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Preface

Statistical methods have become an increasingly important and integral part
of research in health sciences. For this reason, we organized an International
Conference on Statistics in Health Sciences during June 23–25, 2004, at Univer-
sité de Nantes, Nantes, France. This conference, with the participation of over
200 researchers from numerous countries, was very successful in bringing to-
gether experts working on statistical methodology and applications into several
different aspects and problems in health sciences.

This volume comprises a selection of papers that were presented at the
conference. All the articles presented here have been peer reviewed and carefully
organized into 33 chapters. For the convenience of the readers, the volume has
been divided into the following parts:

• Prognostic Studies and General Epidemiology

• Pharmacovigilance

• Quality of Life

• Survival Analysis

• Clustering

• Safety and Efficacy Assessment

• Clinical Designs

• Models for the Environment

• Genomic Analysis

• Animal Health

As is evident, these cover a wide range of topics pertaining to statistical methods
in health sciences.

Our sincere thanks go to all the authors who have contributed to this vol-
ume, and for their cooperation, patience, and support throughout the course of
the preparation of the volume. We are also indebted to the referees for helping
us in the evaluation of the manuscripts and in improving the quality of this
publication.
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Laurent.Bordes@utc.fr

Boyett, James St. Jude Children’s Research Hospital, Memphis, TN 38105-
2794, USA
jim.boyett@stjude.org

Breidenbach, E. Federal Veterinary Office Department of Monitoring, P.O.
Box CH-3003, Bern, Switzerland
Eric.Breidenbach@bvet.admin.ch

xxi



xxii Contributors

Breuils, C. Lab. de Math. Nicolas Oresme, Université de Caen, BP 5186,
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tique Théorique et Appliquée, Bôıte 158, Bureau 8A25, 175 rue du
Chevaleret, 75013 Paris, France
pd@ccr.jussieu.fr

Derzko, Gérard Sanofi-Aventis, 371 rue du Pr Joseph Blayac, 34184 Mont-
pellier Cedex 4, France
gerard.derzko@sanofi-aventis.com

Dufour, Barbara UP Maladies contagieuses, École Nationale Vétérinaire
d’Alfort, 7 Avenue du Général-de-Gaulle, 94704 Maisons-Alfort Cedex,
France
bdufour@vet-alfort.fr



Contributors xxiii

Etienne, Arnaud Cancer Registry of Haut-Rhin, Mulhouse, France
arno.etienne@free.fr

Federov, Valerii V. Research Statistics Unit, GlaxoSmithKline, 1250 S.
Collegeville Rd., Collegeville, PA 19426-0989, USA
Valeri.V.Fedorov@gsk.com

Flynn, Pat Department of Biostatistics, St. Jude Children’s Research Hos-
pital, Memphis, TN 38105-2794, USA

Foulkes, Mary A. U.S. Food Drug Administration Center for Biologics
Evaluation and Research, Office of Biostatistics and Epidemiology, 1401
Rockville Pike, HFM-210, Rockville, MD 20852, USA
foulkes@cber.fda.gov
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Systematic Review of Multiple Studies of

Prognosis: The Feasibility of Obtaining

Individual Patient Data

Douglas G. Altman,1 Marialena Trivella,1 Francesco Pezzella,2

Adrian L. Harris,3 and Ugo Pastorino4

1Cancer Research UK/NHS Centre for Statistics in Medicine, Oxford, UK
2Cancer Research UK Pathology Unit, John Radcliffe Hospital, Oxford, UK
3Cancer Research UK Oncology Unit, Churchill Hospital, Oxford, UK
4Istituto Nazionale Tumori, Milan, Italy

Abstract: Studies of prognosis have received rather little attention by those
carrying out systematic reviews. Such reviews are increasingly being attempted
but the poor quality of published ‘primary’ studies leads to serious difficulties.
Thus there have been calls for such reviews to be based on individual patient
data (IPD) but such studies are as yet rare.

We consider the advantages of IPD for reviews of prognostic variables and
describe in detail a systematic review of microvessel density counts as a prog-
nostic variable for patients with non-small cell lung cancer. We show that such
a study is feasible, but note that it may not be cost-effective to attempt to
obtain all relevant data.

Keywords and phrases: Prognostic markers, systematic review, meta-
analysis, individual patient data

1.1 Introduction

Prognostic studies include clinical studies of variables predictive of future events
as well as epidemiological studies of aetiological risk factors. While they often
explore several factors simultaneously, many studies examine the prognostic
importance of a single specified variable, such as a tumour marker. Such studies
are the focus of this paper.

The number of published prognostic studies continues to grow, but unfor-
tunately additional studies have often led to more confusion than clarification
[Simon and Altman (1994)]. As multiple similar studies accumulate, it becomes
increasingly important to identify and evaluate all of the relevant work in or-
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der to develop a more reliable overall assessment [Altman and Lyman (1998)].
As with other types of research, all the relevant evidence is best assessed in a
systematic review; see Altman (2001) for a systematic identification and struc-
tured appraisal of multiple research studies of the same topic. (Such studies are
often called meta-analyses, but we prefer to reserve that term for the statistical
synthesis of the results of several studies, as discussed below.)

Systematic reviews help both to clarify scientific findings and identify gaps
in the literature. At their best, they may also contribute to policy making
and adoption of new clinical practices. Compared with randomised controlled
trials (RCTs) and epidemiological studies of risk factors, studies of prognosis
have received rather little attention by those carrying out systematic reviews.
Such studies are increasingly being attempted. Although our main emphasis in
this chapter will be on studies of tumour markers, reviews of prognostic studies
are also seen in other medical fields and in other types of research including
epidemiological studies; see Kuijpers et al. (2004), Brocklehurst and French
(1998), Ebell, White, and Weismantel (2000), Ray (1998), Sauerbrei, Blettner,
and Royston (2001), and Kosmas, Tatsioni, and Ioannidis (2004).

When there are several published studies for a single marker, they frequently
yield conflicting results. Broadly speaking, the inconsistent findings may be due
to variation in some or all of patient characteristics, laboratory methods, and
methodological quality (including data analysis), as well as chance variation. It
is important to consider carefully the details of each study as misleading results
from individual studies may distort the results of any subsequent meta-analyses.
Unfortunately, the generally poor standards of reporting in published articles
seriously impedes efforts to make sense of the literature [Riley et al. (2003)].

The key steps of a systematic review are: (1) define a clear and concise ques-
tion, (2) define explicit inclusion and exclusion criteria, (3) identify potentially
relevant studies (using a defined search strategy), (4) select eligible studies, (5)
appraise methodological quality using standardised criteria, (6) extract infor-
mation about methods of each study and its results, (7) analyse and present
results of all the studies (including, if appropriate, a statistical synthesis using
meta-analysis and investigation of possible reasons for heterogeneous results
across studies), and (8) interpret the combined results; see Selvin et al. (2004).

The specific features of prognostic investigations are such that, however
desirable it might be, applying these general principles is not straightforward.
Particular concerns include the inability to extract adequate information about
the details of how the study was done, inconsistent methods of data analysis
(especially relating to cutpoints and adjustment for other variables), inadequate
reporting of the results of the study (linked to the specific issues for summarising
survival data), and the likelihood of publication bias. This last point should
not be underestimated; increasingly systematic reviews are showing a relation
between sample size and observed effect, strongly suggestive of publication bias.
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Such an effect has been strongly suggested, for example, in recent reviews of
thymidylate synthase expression in colorectal cancer [see Popat, Matakidou,
and Houlston (2004)] and glycosylated haemoglobin and cardiovascular disease
in diabetes mellitus [see Selvin et al. (2004)]. As Simon (2001) wrote: “. . .
the literature is probably cluttered with false-positive studies that would not
have been submitted or published if the results had come out differently.” The
consequence is that published studies will tend to overestimate the prognostic
value of tumour markers.

The difficulties of carrying out a systematic review using published data
have been widely recognised; see Altman and Lyman (1998), Altman (2001),
Riley et al. (2006), Williamson et al. (2002), and Parmar, Torri, and Stew-
art (1998). Such problems seriously undermine the key goal of a systematic
review to provide reliable evidence. It is not unusual for systematic reviewers
to conclude that a set of prognostic studies was either too diverse or too poor
to allow a meaningful meta-analysis. Several authors have noted that reviews
of published studies are of limited value and that instead reviewers should at-
tempt to acquire the individual patient data from each study; see Altman and
Lyman (1998), Altman (2001), Riley et al. (2006), Piedbois and Buyse (2004),
and Blettner et al. (1999).

The vast majority of systematic reviews are based on published studies,
primarily because of the relative ease with which they can be done (even though
it is not that easy) [Piedbois and Buyse (2004)]. The alternative of obtaining
the individual patient data (IPD) from multiple studies [Clarke and Stewart
(2000), Stewart and Clarke (1995), and Oxman, Clarke, and Stewart (1995)] is
in principle far more valuable but also potentially problematic.

We believe that there have been very few IPD systematic reviews of prog-
nostic marker studies. Here we consider the issues that arise when carrying out
an IPD systematic review, based on our experience of carrying out such a study
in patients with lung cancer. Although it was clear that the IPD approach was
desirable, we aimed to assess whether such a study was feasible.

1.2 Systematic Review Based on Individual Patient
Data

The broad reasons in favour of IPD reviews together with the principal benefits
over reviews based on published studies are summarised by Riley et al. (2006).
Key advantages include being able to analyse the data in a consistent manner
and reducing (if not eliminating) the effect of publication bias. Noteworthy
disadvantages are the considerable resources needed to carry out such a review
and difficulties encountered in obtaining the data sets, particularly if they were
created a long time ago.
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The general idea of an IPD systematic review is that the raw data for
each individual are obtained directly from the researchers/data owners irre-
spective of whether a particular study has been published. These data are
checked and validated, and ideally are brought up to date (i.e., if extended
follow up information is available). The data are (re-)analysed centrally by the
review group using consistent statistical methods, including meta-analysis if
appropriate.

IPD meta-analyses have most famously been carried out by the Early Breast
Cancer Trialists Collaborative Group (1998) when evaluating the impact of
therapies for early breast cancer. Although the IPD approach has been used
increasingly for reviewing results of RCTs, even here such studies remain in
a small minority because of the resources needed. By contrast, there seem to
have been very few attempts to carry out IPD reviews on prognostic studies;
see Look et al. (2002).

For IPD reviews of trials, rather than simply asking each group to provide
their data, a recommended approach is to establish a multicentre collaborative
framework; see Stewart and Clarke (1995). Such a partnership, including group
authorship of the resulting article(s), is more likely to lead to obtaining the raw
data from as many relevant studies as possible.

We note the importance of investing adequate time at the outset in care-
fully planning the IPD systematic review, including producing a detailed study
protocol. Among key issues to be decided are developing strategies to identify
studies, specifying study inclusion criteria, drawing up a careful list of variables
to be requested, developing a simple and flexible data collection procedure, and
prespecifying methods of statistical analysis.

1.3 A Case Study: Microvessel Density in Non-Small
Cell Lung Cancer

The Prognosis in Lung Cancer (PILC) project was setup as an international
cooperative group aiming to clarify the area of prognostic factors in lung can-
cer. In the first instance, it was decided to examine microvessel density counts
(MVD) (a measure of angiogenesis) as a potential prognostic factor in non-small
cell lung cancer (NSCLC); see Trivella et al. (2006).

A pilot study was first carried out to identify published studies. Online
searches of Medline and CancerLit databases and a trawl of the references
included in identified publications initially revealed 23 eligible studies inves-
tigating MVD as a prognostic factor in NSCLC. The key words used for the
search were: lung cancer, lung carcinomas, angiogenesis, neovascularisation,
and microvessel.
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As well as meeting some clinical criteria, studies were required to have used
the median or mean MVD as a cutpoint to define patients with high or low
vascularisation, and to have reported overall survival (%) after at least five
years of follow-up. Studies that reported results on partially overlapping sets
of data were excluded.

Despite these rather loose criteria only 9 out of the 23 papers (39%) provided
suitable data for inclusion in a meta-analysis. In total, data relating to 1573
patients were analysed; 691 classified as high and 882 as low MVD. The Mantel–
Haenszel method was used to perform a meta-analysis of the relative risk (RR)
from each study. The pooled overall estimate of risk showed a lower risk of
death at five years (RR 0.77, 99% CI 0.68 to 0.88; P < 0.001) for patients with
lower MVD. However, there was highly significant heterogeneity (variability
between estimates) among the 9 studies.

The PILC steering committee comprised an oncologist, a surgeon, a pathol-
ogist, and two statisticians, one of whom worked full time on the project. The
committee provided general advice on the project as well as detailed clinical
and pathological expertise. A key objective was to explore the feasibility and
practical difficulties of doing individual patient data (IPD) systematic reviews
in studies of prognosis. In this chapter, we thus focus on the logistic issues as
they provide the greatest challenges and take the majority of the total time of
such a project. The findings of the analysis will be presented elsewhere.

In the following sections, we discuss general issues and then describe how
we dealt with these issues in PILC.

1.3.1 Identifying studies (data sets) and obtaining the data

For systematic reviews based on published data, it is generally the aim to
include as many studies as possible. For IPD systematic reviews, it is natural
to adopt the same philosophy. However, identifying all relevant studies and
obtaining the data can be very time-consuming, especially if efforts are made
to obtain unpublished data, so that the goal of including data from all relevant
studies may often be impossible to achieve.

The natural first step is to carry out a careful search of electronic databases
for relevant studies. It is advisable not to rely only on PubMed; other data-
bases may be fruitful. Strategies for searching for prognostic studies have been
described by McKibbon et al. (1995). However, in the present context, search-
ing needs to be more comprehensive than just searching for published results
as the aim here is to identify groups who might have relevant data. Thus, for
example, it would be useful also to identify published studies of the comparison
of assays or methods of measuring the marker of interest in patients with the
disease of interest.

Emphasis should be placed on also trying to identify and include as many
unpublished studies as possible, to try to reduce the impact of publication
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bias. Finding unpublished studies is not easy. An unpublished prognostic
‘study’ may be merely a set of data sitting on a computer, possibly with little
documentation. Indeed, their existence may well be nearly forgotten.

Unpublished studies can be identified through a variety of strategies includ-
ing asking personal contacts, advertising the project on the Internet, on email
lists, or at conferences, and writing to appropriate departments. It is particu-
larly relevant to ask groups who are known to have relevant data if they know
of other groups with similar data.

Once potential collaborators have been identified, the reviewers should pro-
vide a detailed protocol of the study as well as any relevant and/or helpful
information that may persuade them to participate and offer their data. They
should also be made aware of future authorship arrangements and be assured
that their data contribution will be used in a responsible and confidential man-
ner.

Even after groups have agreed to collaborate, there may be some delay in
acquiring all the data. It pays to be persistent and polite and when possible
to send regular reminders to those who have failed to respond by the requested
deadline. An easy-to-use reply form might also increase the response rate. The
multinational approach to such a study may also introduce language difficulties.
It is important to establish good relationships and effective ways of communi-
cation with each potential collaborator from a very early stage. Occasional
newsletters may be helpful, reporting on the overall progress of the project.

The few previous IPD studies of prognostic factors seem to have begun with
a collaborative network already in place; see Look et al. (2002). For PILC,
however, there was no existing group. We believed that relatively few groups
worldwide had studied microvessel density counts in non-small lung cancer, so
our intention was to identify all such studies done anywhere and try to obtain
individual patient data from as many research centres as possible, regardless
of whether the studies had been published. Careful searching of the published
literature combined with a network of personal contacts revealed a number of
research groups around the world working on lung cancer. Also, the project
was presented at an international conference abroad. A speculative letter was
drawn up presenting a draft proposal of the project and inviting research groups
to collaborate as well as asking the recipients to forward the letter to anyone
they thought appropriate.

Of the 38 groups initially contacted, 28 (73%) replied positively, but one
group could not participate due to lack of resources. There was no response
from the remaining 10 centres (some of which may not have been reliably iden-
tified). The 28 groups that were willing to participate were sent a second letter
requesting their data; 18 (67%) of the centres had appropriate data. Ultimately,
17 centres were able to supply the required data within the (very flexible) dead-
line, giving data for about 3200 patients. To safeguard the project against pos-
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sible accusations of irresponsible use of data and to ensure that collaborators
felt at ease with the way their data would be treated, at least one investigator
in each group was asked to sign a consent form.

1.3.2 Checking the data

Obtaining individual patient data from each collaborating group opens a new
phase of the study. It is essential also to gain a full understanding about how
each study was carried out, including details of methods of measurement and
coding of key variables. These simple steps mask several common difficulties,
so that checking all the data sets can be a very slow process.

Even the simplest data checking procedures may reveal inconsistencies that
would otherwise have gone undetected. For example, a patient coded as alive
in one field might by mistake have a date of death entered elsewhere in the data
set and thus they could be misanalysed in a survival analysis. When data are
conflicting, it is necessary to seek a resolution from the data owner.

To facilitate data checking in PILC, a ‘Data Characteristics Form’ was sent
to each group requesting information on a series of key questions regarding data
collection procedures, criteria for inclusion of patients, and details of the labo-
ratory methods used for obtaining the data. The information gathered proved
invaluable for checking and validating the data, and provided an understanding
of the structure of each data set. As was expected, however, the standardisation
process was far from straightforward. Table 1.1 lists some of the most profound
problems encountered. For data sets that were compiled a long time ago, it will
be hard (at best) to resolve questions about the data, such as contradictory
fields or invalid codes.

Direct communication with the data owners means that it is possible to
resolve errors and misunderstandings concerning the collection, coding, and
storage of the data. In fact, this is one of the greatest advantages of IPD meta-
analysis over systematic review of only published studies. Also, older data sets
might have been in the meantime updated, so the corrected/updated data can
be used.

A detailed journal was kept of PILC’s daily activity. This exercise, although
time consuming, proved invaluable given the complex process of checking mul-
tiple data sets over a long period. A key part of the cleaning and preparation of
each dataset was the implementation of standardised coding of variables com-
mon to all PILC data sets, without which sensible analysis would have been
impossible. Particular issues arose in relation to the MVD measurements, as
outlined in the next section.

After data checking, an ‘Individual Profile’ for each data set was prepared
based on information extracted from the Data Characteristics Forms and in-
cluded simple descriptive and basic statistical analysis. These profiles were sent
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Table 1.1: Problems encountered with data sets in PILC study

During visual inspection and basic checking of the data sets

• In a few data sets, for some patients the disease-free survival time was
larger than the total survival.

• In one data set, the sex of the patient was not available and had to be
determined from the patient’s first name.

• Very often, the survival time had been calculated manually and many
inaccuracies were observed.

• The variable for cancer stage was calculated wrongly on a number of
records.

• Numerous live patients had a date of death recorded.

• While dealing with numerical errors, it was discovered that some records
in question should not have been included in the database in the first
place. The most common reason was that the patient had not undergone
surgery but only had a biopsy performed.

• Dead patients were coded as “alive” because the cause of death was not
related to the lung cancer.

• On one occasion whilst enquiring about a numerical mistake, the data
owner discovered that his data were ‘randomised;’ in a sorting attempt in
Excel, only half the columns were sorted.

• Different centres use the numbers ‘0’ and ‘9’ in different ways. For in-
stance, in some data sets ‘0’ MVD means it is missing whereas in others
it means that no vessels were identified in the slide.

From the individual profiles

• The data distributions were different from what the researchers expected,
indicating errors in the data.

• The shapes of the summary Kaplan–Meier curves prompted researchers
to recheck their data and correct errors.
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back to the centres to ensure that all the information had been correctly under-
stood and interpreted. As a consequence, some further details were amended.

1.3.3 MVD measurements

Particular issues arose in the PILC study relating to the MVD measurements.
Ideally all the studies would have used identical or at least similar laboratory
methods, as even minor differences could affect the quantification. In the event
when all data sets used immunohistochemistry for angiogenesis quantification,
two main approaches were used and we discovered considerable variability in
their implementation. The Chalkley method uses an eyepiece with 25 random
points and the pathologist attempts to match as many of the points as possible
with the vessels on the slide, counting only the matched vessels. The all vessels
method requires the pathologist to count all visible stained vessels. For both
methods, areas showing a concentration of vessels are chosen to be measured,
known as ‘hotspots.’ In brief, all vessels is a density method whereas Chalkley
produces an area estimate.

In addition to there being two counting methods, there was considerable
variation in the methods of preparation of the slides (three staining agents) in
the decision about where to do the counting (choice of ‘hotspots’), the numbers
of readings, the numbers of observers, and in the microscope magnification
used. Furthermore, some recorded the mean of several counts whereas others
recorded the maximum.

Perhaps not surprisingly, therefore, we found that the all vessels counts var-
ied considerably across studies, both in terms of the average count and the shape
of the distribution. The Chalkley measurements were rather more consistent
across studies.

Fortunately, three studies had used both methods enabling us to make a
direct comparison. Analysis of these data sets showed rather poor agreement.
As a result, it was decided that all subsequent data analyses would be performed
separately for Chalkley and all vessels data. Three other data sets were also
used to develop an empirical correction to convert data recorded as maximum
counts to give estimated mean counts.

With individual patient data and accompanying details of study methodol-
ogy, we were able to get far more detailed information than would have been
possible in a review of only published studies.

To illustrate the value of collecting IPD, 14/17 data sets needed data cor-
rections, some of them major. We were able to remove duplicates as several
studies had been done on overlapping patient groups. Three of the 17 data sets
had not previously been published, and for 6 of the remaining 14 we obtained
extended follow-up compared to the data that had been used for the published
analyses.
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1.3.4 Meta-analysis

There are several important advantages of IPD when conducting a meta-analysis.
All of these were implemented in the PILC study. Thus we were able to carry
out a Cox proportional hazards regression analysis for each data set, keeping the
MVD measurements as continuous and also adjusting for the same covariates
(stage of cancer and age) in each case. The resulting log hazard ratios for MVD
count and standard errors were combined using random effects meta-analysis to
get an overall assessment of the prognostic value of MVD counts. All analyses
were performed separately for Chalkley and all vessels MVD counts.

In addition, we were able to explore subgroups in a consistent way; in par-
ticular, we examined the prognostic value of MVD within groups defined by
stage of cancer. The results of all the analyses are presented elsewhere; see
Trivella et al. (2006).

1.4 Discussion

Prognostic studies are mainly retrospective observational studies. Individually
they are generally too small, and too poorly designed and analysed to provide
reliable evidence. As a consequence of the poor quality of research, prognostic
markers may remain under investigation for many years after initial studies
without any resolution of the uncertainty. An obvious way forward is to carry
out a systematic review and meta-analysis to identify and synthesise the avail-
able relevant information.

Carrying out such studies is more of a challenge than for randomised trials,
however. Published reports of prognostic studies are often lacking in method-
ological reporting, use poorly chosen statistical techniques, and often fail to
report the numerical results that are necessary for inclusion in meta-analysis.
There is to date no accepted set of guidelines on how to assess the quality of
such studies. In addition, as noted earlier, there are serious concerns about the
impact of publication bias, such that publication is more likely among studies
showing that a marker has a statistically significant association with prognosis.

Meta-analysis based on published information may thus be difficult or im-
possible; see Altman and Lyman (1998) and Riley et al. (2006). Although such
meta-analyses may sometimes be useful, especially when the study characteris-
tics do not vary too much and only the best studies are included, the findings
will rarely be convincing. Some, if not all, of these obstacles may be overcome
by obtaining IPD. For example, the widespread use of dichotomisation of con-
tinuous variables reduces power and offers a breeding ground for publication
bias when multiple cutpoints are explored; see Altman et al. (1994). The avail-
ability of IPD avoids bias by enabling the original measurements to be used.
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The IPD approach is perhaps especially useful for studies with time-to-event
data (for example, prognostic studies) inasmuch as such data are generally not
well summarised in publications; see Riley et al. (2003). Indeed, those system-
atic reviews and meta-analyses of RCTs that have been performed using IPD
have largely assessed time-to-event outcomes.

1.4.1 Systematic review of prognostic studies using individual
patient data

Systematic reviews (with meta-analysis) of individual patient data have mainly
been of randomised trials. Consequently, publications with advice on how to
conduct and analyse such studies have concentrated on experiences from RCTs;
see Clarke and Stewart (2000) and Stewart and Clarke (1995).

The PILC project was the first known concerted collaborative effort to ob-
tain IPD for a prognostic marker from as many centres as possible, with the view
to put them through meta-analysis. The few previous similar efforts have been
largely restricted to acquiring data from a limited number of centres, perhaps
as an existing collaborative group; see Look et al. (2002).

For the PILC project, individual patient data were collected from all con-
tributing centres, and unpublished data were sought and included. Methods
were devised to obtain much more detailed information about study methods
than appeared in publications. The data were carefully checked and standard-
ised, and in addition to analysing the data as continuous, a uniform cut-off
point was adopted. Moreover, all analyses were performed separately for the
single most contributory factor of variation, the method of MVD counting. The
reliability of MVD measurement techniques, the choice of cut-off points, and
the number of patients and events in each study were major contributing fac-
tors to study quality. Finally, random-effects meta-analysis was employed to
synthesize the available data.

Although just a single case study, many of the lessons learnt from PILC
will apply broadly to IPD studies of prognosis in cancer and indeed in other
medical areas. Our experiences accord with what has been written by others
about IPD studies, and may be summarised as follows

1. Obtaining and combining raw data from prognostic studies is a long,
expensive, and rather laborious process, although it offers clear compen-
sation in avoiding methodological pitfalls.

2. Identifying unpublished data is difficult and time-consuming.

3. Individual studies are likely to be heterogeneous in terms of measurement
methods (e.g., assays) used.

4. Reported results and publications from participating groups are usually
lacking in detail and laboratory and statistical methods lack consistency.
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5. Data checking and standardisation should be given particular attention
and are inevitably time-consuming.

6. Standardising patient inclusion/exclusion criteria is possible and should
be done.

7. Many data sets will benefit from corrected data and extended follow-up.

8. Detailed record keeping is of primary importance.

9. Appropriateness of analyses can be ensured, including maintaining key
data as continuous and applying consistent adjustment for covariates.

10. Variation in the methods of measuring ostensibly the same variable are a
serious impediment to clear conclusions – consensus methods should be
developed.

The main advantages of collecting IPD in systematic reviews of prognostic
studies are the inclusion of extended follow-up for studies that were published;
inclusion of unpublished studies with reduced risk of publication bias; ability
to check the data; standardised data analysis, including correct analysis of con-
tinuous variables; analysis based on time-to-event for each patient; and ability
to analyse patient subgroups.

IPD meta-analysis is thus clearly desirable. We have shown that it is fea-
sible, but it may not be cost-effective as implemented here. As one of the key
factors is the number of data sets, an obvious option to consider is to restrict
the study to a smaller number of centres with the larger data sets, and perhaps
also to seek only those studies using consistent laboratory methods. Of course,
if not all studies are sought, then the selection of data sets should be made
independently of the study’s findings. In the future, it may be possible to carry
out such studies using high-quality samples stored in tissue banks.

1.4.2 The need for higher-quality prognostic studies

It is encouraging that systematic reviews have expanded into the area of prog-
nosis despite the practical difficulties; see Altman (2001). The approach is the
best available in attempting to efficiently utilise published information. How-
ever, the quality of a systematic review reflects the quality of the primary stud-
ies, and there is ample evidence that primary studies are often poorly reported
and poorly conducted; see Riley et al. (2003, 2006) and Sauerbrei (2005). In
time, we may hope that reporting guidelines for primary prognostic studies
may lead to better quality published information; see McShane, Altman, and
Sauerbrei (2005).

Individual patient data undoubtedly provide the best quality of information
for any systematic review. The great disadvantage is that it is tremendously
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time-consuming – the whole process can take several years. Also, we note that
it cannot overcome either deficiencies of individual studies or heterogeneity of
methodological approaches, although such issues will become much clearer in
an IPD systematic review. Consideration needs to be given to valid strategies
for IPD systematic reviews on subsets of studies, perhaps defined by sample
size or methodological features.

Systematic reviews of prognostic studies, whether based on the literature
or on IPD, will generally fail to yield a very clear answer. They will, however,
be able to draw attention to the paucity of good-quality evidence and pave the
way for higher-quality future research, as in the following example.

From this analysis it becomes evident that further retrospective in-
vestigations will not contribute to the solution of the problem and
thus are obsolete. There is an obvious need for standardization of
the assay procedure and the assessment of the specimens as well as
for the initiation of a prospective multicenter trial to provide definite
answers. [Schmitz-Dräger et al. (2000)]
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On Statistical Approaches for the Multivariable

Analysis of Prognostic Marker Studies

N. Holländer and W. Sauerbrei

Institute of Medical Biometry and Medical Informatics, Freiburg, Germany

Abstract: Various statistical methods to analyse prognostic marker studies
are available and are used in practice. Issues of multivariable model building
will be discussed in the framework of regression models and classification and
regression trees (CART). It is shown that the choice of one specific statistical
method has a strong influence on the results and, therefore, on the interpre-
tation of a prognostic marker. Within regression models we compare the full
model with models obtained by backward variable selection considering also
transformations of continuous covariates. We discuss problems caused by the
uncritical application of CART and outline advantages of small and simple
trees. Furthermore, we show how to form risk groups with different prognoses
and we illustrate the necessity to validate results in an independent study. Data
of two breast cancer studies are used for illustration.

Keywords and phrases: Prognostic markers, model building, regression,
trees, validation

2.1 Introduction

The identification and assessment of prognostic markers (also termed as prog-
nostic factors) is an important task in clinical research. Studies on prognostic
markers attempt to determine a prediction of the course of disease for groups of
patients defined by the values of prognostic markers. In contrast to therapeutic
studies, however, where statistical principles and methods are well developed
and generally accepted, this is not the case for the evaluation of prognostic
markers. Deficiencies in design [see Riley et al. (2006)] and analysis of prog-
nostic marker studies (e.g., no proper multivariable analysis) explain to some
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extent why prognostic markers are discussed controversially. In addition to is-
sues such as small sample size, publication bias, and inappropriate reporting
[see Riley et al. (2003)], differences of statistical methods used to analyse sin-
gle studies are an important reason hindering a sensible summary assessment
of a prognostic marker. Many prognostic markers or prognostic classification
schemes do not survive a rigorous validation in new data [see Sauerbrei et al.
(1997)]. Consequently, prognostic markers derived from these studies are often
not accepted for general use [see Wyatt and Altman (1995) and Boracchi and
Biganzoli (2003)].

In this chapter, we show for a specific example that the choice of the sta-
tistical method and various specific assumptions have a strong influence on the
results and, therefore, on the interpretation of prognostic markers. Focusing
on the statistical analysis of prognostic markers in oncology, we discuss issues
of model building in the framework of regression models and of classification
and regression trees. Within regression models, we compare the full model
with models selected by backward elimination procedures and consider also dif-
ferent assumptions with respect to the functional form of continuous markers.
Applying CART, we discuss problems caused by an uncritical application of
tree-building approaches and outline advantages of small and simple trees. For
illustration, we use the data of two studies in patients with node-positive breast
cancer (Section 2.2). The statistical methods are described in Section 2.3. Re-
sults obtained in the larger of the two breast cancer studies are given in Section
2.4. In Section 2.5, we show how to classify, based on a selected regression
model or tree, the patient population into risk groups with different prognoses.
Using the data of a second smaller breast cancer study, we demonstrate the
necessity of an independent validation of the results.

2.2 Examples: Two Prognostic Studies in

Breast Cancer

We consider the data of two studies of patients with node-positive breast
cancer. The first, a clinical trial [GBSG-2 study, n = 686 patients, 299 events
for event-free survival (EFS)] is used to identify prognostic markers and to
investigate the influence of different model-building strategies. This dataset
was used previously for prognostic modelling [for example, by Sauerbrei
and Royston (1999) and Schumacher et al. (2006)] and is available at
http://www.blackwellpublishers.com/rss/. The data of the second, smaller
Freiburg-DNA study (n = 139 patients, 76 events for EFS) are exclusively
used to validate the results obtained in the GBSG-2 study. Prognostic mark-
ers evaluated in both studies were patient’s age, menopausal status, tumour
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size, estrogen, and progesterone receptor, tumour grade, and number of in-
volved lymph nodes. More details with references are given in Schumacher et
al. (2006).

2.3 Statistical Methods

There are several statistical methods to analyse prognostic marker studies. In
this chapter, we consider regression models and classification and regression
trees.

2.3.1 Regression models

For survival data, a standard tool to analyse multiple prognostic markers si-
multaneously is the Cox proportional hazards regression model. If we denote
the prognostic markers under consideration by X1,X2, . . . ,Xp, then the model
is given by

λ(t|X1,X2, . . . ,Xp) = λ0(t) exp(β1X1 + β2X2 + · · · + βpXp), (2.1)

where λ (t | ·) = limh→0 (1/h)Pr (t ≤ T < t + h | T ≥ t, ·) denotes the
hazard function of the event-free or overall survival time random variable T
and λ0(t) is an unspecified baseline hazard. The assumption of a (log-)linear
effect of a continuous prognostic marker Xj (e.g., tumour size) is one of the
standard assumptions in the Cox regression model; here, exp(βj) represents the
increase or decrease in risk if Xj is increased by one unit. If Xj is binary (e.g.,
menopausal status), then exp(βj) is simply the hazard ratio (HR) of category 1
(e.g., postmenopausal) to the reference category (Xj = 0, e.g., premenopausal).

Continuous markers

Due to this easy interpretation, continuous prognostic markers are often cate-
gorised into two or more subgroups. Doing so, in formula (2.1) the correspond-
ing prognostic marker is replaced by dummy variables for the different categories
(e.g., two dummies for three categories). Then the hazard ratio is estimated
with respect to one reference category. For more details, see standard text-
books by Marubini and Valsecchi (1995) and Therneau and Grambsch (2000).
However, the categorisation of a continuous prognostic marker has several dis-
advantages such as loss of information [see Royston, Altman, and Sauerbrei
(2006)]. On the other hand the assumption of a (log-)linear relationship may
be wrong. As an alternative, Royston and Altman (1994) proposed the frac-
tional polynomial (FP) approach which provides more flexibility by allowing
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non-linear relationships of continuous covariates while preserving simplicity of
the final model to an acceptable degree.

Variable selection

An important aspect in the analysis of prognostic marker studies is the selection
of markers with influence on the outcome. To select relevant covariates in the
framework of regression models, variable selection methods such as stepwise
methods or selection based on an information criterion (e.g., Akaike’s AIC) are
commonly applied [see Weissberg (2005)].

In this chapter, we apply backward elimination (BE) using different nom-
inal significance levels and compare the results to the full model. We will use
the common significance level α = 0.05 [BE(0.05)], BE with significance level
α = 0.157 [BE(0.157)], which corresponds asymptotically to AIC if selection of
one variable is considered, and α = 0.01 [BE(0.01)] leading to a more stringent
selection of markers. Combining the selection of a FP transformation for contin-
uous covariates with selection of variables by backward elimination, Sauerbrei
and Royston (1999) and Sauerbrei et al. (1999) have extended the FP-approach
to a model-building strategy, which is referred to as the multivariable fractional
polynomial (MFP) approach. This MFP approach also allows the incorpora-
tion of basic medical knowledge, that is, the increase or decrease in risk must
be monotonic. Software is generally available [see Sauerbrei et al. (2006)].

To assess the selected models, we use the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC). The latter depends on
sample size and puts more penalty on each covariate in the selected model than
the AIC. A smaller value of AIC and BIC, respectively, corresponds to a better
model.

2.3.2 Classification and regression trees (CART)

Hierarchical trees are a popular approach for nonparametric modelling of the
relationship of several potential prognostic markers and a response variable.
Briefly, the idea of classification and regression trees (CART) is to construct
subgroups that are internally as homogeneous as possible with respect to the
outcome (here, EFS) and externally as separated as possible. Thus, CART leads
directly to prognostic subgroups defined by the selected prognostic markers.
This is achieved by a recursive tree-building algorithm. Although the principles
of the approach have been available for a long time, the monograph of Breiman
et al. (1984) is often considered as the important “starting point” of tree-based
methods. Here we will use CART as a synonym for these approaches. The
original version of CART has been modified in various directions, but here we
concentrate on the application to survival data. The log-rank test is used to split
the data recursively into subgroups. As a stopping rule for the tree-building
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process, we use pstop = 0.05 as an upper bound of the minimal p value and
nmin = 20 as minimum number of patients in a subgroup. Furthermore, we
restricted the possible splits to the range between the 10% and 90% quantiles
of the empirical distribution of each continuous marker. Within this range,
all splits are considered as potential cutpoints and CART selects the cutpoint
corresponding to the minimum p-value pmin of the log-rank test that is used
for the comparison of the resulting two subgroups. More details with references
are given in Schumacher et al. (2006).

Because of the well-known problem resulting from multiple testing, it is
obvious that the selection of the minimum p-value cannot lead to correct results
of the log-rank test. To account for this problem, we used a P -value correction
of Lausen and Schumacher (1992).

2.3.3 Formation of risk groups

Quite often, the aim is to develop a prognostic classification scheme. The final
subgroups obtained in a regression tree are well suited for this task. Depending
on the number of final nodes and their separation, some combination of these
subgroups to a prognostic subgroup might be indicated, especially if the prog-
nosis is comparable. For more complex trees systematic approaches to prune
and amalgamate nodes have been proposed [see Breiman et al. (1984)]. For
smaller trees, medical knowledge and subjective preferences can be incorporated
to define a prognostic classification scheme [see Sauerbrei et al. (1997)].

For the regression approaches considered in Section 2.3, prognostic sub-
groups can be formed by dividing the distribution of the prognostic index
β̂1X1 + β̂2X2 + · · · + β̂pXp into quartiles.

2.4 Results in the GBSG-2 Study

In this section, we apply the different statistical methods to the data of the
GBSG-2 study. Some results will be used to form risk groups in Section 2.5.

2.4.1 Regression models – standard applications

In regression models for the GBSG-2 data, all analyses were adjusted for hor-
monal treatment.

Table 2.1 shows results of univariate Cox models as well as the results of the
full model and the model selected by BE(0.05). For continuous covariates, we
use both approaches, assuming either a linear effect (A) or using cutpoints to
categorise the variables (B). Cutpoints were chosen independently from the data
as predefined in the original analysis of the GBSG-2 study; for more details,
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see Schumacher et al. (2006). Results are given in terms of estimated hazard
ratios (HRs). HRs should be given with confidence intervals, but we have
omitted them for brevity. With BE(0.05), we select with both approaches a
model containing the three markers: tumour grade, number of involved lymph
nodes, and progesterone receptor. Using AIC and BIC for model assessment,
the two models with categorised covariates fit better than the corresponding
models based on the assumption of a linear effect of continuous covariates. For
both approaches, the model selected by BE(0.05) would be preferred to the
corresponding full model due to smaller values of AIC and BIC.

BE(0.01) yields the same model as BE(0.05) when a linear effect is assumed,
whereas only two markers (number of lymph nodes, progesterone receptor) were
selected with BE(0.01) for categorised data (Table 2.2). Applying BE(0.157)
in the latter situation, age and menopausal status were included in the se-
lected model, but both markers were eliminated when assuming a linear effect.
However, tumour size is now included. Assessing models by BIC, the smallest
model would be preferred due to the large penalty term for additional markers;
the smallest AIC value was obtained with BE(0.05) for categorised covariates.
However, in spite of the better fit, the categorisation can always be criticised
because of some degree of arbitrariness and subjectivity concerning the num-
ber of cutpoints, the specific cutpoints chosen, and a loss of information [see
Royston, Altman, and Sauerbrei (2006)].

Age (years)
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Figure 2.1: Different risk functions for the effect of age obtained in the GBSG-2
study: categorised risk function (solid line), linear risk function (dashed line),
and fractional polynomial (dotted line)
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2.4.2 Regression models – the MFP-approach

Applying the MFP-approach to the GBSG-2 data with significance level α =
0.05, the following markers were selected: number of positive lymph nodes,
tumour grade, progesterone receptor, and age, for the latter two a FP transfor-
mation was chosen. This model yields an AIC value of 3072.22 corresponding to
an improvement of the log-likelihood of 8.7 as compared to the model selected
by BE(0.05) with categorised covariates (Table 2.2). For more details, see Table
4 in Sauerbrei and Royston (1999). With the MFP-approach, a highly signif-
icant nonlinear effect of age was detected (likelihood ratio test for age gives
P < 0.001) with a strong increase in risk for younger patients. Corresponding
to the results in Table 2.1, we illustrate in Figure 2.1 that there is hardly any
prognostic effect of age if we assume linearity or after categorising age into the
subgroups based on the predefined cutpoints.

The analysis of the GBSG-2 study has shown that the final regression model
may strongly depend on the underlying model-building strategy and that stan-
dard assumptions such as linearity for continuous covariates may not correspond
to the data.

2.4.3 Summary assessment – implication of the modelling
strategy

As shown in Figure 2.1, we observed hardly any effect of age when assuming
linearity or when categorising age using the prespecified cutpoints. However,
using a single cutpoint of 40 years the resulting HR (95% confidence inter-
val) comparing patients > 40 years, with patients ≤ 40 years in a multivariable
regression model is 0.624 (0.424,0.918) indicating, in contrast to scenario B (Ta-
ble 2.1), a larger and significant age effect. This simple example demonstrates
that the choice of a specific cutpoint can strongly influence the estimated HR
in one single study. This also affects the pooled estimate if such a study is
included in a meta-analysis.

Furthermore, in meta-analyses based on published data, adjusted estimates
of a specific prognostic marker are often not available for several studies [see
Riley et al. (2006)]. It is not uncommon to calculate a pooled estimate of the
HR from all data available, which means that estimated effects from unadjusted
analyses and adjusted analyses are averaged. To illustrate differences between
results from adjusted and unadjusted analyses, we have included univariate
analyses for the GBSG-2 data (see Table 2.1). For some variables, unadjusted
HRs are much larger giving a very optimistic view on the prognostic value of
the corresponding marker. In our example, this is more apparent for the model
with the categorised risk markers. For example, the unadjusted estimated HR
for tumour grades 2 and 3 are 2.369 and 3.056, respectively, as compared to
patients with grade 1 tumours. However, adjusting for the other prognostic
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markers in the full model, the corresponding estimated HRs reduced to 1.723
and 1.746, respectively. In a chapter in this volume Riley et al. (2006) illustrate
a possible influence of this issue on the result of a meta-analysis by calculating
pooled estimates for adjusted and unadjusted effects of a prognostic marker
(MYCN) for neuroblastoma [see Riley et al. (2006)]. As in our analysis, for
a single study the estimated HRs from the unadjusted analysis were larger.
Consequently, a meta-analysis mixing unadjusted and adjusted risk estimates
from the primary studies produces pooled estimates whose interpretation is very
difficult.

2.4.4 Application of classification and regression trees

Using the CART procedure with our choice of specific parameters for the analy-
sis of the GBSG-2 data, we obtained the large complex tree displayed on the left
side of Figure 2.2. We start with the whole group of 686 patients (the ‘root’)
with 299 observed events corresponding to an event rate of 43.6%. The marker
with the smallest minimum p-value is ‘number of involved lymph nodes’ (in
Figure 2.2 denoted as NODES), and the whole group is split at an estimated
cutpoint of 9 positive nodes yielding subgroups of 585 patients with less than
or equal to 9 positive lymph nodes (event rate 38.8%) and a subgroup of 103
patients with more than 9 positive nodes (event rate 70.9%). Repeating this
procedure in the latter smaller subgroup, progesterone receptor (PROGREZ)
with cutpoint 23 fmol leads to the smallest minimum p-value and the 103 pa-
tients are subdivided into subgroups of 60 and 43 patients, respectively. In these
two subgroups, no further splits are possible because of the pstop criterion. In
the group of 585 patients with maximally 9 positive lymph nodes, again NODES
appeared to be the strongest marker with a cutpoint of 3 positive nodes. In
this left part of the tree, the resulting subgroups are then subdivided by PRO-
GREZ; further subdivisions are based on the markers tumour size (TUSIZE),
age (AGE), and/or estrogen receptor (ESTREZ). Finally, the tree-building al-
gorithm leads to 12 final subgroups, which are illustrated by the boxes in Figure
2.2.

This uncritical application of CART has several disadvantages. (i) For con-
tinuous markers, the cutpoint is selected from a large set of possible splits.
Because of the well-known problem resulting from multiple testing, it is obvi-
ous that the selection of the minimum p-value cannot lead to correct results of
the log-rank test. Ignoring this problem, continuous variables are likely to be
chosen for data splitting, even if they have hardly any prognostic effect. Fur-
thermore, the tree-building algorithm produces too many splits and ends up
with too many final subgroups. However, this problem can be reduced by using
a corrected p-value pcor instead of the minimum p-value [see Lausen and Schu-
macher (1992)]. Additionally, it is questionable whether all selected cutpoints
are sensible. In the subgroup of the 103 patients with more than 9 positive
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Figure 2.2: Classification and regression trees obtained for the GBSG-2 study:
(A) no p-value correction and all cutpoints allowed (no prespecification) and
(B) with p-value correction and prespecification of cutpoints

nodes, for example, we obtained for the progesterone receptor a cutpoint of 23
fmol. The same value would be obtained when using a corrected instead of the
minimum p-value. However, the choice of 23 fmol is somewhat arbitrary and
may not be reproducible or comparable to cutpoints obtained in other studies.
In medical studies, cutpoints of 5, 10, or 20 fmol/ml are often used to classify
into receptor-positive and receptor-negative patients. Thus, another useful re-
striction to be implemented in the tree-building process may be the definition
of a set of predefined possible cutpoints. For the progesterone and estrogen
receptors we chose 5, 10, 20, 100, and 300 fmol as possible splits. Defining
also prespecified cutpoints for age and tumour size and using corrected p-values
of the log-rank test, we obtained the small tree displayed on the right side of
Figure 2.2. NODES with a cutpoint of 9 positive lymph nodes is again used to
split the complete population. The corrected p-value is still highly significant
(pcor < 0.0001) indicating the strong prognostic effect of this marker. Further
splits are based on NODES with cutpoint 3 and on PROGREZ. In contrast
to the first complex tree, we obtained a simple small tree, which is based on
the two important prognostic markers only, with 6 final subgroups. Generally,
the interpretation of such simple trees is easier and the chance that results are
reproducible is much higher as compared to that from large complex trees.
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2.5 Formation and Validation of Risk Groups

Using the small tree (Figure 2.2B) we form four prognostic subgroups out of
the six final subgroups:

I: NODES ≤ 3 and PROGREZ > 100.
II: NODES ≤ 3 and PROGREZ ≤ 100 or 4 ≤ NODES ≤ 9 and PROGREZ

> 20.
III: 4 ≤ NODES ≤ 9 and PROGREZ ≤ 20 or NODES > 9 and PROGREZ

> 20.
IV: NODES > 9 and PROGREZ ≤ 20.

The Kaplan–Meier estimates of the event-free survival curves for subgroups
I–IV, which are given in Figure 2.3 under the heading ‘CART,’ show a good
separation between the selected prognostic subgroups.

Kaplan–Meier estimates of EFS for the prognostic subgroups derived from
the prognostic index of the Cox regression model selected by BE(0.05) with
categorised variables are displayed in Figure 2.3 as ‘COX.’ Again, we obtained
a clear separation between prognostic subgroups.

Although both approaches use the same two strong prognostic markers the
resulting prognostic subgroups need not necessarily contain the same patients.
The group with the worst prognosis obtained by COX, for instance, contains
180 patients, whereas subgroup IV of CART contains only 57 patients. Further-
more, it should be taken into account that we estimated the difference between
prognostic subgroups with the same data that we used for model building. As a
consequence, the differences between risk groups are most likely overestimated
and results have to be validated in an independent study.

Validation

We attempt to validate the two prognostic classification schemes with the data
of the Freiburg-DNA study that covers the same patient population and prog-
nostic markers as the GBSG-2 study. Despite the good agreement, which could
not be taken for granted in practice, CART is not directly applicable, because
only progesterone and estrogen receptor status (positive: > 20 fmol and nega-
tive: ≤ 20 fmol) are recorded in the Freiburg-DNA study. Therefore, we modify
CART by replacing the value 100 for PROGREZ by 20. We replace subgroups
I and II by new subgroups I* and II*; the modified classification approach is
referred to as CART*. Except for the adaption for PROGREZ, no further mod-
ifications were necessary. However, this good agreement between studies is an
exception rather than a rule.
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Figure 2.3: Kaplan–Meier estimates of event-free survival probabilities for the
prognostic subgroups derived from a Cox model with categorised covariates
(COX) and the simple tree displaced in Figure 2.2B (CART)

Table 2.3 shows the estimated hazard ratios with 95% confidence intervals
for the prognostic groups derived from the two classification schemes. The HRs
were estimated by using dummy variables defining the risk groups and by taking
the group with the best prognosis as reference. To obtain prognostic subgroups
in the Freiburg-DNA study, the definitions and categorisation derived in the
GBSG-2 study are used. The results show that there is some shrinkage in the
HRs when estimated in the Freiburg DNA study. For several reasons, such as
the baseline category in COX includes only 7.6% of patients in contrast to 35.4%
in the baseline category of CART, a comparison of the amount of shrinkage is
difficult. It seems to be that shrinkage is more pronounced in the CART*
classification scheme (reduction by 47% in the high-risk group) as compared
with COX (reduction by 28% in the high-risk group).

To sum up, the assessment of prognostic classification schemes should not be
performed in the same data set that is used for model building and formation of
risk groups. If no validation data are available, data-splitting as cross-validation
or bootstrap resampling methods could be applied to obtain different data sets
for model building and assessment of results.
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Table 2.3: Estimated hazard ratios (HR) for prognostic subgroups derived in
the GBSG-2 study by using the selected Cox model with categorised covariates
(COX) and a modification of the simple tree displayed in Figure 2.2B (CART*).
Validation of the HRs in the Freiburg-DNA study

GBSG-2 study Freiburg-DNA study†

HR (95% CI) n (percent) HR (95% CI) n (percent)

COX
I 1 52 (7.6) 1 33 (23.7)
II 2.68 (1.23, 5.83) 218 (31.8) 1.78 (0.73, 4.31) 26 (18.7)
III 3.95 (1.83, 8.51) 236 (34.4) 3.52 (1.65, 7.30) 58 (41.7)
IV 9.92 (4.62,21.29) 180 (26.2) 7.13 (2.56,17.18) 14 (10.7)

CART*
I* 1 243 (35.4) 1 50 (36.0)
II* 1.82 (1.34, 2.47) 253 (36.9) 1.99 (1.05, 3.75) 38 (27.3)
III 3.48 (2.51, 4.82) 133 (19.4) 3.19 (1.70, 5.97) 33 (23.7)
IV 8.20 (5.52,11.98) 57 (8.3) 4.34 (1.85,10.15) 11 (7.9)

† Complete case analysis, observations with missing values deleted.

2.6 Discussion

In this chapter, we presented several statistical methods which are used to
analyse prognostic marker studies. It was shown that results can strongly de-
pend on the modelling approach. We demonstrated that a so-called final mul-
tivariable regression model is often the result of a more or less extensive model-
building process which may involve the categorisation and/or transformation of
markers as well as the selection of variables in an automatic or subjective man-
ner. Several assumptions are always required. Investigating prognostic markers
by means of classification and regression trees, corrected p-values should be
applied to overcome problems caused by multiple testing in continuous mark-
ers. Furthermore, the prespecification of cutpoints and the definition of sensible
stopping rules are important to provide interpretable trees.

Considering only 7 potential prognostic markers in our example, we have
shown that standard assumptions of the Cox model may be violated and that a
careful multivariable modelling is needed to select relevant markers and to as-
sess their effect. Obviously, these problems increase with an increasing number
of potential prognostic markers. Even before the first results of gene expression
studies were published, the effect of more than 200 potential prognostic mark-
ers in breast cancer were controversially discussed, and by 2001 about 1000
papers have been published on this issue. Considering only several variables,
the ‘full’ model is often not sensible, although its use is postulated in theo-
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retical papers or some textbooks [e.g., Harrell (2001)]. One important reason
is that the full model avoids data-dependent modelling providing unbiased pa-
rameter estimates and meaningful confidence intervals. On the negative side,
it has to be stressed that the choice of variables in the full model is rather
unclear. Generally, a large number of different variables are recorded in a clin-
ical trial and also in a clinical cancer registry. Which of these variables belong
to the full model? The ‘pro’ to avoid data-dependent modelling leads to the
‘con’ that the full model includes some variables with a negligible effect [see
Sauerbrei (1999)] and usually assumes linear effects for continuous covariates.
However, this assumption may not agree with the dose–response relationship in
the data. Investigating possible nonlinearity with the MFP approach, this was
most obvious for age in our example. Model building by selection of variables
and functional forms for continuous variables may cause bias of estimates in
the final multivariable regression model. Therefore, the model-building process
should be taken into account when judging the results of a prognostic study;
in practice, it is usually neglected. Simplicity should be an important aim of
model building [see Sauerbrei (1999)]. This also helps with issues such as sta-
bility and reproducibility of the selected model or tree. Bootstrap resampling
methods may be used to investigate stability of regression models [see Royston
and Sauerbrei (2003)] and to correct for bias caused by model building [see
Schumacher, Holländer, and Sauerbrei (1997) and Holländer, Sauerbrei, and
Schumacher (2004)]. Procedures to combine variable selection with shrinkage
have been proposed [see Breiman (1995) and Tibshirani (1997)]. To improve
the predictive ability of trees, stabilising methods based on resampling, such as
bagging have been proposed [see Breiman (2001) and Hothorn et al. (2004)].
Furthermore, to assess their usefulness, prognostic models should be validated
in independent data [see Simon and Altman (1994) and Altman and Royston
(2000)]. Using the classification scheme developed in the GBSG-2 study to form
prognostic subgroups in the validation study, we observed some shrinkage with
respect to the separation of the resulting subgroups.

In addition to the statistical approaches described in this chapter, there
are many other modelling approaches available and more statistical issues to
consider for the analysis of a single study. To handle these issues, authors have
specific preferences but general recommendations are currently not available
[see Schumacher et al. (2006), Concato, Feinstein, and Holford (1993), Harrell,
Lee, and Mark (1996), Pajak et al. (2000), McShane and Simon (2001), and
Biganzoli, Borachi, and Marubini (2003)]. A variety of methods is used in
real studies; conflicting results concerning the prognostic relevance of single
markers may be caused by the choice and/or the (inadequate) application of a
specific statistical method. In Table 2.4, we have summarised important issues
concerning the analysis of single studies. In addition to the topics discussed
here, we have also listed a few points requiring more attention in future studies.
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Table 2.4: Summary of important issues for the analysis of single prognostic
marker studies

1. Treatment of Study Population

- Ideally patients without any systemic adjuvant therapy, but unrealistic in many diseases

- Standardisation or randomisation of treatment preferable; adjustment for treatment in the

analysis

2. Model-Building Process

- Multivariable model required to assess the effect of a marker

- Many approaches available; no general agreement concerning preferable strategies

- Our preference is regression models; other approaches can give complementary information

2a. Regression Models

- Problems caused by categorisation of continuous covariates

- Standard assumption of a (log-)linear effect of continuous markers may be wrong

- Variable selection methods sensible to select relevant markers; complexity of the “final”

regression model depends on nominal significance level

- Different variable selection strategies may result in different ”final” regression models

2b. Trees

- Uncritical application of trees can lead to large, unstable, and uninterpretable trees

- p-value correction and prespecification of cutpoints for continuous variables

2c. Other Approaches

- Many methods available, none without problems

3. Formation of Risk Groups

- Different model-building strategies may result in different risk groups

- Avoid too-small risk groups

4. Validation of Results

- Overestimation of effects caused by data-dependent modelling

- Validation of prognostic relevance of markers and models in independent validation study

5. Issues Requiring More Attention in Future Studies

- Stability investigation of selected models

- Combining variable selection with shrinkage

- Differentiation between studies developing a prediction model from studies with main

interest in one specific marker
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In general, the evaluation of a prognostic marker requires a summary as-
sessment from several studies. For individual studies, it is generally accepted
that a multivariable analysis is required. Consequently, a pooled estimate from
several studies should be based on adjusted estimates from individual studies.
Ideally all studies use the same variables for adjustment. This may be possi-
ble with individual patient data (IPD) and simple models containing a small
number of ‘important’ markers only. For new markers, it is more promising
that research groups start cooperation when designing new studies with the
aim of a prospectively planned pooled analysis, a concept sometimes used in
epidemiological research [see Blettner et al. (1999)]. With the current situation
of trying to summarise poorly published estimates based on different ways of
analysis, a reliable assessment of the prognostic value of a marker is nearly im-
possible. Many important problems illustrating the difficulties of performing a
pooled analysis using published studies and the feasibility of obtaining IPD are
addressed in two chapters in this volume by Riley et al. (2006) and Altman et
al. (2006).
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Bagging survival trees, Statistics in Medicine, 23, 77–91.

14. Lausen, B., and Schumacher, M. (1992). Maximally selected rank statis-
tics, Biometrics, 48, 73–85.

15. Marubini, E., and Valsecchi, M. G. (1995). Analysing Survival Data from
Clinical Trials and Observational Studies, John Wiley & Sons, New York.

16. McShane, L. M., and Simon, R. (2001). Statistical methods for the analy-
sis of prognostic factor studies, In Prognostic Factors in Cancer (Eds., M.
K. Gospodarowicz, D. E. Henson, R. V. P. Hutter, et al.), 2nd ed., John
Wiley & Sons, Lisbon.

17. Pajak, T. F., Clark, G. M., Sargent, D. J., McShane, L. M., and Ham-
mond, M. E. H. (2000). Statistical issues in tumour marker studies,
Archives of Pathology and Laboratory Medicine, 124, 1011–1015.

18. Riley, R. D., Abrams, K. R., Lambert, P. C., Sutton, A. J., and Altman,
D. G. (2006). Where next for evidence synthesis of prognostic marker
studies? Improving the quality and reporting of primary studies to facil-
itate clinically evidence-based results, in this volume.

19. Riley, R. D., Abrams, K. R., Sutton, A. J., Lambert, P. C., Jones, D.
R., Heney, D., and Burchill, S. A. (2003). Reporting of prognostic mark-
ers: Current problems and development of guidelines for evidence-based
practice in the future, British Journal of Cancer, 88, 1191–1198.



Multivariable Analysis of Prognostic Marker Studies 37

20. Royston, P., and Altman, D. G. (1994). Regression using fractional
polynomials of continuous covariates: parsimonious parametric modelling
(with discussion), Applied Statistics, 43, 429–467.

21. Royston, P., Altman, D. G., and Sauerbrei, W. (2006). Dichotomizing
continuous predictors in multiple regression: A bad idea, Statistics in
Medicine, 25, 127–141.

22. Royston, P., and Sauerbrei, W. (2003). Stability of multivariable frac-
tional polynomial models with selection of variables and transformations:
A bootstrap investigation, Statistics in Medicine, 22, 639–659.

23. Sauerbrei, W. (1999). The use of resampling methods to simplify regres-
sion models in medical statistics, Applied Statistics, 48, 313–329.
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Abstract: Prognostic markers can help to identify patients with different risks
of specific outcomes, facilitate treatment choice, and aid patient counselling.
Unfortunately, within any given disease area, the wealth of conflicting and het-
erogeneous evidence makes it difficult for the clinician to ascertain the overall
evidence about specific markers and how to use them in practice. The ap-
plication of formal methods (e.g., a systematic review and meta-analysis) of
obtaining and synthesising evidence is therefore greatly needed in the prognos-
tic marker field. However, in this chapter we illustrate and discuss the reasons
why currently poor standards of design, clinical relevance, and reporting in pri-
mary studies limit statistically reliable and clinically relevant evidence-based
results for prognostic markers. These problems add to those issues for the sta-
tistical analysis in primary studies that are discussed in another chapter in this
volume. To help overcome the problems we highlight guidelines for conducting
and reporting primary prognostic research, and we particularly discuss why the
availability of individual patient data would help realise the evidence-based use
of prognostic markers in clinical practice.
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3.1 Introduction and Aims

3.1.1 Prognostic markers and prognostic marker studies

Prognostic markers (also called prognostic factors or prognostic variables) are
important clinical tools as they help to identify patients with different risks of
specific outcomes (e.g., recurrence of disease) and can thereby facilitate the most
appropriate treatment strategies and aid patient counselling. They can include
simple measures such as age, sex, stage of disease, or size of tumour, but also
more complex factors such as abnormal levels of proteins or catecholamines,
and unusual genetic mutations. In oncology, hundreds of prognostic marker
studies are published each year [see Riley et al. (2003b)] with assessments made
about the association of one or more markers with overall survival (i.e., whether
patients were alive or dead at the end of the study) and disease-free survival
(i.e., whether patients were alive or had either died or suffered a recurrence
of disease by the end of the study). However, prognostic marker studies are
common in many other research fields, such as heart disease [Hemingway and
Marmot (1999)] and dementia [Mitchell et al. (2004)], and are also used in
relation to many other outcomes such as surgical complications [Carpeggiana
et al. (2004)] and arthritis [Deodhar et al. (2003)].

3.1.2 The need for formal evidence syntheses of prognostic
marker studies

Unfortunately, within any given disease area, the results across different pri-
mary prognostic marker studies are often inconsistent and contradictory [Si-
mon and Altman (1994)]. Across studies, many different markers are assessed
in relation to heterogeneous subpopulations, treatments, and outcomes. Fur-
thermore, many studies have small numbers of patients and therefore a low
statistical power of detecting treatment or survival benefits arising out of us-
ing prognostic markers. This wealth of conflicting and heterogeneous evidence
makes it difficult for clinicians to ascertain the overall evidence about specific
markers and, even for those known to be important, how to use them in practice
(e.g., to which patients, using which cut-off levels, and applying which treat-
ment regimen). Clinicians thus need help in establishing evidence-based results
and guidelines about prognostic markers. The application of formal methods
of obtaining and synthesising evidence is therefore greatly needed in the prog-
nostic marker field, otherwise there will continue to be large uncertainty and
subjective, perhaps inappropriate, use of prognostic markers in practice.

Since about 1990, there has been a growing movement toward evidence-
based clinical practice and the formation of evidence-based clinical and public
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health policies. The most commonly applied evidence synthesis method is a
systematic review, which is a transparent framework for the collection, critical
appraisal, and synthesis of the current evidence from published and (if possible)
unpublished studies [Egger, Davey Smith, and Altman (2001)]. If appropriate,
a meta-analysis can be performed at the end of a systematic review, which
is a statistical approach that combines the quantitative evidence from all the
individual studies (or the subset of better quality studies) to produce overall
evidence-based results [Egger, Davey Smith, and Altman (2001)]. In order to
facilitate a meta-analysis approach, it is common for a summary statistic (e.g.,
hazard ratio) of interest to be chosen and extracted, where possible, from each
published (and unpublished) study. Alongside the estimate of the summary
statistic chosen, one also requires a measure of the uncertainty about the es-
timate obtained [e.g., standard error of the loge(hazard ratio)], so that the
meta-analysis can give relatively more weight to those estimates with small un-
certainty and, conversely, relatively smaller weight to those estimates with large
uncertainty. A systematic review with meta-analysis is an ideal approach for a
formal evidence synthesis of prognostic marker studies. However, we have re-
cently demonstrated that a reliable and clinically useful systematic review and
meta-analysis will often not be feasible in this field, especially if one seeks to
extract and synthesise summary statistics from published articles [Riley et al.
(2003a)]. One major problem is that the primary studies to be synthesised are
poorly reported, in terms of both statistical information (e.g., solely p-values
are often presented instead of a hazard ratio and confidence interval) and clini-
cal information (e.g., treatment used and age of patients is often not reported).
This problem restricts the extraction of summary statistics and makes it diffi-
cult to perform reliable meta-analyses that determine the clinical importance of
each marker studied based on the overall evidence [Altman (2001) and Altman
and Lyman (1998)].

3.1.3 Aims of this chapter

Chapter 2 in this volume by Holländer and Sauerbrei (2006) highlights issues
associated with an appropriate statistical analysis within primary prognostic
studies. It is shown that different analysis strategies can give different results
concerning the effect of a factor. However, good research and appropriate sta-
tistical practice is required throughout the whole study, not just at the analysis
stage, and so the first aim for this chapter is to highlight further areas where
improvements are needed within primary research of prognostic markers. Our
second aim is to emphasise why there is a need, alongside improvements in the
primary studies, for individual patient data (IPD) to be commonly made avail-
able from each study to help those performing meta-analysis; the practicalities
of actually realising the IPD approach are assessed by Altman et al. (2006),
Chapter 1 in this volume.
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3.2 Difficulties of an Evidence Synthesis of

Prognostic Marker Studies

3.2.1 Poor and heterogeneous reporting

We recently performed a large-scale systematic review of prognostic tumour
markers in neuroblastoma and used it as an empirical investigation of the fea-
sibility of producing evidence-based results of prognostic marker studies from
the published literature [Riley et al. (2003a)]. The review identified 260 prog-
nostic studies and in these there were 575 different reports where levels of one
of 13 different tumour markers were related to overall survival (OS) or disease-
free survival (DFS) by summary statistics or IPD. From each of these reports
an estimate of the loge(hazard ratio) and its variance were sought, but only
204 (35.5%) of the reports enabled both these statistics to be obtained. Fur-
thermore, the loge(hazard ratio) and its variance were both directly provided
on only three occasions in the 575 reports (0.005%); the other 201 estimates
required either indirect estimation methods (160 estimates), as suggested by
Parmar et al. (1998), or used the IPD provided in the published articles to
calculate the estimates directly using Cox regression (41 estimates). IPD was
sometimes presented within the published literature because many studies had
a small sample size due to the rarity of neuroblastoma disease, however, in gen-
eral the availability of IPD from cancer studies is not common [Altman et al.
(2006)].

In the neuroblastoma review, we used the estimates extracted to perform
meta-analyses for each of the 13 markers considered, for each of OS and DFS
where possible [Riley et al. (2004a)]. For example, the OS meta-analysis result
for MYCN, the most commonly studied prognostic marker in neuroblastoma
(152 studies in total presented OS results or IPD for MYCN ), is shown in Figure
3.1 and it suggests that high levels of MYCN are strongly associated with an
increased risk of death. However, the reliability and clinical interpretability of
this meta-analysis result is clearly limited because: (i) 107 studies (70.4 %)
could not be included in the evidence synthesis because the MYCN results or
IPD relating to prognosis were not provided in sufficient detail to allow the
loge(hazard ratio) and its standard error to be estimated for OS; and (ii) the
results across studies were heterogeneous in clinical factors assessed, such as
stage of disease and age of patients, and in the cut-off level used to dichotomise
the data (Figure 3.1). In particular, the multitude of missing summary statistics
in (i) makes one concerned that the set of available summary statistics does not
actually reflect the truth. There is a strong potential for the OS (and similarly
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paper = study id number, n = number of patients, u/a = unadjusted or adjusted hazard ratio;

stage = stage of disease; all stages = all of stages 1,2,3,4,and 4s were represented by the n

patients, all ages = ages < 1 year and > 1 year were represented by the n patients, and cut-off

= cut-off level used to dichotomise MYCN into ‘low-risk’ and ‘high-risk’ levels.

Figure 3.1: Forest plot for the MYCN overall survival (OS) meta-analysis from
the neuroblastoma review including the 45 studies that allowed the loge(hazard
ratio) and its standard error to be estimated [Riley et al. (2004a)]. N.B. There
were 107 other studies which provided MYCN results or IPD in relation to
prognosis but not in sufficient detail to allow the loge(hazard ratio) and its
standard error to be obtained; hence, the meta-analysis pooled hazard ratio
result below must be treated with caution, as it is not possible to include much
of the overall evidence in the evidence synthesis
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the DFS) meta-analysis result to be biased if some of the missing summary
statistics were not missing at random, perhaps because of publication bias or
other related dissemination biases (see Section 3.2.5) [Riley et al. (2004b)].

The key reporting problems (such as no hazard ratio or confidence interval)
that prevented us from obtaining 64.5% of the evidence base in the neuroblas-
toma review are presented elsewhere, with guidelines also made for improved
reporting in the future [Riley et al. (2003a)]. To complement this work, we
will now discuss some of the other underlying reasons why primary prognos-
tic studies often severely limit a clinically useful meta-analysis of the overall
evidence.

3.2.2 Poor study design and problems clarifying study purpose

Altman and Lyman (1998) present suitable criteria that those initiating a pri-
mary prognostic study should consider, and they suggest that every effort
should be made to limit potential biases and to emulate the design standards
of a clinical trial. They propose three main study types for assessing specific
markers (Figure 3.2), based on Simon and Altman (1994). Although Phases
I to III have not yet been universally accepted, at the very least they pro-
vide an important starting point for prognostic marker research, particularly
as currently many published primary studies are not properly designed. For
example, often no justification is made for the sample size used, or whether the

1. Phase I: exploratory studies (hypothesis generating) which seek an association
between a prognostic marker and characteristics of disease thought to have prog-
nostic importance.

2. Phase II: exploratory studies attempting to use values of a prognostic marker
to
(a) discriminate between patients at high and low risk of disease progression or
death; or to
(b) indicate which subsets of patients are likely to benefit from therapy.

3. Phase III: confirmatory studies of a priori hypotheses attempting to use values
of a prognostic marker to
(a) discriminate between patients at high and low risk of disease progression or
death; or to
(b) indicate which subsets of patients are likely to benefit from therapy.

Figure 3.2: Types of prognostic marker studies, as suggested by Altman and
Lyman (1998)

markers, subpopulations, and outcomes assessed were determined prior to the
study beginning [Simon and Altman (1994)]; furthermore, the characteristics of
patients assessed in a study may often not be described and thus one may have
little idea of who the samples of patients selected are. Such problems make one
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concerned that the reasons regarding how and what results are published from
a study may be subject to bias, which limits their reliability for clinical practice
(see Section 3.2.5). The further problem for evidence synthesis is that, due to
poor reporting of information across the large majority of studies [Riley et al.
(2003a)], it is generally very difficult to differentiate those studies which were
properly designed from those studies that were poorly designed.

A related problem is distinguishing those primary studies that were origi-
nally initiated for the same purpose [Altman and Lyman (1998)]. The majority
of prognostic marker studies have the purpose to establish the association be-
tween a single putative marker of interest to some outcome (e.g., OS or DFS),
and these were the predominant studies included in the neuroblastoma review
introduced previously [Riley et al. (2004a)]. However, there are also some
studies that do not have this primary purpose (e.g., studies to develop or val-
idate a classification rule [Sauerbrei et al. (1997)]), yet still report summary
statistics or IPD relating markers to outcome as secondary results. Some meta-
analysts may deem that, other things being equal, only those studies that were
specifically designed for the purposes of evaluating one or more markers should
be included in the meta-analysis (i.e., those where prognostic marker results
were the primary endpoint) [Egger et al. (2003)]. Unfortunately, as the orig-
inal study aims are rarely specified in a published article, it is often hard to
ascertain whether prognostic results were a primary or secondary objective. In-
deed, a study may have started off with prognostic results as a secondary aim
but then, perhaps after witnessing the results obtained, may have switched the
primary focus of the published study to the prognostic markers.

3.2.3 Little indication of how to implement markers in clinical
practice

Prognostic markers that can be specifically used to predict the response to
therapy or treatment are called predictive markers (or predictive factors or pre-
dictive variables). For example, estrogen receptor and progesterone receptors
are predictive markers used to select those breast cancer patients most likely
to respond to hormone therapy [Duffy (2005)]. If the results from prognostic
studies are to be most directly relevant to clinical practice, then as well as be-
ing properly designed (see Section 3.2.2), they must also take into account the
treatment or therapeutic strategy involved in order to identify specific predic-
tive markers [Windeler (2000)]. Such predictive studies relate to the Phase II(b)
and III(b) studies in Figure 3.2 and they should ideally be integrated within an
RCT, where the predictive ability of the marker can be assessed in relation to
the treatment groups assessed. Unfortunately, there are few high-quality Phase
II(b) and III(b) studies, and even when they are published it is often difficult to
identify them from most other prognostic studies due to the type of study (e.g.,
exploratory – Phase I, confirmatory – Phase III) and the treatment received by
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patients not being reported. It is highly likely that the majority of prognostic
studies in the published literature are actually Phase I or II because, as seen
in the neuroblastoma review [Riley et al. (2003a)], they often contain small
numbers of patients and report a large number of results for a variety of possi-
ble markers, and therefore do not seem to be focused on making confirmatory
conclusions for a few markers in relation to specific treatments. Thus, even if
a marker appears to have prognostic value, it will be very difficult to utilise it
in clinical practice when there is a lack of identifiable, high-quality studies that
relate its results to specific treatments. This problem will clearly also limit a
clinically relevant evidence synthesis.

3.2.4 Small sample sizes

Small sample sizes is a particular problem for rare diseases, such as neurob-
lastoma or other childhood cancers, and leads to individual studies having low
statistical power. It also leads to a greater number of similar, but ultimately
slightly different, studies of the same prognostic markers as each research group
reports the results for their own small sample. This in turn leads to hetero-
geneity and inconsistency in how and what results were reported, especially
regarding the adjustment factors used, the characteristics of patients included,
and the cut-off levels used to dichotomise the continuous markers into “high-
risk” and “low-risk” levels (Figure 3.1). All these problems ultimately limit
meta-analysis conclusions. For example, in the neuroblastoma review, if the
hazard ratio was not reported we used indirect estimation methods to obtain
an approximate value for the unavailable hazard ratios where possible [Par-
mar, Torri, and Stewart (1998)]. Such indirect methods more closely estimate
the true values when the sample size is large, however, in the neuroblastoma
review only 196 of 318 reports for which indirect estimation was required in-
cluded more than 25 patients. Multiple studies with small sample sizes also
cause the problem of overlapping sets of patients across different studies. Al-
though prospective studies are the ideal ones [Altman and Lyman (1998)], most
prognostic studies are retrospective, using information that has already been
collected from stored samples (e.g., in a tumour bank), and so there is a large
potential for different studies to report results for many of the same patients.
However, it is practically very difficult to elicit those published studies that use
the same or overlapping sets of patients, and this again weakens meta-analysis
[Riley et al. (2003b)].

3.2.5 Publication bias, selective within-study reporting, and
selective analyses

For prognostic marker studies, there is likely to be the common problem of
publication bias, where results that do not generate formal statistically sig-
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nificant or clinically valuable findings may not be published. Other related
dissemination bias problems may also exist. For example, within-study selec-
tive reporting may occur and in particular nonstatistically significant or neg-
ative results may not be reported in as much detail as significant or positive
results, thus making the extraction of desired summary statistics for meta-
analysis more difficult (e.g., ‘p > 0.05’ is often presented) [Hahn, Williamson,
and Hutton (2002)]. This may often be a consequence of a reluctance of jour-
nals or researchers to report negative findings in detail. Other forms of dis-
semination bias may include outcome reporting bias, subgroup reporting bias,
and language bias [Egger, Dickersin, and Davey Smith (2001)]. In the meta-
analysis of OS estimates for MYCN from the neuroblastoma review, there
was a strong suggestion that dissemination bias may be affecting the results.
For instance, consider a plot of all the loge(hazard ratio) estimates for OS
against their standard error (Figure 3.3). The assumption is that this plot
should form a funnel shape if dissemination bias is not present, as estimates
from smaller studies will be more widely spread about the mean effect due
to larger standard errors [Sterne, Egger, and Davey Smith (2001) and Duval
and Tweedie (2000)]. However, the plot is not indicative of a very funnel-
like shape, and asymmetry is apparent, with a gap in the bottom right of the
plot (Figure 3.3). Furthermore, two statistical tests indicated that dissemina-
tion bias was likely to exist assuming that this was the main cause of funnel
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Figure 3.3: Funnel plot of the overall survival loge(hazard ratio) estimates for
MYCN with Begg’s pseudo 95% confidence limits [Begg and Mazumdar (1994)]
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plot asymmetry (p < 0.001) [Egger et al. (1997) and Begg and Mazumdar
(1994)]. It appears that some studies with less positive results than those
obtained were missing from the meta-analysis, and this suggests that the true
underlying pooled loge(hazard ratio) for OS is likely to be somewhat smaller
than the estimated pooled value of 1.70 (equivalent to a hazard ratio of 5.48)
[Riley et al. (2004b)].

It is important to note many problems of dissemination bias may also be
introduced during a prognostic study and not just at the final reporting stage.
For example, the type of statistical analysis used has an influence on the re-
sult which then may influence the dissemination bias [Holländer and Sauerbrei
(2006)]. The choice of cut-off level used to dichotomise the marker, and thus
define a low-risk and a high-risk group of patients, may also be specifically
chosen to optimise the difference between groups and produce a result with
the maximum statistical or clinical significance possible [Altman et al. (1994)].
The difficulty for meta-analysis is again distinguishing those properly conducted
studies from those where biased choices of cut-off levels, analyses, and samples
were used. Excluding studies with a small number of patients from the evidence
synthesis may help alleviate the potential problem of bias, as these studies are
likely to be of poorest quality. However, this issue relates to currently unan-
swered questions facing meta-analysts about which studies should generally be
included in a meta-analysis [Egger et al. (2003)].

3.2.6 Lack of appreciation or validation of previous findings

Evidence-based reviews are facilitated when new primary studies specifically
build on the results of previous studies, thus forming a collective drive toward
answering questions of real clinical importance. For example, when a primary
study assesses the potential of a new marker, it should do so in relation to those
other markers previously identified as important and currently used in clinical
practice. However, in reality many studies only report unadjusted results, and
the adjusted results that are presented across studies are often highly inconsis-
tent in the set of adjustment factors used [Riley et al. (2003a)]. For example,
of the 17 adjusted hazard ratio estimates for OS and DFS that were obtained
for MYCN from the neuroblastoma review, only 2 were adjusted for exactly
the same set of factors, and both these were from the same article.

It would appear that a lack of collaboration across research groups com-
bined with poorly designed studies (see Section 3.2.2) is causing there to be
many similar but slightly different prognostic studies, with many not building
on previous findings. Indeed, there may be a deliberate ploy to make a new
primary study slightly different from those previously published in order to
increase the opportunity for ‘new’ findings. Validation of previous findings is
considered less important, and such studies may have a smaller chance of pub-
lication. Unfortunately, this leads to substantial clinical and methodological
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heterogeneity across studies. For example, the pooled MYCN meta-analysis
result for OS was based on 45 hazard ratios, of which 6 were adjusted and 39
were unadjusted, and these related to at least 7 different cut-off levels, 3 differ-
ent age groups, and 5 different stage groups (Figure 3.1). Other factors such as
treatment received and how the marker was measured are likely to add further
heterogeneity problems. This heterogeneity makes it very difficult for clinicians
to interpret or use the MYCN pooled OS result in practice; for instance, which
cut-off level should they use, which patients and treatments should MYCN be
used for, and how should MYCN be used alongside other prognostic markers?
The meta-analysis cannot provide answers to such questions.

To help try to make the meta-analysis results clearer, it may often be pos-
sible to perform separate meta-analysis for different subgroups of estimates. In
Figure 3.1, we have pooled the 45 unadjusted and adjusted hazard ratios to-
gether in one analysis to obtain a pooled HR of 5.48 (95% CI: 4.30 to 6.97).
Alternatively, if we just combine the 39 unadjusted results, then a pooled HR
of 6.032 (95% CI: 4.640 to 7.842) is obtained; similarly, if we just combine the
6 adjusted results, then a pooled HR of 2.886 (95% CI: 1.823 to 4.569) is ob-
tained. The fact that the unadjusted pooled result is substantially larger than
the adjusted pooled result emphasises the difficulty in interpreting one over-
all meta-analysis that synthesises both types of estimates together [Holländer
and Sauerbrei (2005)]. Furthermore, even the interpretation of the separate
unadjusted and adjusted subgroup meta-analyses is practically impossible due
to the additional heterogeneity in, amongst many other factors, treatment re-
ceived, age of patients, and the cut-off level used across studies. Indeed, it
was impossible to synthesise even two different MYCN unadjusted estimates
that reflected patients and studies with similar features. The heterogeneity
affecting the MYCN OS dataset therefore demonstrates that even subgroup
meta-analyses may not easily allow clinically relevant evidence-based prognos-
tic marker results.

3.3 What Improvements Are Needed in Primary
Prognostic Marker Studies?

Given the discussion in Section 3.2, there are perhaps four main areas where
improvements in primary prognostic marker studies are needed: study design,
clinical relevance, statistica analysis, and study reporting. The key aspects of
how each of these areas needs to improve are summarised in Figure 3.4, and
these are based on four previous publications [Riley et al. (2003a), Altman and
Lyman (1998), Holländer and Sauerbrei (2006), and Windeler (2000)]. Improve-
ments in each of these four areas would not only improve the clinical relevance
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and validity of the primary studies themselves, but would also greatly facilitate
evidence-based reviews in this field as discussed in Section 3.2.

• Study design – see Altman and Lyman (1998). Improvements need to arise
through greater consideration of, amongst other things:
– Study type (e.g., Phase I, II or III).
– Study purpose (e.g., what is the primary objective?).
– Sample size (e.g., what is the desired power to detect meaningful differences in
outcome).
– Inclusion/exclusion criteria.
– Prior hypotheses and the prior specification of which markers and outcomes are
to be considered (e.g., in a study protocol).

• Clinical relevance – see Windeler(2000). Primary studies need to produce more
clinically useful results by, amongst other things:
– Collaborating across research groups to achieve larger sample sizes and consis-
tency in method of measuring the marker, cut-off levels, adjustment factors, and
outcomes assessed.
– Building on the results of previous studies, and assessing new markers in relation
to those markers and treatments currently used in practice.
– Being high-quality, large-scale Phase III studies and relating assessments to spe-
cific treatment strategies so that predictive markers can be identified for clinical
practice.

• Statistical analysis – see Holländer and Sauerbrei (2006). The statistical analy-
sis in primary studies should consider:
– Multivariable analyses that adjust for standard factors.
– Whether a Cox regression model is appropriate.
– The analysis and reporting of continuous markers on their original scale (rather
than using a cut-off level).
– Analyses in subgroups only if there is strong justification and if sample size is
sufficient.
– Whether the main assumptions of the model are plausible.
– The use of sensitivity analyses for important issues.
– The potential issue of overoptimism when the same data are used for model
development, estimation of parameters, and also model assessment.

• Study reporting - see Riley et al. (2003a). Improved reporting of prognostic
marker studies is greatly needed with regard to, amongst other things:
– Reporting the results of all markers and outcomes considered, not just those
statistically significant (to reduce the threat of publication bias and within-study
selective reporting).
– Reporting an effect estimate (e.g., hazard ratio) with confidence interval, rather
than solely a p-value.
– Reporting marker results adjusted for other prognostic factors and treatments
of recognised and accepted clinical importance.
– Making individual patient data available for those performing evidence synthe-
sis.

Figure 3.4: Key areas where improved research and better statistical practice
are needed within primary prognostic marker studies
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To help achieve improvements in study design, we strongly recommend those
researchers initiating and carrying out prognostic studies refer to the study de-
sign criteria proposed by Altman and Lyman (1998). In particular, those in-
volved in primary studies should decide from the outset whether their study is
to be a Phase I, Phase II, or Phase III study (Figure 3.2), and then clearly state
this in the eventual published article. Indeed, there needs to be a general move
away from Phase I or II studies toward a greater number of large, protocol-
driven (preferably prospective), high-quality Phase III studies. Furthermore,
in order to identify predictive markers, there is also a need to directly relate
marker assessments to a specific treatment regimen (i.e., more Phase III(b)
studies are required). Such a move will inevitably require research groups to
collaborate wherever possible to achieve greater sample sizes; for example, Look
et al. (2002) have successfully initiated a multicentre study of prognostic mark-
ers within the breast cancer field. To help achieve improvements in the analysis
and reporting of results in published studies, we refer to Chapter 2 by Holländer
and Sauerbrei (2006) in this volume and to those reporting guidelines provided
by Riley et al. (2003a). In particular, all markers assessed (and not just those
statistically significant) should be reported, because this would help to reduce
publication and other related biases, as would the reporting of prespecified
hypotheses within a clear and readily available study protocol [Altman and
Lyman (1998)]. We also recommend that continuous markers should not be
dichotomised because, amongst other reasons, this approach discards poten-
tially important quantitative information and considerably reduces the power
to detect a real association between the marker and outcome [Altman et al.
(1994)]. We encourage researchers to analyse and report results (e.g., hazard
ratio estimates) of continuous markers on their original continuous scale [Alt-
man et al. (1994)]. Furthermore, the most appropriate analysis of continuous
prognostic markers may require nonlinear modelling techniques, as highlighted
by Sauerbrei et al. (1999).

3.4 Evidence Synthesis Using Individual Patient

Data Rather than Summary Statistics

Meta-analysis of survival studies using summary statistics extracted from the
published literature can be beneficial [Tudur et al. (2001)], and improved re-
porting of literature-based results is therefore clearly important [Riley et al.
(2003a)]. However, even if all studies are well-designed and clinically impor-
tant Phase III studies, there is increasing evidence that unless IPD is also
made available from these studies, a clinically useful evidence-based review and
meta-analysis may still be limited because of the differing study characteris-
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tics, statistical analyses, and reporting standards used [Riley et al. (2003a) and
Holländer and Sauerbrei (2006)]. The main problems limiting meta-analysis
of summary statistics from the published literature are shown in Figure 3.5,
and improved reporting of summary statistics in primary studies is likely to
reduce rather than remove these problems [Riley et al. (2003a)]. For example,
even if reporting standards improve, it is highly likely that for some studies
not all the summary statistics and outcomes desired would be available, and it
is perhaps inevitable that there will always be some heterogeneity across stud-
ies in cut-off levels, markers assessed, and adjustment factors used. The main
potential advantages for an IPD evidence synthesis of prognostic marker stud-
ies are shown in Figure 3.6. For example, IPD including exact marker levels
would allow data to be reanalysed where cut-off levels, and adjustment factors
were not consistent [Holländer and Sauerbrei (2006)], and would allow contin-
uous marker results where originally a cut-off level was used. Furthermore, it
may increase the opportunity to evaluate combinations of markers, which may
produce more specific and accurate prognostic assessments than the individ-
ual markers themselves. Furthermore, Lambert et al. (2002) have shown that
IPD is generally required when investigating patient characteristics as effect
modifiers in a meta-analysis.

We acknowledge that having IPD from every primary study may still not
necessarily solve all the problems for meta-analysis of prognostic studies [Stew-
art and Tierney (2002)]. In particular, not all the information required to
calculate the desired estimates will always be available in the IPD; for example,
if time of disease recurrence had not been recorded, it would not be possible to
assess DFS, and if continuous marker levels are presented as dichotomised, then
one could not choose a consistent cut-off level across studies. Publication bias
may also affect which IPD is available across studies, and indeed what is exactly
reported in the IPD itself. For example, information about some outcomes or
patients may be deliberately omitted if they produce less interesting or contra-
dictory findings. The availability of IPD will also not overcome the problems
of poor study design or that the study does not consider clinically relevant is-
sues, and there is little benefit of obtaining IPD from previous studies of poor
quality. Obtaining IPD is also likely to be more costly and time-consuming
than extracting literature-based results [Altman et al. (2006) and Stewart and
Tierney (2002)] and there is the potential for the IPD available to simply relate
to those studies which were the best reported in the first place. Of course, even
when prioritising the IPD approach, the meta-analyst will in practice end up
with a mixture of estimates obtained from IPD and estimates obtained from
summary statistics; hence, novel meta-analysis methods which take these dif-
ferent sources into account are also needed [Steyerberg et al. (2000)]. The
practical feasibility of actually initiating, obtaining, and synthesising IPD is
considered in further detail Chapter 1 by Altman et al. (2006) in this volume.
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• Missing and poorly reported outcomes and summary statistics across studies,
possibly due to within-study selective reporting

• The threat of publication bias, and other related dissemination biases
• Direct estimates (e.g., of the hazard ratio) for some studies, only indirect esti-

mates for others
• Heterogeneous choice and use of adjustment factors across studies
• Heterogeneous and biased choice of cut-off levels across studies
• Other heterogeneity across studies in type of statistical analysis used, method of

measuring the markers, treatment the patients received, and stage of disease
• Possibly overlapping sets of patients across studies
• Difficulty in assessing whether patient characteristics are effect modifiers across

studies
• Difficulty in assessing the benefits of a prognostic marker over time and in relation

to time-dependent covariates such as treatment received and stage of disease

Figure 3.5: Summary of the main problems preventing clinically useful
meta-analysis of summary statistics extracted from published prognostic
marker studies

Availability of IPD from the primary studies has the potential to allow
one to:
• Obtain estimates for those missing or poorly reported outcomes and summary

statistics across studies; it may thus reduce the problem of selective within-study
reporting

• Obtain more direct estimates (e.g., of the hazard ratio) where previously only
indirect estimates were available

• Standardise strategy of statistical analysis across studies
• Produce more adjusted estimates where previously only unadjusted estimates

were available
• Use a (small) consistent set of adjustment factors across studies
• Use a consistent cut-off level across studies, or produce continuous marker results

where originally a cut-off level was used (or vice versa)
• Assess the benefits of using combinations of markers
• Assess specific subgroups of patients across studies (e.g., premenopausal, stage 4

disease), and assess whether patient-level characteristics (such as age and treat-
ment) are effect modifiers across studies

• Identify those studies which contain the same or overlapping sets of patients
• Assess model assumptions in each study, such as proportional hazards
• Assess markers over time and in relation to time-dependent covariates such as

treatment received and stage of disease

Figure 3.6: Summary of the main potential benefits of having individual patient
data (IPD) for a meta-analysis of prognostic marker studies
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3.5 Discussion

In this paper we have identified several areas of primary prognostic marker
studies that need to be improved in order to allow more clinically relevant
results from both the individual studies themselves and also from evidence-
based reviews in this field. It is clearly important that the design, clinical
relevance, and reporting of studies are all collectively improved, and this fol-
lows on from the message in another chapter in this volume [Holländer and
Sauerbrei (2006)] that there is a need to improve and partly standardise the
statistical analysis in primary studies. It only takes one of these four areas to
be poor for the usefulness of the individual study to be limited. For exam-
ple, no improvements in study reporting can overcome poor study design or
that the study did not consider those questions of clinical relevance. Guide-
lines for the design [Altman and Lyman (1998)], purpose [Altman and Lyman
(1998)], analysis [Holländer and Sauerbrei (2006)], and reporting [Riley et al.
(2003a)] of prognostic marker studies are clearly very important, and indeed
new reporting guidelines have just been considered by McShane et al. (2005).
However, there is little evidence to suggest that solely publishing such guide-
lines will cause the changes in practice required. Perhaps the most pivotal role
in ensuring the guidelines are adhered to is held by the editors of and reviewers
for clinical journals. Editors can be considered as the ‘gate-keepers’ to pub-
lication, and they can therefore enforce standards that an article must meet
if it is to be considered for publication. Indeed, some editors ensure certain
standards are met at an early stage through the prospective registration of tri-
als with their journal (e.g., The Lancet). However, it may be more difficult to
take this approach with prognostic marker studies as there is usually no in-
tervention as such and many aspects have already been performed before the
study is initiated (e.g., tumour samples already taken and stored in a tumour
bank).

We have also discussed in this paper the importance of IPD for evidence
synthesis of prognostic marker studies, and highlighted how this has substan-
tial benefits over the literature-based approach. Authors of primary studies
are encouraged to make their IPD available for those performing meta-analysis.
Other steps toward clinically useful evidence-based results are also needed. For
instance, the initiation of tumour banks may help as these store patient tumour
samples in a central repository and allow retrospective analyses [Kerr (2003)].
This set-up allows new potentially important prognostic markers to be retro-
spectively analysed in comparison to the set of markers previously found to
be important. Hence, if IPD were also stored for each study, a patient’s tu-
mour sample could be reassessed and the information for the new marker placed
alongside the other marker details already available in the IPD. The UKCCSG
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have initiated such an approach for storing tumour samples of childhood cancers
[Mott, Mann, and Stiller (1997)].

The need for IPD combined with the need for new studies that are prop-
erly designed and appropriately targeted suggests that evidence synthesis of
prognostic marker studies may be best achieved through prospectively planned
pooled analyses [Blettner et al. (1999)]. To achieve this, collaborative groups
are required to work toward a number of high quality primary studies with the
collective, long-term aim of pooling together the IPD from each study to formu-
late evidence-based results. In this situation, the primary studies themselves
could be developed with a prospective meta-analysis in mind, so that it would
be pre-specified which clinical questions to address in the studies and one could
achieve consistency in design, markers assessed, marker measurement, treat-
ments received, patients included, outcomes recorded, and method of analysis
amongst other pertinent factors. It would also allow authors of primary stud-
ies to know right from the beginning that their IPD would be needed, which
should, one would hope, make them more amenable to recording and main-
taining high-quality IPD that they are also willing to make available at the
end of their study. Prospectively planned pooled analyses are already used in
epidemiological research [Blettner et al. (1999)], and their initiation within the
prognostic marker field is something we strongly recommend.
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Abstract: We propose an approach to monitoring unanticipated adverse events
in a clinical trial. For a specific type of event, the methods allow the first
occurrence, the first few occurrences, or an elevated rate to trigger a formal
monitoring plan to identify whether that event occurs more frequently in the
treated than in the control arm. The methods can apply either to rare events
or to common events not expected to occur at an elevated rate in the treated
group. We offer some simple models, emphasizing that, by the very nature of
its rarity, a rare event is quite difficult to monitor.

Keywords and phrases: Safety, data monitoring, sentinel events, group se-
quential plans, time to event analyses, progressive censoring

4.1 Introduction

A clinical trial studying a new product, or a new use for an already approved
product, aims to assess the product’s safety and efficacy. Available statistical
methods allow rigorous assessment of efficacy: one specifies null and alternative
hypotheses along with an appropriate statistical test. At the end of the trial,
one applies the test to the data and ends with a conclusion regarding efficacy.
Trials with a Data Safety Monitoring Board (DSMB) that observes the data
over time might adopt a group-sequential interim monitoring plan that allows
early stopping to declare efficacy with preservation of the Type 1 error rate.
Such procedures are well known [see, e.g., Jennison and Turnbull (2000)].

Monitoring safety poses more difficult problems. Although some trials ex-
plicitly aim to determine whether a product is safe, the primary aim of most
trials is to show efficacy, with safety a byproduct of the design. We gener-
ally assess efficacy with a single prespecified primary endpoint. For safety, by
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contrast, multiplicity abounds and important safety issues may not be clearly
defined before the clinical trial begins. Strict safety stopping rules may not ap-
ply because a DSMB may wish more flexibility in its decision-making for safety
than for efficacy. We note that the FDA has adopted the term Data Monitoring
Committee (DMC); however, we use DSMB to emphasize the “safety” aspect
of the function of these boards. Many different types of events can occur; at
the end of the trial, identifying which, if any, the product under study causes is
daunting both statistically and medically. Even more difficult is the dilemma
for a DSMB observing the data over time: a DSMB that stops a trial early
for an observed excess of events may be reacting to chance phenomena; failure
to stop may put subjects in the trial at unnecessary risk. This paper proposes
sentinel event approaches, both classical and Bayesian, for a DSMB to use in
monitoring the safety of a product during a clinical trial. We consider here
confirmatory (Phase 3) controlled or uncontrolled trials; see FDA Guidance for
Clinical Trial Sponsors (2006). Uncontrolled Phase 3 trials, although not com-
mon in most situations, are sometimes used to study orphan diseases or medical
devices.

We start with three examples (Section 4.2) to provide the context for the
methods. We then present a brief description of usual approaches, both formal
and informal, for monitoring specific adverse events (Section 4.3). We propose
to use the first recognition of an unanticipated adverse event as a sentinel alert-
ing the DSMB to monitor the trial for this event. Not all such first recognitions
would lead to such monitoring; only those deemed sufficiently worrisome would
qualify. After the sentinel event, we apply statistical procedures that control the
Type 1 error rate. This chapter presents some examples of the approach. For
specific cases, the DSMB should devise a method appropriate to the situation,
accounting for such items as the stage of recruitment, the planned follow-up
time, and, of course, the nature of the study and of the sentinel event.

For monitoring in response to a few sentinel events, or a single one (Section
4.4), we present methods for trials with a fixed follow-up time for each subject
where all events occur in the treated group (Section 4.4.1) and for trials with
a common closeout time, that is, follow-up censored on a fixed calendar date
where events occur in both the treated and control group (Section 4.4.2).

For large trials with many events, we propose using the first recognition
that the rate of a particular event is higher in the treated arm; this type of
sentinel event is really a sentinel rate (Section 4.5).

We end with a simple Bayesian model (Section 4.6) applied to one of the
examples and some concluding remarks (Section 4.7).
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4.2 Examples

This section presents three examples. The first shows when a single rare, unan-
ticipated adverse event could serve as a sentinel for further monitoring. In the
second, the sentinel is a small number of unanticipated events of a specific type.
The third case provides an example where an increased rate of an adverse event
could trigger further formal monitoring.

Example 4.2.1 (A single sentinel event.) A death occurred early in the
course of a clinical trial of a childhood vaccine. The trial was so small that
any death was unexpected. Consequently, the death caused serious concern for
the DSMB; members wanted to be confident that the death did not indicate an
unanticipated problem with the vaccine.

Example 4.2.2 (A small number of events comprising the sentinel.)
In a clinical trial randomizing subjects to either a new or a control vaccine, three
subjects in about 900 in the new vaccine group and one of 300 in the control
vaccine group experienced a specific serious adverse event. The p-value for the
difference in these rates is 0.6. The FDA was consulted about the findings
and was worried not about the difference between the two rates, but about the
overall event rate itself, because the anticipated serious adverse event rate had
been roughly 1 in 10,000, substantially lower than the observed rate of 1/300.

Example 4.2.3 (A sentinel event rate.) The Women’s Health Initiative
(WHI) was composed of four trials. Here we discuss the PERT trial
(Progesterone–Estrogen Replacement Therapy), the component that studied
the hypothesis that postmenopausal treatment with estrogen and progesterone
reduces the rate of myocardial infarction. This trial, designed to last 12 years,
had many endpoints and several major hypotheses. The investigators and the
DSMB published their monitoring plan for safety and efficacy [Freedman et
al. (1996)]. The investigators anticipated that estrogens would reduce the rate
of myocardial infarction, hip fracture, and colorectal cancer, but increase the
rate of invasive breast cancer, pulmonary embolism, and endometrial cancer.
Stroke was a “monitored” endpoint, that is, one that the DSMB was to look at
carefully over the course of the trial, but no a priori hypothesis was established
concerning the direction of the effect.

Early in the trial, the DSMB noted a higher incidence of stroke and pul-
monary embolism, and a lower rate of breast cancer in the PERT group. Quite
surprisingly and contrary to the primary hypothesis of the study, the PERT
group also had an early higher incidence of myocardial infarction than the
placebo group. The trends for pulmonary embolism, stroke, and myocardial
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infarction continued throughout the trial, and the breast cancer rates became
higher in the PERT than in the placebo group.

The DSMB of the WHI recommended stopping the PERT trial early because
interim results showed:

• An excess of invasive breast cancer on the treated arm. This excess ex-
ceeded the prespecified boundary for harm for breast cancer.

• A myocardial infarction rate in the treated arm substantially higher than
in the placebo arm. The monitoring plan for the WHI included an
O’Brien–Fleming bound for benefit on myocardial infarction. Because
the plan had no a priori bound for harm, the observed excess did not
cross any prespecified monitoring boundary.

• Accounting for both positive and negative effects on seven monitored end-
points, an adverse effect of treatment that was consistent with the pre-
specified boundary for overall harm.

The National Heart, Lung, and Blood Institute, the sponsor of the trial,
stopped the PERT trial soon after the DSMBs recommendation [Writing Group
for the Womens Health Initiative Investigators (2002)].

Monitoring the PERT trial was complicated by the fact that the WHI in-
cluded an estrogen-alone (ERT) trial, which studied women who had a hysterec-
tomy prior to randomization. Early in the course of the study, the DSMB had
observed more myocardial infarctions in both hormone-treated groups (ERT
and PERT) than in their respective placebo groups. In response to these obser-
vations, the DSMB requested periodic updates on the overall event rates and
based the decision to continue the study on its best judgment at each meeting.
The DSMB could have regarded the excess rate of myocardial infarction as a
sentinel rate.

4.3 Usual Approaches to Monitoring Safety

Many adverse events that occur during the course of a trial are expected. Some
may be due to the disease itself. Others may be caused by the product under
study, by comorbidities, or by drug interactions. For studies of drugs or biolog-
icals, sometimes a particular class of product may be known to cause specific
adverse events. Early phase studies should have already elucidated the mecha-
nism of action of the drug and its pharmacokinetics, so that common adverse
events attributable to the drug should have already been identified. In Phase 3
trials of diseases that are not life-threatening, serious adverse events will usually
occur only rarely. In life-threatening disease, adverse experiences that reflect



Monitoring Unanticipated Adverse Events 65

the process of the disease are common, but their rates are expected to be simi-
lar in the treated and control groups. Of particular concern are unanticipated
serious or life-threatening events that arise during the course of the trial.

Standard statistical guidelines can specify methods for monitoring antici-
pated adverse events. When prior experience provides a background rate, a
formal statistical monitoring plan can detect rates in excess of expectation. For
example, many injected vaccines cause injection site reactions, such as soreness
or redness. Similarly, bleeding is common in trials of antithrombotic agents. If
historical data provide an expected event rate, the investigators can design a
monitoring plan to identify an unacceptably high rate. Although it is generally
preferable to assess safety by comparing the event rates by treatment group,
sometimes it is also useful to compare the rates within a trial to the rates ex-
pected from historical data. A DSMB should know if the rates in the trial in
both the treatment and control arms are meaningfully above expectation. As
we show below, for very rare events, a few occurrences in the treated group and
none in the control can lead to concern.

For unanticipated events, a DSMB risks reacting to a falsely “discovered”
endpoint [Jennison and Turnbull (2000) and Mehrotra and Heyse (2004)], for
the event may have occurred in the treatment arm purely by chance. Therefore,
DSMBs typically wish to dampen a rush to judgment about the product or in-
tervention. In prevention trials among healthy volunteers or in trials of diseases
or conditions not usually accompanied by many types of serious adverse events
(e.g., relief of minor headache pain), one analysis might compare the total num-
ber of adverse events to a standard rate known from historical data (a hurdle)
or to the comparator (a placebo or active control). The observation that the
patients in the test group had more adverse events than expected or more than
those in the comparator might be disconcerting.

Trials in diseases with many associated adverse events (e.g., Type 2 dia-
betes) may compare only the aggregate of all serious adverse events to those
that lead to hospitalization or are life-threatening. For diseases in which many
serious adverse events occur over a short time period (e.g., sepsis), such an ap-
proach will generally not be useful, for nearly all patients will experience serious
adverse events. Instead, focusing on particular serious adverse events will likely
increase the specificity of the comparison.

A DSMB that encounters a worrisome excess of adverse events in a Phase
3 clinical trial typically responds by monitoring that event more frequently or
spending more time discussing it. Sometimes, the DSMB waits until the dif-
ference between the number of events in the treated and control group hits
some nominal level of significance. The statisticians often complain that such
an approach is biased, because it includes the event that led to the monitoring,
nonrigorous, because it does not preserve the Type 1 error rate, and is woefully
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lacking in power. We have rarely seen a DSMB institute a formal plan for
subsequent monitoring of that event.

4.4 Methods for Sentinel Events

Without sufficient data, as in the case of rare events, a plausible statistical
model, coupled with reasonable sensitivity analyses, may enlighten the DSMB’s
interpretation of the observations. In this section, we present a number of proce-
dures as examples of our approach. The procedures share some simple features.
First, they identify a sentinel event. Next, they establish a statistical method
for monitoring subsequent occurrences of that event. The method must exclude
any occurrence of the sentinel event that led to the monitoring. Furthermore,
the method should have reasonably high power. It should be statistically unbi-
ased, but its Type 1 error rate may be set at a one-sided level higher than the
conventional 0.025.

For individual events, we may consider (a) the number of nonevents until
the kth event or (b) the time until the next (or kth) event. For groups of
patients in whom the sentinel “event” is an unexpectedly high rate, we can use
(c) the event rate in the future patients.

Various statistical models suggest themselves: for individual events the neg-
ative binomial model or a binomial sequential probability ratio test is natural
for problem (a) whereas the exponential or gamma distribution is appropriate
for problem (b). Normal models lend themselves to problem (c).

The remainder of this section deals with two specific examples of the ap-
proach. In the first example (Section 4.4.1), all subjects have the same follow-up
time and all events occur in the treated group (or the monitoring is based only
on the treated group). The second example (Section 4.4.2) provides an ap-
proach when the follow-up times differ and we are comparing the occurrences
of the event in the treated group to a historical rate or to the control group.

4.4.1 Constant follow-up time

When all subjects in the trial have the same follow-up time, one can define a
sentinel event that triggers a monitoring activity but is not itself included in
the monitoring. An example of such a trigger is the occurrence of a single rare
event following administration of the product, where “rare” might be defined
as an event that would be expected to occur in less than 1/1500 administra-
tions. An important question is whether only patients randomized after this
subject should contribute to the monitoring set. If the DSMB uses the expo-
nential distribution to model the distribution of time to event, the exponential
distribution’s lack of memory allows inclusion of early patients. To keep the
statistical analysis simple, we consider the time to such presumably rare events
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to be exponentially distributed and then monitor the time to the next event
(or next k events). Our first example, the single death in a trial of a childhood
vaccine, provides a case of this type. Here we consider the case in which all
events occur in the treated group.

For trials with a single administration of a drug (or a short-term treatment
period), we might count the number of nonevents (i.e., the number of admin-
istrations of the drug not followed by an adverse event) until the kth event
occurs, where k is small. The relevant time is the time from randomization.
Thus, the DSMB might consider events within a specific number of days, T ,
after administration. The analysis applies only to the people who have had an
event or who have had at least T days of follow-up. In such a case, the tradi-
tional significance level of 0.05 seems too stringent. Instead, a safety monitor
or DSMB might decide that a probability below 0.1 or 0.2 should lead to more
frequent monitoring or to a pause in the trial for further reflection.

A second statistical model might consider the time until the kth event. As-
suming a short period of enrollment, an exponential distribution for time to
event yields a gamma distribution for the time to the kth event. In some cases,
only adverse events that occur within T days after the end of therapy are plau-
sibly considered. Such a model would lead to a progressively censored sample.
Of course, the distribution of time to event should be examined carefully, for a
cluster of events that occur soon after T may in fact be related to therapy.

To increase power, we might wish to estimate the mean time to an event.
For the exponential distribution, this estimated mean time μ̂ = {∑ ti + [N −
n] × T}/n = V/n, where N is the number of subjects in the treated group, n
the number with an event, and 2V/μ has a χ2(2n) distribution. In situations
where μ is expected to be large, say 1500 days, an estimate of 500 days would
be troubling.

Consider a design with moderately high power at μ0/R, (R < 1), where
R is the ratio of the mean time to event under the hypothesis of “no safety
concern.” For example, if μ0 = 1500 and T = 30, we might want to test for
R = 3 at 80% power and use k = 2 (i.e., the distribution of total time to the
second event after the sentinel event). Note we count each person’s time from
the administration of the product, not from the start of the study. One might
use k = 2 if the event were quite serious and one did not wish to wait long to
determine risk. The critical region would be

2[(t1 + t2) + 30(N − 2)]/1500 ≤ 0.711,

where N is the number of people enrolled after the person with the sentinel
event. For each person with an event, we calculate the time from administration
of the product until the event.

For example, suppose after the sentinel event, two new events occur imme-
diately upon administration of the vaccine. That is, both events occur at t = 0.
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In this situation, being within the critical region would require that N < 20.
Consider, for example, a vaccine study where subjects are recruited over time,
perhaps a short time. In order to conclude that the event represents a safety con-
cern, this second event after the sentinel event must occur before the 20th person
enrolled after the person with the sentinel event receives the vaccine. If the sec-
ond event did not occur until N = 30, then V = (t1 + t2) + 30(N − 2) > 840,
χ2 ≥ 1680/1500 = 1.12, and we could not conclude that there was a safety
concern.

The power of this procedure, namely, the probability that 2V/μ < 0.711
when = 500, is low:

P

(
2V

1500
≤ 0.711|μ = 500

)
= P (χ2

4 ≤ 2.133) = 0.29.

Achieving high power requires either more than two events or specifying a more
extreme difference. For example, a mean time to the event of 5000 days and
R = 10.1 would give power:

P

(
2V

5000
≤ 0.711|μ = 500

)
= P (χ2

4 ≤ 7.11) = 0.87.

This model could reliably detect a large difference from expected mean time to
event with only two events in the treated group and none in the control.

Note that this approach rejects for small, not large, values of V creating a
trap for the unwary statistician because most χ2 tests reject for large values of
the test statistic.

The following curves, see Figure 4.1, show the power of this test for various
ratios of mean time to event under the null and the alternative hypothesis when
(= 0.05 and 0.10). Here, n is the number of events and 2n the number of degrees
of freedom. If the ratio R is very high, or the number of events monitored is
large, this method yields adequate power. For as few as four events, this method
can detect a ratio of at least five with a power of 0.80.

4.4.2 Censoring at a fixed calendar time

We use a type I censoring model if censoring occurs at a fixed calendar time,
rather than after a fixed exposure period. The maximum likelihood estimate of
μ is

μ̂ =
∑

ti +
∑

Tj

n
,

where tj are the event times and Tj are the times of censored observations.
Using the observed information, we find

z =
μ̂− μ√

μ̂2

k

=
√

k
μ̂− μ

μ̂
.



Monitoring Unanticipated Adverse Events 69

.2
.4

.6
.8

1

0 2 4 6 8 10
events

Power at R=3
Power at R=5
Power at R=10

Power for p=0.05

.2
.4

.6
.8

1

0 2 4 6 8 10
events

Power at R=3
Power at R=5
Power at R=10

Power for p=0.10

Figure 4.1: Power of the sentinel event test as a function of R, the ratio of the
mean time between events under the null and alternative hypotheses
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Because this estimate of μ lacks nice distributional properties, the statistic z
requires large samples for the normal approximation to hold; bootstrapping
would give approximately valid tests.

We can adapt this model to compare two arms of a study. Because 2V/μ is
distributed χ2 with 2n d.f., the quantity

F = (VT /nT )/(VC/nC)

has an F distribution with 2nT and 2nC d.f., where VT and VC are the total
exposure times for the treatment and control arms, and nT and nC are the
numbers on each arm. (If the allocation to the two arms is not 1:1, the expected
mean number of events will differ in proportion to the allocation. For example,
if nT = 3nC , we would expect VT to be approximately 3VC when the rates do
not differ.)

Generally, tests based on F distributions will have low power unless the
means μT and μC differ considerably or the number of events is moderately
large. Even a tenfold difference in means will be difficult to detect with a total
of four events in both arms.

Revisiting our second example in Section 4.3, suppose the DSMB had wanted
be sure that the adverse event rate was below 1/2000 = 0.0005. In this case,
the 95% two-tail confidence intervals are (0.0007 to 0.0097) if we observe three
events per 900 and (0.0008 to 0.0184) if we observe one per 300. Both of these
intervals exclude the 0.0005 target. Each participant received one immuniza-
tion and was observed for 21 days. Four events occurred at about 10 days after
vaccination. Thus,

∑
ti = 40 so V = 40 + (21 × 896) = 18, 856. The maxi-

mum likelihood estimate, μ̂ = 18, 856/4 = 4714 days to event, is substantially
greater than 2000. The expected rate was 1/10,000 implying that the median
number of days to event would be about 6930. This calculation suggests that
μ is somewhat smaller than the expected 10,000 days but perhaps not small
enough to be of concern. Pooling both vaccine and control groups, the test for
an overall mean of 6930 days to event is χ2 = 2×18, 856/6930 = 5.44 (p < 0.71),
insufficient evidence to reject a mean of 10,000 days to event for this vaccine.

Recall that nT = 900 and nC = 300, so the two sample test,

F6,2 = [(30 + 21× 897)/900]/[(10 + 21× 299)/300]
= [18, 846/900]/[6289/300] = 0.998

gives p < 0.58, which provides no statistical evidence of a difference between
the vaccines on the control and new vaccine arms.

The FDA, when informed of the adverse events, became concerned even
though the rates were the same in the treated and control groups. Because
of the prior experience with vaccines for this disease, a high rate would have
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caused concern even if the control had been a placebo. The medical severity of
the events was sufficient to cause the trial to pause.

4.5 Methods for Sentinel Event Rates

Consider now a large trial with many adverse events. Suppose a DSMB ob-
serves an elevated event rate of a specific adverse event. The first observation
of such a rate would correspond to the sentinel “event.” In such a case, the
DSMB could initiate a monitoring scheme (perhaps a group sequential plan)
and modify or halt the trial when the adverse event rate exceeded a given level.
Once again, the monitoring scheme would apply only to subjects randomized
after the observation of the sentinel event (the high event rate, in this case).
For a single elevated rate, the result follows directly from the earlier mater-
ial. A monitoring scheme might examine outcomes among every 100 patients.
Monitoring multiple events for safety may require statistical adjustment to pro-
tect against overzealous stopping; the chance of exceeding any one endpoint
is greater than the chance of exceeding a single specified endpoint. Suppose,
for example, in a study of several thousand people, the DSMB met for the
first time after 200 people in each of the treated and control groups had been
randomized and imagine that six strokes, five in the treated group and one in
control, had been reported. The exact two-sided p-value for a five-to-one split is
0.21; the exact one-sided p-value is 0.11. Thus, the event, although worrisome,
does not reach conventional levels of significance even if we disregard multiple
looks. Nonetheless, a 5:1 split in a very serious adverse event would worry a
DSMB. It might then institute an α-spending function approach to apply to the
next patients randomized. It might choose to spend α linearly [i.e., α(t) = αt]
or, perhaps, quadratically. An O’Brien–Fleming boundary is often too strin-
gent at early times, when it is important to stop administering a bad drug,
or at least to inform the investigators and participants of a newly discovered
risk. The bounds would apply only to the newly randomized participants so
that a new stroke that occurred to the first cohort of 400 participants would
not count in the formal monitoring. This approach—defining a boundary dur-
ing the course of the study—allows the DSMB to use data from the study to
generate hypotheses and then subsequent data to test them.

The DSMB for the WHI could have instituted such a plan when it first
noted excess rates of stroke and myocardial infarction in the treated arm.
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Table 4.1: Posterior probability that the event rate is less than π as a function
of various prior distributions: 3 events; 897 nonevents

Posterior Probability Rate < π
Prior Distribution π

a b Mean s.d. 0.0005 0.001 0.005 0.01
1 1 0.5 0.289 0.0109 0.0628 0.8271 0.9939

0.1 19.9 0.005 0.015 0.0093 0.0572 0.8234 0.9940
1 999 0.001 0.001 0.0712 0.2960 0.9959 1.000
10 9990 0.001 0.0003 0.0041 0.3002 1 1
10 19990 0.0005 0.00016 0.2523 0.9742 1 1

4.6 Bayesian Models

When we can view adverse events in a clinical trial as arising from a binomial
distribution, a Bayesian analysis with a beta prior distribution offers a different
approach to the problem of monitoring safety in response to sentinel events. We
provide examples of five arbitrarily chosen beta priors to illustrate the impact of
the prior on the posterior. Assume the parameter p, the adverse event rate, has
a beta distribution with parameters a and b. Recall that the mean and variance
of the beta(a, b) prior are a/(a + b) and ab/[(a + b)2(a + b + 1)], respectively.
Returning to our second example, a trial of 900 patients with three events would
have a beta posterior distribution with parameters a + 3 and b + 897. The pair
of parameters (a, b) = (1, 1), which produces a rather flat prior, requires strong
evidence from the data to demonstrate a low posterior event rate.

The prior (a = b = 1) gives very little assurance that the adverse event
rate is 0.0005 or less. No case in Table 4.1, even when the prior has a very
low mean, gives a posterior probability above 0.9 that the adverse event rate
is below 0.0005. The above analysis shows that the data at hand provide little
evidence that the adverse event rate is below 0.001.

In summary, for the second example, with 900 observations, neither a clas-
sical nor a Bayesian approach provides sufficient statistical evidence to declare
the adverse event rate is below 0.001.
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4.7 Summary

The statistical issues posed by monitoring for safety differ considerably from
the issues posed by monitoring for efficacy. In the latter case, prior hypotheses
govern the design of the study and the consequent data monitoring bound-
aries. For safety monitoring, however, the hypotheses are often data-driven.
We suggest that a DSMB can react to an observed worrisome adverse event by
establishing monitoring procedures in response to a sentinel event.

We have discussed some practical issues in implementing this process. First,
we have concentrated on phase 3 studies, however, investigators will study po-
tentially high-risk products (e.g., gene therapy) in phase 1 and 2 studies. Al-
though these are typically smaller, often single-arm, studies, the ideas regarding
sentinel events can be useful for them as well. In particular, the methods that
assess whether a safety standard has been exceeded are relevant. We can apply
this same approach to phase 4 single arm studies. In these cases, information
about specific safety events may be available so the sentinel event has already
occurred and we can establish a monitoring plan.

The level of evidence needed to raise a concern is relevant to both the size
(the type I error rate) and the power we select in assessing safety. We used
k = 2 events for our vaccine example with progressive censoring. The first
event occurred soon after the study started, making our level of concern high.
Choosing k in other situations will depend on the severity of the event as well as
our prior experience. A sentinel event that occurs after a few participants have
been exposed may lead us to believe the event rate is higher than anticipated
and so we base our power calculations on that higher rate. For example, if the
first event occurs on the 10th patient where T = 30 days, then the estimated
mean time to event is (t + 30× 9)/1 = 270 + t < 300 days, but if it occurs after
the 1000th patient the estimated number of days is (t+999×30)/1 = 29, 970+t.
In the first case, we might choose a small value of k because of a concern that
the mean time to event is much shorter than expected, whereas for the second
we might choose a substantially larger k because the mean is consistent with
our prior experience.

A DSMB or safety monitor should not be bound by purely statistical con-
siderations. It may recommend termination of a study when no statistical
difference in safety can be shown because of the medical implications of an
adverse event. The statistical criteria should be an adjunct to the DSMB’s
judgment, not a governor of it. If possible, we suggest the DSMB examine the
safety analyses at the same time as the efficacy analyses; however, if the effi-
cacy analyses are spaced widely, such a schedule will not provide satisfactory
assurance for safety.
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Statistical stringency is often less crucial for safety than for efficacy analyses.
We believe that the traditional significance level of 0.05 is often too stringent.
Instead, a safety monitor or DSMB might decide that a probability below 0.1
or 0.2 should lead to more frequent monitoring or to a pause in the trial for
further reflection and analysis.

To recapitulate, efficacy endpoints are frequently assessed by group sequen-
tial tests. Because safety endpoints are usually not known at the start of the
trial, formal testing procedures cannot be in place from the onset. Instituting a
formal testing procedure that includes the event bringing the problem to atten-
tion compromises the size of the statistical test. We suggest starting a formal
monitoring procedure on the basis of a sentinel event. We suggest adopting a
definition of “event” as broad as necessary for the purposes of the monitoring.
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Abstract: Pharmacovigilance aims at detecting adverse effects of marketed
drugs. It is generally based on a Spontaneous Reporting System (SRS) that
consists of the spontaneous reporting, by health professionals, of events that are
supposed to be adverse effects of marketed drugs. SRS supply huge databases,
the human-based exploitation of which cannot be exhaustive. Automated signal
generation methods have been proposed in the literature but no consensus exists
concerning their efficiency and applicability due to the difficulties in evaluating
the methods on real data.

The objective is to propose SRS modelling in order to simulate realistic data
sets that would permit completion of the methods’ evaluation and comparison.
In fact, as the status of the drug–event relationships is known in the simulated
data sets, generated signals can be labelled as “true” or “false.”

The spontaneous reporting is viewed as a Poisson process depending on: the
drug’s exposure frequency, the delay from the drug’s launch, the adverse events’
background incidence and seriousness, and the reporting probability. This re-
porting probability, quantitatively unknown, is derived from the qualitative
knowledge found in the literature and expressed by experts. This knowledge is
represented and exploited by means of a set of fuzzy rules.

Then, we show that the SRS modelling permits to evaluate the automatic
signal generation methods proposed within pharmacovigilance and contribute
to generate a consensus on drugs’ postmarketing surveillance strategies.

Keywords and phrases: Adverse drug reaction reporting systems, modelling,
fuzzy system, computer simulation, data mining, validation studies

75



76 E. Roux et al.

5.1 Introduction

Clinical trials are efficient for identifying the most frequent adverse effects of a
drug prior to marketing. However, for obvious reasons, the effects of rare occur-
rences cannot be detected. Such effects can be specific to a population subgroup
and/or can have a latency longer than the trial duration. The identification of
such effects is the scope of pharmacovigilance, whose role includes the post-
marketing surveillance of adverse effects based on the spontaneous reporting by
the medical community of adverse events suspected to be related to a medica-
tion. The Spontaneous Reporting System (SRS) supplies huge databases with a
continuous flow. For example, in 1997, 35,000 new reports were added quarterly
to the Uppsala Monitoring Centre (UMC) database that gathers the reports of
47 countries of the World Health Organization (WHO) Collaborating Program
for International Drug Monitoring [Bate et al. (1998)]. DuMouchel (1999) men-
tioned that the Food and Drug Administration (FDA) database contained 1.2
million different reports. On 1 January 2000, the Netherlands Pharmacovigi-
lance Foundation LAREB contained 26,555 reports concerning 17,330 different
drug–event combinations [Van Puijenbroek et al. (2002)]. At the end of 2001,
the French pharmacovigilance database contained about 200,000 reports refer-
ring to about 185,000 different drug–event couples [Thiessard et al. (2003)].
Such massive databases preclude human-based exploration. In such a context,
pharmacovigilance would benefit from an automatic signal generation method
that would exploit all the available information.

A good evaluation of the suspicious character of a drug–event couple of the
database would be to determine to what extent the observed number of reports
referring to this couple exceeds the expected number of reports, assuming the
independence between exposure to the drug and the adverse event. Such a
direct assessment is not permitted by the SRS. Spontaneous Reporting Systems
are based on the subjective appreciation of the medical community and do not
provide an exhaustive reporting of the adverse effects. At first the adverse event
has to be diagnosed and next, it has to be judged new and serious enough to be
reported [Tubert-Bitter et al. (1998)]. It is impossible to know the proportion
of adverse events that is reported. Moreover, the reported events are supposed
to be causally related to the prescribed drugs but the simultaneous presence
of an adverse event and of a drug can be coincidental. In other words, not
all the adverse effects are reported (and the proportion of reported events is
unknown), and the adverse events reported are not all adverse drug reactions.
Moreover, the background incidence of the events in the whole population and
the number of patients exposed to the drugs are unknown. This prevents reliable
computation of an expected number of reports for drug–event couples.
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A solution proposed in the literature is to use Data Mining (DM) methods
that only exploit the intrinsic information of the database in order to estimate,
for a given couple, the expected number of reports by means of the data related
to all the other drugs and events. DM methods act as automatic hypotheses
generators that pharmacovigilance experts then have to confirm or invalidate.
All the methods use an association measure that evaluates to what extent drugs
and events are statistically related. Decision on the status of the drug–event
relations can then be made according to a threshold. It is also possible to rank
the drug–event couples from the most to the least suspicious according to the
values of the measure [DuMouchel (1999)]. Methods essentially differ from one
to the other by the association measure they use. A large variety of measures has
been proposed: the Proportional Reporting Ratio (PRR) [Evans, Waller, and
Davis (2001)], the Reporting Odds Ratio (ROR) [Van Puijenbroek et al. (2002),
Rothman, Lanes, and Sacks (2004), Egberts, Meyboom, and Van Puijenbroek
(2002), Van Puijenbroek, Diemont, and Van Grootheest (2003) and Waller et al.
(2004)], the Yule’s Q [Van Puijenbroek et al. (2002)], the Sequential Probability
Ratio Test (SPRT) [Evans (2003)], the statistics based on Poisson or Chi-square
distributions [Van Puijenbroek et al. (2002)], the Information Component [Bate
et al. (1998), Van Puijenbroek et al. (2002), and Gould (2003)], and the
Empirical Bayes Method [DuMouchel (1999) and Gould (2003)]. The former
ones are very simple and intuitive disproportionality measures and the two last
ones are more complicated Bayesian measures, demanding more statistical and
computational skills.

Due to the fact that the events’ Relative Risk (RR), the background inci-
dence of the events, and the number of patients exposed to the drugs are un-
known, the signals generated by the DM methods cannot be labelled as ‘true’ or
‘false.’ This prevents us from absolutely evaluating the methods’ performances
in identifying suspicious drug–event couples. So no consensus exists concern-
ing the DM method(s) to be used and routine application of such methods in
pharmacovigilance is still limited. Van Puijenbroek et al. (2002) circumvented
this difficulty by comparing methods’ results with the results of one of them,
considered as the reference one. In this way, methods can be compared in a rel-
ative manner. However, it is necessary to approach the absolute performances
of the methods in order to draw conclusions about their efficiency. Moreover, it
would be interesting to study the sensitivity of the methods’ results according
to the drug and/or event characteristics.

The objective of this paper is to propose a SRS modelling in order to simu-
late realistic data. The evaluation of the DM methods could then be completed,
as the status of the drug–event relationships and the drug and event character-
istics as well are known in the simulated dataset. It is important to obtain data
as realistic as possible in order to be able to derive knowledge of the efficiency
of DM methods with real data.
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The chapter is organized as follows: the SRS modelling is described in the
first section. The model takes into account the qualitative knowledge expressed
by pharmacovigilance experts and found in the literature, by means of a fuzzy
representation of knowledge and a fuzzy inference system. Then, the Applica-
tion section proposes a set of simulation parameter values that aims at obtaining
realistic situations within the French pharmacovigilance context. The empiri-
cal Bayes method [DuMouchel (1999)] is then described. Generated data are
described and results relative to the data mining method are presented in the
Results section. The data mining method evaluation is not the main issue tack-
led by this paper. It is only presented as an illustration of what information
can be derived from simulations.

5.2 Methods

5.2.1 Spontaneous reporting system modelling

In the present study, a pharmacovigilance database is simply viewed as a two-
entry table: one entry for the events and the other for the drugs. The cell
corresponding to the (drug i, event j) couple contains the cumulated reports
number Nij, associated with this couple, that is, the total number of reports
concerning this couple since the launch of the drug.

The probability distribution of the numbers of reports nij , during a given
period Δt, is assumed to be Poisson with a mean report number δij [Tubert
(1993) and Tubert et al. (1992)]:

δij = RRijIjTipij, (5.1)

where RRij is the drug–event relative risk of a (drug i, event j) combination.
When RRij > 1, the drug exposure increases the probability of event; however,
some drug–event associations may still be coincidental. Note that the objective
of a signal generation method is to identify the couples (drug i, event j) with
RRij > 1 – such an identification is a ‘true signal’ – while keeping low the
proportion of ‘false signals’ corresponding to the couples with RRij = 1. Ij is the
background incidence of the event j and Ti the exposure frequency, that is, the
number of patients exposed to the drug i during the given period Δt. Assuming
that the probability of observing the event without the exposure to the drug is
comparable to the probability to observe the event in the whole population, that
is, the background incidence of the event, the product RRij · Ij ·Ti represents
the expected number of events j associated with the drug i during Δt.

As seen in the Introduction section, cases are not systematically reported.
So a reporting probability, pij , completes the Spontaneous Reporting System
modelling. No particular constraint is imposed on the definition of Ij in the
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present version of the SRS modelling. We now describe in detail the other
parameters of the model.

5.2.2 Exposure to the drug (Ti)

The exposure to the drug, Ti, is time dependent and is defined, in our study,
by the drug life cycle characterised by the five periods: ‘Launch,’ ‘Growth,’
‘Maturity,’ ‘Decline,’ and ‘End of life’ (see Figure 5.1). In the present paper,
the only parameter required for defining the whole cycle is the maximal ex-
posure, Timax, corresponding to the exposure during the Maturity phase. Ti

is supposed to reach Timax/10 at the end of the Launch period, to reach its
maximal value after the Growth period, and to decline exponentially after the
Maturity phase, so that at ten years, Ti = Timax/2. The bounds of the cycle
phases and the exposure values associated with these bounds can be adapted
to different situations and can be different from one drug to another. However,
by fixing some values, we choose to limit the number of parameter values that
have to be defined for simulation.

T     /10max

maxT

0 1 4 106

Launch Growth Maturity Decline End of life

Exposure
(Number of patients)

Time

(years)

maxT     /2 

Figure 5.1: Drug life cycle

5.2.3 Events’ relative risk (RRij)

A proportion of coincidental drug–event associations that will give ‘false’ reports
(i.e., with RRij = 1) is defined. The remaining couples, with RRij > 1, are
associated with ‘true’ reports and are supposed to generate a signal. The same
proportions of couples with RRij = 1 and RRij > 1 are imposed on each data
subset having the same value for Ti, Ij , event seriousness and delay since the
drug’s launch. For each subset, the RRij values are randomly attributed to
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the drug–event couples. The set of RRij > 1 is assumed to be exponentially
distributed so that {RRij > 1} ⊂ [RRmin, RRmax], with RRmin > 1.

5.2.4 Reporting probability (pij)

The submodel concerning the static and dynamic characteristics of the report-
ing probability is the most original point of the present paper. In Tubert (1993),
a learning model already attempts to reproduce the changes, over time, of the
reporting probability magnitude for a given drug–event couple. However, the
two major differences with the model of the present paper are: the fact that
in Tubert (1993), the probability of detecting and reporting the event can only
improve with time, and the fact that the learning model is a mathematical ex-
pression with parameters, the values of which can be quite difficult to determine
and interpret for pharmacovigilance experts. In fact, the pharmacovigilance ex-
perts have only general and/or qualitative knowledge of pij . In order to obtain
realistic simulated data, this qualitative knowledge has to be exploited and has
to be easily updated if a change occurs in it. Fuzzy set theory and fuzzy logic
permit us to represent such knowledge and to exploit it to perform humanlike
deductive reasoning. So we propose to derive a set of fuzzy rules from the liter-
ature and pharmacovigilance experts’ advice. These fuzzy rules represent three
basic intuitions of the experts concerning reporting probability, that have been
confirmed by quantitative analysis of real data [Tubert-Bitter et al. (1998)]:
(1) the more serious the event is, and the more reported it is; (2) the more
unknown the causal relationship between a drug and an event is, the more re-
ported the event is; (3) the more recent the drug is, the more reported the
event is. These rules are imposed to distinguish serious and mild events, to
characterise the delay since the drug launch, and the knowledge of the causal
relationship between a drug and an event. We simply consider the seriousness
of an event as a binary variable with two modalities: serious and mild. We
assume that the more a drug–event couple is reported, the more the medical
community suspects the causal relationship between the drug and the event
and considers it as known. So the knowledge the medical community has on a
given drug–event association is assumed to be characterised by the cumulative
number of reports, for the considered drug–event couple, since the launch date
of the drug.

Fuzzy coding

The delay from the drug launch, the cumulative number of reports, and the
reporting probability are characterized by fuzzy subsets as presented in Figure
5.2. The delay since the drug launch is coded according to the five modalities
that characterize the drug life cycle presented in Figure 5.1, that is, ‘Launch,’
‘Growth,’ ‘Maturity,’ ‘Decline,’ and ‘End of life.’ The fuzzy subsets correspond-
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ing to these modalities are defined by the values in Table 5.1. The cumulative
number of reports is partitioned into three fuzzy modalities: ‘Low,’ ‘Medium,’
and ‘High,’ corresponding to the intervals [0,5], [0,20], and [5, +∞], respectively.
Three modalities correspond to an intuitive partitioning of the variable’s domain
and do not demand the definition of an unmanageable number of rules. Eventu-
ally the reporting probability is coded with five modalities: ‘Very low,’ ‘Low,’
‘Medium,’ ‘High,’ and ‘Very high,’ corresponding to the intervals [0,0.0125],
[0,0.025], [0.0125,0.05], [0.025,0.1], and [0.05,0.1], respectively. Note that the
reporting probability is assumed to be at most equal to 0.1, according to the
literature; see Tubert et al. (1992) and Weber (1986). The five modalities of
the reporting probability permit us to define enough rules in order to represent
the whole available knowledge. They especially permit a better representation
of the gradual knowledge previously cited and expressed as ‘The more [. . .] is,
the higher the reporting probability is.’

f  (x)V
F

0

1
Fuzzy subset F

x
a b c d

value
Membership

Variable

Figure 5.2: Trapezoidal membership function of a fuzzy subset F of the variable
V , and fuzzy membership value for an observed value x

The membership value of an observed value x of a variable V , for the fuzzy
subset F , is, due to the trapezoidal shape of the membership functions (or
triangular when b = c, see Figure 5.2):

fV
F (x) = max

(
min

(
x− a

b− a
, 1,

d− x

d− c

)
, 0

)
. (5.2)

For example, a drug–event couple that has been reported ten times belongs
to the modality ‘Medium’ with a membership value equal to 2/3 and to the
modality ‘High’ with a membership value equal to 1/3.
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Table 5.1: Fuzzy characterization of the variables

Variable Fuzzy Subset a b c d

Cumulative Low 0 0 0 5
reports number Medium 0 5 5 20

High 5 20 +∞ +∞
Delay since Launch 0 0 0 1
drug launch Growth 0 1 1 4
(years) Maturity 1 4 6 10

Decline 6 10 10 50
End of life 10 50 +∞ +∞

Reporting Very low 0 0 0 0.0125
probability Low 0 0.0125 0.0125 0.025

Medium 0.0125 0.025 0.025 0.05
High 0.025 0.05 0.05 0.1
Very High 0.05 0.1 0.1 0.1

Fuzzy rules definition

Given the three basic rules previously stated and the coding of the variables, the
rule base presented in Figure 5.3 is defined. The fuzzy conclusions associated
with the cells of the table (Figure 5.3) are chosen to represent the gradual
knowledge of the type ‘the more [. . .] is, the higher the reporting probability is.’
The exceptions are the rules associated to the fuzzy subset ‘Launch,’ for which
the reporting probability is ‘Very high’ (or ‘High’ for mild events) whatever
the cumulative number of reports is. This is justified by the fact that during
the ‘Launch’ period, the potential causal relationship between the drug and
an observed event is a priori unknown. Another exception is the increase of
the reporting probability when moving up from the ‘Launch’ to the ‘Growth’
period and while keeping with a ‘Low’ cumulative number of reports. This
increase of the reporting probability is supposed to model, before the ‘maturity’
period of the drug, a learning phase during which the medical community and
pharmacovigilance experts are more focused on the new drug–event couples,
before the true status of the drug–event relationships is known; see Tubert
(1993).

Rules activation

The fuzzy implication and the generalised modus ponens operator are the min-
imum (min) operator [Bouchon-Meunier and Marsala (2003)]. For instance,
consider the rule (R) ‘IF the event is mild AND IF the cumulative number
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Figure 5.3: Fuzzy rule base for the reporting probability determination. In each
cell of the table are given the conclusions associated with a serious event (upper
part of the cell) and to a mild event (lower part of the cell). VH is for ‘Very
high,’ H for ‘High,’ M for ‘Medium,’ L for ‘Low’ and VL for ‘Very low’

of reports is Low AND IF the delay since the drug launch corresponds to the
Launch period, THEN the reporting probability is High.’ Now consider, for a
given drug–event couple, the observations Nobs and Dobs for the total number
of reports and the delay since the drug launch, respectively. Nobs and Dobs are
‘fuzzified’ according to Eq. (5.2); that is, the membership values fN

Low(Nobs )
and fdelay

Launch(Dobs) are computed. Then the rule (R) is fired; that is, the fuzzy
conclusion CR(Nobs , Dobs ) is computed as follows

CR(Nobs ,Dobs )

= min
x∈[0.025,0.1]

(
fpij

High(x),min
(
fN

Low(Nobs), f
delay
Launch(Dobs )

))
. (5.3)

The principle for obtaining the fuzzy conclusion is also presented graphically
in Figure 5.4. Note that several rules can lead to the same conclusion. So these
fuzzy conclusions are aggregated with the maximum operator.

At this stage, the conclusion is still fuzzy and cannot be exploited directly
by Eq. (5.1). It has to be “defuzzified.” This operation is realised by the
Height Method (HM) [Eklund, Kallin, and Riissanen (2000)], using the following
expression

pij =
∑K

k=1 μk × pk∑K
k=1 μk

,



84 E. Roux et al.

f         (D    ) conclusion
Fuzzy

N D

DN p

"High""Low" "Launch"

μ

0

1 1 1

0 0

Low
N

obs obs

ijk

k

f     (N    )obs

Launch
delay

obs

p

Figure 5.4: Principle of the fuzzy reasoning implementation and values used for
defuzzification

where K is the number of fuzzy subsets characterizing pij , that is, five in the
present model (cf. Table 5.1). pk is the mean of the maxima of the membership
function associated with the kth fuzzy subset of pij and μk is the minimum of
the membership values of the conditions of the rule [cf. Eq. (5.3) and Figure
5.4].

This defuzzification method does not requires defining the membership func-
tions for all the values of pij but only determining the intervals of the fuzzy
subset that correspond to the maxima of the membership functions. Such a
defuzzification method is simple and fast. Moreover, it permits us to reach the
extreme values of pij (i.e., 0 and 0.1), unlike the centre of gravity method, for
example.

5.2.5 Data generation process

The model of the SRS described above can be used to generate simulated data
associated with virtual drugs and events. Given a set of parameter values chosen
for simulation, data are generated sequentially with respect to the procedure
described in Figure 5.5. A total duration of the reporting process, corresponding
to the maximal delay since the drug launch we want to consider, must be
defined. The period Δt between two successive generations has to be chosen
too. As a new drug can be launched during the generation process, it is possible
to have, at the same time, drugs with different delays since launch.

5.3 Application

5.3.1 Values of the model parameters

In the present study, ten years of the Spontaneous Reporting System were sim-
ulated, with a generation period of six months. We considered 150 virtual drugs
and 100 virtual adverse events. The maximal exposures to the drugs over the
ten-year period, Ti max, were three million, 300,000 and 30,000, each value being



Automatic Signal Generation Methods in Pharmacovigilance 85

ijRR RRij

t+   tΔ

T (t)i ΔT (t+   t)i

Poisson

model

Fuzzy

IjjI

Seriousness

N  (t)ij N  (t+   t)ij

Seriousness

Δ

model

p  (t)ij

n  (t)ij

t

t

Figure 5.5: Sequential data generation process for one (drug i, event j) couple

associated with one third of the drugs. For each maximal exposure value, five
drugs were launched each year during the ten year reporting process, leading to
ten different delays since launch, from one to ten years. Background incidences
of adverse events, Ij, were 1/50,000 and 1/10,000, each associated with one
half of the events. For each value of background incidence, half of the events
were considered as serious and the remaining ones as mild. This repartition
corresponds approximately to the one in the French pharmacovigilance data-
base, where 46% of the events are labelled serious [Thiessard et al. (2003)]. Ten
percent of the drug–event couples were associated with a relative risk, RRij , in
the interval [1.2, 10]. The remaining couples (90%) had a relative risk equal to
1. In fact, the results provided by DuMouchel’s method [DuMouchel (1999)] on
the FDA database (this method is described in the next section) tend to show
that about 1/10 of dependent drug–event couples are present in the database,
even if DuMouchel himself does not go so far concerning the interpretation of
his results. In our simulated datasets, this repartition was imposed to each data
subset having the same value for Ti max, Ij, event seriousness, and delay since
the drug launch. Simulations have been performed with the R language and
environment.
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5.3.2 Application of the empirical Bayes method

In order to illustrate the kind of information we can derive from the simulated
data, we apply the empirical Bayes method proposed by DuMouchel (1999). In
this method, the distribution of the number of reports is assumed to be Poisson,
with an expectation μij for the (drug i, event j) couple. Then DuMouchel
considers the rate

λij =
μij

ni. ·n.j

N

,

where ni. and n.j are the total report numbers for the drug i and for the event
j, respectively. N is the total report number in the database and (ni.n.j)/N
is the expected report number for the (drug i, event j) couple, assuming the
independence between the rows and the columns in the dataset. Large values
– larger than 1 – of λij indicate that the couple (i, j) is more reported than
expected. Then a prior mixture of two gamma distributions is assumed for λij :

λij
a priori∼ P · Γ1(α1, β1) + (1− P ) · Γ2(α2, β2),

where P is the weight of the component Γ1(α1, β1) in the mixture. A prior
distribution with five parameters is quite flexible to model the data. The ‘empir-
ical’ character of the method comes from the estimation of the prior distribution
parameters θ = {P,α1, β1, α2, β2}, by means of maximum likelihood estimation
from the data. The posterior distribution is a mixture of two gamma distribu-
tions too. It is then possible to obtain the exact posterior mean of λij , denoted
EBAMij . DuMouchel proposes using this value [in fact, DuMouchel uses the
geometric mean derived from log2(λij)] to rank the drug–event couples. The
proper objective of the present study is not the method description and eval-
uation but the SRS modelling. We refer to the following articles for a more
detailed description of the method [see Bate et al. (1998), DuMouchel (1999),
and Gould (2003)].

5.4 Results

One thousand data sets have been generated. Figure 5.6 shows the reporting
probability and the cumulative number of reports in three different cases and
as a function of the time. On average, 10,502 (standard deviation, SD = 35)
drug–event combinations have been reported at least once. Two thousand (SD
= 37) drug-event couples have been reported only once, 1181 (SD = 29) twice,
770 (SD = 25) three times, and 6551 (SD = 23) at least four times. These
numbers correspond to 19.0%, 11.3%, 7.3%, and 62.4% of the reported couples,
respectively. The average maximal report number for a drug–event couple was
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537 (SD = 19). The average number of ‘true associations,’ that is, the number
of couples whose relative risk exceeds one, was 1182 (SD = 10) and corresponds
to 11.3% of the reported couples.
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Figure 5.6: Reporting probabilities (a) and cumulative number of reports (b),
(c), and (d)

For each of the generated data sets, DuMouchel’s method has been applied.
Table 5.2 shows the prior parameters of the mixture model, obtained by means
of maximum likelihood estimation. These results can be interpreted as follows.
A proportion of P = 0.096 (9.6%) of the drug–event combinations is associated
with λij values that stem from a gamma distribution with a mean superior to
one (α1/β1 = 2.8). The remaining couples (1− P = 0.904) are associated with
values of λij that stem from a gamma distribution with a mean of 0.86 (< 1).
So P = 0.096 can be compared to the 11.3% of the drug–event couples with
RRij > 1, that is, the proportion of the drug–event combinations that have to
be identified by a signal generation method.
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Table 5.2: Average and standard deviation (in brackets), over the 1000 sim-
ulated datasets, of the prior parameters of DuMouchel’s model, estimated by
means of maximum likelihood

θ 1st Mixture
Component

2nd Mixture
Component

Mean Variance Mean Variance
α1 β1 α2 β2 P α1

β1

α1
(β1)

2
α2
β2

α2
(β2)

2

5.188
(0.466)

1.820
(0.134)

146.687
(59.028)

171.098
(69.711)

0.0964
(0.0038)

2.847
(0.065)

1.571
(0.096)

0.858
(0.004)

0.006
(0.002)

The knowledge of the ‘true’ status of the drug–event associations, in terms
of relative risk, allows us to label the signals generated by the data mining
methods as ‘true’ or ‘false.’ As DuMouchel proposes to rank the drug-event
couples by means of the values of the empirical Bayes measure of association,
without defining a threshold, it seems appropriate to evaluate the method by
means of the percentage of the false positive signals among a predefined number
of the most highly ranked couples. For 100, 200, and 500 of the most highly
ranked drug–event combinations, the empirical Bayes method provides 0.0%,
0.3%, and 4.0% of false positive signals, respectively. If a threshold is pro-
posed to generate signals, then method performances can be studied in terms
of sensitivity, specificity, and the like.

5.5 Discussion

The aim of this paper is to obtain realistic simulated data sets in order to evalu-
ate data mining methods, and not to reproduce the reporting process associated
with a real drug–event combination. Consequently, we discuss model validity
at the data set scale. However, the difficulties encountered for the data mining
method evaluation prevent us from easily validating the SRS modelling too.
Nevertheless, qualitative validation can be performed. In fact, the changes of
the reporting probability follow the expected ones, described in the literature
and by experts (Figure 5.6). In Figure 5.6 we notice the increase of the proba-
bility during the first year after the drug launch, corresponding to the ‘learning
phase,’ except for frequent drug–event associations with serious events that are
supposed to be known very quickly and whose reporting probabilities remain
high in the long term.

The estimation of the prior parameters of the mixture model of DuMouchel
(Table 5.2) shows that the prior probability associated with the mixture compo-
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nent with a mean exceeding one and the prior expectations of the two models’
components (0.0964, 2.847, and 0.858, respectively), are of the same order as
the ones found by DuMouchel with real data (0.0969, 3.509, and 0.7699, respec-
tively).

An effort should be made to make the distributions of the marginal numbers
(i.e., ni. and n.j) comparable to the real ones for a size-comparable subset
of the real pharmacovigilance database. Firstly, these numbers are exploited
by the data mining methods to determine the expected numbers of reports.
Secondly, to study the distributions of these numbers is, to our knowledge,
the only manner to quantitatively evaluate the SRS model. In the present
paper, the repartition of the numbers of the drug–event couples according to
the report numbers seems to be realistic even if the very low numbers of reports
are less represented in the simulated data sets than in the real ones. In fact,
in the Dutch database used by Van Puijenbroek et al. (2002), the proportions
of combinations with one, two, three, and four or more reports were 68,4%,
14.2%, 6.2%, and 11.2%, respectively. On the other hand, the FDA database
used by DuMouchel (1999) contained 35.5% of drug–event couples with one
report. So the features of real databases vary from one country to another and,
when performing stratification of the databases according to sex, age, and so
on, from one stratum to another. This creates the need to go further into the
quantitative evaluation of the model of secondary importance. However, the
influence of the values of each model parameter on the methods’ results should
be further investigated in order to contextualize the methods’ performances and
to study the robustness of the results.

Some SRS features have not been taken into account in the previously de-
scribed model. The most important one is the drug interactions, that is, the
fact that some events can be caused by the simultaneous exposure to two or
more drugs and not by the drugs taken alone. DuMouchel proposes a method
to identify the associations between an event and more than one drug by means
of the ‘all-two-factor’ model [DuMouchel and Pregibon (2001)]. In order to
evaluate such a method, it seems necessary to model drugs’ interactions in the
simulated data sets.

5.6 Conclusion

This paper proposes a model of the SRS that permits us to generate realistic
data and to perform the quantitative evaluation of the data mining methods
proposed for pharmacovigilance. Although the quantitative validation of the
model needs further investigations that are difficult to realize, the qualitative
knowledge exploited by the model, especially in order to determine realistic



90 E. Roux et al.

values for the reporting probability, is accepted by pharmacovigilance experts.
Fuzzy set theory and fuzzy logic are not only interesting for modelling qual-
itative knowledge but also to actualise this knowledge by pharmacovigilance
experts themselves. They contribute to make the model adjustable and in-
telligible for the experts and to make the simulated data interpretable. So
Spontaneous Reporting System modelling participates in knowledge discovery
on the SRS itself and is of particular interest for pharmacovigilance experts. By
attempting to reproduce the reporting process of a specific drug–event couple of
the real database, for which exposure to the drug over the time and the event’s
incidence and seriousness are known, it would be possible to approximate the
unobservable features of the couple, and especially the event relative risk. SRS
modelling permits not only the evaluation of data mining methods but also
the support of pharmacovigilance experts in defining and testing surveillance
strategies. Surveillance strategies of databases are sequential and much in-
formation can be derived from the evolution of the report numbers over time
[Bate et al. (1998) and Gould (2003)]. As the data generation process in the
present study is sequential, the evaluation of surveillance strategies including
time consideration is straightforward.
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Latent Covariates in Generalized Linear Models:

A Rasch Model Approach
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Abstract: Study of multivariate data in situations where a variable of interest
is unobservable (latent) and only measured indirectly is widely applied. Item
response models are powerful tools for measurement and have been extended
to incorporate latent structure. The (log-linear) Rasch model is a simple item
response model where tests of fit and item parameter estimation can take place
without assumptions about the distribution of the latent variable. Inclusion
of a latent variable as predictor in standard regression models such as logistic
or Poisson regression models is discussed, and a study of the relation between
psychosocial work environment and absence from work is used to illustrate and
motivate the results.

Keywords and phrases: Rasch models, latent regression, generalized linear
models, measurement error, random effects

6.1 Introduction

In many applied research situations, many of the variables of interest are un-
observable (latent) and are only measured indirectly using indicators. The
rationale behind the construction of a psychometric scale using item response
theory [van der Linden and Hambleton (1997)] is to provide a translation of
manifest variables (item responses) to an underlying latent variable with values
on the real line, that is, translation from a discrete scale to an interval scale. In-
ference about the latent variable should thus not uncritically be based directly
on observed item responses or the observed raw sum score.

This is important when considering a latent covariate, indirectly measured
using categorical items, because a standard approach would be to include the
sum of the observed item responses (the raw sum score) in a regression model,
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thus ignoring the measurement error. The literature on measurement error
models is large, but deals mostly with linear measurement error models. Mea-
surement error models have been applied in different research areas to model
errors-in-variables problems, incorporating error in the response as well as in
the covariates.

This chapter provides a view on Rasch models within a GLM context. A
very general description of this can be found in De Boeck and Wilson (2004)
with focus on modelling latent variables as outcome in regression models, using
observed item responses. Here it is examined how a latent covariate can be in-
cluded in a generalized linear model when the latent covariate is measured using
either a Rasch model [Rasch (1960) and Fischer and Molenaar (1995)] or a more
general log-linear Rasch model [Kelderman (1984,1992)]. Section 6.2 describes
an extension of generalized linear models with subject-level random effects and
shows how a linear regression model with a latent variable as outcome (a la-
tent regression model) can be formulated as a generalized linear mixed model.
The interpretation of regression parameters in the presence of random effects is
discussed in Section 6.3. The results are motivated by an occupational health
example where observed covariates (gender, age, and education) and a latent
covariate (skill discretion) is included in a Poisson regression analysis of absence
rates (Section 6.5).

6.2 Generalized Linear Mixed Models

Generalized linear models [Nelder and Wedderburn (1972) and McCullagh and
Nelder (1989)] are a class of regression models that includes normal, logistic,
and Poisson regression models.

Consider a sample of subjects j = 1, . . . , N and let y1, . . . , yN denote the
observed values of the outcome variable. It is assumed that the distribution of
yj is a one-parameter exponential family:

p(yj|ηj) = exp(yjηj − b(yj , ηj) + c(yj)) (j = 1, . . . , N), (6.1)

where η1, . . . , ηN are parameters called linear predictors and the bs and cs are
constants. Let Xj denote the vector of observed covariates for the jth subject
(the jth row in the design matrix). Exponential families such as (6.1) are the
basis of generalized linear models by assuming the linear structure

ηj = Xjβ (j = 1, . . . , N). (6.2)

The distribution of the ys is determined by the Xs and the βs. These
will often be of interest because they have a straightforward interpretation (for
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example, as difference in means in normal regression model parameters and as
the log of odds-ratios in logistic regression models). For Poisson and logistic
regression models the predictor can be extended with residual variation; that
is,

ηj = Xjβ + εj, εj ∼ N(0, σ2) (j = 1, . . . , N) (6.3)

The result is a simple generalized linear mixed model (the term simple is used to
indicate that only subject-level random effects are introduced). The residual εj

can be interpreted as over dispersion, for example, from unobserved covariates.
Let θ1, . . . , θN denote the values of the latent covariate of interest. In what

follows, it is assumed that the latent covariate is measured using a Rasch model
[Rasch (1960) and Fischer and Molenaar (1995)] or a log-linear Rasch model
[Kelderman (1984)] with known item parameters. Whether such a model fits
the data should of course be examined carefully, and the approaches discussed
in what follows have little merit if a (log-linear) Rasch model does not fit the
data.

6.2.1 Latent regression models

When the values θ1, . . . , θN of the latent covariate have been measured using a
(log-linear) Rasch model where the item parameters are known, the distribution
of the raw scores t1, . . . , tN comes from a one-parameter exponential family
[Christensen et al. (2004)], and the generalized linear mixed model given by
the structure

θj = Zjδ + ξj ξj ∼ N(0, ω2) (j = 1, . . . , N) (6.4)

is called a latent regression model. Since the pioneering work of Andersen and
Madsen (1977), models of this kind have been discussed by many authors for di-
chotomous Rasch models [Zwinderman (1991), Hoijtink (1995), Kamata (2001),
and Maier (2001)], polytomous Rasch models [Anderson (1994), Zwinderman
(1997), and Christensen et al. (2004)], and more general dichotomous item
response theory models [Janssen et al. (2000) and Fox and Glas (2001)].

Latent regression models are a powerful tool for comparing groups with
respect to the value of a latent variable. Inference based on the observed raw
scores t1, . . . , tN has been shown to yield invalid results [Embretson (1996)] and
statistics based on estimated values θ̂1, . . . , θ̂N for each person can yield biased
results [Hoijtink and Boomsma (1996)].

It should be noted that, although there is no mathematical difference in
the way the variables θ and η are used in the regression models, they are in
fact fundamentally different. In the latent regression model, θ is the variable
of interest and the use of the observed raw sum score t is a technical detail. In
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the regression model for the observed outcome, the outcome variable y is the
variable of interest and the introduction of the predictor η is a technical detail.

6.3 Interpretation of Parameters

The inclusion of random effects changes the interpretation of the parameters
β because the predictor η is a stochastic variable. Interpretation of regression
parameters in the presence of random effects has been discussed for logistic
regression models by Larsen et al. (2000), and for latent regression models by
Christensen et al. (2004) focusing on the advantages of reporting of the random
effect as the median of the absolute difference.

Here Poisson regression models with subject-level random effects (the regres-
sion models used in the example in Section 6.5) are considered. In a Poisson
regression model, (6.1) is p(yj|ηj) = exp(yjηj − exp(ηj) − log(yj !)), and the
parameter β1, say, in (6.2) can be interpreted as the logarithm of the rate ratio
between two groups of subjects.

In the presence of random effects, for example, (6.3), differences between
subjects on the link scale are stochastic variables. For two randomly chosen
subjects who have the same value of all fixed effects covariates (i.e., Xj1 = Xj2),
the median is

med(|ηj1 − ηj2 |) =
√

2σ2med(χ2
1) � 0.954 · σ (6.5)

because ηj1−ηj2 is normally distributed with mean zero and variance 2σ2. The
median (6.5) is a measure of heterogeneity on the same scale as the contrasts. In
the example in Section 6.5, where the number of absence days is studied using a
Poisson regression model, (6.5) is the logarithm of the ratio between the largest
and smallest number of absence days for two randomly chosen subjects in the
same group (i.e., with the same value of the covariates).

6.4 Generalized Linear Models with a Latent
Covariate

Assuming for all j = 1, . . . , N that yj and tj are conditionally independent
given ηj and θj , the joint distribution of (yj, tj) is a two-dimensional exponen-
tial family, and the model described in the following is the result of imposing
a simpler structure on the variables (θj , ηj), for j = 1, . . . , N and including
residual correlation.
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Figure 6.1: Overview of the relation between variables in the regression model

This section describes a one-dimensional regression model for the observed
outcome variable y using the raw sum score t and the known item parameters
to model the relation between η and θ. The interpretation of the parameters is
discussed and a two-stage estimation algorithm is proposed.

6.4.1 Model

The latent covariate θ can be included in a regression model for the observed
outcomes by inserting the θs in (6.3), that is, by imposing the structure(

ηj

θj

)
=

(
Xjβ + γθj + εj

Zjδ + ξj

) (
εj

ξj

)
∼ N(0,Σ) Σ =

(
σ2 0
0 ω2

)
(6.6)

for j = 1, . . . , N . This extension is a very simple structural equation model
[Bollen (1989)] formulated for the variables (η, θ); an example of the structural
relationship between variables imposed by this model is shown in Figure 6.1.

The standard approach would be to include the observed raw sum scores
in (6.3), that is, ηj = Xjβ + tjγ + εj, εj ∼ N(0, σ2) for j = 1, . . . , N , thereby
indirectly postulating a relation between the responses yj and values θj of the
latent covariate. Because the raw sum score is not on an interval scale, another
model is required and a better approach would be to include estimated values,
ηj = Xjβ + γθ̂j + εj , ε ∼ N(0, σ2) for j = 1, . . . , N , but two subjects with the
same raw sum score do not have exactly the same value of the latent covariate,
and this approach will ignore estimation error. The model (6.6) on the other
hand takes variation into account by using θ as a random effect.

6.4.2 Interpretation of parameters

For two subjects j1 and j2, mean values can be compared using the difference

ηj1 − ηj2 = (Xj1 −Xj2)β + γ(θj1 − θj2) + (εj1 − εj2) (6.7)
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on the η-scale. If the random effects (εj1 and εj2) are disregarded, the para-
meters β and γ are differences on this scale: β1, say, is the difference between
subjects for whom X1j1 = X1j2 + 1 and Xij1 = Xij2, for i 	= 1 and θj1 = θj2,
and γ is the difference between subjects for whom θj1 = θj2 +1, and Xj1 = Xj2 .

When the random effects are included, the difference (6.7) is a stochastic
variable, and this changes the interpretation of the parameters β and γ. The
difference between subjects for whom X1j1 = X1j2 + 1 and Xij1 = Xij2 , for
i 	= 1 and θj1 = θj2 is normally distributed with mean β1 and variance 2σ2.
The difference between subjects for whom θj1 = θj2 + 1, and Xj1 = Xj2 is
normally distributed with mean γ and variance 2σ2.

When a linear structure is imposed on the latent covariate, θj can be re-
placed by Xjδ + ξj in (6.7) yielding

ηj1 − ηj2 = (Xj1 −Xj2)β + (Xj1 −Xj2)γδ + γ(ξj1 − ξj2) + (εj1 − εj2)
(6.8)

and the difference between subjects for whom X1j1 = X1j2 +1 and Xij1 = Xij2 ,
for i 	= 1 and Xj1 = Xj2 is normally distributed with mean β1 and variance
2γ2ω2 + 2σ2. If X1j1 = X1j2 + 1, X1j1 = X1j2 + 1 and Xij1 = Xij2 , Xij1 = Xij2 ,
for i 	= 1 the mean of the difference is β1 + γδ1. This has special implications
when a covariate influences both η and θ: the effect on the outcome y is divided
into a direct effect, and a indirect (or mediated) effect through the effect on the
latent covariate θ (cf. Figure 6.1).

6.4.3 Parameter estimation

The joint probabilities specified by (6.6) are

Pr(yj , tj) =
∫ ∫

p(yj|Xjβ + γ(Xjδ + ξj) + εj)

× q(tj |Xjδ + ξj)φω2(ξj)φσ2(εj) (6.9)

where φω2 is the density function of the normal distribution with mean zero
and variance ω2. This yields the log-likelihood function

l(β, γ, δ, σ2, ω2) =
N∑

j=1

log(Pr(yj, tj)). (6.10)

This log-likelihood function can be maximized using PROC NLMIXED in
SAS. This procedure uses an adaptive Gaussian quadrature, found to be one
of the best methods in a comparison of several different integrated likelihood
approximations [Pinheiro and Bates (1995)].

Realistic starting values for the parameters β, δ, and γ will decrease com-
puting time greatly and these could be obtained by (i) numerical solution of
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the fixed effects model (given by η = Xβ + γθ and θ = Xδ); (ii) solving the
score equations

U(β, δ, γ) =
N∑

j=1

Xj(yj − E(yj |Xjβ + Xjγδ)) +
N∑

j=1

Xj(tj − E(tj |Xjδ)) = 0,

because this leads to consistent estimates even though the correlation structure
is ignored [Liang and Zeger (1986)]; or (iii) by using the following adaptation of
the Iterative Weighted Least Squares (IWLS) algorithm [see Nelder and Wed-
derburn (1972) and McCullagh and Nelder (1989)]. Estimates of the parameters
β̂, δ̂, and γ̂ yield a vector θ̂ = Xδ̂ of predicted θ-values and thereby also a vec-
tor η̂ = Xβ̂ + γ̂θ̂ of predicted η-values. Because the mean and variance in
one-parameter exponential families are uniquely determined by the parameter
predictors η and θ this yields estimates of the mean vectors and variance–
covariance matrices for y and t. Starting values for the parameters β, γ, and δ
can be obtained by iteratively solving the equations

(X|θ)′V (y)−1(X|θ)
(

β
γ

)
= (X|θ)V (y)−1y∗

X ′V (t)−1Xδ = X ′V (y)−1t∗,

where y∗ = (y − E(y))V (y)−1 and t∗ = (t − E(t))V (t)−1 are updated in each
step. This algorithm is very fast and works in many situations, but will not
always converge when the fixed effects model is not identified.

6.5 Example

In 1997, the Danish National Institute of Occupational Health conducted a
study of the psychosocial work environment in a random sample of 4000 people
from a general population between 20 and 60 years (response rate = 62%).
The data collection yielded responses from a total of 1858 people who were
employed. In this example, the subsample of people employed in offices, trade,
and industry, who had complete item responses, are considered (504 employees
in all: 268 office workers, 99 trade workers, and 137 workers in industry). The
research question concerns how differences in sickness absence rates can be
attributed to the observed covariates: gender, age, job group, and education
[no education, skilled, vocational education (three years), higher education]
and to the latent covariate skill discretion.

Let Yj denote the number of sickness absence spells for person j. Table
6.1 shows estimated parameters from a Poisson regression model with random
person effects (ηj = Xjβ + εj).
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Table 6.1: Predictors of the number of absence spells. Results from Poisson
regression with random person effects

Estimate 95% CI p

Gender (being a woman) 0.247 ( 0.008, 0.487) 0.043
Age (10 years) −0.134 (−0.229,−0.038) 0.006
Trade workers 0 — —
Office workers 0.202 (−0.083, 0.487) 0.164
σ̂ 0.645 ( 0.530, 0.759) —

The number of sickness absence spells is seen to differ among job groups, in-
dustry workers having 41% more sickness absence spells than trade workers
[exp(0.347) = 1.41] and it is also apparent that there is substantial variation
between persons. The median (6.5) is 0.954 · 0.645 = 0.615 and thus the ratio
between largest and smallest number of absence days for two randomly chosen
subjects with the same value of the covariates is exp(0.618) = 1.850.

6.5.1 Latent covariate

Three items were used to measure skill discretion (Does your job require you to
take the initiative? Do you have the possibility of learning new things through
your work? Can you use your skills or expertise in your work? Responses:
To a large extent, To some extent, Somewhat, Not very much, To a very small
extent). The answer categories were scored 0, 1, 2, 3, 4, and total scores tj taking
values 0, 1, . . . , 12 were computed. The Rasch model was found to fit adequately
to the data and based on this model a value θ̂j of the latent covariate can be
estimated for each person.

Three Poisson regression models are compared introducing skill discretion
in the model by: (i) including the raw scores ηj = Xjβ+γ(i)tj +εj, (ii) including
estimated values for each person ηj = Xjβ + γ(ii)θ̂j + εj , or (iii) by the model
(6.6)

ηj = Xjβ + γ(iii)θj + εj

θj = δ0 + ξj.

The estimated effects γ̂(i), γ̂(ii), γ̂(iii) of skill discretion on the number of sickness
absence spells in these three models are shown in Table 6.2

The model (6.6) discloses a substantial reduction and is the only model to
disclose a significant effect. The parameters γ(ii) and γ̂(iii) are immediately
comparable because they are on the same scale.
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Table 6.2: Results from Poisson regression with random person effects including
(i) the observed raw sum score, (ii) estimated values for each person, or (iii)
latent covariate (cf. (6.6)) as predictors. All analyses are adjusted for effect of
gender, age, and job group

Estimate 95% CI p

γ(i) −0.051 (−0.106, 0.004) 0.064
γ(ii) −0.087 (−0.187, 0.013) 0.088
γ(iii) −0.213 (−0.423,−0.003) 0.046

The parameter γ quantifies the effect of a one-point increase on the latent
scale, cf. (6.7), the proposed model estimates that this effect is a reduction
of absence rates by 19.2% (exp(−0.213) = 0.808), whereas the predicted ef-
fect based on estimated θjs is a reduction by 8.3%, presumably because the
measurement error inherent in the estimates is not taken into account.

6.5.2 Job group level effect of the latent covariate

Next, a more general model incorporating job group levels of skill discretion is
considered

ηj = Xjβ + γ(iii)θj + εj

θj = Zjδ + ξj.

This structural equation model [Bollen (1989)] for the variables θ, η yields
a better description of the distribution of the latent variable in the population,
and a latent regression model that fits better [Christensen and Kreiner (2004)].
The estimated parameters are shown in Table 6.3.

In this model, the difference between office workers and trade workers is

ηoffice − ηtrade = βoffice + γδoffice = 0.183 + 0.135 · 0.206
= 0.183 + 0.028 = 0.211;

this difference is of the same magnitude as the one in Table 6.1, but the effect
on sickness absence is divided into a direct effect, and a indirect (or mediated)
effect through the effect on the latent covariate: 0.028/0.211 = 13.3% of this
job group difference is explained by differences in skill discretion.
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Table 6.3: Predictors of the number of absence spells. Effect of the latent
covariate skill discretion on job group level

Parameter Estimate S.E.
βwoman 0.205 0.122
βage −0.140 0.048
βtrade 0 —
βoffice 0.183 0.145
βindustry 0.315 0.166
γ −0.135 0.063
δtrade 0 —
δoffice −0.206 0.156
δindustry −0.144 0.175
σ 0.629 —
ω 1.044 —

6.6 Discussion

A simple approach to including a latent variable indirectly measured through
item responses in a generalized linear model was discussed here. Many other
latent variable models have been proposed; see, for example, Muthén (1984,
1989), Rabe-Hesketh, Skrondal, and Pickles (2004), Skrondal and Rabe-Hesketh
(2003), and Fox and Glas (2001, 2002). A special feature of the approach used
here is that the separation between measurement models and structural models
inherent in the Rasch model is used by inserting known item parameters in
the distribution of the raw sum score. This distribution then comes from a
one-parameter exponential family and (6.4) yields a generalized linear mixed
model. This situation is approximated when consistent conditional maximum
likelihood estimates of item parameters are used. The consequences of this two-
stage estimation procedure have been studied: the procedure yields consistent
estimates of regression parameters, but standard errors are too small, and this
problem is constant over sample sizes but gets smaller if the number of items
is increased, that is, with increased measurement precision [Christensen et al.
(2004)].

Because this approach is based on the distribution of the total score and not
the distribution of single item responses, the framework is easily expanded to
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measurement using log-linear Rasch models [Kelderman (1984) and Christensen
et al. (2004)]. Complex relationships between variables (e.g., local dependence
structures) can thus be included [Kreiner and Christensen (2002, 2004)]. The
use of generalized linear models allows for standard interpretation (e.g., the
rate ratios in the example). When consistent conditional maximum likelihood
estimates of item parameters are inserted, the distribution of the raw sum score
t is a one-parameter exponential family and a model including both latent
variables and Poisson distributed variables is straightforward.

Most applications of random effect models require specialized standalone
software, e.g., HLM [Raudenbush et al. (2000), MLwiN [Goldstein et al. (1998)]
and Mplus [Muthén and Muthén (1998)], an exception being gllamm [Rabe-
Hesketh, Pickles, and Skrondal (2001)] implemented in Stata. The approaches
discussed here are implemented in SAS [Christensen and Bjorner (2003)].
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Abstract: Early stopping of clinical trials either in the case of beneficial or
deleterious effect of treatment on quality of life (QoL) is an important issue.
QoL is usually evaluated using self-assessment questionnaires and responses to
the items are combined into scores assumed to be normally distributed (which
is rarely the case). An alternative is to use item response theory (IRT) models
such as the partial credit model (PCM) for polytomous items which takes into
account the categorical nature of the items.

Sequential analysis and mixed partial credit models were combined in the
context of phase II noncomparative trials. The statistical properties of the
sequential probability ratio test (SPRT) and of the triangular test (TT) were
compared using mixed PCM and traditional average scores methods (ASM) by
means of simulations.

The type I error of the sequential tests was correctly maintained for both
methods, the mixed PCM being more conservative than the ASM. Although
remaining a bit underpowered, the mixed PCM displayed higher power than the
ASM for both sequential tests. Both methods allowed substantial reductions in
average sample numbers as compared with fixed sample designs. Overlapping
of item category particularly affected the ASM by inflating the type I error
and power. The use of IRT models in sequential analysis of QoL endpoints is
promising and should provide a more powerful method to detect therapeutic
effects than the traditional ASM.

Keywords and phrases: Quality of life, item response theory, partial credit
model, mixed models, sequential tests, clinical trials
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7.1 Introduction

Many clinical trials attempt to measure health-related quality of life (QoL)
which refers to ‘the extent to which one’s usual or expected physical, emotional
and social well-being are affected by a medical condition or its treatment’ [Cella
and Bonomi (1995) and Fairclough (2002)]. QoL endpoints, reflecting the pa-
tient’s perception of his or her well-being and satisfaction with therapy, are
important health outcomes to consider. However, each domain of health can
have several components (e.g., symptoms, ability to function, disability) and
translating these various domains of health into quantitative values to measure
quality of life is a complex task, drawing from the field of psychometrics, biosta-
tistics, and clinical decision theory. In clinical trials in which specific therapeutic
interventions are being studied, QoL is usually evaluated using self-assessment
questionnaires that consist of a set of questions called items, which are often
polytomous and frequently combined to give scores for scales or subscales. The
common practice is to work on average scores that are generally assumed to be
normally distributed. However, these average scores are rarely normally dis-
tributed and usually do not satisfy a number of basic measurement properties
including sufficiency, unidimensionality, or reliability. Moreover, these scores
are often used as a reduction of a larger amount of data without introducing
clearly the mechanism of such reduction in the likelihood.

Item response theory (IRT), which was first mostly developed in educa-
tional testing, takes into account the multiplicity and categorical nature of
the items by introducing an underlying response model [Fisher and Molenaar
(1995)] relating those items to a latent parameter having the nice property to
be interpreted as the true individual QoL. In this framework, the probability
of response of a patient on an item depends upon two different parameters:
the ‘ability level’ of the person (which reflects his or her current QoL) and the
‘difficulty’ of the item (which reflects somehow the capacity of that specific item
in discriminating between good and bad QoL).

QoL endpoints are often studied in noncomparative phase II trials, which
are commonly designed to evaluate therapeutic efficacy as well as further inves-
tigation of the side-effects and potential risks associated with therapy. Early
stopping of clinical trials either in the case of beneficial or deleterious effect of
the treatment on QoL is an important matter [Cannistra (2004)]. Several early
termination procedures, allowing for repeated statistical analyses on accumu-
lating data and for stopping a trial as soon as the information is sufficient to
conclude, have been developed over the last few decades [Jennison and Turn-
bull (1999) and Whitehead (1997)]. Although sequential methodology is often
used in clinical trials, IRT modelling, as a tool for scientific measurement, is
not quite well established in the clinical trial framework despite a number of
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advantages offered by IRT to analyse clinical trial data [Holman et al. (2003a)].
Moreover, it has been suggested that IRT modelling offers a more accurate mea-
surement of health status and thus should be more powerful to detect treatment
effects [McHorney et al. (1997) and Kosinski et al. (2003)]. Hence, IRT mod-
elling could be an interesting alternative to traditional sequential analysis of
QoL endpoints based only on average scores. In fact, the benefit of combin-
ing sequential analysis and IRT methodologies using mixed Rasch models for
binary items has already been studied [Sébille and Mesbah (2006)] and seems
very promising. However, because QoL is much more often assessed in clinical
trials using scales with polytomous items, our previous work was extended to
mixed partial credit modelling for polytomous items in the context of phase
II noncomparative trials. We performed sequential analysis of QoL endpoints
(obtained from the observed data) using mixed partial credit models and we
compared the use of such IRT modelling methods with the traditional use of
average scores methods.

7.2 Methods

7.2.1 The partial credit model

The partial credit model is an IRT model that allows for the analysis of re-
sponses to ordinal items [Masters (1982)]. The model considers one parameter
(called the item difficulty parameter) per positive response to each item. Let
the ordinal categories be represented by scores 0, 1, . . .,m. Under the partial
credit model, the probability that the ith patient with health status (QoL)
level θi will respond (Xij) in category k rather than any other category on item
j, given the item difficulty parameters vector βj = (βj0 , βj1, . . . , βjm ), where
βj0 = 0 is given by:

P (Xij = k/θi, βj) = f (Xij/θi;βj) =
exp

(
k∑

l=0

(θi − βjl)
)

m∑
c=0

exp
(

c∑
l=0

(θi − βjl)
) .

Where k = 0, 1, 2, . . .,m, and m is the number of categories minus one, j =
1, 2, . . ., J , and J is the number of items in the questionnaire, i = 1, 2, . . ., N ,
and N is the number of patients.

The parameter βjl can be thought of as an item step difficulty to respond
in category l rather than in category l − 1. That is, βjl is the health status,
as measured by the latent trait, one would require to expect a 50–50 chance
of responding in category l rather than in category l − 1. The item difficulty
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parameter values can take any order and the possible reverse order of these
thresholds leads to the phenomenon of overlapping. For well-constructed items,
the thresholds are ordered. This implies that some grouping of categories might
be required in the case of overlapping.

7.2.2 Estimation of the parameters

Several methods are available for estimating the parameters (the θs and βs)
in the partial credit model [Hamon and Mesbah (2002)] including: joint maxi-
mum likelihood (JML), conditional maximum likelihood (CML), and marginal
maximum likelihood (MML). The MML is used when the partial credit model
is interpreted as a mixed model with θ as a random effect having distribution
h(θ, ζ) with unknown parameters ζ. The distribution h is often assumed to be-
long to some family distribution (often Gaussian) and its parameters are jointly
estimated with the item parameters. The MML estimators for the item parame-
ters are asymptotically efficient [Thissen (1982)]. Furthermore, because MML
does not presume existence of a sufficient statistic (unlike other methods), it is
applicable to virtually any type of IRT model.

7.2.3 Sequential analysis

The ethical desirability of terminating a trial that shows an early therapeutic
advantage or disadvantage is the primary motivation for the use of sequential
analysis. In a sequential trial the decision to stop admission to the trial depends
on the nature of the evidence accumulated thus far. In this section we shall
discuss the methodological aspect of sequential analysis performed either under
the partial credit mixed model or under the average scores approach on QoL
data.

7.2.4 The Z and V statistics

Two sample statistics play an important role in the investigation of a parameter
of interest, say ϕ, and are fundamental to sequential trials [Whitehead (1997)].
One is a cumulative measure of the advantage of a therapy and is called the
efficient score (Z) and the other indicates the amount of information about ϕ
contained in Z and is called Fisher information (V ). Both can be calculated at
any stage of a clinical trial; V will increase as the trial progresses. The form
of the efficient score Z for a parameter of interest and of Fisher information V
can be derived from an appropriate likelihood function.

The model being used to describe the behaviour of the data is assumed
to be known, apart from the value of the parameter of interest and the other
parameters φ are treated as nuisances and in particular the likelihood of ϕ and
φ based on the data will be known. The maximum likelihood estimates of the
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nuisance parameters at a given value of ϕ are used in order to derive the Z and
V statistics that are needed for sequential analysis. The log-likelihood will be
denoted by l(ϕ, φ) and the maximum likelihood estimate of φ at a given value
of ϕ by φ̂(ϕ). The consistency of φ̂(ϕ) implies that in large samples l(ϕ, φ̂(ϕ))
will provide a good approximation to l(ϕ, φ)with the advantage that it depends
only on ϕ. This property guarantees that an expansion in the power of ϕ can
be made. From the Taylor expansion of l(ϕ, φ̂(ϕ)) about (0, φ̂(0)) it can be
shown that

Z = lϕ(0, φ̂(0))

V = −lϕϕ(0, φ̂(0)) +
{

lϕφ(0, φ̂(0))
}

′
{

lφφ(0, φ̂(0))
}−1

lϕφ(0, φ̂(0))),

where the subscripts indicate the derivatives of the log-likelihood with respect
to ϕ, φ, or both ϕ and φ. For small ϕ and large samples, Z is assumed to
have a normal distribution with mean ϕV and variance V . More details on
the theoretical background of the two statistics can be found in well-known
references [Whitehead (1997) and Jennison and Turnbull (1999)].

7.2.5 Traditional sequential analysis

In the traditional framework of sequential analysis [Wald (1947), Whitehead
(1997), and Jennison and Turnbull (1999)], θi is assumed to be observed (not
to be a latent value) and the observed score Si is used as a ‘surrogate’ of the
true latent trait θi. This leads to the classical framework of sequential analy-
sis. For N patients, a normal distribution of the observed scores is assumed:
S1, S2, . . . , SN ∼ N(μ, σ). Let μ0 be the mean score before treatment, the hy-
potheses of interest after receiving treatment can be expressed as: H0: μ = μ0

versus H1: μ > μ0. Let ϕ = (μ− μ0)/σ; the above hypotheses can be rewritten
as H0: ϕ = 0 versus H1: ϕ > 0. The statistics Z and V depending on the
observed scores S, say Z(S) and V (S), can then be derived as previously de-
scribed using the log-likelihood of ϕ and σ based on the N observations. More
details can be found elsewhere [Whitehead (1997)].

7.2.6 Sequential analysis based on partial credit measurements

We shall now focus on the latent case, that is, the case where θi is unobserved.
Thus, the likelihood will be different, because the likelihood is traditionally a
function of the observations, not of the unobserved variables.

The derivation of the Z and V statistics using the partial credit model is
less straightforward. The response of a patient Xij (i = 1, . . ., N) to each item
j (j = 1, . . ., J) depends, under the partial credit model, on two parameters:
the latent trait θi and the item difficulty parameters βj = (βj0, βj1, . . . , βjm).
We assumed a normal distribution g(θi) for the latent trait θi with mean μ and
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variance σ2, and the item difficulty parameters βj to be known. The hypotheses
of interest can be written as H0: μ = μ0 versus H1: μ > μ0.

Let f (Xij/θi;βj) =
exp(

k

l=0
(θi−βjl))

m

c=0
exp(

c

l=0

(θi−βjl))
.

The joint distribution of the responses, Xi, of the ith subject with latent
trait θi, assuming local independence of the items, is given by

f(Xi, θi) =
J∏

j=1

f(Xij/θi) g(θi).

Thus, the marginal contribution of the ith subject to the likelihood is

f(Xi, .) =
∫ J∏

j=1

f(Xij/θi) g(θi) dθi.

Therefore, the likelihood, assuming patients are independent, is given by

L(θ1, θ2, . . . , θN ;μ, σ (μ)) =
N∏

i=1

∫ J∏
j=1

f(Xij/θi) g(θi) dθi.

Substituting the actual distributions of f and g under the partial credit model,
we obtain the following likelihood.

L (θ1, θ2, . . . , θN , μ, σ (μ))

=
N∏

i=1

∫ J∏
j=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp(

k∑
l=0

(θi − βjl))

m∑
c=0

exp(
c∑

l=0

(θi − βjl))
∗

exp(−1
2

(
θi−μ

σ

)2
)

σ
√

2π
dθi

⎫⎪⎪⎪⎬⎪⎪⎪⎭.

Once we have the likelihood, the procedure for finding the Z and the V sta-
tistics can be used. This time, the statistics Z and V will depend on X, the
responses to the items, which contain all the information on the items and
will be denoted Z(X) and V (X). Estimation of Z(X) and V (X) was done
by maximising the marginal likelihood, obtained from integrating out the ran-
dom effects. Numerical integration methods had to be used because it was not
possible to provide an analytical solution. We used the well-known adaptive
Gauss–Hermite quadrature to obtain numerical approximations [Pinheiro and
Bates (1995)].
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7.2.7 The sequential probability ratio test and the
triangular test

The statistics Z and V were denoted Z(S) and V (S) in the case of traditional
sequential analysis based on sufficient scores and Z(X) and V (X) in the case of
a joint sequential and partial credit analysis based directly on observed items.
However, for ease of the general presentation of the tests we shall use the no-
tations Z and V here. The sequential probability ratio test (SPRT) and the
triangular test (TT) use a sequential plan defined by two perpendicular axes,
the horizontal axis corresponds to Fisher’s information V , and the vertical axis
corresponds to the efficient score Z which represents the benefit as compared
with H0. The TT appears in Figure 7.1. For a one-sided test, the boundaries
of the test delineate a continuation region (situated between these lines), from
the regions of nonrejection of H0 (situated beneath the bottom line) and of
rejection of H0 (situated above the top line). The boundaries depend on the
statistical hypotheses (values of the expected treatment benefit, α and β) and
on the number of subjects included between two analyses. They can be adapted
at each analysis when this number varies from one analysis to the other, us-
ing the ‘Christmas tree’ correction [Siegmund (1979)]. The expressions of the
boundaries for one-sided tests [Sébille and Bellissant (2001)] are given in the ap-
pendix. At each analysis, the values of the two statistics Z and V are computed
and Z is plotted against V , thus forming a sample path as the trial goes on.
The trial is continued as long as the sample path remains in the continuation
region. A conclusion is reached as soon as the sample path crosses one of the
boundaries of the test: nonrejection of H0 if the sample path crosses the lower
boundary, and rejection of H0 if it crosses the upper boundary.

7.2.8 Simulation design

We simulated 1000 noncomparative clinical trials with patient’s item responses
generated according to a partial credit model. The latent trait θi was assumed
to follow a normal distribution with mean μ and variance σ2 = 1 and the
trial we considered involved the comparison of the two hypotheses: H0: μ =
μ0 = 0 against H1: μ > 0. We considered a QoL questionnaire with ten
items and four ordinal categories. The items were first assumed to be well
constructed, meaning that there was no overlapping in the categories of the
items and hence the thresholds (item difficulty parameters) of the items were
ordered. We sampled the item difficulty parameters from a uniform distribution
ranging from −3 to 3 in an increasing order according to the categories. The
statistical properties of the SPRT and of the TT were studied in the setting of
one-sided noncomparative trials. We studied the type I error (α), power (1−β),
average sample number (ASN), and 90th percentile (P90) of the number of
patients required to reach a conclusion using simulations. The sequential tests
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Figure 7.1: Stopping boundaries based on the triangular test (TT) for
α = β = 0.05 with an effect size (ES) of 0.5

were compared with the traditional method using the SPRT or TT based on
the averages of patient’s scores. We investigated different expected effect sizes
[(μ− μ0)/σ = μ, ranging from 0.4 to 0.6], sequential analyses were performed
every 20 included patients with working significance level 0.05, and power 0.95.

We also investigated the impact of overlapping category items on the prop-
erties of the sequential tests using either the partial credit model or the average
scores approach. Items with overlapping categories usually require removal or
collapsing of categories in order to improve the validity of the scale. We consid-
ered the case of none, 20%, 30%, 40%, and 50% of items with one overlapping
at the third category and sequential analyses were performed using the same
design as before with an effect size of 0.5.

7.3 Results

Table 7.1 summarises the type I error rate of the SPRT and TT for different
values of the effect size using either the partial credit model or the average
scores method. The significance levels achieved by the SPRT and TT were
found to be lower than the working significance level, both under the partial
credit model and the average scores approach. In particular, the SPRT under
the partial credit model for all effect sizes was found to have lower type I error



Sequential Analysis of Quality of Life with the Mixed PCM 117

probability than the average scores method and hence appeared to be more
conservative. Moreover, the type I error seemed to decrease as the effect size
increased for both SPRT and TT, especially under the partial credit model.

Table 7.1: Type I error probability for the sequential probability ratio test
(SPRT) and the triangular test (TT) (nominal α = β = 0.05). Data are α̂
(standard errors)

Effect Size
Partial Credit Model Average Scores Method

SPRT TT SPRT TT
0.4 0.026 (0.005) 0.035 (0.006) 0.039 (0.006) 0.038 (0.006)
0.5 0.014 (0.004) 0.030 (0.005) 0.038 (0.006) 0.043 (0.006)
0.6 0.008 (0.003) 0.023 (0.005) 0.033 (0.006) 0.043 (0.006)

Table 7.2 shows the power achieved by the SPRT and TT for different
values of the effect size using either the partial credit model or the average
scores method. The power remained more accurate under the partial credit
model as compared with the average scores approach, especially for the SPRT.

Table 7.2: Power for the sequential probability ratio test (SPRT) and the tri-
angular test (TT) (nominal α = β = 0.05). Data are 1− β̂ (standard errors)

Effect Size
Partial Credit Model Average Scores Method

SPRT TT SPRT TT
0.4 0.941 (0.007) 0.928 (0.008) 0.920 (0.009) 0.917 (0.009)
0.5 0.922 (0.008) 0.905 (0.009) 0.909 (0.009) 0.897 (0.010)
0.6 0.935 (0.008) 0.881 (0.010) 0.926 (0.008) 0.905 (0.009)

Table 7.3 summarises the ASN and P90 of the number of patients required
to reach a conclusion under H0 for the SPRT and TT for different values of the
effect size using either the partial credit model or the average scores method.
We also computed for comparison purposes the approximate number of patients
required by a single-stage design (SSD) using IRT modelling from the results
published in a recent paper [Holman et al. (2003a)]. As expected, the ASN and
P90 all decreased as the expected effect sizes increased whatever the method
used. The ASN and P90 under H0 were always much smaller for both methods
based either on the average scores approach or the partial credit model than for
the SSD for whatever values of effect size considered. The decreases in the ASN
were a bit larger for the average scores method as compared with the partial
credit model: −70% and −66% on average, respectively.
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Table 7.3: Average sample number (ASN) and 90th percentile (P90) of the
number of patients required to reach a conclusion under H0 for the sequential
probability ratio test (SPRT) and the triangular test (TT) (nominal α = β =
0.05)

Effect Size
SSD – IRT* Partial Credit Model Average Scores Method

SPRT TT SPRT TT
0.4 125 46.3/80 47.9/80 37.9/80 41.1 /60
0.5 100 33.6 60 33.3/60 27.8/40 28.0 /40
0.6 80 26.7/40 25.8/40 24.0/40 23.1 /40

*Approximate number of subjects required in a single-stage design (SSD) using
IRT modelling. Data are ASN/P90.

Tables 7.4 summarises the ASN and P90 of the number of patients required
to reach a conclusion under H1 for the SPRT and TT for different values of the
effect size using either the partial credit model or the average scores method.
The approximate number of patients required by a single-stage design using
IRT modelling was also computed. The same kind of behaviour was observed
for both methods with a reduction in sample size for the average scores method
and the partial credit model as compared with the SSD of −67% and −58% on
average, respectively, the ASN being a bit larger under H1 as compared with
what was observed under H0.

Table 7.4: Average sample number (ASN) and 90th percentile (P90) of the
number of patients required to reach a conclusion under H1 for the sequential
probability ratio test (SPRT) and the triangular test (TT) (nominal α = β =
0.05)

Effect Size
SSD – IRT* Partial Credit Model Average Scores Method

SPRT TT SPRT TT
0.4 125 58.1/100 56.0/80 44.1/80 46.5 /80
0.5 100 42.2/80 39.5/60 32.5/60 32.3 /40
0.6 80 36.8/60 30.0/40 26.4/40 24.5 /40

*Approximate number of subjects required in a single-stage design (SSD) using
IRT modelling. Data are ASN/P90.

Table 7.5 shows the type I error rate of the SPRT and TT for different
amounts of items with one overlapping category in the scale using either the
partial credit model or the average scores method. The type I error probabilities
of both sequential procedures under the partial credit model appeared to be
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unaffected by the amount of items with one overlapping category and were
always lower than the working significance level (0.05). In contrast, under
the average scores method, the type I error probabilities of both sequential
procedures increased as more items with one overlapping category appeared in
the scale.

Table 7.5: Type I error probability for the sequential probability ratio test
(SPRT) and the triangular test (TT) for different amounts of items with one
overlapping category (nominal α = β = 0.05). Overlap is the proportion of
overlapping category. Data are α̂ (standard errors)

Overlap
Partial Credit Model Average Scores Method

SPRT TT SPRT TT
0 0.014 (0.004) 0.030 (0.005) 0.038 (0.006) 0.043 (0.006)
20 0.010 (0.003) 0.028 (0.005) 0.062 (0.008) 0.052 (0.007)
30 0.013 (0.004) 0.036 (0.006) 0.101 (0.010) 0.108 (0.010)
40 0.012 (0.003) 0.025 (0.005) 0.116 (0.010) 0.141 (0.011)
50 0.012 (0.003) 0.028 (0.005) 0.167 (0.012) 0.172 (0.012)

Table 7.6 shows the power achieved by the SPRT and TT for different
amounts of items with one overlapping category in the scale using either the
partial credit model or the average scores method. The power achieved by
the SPRT and TT under the partial credit model appeared to be unaffected
by the amount of items with one overlapping category, the TT being more
underpowered, however, than the SPRT. In contrast, under the average scores
method, the power achieved by the sequential procedures increased as more
items with one overlapping category appeared in the scale.

Table 7.6: Power for the sequential probability ratio test (SPRT) and the tri-
angular test (TT) for different amounts of items with one overlapping category
(nominal α = β = 0.05). Overlap is the proportion of overlapping category.
Data are 1− β̂ (standard errors)

Overlap
Partial Credit Model Average Scores Method

SPRT TT SPRT TT
0 0.922 (0.008) 0.905 (0.009) 0.909 (0.009) 0.897 (0.010)
20 0.931 (0.008) 0.898 (0.010) 0.941 (0.007) 0.936 (0.008)
30 0.917 (0.009) 0.892 (0.010) 0.964 (0.006) 0.964 (0.006)
40 0.929 (0.008) 0.892 (0.010) 0.972 (0.005) 0.971 (0.005)
50 0.931 (0.008) 0.903 (0.009) 0.982 (0.004) 0.978 (0.005)
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Tables 7.7 and 7.8 summarise the ASN and P90 of the number of patients
required to reach a conclusion under H0 and H1 for the SPRT and TT for
different amounts of items with one overlapping category in the scale using
either the partial credit model or the average scores method. The ASN and
P90 of the number of patients required to reach a conclusion for the SPRT and
TT under the partial credit model appeared to be unaffected by the amount of
the item with one overlapping category. Furthermore, the influence of the item
category overlapping was only slight when using the average scores approach;
the ASN appeared to increase or decrease as more items with one overlapping
category were used under H0 and H1, respectively.

Table 7.7: Average sample number (ASN) and 90th percentile (P90) of the
number of patients required to reach a conclusion under H0 for the sequential
probability ratio test (SPRT) and the triangular test (TT) for different amounts
of items with one overlapping category (nominal α = β = 0.05). Overlap is the
proportion of overlapping category. Data are ASN/P90

Overlap
Partial Credit Model Average Scores Method

SPRT TT SPRT TT
0 33.6/60 33.3/60 27.8/40 28.0/40
20 32.7/60 32.3/60 29.5/60 29.9/40
30 32.8/60 32.1/60 31.9/60 30.9/40
40 33.2/60 33.0/60 35.2/60 33.4/60
50 32.8/60 32.6/60 35.7/60 33.8/60

Table 7.8: Average sample number (ASN) and 90th percentile (P90) of the
number of patients required to reach a conclusion under H1 for the sequential
probability ratio test (SPRT) and the triangular test (TT) for different amounts
of items with one overlapping category (nominal α = β = 0.05). Overlap is the
proportion of overlapping category. Data are ASN/P90

Overlap
Partial Credit Model Average Scores Method

SPRT TT SPRT TT
0 42.2/80 39.5/60 32.5/60 32.3/40
20 44.3/80 40.0/60 31.1/60 31.4/40
30 41.5/80 36.4/60 27.4/40 28.5/40
40 45.6/80 40.2/60 28.2/40 29.5/40
50 44.5/80 39.8/60 26.4/40 28.2/40



Sequential Analysis of Quality of Life with the Mixed PCM 121

7.4 Discussion

We evaluated the benefit of combining sequential analysis and IRT methodolo-
gies in the context of phase II noncomparative clinical trials using QoL end-
points. We studied and compared the statistical properties of the SPRT and
of the TT using either a mixed partial credit model or the traditional average
scores method. Simulation studies showed that: (i) the type I error α was cor-
rectly maintained but seemed to be lower for the mixed partial credit model as
compared with the average scores method; (ii) both methods seemed to be a
bit underpowered, especially the average scores method, the power being higher
when using the mixed partial credit model; (iii) as expected using sequential
analysis, both methods allowed substantial reductions in ASNs as compared
with the SSD; and (iv) overlapping of item category particularly affected the
average score method by inflating the type I error and power.

The observed difference between the mixed partial credit model and the av-
erage scores method with respect to the statistical properties of the sequential
procedures might be partly explained by the plausibility of the distributional
assumption of the Z and V statistics. From the results of normality assessment
(Kolmogorov–Smirnov test) under H0, the normality assumption for the Z sta-
tistic was found to hold more often under the mixed partial credit model as
compared with the traditional average scores method. Moreover, the estima-
tion of Z was always lower when it was performed using the mixed partial credit
model (Ẑ (X)) as compared with the average scores method (Ẑ (S), p < 0.01,
for all cases), which might explain why partial credit modelling methods seemed
to be more conservative than the average scores method in terms of significance
level. Furthermore, the variance of Ẑ was always lower when the estimation
was performed using the Partial Credit modelling method as compared with the
average scores method suggesting that the estimator of Z using mixed partial
credit modelling might be more efficient.

Several limitations to our study are worth being mentioned. The items
considered were assumed studied and the difficulty parameters were assumed
known before designing the sequential analysis. The motivation for this as-
sumption was the existence of calibrated item banks from which items for a
specific study can be obtained [Holman et al. (2003b)]. A two-stage [Andersen
(1977)] estimation embedded in the sequential analysis can be performed by
first estimating the item difficulty parameters from the data and then estimat-
ing the Z and V statistics. However, because often few patients are involved in
phase II trials, the data might be insufficient to satisfactorily estimate the item
difficulty parameters and hence will make this approach difficult and further
work is needed.
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The impact of item overlapping which might often occur in practice seemed
to be quite important for the average scores method as compared with mixed
partial credit modelling and further investigations (different amounts of over-
lapping in scales including different numbers of items) are needed. Moreover,
evaluating the impact on the statistical properties of the sequential tests of
the amount of missing data (often encountered in practice) and missing data
mechanisms (missing completely at random, missing at random, non ignorable
missing data) and studying the statistical properties of other group sequential
methods could also be investigated such as spending functions [Lan and De
Mets (1983)], and Bayesian sequential methods [Grossman et al. (1994)], for
instance. Finally, these combined methodologies (IRT modelling and sequential
procedures) are currently being developed in the context of comparative clini-
cal trials (phase III trials) which frequently include QoL endpoint assessments
when comparing one therapeutic strategy against another (work in progress).

7.5 Conclusion

Item response theory usually provides more accurate assessment of health status
as compared with summation methods [McHorney et al. (1997) and Kosinski
et al. (2003)]. Sequential analysis taking into account the specific nature of
QoL data seems to give more accurate results with respect to the statistical
properties of the sequential procedures and might provide a more powerful
method to detect therapeutic effects than the traditional summation method.

The use of IRT methods in the context of sequential analysis of QoL end-
points is promising and combining both methods to evaluate the effect of dif-
ferent therapeutic strategies on QoL endpoints is appropriate and correct both
from the measurement point of view and from the plausibility of response dis-
tributional assumption.

Appendix

Stopping boundaries for the one-sided SPRT and TT

The stopping boundaries, allowing us to detect an effect size (ES) with working
significance level α and power 1− β (with β = α), are:

Z = −a+ bV (lower boundary) and Z = a+ bV (upper boundary) for the
one-sided SPRT,
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Z = −a + 3cV (lower boundary) and Z = a + cV (upper boundary) for
the one-sided TT,

with a = a′ − 0.583
√

I , b = 1
2 · ES, c = 1

4 · ES, and I = Vi − Vi−1 where
Vi is the information available at inspection i (V0 = 0) for both tests, and
a′ = (1/ES) log[(1−α)/α] for the one-sided SPRT, and a′ = (2/ES) log(1/2α)
for the one-sided TT.

The correction 0.583
√

I is used to adjust for the discrete monitoring of the
data [Siegmund (1979)]. When β 	= α, a corrected value of the effect size ES
must be used to compute the equations of the boundaries. In this case, the
boundaries of the tests are computed from an exact formula.
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Abstract: A parametric degradation model based on the Wiener process is
studied. The best unbiased estimators are constructed for the parameters of
this model.
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8.1 Introduction

Degradation and failure time data in reliability, bioreliability, biology, and med-
ical statistics are usually used to estimate the survival or the intensity functions.
Degradation data are obtained when quantities characterizing degradation of
individuals during a course of disease are measured. It is the information used
in addition to censored failure time data. This paper deals with the modeling
and simultaneous analysis of failure time data and degradation. Traditional
failure time analysis methods for estimating component reliability record only
the time to failure (for units that fail) or the running time (for units that do not
fail). In life testing of highly reliable components, there will be few or no fail-
ures, making reliability assessment difficult. Degradation data can, particularly
in applications in which few or no failures are expected, provide considerably
more reliability information than would be available from traditional censored
failure time data.

Linear degradation models were used by Suzuki, Maki, and Yokogawa (1993)
to model the increase in a resistance measurement over time and by Tseng,
Hamada, and Chiao (1994) for modeling lumen output from fluorescent light
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bulbs over time. Nelson (1990) and Meeker and Escobar (1998) described many
different applications and models for accelerated degradation and described Ar-
rhenius analysis for data involving a destructive testing. Lu and Meeker (1993)
use the convex degradation model for the growth rate of fatigue cracks. Con-
cave degradation models are used by Carey and Koenig (1991) and Meeker and
Luvalle (1995) to describe degradation of components in electronic circuits.
A few years later, Meeker and Escobar (1998) proposed using the so-called
path models. This approach is very interesting and it often gives good results.
See also, Lawless (2003), Bagdonavičius and Nikulin (2001, 2002, 2004), and
Duchesne (2004). More examples can be found in Meeker and Escobar (1998).
The next important step in the development of degradation models was done
by Doksum and Hoyland (1992), Singpurwalla (1995), and Whitemore (1995)
when they proposed the model based on the Wiener process; see also Doksum
and Normand (1995, 1996), Kahle and Wendt (2005), and Lehmann (2004).
Later, Wendt and Kahle (2004), Singpurwalla (1997), Singpurwalla and Youn-
gren (1998), Bagdonavičius and Nikulin (2002), and Harlamov (2004) studied
models based on Gamma, Levy and other processes. Influence of covariates
on degradation is also modelled by Bagdonavičius and Nikulin (2001, 2002) to
estimate reliability when the environment is dynamic. Couallier (2004) com-
pared the parametric and semiparametric estimates in the model described by
Bagdonavičius and Nikulin (2001). The semiparametric analysis of several new
degradation and failure time regression models without and with covariates is
described by Bagdonavičius et al. (2002a,b), Bagdonavičius and Nikulin (2002),
and Bagdonavičius, Haghighi, and Nikulin (2005). Levuliene (2002) consid-
ered semiparametric estimates and goodness-of-fit tests for tire wear analy-
sis. Barberger-Gateau et al. (2004) proposed the so-called conjoint accelerated
degradation model to analyze the impact of dementia and sex on disablement in
the elderly, to verify that a hierarchical relationship exists between the concepts
of activities daily living, instrumental activities of daily living and mobility, and
to use this model to study the evolution of disability; see also Barberger-Gateau
et al. (2006). For more about the applications of degradation and accelerated
life models in biology, demography, medicine, biophysics, and sports, one may
refer to Antonov et al. (2004), Bellamy (1995), Bohm et al. (2005), Ellis et
al. (2005), Gail et al. (2005), Guyatt et al. (1985), Felson et al. (1998, 1987),
Stucki and Simon (2005), and Younger et al. (2005).

We shall consider here a simple parametric degradation model for which we
can describe a good estimation procedure in the sense that we shall construct
the best estimators for the parameters of the considered model.
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8.2 Degradation Process

To describe the degradation, we shall use a simple degradation model based on
a diffusion degradation process X(t), whose parameters can be estimated using
its values in the moments t1, t2, . . . , tn.

We call a failure of an individual natural or soft if the degradation process
attains a critical level.

Other failures (death, for example, one of them) are called traumatic. Trau-
matic failures may be of various modes; see, for example, Bagdonavičius,
Haghighi, and Nikulin (2005). It is interesting to consider models when the
intensities of traumatic failures of different modes depend on degradation. As
a rule, these intensities are increasing functions of degradation process X(t).

Using the degradation process, we can also consider a continuous time multi-
state illness–death model in terms of a semi-Markovian process, when competing
risk between a disease, described in terms of degradation process, and the death
are assumed.

Here we consider the estimation problem for the parameters of a simple
degradation process X(t), which is of interest in applications in biomedical
research, such as sports medicine and public health.

Suppose we observe on the set T = {t1, t2, . . . , tn} ⊂ [0, T ] a random process

X(t) = exp{a(θ; t)} exp
{

σW (t)− σ2t

2

}
, (8.1)

where W (t) is the standard Wiener process on [0,∞). Here, the unknown
function a(θ; t) to be estimated belongs to the given parametric set L and
unknown σ > 0 is the nuisance parameter. Clearly,

EX(t) = exp {a(θ, t)} .

We have to estimate the function a(·, ·) based on observations X(t), t ∈ T . It
is convenient to deal with another process

Z(t) = ln X(t) = a(θ; t)− σ2t

2
+ σW (t).

We set

Z∗(t) = lnX(t) +
σ2t

2
= a(θ; t) + σW (t) = Z(t) +

σ2t

2
.

We suppose that the set L is a linear set

L = sp {ϕ0, ϕ1, . . . , ϕm} ,

where the system {ϕ0, ϕ1, . . . , ϕm} is a basis of L.
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We assume that

ϕ0(t) = ct (8.2)

for some appropriately chosen constant c. Thus,

a(θ; t) =
m∑

j=0

θjϕj(t), where θ = (θ0, θ1, . . . , θm).

It is clear that we are free in the selection of the basis {ϕ0, ϕ1, . . . , ϕm}.

8.3 Estimation Problem

To begin, suppose that σ is known and we have to estimate the unknown pa-
rameter θ from the observations Z∗(t), t ∈ T . As the risk function we take the
quadratic function

R(â, a) = E
n∑

k=1

(â(tj)− a(tj))
2 . (8.3)

We construct a convenient linear unbiased estimator â for a. We assume that
â ∈ L,

â(θ; t) =
m∑

j=0

θ̂jϕj(t).

Denote by IR the space of functions defined on T with the inner product

(ϕ,ψ) =
n∑

j=1

ϕ(tj)ψ(tj),

and the norm
||ϕ|| =

√
(ϕ,ϕ).

We also consider another Hilbert structure on IR which is defined by the rela-
tions

(ϕ,ψ)W =
n∑

i,j=1

ϕ(ti)ψ(tj)ti ∧ tj ,

||ϕ||W =
√

(ϕ,ϕ)W .

It is easy to see that

(ϕ,ψ)W = E

⎧⎨⎩
n∑

j=1

ϕ(tj)W (tj)
n∑

i=1

ϕ(ti)W (ti)

⎫⎬⎭
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and

||ϕ||2W = E

⎛⎝ n∑
j=1

ϕ(tj)W (tj)

⎞⎠2

.

We suppose that the system {ϕ0, . . . , ϕm} is an orthonormal basis of L in
the space IR with inner product (·, ·):

(ϕk, ϕr) = δkr.

We obtain from (8.3)

R(â, a) = E
m∑

j=0

(
θ̂k − θk

)2
.

8.4 Linear MVUE for a

We now want to construct the best linear unbiased estimator θ̂k for θk for all
k = 0, 1, . . . ,m; see, for example, Voinov and Nikulin (1993). It is clear that

θ̂k =
n∑

j=1

ψk(tj)Z∗(tj), (8.4)

where the function ψk satisfies the relation

(ψk, ϕr) = δkr. (8.5)

In this case,

E
(
θ̂k − θk

)2
= σ2E

⎛⎝ n∑
j=1

ψk(tj)W (tj)

⎞⎠2

= σ2||ψk||W . (8.6)

So we have to minimize (8.6) under the condition (8.5).
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8.5 Solution of the Optimization Problem

Denote by L⊥ the orthogonal complement to L in the space IR with the inner
product (·, ·). It is easy to see that

ψk = ϕk − ϕk

for an element ϕk ∈ L⊥. So it follows from (8.4) that the element ϕk is defined
by

||ϕk − ϕk||W = inf
ϕ∈L⊥

||ϕk − ϕ||W .

Thus, we have
ϕk = PW

(
L⊥

)
ϕk.

Here we denote by PW

(
L⊥

)
the orthoprojector in the space IR with the inner

product (·, ·)W onto the subspace L⊥. It is clear that if the system

{ξ1, . . . , ξd} , d = n−m− 1,

is an orthonormal basis of L⊥ in the space IR with the inner product (·, ·)W ;
then for any ϕ ∈ IR

PW

(
L⊥

)
ϕ =

d∑
j=1

(ϕ, ξj) ξj,

So,

ϕk = PW

(
L⊥

)
ϕk =

d∑
j=1

(ϕk, ξj) ξj.

8.6 Estimation of σ2 and θ0

Suppose we construct estimators θ̂1, . . . , θ̂m. It follows from (8.3) and (8.5) that
for k 	= 0 the estimator

θ̂k = (Z∗, ψk) = (Z,ψk)

does not depend on σ.
Actually, σ is unknown. To estimate it, we consider the random variables

Yj = (Z, ξj) = σ (W, ξj) , j = 1, . . . , d.
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It is clear that
EYi = 0, EYiYj = σ (ξi, ξj)W = σδij .

Y1, . . . , Yd is the sequence of i.i.d. random variables and Yj ∈ N(0, σ2); so
we may take as estimator for σ2

σ̂2 =
1

d− 1

d∑
j=1

(
Yj − Y

)2
, Y =

1
d

d∑
j=1

Yj

and take as estimator for θ0 the statistic

θ̂0 = (Z,ψ0) +
σ̂2c

2
, where c is as defined in (8.2).

It is clear that
θ̂0 = θ0 +

c

2
(
σ̂2 − σ2

)
.

Now let Xj(t), j = 1, . . . , N be independent copies of the process X(t), t ∈ T :

Xj(t) = exp{a(θ; t)} exp
{

σWj(t)−
σ2t

2

}
.

We denote by σ̂2
j the unbiased estimator for σ2 that is constructed on the process

Xj :

σ̂2
j =

1
d− 1

d∑
k=1

(ln Xj , ξk)
2 −

(
1
d

d∑
k=1

(ln Xj , ξk)

)2

.

We consider a new estimator for σ2 as

σ̂2 =
1
N

N∑
k=1

σ̂2
k.

In the same way, we consider estimators

θ̂k =
1
N

N∑
k=1

θ̂j
k (k = 1, . . . ,m),

where we denote by θ̂j
k the best unbiased estimator for θk, based on the process

Xj . Thus,

θ̂k = θk +
1
N

N∑
k=1

U j
k .

Here, for k = 0, . . . ,m, we denote

U j
k =

σ

N

N∑
k=1

(Wj , ψk) .
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The estimator θ̂0 is defined by the relation

θ̂0 =
1
N

N∑
k=1

θ̂j
0,

where

θ̂j
0 =

1
N

N∑
k=1

(ln Xj , ψ0) +
σ̂2c

2
.

So

θ̂j
0 = θ0 +

c

2
(
σ̂2 − σ2

)
+

1
N

N∑
k=1

U j
0 .

Suppose N →∞, n→∞. It is then clear that in this case

√
N

(
θ̂N − θ

)
→ N(0,Σ).

Here θ̂N =
(
θ̂0, . . . , θ̂m

)
, θ = (θ0, . . . , θm), and Σ is the covariance matrix of

Gaussian vector
(
U j

0 , . . . , U j
m

)
, which does not depend on j.
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Abstract: Agreement studies, where several observers may be rating the same
subject for some characteristic measured on an ordinal scale, provide important
information. The weighted Kappa coefficient is a popular measure of agreement
for ordinal ratings. However, in some studies, the raters use scales with different
numbers of categories. For example, a patient quality of life questionnaire may
ask ‘How do you feel today?’ with possible answers ranging from 1 (worst) to
7 (best). At the same visit, the doctor reports his impression of the patient’s
health status as very poor, poor, fair, good, or very good. The weighted Kappa
coefficient is not applicable here because the two scales have a different number
of categories. In this paper, we discuss Kappa coefficients to measure agreement
between such ratings. In particular, with R categories of one rating, and C
categories of another, by dichotomizing the two ratings at all possible cutpoints,
there are (R−1)(C−1) possible (2×2) tables. For each of these (2×2) tables, we
estimate the Kappa coefficient for dichotomous ratings. The largest estimated
Kappa coefficients suggest the cutpoints for the two ratings where agreement
is the highest and where categories can be combined for further analysis.

Keywords and phrases: Measure of agreement, Kappa coefficient, ordinal
data

9.1 Introduction

Studies of agreement are common in medical research [Kraemer et al. (2002)].
For example, in order to evaluate a child’s health in a study of childhood asthma,
both parents may be asked to rate the child’s symptoms. In order to assess
the reliability of a new quality of life measure, a cancer patient may be asked
the same or similar general health questions at the beginning and end of a
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questionnaire. The data from such studies give two ratings (e.g., answers to
questions) on the same subject. The goal of these studies is to determine how
well the ratings agree and to quantify their agreement as a way to assess the
validity of measurement. Typically in these agreement studies, the ratings
on the same subject are measured on an ordinal scale with equal numbers of
categories. In certain circumstances, for example, during the development phase
of an instrument, the two ratings on the same subject may not be on the same
scale.

Two examples are presented in this paper. The first example is from the
parent questionnaire from a study of childhood leukemia [Hinkle et al. (2004)].
One parent is asked questions about the child’s health. In this data set, there
are 84 parent surveys, one for each child. At the beginning of the survey
questionnaire, a parent is asked, ‘In general, compared to a year ago how would
you rate your child’s health? Much better, Somewhat better, About the same,
or Worse.’ At the end of the survey questionnaire, the subject’s parents are
asked ‘Compared to others of your child’s age and sex, how would you rate
his/her overall health? Better, About the same, or Worse.’ Thus, the answer to
the first question is on a four-point scale: 1—Much better; 2—Somewhat better;
3—About the same; 4—Worse; and the answer to the second question is on a
three-point scale: 1—Better; 2—About the same; 3—Worse. The difference
between the two questions is that the second question has one less possible
level than the first question; in particular, answers 1 (=Much better) and 2
(=Somewhat better) of the first question should correspond to answer 1 (=
Better) of question 2. If respondents were thinking of the two questions in
identical fashion, then we would expect that all subjects who give answer 3 to
question 1 would give answer 2 to question 2; similarly, all subjects who give
answer 4 to question 1 would give answer 3 to question 2. Finally, we would
expect all subjects who give answer 1 or 2 to question 1 would give answer 1 to
question 2. However, when we look at the data in Table 9.1, we see that this is
not entirely the case.

Table 9.1: (4 × 3) table from answers to the two health status questions from
the parent questionnaire from the childhood leukemia study

Better About the Same Worse Total
Much better 6 27 1 34
Somewhat better 2 22 3 27
About the same 1 9 10 20
Worse 1 1 1 3
Total 10 59 15 84
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The second example is from the 2002 United States National General Social
Survey [Smith (2003) and Davis and Smith (1992)], which has the basic pur-
pose of gathering data on contemporary American society in order to monitor
and explain trends and constants in attitudes, behaviours, and attributes. To
be eligible for the survey, a subject had to be 18 years or older. In this data
set, there are 1524 subjects. The survey has over 700 questions. At the begin-
ning of the survey questionnaire, a subject is asked, ‘Would you say your own
health, in general, is Excellent, Good, Fair, or Poor?’ At the end of the survey
questionnaire, the subject is asked ‘Would you say that in general your health
is Excellent, Very Good, Good, Fair, or Poor?’ Thus, the answer to the first
question is on a four-point scale: 1—Excellent; 2—Good; 3—Fair; 4—Poor;
and the answer to the second question is on a five-point scale: 1—Excellent;
2—Very Good; 3—Good; 4—Fair; 5—Poor. The difference between the two
questions is that the subject has one more possible level (Very Good) for the
second question. If the subjects are thinking of the two questions in identical
fashion, then we would expect that all subjects who give answer 1 to question 1
would give answer 1 to question 2; similarly, all subjects who give answer 3 to
question 1 would give answer 4 to question 2; and all subjects who give answer
4 to question 1 would give answer 5 to question 2. Finally, we would expect all
subjects who give answer 2 to question 1 would give answers 2 or 3 to question
2. However, when we examine the data in Table 9.2, we note that this is not
entirely the case.

Table 9.2: (4 × 5) table from answers to the two health status questions from
the 2002 United States National General Social Survey (GSS)

Excellent Very Good Good Fair Worse Total
Excellent 435 69 10 2 0 516
Good 18 273 394 14 2 701
Fair 0 8 40 190 3 241
Worse 0 1 0 13 52 66
Total 453 351 444 219 57 1524

When evaluating these data, it is important to determine how well the
answers to these two questions agree, but, because they are on different scales,
and the resulting contingency table is not ‘square,’ the popular measures of
agreement (i.e., Kappa or weighted Kappa) cannot be used. For two nominal
ratings, Kraemer (1992) proposed a matrix of Kappa coefficients, in which a
diagonal element of the matrix is the Kappa coefficient for a particular category
relative to all other categories combined. By looking at the matrix, one can see
where agreement is the highest, and where and if it is appropriate to combine
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categories for further analysis. In this paper, we propose an analogous analysis
for ordinal data. In particular, we propose dichotomizing the two ratings at
each cutpoint on the ordinal scale, and then examining the Kappa coefficient at
each of the possible cutpoints. In the second example, in which the first rating
(question) has four levels, we dichotomize at three cutpoints: 1 versus ≥ 2; ≤ 2
versus ≥ 3; and ≤ 3 versus 4. Similarly, for the second rating, we dichotomize
at four cutpoints: 1 versus ≥ 2; ≤ 2 versus ≥ 3; ≤ 3 versus ≥ 4; and ≤ 4 versus
5. There are 12 (3× 4) possible (2× 2) tables formed by looking at all possible
cutpoints, and thus 12 possible Kappa coefficients. In general, if there are R
rows and C columns, there are (R− 1)(C − 1) possible (2× 2) tables and thus
(R− 1)(C − 1) Kappa coefficients.

This research was motivated by the agreement problem that arose in the
Parent Questionnaire in the childhood leukemia study described in Table 9.1
(Example 1) and is further characterized using the health status questions from
the National General Social Survey in Table 9.2 (Example 2). In Section 9.2, we
introduce some notation and briefly outline the rationale behind the formation
of the Kappa coefficients. Section 9.3 contains analyses of these examples.

9.2 Notation and Model

In an agreement study, subject i (i = 1, . . . , n) has two ratings. The n subjects
are assumed to be independent. The first rating on subject i can take on R
ordered levels, and is denoted by the random variable Yi1. The second rating on
subject i can take on C ordered levels, and is denoted by the random variable
Yi2. In general, R 	= C. In the first example, R = 3 and C = 4 and in the second
example, R = 4 and C = 5. The joint distribution of (Yi1, Yi2) is multinomial
with probabilities

pjk = Pr[Yi1 = j, Yi2 = k] (9.1)

for j = 1, . . . , R and k = 1, . . . , C. Let njk be the number of subjects in which
the first rating is level j and the second rating is level k, that is, the number of
subjects with Yi1 = j and Yi2 = k. Considering all n independent subjects, the
joint distribution of the data is multinomial [Bishop et al. (1975)]

f(n11, . . . , nRC |p11, . . . , pRC) =
n!

n11! · · ·nRC !
pn11
11 · · · pnRC

RC . (9.2)

Because the ratings are ordinal, cumulative random variables are often used
[McCullagh (1980)]. Suppose, for the first rating, we form the cumulative ran-
dom variables Uij = 1 if Yi1 ≤ j; 2 if Yi1 > j, j = 1, . . . , R − 1, and, for the
second rating, we form the cumulative random variables Tik = 1 if Yi2 ≤ k; 2
if Yi2 > k, k = 1, . . . , C − 1. Looking at all possible combinations of (Uij , Tik),
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we can form (R− 1)(C − 1) possible (2× 2) tables. The goal of this paper is to
examine all these (2 × 2) tables, and identify where agreement is the highest,
which will tell us where categories can be combined for further analysis.

For a given j and k, suppose we let n11jk be the number of subjects with
Yi1 ≤ j (Uij = 1) and Yi2 ≤ k (Tik = 1); n12jk be the number of subjects with
Yi1 ≤ j (Uij = 1) and Yi2 > k (Tik = 2); n21jk be the number of subjects with
Yi1 > j (Uij = 2) and Yi2 ≤ k (Tik = 1); n22jk be the number of subjects with
Yi1 > j (Uij = 2) and Yi2 > k (Tik = 2). Then, we can form the (2 × 2) table
given in Table 9.3.

Table 9.3: (2× 2) table of cell counts at cutpoints j and k

Rating 2
Y i2≤ k Y i2> k Total

Rating 1 Y i1≤ j n11jk n12jk n1+jk

Y i1> j n21jk n22jk n2+jk

Total n+1jk n+2jk n

The probabilities for Table 9.3 are p11jk = Pr[Yi1 ≤ j, Yi2 ≤ k]; p12jk =
Pr[Yi1 ≤ j, Yi2 > k]; p21jk = Pr[Yi1 > j, Yi2 ≤ k]; p22jk = Pr[Yi1 > j, Yi2 > k],
and can be displayed in a (2× 2) table as given in Table 9.4.

Table 9.4: (2× 2) table of probabilities at cutpoints j and k

Rating 2
Y i2≤ k Y i2> k Total

Rating 1 Y i1 ≤ j p11jk p12jk p1+jk

Y i1> j p21jk p22jk p2+jk

Total p+1jk p+2jk 1

The Kappa coefficient [Cohen (1960)] κjk, that is, the observed probability
of agreement corrected for the agreement based on chance, for the (2× 2) table
in Table 9.4 is

κjk =
pagree,jk − pchance,jk

1− pchance,jk
, (9.3)

where pagree,jk is the probability that the two ratings agree,

pagree,jk = p11jk + p22jk, (9.4)

and pchance,jk is the probability that two ratings agree if they are independent,

pchance,jk = p1+jkp+1jk + p2+jkp+2jk. (9.5)
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Then, putting (9.4) and (9.5) in (9.3), we have

κjk =
p11jk + p22jk − (p1+jkp+1jk + p2+jkp+2jk)

1− (p1+jkp+1jk + p2+jkp+2jk)
.

Using the underlying multinomial distribution in Eq. (9.2), one can show that
the maximum likelihood estimate (MLE) of the probability putjk is

p̂utjk =
nutjk

n
,

for u, t = 1, 2. Given these probability estimates, the MLE of κjk is

κ̂jk =
(n11jk + n22jk)/n− (n1+jkn+1jk + n2+jkn+2jk)/n2

1− (n1+jkn+1jk + n2+jkn+2jk)/n2
.

Even though the (R − 1)(C − 1) κ̂jks are correlated, a confidence interval or
a consistent estimate of the standard error of κ̂jk can be obtained by using
standard methods for (2× 2) tables [Klar et al. (2002), Lee and Tu (1994) and
Fleiss (1981)]. Assessing these κ̂jks, we see where agreement is the highest and
utilize this knowledge to find cutpoints at which the two questions have the
highest agreement.

9.3 Examples and Interpretation

The parent questionnaire from the study of childhood leukemia [Hinkle et al.
(2004)] provides data for the first example. At the beginning of the question-
naire, a parent is asked, ‘In general, compared to a year ago, how would you
rate your child’s health? Much better, somewhat better, about the same, or
worse.’ At the end of the survey questionnaire, the subject’s parents are asked
‘Compared to others of your child’s age and sex, how would you rate his/her
overall health? Better, about the same, or worse.’ The joint distributions of
the paired responses from the two questions are depicted in Table 9.1. With
rating 1 having 4 levels and rating 2 having 3 levels, there are 6 (= 3 × 2)
possible (2 × 2) tables formed by looking at all possible cutpoints, and thus 6
possible Kappa coefficients. The goal is to look at all of these (2×2) tables and
Kappa coefficients, and see where agreement is the highest to identify cutpoints
at which the two questions have the highest agreement.

Table 9.5 gives the estimates of the 6 different Kappa coefficients, and 95%
confidence intervals obtained from a SAS macro developed for this method. We
note from Table 9.5 that the highest agreement occurs (κ̂ = 0.463) when the
first question is dichotomized at ≤ 2 (much better or somewhat better) versus
≥ 3 (about the same or worse), and the second question is dichotomized at ≤ 2
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(better or about the same) versus 3 (worse). Table 9.6 gives the (2 × 2) table
that corresponds to this Kappa of 0.463. Using the cutpoints where agreement
is highest, we can decide on where we can combine the data for further analysis.

Table 9.5: Table of six Kappa coefficients at all cutpoints using the childhood
leukemia study. Estimates and 95% confidence intervals obtained from SAS
Proc Freq

1 versus ≥ 2 ≤ 2 versus 3

1 versus ≥ 2
0.109 0.215

(−0.058,0.276) (0.086,0.344)

≤ 2 versus ≥ 3
0.026 0.463

(−0.059,0.111) (0.245,0.681)

≤ 3 versus 4
−0.018 0.055

(−0.066,0.030) (−0.136,0.246)

Table 9.6: (2× 2) table corresponding to κ̂22 = 0.463 in Table 9.5

Question 2
Better or
about the
same

Worse Total

Question 1 Much
better or
somewhat
better

57 4 61

About
the same
or worse

12 11 23

Total 69 15 84

The questionnaire from the 2002 United States National General Social
Survey [Smith (2003) and Davis and Smith (1992)] provides the data for our
second example. At the beginning of the survey, a subject is asked, ‘Would
you say your own health, in general, is Excellent, Good, Fair, or Poor?’ At the
end of the survey questionnaire, the subject is asked ‘Would you say that in
general your health is Excellent, Very Good, Good, Fair, or Poor?’ The joint
distributions of the paired responses from the two questions are depicted in
Table 9.2. With rating 1 having 4 levels and rating 2 having 5 levels, there are
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12 (= 3× 4) possible (2× 2) tables formed by looking at all possible cutpoints,
and thus 12 possible Kappa coefficients. The goal is to assess all of these (2×2)
tables and Kappa coefficients, and identify where agreement is the highest. This
will tell us the cutpoints at which the categories can be combined.

Table 9.7 gives the estimates of the 12 different Kappa coefficients, and 95%
confidence intervals. We see from Table 9.7 that the highest agreement occurs
(κ̂ = 0.858) when the first question is dichotomized at ≤ 2 (excellent or good)
versus ≥ 3 (fair or worse), and the second question is dichotomized at ≤ 3
(excellent, very good, or good) versus ≥ 4 (fair or worse). Table 9.8 gives the
(2 × 2) table that corresponds to this Kappa of 0.858. Using the cutpoints
where agreement is highest, we can decide on where we can combine the data
for further analysis.

Table 9.7: Table of 12 Kappa coefficients at all cutpoints using the 2002 United
States National General Social Survey. Estimates and 95% confidence intervals
obtained from SAS Proc Freq

1 versus ≥ 2 ≤ 2 versus ≥ 3 ≤ 3 versus ≥ 4 ≤ 4 versus 5

1 versus ≥ 2
0.851 0.598 0.199 0.039

(0.822,0.879) (0.561,0.635) (0.174,0.224) (0.029,0.049)

≤ 2 versus ≥ 3
0.193 0.415 0.858 0.255

(0.169,0.217) (0.376,0.454) (0.825,0.891) (0.199,0.311)

≤ 3 versus 4
0.038 0.094 0.334 0.839

(0.028,0.047) (0.071,0.116) (0.271,0.396) (0.768,0.910)

Table 9.8: (2× 2) table corresponding to κ̂23 = 0.858 in Table 9.7

Question 2
Excellent
Very
Good or
Good

Fair or
Poor

Total

Question 1 Excellent or Good 1199 18 1217
Fair or Poor 49 258 307
Total 1248 276 1524
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9.4 Discussion

This chapter compares the degree of agreement between two different ratings
consisting of different ordinal scales. This comparison is illustrated using ques-
tions that are routinely asked in a clinical setting. Using a matrix of Kappa
coefficients we describe a method to identify cutpoints where agreement is high-
est and where categories can be combined for further analysis.

The method described in this paper may be applied in various settings when
survey data are collected using different ordinal scales. For the situation when
data of this type are elicited, we provide a formal method for further analy-
sis. Two examples were provided where this method is relevant. A confidence
interval or a consistent estimate of the standard error of κ̂jk can be obtained
by using standard methods. Assessing the estimated Kappa statistics to find
the location where the agreement is the highest is helpful to find cutpoints at
which the two questions have the highest agreement, and also can be useful in
planning future agreement studies.

SAS macros are available upon request from the authors.
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10.1 Introduction

Models based on the hazard function have dominated survival analysis since
the proportional hazards model was suggested in the seminal paper by Cox
(1972). At least in part, this model is so popular because of the ease with which
technical difficulties such as censoring and truncation are handled. This is due
to the appealing interpretation of the hazard function as a risk that changes
over time. Naturally, the concept allows the entering of covariates to describe
their influence and to model different levels of risk for different subgroups.
However, in general it is impossible to include all relevant risk factors, perhaps
because we have no information on individual values, which is often the case
in demography. Furthermore, we may not know all relevant risk factors or it
is impossible to measure them without great financial costs, something that
is common in medical, epidemiological, and biological studies. The neglect of
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covariates leads to (unobserved) heterogeneity. That is, the population consists
of individuals with different risks.

This chapter focuses on frailty models, which is a specific area in survival
analysis. The notion of frailty provides a convenient way of introducing unob-
served heterogeneity and associations into models for survival data. A frailty
model is a random effects model for time-to-event data, where the random ef-
fect (the frailty) acts multiplicatively on the baseline hazard function. It can
be used for univariate (independent) lifetimes, that is, to describe the influence
of unobserved covariates in a proportional hazards model (heterogeneity). The
univariate frailty model was introduced by Vaupel et al. (1979). Here, the
variability of lifetimes is formulated as arising from two different sources: first,
natural variability, which is included in the baseline hazard function; second,
unobserved heterogeneity modelled as frailty. There are advantages in sepa-
rating these two sources of variability: unobserved heterogeneity can give an
alternative interpretation of some results such as crossing-over or levelling-off
effects of hazard functions.

Frailty models have been used frequently for modelling dependence in mul-
tivariate time-to-event data; see, for example, Clayton (1978), Yashin et al.
(1995), Hougaard (2000), and Wienke et al. (2002). The dependence usually
arises because individuals in the same group (family, litter, study center) are
related to each other or because of the multiple recurrence of an event for the
same individual. The traditional proportional hazards model cannot be applied
to these cases. A possible solution to this problem is the use of conditional pro-
portional hazards given the frailty. The random effect explains the dependence
in the sense that had we known the frailty, the events would have been inde-
pendent. In other words, the lifetimes are conditionally independent given the
frailty. We assume that, given unobserved frailty, the hazard for each survival
time follows a proportional hazards model, with the frailty variable and the
covariate effect acting multiplicatively on the baseline hazard. Consequently,
specifications of the baseline hazard (in the case of parametric models) and
distributional assumptions about the frailty are necessary.

The most common frailty distribution is the gamma distribution. It has been
widely applied as a mixture distribution. From a computational and analytical
point of view, the gamma distribution fits well into the proportional hazards
framework, because it facilitates closed-form expressions of survival, density,
and hazard functions. This is due to the simplicity of the Laplace transform,
which allows for the use of traditional maximum likelihood procedures in pa-
rameter estimation. Note that no biological reason exists which would prefer
the use of one frailty distribution over another. Nearly all arguments in favor
of or against a distribution are mathematically based. In a very recent publi-
cation, Abbring and van den Berg (2003) proved that the frailty distribution
among the survivors at a specific time t converges to a gamma distribution
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under some regularity assumptions, which speaks in favor of this distribution.
We will use the gamma distribution in the present paper as well but would like
to point out that the concept of correlated frailty is not limited to this frailty
distribution. A useful generalization of the gamma distribution can be found
in Peng et al. (1998). Furthermore, to keep the model as simple as possible,
we restrict our analysis to bivariate lifetime models with single spell data.

The chapter is organized as follows. In Sections 10.2 and 10.3, we introduce
the shared frailty and the correlated frailty model, respectively. In Section
10.4, we describe the correlated gamma frailty model in detail. Section 10.4.1
deals with the Swedish breast cancer twin data used as an illustrative example.
Sections 10.4.2, 10.4.3, and 10.4.4 consider different variants and extensions of
the correlated gamma frailty model. The chapter ends with a discussion in
Section 10.5.

10.2 Shared Frailty Model

A shared frailty model in survival analysis is defined as follows. Suppose there
are n clusters and that the ith cluster has ni individuals and is associated with
an unobserved random effect (frailty) Zi (1 ≤ i ≤ n). Conditional on frailties
Zi, the survival times are assumed to be independent and their hazard functions
to be of the form

λ(t, Zi) = Ziλ0j(t),

where t denotes age or time and λ0j , (j = 1, . . . , ni) is the baseline hazard
function for the jth failure. The frailties Zi are assumed to be identically and
independently distributed random variables with a common density function
f(z, θ), where θ is the parameter of the frailty distribution. A semiparametric
shared frailty model is a model where the baseline hazard functions λ0j are left
unspecified. Observed covariates will be introduced into the model later.

For simplicity, we restrict our treatment of frailty models to the bivariate
case (ni = 2), because extensions to the multivariate case are straightforward.
The assumption of a shared frailty model is that both individuals in a pair
share the same frailty Zi, and this is why the model is called the shared frailty
model. It was introduced by Clayton (1978) (who did not use the notion of
“frailty”) and extensively studied by Hougaard (2000). The two lifetimes are
assumed to be conditionally independent with respect to the shared (common)
frailty. We derive the quantities based on this conditional formulation below.
In the following, we will use Z as a shorthand for all Zi.

Conditionally on Z, the hazard function of an individual in a pair is of
the form Zλ0j(t), where the value of Z is common to both individuals in the
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pair, and thus is the cause for dependence between lifetimes within pairs. In-
dependence of the lifetimes corresponds to a degenerate frailty distribution (no
variability in Z). In all other cases, the dependence is positive. It is assumed
that there is independence between different pairs. The conditional bivariate
survival function is of the form

S(t1, t2|Z) = S01(t1)ZS02(t2)Z = e−Z(Λ01(t1)+Λ02(t2)), (10.1)

where Λ0j(t) =
∫ t
0 λ0j(s) ds (j = 1, 2), and S0j(t) = e−Λ0j (t) are the cumulative

baseline hazard and survival functions of the marginal distributions. Averaging
(10.1) with respect to Z produces the marginal bivariate survival function

S(t1, t2) = ES(t1, t2|Z) = ES01(t1)ZS02(t2)Z

= Ee−Z(Λ01(t1)+Λ02(t2)) = L(Λ01(t1) + Λ02(t2)),

where L denotes the Laplace transform of Z. Thus, the bivariate survival func-
tion is expressed as the Laplace transform of the frailty distribution, evaluated
at the cumulative baseline hazard.

The standard assumption about the frailty distribution is that it is a gamma
distribution with mean 1 and variance σ2. In this case, we get

S(t1, t2) = L(Λ01(t1) + Λ02(t2))

= (1 + σ2(Λ01(t1) + Λ02(t2)))−1/σ2

= (S1(t1)−σ2
+ S2(t2)−σ2 − 1)−1/σ2

.

The notion of shared frailty is different from the definition of individual
frailty introduced by Vaupel et al. (1979) in his analysis of univariate duration
data. This difference has gone largely unrecognized, perhaps because of the
superficial similarity of the individual hazards in the two approaches. The
frailty in the bivariate shared frailty model is only a part of the individual
frailty, capturing only the components of frailty that both individuals share.

Asymptotic properties of the nonparametric maximum likelihood estimates
in the shared gamma frailty model are well established. Murphy shows consis-
tency [Murphy (1994)] and asymptotic normality [Murphy (1995)] in the model
without observed covariates.

Shared frailty models explain correlations within groups or for recurrent
events facing the same individual. However, this approach does have limita-
tions. First, it forces unobserved factors to be the same within the group, which
is not generally acceptable. For example, it is inappropriate to assume that both
partners in a twin pair share all of their unobserved risk factors. Second, the
dependence between survival times within the group is based on their marginal
distributions. To see this, when covariates are present in a proportional haz-
ards model with a gamma distributed frailty, the dependence parameter and
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the population heterogeneity are confounded, implying that the multivariate
distribution of the lifetimes can be identified from the marginal distributions of
these lifetimes. Elbers and Ridder (1982) show that this problem applies to any
univariate frailty distribution with a finite mean. Third, in most cases, shared
frailty will only induce a positive association within the group. However, there
are some situations in which survival times for subjects within the same cluster
are negatively associated.

To avoid these limitations, correlated frailty models are being developed
for the analysis of multivariate failure time data; see, for example, Yashin and
Iachine (1994), Pickles and Crouchley (1994), Xue and Brookmeyer (1996),
Petersen (1998), and Wienke et al. (2003a,b), in which associated random vari-
ables are used to characterize the frailty effect for each cluster. In twin pairs,
for example, one random variable is assigned to twin one and another to twin
two, so that they are no longer constrained to have a common frailty. These two
variables are associated and jointly distributed, and so, knowing one of them
does not automatically imply the other. As a consequence, correlated frailty
models provide not only variance parameters of the frailties as in shared frailty
models, but they also contain additional parameters for modelling the correla-
tion between frailties in each group. Also, these variables may be negatively
associated, which would then induce a negative association between survival
times.

10.3 Correlated Frailty Model

Consider some bivariate observations such as the lifetimes of twins, or age at
onset of a disease in spouses, and so on. In the correlated frailty model, the
frailty of each individual in a pair is defined by a measure of relative risk, that
is, exactly as it was defined in the univariate case. For two individuals in a
pair, frailties are not necessarily the same, as they are in the shared frailty
model. We are assuming that the frailties are acting multiplicatively on the
baseline hazard function and that the observations in the pairs are conditionally
independent, given the frailties. Hence, the hazard of individual j (j = 1, 2) in
pair i (i = 1, . . . , n) has the form

λ(t, Zij) = Zijλ0j(t), (10.2)

where λ0j are some baseline functions and Zij are unobserved (random) effects
or frailties. Bivariate correlated frailty models are characterized by the joint
distribution of a two-dimensional vector of frailties (Zi1, Zi2).

In order to derive a marginal likelihood function, the assumption of con-
ditional independence of life spans given frailty is always used. Let δij be a



156 A. Wienke et al.

censoring indicator for an individual j (j = 1, 2) in pair i (i = 1, . . . , n). In-
dicator δij is 1 if the individual has experienced the event of interest, and 0
otherwise. The contribution of the jth individual in the ith pair of the condi-
tional likelihood is given by

L(tij, δij |Zij) =
(
Zijλ0j(tij)

)δij
eZijΛ0j(tij), (10.3)

where tij stands for the lifetime or the censoring time of the individual and
Λ0j(t) is the cumulative baseline hazard function. Then, assuming the condi-
tional independence of life spans given frailty and integrating out the random
effects, we obtain the marginal likelihood function as

L(t, δ) =
n∏

i=1

∫ ∫
R+×R+

(
zi1λ01(ti1)

)δi1
ezi1Λ01(ti1)

∗
(
zi2λ02(ti2)

)δi2
ezi2Λ02(ti2)fZ(zi1, zi2) dzi1 dzi2,

where t = (t1, . . . , tn), ti = (ti1, ti2), δ = (δ1, . . . , δn), δi = (δi1, δi2), and fZ(·, ·)
is the p.d.f. of the corresponding frailty distribution.

10.4 Correlated Gamma Frailty Model

This model was introduced by Yashin and Iachine (1994) and Pickles and
Crouchley (1994) and applied to related lifetimes in many different settings;
see, for example, Yashin et al. (1995), Yashin and Iachine (1997), Petersen
(1998), Wienke et al. (2001, 2003b), and Zdravkovic et al. (2002). Apply-
ing the Laplace transform of the gamma distributed random variables, we can
derive the unconditional model as

S(t1, t2) = S1(t1)1−(σ1/σ2)ρS2(t2)1−(σ2/σ1)ρ(S1(t1)−σ2
1 + S2(t2)−σ2

2 − 1)−(ρ/σ1σ2).
(10.4)

Here and in the following sections, S is used as a generic symbol for a survival
function. In the following, we apply different variants of the correlated gamma
frailty model to Swedish breast cancer twin data. Because of the symmetric
structure of the twin data, we use the simplification S(t) = S1(t) = S2(t) and
σ2 = σ2

1 = σ2
2.

Parner (1998) proved consistency and asymptotic normality of the nonpara-
metric maximum likelihood estimator in the multivariate correlated gamma-
frailty model with observed covariates.
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10.4.1 Swedish breast cancer twin data

First established in the late 1950s to study the importance of smoking and
alcohol consumption on cancer and cardiovascular diseases whilst controlling for
genetic propensity to disease, the Swedish Twin Registry has today developed
into a unique source. Since its establishment, the registry has been expanded
and updated on several occasions, and the focus has similarly broadened to
most common complex diseases.

The present analysis is restricted to the so-called old cohort (born 1886–
1925) because of small numbers of breast cancer in the younger cohorts. The
data set was created by merging the Swedish Twin Registry with the Swedish
Cancer Registry maintained by the National Board of Health and Welfare.

The church registers from all parishes of the relevant time period were man-
ually checked to identify all twin births. Between 1959 and 1961, to all twins a
questionnaire was sent which included a question about phenotypic similarities
to assess the zygosity: ‘Were you as children as alike as two peas in a pod?’
When both partners agreed, they were defined as MZ twins. This zygosity clas-
sification was compared with laboratory methods (serological markers). The
misclassification rate for this method was very low.

The event under study is the onset of breast cancer. If a woman did not
develop breast cancer or she died during the follow-up, the corresponding ob-
servation is censored.

In order to adjust for year at birth, a variable for different birth periods was
created. This variable was divided into three categories, 1886–1905, 1906–1915,
and 1916–1925. The period between 1886 and 1905 served as the reference
category. Information on dates about childbirth was obtained by means of
linkage with the Swedish Multi Generation Register. This register contains
information on all Swedish residents born on or after 1932 who did not die before
1961. The variable age at first birth was divided into four groups: younger
than 25 years (reference category), 25 up to 30 years, 30 years and older and no
children. The last category also contains all women with no information about
childbirth, especially all women from the older birth cohorts, who gave birth
before 1932.

The data set contains records of 5904 female twin pairs with both partners
being alive in 1959–1961. Individuals were followed up from 1959–1961 to 31
December 2001. The final sample contained, therefore, 4056 MZ and 7752 DZ
females, respectively, with 774 observed breast cancer cases.

For a comprehensive description of the Swedish Twin Registry database,
with a focus on the recent data collection efforts and a review of the principal
findings that have come from the Registry, see Lichtenstein et al. (2002).
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10.4.2 Parametric and semiparametric models

In most applications of frailty models, a parametric approach is used, which
means that the baseline hazard function is specified up to a finite-dimensional
parameter. The main advantage of multivariate frailty models without covari-
ates when compared with univariate models without covariates is that it is
possible to relax the parametric assumption about the baseline hazard in a
similar way as with the Cox regression model. In semiparametric frailty mod-
els, no parametric assumption about the form of the baseline hazard function is
necessary. We deal with both a parametric and a semiparametric approach. In
the parametric approach, we use a Gompertz and a Weibull model, respectively:

λ0(t) = aebt, λ0(t) = abtb−1.

In the semiparametric model the univariate marginal survival is left unspec-
ified. The data is right censored and left truncated which has to be included
into the likelihood. The results of the maximum likelihood parameter estima-
tion procedure are given in Table 10.1.

Table 10.1: Correlated gamma frailty model applied to breast cancer data

Model Gompertz Weibull Semi-parametric
a 3.90e−7 (2.17e−7) 5.20e-16 (1.07e−15) —
b 0.151 (0.011) 7.627 (0.507) —
σ 6.930 (0.427) 5.046 (0.400) 7.403 (1.364)
ρMZ 0.131 (0.041) 0.157 (0.050) 0.126 (0.041)
ρDZ 0.116 (0.030) 0.139 (0.037) 0.111 (0.031)

In all cases, the estimates of correlation coefficients of frailty for MZ twins
(ρMZ) tend to be slightly higher than for DZ twins (ρDZ). Higher correlations
in MZ twins compared to DZ twins indicate the influence of genetic factors
in susceptibility to breast cancer. However, the difference between the two
correlations is not significant. Heterogeneity (σ2) seems to be huge. Another
important aspect is the similarity of the results in parametric and semiparamet-
ric analysis. The estimates are close to each other. Using the semiparametric
analysis as a standard, the Gompertz parameterization shows advantage (esti-
mates are closer to the estimates of the semiparametric analysis) compared to
the Weibull parameterization.

It is necessary to keep in mind that the parameter ρ describes the corre-
lation between the frailties in a pair and not the correlation of the respective
lifetimes. Lindeboom and van den Berg (1994) analyzed the relation of correla-
tion between frailties and between lifetimes. They derived explicit expressions
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for the correlation between the survival times and examined the properties of
this correlation in the special case of a constant baseline hazard function.

10.4.3 Correlated gamma frailty model with covariates

One reason for the popularity of frailty models is that (observed) covariates
can be easily included in the model. We demonstrate the use of the correlated
gamma frailty model with covariates [Yashin and Iachine (1997)] by applying
the model on the Swedish breast cancer twin data described above. We analyze
the influence of birth cohort and age at first birth on the risk to develop breast
cancer. The model takes into account the dependence of lifespans of relatives
(twins). This approach enables the combined analysis of bivariate data on time
to onset and observed covariates; and furthermore, to account for unobserved
heterogeneity and to deal with censored observations. The model results from
(10.2) and the unconditional bivariate survival function is given by

S(t1, t2|X1,X2) = S(t1|X1)1−ρS(t2|X2)1−ρ(S(t1|X1)−σ2

+ S(t2|X2)−σ2 − 1)−(ρ/σ2),

where S(t|X) denotes the marginal univariate survival function and X1 and X2

denote the vectors of observed covariates. We used a Gompertz model

S(t|X) =
(
1 + σ2 a

b
(ebt − 1)eβX

)−(1/σ2)
.

Here, β1 and β2 describe the effect of the birth cohort 1906–1915 and 1916–
1925 compared to the birth cohort 1886–1905. The younger birth cohorts show

Table 10.2: Correlated gamma frailty model with observed covariates

Model Without Covariates With Covariates Dispersion Frailty
a 3.90e-7 (2.17e-7) 3.30e-11 ( — ) 4.20e-11 ( — )
b 0.151 (0.011) 0.201 (0.022) 0.196 (0.018)
σ 6.930 (0.427) 8.235 (0.655) 8.286 (0.553)
ρMZ 0.131 (0.041) 0.115 (0.038) 0.126 (0.040)
ρDZ 0.116 (0.030) 0.093 (0.029) 0.099 (0.031)
β1 2.016 (0.403) 1.845 (0.360)
β2 3.160 (0.533) 2.984 (0.465)
β3 0.769 (0.388) 0.899 (0.368)
β4 0.260 (0.389) 0.359 (0.365)
β5 0.324 (0.387) 0.310 (0.314)
γ −0.202 (0.092)
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a significant higher risk (β1 = 2.016, β2 = 3.160) to breast cancer. The para-
meters β3, β4, and β5 show the effect of age at first birth. Women giving birth
at age between 25-30 show a significant increased risk (β3 = 0.769) compared
to women giving first birth at age before 25, whereas the risk for women giving
birth at older ages (30 years and older) is slightly less increased (β4 = 0.260).
The risk for nulliparous women (including women from the older birth cohorts
with births before 1932) is also increased (β5 = 0.324). Table 10.2 shows that
the inclusion of observed covariates into the model has only small effects on
the estimates of the bivariate frailty distribution, σ2, ρMZ , and ρDZ . Interest-
ingly, the variance estimate of the frailty (σ2) increases slightly after including
observed covariates. This is the opposite of what we expected, because the
observed covariates should account for at least a part of the unobserved hetero-
geneity in the model without observed covariates. This indicates the existence
of important covariates that are not included in our model. A more detailed
example of a correlated gamma frailty model with observed covariates applied
to coronary heart disease can be found in Zdravkovic et al. (2004).

Traditionally, analysis of failure times using a frailty model deals with iden-
tically distributed frailties. However, such a homogeneous assumption about
frailties could sometimes be suspect. For modelling heterogeneity in frailties,
a dispersion frailty model can be used. This model was suggested by Wassell
and Moeschberger (1993) and allows for different heterogeneity (variance of the
frailty) in the study population depending on the value of observed covariates
as

σ(X) = σeγX .

Here, γ is an additional parameter to be estimated. It indicates whether there
is heterogeneity in the frailties (γ 	= 0) or not (γ = 0). This model was applied
to the Swedish breast cancer twin data and the results are given in the last
column in Table 10.2. The parameter γ allowing for different frailty variances
of women giving births at different ages is significantly far from zero. In the
concrete situation above, nulliparous women show a slightly lower heterogeneity
in frailty than the other women.

10.4.4 Cure-mixture models

A bivariate cure-mixture approach for modelling familiar association in diseases
was established by Chatterjee and Shih (2001). For a pair of individuals

Yj =

{
1 : if the jth individual is susceptible
0 : otherwise,

(10.5)

let Tj denote the age at onset for the jth individual when Yj = 1 (j = 1, 2). In
that case, the likelihood function is of the form
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L(t1, t2, δ1, δ2)
= δ1δ2φ11St1,t2(t1, t2)

+ δ1(1− δ2)
(
φ11St1(t1, t2) + φ10St1(t1)

)
+ (1− δ1)δ2

(
φ11St2(t1, t2) + φ01St2(t2)

)
+ (1− δ1)(1− δ2)

(
φ11S(t1, t2) + φ10S(t1) + φ01S(t2) + φ00

)
.

Here the following notations are used: φ11 = P(Y1 = 1, Y2 = 1), φ10 = P(Y1 =
1, Y2 = 0), φ01 = P(Y1 = 0, Y2 = 1), and φ00 = P(Y1 = 0, Y2 = 0). Chat-
terjee and Shih (2001) applied three different copulas in their approach: the
shared gamma frailty model (Clayton’s model), Frank’s copula, and Hougaard’s
shared positive stable frailty model. Their model was extended by Wienke et
al. (2003a), who substituted the shared gamma frailty model by the correlated
gamma frailty model. A parametric model with a Gompertz baseline hazard
was used. The likelihood function of a right-censored lifetime data is given by

L(t1, t2, δ1, δ2)
= δ1δ2φ11St1,t2(t1, t2) + δ1(1− δ2)(φ11St1(t1, t2) + φ10St1(t1))

+ (1− δ1)δ2(φ11St2(t1, t2) + φ01St2(t2)) + (1− δ1)(1 − δ2)(φ11S(t1, t2)
+ φ10S(t1) + φ01S(t2) + φ00).

The model was applied to the Swedish breast cancer twin data and results are
given in Table 10.3.

We consider two different cure models. In the first case, it is assumed that
the susceptible status of the individuals in a pair is independent of the other;
that is, P(Y1 = p1, Y2 = p2) = P(Y1 = p1)P(Y2 = p2) with p1, p2 ∈ {0, 1}. The
cure fraction is given by the univariate probability φ = P(Y1 = 1) = P(Y2 = 1),
which results in φ11 = φ2, φ10 = φ01 = φ(1− φ), φ00 = (1− φ)2. In the second
case, which is an extension of the first one, the restriction of independence
between the susceptibility status of the two partners in a pair is relaxed and
substituted by the weaker constraints φ10 = φ01, φ11 + φ10 + φ01 + φ00 = 1.
When comparing the likelihoods, it turns out that the cure model with an
independent susceptible status of the twin partners shows a nonsignificantly
better fit than the model without a cure fraction (χ2

1 = 1.69, p = 0.19). The
more complicated cure model without an independence assumption between the
susceptible status of the twin partners shows no improvement compared to the
cure model assuming independence (χ2

1 = 0.86, p = 0.35). Interestingly, the
estimate of the size of a susceptible fraction (due to breast cancer) with 0.213
(0.105) is closed to the estimate 0.22 (0.0093) in the parametric model found by
Chatterjee and Shih (2001) in a study population that is completely different.
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Table 10.3: Correlated gamma frailty model without and with a cure fraction

Without Cure Fraction With Cure Fraction1 With Cure Fraction2

Parameter Estimates (std) Estimates (std) Estimates (std)
a 3.90e−7 (2.17e−7) 3.05e−6 (3.04e−6) 1.40e−6 (1.99e−6)
b 0.151 (0.011) 0.139 (0.013) 0.144 (0.011)
σ 6.930 (0.427) 2.592 (1.092) 3.920 (1.566)
ρMZ 0.131 (0.041) 0.918 (0.694) 1.000 ( — )
ρDZ 0.116 (0.030) 0.843 (0.676) 0.940 (0.274)
φ11 1.000 ( — ) 0.045 ( — ) 0.076 (0.087)
φ10 0.000 ( — ) 0.168 ( — ) 0.310 (0.342)
φ00 0.000 ( — ) 0.619 ( — ) 0.304 (0.769)
φ 1.000 ( — ) 0.213 (0.105) 0.3863 ( — )

1constrained by φ11 = φ2, φ10 = φ01 = φ(1− φ), φ00 = (1− φ)2.
2constrained by φ10 = φ01, φ11 + φ10 + φ01 + φ00 = 1.
3calculated by φ = φ11 + φ10.

The strong increase of the correlation estimates ρMZ and ρDZ after allowing
for a cure fraction makes sense because in the model without a cure fraction
the correlation is measured in all twin pairs, whereas in the model with a cure
fraction the correlation is only measured in susceptible individuals. This is also
the reason for the decline in the frailty variance σ2.

The results of this study are slightly different from the numbers obtained in
Wienke et al. (2003a) because the study population used in the present analysis
contains a few more twin pairs with longer follow-up.

Multivariate cure models suffer from the same inherent identifiability prob-
lem with the right-censored observations as univariate cure models. For such
observations, the event under study has not occurred either because the person
is insusceptible or the person is susceptible, but follow-up did not last long
enough to observe the event. The identifiability problem grows with increasing
censoring, but is less of a problem with parametric modelling of the baseline
hazard. In cure models with fixed censoring times (caused by ending the study),
censoring is no longer noninformative even if censoring times and the survival
times are independent. The proportion of censored observations contains im-
portant information about parameters in the model. For example, in the (usual
ideal) case of no censoring, φ = 1.
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10.5 Discussion

Frailty models are becoming increasingly popular in multivariate survival analy-
sis. We discuss the advantages and limitations of the commonly used shared
frailty model. To overcome the disadvantages of shared frailty models, corre-
lated frailty models as an extension were established during the last decade. In
the present study, we examine correlated gamma frailty models in detail.

First, the relation between parametric and semiparametric correlated
gamma frailty models is analysed. A parametric approach means that the
baseline hazard function is specified up to a finite-dimensional parameter, for
example, by a Gompertz or Weibull distribution. The main advantage of multi-
variate frailty models without covariates when compared with univariate frailty
models without covariates is that it is possible to relax the parametric assump-
tion about the baseline hazard similar to the Cox model, which means the
univariate baseline hazard functions are left unspecified. The analysis of the
Swedish breast cancer twin data shows the similarity of the results in paramet-
ric and semiparametric analysis, which supports the use of parametric models,
because they are easier to handle than semiparametric models.

Second, observed covariates can be easily included in the model. This can
be done in the same natural way as in the proportional hazards model by
Cox (1972). We demonstrate the use of the correlated gamma frailty model
with observed covariates by analyzing the influence of birth cohort and age
at first birth on risk to develop breast cancer. The model takes into account
the dependence of event times of relatives (twins). This approach enables the
combined analysis of bivariate data on time to onset and observed covariates,
and also to account for unobserved heterogeneity.

Third, the often-used assumption of identically distributed frailties can be
relaxed by introducing a dispersion frailty model, which allows for heterogeneity
in the frailty distribution of the study population. Here, the variance of the
frailty depends on observed covariates.

Fourth, correlated frailty models can be easily extended to include a cure
fraction to overcome the often unstated assumption that everybody in the study
population is susceptible to the event under study and will eventually experi-
ence this event if the follow-up is sufficiently long. These models extend the
understanding of time-to-event data by allowing for the formulation of more
accurate and informative conclusions. These conclusions are otherwise unob-
tainable from an analysis which fails to account for a cured or insusceptible
fraction of the population. If a cured component is not present, the analysis
reduces to standard approaches of survival analysis.

All model variants allow us to deal with censored and truncated data in a
simple way. The advantages of these models are illustrated by application to
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Swedish breast cancer twin data. We conclude that the concept of correlated
frailty provides a useful tool to model multivariate time-to-event data. This
concept is open for further extensions in various directions. One promising
example of research is the use of correlated log-normal frailty models, where
the frailties are assumed to be log-normally distributed [Locatelli et al. (2004)].
The log-normal model is much more flexible than the gamma model, because
it is not based on the additive composition of the two frailties. On the other
hand, the log-normal distribution does not allow an explicit representation of
the likelihood function, which requires more sophisticated estimation strategies.
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Abstract: The aim of this study, corresponding to a research project on func-
tional decline and mortality of frail elderly patients, is to build a predictive
survival process that takes into account the functional and nutritional evolu-
tion of the patients over time. We deal with both survival data and repeated
measures, but the usual statistical methods for the joint analysis of longitudi-
nal and survival data are not appropriate in this case. As an alternative, we
use the multistate survival model approach to evaluate the association between
mortality and the recovery, or not, of normal functional and nutritional levels.
Once the model is estimated and the prognostic factors of mortality identified, a
predictive process is computed that allows predictions to be made of a patient’s
survival based on his or her history at a given time. This provides a more exact
estimate of the prognosis for each group of patients that may be very helpful
to clinicians in the making of decisions.

Keywords and phrases: Survival analysis, longitudinal data, predictive
process, prognostic factors

11.1 Introduction

In any medical specialty, the regular measurement of health and quality of
life indicators is known to be an effective tool that allows the perception of
the function and patients’ capacities to be incorporated into clinical decisions.
This is particularly relevant in geriatrics, where evaluations of impairment and
disability play a fundamental clinical role.

The goal of this work, which corresponds to a research project on the func-
tional decline and mortality of frail elderly patients, is to build a predictive
process that includes the functional and nutritional evolution of the patients
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over time as prognostic factors of mortality. The data set includes survival times
and repeated observations (the functional and nutritional levels of the patients
at each visit) and their analysis requires a specific statistical methodology. The
problem is that most available methods for the joint analysis of longitudinal
and survival data, such as those used by Faucett and Thomas (1996), Wulfsohn
and Tsiatis (1997), and Henderson, Diggle, and Dobson (2000), are not appro-
priate for our data. The reasons are, firstly, that these methods do not allow for
the use of multivariate markers and, secondly, that due to the mortality of the
patients, for many of them we have fewer than three measurements, insufficient
for the proper use of the mixed model.

As an alternative, we propose to focus our analysis on two clinically relevant
aspects of the health progression: whether the normal levels of functional and
nutritional status are recovered, and the speed of recovery of these normal levels.
We use a multistate survival model to evaluate the association of these two
aspects with mortality. Once the model is estimated and the prognostic factors
of mortality identified, we can obtain a predictive process of a patient’s survival
based on his or her history at a given time. These predictive probabilities are
computed as described in Klein, Keiding, and Copelan (1994) and Klein and
Moeschberger (1998, pp. 289–294).

The paper is organized as follows: In Section 11.2, we describe the cohort
study and the follow-up process. In Section 11.3, we propose specific multi-
state models for the analysis of our data set. The resulting predictive process
is developed in Section 11.3.1. A concluding discussion appears in Section 11.4.

11.2 Cohort Description and Follow-Up

For many elderly patients, an acute medical illness requiring hospitalization
is followed by a progressive decline, resulting in high rates of mortality in this
population during the year following discharge. However, few prognostic indices
have focused on predicting posthospital mortality in older patients. In order
to know more about this question, we analyze a cohort of frail elderly patients
older than 75, who have had an acute disease and that, after being treated in
an acute care unit, were admitted to the geriatric rehabilitation unit.

A multidimensional geriatric assessment was performed at baseline visit in-
cluding information on demographics (age, sex, education, living site prior to
admission and after discharge, etc.); cognitive, functional (measured by Barthel
index), and nutritional (measured by Mini nutritional assessment) status; pres-
ence of depression; co-morbidity; and quality of life level. For any patient,
information for all assessments was collected either from the patient himself
or herself (when cognitive performance was intact) or from a knowledgeable
informant.
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It is a well-known clinical fact that, in this kind of cohort, the status of
patients at admission is not enough for an accurate prognosis to be made.
Instead, the evolution of their functional and nutritional status, especially in the
first weeks after admission, might be very informative of the future mortality of
these patients. For this reason, we planned a one-year prospective longitudinal
follow-up. The patients were visited on admission to the geriatric unit and at
around 1, 3, and 6 months after admission. Of course, not all patients were able
to attend all 4 visits because of mortality during the follow-up. In addition to
this, information on mortality up to 12 months after admission was obtained
through telephone interviews.

The cohort included 165 patients with an average age of 83.3 years old
(standard deviation of 5.1 years) and 31.5% were male. The average length
of stay in the acute care unit was 15.2 days (SD 8.1) and 32% had a good or
very good perception of his quality of life before the acute episode of illness.
At 6 months, accumulated mortality was 29.1% (CI 0.95: 22.2–36.7) and the
mortality accumulated at 12 months was 36.4 (CI 0.95: 29.0–44.2).
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Figure 11.1: Mean profile of functional status

The functional status of the patients was measured with the so-called Barthel
index which consists of a questionnaire dealing with daily activities (bowels and
bladder continence, grooming, toilet use, feeding, transfers, mobility, dressing,
and stairs). In addition to information collected at baseline, 1, 3, and 6 months,
for this index the investigators estimated retrospectively the patient functional
status 15 days before admission to the acute care unit (called preadmission
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assessment). Barthel index rules between 0 and 100 and a Barthel index lower
than 50 indicates the patient is functionally dependent, whereas a Barthel index
higher than 50 is considered to be normal for this kind of cohort. Figure 11.1
represents the mean profile of the functional status of this cohort. Most of the
patients enter the rehabilitation unit with very low Barthel indexes but after a
certain time some of them improve, with functional capacity reaching normal
Barthel levels.

The nutritional status of patients was measured at each visit with the mini
nutritional assessment (MNA) test. This assessment tool can be used to iden-
tify patients at risk of malnutrition. It is composed of 18 questions grouped in
4 categories: anthropometric assessment (weight, height, and weight loss), gen-
eral assessment (lifestyle, medication, and mobility), dietary assessment (food
and fluid intake and autonomy of feeding), and subjective assessment (self-
perception of health and nutrition). A total score lower than 20 indicates a
risk of malnutrition and a score higher than 20 can be considered as a normal
nutritional level for this cohort. In Figure 11.2, we present the mean profile for
the nutritional status of this cohort. As before, most patients enter the unit
at risk of malnutrition but after a certain time the nutritional status of some
patients improves.
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11.3 Multistate Survival Model

As explained in the introduction, the available methods for jointly analyzing
longitudinal and survival data using mixed-effect models are not appropriate in
this study. As an alternative approach, we focus our analysis on two important
aspects of the patients’ evolution. These two aspects are whether the normal
levels of functional and nutritional status are recovered and the speed at which
this recovery occurs. We use a multistate survival model approach to evaluate
the association of these two aspects with mortality.

We consider two intermediate events defined as follows. We use E1 to denote
the event of a patient’s recovery of normal functional levels and, in a similar
way, E2 denotes the event of a patient’s recovery of normal nutritional levels.
All possible paths for a patient who enters the rehabilitation unit are described
in the multistate model represented in Figure 11.3. There are three survival
times involved in this model: the survival time of interest, denoted by T , which
is the elapsed time from admission to death; the elapsed time from admission
to the occurrence of event E1, which is denoted by TB ; and the elapsed time
from admission to the occurrence of event E2, which is denoted by TN .

Figure 11.3: Multistate model with two intermediate events to describe all
possible paths from admission to death

We use Z to denote all fixed covariates measured at admission and define
two time-dependent covariates as B(t) = 1{TB ≤ t} and N(t) = 1{TN ≤ t}
which are indicators of whether the normal functional and nutritional levels
have been achieved at time t.

The multistate model in Figure 11.3 can be analyzed under the proportional
hazards assumption with three Cox models [Cox (1972)]: a Cox model for the
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survival time T with B(t) and N(t) as time-dependent covariates

λT (t|Z,B(t), N(t)) = λT0(t) exp{βT Z + γT B(t) + θT N(t)};

a Cox model for TB , the time to normal functional levels, with N(t) as time-
dependent covariate

λB(t|Z,N(t)) = λB0(t) exp{βBZ + θBN(t)};

and a Cox model for TN given B(t) as time-dependent covariate

λN (t|Z,B(t)) = λN0(t) exp{βNZ + γNB(t)}.

When fitting the first model, the result we obtained indicated that the
parameter γ in (11.1) was not significatively different from zero; that is, time
TB to normal functional levels turned out to be not significant. Thus, our initial
multistate model can be simplified as shown in Figure 11.4.

Figure 11.4: Multistate model with one intermediate event to describe all pos-
sible paths from admission to death

This new multistate model can be analyzed with only two Cox models: a
Cox model for the survival time T with N(t) as time-dependent covariate

λT (t|Z,N(t)) = λT0(t) exp{βT Z + θT N(t)}, (11.1)

and a Cox model for TN

λN (t|Z) = λN0(t) exp{βNZ}. (11.2)

The three hazard functions defined in the new multistate model (Figure
11.4) are obtained from models (11.1) and (11.2) as follows.

λ1(t) = λT (t|Z,N(t) = 1) = λT0(t) exp{βT Z + θT} (11.3)
λ2(t) = λT (t|Z,N(t) = 0) = λT0(t) exp{βT Z} (11.4)
λ3(t) = λN (t|Z) = λN0(t) exp{βNZ}. (11.5)
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The best fit for the model (11.1) shows that there are three fixed covariates
associated with mortality: gender, nutritional status at admission, and func-
tional status before the onset of the acute disease. The results are presented in
Table 11.1. They show that at the moment of admission the risk of mortality
of a man is approximately three times that for a woman and that patients with
low nutritional levels at admission and with low functional levels before the on-
set of the acute disease have a higher risk of mortality. This fit also shows that
the time taken to regain normal nutritional levels is associated with mortality.

Table 11.1: Risk coefficient estimates for model 11.1

coef exp(coef) exp(−coef) p

Gender β1T = −1.1083 0.330 3.03 0.000029
Barthel (pre-admission) β2T = −0.0142 0.986 1.01 0.003800
MNA (admission) β3T = −0.0741 0.929 1.08 0.027000
N(t) θT = −0.9963 0.369 2.71 0.015000

11.3.1 Predictive process

The results in Table 11.1 are useful in describing the effect of the fixed covariates
on survival, but if our interest is rather in how the process of recovering normal
nutritional levels influences the prognosis for a patient, it is more useful to
compute what is called the predictive process. The predictive process is defined
as the probability of death before time u given that the patient is alive at time
t and given the history of this patient at time t:

π(u, t) = P [t < T ≤ u|H(t)]. (11.6)

In our study, we have two possible histories:

H1(t) = {T > t, TN ≤ t} = {T > t, N(t) = 1}

and
H2(t) = {T > t, TN > t} = {T > t, N(t) = 0} .

The first one, H1, corresponds to a patient who recovered normal nutritional
levels before time t and the second one, H2, to a patient whose nutritional levels
continued to be lower than normal at time t.

The predictive process can be obtained in a closed form for both possible
histories, H1 and H2, and will be denoted by π1(u, t) and π2(u, t), respectively.
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The probability π1(u, t) of death before time u for a patient who at time t is
alive and has recovered normal nutritional levels can be obtained by integrating
the conditional density over all possible death times between t and u:

π1(u, t) = P [t < T ≤ u|H1(t)] = P [t < T ≤ u|T > t,N(t) = 1]

=
∫ u

t

f1(s)
S1(t)

ds =
∫ u

t

S1(s)λ1(s)
S1(t)

ds

=
∫ u

t
exp{−(H1(s)−H1(t))}λ1(s) ds.

This expression can be estimated with the estimated risk factors obtained from
fitting model (11.1) and using expression (11.3):

π1(u, t) ≈
∑

t<ti≤u

exp
{
− exp

(
β̂T Z + θ̂T

) (
Λ̂T0(ti)− Λ̂T0(t)

)}
× exp

(
β̂T Z + θ̂T

)
λ̂T0(ti),

where Λ̂T0(t) is Breslow’s estimate of the cumulative baseline hazard function
corresponding to model (11.1).

The probability π2(u, t) of death before time u for a patient who at time t
is alive and has not yet recovered normal nutritional levels can be obtained by
considering two possibilities: that the patient dies at time s or that the patient
recovers normal nutritional levels at time s and then dies between s and u:

π2(u, t) = P [t < T ≤ u|H2(t)] =
∫ u

t

(
f2(s)
S2(t)

+
f3(s)
S3(t)

π1(u, s)
)

ds

=
∫ u

t
(exp{−(H2(s)−H2(t))}λ2(s)

+ exp{−(H3(s)−H3(t))}λ3(s)π1(u, s)) ds.

To approximate this expression, we use the estimated risk factors obtained from
fitting models (11.1) and (11.2) and using the relationship between λ2 and λT

when N(t) = 0 given in expression (11.4) and the relationship between λ3 and
λN given in expression (11.5):

π2(u, t) ≈
∑

t<ti≤u

(
exp

{
− exp

(
β̂T Z

)(
Λ̂T0(ti)− Λ̂T0(t)

)}
exp

(
β̂T Z

)
λ̂T0(ti)

× exp
{
− exp

(
β̂NZ

) (
Λ̂N0(ti)− Λ̂N0(t)

)}
× exp

(
β̂NZ

)
λ̂N0(ti)π1(u, ti)

)
,
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where Λ̂T0(t) and Λ̂N0(t) are Breslow’s estimates of the cumulative baseline
hazard function of T and TN corresponding to models (11.1) and (11.2), re-
spectively.

The predictive process depends on the time t at which the history is known
and the point s at which we wish to make a prediction. By fixing or varying ad-
equately the values of t and s, we can obtain different insights into the problem.
In Figure 11.5, we show the predictive process when fixing t = 2 and varying
s. This corresponds to the predicted residual survival times for patients two
months after admission. It is clear that gender is an important risk factor with
women having a higher predicted survival time than men. Also, recovering or
not normal nutritional levels during the first two months appears to be a risk
factor, though not a very strong one; that is, the survival curves for women
in both categories are very similar as are the survival curves for men in both
categories.
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Figure 11.5: Predicted residual survival curves for patients two months after
admission

Now we computed the predictive process with t = 4 and varying s. This
gives the residual survival curves four months after being admitted (Figure
11.6). Here we note that the differences between patients who recovered and
those who did not, have increased. In particular, though gender is still an
important risk factor, now women who did not recover MNA during the first
four months after admission have a similar predicted survival time to men who
did recover. What these two pictures show is that the recovery, or not, of normal
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Figure 11.6: Predicted residual survival curves for patients four months after
admission

nutritional levels is a dynamic prognostic factor and its impact on mortality
varies over time.

This can be seen more clearly in Figure 11.7. In this graph, we have plotted
the predictive process with a variable value of t and taking s = 6 + t. This
corresponds to the probability of death during the next six months as a function
of the time t from admission. As shown in the figure, it is clear that the
differences between recovering or not recovering normal nutritional levels start
to become apparent around two months after admission. During these first two
months the predicted mortality is similar for both categories, whereas failure
to recover nutritional levels after these two months is associated with a higher
risk of mortality in the next six months for both men and women.

11.4 Discussion

Many medical studies could be improved by introducing information on the
evolution of patients and it is worth working on methodologies that deal with
this problem.

In this work, on the functional decline and mortality of frail elderly pa-
tients, we obtained a predictive process that illustrates the dynamic prognostic
power of nutritional evolution of the patients. Although the data contain both
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Figure 11.7: Probability of death during the next six months as a function of
the time t from admission

survival and repeated observations, the available methods for the joint analysis
of longitudinal and survival data were not appropriate in this case and, as an
alternative we propose a multistate survival model. We observed that the re-
covery of normal nutritional levels during the first two months is critical. This
methodology gives the clinicians a dynamic tool for prediction.
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Abstract: We propose an approach for analysis of survivorship data from
observational and/or experimental studies that allows comparison of survival
in the control and several experimental groups. Our approach is based on the
model of heterogeneous mortality (frailty model), and we also assume that the
difference between survivals for the control and experimental groups is in both
the frailty distribution and baseline hazard. We explore the variety of survival
patterns that can be captured by different specifications of the proposed model
and illustrate the approach with an example of the model application to the
analysis of data from stress-experiment with nematodes Caenorhabditis elegans.
We show that the proposed model gives a good fit to the data and helps to
advance our understanding of biological phenomena as they appear at both
individual and population levels.

Keywords and phrases: Frailty model, hormesis, longevity, survival analysis

12.1 Introduction

The Gompertz model [Gompertz (1825)] is very often used to analyze survival
in the experiments on laboratory animals. Parameters of this model are asso-
ciated with the rate of aging and initial mortality, but these associations are
biologically unjustified. It is well documented that mortality rates for humans
[Manton and Stallard (1984) and Strehler and Mildvan (1960)] as well as for
laboratory animals [Carey et al. (1992), Curtsinger et al. (1992), and Fukui
et al. (1996)] decelerate at advanced ages and deviate from the Gompertz
law. It is also discussed, that only for inbred populations in highly controlled
homogeneous will the environments mortality rate follow the Gompertz curve
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[Economos (1985), Sacher (1966), and Vaupel et al. (1979)]. Still, the theoreti-
cal challenge is to understand how different effects of environmental conditions
or the application of treatment to the experimental group combine to produce
different survival patterns [Boxenbaum et al. (1988), Lithgow et al. (1995),
and Yakovlev et al. (1993)].

The notion of heterogeneity, as applied to a description of stochastic processes,
first appeared in connection with an analysis of demographic processes [Keyfitz
and Littman (1979)]. The authors drew attention to the fact that applica-
tion of treatment produces different effects on homogeneous and heterogeneous
populations. In a homogeneous population, the reduction in death rate and
extension of lifespan are equal: a drop of one percent in the death rate is equiv-
alent to an increase of one percent in the expectation of life. In a heterogeneous
population, the reduction and extension can be very different. Thus, neglect of
heterogeneity can lead to an overestimation of healthcare improvement.

In a homogeneous population, risk of dying is the same for all individuals of
the given age. Due to this, population characteristics such as average lifespan,
hazard, or survival function are true for every member of the population. In a
heterogeneous population, such a generalization can be misleading.

In the model proposed in this chapter, the heterogeneity assumption means
that the population consists of individuals with different susceptibility to death.
This characteristic, which is also called frailty, influences the individual’s risk of
dying. Although lifespan is registered in most observational and experimental
studies, aiming to investigate influences of different treatments on survival, it is
often difficult to detect or measure an individual’s frailty. The model of hetero-
geneous mortality [Vaupel et al. (1979)] allows us to take into account hidden
heterogeneity of the population for survival analysis because of the assumption
about probability distribution of an unobserved random variable—frailty. We
propose an approach for analysis of survivorship data that allows comparison
of survival in the control and several experimental groups.

12.2 Semiparametric Model of Mortality in
Heterogeneous Populations Influenced

by Exogenous Interventions

12.2.1 The heterogeneous mortality model

Let T and Z be the life span and the heterogeneity (frailty) variable such that
the conditional hazard of death given Z is Zμ0 (x), where μ0 (x) is the baseline
hazard, which corresponds to the risk of dying for the individual whose frailty
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is equal to 1. This means that the baseline hazard can only be observed in a
homogeneous population, which is comprised of identical individuals.

Let us assume that Z is a gamma-distributed random variable (Z ∼ G (k, λ))
with mean 1 and variance σ2; that is, k = λ, and σ2 = 1/λ.

Let H (x) =
∫ x
0 μ0 (u) du be the cumulative baseline hazard. Then for the

observed mortality μ (x), one can write [Vaupel et al. (1979)]

μ (x) =
μ0 (x)

1 + σ2H (x)
. (12.1)

The marginal survival function S (x), can be presented as follows.

S (x) =
(

1 +
1
λ

H (x)
)−k

=
(
1 + σ2H (x)

)−(1/σ2)
. (12.2)

For a homogeneous population, σ2 = 0, the expression (12.1) transforms
into μ (x) = μ0 (x). It is easy to show, using the L’Hôpital rule, that S (x) →
exp (−H (x)) = S0 (x), for σ2 → 0 in (12.2), which corresponds to mortality
and survival functions for a homogeneous population.

12.2.2 Changes in the baseline hazard and frailty distribution

In our further calculations, we followed the methodology suggested by Yashin
et al. (1996). Such a methodology was also used for the analysis of data from
stress experiments with Drosophila melanogaster [Semenchenko et al. (2004a)]
and for investigation of influences of different stressors and antistressors on the
survival of transgenic mice HER-2/neu [Semenchenko et al. (2004b)].

Let us consider two identical heterogeneous populations whose chances of
survival correspond to the proportional hazards model [Eqs. (12.1) and (12.2)],
and assume that the initial frailties are gamma-distributed with means 1 and
variances σ2

1 , σ2
2 , respectively.

The first population—the control group—experiences standard living condi-
tions without any interventions, and the second—experimental group—is sub-
jected to some treatment at the age interval [x0, x

∗]. At the age x∗, the treat-
ment is over.

To compare the survival functions after age x∗ in the experimental and in
the control group let us assume that in the control group, the baseline hazard
μ01 (x) does not change and in the experimental cohort the baseline hazard
μ02 (x) increases or decreases at the interval [x0, x

∗]. After age x∗, it can be
represented as follows: μ02 (x) = μ0 (x) + f (x). Note that if f (x) ≡ 0, the
baseline hazard is on the level of the control group. A negative f (x) manifests
a decrease of the baseline hazard during the treatment, and a positive f (x)
represents an increase of the baseline hazard compared to the control group.
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Changes in the baseline hazard can serve as a characteristic of changes in the
intensity of occurrence of intracellular damages caused by treatment [Michalski
et al. (2001)]. If the intensity of damage occurrence decreases, the baseline
hazard also decreases. An increase of the intensity of damage occurrence leads
to an increase of the baseline hazard. Thus, we can consider a beneficial effect
of the treatment as a decrease of the baseline hazard, whereas a detrimental
effect of the treatment is characterized by an increase of the baseline hazard.
Because changes in the baseline hazard can be persistent, progressive, or even
regressive, it is appropriate to consider them as a function of age when the
treatment is over (f (x) for x ≥ x∗).

It follows from (12.2) that the marginal survival functions Si (x), i = 1, 2,
for those who survived age x∗ in both control and experimental groups are

Si (x) =

(
1 +

1
λ∗

i

H∗
i (x)

)−ki

, i = 1, 2, (12.3)

where λ∗
i = (1/σ2

i ) + Hi(x∗), Hi(x∗) =
∫ x∗
0 μ0i(u)du, H∗

1 (x) =
∫ x
x∗ μ0(u)du,

H∗
2 (x) =

∫ x
x∗ μ0(u)du + F (x), F (x) =

∫ x
x∗ f(u)du, ki = 1/σ2

i , i = 1, 2.
Let us assume that under normal living conditions an individual’s suscep-

tibility to death does not change during her life and that any exogenous inter-
vention can increase or decrease an individual’s frailty. Note that in the control
population the “natural” selection process does not change the shape parame-
ter k1 = 1/σ2

1 of the frailty distribution. If the application of treatment does
not influence an individual’s frailty, this parameter also does not change in the
experimental cohort; that is, k2 = 1/σ2

2 .
Let us assume that σ2

1 = σ2
2 = σ2 and that the application of a treatment

can also change the shape parameter of the frailty distribution by a factor γ;
that is, k2 = 1/γσ2. So, for the survival in the control cohort after age x∗, one
can write:

S1 (x) =
(

1 +
k1

λ1
σ2H1 (x)

)−k1

=
(
1 + m1σ

2H1 (x)
)−(1/σ2)

. (12.4)

Then the survival in the experimental cohort (x > x∗) can be presented as
follows.

S2 (x) =
(
1 + m2γσ2H2 (x)

)−(1/γσ2)
. (12.5)

In (12.4) and (12.5), m1 and m2 denote the mean values of frailty distribution at
age x∗ in the control and in the experimental populations, respectively. Factor γ
shows the presence of changes in the frailty distribution that are not associated
with changes of average frailty in the population during the treatment.

Changes in individual frailty characterize the ability of an organism to
switch on new mechanisms of defense or repair in order to withstand harm-
ful effects of treatment or to repair lesions that occurred due to treatment
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[Yashin et al. (2002)]. Thus, the beneficial effect of the applied treatment can
be due to a decrease of the average frailty of the population. This means that
individual characteristics of every cohort member were improved and individ-
ual susceptibility to death was reduced. The detrimental effect produced by
treatment can result in increased average frailty of the population. However,
the application of treatment can produce different effects on different members
of a heterogeneous population. Robust individuals can become more robust,
and weak individuals can become more weak after the treatment, and this re-
sults in an increase of population heterogeneity. If the treatment is beneficial
for weak individuals and detrimental for robust ones, the population becomes
more homogeneous.

12.2.3 Semiparametric representation of the model

Additional assumptions about the parametric form of the baseline hazard in
both control and experimental groups are needed in representations (12.4) and
(12.5), as well as (12.2). Because it is impossible to observe the baseline hazard
in a heterogeneous population, any assumption about its parametric form is
biologically unjustified and should be avoided in an analysis of valuable exper-
imental data.

It follows from (12.4) and from the definition of F (x) that

H2 (x) =
S1 (x)−σ2 − 1

σ2m1
+ F (x) . (12.6)

Replacing H∗
2 (x) in (12.5) with (12.6), we obtain the following equation for the

survival S2 (x), (x > x∗) in the experimental group.

S2 (x) =
(
1 + rγ

(
S1 (x)−σ2 − 1

)
+ m1rγσ2F (x)

)−(1/γσ2)
, (12.7)

where r = m∗
2/m

∗
1, the ratio of mean values of the frailty distributions in ex-

perimental and control groups.
Assuming that an increase or decrease of the baseline hazard after the ap-

plication of treatment can vary nonlinearly with age, in our calculations we use
f (x) = aeβ(x−x∗). Denoting α = am∗

1, Eq. (12.7) can be rewritten as

S2 (x) =
(

1 + rγ
(
S1 (x)−σ2 − 1

)
+ γrσ2 α

β

(
eβx − 1

))−(1/γσ2)

. (12.8)

We call this representation semiparametric because the survival function in
the experimental group (12.8) contains S1 (x), the observed survival function
in the control group. However, parametric approximations of S1 (x) [Thatcher
et al. (1998)] can be used as well as nonparametric ones [Kaplan and Meier
(1958)].
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12.2.4 Interpretation of parameters

In the framework of this model several treatment groups can be considered and
compared to one control group. The model (12.8) has four unknown parameters
α, β, r, γ that are specific to each experimental group and its treatment and one
parameter σ2 that is common to all groups, the frailty variance in the control
cohort.

Parameter σ2 indicates the presence of hidden heterogeneity in the con-
trol population. When values of σ2 are close to zero, the control population
can be considered as homogeneous; large values of σ2 characterize the control
population as highly heterogeneous.

Dependences of the survival function in the experimental group on changes
of the model’s parameters are presented in Figures 12.1 and 12.2.

Effects of changes in the baseline hazard, controlled by parameters α and
β, are presented in Figure 12.1. If β = 0 in the additive part of hazard for the
treatment group f(x) = a exp(βx), changes in parameter α reflect permanent
(constant) decrease or increase of the baseline hazard (Figure 12.1a), producing
rectangularization or derectangularization of the survival curve (Figure 12.1b),
respectively, depending on whether α is greater or less than zero. It can also
be seen that permanent decrease or increase of the baseline hazard does not
influence the “tail” of the survival curve.

Parameter β describes the amplification or disappearance of the α-effect,
according to whether β is greater or less than zero. For each effect a small value
of α was fixed. Absolute values of negative β characterize the rate at which the
baseline hazard in the experimental group returns to the level of the control
group (Figure 12.1c). Different patterns of survival curves, corresponding to
the changes in parameter β < 0, for increased or decreased baseline hazard are
presented in Figure 12.1d. It can be seen that these changes do not influence
the “tail” of the survival function, as in the case of constant changes of the
baseline hazard.

Positive values of β characterize an amplification of effects, produced by the
treatment, during the life (Figure 12.1e). Amplified with age increase of the
baseline hazard shifts the survival curve to the left along the age axis (com-
pared to the control group), and amplified with age decrease shifts it to the
right along the age axis (Figure 12.1f). In both cases the tail of the sur-
vival curve moves in the same direction. The shifts produced are not paral-
lel; they resemble rotation around the initial level of increased or decreased
survival.

Changes produced by the treatment on the frailty distribution and corre-
sponding survival functions are presented in Figure 12.2. An increase or de-
crease in the mean of the frailty distribution (Figure 12.2a) produces a nearly
parallel shift of the survival curve along the age axis with respective lengthen-
ing/shortening of its tail (Figure 12.2b). Parameter r < 1 shows an increase
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Figure 12.1: Dependence of survival function for the experimental group on
changes in the baseline hazard

in the average robustness, whereas r > 1 indicates an accumulation of frail
individuals in the population subjected to the treatment.

Parameter γ 	= 1 characterizes changes in frailty variance in the experimen-
tal groups compared to the control cohort (Figure 12.2c). A decrease in variance
of the frailty distribution (γ < 1) indicates that the experimental group became
less heterogeneous, and an increase in frailty variance (γ > 1) corresponds to an
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Figure 12.2: Dependence of survival function for the experimental group on
changes in the frailty distribution

increase of heterogeneity of the experimental population after the application
of a treatment. It can be seen in Figure 12.2d that changes in population het-
erogeneity mostly influence the tail of the survival function. The population,
which is more heterogeneous, comprises more individuals with high chances of
survival to advanced ages.

By fixing some parameters on the level of the control group, it is possible to
consider a different specification of the proposed model. Thus, if the application
of treatment does not influence survival of the experimental group, the control
and experimental populations remain identical. The following combination of
parameter values α = 0, r = 1, γ = 1 corresponds to such a case. If the only
effect produced by the treatment is a change in the mean value of the frailty
distribution, parameter r 	= 1 and all others are fixed on the level of the control
group. If the only difference between the control and experimental cohorts
is in their heterogeneity, the combination γ 	= 1, α = 0, r = 1 will describe
this situation. In much the same way, changes in the baseline hazard can be
described by the following combination of parameter values; α 	= 0, β 	= 0,
r = 1, γ = 1.
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12.3 One Example of the Model Application to the

Analysis of Poststress Survival Data

12.3.1 Heat shock of different duration applied to populations
of nematodes Caenorhabditis elegans

Nematodes from the strain TJ1060 (spe-9;fer-15) were raised at temperature
25.5◦C. At three days of age, the worms were divided into ten groups and
exposed to 35◦C heat shock for periods of 0, 1, 2, 4, 6, 8, 10, 12, 16, or 24
hours (synchronous start, asynchronous stop). Immediately following the heat
shock, worms were permitted to recover for up to 24 hours at temperature
20◦C on NGM agar. They were then transferred to liquid survival medium and
maintained at temperature 20◦C for the remainder of the experiment. Starting
from day four, the number of alive and dead worms was counted daily for all
groups. No survivors were observed after 16 and 24 hours of heating. The
details of the experiment are described in Michalski et al. (2001). To illustrate
the approach proposed in this paper, we analyzed data only for groups subjected
to heat shock of duration no longer than 8 hours. Characteristics of the lifespan
in these groups are presented in Table 12.1.

Table 12.1: Lifespan characteristics in the groups of nematodes Caenorhabditis
elegans subjected to heat shock of different duration

Heat Shock Duration
Control 1 Hour 2 Hours 4 Hours 6 Hours 8 Hours

Mean lifespan, days 19,47 21,58 20,64 18,58 10,54 7,15
(±0,5) (±0,6) (±0,5) (±0,6) (±0,6) (±0,3)

Variance 4,91 5,57 5,11 6,06 5,42 2,56
Minimal lifespan 6 7 6 4 4 4
Maximal lifespan 36 36 34 27 33 25
p-value 0,002 0,015 0,023 0,001 0,001

Heat shock of a short duration (1–2 hours) produced a hormetic effect on
survival of worms, whereas a long duration (6–8 hours) decreased chances of
survival. Despite the fact that the mean lifespan of worms subjected to heating
for 4 hours does not differ from one of the control group, the difference in
survival according to the log-rank test is statistically significant. Moreover, the
variance of the lifespan distribution is the biggest in this group. This means
that the cohort subjected to 4 hours of heating contains more individuals whose
life span is greater or lower than the average one. In groups that survived 6
or 8 hours of heating, the maximal lifespan, is six- to tenfold greater than
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the average lifespan. This bears evidence of heterogeneity in reaction to the
proposed treatment.

12.3.2 Technical details

To obtain the estimates of the model parameters, the observations of life spans
in all treatment groups were used simultaneously. The maximum likelihood
approach was implemented and parameters were estimated using a nonlinear
optimization procedure [Fletcher (1987)]. Because the structure of the data
corresponds to the number of dead and alive nematodes during discrete time
periods, the log-likelihood function is derived from the binomial distribution,
where binomial probabilities depend on model parameters:

LogLik =
∑
j

(mj ln(qj) + (nj −mj) ln(1− qj)),

where mj is the number of deaths on day j of life, and nj is the number of
individuals that were alive on day j − 1. Values qj are related to survival
functions for the experimental groups by the relationship

qj = 1− S (j + 1)
S (j)

.

Confidence intervals for the parameter estimates were calculated using the
bootstrap method [Davison and Hinkley (1997)].

12.3.3 Results of fitting the model to the data

In order to describe effects produced by treatments on frailty distribution and
baseline hazard, several specifications of the heterogeneous mortality model
were considered. The first one deals with effects such as increase of average
robustness or accumulation of frail individuals in the population. In the second,
changes in mean frailty are accompanied by changes in the baseline hazard. The
third takes into account the opportunity of changes in population heterogeneity
during the treatment in addition to changes in the baseline hazard and mean
values of the frailty distribution. All models are nested, so respective hypotheses
were tested using the likelihood ratio statistics. It turned out that the third
specification of the model fits the data better than the others (p < 0.01).

Parameter estimates of this specification are presented in Table 12.2. Using
the estimate of frailty variance (parameter σ2 in Table 12.2), Eq. (12.1) allows
us to estimate the conditional baseline hazard for the control group, which is
presented in Figure 12.3a. It can be seen that the baseline hazard deviates from
the Gompertz law at advanced ages.

In order to explore predictive abilities of the the model, parameter estima-
tion procedure was conducted in two stages, and first for the groups subjected
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Table 12.2: Parameter estimates of the semiparametric model of heterogeneous
mortality for groups of nematodes Caenorhabditis elegans subjected to heat
shock of different duration

Heat Shock Duration
Parameter 1 Hour 2 Hours 4 Hours 6 Hours 8 Hours
α× 10−1 0,3 0,2 0,4 5,4 7,1

(0,25; 0,32) (0,19; 0,22) (0,38; 0,41) (5,22; 5,47) (7,05; 7,13)

β × 10−1 −0,9 −0,3 −0,8 1 3,9
(−1;−0, 88) (−0, 32;−0, 27) (−0, 9;−0, 72) (0,92; 1,11) (3,86; 4,07)

r × 10−1 3,6 4,5 6,3 2 1,6
(3,45; 3,62) (4,36; 4,54) (6,16; 6,32) (1,97; 2,08) (1,52; 1,63)

γ 0,31 0,40 0,87 1,40 1,31
(0,28; 0,33) (0,37; 0,41) (0,85; 0,9) (1,38; 1,44) (1,3; 1,33)

σ2 Common for all groups 0,28 (0,27; 0,29)
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Figure 12.3: (a) Estimated baseline hazard for the control group of nematodes
compared to the estimates of observed hazard and (b) empirical and modeled
conditional survival functions for experimental groups of worms (survival func-
tion for the control group is approximated by gamma–Gompertz model with
parameters α = 4.4e-4 (3e-4; 5e-4), β = 0.42 (0.4; 0.43), σ2 = 0.83 (0.81; 0.85))

to heating during 1, 4, and 8 hours. According to the proposed model, an in-
crease in survival after 1 hour of heating (Table 12.1 and Figure 12.3b) is due
to a decrease of the average frailty, despite the fact that it was accompanied
by an increase of the baseline hazard before the age of about 17 days and a
decrease of the population heterogeneity.
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The effect of incomplete hormesis (the intersection of survival curves in
the control and experimental groups), which was observed after four hours of
heating, was caused by greater increase of the baseline hazard at young ages,
accompanied by decrease of the average frailty and heterogeneity (both were
less than in the first group).

The group subjected to eight hours of heating became the least frail and the
most heterogeneous, however, long duration of heating not only increased the
baseline hazard but also the rate of its amplification with age. A combination
of these effects determined a concave pattern of survival function and its long
“tail” in this group (Table 12.1 and Figure 12.3b).

Proceeding from these results, we assumed that after two and six hours of
heating the mean values and variances of the frailty distributions, as well as
baseline hazards, are in the intervals between the values, which characterize
respective effects in the groups that survived heat shock during one, four, and
eight hours. As the next step, we conducted parameter estimation for all groups
simultaneously, and the results (Table 12.2) confirmed the assumption that the
baseline hazard increases with an increase of the heat shock duration. Heat
shock of short duration (one and two hours) made the population of nematodes
less frail on average and less heterogeneous. With an increase of heat shock du-
ration up to four hours, average frailty and its variance increased but remained
less then in the control group. Further increase of heat shock duration (six and
eight hours) decreased average frailty but increased heterogeneity of experimen-
tal populations compared to the control group. The fact that the estimate of
the frailty variance for the group survived six hours of heating is greater than
one for the group subjected to heat shock during eight hours, gives evidence
that the longer duration of heating would lead to decrease of heterogeneity of
the population of worms.

12.4 Discussion

The main reason for attempts to investigate influences of toxic substances on
survival [Boxenbaum et al. (1988) and Neafsey et al. (1988)] was to explain the
deviations of the hazard function from the Gompertz curve under assumption
that “The Law” holds for mortality in the absence of treatment.

Further development of studies of survival under or after stress using math-
ematical models [Butov et al. (2001), Yakovlev et al. (1993), and Yashin et al.
(2001)] helped to bind some biological and physiological mechanisms to popula-
tion mortality. However, those models did not take into account heterogeneity
in response to applied treatment.

The Cox regression model [Cox (1972)], which is also widely used in medical
and biological studies, is a method of choice in the case of observed covariates.
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When it is impossible to observe covariates, the specification for the two-sample
problem allows us to estimate relative risk of death in the treatment group
compared to the control population.

Application of a frailty model in the case of unobserved covariates is more
appropriate [Vaupel et al. (1979)]. Still this approach requires additional as-
sumptions for the parametric form of a baseline hazard [Michalski et al. (2001)].
These assumptions are biologically unjustified because of the impossibility of
observing the baseline hazard in the heterogeneous population, and they also
make the model unidentifiable from the viewpoint that the frailty variance de-
pends on the choice of the baseline hazard. The semiparametric representation
of the heterogeneous mortality model allows us to avoid unjustified assump-
tions and makes the model identifiable. Moreover, such a representation makes
it possible to estimate the baseline hazard for the control group, knowing the
variance of frailty distribution.

The main distinctive feature of our model in comparison to other gamma
frailty models [Klein (1992), Michalski et al. (2001), Nielsen et al. (1992), and
Vaupel et al. (1979)] is that we assume that treatment influences parameters
of both frailty distribution and baseline hazard.

Changes in frailty distribution under stressful experimental conditions first
were discussed and studied by modeling discrete frailty classes [Yashin et al.
(2002)]. This model is based on the assumption that a population consists of
three subpopulations of individuals: weak, normal, and robust. Stressful exper-
imental conditions can influence an individual’s frailty and change proportion
of members in each subpopulation. If applied treatment is detrimental, robust
individuals become normal, normal ones become weak, and weak individuals
die. The hormetic effect is caused by an increase in robustness of individuals.
If application of treatment is beneficial, weak individuals become normal, nor-
mal ones become robust. When some individuals from a normal subpopulation
become weak and at the same time other normal individuals become robust,
the effect of incomplete hormesis is observed. We incorporated this elegant
idea into our semiparametric model of heterogeneous mortality assuming con-
tinuous distribution for the frailty variable. We believe that the application
of sophisticated mathematical models advances our understanding of biological
phenomena as they appear at both individual and population levels.
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Abstract: We define nonparametric kernel-type estimators of the conditional
distribution of a lifetime, in a random censorship framework. We show that
these estimators have closed-form expressions, and establish their strong uni-
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13.1 Introduction and Results

13.1.1 Notation and statement of the problem

The present work is concerned with the estimation of a conditional lifetime
distribution under random censorship from the right. The model we consider is
based upon a sequence of observations (Xn, Yn, Un), n = 1, 2, . . ., of a random
vector (X,Y,U), where X denotes a positive lifetime of interest, Y a positive
censoring time, and U a concomitant variable whose influence on the distribu-
tions of X and Y is to be assessed. Throughout, we will assume that X and Y
are conditionally mutually independent, given U . The observed data set is given
by the triplets (Zi, δi, Ui), i = 1, . . . , n, where (Zi := Xi∧Yi, δi := 1I{Xi≤Yi}, Ui),
for i = 1, . . . , n, constitutes a random sample of independent and identically
distributed copies of (Z := X ∧ Y, δ := 1I{X≤Y }, U). Our aim is to estimate
the conditional distribution function F (x|u) = P(X ≤ x|U = u) [respectively,
G(y|u) = P(Y ≤ y|U = u)], provided that this last expression is meaningful.
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We start by giving some notation and assumptions that are needed for the
forthcoming definition of our estimators.

We mention that, in the uncensored case, corresponding to the limiting de-
generate case where Y = ∞ with probability 1, our estimators reduce to that
given by Stute (1986) for conditional empirical distribution functions. The
latter estimators turn out to be a special version of the Nadaraya-Watson non-
parametric regression estimator [see Nadaraya (1964, 1989), Watson (1964),
Härdle (1990), Einmahl and Mason (2000), Deheuvels and Mason (2004), and
the references therein]. In the case where U is independent of (X,Y ), our esti-
mators yield, as a special case, the usual product-limit estimator due to Kaplan
and Meier (1958), for which there is a huge literature [see, e.g., Burke, Csörgő,
and Horváth (1981, 1988), Deheuvels and Einmahl (2000), Földes, Rejtő, and
Winter (1981), Gill (1980), Stute (1995), and the references therein].

Unless otherwise specified, the (possibly defective) distribution functions
we will consider will be assumed to be right-continuous, and of the general
form Ψ(t) = Ψ+(t) = P({R ≤ t} ∩ E}) = limε↓0 Ψ(t + ε). At times, we will
make use of the left-continuous version of Ψ, denoted by Ψ−(t) = P({R <
t} ∩ E}) = limε↓0 Ψ(t− ε). Below, we will always assume that the distribution
functions F (x) = P(X ≤ x) and G(y) = P(Y ≤ y), of X and Y , respectively,
are continuous, so that F (x) = F±(x), G(y) = G±(y), and F±(0) = G±(0) = 0.
This assumption entails that the distribution function H(z) = P(Z ≤ z) =
1 − (1 − F (z))(1 −G(z)) of Z is continuous, and such that H(0) = 0. In this
framework, with probability 1 for each n ≥ 1, the order statistics 0 < Z1,n <
· · · < Zn,n of Z1, . . . , Zn are distinct and positive. Unless otherwise specified,
we will work on the event of probability 1 on which this property holds. There
exists therefore (on the latter event) a rank sequence {r1,n, . . . , rn,n}, defined
as the unique permutation of {1, . . . , n} such that

Zi,n = Zri,n for i = 1, . . . , n. (13.1)

In the sequel, we will set accordingly

δi:n = δri,n and Ui:n = Uri,n for i = 1, . . . , n. (13.2)

We stress the fact that the Ui:n for 1 ≤ i ≤ n are not to be confused with the
order statistics of U1, . . . , Un, which will not be used here. The latter should be
denoted, in agreement with the notation above, by U1,n ≤ · · · ≤ Un,n.

The conditioning random variable U will be assumed to have a measurable
density κ(u) on R, and, therefore, a continuous distribution function K(u) =∫
(−∞,x] κ(u)du. We are specifically interested in conditioning on {U = u} when

u varies in a specified bounded interval I := [A,B] of R. We will assume, for
technical purposes, the existence of a larger interval J := [A′, B′] ⊃ I, such
that −∞ < A′ < B < B′ < ∞, and κ(·) is continuous and positive (and thus,
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bounded away from 0) on J . Our primary concern is to estimate F (x|u) when
u varies in I. To give a precise meaning to this last expression, we assume
further that (X,U) and (Y,U) have joint densities on R

+ × R, denoted by
f(x, u) and g(y, u), respectively. Moreover, we assume that f(x, u) and g(y, u)
are continuous on R

+× J . This allows us to set, for each u ∈ J and x, y ∈ R
+,

F (x|u) = P(X ≤ x|U = u) =
1

κ(u)

∫ x

0
f(x, u)dx, (13.3)

G(y|u) = P(Y ≤ y|U = u) =
1

κ(u)

∫ y

0
g(y, u)dy, (13.4)

κ(u) =
∫ ∞

0
f(x, u)dx =

∫ ∞

0
g(y, u)dy. (13.5)

We note for further use that our assumptions on κ(·), f(·, ·), and g(·, ·), imply,
via (13.3)–(13.5), that F (·|·) and G(·|·) are both continuous on R

+× J . In this
framework, we will make use of the following distribution functions, where, as
usual, we set Z = X ∧ Y and δ = 1I{X≤Y }. We set, for each u ∈ J and z ∈ R

+,

H(0)(z|u) = P(Z ≤ z, δ = 0|U = u) =
∫

(0,z]
(1− F−(t|u)) dG(t|u)

=
1

κ(u)

∫
(0,z]

(1− F−(t|u)) g(t, u)dt, (13.6)

H(1)(z|u) = P(Z ≤ z, δ = 1|U = u) =
∫

(0,z]
(1−G−(t|u)) dF (t|u)

=
1

κ(u)

∫
(0,z]

(1−G−(t|u)) f(t, u)dt, (13.7)

and
H(z|u) = P(Z ≤ z|U = u) = 1− (1− F (t|u))(1 −G(t|u))

= H(0)(z|u) + H(1)(z|u). (13.8)

Even though the continuity of F (·|·) and G(·|·) implies that, in (13.6)–(13.8),
F (t|u) = F±(t|u) and G(t|u) = G±(t|u) over (t, u) ∈ R

+ × J , it is of interest
to use the above formulations in anticipation of the empirical versions of these
equations given later on [see, e.g., (13.30)–(13.32) in the sequel]. We keep in
mind that, under the previous assumptions, (13.6)–(13.8) jointly imply that
H(·|·), H(0)(·|·), and H(1)(·|·) are continuous on R

+ × J .
For each u ∈ J , let ωX(u) = sup{t : F (t|u) < 1}, ωY (u) = sup{t : G(t|u) <

1}, and ωZ(u) = ωX(u) ∧ ωY (u) = sup{t : H(t|u) < 1} denote the upper end-
points of the conditional distributions of X, Y , and Z, respectively, given that
U = u. A direct consequence of (13.6)–(13.7) is that, for each specified u ∈ J ,
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F (t|u) and G(t|u) are uniquely defined for t ∈ [0, ωZ(u)) as the right-continuous
joint solutions of the differential system

dF (t|u) =
dH(1)(t|u)

1−G−(t|u)
and dG(t|u) =

dH(0)(t|u)
1− F−(t|u)

, (13.9)

or, equivalently, via (13.8),

dF (t|u)
1− F−(t|u)

=
dH(1)(t|u)

1−H−(t|u)
and

dG(t|u)
1−G−(t|u)

=
dH(0)(t|u)

1−H−(t|u)
, (13.10)

subject to the boundary conditions

F−(0|u) = G−(0|u) = 0. (13.11)

Among other consequences, the fact that the above equations do not make sense
when t > ωZ(u) illustrates the property that our data set does not carry any
detailed information on F (t|u) and G(t|u) for t > ωZ(u). We will therefore
restrict our interest to the values of t ∈ [0, C], where C denotes a specified
constant, fulfilling, uniformly over u ∈ I,

0 < C < ωZ(u). (13.12)

By continuity of H(·|·) on R
+ × I, we infer from (13.12) the existence of a

constant γ = γ(C, I) ∈ (0, 1
2) such that

1− 2γ := sup
u∈I

H(C|u) < 1. (13.13)

In the next section, we will describe a class of nonparametric estimators Fn,a(x|u)
of F (x|u) [respectively, Gn,a(y|u) of G(y|u)] depending upon a smoothing factor
a > 0. We will establish their uniform consistency over (x, u) ∈ [0, C]× I, viz.,
by showing, in Theorem 13.1.2 that, under suitable conditions imposed upon
a = an, we have, almost surely as n→∞,

sup
0≤x≤C

sup
u∈I
|Fn,a(x|u)− F (x|u)| → 0, (13.14)

and
sup

0≤y≤C
sup
u∈I
|Gn,a(x|u)−G(x|u)| → 0. (13.15)

13.1.2 Definition of the estimators and uniform consistency

With the aim of estimating F (x|u) and G(y|u), we start by introducing a general
kernel K(·), defined as a right-continuous function fulfilling the conditions (K.1–
3) below.
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(K.1) The total variation ‖dK‖ :=
∫

R
|dK(t)| of K on R is bounded;

(K.2)
∫

R
K(t)dt = 1;

(K.3) There exists an M <∞ such that K(t) = 0 for |t| ≥M/2.

We consider further two sequences of positive constants {a′n : n ≥ 1} and
{a′′n : n ≥ 1}, such that

0 < a′n ≤ a′′n for each n ≥ 1, (13.16)

na′n/ log n→∞ and a′′n → 0. (13.17)

We set, for each n ≥ 1, An = [a′n, a′′n]. The estimators that will be introduced
in this section will be indexed by a positive bandwidth a > 0. In practice, one
needs to select this factor in a way that is appropriate to the data set [see, e.g.,
Deheuvels and Mason (2004)]. This question, for the estimators, which will be
introduced below, will be considered elsewhere. In this chapter, we will limit
ourselves to show, in Theorem 13.1.2, that the uniform strong consistency of
our estimators will hold independently of the choice of a ∈ An. Our estimators
of F (x|u) and G(y|u) are defined as follows.

First, we introduce a kernel density estimator of κ(u) [refer to Parzen (1962)
and Rosenblatt (1958)], defined, for each choice of u ∈ R, n ≥ 1, and of the
bandwidth a > 0, by

κn,a(u) =
1
na

n∑
i=1

K
(u− Ui

a

)
. (13.18)

Second, we introduce, for each n ≥ 1 and a > 0, an array of random (and
possibly negative) weights {Wi,n,a(u) : 1 ≤ i ≤ n}, by setting, for 1 ≤ i ≤ n,

Wi,n,a(u) =
K
(

u−Ui
a

)
∑n

j=1 K
(

u−Uj

a

) =
1

κn,a(u)

{ 1
na

K
(u− Ui

a

)}
, (13.19)

when κn,a(u) 	= 0, and

Wi,n,a(u) =
1
n

, (13.20)
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when κn,a(u) = 0. We then set

Hn,a(z|u) =
n∑

i=1

Wi,n,a(u)1I{Zi≤z} =

∑n
i=1 1I{Zi≤z}K

(
u−Ui

a

)
∑n

i=1 K
(

u−Ui
a

)
=

1
κn,a(u)

n∑
i=1

1I{Zi≤z}
{ 1

na
K
(u− Ui

a

)}
=:

Rn,a(z|u)
κn,a(u)

, (13.21)

H(0)
n,a(z|u) =

n∑
i=1

Wi,n,a(u)1I{Zi≤z}(1− δi) =

∑n
i=1 1I{Zi≤z}(1− δi)K

(
u−Ui

a

)
∑n

i=1 K
(

u−Ui
a

)
=

1
κn,a(u)

n∑
i=1

1I{Zi≤z}(1− δi)
{ 1

na
K
(u− Ui

a

)}
=:

R
(0)
n,a(z|u)
κn,a(u)

,

(13.22)

H(1)
n,a(z|u) =

n∑
i=1

Wi,n,a(u)1I{Zi≤z}δi =

∑n
i=1 1I{Zi≤z}δiK

(
u−Ui

a

)
∑n

i=1 K
(

u−Ui
a

)
=

1
κn,a(u)

n∑
i=1

1I{Zi≤z}δ)

{ 1
na

K
(u− Ui

a

)}
=:

R
(1)
n,a(z|u)
κn,a(u)

, (13.23)

whenever κn,a(u) 	= 0, and

Hn,a(z|u) =
n∑

i=1

Wi,n,a(u)1I{Zi≤z} =
1
n

n∑
i=1

1I{Zi≤z}, (13.24)

H(0)
n,a(z|u) =

n∑
i=1

Wi,n,a(u)1I{Zi≤z}(1− δi) =
1
n

n∑
i=1

1I{Zi≤z}(1− δi), (13.25)

H(1)
n,a(z|u) =

n∑
i=1

Wi,n,a(u)1I{Zi≤z}δi =
1
n

n∑
i=1

1I{Zi≤z}δi, (13.26)

when κn,a(u) = 0.
The following proposition turns out to follow, either directly [for (13.27)–

(13.28) below], or after some routine adaptations of the proofs [for (13.29)
below], from Corollary 1 and Theorem 3 of Einmahl and Mason (2005), and so
the corresponding details are omitted.
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Proposition 13.1.1 Under the assumptions above, we have, almost surely

sup
a∈An

sup
u∈I
|κn,a(u)− κ(u)| = o(1), (13.27)

sup
a∈An

sup
u∈I

sup
z∈R+

|Hn,a(z|u) −H(z|u)| = o(1), (13.28)

and, for � = 0, 1,
sup

a∈An

sup
u∈I

sup
z∈R+

|H(�)
n,a(z|u) −H�(z|u)| = o(1). (13.29)

In view of these preliminary results, it becomes very logical to define our esti-
mators of F (x|u) and G(y|u), denoted, respectively, by Fn,a(x|u) and Gn,a(y|u),
as the joint solutions, whenever they exist, of the differential system obtained by
the formal replacements in (13.9)–(13.11) of H(0)(t|u), H(1)(t|u), and H(t|u),
respectively, by their empirical counterparts H

(0)
n,a(t|u), H

(1)
n,a(t|u), and Hn,a(t|u),

as defined in (13.21)–(13.26). By so doing, we are led to the differential system

dFn,a(t|u) =
dH

(1)
n,a(t|u)

1−Gn,a−(t|u)
and dGn,a(t|u) =

dH
(0)
n,a(t|u)

1− Fn,a−(t|u)
, (13.30)

or, equivalently (see, e.g., Remark 13.1.1),

dFn,a(t|u)
1− Fn,a−(t|u)

=
dH

(1)
n,a(t|u)

1−Hn,a−(t|u)
and

dGn,a(t|u)
1−Gn,a−(t|u)

=
dH

(0)
n,a(t|u)

1−Hn,a−(t|u)
,

(13.31)
subject to the boundary conditions

Fn,a−(0|u) = Gn,a−(0|u) = 0. (13.32)

It turns out, rather surprisingly, that the solutions of the differential system
(13.30)–(13.32) have simple closed-form expressions in terms of the random
weights {Wi,n,a(u) : 1 ≤ i ≤ n}, and ranks {ri,n : 1 ≤ i ≤ n}, as defined in (13.1)
and (13.19)–(13.20). These are given as follows. For notational convenience,
we define below a sequence of ranked random weights {wi,n,a(u) : 1 ≤ i ≤ n}.
Recalling the definition (13.2) of {Ui:n : 1 ≤ i ≤ n}, we set, for u ∈ R, a > 0,
and 1 ≤ i ≤ n,

wi,n,a(u) = Wri,n,n,a(u) =
K
(

u−Ui:n
a

)
∑n

j=1 K
(

u−Uj:n

a

) =
1

κn,a(u)

{ 1
na

K
(u− Ui:n

a

)}
,

(13.33)

whenever κn,a(u) 	= 0, and

wi,n,a(u) = Wri,n,n,a(u) =
1
n

, (13.34)
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when κn,a(u) = 0. Next, recalling the definitions (13.21)–(13.24), of Hn,a(z|u),
and (13.33)–(13.34), of wi,n,a(u), we introduce a random index, defined, for each
u ∈ R, a > 0, and n ≥ 1 by

Nn,a(u) = min
{

i ∈ {1, . . . , n} :
i∑

j=1

wj,n,a(u) = 1
}

= min
{

i ∈ {1, . . . , n} : Hn,a(Zi,n|u) = 1
}

. (13.35)

Because of the fact [obvious, via (13.21)–(13.24)] that Hn,a(Zn,n|u) = 1, the
index Nn,a(u) ∈ {1, . . . , n} always exists. The following simple lemma gives a
useful limiting property of this statistic.

Lemma 13.1.1 Under the assumptions above, we have, almost surely for all n
sufficiently large,

inf
a∈An

inf
u∈I

ZNn,a(u),n ≥ C. (13.36)

Proof. In view of (13.35), it is enough to show that the inequality

sup
a∈An

sup
u∈I

Hn,a(C|u) < 1

holds ultimately in n → ∞ with probability 1. This, however, is a direct
consequence of (13.12)–(13.13), when combined with (13.28).

We are now ready to state the first main result of this chapter, giving
explicit closed-form expressions for the solutions Fn,a(x|u) and Gn,a(y|u) of the
differential system (13.30)–(13.32). In the statement of the theorem, we use the
conventions that

∑
∅(·) = 0 and

∏
∅(·) = 1.

Theorem 13.1.1 For each u ∈ R, n ≥ 1, and a > 0, the solutions Fn,a(x|u)
and Gn,a(y|u) of the differential system (13.30)–(13.31), subject to the boundary
conditions (13.32), are uniquely defined over t ∈ [0, ZNn,a(u),n), and coincide on
this interval with the functions defined on R

+ by

Fn,a(t|u) = 1−
∏

i:Zi,n≤t

{1−∑i
j=1 wj,n,a(u)

1−
∑i−1

j=1 wj,n,a(u)

}δi:n

when t < ZNn,a(u),n,

= 1 when t ≥ ZNn,a(u),n, (13.37)

and

Gn,a(t|u) = 1−
∏

i:Zi,n≤t

{1−∑i
j=1 wj,n,a(u)

1−∑i−1
j=1 wj,n,a(u)

}1−δi:n

when t < ZNn,a(u),n,

= 1 when t ≥ ZNn,a(u),n. (13.38)
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The proof of Theorem 13.1.1 is postponed until Section 13.2.

Remark 13.1.1 (1) It is obvious from the definition (13.25) of Nn,a(u) that
Fn,a(·|·) and Gn,a(·|·) are properly defined by (13.37)–(13.38), and fulfill

Hn,a(t|u) = 1−
(
1− Fn,a(t|u)

)(
1−Gn,a(t|u)

)
for t < ZNn,a(u),n. (13.39)

On the other hand, the equality on the left-hand side of (13.39) may not be
true for some t ≥ ZNn,a(u),n. If that is the case, we see that the equivalence
between the differential systems (13.30) and (13.31) fails to hold in the interval
[ZNn,a(u),n,∞).

(2) As a consequence of (1), there exists almost surely an n0 = n0(C, I) such
that, for all n ≥ n0, (13.39) holds uniformly over t ∈ [0, C], u ∈ I, and a ∈ An,
with Fn,a(t|u) < 1 and Gn,a(t|u) < 1 being properly defined by (13.37)–(13.38).
We will make a repeated implicit use of this observation in the remainder of
this chapter.

Our second theorem gives a general uniform consistency result of our esti-
mators.

Theorem 13.1.2 Under the assumptions above, we have, almost surely

sup
a∈An

sup
u∈I

sup
x∈[0,C]

|Fn,a(x|u)− F (x|u)| = o(1), (13.40)

and
sup

a∈An

sup
u∈I

sup
x∈[0,C]

|Gn,a(y|u)−G(y|u)| = o(1). (13.41)

The proof of Theorem 13.1.2 will be given in Section 13.2. The study of
rates of consistency for these estimators will be investigated elsewhere.

13.2 Proofs

13.2.1 Construction of the estimators

In the present subsection, we give a proof of Theorem 13.1.1, together with
additional details on the construction of our estimators. We recall that the
distribution function H(z) = P(Z ≤ z) = 1 − (1 − F (z))(1 −G(z)) is continu-
ous, and that the order statistics Z1,n, . . . , Zn,n of Z1, . . . , Zn are almost surely
distinct and fulfilling

0 < Z1,n < · · · < Zn,n. (13.42)
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For convenience, we will set, in the sequel,

Z0,n = 0 and Zn+1,n =∞. (13.43)

The strict inequalities in (13.42) allow us to define, on the event where (13.42)
holds, a unique permutation {r1,n, . . . , rn,n} of {1, . . . , n}, such that, for i =
1, . . . , n,

Zr1,n = Zi,n. (13.44)

In view of (13.42)–(13.44), we set, for i = 1, . . . , n,

δi:n = δri,n . (13.45)

Let now π1:n, . . . , πn:n be any sequence of (possibly negative) weights fulfilling
π1:n + · · ·+ πn:n = 1, and set

nπ = min
{

i ∈ {1, . . . , n} :
i∑

j=1

πj:n = 1
}

. (13.46)

Keeping in mind that 1 ≤ nπ ≤ n, we set further

H(0)
n;π(z) =

∑
j:Zj,n≤z

πj:n(1− δj:n), (13.47)

and
H(1)

n;π(z) =
∑

j:Zj,n≤z

πj:nδj:n. (13.48)

Throughout, we make use of the convention that
∑

∅(·) = 0. In particular,
in (13.51)–(13.52) below, we set

∑0
j=1 πj:n = 0. We next define Fn;π(z) and

Gn;π(z) for z ∈ R
+ as follows.

– When
∑nπ

i=1 δi = 0, we set, for all z ∈ R
+,

Fn;π(z) = 0 and Gn;π(z) = H(0)
n;π(z). (13.49)

– When
∑nπ

i=1(1− δi) = 0, we set, for all z ∈ R
+,

Fn;π(z) = H(1)
n;π(z), and Gn;π(z) = 0. (13.50)

– When 0 <
∑nπ

i=1 δi < nπ, we set

Fn;π(z) =

⎧⎪⎪⎨⎪⎪⎩
1−

∏
i:Zi,n≤z

{1−∑i
j=1 πj:n

1−∑i−1
j=1 πj:n

}δi:n

for z < Znπ,n,

1 for z ≥ Znπ,n.

(13.51)

Gn;π(z) =

⎧⎪⎪⎨⎪⎪⎩
1−

∏
i:Zi,n≤z

{1−
∑i

j=1 πj:n

1−
∑i−1

j=1 πj:n

}1−δi:n

for z < Znπ,n,

1 for z ≥ Znπ,n.

(13.52)
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Theorem 13.2.1 The differential system

dGn(z) =
dH(0)

n;π(z)
1−Fn−(z)

, and dFn(z) =
dH(1)

n;π(z)
1− Gn−(z)

. (13.53)

with limit conditions
Fn−(0) = Gn−(0) = 0, (13.54)

has a pair of right-continuous solutions, uniquely defined on [0, Znπ ,n) by
Fn(z) = Fn;π(z) and Gn(z) = Gn;π(z).

Proof. We will limit ourselves to the case where nπ = n. The proof of the
theorem when 1 ≤ nπ < n turns out to follow from simple modifications of our
arguments, and the details will be therefore omitted. Set Sn = δ1 + · · ·+ δn.

– When Sn = 0, we infer from (13.51)–(13.52) that Fn;π(z) = 0 for all z < Zn,n,
whereas, for i = 0, . . . , n and Zi,n ≤ z < Zi+1,n,

Gn;π(z) =
i∑

j=1

πj:n =
i∑

j=1

πj:n(1− δj:n) = H(0)
n;π(z).

It is now straightforward that the so-defined Fn;π(z) and Gn;π(z) are solutions
on [0, Zn,n) of the differential system (13.53). The arguments are very similar
when Sn = n and shall be omitted.

– We now turn to the only remaining case where 0 < s := Sn < 1, and define
a sequence of indices 1 ≤ j1 < · · · < js ≤ n in such a way that δi:n = 1 iff
i ∈ {j1, . . . , js}. Obviously, for Zjm−1,n ≤ z < Zjm,n,

1−Fn;π(z) = 1−Fn;π(Zjm−1,n), (13.55)

whereas, for z = Zjm,n,

1−Fn;π(Zjm,n) =
{

1−Fn;π(Zjm−1,n)
}{ 1−∑jm

i=1 πi:n

1−∑jm−1
i=1 πi:n

}
= Fn;π(Zjm−1,n) +

{
1−Fn;π(Zjm−1,n)

}{ πjm:n

1−∑jm−1
i=1 πi:n

}
.

Now, we use the observation that{
1−Fn;π(Zjm−1,n)

}{
1− Gn;π(Zjm−1,n)

}
= 1−

jm−1∑
i=1

πi:n,

so that

Fn;π(Zjm,n) = Fn;π(Zjm−1,n) +
πjm:n

1− Gn;π(Zjm−1,n)

{ 1−
∑jm−1

i=1 πi:n

1−∑jm−1
i=1 πi:n

}
= Fn;π(Zjm−1,n) +

dHn;π
(1)(Zjm,n)

1− Gn;π(Zjm−1,n)
.
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This, in turn, suffices to show that Fn;π satisfies the differential system (13.53)
on (Zjm−1,n, Zjm,n]. By combining this property with a straightforward induc-
tion, and a similar argument for Gn;π, we readily conclude the proof of Theorem
13.2.1.

Proof of Theorem 13.1.1. It suffices to apply Theorem 13.2.1 in the par-
ticular case where the weights are given by πi:n = wi,n,a(u) for 1 ≤ i ≤ n.

13.2.2 A useful auxiliary result

In this section, we will show that the proof of Theorem 13.1.2 turns out to be a
simple consequence of Proposition 13.1.1, when combined with a useful auxiliary
result of independent interest, stated in Proposition 13.2.1. Consider, in general,
two pairs of right-continuous distribution functions F� and G�, � = 1, 2. Set, for
z ∈ R and � = 1, 2,

H(0)
� (z) =

∫
(0,z]

(
1−F�−(t)

)
dG�(t), (13.56)

H(1)
� (z) =

∫
(0,z]

(
1− G�−(t)

)
dF�(t), (13.57)

H�(z) = 1−
(
1−F�(z)

)(
1− G�(z)

)
= H(0)

� (z) +H(1)
� (z). (13.58)

We have the following proposition.

Proposition 13.2.1 Let c > 0 and θ > 0 be such that, for � = 0, 1,

sup
0≤t≤c

|H(�)
1 (t)−H(�)

2 (t)| ≤ θ. (13.59)

Assume further that, for some 0 < ρ < 1,

H1(c) ∨H2(c) ≤ ρ < 1. (13.60)

Then, we have

sup
0≤x≤c

|F1(x)−F2(x)| ≤ 4θ
(1− ρ)2

. (13.61)

Proof. Under (13.59), we infer from (13.58) the inequalities

sup
0≤t≤c

|H1±(t)−H2±(t)|

≤ sup
0≤t≤c

|H(0)
1 (t)−H(0)

2 (t)|+ sup
0≤t≤c

|H(1)
1 (t)−H(1)

2 (t)| ≤ 2θ. (13.62)
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Moreover, we infer from (13.60) and (13.58) that, uniformly over 0 ≤ t ≤ c, and
� = 0, 1,

0 ≤ H(�)
1±(t) ∨H(�)

2±(t) ≤ H1(t) ∨H2(t) ≤ ρ < 1. (13.63)

Observe that, for � = 1, 2, F�(t) and G�(t) are joint solutions over t ∈ [0, c] of
the differential system

dF�(t)
1−F�−(t)

=
dH(1)

� (t)
1−H�−(t)

and
dG�(t)

1− G�−(t)
=

dH(0)
� (t)

1−H�−(t)
, (13.64)

subject to the boundary conditions

F�−(0) = G�−(0) = 0. (13.65)

Thus, making use of (13.64) and integrating by parts, we may write, for 0 ≤
x ≤ c,

Δ(x) :=
{
− log

(
1−F1(x)

)}
−

{
− log

(
1−F2(x)

)}
=

∫
(0,x]

{ dF1(t)
1−F1−(t)

}
−

∫
(0,x]

{ dF2(t)
1−F2−(t)

}
=

∫
(0,x]

{ dH(1)
1 (t)

1−H1−(t)

}
−

∫
(0,x]

{ dH(1)
2 (t)

1−H2−(t)

}

=
∫

(0,x]

{(
1−H2−(t)

)
−

(
1−H1−(t)

)(
1−H2−(t)

)(
1−H1−(t)

) }
dH(1)

1 (t)

+
∫

(0,x]

{ 1
1−H2−(t)

}
d
{
H(1)

1 (t)−H(1)
2 (t)

}
=

∫
(0,x]

{ H1−(t)−H2−(t)(
1−H2−(t)

)(
1−H1−(t)

)}dH(1)
1 (t) +

H(1)
1 (x)−H(1)

2 (x)
1−H2−(x)

−
∫

(0,x]

{
H(1)

1 (t)−H(1)
2 (t)

}{ dH2(t)(
1−H2−(t)

)2

}
.

This, in turn, readily implies, via (13.62) and (13.63), that

sup
0≤x≤c

|Δ(x)| ≤ 2θ
(1− ρ)2

+
θ

1− ρ
+

θ

(1− ρ)2
≤ 4θ

(1− ρ)2
. (13.66)

Next, we infer from Taylor’s formula that, for each choice of 0 ≤ u ≤ v < 1,
there exists a w ∈ [u, v] for which{

− log(1− v)
}
−

{
− log(1− u)

}
=

v − u

1− w
> v − u.
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We have, therefore, for any 0 ≤ u, v ≤ 1,

|v − u| ≤
∣∣{− log(1− v)

}
−

{
− log(1− u)

}∣∣,
so that we infer readily (13.61) from (13.66), by setting u = F1(x) and v = F2(x)
in this last inequality.

Proof of Theorem 13.1.2. It is a straightforward consequence of Proposi-
tions 13.1.1 and 13.2.1, in combination with Theorem 13.1.2.

13.2.3 Concluding comments

The well-known results [see, e.g., Deheuvels and Mason (2004) and the refer-
ences therein] concerning the consistency of Nadaraya–Watson regression esti-
mators (which are obtained as a special case of our estimators, as mentioned in
Section 13.1), show readily that the conditions of our theorems are sharp.
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Sequential Estimation for the Semiparametric

Additive Hazard Model

L. Bordes and C. Breuils

University of Technology of Compiègne, LMAC, Compiègne, France
University of Metz, LMAM, Metz, France

Abstract: In this chapter, we investigate the asymptotic behavior of the se-
quential version of the regression parameter estimator for the additive hazard
model. We mainly establish that the Lin and Ying (1994) nonsequential esti-
mator is strongly consistent (in the sense of complete convergence) and that
this estimator, indexed by any regular sequence (sequential estimator), has the
same asymptotic behavior as the nonsequential estimator. An example of a
fixed-width confidence-type sequential estimator is illustrated by simulations.

Keywords and phrases: Semiparametric additive hazard model, sequential
estimation, right-censored survival data, complete convergence

14.1 Introduction

In semiparametric survival studies, Cox’s (1972) proportional hazards model
(PHM) is certainly the most popular among lifetime regression models. How-
ever, several studies [see, for example, Huffer and McKeague (1991)] showed
that the hazard rate proportionality assumption is not satisfied and it is there-
fore necessary to use alternative models. The additive hazards regression model
[Cox and Oakes (1984)], studied by Lin and Ying (1994), like the PHM, allows
easy interpretation of the covariates effect. Formally, the hazard rate function
λ(t;Z) of a duration T , given a covariate process Z, is defined at time t ∈ R

+,
by

λ(t;Z) = λ0(t) + βT
0 Z(t), (14.1)

where λ0 is a baseline hazard rate function (a nuisance parameter in this study)
and β0 ∈ R

p a vector of regression parameters.

211
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In many studies, the cost of the study is linked to the total duration of
the experiments or to the number of experiments. This is the reason why we
need to propose an earlier stop of the study without deteriorating the quality
of the estimators [see Lai (2001) for a recent overview on sequential trials].
This naturally leads us to define stopping rules (i.e., criteria), which once they
are satisfied, lead to estimators having some prespecified properties. In this
chapter, we consider sequential versions of the Lin and Ying (1994) regression
estimator.

Let T be the failure time of interest, Z be a covariate vector (that possibly
depends on time t), and C be a censoring time that is conditionally independent
of T given Z. We are given data on X = min(T,C), δ = I(T ≤ C) (where I(·) is
the set characteristic function), and also on covariates Z ≡ {Z(s); s ≤ X}. The
problem is to account for the covariate effect by assuming that the conditional
hazard function of T given Z follows model (14.1). Suppose we are given n
such independent observations (X1, δ1, Z1), . . . , (Xn, δn, Zn). For simplicity we
shall assume that the covariate processes are real-valued. Lin and Ying (1994)
proposed to estimate β0 by β̂n, solving Un(β̂n, τ) = 0, where

Un(β, t) =
1
n

n∑
i=1

∫ t

0
(Zi(s)− En(s)) (dNi(s)− Yi(s)βZi(s)ds),

with τ the (deterministic) upper bound of the time interval of study, and

Ni(s) = I(Xi ≤ s, δi = 1), Yi(s) = I(Xi ≥ s),

Z
(k)
n (s) =

1
n

n∑
i=1

Zk
i (s)Yi(s), k ∈ {0, . . . , 3}, En = Z

(1)
n /Z

(0)
n .

From the linearity of Un with respect to β, the estimator of β0 has an explicit
form

β̂n ≡ β̂n(τ) = I−1
n (τ)×Θn(τ),

where
In(τ) =

∫ τ

0

(
Z

(2)
n (s)− Z

(1)
n (s)En(s)

)
ds

and

Θn(τ) =
1
n

n∑
i=1

∫ τ

0
(Zi(s)− En(s)) dNi(s).

It is also interesting to note that β̂n = arg maxβ∈R Cn(β, τ), where Cn(β, τ) =
βΘn(τ)−β2In(τ)/2 is concave (at least asymptotically) and twice continuously
differentiable with respect to β. Let us recall that a random sequence of integers
(Tn)n≥1 is regular if there exists a deterministic sequence of integers (tn)n≥1 such
that (i) tn → +∞ as n→ +∞, and (ii) Tn/tn → 1 in probability, as n→ +∞.
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Lin and Ying (1994) proved that
√

n(β̂n − β0) is asymptotically Gaussian
with zero mean and covariance σ2

0(τ) consistently estimated by σ̂2
n(τ) = I−2

n (τ)Vn(τ),
where

Vn(τ) =
1
n

n∑
i=1

∫ τ

0
(Zi(s)− En(s))2 dNi(s).

In Section 14.3, we introduce general assumptions for which we prove the fol-
lowing results.

(A) β̂n converges completely (see Section 14.4.1) to β0, as n→ +∞;

(B) For any regular sequence (Tn)n≥1,
√

n(β̂n − β0) and
√

Tn(β̂Tn − β0) have
the same asymptotic behavior;

(C) σ̂2
Tn

(τ) is a consistent estimator of σ2
0(τ).

14.2 Example and Numerical Study

One of the most popular sequential estimators arises from fixing the length of
a α-level confidence set [see, for example, Ghosh et al. (1997)] leading to a
regular sequence (Nd)d>0 of stopping rules defined by

Nd = inf{n ≥ n0;n ≥ σ̄2
n(τ)u2

α/d2}, (14.2)

where uα is the quantile of order 1− α/2 of a standard Gaussian distribution,
n0 an initial sample size, 2d > 0 an upper bound of the length of the asymptotic
confidence set, and σ̄2

n = max(σ̂2
n, εn), where (εn)n≥1 is a sequence of real num-

bers decreasing to 0. One can show [see, for example, Ghosh et al. (1997) and
Breuils (2003)] that such a sequence is regular with respect to the deterministic
sequence (nd)d>0, where

nd = inf{n ≥ n0;n ≥ σ2
0(τ)u2

α/d2}. (14.3)

Note that here, asymptotics must be understood in the sense that d → 0+;
that is, the smaller the length of the confidence set is, the more accurate is the
estimator. Under assumptions given in the next section, we obtain:

(i) β̂Nd
converges in probability to β0, as d→ 0+;

(ii)
√

Nd(β̂Nd
−β0) converges in distribution to N (0, σ2

0(τ)), as d→ 0+, where
N (μ, σ2) denotes a Gaussian distribution with mean μ and variance σ2;

(iii) σ̂2
Nd

(τ) converges in probability to σ2
0(τ), as d→ 0+.
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Moreover, by assuming that the whole data are identically distributed, we prove
that

(iv)
√

Nd −
√

nd is asymptotically Gaussian, as d→ 0+.

Now, we provide some results obtained by Monte Carlo simulations, taking
a Weibull law for both baseline hazard rate and censorship laws. The covariates
are supposed to be time independent and uniformly distributed on [0, 1].

Table 14.1: Nd behavior for various values of d (β0 = 1, censorship rate: 48%)

d EM.(β̂Nd
)(StD.) EM.(Nd)(StD.) M.1 M.2 C.I.

1 0.90(0.34) 95(33) 5.97 6.43 91
0.9 0.97(0.29) 126(35) 6.41 8.17 87
0.8 0.99(0.25) 164(39) 6.71 8.60 93
0.7 0.95(0.19) 203(45) 6.39 6.70 90
0.6 0.98(0.15) 283(42) 6.56 6.06 92
0.5 0.99(0.13) 415(47) 6.71 6.64 94
0.4 1.00(0.11) 641(69) 6.65 7.51 92
0.3 0.99(0.07) 1149(90) 6.72 6.15 97
0.2 1.00(0.05) 2585(138) 6.65 6.64 94

0.15 1.00(0.04) 4575(181) 6.69 5.71 97

The given results are Empirical Means (EM.), Standard Deviations (StD.)
of estimators from 100 simulations. In Table 14.1, we study the sequential rule
behavior as d is positively decreasing to 0. We can observe that the required
sample size is increasing. This study affords two ways to estimate the asymp-
totic variance: M.2 is the variance of the

√
Nd(β̂Nd

− β0) (which cannot be
computed for real data) and M.1 is the mean of estimated variances, which
seems more stable as d varies. The last column “C.I.” gives the percentage
(based on 100 simulations) of coverage of the confidence interval. We can see
the behavior of N0.5 when β0 decreases (d = 0.5) in Table 14.2. The required
sample sizes decrease, which is explained by the fact that the theoretical risks
are closer to λ0 as β0 goes to 0. The column “Cens. (%)” indicates the censoring
percentages.
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Table 14.2: N0.5 with respect to β0

β0 EM.(β̂N0.5)(StD.) EM.(N0.5)(StD.) M.1 M.2 Cens. (%) C.I.
5 5.01(0.13) 5013(201) 81.11 85.92 12.7 95
4 3.99(0.12) 3345(146) 54.03 48.25 15.8 94
3 3.00(0.12) 2034(120) 33.00 28.96 20.9 98
2 2.01(0.13) 1069(80) 17.33 19.07 29.9 92

1.5 1.49(0.15) 701(77) 11.35 14.20 37.5 92
1 1.02(0.11) 413(48) 6.68 4.73 48.6 98

0.5 0.49(0.12) 190(35) 3.04 2.77 65.3 93
0 0(0.09) 24(17) 0.29 0.29 93.5 100

14.3 Assumptions and Theoretical Results

We consider the following assumptions.

A1. There exist deterministic functions γi defined on [0, τ ], satisfying

∀k ∈ {0, . . . , 3}, sup
s∈[0,τ ]

∣∣∣EZ
(k)
n (s)− γk(s)

∣∣∣→ 0, as n→ +∞,

with γ0 bounded away from 0 on [0, τ ],

0 < I0(τ) =
∫ τ

0
(γ2(s)− e1(s)γ1(s))ds < +∞

and

0 < V0(τ) =
∫ τ

0
λ0(s)(γ2(s)− e1(s)γ1(s))ds

+ β0

∫ τ

0
(γ3(s)− 2e1(s)γ2(s) + e2

1(s)γ1(s))ds < +∞,

where ei = γi/γ0 for i = 1, 2;

A2. τ is positive real number such that
∫ τ
0 λ0(s)ds < +∞;

A3. {Zi(t); t ∈ [0, τ ]}i≥1 has bounded variations (uniformly in i ≥ 1); that is,
there exists 0 < B <∞ such that

∀i ≥ 1,
∫ τ

0
|Zi(ds)| ≤ B;



216 L. Bordes and C. Breuils

A4. The random triples (Ti, Ci, Zi(·)) are identically distributed.

Note that the first assumption in A1 is automatically fulfilled if A4 is true be-
cause in this case, we have equality between EZ

(k)
n (s) and γk(s) for all s ∈ [0, τ ].

The last assumptions in A1 ensure a nondegenerate asymptotic distribution for√
n(β̂n − β0). Assumption A2 specifies that the probability to observe a fail-

ure near the upper bound of the interval of study is large enough. A3 is an
assumption that is met in practical survival analysis studies and A4 is purely
a technical assumption. Our main result is then as follows.

Theorem 14.3.1 Under A1–A3, we have results (A), (B), and (C) of Section
14.1. If A4 is also satisfied, and if Nd and nd are defined by (14.2) and (14.3),
respectively, then

√
Nd −

√
nd is asymptotically Gaussian with zero mean.

Proof. For all n ≥ 1, the map β �→ Cn(τ, β) we introduced in Section 14.1,
defined on a bounded open subset B ⊂ R containing β0, is twice continuously
differentiable and concave (for n large enough; see C1 and C2 below). We also
denote by Un(τ, β) and In(τ) = In(β, τ) the first- and second-order derivatives
of Cn with respect to β. By Theorems 2.1, 2.2, and 2.3 in Bordes and Breuils
(2006), we need to prove Condition C1–C4 below (under A1–A3), and C5 if A4
is also satisfied:

C1. |In(τ)− EIn(τ)| c−→ 0, and |Vn(τ)− EVn(τ)| c−→ 0, as n→∞;

C2. EIn(τ)−→I0(τ) > 0 and EVn(τ)−→V0(τ), as n→∞;

C3. (Un(β0))n≥1 converges completely to 0, as n→∞;

C4. For all regular sequences of integer-valued random variables (Tn)n≥1, we
have √

TnUTn(β0)
D−→ N (0,V0(τ)), as n→∞;

C5. For all regular sequences of integer-valued random variables (Tn)n≥1, we
have√

Tn

(
VTn(β̂Tn)− V0(τ)
ITn(β̂Tn)− I0(τ)

)
D−→ N (0,Γ0(τ)) , as n→∞. (14.4)

First note that C4 with Tn = n follows directly from Lin and Ying (1994),
and C2 is straightforward under A1. The main part of this proof consists in
showing C1, C3, C4, and C5. Let us recall [see, for example, Andersen et al.
(1993)] that processes Mi, defined for t ∈ [0, τ ] by

Mi(t) = Ni(t)−
∫ t

0
Yi(s)(λ0(s) + β0Zi(s))ds,

are martingales with respect to the natural filtration.
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Proof of C3: First note that for β = β0, Un(β0, ·) is a martingale, because
we have

Un(β0, t) =
1
n

n∑
i=1

∫ t

0
(Zi(s)− En(s)) dMi(s).

Because by A3 covariates Zi are uniformly bounded by a constant B, we have

|ΔUn(β0, t)| ≤
1
n

n∑
i=1

∣∣∣∣Δ ∫ t

0
(Zi(s)− En(s)) dNi(s)

∣∣∣∣
≤ 1

n

n∑
i=1

|Zi(Xi)− En(Xi)|ΔNi(t) ≤
2B
n

,

and, using A2 and A3 there exists a constant K such that

| 〈Un(β0, ·)〉 (t)| ≤
K

n
.

Then, applying Proposition 14.4.3, we get the complete convergence of the
sequence (supt∈[0,τ ] |Un(β0, t)|)n≥1 to 0.

Proof of C1: For t in [0, τ ], we write

In(t)− EIn(t) =
∫ t

0

(
Z

(2)
n (s)− EZ

(2)
n (s)

)
ds

+
∫ t

0

(
E

(
Z

(1)
n (s)En(s)

)
− Z

(1)
n (s)En(s)

)
ds,

whose complete convergence can then be easily deduced from Lemma 14.4.1.
For Vn, straightforward calculations lead to

Vn(t)− EVn(t) =
1
n

n∑
i=1

∫ t

0
(Zi(s)− En(s))2 dMi(s) (14.5)

+
∫ t

0

(
H(1)

n (s)− EH(1)
n (s)

)
λ0(s)ds (14.6)

+ β0

∫ t

0

(
H(2)

n (s)− EH(2)
n (s)

)
ds, (14.7)

where

H(1)
n (s) = Z

(2)
n (s)− Z

(1)
n (s)En(s)

and
H(2)

n (s) = Z
(3)
n (s)− 2En(s)Z(2)

n (s) + Z
(1)
n (s)(En(s))2.
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Again Lemma 14.4.1 allows us to prove the uniform complete convergence of
H

(k)
n − EH

(k)
n to 0 on [0, τ ] for k = 1, 2; then, using A2, we get the complete

convergence of (14.6) and (14.7) to 0. Following the proof of C3, we finally
show that (14.5) converges completely to 0.

Proof of C4: Let us define Ũn on [0, τ ] by

√
nŨn(β0, t) =

1√
n

n∑
i=1

∫ t

0
(Zi(s)− e1(s)) dMi(s).

Lemma 14.3.1 (
√

nŨn(β0, ·)) and (
√

nUn(β0, ·)) are completely asymptotically
equivalent.

Proof. First note that for t ∈ [0, τ ], we have

Bn(t) =
√

n(Un(β0, t)− Ũn(β0, t)) =
1√
n

n∑
i=1

∫ t

0
(En(s)− e1(s)) dMi(s),

and, as in the proof of C3, we check that the assumptions of Proposition 14.4.3
are fulfilled. Indeed, Bn(·) is a martingale, such that ΔBn(·) is a O(n−1/2), and
we have

P
(
〈Bn〉 (t) > n−1/4

)
= P

(∫ t

0
(En(s)− e1(s))

2 1
n

n∑
i=1

d < Mi > (s) > n−1/4

)

≤ P

(
sup

s∈[0,τ ]
|En(s)− e1(s)| > Bn−1/8

)
.

We then use Lemma 14.4.1(ii) to obtain the second assumption of Proposi-
tion 14.4.3 and to complete the proof of the result.

Lemma 14.3.2 For t ∈ [0, τ ], (
√

nŨn(β0, t))n≥1 satisfies the Anscombe condi-
tion (see Section 14.4.1).

Proof. For t in [0, τ ] and k an integer, we have∣∣∣√n + k Ũn+k(β0, t)−
√

n Ũn(β0, t)
∣∣∣

≤
∣∣∣∣ 1√

n + k
− 1√

n

∣∣∣∣
∣∣∣∣∣

n∑
i=1

∫ t

0
(Zi(s)− e1(s)) dMi(s)

∣∣∣∣∣ (14.8)

+
1√

n + k

∣∣∣∣∣
n+k∑

i=n+1

∫ t

0
(Zi(s)− e1(s)) dMi(s)

∣∣∣∣∣ . (14.9)
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By applying the Rebolledo theorem to (14.8) and the Kolmogorov inequality
to (14.9), we show that the Anscombe condition is fulfilled and the lemma is
proved [for details of such a proof see Bordes and Breuils (2006)].

To achieve the proof of C4, we use a result by Breuils (2003) [see also
Bordes and Breuils (2006)]. By the Rebolledo theorem, it is easy to see that
(
√

nUn(β0, ·)) and (
√

nŨn(β0, ·)) have the same asymptotic Gaussian distribu-
tion. Therefore, both Lemmas 14.3.1 and 14.3.2 allow us to apply Proposition
14.4.1 which proves C4.

Proof of C5. Here we assume that A1–A4 are satisfied; in this case, the
primary assumption in A1 is satisfied because EZ

(k)
n = γk for 0 ≤ k ≤ 3. In the

sequel, we use the oc(1) notation to specify that a “remaining term” converges
completely to 0. Straightforward but lengthy calculations allow us to show,
using Lemma 14.4.1 repeatedly, that for t ∈ [0, τ ] we have

Zn(t) =
√

n

(
In(t)− I0(t)
Vn(t)− V0(t)

)
= Z̃n(t) + oc(1),

with

Z̃n(t) =

( ∑2
i=0

∫ t
0 ki(s)W

(i)
n (s)ds∑3

i=0

∫ t
0 hi(s)W

(i)
n (s)ds +

∑6
i=4

∫ t
0 hi(s)dW

(i)
n (s)

)
,

where for 0 ≤ k ≤ 3, W
(k)
n (t) =

√
n(Z(k)

n (t)− γk(t)), and

W (k)
n (t) = n−1/2

n∑
i=1

∫ t

0
(Zi(s))k−4dMi(s)

for 4 ≤ k ≤ 6. Functions hi and ki are defined by

h0 = λ0e
2
1 + 2β0e1e2 − 2β0e

3
1, h1 = 3β0e

2
1 − 2β0e2 − 2e1λ0,

h2 = λ0 − 2β0e1, h3 = β0, h4 = e2
1, h5 = −2e1, h6 = 1,

and k0 = e2
1, k1 = −2e1, k2 = 1.

Let us define on [0, τ ], the R
7-valued process Wn = (W (0)

n , . . . ,W
(6)
n )T . By

A4 and the definition of the W
(i)
n s, we can see that

Wn =
1√
n

n∑
i=1

Wn,i,

where the Wn,is are independent and identically distributed processes. Because
we proved that Zn(τ) is asymptotically completely equivalent to Z̃n(τ), an R

2-
valued linear functional of Wn(·), it follows that Z̃n(τ) is a sum of centered,
independent, and identically distributed random variables with finite variance



220 L. Bordes and C. Breuils

under A2–A3. By the classical central limit theorem, Z̃n(τ) has an asymptotic
centered Gaussian distribution with a variance–covariance matrix Γ0(τ). More-
over, Z̃n(τ) satisfies the Anscombe condition (as a sum of centered indepen-
dent and identically distributed random vectors with finite variance–covariance
matrix), and so by Proposition 14.4.1, Condition C5 is fulfilled and, hence,
Theorem 14.3.1 is proved.

14.4 Technical Tools

14.4.1 Complete convergence, Anscombe condition, and
exponential inequality

First we recall that a sequence (Xn)n≥1 of real-valued random variables con-
verges completely to a random variable X (denoted by Xn

c−→ X) if for all
ε > 0 we have ∑

n≥1

P (|Xn −X| > ε) < +∞.

Two sequences (Xn)n≥1 and (Yn)n≥1 of real-valued random variables are com-
pletely asymptotically equivalent if their difference converges completely to 0.

We say that (Xn)n≥1 satisfies the Anscombe condition or is uniformly con-
tinuous in probability, if for all ε > 0 there exists an integer n0 ≥ 1 and a real
number δ > 0 such that

P

(
max

0≤k≤δn
|Xn+k −Xn| > ε

)
< ε, ∀n ≥ n0.

Proposition 14.4.1 Let (Xn)n≥1 and (Yn)n≥1 be two asymptotically completely
equivalent sequences. If (Xn)n≥1 satisfies the Anscombe condition, and (Tn)n≥1

is a regular sequence, then
YTn − Ytn

P−→ 0.

Moreover, if (Xn)n≥1 converges to X in distribution, (YTn)n≥1 converges to X
in distribution too.

Proof. See Breuils (2003) or Bordes and Breuils (2006).

We consider (Ω,A, P ) a probability space. For ω ∈ Ω, we define

Fn,ω = {fn(ω, t) = (fn,1(ω, t), . . . , fn,n(ω, t)), t ∈ [0, τ ]} ,

a subset of R
n corresponding to a triangular array of processes. We focus our

interest on the random element defined by

Δn(ω) = sup
t∈[0,τ ]

|Sn(ω, t)− ESn(·, t)| , ω ∈ Ω,
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where Sn(ω, t) =
∑n

i=1 fn,i(ω, t). We write Fn,ω =
(
F

(1)
n,ω, . . . , F

(n)
n,ω

)
, the enve-

lope of Fn,ω, and it satisfies |fn,i(ω, t)| ≤ F
(i)
n,ω for all t ∈ [0, τ ] and 1 ≤ i ≤ n;

we write δn(ω) = |Fn,ω|2, where | · |2 denotes the Euclidean norm in R
n.

Proposition 14.4.2 Let Fn,ω be a subset of R
n. We assume that (i) δn(ω) =

O(n−1/2) uniformly in ω ∈ Ω, and (ii) Fn,ω is Euclidean [see Pollard (1990)].
Then, there exist constants 0 < c1 ≤ 5 and c2 > 0 such that

1. P (Δn ≥ ε) ≤ c1 exp(−c2nε2), for all n ≥ 1,

2. Δn
c−→ 0, as n→∞.

Proof. Follows from Pollard (1990, Chapter 7); see Breuils (2003) and Bordes
and Breuils (2064).

Proposition 14.4.3 Let (M̃n)n≥1 be a sequence of local martingales, locally
uniformly integrable, with value 0 at 0. We suppose that for n ≥ 1, we have

sup
t∈[0,τ ]

|ΔM̃n(t)| ≤ c√
n

,

where c > 0. If we have∑
n≥1

P
(〈

M̃n

〉
(τ) ≥ n−1/4

)
< +∞,

then (supt∈[0,τ ] |M̃n(t)|)
n≥1

converges completely to 0.

Proof. Follows from a result by Shorack and Wellner (1986, p. 900); see
Breuils (2003) and Bordes and Breuils (2006).

14.4.2 Technical results

Lemma 14.4.1 Under A1–A3, we have:
(i) There exist real numbers c > 0, d > 0, and an integer n0 ≥ 1, such that

for all ε > 0, 0 ≤ k ≤ 3, and n ≥ n0:

P

(
sup

s∈[0,τ ]

∣∣∣Z(k)
n (s)− γk(s)

∣∣∣ > ε

)
≤ c exp(−dnε2);

moreover, both sups∈[0,τ ]

∣∣∣Z(k)
n (s)− EZ

(k)
n (s)

∣∣∣ and sups∈[0,τ ]

∣∣∣Z(k)
n (s)− γk(s)

∣∣∣
converge completely to 0;

(ii) There exist real numbers c′ > 0, d′ > 0, and an integer n′
0 ≥ 1, such

that for all ε > 0, and n ≥ n′
0:

P

(
sup

s∈[0,τ ]
|En(s)− e1(s)| > ε

)
≤ c′ exp(−d′nε2).
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Proof. Let us prove (i). By the triangular inequality applied to Z
(k)
n (s) −

γk(s) and A1, it is enough to prove the result for sups∈[0,τ ] |Z
(k)
n (s)−EZ

(k)
n (s)|.

Moreover, we prove that the family Fnω defined by

Fnω = {(fn,1(ω, t), . . . , fn,n(ω, t)), t ∈ [0, τ ]} ,

for i ∈ {1, . . . , n}, fn,i(ω, t) = n−1Yi(t)Zk
i (t), is Euclidean by arguments similar

to those of Bilias et al. (1997). This family has an envelope Fn,ω with an
Euclidean norm less than Cn−1/2 (with C > 0) and thus satisfies assumptions
of Proposition 14.4.2 giving constants ck and dk. Finally, we take c = max ck

and d = min dk. The last two results of (i) follow immediately.
Result (ii) is straightforward by using the triangular inequality with result

(i) and the fact that, by A1 and A3, 1/γ0 and En are, respectively, bounded.
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Variance Estimation of a Survival Function with

Doubly Censored Failure Time Data

Chao Zhu and Jianguo Sun

University of Missouri, Columbia, MO, USA

Abstract: Doubly censored failure time data often occur in epidemiological or
disease progression studies. In this situation, several authors have investigated
the problem of estimating a survival function and proposed methods for the
problem. However, there appears to be no existing research studying variance
estimation of an estimated survival function. This chapter discusses pointwise
estimation of variances of an estimated survival function and several methods
are presented. The evaluation and comparison of the methods are conducted
using numerical studies and a set of real doubly censored failure time data. The
results suggest that the proposed methods work well under practical situations.

Keywords and phrases: AIDS incubation time, disease progression studies,
pointwise estimation of variance, survival function

15.1 Introduction

Doubly censored failure time data arise in many studies of disease progression
that involve two events, an initial event and an end event such as disease onset
and subsequent death [De Gruttola and Lagakos (1989) and Sun (2004)]. By
doubly censored data, we mean that the survival time of interest is defined as
the elapsed time between the initial and end events and observations on the
occurrences of both events can be either right- or interval-censored [Finkelstein
(1986), Kalbfleisch and Prentice (2002), and Sun (2005)]. If the initial event can
be exactly observed, we then have right- or interval-censored failure time data
depending on observations on the end event. This chapter discusses pointwise
estimation of variances of the estimated survival function and several methods
are presented.

225
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An example of doubly censored data that motivated this research occurs
in the analysis of follow-up studies of patients who have been or are at risk
of being infected by the Type-1 human immunodeficiency virus (HIV-1) and
thus are also at risk of developing the acquired immune deficiency syndrome
(AIDS). In this case, one variable of great interest is AIDS incubation time [De
Gruttola and Lagakos (1989)], the survival time of interest defined as the time
from HIV-1 infection (initial event) to the diagnosis of AIDS (end event). The
HIV-1 infection time is often interval-censored partly due to the recruitment of
HIV-1 positive patients into the studies and the fact that the infection times
of these patients can usually only be determined retrospectively to lie in some
intervals. In the meantime, observations on the diagnosis of AIDS could be
right- or interval-censored too.

A number of authors have considered the analysis of doubly censored failure
time data. For example, De Gruttola and Lagakos (1989) and Gómez and
Calle (1999) proposed some algorithms for estimation of the survival function.
Goggins et al. (1999), Pan (2001), and Sun et al. (1999) investigated regression
analysis of doubly censored data under the proportional hazards model and
Sun (2001a) developed a nonparametric test for survival comparison based on
doubly censored data. However, there does not seem to be research discussing
variance estimation of estimated survival functions except that one sometimes
suggests using the Fisher information matrix. It is well known that the Fisher
information matrix approach could usually work only for the case with a finite
number of parameters and it does not seem to provide a reasonable choice in the
presence of interval censoring [Goodall et al. (2004)]. In the following, several
methods are presented and studied for the pointwise estimation of variances of
estimated survival functions. More references on doubly censored data can be
found in Sun (2004).

The remainder of the chapter is organized as follows. Section 15.2 introduces
some notation and assumptions that will be used throughout the chapter and
also gives a brief review of variance estimation of survival functions with right-
censored data. In Section 15.3, four approaches are presented for pointwise
variance estimation of estimated survival functions when only doubly censored
data are available. The first two are generalizations of methods given in Sun
(2001b) for interval-censored failure time data. For evaluation and comparison
of the proposed methods, simulation studies are conducted and their results
are reported in Section 15.4, which indicate that they work well under realistic
situations. Also in Section 15.4, we apply the methods to the AIDS example
that motivated this study and some concluding remarks are given in Section
15.5.
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15.2 Preliminaries

Consider a survival study in which there are n independent subjects and each
experiences two related events, initial and end events. Let Xi and Ti > 0
represent the time to the initial event (HIV infection time in the case of AIDS)
and the time to the end event (diagnosis of AIDS), respectively, for i = 1, . . . , n.
The random variable Si = Ti −Xi corresponds to the survival time of interest
(AIDS incubation time). Assume that {1, 2, . . . , k + 1} is the possible range
of Xi, Ti and Si, i = 1, . . . , n, for a simple presentation. That is, we assume
that all of the random variables are discrete and there are only finite possible
failure time points, which is often the case when data arise from clinical trials
or longitudinal studies. A more practical way would be to assume that Xi, Ti,
and Si belong to a set of times whose indices are from {1, 2, . . . , k + 1}. In this
case, the following proposed methods can be developed in the same way. When
the underlying variable is continuous, the approach here also applies if observed
data are discrete. In this case, k + 1 represents infinity.

For each subject, suppose that intervals Ai = [ai1, ai2] and Ii = [ai3, ai4] are
observed to which Xi and Ti belong, respectively, where aij ∈ {1, 2, . . . , k + 1}
and ai1 ≤ ai2 ≤ ai3 ≤ ai4, i = 1, . . . , n and j = 1, 2, 3, 4. That is, we have
interval-censored data on the Xis and Tis and observed data on the Sis are
doubly censored and have the form {(Ai, Ii); i = 1, . . . , n}. If ai1 = ai2, i =
1, . . . , n, then the occurrence of the initial event is exactly observed and we have
the usual interval-censored data for the Sis [Finkelstein (1986) and Sun (2005)].
Furthermore, if ai3 = ai4 or ai4 = k + 1 for all subjects, we then observe right-
censored failure time data [Kalbfleisch and Prentice (2002)]. Let v1 < · · · < vr

denote the possible mass points for the Xis and u1 < · · · < um < um+1 = k + 1
the possible mass points for the Sis. Define αi

lj = I(ai1 ≤ vl ≤ ai2, ai3 ≤ vl +
uj ≤ ai4), wl = Pr(Xi = vl), and fj = Pr(Si = uj), l = 1, . . . , r, j = 1, . . . ,m.
Then the full likelihood function L can be written as

L(w′
ls, f

′
js) =

n∏
i=1

r∑
l=1

m+1∑
j=1

αi
ljwlfj .

Let H(x) = Pr{Xi ≤ x} and S(t) = Pr{Si > t} denote the cumulative dis-
tribution function of the Xis and the survival function of the Sis, respectively.
Also let Ŝ(t) and Ĥ(x) denote the joint nonparametric maximum likelihood
estimators of S and H, which have no closed forms and can be obtained by, for
example, the self-consistency algorithm of De Gruttola and Lagakos (1989). In
the following, our main interest focuses on the problem of estimating the point-
wise variances of Ŝ(t). As did other authors [De Gruttola and Lagakos (1989),
Sun (2004), Gómez and Calle (1999), Goggins et al. (1999), Pan (2001), Sun
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et al. (1999), and Sun (2001b)], we will assume that Xi and Si are independent.
Also we will assume that the censoring mechanisms yielding the Ais and Iis are
independent of the failure variables Xis and Sis.

Note that for right-censored data, Ŝ(t) has a closed form and is given by

ŜKM(t) =
∏

j|uj≤t

nj − dj

nj
,

the so-called Kaplan–Meier estimator [Kalbfleisch and Prentice (2002)], where
dj = # {i; ai3 − ai1 = ai4 − ai1 = uj}, the failure numbers at uj, and nj = #
{i; ai3 − ai1 ≥ uj}, the risk numbers at u−

j . In this case, the most commonly
used variance estimator of ŜKM(t) is given by the so-called Greenwood formula
[Kalbfleisch and Prentice (2002)]

VG(t) = Ŝ2
KM(t)

∑
j|uj≤t

dj

nj(nj − dj)
.

Corresponding to the Greenwood formula, which tends to underestimate the
variance, Simon and Lee (1982) and Zhao (1996) suggested using, respectively,

VSL(uj) =
Ŝ2

KM(uj){1 − ŜKM(uj)}
(nj − cj)

and

VZ(uj) =
Ŝ2

KM(uj){1− ŜKM(uj)}
(nj − dj)

for the variance estimation of Ŝ at uj, where cj = # {i; ai3 − ai1 = uj}, the
number of tied observations at uj .

15.3 Variance Estimation

This section presents four methods for pointwise variance estimation of Ŝ(t).
The first one is conceptually simple and based on the bootstrap approach [Efron
(1981)], but may be computationally intensive. In contrast, the other three use
the imputation approach [Pan (2001) and Wei and Tanner (1991)] and are
computationally simpler than the first one.

15.3.1 Simple bootstrap method

Let M be a prespecified integer. For each l (1 ≤ l ≤ M), let (A(l)
1 , I

(l)
1 ), . . . ,

(A(l)
n , I

(l)
n ) be an independent sample of size n drawn with replacement from the
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observation set {(Ai, Ii)} and Ŝ(l)(t) denote the maximum likelihood estimator
of S(t) based on {(A(l)

1 , I
(l)
1 ), . . . , (A(l)

n , I
(l)
n )}. Then for given t, one can estimate

the variance of Ŝ(t) by the sample variance

VB(t) =
1

M − 1

M∑
l=1

[Ŝ(l)(t)− S̄(t)]2 ,

where

S̄(t) =
∑M

l=1 Ŝ(l)(t)
M

.

15.3.2 Generalized Greenwood formula

Let M be a prespecified integer as before. For each l (1 ≤ l ≤ M), first we
draw a right-censored survival sample of size n using the following algorithm.

Step 1. Let {X(l)
i ; i = 1, . . . , n} be an independent sample of size n such that

X
(l)
i is drawn from the conditional probability function

ĥi(x) = Pr{X(l)
i = x} =

Ĥ(x)− Ĥ(x−)
Ĥ(ai2)− Ĥ(ai1−)

, x ∈ [ai1, ai2]

given Xi ∈ [ai1, ai2], i = 1, . . . , n.

Step 2. For the given X
(l)
i s, let {(S(l)

i , δ
(l)
i ); i = 1, . . . , n} be an independent

right-censored number of size n such that if ai4 = k + 1, let S
(l)
i = ai3 − X

(l)
i

and δ
(l)
i = 0 and if ai4 < k + 1, let S

(l)
i be a random sample drawn from the

conditional survival probability function

fi(s) = Pr{S(l)
i = s} =

Ŝ(s−)− Ŝ(s)

Ŝ((ai3 −X
(l)
i )−)− Ŝ(ai4 −X

(l)
i )

s ∈ [ai3 −X
(l)
i , ai4 −X

(l)
i ]

and δ
(l)
i = 1, i = 1, . . . , n, where δ

(l)
i is the censoring indicator.

Let d
(l)
j and n

(l)
j denote the failure and risk numbers dj and nj defined above,

but based on the data set {(S(l)
i , δ

(l)
i ); i = 1, . . . , n}, and Ŝ

(l)
KM(t) and V

(l)
G (t)

the Kaplan–Meier estimator of S and the Greenwood estimator VG also based
on the data set {(S(l)

i , δ
(l)
i ); i = 1, . . . , n}, respectively, l = 1, . . . ,M . Then the

variance of Ŝ(t) can be estimated by

VGG(t) =
1
M

M∑
l=1

V
(l)
G (t) +

(
1 +

1
M

) ∑M
l=1{Ŝ

(l)
KM (t)− S̄KM(t)}2

M − 1
,
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where

S̄KM(t) =
∑M

l=1 Ŝ
(l)
KM(t)

M
.

It is easy to see that if right-censored data are available, the proposed estimate
VGG reduces to the Greenwood formula VG.

15.3.3 Imputation methods I and II

For given l and the generated data set {(S(l)
i , δ

(l)
i ); i = 1, . . . , n}, by using the

notation given above, let

V
(l)
SL(uj) =

Ŝ
(l)2
KM(uj){1 − Ŝ

(l)
KM(uj)}

(n(l)
j − c

(l)
j )

and

V
(l)
Z (uj) =

Ŝ
(l)2
KM(uj){1 − Ŝ

(l)
KM(uj)}

(n(l)
j − d

(l)
j )

,

where as cj , c
(l)
j denotes the number of tied observations at uj, l = 1, . . . ,M ,

j = 1, . . . ,m. Then following VSL and VZ , we can also estimate the variance of
Ŝ(uj) by

VGSL(uj) =
1
M

M∑
l=1

V
(l)
SL(uj) +

(
1 +

1
M

) ∑M
l=1{Ŝ

(l)
KM(uj)− S̄KM(uj)}2

M − 1

or

VGZ(uj) =
1
M

M∑
l=1

V
(l)
Z (uj) +

(
1 +

1
M

) ∑M
l=1 {Ŝ

(l)
KM (uj)− S̄KM(uj)}2

M − 1
,

which will be referred to as imputation I and imputation II.
As mentioned above, the simple bootstrap method is clearly conceptually

simpler than other three methods, but it is computationally more demanding
than the others. This is because the former requires estimation of the survival
function based on doubly censored data, which could be really slow. In contrast,
the other methods only need the estimation with right-censored data, which
does not need iterations. In both the simulation and the example below, the
self-consistency algorithm proposed by De Gruttola and Lagakos (1989) was
used for the estimation with doubly censored data. To apply the above methods,
one needs to choose M and our simulation experience suggests that M = 30
seems large enough for all situations considered. Of course, for a particular
example, one may want to try different values of M to obtain stable variance
estimation.
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Figure 15.1: Estimated standard deviations with b = 1

15.4 Numerical Results

We conducted a simulation study to investigate the performance of the proposed
variance estimators. In the study, we assumed that a failure could occur only at
1, 2, . . . , 20 and infinity; that is, k = 20. In the simulation, the failure time Si

of interest was assumed to follow an exponential distribution with the hazard
λ0. To generate doubly censored data, we first generated the initial event time
Xi from the uniform distribution U{1, 2, . . . , a}; given this value of Xi, ai1 and
ai2 were generated by subtracting from Xi (for ai1) and adding to Xi (for ai2)
two random numbers generated from the uniform distribution U{0, 1, . . . , b},
respectively, where a and b are some integers. For the Tis, we assumed that
right-censored data are available and defined Ti = Xi+Si with a common right-
censoring time point 20. The results reported below are based on the sample
size n = 100, M = 30, a = 8, and 300 replications.

Figure 15.1 shows the sample means of the estimated standard deviations
given by four methods presented in the previous section with b = 1 and λ0 =
1/12, which corresponds to roughly 30% right-censoring on the Sis. For com-
parison, the sample standard deviations based on estimated survival functions
are also calculated and included in the figure. It can be seen that all esti-
mates are close to each other except at the tail, where there exists relatively
less information about the survival time of interest. As expected, while ap-
proaching the tail, the estimates given by the bootstrap, imputation I and II
start to overestimate the variances, and the generalized Greenwood formula
underestimates.
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Figure 15.2: Estimated standard deviations with b = 2

Figure 15.2 displays the same estimates as Figure 15.1 except with b = 2 and
gives similar conclusions to Figure 15.1. We also considered other set-ups and
obtained similar results. In summary, the results suggest that all four methods
seem to work reasonably well and give similar variance estimates except at the
tail. In particular, the simple bootstrap method seems little better than the
other three without considering computational effort. Also, it should be noted
that the simple bootstrap method may need relatively large M to obtain stable
estimates compared to the other three methods.

To illustrate the proposed methods, we applied them to a set of doubly
censored data from an AIDS study on hemophiliacs [De Gruttola and Lagakos
(1989), Goggins et al. (1999), and Sun et al. (1999)]. The original study
consisted of individuals with Type A or B hemophilia who were at risk for HIV-
1 infection through the contaminated blood factor they received during their
treatment. The subjects were classified into two groups, lightly and heavily
treated groups, according to the amount of blood. The data include observed
intervals for HIV infection and AIDS diagnosis times, respectively, and one of
the objectives was to compare the AIDS incubation distributions between the
two groups. For illustration, here we will focus on observed data from the
subjects in the heavily treated group.

Figure 15.3 presents the estimated survival function for AIDS incubation
time along with the estimated 95% confidence bands given by the simple boot-
strap method and generalized Greenwood formula. The confidence bands based
on imputations I and II were also obtained and are similar to those shown in
Figure 15.3 except at the tail as seen in Figures 15.1 and 15.2, and so were
omitted. To check the dependence of the results on M , we tried a number of
values of M including 10, 20, 30, 50, 100, and 200. It seems that the estimated
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Figure 15.3: Estimated survival function and 95% confidence bands

standard deviations by the generalized Greenwood formula and imputation I
and II are quite stable when M is close to 30. In contrast, the results given
by the simple bootstrap method are still changing for large M although the
change is somewhat mild. Note that the dependence of the results on M could
also depend on the sample size.

15.5 Concluding Remarks

This chapter discussed variance estimation of estimated survival functions for
doubly censored data and four methods were presented for the problem. Among
them, the simple bootstrap method seems little better than the others, but it
requires more computational effort and larger M than the others. The three
approaches based on imputation tend to give very close estimates except at
the tail, where the generalized Greenwood formula tends to underestimate the
variance. In contrast, imputations I and II tend to overestimate the variance
at the tail. The bootstrap method and generalized Greenwood formula are
generalizations of the methods given in Sun (2001b) for interval-censored failure
time data.

For simplicity, the discussion was confined to discrete situations, which is
the case for many clinical and epidemiological studies with periodic follow-
ups. In these situations, subjects under study are usually given or assigned
prespecified finite numbers of clinical visit or observation times although actual
visit or observation times may differ from subject to subject. This includes the
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situation where the underlying variable is continuous, but observed data appear
on a discrete scale as is the case in the example discussed in Section 15.4. It
is straightforward to generalize the presented methods to situations where all
concerned variables are continuous with doubly censored data.

Throughout this chapter, we assumed that there are no covariates. For
regression analysis, several methods have been proposed under the proportional
hazards model [Goggins et al. (1999), Pan (2001), and Sun et al. (1999)] and
all proposed methods focused on estimation of regression parameters. In other
words, no research or method exists for variance estimation of baseline hazard or
survival function. It would be useful to generalize the methods proposed above
to regression situations. This is needed, for example, if one wants survival
prediction. The same is true for truncated and doubly censored failure time
data, which often occur in cohort or longitudinal studies [Turnbull (1976)].
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Statistical Models and Artificial Neural Networks:

Supervised Classification and Prediction Via Soft

Trees

Antonio Ciampi and Yves Lechevallier

McGill University, Montreal, QC, Canada
INRIA-Rocquencourt, Le Chesnay, France

Abstract: It is well known that any statistical model for supervised or unsu-
pervised classification can be realized as a neural network. This discussion is
devoted to supervised classification and therefore the essential framework is the
family of feedforward nets.

Ciampi and Lechevallier have studied two- and three-hidden-layer feed-
forward neural nets that are equivalent to trees, characterized by neurons with
“hard” thresholds. Softening the thresholds has led to more general models.
Also, neural nets that realize additive models have been studied, as well as net-
works of networks that represent a “mixed” classifier (predictor) consisting of
a tree component and an additive component. Various “dependent” variables
have been studied, including the case of censored survival times.

A new development has recently been proposed: the soft tree. A soft tree can
be represented as a particular type of hierarchy of experts. This representation
can be shown to be equivalent to that of Ciampi and Lechevallier. However,
it leads to an appealing interpretation, to other possible generalizations and
to a new approach to training. Soft trees for classification and prediction of a
continuous variable will be presented. Comparisons between conventional trees
(trees with hard thresholds) and soft trees will be discussed and it will be shown
that the soft trees achieve better predictions than the hard tree.

Keywords and phrases: Prediction trees, probabilistic nodes, hierarchy of
experts
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16.1 Introduction

The task of learning from data has been the object of two independent but con-
verging traditions: machine learning, which emphasizes algorithmic approaches,
and statistical modeling, which emphasizes choice of a model for the probability
distribution of the observed data. From the point of view of statistical learn-
ing theory, the well-known distinction between supervised and unsupervised
learning corresponds to the problems of conditional and unconditional density
estimation, respectively.

Traditional parametric modeling uses data to search for an optimal value of
a parameter that varies within a space of specified dimension. Complex data,
such as those encountered in contemporary data analysis can seldom be fully
studied by this traditional approach. Statistical learning theory [Hastie, Tibshi-
rani, and Friedman (2001)] aims to extract information from complex data by
a new, flexible approach known as adaptive modeling. Typically, dictionaries—
that is, “super-families” of models of unspecified dimension—replace parametric
models. And model searches are conducted within dictionaries relying on vari-
ous heuristics, often inspired by simple cognitive strategies. Although the goal
of statistical learning remains the modeling of a probability distribution, the
approach becomes increasingly algorithmic. Also, the goal of finding a global
optimum is often reduced to the search for a suboptimal but meaningful solution
such as a reasonably stable local optimum.

In this chapter, we are concerned with supervised learning and, in particular,
with the prediction problem. The aim is to construct from data the regression
function E[y|x], which is the expectation of the variable to predict y given
the vector of predictors x. Two common examples of regression functions are
ordinary linear regression, in which y is a continuous variable and E[y|x] is
assumed linear in the x; and generalized linear regression, in which linearity
is assumed for a monotone transformation of E[y|x], as in logistic and Poisson
regressions. In the statistical modeling tradition, variable selection algorithms
for multivariable regression may be considered as the ancestors of adaptive
modeling in supervised learning.

Much of contemporary research in statistical supervised learning focuses on
approaches shared with machine learning, such as trees and, to a lesser extent,
feedforward Artificial Neural Networks (ANN). Neural networks appear particu-
larly attractive because they are universal approximators [Hornik, Stinchcombe,
and White (1989)]. However, this very desirable property is of little use in prac-
tice. Indeed, before training an ANN, one needs to choose its architecture. This
is not done by use of mathematical results, but rather by trial and error and re-
liance on past experience. This lack of mathematical definition may well be one
of the main reasons why ANNs have been to date less attractive to statisticians.
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Indeed, statisticians have directed their attention to the sampling properties of
ANNs and to some training algorithms for simple architectures [Venable and
Ripley (2002)], but not so much to the design of innovative architectures.

On the other hand, owing to the universal approximation property, any
statistical model can be realized as an ANN. Therefore, one can use a statis-
tical model that produces reasonably good predictions as the basis on which
to build the architecture of an ANN. Once trained, this ANN should produce
predictions at least as good as the original statistical model. In the last few
years, we have pursued this theme in the context of supervised learning [Ciampi
and Lechevallier (1995a,b, 1997, 2000, 2001), Ciampi and Zhang (2002), and
Ciampi, Couturier, and Li (2002)]. In this chapter, we present some of the
results obtained in the endeavor. In Section 16.2, we state more formally the
correspondence between statistical models and ANNs. We also demonstrate
the realization of linear, generalized linear, and tree-shaped prediction models
as specific ANN architectures. Furthermore, we show how these specific archi-
tectures can be made more flexible and to produce indeed ANNs which should
be at least as good as the original ones. In Section 16.3, we introduce a sim-
ple approach to the design of an ANN that has statistical models as building
blocks, and explore its advantages and shortcomings. A subtler approach to
combining models, developed in Section 16.4, is based on the notion of hierar-
chy of experts. In Section 16.5, we propose a new architecture, the soft tree,
which can be seen as a special case of hierarchy of experts, but one that can
be constructed directly from data. This constructive approach is extended in
Section 16.5 to a more general hierarchy of experts. Section 16.6 contains a few
concluding remarks.

16.2 The Prediction Problem: Statistical Models
and ANNs

For the purpose of this work, the prediction problem can be formulated as
follows. Suppose we have obtained a data matrix D = [Y |X], whose columns
represent measurements on n randomly sampled units of the variable y and
of the vector of predictors x. Assume a statistical model for the conditional
distribution of y given x as

y|x ∼ f(y; θ(x), φ),

where θ is a parameter that can be influenced by x, and φ is a possibly infinite-
dimensional parameter that does not depend on x and may be considered as a
nuisance parameter. Often, we have θ(x) = μ(x), the expected value of y given
x. The task is to estimate from D a functional form for θ(x), θ̂(x).
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The ANN modeling approach to the prediction problem is summarized in
Figure 16.1. The “input” data vector x enters the ANN through the input layer
and then flows through the inner layers towards the output layer. Each unit
or (artificial neuron) transforms an input into an output through a specified
function, known as the activation function of the neuron. Neurons are disposed
in layers. Usually the neurons of a layer share the same activation function.
The first layer is the input layer; its neurons receive as input one of the com-
ponents of x and the output repeats the input (identity activation function).
Each neuron in the inner layers is connected to some or all of those in the
immediately preceding layer; the lines in the figure represent the connections.
The input of each inner layer neuron is a linear combination of the outputs of
the neurons directly connected to it. The coefficients of the linear combination
are called connection weights and have to be determined from the data. They
can be considered as constituting a high-dimensional vector parameter w . It
should be noted here that, from the point of view of the classical statistical
modeler, trained to strive for parsimony of parameterization and interpretabil-
ity of parameters, the role of w as “parameter” is highly unusual: the ANN
does not appear parsimonious, but rather overparameterized. The activation
function of the inner layers’ neurons is usually a sigmoid function (e.g., the lo-
gistic function). At the output of the outer layer neurons (in Figure 16.1, there
is only one), one reads the output out(x|w), which represents the prediction.
The activation function of the neurons of the outer layer depends on the specific
problem.

In the training phase, connection weights are determined from data. In
general, the optimal weights vector parameter ŵ is determined by maximizing

ANN

Statistical 
Model:

θ (x) = out (x)

.

.

.

x → out (x)

.

.

.

w

Figure 16.1: ANN and prediction models



Statistical Models and Artificial Neural Networks 243

a “cost function” c(Y, out(X|w)). Backpropagation is the most popular maxi-
mization algorithm: it has an intuitive appeal in terms of learning theory, but
it is by no means the only way to approach the maximization problem.

It is natural to identify out(x) with θ(x), and, when training is completed,
out(x|ŵ) with θ̂(x). Although the choice of the cost function can be dictated by
a number of pragmatic considerations, a statistically natural one is to identify
the cost function with the deviance, that is, the negative of twice the log-
likelihood of the data. It is clear that with these choices, the neural network
family is simply a highly flexible model family and ANN training is just one
approach to likelihood maximization.

We shall now see how some familiar statistical models can be represented
as ANNs.

16.2.1 Generalized linear models as ANNs

Consider the generalized linear model family:

f(y|x) = f(y|θ(x)), (16.1)
η(μ(x)) = η(θ(x)) = βx, (16.2)

where η is the link function and f is a density of the exponential family [Mc-
Cullagh and Nelder (1989)]. For ease of notation, we do not explicitly indicate
the dispersion parameter, inasmuch as it does not play a role in the estimation
of the regression coefficients.

Several useful regression models are included in this general definition: one
simply has to specify the link and the density f . For example, the normal
linear regression model corresponds to the choice of the identity link and of a
normal density. Two other examples, particularly useful in health statistics,
are the logistic regression model, with the logit link function and the binomial
distribution, and the Poisson regression model, with the logarithmic link and
Poisson distribution. The Poisson regression model can be easily adapted to
treat censored survival data when the survival time is assumed to be exponen-
tially distributed.

Figure 16.2 represents the generalized linear model as an ANN.
The architecture consists of one inner layer, with identity activation function

for its neurons; the weights of the connections from the input to the inner layer
are fixed and equal, for example, all equal to 1; and the output neuron has
an activation function equal to the inverse of the link function. Clearly, the
only weights to learn are those of the connections between the inner layer and
the output neuron, so that w is identified with β, the vector of the regression
coefficients. In particular, for ordinary linear regression we have

out(x|β) − θ(x) = μ(x) = βx, (16.3)
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x → μ

ANN
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Statistical 
Model:

μ = β x logit μ = β xor

Figure 16.2: Linear predictor

and for logistic regression we have

out(x|β) = θ(x) = μ(x) = p(x) =
eβx

1 + eβx
. (16.4)

A likelihood-based cost function is then

c(Y, out(X,β)) = −2 log L = −2
n∑

i=1

log f(yi|out(xi|β)). (16.5)

Thus it can be seen that from an ANN perspective, the choice of the density
function and of the link function corresponds to the choice of the cost function
and of the activation function of the output neuron, respectively.

As long as we wish to limit ourselves to fitting generalized linear models,
the correspondence we have outlined amounts to nothing more than a formal
remark; in particular, backpropagation is not especially useful in this situation,
as there are simple and powerful algorithms to learn the parameters, which
require no iterations for the linear model and generally few iterations for the
generalized linear models. However, suppose we want to allow little deviations
from linearity. Then we can use logistic thresholds in the inner layer, allow
variable connection weights between the input and the inner layer, but choose
an initialization of these weights so that the logistic activation functions behave
virtually as identity functions at the first step of the training. Also, at initializa-
tion, the weights of the connections of the inner layer with the output layer can
be taken as the regression coefficients of the regression estimated by the appro-
priate statistical procedure. During training, these initial weights may change
very little or not at all, in which case the linear model is consistent with the
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data, or they may change substantially, indicating that the linear assumption
is not valid. Therefore, the data will decide whether a deviation from the linear
model is warranted. We stress, however, that if such deviation is warranted,
it will be of a particular nature: the final model will be linear in some logistic
transformation of the original predictors. Therefore, it will still be “close” to a
linear model, in the sense that it will be a simple case of additive model.

Another way to enlarge the generalized linear model ANN (GLM-ANN) is
to add a second hidden layer, initialize the training process so that the new
ANN is indistinguishable from the GLM-ANN, and then let the data determine
whether the generalization is warranted. In principle, the result can be any
ANN with one hidden layer. The “linear” initialization underlies the approach
developed in Ciampi and Zhang (2002) for training an ANN. It has a number of
advantages on the standard random initialization, at least when the variable to
predict is a binary variable. In this case, training is achieved in a shorter time
than with random initialization and the predictive accuracy is not inferior to
that obtained by the more costly initialization; furthermore, one demonstrably
improves the predictive accuracy of the “initial” linear regression model. A
similar approach was developed in Ciampi and Lechevallier (2000, 2001) for
censored survival data, using the formal equivalence of censored exponential
regression with a Poisson model referred to above.

16.2.2 Generalized additive models as ANNs

Generalized additive models are an extension of the generalized linear model
that has proved very useful in a variety of applications [Hastie and Tibshi-
rani (1990)]. The linear assumption in Eq. (16.2) is replaced by the additive
assumption

η(μ(x)) = θ(x) =
∑

gi(xi), (16.6)

where the gs are arbitrary continuous functions, to be determined from the data
through flexible modeling.

An ANN, as shown in Figure 16.3, can also represent the most general
additive model. Here, instead of having an inner layer of neurons, we have an
inner layer of ANNs; in other words, the architecture is that of a network of
networks.

Each component xi of the predictor vector x serves as input to a standard
ANN whose internal connection weights have to be learned from the data. The
output of the ith inner layer ANN is denoted by gi(xi); because of the universal
approximation property of ANNs, the form of this function is totally flexible.
The outputs of the inner layer ANNs flow towards the output of the network
of networks, with fixed, equal connection weights. As for the linear case, the
form of the activation function of the output neuron and the choice of the
cost function determine the type of additive model. The output functions for
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Figure 16.3: Additive predictor

ordinary and for logistic additive regression are, respectively,

out(x|β) = θ(x) = μ(x) =
n∑

i=1

βxi (16.7)

and

out(x|β) = θ(x) = μ(x) = p(x) =
e
∑

gi(xi)

1 + e
∑

gi(xi)
. (16.8)

The ANN for additive modeling can be enlarged, in a manner similar to that
discussed at the end of the previous section. We can, for instance, add another
inner layer between the layer of networks and the output layer, initialize it in
a way that it is indistinguishable from the additive model ANN, and then let
the data determine departures from the initial model.

16.2.3 Classification and regression trees as ANNs

Tree-structured prediction is becoming increasingly popular in a vast domain
of applications. A prediction tree is a graph such as the one shown in Figure
16.4, with which the following statistical model is associated.

μ(x) = μ1I [x1 > a1] I [x1 > a2] + μ2I [x1 > a1] I [x1 ≤ a2] + μ3I [x1 ≤ a2] .
(16.9)

Here I[x ∈ A] is the characteristic function of the set A; that is, I[x ∈ A](x)
is 1 if x is in A and 0 otherwise. Also this model has an ANN representation,
which was proposed in Ciampi and Lechevallier (1995b, 1997) and Ciampi and
Zhang (2002) and is shown in Figure 16.4.

This ANN has two inner layers, with activation functions I[x ≤ 0]. The
first inner layer has as many neurons as there are inner nodes in the tree: it
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creates the questions at the nodes, in the sense that each neuron has output
1 or 0 depending on whether the question defining the branching has answer
yes or no. The second inner layer has as many neurons as there are leaves
and the output of each neuron is 1 or 0 depending on whether the subject
with predictor x is assigned to the corresponding leaf. The output layer simply
realizes Equation (16.9).

Tree

x1 >a1

x2 >a2 μ 3

μ 2μ 1

Statistical 
Model:
μ = μ 1 I[x1 > a1] I[x 2 > a2]

+ μ 2 I[x1 > a1] I[x 2 ≤ a2]
+ μ 3 I[x1 ≤ a1]

ANN

x1

a1

x2

const

μ

μ 3

μ 2

μ 1

a2
+1/2+1/2

-1

-1/2

+1/2

Figure 16.4: Prediction tree and its associated ANN

As in Section 16.2.1, the main interest of the correspondence between tree
and ANN is that it can be used to train a neural net that can in fact im-
prove on the tree. The problem with the description of Figure 16.4(b) is that
we have “hard thresholds” as activation functions for the inner layer neurons,
which makes optimization hard and impossible with techniques based on dif-
ferentiation of the activation function, such as backpropagation. However, by
appropriate choice of the initial conditions, one can replace hard thresholds
with very steep soft thresholds without changing the numerical value of the
cost function at initialization. As training proceeds, the weights may evolve so
that the activation functions become quite far from the initial steep threshold,
in which case the indication given by the data is that a tree model can be im-
proved upon. Our experience shows that this behavior is observed in practical
applications and that substantial improvement on the tree may result [Ciampi
and Lechevallier (1995b, 1997) and Ciampi and Zhang (2002)]. Unfortunately,
when thresholds become soft, the interpretation of the model is not clear. How-
ever, it is possible to interpret the output of the neurons of the first inner layer:
if we still consider an inner layer neuron as corresponding to a node in the tree,
then the output of such a neuron is between 0 and 1; it is close to 1 if the input



248 A. Ciampi and Y. Lechevallier

is large and close to 0 if it is small. It is suggestive to interpret this output as a
probabilistic answer to the question defining the node, which could be restated
as, “Is x1 large?” For instance, if x1 is very large or very small for a subject,
then that subject goes left or right; for “intermediate” values of x1, the subject
goes to the left with the probability given by the output of the neuron and
to the right with complementary probability. We are implicitly assuming that
there is a latent binary variable, taking values 1 for “large” and 0 for “small,”
for which x1 is an indicator.

We will see later that this interpretation can be developed more fully but
only after we propose an alternative representation of the tree as an ANN.

16.3 Combining Prediction Models: Hierarchy of
Experts

We have seen that an additive model can be represented as a network with an
inner layer consisting of networks. There is, however, the important restriction
that each neuron of the input layer, corresponding to a one-dimensional compo-
nent of x, is connected to only one of the inner networks. What if we drop this
restriction and allow full connectivity between the outer and the inner layer?
We proposed this in Ciampi and Lechevallier (2000), and suggested that each
inner network might represent a statistical model; for example, we might have
two inner networks, one representing a linear model, and the other a tree. The
output of the whole network would then appropriately weight the two models
and suggest whether a tree or a linear model is more consistent with the data.
Again, our experience shows that, when the data warrant it, the ANN based
on the combination of two statistical models does better than the individual
models themselves and the associated ANNs [Ciampi and Lechevallier (2000)].

Although the idea of a network of networks has proved useful in the direct
form proposed in Ciampi and Lechevallier (2000), we have recently pursued an
interesting alternative to the development of a network of networks: we can
arrange several networks in a hierarchical structure called hierarchy of experts
[Jordan and Jacobs (1994)]. Figure 16.5 represents such a structure.

At the core of the graph, there is a tree structure. However, data flow from
the leaves to the root of the tree. The leaves of the tree, represented by darkly
filled squares, are neural networks, receiving input x. Each node, represented
as usual by a circle, is a neuron with sigmoid activation function, receiving
input from its children and sending its output towards its parent node. Next to
each branch there is a neural network, represented by a lightly filled box and
known as a gating network or, more briefly, gater. A gater also receives x as
input, and outputs a number p between 0 and 1. The role of the gater is to
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Figure 16.5: Alternative architecture: hierarchy of experts

weight the outputs of the children with its own output. Conventionally the left
branch receives weight p and the right branch receives weight 1−p. Then these
weighted outputs serve as input to the parent node. The output of the root
node is the output of the whole system.

The name of this architecture is explained by the following suggestive in-
terpretation. A leaf of the tree represent a “first-level” expert, who looks at
the data and makes a prediction. This prediction is examined by a “second-
level” expert, who also examines the data but only to decide how to weight
the predictions of the first-level experts. Second-level experts submit their own
predictions, based on the weighted predictions of their subordinates, to third-
level experts; and so on, until a “super expert,” represented by the root of the
tree, makes the final prediction.

The idea of mixing ANNs based on statistical models can easily be realized
with the hierarchy of experts architecture. For example, one can place classical
statistical models at the leaves, and use as gaters networks with constant output:
this will be equivalent to the network of networks architecture discussed at the
beginning of this section. More generally, using linear or additive ANNs as
gaters allows greater flexibility, because models are weighted by weights that
may depend on the predictors.

Hierarchy of experts has great flexibility and can be used to mimic a wide
variety of situations. One such situation is the following: leaf networks represent
“experts” working with different sets of variables: for example, one expert might
make a tentative diagnosis based on standard blood tests, another on genetic
tests, yet another on an X-ray examination, and so on. Then the role of a “super
expert” is to combine these different points of view and, based on the totality
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of the information, to weight the partial diagnoses and issue a comprehensive
one.

In spite of many impressive features, the hierarchy of experts remains an
architecture, that is, a structure that should be designed a priori before using
the data for learning the weights of its components. This is a limitation that
we are attempting to overcome by developing algorithms that can construct
a hierarchy of experts directly from data. The key idea at the root of this
development is the soft tree.

16.4 The Soft Tree

In Section 16.2.3, we have discussed an ANN architecture based on a tree; we
also pointed out that during training, the resulting predictor may differ quite
markedly from the original tree structure and may indeed lose the advantage of
interpretability. The hierarchy of the experts offers an alternative approach to
the design of a network based on a tree, which remains interpretable even if the
data suggest departures from the original tree structure. Indeed, a hard tree
can be easily represented as a hierarchy of experts with very specific features.
The expert at the leaves should be imagined as making the same prediction for
all subjects, regardless of the values of the predictor variables x; in other words,
the outputs of the leaf networks do not depend on the input. Furthermore, each
gater should be thought of as a hard threshold on a single variable, characteristic
of the corresponding node. In terms of the expert interpretation, the super
expert simply chooses one of the predictions of its subordinate experts, and
does so on the basis of just one variable.

As in Section 16.2.3, one can replace hard thresholds with soft thresholds,
initialize all the gaters so that at the beginning of the learning process they be-
have as hard thresholds, and then train the networks while allowing departures
from the hard thresholds. The resulting structure is a tree with soft nodes, or,
for brevity, a soft tree. It is represented in Figure 16.6.

The process for creating such a structure may be entirely constructive: the
data are used a first time to determine the hard tree structure on which to base
the architecture of hierarchy of experts, and a second time to soften the hard
thresholds, if warranted to improve prediction. It could be easily implemented
as an algorithm. However, we have developed a more efficient alternative ap-
proach, which determines recursively both the variable at each node and the
gater associated with it. The details of the algorithms to predict a binary re-
sponse are discussed in Ciampi, Couturier, and Li (2002). In what follows, we
outline the main ideas.



Statistical Models and Artificial Neural Networks 251

Statistical
Model:

μ = μ 1 g1[x1 > a1] g2[x 2 > a2]
+ μ 2 g1[x1 > a1] (1-g2[x 2 > a2])
+ μ 3 (1-g1[x1 > a1])

μ 3

μ 2μ 1

a1

g1(x1 )

a2

g2(x2 )

gk= logistic((xk-ak)/σk)

Figure 16.6: Example of soft tree

16.4.1 General concepts in tree construction

The construction algorithm proposed in Ciampi, Couturier, and Li (2002) rests
on some intuitive concepts that are simple generalizations of their counterparts
for a tree with ordinary hard thresholds [see Hornik, Stinchcombe, and White
(1989)]; we will refer to the latter as a hard tree. Consider first a simple binary
split with a soft threshold based on the variable x1, say: thus a subject goes
to the left branch with probability g(x1) and to the right branch with comple-
mentary probability 1 − g(x1). The trivial tree consisting of the root node is
only a statistical model corresponding to the hypothesis that the distribution
of y|x does not depend on x. The tree with the two nodes of the split is also
a statistical model, according to which the distribution of y|x is a mixture of
distributions of the form

f(y|x) = g(x1)f1(y) + (1− g(x1))f2(y). (16.10)

We define the information content of the split as the Likelihood Ratio Statistic
(LRS) for comparing these two models. This definition is easily generalized to
a tree of general structure T . In fact, we can construct an LRS for comparing
the root node model with the model associated with the leaves of T , that is, a
formula for the conditional density that generalizes (16.10) in a direct way

f(y|x) =
L∑

l=1

Gl(x)fl(y), (16.11)

where fl(y) denotes the probability density associated with the �th leaf, the sum
is over the L leaves of T , and the coefficient of f�(y)s is obtained from basic
properties of probability, as a product of “soft threshold” functions g�(x�) and
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of complements of such functions associated with the nodes that are ancestors
of the �th leaf. Thus the information content of a tree is

IC(T : Root|data) = LRS(T : Root|data). (16.12)

Other concepts used in (soft) tree-growing are Information Gain (IG) and In-
formation Loss (IL). If T∗ is a rooted subtree of T (a subtree containing the
root node), then the IG of T with respect to T∗ and the IL of T∗ with respect
to T are

IG(T : T ∗ |data) = LRS(T : T ∗ |data) = IC(T |data)− IC(T ∗ |data)

and

IL(T∗ : T |data) = LRS(T∗ : T |data) = IC(T ∗ |data)− IC(T |data).

Given a tree T , we define the best one-split augmentation of T as the tree
obtained from T by adding to one split one leaf such that the augmented tree
has the highest information gain with respect to T .

16.4.2 Constructing a soft tree from data

We can now write the general outline of our soft tree construction algorithm:

GENERAL ALGORITHM:
1. FIX admissibility conditions and selection rules (AIC or BIC )
2. STEP 0: INITIALIZE:
Estimate the parameter for the trivial tree T0=Root
. . . . . . . . . . . . . . . . . . ..
3. STEP k :ENLARGE TREE BY 1 SPLIT
Find best 1-split augmentation of Tk

4. UPDATE: Tk ← T k+1

5. If IG(T∗ : T ) is small enough
THEN STOP
ELSE, GO TO 3.

In order to perform STEP k, we need to repeatedly estimate the parameters
of the soft tree Tk and of all its one-split augmentations. The parameters of
a soft tree describe the constant leaf predictors; on the other hand, there are
also parameters describing the soft nodes. If we model the gater at a node by
a logistic function

fk(x) =
eak+bkx

1 + eak+bkx
,
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we have two parameters to estimate for each node: ak and bk. If L is the number
of leaves and we have K parameters per leaf, we have a total of (2 + K)L − 2
parameters, or 3L − 2 for K = 1, the case of a single continuous or binary
response variable.

We estimate the parameters by an EM-type algorithm, described below.
Indeed, the actual likelihood of a soft tree of a given structure is rather hard to
write down and maximize directly. On the other hand, it is easy to “complete”
the data and to write a “complete data” likelihood, based on the following idea.
Suppose that there is an unobserved binary variable at each node k, such that
ζk = 1 means “go left” and ζk = 0 means “go right.” Then we can complete the
observed data by adding hypothetical values of ζk so that the soft tree becomes
a hard tree: when this is done, the task of writing and maximizing the likelihood
is trivial or, at least, reducible to a well-known one.

EM ALGORITHM FOR ESTIMATING THE PARAMETERS OF
A SOFT TREE
1. INITIALIZE:
Assign initial values to all parameters θ (0)

2. E-STEP:
Calculate E[ζk | y;θ (r)] and substitute this to ζk in the complete
likelihood
3. M-STEP:
Maximize complete likelihood to obtain θ (r+1)

4. UPDATE: θ (r) ← θ (r+1)

5. IF update parameters are “close enough” to old parameter,
THEN STOP
ELSE GO TO 2

The algorithms of tree construction and parameter estimation are quite
general in the form presented here, however, several technical difficulties had to
be overcome in practice. Different types of response variable present different
problems. We now have a stable algorithm for the case of binary and continuous
responses. An improved version of this approach, which can handle continuous,
binary and multinomial responses, is now under development and the results
seem promising.

16.4.3 An example of data analysis

We summarize here the results of the construction of a soft tree predictor from
a well-known data set in the public domain: the Pima Indians Diabetes data
[Venable and Ripley (2002)]. Data are available on 532 subjects of Pima Indian
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heritage, all females and of age 21 or older, living near Phoenix, Arizona. The
goal is to predict a binary variable that indicates the presence of Type II di-
abetes (WHO definition), from the following predictors: number of pregnan-
cies (npreg), plasma glucose concentration (Glu), diastolic blood pressure (bp),
triceps skin fold thickness (skin), body mass index (BMI), diabetes pedigree
function (Ped), and age. Figure 16.7 shows a soft tree constructed from these
data according to the algorithm outlined in Section 16.4.2.
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Figure 16.7: Soft tree for Pima Indians data

Notice that the soft nodes vary in degree of “softness,” as shown by the
gater functions at the nodes: for instance, the first node, determined by plasma
glucose concentration is very soft, and the lowest node based on BMI is nearly
hard. For purpose of comparison, we also constructed a hard tree from the
same data, shown in Figure 16.8.

Is one model clearly better than the other? Model comparison is summa-
rized in Table 16.1, which contains four common cross-validated measures of
predictive accuracy [Harrell (2002)] for the soft and the hard trees: deviance,
area under the receiving operator characteristic (ROC) curve, Brier’s score, and
misclassification error. Except for the Brier’s score, which is the same for the
two predictors, the measures reveal a clear advantage of the soft tree.
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Figure 16.8: Hard tree for Pima Indians data

Table 16.1: Model comparison for Pima Indians data

Soft tree Hard tree
Deviance 448.23 453.67
Area under the ROC curve 86.54 85.81
Brier’s score 0.14 0.14
Misclassification error 19.55% 21.05%
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1. Split at random the data into a learning set and a test set (10% of the
data).
2. Build two predictors, hard and soft tree, on the black learning set.
3. On the test set, compare the accuracy of the two predictors
Repeat the random splitting 100 times.

Table 16.2: Test set classification error

Soft tree Hard tree
Mean Std Mean Std p-values

Breast cancer 3.998 2.499 5.31 2.715 < 0.0001
Pima Indian 22.86 5.58 26.12 5.797 < 0.0001
Heart disease 22.37 7.429 33.73 7.803 < 0.0001
Liver disease 37.74 7.556 50.63 8.634 < 0.0001
Diabetes 2 15.68 5.34 14.62 5.47 0.0007
Prostate cancer 36.92 6.92 39.19 6.65 0.0013

16.4.4 An evaluation study

The analysis of the Pima Indian data is part of an evaluation study presented
in Ciampi and Couturier (2002). We chose six public domain data sets with
a binary response: breast cancer, Pima Indian, heart disease, liver disease,
diabetes 2, and prostate cancer. By the following resampling approach, we
compared soft and hard trees on these data.

The results are summarized in Tables 16.2 and 16.3, in which the comparison
is based on the classification error. Clearly, as could be expected, the soft tree
performs statistically better than the hard tree.

Table 16.3: Proportion of time the hard tree test set classification error (EH)
is greater than the soft node test set classification error (ES)

EH > ES(%) EH >= ES(%)
Breast cancer 58 84
Pima Indian 69 77
Heart disease 82 86
Liver disease 86 93
Diabetes 2 3 78
Prostate cancer 54 66
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The results of the comparisons based on other measures of predictive accu-
racy point in the same direction, and are not shown here.

16.5 Extending the Soft Tree

The soft tree model can be easily extended in order to increase predictive accu-
racy while sacrificing as little as possible of interpretability and parsimony. The
idea is suggested by the hierarchy of expert paradigm, and on the other hand
by some generalized tree-growing algorithms for trees with hard nodes [Ciampi
(1991), Chaudhuri et al. (1995), and Chipman, George, and McCulloch (2002)].
One can replace the constant predictor at the leaves by a (generalized) linear
predictor, that is, a regression equation. The algorithm outlined in Section
16.4.2 has to be modified by allowing at each split some simple form of stepwise
variable selection.

Although we are still in the process of developing stable algorithms, we
will present here some new results. We have analyzed another public domain
data set, the car mileage data [Venable and Ripley (2002)]. These data contain
city-cycle fuel consumption in miles per gallon, to be predicted in terms of the
following predictors: cylinders, displacement, horsepower, weight, acceleration,
model year. Hard, soft, and extended soft trees were constructed from these
data. They are shown in Figures 16.9–16.11.

The cross-validated prediction mean square error was calculated for each of
the predictors, obtaining 11.64 for the hard tree, 10.23 for the soft tree, and
9.68 for the extended soft tree. Clearly, at least for these data, the extended
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Figure 16.9: Hard tree for car mileage data
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soft tree appears to be superior and the soft tree better than the hard tree. An
empirical evaluation study based on several publicly available data sets is under
way.

16.6 Conclusions

We have summarized some work and presented some new results based on
the interplay of statistical modeling and artificial neural networks. The simple
remark that ANNs and statistical models are equivalent opens up new directions
of methodological development. Statistical models can be used to advantage for
designing ANNs and initializing ANN training algorithms. On the other hand,
ANN thinking may suggest new statistical modeling approaches. Indeed, new
adaptive modeling approaches such as the soft tree begin to emerge; they can
be seen as true “hybrids” of statistical models and ANNs.

ANNs and statistical models share the same goal, learning from data. But
this goal is pursued with different emphasis: ANNs privilege predictive ac-
curacy, whereas statistical modeling privileges interpretability and parsimony.
The approach we have been developing aims at striking a compromise between
the two principal aims. The soft tree, which we have discussed in some detail,
is a primary example: it aims to be nearly as accurate as an ANN and nearly
as interpretable/parsimonious as a statistical model. After a first successful
attempt, the basic soft tree model has been extended to increase predictive ac-
curacy while sacrificing as little as possible of interpretability and parsimony.
This has been done, as we have shown, by replacing the constant predictor at
the leaves of the soft tree by a regression equation. We are currently working
at refining the present algorithm. Careful evaluation is also in progress. Soft
trees for more complex response variables are under development (survival time,
longitudinal response, etc.).

The process we have outlined can be extended much further. One possible
goal could be the construction of a more general hierarchy of experts from data.
Gating networks, which are for now of the simplest kind, can also be made a
little more complex, while remaining interpretable. For instance, a simple gate
could be one that responds to “total number of symptoms or features” out of
a specified list. This and other ideas will be explored in future research.
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Multilevel Clustering for Large Databases

Yves Lechevallier and Antonio Ciampi
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Abstract: Standard clustering methods do not handle truly large data sets
and fail to take into account multilevel data structures. This work outlines
an approach to clustering that integrates the Kohonen Self-Organizing Map
(SOM) with other clustering methods. Moreover, in order to take into account
multilevel structures, a statistical model is proposed, in which a mixture of
distributions may have mixing coefficients depending on higher-level variables.
Thus, in a first step, the SOM provides a substantial data reduction, whereby a
variety of ascending and divisive clustering algorithms becomes accessible. As a
second step, statistical modeling provides both a direct means to treat multilevel
structures and a framework for model-based clustering. The interplay of these
two steps is illustrated on an example of nutritional data from a multicenter
study on nutrition and cancer, known as EPIC.

Keywords and phrases: Clustering, classification on very large databases,
data reduction

17.1 Introduction

Appropriate use of a clustering algorithm is often a useful first step in extracting
knowledge from a data base. Clustering, in fact, leads to a classification, that
is, the identification of homogeneous and distinct subgroups in data [Gordon
(1981) and Bock (1993)], where the definition of homogeneous and distinct
depends on the particular algorithm used: this is indeed a simple structure,
which, in the absence of a priori knowledge about the multidimensional shape
of the data, may be a reasonable starting point towards the discovery of richer,
more complex structures.

In spite of the great wealth of clustering algorithms, the rapid accumulation
of large databases of increasing complexity poses a number of new problems
that traditional algorithms are not equipped to address. One important feature
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Table 17.1: French center sample

Center Number Frequency
Ile-de-France 1201 24.75

Nord-Pas-de-Calais 452 9.32
Alsace-Lorraine 478 9.85
Rhone-Alpes 1018 20.98

Languedoc-Roussillon 625 12.88
Aquitaine 443 9.13

Bretagne-Pays-de-Loire 635 13.09

of modern data collection is the ever-increasing size of a typical database: it
is not so unusual to work with data bases containing from a few thousand
to a few million individuals and hundreds or thousands of variables. Now,
most clustering algorithms of the traditional type are severely limited as to the
number of individuals they can comfortably handle (from a few hundred to a
few thousand). Another related feature is the multilevel nature of the data:
typically a database may be obtained from a multicountry, multicenter study,
so that individuals are nested into centers which are nested into countries. This
is an example of an elementary known structure in the data that should not be
ignored when attempting to discover new unknown structures.

This work arises from the participation of one of its authors in the EPIC
project. EPIC is a multicenter prospective cohort study designed to investigate
the effect of dietary, metabolic, and other lifestyle factors on the risk of cancer.
The study started in 1990 and now includes 23 centers from ten European
countries. By now, dietary data are available on almost 500,000 subjects. Here
we initiate a new methodological development towards the discovery of dietary
patterns in the EPIC database. We look for general dietary patterns, but taking
into account, at the same time, geographical and socioeconomic variation due
to country and centers.

For simplicity, we consider only data from a subsample of the EPIC popu-
lation consisting of 4852 French women distributed in seven centers.

Also, we limit ourselves to an analysis of data from a 24-hour recall question-
naire concerning intake of 16 food groups. Thus, we will only discuss clustering
for two-level systems: subjects (first level) and center (second level), in our
case.

The approach we propose is based on two key ideas:

(1) A preliminary data reduction using a Kohonen Self-Organizing Map (SOM)
is performed. As a result, the individual measurements are replaced by
the means of the individual measurements over a relatively small number



Multilevel Clustering for Large Databases 265

of microregimens corresponding to Kohonen neurons. The microregimens
can now be treated as new cases and the means of the original variables
over microregimens as new variables. This reduced data set is now small
enough to be treated by classical clustering algorithms. A further ad-
vantage of the Kohonen reduction is that the vector of means over the
microregimens can safely be treated as multivariate normal, owing to the
central limit theorem. This is a key property, in particular, because it
permits the definition of an appropriate dissimilarity measure between
microregimens.

(2) The multilevel feature of the problem is treated by a statistical model
that assumes a mixture of distributions, each distribution representing,
in our example, a regimen or dietary pattern. Although more complex
dependencies can be modeled, here we will assume that the centers only
affect the mixing coefficients, and not the parameters of the distributions.
Thus we look for general dietary patterns assuming that centers differ
from each other only in the distribution of the local population across the
general dietary patterns.

Although the idea of a preliminary Kohonen reduction followed by the ap-
plication of a classical clustering algorithm is not entirely new [Murthag (1995),
Ambroise et al. (2000) and Thiria et al. (1997)], this work differs from previous
attempts in several respects, the most important of which are:

(a) The Kohonen chart is trained by an initialization based on principal com-
ponent analysis;

(b) The choice of clustering algorithm is guided by the multilevel aspect of
the problem at hand;

(c) The clustering algorithm is based on a statistical model.

Thus this work continues the authors research program which aims to de-
velop data analytic strategies integrating KDDM and classical data analysis
methods [Ciampi and Lechevallier (1995, 1997)].

17.2 Data Reduction by Kohonen SOMs

We consider p measurements performed on n subjects grouped in C classes,
{Gc, c = 1, . . . , C}. We denote these measurements by (G(i), x(i)), i = 1, . . . , n,
where for the ith subject G(i) denotes the class (the center, in our example),
and x(i) the p-vector of measurements (the 16 food-group intake variables); or,
in matrix form, D = [G|X].
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In this section we describe the first step of the proposed approach, which
consists in reducing the n × p matrix X to a m × p matrix, m � n. To do
this, we first pass the data matrix X through a Kohonen SOM consisting of
m units (neurons) disposed in a rectangular sheet with connections along two
perpendicular axis.

17.2.1 Kohonen SOMs and PCA initialization

We recall that in a Kohonen SOM the neurons of the rectangular sheet are
associated with a grid of prototypes in the p-dimensional space which represents
the row-vectors of the data matrix: the sheet is supposed to represent the grid
with a minimum distortion, so that a SOM can be seen as a nonlinear version
of classical data reduction techniques such as a Principal Component Analysis
(PCA). In order to specify a SOM, one needs to specify initial values of the
sheet’s connection weights and of the position of the prototypes. Then, the
data points are repeatedly sent through the SOM, each passage causing an
update of both the connection weights and the position of the prototypes, that
is, an alteration of both the sheet in two-dimensional space and the grid in
p-dimensional space. Normally, this process converges, in that the changes at
each passage become negligible.

In the original approach, initial weights were chosen at random; however,
as the efficacy of the algorithms crucially depends on the initialization, much
effort has been devoted to improving this first step. The distinguishing feature
of our construction consists in designing the sheet with the help of the results
of PCA performed on X. It is advantageous to choose the dimensions of the
grid, a and b (m = ab), such that

a

b
=
√

λ1√
λ2

,

where λ1 and λ2 denote the first and second eigenvalues of the PCA; see Fig-
ure 17.1. Also, the initial connection weights and position of the prototypes are
obtained from the two first eigenvectors of the PCA. The details are described
in Elemento (1999), where it is also shown that PCA initialization presents
substantial practical advantages over several alternative approaches.

17.2.2 Binning of the original data matrix using a
Kohonen map

As a result of the training process, the SOM associates with each subject a
unique neuron–prototype pair, which we shall refer to as a microregimen. Each
microregimen, Br, r = 1, . . . ,m, can be considered as a bin in which similar
individuals are grouped. We shall denote by nr the number of subjects in Br

and by nr,c the number of subjects in Br ∩ Gc. Also, let x̄r and x̄
(c)
r denote
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Figure 17.1: Initialization by PCA

Figure 17.2: Kohonen map



268 Y. Lechevallier and A. Ciampi

the vectors of the means of x(i) taken over Br and over Br ∩Gc, respectively.
Figure 17.2 gives a graphical representation of the bins [Hébrail and Debregeas
(1998)]: in each bin, the dot is proportional to bin size and the graph is a profile
of the input variables.

Already at this stage, an exploratory analysis of the two-way table {nr,c;
r = 1, . . . ,m, c = 1, . . . , C}, would be instructive: for example, Correspondence
Analysis (CA) of the table, ordering its rows and columns according to the factor
scores and eventually clustering rows and columns, is likely to shed some light
on the relationship between centers and microregimens.

Our goal, however, is to look for macroregimens, (dietary patterns in our
example), by clustering microregimens. To proceed further, we assume here
that the expected value of x and its variance–covariance matrix may depend on
the microregimens but not on the centers. It follows that if nr,c is large enough,
then, by the central limit theorem, x̄

(c)
r is approximately multivariate normal

Np(μr, (1/nr,c)/Σr), and the maximum likelihood estimates of μr and Σr are

x̄r =
1
nr

∑
i∈Br

x(i) and Vr =
1
nr

∑
i∈Br

(x(i) − x̄r)T (x(i) − x̄r).

17.2.3 Dissimilarity for microregimens

From these considerations, a natural definition for a dissimilarity between two
bins Br and Bs follows. This is the Likelihood Ratio Statistic (LRS) comparing
the hypothesis that x̄

(c)
r and x̄

(c)
s have different distributions with the hypothesis

that they have the same distribution; viz.,

d(Br, Bs) = 2
C∑

s=1

log

⎧⎨⎩ Np(x̄
(c)
r |x̄r,

1
nr,c

Vr)Np(x̄
(c)
s |x̄s,

1
ns,c

Vs)

Np(x̄
(c)
r |x̄r∪s,

1
nr,c

Vr∪s)Np(x̄
(c)
s |x̄r∪s,

1
ns,c

Vr∪s)

⎫⎬⎭ , (17.1)

where Np(.|μ,Σ) is the density function of a multivariate normal Np(μ,Σr) and

x̄r∪s =
nrx̄r + nsx̄s

nr + ns
(17.2)

and

Vr∪s =
1

nr + ns
[nrVr + nsVs + nrns(x̄r − x̄s)(x̄r − x̄s)T ]. (17.3)
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Figure 17.3: Relation between center and regimens

17.3 Clustering Multilevel Systems

Although the dissimilarity of Eqs. (17.1) and (17.2) is very natural in our con-
text, some other ones can be usefully defined, such as those proposed in the
symbolic data analysis literature [Bock and Diday (1999)]. Once the choice of
dissimilarity has been made, several standard algorithms can be applied to the
bins. Because the number of bins (m � n) may be chosen to be relatively
small, a panoply of ascending approaches becomes accessible. Moreover, sev-
eral dissimilarity-based divisive approaches are available. Among these, some
conceptual clustering algorithms [Chavent (1998)] seem particularly promising
as the one used in this work; see the next section, for example.

Suppose now that a clustering algorithm has been deployed. As a result, the
m microregimens are grouped to produce k � m macroregimens. Furthermore,
the two-way table {mi,c; i = 1, . . . , k, c = 1, . . . , C} obtained by crossing centers
with macroregimens can be analyzed by CA as outlined in the previous section.
Finally, proportions of subjects following different regimens in each center would
usefully summarize local characteristics, and a description of the clusters would
give insight on the nature of the macroregimens found in the general population.



270 Y. Lechevallier and A. Ciampi

17.3.1 A two-level statistical model

A statistical model may now be proposed. This can be useful for efficiently
extracting information from the data, as it suggests a family of model-based
clustering algorithms that explicitly account for the multi-level structure of
the data. For a two-level system, we suppose that the reduced data vector
x̄

(c)
r has as distribution a mixture of k multivariate normal distributions, each

corresponding to a macroregimen, or dietary pattern in our example. Thus the
density can be written as

f(x̄(c)
r ) =

k∑
i=1

αi(Gc)Np(x̄(c)
r |μi,Δi). (17.4)

A more complex model would include dependence of the μs and the Δs on c.
The interest of such a model is limited, although it could eventually be used
to check the adequacy of the one we propose. The simpler model is of greater
interest, especially for our dietary data example, because it allows identifica-
tion of general patterns that are to be found in all centers albeit in different
proportions. For instance, we may expect that the Mediterranean diet is not
an exclusive characteristic of Mediterranean regions; although more frequently
encountered in these regions, it can be chosen as a way of eating normally,
perhaps for health reasons, by people living in all areas of France, and indeed,
of Europe.

It is easy to see how this two-level model can be generalized to three- and
multilevel systems by introducing, for example, a country level and treating
centers-within-country by random effects. This, however, will not be pursued
here.

17.3.2 Estimating parameters by the EM algorithm

In many situations, a reasonable description of the data is amply sufficient.
Then the statistical model of (17.3) serves as useful guidance, but the ex-
ploratory approach outlined above is all that is needed: indeed, it produces
both a reasonable guess for the number of clusters and rough estimates of
means, variance–covariance matrices, and mixing coefficients. On the other
hand, when more precise estimates are desired, these rough ones can be used
to initialize an iterative algorithm for maximum likelihood estimation. Here, as
we are dealing with a mixture model, the EM algorithm seems an appropriate
choice, with the dependence of the mixing coefficients on the center introducing
only a minor additional complication.

The EM is applied as follows.
(a) The complete data are

(
x̄

(c)
r , ρ(r)

)
, where ρ(r) is the (actually unknown)

regimen to which the rth microregimen belongs;
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(b) The log-likelihood of the complete data is

l = log L =
C∑

c=1

m∑
r=1

k∑
i=1

log[α(t)
i (Gc) +Np(x̄(c)

r |μi,
1

nr,c
Δi)].

(c) At step t, let

p(t)(c|i, x̄(c)
r ) =

α
(t)
i (Gc)Np(x̄

(c)
r |μt

i,
1

nr,c
Δt

i)∑k
j=1 α

(t)
j (Gc)Np(x̄

(c)
r |μt

j,
1

nr,c
Δt

j)
.

Then the iterative equations from the EM approach can be shown to be

μ
(t)
i =

1
n

C∑
c=1

m∑
r=1

p(t−1)(c|i, x̄(c)
r ))x̄(c)

r ,

Δ(t)
i =

1
n

C∑
c=1

m∑
r=1

p(t−1)(c|i,m(r,c))(x̄(c)
r )− μ

(t−1)
i )T (x̄(c)

r )− μ
(t−1)
i ),

p(t)(c|i, x̄(c)
r ) =

1
nc

m∑
s=1

p(t−1)(c|i, x̄(c)
s )) .

17.4 Extracting Dietary Patterns from the
Nutritional Data

We return now to the subset of the EPIC database describing dietary habits of
4852 French women. Figure 17.2 summarizes the Kohonen SOM analysis of the
data based on a 10× 10 sheet. Because one bin is empty, 99 distinct regimens
were identified. Both a standard ascending algorithm [Murthag (1995)] and a
conceptual clustering algorithm [Chavent (1998)] applied to the microregimens,
suggest four, six, or nine classes or dietary patterns. The results of the six-class
analysis are summarized in Figure 17.4 which shows the first factorial plane of
the CA representing the relationship between centers and dietary pattern; Fig-
ure 17.4, which shows the Zoom Star graphs [Noirhomme-Fraiture and Rouard
(1998)] of the eight most discriminating variables describing dietary patterns;
and Table 17.4 which gives a rough estimate of the proportions of subjects
following the six dietary patterns, overall and by center.

An example of interpretation is as follows: regimen 1 is characterized by high
consumption of meat and vegetables; regimen 2 by high soup and low vegetable
consumption; regimen 3 by high fish and low meat consumption (respectively,
13% and 3% of the total weight of food intake); regimen 4 by high meat and
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Figure 17.4: The six regimens by Zoom Stars
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Table 17.2: Proportion of the six regimens: overall and by center

Regimens Overall Alsace Aquitaine Bretagne Ile-de Languedoc Nord -Pas Rhone
-Lorraine Loire -France -Roussillon -de-Calais -Alpes

regim 1 0,56 0,58 0,59 0,49 0,58 0,54 0,46 0,61
regim 2 0,19 0,18 0,18 0,20 0,14 0,21 0,28 0,18
regim 3 0,08 0,08 0,07 0,12 0,09 0,08 0,08 0,06
regim 4 0,03 0,02 0,04 0,03 0,03 0,04 0,02 0,03
regim 5 0,10 0,10 0,08 0,11 0,10 0,08 0,13 0,09
regim 6 0,04 0,04 0,04 0,05 0,05 0,04 0,03 0,04

low fish consumption; regimen 5 by high alcohol and meat consumption; and
regimen 6 by high consumption of dairy products, eggs, and vegetables and low
consumption of fish, alcoholic beverage, and vegetables. Also, the Nord-Pas-
de-Calais region is positively associated with regimens 2 and 5 and negatively
with regimen 1; similarly, there is a positive association of Bretagne-Pays-de-
Loire with regimen 3 and a negative association with regimen 1; and finally,
Rhone-Alpes is positively associated with regimen 1.
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Abstract: Smear negative pulmonary tuberculosis (SNPT) accounts for 30%
of pulmonary tuberculosis (PT) cases reported yearly. Rapid and accurate diag-
nosis of SNPT could provide lower morbidity and mortality, and case detection
at a less contagious status. The main objective of this work is to evaluate a
prediction model for diagnosis of SNPT, useful for outpatients who are attended
in settings with limited resources. The data used for developing the proposed
models werecomprised of 136 patients from health care units. They were re-
ferred to the University Hospital in Rio de Janeiro, Brazil, from March 2001
to September 2002, with clinical–radiological suspicion of SNPT. Only symp-
toms and physical signs were used for constructing the neural network (NN)
modelling, which was able to correctly classify 77% of patients from a test sam-
ple. The achievements of the NN model suggest that mathematical modelling,
developed for classifying SNPT cases could be a useful tool for optimizing ap-
plication of more expensive tests, and to avoid costs of unnecessary anti-PT
treatment. In addition, the main features extracted by the neural model are
shown to agree with current analysis from experts in the field.

Keywords and phrases: Neural networks, cross-validation, clustering, tuber-
culosis, medical diagnosis
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18.1 Introduction

Tuberculosis is a serious public health problem and it is estimated by the World
Health Organization (WHO) that approximately 1.8 billion individuals are in-
fected by Mycobacterium tuberculosis [WHO (2002)]. In Brazil, approximately
35 to 45 million individuals are currently infected by this disease.

Sputum smear and Mycobacterium tuberculosis culture have been advo-
cated as valuable tools for diagnosis of pulmonary tuberculosis. However, the
sputum smear staining lacks sensitivity, and culture confirmation requires sev-
eral weeks; few tuberculosis-control programmes in low-income countries have
access to facilities that allow culture performance in their primary-care diag-
nostic.

Approximately 20% to 50% of patients with pulmonary tuberculosis are
smear negative, and 10% of these patients are culture negative. However, these
smear-negative cases pose a relevant public health hazard due to their trans-
mission rate of Mycobacterium tuberculosis of 17% among exposed individuals
[Sarmiento et al. (2003)].

Much attention has recently been paid to the problem of smear negative
pulmonary tuberculosis (SNPT) particularly due to the HIV epidemic, because
the co-infection increases the risks of tuberculosis atypical presentation and
associated morbidity and mortality. Quite appropriately, the discussion regard-
ing SNPT has focused on low-income countries, home of the vast majority of
individuals with tuberculosis and HIV infection and where the availability of
culture diagnostics is limited. So, rapid and accurate diagnosis of SNPT could
provide lower morbidity and mortality, and case detection at a less contagious
status [Long (2001)].

Diagnosis of SNPT is usually based upon clinical presentation and radiolog-
ical indicators that present a limited accuracy. In this context, there is a need
for new approaches for the diagnosis of SNPT. For clinical use, these new tools
should be used under routine conditions in the health care units.

In the medical literature, several statistical models have been suggested
for pulmonary tuberculosis diagnostics. El-Solh et al. (1999) established a
model for identification of PT using neural networks. Mello et al. (2006) use
multivariate logistic regression and classification trees to predict the patient’s
probability of PT. Santos (2003) uses neural networks and classification trees
to identify patients with clinical–radiological suspicion of SNPT.
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Statistical models can be used for prediction of infection or of the disease.
They also can be used to simulate epidemic situations providing clues for pre-
ventive interventions. If formulated in a systematic way and implemented with
high-qualified data, these models can be representative of the clinical problem
under evaluation and could be useful for physicians in their clinical regular
practice, as well as for public health policy administration [Kritski and Ruffino-
Netto (2000)].

In this work, we use artificial neural network for developing and evaluat-
ing a prediction model for diagnosing SNPT, useful for patients attended in
health care units within areas of limited resources. In addition, we analyze the
information that is extracted by the model and compare it to expert analysis
for diagnosis. This analysis aims at helping doctors to understand the way the
model works and to make them more confident in its practical application.

The chapter is arranged as follows. Section 18.2 describes the methods used
in this work and specifically describes the networks used. This section also
describes the data set in the study as well as the selection criteria for both
the training and testing sets used for developing the artificial neural model
and testing its generalization capacity. In Section 18.3, the methodology used
to identify the relevant variables is presented. Results and conclusions are
presented in Sections 18.4 and 18.5, respectively.

18.2 Materials and Methods

In this section, we first describe the data set used for artificial neural network
design. In Section 18.2.2, the topology of the artificial neural networks used in
this work is defined. Clustering techniques were applied for splitting the data
set into a training and testing sets and this is described in Section 18.2.3. The
section concludes with a study of the relevance of the explanatory variables that
feed into networks.

18.2.1 Data set

The data set refers to 136 patients who agreed to participate in the study. They
were referred to Hospital Clementino Fraga Filho, a University Hospital of Fed-
eral University of Rio de Janeiro, Brazil, from March, 2001 to September, 2002,
with clinical–radiological suspicion of SNPT. The data consisted of information
from anamnesis interview and included demographic and risk factors typically
known for tuberculosis diagnosis.
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These patients were under suspicion of active pulmonary tuberculosis, pre-
senting negative smear. Forty-three percent of these patients actually showed
PT in activity.

Firstly, 26 clinical variables were considered for model development. These
included: age, cough, sputum, sweat, fever, weight loss, chest pain, shudder,
dyspnea, diabetes, alcoholism, and others. In the sequence, the data set was
described using just 12 or 8 clinical variables. Those variables were selected by
experts active in tuberculosis research.

18.2.2 Neural network design

In this work, we use a multilayer feedforward architecture with a backpropa-
gation algorithm [Haykin (1999)]. The network has three layers and each layer
receives inputs only from its preceding layer. Adjacent layers are fully con-
nected, that is, every neuron in a layer is connected to every neuron in an
adjacent layer.

Several factors are important in a network design for pattern classification
problems. These include the network architecture as well as the training metho-
dology used. All the networks investigated in this study used a single hidden
layer. It has been shown that neural networks of this type can handle the
majority of problems [Hornik (1991)].

As already mentioned, from 26 to 8 input variables were fed into the network
input nodes, which correspond to the patients’ clinical variables. Variables were
normalized by the following transformation:

x∗
i =

xi − x̄

max(xi − x̄)
, i = 1, 2, . . . , 136, (18.1)

where xi is the original variable and x̄ its arithmetic mean. Variable norma-
lization is required for matching input variation with the dynamic range of
activation function of the neurons. In our case, a hyperbolic tangent was chosen
as the function for activating all neurons.

The binary variables were codified as −1 or 1, where −1 represents the
absence of the observed attribute and 1 the presence of the attribute. The
qualitative variables with three categories were codified as −1 (absence of ob-
served attribute), 1 (presence of the observed attribute) and 0 (ignored).

The network has a single output neuron, with training targets defined as 1
if the patient is with active PT and −1 otherwise.
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It is known that parsimonious models with few hidden neurons are prefe-
rable, because they tend to show better generalization ability, reducing the over-
fitting problem. The number of neurons in the hidden layer was defined through
experimentation. Networks having three and four hidden neurons proved to
work well for this problem.

The performance of the neural network (NN) was evaluated through the
classification for the testing set, which is referred to here as accuracy. Other
descriptive statistics were also used to evaluate the performance of NN in study,
they are: sensitivity and specificity, because those measured are of general use in
medicine. Sensitivity of the neural model will tell us how the model is classifying
the patients with PT in activity, and the specificity will tell how the model is
classifying patients without PT in activity.

We will use the notation (i − h − o) to refer to a neural network with i
inputs, h hidden neurons and o neurons in the output layer.

18.2.3 Data selection for network design

Building the training and testing sets is one of the main tasks in designing
an artificial neural network, especially in practical situations where statistical
restrictions are present.

Both training and testing sets should be constituted from the available data
set. In practical applications, the amount of available data for model deve-
lopment may be small. In such a situation, the training and testing sets should
be carefully selected, so that representative samples of the problem are obtained.

At first, the original data were randomly divided into the training and tes-
ting sets. Given the statistical limitations of the available data, a division in
the form of 80% of the patients for the training set and 20% for the testing set
would be preferable. With this strategy, model development was made varying
the number of hidden neurons. It was observed that some neural networks
exhibited poor performance. This was due to poor statistical representation of
the training set with respect to patterns belonging to the testing set. If any
region of the domain of the input of the network does not have an appropriate
number of patterns included in the training set, this region will not be learned
efficiently and, consequently, patterns in the testing set that belong to region
will be probably classified erroneously [Alencar (2003)].

Efficient alternatives for data selection are cross-validation [Stone (1974)]
and cluster analysis [Morrison (1990)].
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Cross validation

Cross-validation has been successful in neural network designs. For this, the
original data set D is divided randomly into k mutually exclusive subsets Dv,
v = 1, . . . , k. The subsets should be the most homogeneous possible and the
number of cases of each subset should be approximately the same. Frequently,
k is taken to be ten and the division of the data into k subsets is through the
k-fold cross-validation method.

After the division of the original data D, as showed in Figure 18.1, the
neural networks are trained, using as training set D−Dv (the cases that belong
to D but not to Dv) and as test set Dv. In Figure 18.1, the first subset is the
testing set, and the others form the training set. Next, the second subset is the
testing set and the others as training set, and so on. We can observe that each
subset enters the training set as well as the testing set.

Figure 18.1: Example of cross-validation for k = 10

In this study, the data set was split into six subsets, containing approxi-
mately the same number of patterns. Four of the six subsets were used for
training of the NN, and the remaining ones were used for testing the generali-
zation capacity of the classifier. This procedure was repeated until all possible
combinations of the six subsets were used for training the NN. In total, 15 dif-
ferent training and testing subsets were formed. Each training subset comprised
on an average 92 patterns, and the testing subset 44.

Cluster analysis

Cluster analysis is a technique used to detect the existence of clusters in given
data. This grouping process can be seen as an unsupervised learning technique.

Generally speaking, cluster analysis methods are of two types: (a) Parti-
tioning methods: algorithms that divide the data set into k clusters, where
the integer k needs to be specified by the user; (b) Hierarchical methods: algo-
rithms yielding an entire hierarchy of clusterings of the data set. Agglomerative
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methods start by forming local clusters from each object in the data set and
then successively merge clusters until only one large cluster remains that is the
whole set of data. Divisive methods start by considering the whole data set as
one cluster, and then split up clusters until each object is separate.

To avoid the possibility of some regions not being represented, training and
testing sets were also obtained data clustering. Firstly, for obtaining the groups,
we used the agglomerative hierarchical method. The hierarchical methods do
not present an intuitive indicator for the number of clusters present in the data
set. An alternative is the construction of the dendrogram, which is a tree whose
leaves are data objects, and branches can be seen as the identified clusters
[Morrison (1990)].

The dendrogram was constructed using Ward’s method [Kaufman and
Rousseeuw (1990)]. In the first step, the patterns were grouped according to
the 26 explanatory variables. Analyzing the dendrogram, three main clusters
were identified. Restricting the data space to 12 or 8 explanatory variables,
three main clusters were also identified.

An artificial neural network method was also used to obtain homogeneous
groups. This method is the modified ART (adaptive resonance theory) archi-
tecture, presented by Vassali, Seixas, and Calôba (2002). This method is based
essentially on the Kohonen layer and competitive learning [Haykin (1999)].

In the modified ART, each neuron of such a layer has assigned to it a vector
of synaptic weights with unitary norm. The classification of an input vector x
is performed by the neuron that exhibits the smallest distance (according to the
Euclidean metric) to this vector, among all neurons, provided that this distance
is smaller than a predefined radius r0. This neuron becomes the winner and
will be the only neuron to be trained, according to the equation

wn+1 = (1 − η)wn + ηx, (18.2)

where η is the learning coefficient and w is the weight vector.
The distance between an incoming vector and a given weight vector can be

obtained by computing the inner product between these two vectors as

< x,w >= 1− d(x,w)2

2 . (18.3)

This is possible because vectors are normalized (|x| = |w| = 1). Vector nor-
malization is performed by adding one more element to each original vector, so
that this extra component provides the information concerning the norm of the
original vector.

It should be clear that this operation is equivalent to a clustering procedure,
where each neuron is assigned to a cluster. In fact, after a number of training
steps, it is expected that the weight vector assigned with a neuron will converge
to the centroid of the corresponding cluster [Vassali, Seixas, and Calôba (2002)].
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An interesting feature that has been added to this network was the vigilance
radius r0, which can impose a limited region for the neuron’s action. Geometri-
cally, it is equivalent to imposing a maximum volume on each cluster, so that an
incoming vector that does not exhibit similarity to any of the existing neurons
will not be classified. During the training phase, whenever this happens, a new
neuron is created, and its corresponding weight vector is the incoming vector
itself. If this happens during the production phase, the incoming vector cannot
be assigned to any class and it is declared to be unknown [Vassali, Seixas, and
Calôba (2002)].

In the sequence, the modified ART method was applied. Initially, the norm
of each vector of explanatory variables xi was made unitary. Considering p ex-
planatory variables, the normalization component, denoted as xip+1, was added
as

xip+1 = (M −
p∑

j=1

x2
ij)

1/2, i = 1, 2, . . . , 136, (18.4)

where

M = max ||xi||. (18.5)

So, the normalized data vector became

xi =
1√
M

(xi1, xi2, · · · , xip+1)′, i = 1, 2, . . . , 136. (18.6)

The modified ART method requests a vigilance radius for each cluster to be
formed. To obtain the vigilance radius, we calculated the Euclidean distance
between the patterns in the data set. The choice for this radius was based on the
more frequent distance. As result of this, three clusters were again recognized
in the data set, despite describing the input space with 26, 12, or 8 exploratory
variables.

Although both clustering methods under investigation pointed out three
clusters in the data set, they were not the same. In this case, the training set
was obtained by randomly selecting 75% of the patients in each cluster and 25%
of patients was selected to form the testing set.

After having formed the training and the testing sets from both the cluste-
ring and cross-validation approaches, we trained several NN and evaluated their
performance. The data sets that exhibited the best performance were chosen
to form the final model. Table 18.1 presents these data sets. We can observe
that amount of patients with PT in activity (PT+) and without PT (PT−) is
different in the considered data sets.
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Table 18.1: Composition of the training and testing sets selected.

Train Test
Method Variables PT− PT+ Sum PT− PT+ Sum

26 52 39 91 25 20 45
Cross-validation 12 50 40 90 27 19 46

8 49 42 91 28 19 45
26 57 45 102 20 14 34

Clustering 12 59 42 101 18 17 35
8 55 41 96 22 18 40

18.3 Relevance of Explanatory Variables

For network design, we should select the relevant explanatory variables. Using
only relevant information, the dimensionality of the input data space can be
reduced, which favors compact designs. The inclusion of variables that poorly
contribute to the design target may reduce the generalization power.

Several methods for input variable selection have been proposed. Some
authors use the Akaike Information Criterion [Akaike (1974)] and Bayesian
Information Criterion [Schwarz (1978)] as the procedure for selection of the
input variables. Here, the relevance of an input variable is measured by using
statistic Rj ; see Seixas, Calôba, and Delpino (1996). This statistic measures
the variation, produced in the output of network when the value of an input
variable is substituted by its mean, for all the events that belong to the training
set. Therefore, Rj is given by

Rj =
1

Npat

Npat∑
i=1

(y(xi, ω)− y(xi, ω)|xj,i=x̄j))
2, (18.7)

where Npat is the number of events in the training set and y(xi, ω) corresponds
to the output of the network.

18.4 Results

After selecting the training and testing sets, the NNs were trained. Different
numbers of neurons on the hidden layer were considered. Neural networks with
three, four and five hidden neurons were tested. Alternative parameters were
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used (learning rate, momentum, and number of iterations) of the backpropaga-
tion algorithm. The NNs with the smallest classification errors in the test set
were selected.

According to Table 18.2, the NN with 12 input variables presented the
largest accuracy (77%), as well as the largest specificity (83%). However, the
neural network developed with the training set obtained by cross-validation
possessed the largest sensitivity (84%); that is, this network better classifies
the individuals with active PT.

Table 18.2: Classification efficiencies

Cross Validation Clustering
Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

Networks (%) (%) (%) (%) (%) (%)

(26-4-1) 71 76 65 71 65 79
(12-4-1) 72 63 84 77 83 71
(8-4-1) 71 68 76 70 61 82

To identify the relevant variables, considering the neural network with the
largest accuracy, the relevance of each variable was computed. For this, Eq.
(18.7), defined in Section 18.3, was used.

According to Figure 18.2, the neural network identified 11 relevant variables
for the problem under study, except the variable extrapulmonary tuberculosis.

18.5 Conclusions

The proposed NN model suggests that mathematical modelling, for classifying
SNPT cases, could be a useful tool for optimizing utilization of more expensive
tests, and to avoid costs of unnecessary anti-PT treatment. Besides, the neural
model was able to identify the important variables for the problem under study,
as described by experts of the field.

In the case under study, the sample size was one of the main limitations for
design network. We used cross-validation and clustering methods to overcome
this limitation of NN model development. These techniques made it possible to
identify a training set that could allow good response generalization for testing
set.

The neural network model achieved good classification performance, exhibit-
ing sensitivity from 71 to 82% and specificity from 60 to 83%. However, only
symptoms and physical signs were used for constructing the neural network.
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Figure 18.2: Relevance for data description using 12 variables

The validation of the network performance in an independent sample of pa-
tients is necessary to confirm these findings.
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Abstract: In this chapter, we have assessed the time to development of drug
resistance in HIV-infected individuals treated with antiviral drugs by using
longitudinal viral load HIV-1 counts. Through log-transformed data of HIV
virus counts over time, we have assumed a linear changing-point model and de-
veloped procedures to estimate the unknown parameters by using the Bayesian
approach. We have applied the method and procedure to the data generated by
the ACTG 315 involving treatment by the drug combination (3TC, AZT, and
Ritonavir). Our analysis showed that the mean time to the first changing point
(i.e., the time the macrophage and long-lived cells began to release HIV parti-
cles) was around 15 days whereas the time to development of drug resistance by
HIV was around 75 days. The Bayesian HPD intervals for these changing points
are given by (8.7, 21.3) and (42, 108), respectively. This analysis indicated that
if we use the combination of three drugs involving two NRTI inhibitors (3TC
and AZT) and one PI inhibitor (Ritonavir) to treat HIV-infected individuals,
in about two and half months, it would be beneficial to change drugs to avoid
the problem of drug resistance.

Keywords and phrases: AIDS clinical trial, Gibbs sampler, HIV dynamics,
longitudinal data, random change points, nonlinear mixed-effects models

19.1 Introduction

It has been well documented that plasma HIV RNA level (viral load) is a very
effective predictor for clinical outcomes in HIV-infected individuals [Saag et
al. (1996) and Mellors et al. (1995, 1996)], and has thus become a primary
surrogate marker in most AIDS clinical trials. To assess the effects of drugs and
also to monitor the progression of the disease in HIV-infected individuals treated

289
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with anti-retroviral drugs, it appears necessary to study the HIV dynamics
during treatment through HIV viral loads and how the dynamics are related to
the changing numbers of HIV virus load over time.

To illustrate the basic HIV dynamics in HIV-infected individuals, consider
an HIV-infected individual treated with highly active antiretroviral therapy
(HAART) involving two nucleoside reverse transcriptase inhibitors (NRTI) such
as 3TC and AZT and one protease inhibitor (PI) such as Ritonavir. Then, it
has been shown that within the first week, the total number of HIV counts per
ml of blood can be approximated by an exponential function. It follows that in
the first week, the log of the HIV virus load decreases linearly and sharply with
large negative slope [Ho et al. (1995), Wei et al. (1995), and Tan (2000, Chap-
ter 8)]. After the first week, however, the picture is very different and shows
multiphases of decline and increase. In log scale, within the first two to three
months after the first week, the picture is again linear but the curve is very flat
due presumably to the release of HIV by macrophage and other long-lived cells
from the lymph nodes [Perelson et al. (1997) and Tan (2000, Chapter 8)]; at
some point between the third and eighth months, for some individuals the virus
load increases sharply, reaching the level before treatment, due presumably to
the development of drug resistance of HIV to the drugs. By using a compre-
hensive stochastic model of HIV pathogenesis involving flow of HIV from the
lymph nodes and development of drug resistance, Tan (2000, Chapter 8) has
demonstrated through computer simulation how these changes and outcomes
are predicted by the model. To illustrate these points, we give in Figure 19.1
a scatter plot of viral load (in log10 scale) at different treatment times from
an AIDS clinical study conducted by the AIDS Clinical Trials Group (ACTG
315). In this study, 48 HIV-1 infected patients were treated with potent antivi-
ral therapy consisting of Ritonavir, 3TC, and AZT [see Lederman et al. (1998)
and Wu et al. (1999) for more details on this study]. Viral load was monitored
simultaneously at treatment days 0, 2, 7, 10, 14, 28, 56, 84, 168, and 336.

From Figure 19.1, we observe that the viral load of most patients declines
rapidly within the first two weeks with large negative slope; after two weeks,
however, the trend of decline decreases and becomes flat. At about ten weeks,
the viral loads rebound mostly upward to the end of treatment. From this,
it is logical to assume that the effect of treatment can be divided into three
stages: rapid decline, slow decline, and rebound. We are interested in the
rate of decline/rebound and the time of changing points. From the biological
perspective, one may link the time of the first changing point as the time when
the macrophage or other long-lived HIV-infected cells from lymphoid tissues
release free HIV to the blood; one may link the second time of changing point
as the time when HIV has developed resistance to the drugs. These time points
have important clinical implications because this is the time to change drugs to
avoid the problem of drug resistance.



Assessing Drug Resistance in HIV Infection 291

0 50 100 150 200 250 300

2
3

4
5

6

ACTG 315 Data

Days

Lo
g1

0 
RN

A 
(c

op
ies

/m
L)

Figure 19.1: Viral load data for ACTG 315 study

For better understanding of the HIV pathogenesis and for better treatment
management and care of AIDS patients, it is important to identify when the
patients’ viral load or CD4 cell counts decline, and when to change the declining
trend, and rebound. For assessing HIV infection, Lange et al. (1992) considered
a fully Bayesian analysis of CD4 cell counts. Kiuchi et al. (1995) used a similar
approach to examine change points in the series of T4 counts prior to AIDS.
Putter et al. (2002) and Han et al. (2002) have considered a population HIV
dynamic model using the Bayesian approach. But none of these studies has
ever attempted to estimate the time to drug resistance. By using data from
the clinical trial ACTG 315, in this chapter we develop a Bayesian procedure
to estimate the time of these changing points.

In this chapter, we propose a three-segment model with random change
point to describe viral load trajectory data. We are concerned with the decline/
rebound rates and the location of changing points. This chapter is organized
as follows. In Section 19.2, we propose the model structure, prior distrib-
utions and conditional posterior distributions. In Section 19.3, we describe
the multilevel Gibbs sampling procedures to estimate the unknown parame-
ters and the times of changing points. In Section 19.4, we present the analysis
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and results for the ACTG 315 data by using the models and methods given
in previous sections. Finally, in Section 19.5, we present some conclusions and
discussions.

19.2 The Model

For monitoring the disease progression in HIV-infected individuals, the data
are usually the number of RNA virus copies over different time points. As
illustrated in Section 19.1, in log scale these data sets are best described by a
piecewise linear model with at most two unknown changing points. The first
changing point is the time at which some HIV are released by macrophage
or other long-lived cells from the lymphoid tissues [Perelson et al. (1997)].
The second changing point is the time at which the HIV in the HIV-infected
individual develops resistance to the drugs. For those individuals in which the
HIV has not yet developed resistance to the drugs, the log of the RNA virus
copies per ml then showed a two-segment linear curve with one changing point;
the first linear segment is a sharp linear declining curve with large negative slope
showing a rapid decline of the HIV numbers due to the inhibition effect of the
drugs whereas the second linear segment is a less rapid linearly declining curve
with small negative slope due to additional new release of HIV of macrophage
from lymphoid tissues [Perelson et al. (1997)]. When the HIV in the HIV-
infected individual has developed drug resistance, then one would expect a
three-piece linear model with two changing points; the third linear segment is
a linear ascending curve with positive slope and the second changing point is
the time when the HIV develops resistance to the drugs. A typical picture
describing this situation is shown in Figure 19.2.

To describe the model, suppose that there are n HIV-infected individuals
treated by the same drug combination. For the ith individual, let tLi and
tRi denote the time of the first and second changing points, respectively. As-
suming a mixed model to account for the variation between individuals, then
{tLi, i = 1, . . . , n} is a random sample from an unknown density with mean
tL and {tRi, i = 1, . . . , n} is a random sample from an unknown density with
mean tR. It is generally believed that tL occurs at about two weeks [Perelson
et al. (1997)] and tR occurs some time between the third and eleventh months
[Tan (2000, Chapter 8)]. For the ith individual, the three linear segments are
separated by tLi and tRi. For this individual, the first line segment is η0i + η1it,
showing a rapid decline in log(RNA) after treatment. The second line segment
is η2i + η3it, showing a less rapid decline after some unknown time point tLi

due to the release of HIV from macrophage or other long-lived cells from the
lymphoid tissues. The third segment is η4i + η5it, showing an increase of the
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Figure 19.2: Illustrative plot of three segments used to explore viral load tra-
jectory

log(RNA) after some unknown time point tRi, because of the drug resistance.
Notice that the first two segments agree at tLi, whereas the last two segments
agree at tRi. Denote by Δ1i = η3i − η1i and Δ2i = η5i − η3i. Then, by comb-
ing these three line segments we can express the piecewise linear model by the
following equation:

yij = η0i + η1itij + Δ1i(tij − tLi)+ + Δ2i(tij − tRi)+ + εij , (19.1)

where s+ = max(s, 0) and εij is the random measurement error for measuring
yij.

It is assumed that the εijs are independently distributed normal random
variables with means 0 and variance σ2

i , independently of {ηri, r = 0, 1,Δui, u =
1, 2, tLi, tRi} for all i = 1, . . . , n. That is, εij ∼ N(0, σ2

i ), independently distrib-
uted of the random variables η0i, η1i, Δ1i, Δ2i, tLi, and tRi for all i = 1, . . . , n.

In the above model, because of variation between individuals, the {ηji, j =
0, 1} and the {Δri, r = 1, 2} are random variables. As in Wu et al. (1999), we
use a mixed-effects model to account for variation between individuals. Also,
following Lange et al. (1992) and Kiuchi et al. (1995), we will model these
variables by using first-order linear equations:

η0i = α0 + β0i,
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η1i = α1 + β1i,

Δ1i = α2 + β2i,

Δ2i = α3 + β3i,

In the above equations, the αs denote population effects, and the βs individual
effects to account for variations between individuals. Let βi = (β0i, β1i, β2i, β3i)T.
As in Lange et al. (1992) and Kiuchi et al. (1995), we assume that the βis
are independently and identically distributed as a Gaussian vector with mean
0 and unknown covariance matrix V, that is, βi ∼ N(0,V), independently.

19.2.1 The likelihood function

In the above model, the {tLR,i = (tLi, tRi)T,βi} are random variables. The
unknown parameters are {α = (α0, α1, α2, α3)T,V, σ2

i }. Let β denote the
collection of all βi, σ2 the collection of all σ2

i , and tLR the collection of all
tLR,i = (tLi, tRi)T. Let N(y|μ, σ2) denote the density of a normal distribution
with mean μ and variance σ2, and let y = (yij , i = 1, . . . , n, j = 1, . . . , ni)T.
Then the conditional likelihood given (α,β, tLR) is

L(y|α,β, tLR) =
n∏

i=1

mi∏
j=1

N(yij|μij , σ
2
i ),

where μij is the right-hand side of (19.1) apart from εij .
Let p(tLR,i) denote the probability density function of tLR,i. Then the joint

density of {y,β, tLR} given the parameters {α,V,σ2} is

P(y,β, tLR|α,V,σ2) =
n∏

i=1

mi∏
j=1

N(yij |μij, σ
2
i )

n∏
i=1

{N(βi|0,V)p(tLR,i)}.

In the above distribution, p(tLR,i) is a density of discrete random variables.
To specify this density, we assume that the tLis are independently distributed
of the tRis. Because we have very little information about tLi except that
the expected value of tLi probably occurs at about two weeks [Perelson et al.
(1997)], we assume that the tLi is a discrete uniform random variable on the
set {8, 9, . . . , 18}; similarly, because we have no information about tRi except
that the plots of the data seemed to suggest that its expected value probably
occurs between 60 and 90 days, we assume that tRi is a discrete uniform random
variable on the set {60, 65, . . . , 90}.

19.2.2 The prior distribution

For the prior distribution of the parameters {α,σ2,V}, we assume that a priori
these parameters are independently distributed of one another. As in Lange
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et al. (1992), we assume that α is a normal vector with prior mean μα and
prior covariance matrix Dα. For specifying these hyperparameters, we will
adopt an empirical Bayes approach by using some data to estimate its values;
for details, see Section 19.4. For the prior distribution of σ2

i s, it is assumed that
the σ2

i s are independently and identically distributed as an inverted gamma
distribution IG(λ1, λ2) with λ1 = 10 and λ2 = 0.06. For the prior distribution
of V, we assume that the V is distributed as an inverted Wishart random
matrix. Denote by S ∼ W (Σ, f) that the symmetric random matrix S is
distributed as a Wishart distribution with matrix Σ and degrees of freedom f .
Then, V−1 ∼W ((ρΓ)−1, ρ). In Γ, the left upper 2×2 submatrix is initiated by
the covariance matrix of random term from modeling (19.9); the right-bottom
2×2 submatrix is an identity matrix and the other elements are zeros. We also
take ρ = 2.

Let N(α|μα,Dα) denote the density of α, IG(z|f1, f2) the density of an
inverted Gamma distribution with parameters (f1, f2), and W (V−1|(ρΓ)−1, ρ)
the density of V−1. Using the above prior distributions, the joint density of
{y,α,β, tLR,σ2,V} is

P(y,α,β, tLR,σ2,V)

=
n∏

i=1

mi∏
j=1

N(yij|μij , σ
2
i )N(α|μα,Dα)

n∏
i=1

N(βi|0,V)

×
n∏

i=1

IG(σ2
i |λ1, λ2)

n∏
i=1

p(tLR,i)W (V−1|(ρΓ)−1, ρ). (19.2)

19.2.3 The posterior distributions

From the joint density given in Eq. (19.2), one may readily derive the conditional
posterior distributions of the parameters and the conditional distributions of
{βi, tLR,i}. For this purpose, we introduce the following notations: Xij =
{1, tij , (tij − tLi)+, (tij − tRi)+}, Xi = (XT

i1, . . . ,X
T
imi

)T, εi = (εi1, . . . , εimi)
T,

yi = (yi1, . . . , yimi)
T. Then, (19.1) can be described as

yij = Xij(α + βi) + εij or yi = Xiα + Xiβi + εi.

Then, with εi = yi − (Xiα + Xiβi),

L(y|α,β, tLR,σ2) ∝ exp

{
−

n∑
i=1

εi
Tεi

2σ2
i

}
.

By direct calculation, one can readily derive the posterior distributions of the
parameters. For implementing the Gibbs sampling method to estimate the un-
known parameters and {βi, tLR,i}, we summarize these distributions as follows.
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(a) Denote rα,i = yi − Xiβi. Then the conditional posterior distribution of
α given {y, tLR,β,V,σ2} is a Gaussian random vector with means α̂ and
covariance matrix Σ̂α, where

α̂ =

(
n∑

i=1

XT
i Xi

σ2
i

+ D−1
α

)−1 ( n∑
i=1

XT
i rα,i

σ2
i

+ D−1
α μα

)
and

Σ̂α =

(
n∑

i=1

XT
i Xi

σ2
i

+ D−1
α

)−1

.

That is,

α|{y, tLR,β,V,σ2} ∼ N(α̂, Σ̂α). (19.3)

(b) Denote rβ,i = yi −Xiα. Then,

βi|{y, tLR,V,α,σ2} ∼ N(β̂i, Σ̂β), (19.4)

where

β̂i =

(
XT

i Xi

σ2
i

+ V−1

)−1 (
XT

i rβ,i

σ2
i

+ V−1μα

)
and

Σ̂β =

(
XT

i Xi

σ2
i

+ V−1

)−1

.

(c) Denote rσ2,i = yi −Xiα−Xiβi. Then,

σ2
i |{yi,α,βi,V, tLR} ∼ IG

{
λ1 +

mi

2
,

(
1
λ2

+
1
2
rT

σ2,irσ2,i

)−1
}

. (19.5)

(d) Denote ai = α + βi − μα. Then,

V−1|{α,βi,σ, tL, tR} ∼W

⎧⎨⎩
(

n∑
i=1

aiai
T + ρΓ

)−1

, n + ρ

⎫⎬⎭ . (19.6)

(e) Denote the exponent in the expression
∏mi

j=1 N(yij|μij , σ
2
i ) from

L(y|α,β, tLR) as G. Then, the conditional distribution of tLi given
{y, tR,α,βi,σ

2,V} is

tLi|{y, tRi,α,βi,σ
2,V} ∼ exp{−G(tLi)}p(tLi)∑

tLk
exp{−G(tLk)}p(tLk)

. (19.7)

(f) In the exactly same way as (e), we obtain the conditional distribution of tRi

given {y, tL,α,βi,σ
2,V} as

tRi|{y, tLi,α,βi,σ
2,V} ∼ exp{−G(tLi)}p(tRi)∑

tLk
exp{−G(tRk)}p(tRk)

. (19.8)
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19.3 The Gibbs Sampling Procedure

In the Bayesian approach, one derives the Bayesian estimates via the posterior
means and derives the HPD intervals of the parameters from the marginal
posterior distributions. With the conditional posterior distributions given by
Eqs. (19.3) to (19.8), one may generate random samples from the marginal
distributions via the multi-level Gibbs sampling method. General theories of
these procedures are given by Sheppard (1994), Liu and Chen (1998), and
Kitagawa (1998). Detailed procedures and their proofs are given in Chapter 3
of Tan (2002). This is an iterative algorithm by sampling from the conditional
distributions alternatively and sequentially with updated parameter values. At
convergence, this then gives samples from the marginal distributions. For the
model here, each cycle in this algorithm loops through the following steps.

Step 1. Starting with initial values Θα
0 = (σ−2

0 ,β0,V0, tL0, tR0)T, one draws a
sample from the density fα(α|y,Θα

0 ) given by (19.3). Denote the sample
value of α by α1.

Step 2. With Θβ
0 = (σ−2

0 ,α1,V0, tL0, tR0)T, one draws a sample from the
density fβ(βi|y,Θβ

0 ) given by (19.4). Denote the sample value of βi by
βi1, i = 1, . . . , n, and let β1 = {βi, i = 1, . . . , n}T.

Step 3. With Θσ2

0 = (α1,β1,V0, tL0, tR0)T, one draws a sample of σ2
i from

the density fσ(σ2
i |y,Θσ2

0 ) given by (19.5). Denote the sample value of σ2
i

by σi1, i = 1, . . . , n, and let σ1 = {σi1, i = 1, . . . , n}T.

Step 4. With Θ(V )
0 = (σ1,α1,β1, tL0, tR0)T, one draws a sample of V from

the density fV (V−1|y,Θ(V )
0 ) given by (19.6). Denote the sample value of

V by V1.

Step 5. With Θ(L)
0 = (σ1,α1,β1, tR0)T, one draws a sample of tLi from the

density fL(tLi|y,Θ(L)
0 ) given by (19.7). Denote the sample value of tLi

by tLi,1, and let tL1 = {tLi,1, i = 1, . . . , n}T.

Step 6. With Θ(R)
0 = (σ1,α1,β1, tL1)T, one draws a sample of tRi from the

density fR(tRi|y,Θ(R)
0 ) given by (19.8). Denote the sample value of tRi

by tRi,1, and let tR1 = {tRi,1, i = 1, . . . , n}T.

Step 7. With Θα
0 in Step 1 replaced by Θα

0 = (σ−2
1 ,β1,V1, tL1, tR1)T, repeat

the above cycle until convergence is reached.
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As shown in Chapter 3 of Tan (2002), at convergence one generates a sample
of size one from the marginal distribution of each parameter and of {tL, tR}
respectively. By repeating the above procedure, one generates a random sample
of size m from the marginal posterior distribution for each parameter and for
{tL, tR}, respectively. Then one may compute the sample means and the sample
variances and covariances for these parameters. These estimates are optimal
in the sense that under the squared loss function, the posterior mean values
minimize the Bayesian risk function.

19.4 Analysis of the ACTG 315 Data

Using data from the ACTG 315 clinical trial on HAART, in this section we will
derive a full Bayesian analysis to estimate the times to changing points and to
drug resistance. In this analysis, we will adopt an empirical Bayesian approach
to estimate the prior means and prior variances of the parameters α. Because
the first change point generally occurs in about two weeks, we use the first two
week’s data to conduct linear mixed effects modelling via

yij = η0i + η1itij + εij . (19.9)

The estimated values of α0 and α1 given here are taken as the means of our
prior distributions of α0 and α1. The prior distribution of α2 and α3 are both
assumed to be N(•|0, 1). The covariance matrix of α0 and α1 obtained from
(19.9) is taken as the left-upper submatrix of D. The random estimated values
are taken as the prior distributions of β0i and β1i.

With the posterior distributions given in Section 19.2 and with the Gibbs
sampling procedure in Section 19.3, one can readily develop a full Bayesian
analysis to estimate the relevant parameters and the times to changing points.
To implement the MCMC sampling scheme, we follow the method proposed by
Raftery and Lewis (1992). The procedure works as follows. After an initial
number of 1000 burn-in iterations, every tenth MCMC sample is retained from
the next 200,000 samples. Thus, we obtain 20,000 samples of targeted posterior
distributions of the unknown parameters. The stability of the posterior means
is checked informally by examining the graphics of the runs. Figure 19.3 shows
the number of MCMC iterations and convergence diagnostics.

Figure 19.4 shows us a population trend of the viral load trajectory with
η1 = −0.12(0.005), η3 = −0.011(0.006), and η5 = 0.003(0.003), tL = 15, and
tR = 75. Denote the time period from entry time to 15 days as the first stage,
and the time period from 15 days to 75 days as the second stage. Figure 19.4
then implies that the decline rate at the beginning stage is about ten times that
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Figure 19.3: Diagnostic plots. Left panel: the number of MCMC iterations and
posterior means; right panel: the densities of the posterior means

of the decline rate of the second stage. After 75 days, the viral load trajectory
slightly rebounds.

To characterize the patterns of viral dynamics, we select four subjects and
examine the trajectories of their viral load. Given in Table 19.1 are the estimates
of the parameters for these four subjects. Given in Figure 19.5 are the plots
of fitted values for these four subjects based on the three-segment model and
the Bayesian approach. These results indicate that the individual estimates of
η1, tL, and tR are quite similar to the corresponding ones of the population
estimates respectively. However, the individual estimates of η3 and η5 varied
widely so that the individual estimates may be totally different from the ones
of the population. Figure 19.5 shows that the viral load trajectory of patient
10 is comparable to that of the population but with a stronger rebound in
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the later stage; but the patterns of viral load trajectory in subjects 8 and 20
are very different from that of the population in that in the second segment,
their viral loads continued declining (patient 8) or flat (patient 20) instead
of a rebound as in the population pattern, suggesting that drug resistance in
these patients had not yet been developed. Figure 19.5 also shows a large
difference between individual viral load trajectory in patient 48 and that from
the population; for this patient, the viral loads rapidly declined in the first
stage, then rapidly rebounded in the second segment, and kept flatly rebound
in the third segment to the end of the treatment. These results indicate that for
the clinicians to manage treatment and care of AIDS patients, it is necessary to
study the viral load trajectory of each individual. Because the HIV pathogenesis
is a stochastic dynamic process, this calls for individual-based models to assess
effects of treatment and drug resistance.

Figure 19.4: The estimated population mean curve obtained by using ACTG
315 data and Bayesian approach. The observed values are indicated by plus

Table 19.1: Estimates of the parameters of four subjects

ID η0 η1 η3 η5 tL tR
8 4.947 −0.12 −0.003 −0.005 14 75

10 5.38 −0.112 −0.017 0.009 15 76
30 4.741 −0.118 −0.019 0 15 76
48 4.838 −0.144 0.032 0.002 14 76
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Figure 19.5: Profiles of four arbitrarily selected patients for ACTG 315 data.
The dotted and solid lines are estimated individual and population curves. The
observed values are indicated by the circle signs

19.5 Conclusion and Discussion

To treat HIV-infected individuals with antiretroviral drugs, a major obstacle is
the development of drug resistance. In order to avoid the problem of drug resis-
tance, it is therefore of considerable interest to estimate the time at which some
resistance to the drugs have developed by the HIV. To answer this question,
we have developed here a full Bayesian approach by assuming a three-segment
linear model with two unknown changing points for the log of RNA viral load.
In this model, the first changing point is the time when the macrophage or
other long-lived cells release HIV to the blood from lymph nodes [Perelson et
al. (1997)]; the second changing point is the time when the HIV develops resis-
tance to the drugs [Tan (2000, Chapter 8)]. This statistical model is motivated
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and dictated by the dynamic models of HIV pathogenesis under treatment and
by the observed and simulated data on HIV pathogenesis [Perelson et al. (1997)
and Tan (2000, Chapter 8)]. The Bayesian approach is useful because it can
incorporate prior information from an empirical study or other related or pre-
vious studies. This is important because current clinical data are not enough
to identify all viral dynamic parameters.

In this chapter, we have applied the above Bayesian procedure to analyze
the ACTG 315 data. These data treated patients with HAART involving 3TC
and AZT (NRTI) and ritonavir (PI). For each patient, the data gave RNA viral
load per ml of blood at different time points after treatment. Using this data
and the log transformation, we have estimated the expected time to the first
changing point as 15 days after treatment and the time to development of drug
resistance as 75 days after treatment. The Bayesian HPD intervals for these
changing points are (8.7, 21.3) and (42, 108), respectively. For the three-line
segments, the estimates of the slope are −0.12, −0.011, and 0.003, respectively.
The variances of these estimates are 0.005, 0.006, and 0.003 respectively. From
these estimates, it is clear that most patients have very much the same slope
for the first segment; but the opposite is true for the other two segments.
Observing the log plots of RNA load, one may explain this by noting: (i) for
some patients, the second segment is very short or hardly noticeable, whereas
for other patients, the second segment is long. (ii) Although drug resistance
have developed in some patients (about 21 patients), in other patients drug
resistance had not developed or was hardly noticeable. Thus, for the second
and third segments, there is considerable variation among individuals.

We have estimated the time to drug resistance by using a Bayesian approach,
however, in treating HIV-infected individuals with antiretroviral drugs, many
important problems cannot be answered by this or any other statistical model.
In particular, to monitor the disease progression, to assess efficacy of the drugs,
and to search for optimal treatment protocols, it is important to estimate effects
of different drugs and how these effects are affected by many risk factors such
as CD4 T cell counts and CD8 T cell counts; also it is important to estimate
the numbers of infectious as well as noninfectious virus loads. Because the
drug efficacy depends on pharmacokinetics and the bioavailability of the drugs,
it is also of considerable interest to study how the pharmaco-kinetics affects
effects of treatment and drug resistance. Because the HIV pathogenesis is a
stochastic dynamic process, this calls for stochastic dynamic models and state
space models. Using the ACTG 315 data, we are currently developing stochastic
dynamic models and state space models to answer these questions.
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Abstract: In this chapter, we have developed a method to estimate the ef-
ficiency of the drugs and the numbers of infectious and noninfectious HIV in
HIV-infected individuals treated with antiretroviral drugs. As an illustration,
we have applied the method to some clinical and laboratory data of an AIDS
patient treated with various antiviral drugs. For this individual, the estimates
show that the HAART protocol has effectively controlled the number of in-
fectious HIV virus to below 400/ml copies although the total number of HIV
copies was very high in some intervals.

Keywords and phrases: Productively infected CD4(+) T cells, numbers of in-
fectious and noninfectious HIV, multilevel Gibbs sampling method, observation
model, stochastic equation

20.1 Introduction

To control HIV, recently important progress has been made through the com-
bination of three drugs: two of nucleoside reverse transcriptase inhibitors (NR-
TIs) such as AZT and 3TC with a nonnucleoside reverse transcriptase inhibitor
(NNRTI) such as efavirenz or a protease inhibitor (PI) such as indinavir, re-
ferred to as the Highly Active Anti-Retroviral Therapy (HAART); see Bajaria
et al. (2002). However, many recent studies on HAART have indicated that
this treatment protocol, despite its effectiveness, is still far from perfect and
life-long treatment is required [Betts et al. (2001), Chun et al. (1999), Garcia
et al. (1999), and Pitcher et al. (1999)]. For monitoring HIV progression un-
der treatment by antiviral drugs and to alert for possible development of drug
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resistance, it is therefore important to estimate the relative effects of NRTIs,
NNRTIs, and PIs, as well as the numbers of infectious HIV virus and noninfec-
tious HIV viruses over time. To date, methods for estimating these parameters
and state variables are nonexistent. By applying the state space model and the
multilevel Gibbs sampling procedures, the objective here is to develop efficient
procedures to estimate these parameters and the state variables as well as other
unknown parameters.

In Section 20.2, we will describe how to derive a stochastic model for
HIV pathogenesis in HIV-infected individuals under treatment by antiretroviral
drugs. In Section 20.3, we will derive a state space model for HIV pathogenesis
in HIV-infected individuals under treatment by antiretroviral drugs by using
data from the observed RNA virus counts over time. In Section 20.4, we will
develop a general procedure via the multilevel Gibbs sampling method to es-
timate the unknown parameters and the state variables. As an application of
our models, in Section 20.5 we will apply the results to the data of a patient
from St. Jude Children’s Research Hospital treated by various antiviral drugs.

20.2 A Stochastic Model for HIV Pathogenesis
Under Treatment

To assess effects of different drugs and to estimate relevant state variables, in
this section we will extend the Perelson et al. (1996) model into a more complex
stochastic dynamic model for HIV pathogenesis in HIV-infected individuals
treated with antiretroviral drugs including HAART. Under this model, free HIV
viruses infect actively dividing CD4(+) T cells to generate productively infected
CD4(+) T cells (denoted by TP cells). At the death of a TP cell, a large number
(N(t)) of free HIV is generated, which will further infect other CD4(+) T cells.
[Because N(t) is very large, we will assume N(t) as a deterministic function of t.]
As in Perelson et al. (1996), we will ignore latently HIV-infected CD4(+) T cells
because the contribution to HIV of these cells is very small. Because different
drugs and drug combinations are used over different time periods in practical
situations, we partition the time interval into nonoverlapping subintervals and
follow Perelson et al. (1996) to assume that the number of uninfected CD4(+)

T cells is a constant in each subinterval. This is justified by the observations
that before the start of the treatment, the HIV pathogenesis is at a steady-state
condition and that the uninfected CD4 T cells have a relatively long lifespan;
see Cohen et al. (1998).

To derive the stochastic model, consider the situation in which an HIV-
infected individual is treated by antiretroviral drugs including HAART. Let V0

and V1 denote noninfectious and infectious HIV, respectively. Let {V0(t), V1(t)}
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denote the numbers of V0 HIV and V1 HIV per ml of blood at time t and TP (t)
the number of productively HIV-infected CD4(+) T cells (TP cells) at time t
per ml of blood. Then we are entertaining a three-dimensional Markov process
X∼

(t) = {TP (t), V0(t), V1(t)}
′
with continuous time Ω = [0,∞) and with discrete

state space S = {(i, j, k), i, j, k = 0, 1, . . . ,∞}. For this stochastic process, the
traditional approach is too complicated to be of much use. Hence, we propose
here an alternative approach by using stochastic differential equations.

20.2.1 Stochastic differential equations of state variables

To derive stochastic equations for the state variables, we define the following
stochastic variables.

DP (t) = Number of deaths of TP cells per ml of blood during
[t, t +�t);

DV i(t) = Number of free Vi HIV per ml of blood that have lost
infectivity, or die, or have been removed during [t, t +�t), i = 0, 1;

F (t) = Number of V1 per ml of blood that have lost through infec-
tion of CD4(+) T cells during [t, t +�t). This is the number of V1

HIV per ml that have entered the CD4(+) T cells but whose viral
RNA have not yet been converted to viral DNA;

F1(t) = Number of productively infected CD4(+) T cells (TP cells)
per ml generated by the infection of actively dividing CD4(+) T cells
by free HIV during [t, t +�t);

Rj(t) = Number of noninfectious free HIV per ml of blood (i.e., V0)
generated by the death of the jth TP cell during [t, t +�t) under
treatment by PI inhibitors.

To specify the probability distribution of these variables, let μT (t) and μV i(t)
denote the death rate of TP cells and the rate by which free Vi HIV are being
removed, die, or have lost infectivity at time t, respectively. Let k(t) be the
HIV infection rate of CD4(+) T cells in the absence of NRTIs and NNRTIs, and
let kT (t) = k(t)T (t), where T (t) is the number of uninfected CD4(+) T cells per
ml of blood at time t. Denote by ξR(t) the probability that the RNA→ DNA
process is blocked by the NRTIs and/or NNRTIs at time t inside the uninfected
CD4(+) T cells and let ξP (t) denote the probability that free HIV released in
the blood at time t by the death of a productively infected T cell in the blood
is noninfectious. Then the conditional probability distribution of the above
random variables given the state variables is given by:

• [F (t),DV 1(t)] | V1(t) ∼ Multinomial[V1(t); kT (t)Δt, μV 1(t)Δt];
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• F1(t) | F (t) ∼ Binomial{[c(t)F (t)]; [1 − ξR(t)]}, where [c(t)F (t)] is the
largest integer ≤ c(t)F (t) and where c(t) is the proportion of activated
CD4 T cells at time t among all uninfected CD4 T cells;

• DP (t) | TP (t) ∼ Binomial [TP (t);μT (t)Δt];

• {Rj(t), j = 1, . . . ,DP (t)} | DP (t) > 0 ∼ Binomial [N(t); ξP (t)] indepen-
dently (Rj(t) = 0 if DP (t) = 0.);

• DV 0(t) | V0(t) ∼ Binomial [V0(t);μV 0(t)Δt].

Given X(t), conditionally {DP (t), [F (t),DV 1(t)],DV 0(t)} are independently
distributed from one another; given F (t), conditionally F1(t) is independently
distributed from other variables.

By the conservation law and by using these distribution results, we ob-
tain the following stochastic differential equations for {TP (t), Vj(t), j = 0, 1},
respectively.

dTP (t) = TP (t + Δt)− TP (t) = F1(t)−DP (t) = {c(t)kT (t)[1 − ξR(t)]V1(t)
− TP (t)μT (t)}Δt + ε1(t)Δt, (20.1)

dV0(t) = V0(t + Δt)− V0(t) =
DP (t)∑
j=1

Rj(t)−DV 0(t) = R(t)−DV 0(t)

= {N(t)ξP (t)TP (t)μT (t)− μV 0(t)V0(t)}Δt + ε3(t)Δt, (20.2)

dV1(t) = V1(t + Δt)− V1(t) =
DP (t)∑
j=1

[N(t)−Rj(t)]− F (t)−DV 1(t)

= {N(t)[1− ξP (t)]μT (t)TP (t)− kT (t)V1(t)− μV 1(t)V1(t)}Δt +
+ ε3(t)Δt. (20.3)

In Eqs. (20.1) to (20.3), the random noises {εj(t)Δt, j = 1, 2, 3} are derived
by subtracting the conditional mean values from the random variables, respec-
tively, and have expectation zero. It can easily be shown that these random
noises are uncorrelated with the state variables TP (t) and Vj(t),= 0, 1; further-
more, one may also assume that the random noises εj(t) are uncorrelated with
the random noises εl(τ) for all j and l if t 	= τ .

20.2.2 The probability distribution of state variables

Let Θ be the collection of all parameters. Letting Δt ∼ 1 correspond to a
small interval such as 0.1 day, then the state variables are X = {X∼ (t), t =

0, 1, . . . , tM}, where tM is the termination time of the study. For implementing
the multilevel Gibbs sampling procedure, we define the unobserved state vari-
ables U∼

(t) = {F (t),DP (t), R(t)} and let U = {U∼ (t), t = 0, 1, . . . , tM − 1}. By
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using the above distribution results, we obtain the conditional density of U∼
(t)

given X∼
(t) as

P{U∼ (t)|X∼ (t)} = C1(t)[μT (t)]DP (t)[1− μT (t)]TP (t)−DP (t)[kT (t)]F (t)

× [1− kT (t)]V1(t)−F (t)[ξP (t)]R(t)[1− ξR(t)]DP (t)N−R(t) ,

(20.4)

where C1(t) =
(V1(t)

F (t)

)(TP (t)
DP (t)

)(NDP (t)
R(t)

)
and R(t) = 0 if DP (t) = 0.

The conditional density of X∼
(t + 1) given {U∼ (t),X∼

(t)} is

P{X∼ (t + 1)|U∼ (t),X∼
(t)} =

(
[c(t)F (t)]

A1(t)

)
[ξR(t)]A2(t)[1− ξR(t)]A1(t)

×
(

V0(t)
B1(t)

)
[μV0(t)]

B1(t)[1− μV0(t)]
V0(t)−B1(t)

×
(

V1(t)− F (t)
B2(t)

)
[

μV1(t)
1− kT (t)

]B2(t)

× [1− μV1(t)
1− kT (t)

]V1(t)−F (t)−B2(t), (20.5)

where

{A1(t) = TP (t + 1)− TP (t) + DP (t), A2(t) = [c(t)F (t)] −A1(t)}

and

{B1(t) = V0(t)−V0(t+1)+R(t), B2(t) = V1(t)−V1(t+1)+NDP (t)−R(t)−F (t)}.

The joint density of {X ,U} given Θ is

P{X,U |Θ} = P{X∼ (0)|Θ}
tM∏
t=1

P{X∼ (t)|U∼ (t− 1),X∼
(t− 1)}

× P{U∼ (t− 1)|X∼ (t− 1)}. (20.6)

20.3 A State Space Model For HIV Pathogenesis
Under Antiretroviral Drugs

Based on the observed number of RNA virus counts over time, in this section
we develop a state space model for the HIV pathogenesis under treatment by
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antiretroviral drugs including HAART. For this state space model, the state
variables are X∼

(t) = {TP (t), Vj(t), j = 0, 1}. Thus the stochastic system

model is represented by the stochastic Eqs. (20.1) to (20.6) given above for
these variables. The observation model is given by the statistical model based
on the observed number of RNA virus copies per ml of blood over time.

To derive the observation model, let yj be the observed total number of HIV
RNA virus load at time tj, j = 1, . . . , n. Then the conditional mean of yj given
V (tj) = V0(tj)+V1(tj) and the conditional variance of yj given V (tj) are V (tj)
and σ2V (tj), respectively [Tan and Xiang (1998) and Tan (2000, Chapter 3)],
where σ2 > 0. Let ej = (yj −V (tj))/

√
V (tj). Following Tan and Xiang (1998),

we assume that the ejs are independently distributed as normal variables with
means 0 and variance σ2. From this, the observation model is given by

yj = V (tj) + ej

√
V (tj), j = 1, . . . , n, (20.7)

where ej ∼ N(0, σ2), j = 1, . . . , n, independently.
Let Y = {yj, j = 1, . . . , n} and

fY {yj |X(tj)} = {2π V (tj)σ2}1/2 exp{− 1
2V (tj)σ2

[yj − V (tj)]2}. (20.8)

Then the joint density of {X ,U ,Y } given Θ is

P{X ,U ,Y |Θ} = P{X∼ (0)|Θ}
n∏

j=1

fY {Y (j)|V (tj)}
tj∏

t=tj−1+1

P{U∼ (t−1)|X∼ (t−1)}

× P{X∼ (t)|X∼ (t− 1), U∼
(t− 1)}. (20.9)

20.4 Estimation of Unknown Parameters and State

Variables

As in Tan (2000, Chapter 8), one may assume {c(t) = c,N(t) = N,μT (t) =
μT , μVi(t) = μV , i = 0, 1}. To estimate the time-dependent parameters {ξR(t),
ξP (t), kT (t)}, we partition the time interval [0, tM ) into k nonoverlapping subin-
tervals {Lj = [sj−1, sj), j = 1, . . . , k} with (s0 = 0, sk = tM ) and assume these
parameters as constants in each subinterval. Now, we will use least squares
methods to estimate Θ1 = {c,N} and use the multilevel Gibbs sampling method
to estimate Θ2 = {μT , μV , σ2, ξR(t), ξP (t), kT (t), t = 1, . . . , k}, and then iterate
between these two procedures until convergence. The least squares method is
described in Tan and Wu (1998) by using some statistical packages from IMS.
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The multilevel Gibbs sampling procedures are given in Tan (2002, Chapter 9)
and Tan, Zhang, and Xiong (2004). The proof of convergence of these pro-
cedures is available from Tan (2002, Chapter 3) and Tan, Zhang, and Xiong
(2004).

Let P{Θ2} be the prior density of the parameters Θ2. For i = 1, . . . , k and
r = 1, 2, let

R̄(i) =
si∑

j=si−1+1

R(j), D̄P (i) =
si∑

j=si−1+1

DP (j),

F̄ (i) =
si∑

j=si−1+1

F (j), T̄P (i) =
si∑

j=si−1+1

TP (j),

V̄l(i) =
si∑

j=si−1+1

Vl(j), l = 0, 1, Ār(i) =
si∑

j=si−1+1

Ar(j),

B̄r(i) =
si∑

j=si−1+1

Br(j), C̄r(i) =
si∑

j=si−1+1

Cr(j), r = 1, 2.

By using the densities given above, the conditional density of Θ2 given
{Y ,X ,U ,Θ1} is

P{Θ2|X,U ,Y ,Θ1}

∝ P{Θ}μD̄P
T (1−μT )T̄P−D̄P μB̄

V (1−μV )V̄−B̄
n∏

j=1

[ξR(j)]Ā2(j)

× [1− ξR(j)]Ā1(j)[ξP (j)]R̄(j)[1− ξP (j)]ND̄P (j)−R̄(j)

×
(

kT (j)
1− μV

)F̄ (j) (
1− kT (j)

1− μV

)V̄1(j)−F̄ (j)−B̄2(j)

, (20.10)

where

D̄P =
k∑

j=1

D̄P (j), T̄P =
k∑

j=1

T̄P (j), V̄ =
1∑

r=0

k∑
j=1

V̄r(j), B̄ =
2∑

r=1

k∑
j=1

B̄r(j).

Equation (20.10) will be used to generate Θ2 given {X,U ,Y ,Θ1} in the mul-
tilevel Gibbs sampling procedures.

20.5 An Illustrative Example

In this section, we apply the above method to a patient from St. Jude Children’s
Hospital treated by various drugs including HAART. This patient is a perinatal
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AIDS treated by various anti-retroviral drugs. For this patient, the observed
RNA virus copies per ml blood over time since HIV infection are given in Table
20.1. The history of drug treatment is given in Table 20.2. To analyze data
from this patient, we partition the time period into k subintervals Li as given in
Table 20.3 and assume {ξR(t) = ξR(i), ξP (t) = ξP (i), kT (t) = kT (i)} for t ∈ Li.

Using the procedures in Section 20.4, we have developed a Fortran pro-
gram to compute the estimates of the unknown parameters and the state
variables. Applying this program to the data in Table 20.1, the estimates
of {μT , μV , c,N} are {μ̂T = 0.0490 ± 1.9819 × 10−2, μ̂V = 0.3014 ± 0.1336 ×
10−2, σ̂2 = 5.0500±0.9514, ĉ = 0.03±0.4426×10−2 , N̂ = 2, 000±0.3987}. The
estimates of the time-dependent parameters {ξR(i), ξP (i), kT (i), i = 1, . . . , k}
are given in Table 20.3. The estimates of the numbers of the infectious HIV
and noninfectious HIV per ml of blood over time and the number of TP cells per
ml of blood over time are all plotted in Figure 20.1. Given in the third column
in Table 20.1 are the predicted total numbers of HIV by using the model and
the jackknife procedure of Efron (1982).
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Figure 20.1: Plots showing the estimated numbers of infectious and noninfec-
tious virus, and productively HIV-infected CD4 T cells per ml of blood
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Table 20.1: The observed numbers of HIV RNA virus load of an HIV-infected
patient

Days RNA Predicted Predicted Infectious
Since Copies/ml RNA Copies/ml RNA Copies/ml

HIV Infection ± Std Error ± Std Error
80 150000 149104±58003 149104±58003
88 160000 167419±68292 167419±68292
92 210000 208541±170760 4659±4114
93 120000 116406±137000 2032±2490
95 110000 111653±7433 1931±1295
99 43000 43647±21277 9202±5024
120 1200 1364±2806 54±253
179 950 615±1461 92±313
204 ≤400 532±1493 18±232
232 20000 20109±9440 1418±720
248 14000 14026±7412 743±398
260 36000 36286±17361 5037±2390
291 ≤400 467±1272 39±269
331 ≤400 551±1254 31±186
353 ≤400 528±1455 19±164
437 34000 33805±18528 5068±2839
465 4400 4383±2672 332±214
527 ≤400 517±1349 24±142
592 4100 3938±2807 575±370
671 12000 12088±6343 1110±618
746 3300 3389±2208 391±271
774 5700 5799±3098 854±483
802 ≤400 487±1471 29±176
894 ≤400 758±1591 56±185
984 1600 1897±1920 279±364
1073 1100 1354±1956 169±367

(1) The predicted numbers by using the model as given in Table 20.1 are
very close to the observed numbers. This indicates that the fitting of the data
by the model is extremely good; for more details, see Zhang (2004, Chapter 2).

(2) It appears that the estimates of {μT , μV } are consistent with the esti-
mates of Ho et al. (1995), indicating that both the productively HIV-infected
CD4 T cells and the HIV are short lived. Similarly, the estimate of N is con-
sistent with the estimate given by Tan and Wu (1998) and the estimate of c is
close to the observation by Phillips (1996).
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Table 20.2: The history of drug treatment

Days Partition Drug Treatment Inhibitor
[0, 49) Zidovudine NRTI
[49, 91) No Drugs No Inhibitor
[91, 98) Ritonavir PR Inhibitor
[98, 122) Ritonavir, Lamivudine NRTIs + PI

Zidovudine
[122, 414) Ritonavir, Lamivudine, Zidovudine NRTIs + PI

Trimethoprim-sulfamethoxazole
[414, 668) Nelfinavir, Lamivudine, Zidovudine NRTIs + PI

Trimethoprim-sulfamethoxazole
[668, 773) Nelfinavir, Lamivudine, Zidovudine NRTIs + PI
[773, 1100) Didanosine, Efavirenz, Stavudine NRTIs + NNRTI

(3) From Figure 20.1 (a), we observe that in most time periods after 440 days
since HIV infection, the number of infectious HIV is very small. Apparently,
the HAART protocols (i.e., the combination of two NRTIs and one PI) have
successfully suppressed HIV reproduction. From the estimates of {ξR(t), ξP (t)}
in Table 20.3, it is observed that at least one of the drugs worked very well
when HAART was applied. This may help explain why the HAART protocol
is very effective in suppressing HIV replication.

(4) From the estimates of infectious HIV virus copies as given in Table 20.1
and Figure 20.1(a), we observe that the drug combination involving two NRTIs
(Didanosine and Starvudine) and one NNRTI (Efavirenz) is at least as efficient
as the three drug combinations in HAART involving two NRTIs (Lamivudine
and Zidovudine) and one PI (Ritonavir or Nelfinavir) in suppressing HIV repli-
cation. This suggests that controlling HIV infection of CD4 T cells by HIV may
be of primary importance.

20.6 Conclusions and Discussion

In this chapter, we have developed a state space model for the HIV pathogenesis
under treatment by HAART based on data of RNA HIV virus copies over time.
This is an individual-based model applicable to cases when the observed RNA
HIV virus copies are available over time. Because different individuals have
different genetic backgrounds, it is expected that different drugs and different
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Table 20.3: The estimate of parameters

Periods Estimate Estimate Estimate
Days of {ξP (t)} of {ξR(t)} of {kT (t)}

After Infection ± Std Error ± Std Error ± Std Error

[0, 49) 0.01 0.845 2.85E-02
± 6.0064E-04 ±4.1930E-03 ±5.8051E-04

[49, 91) 0.0 0.0 5.101E-03
±0.0 ±1.1166E-02 ±1.7281E-04

[91, 98) 0.9775 0.0 6.05E-02
±5.4589E-04 ±1.2851E-02 ±9.6712E-04

[98, 102) 0.5 0.9998 6.67E-01
±4.0100E-03 ±1.2023E-03 ±2.1950E-03

[102, 122) 0.865 0.9885 1.5E-01
±0.3496 ±0.3225 ±6.8427E-02

[122, 188) 0.7535 0.9975 5.8152E-02
±0.3341 ±0.3901 ±2.7205E-02

[188, 226) 0.806 0.9971 1.985E-01
±0.3573 ±0.4263 ±9.9543E-02

[226, 236) 0.915 0.856 2.15E-02
±0.4316 ±0.3164 ±1.0879E-02

[236, 251) 0.935 0.8985 3.95E-02
±0.4411 ±0.3363 ±2.0148E-02

[251, 284) 0.8245 0.81 8.652E-02
±0.3886 ±0.2907 ±4.2733E-02

[284, 311) 0.7505 0.9975 1.251E-01
±0.3539 ±0.4543 ±6.2958E-02

[311, 337) 0.81 0.9975 1.51E-01
±0.4041 ±0.4820 ±8.3933E-02

[337, 414) 0.845 0.997 1.935E-01
±0.4266 ±0.4831 ±0.1101

[414, 444) 0.8085 0.8112 7.7E-02
±0.4084 ±0.3092 ±4.1171E-02

[444, 465) 0.9 0.9975 5.7455E-02
±0.4544 ±0.4857 ±3.1137E-02

[465, 528) 0.85 0.9973 1.9358E-01
±0.4291 ±0.4847 ±0.1098

[528, 668) 0.804 0.985 1.45E-01
±0.4069 ±0.4066 ±8.5151E-02

[668, 679) 0.7945 0.956 0.395
±0.4015 ±0.4375 ±0.2017

[679, 773) 0.845 0.9865 8.5295E-02
±0.4270 ±0.4698 ±4.7300E-02

[773, 786) 0.805 0.9785 7.286E-02
±0.4074 ±0.3630 ±4.3805E-02

[786, 894) 0.845 0.997 1.756E-01
±0.4270 ±0.4836 ±9.9170E-02

[894, 1100] 0.765 0.9885 7.55E-02
±0.3873 ±0.4679 ±4.2816E-02



316 W.-Y. Tan et al.

treatment regimens are usually applied to different patients. This makes the
individual-based model extremely useful and appropriate.

To monitor HIV progression in HIV-infected individuals treated by HAART
or other protocols, it is important to estimate the number of infectious HIV and
noninfectious HIV. In this chapter, by using the state space model, we have de-
veloped procedures to estimate both the unknown parameters and the numbers
of infectious HIV virus and noninfectious HIV virus per ml of blood. We have
applied these procedures to the data of a patient treated with various antivi-
ral drugs and HAART at St. Jude Children’s Research Hospital in Memphis,
TN. For this patient, in most time periods the HAART treatment appeared
to have controlled the number of infectious HIV to the undetectable level very
effectively. Besides these results, we also make the following observations.

(1) We have provided here some examples indicating that in monitoring the
disease status, using the total number of HIV to measure the success or failure
of the drugs is very misleading and may be erroneous. For example, at 232, 248,
and 260 days since HIV infection, the total number of observed HIV copies per
ml of blood are 20,000, 14,000, and 36,000, respectively. However, most of the
HIV are noninfectious and the estimated number of infectious HIV are 1418,
743, and 5307 copies per ml of blood, respectively, indicating the effectiveness
of the treatment. These results suggest that for clinical applications and for
providing guidelines for medical doctors to follow, it is important to estimate
both the numbers of infectious HIV and noninfectious HIV.

(2) It has been reported in the literature that when the drugs are stopped, in
3 to 14 days the number of HIV rebounds, reaching the level before treatment;
see Chun et al. (1999). We have obtained here similar results. For example,
during the period [49, 91) when the treatment had been stopped, both the num-
ber of productively HIV-infected CD4(+) T cells (i.e., TP cells) and infectious
HIV (i.e., V1) copies are very high, reaching the highest number in a few days
(200,000 copies HIV per ml of blood). However, our estimates also indicated
that when the HAART treatment was reintroduced, in a few days the total
number of HIV copies was reduced significantly whereas the number of infec-
tious HIV had reduced to below 1931 copies per ml of blood by day 95 since
HIV infection. This result provides some clues and justification of the use of a
structural on and off HAART protocol as discussed in Bajaria et al. (2002).

(3) The estimates of {ξP (t), ξR(t)} indicate that in most time periods, at
least one type of drug has efficiency over 94%; thus although one might be
anticipating possible problems such as drug resistance of HIV to one of the
drugs and noncompliance by the patient due to high side-effects of the drugs,
the HAART can still successfully control the HIV infection, suggesting the
usefulness of the combination therapy.

(4) The successful suppression of HIV replication by the drug combina-
tion (Didanosine, Stavudine, and Efavirenz) suggests that one may replace the
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protease inhibitors Ritonavir and Nelfinavir by the NNRTI drug Efavirenz. This
has important clinical implications because the PIs Ritonavir and Nelfinavir
have serious side-effects and toxicity for most patients.

To validate the model, we have used the jackknife procedure as given in
Efron (1982) to derive the predicted value of each observation. This procedure
deletes one observation each time and uses the remaining data (i.e., the data
with the observation in question being deleted) and the model to derive the pre-
dicted value of the observed numbers of RNA HIV copies. The results are given
in the third column of Table 20.1. These results indicated that the predicted
numbers are very close to the observed ones.

Although the models and the methods developed here are useful to estimate
the unknown parameters and state variables and to monitor the HIV dynamics
under HAART, some further research is needed to address some important
issues regarding the methods. Specifically, we need to do more research to
answer the following questions.

(1) In this chapter, we have partitioned the time period into nonoverlapping
subperiods and assume that the parameters {ξR(t), ξP (t), kT (t)} are constants
in each subperiod. This partition is dictated by the treatment regimens and by
the assumption that the number of noninfected CD4(+) T cells is a constant in
each subperiod. In order for the latter assumption to prevail, the subperiods
cannot be too long and more subperiods are needed in intervals where the
number of HIV changes wildly. In our future research, we will examine the
impact of this partitioning and look for optimal ways of selecting a partition.

(2) In many practical problems, it is important to assess the impact of many
risk variables such as CD4 T cell counts over time and CD8 T cell counts over
time. We have not addressed these problems here.

In this chapter, we have proposed a state space model based on RNA HIV
copies over time. To make the procedures here widely applicable and useful, we
need to develop user-friendly software for the computation. Also, we need to
apply the model and methods to some data of the structural on-and-off HAART
protocol as described in Bajaria et al. (2002); this will be our future research
work.
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Safety Assessment Versus Efficacy Assessment

Mary A. Foulkes

Center for Biologics Evaluations and Research, FDA, Rockville, MD, USA

Abstract: Many statistical methods have been developed that focus primarily
on efficacy. Safety evaluation frequently involves many additional considera-
tions. Randomized controlled trials, especially later phase 3 trials, are infre-
quently designed based on safety outcomes. Most of these trials are designed
based on efficacy outcomes, and therefore have limited power to detect impor-
tant differences in safety outcomes. Recently, there have been calls to design
trials with sufficient power to address known safety concerns. When prevention
trials introduce an experimental preventive intervention (e.g., a vaccine) to an
otherwise healthy (although at-risk) population, safety considerations can sub-
stantially affect the benefit:risk ratio and thus the utility and acceptability of
the intervention. Observation of safety outcomes is often less controlled than
for efficacy outcomes, particularly for safety concerns that emerge during the
course of the trial. When either safety or efficacy outcomes are missing, spe-
cific assumptions are required for analysis (e.g., missing completely at random,
MCAR), but often these assumptions may not apply. The statistical meth-
ods that rely on these assumptions have largely been developed with a focus
on efficacy outcomes. Illustrative examples, including meta-analyses, will be
presented and the underdeveloped areas highlighted.

Keywords and phrases: Patient safety, clinical evaluations

21.1 Introduction

Most clinical trials are designed with a focus on efficacy assessment. Recently,
there have been calls for longer-term safety studies with large placebo groups to
determine the natural rate of a particular disease, and for larger vaccine trials
with the capability of estimating rates of rare adverse events (AEs) [Ellenberg
et al. (2004)]. Usually, safety and efficacy are evaluated separately within the
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same subjects, and then at benefit:risk ratio assessed. Counterterrorism pre-
paredness, however, has opened the possibilities of evaluation of safety of ther-
apeutics or preventive interventions (as demonstrated in more than one animal
species, as well as in humans), and regulatory decisions made without definitive
efficacy evaluations in humans, for example, for post exposure treatments for
soman gas exposure [Couzin (2003)]. This puts the careful evaluation of safety
into sharper focus. Prospective safety evaluation based on studies that are
large enough, long enough, and detailed enough present different experimental
design, analysis, and inference issues than do efficacy evaluations. Differences
(some subtle and some not so subtle) and the opportunities for novel approaches
to the evaluation of safety and evaluation of efficacy will be examined.

21.2 Design Issues

21.2.1 Outcomes

In order to arrive at inferences and conclusions that are reproducible, inter-
pretable, and generalizable, precise definitions of terms, including processes by
which the data may be obtained, are critical to acquiring information on out-
comes in a reproducible fashion. Experimental or observational study design,
either early in product/intervention development or later in general use, re-
quires the specific definition of an outcome of interest. Efficacy outcomes are,
by design, defined a priori with specific methods of measurement, observed on
a planned schedule (e.g., monthly), and capable of being observed on every
subject regardless of experimental treatment. Safety outcomes are often not.

AE reporting (particularly outside of a controlled trial, e.g., passive post-
marketing surveillance) relies on medical/clinical personnel to observe, recog-
nize and report suspected AEs. The occurrence of adverse events is actively
queried in a controlled trial at follow-up visits, which occurred on an established
schedule. By contrast, passive spontaneous AE reports are recorded often with-
out any coding conventions, on an irregular, undefined schedule, notoriously
incomplete in their detail and application of rigorous, a priori definitions. So
an overall evaluation of all available safety data needs to take into account the
context of the AE report, and address both the information that is available
and that which is not. Unexpected safety issues often emerge during the course
of a controlled trial, and require analyses that are necessarily data-driven. The
more forethought and predefined analyses the better, for example, “Decide be-
fore looking at the data on order [rules of intensity grade] based on certainty
of diagnosis and anticipated adverse experience” [Chuang-Stein et al. (1992)].
Adjudication of safety outcomes rarely involves the process of oversight that
primary efficacy outcomes adjudication committee reviews provide [Jovanovic,
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Algra, and van Gijn (2004) and Walter et al. (1997)], except in those cases
where the safety outcome is the primary outcome [Bombardier et al. (2000)
and Wingard et al. (2000)].

Safety and efficacy cannot, in some cases, be completely separated and
evaluated based on disjoint sets of variables. The same instrument can measure
both safety and efficacy, for example, in psychopharmacological trials [Bender
et al. (2004)].

21.2.2 Power

Comparisons for each individual data item lack power for the safety compar-
isons of interest. Clinical trials, for example, are designed to provide sufficient
power to address a primary hypothesis, most frequently the primary efficacy
hypothesis. This establishes the overall sample size, but it may not be adequate
to address safety issues that emerge during the conduct of a trial or later. Rare
reactions, reactions with delayed onset, or reactions in specific subpopulations
are all difficult to detect, and difficult to assess associations with exposure to a
specific medical intervention or product. The sample size needed to detect dif-
ferences between treatment groups in background rates of anticipated adverse
events, such as differences in rates of torsade de pointe arrhythmias in cardiac
patients, are not necessarily considered. If the safety question of interest de-
pends upon having sufficient power to detect a rare event, the approximate
sample sizes needed as a function of that event rate are shown in this table:

Sample Size
Rate of
Event

80%
Power

90%
Power

0.01 160 230
0.001 1,600 2,300
0.0001 16,000 23,000

With smallpox vaccine, for example, for every million people immunized,
there would be anexpected one to two deaths and 15 life-threatening compli-
cations, and about 60 less serious events (such as encephalitis) [Fauci (2003)].
These represent event rates considerably smaller than 0.0001, and would require
very large trials to detect.

If, however, the safety question of interest were whether a particular ad-
verse event rate increased with chronic exposure, the issue of power and sample
size also involves duration of follow-up. O’Neill (1995) presented an example
that, with 1000 subjects exposed to a drug and followed for six months and 20%
of those followed for an additional six months (with an expected gastrointestinal



326 M. A. Foulkes

bleeding rate of 1% in a six month period), the power was insufficient to detect
a sixfold increase in that rate of gastrointestinal bleeding.

21.2.3 Population

Efficacy trial enrollment may be purposefully restricted to those at highest risk,
to improve efficiency and demonstrate an effect. However, to the extent that
the trial enrollees do not reflect the ultimate target population, unanticipated
safety issues may emerge when a new intervention or product is introduced
to a less restrictive population. Safety issues might not be uniform across all
population subgroups, for example, across age groups or gender. The diversity
of the population initially studied, which will necessarily be constrained by the
size of the studies, may limit the detection of some safety issues until effects
are observable in a more diverse population.

21.2.4 Comparison

A strength of the experimental design in controlled trials is the appropriate
comparison group for the efficacy assessment. The appropriate comparison
group for safety assessments is not always well defined, or even known. In
randomized trials, there may be no placebo or untreated group, which would in
some cases be the appropriate comparison group. In observational studies, it
may be difficult to determine whether the noncases (those without the adverse
event) were exposed to the intervention or product.

21.3 Analytic Issues

21.3.1 Compliance

Compliance may be more of a concern in evaluation of safety data, where it may
be difficult to attribute an adverse event occurring to a noncompliant subject.
Comparisons of efficacy outcomes relying (at least initially) on “intention-to-
treat” analysis (ITT) may be less directly dependent on individual compliance
[Institute of Medicine Committee on Data Standards for Patient Safety (2003)].
Safety analyses can sometimes focus on “as treated” subgroups of subjects,
for example, subjects who received one, two, or three doses, which destroys
the randomized comparison groups and, as with all postbaseline characteristic
subgroups, may introduce bias. Safety evaluations are performed with caution
and the concern is more with minimizing risk than maximizing benefits, with
false negative conclusions than with false positives, that is, with type II error
than with type I error.
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21.3.2 Missing data

A second analytic issue relates to missing data for either efficacy or safety evalu-
ations. The set of subjects included in a safety evaluation may differ from those
included in the efficacy evaluation. The measurements needed for safety may
not be recorded because they never were taken (e.g., no tests of an organ sys-
tem because there was no suspicion of an effect on that system), because they
were considered optional, or for other reasons. Thus, it may not be possible
to distinguish those truly missing responses from responses implying no safety
concern. Efforts in controlled trials to minimize the amount of missing primary
efficacy outcome data frequently cannot be applied to emerging safety concerns.
The mechanisms of missingness may be very different for safety outcomes than
for efficacy outcomes [Touloumi et al. (2002) and Mertens (1993)]. Missing
essential information often cannot be anticipated, for example, a spontaneous
report of a case of suspected drug-induced pancreatitis that fails to include
whether the subject was alcoholic or was examined for gallstones, two of the
most common causes of acute pancreatitis. The distinction between character-
istics of safety and efficacy outcomes can be minimal, as in the case where the
primary efficacy outcomes and major safety outcomes are the same, for exam-
ple, myocardial infarction. Alternatively, that distinction can be considerable,
particularly when the full range of safety outcomes that should optimally be
captured is not known at the beginning of the trial and the efficacy outcome is
total mortality with potential missingness minimized by input from a national
death registry.

Clinical trials of interventions with relatively well-known safety profiles, for
example, the third or fourth drug developed in a class, have obvious domains
for careful follow-up. For example, studies of antiplatelet agents such as ticlopi-
dine will capture detailed data on hematological response variables, and studies
of antiretroviral drugs will evaluate evidence of lipodystrophy. For such a pri-
ori treatment group comparisons, the usual testing and estimation approaches
apply. However, a new agent without historical background will not have a
clear direction for attention to safety outcomes. Analytic assumptions about
missingness may not be as viable for missing safety outcomes and for missing
values of the primary efficacy outcome and validating missingness assumptions
would be difficult at best.

21.3.3 Confounding

Safety and efficacy evaluations are limited by the information available on con-
founding factors, for example, concomitant medications, intercurrent illnesses,
and chronic conditions. Concomitant medications are not easily recorded out-
side controlled trials, particularly information on over-the-counter (OTC) med-
ications, which are often taken without input from healthcare professionals.
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Other confounding factors, such as access to care, may differentially affect safety
and efficacy evaluations.

21.3.4 Bias

Biases can both over- and underestimate the relative risk of AEs after exposure
to an intervention or product, and can be a particular problem in unblinded
trials. Unlike the primary efficacy outcome, adverse event data are often cap-
tured passively, in an open-ended fashion, without structured and timely pro-
cedures (e.g., diagnostic work-up), and without clear, uniformly applied, and
objective definitions. Information bias or diagnostic suspicion bias could occur
if the treatment groups were differentially monitored or ascertained with re-
spect to completeness of safety outcome data. Safety responses are often based
on subject recall, or on the depth of the interviewers’ prompting. Information
obtained from computerized records, or queries prompted equally from all treat-
ment groups could ameliorate potential information biases. Lastly, publication
bias may affect safety evaluations even more than efficacy evaluations.

21.3.5 Misclassification

Individuals not familiar with the specific definition of an outcome might pro-
vide inaccurate information and might confuse the outcome in the informa-
tion reported. For example, anaphylaxis might be recorded as syncope. Thus,
an uncritical review and analysis of the reported outcomes might ignore some
outcomes due to misclassification. Even in a well-designed clinical trial such
misclassification can lead to biased estimates [O’Neill (1995)].

21.3.6 Multiplicity

Evaluations of either efficacy or safety involve large numbers of comparisons that
may then identify either real differences, or chance findings. There are multiple
dimensions of concern, multiple outcomes, and possibly multiple comparison
groups. A single study may simultaneously evaluate multiple outcomes, for
example, EKG and clinical lab data, or liver enzymes, nausea, and jaundice.
Occasionally, there is the need for a “no treatment” (or placebo) comparison as
well as an active comparator, in order to provide estimates addressing different
risk:benefit questions. Multiple comparisons also occur in assessing drug–drug
interactions where either efficacy or safety evaluations may differ by drug–drug
combinations. Adverse reactions to an intervention may not be distinguishable
from events in the natural course of the disease under study, or the target
study population may have extensive comorbidities so that the cause of the
event is unclear. A variety of comparisons may help distinguish the causal from
the coincidental effects, but the strongest experimental design, the randomized
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controlled trial, provides the context in which adverse event rates elevated over
background rates could be detected.

21.4 Analytic Approaches

The analyses of missing data, and particularly the assumptions about the mech-
anism of missingness, have been extensively addressed in the statistical litera-
ture [Little and Rubin (1987) and Laird (1988)]. Designations such as missing
completely at random (MCAR), missing at random (MAR), and missing not
at random (MNAR) may apply differently to efficacy outcomes than to safety
outcomes even for the same subject. Some analytic approaches utilize covari-
ates related to missing (e.g., distance from residence to clinic) or to reasons for
discontinuation of therapy (tolerance, toxicity, drug–drug interactions, etc.).
Analytic approaches can contribute to and advance the identification of poten-
tial safety problems that might not rapidly come to light with less sensitive
methods. In evaluating either efficacy or safety, the sensitivity of estimates
and hypothesis tests to assumptions and to methods of estimation should be
examined.

A common analytic approach is to compare the incidence of each med-
ical/clinical outcome or to compare the mean changes from baseline values
[Peace (1987)]. Hypothesis testing and confidence interval estimation for treat-
ment group differences or for evaluating prespecified adverse events of specific
concern are frequent analyses; however, safety issues often emerge during the
course of a study or a series of studies. The characterization of the available
safety data for purposes of regulatory decisions can be called an integrated
summary of safety (ISS) [FDA Reviewer Guidance (2005)]. In addition to the
guidance offered by regulatory agencies, a variety of statistical approaches to
summarizing the safety data has been published [Enas and Goldstein (1995)
and Chuang-Stein and Le (2001)]. Various approaches to modeling should be
explored for the potential to contribute to both safety and efficacy evaluations,
for example, pattern-mixture models [Fitzmaurice, Laird, and Shneyer (2001)],
and latent dropout class models [Roy (2003)].

One measure that clinicians may find more immediately useful than relative
or absolute risk estimates are the estimates of the number of patients need
to treat (NNT), which is the reciprocal of the absolute risk reduction for the
treatment. With respect to safety concerns, the metric is the number needed to
harm (NNH). These may provide clinicians and patients with information for
making therapeutic choices. These measures do have limitations, as they may
have wide confidence intervals, apply only to the limited conditions or eligibility
of the source trial, depend on the subject’s risk at baseline, and be based on
the specific period of observations of the source trial [Altman (1998)].
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Meta-analyses are often employed to evaluate either efficacy or safety. The
difficulties and limitations of meta-analyses to evaluate safety are well demon-
strated in Shekelle et al. (2003). They summarized adverse events (psychi-
atric symptoms, autonomic symptoms, upper-gastrointestinal symptoms, and
heart palpitations) in 52 controlled trials, and concluded that subjects receiv-
ing ephedra or ephedrine for either weight loss or athletic performance, com-
pared to controls, were at two to three times the risk of those adverse events.
Given the size of the trials, they could not exclude that more serious adverse
events may have occurred at rates less than one per thousand. They reported
heterogeneity among the athletic performance trials, but did not observe het-
erogeneity among the weight loss trials. In another example of meta-analyses
of a safety outcome, Freeman, Zehenbauer, and Buchman (2003) reported a
meta-analysis of the risk of clinically significant bleeding with anticoagulant
therapies. Publication bias, restrictive enrollment, and duration of observa-
tion within the trials were all discussed as limitations to both of these meta-
analyses.

21.5 Inferences

Analytic results are used to make a range of inferences for personal decisions,
and for public health policy and regulatory actions. Recognition of the dif-
ferences between efficacy and safety evaluations (summarized in Table 21.1)
should be part of each of these decisions or actions. Two limits on inferences
particularly affect safety evaluations, and have been extensively addressed in
both the statistical and the clinical literatures. These are, first, distinguishing
causal from coincidental events, and interpreting zero safety events, that is, an
absence of evidence [Altman and Bland (1995)].

21.6 Conclusions

Evaluation of efficacy and safety may be based on the same data sources, the
same study designs, the same subjects, and sometimes even similar outcome
definitions. The careful evaluation of efficacy and safety, however, requires
an understanding of the data to inform the respective analytic assumptions
and inferences. Recognizing the limits in the available safety information can
provide insights into the additional investigations needed to further characterize
a safety profile, highlight inadequately assessed areas of concern, and specific
safety outcome definitions, and can also suggest improvements in study designs,
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conduct, and analytic approaches that serve each of the goals of efficacy and
safety evaluation.

Table 21.1: Differences that affect the assessments of safety and efficacy
throughout product/intervention development

Safety Efficacy

Design
A priori defined outcomes Few All critical outcomes
Primary outcome parameter Rarely Almost always
Scheduled or spontaneous
observations

Scheduled evaluations, e.g.,
toxicity, others spontaneous

According to design sched-
ule

Experimental design Observational/randomized,
controlled

Randomized, controlled

Long-term observation Rarely Duration by design
Elicitation of outcome Uncertain quality of data,

often insufficient detail
As designed, and staff
trained

Power Often not addressed To detect a specified differ-
ence

Adequate sample size Limited By design
Preferably assessed in popu-
lation

More broadly defined, possi-
bly healthier population

More narrowly defined, pos-
sibly more serious disease
patients, e.g., trial eligibility

Comparison group Occasionally Often by design
Analytic Issues
Adjudication of events Unusual, unless a specific

safety outcome is the pri-
mary outcome

Often adjudication of pri-
mary efficacy outcome

Benefit:risk considerations Minimize risk Maximize benefits
Multiplicity Often ignored More clearly recognized and

addressed in analytic plans
Interim monitoring plan Rarely Often
Mechanism of action Little known; in any body

system; often at low inci-
dence

Usually well characterized

Completeness of follow-up Not often known Quantifiable
Analytic Approaches
Mechanisms of missingness Often unclear Often unclear, analytic as-

sumptions include MCAR,
MAR, or MNAR

Clinical summary measures Number needed to harm
(NNH)

Number needed to treat
(NNT)

Summaries Often descriptive Inferential
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Abstract: Few methods for cancer clinical trials have been proposed in the
past decade to evaluate treatments on the basis of joint efficacy and toxicity
endpoints. The primary goal of a new cancer treatment is to improve efficacy.
Because of the antagonist relationship between efficacy and toxicity, a critical
question is to achieve this improvement without increasing unacceptably the
risk of a severe toxicity. In this paper, two methods due to Letierce et al.
(2003) and Tubert-Bitter et al. (2005) are compared in a simulation study.
They are both nonparametric and, besides the joint approach of efficacy and
toxicity, they consider the cumulative doses at which efficacy and toxicity occur,
with the idea that it is better for the patient to attain efficacy at a small dose
and to experience toxicity, if it happens, at the highest dose possible. These
methods are detailed in the same framework. For the simulation study, the
two true correlated doses at which efficacy and toxicity occur are generated
from a Clayton model with Weibull marginal distributions. A fixed censoring
value is considered, corresponding to the total dose of drug received at the
end of the trial by the patients. Treatment groups of size 50 and 100 patients
were simulated with 50%, 65%, and 80% of efficacy and 20%, 35%, and 50%
of toxicity. Two values for the correlation of the variables were considered.
One thousand simulations were run to estimate the type I error rate and the
power of the tests. A few features were observed depending on the sample size,
the correlation of the variables, and whether the difference between the two
simulated treatments concerned efficacy, toxicity, or both.

Keywords and phrases: Cancer, clinical trials, efficacy, toxicity, nonpara-
metrics, Clayton model
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22.1 Introduction

In cancer treatment, physicians seek complete remission or at least the reduc-
tion of the tumour mass by a significant amount. To this end, they need to
employ efficacious drugs in large dosage. Improvements in the control of the
toxic effects of the cancer therapies have been realized, such as the introduction
of haematopoietic growth factors in chemotherapy to reduce haematological
toxicity or the better control of radiation administration in radiotherapy. Yet,
the use of larger doses of therapeutics can cause damage to many organs, some-
times very serious and even lethal. In addition, these toxicities can affect the
course of the treatment and as a result prevent efficacy. In this context, the
question of a global evaluation of treatments, taking into account both of these
antagonist effects, efficacy and toxicity, becomes critical.

In the past decade, few methods have been proposed for phase III clinical
trials to address the question of a joint analysis of the treatments. Several
approaches can be found, and they correspond to different testing hypothe-
ses defining the superiority of a treatment in a multidimensional space. Some
methods for one-sided comparisons are based on the derivation of reasonable
trade-offs between efficacy and toxicity. Jennison and Turnbull (1993) have
developed a parametric method based on the definition of an “indifference re-
gion” to analyse one treatment. Two continuous variables measuring efficacy
and toxicity are assumed to have a bivariate normal distribution with mean
µ = (µ1, µ2). Assuming that high values of µ1 and µ2 are preferable, two para-
meters εj and ∆j (εj < ∆j , j = 1, 2) are a priori defined for each variable, to
divide the axis into three parts: µj > ∆j, where the treatment is acceptable,
µj < εj, where the treatment is unacceptable, and between εj and ∆j, a region
of indifference. The intersection of the two axes forms nine parts from which
several acceptance or rejection regions can be derived to obtain more or less
demanding decision rules, depending on the context of the treatment. Bloch,
Lai, and Tubert-Bitter (2001) have proposed a test for the comparison of two
treatments A and B, derived from the difference of the vector means of the
considered variables, removing the normality assumption. A is preferable to B
if one of the univariate differences is strictly positive and the other one is larger
than a prespecified quantity, to ensure that the benefit on one endpoint is not
obtained at the detriment of the other one. The test is derived with a bootstrap
procedure [Efron and Tibshirani (1993)]. Thall and Cheng (1999) have derived
a method specifically for the comparison of cancer treatments. It is based on the
definition of “target-points” that constitute clinically meaningful improvements
over the null hypothesis of “no difference between the two treatments.” These
points are elicited by the physicians and are expressed in terms of either binary
endpoints or continuous measures, possibly censored. The rejection region is
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obtained by a numerical procedure, assuming that some proper transformation
of the two-dimensional difference follows a normal bivariate distribution. All
these methods are either parametric, based on the normality of some variables,
or they require some parameters to be fixed a priori. These parameters are a
threshold of efficacy to attain or a threshold of toxicity not to exceed, or target
points.

Two recent methods, by Letierce et al. (2003, denoted below by MULTIN)
and by Tubert-Bitter et al. (2005, denoted below by DISCR), are the focus
of attention here. These methods derive nonparametric tests to compare two
treatments with both efficacy and toxicity binary endpoints. They additionally
take into account the cumulative doses of treatment received by the patient,
that respectively achieve efficacy and toxicity, with the idea that it is preferable
that the patient experiences efficacy at a small dose of treatment and suffers
from toxicity at the largest possible dose, and at best, not at all. If toxicity
occurs near the end of the treatment, one can hope the patient will avoid a
too serious damage and will be able to continue the treatment till the end,
which increases the chance of response. Parametric bivariate models on the
doses, with the possibility of censoring, could be fitted but they do not solve
the crucial issue of formulating the alternative hypothesis of the superiority of
one treatment over another one in a clinical trial. Concerning this matter, only
the nonparametric methods MULTIN and DISCR have been proposed in the
literature. The other common point of these two latter methods is that they are
not based on the specification of any trade-off between the antagonist effects,
and consequently, they do not require the definition of any parameter before the
analysis. A simulation study is reported in this chapter to compare them. The
two approaches are presented in the same framework in Section 22.2, followed
by the description of the simulation method in Section 22.3. Then the results
are reported in Section 22.4 and some concluding remarks are given in Section
22.5.

22.2 Setting

The two methods MULTIN and DISCR deal with binary endpoints, one for
efficacy and one for toxicity. They both add another consideration, that is,
which one of the antagonist effects occurs first. Let us introduce the common
framework. Consider a patient involved in a clinical trial; he is followed for a
certain period of time, planned by the protocol, and receives either the new
treatment A or the standard treatment B. Define for each patient two positive
random variables X∗ and Y ∗, respectively, corresponding to the cumulative
doses of treatment required to achieve toxicity and efficacy (usually expressed
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in mg/m2). Time-to-event variables can be used as well. The variables X∗ and
Y ∗ are censored at the total dose of treatment if the corresponding effects are
not attained at the end of the treatment. Denoting by Q (Q > 0) the total dose
of treatment received by the patient at the end of the trial, the observations
are X = min(X∗, Q) and Y = min(Y ∗, Q). Two binary variables T and E are
also defined to denote if toxicity and efficacy are attained (respectively, T = 1,
E = 1) or not (respectively, T = 0, E = 0). Notice that T = 1 and E = 1 are,
respectively, equivalent to X = X∗ ≤ Q and to Y = Y ∗ ≤ Q.

Considering the plane (X∗, Y ∗) with the origin O(0, 0), the dose Q delimits
a square in the first quadrant (OX∗, OY ∗). Different situations are possible for
the couple (X∗, Y ∗) depending on whether X∗ and/or Y ∗ are lower than Q, and
on their sequence: (i) X∗ > Q and Y ∗ > Q: the necessary doses of treatment
to attain toxicity and efficacy are not reached; (ii) X = X∗ ≤ Q and Y ∗ > Q:
only the dose causing toxicity is attained; (iii) X∗ > Q and Y = Y ∗ ≤ Q: the
dose achieving efficacy is attained without causing toxicity; (iv) X∗ ≤ Y ∗ ≤ Q:
the doses achieving efficacy and toxicity are both attained, the dose up to
toxicity being smaller than the dose up to efficacy; (v) Y ∗ < X∗ ≤ Q: the
doses achieving efficacy and toxicity are attained, with the efficacy obtained at
first. In terms of observed values (X,Y, T,E), as plotted in Figure 22.1, the
corresponding five parts are: (i′) X = Y = Q, T = 0, E = 0; (ii′) X ≤ Q,
Y = Q, T = 1, E = 0; (iii′) X = Q, Y ≤ Q, T = 0, E = 1; (iv′) X ≤ Y ≤ Q,
T = 1, E = 1; (v′) Y < X ≤ Q, T = 1, E = 1. The best outcome is the
situation (iii′) when efficacy is attained without toxicity. Between (iv′) and (v′)
for which the patient experiences both efficacy and toxicity, (v′) is preferable
because efficacy is attained at a lower dose than toxicity. For (i′) and (ii′),
efficacy is not reached and the worst outcome is the situation (ii′) where the
patient experiences toxicity.

The methods compared in this paper share a common approach in the
sense that they are based on the division of the plane into these five parts.
In MULTIN, by Letierce et al. (2003), two tests on the multinomial reparti-
tion of the patients into the five parts are applied. An order of the parts has
to be defined first, from the worst outcome, to the best. This is done in the
following way: (ii′) ≺ (i′) ≺ (iv′) ≺ (v′) ≺ (iii′). Let us now renumber these
ordered parts from category 1 to category 5. The authors justify the position
of category 2, for which E = 0 and T = 0 by the fact that efficacy is the main
aim in cancer trials. The two multinomial parameters pA = (pA1, pA2, . . ., pA5)
and pB = (pB1, pB2, . . ., pB5) of the probabilities of the five categories for treat-
ments A and B (with

∑5
i=1 pAi =

∑5
i=1 pBi = 1) are compared with likelihood

ratio tests that were derived by Dykstra, Kochar, and Robertson (1995). The
null hypothesis is H0 : pA = pB and two alternative one-sided hypotheses cor-
responding to two stochastic orderings are considered. The first alternative
hypothesis is the likelihood ratio ordering [Dykstra, Kochar, and Robertson
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Figure 22.1: The five sets of points (X,Y ) on the Q×Q square. Points a(X,Y ),
a′(X ′, Y ), and a′′(X,Y ′) illustrate the DISCR method. They satisfy X ′ > X
and Y ′ < Y

(1995)], denoted by LR, and the second is the stochastic ordering [Lehmann
(1955)], denoted by ST . The superiority of pA over pB for the LR ordering
is defined as the ratio pAi/pBi is nondecreasing in i, for i in {1, 2, . . ., 5}. The
superiority of pA over pB for the ST ordering is defined as follows: for all j
in {1, . . ., 4}, ∑j

i=1 pAi ≤
∑j

i=1 pBi with
∑5

i=1 pAi =
∑5

i=1 pBi = 1. The com-
putation of these tests requires the estimation of isotonic regressions and the
calculation of coefficients involved in the asymptotic distribution of the test sta-
tistic under the null hypothesis. Indeed, the asymptotic distribution under H0

is a mixture of chi-squared distributions, called a chi-bar squared distribution
[Robertson, Wright, and Dykstra (1988)]. The authors performed a simulation
study [Letierce et al. (2003)] to estimate the type I error rate and the power of
the two tests, in comparison with the usual tests used to compare multinomial
distributions (the Wilcoxon test and a scored t-test).

The method DISCR by Tubert-Bitter et al. (2005) consists of the construc-
tion of an “effectiveness region” in the plane of the observed values (X,Y ) for
each treatment A and B. This region is determined by a discrimination al-
gorithm that allows us to separate points of two types with a monotone step
function [Bloch and Silvermann (1997)]. The authors propose a statistic S that
is a sum of two components. The first term is the proportion of efficacious
outcomes for which there is no toxicity or for which toxicity occurs at a greater
dose than efficacy, that is, points falling in parts (iii′) and (v′) (Figure 22.1).
The second term of S concerns the other outcomes, belonging to parts (i′), (ii′),
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and (iv′) that form a set denoted D. For these points, there may be efficacy,
but at a larger dose than toxicity. The algorithm is run on them to discrimi-
nate between outcomes for which E = 1 and outcomes for which E = 0 with
an increasing function, with points E = 1 supposed to lie under the discrimi-
nant function, and points E = 0 supposed to lie above it. The monotonicity
of the discrimination procedure is required to follow certain constraints: if a
given point a = (X,Y ), such as the one plotted in Figure 22.1, is included in
the effectiveness region, any point a′ = (X ′, Y ) with X ′ > X should also be
included because it reflects a better outcome (the dose up to toxicity is larger
for a′ than for a; i.e., the patient tolerates the treatment better). Similarly,
any point a′′ = (X,Y ′) with Y ′ < Y should be included in the effectiveness
region because efficacy occurs at a lower dose for a′′ than for a. The second
term of the statistic S is the proportion of efficacious outcomes in the set D,
weighted by the area between the diagonal of the square and the discriminant
function. The statistic S lies between 0 and 1, S = 0 if there is no efficacy,
S = 1 if efficacy is attained for every patient, and it increases with the number
of efficacious outcomes. The computations of the difference between the two
groups A and B, SA–SB , and of the P -values of the test require us to compute
the step monotone discrimination function and to run a bootstrap testing pro-
cedure [Efron and Tibshirani (1993)]. The authors showed in their simulation
study that the type I error rate of their test was well controlled and that its
power was greater than the power of the usual normal test used to compare
proportions of efficacious outcomes.

22.3 Method for the Simulation Study

Couples (X∗, Y ∗) of random variables were generated from a Clayton copula
model with marginal Weibull distributions according to an algorithm based on
the one proposed by Marshall and Olkin (1988). Copula models [Genest and
Mac Kay (1986)] allow us to handle multivariate distributions by considering
the marginal variables. Denoting by SX∗,Y ∗ the bivariate survival function of
X∗ and Y ∗, and by SX∗ and SY ∗ the marginal survival functions, a copula C
satisfies:

SX∗,Y ∗ (x, y) = C (SX∗ (x) , SY ∗ (y)) .

Some copulas Cα, called Archimedean copulas, are generated by a function ϕα

satisfying some properties [Genest and Mac Kay (1986)] so that Cα(u, v) =
ϕ−1

α (ϕα (u) + ϕα (v)) for (u, v) in [0, 1]. α is an association parameter: the
greater α is, the stronger is the association between X∗ and Y ∗. The Clayton
copula is an Archimedean copula, for which ϕα (t) = t1−α − 1 (α > 1) and
Cα (u, v) =

(
u1−α + v1−α − 1

)1/(1−α).
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The algorithm by Marshall and Olkin was turned out to handle survival
functions instead of distribution functions. It uses the relation

SX∗,Y ∗ (x, y) =
∫

SX∗ (x)w SY ∗ (y)wdW (w); (22.1)

that is, SX∗,Y ∗ is the Laplace transform L(s) = EW (exp(−sw)) of a variable W
taken at the point s = − log(SX∗)− log(SY ∗).

In a Clayton model, the inverse function of ϕα, ϕ−1
α (s) = (1 + s)1/(1−α),

is the Laplace transform L of a Gamma distribution with parameter A =
1/(α − 1). Then, the procedure to generate a random couple (X∗, Y ∗) involves
the three following stages.

• Firstly, a variable W is generated from a Γ(A, 1) distribution, whose den-
sity function is defined by f(w) = [1/Γ(A)]e−wwA−1 for w > 0;

• Secondly, two independent random variables U and V are generated from
the uniform distribution on [0; 1];

• And thirdly, U and V are transformed using W and the inverse functions
S−1

X∗ and S−1
Y ∗ of SX∗ and SY ∗ , to obtain the random variables X∗ and Y ∗.

Two-parameter Weibull variables (γj ,βj)j=1,2, where γj is the scale and βj is
the shape of the distribution, were chosen for the marginal distributions because
the Weibull model is flexible enough to describe different situations.

To obtain variables X and Y , a constant Q was fixed, representing the
total dose of treatment received by the patient and planned in the protocol,
assuming that it is the same for every patient. The observations were then
X = min(X∗, Q), Y = min(Y ∗, Q), and the binary variables T = 0/1 and
E = 0/1 defined as previously. Independent realizations were generated and
gathered to form two samples of equal size n = 50 and n = 100 figuring the
treatment groups. Observations were classified into categories 1 to 5 to run the
tests for the LR ordering and the ST ordering in MULTIN. The test statistic
S in DISCR was calculated directly from the observations (X,Y,E, T ).

Two values for α were explored: α = 2 and α = 5. The total dose Q was
fixed at 0.8. Both β1 and β2 were fixed at 6; γ1 and γ2 were made variable so as
to obtain different marginal percentages of efficacy and toxicity. Configurations
with 80%, 65%, and 50% of efficacy and 20%, 35%, and 50% of toxicity were
considered. Nine treatments were labelled by juxtaposing the percentage of effi-
cacy “Exx” and the percentage of toxicity “Eyy” in the following: “Exx Tyy.”
Each configuration was generated 1000 times. The two tests of MULTIN were
computed in SPlus and DISCR was computed in Fortran.

Tests were run for one-sided alternative hypotheses and with a nominal
type I error equal to 0.05. Each treatment was compared to itself in order to
estimate the type I error rate, and it was compared to each treatment having
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less or equal efficacy and more or equal toxicity (not equal at the same time).
Another configuration in which there is a gain of at least 15% in efficacy and
a loss in safety of 15% between treatments A and B was considered: the six
following comparisons were performed, between A = E80T35 and B = E65T20
or B = E50T20, A = E80T50 and B = E65T35 or B = E50T35, A = E65T35,
and B = E50T20 and A = E65T50 and B = E50T35 with the one-sided
alternative hypothesis “A is better than B.”

22.4 Results

The type I error estimates are reported in Table 22.1 for the two sizes of treat-
ment group. For 1000 simulations, the 95% probability interval of the type I
error rate is [0.036;0.064]. Estimates for S are always in this interval, whatever
the sample size and the value of the association parameter α. Estimates for the
tests of MULTIN are less satisfactory, as LR has sometimes too high a type I
error rate and ST is sometimes conservative.

Results for the power estimates are reported in Tables 22.2 and 22.3, respec-
tively, for n = 50 and n = 100 patients in each group. As expected, a higher
power is always observed for the greater sample size for all the tests. The power
of the three tests is generally greater for α = 5 than for α = 2; there are only a
few exceptions among the 33 comparisons run for each sample size, that rather
happens for ST . When the difference between the two compared treatments
only concerns toxicity, the power of DISCR is less than the power of MULTIN,
and this is much more marked for a difference of 30% in toxicity, as the power
estimates of the MULTIN tests are near 100%. This situation is caused by the
fact that DISCR was constructed to compare efficacies, with a penalty for too-
toxic treatments. When the difference between the two compared treatments
only concerns efficacy, ST has a lower power than the other two tests, which
have almost similar powers, for both sample sizes. For a given treatment Exx
Tyy, the power for the comparison with treatments Exx′ Tyy′ (in the list of
compared treatments) always increases with the percentage of toxicity Tyy′,
for a given percentage of efficacy Exx′. For the extreme comparisons, that is,
between treatments with very different percentages of efficacy and toxicity, the
powers are excellent, near to 100%, even if the powers of the MULTIN tests
rise more rapidly when the difference becomes more pronounced. Concerning
the comparisons between a treatment Exx Tyy and treatments Exx′ Tyy′ with
xx′ < xx and yy′ = yy − 15, the powers are comparable for the three tests for
each sample size and each value of α, but there is a slight superiority of the
power of DISCR.

These results are consistent with what the authors found in their respective
papers even though the simulations were not conducted in the same way. For
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Table 22.1: Type I error rate estimates for n = 50 and n = 100 patients in
each group, for the association parameter α = 2 and α = 5, obtained from 1000
simulations. LR and ST refer to the MULTIN tests for the likelihood ratio
ordering and the stochastic ordering

α = 2 α = 5
DISCR LR ST DISCR LR ST

n = 50
E80 T20 0.055 0.052 0.036 0.052 0.055 0.035
E80 T35 0.041 0.049 0.021 0.042 0.044 0.045
E80 T50 0.052 0.060 0.039 0.046 0.051 0.053
E65 T20 0.054 0.063 0.020 0.055 0.053 0.036
E65 T35 0.037 0.051 0.028 0.054 0.048 0.041
E65 T50 0.047 0.064 0.049 0.052 0.053 0.038
E50 T20 0.062 0.059 0.036 0.059 0.053 0.032
E50 T35 0.052 0.066 0.065 0.053 0.048 0.030
E50 T50 0.063 0.050 0.056 0.049 0.054 0.042
n = 100
E80 T20 0.049 0.051 0.040 0.055 0.056 0.048
E80 T35 0.050 0.060 0.056 0.048 0.060 0.061
E80 T50 0.053 0.049 0.043 0.047 0.047 0.048
E65 T20 0.038 0.066 0.060 0.047 0.054 0.038
E65 T35 0.053 0.054 0.047 0.048 0.041 0.033
E65 T50 0.041 0.044 0.048 0.055 0.079 0.038
E50 T20 0.062 0.044 0.028 0.053 0.060 0.034
E50 T35 0.056 0.058 0.036 0.044 0.065 0.039
E50 T50 0.049 0.075 0.031 0.053 0.059 0.052
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Table 22.2: Power estimates for the one-sided comparison of treatment A versus
treatment B, with n = 50 patients in each group, based on 1000 simulations.
See Table 22.1 for the column names

α = 2 α = 5
A B DISCR LR ST DISCR LR ST

E80 T20 E80 T35 0.118 0.302 0.246 0.099 0.342 0.301
E80 T50 0.153 0.801 0.794 0.121 0.849 0.875
E65 T20 0.537 0.536 0.311 0.565 0.555 0.387
E65 T35 0.696 0.844 0.621 0.717 0.894 0.764
E65 T50 0.797 0.980 0.944 0.848 0.998 0.995
E50 T20 0.941 0.939 0.805 0.968 0.971 0.885
E50 T35 0.980 0.992 0.943 0.995 1 0.992
E50 T50 0.986 0.999 0.994 0.999 1 1

E80 T35 E80 T50 0.076 0.283 0.238 0.077 0.329 0.343
E65 T20 0.380 0.361 0.387 0.437 0.403 0.415
E65 T35 0.553 0.541 0.326 0.600 0.603 0.431
E65 T50 0.668 0.832 0.634 0.752 0.943 0.879
E50 T20 0.885 0.890 0.850 0.930 0.914 0.847
E50 T35 0.946 0.946 0.832 0.977 0.987 0.929
E50 T50 0.970 0.994 0.959 0.996 1 0.997

E80 T50 E65 T35 0.451 0.392 0.396 0.496 0.441 0.412
E65 T50 0.580 0.569 0.382 0.682 0.731 0.559
E50 T35 0.923 0.910 0.864 0.967 0.956 0.880
E50 T50 0.964 0.951 0.879 0.993 0.998 0.970

E65 T20 E65 T35 0.102 0.304 0.273 0.100 0.340 0.305
E65 T50 0.182 0.725 0.812 0.201 0.876 0.905
E50 T20 0.443 0.464 0.242 0.504 0.504 0.304
E50 T35 0.605 0.784 0.590 0.700 0.898 0.785
E50 T50 0.729 0.968 0.945 0.844 1 0.999

E65 T35 E65 T50 0.102 0.294 0.274 0.120 0.417 0.399
E50 T20 0.304 0.290 0.397 0.386 0.342 0.331
E50 T35 0.458 0.461 0.314 0.574 0.602 0.389
E50 T50 0.586 0.774 0.636 0.759 0.969 0.891

E65 T50 E50 T35 0.333 0.295 0.366 0.387 0.344 0.301
E50 T50 0.474 0.466 0.350 0.609 0.708 0.478

E50 T20 E50 T35 0.114 0.309 0.323 0.137 0.397 0.334
E50 T50 0.204 0.741 0.862 0.295 0.936 0.933

E50 T35 E50 T50 0.107 0.281 0.307 0.137 0.463 0.407
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Table 22.3: Power estimates for the one-sided comparison of treatment A versus
treatment B, with n = 100 patients in each group, based on 1000 simulations.
See Table 22.1 for the column names

α = 2 α = 5
A B DISCR LR ST DISCR LR ST

E80 T20 E80 T35 0.125 0.520 0.525 0.121 0.508 0.574
E80 T50 0.187 0.973 0.988 0.211 0.997 0.997
E65 T20 0.806 0.774 0.581 0.817 0.809 0.649
E65 T35 0.916 0.992 0.945 0.918 0.995 0.985
E65 T50 0.971 1 1 0.980 1 1
E50 T20 1 1 0.994 1 1 0.995
E50 T35 0.999 1 1 1 1 1
E50 T50 1 1 1 1 1 1

E80 T35 E80 T50 0.094 0.495 0.468 0.126 0.593 0.608
E65 T20 0.627 0.645 0.748 0.681 0.674 0.738
E65 T35 0.810 0.786 0.612 0.861 0.869 0.718
E65 T50 0.902 0.984 0.954 0.951 0.996 0.996
E50 T20 0.993 0.996 0.996 1 0.997 0.990
E50 T35 0.999 0.998 0.991 1 1 0.999
E50 T50 0.999 1 1 1 1 1

E80 T50 E65 T35 0.694 0.620 0.688 0.724 0.677 0.639
E65 T50 0.837 0.816 0.712 0.882 0.923 0.802
E50 T35 0.997 0.994 0.991 0.998 0.999 0.995
E50 T50 0.999 0.999 0.996 1 1 1

E65 T20 E65 T35 0.126 0.467 0.576 0.120 0.576 0.639
E65 T50 0.251 0.950 0.985 0.307 0.994 0.996
E50 T20 0.683 0.669 0.506 0.759 0.759 0.557
E50 T35 0.869 0.966 0.919 0.922 0.997 0.981
E50 T50 0.945 1 0.999 0.982 1 1

E65 T35 E65 T50 0.112 0.425 0.481 0.146 0.668 0.649
E50 T20 0.488 0.491 0.697 0.565 0.575 0.641
E50 T35 0.707 0.697 0.546 0.829 0.883 0.655
E50 T50 0.838 0.970 0.929 0.948 1 0.998

E65 T50 E50 T35 0.519 0.506 0.633 0.639 0.578 0.563
E50 T50 0.711 0.697 0.571 0.833 0.925 0.853

E50 T20 E50 T35 0.134 0.486 0.571 0.169 0.622 0.654
E50 T50 0.281 0.959 0.993 0.413 0.999 0.999

E50 T35 E50 T50 0.136 0.439 0.494 0.200 0.724 0.770
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MULTIN, the authors generated directly random multinomial variables for the
frequencies of the categories, without considering any underlying distributions
for the doses. For DISCR, the model for the random generation of the vari-
ables was a trivariate logistic distribution, as the total dose received by the
patient was also considered as a random variable, instead of a fixed censoring
as simulated in this paper.

22.5 Conclusion

The two compared methods MULTIN and DISCR both take into account the
cumulative doses of treatment at which efficacy and toxicity occur. They are
both completely nonparametric and they do not need to fix a priori thresh-
olds for the differences of efficacy and toxicity as it is necessary for the other
methods [Bloch, Lai, and Tubert-Bitter (2001) and Thall and Cheng (1999)].
They have been developed in the context of cancer trials where efficacy is the
primary goal, as it is reflected in MULTIN by the order of category 2, and in
DISCR by the definition of the statistic S itself. The simulation study shows
different behaviours of these methods depending on whether the simulated dif-
ference between the two treatments concerns efficacy, toxicity, or both. It is
caused by the definition of the statistic S that rather focuses on efficacy and
treats toxicity as a nuisance effect (what it is exactly). Nevertheless, they have
excellent powers to detect differences in all the clear-cut cases. In addition,
these methods proved to perform better than the other classical methods used
in their respective domains, that is, comparison of multinomial distributions for
MULTIN and comparison of proportions for DISCR, so that the computational
work they require, identical for both, seems to be worth the while. In conclu-
sion, DISCR is not appropriate to compare treatments for which the difference
only concerns toxicity but in other cases, the two methods are comparable to
analyse treatments with binary endpoints and dose-related effects.

Concerning the two approaches, some points are worth mentioning. With
MULTIN, it is possible to deal with more than one toxicity by creating one or
more further categories. If one considers two toxicities T1 and T2 in a cancer
trial, defined by binary variables, and one does not want to give more impor-
tance to one or another, the worst category would be T1 = 1, T2 = 1, E = 0,
and additional categories would be defined from the occurrence of T1, or T2, or
both, and eventually their sequence. With DISCR, it does not seem possible to
handle two toxicities without choosing one or both to define the variable X∗.
A reasonable choice of X∗ could be the dose up to the first toxicity, whatever
the type. The same problem arises when many efficacious assessments have
to be taken into account. Thanks to the great adaptability of the definition
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of the categories in MULTIN, the tests LR and ST can be applied whatever
the binary variables, not necessarily antagonist outcomes, whereas for DISCR,
variables X∗ and Y ∗ have to reflect antagonist effects (X∗ not desirable, Y ∗

highly desirable). For the two methods, when the two compared treatments
do not involve the same drug, X∗ and Y ∗ can be defined in a rank scale as
opposed to a dose scale. Otherwise, an appropriate alternative is to express
them in terms of duration of the treatment that makes it possible to apply the
methods to treatments composed of several drugs.
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Safety Assessment in Pilot Studies When Zero

Events Are Observed
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Abstract: Pilot studies in clinical research settings frequently focus on esti-
mating the frequency of occurrence of certain adverse events. When zero such
events are observed, the question of legitimate inference on the true event rate
arises. The relationship between binomial and geometric distributions’ confi-
dence intervals yields two useful graphical displays and interpretations for the
event rate inference in this circumstance. The interval is also closely related to
the Bayesian credible interval when the prior distribution for the event rate is
uniform. In addition, the simple algebraic expression for the confidence bound
is seen to be useful in the context of planning studies.

Keywords and phrases: Bayesian credible interval, binomial distribution,
geometric distribution, confidence interval, pilot study

23.1 Introduction

Statisticians collaborating in clinical research settings often assist in the plan-
ning and analysis of pilot studies. Although pilot studies may vary in the fun-
damental objectives, many are designed to explore the safety profile of a drug
or a procedure [Spilker (1991) and Friedman, Furberg, and DeMets (1998)].
Often before applying a new therapy to large groups of patients, a small non-
comparative study is used to estimate the safety profile of the therapy using
relatively few patients. This type of investigation is typically encountered in
the authors’ experiences as collaborating biostatisticians at our General Clini-
cal Research Center, and to a more limited extent, through our NIDA Clinical
Trial Network Regional Research Training Center.

In these settings, a relatively common interest is in deriving knowledge from
a pilot investigation in which there are no occurrences of the adverse event
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under study. This is often the case because initial pilot studies will typically
focus on rather major categories of adverse events such as death, respiratory
failure, major hemorrhage, and so forth. For example, if a synthetic heparin-like
product is under investigation for its ability to prevent occlusion of the arteries,
then a major adverse event to be monitored would be major hemorrhage. If
initial studies fail to rule out a high probability of major hemorrhagic events,
then the product, at that dose regimen, likely will not proceed further to more
intensive study. On the other hand, if no hemorrhages are observed in the pilot,
how optimistic can one be about the true hemorrhage rate?

Louis (1981) describes a similar clinical setting in the context of diagnostic
testing. He notes that many diagnostic tests have relatively small false negative
rates (i.e., the likelihood a diseased person will test negative for the disease),
and when studying the test among only a few diseased persons, the study
may yield zero negative test results. He cautions that this sample result may
generate a false sense of optimism for the actual false negative rate. Accordingly,
confidence intervals should be reported to reflect the uncertainty accompanying
the findings. Of course, a major ingredient in the calculations is the sample size,
n, upon which the observation of zero false negatives is made.

In this chapter, we focus on a somewhat different, but related, context. In
particular, we utilize the pilot clinical study as our motivation, and examine the
inferences (primarily via confidence intervals) that one can make in the setting
when no events are observed. We consider three apparently distinct approaches,
but as it turns out, all three approaches are mathematically related under the
realization of zero events. Interesting reminders of relationships between some
basic distributions emerge. The development includes graphical representation
of one-sided confidence intervals, which may be useful to clinical researchers
and to biostatisticians collaborating in such clinical research settings. Finally,
it is noted that one rather simple algebraic expression underlies the resulting
inference, and this expression arises from several different viewpoints.

23.2 Clinical Setting

When a novel therapeutic intervention is in development, a pilot clinical study
in humans is typically undertaken. In many settings, these pilot studies may be
in the formal clinical trial context of phase I and phase II trials, and in others,
it may be to explore the intervention in a more limited way [Spilker (1991)].

For many such circumstances there is a specific adverse event that is defined
to be critical in determining whether the treatment regimen moves forward for
additional testing. If the treatment regimen results in an unacceptably high
adverse event rate, then the treatment regimen might not be considered for
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additional testing. One of the major goals of an initial pilot study would be to
estimate the adverse event rate that may result from the therapy.

To narrow the setting further, there are numerous clinical instances wherein
the initial expectation is that the therapy has an extremely low chance of elic-
iting the particular adverse event, and the aim of the pilot study is to attempt
to rule out the levels of adverse event rates that do not seem tenable on the
basis of the resulting observations in the pilot study.

The situation of particular interest is then one in which no adverse events
are realized in a pilot study, and inferences are to be made using this finding.
As will be seen in the following sections, there are several statistical approaches
applicable when a pilot study yields the finding of zero events, and in the context
of confidence intervals, it will be seen that these findings have interpretations
with important clinical points of view.

23.3 Notation

For ease of presentation, assume the pilot study will involve n independent
patients for which the probability of the adverse event of interest is π, where
0 < π < 1. In the next two sections, two designs are considered. The first is
the typical binomial setting in which the number of patients is fixed in advance.
The second is one in which the number of participants increases until the first
adverse event of interest is observed. The second setting is, of course, the typical
geometric distribution setting. In each case, a 100(1− α)% confidence interval
is to be generated for π.

23.4 Binomial Setting

One design common in pilot studies is to select n patients and observe the
number of adverse events in this sample. Denote X as the number of patients
sampled who experience the adverse event of interest. Then,

P (X = x) =

(
n
x

)
πx(1− π)n−x , x = 0, 1, . . . , n .

Denote πu as the upper limit of the exact one-sided 100(1−α)% confidence
interval for the unknown proportion, π [Clopper and Pearson (1934)]. Then πu

is the value such that
x∑

j=0

(
n
j

)
πj

u(1− πu)n−j = α . (23.1)
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When zero events are realized, Eq. (23.1) reduces to

(1− πu)n = α .

Accordingly, the upper limit of a one-sided 100(1−α)% confidence interval for
π is

πu = 1− α1/n. (23.2)

The resulting 100(1−α)% one-sided confidence interval is (0, 1−α1/n). Graph-
ically, one can represent this interval on a plot of π against n as illustrated in
Figure 23.1 for α = 0.05, 0.10, and 0.25. Values of π below 1 − α1/n repre-
sent the values of π consistent (at the 1−α level of confidence) with observing
zero events. This display makes evident the point of clinical concern, viz.,
with smaller sample sizes a realization of no adverse events is consistent with
many potential rates. Some rates may be high enough to be of concern before
proceeding to the next stages of clinical investigation.

In a similar manner, one can look at the values of π above 1 − α1/n in the
graph. Schoenfeld (1980) discussed statistical inference for pilot studies and
argued that many clinical researchers design pilot studies asking, “What values
of π have at least a (1 − α) chance of generating at least one adverse event?”
By reflecting on this question a moment and on the preceding confidence in-
terval development, it can be seen that the area in the graph above 1 − α1/n

would correspond to the values of π with the chance less than or equal to α of
generating zero events; therefore, they are the values of π with probability of
1−α or more of seeing at least one adverse event. Hence, this single graph has
an important clinical interpretation from both perspectives.

23.5 Geometric Setting

Another reasonable approach to designing a pilot study in this environment is
to sample patients until the first adverse event is realized, and in this way it
is the number of patients studied that is the random variable. Denoting Y as
the number of patients studied until the first adverse event, then following the
usual geometric distribution, we have

P (Y = y) = π(1− π)y−1 ; y = 1, 2, . . . .

Now in the context of observing no adverse events, suppose n trials were
conducted sequentially and no adverse events were observed. Hence, if one
abruptly stopped at this point, one can conclude that n + 1 or more trials
are required to observe the first adverse event. Accordingly, what values of π
correspond to a 100(1 − α)% confidence interval?
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Figure 23.1: Upper limit of the 100(1 − α)% one-sided confidence interval for
the true underlying adverse event rate, π, for increasing sample sizes when zero
events of interests are observed

In this situation, the 100(1−α)% confidence interval will be the set of values
of π that have greater than or equal to α chance of requiring n + 1 or more
trials to get to the first adverse event. Putting this in probability terms, one
has

P (Y ≥ n + 1) =
∞∑

y=n+1

π(1 − π)y−1 ,

or, in terms of α
∞∑

y=n+1

π(1− π)y−1 ≥ α . (23.3)

The preceding expression can be evaluated for each n; however, some algebraic
work on the left-hand side of (23.3) yields

∞∑
y=n+1

π(1− π)y−1 = (1− π)n
[

∞∑
j=1

π(1− π)j−1

]
= (1− π)n · 1
= (1− π)n .

Accordingly, following (23.3) the upper limit of the 100(1 − α)% confidence
interval for π is ∞∑

y=n+1

πu(1− πu)y = (1− πu)n = α ,
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which yields
πu = 1− α1/n .

This is identical to (23.2); hence, the 100(1 − α)% confidence interval is the
same with either formulation when zero adverse events are observed in the n
trials.

23.6 Bayesian Credible Interval

A Bayesian approach to the statistical inference with zero events is particularly
useful, even with a noninformative (i.e., uniform) prior is considered. One
immediate advantage of considering a Bayesian approach is the incorporation of
prior information into the estimation of πu. In particular, the beta distribution
describing the posterior distribution is

f(π|x) =
Γ(n + a + b)

Γ(x + a)Γ(n− x + b)
πx+a−1(1− π)n−x+b−1 . (23.4)

When zero events are observed, the 100(1− α)% Bayesian credible interval for
π using an uniform prior (a = b = 1) is (0, πu), where πu such that

1− α =
πu∫
0

Γ(n + 2)
Γ(1)Γ(n + 1)

(1− π)ndπ ,

or simply in terms of πu,
πu = 1− α1/(n+1) .

Thus, utilizing a Bayesian approach to estimating the upper limit of the 100(1−
α)% confidence (or credible) interval reduces the upper limit by a factor of
(1−α1/(n+1))/(1−α1/n). Louis (1981) presents this interval as πu = 1−α1/n, a
result consistent with the Clopper–Pearson upper limit derived above; however,
our calculations show the credible interval to be slightly different. In some pilot
studies, reasonable estimates of the adverse event rate may be available, and
incorporating this information in terms of a and b in Eq. (23.4) yields increased
precision for estimating π, the unknown adverse event in the population under
study.

Winkler, Smith, and Fryback (2002) and Thall and Simon (1994) have con-
sidered various prior distributions when utilizing Bayesian approaches to related
problems. Indeed, one could argue that other values of a and b besides 1 would
form a more appropriate prior distribution for π. When zero events are realized
and terms are regrouped, Eq. (23.4) reduces to

f(π|x = 0) =
Γ(a + (n + b))
Γ(a)Γ(n + b)

πa−1(1 − π)n+b−1 , (23.5)
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Figure 23.2: Comparisons of upper limit of a 90% Bayesian credible interval for
values of a and b

which is beta(a,n + b). Therefore, the upper limit, πu, of the (1−α)% credible
interval satisfying

1− α =
πu∫
0

Γ(a + (n + b))
Γ(a)Γ(n + b)

πa−1(1− π)n+b−1

can be easily obtained from the cumulative distribution of the beta distribution.
Figure 23.2 illustrates the effect the selection of a and b have on the upper limit
of the 90% Bayesian credible interval in relationship to the Clopper–Pearson
interval. For small sample sizes, the effect of a and b is more dramatic. In
particular, if a = 1 and b = 10, 90% of the prior beta distribution is concentrated
below p = .206. Thus, a result of observing zero adverse events is highly
consistent with this prior information and would lead to great efficiency in trial
design. However, we caution that more conservative values of a and b, such as
a = b = 1, should be considered in early phase testing in which limited prior
information may be available.
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23.7 Clinical Setting: Revisited

One of the major items prompting this work was interest in summarizing safety
findings from noncomparative pilot studies in which no adverse events (of a
specific type) are observed. As Louis (1981) observed, the clinical observa-
tion of zero false negatives in the context of diagnostic testing may generate
unreasonable optimism regarding the rate, particularly for smaller sample sizes.

A similar situation does arise in pilot studies, wherein the number of patients
studied is typically small and zero observed events may not be an uncommon
result. From the perspective of the collaborating biostatistician, it is critical to
be able to reflect the uncertainty in the findings, and in most instances offer
guidance regarding the interpretation. As seen in the preceding sections, a
unifying expression that emerges from the zero adverse events setting is

π = 1− α1/n , (23.6)

and in this setting, this expression is interpretable as follows.

1. The upper limit of the 100(1− α)% one-sided confidence interval for π

2. The lower limit for π such that all values of π above it have at least (1−α)
probability of yielding 1 or more adverse events in n trials

3. The approximate upper limit of the 100(1−α)% one-sided Bayesian cred-
ible interval for π under a uniform (0, 1) prior distribution for π

Furthermore, one can consider using (23.6) in other clinically important
manners. For instance, an investigator may be planning a pilot study and want
to know how large it would need to be to infer with 100(1−α)% confidence that
the true rate did not exceed a prespecified π, say π0, given that zero adverse
events were observed. Using (23.6), it follows that

n =
lnα

ln(1− π0)
. (23.7)

Hence, the expression 1 − α1/n has a pivotal place in the statistical inter-
pretation of clinical pilot studies in which zero adverse events are observed. It
is an upper limit of a confidence interval, a Bayesian prediction interval, and
can be easily inverted to address questions of sample size. To illustrate the
expression’s utility, consider the following example that originated as a part of
routine collaboration.

Our Neonatal Intensive Care Unit often treats premature infant births with
surfactant to stimulate lung tissue and prevent respiratory failure that could
result in death. Once a vial of surfactant is opened, it must be stored in
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controlled conditions and discharged after 12 hours. Because regular adminis-
tration of surfactant is delivered on 12 hour intervals, it would be desirable to
extend the viability period beyond 12 hours. The question of interest is, “How
long is a safe period for storage?” In this setting, in vitro examination of the
drug could be used to identify drug samples that have become contaminated
as a surrogate endpoint for infection in the premature infant, a likely adverse
experience resulting from prolonged storage of the drug. It is desirable to rule
out storage conditions not consistent with the general risk of infection, say
π0 = 0.05, before considering more conclusive testing or treatment of human
subjects. Therefore, using Eq. (23.7), we would calculate that 45 vials would
need to be contaminant free after a period of prolonged storage to be confident,
at the α = 0.10 level, that the prolonged storage conditions would be consistent
with a contamination risk less than or equal to 0.05. This screening procedure
could be replicated at more stringent significance levels to arrive at one or two
viable storage conditions that would undergo additional study.

23.8 Summary

In clinical pilot studies, it is common to explore the adverse event profile of
a new regimen. In this note, we illustrate how a simple expression has mul-
tiple useful clinical interpretations for the generation of confidence intervals
when zero events are observed. Settings of fixed and variable sample sizes yield
equivalent confidence interval inference in this specialized scenario. This has
implications as a practical finding for the interpretation of clinical trial safety
data, and offering clinicians advice on the range of adverse event rates that can
be thought to be consistent with the observation of zero events. The presented
formula offers more flexibility than the “rule of 3” approximation [Lewis (1981)]
because it allows for the specification of significance levels other than α = 0.05.
The ability to choose the significance level might be important when designing
or interpreting preliminary data obtained from a pilot study.
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Abstract: In this article, we consider some up-and-down designs that are dis-
cussed in Ivanova et al. (2003) for estimating the maximum tolerated dose
(MTD) in phase I trials: the biased coin design, k-in-a-row rule, Narayana rule,
and continual reassessment method (CRM). A large-scale Monte Carlo simula-
tion study, which is substantially more extensive than Ivanova et al. (2003), is
conducted to examine the performance of these five designs for different sample
sizes and underlying dose–response curves. For the estimation of MTD, we pro-
pose a modified maximum likelihood estimator (MMLE) in addition to those in
Ivanova et al. (2003). The selection of different dose–response curves and their
parameters allows us to evaluate the robustness features of the designs as well
as the performance of the estimators. The results obtained, in addition to re-
vealing that the new estimator performs better than others in many situations,
enable us to make recommendations on designs.

Keywords and phrases: Clinical trials, sequential adaptive designs, maxi-
mum tolerated dose, isotonic regression estimators, maximum likelihood esti-
mator, robustness, Monte Carlo simulations

24.1 Introduction

In a phase I clinical trial, researchers study a new drug or treatment to de-
termine a safe dose level for humans and also the highest dose that can be
tolerated. The standard phase I design is a dose escalation trial in which suc-
cessive patients are given successively higher doses of the treatment until some
of the patients experience unacceptable side effects. In most phase I trials, the
patients in the trial are assigned sequentially to various dose levels of a drug
one at a time, starting at the lowest dose. If unacceptable side effects are not
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seen in the first patient, the next patient gets a higher dose. This continues
until a dose level is reached that is too toxic, then the next patient gets a lower
dose. The goal here is to estimate a dose, usually referred to as the maximum
tolerated dose (MTD), which has a prescribed probability, Γ, of toxicity.

For ethical consideration so as to avoid patients being assigned to higher
toxic dose levels and for possible improvement of efficiency in estimation by
allowing more patients to be assigned to dose levels closer to MTD, it has
been seen that up-and-down designs, being sequential and adaptive, are quite
suitable.

Based on simulation results, Ivanova et al. (2003) have compared four up-
and-down designs, viz., the biased coin design, k-in-a-row rule, Narayana rule,
and continual reassessment method (CRM), by considering three estimators,
viz., the empirical mean, isotonic regression estimator, and maximum likelihood
estimator. For the purpose of simulation, they have used only logistic response
models with different sets of parameters. In all three scenarios, the MTD is
within the selected dose levels. In this chapter, we have carried out a very
extensive examination of the same problem, by inclusion of a proposed modified
maximum likelihood estimator (MMLE), by adding to the list of norms for
comparison the mean squared error of the estimates of the probability at target
dose (T-MSE) which is same as MTD [Stylianou et al. (2003)] and two more to
the list of target doses (viz., Γ = 0.15 and 0.5), and by considering more response
models, particularly ones such that the target dose is outside the selected dose
levels for checking the robustness of a design. The MMLE proposed here is
a modification of the MLE by means of isotonization and hence is expected
to be an improvement over MLE; the simulation results do support this. In
Section 24.2, we define the notation and the start-up rule that is used prior
to the primary design and describe all designs. Section 24.3 is devoted to
putting forth all estimators. The formulation for Monte Carlo simulation is
dealt with in Section 24.4. The comparisons of estimators and the designs
including conclusions are presented in Sections 24.5 and 24.6, respectively.

24.2 Notation and Designs

The following notation will be used throughout this paper.
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K Number of dose levels
N Total number of subjects
µ The maximum tolerated dose (MTD), the tar-

get dose
Y 1, 0 depending on whether the outcome is

toxic
Γ Pr(Y = 1|µ)
dj , j = 1, 2, . . . ,K The set of ordered dose levels
Y (n), n = 1, 2, . . . , N Outcome for the nth subject (1 or 0)
D(n), n = 1, 2, . . . , N Dose assignment for the nth subject
Q(dj), j = 1, 2, . . . ,K Pr(Y = 1|dj), assumed to be a nondecreasing

function of doses
Xj(n) Number of toxic response at dose dj including

the nth patient
Nj(n) Number of assignments to dose dj including

the nth patient
h The maximum index such that Nh(n) > 0

(h ≤ k)

Let Q̂(dj , n) denote Xj(n)/Nj(n), which is an estimate of Q(dj) for j =
1, . . . , h in which the nth subject is included.

A start-up rule is used before the primary design to bring the starting point
of the primary design closer to the target. The start-up rule proposed by Storer
(1989), and modified by Korn et al. (1994), which is employed in Ivanova et al.
(2003), is described below.

Start-up rule: Given Γ, let k be the closest integer solution of Γ = 1−0.51/k .
Beginning at the lowest dose level, treat k subjects and go to the next higher
dose level if no toxicity in the group is observed. Stop as soon as the first
toxicity is observed, go to the next lower level and start the primary design.
We note that k = 1, 2, 3, 4 for Γ = 0.5, 0.2, 0.2, 0.15, respectively, are the choices
we have used.

In this study, the primary design is taken as one of the following five up-
and-down designs. To describe the designs, let us assume that the nth subject
is assigned to dose level dj , j = 1, . . . ,K.

24.2.1 The biased coin design (BCD)

The biased coin design is a randomized design introduced by Durham and
Flournoy (1994). For Γ ≤ 0.5, the biased coin design assigns the next subject
to

(i) Dose level max(d1, dj−1) if Y (n) = 1; that is, toxicity is observed in the
previous subject;
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(ii) Dose level min(dK , dj+1) with probability Γ/(1 − Γ) and dose level dj with
probability 1− [Γ/(1− Γ)], if Y (n) = 0.

24.2.2 The k-in-a-row rule (KROW)

The k-in-a-row design was introduced by Gezmu (1996) which can target any
Γ = 1− (0.5)1/k , where k is a positive integer. The k-in-a-row rule assigns the
next subject to

(i) Dose level max(d1, dj−1) if Y (n) = 1;
(ii) Dose level min(dK , dj+1) if Y (n) = Y (n − 1) = · · · = Y (n − k + 1) = 0;

that is, no toxicity is observed in the k most recent subjects receiving
dose dj ;

(iii) Dose level dj otherwise.

Note that selection of Γ is dependent on positive integer k.

24.2.3 The Narayana rule (NAR)

The Narayana rule was introduced by Narayana (1953) for Γ = 0.5. This has
been modified in Ivanova et al. (2003) in order to consider any Γ. The Narayana
rule assigns the next subject to

(i) Dose level max(d1, dj−1) if Q̂(dj , n) > Γ and if there is at least one toxicity
among the k most recent responses on the current dose level;

(ii) Dose level min(dK , dj+1) if Q̂(dj , n) < Γ and if there are no toxicities
among the k most recent responses on the current dose level;

(iii) Dose level dj otherwise.

Note that the rule uses the information on Q through its estimate at every
stage.

24.2.4 Continual reassessment method (CRM)

A Bayesian design for a phase I clinical trial, the continual reassessment method,
was proposed by O’Quigley, Pepe, and Fisher (1990). The restricted CRM sug-
gested by Faries (1994) and Korn et al. (1994) is to avoid a rapid escalation of
the dose by prohibiting any skipping of a dose level. For a more comprehensive
review on CRM, one may refer to Crowley (2001).

We choose a simple one-parameter dose–response model as the working
model for the CRM

Pr(Y = 1|dj , a) = αa
dj

,
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where (α1, α2, α3, . . . , α11) = (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.55,
0.7). This is the same as given in Ivanova et al. (2003).

The prior distribution of a is set to be g(a) = exp(−a), and is updated
using the Bayes theorem as data become available. Assume that n patients
have been assigned so far and the nth subject was allocated to level dj , j =
1, 2, . . . ,K. After observing the response of the nth patient, we have the data
Ωn = {(D(1), Y (1)), . . . , (D(n), Y (n))} and the likelihood function is

LΩn(a) =
n∏

j=1

[Pr(Y = 1|D(j), a)]Y (j) [1− Pr(Y = 1|D(j), a)]1−Y (j) .

The posterior density of a given LΩn(a) can be computed as

f(a|LΩn) =
LΩn(a)g(a)∫∞

0 LΩn(u)g(u)du
,

and the posterior mean is

ân = E(a|Ωn) =
∫ ∞

0
af(a|Ωn)da.

The dose–response probabilities can be updated as Pr(Y = 1|dj , ân). Ac-
cording to the restricted CRM, the (n + 1)th patient is assigned to one of the
dose levels di such that |Pr(Y = 1|di, ân)− Γ|, i = j − 1, j, j + 1, is minimized.

24.3 Estimation of Maximum Tolerated Dose

Several estimators of the MTD have been studied by Stylianou and Flournoy
(2002) which are also considered in Ivanova et al. (2003). In this section, a
review of these estimators will be given and a modified maximum likelihood
estimator will be proposed. Note that if all the subjects are assigned to the
start-up stage, then we will estimate µ by the highest dose without toxicity.
This will be so for each estimator described below.

• The Empirical Mean Estimator (EME):
A simple nonparametric estimator of µ is the mean of the dose assignments
distribution, called the empirical mean estimator. It is given by [see, for
example, Stylianou and Flournoy (2002)]

µ̂1 =
1

N − r + 2

N+1∑
i=r

D(i),

where r is the first subject in the design stage. Note that the (N + 1)th
dose assignment is included in the estimate.
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• The Isotonic Regression Estimator (IS):
Estimate Q(dj) by Q̂(dj) = Q̂(dj , N) = Xj(N)/Nj(N) for j = 1, . . . , h.

Estimators based on isotonic regression [see Robertson et al. (1988)]
can be used here. Because Q̂(d1), Q̂(d2), . . . , Q̂(dh) may not be isotonic,
therefore, the pool adjacent violators algorithm (PAVA) [see Barlow et al.
(1972)] is used to adjust Q̂s to obtain Q̂∗(d1) ≤ Q̂∗(d2) ≤ · · · ≤ Q̂∗(dh).
We can use linear interpolation to get the estimator

µ̂2(linear) = dm +
Γ− Q̂∗(dm)

Q̂∗(dm+1)− Q̂∗(dm)
(dm+1 − dm),

or use logistic type interpolation to get the estimator

µ̂2(logit) = dm +
logit(Γ) − logit[Q̂∗(dm)]

logit[Q̂∗(dm+1)]− logit[Q̂∗(dm)]
(dm+1 − dm),

where Q̂∗(dm) < Γ ≤ Q̂∗(dm+1) and logit(Z) = log[Z/(1 − Z)].

Based on linear interpolation, we propose the estimator (ISLIN) :

µ̂2a =

⎧⎪⎨⎪⎩
d1, if Γ < Q̂∗(d1),
dh, if Γ > Q̂∗(dh),
µ̂2(linear), otherwise.

Note that µ̂2a is equivalent to the modified isotonic estimator (MIE) dis-
cussed in Stylianou and Flournoy (2002).

As the logit function is undefined when Q̂∗(dm) = 0 or Q̂∗(dm+1) = 1, we
will use the following estimator (ISLOG):

µ̂2b =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d1, if Γ < Q̂∗(d1),
dh, if Γ > Q̂∗(dh),
µ̂2(linear), if Q̂∗(dm) < Γ ≤ Q̂∗(dm+1), Q̂∗(dm) = 0

or Q̂∗(dm+1) = 1,
µ̂2(logit), otherwise.

• Maximum Likelihood Estimator (MLE):
Consider the two-parameter logistic model for dose-toxicity function

Q(dj , a, b) =
exp(a + bdj)

1 + exp(a + bdj)
, j = 1, 2, . . . ,K.

The data are augmented by adding two observations so that the fitted
probability shrinks towards Γ by Clogg’s correction [Clogg et al. (1991)].
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The Clogg’s correction ensures the existence of the MLE of a and b. We
denote the resulting Q̂s after Clogg’s correction by Q̂c(d1), Q̂c(d2), . . . ,
Q̂c(dh). In other words, the MLEs of a and b are computed based on
Q̂c(d1), Q̂c(d2), . . ., Q̂c(dh). Then the MLE of µ is given by

µ̂3 =

⎧⎨⎩
d1 if µ̂′

3 < d1,
dK if µ̂′

3 > dK ,
µ̂′

3 otherwise,

where µ̂′
3 =

(
log
(

Γ
1−Γ

)
− â

)/
b̂.

• Modified Maximum Likelihood Estimator (MMLE):
Here, because Q̂c(d1), Q̂c(d2), . . . , Q̂c(dh) may not be isotonic, we suggest
applying the PAVA before computing the MLE of a and b, that is, compute
the MLE based on Q̂∗

c(d1) ≤ Q̂∗
c(d2) ≤ · · · ≤ Q̂∗

c(dh). The resulting MLEs
are, say â∗ and b̂∗:

µ̂4 =

⎧⎨⎩
d1, if µ̂′

4 < d1,
dK , if µ̂′

4 > dK ,
µ̂′

4, otherwise,

where µ̂′
4 =

(
log
(

Γ
1−Γ

)
− â∗

)/
b̂∗.

24.4 Simulation Setting

For the simulation study, we consider the following dose–response curves by
assuming the probability of toxicity at dose dj is given by the relationship:

Q(dj , a, b) = H(a + bdj), j = 1, 2, . . . ,K,

where H(·) is a monotone function that is twice differentiable. The following
models are used in the simulation study.

• Logistic:

H(x) =
exp(x)

1 + exp(x)
.

• Extreme-value:
H(x) = 1− exp [exp(x)] .

• Probit:

H(x) =
1√
2π

∫ x

−∞
exp

(
−u2

2

)
du.
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• Generalized Logistic:

H(x) =
[

exp(x)
1 + exp(x)

]α
, α > 0.

In the simulation study, we use [1] a = −6.0, b = 1.0, [2] a = −4.5, b = 0.5, [3]
a = −3.0, b = 0.5, [4] a = −6.0, b = 0.5, [5] a = −1.5, b = 0.25, and α = 2.0 for
the generalized logistic curves. The choice of parameters in [1], [2], and [3] will
place the target dose level within the selected range of dose levels, and those in
[4] and [5] will, respectively, tend to shift them to the right and left within the
selected range.

We consider the situation with K = 11 dose levels with dj = j, j =
1, 2, . . . , 11 and target toxicity Γ = 0.15, 0.2, 0.3, 0.5, giving rise to k = 4, 3, 2, 1,
respectively. Different sample sizes (N = 15, 25, 35, and 50) are considered
in the simulation study. In each scenario (crossover of dose–response curve,
sample size, and target toxicity), we simulated M = 10000 samples in order to
obtain the estimates for comparison.

It is important to mention here that for each configuration of the parameter
(a, b), the four dose–response curves listed above provide a reasonable degree of
variation (see Figures 24.1 to 24.5) thus allowing us to evaluate the performance
of the designs and estimators under a more flexible response setting. Moreover,
our selection of the three groups of the parameter (a, b) as described above help
us to examine the robustness features.

24.5 Comparison of Estimators

We use the following criteria for comparison.

• Bias (BIAS) and Mean Squared Error (MSE):
We compare the five estimators based on the bias and mean squared error
which are computed as

Bias =
1
M

M∑
i=1

µ̂(i) − µ, MSE =
1
M

M∑
i=1

(µ̂(i) − µ)2,

where µ̂i, i = 1, . . . ,M , are the resulting estimates of µ in each simulation.

• Bias (T-BIAS) and Mean Squared Error (T-MSE) of Probability of Tox-
icity at Target Dose:
In a phase I trial, it is important to estimate the probability of toxicity at
the target dose which is an estimate of Γ and see how close it is to Γ [see
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Stylianou et al. (2003)]. Therefore, in addition to the previous criterion,
we may use the following bias and mean squared error as measures,

T-Bias =
1
M

M∑
i=1

[
Q(µ̂(i), a, b)− Γ

]
,

T-MSE =
1
M

M∑
i=1

[
Q(µ̂(i), a, b)− Γ

]2
,

where Q(µ̂(i), a, b) is the probability of toxicity at µ̂(i) based on the dose–
response curve (assume that we know the underlying dose–response curve)
in each simulation.

The average BIAS and MSE and the average T-Bias and T-MSE (aver-
aged over the four dose–response curves given earlier) of each estimator for the
five parameter configurations [1] to [5] are presented in Tables 24.1 to 24.8,
respectively. These results are based on the BCD only. However, we are not
presenting results for other designs, because they manifest similar patterns as
far as the comparison of estimators is concerned.

From these results, we observe that the isotonic regression estimator based
on the logistic interpolation is, in most cases, better than the one based on the
linear interpolation. It is also observed that the MMLE is consistently better
than the MLE. Moreover, in most cases, the MMLE has better performance
than the other estimators in terms of MSE and T-MSE, whereas ISLOG per-
forms better than the MMLE in some scenarios. In addition, our simulation
results (not presented here) have revealed that the superiority of MMLE is
maintained even when the underlying model is not logistic. Because of these
observations, we will use ISLOG and MMLE for comparison of designs.

24.6 Comparison of Designs

We compare the five designs based on the measures described below.

• Mean Squared Error (MSE):
Because of our observation in Section 24.5 that among the five estimators
ISLOG and MMLE have better performance in general, we will use MSE
of ISLOG and MMLE for comparison.

• Mean Squared Error of Probability of toxicity at target dose (T-MSE):
Another natural measure by which the designs can be compared is T-MSE
as it measures the closeness of Γ to the probability of toxicity evaluated
from the dose–response curve. Hence, it is appropriate to consider T-MSE
of ISLOG and MMLE.
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• Average Squared Targeting Error (TE):
The main aim of these designs is to assign most subjects to dose levels
close to the target level. A measure for the closeness is the average squared
targeting error as given by

1
N − r + 1

N∑
i=r

[D(i)− µ]2,

where r is the first subject in the design stage. We then take the average
of these values over the simulation runs. If we do not go into the design
stage (all subjects are in the start-up stage), this quantity will be set to
0 and, therefore, will not be taken into account.

• Average Proportion of Toxic Responses (TOX):
For ethical reasons, it is important to have as few toxic responses as
possible. Thus, for comparison of designs, one may calculate average
proportion of toxic responses as given by

1
N − r + 1

N∑
i=r

Y (i),

where r is the first subject in the design stage. We then take the average
of these values over the simulation runs. If we do not go into the design
stage (all subjects are in the start-up stage), this quantity will be set to
0 and, therefore, will not be taken into account.

For the purpose of comparison, we divided the dose–response curves consid-
ered in the simulation study into three groups by the location of the true MTD:
(1) within the selected dose levels ([1] a = −6.0, b = 1.0; [2] a = −4.5, b = 0.5;
[3] a = −3.0, b = 0.5); (2) shifted to the right within the selected dose levels ([4]
a = −6.0, b = 0.5); and (3) shifted to the left within the selected dose levels ([5]
a = −1.5, b = 0.25). Because the BCD is the design most commonly referred to
in the literature, we calculate the ratio of a comparison measure of the BCD to
that of every other design, and use the average value of this ratio as an overall
measure. These values are presented in Tables 24.9 to 24.14. A value less than
1 means the BCD is a better design.

From Tables 24.9 to 24.12, we can see that for the group of dose–response
curves wherein the true MTD are within the selected dose levels, NAR is a
better design in terms of MSE and BCD is a better design in terms of T-MSE.
This additional information, which was not observed earlier, will be of interest
if T-MSE is of primary concern.

KROW performs better in most scenarios for the group of dose–response
curves wherein the true MTD are to the right of the selected dose levels and
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BCD is better in most scenarios for the group of dose–response curves wherein
the true MTD are on the left of the selected dose levels.

The purpose of an up-and-down design is to have trials close to µ. From this
point of view, the efficacy of a design is reflected by comparison of TE (Table
24.13). We can see that CRM targets Γ better than the others, for Γ = 0.15, 0.2,
and 0.3 except when Γ = 0.3 and the true MTD is shifted to the left within the
selected dose levels. For Γ = 0.5, NAR performs better in most cases but CRM
is comparable.

It is well known that the KROW and CRM tend to overdose patients. This
can be seen from the measure TOX in Table 24.14. In terms of TOX, it is
clear that BCD gives the lowest average proportion of toxic responses and the
average proportion of toxic responses of NAR are higher than those of BCD but
lower than those of KROW and CRM. In situations where avoiding overdose
is the primary concern of the experimenter, for example, when patients who
are treated at a dose level above the MTD are expected to have serious health
problems or side effects, BCD will be the best choice for phase I trials even
though it will suffer from a loss in efficiency in the estimation of MTD. But
if avoiding overdose is not a predominant concern, we suggest the use of NAR
because it performs well (based on the criteria considered) and has a relatively
lower average proportion of toxic responses compared to other designs.

Overall, if we compare the designs from the estimation point of view, CRM
outperforms the other designs in general for small values of Γ (Γ = 0.15 and
0.2). However, its performance becomes worse for larger values of Γ (Γ = 0.3
and 0.5) even though it has comparatively a higher average proportion of toxic
responses in these cases. In these cases when Γ = 0.3 and 0.5, NAR is observed
to be a better design to use. Thus, when one is particularly interested in the
case of Γ = 0.5 (ED50, for example), it is observed that the CRM is undesirable
on two counts: one, that the performance is poor in general under the different
criteria considered and second, that it has a higher average proportion of toxic
responses. In this case, NAR seems to be the best design to use on both grounds.

Finally, Γ and N will usually be known in advance and so the tables pre-
sented here can serve as a guideline for selecting a suitable design. For example,
if Γ = 0.15 and N = 35, CRM should be used; if its toxicity measure is consid-
ered to be too high, NAR should be selected.

Our observation that CRM performs better but rapidly escalates assignment
of subjects to highly toxic doses is in agreement with Ivanova et al. (2003).
However, differing from their conclusion, we find KROW to be not as efficient
as CRM or NAR.

An important point to keep in mind is that although the conclusions of
Ivanova et al. (2003) are based only on the logistic model, our study is not
model specific. In addition, we have included MMLE as an estimator and
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T-MSE as a criterion for comparison of designs, and therefore have added
strength to our conclusions for practical applications.

Acknowledgements. We would like to thank the two referees for their com-
ments and suggestions which resulted in a much improved version of the
manuscript.

Table 24.1: Bias and MSE of the estimators under biased-coin design with
N = 15

Γ = 0.15 Γ = 0.2 Γ = 0.3 Γ = 0.5

Estimator Bias MSE Bias MSE Bias MSE Bias MSE

[1] EME -1.148 1.807 -0.858 1.356 -0.528 0.988 -0.219 0.362
ISLIN -1.087 1.570 -0.576 0.786 -0.185 0.632 0.004 0.418
ISLOG -1.087 1.569 -0.575 0.783 -0.179 0.625 0.005 0.417
MLE -1.094 1.604 -0.584 0.902 -0.273 0.819 -0.101 0.393

MMLE -1.077 1.536 -0.546 0.747 -0.232 0.639 -0.119 0.380

[2] EME -2.907 9.550 -2.652 8.124 -1.686 4.712 -1.014 2.125
ISLIN -2.826 9.039 -2.460 7.082 -1.322 3.162 -0.366 1.272
ISLOG -2.825 9.032 -2.459 7.073 -1.319 3.146 -0.364 1.270
MLE -2.860 9.258 -2.534 7.630 -1.511 4.541 -0.318 1.619

MMLE -2.825 9.023 -2.458 7.098 -1.348 3.297 -0.348 1.365

[3] EME -0.841 1.667 -0.940 1.900 -0.381 0.552 -0.647 1.299
ISLIN -0.675 1.386 -0.593 1.391 -0.033 0.578 -0.098 1.190
ISLOG -0.668 1.377 -0.583 1.373 0.002 0.571 -0.097 1.189
MLE -0.718 1.430 -0.705 1.675 -0.101 0.451 -0.242 1.369

MMLE -0.648 1.320 -0.573 1.344 -0.082 0.407 -0.281 1.198

[4] EME -5.586 32.405 -5.198 28.095 -3.399 12.900 -2.336 6.543
ISLIN -5.562 32.122 -5.163 27.674 -3.292 11.899 -1.761 4.333
ISLOG -5.562 32.122 -5.163 27.673 -3.292 11.896 -1.760 4.332
MLE -5.575 32.282 -5.188 28.006 -3.350 12.763 -1.758 5.048

MMLE -5.563 32.128 -5.167 27.728 -3.278 11.837 -1.693 4.154

[5] EME 0.960 1.914 -0.960 1.732 -0.684 1.410 -0.198 0.538
ISLIN 0.931 1.705 -0.623 1.081 -0.275 0.914 0.068 0.955
ISLOG 0.943 1.720 -0.620 1.073 -0.265 0.901 0.069 0.954
MLE 0.983 1.866 -0.660 1.274 -0.401 1.256 -0.127 0.834

MMLE 0.999 1.847 -0.588 1.030 -0.320 0.929 -0.106 0.731

EME: Empirical Mean Estimator, ISLIN: Isotonic Regression Estimator with Linear Inter-
polation, ISLIN: Isotonic Regression Estimator with Logistic Interpolation, MLE: Maximum
Likelihood Estimator, MMLE: Modified Maximum Likelihood Estimator.

[1] a = −6.0, b = 1.0, [2] a = −4.5, b = 0.5, [3] a = −3.0, b = 0.5, [4] a = −6.0, b = 0.5,

[5] a = −1.5, b = 0.25.
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Table 24.2: Bias and MSE of the estimators under biased-coin design with
N = 25

Γ = 0.15 Γ = 0.2 Γ = 0.3 Γ = 0.5

Estimator Bias MSE Bias MSE Bias MSE Bias MSE

[1] EME -0.536 1.059 -0.477 0.815 -0.365 0.508 -0.123 0.182
ISLIN -0.196 0.657 -0.155 0.495 -0.064 0.343 0.010 0.249
ISLOG -0.188 0.647 -0.132 0.485 -0.032 0.338 0.011 0.247
MLE -0.182 0.742 -0.184 0.550 -0.158 0.322 -0.095 0.196

MMLE -0.139 0.597 -0.149 0.429 -0.152 0.293 -0.104 0.195

[2] EME -1.321 3.531 -1.193 3.353 -1.014 2.444 -0.649 0.964
ISLIN -1.002 2.415 -0.691 2.034 -0.339 1.336 -0.103 0.735
ISLOG -0.995 2.391 -0.677 2.001 -0.313 1.313 -0.102 0.734
MLE -1.095 3.029 -0.848 2.977 -0.515 2.016 -0.123 0.724

MMLE -0.978 2.387 -0.692 2.045 -0.445 1.440 -0.183 0.707

[3] EME -0.511 1.259 -0.606 1.294 -0.483 0.826 -0.380 0.661
ISLIN -0.192 1.076 -0.202 1.047 -0.041 0.780 0.047 0.876
ISLOG -0.165 1.063 -0.166 1.030 -0.005 0.772 0.047 0.874
MLE -0.255 1.216 -0.308 1.233 -0.155 0.681 -0.139 0.722

MMLE -0.135 1.002 -0.186 0.946 -0.129 0.592 -0.179 0.670

[4] EME -3.050 10.845 -2.155 6.602 -1.808 4.750 -1.953 4.519
ISLIN -2.924 9.835 -1.920 5.096 -1.186 2.636 -1.414 2.872
ISLOG -2.924 9.830 -1.918 5.084 -1.175 2.608 -1.413 2.870
MLE -2.969 10.383 -1.994 6.132 -1.268 3.942 -1.359 2.906

MMLE -2.917 9.820 -1.888 5.025 -1.152 2.675 -1.353 2.746

[5] EME 1.009 1.918 -0.561 1.081 -0.457 0.753 -0.076 0.339
ISLIN 0.896 1.549 -0.186 0.716 -0.073 0.545 0.085 0.746
ISLOG 0.918 1.571 -0.157 0.701 -0.040 0.539 0.085 0.743
MLE 0.967 1.793 -0.230 0.827 -0.167 0.533 -0.080 0.525

MMLE 0.958 1.656 -0.164 0.632 -0.152 0.461 -0.066 0.481

EME: Empirical Mean Estimator, ISLIN: Isotonic Regression Estimator with Linear Inter-
polation, ISLIN: Isotonic Regression Estimator with Logistic Interpolation, MLE: Maximum
Likelihood Estimator, MMLE: Modified Maximum Likelihood Estimator.

[1] a = −6.0, b = 1.0, [2] a = −4.5, b = 0.5, [3] a = −3.0, b = 0.5, [4] a = −6.0, b = 0.5,

[5] a = −1.5, b = 0.25.
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Table 24.3: Bias and MSE of the estimators under biased-coin design with
N = 35

Γ = 0.15 Γ = 0.2 Γ = 0.3 Γ = 0.5

Estimator Bias MSE Bias MSE Bias MSE Bias MSE

[1] EME -0.475 0.737 -0.414 0.555 -0.308 0.337 -0.089 0.121
ISLIN -0.161 0.429 -0.108 0.328 -0.059 0.234 0.005 0.170
ISLOG -0.124 0.419 -0.059 0.322 -0.016 0.230 0.006 0.167
MLE -0.131 0.455 -0.108 0.302 -0.118 0.197 -0.079 0.139

MMLE -0.095 0.350 -0.092 0.254 -0.115 0.188 -0.085 0.139

[2] EME -1.046 2.708 -0.931 2.279 -0.750 1.490 -0.515 0.624
ISLIN -0.547 1.641 -0.339 1.334 -0.123 0.908 -0.068 0.527
ISLOG -0.523 1.603 -0.300 1.303 -0.088 0.895 -0.067 0.524
MLE -0.657 2.344 -0.464 1.846 -0.264 1.041 -0.089 0.478

MMLE -0.508 1.581 -0.366 1.278 -0.255 0.864 -0.141 0.457

[3] EME -0.421 0.938 -0.486 0.945 -0.620 1.199 -0.264 0.429
ISLIN -0.106 0.854 -0.107 0.842 -0.113 0.977 0.046 0.660
ISLOG -0.059 0.846 -0.058 0.832 -0.081 0.966 0.046 0.656
MLE -0.143 0.899 -0.163 0.833 -0.265 1.049 -0.112 0.482

MMLE -0.044 0.742 -0.088 0.687 -0.209 0.839 -0.138 0.459

[4] EME -1.898 5.443 -1.531 4.093 -1.424 2.977 -1.852 4.019
ISLIN -1.604 3.926 -0.981 2.297 -0.704 1.293 -1.345 2.613
ISLOG -1.599 3.901 -0.965 2.259 -0.681 1.264 -1.344 2.611
MLE -1.706 5.057 -1.070 3.548 -0.691 1.666 -1.309 2.652

MMLE -1.578 3.872 -0.942 2.293 -0.681 1.345 -1.307 2.537

[5] EME 1.030 1.899 -0.482 0.768 -0.375 0.504 -0.022 0.242
ISLIN 0.868 1.446 -0.120 0.516 -0.052 0.394 0.069 0.566
ISLOG 0.892 1.465 -0.071 0.506 -0.012 0.389 0.069 0.562
MLE 0.949 1.710 -0.127 0.504 -0.116 0.328 -0.063 0.370

MMLE 0.936 1.559 -0.092 0.413 -0.109 0.302 -0.049 0.348

EME: Empirical Mean Estimator, ISLIN: Isotonic Regression Estimator with Linear Inter-
polation, ISLIN: Isotonic Regression Estimator with Logistic Interpolation, MLE: Maximum
Likelihood Estimator, MMLE: Modified Maximum Likelihood Estimator.

[1] a = −6.0, b = 1.0, [2] a = −4.5, b = 0.5, [3] a = −3.0, b = 0.5, [4] a = −6.0, b = 0.5,

[5] a = −1.5, b = 0.25.
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Table 24.4: Bias and MSE of the estimators under biased-coin design with
N = 50

Γ = 0.15 Γ = 0.2 Γ = 0.3 Γ = 0.5

Estimator Bias MSE Bias MSE Bias MSE Bias MSE

[1] EME -0.431 0.516 -0.374 0.383 -0.272 0.228 -0.064 0.081
ISLIN -0.130 0.285 -0.093 0.225 -0.058 0.154 0.002 0.115
ISLOG -0.068 0.276 -0.030 0.218 -0.010 0.150 0.003 0.111
MLE -0.068 0.253 -0.062 0.174 -0.084 0.126 -0.063 0.101

MMLE -0.048 0.209 -0.054 0.161 -0.080 0.122 -0.067 0.101

[2] EME -0.820 1.849 -0.733 1.477 -0.568 0.897 -0.429 0.430
ISLIN -0.280 1.104 -0.175 0.893 -0.065 0.635 -0.059 0.373
ISLOG -0.227 1.074 -0.123 0.875 -0.030 0.626 -0.059 0.369
MLE -0.338 1.425 -0.238 0.942 -0.162 0.570 -0.076 0.316

MMLE -0.245 0.978 -0.201 0.747 -0.168 0.526 -0.120 0.304

[3] EME -0.341 0.676 -0.409 0.665 -0.927 2.099 -0.190 0.286
ISLIN -0.070 0.679 -0.083 0.656 -0.448 1.434 0.023 0.479
ISLOG -0.011 0.675 -0.030 0.647 -0.433 1.412 0.022 0.475
MLE -0.063 0.623 -0.091 0.546 -0.654 2.043 -0.091 0.357

MMLE 0.008 0.540 -0.044 0.481 -0.502 1.466 -0.109 0.344

[4] EME -1.264 3.269 -1.167 2.480 -1.216 2.059 -1.798 3.783
ISLIN -0.647 1.668 -0.474 1.073 -0.553 0.913 -1.309 2.508
ISLOG -0.616 1.625 -0.434 1.035 -0.529 0.892 -1.308 2.507
MLE -0.723 2.646 -0.498 1.495 -0.491 0.915 -1.289 2.547

MMLE -0.610 1.636 -0.463 1.055 -0.521 0.892 -1.289 2.476

[5] EME 1.047 1.883 -0.416 0.521 -0.317 0.345 0.017 0.175
ISLIN 0.840 1.364 -0.090 0.369 -0.054 0.276 0.045 0.431
ISLOG 0.865 1.377 -0.031 0.360 -0.012 0.271 0.045 0.427
MLE 0.926 1.610 -0.065 0.301 -0.078 0.216 -0.050 0.275

MMLE 0.905 1.438 -0.045 0.267 -0.072 0.205 -0.038 0.264

EME: Empirical Mean Estimator, ISLIN: Isotonic Regression Estimator with Linear Inter-
polation, ISLIN: Isotonic Regression Estimator with Logistic Interpolation, MLE: Maximum
Likelihood Estimator, MMLE: Modified Maximum Likelihood Estimator.

[1] a = −6.0, b = 1.0, [2] a = −4.5, b = 0.5, [3] a = −3.0, b = 0.5, [4] a = −6.0, b = 0.5,

[5] a = −1.5, b = 0.25.
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Table 24.5: T-Bias and T-MSE of the estimators under biased-coin design with
N = 15

Γ = 0.15 Γ = 0.2 Γ = 0.3 Γ = 0.5
Estimator T-Bias T-MSE T-Bias T-MSE T-Bias T-MSE T-Bias T-MSE

[1] EME -0.102 0.012 -0.099 0.016 -0.078 0.032 -0.060 0.027
ISLIN -0.100 0.012 -0.074 0.012 -0.013 0.030 0.000 0.030
ISLOG -0.100 0.012 -0.074 0.012 -0.012 0.030 0.001 0.030
MLE -0.101 0.012 -0.072 0.012 -0.027 0.030 -0.030 0.029

MMLE -0.100 0.012 -0.071 0.012 -0.025 0.029 -0.035 0.029
[2] EME -0.118 0.015 -0.150 0.024 -0.144 0.031 -0.137 0.038

ISLIN -0.117 0.015 -0.145 0.023 -0.122 0.025 -0.048 0.026
ISLOG -0.117 0.015 -0.145 0.023 -0.122 0.025 -0.047 0.026
MLE -0.118 0.015 -0.146 0.023 -0.129 0.027 -0.037 0.028

MMLE -0.117 0.015 -0.145 0.023 -0.124 0.025 -0.044 0.027
[3] EME -0.048 0.006 -0.066 0.010 -0.041 0.007 -0.091 0.026

ISLIN -0.039 0.006 -0.039 0.009 0.003 0.009 -0.012 0.024
ISLOG -0.039 0.006 -0.038 0.009 0.008 0.009 -0.012 0.024
MLE -0.042 0.005 -0.045 0.009 -0.006 0.007 -0.033 0.026

MMLE -0.038 0.005 -0.037 0.009 -0.004 0.006 -0.040 0.024
[4] EME -0.142 0.020 -0.187 0.035 -0.245 0.062 -0.299 0.099

ISLIN -0.141 0.020 -0.186 0.035 -0.243 0.061 -0.235 0.070
ISLOG -0.141 0.020 -0.186 0.035 -0.243 0.061 -0.235 0.070
MLE -0.141 0.020 -0.186 0.035 -0.243 0.061 -0.228 0.068

MMLE -0.141 0.020 -0.186 0.035 -0.243 0.061 -0.227 0.067
[5] EME 0.098 0.018 -0.089 0.014 -0.083 0.027 -0.029 0.012

ISLIN 0.094 0.017 -0.059 0.011 -0.023 0.025 0.010 0.020
ISLOG 0.095 0.017 -0.059 0.011 -0.021 0.025 0.010 0.020
MLE 0.100 0.019 -0.060 0.011 -0.037 0.026 -0.019 0.017

MMLE 0.102 0.019 -0.056 0.011 -0.031 0.024 -0.016 0.016

EME: Empirical Mean Estimator, ISLIN: Isotonic Regression Estimator with Linear Inter-
polation, ISLIN: Isotonic Regression Estimator with Logistic Interpolation, MLE: Maximum
Likelihood Estimator, MMLE: Modified Maximum Likelihood Estimator.

[1] a = −6.0, b = 1.0, [2] a = −4.5, b = 0.5, [3] a = −3.0, b = 0.5, [4] a = −6.0, b = 0.5,
[5] a = −1.5, b = 0.25.

T-Bias: Bias of probability of toxicity at target dose; T-MSE: MSE of probability of toxicity

at target dose.
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Table 24.6: T-Bias and T-MSE of the estimators under biased-coin design with
N = 25

Γ = 0.15 Γ = 0.2 Γ = 0.3 Γ = 0.5
Estimator T-Bias T-MSE T-Bias T-MSE T-Bias T-MSE T-Bias T-MSE

[1] EME -0.033 0.014 -0.048 0.015 -0.063 0.019 -0.036 0.015
ISLIN 0.005 0.015 -0.001 0.016 0.001 0.019 0.002 0.019
ISLOG 0.006 0.015 0.003 0.016 0.009 0.020 0.002 0.019
MLE 0.010 0.015 -0.006 0.014 -0.024 0.016 -0.029 0.016

MMLE 0.012 0.015 -0.004 0.014 -0.024 0.015 -0.032 0.016
[2] EME -0.061 0.008 -0.068 0.014 -0.091 0.021 -0.092 0.019

ISLIN -0.050 0.007 -0.036 0.012 -0.023 0.017 -0.013 0.016
ISLOG -0.050 0.007 -0.035 0.012 -0.020 0.017 -0.013 0.016
MLE -0.051 0.007 -0.041 0.013 -0.037 0.018 -0.018 0.015

MMLE -0.049 0.007 -0.036 0.012 -0.035 0.017 -0.026 0.015
[3] EME -0.024 0.007 -0.041 0.009 -0.050 0.010 -0.055 0.014

ISLIN 0.000 0.008 -0.003 0.010 0.005 0.013 0.006 0.018
ISLOG 0.002 0.008 0.000 0.010 0.010 0.013 0.006 0.018
MLE -0.002 0.007 -0.011 0.010 -0.010 0.010 -0.021 0.015

MMLE 0.004 0.007 -0.003 0.009 -0.008 0.009 -0.027 0.014
[4] EME -0.120 0.015 -0.128 0.019 -0.162 0.033 -0.265 0.078

ISLIN -0.118 0.015 -0.122 0.018 -0.114 0.023 -0.199 0.052
ISLOG -0.118 0.015 -0.122 0.018 -0.113 0.023 -0.198 0.052
MLE -0.118 0.015 -0.122 0.018 -0.111 0.024 -0.189 0.049

MMLE -0.118 0.015 -0.120 0.018 -0.109 0.023 -0.190 0.049
[5] EME 0.102 0.018 -0.047 0.013 -0.062 0.017 -0.011 0.008

ISLIN 0.088 0.014 -0.002 0.014 0.002 0.018 0.011 0.015
ISLOG 0.090 0.015 0.002 0.014 0.008 0.018 0.011 0.015
MLE 0.097 0.018 -0.006 0.013 -0.016 0.015 -0.013 0.011

MMLE 0.095 0.016 -0.002 0.012 -0.015 0.014 -0.011 0.010

EME: Empirical Mean Estimator, ISLIN: Isotonic Regression Estimator with Linear Inter-
polation, ISLIN: Isotonic Regression Estimator with Logistic Interpolation, MLE: Maximum
Likelihood Estimator, MMLE: Modified Maximum Likelihood Estimator.

[1] a = −6.0, b = 1.0, [2] a = −4.5, b = 0.5, [3] a = −3.0, b = 0.5, [4] a = −6.0, b = 0.5,
[5] a = −1.5, b = 0.25.

T-Bias: Bias of probability of toxicity at target dose; T-MSE: MSE of probability of toxicity

at target dose.
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Table 24.7: T-Bias and T-MSE of the estimators under biased-coin design with
N = 35

Γ = 0.15 Γ = 0.2 Γ = 0.3 Γ = 0.5
Estimator T-Bias T-MSE T-Bias T-MSE T-Bias T-MSE T-Bias T-MSE

[1] EME -0.038 0.009 -0.049 0.011 -0.059 0.014 -0.026 0.010
ISLIN -0.001 0.010 -0.002 0.011 -0.003 0.014 0.001 0.014
ISLOG 0.004 0.010 0.008 0.012 0.008 0.014 0.001 0.013
MLE 0.003 0.009 -0.004 0.009 -0.020 0.011 -0.025 0.012

MMLE 0.005 0.008 -0.003 0.009 -0.019 0.010 -0.027 0.012
[2] EME -0.047 0.008 -0.057 0.011 -0.072 0.015 -0.075 0.013

ISLIN -0.020 0.007 -0.012 0.011 -0.002 0.014 -0.009 0.012
ISLOG -0.019 0.007 -0.008 0.011 0.002 0.014 -0.009 0.012
MLE -0.022 0.007 -0.019 0.010 -0.019 0.013 -0.013 0.011

MMLE -0.018 0.007 -0.016 0.010 -0.020 0.012 -0.021 0.010
[3] EME -0.022 0.005 -0.034 0.007 -0.062 0.014 -0.039 0.009

ISLIN 0.004 0.007 0.003 0.009 -0.001 0.015 0.006 0.014
ISLOG 0.008 0.007 0.008 0.009 0.003 0.015 0.006 0.014
MLE 0.002 0.006 -0.002 0.007 -0.018 0.013 -0.017 0.010

MMLE 0.008 0.006 0.003 0.007 -0.015 0.012 -0.021 0.010
[4] EME -0.090 0.010 -0.096 0.014 -0.139 0.025 -0.256 0.073

ISLIN -0.082 0.009 -0.065 0.011 -0.073 0.014 -0.191 0.049
ISLOG -0.082 0.009 -0.064 0.011 -0.071 0.014 -0.191 0.048
MLE -0.083 0.009 -0.063 0.011 -0.066 0.015 -0.185 0.047

MMLE -0.081 0.009 -0.061 0.011 -0.068 0.014 -0.186 0.047
[5] EME 0.103 0.018 -0.045 0.010 -0.055 0.012 -0.003 0.006

ISLIN 0.083 0.013 0.001 0.011 0.002 0.014 0.009 0.012
ISLOG 0.086 0.013 0.008 0.011 0.010 0.014 0.009 0.012
MLE 0.094 0.017 -0.001 0.009 -0.012 0.010 -0.010 0.008

MMLE 0.091 0.014 0.002 0.009 -0.011 0.010 -0.008 0.008

EME: Empirical Mean Estimator, ISLIN: Isotonic Regression Estimator with Linear Inter-
polation, ISLIN: Isotonic Regression Estimator with Logistic Interpolation, MLE: Maximum
Likelihood Estimator, MMLE: Modified Maximum Likelihood Estimator.

[1] a = −6.0, b = 1.0, [2] a = −4.5, b = 0.5, [3] a = −3.0, b = 0.5, [4] a = −6.0, b = 0.5,
[5] a = −1.5, b = 0.25.

T-Bias: Bias of probability of toxicity at target dose; T-MSE: MSE of probability of toxicity

at target dose.
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Table 24.8: T-Bias and T-MSE of the estimators under biased-coin design with
N = 50

Γ = 0.15 Γ = 0.2 Γ = 0.3 Γ = 0.5
Estimator T-Bias T-MSE T-Bias T-MSE T-Bias T-MSE T-Bias T-MSE

[1] EME -0.042 0.006 -0.051 0.008 -0.056 0.010 -0.020 0.007
ISLIN -0.005 0.006 -0.005 0.008 -0.007 0.009 0.000 0.010
ISLOG 0.006 0.007 0.008 0.008 0.006 0.009 0.001 0.009
MLE 0.003 0.005 -0.001 0.006 -0.014 0.007 -0.020 0.009

MMLE 0.005 0.005 0.000 0.006 -0.014 0.007 -0.021 0.009
[2] EME -0.040 0.006 -0.049 0.008 -0.058 0.010 -0.063 0.009

ISLIN -0.005 0.006 -0.003 0.008 0.001 0.010 -0.008 0.009
ISLOG -0.001 0.006 0.003 0.008 0.005 0.010 -0.008 0.008
MLE -0.007 0.006 -0.009 0.007 -0.012 0.008 -0.012 0.007

MMLE -0.004 0.005 -0.007 0.006 -0.014 0.008 -0.018 0.007
[3] EME -0.019 0.004 -0.031 0.005 -0.087 0.021 -0.028 0.006

ISLIN 0.004 0.005 0.002 0.007 -0.036 0.018 0.003 0.010
ISLOG 0.009 0.006 0.008 0.007 -0.034 0.018 0.003 0.010
MLE 0.005 0.004 0.001 0.005 -0.052 0.020 -0.014 0.008

MMLE 0.010 0.004 0.004 0.005 -0.042 0.018 -0.017 0.007
[4] EME -0.061 0.007 -0.081 0.010 -0.127 0.021 -0.251 0.070

ISLIN -0.030 0.006 -0.031 0.007 -0.060 0.011 -0.187 0.047
ISLOG -0.028 0.006 -0.028 0.007 -0.057 0.011 -0.186 0.047
MLE -0.028 0.006 -0.029 0.007 -0.051 0.011 -0.183 0.046

MMLE -0.027 0.006 -0.030 0.007 -0.055 0.011 -0.184 0.046
[5] EME 0.105 0.018 -0.044 0.007 -0.049 0.009 0.003 0.004

ISLIN 0.079 0.012 0.000 0.008 -0.002 0.009 0.006 0.009
ISLOG 0.082 0.012 0.008 0.008 0.006 0.010 0.006 0.009
MLE 0.090 0.015 0.002 0.006 -0.008 0.007 -0.008 0.006

MMLE 0.087 0.013 0.004 0.006 -0.007 0.007 -0.007 0.006

EME: Empirical Mean Estimator, ISLIN: Isotonic Regression Estimator with Linear Inter-
polation, ISLIN: Isotonic Regression Estimator with Logistic Interpolation, MLE: Maximum
Likelihood Estimator, MMLE: Modified Maximum Likelihood Estimator.

[1] a = −6.0, b = 1.0, [2] a = −4.5, b = 0.5, [3] a = −3.0, b = 0.5, [4] a = −6.0, b = 0.5,
[5] a = −1.5, b = 0.25.

T-Bias: Bias of probability of toxicity at target dose; T-MSE: MSE of probability of toxicity

at target dose.



380 H. K. T. Ng, S. G. Mohanty, and N. Balakrishnan

T
ab

le
24

.9
:

R
at

io
of

M
SE

fo
r

IS
L
O

G
to

B
ia

se
d

co
in

de
si

gn

W
it

h
in

S
e
le

c
te

d
D

o
se

L
e
v
e
ls

R
ig

h
t

o
f
S
e
le

c
te

d
D

o
se

L
e
v
e
ls

L
e
ft

o
f
S
e
le

c
te

d
D

o
se

L
e
v
e
ls

Γ
D

e
si

g
n
s

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

0
.1

5
K

R
O

W
1
.1

5
0
.8

8
0
.8

1
0
.9

8
1
.0

3
1
.4

4
1
.9

5
1
.7

8
0
.5

4
0
.6

1
0
.7

2
0
.8

0
N

A
R

1
.6

7
1
.3

2
1
.1

7
1
.1

6
1
.0

2
1
.2

9
1
.6

3
1
.6

5
0
.7

8
0
.8

2
0
.8

9
0
.9

0
C

R
M

1
.0

3
1
.1

8
1
.3

7
1
.4

6
0
.9

7
0
.8

0
1
.8

5
1
.8

7
0
.8

0
1
.0

0
1
.0

6
1
.0

6
0
.2

K
R

O
W

1
.3

2
0
.9

6
1
.0

3
1
.1

7
1
.0

6
1
.9

7
2
.0

4
1
.5

7
0
.5

3
0
.6

3
0
.7

8
0
.8

7
N

A
R

1
.2

3
1
.0

8
1
.0

6
1
.1

8
1
.0

4
1
.5

3
1
.6

9
1
.4

7
0
.7

9
0
.8

6
0
.9

5
1
.0

0
C

R
M

1
.2

8
1
.2

5
1
.3

7
1
.4

2
1
.1

8
1
.2

6
1
.9

1
1
.4

7
1
.0

2
1
.1

1
1
.2

6
1
.4

1
0
.3

K
R

O
W

1
.3

3
0
.9

6
1
.0

3
1
.1

0
1
.1

7
2
.1

1
1
.5

5
1
.2

8
0
.6

5
0
.7

5
0
.8

9
0
.9

3
N

A
R

1
.2

1
1
.1

0
1
.1

8
1
.2

5
1
.1

0
1
.5

3
1
.3

3
1
.2

8
0
.9

5
1
.0

5
1
.1

0
1
.0

9
C

R
M

1
.1

8
1
.1

0
1
.1

7
1
.1

6
0
.7

8
1
.7

0
1
.0

1
0
.8

6
0
.9

9
1
.1

5
1
.3

5
1
.5

5
0
.5

K
R

O
W

1
.0

1
1
.0

0
1
.0

0
1
.0

2
1
.0

1
0
.9

8
1
.0

0
0
.9

9
0
.9

9
0
.9

9
0
.9

9
1
.0

0
N

A
R

1
.0

5
1
.1

8
1
.2

2
1
.2

4
0
.8

6
0
.9

8
1
.0

4
1
.0

4
1
.1

9
1
.2

7
1
.2

7
1
.2

8
C

R
M

0
.7

2
0
.7

3
0
.7

2
0
.6

7
1
.1

5
0
.7

8
0
.7

2
0
.6

9
0
.8

9
0
.9

9
1
.0

4
0
.9

4

K
R

O
W

:
k
-i
n
-a

-r
o
w

ru
le

,
N

A
R

:
N

a
ra

y
a
n
a

ru
le

,
C

R
M

:
C

o
n
ti

n
u
a
l
R

e
a
ss

e
ss

m
e
n
t

M
o
d
e
l.

T
ab

le
24

.1
0:

R
at

io
of

T
-M

SE
fo

r
IS

L
O

G
to

bi
as

ed
co

in
de

si
gn

W
it

h
in

S
e
le

c
te

d
D

o
se

L
e
v
e
ls

R
ig

h
t

o
f
S
e
le

c
te

d
D

o
se

L
e
v
e
ls

L
e
ft

o
f
S
e
le

c
te

d
D

o
se

L
e
v
e
ls

Γ
D

e
si

g
n
s

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

0
.1

5
K

R
O

W
0
.8

0
0
.3

2
0
.4

0
0
.7

0
1
.0

1
1
.0

3
0
.8

4
0
.9

6
0
.4

4
0
.5

4
0
.6

7
0
.7

6
N

A
R

0
.6

8
0
.8

1
0
.7

4
0
.8

7
1
.0

1
1
.0

5
0
.9

1
1
.0

0
0
.7

2
0
.7

8
0
.8

6
0
.8

7
C

R
M

1
.0

3
0
.8

9
1
.0

7
1
.4

5
0
.9

9
0
.9

3
1
.4

0
1
.4

5
1
.0

2
1
.0

0
1
.0

9
1
.2

7
0
.2

K
R

O
W

0
.8

8
0
.5

2
0
.6

3
0
.8

3
1
.0

2
1
.2

2
1
.0

8
1
.1

2
0
.4

6
0
.5

7
0
.7

3
0
.8

5
N

A
R

0
.9

5
0
.7

0
0
.8

0
1
.0

1
1
.0

1
1
.1

7
1
.1

0
1
.1

3
0
.7

4
0
.8

2
0
.9

2
0
.9

9
C

R
M

1
.0

5
0
.9

0
1
.2

8
1
.5

2
1
.0

5
1
.0

9
1
.5

1
1
.4

2
0
.9

6
1
.0

6
1
.3

1
1
.5

2
0
.3

K
R

O
W

0
.9

8
0
.7

8
0
.9

4
1
.0

7
1
.0

6
1
.5

9
1
.3

3
1
.2

1
0
.6

1
0
.7

3
0
.8

8
0
.9

4
N

A
R

1
.0

2
0
.9

7
1
.1

1
1
.1

9
1
.0

3
1
.3

1
1
.2

2
1
.2

1
0
.9

4
1
.0

4
1
.0

9
1
.0

8
C

R
M

0
.9

1
1
.0

5
1
.2

8
1
.3

4
0
.9

3
1
.5

2
1
.1

1
0
.9

9
0
.9

0
1
.1

4
1
.4

0
1
.6

7
0
.5

K
R

O
W

1
.0

0
1
.0

0
1
.0

0
1
.0

1
1
.0

1
0
.9

9
1
.0

0
0
.9

9
0
.9

9
1
.0

0
1
.0

0
1
.0

0
N

A
R

1
.0

5
1
.1

5
1
.1

9
1
.2

1
0
.8

7
0
.9

9
1
.0

4
1
.0

4
1
.1

6
1
.2

2
1
.2

3
1
.2

4
C

R
M

0
.7

7
0
.7

8
0
.7

9
0
.7

6
1
.1

2
0
.8

4
0
.7

8
0
.7

5
0
.8

9
1
.0

0
1
.0

6
0
.9

7

K
R

O
W

:
k
-i
n
-a

-r
o
w

ru
le

,
N

A
R

:
N

a
ra

y
a
n
a

ru
le

,
C

R
M

:
C

o
n
ti

n
u
a
l
R

e
a
ss

e
ss

m
e
n
t

M
o
d
e
l.



An Assessment in Phase I Trials 381

T
ab

le
24

.1
1:

R
at

io
of

M
SE

fo
r

M
M

L
E

to
bi

as
ed

co
in

de
si

gn

W
it

h
in

S
e
le

c
te

d
D

o
se

L
e
v
e
ls

R
ig

h
t

o
f
S
e
le

c
te

d
D

o
se

L
e
v
e
ls

L
e
ft

o
f
S
e
le

c
te

d
D

o
se

L
e
v
e
ls

Γ
D

e
si

g
n
s

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

0
.1

5
K

R
O

W
1
.2

0
1
.2

3
1
.1

6
1
.1

0
1
.0

3
1
.4

6
2
.2

1
2
.1

6
0
.6

6
0
.6

8
0
.7

5
0
.7

7
N

A
R

2
.3

1
1
.6

9
1
.4

2
1
.2

6
1
.0

1
1
.3

0
1
.7

4
1
.8

4
0
.8

7
0
.8

8
0
.9

3
0
.9

2
C

R
M

1
.0

2
1
.1

9
1
.3

7
1
.3

1
0
.9

7
0
.7

3
1
.6

3
1
.7

2
1
.0

1
1
.0

3
1
.0

4
1
.0

4
0
.2

K
R

O
W

1
.3

9
1
.3

3
1
.3

6
1
.3

0
1
.0

6
1
.9

6
2
.0

2
1
.9

3
0
.6

8
0
.6

9
0
.7

5
0
.7

8
N

A
R

1
.2

9
1
.2

8
1
.2

4
1
.2

4
1
.0

3
1
.5

4
1
.7

1
1
.5

7
0
.8

8
0
.9

0
0
.9

5
0
.9

7
C

R
M

1
.2

1
1
.3

4
1
.4

1
1
.2

4
1
.1

7
1
.0

5
1
.9

1
1
.5

3
1
.0

3
1
.0

4
1
.1

0
1
.1

3
0
.3

K
R

O
W

1
.4

4
1
.2

9
1
.3

2
1
.2

4
1
.1

7
1
.8

7
1
.9

1
1
.8

0
0
.7

5
0
.7

9
0
.8

2
0
.7

9
N

A
R

1
.2

6
1
.2

1
1
.2

2
1
.1

7
1
.1

1
1
.5

3
1
.4

7
1
.3

6
0
.9

5
0
.9

8
0
.9

9
0
.9

5
C

R
M

1
.3

2
1
.2

7
1
.2

7
1
.0

8
0
.7

9
2
.0

6
1
.3

7
1
.0

7
0
.9

8
1
.0

5
1
.0

2
0
.9

6
0
.5

K
R

O
W

1
.0

1
1
.0

0
1
.0

0
1
.0

1
1
.0

2
0
.9

9
1
.0

0
1
.0

0
0
.9

9
1
.0

4
0
.9

9
0
.9

9
N

A
R

1
.0

0
0
.9

9
1
.0

2
1
.0

5
0
.8

6
0
.9

4
1
.0

3
1
.0

7
0
.9

3
0
.9

1
0
.9

0
0
.9

0
C

R
M

1
.0

1
0
.9

3
0
.8

5
0
.7

6
1
.5

1
0
.8

9
0
.8

0
0
.7

7
1
.1

9
1
.1

0
1
.0

2
0
.8

8

K
R

O
W

:
k
-i
n
-a

-r
o
w

ru
le

,
N

A
R

:
N

a
ra

y
a
n
a

ru
le

,
C

R
M

:
C

o
n
ti

n
u
a
l
R

e
a
ss

e
ss

m
e
n
t

M
o
d
e
l.

T
ab

le
24

.1
2:

R
at

io
of

T
-M

SE
fo

r
M

M
L
E

to
bi

as
ed

co
in

de
si

gn

W
it

h
in

S
e
le

c
te

d
D

o
se

L
e
v
e
ls

R
ig

h
t

o
f
S
e
le

c
te

d
D

o
se

L
e
v
e
ls

L
e
ft

o
f
S
e
le

c
te

d
D

o
se

L
e
v
e
ls

Γ
D

e
si

g
n
s

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

0
.1

5
K

R
O

W
0
.9

0
0
.5

0
0
.6

0
0
.7

2
1
.0

1
1
.0

6
0
.9

3
1
.1

1
0
.5

8
0
.6

3
0
.7

1
0
.7

4
N

A
R

0
.9

3
1
.1

5
0
.9

0
0
.9

1
1
.0

0
1
.0

6
0
.9

8
1
.0

9
0
.8

3
0
.8

6
0
.9

3
0
.9

1
C

R
M

1
.0

2
1
.0

1
1
.0

8
1
.2

3
0
.9

9
0
.9

2
1
.2

7
1
.3

8
1
.0

0
1
.0

1
1
.0

3
1
.0

7
0
.2

K
R

O
W

0
.9

8
0
.7

6
0
.8

1
0
.8

6
1
.0

2
1
.2

1
1
.0

8
1
.2

3
0
.6

1
0
.6

4
0
.7

0
0
.7

4
N

A
R

1
.0

2
0
.8

9
0
.9

5
1
.0

4
1
.0

1
1
.1

6
1
.1

2
1
.1

4
0
.8

4
0
.8

8
0
.9

3
0
.9

5
C

R
M

1
.0

2
1
.0

3
1
.2

4
1
.2

1
1
.0

5
1
.0

3
1
.4

9
1
.3

4
0
.9

7
0
.9

8
1
.1

0
1
.1

5
0
.3

K
R

O
W

1
.0

9
1
.0

3
1
.1

3
1
.1

0
1
.0

6
1
.4

4
1
.5

6
1
.5

5
0
.7

1
0
.7

6
0
.7

9
0
.7

6
N

A
R

1
.0

6
1
.0

5
1
.1

0
1
.0

8
1
.0

3
1
.2

8
1
.3

0
1
.2

4
0
.9

3
0
.9

6
0
.9

8
0
.9

4
C

R
M

1
.0

3
1
.1

2
1
.2

0
1
.0

6
0
.9

4
1
.7

0
1
.2

8
1
.0

7
0
.9

0
1
.0

0
1
.0

1
0
.9

8
0
.5

K
R

O
W

1
.0

0
1
.0

0
0
.9

9
1
.0

0
1
.0

1
1
.0

0
1
.0

0
1
.0

0
0
.9

9
1
.0

4
0
.9

9
1
.0

0
N

A
R

1
.0

1
0
.9

8
1
.0

0
1
.0

3
0
.8

9
0
.9

5
1
.0

3
1
.0

7
0
.9

3
0
.9

1
0
.9

0
0
.8

9
C

R
M

1
.0

1
0
.9

2
0
.8

5
0
.7

7
1
.3

9
0
.9

0
0
.8

3
0
.8

0
1
.1

7
1
.1

0
1
.0

1
0
.8

8

K
R

O
W

:
k
-i
n
-a

-r
o
w

ru
le

,
N

A
R

:
N

a
ra

y
a
n
a

ru
le

,
C

R
M

:
C

o
n
ti

n
u
a
l
R

e
a
ss

e
ss

m
e
n
t

M
o
d
e
l.



382 H. K. T. Ng, S. G. Mohanty, and N. Balakrishnan

T
ab

le
24

.1
3:

R
at

io
of

T
E

to
bi

as
ed

co
in

de
si

gn

W
it

h
in

S
e
le

c
te

d
D

o
se

L
e
v
e
ls

R
ig

h
t

o
f
S
e
le

c
te

d
D

o
se

L
e
v
e
ls

L
e
ft

o
f
S
e
le

c
te

d
D

o
se

L
e
v
e
ls

Γ
D

e
si

g
n
s

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

0
.1

5
K

R
O

W
1
.1

9
1
.1

1
0
.9

6
0
.8

9
1
.1

4
1
.1

7
1
.4

1
1
.4

3
0
.7

4
0
.7

1
0
.7

1
0
.7

2
N

A
R

1
.0

7
1
.0

9
1
.0

6
1
.1

0
1
.0

7
1
.0

9
1
.2

1
1
.2

9
0
.9

3
0
.9

5
1
.0

0
1
.0

6
C

R
M

1
.2

4
1
.2

0
1
.2

3
1
.3

2
1
.1

3
1
.1

7
1
.5

0
1
.6

2
1
.0

4
1
.0

5
1
.0

7
1
.1

6
0
.2

K
R

O
W

1
.2

4
1
.1

0
1
.0

1
0
.9

8
1
.1

5
1
.2

2
1
.4

4
1
.4

7
0
.7

5
0
.7

2
0
.7

3
0
.7

4
N

A
R

1
.1

1
1
.1

2
1
.1

4
1
.2

0
1
.0

6
1
.1

1
1
.2

4
1
.3

3
0
.9

7
1
.0

2
1
.0

8
1
.1

5
C

R
M

1
.3

1
1
.1

7
1
.2

4
1
.3

5
1
.1

7
1
.2

5
1
.5

8
1
.6

6
1
.0

2
1
.0

5
1
.1

2
1
.2

4
0
.3

K
R

O
W

1
.1

7
1
.1

1
1
.0

9
1
.0

8
1
.0

8
1
.2

8
1
.3

4
1
.3

7
0
.8

3
0
.8

2
0
.8

3
0
.8

4
N

A
R

1
.1

0
1
.1

4
1
.1

9
1
.2

6
1
.0

4
1
.1

5
1
.2

1
1
.2

9
1
.0

1
1
.0

9
1
.1

6
1
.2

4
C

R
M

1
.1

6
1
.1

1
1
.2

2
1
.3

3
1
.1

1
1
.4

1
1
.5

6
1
.6

9
0
.9

8
1
.0

1
1
.0

8
1
.2

0
0
.5

K
R

O
W

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
N

A
R

1
.0

4
1
.1

1
1
.1

9
1
.2

7
0
.9

7
1
.0

5
1
.1

1
1
.1

8
1
.0

7
1
.1

6
1
.2

2
1
.2

9
C

R
M

0
.8

5
0
.9

5
1
.0

6
1
.1

7
1
.1

1
1
.2

1
1
.3

1
1
.3

6
1
.0

5
1
.1

0
1
.1

4
1
.2

2

K
R

O
W

:
k
-i
n
-a

-r
o
w

ru
le

,
N

A
R

:
N

a
ra

y
a
n
a

ru
le

,
C

R
M

:
C

o
n
ti

n
u
a
l
R

e
a
ss

e
ss

m
e
n
t

M
o
d
e
l.

T
ab

le
24

.1
4:

R
at

io
of

T
O

X
to

bi
as

ed
co

in
de

si
gn

W
it

h
in

S
e
le

c
te

d
D

o
se

L
e
v
e
ls

R
ig

h
t

o
f
S
e
le

c
te

d
D

o
se

L
e
v
e
ls

L
e
ft

o
f
S
e
le

c
te

d
D

o
se

L
e
v
e
ls

Γ
D

e
si

g
n
s

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

N
=

1
5

N
=

2
5

N
=

3
5

N
=

5
0

0
.1

5
K

R
O

W
0
.3

2
0
.5

2
0
.4

6
0
.4

7
0
.3

4
0
.2

9
0
.3

2
0
.5

1
0
.7

9
0
.7

6
0
.7

6
0
.7

6
N

A
R

0
.5

0
0
.7

3
0
.6

6
0
.7

0
0
.5

0
0
.5

9
0
.5

3
0
.6

7
0
.9

3
0
.9

6
0
.9

8
1
.0

1
C

R
M

0
.4

6
0
.6

1
0
.6

6
0
.7

7
0
.6

5
0
.4

9
0
.4

1
0
.7

4
0
.9

3
0
.9

4
0
.9

6
1
.0

1
0
.2

K
R

O
W

0
.4

3
0
.5

7
0
.5

5
0
.5

5
0
.4

1
0
.5

0
0
.5

9
0
.6

2
0
.7

9
0
.7

7
0
.7

7
0
.7

8
N

A
R

0
.7

0
0
.7

5
0
.7

5
0
.7

9
0
.6

3
0
.6

8
0
.7

2
0
.7

5
0
.9

5
0
.9

7
1
.0

0
1
.0

2
C

R
M

0
.4

5
0
.6

0
0
.6

9
0
.7

9
0
.5

3
0
.5

2
0
.6

8
0
.7

6
0
.8

6
0
.8

9
0
.9

4
0
.9

9
0
.3

K
R

O
W

0
.7

6
0
.7

1
0
.7

2
0
.7

3
0
.8

0
0
.7

5
0
.7

8
0
.8

1
0
.8

3
0
.8

3
0
.8

4
0
.8

4
N

A
R

0
.8

8
0
.8

6
0
.8

8
0
.9

0
1
.0

9
0
.8

7
0
.8

5
0
.8

5
0
.9

6
0
.9

9
1
.0

1
1
.0

3
C

R
M

0
.6

4
0
.6

4
0
.7

4
0
.8

1
1
.1

1
0
.7

5
0
.7

6
0
.7

9
0
.8

2
0
.8

5
0
.8

9
0
.9

4
0
.5

K
R

O
W

1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

9
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
N

A
R

1
.0

3
1
.0

2
1
.0

0
1
.0

0
1
.0

2
0
.9

4
0
.9

2
0
.9

0
1
.0

4
1
.0

4
1
.0

3
1
.0

3
C

R
M

0
.6

8
0
.7

6
0
.8

1
0
.8

6
0
.8

9
0
.8

6
0
.8

6
0
.8

6
0
.8

1
0
.8

5
0
.8

8
0
.9

1

K
R

O
W

:
k
-i
n
-a

-r
o
w

ru
le

,
N

A
R

:
N

a
ra

y
a
n
a

ru
le

,
C

R
M

:
C

o
n
ti

n
u
a
l
R

e
a
ss

e
ss

m
e
n
t

M
o
d
e
l.



An Assessment in Phase I Trials 383

Figure 24.1: Dose–response curves with parameters a = −6.0, b = 1.0

Figure 24.2: Dose–response curves with parameters a = −4.5, b = 0.5
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Figure 24.3: Dose–response curves with parameters a = −3.0, b = 0.5

Figure 24.4: Dose–response curves with parameters a = −6.0, b = 0.5
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Figure 24.5: Dose–response curves with parameters a = −1.5, b = 0.25
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Design of Multicentre Clinical Trials with Random

Enrolment

Vladimir V. Anisimov and Valerii V. Fedorov
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GlaxoSmithKline, Upper Providence R&D Laboratory, RI, USA

Abstract: This chapter is devoted to the investigation of multicentre clinical
trials with random enrolment, where the patients enter the centres at random
according to doubly stochastic Poisson processes. We consider two-arm trials
and use a random-effects model to describe treatment responses. The time
needed to complete the trial (recruitment time) and the variance of the estima-
tor of the Expected Combined Response to Treatment (ECRT) are investigated
for different enrolment scenarios, and closed-form expressions and asymptotic
formulae are derived. Possible delays in initiating centres and dropouts of pa-
tients are also taken into account. The developed results lead to rather simple
approximate formulae which can be used to design a trial.

Keywords and phrases: Multicentre clinical trial, combined response to
treatment, random enrolment, recruitment time, optimization

25.1 Introduction

A large clinical trial usually involves multiple centres. The analysis of multi-
centre clinical trials includes several key variables such as the recruitment time,
the variance of the estimated ECRT, and the risk function, which includes pos-
sible costs for treatments, cost of enrolment, centre initiation, advertisement
expenses, and so on, and potential revenue loss due to delay of the trial.

For the sake of simplicity, we consider the case with only two treatments.
When treatments and centres are fixed effects, a combined response to treat-
ment as the measure of the treatment effect difference was introduced in Dra-
galin et al. (2002). In Fedorov, Jones, and Rockhold (2002), this definition was
extended to the case of the random-effects model for the treatment effects with
a fixed number of patients per centre. Because at the design stage the number

387
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of patients that actually will be enrolled at each centre is not known and can be
viewed as a random variable, these results were extended by Anisimov, Fedorov,
and Jones (2003) to the case where the patients arrive at centres according to
Poisson processes with fixed rates. However, with many centres (several hun-
dred) and a large number of descriptors for these centres, it is expedient to
model enrolment rates as a sample from some population. In this chapter, we
extend the results of Anisimov, Fedorov, and Jones (2003) to the case when
the patients arrive at different centres according to doubly stochastic Poisson
processes with gamma or arbitrary distributed rates.

One problem in designing a multicentre trial can be formulated as follows:
find the optimal numbers of centres and patients minimizing a risk function
given the restrictions on the variance of the estimator of ECRT.

Assume that we plan to recruit in total n patients at N medical centres.
Consider the following costs: Ci, the cost of initiating and running the ith
centre; ck, the cost of treating the kth patient; and R, the potential revenue
loss per time unit due to the late market entering. Here, Ci and ck are random
variables with known expectations C = E[Ci] and c = E[ck]. Denote by
Te(n,N) the recruitment time (the time needed to enrol all n patients at N
centres) under some enrolment strategy e. The linear loss function can be
defined as follows,

L(n,N) =
N∑

i=1

Ci +
n∑

k=1

ck + RTe(n,N).

The risk function is

L(n,N) = E[L(n,N)] = CN + cn + RE[Te(n,N)]. (25.1)

If nij is the number of patients actually recruited in centre i on treatment
j, then n =

∑
i,j nij. Let ζ2({nij}) be the variance of the estimator of ECRT

for the enrolment {nij}. At the design stage, we do not know the values nij.
Assume that they are random and consider the averaged by distribution of {nij}
variance ζ2(n,N) = E[ζ2({nij})] given n and N .

The simplest design optimization problem is: find the values n∗ and N∗

such that

{n∗, N∗} = arg min
n,N

L(n,N) given that ζ2(n,N) ≤ v2, (25.2)

where v is some specified small value.
Alternatively, we can consider the minimization of the risk function given

the condition P(ζ2({nij}) ≤ v2), or the minimization of a certain quantile of
a loss function P(L(n,N) > L∗) given the restrictions on the variance of the
estimator of the ECRT.
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The solution of the optimization problem includes several stages. Firstly,
we analyze the recruitment time which is one of the key decision variables at
the planning stage of a multicentre trial. Secondly, we analyze the variance of
the estimator of the ECRT under different enrolment scenarios and derive the
first-order approximation formulae which are simple and intuitively transparent.
Finally, we solve the optimization problem.

25.2 Recruitment Time Analysis

We assume that the patients arrive at centre i according to a doubly stochastic
Poisson process [or Cox process; see Kovalenko, Kuznetsov, and Shurenkov
(1996, p. 141)], with random rate λi, where λi are sampled from a population
with a gamma or arbitrary distribution. In addition, there can be dropouts of
patients and random delays in initiating the centres. At this stage, we study
only the recruitment time and do not investigate different schemes for how the
patients at each centre can be allocated to the treatments.

Consider the following three enrolment policies.

(1) A competitive policy means stopping when the total number of enrolled
patients reaches a prescribed level n. In this case, the recruitment time
T1(n,N) is called a competitive time.

(2) A balanced enrolment policy means waiting until the number of patients
in every centre reaches some fixed value n0 = n/N . The recruitment time
T2(n,N) is called a balanced time.

(3) A restricted enrolment policy means that every centre has to enrol at
least n∗ patients and cannot enrol more than n∗ patients, where n∗ and
n∗ are given threshold levels. The recruitment time T3(n,N) in this case
is called a restricted time.

Note that the balanced policy leads to trials with minimal variance of the
estimator of the ECRT [Fedorov, Jones, and Rockhold (2002)], but the recruit-
ment time in this case can be too large.

Let ni(t) be the number of recruited patients at centre i at time t and
n(t) =

∑N
i=1 ni(t) be the total number of patients recruited at time t at all N

centres.
If the rates λi are fixed, then ni(t) is a Poisson process with rate λi and n(t)

is a Poisson process with rate λ̂N , where λ̂ =
∑N

i=1 λi/N . Denote by Ga(α, β)
a random variable which has a gamma distribution with p.d.f. p(x, α, β) =
e−βxβαxα−1/Γ(α), where α and β are the shape and rate parameters, respec-
tively, and Γ(α) is a gamma function. T1(n,N) is the time of the nth event
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for the Poisson process n(t) and it has a gamma distribution with parameters
α = n and β =

∑
i λi = λ̂N . Thus,

T̄1 = E[T1(n,N)] = n/λ̂N, S2
1 = Var[T1(n,N)] = n/(λ̂N)2.

The result [Johnson, Kotz, and Balakrishnan (1994, p. 340)] on the normal
approximation of a standardized gamma distribution implies that for any fixed
N as n→∞, the variable (T1(n,N)− T̄1)/S1 converges in distribution to the
standard normal random variable N (0, 1).

Consider now the case when the rates λi are sampled from a gamma dis-
tribution with parameters (αλ, βλ), and denote by T1 = T1(n,N) a competitive
time. Recalling that for a given collection {λi} the time T1 has a gamma dis-
tribution with parameters α = n and β =

∑
i λi, one may conclude that T1 is

gamma distributed with parameters α = n and β = Ga(αλN,βλ), where the
rate parameter is random. Integrating by the distribution of β, one may verify
that T1 has a Pearson Type VI distribution with p.d.f. [Johnson, Kotz, and
Balakrishnan (1994, p. 381)]

p(x | n,N,αλ, βλ) =
1

B(n, αλN)
xn−1βαλN

λ

(x + βλ)n+αλN
, x ≥ 0, (25.3)

where B(i, a) is a beta function. From (25.3), we can conclude that for
αλN > 2,

T̄1 = E[T1] =
βλn

αλN − 1
, S2

1 = Var[T1] =
β2

λn(n + αλN − 1)
(αλN − 1)2(αλN − 2)

. (25.4)

Consider the asymptotic properties of T1. Denote convergence in probability
by the symbol P−→. It is known [Johnson, Kotz, and Balakrishnan (1994, p. 17)]
that the normal distribution is the limiting distribution for all Pearson types.
Using the asymptotic properties of a gamma distribution, one can prove that
as n→∞ and N →∞, T1/T̄1

P−→ 1, and the variable (T1− T̄1)/S1 converges
in distribution to N (0, 1).

The condition that both N → ∞ and n → ∞ is necessary and sufficient.
Note that in the case of deterministic rates, we need only the condition n→∞;
see Anisimov, Fedorov, and Jones (2003).

Limit theorems for doubly stochastic Poisson processes are studied by Sny-
der and Miller (1991). Note that our result does not follow from Theorem 7.2.2.
of Snyder and Miller (1991) because, in our case, the value βλn/αλN , which
plays the role of t of Snyder and Miller (1991), may not tend to infinity.

Consider now a general case when the rates λi are sampled from a population
with arbitrary distribution. In this case, the moment and distribution functions
of T1 in general cannot be calculated in closed form. Thus, we provide an
asymptotic analysis. Assume that λi have finite second moments and denote
E[λi] = λ̄, Var[λi] = σ2. Suppose that λ̄ > 0, σ2 ≥ 0.
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Theorem 25.2.1 If n → ∞ and N → ∞, then λ̄NT1/n
P−→ 1, and the

variable αn,N (T1−n/λ̄N) converges in distribution to N (0, 1), where αn,N =
λ̄2Nn−1(λ̄2/n + σ2/N)−1/2.

The proof is given in Appendix A.1. Note that this result includes in par-
ticular the cases when σ2 = 0 (the rates are fixed) and when the rates have a
gamma distribution.

The results of Theorem 25.2.1 can be extended to a practical case where
there are r groups of centres of different types (quick or slow recruitment, for
example). Assume that the kth group contains Nk centres and the recruitment
rates for this group are sampled from a population with arbitrary distribution
with mean ak ≥ 0 and variance σ2

k ≥ 0. Let N → ∞, Nk/N → gk ≥ 0,
k = 1, . . . , r. Denote λ̄ =

∑r
k=1 gkak, σ2 =

∑r
k=1 gkσ

2
k, AN =

∑r
k=1 akNk, and

assume that λ̄ > 0, σ2 > 0.

Theorem 25.2.2 As n→∞ and N →∞, λ̄NT1/n
P−→ 1, and the variable

αn,N (T1 − n/AN ) converges in distribution to N (0, 1),

The proof follows along the same lines and is therefore omitted.
Consider now trials with delays and dropouts. Assume that λi satisfy condi-

tions of Theorem 25.2.1. Suppose that each patient stays in the trial only with
probability p > 0, and with probability 1 − p the patient leaves the trial. In
addition, allow for a random delay τi in initiating centre i, where the variables
τi are sampled from a population with mean m ≥ 0 and variance b2 ≥ 0. For
simplicity, let τi be bounded by some constant Cτ . Denote a competitive time
as above by T1. Set

Mn,N = m + n/(pλ̄N), βn,N = pλ̄2N
√

N
/√

σ2n2 + λ̄2p2b2N2 + λ̄2nN.

Theorem 25.2.3 If n→∞, N →∞, and lim Mn,N > Cτ , then T1/Mn,N
P−→

1 and βn,N (T1 −Mn,N ) converges in distribution to N (0, 1).

The proof is given in Appendix A.2.
These results can be also extended to the case where there are different

groups of centres.
The analysis of other enrolment characteristics such as the cumulative ar-

rival process, the total cost of enrolment, and so on, can be provided as well.
Consider, as an example, n(t), the total number of patients enrolled at all cen-
tres up to time t. Suppose that the conditions of Theorem 25.2.1 (or Theorem
25.2.2) are satisfied. Assume for simplicity that there are no delays (m = 0)
and dropouts appear with probability 1− p. Consider the normalized process
γN (t) = (n(t)− pλ̄tN)/

√
N, t > 0.
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Lemma 25.2.1 As N →∞, the process γN (t) converges (in the sense of weak

convergence in Skorokhod space) to the process γ0(t) = pσξt+
√

λ̄p w(t), where
w(t) is a standard Wiener process, E[w(t)] = 0, Var[w(t)] = t, ξ is independent
of w(t), and has a normal distribution with parameters (0, 1).

The proof is given in Appendix A.3.
This implies that for modelling n(t), we can use the approximation n(t) ≈

pλ̄tN +
√

N
(
pσt ξ +

√
pλ̄w(t)

)
.

Consider now a balanced time T2(n,N). Suppose first that the rates λi are
fixed and λi ≡ λ. Let t

(i)
k be the time of arrival of the kth patient at the ith

centre. Then t
(i)
k has a gamma distribution with parameters (k, λ), and for any

x > 0,

P(T2(n,N) ≤ x) = P( max
i=1,...,N

t(i)n0
≤ x) = P(Ga(n0, λ) ≤ x)N .

Consider the case when the rates λi are random and sampled from a gamma
population with parameters (αλ, βλ). In this case, t

(i)
k is a doubly stochastic

random variable of the form t
(i)
k = Ga(k,Ga(αλ, βλ)). Denote γ(k, αλ, βλ) =

Ga(k,Ga(αλ, βλ)). Then for any x > 0,

P(T2(n,N) ≤ x) = P( max
i=1,...,N

t(i)n0
≤ x) = P(γ(n0, αλ, βλ) ≤ x)N , (25.5)

where γ(n0, αλ, βλ) according to (25.3) has a Pearson Type VI distribution with
p.d.f. p(x) = xn0−1βαλ

λ B(n0, αλ)−1(x + βλ)−(n+αλ), x ≥ 0.
Equation (25.5) can be written in a convenient form suitable for computation

P(T2(n,N) ≤ x) = I
(
n0, αλ,

x

βλ + x

)N
, x > 0, (25.6)

where I(i, αλ, x) = B(i, αλ, x)/B(i, αλ), and B(i, αλ, x) is the incomplete beta
function:

B(i, αλ, x) =
∫ x

0
ti−1(1− t)αλ−1dt, 0 ≤ x ≤ 1.

In fact, by definition, I(i, αλ, x) is a distribution function of a beta ran-
dom variable beta(i, αλ) with parameters (i, αλ). Now we can use a repre-
sentation [Johnson, Kotz, and Balakrishnan (1995, p. 248)]: γ(i, αλ, βλ) =
βλbeta(i, αλ)(1− beta(i, αλ))−1, which implies (25.6).

Let us compare enrolment policies. Assume that n0 = n/N and n∗ < n0 <
n∗. Then stochastically T1(n,N) < T3(n,N) < T2(n,N), which means, for any
t > 0,

P(T1(n,N) > t) < P(T3(n,N) > t) < P(T2(n,N) > t), (25.7)

and E[T1(n,N)] < E[T3(n,N)] < E[T2(n,N)], respectively. Numerical calcu-
lations show that a balanced time is essentially larger than a competitive time
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Figure 25.1: Comparison of recruitment times. n = 160, N = 20. Competitive
time: 1 – fixed rates with λ = 2; 2 – gamma rates, E[λ] = 2,Var[λ] = 0.5.
Balanced time: 3 – fixed rates with λ = 2; 4 – gamma rates, E[λ] = 2,Var[λ] =
0.5

and the variation in rates essentially inflates the recruitment time (see Figure
25.1).

For restricted recruitment time, we cannot write a closed-form solution, but
it follows from (25.7) that in some sense the restricted time is somewhere be-
tween competitive and balanced times and it essentially depends on the thresh-
old levels n∗ and n∗.

25.3 Analysis of Variance of the Estimated ECRT

Consider a clinical trial in which n patients are enrolled at N centres. Denote by
nij the number of patients on treatment j in centre i, i = 1, 2, . . . , N ; j = 1, 2.
Let ni = ni1 + ni2 be the total number of patients in centre i. The problem
is how to combine the treatment responses at different centres to a combined
response to treatment. Different approaches are considered in Dragalin et al.
(2002), Fedorov, Jones, and Rockhold (2002), Gallo (2000), and Senn (1997,
2000), for example. Following Fedorov, Jones, and Rockhold (2002), we use a
random-effects model: a response given by patient k on treatment j in centre i
is

yijk = μij + εijk, (25.8)
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where often {εijk} are assumed to be independent and normally distributed,
E[εijk] = 0 and Var[εijk] ≡ σ2. The variables εijk describe the within-centre
variability. The centre mean vector μi = [μi1, μi2]� is assumed to be sampled
from the bivariate normal distribution N (μ,V ), where μ = [μ1, μ2]� and V for
convenience is presented in the form V = σ2Λ. The treatment effect difference
at centre i is δi = μi1 − μi2, and the ECRT is defined as follows: δ = ECRT =∑N

i=1 E[δi]/N = μ1 − μ2.
Let ȳij. =

∑nij

k=1 yijk/nij if nij > 0, and 0 otherwise, i = 1, . . . , N , j = 1, 2,
and ȳi = [ȳi1., ȳi2.]�. Given N and {nij}, the best linear unbiased estimator of
μ [see Fedorov, Jones, and Rockhold (2002)] is

μ̂ =

{
N∑

i=1

Wi

}−1 N∑
i=1

Wiȳi, (25.9)

where, if all nij > 0, Wi = (Λ + M−1
i )−1, and Mi is a diagonal matrix with

entries {ni1, ni2}. If in the ith centre there are no patients on treatment j′ (i.e.,
nij′ = 0), where j′ = 1 or 2, then formula (25.9) still applies, but now for j 	= j′

the (j, j)th entry of the matrix Wi is (Λjj + 1/nij)−1 and all other entries are
zeros.

The estimator of the ECRT is δ̂ = ��μ̂� = μ̂1 − μ̂2, where �� = [1,−1].
In Fedorov, Jones, and Rockhold (2002), the following formula for the vari-

ance of δ̂ is derived: for given nij ,

ζ2[{nij}] = Var[δ̂ | nij] = σ2��
{

N∑
i=1

Wi

}−1

�. (25.10)

As nij are random values due to random enrolment, then the averaged
variance [Anisimov, Fedorov, and Jones (2003)] is

ζ2(n,N) = Var[δ̂] = σ2��E

[{
N∑

i=1

Wi

}−1]
�. (25.11)

In particular, if the trial is completely balanced (in each centre nij = n/2N),
then

ζ2(n,N) =
4σ2

n
+

s2

N
, (25.12)

where σ2 = Var[εijk] (within-centre variability) and s2 = ��V � (between-
centre variability).
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25.4 Inflation of the Variance Due to Random

Enrolment

The expressions in (25.10) and (25.11) have quite a complicated form. We give
simpler approximate formulae which can be used at the design stage and for
solving the optimization problem. The results of simulation show that these
formulae work very well for a very wide range of parameters.

The type of approximation essentially depends on the relationship between
σ2 and s2. Let us consider the case when s2 is relatively small compared to
σ2, as is often seen in practical situations. If the patients are equally allocated
between treatments, it was shown by Anisimov, Fedorov, and Jones (2003) that
the first-order approximation of the variance in (25.10) is

ζ2[{nij}] ≈
4σ2

n
+

s2

n2

N∑
i=1

n2
i =

4σ2

n
+

s2

N
(1 + ω2

n), (25.13)

where ω2
n =

[∑N
i=1(ni − n̄)2

]
/(n̄2N), n̄ =

∑N
i=1 ni/N = n/N. The averaged

variance is

ζ2(n,N) ≈ 4σ2

n
+

s2

n2

N∑
i=1

E[n2
i ] =

4σ2

n
+

s2

N
(1 + E[ω2

n]). (25.14)

The computation of the right-hand side of (25.14) depends on the type of
enrolment model we study. Consider the competitive enrolment policy. Assume
first that the rates λi are fixed. Denote pi = λi/ΛN , i = 1, 2, . . . , N, where
ΛN =

∑N
i=1 λi. Given n, the vector {ni, i = 1, . . . , N} has a multinomial

distribution with parameters (n, p1, . . . , pN ), and ni has a binomial distribution
with parameters (n, pi), Thus, E[n2

i ] = n(n − 1)p2
i + npi and we can represent

(25.14) up to the terms of order O(1/nN) in the form

ζ2(n,N) ≈ 4σ2

n
+

s2

N

(
N

n
+ N

N∑
i=1

p2
i

)
=

4σ2

n
+

s2

N

(
1 +

N

n
+ ω2

λ

)
, (25.15)

where ω2
λ =

[∑N
i=1(λi − λ̄)2

]
/(λ̄2N). In particular, if λi ≡ λ (stochastically

balanced case), then ω2
λ = 0.

If the rates λi are random, then in (25.15) we need to take E[ω2
λ]. Thus, if

λi are sampled from some population with arbitrary distribution, then at large
N , E[ω2

λ] ≈ ω̄2
λ = Var[λ]/(E[λ])2, and at large n and N ,

ζ2(n,N) ≈ 4σ2

n
+

s2

N

(
1 +

N

n
+ ω̄2

λ

)
. (25.16)
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If λi are sampled from a gamma distribution with parameters (αλ, βλ), we
can calculate exactly the expectation on the right-hand side in (25.15). In this
case pi = Ga(αλ, βλ)−1(Ga(αλ, βλ)+Ga((N−1)αλ , βλ)), where Ga(αλ, βλ) and
Ga((N − 1)αλ, βλ) are independent. Thus, pi has a standard beta distribution
with parameters (αλ, (N −1)αλ). As E[p2

i ] = (αλ +1)/(N(αλN +1)) [Johnson,
Kotz, and Balakrishnan (1995, p. 217)], we get

ω̄2
λ = (N − 1)/(αλN + 1). (25.17)

Therefore, if the rates vary (which is always true in practical situations), the
variance is larger compared to the stochastically balanced case where λi ≡ λ.

The following table summarizes the results on the inflation of the variance.

Model Enrolment Variance
Fixed effects Deterministic, balanced 4σ2

n

Random effects Deterministic, balanced 4σ2

n + s2

N

Random effects Poisson, equal rates 4σ2

n + s2

N

(
1 + N

n

)
Random effects Varying rates 4σ2

n + s2

N

(
1 + N

n + E[ω2
λ]
)

These results show that the additional sources of variability add extra terms
and increase the variance of the estimator of ECRT. Thus, using the traditional
approach may lead to underpowered studies.

These results are supported by a simulation study showing that for a very
wide range of scenarios at large enough n ≥ 200 and N ≥ 20, the first-order
approximation (25.12) is a very close lower boundary for the variance of the
estimator of the ECRT. The models with varying and gamma rates have a larger
variance and the expansions (25.15) and (25.17) improve the approximations.

25.5 Solution of the Optimization Problem

Consider only the case when s2 is smaller than σ2 as this is often seen in
practical situations. Let us study a competitive enrolment policy which is the
most common one. Assume first that λi are sampled from a gamma distribution
with parameters (αλ, βλ). According to (25.4), E[T1(n,N)] = βλn/(αλN − 1)
and the risk function (25.1) can be written in the form L(n,N) = CN + cn +
βλRn/(αλN − 1). To find an approximate solution, we use (25.16) with ω̄2

λ in
the form (25.17). Thus, the optimization problem (25.2) can be written in the
following form. Find

{n∗, N∗} = arg min
n,N

L(n,N) given that
4σ2 + s2

n
+

(αλ + 1)s2

αλN + 1
≤ v2. (25.18)
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To solve the problem (25.18) in closed form, we replace L(n,N) by the
expression L∗(n,N) = CN + cn + βλRn/(αλN + 1), which is asymptotically
equivalent at large N . Now the optimization problem up to some constants is
equivalent to problem (27) of Fedorov, Jones, and Rockhold (2002) [see also
problems (6.2) and (6.3) of Anisimov, Fedorov, and Jones (2003)]. Solving it
in the same way, we get

N∗ =
(αλ + 1)s2

αλv2
+

1
v2

√
4σ2 + s2

Cαλ

√
c(αλ + 1)s2 + βλRv2,

n∗ =
4σ2 + s2

v2 − (αλ+1)s2

αλN∗+1

. (25.19)

Using these formulae we can calculate the variance ζ2(n∗, N∗) and the power
of the optimal trial, respectively.

If λi are sampled from a population with a general distribution and N is
large enough, then according to Theorem 25.2.1 we can use the approximation
E[T1(n,N)] ≈ n/λ̄N and the expression (25.16) for the variance. In this case
the optimization problem has the form: find

{n∗, N∗} = arg min
n,N

{
CN + cn +

Rn

λ̄N

}
given that

4σ2 + s2

n
+

(1 + ω̄2
λ)s2

N
≤ v2. (25.20)

According to Fedorov, Jones, and Rockhold (2002) and Anisimov, Fedorov,
and Jones (2003), a solution of (25.20) has the form

N∗ =
(1 + ω̄2

λ)s2

v2
+

1
v2

√
4σ2 + s2

C

√
(1 + ω̄2

λ)cs2 + Rv2/λ̄, n∗ =
4σ2 + s2

v2 − (1+ω̄2
λ
)s2

N∗

.

Consider now a problem of minimization of a certain quantile
P(L(n,N) > L∗) of the loss function L(n,N) given that ζ2(n,N) ≤ v2.

According to Theorems 25.2.1–25.2.3, we can use a normal approximation
for T1(n,N) in the form T1(n,N) ≈ An,N + Bn,NN (0, 1) for a very wide range
of enrolment models, where the values An,N and An,N are calculated in closed
form. For the sake of simplicity, assume that all other costs are nonrandom and
Ci ≡ C, ci ≡ c. Then the problem of minimization of P(L(n,N) > L∗), where
for T1(n,N) we use a normal approximation, is equivalent to the problem of
minimization of the expression (CN + cn + RAn,N − L∗)/RBn,N .

For example, under the conditions of Theorem 25.2.3, An,N = Mn,N , Bn,N =
β−1

n,N , and the optimization problem has the form: find

{n∗, N∗} = arg min
n,N

βn,N (CN + cn + RMn,N − L∗)

given that
4σ2 + s2

n
+

(1 + ω̄2
λ)s2

N
≤ v2. (25.21)
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This problem can be easily solved numerically for any given values of the
parameters.

25.6 Conclusions

We consider a multicentre trial under quite general and practical assumptions
taking into account random enrolment. The developed results lead to simple
approximate formulae which can be used at the design and planning stages of
multicentre clinical trials. These results prove that random enrolment increases
the mean and the variance of the recruitment time and the variance of the
estimated ECRT and decreases the power of the trial. To achieve the necessary
power, we need to increase the number of centres N , as well as the number of
patients n.

These facts should be taken into account at the design and planning stages
of multicentre clinical trials because the use of the traditional approach may
lead to underpowered studies.

Appendix

A.1 Proof of Theorem 25.2.1

We use the following representation (in the sense of the equality of distribu-
tions): T1 = Ga(n,ΛN ) = Ga(n, 1)/ΛN , where ΛN =

∑
i λi. As λi are indepen-

dent, we can apply the Law of Large Numbers: as N → ∞, ΛN/λ̄N
P−→ 1.

Thus, as n→∞, N →∞, λ̄NT1(n,N)/n = (Ga(n, 1)/n)× (ΛN /λ̄N)−1 P−→ 1.
Furthermore, if σ > 0,

αn,N (T1(n,N)− n/λ̄N) =

(
cn1

Ga(n, 1) − n√
n

+ cn2
ΛN − λ̄N

σ
√

N

)
λ̄N

ΛN
, (A.1)

where cn1 = αn,N
√

n/λ̄N, cn2 = αn,N nσN−3/2/λ̄2, and c2
n1 + c2

n2 = 1. Noting
that the variables (Ga(n, 1)−n)/

√
n and (ΛN−αN)

/
(σ
√

N) are independent
and, for large n and N , are both asymptotically standard normally distributed,
we prove that the right-hand side of (A.1) is asymptotically standard normally
distributed.
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A.2 Proof of Theorem 25.2.3

Denote by Πλ(t) a Poisson process with parameter λ. Let χi = χ(τi ≤ t) be the
indicator of the event {τi ≤ t}; that is, χi = 1 if τi ≤ t, and χi = 0 otherwise.
Denote QN (t) = p

∑N
i=1 λi(t−τi)χi, ΛN =

∑
i λi. We can write representations

n(t) =
N∑

i=1

Πpλi
((t− τi)χi) = Π1(QN (t)),

P(T1(n,N) ≤ t) = P(Ga(n, 1) ≤ QN (t)). (A.2)

If t > Cτ , then for all i, χi = 1 and QN (t) = p
∑N

i=1 λi(t− τi). Therefore,

P(T1(n,N) ≤ t) = P

(
Ga(n, 1) + p

∑N
i=1 λiτi

pΛN
≤ t

)
. (A.3)

Under the conditions of Theorem 25.2.3 we can apply the Law of Large
Numbers: as n→∞, N →∞,

ΛN

/
Nλ̄

P−→ 1,

(
Ga(n, 1) + p

N∑
i=1

λiτi

)/
(n + pλ̄mN) P−→ 1.

These relationships imply that T1(n,N)/Mn,N
P−→ 1. Furthermore, using (A.2)

we can write a relationship P(βn,N (T1(n,N)−Mn,N ) ≤ z) = P(ζn,NqN ≤ z),
where

ζn,N = βn,N

(
Ga(n, 1) + p

N∑
i=1

λi(τi −Mn,N)

)/
(pλ̄N), qN = λ̄N

/
ΛN . (A.4)

One can calculate that E[ζn,N ] = 0, Var[ζn,N ] = 1 and under conditions of
Theorem 25.2.3, as n→∞, N →∞, the variable ζn,N converges in distribution

to N (0, 1). As qN
P−→ 1, this implies the statement of Theorem 25.2.3.

A.3 Proof of Lemma 25.2.1

Using the property that as N → ∞, the random variable (ΛN − λ̄N)
/√

N

converges in distribution to N (0, σ2), we can write for any t > 0 the following
relationship for the characteristic function of the process ζN (t): as N →∞,

E
[
exp{iθζN(t)}

]
= E

[
exp

{
pΛN t(eiθ/

√
N − 1)− iθpλ̄t

√
N

}]
≈ E

[
exp

{
iθpt(ΛN − λ̄N)/

√
N − ptθ2ΛN/2N

}]
→ E

[
exp{−(p2σ2t2 + p̄λt)θ2/2}

]
,
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where i = +
√
−1. Thus, for any t > 0, ζN (t) converges in distribution to

the variable ζ0(t) = pσξt +
√

pλ̄w(t). As the process ζN (t) has conditionally
independent increments, we can prove in the same way that the increments
of ζN (t) weakly converge to the increments of ζ0(t) and also check the weak
compactness in Skorokhod space.

References

1. Anisimov, V., Fedorov, V., and Jones, B. (2003). Optimization of clinical
trials with random enrollment, GSK BDS Technical Report, 2003–03.

2. Dragalin, V., Fedorov, V., Jones, B., and Rockhold, F. (2002). Estimation
of the combined response to treatment in multicentre trials, Journal of
Biopharmaceutical Statistics, 11, 275–295.

3. Fedorov, V., Jones, B., and Rockhold, F. (2002). The design and analysis
of multicentre trials in the random effects setting, GSK BDS Technical
Report, 2002–03.

4. Gallo, P. P. (2000). Center-weighting issues in multicenter clinical trials,
Journal of Biopharmaceutical Statistics, 10, 145-163.

5. Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous Uni-
variate Distributions, Vol. 1, Second edition, John Wiley & Sons, New
York.

6. Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995). Continuous Uni-
variate Distributions, Vol. 2, Second edition, John Wiley & Sons, New
York.

7. Kovalenko, I. N., Kuznetsov, N. Yu., and Shurenkov, V. M. (1996). Mod-
els of random processes, In A Handbook for Mathematicians and Engi-
neers, CRC Press, Boca Raton, Florida.

8. Senn, S. (1997). Statistical Issues in Drug Development, John Wiley &
Sons, Chichester, U.K.

9. Senn, S. (2000). The many modes of meta, Drug Information Journal,
34, 535-549.

10. Snyder, D., and Miller, M. (1991). Random Point Processes in Time and
Space, Second edition, Springer-Verlag, New York.



26

Statistical Methods for Combining Clinical Trial

Phases II And III

Nigel Stallard and Susan Todd

The University of Warwick, Coventry, UK
The University of Reading, Reading, UK

Abstract: This chapter reviews recently developed methodology for designs
that combine clinical trial phases II and III in a single trial. The designs
enable both selection of the best of a number of experimental treatments and
comparison of this treatment with a control treatment, and allow the trial to be
stopped early if the best experimental treatment is insufficiently promising or is
clearly superior to the control. The stopping rules are constructed to preserve
the overall type I error rate for the trial. Two-stage designs are reviewed briefly
and two multistage methods based, respectively, on the adaptive and group-
sequential approaches are described in detail. The latter are illustrated by a
trial to compare three doses of a new drug for the treatment of Alzheimer’s
disease.

Keywords and phrases: Adaptive designs, phase II/III trials, select and test
designs, sequential clinical trials, treatment selection

26.1 Introduction

In the statistical design of clinical trials to evaluate new drugs, an area of
considerable interest is the combination of clinical trial phases II and III into a
single trial, because this allows the drug development process to be accelerated.
Trial design methods with this aim have been proposed by Thall et al. (1988,
1989), Schaid et al. (1990), Bauer and Kieser (1999), Stallard and Todd (2003),
Royston et al. (2003), and Inoue et al. (2002). Their approaches extend
the sequential design of clinical trials where two or more interim analyses are
conducted as data accumulate through the course of the trial. In essence,
the new methods use one or more of the earlier interim analyses to replace
the phase II trial. A single trial is thus conducted which allows selection of
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one or more of the experimental treatments, as would usually take place in a
phase II trial, as well as the comparison of the selected treatment(s) with the
control treatment as in a phase III trial. With the exception of Royston et al.
(2003) and Inoue et al. (2002), all of the cited papers focus on the construction
of frequentist designs in which the overall type I error rate allowing for the
treatment selection is controlled. These two papers, however, address a slightly
different problem in the combination of phases II and III: that of the use of
a definitive endpoint in the final ‘phase III’ analysis and a surrogate endpoint
in the interim ‘phase II’ analysis. Royston et al. (2003) propose a frequentist
solution to this problem, whereas Inoue et al. (2002) adopt a Bayesian method.
Although the use of surrogate endpoints is considered briefly in the Discussion
section, most of this chapter is concerned with frequentist methods that allow
for treatment selection based on the use of the same endpoint throughout. The
chapter provides a review of such methods, illustrating the advantages that
their use might bring and highlighting when they are most appropriate. An
example of a clinical trial to compare several dose levels of galantamine for the
treatment of Alzheimer’s disease is used to illustrate and compare the newer
methods and future directions and challenges in this field are discussed.

Following this introductory section, we give an overview of the clinical test-
ing process for a new drug in Section 26.2, explaining the roles played by phase
II and phase III clinical trials. The advantages and limitations associated with
the combination of phases II and III are then discussed. As several of the
methods described rely on statistical methodology for sequential clinical trials
comparing a single experimental treatment with a control treatment, a brief
summary of this area is given in Section 26.2. The main description of the
methods combining phases II and III is given in Section 26.3, together with
the illustrative example. We end with a discussion of the methodology and
remaining challenges in Section 26.4.

26.2 Background

26.2.1 The clinical evaluation programme for new drugs

The programme of clinical evaluation of a new drug prior to application to
regulatory authorities for registration can be divided into three phases. Phase
I clinical trials are small-scale trials in which the first exposure to humans of
the new drug is carefully assessed. The focus is on the safety of the drug,
and the subjects will often be healthy volunteers. A control group may be
included to maintain blindness, but formal comparison between treated and
control groups is unusual. A number of doses of the new drug are generally
used, with the aim of determining the maximum tolerated dose; the highest
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dose that can be administered without causing an unacceptably high level of side
effects.

Phase II clinical trials are both the first trials conducted in the target pa-
tient population and the first in which treatment efficacy is assessed. They are
usually conducted using a control group and double-blind randomization. Al-
though a maximum tolerated dose will have been determined by phase I trials,
phase II may include a number of doses, dosing patterns, or formulations. The
main purpose of these trials is to act as screens to decide which new drugs are
worthy of further evaluation in phase III trials. The trials are relatively small-
scale, with sample sizes of a few hundred or less, to avoid large commitment
of resources. In order to minimize trial duration, a short-term or surrogate
endpoint can be primarily considered.

The aim of phase III trials is to provide definitive evidence of the efficacy and
safety of a drug for regulatory approval. These are large-scale trials conducted
in the target patient population, requiring several hundred or more patients.
The large sample size, and hence the high cost and long duration of such trials
means that a single dose level is compared with a control treatment, which
may be a placebo or a standard therapy in a double-blind randomised trial.
The primary endpoint is chosen to reflect the clinical setting. This is often
an endpoint, such as survival, obtained after long-term follow-up. To provide
confirmatory evidence of treatment efficacy, regulatory authorities generally
require two phase III trials.

26.2.2 Combining clinical trial phases II and III

Approaches that allow the clinical testing programme to be completed more
quickly or with fewer patients without any compromise in the level of evidence
provided are appealing to companies acting in the competitive field of drug
development. Such approaches are also of benefit to society if effective drugs
can be made available more quickly as indicated in Section 112 of the US FDA
Modernization Act of 1997 on Expediting Study and Approval of Fast Track
Drugs. One movement towards accelerated drug development that has been
very successful over the last few decades is the application of sequential meth-
ods in phase III clinical trials comparing a single experimental treatment with
a control. This approach allows analysis of accumulating data to be conducted
during the course of a trial, with the trial being stopped as soon as sufficient evi-
dence has been observed to conclude that the experimental treatment is superior
to the control, or that the experimental treatment is insufficiently superior to
make continuation of the trial worthwhile. Overviews of sequential clinical trial
methods are given by Whitehead (1997) and Jennison and Turnbull (2000).

Of more recent interest, with the same aim of accelerating the drug testing
process, has been the possibility of designs that combine the usually distinct
phases of development. The range of methods for combining phases II and
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III that have been proposed are described in detail and compared in Section
26.3 below. We first consider the situations in which combination of the two
phases is and is not possible and desirable. We may consider three distinct
cases. The first is that in which phases II and III involve efficacy evaluation
in different patient populations. This is common in cancer trials, for example,
when patients are often enrolled in phase II trials only after the failure of first-
line therapy. In this case, it seems reasonable to consider phases II and III
separately, and there is very little scope for combining them. The second case
is that in which the patient populations for phases II and III are the same,
but a different primary endpoint is used in the two phases. For example, it
is common to use a rapidly observable endpoint in a phase II trial, with long-
term survival considered in phase III. In this case, there might be some scope for
combining phases II and III, but existing methods would have to be extended.
This extension is an area of current research. In the third case, in which the
same patient population and endpoint are used for phases II and III, a combined
trial seems both suitable and desirable. For the remainder of the chapter, it
will be this case that is considered.

If two separate phase III trials are required, we suggest that the first could
be conducted using a combined phase II/III approach as discussed here and
the second conducted comparing the chosen experimental treatment with the
control treatment using a more conventional phase III design.

26.2.3 Background to sequential clinical trials

Several of the methods for clinical trials that combine phases II and III are
based on extensions of sequential methods for trials that compare a single ex-
perimental treatment group with a control group. This section describes two
such methods, the group-sequential method and the adaptive design approach,
introducing the key underlying concepts and some notation and terminology
that will be used in the description of the combined phase II/phase III designs,
in Section 26.3.

In a sequential trial to compare a single experimental group with a control
group, a test statistic giving some measure of treatment difference is compared
with a stopping boundary at a series of interim analyses. The trial stops as
soon as the stopping boundary is reached, or after some maximum number, n,
of interim analyses. Let θ be a measure of the treatment difference, with θ > 0,
θ = 0, and θ < 0 corresponding, respectively, to superiority, equality, and inferi-
ority of the experimental treatment to the control. The aim of the trial is to test
the null hypothesis H0 : θ = 0 in favour of the one-sided alternative hypothesis
θ > 0. Whitehead (1997) proposes use of the efficient score for θ as a test statis-
tic, which may be compared with stopping limits that depend on the observed
Fisher’s information at the interim analysis. The efficient score and observed in-
formation at the jth interim analysis will be denoted by Zj and Vj, respectively.
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Forms for θ and the corresponding Zj and Vj for a number of settings are
given by Whitehead (1997). In the case of normal data, for example, he takes
θ to be the standardised difference in means. If the experimental and control
groups have, respectively, nE and nC observations and observed means x̄E and
x̄C , and the sum of the squares of all observations (taken over both groups) is
Q, then Z and V are given by

Z = nEnC(x̄E − x̄C)/{nE + nC}D (26.1)

and
V = nEnC/(nE + nC)− Z2/2{nE + nC}, (26.2)

where D = {Q/(nE + nC) − (nE x̄E + nC x̄C)2/(nE + nC)2}1/2. In this case,
under H0, when the expected value of Z is zero, if nE = nC , V is approximately
equal to nC/2.

It can be shown that in a wide range of settings, asymptotically, for large
sample sizes and small θ, Z1 ∼ N(θV1, V1), and the increment in efficient score
at the jth interim analysis, Zj−Zj−1, is independent of Zj−1, with Zj−Zj−1 ∼
N(θ(Vj −Vj−1), (Vj −Vj−1)) [Scharfstein et al. (1987)]. In the group sequential
method at the jth interim analysis, j = 1, . . . , n, Zj are compared with stopping
limits, lj and uj. If Zj ≥ uj , the trial will be stopped with H0 rejected in favour
of the one-sided alternative, θ > 0. If Zj ≤ lj, the trial will be stopped without
rejection of H0. If lj < Zj < uj, the trial continues to the (j + 1)th interim
analysis, with ln = un so that the trial must stop at the nth interim analysis if
not before.

The values of lj and uj , j = 1, . . . , n, may be chosen so as to satisfy some
specified α-spending function as introduced by Lan and DeMets (1983). Using
the approach proposed by Stallard and Facey (1995) for asymmetric tests that
may stop for futility with overall one-sided type I error rate α/2, two increasing
functions, α∗

U : [0, 1] → [0, α/2], with α∗
U (0) = 0 and α∗

U (1) = α/2, and α∗
L :

[0, 1]→ [0, 1−α/2], with α∗
L(0) = 0 and α∗

L(1) = 1−α/2, are specified. Stopping
limits are then constructed so as to satisfy

Pr(stop and reject H0 at or before look j | H0) = α∗
U (tj) (26.3)

and

Pr(stop and do not reject H0 at or before look j | H0) = α∗
L(tj), (26.4)

with tj = Vj/Vmax, where Vmax is the planned value of Vn.
The values of lj and uj , to give a test to satisfy (26.3) and (26.4), can be

obtained via a recursive numerical integration technique based on the asymp-
totic distribution of Z first described by Armitage et al. (1969). Further details
are given by Jennison and Turnbull (2000). A numerical search may be used
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to find Vmax so that the procedure has the required power under some specified
alternative hypothesis.

Bauer and Köhne (1994) present the adaptive design approach that allows
for more design modification than the group-sequential method. Considering
a two-stage sequential trial, they propose that the evidence of a treatment
difference at the jth stage of the trial for j = 1, 2, is summarised by a one-sided
p-value, pj, for the test of the null hypothesis, H0 : θ = 0, where, as above,
θ is some measure of treatment difference. The evidence from the two stages
is then combined via the product of the p-values, p1p2. Suppose that the trial
stops at the first interim analysis with rejection of H0 if p1 ≤ α1 and without
rejection of H0 if p1 ≥ α0, for some α1 and α0. Bauer and Köhne show that in
order to achieve overall one-sided type I error rate α/2, a critical value of cα/2 =
(α/2−α1)/(log α0− log α1) must then be used for the product of p-values at the
second stage. The only assumption is that p1 and p2 are independent and have
a U [0, 1] distribution under H0. This is generally satisfied by the fact that the
p-values are based on observations from different groups of patients. In contrast
to the group-sequential approach, this means that considerable flexibility in the
modification of the sequential design can be allowed without affecting the type
I error rate.

Wassmer (1999) describes how the Bauer and Köhne procedure can be ex-
tended to allow more than two stages. Suppose that at the jth stage for
j = 1, . . . , n, the product of p-values p1 × · · · × pj is calculated and com-
pared with a critical value cα(j) , with the trial being stopped and H0 rejected
if p1 × · · · × pj ≤ cα(j) , and being stopped for futility if pj ≥ α

(j)
0 , for some

choice of cα(j) , j = 1, . . . , n, and α
(j)
0 , j = 1, . . . , n − 1. Wassmer shows that

the probability of stopping and rejecting the null hypothesis at the jth interim
analysis is equal to Pj , given recursively by

Pj = cα(j)

j∑
k=1

(
k−1∏
i=1

log(α(j−i)
0 )

)
(Yk −Xk), (26.5)

where Xk =
∑j−k−1

i=1 (1/(j − k + 1− i)!) logj−k+1−i
(
(cα(i)

∏j−k−1
l=i+1 α

(l)
0 )/cα(j−k)

)
×(Pi/cα(i)) and Yk = logj−k

(
(
∏j−k−1

i=1 α
(i)
0 )/cα(j−k)

)
/(j − k)! with logi(x) de-

noting (log(x))i, cα(0) = 1 and
∑b

i=a xi = 0 and
∏b

i=a xi = 1 if a > b.
Values of α

(j)
0 and cα(j) , j = 1, . . . , n, may be constructed so that the test

satisfies (26.3) and (26.4) for some specified spending function, provided these
are such that the cα(j) values are decreasing. At the first interim analysis, the
probabilities under the null hypothesis of stopping and rejecting or not rejecting
H0 are, respectively, P1 = cα(1) and 1− α

(1)
0 , so that these can be set equal to

α∗
U (t1) and α∗

L(t1), respectively. At the jth interim analysis, the probability
under H0 of stopping for futility given that the trial has not stopped earlier is
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1−α
(j)
0 . If the values of cα(h) and α

(h)
0 , for h = 1, . . . , j− 1, have been obtained

so that the test satisfies (26.3) and (26.4) for earlier looks, the probability
of not having stopped before the jth look is 1 − α∗

U (tj−1) − α∗
L(tj−1). The

probability of stopping at the jth look and not rejecting H0 is thus equal to
(1 − α

(j)
0 )(1 − α∗

U (tj−1) − α∗
L(tj−1)). To satisfy (26.3) and (26.4), this must

be equal to α∗
L(tj) − α∗

L(tj−1), so that α
(j)
0 = (1 − α∗

U (tj−1) − α∗
L(tj))/(1 −

α∗
U (tj−1)− α∗

L(tj−1)). It is also desired that the probability of stopping at the
jth interim analysis and rejecting H0 is equal to α∗

U (tj) − α∗
U (tj−1). A value

of cα(j) to achieve this can be found from (26.5) with Pj set equal to α∗
U (tj)−

α∗
U (tj−1).

As in the two-stage design, the only requirement for (26.3) and (26.4) to
be satisfied, and hence for the preservation of the overall type I error rate, is
that p1, . . . , pn follow independent uniform distributions under H0. This allows
considerable design flexibility. Indeed, in principle at least, H0 may be changed
from one interim analysis to the next to provide a final test of the intersection
of the null hypotheses considered, though the practical value of such a strategy
might be questioned.

26.3 Methods for Combining Phases II and III

As indicated in Section 26.1 above, one of the aims of a phase II clinical trial is
to compare competing treatments, which may be the same drug administered at
different doses or with different treatment regimens, or different drugs, in terms
of their efficacy to choose the most effective. The aim of a phase III clinical
trial is to compare a single treatment with a control treatment with the hope of
obtaining definitive evidence of a treatment effect. An approach to combining
phases II and III into a single trial must thus focus on both selecting the best of
a number of treatments and comparing this with the control treatment. In view
of this dual nature, the designs for combining phases II and III are sometimes
known as ‘select and test’ designs.

In detail, we suppose k competing experimental treatments, which we will
denote by T1, . . . , Tk, are to be compared with each other and with a control
treatment, T0. Let θi be a measure of the superiority of treatment Ti rela-
tive to T0, with θi > 0, θi = 0, and θi < 0 corresponding, respectively, to
superiority, equality, and inferiority of Ti. The aims of the combined phase
II/III trial are to both select the best experimental treatment and to test the
global null hypothesis H0 : θ1 = · · · = θk = 0, with controlled type I error
rate.
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26.3.1 Two-stage methods

Methods for combining phases II and III were proposed by Thall et al. (1988)
and Schaid et al. (1990). Both papers propose trials conducted in two stages,
with a single interim analysis at the end of the first stage, at which the trial
will be stopped if results are insufficiently promising. In the first stage, pa-
tients are randomized between a number of experimental treatments and a
control treatment, with the aim of selecting the best treatment or treatments
for continuation to the second stage. The final analysis is performed at the end
of the second stage, and uses data from both the second and the first stages for
those treatments continuing to the end of the trial.

Thall et al. (1988, 1989) proposed a method for trials with a binary endpoint
in which, providing the trial has not been stopped, only the best treatment
from the first look continues with the control treatment to the second stage.
The overall type I error rate, given the critical values at the two analyses may
be obtained through the use of a normal approximation if a control group is
included in the first stage [Thall et al. (1988)] or by binomial calculations if
there is no control group [Thall et al. (1989)]. A numerical search can thus
be used to obtain the critical value at the final analysis given that at the first
stage, and the latter can be chosen to minimize the required sample size subject
to a specification of the power of the trial.

Schaid et al. (1990) propose a method for trials with a survival endpoint.
Their method allows any number of the experimental treatments to continue
to the second stage along with the control. The overall type I error rate is
maintained by imposing a Bonferroni correction as if no experimental arms
could be dropped, leading to a design that is more flexible than that suggested
by Thall et al. (1988), but is generally conservative.

26.3.2 A multistage group-sequential method

More recently proposed methods for combining phase II and phase III clinical
trials build on sequential clinical trial methodology to allow trials that may be
conducted in more than two stages. The frequentist properties of the test can
be specified via spending functions as in (26.3) and (26.4), where now the test
is of the global null hypothesis, with rejection of this in the one-sided direction
that some experimental treatment is superior to the control.

Stallard and Todd (2003) proposed a method based on the group-sequential
approach described in Section 26.2. It is assumed that randomization is initially
to the k experimental treatments and the control. At the first interim analysis
the best of the experimental treatments is selected, and, if the trial does not stop
at this point, further randomization is between the control and this treatment
only. The trial then proceeds with a series of interim analyses comparing this
treatment with the control. The combination of evidence from the different



Combining Clinical Trial Phases II and III 409

stages in the trial is achieved through the calculation of efficient score statistics
for θ1, . . . , θk.

Suppose that at the first interim analysis, the efficient score and observed
Fisher’s information for θi are, respectively, Zi,1 and Vi,1, i = 1, . . . , k. If
the sample size for each treatment arm is the same, it is often reasonable to
assume that V1,1 = · · · = Vk,1. Because an approximate maximum likelihood
estimate of θi is given by Zi,1/Vi,1, the best treatment is the one with the largest
value of Zi,1. Let S = arg max{Zi,1}, that is, the value of i for which Zi,1 is
largest, so that the selected treatment is TS . A test of the global null hypothesis
can be based on the observed value of ZS,1. Based on the assumption that
V1,1 = · · · = Vk,1, Stallard and Todd (2003) derive the density of ZS,1. As only
TS and T0 continue beyond the first stage of the trial, data from subsequent
stages can be summarized by the statistics ZS,j and VS,j. As in the case of
a trial with a single experimental treatment, the increment ZS,j − ZS,j−1 is
asymptotically N(θS(VS,j −VS,j−1), (VS,j −VS,j−1)) and independent of ZS,j−1.
The joint density of ZS,1, . . . , ZS,k can thus be obtained from the density of
ZS,1 using recursive numerical integration in a similar way to that described by
Armitage et al. (1969) and Jennison and Turnbull (2000) to give a stopping
boundary that satisfies (26.3) and (26.4) for specified spending functions.

26.3.3 A multistage adaptive design method

An alternative approach to the design of a trial combining phases II and III
has been proposed by Bauer and Kieser (1999). They use the adaptive design
approach described in Section 26.2 above. Although they describe a two-stage
method, the approach of Wassmer can be used to extend their approach to a
multistage setting. In general, at the jth stage, patients are randomized be-
tween the control treatment and some subset τj of {T1, . . . , Tk}. Although the
flexibility of the adaptive design approach allows τj to be chosen in any way,
typically τ1 would be taken to be {T1, . . . , Tk} and τj ⊆ τj−1 for j > 1, so that
randomization is initially to all treatments, with ineffective treatments dropped
through the course of the trial and no dropped treatment reinstated. At the jth
stage a p-value, pj, is calculated as a test of the global null hypothesis based on
the new data from that stage and the product of p-values up to and including
that stage is compared with appropriate critical values to decide whether the
trial should be stopped. To preserve the overall type I error rate, the p-value
must allow for the multiple comparison of several experimental treatments with
a control. Bauer and Kieser (1999) give a brief discussion of alternative meth-
ods including a simple Bonferroni correction. Using this approach, at the jth
stage, one-sided p-values would be obtained for the comparison of each of the
treatments in τj with the control. The smallest of these p-values, correspond-
ing to the treatment most superior to the control, would then be multiplied by
the number of treatments, that is, |τj |, to correct for the multiple comparisons,
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to give pj. The product p1 × · · · × pj is then compared with cα(j) , and pj is
compared with α

(j)
0 as described above to give a test with overall error rates as

specified by the spending functions (26.3) and (26.4).

26.3.4 Example—a multistage trial comparing three doses of a
new drug for the treatment of Alzheimer’s disease

Stallard and Todd (2003) illustrate their method with the example of a clinical
trial to assess the effectiveness of galantamine for the treatment of Alzheimer’s
disease. Patients were randomized to receive the placebo or galantamine at a
dose of 18 mg/day, 24 mg/day, or 36 mg/day.

The original trial was conducted as three simultaneous group-sequential
triangular tests [see Whitehead (1997, Section 3.7) for details of the triangular
test], each one comparing a single dose of galantamine with the placebo control.
Comparison was in terms of the cognitive portion of the Alzheimer’s disease
assessment scale (ADAS) score, which was assumed to be normally distributed.
Sample size calculations indicated that a maximum of 100 patients on each
treatment arm would be needed, and it was planned to conduct interim analyses
when results were available from groups of 20 patients on each arm, so that
a maximum of five interim analyses was anticipated. Using the result that
the observed Fisher’s information, V , is approximately equal to half of the
number of patients per group, this corresponds to V increasing by 10 each
look.

As an alternative to the three simultaneous triangular tests that take no
account of the multiple comparisons, the selection of the best galantamine
dose and comparison of this with the control treatment could be conducted
using either of the methods described in Section 26.3 above, as illustrated
in the remainder of this section. To give a test with similar properties to
that actually used, the combined phase II/III test may be designed to sat-
isfy (26.3) and (26.4) with spending functions corresponding to the triangular
test. The form of the spending functions is given by Whitehead (1997). For
a test with overall one-sided type I error rate of 0.025 and five equally spaced
interim analyses planned, we get (α∗

U (0.2), α∗
U (0.4), α∗

U (0.6), α∗
U (0.8), α∗

U (1)) =
(0.001, 0.010, 0.019, 0.024, 0.025) and (α∗

L(0.2), α∗
L(0.4), α∗

L(0.6), α∗
L(0.8), α∗

L(1))
= (0.185, 0.733, 0.933, 0.973, 0.975). The critical values for the product of p-
values, cα(j) , j = 1, . . . , 5, obtained from Eq. (26.5) with these spending func-
tion values are not decreasing, so that critical values satisfying these spending
functions cannot be found using (26.5). In particular, because cα(1) = α∗

U (0.2),
the small value of the spending function for the upper boundary at this first
look results in cα(1) < cα(2) . Stopping boundaries were instead obtained using
a slight modification of the triangular test spending function, with the values
given in the second and third columns of Table 26.1.
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Table 26.1: Critical values for the Stallard and Todd (2003) and Bauer and
Kieser (1999) designs for the galantamine trial

Look Spending Functions Stallard and Todd Bauer and Kieser
(j) α∗

L(tj) α∗
U (tj) Critical Values Critical Values

lj uj α
(j)
0 cα(j)

1 0.2 0.002 -0.461 10.1 0.800 0.002
2 0.7 0.01 4.01 12.0 0.373 0.00134
3 0.9 0.02 8.32 13.4 0.310 0.000691
4 0.97 0.024 14.2 16.0 0.125 0.000210
5 0.975 0.025 18.1 18.1 . 0.000140

The critical values for ZS,j, lj, and uj obtained using the approach of Stal-
lard and Todd (2003) are given in Table 26.1. The values are calculated assum-
ing that for each of the three comparisons with control, the observed Fisher’s
information, V , increases by 10 at each interim analysis. Also given in Table
26.1 are the critical values for the products of p-values, α0(j) and cα(j) , for
j = 1, . . . , 5. The boundary values for the Stallard and Todd approach are also
plotted against V in Figure 26.1. The figure shows the roughly triangular shape
of the continuation region bounded by the stopping boundaries. The continua-
tion region is similar in shape to the triangular tests of Whitehead (1997), but
is moved upwards due to the selection of the best treatment at the first interim
analysis.

Table 26.2 gives a summary of the comparison of each dose with the placebo
at the first two interim analyses. The values of the efficient score, Z, and
observed Fisher’s information, V , for each comparison are obtained from ex-
pressions (26.1) and (26.2), so that Z represents the cumulative evidence of a
difference between the dose group and placebo based on all of the data accu-
mulated thus far in the trial. The p-values for the first interim analysis are
given by pi,1 = 1− Φ(Zi,1/Vi,1), i = 1, . . . , 3, and so correspond to an analysis
based on the asymptotic normality of the efficient score statistics Zi,1. Because
the full data for the trial were unavailable, the p-values that would be obtained
from a similar analysis of the data from the new patients at the second interim
analysis have been approximated by pi,2 = 1 − Φ((Zi,2 − Zi,1)/(Vi,2 − Vi,1)),
i = 1, . . . , 3, because the values of Zi and Vi for the new patients’ data are
likely to be similar to the increments (Zi,2 − Zi,1) and (Vi,2 − Vi,1).

It can be seen that the values of observed Fisher’s information, V , are close
to the expected values of 10 at the first interim analysis and 20 at the second
interim analysis. The values of the efficient score, Z, at the first interim analysis
are plotted against the values of V in Figure 26.1. At this interim analysis, the
24 mg/day dose appears the best, so that this dose is considered for continuation
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Table 26.2: Observed test statistics for the galantamine trial

Comparison Look 1 Look 2
Zi,1 Vi,1 pi,1 Zi,2 Vi,2 pi,2

18 mg/day vs. placebo 4.28 11.79 0.1063 4.29 20.61 0.4987
24 mg/day vs. placebo 7.89 10.82 0.0082 13.78 19.58 0.0233
36 mg/day vs. placebo 4.64 11.01 0.0810 8.39 20.30 0.1093

along with the control in the Stallard and Todd (2003) design. As the value of
Z for the comparison of this dose with the control is between l1 and u1 given
in Table 26.1, the trial continues to the second interim analysis. At the second
look, the value of Z for the comparison of the 24 mg/day dose with the placebo
is 13.78. This value is also plotted in Figure 26.1. As it exceeds the value for
u2 given in Table 26.1, using the Stallard and Todd design, the trial would be
stopped at this point and it would be concluded that the 24 mg/day dose is
superior to the control.

V

Z

0 10 20 30 40 50

0
5

10
15

20

18 mg/day vs placebo

24 mg/day vs placebo

36 mg/day vs placebo

Figure 26.1: Group-sequential stopping boundary and sample paths for the
galantamine trial with efficient score, Z, plotted against observed Fisher’s in-
formation, V
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With the Bauer and Kieser (1999) approach, the critical values are obtained
exactly as in the case of comparison of a single experimental treatment with
control. The correction for the use of multiple doses must be made in calculation
of the p-values that are compared with those critical values. At the first stage
there are three comparisons with control. A simple Bonferroni correction thus
uses, as the p-value for the test of the global null hypothesis, the smallest of
the three p-values observed and multiplies this by three. This gives a p1 of
3 × 0.0082 = 0.0246. As this is larger than cα(1) and smaller than α

(1)
0 from

Table 26.1, the trial continues. With the Bauer and Kieser (1999) approach,
any number of doses may continue to the second stage. We therefore illustrate
how the trial would proceed in two different cases. In the first, as in the Stallard
and Todd design, only the 24 mg/day dose proceeds to the second stage along
with the placebo. In the second case, both the 18 and 24 mg/day doses continue
to the second stage. This case might correspond to a situation in which the
lowest effective dose is sought and it was considered that there was insufficient
evidence from the first stage alone to reject the 18 mg/day dose.

In the first case, the p-value for comparison of the 24 mg/day dose with the
control at the second stage does not need correcting for multiple comparisons
as only one comparison is conducted at this interim analysis. The product
of p-values is thus equal to 0.0246 × 0.0233 = 0.000573. In the second case,
again applying a Bonferroni correction, now to allow for the two comparisons
conducted at the second interim analysis, the product of p-values is equal to
0.0246×2×0.0233 = 0.001146. In both cases, the product of p-values is smaller
than cα(2) from Table 26.1, so that, as in the Stallard and Todd design, the trial
would be stopped at this point.

26.4 Discussion and Future Directions

This chapter has provided a review of recent research work on designs for clin-
ical trials that combine phases II and III, focusing in particular on the mul-
tistage approach of Stallard and Todd (2003) and the approach of Bauer and
Kieser (1999) that may be extended to a multistage method using the tech-
nique proposed by Wassmer (1999). Although both the Stallard and Todd and
the Bauer and Kieser methods achieve similar aims and may lead to the same
conclusion, the underlying statistical methodology is different. The Stallard
and Todd method is based on the group-sequential approach. This means that
the number of experimental treatments that will be compared with the control
treatment at each stage must be specified in advance. As formulated by Stallard
and Todd, only a single experimental treatment is allowed to continue beyond
the first interim analysis. This is in contrast to the Bauer and Kieser approach,
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which is based on the adaptive design approach of Bauer and Köhne (1994) and
allows a great amount of flexibility in the design, including the possibility to
continue with any number of experimental treatments at any stage. Although
the adaptive designs have been criticized for a lack of power compared with
the group-sequential approach due to the fact that the product of p-values used
as a test statistic is not a sufficient statistic for the parameter of interest [see
Jennison and Turnbull (2003) and Tsiatis and Mehta (2003)], the difference
in power may be very small in practice [Kelly et al. (2005)]. A more severe
practical problem may be the fact that for the adaptive design approach, the
p-values are based on the separate data sets observed at each interim analysis.
When the test used to construct the p-values is based on an asymptotic result,
this may hold poorly in these small samples, leading to inaccurate type I error
rates.

A feature of both multistage methods described above is that they formally
test the global null hypothesis that all experimental treatments are of identi-
cal efficacy as the control. Rejection of the null hypothesis thus indicates that
some experimental treatment is superior to the control, but does not give in-
formation on individual treatment comparisons. As an example, suppose that
two experimental treatments are compared with a control using the Bauer and
Kieser design, and that at the first interim analysis T1 is superior to T0 and T2

is inferior. Suppose that the trial continues with both treatments and that at
the second interim analysis, based on the new data, T2 is superior to T0 and T1

is inferior. The corrected p-values from the two stages may be such that the
global null hypothesis can be rejected based on the p-value product without
rejection of either H01 : θ1 = 0 or H02 : θ2 = 0. The restriction in the Stallard
and Todd approach that only the best experimental treatment from the first
stage continues to subsequent stages means that the evidence against the null
hypothesis from the different stages arises from comparison of the same exper-
imental treatment with the control, so that this problem does not arise. In the
Stallard and Todd design, the need to specify in advance the rule for deciding
which treatments are to be used in the different stages might also be seen as an
advantage by the regulatory authorities, who do not always look favourably on
unplanned design modification.

Although, as reported above, great advances have been made recently in the
methodology available for combined phase II/III clinical trials, this remains an
area of active research. One outstanding challenge is the question of analysis
after such a trial. Another is the use of information on a surrogate endpoint
early in the trial as discussed by, for example, D’Agostino (2000), Zhang et
al. (1997), and Shih et al. (2003). Whilst some work on the use of surro-
gate endpoints in the setting of combined phase II/phase III clinical trials has
been undertaken [see, for example, Todd and Stallard (2005) and Stallard and
Todd (2005)], some difficulties remain. The optimal design of trials of this sort,
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particularly the division of resources between assessment of several experimen-
tal treatments early in the trial and the more detailed comparison of a single
experimental treatment with a control later in the trial, is also an area in which
more work is needed.

Acknowledgements. The authors are grateful to Gernot Wassmer for assis-
tance with implementation of the multistage adaptive design approach, to an
anonymous referee for helpful comments on the chapter, and to Professor Auget
and the organising committee of the International Conference on Statistics in
Health Sciences for the opportunity to present this work. Some of the work re-
ported here was developed at a workshop organised by the authors in Reading
in March 2004. The authors are grateful to the UK Engineering and Physi-
cal Sciences Research Council for funding the workshop and to participants for
their input.

References

1. Armitage, P., McPherson, C. K., and Rowe, B. C. (1969). Repeated
significance tests on accumulating data, Journal of the Royal Statistical
Society, Series A, 132, 235–244.

2. Bauer P., and Kieser M. (1999). Combining different phases in the devel-
opment of medical treatments within a single trial, Statistics in Medicine,
18, 1833–1848.
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Abstract: A sequential clinical trial is designed with given significance level
and power to detect a certain difference in the parameter of interest and the
trial will be stopped early when data collected at an early stage of the trial
have produced enough, in one sense or another, evidence for the conclusion of
the hypotheses. Different sequential test designs are available for a same re-
quirement of significance level and power. On the other hand, a same set of
observed data can be interpreted as outcomes of different sequential designs
with the same significance level and power. Therefore for same observed data,
the conclusion of a test may be significant by one sequential design but in-
significant by another sequential test design. This phenomenon may lead to the
question of whether applying sequential test design to clinical trials is ratio-
nal. Withstanding this challenge, the sequential conditional probability ratio
test (SCPRT) offers a special feature such that a conclusion made at an early
stopping is unlikely to be reversed if the trial were not stopped but continued
to the planned end. The SCPRT gives a sound reason to stop a trial early;
that is, if the trial were not stopped as it should, then adding more data and
continuing the trial by the planned end would not change the conclusion. With
an SCPRT procedure, a sequential clinical trial is designed not only with given
significance level and power, but also with a given probability of discordance
which controls the chance that conclusion at an early stage would differ from
that at the final stage of the trial. In particular, the SCPRT procedure based
on Brownian motion on information time is simple to use and can be applied
to clinical trials with different endpoints and different distributions.

Keywords and phrases: Sequential analysis, hypothesis testing
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27.1 Introduction

Whether we realize it or not, clinical trials are experiments with human subjects
and hence there is a conflict between the scientific merits of clinical trials and
the ethical concerns on the trials in terms of sample sizes. The scientific merits
of clinical trials require larger sample sizes for more reliable results, whereas the
ethical concerns in clinical trials demand that fewer patients should be exposed
to the inferior treatment. In addition, the scientific merits also conflict with
the efficiency of clinical trials in light of the many potential research initiatives
competing for clinical trials, whereas the number of patients and resources
available for clinical trials is very limited. The sequential clinical trials provide
a better solution to balance these conflicts, by which fewer patients will be
exposed to the inferior treatment, the test is more efficient with smaller expected
sample sizes, and investigators can monitor data at early stages of a trial.
Motivated by improving the efficiency of sampling for inspection of ammunition
production in World War II, Wald (1947) proposed the first sequential procedure
as the sequential probability ratio test (SPRT) in the United States in 1943, and
independently in the same year, Bernard (1946) proposed a similar sequential
procedure as the problem of gambler’s ruin in the United Kingdom. Since then,
the sequential test procedures have been widely applied in industry, economics,
business, and other fields. The application of sequential designs to clinical
trials, although started in early 1950, did not sail smoothly through the clinical
trial community. This is because some properties of sequential procedures are
unappealing to clinical investigators. The past decades witnessed many authors’
efforts to improve sequential designs to make them more suitable for clinical
trials: for example, the sequential medical plans by Bross (1952) and Armitage
(1957), the truncated SPRT by Anderson (1960), the uniformly most powerful
(UMP) sequential test by Alling (1966), the direct method by Aroian (1968),
the repeated significance tests by Armitage et al. (1969), the modified UMP
sequential test by Breslow (1970), the Pocock boundaries by Pocock (1977), the
O & F boundaries by O’Brien and Fleming (1979), the stochastic curtailing by
Lan et al. (1982), the triangular sequential design by Whitehead and Stratton
(1983), the spending function by Lan and DeMets (1983), and the repeated
confidence interval approach by Jennison and Turnbull (1989). A recent book
by Jennison and Turnbull (2000) summarizes various group-sequential methods
and applications to clinical trials. The sequential procedure offers an advantage
with smaller sample size on average as compared with the fixed sample test.
However, the enthusiasm for sequential procedures by clinical trial investigators
could have been discouraged by concerns such as, “Is the conclusion reliable?”
when the trial was stopped early and the conclusion was drawn from a smaller
sample, or, “Would the conclusion be reversed if the trial were not stopped and
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had got more samples?” On the other hand, although the sequential trial is
expected to stop with a smaller sample size, it may end up with a substantially
larger sample size than that of the fixed sample size test. The bottom line is
that medical investigators are conservative and would be hesitant to use the
sequential procedure if they do not feel confident about it. Consequently, the
question is, what should be the ideal sequential test procedures for clinical
trials? In our opinion, at least, an ideal sequential test procedure should be
consistent in conclusions at different interim and final looks, and for which the
efficiency of the test should be judged not only by the expected sample size but
also by the maximum sample size.

27.2 The SCPRT Procedure

The Sequential Conditional Probability Ratio Test (SCPRT) procedure was
proposed by Xiong (1993, 1995), based on one of the results in Xiong (1991).
The special properties of SCPRT are that the (maximum) sample size of the
sequential test is not larger than that of the (reference) fixed sample size test,
and that the probability of discordance as a design parameter can be controlled
to any small level, where the discordance is the disagreement between the con-
clusion reached by the sequential test and that by the fixed sample test at the
final stage or the planned end. The SCPRT is derived using the ratio of max-
imum conditional likelihoods which are conditioned on the future value of the
test statistic at the final stage. The likelihood ratio is the ratio of maximum
likelihood that the test statistic at the final stage will end at the rejection region
to the maximum likelihood that this test statistic will end at the acceptance
region. The SCPRT procedures have been developed so far for several distrib-
utions such as binomial, normal, exponential, Poisson, Gamma, and Brownian
motion in a technical report [Xiong (1993)] and published papers [Xiong (1995)
and Xiong et al. (2003)]. In this paper, we sketch the basic concepts of SCPRT
using the example of SCPRT for Brownian motion on information time for those
who are mainly interested in clinical trial applications, and details of this pro-
cedure can be found in Xiong et al. (2003). For Brownian motion St ∼ N(δt, t)
on information time [0, 1] to test hypotheses H0 : δ ≤ 0 versus Ha : δ > 0 with
significance level α, the ratio of maximum conditional likelihoods is defined as

LR(t, St|zα) =
max{s>zα} f(St|S1 = s)
max{s≤zα} f(St|S1 = s)

, (27.1)

where St is the test statistic at current information time t; S1 is the St at
future information time t = 1; f(St|S1) is the likelihood of St given S1; zα

(upper α-quantile of standard normal distribution) is the cutoff value for S1.
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By taking the log of LR in (27.1), the stopping rule is defined as

log(LR(tk, Stk |zα)) > a or log(LR(tk, Stk |zα)) < −b, (27.2)

where a and b are positive numbers. Applications can be greatly simplified by
letting a = b which produces symmetric sequential boundaries. Derived from
equations in (27.2) with a = b, the upper and lower boundaries for Stk are,
respectively,

ak = zαtk +
√

2atk(1− tk) and bk = zαtk −
√

2atk(1− tk), (27.3)

where (t1, . . . , tK) are the information times specified by investigators for the
interim and final analyses. If the hypotheses are H0 : δ ≥ 0 versus Ha : δ < 0,
then the upper and lower boundaries should be

ak = −zαtk +
√

2atk(1− tk) and bk = −zαtk −
√

2atk(1− tk). (27.4)

The a in the above equations is called the boundary coefficient, and can be
determined through the probability of discordance using Table 27.1. If investi-
gators of a clinical trial are interested in only one side of the boundaries (e.g.,
the upper boundaries), then the other side of the boundaries (e.g., the lower
boundaries) can be deleted. For the design after deletion, the power function
(including its two special values, the significance level, and the power for de-
tecting the given alternative) change very little if a small ρmax was chosen for
the design before deletion (e.g., ρmax = 0.0054). The ρmax for the design after
deletion is about half of that for the design before deletion.

Table 27.1: Boundary coefficient a for given K and ρ

For any K Boundary Coefficient a
ρ ρmax K = 2 K = 3 K = 4 K = 5 K = 6

0.005 0.0012 3.315 3.895 4.227 4.459 4.636
0.01 0.0025 2.699 3.271 3.595 3.819 3.987
0.02 0.0054 2.109 2.645 2.953 3.166 3.327
0.03 0.0084 1.769 2.285 2.583 2.789 2.945
0.04 0.0116 1.532 2.031 2.320 2.521 2.672
0.05 0.0149 1.353 1.835 2.118 2.313 2.460
0.06 0.0183 1.209 1.678 1.951 2.142 2.287
0.08 0.0256 0.987 1.431 1.693 1.876 2.015
0.10 0.0331 0.821 1.243 1.494 1.669 1.803
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27.2.1 Controlling the boundary

The only undetermined parameter in Eqs. (27.3) and (27.4) is the bound-
ary coefficient a which controls the width of the continuation region between
the upper and lower boundaries: the smaller the a, the narrower the region
is. For a sequential design, it is critical to choose an appropriate a, which
can be determined intuitively through using the probability of discordance de-
fined as follows. Let D be the event that the sequential test and the non-
sequential test at the final stage reach different conclusions on sequentially
collected data. The probability of discordance Pδ(D) depends on δ, and is
maximized at δ = zα. The maximum probability of discordance is defined as
ρmax = maxδ Pδ(D), and the maximum conditional probability of discordance
is defined as ρ = maxs P (D|S1 = s). The relationships among a and ρmax and
ρ are given in Table 27.1, in which K is the total number of interim looks and
the final look. The principle for choosing an appropriate a is that the design
should be as efficient as possible, while keeping the significance level and power
of the sequential test about the same as that of the fixed sample size test at the
final stage. The smaller the a, the larger are ρ and ρmax, and the smaller is the
expected sample size. Because a smaller ρmax is desirable and a larger expected
sample size is undesirable, one has to choose the a by balancing the two opposite
desirabilities in accordance with the very utility in the clinical trial. In general,
we recommend to choose an a that produces ρ = 0.02 or ρmax = 0.0054, which
implies that on average there are 5.4 cases of reversing conclusion in 1000 trials
using this design under the most unfavorable scenario (δ = zα).

27.2.2 Boundaries in terms of P -values

For practical convenience, users may prefer sequential boundaries in terms of
the (nominal) critical P -values, and accordingly the sequential test statistic in
terms of the (nominal) observed P -value. At information time tk, the variance
of test statistic St is Var(Stk) = tk; then the upper and lower boundaries can
be standardized by ak, bk/

√
Var(Stk) = zα

√
tk ±

√
2a(1 − tk). For testing hy-

potheses H0 : δ ≤ 0 versus Ha : δ > 0, the (nominal) critical P -values (critical
significance levels) are

Pak
=1−Φ

(
zα

√
tk+

√
2a(1−tk)

)
and Pbk

=1−Φ
(

zα

√
tk−

√
2a(1−tk)

)
(27.5)

for the upper and lower boundaries, respectively. The test statistic Sk can
be standardized as Stk/

√
Var(Stk) = Stk/

√
tk. Hence, the (nominal) observed

P -value at stage k is

PSk
= 1− Φ

(
Stk/
√

tk
)
. (27.6)
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The trial should be stopped if the observed P -value ≤ critical P -value on the
upper boundary, or ≥ critical P -value on the lower boundary. If the hypotheses
are H0 : δ ≥ 0 versus Ha : δ < 0, then the critical P -values are

Pak
= Φ

(
−zα

√
tk +

√
2a(1− tk)

)
and Pbk

= Φ
(
−zα

√
tk −

√
2a(1 − tk)

)
(27.7)

for the upper and lower boundaries, respectively; and the observed P -value at
stage k is

PSk
= Φ

(
Stk/
√

tk
)
. (27.8)

The trial should be stopped if the observed P -value ≥ critical P -value on the
upper boundary, or ≤ critical P -value on the lower boundary. The observed
P -value in (27.6) or (27.8) at stage k is actually same as the P -value (of one-
sided test) for the regular nonsequential test applied to the data up to stage k,
which is available from regular analysis of updated data using SAS, SPlus, or
other statistical packages.

27.3 An Example

Assume the Xis are normally distributed with mean μx and variance σ2
x = 1,

and the Yis are normally distributed with mean μy and variance σ2
y = 1.52. To

test H0 : μx ≤ μy versus Ha : μx > μy, with significance level α = 0.05 and
power 1 − β = 0.8 for detecting an alternative δ = μx − μy = 0.3, the sample
sizes for a nonsequential test are calculated as m = mx = my = 224. For
the sequential test, assume the interim and final looks are planned when 25%,
50%, 75%, and 100% of the data are collected; hence the information times are
(0.25, 0.5, 0.75, 1) and sample sizes are (56, 112, 168, 224) for those looks. The
test statistic is

Stk = nk(X̄nk
− Ȳnk

)/
√

m(σ2
x + σ2

y), (27.9)

where tk = nk/m for k = 1, . . . , 4. Assume ρ = 0.02; then a = 2.953
and ρmax = 0.0054 from Table 27.1. The SCPRT upper and lower bound-
aries are (1.4635, 2.0375, 2.2860, 1.6449) and (−0.6411,−0.3927, 0.1813, 1.6449)
by Eq. (27.3). The critical P -values are (0.0017, 0.002, 0.0042, 0.05) for the
upper boundary and (0.9001, 0.7107, 0.4171, 0.05) for the lower boundary by
Eq. (27.5).
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SCPRT boundaries for Brownian motion on [0,1]
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Figure 27.1: Sequential test statistic St simulated under H0: μx − μy = 0

Under H0 assuming μx = μy = 0, we simulated 224 Xis and 224 Yis,
from which the test statistic St was a process on information time interval
[0, 1] emulating a Brownian motion, as shown in Figure 27.1. On the four
interim and final looks, (St1 , . . . , St4) = (−0.2083,−0.7161,−0.3262,−0.4142)
and the observed P -values = (0.6615, 0.8444, 0.6468, 0.6606). The observed
P -value is greater than the critical P -value of the lower boundary at k = 2
(i.e., 0.8444 > 0.7107) and hence the trial should be stopped with sample size
n2 = 112 and a conclusion of not significant. As shown in Figure 27.1, the test
statistic St exited the lower boundary at t2 = 0.5, and if the trial did not stop
as it should at t2 = 0.5 but continued to the planned end, then the test statistic
at t4 = 1 would fall in the acceptance region and the conclusion would still be
the same as not significant.

Under Ha assuming μx = 0.4 and μy = 0, a simulation similar to the
above leads to a process of test statistic St as plotted in Figure 27.2. On the
four looks (St1 , . . . , St4) = (0.8004, 2.3843, 2.6519, 3.3241) and the observed P -
values = (0.0547, 0.0004, 0.0011, 0.0004). The observed P -value is smaller than
the critical P -value of the upper boundary at k = 2 (i.e., 0.0004 < 0.002) and
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SCPRT boundaries for Brownian motion on [0,1]
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Figure 27.2: Sequential test statistic St simulated under Ha: μx − μy = 0.3

hence the trial should be stopped with sample size n2 = 112 and conclusion
of significant. As shown in Figure 27.2, the test statistic St exited the upper
boundary at t2 = 0.5, and if the trial did not stop as it should at t2 = 0.5 but
continued to the planned end, then the test statistic at t4 = 1 would fall in the
rejection region and the conclusion would still be the same as significant.

27.4 SCPRT with Unknown Variance

In the statistical design of clinical trials, the variance σ2 has to be assumed
known for calculating the sample size and the test statistic. However, in reality,
the variance is usually unknown and its estimate σ̂2 is used for the sample
size calculation, which leads to a loss of power. In the table below, for a
nonsequential test designed with significance level α = 0.05 and power 1− β =
0.8, the actual (overall) power is calculated for different n which is the sample
size for σ̂2. For example, the actual power is 0.74 instead of 0.8 when n = 10.
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Sample size for σ̂2: n 10 20 30 40 80 100
Overall power: E(1 − β̂) 0.74 0.772 0.781 0.786 0.793 0.795

For a clinical trial design in which σ̂2 instead of σ2 was used for calculating
sample size, in order to reach a targeted overall power 1− β, the loss of power
can be compensated by using a nominal power 1−β∗ which is a solution of the
equation,

1− β = (1− β∗)− φ(zβ∗)
4(n − 1)

{
(zα + zβ∗) + (zα + zβ∗)2zβ∗

}
.

For significance level α = 0.05 and the targeted power 1−β = 0.80, the nominal
power 1 − β∗ is calculated for different n in the table below. For example, for
n = 10, 1 − β∗ = 0.867 which is substantially larger than the targeted power
1− β = 0.8.

n for σ̂2 10 20 30 40 80 100
Nominal power 1− β∗ 0.867 0.831 0.82 0.815 0.807 0.806

We now give a nonsequential test procedure that guarantees significance
level and power for any unknown true σ2. Assume σ2 is estimated by σ̂2 with
sample size n = 20 and then this σ̂2 is used to calculate the sample size m̂∗

(an estimate of m∗) for a design of a test with significance level α = 0.05 and
targeted power 1−β∗ = 0.831 (corresponding to n = 20 in the table above). The
conditional power for this test given σ̂2 is 1− β̂∗ which is random and unknown
(because it depends on the random σ̂2 and the unknown σ2). However, the
overall power for this procedure (that includes estimating σ2, calculating the
sample size of the test using σ̂2, and carrying out a test with sample size m̂∗)
is E(1 − β̂∗) = 0.80(= 1− β) for any unknown true σ2.

Based on the nonsequential test procedure above, we then develop an adap-
tive SCPRT procedure for which the significance level and power of a sequential
test procedure can be retained for any true variance. This procedure was built
on the property that the SCPRT is a sequential test in accordance with conclu-
sions of the nonsequential test with the same significance and power. At each
look k, σ2 is reestimated as σ̂2

k, and by which the final sample size (unknown
m) is reestimated as m̂k. Then the SCPRT boundaries are recalculated using
the updated estimate of final sample size m̂k. The upper quantile of t distribu-
tion, tα(n− 1), is used (instead of zα for the standard normal distribution) for
calculating the boundaries. Ultimately, the adaptive SCPRT design keeps the
power of the test for any unknown true σ2. For example, to test hypotheses of
μ0 = 0 versus μa = 0.5 with significance level α = 0.05 and power 1− β = 0.8,
the operating characteristics (OC) for the adaptive SCPRT (t-test) are given in
Table 27.2, in which different scenarios are assumed for the unknown true vari-
ance σ2 (= 1, 16, 64) and the maximum conditional probability of discordance
ρ (= 0.005, 0.02).
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Table 27.2: OC for the adaptive SCPRT with unknown variance

Fixed Sample Size Test Adaptive SPCRT with Unknown σ2

True with Known σ2 t-Test; Nominal α = 0.04
σ2 Sample Size m ρ α 1− β Eμ0N EμaN

1 25 0.005 0.051 0.802 22.2 24.6
0.02 0.053 0.802 20.8 23.5

16 396 0.005 0.045 0.797 353 391
0.02 0.050 0.790 323 367

64 1583 0.005 0.047 0.796 1416 1570
0.02 0.053 0.790 1296 1470

27.5 Clinical Trials with Survival Data

In this section, we apply SCPRT procedures to clinical trials for comparing two
survival curves (treatment and control). There are two scenarios for this type
of sequential procedures. The first scenario is for regular clinical trials in which
enrollments for the treatment group and control group are both prospective,
and synchronize in proportion of total enrollments at each stage. The second
scenario is for the clinical trials with historical controls, in which the enrollment
of the control group had been completed before the start of the clinical trial,
whereas the treatment group is prospectively and sequentially enrolled. For
this scenario, the comparison at each stage is between the partially enrolled
treatment group and the whole control group.

Assume observations for the treatment group are Xis with hazard rate λx,
and observations for control group are Yis with hazard rate λy. The hypotheses
of interest are H0 : r ≤ 1 versus Ha : r > 1, where r = λy/λx. Let mx and
my be sample sizes for the treatment and control groups, respectively. Let
π = mx/(mx + my) and 1 − π = my/(mx + my) be proportions of pooled
patients for the two groups. Let a be the length of the enrollment period and
f be the length of the followup period in the clinical trial, and a and f are
the same for both groups. Assume Gx(t) and Gy(t) are survival functions for
Xi and Yi, respectively. Let A = (1/6){Gx(f) + 4Gx(0.5a + f) + Gx(a + f)}
and B = (1/6){Gy(f) + 4Gy(0.5a + f) + Gy(a + f)}, as in Collett (2003).
Suppose we want to test the hypothesis with significance level α and power
1 − β for detecting alternative ra. For the first scenario of sequential design,
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the proportion π should have been given, by which the (maximum) sample size
of the control group is

my =
(zα + zβ)2

π[1−B − π(A−B)](log ra)2
, (27.10)

and the sample size of the treatment group is mx = myπ/(1−π). For the second
scenario of sequential design, the sample size of control group my should have
been given; then the proportion π is calculated as the solution of Eq. (27.10),
and by which the sample size of the treatment group is mx = myπ/(1− π).

In a uniform way, we describe how to calculate the sequential test statistic
for the two scenarios of sequential designs. Assume distinct event times τ1 <
τ2 < · · · < τj < · · · across two groups, where the event time is defined as the
length of time from the accrual to the event for a patient. At time τj, let dx

j be
the number of events in the treatment group and dy

j the number of events in the
control group. Let nx

j and ny
j be the numbers of patients at risk just before time

τj for the two groups. Consequently, dj = dx
j + dy

j is the total number of events
at time τj among a total of nj = nx

j + ny
j patients just before τj. At the kth

look of the sequential clinical trial, let τ∗(k) be the calendar time, and by which
a log-rank score is defined as Uk =

∑
j(d

x
jτ∗(k) − ex

jτ∗(k)), where dx
jτ∗(k), ex

jτ∗(k),
nx

jτ∗(k), djτ∗(k), and njτ∗(k) are those as dx
j , ex

j , nx
j , dj , and nj but calculated

from the data up to calendar time τ∗(k). The variance of Uk is Vk =
∑

j vx
jτ∗(k),

where vx
jτ∗(k) = nx

jτ∗(k)n
y
jdjτ∗(k)(njτ∗(k)−djτ∗(k))/n2

jτ∗(k)(njτ∗(k)−1). We define

the sequential test statistic as Stk = Uk/V
∗
K

1/2 for k = 1, . . . ,K − 1, where
V ∗

K = {(zα + zβ)/{ln(ra)}2 is the projected final variance; tk = Vk/V
∗
K is the

projected information time. At the final stage K, the true variance VK is used
instead of V ∗

K , and so tK = 1 and StK = UK/V
1/2
K . For sequential procedures

with survival data, the information time tk cannot be specified in advance, but
can be calculated from Vk with data up to the stage k, where the kth look is
designed according to the calendar time or the number of patients enrolled since
the start of the clinical trial. At stage k, the SCPRT boundaries for Stk can be
calculated by (27.3) with information time tk and boundary coefficient a which
was determined from the prespecified probability of discordance ρ and the total
number of looks K. For practical convenience, one does not need to calculate
Stks. The observed P -value PSk

is available as the P -value from regular survival
(nonsequential) test applying to the data up to stage k, for which the critical
P -values Pak

and Pbk
are available by (27.5) or (27.7) with tk = Vk/V

∗
K . If at

some stage k for the first time, PSk
is less than or equal to Pak

, or greater than
or equal to Pbk

, then the trial will be stopped. We illustrate here the SCPRT
procedure for the design and analysis of clinical trials with survival data using
a simulation example below.
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Example: Assume Xis are distributed with Exponential(μx) with hazard
λx = 1/μx for the treatment group, and assume Yis are distributed with
Exponential(μy) with hazard λy = 1/μy for the control group. Suppose hy-
potheses H0 : r ≤ 1 versus Ha : r > 1 are to be tested with α = 0.05 and
power 1 − β = 0.8 for detecting ra = 1.6 for r (= λy/λx = μx/μy). Assume
the length of the accrual period in clinical trial is a = 4 years, and assume the
length of the follow-up period is f = 1 year. Assume interim and final looks
are planned at calendar time (2, 3, 4, 5) years from the start of the clinical trial.
For sample size calculation, assume μy = 5 years and thus under Ha we have
μx = 8 years. Hence Gy(t) = e−0.2t and Gx(t) = e−0.125t, by which A = 0.6945
and B = 0.5636 are calculated. For the first scenario of sequential design (i.e.,
for regular clinical trials with prospective enrollment for both treatment and
control groups), assume π = 0.5 (sample sizes of two groups are equal), then
my = mx = 151 by Eq. (27.10). For the second scenario of sequential de-
sign (for the clinical trials with historical controls), assume the sample size for
controls is my = 170, then the proportion for treatment group π = 0.5843 is
calculated by (27.10), and hence mx = 140.

We now simulate data for the second sequential design scenario, for which
sample sizes mx = 140 and my = 170. With interim and final looks at 2, 3, 4,
and 5 years, the information times (t1, . . . , t4) = (0.3889, 0.6264, 0.8725, 1) are
calculated from simulated data. The SCPRT upper boundary (a1, . . . , a4) =
(0.5451, 0.1453,−0.6244,−1.6449) and lower boundary (b1, . . . , b4) = (−1.8243,
−2.2060, −2.2457,−1.6449) by Eq. (27.4), for which the boundary coefficient
a = 2.953 from Table 27.1 for a specified ρ = 0.02 (ρmax = 0.0054) and
K = 4. The sequential test statistic at the four stages is (St1 , . . . , St4) =
(−1.0476,−2.2299,−2.6425,−3.0113). The clinical trial should stop at the sec-
ond stage because the test statistic crosses the boundaries for the first time at
(St2 = −2.2299 ≤ −2.2060 = b2). The decision made at the second stage is in
accordance with that made at the planned end if the study were not stopped,
that is, both rejecting H0. In terms of nominal P -values for practical conve-
nience, the critical P -values are (Pa1 , . . . , Pa4) = (0.809, 0.573, 0.252, 0.05) for
upper boundaries (for acceptance of H0), and are (Pb1 , . . . , Pb4) = (0.0017,
0.0027, 0.0081, 0.05) for lower boundaries (for rejection of H0), calculated
by (27.7). The observed P -values are (PS1 , . . . , PS4) = (0.0465, 0.0024, 0.0023,
0.0013), calculated by (27.8).
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Figure 27.3: Clinical trial with historical control: survival curves at different
looks
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27.6 Conclusion

Ethical consideration and availability of patients are major concerns for sta-
tistical designs of clinical trials. Sequential procedures lessen the conflict be-
tween the scientific merits and the ethical concerns of clinical trials in terms
of sample sizes, and improve the efficiency of clinical trials by having smaller
expected sample sizes. However, medical investigators are hesitant to apply se-
quential procedures for designing studies because some properties of sequential
procedures are not suitable for this application. SCPRT procedures meet the
challenge by providing properties useful in clinical trials, especially one that
provides a sound reason (from a scientific point of view) to stop a trial early: if
the trial were not stopped as it should, then adding more data and continuing
the trial until the planned end would not change the conclusion. A sequential
clinical trial by SCPRT is designed not only with given significance level and
power, but also with a given probability of discordance. The SCPRT procedure
based on Brownian motion on information time is simple to use, and in par-
ticular is appropriate for clinical trials that compare two populations for which
distributions are not normal. The distribution of the observed difference be-
tween two groups usually approximates the normal distribution well even when
sample sizes are small, and thus meets the application condition for the SCPRT
procedure based on Brownian motion on information time. Computer software
for implementing the designs described in this paper is available from the Web
site www.stjuderesearch.org/depts/biostats.
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Abstract: Biosurveillance systems for infectious diseases typically deal with
nonlinear time series. This nonlinearity is due to the non-Gaussian and non-
stationary nature of an outcome process. Infectious diseases (ID), waterborne
and foodborne enteric infections in particular, are typically characterized by a
sequence of sudden outbreaks, which are often followed by long low endemic lev-
els. Multiple outbreaks occurring within a relatively short time interval form a
seasonal pattern typical for a specific pathogen in a given population. Seasonal
variability in the probability of exposure combined with a partial immunity to
a pathogen adds to the complexity of seasonal patterns. Although seasonal
variation is a well-known phenomenon in the epidemiology of enteric infections,
simple analytical tools for examination, evaluation, and comparison of seasonal
patterns are limited. This obstacle also limits analysis of factors associated
with seasonal variations. The objectives of this paper are to outline the notion
of seasonality, to define characteristics of seasonality, and to demonstrate tools
for assessing seasonal patterns and the effects of environmental factors on such
patterns. To demonstrate these techniques, we conducted a comparative study
of seasonality in Salmonella cases as reported by the state surveillance system in
relation to seasonality in ambient temperature, and found that the incidence in
Salmonella infection peaked two weeks after a peak in temperature. The results
suggest that ambient temperature can be a potential predictor of Salmonella
infections at a seasonal scale.

Keywords and phrases: Seasonality, δ-method, ambient temperature,
Salmonella infection, biosurveillance
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28.1 Introduction

We define “disease seasonality” as systematic periodic fluctuations within the
course of a year that can be characterized by the magnitude, timing, and dura-
tion of a seasonal increase. Variations in seasonal characteristics in temporal,
spatial, or demographic contexts provide important clues to factors influenc-
ing disease occurrence. We consider stability in seasonality, expressed by some
measure of variation in the above-mentioned characteristics of a seasonal pat-
tern, as an indicator of synchronization in disease incidence by environmental
and/or social processes. Meteorological factors, and ambient temperature in
particular, appear to be critically linked to seasonal patterns of disease. Recent
studies indicate that meteorological disturbances may influence the emergence
and proliferation of water- or foodborne pathogens. It is quite plausible that
seasonal fluctuation in ambient temperature might affect the timing and in-
tensity of infectious outbreaks. Therefore, we examined seasonal patterns in
both infections and temperature time series and then compared characteristics
of seasonality.

28.1.1 Conceptual framework for seasonality assessment

This synchronization in disease incidence and environmental factors can be
viewed as a special case when multiple time series exhibit common periodicities
[MacNeill (1977)]. The conceptual format for measuring the temporal relation
between seasonal patterns in environmental temperatures and disease incidence
is shown in Figure 28.1. Considering two characteristics of seasonality: the
magnitude and the timing of a seasonal peak, we define a set of measures.
The measures related to timing are (1) the position of the maximum point on
the seasonal curve of exposure (i.e., temperature) or disease incidence, (2) the
position of the minimum point on the seasonal curve of exposure or disease
incidence, and (3) the lag, which is the difference between time of exposure
maximum and time of disease incidence maximum. The magnitude related
measures are (1) maximum value on the seasonal curve of exposure or incidence
of disease, (2) minimum value on the seasonal curve of exposure or incidence
of disease, (3) the amplitude, which is the difference between maximum and
minimum values on the seasonal curve for exposure or incidence of disease, and
(4) the relative intensity, which is the ratio of maximum value and minimum
value on the seasonal curve. Thus, the task of measuring the temporal relation
between seasonal patterns is translated to the problem of estimating the lag
and associations among measures of timing and intensity.

This concept is easy to express via Model 1 as follows.

Y (t) = γ cos(2πωt + ψ) + e(t), (28.1)
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Figure 28.1: Characteristics of seasonality: Graphical depiction and definition
for daily time series of exposure (ambient temperature) and outcome (disease
incidence) variables

where Y (t) is a time series, the periodic component has a frequency of ω, an
amplitude of γ, and a phase angle of ψ, and {e(t), t = 1, 2, . . ., n} is an i.i.d.
sequence of random variables with E[e(t)] = 0 and Var[e(t)] = σ2. From a
user standpoint, this model offers the highly desirable property of being easy
to interpret. The model describes a seasonal curve by a cosine function with
symmetric rise and fall over a period of a full year. The locations of two points
at which this seasonal curve peaks and has the lowest value can be determined
using a shift, or phase angle parameter, ψ. This parameter reflects the timing
of the peak relative to the origin. For convenience, an origin can be set at the
beginning of a calendar year, January 1. So, if ψ = 0, there is no shift of a peak
relative to the origin. If ψ = π, the peak shifts to the summer, that is, to the
182nd day. If π < ψ < 2π, there is a shift toward fall; or if ψ < π, there is a
shift toward spring. The parameter can be used for seasonality comparison and
can be expressed in days. The amplitude of fluctuations between two extreme
points is controlled via a parameter γ; if γ = 0, there is no seasonal increase.

This Model 1 is equivalent to Model 2:

Y (t) = β1 sin(2πωt) + β2 cos(2πωt) + e(t), (28.2)
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which is more convenient to fit by least squares, a procedure available in much
commercial statistical software. Below we demonstrate an approach that allows
us to combine the ease of fitting Model 2 and the simplicity and elegance of
interpretation of Model 1, by using the δ-method.

28.2 δ-Method in Application to a Seasonality Model

This methodology, whose origin is remote, enables one to obtain a workable
approximation to the mean, variances, and covariances of a function of random
variables whose means and variances are either known or for which there exist
consistent estimators.

28.2.1 Single-variable case

Let X be a random variable with E(X) = μ and Var(X) = σ2. Also let
X1,X2,. . . , Xn, be a sequence of i.i.d. random variables each with the same
distribution as X. If Xn = n−1 ∑n

i=1 Xi, then E(Xn) = μ and σ2
Xn

= σ2/n.
Hence, Xn → μ as n → ∞, where convergence is in each of: probability, a.e.,
and mean square. Now let f () be a function of one variable that may be
expanded in Taylor’s series; that is,

f (x) = f (x0) + (x− x0)f ′ (x0) +
(x− x0)2

2!
f ′′(x0) + · · · .

In consequence of the above,

Yn = f
(
Xn

)
= f (μ) +

(
Xn − μ

)
f ′ (μ) + O

(
1
n

)
.

Because Xn → μ, f
(
Xn

)
→ f (μ), and f ′

(
Xn

)
→ f ′ (μ),

f
(
Xn

)
− f (μ)

=
(
Xn − μ

) [
f ′(Xn)−

{
f ′(Xn)− f ′ (μ)

}]
+ O

(
1
n

)
=

(
Xn − μ

)
f ′(Xn)−

(
Xn − μ

){
f ′(Xn)− f ′ (μ)

}
+ O

(
1
n

)
=

(
Xn − μ

)
f ′(Xn) + O

(
1
n

)
.

Therefore, E [Yn − f (μ)]2 = E
[
Xn − μ

]2 {
f ′

(
Xn

)}2
+ O

(
1

n1/2

)
. That is

σ2
Yn

= σ2
Xn

{
f ′ (Xn

)}2
+ O

(
1

n1/2

)
,
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where σ2 may be estimated consistently by σ̂2 = n−1 ∑n
i=1

(
Xi − X̂n

)2
. Thus,

for large samples: E [Yn] ∼= f ′
(
Xn

)
and σ2

Yn
∼=

{
f ′

(
Xn

)}2
(σ̂2

Xn/n).

28.2.2 Two-variables case

Let f (·, ·) be a function of two random variables X and Y , whose means (μx

and μy), variances (σ2
xand σ2

y), and covariance (σxy) are known. Consider the
first few terms in the Taylor’s series expansion of f (·, ·):

f (X,Y ) = f (μx, μy) + (X − μx)
∂f

∂X

∣∣∣∣
μx,μy

+ (Y − μy)
∂f

∂Y

∣∣∣∣
μx,μy

+
1
2
(X − μx)2

∂2f

∂X2

∣∣∣∣∣
μx,μy

+
1
2
(Y − μy)2

∂2f

∂Y 2

∣∣∣∣∣
μx,μy

+ (X − μx)(Y − μy)
∂2f

∂X∂Y

∣∣∣∣∣
μx,μy

+ · · · .

Then, by neglecting higher-order terms in the expansion, one can obtain a large
sample approximation to E [f (X,Y )] as follows.

E [f (X,Y )] ∼= f (μx, μy) +
σ2

x

2
∂2f

∂X2

∣∣∣∣∣
μx,μy

+
σ2

y

2
∂2f

∂Y 2

∣∣∣∣∣
μx,μy

+ σxy
∂2f

∂X∂Y

∣∣∣∣∣
μx,μy

.

Similarly, a large sample approximation to the variance of f (X,Y ) can be
obtained as follows.

Var [f (X,Y )] ∼= σ2
x

(
∂f

∂X

∣∣∣∣
μx,μy

)2

+ σ2
y

(
∂f

∂Y

∣∣∣∣
μx,μy

)2

+ 2σxy

(
∂f

∂X

∂f

∂Y

∣∣∣∣
μx,μy

)
.

Now we consider large sample results. Let X1n and X2n be two sequences of ran-
dom variables with Var(X1n) = n−1σ11, Var(X2n) = n−1σ22, and
Cov(X1n,X2n) = n−1σ12. The estimators for the parameters are denoted by
μ̂jn and σ̂jkn, j, k = 1, 2. These estimators are assumed to be consistent. Then

Yn = f (μ̂1n, μ̂2n) + (μ̂1n − μ1)
∂f

∂μ1

∣∣∣∣
μ̂1n,μ̂2n

+ (μ̂2n − μ2)
∂f

∂μ2

∣∣∣∣
μ̂1n,μ̂2n

+
1
2

(μ̂1n − μ1)
2 ∂2f

∂μ2
1

∣∣∣∣∣
μ̂1n,μ̂2n

+
1
2

(μ̂2n − μ2)
2 ∂2f

∂μ2
2

∣∣∣∣∣
μ̂1n,μ̂2n

+ (μ̂1n − μ1) (μ̂2n − μ2)
∂2f

∂μ1∂μ2

∣∣∣∣∣
μ̂1n,μ̂2n

+ · · · .
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Because E (μ̂jn − μj)→ 0, j = 1, 2, and σ̂jkn = (1/n)σ̂jk j, k = 1,2, E [Yn] ∼=
f (μ̂1n, μ̂2n), then

σ2
Yn
∼= σ̂11n

(
∂f

∂μ1

∣∣∣∣
μ̂1n,μ̂2n

)2

+ σ̂22n

(
∂f

∂μ2

∣∣∣∣
μ̂1n,μ̂2n

)2

+ 2σ̂12n

(
∂f

∂μ1

∣∣∣∣
μ̂1n,μ̂2n

)(
∂f

∂μ2

∣∣∣∣
μ̂1n,μ̂2n

)
.

More generally, it can be shown that

E [f (X1,X2, . . . ,Xk)]

∼= f (μx1, μx2 , . . . , μxk
) +

1
2

k∑
i=1

k∑
j=1

σxixj

∂2f

∂Xi∂Xj

∣∣∣∣∣
μx1 ,μx2 ,...,μxk

and

Var [f (X1,X2, . . . ,Xk)] ∼=
k∑

i=1

k∑
j=1

σxixj

⎛⎝ ∂f

∂Xi

∂f

∂Xj

∣∣∣∣∣
μx1 ,μx2 ,...,μxk

⎞⎠.

28.2.3 Application to a seasonality model

Now by using the δ-method we demonstrate how we can relate parameters of
two models: Model 1 and Model 2. Consider a time series {Y (t), t = 1, 2, . . ., n}
and the traditional model for seasonality, Model 2:

Y (t) = β1 sin(2πωt) + β2 cos(2πωt) + e(t),

where {e(t), t = 1, 2, . . ., n} is an i.i.d. sequence of random variables with
E[e(t)] = 0 and Var[e(t)] = σ2. Note that cos(2πωt + ψ) = cos(2πωt) cos(ψ) −
sin(2πωt) sin(ψ).

If β1 = −γ sin ψ and β2 = γ cos ψ, then γ cos(2πωt + ψ) = β1 sin(2πωt) +
β1 cos(2πωt).

Also, β1/β2 = − sin(ψ)/ cos(ψ) = − tan(ψ) and γ2 = β2
1 + β2

2 . Therefore,
γ = a(β2

1 + β2
2)1/2, where a = −1 when β2 < 0 and a = 1 otherwise; and

ψ = − arctan(β1/β2) with π
2 < ψ < π

2 . It may be noted that a change of sign
of gamma results in a phase shift of ±π. Also,

∂γ

∂β1
= aβ1/(β2

1 + β2
2)1/2,

∂γ

∂β2
= aβ2/(β2

1 + β2
2)1/2,

∂ψ

∂β1
= −β2/(β2

1 + β2
2),

∂ψ

∂β2
= β1/(β2

1 + β2
2).

To fit the Model 2 by OLS, we let Y ′ = {Y (1), Y (2), . . . , Y (n)} be the vector
of observations; e′ = {e(1), e(2), . . . , e(n)} be the vector of noise variables; β′ =
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{β1, β2} be the vector of parameters; and X be the design matrix where Xk1 =
sin(ωk) and Xk2 = cos(ωk), k = 1, 2, . . ., n. Then for Y = Xβ + e, the least
squares estimators are β̂ = (X ′X)−1X ′Y , and the variance–covariance matrix
is Cov(β̂) = σ2(X ′X)−1. If Ŷ = Xβ̂, then we denote the vector of residuals
by ê = Y − Ŷ . The unknown variance may be consistently estimated by σ̂2 =
n−1e′e. Because OLS estimators of the parameters of Model 2 are consistent,
we have consistent estimators for β1, β2, and σ2.

Models 1 and 2 are equivalent, therefore we can fit Model 2 to obtain the
estimates for the amplitude and phase parameters by applying the δ-method.
Thus, we have E[β̂′] = E[(β̂1, β̂2)]→ (β1, β2) = β′ and

Cov(β̂) = σ2(X ′X)−1 =

(
σ̂2

β1
σ̂β1β2

σ̂β1β2 σ̂2
β1

)
≈ σ2(X ′X)−1.

For the amplitude γ = f(β1, β2) = (β2
1 + β2

2)1/2, the estimates are

γ̂ = f(β̂1, β̂2) = (β̂2
1 + β̂2

2)1/2

and
Var(γ̂) = (σ̂2

β1
β̂2

1 + σ̂2
β2

β̂2
2 + 2σ̂β1β2β̂1β̂2)/(β̂2

1 + β̂2
2).

The phase angle estimate is ψ̂ = − arctan(β̂1/β̂2) and corresponding vari-
ance estimate is

Var(ψ̂) = (σ̂2
β1

β̂2
2 + σ̂2

β2
β̂2

1 − 2σ̂β1β2 β̂1β̂2)/(β̂2
1 + β̂2

2)2.

28.2.4 Potential model extension

Model 2 can be extended to a more general Model 3 for seasonality as

Y (t) = β0 + β1 sin(2πωt) + β2 cos(2πωt) + β3 sin(4πωt) + β2 cos(4πωt) + e(t),
(28.3)

where ω is the frequency of the seasonal component and 2ω is its first harmonic.
The vector form of the model uses the following notation.

Y ′ = {Y (1), Y (2), . . . , Y (n)};

e′ = {e(1), e(2), . . . , e(n)};

β′ = {β0, β1, β2, β3, β4};

and the (n× 5) design matrix X has as kth row

{1, sin(2πωt), cos(2πωt), sin(4πωt), cos(4πωt)}.
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Model 3 can now be rewritten as described above with an alternative Model
4 as

Y (t) = β0 + γ1 cos(2πωt + ψ1) + γ2 cos(4πωt + ψ2) + e(t). (28.4)

The relations between the parameters of Models 3 and 4 are as follows: γ2
1 =

β2
1 + β2

2 ; ψ1 = − arctan(β1/β2); γ2
2 = β2

3 + β2
4 ;ψ2 = − arctan(β3/β4) and

β1 = −γ1 sin(ψ1); β2 = γ1 cos(ψ1); β3 = −γ2 sin(ψ2); β4 = γ2 cos(ψ2). The
estimation for β0 is the same for each of Models 3 and 4. The partial derivatives
are those given in Models 1 and 2, but it should be noted that many of the
derivatives are zero; that is,

∂γ1

∂β0
=

∂γ1

∂β3
=

∂γ1

∂β4
=

∂γ2

∂β0
=

∂γ2

∂β3
=

∂γ2

∂β4
= 0,

∂ψ1

∂β0
=

∂ψ1

∂β3
=

∂ψ1

∂β4
=

∂ψ2

∂β0
=

∂ψ2

∂β3
=

∂ψ2

∂β4
= 0,

and
∂β0

∂βi
= 0, i = 1, . . ., 4; also

∂β0

∂β0
= 1.

This simplifies the computation of the standard error estimates for
(β0, γ1, ψ1, γ2, ψ2). Thus, we have the following estimates for Model 4 based
on the fit for Model 3:

β̂0 = β̂0; γ̂1 = (β̂2
1 + β̂2

2)1/2; γ̂2 = (β̂2
3 + β̂2

4)1/2;
ψ̂1 = − arctan(β̂1/β̂2); ψ̂2 = − arctan(β̂3/β̂4).

To obtain the estimates of the standard errors of the parameters
Ω = (β0, γ1, ψ1, γ2, ψ2), we denote the matrix of partial derivatives of the Model
4 parameters with respect to Model 3 by ∂Ω

∂β

∣∣∣
β
. Then

Cov(Ω̂) ∼=
(

∂Ω
∂β

∣∣∣∣
β

)′
(σ̂2(X ′X)−1)

(
∂Ω
∂β

∣∣∣∣
β

)
.

28.2.5 Additional considerations

Here we intend to apply the proposed method for assessing seasonality in infec-
tious diseases that typically have one annual peak and are measured by count-
ing cases occurring over prespecified time periods (e.g., days, weeks, months).
Therefore, two main aspects of the method of implementation should be dis-
cussed: the underlying distribution of the case counting process and the or-
thogonality of the design matrix.
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It is plausible to assume a Poisson process for a rare event such as a case
of infection in a large closed population that satisfies a requirement of non-
negativity in a time series of counts. Suppose the mean-value function for a
Poisson process follows Model 2 or 3. Then the process will have as its tth
component a Poisson variate with parameter λ(t). Unless λ(t) = λ for all t, the
process will not have constant variance. In a case of nonconstant variance, the
OLS parameters will be biased. To reduce this bias, we will use an iterative
weighted least squares approach implemented via standard statistical software
for a generalized Poisson regression.

Figure 28.2: Seasonal curve for ambient temperature in temperate climate of
Massachusetts, USA. Solid line is the fitted mean-value function

When fitting a trigonometric polynomial to a set of data, it is helpful if the
columns of the design matrix X are orthogonal. Suppose that a time period
consists of n equal subintervals of length 1/n, and the data are collected at
the end of each time subinterval. For a one-year study period, a year is a
time period of one unit in length divided into 365 subunits, that is, days, each
of 1/365th of the unit. For the proposed Model 1, the frequency ω equals 1,
meaning that in one full cycle per unit of time (year) the first harmonic has
twice this frequency, or there are two full cycles per year. Then the design
matrix X will have columns that are orthogonal and X ′X will be a diagonal
matrix.
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28.3 Application to Temperature and Infection
Incidence Analysis

To examine the relations between seasonal patterns in ambient temperature and
disease incidence, we study time series of daily mean temperature and counts
of Salmonella that have been established over the last decade in Massachusetts,
USA. Ten years of temperature daily observations and Salmonella counts, su-
perimposed for ease of seasonality visualization are shown in Figures 28.2 and
28.3. Figure 28.4 demonstrates daily counts of Salmonella with respect to the
corresponding temperature values. As we can see, there are apparent increases
in Salmonella cases in warm summer months, as well as respective increases in
variability in these time periods. A daily rate of Salmonella is 0.78 cases per
1,000,000 population.

Our first step was to describe the seasonal pattern in temperature and in-
fections over the last decade. We used a generalized linear model (GLM) with a

Figure 28.3: Seasonal curve for salmonella cases in Massachusetts, USA. Solid
line is the fitted mean-value function
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Figure 28.4: Temporal pattern in daily Salmonella cases (Z-axis) with respect
to ambient temperature values in Co (Y -axis) over time (X-axis)

Gaussian distribution for the outcome when the variable of interest is ambient
temperature,

Y (t) = β0 + β1 sin(2πωt) + β2 cos(2πωt) + e(t), (28.5)

and a Poisson distribution if the studied outcome is daily disease counts,

log(E[Y (t)]) = β0 + β1 sin(2πωt) + β2 cos(2πωt) + e(t). (28.6)

In both cases, β0 is an intercept that estimates a baseline of a seasonal pattern.
With t as time, expressed in days for a time series of length N (t = 1, 2, . . ., N ,
where N is the number of days in a time series), we set ω = 1/365 to properly
express the annual cycle. The exp{β0} for the Poisson regression reflects a
mean daily disease count over a study period. We estimated the mean-value
function using Models 5 and 6, as well as using the estimates of the amplitude
and phase angle, and obtained the exact same plot (Figures 28.2 and 28.4).

Now, using the estimates of the amplitude and the phase angle, the proposed
characteristics of seasonality can be expressed as follows.

1. The average maximum value on the seasonal curve of exposure, max{Y (t)}
= β0 + γ, or incidence of disease, max{Y (t)} = exp{β0 + γ};

2. The average minimum value on the seasonal curve of exposure, min{Y (t)}
= β0 − γ, or incidence of disease, min{Y (t)} = exp{β0 − γ};
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3. The average intensity, the difference between maximum and minimum
values on the seasonal curve for exposure, I = 2γ, or incidence of disease,
I = exp{β0 + γ} − exp{β0 − γ};

4. The average relative intensity, the ratio of maximum value and minimum
value on the seasonal curve, for exposure, IR = (β2

0 − γ2)/(β0 − γ )2, or
incidence of disease, IR = exp{2γ};

5. The average peak timing (in days), a position of the maximum point on
the seasonal curve of exposure or disease incidence, P = 365(1−ψ/π)/2;

6. The average lag, PE−PD, the difference between peak timing of exposure,
PE , and peak timing of disease incidence, PE .

The results of fitting Model 2, as well as the estimated amplitude and phase
angle parameters are shown in Table 28.1. We used S-Plus glm-function to fit
the models. S-Plus codes for estimation of seasonality parameters are available
on request. Suggested models demonstrate that a seasonal component explained
83% of variability in daily temperature and 23% in counts of Salmonella infec-
tions. The Salmonella infections peaked two weeks after a peak in temperature.

Table 28.1: Characteristics of seasonal curves for ambient temperature and
Salmonella cases

Temperature Disease
Parameters Parameters
Value (Std.error) Value (Std.error)

Intercept—β0 58.971 (0.1213) 1.377 (0.0086)
sin(2*π*time/365)—β1 −9.187 (0.1716) −0.3111 (0.0117)
cos(2*π*time/365)—β2 −21.093 (0.1715) −0.4331 (0.0118)

Null variance (df = 3652) 1163591 8967
Residual variance (df = 3650) 196222 6871
% variance explained 83% 23%

Amplitude—γ 22.9698 0.5412
Phase angle—ψ −0.4071 −0.6489
Relative intensity—IR 2.2760 2.9519
Peak timing—P 206.1 220.2

Next, we hypothesized that temporality in ambient temperature will deter-
mine, in part, the timing and magnitude of peaks and we explored associations
between seasonal characteristics in disease and temperature. Specifically, we
asked the question, “Do the timing and/or intensity of a seasonal peak in am-
bient temperature predict the timing and/or intensity of the seasonal peak for
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an enteric infection?” In order to answer this question, we examined seasonal
characteristics in ambient temperature and Salmonella infections in the manner
described above for each year separately and then examined the synchronization
of seasonal patterns in temperature and Salmonella counts. A few interesting
observations are: moderate association exists between relative intensities for
temperature and Salmonella cases (ρ = 0.648), and negative correlation exists
between average minimum values for temperature and average maximum val-
ues for Salmonella infections (ρ = −0.806). These results suggest that ambient
temperature can be a potential predictor of Salmonella infections at a seasonal
scale.

28.4 Conclusion

An ability to provide estimates for seasonality characteristics as a set of para-
meters was the main objective in developing the presented models. The pre-
sented set of analytical tools allows for comprehensive, systematic, and detailed
examination of a seasonal pattern in daily time series of continuous and dis-
crete outcomes. The application indicates the promise of these techniques to
produce sensible and intuitively appearing functional relationships. The sug-
gested conceptual structure permits the description of seasonal patterns and
their comparison. In fitting a GLM with a cosine function for a seasonal curve
we assumed that a pattern described by a cosine curve has a symmetric rise
and fall, and a cosine curve with a period of a full year has a point at which
it peaks and a point with the lowest value. We demonstrated an approach, in
which we combine the ease of fitting one model with the simplicity and elegance
of interpretation of another one, by using the δ-method. We also demonstrated
that the proposed technique could be extended to a more general case, for ex-
ample, when two seasonal peaks can be identified. Clearly, further experience
in using these techniques and some theoretical work are required. It is impor-
tant to compare the performance of models with well-documented statistical
techniques for seasonality evaluation, to expand visual presentation of mod-
eling results, and to provide step-by-step instructions for implementing these
statistical procedures in practical settings for public health professionals. The
presented models and parameter estimation procedures allow for a straightfor-
ward interpretation, are easy to perform using commercial statistical software,
and are valuable tools for investigating seasonal patterns in biosurveillance.

One methodological aspect of this exercise deserves special comment. The
vast majority of epidemiological studies that have examined the seasonality of
diseases used crude quarterly or monthly aggregate data which prevent a fully
detailed, accurate, or comprehensive analysis of a seasonal pattern and may
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even be misleading [da Silva Lopes (1999)]. Examination of weekly rates sub-
stantially improves the evaluation of seasonal curves when compared to monthly
data, but a systematic approach to the issue of week standardization has often
been lacking. The use of daily time series enabled us to detect significant differ-
ences in the seasonal peaks of infections, which would have been lost in a study
that used monthly cumulative information. The effective use of the presented
methods requires data collected over a long period with sufficient frequency.
An efficient surveillance system has similar requirements. The vast majority of
continuously monitored surveillance systems collect data on a daily basis and
focus on the use of daily time series.
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Abstract: Generalized linear models with a Poisson distribution are often used
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29.1 Introduction

The cancer registries collect data for calculation of incidence and survival of
different sites of cancer. Among influential factors, age and sex are collected.
Environmental factors are also important but they are not gathered by the
registries. To take into account the cumulative effect of such unobserved co-
variates, a spatial effect is added in the models: each case in the cancer registry
is geographically located by his address, reported to the geographical unit it
belongs to, and eventually located by the geographical coordinates of its cen-
troid, that is, the centre of the geographical unit, derived mathematically and
weighted to approximate a sort of ‘centre of gravity.’ This location is used as a
proxy for environmental exposure. During the last ten years, spatial modelling
has become a topic of great interest. Many atlases of diseases or publications
before the year 1990 have represented by some geographical unit the maximum
likelihood estimate of relative risks under Poisson assumption. If O is the num-
ber of observed cases and E the expected cases (both are cases for incidence
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or deaths for mortality), these estimates are O/E, which correspond to the
standardized incidence ratio (SIR) or to the standardized mortality ratio. Such
a model ignores the correlation between geographical units: the outcome in a
unit is more similar to the outcome of a proximate unit than the outcome of an
arbitrary unit. Different kinds of methods have been developed for taking into
account this correlation. Non-Gaussian spatial data are frequently modelled us-
ing generalized linear mixed models, with location-specific random effect. The
correlation between units can be taken into account in a joint way or in a con-
ditional way. The conditional way uses a singular precision matrix whereas the
joint approach models the variance–covariance matrix. The joint modelling can
be considered as a first step of kriging modelling [Diggle, Tawn, and Moyeed
(1998)]. The spatial effect is normally distributed with mean μ and variance–
covariance σ2V . For example, in an exponential model, the element vij of the
V matrix is given by exp[−(dij/ρ)], where dij is the Euclidian distance between
two units and ρ is a given random “attenuation” factor. On the other hand,
the conditional way yields conditional autoregressive models [Besag, York, and
Mollié (1991) and Mollié (1996)] whose expansion is a multivariate normal. A
particular form of this model is a pure autocorrelation model, which is named
the intrinsic conditional autoregressive (ICAR) model. In this model, the force
of the autocorrelation is maximum, measured by a so-called adjacency matrix,
an indicator matrix of direct neighbourhood (i.e., geographical units sharing
a boundary). The conditional spatial effect φ is then a normal with a mean
which is the mean of the spatial effect around each unit and the variance is
proportional to the number of neighbours ni of each unit (all neighbours of i
constituting the set ∂). This can then be written as

φi|φ−i ∼ N

(∑
j∈∂ φj

ni
,

z

ni

)
. (29.1)

The only parameter to be estimated is a variance parameter z. A nonspatially
structured exchangeable normal distribution θi ∼ N [0, (1/τθ)] is often added to
the autocorrelation part and represents an heterogeneity part, which is aimed
to distribute spatially some residual variability. A particular model is called the
‘convolution prior’ [Besag, York, and Mollié (1991)], a sum of this heterogeneity
term and an ICAR component.

The goal of all the previous models is to take into account the outcome
of neighbours for each geographical unit. Beside these distance and adjacency
models, there is an interesting other series of smoothing functions, such as two-
dimensional P-splines. The spatial effect is now an unknown surface which can
be approximated by the tensor product of two one-dimensional B-splines [Lang
and Brezger (2004)]. B-splines provide a useful tool for fitting complicated
models with smooth components. In general, if u+ defines the positive part of
a function u (equal to u if u is positive and 0 otherwise), a smoothing B-spline
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of degree l for a variable x is a linear combination of 1, x, x2, . . . , xl, (x−κ1)l+,
. . . , (x−κK)l+ [Ruppert, Wand, and Carroll (2003)]. The K points κ are points
equally spaced between the minimal value of x and its maximal and are called
knots. If the centroid of the geographical units has coordinates (x, y), then
the smoothing surface is defined by f(x, y) =

∑m ∑m πijBi(x)Bj(y), where
Bi and Bj are B-splines and π are the coefficients of the linear combinations
of B-splines. In a Bayesian framework, the most commonly used priors on π
are based on the four nearest neighbours [Lang and Brezger (2004)] and are
specified in first-order random walks:

πij ∼ N

(
1
4
(
π(i−1)j + π(i+1)j + πi(j−1) + πi(j+1)

)
,

1
τπ

)
. (29.2)

These methods of disease mapping are useful for cancer registries only if they
fulfill some conditions. Geographical units highlighted with a particular high
or low risk must have internal plausibility (relation between cancer and known
exposure, relative constancy over time, etc.) and also external (spatial pattern
of contiguous regions). The smoothing proposed by these methods should be
sufficient for a public health utilization which cannot focus on several isolated
geographical units.

Our aim is to compare, using a lung cancer incidence data set from the reg-
istry of the Haut-Rhin department in France, three “convolution prior” mod-
els: the first with an ICAR model, the second with a joint exponential-distance
model, and the third with two-dimensional P-splines. In all these three models,
an heterogeneity part is added and modelled as an exchangeable normal. Our
approach is fully Bayesian with Markov chains and Monte Carlo inference. The
example of lung cancer is chosen because of the high incidence in the popu-
lation of this site and its known epidemiology; see, for example, Hill, Millar,
and Connelly (2003) and Janssen-Heijnen and Coebergh (2003). Among its risk
factors, the main one is tobacco habits and of less importance is atmospheric
or occupational exposure (asbestos, nickel, etc.). This cancer is a male one (1
female for 5 males) but the incidence for female grows for 35–44 age categories
because of new smoking habits. A peak of incidence is reached about 70 years
old. This location of cancer is threefold more frequent in cities than in rural
zones.

29.2 Material and Methods

The data are from the cancer registry of the Haut-Rhin. The Haut-Rhin depart-
ment is located in the north-east of France sharing a boundary with Germany
and Switzerland. It has 3525 km2 and 707,555 inhabitants (in 1999) in a very
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dense irregular lattice of 377 municipalities (‘communes’) which are our geo-
graphical units. The largest distance between two geographical units is about
95 kms. We extract the counts of lung cancer by age, sex, year of diagnosis and
geographical unit. The age is categorized into nine groups: the interval [0–44
years], the 5-year intervals [45–49], . . . , [75–79], and the interval [80 and more].
Our data are available and validated between 1988 and 1999 (renumbered as
1 to 12). The total number of cases is 3415, unequally split between 2903 for
males and 513 for females. The temporal evolution of numbers of cases is dif-
ferent between sexes. For males, the number of cases is 218 in 1988 and 230 in
1999 with little variations between 231 and 247 in the interval (except 281 cases
in 1996). For females, the number is 20 in 1988 and 62 in 1998 with increasing
from 26 to 52 in the interval. The population at risk during these 12 years is
8,240,000 with 4,200,000 females. By geographical unit, this population varies
from about 55 to about 110,000 (from 25 to 56,000 for female) by year. Due to
covariates, the data set consists of counts of cases distributed in 81,432 cells.

Following Clayton and Kaldor (1987), we assume that the number of ob-
served cases O follows a Poisson distribution: O|. ∼ P (E.eμ.), where E denotes
the number of cases expected and μ is a linear combination of covariate effects
(the symbol ‘.’ stands for all these covariates). Hence, we build the different
models with outcome Osati (the counts of cases) and as covariates: sex s (1 or
2), age category a (a ∈ [1 − A] where A = 9), year of diagnosis t (t ∈ [1 − T ]
where T = 12), and geographical units i (i ∈ [1 − N ] where N = 377). Popu-
lation counts are known by age, sex, and geographical unit for 1990 and 1999
(national census). We use the 1990 population for 1988, 1989, 1990, and 1991.
The population of 1999 is used for 1998 and 1999. A linear interpolation on
the years 1993 and 1996 is used for 1992 to 1994 and for 1995 to 1997. If we
denote by R the population counts, we then get the estimation for Rsati. For
the calculation of expected counts E, Esati = p̂Rsati, where p̂ estimates a global
risk by

p̂ =
∑2 ∑A ∑T∑N Osati∑2 ∑A ∑T∑N Rsati

.

The modelling of the spatial effect, say Ψ, takes the form of a sort of ‘con-
volution prior’ as it associates a factor θ for heterogeneity and a factor φ for
correlation, and will yield three different hierarchical main models, just differing
on the specification of φ. The first level of the hierarchy, for all three models,
is the Poisson level for observed cases in geographical unit i, for sex s, age a,
and time t:

Osati ∼ P (Esatieμsati) where μsati = α + βs + γa + δt + Ψi. (29.3)
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29.2.1 ICAR model

In the second level of the hierarchy, priors are assigned to the parameters of
μ. For the constant α, we choose a noninformative uniform prior. The age
effect γa has vague normal prior with 0 mean and a certain common precision
τγ . Due to the different evolution in incidence between genders, we choose to
model βs + δt as a random slope for linear time trend: βs× t with vague normal
prior on βs: βs|τβ ∼ N [0, (1/τβ)]. In the spatial effect, Ψi = θi + φi, the θis
are exchangeable normals for heterogeneity with 0-mean and τθ precision. The
main spatial effect φ is an ICAR model with a precision λ which is 1/z with
the notation of Eq. (29.1).

The precisions on βs, γa, and θ, τβ, τγ , and τθ, are supposed to be vague
gamma distributions Γ(0.01, 0.01). The relative contribution of autocorrelation
effect φ with respect to the totally spatial effect is about 0.30 [Bernardinelli,
Clayton, and Montomoli (1995)] and thus the priors on the autocorrelation part
and the heterogeneity part have to be calibrated. It seems that a good procedure
is to divide τθ by 2m, where m is the mean number of neighbours of each
geographical unit. Thus, the λ prior is gamma distributed but its parameters are
the parameters for the τθ divided by 10 because the mean number of neighbours
of the geographical units in our region of interest is 5.5.

In what follows, this model is referred to as M-ICAR. The specifications of
the second and third models are the same as the M-ICAR except for the main
spatial effect of the correlation φ and its priors.

29.2.2 Distance model based on the exponential function

Here φ is modelled as a multivariate normal distribution with 0 mean and a
precision matrix Ω. We choose to parametrize elements of Ω rather than to
use a Wishart distribution, which is the conjugate prior distribution for the
inverse covariance matrix in a multinormal distribution [Gelman et al. (1995)],
because our focus is on spatial structure. Thus, we write Ω = (1/σ2)V −1, where
an element of the matrix V is vij = exp[−(dij/ρ)] with the same notation as
before. The prior on 1/σ2 is a vague gamma Γ(0.01, 0.01) and the prior on
ρ is a uniform prior. The bounds of this uniform are chosen with respect to
the bounds of the expected correlation between two units (element of the V
matrix) at a given distance d∗ apart. Because v = exp[−(d/ρ)], for vmin and
vmax, ρmin and ρmax are, respectively, −[(log(vmax))/d∗] and −[(log(vmin))/d∗].
For a correlation between 0.001 and 0.8 at a distance of 20,000 metres, the
prior of ρ is a uniform (0.00001, 0.0005) (rounded values). In what follows, this
model is referred to as M-EXP.
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29.2.3 Two-dimensional P-splines model

In the third model (which will be referred to as M-SMOOTH), φ is modelled
as two-dimensional P-splines, based on the coordinates of the centroid of each
geographical unit. We use cubic B-splines and 15 knots. The priors for the
coefficients of the P-splines are two-dimensional first-order random walks of
precision τπ [see Eq. (29.2)]. This precision is supposed to be vague gamma
distribution Γ(0.01, 0.01).

29.2.4 Implementation of the models

The number of parameters to be estimated is quite big (for example, we have
2NAT + 2N + A + 7 parameters in the M-ICAR model). Clearly, computation
via numerical integration is not feasible and instead we use Gibbs sampling.
The models are implemented in WinBUGS [Spiegelhalter et al. (2003)] for the
first two models and in BayesX [Brezger, Kneib, and Lang (2005)] for the third
one. The length of the burn-in phase is based on the plots of correlations and
traces of iterations for all the parameters. Then, the simulations for estimation
are about tenfold longer than the burn-in.

The adequacy of models is assessed by the deviance information criterion
(DIC) [Spiegelhalter et al. (2002)] which is the sum of the posterior mean of
the deviance and the effective number of parameters of the model. The smaller
the DIC, the better is the fit of the model. Following Knorr-Held and Besag
(1998), we present spatial effect as the exponential of the effect which can define
an ‘adjusted relative risk’ in a Poisson model such as (29.3).

29.3 Results

The values of the DIC are 18,112, 18,086, and 17,848, respectively, for the
M-ICAR, M-EXP, and the M-SMOOTH models, and the effective number of
parameters are, respectively, 102, 77, and 66. Selection based on the DIC
suggests that the M-SMOOTH model has to be preferred. Table 29.1 shows
summary statistics of the posterior distribution of the fixed parameters in the
three models. The constant α has very different values according to the three
models: a strong negative value in the M-ICAR and M-EXP models and a
positive value in M-SMOOTH. Whatever the model is, posterior distributions
for βs are nearly the same. The means are about 0.06 for females and −0.14 for
males. This means that, in an exponential scale, a linear time trend for women
has a 0.1 slope (credibility interval of 0.08 and 0.12) and for men a −0.06 slope
(interval also). The estimates of the γa are different between M-ICAR and
M-EXP on the one hand and M-SMOOTH. The M-ICAR and M-EXP models
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exhibit an age effect increasing (in mean from −0.7 to 0.7) with maxima for 60–
69 years categories and then decreasing to −0.2 for the oldest age category. The
M-SMOOTH model shows about the same range of effect but with a constant
low risk for the two youngest categories of age, then a higher steady state in 50–
79 years categories (about 0), and then a peak for the oldest category (0.8). The
attenuation factor ρ of the M-EXP model exhibits a narrow credible interval but
its distribution is very near to the upper bound of the prior uniform distribution.
The M-ICAR yields the more precise value for heterogeneity (the strongest of
the three different estimates for τθ), but with a coefficient of variation more
than 1 contrary to the M-EXP. A contrario, the M-EXP model gives a poor
value for 1/σ2, compared to the value of λ and the precision τε in the P-splines.

Gathering the data over the 12 years, the age categories, and genders, the
SIRs are from 0 (in 54 geographical units) to 4.3, without any clear spatial
structure (Figure 29.1). Figure 29.2 represents the mapping of the exponential
of ‘main’ spatial effects (Figures 29.2a,b,c) and the exponential of the het-
erogeneity components (Figures 29.2d,e,f) for the three models. For all three
models, the heterogeneity part is the same in terms of spatial position (several
dispersed geographical units with high residual heterogeneity) but also in val-
ues: the mean is 1.0 for all the geographical units, with a maximum at 1.2 or
1.3 and a minimum at 0.9 (all values in term of exponential effect). The main
effect is 1.0 in mean (with a maximum at 1.2 and a minimum at 0.8). The maps
for M-EXP and M-SMOOTH seem to be smoother than that for M-ICAR. The
M-ICAR exhibits three subregions with high risk but one is along the east-
ern boundary and the other corresponding to two of the cities in the region.
The M-SMOOTH highlights the same two central subregions (more markedly
than M-ICAR) but also another one along the western boundary. The M-EXP
shows an identical pattern to M-ICAR. At the nominal level of 95%, no ge-
ographical unit exhibits a ‘significant’ spatial effect either with the M-ICAR
model or with the M-SMOOTH (all credible intervals include 0). With the
M-SMOOTH model and at the level of 80%, the units in a subregion along
the eastern boundary have low risk and all the units in the central subregion
constitute a contiguous set of units with higher risks. But credible intervals for
the effect in the units along the western boundary all include 0.

For the three models, iterations required more memory than we had, so we
had to access the disk as virtual memory, a process that dramatically slowed
down the computation. This problem was stronger with the M-ICAR and M-
EXP models in WinBUGS. Very globally, burn-in phase of 5000 iterations is the
norm and estimations on 50,000 further iterations are enough for estimations
(little less in WinBUGS). The times for achieving 1000 simulations are 7200
seconds for M-ICAR, 12,000 for M-EXP, and 1500 seconds for M-SMOOTH.
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Table 29.1: Estimation of parameters for the three models

Parameter Model Mean Sd p2.5 Median p97.5
Fixed Effects

α M-ICAR -5.68 0.199 -6.10 -5.67 -5.31
M-EXP -5.59 0.898 -6.61 -6.03 -3.86
M-SMOOTH 0.182 0.142 -0.0988 0.180 0.472

β1 M-ICAR 0.0632 0.00469 0.0540 0.0634 0.0726
M-EXP 0.0633 0.00489 0.0537 0.0634 0.0728
M-SMOOTH 0.0614 0.00534 0.0521 0.0614 0.0711

β2 M-ICAR -0.140 0.00797 -0.156 -0.140 -0.124
M-EXP -0.140 0.00812 -0.156 -0.140 -0.125
M-SMOOTH -0.156 0.00810 -0.172 -0.156 -0.140

γ1 M-ICAR -0.770 0.206 -1.14 -0.780 -0.319
M-EXP -0.847 0.223 -1.27 -0.859 -0.385
M-SMOOTH -0.386 0.148 -0.657 -0.383 -0.118

γ2 M-ICAR -0.514 0.204 -0.874 -0.525 -0.0614
M-EXP -0.591 0.220 -1.01 -0.603 -0.129
M-SMOOTH -0.378 0.150 -0.686 -0.374 -0.0951

γ3 M-ICAR -0.121 0.201 -0.473 -0.132 0.332
M-EXP -0.197 0.217 -0.600 -0.212 0.262
M-SMOOTH 0.0854 0.145 -0.206 0.0870 0.370

γ4 M-ICAR 0.321 0.199 -0.0237 0.310 0.772
M-EXP 0.245 0.216 -0.150 0.228 0.702
M-SMOOTH -0.0542 0.128 -0.325 -0.0515 0.213

γ5 M-ICAR 0.750 0.198 0.406 0.731 1.20
M-EXP 0.668 0.214 0.280 0.649 1.12
M-SMOOTH -0.00276 0.125 -0.274 -0.000132 0.265

γ6 M-ICAR 0.759 0.197 0.421 0.747 1.21
M-EXP 0.681 0.214 0.294 0.663 1.13
M-SMOOTH -0.00965 0.118 -0.281 -0.00702 0.258

γ7 M-ICAR 0.443 0.198 0.0996 0.431 0.893
M-EXP 0.366 0.215 -0.0238 0.349 0.823
M-SMOOTH -0.00346 0.118 -0.275 -0.000830 0.264

γ8 M-ICAR 0.00913 0.200 -0.338 -0.00446 0.461
M-EXP -0.0670 0.217 -0.463 -0.0823 0.388
M-SMOOTH -0.0694 0.128 -0.341 -0.0668 0.198

γ9 M-ICAR -0.211 0.202 -0.566 -0.223 0.242
M-EXP -0.288 0.218 -0.695 -0.304 0.171
M-SMOOTH 0.805 0.199 0.465 0.811 1.111

ρ M-EXP 3.42E-4 9.26E-5 1.54E-4 3.50E-4 4.89E-4
Precisions of the Spatial Effects

τθ M-ICAR 53.1 70.5 17.1 37.6 184
M-EXP 46.4 36.2 16.5 36.0 142
M-SMOOTH 44.7 80.2 18.7 48.7 215

λ M-ICAR 44.9 57.5 8.00 28.2 199
1

σ2 M-EXP 7.05 8.81 0.328 3.04 32.1
τε M-SMOOTH 24.3 31.6 8.73 29.7 276
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29.4 Discussion

Comparing with the mapping of the crude SIRs (Figure 29.1), maps of the main
effect of the three spatial models are smoother—less with the M-ICAR model—
with obvious spatial similarity between neighbouring geographical units (Figure
29.2). All three models exhibit a very global weak heterogeneity component but
in some of the geographical units strong values remain. Furthermore, accord-
ing to our three models there is little main spatial effect also. In fact the main
effect in value is clearly the age effect for the M-ICAR and the M-EXP models.
The main effect in the M-SMOOTH is the overall risk (constant α), but other
effects also play a role (which is quite diffuse). For this model, the age effect
does not have a classical form (with an incidence peak about 70 years). For all
three models, the sex–time effect are the same and coherent with the published
papers; see, for example, Janssen-Heijnen and Coebergh (2003). The models
identify two central subregions with high risk. M-ICAR identifies another sub-
region along the eastern boundary, and M-SMOOTH another subregion along
the western boundary and also a subregion along the eastern boundary with
low risk. An edge effect cannot be kept off although it seems to be too massive.
The lack of difference between M-ICAR and M-EXP is a little surprising as
the region has geographical units with very different sizes and shapes, and so
differences are expected when the models rely on distance between units rather
than on adjacency. This is perhaps due to a very weak spatial effect and some
differences will arise if the spatial effect is stronger. Finally, the best model
according to the DIC is the M-SMOOTH.

When the disease mapping is for descriptive purposes, the user needs to
know first how important is the effect drawn on her maps and if it is accurate
to model disease risk with spatial model and autocorrelation. A first step can
be made with a simple Potthoff–Whittinghill’s test [Potthoff and Whittinghill
(1966)] to investigate if risks are homogeneous in the study region. Then in a
second step a Moran’s I statistic [Moran (1948)] can be used to test if risks are
spatially related in the study region. Because distributions of these statistics
are difficult to derive, it is possible to use a bootstrap approach for estimating
their distributions [Gómez-Rubio, Ferrándiz, and López (2003)].

A main problem occurring with count data with several covariates is that the
data have many zero counts. Furthermore, the models contain a large number
of parameters with high correlations. The consequences of these facts are un-
ambiguous. MCMC samplers need a large amount of iterations for convergence
and the mixing can be very poor. Different solutions can then be found. It is
possible to aggregate the data in both time and space to some level that repre-
sents an equilibrium between the sparseness of cases and the spatial or temporal
information of the data. However, this point is difficult to find without any prior
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Figure 29.1: Standardized incidence ratios for lung cancer by geographical unit
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(a) M-ICAR, ICAR(λ) (b) M-EXP, MV N(0, Ω) (c) M-SMOOTH, 2D-splines

(d) M-ICAR, θ (e) M-EXP, θ (f) M-SMOOTH, θ

Figure 29.2: Mapping of spatial effects for lung cancer (exponential of the
values)
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knowledge. Another solution is the reparametrization of the models: for exam-
ple, by centering (in the M-EXP model) or by considering no further the spatial
effects θ and φ but θ + φ and φ [Waller et al. (1997)]. And finally, changing
the sampler can improve mixing of parameters. For our three different models,
we use two different software: WinBUGS which allows to choose the algorithm
in relation to the models and BayesX which implements a block updating algo-
rithm [Rue (2001) and Knorr-Held and Rue (2002)]. In WinBUGS, the most
efficient algorithms, among those open to choice, are the rejection sampling for
the M-ICAR and the slice sampling for the M-EXP. Considering the time spent
by convergence, it seems that the best algorithm is the block-update but it is
difficult to compare M-ICAR and M-EXP algorithms because a considerable
amount of computation time for M-EXP is spent on the inversion at each step
of the variance matrix (the algorithm has N3 complexity). For M-ICAR, it has
been shown [Haran, Hodges, and Carlin (2003)] that a structured MCMC, a
class of block-update MCMC algorithms using different size blocks, to which
the one of BayesX belongs, with or without reparametrization, improves the
mixing and sometimes the number of effective samples generated by a second
of time. All these considerations tend to suggest that block-update MCMC is
the more accurate algorithm (BayesX can also be used for the M-ICAR model).

In the M-EXP model, the choice of prior on ρ is very subjective and a sensi-
tivity analysis should be conducted on this choice. The convolution prior model,
like the M-ICAR model, is highly sensitive to the prior specification [MacNab
(2003)] and also needs a sensitivity analysis on the choice of λ and τθ. Different
values for the parameters of τθ, for example, Γ(0.001, 0.001) and Γ(1, 1), can
be used. The precision λ of the ICAR is then adapted with respect to these
new values. For priors on all the precisions in our models (which only concern
normal distributions), we chose to use proper conjugate priors and our priors
are Γ(G,G). When G→ 0, we get an improper posterior distribution and thus
we set G to the ‘reasonable’ value 0.01. According to Gelman (2004), it could
be possible to use other priors for precision or for the standard deviation of
normal distribution. For example, we could choose as a noninformative prior
an uniform distribution on a wide positive range or, if a more informative prior
were desired, a distribution of the positive t-family which has a better behaviour
near 0 than inverse-Γ, for example, a positive-Cauchy distribution.

In our models, we take into account the age at the diagnosis and the year
at the diagnosis. Nevertheless, there is a growing literature about the cohort of
birth effect and so we have to model this effect as well. For example, Schmid,
and Held (2004), in a binomial model, use random walks and Gaussian random
Markov fields for age, time, cohort with interaction space–time or space–cohort.
Lagazio, Dreassi, and Biggeri (2001) use a conditional autoregressive prior for
cohort effect (adjacent cohorts of a cohort c are the cohort c − 1 and c + 1),
whereas Lagazio, Biggeri, and Dreassi (2003) use random walks prior for main
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age, period, and cohort effects and some interactions space–time and space–
cohort.

Another way to address the problem of disease mapping is by using partition
models. These models stay in the strict definition of mapping whereas they split
the region of study in a series of a priori unknown subregions with homogeneous
risks as cluster analysis does. But no formal test for clustering is allowed with
these methods. For example, Knorr-Held and Rasser (2000) and Giudici, Knorr-
Held, and Rasser (2000), for taking into account some categorical covariates,
model log-risk in each subregion as a normal distribution. The method used in
these two articles is related to that of Schlattmann and Böhning (1993) who use
mixture models. Denison and Holmes (2001) make use of Voronoi tessellation
for building subregions.

The cancer registries have to produce incidence data for each site of cancer,
taking into account (or not) several covariates. The M-SMOOTH model is
the fastest one to converge whereas M-EXP can take one day. Furthermore,
M-SMOOTH seems to be less sensitive to prior choice than M-EXP and M-
ICAR and so sensitivity analysis can be reduced (but not cancelled). Globally,
our results agree with those of a recent paper [Best, Richardson, and Thomson
(2005)], which includes M-EXP and M-ICAR models but not the M-SMOOTH.
This chapter concludes that the exponential model (M-EXP) does not perform
well. Its issues are based on simulation study. Beyond these results are some
public health consequences, which have to rely on an accurate smoothing. For
example, the descriptions of subregions are not so strictly defined for the M-
ICAR model as compared to those for the M-SMOOTH model. Finally, the
model using a spatial smoothing with Bayesian P-splines seems to be the more
accurate model among all those we have tested.
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Abstract: The first aim of this work is to clearly present a very popular semi-
parametric methodology often used to estimate the association between death
or hospital counting data and pollution data and to estimate short-term effects
of ambient air pollution on infant bronchiolitis hospital consultations. Infant
bronchiolitis is a frequent infectious disease caused by a virus, the syncethial
respiratory virus (RSV). Normally, contact with this virus is responsible for
a cold, but in infant and in some circumstances, especially at the beginning
of winter, the virus can be responsible for a severe respiratory disease which
can lead to numerous hospital consultations and hospitalizations. A critical
comparison of its practical application using S-Plus, R, or SAS Proc Gam is
performed. It appears that more work is needed to get a satisfactory implemen-
tation of the Schwartz method in SAS with similar results to those in S-Plus or
R.

Keywords and phrases: GAM model, air pollution, semiparametric models

30.1 Introduction

Time series studies of air pollution and health estimating associations between
day-to-day variations in air pollution concentrations and day-to-day variations
in adverse health outcomes have been widely used since the 1980s and have mo-
tivated reassessment of air quality standards in the United States and Europe.

In the last ten years, many advances have been made in the statistical mod-
eling of air pollution time series studies. Standard regression methods used
initially have been replaced by semiparametric approaches. Use of generalized

467
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additive models [GAMs; Hastie and Tibshirani (1990)] became popular in the
mid-1990s. In a recent issue of American Journal of Epidemiology, Dominici
et al. (2002) discuss the fact that the gam default convergence criteria defined
in S-Plus version 3.4, (and, to a lesser degree in SAS) were not sufficiently
rigorous for these analyses; the result was an overestimation of the effect of
air pollution on health. More recently, in a issue of Epidemiology, Ramsay et
al. (2003) point out that S-Plus and SAS GAM functions use a computational
approximation which, in the presence of a large correlation between the nonlin-
ear functions included in the model (called concurvity), can underestimate the
standard errors of the relative rates. The community of air pollution researchers
is now faced with the obligation of repeating analyses that have used the GAM
function in S-Plus and considering further methodological issues [Health Effect
Institute (2003)]. Researchers over the past decade have found other ways to fit
GAM. Penalized regression splines (P-Splines) using R software are an example
of a technique with similar characteristics to smoothing splines, that requires
much less computation for standard errors. From 1997 to 2001, daily means of
environmental variables including pollution data and meteorological data were
gathered. In order to evaluate the impact of the GAM problems, data are
analyzed using different methods:

– GAM using LOESS functions and the default convergence parameters
(using S-Plus and SAS software)

– GAM using more stringent convergence parameters than the default set-
ting (in S-Plus) and GAM using P-Splines (in R)

The aim of this work is to estimate short-term effects of PM10 on infant
bronchiolitis hospital consultations. Infant bronchiolitis is a frequent infectious
disease caused by a virus, the syncethial respiratory virus (RSV). Normally,
contact with this virus is responsible for a cold, but in infants and in some cir-
cumstances, especially at the beginning of winter, the virus can be responsible
for a severe respiratory disease which leads to numerous hospital consultations
and hospitalizations. The bronchiolitis and environmental data are first pre-
sented in Section 30.2. Secondly, the methods used are detailed. GAMs are
described in Section 30.3.1. The particular strategy applied in the case of air
pollution time series studies is then expounded (Section 30.3.2). Next, in Sec-
tion 30.3.3, criticism about the use of standard statistical software to fit GAM
is displayed. Results of the bronchiolitis study are finally presented in Section
30.4.
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30.2 Data

The study consists of a longitudinal data analysis based on ecological sanitary
and environmental data.

30.2.1 Sanitary data

For 43 hospitals of the Paris region, the number of hospital consultations have
been provided by the ERBUS (“Epidémiologie et Recueil des Bronchiolites en
Urgence pour Surveillance”) network for the period between 1997 and 2000,
[Thélot et al. (1998)], given a standardized definition. Bronchiolitis is defined
as respiratory dyspnea and/or sibilants and wheezing for an infant of less than
3 years old during the supervision period. Particularly, the counts are available
for the period between the 15th of October and the 15th of January for each
year. In 1999–2000, some hospitals momentarily stopped the data collection.
To avoid missing values problems, only the 34 hospitals that provided complete
data were retained for the study.

30.2.2 Environmental data

From 1997 to 2001, daily means of PM10 (particles with an aerometric diameter
less than 10 microg) and meteorological data were gathered. Air pollutants were
routinely measured at the stations of the AIRPARIF network. We retained
PM10 data from the nine urban background monitoring sites representative
of ambient air pollution in the geographical area (greater Paris). The daily
average (SE) during the study period was 24.2 (10.4) micro/m3. Weather data
corresponding to Paris and its outer suburbs were provided by Meteo France.
Twelve covariates were transmitted for the period beginning 01/01/1996 and
finishing 12/31/2000. Five of them were chosen using the results of a previously
performed principal components analysis [Tual (2003)]. The idea was to retain
the covariates that carry the most information about the principal components.
The weather factors retained for this study are the daily minimal temperature,
the relative humidity, the daily precipitation, the daily average wind strength,
and the pressure at sea level.
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30.3 Methods

30.3.1 Generalized additive models

GAMs [Hastie and Tibshirani (1990) and Xiang (2002)] assume that the mean
of the dependent variable depends on an additive predictor through a nonlinear
function. Let Y be a response random variable and X = (X1, . . . ,Xp) be a
set of predictor variables. The standard linear regression model assumes the
expected value of Y has a linear form and can be written as

E(Y |X) = f(X1, . . . ,Xp) = β0 + β1X1 + · · ·+ βpXp. (30.1)

The additive model generalizes the linear model by modeling the expected value
of Y as

E(Y |X) = f(X1, . . . ,Xp) = s0 + s1(X1) + · · ·+ sp(Xp), (30.2)

where si(X), i = 1, . . . , p are smooth functions. These functions are not given a
parametric form but instead are estimated in a nonparametric fashion. GAMs
extend traditional linear models in another way, viz., by allowing for a link
between f(X1, . . . ,Xp) and the expected value of Y . Hence, GAMs consist of a
random component, an additive component, and a link function relating these
two components. The response Y , the random component, is assumed to have
a density in the exponential family

fY (y; θ;φ) = exp
{

yθ − b(θ)
a(φ)

+ c(y;φ)
}

, (30.3)

where θ is called the natural parameter and φ the scale parameter. The additive
component is the quantity η defined as

η = s0 + s1(X1) + · · · + sp(Xp), (30.4)

where si(X), i = 1, . . . , p, are smooth functions. Finally, the relationship be-
tween the mean E(Y |X) of the response variable Y and η is defined by a link
function g(E(Y |X)) = η.

Scatterplot smoothing functions, commonly referred to as smoothers, are
central to GAMs. A smoother is a mathematical technique for approximat-
ing an observed variable Y by a smooth function of one (or several) indepen-
dent variables(s). Some examples of commonly used smoothers are smoothing
splines, regression splines, LOESS functions (locally estimated polynomial re-
gression), and kernel smoothers. These methods are nonparametric because
they make no parametric assumption about the shape of the function being
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estimated. Each smoother has a parameter that determines how smooth the
resulting function will be. For the LOESS function, that parameter is called
the span. For smoothing splines and natural splines, the degree of smoothing
can be specified through the degrees of freedom parameter. In general, the
amount of smoothing selected will have more impact than the type of smoother
chosen. Further information about smooth functions can be found in Hastie
and Tibshirani (1990).

GAMs have the advantage that they allow greater flexibility than the tradi-
tional parametric modeling tools. They relax the usual parametric assumption
and enable us to uncover hidden structure in the relationship between the in-
dependent variables and the dependent variable. The link amounts to allowing
for an alternative distribution for the underlying random variation besides just
the normal distribution. GAMs can therefore be applied to a much wider range
of data analysis problems. In particular, they are widely used for air pollution
time series studies.

30.3.2 Air pollution time series studies strategy

A time series analysis of air pollution and health raises distributional and mod-
eling issues. On any given day, only a small portion of the population consults
or is hospitalized. This number is a count, which suggests that a Poisson process
is the underlying mechanism being modeled.

Analysis of the health effects of air pollution must account for other time-
varying factors that may affect health outcomes to avoid taking the effects
of such factors for pollution effects. Indeed, the basic issue in modeling is
to control properly potential confounding. Many variables show systematic
variation in time. Because any two variables that show a long-term trend must
be correlated, searches for correlations that are more likely to be causal must
exclude these trends. A second common attribute of many variables that evolve
over time is seasonality. These variations would be present even if these factors
were not causally related, and will induce correlations among them. Again, to
focus on possibly causal associations, it is necessary to remove these patterns.
A final systematic component that may bias time series regressions involves
calendar-specific days such as day of week or holiday effects.

After season and trend, weather terms are the most important covariates
to enter the model. The variables will be there to carry information about the
effects of short-term variations in weather on health effect. The effects of all
the explanatory variables may be immediate, or may occur with some lag.

Repeated measurements are likely to be dependent. In the case where two
observations closer together in time are more alike than two randomly chosen
observations, this is referred to as serial correlation. If the serial correlation in
the outcome is due to omitted covariates or imperfectly controlled for covariates,
serial correlation will be observed in the residuals of the model. Autoregressive
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models represent efficient schemes to take the serial correlation into account.
Consequently, it is essential to take into account time effects and serial

correlation to identify and estimate the short-term relation between pollution
and health events without bias. The model building is done, in accordance with
the methodology developed by Schwartz et al. (1996), including step by step:
long-term variations (trend), medium-term variations (seasonality), short-term
variations (calendar-specific days, weather factors), short-term relations with
the different pollutants, and autoregressive terms if necessary.

Note that, because of the high correlations between the pollutants, multi-
pollutant models are seldom considered.

During the model-building process, diagnostics plots are used to evaluate
the success of the approach. First, a plot of the residuals versus time can
often identify long wavelength patterns that remain. These patterns should
disappear as one goes along. Secondly, a plot of the predicted outcome over
time can also be quite useful. The comparison of the graph of the predicted
series and the graph of the initial series allows us to judge the quality of the
model. Finally, a graph of the partial autocorrelation of the residuals of the
model is very important. The sum of the autocorrelations should be as near
to 0 as possible and, ideally, at the end of the analysis, the autocorrelation
function of the residuals should be a white noise. In the case of morbidity, the
autocorrelation is also due to intrinsic factors and is more difficult to suppress.
Sometimes, an important residual autocorrelation remains on the first lag. It
is, however, necessary to obtain a white noise beyond the ten first lags as well
as a reduction of the autocorrelation on the first lags.

Let Y be the response variable studied, date, the covariate representing the
time (in days), and X1, . . . ,Xk, the different weather factors. Note pol is the
pollutant considered, J1 = I(Sunday), J6 = I(Friday), . . . , F = I(official holi-
day), V = I(holidays), where I is the indicator function. Let X = (date,X1, . . . ,
Xk, pol, J1, . . . , J6, F, V ) be the set of all the covariates. Note lospdate

(date) is
the LOESS function for date with a span equal to spdate, and for 1 ≤ i ≤ k,
lospi(Xi) is the LOESS function for the weather factor i and a span equal to spi.
Let losppol

(pol) be the LOESS function corresponding to the pollutant (with a
span equal to sppol) and verifying

losppol
(pol) = βpol + f(pol), (30.5)

with f(pol), a nonlinear function of the pollutant, and β0, β11,. . . , β16, β2, β3,
and β, the parameters of the model. The model can be written as

log{E(Y |X)} = β0 + lospdate
(date) + β11J1 + · · ·+ β16J6 + β2F

+ β3V + losppol
(pol) +

∑
1≤i≤k

lospi(Xi) = a. (30.6)
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A model differing from the preceding one by the fact that the effect of the
pollutant is linear is also interesting. This model has the form

log{E(Y |X)} =β0 + lospdate
(date) + β11J1 + · · ·+ β16J6 + β2F

+ β3V + βpol +
∑

1≤i≤k

lospi(Xi) = b. (30.7)

Because (30.5), models (30.6) and (30.7) are nested and because the distribution
used is the Poisson distribution, a χ2-test can be performed to compare them.
Indeed, the deviance corresponding to a Poisson distribution is given by

2
∑

i

{
yi(log(

yi

μi
)− (yi − μi)

}
.

The difference of the deviances in models (30.6) and (30.7) has, therefore, the
following form.

S = 2
∑

i

{yif(pol)− (exp(a)− exp(b))} . (30.8)

The statistic S follows a chi-square distribution. If the two models are not
significantly different, model (30.7) will be preferred for ease of interpretation.

At this step, some autocorrelation terms can be introduced in the model if it
is necessary. Let AR1, . . . , ARj , be these terms. The final model then becomes

log{E(Y |X)} = β0 + lospdate
(date) + β11J1 + · · ·+ β16J6 + β2F

+ β3V + βpol +
∑

1≤i≤k

lospi(Xi) +
∑

1≤l≤j

ARl.
(30.9)

The pollutant parameter can now be interpreted. Indeed, for pol = 1, model
(30.9) becomes

log{E(Y |X)|pol = 1} = β0 + lospdate
(date) + β11J1 + · · ·+ β16J6

+ β2F + β3V + β +
∑

1≤i≤k

lospi(Xi) +
∑

1≤l≤j

ARl.

(30.10)

Similarly, for pol = 0, model (30.9) can be written as

log{E(Y |X)|pol = 0} = β0 + lospdate
(date) + β11J1 + · · · + β16J6

+ β2F + β3V +
∑

1≤i≤k

lospi(Xi) +
∑

1≤l≤j

ARl.
(30.11)

By subtracting (30.10) and (30.11), the following equation is obtained,

log{E(Y |X)|pol = 1} − log{E(Y |X)|pol = 0} = β, (30.12)
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which can be rewritten as

log
{

[E(Y |X)|pol = 1]
[E(Y |X)|pol = 0]

}
= β. (30.13)

The exponential of the parameter β can therefore be interpreted as the relative
risk of the variable Y for an increase of one unity of the value of the pollutant.

Note that another strategy could be adopted. The autocorrelation terms
could be inserted in the model before comparing the LOESS function of the
pollutant to a linear effect of this pollutant. In this work, it was chosen to add
the autocorrelation terms at the end. Autocorrelation terms are introduced
only for taking the serial correlation into account.

30.3.3 Criticism about the use of standard statistical software
to fit GAM to epidemiological time series data

Recently, major concern has been raised about the numerical accuracy of the
estimates of pollutant effect obtained by fitting GAM. Ramsay et al. (2003)
and Dominici et al. (2002) identified important critical points in the analysis of
epidemiological time series using commercial statistical software that fits GAM
by a backfitting algorithm. Two criticisms have been made specifically. First,
the default convergence criteria of the backfitting algorithm defined in S-Plus
(and, to a lesser degree, in SAS) are too lax to assure convergence and lead to
upwards biased estimates of pollutant effect. Secondly, the estimated standard
errors obtained by fitting GAM in S-Plus or SAS are biased.

As demonstrated in Section 30.3.1, the GAM is a generalization of linear
regression. Most of the familiar diagnosis tests for fitting linear regression mod-
els have analogues to fitting GAMs. One important exception to this rule is
concurvity, the nonparametric analogue of multicollinearity. Multicollinearity
is present in the data if some subset of the regressors is highly correlated.
It leads to highly unstable and highly correlated parameter estimates associ-
ated with the multicollinear variables. Concurvity is a nonparametric exten-
sion of this concept. Concurvity occurs when a function s(Xi) of one of the
variables, say Xp, can be approximated by a linear combination of functions
s(X1), . . . , s(Xp−1) of the other variables. As is the case for linear regression, the
parameter estimates of a fitted GAM are highly unstable if there is concurvity
in the data. If data exhibit relevant a degree of concurvity, the convergence of
the backfitting algorithm can be very slow [Biggeri et al. (2002)]. Dominici et
al. (2002) showed that when a smooth function for time and a smooth function
for weather are included in the model, the greater the degree of concurvity, the
greater is the overestimation of the pollutant effect.

At present, S-Plus and SAS provide no diagnostic tools for assessing the
impact of concurvity on a fitted GAM. The inability of the GAMs to detect
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concurvity can lead to misleading statistical inferences, notably an overstate-
ment of the significance of the association between air pollution and health
status. Because of the way variances are estimated in the S-Plus and SAS
GAM functions, the variance estimates do not reflect the instability of the pa-
rameter estimates. The variance estimates produced by the GAM function
will be biased downwards in the case of concurvity. Indeed, both statistical
softwaresprovide an approximation of the variance–covariance matrix, which
takes into account only the linear component of the variable that was fit with a
smooth function. That leads to confidence intervals on linear parameters being
too narrow and in misleading P -values for hypothesis tests based on variance
estimates, resulting in an inflated type I error.

Some solutions to these problems have been suggested [Samet et al. (2003)].
It was first proposed to replace GAM functions with those using stricter con-
vergence criteria. That was suggested to correct the GAM convergence prob-
lem while acknowledging that the problem with standard error estimates was
not addressed. Secondly, it could be interesting to use alternative modeling
approaches to GAM fitted by A backfitting algorithm. The use of generalized
linear models (GLMs) with natural cubic splines, using approximately the same
degrees of freedom as were used in the original GAMs or the use of GAM with
penalized regression spline fitted by the direct method in R software, which
correctly computes the variance–covariance matrix, are two solutions. These
solutions were suggested for correcting problems with the standard errors.

In the case of the bronchiolitis study, it was decided to evaluate the sensi-
tivity of the results by fitting: firstly, GAM by the backfitting algorithm using
S-Plus with default or stringent convergence criteria and secondly, GAM by the
direct method implemented in R 1.6.2 software. A comparison between S-Plus
and SAS results has also been performed.

30.4 Results

The different programs used to produce results here can be obtained from the
authors on request. An example is presented for S-Plus, and a comparison with
R and SAS is discussed.

30.4.1 Series of number of hospital consultations: Results with
S-Plus

This section deals with the model-building process of the daily number of hospi-
tal consultations for infant bronchiolitis for the period between 1997 and 2000,
using the S-Plus method.
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For each model tested, a graphical validation step consisting of examination
of the graph of the residual, and/or the autocorrelation, and/or the partial
autocorrelation of its residuals and the graph of the LOESS function for the
new introduced variable is performed. Due to the large number of these models,
only a few representative graphs will be presented here.

Long term and seasonal variations

Figure 30.1 displays the daily number of hospital consultations for infant bron-
chiolitis in the 34 hospitals considered for this study. The series shows clearly
some seasonal variations. A peak can be observed each winter.
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Figure 30.1: Daily number of hospital consultations for bronchiolitis

Figure 30.2: Autocorrelations of the daily number of hospital consultations for
bronchiolitis
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The autocorrelation of the number of hospital consultations is given in Fig-
ure 30.2. The interval around 0 represents the 95% confidence interval of the
test of the null hypothesis “null autocorrelation.” This graph shows that some
serial correlation is present in the data. The autocorrelation on the first lag is
very high.

Long-term and seasonal variations are first modeled by introducing the time
in the model. A LOESS function is used as a smoothing function. By looking
at the different validation graphs, a span equal to 0.15 is retained. Figures
30.3 and 30.4 show, respectively, the graph of the residuals of the model and
the graph of partial autocorrelation of these residuals. After adjustment for
the trend and seasonal variations, the partial autocorrelation of the residuals
decreases considerably on the first lag and is low on the last lags. Some lags
are, however, still significantly different from 0.

Figure 30.5 displays the LOESS function corresponding to the time. It
represents the part of the logarithm of the number of hospital consultations
explained by this covariate. The seasonal variations of the daily number of hos-
pital consultations can be clearly observed. Indeed, the four peaks are present
on this graph.

At this step, the model can be written as

log{E(nb|X)} = β0 + lo0.15(date), (30.14)

with nb as the number of hospital consultations in the 34 hospitals retained for
the study.

Short-term variations

The next step consists in modeling the short-term variations by introducing the
variables corresponding to the days of the week (six binary variables J1,. . . ,J6,
with Sunday as reference), official holidays (binary variable: F), and holidays
(binary variable: V). After each introduction, the graphs of partial autocorre-
lation of the residuals of the model and the part of the logarithm of the number
of consultations explained by each covariate were produced and evaluated. The
model obtained after this step can then be written as

log{E(nb|X)} = β0 + lo0.15(date) + β11J1 + · · · + β16J6 + β2F + β3V. (30.15)

After taking these covariates into account, the partial autocorrelation of the
residuals becomes null on the last lags.

Introduction of the weather factors

All five weather factors could be introduced in the model. The minimal tem-
perature is the first included in the model. It was decided to choose the lag for
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Figure 30.3: Residuals of model (30.14)

Figure 30.4: Partial autocorrelation of the residuals after introduction of the
time

this covariate using the “AIC-criterion” and to keep the same lag for the other
weather factors. The minimal temperature at lag 1 is retained. Let tmin1 be
this variable. As for the covariate representing the time, a LOESS function is
used to model the effect of minimal temperature at lag 1. A span equal to 0.8
is retained by looking at the validation graphs. Then, successively, the rela-
tive humidity, the daily precipitation, the wind strength, and the atmospheric
pressure were taken into consideration. As for the minimal temperature, the ex-
amination of the validation graphs allows us to choose the span value. The final
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Figure 30.6: LOESS function for the minimal temperature

model at this step is

log{E(nb|X)} = β0 + lo0.15(date) + β11J1 + · · · + β16J6 + β2F

+ β3V + lo0.8(tmin1) + lo0.6(humrel1) + lo0.7(precipit1)
+ lo0.7(forcvent1) + lo0.9(pressmer1).

(30.16)
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Short-term relations with air pollution

For PM10, two indicators were analyzed. Let pm10A1 be the average of the
pollutant concentration over 2 days (the day considered and the previous day)
and pm10A5 be the average of the pollutant concentration over 6 days (the day
considered and the 5 previous days). Only one of these indicators is included
in the model at a time. A LOESS function with a span value equal to 0.7 is
used to model the pollutant effect [Le Tertre (2003)]. If the introduction of the
pollutant is pertinent, the model is compared, as explained in Section 30.3.2,
to a model presenting a linear effect of this pollutant.

Table 30.1 displays summary of the p-values corresponding to the introduc-
tion of PM10.

Table 30.1: Summary of the introduction of the different pollutants

Pollutant pm10A1 pm10A5
p-value 0.0626 1.3736 ∗ 10−6

The introduction of the average over 6 days is significant and a new model is
obtained as

log{E(nb|X)} = A + lo0.7pm10A5. (30.17)

The model containing a linear trend of the pollutant is equivalent to the one
including a LOESS function. Table 30.4.1 displays a summary of the p-values
corresponding to the test of the null hypothesis, “Model with linear term is
equivalent to model with LOESS function.”

Table 30.2: Summary of the test comparing
the model including a linear term and the one
with a LOESS function

Pollutant pm10A5
p-value 0.1639

The pollutant for which the linear term is retained is the particle matter
less than 10 μm in aerodynamic diameter. These models can then be written
as

log{E(nb|X)} = A + βpm10A5. (30.18)
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For the particle matter less than 10 μm in aerodynamic diameter, a com-
parison between the LOESS function and the linear term is shown in
Figure 30.7.

Figure 30.7: Comparison between LOESS function and linear term for pm10A5

A lot of serial correlation remains on the first lag. Some autoregressive
terms are therefore introduced in the model. After looking at the validation
graphs, it was decided to introduce three autoregressive terms in the model.
Hence, the final model has the following form.

log{E(nb|X)} = A + βpm10A5 +
∑

1≤l≤4

ARl. (30.19)

The graph of the partial autocorrelation of the residuals of these final models
is produced. A graph of partial autocorrelation very close to a white noise can
be observed. A graphical comparison between the series and the predictive
values for the final model shows us that this model is good.

It has been shown in Section 30.3.2 that the exponential of the parameter β
can be interpreted as the relative risk of the number of hospital consultations
for an increase of one unity of the value of the pollutant. Table 30.3 displays
the estimate of the parameter β, its standard error, the corresponding t-value,
the relative risk for an increase of 10 unities of the pollutant, and its confidence
interval.

The model-building process was repeated using more stringent convergence
parameters than the default setting. Results obtained were exactly the same.
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Table 30.3: Summary of the estimates of the final models

Model β Standard t-Value Relative CI(−) CI(+)
Error Risk

pm10A5 0.0083 0.0013 6.2506 1.0863 1.0585 1.1149

30.4.2 Series of number of hospital consultations: Results
with R

Models obtained in the previous section are rebuilt using R software. LOESS
functions are replaced by penalized splines with a number of knots k and
a smoothing parameter λ instead of a span parameter. The model-building
process under R is not done from the beginning. Concerning the specific days
and the weather factors, for an easier comparison with S-Plus results, the co-
variates retained in Section 30.4.1 will be used here. Hence, the five weather
factors will be used at lag 1. Moreover, only one pollutant, the particle mat-
ter less than 10 μm in aerodynamic diameter, for which the relation hospital
consultations–pollutant has been expressed in relative risk (in Section 30.4.1)
is considered.

A model without any pollutant is built first. Spline functions are used to
model the effect of the time and of the weather factors. By looking at the
validation graphs, the selected model is

log{E(nb|X)}
= β0 + s40&5.8∗104(date) + β11J1 + · · ·+ β16J6 + β2F + β3V

+s5&5.1∗1011(tmin1) + s8&5.6∗104(humrel1) + s6&2.3∗105(precipit1)
+s5&1∗106(forcvent1) + s5&8∗106(pressmer1), (30.20)

with s40&5.8∗104(date) being a penalized spline of the time using a number of
knots k equal to 40 and a smoothing parameter λ equal to 5.8∗104. The graph
of the partial autocorrelation of the residuals of this model was produced and
examined. Only for very few lags, is the partial autocorrelation significatively
different from 0.

The next step is the introduction of the pollutant. Particle matter less than
10 μm improves the model significantly (p-values are 3.6085 ∗ 10−5) .

The penalized splines corresponding to this pollutant were examined. The
number of hospital consultations increases with the pollutants. Because this
function is almost a perfect line, the model including a linear term for the
pollutant is preferred to the one including a nonparametric function of the



Analysis of Short-Term Bronchiolitis Air Pollution 483

same pollutant. This new model is

log{E(nb|X)}
= β0 + s40&5.8∗104(date) + β11J1 + · · · + β16J6 + β2F + β3V

+ s5&5.1∗1011(tmin1) + s8&5.6∗104(humrel1) + s6&2.3∗105(precipit1)
+ s5&1∗106(forcvent1) + s5&8∗106(pressmer1) + βpm10A5. (30.21)

The graph of the partial autocorrelation of the residuals of the final model
was produced. Almost a white noise can be observed. Therefore, it was decided
not to introduce autoregressive terms in this case.

Again, the exponential of the parameter β can be interpreted as the relative
risk of the number of consultations for an increase of one unity of the value of
the pollutant. Table 30.4 displays the estimate of the parameter β, its standard
error, the t-value, the relative risk for an increase of 10 unities of the pollutant,
and its confidence interval.

Table 30.4: Summary of the estimates of the final models

Model β Standard t-Value Relative CI(−) CI(+)
Error Risk

pm10 (30.21) 0.0043 0.0010 4.159 1.0441 1.0231 1.0655

Using p-splines with R, the estimate of the increase in consultations dropped
to 4.4 percent per 10 mg/m3 increase in PM10 with a standard error of 0.0010,
compared with 8.6 percent (se: 0.0013) using LOESS with S-Plus.

30.4.3 SAS results

As in S-Plus, proc GAM in SAS allows us to fit GAMs using LOESS functions.
However, the smoothing parameter differs from S-Plus. Instead of a “span
parameter,” the LOESS function needs a “DF parameter.” An option allows
us to ask the value of the smoothing parameter to be selected by generalized
cross-validation. The default method in SAS uses DF = 4 for each smooth
function. It is also permitted to choose a particular DF for each function. This
last method is equivalent to playing with the spans in S-Plus.

In order to compare S-Plus and SAS software, the models obtained using
S-Plus have also been implemented in SAS. They are first programmed using,
for each LOESS function, the DF value given in the S-Plus output. The LOESS
functions corresponding to the different covariates of the model can be obtained.
They appear, more or less, to be the ones obtained using S-Plus.

The use of SAS software to apply this method on the bronchiolitis data
has some disadvantages. First, SAS looks for functions with values of DF as
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close as possible to the values asked. That leads to smooth functions different
from those asked. For instance, the obtained graph does not show, as expected,
the four peaks corresponding to the seasonal variations of the daily number of
hospital consultations. Secondly, it takes longer than S-Plus. Indeed, for the
bronchiolitis data, a program runs several hours in SAS whereas it is almost
instantaneous in S-Plus. Finally, the validation graphs used to construct the
model step by step are not provided in the options of the GAM-procedure in
SAS. They can be obtained more easily in S-Plus.

An interesting challenge could be building a SAS macro that allows SAS pro-
cedures (GAM and others, such as Arima and Graphs) to perform the Schwartz
method.

30.5 Discussion

Numerous time series studies have linked levels of particulate air pollution to
daily mortality and cardiorespiratory hospitalizations. However, the study of
the specific role of air pollution as a risk factor for specific respiratory disease is
not usual. This study, conducted in Paris during four successive winters, found
that prevailing levels of PM10 had measurable short-term effects on hospital
consultations for an infectious disease in infants, bronchiolitis.

Generalized additive models (GAMs) with smoothing splines were used for
this purpose and models are presented in detail in this paper. Because of the
critical points identified in the analysis of epidemiological time series using
commercial statistical software which fits GAMs by a backfitting algorithm, a
sensibility analysis was performed using S-Plus, R, and SAS software.

The model-building process was done in accordance with the method pro-
posed by Schwartz, controlling for weather, season, and other longer-term time-
varying factors to minimize confounding the effect estimates for the air pollu-
tant. Models were first constructed using LOESS functions in the GAM function
S-Plus. PM10 (particle matter less than 10 μm) present an effect that can be
expressed in terms of a relative risk of hospital consultation for an increase of
a certain amount of the pollutant concentration. An increase of 10 μg/m3 of
the particle matter less than 10 μm raises the risk of hospital consultation for
bronchiolitis of 8.6% [95% CI is (5.9; 11.5)]. Because it was raised that the
default convergence criteria of the backfitting algorithm would be too lax to
assure convergence, the model-building process was repeated using more strin-
gent convergence parameters than the default setting; results obtained were
identical.

The models obtained in S-Plus were then rebuilt using R software. LOESS
functions were replaced by penalized splines. An increase of 10 μg/m3 of the
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particle matter less than 10 μm raises this risk of only 4.4% [95% CI (2.3; 6.6)].
S-Plus provides no diagnosis tools for assessing the impact of concurvity on a
fitted GAM. S-Plus version 3.4 leads to an overstatement of the significance
of the association between air pollution and health status. Moreover, S-Plus
provides an approximation of the variance–covariance matrix, which takes into
account only the linear component of the variable fitted with a smooth function.
That would lead to confidence intervals on linear parameters being too narrow.
As was expected, the relative risks obtained using S-Plus are higher than the
ones obtained with R. However, with this data set, confidence intervals around
the estimate are similar (and even a little larger) in S-Plus than in R.

The model-building process is easier to implement in S-Plus than in R.
Indeed, using the LOESS function in S-Plus, values must be chosen for the
span of each covariate for which the effect is modeled using a smooth function.
Using penalized splines in R, values for two parameters (k and λ) have to be
selected for each covariate. Therefore, for ease of comparison, we first build the
models using S-Plus before working with R.

Using GAM in SAS is more difficult. Indeed, the validation graphs used to
construct the model step by step are not provided in the options of the GAM
procedure in SAS. Creating SAS macros for an application of the Schwartz
method will be of interest. However, in the case of the bronchiolitis data, SAS
software does not seem to be very appropriate because of the time necessary to
run the different programs. Moreover, implementation in SAS presents more
problems than in S-Plus.

The methodological issues in time series analysis of air pollution epidemiol-
ogy are important as the air pollution effect is small and possibly confounded by
varying factors that are correlated with pollution exposures. The potential for
incorrect standard errors in GAMs was known [Hastie and Tibshirani (1990)],
but the new methods had not been implemented in widely used software, and
therefore have not reached epidemiologists. Actually, the S-Plus default con-
vergence parameters have already been revised in the new S-Plus version and
revisions of GAM software implementation, to enable “exact” calculations of
the standard errors are underway.

Our work has permitted us to show that the pollutants would have a short-
term incidence on infant bronchiolitis and to confirm the overestimation of the
risks by the implementation of GAMs in S-Plus, version 3.4.
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Abstract: Evidence shows that mutations along some genomes do not all
occur independently. This paper introduces statistical methodology for testing
the assumption of independence of the substitution processes acting at two
different positions. We consider specific pairs of sites along a genome of interest.
For each pair, we focus on the distribution of double mutations away from
the consensus (i.e., the most frequent configuration) conditioning on the total
number of sequences and on the consensus pair. The resulting test statistic is
applicable to general contingency tables that have an arbitrary number of rows
and columns.

Keywords and phrases: Contingency table, genomic sequences, indepen-
dence, statistical test

31.1 Introduction

For genomic sequences, the probabilistic model underlying analytical methods
relies, more often than not, on the assumption that positions undergo indepen-
dent mutation processes. For example, in phylogenetic reconstruction, many
popular models for the substitutions at a single position stem from the re-
versible continuous-time time-homogeneous Markov chain model by imposing
various constraints on the rate parameters [Tavaré (1986) and Rodŕıgues et al.
(1990)]. The assumption of independence can be relaxed in a number of ways.
For instance, Felsenstein and Churchill (1996) consider a hidden Markov model
for the assignment of substitution rates at different positions, which results in
correlated rates and implies that, once these rates are fixed, positions undergo
independent mutation processes. Violation of the assumption of independence
leads to the overestimation of genetic distances and therefore to erroneous phy-
logenetic reconstructions [Seillier-Moiseiwitsch et al. (1998)]. It is, therefore,
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critical to assess whether this assumption holds. The methodology introduced
in this paper can serve to check this assumption. It is suitable for contingency
tables with an arbitrary number of rows and columns. A statistical test for 2×2
tables or for the total number of double mutations in a contingency table of
arbitrary dimension was published in Karnoub, Seillier-Moiseiwitsch, and Sen
(1999).

Here, we are concerned with detecting correlated substitutions. Via the con-
sensus character (either amino acid or nucleotide depending on the nature of
the data) at a position we can identify changes at that position. Consequently,
to locate the correlated changes at different positions, we need to condition
on the joint consensus. Other techniques [Korber et al. (1993) and Bickel et
al. (1996)] do not take this consensus into account and thus test for indepen-
dence between positions rather than independence of substitutions. In these
papers, departures from independence can be caused by correlations between a
consensus and a change; this type of correlation is not of interest in our case.
Furthermore, these tests are not suitable for situations where a strong consensus
is expected [Karnoub (1997)].

The outline of this chapter is as follows. In Section 31.2, we describe the
probabilistic model underlying the contingency tables. Parameter estimates are
derived in Section 31.3. We present a χ2-type test in Section 31.4. A power
study is described in Section 31.5. In Section 31.6, we summarize the results
of some simulations. We close this chapter with a data analysis (Section 31.7)
and a brief discussion (Section 31.8).

31.2 The Probabilistic Model

In some contexts, it is justifiable to treat sequences as independent, at least as
a first assumption. In the case of sequences from the immunodeficiency virus
(HIV), for instance, replication cycles are short (e.g., 1 to 2 days) and each cycle
yields a number of substitutions (1 to 10). When sequences are sampled from
different individuals, hundreds of rounds of replication are likely to separate
any two viruses, with each position having had many opportunities to mutate.
Furthermore, functionality of the resulting proteins drives survival/fitness of
the organism. Functionality depends on structure, and thus dictates whether a
position is allowed to mutate and whether substitutions at one position work in
concert with events at other positions. Hence, structural constraints and high
turn-over rates overwhelm ancestral relationships.

Consider a specific pair of sites along the sequences of interest, say positions
I and J . At position I, over all sequences, the characters (amino acids or
nucleotides) are AI1, AI2, . . . , AIc, whereas at position J they are AJ1, AJ2, . . . ,



Are There Correlated Genomic Substitutions? 493

Table 31.1: Contingency table summarizing the observed characters (either
amino acids or nucleotides) at two generic positions

P o s i t i o n I

AI1 AI2 . . . AIc Total
AJ1 n11, p11 n12 . . . n1c n1.

consensus p12 p1c p1.

AJ2 n21 n22 . . . n2c n2.

p21 p22 p2c p2.

P o s i t i o n J
...

...
...

. . .
...

...
AJr nr1 nr2 . . . nrc nr.

pr1 pr2 prc pr.

Total n.1 n.2 . . . n.c n
p.1 p.2 p.c

AJr. The indices c and r run to at most 4 for nucleotides and at most 20
for amino acids. Table 31.1 gives the observed counts for all possible pairs of
characters at these positions. By convention, the (1, 1)-cell contains the number
of sequences with the consensus configuration. Observed counts are denoted by
nij and the corresponding random variables by Nij . Let Nij be the number of
sequences with AIi at position I and AJj at position J , and pij the probability
of having this configuration. Any sequence in the first row or the first column
but not in the (1, 1)-cell sustained a single mutation away from the consensus.
All sequences outside the first row and column had two mutations. The total
number of observed sequences is represented by N and its realization by n.

The interest here is in investigating whether departures from the consensus
characters at two positions are correlated. Clearly, the identification of sub-
stitutions relies on the identification of the consensus pair. This is essentially
our reasoning behind conditioning on the consensus cell. In addition, there are
two statistical arguments in favor of conditioning on N11. First, the data are
presented in a usually large r × c contingency table (with r and c between 2
and 20) with many empty and low-frequency cells. Hence, the exact test con-
ditional on fixed marginals has little power. To gain power, the table needs
to be reduced. To this end, we use the consensus cell as it does not contain
information on the correlation between mutations. The consensus being data
dependent, conditioning on this consensus affects the table structure and the
probability model. Second, the size of N11 affects the power of the test: its
order of magnitude is different from those of other entries (see Tables 31.5 and
31.6). Conditioning on N11, again, improves power.
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It is argued [Karnoub (1997)] that the familiar Fisher’s exact test based
on the hypergeometric law or its large-sample (normal) approximation are not
justifiable in the present context. Indeed, conditioning on the marginal totals
is not an option because we do not have any knowledge about the total number
of mutations with a specific character at any one of the positions. We could,
however, remove the conditioning by taking the expected values and variances
over all possible marginals. Because the asymptotic distribution of the condi-
tional test statistic does not depend on these, we would still retain the normal
distribution as the unconditional distribution of the test statistic. But, we need
to deal with the fact that we know the consensus and the number of sequences
with this consensus. The maximality of N11 and its being fixed to n11 are not
easily handled in such a setup. We therefore develop a test where we condition
on the total sample size and on the fact that we know that the (1, 1) cell is
maximal and equal to n11.

The standard distributions associated with cell counts in contingency tables
are: the Poisson model obtained with a sampling plan that has no restrictions
on the total sample size, the multinomial model with a fixed total sample size,
and independent multinomial distributions for the rows with fixed row totals
or independent multinomial distributions for the columns with fixed column
totals [Bishop, Fienberg, and Holland (1975)]. For these sampling models,
the marginal totals are sufficient statistics for testing the independence of two
factors. Furthermore, under the assumption of independence of the factors, the
maximum-likelihood estimates under the above sampling processes exist, are
unique, and, if none of the marginals is 0, they are equal. In fact, when the
total sample size is fixed, the multinomial and Poisson schemes are equivalent
[Bishop, Fienberg, and Holland (1975)]. The Poisson model is usually preferred
when the events are rare; that is, the cell counts are small. In view of the nature
of our data, we adopt this model here.

The assumptions are:

1. The cell counts Nij are mutually independent and have a Poisson distri-
bution with means λij,

P (Nij = nij) =
e−λij λ

nij

ij

nij !
, 1 ≤ i ≤ r, 1 ≤ j ≤ c .

2. λ11 � λij for all (i, j) 	= (1, 1) and the λijs are all greater than 5, prefer-
ably greater than 10.

Let λ =
∑
(i,j)

λij . The two hypotheses of interest are

• The null hypothesis H0: λij = λαi βj for all (i, j),
∑
i

αi = 1,
∑
j

βj = 1.
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• The alternative hypothesis H1: the cell counts are not restricted in any
way.

Let N∗ = N −N11, n∗ = n− n11 and let λ∗ = λ− λ11. We derive the joint
distribution of the cell counts, given the fixed (1, 1)-cell count n11 and the fixed
total sample size n. First,

P (N11 = n11, N12 = n12, . . . , Nrc = nrc |N11 = n11) = e−λ∗

∏
(i,j)�=(1,1)

λ
nij

ij∏
(i,j)�=(1,1)

nij !
.

As for the distribution of N∗ given the fixed (1, 1)-cell count n11,

P (N∗ = n∗ |N11 = n11) =
P (N∗ = n∗, N11 = n11)

P (N11 = n11)
= e−λ∗ λn∗∗

n∗ !
.

Therefore,

P (N12 = n12, . . . , Nrc = nrc |N11 = n11 , N = n)

=

⎧⎨⎩
P (N12 = n12, . . . , Nrc = nrc |N11 = n11)

P (N = n |N11 = n11)
if n11 + . . . + nrc = n

0 otherwise .

Now, P (N = n |N11 = n11) = P (N∗ = n∗ |N11 = n11) . If λ11 � λij for all
(i, j) 	= (1, 1) and λij > 5 (cf. Appendix 31.1), then

P (N12 = n12, . . . , Nrc = nrc , N11 maximum |N11 = n11)
≈ P (N12 = n12, . . . , Nrc = nrc |N11 = n11) ,

P (N∗ = n∗ , N11 maximum |N11 = n11) ≈ P (N∗ = n∗ |N11 = n11)

P (N12 = n12, . . . , Nrc = nrc |N11 = n11, N11 maximum , N = n)

≈ n∗
n12 !n21 ! . . . nrc !

(
λ12

λ∗

)n12
(

λ21

λ∗

)n21

. . .

(
λrc

λ∗

)nrc

.

This is thus an ((r × c)− 1)-multinomial distribution with parameters n∗ and
λij/λ∗, 1 ≤ i ≤ r, 1 ≤ j ≤ c. The expected values, variances, and covariances
of the cell counts under this conditional model are

E (Nij |N11 = n11, N11 maximum , N∗ = n∗) ≈ n∗
λij

λ∗

Var(Nij |N11 = n11, N11 maximum , N∗ = n∗) ≈ n∗
λij

λ∗

(
1− λij

λ∗

)
Cov(Nij , Nkl |N11 = n11, N11 maximum , N∗ = n∗) ≈ −n∗

λij

λ∗
λkl

λ∗
.
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31.3 Parameter Estimation

Under H0,

P (N11 = n11, . . . , Nrc = nrc |N11 = n11, N11 maximum, N = n)

≈ n∗
n12!n21! . . . nrc!

(
α1 β2

1− α1 β1

)n12
(

α2 β1

1− α1 β1

)n21

. . .

(
αr βc

1− α1 β1

)nrc

.

This conditional law is a function of the (r + c− 2) parameters αi and βj ,
1 ≤ i ≤ r − 1, 1 ≤ j ≤ c − 1. As there are (r × c − 2) degrees of freedom,
non-estimability of the parameters is not a issue. However, to comply with the
constraints imposed by fixing N11 = n11 and N = n, we estimate Θ = α1 β1

from the marginal distribution of N11 and utilize Θ̂ in the log-likelihood for αi

and βj , 1 ≤ i ≤ r − 1 , 1 ≤ j ≤ c− 1.
The marginal distribution of N11 given n is, under H0,

P (N11 = n11 |N = n) =
n !

n11 ! (n− n11) !
(α1 β1)

n11 (1− α1 β1)
n∗ .

Because (∂2L0(Θ))/∂Θ2 = −(n11/Θ2) − (n∗/((1 − Θ)2)) < 0 , the maximum
likelihood estimate of Θ based on this marginal law is Θ̂ = n11/n .

To simplify computations, we keep the log-likelihood as a function of all αs
and βs and maximize it with respect to the constraints

αr = 1− ∑
1 ≤ i ≤ r−1

αi , βc = 1− ∑
1 ≤ j ≤ c−1

βj and Θ = Θ̂ .

Maximizing the log-likelihood is the same as minimizing

f (αi, βj , 1 ≤ i ≤ r, 1 ≤ j ≤ c)

= − (n1. − n11) log α1 −
∑
i �=1

ni. log αi − (n.1 − n11) log β1 −
∑
j �= 1

n.j log βj

subject to the constraints

g1 (αi, βj , 1 ≤ i ≤ r, 1 ≤ j ≤ c) = α1 + α2 + · · · + αr − 1 = 0
g2 (αi, βj , 1 ≤ i ≤ r, 1 ≤ j ≤ c) = β1 + β2 + · · ·+ βc − 1 = 0
g3 (αi, βj , 1 ≤ i ≤ r, 1 ≤ j ≤ c) = α1 β1 − Θ̂ = 0 .

Now represent the gradient of a function h by ∇h and define

g (αi, βj , 1 ≤ i ≤ r, 1 ≤ j ≤ c) =

⎡⎢⎣ g1 (αi, βj)
g2 (αi, βj)
g3 (αi, βj)

⎤⎥⎦ .
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The first-order necessary condition for finding a point at which f (αi, βj) attains
its minimum is that there exists a vector μτ = (μ1, μ2, μ3) such that

∇f τ + μτ∇gτ = 0

[Luenberger (1984)]. Because

∇f τ =
[
−n1. − n11

α1
−n2.

α2
· · · −nr.

αr
−n.1 − n11

β1
−n.2

β2
· · · −n.c

βc

]

and ∇gτ =

⎡⎢⎣ 1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1
β1 0 · · · 0 α1 0 · · · 0

⎤⎥⎦
3×(r+c)

,

this condition is equivalent to

n1. − n11

α1
= μ1 + μ3 β1 (1)

n2.

α2
= μ1 (2) · · · nr.

αr
= μ1 (r)

n.1 − n11

β1
= μ2 + μ3 α1 (r + 1)

n.2

β2
= μ2 (r + 2) · · · n.c

βc
= μ2 (r + c)

(2) · · · (r) =⇒ n2. + · · · + nr. = μ1 (α2 + · · · + αr)⇐⇒ μ1 =
n− n1.

1− α1

(r + 2) · · · (r + c) =⇒ n.2 + · · · + n.c = μ2 (β2 + · · · + βr)⇐⇒ μ2 =
n− n.1

1− β1

(1) =⇒ μ3 = Θ̂−1 (n1. − n11 − μ1 α1)
(1) and (r + 1) =⇒ n1. − n.1 = μ1 α1 − μ2 β1

⇐⇒ (n− n.1) α1
2 + (n.1 − n1.) α1 − Θ̂ (n− n1.) = 0

=⇒ α̃1 =
1
2

⎧⎨⎩1− n− n1.

n− n.1
+

{(
1− n− n1.

n− n.1

)2

+ 4 Θ̂
n− n1.

n− n.1

}1/2
⎫⎬⎭ ,

the other solution to the quadratic equation being negative. From Eqs. (2) to
(r + c), we obtain

α̃i =
ni.

μ1
=

ni. (1− α̃1)
n− n1.

2 ≤ i ≤ r

β̃1 =
Θ̂
α̃1

and β̃j =
n.j

μ2
=

n.j

(
1− β̃1

)
n− n.1

2 ≤ j ≤ c .

31.4 New Test Statistic

The proposed test statistic focuses on the inner-cell counts, that is, Nij for
2 ≤ i ≤ r and 2 ≤ j ≤ c . It combines the standardized inner-cell counts Nij .
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The component statistics of interest therefore are

Z̃ij =
1

n1/2

(
Nij − n α̃i β̃j

)
2 ≤ i ≤ r and 2 ≤ j ≤ c .

In order to study their large sample properties, we consider the classical stan-
dardized variables

Zij =
1

n1/2

(
Nij − n

λij

λ

)
i = 1, . . . r, j = 1, . . . c.

Under H0,

Zij =
1

n1/2
(Nij − n αi βj) .

Note that

Z̃ij =
1

n1/2

(
Nij − n α̃i β̃j − n αi βj + n αi βj

)
=

1
n1/2

(Nij − n αi βj)− n1/2 α̃i β̃j + n1/2 αi βj

= Zij + n1/2 αi βj − n1/2 ni. n.j

(n− n1.) (n− n.1)
(1− α̃1)

(
1− β̃1

)
.

In Appendix 31.2, we linearize α̃1, β̃1, and (ni. n.j)/((n − n1.) (n − n.1)) for
2 ≤ i ≤ r, 2 ≤ j ≤ c. These results lead to

Z̃ij = Zij +
2αi βj

α1 + β1 − 2α1 β1
Z11

− αi βj β1

α1 + β1 − 2α1 β1

(
Z1. −

1− α1

1− β1
Z.1

)
+

αi βj α1 (1− β1)
(1− α1) (α1 + β1 − 2α1 β1)

(
Z1. −

1− α1

1− β1
Z.1

)
− βj Zi. − αi Z.j −

αi βj

1− α1
Z1. −

αi βj

1− β1
Z.1 + Op

(
n−1/2

)
= Zij + κij

11 Z11 + κij
1. Z1. + κij

.1 Z.1 + κij
i. Zi. + κij

.j Z.j + Op

(
n−1/2

)
,

where

κij
11 =

2αi βj

α1 + β1 − 2α1 β1
, κij

1. = − 2αi βj β1

α1 + β1 − 2α1 β1

κij
.1 = − 2αi βj α1

α1 + β1 − 2α1 β1
, κij

i. = −βj and κij
.j = −αi .

With Zτ = [Z11 Z12 · · · Z1c Z21 Z22 · · · Z2c · · · Zr1 Zr2 · · · Zrc]1×rc ,

Z̃ij = C(ij)τ Z + op (1) 2 ≤ i ≤ r , 2 ≤ j ≤ c,
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where C(ij)τ =
[
Cij

11 Cij
12 · · · Cij

1c Cij
21 Cij

22 · · · Cij
2c · · · Cij

r1 Cij
r2 · · · Cij

rc

]
1×rc

with all entries being 0 except

Cij
11 =

2αi βj (1− α1 − β1)
α1 + β1 − 2α1 β1

, Cij
1k = − 2αi βj β1

α1 + β1 − 2α1 β1
k 	= 1, j,

Cij
1j = − 2αi βj β1

α1 + β1 − 2α1 β1
− αi , Cij

i1 = − 2αi βj α1

α1 + β1 − 2α1 β1
− βj ,

Cij
u1 = − 2αi βj α1

α1 + β1 − 2α1 β1
u 	= 1, i , Cij

ij = 1− βj − αi,

Cij
uj = −αi u 	= 1, i, Cij

ik = −βj k 	= 1, j.

Let Pτ =
[

α1 β1 α1 β2 · · · α1 βc · · · αr β1 αr β2 · · · αr βc

]
and DP

be the diagonal matrix with the entries of P as elements. Then Var0 (Z) =
DP −PPτ .

Consider Z̃τ =
[
Z̃22 · · · Z̃2c · · · Z̃r2 · · · Z̃rc

]
1×(r−1)(c−1)

. The variance–

covariance matrix under H0 of Z̃, namely, Var0

(
Z̃
)
, has diagonal elements

Var0

(
Z̃ij

)
and off-diagonal elements Cov0

(
Z̃ij , Z̃kl

)
for 2 ≤ i, k ≤ r , 2 ≤

j, l ≤ c and (i, j) 	= (k, l):

Var0
(
Z̃ij

)
≈ C(ij)τ Var0 (Z) C(ij)

Cov0

(
Z̃ij , Z̃kl

)
≈ C(ij)τ Var0 (Z) C(kl) .

The matrix

Var0

(
Z̃
)
≈

⎡⎢⎢⎢⎢⎣
C(22)τ

C(23)τ

...
C(rc)τ

⎤⎥⎥⎥⎥⎦ (DP −PPτ )
[

C(22) C(23) · · · C(rc)
]

has rank at most (r − 1) (c− 1), which is the number of independent parame-
ters, and has a generalized inverse.

In summary, the new test statistic is

Z̃τ
{
V̂ar0

(
Z̃
)}−

Z̃,

where
{
Var0

(
Z̃
)}−

stands for the generalized inverse of Var0

(
Z̃
)
. The vari-

ance estimate V̂ar0

(
Z̃
)

is obtained by substituting the parameter estimates α̃i

and β̃j for αi and βj , respectively. This statistic follows a χ2-distribution with
(r − 1) (c− 1) degrees of freedom [Sen and Singer (1993, Theorem 3.4.7)].
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31.5 Power Studies

To study the power of the test, we need to assess the behavior of the test
statistic under a small departure from the null hypothesis. Consider the local
Pitman alternatives.

H1: the cell counts are independent and λ−1 λij = αi βj + n−1/2 γij with∑
i

γij =
∑
j

γij = 0 .

Recall that Z̃ij = n−1/2
(
Nij − n α̃i β̃j

)
, i = 2, . . . r, and j = 2, . . . c . Rewrite

this as

Z̃ij =
1√
n

(
Nij − n

λij

λ

)
−
√

n

(
α̃i β̃j −

λij

λ

)
=

1√
n

(
Nij − n

λij

λ

)
−
√

n

(
ni. n.j

(n− n1.) (n− n.1)
(1− α̃1)(1 − β̃1)−

λij

λ

)
.

We use the results from the previous sections to linearize this expression. Hence,

E1

(
Z̃ij

)
= E1

{
1√
n

(
Nij − n

λij

λ

)
−
√

n

(
ni. n.j

(n− n1.) (n− n.1)
(1− α̃1)(1− β̃1)−

λij

λ

)}
= E1

(
−
√

n αi βj + κij
11 Z11 + κij

1. Z1. + κij
.1 Z.1 + κij

i. Zi. + κij
.j Z.j

)
+
√

n
λij

λ
+ O

(
n−1/2

)
= γij + κij

11 E1

(
1

n1/2
(N11 − n α1 β1)

)
+ O

(
n−1/2

)
= γij +

κij
11√
n

E1

(
N11 − n

λ11

λ
− n α1 β1 + n

λ11

λ

)
+ O

(
n−1/2

)
= γij + κij

11 γ11 + O
(
n−1/2

)
= γij +

2αi βj

α1 + β1 − 2α1 β1
γ11 + O

(
n−1/2

)
.

Let Ẽ1

(
Z̃
)
≡

[
γij +

2αi βj

α1 + β1 − 2α1 β1
γ11

]
(r−1) (c−1)×1

≡ Γ + Δ, where

Γ = [γij ](r−1) (c−1)×1 and Δ =
2αi βj

α1 + β1 − 2α1 β1
γ11 [1](r−1) (c−1)×1.
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Var1

(
Z̃
)
≈

⎡⎢⎢⎢⎢⎣
C(22)τ

C(23)
τ

...
C(rc)

τ

⎤⎥⎥⎥⎥⎦ Var1 (Z)
[

C(22) C(23) · · · C(rc)
]

≈

⎡⎢⎢⎢⎢⎣
C(22)τ

C(23)τ

...
C(rc)τ

⎤⎥⎥⎥⎥⎦ Var0 (Z)
[

C(22) C(23) · · · C(rc)
]

.

Then, by Theorem 3.4.7 in Sen and Singer (1993),

Q = Z̃τVar0 (Z)− Z̃ ∼ χ2
rank(Var0(Z))

((
Ẽ1

(
Z̃
))τ

Var0 (Z)−
(
Ẽ1

(
Z̃
)))

and the test statistic

Q̂ = Z̃τ V̂ar0 (Z)− Z̃ ∼ χ2
rank(Var0(Z))

((
Ẽ1

(
Z̃
))τ

Var0 (Z)−
(
Ẽ1

(
Z̃
)))

by Slutsky’s theorem because Q̂/Q converges to 1 in probability. If

Γτ (Var0 (Z))− Δ 	= 0,

the noncentrality parameter will be increased. As the noncentrality parameter
becomes larger, the distribution of the test statistics shifts to the right, and the
probability that it is greater than a specific value goes to 1, which implies that
the power of the test converges to 1.

31.6 Numerical Studies

We present in Tables 31.2 and 31.3 the results of simulations that support
the methodological work developed in the previous sections. For a specific
sample size and combination of row and column probabilities, a total of 1000
replications was performed. Each simulation proceeds as follows. Given the
row and column probability vectors, a contingency table is generated under
independence of positions and the multinomial model. The test statistic is then
computed under the conditional model. The numbers of such statistics falling
above the 90th, 95th, and 99th percentiles of the relevant χ2-square distribution
are entered in the table. It is evident from these tables that the proposed test
statistic converges quickly to its asymptotic distribution.
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Table 31.2: Percentages of statistics falling above given percentiles of the χ2-
distribution with 4 degrees of freedom. * indicates that an entry is farther than
2 S.D.s away from the expected percentage

Sample Row Probabilities Column Probabilities 90 95 99
200 0.80 0.10 0.10 0.80 0.10 0.10 11.8 5.5 2.1 *

0.70 0.20 0.10 0.70 0.20 0.10 9.6 5.2 1.5
0.70 0.20 0.10 0.60 0.20 0.20 9.9 5.3 1.1
0.60 0.20 0.20 0.60 0.20 0.20 9.1 4.5 0.9
0.50 0.25 0.25 0.50 0.25 0.25 10.0 5.2 1.2
0.40 0.30 0.30 0.40 0.30 0.30 8.0 4.0 1.4

600 0.80 0.10 0.10 0.80 0.10 0.10 10.1 4.8 1.2
0.70 0.20 0.10 0.70 0.20 0.10 10.5 6.1 1.5
0.70 0.20 0.10 0.60 0.20 0.20 9.0 4.8 0.9
0.60 0.20 0.20 0.60 0.20 0.20 11.1 5.0 0.9
0.50 0.25 0.25 0.50 0.25 0.25 9.3 3.9 0.7
0.40 0.30 0.30 0.40 0.30 0.30 9.9 5.3 0.8

1000 0.80 0.10 0.10 0.80 0.10 0.10 9.6 4.0 0.6
0.70 0.20 0.10 0.70 0.20 0.10 9.7 4.6 1.1
0.70 0.20 0.10 0.60 0.20 0.20 11.0 6.0 1.6 *
0.60 0.20 0.20 0.60 0.20 0.20 12.9 * 6.4 1.4
0.50 0.25 0.25 0.50 0.25 0.25 10.9 5.5 1.4
0.40 0.30 0.30 0.40 0.30 0.30 10.9 5.3 1.2
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Table 31.3: Percentages of statistics falling above given percentile of the χ2-
distribution with 9 degrees of freedom. * indicates that an entry is farther than
2 S.D.s away from the expected percentage

Sample Row Probabilities Column Probabilities 90 95 99
200 0.70 0.10 0.10 0.10 0.70 0.10 0.10 0.10 11.2 6.6 * 2.2 *

0.60 0.20 0.10 0.10 0.60 0.20 0.10 0.10 11.1 5.4 2.1 *
0.40 0.30 0.20 0.10 0.40 0.30 0.20 0.10 9.1 4.7 0.9

400 0.70 0.10 0.10 0.10 0.70 0.10 0.10 0.10 9.7 5.1 1.0
0.60 0.20 0.10 0.10 0.60 0.20 0.10 0.10 10.2 6.0 1.1
0.40 0.30 0.20 0.10 0.40 0.30 0.20 0.10 8.9 4.3 1.0

600 0.70 0.10 0.10 0.10 0.70 0.10 0.10 0.10 10.5 5.6 1.8 *
0.60 0.20 0.10 0.10 0.60 0.20 0.10 0.10 9.0 5.2 0.8
0.40 0.30 0.20 0.10 0.40 0.30 0.20 0.10 11.0 4.4 0.8

800 0.70 0.10 0.10 0.10 0.70 0.10 0.10 0.10 10.5 5.9 1.2
0.60 0.20 0.10 0.10 0.60 0.20 0.10 0.10 10.7 5.3 1.0
0.40 0.30 0.20 0.10 0.40 0.30 0.20 0.10 9.7 4.3 1.5

1000 0.70 0.10 0.10 0.10 0.70 0.10 0.10 0.10 9.9 5.5 1.4
0.60 0.20 0.10 0.10 0.60 0.20 0.10 0.10 11.0 5.8 1.1
0.40 0.30 0.20 0.10 0.40 0.30 0.20 0.10 8.6 4.9 0.8
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Table 31.4: Results of analysis with new statistic and other approaches. Q
denotes the proposed statistic. Entries are left blank when the test statistic
does not reach the 0.99 significance level. * indicates that the test statistic falls
above the 99.5 percentile, ** above the 99.9 percentile, and *** outside the
support of the reference distribution

Positions Q M G K

9, 11 20.34 *** 0.05 ** 0.03 0.04 **
11, 13 9.30 * 0.07 ** 0.07 ***
11, 27 12.76 * 0.03
12, 18 9.82 *
14, 16 85.42 *** 0.11 *** 0.11 *** 0.15 ***
14, 20 59.31 *** 0.03 ** 0.10 *** 0.04 **
19, 20 83.24 *** 0.02 ** 0.08 *** 0.08 ***
29, 32 31.53 *** 0.05 ** 0.08 ** 0.05 **
32, 34 37.79 *** 0.06 ** 0.06 ***

31.7 Data Analysis

The human immunodeficiency virus (HIV) genome evolves rapidly. Indeed,
frequent recombination between RNA strands and the high error rate of the
reverse transcriptase enzyme give rise to many viral variants. Some of these
random changes are advantageous to the virus as they confer a survival advan-
tage. Furthermore, a potentially deleterious mutation at one position may be
rescued by a mutation at another position, maintaining the structure of the
resulting protein and thus virus viability. These double mutations then become
fixed in some subpopulations.

From the Los Alamos database, we have selected 450 amino-acid sequences
spanning the V3 loop of the envelope gene env . These sequences belong to
the so-called clade B, a phylogenetic grouping that comprises North American,
Western European, Brazilian, and Thai strains. All have the biological property
of not inducing syncitia. We sampled a single sequence from an individual, and
to ensure that epidemiological linkage is unlikely we only consider sequences
that exhibit at least five different nucleotides in pairwise comparisons.

To take into account possible epidemiological linkages among study sub-
jects as well as the underlying phylogenetic relationships among sequences, we
generate the reference distribution on the basis of simulated sequences. In
the absence of information on suitable models for within-individual evolution,
we resort to a simple evolutionary model, which we now describe. From the
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sequence data, for each position, we estimate the amino-acid frequencies. In
view of structural constraints that block the occurrence of some characters at
specific positions, we do not pool the estimates for different sites into overall
estimates. We take the observed frequencies as substitution rates. For HIV,
this is reasonable as the observed frequencies reflect both structural constraints
and immune selection pressures. The event of a mutation at a specific site is a
two-step process. First, whether the position undergoes a change is governed by
the overall mutation rate. For HIV sequences, this is the error rate for reverse
transcriptase, that is, 0.0005 per site per replication [Preston, Poiesz, and Loeb
(1988)]. Next, in the case of mutation, the specific substitution is randomly
selected according to the following transition matrix,

time i + 1
C NC1 NC2 NC3

C M Mp1 Mp2 Mp3

time i NC1 Mp1 M Mp2 Mp3

NC2 Mp2 Mp1 M Mp3

NC3 Mp3 Mp1 Mp2 M

where C denotes the consensus character and NCi a nonconsensus character.
M stands for the probability of change (M = 1 −M) and pi for the observed
frequency of change from C to NCi.

The simulation starts with the consensus sequence as seed. It is subjected
to the mutation process a random number of times. This random number
represents the number of replications before transmission, and is set between
100 and 2400. Indeed, for HIV, mutations occur at the time of replication, and
the replication rate is approximately 240 times per year. The original sequence
thus gives rise to offspring sequences. In the present application, this branching
process mimics HIV transmission: no offspring with probability 0.20 and 1 to
5 offspring with probability 0.16 each [Blower and McLean (1994)]. The tree is
grown by repeating this process many times (with the output sequences from
the previous generation as seeds). We obtain a total of 150,000 sequences. We
sample without replacement as many sequences as there are in the original data
set. Sampling is not restricted to the tips of the simulated phylogenetic tree: all
generated sequences are candidates for selection. From the sampled sequences
we compute the test statistic. The sampling procedure is performed a large
number of times (here 100,000) to build up a reference distribution.

The results of our analysis appear in Table 31.4. For the sake of comparison,
we also analyzed our data with methodologies that purport to identify corre-
lated mutations (Table 31.4). To detect covariation among mutations, Korber
et al. (1993) utilized an information-theoretic measure computed on the whole
data set. Let i denote a position along the genome and a an amino acid appear-
ing at that position. If pi(a) represents the frequency of appearance of amino
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acid a at position i, the mutual information is defined as

M(i, j) = H(i) + H(j)−H(i, j),

where H(i) denotes the Shannon entropy at position i

H(i) = −
∑
ai

pi(ai) log pi(ai)

with ai referring to amino acids appearing at position i, and H(i, j) generalizes
this concept to two positions

H(i, j) = −
∑
ai,bj

pij(ai, bj) log pij(ai, bj) .

M(i, j) takes its minimum value of 0 when either there is no variation or the
positions i and j vary independently. It attains its maximum when the same
pairings always occur. To focus on the covariability of a specific pair of residues,
define Ki,j(a, b) as the M(i, j) statistic obtained by replacing the 20-letter al-
phabet at site i by {a, a} (i.e., a and not a) and at site j by {b, b}. Finally,

K(i, j) = max
a,b

Kij(a, b) (31.1)

is reportedly suited to identify linked mutations [Bickel et al. (1996)].
To obtain the reference distribution for the statistics M(i, j), the amino

acids at each position are permuted independently. A large number B (here
100,000) of pseudo-data sets are created. From each of these pseudo-data sets,
the statistics are computed for all pairs of positions. The number bij of pseudo-
statistics for the pair (i, j) that exceeds the observed M(i, j) is computed for
all (i, j), which leads to the observed significance level (bij + 1)/(B + 1). When
bij = 0, the observed significance is thus (B + 1)−1. Similarly for K(i, j).

Bickel et al. (1996) also used the statistic developed by Goodman and
Kruskal (1979):

G(i, j) =
1
2

{∑
a

p̂ij(a,max) +
∑

b

p̂ij(max, b)− p̂i(max)− p̂j(max)

}
/ {

1− 1
2
(p̂i(max) + p̂j(max))

}
, (31.2)

where

p̂ij(a,max) = max
b

p̂ij(a, b), p̂ij(max, b) = max
a

p̂ij(a, b)

p̂i(max) = max
a

p̂i(a) .
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Table 31.5: Data for positions 12 and 18

R S K G Q W E A
I 312 26 39 29 14 1 2 1
V 9 4 1 3 2 0 0 1
K 1 0 0 0 0 0 0 0
T 0 0 1 0 0 0 0 0
L 1 0 0 0 1 0 0 0
M 1 0 0 0 0 0 0 0
F 1 0 0 0 0 0 0 0

G(i, j) represents the relative reduction in the probability of guessing incorrectly
the amino acid at site j associated with the knowledge of the residue at site i and
vice versa. If the two positions are not associated G(i, j) = 0 . The reference
distribution of G(i, j) is generated through the process described above.

31.8 Discussion

With respect to sequence variation, independence has three facets:

• Independence between different sequences

• Independence between positions along a sequence

• Independence of mutations along sequences

This work focuses on the third issue whereas the papers by Korber et al. (1993)
and Bickel et al. (1996) deal with the second issue. It is clear from the above
data analysis that these issues are distinct. Indeed, although there is a great
deal of agreement between the approaches (Table 31.4), some pairs turn up sta-
tistically significant at the chosen threshold but not at the other. For instance,
only the statistic Q is highly significant for the pair (12, 28) (Table 31.5). The
reverse situation occurs for (14, 19) and (16, 20) (Table 31.6). In the case of
(12, 28), the cell with entry 4 drives the significance of the Q statistic. For
the other two pairs, the 0 cells along the first row or the first column influence
greatly the M , G, and K statistics but are excluded from consideration in the
Q statistic (the latter focuses on the inner-table cells).

An alternative explanation for the lack of statistical significance of the Q
statistic for the pairs (14, 19) and (16, 20) is the manner in which the ref-
erence distributions for the different statistics were generated. The reference
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Table 31.6: Data for positions 14 and 19

A V T S R G N
I 256 7 14 3 0 0 0
M 82 5 6 4 1 0 0
V 8 0 3 1 0 0 1
L 38 1 7 2 0 1 0
F 2 0 2 0 1 0 0
Y 0 1 0 0 0 0 0
T 2 0 0 0 0 0 0
K 0 1 0 0 0 0 0
D 1 0 0 0 0 0 0

distribution for the Q statistic explicitly takes into account the phylogenetic
relationships among the analyzed sequences. This ensures that only pairings
that occur at several branch tips are declared significant. Otherwise, a chance
event that is propagated down a single branch could be found significant. In
fact, when a parametric bootstrap procedure is utilized to create the reference
distribution (which assumes that the sequences are unrelated), many more pairs
are identified than when the phylogenetic approach is adopted (data not shown).

Recall that the proposed methodology is based on the assumption that the
probability of the (1,1) cell frequency being greater than all the others is close
to 1. In the sequence data we have scrutinized this assumption holds for all
pairs of positions but a few. Such an assumption is not tenable when the
true probability of the (1, 1) cell is not substantially larger than the others.
This situation is usually due to a single highly polymorphic position. Then,
it appears that the sample is made up of at least two subpopulations. Each
subpopulation should be considered separately.

Yet we need to consider the possibility that the basic assumption is not
justified. In this context, we note that it is possible to write the conditional
distribution of the cell counts given the (1, 1) cell without assuming anything
about maximality. This conditional distribution of the cell counts given N11

should be used to obtain the MLEs or similar estimators of the parameters αs
and βs. Moreover, estimates of the conditional (given N11) means and variances
can be obtained following the same procedures as here. This would give us a
parallel test statistic, that would be asymptotically χ2-distributed. This test,
however, does incorporate the information contained in the marginal distribu-
tion of N11 in the estimation of the parameters. Therefore, the power of this
test would be different and might not be as good as the one we obtained earlier
where the information in the marginal distribution of N11 was incorporated.
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In the absence of reliable information about the underlying evolutionary
process the simple model, on which the simulation is based, is best. The ref-
erence distribution then takes into account an array of possible phylogenetic
relationships as generated by this model. The simulation starts with the con-
sensus sequence. However, the ancestral sequence could also be used. Our
results indicate that this modification leaves the inferences unchanged.

The test procedure introduced in this paper was constructed for the spe-
cific purpose of detecting correlated substitutions. However, it is more widely
applicable. For example, it may be used in the investigation of gene or pro-
tein networks. There, one wants to assess whether genes or proteins are jointly
upregulated or downregulated under specific conditions in a microarray or pro-
teomic experiment.
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Appendix 31.1

P (N11 maximum) ≈ 1.

P (N11 maximum)
= P (Nij < N11 ∀ (i, j) 	= (1, 1))
= E {P (Nij < N11 ∀ (i, j) 	= (1, 1) |N11)}
= E {P (N12 < N11 |N11)× P (N21 < N11 |N11)× P (N21 < N11 |N11)}
=

∏
(i,j)�=(1,1)

E
{
P

(√
Nij <

√
N11 |N11

)}
=

∏
(i,j)�=(1,1)

E
{
P

{
2
(√

Nij −
√

λij

)
< 2

(√
N11 −

√
λ11 −

√
λij +

√
λ11

)
|N11

}}
=

∏
(i,j)�=(1,1)

E {Wij} ,

where

Wij = P
{
2
(√

Nij −
√

λij

)
< 2

(√
N11 −

√
λ11 −

√
λij +

√
λ11

)
|N11

}
.
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Each of these conditional probabilities Wij are bounded and can be approxi-
mated by a random variable based on Anscombe’s Poisson-normal approxima-
tion [Anscombe (1948)]. Hence, the product W12 W21 W22 can be approximated
for a given N11 = n11 by∏

(i,j)�=(1,1)

P
{
N (0, 1) < 2

(√
n11 −

√
λ11 +

(√
λ11 −

√
λij

))}
.

Now,
√

N11 −
√

λ11 is bounded in probability and λ11 � λij for all (i, j) 	=
(1, 1). Therefore, with probability tending to 1, the above product is close
to 1. Because W12, W21, W22 are bounded random variables, convergence in
probability implies convergence in the first mean and∏

(i,j)�=(1,1)

E {Wij} −→ 1,

which is what we set out to prove.

Appendix 31.2
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αi βj

(1− α1) (1− β1)
+

βj

(1− α1) (1− β1)

(
ni.

n
− αi

)
+

αi

(1− α1) (1− β1)

(
n.j

n
− βj

)
+

αi βj

(1− α1)
2 (1− β1)

(
n1.

n
− α1

)
+

αi βj

(1− α1) (1− β1)
2

(
n.1

n
− β1

)
+ op

∥∥∥∥(ni.

n
,

n.j

n
,
n1.

n
,

n.1

n

)
− (αi, βj , α1, β1)

∥∥∥∥ .

α̃1 = α̃1

(
x, Θ̂

)
=

1
2

⎧⎨⎩1− n− n1.

n− n.1
+

√(
1− n− n1.

n− n.1

)2

+ 4 Θ̂
n− n1.

n− n.1

⎫⎬⎭
=

1
2

⎧⎨⎩1− 1− (n1./n)
1− (n.1/n)

+

√(
1− 1− (n1./n)

1− (n.1/n)

)2

+ 4 Θ̂
1− (n1./n)
1− (n.1/n)

⎫⎬⎭
=

1
2

{
x +

√
x2 + 4 Θ̂ (1− x)

}

with x = 1− 1− (n1./n)
1− (n.1/n)

. Expand α̃1 around
(
x, Θ̂

)
=

(
1− 1− α1

1− β1
, Θ

)
:

α̃1 =
1
2

⎧⎨⎩
(

1− 1− α1

1− β1

)
+

√(
1− 1− α1

1− β1

)2

+ 4Θ
(

1−
(

1− 1− α1

1− β1

))⎫⎬⎭︸ ︷︷ ︸
α1

+
∂α̃1

(
x, Θ̂

)
∂x

|(
x,Θ̂

)
=

(
1− 1−α1

1−β1
,Θ

) (
x−

(
1− 1− α1

1− β1

))

+
∂α̃1

(
x, Θ̂

)
∂Θ̂

|(
x,Θ̂

)
=

(
1− 1−α1

1−β1
,Θ

) (
Θ̂−Θ

)
︸ ︷︷ ︸

1
n

(N11−n α1 β1)

+ op

∥∥∥∥(x, Θ̂
)
−

(
1− 1− α1

1− β1
,Θ

)∥∥∥∥
= α1 +

∂α̃1

(
x, Θ̂

)
∂x

|(
x,Θ̂

)
=

(
1− 1−α1

1−β1
,Θ

) (
1− α1

1− β1
− 1− (n1./n)

1− (n.1/n)

)

+
∂α̃1

(
x, Θ̂

)
∂Θ̂

|(
x,Θ̂

)
=

(
1− 1−α1

1−β1
,Θ

) 1
n1/2

Z11

+ op

∥∥∥∥(x, Θ̂
)
−

(
1− 1− α1

1− β1
,Θ

)∥∥∥∥ .



512 M. Karnoub, P. K. Sen, and F. Seillier-Moiseiwitsch
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Swiss Federal Veterinary Office Risk Assessments:

Advantages and Limitations of The Qualitative

Method

R. Hauser, E. Breidenbach, and K. D. C. Stärk

Swiss Federal Veterinary Office, Bern, Switerland

Abstract: The Swiss Federal Veterinary Office (SFVO) applies risk analysis
methods in the fields of animal disease control and food safety. Analysis results
are used to formulate import regulations for animals and goods, to check the
effectiveness of control measures, and to set up monitoring programmes for
animal diseases and food contamination. The assessment of the potential health
risks to the population from consuming milk and dairy products contaminated
with zoonotic agents is used to demonstrate the steps and the advantages of a
qualitative risk assessment. The probability of contamination occurring in raw
milk, retail milk, and 12 milk products was investigated. The products posing
the greatest risk were raw milk and fresh and soft cheeses whereas the risk from
pasteurised milk, cream, butter, and hard cheese was seen to be negligible.
Based on these results, the first risk-based monitoring of milk products was
introduced in Switzerland in 2002. The initial phase of a risk analysis is a
qualitative process. Often, while the risk network is being established, it is
realised that the required data are unavailable or that data quality is insufficient.
Qualitative evaluation of expert opinion is easier than quantitative evaluation.
However, assigning risks to qualitative categories is done subjectively and there
is no standardised method. Usually the information provided by qualitative
assessments is adequate for risk managers for decision making. Management
measures in public health are often ‘yes’ or ‘no’ decisions. Risk communication
between risk managers and stakeholders is simplified when the results of a
qualitative assessment are available.

Keywords and phrases: Qualitative risk assessment, milk contamination,
risk-based monitoring

519



520 R. Hauser, E. Breidenbach, and K. D. C. Stärk

32.1 Introduction

The Swiss Federal Veterinary Office (SFVO) is responsible for monitoring the
health and welfare of animals in Switzerland and protecting the public from dis-
eases transmitted by animals or through animal products. Risk analysis meth-
ods are used in the fields of disease control and food safety in accordance with
international standards laid out by the Office International des Epizooties (OIE)
[Anonymous (2003)] and in the FAO/WHO’s Codex Alimentarius [Anonymous
(2001)].

Figure 32.1: The four elements of risk analysis. [Source: OIE, Terrestrial Ani-
mal Health Code (2003)]

In accordance with international standards, risk analyses at the FVO are
structured into four elements: Hazard Identification, Risk Assessment, Risk
Management, and Risk Communication.

Hazard Identification involves identifying pathogenic agents that could poten-
tially produce adverse consequences within the use of a defined commodity.

Risk Management is the process of deciding and implementing measures to
achieve the appropriate level of protection, taking into account scientific and
other legitimate factors. The effects of the implemented measures are moni-
tored.

Risk Communication is an important part of a successful risk analysis. It in-
volves the exchange of information and opinions concerning the risk. Risk com-
munication is part of the responsibility of risk management with comprehension
of all participants and communication specialists.

During the Risk Assessment, current information is collected, documented, and
assessed according to scientific criteria by means of literature research and ex-
pert opinion. Existing knowledge gaps, limitations, and uncertainties are trans-
parently documented. The risk consists of the probability that the undesired



Swiss Federal Veterinary Office Risk Assessments 521

events might happen and the extent of the possible harm. For a qualitative risk
analysis, the result is described in words.

Analysis results are used to formulate import regulations for animals and
goods, to check the effectiveness of control measures, and to set up monitoring
programs for animal diseases and food contamination. Information gained from
literature searches and expert opinion is evaluated according to established
scientific criteria. Gaps in data, limitations on its use, and uncertainties are
identified and documented. Risk is then assessed on the basis of structured
information and is expressed in terms of the likelihood of an adverse event
occurring and the magnitude of the consequences. Results are usually given in
report form (qualitative risk analysis).

32.2 Health Risks from Consumption of Milk and
Dairy Products: An Example of a Qualitative

Risk Assessment

An analysis of the potential health risks to the population from consuming milk
and dairy products is used here to demonstrate the steps involved in qualitative
risk analysis and the advantages of the method.

32.2.1 Risk profile

After inspections by the European Union’s Food and Veterinary Office in
Switzerland, it was recognised that a program of risk-based monitoring of man-
ufactured milk and dairy products, supported by official random sampling, was
required to ensure products were fit for export to the EU. In co-operation with
risk managers, risk analysts drew up a risk profile establishing the reason for
the assessment, identifying the hazards to be investigated, the tolerance values,
and a detailed questionnaire. The likelihood of high levels of contamination
occurring in raw milk, retail milk, and 12 milk product groups leading to rejec-
tion of the products (contamination above tolerance values or above threshold
limits) was investigated.

32.2.2 Hazard identification

Hazard identification is an important part of a risk assessment in which all
potential hazards are identified including those that will not actually be studied,
in this case Listeria monocytogenes, Salmonella spp., Staphylococcus aureus and
its toxins, Escherichia coli, Bacillus cereus and its toxins, and Aflatoxin M1. No
assessment was made of the risk from campylobacter, Yersinia enterocolitica,
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Vibrio cholerae, and Central European encephalitis. They were assessed to be
not relevant for milk products (no or extremely rare evidence). Cattle, goats,
and sheep have been officially declared free of Mycobacterium bovis and Brucella
spp. so no assessment was made for these pathogens.

32.2.3 Risk network

After all the potential hazards and their origins were identified, a risk network
for milk and dairy products was drawn up, as shown in Figure 32.2.

Figure 32.2: Risk network, origin, and identification of hazards in dairy product
manufacture

The chain of primary production, manufacturing, and sale of milk and dairy
products was divided into four stages. Animal health, water, feed, animal hous-
ing, milking hygiene and staff hygiene are all factors that influence the quality
of raw milk during primary milk production. Refrigeration and hygiene are
crucial during transport. Each manufacturing process used for dairy products
has an influence on any potential hazards. During storage and distribution to
points of sale, quality is influenced by staff and equipment hygiene.

Potential factors that could have a negative effect on the quality of the end
product were identified in the risk network. Expert opinion was obtained to
assess the probability of occurrence for each factor and the consequences for the
end product. The probability of occurrence was defined as less than 1%, less
than 10%, less than 25%, and more than 50%. The consequences were classified
qualitatively as ‘negligible,’ ‘low,’ ‘medium,’ and ‘high’ (see Table 32.1).
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Table 32.1: Expert opinion: Factors with negative effects, probability of
occurrence, and consequences for the end product

Production Stage Factor with Detri-
mental Effect

Probability of
Occurrence (%)

Consequences

Milk production

Animal health < 25 Small to medium
Water quality < 10 Small
Feed contaminated
with mycotxin

< 1 Small

Feed dust < 10 Small
Hygiene > 50 Medium to high

Transport

Break in refrigeration
chain

< 10 Small

Hygiene < 10 Small
Water quality < 1 Negligible

Manufacturing process

Contamination dur-
ing process

< 10 Small

Water quality < 10 Negligible to small
Ineffective pasteuri-
sation

< 1 Negligible

Process tempera-
tures low

< 1 Negligible to small

Lowering pH value < 1 Small
Additives < 10 Medium
Maturation period
too short

< 10 Small to medium

Contamination of
end product

< 10 Medium,

Storage Hygiene of staff and
equipment

< 1 Small

A qualitative assessment was made of each process stage and each was cate-
gorised. Pasteurisation and sterilisation completely eliminate pathogens. Low-
ering the pH value and high processing temperatures reduce contamination risk
to ‘medium.’ Long maturation periods of more than 60 days reduce contami-
nation substantially. Adding water and other supplements during the process
may cause pathogens to multiply.

32.2.4 Risk estimation

Various product groups were categorised according to risk, on the basis of the
probability of tolerance limits being exceeded. This was an indication of the
exposure risk to consumers. For dairy products, the likelihood of contamination
occurring was estimated by combining available data and on the basis of expert
opinion and was defined as ‘negligible,’ ‘low,’ and ‘medium’ (Figures 32.3 and
32.4).
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Figure 32.3: Qualitative assessment of hard cheese. The probability of
contamination

Figure 32.4: Qualitative assessment of yoghurt and curdled milk. The
probability of contamination

The products posing the greatest risk were raw milk and fresh and soft
cheeses whereas the risk from pasteurised milk, cream, butter, and hard cheese
was seen to be negligible.

32.2.5 Recommendations for random sample planning and risk
managers

The expected probability of tolerance limits being exceeded was defined as less
than 1% for a ‘negligible’ risk, less than 2.5% for a ‘low’ risk, and less than 5%
for a ‘medium’ risk.

The number of random samples required was calculated using the usual
sample size formulae. Based on the results of the risk assessment and the
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experience of the authorities, the first risk-based monitoring of end products
was introduced throughout Switzerland in the autumn of 2002.

Table 32.2: Probability of contamination above threshold limits

Risk Category Probability of
Contamination
over Threshold
Limits (%)

Milk Product

Negligible < 1 Pasteurized milk,
cream, butter,
hard cheese

Low < 2.5 Yogurt, dessert,
semi-hard cheese

Medium < 5 Fresh cheese, creamy
cheese, raw milk

32.3 Advantages and Disadvantages of Qualitative

Risk Assessment

Establishing a risk profile and characterising the hazards in the initial phase of
a risk analysis is a qualitative process. A risk network is indispensable to both
the qualitative and quantitative methods. Often, while the network is being
established, it is seen that the required data are unavailable or data quality
is insufficient. Qualitative evaluation of expert opinion is much easier than
quantitative evaluation.

Drawing up a qualitative risk assessment to determine whether there is in
fact a risk is the first requirement before proceeding with a quantitative risk as-
sessment. If data of sufficiently high quality are available, models can be created
and all risk paths can be quantitatively assessed. In practice, risk assessments
are comprehensive projects that can keep whole institutes and organisations oc-
cupied for years. The qualitative assessment of health hazards in milk and dairy
products described in this chapter was completed in less than seven months.

In qualitative risk assessments, the risk can be described in terms such as
‘negligible,’ ‘low,’ ‘medium,’ and ‘high.’ However, assigning risks to qualitative
categories is done subjectively and there is no standardised method. The tran-
sition between ‘negligible’ and ‘non-negligible’ is defined subjectively by risk
managers. International standards could be reached by a broad discussion of
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terminology leading to more meaningful risk assessments and improved accep-
tance of the method.

Usually the information provided by qualitative assessments is adequate for
risk managers for decision making. In most cases, management measures are
general in nature and concern import requirements, monitoring and control
regulations, or require ‘yes’ or ‘no’ decisions. Often, measures will either be
implemented or not, irrespective of the fine shades of risk.

Risk communication between risk managers and stakeholder groups is sim-
plified when the results of a qualitative assessment are available. No special
mathematical knowledge is needed to determine the risk paths and to evaluate
the data. Complex quantitative models such as dose–effect relationships, sim-
ulations, and the like, are usually hard to understand and may be difficult to
communicate. They may be perceived as ‘black-box’ approaches.

32.4 Statistics’ Part in Qualitative Risk Assessment

Qualitative risk assessments make use of descriptive statistical evaluations.
Probability calculus is used to estimate prevalent risks, their development and
the effect of risk reduction measures. It is difficult, if not impossible, to compare
risk assessments made in different countries or by different analysts because cat-
egorisations are subjective. Statistical methods could help standardise assess-
ments and make comparison possible. Statistics’ role is to provide high-quality
data resulting in more accurate risk assessments. Inaccuracies are possible in all
assessments because of data gaps and variability. High-quality data compensate
for lack of knowledge and increase the accuracy of assessments. Well-planned
and evaluated studies are needed to obtain such data. Corresponding data from
different studies may be combined by means of a meta-analysis.
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Methodological Example
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Abstract: Risk analysis can be performed following either a quantitative or
a qualitative approach. Both methodologies are linked to the same theoretical
rules. Once the potential hazard has been identified, the qualitative risk assess-
ment is carried out by combining the probabilities of occurrences of the events
(emission and exposition) in the presence of a hazard, and its consequences.
The probability of an event can be evaluated by combining the probabilities of
the different parameters.

Within the frame of global expertise, the necessity of realizing collegial risk
evaluations, sometimes when only few data are available and within a short
amount of time, leads us to work on a standardised method for a qualitative
approach.

The process of global qualitative risk appreciation is completed by adding
support to the rationalisation of the estimation step. It has been proposed that
each parameter be evaluated with the help of all available information and that
an evaluation of the probability of occurrence of each of these can be realized
individually to yield a given level of probability (null, negligible, low, moderate,
high) or an interval between two levels (for example: ‘negligible to low’).

The combination of probabilities and of intervals was carried out using a
table that was tested and evaluated through the following risk assessment: qual-
itative risk evaluations of the transmission of Q fever to humans in France.

Both the advantages and the limitation of this approach are also presented.

Keywords and phrases: Risk analysis, qualitative methodology, Q fever
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33.1 Introduction

Risk analysis has undergone rapid development in the whole field of food safety
and within a few years become a priority for scientists and decision makers who
see in this new tool a way to improve the rationale of their decisions, particularly
in animal health expertise.

It is now recognised that risk estimation can be performed following either
quantitative or qualitative methodology. Quantitative risk analysis must be fu-
eled by data that are not always available, either easily or rapidly. At the same
time, risk analysis needs to be organised around more or less complex models in
order to estimate the variables’ distributions and occurrence probabilities [Sut-
moller and Wrathall (1997) and Gale et al. (1998)]. The field of quantitative
risk analysis is indeed a rich research domain for scientists. On the other hand,
few publications have presented investigations using the qualitative approach,
although this may be seen as easier to perform in the absence of some of the
basic data. The qualitative approach is nevertheless used by managers [Pharo
(2002)] and by expert working groups [Anonymous (2002, 2003, 2004)], espe-
cially when time is lacking for a full quantitative analysis or when crude data are
missing.

It thus seemed that a methodological approach to quantitative risk analysis
could be of some interest. This chapter presents the method used within the
collegial scientific expertise of the French food safety agency (AFSSA, Agence
française de sécurité sanitaire des aliments), following and adapting the work
of Zepeda-Sein (1998).

33.2 Global Presentation of the Method

The method to appreciate a risk, as proposed by the Animal World Health
Organisation (OIE, Paris), consists of the following five steps [Ahl et al. (1993)
and OIE (2001)]: (i) hazard identification; (ii) appreciation of the emission (the
probability of emission from the source); (iii) appreciation of the exposition (the
probability of exposition to the hazard); (iv) appreciation of the consequences
(occurrence and severity combined); and (v) estimation of the risk (the combi-
nation of the probabilities of occurrence of the emission and of the exposition
with its consequences).

Each of the parameters, like emission, exposition, and consequences, may
themselves be complex and can be subdivided into simpler elements, each of
which contributes to their global occurrence.
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As an example to illustrate this, the meanings of these parameters in the
field of animal health are presented as follows. The parameter ‘emission’ is
linked to and depends on the sources of virulent materials, the cycle of excre-
tion by the infected animals, as well as the prevalence of the disease in the
species of concern. The parameter ‘exposition’ depends on the characteristics
of the exposed populations (density, distribution, sensitivity, etc.) and on the
different possible routes of contamination (airborne, foodborne, etc.). The pa-
rameter ‘consequences’ takes into account the sanitary (severity of the disease,
morbidity, and lethality rates) and economical costs of the possible outbreak
(loss of production, loss of markets, direct slaughtering and destruction of ani-
mals) aspects.

For each parameter, the list of all the elements to be taken into account is
completed, following the timing and the chronology of the more pertinent event
tree, specifically built for the item of concern. Each of these elements is first
described; then the available information and data are collected and analysed
through the process, to result in an estimation value.

The parameters can be characterized following three modalities: (i) by a
value: this kind of quantitative analysis is said to be ‘punctual’ or ‘determin-
istic;’ (ii) by a law of probability : this kind of quantitative analysis is said to
be ‘probabilistic’ or ‘stochastic;’ (iii) by a qualitative appreciation for which a
quantification process will not be used, but instead the level of each parameter
will be assessed using descriptive scales or qualifications

Risk can then be evaluated by combining probabilities of each parameter
following the rules presented in Figure 33.1. In the case of a quantitative risk
appreciation, the laws of probabilities show how to combine the probabilities
of each parameter. This chapter proposes a rationalized approach to deal with
qualitative risk appreciation (Figure 33.2).

Figure 33.1: The components of risk estimation



530 B. Dufour and F. Moutou

Figure 33.2: Presentation of the global chart of the analysis. [From OIE (2001).]

33.3 Qualitative Appreciation of the Probability

of Each Event

The global process of qualitative risk appreciation was completed with the help
of the estimation rationalisation adapted from the work of Zepeda-Sein (1998).
This author proposes that each of the parameters (emission, exposition, and
consequences) can be analysed by using all the available information and that
an evaluation of the occurrence probability of each of them can be realised
separately to obtain a certain level of probability [five qualifications are then
fixed to qualify the occurrence probability of each parameter: null (Nu: the
occurrence of the event is not possible); negligible (N: the occurrence of the event
could only be possible under exceptional circumstances); low (L: the occurrence
of the event is not very high, but is possible under some circumstance); moderate
(M: the occurrence of the event is clearly possible); or high (H: the occurrence
of the event is high)] or within a given interval (for instance: between negligible
to low).

After each event has been evaluated separately from the others following a
qualitative process, the final qualitative appreciation of each parameter is made
globally, by combining its event qualifications. The process must be strongly
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argued and some specific weight can be given to specific events, following the
characteristics of each disease. For instance, for the exposition parameter, the
event ‘contamination route’ may or may not be a determinant compared to
‘populations of concern,’ and its qualification will depend on this.

33.4 Qualitative Risk Appreciation

The combination of the probabilities of two given parameters, as proposed by
Zepeda-Sein (1998) has been adapted by Dufour et al. (2003) and then used by
different working groups organised within the context of the expert specialised
groups of the French food safety agency (AFSSA). The method was developed,
then tested on different subjects [Anonymous (2003) and Anonymous (2004)],
and underwent different adjustments before being validated through an expert
consensus of the Animal Health Committee of the French food safety agency in
2004.

For example, the working group on bat rabies and the risk of its transmission
played a major role in the realisation and adaptation of this method. Here, the
use of the qualitative approach allowed the expert group to characterise the
risk of transmission of bat rabies to human beings in France when data on
the prevalence of rabies within bat colonies was lacking, making impossible
any quantitative analysis [Anonymous (2003)]. However, at the end of this
qualitative analysis, the combination table rules were judged to be too severe,
quite probably leading to an overestimation of the risk.

Therefore, new adaptations were introduced to take into account the im-
precision of some data, the real subjectivity of the evaluation of the different
probabilities which are used, and mainly the fact that the combination of two
probabilities should result in a lower probability than each of the two original
probabilities (as when following this quantitative example: 10−4×10−4 = 10−8),
which had not been the case in the bat rabies document.

To take this last point into account, the qualification combination rules
adopted are as follows.

• Two probabilities with the same qualification combined together give the
qualification just below (low × low = negligible),

• Two adjacent probabilities give the lower interval of the lower original
probability (low × moderate = negligible to low),

• Two probabilities neither adjacent nor opposed give the lower probability
(low × high = low),
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• Two opposite probabilities give the higher interval of the lowest probabil-
ity (negligible × high = negligible to low),

• The combination of probabilities can also be performed by combining one
or two interval(s). Table 33.1 shows all these possible combinations.

Using this method, the combination of two ‘negligible’ qualifications should
logically lead to ‘null.’ However, AFSSA experts estimated that this qualifica-
tion should be reserved to describe an impossible event, so they decided to use
instead the ‘null to negligible’ interval for all the lowest probability situations.

The combination of these different probabilities for each parameter leads
to the probability of occurrence of a hazard, which is therefore also presented
using the same five qualifications as seen before (null, negligible, low, moderate,
or high) or with the intermediate intervals.

The following remarks are to be taken into account: (i) Table 33.1 gives
results that are close to results which could have been obtained through a
quantitative analysis, if quantitative data had been available. The multiplica-
tion of two probabilities gives a probability lower than each of the two original
probabilities; (ii) Table 33.1 gives relative information as opposed to absolute
information between the different rows and columns; (iii) the combination of
more than two parameters leads to the question of the ordering of the combi-
nation. With three parameters, N, M, and H for instance (N × H) × M gives
N to L, whereas N × (H × M) yields N. To overcome this difficulty, it is here
suggested to return to the event tree and to combine the parameters in the
same order every time.

33.5 Qualitative Appreciation Examples

This qualitative approach, after being developed within different working
groups, has recently been used by the specialised experts committee on Animal
Health of the French food safety agency for an evaluation of Q fever transmis-
sion from ruminants to man in France [Anonymous (2004)].

The prevalence of Q fever in domestic ruminants in France is not known.
Various surveys, with protocols that are both quite different and difficult to
compare, suggested a global serological prevalence somewhere between 5% and
85%, which is not useful in a quantitative evaluation.

Three populations were defined with respect to their degree of risk exposi-
tion: people living closely to possibly infected animals, the ‘rural’ population
that could be exposed to airborne contamination, and the global, usually urban,
population.
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The qualitative method used by the working group led to the following
points: (i) the risk for the global population, that is, without any known extra
risk factor (no pregnancy, valvulopathy, nor immunodepression) could be qual-
ified as very low (‘null to negligible’); (ii) globally, the level of risk was higher
for populations with extra risk factors, which means that a specific therapy
and/or treatment will be of great importance in these subpopulations. Indeed,
the global risk is lowered from ‘negligible to low’ to ‘null to negligible’ after a
therapeutic risk reduction for these subpopulations; (iii) the risk linked to the
consumption of contaminated foodstuffs (such as raw milk or milk products
from raw milk) was, as a whole, ‘null to negligible’ except for the populations
with extra risk factors, in which it was ‘negligible;’ (iv) exposure through the
airborne route or through close contacts with contaminated animals were the
highest risks, so the persons in close contact with infected animals or ‘rural per-
sons’ were the ones facing the greatest risk; (v) Table 33.2 presents the details of
one of the tables obtained in the case of contamination through direct contacts
with domestic ruminants issued from the AFSSA report [Anonymous (2004)].
Recommendations could then be established following this risk assessment.

33.6 Discussion

The qualitative approach presented here was built to answer the needs of ex-
pert committees of the French food safety agency, who have the obligation to
evaluate, within short delays, risks linked to animal health in order to provide
advice to risk managers, in this case the Central Veterinary Office (Direction
générale de l’alimentation) of the ministry in charge of agriculture. With this
background, two items are of specific concern: the method had to be simple,
understandable, and easily accessible, both to the experts and to the man-
agers; and it should not overevaluate the risk too much. For the first point,
Zepeda-Sein methodology was preferred to semi-quantitative approaches, whose
appropriation and understanding by users are more delicate. To prevent any
over-estimation of the risk, the combination tables were redrawn from the ex-
perience gained in the bat rabies working group [Anonymous (2003)].

The experience of the different AFSSA working groups that have used the
method show that the qualitative approach is simpler than the quantitative
one and thus open to a wider audience. The experts of these different working
groups had no difficulties familiarizing themselves with the method. Another
major advantage is to be much less time consuming, and it thus represents a
real possibility when there is little time to answer and when the decision behind
the assessment is urgent.

This process requires a detailed and organised study of all the parameters
that must be taken into account in the decision, including those for which the
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lack of available data does not allow quantitative analysis to be carried out.
This is why the construction of an event tree is so important.

Moreover, the approach points to the data used to obtain the estimation:
the whole method is built on the quality of the information used and on the
quality of the arguments followed to qualify the parameters. It is then quite
easy to judge the pertinence of the analysis and to discuss its results following
the quality of the data used to fuel the process. This is quite helpful to prevent
spending too much time discussing software, algorithms or distribution laws in
the case of quantitative or even semi-quantitative approaches. These discussions
may lead one to forget that the real questions are at the data level, not in the
computation.

However, the weakness of the qualitative process lies in the important part
of subjectivity that is present in it. The attribution of the retained levels of
probability (null, negligible, low, moderate, high probabilities) can be seen as
arbitrary and thus questionable. A way to decrease the arbitrary part of an
individual estimation is to make this process a collective one, by using an expert
group to discuss its different steps. In this case, it is important that the experts
have a good apprehension of the different proposed probability levels.

It is also necessary to make the process as transparent as possible; for ex-
ample, the documentation on which the argumentation is built and which leads
to each of the qualifications used must be presented in detail.

The quantitative method seems, at a first glance, more rigorous and less
arbitrary. It also presents the advantage of permitting a sensitivity analysis
of the estimation, compared to the incertitude of the hypothesis. However,
this process can be very long and is only possible in a very few situations,
as it requires much quantitative information quite often difficult to obtain.
When major data are lacking, the evaluators will use hypotheses, which, even
if presented with figures, are also arbitrary.

Acknowledgements. The authors are pleased to acknowledge all the col-
leagues that contributed their participation to the ‘bat rabies’ and ‘Q fever’
working groups of the animal health committee of AFSSA. Jayne Ireland is
warmly thanked for improving our English. The authors also thank Anne-Marie
Hattenberger as well as the two referees who helped improve a first version of
the manuscript.

References

1. Ahl, A. S., Acree, J. A., Gipson, P. S., Mc Dowell, R. M., Miller, L., and
McElvaine M. D. (1993). Standardisation of nomenclature for animal



Qualitative Risk Analysis in Animal Health 537

health risk analysis, Revue scientifique et technique (International Office
of Epizootics), 12, 1045–1053.

2. Anonymous (2002). Rapport sur le botulisme d’origine aviaire et bovine,
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4. Anonymous (2004). Rapport sur l’évaluation des risques pour la santé
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Maisons-Alfort.

5. Dufour, B., Moutou, F., and Hattenberger A. M. (2003). Qualitative and
collegial risk analysis method: An example: Bats rabies transmission to
man in France, In Proceedings of ISVEE 10th (Ed., S. Urcelay), pp. 1–4,
ISVEE, Vina del Mar, Chile, November 16–21, 2004.

6. Gale, P., Young, C., Stanfield, G., and Oakes, D. (1998). Development of
a risk assessment for BSE in the aquatic environment, Journal of Applied
Microbiology, 84, 467–477.

7. Office international des épizooties (2001). Code zoosanitaire interna-
tional: mammifères, oiseaux et abeilles, 10ème édition, OIE, Paris.
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