000
Chandler 1987:17

March 21,
1349Amasuno

1996:65

August,
1349-July,
1350Amasuno

1996:65

High mortali-
tyBallesteros 1982:103

Duero Valley
October,
1348Amasuno

1996:64

High mortali-
tyValdeón and Martin

1996:85

Estella
Sept., 1348Ubieto

1997:85

Population de-
clined by 63%
between 1330-
66Zavalo 1968:83

Girona
4,000 in
1378Wolff 1985:60

Mid May,
1348Guilleré

1984:106

End of
August,
1348Guilleré

1984:106

2/3 diedVeny

1971:30

50% among
notaries and
40% among
merchantsGuilleré

1984:118-119

Granada

90,000Chandler

1987:17

23,000-49,000
http://scholar

The poet Kathemat
Alansaraeus passed away on
May 22, 1349Ubieto 1975:65

30%Gottfried

1983:52

Huesca
Raging in
Sept., 1348Ubieto

1975:56

Subsided in
November,
1348Ubieto

1975:57

Igualada* 1348Biraben 1975:75

Inca*
5,750Santamaría

1969:122
20%Santamaría

1969:122

Jérica
Oct., 1348Ubieto

1997:85

León
25,000 in 1300
Chandler 1987:17

October, 1348
Amasuno 1996:64

Lérida 10,000Veny 1971:30

Shortly after
April 24,
1348Arrizabalaga

1991:75

At least
23%Veny 1971:30
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Place
Pre-plague
population

Start End Mortality

Lugo
July, 1348Ubieto

1975:63

Dec.,
1348Ubieto

1975:63

65%González

1989:110

Málaga
15,000Calero

1991:66
March,
1349Calero 1991:63

After poet
Alkailuzi
died on July
11, 1349Ubieto

1975:65

Before
March,
1350Calero

1991:63

Mallorca
March 28,
1348Santamaría

1969:120

August,
1348López

1959:342-344

23%Santamaría

1969:120

Manresa* 1348Biraben 1975:75 High mortali-
tyCabrillana 1965:493

Medina del
Campo*

1348Vasold 1991:47

Minorca
April,
1348Biraben 1975:75

Montblanc 1348Biraben 1975:75

Morella
End June,
1348Grau 1970:150

End August,
1348Grau

1970:150

Monthly tes-
taments, start-
ing in June
1348 [2 17 13
1 1] Grau 1970:150

Murcia
25,000 in
1300Chandler

1987:17

October,
1348Torres 1981:12

March,
1349Torres

1981:14

High mortality
Torres 1981:11

Navarra*
October,
1348Ubieto 1997:85

Hardly hitUbieto

1997:85

Oviedo*
October,
1348Ubieto 1975:48

Palencia*

19% villages
disappeared,
more than 50%
died in many
othersCabrillana

1968:255-6

Pamplona*
54%, partly
due to famine
Berthe 1983:306

Plana de Vic
16,500Pladevall

1963:365
June, 1348Ubieto

1975:53

66-74% drop
in hearthsShirk

1981:365



266 Appendices

Place
Pre-plague
population

Start End Mortality

Puertollano
1,000http://

www.puertollanovirtual
93%http://

www.puertollanovirtual

Salamanca*
1348http://

www.exitmedia

Salvatierra* 90%Gasquet 1908:68

San Joan*
500Santamaría

1969:122
13%Santamaría

1969:122

San Juan de la
Peña

D. de Arresal died on Decem-
ber 17, 1348Ubieto 1975: 57

Sangüesa*
47%, partly
due to famine
Berthe 1983:306

Santesteban
June,
1348Benedictow

2004:88

Santiago de
Compostela

June, 1348Phillips

1998:49

Sarrión
June 21,
1348Martínez

1969:16

Segorbe

Long before
Oct. 30,
1348Suárez y Re-

glá 1966:XXVIII

Seu d’Urgell*
1,300Villaró 1986-

7:281

June 12,
1348Villaró 1986-

7:278

August 12,
1348Villaró

1986-7:278

23-38% mor-
tality Villaró 1988-

9:343

Wills, starting
June 1348 [50
250 20] Villaró

1986-7:279

Seville

65,000 to
80,000 in 1284
Bardet and Dupâquier

1997:177

1349Ladero

1976:208; Collantes

1977:154

1350Ladero

1976:208; Collantes

1977:154

Soria
End of
1348Benedictow

2004:86

Tarazona
October,
1348Trenchs

1981:201

Plague re-
lated institu-
tion on 10
Dec., 1348
Trenchs 1981:201

Tarragona
11,000Virgili

1979:33
May 1, 1348
Ubieto 1975:51

After Aug.1,
1348Trenchs

1969:55
50%Virgili 1979:38
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Place
Pre-plague
population

Start End Mortality

Teruel
5,300
Sobrequés 1970-1:75

End of July,
1348Ubieto 1975:56

No later than
November 6,
1348Gautier-

Dalché 1962:67

Bankrupt
economy in
1349Cabrillana

1965:502

Toledo
33,000Chandler

1987:17
Summer of
1349León 1977:334

Tortosa
6,000 in
1366Wolff 1985:60

Bishop Oliver died July 14,
1348Ubieto 1975: 52

Tudela*
1348http://www.

conelarte

Tuy

March-July,
1348Ubieto 1975:61

Aug.-Oct.,
1348Valdeón and

Martin 1996:84

Urgell
New bishop June 13, 1348Ubieto

1975:60

Valencia
15,000 to
22,000http://scholar

May 1348Ubieto

1975:53

August,
1348Rubio

1979:28

30-40%Gottfried

1983:52

Wills, starting in
May 1348: [0 31
11 5 1]Rubio 1979:26

Vic*
3,000-3,500 in
1365Bautier 1988:438

End of June
1348Guilleré

1984:106

End of
Aug.1348Gui-

lleré 1984:106

Villafranca del
Penedés*

1348 Biraben 1975:75

Villalobos
200 to 300Vaca

1990:163
October
1348Vaca 1990:164

December
1348Vaca

1990:164

Viseo
New bishop on July 8,
1349Ubieto 1975:64

Zaragoza
22,000Chandler

1987:17
Sept., 1348Pueyo

1993:724

April,
1349Pueyo

1993:715

Up to 300
deaths dailySuárez

and Reglá 1966:XXVIII

Institutions,
starting in
Sept. 1348 [12
58 48 33 20 13
7 6 10 4 5 3 1
1 0]Pueyo 1993:724-

733
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o. Sweden

Moving northwards and north-eastwards in Europe, the historical evidence which
can be used in the study of the Black Death becomes increasingly poor. The Black
Death’s history in Sweden reflects the continuation of this unfortunate develop-
ment, which means that the attainable insights into this momentous event in its
history are severely limited. The sources also tend to take on the character of
pieces of epidemic structures that have been atomized by history in the sense that
the outcome of dedicated endeavours to collect sources for the history of the Black
Death in Sweden consists of a number of dispersed pieces of information that can
only with great difficulty be correlated in a meaningful way to produce a rough
outline of the temporal and spatial dimensions of the event, especially church do-
nations (Benedictow 2004:176).

The Black plague devastated Sweden.  Evidences point toward mortality levels
close to 50% (http://www.genealogi).

Place
Pre-plague
population

Start End Mortality

East Gotland
February,
1350Benedictow

2004:175-176

November,
1350 Benedictow

2004:175-176

Gotland*
May,
1350Biraben

1975:80

Halmstad

End of
August,
1349Benedictow

2004:172

Lund
Summer
1350http://www.hum

Örebo
Church donation in August,
1350 Benedictow 2004:175-176

Smalandia
February,
1350Benedictow

2004:175-176

December,
1350 Benedictow

2004:175-176

Söderman-
land

Church donation in December,
1350Benedictow 2004:175-176

Stockholm HighGasquet 1908:79

Uplandia
September,
1350Benedictow

2004:175-176

November,
1350Benedictow

2004:175-176

Visby
March 28,
1350Benedictow

2004:173

Westrogothia
December,
1349Benedictow

2004:175-176

March,
1350Benedictow

2004:175-176



Appendix A.  Annotated Black Death Data Summary 269

p. Switzerland

Switzerland received the Black Death from two original focus of infection.  The
western cantons were raged by the wave that starting from Marseilles moved up
the Rhone valley.  The wave originated at Genoa ravaged the rest of the country.

On average, mortality seems to have been in the middle range by comparison to
the rest of the continent.

Place
Pre-plague
population

Start End Mortality

Aargau
Sept. 8, 1349Biraben

1975:77

Basel May, 1349Fössel 1987:9

Bellinzona
October-November
1348 Biraben 1975:75

Bern
February, 1349Fössel

1987:9

Chillon
December,
1348Fössel 1987:9

Dissentis
December
1348Sticker 1908:56

Engelberg
Sept. 8, 1349Fössel

1987:9
January 6,
1350Fössel 1987:9

Entremont*
4,500Bene-

dictow 2004:328
41%Benedictow

2004:328

Geneva
August 10,
1348Andenmatten and

Morerod 1987:26

October 11,
1348Andenmatten and

Morerod 1987:26

Lausanne
Nov. 10,
1348Andenmatten and

Morerod 1987:24-25

August 18,
1349Andenmatten and

Morerod 1987:24-25

Wills, starting
in October 1348
[0 3 6 2 7 5 8 9
5 4 2 0] Pasche

1998:126-129

Lucerne
March, 1349Fössel

1987:9

Monthey*
1,200 in
1329Benedictow

2004:329-330

43%Benedictow

2004:329-330

Nyon
Sept. 20,
1348Andenmatten and

Morerod 1987:26

Pfäfers
May, 1349Biraben

1975:77
November
1349Hoeniger 1882:17

Rutwil
March, 1349Biraben

1975:77

Saint Gallen
April, 1349Fössel

1987:9
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Place
Pre-plague
population

Start End Mortality

Saint
Maurice

1,500Pasche

1998:129
January, 1349Pasche

1998:127-129

August,
1349Pasche 1998:127-

129

30-40%Dubuis

1980:10

Fatalities,
starting in Janu-
ary 1349 [45
120 45 90 60 45
30 15]Pasche

1998:127-129

Sion
March,
1349Andenmatten and

Morerod 1987:27

September,
1349Andenmatten and

Morerod 1987:27

Wills, starting
in  February,
1349 [0 3 13 14
20 24 3 8
0]Andenmatten and

Morerod 1987:27

Vevey
Nov. 20,
1348Andenmatten and

Morerod 1987:26

May 17,
1349Andenmatten and

Morerod 1987:26

Zurich
October 11,
1349Biraben 1975:75 60%http://www.memo

q. The Netherlands

The Black Death most likely came from neighboring Germany.  It raged more
generally than until now accepted, but the losses never seem to have been so dra-
matic as in the North-Italian towns or in England (Blockmans 1980:845).

Place
Pre-plague
population

Start End Mortality

Deventer
June, 1350Blockmans

1980:843

August,
1350Blockmans

1980:843

Deaths starting
May, 1350 [1
10 25 13 3];
background: 4
Blockmans 1980:843

Foswert*
December,
1349Biraben 1975:77

Friesland 1350Blockmans 1980:843 1351Blockmans

1980:843

Groningen 1350Blockmans 1980:843 1351Blockmans

1980:843

Zwolle
Late 1350Benedictow

2004:204-205

First months of
1351Benedictow

2004:204-205
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r. United Kingdom

The English part of the country has the best documented regional account of the
disease because of numerous ecclesiastical and manorial records.  For the rest of
the kingdom, particularly Northern Ireland and Scotland, the information is close
to none.

Chronicles and scholars disagree about the place and time of the outbreak and
the exact source of the infection.  Lately the distinction for place of first outbreak
in the UK tends to go the southern port of Weymouth, which may have happened
as early as June 24, 1348 or as late as August 1 of the same year (Horrox 1995:63-
64).
Also there is disagreement about the intensity of the epidemic.  J.F.D. Shrews-

bury is the leading proponent of a low national mortality of no more than 5%
(Shrewsbury 1970:123), but increasingly the opinion is that the mortality was
high, close to 50%, especially in the south of England (Ziegler 1969:Chapter 14;
Britnell 1994; Dohar 1995:40).
Like in most other countries, particularly France, once the Black Death started

in Great Britain and Ireland, the timing of the spreading suggests the infection
moved by land as no credible cases of leapfrogging are reported along the numer-
ous ports along the coast.

Place
Pre-plague
population

Start End Mortality

Aberdeen*
1350http://www.geocities.

com/localhistories/aberdeen.html

50% population
mortali-
tyhttp://www.geocities

Aber-
gavenny

March,
1349Rees1920:117

At least 65%
population mor-
talityRees1920:117

Alnwick*
Plague death reported on March 25,
1350Gasquet 1893:160

Anglesey
Isle*

High population
mortality
Benedictow 2004:143

Bath and
Wells dio-
cese

84,111 in
1377Shrews-

bury 1970:27

October, 1348de

Hahn 2002:83
May, 1349de

Hahn 2002:83

48% clergy mor-
talityhttp://

www.geocities.com/Athens

Ecclesiastical ap-
pointments, start-
ing November,
1348 [9 32 47 43
36 40 36 7]de Hahn

2002:83;
background:
3Gasquet 1908:192
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Place
Pre-plague
population

Start End Mortality

Bedford
archdea-
conry

30,508 in
1377Shrewsbury

1970:27

March,
1349Thompson 1911:346-

347

September,
1349Thompson

1911:346-347

39% clergy mor-
talityThompson 1911:324

Ecclesiastical ap-
pointments, start-
ing April, 1349 [1
2 8 15 16 2 3
0]Thompson 1911:346-347

Background: 6 a
yearThompson 1911:335

Berkshire*
34,084 in
1377Shrews-

bury 1970:27
1348James 1999:11

Billingham*
40%-49% popula-
tion mortalityLomas

1989:130

Bishops
Lynn*

50% population
mortalityhttp://www.

geocities.com/localhistories

Blandford*
A few weeks be-
fore Nov. 20,
1348Watts 1998:23

Bodmin*
4,000Creighton

1891:126

December 25,
1348Cartwright and Biddiss

2000:25

37%Creighton 1891:116

and 126

Brightwell*
200Ballard

1916:208 1349Ballard 1916:208
30% population
mortalityBallard

1916:208

Bristol
20,000Dyer

2000:758; Titow

1969:67-68

August 15,
1348Boucher 1938:34

Mid March
1349Horrox

1995:62

35%-40% popula-
tion mortali-
tyhttp://cternus

50% clergy mor-
talityBoucher 1938:36

Buckingham
archdeaconry

37,008 in
1377Shrews-

bury 1970:27

March, 1349Thompson

1911:347-348

October,
1349Thompson

1911:347-348

37% clergy mor-
tality Thompson 1911:322

Ecclesiastical ap-
pointments, start-
ing April, 1349 [1
8 17 24 13 5 5 1
0]Thompson 1911:347-348

Background: 1 a
yearThompson 1911:336

Bury Saint
Edmunds*

7,000Gottfried

1989:344
50% clergy mort-
alityGottfried 1983:66

Cadland*
300 in
1377James

1999:6

Before May 6,
1349Watts 1998:26

Around July
25, 1349Watts

1998:26

100% population
mortalityWatts 1998:27
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Place
Pre-plague
population

Start End Mortality

Caernarvon*
High population
mortalityTwigg

1984:62

Calstock*
Before Septem-
ber, 1349Hatcher

1970:105

62% population
mortalityHatcher

1970:105

Cambridge*
4,403Russell

1948:292
May 9,
1349Biraben 1975:80

August,
1349Gottfried

1989:344

40% population
mortalityGottfried

1989:344

Canterbury
10,000http://

www.kessler-web
Late December
1348Gasquet 1908:118

End May
1349Gasquet 1908:118

50% population
mortalityhttp//

www.kessler-web

Cardigan Summer of 1349Twigg 1984:61
High population
mortalityTwigg

1984:61

Carmarthen
End of March,
1349Rees 1920:121

High population
mortalityTwigg

1984:61

Channel
Islands

Summer 1348http://

www.dudleyfamilypages

Chartham*
900Langridge

1984:229 50%Langridge 1984:229

Chester
archdea-
conry

15,503 in
1377Shrewsbury

1970:27

June, 1349Wood et

al. 2003:443

September,
1349Wood et al.

2003:443

37% clergy mor-
talityWood et al. 2003:441

Ecclesiastical
deaths, starting
April, 1349 [0 1 8
4 8 9 0] Wood et al.

2003:443

Chester-
field*

Lord Thomas Wake died of plague
on 30 May 1349Bestall 1974:72 51%Bestall 1974:117

Cleverland
archdea-
conry

July, 1349Thompson

1914:137

November,
1349Thompson

1914:137

30% clergy mor-
talityThompson 1914:137

Ecclesiastical ap-
pointments,
starting June,
1349 [0 1 7 10 6
1 1 0]Thompson

1914:137

Background: 1 a
yearThompson 1914:129

Climsland*
Before Sept.,
1349Hatcher 1970:105

42% population
mortalityHatcher

1970:105

Coltishall*
600Campbell

1984:96

56% population
mortalityCampbell

1984:96
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Place
Pre-plague
population

Start End Mortality

Cornard
Parva*

180http://

www.harvestfields
Before March 31,
1349Gasquet 1908:150

After May 1,
1349http://

www.harvestfields

At least 42% popu-
lation mortalityGasquet

1908:150

Cornwall
archdeaconry

51,411 in
1377Shrews-

bury 1970:27

December,
1348Hatcher 1970:103

October,
1349Hatcher

1970:103

56% clergy mortali-
tyBiraben 1975:174

Ecclesiastical ap-
pointments, starting
December, 1348 [0 3
3 5 13 12 14 13 6 9 5
4 1]Hatcher 1970:103;
background:
0.3Gottfried 1983:60

Coventry*
15,000Dyer

2000:758; Titow

1969:67-68

March 1349Gooder

1998:39

After peack-
ing in May,
1349Gooder

1998:39

25-35% population
mortalityGooder 1998:41-43

Coventry
archdea-
conry

April, 1349Davies

1989:87

October,
1349Wood et al.

2003:443

56% clergy mortali-
tyWood et al. 2003:441

Ecclesiastical deaths,
starting March, 1349
[0 9 12 10 10 5 2 2
0]Wood et al. 2003:443

Crowland*
450Page

1934:84-88
May, 1349Page

1934:121

Before No-
vember,
1349Page 1934:121

50%Page 1934:84-88, 121

Cuxham*
200Harvey

1965:135; Rus-

sell 1948:131

Shortly before
March 20,
1349Harvey 1965:136

Before June
23, 1349Harvey

1965:136

67% population
mortalityGottfried 1989:340

Deganwy*
High population
mortalityTwigg 1984:62

Derby arch-
deaconry

36,433 in
1377Shrews-

bury 1970:27

June, 1349Woods et

al. 2003:443

September,
1349Woods et al.

2003:443

66% clergy mortali-
tyWood et al. 2003:441

Ecclesiastical deaths,
starting April, 1349
[0 1 10 23 21 10
0]Wood et al. 2003:443

Devon archd-
eaconry

78,707 in
1377Shrews-

bury 1970:27

November,
1348Benedictow

2004:131
51%Biraben 1975:174

Doncaster*

2,000Dyer

2000:759; Rus-

sell 1948:131,

246

Ecclesiastical ap-
pointments, starting
July, 1349[2 3 7 7 3
4]Gasquet 1908:176-177

Dorchester*
A few weeks be-
fore Oct. 19,
1348Watts 1998:23
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Place
Pre-plague
population

Start End Mortality

Dorset arch-
deaconry

51,361 in
1377Shrews-

bury 1970:27

June, 1348Horrox

1995:63
July, 1349Twigg

1984:60

Ecclesiastical ap-
pointments, starting
October, 1348 [4 17
28 21 12 12 6 9 3 11
5]Fletcher 1922:7

Downton*
600Ballard

1916:213 1349Ballard 1916:213 66% population
mortalityJames 1998:14

Durham
13,091 in
1377Shrews-

bury 1970:27

Second semester, 1349Benedictow

2004:141-142
50% population
mortalityLomas 1989:131

East
Anglia*

March,
1349Ziegler 1969:167

Fall, 1349
Ziegler 1969:167

High population
mortalityGottfried 1983:65

East
Lulworth*

A few weeks
before Nov. 18,
1348Watts 1998:23

East
Reading
archdea-
conry

May,
1349Thompson

1914:138-139

January,
1350Thompson

1914:138-139

48% clergy mortali-
tyThompson 1914:111

Ecclesiastical ap-
pointments, starting
May, 1349 [0 3 3 5
17 17 3 3 2 2
1]Thompson 1914:138-139

Background: 5 a
yearThompson 1914:129

Edinburgh* 1349http://www.portfolio
33% population
mortali-
tyhttp://www.portfolio

Ely diocese
46,461 in
1377Shrews-

bury 1970:27

March,
1349Aberth 1995:280

December,
1349Aberth

1995:280

47% clergy mortal-
ityAberth 1995:279

Ecclesiastical ap-
pointments, starting
March, 1349 [0 6 6
17 22 10 7 6 4 4 3
1]Aberth 1995:279

Essex* 1349Poos 1991: 107 45% population
mortalityPoos 1991: 107

Exeter*
4,000Shrews-

bury 1970:24;

Russell 1948:246

Almost 50% popula-
tion mortalitySloan

1981:648

Exeter dio-
cese*

130,118 in
1377Shrews-

bury 1970:27

November,
1348Gasquet 1908:100-

102

49% clergy mortali-
tyCoulton 1943:496

Fingreth
600Fisher

1943:13-20

Shortly before
March 23,
1349Fisher 1943:14

Between June
1 and June 30,
1349Fisher

1943:14-19

50% population
mortalityFisher 1943:20
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Place
Pre-plague
population

Start End Mortality

Frodsham*
181Dodd 1981-

2:28
20-40% population
mortalityDodd 1981-2:30

Funtley*
60 in
1377James

1999:6

Before April
23, 1349
Watts 1998:26

Before July
25, 1349Watts

1998:26

100% population
mortalityWatts 1998:27

Glaston-
bury*

57%Ecclestone 1999:25

Gloucester*
7,500Holt

1985:149; Russell

1948:246

End of August,
1348Biraben 1975:78

At least 33%Holt

1985:149

Gloucester
archdeaconry

68,016 in
1377Shrews-

bury 1970:27

February,
1349Ziegler 1969:138

August,
1349Ziegler

1969:138

47% clergy mortali-
tyBiraben 1975:174

Halesowen*
1974Razi

1980:25 and 75
March 1349Razi

1980:102
August
1349Razi 1980:102

42% population
mortalityRazi 1980:103

Deaths of males,
staring March, 1349
[2 3 21 25 22 3]Razi

1980:102

Hampshire
archdeaconry

60,849 in
1377Shrews-

bury 1970:27

November,
1348Gasquet

1908:130

August, 1349
Gasquet 1908:130

49% clergy mortali-
tyBiraben 1975:174

Ecclesiastical ap-
pointments, starting
December, 1348 [7
12 19 33 46 29 24 18
11 12]Gasquet 1908:130

Hereford
diocese

25,831 in
1377Shrews-

bury 1970:27

January,
1349Dohar 1995:46-

47

October, 1349
Dohar 1995:46-47

48% clergy mortali-
tyBiraben 1975:174

Ecclesiastical ap-
pointments, exclud-
ing exchanges and
resignations, starting
January, 1349 [1 3 7
9 11 13 30 30 18 11
9 1]Dohar 1995:46-47;
background: 1Gasquet

1908:165

Hertford-
shire arch-
deaconry

29,962 in
1377Shrews-

bury 1970:27

May,
1349Gasquet

1908:114

November,
1349Gasquet

1908:114

35% clergy mortali-
tyBiraben 1975:174

Ecclesiastical ap-
pointments, starting
June, 1349 [6 8 4 4 0
2 1]Gasquet 1908:114

Higham Fer-
rers*

Early May,
1349Groome 1982-

3:310

At least 37% popu-
lation mortalityGroome

1982-3:310
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Place
Pre-plague
population

Start End Mortality

Holywell
Spring,
1349Gottfried

1983:87

Fall,
1349Gottfried

1983:87

High population
mortalityGottfried 1983:87

Huntingdon
archdeaconry

21,243 in
1377Shrews-

bury 1970:27

March,
1349Thompson

1911:348-350

October,
1349Thompson

1911:348-350

37% clergy mortality
Thompson 1911:322

Ecclesiastical ap-
pointments, starting
April, 1349 [2 7 12
22 15 1 3 2 1 1
0]Thompson 1911:348-350

Background: 3 a
yearThompson 1911:336

Isle of
Wight*

High population
mortalityZiegler 1969:146

Kibworth
Harcourt*

200Howell

1983:16-17
Peacked before the end of April,
1349 Howell 1983:42 70%Lomas 1989:131

Kingston
Russel*

A few weeks
before Nov. 13,
1348Watts 1998:23

Lancashire
35,820 in
1377Shrews-

bury 1970:27

September 8,
1349Little 1890:525

January 11,
1350Little 1890:525

Leicester*
4,800 in
1327Russell

1948:293
50%Bitnell 1994:200

Leicester
archdeaconry

50,748 in
1377Shrews-

bury 1970:27

March,
1349Thompson

1911:350-351

November,
1349Thompson

1911:350-351

37% clergy mortality
Thompson 1911:324

Ecclesiastical ap-
pointments, starting
April, 1349 [2 7 16
16 13 12 6 4 6
0]Thompson 1911:350-351

Background: 9 a
yearThompson 1911:337

Lichfield dio-
cese*

March,
1349Wood et al.

2003:443

October,
1349Wood et al.

2003:443

40% clergy mortali-
tyhttp://www.geocities

Ecclesiastical ap-
pointments, starting
January, 1349 [2 3 0
13 21 35 50 48 30 10
2 0]Shrewsbury 1970:70

Lincoln*
9,000Shrews-

bury 1970:24; Rus-

sell 1948:246

April 5,
1349Benedictow

2004:138

60% population
mortalityBenedictow

2004:359
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Place
Pre-plague
population

Start End Mortality

Lincoln
archdea-
conry

April,
1349Thompson

1911:339-344

January,
1350Thompson

1911:339-344

45% clergy mortali-
tyThompson 1911:325

Ecclesiastical ap-
pointments, starting
April, 1349 [1 5 23
72 80 38 21 17 8 5 7
3]Thompson 1911:339-344

Background: 7 a
yearThompson 1911:334

London

50,000Gott-

fried 1983:64

At least
100,000 in
1300Keene

1984:20

September 29,
1348Cohn 2002b:142

Spring
1350Gottfried

1983:65

35-50% population
mortalityGottfried 1983:65

Lulworth*
A few weeks
before Nov. 18,
1348Watts 1998:23

Mells*
300McGarvie

2000:409
Peak before May 3, 1349McGarvie

2000:409
67% population
mortalityMcGarvie 2000:409

Newark*
3,000Dyer

2000:758; Russell

1948:131, 246

New cemetery on May 15,
1349Benedictow 2004:139

Norfolk
146,726 in
1377Shrews-

bury 1970:27

January,
1349Bolton 1996:22

North-
ampton
arch-
deaconry

62,553 in
1377Shrews-

bury 1970:27

March,
1349Thompson

1911:351-354

December,
1349Thompson

1911:351-354

33% population
mortalityGroome 1982-3:309

37% clergy mortali-
tyThompson 1911:323

Ecclesiastical ap-
pointments, starting
April, 1349 [2 9 17
38 28 11 3 10 2 5 4
1]Thompson 1911:351-354

Background: 9 a
yearThompson 1911:337

Northum-
berland

25,210 in
1377Shrews-

bury 1970:27

December
1349http://

www.hindmarsh

Norwich*
13,000 in
1311Russell

1948:293

January,
1349Bolton 1996:22

40-45% population
mortalityBolton 1996:22
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Place
Pre-plague
population

Start End Mortality

Norwich
diocese*

240,569 in
1377Shrews-

bury 1970:27

January,
1349Shrewsbury

1970:99

November,
1349Shrewsbury

1970:99

49% clergy mortali-
tyCoulton 1943:496

Ecclesiastical ap-
pointments, starting
January, 1349 [3 8
12 17 65 110 194
135 70 65 46
19]Shrewsbury 1970:99

Nottingham
archdeaconry

43,328 in
1377Shrews-

bury 1970:27

June 1349Thompson

1914:139-140

December
1349Thompson

1914:139-140

36% clergy mortali-
tyBiraben 1975:174

Ecclesiastical ap-
pointments, starting
May, 1349 [1 15 12
15 8 4 2 2 0]Thompson

1914:139-140;
background: 6 a year
Thompson 1914:129

Oxford*
6,000Shrews-

bury 1970:24;

Russell 1948:246

43% population
mortalityZiegler 1969:139

Oxford
archdea-
conry

41,008 in
1377Shrews-

bury 1970:27

March,
1349Thompson

1911:354-356

November,
1349Thompson

1911:354-356

39% clergy mortali-
tyThompson 1911:338 & 354-356

Ecclesiastical ap-
pointments, starting
April, 1349 [4 7 12
27 9 7 3 2 2 2 1
0]Thompson 1911:354-356

Background: 3 per
year Thompson 1911:338

Portchester*
Before March
12, 1349Watts

1998:25

Between May
3 and July 25,
1349Watts 1998:25

Quob*
100% population
mortalityJames 1999:6

Rochester*
1,400Dyer

2000:759; Russell

1948:131, 246

50% population
mortalityBritnell 1994:199

Rochester
diocese*

December,
1349Shrewsbury

1970:93

Ruthin
200Gottfried

1989:340
June, 1349Ziegler

1969:191

August,
1349Ziegler

1969:191

Saint Al-
bans*

April 3, 1349Biel

1989:38-39
47% population
mortalityRussell 1948:223
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Place
Pre-plague
population

Start End Mortality

Salisbury
diocese*

154,187 in
1377Shrews-

bury 1970:27

June, 1348Horrox

1995:63

Salop
archdea-
conry

40,242 in
1377Shrews-

bury 1970:27

June, 1349Woods et

al. 2003:443
October, 1349
Woods et al. 2003:443

63% clergy mortali-
tyWood et al. 2003:433

Ecclesiastical deaths,
starting May, 1349
[0 2 8 10 5 1 0]Wood et

al. 2003:443

Selkirk
Fall of
1349Biraben 1975:80

Snowdonia*
High population
mortalityBenedictow

2004:143

South-
hampton*

July 1348Biraben

1975:80

Stafford
archdea-
conry

33,734 in
1377Shrews-

bury 1970:27

April, 1349Woods

et al. 2003:443

September,
1349Woods et al.

2003:443

39% clergy mortali-
tyWood et al. 2003:433

Ecclesiastical deaths,
starting March, 1349
[0 2 6 6 10 9 3 0]Wood

et al. 2003:443

Stow
archdea-
conry

May,
1349Thompson

1911:344-345

December,
1349Thompson

1911:344-345

57% clergy mortali-
tyThompson 1911:325

Ecclesiastical ap-
pointments, starting
April, 1349 [0 1 6 18
11 13 4 4 3 5
1]Thompson 1911:344-345

Background: 5 a
yearThompson 1911:335

Surrey
archdea-
conry

27,058 in
1377Shrews-

bury 1970:27

December,
1348Gasquet 1908:130

August,
1349Gasquet

1908:130

56% clergy mortali-
tyBiraben 1975:174

Ecclesiastical ap-
pointments, starting
January, 1349 [5 8
12 22 23 6 7 2
5]Gasquet 1908:130;
background: 0.8Gasquet

1908:209

Swanwick*
150 in
1377James

1999:6

Before March
12, 1349Watts

1998:25

Between May
6 and July 25,
1349Watts 1998:25

64% population
mortalityWatts 1998:27

Tilgarsley*
100% population
mortalityJames 1999:6
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Place
Pre-plague
population

Start End Mortality

Tilling-
down*

Before Septem-
ber 29, 1349Saaler

1992:38

Before end of
1349Saaler 1992:38

Titchfield*
600 in
1377James

1999:6

Shortly before
October 31,
1348Watts 1998:24

Between
March 11 and
May 8,
1349Watts 1998:24

72% population
mortalityWatts 1998:27

Toller Por-
corum*

A few weeks be-
fore Nov. 19,
1348Watts 1998:23

Ulster* 1349Kelly 2001:35-36

Walsham-
le-Willows*

1,250-
1,500Lock

1992:321

May 1349 Lock

1992:316
July 1349 Lock

1992:316 45-55%Lock 1992: 321

Warmwell*
A few weeks be-
fore Oct. 9,
1348Watts 1998:23

Warwick-
shire arch-
deaconry

45,396 in
1377Shrews-

bury 1970:27

March,
1349Gasquet 1908:145

September,
1349Gasquet

1908:145

36% clergy mortality
Biraben 1975:174

Ecclesiastical ap-
pointments, starting
April, 1349 [4 13 17
20 15 7 10] Gasquet

1908:145

West
Chickerell*

A few weeks be-
fore Sept. 30,
1348Watts 1998:23

Westmin-
ster*

December, 1348
http://www.harvestfields

Weymouth
June 23, 1348-
August 1,
1348Horrox 1995:63-64

Wiltshire*
68,742 in
1377Shrews-

bury 1970:27
1348James 1999:11 1349James 1999:11

Winchester*
5,000-
8,000Gottfried

1983:63

Late in
1348Gottfried 1983:63

At least 50% popu-
lation mortality
Sloan 1981:648

Winchester
diocese*

87,907 in
1377Shrews-

bury 1970:27

65% population
mortalityTitow 1969:70

49% clergy mortality
Ziegler 1969:145

Ecclesiastical ap-
pointments, starting
November, 1348 [0 3
3 11 40 64 56 35 25
13 15 16]Watts 1998:22
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Place
Pre-plague
population

Start End Mortality

Winter-
bourne
Zelton*

A few weeks
before Nov. 19,
1348Watts 1998:23

Witney*
400Turner

1988:21 1349Turner 1988:21 66% population
mortalityTurner 1988:21

Wool*
A few weeks
before Oct. 19,
1348Watts 1998:23

Worcester*
2,336 in
1377Shrews-

bury 1970:24

April,
1349Gasquet

1908:142

Worcetser
diocese

137,560
Shrewsbury

1970:27

February,
1349Ziegler 1969:138

September,
1349Gasquet

1908:145

42% population
mortalityDyer 1980:238

48% clergy mortali-
tyBiraben 1975:174

Wycombe*
May, 1349Ziegler

1969:141

September,
1349Ziegler

1969:141

50% population
mortalityZiegler 1969:141

60% clergy mortali-
tyZiegler 1969:141

Yarmouth*
More than
10,000Ziegler

1969:167

Up to 70% popula-
tion mortali-
tyhttp://www.godecookery

York*
12,000Shrews-

bury 1970:109
May 9,
1349Biraben 1975:80

High clergy mortal-
itySloan 1981:648

Ecclesiastical ap-
pointments, starting
May, 1349 [1 4 4 3
6] Thompson 1914:105

York dio-
cese*

May, 1349Twigg

1984:66
February,
1350Twigg 1984:66

40-45% population
mortalityKermode 2000:676

40% clergy mortali-
tyHatcher1977:26

Ecclesiastical
apointments, starting
May, 1349 [1 7 24
37 63 51 15 18 6 9
4]Twigg 1984:66

York
archdea-
conry

May,
1349Thompson

1914:135-137

January,
1350Thompson

1914:135-137

45% clergy mortali-
tyThompson 1914:135-137

Ecclesiastical ap-
pointments, starting
April, 1349 [1 0 4 5
13 21 20 7 12 1 4
2]Thompson 1914:135-137

Background: 5 a
yearThompson 1914:129
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Appendix B.  Parameters for the Non-linear Extended
Reed and Frost (ERF) Model

a. Austria

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Eggenburg 100 20 3 5 0.369
Marienberg 100 20 4 5 0.4
Neuberg 100 20 4 5 0.356
Pongau 100 20 4 5 0.356
Upper Inntal 100 20 2.3 3 0.524
Vienna 100 20 2.3 7 0.51
Villach 100 20 3 5 0.369

b. Belgium

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Ath 100 20 4 5 0.356
Bruges 100 20 1.7 7.5 0.336
Ghent 100 20 1.4 5.5 0.505
Mons 100 20 4 5 0.152
Tournai 100 20 3 7 0.263
Ypres 100 20 2.2 3 0.233

c. Croatia

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Dubrovnic 100 20 3 3.5 0.467
Istria 100 20 4 4 0.356
Split 100 20 3.3 5 0.467
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d. Czech Republic

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Bohemia 100 20 4 5 0.102

e. Denmark

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Aalborg 100 20 4 5 0.305
Bornholm 100 20 4 5 0.407
Ribe 100 20 4 5 0.305
Zealand Island 100 20 3 6.5 0.421

f. France

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Abbeville 100 20 4 5 0.203
Agen 100 20 4 4 0.350
Aix-en-Provence 100 20 3.5 5 0.467
Albi 100 20 3 6 0.579
Alès 100 20 4 6 0.457

Amiens
100
100

20
20

2.7
4

7
4

0.215
0.254

Angers 100 20 2.5 6.5 0.275
Angoumois 100 20 2.7 6.5 0.377
Anjou 100 20 2 3 0.49
Arles 100 20 3 6 0.527
Auch 100 20 4 5 0.407
Aurillac 100 20 4 5 0.407
Avignon 100 20 2.3 3 0.628
Bayeux 100 20 3 6.5 0.421
Beaune 100 20 4 5 0.356
Beauvais 100

100
20
20

2
2.5

6
6.5

0.182
0.275

Besarçon 100 20 3 5 0.369
Béziers 100 20 2.5 6.5 0.44
Bordeaux 100 20 3 6.5 0.421
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Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Bourg-en-Bresse 100 20 4 5 0.356
Buis-les-Baronnies 100 20 4 5 0.457
Burgundy 100 20 2.2 3 0.466
Cadenet 100 20 4 5 0.457
Calais 100 20 3 7 0.316
Carcassonne 100 20 4 6 0.407
Castellane 100 20 4 5 0.407
Châlons-en-Champaigne 100 20 4 5 0.356
Chambéry 100 20 4 5 0.457
Châteauroux 100 20 4 5 0.457
Colmar 100 20 4 4 0.356
Corsica 100 20 4 6 0.407
Die 100 20 3 5 0.369
Digne 100 20 4 5 0.407
Dijon 100 20 4 5 0.356
Draguignan 100 20 4 6 0.457
Forez 100 20 2 3 0.421
Fresnois-la-Montagne 100 20 4 4 0.153
Grasse 100 20 4 6 0.457
La Châtre 100 20 3 6.5 0.421
Lexy 100 20 4 4 0.153
Lille 100 20 2.2 6 0.173
Limousin 100 20 3.3 5 0.467
Luz 100 20 3 6 0.527
Lyon 100 20 2.7 6.5 0.366
Malaucène 100 20 4 5 0.457
Marseille 100 20 2.3 3 0.685
Maubege 100 20 4 4 0.153
Maurienne 100 20 2 3 0.49
Metz 100 20 4 6 0.305
Montauban 100 20 4 5 0.407
Montbéliard 100 20 4 5 0.356
Montpellier 100 20 2.3 3 0.628
Nancy 100 20 4 5 0.305
Narbonne 100 20 2.2 3 0.466
Navarrenx 100 20 4 5 0.508
Nîmes 100 20 4 5 0.508
Nyons 100 20 4 5 0.457
Orleans 100 20 1.6 5 0.506
Paray-le-Monial 100 20 4 5 0.356

Paris
100
100

20
20

1.32
1.5

5
5

0.279
0.233

Périgord 100 20 4 5 0.407
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Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Perpignan 100 20 3 6 0.579
Pia 100 20 6 10 0.301
Poitou 100 20 3 6 0.527
Poligny 100 20 4 5 0.457
Quimper 100 20 6 10 0.351
Reims 100 20 2.2 3 0.291
Revel 100 20 4 5 0.407
Roanne 100 20 4 5 0.356
Rodez 100 20 4 5 0.407
Rouen 100 20 2.3 3 0.524

Saint Denis
100
100

20
20

1.32
1.5

5
5

0.279
0.233

Saint-Etienne 100 20 4 5 0.356
Saint-Flour 100 20 3.5 5 0.467
Saint Marie Laumont 100 20 6 10 0.501
Salins 100 20 4 5 0.457
Strasbourg 100 20 3 5 0.369
Tarbes 100 20 4 5 0.508
Toulon 100 20 4 5 0.508
Toulouse 100 20 2.3 2.4 0.4
Tulle 100 20 4 5 0.407
Valenciennes 100 20 4 5 0.305
Verdun 100 20 4 5 0.305

g. Germany

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Ausburg 100 20 3 7 0.263
Baden-Baden 100 20 3 6.5 0.421
Bielefeld 100 20 4 5 0.407
Borau 100 20 4 5 0.407
Braunschweig 100 20 4 5 0.457
Bremen 100 20 2.3 7 0.51
Cologne 100 20 1.8 3 0.659
Erfurt 100 20 2.2 3 0.466
Frankfurt-am-Main 100 20 2.3 2.4 0.4
Güstrow 100 20 4 5 0.305
Halberstadt 100 20 3 6.5 0.421
Hamburg 100 20 3 6 0.579
Hanover 100 20 4 5 0.254
Kontanz  100 20 3 7 0.158
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Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Limburg 100 20 3 7 0.316
Magdeburg 100 20 3 6 0.527
Mainz 100 20 2.2 3 0.233
Minden 100 20 4 5 0.1
Mühldorf 100 20 4 5 0.152
Münster 100 20 3 6.5 0.421
Nuremberg 100 20 4 5 0.102
Osnabrück 100 20 4 5 0.051
Paderborn 100 20 3.3 5 0.436
Parchim 100 20 4 6 0.407
Passau 100 20 4 5 0.203
Regensburg 100 20 4 5 0.203
Rostock 100 20 4 5 0.305
Schleswig 100 20 3 6.5 0.421
Trier 100 20 4 5 0.305
Ulm 100 20 4 5 0.407
Wismar 100 20 3 6.5 0.421
Würtzburg 100 20 3 7 0.316

h. Gibraltar

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Gibraltar 100 20 1.6 5 0.578

i. Ireland

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Drogheda 100 20 3.5 5 0.457
Dublin 100 20 2.3 7 0.51
Dundalk 100 20 4 5 0.407
Ennis 100 20 4 5 0.356
Ferns 100 20 3 5 0.369
Kildare 100 20 3.3 5 0.467
Kilkenny 100 20 3.3 5 0.467
Limerick 100 20 4 5 0.356
Meath 100 20 4 5 0.407
Moylurg 100 20 4 5 0.407
Nenagh 100 20 4 5 0.356
Waterford 100 20 3.3 5 0.467
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j. Italy

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Agrigento 100 20 3 6 0.579
Ancona 100 20 4 5 0.457
Bari 100 20 3.3 5 0.467
Cagliari 100 20 2.3 7 0.566
Catania 100 20 2.3 3 0.685
Cesena 100 20 3.3 5 0.457
Elba Island 100 20 4 5 0.407
Faenza 100 20 3.3 5 0.467
Ferrara 100 20 3 6.5 0.421
Florence 100 20 2 3 0.601
Friuli 100 20 3 5 0.369
Genoa 100 20 1.3 5.3 0.663
Lucca 100 20 3 6.5 0.421
Messina 100 20 2.3 7 0.51
Modena 100 20 3 6.5 0.421
Naples 100 20 2 3 0.551
Orvieto 100 20 3.3 5 0.467
Padua 100 20 2.3 7 0.51
Parma 100 20 2.2 3 0.466
Piacenza 100 20 2.7 6.5 0.377
Piombino 100 20 4 5 0.407
Pisa 100 20 1.6 5 0.506
Pistoia 100 20 2.5 6.5 0.44
Prato 100 20 4 6 0.407
Pusteria 100 20 4 5 0.356
Reggio d’Emilia 100 20 2.2 3 0.466
Reggio di Calabria 100 20 4 5 0.457
Rimini 100 20 3 6 0.527
Rome 100 20 2.3 2.4 0.4
Sardinia 100 20 2.3 3 0.571
Siena 100 20 2.3 3 0.524
Syracuse 100 20 3 6 0.527
Trapani 100 20 3 6 0.632
Trent 100 20 3 6.5 0.421
Turin 100 20 4 4 0.356
Varesse 100 20 4 5 0.407

Venice
100
100
100

20
20
20

2
2
2.2

3
3
3

0.184
0.429
0.116

Ventimiglia 100 20 4 5 0.356
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Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Verona 100 20 2.3 3 0.628
Vintschgau 100 20 4 5 0.407

k. Norway

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Agden 100 20 4 4 0.356
Bergen 100 20 3 6.5 0.421
Hamar 100 20 6 10 0.251
Idd 100 20 4 5 0.356
Lom 100 20 4 5 0.356
Oslo 100 20 3 6 0.527
Stavenger 100 20 4 5 0.356
Tinn 100 20 4 5 0.356
Tønsberg 100 20 4 5 0.356
Toten 100 20 4 5 0.305
Trondheim 100 20 3 6 0.527
Upper Eiker 100 20 3 5 0.305
Vågå 100 20 4 5 0.356
Valdres 100 20 4 5 0.356

l. Poland

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Gdansk 100 20 4 5 0.305
Torun 100 20 4 5 0.305

m. Portugal

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Braga 100 20 3.3 5 0.467
Coimbra 100 20 6 10 0.491
Evora 100 20 2.3 2.4 0.4
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Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Lamego 100 20 2.9 6 0.424
Lisbon 100 20 3 7 0.453
Silves 100 20 2.3 7 0.453

n. Spain

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Almería 100 20 1.6 6 0.774
Almudevar 100 20 4 4 0.356
Asturias 100 20 3 5 0.369
Badajoz 100 20 3 5 0.369
Berga 100 20 3 5 0.369
Borja 100 20 4 4 0.356
Cádiz 100 20 2.2 3 0.466
Calatayud 100 20 4 4 0.356
Camprodrón 100 20 6 10 0.301
Cartagena 100 20 2.3 7 0.51
Cerdanya 100 20 4 4 0.356
Cordoba 100 20 2 3 0.49
Duero Valley 100 20 2 3 0.551
Estella 100 20 2.5 6 0.661
Girona 100 20 3.3 5 0.467
Granada 100 20 1.45 5 0.7281
Huesca 100 20 2.9 6 0.424
Jérica 100 20 4 4 0.356
León 100 20 2.7 6.5 0.377
Lérida 100 20 3 5 0.369
Lugo 100 20 2.7 7 0.323
Málaga 100 20 2.3 7 0.51
Mallorca 100 20 3 5 0.358
Minorca 100 20 6 10 0.351
Morella 100 20 4 5 0.305
Murcia 100 20 2.3 7 0.51
Plana de Vic 100 20 3.3 5 0.519
Puerto Llano 100 20 6 10 0.451
San Juan de la Peña 100 20 6 10 0.351
Santesteban 100 20 4 6 0.407
Santiago de Compostela 100 20 2.9 6 0.424
Sarrión 100 20 4 5 0.254
Segorbe 100 20 4 4 0.356
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Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Seville 100 20 1.4 5.5 0.673
Soria 100 20 4 4 0.356
Tarazona 100 20 4 4 0.356
Tarragona 100 20 3.3 5 0.467
Teruel 100 20 4 4 0.305
Toledo 100 20 1.6 5 0.578
Tortosa 100 20 2.9 6 0.424
Tuy 100 20 4 5 0.407
Urgell 100 20 4 5 0.356
Valencia 100 20 3 5 0.369
Villalobos 100 20 6 10 0.401
Viseo 100 20 4 4 0.356

o. Sweden

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
East Gotland 100 20 1.4 5.5 0.728
Halmstad 100 20 3 5 0.369
Lund 100 20 1.6 5 0.65
Örebo 100 20 3 5 0.369
Smalandia 100 20 1.3 5.5 0.847
Södermanland 100 20 3 5 0.369
Uplandia 100 20 3 6.5 0.421
Visby 100 20 2.2 3 0.466
Westrogothia 100 20 2.7 6.5 0.377

p. Switzerland

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Aargau 100 20 4 5 0.356
Basel 100 20 3 6.5 0.421
Bellinzona 100 20 3 5 0.369
Bern 100 20 4 5 0.356
Chillon 100 20 4 5 0.305
Dissentis 100 20 4 5 0.356
Engelberg 100 20 3 6.5 0.421
Geneva 100 20 3 5 0.369
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Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Lucerne 100 20 4 5 0.407
Nyon 100 20 4 5 0.407
Pfäffers 100 20 4 5 0.356
Rutwil 100 20 4 5 0.356
Saint Gallen 100 20 3 7 0.316
Vevey 100 20 4 5 0.305
Zurich 100 20 3 6.5 0.421

q. The Netherlands

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Friesland 100 20 3 7 0.316
Groningen 100 20 3 7 0.316
Zwolle 100 20 3 6.5 0.421

r. United Kingdom

Place
Population

Ps,0

Serial
Time

Contacts

Ks

Initial
Cases

Is,

Factor

f
Abergavenny 100 20 4 5 0.508
Bristol 100 20 2.2 3 0.466
Canterbury 100 20 3.3 5 0.508
Cardigan 100 20 3 6.5 0.421
Carmarthen 100 20 3 6.5 0.421
Channel Islands 100 20 4 5 0.407
Devon 100 20 1.8 3 0.672
Durham 100 20 3 6 0.527
Fingreth 100 20 4 5 0.508
Gloucestershire 100 20 2 5 0.571
Holywell 100 20 3.3 5 0.467
Lancashire 100 20 3 6 0.527
London 100

100
20
20

1.3
2

3
3

0.673
0.184

Northumberland 100 20 3 5 0.369
Ruthin 100 20 4 5 0.356
Selkirk 100 20 3 5 0.369
Weymouth 100 20 3 6.5 0.421
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