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PREFACE

“I think that when we know that we actually do live in
uncertainty, then we ought to admit it; it is of great value
to realize that we do not know the answers to different
questions. This attitude of mind – this attitude of uncer-
tainty – is vital to the scientist, and it is this attitude of
mind which the student must first acquire”

Richard P. Feynman, Noble Laureate in Physics, 1965

This book offers five substantial case studies on decision
making under uncertainty for subsurface systems. The
strategies and workflows designed for these case studies
are based on a Bayesian philosophy, tuned specifically
to the particularities of the subsurface realm. Models
are large and complex; data are heterogeneous in nature;
decisions need to address conflicting objectives; the sub-
surface medium is created by geological processes that
are not always well understood; and expertise of a large
variety of scientific and engineering disciplines need to
be synthesized.
There is no doubt that we live in an uncertain time.With

growing population, resources such as energy, materials,
water, and food will become increasingly critical in their
exploitation. The subsurface offers many such resources,
important to the survival of humankind. Drinking water
from groundwater systems is gaining in importance, as
aquifers are natural purifiers and can store large volumes.
However, the groundwater system is fragile, subject to
contamination from agriculture practices and industries.
Before renewables become the dominant energy sources,
oil and gas will remain a significant resource in the next
few decades. Geothermal energy both deep (power) and
shallow (heating) can contribute substantially to alleviat-
ing reliance on fossil fuels. Mining minerals used for
batteries will aid in addressing intermittency of certain
renewables, but mining practices will need to address envi-
ronmental concerns.
Companies and governmental entities involved in the

extraction of these resources face considerable financial
risk because of the difficulty in accessing the poorly under-
stood subsurface and the cost of engineering facilities.
Decisions regarding exploration methods, drilling, extrac-
tion methods, and data-gathering campaigns often need
to balance conflicting objectives: resource versus environ-
mental impact, risk versus return. This can be truly
addressed only if one accepts uncertainty as integral part
of the decision game. A decision based on a deterministic
answer when uncertainty is prevailing is simply a poor
decision, regardless of the outcome. Decisions and

uncertainty are part of one puzzle; one does not come
before the other.
Uncertainty on key decision variables such as volumes,

rates of extraction, time of extraction, spatiotemporal var-
iation on fluid movements needs to be quantified. Uncer-
tainty quantification, in this book shortened to UQ,
requires a complex balancing of several fields of expertise
such as geological sciences, geophysics, data science, com-
puter science, and decision analysis. We gladly admit that
we do not have a single best solution to UQ. The aim of
this book is to provide the reader with a principled
approach, meaning a set of actions motivated by a math-
ematical philosophy based on axioms, definitions, and
algorithms that are well understood, repeatable, and
reproducible, as well as a software to reproduce the results
of this book. We consider uncertainty not simply to be
some posterior analysis but a synthesized discipline
steeped in scientific ideas that are still evolving. Ten chap-
ters provide insight into our way of thinking on UQ.
Chapter 1 introduces the five case studies: an oil reser-

voir in Libya, a groundwater system in Denmark, a geo-
thermal source for heating buildings in Belgium, a
contaminated aquifer system in Colorado, and an uncon-
ventional hydrocarbon resource in Texas. In each case
study, we introduce the formulation of the decision prob-
lem, the types of data used, and the complexity of the
modeling problem. Common to all these cases is that
the decision problem involves simple questions: Where
do we drill? Howmuch is there? How do we extract?What
data to gather? The models involved on the other hand are
complex and high dimensional, the forward simulators
time-consuming. The case studies set the stage.
Chapter 2 introduces the reader to some basic notions in

decision analysis. Decision analysis is a science, with its
own axioms, definitions, and heuristics. Properly formu-
lating the decision problem, defining the key decision vari-
ables, the data used to quantify these, and the objectives of
the decision maker are integral to such decision analysis.
Value of information is introduced as a formal framework
to assess the value of data before acquiring it.
Chapter 3 provides an overview of the various data sci-

ence methods that are relevant to UQ problems in the
subsurface. Representing the subsurface requires a high-
dimensional model parametrization. To make UQ pro-
blems manageable, some form of dimension reduction
is needed. In addition, we focus on several methods
of regression such as Gaussian process regression and
CART (classification and regression trees) that are useful
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for statistical learning and development of statistical
proxy models. Monte Carlo is covered extensively as this
is instrumental to UQ. Methods such as importance sam-
pling and sequential importance resampling are discussed.
Lastly, we present the extension of Monte Carlo to Mar-
kov chain Monte Carlo and bootstrap; both are methods
to address uncertainty and confidence.
Chapter 4 is dedicated to sensitivity analysis (SA).

Although SA could be part of Chapter 3, because of its
significance to UQ, we dedicate a single chapter to it.
Our emphasis will be on global SA and more specifically
Monte Carlo-based SA since this family of methods
(Sobol’, regionalized sensitivity analysis, CART) provides
key insight into understanding what model variables most
impact data and prediction variables.
Chapter 5 introduces the philosophy behind Bayesian

methods: Bayesianism. We provide a historical context
to why Bayes has become one of the leading paradigms
to UQ, having evolved from other paradigms such as
induction, deduction, and falsification. The most impor-
tant contribution of Thomas Bayes is the notion of the
prior distribution. This notion is critical to UQ in the sub-
surface, simply because of the poorly understood geolog-
ical medium that drives uncertainty. The chapter,
therefore, ends with a discussion on the nature of prior dis-
tributions in the geosciences, how one can think about
them and how they can be established from physical,
rather than statistical principles.
Chapter 6 then extends on Chapter 5 by discussion on

the role of prior distribution in inverse problems. We pro-
vide a brief overview of both deterministic and stochastic
inversion. The emphasis lies on how quantification of geo-
logical heterogeneity (e.g., using geostatistics) can be used
as prior models to solve inverse problems, within a Bayes-
ian framework.
Chapter 7 is perhaps the most novel technical contribu-

tion of this book. This chapter covers a collection of meth-
ods termed Bayesian evidential learning (BEL). Previous
chapters indicated that one of the major challenges in UQ
is model realism (geological) as well as deal with large
computing times in forward models related to data and
prediction responses. In this chapter, we present several
methods of statistical learning, whereMonte Carlo is used
to generate a training set of data and prediction variables.
ThisMonte Carlo approach requires the specification of a
prior distribution on the model variables. We show how
learning the multivariate distribution of data and predic-
tion variables allows for predictions based on data with-
out complex model inversions.
Chapter 8 presents various strategies addressing the

decision problem of the various case studies introduced
in Chapter 1. The aim is not to provide the best possible
method but to outline choices in methods and strategies in

combination to solve real-world problems. These strate-
gies rely on materials presented in Chapters 2–7.
Chapter 9 provides a discussion of the various software

components that are necessary for the implementation of
the different UQ strategies presented in the book. We dis-
cuss some of the challenges faced when using existing soft-
ware packages as well as provide an overview of the
companion code for this book.
Chapter 10 concludes this book bymeans of seven ques-

tions that formulate important challenges that when
addressed may move the field of UQ forward in impactful
ways.
We want to thank several people who made important

contributions to this book, directly and indirectly. This
book would not have been possible without the continued
support of the Stanford Center for Reservoir Forecasting.
The unrestricted funding provided over the last 30 years
has aided us in working on case studies as well as funda-
mental research that focuses on synthesis in addition to
many technical contributions in geostatistics, geophysics,
data science, and others. We would also like to thank our
esteemed colleagues at Stanford University and else-
where, who have been involved in many years of discus-
sion around this topic. In particular, we would like to
thank Tapan Mukerji (Energy Resources Engineering &
Geophysics), who has been instrumental in educating us
on decision analysis as well as on the geophysical aspects
of this book. Kate Maher (Earth System Science) pro-
vided important insights into the modeling of the case
study on uranium contamination. We thank the members
of the Ensemble project funded by the Swiss government,
led by Philippe Renard (University of Neuchatel), Niklas
Linde (University of Lausanne), Peter Huggenberger
(University of Basel), Ivan Lunati (University of Lau-
sanne), Grégoire Mariethoz (University of Lausanne),
and David Ginsbourger (University of Bern). To our
knowledge, this was one of the first large-scale govern-
mental project involving both research and education
for quantifying uncertainty in the subsurface. We would
also like to thank Troels Vilhelmsen (University of Aar-
hus) for the short but intensive collaboration on the Dan-
ish groundwater case. We welcome the data provided by
Wintershall (Michael Peter Suess) and Andarko (Carla
Da Silva). The Belgian case was done with Thomas Her-
mans (University of Gent), when he was postdoctoral
researcher at Stanford. Discussions with Fréderic Nguyen
(University of Liege) were also instrumental for that case
study. We would also like to thank Emanuel Huber
(University of Basel) for the construction of the hydrolog-
ical (DNAPL) test case used in Chapters 3 and 4 during
his postdoc at Stanford.
PhD students also have been integral part of this work,

at Stanford and elsewhere. In particular, we would like to
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thank Addy Satija, Orhun Aydin, Ognjen Grujic, Guang
Yang, Jihoon Park, Markus Zechner, and Adrian Barfod
(University of Aarhus).
The thumbtack game on decision analysis was intro-

duced to us by Reidar Bratvold (University of Stavan-
ger). Early reviews on Chapter 5 (Bayesianism) by
Klaus Mosegaard (University of Kopenhagen),
Don Dodge (Retired, San Francisco), and Matthew
Casey (The Urban School, San Francisco) were instru-
mental to the writing and clarity of the chapter. We

also thank Darryl Fenwick (Kappa Engineering) for
early reviews of Chapters 4 and 6 and for many fruitful
discussions. We are very grateful to the 10 anonymous
reviewers and the Wiley editors for their critical
comments.
We hope you enjoy our work.

Céline Scheidt
Lewis Li
Jef Caers
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1
The Earth Resources Challenge

Co-Authored by: Troels Norvin Vilhelmsen1, Kate Maher2, Carla Da Silva3, Thomas Hermans4,
Ognjen Grujic5, Jihoon Park5, and Guang Yang5

1.1. WHEN CHALLENGES BRING
OPPORTUNITIES

Humanity is facing considerable challenges in the 21st
century. Population is predicted to growwell into this cen-
tury and saturate between 9 and 10 billion somewhere in
the later part. This growth has led to climate change (see
the latest IPCC reports), has impacted the environment,
and has affected ecosystems locally and globally around
the planet. Virtually no region exists where humans have
had no footprint of some kind [Sanderson et al., 2002]; we
now basically “own” the ecosystem, and we are not
always a good Shepard. An increasing population will
require an increasing amount of resources, such as energy,
food, and water. In an ideal scenario, we would transform
the current situation of unsustainable carbon-emitting
energy sources, polluting agricultural practices and
contaminating and over-exploiting drinking water
resources, into a more sustainable and environmentally
friendly future. Regardless of what is done (or not), this
will not be an overnight transformation. For example,
natural gas, a green-house gas (either as methane or
burned into CO2), is often called the blue energy toward
a green future. But its production from shales (with vast
amounts of gas and oil reserves, 7500 Tcf of gas, 400 bil-
lion barrels of oil, US Energy Information, December

2014) has been questioned for its effect on the environ-
ment from gas leaks [Howarth et al., 2014] and the
unsolved problem of dealing with the waste water it gen-
erates. Injecting water into kilometer-deep wells has
caused significant earthquakes [Whitaker, 2016], and risks
to contamination of the groundwater system are consider-
able [Osborn et al., 2011].
Challenges bring opportunities. The Earth is rich in

resources, and humanity has been creative and resourceful
in using the Earth to advance science and technology.
Batteries offer promising energy storage devices that
can be connected to intermittent energy sources such as
wind and solar. Battery technology will likely develop
further from a better understanding of Earth materials.
The Earth provides a naturally emitting heat source that
can be used for energy creation or heating of buildings. In
this book, we will contribute to exploration and exploita-
tion of geological resources. The most common of such
resources are briefly described in the following:
1. Fossil fuels will remain an important energy source

for the next several decades. Burning fossil fuels is not a
sustainable practice. Hence, the focus will be on the
transformation of this energy, least impacting the
environment as possible. An optimal exploitation, by
minimizing drilling, will require a better understanding
of the risk associated with the exploration and produc-
tion. Every mistake (drilling and spilling) made by an
oil company has an impact on the environment, direct
or indirect. Even if fossil fuels will be in the picture for
a while, ideally we will develop these resources as efficient
as possible, minimally impacting the environment.
2. Heat can be used to generate steam, drive turbines,

and produce energy (high enthalpy heat systems).
However, the exploitation of geothermal systems is
costly and not always successful. Injecting water into

1Department of Geoscience, Aarhus University, Aarhus,
Denmark

2Department of Geological Sciences, Stanford University,
Stanford, CA, USA

3Anadarko, The Woodlands, TX, USA
4University of Liege, Liege, Belgium
5Department of Energy Resources Engineering, Stanford

University, Stanford, CA, USA
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kilometer-deep wells may end up causing earthquakes
[Glanz, 2009]. Reducing this risk is essential to a success-
ful future for geothermal energy. In a low enthalpy
system, the shallow subsurface can be used as a heat
exchanger, for example through groundwater, to heat
buildings. The design of such systems is dependent on
how efficient heat can be exchanged with groundwater
that sits in a heterogeneous system, and the design is
often subject to a natural gradient.
3. Groundwater is likely to grow as a resource for

drinking water. As supply of drinking water, this resource
is however in competition with food (agriculture) and
energy (e.g., from shales). Additionally, the groundwater
system is subject to increased stresses such as from
over-pumping and contamination.
4.Minerals resources are exploited for a large variety of

reasons. For example, the use of Cu/Fe in infrastructure,
Cd/Li/Co/Ni for batteries, rare earth elements for ampli-
fiers in fiber-optic data transmission or mobile devices, to
name just a few. An increase in the demand will require
the development of mining practices that have minimal
effect on the environment, such as properly dealing with
waste as well as avoiding groundwater contamination.
5. Storage of fluids such as natural gas, CO2, or water

(aquifer storage and recovery) in the subsurface is an
increasing practice. The porous subsurface medium
acts as a permanent or temporary storage of resources.
However, risks of contamination or loss need to be
properly understood.
The geological resource challenge will require develop-

ing basic fields of science, applied science and engineering,
economic decision models, as well as creating a better
understanding regarding human behavioral aspects. The
ultimate aim here is to “predict” what will happen, and
based on such prediction what are best practices in terms
of optimal exploitation, maximizing sustainability, and
minimizing of impact on the environment. The following
are the several areas that require research: (i) fundamental
science, (ii) predictive models, (iii) data science, and
(iv) economic and human behavior models.
Fundamental science. Consider, for example, the man-

agement of groundwater system. The shallow subsurface
can be seen as a biogeochemical system where biological,
chemical agents interact with the soils or rock within
which water resides. The basic reactions of these agents
may not yet be fully understood nor does the flow of water
when such interactions take place. To understand this
better, we will further need to develop such understanding
based on laboratory experiments and first principles.
Additionally, the flow in such systems depends on the
spatial variability of the various rock properties. Often
water resides in a sedimentary system. A better under-
standing of the processes that created such systems will
aid in predicting such flow. However, the flow of particles
in a viscous fluid, which leads to deposition and erosion

and ultimately stratigraphy, is fundamentally not well
understood; hence, the basic science around this topic
needs to be further developed. A common issue is that
basic science is conducted in laboratories at a relatively
small scale; hence, the question of upscaling to application
scales remains, equally, a fundamental research challenge.
Predictive models. Fundamental science or the under-

standing of process alone does not result in a prediction
or an improvement into what people decide in practice.
Predictions require predictive models. These could be a
set of partial differential equations, reactions, phase dia-
grams, and computer codes developed from basic under-
standing. In our groundwater example, we may develop
codes for predictive modeling of reactive transport in
porous media. Such codes require specification of initial
and boundary conditions, geochemical reaction rates,
biogeochemistry, porous media properties, and so on.
Given one such specification, the evolution of the system
can then be predicted at various space-time scales.
Data science. Predictive models alone do not make

meaningful predictions in practical settings. Usually,
site-specific data are gathered to aid such predictions. In
the groundwater case, this may consist of geophysical
data, pumping data, tracer data, geochemical analysis,
and so on. The aim is often to integrate predictive models
with data, generally denoted as inversion. The challenge
around this inversion is that no single model predicts
the data; hence, uncertainty about the future evolution
of the system exists. Because of the growing complexity
of the kind of data we gather and the kind of models
we develop, an increased need exists in developing data
scientific methods that handle such complexities fully.
Economic decision models and social behavior. The pre-

diction of evolution of geological resource systems cannot
be done without the “human context.”Humans will make
decision on the exploitation of geological resources and
their behavior may or may not be rational. Rational deci-
sion making is part of decision science, and modeling
behavior (rational or not) is part of game theory. Next
to the human aspects, there is a need for global under-
standing of the effect of the evolution of technology on
geological resources. For example, howwill the continued
evolution affect the economy of mineral resources? How
will any policy change in terms of rights to groundwater
resources change the exploitation of such resources?
In this book, we focus mostly on making predictions as

input to decision models. Hence, we focus on develop-
ment of data scientific tools for uncertainty quantification
in geological resources systems. However, at the same
time, we aremindful about the fact that we do not yet have
a fundamental understanding of some of the basic science.
This is important because after all UQ is about quantify-
ing lack of understanding. We are also mindful about the
fact the current predictive models only approximate any
physical/chemical reality in the sense that these are based
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on (still) limited understanding of process. In the subsur-
face, this is quite prevalent. We do not know exactly how
the subsurface system, consisting of solids and fluids, was
created and how solids and fluids interact (together with
the biological system) under imposed stresses or changes.
Most of our predictive models are upscaled versions of an
actual physical reality. Last, we are also mindful that our
predictions are part of a larger decision model and that
such decision models themselves are only approximate
representation of actual human behavior.
Hence, we will not provide an exact answer to all these

questions and solve the world’s problems! In that sense,
the book is contributing to sketching paths forward in this
highly multidisciplinary science. This book is part of an
evolution in the science of predictions, with a particular
application to the geological resources challenge. The best
way to illustrate this is with real field case studies on the
above-mentioned resources, how predictive models are
used, how data come into the picture, and how the deci-
sion model affects our approach to using such predictive
models in actual practical cases, with actual messy data.
Chapter 1 introduces these cases and thereby sets
the stage.

1.2. PRODUCTION PLANNING AND
DEVELOPMENT FOR AN OIL FIELD IN LIBYA

1.2.1. Reservoir Management from Discovery
to Abandonment

Uncertainty quantification in petroleum systems has a
long history and perhaps one of the first real-world
applications of such quantification, at least for the
subsurface. This is partly due to the inherent large
financial risk (sometime billions of dollars) involved in
decision making about exploration and production.
Consider simply that the construction of a single offshore
platformmay cost several billion dollars and may not pay
back return if uncertainty/risk is poorly understood, or if
estimates are too optimistic. Uncertainty quantification
is (and perhaps should be) an integral part of decision
making in such systems.
Modern reservoir management aims at building com-

plex geologicalmodels of the subsurface and running com-
putationally demanding models of multiphase flow that
simulates the combined movement of fluids in the subsur-
face under induced changes, such as from production by
enhancing the recovery by injection of water, CO2, poly-
mers, or foams. In particular, for complex systems and
costly operations, numerical models are used to make pre-
diction and run numerical optimizations since simple ana-
lytical solution can only provide very rough estimates
and cannot be used for individual well-planning or for
assessing the worth of certain data acquisition methods.

Reservoir management is not a static task. First, the
decision to use certain modeling and forecasting tools
depends on what stage of the reservoir life one is dealing
with, which is typically divided into (i) exploration,
(ii) appraisal, (iii) early production, (iv) late production,
and (v) abandonment. Additionally, several types of
reservoir systems exist. Offshore reservoirs may occur in
shallow to very deep water (1500–5000 ft of water
column) and are found on many sedimentary margins in
the world (e.g., West Africa, Gulf of Mexico, Brazil).
To produce such reservoirs, and generate return on
investments, wells need to be produced at a high rate (as
much as 20,000 BBL/day). Often wells are clustered from
a single platform. Exploration consists of shooting 2D
seismic lines, from which 2D images of the subsurface
are produced. A few exploration wells may be drilled to
confirm a target or confirm the extent of target zone. From
seismic alone it may not be certain that a sand is oil-filled
or brine-filled. With interesting targets identified, 3D seis-
mic surveys are acquired to get a better understanding of
the oil/gas trap in terms of the structure, the reservoir
properties, and distribution of fluids (e.g., contacts
between gas/oil, oil/water). Traps are usually 1–10 km in
magnitude aerially and 10–100s of feet vertically. The
combination of additional exploration wells together with
seismic data allows for the assessment of the amount of
petroleum product (volume) available and how easy it is
to recover the reservoir, and how such recovery will play
out over time: the recovery factor (over time).
Because of the lack of sufficient data, any estimate of

volume or recovery at the appraisal stage is subject
to considerable uncertainty. For example, a reservoir
volume (at surface conditions, meaning accounting for vol-
ume changes due to extraction to atmospheric conditions)
is determined as

Volume= area× thickness × porosity × oil saturation

× formation volume factor

1 1

However, this simple expression ignores the (unknown)
complexity in the reservoir structure (e.g., presence of
faults). Each of the above factors is subject to uncertainty.
Typically, a simple Monte Carlo analysis is performed to
determine uncertainty on the reservoir volume. This
requires stating probability distributions for each varia-
ble, often taken as independent, and often simply guessed
by the modeler. However, such analysis assumes a rather
simple setting such as shown in Figure 1.1 (left). Because
only few wells are drilled, the reservoir may look fairly
simple from the data point of view. The combination of
a limited number of wells (samples) with the low-
resolution seismic (at least much lower than what can
be observed in wells) may obfuscate the presence of
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complexity that affects volume, such as geological heter-
ogeneity (the reservoir is not a homogenous sand but has a
considerable non-reservoir shale portion), presence of
faults not detectable on seismic, or presence of different
fluid contacts as shown in Figure 1.1 (right). This requires
then a careful assessment of the uncertainty of each
variable involved.
While offshore reservoirs are produced from a limited

set of wells (10–50), onshore systems allow for much more
extensive drilling (100–1000). Next to the conventional
reservoir systems (those produced in similar ways as the
offshore ones and in similar geological settings), a shift
has occurred to unconventional systems. Such systems
usually consist of shales, which were considered previ-
ously to be “unproducible,” but have become part of
oil/gas production due to the advent of hydraulic fractur-
ing (HF). Thus, starting in 2005, a massive development
of unconventional shale resources throughout North
America has interrupted both the domestic and the
international markets. From a technical perspective,
development of shale reservoirs is challenging and is sub-
ject to a substantial learning curve. To produce value,
shale operators often experiment with new technologies,
while also testing applicability of the best practices estab-
lished in other plays. Traditional reservoir modeling
methods and Monte Carlo analysis (see next) become
more difficult in these cases, simply because the processes
whereby rock breaks, gas/oil released and produced at the
surface are much less understood and require in addition
to traditional fields of reservoir science knowledge about
the joint geomechanical and fluid flow processes in such
systems. As a result, and because of fast development of
shale plays (e.g., one company reporting drilling more
than 500/year of “shale” wells), a more data centric
approach to modeling and uncertainty quantification is
taken. This data scientific approach relies on using pro-
duction of existing wells, in combination with the produc-
tion and geological parameters to directly model and
forecast new wells or estimate how long a producing well
will decline (hydraulic fractured wells typically start with

a peak followed by a gradual decline). In Section 1.6, we
will present these types of systems. Here we limit ourselves
to conventional reservoir systems.

1.2.2. Reservoir Modeling

In the presence of considerable subsurface complexity,
volume or recovery factor assessment becomes impossible
without explicitly modeling the various reservoir elements
and all the associated uncertainties. Reservoirs requiring
expensive drilling are therefore now routinely assessed by
means of computer (reservoir) models, whether for
volume estimate, recovery factor estimates, placement
of wells, or operations of existing wells. Such models
are complex, because the reservoir structure is complex.
The following are the various modeling elements that
need to be tackled.
1. Reservoir charge. No oil reservoir exists without

migration of hydrocarbon “cooked” from a source rock
and trapped in a sealing structure. To assess this, oil
companies build basin and petroleum system models
to assess the uncertainty and risk associated with finding
hydrocarbons in a potential trap. This requires modeling
evolution of the sedimentary basins, the source rock, burial
history, heat flow, and timing of kerogen migration, all of
which are subject to considerable uncertainty.
2. Reservoir structure, consisting of faults and layers.

These are determined from wells and seismic, and these
may be very uncertain in cases with complex faulting (cases
are known to contain up to 1000 faults), or due to difficult
and subjective interpretation from seismic. In addition, the
seismic image itself (the data on which interpretation are
done) is uncertain. Structures are usually modeled as sur-
faces (2D elements). Their modeling requires accounting
of tectonic history, informing the age relationships between
faults, and several rules of interaction between the struc-
tural elements (see Chapter 6).
3. The reservoir petrophysical properties. The most

important are porosity (volume) and permeability (flow).
However, because of the requirement to invert and model
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Figure 1.1 Idealized vs. real setting in estimating original oil in place.
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seismic data (3D or 4D), other properties and their spatial
distribution are required such as lithology, velocity
(p-wave, s-wave), impedance, density, compressibility,
Young’s modulus, Poisson coefficient, and so on. First,
the spatial distribution of these properties depends on
the kind of depositional system present (e.g., fluvial,
deltaic), which may itself be uncertain, with few wells
drilled. The depositional systemwill control the spatial dis-
tribution of lithologies/facies (e.g., sand, shale, dolomite),
which in turn controls the distribution of petrophysical
properties, as different lithologies display different
petrophysical characteristics. In addition, all (or most)
petrophysical properties are (co)-related, simply because
of the physical laws quantifying them. Rock physics is a
field of science that aims to understand these relationships,
based on laboratory experiments, and then apply them to
understand the observed seismic signals in terms of rock
and fluid properties. These relationships are uncertain
because (i) the scale of laboratory experiments and ideal
conditions are different from reservoir conditions and
(ii) the amount of reservoir (core) samples that can be
obtained to verify these relationships are limited. This
has led to the development of the field of statistical rock
physics [Avseth et al., 2005; Mavko et al., 2009].
4. Reservoir fluid properties. A reservoir usually contains

three types of fluids: gas, oil, and brine (water), usually
layered in that order because of density difference. The (ini-
tial) spatial distribution of these fluidsmay, however, not be
homogeneous depending on temperature, pressure, geolog-
ical heterogeneity, andmigration history (oilmatures froma
source rock, traveling toward a trap). Reservoir production
will initially lead to a pressure decline (primary production),
then to injection of other fluids (e.g., water, gas, polymers,
foams) into the reservoir. Hence, to understand all these
processes, one needs to understand the interaction and
movement of these various fluids under changing pressure,
volume, and temperature conditions. This requires knowing
the various thermodynamic properties of complex hydro-
carbon chains and their phase changes. These are typically
referred to as the PVT (pressure–volume–temperature)
properties. The following are some basic properties involved
that are crucial (to name just a few):

• Formation volume factor: The ratio of a phase vol-
ume (water, oil, gas) at reservoir conditions, relative to
the volume of a surface phase (water, oil, or gas).
• Solution gas–oil ratio: The amount of surface gas

that can be dissolved in a stock tank oil when brought
to a specific pressure and temperature.
• API specific gravity: A common measure of oil spe-

cific gravity.
• Bubble-point pressure: The pressure when gas bub-

bles dissolve from the oil phase.
In a reservoir system, several fluids move jointly

through the porous systems (multiphase flow).
A common way to represent this is through relative

permeability and capillary functions. These functions
determine how one fluid moves under given saturation
of another fluid. However, they in turn depend on the
nature of the rock (the lithology) and the pore fabric
system, which is uncertain, both in characteristics (which
mineral assemblages occur) and in spatial distribution.
Limited samplings (cores) are used in laboratory experi-
ments to determine all these properties.
Building a reservoir model, namely representing

structure and rock and fluid properties, requires a
complex set of software tools and data. Because of the
limited resolution of such models, the limited understand-
ing of reservoir processes, and the limited amount of data,
such models are subject to considerable uncertainty. The
modern approach is to build several (hundreds) of alterna-
tive reservoir models, which comes with its own set of
challenges, in terms of both computation and storage.
In addition, any prediction of flow and saturation changes
(including the data that inform such changes such as 4D
seismic and production data) requires running numerical
implementation of multiphase flow, which depending on
the kind of physics/chemistry represented (compressibil-
ity, gravity, compositional, reactive) may take hours to
sometimes days.

1.2.3. The Challenge of Addressing Uncertainty

As production of oil/gas takes place in increasingly
complex and financially risky situations, the traditional
simple models of reservoir decline are gradually replaced
by more comprehensive modeling of reservoir systems to
understand better uncertainty in predictions made from
such models. Based on the above description, Table 1.1
lists the various modeling components, subject to uncer-
tainty, and the data involved in determining their
uncertainty.
Despite the complexity in modeling, the target variables

of such exercise are quite straightforward. In all, one can
distinguish four categories of such prediction variables.
1. Volumes. How much target fluid is present? (a scalar)
2. Recovery. How much can be recovered over time

under ideal conditions? (a time series)
3. Wells. Where should wells be placed and in what

sequence? What strategy of drilling should be followed?
Injectors/producer? Method of enhanced recovery? These
are simply locations ofwells and the time theywill be drilled
(a vector), and whether they are injecting or producing.
4.Well controls. How should wells produce?More com-

plex wells are drilled, such as horizontal wells, that can be
choked at certain points and their rates controlled in that
fashion.
The primordial question is not necessarily the quantifi-

cation of uncertainty of all the reservoir variables in
Table 1.1 but of a decision-making process involving
any of the target variables in question, which are
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uncertain due to various reservoir uncertainties. Is the 2D
seismic data warranting drilling exploration wells? Is there
enough volume and sufficient recovery to go ahead with
reservoir development? Which wells and where do we drill
to optimize reservoir performance? To further constrain
reservoir development, is there value in acquiring 4D seis-
mic data and how? As such, there is a need to quantify
uncertainty with these particular questions in mind.

1.2.4. The Libya Case

1.2.4.1. Geological Setting. To illustrate the various
challenges in decision making under uncertainty for a real-
istic reservoir system, we consider a reservoir in the Sirte
Basin in north central Libya. This system contains 1.7%
of the world’s proven oil reserves according to Thomas
[1995]. Its geological setting as described by Ahlbrandt
et al. [2005] considers the area to have been structurally

weakened due to alternating periods of uplift and
subsidence originating in the Late Precambrian period,
commencing with the Pan-African orogeny that
consolidated several proto-continental fragments into an
early Gondwanaland. Rifting is considered to have com-
menced in the Early Cretaceous period, peaked in the Late
Cretaceous period, and ended in the early Cenozoic. The
Late Cretaceous rifting event is characterized by formation
of a sequence of northwest-trending horsts (raised fault
blocks bounded by normal faults) and grabens (depressed
fault blocks bounded by normal faults) that step progres-
sively downward to the east. These horsts and grabens
extend from onshore areas northward into a complex off-
shore terrene that includes the Ionian Sea abyssal plain to
the northeast [Fiduk, 2009]. This structural complexity has
important ramifications to reservoir development.
TheN-97 field under consideration is located in theWest-

ern Hameimat Trough of the Sirte Basin (see Figure 1.2).

Table 1.1 Overview of the various modeling components, fields of study, and data sources for UQ and decision making in
conventional oil/gas reservoirs.

Type Class Uncertain variable Field of study Main data

Charge Basin Deposition, erosion Basin and petroleum
system modeling,
geochemistry

Wells seismic core/
log oil samplesSource rock Organic content; heat flow

Migration Timing of kerogen transformation

Structural

Faults

Amount

Location Structural geology Wells

Slip/throw

Transmissibility Geomechanics 3D seismic

Fractures

Fault network hierarchy Rock mechanics Well tests

Horizons
Depth variation

Stratigraphy
Wells

Layer thickness variation 3D seismic

Contacts
WOC

Hydrostatics Pressure data
GOC

Petrophysical

Reservoir

Porosity
Sedimentary geology Core/log

Permeability

Lithology
Carbonate geology Seismic

Depositional system

Production data

Seismic

Velocity (P/S)
Seismic processing Seismic

Density Rock physics Core/logs
Impedance (P/S)

Geo-mechanics
Poisson modulus

Geomechanics Cores
Young’s modulus

Fluid Fluid
PVT Thermodynamics Lab samples

Relative permeability Multiphase flow Core experiments

Capillary pressure
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Figure 1.2 Structural elements of Sirte Basin. Schematic, structural cross-section from the Sarir Trough showing hydrocarbons in the
Sarir Sandstone [Ambrose, 2000; Ahlbrandt et al., 2005].
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The reservoir under consideration, the WintersHall
Concession C97-I, is a fault-bounded horst block with
the Upper Sarir Formation sandstone reservoir. Complex
interactions of dextral slip movements within the Creta-
ceous–Paleocene rift systemhave led to the compartmental-
ization of the reservoir [Ahlbrandt et al., 2005].
Fluid flow across faults in such heterolithic reservoirs is

particularly sensitive to the fault juxtaposition of sand
layers. But the variable and uncertain shale content and
diagenetic processes make estimation of the sealing capac-
ity of faults difficult [Bellmann et al., 2009]. Thus, faulting
impacts fluid flow as well as fault sealing through fault
juxtaposition of sand layers (see Figure 1.3).

1.2.4.2. Sources of Uncertainty. The reservoir is
characterized by differential fluid contacts across the
compartments. Higher aquifer pressure in the eastern
compartment than the western compartment suggests
the presence of either fully sealing faults or low transmis-
sibility faults compartmentalization. However, the initial
oil pressure is in equilibrium. Such behavior can be
modeled using one of the two mechanisms:
1. a differential hydrodynamic aquifer drive from the

east to the west, or
2. a perched aquifer in the eastern part of the field

(see Figure 1.2).
By studying the physical properties of the fault-rock sys-

tem such as pore-size distribution, permeability and capil-
lary curves, the presence of only a single fault was falsified

since that would not be able to explain the difference in the
fluid contacts [Bellmann et al., 2009].When fault seal prop-
erties are modeled in conjunction with fault displacement,
the cata-clastic fault seal is able to hold oil column heights
across a single fault up to 350 ft. This indicates the presence
of as many as four faults in the system. The displacement of
all the faults is uncertain. This structural uncertainty in the
reservoir in terms of the presence of faults and fluid flow
across them needs to be addressed.

1.2.4.3. Three Decision Scenarios. Figure 1.4 shows
three decision scenarios that are modeled to occur during
the lifetime of this field.
Decision scenario 1. We consider the field has been in

production for 5 years, currently with five producers.
The field is operated under waterflooding. Waterflood-
ing is an enhanced oil recovery method that consists of
injecting water (brine) into the subsurface via injectors
to push oil toward producers. At 800 days, one needs
to address the question of increasing the efficiency of
these injectors, by re-allocating rate between injectors.
Evidently, the optimal re-allocation depends on the
(uncertain) reservoir system. To determine this re-
allocation, the concept of injector efficiency is used.
Injection efficiency models how well each injector aids
production at the producing wells. This measure is calcu-
lated from a reservoir model (which is uncertain). The
question is simple: How much needs to be re-allocated
and where?

Partially sealing fault

Oil

Water

Partially sealing fault
(a) (b)

Fluid contact 2

Sealing fault

Perched 

aquiferOil

Water

Fluid contact 1

Fluid contact 2

Fluid contact 1

Figure 1.3 (a) Differential hydrodynamic trapping mechanism leading to different levels in fluid contact. (b) The perched aquifer
explained as the reason. Contact levels depend on the number of faults in the system.
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Figure 1.4 Three decision scenarios with three decision variables: injector efficiency, quality map, and production decline.
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Decision scenario 2. At some point, optimizing just
injectors will not cut it and new producing wells will need
to be drilled, which comes at considerable cost. These
wells should tap into un-swept areas of the reservoir
system, for example, where the oil saturation is high.
To do so, one often constructs “quality maps” [da Cruz
et al., 2004], for example, maps of high oil saturations.
These maps can then be used to suggest locations where
this new well can be drilled. The question here is again
straightforward: Where to drill a new producer?
Decision scenario 3. At the final stages of a reservoir life,

production will need to be stopped when the field
production falls below economic levels of current operat-
ing situations. This will depend on how fast production
declines, which itself depends on the (uncertain) reservoir
system. Companies need to plan for such phase, that is,
determine when this will happen, to allocate the proper
resources required for decommissioning. The question is
again simple: What date to stop production?
The point made here is that the engineering of subsur-

face systems such as oil reservoir involves a larger number
of fields expertise, expensive data, and possibly complex
modeling, yet the question stated in these scenarios
involve a simple answer: how much, where, when?

1.3. DECISION MAKING UNDER
UNCERTAINTY FOR GROUNDWATER

MANAGEMENT IN DENMARK

1.3.1. Groundwater Management Challenges under
Global Change

Global change, in terms of climate, energy needs,
population, and agriculture, will put considerable stress
on freshwater supplies (IPCC reports, [Green et al.,
2011; Oelkers et al., 2011; Srinivasan et al., 2012; Kløve
et al., 2014]). Increasingly, the shift from freshwater
resources toward groundwater resources put more
emphasis on the proper management of such resources
[Famiglietti, 2014]. Currently, groundwater represents
the largest resources of freshwater accounting for one
third of freshwater use globally [Siebert et al., 2010;
Gleeson et al., 2015]. Lack of proper management where
users maximize their own benefit at the detriment of the
common good has led to problems of depletion and
contamination, affecting ecosystems and human health,
due to decreased water quality [Balakrishnan et al.,
2003; Wada et al., 2010].
Solutions are sought to this tremendous challenge

both in academia and in wider society. This requires a
multidisciplinary approach involving often fragments of
fields of science and expertise as diverse as climate
science, land-use change, economic development, policy,
decision science, optimization, eco-hydrology, hydrology,

hydrogeology, geology, geophysics, geostatistics, multi-
phase flow, integrated modeling, and many more. Any
assessment of the impact of policy and planning, change
in groundwater use or allocation, will increasingly rely
on integrated quantitative modeling and simulation based
on understanding of the various processes involved,
whether through economic, environmental, or subsurface
modeling. Regardless of the complexity and sophistica-
tion of modeling, there is increased need for acquiring
higher quality data for groundwater management. Com-
puter models are only useful in simulating reality if such
models are constrained by data informing that reality.
Unfortunately, the acquisition of rigorous, systematic,
high quality, and diverse data sources, as done in the
petroleum industry, has not reached the same status in
groundwater management, partly because such resources
were often considered cheap or freely available. Data are
needed both to map aquifers spatially (e.g., using geo-
physics) and to assess land use/land-use change (remote
sensing), precipitation (remote sensing), hydraulic heads
(wells), aquifer properties (pump tests), and heterogeneity
(geological studies). It is likely that with an increased
focus on the freshwater supply such lack of data and lack
of constraints in computer modeling and prediction will
gradually dwindle.
Quantitative groundwater management will play an

increasing role on policy and decision making at various
scales. Understanding the nature of the scale and the mag-
nitude of the decision involved is important in deciding
what quantitative tools should be used. For example, in
modeling transboundary conflict [Blomquist and Ingram,
2003;Chermak et al., 2005;Alker, 2008;Tujchneider et al.,
2013], it is unlikely that modeling of any local heterogene-
ity will have the largest impact because such problems are
dominated by large-scale (read averaged) groundwater
movement or changes and would rather benefit from
an integrated hydro-economic, legal, and institutional
approach [Harou and Lund, 2008; Harou et al., 2009;
Maneta et al., 2009; Khan, 2010]. A smaller-scale model-
ing effort would be at the river or watershed scale where
groundwater and surface water are managed as a single
resource, by a single entity or decision maker, possibly
accounting for impact on ecosystem, or land use [Feyen
and Gorelick, 2004, 2005]. The impact of data acquisition
and integrated modeling can be highly effective for
resourcemanagement in particular in areas that are highly
dependent on groundwater (such as the Danish case). In
this context, there will be an increased need for making
informed predictions, as well as optimization under
uncertainty. Various sources of uncertainty present
themselves in all modeling parameters, whether econom-
ical or geoscientific due to a lack of data and lack of full
understanding of all processes, and their interactions.
In this book, we focus on the subsurface components of

this problem with an eye on decision making under the
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various sources of subsurface uncertainty. Such uncer-
tainty cannot be divorced from the larger framework of
other uncertainties, decision variables or constraints, such
as climate, environmental, logistical, and economic
constraints, policy instruments, or water right structures.
Subsurface groundwater management over the longer
term, and possibly at larger scales, will be impacted by
all these variables. Here we consider smaller-scale model-
ing (e.g., watershed) possibly over a shorter-term time
span (e.g., years instead of decades).
Within this context, often, a simulation–optimization

approach is advocated [Gorelick, 1983; Reed et al.,
2013; Singh, 2014a, 2014b] where two types of problems
are integrated: (i) engineering design, focusing on mini-
mizing cost and maximizing extraction under certain con-
straints and (ii) hydro-economics to model the interface
between hydrology and human behavior to evaluate the
impact of policy. Suchmodels require integrating the opti-
mization method with integrated surface–subsurface
models. The use of optimization methods under uncer-
tainty (similar to reservoir engineering) is not within the
scope of this book, although the methods developed can
be readily plugged into such framework. Instead, we focus
on smaller-scale engineering type, groundwater manage-
ment decision analysis for a specific case, namely ground-
water management in the country of Denmark.

1.3.2. The Danish Case

1.3.2.1. Overview. Groundwater management in
Denmark is used as a backdrop to illustrate and present
methods for decision analysis, uncertainty quantification,
and their inherent challenges, as applied to aquifers. The
Danish case is quite unique but perhaps also foretelling of
the future of managing such resources through careful and
dedicated top-down policy making, rigorous use of
scientific tools, and most importantly investment in a rich
and heterogeneous source of subsurface data to make
management less of a guessing game.
Freshwater supply in Denmark is based on high-quality

groundwater, thereby mitigating the need for expensive
purification [Thomsen et al., 2004; Jørgensen and Stock-
marr, 2009]. However, increasing pollution and sea-level
changes (and hence seawater intrusion) have increased
stresses on this important resource of Danish society.
As a result, the Danish government approved a ten-point
plan (see Table 1.2) to improve groundwater protection,
of which one subarea consisted in drawing up a water-
resources protection plan. The government delegated
that 14 county councils be responsible for water-resources
planning based on dense spatial mapping (using geophys-
ics) and hydrogeological modeling as the basis for such
protection. This high-level government policy therefore
trickled down into mandates for local, site-specific,
groundwater protection, a strategy and ensuing action

plan (decision making) by local councils at the river/
watershed level.
The widespread availability of high-quality groundwa-

ter limits extensive pipeline construction. It was also
recognized that some areas are more vulnerable to con-
tamination from industry and agriculture than others;
that despite extensive drilling, the aquifer heterogeneity
and its impact on pumping could not be simply deduced
or modeled from wells only. Hence, a more data-rich,
modeling-intensive approach is required for proper man-
agement and to meet the goals in the government action
plan. In that context, it was also established that simple
drinking-well protection models based on multilevel
radial protection zones ignored the impact of geological
heterogeneity on how contaminants reach wells [Sonnen-
borg et al., 2015]. This is particularly relevant in Denmark
where the shallow subsurface is largely dominated by
the presence of “buried valleys.” Buried valleys are
mainly thought to be formed below the ice by erosion into
the substratum caused by pressurized meltwater flow
[Jørgensen and Sandersen, 2006]. Typically formed close
to and perpendicular to the ice margin, these valleys often
end abruptly, their cross-sections are typically U-shaped
and can occur at a depth of up to 350 m.While the valleys
are formed as isolated structures, they often show cross-
cutting relationships. Often younger valleys are eroded
into the fill of older valleys, where these deposits are easily
erodible than the surroundings. A complex network of

Table 1.2 Danish government’s 10-point program from 1994.

Danish government’s 10-point program (1994)

Pesticides dangerous to health and environment shall be
removed from the market

Pesticide tax – the consumption of pesticides shall be halved

Nitrate pollution shall be halved before 2000

Organic farming shall be encouraged

Protection of areas of special interest for drinking water

New Soil Contamination Act – waste deposits shall be
cleaned up

Increased afforestation and restoration of nature to protect
groundwater

Strengthening of the EU achievements

Increased control of groundwater and drinking water quality

Dialogue with the farmers and their organisations

Source: http://www.geus.dk/program-areas/water/denmark/
case_groundwaterprotection_print.pdf.

This structure has been changed since 1994. Denmark no
longer has 14 counties but 5 regions. The regions are not
directly involved in the groundwater protection, which now
has been moved to state level, and the local management
is controlled by municipalities.
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cross-cutting valleys creates significant heterogeneity in
the subsurface that influence groundwater recharge and
flow. About half of the valleys are filled with hydraulic
conductive sand, the rest filled with clayey deposits, but
valleys with combined sand/clay infill are also quite
common [Sandersen and Jørgensen, 2003]. Some of the
valleys act as groundwater reservoirs, while others
constitute barriers for groundwater flow/protection,
making groundwater management unlikely to be reliable
without any modeling or based on simple basic
assumptions.
This geological phenomenon cannot be comprehen-

sively modeled from boreholes only as such “point”
information does not allow for an accurate mapping of
the subsurface, leading to considerable uncertainty and
risk in establishing protection zones.
Understanding the heterogeneity caused by the buried

valleys depositional system is therefore critical to
assessing aquifer vulnerability. Such valleys act as

underground “rivers,” but such structure may themselves
contain or act as flow-barriers created by the presence of
clay [Refsgaard et al., 2010; Hoyer et al., 2015]. The
complex intertwining of sand and clay makes such
assessment difficult, and also because the majority of
buried valleys are not recognizable from the terrain. In
such depositional system, clay serves not only as a
purifier, sand as a conduit, of water but also as a
contaminant. This requires a comprehensive modeling
of the various physical, chemical, and biological processes
that take place in the heterogeneous subsurface. For that
reason, a large geophysical data acquisition campaign
was initiated, in particular through the use of various
transient electro-magnetic (TEM) surveys [Møller et al.,
2009] (see Figure 1.5). Such geophysical surveys provide
a more detailed insight into the geological heterogeneity
but their use does not necessarily result in a perfectly accu-
rate map of the subsurface, due to limited resolution of the
data source (similar to the limited resolution of seismic
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Figure 1.5 Location of the decision problem near the city of Kasted. The blue diamonds are the four alternative well locations (A, B,
C, and D) in the decision problem. The grey lines are locations with SkyTEM data. Bottom: vertical profile of inverted SkyTEM data
showing buried valleys.
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data in reservoir modeling), limitations in data coverage,
and the subjectivity of interpretations made from such
data [Jørgensen et al., 2013].

1.3.2.2. A Specific Decision Problem. Aquifer
management requires dealing with conflicting objectives,
uncertain predictions, limited data, and decision making
within such context. At the local level, the decision to
drill wells for drinking water extraction requires balan-
cing the need for using resources versus the impact of
extraction on the environment. In Denmark, the benefit
of using aquifers for drinking water supply has to be
weighed against the risk of (i) affecting streamflow,
(ii) affecting wetland restoration, and (iii) risk of contam-
ination from agriculture. These factors are related to EU
regulations in which the Water Framework Directive
is based.
We consider an area in Denmark, near the small town

of Kasted, that requires considering such careful balan-
cing act (see Figure 1.5). It has been observed that an
extraction area is affecting wetlands; hence, in order to
restore wetlands closer to their original state, a portion
of the current groundwater abstraction will need to be
re-allocated to a different area. Based on consideration
of existing wells, current water distribution system,
accessibility, and geological knowledge, four locations
are proposed, A, B, C, and D, as shown in Figure 1.5.
Jointly, the local municipality council and the water
supply company must now decide on one of these
locations. Evidently, we need to justify that the new
location can indeed make up for the reduction in
abstraction from the current well field, but also that this
would not have any adverse effect on the environment,
which would defeat the purpose of this re-allocation.
We will treat this problem within a formal decision
analytic framework using state-of-the-art groundwater
modeling, sensitivity analysis, and uncertainty
quantification.
Chapter 2 will introduce a formal decision analysis

framework requiring stating objectives and using such
objectives to compare stated alternatives on which deci-
sions are based. This requires a formal statement of
(i) what the alternatives are; no decision is better than
the choice made from the stated alternatives, (ii) the
objectives under which alternatives will be evaluated,
typically in the form of “maximize this,” “minimize
that,” and (iii) a quantitative measure of how well each
alternative achieves the stated objectives (termed the
“attribute”). Because of the existence of multiple com-
peting objectives in this case, some statements of prefer-
ences are needed. In a decision analysis framework, these
preferences are stated as value function, which trans-
form preference to a common scale (e.g., 0–100). More
details will be discussed in Chapter 2, more specifically,

the means of weighting the various conflicting objec-
tives. Formally, we have constructed the following
definitions:
1. Alternatives: the four locations/zones of pumping

wells we are considering, assuming the well rates are fixed
and known (corresponding to 20% of the abstraction at
the existing well field). We could also consider several well
rates.
2. Objectives: four objectives are stated:
• minimize drawdown extraction: preferably, the new

location should bear the burden of the 20% extraction
due to re-allocation and anything more is an additional
plus. A large drawdown indicates poor aquifer condi-
tions, and hence needs to be minimized.
• maximize streamflow reduction potential: depends

on the flow in the stream given the existing abstraction,
and the flow on the stream if we move 20% of the
groundwater abstraction from the existing wells to the
new well at any of the four locations.
• maximize increased groundwater outflow to wetlands:

due to re-allocation, the aim is to restore the water table,
thereby increasing the outflow of groundwater to the
wetlands proximate to the existing well field.
• minimize risk of contamination of drinking water: the

abstracted groundwater from the new well originates
from within the so-called well catchment zone. This
catchment zone intersects land use, such as “nature,”
“city,” “farmland,” and “industry.”We aim tomaximize
the part of the well catchment that is located in nature
and minimize that part of the catchment located within
the category “industry” and “farmland.” The city is con-
sidered as neutral.
The four target variables are calculated from a ground-

water model, but because this model is uncertain, so are
the payoffs associated with each target. This groundwater
model has the following uncertain parameters (model
components):
1. Uncertainty in the lithology distribution
2. Uncertainty in the hydraulic conductivity
3. Uncertainty on the boundary conditions
4. Uncertainty on the aquifer recharge
5. Uncertainty related to streams: connection with the

aquifer (conductance) and digital elevation model
(DEM) model used to define their elevation

To constrain this uncertainty, several data sources are
available.
Conceptual geological understanding of buried valleys.

The availability of dense borehole data in conjunction
with high-quality geophysical data allows for a better
understanding of the nature of the depositional system.
Based on the large amount of studies in Denmark and
neighboring areas [Sandersen and Jørgensen, 2003;
Sandersen et al., 2009; Høyer et al., 2015], a conceptual
model has been drawn (Figure 1.6), conveying the
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interpretation of the lithological architecture created by
subsequent glaciation periods.
Hydraulic head observations. A Danish national well

database, JUPITER [Møller et al., 2009], can be queried
for measurements in the area of study. These measure-
ments vary in quality, either because of how they are
measured, type, and age of the borehole or because of
the difference in coordinate and datum recording.
A total of 364 head data were used in the study.
Stream discharge measurements were available from

three gauging stations. Two stations had time series
spanning approximately 20 years, while the third station
had a span of 3 years.
Borehole data. The study area holds approximately

3000 boreholes with lithological logs of which the
majority of boreholes are relatively shallow in depth
(<50 m). Borehole information consists of lithology
variation with depth. This data is also of different quality
and based on metadata (drill-type, age) it is grouped into
four quality groups.
Geophysical data. One of the defining features of the

Danish groundwater management case is the availability
of a rich and high-quality set of direct current (DC) and
TEM geophysical data (see Figure 1.5). DC methods
typically resolve the very shallow subsurface, while
TEM methods resolve resistivity contrasts at greater
depths. The TEM data were collected either through a
port of numerous ground-based campaigns or through
two campaigns (in 2003 and 2014) using the SkyTEM
system [Sørensen and Auken, 2004] with the main purpose
to delineate important buried valley structures, serving as

aquifers. Altogether, geophysical data collected in the
area span 30 years, and 50 individual surveys, and they
have all been stored in the national Danish geophysical
database GERDA [Møller et al., 2009].
The question now is simple: What is the best location to

re-allocate drinking water, A, B, C, or D?

1.4. MONITORING SHALLOW GEOTHERMAL
SYSTEMS IN BELGIUM

1.4.1. The Use of Low-Enthalpy Geothermal Systems

Low-enthalpy geothermal systems are increasingly used
for climatization (heating/cooling) of buildings, in an
effort to reduce the carbon footprint of this type of energy
use. It is estimated [Bayer et al., 2012] that the potential
reduction of CO2 emission reduction is around 30%
compared to conventional systems. The main idea is the
utilization of the subsurface, whether rocks, soils,
saturated, or unsaturated, as a heat source or heat sink
(cooling). To make this work in practice, two types of
systems are used [Stauffer et al., 2013] (see Figure 1.7).
1. Closed systems (BTES or borehole thermal energy

storage): a series of vertical or horizontal pipes, often
plastics, are installed in the subsurface. Fluids such as
antifreeze solutions are circulated in the pipes to exchange
heat with the subsurface. The system can be used for
warming in winter and cooling in summer. Such systems
are often installed in low-permeability soils, mitigating the
risk of leakage of pipes.
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Figure 1.6 Conceptual geological model (a sketch) of the buried valet deposits. Valleys are with different lithologies. Hence,
hydraulic properties cross-cut each other [Hoyer et al., 2015].
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2. Open systems (ATES or aquifer thermal energy
storage): using drilling and boreholes, water is directly
circulated between a production and an injection well
through a heat exchanger (also called groundwater heat
pump). Evidently, this requires a high-permeability
subsurface. Heat stored in summer can theoretically be
used in winter. However, because the open system is more
sensitive to the ambient subsurface, its design needs to be
done more carefully than a closed system. There is a risk
that, if the system operates suboptimal, the energy stored
cannot be fully recovered (e.g., in case of hydraulic
gradient).
While the idea is straightforward, the practical

implementation raises a number of important questions.
Next to the evident question on how to design the system,
questions related to the impact of such thermal perturba-
tion on the subsurface system need to be addressed.
These impacts are multifold:
1.Hydrological. Changes in temperature induces a heat

flux, which may affect areas further away from wells (the
thermally affected zone). Catchment areas of existing
drinking water wells may be affected, which in turn
may impact flow and hence such change increases the
risk for unwanted (and unforeseen) contamination or
cross-aquifer flow.
2. Thermal. A long-term warming or cooling may

occur. This may cause interference with other uses of
groundwater. In addition, it may affect the performance
of the system because of possible freezing or short-
circuiting the heat exchange. This thermal impact needs
to be considered jointly with other long-term sources of
thermal changes such as climate change and urbanization.
3.Chemical. Rainwater is filtrated in the subsurface and

such a process produces fresh drinking water, leading to a
specific vertical groundwater stratification with shallow
oxidized, nitrate-rich groundwater and reduced iron-rich
deeper water. ATES can introduce a mixing that affects

the quality of the groundwater. In addition, one needs
to be concerned of other effects such as change in reaction
kinetics, organic matter oxidation, and mineral solubility.
Urban areas are already vulnerable to contamination
from various pollution sources and chemical changes
may further enhance that effect.
4. Microbial. The groundwater system is an ecosystem

(consisting of bacteria, fungi, pathogens, and nutrients).
Any temperature changes may affect this system, and
hence affect the balance of this ecosystem, possibly
leading to changes in water quality. In addition, microbial
changes may lead to clogging of this system, which is
particularly relevant near boreholes.

Since exploitation of the subsurface for heat will add an
additional stress to a system already subject to stresses
from other sources, such as drinking water extraction,
contaminants, and geotechnical construction, it is likely
that new policies and regulations will need to address
the shared use of this resource. Such regulations are likely
to include monitoring (perhaps in the same sense as
required for CO2 sequestration) to mitigate risk or reduce
the impact of the thermal footprint. Next we discuss the
design of such monitoring system and what affect the
unknown subsurface properties have on that design.
Then, we introduce a specific case of data acquired in
an aquifer in Belgium.

1.4.2. Monitoring by Means of Geophysical Surveys

1.4.2.1. Why Geophysics?. The design as well as
monitoring of the shallow geothermal system, like many
other subsurface applications, require a multidisciplinary
approach, involving several fields such as geology,
hydrogeology, physics, chemistry, hydraulics engineering
design, and economics. For example, Blum et al. [2011]
showed (based on systems in Germany) that subsurface
characteristics are insufficiently considered for a proper

(a) (b)

Figure 1.7 (a) An open (ATES) and (b) closed (BTES) shallow geothermal systems [Bonte, 2013].
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design. Characterization of heat flow, temperature
changes, and its effect on the ambient environment
requires characterizing geological heterogeneity,
combined fluid and thermal properties, as well as
geochemical characteristics (to study impact on
subsurface chemistry). Early models relied mostly on
analytical equations. However, such approaches ignore
the complexity of the subsurface and the observed (see
later) heterogeneity of temperature and temperature
changes in the subsurface, leading to inadequate design.
The more modern approach relies on creating groundwa-
ter models and modeling combined fluid flow and heat
transport using numerical simulators. Next to traditional
tests such as borehole flowmeter tests, slug tests, hydraulic
pumping tests, and tracers, two field experiments are used
to constrain the thermal parameters required for such
simulators: the thermal response test (TRT) and the
thermal tracer test (TTT). These are used to characterize
thermal diffusivities and hydraulic and thermal
conductivities required for simulations. These values
can be obtained both from field and from laboratory data.
However, both TRT and TTT are borehole centric tests.
For example, with a TRT one circulates a hot fluid and
continuously measures temperature changes of the fluid.
TTT involved two wells and works like a tracer but
now for heat. Such experiments can be short or long term
(short = hours, long = months). In the short-term
experiments, heated or cooled water is injected as a tracer,
and temperature changes are measured in a nearby
observation well. To derive the required properties, one
can either use analytical equations (relying on simplifying
assumptions) or build numerical models and solve inverse
problems. There are several problems that arise when
limiting oneself to only these types of test. First, they
provide only information near the well (TRT) or between
well locations. Second, geological heterogeneity makes

direct interpretation difficult for such tests and hence
inverse modeling becomes tedious.
New techniques are therefore needed to more directly

and more effectively monitor the spatial and temporal
distributions of temperature in the system which could
lead to (i) better design the geothermal system and the
monitoring network, (ii) prevent any thermal feedback/
recycling, and (iii) image and control the thermal affected
zone [Hermans et al., 2014]. Here we focus on the use of a
specific method, namely electrical resistivity tomography
(ERT) and its time-lapse variety to characterize
temperature and its changes under shallow geothermal
exploitation and monitoring.

1.4.2.2. ERT and Time-Lapse ERT. ERT is a method
that images the bulk electrical resistivity distribution of
the subsurface (Figure 1.8). Electrical resistivity depends
on several properties of relevance for shallow geothermal
systems: (i) clay mineral content, (ii) water saturation and
salinity, (iii) porosity, and (iv) temperature. As with any
geophysical technique, the target physical property
(temperature here) needs to be untangled from other influ-
ences. Consequently, because of geological heterogeneity,
this becomes more difficult to achieve and requires knowl-
edge of such heterogeneity as well as the various rock
physics relations between the properties involved.
Practically, electrical currents are injected between two

current electrodes, either on the surface or in the borehole.
Then, the resulting potential difference is measured simul-
taneously between two different (potential) electrodes.
Because the current is known (a control), the ratio
between the measured difference of electrical potentials
equals the electrical resistance, as follows directly from
Ohm’s law. This process is repeated along one or several
profiles using many quadrupoles to acquire 2D or 3D
datasets. The acquired values of electrical resistance
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Figure 1.8 The use of electrical resistivity tomography in the design of shallow geothermal systems. From Hermans et al. [2014].
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measured at each (quadrupole) location needs to be
inverted into an electrical resistivity distribution that
can then be linked to a target physical property (e.g.,
temperature).
Monitoring is a time-varying study; hence, instead of

taking one snapshot (in time), ERT imaging can be
repeated to detect changes. Inversion into electrical
resistivity is repeated and compared with the base survey.
Similar to the static inversion, changes in electrical
resistivity can be related to changes in target physical
properties such as temperature changes. One of the
advantage of time-lapse ERT as applied to geothermal
monitoring is that temperature is the dominant change;
hence, time-lapse ERT becomes easier to interpret in
terms of temperature, as other effects are mostly constant.
As an example, Hermans et al. [2015] monitored a
heat-tracing experiment with cross-borehole ERT.
Assuming no changes in chemistry and the absence of
clayey minerals, Hermans et al. were able to image from
ERT changes in temperature as low as 1.2 C with a
resolution of a few tenths of degree Celcius (Figure 1.9).

1.4.2.3. Issues. Despite the straightforward advantage
of ERT and its time-lapse variety, several challenges
occur because of non-ideal conditions in the subsurface
and in performing such surveys.
Smoothing. As with any geophysical technique, ERT

data provides only a smooth view of the physical proper-
ties of the subsurface. As a result, any inversion of such
data is non-unique (see Chapter 6 on inverse modeling).
However, most current approaches rely on some smooth
inversion (using regularization terms, see Chapter 6). The
lack of proper representation of actual subsurface varia-
bility has led to poor recovery of mass-balance in tracing
experiments [Singha and Gorelick, 2005; Muller et al.,
2010] and over- or underestimation of the physical proper-
ties due to over-smoothing of the geophysical image
[Vanderborght et al., 2005; Hermans et al., 2015].
Additionally, to convert electrical resistivity changes to

temperature changes, one needs to rely on petrophysical
relationships established in small-scale laboratory
experiments that become difficult to apply (without error)
to the larger-scale inversions. Such approaches will work
in relatively homogeneous deposits but lose their applica-
bility in more heterogeneous systems. In Chapter 6, we
show how standard regularization methods do not lead
to an adequate quantification of the uncertainty in the
obtained temperature changes. Such an uncertainty is
needed for risk quantification in the design of the system.
Noise. Noise in ERT measurements is composed of a

random and a systematic component. The latter may be
correlated in time. Random error arises from variations
in the contact between the electrodes and the ground
[Slater et al., 2000]. Systematic errors are related to the
data acquisition, hence any problems with electrode
placement (e.g., misplaced, disconnected). Time-lapse
geophysical measurements are subject to the repeatability
issues, namely that exact same conditions and configura-
tions need to occur over time, which is rarely the case. One
way to address noise is to make use of the so-called recip-
rocal measurements, which involves reversing the current
and potential electrodes. Under ideal, non-noise condi-
tions, this should result in identical readings. It is often
observed that the error obtained by means of reciprocal
measurement increases with resistance.

1.4.2.4. Field Case. We consider a specific field case
where geophysical data is used to assess the potential
for a geothermal heat exchanger for building heating.
The aim is to assess whether an alluvial aquifer allows
storing thermal energy and restore it at a later stage.
The aim is therefore to predict heat storage capacity of
the system undergoing an injection and pumping cycle.
Here we study one such cycle of injecting hot water for
30 days, then extracting for 30 days. In other words, the
target is to predict the change in temperate during extrac-
tion. This quantifies the efficiency of the recovery and aids
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Figure 1.9 Example of temperature monitoring during a heat-tracing experiment from ERT. Modified after Hermans et al. [2015].
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in the design of the heat pump. The target for prediction is
a simple function of time: ΔT(t).
The study site is located in the alluvial aquifer of the

Meuse River in Hermalle-sous-Argenteau, Belgium,
consisting of a 10m thick zone. The water level is located
at 3.2 m depth. Based on borehole logs, the saturated
deposits can be divided into two distinct layers. The upper
layer, between 3 and about 7 m depth, is composed of
gravel in a sandy matrix. The bottom layer is composed
of coarse clean gravel. The bedrock composed of low
permeability carboniferous shale and sandstones lies at
10 m depth and constitutes the basement of the alluvial
aquifer. The reader can refer to Klepikova et al. [2016]
and Hermans et al. [2015] for more details on the site.
For 30 days, heated water is continuously injected into a

well at a rate of 3 m3/h. The temperature of the injected
water is 10 C above the background temperature. At
the end of the 30-day period, water is extracted from
the well at the same rate of 3 m3/h. The change in
temperature of the pumped water compared to the initial
value in the aquifer (i.e., before injection) is recorded
for another 30-day period. The thermal energy recovery
can be estimated using the temperature of the extracted
water. The simulation is limited in time to avoid
considering changing boundary conditions with time.
Similarly, a rate of 3 m3/h allows to reduce the size of
the investigated zone.
In Chapter 8, we will address the following questions:
1. In the design of this specific system, which model

parameter most impacts the prediction of ΔT(t). Many
uncertainties exist as discussed earlier; hence, we need
to focus on those that matter.
2. What data can be used to narrow those model

uncertainties that most impact the decision variable, here
ΔT(t). Will it be useful to use ERT data?
3. If we would decide to go ahead with acquiring ERT

data, how would the uncertainty on ΔT(t) be reduced?
4. Given that we are working in such a complex system,

is there a way to test our various modeling assumptions
(meaning aiming to falsify them, see Chapter 5)?

1.5. DESIGNING STRATEGIES FOR URANIUM
REMEDIATION IN THE UNITED STATES

1.5.1. Global Environmental Challenges

Similar to the need to protect and manage groundwater
resources in the next century, stresses on the environment,
due to anthropogenic activities, will continue to grow. For
example, the United States government, under the
Department of Energy (DOE), formulated the explicitly
stated goals of developing sustainable solutions to
such environmental challenges, based on a predictive

understanding of environmental systems. Some of the
stated goals are as follows: (i) synthesize new process
knowledge and innovative computational methods that
advance next generation, integrated models of the
human–Earth system; (ii) develop, test, and simulate
process-level understanding of atmospheric systems and
terrestrial ecosystems, extending from bedrock to the
top of the vegetative canopy; (iii) advance fundamental
understanding of coupled biogeochemical processes in
complex subsurface environments to enable systems-level
prediction and control; and (iv) identify and address
science gaps that limit translation of fundamental science
into solutions for the most pressing environmental
challenges (http://science.energy.gov/ber/research/cesd/).
As in the groundwater case, there is a need to under-

stand and study watersheds as complex hydrobiogeo-
chemical systems, in particular how such systems
respond to contaminant loading. This systems approach
is similar to the “reservoir system” or the “groundwater
system.” However, now an additional set of processes
may complicate matters. For example, an understanding
of the complex processes and interactions that occur from
bedrock to the top of the canopy is necessary [Brantley
et al., 2007]. This requires modeling and understanding
processes from themolecular to a planet-wide scale of per-
turbations or changes. The latter has led to the building of
mechanistic (numerical models) reactive transport mod-
els. Such models incorporate knowledge of microbial pro-
cesses, speciation, and interactions of inorganic elements
with microbes, and how these processes act on different
time and space scales [Li et al., 2017].
These broad scientific questions are often addressed

within specific decision-making frameworks and policy
outcomes inmind. Hence, there is a need to integrate these
various processes within a single framework, to provide
guidance on what data should be collected to adhere to
regulations, to design any remediation strategy, and to
ultimately monitor and verify the effects of such
remediation.

1.5.2. Remediation: Decision Making Under
Uncertainty

On a more local scale, there will be an increased need to
remediate contaminated soils or groundwater that may
pose a significant risk to human health. Decision making
for contaminant remediation may well be more complex
than for petroleum or (uncontaminated) groundwater sys-
tems. Such a decision making varies highly by country,
regions, or even state (see Table 1.3). For example, at
an EPA Superfund site near Davis, California, three lead
agencies oversee the cleanup of chemical spills: the Cen-
tral Valley Regional Water Quality Control Board
(RWQB), the California Department of Toxic Substances

THE EARTH RESOURCES CHALLENGE 17

http://science.energy.gov/ber/research/cesd/


Control, and the US EPA (United Stated Environmental
Protection Agency). Often environmental consultants are
hired by responsible parties (here UC Davis and the
DOE), leaving the decisions on which remedial options
to consider. Recommendations are made to the lead agen-
cies for implementation and final decision making.
Within this context, the US EPA guidelines are outlined

in a document entitled “Adecision-making framework for
cleanup of sites impacted with light non-aqueous phase
liquids (LNAPL)” (2005). Although specific to LNAPL,
the document is only a guide (not a policy or legal require-
ment), aiming to provide practicable and reasonable
approaches for management of petroleum hydrocarbons
in the subsurface (and hence is specific to contamination
from petroleum product around refineries, pipelines, etc.).
Although not based on any formal decision analysis (such
as in Chapter 3), the document outlines the complex
interaction of stake holders (oil industry, local commu-
nities, government agencies), formulation of high-level
goals and objectives, the implementation of remediation
strategies, modeling of potential exposure pathways,
and data acquisition. This decision process involves
different parties with different competing objectives.
The treatment of these competing objectives within a
formal decision-making process will be discussed in
Chapter 2.

1.5.3. Remediation: Data and Modeling

Targeted data collection is critical to the evaluation of
several remediation options and the selection of the most
appropriate alternative for a given site, as many alterna-
tives may present themselves such as “clean up the site to
pristine conditions,” and “clean only the most impacted
portions and contain the remainder of the contamination
on site.” A decision will ultimately consist of choosing
among these alternatives (and accompanied remediation
methods) based on the stated objectives. Similar to the
groundwater case, data and modeling will have value as
long as they inform the “payoffs” for each alternative.
If all aspects of the subsurface are clearly informed, the

effect of remediation would be perfectly known, then a
decision is simply made from the highest payoff (or lowest
cost). However, because of the various uncertainties
involved, decisions will need to be made under
uncertainty.
The importance of prediction of contaminant distribu-

tion in space and time through numerical modeling has
long been acknowledged [Wagner and Gorelick, 1987;
Morgan et al., 1993; Andričević and Cvetković, 1996;
James and Oldenburg, 1997; Maxwell et al., 1999]. Such
a prediction is especially important toward designing
and evaluating remediation strategies. For example, in
one mercury contamination remediation case study, var-
ious risk assessment/prediction tools are developed to
evaluate options of active management such as capping
and dredging, or passive natural attenuation [Wang
et al., 2004]. As monitoring costs are very expensive
and such monitoring data provide only a short-term infer-
ence on future events within a limited spatial area, numer-
ical modeling is needed to provide meaningful long-term
predictions. Behavior of contaminant plumes, both
conservative and reactive, has been studied extensively
both at the lab-scale and at the field-scale experiments,
to assist developing better numerical modeling tools that
provide these predictions [Lovley et al., 1991; Yabusaki
et al., 2007; Li et al., 2011; Williams et al., 2011].
However, uncertainties are naturally associated with
numerical modeling. Such uncertainties in models of
contaminant transport come from spatially variable
hydraulic properties, physical and chemical descriptions
or the initial and boundary conditions, knowledge of
the contaminant source, and importantly the rates and
mechanisms associated with the physical and biochemical
processes.
As decisions made in contaminant remediation depend

on long-term predictions within a small tolerance range,
efforts have been made across research areas, such as
hydrogeology, geology, geostatistics, geophysics, biogeo-
chemistry, and numerical modeling, to create better mod-
els that improve accuracy and reduce the uncertainties of
predictions [Cirpka and Kitanidis, 2000; Sassen et al.,

Table 1.3 Example of stakeholders in the decision context of contamination remediation.

Facility owner Regulatory agencies Local/county agencies

• Achieve regulatory
compliance

• Utilize risk-based techniques
• Minimize/eliminate disruption of
operations

• Minimize costs
• Reduce long-term treatment and
liabilities

• Protect human health and the environment,
including groundwater resources

• Protect groundwater resources
• Achieve regulatory compliance
• Eliminate off-site impacts to receptors
• Involve stakeholders
• Maintain reasonable schedule
• Obtain reimbursement for oversight costs

• Optimize zoning
• Maximize tax revenues
• Accelerate schedule
• Protect human health and the
environment

• Maximize quality of life
• Protect groundwater resources

Source: Adapted from “A decision-making framework for cleanup of sites impacted with light non-aqueous phase liquids
(LNAPL)” (2005))
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2012; Steefel et al., 2015]. More recently, there have been
rising concerns over remediation solutions to real-world,
polluted groundwater systems. Such contaminations were
caused by destructive human activities during the 20th
century [Wang et al., 2004; Yabusaki et al., 2007; Chen
et al., 2012].

1.5.4. Uranium Contamination in the United States

In this book, we will be concerned with groundwater
contamination resulting from the extraction and
processing of uranium ore during the Cold War era that
poses environmental risk across hundreds of sites in the
United States, particularly within the upper Colorado
River Basin [Palmisano and Hazen, 2003]. AUSDOE site
near Rifle, Colorado, contains a contaminated floodplain
that has been the focus of detailed investigation [as
reviewed in Anderson et al., 2003; Williams et al., 2009,
2011; Orozco et al., 2011]. The site once contained a
milling facility for ores rich in uranium and other redox
sensitive metals (e.g., vanadium, selenium, and arsenic).
After removal of the contaminated overburden, low but
persistent levels of contamination within subsurface sedi-
ments still affect groundwater quality and flow directly to
the Colorado River. Elevated concentrations of contami-
nants can be harmful to young-of-year fish that use the
backwater channels as habitat during late summer. The
Rifle site is also within the above described wider context

of building models to quantify how land use and climate
change affect subsurface carbon fluxes and transforma-
tions, flow paths, subsurface microbial communities,
and ultimately the biogeochemical behavior of a water-
shed. The wealth of data collected at this site provides a
testbed for developing such models, testing hypotheses,
generating predictive uncertainty, and ultimately quanti-
tative prediction of short- and long-term evolution of this
biogeochemical system [Williams et al., 2011; Zachara
et al., 2013; see also Williams et al., 2013].
Acetate injection has been evaluated at the Rifle pilot

site to examine the effectiveness of in situ bio-remediation
[Yabusaki et al., 2007; Li et al., 2011; Williams et al.,
2011]. The acetate amendment stimulates the indigenous
dissimilatory iron reducing microorganisms to catalyze
the reduction of U(VI) in groundwater to insoluble
U(IV) [Lovley et al., 1991] and offers a cost-effective, in
situ remediation solution.

1.5.5. Assessing Remediation Efficacy

To study the efficacy of acetate injection as a remedia-
tion strategy, four field bio-stimulation experiments have
been conducted at the US DOE’s Integrated Field
Research Challenge site in Rifle, Colorado, as shown in
Figure 1.10. Previous experiments have shown that
acetate injection is capable of immobilizing uranium
[Li et al., 2010; Williams et al., 2011]. Figure 1.11 shows

Flood plain

2002 & 2003

2007 & 2008

20m

Figure 1.10 Rifle site with locations of the four uranium bioremediation experiments conducted in the years 2002, 2003, 2007, and
2008. The areal extent of 2007 and 2008 experiments are approximately 20m × 20m. The terrain map is obtained from Google
Earth. Location of the wells (indicated by the red dots) for different years are referred from Yabusaki et al. [2007].
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the setup of the 2007 Winchester experiment, which is the
data we will be using in this book. Acetate mixed with
conservative tracer is injected into a set of injector wells.
Concentrations of tracers as well as acetate, sulfate, and
UO2

2+ are measured at observation wells. The goal of this
study is to predict the volume of immobilized uranium,
since this will indicate the efficacy of the injection
experiment.
The uncertainties associated with predicting the extent

of uranium immobilization are substantial. Similar to the
case of shallow geothermal monitoring, the amount of
data (even at these kinds of sites) remains limited
(although geophysical surveys have also been conducted
at these sites) [Williams et al., 2009; Orozco et al.,
2011]. We distinguish three groups of uncertainties:
1. Geological. This pertains to the uncertain hydraulic

conductivity and porosity, their statistical properties
and spatial variability.
2. Biogeochemical. This pertains to the various geo-

chemical reactions taking place upon acetate injection,
in particular the kinetics of such reactions, as well as
the initial concentrations and volumes and surface areas
of iron-bearing minerals.
3. Hydrological. This pertains to the various boundary

conditions such as hydraulic gradients, recharge, and
so on.

Therefore, the questions are as follows:
1. Which of all these uncertainties impacts most the

remediation efficacy?
2. Having this knowledge, how much can we predict

long-term efficacy from short-term tracer monitoring?

1.6. DEVELOPING SHALE PLAYS IN
NORTH AMERICA

1.6.1. Introduction

A new and vast source of energy, organically rich shale
rocks, has changed the global energy landscape in the
last decade (see Figure 1.12). Development of such
resources is very complex and relies on substantial
amount of drilling (operators drill hundreds of wells
per year). Decision questions regarding shale systems
are not very different from those in conventional
systems: Where to drill? How to fracture the rock? What
production to expect? However, the well-established
approaches developed for conventional reservoirs are
not readily applicable to shales, mainly due to the rapid
development of these plays. Unconventional wells are
drilled at a rate of several wells per week, while one
comprehensive prediction and uncertainty quantifica-
tion could take anywhere from a few weeks to several
months. This peculiar nature of unconventional
reservoirs calls for the development of new, rapid and
comprehensive data analysis and uncertainty quantifica-
tion methods. In that sense, the problems described in
this section are unique and the methods different from
those introduced in the previous applications fields. Here
statistical and machine learning methods appeared to be
more attractive because of their rapid learning and
prediction. However, this learning is challenging,
involving spatial, temporal, and multivariate elements
of high degrees of complexities.

0 17 m
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(a) (b)
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Figure 1.11 The 2007Winchester experimental setup (a). The aim is to predict the volume and spatial distribution of immobilized
uranium. One simulation result for immobilized uranium is shown (b). M1–M12 are wells where tracers or concentrations are
monitored.
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1.6.2. What are Shales Reservoirs and How are They
Produced?

In oceans, a large amount of organic matter from
microorganisms and planktons falls to the seabed and
mixes with silt, clay, and other materials already present,
forming an organic source. Sediment inflow from rivers
brings clastic material that is simply deposited on top of
the organic source, further burying sediments into the
subsurface. Over the course of millions of years, such
organically rich and finely grained mixture turns into a
specific type of rock, shale, and ends up buried at very
large depths. Large depth means large overburden, which
imposes high pressures on the organically rich shale,
hence increasing its overall temperature. When the
temperature of the shale exceeds 120 C the organic matter
starts to “cook.” Hydrocarbon molecules start forming
from the organic matter already contained within the
rock. When the volume of hydrocarbons in the rock
becomes critical, low density and buoyant forces push
hydrocarbons toward the shallower zones of the
subsurface (toward lower pressure) in a process called
“migration.” Normally, hydrocarbons would migrate
all the way to the surface (seeping holes); however, they
often end up trapped in highly porous sandstones forming
hydrocarbon reservoirs. These hydrocarbon reservoirs are
also known as the conventional reservoirs, while the

organically rich shale that generated the hydrocarbons
is commonly referred to as the “source rock.”
The amount of hydrocarbons contained in conventional

reservoirs is only a small portion of the oil that the source
rocks originally generated. Source rocks still contain a
large amount of immobile hydrocarbons and as such
represent a potentially large energy resource. Every shale
rock is different, and the way in which it bounds with the
hydrocarbons is also different. This bounding is a result of
complex interplay of the rock and fluid compositions and
complex physical interactions. Some shales are capable of
chemically absorbing gas (sorption), while others are not,
sometimes the viscosity of oil is high, and sometimes it is
low. Some shales are very brittle with dense networks of
natural fractures, while some others are very ductile with
almost no natural fractures. What all shales have in
common is the fact that they are all almost impermeable
and highly organically rich rocks.
Early efforts to produce shale reservoirs through verti-

cal drilling and completion havemostly resulted in failure,
due the low permeability of shales. However, with the
advent of hydraulic fracturing (HF) and in some cases
usage of explosives, production of commercial quantities
of hydrocarbons at specific shale plays was possible. The
most notable ones are the Big Sandy gas field in Eastern
Kentucky, North part of the Marcellus shale in the state
of New York where some wells were drilled in the early

Legend

Assessed basins with resource estimate

Assessed basins without resource estimate

Figure 1.12 Overview of world shale resources (oil or gas). Image taken from http://www.eia.gov.
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1800s (indeed almost 200 years ago), and New Albany
shale. These sporadic successes were later attributed to
the very well developed networks of natural fractures
(producing high permeability flow paths). Real,
organized, large-scale effort to tap into shales did not
occur until the first big oil crisis in the late 1970s when
US DOE initiated the game-changing Eastern Shales
Gas Project (ESGS). This project is the largest research
project ever taken on shale reservoirs whose successful
result is best reflected on US independence on foreign
oil at present. ESGS identified that horizontal drilling
technology with multistage fracturing is a technique capa-
ble of unlocking the potential of organically rich shales.
The idea is simple, try to maximize the contact between
the well and the rock by producing as many as possible
artificial flow paths/fractures.
Today, operators drill long horizontal wells (several

thousands of feet long) and conduct massive HF jobs with
anywhere between 10 and 40 man-made hydraulic
fractures (commonly referred to as “stages”) (see
Figure 1.13). HF is a complicated and expensive proce-
dure with many different parameters whose complex
interplay with the geology determines the quality of the
produced hydraulic fractures and ultimately affects the
hydrocarbon production. Table 1.4 provides just a few

of the many engineering and geological parameters
involved. (The abbreviations given in the last column of
the table will be used in Chapter 8.) Obviously,
optimization of such parameters achieves significant cost
reductions, hence maximizes profit. Given that every
shale is different, best fracturing practices identified in
one shale play do not necessarily translate directly as
the most optimal to other shale plays. Therefore, every
shale play data are analyzed independently with the aim
to understand production, interplay between HF and
geology, and ultimately use such understanding to
produce some forecasting models. All this in an effort
to answer the simple business questions: where to drill,
how to complete, and what to expect?
Analysis of data from shale production is not a trivial

endeavor. First, the input data (covariates) are very high
dimensional (see Table 1.4), making standard statistical
techniques difficult to apply. Second, production data
from different wells comprise of time series, but of dif-
ferent time intervals, depending on how long the well
has been in production. In Chapter 8, we will consider
two real field cases, one from the Barnett shale with
thousands of wells and one from newly developed sys-
tem with only 172 hydraulically fractured horizon-
tal wells.

1. Water
acquisition

2. Chemical
mixing

3. Well
Injection

4. Flowback and
produced water
(wastewaters)

5. Wastewater
treatment and
waste disposal

Natural gas flows from fissures
into well

Figure 1.13 Overview of shale HF operations. Image taken from Wikimedia.
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1.6.3. Shale Development Using Data Science

Examples of data centric modeling for shales are in
Mohaghegh et al. [2011] who utilized artificial intelligence
to data mine and forecast production in unconventional
reservoirs (see also Bhattacharya and Nikolaou [2013]).
Most of these methods predict scalar values, such as a rate
at a given time. However, decision variables in shale
systems are rates or volumes of produced hydrocarbons
as they vary over time. Therefore, understanding shales
and identifying value-creating practices with data-driven
techniques require proper handling of production time
series. This is often challenging since production time
series come as noisy, discrete observations of production
rates over time. In addition, any data scientific method
will need to account for the large number of variables
involved as well as the spatial heterogeneity of the shale
play itself, leading to spatial variation of production, even
if they would be produced under the exact same engineer-
ing conditions.

Shale management from exploration and production
comes with a large series of problems and questions. Here
wewill focus on those that pertain to the use of data science
to predict and quantify uncertainty to what happens when
the play is in production. Asmore wells are drilled and pro-
duced, more data become available about geological para-
meters, completion parameters, and production decline.
The following are the questions we will be most inter-

ested in:
1. Which geological and completion parameters most

impact production? This a question of sensitivity and it
is needed to make the high-dimensional problem manage-
able before developing any prediction or UQ methods.
2. How to predict and quantify uncertainty on produc-

tion decline in a newwell for given geological and comple-
tion parameters? This question requires building a
statistical relationship between several covariates and an
uncertain function.
3.Howmanywells need to be in production before a sta-

tistical model can confidently estimate production decline

Table 1.4 Overview of some of the parameters involved in designing unconventional shale operations.

Type of uncertainty Parameter Unit Abbreviation

TARGET Production Oil rates stb/day Function of time

Gas rates stb/day Function of time

Water rates stb/day Function of time

INPUT (Covariates)

Completions

Number of completion stages # CMP STAGES STIMULATED

Total amount of injected fluid gal CMP TOTAL FLUID PUMPED GAL

Total amount of injected proppant lbs CMP TOTAL PROPPANT USED

Stimulated lateral length ft CMP STIMULATED LATERAL
LENGTH

Total amount of slick water bbl CMP AMT SLICKWATER BBL

Total amount of injected x-link
fluid

bbl CMP AMT CROSSLINK BBL

Completion stage interval ft CompStageInterval

Total amount of linear fluid bbl CMP AMT LINEAR BBL

Geographical

X location ft GeolX Rel

Y location ft GeolY Rel

Z location (depth) ft GeolZ

PVT Oil API gravity api units GeolAPIGrav

Petrophysical

Total organic content (TOC) % PetroTOC

Clay content % PetroVClay

Water saturation % PetroSwt

Porosity % PetroPor

Total amount of quartz % PetroVQtz

Amount of pyrite % PetroPyr
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in a new location? With too few data, data scientific
methodwill fail to produce meaningful prediction because
uncertainty is too large.

1.7. SYNTHESIS: DATA–MODEL–
PREDICTION–DECISION

While the various applications of prediction and UQ
are quite diverse, there are various common elements
that are useful in summarizing. To do this, let us consider
the following statements, including some additional
comments.
In engineering the subsurface, uncertainty quantification

is only relevant within a decision framework.
This book is about applied science, not pure science.

Hence, in such application there is a “utility,” or at a
minimum “use-inspired” part of the scientific process of
UQ. In the various applications, we saw how, ultimately,
a decision is what is needed:
1. case 1: how much to re-allocate, where to drill new

wells, when to stop production
2. case 2: choose between four alternative well fields
3. case 3: design of the geothermal system by deciding

on the type of heat pump
4. case 4: deciding to perform acetate injection and if so,

how to inject
5. case 5: deciding where to drill wells, how to com-

plete wells
If for some reason, any UQ does not affect the decision

made, simply because a deterministic model leads to a
“good” decision, then no UQ is needed. It is therefore
important to consider the decisions as an integral part
of any UQ; otherwise, one may endlessly model to
quantify uncertainty, then only to discover such exercise
has negligible impact. This concept will be treated in
Chapters 2 and 4 using methods of decision analysis
and sensitivities involved in such decisions.
Decisions are made based on key prediction variables

that are often simple quantities. Rarely are decisions made
directly on complex models.
Rarely do modelers look at hundreds of complex

models and decide on that basis. Key prediction variables
in decision problems are often simple quantities, certainly
simpler than the models on which they are based:
1. case 1: an injector efficiency (scalar), a quality map

(map), a rate decline (time series)
2. case 2: recharge area (map), wetlands (rate), river

(rate), contamination (map)
3. case 3: heat variation in the subsurface (space-time

variable)
4. case 4: volume (scalar) and spatial distribution (map)

of precipitated uranium
5. case 5: location (two parameters) or completion

(about 10–20 parameters)

The fact that key prediction variables are much simpler
(of lower dimension) than models (much higher
dimension) can be exploited in a fit-for-purpose
(sometimes also termed top-down) modeling approach.
It is difficult to reduce model dimension, but it is easier
to reduce dimensions in the key prediction variables. This
idea will be exploited in Chapter 4 in terms of quantifying
sensitivity of models and model variables on prediction
variables. It will also be exploited in Chapter 7 to avoid
difficult model inversion by directly focusing on the pos-
terior distribution of key prediction variables.
Uncertainty quantification without data (and only

models) is meaningless within an engineering–type,
decision-making context.
Models alone cannot make accurate predictions.

They can be used to understand sensitivity of model
variables on prediction variables or data variables.
They may provide a way to optimize data acquisition
campaigns. But ultimately, if a prediction needs to be
made and decisions are to be based on them, in a
quantitative fashion, then field measurements are
needed. The oil industry has long invested in measure-
ments for the simple reason that they pay back tremen-
dously in terms of management and decision making in
reservoirs. The environmental sector has lagged in
gathering quality measurements simply because of cost.
However, if the goal is to gain a “predictive
understanding” of environmental systems and to attain
quantitative decision making, then gathering more data
will be a prerequisite. As such, the introduction of
geophysical data as presented in cases 2, 3, and 4
has gained increased attraction. Like the role of mod-
els, data are only useful if it alter decisions, not neces-
sarily only because it inform better models or
predictions. This will be treated in Chapter 2 as a
“value of information” problem.
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2
Decision Making Under Uncertainty

2.1. INTRODUCTION

Making good decisions is important in many aspects of
life. Decisions in the personal realm are made by indivi-
duals and usually consider the consequences of those deci-
sions on others (e.g., family members). In organizations
(e.g., corporations, governments, universities, etc.), indi-
viduals also play a critical role in decision making, but
they are usually part of a group-based decision-making
process. How does an individual or an organization know
whether they are making a good decision at the time they
are making that decision (without the benefit of hind-
sight)? Would you know a good decision if you saw
one? Without any field-specific knowledge one could be
inclined to define decision making as “choosing between
many alternatives that best fits your goals.”However, the
evident questions then are (i) how to define what is best or
optimal, requiring the definition of some criterion, which
may change the decision if this criterion changes and
(ii) what are the stated goals? Decision analysis theory
provides axiomatic scientific tools for addressing these
questions in a structured, repeatable way.
Uncertainty plays a very important role in making

sound decisions. The existence of uncertainty does not
preclude one from making a decision. Decisions can be
made without perfect information. A poor way of pro-
ceeding is to make a decision first and then question
whether particular events were uncertain. Decision mak-
ing and uncertainty modeling is an integral and synergetic
process, not a sequential set of steps.
In most meaningful circumstances, a decision can be

defined as a conscious, irrevocable allocation of resources
to achieve desired objectives [Howard, 1966]. This defini-
tion very much applies to any type of geo-engineering
situation. The decision to drill a well, cleanup a site,
construct aquifer storage and recovery facilities, or re-
allocating water abstraction requires a clear commitment
of resources. One may go even to a higher level and

consider policy making by government or organizations
as designed to affect decisions to achieve a certain
objective.
Ron Howard who was at the forefront of decision mak-

ing as a science describes this field as a “systematic proce-
dure for transforming opaque decision problems into
transparent decision problems by a sequence of transpar-
ent steps.” Applying the field of decision analysis to sub-
surface systems is not trivial because it involves the
following:
1. Uncertainty. While most of this book addresses the

geoscience aspect of uncertainty as it pertains to the mea-
surements and models we establish to make prediction
and optimize profit or use of resources, there may be
many other sources of uncertainty, more related to the
economic portion of uncertainty (costs, prices, human
resources) or human behavior that are not discussed in
this book.
2. Complexity. Rarely does one make a single decision

on a single decision question. Often a complex sequence of
decisions needs to be made. This is certainly the case in oil
field production where engineers need to make decisions
on facility or well location and well-types as the field is
being produced.
3.Multiple objectives. Often, competing objectives exist

in decision making, for example as related to safety and
environmental concern compared to the need for energy
resources.
4. Time component. If it takes too much time to quantify

uncertainty that tries to include all sorts of complexity, and
the decision must be made in a much shorter time frame,
then a complex model ends up having little input into the
decision. This is often the case in a time-sensitive business
or industries (competitive oil-field reserve calculations, for
example). In such cases, one may want to employ simpler
models of uncertainty over complex ones.

This chapter provides a basic overview of those ele-
ments of decision analysis that are important in the

Quantifying Uncertainty in Subsurface Systems, Geophysical Monograph 236,
First Edition. Céline Scheidt, Lewis Li, and Jef Caers.
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context of the subsurface. The purpose is not to be exhaus-
tive by any means, instead to be more illustrative of con-
cepts that may be new to some readers. The following
publications are recommended as introductory material:
Foundation of Decision Analysis [Howard and Abbas,

2015]. This book is based on course notes that Ronald
Howard used for teaching decision analysis at Stanford.
This is one of the gold standard texts in decision analysis.
Handbook of Decision Analysis [Parnell et al., 2013]. As

an excellent introduction to the topic, it covers next to the
more axiomatic component of decision analysis, the soft
skills that are needed to make good decisions.
Value of Information in the Earth Sciences [Eidsvik et al.,

2015]. This publication looks at decision analysis with a
spatial context as well as values information analysis with
many applications in the Earth sciences.
Making Good Decisions [Bratvold and Begg, 2010]. This

book focuses on the petroleum industry, but it is an excel-
lent easy read for those looking to be exposed to the
subject matter.

2.2. INTRODUCTORY EXAMPLE: THE
THUMBTACK GAME

To illustrate some basic concepts in decision making, let
us play a game. Imagine you are offered an opportunity to
win $100. The game is simple. A thumbtack will be tossed
with two possible outcomes, “pin up” and “pin down”; if
you guess correctly, you win $100, otherwise you get noth-
ing. However, there is no free lunch; you need to go into
competition with other players to buy your way into this
opportunity to bet. In other words, the opportunity will be
auctioned off. This auction can be done under varying
rules: closed first price, closed second price (Vickrey

auction, e.g., E-bay), open descending (Dutch auction),
or open ascending (English auction).
Regardless of the auction, someone will get the oppor-

tunity and pay an amount for it. Imagine youwon the auc-
tion by offering $20. This $20 is now gone, you will never
see it again. In decision analysis, this is termed a “sunk
cost.” In rational decision making, sunk costs should be
ignored; in other words, one should not have a sentimen-
tal attachment such as “I already invested so much in the
project; that means I need to keep investing, because I feel
committed to it.” Future decisions will not and should not
be affected by sunk costs; they will only affect net-profit.
Sunk costs are about the past, decisions are about the
future. Figure 2.1 describes this situation with a decision
tree (a logical time-dependent arrangement of decisions,
uncertainties, and payoffs, see Section 2.5).
The decision tree allows introducing a few more

concepts:
1. A scenario. An instantiation of every decision situa-

tion, here it is the combination of your call with the out-
come (four possibilities).
2. A prospect. How the decision maker views the future

for each scenario. It is the equivalent of “outcome” in
probability theory.
3. A lottery (gambles or deals). A situation with uncer-

tain prospects without a decision being made. For exam-
ple, you could be told to call pin down, without having a
say in this. Then you face a lottery.

After paying $20, you get a certificate that gives you the
right to bet on the game. Let us now consider the follow-
ing question: What is the least amount of dollars you are
willing to sell this certificate for? There is no objective
answer, it depends on your willingness to sell it at a high
or low price, and hence we need to introduce a second
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Figure 2.1 Decision tree for a simple game of investing and betting. Squares represent decisions nodes and circles represent
uncertainty nodes.
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important component: utility. All situations that face
decisions and uncertainty require only two basics con-
cepts: probability and utility. A utility represents the deci-
sion maker’s preference for lotteries with uncertain value
prospects. A risk neutral decision maker takes values as
they are and takes the alternative that maximizes expected
value. To account for risk averse or risk-seeking decision
makers, a utility function is introduced to map the value
into a new value termed “utility” [VonNeumann andMor-
genstern, 1944], which is between 0 and 1 or 0 and 100 (see
Figure 2.2).
Let us now return to the question of selling your certif-

icate. We now introduce the concept of certainty equiva-
lent (CE) which is the certain amount in your mind that
you are willing to sell the certificate for. In more formal
language, it is the amount where the decision maker is
indifferent between selling it and retaining it. Logically
then, the difference between the expected prospect and
the CE reflects your attitude toward risk.

Risk premium= expected value – certainty equivalent

The expected value in this binary game is simply

E payoff =P correct call × $100

which is not known in this case because we do not know
the probabilities related to tossing a thumbtack. In a
Bayesian sense, we could assume some prior distribution
on this (see Chapter 5 and the billiard table example).
Therefore, this probability reflects our state of knowledge,
it is not a property of the thumbtack. Indeed, if we know
the outcome of the toss, then this probability is simply
one. Risk neutral investors will have a CE equal to the
expected value (they sell the certificate for a price equal
to what they consider the expected payoff ). Risk averse
investors will be conservative and sell it for a low price
to make sure they get paid at least some amount for

certain (note that the sunk cost does not come into play
here). Risk-seeking investors are willing to set high prices,
with the risk of getting paid nothing by entering risky
investments. For the same utility, risk seekers have higher
CE (see Figure 2.2).
Decision makers who follow the rules of decision anal-

ysis (Section 2.4.2) take the alternative that maximizes
expected utility.
You or an investor interested in buying your certificate

may want to gather some information about the uncertain
event, the outcome of tossing the thumbtack. What infor-
mation would you get and how much would you pay for
it? This is a “value of information” question. You may
want to buy some tosses, say 50 cents per toss, or, you
may want to buy a computer program that simulates
tosses, and so on. All this information is, however, imper-
fect. It does not reveal the “truth,” the ultimate toss out-
come. Perfect information is tantamount to revealing the
truth, here knowing the toss outcome. It makes logical
sense that you would not pay more for imperfect informa-
tion than for perfect information. Hence, the value of per-
fect information (VOPI) is an upper limit that you will
never exceed when buying information. The VOPI is
therefore

VOPI= value with perfect information

−value without information

Clearly knowing the toss result will get you $100 (=value
with perfect information) and without any information
you will get your CE, because that is the certain amount
in your mind (knowing nothing else), hence

VOPI= $100−certainty equivalent

Let us now consider imperfect information or simply VOI:

VOI= value with information−value without information

Without yet getting into any calculations (these are dis-
cussed in Section 2.6.2), three main elements influence this
value as per the following definitions:
1. Prior. What we know before, a base-level uncer-

tainty. If we already know a lot, then additional informa-
tion, data, or experiments will not add much value.
2.Reliability. How reliable is the information, meaning,

how well it predicts what I need to know, the
unknown truth.
3. Decision. There is no value in knowledge that does

not affect the decision.
Deciding to gather information is therefore part of the

decision model, in the sense that it adds one more alterna-
tive from which one can choose (see Figure 2.1). If the
information gathering branch in Figure 2.1 has higher
payoff, then one should decide to gather information,
and then only make a decision. Note that the VOI does

Utility

Value
0

100

Risk averse

50

CEaverse CEneutral CEseeking

Risk neutral

Risk seeking

Figure 2.2 Illustration of the concept of value, utility, and
certainty equivalent.
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not depend on the cost of the information gathering. This
is a common confusion. Information gathering costs are
sunk costs because they precede the decision. Instead,
the cost should be compared with the value of informa-
tion; hence, a decision to acquire data should be made
on that basis.
Imagine now that you are asked to call the toss and you

made the right call. Did you make a good decision?
Unfortunately, the skill of a person in terms of making
decisions is often evaluated based on one outcome. Some-
body got rich in life, he/she must really have made good
decisions (?). But what if this outcome was purely based
on chance, and whatever decision he/she made had in fact
very little impact? Good decisions can be evaluated only
in the long run. If one wants to compare decision making
based on a gut-feeling versus decision making based on
decision theory, then this can only be evaluated for a large
set of decision-making processes and chance outcomes.
Unfortunately, very few corporations or decision entities
keep track of such success/failure rates.

2.3. CHALLENGES IN THE DECISION-MAKING
PROCESS

2.3.1. The Decision Analyst

To make this section educational, the reader should
now consider themselves as decision analyst/consultant
observing and analyzing the decision-making process in
the situations described in the following. This third-
person view is important because readers may have differ-
ent background and hence interpret the subjective deci-
sion process very differently, or may have been decision
makers, or more likely subject matter experts.Wewill also
illustrate the challenges with two very different situations
that would be rather typical for the decision-making back-
ground in the context of this book. The first situation is a
decision analyst visiting ExxonMobil in Houston (or any
large oil/gas company) and the second situation concerns
the Danish government (see Chapter 1 for general back-
ground information). We will abbreviate ExxonMobil
as EM and the Danish government as DG. Clearly, as
decision analyst and consultant, you will encounter two
very different situations; hence, no single solution will
fit all problems. However, in both cases you will likely
interact with decision makers, stakeholders, and subject
matter experts (SMEs), all of which are humans and there-
fore not necessarily rational. Important skills for any ana-
lyst are therefore not just technical (as most readers have)
but also require certain soft skills such as understanding
how people think (rational and irrational), how experts
should be approached, how decision makers should or
should not be aware of the technical context, how the

group dynamic works, and so on. The analyst will also
need to face some push-back against rational decision
making or any decision-theoretic framework. Even today,
with the advances in decision analysis as a science, many
still rely on “my intuition” or “my gut-feeling,” or “my
rules of thumb.” It is well documented that the rational
decision-making process outperforms these one-at-a-time,
anatomical decisions [Parnell et al., 2013]. Few see deci-
sion analysis as something that will be beneficial in the
long term, and many will judge the decision-making proc-
ess on single outcomes (“see, I knew this all along, so we
didn’t need any technical, or advanced approaches,
I could just have told you so”). That would be the same
as judging one’s black-jack playing skills from one single
win (which is what makes casinos rich).
As decision analyst, you will not just focus on the tech-

nicalities involved in running decision models or structur-
ing the decision axiomatically (e.g., probability theory,
decision trees) but also be the facilitator integrating the
complex and multiple objectives of stakeholders or the
conflicting information provided by the various domain
experts involved. As decision analyst, you will need to
integrate technical knowledge with business knowledge.
In the case of EM, you may need to have technical knowl-
edge (such as about the subsurface). In other cases, in par-
ticularly when working with EM management, you may
need to work with higher level technical managers or
executives focusing on the entire decision-making process
rather than on specific technical challenges. In the Danish
case, you will need to be aware of the Danish democratic
process, the sensitivities concerning sustainable agricul-
ture within a changing environment, the dynamic between
industry and local farmers, and the communities they
live in.

2.3.2. Organizational Context

The decision-making process for EM and the DG are
very different. In both the cases, however, the decision
process is complex. In the case of EM, many stakeholders
exist (board, stock-holders, government regulators,
domain experts, executives, etc.). This is less the case
for the DG which obtains some input from stakeholders,
such as cities, farmers, agriculture, but because of the
Danish style of democracy, the government is the central
decision maker. “Stakeholders” refer to all parties with
vested interest, not just decision makers or experts.
A proper analysis of the stakeholders is required too since
the nature of the fundamental and means objective (see
Section 2.4.4) may depend on how they are defined.
Complexity is present for various reasons. First, there

is the technical complexity, which the subject matter of
this book. EM and also increasingly DG are using
complex, multidisciplinary data acquisition and modeling
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approaches to inform their decisions. This by itself
involves many domain experts in geology, geophysics,
subsurface engineering, surface facilities, economist, and
so on. With 73,500 employees (2015), EM organizational
complexity is substantial. Decisions are made from the
very high level to the daily operations, with a complex
hierarchy, many stakeholders, contractors, and experts.
Typically, various decision levels are present. Strategic
decisions focus on the long-term goals of the organization:
the “mission.”Tactical decisions turn these strategic goals
into measurable objectives. This book covers some of
these types of decisions, such as how to allocate resources
(cleaning, drilling, data acquisition) to obtain certain
objectives. Day-to-day operational decisions are short
term and usually reactive. The latter usually does not
involve complex modeling or technical analysis.
Therefore, it is important for the decision analyst to

understand the social aspect of such organizations, in par-
ticular the cultural differences that exist in these various
situations. For DG, EM, and others, no single solution
fits all. In fact, it may be dangerous to think of solutions,
because it points to an overly technical and analytical
approach to the problem, ignoring the human aspect.
Public sectors often require transparency and clear over-
sight, while private companies, certainly those not pub-
licly traded, may have a very closed decision-making
process.
One of the common issues, certainly in large organiza-

tions is the lack of transparency around objectives; this
leads to technical experts to perform their technical work
without proper context. They have no stake in the deci-
sion but simply execute some task. This may lead to gath-
ering data without real goals, or ambiguous goals, or just
collect data because “that’s what we always do.”As such,
technical experts may focus on a wrong problem or an
unimportant problem or task.
In executing such tasks, there may be overconfidence in

one’s judgment, or overreliance on the limited domain of
expertise. This is common in oil/gas companies. The
domain expert will emphasize that their domain is impor-
tant and relevant, “because it is.” Some geophysicist may
state that everything can be explained with geophysical
data, or well-test engineers with his/her well-test data,
as long as enough time is spent on analyzing the data or
gathering more “perfect data.” From a human point of
view, this is understandable, since the domain expert
may have anxiety about one’s irrelevance with the larger
context of the problem; hence, the focus is on the narrow
problem only. This way of working often leads to some
form of “decision paralysis,” meaning postponing deci-
sions until everything is fully understood (determinism).
The problem is that in any sciences and in particular in
the subsurface geological sciences, we will rarely fully
understand everything; hence, geologist may find it

difficult to move forward. This also makes their domain
increasingly irrelevant, since usually some form of quan-
tification is needed to make decisions meaningful.
Another issue, in particular in large organization, is that

both the decision analysis and the domain experts are
shielded from the decision maker. In fact, there is often
a geographical problem as decision makers do not work
in the same location (or even building) as the technical
experts. As such, experts rarely understand the decision
maker’s preferences and therefore lack value-focused
thinking (addressing their own small problems, instead
of the organizations’).
Cognitive bias is a problem when dealing with complex

situations. “Cognitive biases are mental errors caused
by our simplified information processing strategies.
A cognitive bias is a mental error that is consistent and
predictable” [Heuer, 1999]. A typical problem in both aca-
demia and industrial setting-related decision problems is
the bandwagon effect, meaning doing things a certain
way because that is what other people do, without asking
questions as to whether this is appropriate. This band-
wagon effect may be present on a small scale, such as
experts always using a software in the same way, without
question, because that is what the organization does or
that is what the software provides, even if it makes no
sense. At a larger scale, a bandwagon effect may affect
entire industries or academic fields. In Chapter 5, we will
discuss this extensively as “blindly following the para-
digm.” In this type of bandwagon effect, there is an undo-
cumented consensus that things should be done in a
certain way, and that any other way that questions on
the very nature of the paradigm is simply cast aside
(and hence never funded!).
Information and confirmation biases occur when infor-

mation is gathered without knowing if it adds value or
worsens it, to confirm a hypothesis rather than attempting
to reject one (see Chapter 5 on inductionism vs. falsifica-
tionism). Another common trait is to anchor, meaning
creating a best guess and anchoring uncertainty on that
best guess, never questioning the anchor. In the subsur-
face, this is quite common. For example, a few wells are
drilled, the average of some petrophysical property is esti-
mated from logging or coring, and the uncertainty on that
property is specified as the mean of the data plus or minus
some standard deviation. Clearly, the mean may be com-
pletely incorrect, due to under-sampling, biases, measure-
ment issues, and so on. Another common form of
anchoring is to build a base case and design the entire
future on it even in the presence of evidence that refutes
the base case, or to make ad hoc modification to the base
case. The issue of ignoring Bayes’ rule and making ad hoc
model choices, without assessing them against evidence,
or evaluating the probability of such ad hoc modification,
will be treated in extenso in Chapter 5.
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2.4. DECISION ANALYSIS AS A SCIENCE

2.4.1. Why Decision Analysis Is a Science

What is science? This common question is also known
as the “demarcation problem,” first introduced by Popper
[1959]. Science operates in certain ways; a complex inter-
action of axioms, hypothesis, conjectures, evidence gath-
ering, experimentation, ways of reasoning, such as
induction and deduction, and others such a Bayesianism.
We will dedicate Chapter 5 to this topic.
Decision analysis uses axioms of probability theory and

utility theory [Howard, 1968; Raiffa, 1968; Keeney and
Raiffa, 1993]. Most decision analysis are Bayesian (see
Chapter 5) in the sense that they work with subjective
beliefs and Bayes’ rule to update such beliefs with evi-
dence. They accept the notion of conditional probability
in doing so. In addition to these axioms, decision analysis
relies on behavioral decision theory, an area of psychol-
ogy [Edwards, 1954;Kahneman et al., 1974]. For example,
prospect theory (winning the Noble Prize in 2002) uses
behavioral decision theory as an alternative to the well-
known utility theory. Game theory is another important
element in decision science [Von Neumann and Morgen-
stern, 1944].

2.4.2. Basic Rules

Decision analysis guides the decision maker to turn
opaque situations into a clear set of actions based on
beliefs and preferences. Therefore, it is both prescriptive
and normative. The latter require invoking a set of
rules/axioms.We already encountered one rule of decision
analysis in the thumbtack example: maximize expected
utility.
Parnell et al. [2013] state five basic rules under which

any decision analysis should operate. They are as follows:
1. Probability rule. A formulation of subjective degrees

of belief. Decision analysis is Bayesian and requires
exhaustive and mutually exclusive events.
2. Order rule. It refers to the order of preferences for all

prospects, such ordering also needs to be transitive: if you
prefer X over Y and you prefer Y over Z, then you must
prefer X over Z.
3. Equivalence rule. It refers to the hypothetical creation

of a lottery involving the best and the worst prospects.
Suppose there are three prospects X, Y, and Z. X is the
worst, and Z is the best. Some probability p exists such
that a deal gives you X with probability p, Z with proba-
bility (1− p), and you are receiving Y for sure (CE). This
probability p is termed “the preference probability”
because it depends on preferences rather than referring
to real events.

4. Substitution rule. The decision maker should be will-
ing to substitute any prospect with a lottery. In other
words, your preference for a prospect will not change if
an uncertain deal contained in the prospect is replaced
by the CE.
5. Choice rule. The decision maker should choose the

lottery with the highest probability of winning (i.e., a
Bayesian classification). Simply if you prefer prospect X
over Y, and if in deal A, P(X) = 35% and in deal B P
(X) = 20%, then you prefer deal A.

2.4.3. Definitions

As with any science, decision analysis operates with
definitions and nomenclature. This will help with a clear
structuring of the decision problem and with identifying
the main “elements” and avoid any ambiguity.
Important to making a decision is to define the decision

context, that is, the setting in which the decision occurs.
Note that the same decision problem may occur in differ-
ent contexts. The context will identify relevant alterna-
tives and set the objectives. The context will also
identify the decision maker, that is, that person whose
objectives and preferences are required. In the context,
the necessary assumptions and constraints need to be
identified as well.
Decision: A conscious, irrevocable allocation of resources

to achieve desired objectives. A good decision is, therefore,
an action we take that is logically consistent with the objec-
tives stated, the alternatives we believe there to be, the
knowledge/information, datasets, and the preferences we
have. Decision making is not possible if there are no (mutu-
ally exclusive) alternatives or choices to be decided on.
Alternatives can range from the simple yes/no (e.g., cleanup
or not), through the complex and sequential (e.g., oil and
gas exploration, field development), to those with extremely
large numbers of alternatives. Leaving out realistic alterna-
tives has been identified as a fatal flaw, in hindsight, in
important decisions. A decision is only as good as the alter-
native listed.
Rational decision making requires clear objectives that

will be used to compare each alternative. An objective is
defined as a specific goal whose achievement is desired.
A quantitative measure to determine how well each

alternative achieves the stated objective is needed. This
measure is often termed an attribute. A payoff or perfor-
mance score is what finally happens with respect to an
objective, asmeasured on its value scale, after all decisions
have beenmade and all outcomes of uncertain events have
been resolved. Payoffs may not be known exactly because
of uncertainty and need to be predicted.
A value metric is then a quantitative scale that measures

the value to the decision makers of the degree to which
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objectives are achieved. Value functionsmap performance
scores to a value metric.
The following are the other common definitions:
1. Risk preference. A description of a decision maker’s

attitude toward risk, whether averse (EM), neutral (DG),
or seeking.
2. Utility metric. It is a quantitative scale that expresses

the decision maker’s attitudes toward risk-taking for the
value metric.
3. Utility function. It maps the utility metric to a value

metric in the case of a single-dimensional utility function.
Section 2.4.5 will provide an example to illustrate these
various definitions.

2.4.4. Objectives

Decision problems may have a single objective (e.g.,
maximize share-holder value) or multiple, often compet-
ing objectives (maximize income, minimize environmen-
tal impact). In single objective cases, a common
performance score is net present value (NPV). Monetary
scales are often preferred as dollar values allow for easier
comparison. Another common and easily interpretable
scale is “time.” Value functions are used to translate
any nonmonetary performance score into a monetary
value metric (see Section 2.4.5.2 for example). Single
objective decisions also allow for risk-attitude in terms
of single-dimensional utility functions. These functions
need to be assessed by interviewing the decision maker.
In risk-neutral cases, the expected value is maximized.
Many problems involve multiple objectives (see, e.g.,

the Danish groundwater case of Chapter 1). These objec-
tives are organized using a value tree. This tree is generally
developed by working from high-level to specific objec-
tives. “Values” are general in nature: for example, values
could be “be popular,” “support UNICEF,” “be
healthy,” “make money,” while objectives are specific

and could be of the form “maximize this” or “minimize
that.” One should distinguish between fundamental
objectives that identify the basic reasons why a decision
is important andmeans objectives that are ways of achiev-
ing a fundamental objective. Fundamental objectives
should be independent and can be organized in a hierar-
chy. For example, “maximize profit” can be divided into
“minimize cost” and “maximize revenue.” Means objec-
tives are not the fundamental reason for making a deci-
sion; a means objective could be, for example, to
“create a clean environment” or to “have welfare pro-
grams.” Indeed, welfare programs and a clean environ-
ment are only a means to population happiness.
Figure 2.3 shows such a tree that could be relevant to a
local government. Some objectives are fundamental
(improve welfare), others are means (improve safety).
The next step is to measure the achievement of an

objective. For certain objectives, there will be a natural
scale, in either dollars or ppm or rates. For other, more
descriptive objectives, a scale needs to be constructed,
usually through numerical or other “levels” (high,
medium, low). An objective such as “minimize tax”
has a natural scale in dollars, while others such as “max-
imize ecosystem protection” can be measured using the
constructed scale:
1 = no protection
2 = minimal monitoring
3 = monitoring/reactive
4 = monitoring/proactive
5 = special status as protected zone

2.4.5. Illustrative Example

2.4.5.1. Overview. Chapter 8 presents a real-life exam-
ple of the above-mentioned ideas. Here we discuss a sim-
ple hypothetical case that will help clarify some of the
concepts and definitions.

Maximize 

satisfaction 
of local population

Minimize 
tax

collection

Improve

environment

Maximize 
population 

health

Improve 
welfare

Maximize 

population 
safety

Minimize 

industrial 
pollution

Maximize 

ecosystem
protection

Minimize
economic

interruption

Figure 2.3 Example of a hierarchical tree with objectives.
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Consider that in Denmark a leakage of chemicals was
discovered in the subsurface close to an aquifer. Govern-
ment analysts in collaboration with consultants are spec-
ulating that due to the geological nature of the subsurface,
this pollution may travel to the aquifer and potentially be
widely distributed. Models built on gathered data (e.g.,
SkyTEM) can be used to make any probabilistic forecasts
of a property of interest.
The local government has to make a decision, which in

this case is whether to act, and hence start a cleanup
operation (which is costly for tax-payers) or do nothing,
thereby avoiding the cleanup cost but potentially be
asked to pay damages to local residents in case wide-
spread contamination occurs. What decision would the
local government make? Cleanup or not? How would
they reach such a decision? Are there any other alterna-
tives? For example, monitoring at certain locations,
cleaning if contamination is detected, or importing
“clean” water from another source? Is investing in such
monitoring actually useful?

2.4.5.2. Performance Score Matrix. Recall that a per-
formance score is a metric that quantifies how an objec-
tive is met after the decision is made and the outcomes
of any uncertain events have been resolved. Therefore,
performance scores are not known in advance and must
be predicted. This is what most of this book is about.
The objectives are listed in the tree of Figure 2.3 and
the alternatives are whether to “cleanup” or “not
cleanup.” Assuming neither alternative will impact safety
(cleaning up or not will not affect crime), then Table 2.1
could be an example of hypothetical performance scores
matrix (also called payoff matrix) for this case. These
are averages (expected values) which would be fine if
the decision maker is risk neutral (a Scandinavian govern-
ment may bemore risk averse). In reality, probability den-
sity functions are obtained from the modeling study.
Tax collection will be impacted by such cleanup because

of its cost (say $10 millions), which will affect the local

budget. Ecosystem protection will increase (a constructed
scale), while industrial pollution (in ppm) will be small
(some pollutants may be left in the ground). In the case
of not cleaning up, the tax collection also increases
because of the requirement to import “clean” water to
meet the needs of the population, assuming the govern-
ment would have to pay for this (e.g., suppose the contam-
ination was made by a government research lab). This
number is more difficult to establish. Indeed, damage pay-
offs will occur when the geology is unfavorable or if the
pollutant is very mobile in the specific environment, caus-
ing the pollution to leak into the aquifer. In a payoff
matrix, it makes sense to only include objectives that dis-
tinguish among alternatives. Any other objectives should
be removed, such as population safety in this case. Also, in
a payoff matrix, one works across the rows of the payoff
matrix rather than down its columns.
The next evident question is how to incorporate prefer-

ences into a single attribute scale and combine perfor-
mance scores measured on different scales. This is
addressed by the above-mentioned value functions. Value
functions transform attributes to a common scale, say,
from 0 to 100. The value function expresses how an
increase in the score translates into an increase in value.
Therefore, a linear value function (Figure 2.4) states that
such an increase is proportional, such as for health,
or inversely proportional, such as for pollution. A nonlin-
ear function such as for taxes in Figure 2.4 states that an
increase in dollars collected results in a smaller decrease in
actual value (high value if less taxes are collected). This
means that if tax becomes larger, then any increase in
tax will leave the population not necessarily equally more
displeased (low value); they are already displeased with
such high taxes! For the ecosystem, one could argue for
an opposite attitude: more pollution will eventually com-
pletely ruin the ecosystem, while a small increase can pos-
sibly be tolerable. Such nonlinearity in the function can
therefore be interpreted as the attitude toward “risk”
one may have about certain outcomes. For example,
the attitude toward safety may be different than the atti-
tude toward income. One’s preference may be to riskmore
when money is involved (tax) than with the environment
because such effects are often irrevocable (although gov-
ernmental attitudes around the world may substantially
vary in this aspect).

2.4.5.3. Swing Weighting. Different objectives may
carry different weights. This allows the decision maker
to inject his/her preference of one objective into another.
For example, preference in environmental protection may
supersede preference in being displeased with increased
taxes. Note that preference is used here to compare

Table 2.1 Hypothetical performance score matrix in a binary
decision problem.

Alternatives

Cleanup
Do not
cleanup

O
bj
ec

tiv
es

Tax collection (million $) 10 18

Industrial pollution (ppm/area) 30 500

Ecosystem protection (1–5) 4 1

Population health (1–5) 5 2

Economic interruption (days) 365 0
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various objectives, which is different from the previous
sections where preference was used to describe “risk”
toward various outcomes within a single objective. One
may be tempted to use a simple relative weighting using
the following: (i) Rank the various objectives, (ii) assign
a number on scale 0–100, and (iii) normalize and stand-
ardize the score to unity.
Such an approach does not account for the performance

scores on the alternatives. For example, a specific objec-
tive may be ranked high but may not have much effect
on the various alternatives formulated. A direct weighting
method, therefore, does not account for the ultimate pur-
pose, that is, to decide among various alternatives. In
practice, the problem can be overcome by using swing
weighting, which considers the relative magnitudes of
the performance scores. The objectives are first ranked
by considering two hypothetical alternatives: one consist-
ing of the worst possible payoff on all objectives (in terms
of score, not value) and one consisting of the best possible
payoff. The objective whose best score represents the
greatest percentage gain over its worst score is given
the best rank (i), and the methodology is repeated for
the remaining objectives until all are ranked.
Since we are dealing with a binary decision problem, the

weighting problem does not present itself (there is always a
best and a worst). To illustrate the swing weighting,

therefore, consider a slightly modified example where
one adds two more alternatives: (i) a detailed cleanup that
is costlier but removes more contaminant, therefore, pro-
tecting health and environment and (ii) a partial cleanup
that leaves some pollutant behind with a decreased risk
of drinking water contamination. Table 2.2 shows how
swing weighting works. First, the best and worst scores
for each objective are taken, then the relative differences
are ranked, with 1 being the largest relative difference.
Clearly, the tax impact is least discriminating amongst
the alternative and therefore gets the smallest weight.
Weights are then attributed to each objective following
the rank order and then normalized. After weights and
attributes are defined, we can combine scores on each
objective to determine an overall value for each alternative.
This is achieved by calculating the weighted sum of each
column in the matrix:

vj =
Nj

i=1

wivij (2.1)

where wi is the weight calculated for each objective and vij
is the score of the j-th alternative for the i-th objective.
This is done in Table 2.3 where attributes are now turned
into values using some hypothetical value functions (not
shown). Therefore, in summary, the cleanup alternative

Tax Pollution

Ecosystem Health

$ ppm

Score Score

100

0

100

0

100

0

100

15

Economic
interruption

Days
0

1009

25
20

Figure 2.4 Hypothetical value functions, turning a score into a common scale.
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is the one that is logically consistent with maximizing the
value of the decision, for given alternatives, objectives,
weights, score predictions, and preferences expressed in
value functions.

2.4.5.4. The Efficient Frontier. Conflicting objectives
can make decision making hard. In this case the minimi-
zation of tax burden is opposite to the cost of maintaining
a clean environment. Increasing returns (money) may
come at the expense of increasing risks (health, safety,
and environment). A term called “the efficient frontier”
may help investigate what kind of trade-offs are made
and possibly change a decision based on this insight. This
is very common in portfolio management (choice of equi-
ties, i.e., shares in stocks of companies, and bonds). Port-
folio management utilizes historical data on return of
equities to form the basis for assessment or risk and return
and use the past performance as a proxy for future
performance.
To study trade-offs, two categories are created: one for

the risks and one for the returns (or cost/benefit). Overall
weighted scores are then calculated for each subset, in a
similar fashion as described earlier, as shown in

Table 2.3. Risk/return is plotted versus cost/benefit in
Figure 2.5. From this plot, we can eliminate some obvious
alternatives as follows. The alternative “do not cleanup”
is clearly dominated by the alternative “partial cleanup.”
Indeed, “partial cleanup” has both more return and less
risk. Therefore, the alternative “do not cleanup” can be
eliminated because it results in taking on more risk rela-
tive to the return. “Do not cleanup” is the only alternative
that can be eliminated as such; other alternatives involve a
trade-off between risk and return. The curve connecting
these points is the efficient frontier. The efficient frontier
can be seen as the best set of trade-offs between risk and
return for the current alternatives. Recall that a decision
can only be as good as the alternatives formulated. There-
fore, pushing the efficient frontier upward (i.e., up and
toward the right in Figure 2.5) would require different
alternatives, leading to a better set of trade-offs. Such
alternatives are only as good as the imagination of those
creating them.
An efficient frontier allows asking question such as

“Am I willing to trade-off more risk for more return
between any two alternatives?” For example, is the
decrease of about five units of risk, worth the decrease

Table 2.3 Outcome of the hypothetical score matrix with cleanup being the winning alternative.

Objectives Rank Weight
Detailed
cleanup Cleanup Partial cleanup

Do not
cleanup Type

Tax collection (million $) 5 0.07 30 20 100 0 Return/$ benefit

Industrial pollution (ppm/area) 2 0.27 100 99 40 0 Risk/$ cost

Ecosystem protection (1–5) 3 0.20 100 75 25 0 Risk/$ cost

Population health (1–5) 4 0.13 100 100 0 0 Risk/$ cost

Economic interruption (days) 1 0.33 0 33 90 100 Return/$ benefit

Total 62.1 67.0 52.5 33.0

Return/$ benefit 2.1 12.3 36.7 33

Risk/$ cost 60 54.7 15.8 0

Note: Calculation of risk versus return.

Table 2.2 Calculating swing ranks.
Alternatives

Detailed
cleanup Cleanup Partial cleanup

Do not
cleanup Best Worst

Swing
rank

O
bj
ec
tiv

es

Tax collection (million $) 12 10 8 18 8 18 5

Industrial pollution (ppm/area) 25 30 200 500 25 500 2

Ecosystem protection (1–5) 5 4 2 1 5 1 3

Population health (1–5) 5 5 2 2 5 2 4

Economic interruption (days) 500 365 50 0 500 0 1
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in about ten units of return when going from detailed
cleanup to “cleanup”? If all attributes were in dollar
values than these would be actual dollar trade-offs, in
our case these are only indicative trade-offs, basically
forming a scale from “less preferred” to “more preferred”
in terms of trade-off.

2.5. GRAPHICAL TOOLS

2.5.1. Decision Trees

Decision trees (Figure 2.6) are graphical models that
organize logically, in time, the various decisions, alterna-
tives, uncertainties, and payoffs (value for each prospect).
The time component is critical here. First, we state the
alternatives, then we face uncertainties (not the other
way around); these uncertainties are then resolved some-
time in the future, resulting in a payoff. This also means
that the root is a decision. Any costs or uncertainties prior
to the decision are irrelevant. The leaves in the decision
tree represent the various scenarios that can occur.
To solve a decision tree, meaning find the best alterna-

tives, we go the opposite way: we start at the leaves
and resolve uncertainty nodes by taking consecutively
expected values. If the decision maker is not risk neutral,
then the solution involves utilities. At any decision nodes,
we then take the alternative that is maximal (maximum
expected utility). Figure 2.6 shows a hypothetical
example. Some of the probabilities in this tree are prior
probabilities, other may be the result of modeling (condi-
tional probabilities).
A limitation of decision trees is that they become intrac-

table for decisions with either a large set of alternatives or

a more continuous type of uncertainty, rather than dis-
crete outcomes such as in Figure 2.6.

2.5.2. Influence Diagrams

An influence diagram captures a decision situation by
depicting relationships between decisions, uncertainties,
and preferences [Shachter, 1986; Eidsvik et al., 2015].
Consider as illustration the hypothetical example in
Figure 2.7. A site is contaminated, which potentially poses
a health risk. The decision is to clean (or not, or how to
clean) and also the decision is to hire a consultant (or
not). Depending on a report (negative/positive) certain
actions will be taken. The outcome of the report depends
on the unknown distribution of the subsurface plume. The
costs will depend on how uncertainties are resolved. One
distinguishes three kinds of nodes (uncertain nodes, deci-
sion nodes, and value nodes) and three kinds of arcs (con-
ditional, information, and functional). Notice how there
is no arc between “clean” and “contamination.” The deci-
sion to clean does not affect the amount of contamination
present before cleaning. Each uncertain node is associated
with a probability table. For example, the contamination
node can be associated with a table of “low,” “medium,”
and “high” contamination and associated probabilities
(obtained through measurements and models). A value
node is associated with a value table indicating the payoffs
of various scenarios. In that sense, calculations can be
done with influence diagrams in the same way as with
decision trees. Because the time component is not explic-
itly represented, it is easier to make mistakes with such
diagrams, in particular when they become complex
(e.g., Figure 2.8). For example, information should be
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known to all decisions that are posterior to the informa-
tion acquisition. It is not rational to forget information.

2.6. VALUE OF INFORMATION

2.6.1. Introduction

In many practical situations, we are faced with the fol-
lowing question: Given a decision situation between sev-
eral alternatives, do we choose or do we decide first to

gather information to help improve the decision? In the
subsurface, this maymeanmany things: conducting a geo-
physical survey, drilling wells, doing more core experi-
ments, doing a more detailed modeling study, hiring
experts or consultant, and so on. The main driver is to
reduce uncertainty on key decision variables. However,
data acquisition may be costly. Questions that arise
include the following:
1. Is the expected uncertainty reduction worth its cost?
2. If there are several potential sources of information,

which one is the most valuable?

Consult? Clean?

Report

Contamination

Cost

Uncertain node

Decision node

Value node

Conditional arc

Informational arc

Functional arc

Figure 2.7 Example of a hypothetical influence diagram.
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Figure 2.6 A hypothetical decision tree. The first node has to be a decision node. Uncertainties here are the type of geological
system (channel vs. bar), the orientation of geological bodies and the degree of connectivity between them as measured by a
probability. The latter is calculated from actual models. The best alternative is “clean.” Adapted from Caers [2011].
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3. Which sequence of information sources is optimal?
These types of questions are framed under “the value of

information problem.” These questions are not trivial to
answer because we need to assess the value before any
measurement is taken. You cannot first take the measure-
ment and then decide whether it is valuable, because then
you have already decided to invest in some sunk cost.
Decision analysis and VOI has been widely applied to

decisions involving engineering designs and tests, such
as assessing the risk of failure for buildings in earth-
quakes, components of the space shuttle, and offshore
oil platforms. In those fields, gathering information con-
sists in doingmore “tests” and if those tests are useful, that
is they reveal design flaws (or lack thereof ), then such
information may be valuable depending on the decision
goal. This invokes some measure of “usefulness” of the
test. Indeed, if the test conducted does not inform the
decision variable of interest, then there is no point in con-
ducting it. The “degree of usefulness” is termed the “reli-
ability” of the test in the traditional value of information
literature. In engineering sciences, the statistics on the
accuracy of the tests or information sources that attempt
to predict the performance of these designs or components
are available, as they are typically made repeatedly in con-
trolled environments such as a laboratory or testing facil-
ity. These statistics are required to complete a VOI
calculation as they provide a probabilistic relationship
between the information message (the data) and the state
variables of the decision (the specifications of the engi-
neering design or component).

Many challenges exist in applying this framework to
spatial decisions pertaining to an unknown subsurface.
Eidsvik et al. [2015] provide a thorough treatment on
the topic including several case studies. For application
to petroleum system in particular, see Bratvold et al.
[2013]. Here we provide a short overview of the main
elements.

2.6.2. Calculations

The aim of collecting more data is to reduce uncertainty
on those parameters that are influential to the decision-
making process. In the thumbtack example, we discussed
that VOI should depend on three components:
1. The prior uncertainty of what one is trying to model.

The more uncertain one is about some subsurface compo-
nent the more the data can possibly contribute to resol-
ving that uncertainty.
2. The information content of the data (this will be

translated into data reliability or vice versa). If the data
is uninformative, it will have no value. But even perfect
data (data that resolves all uncertainty) may not help if
that does not influence the decision question.
3. The decision problem. This drives the value assess-

ment on which any VOI calculation is based.
The simplest way to illustrate VOI calculation is by

means of a decision tree. Consider again, our simple illus-
trative “contamination” case. The top part of the tree in
Figure 2.9 is the basic decision problem. It is binary
and has one binary uncertainty: contamination is low (a1)
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Figure 2.8 Example of a complex influence diagram for assessing the value of 4D seismic data. From Eidsvik et al. [2015].
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versus contamination is high (a2). In VOI assessment, we
consider acquiring data as an additional alternative.
However, now we also face an additional uncertainty:
What is the outcome of this data acquisition? Here we
consider a binary outcome: positive versus negative. Pos-
itive means indicating “high contamination” (b2) and
negative means indicating “low contamination” (b1).
The term “indicating” is important here: we do not know
for sure; the data may not necessarily be clairvoyant and
reveal the truth. Next we notice in the tree that the basic
decision problem is literally repeated after each possible
data outcome. This is important. If this is not done prop-
erly then VOI may be negative, which makes no sense
because you can always decide not to gather informa-
tion. Instead, what has changed is the probability asso-
ciated to the branches involving our uncertainty. We
now have a conditional probability instead of a prior
probability. The conditional probability P(Ai = ai| Bj =
bj) is termed the information content and is of the general
form P(real world is| data says). In traditional VOI cal-
culations, and we refer here to the original engineering
test, the following probability is usually specified P(data
says| real world is). This originated from the idea of
doing tests under various “real world” conditions. The
relationship between information content and reliability
is simply Bayes’ rule.
Let us assume perfect information, meaning that

P A1 = a1 B1 = b1 = 1;P A1 = a1 B2 = b2 = 0;

P A2 = a2 B1 = b1 = 0;P A2 = a2 B2 = b2 = 1
(2.2)

The data is clairvoyant, that is, it will tell if we have low or
high amount of contaminant. Considering the numbers in
Figure 2.9, we find that for the basic decision problem
“clean” has value −10 and “not clean” has value −7. If
we have perfect information, then the “collect data” branch
has value −4. Hence, the VOPI is −4− (−10) = 6 in other
works (assuming number in $K), we would never paymore
than $6000 for any information. Plugging in any other
values will result in the VOI. These reliabilities require
modeling studies. It would require forward modeling of
the data on some reference cases (or using Monte Carlo)
and observing how well the data resolves the truth.
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3
Data Science for Uncertainty Quantification

3.1. INTRODUCTORY EXAMPLE

3.1.1. Description

This chapter provides an overview of the relevant math-
ematical, statistical, and computer science components
needed to develop and understand the various approaches
to uncertainty quantification in subsequent chapters. The
aim here is to place these various components within
the unified context of uncertainty quantification, and as
application to geoscientific fields and not just to provide
a mere overview, which can be found in many excellent
existing books. Instead, we provide some additional
insight into how various, seemingly independent applied
mathematical concepts share important common traits
within the context of uncertainty quantification. The field
of data science (statistics, machine learning, and computer
vision) is growing fast. Most developments are driven by a
need to quantify human behavior or interaction (e.g.,
Facebook). Here we deal with the physical world. Data
scientific approaches will need to be tuned to the kind
of challenges we face in this world, such as data sparsity,
complex relationship between physical variables, high
dimension, non-Gaussianity, nonlinearity, and so on.
As an aid to this overview, we develop a simple illustra-

tive example. This example is not a real example by any
stretch of the imagination but has elements common to
uncertainty quantification as outlined by the real field
studies in the previous chapter. This will also aid in devel-
oping notation in this book by providing common nota-
tion in the various applied mathematical and computer
science disciplines involved. The reader should also refer
to the notation in the next two sections.
The case here concerns the simple design of a water

purification system by pumping and infiltrating river
water into an aquifer by means of an infiltration basin
(see Figure 3.1). Then, usable drinking water is retrieved
from a pumping well. The aims of this artificial recharge is

1. to improve groundwater quality through filtration
and bioactivity in the soil
2. to create a hydraulic barrier to divert any con-

taminated groundwater from an known industrial pollut-
ing area
However, the pumping wells needs to be shut off from

time to time, either for saving energy or for maintenance.
Too long of a shut-off periodmay result in pollutants infil-
trating the filtration zone. Hence, knowing whether such
contamination will take place and knowing when this will
take place will help in designing shut-off periods. To aid in
this design, head measurements from several wells in the
area are available, as well as reports that the subsurface is
substantially heterogeneous because of the depositional
system induced by the nearby river (fluvial system).

3.1.2. Our Notation Convention

One of the challenges in scientific writing is to come up
with a strategy for representing common objects, vectors,
scalars, function, random functions, and so on. Many
publications and books use different conventions and
notations. Our material comes from different worlds with
different notations, so we do not want to leave the reader
guessing what “x,” or “i,” or “n” is; hence, we are quite
explicit on notation in the hope this also unifies many
concepts. Here is an overview what you need to know:
1. a, b, x: small italic is a scalar, an outcome, a sample
2. A, B, X: capital italic is either a matrix or a random

variable. Those different contexts are usually clear.
3. X: capital bold is a random vector (a vector of

random variables)
4. x: small bold is the outcome of a random vector or

simply a vector
5. L: the number of samples in a statistical study
6. N: the dimension of the problem in general, for

example, the dimension X

Quantifying Uncertainty in Subsurface Systems, Geophysical Monograph 236,
First Edition. Céline Scheidt, Lewis Li, and Jef Caers.
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7. Counters: we use small font and corresponding capi-
tal letter, for example, n = 1, …, N or ℓ= 1, …, L. We
avoid using mixing letters such as i = 1, …, N
8. f: probability density function (pdf ) or just a function
9. F: cumulative distribution function (cdf )

3.1.3. Variables

Since we are interested in the future evolution of a sys-
tem, we need to model and simulate the above-presented
situation with computer models. Basically, any UQ exer-
cise has a number of components as synthetized in
Section 1.7. For any UQ problem, it is therefore critically
important to clearly and rigorously define the data vari-
ables, the model variables, and the prediction variables.
A common confusion is to think that the data variables
are the observed data. They are not. In a typical probabi-
listic way of reasoning, the actual field data are seen as
one particular realization, sample, or instantiation (what-
ever choice of nomenclature one is used to) of these
data variables. Data variables are random variables
whose outcomes are not known. How do we define such
data variables? Data is caused by some action (a sam-
pling, a measurement, a study, a drilling, a logging,
etc.) on the subsurface system in question. Hence, in order
to define data variables, we need to first define the vari-
ables that describe the (unknown) subsurface system.
These are the model variables. These model variables
are, therefore, the parameterization that the modeler
believes to allow for a proper representation of all aspects
of the subsurface system, whether these are fluxes,

pressures, concentrations, chemical reactions kinetics,
and so on.
In the hydro case mentioned earlier, we will represent

the area in question with a number of grid cells. Many
simulators, for example of multiphase flow, of reactive
transport, and of geostatistical algorithms, require a grid
and a definition of the size of these cells. These cells may
be on a regular grid or on any grid, depending on how
accurately models need to be simulated. Here we assume
the grid is regular and has a certain cell size. To model this
system, we will need to specify spatially distributed values
such as porosity and hydraulic conductivity. A subset of
the model variables are the relevant properties for each
cell value. However, property values in different grid cells
are not independent (statistically). The geological deposi-
tional system has induced spatial correlation and such
spatial correlation is often modeled using geostatistical
models or algorithms. As such, the gridded model vari-
ables depend on the definition of some statistical model,
which may have its own parameter/model variables, for
example the mean porosity or in the case of a correlated
spatial porosity, the spatial covariance or variogram
model parameters. In addition, the above model requires
defining initial conditions and boundary conditions, both
of which may be uncertain and also modeled using prob-
ability distributions with their own set of parameters.
In this book, because of the specific spatial (or spatio-

temporal) nature of subsurface models, we split the model
variables in two groups: (i) those model variables that
comprise the spatial distribution of properties on a grid,
for example concentration, porosity, and permeability
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at each grid location and (ii) the parameters that were
used to generate these spatial model variables, or any
other model variables or parameters that are not defined
on the grid. For the model parameterization, as a whole,
we use the notation m comprising of (i) gridded model
variables and (ii) non-gridded model variables.

m= mgrid,p (3.1)

Another part of the model that will be dealt with sepa-
rately is the physical/chemical/biological process that is
modeled using ODEs or PDEs or whatever other mathe-
matical representation one deems appropriate. Such
equations can be seen as “theories” (in the mold of Taran-
tola [1987]) that provide information on the relationship
between several aspects of the subsurface system, for
example stating the theoretical link between data and
model variables. In this book, we will limit ourselves to
expressing these relationships using forward models.
A forward model is represented by an explicit function
(derived from an implicit physical relationship). A first
forward model is between the data variables and the
model variables

fd m,d =0 d= gd m = gd mgrid,p (3.2)

For example, fd could be a set of partial differential
equations and gd the numerical implementation that out-
puts the desired data variables. Therefore, gd represents
the data forward model, a simulation model that takes
as input the model variables and outputs the data vari-
ables. For the hydro case in question, we can now specify
both model variables and data variables. As model vari-
ables, we have the following (summarized in Table 3.1):
1. Hydraulic conductivity (a gridded property). The

parameters used to generate a gridded hydraulic conduc-
tivity model are uncertain. Here we assume that hydraulic
conductivity can be modeled using a Gaussian process
(see Section 3.7.5). Such process requires specifying the
mean, standard deviation, and a set of spatial covariance
parameters such as range, nugget, and anisotropy, as well
as type of covariance model.
2. Boundary conditions. Boundary conditions are

simulated by means of Gaussian process regression. The
Gaussian process regression is here defined by a prior
mean and Matérn covariance function. This covariance
is not known, and its uncertainty is parametrized as uncer-
tainty in the variance, range, and smoothness. The prior
mean function is specified by three monomial basis
functions with unknown parameters with a vague prior.
The Gaussian process is conditioned to four groundwater

Table 3.1 Overview of the various parameters and their uncertainty for hydro case.

Parameter
code Description

Variable
type Distribution

Hydraulic
conductivity
representation

Kmean Mean value of hydraulic conductivity K (m/s) Continuous U(7e−4, 10−3)

Ksd Standard deviation of log(K) (m/s) Continuous U(0.05, 0.3)

KCov Type of covariance model for simulation of K Discrete Gaussian or
spherical

Kangle Horizontal anisotropy angle for K (degree) Continuous U(110, 150)

Krange Correlation length along the principle direction for K
(m)

Continuous U(10, 100)

Kanixy_ratio Anisotropy, horizontal stretching ratio Continuous U(l/20, 1/2)

Kaniz_ratio Anisotropy, vertical stretching ratio Continuous U(15, 30)

Knugget Nugget for K (m/s) Continuous U(0, 0.1)

Boundary conditions
representation

Hsd
STD of the Matern covariance model for simulation
of boundary conditions

Continuous U(0.01, 0.1)

Hrange Correlation length of the Matern covariance model
for simulation of boundary condition

Continuous U(20, 40)

Hnu Smoothness of the Matern covariance model for
simulation of boundary conditions

Continuous U(1.5, 3.5)

HrivGrad Gradient of the river Continuous N(−0.0015,
0.0001)

Measurement error
HrivRef River hydraulic head (meters) Continuous N(7, 0.05)

Hnugget Measurement error groundwater hydraulic
heads (meters)

Continuous U(0.02, 0.1)
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hydraulic head measurements as well as to the river
heads (with measurement error, see the following text).
The river head gradient is uncertain as well.
3. Measurement error. The hydraulic head measure-

ments are subject to noise, modeled as a noise variance
(entering as a nugget effect when estimating the boundary
conditions). The hydraulic head of the river is uncertain
as well.
Essentially, the model is infinite dimensional, unless one

discretizes space and time. Because both space (grid cells)
and time (time-steps) are usually discretized, the model
is very high dimensional, namely assuming all model
variables are time-varying

dim m =Ntimesteps Ngridcells ×Nproperties+ dim p (3.3)

Not all model variables may be time-varying, but regard-
less of this fact, dim(m) can be extremely large for real-
world applications (106−109).
We now return to the data variables. The data variables

are obtained by generating one model realization (e.g.,
using Monte Carlo, see Section 3.10) and applying the
forward model representing the physical relationship
between the model and the data variable. Here the data
consists of hydraulic head data at four locations. The
observed data are denoted as dobs: the head measurements
in four wells.
The design of the system will be based on the evolution

of the contaminant in the future as the recharge is termi-
nated. Therefore, key prediction variables, generically
denoted as h, are as follows:
1. The future concentration (over time) of DNAPL in

the drinking well
2. The DNAPL arrival time in the critical zone

These can be forward modeled as well (see Figure 3.2)
based on models:

fh m,h =0 h= gh m = gh mgrid,p (3.4)

3.2. BASIC ALGEBRA

3.2.1. Matrix Algebra Notation

Some basic algebra notations are reviewed in this section,
as well as eigenvalues and eigenvectors, which lie at the
foundation of multivariate (high dimension) problems in
both mathematics and statistics. Ultimately, regardless of
the technique or method developed, all operations can be
summarized as matrix operations and most of them rely
on some form of orthogonalization. Specific to multivari-
ate modeling, an important matrix is the “data matrix,”
which consists of multiple observations of a random vector
of a certain size. “Data” should not be limited to any field
data or actual observation or to data variables; suchmatrix
may contain model realizations. For example, one may
generate a set of L model realizations with a total amount
of model variables N. Throughout the book, unless other-
wise stated, we will use N to represent the dimension of
“data,” whether models, samples, realizations, and obser-
vations, while L represents the amount of “data.” For
example, consider a model realization,

m= m1,m2,…,mN 3 5

Notice the notation as follows: bold for vectors and
italic for scalar variables. Now also consider that Lmodel
realizations have been generated, in our notation:

m ℓ = m ℓ

1 ,m ℓ

2 ,…,m ℓ

N , ℓ=1,…,L (3.6)

0 10 20 30 40 50 60
0

5

10

15

20

25

Time (days)

C
o
n
c
e
n
tr

a
ti
o
n

Gaussian

Spherical

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

Time (days)

Arrival time for models with pollutant

Figure 3.2 Concentration of DNAPL at the drinking well location with histogram of arrival times.
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Then, a matrix of model realizations becomes

m 1
1 m 1

2 … … … m 1
N

m 2
2

m L
1 m L

2 … … … m L
N

(3.7)

Consider now applying a forward model, for example the
data forward model on each model, to generate the data
variable outcomes (such as hydraulic heads in our sim-
ple case):

d ℓ = gd m ℓ = gd m ℓ

1 ,m ℓ

2 ,…,m ℓ

N , ℓ=1,…,L

Then, another matrix can be generated as

d 1
1 d 1

2 … … … d 1
Nd

d 2
2

d L
1 d L

2 … … … d L
Nd

(3.8)

withNd the dimension of the data variables, to distinguish
it from the dimension of the model variables.
The following notation and conventions are adapted for

matrix algebra, including some specific type of matrices:
1. X = (xij) an N×L matrix consisting of scalars xij
2. A row vector xT with x a column vector

3. 1N= (1,…, 1)T a vector of ones with length N
4. 0N= (0,…, 0)T a vector of zeros with length N
5. a diagonal matrix diag(xii), xij i j
6. an identity matrix diag(1,…, 1) = IN
7. a unity matrix 1N1TN
8. Trace: tr(X)
9. Determinant det(X)

3.2.2. Eigenvalues and Eigenvectors

When multiplying a matrix of size N× L with a vector
of size L × 1 (or simply L), a vector of size N× 1 is
obtained. In one specific interpretation, when dealing
with Cartesian axis systems (more about spaces and geo-
metries later), such operation can be seen as mapping
or projection of a vector in a Cartesian axis system of
dimensionN into a newCartesian axis systemwith dimen-
sion L. When L<N then this amounts to a dimension
reduction, otherwise a dimension increase.
Consider now the special case where such matrix is a

square matrix. For example, a linear relationship between
model and data exists (or be assumed):

Gm= d 3 9

Hence, the forward model operator, as a linear model, is
expressed in matrix G. We consider for now that the
dimension of data and model are the same:

N =Nm =Nd (3.10)

Now we wish to analyze the properties of G. This is rele-
vant, since the specifics of G will determine how L model
realizations are mapped into L data realizations (see
Figure 3.3). Since G is a linear operator we do not expect
such mapping to change the topology of the space.
Indeed, we expect that the model point cloud in
Figure 3.3 is stretched/squeezed and rotated, perhaps

m3 d3G

m2 d2

m1 d1

m(ℓ) d(ℓ)

λ2mλ2

λ1mλ1

mλ1

mλ2

λ3mλ3

mλ3

Figure 3.3 A matrix multiplication representing a mapping from one Cartesian axis space to another Cartesian axis space.
Eigenvalues and eigenvectors characterize the nature of such transformation.
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translated into a new point cloud (the data point cloud).
It is, therefore, interesting to study which model realiza-
tions (model vectors) are modified/transformed only up
to a scalar. These special model realizations are termed
eigenvectors of the transformation G.
Formally, consider a square matrix G, if a scalar λ and

vector mλ exists such that

Gmλ = λmλ (3.11)

then λ is termed an eigenvalue and mλ an eigenvector.
In this case, eigenvalues can be calculated as roots of
and Nth order polynomial det(G − λIN); hence, up to N
eigenvalues exist λ1, …, λN, for each eigenvalue a corre-
sponding eigenvector exists mλ1 ,…,mλN . The determinant
and trace can be written as function of eigenvalues:

det G =
N

n

λn (3.12)

tr G =
N

n

λn (3.13)

An intuitive explanation by means of geometric descrip-
tion for trace and determinant is as follows. The determi-
nant of a matrix represents the signed volume change of a
unit cube into a parallelepiped after projection with G.
The sign indicates how the volume is rotated (clockwise
or counterclockwise). The sign and volume change
depends on the sign of the eigenvalues as well as their
magnitudes, where increases in volume occur when λ
are larger than unity in absolute value and decreases for
absolute values smaller than unity.
The trace has a geometric interpretation of a change of

that volume after projection under an infinitesimal change
before projection; hence, the trace determines “how big”
the projection is. Both determinant and trace have impor-
tant application in UQ such as in the analysis of covari-
ance matrices, least-squares methods, or in dimension
reduction methods.

3.2.3. Spectral Decomposition

3.2.3.1. Theory. The spectral decomposition or Jordan
decomposition links the structure of a matrix to the eigen-
values and the eigenvectors. Each symmetric matrix can
be written as

A=VΛVT 3 14

For example, when considering the forward model G of
the previous section,

G =VΛVT =
N

n=1

λnmλnm
T
λn

(3.15)

Λ= diag λ1,…,λN (3.16)

V = mλ1 ,…,mλN VVT = I (3.17)

If all eigenvalues are positive then

G−1 =VΛ−1VT (3.18)

In the more general case, an operator may not be a square
matrix, for example when the data variable dimension is
different from the model dimension variable (Nm Nd),
then each (non-square) matrix with rank r can be decom-
posed as

G =VΣUT VVT =UUT = Ir (3.19)

with V a matrix of size (Nm× r) and U a matrix of size
(Nd × r).

Σ= diag λ1,…, λr , λi >0 (3.20)

The values λ1, …, λr are the nonzero eigenvalues of GGT

and GTG with V and U containing the corresponding
eigenvalues of these matrices.

3.2.3.2. Geometric interpretation. Singular value
decomposition (SVD) lies at the heart of many useful
methods of UQ covered later in this book. SVD decom-
poses a matrix (whether a data matrix, a covariance
matrix) into simpler, more easily interpretable and mean-
ingful parts. To understand this, again geometrically, we
consider that a matrix A is a linear mapping from one
Cartesian space to another (see Figure 3.4). Consider
the case of a simple matrix

A=
1 1

0 1
(3.21)

A

V

y = Ax

UT

Σ

Figure 3.4 Geometric explanation of SVD as a transformation
from one orthogonal system to another orthogonal system.
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which results in shearing a unit cube when mapping the
vectors of that cube using A. SVD allows writing this
transformation as a series of affine corrections between
one orthogonal space and another orthogonal space.
The fact that we map into a space that is also orthogonal
means that we can use the usual tools such as Euclidean
distance, norms, and so on. To map a vector x with A
is now equivalent to

y=Ax=VΣUTx (3.22)

which is equivalent to applying a rotation UT (here by
58.28 ), a stretching (Σ), and another rotations V (again
by 58.28 ). A here is a full rank matrix. If the matrix is
not full rank then the mapping (rank = 1) is onto a single
vector. However, the formulation is still the same, mean-
ing one can achieve such mapping, always, by means of
rotations and stretching (even if stretched to infinity).

3.2.4. Quadratic Forms

Quadratic forms in higher dimensions are a useful way
to study properties of data. These forms are often associ-
ated with least squares, inverse modeling, or the multi-
Gaussian distribution. Calculating the derivative of a
quadratic form in the context of optimization (e.g., max-
imum likelihood method) leads to a linear system of equa-
tions that can then be solved with standard techniques.
Since the quadratic form is associated with a symmetric
matrix, any application that involves such matrix, such
as a covariance matrix, relies on these forms.
Consider x RL, then a quadratic form is built from a

symmetric matrix A as follows:

Q x = xTAx=
L

ℓ =1

L

ℓ =1

aℓℓ xℓxℓ 3 23

If Q(x) > 0, x 0 then the quadratic form is positive
definite. A is then positive definite if the corresponding
quadratic form is positive definite. Applications occur
when A is a covariance matrix of x (see later) or when
A is the matrix of second derivatives on x. In the latter
case, the quadratic form measures the curvature in x.
The eigenvalues ofA determine the shape of the quadratic
form. It is easy to show that with λℓ as eigenvalues and V
as eigenvectors that

xTAx=
L

ℓ=1

λℓy2ℓ with y=VTx (3.24)

An interesting property of quadratic forms relates to the
extrema of these forms. Consider two symmetric matrices
A and B, then

max
x

xTAx
xTBx

= λ1 ≥ λ2 ≥ ≥ λL = min
x

xTAx
xTBx

(3.25)

with λ1 the eigenvalues of B
−1A. In the specific case when

xTBx=1, x we get

max
x

xTAx= λ1 ≥ λ2 ≥ ≥ λL = min
x

xTAx (3.26)

This property will be useful later when searching for
linear combinations in the data Ax that maximally
explain variance (variance = a square form) of that data.

3.2.5. Distances

3.2.5.1. Basics. Distances form an important compo-
nent of many of the UQ tools presented in this book.
Models of the subsurface are usually complex and high
dimensional. Hence, representing them mathematically
in some extremely high-dimensional Cartesian space is
not feasible. In addition, Cartesian spaces may not be
the best choice for physical properties (see Chapter 6).
We may not at all be interested in the model itself, but
we may be interested in the difference between one model
and another model. After all, UQ is only meaningful if
models “differ” in some sense or another. Of relevance
is that they differ in the prediction calculated from them
or in some other summary statistics. The mathematical
foundation of difference is “distance” and the space cre-
ated is metric space.
A metric space is a set for which the distances between

the members of the set are defined. For example, a set of
L model realizations is such a set or the L data variables
or response variables calculated from the models is
also a set. If we call this set X = (x(1),…, x(L)), then
the following axioms of distance are formulated for a
metric space:

d x ℓ ,x ℓ ≥ 0 non-negativity

d x ℓ ,x ℓ =0 x ℓ = x ℓ identity

d x ℓ ,x ℓ = d x ℓ ,x ℓ symmetry

d x ℓ ,x ℓ ≤ d x ℓ ,x ℓ + d x ℓ ,x ℓ triangular

inequality

(3.27)

Here d is called the distance function. Well-known
metric spaces are the real numbers with absolute differ-
ence or any Euclidean space with a Euclidean distance
defined as

d x ℓ ,x ℓ = x ℓ −x ℓ
T x ℓ −x ℓ (3.28)
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3.2.5.2. Useful Distances for UQ

3.2.5.2.1. Univariate Variables. A wide class of differ-
ences are generated based on norms:

d x 1 ,x 2 = x 1 −x 2
r =

N

n=1

x 1
n −x 2

n
r

1 r

3 29

Hence, any normed vector space is a metric space. An
assumption here is that the components of x are on the
same scale. The Manhattan norm gives rise to the Man-
hattan distance (also termed L1 distance), where the dis-
tance between any two vectors is the sum of the differences
between corresponding components. The maximum
norm gives rise to the Chebyshev distance or chessboard
distance.
The norms above are appropriate when dealing with

continuous variables; however, they become problematic
for categorical variables. Categorical variables may not
have ordinality. Consider the following examples of geo-
logical sequences:

S1 DF F EDE D=delta, F = fluvial, E = estuarine

S2 F DF E F E

What is a measure of their difference? In the absence of
order, there should be no difference between D E and
D F. To alleviate this, we need to create indicator variables

ID =
1 if S =D

0 else
IE =

1 if S =E

0 else
IF =

1 if S =F

0 else

(3.30)

and hence an appropriate distance is

d S1,S2 =
1
3 s D,E,F Is (3.31)

3.2.5.2.2. Hausdorff Distance. The Hausdorff distance
is popular in image analysis for measuring the dissimilar-
ity between two sets of data S(1) and S(2) [Huttenlocher
et al., 1993]. Individual elements of S(1) are denoted as

s 1
i and individual elements of S(2) are denoted as s 2

i .
S(1)and S(2) are deemed similar if each point in one set
is close to all other points in the other set. Consider two
objects in Figure 3.5. What is the distance between these
objects? First, each has been rasterized into a set of points.

Consider first calculating d s 1
i ,S 2 between one point

and the set. This distance is defined as the minimum:

d s 1
i ,S 2 = min

j
d s 1

i ,s 2
j (3.32)

Then, to calculate d(S(1), S(2)), Dubuisson and Jain
[1994] propose to average over the points in set S(1):

d S 1 ,S 2 =
1
N1

N1

i=1

min
j

d s 1
i ,s 2

j (3.33)

The resulting measure is not symmetric d(S(1), S(2))
d(S(2), S(1)), hence not a distance, so technically we cannot
use the notation d. Dubuisson and Jain [1994] propose to
use the maximum to symmetrize the distance of Eq. (3.34)

d S 1 ,S 2 = d S 2 ,S 1

= max
1
N1

N1

i=1

min
j

d s 1
i ,s 2

j ,
1
N2

N2

j =1

min
i

d s 1
i ,s 2

j

(3.34)

Figure 3.6 shows an example of how the Hausdorff dis-
tance outperforms the Euclidean distance in discriminat-
ing between objects.

3.2.5.2.3. Distances Based on Transformations. Simple
Euclidean distances between images, or spatial models,
often are not very informative about their actual differ-
ence. Consider a simple case of three simple images with
one line (e.g., a fracture or fault). In the second image, the
line is slightly offset, hence there are no overlapping pix-
els, while the third image is orthogonal to the first image,
and therefore it has at least one location in common. The
Euclidean distance cannot capture the significant similar-
ity between images 1 and 2.
A solution is to transform the categorical variable into a

continuous variable that informs the distance to the edge

S(1)

S(2)

si
(1)

sj
(2)

d si
(1), S(2)

d S(1), sj
(2)

Figure 3.5 Creating a Hausdorff distance between two objects
that are discretized with points.
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of the feature of interest. This proximity transform results
in a “distance map” as shown Figure 3.7. It results in a
transformed variable where the grayscale levels indicate
the distance to the diagonal black object. The computa-
tion of a distance between both distance maps, using for
example a Euclidean norm, is then more meaningful than
the distance between categorical patterns.

3.2.5.2.4. Distances Between Distributions. Is the prior
distribution different from the posterior? Is the posterior
distribution generated by a Markov chain Monte Carlo
method similar to the theoretical posterior, or the poste-
rior of another method? Is the histogram of one model

realization (e.g., porosity) significantly different from
another realization? All these questions call for a measure
of difference between distributions. The statistical
literature offers various methods to test whether two dis-
tributions are statistically significantly different. In this
section, we will limit ourselves to comparing univariate
distributions. In the application chapters, we will see
how comparisons between multivariate distributions are
achieved by comparing distributions of orthogonal com-
ponents of the random vector in question. Consider to
that end two discrete probability distributions represented
by the discrete probabilities pk, qk, k = 1, …, K. A well-
known distance is the chi-squared distance

EUCL = 1.00

EUCL = 1.02 MHD = 1.3

MHD = 0.79

MHD = 0.91
EUCL = 0.97

Figure 3.6 Evaluation of the modified Hausdorff distance for images of numbers 1, 4, and 7. Modified Hassdorf distance (MHD)
requires the rasterization of the images into points sets (shown on the right). The smallest MHD is observed between images of 1 and
7, which is consistent with visual inspection. This is not the case for the pixel by pixel Euclidean distance (left).

d (1,2)

Euclidean distance d

d (1,2) > d (1,3)

d (1,3) d (2,3)

Model Proximity transform

Figure 3.7 The proximity transforms to measure differences in images constituted by discrete objects.
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dχ2 p,q =
1
2

K

k =1

pk−qk
2

pk + qk
(3.35)

This distance may underweight small differences because
of the square, but it is symmetric. Another measure of dif-
ference related to information theory is the Kullback–
Liebler (KL) divergence

difKL p,q =
K

k =1

pk log
pk
qk

(3.36)

which is the expected value of the logarithmic differences.
This measure is not symmetric; it emanates from infor-
mation theory where information is optimally coded by
assigning the smallest code to the most frequent letter/
message. This measure can be interpreted as the expected
extra message-length that is communicated if a code opti-
mal for some assumed distribution (q) is used, compared
to a code that is based on the underlying, unknown true
distribution (p). The symmetric form of the KL difference
is the Jensen–Shannon divergence:

dJS p,q =
1
2
difKL p,q +

1
2
difKL q,p (3.37)

Note that the continuous form of the KL distance is

difKL p x , q x = p x log
p x
q x

dx (3.38)

with p(x) and q(x) densities. Another distance is the earth
movers distance (EMD) where pdfs are seen as two piles
of material. The EMD is then defined as the minimum
cost of turning one pile into the other. The cost is defined
as the amount of material moved times the distance by
which it is moved. A last example based on pdfs is the
Bhattacharyya distance:

dBC p,q =− log
K

k =1

pkqk (3.39)

In terms of cdfs one can use the L1 norm, which is basi-
cally the area between the two cdfs.

3.3. BASICS OF UNIVARIATE AND
MULTIVARIATE PROBABILITY THEORY

AND STATISTICS

In this section, we present some basic elements of mul-
tivariate probability theory, mostly to cover notation and
conventions and for those who need a brief refresher.

3.3.1. Univariate Transformations

TheBox–Cox transform is a procedure for transforming
data into a normal shape. It uses a single parameter λ,
such that for each sample x(ℓ)

x ℓ

trans =
x ℓ

λ
−1

λ
, λ 0

ln x ℓ , λ=0

3 40

λ can range from −5 to 5, with a special case when λ= 0,
which is known as the log-transform. To determine which
value of λ to be used, we can search over the range for the

value that maximizes the correlation between x ℓ

trans and a
theoretical normal distribution. The Box–Cox transfor-
mation does not guarantee that the resulting distribution
is actually normal, so it is essential to perform a check
after the transformation. The Box–Cox transform can
be applied only to positive data, so it may be necessary
to add a constant to x(ℓ) to ensure this.
Another useful transform that is useful when x(ℓ) varies

from 0 to 1 such as for proportions or percentages.

x ℓ

trans = sin−1 x ℓ (3.41)

The result of the transform is given in radians ranging
from −π/2 to π/2. The arcsin transform is helpful when
the variance of the variable is uneven (smaller near
0 and 1) by spreading the variance over the entire range
and can make the variable more normal.
The rank transform is a common way to transform into

any distribution type, such as for example a normal score
transform. It also allows any easy back-transformation.
We first rank the data

x 1 ≤ x 2 ≤ ≤ x L (3.42)

the subscript indicating the rank. The cumulative fre-
quency for each ranked sample:

pℓ =
ℓ

L
−

1
2L

(3.43)

then for any cumulative distribution function G (such as a
normal distribution)

x ℓ

trans =G−1 pℓ (3.44)

3.3.2. Kernel Density Estimation

The goal of density estimation is to estimate a probabil-
ity density function using only samples drawn from it. The
simplest form of density estimation is the histogram. By
dividing sample spaces into a fixed number of equally
sized bins and counting the fraction of samples that fall
within each bin, an estimate of the density over the bin
interval is obtained. This histogram is straightforward
to compute, but it results in discontinuities in the esti-
mated density because of the discrete nature of the bins.
Furthermore, as the dimension of the space increases,
the number of bins increases exponentially. Another
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way offers itself by density estimation based on the kernel
method and is widely used in the later chapters.
Based on Parzen windows, which places a bin centered

at each sample, the kernel density estimate at x is then the
sum of the number of bins that encompass it. Therefore,
for a given value x, the density is expressed as

f x =
1
L

L

ℓ =1

K
x ℓ −x

w
=

1
L

L

ℓ=1

K
zℓ
w

3 45

where zℓ is the distance between the location at which the
density is being evaluated and sample point x(ℓ), and K is
the kernel or the shape of the bin. For Parzen windows,
the kernel is a rectangular function, and the width is set
by the w parameter. This approach fixes the number of
bins to the number of samples, which alleviates the prob-
lem of exponentially increasing number of bins in high
dimensions. However, Parzen windows do not address
the issue of discontinuities because of the shape of the ker-
nel. A smoothly varying function such as the Gaussian
kernel is more frequently used:

K z =
1

2π
exp −

z2

2
(3.46)

Other popular kernels are the uniform, triangular, and
Epanechnikov kernels. The method is named kernel
density estimation. w is the smoothing parameter or band-
width of the estimator. In higher dimensions, the band-
width is the covariance matrix of the Gaussian kernel.
The bandwidth controls the extent of the influence each
sample has on estimating the density. The choice of band-
width has a very strong influence on the resulting density
estimate. A small bandwidth will result in “spiky” density
estimates, while a large choice will over smooth the
estimate and obscure its structure.
A popular choice for w is Silverman’s rule of thumb,

which assumes that the underlying distribution is
Gaussian. The diagonal components of the matrix are

wn =
4

N +2

1
N +2

L− 1
N +4 σn (3.47)

where σn is an estimate of the standard deviation of the
n-th variate, and N is the dimension of the problem.
In theory, kernel density estimation can be extended to

any number of dimensions. The kernel function in
Eq. (3.47) is simply extended to higher-dimensional func-
tions. However, in practice because of the curse of dimen-
sionality, the number of samples required for accurate
estimation grows exponentially with dimension. Silverman
[1986] provides anoptimistic upper boundon the number of
dimensions as five, before the number of required samples
for accurate joint density estimation often becomes imprac-
tically large. Nonetheless, smoothing techniques provide a

powerful way of gaining insight into complex distributions.
This additional flexibility does, however, come with
the challenging task of specifying the bandwidth, as well
as the limitation of only working effectively in low
dimensions.

3.3.3. Properties of Multivariate Distributions

In multivariate statistics, we study random vectors,
generically written as X = (X1,…,XN). The stochastic
variation of these random vectors is fully described by
the joint cumulative distribution

P X1 ≤ x1,X2 ≤ x2,…,XN ≤ xN =F x1,x2,…,xN 3 48

or the corresponding joint (multivariate) density function

f x1,x2,…,xN =
∂NF x1,x2,…,xN

∂x1∂x2…∂xN
(3.49)

From the full multivariate distribution, one can deduce
any marginal distribution, such as a univariate or bivari-
ate distribution

F xn = dx1 dxn−1 dxn+1 f x1,…,xN dxN

F x1,x2 = dx3 dx4 f x1,…,xN dxN
(3.50)

or any conditional distribution

F xn Xn = xn n n =P Xn ≤ xn Xn = xn n n

=

xn

−∞

f x1,…,xn −1,xn , xn +1,…,xN dxn

f x1,…,xn −1,xn +1,…,xN
(3.51)

The problem in reality is that very few analytical expres-
sions exist for the joint multivariate distribution (except
for the Gaussian, see later). The focus instead lies on
lower-order statistics, such as the bivariate distributions
from which then moments such as the variogram γ and
covariance, cov, can be derived (and estimated with data)

γ Xn,Xn =
1
2
E Xn−Xn

2

=
1
2

xn−xn
2f xn,xn dxndxn

(3.52)

cov Xn,Xn =E Xn−E Xn Xn −E Xn
2

= xn−E Xn xn −E Xn f xn,xn dxndxn
(3.53)

From the latter we define correlation as

ρ Xn,Xn =
cov Xn,Xn

var Xn var Xn
(3.54)
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When the (X1,…,XN) are (globally) independent then

f x1,x2,…,xN =
N

n=1

f xn (3.55)

Global independency entails also pair-wise independence
but not vice versa. Pair-wise independence means that any
bivariate distribution becomes a product of marginal,
moreover then:

ρ Xn,Xn =0 n,n (3.56)

Equation (3.56) entails linear independence only. When
the relationship is nonlinear, then Eq. (3.56) may still
hold, even if pair-wise dependency exists. Another form
of independence is conditional independence, which in
the univariate case becomes

f xn,xn xn = f xn xn f xn xn (3.57)

or equivalently

f xn xn ,xn = f xn xn = f xn xn (3.58)

This concept can be extended to any mutually exclusive
subset of random variables that comprise the random vec-
tor X. The concept of conditional independence is used
throughout UQ. For example, one may have various
types of data that inform the subsurface d1, d2, …, dn.
These data may be from different origin, such as one data
source from geophysics, another from drilling, or yet
another from testing the subsurface formation. The con-
ditional independence assumption that is used is then as
follows:

f d1,d2,… m =
i
f di m (3.59)

Basically this means that if we knew the real earth, then
these data sets can be treated as independent. In other
words, knowing the real earth is enough tomodel eachdata
set separately through individual likelihoods f(di|m).
This appears quite reasonable for data sets that are very
different, for example whose forward models capture very
different physics.

3.3.4. Characteristic Property

Recall that among all outcomes of a random variable,
the expected value is known to minimize the average
square error (essentially a variance):

E X = min
x0

E X −x0
2 3 60

This property lies at the heart of all least-square method:
the expectation is the best least-square estimate of an
unknown RV. Similarly, consider the conditional mean
as a N− 1 dimensional function

E Xn Xn = xn , n n =ψ xn , n n (3.61)

Among allN − 1 variate functions, the conditional expec-
tation in Eq. (3.61) minimizes the estimation variance

ψ xn n n

= min
ψ0 xn , n n

E Xn−ψ0 xn , n n Xn = xn n n 2

(3.62)

or any function that minimizes a variance (least square) is
an expectation, whether conditional or unconditional.
This property will be used throughout the book when
dealing with least squares, Gaussian processes (see
Section 3.7), linear inverse problems, and so on.

3.3.5. The Multivariate Normal Distribution

The multivariate normal is a very popular model in
multivariate statistics as well as in UQ. The reason lies
in the mathematical convenience of this model, its
arranged marriage will least-square and maximum likeli-
hood estimation methods as well as linear modeling.
When X = (X1,…,XN) is multivariate normal then

f x1,…,xN

=
1

2π N det C
exp −

1
2
x−E X TC−1 x−E X
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One notices the quadratic form in the exponent (basically
a second-order polynomial in x). This form is relevant
because the log of the density is quadratic, and hence
the derivative is linear. C is the covariance matrix with
elements

C nn = cnn = cov Xn,Xn , n,n =1,…,N (3.64)

(x − E[X])TC−1(x− E[X]) is also termed the Mahalanobis
distance: a distance of a point x from some center E[X]. It
can be generalized to a distance as

d x,x = x−x TC−1 x−x (3.65)

This distance accounts for the correlation that may exist. If
no correlation exists then C= I, and we get the Euclidean
distance. The more x is correlated with x , the less that
component will contribute to the distance (they look closer,
because they are more similar). TheMahalanobis transfor-
mation renders the elements (linearly) independent:

Y=C−1 2 X−E X (3.66)

The elements of Y have no (linear) correlation.
Some useful properties of the multivariate normal are

as follows:
1. All N− n variate distribution are multivariate

normal.
2. All conditional distribution are multivariate normal.
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3. In case of a univariate conditional distribution, we
find that the corresponding conditional expectation are
linear functions of the conditioning values, for example

E Xn Xn = xn , n n =
n n

wn xn (3.67)

or for any subset of conditioning values.
4. The joint distribution of any subset of X and linear

combinations of another mutually exclusive subset is also
multivariate normal, for example

n n

wn Xn ,Xn = Xn,Xn bivariate normal (3.68)

This results in the so-called conditional unbiasedness
property

E Xn Xn = x = x (3.69)

These properties make the multivariate Gaussian useful in
many applications. However, assumingmultivariateGaus-
sian models is not without risk. First, the assumption can
rarely be verified with actual data, simply because of the
lack of data in higher dimensions. More importantly,
assuming a multivariate Gaussian distribution imposes a
higher-order dependency structure that goes beyond the
covariance defining that distribution. In spatial modeling
(where the Xn are properties in a grid), limitations of this
distribution are well known [Gómez-Hernández and Wen,
1998; Zinn and Harvey, 2003; Feyen and Caers, 2006].
More specifically, the maximum entropy property [Journel
and Deutsch, 1993] entails that extremes become rapidly
uncorrelated. Additionally, the multivariate distribution
is clearly tied to linear modeling; hence, any relationships
between the Xn that is not linear becomes problematic.

3.4. DECOMPOSITION OF DATA

3.4.1. Data Spaces

Subsurface models are complex, and data can be exten-
sive, such as for example seismic data; hence, forms of
dimension reduction are critical to render such complex
problems manageable. Dimension reduction lies at the
foundation of many of the methods covered in subsequent
chapters. Here we provide the very foundation of most
dimension reduction techniques.
Consider again the “data matrix” of size N×L, gener-

ically written as

X =

x 1
1 x 1

2 … … … x 1
N

x 2
2

x L
1 x L

2 … … … x L
N
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This matrix can be viewed in two ways: row by row (per
“data sample”) or column by column (per each dimen-
sion of the “data sample”). For example, if the data
matrix stores model realizations, then we can look either
at the collection of model (rows) or the samples of each
individual variable of the model (columns). Hence, from
a geometric point of view, one can take two views and
create two alternative Cartesian axis systems (see
Figure 3.8).

N pointsL points

R

x N
(1)

x
1
(1)

x
2
(1)

x n
(L)

x n
(1)

x n
(2)

RLN

Figure 3.8 Two views of the same data matrix.
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1. (Sample dimension) Space RN: The space containing

vectors x ℓ

N = x ℓ

1 ,x ℓ

2 ,…,x ℓ

N , a cloud of ℓ= 1, …,

L points.
2. (Sample size) SpaceRL: The space containing vectors

x L
n = x 1

n ,x 2
n ,…,x L

n , a cloud of n= 1, …, N points.

While both spaces convey the same information, choos-
ing which axis system to work with (model, sample, fit,
regress) is of critical importance to many of the methods
in this book. In fact, we will illustrate several dualities
between these two spaces and the techniques that are
applied in such spaces. The choice of the axis system
largely depends on the dimension of the space. Clearly,
a low-dimensional space with a lot of points in the point
cloud is easier to manage than a high-dimensional space
with very few. High dimensions are challenging because
they become very rapidly “empty” as dimension increases.
Consider a simple example of a circle within a square and
calculate the ratio between the areas occupied by the circle
over the area occupied by the square; consider increasing
the dimension and calculating the same ratio, now
between hypercube and hypersphere. In Figure 3.9 one
notices that the ratio is basically zero after dimension
10. In other words, an exponential increase in volume
exists with each dimension added to a Cartesian space.
This also means that an exponentially increasing amount
of samples is needed to cover high-dimensional spaces as
one would cover/sample low-dimensional spaces. One
characteristic of uncertainty quantification is that subsur-
face models are complex, spatial, or spatiotemporal;
hence it is of very high dimension N. As shown in
Chapter 1, the key target variables, on which decisions
are made and whose uncertainty is most relevant, are
often of much lower dimension than the models. For
quantifying their uncertainty (as simple as a volume for
example), much less samples L are needed. For most

UQ problems, certainly, those treated in Chapter 1, we
can safely state that

L N (3.71)

This is not an observation without considerable conse-
quence. This property is different from data problems that
involve people (e.g., Facebook, Google) where the sample
size is very large (millions/billions) and the model dimen-
sions (e.g., people’s preference) are much smaller. Hence,
blindly applying data science in these areas to the pro-
blems in this book will be ineffective and inefficient.

3.4.2. Cartesian Space of Size L: The Sample Size

In RL we need to embed N data points, when consider-
ing the data matrix of Eq. (3.70). To reduce dimension, we
need to project points into a lower-dimensional space.
A straightforward way would be just to ignore a model
realization, but this would lead to too much of a loss of
information, and potential removal of important realiza-
tions from the analysis. Instead, we attempt to project into
a lower-dimensional space byminimizing the loss of infor-
mation caused by such projection. Consider, therefore,
first projecting the cloud into one dimension, in other
words, a line. Since a line can be defined through a unit
vector, u1, u1 = 1, we need to find the “optimal” u1 that
best represents theL-dimensional cloud. This is illustrated
in Figure 3.10. The coordinate of a projection of a point is

x ℓ

N

∗
= x ℓ

N

T
u1 (3.72)

As measure of “loss of information” due to such projec-
tion, we use a least-square formulation and minimization:

L

ℓ =1

x ℓ

N

∗
−x ℓ

N

2
(3.73)

100%

78.5%

52.4%

30.8%

16.4%

8.1%
3.7%1.6%0.6%0.2%0.1%

1 2 3 4 5 6 7 8 9 10 11 dim

Figure 3.9 Curse of dimensionality, the ratio of hypersphere with hypercube. Space becomes virtually empty after dimension 10.
Modified from Wikipedia.
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The problem of minimizing Eq. (3.73) is equivalent to
maximizing

L

ℓ=1

x ℓ

N

∗ 2
(3.74)

which is a convenience resulting from using a square loss
function. Because

x 1
N

∗

x 2
N

∗

x L
N

∗

=

x 1
N

T
u1

x 2
N

T
u1

x L
N

T
u1

=Xu1 (3.75)

maximizing Eq. (3.74) is equivalent to solving

max
u1

X u1
T X u1 = max

u1
uT1 X

TX u1 subject to u1 = 1

(3.76)

According to our previous analysis about quadratic forms
such as this, we know that the vector that maximizes
Eq. (3.76) is the first eigenvector of XTX associated with
the first eigenvalue.
An important observation is made when the data is cen-

tered, meaning that L
ℓ=1

x ℓ

N
L =0 Then 1/L XTX is the

empirical covariance between theL realizations consisting
of N variables. Hence, in making such projection, we are
seeking to make use of correlations among the variables
in X. Obviously, if that covariance is zero (and variance

some constant), then we cannot reduce the problem to a
lower-dimensional problem, all realizations (L) will need
to be used.
The above analysis extends to projections in more than

one dimension. The solution is simply found by calculating
the eigenvalues λn, n= 1, …, N and corresponding eigen-
vectors un of the matrix XTX, with its eigenvalues ranked
from large to small. Note that in our type of problem
XTX of size N×N is very large. Directly calculating eigen-
values on XTX may be impossible for large problems. We
will see later that ways around this problem exist.

3.4.3. Cartesian Space of Size N: Sample Dimension

Nowwe turn to the spaceRN. We need to embed L data
realizations. Hence, any reduction in this space means
reducing the number of variables. Clearly, just ignoring
individual variables will usually not be efficient, instead
we will, as before, rely on projections; basically, linear
combinations of the variables in question. The solution
to this projection problem is exactly the same as in the
previous section, but now replace X by XT, namely

N

n=1

x L
n

∗ 2
= max

v1
X v1 X v1

T

= max
v1

vT1 XX
T v1 subject to v1 = 1
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Hence, we seek the eigenvalues μℓ, ℓ = 1, …, L and corre-
sponding eigenvectors vℓ of XX

T from largest to smallest
to create projections in lower dimensions. Note that
the rank

r= rank XXT = rank XTX = rank X (3.78)

In other words, we cannot obtain a dimension larger
than r.WhileXTX is related to the covariance of data vari-
ables, calculated from data realizations, XXT is related to
the dot-product of data realizations calculated from data
variables. Recall that the dot-product is the projection
(a length is a scalar) of one vector onto another vector
or, in this case, a projection of one (data) sample onto
another (data) sample. Since we have L samples one
can calculate L× L of such dot-products; hence, the
dot-product matrix is, in our context, much smaller in size
than the covariance matrix.

3.4.4. Relationship Between Two Spaces

Because both spaces represent the exact same infor-
mation, but each with different projections into lower
dimensions, a relationship must exist between these two
projections. Consider the eigenvectors and eigenvalues
in RN

XXTvℓ = μℓvℓ ℓ ≤ r (3.79)

xn
(L)

xn
(1)

xn
(2)

xN
(ℓ)

u1

R

||u1|| = 1

T
xN

(ℓ)

u1

L

Figure 3.10 Projection of data onto an eigenvector.
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By multiplying each side with XT, we find

XTX XTvℓ = μℓ XTvℓ ℓ ≤ r (3.80)

Hence, each eigenvector vℓ of (X
TX) in RN corresponds to

the eigenvector XTvℓ in RL, or

uℓ XTvℓ (3.81)

and associated with the same eigenvalue μℓ. Every non-
zero eigenvalue of XXT is also an eigenvalue of XTX.
Similarly, when multiplying

XTXun = λnun n ≤ r (3.82)

Therefore, each eigenvector un of XX
T in RL corresponds

to the eigenvector Xun in RN, or

vn Xun (3.83)

Since the eigenvectors u and v need to be unit vectors, the
proportionality constant in both cases is 1 λk =1 μk.
This leads to stating the following duality: for a data

matrix X of size N×L with rank r, the eigenvalues (num-
ber of eigenvalues ≤r) of XTX and XXT are the same and
the eigenvectors are related as follows:

uk =
1
λk
X Tvk k ≤ r

vk =
1
λk
Xuk

(3.84)

Additionally, it can be shown that with U= (u1 u2 ur),
V = (v1 v2 vr), and Σ= diag λ1,…, λr , we obtain
the SVD of X:

X =VΣUT (3.85)

3.5. ORTHOGONAL COMPONENT ANALYSIS

As discussed in the previous section, data matrices can
be represented in two spaces. Analysis of the characteris-
tics of the data cloud can be done by means of eigenvalues
or eigenvectors, if one adapts a least-square-based projec-
tion method. The treatment was done from a pure alge-
braic point of view. In this section, we will include a
statistical interpretation of the data matrix and collection
of samples of a certain dimension. The least-square min-
imization then becomes a variance maximization. The
“data” are no longer simple algebraic values but are
now considered outcomes of some multivariate distribu-
tion. The workhorse of multivariate statistical analysis
is principal component analysis (PCA), which follows
immediately from the previous section. It lies at the foun-
dation of other types of data analysis, certainly those that
deal with orthogonal axis systems, least squares, covar-
iances, linear regressions, and anything within that realm.

3.5.1. Principal Component Analysis

3.5.1.1. Theory.Wenow consider the realizations in the
data matrix to be realizations of a random vector of
dimension N. Each entry in this random vector XN is a
random variable Xn, or

XN = X1,X2,…,XN
T 3 86

of which we have L samples/realizations

x ℓ

N = x ℓ

1 ,x ℓ

2 ,…,x ℓ

N

T
ℓ =1,…,L (3.87)

From a statistical point of view, dimension reduction can
be achieved by creating standardized linear combinations
(SLC of the elements in random vectors):

SLC= uTXN =
N

n=1

unXn with
N

n=1

u2n =1 (3.88)

The goal is to simplify the relationships between the
various Xn, such that the newly obtained random vector
contains random variables with simpler and easier repre-
sentation of statistical properties; for example, a trans-
formation that minimizes the correlation between the
components in Eq. (3.86). In Section 3.4.2 we used a
least-square criterion to minimize the loss of information.
Here we treat the same problem differently, namely we
would like this new random vector to be as close as pos-
sible in variance to the original random variable. Informa-
tion is now as expressed as a variance (note that a variance
is least square (!) deviation from mean, so a comparison
with two-norms in Eq. (3.73) is not coincidental as
it looks).
Practically, we maximize

Var uTXN = uTVar XN u= uTCNu (3.89)

Here CN is the covariance matrix of the N random vari-
ables and has size N×N. Hence, we need to solve

max
u

uTCNu subject to u =1 (3.90)

This problem is similar to the algebraic projection problem
in RN as outlined in Section 3.4.3, where the matrix to be
decomposed was XTX, which basically serves as the basis
for calculating the (empirical) covariance matrix (although
in algebra such interpretation is not given). Therefore, the
solution to Eq. (3.90) is found by calculating the eigenva-
lues and eigenvectors of the covariance matrix, which
can be estimated from the data (see next section). Note that
this covariance matrix may be extremely large.
Without yet considering any practical calculation, we

write the probabilistic result of this “principal compo-
nent” transformation as

YN = Y1,Y2,…,YN
T =UT XN−E XN (3.91)
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where we centered the original random variable. By
noting that V contains the eigenvectors of CN with eigen-
values λn, n= 1, …, N, we have the following properties
for YN:

E Yn =0 n=1,…,N

Cov Yn,Yn =0 n,n =1,…,N n n

Var Yn = λn n=1,…,N

Var Y1 ≥Var Y2 ≥ ≥Var YN ≥ 0

(3.92)

In other words, we obtain a new random vector, whose
mean is zero, whose components are not correlated, and
whose variances are ranked from high to low, and given
by the eigenvalues of the covariance of the original ran-
dom vector.

3.5.1.2. Practice. The above formulation relies on the
theoretical covariance matrix, as defined by expectations.
In practice, all the expectations need to be substituted with
empirical estimates, subject to their own variances/errors.
Consider the estimates of mean and covariance as

E XN xN
CN SN
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Then using the eigenvalue decomposition on SN : SN=
UTΛSU, we obtain the principal components as

y ℓ

N =UT x ℓ

N −1NxTN (3.94)

With ΛS = diag(λS,1,…, λS,N), the following property
follows

s2yn = λS,n n=1,…,N (3.95)

meaning that the empirical variances s2yn depend on the
eigenvalue of SN, also the empirical covariances are zero.
Because covariances and variances depend on the scale of
a variable, PCA is sensitive to scale changes, such as
simply multiplying a variable with a constant. Tomitigate

this effect, one will need to scale the variables to the same
or similar scale. In summary,

CalculatexN =
1
L

L

ℓ=1

x ℓ

N

CenterSN =
1
L

L

ℓ=1

x ℓ

N −xN x ℓ

N −xN
T

Decompose SN =UTΛSU

Project y ℓ

N =UT x ℓ

N −1NxTN , ℓ=1,…,L

(3.96)

PCA is not just a “trick” to orthogonalize data and look
for combinations of maximum variance. The resulting
linear combination and variances contain interesting
information that need to be interpreted. Since PCA relies
on a linear combination of components of a random vec-
tor, it is imperative to look at the resulting weights.
The weighting informs which directions best explain
variance; hence, it is useful to plot a measure of how well
the first n components explain that variance. This pro-
portion is given as the ratio:

n

n=1
λS,n

N

n=1
λS,n

=

n

n=1
s2yn

N

n=1
s2yn

(3.97)

To summarize this information for all n = 1, …, N, a
so-called scree plot is created (either as individual contri-
bution or as cumulative contribution). It allows for a
direct visual inspection of how much variance the first
n components explain. Then for some given desired var-
iance, one can read off the corresponding n .

3.5.1.3. Application of PCA to Spatial Models.To illus-
trate PCA and its relevance to UQ, consider a case where
the matrix X contains L = 1000 models of some spatial
variable (e.g., porosity, hydraulic conductive, saturation).
The dimension of a model is 125 × 100, henceN= 12,500.
Figure 3.11 shows a few models; the models appear to
exhibit smooth spatial variability. Figure 3.12 shows the
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Figure 3.11 Five spatial models out of a set of 1000.
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resulting PCA. First, we calculate the cumulative contri-
bution of each principal component (PC) to the variance
and create the scree plot. From this plot, we can deduce
that 34 PCs are required to explain 95% of variance.
Although the size of the covariance matrix is N×N, only
a maximum of L − 1 eigenvalues exist, because of the
limited amount of models used.
We can also create a score plot, here the first versus

second score (first two entries in yN), as axes label (and this
a convention throughout the book), we list the percent
contribution to the variance, 10 and 8% respectively in
Figure 3.12. In the score plot, each dot represents an
image. The scatter appears to be a bivariate Gaussian
distribution with zero correlation. The mean of the
realizations is also shown and is close to zero almost

everywhere. Next we plot the PCs, the vectors u of U.
Since X contains “images,” the resulting PCs are images
as well. They also appear to have a meaning: the first
PC seems to contain a spatial basis function that is ellip-
tical, somewhat centered in the middle. The second PC
seems to contain two ellipses (red and blue areas), one pos-
itive and one negative; hence, this represents some gradi-
ent in the image. The next PCs contain more ellipses with
increasing spatial frequency. Why is this? The mathemat-
ical reason for this will be studied in Section 3.7.5. The
spatial models here are realizations of a Gaussian process
(Section 3.7.5), which requires specifying a mean and
spatial covariance. It seems that any realization of such
process can be written as a combination (with standard
Gaussian coefficients) of filters or basis functions (the
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Figure 3.12 Scree plot, average of all models, score plot and 6 out of 1000 PCs, each of dimension 125 × 100.
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PCs) with different spatial frequencies. Hence, it provides
a decomposition of the images into a basis and a set of
random coefficients.
Figure 3.13 illustrates the bijective nature of PCA,

meaning that an image can be reconstructed back, once
all PCs and scores are used. By using an amount of PC
less than L, we find only an approximation of the original
images:

x ℓ

N,reconstructed =
n

n=1

y ℓ

N n
un + 1NxTN (3.98)

Even when using a limited amount of PCs (n = 15) we
find a reasonable approximation of the original image

x ℓ

N . This is less so when the spatial variability becomes
less smooth, see the bottom row of Figure 3.13. This
makes intuitive sense: higher-frequency models require
more frequencies (PCs) to represent them.
Decomposition and reconstruction with PCA is appeal-

ing because it is bijective. However, the method does not
work so well for variables that are not Gaussian, or vari-
ables that have physical bounds, such as the concentra-
tions. Figure 3.14 illustrates this, where PCA is applied
to a set of concentration curves. PCA reveals that only

a few PCs are required to explain variance. This makes
sense, the variation in these curves is not complex; one
could easily fit a parametric function with a few para-
meters. However, the PCs, which are unbounded, have
negative values as shown in Figure 3.14. As a result,
any reconstruction with limited PCs will lead to unphys-
ical values (negative concentrations).

3.5.2. Multidimensional Scaling

3.5.2.1. Basic Example. In Section 3.4.4, we presented a
dual algebraic view on the data matrix, one based onXTX
and one based on XXT. The statistical variation of the
same type of orthogonal analysis, termed PCA is based
on XTX which is essentially the empirical covariance
matrix (up to a factor of 1/L). It therefore makes sense
when L N to look at the dual of PCA, which will
now be based on the dot-product XXT. This method is
termed multidimensional scaling (MDS).
In presenting MDS, we will not start from a Cartesian

axis system and space, but we will start from a space in
which only distances are defined: a metric space. As an
illustrative example, consider L cities and a distance
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Figure 3.13 Examples of reconstruction of two spatial models with different spatial variability.

DATA SCIENCE FOR UNCERTAINTY QUANTIFICATION 63



table between those cities (see Figure 3.15). Like PCA,
MDS is a projection method, but now such projection
occurs from a metric space into a Cartesian space. More
specifically, MDS finds the projection that best matches
the distance in the distance table. Like PCA, such projec-
tion can be done in 1D, 2D, …, LD. Note that the maxi-
mal projected Cartesian space has dimensionL (and notN
as for PCA). In that sense, it is also a dimension reduction
method.

3.5.2.2. MDS Projection. In MDS, we start from an
L × L distance matrix. This could be the differences
between any two models, any two data responses, or
any two predictions. What is important is that from

now on we will work with x ℓ

N ,ℓ=1,…,L (column-wise)

and not x L
n ,n=1,…,N (row-wise) as in PCA. To lighten

the notation, we will write x(ℓ) instead of x ℓ

N . Consider
first the Euclidean distance:

d2
ℓℓ
= x ℓ −x ℓ

T
x ℓ −x ℓ , 1 ≤ ℓ,ℓ ≤L x ℓ ,x ℓ RN

3 99

The usual notation of d2
ij = xi−xj

T xi−xj is now put in
the specific context of UQ problems. The aim of MDS is
to recover in lower dimensions, the original Cartesian
coordinates of x(ℓ) from a distance matrix, in this case
containing Euclidean distances. However, since our dual
treatment of the data matrix only works on either the
covariance or the dot-product matrices, we need to
retrieve the dot-product matrix from the Euclidean
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distance matrix. To achieve this, we rely on the following
relationship:

d2
ℓℓ

= x ℓ
T
x ℓ + x ℓ

T
x ℓ −2x ℓ

T
x ℓ

= bℓℓ + bℓ ℓ −2bℓℓ
(3.100)

with bℓℓ a dot-product between x(ℓ) and x ℓ . Similar to
centering operations on the covariance matrix in PCA,
we need to center the dot-product matrix to obtain

L

ℓ=1

bℓℓ =0 (3.101)

This is not as trivial because we can no longer calculate
a mean directly from data. Instead, we impose this con-
straint as follows:

1
L

L

ℓ =1

d2
ℓℓ
=

1
L

L

ℓ =1

bℓℓ + bℓ ℓ

1
L

L

ℓ =1

d2
ℓℓ
= bℓℓ +

1
L

L

ℓ=1

bℓ ℓ

1
L2

L

ℓ =1

L

ℓ=1

d2
ℓℓ
=

2
L

L

ℓ=1

bℓℓ

(3.102)

With this centering, we can nowwrite the dot-product as a
function of the Euclidean distance:

bℓ ℓ = −
1
2
d2
ℓℓ
−
1
2

d2
ℓ• + d2

•ℓ −d2
•• (3.103)

where the • refers tothe summingover the indicesEq. (3.103).
We can also put the same expression in matrix notation.
Consider, then, A the matrix containing the entries − 1

2d
2
ℓℓ

and H the centering matrix, in this case, = IL− 1
L1L1

T
L .

Then the dot-product matrix B can be written as

B= HA HA T

=XXT
(3.104)

Now consider the eigenvalue decomposition of B

B = VBΛBVT
B

= VBΛ
1 2
B VBΛ

1 2
B

T (3.105)

Hence, the coordinates of X can be reconstructed by
means of

X =VBΛ
1 2
B (3.106)

One of the strengths of MDS is that any distance can be
used, not just the Euclidean distance. Figure 3.16 illus-
trates overhead images of 136 from a flume experiment
(see Chapter 5 for details on this data set). The modified
Hausdorff distance is calculated for each pair of images.
MDS is then used to create a 2Dmap of these images (just
like mapping of cities). In this map, images that look alike
(small distance) are plotted close by.

3.5.2.3. Kernel Density Estimation in Metric Space.
MDS generates a Euclidean space of dimension n L.
The higher the dimension the better that space approxi-
mates the variability of the physical variable as modeled
by the distance defined. The Euclidean space approxi-
mates how close variables are with respect to each other;
hence, if the original variable is a stochastic variable (of
very high dimension possibly), then MDS creates an
empirical density of these variables in lower-dimensional
space. If the approximation can be done in a low dimen-
sion (e.g., <6), then one can estimate the pdf from the
cloud of points. A useful method in that regard is kernel
density estimation [Silverman, 1986, see Section 3.3.2].
When applied to a set of reconstructed coordinates

x ℓ

n ,ℓ=1,…,L with some low dimension n L, then a
kernel density estimate is

f xn =
1
L

L

ℓ=1

K
xn− x ℓ

n

σ
(3.107)

Boston NYC DC Miami Chic Seattle SF LA Denver

Boston 0 206 429 1504 963 2976 3095 2979 1949

NYC 206 0 233 1308 802 2815 2934 2786 1771

DC 429 233 0 1075 671 2684 2799 2631 1616

Miami 1504 1308 1075 0 1329 3273 3053 2687 2037

Chic 963 802 671 1329 0 2013 2142 2054 996

Seattle 2976 2815 2684 3273 2013 0 808 1131 1307

SF 3095 2934 2799 3063 2142 808 0 379 1235

LA 2979 2786 2631 2687 2054 1131 379 0 1059

Denver 1949 1771 1616 2037 996 1307 1235 1059 0

Boston

NYC

Miami

DC

Chicago

Denver

Seattle

SF

LA

Figure 3.15 MDS: turning a distance table between cities into a 2D map.
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Figure 3.16 shows an example of kernel density estimation
applied to the flume experiment images.
As another example, consider again the simple hydro

case. First, we calculate the Euclidean difference between
any two model realizations in our hydro case:

d2
ℓℓ
= m ℓ −m ℓ

T
m ℓ −m ℓ , 1 ≤ ℓ,ℓ ≤L (3.108)

or simply the square difference between values in the grid.
Note that these realizations have different variogram
ranges, nuggets, and types. Figure 3.17 shows the score
plot colored by the type of variogram (spherical vs.
Gaussian).
Consider now calculating the distance between the con-

centration responses calculated from these hydraulic con-
ductivity (Figure 3.17). The score plot of Figure 3.17
looks a lot like the score plot of Figure 3.14. This makes
sense, because of the duality of MDS with Euclidean dis-
tance and PCA. An interesting observation in Figure 3.17
is the coloring of the dots with parameter values that were
used to generate the models. In the first plot, we observe
that the red and blue dots occur randomly, while in the
second plot (mean k), we observe a clear trend. The inter-
pretation is that mean k impacts the response while the
variogram does not. This will be used in Chapter 4 to
develop methods of sensitivity analysis.

3.5.3. Canonical Correlation Analysis

Continuing our study of “data” and the analysis of data
matrices from an algebraic and statistical point of view,
we now study two data matrices jointly and how they
relate to each other. We will again rely on a least-squares
framework with Cartesian axis, Euclidean distances, and

orthogonal projections. A method of multivariate analy-
sis for exploration and quantification of the relationships
between two data matrices under these principles is
termed canonical correlation analysis (CCA). Like PCA
and MDS, CCA is an orthogonal method that relies on
projections in lower dimensions.

3.5.3.1. Theory. Consider two random vectors X, Y
RN (orRL, or they can be of different dimension). We con-
sider the linear combinations

aTX

bTY
3 109

The correlation between these two random variables can
be derived as

ρ aTX, bTY =
aT cov X,Y b

aT var X a bT var Y b

=
aTCXYb

aTCXXa bTCYYb

(3.110)

InCCAwe find themaximumof this correlation.Thismax-
imum depends on the singular value decomposition (eigen-
values in case dim(X) = dim(Y)) of the following matrix

C =C1 2
XXCXYC

1 2
XX =VΛUT (3.111)

namely, the linear combinations that result in maximal
correlation are the canonical correlation vectors

ack =C−1 2
XX vk k=1,…, rank C

bck =C−1 2
YY uk

(3.112)
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Figure 3.16 (a) MDS projection of 136 binary overhead snapshots of a flume experiment, using the modified Hausdorff distance.
(b) Kernel density estimation in MDS projection.
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This results in a set of new vectors whose pair-wise com-
ponents are maximally correlated (and hence cross-
components are minimally correlated):

Xc
k = ack

TX k =1,…, rank C

Yc
k = bck

TY
(3.113)

The maximal correlations are function of the eigenvalues

ρcmax,k = λk (3.114)

3.5.3.2. Example. In constraining predictions, we often
use data. For example, we use pressure data to constrain per-
meability or head data to constrain hydraulic conductivity.
The hope is that by building calibrated models, the predic-
tion will have less uncertainty than not doing so. This kind
of calibration (inversion, Chapter 6) becomes very difficult
when models and data become very complex and high
dimensional. In Chapter 7, we will develop an alternative
approach that “learns” prediction directly from data. In
such learning CCA will be used as one method to learn.
A simple example is as follows. Consider the models gener-
ated in our hydro case and consider that both data variables
and prediction variables have been evaluated. The data

consists of seven measurements of hydraulic head, the pre-
diction is the concentration. They should be related. The
question is how this can be visualized, after all we are dealing
with a seven-dimensional variable and a function. To do
this, we apply first PCA on each variable (see
Figure 3.18). The first PC of the data does not correlate with
the first PC of the prediction. CCA finds the optimal linear
combinations that find this correlation. Consider that for the
data we retain two PCs (about 90%) and for the prediction
we retain five PCs. This means that a maximum of two
canonical components can be calculated, as shown in
Figure 3.18. We note the high correlation of 0.86 in the first
components, which is encouraging since it means that data
are correlated with the prediction, so reduction in uncer-
tainty on the prediction is possible. In Chapter 7, we will
use CCA to build linear relationship between complex
objects, whether vectors, functions, or 2D/3D maps.

3.6. FUNCTIONAL DATA ANALYSIS

3.6.1. Introduction

Multivariate data analysis comprises methodologies to
address the statistical analysis of data and inference with
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Figure 3.17 (a) Scree plot and MDS projection when the distance is the Euclidian distance between hydraulic conductivity
realizations. (b) MDS projection when the distance is the Euclidian distance between realizations of concentration in time. The
plots are colored by model parameters.
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high-dimensional data and models. In certain cases, it is
however more effective to resort to functional data anal-
ysis (FDA) [Ramsay and Silverman, 2005]. The decision
between the two is a subjective choice. Broadly speaking,
FDA relies on the notion that the data has some system-
atic variation. In the context of this book, this can refer to
cases where physical dynamics are driving the system,
but because of uncertainty, the exact nature is not fully
known; only what that systematic part looks like. For
example, a concentration of some substance starts at zero
and then gradually increases to level off at 100%, but we
do not know when that starts or how fast or when it levels
off. In the latter case, the variable is a function of time,
and hence in theory, infinite-dimensional. In multivariate
analysis, we would instead discretize time into small inter-
vals and treat time instance variables as high-dimensional
(and highly correlated). This is not required in FDA and is
amajor advantage. FDA is a non-parametric approach. It
does not rely on fitting functions that represent physics.
For example, in the production of shale gas (see
Figure 3.19) the function is simply a peak (peak gas) fol-
lowed by some decline. The parametric approach would
be to fit these parametric functions to observed decline

data to get parameter estimates. The problem is that the
functional form has to be known and currently it is not
clear, for shale gas production, which forms are appropri-
ate. FDA avoids this by using standard basis functions
that can be used in many applications.

3.6.2. A Functional Basis

More formally, FDA assumes that changes in any
measurement of a physical variable over space or time
is based on an underlying smooth physical process that
in turn can be mathematically represented using a contin-
uous and differentiable mathematical function and that
this function not always needs to be known for analyzing
measurements. This assumption allows for the decompo-
sition of any time series measurement into a linear combi-
nation of underlying continuous functions called basis
functions, forming a functional basis. Multiple functional
bases such as a sinusoidal basis, a Fourier basis, a polyno-
mial basis, an exponential basis, or a spline basis are avail-
able and the choice between them is application driven.
The spline basis has an advantage over the others
because of its versatility in terms of computational ease
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of evaluation, as well as their derivatives. This flexibility
will be used throughout this book. Consider a time series
x(t) as an example. Using a spline basis of K spline
functions {ψ1(t), ψ2(t),…, ψK(t)}, the time series is
approximated by a linear combination

x t
K

k =1

cψ ,kψk t 3 115

where the FDA components cψ ,k are the scalar linear com-
bination coefficients of the spline function ψk(t). In terms
of matrix notation, consider matrix X containing L sam-
ples of time series sampled at N time instances, the FDA
composition can be written as

X CψΨ (3.116)

where the K ×N matrix Ψ contains the values of the
K spline basis functions at the N values of time t = t1,
t2,…, tN as row vectors, and the L×KmatrixCψ contains
the K coefficients or FDA components of each of the L
time series as row vectors.
Consider the example of shale oil production from

200 wells as shown in Figure 3.19. The coefficients in

Eq. (3.115) are found by least-square fitting with a regu-
larization term

argmin
cψ,k

L

ℓ=1

x t −
K

k =1

cψ ,kψk t

2

+ λ
d2

dt2

K

k=1

cψ ,kψk t

2

dt

(3.117)

The regularization term avoids overfitting noisy data by
adding a roughness penalty in terms of the second deriv-
ative. FDA therefore requires specifying two tuning para-
meters: λ the amount of smoothing and K the number of
basis functions. These are usually obtained by means of
cross-validation [Ramsay and Silverman, 2005].

3.6.3. Functional PCA

As discussed in Section 3.5.1, PCA is a multivariate
analysis procedure that uses an orthogonal transforma-
tion to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated
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Figure 3.19 Raw data of oil rate decline in 200 wells; basis function and fitting with smoothing; all 200 smoothed data.
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variables. PCA identifies the principal modes of variation
from the eigen-vectors of the covariance matrix. Func-
tional PCA (FPCA) simply consists of doing eigenvalue
decomposition on the vectors of component data cψ ,k
obtained after functional decomposition. Hence FDA
turns a functional problem into a vector problem on
which classical multivariate techniques apply. The end
result is that the function can be approximated by a linear
combination of eigen-functions ϕm(t):

x t
M

m=1

cfmϕm t (3.118)

Conventionally M K, so the PCA step of FPCA
achieves a dimension reduction. How do we get to
(3.118)? Recall that PCA relies on an eigenvalue decom-
position of the covariance matrix of a random vector X:

CNu= λu or CN =UTΛU (3.119)

The covariance matrix is of size N×N. In a functional
space, however, we define the empirical covariance func-
tion of a set of sample functions {x(1)(t),…, x(L)(t)}:

c tn, tn =
1
L

L

ℓ =1

x ℓ tn x ℓ tn (3.120)

The eigen-problem is now defined as an integral

c tn, tn u tn dtn = λ u tn (3.121)

If we define

Cu= c , tn u tn dtn (3.122)

which is an integral transform C of the function u. C is
now a covariance operator instead of a covariance matrix,
hence

Cu= λu (3.123)

which looks like PCA but now with functions. One major
difference, however, lies in the rank of the covariance
matrix versus the integral transform. In PCA, the rank
of the empirical covariance matrix is maximally equal
with L − 1, because L N the dimension of the vector.
In functional analysis the function can be sampled infi-
nitely; hence, N can be very large. Practically, we need
to retain only a few dimensions in most cases, here
denoted asM. Expression (3.118) is obtained by equating
the firstM eigen-functions um(t), m= 1,…,M with ϕm(t),
m= 1, …, M and the weights (the component scores) as

cfm = ϕm t x t dt (3.124)

Evidently, all integrals are approximated by sums.

Figure 3.20 illustrates the use of FPCA to the shale oil
decline curves. Similar to PCA, a score plot of the FPC
can be produced. Additionally, one can plot the eigen-
functions, which are often termed “harmonics” referring
to components of vibration of a string fixed at each
end. Here these “vibrations” are the changes of the func-
tion around the mean. To visualize this better, one often
plots this mean, added and subtracted with some multiple
of the eigen-function. This is shown in Figure 3.20. Now
one notices how the first functional component (75.3% of
variance) represents a variation around the mean, the sec-
ond functional component (12.6%) has a stationary point
around 50 days. This can be attributed to a change in pro-
duction from flow due to fracturation to flow through the
geological medium. The third component has two station-
ary points, one early and one around 100 days.

3.7. REGRESSION AND CLASSIFICATION

3.7.1. Introduction

Regression and classification methods are important
elements of statistical learning [Hastie et al., 2009].
Numerous methods have been developed, from simple
linear regression to nonlinear methods such a neural net-
work or deep learning [see e.g., Bishop, 1995]. In general,
these are denoted as methods for “predictive learning
from data.” In selecting a suitable method, one will need
to account for a variety of criteria. Table 3.2 provides an
overview of some popular methods, together with criteria
against which each method can be evaluated. Artificial
neural networks (ANN) constitute a large family of non-
linear regression models that create a nonlinear mapping
between input and output variables. The initial idea of
ANN was to solve problems in the same way the human
brain would. A support vector machine (SVM) uses super-
vised learning to create a classifier that separated regions
in space by means of hyperplanes. The k-nearest neighbor
is a local classification or regression method that uses an
amount k of nearest data near a location in input space
that needs to be classified and regressed. The result is sim-
ply a majority vote (classification) or an average (regres-
sion). Kriging accounts for the correlation between
predictors and allows to interpolate data. In this section,
we will focus on several of these methods and how they
apply in the context of UQ.

3.7.2. Multiple Linear Regression

The simplest form of linear regression is multiple linear
regression. It is used to model the relationship between
one or more data variablesX = {X1,X2,…,XN} and a sin-
gle continuous prediction variable Y. The fundamental
assumption of multiple linear regression is that the
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conditional expectation function E(Y|X) can be expressed
using the linear relation:

E Y X = β0 + β1X1 + β2X2+ + βNXN 3 125

β0 is commonly referred to as the intercept while β1,…, βn
are termed coefficients. We also assume the existence of
an unobserved random variable ϵ that adds noise to the
linear relationship. Given L measurements of X and Y
that are independently and identically distributed, the
modeled relationship can be expressed as

y ℓ = β0 + β1x
ℓ

1 + β2x
ℓ

2 + + βNx
ℓ

N + ϵ ℓ for ℓ =1,…,L

(3.126)

In matrix notation, this is written as

y=Xβ+ ϵ (3.127)

where each of the matrices is given as

X =

1 x 1
1 x 1

N

1 x L
1

x L
N

(3.128)

β=

β0

βN

,y=

y 1

y L

,ϵ=

ϵ 1

ϵ L

(3.129)

To solve for the unknown coefficients and intercept,
an estimation method is required. A variety of different
techniques can be used, for example ordinary least squares
(OLS), generalized least squares, ridge regression, maxi-
mum likelihood estimation, and so on. Each method var-
ies in terms of computational complexity and underlying
assumptions. Refer to Hastie et al. [2009] for a discussion
of various estimators and their properties. We will con-
sider the simplest and most commonly used estimator:

OLS. The solution from OLS in matrix notation is as
follows:

β= XTX
−1
XTy (3.130)

Using this estimated β, the predicted values of Y can be
computed as y=Xβ. The difference between these pre-
dicted and observed values of Y is called the residual:

r= y−y= I −X XTX
−1
XT y (3.131)

The OLS solution is the one that minimizes the sum of the
squares of the residuals. It does however, require additional
assumptions. First of all, the error random variable should
have a zero mean, E[ϵ] = 0, and be uncorrelated with the
data variables E[XTϵ] = 0. Furthermore, the data variables
in X must be linearly independent, the failure of which is
termed multicollinearity. Finally, the error term must be
homoscedastic, that is, the variance of the errors should
not change between different observations. This is expressed
mathematically as E[(ϵ(ℓ))2|X] = σ2 for ℓ= 1,…,L, where σ2

is finite.
When each of the previous conditions are met, OLS can

be used to make estimates of the prediction variable for
new data observations Xnew.

ynew =Xnewβ (3.132)

This is also known as the minimum-variance unbiased
estimator. By performing this analysis, we can make esti-
mates of a prediction variable using multiple data
variables.

3.7.3. Support Vector Machines

SVMs are powerful and popular statistical models used
for both regression and classification. It was originally
invented as a linear binary classifier [Vapnik and Lerner,
1963] but has since seen numerous improvements to

Table 3.2 Overview of methods of regression and classification and how they score on various criteria.

Criteria Neural net Kriging SVM Kernel k-NN Trees Boosted trees

Mixed-type data − + − − + +

Missing data − + − + + +

Robust to outliers − 0 − + + +

Computational scalability − 0 − − + +

Deal with irrelevant input − 0 − − + +

Ease of interpretation − + − − 0 −

Predictive power + 0 + + − +

Source: Idea adapted and extended from Hastie et al. [2009].
− = poor; + = good; 0 = average.
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handle nonlinear boundaries, soft margins, regression,
and multiple classes. Given a set of training samples, each
labeled as being in one of the two classes, the basic SVM
aims to train a linear hyperplane that separates the sam-
ples according to its class.
The basic SVM is applied when we have a set of real pre-

dictor variablesXandbinarypredictor variableY {−1, 1}.
SVM attempts to fit a linear hyperplane wTx+ b= 0 that
separates the samples into two classes. This means finding
the value of w can then be expressed as an optimization
problem:

min
w

w

subject to

y ℓ wTx ℓ +b ≥ 1 ℓ=1,…,L (3.133)

This can be solved using quadratic programming. Once
the hyperplane has been estimated, predictions for a
new sample x� can be made by evaluating

f x� = sgn wTx� +b (3.134)

This optimization problem can be solved using Lagran-
gian multipliers, in which a multiplier λ(ℓ) is assigned to
each of the constraints. The resulting decision boundary
can then be expressed as

f x� = sgn
L

ℓ=1

λ ℓ y ℓ K x�,x ℓ +b (3.135)

The function K(x�, x(ℓ)) = ϕ(x�)Tϕ(x(ℓ)) is known as the
kernel function. ϕ is a function that projects x(ℓ) into a
new space. This is particularly useful when the samples
are not linearly separable in the original x(ℓ) space; ϕ can
be used to map the samples into one in which they can
be linearly separated. This newly transformed space
canbeof anyarbitrarydimension andyield complex separ-
ating hyperplanes that may be computationally expensive
to solve. However, by realizing that the decision boundary
only requires the dot-product of the vectors in the trans-
formed space, we can replace it with a chosen kernel func-
tion and forgo the transformation. This is known as the
kernel trick and is what allows SVMs to work with nonlin-
early separable data. Section 3.8 describes some possible
choices of kernel functions.
Another use of SVMs is that of anomaly detection. This

occurs when the training samples are only of a single class,
but we need to determine if new samples fall within this
class or represent an anomaly. Essentially, the idea is to
find a minimal volume hypersphere around the training
sample. Any new samples that fall outside the hypersphere
are classified as anomalies. This hypersphere is fitted in a
transformed space using the kernel trick and is parame-
trized by its center coordinate a and its radius R.

In a one-class SVM, we cannot maximize the distance
between the prior and the unknown non-prior class.
Instead, we fit the hyperplane such that all the prior sam-
ples are on one side, and we maximize the distance
between the hyperplane and the origin of the data space.

min
R,a

R

subject to

x ℓ −a
2
≤R2

ℓ=1,…,L (3.136)

The decision boundary then becomes

f x� = sgn
L

ℓ=1

αi K x�,x ℓ −R2 (3.137)

This one-class SVM is useful for detecting when new
samples are not part of the class in which the training
samples are part of. Chapter 7 has application of one-
class SVM for detecting if a prior distribution within a
Bayesian context is consistent (or not) with some observed
data.

3.7.4. CART: Classification and Regression Trees

3.7.4.1. Single Tree Methods. The basic idea of tree-
based methods is simple, yet powerful. Figure 3.21 show-
s a simple tutorial example with two predictor variables
X1 and X2. Trees rely on a binary partition of the input
space and model Y by means of a constant in the parti-
tioned regions. In other words, the model ofY is piecewise
discontinuous. The hierarchy of this partitioning can
be represented with a tree-like topology, such as
Figure 3.21. The estimate for Y is simply the average of
the y(ℓ) in each region. The main question is, therefore,
how to split the input space in these regions (what is the
topology of the tree?).
For regression, the tree model is

y=
M

m=1

cmI x Rm (3.138)

which is simply a linear combination of discrete indicator
functions (I) over M regions Rm. Based on the
observations (x(ℓ), y(ℓ)), ℓ= 1, …, L, a regression model
is then estimated by calculating the coefficients as follows:

cm =
1

# y ℓ x ℓ Rm y ℓ x ℓ Rm

y ℓ

y=
M

m=1

cmI x Rm

(3.139)

Basically, this is simply the average of the sample values
of y in each region. For categorical variables that are
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ordinal, the splitting occurs at discrete instances. How-
ever, for categorical variables that are not ordinal (e.g.,
a geological scenario), one needs to explore all combina-
torials of splitting, which may become large.
To find an optimal partition, one could formulate a

least-square criterion between the model and the data,
then try out every possible partition. This is computation-
ally infeasible. Instead, a greedy algorithm is used where
the least squares is defined based on first the split variable
then on the split-point for that choice of variable. The rea-
son for this is that sorting through the universe of vari-
ables is easier than the possibilities of split-points. The
question now is how large to grow the tree: too large of
a tree will lead to overfitting the data. The tree size deter-
mines the complexity of the model of Eq. (3.138). The
main idea here is to grow a large tree, then “prune” the
tree. To achieve this, one formulates a new least-square
criterion but now adding a regularization term that
includes the number of terminal nodes (see Breiman
et al. [1984] for details).
For classification the same idea is used except that the

least-squares criterion is dropped in favor of a more suit-
able one for classification. For classification, one models
in each region Rm the estimated proportions of each
class y {k = 1,…,K}, as pmk. In such regions, the class
with the largest proportion is taken as the estimated class.
An example of a suitable criterion (instead of least
squares) for establishing an optimal tree is, for example,
to minimize entropy

E = −
K

k =1

pmk log pmk (3.140)

Consider now the application of the regression tree to the
hydro case of Section 3.1. The aim here is to emulate the

forward model of predicting contaminant arrival time (y)
using six input (predictor) variables. Four parameters
related to the hydraulic conductivity, Kmean, Ksd, Krange,
and KCov, and two parameters related to boundary
conditions, HrivGrad, Hrange, are used. The tree model is
shown in Figure 3.22, split first onKmean, then onHrivGrad,
and so on.

3.7.4.2. Boosted Trees. As shown in Table 3.2, the pre-
diction power of trees is lesser than most other methods,
they seldom have more accuracy than what can be
achieved with the data itself [Hastie et al., 2009].
Figure 3.23 shows that in the hydro case the prediction
performance of regression of arrival time in terms of cor-
relation with a test set is only 0.43. This is partly due to the
piecewise continuous nature of the model. It is, therefore,
considered a weak classifier, meaning it would not do
much better than random selection. A powerful method
for dealing with such cases is “boosting.” The idea of
boosting is that it uses outcomes of weak classifiers and
produces a powerful “committee” by combining the
strengths of each weaker classifier (the whole is better than
each of the individuals). The idea of boosting is very sim-
ple. It works for both regression and classification, but
consider classification as an example here. A classifier,
such as a tree, takes some input x and classifies it
using y(x), with possible class outcomes k = 1, …, K.
The idea of boosting is to generate a sequence of classifiers
on repeatedly modified versions of the same data.
Intuitively it works as follows. Consider a data set (x(ℓ),

y(ℓ)), ℓ= 1,…, L of i.i.d. samples, meaning each has equal
weightwℓ= 1/L. A base classifier, such as the tree, will per-
form better on certain pairs (x(ℓ), y(ℓ)) than on other pairs.
Boosting consist of generating a new tree classifier but
now using an error model that has increased weights on

X1 ≤ t1

X2 ≤ t2

R1 R2 R3

R4 R5

X1 ≤ t3

X2 ≤ t4

t2

X2

X1

R1

R3

R2

R5

t4

t3t2

R4

Figure 3.21 Example of a regression tree with two variables and four splits.
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samples with large errors. The classifier is, therefore,
forced to concentrate on samples that are hard to classify.
Each of the generated classifiers in this sequence is still
weak classifiers (increasing weights may also decrease per-
formance on others). Therefore, the ultimate classifier is
taken as a weighted combination of the sequence of
classifiers.

Mathematically, this means that a specification of error
is needed for classifier ym in the sequence m= 1, …, M

err m =

L

ℓ =1
wℓI y ℓ ym x ℓ

L

ℓ=1
wℓ

(3.141)
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Figure 3.22 Regression tree for the case of Section 3.1, involving six variables and 200 runs of the model. The color is the average
arrival time. The color indicates the deviation from the global average (26.3).
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Figure 3.23 Application of a single tree and boosted tree to a test set, shown are observed and predicted arrival time.
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that this error is turned into a weight for that classifier ym

αm = log
1−err m
err m

(3.142)

and that this weight and the error are used to determine
the re-weighted samples

wℓ wℓ exp αmI y ℓ ym x ℓ ,ℓ=1,…,L (3.143)

for some initial set of weights wℓ= 1/L. The final classifier
is then

y x =
M

m=1

αmym x (3.144)

A boosted tree model is, therefore, simply a weighted sum
of trees. Figure 3.23 illustrates the difference in perfor-
mance between a single tree and a boosted tree for the
hydro regression problem. Here 80% of the data (160
runs) are used to establish the tree, while 20% (40 runs)
are withheld to evaluate the tree. Even if improved, the
rather low correlation also shows that other variables,
not used in fitting the tree, affect the response, in partic-
ular the heterogeneity of the hydraulic conductivity. In
Chapter 4, we will introduce methods that can include
these variability tree methods and hence even further their
performance.
Tree methods span a large variety of ideas on the same

theme. Bagging or bootstrap aggregation with trees con-
sists of generating bootstrap samples of the data set, then

averaging the estimator generated with these bootstrap
sample. We will discuss The Bootstrap in Section 3.13.
Unlike bagging, boosting, a so-called committee of weak
learners, varies over time. Another modification of boost-
ing and bagging are random forests. Here we also generate
bootstrap samples of the data, but in addition, when
growing the tree, at each terminal node of the tree, we
select randomly a subset of variables of the N variables
xn and pick the best split-point amongst that subset. This
creates an ensemble of trees (a forest). In a regression
problem, one simply averages the trees.

3.7.4.3. Sensitivity. The topic of “sensitivity” of predic-
tor variables on predictants will be extensively treated in
Chapter 4. Regression trees constitute one such method
since it allows ranking the relative importance (or
broadly, sensitivity) of variables X in predicting Y. Brei-
man et al. [1984] proposed the following quantification
of the importance for each variable xn:

I2n =
J−1

j =1

i2j I v j = n (3.145)

To explain this intuitively, consider Figure 3.24. The sum-
ming here is over internal nodes, a total of J − 1. The
importance of a variable is quantified by how much the
square error improves when splitting the tree on that var-
iable. For example, in the first internal node j = 1, we split
on the second variable v(1) = 2, and calculate how much
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Figure 3.24 (a) Example calculation of variable importance (sensitivity) for the case of Figure 3.21 using regression trees. (b) Relative
importance (sensitivity) using boosted tree model for the arrival time response. Relative importance is expressed in percent.
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the square error improves as i22. This is continued over all
internal nodes, for Figure 3.24, we therefore get

I21 = i22 I 22 = i21 + i23 (3.146)

In Chapter 4, we will use this basic notion and extend it
to perform sensitivity analysis on much more complex
situations than a few simple scalars and develop methods
of sensitivity for objects such as curves, maps, or volumes,
given any type of input variable.
When using boosted trees, the relative importance is

averaged over all trees in the sequence. Figure 3.24 shows
the application of this to the arrival time response case.
The mean hydraulic conductivity together with the river
gradient have the largest relative importance.

3.7.5. Gaussian Process Regression: Kriging

3.7.5.1. Introduction. Least-square problems comprise
a large family of statistical learning and inference pro-
blems. The “square” in the names is relevant as differen-
tiation of squared functions lead to linear functions, which
then allows for straightforward linear algebra. In addi-
tion, the Gaussian distribution contained a squared func-
tion (after taking the log), leading to a preponderant role
of theGaussian family of distributions in least-square pro-
blems. In presenting these methods, we provide a survey
of two literature, which treat the same problem: Gaussian
process regression (used in the statistical community) and
simple kriging (developed somewhat independently in the
geostatistical community).
In uncertainty quantification, least-square problems

take an important role, in particular when relationships
between models and data or data and prediction are lin-
ear. In all such cases, the inference problem is reduced
to estimating first- and second-order statistics, in particu-
lar conditional means, variance, and covariance of, for
example, the model parameters given the data observa-
tion. Closed form expressions for the posterior distribu-
tion modeling the uncertainty are available in such
cases. Evidently, most real-world problems are not Gaus-
sian, nor linear, and hence more advanced methods rely
on extending these linear method to more general cases,
which we present in Chapter 6.

3.7.5.2. What Is a Gaussian Process?.AGaussian proc-
ess is a stochastic process defined over a continuous domain
of some finite dimension (e.g., 1D-time, 2D/3D= space).
The stochastic naturemeans that we do not know their out-
come at each point of the domain, but we assume it has
a Gaussian distribution as a model of uncertainty of
that unknown value. We also assume that any finite set
of unknown values follows a multivariate Gaussian distri-
bution and, as a consequence, any finite set of linear

combinations of unknown values is also multivariate
Gaussian. Note that Gaussian processes can be defined
over any high-dimensional domain, not just 1D, 2D,
or 3D. In 3D, a Gaussian process is also termed a
Gaussian “random field.”For example, wemay have some
unknown model variables that are spatially distributed
over a grid:

m= m s1 ,…,m sNgr (3.147)

with location in space sn. Consider now any pair of
unknown model variables, then the covariance function is

C sn,sn = cov m sn ,m sn n,n (3.148)

under stationarity assumptions over the domain this
reduces

C sn,sn = cov sn−sn n,n (3.149)

with sn−sn the distance between these two locations in the
domain. In geostatistics, one usually uses the variogram
instead of the covariance:

γ sn−sn = var − cov sn−sn ; var = cov 0

TheGaussian process is completely defined by the second-
order statistics, mean, and covariance function (or
variogram). Common covariance functions used are
exponential, Matern, or linear, each leading to Gaussian
processes with different characteristics. Examples of some
realizations of Gaussian processes are shown in
Figure 3.25.
An important property of a Gaussian process relates

to how Gaussian processes or data that follow such
processes can be orthogonalized, meaning having their
correlation removed (as was done using PCA). More
specifically, consider the orthogonal decomposition of
the covariance function as follows (Mercer’s theorem):

C sn,sn =
∞

j =1

λjψ j sn ψ j sn (3.150)

where ψ j(s) are termed eigen-functions and λj eigenvalues
such that

λjψ j sn =

∞

−∞

C sn,sn ψ j sn dsn (3.151)

This looks similar to PCA (eigen-decomposition of the
covariance matrix) but now written with integrals and
functions instead of sums and vectors. Mercer’s theorem
can be used to turn a Gaussian process into a sum of
uncorrelated random variables.

X sn =
∞

j =1

λjψ j sn Zj Zj N 0,1 (3.152)
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Within the context of this book X(s) can represent any-
thing, whether model, data, or prediction variable, hence
of any dimension. This decomposition is also termed the
Karhunen–Loeve expansion, which is basically a general-
ization of SVD (PCA) to continuous spaces. A Gaussian
process can be approximated by a finite sum by truncating
the sum based on decreasing eigenvalues (see Figure 3.26):

X sn
J

j =1

λjψ j sn Zj Zj N 0,1 (3.153)

Generating (approximate) realizations of the Gaussian
process can now proceed simply by drawing Gaussian
deviate zj.

3.7.5.3. Prediction with Gaussian Processes. Consider
first the general problem of predicting some unknown
value, assuming that the unknown values as well as any
observed value were somehow generated from aGaussian
process. Note that this cannot be verified [Mariethoz and

Caers, 2014], since we do not have any replicates of the
process. Still, it is interesting to study prediction (and
hence uncertainty quantification) under such conditions.
Suppose we have observed the process at certain points

x s1 ,…,x sN and we want to predict X at some desired
location s0 (with unobserved value of the process). Given
the assumption of a Gaussian process, we assume the ran-
dom vector X s1 ,…,X sN ,X s0 is multivariate
Gaussian. We also assume for convenience that the mean
of the process is zero (and known). The covariance matrix
of that multivariate Gaussian distribution is partitioned
as follows:

K+ =
K k

k k0
(3.154)

with

K covariance between any twodata locations
k vector of covariance between anydata location

and the unknown
k0 prior variance at the location tobepredicted

The multivariate distribution of X s1 ,…,X sN ,X s0
is completely known and needs to be conditioned on
specific observations x s1 ,…,x sN . The resulting
conditional distribution of X(s0) is also Gaussian and
has conditional mean and covariance [von Mises, 1964]

E X s0 x s1 ,…,x sN = kTK −1x

x= x s1 ,…,x sN

var X s0 x s1 ,…,x sN = k0−kTK −1k

(3.155)

Important to note is that the expected value is a linear
combination of the data and that the conditional variance
is not a function of the observed values. Instead, it uses the
same linear combination (kTK−1), but it is now applied to
the covariances k and compared (subtracted) from the
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Figure 3.25 Five realizations of Gaussian processes for different covariance models.
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Figure 3.26 Example of approximate realizations of a Gaussian
process generated using Karhunen–Loeve expansion (compare
with the left figure in Figure 3.25).
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prior variance (not knowing anything, except that the
process is Gaussian with some variance). A useful prop-
erty of this result is that prediction is exact at the data loca-
tions. This means that the expected value, as function of s,
interpolates exactly the data, as shown in Figure 3.27. This
property makes Gaussian process regression an excellent
candidate as a surrogate model to emulate a computer
model based on a few sample runs. This form of regression
will exactly replicate the output of the sample runs, and
hence form an interpolator for runs that have not been
evaluated, yet its linear formulation avoids overfitting,
as compared to nonlinear models (such as ANN).

3.7.5.4. Generalized Linear Regression. In the previ-
ous section, we focused on the general problem of predict-
ing with a Gaussian process. It turned out that the
conditional expectation of some unknown given observa-
tions of the process elsewhere is a linear combination of
the observations. The previous method is one of the most
general forms of linear prediction in the sense that it uses
knowledge about the Gaussian process in terms of a
covariance function and uses the covariance between
the predictors (the knowns) and the covariance between
predictors and the predictant. The resultant weights are,
therefore, functions of this covariance.
We now turn to a specific form of linear regression and

the particular Gaussian process derived from it (hence we
start from specifying the regression first, then make links
withGaussian processes). Consider fitting the data using a
generalized linear model:

y s,w =
J

j =1

wjϕ sj 3 156

We use the classical regression notation of y for predic-
tant. Essentially, we are trying to fit a surface using some
observations but within a statistical framework. To do so,

we introduce (again) a Gaussian assumption, now not on
the unobserved process but on the weights. The weights
are considered random variables W that need to be esti-
mated. Additionally, we consider this regression within
a Bayesian context, meaning we assume a prior distribu-
tion on the weights, namely a multivariate Gaussian with
mean zero and covariance Cw:

W N 0,Cw (3.157)

Observations may be subject to noise. To model this, we
assume the following observation model with random
uncorrelated and unbiased error

t s = y s + ε var ε = σ2ε (3.158)

and hence the observations (t(s1),…, t(sN)). We can state
a likelihood model for the data under the model of
Eq. (3.158), namely

L t s1 ,…,t sN w

=
1

2π σ2ε
N

N

n=1

exp −
t sn −y sn,w

2

σ2ε

(3.159)

According to Bayes’ rule, the posterior of the weights is
also Gaussian (because both prior and likelihood are
Gaussian, with mean

E W t s1 ,…,t sN =
1
σ2ε

C−1
w +

1
σ2ε
ϕTϕ ϕT t (3.160)

with
t= t s1 ,…,t sN (3.161)

and the design matrix

ϕ=

ϕ1 s1 ϕJ s1

ϕ1 sN ϕJ sN

(3.162)
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Figure 3.27 Five realizations of Gaussian processes for different covariance models that are conditioned to available data
(represented as black dots). The black line represents the mean value and the shaded area represents the 95th confidence
interval. This illustrates that Gaussian process regression (kriging) is an exact interpolator.
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This classical solution also has an interpretation in terms
of Gaussian processes. The relationship between the
weight space view (weights as RV) and the Gaussian proc-
ess view can be established by choosing Cw to approxi-
mate a Gaussian process. To establish that link, we
consider unknown and data variables (observations)
(T(s1),…, T(sN),Y(s0)) to be multivariate Gaussian. Since
Y is corrupted by noise, we consider first the noise-free
variables (Y(s1),…,Y(sN),Y(s0)). Because the Ys are lin-
early related to the Ws, see Eq. (3.158), a relationship
between the covariance of Y and W is as follows:

Cy =ϕ0Cw ϕT
0 (3.163)

with the extended design matrix now including the evalu-
ation of the basis functions ϕ at the location to be esti-
mated s0:

ϕ0 =

ϕ1 s1 ϕJ s1

ϕ1 sN ϕJ sN

ϕ1 s0 ϕJ s0

(3.164)

The extension to corrupted measurements then simply
involves adding variance to the diagonal, except for the
last row/column since this involves the true unknown
(not corrupted with noise evidently):

T s1 ,…,T sN ,Y s0 N 0,ϕ0Cw ϕT
0 +E (3.165)

with

E =

σ2ε 0

σ2ε

0 0

(3.166)

Again, because the multivariate normal distribution is
now stated, the conditional mean and variance can be
expressed as

E Y0 t s1 ,…,t sN =ϕT
0 Cw ϕT ϕCw ϕT + σ2εIN

−1
t

var Y0 t s1 ,…,t sN =ϕT
0 Cw ϕT

0

−ϕT
0 Cw ϕT ϕCw ϕ

T + σ2εIN
−1
Cw ϕ0

(3.167)

Williams [1999] shows that expressions (3.155) and
(3.167) are identical, meaning that the weight-space (W)
approach and the function-space approach (Y) are equiv-
alent. The difference lies in computational complexity. In
theW-approach one needs to invert a J× J system (size of
the approximation), while in theY-approach the inversion
is of an N×N matrix (size of data). Recall a similar

duality in Section 3.4.4 between sample size space and
model size space.

3.7.5.5. History of Applications of Gaussian Process
Regression. Several communalities with different views
of the same problem exist that invoke the Gaussian proc-
ess of the unknown phenomenon being estimated (condi-
tional expectations). Historically, these methods have
been developed somewhat independently in a number of
different areas (statistics, geostatistics, machine learning).
Although the basic theory still goes back to Wiener and
Kolmogorov, linear prediction is also well known in the
geostatistics field [Matheron, 1970; Journel and Huij-
bregts, 1978; Cressie, 1993] as kriging. Kriging was estab-
lished as the best linear unbiased estimator:

y s0 =
N

n=1

wnt sn =wT t (3.168)

In geostatistics, noise σ2ε is modeled as the so-called nug-
get effect. The weights are derived based on a minimum
estimation variance criterion, resulting in

w= kTK −1 (3.169)

This solution “identifies” the covariance, meaning that
the covariance between the estimate Y(s0) and the obser-
vations is the same as (identifies) the modeled covariance,
based on the observations. The establishment of the kri-
ging equation, initially, did not invoke any Gaussian
process. However, simple kriging can be regarded as the
conditional expectation of an unknown value of a Gaus-
sian process given observations. Dual kriging [Goovaerts,
1997] is another form to express the same kriging, but now
the unknown is written as a linear combination of covar-
iance functions:

y s0 =
N

n=1

wnC s0−sn (3.170)

The weights are now established by means of identifica-
tion with the observed values (the exact interpolator
property):

w= tTK −1 (3.171)

Equation (3.156) looks like Eq. (3.170), but it is now writ-
ten with covariance functions as basis functions. These
covariance functions can be estimated from the observa-
tions, providing a method for inferring such basis func-
tions. This is typically possible in 3D, but it becomes
more difficult in higher dimensions because of emptiness
of high-dimensional space and the limited amount of data
for such inference. In such cases, inference can be made
based on likelihood methods [Diggle and Ribeiro, 2007],
rather than least-square fitting of covariance or vario-
grams [Cressie, 1985].
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3.7.5.6. Linear Inverse Problems and Kriging. The
solution of linear inverse problems has many applications
in the subsurface, either where the relationship between
data variables and model variables is linear, or where
the linear problem is solved iteratively as part of a larger
nonlinear inversion. In this section, we define what a lin-
ear inverse problem is and how it is related to Gaussian
process regression (kriging) [see Hansen et al., 2006].
A linear inverse problems involves a linear relationship
between data variables and model variables

d=Gm (3.172)

The aim is to invert (estimate/regress) the model variables
from observed data. In this sense, this is an extension of
Eq. (3.168) where one model variable is a linear combina-
tion of the observed data, but model and data variables
are of the same type (although co-kriging can be used
to extend the regression to any type, seeGoovaerts [1997]).
The linear inverse problem can be solved within a

Bayesian framework. Just as the case in Gaussian pro-
cesses, we assume (a priori) that the model parameters fol-
low a multivariate Gaussian distribution with some prior
covariance Cm. If the models are defined on a grid with a
number of cellsNgrid, then the observed data (of sizeNdata)
is simply

dobs = d s 1 ,…,d s Ndata
= m s 1 ,…,m s Ndata

(3.173)

with s(n), n= 1,…, Ndata the locations where observations
are available. As a result, the operator G simply contains
ones and zeros as elements:

Gn n =1 if s n = s n , zero else

n=1,…,Ngrid;n =1,…,Ndata
(3.174)

G identifies grid locations with data locations. Equation
(3.172), however, states that data variables can be forward
modeled by any linear combination (not just ones and
zeros) of model variables:

dn =
Ngrid

n=1

gn nm sn ; n =1,…,Ndata (3.175)

In terms of physical modeling, this applies to a limited
set of forward models in the subsurface such as pressure
equations (as function of permeability) or tomography
problems Arrival times are linear combinations of model
velocities (which in itself is an approximation to the full
physics in such problems). While traditionally such pro-
blems have been solved using least squares, such methods
ignore any prior covariance and hence solutions tend to be
too smooth (certainly smoother than the actual reality).
The prior covariance on the model variables allows

injecting any information about the spatial distribution
of these properties as quantified by a Gaussian process.
The solution to this problem are provided in Tarantola
[1987, p. 66] and summarized here by listing the expres-
sion of the posterior mean E[M| dobs] of the entire model
m and the posterior covariance CM dobs :

E M dobs =E M +CMGT GCMGT +CD dobs−GE M

CM dobs =CM −CMGT GCMGT +CD
−1GCM

(3.176)

Like Gaussian process regression, the posterior covari-
ance is not a function of the observed data. CD is the
covariance of the data variables, which under a simple
error model becomes

CD =

σ2ε 0

0 σ2ε

(3.177)

Conditioning to linear averages in geostatistics is also
known as block kriging [Journel and Huijbregts, 1978].
The “blocks” do not need to be square or compact, the
term refers to estimating mining blocks (averages) from
point data, but the problem can be reversed to estimating
points from block data. “Block data” simply refers to
some linear averaging. Block kriging requires calculating
covariances of the linear averages, covariances between
the linear averages and the unknown, which are then
plugged into Eq. (3.176). All these covariance can be cal-
culated from CM. The matrix CD reflects the so-called
nugget effect.

3.8. KERNEL METHODS

3.8.1. Introduction

Consider the following simple problem (see
Figure 3.28). The aim is to cluster the two red points in
one group and the two blue points in another group. To
achieve this would require a complex discriminant func-
tion. A discriminant function is a function that divides
space into two parts, to “discriminate” one part from
the other. Obviously, this is useful for classification where
any point in one half are then considered to belong to
group “red” and the other to group “blue.” Using highly
nonlinear discriminant function can be problematic
because (i) finding expressions for such function may
not be trivial and (ii) overfitting may occur quite rapidly.
This is shown in Figure 3.28. The discriminant function
fits the problem of discriminating the blue points from
the red points almost perfectly; however, that discrimina-
tion will have poor performance when applied to yet
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unseen blue/red points. This problem is obvious here, but
it becomes difficult to diagnose in higher dimensions. An
obvious solution is to split the data into a training set and
a validation set and use such validation set to avoid over-
fitting. However, this would not mitigate the problem of
what function to choose in the first place, and it may not
be applicable when only few samples are available.
For these reasons, linear methods have their appeal, but

clearly there is no linear solution to the problem of
Figure 3.28, which uses 2D Cartesian space with Euclid-
ean distances. How can we make a linear method work?
Take now the example in Figure 3.29 with a complex
curve in 2D. Consider now increasing the dimension by
one and embedding that curve into a plane (a linear fea-
ture!) such that the projection back into 2D still results in
the same curve. Figure 3.29 achieves this. One can imag-
ine that if the curve is a helix, then further increasing the
dimensions allows embedding the helix into a hyperplane
(unfortunately, we cannot show that in a figure!)
The idea, therefore, is to change space using some trans-

formation. However, we will not be transforming coordi-
nates of a Cartesian axis system, as this again would call
for complex multivariate transformation functions (and
hence we are back to the same problem). To change space,
we will change distances to create a new space. Recall that
distances can be expressed as dot-products and vice versa
(see Section 3.5.2). Now let us go back to our problem in

Figure 3.28. Let us first calculate the distance between the
four points, listed in the distance table; clearly, the two red
points are far from each other than the red from the blue
point and vice versa. Now we transform that distance
table into a new distance table using the following simple
equation:

kij =1− exp dij i, j =1,…,4 (3.178)

The exponential function of minus the distance makes
objects that are far apart appear closer and objects that
are closer further apart. That is exactly what we like to
achieve, because it would move the two red points closer,
the two blue point closer, and the red points further apart
from the blue points. The problem is that this cannot be
done in 2D. Why not? This can be explained by calculat-
ing the eigenvalues of the distance matrix d and of the
matrix k, we find

d λ1 = λ2 = 1; λ3 = λ4 = 0

k λ1 = λ2 = 0 44; λ3 = 0 31; λ4 = 0
(3.179)

The distance table has only two positive eigenvalues. This
means that we can only create a 1D or 2D projection from
the distance table to Cartesian coordinates. The k-table,
however, has three positive eigenvalues. This means that
we can construct an orthogonal 3D Cartesian space, with
its own (3D) Euclidean distance (despite the fact that we
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Figure 3.28 A simple classification problem with a nontrivial solution. Linear classification is not possible in this XOR problem
(exclusive or). Linear discriminant functions are desirable, in particular when going to higher dimension. The “trick” is to
transform the distances to obtain a higher-dimensional space.
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only specified 2D distances). In fact, if we perform an
MDS projection into this 3D space, we notice how the
blue points moved up and the red down. A simple plane
(a linear function!) now solves the classification problem,
exactly what we set out to achieve.
The problem in Figure 3.28 involves a classification

problem, but classification and regression problems are
basically variations of the same theme as we discussed
in Section 3.7. In classification problems, we seek a dis-
criminant function. In regression, we seek also to estimate
a function between predictors and predictants. In the both
cases, we have to estimate a function. We saw in
Section 3.7 that linear methods, such as Gaussian process
regression, can be powerful, if the linear models are ade-
quate to describe the actual complexity of data on which
they are applied. In Figure 3.28, we observed how embed-
ding the “data” into a new space, where linear operations
apply more readily, is an interesting concept worthwhile
pursuing. To understand a bit better how this works for
regression problems, we consider two views of the same
regression. Consider a data set

x 1 ,y 1 ,…, x L ,y L (3.180)

with x a vector of any dimension N of predictors x= (x1,
…, xN) (could include spatial location, so we exchange x
and s in denoting predictors). A linear model is assumed

y x,w =
N

n=1

wnxn =wTx (3.181)

If we denote, as before,

X = x 1 ,…,x L

y= y 1 ,…,y L
(3.182)

Then the classical and primal solution for the least-square
weights is (see Eq. (3.130))

w= XTX
−1
XTy (3.183)

An alternative form of presenting the same solution in a
dual form is

w=XTw with w = XXT −1
y (3.184)

The primal form onXTX and the dual form relies onXXT.
If this looks familiar, then refer to presentation of the data
matrices in two ways: the space formed by the dimension
of the vector x, using covariances (XTX), or the space
formed by sample size with dot-products (XXT). We dis-
cussed the advantage of working with XXT over XTX in
the type of UQ problems we are dealing with. As a result,
the presentation of the material that comes next, kernel
mapping, can be highly effective in addressing certain
UQ problems, in particular those that involve complex
priors and nonlinear operations. Basically, we will see that
it is easy to extend any linear statistical operation simply
by changing dot-products (see Figure 3.30). This will
invoke a transformation φ of the original Cartesian space;
however, an explicit representation of φ (a possible high-
dimensional function, which as we know, we would like to
avoid) will not be required, only a dot-product (just a sca-
lar!). The change in dot-product aims at embedding the
data in a space in which linear operations apply more
readily (see Figure 3.30).

3.8.2. Kernel-Based Mapping

Consider a general nonlinear mapping between two
spaces

φ x RN ↦ x RM 3 185

Figure 3.29 Embedding a nonlinear 2D function in a 3D plane, such that projection retrieves the nonlinear function.
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Both N andM could be very large (possibly even infinite)
and hence a function φ that creates a space where linear
methods more readily apply would be difficult to find.
Instead, many such linear methods only require knowing
a dot-product. In this new space, the dot-product between
any two samples x(ℓ)and x ℓ is

gℓℓ =φT x ℓ φ x ℓ (3.186)

where the matrix G consisting of elements gℓℓ is termed
the Gram matrix (or kernel matrix). Then, when consid-
ering a new predictor x, we write

kℓ =φT x ℓ φ x (3.187)

which leads to the definition of a kernel function:

k x,x =φT x φ x (3.188)

Since a dot-product can be related to a distance, in that
sense, the kernel matrix contains all the information
needed to compute distances, and hence define a metric
space. Such space has no orientation; therefore, the kernel
matrix is rotationally invariant. Transformations such as
rotation are, however, not really important when doing
regression or performing classification. Therefore, the
kernel matrix is viewed as the information bottleneck, fil-
tering the necessary information to perform “learning”
whether this is regression, classification, or orthogonal
component analysis. Hence, the “a priori” insight that
renders the problem more linear is provided by means
of distances. The choice of the kernel function is, there-
fore, relevant to solve complex problems.
A kernel that will be used throughout this book is the

radial basis function (RBF). The RBF kernel function
is expressed as

k x,x = exp −
x−x 2

2σ2
with σ >0 (3.189)

The performance of the RBF kernel depends highly on its
bandwidth σ. If σ is small, the kernel matrix is close to the
identity matrix (K = I); hence, all the xwill tend to be very
dissimilar. On the other hand, large values of σmakes the
kernel matrix close to a constant matrix (K = 11T), leading
to all the x being very similar. Cross-validation techniques
are very popular to estimate the kernel bandwidth in the
case of supervised learning. However, for unsupervised
learning (such as KPCA), the choice of the bandwidth
remains an open question. We will rely on the rule of
thumb of Kwok and Tsang [2004].
Figure 3.31 provides an example of what a kernel func-

tion does on mapping concentrations in feature space
(kernel space), for the simple hydro case. The left plot is
the MDS plot based on the Euclidean distance (or PCA
with covariance) between the original concentration
curves; one notices how for small distances the data is
strongly clustered but spreads out for larger distances.
This is common in classical metric spaces, a few large dis-
tances are easier to approximate in lower dimensions than
a lot of small distances. The kernel transformation makes
these distances more uniform (by increasing dimension).
Figure 3.31 shows a nice arrangement of models along
a curve-linear feature. Modeling in feature space is prefer-
able over modeling in the original Cartesian space in these
types of cases.

3.8.3. Kernel PCA

3.8.3.1. Method. Recall from Section 3.5.1 that PCA
performs a projection onto orthogonal bases, derived
from the covariance matrix (space of XTX). This projec-
tion onto the n-th eigenvectors can be written as

uTn x=
L

ℓ =1

v ℓ

n x ℓ
T
x

λn
n ≤ rank X (3.190)

Space with Space with

φ

φ(x)φT(x)xxT

Figure 3.30 Changing dot-product to render linear modeling more appropriate. The space on the right is also termed the “feature
space” in machine learning, features being quantified by the kernel function. Features in statistics are termed simply “predictors.”
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Here we use the duality that exists in using XTX or XXTto
calculate eigenvalues and eigenvectors u and v, respec-
tively. We now apply the same kernel trick to turn PCA
into kernel PCA (KPCA) by changing the dot-product
xTx to φ(x)Tφ(x) to obtain a projection (now in
XXTspace) as

L

ℓ =1

v ℓ

n φT x ℓ φ x
λn

=
L

ℓ=1

v ℓ

n

λn
k x ℓ ,x (3.191)

This leads to the following calculation for KPCA (com-
pare with PCA in Section 3.5.1.2)

Calculate gℓℓ = k x ℓ ,x ℓ , ℓ,ℓ =1,…,L

Center gℓℓ gℓℓ −
1
L
gℓ•−

1
L
g•ℓ +

1
L2g••

DecomposeG=VTΛV

Project y=
L

ℓ=1

v ℓ

n

λn
k x ℓ ,x

(3.192)

Note how the centering in the covariance is now replaced
by the centering of the dot-product (see Section 3.5.2).

3.8.3.2. The Pre-image Problem. PCA is a bijective
projection, meaning that one can uniquely recover the
original vector, after projection and reconstruction. This
is not the case for KPCA. This makes sense, intuitively:
KPCA relies on distances (similarities) between vectors,
and not on their exact location in a Cartesian setting.
Therefore, reconstructing a new vector based on the orig-
inal data is not unique. This is the case for UQ in the sub-
surface where L N. For example, imagine knowing the
distance between three vectors in 100-dimensional space
and we are given a fourth vector for which only the dis-
tance to the previous three is specified. Reconstructing
this fourth vector is a nonunique problem, many solutions
exist. In computer science literature, this is termed a

“pre-image problem” [Schölkopf and Smola, 2002].
Pre-image means seeking the “image” of an object, given
the distances with other objects whose “images”
are known.
The difficulty in the pre-image problem is that the map-

ping function φ into the feature space is unknown, nonlin-
ear and nonunique, thus only approximate solutions
can be generated. Consider a feature space expansion
Ψ= L

ℓ=1α
ℓ φ x ℓ and denote x∗ as its approximate

pre-image. The pre-image problem attempts to minimize
the squared distance in feature space:

min
x∗

Ψ−φ x∗ 2 = min
x∗

L

ℓ =1

α ℓ φ x ℓ −φ x∗
2

(3.193)

From the kernel trick, the minimization of Eq. (3.193) is
equivalent to minimizing

min
x∗

k x∗,x∗ −2
L

ℓ =1

α ℓ k x∗,x ℓ

+
L

ℓ =1

L

ℓ =1

α ℓ α ℓ k x ℓ ,x ℓ

(3.194)

which formulates a nonlinear optimization problem that
is only function of the kernel function and not of φ.
Gradient procedures can be used to minimize this expres-
sion. In the particular case of the RBF kernel, a fixed-
point iterative approach can be used to find approximate
pre-images [Schölkopf and Smola, 2002]. The following
solution is then obtained:

x∗t+1 =

L

ℓ=1
α ℓ exp − x ℓ − x∗t

2
2σ2 x ℓ

L

l =1
exp − x ℓ − x∗t

2
2σ2

(3.195)

MDS/PCA 2D feature space 3D feature space

96%

4
%

Figure 3.31 Comparison of classical MDS with MDS after kernel transformation. Notice, like in Figure 3.28, the impact of an
increase in dimension.
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Unfortunately, the fixed-point iterative method suffers
from encountering local minima and tends to be unstable.
An interesting property of the fixed-point iterative
method is that the resulting pre-image lies in the span of
the available data, since the pre-image is simply a
weighted sum of x(ℓ).

3.9. CLUSTER ANALYSIS

Cluster analysis is widely used to find hidden structures
that may exist in data sets. The aim of clustering is to par-
tition a set of L data points x(ℓ), ℓ= 1,…, L into K groups
or clusters, based on the similarity between data points:
data within a cluster should be similar, and dissimilar to
data in other clusters. An ideal cluster is a set of points
that is compact and isolated [Jain, 2010]. Clustering is
used in a variety of applications, such as data mining,
image segmentation, and data compression. In subsurface
modeling, clustering is sometimes applied to group sub-
surface models that are similar, given some defined meas-
ure of similarity, or for dimension reduction purposes.

3.9.1. k-Means

Among many available clustering algorithms, k-means
clustering is probably one of the most widely used algo-
rithms because of its simplicity and efficiency. The objec-
tive of k-means is to find the cluster configuration that
minimizes the squared error over all K clusters:

J =
K

k=1 x ℓ ck

x ℓ −μ k 2 μ k = x ℓ ck

x ℓ

Sk
3 196

with μ(k) the centroids of cluster ck defined as the mean
point of the cluster. |Sk| the number of samples in the clus-
ter ck. The main steps of the k-means procedure are illus-
trated in Figure 3.32 and are as follows:
Step 1: Select randomly K centroids μ(k). These points

need not correspond to any of the data points.

Step 2: Find the closest centroid μ(k) to the point x(ℓ) and
assign point x(ℓ) to cluster ck.
Step 3: Update centroids μ(k) using the equation above.
Step 4: Repeat Steps 2 and 3 until convergence, that is

cluster configuration is stabilized (the squared error is
minimized).
In the k-means procedure, the number of clusters K

needs to be specified prior to clustering and remain fixed.
Methods have been developed to determine the number
of clusters (see Section 3.9.4). The k-means algorithm
finds a local minima of Eq. (3.196); hence, the clustering
results may differ with the choice of different initial clus-
ters centers. This can be mitigated by running k-means
multiple times with different initial randomly chosen
centroids and selecting the partition with the smallest
squared error.

3.9.2. k-Medoids

Instead of taking the mean values of the data within a
cluster as centroids, k-medoids assigns the cluster center
to the most central point of that cluster (referred to as
the medoids, the point “in the middle”). Partitioning
in k-medoids is still based on the minimization of the
sum of the dissimilarities of the data and the cluster cen-
ters, but k-medoids does not require the use of a squared
Euclidean distance in the calculation of the cost function
(Eq. (3.196)). k-medoids algorithms may employ
directly any dissimilarity distance matrix. k-medoids
clustering is more robust to noise and outliers than
k-means.
Among many algorithms for k-medoids clustering, par-

titioning around medoids (PAM) proposed by Kaufman
and Rousseeuw [1990] is the most popular. PAM consists
of first selecting randomly k-medoids and assigning each
data point to the cluster with the closest medoid in terms
of the dissimilarity measure. Then, iterating over the data
points, each medoid and non-medoid are swapped. If the
total cost of the configuration is decreased then the swap is
preserved. The algorithm stops when no further permuta-
tions improve the quality of the clustering. The major

Step 1 Step 2/3 Step 4/5 Step 2

Figure 3.32 An example of partitioning. Image from Caers [2011].
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drawback of PAM is its high computational cost, which
makes k-medoids more costly than k-means. PAM
becomes impractical in terms of CPU when the number
of data points L or the number of clusters K is large. Its

complexity is of the order OK L−K 2
.

3.9.3. Kernel Methods for Clustering

Data may contain nonlinear structures that cannot
be easily separated by linear models such as k-means or
k-medoids. An example of such a case was given in
Figure 3.28. Linear methods such as k-means would per-
form poorly. One way to tackle this problem is to use
kernel clustering (kernel k-means or kernel k-medoids).
The use of kernels can, by increasing the dimension of
the problem, result in increased linearity and separability.
In kernel-based clustering, the data points are first
mapped into a high-dimensional space (the feature space),
and then clustering is applied in this space. For both ker-
nel k-means and kernel k-medoids methods, the distance
in feature space between a point and its centroid/medoid
can be computed using only the kernel function. In the
case of k-means, a pre-image problem must be solved to
obtain the centroid coordinates in the original space.

3.9.4. Choosing the Number of Clusters

3.9.4.1. Silhouette Index. Kaufman and Rousseeuw
[1990] proposed a “silhouette index” to determine the
quality of the clustering. This index can also be used to
find the optimal number of clustersK to use in the cluster-
ing algorithm. Let a(ℓ) be the average distance of a point
x(ℓ) to all other points in the same cluster. It measures how
well the point x(ℓ) is assigned to its cluster (the smaller, the

better). Let b(ℓ) represent the minimum of the average dis-
tance between x(ℓ) and the points in different clusters:

b ℓ = min
k

d x ℓ ,ck (3.197)

with d(x(ℓ), ck) the average distance between x(ℓ) and all
points in ck ( x(ℓ)does not belong to ck). The silhouette
index s(ℓ) is then defined as follows:

s ℓ =
b ℓ −a ℓ

max a ℓ , b ℓ
(3.198)

If s(ℓ) is close to one, the data point x(ℓ) is well classified,
whereas if s(ℓ) is close to zero, it is unclear whether x(ℓ)

should belong to its assigned cluster or its neighboring
cluster. A negative value is an indication that the data
point x(ℓ) has been misclassified. The average value over
all data points x(ℓ) is called the average silhouette index
and can be evaluated for different number of clusters.
The best clustering configuration is achieved when the
average silhouette index is maximal. The silhouette index
can be plot as a function of the number of clusters. This
plot often has an “elbow” shape (and is sometimes
referred to as elbow plot). The optimal number of clusters
is obtained when the average silhouette index value bends
“at the elbow,” see for example Figure 3.33.

3.9.4.2. Davies–Bouldin Index. An alternative index to
quantify cluster quality and optimal number of clusters is
the Davies–Bouldin index [Davies and Bouldin, 1979]. It is
defined as a function of the ratio of the within cluster scat-
ter to the between cluster separation:

DB=
1
K

K

i=1

max
j i

Si +Sj

Mij
(3.199)
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Figure 3.33 Choice of the optimal number of clusters using the silhouette index andDavies–Bouldin index. Five clusters are created
using k-medoid, applied on the set of 136 overhead snapshot of a flume experiment. Note that the clustering is applied in high
dimension (and not 2D).
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where the intra-cluster (within) distance is defined as

Si =
1
Nci

Nci

ℓ=1

x ℓ −μ i p

1
p

(3.200)

withNci the number of points assigned to cluster ci and the
cluster separation (inter-cluster distance) between cluster
ci and cj as

Mij =
N

n=1

μ i
n −μ j

n
p

1 p

(3.201)

Usually, p= 2. As opposed to the silhouette index, the opti-
mum number of clusters is obtained by minimizing the
index with respect to the number of clusters (Figure 3.33).
TheDavies–Bouldin index is describedhere for thek-means
algorithm,but it couldbeestimated similarly fork-medoids,
by replacing the centroids by the medoids.

3.9.5. Application

Clustering is applied to the set of 136 overhead snap-
shots of a flume experiment, based on the modified Haus-
dorff distance between snapshots. This data set will be
further discussed in Chapter 5. Both the silhouette index
and the Davies–Bouldin index suggest that the optimal
number of clusters for this data set is 5. The k-medoid pro-
cedure was applied to identify five medoids, which corre-
spond each to one of the snapshots. The five selected
images can be considered as representative of the set of
136 images, as defined by the modified Hausdorff dis-
tance. This idea is very useful when dealing with a large
number of spatial model realization in UQ. Using cluster-
ing, one can reduce this large set to a representative smal-
ler set that has the same impact in terms of UQ [see
Scheidt and Caers, 2009; Scheidt and Caers, 2013].

3.10. MONTE CARLO AND QUASI
MONTE CARLO

3.10.1. Introduction

In this important section in the context of uncertainty
quantification, we discuss various methods of Monte
Carlo (MC) simulation. MC is used in many fields of sci-
ence and engineering and literature is extensive. Here we
focus on those methods that are relevant to UQ in subsur-
face systems. The development of MC goes back to John
von Neumann who introduced random numbers gener-
ated by a computer to solve problems encountered in
the development of atom bomb [Von Neumann, 1951].
MC refers to the famous casino in Monaco, where ran-
domness is also used in a perhaps more joyful way than
von Neumann’s original application.

Broadly, MC uses random sampling to study properties
of systems with components that behave in a random
fashion [Lemieux, 2009]. The idea is simply to simulate
on a computer the behavior of a system (in terms of out-
puts for example) by randomly generating the variables
that control/model/describe the system (e.g., the inputs).
Then, using the obtained results one can study the system,
such as to perform a sensitivity analysis or apply any
other statistical analysis or inference. This requires
(i) the description of the “model,” including a computer
code implementing “the model,” (ii) specification of
distributions on the variables describing the system,
(iii) generating samples from these distributions and eval-
uating the samples using the computer written code, and
(iv) statistical analysis and learning from the obtained
results. From a purely practical point of view, one needs
to define (i) a mathematical model, (ii) a computer imple-
mentation of it, and (iii) a way of random sampling and
propagating that sampling through the computer code;
then observing and analyzing the output of that code,
for whatever purpose is deemed relevant. This very broad
description encapsulated many specific applications such
as the following:
1. Sampling from a known distribution: A probability

distribution is a mathematical model that can be imple-
mented with a numerical model in a computer program.
The inputs are pseudo-random numbers that are passed
through this program to generate samples which can then
be studied statistically. Underlying all MC methods,
therefore, is the generation of these pseudo-random num-
bers. The pseudo-random number generator itself is a
computer code that takes a deterministic input (the seed)
and generates an (approximate) sequence of random
numbers in the interval [0,1].
2. Stochastic simulation: This is generically described as

the study of systems that contain stochastic components,
broadly represented as Y= g(X). X denotes a set of ran-
dom variables (the stochastic components) that needs
to be simulated to generate outputs Y. g is a “transfer
function,” or “forward model,” or “system response
model”; whatever flavor is used, it again represents some
computer code (hence deterministic). Such computer code
can be a simple function or be as complex as a numerical
implementation of a partial differential equation that
models a dynamic system (e.g., wave equations or flow
and transport in porous media).
3. MC integration: A specific problem in MC simula-

tion where the goal is to use random sampling to solve
a deterministic problem (or problem that has no inherent
stochastic component) of the kind:

V

f x dx (3.202)
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MC integration solves this problem by generating random
samples of x. For example, if f(x) = x g(x) with g(x) a pos-
itive function whose integral is unity, thenMC integration
boils down to estimating the mean of the random
variable X.

3.10.2. Sampling from Known Distributions

3.10.2.1. Inversion. The method of inversion goes back
to von Neumann. Inversion applies to the cdf, simply as
follows, for a continuous distribution:

u rand •

x=F −1 u
3 203

Obviously, this method depends on the ability to calculate
the inverse of the cumulative distribution F. For discrete
distributions this becomes

u rand •

x= inf y F y ≥ u
(3.204)

If an explicit expression for inf is not available, then this
becomes a search problem.

3.10.2.2. Acceptance–Rejection. Sampling through
inversion is usually only possible in univariate cases and
with fully known cdfs of pdfs. In most cases, it will be
impossible to directly sample from a distribution, in par-
ticular when we have only the pdf and then usually only
up to some normalization constant (that we often cannot
compute analytically). Since we cannot directly sample
from the target pdf f(x), we will first sample from another
pdf t(x)/T (i) that we know how to sample from and
(ii) t(x) majors f(x) over the domain of interest, namely
there exists some M such that t(x)M ≥ f(x). t(x) itself is
not a density, but

t x dx=T 3 205

The rejection–acceptance method works as follows:

Sample y from t x M

u rand •

If u ≤
f x
t x

x= y else reject y

(3.206)

Figure 3.34 shows why this works in the case the majoring
function is uniform. Each dot in this plot has coordinates

y, u t x (3.207)

It makes intuitive sense that the values of y should be
accepted based on the ratio between t(x) and f(x). In that
way, the accepted values y will occur more frequently in
the area where the ratio t(x)/f(x) is close to unity.

3.10.2.3. Compositions. Many applications of UQ in
the subsurface require sampling from compositions. For
example, lithologies such as shale and sand may exhibit
different populations of petrophysical properties such as
porosity and permeability. Hence, the total distribution
of such properties may be expressed as

F x =
K

k=1

pkFk x with
K

k =1

pk =1 and pk ≥ 0 k

3 208

A mixture distribution with K=∞ is termed a composi-
tion. Equation (3.208) can also be written in terms of den-
sities. To sample from a mixture two draws are needed:

u1 rand •

i= inf k
k

k =1

pk ≥ u1

u2 rand •

x=F −1
i u2

(3.209)

3.10.2.4. Multivariate Gaussian. The Gaussian model
is popular; hence, many ways exist to sample from it.
The Gaussian model is applied in cases of not only mul-
tivariate modeling but also spatial modeling. In the latter
case, the variables are the unknown random variables on
a lattice or grid (random field). In the spatial case, one
may already have measurements at certain locations
(in geostatistics termed “hard data”). Without any hard
data, the unconditional simulation of Gaussian field
proceeds through, for example, an LU-decomposition
(zero mean case):

C =LU X =LTy, y N 0,1 3 210

M
f(x)

t(x)

Uniform
pdf

Figure 3.34 Sampling from a complex pdf by sampling from
a uniform distribution and then accepting the red dots and
rejecting the blue dots.
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C is the covariance matrix, which can be very large in the
spatial case. To deal with these large matrices and also
include the hard data, a sequential decomposition of the
multivariate Gaussian into a chain of univariate Gaus-
sians can be used:

f X s1 ,…,X sN = f X s 1 × f X s 1 X s 2

× f X s 3 X s 1 X s 2 ×

× f X s N X s N−1 X s 1

(3.211)

where the notation (i) refers to a random permutation of
the grid locations. Should some hard observation dobs be
available (and those are standard Gaussian or trans-
formed to standard Gaussian), then

f X s1 ,…,X sN dobs = f X s 1 dobs
× f X s 1 X s 2 ,dobs ×

× f X s N X s N−1 X s 1 ,dobs
(3.212)

A practical implementation of this is termed sequential
Gaussian simulation [Goovaerts, 1997] and will be used in
several applications later.

3.10.2.5. Using MC to Approximate a Distribution.
MCarose as a technique to solve integrals. This looks per-
haps a bit odd, since random number generators are used
to solve a deterministic problem. However, calculating
integrals numerically is not a trivial problem, in particular
in higher dimensions. The number of samples drawn will
then determine the accuracy of that solution. One partic-
ular integral problem is the definition of the expectation of
some function

μh =E h X = h x f x dx X f x 3 213

Using MC, this integral is estimated simply by the
arithmetic mean from L samples {x(1),…, x(L)} drawn
from f(x)

μh =
1
L

L

ℓ=1

h x ℓ (3.214)

In UQ, we are interested not only in just estimating a
mean or a function but also in an uncertainty statement
on some function value. Such uncertainty statement
would need to involve a pdf or some quantiles calculated
from that pdf. With a limited set of samples, this distribu-
tion can be represented by an empirical cdf:

F h x =
1
L

L

ℓ =1

1h x ℓ ≤ h x (3.215)

While this cdf is discontinuous, a continuous approxima-
tion can be obtained by making suitable interpolations
and extrapolations [Deutsch and Journel, 1992]. In similar
vein, the quantiles for given percentile 0 < p< 1 can be
estimated as

qp = inf h x F x ≥ p (3.216)

Generally, the estimate F is unbiased but qp is biased

because it relies on the estimateF and not the true F.

3.10.3. Variance Reduction Methods

3.10.3.1. Introduction. In estimating or approximating
integrals such as Eq. (3.202) or approximating a distribu-
tion using MC sampling, accuracy in the estimates is
increased as the number of samples increases. However,
evaluating the function h(x) in Eq. (3.214) (such as a for-
ward model) may be CPU demanding; hence, the number
of MC samples must be limited. This calls for the defini-
tion of a measure of accuracy in the estimates. One such
measure of accuracy is the variance of the estimates which
measures the degree of error caused by limited sampling.
A high variance in the estimates means low accuracy and
a low variance of the estimates is a sign of high accuracy.
When performing simple also termed naïveMonte Carlo,

we know that the sampling variance of Eq. (3.214) (a
measure of degree of error caused by limited sampling) is
given by

var μh =
σ2

L
, σ2 = var h X (3.217)

This estimate is also unbiased by definition (see
Section 3.13 for a formal definition of bias). In case of
biased estimators, a better measure of accuracy is the
mean squared error (MSE) which is defined as

MSE μh = var μh +bias2 μh (3.218)

Variance reduction aims to improve on the variance of
Eq. (3.217) produced by the (naïve) MC sampling. Most
variance reduction sampling schemes achieve this by sam-
pling X more strategically. Random sampling may cause
accidental clustering of samples x(ℓ) in the space defined
by X; hence, such samples are “wasted.” Stratification
(spreading the samples) is one such method. Another
approach is to oversample (bias) certain regions that
affect the calculation of the integrals most. Some weight-
ing scheme must then be introduced to account for the
incurred bias. This method, known as importance sam-
pling, can be very efficient in reducing variance, but its
improper use may lead to such sampling to run astray
and actually increase variance. In other words, efficiency
is traded off for the risk to have even less efficiency than
the naïve sampler.
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3.10.3.2. Stratified Sampling. The idea behind stratifi-
cation is simple: split the high-dimensional model space of
X into mutually exclusive and exhaustive regions and
spread samples equally over these regions (instead of ran-
dom of the entire domain as in the naïve MC), see
Figure 3.35. Consider V the domain in which X varies
and consider a partition of that domain into regions Vk :
k = 1, …, K. Denote

pk =P X Vk (3.219)

Then, the conditional density of X X Vk is

f x x Vk =
1
pk

f x 1x Vk (3.220)

Stratified sampling becomes practical when we know the
size of each strata Vk and we know how to sample from
f(x| x Vk); the latter is usually the case when the compo-
nents of X are independent or when X follows a multi-
Gaussiandistribution.For example,when the components
of X = (X1,…,XN) are independent, then we sample a
number of samples Lk : k = 1, …, K, per region, prefera-
bly Lk ≥ 2 (to estimate sampling variance). The samples

per each region are denoted as x 1
k ,…,x Lk

k . The strati-

fied (and unbiased) estimate of Eq. (3.214) becomes

μh, strat =
K

k =1

pk
Lk

Lk

ℓ=1

h x ℓ

k (3.221)

In the case the Lk are chosen proportional, namely Lk=
pkL with L the total number of samples, then

μh,strat =
1
L

K

k =1

Lk

ℓ =1

h x ℓ

k (3.222)

The variance of this estimate is

var μh, strat =
K

k=1

p2k
σ2k
Lk

with σ2k = var X X Vk

(3.223)

From this it becomes clear that a good stratification
scheme has small within strata variances. The optimal
allocation of Lk depends on the sampling cost per
each stratum. If these are the same then the optimal Lk

is given as

Lk =
Lpkσk

K

k =1
Lpk σk

(3.224)

In actual applications, however, the σk may not be known
(a priori) or may have to be estimated. Under such cir-
cumstances a safe bet is to use proportional allocation.
Because high-dimensional space becomes empty very rap-
idly, stratification becomes difficult to implement beyond
dimension larger than 5. As we will see in Chapter 8, it is
most useful when sampling a subset of the variables within
a larger MC sampling scheme involving other methods of
variance reduction such as importance sampling.

3.10.3.3. Latin Hypercube Sampling. The main issue
with stratification is that a space becomes quite empty
for dimensions larger than 5. For example, in any dimen-
sion N, a regular grid has only L1/N L strata per each
component of the random vector (of dimension N) with
L samples.
In Latin hypercube sampling [LHS; Mckay, 1998], we

consider more than one dimension at a time to avoid
the L1/N problem. The method is quite straightforward
and easily explained when d= 2 (see Figure 3.36). Instead
of assigning a number of samples per each square, one
now assigns a sample per each row and column combined.

Figure 3.35 Sampling from a uniform distribution with seven samples per stratum. Sampling from a Gaussian distribution with four
samples per stratum constructed from concentric circles.
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The same idea is easily extended to higher dimensions.
Note that in this context, the maximum number of com-
binations for a LHS with K divisions and N variables
is (K!)N − 1. For example, a LHS with K = 4 divisions
and dimension of X equal to 3 will have only 576 possible
combinations of samples.
Theory shows that LHS can be much better than naïve

MC, and moreover it is robust in the sense that the bound
on the sampling variance is almost the naïveMC sampling
variance for Eq. (3.214) (up to a factor of n/(n − 1) only).
In other words, it cannot get worse and for most functions
h performs much better.

3.10.3.4. Control Variates and Multilevel MC. In the
method of control variates, the variance of the sampler
is reduced (compare to naïve MC) by the introduction
of another variable termed the control variable. The basic
idea is for this additional variable to be correlated to the
target, but that performing MC on this control variable
has much less cost than for the target. Next to having sam-
ples of the target h(x1), …, h(xL) to compute the estimate
Eq. (3.214), we now consider samples available of a con-
trol variable denoted by (c1,…, cL); hence, we have some
estimate

μc =
1
L

L

ℓ=1

cℓ (3.225)

If h(X) and C correlate, then this estimate will inform the
estimate μh, whether it is too small or too large, for exam-
ple by comparing μc for a sample size of L with μc,
assumed to be quite accurately known through extensive
sample ( L). A control variate estimator is constructed
as follows:

μcv =
1
L

L

ℓ =1

h x ℓ + β μc−cℓ (3.226)

A simple calculation shows that the optimal value
of β, under the criterion of minimizing the estimation
variance, is

β=
cov h X ,C

var C
(3.227)

which makes sense, since the better the correlation, the
more the covariate approximates the unknown μh.
The main problem is that estimating β requires knowing
the mean μh, which defeats the very purpose of sampling.
For that reason β is estimated using the sample (h(x(1)),
c1), …, (h(x(L)), cL)

β=

L

ℓ =1
h x ℓ cℓ +Lμhμc

L−1 σ2c
σ2c =

1
L−1

L

ℓ =1

cℓ−μc
2

(3.228)

Multilevel MC builds further on the idea of covariates. In
multilevel MC, as the term suggests, we use more than
one covariate (two levels: the target and a covariate).
The goal again is to estimate E[h(X)] of which samples
h1(x

(ℓ)), ℓ= 1, …, L1 (h1 = h) are available as well as sam-
ples h0(x

(ℓ)), ℓ= 1, …, L0 whose sampling is much less
costly than h1 (L0 > L1), then

E h X =E h1 X =E h0 X +E h1 X −h0 X
(3.229)

This method again relies on the difference between the
approximation and the target, which is estimated by

μh,2L =
1
L0

L0

ℓ =1

h0 x ℓ +
1
L1

L1

ℓ=1

h1 x ℓ −h0 x ℓ

(3.230)

2L refers to a two-level MC. The difference now with
covariates is that β = 1 and the expected value of h0 needs

Figure 3.36 Three Latin hypercube samples in two dimensions.
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to be estimated (instead of assumed known with high
accuracy). The question instead is what appropriate
values for L0 and L1 are that minimize the estimation var-
iance of μh,2L. To that end, consider the following costs
and estimation variances:

cost0,var0 the cost and variance for h0 X
cost1,var1 the cost and variance for h1 X

(3.231)

Then based on Eq. (3.230), the total variance is

vartotal =
var0
L0

+
var1
L1

(3.232)

which is minimized for some fixed total cost by choosing

L1

L0
=

var1
cost1
var0
cost0

or L1
var1
cost1

; L0
var0
cost0

(3.233)

This makes sense, since one would like for each level (tar-
get and covariate) to run an amount of simulations that is
proportional to the accuracy (estimation variance) and
inversely proportional to the cost of doing so. The two-
levelMC can be extended to a multilevel MCwith various
covariates with different approximations of the target.
Consider these levels as 0, 1,…,M with hM= h the target,
then Eq. (3.230) can be generalized to

μh,M =
1
L0

L0

ℓ=1

h0 x ℓ

+
M

m=1

1
Lm

Lm

ℓ =1

hm x ℓ −hm−1 x ℓ

(3.234)

Again, one chooses an amount of simulations based on
cost and estimation variance

Lm
varm
costm

m=0,…,M (3.235)

3.10.3.5. Importance Sampling

3.10.3.5.1. Methodology. The previous two methods
used the idea of correlated samples to steer sampling of
f(x) to areas of the sampling domain that leadmost to var-
iance reduction of a particular estimate, without inducing
(much) bias. The importance sampler uses a different
strategy. It still tries to steer the sampler to important
areas of the domain but does so by means of another
pdf q(x) (instead of a covariate).
Because sampling is done from the wrong distribution,

a correction will need to be made to obtain unbiased esti-
mates. In that sense, importance sampling is more than a
variance reduction technique of an estimate It can also be
used to perform MC on a given distribution by means of
sampling from another distribution. Since UQ relies on

some form of MC, we will see that importance sampling
has many applications in UQ (see Chapter 7). For that
reason, it can also be seen as an alternative to rejection
sampling and lies at the foundation of sequential MC,
which is treated in the next section.
Consider again the estimation problem of (3.214) with

samples distributed as f(x). Consider now another distri-
bution q(x) and write the expectation of h as follows:

μh =

V

h x q x
f x
q x

dx (3.236)

One notices how the portion h(x)q(x) in the integral leads
to calculation of the expected value of h(x) under q(x),
which is then corrected by a ratio of two pdfs f(x) and
q(x). In importance sampling, we generate samples x(ℓ)

from q(x) and not f(x), which then produces the estimate

μh =
1
L

L

ℓ =1

h x ℓ
f x ℓ

q x ℓ
=

1
L

L

ℓ =1

wℓh x ℓ (3.237)

which requires the calculation of the ratio f/q. A sufficient
condition for q is

f E =0 such that q E =0 for that setE (3.238)

This basically entails that q must “cover” the range of f,
being able to generate samples wherever f generates sam-
ples. The most critical question evidently is on good
choices for q. Statistical theory provides some suggestions
[Lemieux, 1997] based on general principles, but having
domain knowledge (the specific application) on the target
distribution may be more important. For example, where
sampling of f has greatest impact onUQ and perhaps even
the decisions made is probably more relevant to the con-
text of this book. In that respect, any sampling to estimate
Eq. (3.214) can also be used to approximate a distribution.
Nevertheless, the choice of qwill determine the amount of
variance reduction achieved. Chapter 7 uses such domain
knowledge to decide on a proposal distribution.
Consider a simple example in Figure 3.37 where the

goal is to estimate P(X > 4) where X N(0, 1) and hence
the true exceedance probability ptrue = 3.1671 × 10−5.
When performing naïve MC with 100.000 samples, we
get the estimate pnaive = 3 5000× 10−5. Consider now
another pdf more centered around the target area of
interest, q(x) N(4, 2). When applying Eq. (3.237) we
find that pimp = 3 1676× 10−5.

3.10.3.5.2. Guideline for q. To study the sampling
properties of importance sampling, and the impact of
certain choices of q, recall that the variance of the
MC sampler is

var μh,MC =
1
L

E h2 X −μ2h X f x 3 239
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A simple calculation shows that

var μh,MC =
1
L

E h2 X
f X
q X

−μ2h X f x

(3.240)

Hence, importance sampling is more efficient than
MC when

E h2 X
f X
q X

≤E h2 X (3.241)

As a result, to be efficient, the ratio f/q should be small,
making x more likely (according to that ratio) when
h(x) is larger. When h(x) is small, then one should aim
for a ratio larger than unity. Note that only when

f x
q x

<1 x for which h x 0 (3.242)

leads to variance reduction. This is also means that a
poorly chosen q will lead to a variance increase. The
more one knows about h(x) and f(x) the better a choice
for q can be made, but again, this is very application spe-
cific. Getting insight into g(x) and f(x) in very high
dimensions is not trivial. We will show in Chapter 7 that
dimension reductionmethods become very helpful in this
regard.
q cannot be light-tailed compared to f, but a heavy

tailed q often leads to inefficient sampling (close to rejec-
tion sampling). To study more quantitatively the impor-
tance sampling weights, a so-called effective sample size
is introduced. When all weights are equal then the effec-
tive sample size is basically L. However, when weights
become skew, then fewer samples have influence on the
estimate of h. Denote as wℓ the weight given to a sample
of q, namely x(ℓ), then an effective sample size Leff can be
defined as

Leff =L

L

ℓ =1
wℓ

L

ℓ=1
w2
ℓ

(3.243)

Clearly, Leff Lwhen the weights are very skew. If Leff is
very small, then the importance sampler estimate may
not be trusted and, worse, it may lead to an increase in
variance. In the next section, on sequential MC, we will
see how this problem can be alleviated.

3.11. SEQUENTIAL MC

3.11.1. Problem Formulation

Previously, we discussed methods to sample from uni-
variate or higher-dimensional distributions. Here we con-
sider a more specific problem, namely sampling from
higher-dimensional distributions conditioned on observa-
tions. In particular, predicting, by means of MC, a future
“signal” (realization, unknown, sample, event) from a
past “signal” (typically denoted as “data”). In addition,
this problem is formulated dynamically in time, not for
a single static instance. The idea is to “assimilate” data
as time progresses to make forecasts on some target future
variable or event. Future observations will then become
data as time progresses. Forecasting weather is an evident
example [Leeuwen and Jan, 2009], but many other appli-
cations exists such as robotic navigation [Dellaert et al.,
2001], financial market analysis [Aihara et al., 2009], vis-
ual object tracking [Nummiaro et al., 2003], and so on.
Data assimilation, data filtering, sequential MC (SMC),
bootstrap filtering, particle filtering, and survival of the
fittest sampling are all nomenclature to address basically
the same problem.
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Figure 3.37 Using MC to estimate an exceedance probability from the blue pdf. Thousand samples provide basically no accuracy,
while high accuracy can be obtained by using the green proposal distribution.
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Generally, SMC aims to dynamically predict an
“unknown signal” from “observed data.”Within the con-
text of UQ, the data are modeled using data variables, but
now occur at some discrete time events:

d1 t = d1,…,dt−1,dt t N + (3.244)

For example, one may repeat 3D seismic surveys to
obtain a sequence termed 4D seismic (each 3D is com-
pared with the base survey) or, in a groundwater setting,
one may repeat hydraulic head or concentration measure-
ments over time. The “unknown signal” is the unknown
subsurface, modeled using model variables; here these
model variables are updated in time (no longer a single
static model)

m1 t = m1,…,mt−1,mt (3.245)

Forward models are used to produce predictions

h1 t = h1,…,ht−1,ht ht = gh mt (3.246)

Note that the forwardmodel gh is now explicitly written as
a function of the time at which a prediction is made. Prior
to having any data, hence at time t = 0, the initial or prior
uncertainty on model and prediction are

m0 f m0 ; h0 f h0 nodata yet (3.247)

In addition, and this is an assumption used in most SMC,
a Markov property is invoked whereby the unobserved
signal is conditionally independent of all previous states
t − 2, …, 1 given state t − 1. This basically means that
knowing the previous state at t − 1 is sufficient, and we
do not need to include all the prior states t − 2, …, 1.
The probabilistic model is now fully specified by

Prior f m0

Conditional f mt mt−1,mt−2,…,m1 f mt mt−1

Conditional f dt mt,mt−1,…,m1 f dt mt (3.248)

The aim is to recursively estimate the following:
1. f(m0:t| d1:t): the full posterior distribution of all mod-

els, in time, given the time sequence of data.
2. f(mt| d1:t): the marginal for the present model given

past data, also termed the filtering distribution.
3. h(m0:t)f(m0:t| d1:t)dm0:t: any expectation of some

function of interest. This could be a mean, a covariance
but also some summary statistic of the model, such as
the prediction h deduced from it. More specifically, the
marginal h(mt)f(mt| d1:t)dmt.

In terms of the latter prediction, one could also aim to
directly obtain f(h0:t| d1:t): the model is now a hidden
variable.
Ways of obtaining samples from Eq. (3.248) will be the

topic of Chapter 7. The solution to the above-formulated

problem is obtained by the direct application of
Bayes’ rule:

f m0 t d1 t =
f d1 t m0 t f m0 t

f d1 t m0 t f m0 t dm0 t
(3.249)

Then, a recursive formula going from time t to t + 1 is
obtained as

f m0 t+1 d1 t+1 = f m0 t d1 t
f dt+1 mt+1 f mt+1 mt

f dt+1 d1 t

(3.250)

In terms of the marginal, one therefore obtains the follow-
ing recursion:

Predict t from1 t−1 f mt d1 t−1

= f mt mt−1 f mt−1 d1 t−1 dmt−1

Update assimilate data dt f mt d1 t

=
f mt dt f mt d1 t−1 dmt

f mt dt f mt d1 t−1 dmt

(3.251)

This iterative/recursive of updating models with data
requires the solution of integrals over high-dimensional
functions. From our previous discussion, see Section
3.10.2.5, we saw how MC can be used to estimate these
integrals. This would be “perfect MC” sampling. How-
ever, such MC would be very inefficient, in particular if
evaluation of either data forward models or prediction
forward models are CPU demanding. Perfect MC ignores
the sequential nature of these integrals (the next one
depends of the previous one only because of the Markov
property) and thereby ignoring important information
to make such calculation more efficient. How this is
achieved is discussed in the following section on a sequen-
tial sampling method termed SIR (sequential importance
resampling).

3.11.2. Sequential Importance Resampling

Recall that importance sampling aims to calculate an
expectation more accurately with lesser samples than a
naïve MC. This was achieved by sampling from another
distribution, then reweighting the samples to correct for
that biased sampling. Importance sampling can equally
be applied as a variance reduction method within sequen-
tial MC. In this context and using the notation in the con-
text of the importance sampling method, see Eq. (3.237),
we substitute as follows:

E h X E h m0 t (3.252)

f x f m0 t d1 t (3.253)

q x q m0 t d1 t (3.254)
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x ℓ m ℓ (3.255)

μh m0 t ,IS =
1
L

L

ℓ=1

w m ℓ

0 t h m ℓ

0 t ;

w m ℓ

0 t =
f m0 t d1 t

q m0 t d1 t

(3.256)

which is estimated from L samples

m 1
0 t ,…,m L

0 t (3.257)

These samples are also termed “particles”: think of points
floating around in a very high dimensional space. The
problem with this simple application of importance sam-
pling within the context SMC is that the weights need to
recalculated at each time t, since models get updates and
hence weights need updating, regardless of how suitable a
choice for q is taken. As time progresses, this becomes pro-
gressively more difficult from a computational point
of view.
One way around this is to evoke again the Markov

assumption and state that q at time t is conditionally
depended on q at time t − 1

q m0 t d1 t = q m0 t−1 d1 t−1 q mt m0 t−1,d1 t (3.258)

For example, if q is simply the prior distribution f(m)
(which will certainly cover the target posterior distribu-
tions), then

q m0 t d1 t = f m0

t

t =1

f mt mt −1,dt (3.259)

The problem, however, with this approach is that as t pro-
gresses, the weights become very skewed, meaning that
only very few samples (particles) get any weight (also
termed degeneracy). This makes intuitive sense: as data
becomes more constraining, the posterior distribution
becomes narrower, and given a limited set of prior mod-
els, few of those prior models fall within the range of the
posterior distribution. We discussed in Section 3.10.3.5
that such skewness is not desirable, as IS estimates may
have very large variance, even larger than the MC
sampler.
SIR, also termed bootstrap filtering, allows dealing

with this problem by eliminating from the set of prior
models/particles those models that have low weights in
the importance sampler and targeting the generation of
particles/models with higher weight. SIR employs a sim-
ple resampling idea. Since importance weights are nor-
malized (w ≥ 0; w=1), these weights form a discrete
empirical distribution (see also Section 3.10.3.5) on the
current particles/models. We can, therefore, replace the
weighted estimate of Eq. (3.256) into an unweighted

estimate by resampling particles/models from this
discrete distribution

μh,SIR =
1
L

L

ℓ =1

h m ℓ

0 t (3.260)

with m ℓ

0 t sampled according to the importance sampler
weights w0:t. The advantage of SIR is that (i) it is easy
to implement because it is very modular (generate model,
calculate weights, resample models), hence no iterative
inversion is needed and (ii) it is perfectly parallelizable
since the forward models can be applied to all samples
at the same time.
As additional observations become available, dt + 1, the

process is repeated. The proposal function is reestimated
using the resampled particles from the previous time step,
and Eq. (3.258) is rewritten as

q m0 t+1 d1 t+1 = q m0 t d1 t q mt+1 m0 t,d1 t+1

(3.261)

This process is repeated each time new observations are
gathered, providing an online estimate ofmt at any subse-
quent time step.

3.12. MARKOV CHAIN MC

3.12.1. Motivation

Markov chain MC (McMC) methods [Geyer, 2002] are
used to sample iteratively from complicated distributions
for whichMCmethods do not work anymore. Such situa-
tions arise, for example in Chapter 6 on inversion, where
the aim is to infer model variables from data. While
McMC methods apply to sampling from any distribution
model, the interest in this book mostly lies in sampling
from a posterior model within a Bayesian context (see
Chapters 5 and 6); hence, the distribution to be sampled
from is defined as

f m d =
f d m
f d

f m f d m f m (3.262)

A number of complications may arise when sampling
from such posterior model:
1. The prior model f(m) may not have an analytical

expression, but rather is some computer algorithm that
generates prior model realizations m(1), m(2), m(3), …;
hence, the density value f(m(ℓ)) cannot be evaluated. This
is not unusual in subsurface applications where complex
computer codes generate very realistic representations
of the subsurface. Basically this code maps random num-
bers into some subsurface model, without explicit knowl-
edge of the underlying density.
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2. The forwardmodeling code used to evaluate howwell
a model matches the data is again a complex computer
algorithm to which we have little or no access.
The main point here is that in both (1) and (2) we have

only access to the “black box” for generating prior
models and for applying some response function on these
prior model.

3.12.2. Random Walk

Since we cannot sample directly and independently
from the posterior, we need to “walk around” the sample
space iteratively and hope to find high-likelihood models.
Jumping around randomly is not a good strategy. A better
strategy would be to walk around models that have high
likelihood, once we have found such a region. Unless the
posterior is quite degenerate (random peaks), it is more
plausible that higher likely models can be found in such
region. This suggests walking around more like a drunk
person (a random walk) than a grasshopper. The problem
now is how to merge this random walking with sampling
properly from a distribution. Intuitively, the randomwalk
as a sampling method makes sense: walking around more
frequently in high-likelihood areas than low-likelihood
areas will generate samples from the posterior that reflects
that frequency. The list of samples obtained along this
randomwalk, however, does not constitute a sample from
the posterior, because two consecutive samples along this
randomwalk are not independent (and we would like i.i.d.
samples). In fact, to make this walking relevant in terms
of finding high-likelihood samples, they should be very
dependent.
The random walk initiates aMarkov chain of modelsm

such that the next model is generated only knowing the
current model. The key theoretical result is that if such
chain of models is (i) irreducible and not transient, mean-
ing essentially that any model can be “reached” from any
other model through the walk, and (ii) is aperiodic (e.g., it
does not get stuck in loops), then the Markov chain has a
stationary distribution that equals the target distribution,
here the posterior distribution. If this walking around is
done “long enough” then the sample obtained when stop-
ping the walk is a sample from the posterior distribution.
More samples can be obtained by starting over, or waiting
again long enough. These issues will be discussed in
Section 3.12.5.
The McMC theory does, however, not state how such

walking (iterating) should be performed but provides only
the necessary and sufficient conditions for it. Hence, many
methods have been designed to performMcMC sampling.
Unless in very specific cases (e.g., Gaussian), there is also
no theoretical result on when to stop (i.e., when “conver-
gence” is reached). In that sense, McMC constitutes a
family of approximate samplers.

3.12.3. Gibbs Sampling

The Gibbs sampler [Geman and Geman, 1984] is partic-
ularly useful for high-dimensional problems because it
relies on dividing the model variables into “blocks”:

m= m1,m2,…,mK (3.263)

Each iteration of the Gibbs sampler consists of cycling
through all these blocks mk and drawing a new value
for each block conditional on all the other blocks. These
conditional distributions are, therefore, represented as

f mk m1,m2,…,mk−1,mk +1,…,mK ,d (3.264)

Notice how these conditional distributions are in fact
partial posterior distribution in the model variables.
Gibbs sampling is particularly useful in cases where the
sequence of conditional distribution is available, such as
in hierarchical Bayesian models [Jaynes, 2003], or in
sequential simulation, often used in geostatistics [Hansen
et al., 2012].

3.12.4. Metropolis–Hastings Sampler

The Metropolis sampler [Hastings, 1970] adds an
acceptance/rejection rule to the random walk and works
as follows:
Generate an initial model from the prior: m0 f(m)
For k= 1, 2, …
1. Sample a new model from the proposal distribution

m∗ f(m|mk− 1)

2. Calculate the ratio α=
f d m∗

f d mk−1

3. Set mk =
m∗ with probability min α,1

mk−1 else
For the Metropolis sampler, the proposal distribution

must be symmetric f(mi|mj) = f(mj|mi). The Metropolis–
Hasting sampler, on the other hand, generalizes this to
asymmetric proposal distributions, a much wider class
of proposal distributions. Therefore, it requires the calcu-
lation of the following ratio which accounts for this
asymmetry:

α=
f d m∗

f d mk−1

f mk−1 m∗

f m∗ mk−1 (3.265)

The use of an asymmetric proposal distribution often aids
in increasing the speed of the random walk [Gelman et al.,
2004]. The ideal jumping distribution is the target distri-
bution. In that case α= 1, always; the sampler becomes
a series of independent draws from the target distribution.
This ideal case does not happen, but some desirable prop-
erties of jumping distributions are that (i) they are easy
to sample from and (ii) they allow relatively large jumps
and do not often get rejected. The Gibbs sampler and
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Metropolis sampler are often used as basic building
blocks in constructing more efficient samplers (see
Section 3.12.6).

3.12.5. Assessing Convergence

MCby independent draws (i.i.d sampling) is simple: the
resulting outcomes are samples from the target distribu-
tion (here the posterior distribution) and the empirical dis-
tribution approximates the target distribution. Sampling
iteratively is more challenging because of the following
reasons:
1. The iterations have to proceed long enough; other-

wise, the sampler will reflect more the starting approxima-
tion rather than the actual distribution.
2. Since sampling is not done by independent draws,

serial correlation exists between the samples that may
cause inefficiency in the sampling. Even though at “con-
vergence” (which is theoretically infinite but has good
approximation for finite iterations), the correlated draws
are samples from the target distribution, the amount of
samples is effectively less than if one would sample by
independent draws. The higher this correlation, the less
the effective sample size is.
This requires methods for “monitoring” convergence.

Note that such methods usually provide necessary indica-
tions/conditions that we are drawing from the target dis-
tribution, they are however not sufficient. The first stage
of monitoring is with regard to the “burn-in” or “warm-
up.”Here we see significant changes in any properties cal-
culated during in the chain. Any statistics that are being
monitored display nonstationary variation. A common
approach to monitoring is to start multiple chains and
then study so-called “mixing” of the chains. In this mix-
ing, we study two levels of variation in the chain: the var-
iation of some quantity q (mean, variance, median, etc.)
within a single chain and the variation between chains
(similar to a variance analysis in cluster sampling). Con-
sider again our target distribution f(m| d) and the monitor-
ing of some estimated q (a scalar such as an estimate of the
mean of the posterior distribution). Consider that we run
m chains and that we are currently at iteration n. We
compute

Bq the between variance of q

Wq the within variance of q
3 266

Wq provides an estimate of the marginal posterior vari-
ance of q; however, this is an underestimate (has less var-
iability) because the target distribution has not been fully
sampled yet. One proposal, therefore, is to calculate a
“corrected” estimate as

Wq,corr =Wq +
1
n
Bq (3.267)

In the limit this will estimate the variance unbiasedly. In
monitor convergence, we can therefore study the ratio

R=
Wq,corr

Wq
(3.268)

which should converge to 1 as n ∞.

3.12.6. Approximate Bayesian Computation

A “full” Bayesian method involves specifying models
for the likelihood and prior and then to sample from
the posterior. These models are full multivariate pdfs.
In Chapter 6 we will discuss various applications of the
full Bayesian approach. The problem with full Bayesian
methods is that they often rely on certain model assump-
tions. One example is the overuse of the Gaussian distri-
bution (by lack of anything better) or specification of
likelihood by assuming independence in measurement
errors. In that context, Schoups and Vrugt [2010] intro-
duced a generalized likelihood function where residual
errors are correlated, heteroscedastic, and non-Gaussian.
However, within a geological context this may not be
the main issue. Even if this allows for a more general
likelihood function, it does not address how errors
(model, data, epistemic, aleatory) can be separated. Full
Bayes may require extensive computations to fully
evaluate the likelihood model and/or normalization
constant. An example of the latter is the unknown nor-
malization constants in MRF models that may require
McMC sampling just to evaluate this normalization
constant [Tjelmeland and Besag, 1998; Mariethoz and
Caers, 2015].
From a subsurface system application point of view, a

full Bayesian approach may not be needed. Adhering rig-
orously to model specifications and performing rigorous
sampling ignores the subjectivity and importance of the
prior model. Why would one sample from a very subjec-
tively chosen model very rigorously? This point will be
strongly argued in Chapters 5, 6, and 7. The critical issue
in UQ is the statement of a physically realistic and geolog-
ically plausible prior distribution. Hence, the main
problem is not so much the sampling, but what exactly
one is sampling from. We may not need to care too much
about the “correct” posterior model and the “correct”
sampling from it. Rather we would like for our posterior
models to adhere to properties formulated in a physics-
based prior and to reflect some field data.
A large family of methods that avoid likelihood pdfs,

and also called “likelihood-free” methods [Diggle and
Graton, 1984], are termed approximate Bayesian compu-
tation (ABC). This simple idea has many varieties, see
ABCsmethod inBeaumont et al. [2002], Sadegh and Vrugt
[2014], Sadegh and Vrugt [2013], and Turner and Van
Zandt [2012], or extended rejection sampling in
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Mosegaard [1995], or generalized likelihood uncertainty
estimation inBeven [2009]. The basic method is as follows:
1. Drawm from the prior distribution f(m), simulate the

data from the forward model d= gd(m).
2. Specify a distance and calculate d(d, dobs).
3. Acceptm if d(d, dobs) < ε for some specified threshold ε,

otherwise reject.
This method accepts draws from the prior relative to the

distance calculated from the observed data. There are
three issues that need to be addressed: (i) specify an appro-
priate distance, note that dmay be very high dimensional,
hence comparison will be made based on some summary
statistics evaluated on d, (ii) ε should be small, but not too
small, and (iii) for certain prior models, the rejection rate
may be very high.
What approximation is being made compared to a full

Bayesian approach? Given the above distribution, the
approximate distribution being sampled from is

f m d = f m

d

f d m I d gd m ,dobs < ε dd (3.269)

with I an indicator operator (either 1 or 0). The actual
(true) posterior distribution is obtained when ε 0 [Beau-
mont et al., 2002; Turner and Van Zandt, 2012]. In the
above algorithm

f d m = δ d−g m (3.270)

but could also be based on a measurement error model
(see Chapter 6)

d= g m + ε (3.271)

3.12.7. Multichain McMC

Traditional McMC methods work well for problems
that are not too high dimensional (a few parameters,
e.g., five or less). For high-dimensional and nonlinear pro-
blems, with multimodel distributions in such spaces, these
methods can become difficult to apply, or have problems
in terms of efficiency and convergence. One way to over-
come these inefficiency problems is to create so-called
adaptive chains, meaning that the proposal distribution
changes during iteration.
The most common adaptive single chain methods are

adaptive proposal [Haario et al., 1999] and adaptive
Metropolis [Haario et al., 2001] methods. The proposal
distribution here is multivariate Gaussian and the adapta-
tion is made in the covariance matrix, by recalculating the
covariance based on a set of samples along the chain as
well as some consideration on the dimensionality of the
problem. Although increase in efficiency is achieved in
higher dimensions, the nature of the adaption makes it
really only applicable for Gaussian-type distributions.

Multiple chain methods use multiple chains running in
parallel and are known to out-perform single chain
methods for complex posterior distributions, for exam-
ple, that exhibit multimodality (e.g., [Gilks et al., 1994;
Liu et al., 2000;Craiu et al., 2009]). A multichain method
popular in hydrology (as well applied to a variety of
other problems) is the DiffeRential Evolution Adaptive
Metropolis method [DREAM, Vrugt et al., 2009; Gupta
et al., 2012; Laloy and Vrugt, 2012; Vrugt, 2016]. This
method is based on an adaptive Metropolis sampler
termed Differential Evolution Markov chain (DE-
MC). DE-MC employs genetic algorithms (or any other
differential evolution, [Storn and Price, 1997] to evolve a
population of chains but using the Metropolis criterion
(Eq. (3.265)) to evolve the population of chains [Ter
Braak, 2006]. A traditional genetic algorithm (GA),
(on its own) is not a sampler but an optimizer; hence,
convergence is increased by combining GA and McMC,
while still drawing from the posterior distribution. In
DREAM,DE-MC is enhanced by using an adaptive ran-
domized subspace sampling as well as other methods to
get balance and ergodicity in the chain, leading to con-
siderable improvement over other adaptive MCMC
sampling approaches [Vrugt, 2016].
Another approach is to combine McMC with sequen-

tial MC. For example, Andrieu et al. [2010] propose a
particle Markov chain Monte Carlo (PMCMC) methods,
which relies on a combination of both McMC and SMC
taking advantage of the strength of each. Here SMC
algorithms are used to design efficient high-dimensional
proposal distributions for MCMC algorithms.

3.13. THE BOOTSTRAP

3.13.1. Introduction

Even with the advent of new data scientific approaches
such as machine learning, or computer vision, the basic
approach to data analytics has not changed: (i) collect
data, (ii) summarize data, and (iii) infer from data: statis-
tical inference. In that regard, the bootstrap caused a rev-
olution in statistical science since its inception [Efron,
1979; Efron and Tibshirani, 1994]. Statistical inference
deals with the estimation of (population) parameter θ,
in terms of estimates θ and determining how accurate θ
is in terms of the true θ. A typical example is the estimate
of the mean μ= E[X] of a random variable X F(x, θ). An
unbiased estimate of this expectation is the arithmetic
average

μ=
1
L

L

ℓ=1

x ℓ (3.272)
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If the population variance σ is known, and X N(μ, σ),
then the sampling distribution of μ (meaning how μ varies
in the population for that sample size) is

X N μ,
σ

L
(3.273)

In case σ is not known, the standard error of the estimate
can be calculated as

seF =
s

L
s=

L

ℓ=1
x ℓ −μ

2

L−1
(3.274)

The problem is that this simple setting does not easily
extend to the general case for any random variable and
any quantity of interest that needs to be estimated.
Explicit expressions are usually not available.
The bootstrap instead provides an approximation of seF

by way of resampling. To that extent, we introduce the
notion of a bootstrap sampling which samples from the
original sample (x(1),…, x(L)) with replacement (basically
putting all samples in a bag, taking a value, but putting it
back too). We denote such sample as

xb = x 1
b ,…,x L

b (3.275)

The value x ℓ

b can only be one of the original sample
values. This resampling idea allows for values to be
sampled multiple times, even if they are only found once
in the original sample. Essentially, samples are drawn
from the (discrete) empirical distribution constructed
from the original sample. As many such new sample sets
can be generated as desired

xb = x 1
b ,…,x L

b b=1,…,B (3.276)

Using each such bootstrap sample, we recalculate the esti-

mate as θb (the double hat indicating it is calculated under
the bootstrap, the subscript, which bootstrap sample) and
calculate the bootstrap standard error as

seB θ =

B

b=1
θb−θ

2

B−1
θ=

B

b=1
θb

B
(3.277)

Note, however, that θ does not have to be the mean, it
could be any parameter. Figure 3.38 provides a summary
of the procedure.

3.13.2. Nonparametric Bootstrap

3.13.2.1. One-Sample. In this section, we focus on
the simple case of a single sample of a random
variable (x(1),…, x(L)) F(x, θ). This sample generates
an empirical distribution F with emprical probability of
1/L on each sample x(ℓ). The true parameter of a distribu-
tion can be written as a general function (e.g., an integral)
of the true distribution

θ= t F 3 278

Using the empirical distribution, one can now generate a
so-called plugin estimate

θ= t F (3.279)

Nonparametric bootstrap provides a modular way of
studying the sampling properties (e.g., bias, standard
error, quantiles) of the estimate θ. Figure 3.39 provides
an overview of this procedure.

F

X1

(θ)

θ1

θ2

θB

X2

seB

XB

Figure 3.38 Summary of the bootstrap procedure.

Unknown Known

Bootstrap samples

= s

~(1)xb

t(F)=

(L)xb,..., F(x)( )

(1)xb
(L)xb,...,( )

~(1)x (L)x,..., F(x,θ)( )

θ= st(F)= (1)x (L)x,...,( )θ

θ = t(F)

Figure 3.39 The one-sample bootstrap.
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3.13.2.2. Bias Correction. A bias is a systematic error
made by an estimator about an unknown quantity. Math-
ematically, this is represented as

biasF = EF θ −θ

= EF t F − t F plugin
3 280

The bootstrap can be used to estimate this bias as follows:

biasF =EF θ − t F

=EF θ −θ
(3.281)

This bias estimate can then be used to correct the original
estimate into a bias-corrected estimate:

θbias−corrected = 2θ−EF θ (3.282)

The main issue with bias-corrected estimators is that they
may have higher variance. This is clear from Eq. (3.282)
since the bias corrections have two quantities that need to
be estimated (hence subject to estimation variance). In
addition, the multiplication by two increases this effect.

3.13.2.3. Time Series. Bootstrap can also address more
complex data structures than the simple one-sample
model with single parameter θ. The idea depicted in
Figure 3.39 can be extended to any probability model gen-
erated the “sample,” whether these are time series, maps,
3D cubes of data, and so on. As illustration, consider a
time series modeled as a first-order auto-regressive model

x t = βx t−1 + ε t (3.283)

given an observed time series (x(1),…, x(T)), β can be esti-
mated as β through a simple least-square procedure (mini-
mizing the squares error of residuals). In addition, it is
assumed that the error follows a certain distribution F.
Hence, the generating probability model for the data
has two unknowns: (β, F). The empirical distribution of
the residuals is

ε t = x t −βx t−1 ,
1
T

, t=1,…,T (3.284)

which then allows generation of bootstrap samples xb by
the following recursion:

xb i = βxb i−1 + εb i−1 (3.285)

3.13.2.4. Regression. Another application of a more
complex data structure offers itself in regression. For
example, we may want to build a regression between
model parameters and data, predictions and data, and
so on in the context of UQ (see Chapter 7). Because we
have limited samples to do so, we need to get some idea

of confidence in that regression. In regression, the aim
is to model the conditional expectation on some variable
Y given obnservations (independent variables) X, of
dimension N. Consider the general situation of samples

z ℓ = x ℓ ,y ℓ ,ℓ=1,…,L (3.286)

The aim is to model the conditional expectation with a
linear function

E Y X = βTx (3.287)

The probability structure for the y-values is expressed by
means of an error model

y= βTx+ ε (3.288)

The classical solution (see Eq. (3.130)) is

β= XTX
−1
XTy y= y 1 ,…,y L (3.289)

To apply the bootstrap, we need to first state the proba-
bilistic generating structure P(β, F). Here F is the distribu-
tion of the residuals ε, which is modeled empirically

as β,F

F P ε= εℓ =
1
L
εℓ = y ℓ −βTx ℓ (3.290)

This allows generating bootstrap samples as follows: esti-
mate β, generate bootstrap sample of ε using Eq. (3.290),
and then generate bootstrap samples of y using
Eq. (3.288).

3.13.3. Bootstrap with Correlated Data

In geosciences one often deals with models, data, or pre-
dictions that are correlated in space and/or time. In such
cases, one is equally interested in stating confidence on
same statistical parameter whether it is the global mean
of a spatial field or parameters of the spatial covariance
function, modeling the observations.
A simple approach to deal with such correlated data is

to first decorrelate [Solow, 1985] them, apply a standard
one-sample nonparametric bootstrap, and then back-
transform the uncorrelated bootstrap sample to a corre-
lated one. Consider a random vector X = (X1,…,XN)
whose elements are correlated (could be space, time, or
just multivariate). Then the covariance matrix CX (mod-
eled from these observations) can be decomposed by
means of a Cholesky decomposition:

CX =LLT (3.291)

Decorrelated observations can now be generated as
follows:

u=L−1x CU = IN (3.292)
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Generating any bootstrap sample ub results in a boostrap
sample xb

xb =Lub b=1,…,B (3.293)

from which any statistics (e.g., the global mean) can be
calculated. Note that this model assumes Gaussianity;
hence, some prior normal-score transformation may be
required if the Xn are not Gaussian.
Consider now the specific case of a spatial model (a grid

with unknown quantities) of which we have some partial
observations (e.g., measurements at certain locations).
The spatial model may not necessarily be a multi-
Gaussian model with some covariance function. For
example, the random field may be modeled with a Bool-
ean model, a Markov random field, or some multiple-
point geostatistical method (see Chapter 6). The idea of
these methods is to generate posterior samples from some
(implicit or explicit) posterior model of the unknown grid
variables:

x s1 ,…,x sNgrid (3.294)

from some limited set of observations on that grid
x s 1 ,…,x s Ndata

. In a general method for spatial
bootstrap, these conditional samples/realizations are
resampled using the same sampling strategy (but different
locations) to obtain resampled data sets:

xb s 1 ,…,xb s Ndata
,b=1,…,B (3.295)

Thus, resampling accounts for whatever correlation struc-
ture is assumed in generating the realizations. The boot-
strap samples can then be used in any estimator:

t x s 1 ,…,x s Ndata
t xb sb, 1 ,…,xb sb, Ndata

(3.296)

Consider the case of estimating the global mean of the
domain and requiring some confidence on that estimate.
The variability of this arithmetic estimator of that
unknown mean is dependent on the correlation structure
of the field (the pure random case would then be solved
with the i.i.d bootstrap, but otherwise this method would
yield incorrect confidence). This type of bootstrap allows
accounting for that structure. Example applications of
these ideas are presented in Journel [1994] and Caumon
et al. [2009].

3.13.4. Bootstrap Confidence Intervals
and Hypothesis Testing

In the application of UQ, it is often important to
know if two sample sets follow the same distribution or
a different distribution. Knowing whether two (empirical)
distributions are different is, for example, relevant to the
application of Bayes’ rule. If the prior is not sufficiently

different from the posterior, then clearly the data was
not able to reduce uncertainty. Another application lies
in sensitivity analysis: we would like to know if a varia-
ble/parameter is impacting the response or not. One
way of testing this is to classify the response into two
groups (positive/negative or high/low or reacting/non-
reacting), then study the distribution of that variable in
each group (see Chapter 5). If the distribution within
the two groups is the same, then the parameter is not
impacting the response; likewise, the degree of difference
can inform how impacting that variable is with respect to
other variables.
The problem is that typically we have a limited sample

only. Either because the data is too expensive to acquire,
or when computer models are involved, the amount of
runs is limited. A hypothesis test is needed where the null
hypothesis is defined as “no difference in the distribu-
tions exists” and the statistical evidence is used to test
if it can be rejected (hypothetico-deductive reasoning,
see Chapter 5). Because hypothesis testing requires sam-
pling statistics, bootstrap is an ideal candidate for those
tests that involve statistics whose sampling distributions
are not known.
Here we present two different ways of addressing these

hypotheses tests, each addressed with a different boot-
strap method. First consider the null-hypothesis that
two distributions are the same:

H0 F1 =F2 (3.297)

with F1and F2 the two distributions in question. Next we
define a test statistics, such as for example the difference
in mean:

θ= μ F1 −μ F2 (3.298)

The difference is also estimated from the data as θ.
Clearly, if θ is significantly different from zero then the
null-hypothesis should be rejected. To study this, we
would like to generate bootstrap samples and use them

to calculate bootstrap estimates θb, which allows calculat-
ing the so-called “achieved significance level” (ASL):

ASL=PH0 θb ≥ θ (3.299)

The smaller ASL, the more evidence against the null-
hypothesis. The problem now lies in how to resample
(a question of the probability generating structure) to gen-
erate these bootstrap estimates. Indeed, H0 leaves many
possibilities for distributions F1 = F2 with a given test sta-
tistics (e.g., if the test statistics is themean only, thenmany
distributions can be constructed). To address this, a per-
mutation test looks at every possible combination of
creating two groups with the original sample values.
For example, if we have L1 samples in group 1 (F1) and
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L2 samples in group 2 (F2), then the amount of possible
combinations is

L1 +L2

L1
=

L1 +L2

L2
=

L1 +L2

L1 L2
(3.300)

and each of such a combination has probability

1
L1 +L2

L1
. A permutation test can be considered as

a bootstrapwithout replacement. It selectsL1 samples ran-
domly from the combined set of L1 + L2 samples, assigns
it to group 1 and the remainder to group 2. As a result,
samples in group 1 do not replicate in group 2 (that would
be a bootstrap with replacement). When using a finite
amount B of such bootstrap samples, then ASL in
Eq. (3.299) can be approximated by

ASLperm =# θb ≥ θ
L1 +L2

L1
(3.301)

A second and different way of addressing the same
problem is to avoid the original null-hypothesis and
directly test

H0 θ= θ0 (3.302)

The distributions are now simply the empirical distribu-
tions; hence, B bootstrap samples with replacement are
drawn of size L1 +L2 of which the first L1 are assigned
to group one and the remainder to group 2. Unlike the per-
mutation test, this way of testing does not assign probabil-
ities to each sample (no explicit generating structure). This
also means that the ASL obtained ASLboot =# θb ≥ θ B
has no interpretation of a probability as B goes to infinity.
The bootstrap sampling results from hypothesis testing

can equally be used to construct confidence intervals on

any statistic θ. The bootstrap estimates θb represent the
empirical distribution from which any percentiles

F
−1

α can be calculated. This simply means that for a
given α, one finds amongst the B bootstrap samples the
sample with rank (α× B)/100. This results in the confi-
dence interval

θα,Lo,θα,Hi = Fb α ,Fb 1−α (3.303)

The link with hypothesis testing also becomes clear now.
Consider the case again of testing difference

H0 θ=0 ASL= α (3.304)

meaning that we can use confidence intervals to calculate
ASL. Indeed, consider that θ>0, if we chose α such that
θα,Lo =0 then as a result

Pθ=0 θb ≥ θ = α (3.305)
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4
Sensitivity Analysis

4.1. INTRODUCTION

Prediction in subsurface systems often relies on the use
of complex computer simulation models. These models
may contain a large number of input parameters whose
values are uncertain, thereby introducing uncertainty in
the output of such computer models. Fundamental to
any uncertainty quantification (UQ) is understanding
the influence of each uncertain input parameter and
how the input parameter uncertainty propagates to out-
put (response, prediction) uncertainty. Sensitivity analysis
(SA) is the study of how variation of input parameters
impacts the uncertainty of a response of interest. With a
good understanding of how input parameters influence
the response, several actions/options are possible. SA
can aid in reducing uncertainty in prediction by identify-
ing high-impacting parameters, and hence which data to
acquire to reduce uncertainty on said parameters. Addi-
tionally, one may wish to fix the values of the parameters
that have little influence on the prediction, which may
help in reducing the complexity of the problem, or even
computational complexity. Finally, SA allows quantify-
ing and understanding how the combined effect of para-
meters generates nonlinear variations in responses. In
SA terminology, these are termed interactions. Parameter
interaction occurs when the effect of a parameter value on
the response of interest varies for different values of
another parameter. Identifying the presence of interac-
tions is important as it has consequences on the two pre-
vious points [Saltelli et al., 2000]. In this chapter, we only
consider interactions between two parameters (referred as
two-way interactions) and ignore multi-way interactions
(among three or more inputs). Multi-way interactions
are difficult to calculate and interpret and are usually less
significant than the lower-order sensitivity coefficients
[Zagayevskiy and Deutsch, 2015].
Many reviews of SA exist (among many others,

e.g., [Saltelli et al., 2000; Frey and Patil, 2002; Iooss and

Lemaître, 2014; Song et al., 2015; Borgonovo and
Plischke, 2016], etc.). The literature on SA uses different
terminology, such as “influential,” “sensitive,”
“important,” “impacting,” “effective,” and “correlated”
interchangeably. We will use the following terminology:
a parameter is defined as influential when it has a signif-
icant impact on model response. When the parameter is
influential, the common nomenclature in the SA literature
is to define the response as sensitive to the parameter. The
above definition requires a measure of a threshold of
sensitivity beyond which a parameter is considered as
influential. We will use the term objective measure of
sensitivity to identify measures which compute the
threshold, often using statistical techniques. However,
many SA methods only provide a subjective measure of
sensitivity, that is, they rank the parameters based on their
influence on the response, but they require a subjective
definition of the threshold by the user (often based upon
visual inspection).
In this chapter, we do not offer an exhaustive list of the

existing SA techniques, but we only discuss some of the
state-of-the-art techniques that are well suited for the spe-
cificities of subsurface systems. Input parameters and
model responses in subsurface modeling may have char-
acteristics that require adaptation of existing SA techni-
ques. In particular, input and output variables may be
spatiotemporal (permeability, saturation maps, produc-
tion as a function of time at many wells, etc.) and not uni-
variate. In addition, uncertain parameters can be of any
type, continuous, discrete, or nonnumerical, such as a
depositional scenario. Not all SA methods are well suited
for these general conditions. Finally, stochasticity in
model responses may be present which introduces addi-
tional complications that render application of many
SA methods problematic. Stochasticity in subsurface sys-
tems is often modeled through a set of alternative numer-
ical models representing the spatial heterogeneity of the
Earth. The set of alternative spatial models is generally
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obtained using geostatistics and is sometimes referred to
as spatial uncertainty or stochastic imaging [Goovaerts,
1997]. Spatial uncertainty introduces stochasticity in the
model response. The implications of stochasticity will
be further discussed in Section 4.5.
SA methods can be divided into two categories: local

and global methods. Local SA evaluates sensitivity for
a single (deterministic) set of input parameters. Sensitivity
measures are usually defined by computing partial deriva-
tives of the output function with respect to the parameters.
The main advantage of local methods is their computa-
tional efficiency. Their major limitation is that they are
only calculated for that single set; hence, they are only
informative locally near the set of input parameters and
not elsewhere in the parameter space. The main advan-
tage of global SA (GSA) methods lies in their ability to
assess the effect of inputs over the entire parameter space
to evaluate sensitivity measures, and hence it is more
appropriate for UQ. Global methods often require many
model evaluations because of the need to cover suffi-
ciently the parameter space, which is potentially vast in
subsurface systems [Saltelli et al., 2000]. Screening techni-
ques, described next, attempt to minimize computational
cost by selecting a reduced set of input parameters.

4.2. NOTATION AND APPLICATION EXAMPLE

We consider a system which takes Np input parameters
x= x1,…,xNp and is used to predict a response y. In the
context of uncertainty in subsurface systems described in
Chapter 3, x can be either the gridded model vari-
ables mgrid or the non-gridded model variables p. The
response of the system y can be the data variables d or
the prediction variables h. For many SAmethods, y needs
to be a scalar. x and y are outcomes of random variables
X= X1,…,XNp and Y, respectively, and we assume that
Y can be defined as a function of X:

Y= f X = f X1,…,XNp (4.1)

Because X is uncertain and thus characterized by a joint
probability distribution, Y is also uncertain and can be
characterized by its own joint probability distribution.
To illustrate some of the different SA methods pre-

sented in this chapter, we use a simplified version of the
dense non-aqueous phase liquid (DNAPL) test case pre-
sented in Chapter 3. For clarity in presenting the results,
the number of uncertain parameters was reduced from
14 to 6. The parameters that are kept are the mean and
standard deviation of the hydraulic conductivity (Kmean

and Ksd, respectively), the covariance model (KCov) and
the covariance range (Krange) of the hydraulic conductiv-
ity, the river gradient (HrivGrad), and the range of the
Matèrn covariance model (Hrange) used to define the
boundary conditions. All other parameters are fixed to

their mean value. Because most SA methods work with
scalar responses, the influence of each parameter on the
pollutant arrival time, a scalar, is assessed. In Sections
4.4.3 and 4.4.4, we analyze the pollutant arrival as a
time-varying response instead of a scalar.

4.3. SCREENING TECHNIQUES

Screening techniques rely on simplified approaches to
identify non-influential inputs of a computer model, while
keeping the number of model evaluations small. They are
often used for systems with many input parameters as a
first screening, before using more advanced SA methods.
Because screening techniques are computationally eco-
nomical, only a subjective measure of sensitivity can be
evaluated, that is, the parameters can only be ranked
based on their importance and not defined as sensitive/
insensitive based on some statistical criteria. Two of the
most widely used screening techniques in subsurface mod-
eling are presented next: the one-at-a-time (OAT) method
and the Morris method.

4.3.1. OAT Method

The OAT approach [Daniel, 1973] is the most widely
used screening method because of its simplicity. The idea
is to vary the input parameters one by one, while keeping
the other inputs fixed at a baseline (“nominal” value), and
to monitor changes in the output. Tornado charts are a
common tool in SA to visualize the effect of changing
one parameter at a time. The Tornado chart consists of
two OAT designs: changes in the response (output) when
a parameter is changed from its nominal value to its lower
and higher extremes are recorded. The corresponding var-
iations of the response are plotted from the highest varia-
tion to the lowest in the Tornado chart (Figure 4.1). The
nominal value for each parameter is usually taken as the
midpoint between the two tested extremes. The number of
model evaluations for the Tornado chart is therefore
2Np+ 1, where Np is the number of parameters. The
low computational cost of the OAT is one of its main
advantages.
If parameters are changed over small intervals, the

OAT method can be considered as a local method.
Because the OAT method only varies one parameter at
a time, the effect of varying several parameters simultane-
ously is not investigated, and therefore interactions
between parameters cannot be assessed. Care must, there-
fore, be taken to not remove a parameter using an OAT
analysis, without quantifying interactions with other
parameters. In addition, the OAT approach does not
explore well the input parameter space; the results are
dependent on the choice of the baseline values. The anal-
ysis is only strictly valid when the response can be mod-
eled as a linear representation of the inputs. Moreover,
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OAT approaches require numerical input parameters;
hence, the impact of scenario-based parameters cannot
be assessed by this technique, as one cannot define a
“min” and “max” scenario. Saltelli and Annoni [2010]
offer a critical review of the OAT method. Despite the
OAT’s limitations, several examples of its use can be
found in the literature. In the context of the subsurface,
and particularly in oil and gas applications, OAT is
attractive as it can directly display the impact in terms
of production volume or dollar amounts when a parame-
ter is varied over its possible range of values (an example
can be found in Cavalcante et al. [2015]). Other applica-
tions are, for example, in hydrological modeling [e.g.,
Khalid et al., 2016] and ground water recharge [Nolan
et al., 2007].
To illustrate, the OAT approach was applied to the sim-

plified DNAPL example. A fixed Gaussian covariance
model is used, since the OAT method cannot handle sce-
nario (nonnumerical) parameters. In addition, because
OAT methods cannot be used in the presence of stochas-
ticity in the response, both the boundary conditions and
the hydraulic conductivity fields were generated using a
Gaussian process (see Chapter 3 for more details) with
a fixed random seed; there is no spatial uncertainty and
hence no stochasticity. The resulting Tornado chart for
the pollutant arrival time (in days) is shown in Figure 4.1.
Figure 4.1 shows that the parameter’s hydraulic con-

ductivity mean and standard deviation (Kmean and Ksd)
and the river gradient (HrivGrad) are influential on the arri-
val time. In particular, an increase of Kmean by two stand-
ard deviations results in contaminant arriving 3.5 days
earlier, whereas a decrease of Kmean would result in late

arrival time (+6 days). In addition, increasing the value
ofHrivGrad or decreasing the value ofKsd result in late arri-
val time of the contaminant. The effect of an increase or
decrease of the parameter value is not necessarily
symmetric.

4.3.2. Morris Method

Morris [1991] extends the concept of OAT by deriving
GSAmeasures from a set of local measures evaluated over
the input parameter space. TheMorris method is based on
a repeated sampling of randomized OAT designs; hence,
it is much more complete than the standard OATmethod,
but also more costly. It is well suited for models with a
large number of input parameters (up to thousands, see
an application inHerman et al. [2013]) and with relatively
long computational times. Using the Morris method, the
input parameters can be classified into three groups:
(i) negligible effects, (ii) linear and additive effects, and
(iii) nonlinear effects and/or interactions effects.
The Morris method works as follows. First, input para-

meters are scaled to the unit interval [0, 1] and discretized
into q-levels, (xn {0, 1/(q− 1), 2/(q− 1),…, 1}), resulting
in a q-dimensional lattice denoted Ω. In the Morris
method, the elementary effect of the n-th parameter
(EEn) is evaluated by perturbing the n-th parameter of a
point x= x1,…,xNp Ω by a predefined increment Δ
and keeping all other parameters constant

EEn =
f x1,…,xn−1,xn +Δ,…,xNp − f x1,…,xn−1,xn,…,xNp

Δ
(4.2)

with Δ a multiple of values 1/(q− 1) and x and x +Δ
belonging to the discretized input space Ω. q is often
restricted to even values and Δ = q/(2(q− 1)) [Mor-
ris, 1991].
The Morris design is a strict OAT design as defined in

the terminology proposed by Daniel [1973]. The design
creates multiple trajectories through the parameter space
as follows. For a given point x, each trajectory contains a
sequence of Np perturbations, resulting in Np+ 1 model
evaluations to evaluate theNp elementary effects. The ele-
mentary effects depend on the point x. To avoid this
dependency, Morris suggests creating multiple trajec-
tories by sampling a set of L randomly selected starting
points to estimate a distribution of elementary effects
for each parameter. The procedure is equivalent to per-
forming a given number (L) of OAT designs. The total
cost of the method is, therefore, L(Np+ 1). The choice
of q and L is critical in the Morris approach. High values
of q create a large number of possible levels to explore,
requiring a large number of trajectories to ensure
that the space is well explored. Values such as q = 4
and L= 10 are often sufficient to provide meaningful

OAT sensitivities

Kmean

Ksd

HrivGrad

Krange

Hrange

20 22 24

Arrival time (days)

26 28 30

Figure 4.1 Tornado chart for the simplified hydrological case
from Chapter 3 on the pollutant arrival time. Blue bars
represent changes when a parameter is decreased by two
standard deviations. Red bars represent changes when a
parameter is increased by the same degree.
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results [Wainwright et al., 2014]. More recent work pro-
poses trajectories to maximize the coverage of the input
space [van Griensven et al., 2006;Campolongo et al., 2007].
The distribution of the elementary effects of each

parameter is analyzed to define sensitivities, using its
mean μn and standard deviation σn, defined as

μn =
1
L

L

ℓ =1

EE ℓ

n and σ2n =
1

L−1

L

ℓ=1

EE ℓ

n −μn
2

(4.3)

with EE ℓ

n the elementary effect of the n-th parameter (as
defined in Eq. (4.2)) and of the ℓ-th randomly selected xn.
The mean μn assesses the overall impact (influence) of

the parameter on the response. A large mean indicates
large changes in the response when perturbing a parame-
ter (an influential parameter). The standard deviation or
variance σ2n is a measure of nonlinear and/or interaction
effects. A large value indicates that the elementary effects
depend highly on the choice of the sample point at which it
is computed. On the other hand, a small σ2n indicates sim-
ilar values in elementary effects for different sample
points, implying that the effect of the parameter is inde-
pendent of other parameter values. In some instances,
μn can be prone to type II errors (if the distribution con-
tains both positive and negative values, they may cancel
out).Campolongo et al. [2007] suggests replacing themean
of the elementary effects by the mean of the absolute value
of the elementary effects:

μ∗n =
1
L

L

ℓ =1

EE ℓ

n (4.4)

A graphical representation of μ∗n,σn is often used to
interpret parameter sensitivity, as shown in Figure 4.2.
Saltelli et al. [2008] suggests using three measures μn,

μ∗n, and σn to interpret influence of each parameter to
get a better insight of the impact of each parameter.
The Morris method is applied to the hydrological case,

using q = 4, Δ = 2/3, and L = 10. The elementary effects
were calculated on the arrival time (again, uncertainty
in the covariance model was not considered). We observe
in Figure 4.2 that the parameters Kmean andHrivGrad have
a large impact on the pollutant arrival time, with both a
large μ∗n and σn. The large value of σn indicates the pres-
ence of nonlinearity or interactions. Interestingly, Kmean

has a μn close to zero, which indicates that the elementary
effect for that parameter has a different sign depending on
where in the parameter space it is computed. On the other
hand, HrivGrad has a negative μn of similar order as μ∗n,
which indicates that most elementary effects are negative.
The parameters Krange and Ksd are less influential, but it
still may have an impact on the arrival time, as well as
interactions. However, Hrange appears not to be
influential.
The Morris method has been applied to various appli-

cations, but only recently in the geosciences, for example
for carbon sequestration projects [Wainwright et al., 2013;
Sarkarfarshi et al., 2014], oil reservoir applications
[Feraille and Busby, 2009; Gervais-Couplet et al., 2010],
geothermal [Finsterle et al., 2013], hydrogeology [Wain-
wright et al., 2014;Dessirier et al., 2015], flood inundation
models [Pappenberger et al., 2008], and hydrological stud-
ies [Francos et al., 2003; Herman et al., 2013] to list a few.
Screening techniques only provide subjective measures

of sensitivity. Also, they do not evaluate or distinguish
interactions from nonlinear effects. In addition, screening
methods require continuity in the response; hence, they
cannot be applied to stochastic models (i.e., in the pres-
ence of spatial uncertainty, as defined by a varying ran-
dom seed in the computer simulation). The choice of
the random seed may have an impact on the results, as
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Figure 4.2 Morris method applied to the simplified hydrological case.
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shown in Section 4.5. Nevertheless, the Morris method
has recently gained attention in the geosciences commu-
nity as it was shown to hold promise in identifying para-
meters that can be safely removed from the study, before
applying the more complex, sampling-based techniques
described next.

4.4. GSA METHODS

GSA methods are often based on some form of Monte
Carlo sampling (see Section 3.10). All parameters are var-
ied jointly, and hence their joint effect (interaction) on
some desired response is evaluated. This global sampling
provides a more rigorous assessment of parameter sensi-
tivity, but at a much greater computational cost. GSA
also considers the input parameter distribution, which
was not the case for screening methods, and also allows
for stochastic responses, which commonly occur in the
geosciences.
Global sensitivity methods described in this section can

be divided into four main categories based on their
assumptions and how they determine sensitivities: linear
regression-based SA, variance-based SA, regionalized/
generalized SA [Saltelli et al., 2000], and tree-based sensi-
tivities. Linear regression-based SA relies on the assump-
tion of a linear relationship between parameters and
responses. Because they are relatively simple and efficient
(low computational cost), linear-based SA are popular
methods in UQ for subsurface systems. Variance-based
SA methods do not require an assumption of linearity
and rely on a decomposition of the variance of the
response with respect to the parameters. These methods
are popular as a research topic, but not yet widely applied
in the geosciences because they suffer from high-
computational demand and hence are yet impractical in
many real-field applications. Many authors propose
methods to approximate the model response using a sur-
rogate model to make variance-based SA computation-
ally feasible. Regionalized (or generalized) sensitivity
analysis (RSA) methods are less used, but it can be quite
powerful, especially with the latest developments that are
tailored to handle many of the challenges when dealing
with complex subsurface systems. Finally, tree-based
SA has not been applied much in the context of subsurface
modeling, but the latest development makes them poten-
tially a valuable tool. We provide more details of each
approach, including their advantages and drawbacks in
the context of UQ for subsurface systems.

4.4.1. SA Based on Linear Models

4.4.1.1. Scatter Plots and Correlation Coefficient.One
of the simplest SAmethods is to analyze scatterplots of the
response versus each input parameter, thereby visualizing

the relationship between parameter and response.
A strong correlation between an input parameter and a
response indicates an influential parameter. Parameters
are defined as influential/not influential by visual inspec-
tion, aided often by displaying the Pearson correlation
coefficient. One of the drawbacks of scatterplots is that
as many plots as the number of parameters are needed,
which can be cumbersome when studying a large set of
parameters. Scatterplots for the parameters of the syn-
thetic case used through this chapter are shown in
Figure 4.3 where a Latin hypercube sample
(Section 3.10.3.3) with 200 runs was used.
The scatterplots show that the mean value of the

hydraulic conductivity (Kmean) is correlated with the arri-
val time of the pollutant, with a Pearson correlation coef-
ficient (ρ) of −0.83. A larger value of Kmean results
generally in earlier arrival of the pollutant at the drinking
well. The standard deviation of the hydraulic conductivity
(Ksd) and the gradient of the river (HrivGrad) also show
some correlation with the arrival time. Very little influ-
ence is seen for the range of the covariance (Krange) and
the covariance model (KCov) for the hydraulic conductiv-
ity and for the range of the covariance (Hrange) used to
define the boundary conditions.
One of the advantages of scatterplots is that they allow

the identification of potentially complex dependencies
(such as quadratic behavior) which can help to select an
appropriate SA technique [Frey and Patil, 2002]. How-
ever, scatterplots are only visual tools, they do not provide
a measure of sensitivity. The Pearson correlation coeffi-
cient is useful when a linear relationship between param-
eter and response occurs. The Pearson correlation
coefficient is not meaningful for scenario-type of para-
meters (hence not shown in Figure 4.3).

4.4.1.2. Linear Regression Analysis. Regression analy-
sis can also be used to assess the impact of the input para-
meters on the output response. Common practice in SA is
to fit a linear regression model (also denoted as response
surface) to the data. Consider a “main effect model,” that
is, a model that does not contain interactions:

y= β0 +
Np

n=1

βnxn + ε 4 5

Assuming that a linear model holds (the alternative is dis-
cussed in Section 4.4.1.3), the coefficients βn can be used to
determine the importance of each parameter xn with
respect to the response y. When xn are independent, the
absolute standardized regression coefficients can be taken
as a measure of sensitivity:

SRCn = βn
sn
s

(4.6)
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where sn and s are estimated standard deviations for
xn and y. Calculating the SRC coefficients is equivalent
to performing the regression analysis with the input and
output variables normalized to mean of zero and variance
of one [Helton, 1993]. A large SRCn indicates a large
change in the response for a unit change in the input
parameter. Hence, the larger SRCn is, the more important
the input parameter xn is. If the parameters are not
independent (i.e., there is a correlation between the values
of parameters xn and xn ), then the SRC is not suitable
for measuring the importance of the input parameters
[Helton, 1993]. Note that the coefficients βn (hence SRCn)
are estimated based on the regression model, not on
the data. As a consequence, if the model poorly fits the
data, then the resulting sensitivity measure may be
inaccurate.
The SRCn are themselves uncertain because they are

dependent on the sample used to fit the regression model.
Hence, a statistical analysis of the significance level of
each parameter is desirable through hypothesis testing
on each of the coefficients of themodel [Draper and Smith,
1981]. The null hypothesis is defined as

H0 βn =0

H1 βn 0
(4.7)

If H0 is rejected, then xn is “significant.” Otherwise, the
input does not significantly impact the response and can
be removed from the model. UnderH0 and assuming that
the error ε in Eq. (4.5) follows a normal distribution, then
the statistic

t0 =
βn

σ2cnn
(4.8)

is a student variable with L−m− 1 degrees of freedom,
with L being the total number of samples and m the num-
ber of terms in the model. The term cnn is the n-th diagonal
element of the data matrix XTX and σ

σ =
SSE
L−m

(4.9)

where SSE is the sum of the squares of the errors (refer to
Section 3.7.2 on linear regression).
One then needs to compare t0 to the critical value of the

student t distribution with L −m− 1 degrees of freedom
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Figure 4.3 Scatterplots of parameters values versus the pollutant arrival time.
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for a given significance level α (usually α = 0.05). If |t0| >
tα/2, the null hypothesis is rejected and the corresponding
term is deemed influential on the response. Otherwise, the
term is considered to be non-influential. This test allows
for the definition of an objective measure of sensitivity,
as opposed to the coefficient SRCn. Note that this test
must be used with care, as the result depends on the form
of Eq. (4.5) which is employed. Different results may be
obtained if parameters are removed or added to
Eq. (4.5). To overcome this drawback, methods such as
stepwise regression can be used to automatically add sta-
tistically influential parameters [Helton, 1993]. In this
approach, parameters are added to the regression model
sequentially and each time the model is fit to the data.
The coefficient of determination (R2) [Draper and Smith,
1981] is calculated. R2 measures the proportion of vari-
ance of the response that is explained by the model. The
largest incremental change in R2 is used to determine
the most influential parameter. When the most influential
parameter is determined, the process is repeated with the
remaining parameters.
Even though most papers/books on regression analysis

usually present the simple linear model, interactions terms
can be added. Quadratic regression terms can be included
as well [e.g., Helton, 1993; Zagayevskiy and Deutsch,
2015], but others find that linear and interaction terms
are sufficient [Dejean and Blanc, 1999]. The hypothesis
test described above is valid for Eq. (4.10); hence, the
impact of interactions can be estimated as well. Note
though that here interactions are modeled by means of
a product of two parameters and, therefore, are assumed
to have a symmetrical impact on the response.

y= β0 +
Np

n=1

βnxn +
Np

n=1

Np

n =1

βnn xnxn + ε (4.10)

The regression method is popular for SA because it is
straightforward and simple to apply. It has been used
extensively in oil and gas applications [Dejean and Blanc,
1999; White et al., 2001; Zabalza-Mezghani et al., 2004;
Zagayevskiy and Deutsch, 2015], hydrological modeling
[e.g., Manache and Melching, 2004; Muleta and Nicklow,
2005; Yang, 2011], radioactive waste disposal [Helton,
1993], and stormflow models [Gwo et al., 1996] to cite just
a few. However, it should be used with care as it is not
applicable when the relationship between the input and
the output is nonlinear. Hence, before evaluating sensitiv-
ities based on the linear regression model, the quality of
the regression model should be assessed. Classical mea-
sures include the evaluation of the coefficient of determi-
nation (R2) and the predicted residual error sum of
squares. In addition, if the residuals ε (in Eq. (4.5)) are
not normally distributed or if the input parameters are
not independent, the results of the regression analysis

can only be interpreted subjectively, because the assump-
tions that are required to perform the t test are not valid.
A linear regressionmodelwasappliedon theDNAPLtest

case, using 100 parameter combinations obtained by LHS
sampling. Because linear regression does notworkwellwith
scenario-type parameters, the analysis was performedusing
a (fixed) Gaussian covariance model. The standardized
regression coefficients SRCn and the t-statistics and corre-
sponding p-values (see Section 3.13) for each parameter
are displayed in Table 4.1. The estimated model is

ArrTime= 67−27,913×Kmean−17 57×Ksd−0 008

×Krange + 10,906×HrivGrad + 0 017×Hrange

(4.11)

We observe that the parameters Kmean, Ksd, and
HrivGrad are influential based on the linear model (small
p-values, or |t0| > tα/2 = 1.98 for α = 0.05). The parameters
Krange and Hrange are also influential, but far less than the
other three parameters. The model quality is good with
R2 = 0.98.
The study was repeated using a linear regression model

including interactions (Eq. (4.10)). Comparison of the
t-statistics for both “main effect only” and “interaction”
are presented in the Pareto plots in Figure 4.4. Interest-
ingly, the influence of the main factors changes signifi-
cantly between the two regression models, including
HrivGrad which is not influential when including interac-
tions, but highly influential when considering only the
main effects. This may be due to the importance of the
interaction between HrivGrad and Hrange, which translates
into a strong main effect when ignoring interactions.

4.4.1.3. Final Remarks on Linear Regression–Based
SA. All sensitivity measures described in this
section assume that the linear model is valid for the case
under consideration. If the linear hypothesis does not
hold, one may attempt to apply the same techniques after
applying a rank transformation to the response [Saltelli
et al., 2000]. Rank transformations may be useful since
it linearizes nonlinear models and reduces the effect of
long-tailed distributions [Yang, 2011]. Rank transforma-
tion though may not always fully linearize the problems,
in particular with non-monotonic models.

Table 4.1 Linear regression analysis, without interactions.

Parameter SRC t-Value p-Value

Kmean 0.84 −63.9 <0.001

Ksd 0.42 −32.8 <0.001

Krange 0.03 −2.3 0.02

HrivGrad 0.38 29.3 <0.001

Hrange 0.03 2.6 0.01
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When using a regression model for SA, the response
needs to be smoothly varying, which may not be the case
in geoscience applications. Non-smooth or abrupt
changes in the response occur when there is a stochastic
component (spatial uncertainty), as well as discrete-
valued input parameters, such as different geological
interpretations. The impact of spatial uncertainty will
be discussed in further details in Section 4.5.
One limitation of regression-based SA is their high com-

putational cost. To increase their efficiency, experimental
designs are often used instead of Monte Carlo sampling.
Experimental design is a technique allowing to optimally
define the number and value of input parameters to get the
most information at the lowest cost (in terms of number of
model evaluations), see Chapter 3. Example applications
of experimental design with regression for petroleum
applications can be found inDamsleth et al. [1992],White
et al. [2001], Dejean and Blanc [1999] among others. For
scatter plots or correlation coefficient analysis, a natural

alternative to Monte Carlo sampling is the use of Latin
hypercube designs [Helton and Davis, 2003].

4.4.2. Variance-Based Methods/Measures
of Importance

Variance-based SA methods are quite popular in the
geosciences (see References). Also referred to as measures
of importance, variance-based SA attempts to evaluate
the part of the total variance of the response Y that can
be attributed to input parameter Xn:

Var E Y Xn = xn
Var Y

4 12

Among the variance-based global sensitivity methods, the
Sobol’ approach is the most popular. According to Sobol’
[1993], any numerical computer model f, with associated
parametersX and responseY = f(X), can be expanded into
summands of different dimensions:
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Figure 4.4 Pareto plots displaying the t-statistics for (left) regression model without interactions (R2 = 0.98) and (right) regression
model including interactions (R2 = 0.99). Red bars show influential parameters. The black line represent the significance level
of statistical test for α = 0.05.
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f x = f0 +
Np

n=1

fn xn +
1 ≤ n ≤ n ≤Np

fn,n xn,xn +

+ f1,2,…,Np x1,…,xNp

(4.13)

Assuming independence in the input parameters and
orthogonality of the summands, the variance of each term
in Eq. (4.13) can be obtained by means of Monte Carlo
integration, leading to a decomposition of variance of Y
similar to a functional ANOVA procedure:

Var Y =
Np

n=1

Dn +
1 ≤ n ≤ n ≤Np

Dn,n + +D1,2,…,Np

(4.14)

where
Dn =Var E Y Xn

Dn,n =Var E Y Xn,Xn −Dn−Dn (4.15)

and so on for higher-order interactions. The total variance
of the responseY can be decomposed into partial variances,
attributing variability of the response Y to each input
parameter, including interactions. The Sobol’ indices are
obtained by normalizing each partial variance with respect
to the total (unconditional) variance of Y as follows:

Sn =
Dn

Var Y
,Sn,n =

Dn,n

Var Y
,…,S1,2,…,Np =

D1,2,…,Np

Var Y

(4.16)

The first-order Sobol’ index Sn calculates the impact of the
input parameter xn by estimating the partial variance ofY
explained by this parameter. It estimates by howmuch the
variance of the response is reduced, on average, when the
parameter xn is fixed, that is, it measures the contribution
of the parameter xn to the total variance of the response.
The second-order Sobol’ index Sn,n measures the contri-
bution of the interacting effects between xn and xn on the
response variance. In Eqs. (4.15) and (4.16) the sum of all
the terms should be equal to 1.
In addition to the indices defined in Eq. (4.16) the total

effect index for a parameter xn is defined as [Homma and
Saltelli, 1996]:

STn =Sn +
n< n

Sn,n +
n n,n n,n < n

Sn,n ,n + (4.17)

The total effect index represents the total contribution
(including interactions) of a parameter xn to the response
variance; it is obtained by summing all first-order and
higher-order effects involving the parameter xn.
Evaluating this quantity would require estimating all

2Np −1 sensitivity indices, which is not possible with a rea-
sonable number of model evaluations. The calculation of

STn can be obtained much more efficiently by evaluating
the following equation [see Saltelli et al., 2008 for details]:

STn =
Var Y −Var E Y X n

Var Y
=
E Var Y X n

Var Y

(4.18)

with X n = X1,…,Xn−1,Xn+1,…,XNp .
The smaller STn is, the less xn contributes to the vari-

ance. If STn =0, then xn is a non-influential parameter
and xn can be fixed at any value within its range of uncer-
tainty without significantly impacting the variance of
Y [Saltelli et al., 2008]. The difference between STn and
Sn represents the interaction effect of the parameter xn
with the other inputs. If Sn =STn for all n, there is no inter-
action effect.
Confidence intervals for the first-order and total effect

indices can be computed using the bootstrap method (see
Section 3.13). Sampling with replacement is performed to
obtain a distribution of the Sn and STn , from which con-
fidence intervals can be derived [Archer et al., 1997].
The main advantage of the Sobol’ method is that the

indices are defined for any type of response (nonlinear,
non-monotonic) and any type of parameter. The Sobol’
indices can also be applied for groups of parameters,
and not just to each parameter separately [Saltelli et al.,
2008]. However, in its traditional formulation, the
response must be univariate; if the response is, for exam-
ple, a time series then the Sobol’ indices need to be calcu-
lated at all desired times. Gamboa et al. [2014] propose a
generalization of the Sobol’ indices to determine sensitiv-
ities for any multidimensional responses, including time-
varying responses or spatial maps. This new formulation
has been applied to spatial outputs in the context of con-
tamination [De Lozzo and Marrel, 2017] and cyclone-
induced waves [Rohmer et al., 2016]. The Sobol’ method
is computationally demanding because the indices are
computed using a Monte Carlo procedure and a large
sample is required to reach convergence. For details on
how to compute the sensitivity indices, we refer to Saltelli
et al. [2008], who shows that at least m× (Np+ 2) model
evaluations are needed to compute the first-order and
total effect indices, wherem can vary from a few hundreds
to a few thousands. Different algorithms exist to compute
the sensitivity indices, for example Glen and Isaacs [2012]
and Wainwright et al. [2014] use the Pearson correlation
coefficient. Of particular interest, Wainwright et al.
[2014] suggests an alternative method to compute the
Sobol’ total effect indices using nonparameteric regres-
sion. They additionally suggest that the Morris’s mean
|EE| can be used instead of STn to rank parameter effects
(including the interaction), reducing significantly the com-
putational cost. However, this method does not allow to
compute the Sobol’ first-order effect.
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Because of its high cost, the Sobol’ method is often
impractical for geoscience applications with high-
dimensional inputs. Despite this high-computational
demand, it has been applied in environmental modeling
(see, e.g., [Pappenberger et al., 2008; Nossent et al.,
2011]). Most studies based on Sobol’ circumvent this
problem by approximating the computer model by a sur-
rogate model (meta-model) and use the surrogate model
to compute the Sobol’ indices at a much cheaper cost.
For example, Gaussian process regression (kriging,
Chapter 3) may provide such a surrogate model, others
are polynomial chaos expansions (expressing output as
a polynomial series). In many applications, surrogate
models has been used to estimate the Sobol’ indices,
including water contaminant remediation [Ciriello et al.,
2013;Luo and Lu, 2014], CO2 geological storage [Rohmer,
2014], oil and gas applications [Touzani and Busby, 2013;
Dai et al., 2014; Sarma et al., 2015], landslide modeling
[Rohmer and Foerster, 2011], and hydrogeology [Marrel
et al., 2012; Oladyshkin et al., 2012] among many others.
Sobol’ sensitivity indices were calculated on a modified

version of the Libyan case presented in Chapter 1. The
case is fully described in Park et al. [2016]. In total,
12 uncertain parameters are considered in this study,
requiring a total of 14,000 simulations (m= 1000). The
sampling procedure described in Saltelli et al. [2008]
was applied and the sensitivity indices were computed
using the approach of Wainwright et al. [2014]. The
response considered was the total field water production
at a given time. For more details about the case and the
calculation of the indices, we refer to Park et al. [2016].
The sensitivity indices as a function of time are presented
in Figure 4.5. Oil–water contact is by far the most influ-
ential parameter on the field water production, especially
early in the simulation time. Because the first-order effect

and the total effect have similar values, this model does
not appear to contain many influential interactions. It is
also worth noting that in some cases, the total effect
appears slightly smaller than the first-order effect, which
is due to numerical error. This numerical error may be
reduced by increasing the sample size m.
An alternative variance-based method is the Fourier

amplitude sensitivity test (FAST) method [Cukier et al.,
1978], which is more efficient than the Sobol’ method
while providing the same indices (Sn and STn ). The FAST
method evaluates the contribution of a parameter xn to
the variance of the response based on the estimation of
Fourier coefficients. In its original version, the FAST
method only provides first-order sensitivity indices (Sn

in Sobol’). Saltelli et al. [1999] present an extended FAST
approach which can account for higher-order interac-
tions. As for the Sobol’ approach, FAST does not require
any assumptions on the functional form of the model. One
of the limitations of the FAST algorithm is its lack of reli-
ability in the presence of uncertain discrete parameters, as
well as its algorithmic complexity [Frey and Patil, 2002].
Example applications of FAST in geosciences includes
groundwater modeling [Fontaine et al., 1992] and hydrol-
ogy [Francos et al., 2003].

4.4.3. Generalized/Regionalized SA

4.4.3.1. Regionalized SA. The regionalized sensitivity
analysis (RSA) method was originally developed by Spear
and Hornberger [1980] to identify influential parameters
in environmental systems. Spear and Hornberger refer
to it as generalized SA, but the approach was later
renamed to RSA [Spear and Grieb, 1994]. RSA is based
on the principle of Monte Carlo filtering [Rose et al.,
1991; Saltelli et al., 2004, pp. 151–191 for a review], which
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Figure 4.5 Sobol’ indices: (a) first-order effect and (b) total effect (including interactions) for a modified version of the Libyan case
described in Chapter 1. Modified from Park et al. [2016].
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consists of classifying each response generated from a
Monte Carlo sampling of the uncertain input parameters
into two classes (“behavior” or “non-behavior,” as
described by Spear and Hornberger). The definition of
the behavioral classes usually requires the definition of
a threshold: if the response is within the threshold, then
the model is attributed to the category “behavior” B
(acceptable models), otherwise to “non-behavior” B
(unacceptable models). In the case of Spear and Hornber-
ger, behavior is defined as the presence or absence of algae
in the Peel Inlet of Western Australia. Parameter values
leading toB are then analyzed in theMonte Carlo filtering
procedure. In this instance, one is not interested in the var-
iance of the response, but rather in which parameter
values generated models found in class B. Spear and
Hornberger suggest to analyze the difference in input
parameter distributions between the Lm samples that lead
to the category B and the Lm samples that lead to class B.
The cumulative distribution of each parameter is calcu-
lated for each behavior and compared statistically: if
the distribution for parameter xn is different between
the two classes, then xn is defined as influential on the
response. The comparison is done using a two-sampled
Kolmogorov–Smirnov (KS) statistical test, where the
null-hypothesis is defined as H0 f xn B = f xn B . The
KS test is based on the Smirnov statistic which is defined
as the largest vertical distance between the two distribu-
tion functions (see Figure 4.6):

dLm,Lm
= sup FLm xn B −FLm

xn B (4.19)

Intuitively, parameters with larger dLm,Lm
are more

influential in discriminating the response between models
in B and B, implying more impact on the response. On the
other hand, small values of dLm,Lm

indicate a similar

distribution of parameters between classes, hence little
impact of the parameter on the response.
RSA and subsequent extensions [Beven and Binley,

1992; Bastidas et al., 1999; Pappenberger et al., 2008] have
been extensively used in hydrology (e.g., [Chang and Del-
leur, 1992; Lence and Takyi, 1992; Spear and Grieb, 1994;
Tang et al., 2007], among others). More specifically, the
extension based on generalized likelihood estimation
(GLUE) due to Beven and Binley [1992] has been popular
in hydrology [Freer et al., 1996;Hossain et al., 2004;Ratto
et al., 2007]. In the GLUE approach, the binary classifi-
cation of the realizations into behavior/non-behavior is
replaced by a likelihood weight (models in the non-
behavior class have low likelihood).
Similar to variance-based methods, RSA has many

global properties: (i) the entire range of values of the
input parameters is considered and (ii) all parameters
are varied simultaneously. Other advantages of RSA
are that it is conceptually simple, model-independent
and does not assume any functional form of the response
(smoothness, linearity, etc.). However, because RSA is
based on a KS test, it is only applicable to continuous
parameters. In addition it cannot quantify interaction
effects. This is one of the reasons why Fenwick et al.
[2014] developed an extension of the basic RSA method
of Spear and Hornberger, denoted as DGSA and
described in the following.

4.4.3.2. Distance-BasedGeneralized SA. Fenwick et al.
[2014] extend the principles of the RSA method in several
aspects by proposing a distance-based generalized sensi-
tivity analysis (DGSA). One extension of DGSA is to
account for the possible high-dimensional responses of
the computer models, which is typically the case in sub-
surface systems. They propose a distance-based classifi-
cation procedure [Scheidt and Caers, 2009a, 2009b] to
classify the responses (analogous to behaviors in RSA).
This presents two advantages: (i) the response does not
need to be univariate, as in the screening SA, linear-
based methods, and traditional variance-based methods
seen so far in this chapter and (ii) more than two classes
can be constructed, which can be of interest because the
modeler may wish to classify the response into more than
two types of behavior, hence exploring more refined
behavior. The definition of the sensitivity measure in
DGSA does not rely on the KS test; instead, it uses
the concept of distances between the prior cdfs and
class-conditional cdfs. The advantage of using a distance
measure over the KS test is that a distance can be com-
puted for all types of input parameter distributions (con-
tinuous, discrete, scenario-based, etc.).
For each class ck (k = 1,…,K) and for a parameter xn,

the distance is calculated as the L1-norm between the
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Figure 4.6 Schematic illustration of the KS test.
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prior distribution of xn (denoted asF xn ) and its class-
conditional distribution (denoted asF xn ck ):

d k
n = fΔcdf F xn , F xn ck (4.20)

where fΔcdf is a distance between two cdfs, determined by
evaluating the L1-norm. This distance represents the area
between the curves.
To determine if the parameter xn is influential on the

response for a class k, a hypothesis test is formulated
and evaluated using a resampling procedure. The resam-

pling procedure estimates a distribution of distances d k
n

that would occur if the input parameter xn had no impact
on the response (null hypothesis H0). The observed dis-
tance is then compared to the resampling distribution.
This estimated distribution under H0 is obtained by
repeatedly evaluating the L1-norm between the prior
cdf of xn and the cdf of a random sample of nk parameters
xn from its prior distribution (nk being the number of mod-
els in cluster k). The null hypothesis is then

if k for which d k
n ≥ d k

n,α, then H0 is rejected

where d k
n,α is the alpha-percentile (usually, α = 0.95) from

the resampling procedure (see Figure 4.7).
A standardized measure of sensitivity of the parameter

xn on the response for class k can be expressed as

dS k
n =

d k
n

d k
n,α

(4.21)

A parameter xn is defined as influential if for at least one
class the standardized measure of sensitivity is greater
than 1. Fenwick et al. [2014] propose to visualize sensitiv-
ity measures using Pareto plots. Because sensitivity is
defined based on classes, for each parameter, K bars

can be displayed (Figure 4.8a). For simplicity, an aver-
aged sensitivity value can be calculated and displayed in
the Pareto chart, as illustrated in Figure 4.8b:

s xn =
1
K

K

k =1

dS k
n (4.22)

Note that for Figures 4.8–4.10, sensitivity on the full
concentration curves as a function of time is performed,
whereas in the previous examples the sensitivity was deter-
mined on a scalar: the pollutant arrival time. In addition,
spatial uncertainty was included in the modeling exercise
for the definition of both the boundary conditions and the
hydraulic conductivities.
An alternative representation of DGSA results is to dis-

play ASL=1−ASL (the achieved significance level or
ASL, see Section 3.13) obtained from the resampling pro-
cedure. For each observed L1-norm for parameter xn and

ck, ASL d k
n can be estimated from the resampling pro-

cedure (see Eq. (3.299)):

ASL d k
n =P d k

n ≤ d k
n (4.23)

The global sensitivity measure s∗(xn) for xn is then repre-

sented by the maximum ASL per class (see Figure 4.9):

s∗ xn = max
k

ASL d k
n (4.24)

The larger s∗(xn), the more influential the parameter is.
Sensitivity can then be divided into three groups, based on
the value of confidence of the hypothesis test:
1. High value: s∗(xn) > α → the parameter xn is influen-

tial (critical).
2. Low value: s∗(xn) < α → the parameter xn is non-

influential.
3. s∗(xn)≈ α → the parameter xn is important.

DGSA also estimates the impact of interacting para-
meters on the response. Contrary to SA based on a regres-
sion model which assumes symmetric interactions
(interactions are modeled by the product of two para-
meters), DGSA models interactions through conditional
densities. For example, two-way interactions are
expressed using conditional densities, that is, xn xn and
xn xn for interactions between parameters xn and xn .
In this manner, the approach is capable of evaluating
asymmetric interactions. The principle for determining
sensitivity for parameter interactions is similar to the main
factors and works conceptually as follows: if no signifi-
cant difference exists between the class-conditional distri-
butions of a single parameter and the class-conditional
distribution of the parameter additionally conditioned
to a second parameter, then the two-way interaction is
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not influential. For a class ck, the sensitivity measure for
interaction is again a function of the distance between the
two cdfs:

dk,n n = fΔcdf F xn xn ,ck ,F xn,ck (4.25)

The conditional distributions are obtained by binning the
conditioning parameter xn into a few levels (e.g., low/
medium/high). The resampling procedure is applied, as
in the case of main sensitivities, to determine the signifi-
cance of the observed sensitivity measures. For more
details on how the sensitivity on interactions is computed,
we refer the reader to Fenwick et al. [2014]. Pareto plots
representing the average (per level of conditioning param-
eter and number of classes) of standardized L1-norm dis-

tances or ASL-based sensitivity values can be used again
to visualize the results. However, when the number of
parameters is large, the high number of interactions
makes it difficult to visualize the results in such a manner.
An alternative visualization of two-way interactions using
2D bubble plots or H-plots is proposed in Park et al.
[2016]. A third alternative is to use a table, as shown in
Figure 4.10, where the diagonal values in the table show

the ASL-based sensitivity values for the one-way sensitiv-

ity, and the off-diagonal values are the ASL-based sensi-
tivity values for the two-way interactions (row|column).
Figure 4.10 shows a few interesting results. First, each

parameter has at least one influential interaction with

another parameter, which illustrates the high complexity
of the case. In particular, the interaction HrivGrad|Ksd is

critical to the variation of the response (ASL-based sensi-
tivity values of 98.9). Second, some interactions are asym-
metric. For example,KCov|Kmean is shown important, with

a ASL-based sensitivity values of 94.3. However, Kmean|

KCov is not influential on the response, with a ASL-based
sensitivity values of 57.7.
DGSA is well suited for geoscience applications and is

best used when only a modest number of model evalua-
tions can be afforded. Fenwick et al. [2014] recommend
using Latin hypercube sampling instead of random sam-
pling. As a rule of thumb, Fenwick et al. [2014] suggests to
define the number of classes K and evaluate a sufficient
number of models such that at least ten models are found
in each class. DGSA can handle any type of parameter
distributions as well as high-dimensional responses and
does not require an assumption that the model response
takes any particular functional form. DGSA was applied
in the context of basinmodeling [Tong andMukerji, 2017],
flood and drought hydrologic monitoring [Chaney et al.,
2015], and reservoir engineering [Fenwick et al., 2014;
Park et al., 2016].
DGSA also works well with non-smooth responses,

such as those subject to stochastic (spatial) uncertainty,
or when discrete or scenario-based parameters exist.
One of its main advantages is that asymmetric
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interactions can be estimated (two-way interactions are
not assumed to be symmetric). In theory, DGSA can be
used to estimate interactions betweenmore than two para-
meters, but this has not been explored and would require a
large initial sample of models. Finally, because the
responses are only used for classification, a proxy can
be used instead of the time-consuming model evaluations.
Note that DGSA does not require the proxy model itself
to be accurate (only the classification of models must be
accurate) which is a much less stringent requirement.
One minor drawback with DGSA is that the results
may lack in ease in interpretation, as the SA measure

(standardized L1-norm or ASL) may be harder to inter-
pret than in OAT or Sobol’ indices for example.
A comparison of the results obtained from DGSA and

Sobol’ on a case derived from a real oil field is proposed in
Park et al. [2016]. The parameter ranking was similar for
the two methods, for only a fraction of the cost for DGSA
(14,000 for Sobol’ vs. 1000 for DGSA).

4.4.4. Tree-Based SA

Classification and regression trees (CART) are also a
powerful tool for SA [Breiman et al., 1984]. As seen in
Section 3.7.4, the overall impact of an input parameter
xn on the response y can be quantified using the CART
variable importance procedure. In CART, the input
parameter space is partitioned into smaller regions by
recursive binary splitting. At each node of the tree, the
splitting parameter is partitioned into two subbranches.
The choice of the splitting parameter and the splitting point
is based on the minimization of a cost function (often least
square for continuous responses). For a tree withM termi-
nal nodes (or regions Rm), the cost using the least-square
formulation can be expressed as (see Eq. (3.138))

Cost =
L

ℓ=1

y ℓ −y
2
, with y=

M

m=1

cmI x Rm (4.26)

with cm the average of all responses in region Rm and I the
indicator function.
The sensitivity of an input parameter can then be esti-

mated by its overall contribution to the reduction of the
cost function. In the CART literature, this is referred to
as “relative importance.” The relative importance of a
parameter xn for a regression tree containing M terminal
nodes is defined as (Chapter 3)

I 2n =
M−1

j =1

i2j I v j = n (4.27)

where
1. v(j) indicates the split variable at node j (e.g., if the j-th

node splits variable xn, then v(j) = n).
2. i2j accounts for how much the cost is improved by

splitting the tree at node j into two subbranches (right

jR and left jL): i2j =Costj−CostjL−CostjR, with Costj,
CostjL, and CostjR the costs for the partition at node j
and the left and right subbranches (as defined in
Eq. (4.26)), respectively.
Recursive splitting of the regression tree allows for

multi-way interactions to be accounted for, since all splits
are conditional to the previous splits. Hence, the relative
importance of an input parameter is a measure of sensitiv-
ity of that parameter, including all interactions.
In the classical approach, the regression tree is com-

puted on a scalar response; hence, sensitivities can only
be obtained for scalar responses. However, this can be
extended to functional variable, by generalizing the defi-
nition of the cost function defined in Eq. (4.26). Assume
the response of interest is a function of time y(ℓ) = y(ℓ)(t).
Based on observations (x(ℓ), y(ℓ)(t)), the regression model
can be generalized to

y t =
M

m=1

cm t Im x Rm with

cm t =
1

# y ℓ t x ℓ Rm y ℓ t x ℓ Rm

y ℓ t
(4.28)

The partitioning of the input space can then be obtained
by generalizing the cost function to functional variables.
Many such cost functions can be defined, only a few are
presented here. For example, a cost function for a region
Rm can be obtained by integrating the difference over all
times, or by simply taking the L2-norm:

Costm =
y ℓ t x ℓ Rm T

y ℓ t −cm t dt (4.29)

Costm =
y ℓ t x ℓ Rm

y ℓ t −cm t 2 (4.30)

The cost function can be further extended by using the
concept of distances between two model responses (simi-
larly to what was done inDGSA, see Section 4.4.3.2). Any
dissimilarity/similarity distance between model responses
can be used in tree-based techniques. Instead of using the
average response cm t in the calculation of the cost func-
tion (which may not always be an optimal criteria for
physical variables), one can simply select the medoid
(the model whose response dissimilarity to all other
responses in the region is minimal) in each region and
evaluate its distance to the responses of the models in
the same region:

Costm =
y ℓ t x ℓ Rm

d y ℓ t , ymedoid t (4.31)

This corresponds to approximating the regression model
using the medoid response of each region, as opposed
to the average response of each region (classical proce-
dure). Note that the use of distances between model
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responses is not limited to time-varying data and can be
applied to maps, 3D volume, and so on.
An example of tree-based relative importance for the

DNAPL example is shown in Figure 4.11. Contrary to
the application of CART for SA in Chapter 3, which uses
the contaminant arrival time for response, here we use the
entire contaminant production curve.
Even though the procedure is only described for a single

regression tree (CART), variable importance can also be
estimated using more complex, randomized tree, such as
random forest (RF), see Wei et al. [2015] and Breiman
[2001] for details. The idea behind RF is to construct mul-
tiple trees based on bootstrapped copies of the original
data and a random sub-selection of K input parameters
at each node of the tree. RF is quite popular because it
reduces variance of single trees and thus improve predic-
tions. In the case of RF, the variable importance can be
estimated by simply averaging the relative importance
(as defined in Eq. (4.27)) over all trees in the forest. An
alternative approach proposed by Breiman [2001] is to
compute variable importance based on the out-of-bag
samples. This is often referred to as permutation impor-
tance and is described in Wei et al. [2015].
Currently, very few applications of SA based on regres-

sion trees to subsurface modeling exist. Examples of such
includes Mishra et al. [2009], Pappenberger et al. [2006],
Spear and Grieb [1994]. However, CART-based SA has
many advantages that are well suited to the problem of
subsurface modeling. There is no assumption on the func-
tional form of the response. For example, high-
dimensional model responses can be used as well as

stochastic responses. Any type of input parameter with
their own input distributions can be used (continuous, dis-
crete and numerical, categorical, functional, maps/
images). Finally, the resulting measure of sensitivity
may not be easy to interpret (it is a function of the reduc-
tion in cost) and is rather subjective, that is, it is the
modeler who decides which parameter are influential or
non-influential.

4.5. QUANTIFYING IMPACT OF
STOCHASTICITY IN MODELS

Most SA studies ignore stochasticity in the computer
model, which for subsurface applications is often in the
form of spatial uncertainty. The reason is either because
the modeler believes that stochasticity is unimportant or
the modeler is unaware that a stochastic component of
the response may exist. Ignoring stochasticity may simply
be a convenience, since it introduces discontinuities in the
response and poses a problem for SA approaches relying
on linear models. However, spatial uncertainty may have
a major effect on the response, as illustrated in the con-
taminant concentrations profiles of the DNAPL example
shown in Figure 4.12 and hence should not be neglected.
Clearly in this example, when fixing the random seed for
generating the spatial hydraulic conductivity and hydrau-
lic heads at the boundaries, uncertainty in the contami-
nant arrival time is reduced compared to uncertainty
obtained with varying random seed.
An additional complication in ignoring spatial uncer-

tainty is that the results of classical SA approaches may
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Figure 4.11 Application of CART-based SA on the simplified DNAPL example, using the cost of Eq. (4.31).
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be different for different choices of random seeds in the
simulation. This is illustrated in Figures 4.13 and 4.14,
where SA results for OAT and Morris methods are
repeated three times each with different random seeds.
One observes in Figure 4.13 that in two out of three ana-
lyses, Kmean andHrivGrad parameters are the most influen-
tial. However, we observe that Ksd is the second most
influential parameter in Figure 4.13 (left), but it the least
influential parameter in Figure 4.13 (middle). Similar
observations can be made when analyzing the results of
the Morris method for three different random seeds
(Figure 4.13). Even though the main two parameters,
namely HrivGrad and Kmean, are identified in all cases, μ∗n
and σn vary quite significantly. Differences are also
observed for the other parameters.
These results indicate that performing SA using a single

random seed may result in an incorrect assessment of

parameter sensitivity, if spatial uncertainty is present. In
addition, the use of linear regression to estimate sensitivity
values in the presence of spatial uncertainty is not recom-
mended, as most likely the stochasticity of the models
will result in poor quality regression models, and
hence the obtained sensitivities may not be reliable. For
example, without spatial uncertainty, the main effect
model of the arrival time had a coefficient of determina-
tion R2 of 0.98. However, for the same case with spatial
uncertainty, the R2 value is only 0.43. If spatial uncer-
tainty is part of the modeling procedure, we suggest using
methods such as DGSA to estimate the parameters
sensitivities.
An interesting problem is to quantitatively assess the

impact of spatial uncertainty on the response. Some
authors attempt to account for stochasticity in the model
and estimate the influence of the stochastic component of
the response. Of note is the work of Iooss and Ribatet
[2009] and Marrel et al. [2012]. These authors expand
on the joint modeling method proposed by Zabalza-
Mezghani et al. [2004], who modeled the model response
as a combination of a proxy of the mean response and a
proxy for the variance (dispersion) around the mean. The
dispersion component of the joint model is used to evalu-
ate the Sobol’ indices. Rohmer [2014] proposes to assign a
categorical indicator to the set of stochastic realizations
and to usemeta-modeling techniques that can handle both
continuous and categorical parameters to compute Sobol’
sensitivity indices. Park et al. [2016] propose an approach
to parameterize spatial uncertainty by ranking the models
using KPCA+SOM. They then apply DGSA using the
rank as input parameter. Other ranking techniques which
classify the subsurface models in a one-dimensional order-
ing, such as Optimal Leaf Ordering [Bar-Joseph et al.,
2001], can be used as well. Note though that the rank
obtained by either approach may be correlated to the
value of other parameters. When this occurs, SA is a chal-
lenge since most SA techniques assume independence in
the input parameters.
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4.6. SUMMARY

SA is a learning tool and is a critical step in UQ. The SA
methods presented here allow modelers to obtain insight
into how the model response varies with changes to the
input in a structured, rigorous manner. SA is a fundamen-
tal step in many studies of uncertainty.
One of the main uses of SA is for model simplification.

For example, the model may contain a large set of input
parameters which may render any subsequent studies very
cumbersome. In this case, the user may wish to reduce the
number of parameters of the model. Using results from
SA, the user can fix or remove non-influential parameters
without significantly affecting the uncertainty of the
response. Note, however, that non-influential parameters
may have influential interactions with other parameters.
Fixing such non-influential parameters without account-
ing for interactions may reduce uncertainty in the
response artificially. Evidently, fixing an influential
parameter to a certain value (often the mean value of
the parameter distribution) may result in a reduction of
uncertainty in the response.
SA provides insight into which parameters have the

most influence on the response, allowing one to focus
on additional resources to better estimate parameters that
have the largest impact, and therefore potentially redu-
cing uncertainty on the response of interest. This is often
referred to as factor prioritization in the SA literature.
Note that sensitivity of parameters may be affected
strongly by ranges of inputs. Thus, if new data reduces
the range of values a parameter may have, the influence
of that parameter compared to others will likely diminish.
Although several SA techniques exist, there is no con-

sensus on which methods are best applicable under what
circumstances. Most studies compute sensitivities based
on only one SA methodology, although different SA
methods may rank parameters differently. Selecting an

appropriate technique requires a clear statement of the
objective of the analysis and the insights that the user
wishes to obtain. In addition, which method to apply
depends on the specific characteristics of the model under
study, namely the number of parameters, the simulation
time, the type of model (linearity, monotonicity, etc.),
the type of input parameters (presence of discrete or sce-
nario-based parameters), and the type of response (scalar
vs. high-dimension). Finally, the choice of method
depends on how to quantify model interactions, if at all
desired. A summary of the main properties of the different
SA methods discussed in this chapter is presented in
Table 4.2.
Screening methods, such as OAT and Morris methods,

are well suited for models that contain many input para-
meters and are computationally expensive, because they
are relatively economical. They provide only subjective
sensitivity measures, allowing to rank parameters based
on their influence on the response and require a subjective
judgment on which parameters are influential based upon
visual inspection of the results. Linear regression methods
were the first GSA techniques to be intensively employed
and are still quite popular because of their mathematical
rigor which provides objective sensitivity measures
directly. These methods require no particular sampling
procedure; Monte Carlo or experimental designs can be
used for the analysis, as long as the parameters are uncor-
related. However, linear regression is not suitable for non-
linear and non-monotonic problems. Variance-based
methods, and in particular Sobol’ indices, are quite pop-
ular in subsurface applications, as they allow to apportion
the proportion of variance in the response that can be
explained by each input parameter. However, they require
an extensive number of model evaluations, which makes
them a challenge to use for computationally intensive pro-
blems without the use of proxy models. This poses the
additional problem of the quality of the proxy model used
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within variance-based analysis. In cases where a large
number of model evaluations cannot be performed, an
alternative could be to use the elementary effects evalu-
ated using the Morris method, which have been shown
to be a good proxy for the total sensitivity indices [Wain-
wright et al., 2014]. In cases of a large number of
parameters, one could also first apply the Morris method
to screen out non-influential parameters and then do a
variance-based analysis on the remaining subset of para-
meters. Note though that for variance-based methods, the
sensitivity measure is still a subjective procedure, where
the user must decide which parameters are influential.
DGSA, the most recently developed GSA method
described in this chapter, has the advantage of being
computationally efficient compared to variance-based
methods and able to handle any distribution in input
parameters, and stochasticity in the model. Another
advantage of DGSA lies in its ability to quantify
asymmetric interactions. The resampling procedure
additionally provides the user with an objective measure
of parameter influence. Finally, tree-based SA looks very
promising for subsurface applications because it presents
similar advantages as DGSA, but the measure of sensitiv-
ity is subjective.
All SA methods discussed have the capability to reveal

key sensitivities, but they rely on many hypotheses, which
when violated may lead to erroneous interpretations. In
particular, some of the SA methods assume a linear rela-
tionship between the response and the parameters, and if
this condition is not met, then the obtained sensitivity

values may be misleading. Rank transformation could
be used in the presence of nonlinearity, but it requires
monotonicity of the response to be useful. Because of
the nature of the subsurface modeling, two or more para-
meters may have values which are correlated (such as
porosity and permeability). This is a challenge for all
SA techniques seen in this chapter. When parameters
are correlated, the interpretation of the sensitivities for
the correlated parameters is confounded, as well as the
interactions with these parameters. To avoid this issue
[Iman and Helton, 1988] propose the use of the partial cor-
relation coefficient (PCC). The PCC measures the degree
of linear relation between the input parameter xi and the
model output y after removing the linear effect of all the
remaining parameters xj,j i.
In this chapter, we covered some of the SA techniques

currently most applied in subsurface problems. The list is
not an exhaustive set of all SAmethods. Many other tech-
niques exist and may in the future be of broader interest in
applying to subsurface problems. One can note in partic-
ular the reliability methods (FORM and SORM, see Salt-
elli et al. [2000] for details or, Jyrkama and Sykes [2006]
for application on groundwater recharge) and entropy-
based measures (examples of applications include Mishra
et al. [2009], Pappenberger et al. [2008], Song et al. [2015]).
Entropy-based methods are attractive for delineating
nonlinear and non-monotonic multivariate relationships
compared to regression-based methods, and hence may
be promising in applications to complex subsurface flow
problems.

Table 4.2 Summary table of the SA techniques described in this chapter.

OAT Morris method Regression Sobol’ DSGA Tree-based SA

Cost (amount of
simulations)

LowNp + 1 Low L(Np + 1) Low LHS, ED m High quasi-
random, LHS m
(Np + 2)

Moderate
LHS m

Moderate
LHS m

Model
assumption

Linear Model free Depends on
regression model

Model free Model free Model free

Sensitivity
measure

Subjective Subjective Objective Subjective Objective Subjective

Interactions No Yes, qualitative Depends on
regression model,
symmetric

Yes Yes asymmetric Yes

Discrete
parameter

No No Yes Yes Yes Yes

Stochasticity No No No With proxy only Yes Yes

Input distribution No No Yes Yes Yes Yes

High-
dimensional
response

No No No Not in standard
approaches

Yes Yes
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5
Bayesianism

5.1. INTRODUCTION

What really constitutes “Bayesian” modeling? Thomas
Bayes did not write Bayes’ rule in the form we often see it
in textbooks. However, after a long time of being mostly
ignored in history, his idea of using a “prior” distribution
heralded a new way of scientific reasoning which can be
broadly classified as Bayesianism. The aim of this chapter
is to frame Bayesianism within the historical context of
other forms of scientific reasoning, such as induction,
deduction, falsification, intuitionism, and others. The
application of Bayesianism is then discussed in the context
of uncertainty quantification (UQ). This makes sense
since quantifying uncertainty is about quantifying a lack
of understanding or lack of knowledge. Science is all
about creating knowledge. But then, what do we
understand and what exactly is knowledge (the field of
epistemology)? How can this ever be quantified with a
consistent set of axioms and definitions, that is, if a
mathematical approach is taken? Is such quantification
unique? Is it rational at all to quantify uncertainty? Are
we in agreement as to what Bayesianism really is?
These questions are not just practical questions toward

engineering solutions, which is what most of this book is
about, but aim at a deeper discussion around uncertainty.
This discussion is philosophical, a discussion at the
intersection of philosophy, science, and mathematics.
In many scientific papers that address uncertainty in
subsurface systems, or in any system for that matter,
philosophical views are rarely touched upon. Many such
publications would start with the “we take the Bayesian
approach…,” or “we take a fuzzy logic approach to…,”
and so on. But what entails making this decision? Quickly,
papers become about algebra and calculus. Bayes or any
other way of inferential reasoning is simply seen as a set of
methodologies, technical tools, and computer programs.
The emphasis lies on the beauty of the calculus, solving
the puzzle, not on any desire of deeper understanding to

what exactly one is quantifying. A pragmatic realist
may state that in the end, the answer is provided by the
computer codes, based on the developed calculus.
Ultimately, everything is about bits and bytes and
transistors amplifying or switching electronic signals,
inputs and outputs. The debate is then which method is
better, but such debate is only within the choices of the
way of reasoning about uncertainty. That choice is rarely
discussed. The paradigm is blindly accepted.
Our hope is that by being acquaintedwith debates about

reasoning and being aware about the inherent subjectivity
of making certain choices of reasoning, such as Bayesian-
ism,will hopefully (i) allow gaining better insight intowhat
such approaches require, what their limitations are and
(ii) take thingswith abit of grain of salt, perhaps, by adding
some healthy self-criticism and skepticisms toward any
practical method or technique. This book heavily relies
on Bayes. Why? Bayes is like old medicine, we know
how it works, what the side effects are, and it has been
debated, tweaked, improved, and discussed since reverend
Bayes’ account was published by Price [Bayes and Price,
1763]. Let us say, it is the Prozac of UQ. It works when
we know it will work, but we do not yet know what to
do when it does not or what strong alternatives are, simply
because these alternatives (e.g., possibility theory) have
not been around that long, or been tested in practice to
the extent that Bayesianism has.
Our discussion will start with a general overview of the

scientific method and the philosophy of science. This by
itself is a gigantic field; the purpose is not to be exhaustive
but to lead readers to accessible books and publications,
to provide some insight into that debate. For some readers
this will be new, for the more mathematically (and
philosophically) inclined this will be more common
terrain. This discussion is useful in the sense that it will
help introduce Bayesianism, as a way of inductive reason-
ing, compared to very different ways of reasoning. Bayes
is popular but not accepted by all [Earman, 1992;
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Klir, 1994;Wang, 2004;Gelman, 2008]. The philosophical
discussion will then help in creating a better understand-
ing of the Achilles heals of Bayesianism and hopefully will
help the reader in designing a more thoughtful approach
to UQ beyond the mere algorithmic and computer science
aspects covered in the rest of this book.

5.2. A HISTORICAL PERSPECTIVE

In the philosophy of science, fundamental questions are
posed such as the following: What is a “law of nature”?
How much evidence and what kind of evidence should
we use to confirm a hypothesis? Can we ever confirm
hypotheses as truths? What is truth? Why do we appear
to rely on inaccurate theories (e.g., Newtonian physics)
in the light of clear evidence that they are false and should
be falsified? How does science and the scientific method
work? What is science and what is not (the demarcation
problem)? Associated with the philosophy of science are
concepts such as epistemology (study of knowledge),
empiricism (the importance of evidence), induction and
deduction, parsimony, falsification, paradigm, and so
on, all which will be discussed in this chapter.
Aristotle (384–322 BC) is often considered to be the

founder of both science and philosophy of science. His
work covers many areas such as physics, astronomy,
psychology, biology, and chemistry, mathematics, and
epistemology. Attempting to not solely be Euro-centric,
one should also mention the scientist and philosopher
Ibn al-Haytham (Alhazen, 965–1040 AD), who could
easily be called the inventor of the peer-review system,
on which also this book is created. In the modern era,
Galileo Galilei and Francis Bacon take over from the
Greek philosophy of thought (rationality) over evidence
(empiricism). Rationalism was continued by René
Descartes. David Hume introduced the problem of
induction. A synthesis of rationalism and empiricism
was provided by Emanuel Kant. Logical positivism
(Wittgenstein, Bertrand Russel, Carl Hempel) ruled much
of the early twentieth century. For example Bertrand
Russel attempted to reduce all of mathematics to logic
(logicism). Any scientific theory then requires a method
of verification using a logic calculus in conjunction with
evidence, to prove such theory true of false. Karl Popper
appeared on the scene as a reaction to this type of
reasoning, replacing verifiability with falsifiability,
meaning that for a method to be called scientific, it should
be possible to construct an experiment or acquire evidence
that can falsify it. More recently, ThomasKuhn (and later
Imre Lakatos) rejected the idea that one method
dominates science. They see the evolution of science
through structures, programs, and paradigms. Some
philosophers, such as Feyerabend, go even further

(“Against method”; [Feyerabend, 1993]) stating that no
methodological rules really exist (or should exist).
The evolution of philosophy of science has relevance to

UQ. This can be seen by simply replacing the concept of
“theory” with “model,” and observations/evidence with
data. There is much to learn from how viewpoints toward
scientific discovery differs, how they have changed, and
how such change has affected our ways of quantifying
uncertainty. One of the aims, therefore, of this chapter
is to show that there is not really a single objective
approach to UQ based on some laws or rules provided
by a passive, single entity (the truth-bearing clairvoyant
God!). UQ, just like other science disciplines, is dynamic
and relies on interaction between data, models, and
predictions and evolving views on how these components
interact. It is likely that few methods covered in this book
will not be used in 100 years; just consider the history of
science as evidence.
The reader is referred to some excellent books on the

topic. Those new to the field can consult the following:
1. Barker, G., and Kitcher, P. (2013), Philosophy of

Science: A New Introduction, Oxford University Press.
2. Okasha, S. (2002), Philosophy of Science: A Very

Short Introduction.
3. Chalmers, A. F. (2013), What Is This Thing Called

Science?
Much of our treatment will follow the overviews

provided in these books, the reasons, arguments, and
counter-arguments, historical evolution, interwoven
with personal experiences specific relevant to UQ, a
topic not treated much, at least from the outset, in these
books.

5.3. SCIENCE AS KNOWLEDGE DERIVED
FROM FACTS, DATA, OR EXPERIENCE

Science has gained considerable credibility, including in
everyday life because it is presented as “being derived
from facts.” It provides an air of authority, a truth that
contrasts to the many uncertainties of daily life. This
was basically the view with the birth of modern science
in the seventeenth century. The philosophies that exalt
this view are empiricism and positivism. Empiricism states
that knowledge can only come from sensory experience.
The common view was that (i) sensory experience
produces facts to objective observers, (ii) facts are prior
to theories, (iii) facts are the only reliable basis for
knowledge.
Empiricism is still very much alive in the daily practice

of data collection, model building, and UQ. In fact, many
scientists findUQ inherently “too subjective” and of lesser
standing than “data,” physical theories, or numerical
modeling. Many claim that decisions should be based
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merely on observations, not models. Our aim is here to
present some serious doubt into this way of thinking.
Seeing is believing. “Data is objective, models are

subjective.” If facts are to be derived from sensory
experience, mostly what we see, then consider
Figure 5.1. Most readers see a panel of squares, perhaps
from a nice armoire. Others (very few) see circles and
perhaps will interpret this an abstract piece of art with
interesting geometric pattern. Those who do not see
circles at first, need to simply look longer, with different
focusing of their retinas.
Hence, there seems to be more than meets the eyeball

[Hanson, 1958]. Consider another example in Figure 5.2.
What do you see? Most of us reading this book will

recognize this as a section of a geophysical image (seismic,
ground-penetrating radar (GPR), etc.). A well-trained
geophysicist will observe potentially a “bright spot” which
may indicate the presence of a gas (methane, carbon
dioxide) in the subsurface formations. A sedimentologist
may observe deltaic formations consisting of channel
stacks. Hence, the experience in viewing an object is highly
dependent on the interpretation of the viewer and not on
the pure sensory light perceptions hitting one’s retina. In
fact, Figure 5.2 is a modern abstract work of art by Mark
Bardford (1963) on display in the San Francisco Museum
of Modern Art (September 2016).
Anyone can be trained to make interpretations and this

is usually how education proceeds. Even pigeons can be
trained to spot cancers as well as humans [Levenson
et al., 2015]. But this idea may also backfire. First off,
the experts may not do better than random (Financial
Times, 31 March 2013: “Monkey beats man on stock
market picks”, based on a study by the Cass Business
School in London), or worse produce cognitive biases,
as pointed out by a study of interpretation seismic images
[Bond et al., 2007].
First facts, then theory. Translated to our UQ realm as

“first data, then models.” Let us consider another
example in Figure 5.3, now with an actual geophysical
image and not a painting. A statement of fact would then
be “this is a bright spot.” Then, in the empiricist view,
deduction, conclusions can be derived from it (“it contains
gas”). However, what is relevant here is the person
making this statement. A lay person will state as fact:
“There are squiggly lines.” This shows that any
observable fact is influenced by knowledge (“the theory”)
of the object of study. Statements of facts are, therefore,
not simply recordings of visual perceptions. Additionally,
quite an amount of knowledge is needed to undertake the
geophysical survey in the first place; hence, facts do not
proceed theory. This is the case for the example hereFigure 5.1 How many circles do you see?

Figure 5.2 What do you see?
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and is a reality for many scientific discoveries (we need to
know where to look). A more nuanced view, therefore, is
that data and models interact with each other.
Facts as basis for knowledge. “Data precedes the

model.” If facts depend on observers resulting in
inherently subjective statements, then, can we trust data
as a prerequisite to models (data precede models)? It is
now clear that data does not come without a model itself,
and hence if the wrong “data model” is used, then the data
will be used to build incorrect models. “If I jump in the air
and observe that I land on the same spot, then
“obviously” the Earth is not moving under my feet.”
Clearly, the “data model” used here is lacking the concept
(theory) of inertia. This again reinforces the idea that in
modeling, and in particular UQ, data does not and should
precede the model, or that one is subjective and the other
somehow is not.

5.4. THE ROLE OF EXPERIMENTS: DATA

Progress in science is usually achieved by experimenta-
tion, the acquisition of information in a laboratory or field
setting. Since “data” is central to UQ, we spend some time
on what “data” are, what “experiments” aim to achieve,
and what the pitfalls are in doing so.
First, the experiment is not without the “experimenter.”

Perceptual judgments may be unreliable, and hence such
reliance needs to be minimized as much as possible. For
example, in Figure 5.4, the uninformed observer may
notice that the moon is larger when on the horizon,
compared to higher up in the sky, which is merely an
optical illusion (on which there still is no consensus as
to why). Observations are, therefore, said to be both
objective and fallible. Objective in the sense that they
are shared (in public, presentations, papers, online) and

subject to further tests (such asmeasuring the actual moon
size by means of instruments, revealing the optical
illusion). Often such progress happens when more
advanced ways of testing or gathering data occur.
Believing that a certain amount and type of data will

resolve all uncertainty and lead to determinism on which
“objective” decisions can be based is an illusion because
the real world involves many kinds of physical/chemi-
cal/biological process that cannot be captured by one
way of experimentation. For example, performing a
conservative tracer test, to reveal better hydraulic
conductivity, may in fact be influenced by reactions in
the subsurface taking place while doing such experiment.
Hence, the hydraulic conductivity inferred through some
modeling without geochemical reactions may provide a
false sense of certainty about the information deduced
from such experiment. In general, it is very difficult to
isolate a specific target of investigation in the context of
one type of experiment or data acquisition. A good
example is in the interpretation of 4D geophysics
(repeated geophysics). The idea of the repetition is to
remove the influence of those properties that do not
change over time, and therefore reveal only those that
do change, for example, change in pressure, change in
saturation, temperature, and so on. However, many
processes may be at work at the same time, a change in
pressure, saturation, rock compressibility, even porosity
and permeability, geomechanical effects, and so on.
Hence, someone interested in the movement of fluids
(change in saturation) is left with a great deal of difficulty
in unscrambling the time signature of geophysical sensing
data. Furthermore, the inversion of data into a target of
interest often ignores all these interacting effects.
Therefore, it does not make sense to state that a pump test
or a well test reveals permeability, it only reveals a
pressure change under the conditions of the test and of

Figure 5.3 No art, just a geophysical image.
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the site in question, and many of these conditions may
remain unknown or uncertain.
Practitioners of UQ are often unaware of the difficulty

in acquiring data, whether in the lab or the field. Those
who perform UQ are often the “modelers” and their lab
is the computer. The data are given to them, and they
use it “as is.” In Chapter 1, we discussed the use of
ERT (electrical resistivity tomography) monitoring data
in designing heat storage systems. Theoretically, this is
a very worthy idea, but the practical implementation
stands or falls with the experience of the experimenter.
For example, if the injection and pumping wells are
aligned on the ERT profile and the pumped water is used
for re-injection, then an electric short-circuit is created
rendering the collected data useless for monitoring the
storage system [Hermans et al., 2015]. This can also
happen with perpendicular profiles when they are close
to the injection or pumping well. In addition, problems
may exist with the proper placement of sensors. Another
confounding factor is noise. In the ERT case, and in most
geophysical surveys, it is not just the presence of noise
(random noise can be easily dealt with), but the presence
of correlated noise whose correlation structure changes in
time. Hence, such noise is nonstationary; no simple
repetition occurs that allows to easily remove it, as is
the case with random noise. Having an incorrect noise
characterization or simplymaking the wrong assumptions
may lead to meaningless results when such data is
inverted. The problem often is that very little

communication exists between the “experimenter” and
the “modeler” (often two different persons).
A final issue that arises in experimentation is the

possibility of a form of circular reasoning that may exist
between an experimental setup and a computer model
aiming to reproduce the experimental setup. If
experiments are to be conducted to reveal something
important about the subsurface (e.g., flow experiments
in a lab), then often the results of such experiments are
“validated” by a computer model. Is the physical/chemi-
cal/biological model implemented in the computer code
derived from the experimental result, or are the computer
models used to judge the adequacy of the result? Do
theories vindicate experiments and do experiments
vindicate the stated theory? To study these issues better,
we introduce the notion of induction and deduction.

5.5. INDUCTION VERSUS DEDUCTION

Bayesianism is based on inductive logic [Howson, 1991;
Howson et al., 1993; Chalmers, 1999; Jaynes, 2003; Gel-
man et al., 2004], although some argue that it is based both
on induction and on deduction [Gelman and Shalizi,
2013]. Given the above consideration (and limitations)
of experiments (in a scientific context) and data (in a
UQ context), the question now arises on how to derive
theories from these observations. Scientific experimenta-
tion, modeling, studies often rely on a logic to make

Figure 5.4 The harvest moon appearing gigantic as compared to themoon in the high sky. Source: https://commons.wikimedia.org/
wiki/File:Harvest_Moon_over_looking_vineyards.jpg.
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certain claims. Induction and deductions are such kinds of
logic. What such logic offers is a connection between
premises and conclusions:
1. All deltaic systems contain clastic sands.
2. The subsurface system under study is deltaic.
3. The subsurface system contains clastic sands.
This logical deduction is obvious, but such logic only

establishes a connection between premises 1 and 2 and
the conclusion 3, it does not establish the truth of any
of these statements. If that would be the case, then the fol-
lowing is also equally “logic”:
1. All deltaic systems contain steel.
2. The subsurface system under study is deltaic.
3. The subsurface system contains steel.
The broader question, therefore, is if scientific theories

can be derived from observations. The same question
occurs in the context of UQ: can models be derived from
data. Consider an experiment consisting of a set of n
experiments:
Premises:
1. The reservoir rock is water-wet in sample 1.
2. The reservoir rock is water-wet in sample 2.
3. The reservoir rock is water-wet in sample 3.

…

20. The reservoir rock is water-wet in sample 20.
Conclusion: the reservoir is water-wet (and hence not

oil-wet).
This simple idea is mimicked from Bertrand Russel’s

turkey argument (in his case it was a chicken). “I (the
turkey) am fed at 9am” day after day, hence “I am
always fed at 9am”, until the day before Thanksgiving
[Chalmers, 1999]. Another form of induction occurred
in 1907: “But in all my experience, I have never been
in any accident … of any sort worth speaking about.
I have seen but one vessel in distress in all my years at
sea. I never saw a wreck and never have been wrecked
nor was I ever in any predicament that threatened to
end in disaster of any sort” [E. J. Smith, 1907, Captain,
RMS Titanic].
Any model or theory derived from observations can

never be proven in the sense as being derived from it.
This does not mean that induction (deriving models

from observations) is completely useless. Some inductions
are more warranted than others. Specifically, in the case
when the observations set is “large,” and performed under
a “wide variety of conditions,” although these qualitative
statements depend clearly on the specific case. “When
I swim with hungry sharks, I get bitten,” this really needs
to be asserted only once.
The second qualification (variety of conditions)

requires some elaboration because we will return to it
when discussing Bayesianism. The conditions that are
being tested are important (the age of the driller, e.g., is
not); hence, in doing so we rely on some prior knowledge
of the particular model or theory being derived. Such

prior knowledge will determine which factors will be
studied, which are influencing the theory/model and
which not. Hence, the question is how this “prior
knowledge” itself is asserted by observations. One runs
into the never-ending chain of what prior knowledge is
used to derive prior knowledge. This point was made clear
by David Hume, an eighteenth century Scottish
philosopher [Hume, 1978, originally 1739]. Often, the
principle of induction is argued because it has “worked”
from experience. The reader need simply replace the
example of the water-wet rocks with “Induction has
worked in case j,” and so on, to understand that induction
is, in this way, “proven” by means of induction. The way
out of this “mess” is to not make true/false statements, but
to use induction in a probabilistic sense (probably true), a
point we will return to when addressing Bayesianism.

5.6. FALSIFICATIONISM

5.6.1. A Reaction to Induction

Falsificationism, as championed by Popper [1959],
appeared in the 1920s partly as a reaction to inductionism
(and logical positivism). Popper claimed that science
should not involve any induction (theories derived from
observations). Instead, theories are seen as speculative
or tentative, as created by the human intellect, usually
to overcome limitations of previous theories. Once stated,
such theories need to be tested rigorously with observa-
tions. Theories that are inconsistent with such observation
should be rejected (falsified). The theories that survive are
the best current theories. Hence, falsificationism has a
time component and aims to describe progress in science,
where new theories are born out of old ones by a process
of falsification.
In terms of UQ, one can then see models not as true

representations of actual reality but as hypotheses. One
has as many hypotheses as models. Such hypothesis can
be constrained by previous knowledge, but real field data
should not be used to confirm a model (confirmation with
data) but to falsify a model (reject, the model does not
confirm with data).
A simple example illustrates the difference:

Induction:
Premise: All rock samples are sandstones.
Conclusion: The subsurface system contains only
sandstone.

Falsification:
Premise: A sample has been observed that is shale.
Conclusion: The subsurface system does not consist just
of sandstone.

The latter is clearly a logically valid deduction (true).
Falsification, therefore, can only proceed with hypotheses
that are falsifiable (this does not mean that one has the
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observations needed to falsify, but that such observation
could exist). Some hypotheses are not falsifiable, for
example, “the subsurface system consists of rock that
are sandstone or not sandstone.”This then raises the ques-
tion of the degree of falsifiability of a hypothesis and the
strength (precision) of the observation in falsifying. Not
all hypotheses are equally falsifiable and not all observa-
tions should be treated on the same footing. A strong
hypothesis is one that makes strong claims, and there is
a difference between the following two statements:
1. Significant accumulation in the Mississippi delta

requires the existence of a river system.
2. Significant accumulation in all deltas requires the

existence of a river system.
Clearly 2 has more consequences than 1. Falsification,

therefore, invites stating bold conjectures rather than safe
conjectures.
The latter has considerable implication in UQ and

model building. Inductionists tend to bet on one model,

the best possible, best explaining most observations,
within a static context, without the idea that the model
they are building will evolve. Inductionists evolve their
models, but that is not the outset of their viewpoint, there
is always the hope that the best possible model will remain
the best possible. The problem with this inductionist
approach is that new observations that cannot be fit into
the current model are used to “fix” the model with ad-hoc
modification. A great example of this can be found in the
largest oil reservoir in the world, namely the Ghawar field
[see Simmons, 2013]. Before 2000, most modelers (geolo-
gists, geophysicist, engineers) did not consider fractures as
being a driving heterogeneity for oil production. How-
ever, flowmeter observations in wells indicated significant
permeability. To account for this, the already existing
models with already large permeabilities (1000–10,000
mD) were modified to as much as 200D (see
Figure 5.5). While this dramatic increase in permeability
in certain zones did lead to fitting the flow meter data

5 km

2 Darcy zone

10 Darcy zone

50 Darcy zone

250 Darcy zone

Figure 5.5 A reservoir modeled developed to reflect super permeability channels. Note the legend with permeability values [Valle
et al., 1993].
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better, the ad-hoc modification cannot be properly tested
with the current observations. It is just a fix to the model
(the current “theory” of no fractures). Instead, a new test
would be needed, such as new drilling to confirm or not
the presence of a gigantic cave, that can explain such
ridiculous permeability values. Today, all models built
on the Ghawar field contain fractures.
Falsificationism does not use ad-hoc modification,

because the ad-hoc modification cannot be falsified. In
the Ghawar case, the very notion of fluid flow by means
of an unrealistically large matrix permeability tells the
falsificationist that bold alternative modifications to the
theory are needed and not simple ad-hoc fixes, in the same
sense that science does not progress by means of fixes. An
alternative to the inductionist approach in Ghawar could
be as follows: most fluid flow is caused by large
permeability, except in some area where it is hypothesized
that fractures are present despite the fact that we have not
directly observed them. The falsificationist will now
proceed by finding the most rigorous (new) test to test this
hypothesis. This could consist of acquiring geomechanical
studies of the system (something different than flow) or by
means of geophysical data that aims to detect fractures.
New hypotheses also need to lead to new tests that can
falsify them. This is how progress occurs. The problem
often is “time,” a falsificationist takes the path of high
risk, high gain, but time may run out on doing
experiments that falsify certain hypotheses. “Failures”
are often seen as that and not as lessons learned. In the
modeling world, one often shies away from bold
hypotheses (certainly if one wants to obtain government
research funding!) and those modelers, as a group tends
to gravitate toward some consensus under the banner of
being good at “team-work.” It is the view of the authors
that such prohibits a realistic UQ. UQ needs to include
bold hypotheses, model conjectures that are not the norm,
or based on any majority vote, or by playing it safe, by
being conservative. Uncertainty cannot be reduced by just
great team-work, it will require equally rigorous observa-
tions (data) that can falsify any (preferably bold)
hypothesis.
This does not mean that an inductionist type of model-

ing and falsification type of modeling cannot coexist.
Inductionism leads to cautious conjectures and falsifica-
tion to bold conjectures. Cautious conjectures may carry
little risk, and hence, if they are falsified, then insignificant
advance is made. Similarly, if bold conjectures cannot be
falsified with new observations, significant advance is
made. Important in all this is the nature of the background
knowledge (recall, the prior knowledge), describing what
is currently known about what is being studied. Any
“bold” hypothesis is measured against such background
knowledge. Likewise, the degree to which observations
can falsify hypothesis need to be measured against such

knowledge. This background knowledge changes over
time (what was bold in 2000 needs no longer to be bold
in 2015), and such change, as we will discuss, is explicitly
accounted for in Bayesianism.

5.6.2. Falsificationism in Statistics

Schools of statistical inference are sometimes linked to
the falsificationist views of science, in particular the work
of Fischer, Neyman and Pearson; all well-known
scientists in the field of (frequentists) statistics [Fisher
and Fisher, 1915; Fisher, 1925; Neyman and Pearson,
1967;Rao, 1992; Pearson et al., 1994; Berger, 2003; Fallis,
2013 for overviews and original papers]. Significance tests
and confidence intervals p-values are associated with a
hypothetico-deductive way of reasoning. Since these
methods are pervasive in all areas of science, in particular
in UQ, we present some discussion on their rationality
together with opposing views of inductionism within this
context.
Historically, Fisher can be seen as the founder of

modern statistics. His work has a falsificationist
foundation, steeped in statistical “objectivity” (lack of
needed subjective assumption, which is the norm in
Bayesian methods). The nowwell-known procedure starts
with stating a null-hypothesis (a coin is fair), define an
experiment (flipping), a stopping rule (e.g., number of
flips), and a test-statistic (e.g., number of heads). Next
the sampling distribution (each possible value of the
test-statistic), assuming the null-hypothesis is true, is
calculated. Then, we calculate a probability p that our
experiment falls in an extreme group (e.g., 4 heads or less
which has only probability of 1.2% for 20 flips). Then a
convention is taken to reject (falsify) the hypothesis when
the experiment falls in the extreme group, say, p ≤ 0.05.
Fisher’s test works only on isolated hypotheses, which is

not how science progresses; often many competing
hypotheses are proposed that require testing under some
evidence. Neyman and Pearson developed statistical
methods that involve rival hypotheses, but again reason-
ing from an “objective” perspective, without relying on
priors or posteriors of Bayesian inductive reasoning.
For example, in the case of two competing hypothesis
H1 and H2, Neyman and Pearson reasoned that either
hypotheses are accepted or rejected, leading to two kinds
of errors (stating that one is false, while the other is false
and vice versa), better known as type I and II errors.
Neyman and Pearson improved on Fischer in defining
better “low probability.” In the coin example, a priori,
any combination of 20 tosses have a probability of 2−20,
even under a fair coin, most tosses have small probability.
Neyman and Pearson provide some more definition of
this critical region (where hypotheses are rejected).
If X is the random variable describing the outcome
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(e.g., a combination of tosses), then the outcome space is
defined by the following inequality:

L X =
P X H1

P X H2
≤ δ P L X ≤ δ H1 = α (5.1)

with δ depending on the significance level α and the nature
of the hypothesis. This theorem known as the Fundamen-
tal Lemma [Neyman and Pearson, 1933] defines the most
powerful test to reject H1 in favor of H2 at significance
level α for a threshold δ. The interpretation of a likelihood
ratio was provided by Bayesianists as the Bayes’ factor
(the evidential force of evidence). This was, however,
not the original interpretation of Neyman and Pearson.
What then does a significance test tell us about the truth

(or not) of a hypothesis? Since the reasoning here is in
terms of falsification (and not induction), Neyman–
Person interpretation is that if a hypothesis is rejected,
then “one’s actions should be guided by the assumption
that it is false” [Lindgren, 1976]. Neyman and Pearson
admit that significance test tells nothing about whether
a hypothesis is true or not. However, they do attach the
notion of “in the long run,” interpreting the significance
level as, for example, the number of times in 1000 times
that the same test is being done. The problem here is that
no testing can be done andwill be done in exactly the same
fashion, under the exact same circumstances. This idea
would also invoke the notion that under a significance
level of 0.05, a true hypothesis would be rejected with
the probability of 0.05. The latter violates the very reason
on which significance tests were formed: events with the
probability p can never be proven to occur (that requires
subjectivity!), let alone with the exact frequency of p.
The point here is to show that modern statistics need not

be seen as purely falsificationist, a logical hypothetic-
deductive way of reasoning. Reasoning in statistics comes
with its own subjective notions of personal judgments
(choosing which hypothesis, what significance level,
stopping rules, critical regions, independence assump-
tions, Gaussian assumptions, etc.). This was in fact later
acknowledged by Pearson himself [Neyman and Pearson,
1967, p. 277].

5.6.3. Limitations of Falsificationism

Falsificationism comes with its own limitations. Just as
induction cannot be induced, falsificationism cannot
be falsified, as a theory. This becomes clearer when
considering real-world development of models or
theories. The first problem is similar to the one discussed
in using inductive and deductive logic. Logic only works if
the premises are true; hence falsification, as a deductive
logic cannot distinguish between a faulty observation
and a faulty hypothesis. The hypotheses do not have to
be false when inconsistent with observations, since

observations can be false. This is an important problem
in UQ that we will revisit later.
The real world involves considerably more complica-

tion than “the subsurface system is deltaic.” Let us return
to our example of monitoring heat storage using
geophysics. A problem that is important in this context
is to monitor whether the heat plume remains near the
well and is compact, does not start to disperse, since then
recovery of that heat becomes less efficient. A hypothesis
could then be “the heat plume is compact,” geophysical
data can be used to falsify this by, for example, observing
that the heat plume is indeed influenced by heterogeneity.
Unfortunately, such data does not directly observe
“temperature,” instead it might measure electrical
resistance, which is related to temperature and other
factors, including survey design. Additionally, because
monitoring is done from a distance of the plume (at the
surface), the issue of limited resolution occurs (any
“remote sensing” suffers from this limited resolution).
This is then manifested in the inversions of the ERT data
into temperature, since many inversion techniques result
in smooth versions of actual reality (due to this limited
resolution issue), from which the modeler may deduce
that homogeneity of the plume is not falsified. Where
now lies the error? In the instrumentation? In the
instrumentation setup? In the initial and boundary
conditions that are required to model the geophysics? In
the assumptions about geological variability? In the
smoothness constraint in the inversion process? Falsifica-
tion does not provide a direct answer to this. In science,
this problem is better known as the Duhem–Quine thesis
after Pierre Duhem andWillard Quine [Ariew, 1984]. This
thesis states that it is impossible to falsify a scientific
hypothesis in isolation, because the observations required
for such falsification themselves rely on additional
assumptions (hypotheses) that cannot be falsified
separately from the target hypothesis (or vice versa).
Any particular statistical method that claims to do so
ignores the physical reality of the problem.
A practical way to deal with this situation is to not

consider just falsification but sensitivity to falsification.
What impacts the falsification process? Sensitivity, even
with limited or approximate physical models, provides
more information that can lead to (i) changing the way
data is acquired (the “value of information” in
Chapter 3) and (ii) changing the way the physics of the
problem (e.g., the observations) is modeled by focusing
on what matters most toward testing the hypothesis (the
target, see Chapter 1).
More broadly, falsification does not really follow the

history of the scientific method.Most science has not been
developed by means of bold hypotheses that are then
falsified. Instead, theories that are falsified are carried
through history; most notably, because observations that
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appear to falsify the theory can be explained by means of
causes other than the theory that was the aim of falsifica-
tion. This is quite common in modeling too: observations
are used as claims that a specific physical model does not
apply, only to discover later on that the physical model
was correct but that data could be explained by some
other factor (e.g., a biological reason, instead of a physical
reason). Popper himself acknowledged this dogmatism
(hanging onto models that have “falsified” to “some
degree”). As we will see later, one of the problems in
the application of probability (and Bayesianism) is that
zero probability models are deemed “certain” to not
occur. This may not reflect the actual reality that models
falsified under such Popper–Bayes philosophy become
“unfalsified” later by new discoveries and new data.
Probability and “Bayesianism” are not at fault here, but
the all-too common underestimation of uncertainties in
many applications.

5.7. PARADIGMS

5.7.1. Thomas Kuhn

From the previous presentation, one may argue that
both induction and falsification provide too much of a
fragmented view of the development of scientific theory
or methods that often do not agree with reality. Thomas
Kuhn, in his book The Structure of Scientific Revolution
[Kuhn, 1996] emphasizes the revolutionary character of
scientific methods. During such revolution, one abandons
one “theoretical” concept for another, which is incompat-
ible with the previous one. In addition, the role of
scientific communities is more clearly analyzed. Kuhn
describes the following evolution of science

Paradigm crises revolution new paradigm
new crisis

Such a single paradigm consists of certain (theoretical)
assumptions, laws, methodologies, and applications
adapted by members of a scientific community (e.g.,
evolution, plate tectonics, genetics, relativity theory).
Probabilistic methods, or Bayesian methods, can be seen
as such a paradigm: they rely on axioms of probability
and the definition of a conditional probability, the use
of prior information, subjective beliefs, maximum
entropy, principle of indifference, algorithms of McMC,
and so on. Researchers within this paradigm do not
question the fundamentals of such paradigm, the
fundamental laws or axioms. Activities within the
paradigm are then puzzle-solving activities (e.g., studying
convergence of a Markov chain) governed by the rules of
the paradigm. Researchers within the paradigm do not
criticize the paradigm. It is also typical that many

researchers within that paradigm are unaware of the
criticism on the paradigm or ignorant as to the exact
nature of the paradigm, simply because it is a given:
Who is really critical of the axioms of probability when
developing Markov chain samplers? Or, who questions
the notion of conditional probability when performing
stochastic inversions? Puzzles that cannot be solved are
deemed to be anomalies, often attributed to the lack of
understanding of the community about how to solve the
puzzle within the paradigm, rather than a question about
the paradigm itself. Kuhn considers such unsolved issues
as anomalies rather than what Popper would see as
potential falsifications of the paradigm. The need for
greater awareness and articulation of the assumptions
of a single paradigm becomes necessary when the para-
digm requires defending against offered alternatives.
Within the context of UQ, a few such alternative

paradigms have emerged reflecting the concept of
revolution as Kuhn describes. The most “traditional”
of paradigms for quantifying uncertainty is by means of
probability theory and its extension of Bayesian probabil-
ity theory (the addition of a definition of conditioning).
We provide here a summary account of the evolution of
this paradigm, the criticism leveled, the counterargu-
ments, and the alternatives proposed, in particular
possibility theory.

5.7.2. Is Probability Theory the Only Paradigm for UQ?

5.7.2.1. The Axioms of Probability: Kolmogorov–Cox.
The concept of numerical probability emerged in the
mid-seventeenth century. A proper formalization was
developed by Kolmogoroff [1950] based on classical
measure theory. A comprehensive study of its foundations
is offered in Fine [1973]. This topic is vast and of particular
note are books by Fine [1973], Feller [2008], Gnedenko
et al. [1962], de Finetti et al. [1975], de Finetti [1974,
1995], and Jaynes [2003]. Also of note is the work of
Shannon [1948] on uncertainty-based information in
probability. In other words, the concept of probability
has been around for three centuries. What is probability?
It is now generally agreed (the fundamentals of the
paradigm) that the axioms of Kolmogorov as well as
the Bayesian interpretation by Cox [1946] form the basis.
Since most readers are unfamiliar with Cox theorem and
its consequences for interpreting probability, we provide
some high-level insight.
Cox works from a set of postulates, for example (we

focus on just two of three postulates),
1. “A proposition p and its negation ¬p is certain” or

plaus(p ¬ p) = 1 which is also termed the logical
principle of the excluded middle. plaus stands for
plausibility.
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2. Consider now two propositions p and q and the
conjunction between them p q. This postulate states that
the plausibility of the conjunction is only function of the
plausibility of p and the plausibility of q given that p is
true. In other words,

plaus p q = f plaus p ,plaus q p

The traditional laws are recovered when setting plaus to
be a probability measure or P, or stating as per Cox
theorem “any measure of belief is isomorphic to a
probability measure.” This seems to suggest that
probability is sufficient in dealing with uncertainty,
nothing else is needed (due to this isomorphism). The
consequence is that one can now perform calculations
(a calculus) with “degrees of belief” (subjective probabil-
ities, see Section 5.8.3) and even mix probabilities based
on subjective belief with probabilities based on frequen-
cies. The question is, therefore, whether these subjective
probabilities are the only legitimate way of calculating
uncertainty? For one, probability requires that either
the fact is there or it is not there, nothing is left in the
“middle.” This then necessarily means that probability
is ill-suited in cases where the excluded middle principle
of logic does not apply. What are those cases?

5.7.2.2. Intuitionism. Probability theory is truth driven.
An event occurs or does not occur. The truth will be
revealed. From a hard scientific or engineering approach
this seems perfectly fine, but it is not. A key figure in this
criticism is the Dutch mathematician and philosopher Jan
Brouwer. Brouwer founded the mathematical philosophy
of intuitionism countering the then-prevailing formalism,
in particular of David Hilbert as well as Bertrand Russell
claiming that mathematics can be reduced to logic; the
epistemological value of mathematical constructs lies in
the fundamental nature of this logic.
In simplistic terms perhaps, intuitionists do not accept

the law of excluded middle in logic. Intuitionism reasons
from the point that science (in particular mathematics) is
the result of the mental construction performed by
humans rather than principles founded in the actual
objective reality. Mathematics is not “truth,” rather it
constitutes applications of internally consistent methods
used to realize more complex mental constructs, regard-
less of their possible independent existence in an objective
reality. Intuition should be seen in the context of logic as
the ability to acquire knowledge without proof or without
understanding how the knowledge was acquired.
Classical logic states that existence can be proven by

refuting nonexistence (the excluded middle principle).
For the intuitionist, this is not valid; negation does not
entail falseness (lack of existence), it entails that the
statement is refuted (a counter example has been found).
For an intuitionist, a proposition p is stronger than a

statement of not (not p). Existence is a mental construc-
tion, not proof of nonexistence. One particular form
and application of this kind of reasoning is fuzzy logic.

5.7.2.3. Fuzzy Logic. It is often argued that epistemic
uncertainty (or knowledge) does not cover all uncertainty
(or knowledge) relevant to science. One such particular
form of uncertainty is “vagueness” which is borne out
of the vagueness contained in language (note that other
language-dependent uncertainties exists such as
“context-driven”). This may seem rather trivial to some-
one in the hard sciences, but it should be acknowledged
that most language constructs (“this is air,” meaning
78% nitrogen, 21% oxygen, and <1% of argon, carbon
dioxide, and other gases) are a purely theoretical
construct, of which we still may not have incomplete
understanding. The air that is outside is whatever that
substance is, it does not need human constructs, unless
humans use if for calculations, which are themselves
constructs. Unfortunately, (possibly flawed) human
constructs is all that we can rely on.
The binary statements “this is air” and “this is not air”

again are theoretical human constructs. Setting that aside,
most of the concepts of vagueness are used in cases with
unclear borders. Science typically works with classifica-
tion systems (“this is a deltaic deposit,” “this is a fluvial
deposit”), but such are again man-made constructs.
Nature does not decide to “be fluvial,” it expresses itself
through laws of physics, which are still not fully
understood.
A neat example presents itself in the September 2016

edition of EOS: “What is magma?”Most would think this
is a solved problem, but it is not, mostly due to vagueness
in language and the ensuing ambiguity and difference in
interpretation by even experts. A new definition is offered
by the authors: “Magma: naturally occurring, fully or
partially molten rock material generated within a
planetary body, consisting of melt with or without crystals
and gas bubbles and containing a high enough proportion
of melt to be capable of intrusion and extrusion.”
Vague statements (“this may be a deltaic deposit”) are

difficult to capture with probabilities (it is not impossible
but quite tedious and construed). A problem occurs in
setting demarcations. For example, in air pollution, one
measures air quality using various indicators such
PM2.5, meaning particles which pass through a
size-selective inlet with a 50% efficiency cut off at 2.5
μm aerodynamic diameter. Then standards are set, using
a cutoff to determine what is “healthy” (a green color),
what is “not so healthy” (orange color), and unhealthy
(a red color). Hence, if the particular matter changes by
one single particle, then the air goes suddenly from
“healthy” to “not so healthy” (from green to orange).
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In several questions of UQ, both epistemic and
vagueness-based uncertainty may occur. Often, vagueness
uncertainty exists at a higher-level description of the
system, while epistemic uncertainty may then deal with
questions of estimation because of limited data within
the system. For example, policy makers in the environ-
mental sciences may set goals that are vague, such as
“should not exceed critical levels.” Such a vague
statement then needs to be passed down to scientist who
is required to quantify risk of attaining such levels by
means of data and numerical models, where epistemic
uncertainty comes into play. In that sense, there is no need
to be rigorously accurate, for example, according to a very
specific threshold, given the above argument about such
thresholds and classification systems.
Does probability easily apply to vagueness statements?

Consider a proposition “the air is borderline unhealthy.”
The rule of the excluded middle no longer applies because
we cannot say that the air is either not unhealthy or
unhealthy. Probabilities no longer sum to one. It has,
therefore, been argued that the propositional logic of
probability theory needs to be replaced with another logic:
fuzzy logic (although other logics have been proposed
such as intuitionistic, trivalent logic, we will limit the
discussion to this one alternative).
Fuzzy logic relies on fuzzy set theory [Zadeh, 1965,

1975, 2004]. An example of fuzzy set A such as “deltaic”
is said to be characterized by a membership function
μdeltaic(u) representing the degree of membership given
some information u on the deposit under study, for
example μdeltaic(deposit) = 0.8 for a deposit with info u
under study. Probabilists often claim that such member-
ship function is nothing more than a conditional probabil-
ity P(A| u) in disguise [Loginov, 1966]. The link is made
using the following mental construction. Imagine 1000
geologists looking at the same limited info u and then
voting whether the deposit is “deltaic” or “fluvial.” Let
us assume these are the two options available.
μdeltaic(deposit) = 0.832 means that 832 geologists picked
“deltaic” and hence a vote picked at random has 83.2%
chance of being deltaic. However, the conditional proba-
bility comes with its limitations as it attempts to cast a
very precise answer into what is still a very vague concept.
What really is “deltaic”? Deltaic is simply a classification
made by humans to describe a certain type of depositional
system subject to certain geological processes acting on it.
The result is a subsurface configuration, termed architec-
ture of clastic sediments. In modeling subsurface systems,
geologists do not directly observe the processes (the del-
taic system) but only the record of it. However, there is
still no full agreement as to what is “deltaic” or when “del-
taic” ends and “fluvial” starts as we go more upstream?
(Recall our discussion on “magma.”) What are the pro-
cesses actually happening and how all this gets turned into
a subsurface system? Additionally, geologist may provide

interpretations based on personal experiences, different
education (schools of thought about “deltaic”), and dif-
ferent education levels.What then does 0.832 really mean?
What is the meaning of the difference between 0.832 and
0.831? Is this due to education? Misunderstanding or
disagreement on the classification? Lack of data
provided? It clearly should be a mix of all this, but
probability does not allow an easy discrimination. We
find ourselves again with a Duhem–Quine problem.
Fuzzy logic does not take the binary route of voting up

or down, but it allows a grading in the vote of each
member, meaning that it allows for more gradual transi-
tion between the two classes for each vote. Each person
takes the evidence at his/her value and makes a judgment
based on their confidence, education level: I do not really
know, hence 50/50, I am pretty certain, hence 90/10.
(More advanced readers in probability theory may see
now a mixture models of probability stated based on
the evidence what the u is. However, because of the
overlapping nature of how evidence is regarded by each
voter, these prior probabilities are no longer uniform.)

5.7.2.4. The Dogma of Precision. Clearly, probability
theory (randomness) does not work well when the event
itself is not clearly defined, subject to discussion. Probabi-
lity theory does not support the concept of a fuzzy event;
hence, such information (however vague and incomplete)
becomes difficult and nonintuitive to account for.
Probability theory does not provide a system for comput-
ing with fuzzy probabilities expressed as likely, unlikely,
and not very likely. Subjective probability theory relies
on elicitation rather than estimation of a fuzzy system.
It cannot address questions of the nature, “What is the
probability that the depositional system may be deltaic”?
One should question, under all this vagueness and
ambiguity what really the meaning of the digit “2” or
“3” is in P(A| u) = 0.832. The typical reply of probabilists
to possibilists is to “just be more precise” and the problem
is solved. But this would ignore a particular form of lack
of understanding, which goes to the very nature of UQ.
The precision required does not agree with the vagueness
in concepts.
The advantage and disadvantage of the application of

probability to UQ is that it requires, dogmatically,
precision. It is an advantage in the sense that it attempts
to render subjectivity into quantification, that the rules
are very well understood, the methods deeply practiced,
because of the nature of the rigor of the theory, the
community (after 300 years of practice) is vast. But, this
rigor does not always jive with reality. Reality is more
complex than “Navier stokes” or “deltaic,” so we apply
rigor to concepts (or even models) that probably deviate
considerable from the actual processes occurring in
nature. Probabilists often call this “structural” error (yet
another classification and often ambiguous concept,
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because it has many different interpretations) but provide
no means of determining what exactly this is and how it
should be precisely estimated, as is required by their
theories. It is left as a “research question,” but can this
question be truly answered within probability theory
itself? For the same reasons, probabilistic method (in
particular Bayesian, see next) are computationally very
demanding, exactly because of this dogmatic quest for
precision.

5.7.2.5. Possibility Theory: Alternative or Compliment?.
Possibility theory has been popularized by Zadeh [1978]
and also by Dubois and Prade [1990]. The original notion
goes back further to the economist Shackle [1962] study-
ing uncertainty based on degrees of potential surprise of
events. Shackle also introduces the notion of conditional
possibility (as opposed to conditional probability). Just as
probability theory, possibility theory has axioms. Con-
sider Ω to be a finite set, with subsets A and B that are
not necessarily disjoint:
axiom 1: pos(Ø) = 0 (Ω is exhaustive)
axiom 2: pos(Ω) = 1 (no contradiction)
axiom 3: pos(A B) =max(pos(A), pos(B)) (“additivity”)
A noticeable difference with probability theory is that

addition is replaced with “max” and the subsets for axiom
3 need not be disjoint. Additionally, probability theory
uses a single measure, the probability, whereas possibility
theory uses two concepts, the possibility and the necessity
of the event. This necessity, another measure, is defined as

nec A =1−pos A (5.2)

If the complement of an event is impossible, then the event
is necessary. nec(A) = 0 means that A is unnecessary. One
should not be “surprised” if A does not occur, it says
nothing about pos(A). nec(A) = 1means thatA is certainly
true, which implies pos(A) = 1. Hence, nec carries a degree
of surprise, nec(A) = 0.1 a little bit surprised, and nec(A)
= 0.9 very surprised if A is not true. Possibility also allows
for indeterminacy (which is not allowed in epistemic
uncertainty), this is captured by nec(A) = 0, pos(A) = 1.
Logically then

nec A B = min nec A , nec B (5.3)

Possibility does not follow the rule of the excluded middle
because

pos A +pos A ≥ 1 (5.4)

An example goes as follows. Consider a reservoir. It either
contains oil (A) or contains no oil (A) (something we like
to know!). pos(A) = 0.5 means that I am willing to bet that
the reservoir contains oil as long as the odds are even or
better. I would not bet that it contains oil. Hence, this
describes a degree of belief very different from subjective
probabilities.

Possibilities are sometimes called “imprecise probabil-
ities” [Hand and Walley, 1993] or are interpreted that
way. “Imprecise” need not be negative, as discussed
above, it has its own advantages, in particular in terms
of computation. In probability theory, information is used
to update degrees of belief. This is based on Bayes’ rule
whose philosophy will be studied more closely in the next
section. A counterpart to Bayes’ rule exists in possibility
theory, but because of the imprecision of possibilities over
probabilities, no unique way exists to update possibilities
into new possibility, given new (vague) information.
Recall that Bayes’ rule relies on the product (correspond-
ing to a conjunction in classical logical)

P A B =
P B A
P B

P A (5.5)

Consider first the counterpart of the probability density
function fX(x) in possibility theory, namely the possibility
distribution πX(x). Unlike probability densities, which
could be inferred from data, possibility distributions are
always specified by users, and hence take simple form
(constant, triangular) functions. Densities express
likelihoods, a ratio of the densities assessed in two
outcomes denotes howmuch more (or less) likely one out-
come is over the other. A possibility distribution simply
states how possible an outcome x is. Hence, a possibility
distribution is always equal or less than unity (not the case
for a density). Also, note that P(X = x) = 0, always, if X is
a continuous variable, while pos(X = x) is not zero every-
where. Like a joint probability distribution, we can define
a joint possibility distribution πX,Y(x, y) and conditional
possibility distributions πX Y(x| y). The objective now is
to infer πX Y(x| y) from πY X(y| x) and πX(x).
As mentioned above, probability theory relies on

logical conjunction (see Figure 5.6). This conjunction
has the following properties:

a b= b a commutativity

if a ≤ a and b ≤ b then a b ≤ a b monotonicity

a b c= a b c associativity

a 1= a neutrality

Possibility theory, as it is based on fuzzy sets rather than
random sets, relies on an extension of the conjunction
operation. This new conjunction is termed a triangular
norm (T-norm) [Jenei and Fodor, 1998; Klement et al.,
2004; Höhle, 2003] because it follows the following four
properties:

1 T a,b =T b,a commutativity

2 if a ≤ a and b ≤ b thenT a,b =T a ,b monotonicity

3 T a,T b,c =T T a,b ,c associativity

4 T a,1 = a neutrality
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Recall that Cox relied on the postulate that plaus(p q) =
f(plaus(p), plaus(q| p)). Similarly, possibility theory
relies on

πY X y x =T πX x ,πY X y x =T πY x , πX Y x y

(5.6)

For example, for the minimum triangular norms we get

πX Y x y =

1

min π x , πY X x y

if π x = min π x , πY X x y

if π x > min π x , πY X x y

(5.7)

and for the product triangular norm, we get something
that looks Bayesian

πX Y x y =
πY X x y π x

π y
(5.8)

5.8. BAYESIANISM

5.8.1. Thomas Bayes

Hopefully, the reader has appreciated the scant
overview of a long history of scientific tradition as well
as philosophical approaches. UQ today often has a
Bayesian flavor. What does this mean? Most researcher
simply invoke Bayes’ rule, as a theoremwithin probability
theory. They work within the paradigm. But what is really
the paradigm of Bayesianism? It can be seen as a simple
set of methodologies, but it can also be regarded as a
philosophical approach of doing science, in the same sense
as empiricism, positivism, falsificationism, or induction-
ism. The reverend Bayes’ would perhaps be somewhat
surprised by the scientific revolution and main stream
acceptance of the philosophy based on his rule.

Thomas Bayes was a statistician, philosopher, and
reverend. Bayes presented a solution to the problem of
inverse probability in “An Essay towards solving a
Problem in the Doctrine of Chances.” This essay was read
one year after his death, by Richard Price for the Royal
Society of London. Bayes’ theorem remained in the
background until it was reprinted in 1958, and even then
it took a few more decades before an entire new approach
to scientific reasoning, Bayesianism was created [Earman,
1992; Howson et al., 1993].
Prior to Bayes’ most works on chance were focused on

direct inference, such as the number of replications needed
to calculate a desired level of probability (how many flips
of the coin are needed to assure 50/50 chance?). Bayes’
treated the problem of inverse probability: “given the
number of times an unknown event has happened and
failed, required: the chance that the probability of its
happening in a single chance lies between any two degrees
of probability that can be named” (see the Biometrika
publication of Bayes’ essay). Bayes’ essay has essentially
four parts. Part 1 consists of a definition of probability
and some basic calculation which are now known as the
axioms of probability. Part 2 uses these calculations in
a chance event related to a perfectly leveled billiard table
(see Figure 5.7). Part 3 consists of using the equations
obtained from the analysis of the billiard problem to his
problem of inverse probability. Part 4 consists of more
numerical studies and applications.
Bayes’, in his essay, was not concerned with induction

and the role of probability in it. Price, however, in the
preface to the essay did express a wish that the workwould
in fact lead to a more rational approach to induction than
was then currently available. What is perhaps less known
is that “Bayes’ theorem” in the form that we now know it
was never written by Bayes’. However, it does occur in the
solution to his particular problem. As mentioned above,
Bayes’ was interested in a chance event with unknown

a b a b

0 0 0 0.1 0.1 0.1 0.01 0.053

1 0 0 0.9 0.1 0.1 0.09 0.098

0 1 0 0.1 0.1 0.1 0.09 0.098

1 1 1 0.9 0.9 0.9 0.81 0.82

a ∩ b T1(a,b)

T1(a, b) = min(a, b); T2(a, b) = a.b; T2(a, b) =
ab

a+b–ab

T2(a,b) T3(a,b)

Figure 5.6 Example of t-norms for conjunction operations.
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probability (such as in the billiard table problem), given a
number of trials. IfM counts the number of times that an
event occurs in n trials, then the solution is given through
the binomial distribution:

P p1 ≤ p ≤ p2 M =m =

p2

p1

n
m pm 1−p n−mP dp

1

0

n
m pm 1−p n−mP dp

(5.9)

where P(dp) is the prior distribution over p. Bayes’ insight
here is to “suppose the chance is the same that it (p) should
lie between any two equi-different degrees.” P(dp) = dp, in
other words the prior is uniform, leading to

P p1 ≤ p ≤ p2 M =m =
n+1

m n−m

p2

p1

n
m pm 1−p n−mdp

(5.10)

Why uniform? Bayes’ does not reason from the current
principle of indifference (which can be debated, see later),
but rather from an operation characterization of an event
concerning the probability which we know absolutely
nothing about prior to the trials. The use of prior distribu-
tions, however, was one of the key insights of Bayes’ that
very much lives on.

5.8.2. Rationality for Bayesianism

Bayesians can be regardedmore as relativists than abso-
lutists (such as Popper). They believe in prediction based
on imperfect theories. For example, they will take an
umbrella on their weekend, if their ensemble Kalman
filter prediction of the weather at their trip location puts
a high (posterior) probability of rain in 3 days. Even if

the laws involved are imperfect and probably can be
falsified (many weather prediction are completely
wrong!), they rely on continued learning from future
information and adjustments. Instead of relying on
Popper’s zero probability (rejected or not), they rely more
on an inductive inference yielding nonzero probabilities.
If we now take the general scientific perspective (and

not the limited topic of UQ), then Bayesians see science
progress by hypotheses, theories, and evidence offered
toward these hypotheses all quantified using probabilities.
In this general scientific context, we may therefore state
hypothesis H, gather evidence E, with P(H|E) the
probability of the hypothesis in light of the evidence,
P(E|H) the probability that the evidence occurs when
the hypothesis is true,P(H) the probability of the hypoth-
esis without any evidence, and P(E) the probability of the
evidence, without stating that any hypothesis is true:

P H E =
P E H
P E

P H 5 11

P(H) is also termed the prior probability and P(H| E) the
posterior probability. We provided some discussion on a
logical way of explaining this theorem [Cox, 1946] and the
subsequent studies that showed this was not quite as log-
ical as it seems [Halpern, 1995, 2011]. Few people today
know that Bayesian probability has six axioms [Dupré
and Tiplery, 2009]. Despite these perhaps rather technical
difficulties, a simple logic underlies this rule. Bayes’ theo-
rem states that the extent to which some evidence supports
a hypothesis is proportional to the degree to which the
evidence is predicted by the hypothesis. If the evidence
is very likely (“sandstone has lower acoustic impedance
than shale) then the hypothesis (“acoustic impedance
depends onmineral composition”) is not supported signif-
icantly when indeed we measure that “sandstone has
lower acoustic impedance than shale.” If, however, the
evidence is deemed very unlikely, for example (“shale
has higher acoustic impedance than sandstone”), then
the hypothesis of another theorem (“acoustic impedance
depends not only on mineralization, but also fluid con-
tent”) will be highly confirmed (have high posterior
probability).
Another interesting concept is how Bayes’ deals with

multiple evidences of the same impact on the hypothesis.
Clearly, more evidence leads to an increase in probability
of a hypothesis supported by that evidence. But evidences
of the same impact will have a diminishing effect.
Consider that a hypothesis has equal probability as some
alternative hypothesis:

P H =0 5

Now consider multiple evidence sources such that

P H E1 = 0 8;P H E2 = 0 8;P H E3 = 0 8

C s D

M

M

B Ao

W

Figure 5.7 Bayes’ billiard table: “to be so made and leveled that
if either of the ball O and W thrown upon it, there shall be the
same probability that it rests upon any one equal part of the
plane as another” [Bayes and Price, 1763].
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Then, according to a model of conditional independence
and Bayes’ theorem [Bordley, 1982; Genest and Zidek,
1986; Journel, 2002; Clemen and Winkler, 2007]:

P H E2,E1 = 0 94;P H E3,E2,E1 = 0 98

Compounding evidence leads to increasing probability of
the hypothesis, but it will never reach unity, unless some
evidence states P(H| Ej) = 1.

5.8.3. Objective Versus Subjective Probabilities

In the early days of the development of Bayesian
approaches, several general principles were stated under
which researchers “should” operate, resulting in an
“objective” approach to the problem of inference, in the
sense that everyone is following that same logic. One such
principle is the principle of maximum entropy [Jaynes,
1957], of which the principle of indifference (Laplace) is
a special case. Subjectivists do not see probabilities as
objective (leading to prescribing zero probabilities to
well-confirmed ideas). Rather, subjectivists [Howson
et al., 1993] see Bayes’ as an objective theory of inference.
Objective is the sense that given prior probabilities and
evidence, posterior probabilities are calculated. In that
sense, subjective Bayesian make no claim on the nature
of the propositions on which inference is being made (in
that sense, they are also deductive).
One interesting application of reasoning this way occurs

when disagreement occurs on the same model. Consider
modeler A (the conformist) who assigns a high probability
to some relatively well-accepted modeling hypothesis and
low probability to some rare (unexpected) evidence.
Consider modeler B (the skeptic) who assigns low
probability to the norm and hence high probability to
any unexpected evidence. As a consequence, when
the unexpected evidence occurs and hence is confirmed
P(E|H) = 1, then the posterior of each is proportional
to 1/P(E). Modeler A is forced to increase their prior more
than the Modeler B. Some Bayesians, therefore, state that
the prior is not that important as continued new evidence is
offered. The prior will be “washed out” by cumulating new
evidence. This is only true for certain highly idealized situa-
tions. It is more likely that two modelers will offer two
hypotheses; hence, evidence needs to be evaluated against
each other. However, there is always a risk that neither
model can be confirmed, regardless how much evidence
is offered; hence, the prior model space is incomplete,
which is the exact problemof the objectivist Bayes’. Neither
objective nor subjective Bayes’ addresses this problem.

5.8.4. Bayes with Ad-Hoc Modifications

Returning now to the example of Figure 5.5, Bayesian
theory, if properly applied, allows for assessing these
ad-hoc model modifications. Consider that a certain

modeling assumption H is prevailing in multiphase flow:
“oil flow occurs in rock with permeability of 10–10000
md” (H), now this modeling assumption is modified ad
hoc to “oil flow occurs in rock with permeability of
10–10000 md and 100–200D)” (H ad hoc). However,
this ad-hoc modification, under H, has very low
probability, P(ad hoc) 0 and hence P(H ad hoc) 0.
The problem in reality is that those making the ad-hoc
modification often do not use Bayesianism, hence never
assess or use the prior P(ad hoc).

5.8.5. Criticism of Bayesianism

What is critical to Bayesianism is the concept of
“background knowledge.” Probabilities are calculated
assuming some commonly assumed background
knowledge. Recall that theories cannot be isolated and
independently tested. This “background” consists of all
the available assumptions tangent to the hypothesis at
hand. The problem with using Eq. (5.11) is that such
“background knowledge” (BK) is taken implicit:

PBK0 H E PBK0 E H PBK0 H PBK1 H (5.12)

where 0 indicates time t = 0. The posterior then includes
the “new knowledge” which is included in the new
background knowledge at the next stage t = 1. A problem
occurs when applying this to the real world: What is this
“background knowledge”? In reality, the prior and
likelihood are not determined by the same person. For
example, in our application, the prior may be given by
a geologist, the likelihood by a data scientist. It is unlikely
that they have the same “background knowledge” (or
even agree on it). A more “honest” way of conveying this
issue is to make the background knowledge explicit.
Suppose thatBK(1)is the background knowledge of person
1, who deals with evidence (the data scientist) then

P H E BK 1 P E BK 1 H P H BK 1

(5.13)

Suppose BK(2) is person 2 (geologist) who provides the
“prior,” meaning the person provides background
knowledge on his/her own, without evidence. Then, the
new posterior can be written as

P H E BK 1 BK 2 P E BK 2 H

P H BK 2 P H BK 1
(5.14)

assuming, however, there is no overlap between back-
ground knowledge. In practice, the issue that different
components of the “system” (model) are constructed by
different modelers with different background knowledge
is ignored. Even if one would be aware of this issue, it
would be difficult to implement in practice. The ideal
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Bayesian approach rarely occurs. No single person
understands all the detailed aspects of the scientific
modeling study at hand. A problem then occurs with
dogmatism. The study in Figure 5.5 illustrates this.
Hypotheses that are given very high probability (no
fractures) will remain high, particularly in the absence
of strong evidence (low to medium P(E)). Bayes’ rule will
keep assigning very high probabilities to such hypotheses,
particularly due to the dogmatic belief of the modeler or
the prevailing leading idea of what is going on. This is not
the problem of Bayes’, but its common (faulty)
application. Bayes’ itself cannot address this.
More common is to select a prior based on general

principles or mathematical convenience, for example
using a maximum entropy principle. Under such
principle, complete ignorance results in choosing a
uniform distribution. In all other cases, one should pick
the distribution that makes the least claims, from
whatever information is currently available, on the
hypothesis being studied. The problem here is not somuch
the ascribing of uniform probabilities but providing a
statement of what all the possibilities are (on which then
uniform probabilities are assigned). Who chooses these
theories/models/hypotheses? Are those the only ones?
The limitation, therefore, of Bayesianism is that no

judgment is leveled to the stated prior probabilities.
Hence, any Bayesian analysis is as strong as the analysis
of the prior. In subsurface modeling, this prior is
dominated by the geological understanding of the system.
Such geological understanding and its background
knowledge is vast, but qualitative. Later we will provide
some ideas on how to make quantitative “geological
priors.”

5.8.6. Deductive Testing of Inductive Bayesianism

The leading paradigm of Bayesianism is to subscribe to
an inductive form of reasoning: learning from data.
Increasing evidence will lead to increasing probabilities
of certain theories, models, or hypothesis. As discussed
in the previous section, one of the main issues lies in the
statement of a prior distribution, the initial universe of
possibilities. Bayesianism assumes that a truth exists, that
such truth is generated by a probability model, and also
than any data/evidence are generated from this model.
The main issue occurs when the truth is not even within
the support (the range/span) generated by this (prior)
probability model. The truth is then not part of this initial
universe. What happens then? The same goes when the
error distribution on the data is chosen too optimistic,
in which case the truth may be rejected. Can we verify
this? Diagnose this? Figure out whether the problem lies
with the data or the model? Given the complexity of
models, priors, and data in the real world, this issue
may in fact go undiagnosed if one stops the analysis with

the generation of the posterior distribution. Gelman and
Shalizi [2013] discuss how mis-specified prior models
(the truth is not in the prior) may result in either no solu-
tion, multi-model solutions to problems that are unimodal
or complete nonsense.
Work by Mayo [1996] looks at these issues. Mayo

attempted to frame tests within classical hypothesis
testing. Recall that classical statistics relies on a deductive
form of hypothesis testing, which is very similar in flavor
to Popper’s falsification. In similar vein, some form of
model testing can be performed posterior to the
generation of the posterior. Note that Bayesian model
averaging [Henriksen et al., 2012; Refsgaard et al., 2012;
Rings et al., 2012; Tsai and Elshall, 2013; Brunetti et al.,
2017] and model selection are not tests of the posterior,
rather they are consequences of the posterior distribution,
yet untested! Classical checks are whether posterior
models match data, but these are checks based on
likelihood (misfit) only.
Consider a more elaborate testing framework (see for

Gelman et al., 1996). These formal tests rely on generating
replicates of the data given some model hypothesis and
parameters are the truth. Take a simple example of a
model hypothesis with two faults (H=two faults) and
the parameters θ representing those faults (e.g., dip,
azimuth, length, etc.). In Chapter 3, we discussed a
bootstrap (Monte Carlo)-based determination of
achieved significance level (ASL) as

ASL θ =P S drep ≥S dobs H,θ (5.15)

Here we consider calculating some summary statistic of
the data as represented by the function S. This summary
statistic could be based on some dimension reduction
method, for example, a first or second principal
component score. The uncertainty on θ is provided by
its posterior distribution; hence, we can sample various
θ from the posterior. Therefore, we first sample drep from
the following distribution (averaging out over
posterior in θ)

P drep H,dobs = P drep H,θ P θ H,dobs dθ (5.16)

and calculate average ASL over the posterior distribution.
Analytically, this equals to

ASL= ASL θ P θ H,dobs dθ (5.17)

or for given limited sample θ(ℓ), ℓ = 1, …, L~P(θ|H, dobs)

ASL=
1
L

L

ℓ =1

ASL θ ℓ (5.18)

(Chapter 8 provides such example) These tests are not
used to determine whether a model is true, or even should
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be falsified but whether discrepancies exist between model
and data. The nature of the functions S defines the
“severity” of the tests [Mayo, 1996]. Numerous complex
functions will allow for a more severe testing of the prior
modeling hypothesis. We can learn how the model fails by
generating several of these summary statistics, each
representing different elements of the data (a low, a
middle, and some extreme cases, etc.)
Within this framework of deductive tests, the prior is no

longer treated as “absolute truth,” rather the prior
becomes a modeling assumption that is “testable” given
the data. However, some may disagree on this point:
Why should the data be any better than the prior? In
the next section, we will try to get out of this trap, by
basing priors on physical processes, with the hope that
such priors are more realistic representations of the
universe of variability, rather than simply relying on
statistical methods that are devoid of physics.

5.9. BAYESIANISM IN GEOLOGICAL
SCIENCES

5.9.1. Introduction

In the study of subsurface systems, one of the leading
uncertainties in most cases is due to the geological
variability of the depositional system with which one
has to deal with in engineering applications. We discussed
in Chapter 1 that many uncertainties are present that
requires handling, such as boundary conditions, initial
conditions, physical laws, chemical reactions, and so on.
Some of these can be estimated directly from data (such
as boundary conditions and initial conditions), others
are physical laws that we keep refining through
experimentation and modeling, such as multiphase flow.
Here we discuss specifically the use of Bayesianism in
dealing with uncertainty related to the geological system.
Evidently, the science involved here are the various
geological sciences that matter for the kind of studies in
this book such as sedimentary geology, carbonate
geology, geochemistry, and structural geology.
We discussed previously how the prior is mostly used as

a smoother, regularizer, a mathematical construct to
conveniently solve the Bayesian puzzle of getting to the
posterior (and ways to sample from it). Most of the prior
formulation used has very little to do with “background
knowledge” of geological systems, simply because most
Bayesians are not geologists, nor do they understand
necessarily well the language and science of geology.
We will discuss these kinds of techniques in more detail
in Chapter 6. A principled approach to defining geologi-
cally founded prior is still in its infancy, and in the follow-
ing section we provide some conceptual thoughts.

5.9.2. What Is the Nature of Geological Priors?

5.9.2.1. Constructing Priors from Geological Field
Work. In a typical subsurface system, the model variables
are parameterized in a certain way, for example with a
grid, or a set of objects with certain lengths, widths dips,
azimuths, and so on. What is the prior distribution of
these model variables? Since we are dealing with a geolog-
ical system, for example a delta, a fluvial, or a turbidite
system, a common approach is to do geological field
work. This entails measuring and interpreting the
observed geological structures, on outcrops, and creating
a history of their genesis, with an emphasis on generating
(an often qualitative) understanding of the processes that
generated the system. The geological literature contains a
vast amount of such studies.
To gather all this information and render it relevant for

UQ, geological databases based on classification systems
have been compiled (mostly by the oil industry). Analog
databases, for example, on proportions, paleo-direction,
morphologies, and architecture of geological bodies or
geological rules of association [Eschard and Doligez,
2002; Gibling, 2006] for various geological environments
[FAKT: Colombera et al., 2012; CarbDB: Jung and
Aigner, 2012; WODAD: Kenter and Harris, 2006; Pyrcz
et al., 2008] have been constructed. Such relational
databases employ a classification system based on
geological reasoning. For example, the FAKTS database
classifies existing studies, whether literature-derived or
field-derived from modern or ancient river systems,
according to controlling factors, such as climate, and
context-descriptive characteristics, such as river patterns.
The database can, therefore, be queried on both architec-
tural features and boundary conditions to provide the
analogs for modeling subsurface systems. The nature of
the classification is often hierarchical. The uncertain style
or classification, is often termed “geological scenario”
[Martinius and Naess, 2005] and variations within
that style.
While such approach appears to gather information, it

leaves the question of whether the collection of such
information and the extraction of parameters values to
state prior distribution produce realistic priors (enough
variance, limited bias) for what is actually in the
subsurface. Why?
1. Objects and dimensions in the field are only apparent.

An outcrop is only a 2D section of a 3D system. This
invokes stereological problems in the sense that structural
characteristics (e.g., shape, size, texture) of 2D outcrops
are only apparent properties of the 3D subsurface. These
apparent properties can drastically change depending on
the position/orientation of the survey. Furthermore,
interpreted 2D outcrops of the subsurface may be biased
because large structures are more frequently observed

146 QUANTIFYING UNCERTAINTY IN SUBSURFACE SYSTEMS



than small structures [Lantuejoul, 2013]. The same issue
occurs when doing 2D geophysical surveys to interpret
3D geometries [Davies and Sambrook Smith, 2006]. For
example, quantitative characterization of 2D GPR
imaging [e.g., Bristow and Jol, 2003] ignore uncertainty
on the 3D subsurface characteristics resulting from the
stereological issue.
2. The database is purely geometric in nature. It records

the end-result of deposition not the process of deposition.
In that sense, it does not include any physics underlying
the processes that took place and therefore may not
capture the complexity of geological processes fully to
provide a “complete” prior. For that reason, the database
may aggregate information that should not be
aggregated, simply because each case represents different
geological processes, accidently creating similar
geometry. For modeling, this may appear irrelevant
(who cares about the process), yet it is highly relevant.
Geologists reason based on geological processes, not just
the final geometries; hence, this “knowledge” should be
part of a prior model construction. Clearly, priors should
not ignore important background knowledge, such as
process understanding.

The main limitation is that this pure parameterization-
based view (the geometries, dimensions) lacks physical
reasoning, hence ignore important prior information.
The next section provides some insight into this problem
and suggests a solution.

5.9.2.2. Constructing Priors from Laboratory
Experiments. As discussed earlier in this book, natural
depositional systems are subject to large variability whose
very nature is not fully understood. For example,
channelized transport systems (fan, rivers, delta, etc.)
reconfigure themselves more or less continually in time,
and in a manner often difficult to predict. The configura-
tions of natural deposits in the subsurface are thus
uncertain. The quest for quantifying prior uncertainty
necessitates understanding the sedimentary systems by
means of physical principles, not just information
principles (such as the principle of indifference). Quantify-
ing prior uncertainty, thus, requires stating all configura-
tions of architectures of the system deemed physically
possible and at what frequency (a probability density)
they occur. This probability density need not be Gaussian
or uniform. Hence, the question arises: What is this
probability density for geological systems, and how does
one represent it in a form that can be used for actual
predictions using Bayesianism?
The problem in reality is that we observe geological

processes over a very short time span (50 years of satellite
data and ground observations), while the deposition of the
relevant geological systems we work with in this book
may span 100,000 years or more. For that reason, the only

way to study such system is either by computer models or
by laboratory experiments. These computer models solve
a set of partial differential equations (PDEs) that describe
sediment transport, compaction, diagenesis, erosion,
dissolution, and so on [Koltermann and Gorelick, 1992;
Gabrovsek and Dreybrodt, 2010; Nicholas et al., 2013].
The main issue here is that PDEs offers a limited represen-
tation of actual physical process and require calibration
with actual geological observations (such as erosion
rules), boundary conditions, and source terms. Often their
long computing times limit their usefulness for construct-
ing complete priors.
For that reason, laboratory experiments are increas-

ingly used to study geological deposition, simply because
physics occurs naturally, and not through an artificial
computer code. Next we provide some insight into how
laboratory experiments work and how they can be used
to create realistic analogs of depositional systems.

5.9.2.3. Experimenting the Prior. We consider a delta
constructed in an experimental sedimentary basin subject
to constant external boundary conditions (i.e., sediment
flux, water discharge, subsidence rates), see Figure 5.8.
The dataset used is a subset of the data collected during
an experiment conducted in 2010 [Wang et al., 2011].
Basin dimensions were 4.2 m long, 2.8 m wide, and 0.65
m deep. The sediment consisted of a mix of 70% quartz
sand and 30% anthracite coal sand. These experiments
are used for a variety of reasons. One of them is to study
the relationship between the surface processes and the
subsurface deposition. An intriguing aspect of these
experiments is that much of the natural variability is
not due to forcing (e.g., uplift, changing sediment source)
but due to the internal dynamics of the system itself, that
is, it is autogenic. In fact, it is not known if the autogenic
behavior of natural channels is chaotic [Lanzoni and
Seminara, 2006], meaning one cannot predict with
certainty the detailed configuration of even a single
meandering channel very far into the future. This then
has immediate impact on uncertainty in the subsurface
in the sense that configuration of deposits in the subsur-
face cannot be predicted with certainty away from wells.
The experiment, therefore, investigates uncertainty
related to the dynamics of the system, our lack of physical
understanding (and not some parameter uncertainty or
observational error). All this is a bit unnerving, since this
very fundamental uncertainty is never included in any
subsurface UQ. At best, one employs a Gaussian prior,
or some geometric prior extracted from observation
databases, as discussed above. The following are the
fundamental questions:
1. Can we use these experiments to construct a realistic

prior, capturing uncertainty related to the physical
processes of the system?
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2. Can a statistical prior model represent (mimic) such
variability?
To address these questions and provide some insight

(not an answer quite yet!), we run the experiment under
constant forcing for long enough to provide many differ-
ent realizations of the autogenic variability, a situation
that would be practically impossible to find in the field.
The autogenic variability in these systems is due to tempo-
ral and spatial variability in the feedback between flow
and sediment transport, weaving the internal fabric of
the final subsurface system.
Under fixed boundary conditions, the observed

variability in deposition is therefore the result of only
the autogenic (intrinsic) variability in the transport
system. The dataset we use here is based on a set of 136
time-lapse overhead photographs that capture the
dynamics of flow over the delta approximately every
minute. Figure 5.9 shows representative images from this
database. This set of images represents a little more than
2 h of experimental run time. Figure 5.9b shows the binary
(wet-dry) images for the same set, which will be used in the
investigation.
The availability of a large reference set of images of the

sedimentary system enables testing any statistical prior by
allowing a comparison of the variability of the resulting
realizations, since all possible configurations of the system
are known. In addition, the physics are naturally con-
tained in the experiment (photographs are the result of
the physical depositional processes). A final benefit is that
a physical analysis of the prior model can be performed,
which aids in understanding what depositional patterns
should be in the prior for more sophisticated cases.

5.9.2.4. Reproducing Physical Variability with Statisti-
cal Models. To attempt to reproduce physical variability,
we employ a geostatistical method termed multiple-point
geostatistics (see Chapter 6 for a more elaborate discus-
sion). MPS methods have grown popular in the last dec-
ade because of their ability to introduce geological realism
in modeling via the training image (TI) [Mariethoz and
Caers, 2014]. Similar to any geostatistics procedure,
MPS allows for the construction of a set of stochastic rea-
lizations of the subsurface. TIs, along with trends (usually
modeled using probability maps or auxiliary variables),
constitute the prior model as defined in the traditional
Bayesian framework. The choice of the initial set of TIs
has a large influence on the stated uncertainty, and hence
a careful selection must be done to avoid artificially redu-
cing uncertainty from the start.
It is unlikely that all possible naturally occurring pat-

terns can be contained in one single TI within the MPS
framework (although this is still the norm; similarly it is
the norm to choose for a multi-Gaussian model by
default). To represent realistic uncertainty, realizations
should be generated frommultiple TIs. The set of all these
realizations then constitutes a wide prior uncertainty
model. The choice of the TIs brings a new set of questions:
How many TIs should one use and which ones should be
selected? Ideally, the TIs should be generated in such a
way that natural variability of the system under study is
represented (fluvial, deltaic, turbidite, etc.), so that that
all natural patterns are covered in the possibly infinite
set of geostatistical realizations. Scheidt et al. [2016] use
methods of computer vision to select a set of representa-
tive TIs. On such computer vision method evaluates a rate

Figure 5.8 Flume experiment of a delta with low Froude number performed by John Martin, Ben Sheets, Chris Paola and Michael
Kelberer. Source: https://www.esci.umn.edu/orgs/seds/Sedi_Research.htm.
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of change between images in time and the TIs are selected
in periods of relative temporal pattern stability (see
Figure 5.10).
The TI set shown in Figure 5.10 displays patterns con-

sistent with previous physical interpretations of the funda-
mental modes of this type of delta system: a highly
channelized, incisional mode; a poorly channelized,
depositional mode; and an intermediate mode. This sug-
gests that some clues to the selection of appropriate TIs lie
in the physical properties of the images from the
experiment.
With a set of TIs available, multiple geostatistical real-

ization per each TI can be generating (basically a hierar-
chical model of realizations). These realizations can now
be compared with the natural variability generated in the
laboratory experiments, to verify whether such set of rea-
lizations can at all reproduce natural variability. Scheidt
et al. [2016] calculate the modified Hausdorff distance
(MHD), described in Chapter 2, between any two geosta-
tistical realizations and also between any two overhead

shots. A QQ-plot of the distribution of the MHD between
all the binary snapshots of the experiment andMPS mod-
els is shown in Figure 5.11a, showing similarity in
distribution.
The result is encouraging but also point out a mostly

ignored question of what a complete prior geological
entails, that the default choices (one TI, one Boolean
model, one multi-Gaussian distribution) make very little
sense when dealing with realistic subsurface heterogene-
ity. The broader question remains on how such a prior
should be constructed from physical principles and how
statistical models, such as geostatistics, should be
employed in Bayesianism when applied to geological sys-
tems. This fundamental question remains unresolved and
certainly under-researched.

5.9.2.5. Field Application. The above flume experi-
ments have helped in understanding the nature of a geo-
logical prior, at least for deltaic-type deposits. Knowledge
accumulated from these experiments will create scientific

10 min
(a)

(b)

30 min 50 min 70 min 90 min 110 min 130 min

Figure 5.9 Examples of a few photographs images of the flume experiment for different time. Flow is from top to bottom.
(a) Photographs of the experiments. The blue pixels indicate locations where flow moves over the surface. The black sediment
is coal which is the mobile fraction of the sediment mixture, and the tan sediment is sand. (b) Binary representation of the
photographs. Black represents wet (flow) pixels and white represents dry (no flow) pixels.

13 min 24 min 45 min 91 min 125 min

Figure 5.10 Selected images by clustering based on the modified Hausdorff distance. The value at the top of the image represents
the time in minutes of the experiment.
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understanding on the fundamental processes involved in
the genesis of these deposits and thereby help to under-
stand better the range of variability of the generated strat-
igraphic sequences.
It is unlikely, however, that laboratory experiments will

be of direct use in actual applications, since they take con-
siderable time and effort to set up. In addition, there is a
question of how to scale to the real world. It is more likely
in the near future that computer models, built from such
understanding, will be used in actual practice. In
Chapter 6, we discuss various such computer models for
depositional systems (process-based, process-mimick-
ing. etc.).

We consider here one such computer model, FLUMY
[Cojan et al., 2005], which is used to model meandering
channels, see Figure 5.12. FLUMY uses a combination
of physical and stochastic process models to create realis-
tic geometries. It is not an object-based model, which
would focus on the end result, but it actually creates the
depositional system. The input parameters are, therefore,
a combination of physical parameters as well as geomet-
rical parameters describing the evolution of the
deposition.
Consider a simple application to an actual reservoir sys-

tem (Courtesy of ENI). Based on geological understand-
ing generated from well data and seismic, modelers are

0

5

10

15

20

(a) (b)

20
MPS

S
na

ps
ho

ts

10 2010 15

Snapshots

MPS

50
0

0.1

0.2

F
re

qu
en

cy

Distance
0

Figure 5.11 (a) QQ-plot of theMHD distances between the 136 images from the experiment and 136 images generated using direct
sampling (DS). (b) Comparison of the variability, as defined by MHD, between generated realizations per each training image (TI)
(red) and the images from the experiment (blue) closest (in MHD) to the selected TI.
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Figure 5.12 Example of a FLUMY model with several realizations of the prior generated from FLUMY with uncertain input
parameters.
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asked to input the following FLUMY parameters: chan-
nel width, depth and sinuosity (geometric), and two
aggradation parameters: (i) decrease of the alluvium
thickness away from the channel and (ii) maximum thick-
ness deposited on levees during an overbank flood. More
parameters exist, but these are kept fixed for this simple
application.
The prior belief now consists of (i) assuming the

FLUMY model as a hypothesis that describes variability
in the depositional system and (ii) prior distributions of
the five parameters. After generating 1000s of FLUMY
models (see Figure 5.12) we can run the same analysis
as done for the flume experiment to extract modes in
the system that can be used as TIs for further geostatistical
modeling.
Another approach is to define a certain desired model

response (data or prediction or both) and to perform a
sensitivity analysis on which of the FLUMY parameters
are most impacting the response (e.g., using global sensi-
tivity analysis in Chapter 4).

5.9.3. Moving Forward

Eventually, philosophical principles will need to be
translated into workable practices, ultimately into data
acquisition, computer codes, and actual decisions.
A summary of some important observations and perhaps
also personal opinions based on this chapter are as
follows:
1. Data acquisition, modeling, and predictions “collabo-

rate”; going from data to models to prediction ignores the
important interactions that take place between these com-
ponents. Models can be used, prior to actual data acqui-
sition, to understand what role they will play in modeling
and ultimately in the decision-making process. The often
classical route of first gathering data and then creating
models may be completely inefficient if the data has no
or minor impact on any decision. This should be studied
beforehand and hence requires building models of the
data, not just of the subsurface.
2. Prior model generation is critical to Bayesian

approaches in the subsurface and statistical principles of
indifference are very crude approximation of realistic geo-
logical priors. Uniform and multi-Gaussian distributions
have been clearly falsified by many case studies [Gómez-
Hernández and Wen, 1998; Zinn and Harvey, 2003; Feyen
and Caers, 2006]. They may lead to completely erroneous
predictions when used in subsurface applications. One can
draw an analogy here with Newtonian physics: it has been
falsified but it is still around, meaning it can be useful to
make many predictions. The same goes with multi-Gaus-
sian-type assumptions. Such choices are logical for an
“agent” that has limited knowledge and hence (rightfully)
uses the principle of indifference. More informed agents

will, however, use more realistic prior distributions. The
point, therefore, is to use more informed agents (geolo-
gists) into the quantification of prior. The use of such
agent would make use of the vast geological (physical)
understanding that has been generated about over many
decades.
3. Falsification of the prior. It now seems logical to pro-

pose workflows of UQ that have both the inductions and
deduction flavors. Falsification should be part of any a-
priori application of Bayesianism and also on the poste-
rior results. We will propose several ways of falsifying
realistic geological priors with data, prior to application
of Bayes’ rule for the applications in Chapter 8. Such
approaches will rely on forms of sensitivity analysis as
well as developing geological scenarios that are tested
against data. The point here is not to state rigorous prob-
abilities on scenarios but to eliminate scenarios from the
pool of possibilities because they have been falsified.
The most important aspect of geological priors are not
the probabilities given to scenarios but the generation of
a suitable set of representative scenarios to represent the
geological process taking place. This was illustrated in
the flume experiment study.
4. Falsification of the posterior. The posterior is the

result of the prior model choice, the likelihood model
choice and all of the auxiliary assumptions and choices
made (dimension reduction method, sampler choices,
convergence assessment, etc.). Acceptance of the posterior
“as is” would follow the pure inductionist approach. Just
as the prior, it would be good practice to attempt to falsify
the posterior. This can be done in several ways, particu-
larly using hypothetico-deductive analysis, such as the sig-
nificance tests introduced in this chapter. Chapter 8 will
illustrate this practice.
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6
Geological Priors and Inversion

6.1. INTRODUCTION

Inverse problems are ubiquitous in the Earth Sciences.
When dealing with data and modeling some form of
“inversion” usually applies. Applications range from the
local kilometer scale (mostly the topic of this book)
to the global Earth scale (such as in global seismology).
Here we deal with inversion within the context of uncer-
tainty quantification (UQ). Inversion can be an important
part of UQ, but UQ requires more than inversion. UQ
requires considering many components not just data
and model but also the prediction, the decision to be
made, the a-priori geological information at hand, and
so on. Inversion here will be understood as the narrower
set of methodologies that infer models from data, the
relation between the two being modeled by a physical
model (in the sense of not a pure mathematical or
statistical model).
The chapter proceeds by first providing a theory of

inversion in its most general form, mostly based on the
work of Tarantola and his school of thought [Tarantola,
1987;Mosegaard, 1995]. This theory provides a high-level
description. Any practical implementation of inverse
modeling will require a model parameterization. Model
variables and data variables must be chosen to represent
the description of the system as a whole. This choice is
important and not unique, in particular since models
can be very large and hence a good model parameteriza-
tion is important to render the inverse solution computa-
tionally manageable. We will discuss not only the
common explicit grid model but also how to parameterize
more complex subsurface structures such as faults and
horizons. We will also provide some alternatives to the
grid model and present implicit models. We will compare
several forms of inversion, from the deterministic
inversion that is still quite common, to the fully stochastic
(Bayesian) inversion relying on Markov chain Monte
Carlo (McMC). Next some specifics are discussed

regarding the inversion of geophysical data that often
requires the addition of statistical rock physics in the
forward model and the use of dynamic observations
with the ensemble Kalman filter. The latter involve all
time-varying observations such as time-lapse geophysics,
well test, pump test, tracer test, and so on. The literature
on these subjects is vast; our focus lies on the integration
of geological information into the inverse modeling and
the context within UQ.

6.2. THE GENERAL DISCRETE
INVERSE PROBLEM

6.2.1. Introduction

In this section, we will review a general formulation of
the inverse problem, and not yet focus on a specific
method to parameterize it or to present inverse solution
methodologies. The aim here is to show that many of
the standard formulations (in particular the Bayesian/
Gaussian) are derived from a more general formulation.
Under the usual inverse modeling paradigm these
assumptions are taken for granted, not necessarily
without consequences.
Tarantola and Valette [1982] provided one of the first

comprehensive formulation of “the inverse problem.” It
is different from the usual Bayes’ formulation. They
(TV) state conditions necessary for such formulation:
1. The formulation should address linear to “strongly”

nonlinear problems. We will later quantify what “strong”
means exactly.
2. The formulation must address both overdetermined

and underdetermined problems.
3. The formulation must be invariant to any change in

parameterization. In other words, solving an inverse
problem with frequency or period should yield the same
solution (uncertainty), because a change of variables does
not add any new information to the problem.
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4. The formulation must be general enough to allow for
“errors in theory” and “errors in observations.”
5. The formulation must allow for any a priori informa-

tion. Although this notion in TV is somewhat differently
formulated than in Bayesianism.
TV follows the general notion in probability that any

state of information on a parameter can be defined by a
probability density function. Hence, solving inverse
problems requires combining measurements with prior
states of information onmodel parameters and with states
of information on the physical correlation between data
and model. They consider inverse problems within the
broader approach to scientific discovery by considering
three major steps:
1. Parameterization of the physical system: stating the

minimal set of model parameters whose values completely
characterize the system.
2. Forward modeling: discovery of physical laws that

allow making predictions on the results of measurements.
3. Inverse modeling: infer actual values of the model.
From a philosophical point of view, TV adhere to

notions of probability theory and hence some form of
Bayesianism, although Tarantola also prescribed to falsi-
ficationism [Tarantola, 2006] after having formulated his
more inductionist-inspired theory.
TV limit themselves to a “discrete” inverse problem,

meaning that model and data variables are discretized
and represented through a finite list of parameters. In
other words, they do not treat problems that involve
functions. This is mainly of technical concern, functions
can easily be represented with discrete coefficients after
some appropriate decomposition (e.g., wavelet, Fourier,
Discrete Cosine Transform).

6.2.2. Representation of Physical Variables
in Probability Theory

6.2.2.1. Model and Data Space. Many applications in
probability theory deal with variables that are not based
on physics (here meant to include chemistry), such as
number of people, income, IQ, crime level, and so on,
which are represented by events (sets) or random
variables. Such variables are often represented by
Cartesian axis systems in which linear (matrix) operations
apply. The Cartesian axis system (e.g., income vs. IQ)
represents the parameterization of the problem.
In our type of inverse problems, we deal with model

variables and data variables that are often physical in
nature. As discussed in Chapter 2, the model variables
and data variables are represented by

m= m1,m2,… and d= d1,d2,… (6.1)

as part of an abstract space of points or manifold Ωm for
the model space and Ωd for the data space. Recall that
model and data are treated in the same manner, namely
data are considered to be measurements of observable
parameters.

6.2.2.2.Metric Densities. Physical variables (compress-
ibility, resistivity, frequency) cannot be treated on the
same footing as nonphysical ones. Such variables often
have an inverse (bulk modulus, conductivity, period).
Consider a simple model composed of two physical
variables, resistivity and period, {ρ,T}, and two model
realizations {ρ1, T1} and {ρ2, T2}, then the Euclidean
distance is

dρT = ρ1−ρ2
2 + T1−T2

2 6 2

Consider now the same Euclidean distance for conductiv-
ity and frequency {κ, f}

dκf = κ1−κ2
2 + f1− f2

2 (6.3)

Clearly, dκf dρT. This is a problem; the two realizations
represent the exact same physical system, just expressed dif-
ferently, yet their parametrization in a Cartesian axis sys-
tem leads to different distances. A difference in distance
logically means a difference in “density.” If one would con-
sider now 100 realizations, say from a uniform distribution,
and calculate the distances in the {ρ,T} representation and
make a multi-dimensional scaling (MDS) plot of these,
then that MDS plot is different if one uses the {κ, f} repre-
sentation. The empirical density calculated over these two
MDS plots is different, see Figure 6.1a. This matter is not
without consequence. A modeler working with {ρ,T} will
get different results than amodeler working with {κ, f}, and
if these prior distributions are used in a UQ study, both
the modelers will produce different posterior distributions.
Clearly, a uniform Cartesian space is not a good choice

for physical parameters. In this case, a better choice would
be to define the following distance:

dρT = log
ρ1
ρ2

2

+ log
T1

T2

2

(6.4)

Now dκf = dρT, see Figure 6.1b, and as a result, the prior
densities are invariant to a change in variable. Jeffreys
[1946] provides a general framework for assigning (prior)
distributions such that the distributions are invariant to
(certain) transformations. To study this issue a bit deeper,
consider a transformation of coordinates x (e.g., model or
data variables)

x∗ = t x (6.5)
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Consider that X is a random vector with density f(x). Per
definition of the density function

A

f x∗ dx∗ =
A

f x dx (6.6)

hence, per elementary property of integrals

f x∗ = f x
∂x
∂x∗

(6.7)

The above example shows that each parameterization
comes with a different “density.” This essentially means
that the volume associated with some event A (a set
basically) is not uniform. Consider V(A) to be the volume
with the set A, then define v(x) as the volume density, or

dV x = v x dx

A

v x dx=V A (6.8)

then given some total volume V

μ x =
v x
V

(6.9)

which is termed the “homogenous probability density.”
When dealing with Jeffrey’s parameters we have that an
elementary volume decreases proportional to its magni-
tude [Jeffreys, 1946]

dV ρ,T =
dρ
ρ

dT
T

(6.10)

which entails the homogenous probability density

μ ρ,T =
1
ρT

(6.11)

Logically, then {f, κ} has density of similar shape

μ∗ f , κ =
1
f κ

(6.12)

Note that the functional form 1/x corresponds to the
lognormal distribution when taken in the limit to
infinity. Jeffrey’s parameters often exhibit lognormal
distributions.
In the statistical literature, Eq. (6.9) is often termed the

“non-informative” distribution [Jaynes, 2003], a rather
poor choice of terminology, as this density informs
the metric being used. While Tarantola terms this the
homogeneous density, a more appropriate term may be
to use “metric density” as it reflects the metric used to
measure the distance in the space of models and space
of data parameters. In fact, given a distance, the general
representation of a metric density is obtained from
differential geometry [see e.g., Sternbergh, 1999] as

fmetric x = det D x1,x2,… (6.13)
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Figure 6.1 (a) Prior densities depend on the parameterization. (b) Prior densities are invariant to the parameterization.
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with D(x1, x2,…) the metric tensor defined on the
manifoldΩx (e.g., a Euclidean metric tensor is the identity
matrix for an n-dimensional manifold). A metric tensor is
the derivative of the distance function defined on that
space. From now on we will use the notation fmetric for
metric density and

Pmetric A =

A

fmetric x dx (6.14)

6.2.3. Conjunction of Information

6.2.3.1. Information Sources: Experimentation and
Theory. Tarantola makes an analogy between how
research in physics works and how inverse problems are
formulated [Tarantola, 1987]. He argues that two
realms exist: (i) “the realm of experimentation,” conduct-
ing of experiments in lab/field and (ii) “the realm of
theorization,” the creation of theories and models of
the real world. In Chapter 5 we discussed the various
views (induction, deduction, paradigm) on how these
worlds interact. Tarantola views each as providing infor-
mation about the unknown world. These two information
streams need to be conjoined into one single infor-
mation model. Since he relies on probability theory,
information is represented by probability density distribu-
tions. One of the major differences with Bayes’ theory is a
quest for symmetry (not atypical for a physicist) between
the theoretical world and the empirical world. In classical
Bayes’ theory, at least technically, the hypothesis comes
first (the prior) and hypotheses are then assessed probabil-
istically with evidence. The prior basically always existed,
the data is then specific to the case studied (recall that
Gelman and Shalizi [2013] question the classical induction
notion of Bayes’ theory as was discussed in Chapter 5).
If data variables represent the observable world and
model variables represent the unobservable world, then
both sources (experimentation and theorization) provide
information on each, represented by two probability
density functions:
1. fprior(d,m): any experimental information available

on both the data variables and the model variables
(observable and unobservable), prior to formulating
theories. Although there is a Bayesian flavor here, Bayes’
theory would consider fprior(d) and fprior(m) separately.
2. ftheory(d,m): any association between the data and

model variables as speculated through theories. For
example, such theories can be represented by partial
differential equations.
Note that these are pdfs, not deterministic functions, so

any uncertainties associated with both are part of the
formulation.

6.2.3.2. Conjunction. fprior(d,m) and ftheory(d,m) are
considered probabilistic information sources that need
to be conjoined. Because they express uncertainty,
Tarantola calls on fuzzy logic (“and” operation between
two vague statements) to address this problem. Recall
(Chapter 5) that logical operations require a “neutral”
element. In classical logic, a neutral element for a
proposition is “1,” since

p 1= p (6.15)

In probability theory, the “neutral element” is termed a
“non-informative distribution,” and it models complete
ignorance; hence, it will not affect any conjunction of
probabilistic information (it does not add any
information). The neutral element in this context is not
necessarily the uniform distribution, since we already
know something about physical variables. This
knowledge is injected through the parameterization
(e.g., deciding to model wave propagation with frequen-
cies or periods). This information needs to be accounted
for. To understand this better, consider now the conjunc-
tion of two probabilities:

P1 A =

A

f1 x dx P2 A =

A

f2 x dx (6.16)

The conjunction of two probabilities becomes

P1 P2 A =

A

f1 f2 x dx (6.17)

The neutral element here is then, using the metric density,

Pmetric A =

A

fmetric x dx (6.18)

which imposes the conditions

Pn Pmetric A =Pn A n=1,2 (6.19)

From Eqs. (6.17) and (6.18), Tarantola deduces that the
following is a conjunction of probabilistic information
with metric density as a neutral element:

f1 f2 x
f1 x f2 x
fmetric x

(6.20)

Consider now x= (d,m), the conjunction of information
fprior(d,m) and ftheory(d,m) in the context of inverse
problems is defined as

f d,m
ftheory d,m fprior d,m

fmetric d,m
(6.21)

This is a general formulation of the discrete inverse
problem. Note the symmetry in the formulation in terms
of (d,m). It reflects that any choice of parameterization
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should not distinguish d and m as being any different in
the sense they are all physical variables representing the
system. Before specifying a narrower formulation that
will eventually be used to sample inverse solutions, we
provide a discussion on how conditional probabilities
are special form of conjunction (the reader may also refer
to Chapter 5).

6.2.3.3. Conditional Distributions as Conjunctions.As
was discussed in Chapter 5, probabilities cannot handle
vague information and quantify the probability of it rain-
ing Sunday given that it may rain Saturday. Instead, in
probability theory, either something is true or false; there
is no middle. How can we formulate a conditioning such
asP(A| B) with a conjunction? ConsiderA andB to be two
(overlapping) sets on some manifold Ω. Define

fmetric,A x =
fmetric x if x A

0
(6.22)

as the metric density limited by A. Then for any other
event, we define

Pmetric,A B =

B

fmetric,A x dx (6.23)

Figure 6.2 describes the situation in 1D.
Tarantola defines a conditional probability as a

conjunction

P A B = P Pmetric,A B (6.24)

in other words, a conjunction between the probability
model over A with the metric density (the neutral element
evaluated in B). The conjunction is more general in the
sense that B must be a set and can be a fuzzy set (no hard
bounds). This also shows that conditional probabilities
need not be derived from the more “primitive” definition:

P A B =
P A B
P B

(6.25)

6.2.4. More Limited Formulations

ftheory d,m

Wewill derive the usual (andmore limited) formulation of
the inverse problem, by simplifying each term in
Eq. (6.21). To get to the classical Bayesian formulation,
we state that

ftheory d,m = fforward d m fmetric m (6.26)

which requires assuming

fmetric d,m = fmetric d fmetric m (6.27)

and assuming that the physical relationship between d and
m can be expressed using a forwardmodel g(m). Often one
assumes error on this relationship, for example

fforward d m exp d−g m TC−1
theory d−g m

(6.28)

This error is “model” error, reflecting the uncertain rela-
tionship between variables due to the fact that the actual
physical relationship remains unknown and is simply
being approximated. The model error is here limited to
a covariance (because of the choice of the multivariate
Gaussian).

fprior d,m

fprior d

First, we assume that the prior on model parameters
and data parameters are independent (recall that this prior
is different from the Bayesian prior):

fprior d,m = fprior d fprior m (6.29)

A

fmetric(x)~
1

A B

x
Pmetric,A(B) fmetric,A(x)dx

B

=
(a) (b)

Figure 6.2 (a) Metric density of which the integral need not exist. (b) The integral always exists.
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Consider first fprior(d). If measurements were perfect then
this term simply identifies the observations

fprior d = δ d−dobserved (6.30)

In reality, the true observables d are not observed, for a
variety of reasons, most importantly because we have
experimental setups that are limited; d is not observed
but something else related to d is. This situation is
extremely common and several examples were given in
Chapter 5. Consider, therefore, the general situation
where d is being “probed” so that we only get dprobed
instead of d. Then, the joint distribution f(d, dprobed) can
be written as

f d,dprobed = f dprobed d fmetric d (6.31)

modeling that the output of instruments are some function
of real physical variables being measured/probed.
A common assumption (a choice) is to use an additive
error model

dprobed = d+ ε (6.32)

in particular, assume the error is not a function of what is
being measured (homoscedasticity):

fprior d = f dprobed d = f dprobed−d = f ε (6.33)

This is then evaluated in dprobed = dobserved, the actual
observed measurements. A common assumption is to
use a multivariate Gaussian distribution:

fprior d exp d−dobserved
TC−1

ε d−dobserved (6.34)

with C−1
ε the covariance of the error vector ε. Often this

covariance is taken as diagonal simply because the
off-diagonal elements are hard to assess (repeated
measurements are rarely available).

fprior m

A very common assumption here is to assume a multivar-
iate Gaussian prior. In other words, the model m is
considered to be a Gaussian process, when such model
has a space component, which is the norm in the
subsurface.

6.2.4.1. Simplified Formulation. Given Eqs. (6.26),
(6.27), and (6.29), we can now state a simplified formula-
tion of the general inverse problem:

f d,m fprior m
fprior d fforward d m

fmetric d
(6.35)

and as a result

f m fprior m

d

fprior d fforward d m
fmetric d

dd (6.36)

A simplified form can now be retrieved by equating the
integral part as a likelihood model:

L m =

d

fprior d fforward d m
fmetric d

dd (6.37)

Note that Tarantola uses a slightly different notation for
the posterior, f(m), and not f(m| d), which is used in the
Bayesian formulation.

6.3. PRIOR MODEL PARAMETERIZATION

6.3.1. The Prior Movie

It is easy to write mathematically the posterior f(m),
then develop an elegant theory and derive equations.
Reality, however, begs for an actual statement of the prior
(see Chapter 5) and for computer implementations. Apart
from the multivariate Gaussian prior, very few explicit
spatial prior models are available (and for that reason,
the wrong reason, the Gaussian is very popular). Most
prior models and their parametrizations are intricately
linked with the computer algorithms that generate them.
This is not a bad idea at all. A modern trend in geological
sciences is to simulate depositional systems of all kind
with numerical simulation models. These computer codes
have inputs that are uncertain and sometime have built-in
(aleatory) randomness. The prior model can then simply
be represented by the (possibly infinite) realizations cre-
ated by the computer code. Tarantola [1987] calls this
the “prior movie” (a long and possibly boring one!). Here
we provide an overview of these “movies,” what they are
and how they are created, who the director is. We focus
specifically on the spatial model parameterization simply
because the subsurface is a 3D system. Hence, simple uni-
variate models (e.g., N layers with unknown properties)
are often unrealistic prior model representations.

6.3.2. Gridding

Many prior model parameterizations involve some
form of grid. A grid is basically a discretization of what
in reality is more like a continuous function. The choice
of grid is dependent on many factors such as computa-
tional demand, need to resolve details, purpose of the
study, errors in numerical solutions, and so on. We will
not be providing a treatment on this topic and the reader
may refer to Mallet [2014] or related books on the topic.
Although it is common to use a simple 3D Cartesian grid
with a regular grid or a regular mesh, this simple grid is
not preferable when complex geological structures are
present, in particular faults, complex layering and com-
plex geological architecture. Here we provide a broad
overview of model parametrizations aiming to represent
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3D variability, in particular the subsurface geological sys-
tem, since this is central to the topics treated in this book.
In many subsurface applications, such as oil/gas, geo-

thermal, even aquifers, faulting has a major impact on
fluid flow, and hence, uncertainty of such faulting needs
to be taken into account. Section 6.5.1 covers the issue
of fault uncertainty. The composition of modeled faults
and layers is termed the “structural model.” Structural
models are often built from geophysical data, as reflectors
inform internal layering of the system due to contrasting
petrophysical properties. Faults appear on geophysical
images because of an off-set in reflectors, due to a fault
throw. Because faults tend to be vertical structures, they
are only indirectly visible by means of such throw.
A structural model is often built from point interpretation

from geophysical data (see Figure 6.3). One of the major
difficulties in parametrizing the subsurface model (and
hence any model of uncertainty) lies in the gridding of
complex structures. In addition, the various properties
need to follow the stratigraphy, including the offset due
to faulting. This means that such properties cannot be
directly modeled in real space (see Figure 6.4). Some form
of mapping needs to be constructed to a depositional
space, where any effect of faulting is removed (see
Section 6.5.1). Such mapping can be geometric [Mallet,
2004, 2014; Caumon et al., 2009] or based on an actual
unfaulting of the system. The latter requires an enormous
amount of additional information such as stress,
strain, faulting history, and hence, the former is often
preferred.
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Figure 6.3 (a) Generation of point sets interpreted from a geophysical image of the subsurface, (b) initial fault surface, (c) generating
proper intersection, (d) creation of the point set for layering, (e) construction of layer surfaces, and (f ) putting it all together
[Caers, 2011].
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6.3.3. Process-Based Prior Model

Process-based modeling is gaining increased attention
in generating realistic geological variability through the
explicit modeling of the physical processes of deposition,
erosion, growth, and diagenesis [e.g., Koltermann and
Gorelick, 1992; Gabrovsek and Dreybrodt, 2010; Nicholas
et al., 2013]. Many computer codes are now available.
These process models aim not just at creating a
stratigraphy but also to model the time-varying
depositional process [Paola, 2000]. Such models require
many input parameters (each of which are uncertain such
as boundary conditions and source terms). Because of the
considerable computational demand and the nature of
forward modeling, constraining such models to complex
3D data such as multiple wells, geophysics, or other
data is not possible currently, except for very limited
representations [e.g., Karssenberg et al., 2001]
One effort around these limitations is not to model the

physics of deposition but to mimic the physics using so-
called pseudo-genetic methods that generate structure-
imitating model realizations [Jussel et al., 1994; Scheibe
and Freyberg, 1995; Koltermann and Gorelick, 1996;
Deutsch and Tran, 2002; Ramanathan et al., 2010; Guin
et al., 2014].
For instance, a fracture model may include fracture

growth and interactions that mimic mechanical processes
[Davy et al., 2013]. Similarly, the processes of channel evo-
lution through time (e.g., sedimentation, avulsion) can be
accounted for while simulating the objects [Pyrcz, 2003;
Zhang et al., 2009]. Such ideas have also been used to

develop 3D models of karst networks [Borghi et al.,
2012; Rongier et al., 2014] by accounting for preexisting
geology, fracturing, and phases of karstification without
solving the flow, transport, and calcite dissolution equa-
tions. Because such models can be generated in a matter
of seconds (compared to hours or days for process mod-
els), some limited constraining to data can be achieved
[Michael et al., 2010; Bertoncello et al., 2013].

6.3.4. Geostatistics

6.3.4.1. Multiple-Point Geostatistics: A Prior Movie
Based on Training Images. A new class of structure imi-
tating approaches emerged 20 years ago [Guardino and
Srivastava, 1993; Mariethoz and Caers, 2015]. It uses a
training image that represents a fully informed description
of how the subsurface may look like, but with the loca-
tions of different repeating structures being unknown.
The concept of a training image can be seen as a vehicle
to convey the prior conceptual geological knowledge that
is to be combined with other sources of information (e.g.,
boreholes, outcrop, etc.) via a simulation algorithm.
Figure 6.5 provides an example of this idea. The first suc-
cessful simulation algorithm [snesim, Strebelle, 2002]
based on these ideas worked with high-order conditional
statistics or multiple-point statistics (MPS) derived from
the training image. The snesim algorithm was restricted
to categorical images with a small number of categories.
The concept of a training image opened up a whole set
of possible simulation methods. Indeed, why not use

Physical domain

Depositional domain

Modeling of physical
processes (flow, wave
propagation, etc.)

Modeling of properties

Mapping of properties
Unfolding/unfaulting

data transfer

Figure 6.4 Assigning properties in a stratigraphic grid by creating a “depositional domain” [Caers, 2011].
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techniques derived from pattern recognition, texture syn-
thesis, and machine learning algorithms? A large variety
of methods to generate realizations for the prior movie
based on training images have been developed [Arpat
and Caers, 2007; Honarkhah and Caers, 2010; Tahmasebi
et al., 2012; Huang et al., 2013; Straubhaar et al., 2013;
Mahmud et al., 2014; Mariethoz and Lefebvre, 2014].
The generation of training images can be challenging
[Chugunova and Hu, 2008; Comunian et al., 2012;
Comunian et al., 2014]. Common approaches include
using a process-based, an object-based method [Deutsch
and Tran, 2002; Pyrcz et al., 2009] or outcrop data
[Huysmans and Dassargues, 2009]. Another approach is
to model Markov random fields based on these training
images [Kindermann and Snell, 1980; Tjelmeland and
Besag, 1998; Mariethoz and Caers, 2015]. While such
methods rely on consistency offered by probability
theory, the challenging parameter inference of the
Markov random field (MRF) model and computational
burden in simulating such model using McMC makes
them difficult to apply in actual applications.

What is relevant for UQ (see our discussion in
Chapter 4) is the selection of training images that repre-
sent a realistic prior for the geological depositional under
study (fluvial, deltaic, etc.). As illustrated in Chapter 4,
one single training image rarely, if ever, represents realis-
tic prior geological uncertainty. In that sense, an a-priori
rich set of training images (100s) can be proposed and an
attemptmade to falsify them bymeans of data [Park et al.,
2013; Scheidt et al., 2015]. An example of such falsifica-
tion with geophysical data is presented in Chapter 7.

6.3.4.2. Variogram-Based Geostatistics. Variogram-
based approaches are widely used, but they are often
insufficient to capture the complexity of geological
structures. Sequential indicator simulations [SIS;
Goovaerts, 1997] or transition probability-based techni-
ques, such as T-Progs [Carle and Fogg, 1996; Jones
et al., 2003], were remarkable advances in the 1990s
and they are still among the most popular techniques to
model geological heterogeneity. Unfortunately, they
cannot properly reproduce curvilinear features, such as

Training image

Sample data

Three realization of the training-image-based prior movie

Figure 6.5 MPS: generating realizations from training images, constrained to hard data. Here three “snapshots” of the prior movie
are shown.
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channels [Strebelle, 2002] ormore complex structures, and
they do not include conceptual geological information
beyond simple transitional constraints on the dimension
and relations between structures. They are also limited
in simulating realistic subsurface hydraulic connectivity,
which often has considerable impact on fluid flow.
A method of increasing popularity is the truncated

pluri-Gaussian approach [Dowd et al., 2003; Mariethoz
et al., 2009] With pluri-Gaussian methods, it is possible,
for example, to impose channels to be surrounded by
levees, which in turn are surrounded by a flood plain.
As compared to SIS or T-Progs, the inference of the
underlying variogram is more complex.

6.3.5. Non-Grid-Based Prior Movies

6.3.5.1. Object-Based Priors. Object-based methods
allow for the direct modeling of geometries, their spatial
distribution and interactions. In that sense, they do not
need the definition of a grid. From a practical point of
view, such methods are efficient in terms of memory
and computational demand. In addition, they are framed
within a rigorous probabilistic framework, allowing for a
more theoretical treatment than, for example, MPS
methods, whose properties can only be studied with
simulations.
In particular, Boolean methods allow for a consistent

treatment of observations. Such treatment is required
since larger objects tend to be more visible in data, for
example from wells or geophysics, than smaller objects.
In other words, the data provides a biased apparent
geometry. Any method that conditions object models to
ad-hoc fixes will, therefore, create object models inconsist-
ent with the prior (violating Bayes’ rule) even though they
perfectly match the data. This is in particular the case with
2D geophysics and data from wells.
An example of this idea is shown in Figure 6.6. A 2D

GPR survey detects scour formation in a braided river
system. Any direct use of dimensions of 2D interpreted

scour features would be biased toward larger objects.
Object-based methods allow for the following:
1. The formulation of a prior distribution of geometries,

spatial distribution and rules, for example from analog
data or general understanding of the system. This is the
prior movie.
2. A fast sampling by means of McMC methods (see

Chapter 3) that generates posterior models in accordance
with prior geometries and rules and matching any data.
The sampling is fast because of the absence of a grid. Such
McMC sampling relies on perturbations that are in
accordance with the prior by generating (birthing) new
objects and removing (dying) objects according to some
point process model (e.g., Poisson, Strauss [Strauss,
1975]). The algorithm below is an example of McMC
sampling in the case of a Poisson process with intensity λ.
This type of sampling uses a Barker kernel [Illian et al.,
2008; Lantuejoul, 2013] to make sure that the birth and
death process of points eventually results in a number of
points, randomly distributed in space, where the amount
of points follows a Poisson distribution.

Metropolis-Hasting-Green Simulation of a Poisson
process.

n current number of objects
draw u = {+1, −1,0} with probabilities
p+1 0.5 min(1,λ/(n + 1))
birth probability
p−1 0.5 min(1,n/(n + λ))
death probability
p0 1 − p+1 − p−1

no change probability
if u == +1 do

add 1 object
else if u == −1 do

remove 1 object
else if u == 0 do

do nothing
end if
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Figure 6.6 (a) A 2D GPR section with interpreted scour features. (b) A graphical presentation of a 2D GPR. (c) A 3D object model
with 3D scour objects constrained to the interpreted section (red plane).

164 QUANTIFYING UNCERTAINTY IN SUBSURFACE SYSTEMS



6.3.5.2. Level-Set Representation of Surfaces. Level
sets have gained attention in the modeling of subsurface
heterogeneity, in particular in cases with strong contrasts
such as channel boundaries, layer boundaries, or faults
[Dorn et al., 2000; Zhao et al., 2001; Dorn and Lesselier,
2006; Frank et al., 2007; Caumon et al., 2009; Iglesias
and McLaughlin, 2011]. Level sets alleviate the difficulty
arising when explicitly gridding complex surfaces, instead
representing them by implicit functions, potentially
saving considerable memory and possibly computation
time. Note that other implicit methods, such a kriging
and radial basis interpolation, do not need a grid either;
they only require distances (or distance functions).
A level-set Π(F, c) of an implicit function F and a scalar

c is defined such that

Π F x,y,z ,c = x,y,z F x,y,z = c (6.38)

where F(x, y, z) is any dimensional implicit function, with
(x, y, z) as coordinates, and a scalar representing any
iso-contour value [Osher and Fedkiw, 2002]. F(x, y, z)
determines the geometry of the manifolds defined as
iso-contours of Π. For the 2D case, the level set is called
the level curve. For the 3D case the level set is referred to
as the level surface. In many practical applications, the

implicit function F(x, y, z) is defined as the signed distance
function, representing a distance from a specific surface.
Perturbations of a surface in this implicit representation
entail simply recalculating the level-surface function for
a different iso-contour value of c [Frank et al., 2007]. Thus,
perturbing a surface in 3D is done by calculating an
implicit function at a different iso-contour.
A common problem in dealing with surfaces is to model

the interaction between such surfaces and the rules that
exist in doing so, such as a younger fault truncated by
an older fault. Using explicit triangularized surface
models, this may become challenging, in particular when
procedures (such as perturbations or Monte Carlo
simulations) need to be automated, which is often a
requirement in inversion and UQ in general.
The level-set methodology defines surface terminations

as a Boolean operation [Osher and Fedkiw, 2002].
Consider two different level-sets, with different level-set
functions Π(F1, c1) and Π(F2, c2), each representing
surfaces by taking a specific contour level c1 = c 1 and
c2 = c 2 (see Figure 6.7). Consider also that the surface
of level set 1 is older, meaning that the surface of level
set 2 needs to be truncated. To do so, we first need to know
on which side surface 2 lies with respect to surface 1 (see
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Figure 6.7 Intersection of two surfaces as constructed by a Boolean operation on two level-set functions.
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Figure 6.7). The surface defined by Π(F2, c2 = c 2) divides
space in two regions, Ω+

2 and Ω−
2 . The convention here is

that the plus sign is where the distance function is positive,
the minus sign negative (or minus a positive distance).
Consider now a new level set, Π∗(F, c), which represents
the truncated surface of fault 2. Then, the level surface
for the truncated surface is written using the difference
operator from constructive solid geometry [Voelcker
and Requicha, 1977] as follows:

Π∗ F1,c1 =Π F1,c1 −Π F2,c2 c2 < c2 (6.39)

The truncated surface is obtained by calculating this
level surface at iso-contour c1 = c 1.

6.3.6. Dimension Reduction and Model Expansion
from a Limited Prior Movie

6.3.6.1. General Purpose. Most of the above-
mentioned algorithms for generating a prior movie allow
for a possible infinite set of model realizations, an
infinitely long prior movie (if the grid has infinitesimally
small grid cells). Many of these algorithms do not rely on
any explicit model formulation, in particular those relying
on training images. The difficulty in dealing with such
prior movies is that such algorithms generate possibly
large realizations, whose dimension is equal to the number
of grid cells (see Chapter 1). Such models are difficult to
handle in inverse problems. To alleviate this problem,
methods of dimension reduction can be applied. First, a
limited set of prior model realizations is generated (a short
movie or some summary shots from that movie, like a
trailer), and then these realizations are used to build a
reduced dimensional representation of the model
variation. Model expansion (expanding the short movie)
is done by fitting a probability model in reduced
dimensional space. Methods of bijective dimension
reduction (reduction and construction are unique, see
Chapter 3), such as principal component analysis
(PCA), are particularly useful here. However, PCA is
limited in what it can represent.
In general terms, the aim is to replace a high-

dimensional model realization m with a reduced
dimension model m∗ such that dim(m∗) dim(m) and
either sampling or optimization of m∗is more efficient
than with m.

6.3.6.2. Kernel Methods for Dimension Reduction. A
successful parameterization would require obtaining a
mapping between some small set of parameters m∗ and
the model realization m

m=T m∗ 6 40

where T is estimated from a limited sample of model
realizations m(1), m(2), …, m(L). A linear mapping entails

PCA, which is calculated from the experimental
covariance

C =
1
L

L

ℓ=1

m ℓ m ℓ
T

(6.41)

The size of the covariance matrix is N ×N, where N is the
dimension ofm. The problem here is the possible large size
of C, which would render the eigenvalue decomposition
impractical. To solve this problem, we rely on the duality
between eigenvalues of covariance matrices N×N and
dot-product matrix B of size L ×L.

bℓℓ = m ℓ
T
m ℓ (6.42)

Relationships between eigenvalues and eigenvectors of
C and B are given in Chapter 3. The eigenvalue de-
composition can be used to determine a discrete
Karhunen–Loeve (KL) expansion of the model m, which
for covariance-based models is classically known as

m=VΛ1 2m∗ (6.43)

m∗ is a vector of uncorrelated random variables. If m∗ is
Gaussian, then so is m. At best, the linear PCA can only
provide a Gaussian-type parameterization of a general
prior movie.
To extend the formulation to a more general prior

movie, the above dual formulation between covariance
and dot-product is extended by means of kernels

kℓℓ = φ m ℓ
T
φ m ℓ (6.44)

where φ is some unspecified multivariate (multi-point)
transformation of m. We refer to Chapter 3, for an intro-
duction to kernel methods, in particular kernel PCA,
or KPCA.
The same KL expansion can be applied after kernel

mapping, resulting in an expansion of the transformed
realization φ(m) and hence a parametrization of that real-
ization in feature space:

φ m = m∗ TT K,m∗ (6.45)

The mapping T is based on an eigen-decomposition of K
[see Sarma et al., 2008; Vo and Durlofsky, 2016 for
details]. What is needed, however, is a parametrization
of m, not of φ(m). The problem is that φ−1 is not known,
only the dot-product. In Chapter 3, this problem was
introduced as the pre-image problem, which itself is an
ill-posed problem: many m can be mapped onto the same
φ(m).
Figure 6.8 illustrates this problem. A large set of

realizations with discrete structures is generated of which
two are shown. The KL expansion (PCA) and the
reconstruction of a new realization result in a smoothed
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reconstruction, as does the KPCA with a fixed-point iter-
ation (Chapter 3). Vo and Durlofsky [2014, 2016] add a
regularization to the PCA reconstruction (a linear
transform) and the KPCA reconstruction (pre-image
problem) fixed-point algorithm. This results in generating
new realizations that contain discrete structures instead of
smooth ones. The problem of “smoothing” discrete
spatial structures is an issue in most techniques relying
on some form of dimension reduction/compression
whether one uses wavelets [Khaninezhad et al., 2012;
Scheidt et al., 2015] or other decomposition techniques.

6.4. DETERMINISTIC INVERSION

6.4.1. Linear Least Squares: General Formulation

To get to a treatment of deterministic inversion, we will
start fromastochasticmodel.Deterministic cases canalways
bewrittenas special casesof stochasticmodels; it just requires
substituting a Dirac function. All deterministic solutions
can be derived from the general formulation of Eq. (6.21).
In deterministic inversion [Menke, 2012], we often seek

one solution; hence, what is relevant is the uniqueness of
that solution. Inverse problems rarely have unique
solutions; the key is to turn a nonunique into a unique
one. Two approaches exist. The first approach is to

acknowledge that the problem is nonunique and work
out a stochastic solution (a posterior pdf ), then take some
model of that solution, for example, a maximum a
posteriori model or maximum likelihood model. The
second approach is to consider inversion as an optimiza-
tion problem with a nonunique solution, then change the
function to be optimized such that a unique solution
exists. This requires imposing some additional “character-
istics” on the solution (e.g., a smoothness or a distance
from a base model).
The general linear solution is directly derived from

Tarantola’s formulation by making the following
assumptions:
1. The forward model is linear and exact: d =Gm

fforward(d|m) = δ(d−Gm).
2. The variables are Cartesian (hence not Jeffrey’s para-

meters): fmetric(d) = cte.
3. The prior on the model parameters is Gaussian with

mean mprior and covariance Cm.
4. The prior on the data parameters is Gaussian with

mean dobs and covariance Cd.
The posterior can now be written as

f m exp −
1
2
Gm−dobs

TC−1
d Gm−dobs

−
1
2

m−mprior
T
C−1

m m−mprior (6.46)

Discrete model realization

PCA Regularized PCA KPCA Regularized KPCA

Figure 6.8 Discrete model realization and expansion of the sampling space using various dimension reduction methods and their
regularizations to generate discreteness in the reconstruction [Vo and Durlofsky, 2016].
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According to Chapter 3, the maximum a-posterior
solution (also the mean of the posterior) equals

mMAP =mprior +CmGT GCmGT +Cd
−1

dobs−Gmprior

(6.47)

One can attach to this single solution a measure of
“accuracy” by stating the posterior covariance:

Cm =Cm−CmGT GCmGT +Cd
−1
GCm (6.48)

The eigenvalues of the posterior covariance Cm indicates
how ill-posed the solution is, for example, by comparing
the largest with the smallest eigenvalue. The maximum
a-posterior solution should not be confused with the
maximum likelihood solution, which simply maximizes
fprior,d(Gm) (or minimize minus its logarithm) to obtain

mML = GTC−1
m G

−1
GC−1

m dobs (6.49)

6.4.2. Regularization

6.4.2.1. Theory. A different view of the same problem
starts from a purely deterministic formulation of the
problem. In such formulation, inverse modeling requires
generatingmodels that match data. In that sense, consider
for a linear forward model (see Section 6.4.5 for nonlinear
models) the following optimization problem:

m= min
m

Gm−dobs
2
2 = min

m
Gm−dobs

T Gm−dobs

(6.50)

The solution of this least square problem is provided in
Chapter 3:

m= GTG
−1
GTdobs (6.51)

The problem is that the system is often underdetermined
(many solutions exists) or that the matrix (GTG)−1 is
close to singular. One way around this is to use SVD
(Chapter 3). Another way is to “stabilize” the formulation
by adding a so-called regularization term in the misfit
function [Tikhonov and Arsenin, 1977]:

O m = Gm−dobs
2
2 + α m−m0

2
2 (6.52)

with m0 some reference, sometimes called a priori model,
although this should not necessarily be interpreted in a
Bayesian sense. The minimization of O(m) leads to a reg-
ularization of the generalized least-square solution
(Chapter 2):

m= GTG+ αI
−1

GTdobs + αm0 (6.53)

See also Levenberg [1944] and Marquardt [1963]. One
can also introduce weight matrices (the equivalent of

covariance matrixes in the Bayesian approach), Wm for
the model variables and Wd for the data variables

O m = WT
d Gm−dobs

2
2 + α WT

m m−m0
2
2 (6.54)

to obtain

m= GTWdWT
d G + αWT

mWm
−1

GTWdWT
d dobs + αWT

mWmm0

(6.55)

Equation (6.55) can also be seen as a form of ridge regres-
sion. Various choices can be made in terms of the weight
matrices. One is to choose them to be (often diagonal)
covariance matrices. This will impose certain smoothness
constraints in the solution as modeled by the covariance
matrix (a kriging-like solution, see Chapter 3). Another
simple option is to optimize

O m = Gm−dobs
2
2 + α WT

m m−m0
2
2 (6.56)

and haveWm to contain first-order difference (gradients),
which allows modeling the sharpness of the boundaries
occurring in the inverse solution [Menke, 2012].

6.4.3. Resolution

Approaches of deterministic inversion often introduce a
“resolution matrix”: Howmuch of the model can the data
resolve? This resolution model going back to [Backus and
Gilbert, 1970] can also be framed within a stochastic
context. To understand this, consider the true “earth”
mtrue and the exact data extracted from it. Consider
now the change in difference from the prior model:

m−mprior =R mtrue−mprior (6.57)

This basically states how the difference between the true
earth and the prior is filtered into a difference between
some solution and the prior. If R is the identity matrix
then the data identifies the true earth. Any deviation
(e.g., as measured by eigenvalues) is a measure of the loss
of information on the true earth due to this filtering
operation.
If we take m as the MAP solution then one can derive

[Tarantola, 1987] that the resolution matrix takes the
Wfollowing expression:

R= I −CmC−1
m (6.58)

Another way of stating this is that

Cm = I −R Cm (6.59)

In other words, if R is close to the identity matrix then
data resolves the model. This form also quantifies what
is resolved by the data and what is resolved by the a-priori
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information (at least under the above assumptions of
Gaussianity, linearity, etc.):

tr I = tr R + tr CmC−1
m (6.60)

which is loosely interpreted as

No total parameters = no resolved bydata +no resolvedbyprior

In most subsurface setting, the resolution of data will
decrease with depth. An example of this will be presented
in Section 6.4.7.

6.4.4. Kalman Filter

An interesting property of linear inverse problems pre-
sents itself when the data vector is divided into mutually
exclusive parts:

d= d1,d2,d3… and hence dobs = dobs,1,dobs,2,dobs,3…

6 61

with the data prior covariance matrix written as block
matrices (no cross-correlation between the data blocks)

Cd =

Cd1 0 0

0 Cd2 0

0 0 Cd3
andG =

G1

G2

G3
(6.62)

For example, these blocks of data could be blocks that
present themselves consecutively in time. It can be shown
that for the linear/Gaussian case, solving the full inverse
problem with d is the same as solving consecutive
updating problems as follows:

mt+1 =mt +CtGT
t Gt+1CtGT

t+1 +Cdt+1

−1 dobs, t+1−Gt+1mt

Ct+1 =Ct−CtGT
t Gt+1CtGT

t+1 +Cdt+ 1

−1
Gt+1Ct

(6.63)

Meaning that data set dt + 1 is used to update the model
mt+1 from model mt. In other words, the “memory” of
consecutive data is perfectly and consistently integrated
in the linear/Gaussian case. Since most cases are not linear
nor Gaussian, the question arises on how to perform
updates in such case and if such “memory” property
exists. This will be treated in Section 6.7.

6.4.5. Nonlinear Inversion

When the forward model is nonlinear and hence of the
general form

d= g m 6 64

then no simple analytical solution as in the linear case is
available, even when assuming Gaussianity. In case the

forward model is only mildly nonlinear, meaning that near
the inverse solution a linear approximation of the form

g m g m0 +G m−m0 (6.65)

exists, for some m0 not far from the solution. The matrix
G contains as entries the first derivative of the forward
model with regard to the model parameters.

G ij =
∂gi
∂mj

i=1,…, dim d ; j =1,…, dim m (6.66)

m0 can be some reference model or prior model. Then the
posterior mean (or MAP) becomes

mMAP =m0 +CmGT GCmGT +Cd
−1

dobs−g m0

(6.67)

Another case presents itself when the solution can be
linearized near themaximum likelihood point. Thismeans
that the posterior is Gaussian at that point. However, now
no single-step analytical form is available and hence
iterative descent methods (e.g., quasi-Newton, conjugate
gradient) must be employed to get to the maximum like-
lihood point. Once that point has been reached, the usual
MAP and posterior covariance equations apply.

6.4.6. Conceptual Overview of Various Model
Assumptions

Figure 6.9 provides a summary of the various combina-
tions of modeling assumptions presented earlier. The axes
here are the data variables and the model variables. These
1D axes represent a high-dimensional manifold. The cases
that are presented (from top to bottom, left to right) are as
follows:
1. A linear forward model with Gaussian assumptions

on model variables.
2. A forward model that can be linearized near the

solution with Gaussian assumptions on model variables.
3. A forwardmodel where the solution can be linearized

near the maximum likelihood point with Gaussian
assumptions on model variables.
4. A nonlinear forward model with Gaussian assump-

tions on model variables.
5. A nonlinear forward model with non-Gaussian

modeling assumptions.
Clearly, the last case is more challenging; no simple

expression or gradient optimization method will lead
to the complex, skewed, and multi-model posterior
distribution f(m).

6.4.7. Illustration of Deterministic Inversion

6.4.7.1. Field Data. We will now illustrate some of the
concepts presented in the previous section with a real field
case. The case concerns an area in the Flemish Nature
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Reserve “The Westhoek” (coastal area in northwest Bel-
gium). The study aims at monitoring the intrusion of sea-
water into a freshwater aquifer within a dune system due
to the construction of sea inlets. The depositional system
of the dunes is about 30m in thickness andmainly consists
of sand with interconnecting semipermeable clay lenses.
Because of their stratigraphy, these lenses enhance hori-
zontal flow and diminish vertical flow. To investigate sea-
water intrusion, ERT data was collected (see Chapter 1
for an introduction to ERT). The data acquisition geom-
etry consists for 72 electrodes with a spacing of 3 m and a
dipole-dipole array. Individual reciprocal error estimates
were used to weigh the data during inversion, the global
noise level was estimated to be 5%. In addition, EM con-
ductivity logs were available at the site (see Figure 6.10).

6.4.7.2. Regularized Inversions. We will illustrate
methods of regularization: (i) regularization with smooth-
ness constraint, (ii) regularization with a reference model,

(iii) regularization with structural inversion, and
(iv) regularization with a geostatistical constraint. First,
the solution of the inverse problem with smoothness con-
straint is based on the minimization of the following func-
tion [Kemna, 2000]:

O m = WT
d g m −dobs

2
2 + α WT

mm
2
2 (6.68)

with the matrix

Wd = diag
1
ε1
,
1
ε2
, (6.69)

and εi the error variances of the measurement estimated
from the measurement reciprocal error. Wm is a matrix
evaluating the first-order roughness of m. The problem
is solved using an iterative Gauss–Newton scheme. The
iteration process starts with a homogeneous initial guess
m0, as the mean apparent resistivity of the data.
Figure 6.10a shows the resulting inversion. The cumula-
tive sensitivity is a by-product of the inversion and

d
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Figure 6.9 Cases of inverse problems (adapted from Tarantola [1987]). The ellipses are multivariate Gaussian distributions. (a) The
linear case, (b) approximation of the linear case by expansion in the mean, (c) expansion in the maximum likelihood point, (d) a
nonlinear problem with multiple solutions, and (e) nonlinear and non-Gaussian case.
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function of JTJ with J the Jacobian evaluated in the solu-
tion (a Hessian). Figure 6.10f shows that sensitivity
decreases with depth.
A second way of regularization is to use a refer-

ence model:

O m = WT
d g m −dobs

2
2 + α WT

m m−mref
2
2

(6.70)

where α is called the closeness factor, weighting the
importance of the reference model during the inversion
process. This factor is often chosen arbitrarily. We
investigate two cases, one where the reference model is
a homogenous model and one where the reference model
is a three-layer model. In each case, the influence of α is
evaluated by taking a small value (little impact of the
reference) and a larger value (more impact, heavily
weighted toward the reference). The influence of the
reference model is therefore felt in two ways: (i) the value
of α and (ii) the sensitivity of the inversion, the reference
model tends to dominate the solution more where
sensitivity to data is low. To make a comparison between
the various results in Figure 6.10, the model results were
evaluated at the location where the well-log is available.
Overall the inversion involving a reference model seems
to improve over the smooth-constrained inversion. The
choice of reference model and α are subjective choices
and one may not always have sufficient information to
constrain them.
In regularization by so-called structural inversion, the

aim is to reduce the penalty for rapid changes across a
boundary (one lithology to the next). This would reflect
any prior information about existence of boundaries.
The formulation of the inverse problem remains exactly
the same as for the smoothness constraint inversion,
except that now the constraints are formulated on the
gradient. This gradient is a function of WT

mWm. The
constraints can be imposed in various direction; for
example, if boundaries exist in the vertical more than
the horizontal then the gradient is constrained by

WT
mWm = βxW

T
x Wx + βzW

T
z Wz (6.71)

The modeler may then choose the ratio βx/βz for each
element of the model based on some prior information
[Menke, 2012]. The Ws are first-order difference
matrices:

W =

−1 1 0 0

0 −1 1 0

0 0 −1 0

0 0 0 0

(6.72)

Figure 6.11 shows that the use of structural inversion does
not improve on the smoothness inversion. The problem in
this specific case is that not only lithology causes contrast
but also the saltwater lenses that intruded into the zone of
study. Because of enhanced horizontal flow, the saltwater
sits on top of the clay, making them difficult to discrimi-
nate with a prior model based on boundaries and
contrasts.
The latter result then suggests that information about

the spatial distribution of the model variables could
improve the results. Such prior spatial information can
be captured by means of a spatial covariance model.
A regularization based on such covariance is then

O m =WT
m g m −dobs

2
2 + α C−1 2

m m−m0
2

2

(6.73)

with Cm the covariance matrix that is calculated from
estimating or modeling the spatial covariance. The
problem now is to estimate this spatial covariance. In
most cases, only a few wells are available; hence, only a
vertical variogram or covariance can be confidently
deduced. To get more information on the horizontal
component, it is not uncommon to calculate the
variogram on the smoothed inversion and borrow on
the ratio of horizontal and vertical range however, this
may not be without bias, see Mukerji et al. [1997]. In this
specific case, a Gaussian variogram with vertical range
equal to 8.4 m was estimated from wells. The ratio
between vertical and horizontal ranges (the anisotropy)
was estimated to be equal to 4. Figure 6.12 shows some
results, in particular the improvement over previous
methods in terms of the comparison with the well-log.
Evidently, when looking at Figures 6.10–6.12, all

solutions look smooth and are unique regardless of the
type of regularization. The Hessian matrix JTJ in the
solution provides some idea of confidence near that (best
guess) solution, but this should not be confused with an
UQ. Also, the imposed prior constraints are not very
geologically inspired, they tend to be mostly mathemati-
cal in nature imposing some properties on the resulting
images, such that uniqueness is obtained. Uniqueness
trumps geological realism in deterministic inversion.
“Prior” should be taken with a grain of salt and should
not be confused for the actual injection of rich geological
information into the posterior results. This is the topic of
the following section.

6.5. BAYESIAN INVERSION WITH
GEOLOGICAL PRIORS

In this section, we specifically discuss methods of
stochastic inversion that use parameterization based on
geological information. In Section 6.3, we discussed
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several methods of prior model parameterization that
allow for inclusion of geological information beyond
simple covariances or two-point transition probabilities.
These methods are (i) process-mimicking methods,
(ii) training image-based approaches, and (iii) object-
based approaches. For that reason, our exposition will
not be exhaustive in terms of stochastic inversion, but it
will focus on those application where significant
geological information is available to develop a
geologically informed prior (as opposed to, e.g., a
non-informative prior or a Gaussian prior).

6.5.1. Inversion of Surface-Based Geological Structures

6.5.1.1. Surface-Based Structures. Many important
geological components of the subsurface are represented
by surfaces, not by rectangular or other cell-based grid.
Examples are fault surfaces, horizons that separate
distinct stratigraphic units, salt-domes, thin geological
features such as shale drapes, or architectural boundaries
such as channel boundaries. Such surfaces can be created
from point interpretations on a geophysical image, or they
could simply be defined through an object-based model.
These surfaces are often triangularized from objects on
which operations can be performed.
The difficulty of modeling (and inverting) with

surface-based geological structures is that such surfaces
are subject to geological rules that are not as easy to
impose as, for example, grid-based properties [Caumon
et al., 2009]. Any automated CAD methods run the risk
of generating interaction between surfaces that are
inconsistent with general geological principle. Since a
geological surface forms a boundary between two
volumes of rocks, it needs to have two well-defined sides,
and hence, such volumes should not overlap. Layers
should not be leaking in the presence of faults. This
means that a surface should terminate at a fault and
not in the middle of nowhere. Faults, however, may
terminate in the middle of nowhere.
This means that any surface-based model should

undergo some reality checks. Some of these are manual,
simply based on visual inspection, others rely on
algorithms such as surface curvature analysis [Thibert
et al., 2005; Groshong, 2006]. Mesh quality needs to be
inspected to make sure that any numerical models that
involve such structures have good convergence properties.
Checks can be based on individual surfaces or the entire
structural model. The latter can go as far as restoring
the structural model into the original depositional state
(itself an inverse problem), thereby verifying geological
plausibility [Maerten and Maerten, 2006; Moretti, 2008;
Mallet, 2014].
The challenge in stochastic inversion of surface-based

geological structures is (i) to include general understand-
ing of the tectonic setting that imposes certain rules, (ii) to

construct models that follow these rules, (iii) to provide
consistency and quality checks of the generated models,
and (iv) to design automatic perturbation methods that
preserve these three criteria.

6.5.1.2. Example: Inversion of Faults Networks from
Partial Fault Interpretations

6.5.1.2.1. Geological Priors for Faults. Faults provide
important components to the subsurface system and may
impact considerably the design of engineering operations,
such as oil/gas production, geothermal energy production,
or CO2 sequestration. Locations of faults are uncertain
for many reasons: (i) inaccurate geophysical imaging
(see Section 6.6.2), (ii) imprecise representation of vertical
surfaces in geophysical images, (iii) sparseness of well
data and “luck” in cutting vertical structures, and
(iv) interpretation subjectivity. Figure 6.13 provides a
general overview of the evolution of fault modeling in
the later part of the twentieth century. Because of the
advance in computer graphics allowing the digital
representation of complex surfaces, fault modeling has
evolved from simple disc-like object modeled with a
Poisson process to complex data structures that allow
for both geometrical and topological perturbations. The
current state is such that most geometric information
can be incorporated, but that (i) the physics of tectonic
process is largely ignored and that (ii) generating multiple
models or perturbing models (needed for McMC) is
tedious if not impossible. This brings up a fundamental
question about modeling subsurface fault networks under
uncertainty: How can one address the uncertainty in fault
networks while accounting for knowledge pertaining to
underlying tectonic processes, in the same sense that
property models should integrate information about
depositional process? This is a challenging question
because the effect of tectonic settings on fault network
patterns cannot be analytically expressed. Incorporating
incomplete fault interpretations and tectonic concepts
rigorously is another challenge because most structural
geologists use qualitative descriptions of different tectonic
settings and the resulting fault patterns [Aydin
and Schultz, 1990; Nieto-Samaniego and Alaniz-
Alvarez, 1997].
To illustrate the idea of a geological prior for faults that

allows understanding of the process, we consider a specific
case, the Kumano Basin (see Figure 6.14). The Kumano
Basin and the Nankai Trough are located on the
southwest coast of Japan. The Kumano Basin is a fore-
arc basin situated in the Nankai subduction zone. It has
been studied by many authors for its tsunami-generating
capacity [Aoki et al., 2000; Gulick et al., 2010; Tsuji et al.,
2012] as well as for its hydrocarbon potential, in the form
of natural gas hydrates. Hydrate deposits are present in
clusters and thin seams in the area. The old accretionary
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prism (zone of interest in Figure 6.14) is underneath the
Kumano Basin. The old accretionary prism is poorly
imaged because of attenuation of seismic waves. The seis-
mic image is too blurry to interpret fault surfaces with
confidence. Lateral continuity of fault markers is also
compromised in the seismic image. Because of the effects
of overlying hydrate deposits and a water surface, seismic
artifact multiples exists that resemble fault surfaces.
The classical approach for an interpreter would be to

extend the clearly visible partial faults (perhaps add a
few) and use some truncation rules based on general tec-
tonic understanding of the system. However, such a way
of working leads usually to a deterministic fault model or
some minor variations of that deterministic model, which
may be completely incorrect. Therefore, the questions are
(i) how to generate many fault network models adhering
to the partially visible faults and (ii) account for geological

understanding of the various ways faults could have been
generated, in other words, the geological prior of faults.
Obviously, this is a Bayesian problem, but the question
is on the prior (and it is not multi-Gaussian, for sure).
Because of the wealth of understanding of tectonic pro-
cesses, this prior should entail more than a simple set of
parameters (dip, angle, length) with some prior pdf, such
as uniform or triangular distribution. This prior distribu-
tion needs to reflect the geological understanding of the
tectonics that created the system (see Chapter 5: the prior
needs to integrate the understanding of the geological
depositional system). This understanding is “prior infor-
mation.” The question is how to quantify it. Ignoring it,
because it cannot be easily quantified, leads to unrealistic
posterior uncertainty. Let us, therefore, conceptually for-
mulate what this understanding is as it relates to this
setting.
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Figure 6.13 Overview of the advances in stochastic modeling of faults. The reader is referred to a history of fault modeling including
the following: Priest and Hudson [1976], D. Veneziano [unpublished data, 1978], Andrews [1980], Chilès [1988], Thore et al.
[2002], Hollund et al. [2002], Cherpeau et al. [2012] Caumon et al. [2004]; Cherpeau et al. [2010], Lajaunie et al. [1997]
Hesthammer and Fossen [2000]. MPP = marked point process.
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Fault networks are formed during a tectonic process
where change of stress direction causes secondary fault-
ing. Primary faults occur in clusters due to weakening
of the brittle host rock. Such faulting weakens the sur-
rounding formations such that imperfections are sheared
due to stress. When the stress direction changes, younger
(secondary) faults propagate at a different angle and abut
(terminate) against the older (primary) faults. The effect
of weakening due to primary faulting also impacts
secondary faulting, making it easier for them to propagate
closer to primary faults. However, weakening due to
secondary faulting releases more energy, making it less
likely to generate further secondary faulting. The end
result of this physical process can be conceptualized qual-
itatively with a model of attraction between primary
faults, attraction between primary and secondary faults
and repulsion between secondary faults. This is a very
relevant prior information and has impact on predictions
(as shown later).
We use this conceptual model based on the fault

interpretations from the Nankai Trough to model uncer-
tainty of fault patterns of the old accretionary prism. The
reasoning behind this modeling is that it is our subjective
belief that the old accretionary prism experienced similar
stresses acting on the modern Nankai Trough. Y-faults
and nested splays are the main fault patterns interpreted
in the Nankai Trough. A conceptual model involving
Y-faults and nested splays caused by stress reversal could
explain this observation. The question is now how to turn
these concepts into math.

6.5.1.2.2. FromGeological Prior toMarked Point Process
Prior. Having specified, at least conceptually, how physi-
cal processes create fault patterns, a further quantification
is needed into an actual mathematical representation of
all this prior information, qualitative and quantitative.
Because faults are objects of certain dimension that occur
in space, a marked point process prior seems a logical
choice. A marked point process requires the definition
of the point process as well as the “marks,” which in this
case are fault objects.

More specifically, we use a Strauss process [Strauss,
1975], which has the following probability density model:

f x1;h1 , x2;h2 ,…, xn;hn

exp
Nh

r=1

−γrn−
Nh

q=1

βr,q
i hr = r k hq = q

1 xi−xk ≤ τr,q

(6.74)

(xi; hi) is the marked point, consisting of the location
(point) and a mark indicator that defines the fault hierar-
chy. One of the reasons to go for a MPP is that location
(point) and hierarchy (mark) are clearly related (they are
not independent). Nh here is the number of distinct fault
hierarchies where hk= 1 refers to the oldest faults that
are highest in the hierarchy. One notices that this density

function has a Poisson part exp Nh
r=1−γrn . The coeffi-

cient γr, also referred to as the self-potential, defines the
density of faults that belong to the hierarchy hk= r.

The second component exp Nh
q=1βr,q i hr = r k hq = q

1 xi−xk ≤ τr,q is an addition/subtraction to the
location density function for a fault object due to its inter-
actions with other fault objects. In particular, βr,q, the
pair-potential, models attraction or repulsion between
faults with hierarchies between two fault families. 1( xi −
xk ≤ τr,q) denotes the number of fault pairs that are at
most a distance τr,q apart. Each fault object at location
xk affects the location density function by exp(−γrn).
Fault object pairs (with hr = r and hq= q) that are at most
a distance τr,q or closer affect the location density function
with an additional factor of exp(βr,q). Individual fault
objects can be defined independently by means of
simple pdfs on their parametric descriptions such as fault
length, azimuth, dip, surface roughness, and so on. More
details can be found in Aydin and Caers [2017].
The main issue here is not, so much, this specific math-

ematical description but the fact that “a” mathematical
description helps control what kind of fault networks
are generated, how these hierarchies work, what length
and dips should be generated, as opposed to generating

Visible structure

Visible structure Kumano basin

Nankai trough

Figure 6.14 Kumano Basin, consisting of two areas with clearly interpretable faulting (normal faulting and Y-faulting) and a zone of
interest with poor seismic imaging.
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them, ad hoc, from direct interpretation on the data (with-
out any explicit prior). This prior is what allows the gen-
eration of multiple interpretation, constrained to existing
data, without any artifacts of manual interpretation, and
the inclusion of geological ideas about faulting.
The parameters of the Strauss model are estimated

from analog areas (Nankai Trough, see Aydin [2017] for
details). An analogy can be made here to classical geosta-
tistics: the variogram is estimated from data (possibly
analog areas if not enough samples are available) and then
any posterior solution reflects also the spatial variability
of the variogram model. Sampling from an MPP is not
trivial and needs to proceed by McMC. Important in
the chain is the reversibility. This makes the posterior
model independent of the initial model. A particularity
of McMC with an MPP model is that the initial model
needs to match the data, but it need not be a sample from
the prior. In other words, anyMcMC sampling with these
kinds of objects requires models that match (or almost
match) data. Indeed, an ad-hoc matching of faults struc-
tured by interpretation need not be a sample from the geo-
logical prior; in fact, it may be inconsistent with the
overall geological understanding. To generate initial
models for theMarkov chain sampler, one can do a simple
rejection sampler to find fault parameters that match the
data. There would be as many faults as partial fault inter-
pretations; hence, the initial models likely contain too few
faults, and thus are biased.
Without going into the details of the McMC sampling

[Aydin, 2017], a general overview is provided in
Figure 6.15 (Metropolis sampling). The likelihood func-
tion is a simple mismatch function between the model
and the data; hence, this methods falls under approximate
Bayesian computation (see Chapter 3, no full likelihood
model is specified). Because we are dealing with objects,
the perturbations (e.g., move, remove, or modify) need
to be reversible such that posterior models end up being
consistent with the geologically informed prior. This

involves several complex acceptance probabilities that
have been developed for marked Strauss point process
(MSPP) [Illian et al., 2008], such as a move operation of
a randomly selected object residing at xk to a new location
x∗k with acceptance probability:

αmove = exp
Nh

r=1

Nh

q=1

βr,q
i hr = r k hq = q

1 xi−xk ≤ τr,q

−1 xi−x∗k ≤ τr,q

(6.75)

Notice how the acceptance probability depends on
the prior pdf. Figure 6.16 shows some prior model
realizations, some initial models, and some posterior
model realizations. The data are the four partial fault
interpretations.

6.5.1.2.3. Why Is the Geological Prior so Important?.
Why bother with these complex mathematical descrip-
tions? It seems that a simple rejection sampler creates
(initial) models that match data that appear to look
reasonable. To understand the effect of various modeling
decision (Bayesian vs. non-Bayesian), we calculate a
global statistic on the generated models. Often faults
are important because they disconnect the subsurface into
different volumes. Then these volumes may or may not be
in communication depending on the sealing of the fault
(often a function of fault throw [Hollund et al., 2002]).
This sealing has a considerable impact on fluid flow
[Knipe et al., 1998; Manzocchi et al., 2008; Cherpeau
et al., 2010; Rohmer and Bouc, 2010]. The statistic of
interest we chose is the size distribution of connected
volumes. This global statistic should be the same for prior
and posterior (indeed the very few partial interpretations
will not affect this global statistic). Figure 6.16 shows this
is the case. However, the size distribution of the initial
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Figure 6.15 Various perturbations in the Metropolis sampling of the Strauss process.
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models is quite different, lacking small compartments.
This illustrates the bias of ad-hoc fault modeling, generat-
ing only as many faults as interpretations. Clearly, the
presence of invisible faults cuts the region up, such that
small compartments exist. This is critical to any
application that involves moving fluids around. Based
on the ad-hoc matched models, one may be overconfident
about connectivity and hence recovery of fluids from such
systems.

6.5.2. Inversion for Grid-Based Geological Structures

6.5.2.1. Introduction. Often grid-based models are
built after generating structural models. If the structure
is complex then the gridded model needs to reflect this
(see Figure 6.3). In many cases, one will need to perform
some joint inversion on both structural model uncertainty
and property uncertainties. Separating both would ignore
the interaction they have on the studied physical/chemical
responses, whether fluid flow models or geophysical
models. Here we focus specifically on situations where
we do not consider any structural elements, just a flat
gridded, Cartesian model. In Chapter 8, in the Libya oil
field case, we will discuss ways of dealing with structure
and properties jointly. Again we focus on the situation
where geological information has been provided through
a prior movie (see Section 6.3). Similar to the above dis-
cussion on object simulation using MSPP, we will sample

from the posterior distribution usingMcMC. The random
walk needs to be reversible, meaning (i) posterior samples
are independent of the initial models and (ii) the prior
information is not changed because of the proposed
perturbation (sinuous channels should not become
straight, unless that is part of the prior).

6.5.2.2. Perturbation Methods. Much of McMC sam-
pling relies on perturbation mechanisms, changing a
model into a new model (in a reversible way), or changing
a set of models jointly and then calculating a likelihood. In
low dimensions, this can be quite easy to apply (such as
the move/remove operations for objects). This is no longer
the case with perturbing large gridded model realizations.
First, the dimensions are very large, and second geological
prior model constraints need to be adhered to. In the
multi-Gaussian case (variograms), one way of achieving
this perturbation is to use gradual deformation [Hu,
2000; Hu et al., 2001]. Consider a current model m and
some other model drawn at random from the multi-
Gaussian distribution mnew. Then, a proposal model m∗

models a gradual change from one Gaussian realization
m to any other Gaussian realization mnew

m∗ =m cos θ +mnew sin θ (6.76)

The current model m is multiplied (globally) with a scalar
dependent on θ and combined with a new model realiza-
tion. The value of θmodulates the amount of perturbation
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Figure 6.16 Data, prior model realizations, initialization with an ad-hoc matching, and posterior fault networks. Histogram of the
size (in percent of total domain size) of the various model sets.
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betweenm andmnew. A simple proof shows that the result-
ing perturbations preserve the mean and covariance struc-
ture [Reis et al., 2000]. Additionally, any perturbed model
m∗ can be gradually morphed into another new realization
m new. This allows making small changes (changing θ ), or
making very large changes by taking a newmnew. Gradual
deformation can be used in an optimization mode simply
by optimizing θ (under a randomized mnew); however,
such samples are not necessarily samples from a multi-
Gaussian posterior distribution [Mariethoz and Caers,
2015]. Nevertheless, gradual deformation can be quite
useful in generating proposal models that are consistent
with the mean and covariance structure. In addition,
the θ can be made spatially varying allowing for local per-
turbation (setting θ = 0) in areas where the model should
not be perturbed. The proposal mechanism of gradual
deformation is reversible; hence, gradual deformation is
a valid proposal mechanism for McMC. It is straightfor-
ward to extend gradual deformation to truncated Gaus-
sian or pluri-Gaussian fields. The same principle can
also be generalized to combine the uniform random num-
bers that are underlying most stochastic techniques, for
example, to deform object-based simulations of fractures.
The probability perturbation method (PPM) is similar

to the gradual deformation in principle but offers a
different perspective [Caers and Hoffman, 2006]. Instead
of combining simulations directly or modifying the
underlying random numbers, PPM takes a linear
combination of two probability fields to obtain a spatial
probability field that is then used as soft data to guide
geostatistical simulations. This model perturbation
technique is rather general and applicable to object-based,
pluri-Gaussian, or training-image models. PPM, as
gradual deformation method (GDM), allows for local
or global perturbation. In case of global perturbation of
a binary variable, a realization of probabilities (on the
same grid as m) is defined as

p m,θ = 1−θ m+ θ pm (6.77)

with pm a marginal probability of the binary variable.
θ modulates the amount of perturbation with θ = 0 entail-
ing no perturbation and θ = 1 equivalent to generating
another prior model realization randomly. To achieve a
perturbation, the current realization is perturbed using a
model of probabilities p defined on the same grid as m.
This probability model is then used as a soft probability
(in a geostatistical sense, see [Goovaerts, 1999]) to generate
a new realization. To allow for more flexibility in the
perturbation, regions can be introduced, each with a
different θ. This achieves a regional perturbation where
some regions may change more than others, without
creating region border artifacts.
The idea of GDM and PPM is to create dependency in

the chain that can be exploited by the sampler. Another
way of injecting such dependency is to retain some part

of the spatial model realization as conditioning data to
generate the next realization in the chain. This can be done
in various ways; for example, one can retain a set of
discrete locations (iterative spatial resampling,Mariethoz
et al. [2010]) or one can return a compact block of
locations [Hansen et al., 2012]. Other proposals are to
retain only the edge of a block [Fu and Gómez-Hernández,
2009]. The size of blocks or the amount of resampled
points retained allows controlling the amount of perturba-
tion generated.

6.5.2.3. Samplers that Involve Geological Priors

6.5.2.3.1. Sequential Gibbs Sampling. Recall that the
Gibbs sampling (Chapter 3) involves sampling from a
multivariate distribution by sampling from a full condi-
tional distribution:

f mn m1,m2,…mn−1,mn+1,…,mN (6.78)

The Gibbs sampler requires only for a sample to be
generated; the actual specification of the full conditional
distribution is not necessary. Second, generating only
one single mn at a time is not very efficient and may lead
to long iterations; therefore, it may be more useful to
generate a subset mn S of m at one time (defined either
as compact blocks or as a set of points as outlined earlier)
requiring sampling from f(mn S|mn S). In Hansen et al.
[2012] the sampling of this distribution is done by
sequential simulation (see Chapter 3). This sequential
Gibbs sampler is then implemented within the extended
Metropolis sampler to generate new samples from the
prior. Figure 6.17 shows an example of this re-simulation
of blocks to generate a chain of MPS realizations drawn
from the prior.

6.5.2.4. Multichain Methods. Traditional McMC
methods work well for problems that are not too high
dimensional (a few parameters). As was discussed in
Section 3.12.7, multichain methods use multiple Markov
chains running in parallel and use the information gener-
ated by all chains to update models and thereby improve
on convergence to the posterior distribution. However,
multiple chains have not yet been well adapted to geolog-
ical priors or any prior involving a spatially distributed
property. A neat exception is that of Lochbuhler et al.
[2015] where prior information enters the chains through
so-called summary statistics. Figure 6.18 conveys the idea.
A training image is proposed to convey relevant spatial
statistics. These images are then compressed, here by
means of a discrete cosine transform [DCT; Jafarpour
et al., 2009], which allows extracting prior information
in terms of histograms. These histograms are used as
prior distributions in the DREAM sampler [Laloy and
Vrugt, 2012].
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6.6. GEOLOGICAL PRIORS IN
GEOPHYSICAL INVERSION

6.6.1. Introduction

Geophysical imaging found its way to major applica-
tions in the 1960s, in particular in oil and gas exploration.
Many geophysical imaging techniques and ideas have been
developed within that industry, simply because of the direct
monetary advantage of employing such techniques. At
present, the field of hydro-geophysics has emerged as a
way to image hydrological processes in the subsurface
[Linde et al., 2006; Hyndman et al., 2013; Binley et al.,
2015]. In mineral resources assessment, geophysical ima-
ging is increasingly used in exploration and also during
the mining phase to assess the nature of the orebody [Ward
et al., 1977; Goodway, 2012; Hatherly, 2013; Smith, 2014].
While the purpose may be different, the main principles of

geophysical imaging in these various areas are the same.
This section is not intended to provide an overview of geo-
physical imaging and inversion methods, but it is intended
to discuss the use of geological priors in the inversion of
geophysical data and how suchmethods integrate intoUQ.
Many types of geophysical imagingmethods are available

(see Table 6.1). The basic principle is to use some physical
phenomenon (acoustic waves, electricity, and magnetism),
a source for that physical phenomenon (explosions, current
electrodes), and a receiver to record what happens when
the subsurface is subjected to this physical “agitation.”
The idea is to infer 3Dproperties of the subsurface by untan-
gling the received signals in terms of these properties. This
is the “inversion.” However, this “geophysical inversion”
really consists of three different types of inversion.
1. Migration: This step is often termed “data proces-

sing.” It requires putting the signals in the right place
and removing noise as much as possible [Yilmaz, 2001;
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Figure 6.17 Six iterations of the sequential Gibbs. At each iteration a 4 × 4 window is re-simulated [Hansen et al., 2012].

Training image (TI)

Realizations of the TI

Posterior models
(DCT domain)

Determine dominant
DCT coefficients (m)

32

25 P
o

ro
si

ty
 (

%
)

P
ro

b
ab

ili
ty

MPS
Simulations

DCT

k z

kx

Inverse
DCT

Compressed TI realizations

Parameterization

MCMC sampling with
DREAM(zs)

Prior pdf

Observed data d Extract summary statistics

Summary metric value

Inverse
DCTPosterior porosity models

Figure 6.18 Extracting summary statistics fromDCT-compressed prior model realizations. These summary statistics are then used as
prior model statistics in a multichain sampler [Lochbuhler et al., 2015].

180 QUANTIFYING UNCERTAINTY IN SUBSURFACE SYSTEMS



Berkhout, 2012]. The receivers do not see an image, but
they see signals varying over time. To turn these signals into
an image of the medium, we therefore need to anchor the
signal to the location (to migrate) it came from in the sub-
surface (the subsurface source). Since the subsurface is
unknown, an inversion is needed to do this. This inversion
may be the most CPU demanding of all inversions simply
because some geophysical methods, for example, seismic
rely on a lot of redundancy in the signal to make sure
the noise is sufficiently suppressed. For example, the
SEAMmodel [Fehler and Larner, 2008], a constructed sur-
vey (see Figure 6.20), has 65,000 shots with a total of 200
TB of data.
2. Geophysical parameter inversion. Table 6.1 links the

geophysical method to the subsurface geophysical para-
meters (properties or variables) that are being explored.
Obviously, when using a seismic method, one is exploring
the subsurface variations in velocity or density, while with
electrical methods, one is exploring resistivity. This second
inversion, therefore, turns the geophysical image into an
image of a geophysical parameter.
3. Rock or soil physical parameter inversion. The ulti-

mate interest does not lie in the geophysical parameters
but in some other physical parameter of interest, as listed
in Table 6.1, for example, a mineralization, a saturation,
porosity, clay content, lithology, soil type, and so on. In
the oil industry, this is termed a “petrophysical inversion”
(also recently adopted by the hydrological community).
Such inversion requires understanding the influence of
the physical or chemical parameters of the medium on
the geophysical parameters [Mavko et al., 2009].

In what comes next, we will briefly touch on these
various inversions, with an eye on the various sources
of uncertainty involved and how geological priors come
into the picture.

6.6.2. Creating the Geophysical Image

The geophysical image produced is the outcome of
a complex chain of geophysical processing. Here we
discuss uncertainty related to “migration.” This inversion
problem is large because of the large amount of data
gathered and the large area covered (10–100 km area,
0–4 km depth). Hence, this (single deterministic)
migration may take days to weeks of computing time
(and this after making several linearization assumptions
in the inversion), see Figure 6.19.
Uncertainty in velocity is particularly prevalent in situa-

tions where the subsurface has complex heterogeneity, for
example, due to extensive faulting. We will illustrate ways
of addressing such uncertainty in the context of subsalt
exploration for oil and gas. Salt basins such as those located
in the Gulf of Mexico and in the Brazilian offshore have
been the site of extensive discoveries. However, because
these reservoirs lie below the salt, the seismic image is very
poor. The main issue is the shape of the salt body and its
higher velocity compared to surrounding sediments. The
salt body acts as a lens for such waves, creating poorly
imaged regions or gaps in the data due to scattering and
refraction. Figure 6.20b shows the illumination, which
quantifies which areas are well covered by seismic rays
(the red areas) and which areas are not (the blue areas).

Table 6.1 Overview of geophysical methods, geophysical variable or property, physical variables (or the variable of interest), and
their area of application.

Geophysical
method Geophysical variable Physical variable

Main application
domain

Seismic Elastic modulus, bulk density, attenuation,
dispersion

Facies, pore fluid, cementation All

Seismo-electric Electrical current density Voltage coupling coefficient and permeability Mostly oil/gas

Magnetic Magnetic susceptibility Magnetic permeability (metals) Mining, oil/gas

Gravity Bulk density Bulk density All

GPR Permittivity, electrical conductivity Water content, porosity Mostly hydro

Resistivity Electrical conductivity Water content and conductivity, clay content All

Self-potential Electrical conductivity Permeability voltage coupling coefficient All

NMR Proton density Water content, permeability Hydro, oil/gas

Induced
polarization

Electrical conductivity, chargeability Water content and conductivity, clay content,
surface area, permeability

Hydro, oil/gas

Time lapse Common are seismic, resistivity, induced
polarization

Changes in pressure, saturation, subsidence,
temperature

Hydro, oil/gas
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If illumination were perfect, then we would obtain a nicely
imaged anticline (see Figure 6.20). However, poor illumi-
nation creates artifacts depicting structures that do not
actually exist. Interpreters may then interpret faults that
do not exist, or the structure may be determined at a depth
very different from the actual depth.
The deterministic form of imaging may, therefore, lead

to a biased estimate of, for example, reservoir volume.
Interpreters are also left in the dark as to what the
uncertainty of the reservoir is, since basically only one
realization of the image is available.
A stochastic form of imaging (Figure 6.19) recognizes

that the velocity model is uncertain, in the salt-dome case
mostly due the unknown shape of the salt-body, in partic-
ular the bottom boundary (the top boundary tends to be
flat and hence well imaged). This means that several
perturbations of the base velocity model can be made that
(i) still match the raw data equally as well as the basemodel

and (ii) create different seismic images. Figure 6.21 shows
four such perturbations to the salt-body roughness, using
correlated Gaussian noise [Li et al., 2015].
Does this matter? Imaging uncertainty in these kinds

of system can produce a zero-th order uncertainty on
prediction variables of interest. In oil field exploration,
one such variable is the OOIP (see Chapter 1), depend-
ing, amongst others, on the total volume of rock in the
reservoir system (a steep anticline makes for a smaller
volume). Figure 6.21 shows the difference between such
volume extracted from a deterministic inversion (the
usual single migration) and a stochastic versus determin-
istic migration. The deterministic inversion significantly
overestimates volume and hence OOIP. Given the
billions of dollars involved in offshore production, this
is not an error without consequence! (“Shell Cuts
Reserve Estimate 20%As SEC Scrutinizes Oil Industry”,
WSJ, 12 January 2004].
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6.6.3. Rock Physics: Linking the Image with Properties

Any obtained geophysical image can be regarded as
observed data to infer either geophysical parameters or
rock/soil physics parameters. For this step, one can use
deterministic or stochastic inversion methods. The inver-
sion problem is formulated using a combined model
parameterization

m= mgeoph,mphys 6 79

Here we differentiate the geophysical parameters as geoph
and the target physical parameters as phys. There is a
hierarchy in the model parameters, however: it is the
combination of physical parameters and the physics of
the material studied that will determine the geophysical
parameters; hence, the prior distribution of the model is
often written as [Bosch et al., 2010]:

fprior mgeoph,mphys = fprior mgeoph mphys fprior mphys

(6.80)

The Bayesian posterior formulation is then often taken as
follows:

fposterior mgeoph,mphys dobs f d= dobs mgeoph

fprior mgeoph mphys fprior mphys
(6.81)

fprior(mphys) models the prior distribution of physical para-
meters. For example, porosity can be modeled using any
of the above geostatistical methods: variogram-based,
Boolean, or MPS, based on geological understanding
(the geological prior). fprior(mgeoph|mphys) models the
uncertain relationship between physical and geophysical
parameters. This uncertainty is modeled in a field of
science termed “rock physics.”
Rock physics (soil physics, petrophysics) studies by

means of theoretical or empirical models the behavior
of geophysical parameters (e.g., bulk modulus) as a
function of physical parameters (factors) such as water
content, mineralogy, pore structure, cementation, and
so on [Avseth et al., 2005; Mavko et al., 2009]. These
models, therefore, play an important role in establishing
relationships that can be used when limited sampling (in
particular, the limited amount of wells) in a specific site
or reservoir is available. However, rock physics models
need to be calibrated to the specific site using geophysical
data, and possibly also well data (such as core samples,
logging). The area of statistical rock physics brings all
these uncertainties together: limited wells, uncertain
calibration, or difference in scale between the geophysi-
cal data, the well data, and any empirically derived
petrophysical relationships.
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6.6.4. Workflows and Role in UQ

Within UQ geophysical imaging and inversion are not
an end-goal. It is but a means to eventually make better
decisions based on realistic uncertainty assessment of
key variables. These variables may not be directly imaged
by geophysical methods. While developing better meth-
ods for geophysical imaging, better understanding of
the petrophysical relationships is evidently of enormous
use. The question of how this data is integrated in work-
flows for UQ and decision making is equally important.
Figure 6.22 provides an overview of the most common

and traditional workflow [Linde et al., 2006; Bosch et al.,
2010; Linde et al., 2015]. In this workflow, the various
disciplines involved are kept separated and often executed
by different modelers. First, some kind of image of one or
two geophysical parameters is generated (e.g., acoustic
and elastic impedance). The deterministic inversion
results in a smooth image, at least smoother than what
is often required for applications, in particular those
applications involving multiphase flow. The second
portion consists of mostly petrophysics-related activities
of converting the geophysical parameters into physical
parameters, for example, using well data and/or rock
physics relationships. The problem now is that the
obtained physical parameters are too smooth; hence,
some form of “downscaling” is required. This involves a
third series of activities typically termed “geostatistical
modeling.” Here some form of finer scale variability
model is formulated whether using variograms, transition
probabilities, objects, or training images. Various
methods exist that allow integrating this information with
the geophysical image, usually using some form of
co-kriging or block-kriging [Goovaerts, 1997; Dubrule,
2003]. This leads to models that use the geophysical image
as “soft data,” whether for facies or petrophysical
properties. These models are constrained also to well
information and reflect globally some model of spatial

variability that was adapted in the geostatistical simula-
tions. The advantage of dividing modeling activities into
three pieces is also a disadvantage. Each piece comes with
its own assumptions, estimates, and uncertainties.
Because one mostly passes around deterministic images,
most of these uncertainties are lost. Therefore, it is not
uncommon that future data, in particular data from a
completely different nature, cannot be predicted with
the resulting models that have too small uncertainties.
This has been documented in many case studies [e.g.Hoff-
man and Caers, 2007; Park et al., 2013]. Hence, often ad
hoc modifications to the models are made, leading to even
smaller uncertainties. One of the reasons (but not the only
one as we will see) is that the resulting geostatistical
models only represent the statistical relationship between
the geophysical image and the target petrophysical
variable. It is not necessarily the case that any forward
modeling of the data on the posterior geostatistical reali-
zation results in models that match the geophysical data.
Figure 6.23 describes a workflow that addresses some of

these issues. Instead of working with deterministic inver-
sion of geophysical parameters, the geostatistical model-
ing is integrated into the workflow. Geostatistical
models of physical properties are generated, and these
are converted into geophysical parameters. Here any
uncertainty on the rock physics models can be integrated
as well. Then, any form of Bayesian inversion, for exam-
ple using McMC, can be executed to generate posterior
models of both physical and geophysical variables. The
loop can even be extended to the imaging part if the for-
ward model related to the imaging is not too computa-
tionally demanding. The workflow in Figure 6.23 is
more cumbersome because of the iteration that requires
integrating several pieces of code that often have been
developed independently.
While this new workflow improves on the original, it

still avoids addressing a very important question: What
is the geostatistical prior? In the above two workflows,
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Figure 6.22 Most common workflow from geophysical data acquisition to subsurface geostatistical models.
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the geostatistical prior is typically estimated from wells, in
particular when dealing with variogram-based methods,
or just assumed, if limited information is available.
However, as noted above, such prior would ignore
important geological information. It also avoids the
question of falsification of the prior: is the assumed prior
actually consistent with the data? Neither workflow
addressed this; it just assumes that prior and data are
consistent. The two workflows also do not diagnose the
problem of a too narrow prior, leading to a too narrow
posterior, even when matching the data nicely. This is
actually quite common and leads to ad-hoc model
modifications later on.
Therefore, it is necessary to first attempt to falsify the

prior. This would require using a very informative prior.
Note that an informed prior may actually represent a
more realistic uncertainty than the usual non-informative
prior, such a simple uniform or Gaussian or other simple
distribution on parameters. Figure 6.24 describes such
workflow. Here all uncertainties are formulated and
generated: in the acquisition model (e.g., the source
wavelet), the rock physical models and the mathematical

parameters representing the conceptual geological
uncertainties. For example, one may assume a large vari-
ety of training images, or variogram models or a diverse
set of Boolean models, fault network models, and so
on. Then, forward models of the data are generated and
a comparison is made with the actual data. This compar-
ison need not simply be a mismatch (a likelihood or
objective function). Instead, one may opt to run a global
sensitivity analysis (see Chapter 4) and test which of the
uncertainties impact the data variables, or one may
perform a statistical comparison (e.g., using summary
statistics [see Lochbuhler et al., 2015; Scheidt et al.,
2015] between the data variables and the observed data.
The latter statistical comparison actually allows for pos-
sibly rejecting the null-hypothesis that the data can be
generated from the prior (a requirement for Bayesianism).
In Chapter 7, we present one possible statistical method to
achieve this when the data are seismic amplitudes. One
advantage of this form of statistical falsification is that
is does not require any inversion of data (hence can be
very efficient). In Chapter 8, we present several real field
applications of the workflow in Figure 6.24.
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6.7. GEOLOGICAL PRIORS IN ENSEMBLE
FILTERING METHODS

A particular type of inversion is often required when
data is accumulated over time, instead of being taken at
one time-instance. Examples of these are tracer data,
pressure data, well-test data, production data, flow-meter
data, stream-flow data, heat-tracers, and so on. Some of
this data can be handled directly, such as a well test or
pump test since these occur only over a limited time
period. In Chapter 3, we discussedmethods that filter such
data over time into an update of model uncertainty. Here
we discuss one such method, termed the “ensemble
Kalman filter” (EnKf ) [Houtekamer and Mitchell, 1998;
Evensen, 2003; Aanonsen et al., 2009], which has gained
popularity in data assimilation. The method borrows
the idea of the Kalman filter (see Section 6.4.4) by
iteratively calculating the covariances of the Kalman filter
empirically from model realizations. However, the
question in this book is not how to assimilate data but
how to quantify uncertainty on the forecast in the
presence of prior geological information. In that regard,
the problem is considerably different from oceans or
atmospheres, the main area of application of the EnKf.
Therefore, we cover first the basic method and then
provide a survey of those extensions of the EnKf to
integrate geological priors.
In its most basic form, the EnKf is a recursive filter

operation where a mismatch in the data is used to adjust
the model by a linear update operation. The recursive part
refers to its consecutive application in time, as more data
becomes available. The theoretical formulation can be
derived directly from Eq. (6.21) as well as any Bayesian
formulations of the inverse problems. The main assump-
tions underlying the basic EnKf derivation are to assume
1. a multi-Gaussian distribution on the model and data

variables (d,m)
2. a linear relationship between all the variables (d,m)
3. a metric density for (d,m) that is uniform
In EnKf, the model variables are split into two parts:

the static variables mstat (not changing in time) and the
dynamic variables mdyn. In the subsurface context, the
static variables are typically porosity and permeability,
and the dynamic variables are pressures and saturations.
The triplet of variables (d,mstat,mdyn) is now termed the
“state vector.” In EnKf, an initial ensemble of various
(mstat,mdyn) is generated. Consider this initial ensemble
at time t = 0. Next a forecast step is used to predict the
dynamic variable, at the next time t +Δt as well as to pro-
vide a forecast of the observable variables d for all models
in the ensemble. In the assimilation step, an update of all
variables is made based on the difference between the
forecasts and the actually observed d at that time t +Δt
using a linear filter as follows:

yt+Δt = yt +Kt+Δt dobs, t+Δt−dt+Δt with y=

d

mstat

mdyn

(6.82)

with the Kalman gain expressed as

K =Cyt+ΔtH
T HCyt+ΔtH

T +Cd
−1

(6.83)

where H is a centering matrix (see Chapter 3). The
covariance matrix Cyt+Δt

is calculated from the ensemble.
The matrix Cd represents the error covariance on the data
variables. Given the assumptions made, the resulting
posterior distribution in this linear case is also Gaussian
and fully known through the specifications of the various
covariance matrices (the original derivation of Kalman).
The linear model can be replaced by a nonlinear forward
model, but then the posterior distribution is no longer
known analytically, and evidently, no longer Gaussian.
Nevertheless, the filter can be applied to variables that
are non-Gaussian. However, in such extension, several
problems may occur:
1. The variables are no longer Cartesian (facies,

permeability); hence, metric densities are not uniform,
and possibly unphysical values may be obtained (e.g.,
negative saturation or porosity; there is no preservation
of the discreteness of the variables).
2. The updated static variables (such as porosity) may

no longer be within the prior formulated on such
variables. In fact, the progressive updates of the static
model realizations become more Gaussian, even when
the prior is distinctly non-Gaussian. As a result, the UQ
becomes inconsistent with Bayes’ rule. This problem is
well recognized, and iterative solutions have been
developed to address the issue of UQ [Evensen and van
Leeuwen, 2000; Emerick and Reynolds, 2013].
The leading ideas on addressing these issues is not to

apply EnKf directly on gridded models but on some form
of re-parametrization that allows preserving the prior
model statistics. Such parameterization may address the
issue of an artificially dissipating (washing out) prior
model as the EnKf assimilates non-Gaussian and
nonlinear data. The usefulness of any transformation
should also be assessed in how easily (and unique) the
back-transform is. For example, taking a logarithm and
then an exponential is easier than transforming in feature
space (kernels) and then back to physical space (the
transformation is difficult and non-unique).
Table 6.2 provides an overview of some of themain ideas

and references. These consists of parameterization based
on theGaussianmodel, meaning transforming the problem
such that one can assimilate based on Gaussian random
variables, instead of original random variables. Another
set of approaches rely on changing the parameterization
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of models to focus on certain properties, such as channels
or boundaries. Another set consist of generating a set of
prior models from whatever method and then parameteriz-
ing them by means of kernel methods.
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7
Bayesian Evidential Learning

7.1. THE PREDICTION PROBLEM REVISITED

Decision making does not require perfect information;
however, it does require understanding and taking into
consideration the uncertainties associated with the
decision. In the subsurface, decisions are often dependent
on some quantity that cannot be directly observed; hence,
it needs to be predicted. Predictions are often about some
future event (e.g., a production profile of a yet-to-be
drilled well) or a quantity that cannot be directly
measured (i.e., map of the current concentration of a
contaminant). Instead, one relies on data that can be
measured (i.e., groundwater levels or electrical resistivity
at selected locations) and build appropriate subsurface
models that describe the system in question. Applying
forward simulation on these subsurface models then
allows estimating any desired prediction variable. Recall
from Section 3.1.2 that we consider the data, predictions,
and model variables to be random variables whose values
are unknown or only partially observed. The actual
observed data measurements from the field are regarded
as a single realization of the data random variables.
Our goal is to use the data and prediction variables gen-
erated by applying a forward model to the subsurface
models in combination with our observed or “real” data
to make estimates of the value of the prediction variable.
To illustrate this, consider a simple example. Suppose

we are about to move to a different city for a new job
and need to make a decision about how much furniture
to purchase. This decision will require making a predic-
tion of how large our new apartment will be (denoted
as the prediction variable h), as well as quantifying uncer-
tainty on this prediction. We know that the size of an
apartment is related to its rent, and therefore salary (base
and bonus) of its tenant, which we denote as the data
(observable) variable d. Both apartment size and salary
are functions of the socioeconomic conditions within
the city. We will call these conditions the socioeconomic

model m, and for a given m we use deterministic forward
functions to model salary and the size of an affordable
apartment. The socioeconomic model is complex
involving many parameters such as housing supply,
unemployment rate, types of local industries, economic
growth, property taxes, and so on, all of which affect
housing costs as well as salaries. Furthermore, each of
these parameters may be global (applicable all over the
city), or vary spatially from one neighborhood to another.
This means that the dimension of m (number of para-
meters and spatially varying components) will be much
larger than that of h (apartment size in square feet) and
d (base and bonus in dollars), see Eq. (7.1):

dim m dim h , dim d (7.1)

We will term the approach involving inference on model
variables from data to predict h, causal analysis. Suppose
we have signed a job offer, so we know what our actual
salary is (dobs). A causal analysis would then attempt to
determine a socioeconomic model that will produce a
salary that matches dobs. We then take this matched m
and apply a forward function to predict what size of an
apartment we will be able to afford under these socioeco-
nomic conditions. However, obtaining this matched m
will be a challenging task, since this involves solving an
inverse problem. In Chapter 6, we discussed solutions to
inverse problems and illustrated that under nonlinearity
of the forward function or if the system is underdeter-
mined, multiple solutions may exist. A single matched
model may not actually describe the true conditions in
the city and may yield a prediction of apartment size that
is different from reality. An alternative approach to
solving such problem is Bayesian evidential learning
(BEL), since it involves a statistical model. In BEL, we
first consider a-priori information about the city’s
socioeconomic conditions, prior to considering the
offered salary dobs. For instance, while wemight not know
the exact value of the property tax in the city, we may be
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able to say that it varies between 0 and 3% because of state
regulations. For each model variable, we state some f(mn)
that captures that prior information (here assumed
independent). A random sampling from each of these
prior distributions then generates a set of socioeconomic
model realizations {m(1),m(2),…,m(L)}. Given a realiza-
tion m(ℓ), forward modeling produces a value for salary
d(ℓ) as well as apartment size h(ℓ). It is likely that very
few to no d(ℓ) will match our actual salary dobs. Instead,
we generate a scatter plot between d(ℓ) and h(ℓ) and fit a
statistical relationship (the learning) between salary and
apartment size (see Figure 7.1). This statistical relation-
ship can then be used to predict h when d = dobs.
Why is this approach termed “evidential” and what are

we “learning”? This is related to the discussion in
Chapter 5 on Bayesianism, where the data is used as
evidence to infer certain hypotheses. The ultimate goal
of modeling here is not the model hypotheses (i.e.,
fractures occur, the water level is low, the system is
fluvial). Even if we can assess the probability of these
model hypotheses, we still need to calculate how these
model hypotheses cause (affect) the prediction variables
that ultimately matter in decision making. This is the
causal approach. In evidential learning, we aim to learn
the relationship between the data variables (the evidence)
and the decision variables (the decision hypothesis). How
much evidence is there that we need to drill a well at some
location (x, y)? Is there evidence that contamination has
spread: yes or no? The causal form of learning is using

evidence as circumstantial: evidence is used for a model,
then by circumstance for the prediction. Evidential
learning directly models how evidence/data is able to
influence decisions. As with any learning, the system
requires “examples.” These examples are furnished by
a-priori model realizations. However, these model vari-
ables need not be calibrated (inverted) with data.
This evidential approach is in line with the Bayesianism

philosophy of Chapter 5. The prior distribution on the
subsurface model parameters leads to stating uncertainty
on prior prediction or decision hypothesis P(h). Since this
is based on a limited sample, we get an estimateP h . The
prior of data variables is estimated from the same prior
models as P d . By estimating a statistical relationship,
one can then either directly estimateP h dobs or estimate
a likelihood model of the evidence occurring under our
current hypothesis P dobs h to get (Bayes’ rule):

P h dobs =
P dobs h

P dobs
P h (7.2)

In the subsurface, the previous socioeconomic model is
replaced with a subsurface model m, a numerical model
that describes uncertain subsurface properties. The data
d refer to an observable variable, for instance the log of
an existing borehole or a geophysical survey of interest,
while dobs is the field data, that is, the value of the variable
d measured in reality. The prediction h represents the
uncertain quantity we are trying to predict, such as a
future production rate, or an exhaustive concentration
map. For a given subsurface model, the corresponding
data and prediction variable are obtained through
forward (often highly nonlinear) physical simulation. This
could entail flow simulation, geophysical image
migration, reactive transport simulation, and so on. Both
data and prediction variables can be static (not changing
in time) or dynamic and can manifest as scalars, time
series, or spatial maps. Table 7.1 lists some examples of
scenarios where decisions depend on data and prediction
variables of varying types.
Depending on the discipline, causal analysis (see

Figure 7.2) goes by various terms such as, history
matching [Oliver et al., 2008], migration velocity analysis
[Sava and Biondi, 2004], data assimilation [Houtekamer
and Mitchell, 1998; Evensen, 2003; Reichle, 2008],
dynamic data integration [Suzuki et al., 2008], and so
on. However, because inversion is a challenging problem,
one frequently invokes ad-hoc modifications to make it
work (see Chapters 4 and 6). Furthermore, inverted
models are not guaranteed to remain consistent with
any additional data that is collected in the future. This
necessitates updating or rebuilding the subsurface model
each time additional data becomes available. Besides
being an expensive and difficult procedure, this has the
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potential to cause fluctuating or contradictory forecasts
over the lifetime of a project.
The BEL approach [Scheidt et al., 2014; Satija and

Caers, 2015; Satija et al., 2017] is motivated by the recog-
nition that inverted subsurface models are not necessarily
the final desired product for decision making but rather
the prediction variable and their quantification of uncer-
tainty. In BEL, we reconsider the role of the subsurface
model. Rather than serving as a mechanism to match
observed data, the subsurface model is used to generate
samples to learn a statistical model that describes the rela-
tionship between the data and prediction variables. This
statistical model then serves as the mechanism for predict-
ing h from dobs.
In this section, we will examine the elements of

statistical learning that are specifically tailored for the
kind of problems we typically deal with in the subsurface.
Figure 7.3 shows the broad strokes by which this process
works and will be further detailed in the next sections. We
start by considering the role of the prior in generating the
samples used for learning the statistical model. However,
statistical learning requires some form of assumption on

both the underlying variables and the nature of their
relationships. We will discuss these assumptions, tests of
their validity, and transformations that can be applied
to assuage any deviations. It also requires some form of
dimension reduction (feature extraction) for such learning
to work, and a way to undo those transformations after
modeling. Since the statistical model is not perfect, we
need to establish a confidence interval and assess the error
of the statistical model in terms of uncertainty quantifica-
tion (UQ). Finally, we will illustrate the application on
several situations that occur in practice.

7.2. COMPONENTS OF STATISTICAL
LEARNING

7.2.1. The Statistical Model

The goal of statistical modeling is to characterize the
possible outcomes of a random event or quantity and
establish how likely each outcome is to occur. Formally,
a statistical model is defined as a corresponding pair of the

Table 7.1 Example decisions and the associated data/prediction variables in subsurface applications.

Decision problem Data variable Prediction variable

Should we perform a workover on an
existing oil production well?

(Dynamic) Existing well’s historical
production profile

(Dynamic) Future production rate after
performing the workover

Should we remediate a site that has been
contaminated?

(Dynamic) Rates of contaminant
concentrations at monitoring wells

(Static) Map of containment
concentration at a given time

Should we explore a potential mining
prospect?

(Static) Magnetic data (Static) Mineral deposit size

What should the specifications of a
geothermal heat pump be?

(Static) Electrical resistivity tomography (Dynamic) Future temperature decline
in extraction well
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Figure 7.2 Two paradigms for uncertainty quantification. The traditional framework (a) applies causal analysis to match the
subsurface models to the data, then use those matched models for predictions. The proposed methodology (b) uses Bayesian
evidential learning by which the model is used to construct a statistical relationship between the data and prediction variables.
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sample space Ω (the set of all possible outcomes), and the
set of probability distribution Ρ on the sample space.
Returning to our apartment salary example, the uncertain
quantity is the square footage of our future apartment.
The sample space comprises all possible sizes that an
apartment can take on (from 0 to the largest apartment
in the world). The probability distribution describes the
chances of our future apartment being each of the sizes
defined in the sample space. As discussed in Chapter 5,
the construction of statistical models and UQ is not very
meaningful without first collecting some data. Often, the
goal is to identify the additional sources of information
that narrow the posterior f(h| d= dobs) which expresses
the distribution of the prediction variable h (sometimes
called the target or dependent variable), given that the
observable variable or data variable d has outcome dobs
(also termed features, predictor, or independent variable).
The process of uncovering this relationship between the
data and prediction variables involves a regression
analysis. The choice of the actual statistical model used
for carrying out regression analysis will depend on the
nature of the variables as well as their relationship.
Regardless of the choice of the statistical model,

performing regression requires samples of h and d to
use as the training set. The statistical model is fitted or
trained in such a way that it estimates the relationship
between the variables using the samples in the training
set. Once fitted, the statistical model can then be used
to make a prediction on the value or distribution of h
given d= dobs. The process of obtaining these training
samples is called data collection (although it entails
collecting both samples of data and predictions). Depend-
ing on the subject area, data collection can be achieved
through surveys, laboratory experiments, or clinical trials,
and so on. The essence of data collection is making

multiple repeated measurements of the unknown random
variables h and d.
In our apartment–salary case, the training set is a list of

apartment sizes and the salaries of their tenant salaries
within the city. One could imagine that, to get such sam-
ples, we could interview denizens of the city about their
salaries and living conditions. However, in the subsurface
this is not possible. There is no way for us to directly query
the performance of a future well, or take multiple logs of
the same well. Instead, we must rely on using subsurface
models and forward simulators to generate a set of reali-
zations of h and d. Another aspect of a statistical model is
that it typically comes with a set of underlying assump-
tions. Assumptions are usually required for any form of
statistical modeling, and incorrect assumptions can inval-
idate any conclusions drawn from the analysis.
A common assumption is that the data and prediction
random variables are distributed according to some par-
ametric distribution (fully described by a finite number
of parameters). The most popular parametric distribution
that occurs in statistics is the Gaussian distribution, for
the reasons discussed in Section 3.3.5. The advantage of
using parametric distributions is twofold. First, it reduces
the number of unknowns that we are trying to predict,
from the full joint probability distribution to just a few
parameters. Second, parametric assumptions provide
mathematical convenience as closed-form solutions can
often be derived for evaluating the prediction. Another
class of assumptions lies in the underlying relationship
between the data and prediction variables. Since regres-
sion will seek to formulate a function that maps the two
variables, structural assumptions on this function can
greatly simplify the mathematics. For instance, assuming
a linear function between the variables will allow for an
analytical solution of the conditional probability (see
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Chapters 3 and 6). While these assumptions simplify
regression analysis, it is important to verify that they do
indeed hold before any results can be taken with
confidence.
Another consideration for regression analysis is the

dimension of the problem. This refers to both the
dimension of the data and prediction variables, and
the number of underlying variables. Recall from
Section 3.4.1 that the number of required samples
increases exponentially with the dimension of the
problem. However, in practice, many of the dimensions
of the data and prediction variables are redundant.
Consider the case where h is a time-series response; its
dimension is equal to the number of time steps by which
it has been discretized into. Since physical responses are
rarely pure random noise, it suggests that we do not need
every single time step to represent themajority of informa-
tion contained within the signal. For instance, for
smoothly varying densely sampled time series, simply
discarding every other time step would allow for a
dimension reduction without much loss of information.
Uncovering such low-dimensional representations has
the advantage of reducing the number of samples required
for training and simplifying the statistical model. The
choice of dimension reduction technique varies depending
on the characteristic of the variables being considered. We
will discuss some methods as well as strategies for
selection in Section 7.2.3.
The choice of the regression approach depends on the

validity of the assumptions on the variables and the
dimension of the problem. In Section 7.2.4 we will discuss
a few types of regression techniques that can be applied
when certain assumptions are met. The resulting fitted
statistical model is then used with the actual observed
value of d= dobs to make a probabilistic prediction on h.
However, before these predictions can be used for
decision-making, it is important to check the validity of
the result. In Section 7.2.5 we will develop methods that
can falsify the Bayesian evidential learning approach
(possibly then in favor of the traditional causal analysis).

7.2.2. Generating the Training Set

The first step of any regression analysis is the collection
of samples of the prediction variables and data variables.
The goal of sampling is to gather information on the
variables of interest in a systematic way, such that they
can be used to train or fit the statistical model. Sampling
entails first defining the population on which we are trying
to establish a statistical model. In our apartment–salary
example, the population is defined as the set of all
apartments in the city and the salaries of their tenants.
It would be impossible to gather information regarding
every single apartment and tenant, so we would need to
select a smaller and manageable subset of the entire

population to study. To this end, we need to define a
sampling framework, which is a set in which we can
identify every single element and can possibly incorporate
each one into our samples. For instance, we could identify
all of our friends that live in the city and ask them how
much they make and how large their apartment is. These
sets of apartment sizes and salaries will then serve as the
training set for a statistical model. A fundamentally
important characteristic of a good sampling methodology
is that it generates samples representative of the
population from which it was drawn from. Failure to
do so will introduce a sampling bias meaning that certain
members of the population are overrepresented in the
training set. Accordingly, we would need to query our
friends from all walks of life, as statistical modeling using
biased samples can result in erroneous conclusions.
We may now be asking ourselves: would it have been

easier to call our friends and inquire about their salaries
and apartments rather than going through the whole
socio-economic modeling process? The answer is, of
course, it would have been. However, in order to do so
we have assumed that we have multiple friends in the city
who we can call. This means we are able to take repeated
measurements of the h and d random variables.
Unfortunately, the same assumption does not hold when
dealing with subsurface systems. Recall that a probabilis-
tic approach to UQ perceives reality as a single realization
drawn from a random variable. There is no way to draw
another realization of reality; once we have drilled a well
and logged it to obtain dobs, we cannot re-drill it and
measure a second, different instance of dobs. For h, we
cannot even measure a single instance, as it refers to a
variable that cannot be directly observed at all (i.e., future
rates, spatially exhaustive measurements, etc.).
Instead, we must rely on the fact that d and h are related

to the subsurface model m through forward functions.
The function gd generates the expected d for a given m

d= gd m (7.3)

This function tells us deterministically the value d would
take if m describes the subsurface, and without
consideration of noise on d. In practice, gd is usually a
physics-based forward simulation that produces a
time-series response (e.g., production rates) or spatial
map (e.g., seismic imaging). Likewise, another function
gh applied to m generates the prediction:

h= gh m (7.4)

To generate a set of subsurface models m, we must first
parameterize it such that both the spatially varying and
non-gridded components are accounted for. Refer to
Section 6.3 for an in-depth discussion of subsurface model
parameterization. Since the true subsurface system is
unknown, each of these parameters will be
uncertain. We may have a-priori beliefs regarding those
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uncertain parameters. Suppose we parameterized our
m= (mgrid, p) using N parameters, we then specify the
prior parameters distributions as

mi f mi i=1,…,N (7.5)

f(mi) is the pdf of the i-th model parameter, before any
observations of the data and prediction variables have
been made. Specifying appropriate priors is perhaps the
most challenging aspect of Bayesian analysis, and still
an active field of research (see Chapter 5 and Section 6.5).
After stating prior distributions, a set of L samples

are generated: {m(1),m(2),…,m(L)}. The sets of d and h
obtained from applying gd and gh on these models serve
as the training data for BEL:

d 1 ,h 1 , d 2 ,h 2 ,…, d L ,h L (7.6)

Building a regression model from a limited set of samples
comes with an important caveat: extrapolations.
Predictions obtained from extrapolation using any
regression method should be taken with caution as none
of the training samples suggest that such a prediction
value is even possible. This phenomena has been
evidenced in several practical studies [Makridakis et al.,
1982; Wilkinson, 1983; McKenzie et al., 1997; Chiu
et al., 2007]. If the samples in Eq. (7.6) do not cover or
span the observed data, it may be tempting to perform
ad-hoc modifications to the prior (such as multiplying a
parameter with some ad-hoc value) with the purpose of
ensuring that the prior range encompasses the observed
data. However, this has been refuted as “ad-hoc”
[Chalmers, 1999] and can lead to incorrect posteriors.
Indeed, any ad-hoc modification of the prior may lead
to posteriors to be inconsistent when additional
observations are collected in the future. If the prior on
d is realistic, then logically the probability of the observed
data to lie outside of the span of the simulated data
variables is simply 2/(L + 1). To see why this is true,
consider that each sample drawn from any pdf has equal
probability of being the largest drawn so far. Therefore,
the probability that dobs is larger than all L simulated data
variables is 1/(L + 1). Likewise, the same logic applies for
dobs being smaller than all L data values, yielding the total
probability of dobs lying outside the span of d of 2/(L + 1).
If the simulated data variables do not cover the
observations then either (i) one needs more samples or
(ii) one needs a different prior. The latter will occur with
a probability of (L− 1)/(L + 1).

7.2.3. Dimension Reduction and Feature Extraction

Traditionally, regression has primarily been applied to
cases where the number of samples far exceeds the number
of unknown parameters. While there have been recent
advancements in high-dimensional regression [Fodor,

2002;Hinze and Volkwein, 2005], many challenges remain
and it remains still an area of active research. The rise in
high-dimensional statistical problems is driven by the
ability to record and measure large datasets (for instance
the resolution at which rates can now be measured).
However, increased dimension in data does not necessar-
ily indicate that additional information is obtained, as
there could be redundancies within the data. A specific
type of redundancy known as multicollinearity occurs
when dimensions of the variable are highly correlated
with each other. Multicollinearity can result in both
numerical issues during regression, in addition to
degrading the predictive performance of the statistical
model [Graham, 2003].
In many cases, we may have reasons to believe that

while the data and prediction are given in high
dimensions, they are actually indirect measurements of
a lower-dimensional source that cannot be directly
observed. This means that the source of the variability
between samples lies on a lower-dimensional manifold.
The goal of dimension reduction is, thus, to identify these
degrees of freedom that capture the majority of the
variance in the data. Performing statistical analysis in this
lower-dimensional space not only reduces the required
number of samples but can improve the performance of
the model due to the removal of multicollinearity.
There has been a recent surge in interest in dimension

reduction techniques, and practically some form is usually
applied as a preprocessing step for statistical learning
procedures. Readers are referred to Fodor [2002], Hinze
and Volkwein [2005], and van der Maaten et al. [2009]
for a comprehensive survey of existing methodologies.
The selection of an algorithm is highly dependent on
the nature of the variable. We will next review (see
Chapter 2 for the details) three families of methods in
the context of BEL.
1. Principal component analysis (PCA): The mathemat-

ical formulation of PCA was discussed in Section 2.5.
Recall that PCA provides a sequence of the best linear
approximation to the original high-dimensional variable.
By examining the resulting eigenvalues, we can find the
number of dimensions that need to be kept capturing
the majority of the variability. It should be noted that
dimension reduction using PCA is strictly limited to not
only sets of vectors but also matrices and spatial maps.
A useful application is finding low-dimensional represen-
tations of a set of images (e.g., for saturation maps,
contaminant maps). This idea was originally developed
for purpose of facial recognition and is called eigen-faces
[Turk and Pentland, 1991; Belhumeur et al., 1997]. By
flattening each image in the training set into a vector,
the formulation in Section 3.5.3 can be readily applied.
Another important property of PCA is that it is bijective,
meaning that the original high-dimensional variable
can be recovered by undoing the projection. This is a
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particularly useful trait in statistical learning, as it allows
for regression to be performed in the PC space, and any
predictions made in the low-dimensional space can be
reconstructed in the original space, easily and uniquely.
The precision of the reconstruction depends on the
number of components used. For cases where themajority
of the variance is captured by the first few eigenvalues,
accurate reconstructions can be obtained using only those
first few eigen-bases. PCA can also be used to pool data
from different sources, identify redundancies, and
generate a reduced dimensional projection of the com-
bined data. This is referred to as mixed PCA [Abdi
et al., 2013], see Figure 7.4, and could be used, for
instance, to combine data from different well locations
into a single variable. The procedure is composed of three
steps. First, a regular PCA is performed on each of the
data sources to obtain the largest singular value. Second,
each data source is normalized according to the first sin-
gular value; this accounts for any difference in scales
amongst the data sources. Third, the normalized data
inputs are concatenated and regular PCA is applied to this
final matrix.
2. Multidimensional scaling (MDS): The mathematical

details of multidimensional scaling can be found in
Section 3.5.2. Unlike PCA, MDS aims to preserve
pairwise distances of high-dimensional samples in low
dimensions. This requires computing a distance between
samples in the original high-dimensional space, and using

that distance matrix to compute a lower-dimensional
projection. The advantage of MDS is that a variety of
distance metrics can be used, which are suited to describe
the dissimilarity at hand. Section 3.2.5 provides a survey
of common distances used in this book.
3. Functional data analysis (FDA): Functional data

analysis is used to identify the dominant modes of
variation among data that exhibits some systematic
variation. It assumes that the measured variable is being
driven by some underlying physical process that is
smoothly varying. This allows for the decomposition of
the variable into a linear combination of basis function
as described in Section 2.6. FDA is usually ideal for
dimension reduction on time-series variables that are
smoothly varying but complex, in particular, output of
computer models of process in the subsurface.

7.2.4. Regression Analysis

In line with a Bayesian philosophy toward UQ, the
role of regression analysis in BEL is to estimate the pos-
terior probability distribution of the prediction variable
h given we have observed dobs. We invoke Bayes’ rule
to express the posterior as the product between the prior
distribution of h: f(h) and the likelihood function f(dobs| h),
normalized by a constant. In general, we first apply
dimension reduction and/or other transformations to
the prediction and data variables (which we then denote

Compute PCA on each ddi and identify largest singular value γi

… …

……

Normalize each ddi : dividing by γi

… …

Concatenate all N into single matrix

Compute PCA on concatenated matrix
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d1
di dN

norm
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Figure 7.4 Steps in performing mixed PCA.
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as d∗ and h∗, respectively) and then evaluate the posterior
distribution:

f h� d�obs = const × f d�obs h
� f h� 7 7

The process of estimating these distributions will
depend on the choice of regression technique. This choice
is driven by the nature of the underlying variables as well
as their relationship. The literature regarding regression
techniques is expansive and very well developed.
Interested readers can referred to classical texts such as
Hastieet al. [2009], Myers [1990], and Smith and Draper
[1998] for an extensive overview of techniques. We will,
however, discuss examples of two families of regression,
parametric and non-parametric, and their application in
evidential analysis and learning.

7.2.4.1. Parametric Regression. When the prior and
likelihood distributions from Eq. (7.7) come from certain
probability distribution families, an analytical expression
can be derived for the posterior distribution f h∗ d�obs .
This is advantageous as it avoids potentially computa-
tionally expensive numerical integrations to obtain the
posterior. One such family of probability distributions is
the Gaussian distribution. That is, if the likelihood
function and prior are Gaussian, the posterior will also
be Gaussian. Under such an assumption, Gaussian
process regression can be applied [Tarantola, 2005; Satija
and Caers, 2015;Hermans et al., 2016; Satija et al., 2017].
We start by expressing the Gaussian prior f(h∗) as

f h∗ = const × exp −
1
2

h∗−h�
T
C−1

h∗h∗ h∗−h� (7.8)

The mean h� and covariance Ch∗h∗ can be readily
estimated from the prior samples (after dimension
reduction and any transformations) as h� = L

ℓ=1h
ℓ

∗

and Ch∗h∗ = 1
Lh

�Th�. We next consider the likelihood
function, which represents a measure of how well a value
of h∗ is at explaining d�obs. That is to say, what is the
probability that a modelm that generates h∗also generates
d�obs? To express this probability analytically, we need to
assume some form of relationship between d� and h�.
For instance, if they are linearly related then

d∗ =Ah∗ + ε∗ (7.9)

A is the set of unknown coefficients that map h� to d�,
while the error ε∗ is assumed to be a Gaussian with zero
mean and covariance C∗

ϵ . To estimate A, we use our
training set {{d�(1), h�(1)}, {d�(2), h�(2)},…, {d�(L), h�(L)}}
generated from the prior models and apply ordinary least
squares to find the solution A that minimizes the sum of
the squared errors. We can then express the likelihood
as a Gaussian centered around d�obs and covariance

Cd∗d∗ . For any value of h
�, the likelihood can then be eval-

uated using

f d�obs h
� =

const × exp −
1
2

Ah∗−d�obs
T
C−1

d∗d∗ Ah∗−d�obs

(7.10)

However, what is Cd∗d∗? This covariance arises due to two
sources of error. The first is attributed to the imperfect
fitting that occurs in Eq. (7.9). The effect of this can be
estimated from the residuals obtained when fitting the
training data:

Cϵ∗ =
1
L

Ah�−d�
T
Ah�−d� (7.11)

The second source of error arises when measuring the
observed data. All scientific measurements are subject
to error such that instead of measuring dobs we record
dobs + η. This random error ηmay arise from the aggrega-
tion of a large number of independently contributing
errors (e.g., circuit noise, background noise, etc.).
A Gaussian distribution centered on dobs with a covari-
ance Cdd stated in the original high-dimensional space
is used to model this error. Cdd would then be the error
of the sensor used to measure dobs (typically given by
the sensor manufacturer). However, to transformCdd into
its low-dimensional counterpart C∗

dd is not trivial as the
transformation from d to d� (and back) may consist of
a complex series of dimension reduction methods (and
other transformations). Only in the case where the trans-
formation is linear (i.e., canonical correlation or PCA)
and described by a linear operator B, then

C∗
dd =BCddBT (7.12)

However, if the transformations are not linear (e.g.,
FDA, normal score transforms, etc.), then Eq. (7.12) can-
not be used to calculate statistics such as an empirical
covariance C∗

dd .
Instead, we need aMonte Carlo sample of the measure-

ment error based on the observations and Monte Carlo
sample of η. The error (e.g., generated by sampling a zero
mean Gaussian distribution with covarianceCdd) is added
to a selected prior sample d(ℓ) to get

d ℓ

perturbed = d ℓ +η, η 0,Cdd (7.13)

We next apply the necessary nonlinear transformations

(dimension reductions) to get d ℓ
∗
and d ℓ

�

perturbed. We can
then evaluate the difference between the two sets of
transformed variables as

η ℓ
∗
= d ℓ

∗

perturbed−d ℓ
∗

(7.14)

By repeating this for all samples, we obtain a set of errors
in the transformed space: η 1 �

,η 2 �
,…,η L �

. From
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this we can directly estimate the empirical covariance
C∗

dd . Since both errors are Gaussian, we can write

Cd∗d∗ =C∗
dd+Cϵ∗ and substitute into the likelihood

function from Eq. (7.10).
With the Gaussian prior distribution and likelihood

function established, the same formulation as in
Section 3.7.5 [Eq. (3.176)] is used to evaluate the posterior
distribution of the prediction variable. As the posterior is
also Gaussian, the mean and covariance (h

∗
,Ch∗h∗ are

found using the following analytical expressions:

h
∗
= h� +Ch∗h∗A

T
ACh∗h∗A

T
+C∗

dd +Cϵ
−1

d∗obs−Ah�

(7.15)

Ch∗h∗ =Ch∗h∗ −Ch∗h∗A
T

ACh∗h∗A
T
+C∗

dd +Cϵ
−1
ACh∗h∗

(7.16)

The primary advantage of this approach is that sampling
from the posterior f h∗ d∗dobs is straightforward. By rever-
sing any transformations and/or dimension reductions,
each sample drawn from the posterior can be projected
back into the original space yielding f(h| dobs) . This yields
a set of posterior predictions from which statistics such
as quantiles can be computed on the prediction (see
Figure 7.3). However, this approach is only appropriate
when the underlying variables are Gaussian and are line-
arly correlated. It is important that these assumptions
are verified, or the appropriate transformations are
performed before proceeding with regression.

7.2.4.2. Non-Parametric Regression. In contrast to
parametric regression, non-parametric regression does
not make assumptions about the shape of the function

that relates the data to the prediction. Rather, these
techniques use the samples themselves to infer the nature
of the posterior. This is useful when the relationship is
nonlinear, multimodal, or not well understood. While
non-parametric approaches can handle more complex
distributions than their parametric counterparts, they
typically require larger sample sizes, and more
computationally intensive training.
In the previous sections, we discussed a methodology

for estimating the posterior distribution f h∗ d∗obs under
the assumptions of Gaussianity for the distributions and a
linear relationship between h∗ and d∗obs. However, when
Gaussianity does not hold, the estimated posterior mean
and covariances no longer adequately describe the
distribution. Instead, kernel density estimation (KDE,
Section 3.3.3) can be used. Consider an illustrative
example in Figure 7.5, where both the data and prediction
variables are univariate.
The expression for computing the density is

f h,d =
1

Lwhwd

L

ℓ =1

K
h ℓ −h
wh

K
d ℓ −d
wd

(7.17)

Recall that K is the kernel function and wh and wd are the
bandwidths corresponding to the prediction and data
variables (assuming a diagonal bandwidth matrix). Refer
to Chapter 3 for a discussion of kernel choices and
bandwidth selection. This allows estimating the joint
density f h,d for any given combination of h and d. To
estimate the conditional distribution, we use

f h dobs =
f h,dobs
f dobs

(7.18)
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Figure 7.5 Example of density estimation when both the data and prediction variables are univariate. (a) Each blue point represents
a prior sample and the desired conditional distribution is f(h|dobs) where dobs is indicated by the red line. (b) Joint f(h, d) estimated
by performing KDE using a Gaussian kernel. (c) The conditional distribution f(h|dobs) obtained using the joint distribution
and Eq. (7.19).
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To evaluate f dobs , we simply apply kernel density
estimation only on the data variable. Thus, we can rewrite
Eq. (7.18) as

f h dobs =

1
wh

L

ℓ =1

K
h ℓ −h
wh

K
d ℓ −dobs

wd

L

ℓ =1
K

d ℓ −dobs
wd

(7.19)

The expected value of Eq. (7.19) is also known as the
Nadaraya–Watson kernel estimator [Härdle et al.,
2004]. While the example shown in this section was
performed on univariate h and d, it can be readily
extended to higher-dimensional data and prediction
variables (after potentially applying dimension reduc-
tion). However, because of the curse of dimensionality
(see Section 3.4.1), the number of samples required to per-
formKDE increases exponentially as the dimension of the
problem increases.
CART (Sections 3.7.4 and 4.4.4) is another family of

powerful non-parametric regression tools that can handle
both numerical and categorical data variables.

7.2.5. How Much Can We Trust the Statistical Model?

At this point, we have generated samples of data and
prediction variables, performed preprocessing, built a
statistical model, and then estimated the posterior
distribution of the prediction variable. However, before
using these predictions in some decision-making context,
it is necessary to gauge the quality of the fitted statistical
model and assess the confidence in the prediction.
A number of scenarios exist that could deleteriously affect
the posterior prediction in BEL:
1. Inconsistent prior distribution: The data may not be

covered by the prior (or, the prior cannot predict the
data), which may be due to an inconsistent (e.g., too
narrow) prior or the number of samples L from the prior
is simply insufficient. We will discuss how this can be
detected in Section 7.2.5.1.
2. Uninformative data variables: The significance of the

posterior prediction depends on the degree to which the
data variable is informative about the prediction variable.
This significance issue arises because we fit a statistical
model based on a limited sample size. We will develop
a bootstrap test of significance in Section 7.2.5.2 to
quantify this. Note that significance and posterior
uncertainty are not necessarily related. One could have
a high confidence in a wide uncertainty and a low
confidence in a narrow uncertainty. The bootstrap test
of significance will allow us to establish this relationship.
3. Insufficient samples in vicinity of observed data: The

observed data is covered by the prior but an insignificant

number of Monte Carlo samples is available to estimate
the posterior of h. The latter may occur when dobs lies
in the extremes of the prior. We will develop an impor-
tance sampling-based methodology in Section 7.2.5.3 to
generate additional subsurface models that are both
consistent with dobs and the posterior prediction.

7.2.5.1. Inconsistent Prior Distributions. The Bayesian
formulation of the prediction problem requires the
specification of a subjective belief on a hypothesis. The
importance of this subjective prior is well known, and
some authors have developed method of falsification of
the prior [Gelman et al., 1996; Gelman and Shalizi,
2013]. Should the observed data value dobs fall outside
of the samples of d then the probability of the dobs under
the prior hypothesis will be very small. This in turn results
in the posterior having a very small probability as well.
Furthermore, as discussed in Section 7.2.2, predictions
when dobs are outside of the range of samples of d, entails
extrapolation, which may result in unreliable prediction
when using statistical models.
When the data variable is of low dimension, such a test

is straightforward by visual inspection. However, when d
is high-dimensional, a systematic method is required. This
task can be viewed as a form of statistical analysis. We
assume that the samples within {d(1), d(2),…, d(L)} were
generated from an underlying distribution, and we wish
to know if dobs deviates from the multivariate distribution
modeled by these samples, and thus should be classified
as an anomaly or outlier. Owing to the difficulties of
high-dimensional outlier detection, it is still recommended
that dimension reduction be performed first.
In contrast to conventional classification problems such

as those that can be addressed by regression trees
(Section 3.7.4) or support vector machines (SVM;
Section 3.7.3), applying statistical models for outlier
classification may be challenging because the training
set may not contain any outliers. This is indeed the case
in BEL as the training set contains only samples drawn
from the prior. We lack the ability to generate samples
that are definitively outside of the prior. In their
conventional forms, classification models have difficulties
handling these unbalanced training sets; hence, specific
outlier detection methods are required. A great deal of
research has been conducted in this area; refer to
Aggarwal and Yu [2001], Beniger et al. [1980], and Hodge
and Austin [2004] for a comprehensive survey of outlier
detection methods.
A popular outlier detection algorithm is the one-class

SVM (Section 3.7.3). In contrast to conventional SVMs,
the one-class SVM aims to fit a minimal volume
hypersphere around the samples in {d(1), d(2),…, d(L)}.
Any dobs that falls outside of this hypersphere is classified
as being inconsistent with the prior. Using kernels, this
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provides a powerful tool for detecting outliers both in high
dimensions and with nonlinear decision boundaries.
Consider the example in Figure 7.6. The data variable
represents a rate from a well. At an initial glance, the
observed data does not appear to be an anomaly when
viewed in the original time domain. In actuality, unlike
any of the prior samples, the observed data starts low
and ends up high, and this is inconsistent with the prior.
To detect this, we first perform functional principal
component analysis (FPCA) which reduces the dimension
of the problem by projecting the prior models
and observed data into a functional space (here 3D).
A one-class SVM using a Gaussian kernel is then trained
in functional space, and the decision boundary is
identified. If the observed data falls within this boundary,
then the prior is classified as being consistent with dobs,
and on the contrary if it is outside the boundary. The prior
data variable realizations, observed data, and SVM
boundary are plotted in Figure 7.6, which identifies the
prior as being inconsistent with dobs. In this example,
the one-class SVM is performed in two dimensions for
the sake of illustration; in practice, it can be easily
extended to higher dimensions, where visual inspection
cannot be performed.

7.2.5.2. Statistical Significance of the Posterior. In
BEL, any reduction in uncertainty between the prior
and posterior pdfs should be achieved due to the data
variable being informative of the prediction variable.
While the cause of this informativeness is physical (i.e.,

geology, physical, and chemical processes), we have
modeled it using a statistical model, estimated from
samples of h and d obtained from the sampling the prior.
Since this statistical modeling was performed using a finite
number of samples, we need to test the statistical
significance of the resulting posterior distribution. This
is measured using the p-value (also called achieved
significance level, see Section 3.13), which expresses
how unlikely an estimated reduction in posterior
uncertainty is, if the data variable was not actually infor-
mative of the prediction variable. In other words, this
measures the probability that the uncertainty reduction
we have estimated is an artifact of the random sampling,
as opposed to the data actually being informative of the
prediction variable. A low p− value (i.e., <0.05) would
indicate that our posterior is indeed significant. It should
be noted that uncertainty and statistical significance are
not necessarily correlated. It is possible to generate a nar-
row posterior uncertainty that is insignificant and vice
versa. This depends on a number of factors (the prior
uncertainty, the particular data and prediction variable,
the forward model, etc.), and thus a method is required
to estimate this significance.
In this section, we develop a hypothesis test, which tests

whether the data variable is actually informative of the
prediction (prediction variables in reduction dimension
h�). The data d∗obs is informative when significant
difference exists between the prior distribution f(h∗) and
the posterior f h∗ d∗obs . To test this, we propose the null
hypothesis that the data is not informative. Under such a
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Figure 7.6 (a) Prior and observed data in time domain. (b) Performing outlier detection in 2D functional space. The boundary
learned by the one-class SVM is show in orange; observed data falling outside of the boundary suggests that the prior is inconsistent.

BAYESIAN EVIDENTIAL LEARNING 203



hypothesis, the prior and the posterior should exhibit no
difference.
The difficulty with directly testing this hypothesis is that

we do not have the exact prior and posterior distributions,
but rather we only have a limited number of samples
drawn from the two distributions. Recall that each sample
of f(h∗) requires a computationally expensive forward
model to generate, and thus it is impractical to obtain
an exhaustive sample set. Instead, we will rely on boot-
strapping (Section 3.13) to test this hypothesis. We start
by stating the null hypothesis:

H0 f h∗ = f h∗ d∗obs (7.20)

We next need to define a test statistic that allows us to
measure the distance between these two distributions.
However, since both of these pdfs are multivariate, it
would be difficult to develop a simple measure. There
have been attempts to develop such multivariate test
statistics [Holm, 1979; Peacock, 1983; Fasano and
Franceschini, 1987], but their application is generally
limited to two or three dimensions. Instead, we propose
the use of the first component of h∗1 as a proxy to evaluate
the difference between the two distributions. The first
component is assumed to account for most of the
variation (as is the case when h∗ is the output of a
dimension reduction method such as PCA, MDS, FPCA,
etc.). It should be noted that such a test is a necessary but
not sufficient test. A sufficient test would need to include
all the components.
In the univariate case, the problem of comparing pdfs is

simplified. We define the test statistic as a measure of the
difference between the two distributions:

θ=Δ f h∗1 , f h∗1 d∗obs (7.21)

Δ can be any metric of difference between two distribu-
tions as discussed in Section 3.5.2.2 (e.g., f-divergence,
L1 norm, etc.). The prior distribution is estimated as
f h∗1 directly from the L prior samples. The posterior dis-

tribution is estimated as f h∗1 d∗obs from the posterior
samples obtained from regression. Thus, an empirical
measure of the test statistic is

θ=Δ f h∗1 , f h∗1 d∗obs (7.22)

If θ deviates significantly from 0 then the null hypothesis
should be rejected. However, since the calculation of θ is
based on limited prior samples, a bootstrap is applied.
Specifically, B datasets each of size L are drawn with
replacement from the original set of samples. For each
of these B datasets, a bootstrapped prior is computed
and BEL is applied to estimate the bootstrapped posterior

distribution (denoted by f b h and f b h dobs ). Using
these distributions, we can estimate the set of differences:

θb =Δ f b h∗1 , f b h∗1 d∗obs , b=1,…,B (7.23)

We can use these differences to approximate the achieved
significance level, ASL (see Section 3.13). The smaller this
number, the stronger evidence is against the null hypoth-
esis. In our case, a small ASLmeans that the data variable
is indeed informative of the prediction variable.

ASL≈# θb ≥ θ B, b=1,…,B (7.24)

Conversely, a high ASL is evidence that the null hypoth-
esis is true: the data variable is not informative and not
appropriate for prediction. Any estimated posterior
uncertainties may be unreliable, and any decisions based
on them need to be made with caution. Under such
circumstances, traditional inversion is required.

7.2.5.3. Updating by Sequential Importance Resam-
pling. To verify that the posterior prediction is indeed
viable, it would be useful to generate the actual subsurface
models that are consistent with dobs and yield prediction
that corroborate the posterior uncertainty. This is espe-
cially advantageous when few samples from the prior
are within the vicinity of dobs. Mathematically, this can
be formulated as sampling from the set of subsurface
models that are conditioned to the observed data: f(m1,
m2, …, mN| dobs). Undoubtedly, this is a daunting task
for traditional sampling techniques, such asMonte Carlo,
as this target distribution is high dimensional (equal to
number of parameters), non-parametric, and difficult to
specify. One can imagine that few combinations of model
variables will yield a subsurface model that generates a
data response that matches dobs simply by performing
Monte Carlo.
Instead, sequential importance resampling (SIR) can be

used to obtain models in this target region (see
Section 3.10.3). Importance sampling is a well-known
statistical method [Glynn and Iglehart, 1989] that uses a
proposal distribution q(m1, m2, …, mN| dobs) with the
aim of making sampling more efficient (e.g., sample more
the tail than the center). The proposal distribution can be
anything we want as long as it meets the criteria set out in
Section 3.10.3.5. By carefully selecting the proposal
distribution, based on domain knowledge of the problem,
we can emphasize sampling in the regions that we consider
to be more important (aka the region of the model space
that will generate a data response matching dobs). This
increases the efficiency of the sampling procedure and
allows obtaining greater precision in the prediction using
the same number of samples when compared to regular
Monte Carlo.
However, the use of this proposal distribution will intro-

duce a bias (since the proposal distribution is generally
not equivalent to the target distribution). Therefore, to
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compensate, a weight must be assigned to each drawn
sample. The weight is equivalent to the likelihood ratio
between the target distribution and the proposal distribu-
tion. This was illustrated in Section 3.10.3 with the
numerical integration of a Gaussian distribution; we refer
to the same section for the mathematical details.
Applying SIR to the general subsurface case (making no

distribution assumptions, such as multivariate Gaussian)
is not trivial. The target distribution is f(m1, m2, …,
mN|dobs), and in the general case, no explicit expression
exists. It is, however, more likely that one can deter-
mine the conditional distribution for each individual
model variable f(mn|dobs). Therefore, a possible choice
of proposal function is

f m1,m2,…,mN dobs ≈q m1,m2,…,mN dobs

=
N

n=1

f mn dobs
(7.25)

To estimate this proposal distribution q, we proceed as
usual with BEL, construct a set of prior subsurface models
m, and forward simulate to obtain d (and d� if dimension
reduction is required). However, instead of performing
regression between h� and d�, we instead apply
non-parametric regression (see Section 7.2.4.2) to d� and
each of the subsurface model parameters mn to obtain
f(mn| dobs).
Drawing samples from each of these estimated condi-

tional densities is, thus, equivalent to sampling from
q(m| dobs). Consider that we draw L sets of subsurface
model parameters:

m ℓ

q q m dobs ℓ=1,…,L (7.26)

We use the subscript q to denote that these subsurface
models are drawn from the proposal distribution rather
than the prior. However, because these “proposal mod-
els” were drawn from q instead of f, they are biased.
Therefore, the predictions generated by these proposal
models may not be the same as those of the prior models.
To correct this bias, SIR requires a weight to be assigned
to each proposal subsurface model:

w ℓ =
f m ℓ

q dobs

q m ℓ

q dobs
=
f m ℓ

q,1, m
ℓ

q,2,…, m ℓ

q,N dobs
N

n=1
f m ℓ

q,n dobs

,

ℓ=1,…,L

(7.27)

To evaluate Eq. (7.27), we need to evaluate

f m ℓ

q,1,m
ℓ

q,2,…,m ℓ

q,N dobs for each proposal model.

Unfortunately, this is not possible, as the numerator
represents the high-dimensional target distribution that
we cannot specify.

Instead, we will need some way of approximating the
ratio in Eq. (7.27). To do this, we use a proxy for m itself
rather the high-dimensional subsurface model itself. Such
a proxy would need a function ofm. One such candidate is
the prediction variable h, since it is a function of m
through the forward model gh. We can then approximate
Eq. (7.27) using the low-dimensional projection of the
data and prediction variable as

w ℓ =
f m ℓ

q dobs

q m ℓ

q dobs
≈

f gh m ℓ

q d∗obs

f q gh m ℓ

q d∗obs
≈
f h ℓ ∗ d∗obs
f q h ℓ ∗ d∗obs

(7.28)

The term f h ℓ ∗ d∗obs represents the conditional
distribution of the prediction variable as estimated from
the unbiased prior subsurface models. This is computed
by performing BEL on the pairs of h and d generated
by the prior subsurface models. The denominator of
Eq. (7.28), f q h ℓ ∗ d∗obs , represents the conditional distri-
bution of the prediction variable as estimated from the
biased proposal subsurface models. To evaluate this, we

use the samples m ℓ

q and compute

h ℓ

q = gh m ℓ

q ; d ℓ

q = gd m ℓ

q , ℓ=1,…,L (7.29)

where each pair h ℓ

q ,d ℓ

q is reduced in dimension to

h ℓ ∗
q ,d ℓ ∗

q This set of samples allows estimating

f q h ℓ ∗ d∗obs as before. Using these two estimated densi-
ties, we can evaluate the weight w(ℓ) for each proposal
model using Eq. (7.28).
SIR attempts to address the inefficiency of the prior

distribution in generating samples in regions where it
matters: near observed data and where it is important
for prediction. The proposal distribution is more efficient
in drawing samples that aid prediction as it does take into
account d∗obs. However, the independence assumption in
Eq. (7.25) ignores the dependency created by the
conditioning to observed data (even if prior model
variables are independent). These weights represent how
much each proposal model is in accordance with the
data–forecast statistical relationship established from
the original prior distribution. This means that proposal
models that do not contribute to prediction uncertainty
will get low weight. The posterior of the prediction
variables is then computed using these weights and the
proposal model prediction. For instance, the mean
posterior prediction in reduced dimensional space is

E h∗ =
1
L

L

ℓ=1

w ℓ h ℓ ∗
q (7.30)

Undoing dimension reduction will then yield the posterior
mean. Similarly, quantiles such as the P10, P50, and P90
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can be taken as weighted quantiles, where the quantile
percentage is computed using the fraction of the sum of
the total weight rather than the number of samples.
SIR retains the Bayesian formulation of BEL, as

additional information is collected (e.g., dobs is measured
over a longer period of time), the posterior can be
iteratively updated. Moreover, the proposal distribution
q(m| dobs) can also be constructed sequentially using the
proposal models from the previous iteration to estimate
f(mn| dobs). This allows the SIR algorithm to narrow down
the sampling region each time more observations
are made.
The sequential repetition of SIR may result in the

so-called sample degeneracy. Degeneracy is defined as an
increasing skewness of the SIR weights in Eq. (7.27) with
each iteration [Fox, 2003]. This means that after a few
iterations, a few of the proposal samples will have weights
that are much larger than the others. This is not very useful,
as the goal was to generate multiple samples that are in the
vicinity of dobs. The solution to this is to apply a resampling
step. Resampling works by first normalizing each of the
computed proposal weights, and then interpreting each
normalized weight as the probability of each sample:

w ℓ

norm =
w ℓ

L

ℓ=1
w ℓ

(7.31)

We then redrawL samples according to this discrete prob-
ability distribution. This removes the low-weight samples
and increases the number of high-weight samples. The
rationale behind this is that if a sample has low weight
at iteration t, it will still have low weight at time t + 1.
A variety of other resampling techniques have been
proposed to accomplish this in a systematic manner. An
overview of such techniques can be found in Douc and
Cappe [2005] and Moral et al. [2012].
SIR serves two primary purposes within the Bayesian

evidential learning framework. The first is to address the
situation where the prior is insufficiently sampled within
the vicinity of the observed data dobs. By targeting the
sampling procedure, SIR is able to generate additional
subsurface models in those areas, allowing for a more
refined prediction of the posterior forecast. The secondpur-
pose is to generate corresponding subsurface models that
contribute to the posterior of prediction assessed by BEL.

7.3. BAYESIAN EVIDENTIAL LEARNING
IN PRACTICE

Data and prediction variables in the subsurface may be
of different type, ranging from static scalars to spatial
maps to dynamic time series. Accordingly, a variety of
statistical techniques are needed to account for the diverse
nature of these variables. In this section, we will illustrate

the application of the techniques outlined in this chapter
to a series of situations in which both the prediction and
data variables are static or dynamic, meaning not varying
in time and varying, so “predicting dynamic from
dynamic” means a problem where the goal is to predict
a time-varying prediction variable based on a time-
varying observation. Several of these applications can
be expanded to multiple data sources and hence multiple
data variables. Chapter 8 will consider the full application
of Bayesian evidential learning within a UQ and decision-
making context. In particular, the Libyan oil field case
and the Belgian geothermal case use this form of model-
ing. The reader is, therefore, referred to Chapters 1 and 8
for the context of these applications.

7.3.1. Predicting Dynamic from Dynamic

7.3.1.1. Problem Setup.We first consider the situation
where both data and prediction variables are dynamic
time series. Typically, this occurs when historical data
have been observed over a certain duration, and a
prediction regarding a future time series is required.
Consider, for instance, an oil field that has been in pro-
duction for 10 years from five wells (see Section 8.2 for
the details); we wish to know, under the current operat-
ing scenario, how long the field will be economically
profitable. This entails predicting the future field pro-
duction rate over a given time horizon (30 years) and
predicting when it will decline under a given threshold.
The data variables constitute a set of five time series
describing the historical production rates from the five
existing producers over the past 10 years. While both
variables are infinite-dimensional temporal responses,
in reality they are recorded or simulated as discrete
points in time. Here, both variables are discretized at
3-month intervals. A causal analysis would entail invert-
ing subsurface models from the historical rate data of
five producers (dobs) (history matching); then using the
inverted models to predict future production, for the
same five wells.
In BEL, we first construct 500 prior subsurface models

that are not inverted for the production rate. The con-
struction of these prior models is detailed in Section 8.2.
The forward model functions, gd and gh, are reservoir
simulators that simulate the historical production rates
and future production rates given a subsurface model
and a preset well schedule. By forward simulating each
of the prior models, we obtain prior realization of d and
h (see Figure 7.7).
As an exercise to illustrate the goal of BEL, we will set

aside one of the prior models and use its data variable as
dobs (indicated by red in Figure 7.7). The corresponding
prediction variable from this prior realization can later
be used to verify the performance of BEL.
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7.3.1.2. Dimension Reduction. The data variable con-
sists of five production rates over 10 years at 3-month
intervals for a total of 200 (5 wells × 40 time-steps) data
variables per prior model. Since the data is a time series,
a natural choice for dimension reduction would be FPCA
(see Section 3.6). Using B-splines as basis functions,
FPCA identifies that only four eigenvalues are required
to represent over 95% of the variance for production rates
of each well. Therefore, we arrive at a functional represen-
tation of d denoted as dfpca, a 20-dimensional variable
(five wells × four functional components).
Since each of the five production rates are functions of

the same underlying subsurface model, it is to be expected
that some degree of redundancy or multicollinearity exists
between them. To account for this, a mixed PCA
(Section 7.2.3) is subsequently applied to dfpca, which
identifies that the first seven eigenvalues account for the

majority of the variance between the five producers.
The resulting projection of the data variable dmfpca has
seven dimensions, which is much more manageable for
regression. Similarly, applying FPCA to the prediction
variable results in the reduction dimension projection hfpca

that is four dimensional. Since the forecast variable is a
single time series (field production rate), there is no need
for mixed PCA.

7.3.1.3. Regression. After reducing dimensions of both
d and h to manageable sizes, we can proceed with regres-
sion. To linearize the problem further, we apply canonical
correlation analysis (CCA) followed by a normal score
transform to obtain the normal score canonical compo-
nents denoted as dcand hc, respectively; applying the same
transformations to dobs yields dcobs. Figure 7.8 shows
considerable linear correlation between the canonical
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data and prediction variables; hence, Gaussian process
regression can be applied to estimate f hc dcobs (see
Eqs. (7.15) and (7.16)). Moreover, we can also visually
confirm that dcobs does fall within the ranges of the prior
realizations dc; hence, the statistical model is interpolating
and not extrapolating.
Figure 7.9 shows posterior samples (of the multivariate

Gaussian) plotted in the first two canonical dimensions
The posterior samples in this space (blue) cover a smaller

area than the prior samples (gray), indicating that uncer-
tainty is reduced. These canonical scores can be back-
transformed into actual time series by “undoing” the
series of transformations (normal score, CCA, FPCA).
Statistics such as quantiles can now be computed in the
original time domain and be used for subsequent decision
making. For verification, the “true” future field-
production rate corresponding to the realization that
was set aside and used to generate dobs is shown in red.
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7.3.2. Predicting Static from Dynamic

7.3.2.1. Problem Setup.We next consider a situation in
the same Libyan oil field where the data variable remains
a time series, but the prediction variable is a static scalar
property. This scenario often occurs when the prediction
variable is a property that cannot be directly measured,
and hence needs to be modeled. Now three injectors are
used for water-flooding over a period of 10 years.
Water-flooding is simply an enhanced oil-recovery
method whereby brine fluids are injected in the reservoir
to drive oil to producers. The task is to maximize produc-
tion by modifying the injection rates. To do so, one often
uses the concept of injector efficiency, which measures the
incremental oil that is produced per unit of water that is
injected into the given injector. In other words, an efficient
injector is one that produces the most incremental oil for
as little injected water as possible. Intuitively, we would
reallocate water from inefficient injectors in the field at
the present time to the efficient ones. Injector efficiency
is not a quantity that can be directly measured in the field.
Rather, it is an uncertain prediction variable that is

determined from a reservoir model which itself is
uncertain. Injector efficiency can be computer for each
generated model realization. We will again set aside one
of the prior realizations as “truth,” and use the
corresponding d as dobs (red in Figure 7.9 to predict the
efficiency of injector 1 after the 10th year of production.
The “true” h in this case is 35.41%, which will be used later
to evaluate the performance of BEL.

7.3.2.2. Dimension Reduction and Regression. The
data variable remains the same as in Section 7.3.2 and
is a 200-dimensional time series of the producer historical
rates profile. The prediction variable (injector 1 efficiency)
is a scalar and does not require dimension reduction. The
goal of regression is to build a predictor for an injector’s
efficiency using the seven mixed PCA components of the
data variables, then use it to predict the corresponding
efficiency given the historical field observations dobs.
Figure 7.10 shows the relationship between prediction
variable and reduced dimension data variables. Visually,
we can see that dobs falls within the range of the prior data
forecasts, allowing us to apply BEL.
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To estimate the posterior distribution f(h| dobs), we
apply KDE (see Section 3.3.2). In this example, the joint
space f(h, d), contains eight dimensions (seven from the
data components and one from forecast). Following
the same procedure as in Section 7.2.4, we arrive at the
posterior distribution shown in Figure 7.10. We observe
that BEL does provide a reduction in uncertainty when
compared to the prior, and the value of h corresponding
to the highest density is 38.91% which is in accordance
with the “truth.”

7.3.3. Predicting Dynamic from Static

7.3.3.1. Problem Setup. To illustrate this type of
situation, we will consider a simple 2D synthetic reservoir
model undergoing water flooding and predict the future
production rate of both an existing well and a planned
producer. The setup is shown in Figure 7.11. The model
domain is 200 × 200 cells with each cell having dimensions
50 ft × 50 ft; the thickness of reservoir is 100 ft. The initial
oil saturation is 100% throughout the reservoir. A variety
of uncertainties are present in this reservoir model,
including depositional uncertainty, spatial compaction
distribution, in addition to spatial variability describing
porosity and permeability heterogeneity. Prior distribu-
tions are assumed regarding each of these uncertainties,
and geostatistical simulation is used to generate a prior
set of 1000 reservoir models.
During the first 5 years of production, water is contin-

uously injected into a well located at the lower left of
the model domain at a surface flow rate of 1000 stb/day
with a top-hole pressure limit of 12,000 psi. An existing

production well is located at the center of the model
domain with a bottom hole pressure limit set to 3000
psi. The goal is to predict the next 10 years of production
for both the existing and new producers (from 5 to
15 years). Using the prior reservoir models and a reservoir
simulator, we obtain the prior field production rates
for each model discretized with 50 time steps (see
Figure 7.11). We consider as data variables 4D seismic
data that informs the spatial distribution of oil saturation.
The modeling of such data itself is complex, with many
uncertainties. Here we simply mimic the forward
modeling of this 4D data by taking the oil saturation of
the simulator at 5 years and applying Gaussian filter
to smooth the saturation map. This mimics simply the
lack of resolution. The set of 1000 of these smoothed
spatial maps constitutes the prior data variables (see
Figure 7.12).

7.3.3.2. Dimension Reduction.The data variable under
consideration is the saturation map of size 200 × 200 cells
yielding a 40,000-dimensional variable. This is clearly too
large for regression to be effective, and it necessitates
a dimension reduction. As described in Section 7.2.3,
eigen-images may be an effective parameterization for
smoothly varying spatial data. Recall that eigen-image
analysis is equivalent to PCA. By concatenating each
map into vector, conventional eigenvalue decomposition
is used to compute the underlying eigenvectors and
corresponding eigenvalues. By keeping those eigenvectors
corresponding to the largest eigenvalues, we can identify
the orthogonal modes that capture the majority of the
variance in saturation maps.
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In this example, we were able to retain 90% of the
variance in the prior data variables by keeping the first
30 eigen-images (see Figure 7.12). This decreases the
dimensionality of the data variable without much loss
in variance.Wewill denote this reduced dimension projec-
tion as de. The prediction variable is a time-series
response. Hence, we will apply FPCA with B-splines to
reduce its dimension hfpca from 50 to 5 while retaining
99% of the variance.

7.3.3.3. Regression. Eigen-image analysis and FPCA
reduces d and h to manageable dimensions for regression.
We will once again apply Gaussian process regression
after the same sequence of transformations as in 7.3.3.1
(Canonical Correlation Analysis followed by a normal
score transform). The resulting canonical components
are denoted dc and hc, while the observed data dobs is
transformed to dcobs Posterior samples are then drawn,
and the transformations undone to generate posterior
forecast in the time domain. These posterior samples
are shown along with the quantiles in Figure 7.13.

7.3.4. Predicting Static from Static

7.3.4.1. Problem Setup. In the absence of any dynamic
data or needing to learn a dynamic response, the problem
of deriving static prediction from static data often arises.
Example of static data is any well measurement, such as
cores or logging, 2D, or 3D geophysical data. Target
predictions are proportions, volumes, or any model
parameter. These problems often arise when appraising

a subsurface system. For example, in reservoir modeling,
one needs to appraise the original oil in place based on
wells and seismic. In groundwater management, one
may want to determine drawdown of a well or total
amount of contaminant in a given zone.
The causal inversion approach would be to build

multiple model realizations using a Bayesian-type
inversion and use the posterior models to calculate
empirical distribution of the uncertainty of some target
variable. This approach allows calculating posterior
uncertainty of any variable once the models are derived.
But this comes at the cost of a possibly difficult and
CPU-demanding approach. BEL can be used as an
alternative, even in complex situation.
As an example of such a situation, consider the use of

3D seismic data to assess the total amount of reservoir
rock in a subsurface system. We consider here a real field
case of estimating proportions in a turbidite reservoir
system in West Africa [Scheidt et al., 2015]. The seismic
data over the reservoir zone is shown in Figure 7.14.
BEL requires stating a prior probability model on all
uncertain model variables. It also requires forward mod-
eling of the geophysical data and such forward modeling
relies on rock physics as well as other parameters (e.g.,
seismic wavelet) that are uncertain. Hence, the following
uncertainties are included:
1. Rock physics uncertainty: Since only few wells are

drilled, the relationships between various rock physics
properties are uncertain. Additionally, with only few wells
it is possible that certain type of rocks, known to be pres-
ent in these systems, may not be hit by the well path. As a
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consequence, several alternative rock physics models can
be postulated.
2. Wavelet uncertainty: The wavelet [often a Ricker

wavelet, see Mavko et al., 2009] is used to forward model
the seismic data on a given reservoir model. This wavelet
is calibrated fromwells, but because of measurement error
and limited amount of information, this wavelet has an
uncertain frequency or bandwidth.
3. Geological uncertainty: Turbidite systems in this area

are well studied. Turbidites are created by avalanches on
the seafloor. They either form channel-like or lobe-like
structures. Object-based models can be used to generate
geologically realistic reservoir models. The various para-
meters involved in such modeling (dimensions, spatial
occurrence, relationships) are uncertain (see Section 6.6).

7.3.4.2. Dimension Reduction and Regression. BEL
consists of first drawing parameters from all prior distri-
butions by means of Monte Carlo, including all para-
meters involved in forward modeling. Then using that
set of parameters to forward model the seismic data (see
Figure 7.14) here, we consider seismic amplitude data.
The aim is now to build a statistical relationship between
the 3D seismic amplitude data and a target parameter of
interest. Let us consider as target prediction the total pro-
portion of sand that contains oil. In other words, what we
are after is f(h| d = dobs) with h the proportion and dobs the

observed seismic amplitude data. We need to estimate
f(h| d), then evaluate it in d= dobs. Because the seismic
data is of high dimension, we first need to create a space
of much lower dimension within which the modeling of
f(h| d) can be easily done. To understand how this can
be achieved, we need to understand that what we are inter-
ested in is not so much the seismic data variables them-
selves but how they vary when models variable change.
In other words, if we can quantify how salient features
in the seismic vary, we can achieve a meaningful dimen-
sion reduction. Since seismic data variables are essentially
waveforms, a way to quantify the global variation of the
amplitudes is by means of wavelet analysis [Debauchies,
1993]. Wavelets are essentially a form of dimension reduc-
tion. Changes in the seismic data variables can be quanti-
fied by changes in the wavelet coefficients. Such changes
in wavelet coefficients can be quantified by means of dis-
tance in the histogram of such wavelet coefficients [see
Scheidt et al. 2015 for details]. Once a distance is defined,
density estimation can proceed by means of kernel density
estimation in metric space (see Section 3.3.2). Figure 7.15
shows an MDS plot based on such distance calculations.
This plot also contains the actual observed data dobs and is
colored with a model parameter, here turbidite channel
width. From such plots, one can easily calculate posterior
parameter distribution, including those key target vari-
ables, such as the proportion of oil sand (see Figure 7.15).
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Figure 7.14 (a) 3D seismic survey of a reservoir zone inWest Africa. (b) Prior model realizations and forward simulated 3D seismic.
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7.3.5. Summary

So far in this section, we have applied BEL for predic-
tion in four cases where the data and forecast variables
take on a variety of forms. Despite these differences in
variables, we see the themes outlined in this section are
all prevalent. The first step of BEL always consists of con-
structing a set of prior subsurface model using a-priori
information, Monte Carlo experiments, and geostatistical
simulation. These prior models are then used to construct
the corresponding set of data and prediction variables. In
practice, the forward functions used to create these vari-
ables can consist of reservoir simulators, geophysical
simulators, or simpler static operators.
The next common theme is that of preprocessing by

which the prediction and data variables are transformed
into lower dimensions or appropriate distributions that
satisfy assumptions that may be needed before regression
can be applied. The choice of dimension reduction method
is dependent on the nature of the variable itself. We saw in
these examples that FDA was effective for smoothly vary-
ing time-series data, while eigen-image analysis was useful
for reducing the dimension of spatial maps. The practi-
tioner is encouraged to explore different multiple dimen-
sion reduction techniques. The choice of regression
technique depends on the type, dimension, and relationship
of the data and forecast variables. For high-dimensional
problems, parametric regression is generally preferred over
non-parametric techniques unless a large number of prior
samples are available, or if the underlying assumptions
of parametric regression cannot be met.
In Chapter 8, we will present a few applications of BEL

in real-world decision making.
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8.1. INTRODUCTION

We now arrive at the point where things really matter:

the applications. Here is where elegant theories, smart

workflow, clever mathematics, the rubber meets the road:

real (messy!) data, real decisions. The “solutions” we will

be presenting to the question posed in Chapter 1, using the

materials from previous chapters, are but one approach,

one strategy. No single solution fits all problems of

uncertainty quantification (UQ), or decision making.

The choices we made are our personal preferences.

However, a common thread of reasoning occurs in all

these cases.

Bayesian philosophy. In Chapter 5, we outlined a view

on how Bayesianism applies to UQ in subsurface systems.

We reflected on the importance of a proper representation

and prior uncertainty of the geological variability/hetero-

geneity in the subsurface. We relied on building falsifiable

prior distributions that are wide and reflect realistically

the large set of hypothesis and possibilities that exist.

Monte Carlo. The power of Monte Carlo (and

quasi-Monte Carlo) lies in its simplicity and in its ability

to be parallelized CPU or GPU-wise. Monte Carlo can be

used for many purposes: to perform global sensitivity

analysis, to generate geostatistical models, or to produce

posterior uncertainty on target prediction variables. It is

unlikely that a “one-shot”Monte Carlo will always work.

Often, after a first Monte Carlo experiment, prior

distributions are falsified by some data and hence these

prior distributions need revision, resulting in a second

Monte Carlo. Sensitivity analysis may indicate that

certain variables can be set to fixed values (or reduced

ranges) and this may invoke yet another Monte Carlo.

Global sensitivity analysis. Perhaps of all techniques,

global SA may be the most relevant for UQ. Global

sensitivity analysis has many purposes; it allows

1. understanding the complexity of the problem;

2. understanding what model variables impact data,

decisions, forecasts;

3. simplifying the model;

4. understanding how data informs decisions;

5. targeting the Monte Carlo, thereby reducing

variance.

Falsification. Bayesianism is inherently inductionist.

Both prior and posterior should be tested (deduction). It

is a healthy practice to try and falsify all modeling assump-

tion and hypothesis to the extent that this is possible.

Avoiding complex model inversions. Inversemodeling by

derivingmodel variables from data is a powerful idea. The

current practice, however, is to use increasingly complex

models and increasingly sophisticated data and to couple

many types of physical and chemical models. The entire

world may soon be instrumented. Inversion in high

dimensions with nonlinear forward models, coupled

physics, and non-Gaussian model variables accounting

for all uncertainties remains an illusion. Inversion is

also sequential, mostly Markovian, meaning it is

computationally less appealing than Monte Carlo.

Statistical surrogate models. Doing Monte Carlo and

building smart statistical emulators of the various input

and output uncertainties is a strategy that will be used
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frequently used to overcome the computational burden of

CPU demanding forward models.

Dimension reduction. The subsurface is complex,

describing it requires high-dimensional parameteriza-

tions. These high dimensions are problematic in applying

most statistical methods. A carefully planned dimension

reduction on either model, data, or prediction variables

will be key to rendering standard statistical methodologies

applicable.

Linear models. It may be tempting to use sophisticated

nonlinear modeling to address problems with complex

interacting components. Many of these methods (e.g.,

ANN, additive models) are powerful, but they often

require substantial expertise and tuning to make them

work. Linear models are well understood and robust in

high dimensions. The chance of overfitting (and thereby

artificially reducing uncertainty) is much more favorable

than with nonlinear models. Linear models are not as

accurate as nonlinear models in terms of performance,

but the idea of weak classifiers, bagging, and boosting

may improve accuracy. The trick, therefore, is to turn

the problem linear by means of various transformation

and to further develop linear modeling, such as kriging

in higher dimensions.

In each case, we will first outline and motivate our strat-

egy. We also list the various techniques used, so readers

can refer and read-up on those sections. We will not be

presenting all the details of these cases. Much more work

went into them than perhaps the write-up may suggest.

We will instead focus on the key elements of the

approaches that are unique to each case.

8.2. PRODUCTION PLANNING AND

DEVELOPMENT FOR AN OIL FIELD IN LIBYA

8.2.1. Three Decision Scenarios and a Strategy for UQ

As discussed in Chapter 1, reservoir management

decisions made over the lifetime of an oil reservoir are

subject to a large set of uncertain variables.We considered

three decision scenarios (see Figure 1.4) over the lifecycle

of a large oil field of a Wintershall asset in Libya. We will

first review these three decision scenarios within the

context of the current approaches and then present a

strategy that can be used for all the three scenarios.

Decision scenario 1. This decision presents itself when

the field has been in production with five producers

for 800 days. Waterflooding was commenced at the

400-day mark using three injectors to preserve reservoir

pressure. A decision is required regarding the modifica-

tion of well controls for the three injectors such that the

field oil production/NPV is maximized. In practice,

waterflooding optimization is performed using a reactive

control approach [Nigel et al., 2003], in which nonprofita-

ble producers are shut down. Closed-loop optimization

techniques [Brouwer and Jansen, 2002; Aitokhuehi and

Durlofsky, 2005; Wang et al., 2009] have been developed

to predictively address problems such as early water

breakthroughs. These approaches consist of generating

a single history matched reservoir model (deterministic

inversion, see Section 6.4), and then applying a rate

optimization step on that model. Both steps are time-

consuming. Also, such rate optimization has to be done

repeatedly in time as the reservoir conditions change.

As an alternative to numerical optimization, Thiele and

Batycky [2006] take advantage of streamline simulations

and their ability to quantify the so-called well allocation

factors (WAFs) between injector and producers. These

WAFs allow calculating injector efficiencies (IEs) that

model how effective each injector is at producing offset

oil. A heuristic-based decision model is then built that

calculates new optimal rates for each injector, with the

purpose of re-allocating water from inefficient to efficient

injectors. While this approach has been successfully

applied to large field cases [Ghori et al., 2007;Muhammad

et al., 2007], it still requires the specification of a history-

matched models. The challenge, therefore, is to deal with

the uncertainty in the reservoir model and the

time-dependent nature of the IEs.

Decision scenario 2. The decision question in this

scenario is where to drill an infill well after the field has

been in production for 3000 days. The aim is to maximize

future oil recovery. Optimal well placement has been an

intensive area of research both in oil and gas [Aanonsen

et al., 1995; Güyagüler and Horne, 2001; Nakajima,

2003; Ozdogan and Horne, 2006; Wang et al., 2012] and

in hydrology [Gorelick, 1983; Park and Aral, 2004;

Maskey et al., 2007]. Numerical optimization remains a

popular approach for addressing such well placement

problems, techniques such as simulated annealing

[Beckner and Song, 1995], genetic algorithms [Montes

et al., 2001; Emerick et al., 2009], or particle swarm

optimization (PSO) [Onwunalu and Durlofsky, 2009;

Jesmani et al., 2015] determine the optimal well placement

to maximize recovery. In each approach, the objective

function is evaluated by running a flow simulation for a

proposed well location and computing the production

rate or NPV. As an alternative to full numerical optimiza-

tion, da Cruz et al. [2004] introduce the concept of a

quality map, which serves as a proxy measure of NPV

by drilling at each grid cell in the reservoir model. By

using kriging to interpolate this quality variable from a

few locations, the well placement problem becomes much

more tractable. The problem is that each of such well

placement approaches requires a history-matched

reservoir model, and such model is subject to uncertainty.

In well placement, the risk associated with infill drilling is
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much higher than simply adjusting a few well controls.

We will need to address the question of how to optimize

well-locations subject to the various reservoir model

uncertainties.

Decision scenario 3. Here we need to decide when the

field is to be plugged and abandoned. Since substantial

capital costs is incurred when abandoning a field, it is

important for the operator to have an estimate of when

this occurs. Such decision requires a long-term prediction

of the field production rate and corresponding UQ.

A decision corollary to the long-term production is the

length of the concession contract. Since petroleum licenses

are negotiated for a limited amount of time, it is important

for the decision maker to know how long the field can be

profitable for. We will consider a situation where the

reservoir has been in production for 4000 days. The

abandonment decision will depend on the prediction for

the field production rate in the future.

Despite the different nature of the three above described

decision problems, a common strategy for UQ can be

followed (Figure 8.1). In each scenario, only limited

spatial information is available (well logs at wells), as well

as historical rates from the existing producers.

A causal analysis (inversion or history matching,

Chapter 6) of each of the three decision scenarios would

require constructing multiple history-matched models.

Owing to the complexities of the reservoir and

corresponding difficulties associated with history match-

ing, where all uncertainties (structure, petrophysical,

and fluid) need to be considered, a Bayesian evidential

learning (Chapter 7) appears appealing. Figure 8.1

provides an overview. The workflow consists of generat-

ing prior pdfs on all uncertain modeling components

based on some of the available data. This in turn allows

generating multiple reservoir models. These models are

constrained to well information but not to any production

data. The reservoirs are forward modeled for each of the

three situations described above to obtain data variables

as well as the prediction variables. The data variables

(production at multiple wells) as well as some of the

prediction variables (the quality map, the rate decline)

are reduced in dimension. The latter will make the

building of a statistical relationship between data and

prediction variable easier. This statistical model is then

used to make predictions in each scenario.

Why this strategy?. Various forms of uncertainty.

Uncertainty due to a lack of spatial information (limited

boreholes), as well as uncertainty in the fluid characteris-

tics, relative permeability, fault transmissibility, and so

on, requires a strategy that can properly deal with all

forms of uncertainty at the same time.

Difficulties of traditional inversion when dealing with

production data. In each of the three decisions, the

available data are production profiles from existing

producers. Constructing inverted reservoir models

(history matching) that match production data is

challenging and time-consuming, especially in the

presence of complex geological heterogeneity and

multiple types of uncertainty.

Rapid decision making required. Certain decisions such

as well control optimization need to be made rapidly and

Prior pdfs

Monte Carlo study

Prior data variables:

historic production

Prior prediction variables 

IE/quality/rate

Reduction uncertainty

IE/quality/rate

Well-log well-test

lab data

Multiple 

reservoir

models

Historic

production

data

Flow

simulation

Flow

simulation

Dimension

reduction

Dimension

reduction

Decision

Figure 8.1 A common strategy for UQ in all three decision scenarios.
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frequently to maximize productivity. It would be imprac-

tical to history match every time such a decision is

required.

Because of the different nature of the prediction vari-

ables, a variety of statistical tools will be used to account

for them. Readers can review the following methodolog-

ical sections:

1. Bayesian Evidential Learning (Chapter 7)

2. Mixed PCA (Section 7.2.3)

3. Eigen-image Analysis (Section 3.5.1)

4. Canonical Correlation Analysis (Section 3.5.3)

5. Functional Data Analysis (Section 3.6)

6. Gaussian Process Regression (Section 3.7.5)

7. Kernel Density Estimation (Section 3.3.2)

8.2.2. The Prior

8.2.2.1. Prior Reservoir Models. The authors were not

involved in the actual geological modeling of this

reservoir. Hence, prior distributions were mimicked after

what could reasonably be expected for these cases and

through discussions with geologists and engineers of the

operating company in Kassel, Germany. This also allows

us to generate a “truth” case simply by picking a prior

reservoir model to generate all the data and predictions

(hence we “know” the actual future). In the next section,

on the Danish groundwater case (as well as the Belgian

and US contamination case), we illustrate how such

detailed modeling using geostatistical methods and how

such prior distributions are established in real field

situations.

Recall from Chapter 1 that a single reservoir model is

composed of both gridded (spatial) and non-gridded

components (fluid properties). The spatial component

includes the structural and stratigraphic model of the

reservoir describing the location and geometry of bound-

ing layers and horizons in addition to the faults in the

reservoir. In the Libyan case, the structural model was

constructed according to the geological setting described

in Section 1.2. The structural model (see Figure 8.2)

consists of four faults and two deformable horizons.

In this case, a brittle deformation is modeled with no

smearing. The stratigraphic model is shown in

Figure 8.2. In this example, fault locations and displace-

ments are fixed.

Depositional uncertainty is represented by means of

training images (see Section 6.3.4). Figure 8.3 shows that

the geological conceptual model (as expressed by the

training image) consists of three facies: low-quality sand

(blue), high-quality sand (green), and diatomite (red).

To generate multiple lithological model realizations that

reflect the geometries in this training image and are at

the same time constrained to lithological interpretation

from well data (here five wells), we use a multiple-point

geostatistical (MPS) algorithm termed Image Quilting

[Mariethoz and Caers, 2014] with the well logs as

conditioning data. Realizations of 500 facies were

generated of which a few are shown in Figure 8.3.

To model porosity, porosity data at the existing wells

are used as conditioning data as well as to estimate trends

and variogram ranges. Porosity realizations are then

generated using sequential Gaussian simulation

(Section 2.3) within each lithology. Uncertainty on

non-gridded parameters can be expressed using simple

prior probability distributions. The names and pdfs of

the uncertain non-gridded parameters for the Libyan case

are given in Table 8.1. We perform Monte Carlo

experiment and generate 500 samples from each pdf.

For illustration, we set aside one realization from the prior

and use its data variable as dobs. Its prediction variable is

used as the truth and serves as a mechanism for verifying

the results of evidential analysis.

8.2.2.2. The Prior for Data and Prediction Variables.
Prior realizations of data and prediction variables,

d and h, can now be generated based on the generated

prior reservoir model realizations. In each of the three

decision scenarios, a reservoir flow simulator is used as

the forward functions for both d and h. The data variables

are the production rates for the five existing producers

over periods of 800, 3000, and 6000 days respectively.

In terms of prediction variables, we need to consider

(a) (b)

Figure 8.2 Structural framework (a) and stratigraphic (b) grids for the Libyan case. The reservoir model consists of four faults and two
deformable horizons.
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(i) injector efficiencies, (ii) quality map, and (iii) future

field production rates.

Injector efficiencies. Three injectors are present in the

field and have been injecting for the past 800 days. The

prediction variable is the efficiency of each injector at

the present time. We use the definition of injector

efficiency from Thiele and Batycky [2006] which is the

ratio between offset oil production and water injection.

This is a scalar for each injector, for a total of three

injectors in this study. To determine the efficiency of an

injector for a given prior reservoir model realization, we

use a streamline simulator [Thiele et al., 2010] as the

forward model. A streamline simulator allows quantify-

ing how much fluid is allocated between each injector

and producer by solving a transport problem along each

streamline. By running the streamline simulator for each

prior reservoir model realization, we obtain realizations

(samples) of the prior distributions of each of the injector’s

efficiencies shown in Figure 8.4.

The data variables are composed of the historical

production rates from the five producers over the

800-day duration of the field. These are obtained by

performing reservoir simulation on the prior reservoir

models. The prior data variables now consist of a set of

producer rates discretized at 10-day intervals for a total

of 400 dimensions (five producers, each containing

80 time-steps). These are shown in Figure 8.5 along with

the actual observed rates dobs indicated in red.

Quality map. In decision scenario 2, the field has been in

production for 3000 days. The data variables are the pro-

duction profiles of the five existing wells over the past

3000 days discretized at 50-day intervals for a total of

300 dimensions. The prediction variable is the quality

map, which is a 2D map the size of the reservoir grid

(127 × 165) for a total dimension of 20,095. The quality

map aims to reflect, at each location, the expected reser-

voir performance when opting to drill a production well at

that location. Ideally, to obtain this, we would require a

Training image

(a)

(b)
One permeability model One reservoir model

Three realizations of lithology

Figure 8.3 (a) A training image with channels of high-quality sand and diatomite bodies is used to construct facies realizations.
(b) Permeability realization shown in depositional domain (left) and gridded physical domain (right).

Table 8.1 Prior uncertainties on non-gridded reservoir model
variable.

Parameter name Prior pdf

Oil Water Contact U[1061,1076]

Fault 1 Transmissibility Multiplier U[0.2,0.8]

Fault 2 Transmissibility Multiplier U[0.2,0.8]

Fault 3 Transmissibility Multiplier U[0.2,0.8]

Fault 4 Transmissibility Multiplier U[0.2,0.8]

Oil Viscosity N(4,0.5)

Irreducible Water Saturation N(0.2,0.05)

Irreducible Oil Saturation N(0.2,0.05)

End-point rel K Water U[0.1,0.4]

End-point rel K Oil U[0.1,0.4]

Corey Coefficient Oil U[2,3]

Corey Coefficient Water U[4,6]
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separate simulation for each possible well location. How-

ever, this would be computationally infeasible when deal-

ing with large reservoirs and large number of realizations.

Instead, we follow the approach proposed by da Cruz

et al. [2004], by which only a limited number of potential

locations are selected for forward simulation. The

simulated incremental oil production over the next

1000 days, for each infill well, is used as spatial data for

interpolation with kriging (Figure 8.6). One such quality

map is constructed for each prior realization.

Field production rates. The field has now been under

production for 4000 days, and a prediction is desired on
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the future field production rate. The prediction variable is

the field’s total production profile from day 4000 to

9000 days assuming current operating conditions. The

data variables d are the five production profiles of the

existing producers over 4000 days, also discretized at

50-day intervals. d has a total of 400 dimensions (five

producers, each contains 80 time-steps).

8.2.3. Uncertainty Quantification

8.2.3.1. Decision Scenario 1: Well Control. As out-

lined in Figure 8.1, a dimension reduction on the data

variables is needed to make statistical modeling feasible.

Since the production profiles in Figure 8.5 are smoothly

varying and exhibit systematic variation, functional

principal component analysis (FPCA) is an appropriate

choice for dimension reduction. A third-order B-spline

with 40 knots was selected as the basis function for each

of the five data responses. This choice of basis allows

for 99% of the variance to be expressed by the largest five

eigenvalues, effectively reducing the dimension of d from

500 to dfpca, or 25 dimensions. An additional dimension-

reduction step uses mixed PCA (MPCA) to account for

any possible multi-collinearity of rates between the five

producers. MPCA identifies that the top seven compo-

nents, d
mpca, account for the majority (>99%) of the

variance between the five producers. Figure 8.7 depicts

scatter plots of the first two MPCA components versus

the prior injector efficiencies h. Since each injector’s

efficiency is a scalar, there is no need for dimension
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reduction on h. The red line indicates the actual field

observations d
mpca
obs .

Since the prediction variable is a scalar, the posterior con-

ditional distribution f(h| dobs) is univariate. Kernel density

estimation (Section 3.3.2) will be used to estimate this pos-

teriordistribution.For eachof the three injectors,Figure 8.8

shows the posterior distribution estimated byKDE (blue) in

comparison with the prior distribution (gray).
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8.2.3.2. Decision Scenario 2: Well Placement. To

predict a static spatial variable (quality map) from a

dynamic data, readers are referred to Sections 7.3.2 and

7.3.3. The main challenge in dealing with spatial is the

large dimension of the variable, equivalent to the number

of discretized cells. We will use eigen-image analysis

(Section 7.2.4) to identify basis images (eigen-images) that

represent the underlying modes of variation among the

prior quality maps. We next need to determine how many

eigen-images should be retained. By examining the

eigenvalues, one generally finds that eigen-image analysis

requires much more eigenvalues (up to an order of

magnitude more) to represent 95% of the variance, in

comparison with FPCA. This is due to the underlying

variable (spatial map vs. a time series) being more

complex. However, retaining a large number of eigen-

images required to express 95% of the variance will not

reduce the dimension of the variable sufficiently to

effectively apply regression. Instead, we need to consider

the level of granularity that is required to make the deci-

sion. Since the decision is where to place a new infill well,

we only need to identify the regions of high reservoir

quality, rather than generating a prediction that is

accurate to within each grid cell (Figure 8.9).

A number of eigen-images is required that allows

expressing the large-scale features within the quality

maps. In this instance, 10 eigen-images was deemed

(qualitatively) sufficient (38.8% of the total variance).

This reduced representation of h, denoted heig is 10

dimensional. We next need to perform FPCA andMPCA

on d; the same procedure as in the previous scenario yields

dmpca of seven dimensions.

We now perform regression on d
mpca and h

eig to evaluate

the posterior distribution of the quality maps. Because of

the dimensionality of the problem, we apply CCA and

normal score transforms, and finally Gaussian process

regression to obtain f hc dcobs . As done in Section 7.3.3,

we will sample from this posterior and undo (back-trans-

form) each of the previously applied transformations and

dimension reductions. The result is a set of posterior

quality map realizations. We next compute the mean

and variance of the posterior realizations in the spatial

domain (Figure 8.10). For verification, the true quality

map is also shown. We observe that the posterior mean

identifies the regions that contain the highest reservoir

quality. These two maps (mean and variance) will be used

to guide the decision of where to place the new infill well.

8.2.3.3. Decision Scenario 3: Abandonment. In this

decision scenario, we need to predict dynamic (future rate)

from dynamic (past rate) (see Section 7.3.1). Since both

data and prediction variables are time series, FPCA is

performed on both d and h to get dfpca and hfpca(dim hfpca

= 4). A MPCA step is performed on the data variables

after FPCA to account for multi-collinearity between

the five existing producer rates. After MPCA dmpca is of

seven dimension. Prior to performing regression, we apply

CCA followed by a normal score transform. The scatter

plots of the top three canonical components are shown

in Figure 8.11 and indicate the presence of a strong linear

correlation.

Equations (7.13) and (7.14) are used to estimate the

posterior distribution f hc dcobs as a multivariate
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Gaussian. By sampling from this distribution, we obtain

posterior samples of the prediction in canonical space.

These canonical scores are then back-transformed into

the original time series by reverting each of the previously

applied transformations (normal score, CCA, FPCA).

The resulting posterior prediction variables are shown

in Figure 8.11 along with the quantiles. As an illustration,

we also plot the “true” future production rate from the

realization that was set aside as the reference (in red).

Given risk preferences, the UQ can be used to decide

which date to stop production.

8.2.4. Decision Making

8.2.4.1. Well Control. To address this problem, we use

the decision model proposed in Thiele and Batycky [2006]

in which the new rate of each injector qnew
i is computed by

multiplying the current injection rate qold
i by a factor of

1 +wi, where wi is the weight of each injector determined

from its efficiency.

qnew
i = 1+wi q

old
i (8.1)

The weight wi can be positive (increase rate for current

injector) or negative (decrease injection rate). Thiele and

Batycky [2006] propose a functional form for determining

this weight based on the average of the efficiencies of all

injectors e as well as the least and most efficient injectors

in the field (emin and emax). Therefore, for a given injector

with efficiency ei, its weight wi is computed as

wi = min wmax,wmax

ei−e

emax−e

α

if ei ≥ e (8.2)

wi = max wmin,wmin

e−ei

e−emin

α

if ei < e (8.3)

wmin and wmax represent the minimum and maximum that

the decision maker is willing to modify the injection rate
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Figure 8.10 (a) True quality map with prior and posterior mean, (b) prior and posterior variance.
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(e.g., wmin = −1 would mean that an injector could

potentially be shut off completely). The α exponent

controls the shape of the weight curve (Figure 8.12) and

serves as a mechanism to control how “aggressive”

the decision maker wishes to be when re-allocating

water from injectors that deviate from the average

efficiency e.

Using this heuristic in lieu of full optimization dramat-

ically speeds up the decision-making process but may

result in suboptimal control settings. However, this rapid

updating allows decision makers to make informed

changes on well controls at a much higher frequency than

workflow relying on history matching and rate optimiza-

tion. For this example, we used wmin = −0.5, wmax = 0.5,

and α= 0.5 to compute the optimized injection rates

shown in Table 8.2. To verify these updated rates, the

“true” realization is flow simulated using both the sets

of injection rates for 400 additional days. The cumulative

field oil production for the no action and optimized case

are shown in Table 8.2; we observe a 3% increase in oil

production without increasing the overall field water

injection rate.
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8.2.4.2. Well Placement. Both mean and variance

of the posterior quality maps should be taken into

consideration when determining the placement of an infill

well. Themean qualitymap is itself a good indicator of the

high-quality regions of the reservoir. Intuitively, we would

position a new infill well such that it is located as close as

possible to as many high-quality cells with smallest

uncertainty (as expressed by a posterior variance).

Finding the position xpos of the optimal infill well location

can be expressed as the optimization problem:

max
xpos

nc

i=1

Qi

xi−xpos
2

8 4

nc is the number of potential well locations, Qi and xi are

the quality and position of each potential location. If mul-

tiple (nw) infill well locations xpos = x 1 ,x 2 ,…,x nw are

to be chosen, one can rewrite the optimization problem as

max
xpos

nw

n=1

nc

i=1

Qi

xi−x n 2
(8.5)

The variance of the posterior qualitymaps can be used as

an indication of the uncertainty associated with this well

placement. A conservative decision maker may choose to

avoid placing infill wells in regions where there is signifi-

cant deviation between posterior realizations. This can be

implemented by incorporating additional terms that

accounts for this variance into Eqs. (8.4) and (8.5).

For the Libyan case, this methodology was applied to

the mean posterior quality map image. The resulting loca-

tion for a single new infill well is shown in Figure 8.13. By

overlaying the selected location with the “true” quality

map, we observe that the largest high-quality region

was indeed selected as the well location.

8.2.4.3. Abandonment. For a set of operating expenses

and oil prices, an economical model can be used to

evaluate the required production of a field for it to remain

economically viable. Having computed posterior distribu-

tions of field production, we can then evaluate an

expected time of when the field should be plugged and

abandoned, under that required production rate. Various

economic scenarios can be explored by repeating the deci-

sion model with different oil prices or operating expenses.

For instance, suppose it was determined that the Libyan

field requires at least 600 stb/day to be economically
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Figure 8.12 Weight functions for different values of the exponent.

Table 8.2 Estimated injection efficiency for “no action” and optimized rate, together with the resulting cumulative oil production.

Rates Injector 1 Injector 2 Injector 3
Cumulative oil production
over next 400 days (stb)

True efficiency 72.15% 13.84% 15.61% No action 6.968 × 105

Estimated efficiency 72.92% 14.02% 16.20%

No action injection rate (stb/day) 1460 1830 3788 Optimized
injection

7.112 × 105

Optimized injection rate (stb/day) 3004 1273 2772
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viable. According to our prediction, the P10, P50, and P90

of when the field will drop below this rate are 7897, 7136,

and 6574 days, respectively (see Figure 8.11).

8.3. DECISION MAKING UNDER

UNCERTAINTY FOR GROUNDWATER

MANAGEMENT IN DENMARK

8.3.1. A Strategy for UQ

Recall from Chapter 1 the decision problem of

re-allocating water extraction from an existing well field

to a new well field. Four locations are available as choices

for re-allocation. We need to balance return with risk:

(return) a successful operation that restores streamflow

and wetland, (risk), not achieving the desired re-alloca-

tion, and presence of pollution from industrial or farming

sources.

The decision model will depend on the prediction of five

target variables: (i) caused drawdown, (ii) streamflow

reduction potential, (iii) wetland reduction potential,

(iv) overlap between well catchment and farmland use,

and (v) overlap between well catchment and industry

use. To generate the posterior distributions of these five

variables, a groundwater model that includes all uncer-

tainties will be built. Model variables are informed by

the various data sources available, such as geophysical

data, head data, and streamflow data, but such data is

subject to error/uncertainty. Our strategy to reach a

decision is described in Figure 8.14.

This strategy is summarized as follows. Based on some

initial estimates, expert opinions, geological understand-

ing, and geostatistical modeling, we will build a prior

model for all uncertainty components in the groundwater

model. This prior model will also include any measure-

ment error. This prior model will be used in a Monte

Carlo study to generate prior realizations of the data

(head and streamflow) and the five prediction variables

at the four proposed locations. Next a sensitivity analysis

is performed for both data and prediction variables.

This sensitivity analysis will provide insight into what
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modeling components impact both the data and the

prediction variables. Only those modeling components

that (i) impact the prediction and (ii) whose uncertainty

can be reduced with data are of importance in a further

analysis. Using the same Monte Carlo study, we build

two surrogate models using tree-based regressions. The

first regression tree models the relationship between data

variables and impacting model components and the sec-

ond regression model focuses on the relation between

the five prediction variables for each location and the

model variables. The surrogate models are used to reduce

uncertainty on those model components informed by

head and streamflow data, the second surrogate model

allows performing a secondMonte Carlo with the reduced

uncertainty model components that then generates the

posterior distributions of the prediction variables. The

second surrogate model voids any further running of

the (CPU-demanding) groundwater models. The resulting

posterior distributions on the prediction variables are

used in the decision model. Each of these components

are elaborated in the next sections.

Why this strategy?. Several reasons have motivated our

particular choices:

1. The SkyTEM data. This data is of very high quality,

certainly for groundwater applications. It is at par with

the quality one can expect of seismic data in petroleum

reservoir systems. This means that the model architecture

(lithology) is reasonably well-informed and hence can be

modeled using geostatistics based on a smooth inversion

(see Chapter 6).

2. The complexity of the groundwater model. Because of

the availability of significant amount of data resources

spanning multiple decades, we can afford to build a

complex model that is well informed. However, complex

models come with a large amount of variables. This

means that we need to understand how well these

variables impact data and prediction responses.

3. The flow simulation time. Because of the model

complexity and the large simulation times, surrogate

models based on full flow simulation are needed for

conditioning (inversion) and forward prediction.

The following methods will therefore be used:

1. PCA (Section 3.5.1)

2. MPCA (Section 7.2.3)

3. Deterministic Inversion (Section 6.4)

4. Regression Trees (Section 3.7.4)

5. Approximate Bayesian Computation (Section 3.12.6)

The aim here is not to provide a detailed account of all

geological, geophysical, and hydrological modeling work

performed in this area which spans many years and many

papers [Henriksen et al., 2003; Jørgensen et al., 2003,

2015; Sandersen and Jørgensen, 2003; Thomsen et al.,

2004; Jørgensen and Sandersen, 2006; Foged et al., 2014;

Hoyer et al., 2015; Marker et al., 2015]. Instead, we

illustrate how such expansive modeling work can be

integrated into the workflow of Figure 8.14 to reach a

specific local decision.

8.3.2. Designing a Monte Carlo Study

8.3.2.1. The Groundwater Model: Overview. In creat-

ing any subsurface model, we need to specify various

modeling components largely divided into boundary

conditions (BCs) and the geological variability as

expressed in lithology, porosity, and hydraulic conductiv-

ity. The present groundwater model has common basic

elements: recharge, BCs, pumping conditions, stream

segments, and surface runoff. Although we are interested

in a smaller area near Kasted (see Figure 1.5), this local

area cannot simply be isolated from the larger-scale

regional variation in groundwater flow. A large model

is, thus, built to account for distant outer boundaries

and to avoid any adverse effect due to the abstraction

from large well fields on water balance. This is certainly

the case in heterogeneous systems containing buried

valley structures, where hydraulic responses can spread

over long distances [van der Kamp and Maathuis, 2012].

For that reason, a larger-scale regional model was built

that can then model the BCs (fluxes) of the local model.

In terms ofmodeling effort, there is a fine balance between

efforts spent on the local vs. regional model. For this local

decision problem, it is likely that local details will matter

most, but that the impact of BCs can be modeled through

a coarser regional model. This regional structure can then

be re-used for several different local decision problems.

To limit the computational burden, and since effects of

structural heterogeneity is largest close to the target of

interest (pumping wells in this case), it was decided to

build a deterministic regional-scale lithological model

using the resistivity–clay fraction clustering method

[Foged et al., 2014; Marker et al., 2015]. However,

hydraulic conductivities are treated as uncertain variables

in the deterministic lithology structure. In other words,

any spatial uncertainty related to lithology was deemed

sufficiently resolved within the regional model (but

not within the local model). The deterministic lithological

model was obtained in a fashion similar to Section 6.6.3,

namely based on rock physics calibration. Such calibra-

tion requires the lithological description from boreholes

and the geophysical data inverted to a resistivity model.

The calibration results in a clay-fraction model.

Geophysical-based lithological variation is then created

by clustering several properties (in the present case

clay-fraction and resistivity) into a set of groups, each

denoting a different lithology. A total of 11 lithologies

were created (see Figure 8.15).

The local scale and the regional model were simulated

jointly using MODFLOW-USG [Panday et al., 2015],

to avoid adverse boundary condition effects from the

230 QUANTIFYING UNCERTAINTY IN SUBSURFACE SYSTEMS



interface between the two models. The regional scale

model had a refinement of 100 m by 100 m, and the local

scale model had a resolution of 50 m by 50 m. Both model

areas have 11 numerical layers. Major stream segments

were simulated as rivers, and drains were used to simulate

surface runoff and runoff fromminor trenches and stream

segments that may run dry. Besides these, model recharge

was simulated using the recharge package, and pumping

wells were simulated using the well package in MOD-

FLOW-USG.

Two sources of uncertainty are associated with rivers

and drains. Drains are estimated to be located on average

at a depth of 1 m below the terrain. The terrain elevation

was determined based on a 10-m resolution digital

elevation model (DEM), taking the average elevation of

the DEM model within the groundwater model cell.

The uncertainty of drain depth was modeled using a

normal distribution with a standard deviation of 0.3 m.

The elevation of the river was determined from the same

DEM model, taking the minimum value of the DEM

model −1 m within the groundwater model cell. The

standard deviation of error on DEM is also 0.3 m. The

connection between the rivers/drains and aquifer is

modeled using a conductance term. These conductance

terms were also treated as uncertain in the analysis.

A spatially variable recharge was estimated based on

the land use within both the local and the regional area.

This recharge was also treated as an uncertain model

variable. It was, however, assumed that the spatial pat-

terns were well known, but not their global level; hence,

a constant but uncertain perturbation was applied over

the entire area. This uncertain perturbation was modeled

using a trapezoid distribution with a lower zero value of

0.6, a lower maximum value of 0.75, a higher maximum

value of 0.85, and a maximum zero probability of 1.0.

Approximately half of the outer BCs of the regional

model have constant heads, and the remaining are no-

flow. This constant head BC is also treated as uncertain,

a standard deviation of 0.75 m, was used except for those

boundaries at the coastline, where the standard deviation

was taken as 0.1 m.

Given this initial setup the following groups of para-

meters are considered (Table 8.3):

1.Local model architecture. This models the uncertainty

on the location and the internal structure of the buried val-

leys. The model architecture will be generated using
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Figure 8.15 Embedding of the local “kasted”model into the regional model. The local model lithologies are stochastically varying,
while the regional model is deterministic (with uncertain hydraulic conductivities).

Table 8.3 Summary of parameters and uncertainties.

Parameter name
Parameter
code Amount Type of uncertainty Established from

Local model architecture ma 1 Scenario Geophysics wells

Regional and local
hydraulic conductivity

Kh 22 Log-normal pdfs Head data
Well data

Head boundary
conditions

ch 5 Uniform Experience

River riv 8 Conductance log-normal
DEM: uniform

Experience from previous studies

Drain drn 8 Conductance log-normal
DEM: uniform

Experience from previous studies

Recharge rch 1 Trapezoidal Base-flow estimates
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geostatistics and constrained to the SkyTEM data. This

uncertainty will be discussed in the next section.

2. Local and regional hydraulic conductivity. Here we

need to distinguish two models:

(i) The local model: each lithology has different

hydraulic conductivities.

(ii) The regional model: the hydraulic conductivities

assigned to the architecture at the regional scale will

influence the fluxes into the local model. The prior dis-

tributions include measurement error of the head

values.

3. Rivers. two groups of model parameters are

considered:

(i) River bed conductance: how the river bed is con-

nected to the subsurface.

(ii) River bed elevation: estimated from a DEM,

which has its own uncertainties, modeled as constant

but unknown perturbation on river bed elevation.

4. Drains. It includes simulated surface runoff, runoff

from minor trenches and stream segments that may run

dry. Drains require conductance and elevation, each sub-

ject to uncertainty.

5.Recharge. This is water moving from surface water to

groundwater and is a function of other processes such as

evapotranspiration and infiltration. We assume that the

spatial variation of the recharge over this entire area is

fixed but multiplied with a constant but unknown scalar.

6. Regional scale outer BC. The constant head BCs of

the regional scale model are subject to uncertainty. These

constant head BCs are largely defined by the location of

streams, lakes, or the sea. For the streams and lakes,

the elevation of these BCs was estimated similar to the

streams and drains, as outlined above. This was also the

case for the sea, but here the uncertainty was reduced

compared to the two others.

8.3.2.2. Local Model Architecture. Uncertainty in the

local model architecture reflects uncertainty on the exact

position and crosscutting of buried valleys. Recall that

such valleys consist of poorly sorted sediments, some

consisting of sand, others of clay. This local heterogeneity

is likely affecting the groundwater flow near the four

alternative well locations in the decision model. To model

spatial uncertainty, we need to opt for a geostatistical

method that (i) can be constrained to the geophysical

data, (ii) honors the interpreted crosscutting relationship

and valley structure, (iii) can be constrained to any

borehole data, and (iv) generates multiple realizations

relatively fast.

The workflow to achieve this is shown in Figure 8.16.

This workflow accounts for both the uncertainty in the

geophysical data due to incomplete sampling and the

spatial uncertainty of the lithologies. First, one notices

that the geophysical data does not cover exhaustively

TEM data

Gap-filling

Borehole data

Base geological model 

Figure 8.16 Workflow for generating multiple 3D realizations of the local model architecture. Two major uncertainties need to be
addressed: (i) gap-filling of the SkyTEM data and (ii) spatial uncertainty related to the cross-cutting of buried valleys of different age.
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the area of study because (i) the flight path consists of 1D

lines and (ii) the presence of power-lines, cities, and other

noise sources produce electromagnetic interference that

leaves a gap in this dataset. These gaps therefore need

to be filled. A spatial interpolation method such as kriging

would fill the gaps but does not deliver an uncertainty

model or account for the fact that the geophysical data

clearly displays channel-like features. For that reason,

we use aMPSmethod, namely direct sampling [Mariethoz

et al., 2010]. Direct sampling preserves the channel-like

structures and generates multiple realizations of the

gap-filled geophysical data. We refer to Mariethoz and

Caers [2015] for an example of this type of gap-filling

applied to satellite data.

To generate multiple lithological realizations, we again

rely on direct sampling. Direct sampling requires the

existence of a training image that reflects the geologists’

rules and interpretation of the buried valleys. To create

such training image, a geological expert [Hoyer et al.,

2015] makes a single detailed interpretation of the

geophysical data (see Figure 8.16). We retain only three

major lithologies from this interpretation: meltwater clay

(red), clay till (green), and meltwater sand (blue).

Important here is that the buried valleys consist both of

a permeability lithology (blue) and a much less permeable

lithology (green), whose small-scale variability cannot be

deterministically discerned from the TEM data. Direct

sampling uses the gap-filled geophysical data (as soft

data) and the training image (the spatial variability) to

generate lithological model realizations. Each new litho-

logical realization uses a different gap-filled geophysical

image realization. A total of 50 local model architecture

realizations were generated. Thereby both sources of

uncertainties are accounted for.

8.3.2.3. Data and Prediction Variables. The models

defined so far account for all data sources except for the

364 head measurements and the three streamflow

measurements (see Figure 1.5 for their locations). The

latter could possibly further reduce uncertainty on the

local model variables. To account for head and stream-

flow data, inversion methods are often used to determine

the model parameters, in particular hydraulic conductiv-

ity. Here the problem is much more sophisticated than

simply inverting hydraulic conductivity from head data

since the local model of uncertainty includes the uncertain

lithological model as well as the BCs, which are uncertain

because of uncertainties in the regional model. A standard

inversion method, deterministic or stochastic, would be

difficult to apply.

Therefore, instead of focusing immediately on

inversion, we first explore the problem by means of a

sensitivity analysis. This analysis will help in understand-

ing not only what model parameters influence the data

response (useful for inversion) but also the target

prediction variables. This joint sensitivity analysis will

aid in understanding to what extent the data are informing

the target predictions.

Sensitivity analysis requires defining “input” variables

and “output” variables. The input variables are summar-

ized in Table 8.3. Consider as output first the data

variables (head and streamflow). Using Monte Carlo

simulation, 1000 realizations of all input variables are

generated. The groundwater model is executed for each

run to record 364 simulated head data and three

streamflow data, as well as the 20 prediction variables

(five variables, four locations). Since we need to constrain

the model to both head and streamflow data, a joint

sensitivity is needed on head and streamflow. Therefore,

a PCA is performed on the head data, the streamflow

data, followed by an MPCA. This MPCA generates

(independent) score variables that model joint variation

in head and streamflow data. Figure 8.17 shows a score

plot of the mixed PCs. Important here is that the actual

field observations (the 364 head and the three streamflow

measurements) are captured by the prior model.

Consider the following five prediction variables:

1. WDD: water drawdown (minimize). Because we do

not know the geological and hydrological conditions at

these four locations, it is difficult to evaluate if the desired

abstraction rate is possible. Instead, we look at the

drawdown caused by pumping: if the drawdown is

extremely high, then it is unlikely that the 20% can be

extracted (water is available or not). The drawdown

should therefore be minimized.

2. SFRP: streamflow reduction potential (maximize).

By moving the groundwater extraction from the well field

to a new location, the outflow of groundwater to the

stream should preferentially increase.

3. WRP: wetland reduction potential (maximize).

Groundwater flow to wetlands should increase, if the

groundwater level close to the wetland is partially restored

by reducing the groundwater abstraction at the well field.

However, if the location of the new well is close to wet-

lands, or the new location is hydraulically well connected

to the wetlands, re-allocation will not have the desired

effect.

4. FARM: overlap between well catchment and

farmland use (minimize). To secure high agricultural

production, farmers often use fertilizers and pesticides.

These compounds can potentially pose a threat to the

quality of the groundwater, and thereby the water

extracted. It is, therefore, of interest to minimize the area

of the well catchment which is located in an agricul-

tural area.

5. INDU: overlap between well catchment and industry

use (minimize). Similar to the agricultural area, industrial

areas can potentially pose a threat to the groundwater
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resource. It is, therefore, of interest tominimize the area of

the well catchment that is located in industrial areas.

The prediction variables were calculated in two steps.

First, the base model scenario was run, using the current

groundwater extraction at the well field. This base

scenario was used as reference for the predictions. Second,

the model was run four times, one for each potential

pumping well location. These locations were fixed in the

analysis, but the depth of the screening interval was

adapted for each new run, such that the pumping well

always was screened in the layer of the groundwater

model with the highest hydraulic conductivity. For each

potential well location, the WDD, was calculated as the

drawdown simulated in the cell where the abstraction

occurred. The SFRP was calculated as the percentage

increase in the outflow to the stream by using the base

scenario as reference. The WRP was calculated as the

difference in groundwater outflow to the wetland between

the base scenario and the outflow caused by moving the

abstraction to the new pumping well locations. The

FARM and INDU variables were calculated using

particle tracking. The catchments for each of the new

wells were calculated by backward tracking of particles

from the potential new pumping wells to terrain. By

extracting the land use from GIS themes, the portion

catchment located within farmland and agriculture can

be calculated.

To evaluate the effect of the inflow crossing the local

model boundary, the water balance of this portion of

the model was calculated. Because of the large well fields,

whose influence stretches beyond the local model area, the

local system cannot be modeled independently from the

regional groundwater systems. For each forecast scenario,

the budget of the local model area (see Figure 1.5) was

calculated by determining the inflow and the outflow

across the boundary. The influence of the regional water

balance can thereby be evaluated in the analysis. The

budget variable and its uncertainty, therefore, greatly

simplify the representation of uncertainties regarding

the connection between the local model and the regional

model.

8.3.3. Sensitivity Analysis

To perform sensitivity analysis, we use boosted regres-

sion trees (Chapter 4). Trees can be used for two purposes:

sensitivity and regression. The regression capability will

be used in the next section to generate a surrogate model

groundwater flow. One issue that needs to be addressed is

the model architecture variable (“ma”), representing the

complex spatial variation of buried valley. In order to

use this variable in trees (and regression), we need to

address the fact that we have 50 different models, hence

technically 50 different levels for “ma.” Regression trees

simply do not work well with that many levels. To address

this issue, we first rank the models based on their distance

from the base model interpretation (Figure 8.16). The

base model is here seen as some “best guess” and the

realizations a deviation from it. This makes sense here,

because all models are constrained to the high-quality

SkyTEM data and so is the base model. Most of the

variation in these different model architectures is due to

the uncertain spatial interaction between gravel and

clay-till (blue and green color in Figure 8.16). As distance,

we use the proximity transform distance (see Section 3.5).

The distance is used to classify the model architectures

5 10 15 20 25 30

# PCs

65

70

75

80

85

90

95

100

V
a

ri
a

n
c
e

 e
x
p

la
in

e
d

 (
%

)

Cumulative variance explained

–6 –5 –4 –3 –2 –1 0 1 2 3 4

PC1 (68%)

–3

–2

–1

0

1

2

3

(a) (b)

P
C

2
 (

1
4

%
)

PCA on both head data and stream flow

Figure 8.17 (a) Score plot of first two mixed PCs of the head and streamflow data variables. The yellow cross represents the actual
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into five groups. This reduced the problem from 50 model

realizations to five model realizations.

We first address sensitivity regarding data variables.

More precisely, we calculate sensitivity of model vari-

ables with regard to the mismatch between data variables

and the actual observed data. In that sense, the regres-

sion tree provides insight into how changing certain

model variables will affect this mismatch. Second, the

regression tree can then serve as surrogate model for

the mismatch, which will be useful in inverting the model

variables based on the data. Figure 8.18 shows the tree-

based sensitivity analysis. An important observation is

that the head and streamflow data are dominated by

boundary fluxes (budget) and recharge and not by

hydraulic conductivity or the lithology model within

the local area. Figure 8.19 shows a few of the tree-based

sensitivities for the prediction variables. It is encouraging

that several prediction variables share sensitivity with

the head and flow data, except for the drawdown, which

is mostly influenced by hydraulic conductivity and lith-

ological model. Table 8.4 summarizes the sensitivities

regarding the 20 prediction variables.

8.3.4. Uncertainty Reduction

The same treemodels are now used as surrogatemodels.

The tree for the data variables will serve as surrogate

model in approximate Bayesian computation (ABC,

Chapter 3), to update the uncertainty on the model

variables. ABC becomes feasible because the tree model

can be evaluated many thousands of time without much

computational effort. In Bayesian computation, we need

to define a threshold below which we accept a model

realization as matching the data. This threshold here is

based on how well the tree fits the actual simulations

(see Figure 8.18). Figure 8.20 shows the updated posterior

distributions after ABC in comparison with the prior for a

few model variables. Logically, sensitive variables are

updated, while insensitive variables are not.

The same model realizations accepted by ABC are now

used to calculate reduced uncertainty in the prediction vari-

ables. Table 8.5 shows the goodness of fit in terms of a cor-

relation coefficient between the simulated prediction and

the tree-based prediction. The tree model performs overall

very well. A simple Monte Carlo using the posterior
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Figure 8.19 Sensitivity analysis for three prediction variables at location A.

Table 8.4 Overview of the most impacting model variables for each location and for each prediction variable.

Stream SFRP Wetland WLRP Drawdown WDD Farming Industry

Loc A

Recharge Recharge Local K Local K Model

Outer boundary River Model Budget Local K

Budget Local K Outer boundary River

Local K Model Recharge

Drain DEM

Loc B

Local K Recharge Local K Local K Model

Recharge Local K DEM Budget Budget

River Model River Local K

Recharge

Loc C

Budget Recharge Local K River Local K

Recharge Local K Model Local K River

Local K Model Model Model

River River Recharge

Drain Outer boundary River

Loc D

Budget Recharge Local K Budget Budget

Recharge Local K Model Recharge Recharge

River Model Local K Local K

Local K

Note: Model = the local lithological model (ma); Recharge = rch1; River = any streamflow-related parameters (riv); Local
K = hydraulic conductivity of the local model (kh); Drain = any drain parameter (drn); DEM = digital elevation model (_elev);
boundary = outer boundary error (ch parameter).



realizations of the previous ABC then results in posterior

distributions of these 20 prediction variables (Figure 8.21).

8.3.5. Decision Model

The posterior distributions for the five prediction vari-

ables at four locations (a total of 20 posterior pdfs) can

now be used in a decision model. Here we follow closely

the example case of Section 2.4.5. We need to deal with

multiple (conflicting) objectives. As a risk neutral decision

maker, we take the P50 of each posterior distribution and

construct a table of objectives vs. alternatives (see

Table 8.6). From this, we assess which objective best dis-

criminates the alternative to determine the swing weights.

Table 8.5 Comparison in terms of correlation coefficients between the simulated prediction
variables (using MODFLOW) and the tree-based models.

Stream SFRP Wetland WLRP Drawdown WDD FARM INDU

Loc A 0.76 0.92 0.98 0.81 0.60

Loc B 0.84 0.89 0.997 0.87 0.83

Loc C 0.78 0.89 0.98 0.84 0.88

Loc D 0.88 0.86 0.97 0.85 0.77

Note: Correlation is between the predictions and the training set for all realizations.
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Using linear value functions (a default choice here,

but this should be further refined with the decision

makers) as a way of stating preference, the various units

are transformed into a common scale of 0–100 (see

Table 8.7). Based on this information, a total score is cal-

culated for each alternative. Location D receives the high-

est score.

How can risk be traded off with return? This

information is provided through the efficient frontier

(see Chapter 2) and calculated by grouping risk (pollution

sources and too high drawdown) and returns (wetland &

streamflow restoration) (see Table 8.7). Then, we

recalculate the scores and plot increasing return vs.

decreasing risk (see Figure 8.22). One notices that,

although location D has the highest score, it does not

score well on risk, as a matter of fact it carries the highest

risk (lowest score).

We re-run the same decision model but now for a risk

averse decision maker. For example, we take the P10

quantile for returns (to safeguard against not getting as

much return) and the P90 quantile for the risks (to

safeguard against having more pollution than expected).

The risk averse decision maker seems to have more

options, as the trade-off between location A andD ismore

favorable in their case since now location A has more

return, and location D has less risk.

8.4. MONITORING SHALLOW GEOTHERMAL

SYSTEMS IN BELGIUM

8.4.1. A Strategy for UQ

The previous two cases dealt with geological systems on

a 10–100 km with possibly significant amount of informa-

tion on the subsurface system. We now turn to the use of

groundwater as heat exchanger for climatization of

building. The problem is now at much smaller scale,

10–100 m, and likely involves much less subsurface infor-

mation. Here a few boreholes (at best) and time-lapse

ERT data. This make sense: because of the small size of

the engineering operation, the cost of extensive data

acquisition outweighs its benefit. It may, therefore, be

tempting to just use a deterministic model to design the

system and this is where we start in the next section.

However, using a deterministic model leaves many

(uneasy) questions. Can we really trust it? What if the

chosen parameters differ from the “real” parameters?

A simple deterministic model and some local sensitivity

analysis may aid in designing a prior stochastic model

with uncertainties hydraulic conductivity and boundary

(gradient). Figure 8.23 provides an overview of our

strategy. First, a Monte Carlo study and sensitivity

analysis on the prediction variable (here the temperature

Table 8.6 P50 values of each alternative vs. objective with assignment of the swing rank.
Alternatives

Loc A Loc B Loc C Loc D Best Worst Swing rank

O
b
je
ct
iv
es

Farming pollution Farm (units) 0.895 0.887 0.760 0.616 0.616 0.895 5

Industry pollution Indus (units) 0.066 0.037 0.160 0.227 0.037 0.227 2

Streamflow restoration
SFRP (units)

0.048 −0.102 −0.048 0.139 0.139 −0.102 1

Wetland restorationWLR (units) 0.000085 0.00037 0.00037 0.00049 0.00049 0.000085 3

Drawdown WDD (units) 12.40 36.6 15.66 22.74 12.40 36.6 4

Table 8.7 Scoring alternatives vs. objectives, for a risk neutral decision maker.

Objectives Rank Weight Loc A Loc B Loc C Loc D Type

Farming pollution Farm (units) 5 0.067 0.00 3 48 100 Risk/$ cost

Industry pollution Indus (units) 2 0.267 84 100 35 0 Risk/$ cost

Streamflow restoration SFRP (units) 1 0.333 62 0 22 100 Return/$ benefit

Wetland restoration WLR (units) 3 0.200 0 70 71 100 Return/$ benefit

Drawdown WDD (units) 4 0.133 100 0 87 57 Risk/$ cost

Total 56.7 40.8 42.6 61.0

Return-benefit score 20.74 14.08 21.66 53.33

Risk-cost score 35.92 26.85 24.16 14.30
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change over time) provides insight into what model

components are most impacting the decision variable.

This provides insight into what type of geophysical

measurements (and its design) inform most impacting

model variables. Once that design is known, the actual

field data is acquired, and noise removed. Next the data

is used to reduce uncertainty on the prediction variables.

Here, we use the Bayesian evidential learning (Chapter 7).

This requires generating prior realizations of the data

variables (ERT) and developing a statistical model that

directly predicts the future temperate evolution in the

system from the ERT data. The posterior distribution is

used to decide whether the groundwater system can be

used as a heat exchanger at this site.

Why this strategy?. Little information on spatial varia-

bility. At best, we get some idea of vertical stratification

of the few boreholes available. It would be tempting to

simply ignore spatial variability or even variance of

hydraulic conductivity and work with a smooth or layered

model. However, this would not reflect the impact such

heterogeneity may have on ERT measurements and the

deduced temperature changes. We, therefore, need to ran-

domize sufficiently the model of spatial variability of

hydraulic conductivity. At a minimum, we need to under-

stand its potential impact.

ERT design. Designing time-laps measurements is not a

trivial exercise in these kinds of real field applications. To

avoid any re-doing because of a failed design, it is

M
o

re
 r

is
k

More return More return

0

10

20

30

40

(a) (b)

0 10 20 30 40 50 60

Efficient frontier risk neutral decision maker

0

10

20

30

40

50

0 10 20 30 40 50 60

Efficient frontier risk averse decision maker

Location A

Location B
Location C

Location D

Location B

Location DLocation C

Location A

Figure 8.22 Efficient frontiers for a risk neutral (a) and risk averse decision maker (b).

Prior 

stochastic 

model

Monte Carlo study

Prior data 

realizations

Prior prediction 

variables realizations

Global

sensitivity 

analysis

Reduction uncertainty

Impacting model variables
Posterior in 

predictions
Decision

Local

sensitivity analysis

What data informs 

impacting variables?
Acquire data

Remove noise

Prior data 

realizations

A few boreholes

Deterministic

model

Figure 8.23 Strategy to reach a decision (go ahead with the heat pump) in the shallow geothermal case.

QUANTIFYING UNCERTAINTY IN SUBSURFACE SYSTEMS 239



important to understand, prior to taking the measure-

ments, whether these measurements will have an impact

at all on what predicting temperature change. Part of this

design is knowing how long to run the experiment.

Time-lapse inversion. Such inversion is not trivial (see

Chapter 6) and involves various steps, such as linking

the physical parameters to the measured data, which itself

involves modeling. Bayesian evidential learning allows for

a simple forward modeling only (no explicit inversion to

hydraulic conductivity) and link data directly with

prediction, which is ultimately what is needed here.

The following methods will therefore be used:

1. PCA (Section 3.5.1)

2. Deterministic Inversion (Section 6.4)

3. OAT (Section 4.3.1)

4. DGSA (Section 4.4.3.2)

5. CCA (Section 3.5.3)

6. Modeling Noise (Section 7.2.4.1)

7. Bayesian evidential learning (dynamic from dynamic,

Section 7.3.3.1)

8.4.2. Deterministic Prediction with Local
Sensitivity Analysis

8.4.2.1. A Simple Deterministic Model. UQ does not

necessarily require complex modeling from the get-go.

Some simple model building may already provide some

guidance toward a full UQ and can be useful in cases

where very little data is available. A simple deterministic

model is not necessarily constructed without a-prior

information, but such information is used completely

differently from a Bayesian approach. For this case, sites

similar to the Meuse river target site are used [Derouane

andDassargues, 1998;Wildemeersch et al., 2014;Hermans

et al., 2015].

Based on geological information from boreholes

[Wildemeersch et al., 2014], a model (the saturated part)

is constructed consisting of 14 homogeneous layers each

a half meter in thickness (six coarse gravel at the bottom,

eight sandy gravel layers at the top). The total model size

is 60 m in the direction of flow, 40 m perpendicularly, and

7 m vertically. In that sense, the deterministic model is

oriented such that its main axis corresponds to the natural

direction of flow which was identified in previous studies.

No-flow BCs were assigned to boundaries parallel to this

direction. A no-flow BC was also assigned to the bedrock.

Between the up and down-gradient boundaries, a natural

gradient exists. For the heat transport simulation, a

homogeneous initial temperature is assumed equal to

the average aquifer temperature encountered in the

aquifer. All simulations are done with a control-volume

finite element code termed HydroGeoSphere [Therrien

et al., 2010].

An initial effort consists of performing some model

simulations. The base model simulation uses a hydraulic

conductivity of 0.05 m/s for the coarse gravel layer and

0.0001 m/s for the sandy gravel layer. The natural

gradient on the site has been estimated to be 0.06% from

the regional flow model. All other parameters will remain

fixed (see Table 8.8).

In an OAT analysis, five simulations with a different

gradient are simulated (keep everything else fixed) and

four simulations with varying hydraulic conductivity of

the coarse gravel layer. Figure 8.24 shows that both the

regional gradient and the hydraulic conductivity impact

the temperature change. High gradient and high hydraulic

Table 8.8 Modeling parameters for deterministic and stochastic model.

Parameters Fixed/Variable Value

Mean of log10 K (m/s) Variable U[−4, −1]

Variance log10 K (m/s) Variable U[0.05, 1.5]

Range (m) Variable U[1, 10]

Anisotropy ratio Variable U[0.5, 10]

Orientation Variable U[−π/4, −π/4]

Porosity Variable U[0.05, 0.40]

Gradient (%) Variable U[0, 0.167]

log10 K (m/s) – upper layer Fixed 10−5

Longitudinal dispersivity (m) Fixed 1

Transverse dispersivity (m) Fixed 0.1

Solid thermal conductivity (W/mK) Fixed 3

Water thermal conductivity (W/mK) Fixed 0.59

Solid specific heat capacity (J/kgK) Fixed 1000

Water specific heat capacity (J/kgK) Fixed 4189
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conductivity favor larger groundwater fluxes in the

aquifer, moving the heat plume away from the well during

the injection phase. Small hydraulic conductivity has an

effect similar to the absence of a natural gradient: the

thermal energy recovery is much larger.

8.4.3. Bayesian Prediction with Global
Sensitivity Analysis

8.4.3.1. Constructing a Prior Model. As discussed in

Chapter 5, a Bayesian approach requires a well-thought

out prior distribution. In hydrogeological setting with

very little data, such as in this particular case (the Danish

case is a bit of an outlier), obtaining a meaningful prior

may be challenging, but with some research into literature

and other resources this is not impossible. The priormodel

needs to address three main model uncertainties:

1.Hydrogeological properties. Uncertainties on hydrau-

lic conductivity and porosity are within ranges found in

similar areas of the Meuse site. Note that no direct infor-

mation on these properties is collected, so the ranges

should be quite wide. Uncertainty on porosity may be rel-

evant since thermal properties such as heat capacity and

thermal conductivity are a function of porosity.

2. Spatial variability. This is modeled using a Gaussian

process. This requires a variogram (or spatial covariance).
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Figure 8.24 Deterministic predictions of the change in temperature during the pumping phase. (a) Local sensitivity of natural
hydraulic gradient for a fixed hydraulic conductivity. (b) Local sensitivity of hydraulic conductivity in fixed gradient conditions.
(c) Prior samples of the prediction, the green curve is the prediction for a calibrated hydraulic conductivity distribution.
(d) Global sensitivity analysis (GSA) of the parameters considered in the prior.
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Very little information is available; hence, we focus

mostly on the variogram range which is varied between

1 m (pure nugget) and 10 m (expected radius of influence).

Since hydraulic conductivity is anisotropic, we use a

scaling factor between vertical and horizontal anisotropy.

This scaling factor is uncertain.

3. Boundary conditions. the natural gradient was also

considered as an uncertain parameter. The gradient was

varied between 0 and 0.167%.

In the absence of information, all parameter prior

distributions were modeled with uniform distributions,

using the principle of indifference (see Chapter 5).

8.4.3.2. Assessing Sensitivity of the Prior Model on
Prediction Variables. We now turn to the first question

raised in Chapter 1 for this application: Which model

parameter is most impacting the prediction of ΔT(t)? This

calls for a global sensitivity analysis. Here we use distance-

based generalized sensitivity analysis (DGSA) because of

its flexibility to handle non-scalar input and output. Prior

model variables of 500 realizations are generated by

means of naïve Monte Carlo. For each model realization,

we simulate the heat storage experiment and generate the

temperature change at the well during the pumping phase.

Figure 8.24 shows the results of the main effects. The

parameter exhibiting the most impact on the prediction

is the mean value of the hydraulic conductivity. The

variance of the hydraulic conductivity distribution and

the gradient are also sensitive parameters. The anisotropy

and range also influence the prediction, although to a

lesser extent. The influence of the porosity and the

orientation on the prediction is limited. The global

sensitivity analysis appears to be in line with the local one.

8.4.3.3. Assessing Sensitivity of the Prior Model on
Data Variables. Given our insight into sensitivity on

the prediction, the evident next question is what data

can be used to narrow those model uncertainties that

most impact prediction, in particular here hydraulic

conductivity and gradient. ERT data is proposed because

of its influence on both hydraulic and thermal properties

of the aquifer. More specifically, a forced gradient heat

tracing experiment monitored with cross-borehole electri-

cal resistivity tomography is considered. Before acquiring

such data, the usefulness of the proposed acquisition is

investigated. Again, we can use global sensitivity analysis.

The reasoning being that a “useful” dataset would at least

share parameters sensitivity with the prediction. The pro-

posed lay-out of the experiment is shown in Figure 8.25.

The forced gradient lies in the direction of the natural one,

so that it enables to fasten groundwater flow without

affecting the flow direction encountered in natural

conditions.

The heat-tracing experiment was simulated for the same

500 model realizations of the prior set. The temperature

distribution was transformed into resistivity variations

using a calibrated petrophysical relationship and the

resulting change in resistance was computed. The data

variables consist of the change in the measured electrical

resistance for 410 different electrode configurations at

13 different time-steps; hence, it is of dimension 5330.

Because measurements with close electrode spacing are

similar and because of similarity in the temporal behavior,

we expect a considerable redundancy in this type of data.

This becomes clear when performing a PCA, see

Figure 8.26, where 10 PC scores explain 98.7% variation

in the data. DGSA is, therefore, performed by calculating

differences in PC scores (a vector) of various realizations.

The sensitivity results in Figure 8.26 show that the data

variables are sensitive to the variance of the hydraulic con-

ductivity distribution and the natural gradient; however, its

impact is smaller than for the prediction (heat storage). The

reason for this is that the tracing experiment is carried out

in forced gradient conditions and not natural gradient.

8.4.3.4. Acquiring Data and Removing Noise. An

important issue after acquisition is to deal properly with

noise. Overfitting noise data or inverting models without
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Figure 8.25 (a) Plan view of the experimental setup for the heat tracing experiment. (b) Vertical cross-section of the ERT panel and
electrode layout.
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a proper estimation of the noise component in the data

may lead to completely erroneous models [LaBrecque,

1996]. Noise is often represented using an error covari-

ance matrix Cd. The issue here is that data is represented

in lower-dimensional space using principal component

scores. Hence, any noise model assumed on the actual

data needs to be translated into a noise model in reduced

dimensional space. Because different electrode configura-

tions are affected to various degrees by the noise, depend-

ing on the strength of the measured signal, this translation

is not trivial and requires a Monte Carlo approach, as

outlined in Section 7.3.3.1. This procedure requires first

determining some established methods to estimate an

error model. In these kinds of experiments, this is done

using such as reciprocal measurements in electrical meth-

ods [LaBrecque et al., 1996], see Chapter 1. The Monte

Carlo study then simply consists of simulating the error

and observing how it affects the principal component

scores.

8.4.3.5. Attempts to Falsify the Prior. It is critical at this
point to attempt to falsify the prior. Just continuing with

an untested prior may have disastrous consequences as

was discussed in Chapter 5 [Gelman and Shalizi, 2013].

Here we can use the acquired data or any other data that

is not the target of the study. In fact, using other data can

be quite meaningful in both attempting to falsify the prior

and the posterior. Bayesian methods require that the
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posterior solution is part of the span of the prior. The

acquired data should, therefore, be predicted by the

current prior. We will here verify the prior-data consist-

ency using the entire set of raw ERT measurements, in

terms of resistances, and a set in a reduced dimension

space. In addition, two piezometers within the ERT panel,

located at 1 and 2.25 m from the left ERT borehole

(Figure 8.25) were equipped with measuring continuously

the temperature within piezometers.

Figure 8.26 shows that the average change in resistance

for all electrode configurations is consistent with the prior.

We observe that prior models have a similar temporal

behavior and similar amplitudes as the data. We now

consider the full time-lapse data, but reduced to a few

PC score. We can reduce the actual measurements using

the same linear (PC) transformation. Figure 8.26 shows

how scores of the data lie within the range of the scores

produced by the prior model realizations. Again, we

cannot falsify the prior.

The attempt to falsify the prior with direct temperature

measurements works the same way: data can be compared

in physical space with prior or in reduced dimension

space. In contrast to ERT measurements, direct tempera-

ture measurements are not subject to any integration over

a large volume. Figure 8.27 shows the measured temper-

ature variation is captured by the prior, both for the raw

data and in the reduced dimension space. These measure-

ments did not falsify the prior. It does not prove the prior

“right” or “valid” or “verified,” but it makes it a much

stronger hypothesis as compared to not doing any

attempts of falsification (see our discussion in Chapter 5).

8.4.3.6. Uncertainty Quantification. Since the forced

heat-tracing experiment monitored by ERT is informative

and prior-consistent, we apply Bayesian evidential learn-

ing (see Chapter 7) to predict the temperature at the well

during the heat storage experiment. PCA was applied to

both data variables and prediction variables. Ten

dimensions for d and three dimensions for hwere retained

and a CCA established as shown in Figure 8.28. The

relatively high correlation confirms the sensitivity analy-

sis, namely that the data is highly informative of the

prediction.

The calculated posterior distribution (Figure 8.28) of

the change of temperature at the well indicates that the

potential for heat storage on the field site is relatively

low. Most samples of the posterior have a rapid decrease

in temperature once the pumping phase starts. Only a

small amount of thermal energy is recovered. The

posterior uncertainty is now much smaller than the prior

uncertainty, since we established that the data was

informative. The geophysical experiment, therefore,

suggests foregoing this location as a potential for heat

exchange with the subsurface.

One can now go a step further and predict the spatio-

temporal distribution of temperature in the saturated part

(a 3D = 2D + time variable). The exact same procedure is

used. Three different samples are shown at three different

time-steps, illustrating the variability of the posterior

distribution (see Figure 8.29). They all show a heat plume

limited to the bottom part of the aquifer and divided into

two distinct parts with a lower temperature in the middle

of the section. The confinement of the plume to the
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bottom part of the aquifer is due to the preferential flow in

the coarse gravel layer located above the bed rock.

8.5. DESIGNING URANIUM CONTAMINANT

REMEDIATION IN THE UNITED STATES

8.5.1. A Strategy for UQ

In this case the aim is to evaluate remediation efficacy of

acetate injection to immobilize uranium. Acetate is

injected at certain injector locations and the experiment

is monitored at several locations by means of tracer con-

centrations, both reactive and conservative.

This case has elements in common with the shallow

geothermal applications except that now the model com-

plexity increases dramatically due to the existence of com-

plex chemical reactions. Many uncertainties (geological,

geochemical, and hydrological) need to be addressed.

Moreover, it is likely that all these uncertainties interact

to create data and prediction outcomes. Figure 8.30 pro-

vides an overview of the proposed strategy, summarized

as follows.

Based on previous studies, we will formulate prior pdfs

on all modeling components, which allows performing a

Monte Carlo study. This study will consist of generating

multiple model realizations of the joint geological,
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geochemical, and hydrological model. These model

realizations are then forward simulated to generate tracer

concentrations and realizations of the immobilized

uranium volume at a certain time (any time could be

selected). A sensitivity analysis on both data and

prediction variables will provide insight into what data

informs best the target prediction: spatial distribution of

immobilized uranium. In this case, inversion is impracti-

cal because of the model complexity; hence, we opt for a

Bayesian evidential learning approach that draws

predictions directly based on data. One of the key

elements of the workflow is to perform dimension

reduction on the prediction variable. Here the prediction

variable is a map of immobilized uranium that varies in

space and time. Hence, predicting each single space-time

location independently is difficult. Instead, we will rely on

an eigen-image analysis to reduce dimensionality of

images to a limited amount of scores (see Chapter 7). This

dimension reduction is needed to perform global sensitiv-

ity analysis, in particular DGSA. Directly defining

distances between images is non-trivial. Instead, distances

are calculated based on the scores after dimension reduc-

tion. If a subset of model variables is both sensitive to data

and prediction, then a strong canonical correlation is

expected. This correlation will be used to reduce

uncertainty on the prediction by conditioning to the field

tracer data.

Why this strategy?. The prediction variable is complex.

Successful dimension reduction in the prediction variable

is key here. The spatial variation of immobilized uranium

is likely to have a non-trivial spatial variability due to

existing geological heterogeneity and how that heteroge-

neity interacts with the chemical reactions.

The forward models are complex and time-consuming.

Many of the model components will be interacting to

create a response. It would be a poor choice to select

one data type (e.g., tracer) and calibrate one subset of

model variables while all other remain fixed. Instead,

all (impacting model) variables need to be considered

jointly in all inversions and predictions. A classical model

inversion approach appears impractical, simply because

of the large computation times and complexity of the

model involving a network of reactions (Figure 8.31).

A Bayesian evidential learning approach (Chapter 7) is

more suitable.

The following methods will therefore be used:

1. Functional data analysis (Section 3.6)

2. Canonical correlation analysis (Section 3.5.3)

3. Gaussian process regression (Section 3.7.5)

4. Eigen-image reconstruction (Section 7.3.3)

5. Global sensitivity analysis (Section 4.4.3)

8.5.2. Prior Distributions

As in other predictive studies, our setup starts by defin-

ing the model parameterization (model variables) and

their prior uncertainties. This may require some iteration

because we will attempt to falsify the prior bymeans of the

tracer data. A sensitivity analysis may indicate which

model variables require larger uncertainties.
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Figure 8.30 Strategy to assess long-term remediation efficacy by means of acetate injection.
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As mentioned in Chapter 1, three groups of uncertain-

ties need specification: geological, biogeochemical, and

hydrological. A total of 21 parameters and their pdfs will

be specified. Many of these uncertainties are based on

sample measurements on site as well as sampling in

nearby fields. Table 8.9 lists all parameters considered

uncertain for the Rifle case study. Simple continuous

parameters follow a uniform distribution (based on the

principle of indifference), with bounds collected from

previous studies [Li et al., 2011; Williams et al., 2011;

Kowalsky et al., 2012]. For discrete/categorical variables

or scenarios, each level or scenario is assumed to have

equal probability. The forward modeling code for data

and prediction variables is CrunchFlow [Steefel et al.,

2015]. The lateral discretization of the model has cell size

of 0.25 m × 0.25 m. The model is 17 m in the direction of

flow and 16 m perpendicularly; the model has in total

68 × 64 × 1 cells.

Geological. The area of interest concerns an unconfined

aquifer within an alluvial deposit in the floodplain of Col-

orado River with a thickness around 6–7 m. The water

level here is dynamic but located on average at 3.5 m
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Figure 8.31 Simplified reaction network showing the most important reactions for uranium remediation that takes place when
injecting acetate. Modified after Li et al. [2011].

Table 8.9 List of uncertain model variables and prior pdfs.

Parameter name (code)
Parameter
type Parameter distribution

Geological

Mean permeability (Meanlogk) Continuous log k~U(−11,−10) m2

Variance of permeability(VarioVar) Continuous log k~U(0.26,0.69) m2

Variogram type of permeability(VarioType) Discrete Discrete [1 2 3]

Variogram correlation length(VarioCorrL) Continuous U(3.3,6.6) m

Variogram azimuth(VarioAzimuth) Continuous U(50,90)

Mean porosity(MeanPoro) Continuous U(0.12,0.17)

Porosity correlation with permeability(PoroCorr) Continuous U(0.5,0.8)

Method to simulate porosity(MethodSimPoro) Categorical Discrete [1 2 3 4]

Spatial uncertainty(SpatialLogk) Spatial 500 realizations

Geochemical

Mean Fe(III) mineral content(MeanFerric) Continuous U(2.5,10) μmol/g

Method to simulate Fe(III) mineral
content(MethodSimFerric)

Categorical Discrete [1 2 3 4]

Fe(III) correlation coefficient with
permeability(FerricCorr)

Continuous U(−0.8,−0.5)

Mineral surface area(SurfaceArea) Continuous U(0.1,2) *base value

Reaction rate(FerricRate, FerrousRate, UraniumRate,
SRBRate)

Continuous U(0,2) off base reaction rate (varies for
different reactions)

Initial concentrations of different species
(ICSulfateJCFerrous, ICUranium)

Spatial 500 conditioned spatial realizations

Note: For reaction rates, see the Reactions (1)–(4) in the text.
∗Denotes a reference to that location.
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depth. The bedrock is the Wasatch Formation with very

low permeability and constitutes the basement of the

alluvial aquifer. In this study, the saturated part (2.5 m

thick) of the aquifer is modeled as one layer with hetero-

geneous hydraulic conductivities similar to studies of Li

et al. [2011] and Kowalsky et al. [2012]. We consider five

parameters to parameterize spatial variability of permea-

bility (k): the mean of the logarithmic distribution of k and

its variance, variogram type, range, and azimuth repre-

senting spatial continuity of k. The spatial heterogeneity

of permeability is described by one of the following

choices for variogram type: Gaussian, spherical, or expo-

nential. The variogram range is varied between 3.3 and

6.6 m following previous study [Kowalsky et al., 2012].

The orientation of the variogram main axis is allowed

to deviate from the main flow direction (see below) up

to 40 , which is in accordance with the historical flow

direction variations. These parameters are used to gener-

ate realizations of the permeability field using sequential

Gaussian simulation (Section 3.3.5).

Geochemical. The geochemical uncertainties considered

here consist of (i) solid-phase mineral content and surface

areas, (ii) kinetic rates describing microbial reactions, and

(iii) initial concentrations of different ions. Because the

Fe(III) mineral is an important electron acceptor at the

site that competes with SO4
2−,iron-reducing bacteria are

thought to be the most important community for mediat-

ing reductive immobilization of U(VI). Therefore, spatial

variation of Fe(III) mineral content is included. Together

with the volumes of solid-phase bioavailable Fe(OH)3,

porosity models are also spatially variable. Following

the approach of Li et al. [2011], a negative correlation

between permeability and solid-phase Fe(III) mineral

content is enforced when creating the solid-phase models.

This negative correlation is based on observations from

field samples. The solid-phase Fe(III) content is varied

from 2.5 to 10 μmol/g [Yabusaki et al., 2007]. A positive

but uncertain correlation between porosity and permea-

bility is assumed. Because of the changes of the variogram

type, correlation length, and the method of simulating

porosity and ferric solid-phase content, differences in

patterns at various scales exist among different porosity

and models of solid-phase ferric iron. A complex reaction

network following Li et al. [2011] is implemented within

CrunchFlow. The key reactions and species involved in

uranium remediation are shown in Figure 8.31. Besides

the Fe-reducing microbial reactions (DIRB) that reduce

U(VI) to U(IV), the microbial sulfate reduction (SRB)

reactions compete with the Fe-reduction pathway to

obtain electrons from acetate, due to the high sulfate con-

centrations in groundwater, and impacts the efficacy of

bioremediation. As the initial concentrations of some spe-

cific ions (i.e., SO4
2−, Fe2+, UO2

2+) affect the reaction

rates, a few heterogeneous realizations of concentration

values are imposed. These realizations are conditioned

at monitoring wells to initial measurements as reported

inLi et al. [2011] after the experiment initiated. The in-situ

concentrations of uranium range from 0.4 to 1.4 μM

(above the standard of 0.18 μM), dissolved oxygen con-

centration averages less than 0.2 mg/l [see Williams

et al., 2011 for details]. Examples of U(VI) realizations

are shown in Figure 8.32 reflecting that measurements

from samples at wells within the model domain vary

spatially [Yabusaki et al., 2007], and hence U(VI) is not

spatially homogeneous. Finally, for the prior uncertainty

on mineral surface areas and reaction rates, base values

from previous studies are used. The upper and lower

bounds for reaction rates are set based on the extreme

(low and high) uranium reduction cases considered by

Li et al. [2011].

In CrunchFlow, for interactions that involve solid-

aqueous phase (e.g., mineral-water) heterogeneous reac-

tions, two separate entries in the database file exist.

(i) A thermodynamic entry which gives the stoichiometry

of the reaction. The equilibrium constants are a function

of temperature, molar volume of the solid phase, and its

molecular weight. (ii) A kinetic entry which gives the rate

law and rate coefficients for the reaction. CrunchFlow

currently assumes in all cases that the reaction involves

the dissolution of one mole of the mineral or solid phase

in investigation (i.e., the stoichiometric coefficient is −1).

In our analysis, the thermodynamic entry is kept fixed as
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Figure 8.32 Example of heterogeneous realizations of initial U(VI) concentrations conditioned at the monitoring wells. Models are
created using sequential Gaussian simulation.
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this parameter is normally relatively stable in a shallow

subsurface within a short time window. The kinetic entry

is varied. For each of the mineral reactions considered, a

base rate value and an uncertain offset value vary.

Reactions for which the rates are varied in this study

include the following:

FeOOH s +1 925H+ +0 033NH+
4 +0 208CH3COO−

Fe2+ +0 033C5H7O2N FeRB +0 25HCO−

3 +1 6H2O

(1)

Fe2+ +H2S aq FeS am +2H+ (2)

UO2+ +0 067NH+
4 +0 417CH3COO− +0 8H2O

UO2 s + 0 0667C5H7O2N FeRB +0 5HCO−

3 +2 15H+

(3)

The five reaction types for kinetics in CrunchFlow are

TST, monod, irreversible, PrecipitationOnly, and Disso-

lutionOnly. For Reactions (1) and (3), monod implemen-

tation is used. For Reaction (2), PrecipitationOnly is

chosen. For more details, readers are referred to the

CrunchFlow manual. Monod reactions take inputs of

the specification of the activation energy and the various

“monod terms.” These monod terms indicate the depend-

ence of the reaction rate on electron acceptors and/or

electron donors. The relation between reaction rate

(Rm) and the monod term is

Rm = kmax

i

Ci

Ci +Khalf

(8.6)

The quantities in parentheses are the “monod term.”

Multiple monod terms can be specified, but the most

common approach is to provide dual monod form which

includes dependences on electron acceptors and donors.

In our analysis, the monod terms on acetate is set to be

1e-05. Rm is changed for the three actions with a unit of

log(mol)/m2/s at 25 C.

The base reaction rates for three reactions are (1) −8.2

log(mol)/m2/s, (2) −6 log(mol)/m2/s, and (3) −6 log(mol)/

m2/s. An uniformly distributed offset (U(0,2)) for these

reactions is added onto the base reaction rates as prior

uncertainty model.

In addition, there is an aqueous kinetic reaction

considered:

SO2−
4 +1 082CH3COO− +0 052H+ +0 035NH4+

0 035C5H7O2N SRB +0 104H2O+2HCO−

3 +HS−

(4)

Amonod reaction type is chosen for Reaction (4), with the

monod terms that include acetate (1.0E-4) and sulfate

(5.0E-3). Different from the mineral reactions, the unit

for aqueous reaction rate is mol/kgw/year. A base reaction

rate of 25,000 mol/kgw/year is used with variations being

an offset value U(0,2) on the base rate.

Hydrological. The model is oriented such that its main

axis (x-axis) corresponds to the overall natural direction

of flow, which was identified in previous studies. There-

fore, no-flow BCs are assigned to boundaries parallel to

this direction. Between the up and down gradient bound-

aries, a natural gradient is set up as fixed heads at left inlet

and right outlet. Fixed gradients can be motivated

because of the rather short term of the experiment.

8.5.3. Monte Carlo

Based on the priormodel parameters and pdfs described

earlier, a Monte Carlo study is conducted. A set of 500

prior model realizations is generated. Each realization

constitutes different combinations of all model variables.

Figure 8.33 shows some examples of the spatial model

realizations of hydraulic conductivity.

Considering that acetate injection for the 2007 experi-

ment only lasted approximately 30 days, the data

variables consist of the four tracers measured at 12 moni-

toring wells over 30 days. The prediction variable is the

volume of immobilized uranium at 90 days (longer than

the experiment). Figure 8.34 shows prior realizations of

tracers for one well and a few realizations of the prediction

variable.

8.5.4. Dimension Reduction on Data
and Prediction Variables

FPCA was used to reduce dimension on the data

variables. The more challenging variable is the prediction

variable. Here we use eigen-image analysis (Chapter 7),

which is a spatial version of functional data analysis.

Figure 8.35 shows the result of such decomposition.

The eigen-images exemplify different modes of changes

across the ensemble of the mean-subtracted images. For

example, the first eigen-image depicts the mean across

all the mean-subtracted images; the second eigen-image

shows the gradient change across these; higher-order

eigen-images reveal higher-order derivatives of the image

ensemble. Most changes occurred in the vicinity of the

injectors. It also appears that the areal extent of these

changes corresponds to the mean correlation length of

the permeability field.

Just as with PCA and FPCA, we can use the decompo-

sition to reconstruct the spatial distribution of immobi-

lized uranium from a limited set of scores. Figure 8.35

shows the effect of using different amount of eigen-images

in the reconstruction. It appears that with 100 eigen-

images (about 80% variance) the difference is acceptable

but with some loss of local variations.
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8.5.5. Global Sensitivity Analysis

Sensitivity analysis results for data variables for the

different species concentration curves are shown in

Figure 8.36, together with sensitivity analysis on the

prediction variable. In this study, while applying DGSA,

Euclidean distance between different curves is used for

data variables, while Euclidean distance between scores

of images are used for prediction.

For the conservative tracer concentration, we observe

that mean log k and its spatial variability are impacting

parameters. However, the DIRB reaction rate is perhaps

a more surprising impacting factor here. It appears

that because the solid-phase Fe(III) is correlated with

permeability, its specific surface area and volume, along

with the acetate supply, control the rate of Fe reduction.

Then Fe reduction is correlated with the travel time and

breakthrough curve of the conservative tracers. This

illustrates the fact that in this complex system, everything

is interacting, creating counterintuitive sensitivities.

For the target prediction, namely the spatial distribution

of immobilized uranium, we observe that the uranium
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reaction rate, the variogram variance of permeability

(degree of heterogeneity), mean log k, spatial permeability

distribution, and DIRB reaction rate (FerricRate) are the

most impacting parameters. This is expected as uranium

and DIRB reaction rate control the removal rate of

U(VI) from the solute, and other parameters related to

the permeability influence the spread of the acetate plume.

For example, if themean log k is too high, the injected ace-

tate is quickly flushed through high-permeability regions

(the “channeling effect”), leaving downstream regions of

the injectors unexposed.

If we compare the sensitivities of different data sources

and prediction, we notice that tracer concentration curves

and acetate concentration curves share similar sensitiv-

ities, but the most sensitive parameters (e.g., mean perme-

ability, DIRB reaction rate, and spatial permeability) are

somewhat different from those of predictions of interest.

However, the sensitivity of uranium concentration curves

is similar to the prediction variable of interest. This

indicates that we would only need tomonitor andmeasure

the concentration levels of uranium from the samples,

measuring other species will likely not bring additional

information as to what we are attempting to predict.

A canonical correlation analysis is, therefore, useful to

quantify this observation.

8.5.6. Correlation Analysis and UQ

Now that we have established that a correlation exists

between the data (uranium concentration at eight

locations) and prediction variables (spatial distribution

of immobilized Uranium), we generate a posterior distri-

bution of the predictions based on field observations.

Because both data and prediction variables are vectors

of scores (after dimension reduction), we use CCA.

CCA confirms the correlation between data and predic-

tion (see Figure 8.37). Because the correlation is high

and linear, we can now proceed with performing a

Gaussian process regression to predict the prediction

variable scores, and then reconstruct the target satura-

tions (see Figure 8.37). The concentration is not a simple

homogenous front, propagating from the injector
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locations, but instead it is influenced by heterogeneity on

the geology as well as geochemical reactions. Any future

remediation activity will, therefore, need to account for

this heterogeneity. For example, geophysical imaging

may be of considerable aid in assessing remediation

efficacy.

8.6. DEVELOPING SHALE PLAYS

IN NORTH AMERICA

8.6.1. Strategy for UQ

Recall from Chapter 1 the three stated questions con-

cerning the development of unconventional resources:

Q1. Which geological and completion parameters

impact production most?

Q2. How to predict and quantify uncertainty on pro-

duction decline in a new well for given geological and

completion parameters?

Q3. How many wells need to be in production before a

statistical model can confidently estimate production

decline in a new location?

The uniqueness of this application of UQ is that these

questions will be addressed without any predictive physi-

cal models, such as flow simulators, geochemical models,

geo-mechanics, or rock mechanics. In theory, prediction

based on physics/mechanics is possible, but research in

predictive modeling for shales is still in its infancy com-

pared to conventional resources. The current way of

hydraulic fracturing shales is merely 10 years old, while

modeling of conventional resources goes back more than

half a century. Additionally, the rate by which wells

are drilled and “fracked” is very high, hence any

comprehensive UQ with physical models is challenging

from a time framework point of view. Currently, physical

models are used in understanding what happens during

the fracking process, thereby potentially improving its

practice.

The approach will therefore be purely data scientific.

We will deal with two real field cases.

Shale case 1 (SC1). A publicly available dataset the

Barnett Shale near Dallas, Texas. A large number of wells

have already been drilled. The database does not contain

geological or completion parameters for each well,

because these tend to be propriety. Hence, we will focus

mostly on prediction of production in new locations from

existing locations and the quantification of uncertainty

(see Figure 8.38).

Shale case 2 (SC2). A real field case provided by

Anadarko, one of the largest shale producers in the

United States. In this case, only 172 wells are available,

but now geological and completion parameters are avail-

able for each individual well. Here, we will focus on the

question of sensitivity as well as the prediction based on

the geological and completion covariates and the issue

of confidence (uncertainty on the estimate).

The cases we present here could serve as template exam-

ples for other data-driven method in subsurface and other

Earth Science application. The defining features,

distinguishing it from other data science application is

the combination of (i) dealing with physical variables,

(ii) dealing with spatial/geographical variables and spati-

otemporal variables, and (iii) the issue of high dimensions,

such as numerous covariates. A general outline of how

such methods could proceed is sketched in Figure 8.39.

When dealing with real data (“raw data”), a number of
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important preprocessing steps will need to be done. First

is the definition of “population”: which data will one put

in the analysis pool and which data is excluded because it

is not “representative.” This is highly dependent on the

application. Real data are subject to noise, and not just

random noise. Instrumentation that makes physical

measurement may have noise structures. One such struc-

ture may simply be human induced by changing settings,

turning things off temporarily, and so on. Regression

methods, such as those relying on least squares principle,

are sensitive to outliers. Regardless of which methods are

used, outliers should be dealt with either using robust

statistical approaches or simply removing them from

the analysis.

To address the above-stated questions, the strategy of

Figure 8.40 will be developed. Central to this approach

are two methods: CART and kriging (see Section 3.7).

Kriging will address the spatial problem of varying

production due to spatial geological variation. CART

is a nonspatial regression method that addresses the

problem of predicting decline rate from a set of covariates

(here the geological and completion parameters). CART

also allows for calculating sensitivity (relative impor-

tance) of parameters on some scalar output (or predic-

tant). Because the output is a decline rate over time, we

will use the functional CART method of Chapter 4

(Section 4.4.4). To integrate both the spatial and the

covariate aspects of the problem, we will use a functional

universal kriging (UK) method that integrates the CART

model via a trend model.

Why this strategy?. Functional data. The target predic-

tion variable is a function that varies systematically over

time; hence, a form of functional data analysis applies well

here, such as in the outlier removal, sensitivity analysis,

and spatial prediction.

Large set of covariates. The completion variables are

likely to have considerable impact on the decline rate.

This effect is expected to increase as the operating

company learns how to improve their fracking practice.
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CARTmethods are ideal to model these complex systems,

since CART allows for variables that are discrete,

continuous, and by extension (Chapter 4) functional.

8.6.2. Data Preprocessing

In SC1 we use gas production rate curves (GPRC) from

922 wells drilled in the Barnett shale, one of the most

prolific and the most developed unconventional gas

reservoirs in North America. This dataset was compiled

from www.drillinginfo.com, an online oil and gas data

repository. A common procedure in data preprocessing

is to select a representative set. Shale wells are drilled in

all kind of conditions and with a very large variety of well

lengths and history. Mixing all data into one group may

render prediction impossible if not unrealistic. Therefore,

the 922 wells used for the present analysis were selected

according to the following criteria:

1. Wells whose lateral length was anywhere between

1800 and 2300 ft and were owned by the same company

(operator). This would be an indication that the number

of hydraulic fractures was the same or at least very similar

across all wells.

2. Wells drilled after 2005, which had at least 5 years of

production history (60 months), immediately following

the peak gas rate. As a part of this preprocessing, all data

entries preceding the peak gas rates (about 3months) were

discarded. Such preprocessing is common in unconven-

tional reservoir data analyses [Patzek et al., 2013], since

during that time period wells mostly produce flow-back

water that comes as a consequence of hydraulic

fracturing.

In both SC1 and SC2 data are quite noisy (see

Figure 8.41). SC2 has more noise since the data are

recorded daily, while the public domain dataset has only

monthly recordings. To smooth out this noise, we use

functional data analysis (Section 3.6) and B-spline basis.

The number of spline basis functions as well the

smoothing penalty on the second derivative are obtained

using generalized cross validation [Ramsay and Silver-

man, 2005].

We also need to address the issue of outliers before

proceeding with any further statistical analysis. Outlier

detection on both the predictors (covariates) and the

predictants (production decline curves) needs to be

considered. Outlier on covariates can be addressed using

robust statistical analysis methods such as the minimum

covariance determination, which is a way calculating

covariance between covariates by using a part of the

dataset not affected by outliers, then using that robust

covariance to detect outliers by means of a Mahalanobis

distance (see Chapter 3).

Here we focus on outliers on production curves, as this

is more unusual than outliers on scalars. One way to

address this is to focus on the functional principal compo-

nent scores. To visualize outliers, we use the extension of

the box-plot in 2D: the bagplot [Rousseeuw and Driessen,

1999], extended to the “functional” bagplot, see

Figure 8.42. A bagplot consist of three regions: bag, fence,

and loop (see Rousseeuw for definitions). Basically, the

“bag” contains at most 50% of the data while data outside

the fence are outliers. We use kernel density estimation to

calculate bag and fence.

8.6.3. SC1: Functional Spatial Regression

The aim is to predict decline rate q at locations of future

wells, as functions of production decline at previously pro-

duced wells. The data is, therefore, a set of production

decline rates at existing locations q(sn, t), n = 1, …, N=

922. This is not a trivial problem since this calls for

spatially predicting a function, instead of a scalar, and this
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Figure 8.41 Smoothing of oil decline rate in SC2 using functional data analysis.

256 QUANTIFYING UNCERTAINTY IN SUBSURFACE SYSTEMS



function varies in space. To tackle this problem, we split

the prediction problem into two parts.

q s, t =m s, t + r s, t (8.7)

Production decline q(t) at location s ismodeledwith amean

variation and a residual. In geostatistics, this model is used

in UK (also known as kriging with a trend model) to make

predictions from spatial data. UK extends on Gaussian

process regression (ordinary kriging, seeChapter 3) by add-

ing a trend model. In the case of scalar random variables,

UK assumes the following trend model:

m s =
K

k=0

akfk s f0 s =1 (8.8)

In other words, the trend is a linear combination of

user-specific functions. If we consider s= (x, y), then an

example of such trend is as follows:

m s = a0 + a1x+ a2y+ a3x
2 + a4y

2 (8.9)

To model the residual, one subtracts the estimated mean

from the sample data, and then calculates the spatial

covariance or variogram of the residual from the data.

Recall from Eq. (3.149) that the spatial covariance can

be related to the variogram:

γR sn−sn =Var R −covR sn−sn =
1

2
Var R sn −R sn

(8.10)

To model functions instead of scalars, Menafoglio and

Secchi [2013] extend the idea of UK to functional UK.

To do this, we need to define a space of functions within

which a covariance is properly defined. Such generaliza-

tion is the space L2 of real-valued, square-integrable

functions. In such space, sums, production, and scaling

of function, as well as a distance, are defined:

q sn, t −q sn , t
2
2 = q sn, t −q sn , t

2
dt (8.11)

Once a difference is defined, a covariance or semi-

variogram can be defined for functions as follows:

γ sn−sn =
1

2
VarL2

q sn, t −q sn , t

=E q sn, t −q sn , t
2
− E q sn, t −q sn , t

2

(8.12)

To extendUK of scalars to functions, we rewrite the mean

term as follows:

m s, t =
K

k=0

ak t fk s (8.13)

The empirical estimator of the residual semi-variogram is

γ h =
1

N h

N h

n=1

r sn, t −r sn + h, t
2

=
1

N h

N h

n=1

r sn, t −r sn + h, t
2
dt

(8.14)

The integral is approximated by a sum. Otherwise, the

kriging equations look much like the classical equations

of Eq. (3.15). Figure 8.43 shows the variogram for the

Barnett-Shale decline data as well as maps of gas rates

at certain time, obtained by functional kriging. These
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Figure 8.42 Bagplot for outlier detection. Red lines are outliers decline curves that are not used in the training set.
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maps can be used to make decisions regarding new

location to drill, based on existing production declines.

8.6.4. SC2: Functional Spatial Regression
with Covariates

In SC2, we need to deal with spatial variation as well as

the covariates information, hence in addition to space and

time, the decline rates q(s, t, c) with c the various covari-

ates (geological and hydraulic fracturing parameters).

The data can be represented as follows:

q s1, t ,c1 , q s2, t ,c2 ,…, q sN , t ,cN (8.15)

To include this covariate information, we will adapt the

following model:

q s, t,c =m s, t,c +R s, t (8.16)

The mean variation is now function of the covariates,

while the spatial residual remains as before and will need

to be estimated using functional UK. To estimate this

mean based on the covariate information, we use classifi-

cation and regression trees (CART), which naturally

perform variable selection, and easily modifiable to deal

with functional outputs (see Chapter 4). The main

modification to traditional CART is the definition of a

cost function for functional variables instead of scalars.

For smoothly varying functions such as decline curves,

the following cost function is used:

cost t =
M

m=1 cn Rm

t=T

t=0

q s, t,cn −μm t
2
dt (8.17)

where Rm is m-th region defined by the tree topology and

μm(t) is the mean function associated with m-th region. In

CART, we account for the spatial aspect of the problem

by adding the s= (x, y) of the observed decline rates to the

covariates. After fitting a functional tree for the trend, the

modeling proceeds in the same way as in the case of

functional UK. The trend is removed from the training

data and the spatial covariance of the functional residual

is estimated.

An illustration is given in Figure 8.44. A tree model is

fitted with as input the covariate information and output

the decline rate. The type of tree used is random forest (see

Chapter 2). The variable importance plot shows high

ranking of the hydraulic fracturing parameters in this

plot, these parameters are also the first to produce a split

in the functional regression tree (see Figure 8.44).

The functional random forest approach can also be

used to make predictions of decline rate from geological

and completion parameters (see Figure 8.45). The advan-

tage of random forest or single tree model is the ability to

generate confidence intervals.
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We now visit the question of howmany wells need to be

drilled for predictions to become reliable. To provide an

answer to this question, a small Monte Carlo study was

conducted. The size of the training set was varied from

10 to 100 wells. For each training set size 100, training

and testing sets were generated by randomly sampling

from a pool of 172 original wells. On every iteration, test

sets consisted of 71 wells. Three methods [functional ran-

dom forest (FRF), single tree, and FRF +UK] were fitted

to each training set, and then used to predict its
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corresponding test set and compute the sum of squared

error (SSE):

SSEi = qi t −qi t
2

(8.18)

SSEs are normalized with respect to the averaged squared

norm of the entire dataset.

SSEav =
1

N

N

i=1

qi t −μ t
2

(8.19)

where μ(t) is the mean function of all available data (all

172 wells).

Figure 8.46 shows a distribution of the mean of the nor-

malized SSE of 100 test sets for each training set size and

each of the three regression methods. What is obvious

from this plot is that the error stabilizes around 50–60

wells and that functional random forest had the best fore-

casting capabilities.
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9
Software and Implementation

9.1. INTRODUCTION

Uncertainty quantification (UQ) in the subsurface would
not be possible without the use of modern software and
computational resources. Accordingly, the disciplines of
UQ and computer science are intrinsically linked, and this
relationship is continuously growing stronger as the com-
plexity of the subsurface systems under study increases.
The role of software in our Bayesian approach to UQ
can be classified into three categories: model generation,
forward simulation, and post-processing. In practice, no
single software suite may encompass all three components,
so implementation of UQ methodologies may require
using multiple software packages or codebases.
Model generation refers to the programs used to incor-

porate prior information and expertise to construct prior
subsurface models m, usually by means of Monte Carlo.
The choice of modeling software is motivated by the type
of study (i.e., hydrological, geothermal, oil reservoir, etc.)
and is typically specific to the domain of application. The
forward simulation component refers to the software
package that is used to apply the gd and gh operators.
As with model generation, the choice of forward simula-
tor is dependent on the domain (i.e., flow, geophysical), as
well as the application (i.e., compositional, chemical,
etc.), and is at the discretion of the practitioner. The third
category corresponds to the methodologies that have been
the focus of this book. We refer to this as “post-proces-
sing” as it refers to the analysis of modeling parameters
and simulation results for quantifying uncertainty. Unlike
the former two categories, the same post-processing
codebase can be applied to different disciplines, as long
as the parameters and simulation results are readily
available in an appropriate format.
While practitioners may already have a preferred choice

of software for each of the first two stages, in this chapter
we will discuss some of the practical considerations that
may be ubiquitous to all applications. We next introduce

the companion code for this book that implements the
post-processing software component. We will elaborate
on the technologies that were used as well as provide an
overview of executable tutorials based on the examples
presented throughout the book. Lastly, we will discuss
issues related to modifying and deploying our codebase
for analyzing other datasets.

9.2. MODEL GENERATION

The Bayesianism approach to UQ requires the
construction of prior models by sampling from the prior
distribution f(m). The process of performing a Monte
Carlo study is heavily dependent on computer algorithms
and their software implementations. Depending on the
nature of the prior information, different parameteriza-
tions, algorithms, and/or combinations of algorithms will
be required. Popular commercial subsurface modeling
softwares include, for example, Petrel [Schlumberger,
2015], SKUA [Paradigm, 2016], and JewelSuite [Baker-
Hughes, 2017], all of which provide comprehensive mod-
eling capabilities. Other modeling softwares can be used
for specific purposes, such as SGEMS [Remy et al.,
2009] for geostatistics and FracMan [Dershowitz et al.,
1993] for fractures.

9.2.1. Monte Carlo Sampling

Recall that subsurface model consists of both gridded
and non-gridded components m= (mspatial, p). For non-
gridded model parameters p with explicitly specified prior
distributions, this requires a Monte Carlo experiment on
the prior distributions. For the spatial model parameters
mspatial, Chapter 6 discussed various geostatistical, proc-
ess-based, level-set, or object-based simulations, or any
combination of these. Many of these algorithms have
aleatory randomness built in that allows for the

Quantifying Uncertainty in Subsurface Systems, Geophysical Monograph 236,
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automated construction of a set of prior model realiza-
tions. Any manual operation must be avoided.

9.2.2. The Need for Automation

A major requirement for the practical implementation
of Bayesian UQ methodologies is the automation of
model generation. Some commercial software suites con-
tain workflow tools that allow users to chain together
algorithms to construct complex models. These tools
may be graphical in nature such as block diagrams. In
other instances, parts of the underlying modeling software
may be exposed, such that high-level scripting languages
such as Python [Van Rossum, 2007], Perl [Wall, 1994], and
so on may be used to write scripts that automate each of
the workflow tasks and connect different software compo-
nents. By incorporating automation capabilities into
model generation software, developers will allow the
end user much greater flexibility and efficiency when
performing UQ.

9.3. FORWARD SIMULATION

The forward simulation is typically a physical simula-
tion of some phenomena, such as fluid flow or wave
propagation, that allows us to obtain the expected data
d and prediction h variables for a given subsurface model
realization. As with modeling, forward simulation soft-
ware is domain specific. For instance, for reservoir simu-
lation, popular commercial packages include ECLIPSE
[Schlumberger, 2016a], INTERSECT [Schlumberger,
2016b], IMEX [CMG, 2017], and 3DSL [Streamsim,
2017], and academic implementations such as AD-GPRS
[Voskov and Tchelepi, 2012] and MRST [Lie et al., 2012]
are available. Other packages such as TOUGH2 [Pruess
et al., 2012], Open-FOAM [Jasak et al., 2007], and
MODFLOW [Harbaugh et al., 2000] can be used to
simulate fluid flow for a variety of applications. As
forward simulation is typically the most computationally
expensive component of the UQ workflow, it is the most
likely one to invoke the need for high-performance
computing, parallelism, or other approaches to improving
computational efficiency. The Bayesian Monte Carlo
nature of UQ further necessitates this need for accelera-
tion since an ensemble of subsurface models need to be
forward simulated.

9.3.1. The Need for Parallelism

Parallelization can be used to accelerate computational
performance in two different ways. First, all modern
CPUs having multiple cores allow for the distribution
of the computational load of a single realization across
numerous cores. Many modern simulators have already

implemented this parallelization functionality. However,
certain forward simulations may be less conducive to this
type of parallelization, and increasing the number of cores
used may result in diminishing returns. Many factors
determine the effectiveness of multi-core simulations,
and an optimal choice of cores is perhaps best determined
experimentally. Next to CPU, one should note that many
computing and scripting languages, such as Python/
MATLAB are very easy to run on GPUs making GPU
computing more easily accessible.
The second type of parallel acceleration is due to the

“embarrassingly parallel” nature of the Bayesian Monte
Carlo problem, as each realization can be forward
simulated independently. Therefore, the number of
realizations that can be forward simulated at a given time
is limited only by the number of computers that are
available. This allows for maximizing throughput of
computer clusters with multiple compute nodes. How-
ever, one bottleneck that arises when using commercial
simulators is the number of available licenses. Hopefully,
vendors will shift toward licensing paradigms that are
more conducive for UQ.

9.3.2. Proxy Simulators

In addition to using parallel computing for accelerating
the forward simulation software component, we could use
proxy simulators. For instance, reduced-order simulators
could be used to transform high-dimensional models into
lower-dimensional representations to speed up simulation
[Bai, 2002; Cardoso et al., 2009]. In certain scenarios,
reduced physics simulations such as streamline simula-
tions can also be used. For instance, in the oil reservoir
undergoing waterflooding in Section 8.2, streamline simu-
lations were used in lieu of finite difference simulators to
dramatically decrease computational time. However, use
of proxy simulators necessitates understanding of the
subsurface system under study, and the applicability of
the simulator under these conditions.

9.4. POST-PROCESSING

The final software component is the post-processing
component that implements the UQ methodologies pre-
sented in the book. Unlike model generation and forward
simulation, the post-processing software does not need to
be application specific. In fact, despite the diversity of the
case studies in Chapter 8, a common codebase was used
for the analysis and generating the accompanying illustra-
tions. This codebase was implemented in MATLAB and
has been made available online as a git [Loeliger, 2009]
repository at https://github.com/SCRFPublic/QUSS.
We have also included a set of executable tutorials using
Jupyter [Kluyver et al., 2016] and sample data sets.
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Readers can download this package, and rerun the code to
reproduce various examples from the book. In addition,
readers can import their own datasets and perform anal-
ysis on their own cases. This package may also serve as
a starter code for users to develop their own versions.
Other packages that implement various UQ methods
include DAKOTA [Adams et al., 2014] and PEST
[Doherty, 2015].

9.4.1. Companion Code Technologies

9.4.1.1. Git. Our codebase is stored as a git repository,
which is a versioning system that allows users access to the
current software package as well as any future updates.
Users can “clone” the repository to make a copy of the
codebase, test datasets, and executable tutorials on their
local machines. Advanced users can also “fork” the
codebase to create their own repository for making
modifications to the codebase for catering to their own
specific needs. Blischak et al., [2016] provide a succinct
introduction to using git for software development. Our
repository is hosted using Github, which provides a forum
for users to interact with the authors for questions, bug
reports, and suggestions.

9.4.1.2. Jupyter Tutorials. In addition to the codebase
that implements the approaches in the book, our git
repository also contains several executable tutorials under
the tutorials folder for data science (Chapter 3), sensitivity
analysis (Chapter 4), Bayesian evidential learning (BEL),
sequential importance resampling (SIR, Chapter 7), and
so on. These tutorials are implemented using the Jupyter
package [Kluyver et al., 2016], which is a documentation
system that is compatible with a variety of programming
languages, including MATLAB. It allows to typeset tutor-
ials to contain both code and expected output of the code.
The generated documents can not only be viewed within a
web browser but can also be downloaded and rerun with
modifications, serving as an interactive tutorial.

9.4.2. Deployment Considerations

In our repository, we have provided example datasets
that can be used with the tutorials and codebase. To
import their own data, users will need to convert their
datasets into the appropriate format; that is, we need to
ensure that the output of model generation and forward
simulation are in a compatible format. This brings us to
the notion of bookkeeping and its importance throughout
the deployment of all three of the software components
required for UQ. A second deployment consideration
pertains to the licensing of packages used in the develop-
ment of post-processing software.

9.4.2.1. The Need for Bookkeeping. Methodologies
such as sensitivity analysis (Chapter 4) or Bayesian
evidential learning (Chapter 7) require input parameters
of each realization and well as its corresponding data
and prediction variable. Since the modeling and forward
simulation are often performed in separate programs, the
bookkeeping of parameters and simulation results can
become a non-trivial task. While most modeling and
simulation software will have the capability to export
parameters and results into text files, the output formats
may not be conducive for post-processing, as they contain
extraneous information. Additional processing may be
required to extract the appropriate data. We have
included an example in our companion code (examples/
Process3DSLResults.m) of a simulator output log, and
the MATLAB script used to marshal the results from a
realization, and match it to its corresponding model
parameters. Obviously, such a processing script would
be modeling/simulator dependent, but it is an important
software component in any UQ workflow. Finally, these
extracted parameters and data must be stored in a format
that can be read by the post-processing software. In
our tutorials, the data is organized as MATLABmatrices
or structs as explained in detail within the Jupyter
documents.

9.4.2.2. Licensing. The final consideration when
deploying post-processing software is the licensing of
the open source codebases and libraries that may be
incorporated. As the post-processing software component
is the least computationally expensive aspect of the UQ
workflow, it is reasonable to use high-level languages such
as R, Python, and MATLAB for their implementation.
This opens up the possibility of incorporating high-qual-
ity, open-source packages that implement many of the
data science tools. For instance, the statistical learning
tools used in Chapter 7 are all available within the
scikit-learn package [Pedregosa and Varoquaux, 2011],
which allows us to quickly experiment with different
regression methods. However, users will need to be mind-
ful of the open source licenses that such packages are
released under. The companion code for this book is
released under the MIT license, a permissive license.
Other software packages may be released under more
prohibitive licenses such as GPL. The reader may refer
to Rosen [2004] for a discussion of the various types of
open source licenses.
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10
Outlook

10.1. INTRODUCTION

One of the main purposes of this book is to introduce
the reader to a variety of real-case problems involving
the subsurface, uncertainty, and decision making, as
well as its societal importance, in terms of the future of
geological resources. We have stated repeatedly that no
single best method exists to tackle a problem involving
so many complexities as well as fields of science, from
fundamental science to applied science, from data to
decision. Hopefully, the insight provided through the
case studies, how various existing ideas come together,
generates a platform for making methodological
approaches more applicable in the real world and for
the real world to get an appreciation of how principled,
science-based, and computational approaches can be
powerful in generating informed decisions.
There is little doubt that uncertainty quantification

(UQ), as a scientific discipline, will continue to evolve.
There are many factors that contribute to this evolution:
(i) we need models that predict the future, (ii) more data
will be acquired that will need to be “married” with
models, and (iii) computation and information technol-
ogy will only increase. Compare the monochrome, 1984
IBM AT, 16 bit with 6 MHz CPU, 16 MB RAM,
20 MB hard disk, and no sensors to a typical 2017 smart-
phone with 16 million colors, four times 2.3 GHz CPU
(and GPUs), 4 GB RAM, 256 GB hard disk and a
proximity sensor, light sensor, barometer, altimeter,
magnetometer, accelerometer, and gyroscope. It is
estimated that more than three billion people have a
smartphone (as many as people living in poverty).
What future holds for the material in this book? As

researchers and practitioners of UQ, we are aware of
the difficulty of making predictions, and how one’s too
narrow or cognitive-biased prior may result in an unreal-
istic UQ. Nevertheless, using seven questions, we would
like to speculate about what may come. These are

fundamental as well as practical questions that will hope-
fully outline areas where making progress will have a
meaningful impact.

10.2. SEVEN QUESTIONS

10.2.1. Bayes or Not Bayes?

Bayes’ is the single most-used principled approach to
UQ. By principled we mean referring to Chapter 5 that
it is based on a mathematical framework with axioms,
definitions, algorithms, and so on. Bayes’ is a growing
paradigm. Other principled approaches, such as those
based on fuzzy logic and possibility theory, are appealing
and perhaps complementary to probabilistic approaches
but less developed. Non-Bayesian methods in data science
(e.g., random forests) are appealing but are they or are
they not valid methods for UQ? Should a decision maker
care whether the assessment of uncertainty comes from a
pure Bayesian method or not? What does such decision
entail?
Despite this rigor in the math, it appears that various

interpretations and uses of the notion of prior distribution
exist. Given the nature of subsurface uncertainty, the
prior distribution often has considerable impact on
the posterior of predictions. This has been shown in the
various case studies.
Few standards appear to exist to aid in stating a prior,

beyond the usual informative and uninformative prior
(see Chapter 5) mostly based on statistical principles.
Many within the Bayesian framework use Gaussian and
uniform priors, often for mathematical convenience.
From our practical experience, we find that the following
questions have arisen:
1. Who states the prior? This is not a trivial matter. In

fact, it refers to the group dynamic that exists when
various disciplines (with their own domain experts) come
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together to solve complex problems. If they were left to
their own devices, each expert would likely provide a
different prior, based on their own different background,
probably inspired by the type of “physics” each has
expertise on. There seems yet not to be much agreement
on how this prior is established within such dynamics
(e.g., oil companies).
2. On what principle does that person select a prior?

A principled approach is important since it leads to some
form of reproducibility, a fundamental notion of scientific
research and conduct. But what principles? Should that
person rely on principle of indifference (a more
uninformed prior) or on a physical principle (informed
prior)? In question 2, we will address this more deeply
since the subsurface system is a natural system, subject
to laws of physics that may inform such priors (although
those laws may themselves be uncertain, as yet).
3. How do we know we have a “good” prior? What does

“good”mean?Once a prior is established, do we just move
on and assume it is good? How can this be quantified?
What if much later we need to completely revise this prior
(start from scratch), because some future observation
falsifies it? In one interpretation of Bayes, a prior should
not need revision; priors are updated into posteriors which
then become priors in the next time-stage, when new
information arrives. The prior is therefore fundamental
to everything that comes next: it is the “base-rate,” it
informs us how data and prediction variables are related,
how much certain data informs model variables, how
much we have reduced uncertainty, how decisions are
made, and so on. It seems that any complete revision at
a later stage should be avoided at all cost. How can this
be done?

10.2.2. How to Turn Geological Knowledge into
Quantitative Numerical Models?

A vast knowledge of geological understanding exists on
the nature of the subsurface. One can take two approaches
to summarize such understanding: process and geometry.
The subsurface was created by means of physical,
chemical, and biological processes operating on a
timescale from as few as 100 or 1000 years (e.g., soils)
to millions of years (e.g., oil reservoirs). That process
has led to a geometry of atoms, molecules, minerals,
grains, pores, bedding, layers, unconformities, faults,
basins, and so on. This established structure with its estab-
lished composition can be regarded as a “geometry”: a
spatial arrangement of “stuff” at the present time. How
we got to this geometry is the study of geological processes
and much within the realm of geological sciences.
Traditionally, this process has been studied descriptively,
where geologists use their forensic skills to describe the
nature of the process that took place, thereby getting a

better understanding on how Earth formed and evolved.
They typically use a combination of field work, labora-
tory experiments, and numerical models to reach such
understanding. This can be regarded as pure science, with-
out necessarily any application or engineering goal
in mind.
The field of geological sciences is rich since it asks

fundamental questions about our planet and the universe.
How can this rich knowledge be used beyond the purely
scientific approach toward practical applications such as
those developed in this book? In terms of applications,
we have considered in this book some initial thoughts
on linking process to geometry for a delta system
(Section 5.9) and an extensional faulting regime
(Section 6.3). The traditional way of representing such spa-
tial variation is by means of geostatistics. Geostatistics
allows representing spatial variability of geometries
throughmathematical or computational models. The clas-
sical approach is tomodel these geometries fromdata (e.g.,
the variogram), but such models are hard to infer in data
sparse environments (like the subsurface) and lack the
ability to describe geometries realistically. Such lack of
realism may have considerable impact on predictions
made. Other geostatistical approaches relying on objects
or training images improve on the realism but avoid the
fundamental question: how to turn process understanding
into a prior distribution of “geometries.” The question,
therefore, in practice is (i) how to generate understanding
of process from limited site-specific data and (ii) how to
turn such understanding into a mathematical model that
can be used for predicting (and not just understanding).
Limited data here encapsulate the combination of
boreholes, geophysical data, and expert (a geologist) inter-
pretation, who may rely on data other than those gathered
at the site, such as analog data, previous publications, and
so on. It is very likely that uncertainty remains on the
quantification of such processes, either fundamentally
or on the leading physical, chemical, and biological
parameters.
Consider the buried valley system in Denmark. Even

when the geophysical data is of relatively high quality,
it leaves open the sub-resolution uncertainty of the bur-
ied valley geometry. How do valleys intersect? What
process is at play? What is the process by which clay
lenses are created within such valley system? A better
understanding of the process generated by means of
numerical models for glaciation could generate addi-
tional understanding, in the same sense as the flume
experiment in Chapter 5 generated better understanding
on deltaic deposits. The main question then is how to
construct such process models. There appears to be
considerable opportunity for research in the areas of
numerical process models for geomechanics, rock
mechanics, sedimentary processes, diagenetic processes,
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geochemical processes, and bio-geochemical processes
or any combination of these.
For cases with very little data, such as the geothermal

case in Belgium, these lofty goals of process understand-
ingmay not apply (i) because it may not be needed or (ii) it
simply is not feasible, given the lack of information. For
such cases, we refer to questions 4 and 5.

10.2.3. What Is a Proper Model Parameterization?

In the univariate case, the definition of a probabilistic
model has two components: the variable and the probabil-
ity measure over its support. Here we consider the former
but now extended to high dimensions. What variables are
needed to describe the subsurface system? The common
approach is to go for certain defaults, for example a reg-
ular grid with a number of variables/properties per each
grid (porosity/permeability), statistical parameters (also
variables) that describe these properties (e.g., a mean, a
variogram range). The size of the grid is often taken to
be based on computational limitations. For stochastic
modeling, this may be several millions, for physical
models some order of magnitude less, simply because
stochastic simulation is much faster than numerical
simulation. Gridded models are usually “upscaled” from
the high-resolution stochastic models (the realizations of
geometry). Another way to define the model parametriza-
tion is based on the nature and amount of data available.
The less data, it seems, the coarser the model definition
(fewer variables), simply because it is easier to match
few data points with coarse models (easier inversion
and fast computations) than a heterogeneous set of data
with high-resolution models.
This may not always be an efficient or even effective

approach. Why should we base such definitions solely
on computational needs? In the end, models will be used
to make predictions and such predictions may have differ-
ent sensitivities with respect to the model variables than
the data or the computational needs. The problem here
is to know this in advance. It seems the only way to know
this is by building high-resolution (high-dimensional)
model parameterizations and figure this out by means
of a sensitivity analysis. This may simply not be feasible,
for computational and practical reasons. What can be
done? One proposal is to at least consider a few high-
resolution model parameterizations (various levels of
resolutions) and calculate the error (e.g., on some predic-
tion) statistically. The latter could consist of quantifying
the error made based on physical considerations (the
numeral discretization error), estimated from the physics
of the problem itself. The multilevel approaches outlined
in Chapter 3 offer opportunities in this regard.
Another question relates to the very nature of grids. The

grid can often be a headache when dealing with

considerable structural uncertainty. Such uncertainty
changes the topology of the grid. As a result, one needs
to rely on sophisticated (e.g., adaptive) gridding. How-
ever, such gridding needs to follow basic geological rules
(layers cannot end in the middle of nowhere, see
Section 6.3) that standard gridding codes are not designed
for. All this makes automation very difficult; hence, even
a simple Monte Carlo is cumbersome. Implicit methods
such as level sets, whose very definition is grid-less, appear
to hold promise in including geological rules.

10.2.4. How to Establish a Realistic Prior Distribution?

Once model variables are defined, the probabilistic
approaches call for defining the joint distribution of all
model variables. A portion of such variables may be inde-
pendent, and hence the joint distribution may be defined
by product of individual distributions. Care must be taken
in making such decision. For example, variables may be
independently defined (e.g., a slope and intercept of a
relationship), but when estimated from the (same) data,
they become dependent. This may appear trivial in this
simple case, but less obvious when dealing with complex
data (from drilling or geophysics) and high-dimensional
model variables.
What do we mean by realistic? Largely, this is a subjec-

tive notion: what appears realistic for one person does not
need to be for another. Practically, it would mean that our
choices over the long term appear to generate realistic
predictions, for example a 10% percentile reflects a 10%
success rate. This is only a qualitative and subjective
notion, because each prediction problem has its own
unique characteristics, so pooling many different predic-
tion problems may not be meaningful, in terms of making
such assessment. A second aspect of such realism is that
the prior, in most interpretations of Bayes, needs to
“predict” the data. This refers to the prior-data consist-
ency issue discussed at length in Chapters 5, 6, and 7.
The most common practical problem is not so much to
“select” among alternative prior distributions (model
selection) but to establish a prior that does not have an
infinitely small probability of predicting the data. When
this occurs, it may be very tempting to do two things:
(i) change the model parameterization such that data
matching becomes easier and (ii) make ad-hoc changes
to the prior distributions. An example of such ad-hoc
change can be as follows: the first attempt of a prior for
the mean proportion of sand fraction is taken as uniform
between 15 and 20%. Let us say that it has been estab-
lished that the current prior (involving many other para-
meters) cannot predict the data (e.g., geophysical data),
but a change (a second attempt) in mean proportion of
between 25 and 30% does (fixing all other parameters).
The first problem is the ignorance of any interaction that
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may take place between parameters in predicting data,
and the second is that a narrow range is changed into
another narrow range, simply anchored around a differ-
ent center.
Our experience has been that a first attempt at defining

a prior, in terms of both model variable definitions and
their (joint) distribution, does not perform well at predict-
ing data. For synthetic cases (where we know the future),
the same can be said when making predictions. Our expe-
rience has been that starting with a wider prior is a good
approach and that falsification can be used to narrow this
prior, then using a second (or even third) Monte Carlo.
Falsification does not require matching data, and it could
just be based on comparison between statistics of the data
and statistics generated by the prior. However, this would
require having quality data. An open question, therefore,
exists as to the practice on establishing a realistic prior,
without too much tuning on data, yet consistent with data
and practical (not far too wide) for solving real cases.
A fine line exists between falsification and ad-hoc tuning.

10.2.5. What Combination of Data Is Needed
and for What Purpose?

New data acquisition method attempting to resolve
various aspects of the subsurface have emerged recently,
particularly in geophysics. We mentioned before the
employment of sensor technology which has lead, at least
in the oil industry, to the deployment of sensors in
boreholes for continuous monitoring. Passive seismic,
recording the ambient noise field of the subsurface
without induced sources, has recently emerged as a way
to image subsurface structures.
The main problem here is that no single data source will

resolve what is needed to make realistic predictions.
Various data sources inform the subsurface in various
ways and at various scales. In addition, gathering data
can be regarded as a “short-term” experiment that aims
to inform longer-term future behaviors. What combina-
tion of data sources are needed to address certain decision
or prediction problems? The value of information frame-
work introduced in Chapter 2 provides a way forward.
However, VOI calculations are cumbersome as they call
for model inversion on datasets generated by Monte
Carlo from the prior distribution. To that extent, statisti-
cal learning and regression may aid in alleviating
this issue.

10.2.6. How to Deal with the Computational
and Software Issues?

Each year for the past 50 years, we have been able to
pack double the number of transistors on a CPU wafer

as the year before. This trend, known as Moore’s Law,
has resulted in the rapid increase of not only computation
power but also memory and disk space. In terms of sub-
surface engineering, this means that each year we have
been able to run a larger number of models which them-
selves are larger and increasingly complex. In turn, this
means that our computational capabilities to perform
UQ have also been growing at a rapid pace. However,
as of the 2010s this rate of doubling has slowed. Transistor
sizes have shrunk to near physical limits (the size of silicon
atoms). The end ofMoore’s Law will undoubtedly impact
all disciplines that rely on high-performance computing,
including subsurface UQ. What avenues can we
explore when we can no longer generate and simulate
larger and more models using our current computing
architectures?
The first area of improvement is specialized hardware to

accelerate computations. There has been a recent surge in
popularity in using GPUs for scientific computing. For
specialized types of calculations, they can provide orders
of magnitudes performance improvement over CPUs.
There have been considerable efforts to port CPU
codebases to run on GPUs in many disciplines, including
subsurface engineering. However, GPUs were designed
for processing computer graphics. For a greater level of
optimization, hardware should be specifically designed
for a particular computational task. This has already
happened in machine learning, as Google has designed
and deployed tensor processing units to accelerate the
algorithms behind Google Search, Translate, Photos,
and so on. Could we see specialized hardware for
subsurface simulations in the future?
A second avenue of progress is in distributed or cloud

computing. Previously, individual computers were limited
by their local processors speeds, but with the advent of
cloud computing, one can draw upon larger and more
powerful computers. Services such as Amazon Web
Services allow users to perform computations by renting
instead of purchasing additional hardware. For large
companies, deploying internal distributed computing
can maximize the throughput of available hardware,
improving the economics of computation.
The final direction is improving the algorithms and

software used for UQ. While accelerating physical simu-
lations through algorithmic optimizations may be diffi-
cult, there is still potential for improving performance
throughout the rest of the UQ workflow. For instance,
could we reduce the number of necessary simulations
required through means such as proxy modeling? Can
we incorporate recent and ongoing advents in artificial
intelligence, such as deep learning and reinforcement
learning, to draw additional conclusions from a smaller
number of models?
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10.2.7. What Educational Means Can We Design
to Teach UQ?

AtStanford, this book is used to teach a course onUQ for
graduate students in Earth Sciences as well as Engineering.
How can students prepare themselves for such a complex
topic? One of the main difficulties in teaching this material
is that it relies on synthesis of many concepts.Most courses
teach technical material, for example course in statistics,
machine learning, applied geophysics, inverse modeling,
decision analysis, and so on. A large hurdle exists in taking
all these ideas and methods out of the narrow domain of
each course and then put themall together to solve real pro-
blems.The synthesis can bemore difficult than the technical
details, since it relies on a different kind of intelligence.
Who teaches how to synthesize and how? Often,

students self-teach, with the help of their advisor using
projects or dissertations. But this remains limited in scope,
certainly in terms of audience. In terms of publication
writing, it is still easier to publish an advance in an indi-
vidual technical field (or some limited combination) than
a synthesis solution, simply because of the limited scope of
journals and the emphasis on citations as a measure of
advancement at many institutions. Our experience with
teaching this material to industry is similar. Industrial
applications face considerable complexity, such as organ-
izational, human resources, or technological hurdles that
are not even mentioned in this book. Hence, to organize
around a common theme of decision making under uncer-
tainty remains difficult, and often pieces of the puzzle are
divided among broad groups (geology and geophysics,
engineering, decision analysis, data processors, etc.). It

is often unclear how these pieces come together and what
domain knowledge is used to create this synthesis.
Domain expertise is often how one gets hired.
This suggests a considerable educational challenge. On

top of that, because of the growing technologies, the
amount of information is exploding. A different para-
digm of teaching is needed than what was offered over
the last few decades, where emphasis has been on techni-
cal material and skills, then only applications. Yet
students and instructors alike feel more comfortable
focusing on the technical material. Perhaps, we are enter-
ing a renaissance time in learning. According to Carl
Wieman, Noble Laureate in Physics, former Director
of the White House Office of Science and Technology,
the goal should not be to teach just skills but to teach
how to think like scientists. Teaching ways of thinking,
for example Bayesian or other, makes what appears to
many irrelevant or uninteresting material suddenly
compelling. AsWieman states1: “… key is to design tasks
where students witness real-world examples of how
science works.” As such, the encouraging trend of joint
inter-departmental seminar series and the emphasis on
funding large governmental projects that include signifi-
cant educational components are likely to only accelerate
such renaissance.
“I think that when we know that we actually do live in

uncertainty, then we ought to admit it; it is of great value
to realize that we do not know the answers to different
questions. This attitude of mind – this attitude of uncer-
tainty – is vital to the scientist, and it is this attitude of
mind which the student must first acquire”. Richard
P. Feynman, Noble Laureate in Physics, 1965.

1 nytimes.com/interactive/2013/09/02/science-education-voices.html
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companion code technologies

bookkeeping needed for, 265
deployment considerations for, 265
Git, 265
Jupyter tutorials, 265
licensing for, 265

dealing with software issues, 270
forward simulation

parallelism needed for, 264
proxy simulators for, 264

introduction, 263
model generation
automation needed for, 264
Monte Carlo sampling in, 263–64

post-processing, 264–65
Solid specific heat capacity, 240t
Solid thermal conductivity, 240t
Solution gas-oil ratio, 5
Spatial uncertainty, 247t
Spectral decomposition, 50–51, 50f
SRC. See Standardized regression coefficients

SSE. See Sum of squared error
Standardized regression coefficients (SRC)

linear regression analysis with, 111–13, 113t
sensitivity measured with, 111

Statistical surrogate models, subsurface systems
with, 217–18

Streamflow reduction potential. See SFRP
The Structure of Scientific Revolution (Kuhn), 138
Sum of squared error (SSE), 260
Support vector machine (SVM), 70, 72–73, 72t

outlier detection in statistical model with, 202–3, 203f
Surface-based geological structures

Bayesian inversion with, 174–78, 175f, 176f, 177f, 178f
faults networks from partial fault interpretations with

geological priors for faults, 174–76, 175f, 176f
geological prior’s importance, 177–78, 178f
from geological prior to marked point process prior,

176–77, 177f
SVM. See Support vector machine
Swing weighting, 36–38, 38t

Thermal response test (TRT), 15
Thermal tracer test (TTT), 15
3DSL, 264
Thumbtack game, 30–32, 30f, 31f
TI. See Training image
Time component, decision analysis with, 29
Time-lapse inversion, Belgium geothermal systems with UQ

using, 240
Time series, nonparametric bootstrap with, 101
TOUGH2, 264
Training image (TI), 148–49, 149f
Transverse dispersivity, 240t
Tree-based SA, 121–22, 122f

discrete parameter with, 125t
high dimensional response with, 125t
input distribution with, 125t
interactions with, 125t
model assumption with, 125t
sensitivity measure with, 125t
stochasticity with, 125t

TRT. See Thermal response test
TTT. See Thermal tracer test

Uncertainty
decision making under, 29–42
geological, 213

Uncertainty quantification (UQ)
Bayesianism in context of, 129
Belgium geothermal systems with

Bayesian evidential learning for, 240, 244, 246
Bayesian prediction with GSA methods in, 241–45,

241f–45f
CCA for, 240, 244
deterministic inversion for, 240
DGSA for, 240, 242
modeling noise for, 240, 244
OAT method for, 240
PCA for, 240, 242, 243f, 244f
strategy for UQ in, 238–40, 239f
time-lapse inversion in, 240

data-model-prediction-decision for, 24
distances component in, 51–54, 52f, 53f
elements of BEL for, 196f
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modeling components and data sources for, 6t
outlook for, 267–71
paradigms using BEL for, 195f
probability theory as paradigm for, 138–42, 142f
role of geophysical inversion in, 184–85,

184f, 185f
seven questions on

Bayes or not Bayes, 267–68
geological knowledge into quantitative numerical

models, 268–69
how to deal with software issues, 270
proper model parameterization, 269
realistic prior distribution establishment, 269–70
what combination of data is needed, 270
what educational means for design to teach UQ, 271

statistical model confidence interval with, 195
in subsurface systems

introduction, 217–18
Univariate transformations, 54
UQ. See Uncertainty quantification
Uranium remediation in United States, 17–20, 18t,

19f, 20f
uncertainty quantification with, 245–54, 246f, 247f,

247t, 249f, 250f–53f
Utility function, 35
Utility metric, 35

Value, three elements influencing, 31
Value functions, 35
Value metric, 34–35
Value of Information in the Earth Sciences (Eidsvik et al.), 30
Value of perfect information (VOPI), 31
Variance of permeability, 247t
Variance reduction methods

control variates and multilevel MC, 92–93
importance sampling, 93–94, 94f
introduction, 90
Latin hypercube sampling, 91–92, 92f
stratified sampling, 91, 91f

Variogram azimuth, 247t
Variogram-based geostatistics, 163–64
Variogram correlation length, 247t
Variogram type of permeability, 247t
VOPI. See Value of perfect information

WAFs. See Well allocation factors
Water drawdown. See WDD
Water specific heat capacity, 240t
Water thermal conductivity, 240t
Wavelet uncertainty, BEL in practice with, 213
WDD (Water drawdown), 233–34, 236t
Well allocation factors (WAFs), 218
WRP (Wetland reduction potential), 233–34, 236t, 237t
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