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INTRODUCTION 

Few of us can any longer keep up with the flood of scientific literature, even 
in specialized subfields. Any attempt to do more and be broadly educated 
with respect to a large domain of science has the appearance of tilting at 
windmills. Yet the synthesis of ideas drawn from different subjects into new, 
powerful, general concepts is as valuable as ever, and the desire to remain 
educated persists in all scientists. This series, Advances in Chemical Physics, 
is devoted to helping the reader obtain general information about a wide 
variety of topics in chemical physics, a field which we interpret very broadly. 
Our intent is to have experts present comprehensive analyses of subjects of 
interest and to encourage the expression of individual points of view. We 
hope that this approach to the presentation of an overview of a subject will 
both stimulate new research and serve as a personalized learing text for 
beginners in a field. 

ILYA PRIGOGINE 
STUART A. RICE 
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PREFACE 

This volume is composed of eight chapters all devoted to the theory of 
charge-transfer processes during an atom (ion)-molecule (ion) collision. In 
three chapters are presented different attitudes for treating the potential 
energy surfaces (and the corresponding coupling terms), which govern the 
motion of the interacting atoms and ions, and in five chapters is treated the 
dynamics of these particles. The range of the topics on this subject covers 
the pure quantum-mechanical approach, various semiclassical approaches, 
and several statistical approaches. The order of the chapters are as follows. 

The first chapter, by Lengsfield and Yarkony, deals with the adiabatic 
representation of the potential energy surfaces. Special emphasis is given to 
the importance and the derivation of the radial nonadiabatic coupling terms. 
These terms represent what must be determined in order to characterize an 
electronically nonadiabatic process. Equally significant is the efficient 
determination of where it is most important to determine these quantities. 
Nonadiabatic effects are most important in regions of nuclear coordinate 
space for which the potential energy surfaces in question are in close proximity 
or actually touch or cross. Thus, this chapter will also discuss eficient 
techniques for locating actual and avoided surface crossings. 

The second chapter, by Sidis, deals with the diabatic representation of the 
potential energy surfaces. Here are discussed the problems associated with 
the strict formal definitions of diabatic states and with the adiabatic-diabatic 
transformations when applied for reduced electronic basis sets. Next is 
presented in great detail a method that yields from first principles potential 
energy surfaces and potential coupling terms such that the corresponding 
nonadiabatic coupling terms are relatively small. Results for several systems 
are discussed. 

The third chapter by Gianturco and Schneider describes a semiempirical 
method for the calculations of several potential energy surfaces that are 
usually coupled together in the case of ion-molecule interactions. The 
method, which is based on the diatomics-in-molecules (DIM) wave expansion, 
is briefly reviewed and the physical meaning of the terms included in the 
expansion is discussed. The rigorous handling of the nonadiabatic coupling 
terms between surfaces for specific geometries of the relative orientation is 
reduced, within their treatment, to a more simplified approach that lends 
itself to rather rapid evaluation via the full DIM matrix. Examples are 
discussed for several simple ion (atom)-diatom systems for which either 

ix 
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scattering experiments are available or dynamical computations have been 
attempted. It is shown in conclusions that the present model approach is 
one of the most useful and physically realistic pathways for treating 
ion-molecule collisions based on the general topology of the corresponding 
potential energy surfaces coupled with the dynamics. 

The fourth chapter by Baer deals with the quantum-mechanical approach 
of low-energy charge-transfer processes between ions and neutrals. First is 
discussed the formal theory based on the Born-Oppenheimer treatment (with 
the emphasis on the adiabatic and the diabatic representations and the strict 
and approximate relations between them), which is then followed by deriving 
the Schrodinger equation for studying the dynamics. Special attention is 
given to those instances when exchange (chemical reaction) processes are 
competing with the charge-transfer process. Integral and differential state- 
to-state cross sections were calculated for several systems and compared with 
experiment. 

The fifth chapter, by Nakamura, deals with the semiclassical approach to 
charge-transfer processes. Various transitions such as the Landau-Zener and 
the Rosen-Zener type of nonadiabatic transitions, transitions induced by 
Coriolis coupling, spin-orbit interaction, and the coupling due to the electron 
momentum transfer or the electron translation factor in charge transfer are 
discussed. It is shown that the semiclassical theory can be utilized to analyze 
all these transitions uniformly by introducing the new (dynamical-state) 
representation. Qualitative discussions are also presented for reactive transi- 
tion or particle rearrangement by emphasizing the role of the potential 
ridge. Particular emphasis is given to the two-state case, which is then 
extended to a multistate system. Also, a simple semiclassical generalization 
of the trajectory-surface-hopping method is discussed. 

The sixth chapter, by Gislason, Parlant, and Sizum, is devoted to classical 
path calculations of charge transfer for ion-molecule collisions. Inelastic 
processes that occur at the same time, such as fine-structure transitions and 
vibrational excitation, are also discussed. After a brief introduction the 
classical path technique is discussed in detail. In particular, the choice of 
basis sets, the coupled equations, and the classical trajectory are described, 
and the best numerical techniques to be used are summarized. The 
calculations of both total and differential cross sections are covered. Next 
are reviewed previous classical path calculations of total state-to-state cross 
sections and differential cross sections, and representative results are 
shown. Certain general features of charge-transfer collisions such as the 
Franck-Condon principle, the adiabatic vibronic potential energy surfaces, 
and the general energy dependence of charge-transfer cross sections are also 
discussed. 

The seventh chapter, by Chapman, deals with the classical trajectory- 
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surface-hopping method. Here is not only described in detail the method 
itself and various extensions to it but also a number of procedures for locating 
the position for the potential hopping. The main advantage of the trajectory- 
surface-hopping method is that it enables one to describe relatively simply 
and self-consistently the wide range of processes that may occur in molecular 
collisions, particularly in ion-molecule reactions. These include charge 
transfer, chemical reaction, collision-induced dissociation, and collision- 
induced predissociation. With the addition of some simplifying assumptions, 
it is possible to include electron-detachment channels as well. Results for 
several ion-molecule systems are described in some detail, including 
(H + H2)+,  (Ar + H2)+,  (He + H,)', (Ne + He2)+, (C1+ H2)+ .  Electron jump 
reactions, including M + X ,  ( M  = alkali, X = halogen) and M + 0, are also 
discussed. 

The eighth chapter, by Troe, discusses the application of statistical rate 
theories to unimolecular and bimolecular ion-molecule reactions. Rovibra- 
tionally adiabatic channel potential curves and threshold energies are 
analyzed for various reactive systems. Consequently, the corresponding rate 
constants and cross sections for capture processes, bimolecular reactions 
involving predissociation of the collision complexes and unimolecular 
reactions are derived. Finally, also nonadiabatic corrections to these rate 
expressions are considered. 

MICHAEL BAER 
CHEUK-Y IU NG 

Ames Iowa 
November 1991 
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I. INTRODUCTION 

The introduction of analytic gradient and higher-derivative techniques has 
had an enormous impact on the progress of ah initio electronic-structure 
theory. Analytic derivative methods were first introduced as a practical 
computational tool for use with single configuration wavefunctionsiS2 in the 
late 1960s as an extension of the previous work of Bratoz' and B i ~ h o p . ~  
Progress in both the theory and application of these techniques has been 
quite rapid, so that the use of analytic first and higher derivatives at  various 
post-Hartree-Fock levels of theory is now Testimony to the 
importance of this area of research is given by the large number of 
 review^'^-*^ of the field. In this chapter we discuss the theory and application 
of analytic gradient techniques to the study of electronically nonadiabatic 
processes. These are processes in which the description of the nuclear motion 
involves more than one Born-Oppenheimer potential energy surface and 
include such familiar areas as electronic quenching and charge-transfer 
reactions, predissociation and photofragmentation, and vibronic spectro- 
scopy. Studies of electronic quenching are frequently motivated by practical 
considerations such as the design of gas-phase chemical lasers and the 
interpretation of laser-induced-fluorescence-excitation experiments, which 
probe intermediate species in combustion reactions. Molecular-photodis- 
sociation processes often proceed via excitation to a bound excited state, 
which is predissociated by nonadiabatic coupling with a (set of) dissociative 
states. Alternatively, this process may involve excitation to a set of nonadia- 
batically coupled dissociative states corresponding to distinct exit-channel 
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arrangements. These situations arise in the photofragmentation of H:, where 
the reactions 

H l + h v - + H : + H  

and 

H l  + h v + H +  + H + H 

compete.2' Vibronic absorption spectra involving states of mixed 
valence-Rydberg character are strongly influenced by nonadiabatic 
interactions. This is clearly seen in the recent analysis*' of the 'Xu+ and 'nu 
states of N2 and the kinetic energy release s t ~ d i e s ~ ~ . ~ ~  of d ' n ,  state of 0,. 
Systems exhibiting Jahn-Teller and Renner-Teller2'- 27  intersections also 
require a knowledge nonadiabatic interactions for theoretical study. 
Theoretical and experimental studies of these phenomena have profitted from 
the work of Berry28 and Simonz9 on the adiabatic evolution of the 
wavefunction in a region of degenerate surfaces. 

Our description of these processes employs an adiabatic states 
a p p r o a ~ h . ~ ' - ~ ~  In this approach it is necessary to determine both the 
adiabatic state potential energy surfaces E'(R) as well as the first34-37 

and ~ e c o n d ~ ~ . ~ ~  

derivative couplings, which result in the breakdown of the single potential 
energy surface approximation. In this chapter it is shown how a series of 
recent  advance^^^-^' in electronic-structure theory have facilitated the 
computation of derivative coupling matrix elements in the case where the 
adiabatic electronic states are represented as large-scale multireference 
configuration-interaction (CI) wave function^.^^ .42 The analytic derivative 
procedures that are discussed in this work represent a significant 
improvement over the finite-difference t e c h n i q ~ e s ~ j - ~ ~  that had been 
introduced previously to determine these quantities. In Section I1 these 
analytic-gradient-based techniques for the determination of the first 
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derivative (Sections I1 A and I1 B)36*37 and second derivative (Section I1 
C)38.40 nonadiabatic couplings are reviewed. In Section I1 A a structural 
isomorphism between the energy gradient and the first-derivative 
nonadiabatic coupling matrix elements will be developed. This isomorphism 
is the key to the ellicient evaluation of these quantities using analytic gradient 
methods. 

Section I1 D discusses the additional efficiencies that can be achieved by 
incorporating body-fixed-frame symmetry into the evaluation of derivative 
couplings. In Section I1 F the interrelation between second-derivative 
couplings, k$(R), and the absence of rigorous diabatic bases in polyatomic 
systems is discussed. 

Derivative couplings, nonadiabatic effects, are most important in regions 
of coordinate space for which two or more potential energy surfaces are in 
close proximity or actually touch or cross. Such regions of nuclear coordinate 
space will frequently be characterized by actual or avoided-crossing seams of 
the potential energy surfaces in question. A recently introduced methodology 
for locating actual/avoided  crossing^“^^^^ will be discussed in Section I1 E. 
In that subsection the isomorphism established between the energy gradient 
and the first-derivative nonadiabatic coupling matrix elements will be 
extended to include the energy-difference gradient. The method that is 
developed for the efficient determination of the energy-difference 
gradient will be essential for the determination of actual/avoided surface 
crossings. 

Section 111 considers applications of the methodology discussed in Section 
11. As discussed in Section I1 the first-derivative nonadiabatic coupling matrix 
elements fLJ(R) are responsible for transitions between potential energy 
surfaces, while the second-derivative nonadiabatic coupling matrix elements 
h$(R) both couple and modify the potential energy surfaces. While the 
Born-Oppenheimer potential energy surfaces themselves are mass 
independent, the modifications resulting from h$(R), referred to as the 
adiabatic correction or the Born-Oppenheimer diagonal correction, are mass 
dependent. Several groups have been interested in the Born-Oppenheimer 
diagonal c o r r e c t i ~ n . ~ ~ ‘ ~ ~ - ~ ~  Ah inilio studies include those of Bishop and 
C h e ~ n g ” - ~ ~  who considered H,, HeH’, and LiH using specialized CI 
wave function^^^-^^ as well as SCF or SCF/limited-CI 

of more complex molecules. In this work the second- 
derivative methodology is used to discuss the adiabatic correction to the 
X ‘X+ state potential energy curve of LiH. This subtle mass-dependent 
feature of the X ‘Z’ potential energy curve had been the object of some 
controversy, since experimental and theoretical determinations of this 
quantity had yielded qualitatively different results. We then turn to a discus- 
sion of the electronic structure aspects of the radiationless electronic 
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quenching process 

He + H,(B 'Xu+)+ He + H,(X '1;). 

This reaction is of particular interest since it is facilitated by a seam of actual 
surface crossings permitted by the multidimensional breakdown6' h4 of the 
von Neumann -Wigner65 noncrossing rule. Ab initio characterizations of an 
actual crossing of states of the same symmetry are rare. The characterization 
of an actual crossing seam using multiconfiguration self-consistent field 
(MCSCF)66-68/CI wavefunctions discussed in this chapter is unique.69 The 
only previous characterization of an actual crossing seam is that of Katriel 
and Davidsonh3 who employed a Frost model7' in approximate treatment 
of CH:. 

The methodology outlined in Section 11 E is also capable of determining 
seams of aooided ~ r o s s i n g s . ~ ~ . ~ ~  Seams of avoided crossings represents the 
parametric solution of the equations defining an avoided crossing in a space 
of reduced dimensionality. Since an actual crossing of two states of the same 
symmetry is permitted, but not required, by the noncrossing rule, an actual 
crossing seam may merge into an avoided crossing seam when the solution 
permitted by the noncrossing rule ceases to exist. Thus, it is appropriate 10 
determine avoided-crossing seams in the same parameter space used to 
describe an actual crossing 'seam.' In this regard the fact that both classes 
of solutions can be obtained from the same set of equations is particularly 
convenient. Although not discussed in this presentation, it is relevant to note 
that the role of an avoided-crossing seam, unrelated to an actual surface 
crossing, in the nonadiabatic reactive quenching process 

Na(,P) + HCI --* NaCl + H('S) 

has recently been studied4"" using both the ab initio techniques discussed 
in this work as well as the more empirical optimized72 diatomics-in-molecules 
(DIM)73 approach. 

11. THEORY 

In an electronically nonadiabatic process the rovibronic wavefunction can be 
expanded in a basis of Born Oppenheimer electronic states, that is the total 
wavefunction for the system has the f o r ~ n ~ ' . ~ '  

(2.la) 

(2.lb) 
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where R denotes the nuclear degrees of freedom and r denotes the electronic 
degrees of freedom. Here Y;(r; R) is the electronic wavefunction and &R) 
is the Kth rovibronic wavefunction corresponding to the Ith electronic 
potential energy surface. Equation 2.1 is valid for any electronic wavefunction 
that depends parametrically on nuclear coordinates. As a practical matter it 
is necessary to make a particular choice of Y;(r; R) in order to limit the size 
of the expansion in electronic states. In this work Y;(r; R) will be taken to 
be an adiabatic electronic state and denoted Y,(r; R). Thus, the electronic 
wavefunctions are eigenfunctions of nonrelativistic Born-Oppenheimer 
electronic hamiltonian, 

He(r; R)YJ(r; R) = E;(R)YJ(r; R )  (2.2) 

and the total hamiltonian in the space-fixed coordinate frame is 

(2.3) 

Inserting Eq. (2.1) into the time-independent Schrodinger HTYT = E Y T  gives 
the following system of coupled equations for the rovibronic functions z'"-(R): 

(2.4) 

where the state label L on X'-~(R)  has been suppressed and 

fh'(R) = YJ(r; R)  ~- YJ(r;R) , ( I,",, >r  

(2.5a) 

(2.5b) 

(2.7a) 

(2.7b) 
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and the subscript r on the matrix elements in Eqs. (2.5)-(2.7) denotes 
integration over all electronic coordinates. Thus, the basic matrix elements 
that couple adiabatic electronic states are fi'(R) and h$(R). The term 
- K"(R) is referred to as the adiabatic correction or the Born-Oppenheimer 
diagonal correction. From Eqs. (2.4) and (2.7) it is seen that K"(R), which 
is a linear combination of the k$(R), gives rise to mass-dependent corrections 
to the Born-Oppenheimer potential energy surface. Note that the k$(R) and 
h:i(R) are related as follows: 

This equation will provide the basis for a procedure discussed in Section 
I1 C for the evaluation of h$(R) using only analytic first-derivative techniques. 
Note, too, that in the diatomic case R0me1t'~ has discussed a reformulation 
of the dynamical problem [Eq. (2.4)] in which kJ'(R) completely replaces 
hJ'(R) in the coupled electronic state equations. 

The adiabatic wavefunctions considered in this chapter are multireference 
configuration-interaction wavefunctions, Y,(r; R), which are given as finite 
(but large, on the order of 104-106 terms) expansion in terms of 
configuration-state functions (CSFS):~' 

where the CSF, $A(r; R), is a linear combination of Slater determinants with 
the appropriate spin and spatial symmetry. Inserting Eq. (2.9) into the 
electronic Schrodinger equation, Eq. (2.2). gives the matrix eigenvalue 
equation, the CI problem 

HC'(R) = E'(R)C'(R). (2.10) 

Here the adiabatic electronic energy E;(R) in Eq. (2.2) determined from CI 
wavefunctions is denoted E'(R). 

R) are in turn constructed 
from a linear combination of atomic orbitals x(r; R): 

The molecular orbitals @(r; R) used to build 

(2.1 I )  

Here and throughout this chapter the subscripts i , j ,  k, I ,  m and n will be 
used to denote molecular orbitals, and p ,  q, r, s and t will be used to label 
atomic orbitals. 
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To facilitate the evaluation of the nonadiabatic coupling matrix elements, 
we employ a common set of orthonormal molecular orbitals in the CSF 
expansion for each state. Since the use of a common set of orthonormal 
orbitals permits us to assure state orthogonality at the CI level, it is also key 
to the determination of the actual crossing seam between two states of the 
SAME symmetry discussed in Sections I1 E and I11 B. The common set of 
orthonormal molecular orbitals is determined from a quadratically 
c o n ~ e r g e n t ~ ~ - ~ ~ * ’ ~  state-averaged MCSCF45.66*67*75 (SA-MCSCF) pro- 
cedure. Although a discussion of the details of the SA-MCSCF procedure is 
deferred to later in the development, it is significant to note that in a 
well-designed calculation the quantities of interest should not be sensitive to 
the details of the state averaging scheme, or the reference (MCSCF) space, 
used in developing the CI wavefunctions. The weighting factors for the states 
[see Eq. (2.45)] and reference space used in the SA-MCSCF procedure should 
yield a multireference CI wavefunction of equivalent quality to that which 
would be obtained from a reliable multireference CI wavefunction based on 
orbitals optimized for an individual state. When it is not computationally 
tractable to verify or guarantee that this situation obtains, the viability of 
the wavefunction description will be considered by reference to the available 
experimental data. 

A. Evaluation of the First-Derivative Nonadiabatic Coupling Matrix 
Elements and Energy Gradients: A Unified Approach 

Differentiation of the CI wavefunction defined in Eq. (2.9) gives 

Thus, the first derivative nonadiabatic coupling matrix element consists of 
two terms 

f;’(R) = “Jj‘(R) + ‘SFfil(R) (2.13) 

where the C1 contribution is given by 

and the CSF contribution has the form 

(2.14) 
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From Eq. (2.14) it would appear that the derivative of the CI coefficients 
dC'(R)/sR, 3 V:(R) would be required to evaluate the CI contribution to 
f:'(R), Cff:'(R). However, this is in fact not the case since only the projection 
onto the state \YJ(R) is actually required. Equation (2.14) for ''j':'(R) can be 
recast in a form similar to that of an energy gradient EL(R) = dE'(R)/dR,. 
In the following discussion the first derivative of the CI energy with respect 
to a nuclear displacement R, will be referred to as the CI gradient. The 
transformation of Eq. (2.14) to a form that obviates the explicit determination 
of VL(R) is key to the eficient use of analytic gradient techniques in the 
evaluation of fJ'(R) and provides the basis for the unified approach to the 
evaluation of the energy gradients, nonadiabatic coupling matrix elements, 
and energy difference gradients noted in the Introduction. 

The manipulation of Eq. (2.14) begins with consideration of the 
coupled-perturbed CI (CP-CI)  equation^,^^.^^ which provide a formal 
expression for the derivative of the CI coeficients V:(R). This system of linear 
equations is obtained by differentiating Eq. (2.10) to give 

(2.16) 

so that 

1 C'(R) = - [ R, { H - E'(R)} C'(R). 
d a 

(2.17) 

Taking the dot product of Eq. (2.17) with CJ(R) gives 

(? 
'ff;'(R) = C'(R)+ ~ C'(R) 

iiR, 

dH 
= [EJ(R) - E'(R)]-'CJ(R)' -C'(R). 

d R, 

(2.18) 

(2.19) 

Note that Eq. (2.19) is not the Hellmann-Feynman to which i t  
bears a formal resemblance, since in Eq. (2.19) it  is not the hamiltonian 
operator W(r;  R) but rather the hamiltonian matrix H that is being 
differentiated. 

This expression will be shown to have the same form as a CI gradient 
but with transition density matrices replacing standard density 
in the appropriate  expression^.^^*^^ To see this note that the CI vectors, 
C'(R), are constrained to be orthonormal at all geometries, that is, 

c'(R)+c'(R) - 6,' = 0. (2.20) 
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Taking the dot product of Eq. (2.17) with C'(R) and using Eq. (2.20) yields 

dH - C'(R)+ -~ C'(R), 
d E'( R) 

dRa 
(2.21) 

which has the same form as Eq. (2.19). 
To demonstrate explicitly the connection between Eqs. (2.19) and (2.2 1) 

it is convenient to express the CI energy in terms of one- and two-electron 
integrals, CI coefficients, and coupling constants: 

E'(R) = c'(R)+Hc'(R) (2.22a) 

(2.22b) 

(2.22e) 

where hij and g i j k l  are, respectively, the one-electron integrals and two-electron 
integrals in the molecular-orbital (MO) basis, V, is the nuclear repulsion 
energy, z$ and Z z 1  are coupling constants used to construct the hamiltonian 
matrix element H,,(R) = ( $,(r; R)lH'$,,(r;R)), from the MO integrals, and 
y:; and are one-electron and two-electron density matrices, respectively, 
again in the MO basis. 

Thus, from Eqs (2.21) and (2.22), Eh(R) is given by 

where dVN/,laRa is the derivative of the nuclear repulsion energy. Similarly 
from eq. (2.19) the first derivative nonadiabatic coupling term is given by 

where AE,,(R) = E'(R) - E'(R) and transition density matrix elements y:,! 
and rG1 occur in place density matrix elements, 7:; and which appear 
in the energy gradient expression [Eq. (2.23)]. 
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Since the molecular orbitals are linear combinations of atomic orbitals 
[see Eq. (2.1 I)], the derivatives of the molecular orbitals involve two terms: 

where the derivative of s(R), the MO coefficients, is defined as follows 

a 
- TJR) = 1 Tpj(RWj'i(R) (2.26a) 

= rii(R). (2.26b) 

dR, j 

Thus the derivative of h and g, the MO integrals, also involve two terms 

- a h,(R) = hi"(R) + hY(R) (2.27a) 

where the superscript II on a quantity in the M O  basis indicates that the 
quantity in question is constructed from the derivative of the atomic integrals 
(here h; and g",,J so that we have 

(2.28a) 

gijkl = 1 fpiTqjgpqrsTrkfslr (2.28b) 
p.q.r.s 

while the corresponding derivative quantities are given by 

h; = 2  hi^^^^ (2.29a) 
P.rl 

(2.29b) 

The remaining terms, h y  and g Z l  are constructed from U"(R) in the following 
manner: 

(2.30a) 
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The CI gradient then can be expressed as follows, 

(2.31a) 

(2.3 1 b) 

(2.31~) 

where 

(2.32b) 

In Eq. (2.32a) the density matrix elements have been transformed to the 
atomic-orbital (AO) basis in order to avoid transforming the A 0  derivative 
integrals to the MO basis for each degree of freedom. In Eq.(2.32b) the 
Lagrangian,13 L:;, has been introduced where 

(2.33a) 

(2.3 3 b) 

In an analogous manner Eq. (2.24) gives the CI contribution to the first 
derivative nonadiabatic coupling matrix element as 

where 

(2.324 

(2.32b) 
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and the transition Lagrangian is given by 

(2.33 b') 

Equations (2.31~) and (2.3 lc') provide the unijied approach for the evaluation 
of CI gradients (Eq. (2.31)] and the CI contribution to the jrst-order 
nonadiabatic coupling elements [Eq .  (2.31 c')]. 

The evaluation of Eqs. (2.32b) and (2.32b') can be further simplified by 
avoiding the explicit determination of Ua(R).82-85 However, discussion of 
this procedure is deferred until after an expression for the CSF contribution 
to the first derivative nonadiabatic coupling matrix elements has been 
developed as the same approach can also be employed to reduce the 
computational effort needed to construct this term. 

We now consider the CSF contribution to the first derivative nonadiabatic 
coupling matrix element. A CSF, $A, is an antisymmetric symmetry adapted 
sum of products of molecular orbitals: 

so that its derivative has the form 

(2.35) 

Thus, the overlap between a CSF and the derivative of a CSF can be 
represented as the matrix element of an one-electron operator, 

where 

and 

(2.38) 

The matrix element of a one-electron operator can be obtained as the trace 
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of the one-electron density with the appropriate integrals, thus 

CSF f, J I  (R) = $dYj, (2.39) 
i . j  

where yf is the square one-electron transition density matrix and d"(R) is 
an antisymmetric matrix with matrix elements 

d"(R)= 4 . ( r R )  -4  r;R) . ( ' ' 18:" j (  >, 
(2.40) 

The antisymmetry of da(R) is a consequence of the orthonormality of the 
molecular orbitals, 

( 4i(r; R)I 4j(r; R)), = 6ij. (2.41) 

Here the adjective "square" has been emphasized in reference to the 
one-particle transition density matrix. The one-particle transition density 
matrix is in general not symmetric, that is, the full or square matrix must 
be retained. However, in most electronic structure applications the associated 
one-electron integrals, for example h, are symmetric, permitting the 
off-diagonal density matrix element to be stored in folded or triangular form. 
Since d" is not symmetric, it it necessary to construct and store the transition 
density matrix in its unfolded or square form. 

From Eqs. (2.25) and (2.26) d; is comprised of two terms: 

(4i(r; R)I4m(r; R)>rv:j 

(2.42a) 
P.Q 

= c-J:~(R) + Ut(R) (2.42b) 

so that 
(2.43) 

Thus, the CSF contribution to the first derivative nonadiabatic coupling 
matrix element requires only two new quantities, d;j and the square y;;, which 
do not appear in the formulas for a CI gradient. 

Combining Eqs. (2.31~') and (2.43) we obtain the following expression for 
the first-order nonadiabatic coupling matrix element: 
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( P.4 p.q.r.s i.i 
= - AEJI’ c y:h; + c rgrsg;qrs) + j f*u(R)  + c y’,’uYj. (2.44b) 

B. Molecular-Orbital Derivatives 

We now turn to the evaluation of the U;, which appear in Eqs. (2.32) or 
(2.44). In order to implement the formalism of Section I1 A a common set of 
molecular orbitals must be employed in the description of each pair of the 
states under consideration. As noted earlier, in the present approach the 
common set of orbitals is obtained from a state-averaged MCSCF 
(SA-MCSCF) procedure. The SA-MCSCF energy is a weighted sum of the 
energy of the individual states, 

ESAMC = c w,c’,c(R)tH(R)C’,C(R). (2.45) 

The derivatives of the MO coefficients U;j are obtained from the system of 
linear equations that results from differentiating the equations which define 
the parameters, orbitals, and CI coefficients, which minimize EsAMC These 
equations are known as the coupled-perturbed state-averaged MCSCF,” 
CP-SAMCSCF, equations. However, for the purposes of this discussion, it 
is convenient to consider the equations that arise for a single-state MCSCF 
procedure, the CP-MCSCF13 equations, and defer our discussion of the 
CP-SAMCSCF equations to Appendix C. 

1. Coupled-Perturbed MCSCF Equations 

The conditions defining the MCSCF parameters, the MCSCF variational 
conditions, are as  follow^^'^^'^^^: 

I 

(2.46a) 

= L F  - Ly (2.46b) 

= 0, (2.46~) 

- a --EMc=GC’, 

dCLC.A 
(2.47a) 

= - 2 W U C  - ELC)CLCIA (2.47b) 

= 0, (2.47~) 

where Aij is a unique element of the antisymmetric matrix, A, used to generate 
a unitary transformation, e -’ of the orthonormal molecular orbitals. Only 
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the nonredundant elements of z\, that is, those elements corresponding to 
orbital mixings that can change the-energy, are included in Eq. (2.46). A 
similar set of parameters Cij, where [ is an antisymmetric matrix, may be 
defined to generate a unitary transformation of the CI eigenfunctions of the 
MCSCF hamiltonian. However, a more efficient MCSCF procedure is 
obtained if these CI variations are expressed directly in the CSF basisa6 and 
Eq. (2.47) reflects this choice of basis. 

Before differentiating the MCSCF variational conditions to obtain the 
CP-MCSCF equations, it is necessary to consider the contributions to Ut 
that arise from the molecular-orbital orthonormality constraints [Eq. (2.41)]. 
Differentiating this equation gives 

- . .  

(2.48b) 

(2.48~) 

which yields 

where 

U;j(R) + S;j(R) + U;i(R) = 0 (2.49) 

(2.50b) 

The constraint equation [Eq. (2.49)] is incorporated by defining 
such that 

and T:j 

U:j(R) = z\:j(R) + T;j(R), (2.51) 

where z\yj is an antisymmetric matrix whose elements will be determined by 
solving the CP-MCSCF equations and T:j has the following structure: 
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= - for i = j (2.52b) 

= O  for i > j. (2.52~) 

Equation (2.51) embodies the fact that, as the positions of the nuclei are 
changed, the orbitals evolve in response to the variational conditions and 
also in response to the molecular-orbital orthonormality constraints. The 
latter contribution arises because the overlap matrix in the atomic orbital 
basis, S,,(R), is a function of the nuclear coordinates. 

Differentiating the MCSCF variational conditions gives 

(2.53b) dGOij dGOij acoij 
k.1 aTkI k l  * acki = GO;j + 1 ~ T;, + I-- A;, +I-- C L  

(2.53~) 

= 0, (2.53d) 

(2.54b) 

= 0. (2.54~) 

In Eqs. (2.53)-(2.54) and throughout the remainder of this chapter the 
compound summation index kl denotes a sum that extends over the unique 
nonredundant elements of an antisymmetric matrix. This is to be 
distinguished from the summation over k, I ,  which denotes a (double) sum 
over all the elements in a matrix. In eqs. (2.53) and (2.54) the quantities GO;j 
and G C ;  are defined as in Eqs. (2.46) and (2.47) except that the derivative 
integrals ha and ga replace the undifferentiated quantities h and g in their 
evaluation. Equations (2.53) and (2.54) are equivalent to the following system 
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of linear equations, the CP-MCSCF equations: 

where Eqs. (2.46) and (2.47) have been used to reexpress derivatives of 
gradients GO and GC as second derivatives of EMc This equation is 
abbreviated as follows 

s6" = - (G" + GT"). (2.5 5 b) 

The left-hand side of Eqs. (2.55) is the same hessian that naturally arises in 
a fully quadratic MCSCF procedure. It is the need to solve Eq. (2.55a), or 
its equivalent discussed subsequently, that makes a fully quadratically 
convergent SA-MCSCF procedure not just a convenience but an essential 
component of the methodology discussed in this chapter. 

Using Eq. (2.44) the U"(R) are seen to enter the expression for the first 
derivative nonadiabatic coupling matrix elements in the following manner: 

(2.56a) 

= 1 [AE,,(R)- 'Lf(R) + yf(R)] [8yj(R) + T;(R)] (2.56b) 

= f:'*A(R) + fcvT(R) .  (2.56~) 

i . j  

The contribution to this term from the derivative of the overlap matrix, 
T:,7 requires very little computational effort and will not be considered further. 
In evaluating f;'.'(R), the variational contribution, it would appear that the 
CP-MCSCF equations must be solved for each internal degree of freedom 
R ,  in order to obtain A;). However, the repeated solution of the CP-MCSCF 
equations can be avoided using the Z-vector method of Handy and 
Schaefer.*2 Using the antisymmetry of f;'vA(R) can be rewritten as 

fFnA(R) = 1 { A E y f ' ( L t  - Li:) + 7:' - Y;:}A:~ (2.57a) 

= /:;At, (2.57b) 

ii  

ij 

where the sum now extends only over the unique elements of A". This 
expression can be rewritten by formally inverting Eq. (2.55) to give 
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To evaluate Eq. (2.58b) it is sufficient to solve one equation of the form (2.53, 
that being 

#XJ' = - 1'' (2.59) 

so that Eq. (2.58b) reduces to 

Each of the contributions to f h'*A(R) in Eq. (2.60) can be represented as a 
sum of contributions from the orbital and CI portions of the gradients: 

f iIsA(R) = X:;;GO" + X:;,,tGOT' + X:itGC" + X;'GCT'. (2.61) 

It is important to bear in mind that the term "CI contribution" used in the 
context of this discussion refers to the CI expansion employed in the MCSCF 
calculation. 

The principal computational effort in the evaluation of Eq. (2.61) is now 
the construction of the gradients, GO" and GC", in the molecular-orbital 
basis. This requires a transformation of the derivative integrals from the 
atomic-orbital basis to the molecular-orbital basis for each nuclear degree 
of freedom R,. However, as first noted by Rice and Amos,83 this costly step 
can also be avoided since it is possible to evaluate the traces in Eq. (2.61) 
directly in the atomic-orbital basis. This point is developed in Appendix A. 
Furthermore the orbital and CI contributions that depend on T"(R) [the 
second and fourth terms in Eq. (2.61)] can be efficiently evaluated using 
techniques developed to compute MCSCF second derivatives. The efficient 
construction of these terms is also discussed in Appendix A. With these 
computational economies the evaluation of an energy gradient or nonadiabatic 
coupling matrix element requires a fraction of the time needed to perform the 
multireference CI calculation. 

2. Additional Constraints on the Molecular Orbitals 

In an MCSCF procedure there are generally three classes of molecular 
orbitals: (1) those that are doubly occupied in all CSFs, the core or inactive 
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orbitals; (2) those that are not occupied in any of the CSFs, the virtual 
orbitals, and (3) those that are partially occupied in at least one of the CSFs, 
the active orbitals. The inactive or core orbitals as well as the virtual orbitals 
are not uniquely defined by the MCSCF variational conditions, since a 
rotation among the orbitals within either of these spaces does not change 
the MCSCF energy. Similarly, if a complete-active-space (CAS)87-89 
treatment is used in the MCSCF problem, the MCSCF energy is also 
invariant to rotations among the active orbitals. However, in many 
calculations core orbitals and core-correlating orbitals are excluded from the 
multireference CI calculations. In some cases, limitations on computer 
resources necessitate further truncation of the orbitals and, perhaps, some 
selection of reference configurations in the CI calculation. 

In these instances the multireference CI energy (but not the MCSCF 
energy) is dependent on the definition of the individual orbitals. In this 
situation the orbitals in these spaces must be uniquely defined. This can be 
accomplished in the following manner. The core and virtual orbitals can be 
defined by diagonalizing a Fock operator in these spaces. It is convenient 
to choose this Fock operator to be the closed-shell Fock operator 
corresponding to the core orbitals in the MCSCF procedure. In this case 
the corresponding density matrix is geometry independent (in the 
molecular-orbital basis).'O This choice of Fock operator is also particularly 
convenient for the truncation of virtual orbitals." In the case of the active 
orbital subspace, a natural orbital9* transformation can be used to define 
the unique set of active orbitals. 

These additional rotations result in new antisymmetric contributions to 
U;f The lack of invariance of the CI energy (or the nonadiabatic coupling 
matrix element) to these rotations is manifest by a Lagrangian matrix (and 
transition density matrix) with nonsymmetric diagonal blocks corresponding 
to these subspaces. If the Lagrangian or transition density were symmetric 
in these subblocks, the additional antisymmetric contributions would not 
contribute to the traces in Eqs. (2.32b) or (2.44). 

These new antisymmetric contributions to Ua(R) are obtained by 
differentiating the equations used to uniquely define these orbital spaces. The 
approach for the determination of these antisymmetric contributions is 
similar whether one diagonalizes a Fock operator (for the core and virtual 
orbitals) or a density matrix (as in the case of the active orbital rotation) to 
uniquely define the orbitals in some subspace. The contributions to U"(R) 
from a core/virtual orbital space rotation is given in Appendix B, while the 
contribution from an active space orbital rotation is presented in Appendix D. 

C. Second Derivative Nonadiabatic Coupling 

In this subsection the determination of the second derivative nonadiabatic 
coupling matrix elements, h$(R) and k;16(R), is considered. As noted 
previously these matrix elements, ( 1) provide mass-dependent modifications 
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to Born-Oppenheimer potential energy surfaces, (2) couple potential 
energy surfaces, and (3) are related to the existence of rigorous diabatic bases93 
as discussed in Section I1  F. The second derivative matrix elements are related 
to the first derivative matrix elements by [recall Eq. (2.8)]: 

(2.62a) 

= ki i (R)  + hi:(R). (2.62b) 

For J = I, this equation reduces to 

kL',(R) = - hk',(R). (2.63) 

From Eqs. (2.5a) and (2.7b) these terms give rise to positive definite corrections 
to an individual Born-Oppenheimer potential energy surface. 

As discussed below, ki i (R)  can be evaluated using analytic gradient 
methods. Thus Eq. (2.62) provides a method for evaluating hi i (R)  for J # I 
using only analytic gradient techniques provided a divided difference is used 
to evaluate the left-hand side of Eq. (2.62). This approach obviates the need 
to develop the additional technology required to implement analytic second 
derivatives methods. We will discuss both finite difference (first derivative) 
and analytic (second derivative) methods for the evaluation of h$(R) and 
k p ) .  

I .  Evaluation of k$ (R) Using Analytic Gradient Techniques 

The second derivative nonadiabatic coupling matrix element k$(R) is a sum 
of three terms: 

(2.64a) 

(2.64b) 

(2.65a) 
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and 

(2.65~) 

The minus sign in eq. (2.65~) arises from the previously noted antisymmetry 
of d;T 

a. Eualuation of CsFkJ1(R). In evaluating the CSF contribution to ki:(R), 
nF&J1(R), the fact that two orbitals have been differentiated must be 
considered. This gives rise to a contribution from the square two-particle 
transition density matrix in addition to a contribution from the square 
one-particle transition density matrix. In particular, 

where 

(2.66) 

(2.67a) 

(2.67 b) 

where r;i has been defined in Eq. (2.26), 
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= dp,(R)df,(R) + d;(R)d;(R) (2.68~) 

and where use has been made of the antisymmetry of d:j. The quantity f:;l 

will also arise in the expression for h$(R). The fact that J;iI is a product of 
one-electron integrals greatly facilitates the evaluation of "'k"(R). In this 
case all the d:j needed to construct f$, can be held in memory so that the 
square two-particle density matrix need not be stored, rather the 
contributions to Eq. (2.66a) are evaluated directly. Equation (2.66a) requires 
the use of the "square" two-particle transition density matrix, since the 
symmetry of the f;il with respect to the permutation of indices 

f?iI = - f ;iI = - j $  = f ;ik (2.69) 

is different from that of the two electron integrals gijkl 

h. Evaluation of "kJf(R) and Cs'-C'kJ'(R): The Coupled Perturbed-Cl 
Equations. The evaluation of "kJ'(R) and CsF-C'kJ'(R) requires the derivatives 
of the CI coefficients, which are obtained by solving the coupled-perturbed 
CI (CP-CI) equations. These equations were introduced previously Eq. (2.16) 
but not discussed in detail. We have 

s 
~ [HC'(R) - E'(R)C'(R) = 0, 
dR, 

(2.16) 

which gives a system of linear equations for the requisite vector, 

d 
( H  - Ef(R) )KCf(R)  = - { H  - Ef(R)}]Cf(R) (2.17a) 

(2.17b) 

(2.174 

= - [ H y R )  + Hu'(R) + d ~ E'(R)]C'(R) 
dR, 

= - P[H"(R) + H"'(R)]Cf(R) 
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where P is the projection operator, 

P = 1 - C’C’t, (2.70) 

and as discussed following Eq.(2.27) Ha is the hamiltonian matrix constructed 
from the integrals in Eq. (2.29), while Hun is the hamiltonian matrix 
constructed from the integrals in Eq. (2.30). As a consequence the solution 
of the CP-CI equations requires the prior solution of the CP-MCSCF 
equations in order to evaluate U”. Given the solutions to the CP-CI equations, 
VL, it is straightforward to use Eq. (265a) to construct ‘‘k”(R). Similarly, the 
evaluation of CSF-ClkJ‘(R) becomes analogous to the evaluation of CSFf”(R) 
[see Eq. (2.43)] with 

where J” in Eq. (2.71) implies that V: replaces C’ in the evaluation of the 

transition density matrices in Eq. (2.43). 

2. Analytic Evaluation of ( 4 j I (d2 /dRadRp)4 , )  

In order to evaluate h$(R) analytically we begin with an expression for the 
second derivatives of the molecular orbitals, ( 4j l (d2/dR,dR,)+i ) .  This is 
obtained as follows: 

where 
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and [recall (2.26)] 

(2.73a) 

(2.73b) 

Note that as a result of these definitions 

Thus, from Eq. (2.72) 

(2.74a) 

= U;f(R) + a;f(R) (2.74b) 

= dy,!'(R) (2.744 
where 

(2.7 5a) 

(2.75b) 

In Eqs. (2.74) and (2.75) the second derivative overlap matrix element d;; 
has been cast into a form that is analogous to the derivative overlap matrix 
element dyj defined in Eq. (2.42). 

In order to obtain UaP(R), the second derivative CP-SAMCSCF equations 
must be solved. As in the case of the first derivative CP-SAMCSCF, the 
left-hand side of the second derivative CP-SAMCSCF equations is the full 
hessian of the SA-MCSCF problem. However, the right-hand side is 
hessian of the SA-MCSCF problem. However, the right-hand side is 
considerably more complicated. As in the case of the first derivative 
CP-SAMCSCF equations, it contains contributions from the variational 
conditions as well as from the orthogonality equations. In addition, it contains 
contributions from the solution of the first derivative CP-SAMCSCF 
equations. Some of the ideas involved in the second derivative CP-SAMCSCF 
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equations are illustrated in the treatment of the second derivative 
orthogonality constraints, which follows. More details concerning the 
structure of these equations are found in Appendix E. 

The second derivative of the orthonormality condition, 

= O  
yields 

(2.76a) 

u;! + s;; + u;; = - 1 [U&Sij + u p ;  + qkqj + S p J i j  + Ui,Ufj + Ufp;] 
k 

(2.76b) 

In analogy with Eq. (2.49), Eq. (2.76b) is satisfied if U;; is defined as a sum of 
an antisymmetric matrix and an overlap dependent term, 

u ;;(R) = A;!(R) + T;!(R), (2.77a) 

where 

A;,B(R) = - &;f(R) 
and 

(2.77b) 

T;! = - (S;; + 1 [U;,Stj + U [ , S l j  + SfkUfj + SfkUij  + U i , U t j  + UfiU:j]), 
k 

for i <  j ,  (2.78a) 

Ta! 11 = - +S;,! - [ViiSfi + UfiSfi + U;,Vf ,  + U{iU;i], for i = j (2.78b) 
k 

Tr! = 0, for i > j. (2.78~) 

As noted previously the determination of Aa! from the second derivative 
CP-SAMCSCF equations parallels the deternhation of AFj from the first 
derivative CP-SAMCSCF equations. The details of the treatment of the 
second-order CP-SAMCSCF equations can be found in Appendix E and 
Ref. 38. Note, however, that as in the evaluation of f”(R) the Z-vector method 
can be used to avoid solving the second order CP-SAMCSCF equations for 

3. A-dyt ic  Evaluation of h$(R) 

Given the formal expression for d;;, it is possible to complete the description 
of the analytic evaluation of h;i(R) using only previously introduced concepts. 

A;;. 
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Since 

we again find h$(R) to be a sum of three terms: 

(2.79) 

(2.80) 

(2.8 la) 

(2.81b) 

(2.81~) 

where is the one particle coupling constant matrix introduced in Eq. (2.22). 

a. Eoaluation of “h‘’(R). From Eq. (2.81a) the evaluation of the ‘lhJ’(R) 
formally involves the solution to the second-order coupled-perturbed CI 
equations, which are obtained from 

[HC’(R) - E’(R)C’(R)] = 0. (2.82) 
a 2  

dRadR,  

However, just as Clf”(R) [Eqs. (2.18) and (2.19)] can be obtained without 
solving the first-order CP-CI equations, ‘‘hJ’(R) can be obtained without 
solving the second-order CP-CI equations, Eq. (2.82). Multiplying the 
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E') - ' 

second-order CP-CI equations by C'(R)' gives for "hJ'(R): 

dZH(R) 
CJ(R)t ~ -~ C'(R) 

?R,dR,  

-(C'(R)' 

CJ(R)t 'H aC'(R)) + (CI(R)t !!! ac'q) 
d R ,  d R ,  d R ,  dRa  , 

(2.8 3 b) 

Evaluation of "hJ'(R) is then analogous to evaluating a CI second 
derivative just as the evaluation of 'IfJ'(R) is analogous to evaluating a CI 
first derivative. Note that in Eq. (2.83b) 

CI-JIO f a  (R) = C'(R)t -- aH -__ = CJ(R)t(Hl+ Hu')Vi (2.84) 
dRa  d R ,  

can now be evaluated in the M O  basis, since d H / d R ,  is needed to solve the 
first-order CP-CI equations. From Eq. (2.83b) it is seen that the only new 
term that must be considered is 

CJ(R)' C'(R). 
dR"dR, 

We note that 

where in analogy with eq. (2.31b) the superscripts denote the type of integral 
used in constructing the matrix elements. Thus, the contribution to Eq. (2.83) 
resulting from the first term in Eq. (2.85) has the form of eq. (2.32a') with the 
second derivative integrals h", and gap replacing the first derivative integrals 
h" and g". The contribution of the last term in Eq. (2.85) is of the form of 
Eq. (2.32b) with U", replacing U", that is, 

CJtHu"'C' = C LtU;:.  (2.86) 
i.j 
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The contribution from term two (and similarly term three) in Eq. (2.85) can 
be written as 

CJtHa*URC' = 1 L:,!,"U$ (2.87) 
i . j  

where L:;." is the transition Lagrangian [Eq. (2.33b)l constructed with 
transition density matrices and first derivative integrals [Eqs. (2.30)]. The 
fourth term in Eq. (2.85) H""" involves integrals of the form 

(2.88a) 

g;;y = 1 (U;,ufli + U:iU:j)g,nkr + .... (2.8 8 b) 
m.n 

This term can then be efficiently evaluated in terms of Lagrangians: 

(2.89) 

where L;."' is a Lagrangian constructed from h and g integrals and U" 
transformed density matrices, for example, yJf*"' = UayJf. This type of 
transformed transition density matrix is given explicitly in Appendix A. 

h. 
to that found for CsF-C1kJf(R) [Eq. (2.65c)l. We find 

Evaluation oj CsF-ClhJf(R). The expression for nF-clhJf(R) is analogous 

CSF-CI ha,(R) J 1  
= 1 [$,!"dfj + ~:,!'d:~] 

i . j  
(2.90a) 

Equations (2.65~) and (2.90) are quite similar with the principal difference 
being that in the contribution to 'SF-'' h J 1  (R), Eq. (2.90). only the first-order 
CP-CI solutions associated with state I are used to construct the one-particle 
transition density matrix and both contributions have the same phase. 

c. Evaluation ofCSFhJ'(R). From Eqs. (2.74) and (2.81 b)CSFhJf(R) is given by 

(2.91a) 
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which is similar in form to Eq. (2.66) for apk”. In addition it is clear from 
Eqs. (2.77) and (2.91b) that the Z-vector method can be used to avoid the 
solution of the second derivative CP-SAMCSCF equations for A:; just as it 
was used in the determination of the first derivative coupling to avoid the 
explicit evaluation of A;. 

D. Body-Fixed-Frame Methods 

In Sections I1 B and I1 C it was not necessary to specify the precise nature 
of R,, the coordinates used to perform the differentiation. Thus, R ,  could 
represent an internal nuclear motion, an overall nuclear rotation or 
translation, or an arbitrary atom-centered displacement. Because of the 
nature of the atomic-orbital basis functions, which are atom-centered 
Cartesian gaussian functions, it is convenient to evaluate the derivative 
quantities initially with respect to atom-centered Cartesian displacements. 
Derivatives with respect to these space-fixed coordinates are then transformed 
into the internal motion, nuclear rotation, nuclear translation coordinate 
system, which is referred to as the b o d y - f i ~ e d ~ ~ ~ ~ ~  coordinate system and is 
more appropriate for dynamical treatments. In this subsection we consider 
the computational economies that can be achieved by a priori incorporation 
of the simplifications which are obtained in the body-fixed coordinate system. 

Three coordinate systems are considered: (1) the space-fixed frame (SFF), 
with coordinates, c, R; (2) the center-of-mass fixed frame (CMFF), with 
coordinates, q; Q, C; and (3) the body-fixed frame (BFF), with coordinates 
w, W,B,C. Here r,q, w denote the 3N‘ coordinates of the N‘ electrons in the 
SFF, CMFF, and BFF, respectively, R denotes the 3N SFF coordinates of 
the N nuclei, Q denotes 3N - 3 nuclear coordinates exclusive of translation, 
W denotes 3N - 6 (or 3N - 5) internal coordinates, C denotes the coordinates 
of the center-of-mass of the entire system and B denotes the orientation of 
the molecule (body-fixed axis). The interrelation of these three coordinate 
systems is well For diatomic systems, which are to be considered 
in this section and for which the present approach obtains its maximal 
advantage, we collect the relevant results below. The definition of the internal 
coordinate systems that will be needed are 

(2.92) 

qi = r i  - 0, (2.93) 

0 = ( M I R 1  + M2R2)/M, (2.94) 

Q = R 2  - R’, (2.95) 
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i cos 4 

sin8cos4 s inesin4 c o d  4: 

- cos Ocos 4 - cos Osin 4 si; 8 1 [:I), (2.96) 

w = J R ~  - R , I .  (2.97) 

The orientation of the molecule is defined by B = (0, &), where 8,4 are the 
spherical polar coordinates of Q and the choice of axis system in Eq. (2.96) 
follows K r ~ n i g . ~ ~  Here M T  = M ,  + M2 + meNe is the total system mass and 
M = M ,  + M ,  is the total nuclear mass. The total kinetic energy operator 
in the SFF, CMFF, and BFF is, respectively, 

where 

(2.101) 

(2.103) 

(2.104) 

(2.105) 
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with p - '  = M;' + M i '  and A = V.V.  In the preceding, atomic units have 
been used and when specifying an operator the following convention has 
been followed. A superscript variable name is used to indicate the variable 
name used in the formal operator, while the subscript index denotes the 
corresponding particle index, for example, 

The P 2  term in Eqs. (2.99) and (2.100) is referred to as the mass polarization 
term. 

The electronic Schrodinger equation (T, + V - E'(R))$l(r; R) = 0 is similar 
in the three coordinate systems. The difference is in the dependence of Y I  
on the nuclear coordinates; in the SFF YI=Y, ( r ;R) ;  in the CMFF 
Y I  = Y,(q; Q), and in the RFF Y, = Y,(w; W). Thus, for a diatomic molecule 
the electronic wavefunction depends parametrically on six nuclear coordi- 
nates in the SFF, three nuclear coordinates in the CMFF, and only in the 
BFF does the electronic wavefunction depend parametrically on a single 
coordinate, the internuclear distance, W. 

From these definitions several valuable equalities can be derived. From 
the inverse of Eqs. (2.92)-(2.95) and the chain rule we have 

M2AQ= M:A;+ M:A;-2M,M2Vf.V; (2.107) 

in the space spanned by the Yl .  Then from Eqs. (2.98) and (2.99) the operator 
equivalence 

1 Vg.Vg = A: + A; + 2VY.V; (2.108) 
i . j  

obtains so that 

where j = 1,2 and a = x, y, z, the index j a  refers to the SFF variable Rh, and 

In deriving Eq. (2.109), Eq. (2.8) 
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and the antisymmetry of fi'(R),fi'(R) = - fY(R), which -is valid for 
real-valued Y,, have been used. Equation (2.109) provides a powerful 
diagnostic for the derivative methods discussed in this chapter. The evaluation 
of k$(R) requires the complete derivative apparatus discussed in Section I1 C, 
including the solution of the CP-SAMCSCF equations. and the CP-CI 
equations. The matrix element MP"(Q), on the other hand, is independent 
of the derivative apparatus. Thus, the verification of Eq. (2.109) provides a 
stringent test of the algorithms involved. 

Another useful diagnostic relation can be obtained by comparing the 
CMFF and BFF expressions for the kinetic energy operator with Y ,  restricted 
to be 1 states. In that subspace we have the operator equivalence 

(2. I 1 1) 

where j = 1 , 2 , a n d k = 3 - j ,  

L,Z"'(W) = ( Y A W ;  w l G ; ) 2 1 ~ , ( w ;  W ) ) ,  (2.1 13) 

and Lw is evaluated with the origin at the center-of-mass of the molecule [0 
in Eq. (2.94)]. As for Eq. (2.109) the value of Eq. (2.1 12) as a diagnostic results 
from its relating a quantity independent of nuclear displacement derivatives 
to quantities that depend explicitly on such derivatives. 

The physical content of Eqs. (2.109) and (2.1 12) can be seen as follows. 
Denote the operator that generates a translation of all the nuclei along the 
space-fixed axes as QN and denote as a," the operator that generates a rotation 
of the nuclei about the body-fixed y axis located at the nuclear center of 
mass, that is, 

2 
- V  t' = c v: 

k A  

and 

Then Eqs. (2.109) and (2.113) can be reexpressed in terms of P N  and a," as 

MPJ'(Q) = - C ( tf'f'Jl t,"Y, ) I (2.1 14) 
a 
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,;"'( w = - < P y ,  I P,N% ) 9 (2.1 15) 

where a = x , y , z .  Thus, Eqs. (2.109) and (2.1 12) are seen to relate derivatives 
of Born-Oppenheimer electronic wavefunctions with respect to noninternal 
nuclear degrees of freedom to matrix elements of electronic operators. 

In Section 111 we will require the Born-Oppenheimer diagonal correction 
for a 'Z' state. From Eq. (2.100) this is given by 

MP"(R) L2*"(R) K f ( R )  
+ ~ - -, 

2M 2pW2 2 p  
H"(R) = (2.116) 

where R is the value of the internuclear distance and 

and 
L2"(R) = L,Z"(R) + L;"(R) + LI"(R). (2.1 18) 

In Eq. (2.1 16) derivatives with respect to only two space-fixed coordinates, 
Rf and R ; ,  are required. Each derivative preserves the original molecular 
symmetry axis. This should be compared with the direct evaluation of 
Eq. (2.4). There derivatives with respect to six nuclear coordinates are required 
of which four (two unique) break the original molecular symmetry axis. Thus, 
if Eq. (2.4) is used directly a lower point group (C& involving a larger, more 
costly, CSF space is required to characterize the CI wavefunction. This 
problem is exacerbated since the CPCI equations, the most costly step in 
the derivative procedure, must be solved for four degrees of freedom in this 
larger CSF space instead of the two degrees of freedom in the smaller CSF 
space required if Eq. (2.1 16) is used. 

Similar economies obtain for triatomic systems. In this case of the nine 
nuclear displacements required to evaluate Eq. (2.4) directly in the SFF only 
the six that preserve the original plane of symmetry are required in the BFF 
treatment. Also, C, symmetry can be used in the characterization of the 
Born-Oppenheimer electronic wavefunctions. These computational em- 
ciencies should facilitate the characterization of electronically nonadiabatic 
interactions in triatomic systems. This capability complements the recent 
theoretical work on the vibronic states of X, systems in the presence of a 
Jahn -Teller intersection by Mead, Truhlar, and c o ~ o r k e r s . ~ ' - ~ ~  b y providing 
the capability to determine the basic quantities required in their formalism. 

Note that the economies indicated above are obtained without any 
additional algorithm development beyond that required to determine the 
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requisite one-electron integrals, provided the algorithms required for the 
evaluation of nuclear wavefunctions derivatives are already available. The 
requisite matrix elements, MP"(Q) defined in Eq. (2.1 10) and L2"(W) defined 
in Eq. (2.1 13) are each of the form 

where 6 is a vector of antihermetian operators. Thus, 

where y t  and F f i l  are the square one- and two-particle transition density 
matrices required for the evaluation ofj:'(R), k$(R), and h$(R). These density 
matrices are normalized such that 

Finally note that in Eq.(2.116) the values of K"(W) and MP"(Q) are 
independent of nuclear masses, while the value of L2 ( W) is mass dependent 
through the definition of 0 [Eq. (2.94)]. Hence, L2"(W) must be reevaluated 
for distinct mass combinations. This, however, is not a significant limitation 
since the computational effort required to evaluate L2"( W) is minor compared 
to that required to evaluate k"(R). 

E. Avoided and Actual Surface Crossings: 

R 

Direct Evaluation of the Energy Difference Gradient 

In Section I I A  it was shown that the energy gradient E:(R) and the first 
derivative nonadiabatic coupling matrix element fi'(R) could be evaluated 
using a unified density matrix driven procedure. The energy gradients 
facilitate the determination of extrema, in particular, minima and saddle 
points, on individual potential energy surfaces. The f:'(R), on the other hand, 
are an intersurface property. They are most relevant, that is, electronically 
nonadiabatic processes are most likely to be important, in regions of nuclear 
coordinate space for which two (or more) potential energy surfaces are in 
close proximity or actually touch or cross. Such regions correspond not, in 
general, to an extremum on a single potential energy surface, but rather to 
an extremum, a minimum, in AE,,(R)', the square of the separation of two 
potential energy surfaces. 
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In this subsection it  is shown how the unified density matrix driven 
procedure of Section IIA can be extended to directly evaluate the energy 
difference gradient dAE,,(R)/dR,. This algorithm will form the basis for a 
Newton-Raphson-based procedure for determining allowed/avoided surface 
crossings. 

1. The Energy Difference Gradient 

Avoided/actual surface crossings represent solutions of the equation 

ci 
-. AE,,(R)* = 2ghJ(R)AE,,(R) = GiJ(R) = 0, for all a, (2.122) 
8 R a  

with AE,,(R) # 0 corresponding to an avoided surface crossing and 
AE,,(R) = 0 corresponding to an actual surface crossing. The condition 
AE,,(R) = 0 has also been discussed by Koga and Morokuma"' in relation 
to the minimum energy crossing problem. Here, gy(R) 3 Ei(R) - E:(R) and 
the energy gradient E;C(R) is defined by Ei(R) = dE'(R)/dR,. Thus, gL'(R) is 
seen to represent the difference between the slopes of the potential energy 
surfaces. It can therefore be determined from two independent evaluations 
of the energy gradient. However, the requisite computational effort will be 
reduced considerably if gy(R) can be evaluated directly. This can be 
accomplished using the one- and two-particle diflerence density matrices AyiJ 
and AT', defined in terms of the one- and two-particle density 
matrices density matrices y" and I"' by Ay" = y" - y', and AT', = Y" - Y',. 
Key to achieving this reduction is the observation that evaluation of giJ(R) 
is formally identical to the evaluation of ' T ( R )  provided the difference 
density matrices replace transition density matrices in Eqs. (2.32') and (2.33b'). 
In particular we have 

gLJ(R) = AE;j(R) + AE,O;(R), (2.3 lc") 

where 

AEfJ= c 'yEh;q+ c ArErsg:qrs (2.32a") 
P.4  P.4.r.s  

and 

AEY; = 1 AL;j'U;? (2.32b") 
i . j  

Here the difference Lagrangian13 AL;: is given by 

(2.33b") 
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As noted in Section I I A  if the standard one- and two- particle density 
matrices yf' and Y" replace the difference density matrices in the equations 
for the energy difference gradient [Eqs. (2.3 Ic"), (2.32"), and (2.33b")], then 
these equations [Eqs. (2.31c), (2.32), and (2.33b)I yield the energy gradient 
E:(R). Thus Eqs. (2.31c), (2.32), and (2.33b) provide a unified approach for the 
evaluation of three classes of derivatives, energy gradients (using standard 
density matrices), energy difference gradients (using difference density 
matrices), and (the CI contribution to) first derivative nonadiabatic coupling 
matrix elements (using transition density matrices). 

2. Locating ActuallAvoided Crossings of Potential Energy Surfaces 

The solution of Eq. (2.122) can be accomplished using a Newton-Raphson 
procedure 

F'J(Ro)S(Ro) = - CfJ(R,), (2.1 23) 

where WR,) = R - R, and FfJ(R,) is the second derivative or hessian matrix 
given by 

(2. I 24a) 

The partial derivative in Eq. (2.124b) can be evaluated using forward or 
centered divided differences 

(2.125a) 

or 

d 
~ g;(R,) 2 [g;(R, + c1') - gy(R,  - ~1*)] /2c.  (2.125b) 
dR, 

Since Eq. (2.123) is formally equivalent to that for solving Ef(R) = 0 using 
the identification GfJ(R)-E;(R), existing surface walking procedures"' 
designed to locate extrema on a potential energy surface can be used to 
locate extrema on the energy difference hypersurface AE,,(R)2. However, 
searches on the energy difference hypersurface are significantly more 
complicated than the analogous searches on the energy hypersurface [E'(R)]. 
While extrema on a potential energy surface occur at isolated points, minima 
on the energy difference hypersurface need not be isolated. According to the 
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multidimensional e x t e n ~ i o n ~ l - ~ ~  of the von Neumann- Wigner noncrossing 
rule65 for a system with M internal degrees of freedom, crossings of potential 
energy surfaces of the same overall symmetry are permitted, but not 
guaranteed, to occur on hypersurfaces of dimension M - 2. Thus, for 
triatomic or larger systems for which M - 2 > 0, solutions to Eq. (2.123) for 
which AE,,(R) = 0 and/or AE,,(R) # 0 may exist. 

Solutions to Eq. (2.122) may be obtained in spaces of reduced dimen- 
sionality by restricting the number of degrees of freedom included in the 
Newton-Raphson search algorithm. Although straightforward, the reduced 
dimensionality procedure is quite important. Nonadiabatic interactions are 
frequently highly localized. In triatomic and larger polyatomic systems, a 
systematic means for locating regions of large nonadiabatic effects is desirable. 
In triatomic systems, by eliminating from the Newton-Raphson geometry 
optimization procedure the degree of freedom corresponding to an approxi- 
mate reaction coordinate ( 5 )  one obtains a seam of actual/avoided crossings 
parametrized by (. I t  is in the vicinity of this seam that one expects non- 
adiabatic effects to be prccminent. Finally recall that thc actual crossing 
of two states of the same symmetry is permitted, not required, by the 
noncrossing rule. Thus, an allowed crossing seam may merge into an avoided 
crossing seam when the solution permitted by the noncrossing rule ceases 
to exist. In this regard, the fact that both classes of solutions can be obtained 
from the same set ofequations, Eqs. (2.122)-(2.124) is particularly convenient. 

F. On the Existence of Rigorous Diabatic Bases 

When nonadiabatic effects are large, as in the vicinity of actual surface 
crossings [see Eq. (2.44)], the adiabatic representation may be inconvenient 
for characterizing the nuclear dynamics. In this instance it is conceptually 
and computationally convenient to define a new electronic basis, the diabatic 

,(r; R), which is a unitary transformation of the adiabatic 
electronic basis such that 

basis,93, 1 0 2 - - 1 0 5  y d  

f;L'*d(R) = ( Y:(r; R)I & uIf(c; R ) )  = 0. 
r 

(2.126) 

The existence of a rigorous diabatic basisLo3 has been a matter of considerable 
interest and some controversy in recent  year^.^^+^^^-^^^ While it is not the 
purpose of this review to discuss the subtleties of the existence of rigorous 
and/or approximate diabatic ( q u a s i d i a b a t i ~ ) ' ~ ~ * ' ~ ~  bases or the intrinsic 
limitations of the truncated Born-Oppenheimer expansion, it is useful to 
observe that the methods introduced in Section I1 C to determine kJ'(R) can 
be used to consider, from a computational perspective, the conditions 
discussed by Mead and T r ~ h l a r ~ ~  for the existence of a rigorous diabdtic basis. 
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We illustrate this point by examining the multidimensional two-electronic- 
state problem where the electronically diabatic basis is given by 

(y;(r; R))  = (cos - sin B(R'> ( Y k ;  R))  (2.127) 
Y;(r; R) sin O(R) cos B(R) Y,(r; R) 

and where B(R) is to be determined. Inserting Eq. (2.127) into the requirement 
Eq. (2.126) gives the system of equations 

(2.128) 

which is solved by partial integration. In order for B(R) to be uniquely defined 
the condition for an exact derivative must hold: 

(22- dR,dR,  aR,aR,  B(R) = 0, 
a2 ) (2.129) 

which from Eqs. (2.126) and (2.8) becomes 

k$(R) = kii(R). (2.130) 

Thus, the methodology used to determine the k"(R) introduced in 
Section I1 C can be used to study computationally the existence of a rigorous 
diabatic basis. Note that if in the two-state problem the CSF basis consists 
of two terms, then Eq. (2.130) is a consequence of the antisymmetry of f"(R). 
However, if the number of CSFs is greater than two, k"(R) will in general 
not be symmetric.93 Finally, note that for diatomic systems for which there 
is only one internal degree of freedom Eq. (2.130) becomes trivial. 

111. APPLICATIONS 

In this section applications of the techniques introduced in Section I1 to 
problems of a chemical nature are presented. Recently, several groups have 
used techniques based on divided difference  procedure^^'-^^ to evaluate 
nonadiabatic interactions for MCSCF and limited CI wavefunctions and 
used these methods to study nonadiabatic effects in regions of allowed (conical 
intersections) and avoided crossings. Other groups have used approximate 
diabatization procedures479' lo-'  l 2  to consider electronically nonadiabatic 
effects. However, in this chapter we will focus attention on applications that 
employ the analytic derivative techniques presented in this work. Since these 
computational techniques employ large-scale direct CI wavefunctions 
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[developed from (state-averaged) MCSCF reference spaces], we will be able 
to consider the nonadiabatic interactions using wavefunctions that yield 
reliable potential energy surfaces. This aspect of our treatment is quite 
important, since the magnitude of the nonadiabatic coupling is a sensitive 
function of the separation of the potential energy surfaces in question. 
Furthermore, since our expressions for the nonadiabatic coupling matrix 
elements are exact, that is, are limited only by the accuracy of the MCSCF/CI 
Born-Oppenheimer wavefunctions themselves, it is possible to use the present 
techniques to treat some of the more subtle aspects of the breakdown of the 
Born-Oppenheimer approximation including the adiabatic correction to a 
Born-Oppenheimer potential energy surface. This aspect of molecular 
electronic structure has previously been largely (see, however, Refs. 58-60) the 
province of very specialized treatments for small diatomic  system^.^^*^^*"^ 

We begin by considering an example of the adiabatic correction to the 
Born-Oppenheimer potential energy curve (PEC) for the X I X +  state of LiH. 
The adiabatic correction to this PEC is a matter of some concern, since 
independent estimates of this quantity using advanced experimental' 14-' 
and theoretical techniques52 had produced qualitatively different results. We 
will then turn to an example of radiationless energy transfer resulting in the 
quenching of an electronically excited state. In this latter study we will 
emphasize the electronic structure aspects of the quenching process and will 
be concerned with mechanistic aspects of the process rather than providing 
extensive tabulations of data. Our treatment will focus on the determination 
of the region(s) of coordinate space in which nonadiabatic effects are 
significant and the nature of the nonadiabatic coupling in these regions. The 
expected accuracy of the treatment employed will be carefully documented 
and the accuracy of key "asymptotic" quantities established by comparison 
with experimental data. The calculations reported in this work were carried 
out on dedicated minicomputer systems (Perkin-Elmer 3230 and Alliant 
FX/40 systems) and therefore should be considered to be at a level routinely 
available using the present techniques. 

The electronic quenching problem to be considered 

He + H2(B 'Zu+)+HeH2(2 'A')-+He + H2(X 'X;) 

has been motivated by recent experimental116- and theoretical 
We will be concerned with the possibility of observing the 

metastable excited state of the HeH, moiety, which previous theoretical 
results have suggested to be stable'22 as well as with the mechanism of the 
overall quenching reaction. In addition to the intrinsic interest of the 
chemistry of the He-H,(B) quenching, this system provides a laboratory for 
studying a reaction in which a region of large nonadiabatic effects cannot be 
located on the basis of symmetry arguments and simultaneously provides 

19-121 
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an example of a system in which the multidimensional e x t e n ~ i o n ~ ' ~ ' ' ~  of the 
von Neumann-Wigner noncrossing rule6' is essential to understanding the 
chemistry being considered. 

A. The Adiabatic Correction to the Born-Oppenheimer Potential Energy 
Curve for the X 'X+ State of Lithium Hydride 

The total second derivative nonadiabatic coupling matrix element [see 
Eqs (2.5) and (2.7)], 

where w = x,p, z and i indexes the N nuclei, both modifies ( J  = I )  and couples 
( J  # I )  Born-Oppenheimer potential energy surfaces. Again from Eqs. (2.5) 
and (2 .7 )  the I = J term can be rewritten as 

H"(R)  = - K"(R) = - 1 k:i..ln,(R), (3.2) 
1.w 

where 

and is referred to as the adiabatic correction to the Born-Oppenheimer 
potential energy surface. Under favorable. circumstances, that is, when the 
Born-Oppenheimer potential energy surface is sufficiently isolated so that 
interstate coupling can be neglected, the adiabatic correction can be inferred 
from spectroscopic studies of isotopically substituted species. 

As discussed in Section I1 D, science Eq. (3.1) includes derivatives with 
respect to all nuclear coordinates, it contains nonzero contributions from 
derivatives with respect to overall nuclear translation and rotation. Unlike 
derivatives with respect to internal coordinates, evaluation of derivatives of 
the Born-Oppenheimer wavefunction with respect to nuclear translations 
and rotations do not require derivative technology but rather can be 
expressed in terms of electronic mass polarization and angular momentum 
operators. In particular for the case of a 'I+ state of a diatomic molecule 
orientated along the z axis with internuclear distance R ,  the adiabatic 
correction is given by [see Eqs. (2.1 16)-(2.11 S)] 

where 
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L2"(R) = Lf"(R) + L;"(R) + Lf"(R), 

(3.6) 

(3.7a) 

I(ri) is the orbital angular momentum operator for the ith electron relative 
to the center of mass of the nuclei, p, the reduced mass, satisfies 
p-' = M;' + My' and the total nuclear mass M = M ,  + M,. In Section 
I1 D the computational efficiency that can be achieved through the use of 
Eq. (3.4) rather than Eq. (3.2) for the evaluation of H"(R) was noted. 

Here Eq. (3.4) will be used to evaluate the adiabatic correction for the 
X ' C +  state of LiH. The situation in 1986 is summarized in Table I columns 
2 and 3.40 This table presents as a function of R the mass independent52*56*57 
quantities UH(R) and ULi(R), which are related to the adiabatic correction 
as follows: 

H(X'X+,X'C+,R) = ULi(R)/M(xLi) + U"(R)/JV(~H). (3.8) 

Here M("Li) and M(yH) denote the mass of the "Li isotope of lithium and 
the ''H isotopes of hydrogen and the right-hand side of Eq. (3.8) shows the 
mass dependence of H(X 'C+, X 'C+, R), which is suppressed in the 
notation on the left-hand side of that equation. We have also written 
H"(R) = H(1 ,  I, R). 

The experimental estimate of UH (column 3) was obtained by Chen, 
Harding, Stwalley, and Vidal (CHSV)' ' from an inverted perturbation 
approach (IPA)' l 4  analysis of the A ' C +  + X 'C+ emission for four isotopes, 
"LiYH, x = 6,7 and y = 1,2, of lithium hydride. This analysis assumes that 
the only modification to the Born-Oppenheimer PEC comes from Eq. (3.8), 
that is, it neglects interstate interactions. The theoretical values were obtained 
by Bishop and Cheung (BC)52 and represent a direct evaluation of H(I, I, R). 
BC performed their calculations using an axis system attached to the 
geometric center of the molecule and specialized CI wavefunctions involving 
an elliptical orbital basis. The Born-Oppenheimer wavefunctions of BC 
provide the lowest (best) variational energies reported to date for the X 'C' 
state of LiH. The UH(R) are plotted in Fig. 1. 

From Table I and Fig. 1 it is seen that for internuclear distances (R) such 
that R < r,(X 'Z') = 3 . 0 3 ~ ~  the adiabatic correction derived from experiment 
by CHSV and that computed by BC are in good qualitative agreement. Both 
decrease monotonically with R. Note that CHSV did not report ULi, which 
to within the precision of their model is independent of R. As discussed in 
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Figure 1. Mass independent contribution from hydrogen ( U " )  to the X 'Z' potential 
energy curve for LiH. A is the experimental result from Ref. 11 5;  + is the theoretical result 
from Ref. 52; and x is the result using the methods of this chapter from Ref. 40. 

TABLE I 
Analysis of the Adiabatic Correction: Decomposition into Mass Independent Terms 

ULP 

R b  JY' BCd CHSV' Jy' BCd 

2.5 6. I 5.8 12.2 7.2 7.3 
3.0 0.0 0.0 0.0 0.0 0.0 
3.5 - 3.9 - 3.6 - 5.99 - 3.7 - 3.8 
5.0 - 9.0 - 5.5 - 12.0 - 5.0 - 3.8 
5.5 -9.6 - 1.0 - 12.6 - 2.9 8.2 
1.5 - 10.7 - 13.1 7.0 
9.6 - 12.7 

15.0 - 12.2 

"In cm- '  x u 
hln a,. 
'This work relative to value at R = 3.0, U" = 72.4, or UL' = 907.7. 
"Reference 52 relative to value at R = 3.0. U" = 70.5. or UL' = 924.0. 
'Reference I I 5  relative to interpolated value at R = 3.0, U" = 0.10. 
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Ref. 40 observable properties, such as the isotope dependence of r,(X 'C+), 
are considerably less sensitive to UL'(R) owing to the larger mass of lithium 
and smaller percentage change (compared to analogous changes for 
hydrogen) in mass when 'Li is replaced by 6Li. For R appreciably greater 
than r , (X 'Z') qualitative differences in the functional form of V"(R)  are 
found. The UH(R) deduced by CHSV remains essentially a monotonically 
decreasing function of R, while that of BC begins to increase sharply (see 
Fig. I).  In order to address this discrepancy, evaluation of the adiabatic 
correction was undertaken4' using the present techniques and a 
multireference CI wavefunction designed to provide a reliable representation 
of the wavefunctions over the entire range of internuclear distances required 
in this study. 

The wavefunctions used in these calculations were second-order CI (SOCI) 
wavefunctions relative to an active space, which consists of all CSF's resulting 
from the distribution of four electrons among the (I-4)o orbitals. The 
molecular orbitals used to construct these CSFs were obtained from a 
complete active-space, two-state, state-averaged MCSCF procedure with 
weight vector W = (0.55,0.45), using the above indicated active space. 
This treatment allows for proper dissociation of the X 'C' state and also 
helps to provide an even handed treatment of the ionic ( la22a2) and neutral 
( I  a22a3a) contribution to the wavefunction. The molecular orbitals were in 
turn expanded in terms of (standard) extended atom centered gaussian basis 
sets. The lithium basis is the (1 1 ~ 7 ~ 1 5 ~ 4 ~ )  basis of McLean and ChandlerlZ3 
augmented with two d polarization functions (a  = 0.4,O.l). The hydrogen 
basis is the (9.~14.~) gaussian basis of Siegbahn and L ~ u ' ~ ~  augmented with 
two p polarization functions (a  = 1.4,0.25). Using this basis set the SOCI 
expansion consists of 3798 CSF's in C2,, symmetry. 

The results of the present calculations are summarized in Table I (columns 
1 and 4) and U " ( R )  is plotted in Fig. 1. It is seen that the present results 
agree with those of BC for R 5 r,(X 'C+). that is, the region in which theory 
and experiment agree. Agreement with BC for UL'(R) is also obtained in this 
region. However, for R > r,(X 'C+) the UH(R) reported here remains a 
monotonically decreasing function of R. Thus our results disagree with those 
of BC but are in qualitative accord with those of CHSV. The improved 
agreement between theory and experiment is most likely due to the ability 
of the present calculations to describe all internuclear separations considered 
in this study with comparable accuracy. In this regard it is important to 
emphasize that the present approach uses standard rather than specialized 
C1 wavefunctions, so that the considerable computational experience 
available for this type of wavefunction can be employed in designing 
treatments of polyatomic systems that cannot be readily studied with 
specialized wavefunctions. Such considerations will be employed in future 
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treatments of the LiH system designed to resolve the remaining discrepancies 
between the present theoretical results and experiment. 

B. The He + H2(X 'Xi) -+ He + H2(X 'Ei ) Reaction 

The captioned reaction has a long and controversial history. The original 
experimental studies of the quenching of H2(B 'Xu+) by helium were 
performed by Moore's group116*'17 in the early 1970s. This work motivated 
theoretical studies, which sought to explain the observed quenching in terms 
of (allowed) surface crossings. However, these attempts proved unsuccess- 

Subsequently, Farantos et a1."* found an avoided crossing for 
general C, approach. This finding was rationalized by Nicolaides and 
Z d e t s i ~ " ~  in terms of a concept they introduced termed maximum ionicity 
excited state (MIES) theory. More recently, Perry and Yarkony' 2o showed 
that the avoided crossing determined by Farantos et al. was actually part of an 
extended region of nuclear coordinate space for which the two potential 
energy surfaces in question are in close proximity. 

Theoretical studies of the dynamics of the quenching process have also 
been reported, including the original trajectory surface hopping3' study of 
FarantosI3' and the very recent nonadiabatic wavepacket treatment from 
Lester's group."' These dynamical studies employed a potential energy 
surface originally developed by FarantosI3' using the Sorbie-Murrel"* 
approach based on the ab initio data of Farantos et al.'" and Romelt et a1.lz6 

While this previous work has resulted in a clearer picture of quenching 
of H,(B) by helium several important questions remain unresolved. The 
Farantos surface is known to have significant Perhaps as 
a result, the trajectory surface hopping studies of F a r a n t o ~ ' ~ '  yield a 
quenching cross section significantly smaller than the experimental 
~ a l u e . ~ ' ~ * ' ' ~ - ' ~ '  Furthermore, it has recently been suggested that the MIES 
charge-transfer structure, (HeH)' H - ,  which is composed of two stable 
charged moieties and exists as a local minimum on the 2 'A '  PES may be 
observable experimentally.lZ2 To consider the possibility of observing the 
(HeH)'-H- charge transfer structures on the 2 ' A '  PES and to understand 
the mechanism of the radiationless quenching, we reexamine the 1,2 'A'  
potential energy surfaces and the nonadiabatic interactions which couple 
them using the methods of Section 11. 

The numerical results discussed in this section are taken from the original 
study of Perry and Yarkony and a more recent treatment of Manaa and 
Y a r k ~ n y . ~ ~  The characterization of the electronic wavefunctions follows 
Perry and Yarkony. Three, entrance channel, internal coordinates will be 
used to characterize nuclear configurations, r,  the hydrogen-hydrogen 
distance, R ,  the distance between the center of mass of H, and the helium 
atom, and 7 the angle between the H, axis and the line connecting helium 

ful. 125-  I 2 7  
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to the center of mass of H,. Nuclear configurations will be specified by the 
ordered triple R = (R,r,y) with R,r in atomic units and y in degrees. The 
wavefunctions are SOCI wavefunctions relative to a four-electron-four- 
orbital reference space. The active orbitals (orbitals in the reference space) 
are determined from a SA-MCSCF procedure for the 1,2'A' states with 
weight vector W = (0.55,0.45). The molecular orbitals are expanded in terms 
of the extended contracted gaussian basis of Romelt et al. (Ref. 126, Table 
1) He(7~2pld/5~2pId) and H(7s3p/5s3p), which was augmented with two 
diffuse s functions on helium, sr=O.O7, 0.01 and one diffuse s function on 
hydrogen, sr = 0.02. Using this basis the SOCI space contains 11,410 CSFs. 

To consider the expected reliability of this level of treatment, i t  is useful 
to compare the predicted spectroscopic properties at  the He + H, asymptote 
with the available experimental data. Using the 1 'A '  and 2'A' wavefunctions, 
respectively, the following reactant channel spectroscopic properties 
were obtained for H,(X'XB+) and H,(B'C;). For H,(X'XB+) we find 
re = 0.7464(0.74144)& we = 4328(4401.2)cm-' and for H,(B 'XJ) we find 
re = 1.2661(1.2928)& we = 1424(1358.09)cm-' and Te = 91227(91700)cm-', 
where the experimental values'33 are given parenthetically. For reference the 
SOCI energies for the I ' A '  and 2'A' wavefunctions, E(1'A') and E(2 'A ' ) ,  at 
the (near) equilibrium geometries R = (50, 1.415, 90) and R = (50, 2.393, 90) 
are, respectively, E(l ' A ' )  = - 4.065804 a.u. ( -  260.82763 kcal/mol), 
E(2lA') = -3.601826 a.u. (29.40017 kcal/mol) and E(1'A') = - 3.996224 a.u. 
(-216.82244 kcal/mol), E(2'A') = - 3.650107 a.u. (0.0 kcal/mol). Here the 
parenthetical values are measured relative to E(2 'A' )  at R = (50,2.393,90), 
which will serve as the standard reference point in this work. I t  is significant 
to note that the choice of weight vector, which clearly favors the interaction 
region, does not significantly alter the results in the reactant channel. Using 
W = (0.95,0.05) for the characterization of the 1 ' A '  state and W = (0.05,0.95) 
for the 2lA' state gives the following spectroscopic properties for 
H,(X'XB+),re=0.7474& oe=4323cm- '  and for H,(B 'Xi), r e =  1.2686w, 
we= 1412cm-' and Te=91152cm-'. 

Very recently Pibel et a1.'18 have estimate the entrance channel barrier 
on the 2'A' potential energy surface from experimental quenching data and 
an adiabatic collision model. They report an upper bound (assuming the 
applicability of their adiabatic quenching model) to the barrier of 250 f 
80cm- '. Using the analytic gradient methodology of Section 11, Perry and 
Yarkony located a saddle point in the entrance channel at R = (2.650,2.520, 
64.178) with a corresponding classical barrier of 520 cm - '( 1.49 kcal/mol) (see 
Table 11). This result is in significantly better agreement with experiment 
than all previous theoretical treatments including the most recent previous 
treatment which yielded a classical barrier of 1200cm-'.' '' Recent 
preliminary studies show that at least a portion of the existing discrepancy 



NONADIABATIC INTERACTIONS BETWEEN POTENTIAL ENERGY SURFACES 47 

TABLE 11 
Energies" for the I ' A '  and 2'A' States from SOCI Wavefunctionsb 

r R 7 €( 1 I A') E(2' A' )  

Extrema 
2.520 2.690 64. I78 - 178,72226 1.49288 
3.807 1.625 45.882 - 50.697 I2 - 38.99064 

r 

Crossing Seam 
5.75oooO 
5.25oooO 
4.25oooO 
3.812000 
3.73oooO 
3.500000 
3.000000 
2.700000 
2.55oooO 
2.400000 

2.313281 
2.12725 1 
1.750089 
1 S94403 
1.566372 
1.489807 
1.333254 
1.24361 1 
I .  198878 
1.1 15354 

E( I I A') E(2'A') 

21.053830 
25.584322 
36.861334 
43.100100 
44.364160 
48.06 1934 
56.71 2661 
62.065596 
64.696541 
67.250642 

4.28081 

~ 34.00658 
-38.00010 

- 11.70477 

- 38.14103 
- 37. I8900 
-25.52514 
- 8.90662 

3.37081 
19.07 133 

4.28093 
- 1 1.70472 
- 34.00646 
~ 37.99991 
- 38.14099 
-37.18892 
- 25.52509 
-8.90655 

3.37092 
19.07 133 

"In kcal/mol relative to €(2lA')= -3,650107 at (50. 2.393. 90). 
bR. r in a,; y in degrees. 

between the experimental and theoretical barriers can be attributed to 
limitations in the atomic orbital basis set used by Perry and Yarkony. 

These comparisons demonstrate that the treatment employed in this 
subsection provides a reliable description of both the ground- and excited- 
state surfaces. This treatment can then be expected to provide realistic 
representations of the key features to be discussed here, the actual crossing 
seam and the derivative couplings in the vicinity of this seam. 

As a first step in understanding the mechanism of the quenching of 
H,(B 'Xu+) the methodology outlined in Section I1 E is used to show that the 
region of close approach reported by Perry and Yarkony is in fact the 
consequence of an actual crossing seam between the 1 ' A' and 2' A' potential 
energy surfaces. According to the noncrossing rule an actual crossing seam 
of dimension 1 may, and as just noted does, exist for this system. This seam 
will be parametrized by the single coordinate r, the H, distance. Thus, for 
each value of the parameter r the solution of G:(R) = 0 [Eq. (2.122)] is sought 
in the subspace spanned by R and y. The seam is then represented by the 
triple of internal coordinates R(r) = [R(r) ,  r, y(r)] for which AE,,(R) = 0. The 
seam R(r) is presented in Table I1 and the functions R(r)  and y( r )  are plotted 
in Fig. 2. The energy along the seam, E[R(r)], is plotted in Fig. 3. For the 
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Figure 2. Plot of parameters y(r )  and R ( r )  for energetically accessible portion of seam 
representing the actual crossing of the I.2'A' states of HeH,. 
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Figure 3. Plot of (common) energy along energetically accessible portion of seam 
representing the actual crossing or the 1.2'A' states of HeH,. 



NONADIABATIC INTERACTIONS BETWEEN POTENTIAL ENERGY SURFACES 49 

purposes of these calculations the two states were considered to be degenerate 
when AE,,(R) was less than 0.0002 kcal/mole. (The corresponding changes 
in the geometrical parameters were on the order of distances in atomic 
units, y in radians.) From Table I1 and Fig. 3 it is seen that a seam of actual 
crossings, exoergic with respect to the H,(B 'IU+) state asymptote, exists for 
r z [2.60,5.70]. This portion of the actual crossing seam is thus relevant to 
the low-energy-scattering experiments reported by Pibel et al.' " For the 
range of r presented in the table we find R(r)=0.55986+0.20568r+ 
0.017417r' and y(r) = 126.27 - 28.676r + 1.8058r2. Note that y # 0" or 90' so 
that this is not a high-symmetry section of these potential energy surfaces. 

The electronic character of the wavefunctions in the vicinity of the seam 
has been analyzed in terms of the molecular dipole moment by Perry and 
Yarkony. In that work it was shown that along the seam significant charge 
reorganization occurs involving (HeH)' -H - and HeO-H; moieties. The 
dipole moment does not vary systematically with r. Rather for fixed r, i t  is 
a sensitive function of R and y with for example the charge transfer structure 
(HeH)+-H-, corresponding to either the I ' A '  or the 2'A' state. The 
zwitterionic character of the 2'A' wavefunction in the vicinity of the seam 
was originally noted by Farantos et al.'" and interpreted in terms of MIES 
theory. 

I t  is interesting to note that the seam of actual surface crossings lies within 
the general vicinity of the global minimum on the 2'A' potential energy 
surface. This point is located at R = (1.625,3.807,45.882) (see Table 11) and 
is stable by 38.99 kcal/mol, with respect to the He-H,(B 'X:) asymptote. 
The location of this extremum is in reasonable accord with the uh initio data 
of Farantos et a1."* The charge distribution of this wavefunction was also 
analyzed in terms of the molecular dipole moment by Perry and Yarkony. 
Again this analysis shows that the wavefunction for the 2'A' state at this 
geometry has a large dipole moment consistent with the (HeH)* H 
structure. 

The degeneracy of the I ,  2'A' potential energy surfaces makes i t  clear that 
nonadiabatic effects will be significant in the vicinity of the seam described 
previously. In order to determine the range of nuclear configurations for 
which nonadiabatic effects remain appreciable, that is, the breadth of the 
seam, and to facilitate adiabatic states treatments of the dynamics of the 
quenching reaction the first derivative nonadiabatic coupling matrix 
elements, f(R), are r ~ q u i r e d . ~ ' , ~ ~  This data has been reported elsewhere.'20 
Here we focus on a computational study of the structure of the f(R) at the 
point R, = (1.594416,3.812,43.099850), the point of nearest degeneracy of the 
1,2'A' potential energy surfaces reported by Perry and Yarkony. (Using the 
methodology discussed in Section I1  E, this approximate crossing point of 
Perry and Yarkony for which the 1,2'A' potential energy surfaces are 
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degenerate to 0.001 kcal/mole was refined to give the result reported in 
Table 11.) 

The partial derivatives required of the determination of the f(R) will be 
taken with the center of mass of the triatomic system held fixed. We employ 
1 and 4 as the mass (in atomic mass units) of hydrogen and helium, 
respectively. Below the ordered triple (fR(R), f,(R),f,(R)/R) will be denoted 
as f(R) or f when the geometry dependence is suppressed. Determination of 
the relative phases of the components of f(R) is a matter of some concern. 
The use of the analytic derivative approach facilitates this determination. In 
this case the relative phases of the f(R) at a single point are uniquely 
determined from the phases of the single pair of CI wavefunctions. The 
relative phase of the f(R) at neighboring points will be determined from 
continuity and the requirement that when transversing an avoided/actual 
crossing the convention [Y,,, Yb] -, [ - Y b ,  Yo], should hold. Here the 
ordered pair, Y = [Y,,Y,] denotes the wavefunctions for the two adiabatic 
states Y, = Y ( 1 ’ A ’ )  and Y,  = Y(2’A’). The preceding phase convention is 
consistent with the two state representation of the adiabatic states Y,, Y ,  
in terms of, geometry independent, diabatic states “1, Y $  

(3.9) 

where 4 goes from 0 to 7r/2 as the avoided crossing is traversed. 
The nonadiabatic coupling matrix elements are given in Table 111. In this 

table f(R) is reported as a function of the displacement 6R from the reference 
point R ,  with R = ( R l + 6 R , r , + 6 r , y , + 6 y ) = R , + 6 R .  For 6R=[O,dr,O], 
with - &  < 6r < &,f,(R) has a constant sign and achieves a large but finite 
extremum. However, each fJR) for a # r, that is, the f’s for the “extra” 
degrees of freedom, resembles the derivative of fr(R) evincing two extrema 
and a sign variation. A similar situation obtains in the R and y directions. 
This functional dependence, which is carefully documented in Table 111, 
reflects the following observations. In the vicinity of R ,  the adiabatic state 
wavefunctions are dominated by two CSFs, t,bl = 1~ ’~” ’ ’  and t,b2 = laf22a‘3a’, 
which are constructed from molecular orbitals given approximately by 
la’= a(HeH’), 2a’= ls(H2), and 3a’= a*(HeH’). Thus, t,b, represents a 
charge-transfer CSF, while 41, is less polar. At 6R = [0, 6r, 01, Y = [Y,,, Yb]  
while at 6R = [0, - 6r, 01 , , Y E [ -vb, Y,,]. where ‘Pa, Y b  are largely, 
geometry dependent, linear combinations of the approximately geometry 
independent t,bl and t,b2. Thus, in this instance the adiabatic states Y are 
expressed, in a qualitative sense, as linear combinations of diabatic states 
I),, t,b2 as in Eq. (3.9). The behavior of f,(R) is then a consequence of the 
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phase convention in Eq. (3.9), which is commonly applied in one-dimensional 
problems. 

The f(R) presented in Table 111, which are couplings due to internal modes, 
change by orders of magnitude over a small range of nuclear configurations. 
However, the coupling due to an overall rotation in the molecular plane (a), 
that is, 

is expected to be small and approximately constant in the vicinity of a given 
reference point. This expectation follows from Eq. (3.9) and the antisymmetry 
of d / d o .  In this study the value of f, is obtained computationally as the 
difference of two (large) numbers whose sum is f,. The fact that the expected 
behavior is observed, that is, we find f, 2 0.33 for all points near and including 
reference point 1, lends credence to the accuracy of the numerical techniques 
used in this study and facilitates assignment of the relative phase of the f(R) 
at neighboring points. 

The actual crossing seam reported in this work has important implications 
for the chemistry of the He + H,(B ‘Xu+) system. This feature of the 1,2lA’ 
potential energy surfaces should significantly influence the quenching of 
H,(B lZ;) by He and alter expectations of the lifetime of the state 
corresponding to the global minimum on the 2lA’ potential energy surface. 
It is anticipated that the lower entrance channel barrier noted previously 
and the actual crossing seam reported here will serve to increase the 
calculated quenching cross section. The large nonadiabatic coupling between 
the 1,2lA’ wavefunctions in the vicinity of the global minimum on the 2lA’ 
PES will serve to decrease the predicted lifetime of this “state.” To facilitate 
dynamical studies of these questions additional work on the 1,2’A’ potential 
energy surfaces and the nonadiabatic interactions is in progress. 

IV. FUTURE DIRECTIONS 

The theoretical study of electronically nonadiabatic processes has seen 
considerable progress in recent years. Progress has been made on several 
fronts. In this chapter the important advances in the computation of 
derivative coupling matrix elements ” 38*40 ha s been emphasized. However, 
considerable progress has also been made in the direct construction of 
approximate diabatic or quasidiabatic electronic states. Several approaches 
have emerged including approximate diabatic states which (1) preserve a 
particular molecular property’ 34 or attribute of the molecular wave- 
function$’ (2) are defined in terms of a particular set of atomlike orbitals as 
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has been done by Levy and coworkers’ ” using polarized atomic orbitals, 
or (3) are based on block diagonalization t e c h n i q ~ e s . ’ ~ ~ ” ~ ’  

The recently introduced gradient driven techniques for locating actual6’ 
and/or avoided48 crossings discussed in this chapter should have a significant 
impact on the field. By enabling efficient determination of regions of 
significant electronic nonadiabaticity for systems in which molecular point 
group system is not a determining factor, these techniques have the potential 
to extend considerably the range of tractable systems. 

New benchmark systems are likely to emerge. The He-H, system discussed 
in this chapter is a likely candidate. As a three-atom, four-electron system, 
it is an ideal candidate for study using any electronic structure technique. 
The recently identified69 actual crossing seam discussed in this chapter, which 
is associated with significant charge reorganization, should make this system 
an important test case for approximate diabatization procedures. Interest in 
this sytem will be further stimulated by recent detailed experimental studies 
of the electronic quenching cross sections’ l 8  and wavepacket studies of the 
dynamics of the quenching process. ’” Other likely candidates for benchmark 
systems may be found in the charge-transfer area, which has long provided 
fertile ground for the study of electronically nonadiabatic processes. The 
H +  + 0 2 + H + 0 :  system which has again been the object of 
theoretical’ 3 5 * 1  36 and experimental studies’” is such a benchmark candidate. 

Vibronic spectroscopy of electronically excited states that are perturbed 
or even predissociated by avoided curve crossings is another area in which 
important theoretical contributions can be expected. Systems exhibiting 
valence-Rydberg interactions such as the states of N222 and 0223*24 noted in 
the Introduction are prime candidates in this regard. In this area the second 
derivative methodology for the evaluation of k y ( R )  discussed in Section I1 C 
and applied in Section 111 A to the LiH system” can be expected to find its 
principal application. The experimental determinations of the second 
derivatives couplings such as those available in N,22 will provide unique 
opportunities for experimental-theoretical synergism. Another motivating 
factor will be use of resonance-enhanced multiphoton ionization 
spectroscopy, which regularly probes excited molecular states that are 
strongly perturbed by valence-Rydberg couplings.’ 38 

The progress in electronic structure capabilities has been and will continue 
to be complemented by the considerable progress that has been made in 
dynamical techniques using both time-independent formalisms including the 
RIOSA approach of Baer and coworkers,139-141 the nonadiabatic 
log-der iva t i~e’~~ propagator method of Alexander et al. ‘43 and time- 
dependent formalisms in particular nonadiabatic wavepacket tech- 

These advances in electronic structure and quantum dynamics treatments 

,,iques.2 1.144.145 
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of electronically nonadiabatic processes can be expected to provide a 
synergism which will drive this field in the near future. 

APPENDIX A EVALUATION OF TERMS OF THE FORM Tr(MU) 
IN THE ATOMIC-ORBITAL BASIS 

In this appendix the evaluation of Eq. (2.61) in the A 0  basis is 
con~idered. '~- '~ Consider first the contribution from terms 1 and 3 in that 
equation: 

x'l+c= = X;l;,'GO" + XEtGC". (A. 1 ) 

To evaluate the second (CI) contribution to (A.1) we note that 

From Eq. (A.2b) we see that it is only necessary to construct one Cj)F1*lMC] 
and two [rz;;s'MC] particle transition density matrices between X g  and C$, 
and then use standard techniques to transform these matrices to the A 0  
basis to yield yE;bCI*fMC and rxcK*lMc. pqrs These density matrices are then traced 
with derivative integrals [see Eq. (A&)] to evaluate (A.2). 

A similar expression is obtained for the orbital contribution to XJftGO". 
The orbital contribution is first expressed as the trace of a Lagrangian and 
an antisymmetric matrix: 

X ~ ~ b t G O a = C X ~ G O ~ j  (A.3a) 

= xx;;(Ly.' - LMC,= j i  ) (A.3b) 

' I  

i j  

(A.3c) 

where 2;; is the antisymmetric matrix with unique elements X f .  The 
Lagrangian is then expanded and the sums reordered to obtain the following 
expression: 
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(A.4c) 

where in Eq. (A.4b) the sums over i, j are performed first in order to define 
new "density matrices" in the A 0  basis given in (A.4c). The orbital (A.4c) 
and CI (A.2b) contributions are then combined to obtain: 

XJltGa = 1 y ; ; I M c h i q  + C rpqrs  x . 1 ~ ~  gpqm a (A.5) 
P.4 p.4.r.s 

where 

, i P ,  X . l M C  = y X o r b . l M C  pq + ) t ~ = t * l M C  (A.6a) 

and 
r X . f M C  = r X u r b . l M C  + r x C l . l M C  (A.6b) 

Note from Eq. (A.4c) and the discussion following (A.2) that the definitions 
of the two density matrices that contribute to Eq. (A.6a) [or (A.6b)I differ. 

Finally, consider the T" contribution to f:'*A(R) defined in Eq. (2.58b) 
and reexpressed in Eq. (2.61). This term does not require a great deal of 
computational effort as efficient methods exist to build GOT' and GC". 
However, the T" contribution is best obtained as follows: 

p w  pqrs p w  

and 

(A.8a) 

(A.8b) 

Thus, the generation of the Lagrangian, LX", has no dependence on the 
number of nuclear degrees of freedom, a. The economy afforded by 
reorganizing Eq. (A.3c) in this manner was noted earlier by Page et al.13 in 
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their work on MCSCF second derivatives. For the MCSCF Lagrangian 
employed in these equations, LxJ' need not be constructed by contracting 
11; and gckl integrals with density matrices, rather we build LxJ' by 
contracting a YMC*' matrix, 

which was used to build the MCSCF orbital hessian and by transforming 
the Lagrangian. 

(A.lO) 

APPENDIX B CONTRIBUTION TO DERIVATIVE QUANTITIES 
FROM INEQUIVALENT CORE AND VIRTUAL ORBITALS 

In the discussion of orbital constraints in Section I1 B 2  it was noted that 
when an incomplete virtual orbital space or a redefined fully occupied orbital 
space is used in the CI calculations, additional contributions to the first 
derivative quantities arise. In this appendix equations are presented that 
permit evaluation of these contributions. 

As noted in Section I1 B 2 it is convenient to require that the core and 
virtual orbitals be eigenfunctions of the core Fock operator, Ec, where 

core 

i 

p, = L + 1 (2Ji - Ri). 

This leads to the requirement 

where 4Jr;R) and 4Jr;R) belong to different sets of virtual orbitals or to 
different sets of core orbitals. Carrying out the differentiation yields the 
following equations for the the unique elements Aij(R) of the antisymmetric 
matrix A;j(R) 

(<  4n(r; R ) I  F c 4 n ( r ;  R) >r - < 4 m ( r ;  R)I F c 4 m ( r ;  R)  >,)/\in 
= - 1 [u$(4k(r; R ) I  Fc4n(r;  R) )r  + < 4 m ( r ;  R ) I  Fc4k(r;  R))ru;nl  

k 
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where the sum over j is restricted to core orbitals, f: represents the Fock 
operator in Eq. (B.l) constructed from first derivative integrals [Eq. (2.29)], 
and the derivative of the MO coeficients O:j(R) is given by 

O;j(R) = q j ( R )  + Rj(R) + T:j(R) (B.4a) 

= jil"i(R) + U;j(R). (B.4b) 

Solving for ATj gives 

In Eq. (B.5) the diagonal elements of the f, have been denoted as orbital 
energies EC,. 

As in Section I1 B 1 avoiding the transformation of the derivative integrals 
from the A 0  basis to the M O  basis is the key to the efficient evaluation of 
these contributions to the energy gradient or first derivative nonadiabatic 
coupling matrix elements. To avoid the repeated transformation of the 
derivative integrals from the A 0  basis to the MO basis, it is necessary 
to eliminate the explicit use of U"(R), which require the solution of the 
CP-SAMCSCF equations in the MO basis. By expanding Utm [see Eq. (2.51)] 
we have a general equation of the form 

where Q = Q" + QG 

QLn.kt  = (&: - iFknS1m + Fmk61n} (B.7a) 

Q:n+kI = (EE, - E ; ) -  * {4gmnk1 - gmkn1 - gmnlnk},  where 1 is a core orbital, (B.7b) 

Q L n , k I  = Q Z n , k I  = 0, where 1 is an active orbital. (B.7c) 

We then define 

' m n . k I  = Qmn.kl - Qmn.1k 

to obtain 
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where the compound index kl now is restricted to the nonredundant orbital 
rotations of the MCSCF problem. Each term in Eq. (B.9) results in a 
contribution to f"(R) as in Eq. (2.56) formally: 

fF*"(R) = fi{*"(R) + j$"(R) + jg*''(R). (B.lO) 

The term that depends on T" requires very little computational effort. We find 

(B.11 b) 

where the sum over mn is restricted to nonredundant orbital pairs in either 
the virtual orbital space or the core orbital space and Ifn is defined in 
Eq. (2.57). It is also straightforward to evaluate the derivative Fock operator, 
(F;),,,,,, contribution to this term in the A 0  basis as 

(B. 1 2a) 

where y:? is the one-particle density matrix for the core orbitals in the A 0  
basis. Finally, consider the contribution from the term f'b,*"(R). Since A" is 
never evaluated explicitly, this contribution cannot be evaluated directly as in 
Eq. (B.11). Formally, the contribution to the first-order nonadiabatic coupling 
arising from this term is 

(B.13b) 

Equation (B.13b) is analogous in form to Eq. (2.57b). Thus, its contribution 
can be obtained from the Z-vector method. Because these orbital contributions 
to j'b,*"(R) in Eq. (B.13b) are linear, the contributions from Eq. (B.13b) and 
Eq. (2.57b) are obtained by adding <tn to 1:; and proceeding as in Eq. (2.58). 
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APPENDIX C. COUPLED PERTURBED STATEAVERAGED 
MCSCF EQUATIONS 

In this appendix, we consider the changes in the expressions for a first-order 
nonadiabatic coupling matrix element or a CI gradient that are required 
when a state-averaged MCSCF procedure rather than an MCSCF procedure 
is used to generate the molecular orbitals. Once again, we wish to evaluate 
the derivative integral contribution from these new terms in the A 0  basis. 
The SA-MCSCF energy was presented in Eq. (2.45) in the text. From the 
SA-MCSCF energy expression 

(2.45) 

(C. 1 a) 

(C. 1 b) 

(C. lc) 

(C.2a) 

(C.2b) 

(C.2c) 

(C.3a) 

(C.3b) 

(C.3c) 

where GOij(I, I) is given in Eq. (2.46a) (as GO,), Eq. (C.2) must hold for each 
unique pair I J  of states in Eq. (2.45) and Eq. (C.3) must hold for all states 
in the complement of the “occupied-state” space in Eq. (2.45). The 
state-averaged MCSCF lagrangian is constructed from Eq. (2.33) with a 
density that is the weighted sum of the density of the occupied states, 

.,SAHC r i i  = c w , y y ,  (C.4a) 

r;;yc = c w,r;;I1. (C.4b) 

I 

I 
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In this appendix the term "occupied states" refers to those states included 
in Eq. (2.45). Whereas in the MCSCF procedure there is only one class of 
CI variational parameters in the SA-MCSCF procedure there are two classes 
of C1 variational parameters. The mixings between the CI vectors that occur 
in SA-MCSCF energy expression are represented in the eigenvector basis 
[Eq. (C.2)] and the mixings of the "occupied" CI vectors with the 
"unoccupied" CI vectors are handled in the CSF basis [Eq. (C.3)]. 
Differentiating these variational expressions with respect to nuclear 
displacements generates the coupled-perturbed SA-MCSCF equations, 

. -  

A" 

'I" 

C" 
. -  

1 GO" + GOTZ 

Following our earlier discussions, these terms contribute to the first-order 
nonadiabatic coupling matrix elements through through the following 
equation, 

which we again abbreviate as 

- I  

GO" + GOT' 

G'I" + Grf' 

GC" + GCT' 

We then solve a linear equation that is independent of the number of nuclear 
degrees of freedom, 

.%X J I  = IJ'. (C.8) 

Inserting the solution of this cquation into Eq. (C.5) yields the following 
expression for the variational contribution to the first-order nonadiabatic 
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coupling matrix element: 

We see from Eq. (C.3) that the new term that arises in a state-averaged 
MCSCF calculation can be expressed as 

(C. 10) 

The derivative integral contribution to this term can now be computed in 
the A 0  basis if one generates the following density matrices, 

(C. 11) 

(C. 12) MC K L  
2(wK - W L ) } r p q , i  . 

APPENDIX D: CONTRIBUTION TO DERIVATIVE QUANTITIES 
FROM INEQUIVALENT ACTIVE ORBITALS 

In Section I1 B 2 it was noted that when an incomplete virtual orbital space 
or a redefined fully orbital space is used in the CI calculations additional 
contributions to the first derivative quantities arise. In Appendix B equations 
were presented that permit evaluation of these contributions. In this appendix 
that discussion is expanded to include the case where the MCSCF or 
SA-MCSCF active orbitals must be constrained. In this development the 
commonly applied constraint that the active orbitals be eigenfunctions 
(natural orbitals) of the MCSCF one-particle density is considered. This 
constraint is necessary, for example, if selected configurations from a CAS 
MCSCF space are used to define the reference space for a CI calculation. 
In that case the CI energy is not invariant to rotations among the active 
orbitals. 

A. MCSCF Active Orbitals 

The equations for the derivatives of the independent, active orbital rotations 
in a CAS calculation were derived by Page et al. 1 3 ,  
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where yy*'9'' is the one-particle transition density constructed from the CI 
vector from the MCSCF calculation [C;,] and the CI portion of the solution 
to the CP-MCSCF equations, [CLc] and li is an eigenvalue of the 
one-particle density matrix. Again as in Section I1 B 2 eficient determination 
of this quantity requires the elimination of explicit reference to the solutions 
of the CP-MCSCF equations C&. To accomplish this Eq. (D.l) is rewritten 
as a matrix times the CP-MCSCF solutions, 

(D.2a) 

(D.2b) 

where the indices i , j  refer to active space orbitals. Thus, the contribution to 
f Z ( R )  can be written as (compare with Eq. (B.14)] 

= 14, 11 CUC.C' I' 

c 
(D.3b) 

where the sum over the compound index ij is restricted to active space 
rotations. Since CLc represents the solution to the CP-MCSCF equations 
Eq. (D.3) is evaluated using the Z-vector method with q;' added to the CI 
portion of 1'' in Eqs. (2.58) and (2.59) producing the following vector: 

1: = ( 
B. State-Averaged-MCSCF Active Orbitals 

When the active orbitals are taken to be the natural orbitals of the 
state-averaged density matrix, Eq. (C.4), then Eq. (D. 1) must be modified. 
The appropriate equation in this case is 

Then following the procedure in part A results in an I" vector, the analog 
of Eq. (D.4), which has the following form: 
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where 

and 

(D.8a) 

(D.8b) 

where the sum over ij runs over the nonredundant active-orbital indices. 

APPENDIX E: THE SECOND DERIVATIVE CP-SAMCSCF 
EQUATIONS 

In this appendix the second derivative coupled perturbed state-averaged 
MCSCF (CP-SAMCSCF) equations are described. Here for brevity 
derivatives with respect to CI degrees of freedom are expressed in the 
eigenstate basis rather than in the CSF/eigenstate basis as was done in 
Section I1 B 1 and Appendix C. The ideas developed in those subsections can 
be used to reformulate the expression presented here into the more 
computationally convenient mixed CSF/eigenstate representation of 
Appendix C. 

As in the case of the first derivative CP-SAMCSCF equations discussed 
in Appendix C, the second derivative of the state-averaged MCSCF equations 
can be expressed as a system of linear equation in which the left-hand side 
is the hessian of the state-averaged MCSCF problem. However, the 
right-hand side of this equation is considerably more complex than is the 
case for the first derivative CP-SAMCSCF equations. The right hand side 
involves quantities constructed from derivative integrals, overlap constraints, 
and the results of the first derivative CP-MCSCF equations. In particular 
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we find 

where the state-averaged MCSCF energy E,,,, has been abbreviated E. The 
terms on the right-hand side of Eq. (E.l) can be expressed as follows: 

As in the case of the first derivative CP-MCSCF equations [see Eq. (2 .53)] ,  
the second derivative molecular-orbital orthogonality terms, GOT'P and 
GCr" arise from the definitions of @; and T;; in Eqs. (2.76) and (2.77). The 
representative terms GO'"', GCrzP, GCJI(JB, I"),  GC;,(J, Is), and GO(1". Is) in 
Eqs. (E.2) require further discussion. As discussed in detail in Ref. 38 in 
deriving these expressions differentiations are initially performed in the CSF 
basis and then transformed to the CI or eigenstate basis. 

Yas contributions arise from the second derivative of the CI- 
orthonormality condition, Eq. (2.20). This gives 

where C! is an antisymmetric matrix whose unique elements t;! appear on 
the the left-hand side of Eq. (E.l) and 

y;+ - (E.4a) 
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The derivatives of the CJ are given by 

(E.5a) 

(E.5b) 

For K, J > L, = tiJ = 0 since these parameters are not determined from 
the state-averaged MCSCF equations. Here L is the number of states included 
in the averaging procedure so that WJ = 0 for J > L. 

Using the definition of G O ,  from Eqs. (2.46) and (C.l), GO,= 
X I  WI(L;; - I,;:), together with the definitions of y" and I"' in terms of the 
structure factors E" and EI' in Eqs. (2.22d) and (2.22e), we find 

where 

Similarly since GCj,  is given by 
r 1 

we have 
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and 

(E.12) 

Once the right-hand side of Eq.(E.l) has been constructed, the same 
techniques used to treat the first derivative CP-SAMCSCF equations can 
be applied to the solution and simplification of Eq. (E.1). 

References 

1 .  J. Gerrat and 1. M. Mills, J .  Chem. Phys. 49 1719 (1968). 

2. P. Pulay. Mol. Phys. 17, 197 (1969). 
3. S. Bratoz, Colloq. Intern. CNRS (Paris) 82, 287 (1958). 
4. D. M .  Bishop and M. Randic, J. Chem. Phys. 44, 2480 (1966). 
5. J. A. Pople, R. Krishnan, H. B. Schegel, and J. S. Binkley, Int. J .  Quant. Chem. Symposium 

6. B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, and H. F. Schaefer, 

7. Y. Osamura, Y. Yamaguchi, and H. F. Schaefer, J. Chem. Phys. 75, 2919 (1981). 

8. Y. Osamura, Y. Yamaguchi. and H. F. Schaefef. J. Chem. Phys. 77. 383 (1982). 
9. J. E. Rice, R. D. Amos, N. C. Handy, T. J. Lee, and H. F. Schaefer. J .  Chem. Phys. 85,963 

10. T. J. Lee, N. C. Handy, J. E. Rice, A. C. Scheiner, and H. F. Schaefer, J. Chem. Phys. 85, 

1 1 .  T. Takada, M. Dupuis, and H. F. King, J. Chem. Phys. 75, 332 (1981). 
12. P. Jorgensen and J. Simons, J. Chem. Phys. 79. 334 (1983). 
13. M. Page, P. Saxe, G.  F. Adams, and B. H. Lengsfield, J. Chem. Phys. 81,434 (1984). 
14. P. Pulay, Modern Theoretical Chemistry, H. F. Schaefer, ed., Plenum Press, New York, 

15. P. Jorgensen and J. Simons, Geometrical Derioatiues of Energy Surfaces and Molecular 

16. Y. Osamura, Y. Yamaguchi, and H. F. Schaefer, Theor.  Chim Acta 72, 71 (1987). 
17. Y. Osamura, Y. Yamaguchi, and H. F. Schaefer, Theor.  Chim Acta 72, 93 (1987). 
18. T. Helgaker and P. Jorgensen, Advances in Quantum Chemistry, Academic Press, New 

19. P. Pulay, Ado. Chem. Phys. 69, 241 (1987). 
20. W. J. Hehre, L. Radom, P. R. Schleyer, and J. A. Pople, A b  Initio Molecular Orbital Theory, 

21. A. E. Ore1 and K. C. Kulander, Chem. Phys. Lett .  146, 428 (1988). 
22. D. Stahel, M. Leoni, and K. Dressler, J .  Chem. Phys. 79, 2541 (1979). 
23. W. J. van der Zande, W. Koot, J. R. Peterson, and Los, Chem. Phys. Lett. 140,175 (1987). 
24. W. J. vander Zande, W. Koot, J. Los, and J. R. Peterson,.!. Chem. Phys.89.7658(1988). 
25. H. Koppel, W. Domcke, and L. S. Cederbaum, Adu. Chem. Phys. 57, 59 (1984). 
26. R. L. Whetten, G.  S. Ezra, and E. R. Grant, Ann. Revs. Phys. Chem. 36, 277 (1985). 

13, 225 (1979). 

J .  Chem. Phys. 72,4652 (1980). 

(1986). 

3930 (1986). 

1977, Vol. 4. 

Properties, Reidel, Dordrecht, 1982. 

York, 1988. 

Wiley-Interscience, New York, 1986. 



68 BYRON H. LENGSFIELD 111 A N D  DAVID R. YARKONY 

27. J. W. Zwanziger and E. R. Grant, J .  Chem. Phys. 87, 2954 (1987). 
28. M. V. Berry, Proc. R. SOC. Lond. Ser. A 392, 45 (1984). 

29. B. Simon, Phys. Rev. Lett. 51, 2167 (1983). 

30. J. C. Tully, Modern Theoretical Chemistry, Plenum, New York, 1976. 

31. B. C. Garrett and D. G. Truhlar, Theoretical Chemistry Advances and Perspectives, 

32. 2. H. Top and M. Baer, J. Chem. Phys. 66, 1363 (1977). 
33. M. Baer, in Theory ofChernical Reaction Dynamics, M. Baer ed., Chemical Rubber, Boca 

34. R. J. Buenker, G.  Hirsch, S. D. PeyerimhoN, P. J. Bruna, J. Romelt, M. BettendorN, and 

35. M. Desouter-Lecomte, C. Galloy, J. C. Lorquet, and M. V. Pires, J. Chem. Phys. 71, 3661 

36. B. H. Lengsfield, P. Saxe, and D. R. Yarkony, J .  Chem. Phys. 81,4549 (1984). 

37. P. Saxe, B. H. Lengsfield. and D. R. Yarkony, Chem. Phys. Lett .  113, I59 (1985). 
38. B. H. Lengsfield and D. R. Yarkony, J. Chem. Phys. 84, 348 (1986). 

39. P. Saxe and D. R. Yarkony, J. Chem. Phys. 86, 321 (1987). 

40. J. 0. Jensen and D. R. Yarkony, J. Chem. Phys. 89, 3853 (1988). 

41. 1. Shavitt, Modern Theoretical Chemistry, Plenum Press, New York, 1976, Vol. 3. 

42. H. J. Werner, in Advances in Chemical Physics, K. P. Lawley, ed.. Wiley, New York, 1987, 

43. D. Dehareng, X. Chapuisat, J. C. Lorquet. C. Galloy, and G.  Raseev, J. Chem. Phgs. 78, 

44. C. Galloy and J. C. Lorquet, J. Chem. Phys. 67,4672 (1971). 
45. H. J. Werner and W. Meyer, J .  Chem. Phys. 74, 5802 (1981). 

46. R. J. Buenker, G.  Hirsch, S. D. Peyerimhoff, P. J. Bruna, J. Romelt, M. BettendorN. and 

Academic Press, New York, 1981. 

Raton, 1985 Vol. 2, Chapter 4. 

C. Petrongolo, Current Aspects of Quantum Chemistry, Elsevier, New York, 1981. 

(1979). 

Vol. 69, p. 1. 

1246 ( 1983). 

C. Petrongolo, Current Aspects qf Quantum Chemistry, Elsevier, New York. 1982. 

47. H. Werner, B. Follmeg, and M. H. Alexander, J .  Chem. Phys. 89, 3139 (1988). 

48. D. R. Yarkony, J. Chem. Phys. 92.2457 (1990). 
49. D. R. Yarkony. J .  Phys. Chem. 94, 5572 (1990). 
50. D. M. Bishop and L. M. Cheung, Phys. Rev. A 18, 1846 (1978). 

51. D. M. Bishop and L. M. Cheung, J. Mol. Spectrosc. 75, 462 (1979). 

52. D. M. Bishop and L. M. Cheung, J .  Chem. Phys. 78, 1396 (1983). 
53. R. D. Bardo and M. Wolfsberg, J .  Chem. Phys. 67. 593 (1977). 

54. R. D. Bardo and M. Wolfsberg, J. Chem. Phys. 68, 2686 (1978). 
55. R. D. Bardo, L. 1. Kleinman, A. W. Raczkowski, and M. Wolfsberg, J .  Chem. Phys. 69, 

56. L. 1. Kleinman and M. Wolfsberg, J. Chem. Phys. 60, 4740 (1974). 

57. L. I. Kleinman and M. Wolfsberg, J. Chem. Phys. 60, 4749 (1974). 

58. P. Pulay and H. Sellers. Chem. Phys. Lett .  103, 463 (1984). 
59. H. Sellers. Chem. Phys. Le t t .  108, 339 (1984). 
60. N. C. Handy, Y. Yamaguchi, and H. F. Schaefer, J. Chem. Phys. 84,4481 (1986). 
61. G.  Herzberg and H. C. Longuet-Higgins, Disc. F a r d a y  Soc. 35, 77 (1963). 

1106(1978). 



NONADIABATIC INTERACTIONS BETWEEN POTENTIAL ENERGY SURFACES 69 

62. H. C. Longuet-Higgins. Proc. R. SOC. Land. A 344, 147 (1975). 

63. J. Katriel and E. R. Davidson, Chem. Phys. Le t t .  76, 259 (1980). 
64. C. A. Mead and D. G. Truhlar, J. Chem. Phys. 84, 1055 (1986). 

65. J. von Neumann and E. Wigner, Physrk. Z. 30,467 (1929). 

66. J. Hinze, J. Chem. Phys. 559, 6424 (1973). 

67. B. H. Lengsfield, J. Chem. Phys. 77, 4073 (1982). 

68. R. Shepard, in Advances in Chemical Physics. K. P. Lawley ed., J .  Wiley, New York, 1987. 

69. M. R. Manaa and D. R. Yarkony, J. Chem. Phys. 93,4473 (1990). 

70. A. A. Frost, J. Phys. Chem. 72, 289 (1968). 
71. C. Eaker. J .  Chem. Phys. 93, 8073 (1990). 

72. C. W. Eaker and C. A. Parr, J. Chem. Phys. 64, 1322 (1976). 

73. F. 0. Ellision, J. Am. Chem. Soc. 85, 3540 (1963). 

74. J. Romelt, Int .  J. Quanr. Chem. 24. 627 (1983). 
75. R. N. Diffenderfer and D. R. Yarkony. J .  Phys. Chem. 86, 5098 (1982). 

76. M. R. Hoffman, D. J. Fox, J. F. Caw, Y. Osamura, Y. Yamaguchi, R. S. Grev, G. Fitzgerald, 

77. B. H. Lengsfield, in Proceedings of the N A T O  Workshop on Geometrical Deriuatitres of 

78. J. Hellmann, Einfuhrung in die Quantenchemie, Deuticke, Leipzig, 1937. 

79. R. P. Feynman, Phys. Rev. 56, 340 (1939). 

80. R. McWeeny and B. T. Sutcliffe, Methods of Molecular Quantum Mechanics, Academic 

81. E. R. Davidson, Reduced Density Matrices in Quantum Chemistry. Academic Press. New 

82. N. C. Handy and H. F. Schaefer. J. Chem. Phys. 81, 5031 (1984). 
83. J. E. Rice and R. D. Amos, Chem. Phys. Lett. 122. 585 (1985). 

84. T. J. Lee and W. Allen, J. Chem. Phys. 87. 7062 (1987). 

85. R. Shepard, Int. J. Quant. Chem. 31, 33 (1987). 
86. B. Liu and B. H. Lengsfield. J. Chem. Phys. 75, 478 (1981). 

87. P. Siegbahn, A. Heiberg, B. Roos, and B. Levy, Phys. Scr. 21, 323 (1980). 

88. B. 0. Roos, P. R. Taylor, and P. E. M. Siegbahn, Chem. Phys. 48, 157 (1980). 
89. B. 0. Roos. Int .  J. Quantum Chem. Symp. 14, 175 (1980). 
90. D. R. Yarkony. J. Chem. Phys. 90. 1657 (1989). 
91. C. W. Bauschlicher, J. Chem. Phys. 72. 880 (1980). 

92. P. 0. Lowdin, Phys. Reti. 97, 1474 (1955). 

93. C. A. Mead and D. G.  Truhlar, J. Chem. Phys. 77, 6090 (1982). 
94. R. de L. Kronig, Band Spectra and Molecular Structure, Macmillan. New York, 1929. 

95. W. Kolos, Advances in Quantum Chemistry, Academic, New York, 1970. 

96. B. T. Sutcliffe, Quantum Dynamics of Molecules, in N A T O  Advanced Study Institute Series 

97. C. A. Mead, J. Chem. Phys. 78, 807 (1983). 

98. T. C. Thompson, D. G. Truhlar, and C. A. Mead, J .  Chem. Phys. 82. 2392 (1985). 

Vol. 69, p. 63. 

H. F. Schaefer, P. J. Knowles, and N. C. Handy, J .  Chem. Phys. 80. 2660 (1984). 

Energy Surfaces and Molecular Properties, Sonderborg, Denmark, 1984. 

Press, London, 1969. 

York. 1976. 

B: Physics. R. G .  Wooley, Plenum, New York, 1980, Vol. 57. 



70 BYRON H. LENGSFIELD Ill AND DAVID R. YARKONY 

99. T. C. Thompson and C. A. Mead, J. Chem. Phys. 82, 2408 (1985). 

100. N. Koga and K. Morokuma, Chem. Phys. Lett. 119, 371 (1985). 
101. For a recent review of surface-walking procedures see H. Schlegel. Adu. Chem. Phys. 67, 

102. A. D. McLachlan, Mol. Phys. 4, 417 (1961). 
103. F. T. Smith, Phys. Rev. 179, 111 (1969). 
104. W. Lichten, Phys. Rev. 131, 339 (1963). 
105. W. Lichten, Phys. Rev. 164, 164 (1967). 
106. M. Baer, Chem. Phys. Lett. 35, 112 (1975). 

107. M. Baer, Chem. Phys. 15, 49 (1976). 
108. T. Pacher, C. A. Mead, L. S. Cederbaum. and H. Koppe1.J. Chem. Phys. 91,7057( 1989). 
109. T. Pacher, L. S. Cederbaum. and H. Koppel, J. Chem. Phys. 89, 7367 (1988). 

110. C. W. Bauschlicher and S. R. Langhoff, J .  Chem. Phys. 89,4246 (1988). 

I I I. M. C. Montabanel-Bacchus, G. Chambaud, B. Ley, and P. Mille, Journal de Chimie 

112. P. Archirel and B. Levy, Chem. Phys. 106, 51 (1986). 

1 13. L. Wolniewicz and K. Dressler, J. Chem. Phys. 88, 3861 (1988). 
114. C. R. Vidal and W. C. Stwalley, J .  Chem. Phys. 77,883 (1982). 

115. Y. C. Chen. D. R. Harding, W. C. Stwalley,and C. R. Vidal,J. Chem. Phys.85,2436(1986). 
116. D. Atkins, E. H. Fink, and C. B. Moore, J. Chem. Phys. 52, 1604 (1970). 

117. E. H. Fink, D. L. Atkins, and C. B. Moore, J .  Chem. Phys. 56,900 (1972). 
118. C. D. Pibel, K. L. Carlton, and C. B. Moore, J. Chem. Phys. 93, 323 (1990). 
119. R. M. Grimes, W. A. Lester, and M. Dupuis, J .  Chem. Phys. 84, 5437 (1986). 
120. J. K. Perry and D. R. Yarkony, J. Chem. Phys. 89,4945 (1988). 
121. P. Pernot, F. M.Grimes, W. A. LesterJr.,and C. Cerjan, Chem. Phys. Lett. 163,297(1989). 
122. S. C. Farantos and J. Tennyson, J .  Chem. Phys. 82, 2163 (1985). 
123. A. D. McLean and G. Chandler, unpublished results; the lithium basis is reproduced in 

D. R. Yarkony, /nt .  J .  Quant. Chem. 31.91 (1987). 
124. P. Siegbahn and B. Liu, J. Chem. Phys. 68. 2457 (1978). 
125. H. F. Schaefer, P. Wallach, and C. F. Bender, J. Chem. Phys. 56, 1219 (1972). 
126. 3. Romelt, S. D. Peyerimhoff. and R. J. Buenker, Chem. Phys. 34,403 (1979). 
127. J. Romelt, S. D. Peyerimhoff, and R. J. Buenker, Chem. Phys. 41, 133 (1979). 
128. S. C. Farantos, G. Theodorakopoulos, and C. A. Nicolaides, Chem. Phys. Lett. 100, 163 

129. C. A. Nicolaides and A. Zdetsis, J. Chem. Phys. 80, 1900 (1984). 
130. S .  C. Farantos, Mol. Phys. 54, 835 (1985). 
131. S. C. Farantos. J. N. Murrel, and S. Carter, Chem. Phys. Lett .  108. 367 (1984). 
132. K. S. Sorbie and J. N. Murrel, Mol. Phys. 80, 1900 (1984). 
133. K. P. Huber and G. Henberg  Molecular Spectra and Molecular Structure IV.  Constants 

134. H. Werner and W. Meyer, J. Chem. Phys. 74. 5794 (1981). 

135. D. Grimbert, B. Lassier-Covers, and V. Sidis, Chem. Phys. 124. 187 (1988). 
136. V. Sidis, D. Gimbert, M. Sizun, and M. Baer, Chem. Phys. Lett. 163, 19 (1989). 

249 (1987). 

Physique 80, 425 (1983). 

(1983). 

o/ Diatomic Molecules, Van Nostrand Reinhold, New York, 1979. 



NONADIABATIC INTERACTIONS BETWEEN POTENTIAL ENERGY SURFACES 7 1 

137. M. No11 and J.  P. Toennies, J .  Chem. Phys. 85, 3313 (1986). 
138. P.J.H.Tjossem,T.A.Cool,D.A.Webb,andE.R.Grant,J.Chem.Phys.88,617(1988). 
139. M. Baer and H. Nakamura, J .  Chem. Phys. 87, 465 (1987). 
140. M. Baer, G. Niedner, and J.  P. Toennies, J .  Chem. Phys. 88, 1461 (1988). 
141. M. Baer, G. Niedner-Schatteburt, and J. P. Toennies, J .  Chem. Phys. 91, 4169 (1989). 
142. B. R. Johnson, J .  Compuf. Phys. 13, 445 (1973). 
143. M. H. Alexander, G.  Parlant. and T. H. Hemmer, J .  Chem. Phys. 91. 2388 (1989). 
144. J.  Alvarellos and H. Metiu, J .  Chem. Phys. 88, 4957 (1988). 
145. R. Heather, X. P. Jiang, and H. Metiu, J .  Chem. Phys. 90, 2555 (1989). 



DIABATIC POTENTIAL ENERGY SURFACES 
FOR CHARGE-TRANSFER PROCESSES 

V. SlDIS 

Lahoratoire des Collisions Aromiques et Moleculaires, 
Universite de Paris-Sud. O R S A  Y Cedex, France 

CONTENTS 

I. Introduction 
A. The Quasimolecular Model 
B. 
C. Historical Background 

A. Coordinates 
B. The Hamiltonian in the BF Frame 

lnsufliciency of the BO Approximation 

11. Preliminaries 

111. The Adiabatic Representation 
IV. The Diabatic Representation 

O n  the Transformation of an Arbitrary Representation to a Strictly Diabatic 
Representation 

A. 

B. Nontrivial Strictly Diabatic Bases 
V. Characteristic Two-State Model Cases 

Practical Construction of Diabatic States 
A. 1. Case Study 

2. Philosophy 
B. Preservation of Separated-Partner Characters: Orbitals 

1. The Case of Two Orbitals in Atom--Atom Systems 
2. The Case of a Few Orbitals in Atom Atom Systems: A Hint at the Electron 

Translation Factor Problem 
3. (Quasi-Niabatic Orbitals of the Separated-Partner Type for Atom Diatom 

Systems 
Many-Electron Diabatic States for Electron-Transfer Processes 
I .  Mutual Orthogonalization of Shells 
2. Improvement of Diabatic Prototypes 

I .  Bringing Out Characters 
2. Preservation of Characters 

VI. 

C. 

D. Extended Scope 

. ~- 

State-Selected and State-ro-State Ion-Molecule Reaction Dynamics. Part 2: 7heory. Edited by 
Michael Baer and Cheuk-Yiu Ng. Advances in Chemical Physics Series, Vol. LXXXII. 
ISBN 0-471-53263-0 8 1992 John Wiley & Sons. Inc. 

73 



14 v. SlDlS 

3. Diabatic Basis Changes 
4. Diabatic Vibronic Bases 
5 .  Exotic Diabatic States: Hydrogenic States in Heavy-Light-Heavy Systems 

References 
VII. Conclusions 

I. INTRODUCTION 

An electron transfer between the impinging partners of a molecular encounter 
generally causes changes of both their state of charge and (ro-)vibrational 
excitation. This process is termed (ro-)tiibronic charge transfer: 

but the nomenclature applies as well to processes of the type 

and 

A(* )+BC(u, ) *A*  + B C T ( o , ) .  (1c) 

In the preceding reactions A may be an atom or a molecule and the double 
arrow indicates that the reaction may be read from the left to the right or 
uice tiersa. 

A. The Quasi Molecular Model 

(Ro)vibronic charge transfer at small relative velocities (ti 5 lo-'  a.u. = 
2.18 IO'cm/s) of the impinging molecules is but one of the many heavy- 
particle collision processes whose theoretical investigation may be under- 
taken within the framework of a quasimolecular model. The basic idea of 
this model is to view a slow heavy-particle collision as a process of temporary 
formation and then breakup of a sort quasimolecular system (ABC)'.' built 
from all the nuclei and electrons of the colliding partners.' One may thereby 
effect the well-known Born and O~penheimer'-~ separation of electronic and 
nuclear motions. As is well known this fundamental step rests on the electronic 
to nuclear mass ratio (me,/mnuc 5 1/2000), which makes electrons move much 
faster than nuclei at comparable energies. 

A collision problem thenceforth splits into two parts: (1 )  determination 
of electronic wavefunctions and energies for fixed nuclei and (2) treatment 
of the nuclear motion in the average potentials thus generated by the 
electrons. 
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B. Insufficiency of the BO Approximation 

The mentioned approach is often confused with the Born and Oppenheimer 
(BO) approximation,2-s which consists of representing the total wavefunction 
of the whole quasimolecular system as a single product: an electronic times 
a nuclear wavefunction. A BO electronic wavefunction represents an 
eigenstate of the electronic hamiltonian ( I f c , ) ,  which, in view of the clamped 
nuclei approximation (I), is obtained from the (actual) total hamiltonian of 
the system by dropping out all nuclear kinetic energy terms (Tnuc). Since 
different BO electronic wavefunctions are obtained for different arrangements 
of the clamped nuclei, they depend not only on the electronic coordinates 
but also on those of the nuclei, albeit parametrically so. Likewise, the 
corresponding eigenualues of the electronic hamiltonian depend on the 
nuclear coordinates; these electronic energies are intended to represent the 
potentials that govern the nuclear motions. This is the means by which the 
invaluable notion of electronic potential energy surface is introduced. 

The basic reason for proceeding as just described rests on an adiabatic 
hypothesis. Electrons in a molecule are likely to move so fast compared to 
nuclei that they may be assumed to readjust “instantaneously” and 
continuously to the slowly varying nuclear field. In a molecular collision 
problem, such an adiabatic behavior,6 would amount to forcing the 
quasimolecular system (ABC)**O to remain in the same electronic state 
throughout the collision, namely, the one that correlates with the initial 
electronic state of the reactants by continuous changes of the nuclear 
geometry as imposed by the motion of the collision partners when they 
approach and then recede. 

The conditions of validity of the BO approximation have been analyzed 
in many  work^.^-^ Suffice it to say that a necessary condition for its 
applicability is the smallness of coupling terms arising between BO products 
from the nuclear kinetic energy operators. Owing to the appearance of these 
operators as first- and second-order derivatives with respect to the nuclear 
coordinates, this requirement is fulfilled when both the electronic 
wavefunctions vary slowly with nuclear displacements and when the latter 
motions are slow. Further scrutiny of the mentioned c ~ n d i t i o n ~ - ~  reveals 
that the BO approximation based on a single-product wavefunction is likely 
to fail when the considered electronic state gets close in energy to other states 
as is the case of degeneracies or near degeneracies. 

The BO approximation applies best to the ground state of a stable molecule 
when it is well removed energetically from higher lying states and when the 
nuclear motions are confined to small displacements around their equilibrium 
geometry. It has successfully been applied to the description of pure elastic 
scattering” and resonant charge transfer’ ’ in diatomic collisional systems. 



76 V. SIDIS 

Moreover, it has made it possible to investigate theoretically many reactive 
( A  + BC + A B  + C) and nonreactive collision processes (vibrational and 
rotational excitation) by viewing their dynamics as a classical evolution of 
nuclei along a single adiabatic potential energy surface.’ ’-I5 

There are many cases, however, where the strict electronically adiabatic 
view conveyed by the BO approximation breaks down; to cite a few: 
nonradiative transitions in polyatomic molecules,’6*’ the Jahn-Teller 
effect,’ **19 vibronic coupling effects in molecular spectroscopy,” predis- 
sociation and perturbations in the spectra of diatomic molecules,*’ and 
inelastic as well as charge-transfer processes in collisions of atoms and 
 molecule^.^^-'^ Breakdown of the BO approximation is present in the case 
of vibronic charge transfer of interest to us here. First, the transferred electron 
is located around a different partner in the beginning and at the end of the 
collision; thence, the description of the initial and final asymptotic conditions 
of a charge-transfer process implies the explicit involvement of at least two 
electronic states of the (ABC)**’ quasimolecule. Second, it is well known, 
from both textbook perturbation theory and the detailed investigation of 
two-state  model^^^^^*-^' that collision-induced transitions between two 
states, at small relative velocities, are most likely to occur when the spacing 
between their energy levels is small and/or is comparable with the relevant 
coupling. Third, it is precisely in the regions of nuclear coordinate space 
where such closeness conditions are met that BO electronic wavefunctions 
often display their largest variations. It is thus obvious that the just depicted 
characteristics of a nonadiabatic phenomenon impose a “correlated 
description of nuclei and electrons; this is readily achieved by a superposition 
of BO product wavefunctions,* which constitute the basis of the adiabatic 
represent~tion.’*~ Although it is at this very point that the notion of diabatic 
state is traditionally brought in, we will defer i t  until another important 
notion is recalled, namely, that of sudden behavior.6 

The conditions that make a sudden behavior appear in a quantal system 
are very similar to those (already discussed) which determine adiabatic 
behavior, namely, the separation between slow and rapid motions or between 
the associated long and short characteristic periods, respectively. If a quantal 
system undergoes a perturbation over much shorter time scales than its 
characteristic periods, measured as representative reciprocal energy spacings, 
then it stays in the same state as it was initially prepared in. This will be the 
case in the course of a collision when the typical time taken by the system 

*The mentioned superposition bears some resemblance with the description of “electron 
correlations” in atomic and molecular physics using superpositions of configurations built as 
(antisymmetri7.d) products of one-electron wavefunctions. 
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to change its nuclear geometry is much shorter than the reciprocal energy 
spacings that actually depend on that geometry. Let us now imagine a two- 
state system whose adiabatic potential energy surfaces ( E 2  > E l )  are well 
separated except in a small domain of the nuclear coordinates where they 
exhibit a narrow pinching with an energy gap AE. If the system, initially 
prepared in the lowest adiabatic state $;, traverses the pinching zone in a 
shorter time than A E  ’, then i t  stays in the very $: state until its exit whereon 
it projects onto the adiabatic states ${.2. When I(${ /$;)I z 1, the pinching 
corresponds to an aooided-cur~e-crossing~~ situation. Sudden behavior in this 
case makes state $; correlate with ${and vice versa ($:*${). Such a “boring 
through” characterizes diabatic behavior (etymologically Sia@arca: which 
may traverse). It is well known (and will be shown again in Sections 111 and 
V) that in the mentioned avoided-crossing case the electronic (adiabatic) BO 
wavefunctions display large (not to say huge) variations with nuclear 
geometry in the very pinching zone. As will also be discussed later on such 
rapid variations cause both conceptual and computational difliculties. The 
notion of diabatic behavior just introduced bears the idea of an alternative 
representation spanned by basis states whose dependence on nuclear geometry 
is much smoother than that of BO wavefunctions when such critical situations 
occur. 

C. Historical Background 

The notion of diabatic states has been a matter of repeated rediscovery over 
the past 60 years. 

The widespread literature on the subject attributes their fatherhood to 
L i ~ h t e n ~ ~  and first formal definition to Smith.33 Almost everyone 
acknowledges, however, that they were implicit in studies performed in the 
early 1930s on nonadiabatic transitions in two-state models (whatever curve 
c r o s ~ i n g * ~ - ~ ~  or n o n c r o ~ s i n g ~ ~  models). Actually, both the terminology and 
definition of these states in their modern acceptance appeared as early as 
1935 in a work by Hellmann and on “the anomalously small steric 
factors in chemical kinetics.” Like many of their contemporaries these authors 
were concerned among other things with the curve-crossing problem in ionic 
covalent  reaction^,^^^*^^ which they studied using a semiclassical approach 
where the electrons of the quasimolecular collisional system are treated 
quantally whereas the nuclei are treated classically.’ Their analysis of the 
problem led them to introduce diabatic states defined as linear combinations 
of eigenstates of the electronic hamiltonian ( H e , )  having negligible couplings 
via the nuclear momentum operators. Diagonal matrix elements of H e ,  between 
such states thereby represented diabatic potential energy curves that could 
run freely through avoided adiabatic  crossing^.^ ’ Corresponding off-diagonal 
matrix elements of He, would induce electronic transitions between two 
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diabatic states. This pioneering work has, however, passed unnoticed up to 
the mid 1970s. 

The suggestion to abandon BO electronic states in favor of alternative 
wavefunctions displaying as slow a dependence on nuclear displacements as 
possible reappeared in the early 1960s in two contributions by Hobey and 
McLachlan7 and McLach laP  who dealt with “the wavefunctions of 
electronically degenerate states and the dynamic Jahn-Teller effect in 
polyatomic systems.” The required transformation and its conditions of 
existence were investigated nearly as is done today to define diabatic states. 
Yet, the field was not mature enough to grasp at this occasion of building 
a theory of slow nonadiabatic molecular collisions based on a special 
nonadiabatic representation of the electronic hamiltonian. As pointed out in 
Ref. 37,” in the mid 1960s one could barely treat electronic transitions in 
low and medium energy collisions between the simplest atomic partners (e.g., 
H and He). The state of the theory was such that it was believed that the 
detailed study of molecular collision processes would remain for long an 
exclusive theme ofexperimental physics.” In addition it was not well perceived 
except in pinpoint c o n t r i b ~ t i o n s ~ ~ - ~ ~  how beneficial a molecular description 
of heavy particle collisions would be. 

In a series of articles dealing with atomic collision problems L i ~ h t e n ~ ’ * ~ l * ~ ~  
triggered a sort of “thought Renaissance” in the field by promoting four 
governing ideas. First, molecular physics may be amalgamated into collision 
theory with the objective of understanding electronic transitions; these 
manifest themselves either as anomalies in elastic scattering and resonant 
charge transfer or as inelastic processes (including charge transfer and 
ionization). Second, processes exist in many-electron systems that cannot 
be accounted for by an adiabatic theory thereby forcing one to abandon it 
(or at  least some of its prescriptions) in favor of a quasiadiabatic theory 
that emphasizes the description of molecular states in terms of configuration- 
state function (CSF) built from molecular orbitals (MO).43s44 Third, such 
states termed diabatic may freely undergo crossings; diabatic curve crossings 
are readily predicted from correlation diagrams connecting (one-electron) MO 
and (many-electron) CSF energy levels at infinite and zero interparticle 
distances (separated- and fused-collision-partner limits, respe~t ively) .~~ 
Fourth, a hint at the importance of electron transitions at the thus revealed 
crossings could thenceforth be estimated using results of the celebrated 
L a n d a ~ - Z e n e r ~ ~ * ~ ~  model. An important merit of Lichten in this context 
has been to stress the physicochemical content of the diabatic states he was 
just introducing. He pointed out that in the curve-crossing problem the 
diabatic states are not just convenient mathematical constructs but actually 
convey specific information on characters the system is likely to retain during 
its evolution (as, for example, a MO configuration). A prolongation of this 
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original approach has been the emergence of the so-called MO promotion 
model4’ that aimed at the prediction of diabatic MO crossings (in the newly 
introduced sense) in symmetric4’ and asymmetric45 diatomic systems.* 
Lichten’s masterly ideas have not had immediate impact on the 
quantum-chemistry community both because of their qualitative nature and 
the emphasis they were putting on special rudimentary MO and single- 
configuration descriptions of the diabatic states. For nearly two decades such 
states thereby dragged the bad reputation of being inaccurate, and useful (if 
at all) for energetic collisions between two atomic systems. Yet both Lichten’s 
ideas and the rapid development of the so-called “collision s p e c t r o ~ c o p y ” ~ ~ * ~ ~  
in the late 1960s provoked a strong incitement for the search of a formal 
definition of diabatic states, which would hopefully be as rigorous as that 
of the well-established adiabatic states and would allow their determination 
by state-of-the art quantum-chemistry techniques. 

Three contributions actually provided the basic formalism s o ~ g h t . ~ ~ * ~ ~ - ~ ~  
The earlier prescriptions of Refs. 7,34, and 36 were thus rediscovered in part 
by Levine et aLS3 and Smith33 who suggested that one define diabatic 
electronic states as those that avoid possible rapid variations of the adiabatic 
states with respect to nuclear coordinates. Smith’s general analysis of the 
conditions to be fulfilled by the unitary adiabatic-to-diabatic transformation 
achieving this requirement made his proposal to be retained as the standard 
definition of diabatic states. A quite different formulation based on the 
Feshbach projection operator technique was put forward by O ’ M a l l e ~ . ~ ~ - ~ ~  
Originally, the proposals of Smith and O’Malley looked quite distinct. Later 
practice revealed that they actually pursue the same goal2’: the removal of 
badly behaved off-diagonal matrix elements of the nuclear momentum 
operator between electronic BO states. The former does so in an a posteriori 
way, that is, after having determined these matrix elements, whereas the latter 
does it in an a priori way, that is, by controlled transformation of a basis in 
which matrix elements of nuclear momentum operator are knwon beforehand 
(e.g., by construction) to be null or negligible. 

*This model rests on the idea that adiabatic MO of many-electron systems as provied by 
molecular structure  calculation^^^ often display avoided crossings that one may tentatively put 
in correspondence with true crossings in systems made of a single electron and two bare nuclei. 
Its basic argument is that both inner shells and Rydberg shells of diatomic systems mimic those 
of one-electron diatomic molecules. Thus, diabatic MO should maintain to some extent the 
same behavior and should thus exhibit the same sort of level crossings. The latter crossings 
happen to occur owing to the special symmetry of the two-center Coulomb field*7~’0 and obey 
rules” that are actually exploited in the MO promotion model. In many-electron systems 
electron transitions are induced at those crossings by the screening erects, which cause the 
departure from the pure Coulomb field. It  is precisely those eNects that are responsible for the 
avoidance of the mentioned crossings in the adiabatic view. 
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The contributions of Smith33 and O ' M a l l e ~ ~ ~  have caused significant 
progress in the study of the dynamics of nonadiabatic transitions in diatomic 
systems during the 1970s. Yet, many fewer attempts were made during the 
same period to apply similar ideas to more general polyatomic collisional 
systems. One reason for such a lack of interest might have been the widespread 
use of the so-called trajectory surface hopping (TSH) description of molecular 
 collision^.^^^^^ The propagation of classical trajectories, in the TSH model, 
to describe the evolution of the nuclear motions is quite frequently achieved 
using adiabatic potential energy surfaces; yet, the explicit handling of 
cumbersome couplings between the related states in numerical work is never 
truly needed in TSH, since it does not care for a rigorous description of an 
electronic transition per se. Therefore, adiabatic states seemed to be sufficient. 
Moreover, despite a lengthy literature on the drawbacks of adiabatic 
electronic bases in nonadiabatic conditions, the stubborn nonsensical idea 
that they still uniquely provide the most rigorously founded description of 
the dynamics kept being perpetuated. 

Nevertheless, the progressive undertaking of quanta1 descriptions of 
nonadiabatic molecular ~ o l l i s i o n s ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~  led to the readvocation of the 
use of a diabatic representation instead of the ordinary adiabatic one. Baer5g 
(and later Chapuisat et a1.61) thereby extended Smith's33 idea to polyatomic 
systems. 

Over a decade an abundant literature grew concerned with those defini- 
tions of diabatic ~ t a t e ~ ~ ~ . ~ ~ . ~ ~ - ~ ~  and with methods of determining them in 
practice using state-of-the-art quantum-chemistry techniques. The present 
review intends to survery some of these methods with specific focus on those 
which help dealing with vibronic charge transfer. 

11. PRELIMINARIES 

A. Coordinates 

We consider the general case of a polyatomic system made of the 
N,,, = N Z ,  + N L c  nuclei and N,, = N Z  + N Z  electrons of the colliding 
target 3 and projectile 8. The quantum-mechanical hamiltonian of this 
system in the laboratory reference frame (in atomic units) 

is first transformed by separating off its center-of-mass (c.m.) motion. An 
appropriate set of 3(N, , ,  + Ncl) - 3 relative coordinates is then chosen to 
describe the particles movements in the c.m. frame. 
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Let us first consider the nuclei. Ordinarily, coordinate sets that enable 
one to write the nuclear kinetic energy operator in the form of sums of 
individual relative kinetic energy operators are preferred. This is readily 
achieved iteratively by a well-known method; one defines the first three 
relative coordinates as components of the vector joining an arbitrary pair 
of nuclei. A second relative vector is next formed by joining a third nucleus 
to the c.m. of the initial pair, the third relative vector is then obtained by 
joining a fourth nucleus to the c.m. of the previous three, and so on. Alter- 
natively, one may apply this procedure to subsets of nuclei forming aggregates 
and subsequently use it again to form interaggregate relative vectors. In a 
collision process that does not involve any chemical bond rearrangement 
between the impinging molecules [Eqs. (la)-( lc)] one obvious interaggregate 
distance of this sort is the vector R joining the nuclear c.m. of the target (9) 
to that of the projectile (9). The kinetic energy operator T,,, in the c.m. 
frame then writes: 

where the last two terms are nuclear kinetic energy operators of the target 
and projectile in their own c.m. frame and p is their reduced mass: 

The previously mentioned (Jacobi-type) procedure to sequentially build sets 
of relative coordinates is seldom (if ever) applied to electrons. Rather, i t  is a 
usual practice to refer them to a common origin lying on the R axis at a 
distance 9,.R from the projectile and 9 FR from the target (9 + 9 = 1). 
With such a choice of electronic coordinates (noted ql), the kinetic energy 
TeI of the N,, electrons in the c.m. frame is 

Clearly the choice 

cancels the second term in T,, and identifies the origin of electronic 
coordinates with the nuclear c.m. G. The third term in TeI represents a mass 
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polarization contribution; owing to the electron-to-mass ratio, this term is 
negligible with respect to the first term and is usually dropped. 

The potential Y depends only on the nucleus-nucleus, electron-nucleus, 
and electron-electron interparticle distances and is thereby not affected by 
the lab-c.m. transformation. Neither is it affected by a rotation of the c.m. 
reference frame. This gives the freedom to express the hamiltonian in the 
so-called body-fixed (BF) frame, which rotates with the R axis about G as 
the collision proceeds. The azimuthal (0) and polar (0) spherical components 
of R in the fixed reference frame constitute the first two Euler angles of the 
discussed rotation. The third Euler angle noted 6 is associated with a rotation 
of the system as a wole about the R axis. (This angle is of no relevance in 
linear systems.) One is thus left in the BF frame with 3(Nn,, + N c , )  - e internal 
coordinates, e equals 6, in general, except for linear systems in which case it 
amounts to 5. 

Internal nuclear coordinates actually represent deformations of the nuclear 
geometry. They may be split into two sets ( 3 N z ,  - e .T)  + ( 3 N L c  - e9)  
coordinates represent vibration-type motions of the individual F and 9 
aggregates. The remaining e y  + es - e coordinates represent, respectively, 
the relative Y - 9 motion along R, a relative 9- - 9 (twist) rotation about 
R, and two independent rotations for each of F and 8.* Defining a polar 
axis Z y , y  attached to each aggregate 5,9 enables one to characterize these 
rotations by the angles yS,,+ and by,+;  the former two specify rotations 
about axes perpendicular to the respective (R, ZT, .p)  planes, whereas the 
latter two correspond to rotations about each of the chosen Zy,9 axes. 

The dependence of the potential -Y upon nuclear coordinates occurs only 
through the 3Nn,, - e internal degrees of freedom. Therefore, as will appear 
shortly, rhey are the only coordinates to be considered when dealing with 
adiabatic versus diabatic choices. 

Let us illustrate the matter somewhat. For an atom-atom collision, the 
sole internal deformation coordinate system is R. Consideration of an 
atom-diatom system adds up two new internal deformation coordinates, for 
example, the diatom bond distance r and the (R,r) angle y .  In a 
diatom-diatom system three additional coordinates arise, namely, the r’, y’ 
pair as just defined for one diatom, plus the dihedral angle qYa between the 
(R,r) and (R,r’) planes. For an atom-triatom collision one has, in addition 
to R: 

1. The three internal coordinates determining the shape of the triatomic 
aggregate [for example, the bond distance d of a diatomic pair, the 
distance r of the third atom to the diatom c.m., and the angle (d,r)]. 

*When d or 9 is an atom, the latter two rotations and the twisting motions are irrelevant. 
When 9 or .Y is a linear molecule, a rotation about its axis is irrelevant. 
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2. Two overall rotations of the triatomic plane with respect to R [e.g., 
one rotation characterized by the angle y,ri takes place around an axis 
perpendicular to the (r, R) plane and another one characterized by the 
angle 

Obviously, such choices are not mandatory. They are often suggested by 
the physics of the considered process. For instance, if, as a result of a 
BCD’ + A charge-transfer collision the triatomic BCD neutral dissociates6* 
into a unique atom-diatom arrangement B + CD, then the preceding 
coordinate set (with and dCmD) is a natural one. On the other hand, if 
the other BC + D and/or BD + C dissociation arrangements are also possible, 
coordinate sets designed to treat rearrangement processes (as hyperspheri- 
ca169 or Eckart” coordinates) should be used. At the other extreme, the 
choice of internal nuclear coordinates in the form of small nuclear 
displacements with respect to a reference nuclear configuration” may be 
adequate to the treatment of cases when bulky targets and/or projectiles 
undergo small deformations with respect to their equilibrium geometry 
throughout the collision. 

takes place around r itself]. 

B. The Hamiltonian in the BF Frame 

There are many ways in which body-fixed reference frames may be chosen. 
Except if stated otherwise, we will consider the set of internal electronic: 
{pi}i= and Jacobi-type nuclear: R,ry,ys ,  {rb}== coordinates in 
the rotating BF frame, which is characterized by the three Euler angles 
@, @,a. The z axis in the BF frame lies along R and the BF (Cz, Gx) plane 
contains a (Jacobi-type) internal nuclear vector rg of the target aggregate 
(Fig. 1). We have: 

H = Tnuc + He,, (6) 

Figure 1. The body-fixed reference frame. Dot- 
ted areas represent the target (Y) and projectile (9) 
aggregates. G is the .Y - 9 enter  of mass. Vectors 
in the dotted areas represent schematically Jacobi- 
type coordinates. One of these vectors (rT) in the 
target aggregate is chosen to define the (Cz, Cx) I 
(ry, R) plane. The three Euler angles (not shown) that 
determine the position of the body-fixed frame with 
respect to the space-fixed frame are as usual the two 
spherical angles of vector R I Gz and a rotation of 
angle 6 of the (Cx. Gz) plane about R. 
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where 

where 

All partial derivatives in the preceding equations are to he effected holding the 
other coordinates fixed in the body-fixed reference frame. If spin-orbit 
interaction is to be taken into account in ,V, then the electronic orbital 
angular momentum term in r [Eqs. (8) and (10a)l is to be replaced by the 
total J = L + S electronic angular momentum. The appearance of the 
electronic angular momentum terms in T,,, is readily understood as a 
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Coriolis-type interaction arising from the description of the system in a 
rotating frame. Likewise, the appearance of m components has the same 
origin. Obviously, M does not appear for atom-atom or atom---diatom 
collisional systems. 

The stationary quantum-mechanical description of the F - 9 quasi- 
molecular collision system stems from the Schrodinger equation: 

where E is the total (conservative) energy of the system and Y is its total 
wavefunction. As is frequently done when treating correlated motions of 
particles in a many-body system, one may first write Y in the form of an 
expansion over wavefunction products: each factor in these products describes 
independent motions or independent groups of correlated motions. 
Accordingly, \Y may be sought in the form: 

v+","."' and cp:' describe, respectively, the collective internal nuclear and 
electronic motions, whereas Dk describes overall rotations of given spatial 
configurations of electrons and nuclei. 

The problem of defining and using adiabatic or diabatic representations 
has to do with the actual choice of cp:' basis functions. As will be seen shortly, 
these functions are universally chosen to depend on the electronic coordinates 
(pi} and possibly on R, r5,y5,{rz} but not on the Euler angles @,a, 6; 
hence, the operators K 2 ,  K Z , *  in T,,, act exclusively on D,. The latter 
functions may thus be chosen as the coefficients of the irreducible represen- 
tation of the rotation group.73 In that case the label k stands collectively for 
there indices K ,  M,, SZ: 

which may be used when inserting Y into Eqs. (6), (81, and ( 1  1). In  addition 
the L2, Lz. operators act solely on q:'. Terms in T,,, depending exclusively 
on combinations of the latter six operators are related to rotations and 
electrorotational interactions. These terms will altogether be noted A'. So 
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that T,,, appears in the form: 

I-, - Y2 + m + K -  + m - K +  

cot ys(K + m, + m + K ,  - m + m, - m + L, - L ,  m,) - ( K  + - I-+) ~ 

cot -m, + m- K ,  - m - m, - m - L, - L-m,) + ( K  - - I--)- 

where: 

rl = m2 + 2m.L - 2m, 

1 
( -  2K,m, + 2m,L, + mf). cotyy-+- T2 = + 

a& ays sin2y, 
(16) 

a a 2  

111. THE ADIABATIC REPRESENTATION 

As recalled in Section I, the electronic basis set {(p:'*"} characterizing this 
representation stems from the Born and Oppenheimer approximation; it is 
generated for each fixed geometry u f fhe  nuclei ( R , r g ,  ys, {m}) by: 

where indices following a semicolon specify parametric dependences of the 
electronic wavefunctions. Using this definition in the total Schrodinger 
equation (1 1) yields 

The adiabatic representation thereby compels us to evaluate the Z,,,,, coupling 
terms. Putting aside electrorotational (Coriolis-type) interactions in 9 [Eq. 
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(14)], the so-called internal deformation-type nonadiabatic coupling matrix 
elements contributing to Znm are of the form 

where QI ( I  = 1,3N,,, - e )  is any of R, r J ,  y s  or any of the three components 
of a vector in the set (la). It is readily established that 

Moreover, using the commutation relation 

one gets, for m # n, 

These properties reveal the major drawback of adiabatic basis functions, 
namely, the importance of TYA and T:;) matrix elements and thus that of En, 
coupling terms when the energy difference between two potential energy 
hypersurfaces is small. Even worse, these matrix elements may diverge or 
become discontinuous in polyatomic systems (N , , ,  2 3) near crossings of 
potential energy hyper surface^^'*^*^^^-^^ (see Section V). Although methods 
exist to calculate -I-!,!,! matrix  element^,'^-^^ it is obvious that the numerical 
work involved in their determination and eflectiue use in close-coupling 
treatments of reaction dynamics is a quite tedious task when they become 
singular. Actual calculations of T!,:), T!,!,,', and T:;' matrix elements have 
been calculated for a few triatomic and some tetra-atomic  system^.^^-'^ Still, 
in one category of work the nonadiabatic matrix elements were provided for 
restricted samples of nuclear geometries and were only used in qualitative 
d i s c ~ s s i o n s . ~ ~ ~ ~ ~ * ~ ~ - ~ ~  I n another category of work they were just used to 
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pinpoint regions of strong nonadiabatic coupling were sound albeit rudi- 
mentary recipes provided transition probabilities from one electronic state 
to a n ~ t h e r . ~ ~ * ~ ~ . * ~ - * ~ *  Finally in a third category of works they were 
immediately transformed away by a change of r e p r e s e n t a t i ~ n ~ ~ - ~ ~ * ' ~  before 
undertaking the scattering calculations. 

IV. THE DlABATlC REPRESENTATION 

I t  is important to recall that the actual collision problem consists of solving 
Eq. (1  1) using an expansion of the system's wavefunction in the form given 
by Eq. (12). Obviously, there is absolutely no obligation to chose cp:' as a 
solution of Eq. ( 1  7). 

Formally, a strictly diabatic basis set { c p ; l - d }  may be defined by the 
Condition7.33.34.36,59 

which removes at once the previously mentioned drawbacks of the adiabatic 
representation. With this definition, the stem of coupled equations equivalent 
to Eq. (18) is 

CTnuc + ~ f ( ~ , ~ . ~ , ~ ~ ~ { r m } ) -  ~ I t ; : = C ( ~ n r n  + s n m ) F i ,  (27) 
m 

Ff is defined by Eq. (19) with the replacement of the superscript a by d.  

*Two exceptions. however, are the works on the Na(*P) + H, quenching by Blais and 
TruhlarsU and Eaker"' who did use T:, matrix elements in time-dependent coupled equations 
to determine transition probabilities for a particular use in the TSH2$ method. 
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Yet, Eq. (26) is a trivial d e f i n i t i ~ n ; ~ ~ . " . ~ ~  indeed, since, in general, 

it entails 

In addition differentiation of the orthonormality condition yields 

which shows that ( cp:'*dI i?/dQI I cpil.") in Eq. (32) is a purely imaginary number. 
Hence, one immediately realizes that Eq. (26) yields an electronic basis, which, 
except for phase factors, does not depend on any of the 3N,,, - e internal 
nuclear coordinates. The mentioned phase factors depend exclusively on the 
internal nuclear coordinates and may thus be ignored since they may be 
incorporated in Fd,. The strict definition (26) of diabatic states is obviously 
useless for any practical purpose. Indeed, since it does not refer to any 
simplifying physicochemical property of the system, i t  implies that reference 
is permanently being made to a complete basis set of functions representing 
3 N , ,  motions. Useful definitions should thereby achieve condition (26) 
approximately by restricting it to certain finite electronic subspaces, and/or 
to limited domains of internal nuclear coordinates and/or by requiring that 
( ~ : ' * ~ l  d/dQ,I cp: .d)  be small enough to he neglected. 

A. O n  the Transformation o f  an Arbritary Representation 
to a Strictly Diabatic Representation 

We will examine here whether strictly diabatic bases may be defined by an 
orthogonal transformation C of an arbitrary basis in a finite subspace. 

Let us assume that a basis of Nbas electronic functions {cp;') has been 
selected to treat a given nonadiabatic molecular collision process. This may 
be the adiabatic basis of Section 111 or not. If an equivalent diabatic basis 
of Nbas function { c p : ' * d }  exists, it obeys the orthogonal transformation 
equation 
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Fulfilment of Eq. (26) in this basis entails33*59*63: 

ac 
~ + U"'C = 0, 
JQi 

V Q I .  (35) 

The elements of matrix 8"' are defined as in Eq. (21), without imposing the 
superscript a; those of matrix C are defined in Eq. (34). The necessary and 
sufficient conditions for a solution of this equation to exist are59*60 

With Eqs. (35) and (36) @ formally* obeys the integral 

x @ ( Q 1 ,  Q 2 r . . . r Q ; N n u c - e ) .  (37) 

The latter equation means that to propagate C from some chosen point 
{QY} to {QI} one has to integrate with respect to QI at fixed Q:, . . . , QyNnuc-e, 

then with respect to Qz at fixed Q , , Q 3 , .  . . , Q:Nn "=-. 6 ,  and so on, and finally 
with respect to Q3N,,,-e at fixed Q I ,  Q 2 , .  . . , Q3N,u,-e-  (see Ref. 92). 

Yet analysis of the conditions (36) showed that they may not be fulfilled 
in general.63 The basic argument lies in the fact that the variation of T"' 
with Q 1 ,  Q2 . . .Q3Nnuc-e involves contributions from basis states lying outside 
the considered subspace of dimension Nbas; indeed, it is readily established 
that 

*Equations (35) and (37) are but formal definitions. Indeed the numerical work9* that would 
be required for arbitrary polyatomics, in general, and for singular T"' matrices in particular, 
would be prohibitively cumbersome. 
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with the matrix elements of O"*J) defined as 

(39) 

where the ( k ) ' s  form an orthonormal basis set in complementary subspace. 
Only in exceptional cases can the matrices Ocl*J) be made to vanish. Hence, 
the transformation of an arbitrary { QI )-dependent finite basis (in particular, 
a basis ofNbas adiabatic states) into an equivalent stricrly diabatic basis [Eq. 
(34)] is impossible in general. This does not mean, however, that the objective 
of constructing finite nontrivial basis sets that may get rid of the drawbacks 
of adiabatic bases is out of reach. Construction of such bases is the subject 
of the next sections. 

B. Nontrivial Strictly Diabatic Bases 

Instead of attempting from the outset to obtain diabatic states by an 
orthogonal transformation of a given {Q,}-dependent basis (e.g., the adiabatic 
basis) as is done in Section IV A, let us proceed the other way around. Let 
us start from a complete strictly diabatic basis { I d ) } ;  according to Section IV 
this is a "crude" {Q,}-independent basis. Of course, such a basis is defined 
except for a constant unitary transformation. Let us assume that this constant 
transformation has been properly chosen (on physicochemical grounds) and 
that the complete space may be split into two subspaces S' and SP. For 
example, focusing on charge-transfer processes, this partitioning may be 
conceived as a way that helps distinguish between two specific characters: 
reactant-type (S') or product-type (Sp). We will discuss later how one manages 
in practice to realize this partitioning (see Sections VI A, VI C 2a). One may 
then solve independently the electronic Schrodinger equation in each subspace 

PLHe,PLXf;( {Pi}; {QI} 1 = E,L({QIJ ) X i (  {Pi); {QI})? (40) 

where PL = x d l d L ) ( d L I  is the projector onto subspace S L  (15 = r or p) and 
{QI} ,= ,.3N,,, - e  represents the chosen set of internal nuclear coordinates (e.g., 
R,rz , y . r ,  {r@}). It is obvious that 

Since the use of the projectors prevent any state in S' to mix with any state 
in Sp. It is then possible to pick out one eigenstate of Eq. (40) in each subspace 
s' and SP to form a nontrivial strictly diabatic 2 x 2 subspace. The just 
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described procedure is of course readily generalized to more than two 
subspaces. In addition, since 

it follows that 

This property shows that X k  states that are energetically well separated in 
each subspace have weak dependences upon the internal nuclear coordinates 
(as is ordinarily admitted for acceptable BO states). If this is the case, then 
merging the two bases: { I X i ) }  and { I X i ) }  provides one type of quasidiabatic 
representation. If, on the contrary, two (or more) 1X;)'s in SL bring about 
the same troubles as those which make the adiabatic representation 
unpractical, then SL should be fragmented into two (or more) crude diabatic 
subspaces and the procedure restarted. 

The preceding scheme is inspired by a suggestion that was put forward 
by OMalley.54*56 It provides states that are simultaneously quasiadiabatic 
and quasidiabatic. They are quasiadiabatic via Eq. (40) and they are 
quasidiabatic in the sense that they are not affected by troublesome d /dQI  
matrix elements; in fact, they just retain the weak a /dQI  matrix elements, 
which are universally accepted when the BO approximation applies. 
Expressed differently, the described procedure does just what the BO 
approximation (when valid) does except that it does it within subspaces and 
it does exactly what a strictly diabatic treatment is intended to do except 
that it does it between subspaces. I t  rests of course on bringing out criteria 
to explicitly build the subspaces. This point together with the upgrading of 
the method with the objective of achieving state-of-the-art chemical accuracy 
are practical preoccupations which are dealt with in Section VI. 

V. CHARACTERISTIC TWO-STATE MODEL CASES 

It is instructive to have in mind the behavior of typical interactions in the 
adiabatic and diabatic representations. These are best illustrated by 
two-state-model cases. Since ion-molecule charge transfer is of primary 
concern to us here, we will restrict the discussion to related examples inspired 
by actual cases. For simplicity, reference will be made to atom-diatom 
collisional systems; accordingly, the set of internal nuclear coordinates is R, r, 
and y (Fig. 2). 
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z 

A 

X 

Figure 2. Same as  Fig. 1 for the case when the 
projectile is an atom (A) and the target a diatomic 
molecule (BC).  

On the basis of the discussions in the preceding section (see also Section VI) 
we may assume that two (strictly or nearly) diabatic states may be constructed 
one of which (X' )  owns a reactant-type character (say 8+ + F), whereas the 
other (XP) owns a product-type character (say 9 + .T+). For simplicity, we 
may consider that X'*P are energetically the lowest eigentates of the cor- 
responding Eq. (40). We thereby omit the subscript of these states. In the 
considered 2 x 2 subspace one may construct the equivalent (p:,2 adiabatic 
basis which obtains from the X'vP set according to: 

(p; = X'cos8 + XPsin 8, (444 

(p;= -Xrs in8+XPcos8 ,  (Mb) 

where the angle 0 is determined from 

(cp ' ;  I He, I (p; ) = 0 = i(EP - E')sin 28 + HP' cos 28 (45) 

One thus readily obtains: 

8 = i a rc tan[2H~' (~ '  - EP)-'] 

and 

(47) 



94 V. SIDIS 

The (XPld/dQ,lXr) term does not appear in the expression of T:; owing 
to the assumed (strictly or nearly) diabatic nature of the Xp*' basis. 

One important characteristic of 3' + F +9' + .F+ charge-transfer 
problems is the exponential behavior of the diabatic interaction H'P at large 
intermolecular  distance^.^^-^^ It may be represented roughly by the 
functional d e p e n d e n ~ e ' ~ - ~ ~  (Fig. 3) 

HrP(R,r,y) = A(r,y)R"exp[-E.(r)R] (49) 

Specification of the R, r,y dependences* of the adiabatic energy difference 
E' - EP enables one to get some insight into the behavior of the 1-21 couplings 
in the equivalent adiabatic basis [Eq. (44)]. 

In many A +  + BC charge-transfer systems the energy difference E' - EP 
at large interparticle distance R may be approximated as the difference A1 
between the ionization potential of the neutral molecule and the 
recombination energy of the atomic ion (or vice versa), hence 

E' - EP 2 A l ( r )  (50) 

is grossly a function of r only. Let us examine cases (like H + + H2,57*58 Ar' + 
H2,75 F+ + C0,85 for instance) when A l ( r )  vanishes at a certain value of the 
molecule bond distance rc.  Near rc we have 

A l ( r )  z a(r - rc).  (51) 

If HrP does not depend too much on r and y ,  one obtains with Eq. (48) 

a(r  - r , ) (u/R - i)HrP 
a2(r  - rC)* + 4(H")'' 

T;:)(R, r )  2 _____ (53) 

For f ixed R T!; and are seen to be Lorentzian functions (Fig. 4). The 
full width at half-maximum of I-!\ behaves as 4HrP/a. Hence, as R increases, 
IT!: I gets thinner and larger and tends to a "6-function" in the limit R + 

(Fig. 4a). The function T;:) at fixed R, vanishes ar ro = r,. it displays a positive 

*The variable r representing the molecule bond distance and the superscript r labeling the 
reactant channel should not be confused. When r appears in brackets as a superscript [see Eq. 
( 5 2 ) ] .  it corresponds to the former meaning. 
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I H ,2, a.u. (b) 

Figure 3. Illustration of the functional dependences of the H" interaction in the H +  + 0, 
( X  'Z;) +H(1 ' S )  + O i ( X  'nu) system. (a) Exponential R dependence of the W P  interaction for 
some fixed values of r and y = 45". Solid lines: calculations of Ref. 97; dashed lines: corresponding 
A(r, 7)exp [ - L(r)R] fit. (b)  y dependence of fP' for some fixed values of R and r = 2.282a0. 
Solid lines: calculations of Ref. 97; dashed lines: Pi(cos?) function adjusted to the maximum of 
the calculated H'p interaction. (Both figures are taken from Ref 97.) 
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Figure 4. Typical shapes of Ty: and Ty,’ matrix elements in a 2 x 2 adiabatic basis (cp;,,). 
The corresponding diabatic energy dilTerence behaves as a(r - rc) and the associated diabatic 
coupling H” as A exp( - i R ) .  

and a negative peak at r,,, = rc f 2H‘PIa. These peaks get bigger, thinner, and 
closer to each other as R increases. Concurrently, as R increases, the diabatic 
to adiabatic rotation angle 0 [Eq. (47)] varies more and more abruptly near 
r = rc and tends to a step function in the limit R --* co (see e.g., Ref. 5 8 ) .  I t  
may also be noted that, for u = 0 and fixed r, T!; as a function of R displays 
on either side of rc a bell shape with a maximum at I HrPI = I E‘ - EP1/2. This 
maximum is characteristic of exponential r n o d c l ~ ~ ~ ” * ~ ;  it transforms into a 
peak that sharpens and moves toward large R as r -+ rr (Fig. 4b). The behavior 
of rg’as  a function of R remains qualitatively the same for u # 0 near r = rr. 

The rapid and large variations of T!; and rg’ [Eqs. ( 5 2 )  and (53)] at large 
R values obviously arises from the vanishing of HrP at r = r, when R -+ co. 
Yet another circumstance may cause the vanishing of Hrp, namely, a 7 
dependence of the preexponential factor of Eq. (49) as 

where P;“ is a Legendre function (see, e.g., Fig. 3b). Let us consider, for 
exarnplc, the case 1 = 1, m = 0 corresponding to a cosy dependence of HrP. 
Assuming again a negligible dependence of 2 upon r, one obtains in addition 
to Eqs. ( 5 2 )  and ( 5 3 )  

a(r - r )tan H‘P 
To9 - ---L - 

a (r - rC)’ + 4(HrP)” 2 1  - 2 ( 5 5 )  
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One thus sees that the previously mentioned rapid variation and sharp 
peaking of T?;‘ Or y, as well as the sudden variation of 0 arise near r z rr when 
y + 4 2 .  

Let us next examine a case when (like in the Na + H2,81.83Cs + 0,,98 or 
H + + 0,97 collisional systems) rc is an increasing function of R .  For simplicity 
consider the linear case: 

Here, the r - p crossing may be viewed as occurring not only at r , (R)  for 
fixed R but also at 

for fixed r,  that is, 

E‘ - EP? a [ r  - r,(R)] = aB[R,(r)  - R]. (56c) 

For this case 
transforms into 

remains the same as given by Eq. (52), whereas Eq. (53) 

For HrP # 0, T:”,’ now vanishes at ro = rc + B R / ( A R  - u) and exhibits its two 
maxima at 

When HrP -+O, either because R -t m [Eq. (49)] or because y approaches a 
zero of P;”(cosy) [Eq. (54)], the maximum that moves toward 
rr + 2 8 R  [%R - u] - dies off, whereas that approaching rc tends to a 
“6-function.” 

The rudimentary cases that have been cited help in getting acquainted 
with some characteristic variations of TY; coupling matrix elements for some 
simplistic (albeit realistic) E‘ - EP and HrP functional dependences. Beyond 
their “educational” virtues, they are particularly interesting because they 
correspond to a blend of familiar dynamical models that have all been worked 
out by implicitly using a strictly diabatic representation. In effect, the 
considered curve crossing in the r variable, for fixed R and no dependence 
upon y ,  corresponds to the assumptions of the L a n d a ~ - Z e n e r ~ ’ - ~ ~  model. 
The case when rr is independent of R corresponds (for fixed r and 7) to the 
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exponential model of D e ~ n k o v ~ ~ ~  and Nikitin.93b On the other hand, the 
case when rc depends linearly on R corresponds (for fixed r and y) to the 
linear-exponential model of Nikitin.93b Finally, the case of a cosy dependence 
of HIP corresponds, for fixed R, when y varies on both sides of 7r/2-y z 4 2  f E 

( E  << 1)-to the linear model of a conical intersection in the r, E coordinates. 
It is thus seen that the construction of diabatic states offers the possibility of 
emphasizing the characteristics of such models in actual problems. 

VI. PRACTICAL CONSTRUCTION OF DIABATIC STATES 

A difficulty one actually meets in practice when attempting to directly 
construct quasidiabatic states is that the replacement of the "=" sign in Eq. 
(26) by the ''z" sign does not help building general algorithms to derive the 
transformation matrix C that achieves the modified definition. 

The alternative guidelines presented in Section IV B may serve as a 
practical procedure if one could first generate a manayable strictly diabatic 
basis. It has been repeatedly pointed out that a finite adiabatic basis that 
would have been obtained for some given arrangement {QY}  of the nuclei 
could constitute a strictly diabatic basis when used unaltered for any other 
nuclear arrangement Q,. Yet, it has quite as much been recognized that such 
a basis (termed crude a d i a b a t i ~ ) ~ ~ . ' ~ ~  is not useful in practice primarily 
because its ability to properly describe actual deformations of electron clouds 
rapidly degrades when the nuclei move away from the reference nuclear 
arrangement {QY}. In other words, diagonalization of the H e ,  matrix in crude 
adiabatic bases of realistic sizes would yield poor descriptions of the true 
adiabatic states away from {Q,"} .  The crude adiabatic starting point is thus 
particularly ill suited for collision problems where the R coordinate (at least) 
varies between typical atomic dimensions (ry la,)  and infinity. It is precisely 
for such reasons that normal electronic structure calculations on polyatomic 
systems make use of electronic basis sets attached to every new set of (fixed) 
positions of the nuclei. 

In practice, a general electronic wavefunction cp:' [Eq. (12)] is written as 
a linear combination of configuration state functions (CSF); each CSF is 
expressed as a fixed superposition of Slater determinants built from N , ,  spin 
orbitals.46 An orbital in those Slater determinants is expanded over a finite 
set of nucleus-centered one-electron basis functions. Clearly the utmost 
diabatic states in this context should only involve constant linear combinations 
of CSF's and basis orbitals. Strictly diabatic states would in addition impose 
that those basis orbitals remain fixed in the chosen reference frame 
(Section 11 B); however, as already discussed for crude adiabatic states, this 
is generally not an acceptable option. Right at this point procedures suggest 
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themselves that depend on the class of problem under consideration. These 
are now examined in turn. 

A. Preservation of CSF‘s states differing by two orbitals 

A CSF represents a set of orbitals of the system having identifiable labels 
and being ascribed specijc occupation numbers. Usually, in the absence of 
spin-orbit coupling, CSFs are built as eigenstates of the S 2  and Sz total 
electronic spin operators of the system. When H e ,  is invariant under the 
operations of a symmetry point group, the CSF‘s may be chosen to transform 
according to its irreducible representations (unless some conflict may arise 
with the objective of building diabatic states). 

1. Case Study 

I t  was originally pointed out by Sidis and Lefebvre-Brian'" that since any 
d/dQI operator acts on a Slater determinant as a one electron operator (i.e., 
as: xyfl (~?/dQ,)~l its matrix elements exactly vanish between CSFs 
representing states that are (at least) doubly excited with respect to each 
other.* Numerous examples of curve-crossing patterns have been identified 
as implying the coming together of strictly diabatic CSF‘s of this 

In particular, collisional systems involving He+ ions and 
or molecular  neutral^'^^-'^^ offer nice illustrations of 

related electron transition processes. For instance, charge-exchange 
excitation 

sort,32, 10 1-109 

0 1.102.104.105 

He’ (Is) + BC + He( Is’) + BC’* (59) 

results from two-electron rearrangement processes whereby one electron of 
the neutral fills the He vacancy while another electron is expelled toward an 
excited orbital of the B C +  molecular ion’06.108 (Fig. 5).  These Auger-type 
processes labeled DII (Diabatic 11)104*110 are known to occur at curve 
crossing between a “promoted core-excited valence state and a Rydberg 
series. In what follows the salient features of such interactions are illustrated 
taking the elementary He+-H, system as an example.109 The electronic 
configuration in the entrance state of the collision is asymptotically (R + a) 
l ~ ~ ~ l t ~ $ ~ ;  it transforms at finite R into Ia’2a’’, which corresponds to an 
excited A‘ state of the triatomic quasimolecular system. This state is 
p r e d i ~ t e d ’ ~ ’ * ’ ~ ~  and indeed found”’ to undergo a series of crossings with 
states owning the configuration: la‘2 nu’ (n > 2). These crossings roughly 
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Figure 5. Schematic MO correlation diagram for the (He - H2)+ collisional system in C, 
symmetry indicating how the so-called Diabatic I1  mechanism proceeds. As a result of the 
adiabatic treatment of the a',sHp interaction the 2a' M O  is promoted and gets closer 
in energy to higher lying na' MO. When the matching condition (60) is fulfilled, an electron 
from the 2a" shell fills the la' vacancy brought by the He' ion, while the other electron is 
expelled to one of the outer nu' MO. (The correlation of the MO levels in the R = 0 limit in 
this diagram is of the quasi-atom-atom type; actual adiabatic and diabatic correlations are 
discussed in refs. 107-108 and 11 1 ,  respectively.) (The figure shown is taken from Ref. 107.) 

occur when 

where E+ is the energy of orbital 4 (defined as the energy needed to extract 
the electron ou t  of this orbital in the mentioned configurations). en,. is either 
negative or positive and the la'2na' configuration thereby describes thc 
Rydberg series converging to la" and the associated continuum.' 02. '09 

The common set oforthonormal orbitals that constitute the diabatic CSF's 
for the preceding two-electron rearrangement processes (59) should fulfill a 
few requirements stemming from what follows. 

orbitals 
( 5 -  1 1 eV for realistic molecule bond distances), their mutual interaction 
should be treated adiabatically up to keV collision energies. In other words, 

1. Owing to the large energy gap separating the a',sHe and 
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at low collision energies (E < 1 keV) the 

Het (  Is ’ S )  + H,( lo: X ‘Xi)+ He( Isz ‘ S )  + H l (  lo, X ’1:) (61) 

charge-transfer process is rather unlikely. This will generally be the case for 
a broad class of molecules other than H,. If this is not the case then a more 
careful treatment, such as that discussed in Sections VI B and VIC, is 
required. As a result of the adiabatic treatment of the a’,sHe - interaction 
the energy of the resulting 1a’MO decreases while that of the 2a’MO 
increases. This energy level splitting with decreasing atom-molecule distance 
is the very mechanism that causes the matching condition (60) to occur 
(Fig. 5). 

2. Actually, the previously mentioned MO-energy level movement does 
something more; it induces crossings (labeled DI: diabatic 1)’04*108*’10 
between the “promoted” 2a’ M O  and orbitals like a;muH2 that lie 
asymptotically higher in energy. These crossings take place at rather short 
distances of approach R < 1 . 5 ~ ~  (Vr,y)”’ and may be safely neglected if one 
is focusing on soft collision problems (otherwise, procedures, such as those 
touched upon in Section VID, ought to be considered). With those 
restrictions in mind both valence and Rydberg-type orbitals of (HeBC)’ 
systems may be treated adiabaticidly with a view to investigating processes 
like those specified in Eq. (59). 

The actual building of quasidiabatic states may then proceed along the 
same lines as those proposed in Ref. 109 (which should be consulted for 
details). One first manages to build a Fock-type operator for an SCF scheme 
in order to obtain simultaneously 

( la”2a’ I H , ,  1 1 a‘2dZ ) = 0 (62) 

and 

-cia. = ( I ~ ’ ~ U ’ ~ I H , , I  l ~ ’ 2 ~ ’ ’ )  - ( ld22a’IH,,1 ld22d) .  (63)  

The virtue of those conditions is that the la’-2a’ interaction is treated 
adiabatically (as discussed in paragraph 1)  and that cln, and cZa, represent 
the binding energies of an electron attached to the lu‘2a‘ configuration of 
the (HeH,)++-ion core. Next, one may generate the nu‘ (n > 2) MO as 
improved virtual orbitals (IVO).’ ’ ’*’ ’ This is actually achieved by requiring 
the available orbitals in the space orthogonal to the la’ and 2a‘MO to 
describe an electron in the field of the (la’)’ closed-shell configuration of the 
(HeH,)+ +-ion core. Consequently, such IVO’s obey 

( l a ” n a ’ ~ H , , ~ l a ’ ~ m a ’ ) ~ O  ( n # m > 2 )  (64) 
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among other properties.”’ Finally, following Section IV B, two independent 
CI calculations are carried out: one in the { ( ld22a’), ( ld2na’)) subspace and 
the other one in the {(la’2a’2),(la’2a’na’),(la’n~m~)} subspace (where 4 =a’  
or a” and r14 or rn4 # 1a‘,2a’). Results of these calculations are shown in 
Figs. 6 and 7. 

The described computational scheme may be extended to more 
complicated systems. As advocated in Section IVB it enables one to work 
out in a well-defined way accurate “quasi-adiabatic-diabatic” states. If still 
higher accuracy is desired, one may resort to the method described in Section 
VI C 2b. The use of methods based on quasidegenerate perturbation theory 
has also been proposed as a device to improve quasidiabatic statcs obtained 
by the aforementioned partitioning technique.20*100*’ 15.’ 

2. Philosophy 

Before proceeding further it is worth stressing some particular aspects that 
have emerged during our discussion. The generation of satisfactory diabatic 
states as was done previously has been made possible by a precise specification 

w 

-3.0 

I 1.5 2 2.5 3 3.5 4 4.5 

R (a.u.) R (au.) 

Figure 6. Cuts of a few diabatic potential energy hypersurfaces of the (He-H, + )  molecular 
ion. The H-H distance is fixed at  r = 1.4a0. (a) 7 =O. Solid curves: ’Z+ states; dashed curves: 
’I7 states; dotted curve: limit of the Iu’v series. (h) y = n/2. solid curves: 2 A l ,  dashed curves: 
’ B ,  states; dashed-dotted curve: ’ B ,  states; dotted curve: limit of the laiv  series. In both figures 
the states are labeled by their dominant configuration. The asymptotes are as  follows. ( I )  
Hc(Is’ ‘S) + H ~ ( I s u J , ( I I )  He+ + H,(X ‘Z i ) . ( l I I )  He (Is’ ‘ S )  + H,+(2puU).(IV) He’ + H,(h ’Xu+), 
(V) He(ls’ IS) + H;(Zpn,). (VI) He(1s’ ‘S) + H,+(2sa,). (This figure is adapted from Ref. 109.) 
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Figure 7. Perspective view of diabatic potential energy surfaces of the (He-H,)+ molecular 
ion. (a)  "Core-excited" (la'2a'')'A' state correlating with the ( 1 ~ 2 u * ) ~ Z '  state and (la,2a:)'At 
states of Figs. 6a and 6h, respectively. (b) The (la'23a')2A' member of the (la',v) series correlating 
with the ( l 0 ~ 3 u ) ~ Z '  and the ( la~lb , )ZB,  states of Figs. 6a and 6h, respectively. The views are 
plotted for 1 . 5 ~ 1 ~ 5  R 5 6ao and 0 l y  5 n/2 with steps A R  = 0.18ao and Ay = 5". (The figure is 
taken from Ref. 109.) 

of the nonadiabatic process (59). The actual energy gaps between the three 
classes of orbitals--la',2a', and no'-has made it possible to decide that, in 
the range of interparticle distances that is accessible in soft collisions, those 
orbitals may be treated adiabatically without introducing any troublesome 
d/dQ, matrix element. In these conditions it is possible to design an 
appropriate LCAO-MO-SCF scheme to generate the adiabatic MO that 
serve constructing diabatic CSF prototypes. Those CSF are subsequently 
used to define the projectors onto CI subspaces characterized by the state 
of excitation of the (HeBC)++ ion core. 

Another interesting feature one may stress is that the crossing of a given 
pair of states often results from the independent adiabatic treatment of some 
interactions; this is well illustrated by the promotion of the 2a' MO discussed 
previously. (Fig. 5) . '07* '08* '  ' ' 

B. Preservation of Separated-Partner Characters Orbitals 

The discussion of the preceding section opens the problem of constructing 
diabatic states for processes involving one-electron transitions, which in turn 
brings on the question of diabatic orbitals. This problem arises precisely in 
electron-transfer reactions [viz. Eqs. (la)-(lc)]. It is well known that the 
occurrence of such reactions in a low-energy collision is favored by the 
proximity of the reactant and product energy levels. In those cases, the critical 
region of nonadiabatic behavior is generally located at rather large 
intermolecular  distance^.^^ This critical region actually divides the R range 
into two domains: one in which the active electron belongs exclusioely to 
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the target or projectile (outer domain) and one in which it belongs to both 
(inner domain). The maximum of the T;:) matrix element in Section V, for 
the Demkov-type case (see end of Section V), is the pointer of that critical 
region. Obviously, if one wants the system’s wave function to vary as little 
as possible when traversing it, one ought to preserve either the preoalent 
characters of the outer domain or those of the inner domain. Inasmuch as 
CSF‘s naturally constitute many-electron diabatic prototypes, we now turn 
to express the preceding ideas in terms of CSF‘s built from appropriate 
orbitals. In the outer domain the relevant orbitals should be something like 
the separated-partner orbitals. These are defined as orbitals of the isolated 
collision partners that are brought together without distortion at each of the 
considered nuclear geometries. On the other hand, since M O s  like those 
discussed in Section VI A are adiabatic orbitals, the only possibilities left for 
the inner domain would be something like constant linear combinations of 
separated-partner orbitals. Clearly, the former option which is specifically 
designed for the description of the initial and final states of reactions (la)-( lc) 
is to be preferred. 

A difficulty one has to face when using CSFs made of separated-partner 
orbitals is their nonorthogonality at finite intermolecular distances R. This 
difficulty is altogether ignored in calculations based on the so-called diatomics 
in molecules method (DIM).”*’ ’’ The reason invoked for doing so is twofold. 
First, paraphrasing T ~ l l y , ~ ’ ~  “actual specification of the basis function is 
never required in D I M .  This is a great advantage because it introduces 
substancial flexibility into the basis functions. They can be considered to 
expand, contract, distort in a way that preserves symmetry in order to 
optimally adapt to any particular molecular environment.” Secondly, those 
unspecified basis functions are nonetheless conferred the property of having 
weak dependences upon nuclear geometry2’.’ ’ ’: in other words, they are 
assumed from the outset to be quasidiabatic. Although qualitatively sound 
arguments have been put forward to support such assumptions, they still 
constitute a ticklish l 9  

1 .  The Case of Two Orbitals in Atom-Atom Systems 

To have a first glimpse of the matter, let us first examine a two-state atomic 
case and consider only the two atomic orbitals between which the “active” 
electron is being exchanged: viz., 4,F and 49 centered on the targer (5) and 
projectile (a), respectively. The objective of defining wavefunctions, which 
describe an electron exclusively attached to 5 or 8 is frustrated by the 
existence of a nonvanishing overlap integral: 
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As a by-product 

where z is the component of the electron coordinate p along the R axis and 
O s , p  are defined in Eq. (5b). The appearence of a/& and l i)?,? in these 
equations is related to the relations 

which define electron coordinates referred to Y and .Y, respectively, and entail 

The latter equation relates the different expressions of the d / d R  operator that 
obtain when cffecting thc differentiation with G , F ,  or 9 held fixed. Our 
aim, then, is to look for an orthogonalization method that achieves at once 
a cancellation of the otT-diagonal matrix element of d/dR. To do  so, let us 
first orthogonalize arbitrarily 4 to 4,F using a Schmidt procedure: 

with 
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Clearly with Eq. (68b) we get (4y and 4.T being real  function^)"^ 

a -  a -  
CR 

<$.PI ,Ids> = - <$.TH4.44 d R  

d w  
= .N9$ - 

d R  

d 
d R  

= arcsin o, 

which vanishes only if g 5  = 0, that is, G = 9 (case of infinitely heavy 
target).94 For other cases we still have at  our disposal an orthogonal 
transformation between 16,) and namely, 

I I .~>=cose l$ .~>+s inOI$ ,> .  (724 

I$,+)= -sinO1$,+>+cosO1$y>, ( 7 2 ~  
- 

such that 

which entails 

Equation (73) is easily integrated with (71c) to give 

0 = - 9,F arcsin o. (75) 

In the particular case 9,9- = 1, that is, P,4 = 0 and G z P (which corresponds 
to a much heavier projectile than target), one finds, as could have been 
anticipated, that the proper atomiclike diabatic orbitals obtain from the 
Schmidt orthogonalization of &,F to 4,? [i.e., Eq. (69) with the interchange 
of .T and 9'1. In the case of equal target and projectile masses: 8,- = 9?..r = i, 
the sought diabatic orbitals are found to result from a Lowdin symmetric 
orthogonalization' 19: 
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c ,  =i[(1 --w)"Z+(l +(D)1'2]. 

The preceding elementary example shows that a relation exists between 
the orthogonalization procedure that is intended to .furnish the atomiclike 
diabatic orbitals and the origin of electronic coordinates that is heldjxed while 
effecting the 2/dR diflerentiati~n."~ For instance, in a collision between a 
heavy target and a light projectile ( Q 3  2 0), the arbitrary use of a symmetric 
orthogonalization of +,F and +# will let an off-diagonal matrix element of 
d/ZR Ic I ,f remain; the absolute value of this matrix element is: I(.N/Z)dw/dR I. 
Contrary to what is sometimes thought, the orthogonalization of 
separated-partner orbitals to obtain diabatic orbitals is not arbitrary; the 
interdependence of orthogonalization and diabatization determines the 
choice. 

2. The Case of a Few Orbitals in Atom-Atom Systems: A Hint  at the 
Electron Translation Factor Problem 

Consideration of charge-exchange problems involving more than a single 
active orbital for each collision partner reveals, via Eq. (68), a difficulty that 
was not immediately perceptible in the preceding examples. This is illustrated 
by an elementary three-state case involving two orthonormal orbitals 1 + F  I ), 

of the isolated target and one orbital I+s) of the projectile. The 
general formulation of the problem is the same as in the preceding case 
except that, owing to the relation 

that stems from Eq. (68), the d/2R matrix element does not vanish between 
(nondegenerate) atomic orbitals 01 the same collision partner obeying 
dipole-transition selection rules. This feature rocks the whole theoretical 
structure built up until this point, since it implies that the scattering equations 
cannot be decoupled when the collision partners are infinitely separated. The 
appearance of such spurious couplings is inherent to all methods, whether 
adiabatic, diabatic, or mixed, that attempt to describe the dynamical 
evolution of arbitrary quasimolecular systems using expansions over orbital 
basis sets attached tojixed positions of the nuclei. Its origin lies in the fact 
that those "clamped basis sets" try to describe electron clouds that are more 
or less attached to nuclei that are actually moving.23*24.120 

a. Travelling Orbitals. To convince oneself that the just mentioned dia- 
gnosis is correct, it suffices to note that, in a reference frame where the center of 
mass of the nuclei is at rest (Section II), an isolated atomic orbital that 
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translates with the target (resp. the projectile) is actually described by 

(or: 

resp.), where k is the linear momentum associated with the R motion. 
"Clamped basis sets" lack the plane wave factors of Eqs. (78); those factors, 
which account for the translation of electrons along with the nuclei to which 
they belong, are named electron translation factors (ETF). I t  is easily verified 
that 

(and a similar equation for 9). Hence, when 9 (or 9) is just translating, 
troublesome terms like those appearing in Eq. (77) do not occur with 4::"' 
(or $J',;""): no d/dz term appears in the r.h.s. of Eq. (79). This is the result of 
an exact cancellation between -ill- I k - V R  IG#janS and a term arising from 
- Ap4'YnS/2. Thus, it  seems advisable to use basis sets that incorporate 

not only to remove the mentioned spurious terms but also to 
account correctly for momentum transfer, which is tributary of a proper 
representation of the overall motions of electrons with the centers they belong 
to.I2" The presently available calculations, which make usc of expansions of 
electronic wavefunctions over traveling orbitals as those defined in Eqs. (78), 
are actually confined to energetic collisions of one- or two-electron atomic 
systems that are constrained to move classically with constant velocity along 
straight line trajectories. 22.L23 The major difficulty in using such expansions 
lies in the obligation to redo the whole calculation of He, and T,,, matrix 
element each time the velocity (k/p) of the nuclei is changed. Aside from 
computational complications123 such an approach ruins the conventional 
concept of potential energy surfaces: the potentials now depend on the nuclear 
velocity. 

~ ~ ~ ' ~ 2 3 . 2 4 . 1 2 0  

h. Common ETF's. To overcome the previously mentioned difficulties, it 
was suggested'24 to resort to so-called common ETF's23*123.124 whose 
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purpose is to retain essentially the same H e ,  matrix as that which would be 
built from “clamped atomic basis sets” (except possibly for second-order 
terms in the nuclear velocity and l/p corrections to energy levels)23 while 
removing spurious couplings by correcting the effect of the - iVR operator. 
This is achieved by replacing - 9~T or in Eqs. (78a) and (78b), respectively, 
by a common switching function f ’ ( p ,  R), which tends to - 9 . F  or 9 when 
p approaches 9 . T R  or - 9 , ? R ,  r e ~ p e c t i v e l y . ~ ~ . ’ ~ ~  In this context the matrix 
elements of the - iVR operator are replaced by those of - ivR + A, where23 

Still, such an approach suffers from the arbitrariness in the choice of both 
the form and the parameters of the switching function j ( p ,  R) . l z3  Although 
variational procedures have been proposed to reduce the mentioned 
a r b i t r a r i n e s ~ , ~ ~ ~ - ’ ~ ’  the considerable increase in computational work they 
actually imply thwarted the spreading out of such attempts. Although the 
derivation of the theory with common E T F s  stems from semiclassical ideas, 
a formulation has been proposed that reconciles it with quantum 
mechanics.”* Were it not for the lack of basic principle to derive .f from, 
the latter formulation would offer real possibilities to settle many problems 
like those [related to Eq. (68)] that have triggered the preceding lengthy but 
unavoidable digression. T o  our  knowledge, no attcmpt has been made so 
far to introduce variants of those ideas in quanta1 and/or semiclassical 
treatments of state-to-state vibronic processes in low-energy collisions of 
molecular systems. 

c. Pragmatic Approach. The philosophy one may extract from the preceding 
subsection is that a treatment based on “clamped orbital” expansions is still 
acceptable at low energies prooided one corrects the couplings related to 
nuclear momentum operators like 6/?R. 

Inspection of Eqs. (68) and (79) indicates that t h o s t  corrections essentially 
amount to transferring the origin of electronic coordinates from the c.m. G to 
3 (or 2) when evaluating matrix dements between two orbituls centered on 
9 (or 9 resp.). To make this more transparent, let 4 9- and 4 F~ be eigenstates 
of an isolated one-electron operator h y :  

h y =  - + A p f +  I ‘  F ( P  T 1, (81) 

with eigenvalues I: 9-, and E (resp.) Equation(80) is easily shown to yield”* 
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Since, by definition, the switching function should approximately equal - 24.F 
(at large R) for wavefunctions like 4,Fl and 4,Fz that are mostly located 
around center F, we have 

Considering, in particular, the z component of that matrix element, it is 
immediately seen that ( 4Tl [ A Z  - i ( d / d R ) 1 4 ~ z )  should consititute a negli- 
gible contribution. Indeed, 

The first term in this equation is zero and the second term 

is negligible in view of Eq. (83b). Similar results are of course readily obtained 
for 9-centered orbitals. 

For matrix elements involving orbitals that belong to different collision 
partners, there was apparently no ambiguity up to Section V I B I .  It is 
however seen at this point that consideration of a common ETF modifies 
the a / a R  coupling in a fashion that specifically depends on the way the 
switching function behaves between the collision partners. This is also seen 
from the relation 

which is obtained along the same lines as Eq. (82). Since the definition off 
may continue to be a matter of dispute for some while, one may resort to 
the following set of prescriptions: 

1. Matrix elements of the VR operator between separated-partner orbitals 
that are attached to the same center are set to zero. 

2. Matrix elements of the V R  operator between separated-partner orbitals 
that belong to different centers are evaluated using coordinates referred 
to the center of mass G. 

3. The corrective terms arising from the considerations of a specific form 
of the switching function f in the common ETF are considered as 
additional sources of velocity-dependent interactions. Owing to 
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prescription 1 and in view of Eqs. (84) and (85) ,  one should modify the 
matrix elements of the corrective operator A according to 

and a corresponding modification for &centered separated partner 
orbitals, viz., Sy -+ - 9.+. For two-center (9 - 9’) matrix element, A 
is kept untouched. 

These prescriptions are seen to split the problem into two. One problem 
refers to prescriptions 1 and 2. It is both well defined and well behaved and 
naturally fits with the presentation made until Section VI B 1. Our 
dissertation on diabatic states will be continued on these grounds. The second 
problem has to do with point (3). Although it is formally well behaved and 
has actually received artful solutions in some works, it still depends upon 
one’s ability to devise proper forms of switching functions in the interpartner 
region. I t  has been rightly argued’23 that this problem is similar to that 
posed by the optimization of basis set parameters in electronic structure 
calculations and should therefore be automatically solved by systematic 
enlargement of the basis. This is, however, something one cannot afford at 
present in the field of molecular collisions of many-electron systems. 

d.  Diabatization. With prescriptions 1 and 2, the problem of finding 
separated-partner-type orbitals that are simultaneously orthogonal and 
diabatic is amenable to a practical solution. The procedure consists of three 
steps. First, one starts by choosing as convenient a procedure as one wishes 
to orthonormalize the set of separated-partner orbitals { b}: 

Second, taking prescriptions 1 and 2 into account, one constructs the 
matrix lFR) of the d/dR operator in  the orthogonal basis {&}: 

where with our conventions, the only nonuanishiny (&Id4 , /dR)  matrix 
elements involve orbitals belonging to different collision partners and obey 
[Eqs. (66) and (68 ) ]  
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Third, one determines the rotation matrix a3 obeying Eq. (35) (for Q, = R)  

to transform away the TR)  matrix in the final orbital basis {i}: - 

The general solution is found to be9* 

C = exp(Z) = W U W +  

with 

(91a) 

W is the unitary transformation that diagonalizes the antisymmetric matrix 
Z and U is defined by 

u k l  = exp(ck)6kl, (92) 

where the [ i s  are the purely imaginary (or zero) eigenvalues of Z. Useful 
expressions of exp(Z) in closed form for 3 x 3 and 4 x 4 matrices may be 
found in Ref. 130. 

All the numerical work implied in the preceding three steps is rather 
straightforward. 

3. (Quasi-)diabatic Orbitals of the Separated-Partner Type for 
Atom- Diatom Systems 

Let us first consider a two-state problem and specifically focus on the active 
orbital of the moleculc $ A B  and that of the atom &. that are implied in a 
charge-transfer reaction. For every fixed r,y pair (Fig. 2) these orbitals are 
processed exactly as done in Section VI B 1, Eqs. (69) ( 7 3 ,  with .+'=A, 
9 = BC and 

fj= - /rBc arcsin w, (93a) 

w = (4SClCbA>.  

One then finds 

(94a) 
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This example illustrates the general rule63 (Section IV A) stating that VR’, %(”, 
and Vy) may not be made to vanish simultaneously. Approximate simul- 
taneous cancellation only occurs in the case of light ( A )  + heavy (BC) col- 
lisions when .gBC z 0. Still, inasmuch as &A does not depend on r, we have 

To investigate the importance of the latter quantity, one may formally expand 
4” in terms of a complete set of orbitals of the diatom. This set may be 
chosen as consisting of +Bc and its complementary space {4bc}. It follows 
that if +Bc is an acceptable BO state (in the sense that ( i ? 4 B c / ? R l V + ~ c )  is 
negligible for the isolated molecule), then a o / d r  may be safely neglected. 
Otherwise, diabatization of the isolated 4Bc orbitals ought to be performed 
prior to the undertaking of the A-BC calculation; a survey of the proposed 
methods to achieve this goal is presented in Section VI D. 

Let us next examine the 2/dy matrix clement. In the selected BF reference 
frame (Section I 1  B, Fig. 2), d A  orbitals are normally quantized relative to 
the R axis and therefore do not depend on 7. Hence. 

Proceeding as we have just done for the ?/?r matrix element, it is concluded 
that, if + A B  is an acceptable BO state (in the sense that Coriolis coupling 
( d4BC/2YlV$kc) associated with A-doubling and heterogeneous pertur- 
bations” is negligible), then d o l i l y  may be safely neglected. This conclusion 
may still be strengthened when the scattering equations are set up within 
the framework of the infinite order sudden (10s) approximation, where y 
appears only as a fixed parameter in the scattering calculation (see, for 
example, Ref. 37 and the chapter by Baer in this volume). 

Extension of the preceding discussion and conclusions to more than two 
orbitals is straightforward: most of the effort in the diabatization of 
isolated-partner orbitals is to be placed on the c?/r?R part of the nuclear 
derivative operator as explained in Section VI B 2d as long as the isolated 
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target and/or projectile orbitals meet with the conditons required to apply 
the BO approximation. 

There is, in principle, no restriction in the number of orbitals the preceding 
procedure may handle. Yet a trivial example shows that in practice one will 
have to limit this number. Consider a light (9) + heavy (9) collisional system 
with 2,F 2 0; assume that one decides to describe this system using a single 
d9 orbital and as many dJ, orbitals as one’s supercomputer can handle. 
We already know from the preceding subsections that the diabatic 
orthonormal basis of separated-partner-type orbitals in this case consists of 
v d 3‘ and 

Clearly, if the 9 basis is very large, by is redundant. The trouble then is 
that in order to describe any situation where the electron lies closer to 9 
than to F one will have to use the whole F basis. As a by-product the 
scattering calculation will then have to be treated accordingly; but since we 
are aiming at the description of state-to-state uibronic processes, involving 
not only electronic states but also manifolds of vibrational states, one 
immediately realizes the hugeness of the implied task. It is solely for such 
reasons that the previously mentioned orbital diabatization work has to be 
restricted to the active orbitals, that is, those characterizing the states that 
are to be considered in the scattering calculation. 

C. Many-Electron Diabatic States for Electron-Transfer Processes 

The discussions in Sections VI B have exclusively focused on one-electron 
diabatic states of the separated-partner type. When considering many- 
electron systems, additional features come into play, which we now proceed 
to examine in turn. 

1. Mutual Orthogonalization of Shells 

One feature that immediately manifests itself in many-electron systems is the 
hierarchized electronic shell structure of the configuration state functions 
(CSF).*l2 It is usually better to have the sets of orbitals describing these 
shells mutually orthogonal. Orbital orthogonality has many advantages. 
First, it enforces the Pauli principle. Second, it helps discriminating between 
different shells and thereby it lends itself to the construction of physically 
motivated projection operators. Third, it is explicitly referred to when devising 
pseudopotential and model-potential techniques’ 3’ to avoid energy level 
collapse. Last, it enables one automatically to build orthogonal many-electron 
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states, which once again allow for the unambiguous definition of projection 
operators. 

To describe how the mentioned shell orthogonality problem may be 
handled, we consider, for example, the most widely spread cases of 
atom-molecule charge-transfer systems. In those cases there are three main 
types of shells: inner, active, and remnant. These shells are usually made 
orthogonal in the just specified order. 

The inner shell consists of the tightly bound orbitals, which constitute the 
cores of the separated collision partners. Frequently, the electron occupancy 
of the inner shell is complete. To zeroth order the inner shell occupation 
number may be considered to remain unaltered both in the reactants and 
products states. Orbitals in the cores are orthogonalized sequentially in 
increasing order of energy by the Schmidt procedure. Actually, for shells that 
remain closed, the orthogonalization procedure does not matter, since 
different procedures amount to effecting linear combinations of columns in 
the Slater determinants constituting the CSF's. 

The active shell consists of a few outer (valence and low-lying Rydberg) 
orbitals of the separated collision partners; they are required to be orthogonal 
to the cores. Since the orthogonalization + diabatization procedure outlined 
in Sections VI B 1-3 may be started u p  with nonorthogonal or arbitrarily 
orthogonalized orbitals, mutual orthogonalization of the active orbitals to 
the cores and within the active manifold itself may be done using the Schmidt 
procedure before diabatization is performed. 

All other orbitals in complementary space (Rydberg + polarization and/or 
other virtual orbitals)46*' '* form the remnant shell. There is no established 
prescription concerning the orthogonalization of these orbitals: both Schmidt 
and §-"'  technique^'^' have been proposed and ~ s e d . ' ~ ' . ' ~ ~  

Configuration-state functions built from orbitals that have been ortho- 
gonalized as indicated previously are called projected valence bond (PVB) 
functions94 in reference to the basic ideas of the celebrated VB method' 35 
and considering the previously indicated orthogonalization-diabatization 
schemes (Sections VI B 1-3). By construction, PVB states differing by a single 
active orbital are (quasi)diabatic to the same extent as their active orbitals are. 

2. lmprooement of Diabatic Prototypes 

Raw diabatic orbitals of separated-partner type and PVB-CSF built from 
them lack the proper adiabatic distortions (polarization, shell relaxation, 
exchange, bonding, correlation, and so on) whose description requires 
extensive orbital and configuration mixings (Fig. 8). These mixings can be 
achieved to the highest possible degree compatible with diabatization in two 
steps. 
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Figure8. (a) C,r and (h)  C21. cuts of the ’A”  potential energy hypersurfaces involved in 
the discussion of the H+ + O,(X ’Xi)+ H(I ’S )  + Oi(X  ’&) reaction. Solid lines: adiabatic 
states; dashed lines: raw diabatic PVB-CSF. In (6). the dotted part of the 2 ’A” adiabatic curve 
depicts a cut or a conical intersection where the symmetry or the state changes suddenly from 
’ A ,  to ’ B , .  (This figure is taken from Ref. 97.) 

a. CI in Orthogonal Subspaces. Part of the previously mentioned mixing 
may be readily effected in a controlled way as indicated in Section IV R. To 
describe the main lines of a possible procedure let us consider the 
charge-transfer process in Eq. (la). We first restrict the discussion to the case 
when the considered process involves only the lowest two charge exchange 
CSF’s of the (ABC)’ system, which differ solely by their active orbital. 

Inasmuch as the considered orbitals (Section VI C 1) own separated- 
partner labels, one may think of building the following orthogonal subspaces: 

Reactant-type: {restr A&::’} {free BC‘*’}, (974 
Product-type: {free A ( * ) }  { restr BC&j:)}. (97b) 

{rcstrA,+,I:’) means that any orbital other than those belonging to the 
orthogonalized innershell of A (as defined in Section VI C 1) is excluded. On 
the other hand, {free A‘*’}  means that any orbital of A may be selected at 
will. The nomenclature is obviously transposable to BC. One may then 
perform in each subspace as large a CI as one can afford. The resulting 
lowest root in each subspace constitutes an improved description of the 
related diabatic state: in particular, a correlated description of the BC (or A )  
neutral in thefield of the (relaxed) A +  (resp. BC’) ion is actually achieved. 
This ensures at least that the improved diabatic states have their optimum 
relative energy disposition and correct long range behaviours. These are 
important features for a proper description of the considered charge-transfer 
dynamics. 



DlABATlC POTENTIAL ENERGY SURFACES FOR CHARGE-TRANSFER 1 17 

As was pointed out in Section IV B the previous splitting into only two 
subspaces rests on the certainty that no important nonadiabatic coupling is 
actually affecting the lowest state in each subspace; this should at least be 
the case for the range of internal nuclear coordinates ( R ,  r, y )  that is accessible 
to the A EC system under the considered collision conditions. Such, 
nonadiabatic couplings may result either from curve crossings between CSF's 
that differ by two orbitals, in which case we are brought back to the procedure 
described in Section VI A or from the closeness of CSF that differ by a single 
orbital from the considered ones, in which case the set of active orbitals per 
collision partner is to be enlarged (or its construction reconsidered, see 
Section VI D). 

The study of diabatic ionic-covalent interactions implied by reactions like 
Eq. ( lc) where A is an alkali atom often requires consideration of a few 
active orbitals and the associated CSF manifolds constituting the relevant 
CI subspaces. A nice example of a construction of reactant-type and 
product-type CI subspaces for such a case is provided by the study of Gadea 
et 

When addressing the problem of a few active orbitals per collision partner, 
one is confronted to the problem of deciding which orbitals ought to be 
chosen from the remnant shell when constructing a CI subspace for each 
diabatic CSF. Actually, since the remnant shell is intended to provide (among 
other things) the required flexibility for polarization, a possible answer would 
be to distribute its orbitals in consideration of dipole selection rules. If the 
dilemma persists, there is no other prescription than chemical intuition and 
experience. 

A n  embarrassing aspect of the reactant-type and product-type partitioning 
of the C1 space is that the CSF mixings it allows for generally turn out to 
be insuficient: remote states in product-type subspaces may be needed to 
improve the reactant states of interest and vice versa. This is patently the 
case in the 

H+ + 0 , ( X 3 Z ; ) + H ( 1  2S)+O;(X2119) (98) 

charge-exchange system.97 The 'A''  diabatic potential energy surface of the 
H ' + 0, incident state of reaction (98) owns a well (Fig. 8).97 This well is 
due not only to polarization (rnixings within the reactant-type subspace) but 
also to exchange (mixings involving remote states in the product-type 
subspace), v ~ z . ~ ~  

on the Cs-H, collisional system. 

The adiabatic treatment of these interactions is actually of importance in 
describing the shape of the mcntioned well, which governs the rainbow 
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scattering in this system.136 Moreover, that shape determines the way in 
which the 3A" diabatic states for reaction (98) come together and intersect 
(Fig. 8). Hence, the mentioned adiabatic treatment is seen to be of importance 
also for the accurate determination of the corresponding diabatic crossing 
locus. This matter was duly considered in Ref. 97 thanks to two clues. First, 
the underlying 1s,-(30g, 1 7 ~ ~ ) ~ ~  exchange interaction in (99) had been 
discussed qualitatively' 3 7  and elementary correlation diagrams showed that 
when this interaction is treated adiabatically the Is, orbital energy level gets 
promoted and subsequently undergoes curve crossings with higher-lying 
orbitals, for example, 1xgO2 (Fig. 9). Second, the two 'A"  diabatic states had 
to coincide with the adiabatic 1 'Z-, 1 311, and 1 3B1, 1 3A, states in the 
limiting C,, (linear) and C2, (T-shape) geometries, respectively (Fig. 8). When 
such indications exist they may be used to distribute the CSF in the subspaces 
in a more specific way than the naive reactant-type and product-type 
arrangements [Eq. (97)]. Still, when devising the space partitioning, one 
should always keep in mind the fact that the adiabatic behavior of the system 
vis-a-vis certain interactions depends on the collision conditions. The above 
discussed 1sH-(30g, 1 7 ~ ~ ) ~ ~  interactions [Eq. (99)J are adiabatic in the few 
tens eV energy range but become nonadiabatic at keV energies. 

Figure 9. Schematic MO correlation diagram for the (H-0 , ) '  collisional system showing 
that when the 3a,, (or In&,) - Is,, exchange interaction is treated adiabatically the MO energy 
level correlated with Is, rises and crosses the MO energy level correlating with In,,, (This 
figure is adapted from Ref. 137.) 
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b. Maximum Overlap between Large-Scale CI Wavefunctions and Rough 
Diabatic Prototypes. For very low energies of relative motion the 
quasimolecular collision system is likely to behave most adiabatically except 
in the vicinity of real or underlying crossings of potential energy surfaces. 
In such conditions one's task is to determine the potential energy surfaces 
in the regions of adiabatic behavior with high (chemical or spectroscopic) 
accuracy and simultaneously manage a convenient way of handling the 
localized region(s) of nonadiabatic behavior. This is at the root of all attempts 
to obtain diabatic states by an orthogonal transformation of a small set of 
highly accurate adiabatic states. Actually, rotation methods based on Eq. (35) 
are unpractical. This is not only due to basic hindranc@ (Section IV A) 
but also to the obligation one has to cope with the very acute problems that 
diabatic bases are intended to avoid, namely, the calculation and use of badly 
behaved T'') matrix elements. Nearly three decades have been necessary for 
an alternative criterion to emerge. The new proposal is due to Cimiraglia 
et a1."6; its main lines are as follows. One starts by constructing a small set 
of rt rough diabatic states {q;'.'}: raw or preferably mixings of PVB-CSF's 
as done in Sections VIC 1 and VIC2a,  respectively. Those states are 
associated with reactant and product states of the considered collision 
process. Besides, one determines a set of n highly accurate adiabatic states 
{q:*"} correlating with the latter channel states. One projects the (pi'.' diabatic 
vectors into the PZ x n a diabatic suhspace thereby giving 

In general, the latter projections are neither orthogonal nor normalized. 
Simultaneous orthogonalization and normalization of the projected diabatic 
vectors by the S1/' 32.134 that is, 

provides [via Eq. (101)] the sought rotation matrix @: 

(103a) 

(103b) 
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This is indeed the case because the transformation in Eq. (101) provides the 
vectors that resemble the original diabatic vectors I q;'sd) most, in the sense 
that they maximize the overlap sum: 

This is quite an appealing procedure both as regards its basic idea and the 
relatively small amount of work it requires to effect the adiabatic-to-quasi- 
diabatic transformation. 

I t  is worth mentioning that the idea of the preceding process did not pop 
out rightaway. It was preceded by a proposal by Levy,138 which, albeit 
strange at first sight, was shown later to provide the same information 
as the above procedure. Contrary to the preceding, Levy's method rests on 
the projection of the adiabatic vectors Iq:*") onto the rough diabatic 
subspace {q:.'}. (This is the feature that makes the proposal appear strange.) 
One thus has to force the { q:.d} representation to give as accurate eigenvalues 
of the electronic hamiltonian as those ( E ; )  of the original adiabatic basis. 
This is achieved by introducing an effective (des C l o i ~ c a u x - t y p c ) ~ ~ ~  
hamiltonian lTc, whose eigenvalues are E;: 

( 105a) 

with 

(1 0%) 

sg; = (n;ln;). (105d) 

The representation of the hamiltonian in the diabatic basis is then 

and it has been shown that'jy 

H j k  = ( y ; ' .DJH, l IqS ' .D) .  (106b) 

Although the two descriptions are equivalent the one presented first seems 
more natural. 
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As in Section VI C 2 a a few words of caution concerning the use of the 
preceding rotation method are necessary. I t  rests on the certainty that in the 
considered collision conditions (energy and accessible range of the internal 
nuclear coordinates) a set of a adiabatic states is sufficient to describe the 
considered electron transition processes. In  other words, it requires that 
nonadiabatic coupling terms (if any) between states in the considered +I x 21 

subspace and complementary space may be safely neglected. 
Figures 8, 10a and 10b illustrate results obtained at various stages of the 

construction of diabatic states for the H +  + 0, collisional system, Eq. (98). 
An interesting feature appears in the comparison of the results obtained with 
the method of Section VI C 2 a and those produced by the previous rotation 
method, namely, a bend of the repulsive diabatic state produced by the latter 
method (Fig. 10). This is precisely the sort of situation that has just been 
warned against in the preceding. The mentioned bending gets sharper as the 
geometry of the system approaches the T shape; in that neighborhood i t  
clearly depicts a conical intersection phenomenon (Fig. 8b). Actually a bunch 
of avoided crossings have been found to produce that feature”; the states 
that participate in these crossings differ from the dominant H + 0; 
PVB-CSF by single and double-electron excitations. In Ref. 97 the 
description of this crossing pattern (Fig. 1 1 )  was readily available from CI 
calculations in orthogonal subspaces as indicated at the end .of 
Section VI C 2a. On the other hand, its description by the preceding rotation 
method would have required an increase of J I  well beyond 2. This particular 
example warns against some pitfalls that may sometimes lie in wait for 
methods which systematically attempt to get too close to true adiabatic states. 

C. Extended scope 

In Section VI B we have specifically focused on methods of constructing 
diabatic states for low-energy ion-molecule charge-transfer processes. 
Particular emphasis has been put on procedures that aim at enforcing the 
separated-partner characters in the construction of related diabatic 
prototypes. This has been done in view of the occurrence of those charge- 
transfer reactions in rather distant encounters (K larger than normal atomic 
and molecular dimensions). Actually, this is but one possible class of diabatic 
states. There are many other circumstances where different types of characters 
have to be brought out and preserved. Below are surveyed some of those 
instances that show the degree of generality of the previously mentioned 
ideas and procedures. 

I .  Bringing Out Characters 

This is the part of the work where physicochemical skilfulness is required 
most. Characters readily show off in  regions of internal nuclear coordinates, 
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Figure 11. Example of a diabatic curve crossing pattern obtained by diagonalization in 
orthogonal subspaces (Sections IV B, VI C 2a in text) for the (H-O,)* collisional system at 
r = 2.2820, and y = 0. (This figure is taken from Ref. 97.) 

where there is one dominant type of intera~ti0n.I~'  A simple example is 
provided by the extreme opposite case to the one considered in 
Sections VI B 1- 3, viz., that where the collision partners are united or fused. 
This is the united atom limit in atom-atom systems or the inserted (Dx,,) 
atom limit in A-B2 systems. Those cases have clearly identifiable characters 
that may be exploited, as, for example, symmetry and nodal structure of the 
orbitals. Likewise, real symmetry in limiting geometries (e.g., linear, isoceles 
and equilateral triangles-to cite but the most elementary triatomic 
geometries) give rise to clearcut characters. Exotic real symmetries in phase 
space may arise from the existence of specific operators that commute with 
the electronic hamiltonian; this is the case of the Runge-Lenz 
which confers special quantum numbers to the wavefunctions of linear one- 
electron polycentric systems. When no real symmetry exists, one may look for 
underlying symmetries. Particular examples arc provided by isoelectronic 
systems involving nuclei that differ little in their atomic numbers (quasi- 
symmetric systems), for example, He-He, (Li-He)+,I4' HeH,.l'l Another 
particular example is that of quasicoulombic systems (deep inner shells, high 
Rydberg states, multiply-charged ions with few electron). Utilization of the 
special symmetries of real coulonibic systems as quasisymmetries in non- 
coulombic systems14* has been quite fruitful in the field of atomic collisions. 
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It has provoked the emergence of the celebrated electron-promotion model 
and the associated diabatic correlation diagrams based on the radial 
node-conservation r ~ I e . ~ ~ * ~ ~ ~  For systems lacking such near-symmetries 
electronic properties other than energy may be used to bring out specific 
characters. Examples have only been reported for atom-atom systems. One 
example is the use of the rotational coupling matrix element [9 term in Eq. 
(14)] between a well-behaved nu orbital and a 6, orbital that is independently 
involved in an avoided curve ~ r o s s i n g . ’ ~ ~  The character put forward is large 
or small c n coupling. Another example is the use of dipole moment144; the 
character put forward is large or small dipole moment. A third example of 
the same style consists of using as relevant property the overlap with a 
suitably chosen vector142; the character is thereby large or small overlap. 
Characters associated with allowed regions of classical motion in one-electron 
systems (motions in potential wells of the separated or fused partners or on 
top of potential  barrier^)'^^.'^^ have been stressed recently; in particular the 
use of a character like “existence of electron density on a potential saddle”146 
has provided new insight into special curve-crossing series in Hi -like systems. 
Cases also exist where the character is as simple as the valence or Rydberg 
nature of an orbital.113*’41 The re are probably many more characters one 
may try to emphasize. In the limit where no character readily suggests itself 
there is still the possibility of postulating that it is precisely the one contained 
in the very system’s wavefunction at a nuclear geometry selected well away 
from any troublesome potential surface pinching.l4I This is of course quite 
similar in spirit to the separated-partner character treated in Section VI B. 

2.  Preservation of Characters 

As in Sections VI B and VI C, the next stage in building a diabatic state is to 
preserve the character thus brought out while determining the wavefunctions 
step by step in the considered range of internal nuclear coordinates. This 
may be done by letting the selected wavefunctions evolve in subspaces thereby 
preventing against rapid mixings. 

In Sections VI B 1-3 the orbitals were kept in the form of properly ortho- 
gonalized separated-partner-type orbitals. Yet, in cases when onc studies 
phenomena that occur at typical distances (R or r, for example) comparable 
with normal atomic dimensions, frozen separated-type orbitals turn out to 
be inappropriate. One may form linear combinations of those orbitals in a 
controlled way. A simple example is when one wants to prevent avoided 
crossings between valence and Rydberg orbital energy levels; one just per- 

if the valence or Rydberg character were symmetries. Thus, when transposed 
in the present orbital context, O’Malley’s earlier p r o p o ~ a l ~ ~ * ~ ~  to use pro- 
jection operator techniques amounts to performing “character-constrained” 

forms Hartree-Fock-type calculations in separate subspaces:’ ” . I 4 ’  Just ‘ US 
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SCF (self-consistent-.field) calculations. Some care should however be 
exercised in doing so since standard SCF schemes do not treat occupied and 
empty orbitals on the same footing; so-called IVO (improved virtual orbital) 
generation techniques actually help solving this problem.L 1 2 * L 1 3  Whenever 
desired, the resulting character-constrained-SCF MO may be improved by 
resorting to a rotation method similar to that discussed in Section VI C 2 b 
that achieves diabatization of a feiv accurate adiabatic M O  by maximizing 
their ooerlap with previously determined rough diabatic reference M O .  

Orbitals have been considered lo some extent in the preceding because 
their organization in a CSF determine the character of the related diabatic 
many-electron wavefunction prototype. A simple example will stress the 
importance orbitals have in the adiabatic- diabatic problem. Consider the 
case where one has succeeded in building appropriate diabatic orbitals two 
of which, 4I and 42 ,  cross along a certain intersection locus. The states 
associated with the configurations ( ...4:4:...) and ( . . .4142.. . )  will thereby 
cross near the 41-42 intersection locus. But that is not all; the state 
representing (...#:&...) will cross the latter two and there is still more: the 
whole series ( ...414~...~‘)(...4:4z...4’) will also cross in pairs in the same 
neighborhoods. Clearly, if one lets the 4’ .2  orbitals evolve adiabatically and 
avoid their crossing a terrible mess o f  multiple conical intersections will ensue 
merely at the single-CSF level. This situation has apparently been overlooked 
in the ultimate conclusion of Ref. 116. 

3 .  Diabatic Basis Changes 

I t  sometimes happens that the H,, matrix elements in adiabatic basis increase 
so much that their interpretative usefulness and computational convenience 
are lost. Elementary examples of this situation occur at small relative distances 
R in charge-exchange systems that come under the Demkov--3ikitin 

Since a basis remains diabatic under a constant unitary 
transformation, the exceedingly large matrix elements may be locally 
diagonalized accordingly. This device has been used in cases when good 
diabatic states in one region of internal nuclear coordinates are unsuitable 
for another ~egi0n . I~’  An example is the “incorrect dissociation” of diabatic 
states owing n4 or n2a2 dominant configuration types into interacting 
combinations of ‘ D  and ‘S states or, vice versa, the “incorrect association” 
of diabatic states owning ‘ D  and ‘ S  configuration types into interacting 
combinations of n4 and n202 states.14’ Another well-known case is that of 
spin-orbit ~ o u p l i n g . ~  2.94. ’ O4 F or example, a basis that diagonalizes H,, solely 
in a region of strong electrostatic interactions between the collision partners 
and leaves away comparatively weak spin-orbit interactions constitutes a 
special class of diabatic basis. On the other hand, at large interparticle 
distance a basis that diagonalizes all intrapartner interactions including 
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spin -orbit but leaves away weak interpartner electrostatic interactions is 
another class of diabatic basis. A constant unitary transformation will 
provide the right basis in the right region. It is worth pointing out that this 
device is actually implemented in algorithms dealing with the solution of 
scattering equations of the type given in Eq. (27)'49: the integration domain 
is chopped into small intervals at the center of which the W matrix is locally 
diagonalized. Diabatic basis set changes are emected at the boundary of each 
domain as the system propagates. 

4. Diabatic Vibronic Bases 

So far we have only considered electronic diabatic states. Yet the previously 
discussed methods are not solely confined to those cases. For example, when 
considering Eq. (27) for an atom-diatom collision problem (r,F = r), one 
generally uses vibronic expansions. Those arise from the expansion of .U-gc 
in Eq. (12) over vibrational bases {Gun}.  One may apply the preceding 
procedures to those bases individually or to {Gun(p:'} bases globally. 

Since r is an independent internal nuclear coordinate, vibrational 
eigenstates of the diatomic partner in its reactant or product states constitute 
strictly diabatic vibrational bases Gd,"(r) vis-a-vis the variations of the other 
two coordinates R,y. If the latter coordinates change slowly enough, one 
may elect to construct an adiabatic Gzm(r; R, y) basis where R, y are fixed 
parameters, for example,' 50 

Still the latter basis may be subject to troublesome rapid variation with R 
and y.15' To avoid such problems one may advantageously use the method 
of Section VI C 2 b: Gt functions may be calculated exactly by solving the 
one-dimensional SchAdinger equation (107) numerically. An optimum 
diabatic basis is thereafter provided by the unitary transformation of the 
exact { G",} basis that achieves maximum overlap with the asymptotic {Gd,"} 
basis. Products of diabatic electronic bases times diabatic vibrational bases 
constitute diabatic vibronic bases. The corresponding energy levels as 
functions of R and y may freely cross. A typical crossing network of computed 
diabatic vibronic is shown in Fig. 12; the overall trend of each 
series of levels is determined by that of the electronic state labeling it. 

Another class of quasidiabatic vibronic states has been discussed for the 

N l ( X  'Xi, v + )  + ArttN,(X 'Z,+,oo) + Ar" (108) 

collision in the few eV energy range.'52 It exploits the property of N l ( X  2X:) 
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Figure 12. Right panel: example of a diabatic curve-crossing network of vibronic energy 
levels in the (H -O,)+ collisional system at ‘p = 60”. Solid lines: H +  + O,(X ’Zg-, D = 0, I , .  . . , 5 )  
manifold; dashed lines: H( I zS) + 0; (X zllp. L” = 0, I , .  . . ,12) manifold. All curves are referrcd to 
the H+ +O,(X ’Xi, v = O )  level whose R dependence is shown in the left panel. these are 
samples of the input data used in the vibronic semiclassical close-coupling calculations of Ref. 
I36c. 

and N2(X ‘Xi) states of having nearly parallel energy curves as well as the 
property of the collision system to behave adiabatically vis-a-vis t i ,  = u,, 
transitions; the mentioned quasidiabatic states are thereby obtained by 
mixing G,+cp$l and G,,cp:~,,, states in u ,  = uo pairs. (Interested readers in 
this example may find ample discussions in Refs. 27,37, and 152 and 
corresponding references therein.) 

5. Exotic Diahatic States: Hydrogenic States in Heavy-Light- 
Heaiiy Systems 

It is worth pointing out that some of the preceding ideas have recently been 
applied to a study of the H-atom exchange process between two iodine 
atoms.’53 Exploiting the smallness of the hydrogen/iodine mass ratio a 
BO-type separation has been used which brings the IHI problem into a form 
bearing some resemblance with that encountered in the treatment of familiar 
one-electron diatomic systems. “Hydrogenic” potential energy curves. which 
are the analogs of electronic potential energy curves in one-electron diatomic 
systems, could thus be built. Diabatic energy curves have been obtained in this 
context using a method that amounts to selecting as characters “the H-atom 
localization between or outside the two iodine nuclei” and by preserving 
them using a diagonalization method in quasidiabatic subspaces 
(Sections IV B and VI C 2 a).56 
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VI1. CONCLUSIONS 

The notion of diabatic states is contemporaneous with that of the quasi- 
molecular view of atomic and molecular collisions. It has strengthened after 
each of its rebirths since its first emergence in the 1930s. 

The essential characteristics of diabatic states is their slow dependence on 
parameters that determine the nature and the strength of some varying 
interactions. In general quasimolecular systems those parameters are some 
or all of the internal nuclear coordinates which determine the relative 
arrangements of the constituting aggregates (atoms, molecules, clusters, 
vibrators, rotors, and so on). 

The more or less rapid variation of nuclear coordinates and their domain 
of spatial extension may lead to electron-transition processes. As a 
consequence the average field in which the nuclei evolve changes; this has the 
effect of modifying the velocities and spatial extensions of the nuclear 
motions. This in turn affects the electrons and so on. Diabatic states provide 
a sensible way of treating the quuntum dynamics of those electronuclear 
phenomena. They are most useful when nonadiabatic couplings arising from 
variations of nuclear coordinates hinder the use of the BO approximation. 
This is particularly, but not exclusively, the case near true or avoided 
intersections of adiabatic potential energy surfaces. Diabatic states are useless 
for the detailed description of structural properties of molecular edifices with 
rigid nuclear armatures (except sometimes for qualitative characterization of 
certain states). Part of the past reluctance to employ diabatic states had to 
do with the fact that the relevant electronic data needed to treat the quantum 
dynamics of nonadiabatic molecular phenomena were supplied by molecular 
structure computations. Another source of distrust laid in the mathematical 
definition of diabatic states that tended to confuse them with trivial states 
having no dependence on nuclear geometry. The notion thus went into such 
disrepute that it was sometimes contended that any state which is not 
adiabatic can be considered as diabatic 

The present contribution shows ample evidence that all previous 
objections that have been raised against diabatic states may bc brushed aside. 
Considering the broad class of electron-transfer processes in low-energy 
molecular encounters the complete procedure for building well-defined 
diabatic states, from both mathematical and physicochemical points of view, 
has been described. The procedure blends in a progression basic ideas and 
proposals that have appeared over the past three decades. Its cornerstone is 
an active set of separated-partner orbitals (orthogonal to the cores) that is 
made orthonormal so as to achieve exact cancellation of a suitable 
(ETF-corrected) d/dR operator. Arguments have been given to substantiate 
the idea that if the considered separated-partner orbitals belong to truly 



DIABATIC POTENTIAL ENERGY SURFACES FOR CHARGE-TRANSFER 129 

acceptable BO states then all other J/i?Q, matrix elements ought to be 
satisfactorily small. Discussions have been given to serve as guidelines when 
the preceding condition is not fulfilled. Configuration-state functions, which 
are coined the name projected valence bond, are thereafter built from those 
orbitals (and orbitals in complementary space). Subspaces that primarily 
emphasize the reactantlike or productlike characters of configuration states 
involving the active diabatic orbitals are then generated in order to be 
processed by C1. The construction of those subspaces can allow for extra 
distortions when an adiabatic behavior of the collision system vis-a-vis 
interactions with remote states is anticipated. The resulting states in each 
subspace are obviously prevented from any undue mixing with any state in 
another subspace. Moreover, they incorporate utmost separated-partner 
correlation and mutual polarization compatible with the previously 
mentioned constraint. Yet this constraint may still prevent the quasidiabatic 
states thus determined to include further adiabatic distortions. This is allowed 
for in a final stage by a rotation method. A set of nearly exact adiabatic 
states associated with the considered reactant and products is rotated so as 
to maximize the overlap of the resulting states with the previously mentioned 
quasidiabatic prototypes. 

Possible extensions of those ideas to more general nonadiabatic molecular 
collisions have been outlined. All calculations that are needed in the described 
procedure can be achieved with currently available quantum-chemistry 
computer codes. Just two points presently require some skilfulness: the search 
of the orbital character that is to be preserved and the actual form of ideal 
ETF that combines with it. The latter problem is still open for research. As 
to the former, it is not too utopian to think that in the long run the “character 
search” which seeds the whole procedure could well be aided by evolutionary 
computer-based expert systems. 
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I. INTRODUCTION 

Charge-transfer processes between subsystems A and B + may be written as 

A + B+ + A + B + I P(B) - IP(A), ( 1 . 1 )  

where IP(X) means the ionization potentials of the subsystems X. If A and 
B represent atoms, a model potential description leads to a potential curve 
(crossing) problem. For small differences IP(B) - IP(A), often asymptotic 
interaction potential forms are acceptable descriptions: 

where the coefficients Ci may be obtained from transport properties and 
crystal data. The first term in Eq. (1.2) describes the ion-induced dipole 
interaction, the following terms the van der Waals energy. Such a description 
is only valid for large distances of the constituent species, that is, atoms and 
ions. At smaller distances chemical forces come into play, and they have to 
be calculated by quantum-chemistry methods. Generally, quantum-chemical 
high-quality calculations of diatomic potential energy curves (PEC) are 
nowadays possible for all light constituent atoms or cations. A one- 
dimensional analytic representation of the energies as function of the inter- 
atomic distance r would then give the required model potential curve. 

A similar but practically more difficult situation arises if the charged 
particle is an anion: 

A + B -  + A - + B + EA(A) - EA(B). (1.3) 

Here, even in case of atoms X = A, B, not all electron aflinities EA(X) are 
accurately known. Furthermore, the long-range interactions are not as simply 
formulated as in the case of cations. The electronic states of some negative 
ions are not certain, since free-electron states, that is, continuum states, may 
play a role. And last but not least the quantum chcmistry of negative ion 
molecules is still much more problematic than that of positively charged 
systems. 

Charge-transfer processes as seen from the quantum chemist's view are 
nonadiabatic processes, since as reactant and product systems are differently 
charged, it  is obvious that they are in different electronic states. The transition 
between different electronic states involves a passing of the system through 
a zone of strong electronic interaction (nonadiabatic interaction), where the 
processes do not follow the rules of the usual adiabatic dynamics, but are 
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guided by the influence of at least two potentials (belonging to the different 
electronic states) and of the action of a nonadiabatic interaction operator. 

In the case of very strong interaction in restricted regions of the nuclear 
coordinate space, a pure diabatic model may simplify the treatment. The 
same is true for very weak interaction of both states, where a true adiabatic 
description is applicable. Both diabatic and adiabatic descriptions of the 
dynamics may be treated as one-potential-surface problems, where the 
equations of motion may be formulated and solved in a standard way. 
Nonetheless, the general case for charge-transfer systems could be described 
by the nonadiabetic behavior of the system in limited regions of space and 
by adiabatic dynamics on different surfaces for most of the configuration 
space. 

The task of constructing model potentials for charge-transfer systems thus 
consists in 

1. modeling at least two potentials of the system in different electronic 
states (with differently charged subsystems), and 

2. modeling the nonadiabatic couplings between them. 

Taking into account that for A resp. B being molecules instead of atoms 
the number of degrees of freedom complicates the description, it must be 
confessed that in general systems quantum-chemical calculations of reliable 
accuracy are possible only for a limited number of spatial configurations of 
the nuclei. 

Furthermore, even with a fairly complete grid of potential energy points 
that depend on nuclear coordinates, one needs a smooth (analytical) func- 
tional description of the energy values at all intermediate configurations 
between the grid points. That analytical description of potential energy 
surfaces (PES) is one of the major stumbling blocks of chemical-interaction 
theory. 

Thus, in most practically interesting cases we depend on semiempirical 
concepts to describe the global topography of the PES. Moreover, when 
dealing with the calculation of nonadiabatic coupling matrices, it is by no 
means standard now to get them from accurate quantum-chemical methods 
and, therefore, for practical calculations we are forced to rely on simplified 
model concepts. 

One useful method for calculating model potentials is the method of 
diatomics in molecules (DIM). It is structurally identical to uh initio VB 
calculations, in that it uses information from different asymptotic electronic 
states of atomic and diatomic fragments to construct a multiconfiguration 
basis set and applies the variation principle to obtain the wavefunctions, 
energies, and couplings of several electronic states. 
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The main differences with ah initio methods are, however, the following: 

1. The approximate nature of hamiltonian matrix elements, which are 
mostly constructed from fragment data rather than by integral 
calculations. 

2. The strong restrictions put on the viable number of configurations by 
the increasing complexity of the approach and by enormous increase 
of input data requirements with that number (kept usually lower than 
30). 

In practical terms the matrix diagonalization becomes the time- 
determining step once the molecular integral calculations can be avoided. 
With small secular matrix dimensions the whole calculation may be 
performed very rapidly during a dynamic calculation and subsequent fitting 
steps are not necessary. 

As in every semiempirical method, experience is necessary in applying 
DIM and caution is needed when interpreting the results. But so far, there 
is simply no other method suited for effective calculations of the PES's for 
several electronic states and for nonadiabatic interactions that have correct 
spin and space symmetries, are asymptotically (for large nuclear distances) 
accurate, and reasonably resemble the physical interactions at short distances. 
DIM is not the only scheme for calculating model potentials, and it is not 
simply applicable to any system. Nonetheless, the DIM framework has some 
attractive features, for example, its physical well-founded background and 
the easy interpretability of its results. Furthermore, it allows one to include 
the preliminary knowledge on long-range forces between atoms and ions 
simply by designing the long-range part of the diatomic fragment interactions 
accordingly. 

For the long-range part of the whole interaction the DIM potentials are 
automatically correct (that is, their inherent approximations become 
negligible), a fact that leads to reliable asymptotic interactions. 

In this chapter the method of DIM and its application to several three- 
atomic ion-molecule systems are reviewed with respect to the description of 
charge-transfer processes. Future developments and applications are 
discussed in the final section. 

11. THE DIM METHOD 

The DIM method was originally proposed by Ellison,' who brought the 
atoms-in-molecule partition of the total hamiltonian of Mo!Xt2 to its logical 
consequence for polyatomic molecules. A number of applications to ionic 
systems were subsequently published by Ellison et al.,3-8 which restricted 
themselves to linear or fixed-angle molecular geometries. Later, Kuntz 
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et aL9.l0 and Tully".12 completed the theoretical framework for the description 
of arbitrary geometries, nonadiabatic and spin-orbit interactions, and used 

a non-hermitian matrix approach that involves less approximations than the 
usual hermitian one (Tully and Truesdale"). Faist and M~ckerman '~ . '  ', and 
still later Vojtik,16." presented a comprehensive description of the whole 
formalism of the DIM method. Reviews were published, for instance by 
Kuntz" and by Tully.'' Most common applications concerned the potential 
energy surfaces of three-atomic molecular systems. 

A. General Formalism 

The total nonrelativistic hamiltonian of a system made up of rn electrons 
and N nuclei consists of an electronic hamiltonian fie,, a nuclear kinetic 
energy operator T k ,  and the nuclear repulsion energy Vnn. These operators all 
act on functions of the internuclear distances (collectively denoted by r),  while 
the electronic hamiltonian also acts on functions of the electronic coordinates, 
here given as 6. 

Starting from the usual time-dependent Schrodinger equation in 
nonrelativistic form 

and introducing the Born-Oppenheimer separation, that is, expressing Vke 
by the expansion 

yke(& r, t, := yn(& r)q(r, t), (2.2) 
n 

where Vn(4, r) are the eigenfunctions of the stationary Schrodinger equation 

one arrives at the usual set of coupled differential equations describing the 
nonadiabatic dynamics of the system: 

Here En(r) are the potential energy surfaces of the system, and enm(r) is the 
operator of the nonadiabatic coupling, 
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Equation (2.3) is interpreted as an eigenvalue problem for the electronic 
functions ‘f’,,(t) = Y,,(e, r) lr=r, ,  seen as a “clamped” nuclei problem depending 
only parametrically on the nuclear geometry Ti. Similarly, the coupling 
operator, Eq. (2.5), is determined by calculating the brackets in Eq. (2.5) for 
fixed parameters t. The DIM method differs from conventional a6 inirio 
methods by the way in which the functions ‘f’,(c) are expanded as 
combinations of basis functions. It chooses a special form of representation 
that is similar to valence bond functions and that allows one to determine 
in an approximate way from diatomic data the matrix elements of the 
hamiltonian as well as the coupling matrix elements. 

B. The Symmetry-Adapted Basis Functions 

At variance with the ab initio MO methods, the DIM basis functions arebuilt 
as m-electron functions. In particular, it means that these basis functions 
are not or6itals in the quantum-chemical sense. The second difference from 
a6 initio basis functions is that the DIM basis is not used to calculate integrals, 
thus avoiding the difficulty to define explicitly functional forms of basis 
functions. Actually, the DIM basis functions are defined formally by 
specifying their space and spin symmetries and by demanding largely that 
symmetry-defined combinations of these functions be eigenfunctions of 
certain fragment hamiltonians. 

The primitive functions ansatz of the DIM method was named “composite 
functions” by Mofft. It is a product of atomic eigenfunctions of atomic 
hamiltonians, atomic spin and space symmetry operators, and atomic anti- 
symmetrization operators, for example, in the case of three atoms A,  B, 
and C: 

where . (.‘ = nA + n, + n, is the total number of electrons in the system. The 
distributions of the atoms over the atomic species (that accordingly may be 
ions as well) may differ between different basis structures k, that is, the atomic 
electron numbers n p  may depend on k; L Y , ~ ,  and y are collective labels of 
atomic quantum numbers of the species of A, B, and C, respectively. 

The primitive basis functions dk are the building blocks of basis functions 
Ok, which are antisymmetrized and symmetry consistent with respect to all 
electrons and all atoms of the system: 

Here $ is the row matrix ofthe $k and A is a symmetry transformation matrix. 
Now the eigenfunctions of the Schrodinger equation are expanded as 
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linear combinations of the &: 

where is the matrix of the eigenvectors of the total Hamiltonian I?. 
As is shown in the next section, it is necessary in the method of diatomics 

in molecules to define in addition to the N-atom basis functions [Eq. (2.7)], 
the basis functions of all possible diatomic fragment systems, and to establish 
well-defined relations between the diatomic basis function sets and the total 
basis on one hand and between the diatomic basis functions and the physical 
diatomic eigenstates on the other hand. 

The diatomic basis functions of the fragment P Q  are defined by following 
the philosophy of DIM as antisymmetrized composite functions from all 
atomic eigenstate functions of both the atoms P and Q, which participate in 
the building of the total basis functions. Thus, every primitive basis function 
from Eq. (2.6) corresponds to one primitive basis function of each fragment. 

The relation between the diatomic basis functions and eigenfunctions of 
diatomic states is established by spin and space symmetry transformations 
similar to Eq. (2.7). 

For the diatomic fragment AC in Eq. (2.6) that means, for instance, 

where p i C  is a phase factor (t 1 or - 1) accounting for the permutation 
symmetry of the number of electron permutations necessary for bringing the 
electrons of atom C in the desired order in the molecule AC, which here is 
different from their order in ABC. 

(2.10) 

are then the antisymmetrized product functions suited for describing the 
fragment PQ written as a row matrix. 

They are subject to several matrix transformations, the first of which could 
be a spin transformation APQ accounting for the diatomic total spin, that is, 
expressing diatomic spin eigenfunctions by fixed linear combinations of 
products of atomic spin eigenfuncrions. Second, it must be required that each 
diatomics is described by functions that have the correct angular momentum. 

For that requirement the spin eigenfunctions are transformed by a rotation 
that brings the diatomic axis into the z-axis direction. The corresponding 
transformation matrix is dependent on the geometry of the total molecular 
system. It may be written as a product of two independent transformations 
of the atomic functions on P and Q ,  the matrices of which are R ,  and R,, 
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respectively. The diatomic spin and angular momentum eigenfunctions 

YpQ = (Y;Q.. . 'u;Q) = D~QA,,R,R, (2.1 1) 

often may already determine the diatomic eigenstates uniquely. 
This is achieved by the particular way of defining DIM basis functions, as 

flexible as it is consistent with the most fundamental symmetry considerations, 
that is, nothing other than their symmetries was specified for the atomic 
functions from which the diatomic functions originate. 

If several of the functions YyQ describe the same diatomic spin and angular 
momentum, and if they are constructed from different atomic-state functions, 
then several diatomic states of the same spin and angular momentum have 
to be taken into account, that is, a further transformation ( r p Q )  combining 
the functions \YpQ of the same momenta to different diatomic states must be 
applied: 

For homonuclear fragments PQ the elements of the matrix r p Q  may be 
constants (gerade and ungerade states) and, in general, they will depend on 
the interatomic distance of PQ. r p Q  plays the role of a matrix of eigenvectors 
of the diatomic hamiltonian matrix. 

C. The DIM Hamiltonian 

The equation for the m lowest approximate potential energy surfaces of the 
system reads, in matrix form, as follows: 

H'P =YE, (2.13) 

with the diagonal matrix E of the rn lowest PES. By multiplying Eq. (2.13) 
with the column matrix 'P and integrating over the electron coordinates, it 
is found that 

s - l m -  = rE ,  (2.14) 

where H = ( Q T l f i Q )  and S = (D'IO). Equation (2.14) is an eigenvalue 
problem of a nonsymmetric DIM matrix S-'If (see, for example, Tully and 
Truesdale' j), but in most cases it can be made symmetrical without significant 
loss of accuracy. 

The decisive point of the DIM method is the partition of the total 
hamiltonian into a number of atomic and diatomic hamiltonians, the matrix 
elements of which are easy to calculate from atomic and diatomic data. That 
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partition was introduced by Ellison' and is accurate in the limit ofa  saturated 
(i.e., complete) basis set: 

(2.15) 

The preceding partition, together with the special construction of the basis 
functions in Eq. (2.7), leads to matrix representations of the form 

H = (@7lA, , . f i@)A (2.16) 

that is also valid for the diatomic and atomic fragment hamiltonian matrices 
H p Q  and H,,  respectively. It should be mentioned that there is more than 
one correct partition (2.1 5), depending on the assignment of the .A'* electrons 
to the N atomic species. In particular, i t  is possible to choose a hamiltonian 
partition that corresponds to the electron assignment suited to the basis 
function on which the hamiltonian acts in (2.16). The crucial problem consists 
then in expressing the functions 4 through functions $!,, which are 
appropriate for describing the diatomic fragment wavefunctions. By using 
the definition [for example, see Eq. (2 .6) ]  of 4 and defining different DIM 
partitions of the total hamiltonian for different electronic configurations 
(different ionicities), it may be shown that 

S -  ' H p Q  = ArApQR,RQTPQEpQT-' R'RTApQA. (2.17) 

Here A is the previously mentioned transformation matrix, which transforms 
the primitive basis functions 4 into the spin and spatial symmetry of the 
whole system. Similarly, as mentioned in the preceding section, the matrices 
ApQ are transformations of 4 to spin eigenfunctions of the fragment PQ, the 
rotation matrices R ,  transform the angular momentum functions of the 
atomic species P to an adequate representation of the diatomic PQ (that is, 
with an integer angular momentum projection on the diatomic axis). E,, 
and r p Q  are defined by the eigenvalue equation (2.18) of the diatomic fragment 
PQ: 

fi P Q q P Q r  PQ = * p Q r p Q ~ p p  (2.18) 

Most of the elements of the eigenvector matrices r p Q  are determined by 
symmetry, the others either have to be chosen semiernpirically, possibly 
guided by diatomic VB expansion coefficients, or must be calculated ah initio, 
using orbital approximations for the formally defined DIM basis functions. 

The diagonal eigenvalue matrix EpQ is made up of the respective poten- 
tial curves of different electronic states of the diatomic fragment species. 
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Approximate fragment calculations may also be necessary for unknown 
diatomic terms in E,,, which are commonly involved for highly excited 
diatomic fragment states. 

For the atomic species fragment matrices i t  is found (owing to the way 
the basis was constructed) that 

HP = SATEPA, (2.19) 

where E ,  is the diagonal matrix of the electronic energy terms of the atomic 
species. 

The construction of the transformation matrices is done by standard 
angular momentum coupling techniques, that is, the spin matrices consist of 
Clebsch-Gordan coeflicients and the rotation matrices of elements of the 
Wigner rotation matrices. 

D. The Nonadiabatic Coupling 

The starting point for an approximate treatment of the nonadiabatic 
coupling operator is the adiabatic approximation, resulting in a perturbation 
of the adiabatic dynamics in the form of Eq. (2.5). Usually the first term, 
which depends on the kinetic energy, is neglected as small in comparison 
with the second, which is the only contribution to the nonadiabatic coupling 
needed in the usual semiclassical dynamic methods. This velocity-dependent 
term in Eq. (2.5) may be approximated by the DIM method as a matrix D 
with elements 

(2.20) 

while the gradient of the energy needed for dynamical calculations is 

VEi = - Li. (2.21) 

In the last two equations use was made of an auxiliary matrix I; (with elements 
,Lj) ,  which reads. 

F =  - rl(vs-vI)r ,  (2.22) 

that is, the gradient of the DIM matrix S -  ' H ,  transformed by the eigenvector 
matrix of the DIM secular equation. As in Eq. (2.12), a symmetrized 
approximation for Eq. (2.22) turns out to be effective. 

The treatment described here is approximate not only because of the 
neglect of the kinetic coupling terms but also because, in the course of 
obtaining Eq. (2.22), a part of the velocity-dependent contribution (the part 
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that is related to the basis functions' dependence on the geometry) was 
neglected in accordance with the assumptions on the validity of the DIM 
method." 

Furthermore, the Coriolis (rotational) coupling was not taken into 
account. I t  could be obtained by describing the system not in the internal 
(body-fixed) coordinates, but in a space-fixed system, where the additional 
Coriolis coupling term arises from the overall rotation of the molecular frame 
during the process. 

Accordingly, the preceding equations are adequate in systems, where (1) 
the assumption of the DIM method are fulfilled by the DIM model and (2) 
the "radial" part of the nonadiabatic coupling represents the largest contri- 
bution to the influence of other states on the processes under consideration. 

Generally, it would be possible to formulate other contributions of the 
nonadiabaticity in the preceding formalism, too. As a drawback of such a 
project it must be mentioned, that some of the attractive features of DIM 
would be lost: one would need orbital approximations of the basis functions 
to calculate some types of integrals, which may not be derived from available 
diatomic data, while it would also be necessary to have the second derivatives 
of the DIM matrix. 

E. The Implementations of the Method 

In an actual calculation there are different ways to implement the DIM 
method briefly described. One method would be to orient it to an ub inirio 
way of calculation: define in terms of orbital approximations a many-electron 
basis function set (large enough to describe at least all interesting fragment 
states) and perform all necessary fragment calculations, including the integrals 
that would be restricted to at most two center types. Then the fragment DIM 
matrices could be determined a priori. 

Another possibility of applying the DIM method (now by far the more 
common) is to restrict the formal basis set to the most relevant structures and 
to use empirical and semiempirical fragment information wherever i t  is 
available. 

The disadvantage of the ah initio approach is clearly connected with the 
implicit effort to expand many-center integrals by two-center terms.20 I t  is 
well known, in fact, that the convergence of such expansions is very poor, 
although some rare comparisons of the DIM ah initio approach and, for 
example, a VB a6 initio approach with comparable basis sets, seem to point 
to the superiority of the DIM method.21*22 

In the following sections DIM model calculations are described and use 
is made as much as possible of independently found, best available fragment 
potential data. This way of performing DIM calculations represents quite 
an effective method for obtaining model potentials. Its disadvantage stems 
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from the need to include either many-center correction terms or empirical 
corrections to diatomic fragment terms and diatomic wavefunction expansion 
coellicients in order to account for basis set shortcomings. With small basis 
sets even the global features of the potential topology may be wrong, thus 
requiring predictive ab initio examination. On the other hand, much 
experience has been assembled with the semiempirical kind of DIM 
calculations for many three-atomic ion-molecule systems, generally showing 
the applicability of that approximate approach. 

How important ionic structures are for ab initio VB wavefunction 
calculations is well known from H, Heitler-London calculations. It seems 
to be a reason for the success of the DIM method in several small basis 
set applications on charge-transfer systems that in the description of 
ion-molecule systems different ionic basis structures are naturally included 
in the DIM basis set, because the different asymptotic channels (reactant 
and product channels) have to be described by different ionic structures. 
Thus, a kind of configuration-interaction correction comes into the method, 
out of necessity, once it is applied to charge-transfer processes. 

Ill. TRlATOMlC ION-MOLECULE SYSTEMS 

The ionic systems that have been treated with the DIM method were mostly 
three- or four-atomic systems of the type A + B i  or A +  + B,, where at least 
one of the species A and B was hydrogen or lithium. A simple DIM model 
for rare-gas charge-transfer processes in systems A B ;  has also been 
r ep~r t ed . ’~  

We shall discuss in the following sections several three-atomic ionic 
systems for which DIM calculations have been performed mostly in our 
groups. To begin with, we discuss the less complicated systems for which 
part of the mathematical model of the DIM calculation is described, while 
in the cases with larger basis sets the details of the mathematical background 
are to be found in the respective original papers, as we prefer to concentrate 
here on the discussion of the final results. 

A. The H: Case and Related Models 

Some of the first applications of the DIM method were already dedicated 
to the hydrogen triatomic cation. Ellison, Huff, and Pate13 calculated the 
ground H l  PES using the simplest set of basis structures (only s functions). 
They found an equilibrium geometry at equilateral triangular configuration. 
Binding energy and vibrational frequencies were also determined. Their 
findings were confirmed by later papers, for examples, by Preston and T ~ l l y , ’ ~  
where the authors concentrated on the quantities of most interest to the 
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dynamics of that system. They determined the ground- and lowest-excited- 
state surfaces as well as the radial nonadiabatic coupling in the DIM 
approximation. Further PES calculations with simple DIM models for 
excited states of H: were reported by Wu and 

With the same basis set as used for the H,+ ground state the Li: system 
was calculated by Pfeiffer and E l l i ~ o n . ~  DIM models of Li: and Li: were 
also calculated by Pickup2’ and optimized by Polak et a1.26 Vibrational 
frequencies of the complex and nonadiabatic couplings of Li: were obtained 
with the DIM method by Vojtik et aL2’ 

For the ground-state and first-excited-state nonadiabatic dynamic proces- 
ses in the H i  or H: system, a number of comparisons between theory and 
experiment have been performed using the DIM mode1.24-28-32 

In any application of the DIM method the starting point is the definition 
of the electronic states of the atomic species that have to be taken into 
account. For H: (indicating the three atoms by A, B, and C), these states 
(or DIM basis structures) are 

1. H,(ls) - H,(ls) - H i ,  
2. H,(ls) - H,+ - H&), 

3. Hf - HB(ls)- H,(ls). (3.1) 

Then the polyatomic basis functions (PBF) are defined by the (differing) 
quantum numbers of the atomic eigenfunctions, from which they are com- 
posed. All possible spin and angular momentum projections, which may 
lead to the desired overall symmetry, have to be included in the set of PBF. 
Here the quantum numbers sufficient to distinguish the PBF are the spin 
projections, which are given in the order of A-B-C for an overall projection 
of zero: 

1. a - p - 0 ,  

2. P - a - 0 ,  

3. a - 0 - p ,  

4. 8-0-3, 

5 .  0 - a - 8 ,  

6. 0 - 8 - a .  (3.2) 

I t  is easy to imagine how that table and the matrices belonging to it would 
extend when (in other systems) for every atomic function several angular 
projections have to be included. The number of PBF is the dimension of the 
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- 

a 

0 
a 

matrices used in the following development and therefore we chose to examine 
here the construction of a DIM model only with the very case of the present 
system. 

I t  is rather easy to determine in that simple case what the diatomic spin 
transformation matrices ApQ [see Eq. (2.17)] look like (0 and 1 are submatri- 
ces of appropriate dimensions): 

0 '  

(3.3) 

where the 2 x 2 diagonal submatrix - 1 in AAc is negative because of the 
permutation phase factor mentioned for Eq. (2.9). 

After the definitions of Eq. (3.3) the diatomic states for the six diatomic 
functions of AB are known to be 

H d ' x ; ) ,  H2(3Cu+), H2('I+) ,  H2('I+),  ~ ~ ( ' x ' ) ,  ~ # x + ) .  

The H, functions must form gerade and ungerade combinations to define 
uniquely the final four energy terms in AB. An analogous situation is found 
in the other fragments EC and AC. The diatomic eigenvector matrices r p Q  

are here uniquely defined by symmetry and thus are given by constant factors: 

0 0  

- a  a 

u a  

0 0  
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A =  

Now the parity of the diatomic states is obtained as 

- a  0 O O a O  
- u  0 o o u o ]  

0 0 N U 0 0  

0 0 - a u O O '  

0 - a  O O O j  

0 a 0 0 0 n  - 

that can be seen in connection with the previous definitions, where the 
ionicities of the H ,  species are obvious from the PBF and the spin quantum 
numbers follow from Eqs. (3.1). 

Calculating the Clebsch-Gordan coefficients for the coupling of the spins 
of A B  with C and multiplying the matrix AAR with the matrix of these 
coefficients, we find for the total spin transformation matrix the following 
expression: 

which leads to a total spin of (O,O,O, 1 , l .  1 )  for the six states that one may 
obtain from the simple H ,  model. 

Applying Eq. (2.17) (where the rotation matrices R ,  are unity because all 
atomic states are S states) and adding the thrcc fragment contributions 
S - ' H , ,  and the atomic terms - S - ' H , ,  the matrix S - ' H  is constructed. 
The DIM matrix is symmetrical and block-diagonal in two 3 x 3 blocks 
respectively describing singlet and triplet states of the three-atom system. 
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Both blocks have the same analytical form: 

I VAB(P)  + QBC + Q C A  P J A  J B C  

P J C A  Q A B  + VBC(P) + QCA J A B  

J B C  J A B  Q A B  + QBC + VC,(P) 

(3.7) 

S - ' H  = 

where p = 1 for the singlet case and p = - 1 for triplets. The symbols VpQ(p)  
mean H, diatomic terms (potential energy curves), while the H, terms enter 
the expressions J p Q  and Q p Q  as follows: 

J P Q  = [ ';Q(g) - V ; Q ( u ) l / 2 9  Q p Q  = [ ';Q(g) + V;Q(u)l/2. (3.8) 

The potential energy surfaces for the singlet states of H, in the DIM 
model are given by the eigenvalues of the matrix equation (3.4), with p = 1, 
that allows for the direct use of the DIM model potential in dynamic 
calculations. 

In Fig. 1 we show a schematic view of the potential energy surfaces for 
an angle (BAC)  of 4 3 .  We recognize there the presence of the asymptotic 
region of the avoided-crossing seam as originating from the crossing of the 
H, ground-state PEC with the lowest H, PEC. For the interaction region 
of all three particles, the splitting of the two lowest potentials is the largest 
and thus that seam is not visible in the section through the potential surface 
diagonal, which is shown in Fig. 2 for D,,, and C,, configurations. Here the 
D,, degeneration leads to a true crossing of the two upper PES, which is 
resolved in C,, symmetry. 

Figure 1. Schematic view on the topology 
of the H, singlet PES for an angle BAC of 60" 
according to a simple DIM model. 
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Figure 2. Cut through thediagonal of Fig. 1 (D,,)(left part)and in C,,symmetry (right part). 

In the H l  system the avoided crossing (roughly parallel to the entrance 
valley indicated at large r by a dashed line) is responsible for significant 
nonadiabatic couplingz4 and for charge-transfer processes with vibrationally 
excited 

While the form of Eq. (3.4) is a correct DIM model only for a homonuclear 
three-atom system of three S-state atoms and may also serve as a parametrized 
model for other ionic three-atom homonuclear molecules, it has to be 
modified for a three-atom heteronuclear system. Restricting ourselves to 
S-state atoms only, Li+ + H, may be chosen to describe a simple DIM model 
for heteronuclear ion-molecule systems. 

In that heteronuclear case the mixing matrices of the diatomic fragments 
are not orthogonal (as in the case of H l )  and the whole three-atom matrix 
becomes nonsymmetric. Either by symmetrizing or by diagonalizing the DIM 
matrix with a diagonalization procedure for nonsymmetric matrices one 
obtains three singlets and three triplets PES. For LiH, the topology of the 
singlet PES is illustrated in Fig. 3. For that system the differences of the 
ionization potentials lead to a clearly separated, lower PES for which 
nonadiabatic effects are unlikely to play a role. The corresponding DIM 
potential has ben studied by Wu and Ellison6 and later on by us.’’ 

The DIM matrix of this type of systems may be transformed to a 
nonsymmetric form that reflects the maximum symmetry C2JDmh) of the 
molecular frame: 

The symbols W, D, X, and V mean diatomic LiH- or LiH+-term 
combinations that depend on the distance rBc (and on rAC in the symbols 
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Figure3. Schematic view on :he topology or the LiH, single: PES for C, symmetry 
according to a simple DIM model. 

with bar), while G, U ,  and K are H i  or H, terms at TAB. 2 is the ionization 
potential of Li. The energy of the neutral atoms is taken to be zero. In 
particular, the abbreviations mean: 

x = ( E  + V’)/2, L) = ( E  - V’)/2, (3.10) 

with V‘ = (s,s,V, + clc2V2)/d and d = clc2 + sls2, taking 

Ci = ( 1  - s y ,  

v = ( c , c , V ,  + s , s , V , ) / d ,  

w = C I S 2 (  v, - V2)/(21’2d), 

W’ = s , c 2 ( V ,  - V2)/(2’”d). 

In these expressions the diatomic potential curves E = VBc(LiH, X lZ+) ,  
V ,  = V,,(LiH+, X *I+), V ,  = V,,(LiH+, A 2 X + ) ,  K = VAB(H2, X lXS), G = 
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VA,(H;, Iso), and U = V A ~ ( H ~ , Z ~ u )  and the mixing parameters s l ( rsc)  and 
s2(rEc) (depending on rAC when used in expressions with a bar) appear. In 
the diatomic PEC the correct asymptotic energies are included (those of 
neutral atoms assumed to be zero). 

They are known from ab initio calculations and spectroscopic measure- 
ments. The mixing parameter functions were estimated in Ref. 33 from the 
results of VB-type atoms-in-molecules calculations. 

In this example the specific origin of the nonhermiticity of the DIM matrix 
is obvious: it comes from the mixing parameters s, and s2 (resp., c I  and c2),  
the meaning of which is roughly that of configuration expansion coefficients 
for the ground the first-excited state of LiH + in terms of normalized composite 
basis functions. They are obviously different from each other. This result, on 
the other hand, follows from the fact that the matrices rpQ are nonorthogonal 
and thus may be the reason for the nonhermiticity of the DIM method. The 
most natural way of symmetrizing the DIM matrices comes from a 
symmetrical orihogonalization of the diatomic fragment states and therefore 
of the diatomic fragment DIM matrices S - ' f i p Q  (see, Ref. 20). 

Results of the application of the symmetrized DIM model of Eq. (3.6) in 
comparison to ab iriitio (CEPA) results34 (dashed curves) for the ground-state 
PES are shown in Fig. 4. The Pes was obtained without a posteriori fitting 
of input data. It is correct with respect to the global shape and topology of 
the PES, whence finer details of the potential (for example, location and 

Figure 4. 
R(Li' H2). 

DIM potential (solid lines) and IEPA-PNO potentialsJ4 (dashed lines) for fixed 
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depth of the spurious ion-induced dipole minimum) differ significantly 
between various theoretical input data sources and with the experimental 
values. 

The DIM potential models of Eq. (3.4) or (3.6) could be used for modeling 
the PES of similar systems, too; in that case some of the diatomic curves 
parameters (probably the mixing parameters) would have to be used as 
disposable parameters that are fitted to some specific property or to a more 
accurate calculation. 

B. The HeHl System 

For the lower states of rare-gas/hydrogen molecular ion systems the difference 
in the ionization potentials of the rare-gas atom and a hydrogen atom often 
is large enough to allow for the neglect of DIM basis structures containing 
the rare-gas ionic species. In these cases (e.g., HeH:,35 NeHi  36.37) the most 
simple DIM model potential gives already a realistic ground, state PES. It 
is obtained as lower eigenvalue of a symmetric 2 x 2 matrix and thus may 
be given in closed form as follows(the index C means the rare-gas species): 

= Q A B  + Q A c  + QBC - [ ( J A C  - JBC)z + JAB11'2.  (3.1 1) 

Q A B  and JAB are defined according to Eq.(3.5), while for the AC and BC 
fragments (rare-gas-hydrogen diatomic species) one gets: 

Figure 5 shows the typical features of the topology of the PES which 
result from the simple DIM model. Here the upper surface is not realistic 
for any excited state of the system. Thus, if only the ground-state PES shall 
be modeled, i t  is possible to use the PEC asymptotically forming the upper 
surface (repulsive curves of H l  and of HeH or NeH) to fit the ground-state 
PES to known potential data. This approach has been followed in a number 
of  paper^^'-^' with some success. 

For a description of nonadiabatic charge-transfer processes the assump- 
tions on which Eq. (3.4) is founded, that is, the neglect of excited-state 
basis functions in the DIM model, is no longer justified. The model must 
include at least the recharge structure He+ + H, additional to He + H,' (on 
which structure alone the above potential was built). 

The potential topology of that model is indicated in Fig. 6. In contrast 
to the simple model of Fig. 5, here the topology of the entrance valley (RHH) 

is for the lower excited states roughly correct, while in the exit valley (RHeH) 

several lower excited states are missing. Taking into account that the only 
possible recharge processes on the first excited surface are He' + H, * 
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Figure 5. Schematic view on the topology of the HeH, ' A '  PES for C, symmetry according 
to a simple DIM model. 

He + H + H+ in the lower eV range, that approximation is not too stringent, 
as long as the DIM model is used to analyze these processes only. The DIM 
matrix for the H e H l  doublet states becomes a 4 x 4 nonsymmetric matrix 
with the following structure: 
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Figure 6. Schematic view on the topology of the HeH, ' A '  PES for C, symmetry according 
to an extended DIM model. 

The term combination expressions in Eq. (3.13) have the following 
meaning: J A B  and Q A B  are the samc as in Eq. (3.8), D p Q  is the lowest 2C+ 
state PEC of neutral HeH, I is the difference of the IP of H and He, S,, 
and T A B  arc the hydrogen PEC for X 'Zg and a 'Xu, respectively, and TBc 
and TCA mean the triplet state PEC of the respective fragment diatomic 
HeH'. The lowest t w o  singlet states of HeH+. X , ,  and YpQ, enter the matrix 
expressions through the terms ZpQ,  which read 

z T Q = ( c l C 2 x p ~ +  SlS2Yp~)/d,  Z ~ ' = ( c , c , Y p ~ + s , s , X p ~ ) / d ,  
(3.14) 

zgQ = cIs2(xpQ - ypQ)/d,  Z z Q  = c 2 ~ , ( X P Q  - YpQ)/d.  

Here si, ci, and d are as in Eq. (3.10) mixing parameter functions, depending 
on the distance PQ. 

For that DIM potential model, as formulated in Eq. (3.13), an analytic 
solution for the energy eigenvalues may still be found once the matrix is 
symmetrized. Every model for systems of that type using a more extended 
basis set will lead to a matrix represcntation that must be diagonalized using 
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a numerical diagonalization routine. Approaches of that kind for HeH; have 
been reported with a DIM model including ionic structures, mainly for fitting 
purposes (H H 'He '), that resulted in a 6 x 6 matrix38 and with additional 
excited H atom states (2s ,2p ) ,  where a 15 x 15 case is produced.39 Both 
papers cited give the analytical forms of the DIM matrices as well as 
comparisons with ub initio PES results. 

The main purpose of the 6 x 6 is the description of the 
avoided-crossing seam between the first- and second-excited-state PES in 
the entrance channel. I t  is marked with "S" in Fig. 7, where both surfaces 
are shown in C, ,  symmetry. In the collinear configurations the splitting of 
the PES is largest and the nonadiabatic coupling strength (Fig. 8) has a 
minimum. Only in that linear geometries a dissociation with charge transfer 
is probable. 

In the DIM model calculations on HeH: reviewed here, the excited 
(charge-transfer) states of the system were not described a priori well enough 
by the DIM model; a fitting procedure had to be used to adjust some of the 
parameters of excited diatomic fragment states. The preceding seems to be 
a rather general finding from other DIM models of other systems: i t  is a 
necessity to plan a DIM calculation with some additional care in order to 
adjust the model to accurate data that are known only for a few points of 
the whole PES. 

C. The FH,' Interaction 

To that charge-transfer system a DIM PES study of Kendrick et aL4' was 
published, and corroborated by a more extended basis set DIM model of 
Schneider et aL4' The channel H+ + H F  and the probability of charge- 
transfer processes in that system was further studied by us42 using the latter 
model. 

The DIM model structure is based there on the atomic states F'(3P,), 
F+('D,), F(2P,), F-('Sg), H', and H('S,) which combine to five three-atom 
basis structures. This model leads to 17 triplet and to 15 singlet states; 
accordingly, the dimensions of the matrices are 17 x 17 and I5 x 15 as long 
as other symmetries are not taken into account. Transformation to the 
reflection symmetry at the plane of the three nuclei leads to separate problems 
for A' and A" states of dimensions 9 and 8 for 3 A  states and 9 and 6 for ' A  
states. Fourteen different analytic representations (fits) of diatomic PEC and 
five fits of diatomic mixing coefficients are used for the construction of the 
matrix elements. The less accurately known fragment data were calcuiated 
by the semiempirical atoms-in-molecules method.43 The channel for 
proton H F  collisions was compared with ground-state ah initio CEPA44 
results and analyzed with respect to the probability of nonadiabatic 
charge-transfer processes.42 
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the entrance valley in C1,,.38 

The asymptotic interactions (diatomic PEC) taken into account for the 
DIM model are shown in Fig. 9. In Fig. 10, the resulting lowest and 
first-excited singlet surfaces show no evidence of a pronounced avoided 
crossing in C,, geometry, although a small barrier in the lower surface is 
visible. To visualize the possible orientation dependence of that barrier, 
Fig. 10 reports computed cuts through the full surfaces, with rHF kept at a 
fixed value, as functions of orientation and relative distance R. 

The quality of the DIM calculations can be assessed by comparing the 
DIM (solid) and CEPA (dashed) PEC; the overall shape is essentially the 
same with the CEPA results providing, as expected, deeper potential wells 
in the protonation region. It is important to note that, as the curves become 
increasingly repulsive with smaller y values, an outer barrier appears in both 
the DIM and CEPA calculations, the latter being less pronounced than the 
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Figure 9. Asymptotic situation for the reactant and product valley of a DIM calculation 
of (FHH)‘  4 1  (unit  of length am).  

former. Thus, the “cone” of approach defined by that range of y values 
contains the only region where the lower singlet curves come close to the higher, 
charge-exchange curves [which asymptotically produce H + HF+(211)]. It 
seems, therefore, that only for protons approaching on the H side does the 
possibility exist for either radial coupling at a near-avoided crossing or for 
nonadiabatic Coriolis coupling. In this region, however, the energy gap is 
rather large and the differences in slope are highly localized, thus suggesting 
that both mechanisms would be inefficient in inducing surface-hopping 
processes. 

Further examination of the energy as a function of the rHF distance in the 
region of the smallest energy gap4’ indicates that even for large variations 
of the molecular coordinate the two surfaces remain apart, coming close to 
each other only for a very compressed H, geometry. For these r H H  distances 
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of less than 1 a.u. a substantial amount of repulsion within the triatomic 
system is already produced, making it very unlikely that the internal energy 
available in the target H F  would allow the interacting species to overcome 
such repulsion and to further apply the necessary torque needed for the 
nonadiabatio transition to occur. 

In conclusion, the DIM model PES for H +  + H F  collisions at relative 
energies up to about IOOeV indicate negligible coupling from the initial state 
to HF’ + H, consistent with the experimental findings.45 Furthermore, it 
allows one to explain the rather small vibrational energy transfer observed,”6 
because the PES shows that the internal motion on the lowest surface is 
coupled with that of the incoming proton only over a very small range of 
values of the impact parameters and for relative distances that are not sampled 
at most collision energie~.~’ It is worth noting here that a great deal of the 
physical details of the scattering, charge-exchange process could be gleaned 
by a simple analysis of the DIM calculations. 

D. The BH; Surfaces 

The BH; system was studied in two papers of Schneider et al.a8*49 by DIM 
potential energy calculations aimed at the interpretation of molecular beam 
data. The same DIM model was used by us in a study of the H t  + BH 
charge-transfer  dynamic^.^' Furthermore, the DIM model was used for that 
system in an optimization of the stable complexes on the triplet PES and to 
characterize the spectroscopic constants.” 

The basic structures that define the DIM model are 

1. B+(’S)+2H(Is), 

2. B ’ ( P) + 2H( 1 s), 

3. B(’P)+H(ls)+H+.  

(3.15) 

The diatomic PEC used as input data for this model are shown in Fig. 11 .  
Most of them are “rationalized” fits to ab initio calculated potential points 
(see Refs. 48 and 49). The resulting lower singlet and triplet PES seem quite 
reliable compared to existing experimental knowledge, thus some confidence 
in the model with respect to the charge-transfcr channels appears to be 
justified. 

The DIM model leads here to 7 ‘A ’  and 3 ‘ A ”  states, among which the 
lowest three excited-state PES are most interesting for charge-transfer 
processes in the system H +  + BH(’E+). I t  is found in fact that symmetry 
considerations and different types of nonadiabatic couplings among these 
states markedly influence and control the relative probabilities of various 
elementary processes in such encounters. 
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Figure 11. Asymptotic situation for the reactant and product valley of a DIM calculation 
of (BHH)+49 (unit of length a.u., energy in eV). 

Figures 12 and 13 report various cuts through the PES of the system at 
the BH equilibrium distance ( z 2.4a.u.) that differ from each other by the 
value of the angle of approach, y, which the proton forms with the bond at 
the BH center of mass. Here y = 0" is the linear approach from the H end 
of BH, while y = 180" is the approach from the B end, respectively. 

The lowest potential curve, associated with the 2C state of BH+, is always 
too low in energy to be coupled dynamically to the entrance channel potential 
and therefore can be kept out of the present discussion by taking it to be 
unimportant for the dynamics. For the excited states, the two collinear 
configurations exhibit a lower surface that is of 'll symmetry and therefore 
it splits up once any bent configuration is reached and ' A ' ,  ' A "  states are 
formed. Moreover, the 'll surface can cross the upper 'X' surface and 
transitions between these states can proceed only via Coriolis coupling; by 
the same token, in the bent configurations one can witness crossings between 
' A "  and ' A '  surfaces, as it is seen for the values of y up to 90" shown in the 
figures. 
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Figure 12. DIM PES sections for BH, showing the approach of H' from the H end of 
BH. The dashed line in the left panel is the height of the barrier to the exchange reaction leading 
to B + H,. The encircled area in the right panel marks a region of enhanced nonadiabatic radial 
coupling. 

The avoided-crossing regions that are exhibited by this system as y 
increases (circled areas in Figs. 12 and 13) could be further characterized by 
evaluating the radial coupling strength,I2 which leads to electronically 
nonadiabatic collisions. In Figs. 13 and 14 we show the extension of the 
areas of strong coupling via the encircled regions, where one assumes collision 
energies up to z 1OeV. 

I t  is interesting to note here that, for smaller y values (e.g., for 7 = 30"), 
one already sees evidence for an avoided crossing between the second and 
third ' A '  states. The involved wavefunctions, however, still largely retain 
features of their symmetries at y = 0 ,  that is, they are essentially of 1 and 
of n character and therefore do not produce any significant values for the 
radial coupling matrix elements. 

In case one expects the occurrence of rotational coupling, on the other 
hand, the presence of the 'A" curves nearby and close to the ' A '  makes 
the Coriolis coupling between the latter two states more probable than the 
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, rB,=2.40 
i 
I y =120° 

Figure 13. As Fig. I2 for the boron end of BH. 

Figure 14. DIM PES sections for B H ,  showing the BH bond length variation at 7 - 60 
for fixed proton distances to the center-of-mass of RH. 
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coupling between the two A' states and therefore suggests, at these 'J values, 
possible charge-exchange processes into BH '('II). 

The possibility of exhibiting substantial Coriolis coupling through the 
appearance of a crossing seam is shown even more clearly for the y = 60" 
geometry (Fig. 12), at a relative distance of the colliding partners of about 
4.5 a.u. Thus, surface hopping could occur to populate the 2 ' A '  state, and 
charge-exchange processes into VH +(211) are possible. 

Once we reach the rectangular geometry (y = 90"), one sees from Fig. 13 
that the situation has completely changed: the electronic state that describes 
the entrance channel (the 3 ' A '  term) is now fairly isolated, at nearly all 
distances, from all the other nearby states over the range of possible collision 
energies examined here. The 1 ' A "  curve has, in fact, become attractive as 
opposed to its repulsive behavior for smaller y values and describes now 
(together with the 2lA' state) an attractive interaction of the first 
electronically excited state of BH+(A 'll) with an impinging H atom. One 
therefore expects that for the range of impact parameters which samples this 
orientation, no possibility of charge-transfer processes should exist. 

By progressing to the B end of the system, that is, for 7 values from about 
100" through 1 8 0  as shown in Fig. 13, the BH + H +  interaction along the 
3 ' A '  curve has become repulsive. Its interaction with the first excited state 
of BH', the A 'II state, is now negligible at all distances, while its interaction 
with the next excited state, the B 'C+ state, is instead becoming important. 
A sizable region over which large radial coupling appears for the avoided 
crossing between 2.0 and 3.0 a.u. is clearly shown. In going from the y = 120" 
orientation to the collinear geometry of H B-H, one sees that the energy 
necessary to reach the crossing seam goes down to values slightly above 
4.0eV but can also increase up to and beyond 7.0eV. provided we keep the 
molecular bond fixed at the BH(X IC') value. One knows, however, from 
Fig. 11, that the equilibrium bond length of BH'(B'X+) is 3.66a.u. and 
therefore one should expect in this case the formation of strongly vibrationally 
excited BH', as opposed to what should have happened with the other 
orientations around the H end of the molecule, where only small vibrational 
excitation is probable during the chargc-transfer process. 

For the geometrical situation where the proton impinges on the H end 
of the target (Fig. 14), one sees that for distances inside the avoided crossings 
(left panel of the figure) the stretching of the bond causes increased coupling 
between states only when a large amount of vibrational energy already exists 
in the target molecule on the entrance channel (3 ' A ' ) ;  thus, for the usually 
"cold" molecular-beam measurements one expects very little coupling and 
also very little vibrational excitation as the forced-oscillator-model conditions 
for motion along one surface only are not satisfied in this systems2 As the 
partners sample the avoided-crossing regions (center panel of Fig. 14). one 
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sees that radial and angular couplings now occur not nly for a stretched BH 
bond but also for BH(X 'E+) around its equilibrium position, where hopping 
into the B H + ( A  'II) state can therefore take place. On the other hand, the 
ionic partner will not be formed in a vibrationally excited state and thus one 
should expect charge-transfer processes without substantial vibrational 
energy transfer. 

For larger impact parameters (curves in the right panel of Fig. 14), the 
Coriolis coupling discussed above is now stronger and can induce the 
formation of vibrationally excited BH + ( A  'n). 

In sum, encounters on the H end of BH are favoring the formation of 
B H + ( A  'n), either vibrationally excited or in its ground vibrational state, as 
a function of the collision energy (that is, of the dominant collision parameter 
values). they indicate a good probability of rotational coupling, hence 
suggesting possible formation of vibrationally cold B H  ' ( A  'n) if beam 
experiments are carried out. If the BH target molecule is prepared with a 
large content of vibrational energy, then one observes strong radial coupling, 
leading to larger quantities of electronically excited and vibrationally cold 
BH' in the B 'Et state. 

E. The 0 , H  + Charge-Transfer Interactions 

The application of the DIM method to systems containing several atoms 
with a complicated electronic structure as is the case in oxygen is either very 
difficult or restricted to simple model approaches that include an unreliably 
small basis set and try to account for its artifacts by semiempirical corrections. 
We have chosen this kind of approach for our description of the O2 + H +  
potentials and the nonadiabatic couplings i n v o l ~ e d . ~ ~ ~ ~ ~  Preliminary 
(separate adiabatic) dynamic studies with the DIM potentials are reported 
in Ref. 55. 

In particular, the DIM basis set should be chosen to be capable to describe 
excited states of the oxygen atom and its positive ion as well as at least the 
ground state of its negative ion. That last requirement was however ign~red ,~ '  
and only the minimal number of basis structures corresponding to the fwo 
energetically lowest channels, 

( 1 )  20(3P) + H +, 

(2) 0+(4s) + o(3~) + H ( I A  (3.16) 

was taken into account. The reason for this choice relies on the experimental 
findings." Starting from that basis all possible triplet state functions were 
constructed, already leading to 8 A" and 13 A' symmetry adapted functions. 
Most of the diatomic fragment information used was taken as "rationalized" 
analytic lit or spline interpolant to ab inirio values (22 difierent PEC of O,, 
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Figure 15. Comparison of DIM (solid lines) and CI (dashed lines) results for the lower 
triplet PES of 0,H' (energy and distances in a . ~ . ) . ~ ~  
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OH, O,, and OH + states, 2 mixing parameters). Several excited-state curves 
(seven PEC, one mixing) were then freely varied to obtain the right energetic 
order and the right qualitative angular dependence of the lowest O,H+ states. 
The “trial-and-error” optimization of the free parameters was guided by the 
results of large-scale ab inirio configuration interaction (CI) calculations. 
Figure 15 may provide a qualitative impression of the remaining differences 
between the DIM PES and the CI energies. 

The DIM models3 was used to explain the anomalous vibrational 
excitation of 0, in proton encounters by analyzing the topography of the 
PES. In Ref. 55 the rotational inelasticity during inelastic and charge-transfer 
processes was studied by applying the above DIM model potentials. 
Nonadiabatic couplings between the two 1owest’A” PES were determined 
in Ref. 54. 

Turning more in detail to the DIM potentials, Fig. 16 shows the collinear 
orientation as function of the interatomic distances do, and roo. When looking 
at the lower adiabatic surface (Fig. 16a), it is interesting to note the following 
points: 

1. The charge-transfer channel, as doH increases, exhibits a small barrier 
at the seam between the ’C- and ’Il configurations and a rather shallow 
valley as a function of the vibrational coordinate, roo. Thus, one should 
expect that reactions starting with “hot” molecules would more readily 
progress into charge-exchange products if the complex is formed in a C 
configuration. 

2. The dissociation channel along the roo coordinate presents an even 
weaker energy dependence on the OH vibrational coordinate and a marked 
seam not far from the equilibrium geometry of the complex. The slightly 
higher barrier, therefore, requires more energy to be deposited into the doH 
coordinate. 

The upper adiabatic surface (Fig. 16b) is rather instructive, on the other 
hand, in providing general, qualitative features of the other two possible 
channels for the break-up of the ionic complex: 

1. In the upper surface, for the 0, + H+ entrance channel, the proton 
approach within the region of the 0, equilibrium geometry corresponds 
always to a repulsive situation without complex formation, unless 
nonadiabatic coupling with the lower surface occurs on the way in, as marked 
by the seam in Fig. 16. 

2. For the stretched values of the roo variable, the possibility exists of a 
shallow minimum (local complex formation) around the region of the crossing 
seam with the lower surface. Thus, the dissociative channel with O+ formation 
can only occur if enough vibrational energy is deposited into the 0, molecule 
as the proton approaches. 
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The preceding collinear geometries therefore suggest possible inelastic, 
direct processes in the upper PES with a small probability of dissociative 
charge-exchange occurrence once vibrational excited targets are formed in 
the former entrance channel. Moreover, charge-exchange mechanisms and 
dissociative attachment of the proton only appear to occur via nonadiabatic 
coupling mechanisms. For both surfaces, of course, Coriolis coupling is the 
physical origin of such nonadiabatic terms for linear orientations. 

In an entirely similar manner one can now analyze the surface topography 
in the more general C, symmetry. In Ref. 53 it was pointed out that most 
collision-partner approaches are indeed likely to occur for this type of relative 
orientation. It implies the passing of the system through avoided-crossing 
regions between adiabatic states. 

Figure 17a and 17c present the results of calculations for the same lowest 
two ' A "  state PES as before but in a C, configuration. 

Figure 17b shows the general shape of an intermediate channel; of 3A' 
symmetry, which is present for the same geometry. It stems from the splitting 
of the 'rI surface parts of Fig. 16 (Ca8,) into 'A' and ' A " ,  when the symmetry 
is lowered (C,). 

Between the PES of Figs. 17a and 17c the avoided-crossing seams are not 
obviously visible in these plots. They are located for that angle of approach 

4 00 

d O H  

! ao )  

3 25 

2 50 

1 7 5  

100 
15 2 5  3 5  4 5  roo ( a , )  5 5  

Nonlmear (C,) DIM PES for I 'A"  ((I), I 'A '  (h),  and 2 'A" (c) slates of 0 , I f  * .54 Figure 17. 
energies in a.u. 
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at do, values of about 3.8 a.u. for the entrance channel seam and at 
roo z 3.0 a.u. for the second pseudocrossing. 

The lower of these two surfaces clearly shows the deep minimum region 
of the charge-exchange complex that dissociates into the charge-transfer 
channel (CT, 0; + H) for 0, targets not greatly vibrationally excited. The 
dissociative attachment channel (DAY OH+ + H) evolves through a small 
barrier and a fairly steep repulsive region of the potential that does not easily 
allow for the vibrational excitation of the OH’ system. 

The corresponding upper surface for the same C, symmetry is shown in 
Fig. 17c and indicates a more “floppy” structure for the (O,H)+ complexes, 
since a far more shallow minimum region exists for it and for a broader 
range of internal coordinates. Both the direct, inelastic channel shown in the 
upper left part of the figure and the CT + DA channel (OH + 0’) are reached 
via small repulsive barriers. Moreover, as the involved bond distances can 
markedly vary without much change of their internal-energy content, both 
exit channels allow for effective storage of energy into the vibrational mode 
during the encounters that lead to the two different asymptotic situations. 
This result seems to indicate that this type of behavior of the system is the 
most significant, since C, collision approaches are most probable here. 

Finally, Fig. 176 shows the presence of a sort of “intruder” state of ’ A ‘  
symmetry that appears in between the other two configurations discussed 
previously. Its asymptotic channels are the same as those for the lower surface 
of ’A” symmetry, but its general shape is entirely different. If the system state 
changes in the entrance channel 0, + H +  to ’ A ‘  by strong rotational 
coupling, then the DA channel can be reached here without a significant 
barrier across that channel. 

Nonadiabatic radial coupling, which was also determined for that DIM 
model, is of interest here mostly for the transitions between the lower two 
’A” states. Founded on the coupling-strength function, an appropriately 
reduced “diabatic representation” of the PES allows one to treat the coupled 
nonadiabatic dynamics of the system.s6 The largest component of the 
coupling-strength vector from the described DIM model is the one dependent 
on roo. It is shown in Fig. 18 and reveals some features, which are general 
findings for all components: (1) sharply localized avoided-crossing seams, (2) 
enhancement of the coupling strength with 0, vibrational excitation, (3) 
similar strong coupling for linear and T-shaped complexes, with a minimum 
coupling for y z 45”. 

I t  is interesting to note at  this point that the rise of the DIM surfaces for 
this system within a coupled, quantum treatment of the CT dynamics has 
indeed provided very good agreement with experimental findingss6 and has 
confirmed the importance of nonadiabatic coupling between surfaces in order 
to transfer energy to the 0, molecule. 
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COUPLING IN R(0-0) 
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Figure 18. Nonadiabatic coupling elements of O,Ht  from the DIM models4 for fixed 
distances r-, units in a.u. 
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In other words, the scattering calculations have managed to show that, 
besides testing the general reliability of the DIM surfaces for such a system, 
they can specifically indicate whether or not the going through the 
avoided-crossing region constitutes the essential mechanism responsible for 
energy transfer processes in both asymptotic channels (i.e., H' + 0, and 
H + 0;). 

IV. MORE COMPLEX CASES 

In principle, the specific model approach implied by the previous discussion 
should be well suited for extension to the more complex situations often 
encountered in ion-molecule chemical kinetics. We have tried to show in the 
previous analysis that the DIM description of polyatomic molecules does 
not really try to answer specific questions about the nature of a chemical 
bond, since the model starts with an assumed complete knowledge of all the 
diatomic fragments and component atoms. Thus, the diatomic bonds already 
exist at the outstart and the polyatomic situation is ultimately expressed in 
terms of diatomic behavior as the DIM approach takes account of bonding 
theory in an indirect way through the assumed electronic structure of the 
diatomic fragments. 

The basic ingredients of the present model are therefore produced by a 
somewhat complicated interplay between spin-coupling, charge-transfer, and 
the rotational properties of the atomic functions. DIM is closely related to 
a valence bond (VB) description of a molecule but does not quite stand 
independently of it, since a VB description of the fragments is required as 
input data of the method. It therefore follows that the extension of the model 
PES calculations via the present method to larger systems and to more 
complex situations is hampered by the large basis sets required to handle 
the spin coupling and the rotational properties of the direct product basis. 

The extensions have therefore followed very slowly the general applications 
to three-particle cases as those discussed in the previous section, and we will 
try to describe briefly some of them in the present section. It will be, ou t  of 
necessity, a compact description of a few examples, but they should be 
sufficient to indicate what little has been done beyond the atom 
(ion)-diatomics case. 

A. Rare-Gas Clusters 

The general area of ionized clusters of simple rare gases is quite an interesting 
area of application of model interactions between ionic partners, especially 
since the presence of ions in the clusters strongly modifies both the bonding 
picture and the structure of equilibrium geometries. 

In the case of the DIM approach the main problem is how to handle, on 
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the one hand, the possibility of charge transfer and local strong binding and, 
on the other hand, the rest of the interaction, which is quite weak and 
dominated by dispersion terms. The final result may therefore turn out to 
be quite sensitive to the choice of input functions. 

The simplest case is given by singly ionized rare-gas clusters, where 
applications to trimer ions have appeared in the recent l i t e r a t~ re .~"~*  In 
that instance one starts by admitting only one electronic state for each atomic 
center and neutral atoms are assumed to be in the IS, state. The positive 
ions are instead taken to be in the 2 P ,  state. The positive charge is also 
allowed to reside on any of the centers so that there are N state groups, 
which are possible for a singly ionized N-atom clusters: 

1. Rg('S) Rg('S) * * *  Rg('S) Rg' ( 2 P )  

2. Rg('S)Rg('S) ... Rg+(2P)Rg(1S) 

(4.1 ) 

N - 1 Rg('S)Rgf(2P) ..* Rg('S)Rg('S) 

N Rg+('P) Rg('S) ... Rg('S) Rg('S) 

here the Rg symbol stands for rare gas. Because of the three fold degeneracy 
of the 2 P  state, there are three polyatomic basis functions corresponding to 
each of the state groups. 

If such functions are denoted as P,, P,, and P, and the Rg('S) function 
as s, t ,  then the three basis function for a particular group m are given by 

In total, there are 3N polyatomic basis functions for a singly ionized 
N-atom cluster. The corresponding DIM hamiltonian matrix H is then 
written as a sum of pair contributions, Hi' and of single-center contributions, 
Hi, where i and j label the atomic centers. The atomic contributions are 
diagonal and the diagonal elements, H,, ,  are either E(Rg) or E(Rg'), so that, 
if one adopts the convention that E(Rg) = 0, their sum over the single-center 
matrices simply yields thc ionization potential of Rg, I (Rg). The atomic 
terms therefore all yield the samc contribution, which is given by ( N - 2 )  
I(Rg), to each diagonal element of the DIM hamiltonian matrix and 
therefore can be ignored. 

The symmetric pair matrices Hi' have elements that are mostly zcro, except 
for the elements between basis functions, which have a positive charge on 
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either atom i or j .  They also have nonvanishing values for the diagonal 
elements of all the remaining functions. The corresponding value of the 
elements is given in terms of the diatomic fragment energies5': 

(4.3) 

One can also define the following auxiliary quantities, which are given by 
Q = i ( U + G ) , J = i ( U - G ) ,  e= i (u+G) ,  and J=i(o-c). They remind 
us that the P state has u symmetry. If the two atoms i and j are along the 
z axis, then we get six functions from the possible groups of pairs: ip,, ip,, 
ip ,  and j p ,  j p , .  The corresponding H matrix can then be written as follows: 

i P ,  

iPZ 
Hii(O,O) = ip ,  

i p ,  

i p ,  

j p ,  

ip,  ipZ ip ,  j p ,  i p ,  j p ,  
Qij  0 0 Jij 0 0 - 

0 0 Qij 0 0 J ,  

J i j  0 0 Qij 0 0 

0 0 Jij  0 0 Q i j  

0 Qij 0 0 Jij 0 

0 Jij 0 0 Qij 0 

(4.4) 

here the auxiliary quantities Qij and J i j  are obtained from the diatomic 
fragment PEC's at the internuclear distance given by r i j .  The index (0,O) 
denotes the dependence of the DIM matrix on the rotational angles that are 
needed to produce total wavefunctions of the correct coupling symmetry5'. 
All the remaining diagonal elements of the H matrix are given by the values 
of the S curve indicated in Eq. (4.3). 

In a more general case, the two-body vector rij is not parallel to the z 
axis and therefore the preceding DIM matrix must be constructed from the 
rotated diatomic fragment matrices. This requires the transformation of 
H'J(0,O) by a rotation matrix: 

H"(a, p) = R(a, P)H'J(O, O)R - '(,a, p), (4.5) 
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where one defines the rotation matrix as follows: 

Here the R“’(a,p) is a 3 x 3 matrix that connects with each other the three 
functions ‘pY, ‘pZ,  and ipx: 

i P y  i P Z  i P x  

(4.7) 1. Rci’(a, B) = ; ; f o s a  sin Q sin p sin Q cos /? 

ip: - sin a cos a sin p cos a cos f3 

cos p - sin fl 

The other matrix RU’(a,p) is a similar 3 x 3 matrix that refers to the three 
functions from the center j .  The result of multiplication (4.6) is a symmetric 
matrix that is diagonal everywhere except for the block of Eq. (4.4), where 
it has the following structure: 

H“(Q, p) = [cy ’  3 (4.8) 

where M and N are both 3 x 3 symmetric matrices that can be written in terms 
of another matrix, W(a. b), which is given by 

Wpyp, = a(cos2 a + sin’ a cos’ p) + b sin’ a sin’ /3. 

Wpzpy = (b  - a) sin a sin p cos p, 
Wpxpy = (b - a) sin a cos a sin’ p, 
wp,p, = a sin’ p + h cos’ p, (4.9) 

Wp,p, = (b  - a) cos Q sin fl cos B, 
wp,p, = a(sin’ a + cos’ a cos’ p) + b cos’ a sin’ p. 

The angles /? and a, which define the transformation, are the angles of the 
polar coordinates of the relative position vector rij: 

rij  = (xi - Xi)i+ (yj  - yi)J+ (zj - zi)i (4.10) 

hence cosjl=(Zj-Zi)/lrijl 

a = tan - ’ [ ( Yj - Yi)/(xj - xi)]. (4.1 1) 
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In conclusion, once a specific general symmetry is chosen for the cluster 
of N atoms, ne could simplify the preceding construction of the DIM matrix 
by making use of the symmetry propeties of the corresponding point group 
representation of the cluster. In particular, the results for trimers of Ar, (Ar);, 
have been worked out in the C,, CZv, and D,, ~ y m m e t r i e s . ~ ~  

For more complicated cases with N > 3, the ionic clusters consist of a 
small ionic molecule (trimer or tetramer) surrounded by adjoining shells of 
increasingly more neutral atoms, which are weakly bound to the central core. 
The trimer ions appear to be particularly stable and form the cores of clusters 
up to size 13, when the first shell of neutrals is completed.57 Once the second 
shell begins to be filled, there is a tendency for the central ion to change 
from a trimer to a tetramer and for a small fraction of the positive charge 
to spread out over the rest of the rare gases in the cluster. What happens 
because of that is that the overall structure remains very floppy and several 
configurations of the outer shells exist with an energy near the bottom of 
the potential well. The DIM model qualitatively reproduces such a behavior 
in the sense that the properties of the chosen diatomics, which are the building 
blocks of this model, turn out to be important in influencing the nature of 
bonding in the polyatomic structures. 

B. Interactions on Surfaces 

A further development in complexity could naturally come from a situation 
in which the charge-exchange process takes place on a metal surface, for 
example, when impact ionization processes like 

2A* + S - + 2 A +  + s- --+A2 + s-, (4.12) 

where S represents a metal surface and A + some metastable atomic projectile, 
are considered. Of course several different outcomes could also be taken into 
account when examining the final channels: the treatment of the relevant 
interactions would become accordingly more complicated with the 
consequence of needing even more extended basis functions to construct the 
DIM matrix. 

This area of application of DIM models is relatively new and different 
approaches have been followed to deal with its difficulties. One possibility 
is to model the surface by a small cluster of atoms, so that the final treatment 
amounts to a computation for a large molecule. Examples are given by the 
study of H atoms interacting with Li, c1uste1-s~~ and by the analysis of the 
dissociative adsorption of H, on a Li, cluster.60 The basic mechanism of a 
charge-transfer process on a surface, or in the vicinity of a surface, is perhaps 
even more amenable to the DIM method, since the process turns out to be 
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very similar to the harpooning mechanism of gas-phase reactions,61 whereby 
dynamical calculations could be carriedd out within a small diabatic basis, 
usually chosen to describe the system before and after the charge-transfer 
p r o c e ~ s . ~ ~ . ~ ~  

Another approach attempted to incorporate the entire physical surface into 
the DIM model by approximating its main physical features. The application 
was carried out for the case of the formation of Na+ and Na, ions from 
Na’ (2P,) atoms in the proximity of a tungsten surface partially covered with 
s o d i ~ m . ~ ~ , ~ ~  If the covering could be considered of less than a monolayer, 
then the sodium could be treated as a layer of Na+  on the surface. Since 
each ion is associated with an induced image charge on the metal, then the 
covered surface can be approximated by an nfinitely extended dipole layer, 
which in turn affects the shapes of the neutral and ionic PEC’s from the 
surface itself. The DIM model could then be constructed by considering the 
entire tungsten surface to be an atom and then adding ( N  - 1) Na+ ions and 
one sodium atom. Additional contributions will also have to come from 
several Na, electronic states and the modeled Na+-W potential curves. 

A further extension of the modeling of ion-surface interaction within the 
DIM picture comes from a method that includes delocalized electronic 
interactions within the basic VB picture of the molecule-surface potentials.66 
Strickly speaking, such an approach is no longer a DIM procedure, but it 
may be a useful way to point at many-body improvements within the 
diatomics basis implied by the DIM modeling. For this reason, we are briefly 
describing the approach in what follows. 

The essential approximation is based on an effective medium approach 
to represent the metal-metal bonding and the metal-nonmetal bonding 
outside the strictly covalent bonding described by DIM P E C ’ S . ~ ’ , ~ ~  

The total system is thought o f  as made up of N g  nonmetal atoms 
interacting with a metal surface that is modeled by N ,  metal atoms. The 
metal atoms are separated into a primary zone comprised of N m P  atoms that 
are allowed to move and a secondary zone in which the metal atoms are 
fixed at their lattice geometries. 

The total number of atoms in the system is N = N g  + N ,  and the total 
number of atoms allowed to move is Ng,, = Ny + N m P  This separation 
therefore allows one to develop the interaction with the idea of the embedded 
atom method (EAM), the latter being the procedure through which the 
noncovalent part of the potentials is treated.67 hence, the total potential is 
separated into two contributions: V,, which includes metal-metal 
interactions within the solid and VDIM, that accounts for the interactions 
between gas atoms and the metal and between all the gas atoms: 
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here X is a collective index for all the relative coordinates, E ,  is a reference 
scaling factor that can be chosen for convenience, and the V,,, is a functional 
of the diatomic potential curves E K I ( X ) ,  for the pertinent electronic states of 
the nonmetal atoms K and I ,  and of the EKM(X) potential curves which 
describe the interactions between the relevant electronic state of the nonmetal 
atom K and the metal surface M .  Thus, the indices K and I of the former 
curves run up to N g ,  the number of nonmetal atoms, and describe two-body 
interactions. In the latter E,, curves, the index K also runs up to N g  and 
the metal surface is described via the embedded atom potential as given in 
the V,  e x p r e s ~ i o n ~ ~ :  

N NP 
V,(X)= 1 FiCpi(X)I + C C +ij(Rij), (4.14) 

where the electron density at  the location of the metal atom i is called pi(X) 
and can be written as a sum over atomic densities p j (R)  of all the other 
atoms, metal and nonmetal, in the system under consideraton: 

i = N g + l  i = N g + l  j > i  

(4.15) 

The new element in Eq. (4.14) is the embedding function Fi[pi(X)] and 
corresponds to the energy to embed the atom i into the homogeneous electron 
gas density used to describe the density of the host (that is, all the other 
atoms) at a particular location; it is an attractive function of the density. 
Finally, the + i j  functions of Eq. (4.14) are short range, pairwise repulsive 
functions of the interatomic distances that are given by a simple Coulombic 
form67 

+ij(R) = CZi(R)Zj(R)/R, (4.16) 

where C is a constant and Z i ( R )  is the effective nuclear charge of atom i at 
a distance R from its nuclens. Both F i ( p )  and Zi (R)  are empirical functions 
for a given atom. 

One obviously sees that the DIM model provides here a way of selecting 
the dominating “curves” in the VB sense that play a major role in the 
charge-transfer processes on the surface or in the proximity of it. On the 
other hand, the EAM implied by Eq. (4.14) provides a description of 
the medium, that is, of the other metal atoms in the surface, which modifies 
the structure of the V,,, curves. Instead of expanding the full PES itself in a 
many-body e ~ p a n s i o n , ~ ~ . ~ ’  one tries first to obtain a model hamiltonian for 
the full system and thus introduces the many-body effects into the correcting 
terms of the model potential. 
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As a matter of fact, it is not yet certain whether or not the DIM method 
is well suited to describe a surface structure itself. It is perhaps more likely 
to be of use in describing processes where covalent bonding is involved but 
is also perturbed by the vicinity of a surface or by a few neighboring atoms 
on a simple surface. In such instances, the choice of specific configurations 
via the DIM procedure may be ne of the few methods available to deal with 
the problems at hand. 

V. FINAL CONSIDERATIONS 

In the present chapter we have considered the possible way in which model 
potentials could be developed to treat inelastic collisions involving more 
than one PES during processes at thermal, or nearly thermal, energy 
conditions. 

The main idea is to see if the use of diatomic bond formations, or the use 
of diatomic fragment excitations when describing the region of nonadiabatic 
couplings between surfaces, could provide us with a realistic description of 
the interactions that lead to the charge-transfer channels or that lead to 
internal excitation accompanying the charge-transfer process. 

The concept of nonadiabatic transitions is a very general and 
interdisciplinary concept, which refers, as is well known, to a transition among 
the adiabatic states defined as the eigenstates of a system given at a fixed 
adiabatic parameter “R.” The transition is indeed induced by a variation of 
that parameter R. The adiabatic states produced by the present DIM 
modeling of them therefore describe good basis states only when the 
separability of the parameter R from the other variables holds well, or when 
the variation of R is much slower than the motion with respect to the other 
variables. Since the adiabaticity breaks down, and therefore the required 
nonadiabatic transitions occur efficiently, in such regions of the parameter 
R where the adiabatic states come close together, then it becomes crucial for 
the present model to describe as correctly as possible the local occurrences 
of the avoided crossings where the coupling effects are most important. 

In the examples discussed previously for three-particle systems, and in 
some of the further extensions outlined in Section IV, we have shown that 
the DIM model, being closely related to a VB description of the collision 
partners, appears as an efficient tool for selecting the dominant configurations 
for the nonadiabatic coupling regions. On the other hand, extension of such 
a method to larger molecules is hampered by the large basis sets required 
to handle the spincoupling and the rotational properties of the direct-product 
basis. Thus, one could profitably employ othe theoretical results to help out 
in the simplification. It is always possible, in fact, to omit many of the 
spin-orbit couplings at the design stage of the most important configurations, 
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but the decision about which structures to leave out can only be made on 
the basis of some external experimental knowledge or of previous theoretical 
evaluations. 

Whenever this is possible, however, one finds that the selection of even 
only a few, but judiciously chosen, excited VB configurations could guide 
one quite effectively in the design of approximate, model surfaces relevant 
to charge-transfer  collision^.^^ 

To move to larger cases, however, not only creates several complications 
in the handling of the dynamical process but also requires the introduction 
of external information, which can help us in gaging the weight of each 
selected configuration for a specific process. Typically, MRD-CI calculations 
could be employed for certain regions of a given surface or surfaces and 
the corresponding DIM calculations could be scaled accordingly and 
extrapolated outside the scaling region to save in computational effortss3 

Finally, the presence of strong, covalent bonding on a surface could be 
handled by extending to it the harpooning model of charge exchange 
already existing in the gas phase but also introducing the noncovalent 
interactions by some sort of effective potential that modifies the basic DIM 
approach to the metal-ion interactions. Here again, chemical intuition may 
help in selecting the relevant basis functions and external theories (for 
example, density functional approaches) could be profitably invoked to 
implement the basic modeling provided by the DIM approach. 
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I. INTRODUCTION 

Scattering processes taking place on more than one potential energy surface 
are the most common types of interactions between two (or more) molecular 
species. Among these processes the low-energy charge-transfer (CT) processes 
between ions and neutrals is of particular interest, because it is encountered 
in many systems of major importance such as plasmas, combustion, fusion, 
upper atmosphere chemistry, astrochemistry, and so on. In order to under- 
stand the behavior of these complicated systems under various conditions, 
very detailed information on the microscopic level of the CT process is 
required. This ranges from state-selected integral total cross sections through 
state-to-state integral cross sections down to state-to-state differential cross 
sections. 

The experimental study of these processes started about two decades 
ago’-” but the first state-to-state cross sections were measured only a few 
years ago.698-’2 In this sense the most detailed measurements were carried 
out in Toennies’ group9.” for state resolved differential cross sections for 
both the inelastic and CT processes and in Ng’s group for absolute 
state-to-state integral cross sections.’ ’-’ 

The theoretical treatment of CT processes in ion (atom)-molecule (ion) 
collisions started about two decades ago. The most important contributions 
at that time were the trajectory surface-hopping model (TSHM) first 
suggested by Bjerre and Nikitin13 and then so skillfully applied by Tully 
and Preston14 and the multivibronic (curve) crossing model due to Bauer, 
Fischer, and Gilmore.” These two models are based on the Landau-Zener 
formula,16 which yields the transition probability from one adiabatic curve 
to another. It is important to mention that this formula is not always capable 
of yielding the correct values.” The TSHM and other related topics are 
discussed in Chap. 6 by Chapman.” Another approach mainly pursued by 
Gislason, Parlant, and Sizum” is based on the classical path technique (for 
single-surface studies see review by Billingzo). 

The first quantum-mechanical studies for CT processes were carried out 
within the group of the present author about 15 years ago.213zz Those were 
done for the collinear reactive (H + Hz)+  and (Ar + H,)’ systems. About 10 
years later these studies were extended to three dimensions employing the 
infinite-order sudden approximation (IOSA).z33z4 

The basic theory for electronic transition in heavy-particle collisions 
(atoms and molecules) was given by Born and O~penheimer.’~ The electronic 
nonadiabatic transitions occur due to the breakdown of the Born- 
Oppenheimer approximation. In general, one distinguishes between two types 
of nonadiabatic transitions: (1) those originating from the various relative 
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motions of the heavy  particle^'^,^^-^^ and (2) those originating from the 
rotation of the body frame of the heavy particles with respect to a system 
of coordinates fixed in  pace.^^'^' In this review our main concern is with 
the first type of transition and therefore the theoretical part is devoted to 
this topic. 

The subject of nonadiabatic transitions in atom-molecule collisions has 
been reviewed several times in the past,33934 but the quantum-mechanical 
aspect of it was mainly discussed by the present author34“ and recently also 
by S i d i ~ . ~ ~ ~  The foremost difference between this and the previous review34a 
is that here we emphasize the (approximate) three-dimensional treatment, 
which also finally leads to numerical results that can be directly compared 
with experiment. 

11. THEORY 

A. The Schrodinger Equation 

To treat electronic transitions in heavy-particle (atoms, molecules) collisions, 
we consider the Schrodinger equation, which describes the motion of the 
electrons and the nuclei, namely, 

Here H ,  is the electronic hamiltonian of the electrons assuming the nuclei 
are fixed, Tn is the nuclear kinetic energy, and Y(e, n) is the total wavefunction 
of both the electrons and the nuclei (‘e’ stands for the electronic coordinates 
and ‘n’ for the nuclear coordinates). The function Y ( e ,  n) can be expanded in 
the following form”: 

where $,(n) are the nuclear wavefunctions and Ci(e;n), i =  1 ... N ,  are a 
complete set of electronic wavefunctions that are solutions of the eigenvalue 
problem: 

[ H e  - V;(n)]Ci(e; n) = 0. (3) 

Here Vi(n) are the corresponding electronic eigenvalues that are calculated 
for the given nuclear configuration n. Substituting Eq. ( 2 )  and (3) into Eq. 
(l), multiplying it from the left by an electronic basis function l j(e; n), and 
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integrating over the electronic coordinate e yields the Born-Oppenheimer 
set of coupled equations: 

where the bra and the ket notation is used for integration over electronic 
coordinates. To continue we have to be more specific. In the next section is 
presented the theory for a three nuclei system composed of two coordinates: 
the translational coordinate R and the (internal) vibrational coordinate r. 
For this sake the three particles are assumed to move along a straight line 
(the collinear system). The extension to a more complicated case (either more 
atoms and/or more internal coordinates) is usually straightforward (for the 
three-atom three-dimensional case see Ref. 34a). In Section IIC we again 
discuss a two-coordinate system, but this time it will be for a three- 
dimensional system treated within the IOSA. This exceptional extension 
is done because, so far, all three-dimensional treatments were carried out 
within this framework. 

B. The Collinear Case 

1. T h e  Schrodinger Equation 

For the three-atom collinear case the kinetic energy operator can be presented 
as 

where 

and 

and the dot means scalar product. Here mR and m, are the translational and 
internal reduced masses of the interacting particles. Substituting Eq. ( 5 )  into 
Eq. (4) yields 
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Equation (7) can also be written in a form of a matrix equation: 

V.V, - - (V - ET) Y + 2tY + P y r  = 0. [ h2 2 l  (7') 

Here V is a diagonal matrix that contains the (adiabatic) potential energy 
surfaces and dl) is the (antisymmetric) matrix that contains the nonadiabatic 
coupling terms which are responsible for the transitions from one adiabatic 
potential surface to another. The matrix d2) is also a (potential kind) matrix 
that couples the various adiabatic potentials, but is of much smaller elements 
compared to those of T('). 

2. The AdiabaticeDiabatic Transformation 

The adiabatic equation as presented in Eq. (7) is probably the more efficient 
one for treating the heavy-particle motion. However, from various numerical 
studies it is known that numerical instabilities are encountered owing to the 
very abrupt behavior of the d') matrix elements. Therefore, it is most 
advisable before starting any numerical treatment to eliminate these 
troublesome elements. This can be done by the following transformation: 

Substituting Eq. (9) into Eq. (7) leads to the following expression: 

2 

h2 
A(V.V,)q + 2(VA + t'"A)Vrnq+ (2") + V.V + 2t").V,)Aq - - (V - EI)Aq =O. 

rn 

(10) 

So far the matrix A is undetermined and therefore it will be chosen in such 
a way that the coefficients of Vrnq will vanish, namely, A will be assumed to 
fulfill the first-order differential equation 

Equation (1 1) and the ability to solve it is the bottleneck through which we 
have to pass if electronic transitions (including charge transfer) in heavy- 
particle collisions are to be studied. 

In order to find the condition for having a solution, we write Eq. (1 1) 
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dA 
~ + t',"A = 0, 
aR 

dA 
- + tl"A = 0. 
dr 

Differentiating Eq. (12a) with respect to r and Eq. (12b) with respect to R and 
subtracting the two resulting equations leads to an important requirement 
to be fulfilled by t(R) and tl'), namely, 

which can also be written as 

or 

[V x t'"] + [t'" x t'"] = 0, (14') 

where the x sign stands for the vectorial product. (Here the vector product 
between two identical vector matrices is not necessarily zero.) Equation (1 3) 
is a necessary condition to be fulfilled by 7:) and tzl) in order for having a 
unique solution to Eq. (12). 

The next question to be asked is whether 7:) and T!') as defined in Eq. (8) 
really fulfill Eq. (13). The treatment of this problem will not be given here 
(see Ref. 35),  but it can be shown that in order for Eq. (13) to be fulfilled, 
the size N of the electronic manifold has to be large enough so that the 
condition 

N 

j =  1 

is satisfied. 

that A also satisfies the equation 
In case N is large enough so that Eq. (15) is fulfilled, it can be 

(T") + V.V, + 2d".V,)A = 0. (16) 

Considering, again, Eq. (10) and recalling Eqs. (11) and (16), we obtain 
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that the equation for q reduces to 

2 

h2 
AV-V,q - ~~ (V - EI)Aq = 0. 

Next we prove that A which fulfills Eq. (1 1) is a unitary matrix. The proof 
is based on the fact that dl) is an antisymmetric matrix, namely, 

Consequently, taking the transpose of Eq. (1 1) we get 

Multiplying Eq. (11) from the left by A t  and Eq. (11' )  from the right by A 
and adding the results, we obtain 

or 

A ~ V A  -t ( V A ~ ) A  = o 

V(A+A) == O =  A ~ A  = c, 

where C is a constant matrix independent of R and r .  Without losing 
generality, one may choose A at a given point (r,, ,R,) to be equal to unity, 
namely, 

A(r, ,  R , )  = I. (21) 

Consequently, C is equal to I and therefore, for every r and R, we have 

or in other words A is a unitary matrix at every point. 

and obtain the equation 
Returning now to Eq. (17) we multiply this equation from the left by A t  

(23) 
2 
h2 

V;Vq - --(W - EI)q = 0, 

where W is an ordinary potential matrix 

w = AWA. (24) 
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Thus one may conclude that the adiabatic-diabatic transformation shifts the 
nonadiabatic coupling terms into the potential matrix. 

To solve Eqs. (12) we have to convert them into an integral equation. 
However, there are infinite numbers of these equations and we will mention 
two of them (here and in what follows we replace t(l) by t): 

In order to show that Eqs. (25) are equivalent to Eq. (12) we consider, as 
an example, Eq. (25a). 

The differentiation of Eq. (25a) with respect to r furnishes immediately 
Eq. (12b). The derivation of (12a) is somewhat more complicated. Differentiat- 
ing Eq. (25a) with respect to R yields 

Recalling Eqs. (12) (and assuming A to be analytic), it can be shown that 

Substituting Eq. (27) into Eq. (26) produces 

or 

dA 
~ + tRA = 0. 
aR 

( 12a') 

A similar proof can be given for Eq. (25b). 
Equation (25a) or (25b) are particularly convenient for the computation 

of A(r, R).  Equation (25a), for instance, furnishes the value of A at Q(rl, R , )  
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once its value at P(r, ,  R,) is known in two following steps (see Fig. la): 

1. The derivation of an intermediate matrix A(r, ,R,)  is carried out by 
solving the integral equation. 

W0, R , )  = “0, R1 I + tR(r,,R)A(r,, R)dR. (294 

2. The derivation of A ( r l , R l )  is obtained by solving the equation: 

It is noted that the derivation of A ( r , , R , )  involves two line integrals (see 
Fig. la): one along the straight line I = I, from R = R, to R = R ,  and the 
second along the line R = R ,  from r = ro to r = r , .  Similarly, in case of Eq. 
(25b), we first integrate along the line R = R ,  from r = r ,  to r = r ,  and then 
along the line r = r l  from R = R ,  to R = R , .  

This result can be generalized to any contour line that connects the two 
points P(r, ,  R , )  and Q(r , ,  R , )  (see Fig. la). If ds is a (directed) length element 
along a given contour line T(s), then Eq. (1 1) can be written in the form 

Integrating both sides produces the result 

so 

A(s,) = A(s,) + [ t.dsA(s), 
J s i  

where si, i = 0,1, stand for (r i ,  Ri) respectively. It is well noted from Fig. l a  
that each two paths form a contour. The fact that the result, at the end point 
of each path, does not depend on the path implies that any integral along 
a complete contour is zero. 

The theory presented so far was based on the assumption that tR and t, 
fulfill Eq. (13). The fulfillment of Eq. (1 3) is guaranteed as long as the electronic 
basis set comprises all the electronic wavefunctions. In what follows we 
discuss the situation when this requirement is not fulfilled. 

3. The Quasi- Adiabatic-Diabatic Transformation 

It is not realistic to expect that in a numerical treatment a complete adiabatic 
manifold will be used. In fact, so far, in all applications only two (adiabatic) 
states were included. In such cases Eq. (1  3) is not always fulfilled and therefore 
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K 

la 

Figure 1. (a) Three ditrerent paths that combine the two points P and Q; two of them are 
composed for straight lines parallel to the R and r axes. Along the third, which is an arbitrary 
path, we designated the length element ds. (b) Two different paths which combine the points 
P and Q; one avoiding the shadowed area and the other crossing it. The shadowed area designates 
the region for which the completeness requirement is not fulfilled. 
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the solutions as obtained in Eq. (25)  or (31) may not be unique. This problem 
was discussed in a series of and in a few of them also recipies 
were given how, partially, to resolve this difficulty. In what follows we first 
discuss an interesting idea by Pacher et al.37 and then present our approach. 

The basic observation by Pacher et al.37 is that in the ideal case when 
Eq. (1  3) is fulfilled the transformed nonadiabatic coupling terms, i given in 
the form 

are identically zero. This requirement is not always fulfilled in the reduced 
space. Consequently, they propose to define quasidiabatic states by 
demanding that the integral of the: Euclidean norm for matrices 

over the nuclear coordinates 

is minimal. This requirement led to an interesting equation for A: 

V-VA + AVAt.VA + AV.AtzA = 0. (35)  

This equation, as they put it, is too complicated for practical use. Moreover, 
since no analysis is given, the nature of the solution of such an equation is 
not clear. Some insight can be gained by assuming A to be unitary; then it 
can be shown, following some simple algebra, that is equation reduces to 

(V + AVAt).(VA + TA) = 0. (36) 

From this representation it is well noted that every solution of Eq. (1 1 )  is 
also a solution of Eq. (36). Thus, it is not obvious that the uniqueness of the 
quasidiabatic representation is guaranteed by this equation. 

Here we would like to suggest a different approach, namely, to try and 
modify the z matrices so that a unique solution is obtained. As an example 
we consider the two-surface case for which the condition for a unique solution 
is 
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Since the reduced representation of t, and tR does not satisfy this relation, 
we may modify either t, or tR (or even both) so that Eq. (37) is fulfilled. For 
instance, we introduce ?,: 

so that 

Substituting Eq. (38) into Eq. (39) yields an equation for &(r, R): 

which can be solved for each value of R 

&(r, R )  = & ( I O ,  R )  - [t ,(r ,  R )  - rR(ro, R ) ]  + dr 2. 1: :; 
Now, if along r = ro Eq. (37) is satisfied, this implies that 

4 r 0 ,  R )  = 0, 

and, consequently, the modified value of tR( r ,  R),  that is, ?,(r, R) ,  is given in 
the form 

If Eq. (37) is satisfied along the line R = R ,  (instead of along the line r = ro), 
then tr(r,  R )  will be modified so that: 

?,(r, R )  = t ,(r, R , )  + dR -. Lo (42') 

In many cases we may not need to do any corrections. The reason being 
that Eq. (31) is usually fulfilled except at regions where the nonadiabatic 
coupling is large. This happens in small regions of space configurations where 
the adiabatic surfaces come close to each other. If that is the case, then while 
applying the line integral to calculate A [eqs. (25) or (3 l)] one may distinguish 
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between “safe” paths and “unsafe” paths. The “safe” paths are those along 
which Eq. (37) is fulfilled and the “unsafe” ones are those along which Eq. 
(37) is not always satisfied. Two such paths are shown in Fig. lb, where the 
shadowed area is the region of the strong nonadiabatic couplings [where 
Eq. (37) is not expected to be satisfied]. Thus, it is noted that in order to 
derive the value of A ( r , R )  at Q ( r , R )  it is best to follow path I-l, whereas 
complications are expected when following path Tz. 

In summary it seems rather difficult to give a general solution for the 
nonuniqueness of A .  Each system has to be analyzed separately and, 
accordingly, the path for solving A has to be chosen. In most cases the 
calculation of A will be carried out using tR and t, as such. In a few others they 
may have to be modified as suggested in Eq. (42) or (42’). 

4. The Two-Surface Case 

The two-surface case is of particular interest because the representation of 
A becomes very simple. Since A is unitary, it can be written as 

coscr -since 

sincr coscr 
A = (  

where cr = a(r, R) .  For this case tR and t, have the form 

(43) 

and it can be shown that in this case T~ and t, commute. Substituting Eqs. (43) 
and (44) into Eqs. (12) yields two equations for c1: 

and the solution of these equations can be presented as line integrals along 
various paths. For instance, 

Thus the main simplification in the two-state case is that instead of solving 
integral equations we compute integrals. 

Having calculated c1 we can obtain the diabatic potential matrix elements 
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W [see Eq. (24)]: 

W ,  , = V ,  cos’ a + V2 sin’ a, 

W,,  = V ,  sin’ a + V2 cos’ a, 

W,’ = W,,  =+(Vz - V,)sin2a. 

(474 

(47b) 

(47d 

The resulting diabatic surfaces are expected to cross each other along a 
line (called seum), which can be represented as 

r = r (R) .  (48) 

The equation of the seam can be calculated from the equation 

Next we briefly study the various functions in the vicinity of the seam. To 
do that we express the angle a in terms of w ( r , R ) .  Substracting Eq. (47a) 
from (47b) yields 

w = ( V ,  - V ,  )cos 2a, (51) 

and taking the ratio between Eqs. (47c) and (51) leads to 

a = + i t an-  ‘ ( w ( r ,  R)/2W1,(r,  R)). (52) 

Since at r = r ( R )  the value of w(r, R)  is zero, we obtain the value of w(r ,  R) 
at the vicinity of r ( R )  as 

w’(r, R )  = [ r  -- r ( R ) ]  . 3 =,(R) (53) 

Defining now % ( R )  as 

where w: = (dw/dr)  and assuming that W 1 2 ( r ( R ) ,  R )  in the vicinity of r ( R )  is 
at most, weakly dependent on r, we obtain for a( r ,R)  [see Eq. ( 5 2 ) ]  at the 
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vicinity of the seum that 

x(r, R )  = in + $tan- ‘ ( r  - r (R)) /%(R)) .  ( 5 5 )  

Consequently, the corresponding expression for 7, is 

du 1 4 R )  7 =.-=--  
‘ d r  2 ;.(R)’ + ( r  - r(R))” 

A similar treatment can be carried out if the seam is presented as 

R = R(r ) .  (48’) 

However, in this case we obtain the translational nonadiabatic coupling term 
71: 

and wk(r, R) = (dw/C?R). 

( R ,  r )  or (r ,  R), then 
Thus, in general, if K ( X )  is defined as either A(R) or v ( r )  and ( x ,  y )  are either 

It happens that at x = x ,  the value of W , , ( x ,  y ( x ) )  becomes zero, which implies 
that K ( X )  also becomes zero. Then in the vicinity of x = x, we have 

I .  K 
lim r,(x, y )  = ~ Iim 

x - X I  2 x-x* h-’ + ( y  - Y(X))’ 

or applying a definition of the Dirac 6 function leads to 

lim t y ( x ,  y )  = +nS(y  - y(x , ) ) .  
x-xa 

(59) 

This result implies that at every point along the seam where the diabatic 
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lim a(r, R )  = 
R -  w 

coupling term becomes zero at least one nonadiabatic coupling term becomes 
a Dirac 6 function. 

A very familiar case of a nonadiabatic coupling term becoming a Dirac 
6 function is encountered in treating charge-transfer processes in 
atom-diatom collisions. Here the reagents are either (A', BC) or ( A ,  B C + )  
and therefore in many cases a well-defined seam is encountered in the 
asymptotic and near-asymptotic region. The seam, in this case, is a straight 
line along the R axis. Consequently, the vibrational nondadiabatic coupling 
term T r ( r ,  R )  takes the form 

I 0, r < Is, 

n 
r = r,, - 

4' 

- r > r,. 
n 

, 2' 

where r = r, is the location of the seam. 
As for zR(r, R )  it can be shown that 

lim T R ( r ,  R )  = 0. 
R -  w 

(56") 

This behavior of the two nonadiabatic coupling terms as R + 00 yields the 
following values for a(r, R): 

The asymptotic behavior of cI(r, R )  guarantees the correct asymptotic limit 
of the potential, namely, it leads to the correct diatomic potentials:. 

and W , ,  = 0. 

respectively. 
It is noted that in this case W ,  and W ,  are the potentials of BC and B C + ,  
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C. The Diatomic-in-Molecules Potential 

In contrast to ab initio treatments that always yield adiabatic information 
(adiabatic potential energy surfaces or adiabatic electronic wave function^),^^ 
the semiempirical methods usually deliver diabatic information, in particular, 
the diabatic potential energy matrix. Here the diagonal elements serve as the 
diabatic surfaces and the off-diagonal elements are the diabatic coupling 
terms. The most common method in this sense is the diatomics-in-molecules 
(DIM) method, which is now frequently used.39 Here one constructs a 
potential matrix with dimensions equal to the number of electronic states 
that are assumed to be relevant. LJsually the dimensionality of this matrix 
is too large to be applied directly in a scattering treatment, and the question 
is whether the dimensionality can be reduced in an inherent consistent way. 
It turns out that this can be achieved by transforming to the corresponding 
adiabatic representation. Since the adiabatic surfaces can be ordered 
according to their energy values, the reduction within this framework is 
straightforward. Whereas the derivation of the adiabatic potential energy 
surfaces is achieved by diagonaliting the diabatic potential matrix, the 
derivation of the nonadiabatic coupling term is some what more complicated. 
The latter can be obtained either by employing the Hellman-Feymnan 
t h e ~ r e m ' ~ " ' ~ ~ "  or by other methods. Let us consider the first method. 

If W and V are the diabatic and the adiabatic potential matrices, then 
the two are related by [see Eq. (2411 

w = AWA, 

where A is the unitary transformation matrix. Our aim is now to calculate 
z employing Eq. (1 1). Differentiating Eq. ( 2 4 )  and applying Eq. (1 1) we obtain 

A(VW)A~ == vv + vt - ZV. (64) 

If S is defined as the sum of the three products on the r.h.s. of Eq. (64), then 
it can be shown that the elements of s, that is, slm, are 

In the same way, if S is defined as the product appearing on the 1.h.s. of Eq. 
(64), then 

S,, = A,VWA;, (66) 

where Al  and A: are the lth and the mth row of A. Equating the two 



204 MICHAEL BAER 

expressions, namely, Eq. (65) and (66), one finds 

Here T~~ is a vector with the components 

A simpler expression can be obtained by making use of Eq. (1 l), namely,34a 

t = - (vA)A+, (69) 

or if a moresymmetrical representation is desired, t may also be written 

T = +(AVA+ - (vA)A+). (70) 

Once the nonadiabatic coupling terms, in addition to the adiabatic surfaces, 
are also known, one is able to transform to a diabatic representation of a 
reduced dimensionality. The back transformation is achieved by calculating 

where A,, is the solution of the equation 

VA,, -k t,,AJ, = 0. (1 1') 

Here, both V,, and T , ~  have dimensions that are smaller than those of V and 
z but contain the same corresponding elements. 

4. The Treatment of Reactive Systems 

In this chapter we concentrate on two types of systems: reactive and 
nonreactive. To treat a reactive system in its full dimensionality (including 
charge transfer) is a very time-consuming process. For this purpose we 
recently introduced a new method to treat reactive systems that is based on 
employing short-range negative imaginary potentials [which are termed as 
negative imaginary arrangement decoupling potentials (NIADP)] to 
convert a multiarrangement system into a quasiinelastic single-arrangement 
system.40 It is found that by doing so one obtains not only the correct 
inelastic transition probabilities but also the correct total (and sometimes 
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even state-to-state) transition probabilities for the various ignored 
product-arrangement channels. This conversion is done by substituting these 
potentials at the entrances of all arrangement channels. However, they must 
be located deep enough into each arrangement channel so that they absorb 
outgoing fluxes only. A valuable feature of the NIADPs is that they do not 
affect the wavefunction in the regions external to them, but once the 
wavefunction passes through them, it decays to zero within a short distance. 
The fact that the product-arrangement channels can be so harmless 
eliminated enables a reactive system to be treated as an inelastic one and, 
consequently, the various methods and approximations developed for the 
purpose of treating inelastic systems can now be used on reactive systems 
without any difficulties. 

To show how this conversion is done we consider a collinear reactive 
system (see Fig. 2) where the NIADP u,(r ,R)  is located at the entrance to 
the reactive arrangement-the shadowed area in the figure. We found that 
a convenient form for such a potential is 

I Q  , otherwise, 

1 

r=rI 

I = R  
R=RI 

Figure 2. The collinear-type mass-scaled potential energy surface. The negative imaginary 
arrangement decoupling potential u,(r, R)islocated in the shadowed area along the liner = r,. 
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where the range for R is essentially unlimited and uIo must fulfill the two 
inequalities4' 

Here E,, is the translational energy of the particle interacting with the 
NIADP, m is its mass and Ar, is the NIADPs nonzero range: 

Arl = r21  - rlI .  (74) 

In Eq. (73) the left-hand inequality guarantees that all the flux passing through 
this potential is absorbed and the right-hand inequality guarantees that no 
flux is reflected while passing through it. Once the parameters of this potential 
are determined (they can be determined a priori), the NIADP is added to 
the ordinary potential, which governs the motion of the interacting particles 
and considers the sum as an ordinary potential for an inelastic system. 

E. The Three-Dimensional System-The Introduction of the 
Infinite-Order Sudden Approximation 

In this chapter we do not intend to analyze the general three-dimensional 
system (this was done by us on several other o c ~ a s i o n s , ~ ~ ~ , ~ ~ )  because no 
numerical applications are available for this case. To our knowledge most 
of the three-dimensional numerical studies were carried out within the 
framework of the IOSA12,23,24,42-46 and therefore we will concentrate on 
this approximation. 

The general conditions for the validity of the IOSA were presented and 
discussed extensively elsewhere4' and will not be repeated here. The 
ion-molecule systems usually differ significantly from the atom-molecule 
systems, because the potential is much less dependent on the orientation 
angle y 2 3  defined as 

y = cos-'(i.r*). (75) 

Thus, the IOSA, which becomes more relevant the weaker the dependence 
of the potential on y, is expected to yield more reliable results for charged 
systems than for neutral ones. It is important to emphasize that the IOSA 
becomes exact for isotropic potentials being either rigid-rotor-type or 
breathing-sphere-type potentials. 

As was shown in Section I1 B 4  the most important function for the 
adiabatic-diabatic transformation for a Born-Oppenheimer two-surface 
system is the angle a given in Eq. (46). One way of extending the 
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two-dimensional expression to the three-dimensional case is 

where aoo(ro,Ro,yo) is some initial a value and ty is 

Since the IOSA is essentially a “frozen” y dynamics, it will be convenient for 
our purposes to define for each y an intermediate angle ao(ro, R,, y): 

ao(r0, RO, Y )  = aoo(r0, Ro, Y o )  + ~ y ( r o ,  Ro, Y ) d L  (78) s:, 
s:, s,“, 

so that a(r, R, y) is given in form 

‘(‘9 R, Y )  = ~ o ( ~ o , R o ,  Y )  + tr (r ,  R, y)dr  + t R ( r O >  R, y)dR. (79) 

Equation (79) is the one to be employed within the charge-transfer IOSA 
(CT-IOSA). The corresponding CT-IOSA equation to Eq. (23) is given in the 
form23,24 

+ Wll - E  111 + w12112 =o, 1 h2 a2 h2 d 2  h2 I ( / +  1)  h2 j ( j +  1) 

2mRaR2 2m,dr2 2mR R 2  2mr r2 
+--- +-- _ _ _ _ _ _ ~ ~ _  

+ w22 - E 112 + w, 211 1 = 0, 1 h2 a2 h2 az h2 I ( / +  1)  h2 j ( j +  1) 
2m,dR2 2m,dr2 2mR R2 2m, r2  

+--- +-- 

where 1 and j are the orbital and the internal angular momentum quantum 
numbers assumed to be conserved during the collision (the actual numerical 
treatment is carried out for j = 0). In Eq. (80) all three matrix elements W ,  1, 

W22, and W,, are functions of r,  R, and y, but whereas r and R are variables, 
y is a parameter. Consequently, the qi  functions are also parametrically 
dependent on y. The final physical magnitudes (as will be shown) are obtained 
following an integration over the angle y. 

To treat a reactive system all we have to do (as was discussed in the 
previous section) is to add NIADPs to the ordinary potential. In case the 
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two surfaces are reactive, the Wii,  i = 1,2, in Eq. (80) are replaced by42,43*45 

where 

However, if only the lower surface is reactive, then W2, is left unchanged 
and only W ,  is modified accordingly. Consequently, Eq. (80) becomes 
(assuming also that j = 0) 

Equations (83) were used (with some modifications that will be discussed) to 
calculate reactive cross sections for the (Ar + H2)+ system.42 

The solution of Eqs. (83) yields S matrix elements of the form 
S(E,  7, I1  qi, ui, qf, u,-), where E, y, and I were introduced earlier, q i  and qf stand 
for the initial and final electronic states, respectively, and ui and uf are the 
corresponding initial and final vibrational states. The fact that the interaction 
potential contains an imaginary component does not affect the hermitian 
property of the S matrix, but it may destroy its unitarity. The nonunitarity 
is related to the fact that the interaction may lead to exchange. Consequently, 
P,(E, y, I14i, ui) ,  the reaction probability for a given initial state (qi, ui ) ,  is 
calculated from the expression 

where the summation is carried out with respect to all (asymptotic) open 
states. 

In this work we consider four types of cross sections. 

1. Differential total (nonreactive) cross sections:23324 
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Here P ,  (cos 0) is the Ith Legendre polynomial, 8 is the scattering angle, and 
kqiv,  is the wave vector defined as 

where Eq+, is the initial vib-electronic eigenvalue. 
2. State-to-state (nonreactive) integral cross sections: 

1. . 
(87) 

and integral total reactive cross s e ~ t i o n s ~ ~ , ~ ~  

where a(Elq,, ui, 4,. u,) is defined in Eq. (87) 
3. Initial state (nonreactive) opacity functions: 

and the corresponding reactive f ~ n c t i o n s ~ ~ ' ~ ~  

where P(E,, IIq,, ui, 4,) is defined in Eq. (89). 
4. y-dependent initial state (nonreactive) cross sections: 

and the corresponding reactive cross sections: 

where a(E,ylqi,ui,q,) is defined in Eq. (91). 
This completes our theoretical section. 
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111. STUDIES OF SPECIFIC SYSTEMS 

A. Background 

The first quantum-mechanical studies of CT processes between an atom (ion) 
and a diatomic molecule were carried out for the two reactive systems 
(H, + H)+ and (Ar + H2)+  assuming the three atoms to be aligned, that is, 
the system to be collinear.2'*22 The extension to three dimensions was done 
about a decade later employing the IOSA.23724 Here we distinguish between 
reactive (exchange) and inelastic treatments. The inelastic studies were carried 
out for relative high energies ( 3  20eV), and the systems that were considered 
were (H2 + H)+,23 (0, + H)+,44 and (Ar + H2)+.12 In all three cases the 
reactive channels were ignored and the justification for this is that at such 
high energies exchange processes usually do not take place. The only 
low-energy study of this kind was carried out for the reactive (Ar + H2)+  
and here we distinguish between two studies: (1) the earlier for which 
the ordinary reactive IOSA was employed4' but without satisfactory results 
and (2) the latter4, in which the new IOSA with NIADP45 is used and for 
which much better results were obtained. The latter treatment, in contrast 
to the previous one, also utilizes three surfaces, which is the minimal number 
of surfaces required to obtain meaningful results that can be compared with 
experiment. 

To our knowledge there exists only one additional quantum-mechanical 
CT treatment that is based on the coupled-states-distorted-wave Born 
a p p r o ~ i m a t i o n . ~ ~  As the results of this study are presented elsewhere in this 
volume," they will not be discussed here. 

In what follows we mainly present results for two systems, the H, + H +  
system and its isotopic analogs and the (Ar + H2)+ system. A few results only 
will be shown for 0, + H +  as this system is discussed extensively in other 
chapters (see Chapters 3 , 4, and 5). 

B. The H2(D2, HD) + H+ Systems 

The study of the H, + H +  system is motivated by the experimental available 
vibrational resolved differential cross sections' for the inelastic and charge 
transfer channels for the collision processes: 

H ~ ( v ' )  + H + ,  AE,  = 0, (934 

H + H,f(u+), A E ,  = 1.83eV. (93b) 
H,(u = 0) + H +  + 

The experiments were performed at an energy of ELab (= +E,,) = 30 eV and 
encompassed scattering angles up to 20". At these high collision energies the 
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reactive (exchange) process has a very low probability’ and can be completely 
neglected. 

With only two electrons, this is the simplest of all ion-molecule collision 
systems. The potential hypersurface has extensively been studied, and it has 
been found that the computationally convenient DIM potential is 
reasonably This potential was used by Niedner et al.9 within 
the framework of the TSHM to calculate differential and total cross sections 
for direct comparison with the preceding experiment. 

1. Differential Cross Sections 

Differential cross sections for the vibrationally inelastic channel were 
calculated for the ground potential surface and compared with the 
experiment. The results are shown in Fig. 3a for u’ = 0,2,4, and 6 in Fig. 3b 
for v’ = 1 , 3 , 5  and for the “total.” Since the experiment only provides relative 
cross sections, they were arbitrarily matched to the theoretical total cross 
section by setting the experimental “total” cross section equal to the 
theoretical cross section at 8,, = 11”. The agreement between the theoretical 
calculations and the experiments is quite good. The IOSA treatment predicts 
the correct relative magnitude of the inelastic cross section all the way up 
to v‘ = 6. If shifted by 2.5” to smaller angles, the IOSA also nicely reproduces 
the overall shape of the cross section at angles smaller than the rainbow and 
even suggests that some of the predicted system undulation may also be 
present in the experimental distributions. The main observed discrepancy 
between theory and experiment is with respect to the position of the rainbow 
angle. It is noted that the rainbow angles calculated with IOSA are all shifted 
by about 2.5” toward larger angles. 

Differential quantum-mechanical cross sections for vibrational resolved 
CT processes are presented in Fig. 3c, where they are compared with the 
experiment. It is seen that the relative cross sections are once more nicely 
reproduced by the IOSA calculations. However, at  small angles 8 < 3”, there 
is a serious disagreement between theory and experiment, where the present 
IOSA predicts an increase in cross sections whereas the experiment shows 
a fall off. As for the CT rainbow, it is well reproduced by the IOSA treatment. 
However, as in the inelastic case, it is shifted by 2.5” to larger angles. 

Total differential cross sections for CT are presented in Fig. 3d, where the 
IOSA results are compared with both experiment and TSH results. It is well 
noted that whereas the IOSA produces the expected rainbow structure the 
TSH fails to do so. For the comparison with the experimental cross sections, 
which are only relative, an arbitrary normalization had to be introduced. In 
this case the magnitude of the experimental cross section was matched to 
the IOSA cross section at the rainbow angle. Since both theories provide 
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Figure 3. Vibrational inelastic (elastic) and CT differential cross sections; comparison 
between theory and experiment: ~ , theory, . .., experiment. The normalization at each case 
is done by making the experimental “total” curve equal to the corresponding theoretical curve 
at its rainbow angle (see Fig. 36 for the inelastic case and Fig. 3d for the CT case). (a )  Vibrational 
state-to-state inelastic (elastic) and total differential cross sections; even transitions. (b)  Like 
(Fig. 3a), but for the odd transitions. (c) State-to-state CT differential cross sections. (d)  Total 
CT differential cross sections. A comparison between theoretical (IOSA and TSH) and 
experimental results. The experimental curve is shifted in such a way that its maximum coincides 
with the IOSA maximum at their corresponding rainbow angles. The TSH curve is scaled 
correctly with the IOSA curve. 
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E,, = ZOeV 
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absolute cross section, the magnitudes can be compared directly, revealing 
that the TSH cross sections are smaller by nearly an order of magnitude. 

2. Integral Cross Sections 

The experimental (partial) integral cross sections as a function of u' and o+ 
are shown in Figs. 4a and 4b, respectively, where they are compared with 
the IOSA and TSH results. For the inelastic case the experiments were 
adjusted to match the theoretical absolute values for u '=O,  where both 
theories predict very similar values. It is seen that the IOSA calculation agree 
almost perfectly with the observed rapid decrease in cross section with u', 
whereas the TSH calculations are not nearly as good. For the CT case the 
experiments were adjusted to match the IOSA u f  = 0 result and an excellent 
agreement in the dependence of u +  is found. It is important to mention that 
neither the two theories nor the experiment come close to the distributions 
expected from the commonly used Franck-Condon factors. 

State-to-state integral cross sections, although not directly measured in 
the apparatus, can be derived from the differential cross sections. The 

IOSA 
Experiment 
' I S H  

_- 
. . . . . . . . . 

I I  I I I 1  I I - I 

0 2 4 6 8 0  2 4 6 8 

V' ( H z )  v + ( H t )  

0.01 

Figure 4. Experimental and theoretical (incomplete) final vibrational state distribution (see 
also Table I): (a) inelastic process and (b)  CT process. (FC stands for Frank-Condon-type 
transitions.) 
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procedure requires an integration of the angular distributions out to the 
largest angle. In the present study the detector probed only a limited angular 
range, that is, 0" < O,, < 18" and, consequently, only partial integral cross 
sections could be obtained. However, since this range includes the rainbow, 
most of the contributions to the inelastic and CT processes are expected to 
be from this region. This assumption was checked by integrating the IOSA 
differential cross sections over the entire angular range and comparing with 
the cross sections obtained by integrating just beyond the rainbow region. 
The results are compared in Table I, and it is seen that whereas most processes 
indeed take place in the rainbow region, contributions from the larger angular 
region cannot be ignored. In particular, it is noted that 40% of the CT 
processes occur in the angular region beyond the rainbow. 

Finally in Table I, the absolute cross section calculated within the IOSA 
are also listed. The total integral cross section for CT is found to be 1.1 A'. 
The closest available experimental result is c = 0.226A' at E,, = 50eV.50 
Assuming that the CT cross section decreases as E&, it is estimated to be 
0.57 A' at E,, = 20eV, which is about one-half of the IOSA value. The 
agreement is considered satisfactory in view of the approximate nature of 
the potential surface. At the same energy (i.e., E,, = 20eV) the TSH theory 
predicts a value of 0.3 A'. 

TABLE I 
Quantum-mechanical Integral Cross sections for the processes 

Cross Sections (A2) 
Final Vibrational 
State ( u ' , u + )  Inelastic Charge Transfer 

0 
1 
2 
3 
4 
5 
6 

Total 

52.4 (52.4y 

2.2 (2.06) 
0.77 (0.68) 
0.27 (0.209) 
0.13 (0.076) 
0.065 (0.026) 

5.3 (5.3) 

61.1 (60.75) 

0.53 (0.36)" 
0.33 (0.23) 
0.16 (0.10) 
0.088 (0.044) 

1.10 (0.73) 

"The numbers in parentheses are the corresponding partial cross sections calculated for the 
(rainbow) angular range 0 < OCM = 18". 
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2. On The Mechanism of Charge Transfer in 
The H 2 ( u  = 0) + H +  System 

The (nonreactive) vibronic states of the two coupled systems: (H, + H + )  and 
( H i  + H) are presented in Fig. 5 for the orientation angle y = 60". A similar 
situation is encountered for all other angles. In order for the CT process 

to take place the system has to be able to transform translational energy 
into internal energy (most likely vibrational energy) so that the transition 
from one set of vibronic states to the other becomes a resonantic-type 
transition. Consequently, the CT process can be visualized as a two-step CT 

0 1 2 3 4 5 
R [A1 

Figure 5. Electrovibronic potential curves along the reaction coordinate for the two lowest 
quasiadiabatic surfaces. (The calculations are done for y = 6 0 °  and for rmin =0.38, and 
r,,, = 2.2 A.) 
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H,(u = 0)  + H + -+ H,(u’ 2 4) + H +, (954 

where the most crucial step is the inelastic vibrational excitation process. 
Thus, the next question to be asked is how does the H, + H +  system get so 
strongly vibrationally excited. 

The (H, + H)+ is characterized by a relatively deep potential well 
( -4.8 eV) located at the strong interaction region. As can be seen from Fig. 5, 
this well may contain a large number of vibrational states all of them strongly 
coupled and, consequently, partially populated while the three particles are 
in close proximity to each other. These states are usually expected to become 
depopulated while the particles are receding from the potential well, but, 
since the higher vibrational states of the H, + H +  system are in a resonance 
condition with the lower vibrational states of the ( H l ,  H) system, the CT 
process may successfully compete with the depopulation process. In order 
to support this model, we consider the CT orientational-dependent integral 
cross sections (hence called CT steric factor) for the H, + H +  system and its 
two isotopic analogs D, + H +  and H D  + H+,46 all shown in Fig. 6. At the 
bottom of the figure the meaning of the orientation angle y for H D  is explicitly 
presented; thus, the proton is approaching the H D  molecule from the H side 
for 0 6 y < n/2 and from the D side for 71/2 < y < n. 

It is well noted that, whereas H, and D, possess only weak steric factors, 
a relatively strong steric factor is obtained for HD. In Ref.46 we also showed 
that a similar situation is encountered for the vibrational excitation steric 
factors. These findings indicate that the two processes, namely, vibrational 
excitation and CT transfer, as suggested by Eqs. (95), are strongly coupled 
and the second takes place following the first. 

C. The (Ar + H2)+ System 

The (Ar + H2)+ is unique in that, on the one hand, it contains all possible 
competing processes that may occur in an ion (atom)-diatom (ion) collision 
ranging from vibrational (inelastic) transitions through CT and spin-flip 
transitions to chemical reactions and dissociations and, on the other hand, 
it is still simple enough to be treated quantum mechanically. 

The processes that will be treated here are 

Ar+(2Pj) + H , ,  j = i, $, 
ArH+ + H, 

Ar + H i ( u + )  -+ 
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Figure 6. Orientational-dependent integral cross sections for charge transfer: --, 
Hf + H,; ---, H+ + HD, H+ + D,. 

and 

(974 

,4r+(2Pj.) + HZ(u’), j’( # j )  = i, i. (97c) 

The relative positions of the various vibrational levels are shown in Fig. 7. 
This section is organized in the following way: we start by discussing the 

potential and its extension to include the spin-flip transitions, next we consider 
high-energy results ( >/ 20 eV) for which the reactive channel is ignored, and 
finally we discuss the low-energy region for which reactive cross sections are 
also calculated. 

1. The Three-Surfuce System 

The potential energy surface assumed to govern the three-particle system is 
a DIM surface as derived by Kuntz and Roach.” However, in this potential 

Ar+(*Pj) + H2(u =O)+.  lAr ArH’ + H:(u+)7 + H, j = ’ 3  2’ 2’ (97b) 

I 
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v + = 4  
0.8 

v =  1 

v =  I 
v + =  3 

Figure 7. The eigenstate diagram of the (Ar + Hz)+ system. Note the resonance condition 
between Ar + H:(u+ = 2 )  and Ar+(’P,,,) + H,(u = 0). 

no spin-orbit coupling is built in and, therefore, a brief description of how 
this coupling is incorporated is given. 

The original DIM matrix is an 8 x 8 diabatic potential matrix, which is 
reduced to a 2 x 2 diabatic potential following diagonatization of the original 
matrix and employing the adiabatic-diabatic transformation for the 2 x 2 
adiabatic representation. Thus, we obtain 

where 

W ,  = V ,  cosz a- + V, sinZ a, 

W ,  = V ,  sinz u + V,  cos’ a, 

W I 2 =  W,,  = + ( V 2 -  V,)sin2a, (47‘) 

Here the meaning of Vi, i = 1,2, and a- was discussed in Section I1 B 4. It is 
important to emphasize that once the translational coordinate R becomes 
sufficiently large, W,(R,r)  and W,(R,r), which depend on R and the 
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vibrational coordinate r of the diatom, can be identified as the diatomic 
potentials of H: and H,, respectively. The energy difference of W,(R,r) and 
W,(R, I )  at their asymptotic limits are equal to the difference of the ionization 
energies for H, and Ar. 

Next we incorporate the spin-orbit coupling to distinguish between the 
the two states of Ar+, namely, Arf(2P3,2) and Ar+(2P,,2). Consequently, the 
W ( 3 )  matrix is constructed: 

(99) 

where mi, i = 1-3, are the new diabatic surfaces that correlate asymptotically 
with the Ar + H l ,  Ar+(2P312) + H,, and ArC(’PII,) + H, states, respectively. 
The wij, i,j = 1-3, are the diabatic couplings. To achieve this goal, we have 
made the following assumptions: 

1. The lowest diabatic surface within the new scheme remains unchanged, 
namely, 

2. The two higher surfaces w, and w, are chosen to be identical to W,, 
but shifted one with respect to the other: 

w, = w, + 62, 

w, = w3 + 6 3 ,  

where 6, - 6, = 0.178 eV, the energy difference between the two spin-orbit 
states, Ar+(2P,i2) and Ar+(2P1,2). The value of 6 ,  is determined in such a 
way that, asymptotically, the difference between the eigenvalue of the 
H:(u+ = 2)+ Ar state differs by 0.016eV from the eigenvalue of the 
H2(u = 0) + Ar+(2P112) ground state (see Fig. 7). Thus, 6, is assumed to be 
6 ,  = 0.233 eV. Having these values, 6, becomes 6, = 0.055 eV. 

3. Next we consider the two diabatic off-diagonal terms WI2 and W 3 1 ,  

which couple the ground-state surface with the two corresponding excited 
surfaces associated with the spin--orbit states of Ar+. Here, we follow a 
procedure devised by Tanaka et a1.6a and implement their zeroth-order case. 
According to their analysis, w,, and W13 are related to W , ,  as 
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4. The spin-orbit coupling energy term is known to be in general much 
weaker than the regular electronic terms. Consequently, the coupling energy 
term between the two surfaces due to the spin-orbit states, that is, W2,  and 
W , ,  are assumed to be zero throughout the numerical treatment: 

W2,  = w32 = 0. (1 03) 

Thus, the final 3 x 3 potential matrix W(3), which follows from Wt2), is 

This completes our discussion of the potential energy matrix employed 
in the calculations, except for one additional important comment: Whereas 
the Arf(2P,,2) ion may always give rise to CT while colliding with H,, only 
half of the Ar’(’P312) ions (those with mj = i) are capable of doing so. 
Consequently, all calculated cross sections for Ar+(’P3,2) are divided by two 
before the comparison with experiment is made. 

2. T h e  Study of C T  in T h e  High-Energy Region 

The calculation for CT were carried out at two energies: E,, = 19.3 eV and 
E,, = 47.6 eV for which experimental results are available. 

The CT cross section for reaction (96a) at the preceding two energies are 
presented in Figs. 8(a)-8(d), where they are compared with the experimental 
results. Figures 8(a) and 8(c) show the state-selected cross sections, crv+ (Ar’), 
and Figs. 8(b) and 8(d) show the partial state-to-state cross sections, 
cr ,++3/2 ,1 /2?  v +  =o,.*.>4. 

The main observations for Figs. 8(a) and 8(c) are as follows: 

1. The overall shapes of the experimental and calculated curves are very 
similar; the lowest cross section is observed to be for u +  = 0, whereas the 
largest cross section is found to be for u +  = 2. 

2. With the exception of the theoretical cross sections for v +  = 0, which 
seem to be too low compared to the experimental values, most of the 
theoretical cross sections are in fair agreement with the experimental 
results. 

3. It is expected that once the collision energy becomes sufficiently high, 
the importance of the vibronic coupling will disappear, yielding similar 
cross sections for all the lower vibrational states. This tendency is clearly 
seen in the theoretical results, but not to the same extent as in the 
experimental ones. 
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Figure 8. Comparison between CT-IOSA and experimental cross sections; (a) and (c) stand 
for the process Ar + H ; ( o + ) - t A r +  + H ,  and (b)  and ( d )  for the state-to-state processes 
Ar + H,'(v')-tAr+(2P,) + H Z , j  =f,i. (e)  and ( f )  are for the state-to-state process 
Ar+(,P,)+ H,(u=O)+Ar+ H,'(u+). (a) and (b) are for E,,= 19.3eV; (c) and (d )  are for 
E,, = 47.6eV; and (e)  and ( f )  are for E,, := 19.3 eV. Solid symbols are for experimental results 
and open ones are for theoretical results. In Figs. 7 b  and 7 d  0 , O - j  = f ;  A, A - j  = 2 2 '  
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The comparison of partial state-to-state cross sections in Figs. 8(b) and 
8(d) gives more detailed information about where the source for the difference 
between the experimental and theoretical results lies. It is seen that the 
calculated and measured curves for nu+ --t 1 / 2  overlap reasonably well. There- 
fore, the calculated values for o , , + + ~ / ~  are the main cause for the observed 
discrepancies. 

The CT cross sections for reaction (97a) at the energy E,, = 19.3 eV is 
presented in Figs. 8(e) and 8 ( f ) ,  where they are compared with the 
corresponding experimental results. The fit between the two kinds of results 
are reasonable except for the 03/2+2 and 0112+3 values shown in Figs. 8(e) 
and 8 ( f ) ,  respectively. The discrepancy for o ~ ~ ~ + ~  is reminiscent of a similar 
discrepancy found between the experimental and theoretical values for 02+ 312 

[see Fig. 8 ( b ) ] .  In contrast to the discrepancy for 03,2+2, the discrepancy for 
o ~ / ~ + ~  is somewhat unexpected because good agreement between the 
experimental and theoretical values for 03+ 112 was observed [see Fig. 8 ( b ) ] .  

TABLE I1 
Exchange Cross Sections (A') for the reactions Ar + Hl(u+)+ArH+ + H 

Trans- 
lational U +  

energy 

0.22 T1" 37.06 46.2 2.9 17.2 24.8 

(eV) U +  0 1 2 3 4 

- - - 20.0 
37.0 

- T2 
T3 - - - - 

0.48 T1 24.5 32.8 12.9 27.4 28.0 
- - - - T2 8.8 

T3 31.0 
El 27.0k1.4 31.0k1.6 22.5k1.5 26.5f1.8 28.0k3.2 
E2 27.4 34.0 21.3 32.3 36.4 

- - - __ 

0.75 T1 17.8 26.4 19.9 29.7 - 

E2 22.6 k4 .7  24.5 k4 .7  28.0k4.7 26.6 k4 .7  32.8 k4 .7  

- - 1 .oo TI 17.8 23.1 22.0 
T3 15.0 k 1.3 28.6 f 3.1 26.2 f 2.9 - 22.5 f 2.6 
El 25.6 k 1.3 28.0 k 1.4 22.0 f 1.5 23.3 f 1.6 25.0 f 3.7 
E3 51.8 66.1 69.1 67.7 73.4 

1.30 TI 16.4 21.7 ~ ~ ~ 

E2 21.5 5 5.4 23.6 k 5.4 26.0 & 5.4 31.8 f 5.4 25.4 f 5.4 

- 1.50 T1 15.3 ~ ~ ~ 

"Tl,  complex IOSA (Ref. 42); T2, previous RIOSA (Ref. 23); T3, TSH (Ref. 52); El,  Liao 
et al. (Ref. 12); E2, Tanaka et al. (Ref. 6); E3, Houle et al. (Ref. 5). 
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0 

0 

The fact that microscopic reversibility is fulfilled the~re t i ca l ly~~  seems to 
point to the conclusion that the experimental value for ( T ~ - ~ , ~  is too small. 

in The Low-Energy Region 

In the low-energy region, 0.22 6 ECM 6 1.5 eV, all processes listed in Eqs. (96) 
and (97) are encountered and were studied. The calculated cross sections 
were compared with experimental results obtained in three different 
laboratories. The comparison is presented in several tables and figures. 

3. The Study of Charge Transfer, Exchange, and Spin Transition 

- - 

I 

a. Results for Ar + H l ( v + )  + ArH' + H .  The initial state-selected total 
cross sections for these processes are presented in Table I1 and in Figs. 9 

Figure 9. Initial state-dependent total (absolute) cross sections for the exchange process 
Ar + H i ( u + ) + A r H +  + H. -, IOSA resu!ts (Ref. 42); 0, experimental results 
(Ref. 12); 0, .-n .-, experimental results (Ref. 6). (a) Results for E,, = 0.48 eV; (b) results for 
E,, = 0.75 eV. 
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and 10. The dependence on U’ for several translational energies E,, is shown 
in Fig. 9, and the dependence on ECM for various u +  states in Fig. 10. In 
Fig. 9(a) the IOSA cross sections for E,, = 0.48 eV are compared with 
experimental results obtained by Liao et a1.I2 and by Tanaka et aL6 It is 
seen that the features found in the experiment are nicely reproduced by the 
IOSA calculation, in particular, the strong dip at U +  = 2 and the shoulder 
at U +  = 1.  It is important to emphasize that here and elsewhere, unless 
otherwise specified, the comparison is between absolute cross sections for 
both theory and experiment, and therefore no normalization factors have 
been used. The theoretical IOSA cross sections are compared with Tanaka 

............... 
0.. ........... 

; 20 :‘i 10 

,---Q) 
8” ......... 0 r 

0 1 1 I I 1 I I I  1 
0.2 0.6 1.0 1.4 

@M (eV) 

Figure 10. Translational energy-dependent (absolute) cross sections for the exchange 
process Ar + H:(u+)+ArH+ + H. u, complex IOSA results (Ref. 42); A (previous) 
RlOSA results (Ref. 23); 0-0-0 experimental results (Ref. 12); O--O--O experimental 
results (Ref. 6). (a) Results for u t  = 0; (b) results for u +  = 1; (c) results for u +  = 2. Symbols between 
parantheses stand for linearly interpolated values with respect to the next measured cross section. 
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et al.’s6 results for E,, = 0.75 eV in Fig. 9(b). Again, a reasonably good fit is 
obtained. 

Energy-dependent cross sections for u +  = 0,1,2 are presented in 
Figs. 10(a), 10(b) and 1O(c), respectively. It is seen that for u +  = 0 , l  the fit 
among the different kinds of results is reasonably good. Note that, as far as 
the present version of the IOSA is ~oncerned,~’ not only does it reproduce 
the experimental results reasonably well, but it also gives values very close 
to the TSH ones.52 In Figs. 10(a) and lqb) ,  we give two results due to the 
previous IOSA version.23 It is seen how they differ significantly from all 
other results. 

In contrast to the results in Figs. 10(a) and 10(b), the fit between theory 
and experiment presented in Fig. 1O(c) is somewhat less encouraging. The 
theoretical curve shows a stronger dependence on the energy than the 
experimental curves do, although all results seem to decrease as the energy 
decreases. This behavior is unexpected, because it hints at the existence of a 
potential barrier, which does not seem to exist for the initial u+ = 0,l  states. 
We discuss this finding in greater detail in Section 111 C 4. 

b. Results for A r + ( * P j )  + H ,  -, A r H +  + H .  Energy-dependent cross sec- 
tions for Ar+(2P,iz) and Ar+(2P,,/,) are shown in Figs. ll(a) and 1 l(b), 
respectively. Again, the theoretical results are compared with the 
experimental. In general, Liao et al.’s experimental results fit the theoretical 
results much better than do those of Tanaka et al.I73l8 For both spin states, 
Tanaka et al.’s cross sections are not only larger than the others, but they 
also show a much stronger energy dependence. The more encouraging 
outcome of this comparison is the nice fit between Liao et al.’s experimental 
and the theoretical results for energies higher than 0.4 eV. Still, the different 
behavior at low energies is puzzling. 

c. Results for Ar + H : ( u + ) - + A ~ + ( ~ P ~ )  + H , .  The cross sections for these 
CT processes are presented in Tables 111 and IV and in Figs. 12-14. 

Initially we discuss the CT process in general, not distinguishing between 
the two spin states of Ar+. The energy-dependent cross sections for u+ = 1 
and u +  = 2 are in Figs. 12(a) and 12(b), respectively. In general, a reasonable 
fit between theory and experiment is obtained. This means that for u +  = 1 
the cross sections are small (2-6 A’), whereas for u’ = 2 they are much larger 
(20-40A’). However, whereas for v +  = 1 we obtain the correct energy 
dependence, we fail to do so in the case of U +  = 2. The reason may be 
associated with the fact that (u’ = 2 )  is in resonance with ( u  = 0, j = i) state, 
and therefore the numerical results are much more sensitive to the details 
of the potential (which is semiempirical, as was mentioned). In Fig. 13 we 
present the dependence of the CT cross sections on the initial vibrational 
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Figure 11. Translational energy-dependent (absolute) cross sections for the exchange 
process Ar+(’Pj) + H,(u = O)-,ArH+ + H. Symbols as in Fig. 10. (a)  Results for j = $; (b) results 
f o r j = l  2’ 

states of H:. The results for E,, = 0.48 eV are presented in Fig. 13(a) and 
those for E,, =0.75eV in Fig. 13(b). In Fig. 13(a), the IOSA results are 
compared with Liao et al. experimental results” as well as with those of 
Tanaka et a1.,6 while in Fig. 13(b), they are compared only with those of 
Tanaka et aL6 A nice agreement is shown in Fig. 7(a) (note that we show 
absolute, not relative, cross sections). A less encouraging fit is shown in 
Fig. 13(b), mainly due to the large cross section at u +  = 2. More detailed 
results are shown in Fig. 14, where we distinguish between the two final 
Ar+(’Pj) states. The theoretical results are compared with Liao et al. 
experimental values (at E,, = 0.48 eV), which are the only ones available. 
Again, a nice fit is obtained. 
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TABLE I11 
Charge-Transfer Cross Sections (AZ) for the Process Ar + H:(u+)+Ar+ + H, 

Trans- 
lational U +  

energy 
(ev) U +  0 1 2 3 4 

0.22 T1" 
T2 
T3 

0.48 TI 
T2 
T3 
El 
E2 

0.75 T1 
E2 

1 .oo T1 
T3 
El 
E3 

1.25 T l  
E2 

1.5 T1 

Closed 
Closed 
Closed 

0.2 
2.6 
0.8 
2.0f0.1 
0.0 f 2.8 

0.7 
0.3 f 2.6 

0.6 
1.9 f 0.5 
2.0 f 0.1 
3.1 

0.8 
1 .o f 3.4 

0.9 

1.7 
24.0 
31.0 

3.3 
- 

- 

5.3 f 0.3 
3.3 f 2.8 

4.2 
3.6 f 2.3 

6.6 
26.6 f 3.1 

5.9 f 0.3 
17.1 

7.1 
6.4 k 3.4 

17.2 

31.2 
- 

~ 

27.5 f 2.0 
25.9 2.8 

40.5 
2.5.8 k 2.6 

44.0 
22.4 f 3.6 
27.0 f 1.9 
47.2 

~ 

28.4 & 3.4 

7.5 
- 

- 

7.7 
- 

- 

14.6 f 0.9 
10.8 f 2.8 

8.3 
14.2 k 2.6 

15.5 * 1.1 
28.4 

~ 

16.9 & 3.4 

10.8 
- 

- 

12.0 
- 

- 

13.6 f 2.1 
6.9 f 2.8 

- 

9.6 f 2.6 

21.1 & 3.6 
11.7f 1.8 
24.4 

~ 

9.4 & 3.4 

"TI, Complex IOSA (Ref. 42); T2, previous RIOSA (Ref. 23); T3, TSH (Ref. 52); E l ,  Liao 
et al. (Ref. 12); E2, Tanaka et al. (Ref. 6); E3, Houle et al. (Ref. 5). 

d.  Results for  Ar+('P,)  ;t H , ( v  = O)-+Ar + H l ( v + ) .  Results for these CT 
processes are presented in Figs. 15 and 16. In Fig. 15 we show the energy- 
dependent cross sections for the two initial spin states of Ar'. The theoretical 
cross sections are compared with Liao et a1.I2 experimental values and with 
those of Henri et a1.* In general, the agreement is good, namely, for j = t 
both theory and experiment yield small cross sections (less than 6 A 2 )  and 
for j = they yield larger cross sections (> 15 A'). However, whereas for j  = 3 
the IOSA correctly reproduces the energy dependence of these cross sections, 
it fails to do so for the j  = $case, where the steep increase of the cross sections 
as a function of the energy is not observed in the experiments. 

The final vibrational distribution for the product ion H l  for E,, = 1.OeV 
is presented for j = $ in Fig. 16(a) and that for j = in Fig. 16(b). Whereas 
the fit between experiment (Liao et al.)" and theory is not satisfactory for 
Ar+(2P,12), a nice agreement is obtained for Ar+(2P,12). One possible reason 
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TABLE IV 
State-to-State Charge-Transfer Cross Sections (A2) for Ar + Hi(ui)-+Ar+(2P,) + H 2  

Trans- 
lational 
energy 
(ev) 

0.22 T“ 
E 

T 
E 

0.48 T 
E 

T 
E 

0.75 T 
E 

T 
E 

1 .oo T 
E 

T 
E 

1.25 T 
T 

1.50 T 
T 

li+ 

i 0 i 2 3 4 

3 
2 

2 

1 
2 
1 
2 

3 
2 

2 

1 

2 1 

2 

3 
2 
3 
2 

1 
2 
1 
2 

3 

2 3 

2 

1 
2 
1 
2 

3 
2 1 
2 

3 

~ 

~ 

~ 

~ 

~ 

- 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

5 

Closed 
Closed 

Closed 
Closed 

0.2 
2.0+0.1 

Closed 
Closed 

0.6 
~ 

0.03 
- 

0.6 
2.0 * 0.1 

0.07 
0.0 

0.6 
0.1 

0.8 
0.1 

1.7 
- 

Closed 
Closed 

3.1 
5.3 f 0.4 

0.2 
0.0 

3.8 
- 

0.4 
~ 

6.2 
5.9 k 0.4 

0.4 
0.0 

6.8 
0.5 

~ 

- 

0.5 
- 

17.1 
- 

1 .o 
6.0 f 0.5 

30.6 
21.5 1.5 

1.8 
- 

38.7 
- 

3.0 
6.3 + 0.6 

40.8 
21.3 & 1.5 

- 

- 

~ 

- 

1 . 1  
- 

6.4 
- 

1.6 
4 * 3  

6.1 
1 1 1 3  

0.9 
- 

6.3 

- 
4 1  1.5 

- 

11.5 f 1.5 

- 

- 

- 
- 

5.8 
~ 

5.0 
- 

5.4 
4 f 3  

5.0 
1 0 f 3  

- 

- 

~ 

- 

- 

8.2 k 3.5 

- 

3.5 & 3.5 

- 

~ 

~ 

- 

‘T, Complex IOSA; E, Liao et al. (Ref. 12) 

for the poor fit in the case of j = $ could be the overall small cross sections 
in this case, which may lead to larger experimental errors. 

e.  Results for A r + ( ’ P j )  + H , ( u  = 0) + Ar+(’Pj . )  + H , .  Cross sections for 
spin transitions as a function of energy are presented in Fig. 17. Except for 
E,, = 1.2 eV, experimental values are unavailable. Note that at this energy 
a good agreement is obtained with the experimental results of Liao et al.” 
for the endothermic processes cross section $++, but the agreement is less 
than satisfactory for the reverse process. As for the energy dependence, 
measurements at high energies indicate that both cross sections increase. 
This finding is confirmed in the calculations. 
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Figure 12. Translational energy-dependent (absolute) cross sections for the CT process 
Ar + HZ+(c+)+Ar+ + H,. Symbols as in Fig. 10. (0 )  Results for u +  = 1 ;  (b) results for u +  = 2. 

4. Discussion 

a.  The dominant feature of the (Ar + H,)' ionic system 
is the existence of vibronic resonance in the entrance (reagents) channel 
between u = 0 of the Ar'(2P,,2) + H, system and the u' = 2 of the Ar + H i  
system. This situation is best described in Fig. 18 (but see Fig. 6), where we 
present vibronic curves, as a function of the translational coordinate R for 
the two Ar'('PI) + H, systems and the Ar + H: system. Note that, not only 
does the previously-mentioned resonance [designated as (i, 2)] exist in the 
asymptotic region, but it continues to smaller R values, where the diabatic 
coupling terms between the lower and the two upper surfaces become strong 
enough. Somewhat less pronounced is the resonance between the 
Ar+('P,,,) + H,(u = 0) and the Ar + H,(u+ = 1 )  [designated as (t, l)]. The 

The Resonances. 
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Figure 13. Initial state-selected total (absolute) cross sections for the CT process 
Ar + H;(u+)+Ar+ + H,. Symbols as in Fig. 9. (a) Results for E,, = 0.48eV (b) results for 
E,, = 0.75 eV. 

30 t 
/ \  

L 
n 

0 1 2 3 4 
V +  

Figure 14. State-to-state integral (absolute) cross section for the CT process Ar + H l ( u + ) +  
Ar+(2Pj) + H, as obtained for E,, = 0.48eV. ~ , IOSA results (Ref. 42); ---, experimental 
results (Ref. 12); 0, results for j = $; 0 ,  results for j = 5 .  
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Figure 15. Translational energy-dependent (absolute) cross sections for the C T  process 
Ar+(’P,) + H,(u = O)+Ar + H2f. -, IOSA results (Ref. 42); 0-0-0, experimental 
results (Ref. 12); --lJ--, experimental results (Ref. 8). (a) j = ;, (b) j = 4. 

(+, 2) resonance is much stronger than the (3,l) not only due to the differences 
in the (asymptotic) energy gaps (0.019 eV vs 0.063 eV), but also because this 
smaller energy gap continues to smaller R distances. Many of the results 
shown in the previous section, both in the figures and in the tables, support 
this observation. 

At this point we examine the existence of the resonance from a different 
perspective. In order to do so, we calculated differential cross sections, which 
are presented for El,, = 1.435eV in Fig. 19. In Fig. 19(a) we show differential 
cross sections for the two previously mentioned processes. For both we obtain 
strong forward scattering, but two main differences are apparent: ( 1 )  whereas 
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0 1 2 3 4 
v + 

Figure 16. Final vibrational distribution. (Relative) cross-sections (o( j - t  u+))/a( j + Z ( u + ) )  
for the charge-transfer process Ar+(’P,) + H,(o = O)+Ar + Hl(o+) ,  as  calculated at 
E,, = 1.0eV. -0, IOSA results (Ref. 42); 00-0, experimental results (Ref. 12). (a)  
Results for j = $; (b) results for j = i. 

0 0.4 0.8 1.2 
ECM (eV) 

Figure 17. Translational energy-dependent (absolute) cross section for the spin-transition 
process Ar+(’P,) + H,(u = O)-Ar’(2Pj.) + H,; j (  # j ’ )  = +,$.- , IOSA results for the (5  + i) 
transition; ---, IOSA results for the (i-;) transition; W ,  experimental result for the ($-$) 
transition: 0 ,  experimental result for the (t -2) transition. 
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a very clear rainbow scattering is seen in the ( + , 2 )  case, it seems not to be 
present in the ($, I )  case. (2) The relative contribution of the forward angular 
range to the integral cross section is much larger for the (+,2) case. For 
instance, the contribution of the (0,50") angular range in the (+,2) case is 
about 70%, whereas in the ($, 1) case it is only 43%. 

The importance of the resonance becomes even more apparent in 
Fig. 19(b), where the differential cross sections for the reactions 
Ar + H l  (o+ = 2) -+ Ar+(*Pj) + H2 [designated as (2,j)l are presented. For 
all practical purposes the (2 ,$  curve is identical to the ($2) curve, which is 
another strong indication that these two states are strongly coupled. As an 
example of a nonresonance case, we show in the same figure the differential 
cross sections for the (2,;) case. Note that the strong forward region is nearly 
missing and also that the rainbow shows up at smaller angles, indicating a 
shallower potential well. 

Experimental differential cross sections for the charge-transfer process are 
hardly available and those that are available are not state-to-state cross 
sections. Still the cross sections relevant to ours seem to fit rather well, 
qualitatively, with our calculated cross sections: 

Figure 18. Vibronic potential curves along the translational coordinate R for the three 
quasiadiabatic potential energy surfaces. The calculations were carried out for y = 30 , 
rmln = 0.3 A, and rmai = 4A. 
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Figure 19. State-to-state differential cross sections for the charge-transfer process as 
calculated for E,,, = 1.435 eV. ~ , Results for j = +; ---, results for j = 5. (a)  Ar+(’P,) + 
H,(u=O)+Ar+Hl(u+  =2); (b)  A r + H l ( u +  = 2 ) - + A r + ( Z P j ) + H , .  

1. Hied et al.(3) measured the differential cross section for the process 

Ar+ + H,(u = O)+Ar + H l  (105) 

and found, for the energy value E,, = 0.45 eV (which is that closest to ours) 
essentially a similar distribution; namely, a strong forward peak in the angular 
range 0 < 9,, < 60 and only minor contributions from the rest of the angular 
range. 

2. Bilotta et al.(4) measured the differential cross section for the reversed 
reaction 

where the H l  beam possesses, owing to electron impact of H,, the 
corresponding vibrational Frank-Condon distribution. For the translational 
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energy E,, = 0.45 eV, a dominant forward distribution is obtained (the 
authors labeled it “backward”), which again qualitatively fits ours. 

However, whereas the calculated differential cross sections show a clear 
rainbow structure, this structure is lacking in the experimental cross sections. 
It is quite possible that since neither the initial nor the final states in the 
experiment are well selected, this structure, which is typical only for the 
resonantic transitions, is smeared out. 

In Fig. 20 we show /-weighted opacity functions (21 + I)P(E, ,  11 ...), where 
P(E, , II . . . )  is defined in Eq. (89). In Fig. 2qa) are presented the opacity 
functions for (AI-+(~P,,,), H,) and in Fig. 2qb) those for (Ar+(,P,,,), H,). 
In each figure we show curves, one for the exchange and the other for the 
CT process. The most interesting pattern is that seen in Fig. 20(a) for the 
CT process. The curve has at least three maxima: the largest maximum stands 
for the forward scattering, the next can be identified as responsible for the 
rainbow scattering, and the third, and so on, are responsible for the 
supernumerary rainbows. A similar structure is obtained in Fig. 20(b), but 
its size is much smaller. 

160 
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30 60 90 120 150 180 
1 

I-weighted opacity functions ((21 + I)P,) for charge-transfer and exchange 
processes, as calculated for E,,, = 1.435 eV. (0)  Results for j = f; (b)  results for j = $. -, 
Ar+(2Pj)+H2(u=0)+Ar+H;(u+ =2); ---, Arf (2Pj )+H2(u=0)+ArH+ + H .  

Figure 20. 
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b. Exchange Versus Charge Transfer. The second feature that characterizes 
the (Ar + H,)+ system is the competition between CT and exchange processes. 
This is best presented in terms of the 1-weighted opacity functions shown in 
Fig. 20. Note that for the more resonant case, Ar+('PIiz), the CT process is 
not much affected by the exchange, because the CT takes place mainly at 
the large4 region, whereas the exchange occurs at the lower4 region. 
However, since the CT process is also relatively strong in the low4 region, 
it competes directly with the reaction process and probably decreases the 
reactive cross sections. In the less resonant case, Ar+(2P3,z), the competition 
between the two processes is direct, both are affected, and probably this 
results in smaller cross sections compared to those without competition. This 
is expected to occur in all other cases, as is noted from the reactive opactiy 
functions presented in Fig. 21 for E,,, = 1.435eV. All of these functions have 
a similar pattern with similar numerical values. The probabilities for 
Ar+(2P,,2) + H, are smaller because the calculated values are divided by 2 
for symmetry considerations. 

D. The (H + 0,)' System 

The theoretical investigation of the (H + 0,)' was inspired by the experi- 
mental study of No11 and Toennies" of the process: 

H f  + O,(u') 
H + O:(u') 

H' + O , ( c = O ) +  

carried out at E,, = 23.00 eV. 

0.8 , 
0.6 

Y 
.d - .- 
a 
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0.4 
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I '=.._ 
0 20 40 60 80 100 120 

1 

Figure 21. Opacity functions for exchange processes as calculated at E,,, = 1.435eV. r +  
stands for the process A r + H l ( v + ) + A r H +  + H .  j stands for the process Ar+( 'P , )+  
H,(u=O)+ArH' + H. 
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Figure 22. A comparison between experimental (Ref. 10) and theoretical (Ref. 44a) cross 
sections at E,, = 23.0eV. The theoretical results were obtained using the Effective Model 
Potential approach; 0,  experimental results. ~ , theoretical results. VE, pure elastic and 
inelastic cross sections. CT, charge-transfer cross sections. 

At this energy the reactive (exchange) processes are not likely to take place 
and therefore the reactive arrangement channel can be ignored in the 
treatment. Since this system is also reviewed in other chapters (Chapters 
3-5) we will mention here only a few results. 

The (H + 02)+ system was treated by two groups; both groups used the 
same method, but each employed a different potential energy surface. In 
Fig. 22 we compare the experimental and quantum mechanical cross sections 
for the (pure) inelastic-elastic process and the CT process, obtained using 
the effective model potential approach.44a A very nice fit is noted. In Fig. 23 
three sets of vibrational-resolved angular-dependent CT probabilities are 
shown: experimental results and theoretical results based on the DIM 
potential approach44b and the effective model potential approach.44a In 
general the results produced with the DIM potential seem to fit experiment 
better. 
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Figure 23. A comparison between experimental and theoretical results for the CT process 
H +  +O,(u=O)+H +Ol(u' )  as carried out at EC,=23.0eV. Relative CT probabilities (for 
each of the final vibrational states) as a function of the center of mass scattering angle 8. 0,  
experimental results (Ref. 10). +, theoretical results-effective potential (Ref. Ma). 0, theoretical 
results-DIM potential (Ref. 44b). 

IV. SUMMARY 

In this chapter we concentrated on ion-molecule collisions accompanied by 
charge transfer. The emphasis was on a rigorous quantum-mechanical 
approach (rather than models), which is composed of three parts: 

1. A consistent treatment that enables the reduction of a large-dimensional 
DIM matrix (such as 8 x 8 or 16 x 16) to a small-dimensional (such as 
2 x 2) diabatic matrix. 

2. The incorporation of the negative imaginary arrangement decoupling 
potentials, which enables the treatment of a reactive system as if it were 
nonreactive and still obtaining the correct reactive (exchange) and CT 
cross sections. 
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3. The introduction of the infinite-order sudden approximation, which 

In this review were presented CT (and other) cross sections for three 
different system. Part of the cases were treated in the high-energy region 
(EcM 2 20 eV), but we also reported on many results for the low-energy region 
(EcM < 1.5 eV). In the high-energy region the exchange channel was ignored 
but in the low-energy region it was incorporated employing the NIADP. All 
cross sections were compared with experimental results. In many cases 
the comparison was carried out with respect to absolute values [this accounts 
mainly for the (Ar + H,)' system]. The comparison was more than 
encouraging. This applies for total integral cross sections as well as the 
vibrational resolved differential cross sections. 

The fact that we have a reliable numerical method available for treating 
quantum-mechanical CT processes for nonreactive and reactive system calls 
for extension of this approach to larger (and therefore to more interesting) 
systems. In fact the first steps in this direction were already initiated. Recently, 
we completed a preliminary of the di-ion-diatom system, that is, 
H, + H l  and the results that followed were most interesting. The fit 
with experiment was reasonable but still more calculations are necessary. 

enables the treatment of these processes in three dimensions. 

References 

1. Z. Herman, K. Kerstetter, T. Rose, and R. Wolfgang, Disc. Farad. SOC. 44, 123 (1967). J. R. 
Krenos and R. Wolfgang, J. Chem. Phys. 52, 5961 (1970); J. R. Krenos, R. K. Preston, 
R. Wolfgang and J. C. Tully, J. Chem. Phys. 60, 1634 (1971). 

2. W. A. Chupka and M. E. Russel, J. Chem. Phys. 49, 5426 (1968). 

3. P. M. Hierl, V. Pacak, and Z. Herman, J. Chem. Phys. 67, 2678 (1977). 
4. M. Billota, F. N. Preuminger, and J. M. Farrar, Chem. Phys. Lett. 74, 95 (1980); J .  Chem. 

5. F. A. Houle, S. L. Anderson, D. Gerlich, T. Turner, and Y. T. Lee, Chem. Phys. Lett. 82, 

6. (a) K. Tanaka, J. Durup, T. Koto, and I. Koyano, J .  Chem. Phys. 74, 5561 (1981). (b )  K. 

7. K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 83,166 (1985); P. Tosi, F. Boldo, F. Eccher, 

8. G. Henri, M. Lavallee, 0. Dutuit, J. B. Ozenne, P. M. Guyon, and E. A. Gislason, J. Chem. 

9. G. Niedner, M. Noll, J. P. Toennies, and Ch. Schlier, J .  Chem. Phys. 87, 2685 (1987). 

Phys. 73, 1637 (1980); 74, 1699 (1981). 

392 (1981); J .  Chem. Phys. 77, 748 (1982). 

Tanaka, T. Kato, and I. Koyano, J. Chem. Phys. 75, 4941 (1981). 

M. Fillipi, and D. Bassi, Chem. Phys. Lett. 164, 471 (1989). 

Phys. 88, 6381 (1988). 

10. M. No11 and J. P. Toennies, J. Chem. Phys. 85, 3313 (1986). 
11. C. L. Liao, C. Y. Liao, and C. Y. Ng, Chem. Phys. Lett. 81, 5672 (1984); 82, 5489 (1985). 

J. D. Shao and C. Y. Ng, Chem. Phys. Lett. 118,481 (1985); J .  Chem. Phys. 84,4317 (1986). 
C. L. Liao, R. Xu, G. D. Flesch, Y. G. Li, and C. Y. Ng, J. Chem. Phys. 85, 3874 (1986); 
J. D. Shao, Y. G. Li, G. D. Flesch, and C. Y. Ng, J .  Chem. Phys. 86, 170 (1987). 



240 MICHAEL BAER 

12. (a )  C. L. Liao, R. Xu, G. D. Flesch, M. Baer and C. Y. Ng, J .  Chem. Phys. 93,4818 (1990). 
(b)  C. L. Liao, R. Xu, S. Nourbaksh, G. D. Flesch, M. Baer, and C. Y. Ng, J .  Chem. Phys. 
93, 4832 (1990). 

13. A. Bjerre and E. E. Nikitin, Chem. Phys. Lett. 1, 179 (1967). 

14. (a )  R. K. Preston and J. C. Tully, J .  Chem. Phys. 54, 4297 (1971); (b)  J. C. Tully and R. K. 

15. E. Bauer, E. R. Fisher, and F. R. Gilmore, J .  Chem. Phys. 51, 4173 (1969). A. detailed 

16. L. D. Landau, J .  Chem. Phys. 82, 4033 (1985); C. Zener, Proc. R. Soc. London Ser. A 137, 

17. 1. Last and M. Baer, Molec. Phys. 54, 265 (1985). 

18. S. Chapman (Chap. 6, this volume). 

19. E. Gislason, G .  Parlant, and M. Sizurn (Chap. 5, this volume). 
20. G.  D. Billing, Comput. Phys.  Dept. 1, 237 (1984). 

21. ( a )  Z. H. Top and M. Baer, J .  Chem. Phys. 64, 3078 (1976); (b)  J .  Chem. Phys. 66, 1363 
(1977); (c)  Chem. Phys. 25, 1, 1977. 

22. M. Baer and J. A. Beswick, Chem. Phys. Lett. 51, 360 (1977); M. Baer, Molec. Phys. 35, 1637 
(1978); M. Baer and J. A. Beswick, Phys. Rev. A 19, 1559 (1979). 

23. M. Baer and H. Nakamura, J .  Chem. Phys. 87, 4651 (1987); M. Baer, H. Nakamura, and 
A. Ohsaki, Chem. Phys. Lett. 131,468 (1986); M. Baer and H. Nakamura, J .  Phys. Chem. 91, 
5503 (1987). 

24. M. Baer, G .  Niedner-Schatteburg, and J. P. Toennies, J .  Chem. Phys. 88, 1461 (1988); 91, 
4169 (1989). 

25. M. Born and J. R. Oppenheimer, Ann. Phys. (Leipzig) 84, 457 (1927). 

26. E. C. G. Stuckelberg, Helu. Phys. Acta 5, 89 (1932). 

27. W. Lichten, Phys. Rev. 131, 229 (1963). 
28. W. D. Hobie and A. D. Mclachlan, J .  Chem. Phys. 33, 1695 (1960). 

29. M. S. Child, Molec. Phys.  20, 171 (1971). 
30. F. T. Smith, Phys. Rev. 179, 111 (1969). 
31. R. de L. Kronig, Band Spectra and Molecular Spectra, Cambridge University Press, New 

32. D. R. Bates, Proc. R .  Soc. London Ser. A 240, 22 (1952); 257, 22 (1960). 

33. M. S. Child, in Atom-Molecule, Collision Theory, R. B. Bernstein, Ed., Plenum. Press, 
New York, 1979, p. 427; J. C. Tully, in Dynamics ofMolecule Collisions, Part B. W. H. Miller, 
Ed., Plenum Press, New York 1976, p.217. 

34. (a )  M. Baer in The Theory ofChernical Reaction Dynamics, M. Baer, Ed. CRC, Boca-Raton, 
FL, 1985, Vol. 11, Chap. IV. (b)  V. Sidis, in Advances in Atomic and Molecular Physics, D. R. 
Bates and B. Baderson, Eds., Academic Press, New York, 1989. 

Preston, J .  Chem. Phys. 55, 562 (1971). 

application of this model is given by M. S. Child and M. Baer, J .  Chem. Phys. 74,2832 (1981). 

696 (1932). 

York, 1930, Chap. 6. 

35. M. Baer, Chem. Phys. Lett. 35, 112 (1975). 

36. H. Koppel, W. Domke, and L. S. Cederbaum, Adv. Chem. Phys. 57,59 (1984); C. Petrongolo, 
R. J. Buenker, and S. D. Peyerimhoff, J .  Chem. Phys. 78, 7284 (1983); T. Pacher, L. S. 
Cederbaum, and H. Koppel, J .  Chem. Phys. 89, 7367 (1988). 

37. T. Pacher, C. A. Mead, L. S. Cederbaum, and H. Koppel, J .  Chem., Phys. 91, 7057 (1989). 

38. D. Yarkony (this volume, Chap. I). 



QUANTUM-MECHANICAL TREATMENT FOR CHARGE-TRANSFER 241 

39. F. 0. Ellison, J .  Am.  Chem. Sac. 85,3540,3544 (1963); I? J. Kuntz, in The Theory of Chemical 
Reaction Dynamics, M. Baer, Ed., CRC, Boca Raton, FL, 1985, Vol. I, Chap. 2. See also 
F. A. Gianturco (this volume, Chap. 4). 

40. D. Neuhauser and M. Baer, J .  Chem. Phys. 90,4351 (1989); J .  Phys. Chem. 93, 2862 (1989); 
J .  Chem. Phys. 91,4651 (1989); J .  Phys. Chem. 94, 185 (1990); J .  Chem. Phys. 92,3419 (1990); 
M. Baer, D. Neuhauser, and Y. Oreg. J .  Chem. Phys. Faraday Transactions 86, 1721 (1990); 
D. Neuhauser, M. Baer and D. J. Kouri, J .  Chem. Phys. 93,2499 (1990); M. S. Child, Molec. 
Phys. 72, 89 (1991). 

41. M. Baer, Chem. Phys. 15, 49 (1976). 

42. M. Baer, C-L Liao, R. Xu, S. Naurbahksh, G. D. Flesch, C. Y .  Ng, and D. Neuhauser. J .  

43. M. Baer and C. Y. Ng, J .  Chem. Phys. 93, 4845 (1990); 93, 7787 (1990). 

44. (a)  V, Sidis, D. Grimbert, M. Sizum, and M. Baer, Chem. Phys.  Lett. 163, 19 (1989) M. 
Sizum, D. Grimbert, V. Sidis, and M. Baer, J .  Chem. Phys. (in press); (b) F. A. 
Gianturco, A. Palma, E. Semprimi, F. Stefani, and M. Baer, Phys. Rev. A. 42,3926(1990). 

Chem. Phys. 93, 4845 (1990). 

45. M. Baer, C. Y. Ng, and D. Neuhauser, Chem. Phys. Lett. 169, 534 (1990). 

46. M. Baer, G. Niedner, and J. P. Toennies, Chem. Phys.  Lett. 167, 269 (1990). 

47. L. Munchick and E. A. Mason, J .  Chem. Phys. 35, 1671 (1961); K. Takayanaki Proyr. Theor. 
Phys. (Kyoto) Suppl .  25,40 (1963); K. Kramer and R. B. Bernstein, J .  Chem. Phys. 44,4473 
(1964); C. F. Curtiss, J .  Chem. Phys. 49, 1952 (1968); T. P. Tsien, G. P. Parker, 
and R. T. Pack, J .  Chem. Phys. 59, 5373 (1973); D. Secrest, J .  Chem. Phys. 62, 710 (1975); 
V. Khare, D. J. Kouri, and D. K. Hoffman, J .  Chem. Phys. 74, 2275 (1981); M. A. Wartel 
and R. J. Cross, J .  Chem. Phys. 55. 4983 (1971); J. M. Bowman and J. Arruda, Chem. 
Phys. Lett. 41, 43 (1976). 

48. V. Khare, D. J. Kouri, and M. Baer, .i. Chem. Phys. 71, 1188 (1979); J .  Jellinek and M. Baer, 
J .  Chem. Phys. 76, 4883 (1982); H. Nakamura, A. Ohaski, and M. Baer, J .  Phys. Chem. 90, 
6176 (1976); J. M. Bowman and K. T. Lee, J .  Chem. Phys. 72, 5071 (1980); G. D. 
Barg and G. Drolshagen, Chem. Phys.  47, 209 (1980); D. C. Clary and G. Drolshagen, J .  
Chem. Phys. 76, 5027 (1982); D. C. Clary, Chem. Phys. 71, 117 (1982); 81, 379 (1983); 
G. Grossi, J .  Chem. Phys. 81, 3355 (1984); B. M. D. D. Jensen-op-de-Haar and G. G .  
Balint-Kurti, J .  Chem. Phys. 85, 329 (1987); 90, 888 (1989); H. Nakamura, Phys. Reps. 187, 
1 (1990); M. Nakamura and H. Nakamura, J .  Chem. Phys. 90,4835 (1989); T. Takayanagi, S .  
Tsunashima, and S. Sato, J .  Chem. P h j ~  93, 2487 (1990). 

49. D. C. Clary and D. M. Sonnenfroh, J .  Chem. Phys.  90, 1686 (1989). 

50. W. H. Cremer, J .  Chem. Phys. 35, 836 (1961). 
51. P. J. Kuntz and A. C. Roach, J .  Chem. Sac.. Faraday Trans. 268, 259 (1972). 

52. S. Chapman, J .  Chem. Phys. 82, 4033 (1985). A few of the lower-energy cross sections were 
obtained by private communication. 



SEMICLASSICAL APPROACH TO CHARGE- 
TRANSFER PROCESSES IN ION-MOLECULE 

COLLISIONS 

HIROKI NAKAMURA 

Division of Theoretical Studies, Institute for 
Molecular Science, Myodaiji, Okazaki, Japan 

CONTENTS 

I. Introduction 
11. 

111. 
Basic Mechanisms and Their Characteristics 
Semiclassical Theory of Nonadiabatic Transition 
A. 
B. Landau-Zener-Type Nonadiabatic Transition 
C. Rosen-Zener (Demkov)-Type Nonadiabatic Transition 

A. 

Dynamical State (Generalized Adiabatic State) Representation 

IV. Multichannel Curve Crossing Problem 
General Formulation of Electronic Transitions in Diatomic Systems 
1. The Case Without Closed Channel 
2. General Case Involving Closed Channels 

B. VibronicTransition in Ion-Molecule Collisions 
C. Numerical Examples 

1. Vacancy Migration in the Ne' + Ne Collision-Catalysis Effect 
2. Li' + Na and Li + Na+ Collisions 
3. Three- and Four-Level Model Systems 
4. Application of the BFG Model to Vibronic Transitions 

A. Orbiting (Langevin) Model for Ion-Molecule Collision 
B. Classical S-Matrix Theory 
C. Hyperspherical Coordinate Approach 
Semiclassical Treatment of Electronically Nonadiabatic Chemical Reaction-Future 
Developments 

Acknowledgements 
References 

V. Chemical Reaction-Particle Rearrangement 

VI. 

VII. Summary 

State-Selected and State-to-State Ion-Molecule Reaction Dynamics, Part 2: Theory, Edited by 
Michael Baer and Cheuk-Yiu Ng. Advances in Chemical Physics Series, Vol. LXXXII. 
ISBN 0-471-53263-0 8 1992 John Wiley & Sons, Inc. 

243 



244 HIROKI NAKAMURA 

I. INTRODUCTION 

The terminology of "semiclassical theory" is used in a variety of ways. It 
is quite often used to mean generally the case that the electronic degrees of 
freedom are treated quantum mechanically but the nuclear degrees of freedom 
are approximated by the pure classical mechanics. In the impact parameter 
method, for instance, the nuclear trajectory (relative motion of atoms and 
molecules) is given a priori as a function of time and is treated as a kind of 
external parameter for the electronic degrees of freedom. More appropriate 
usage of the terminology from the author's view point is to mean that the 
nuclear degrees of freedom themselves are treated semiclassically. Even in 
this category, however, there exist many versions of semiclassical theory, 
depending on how we use semiclassical approximation (certain kind of 
expansion with respect to h). The most standard one is the JWKB theory 
and its exten~ion. ' -~ The other examples are the wave-packet approach in 
the coordinate space and the phase-space distribution function t h e ~ r y . ~  - 8  

Our stand point in this paper is basically the first one. Since our main concern 
here is charge transfer, we present the semiclassical theories for the 
electronically nonadiabatic transitions between adiabatic electronic states at 
low collision energies. 

Semiclassical theory is, of course, an approximation to quantum 
mechanics, but has a great significance in the sence that it provides a useful 
analytical theory, using the feasibility of classical mechanics and yet taking 
into account the correct concepts of quantum mechanics. As is well known, 
the JWKB theory can provide an analytical expression of wavefunction and 
can describe quite accurately the quantum-mechanical effects such as 
tunneling, nonadiabatic transition, interference, and resonance. These various 
effects can be treated in a nonperturbative way: the Landau-Zener type of 
theory for nonadiabatic transition, for instance, is not a simple perturbation 
theory. More importantly, with these capabilities of the semiclassical theory, 
this enables us to grasp the underlying physics of the phenomena. This is 
valuable even when accurate quantum-mechanical calculations become 
possible, since the latter results are often obtained by the heavy numerical 
computations. One-dimensional semiclassical theory has been well developed 
for describing the previously mentioned various effects, and presents a 
powerful method to investigate the dynamics of diatomic systems such as 
ion-atom inelastic c ~ l l i s i o n s . ~ ~ ~ ~ ' ~  Unfortunately, however, the multi- 
dimensional theory has not been well developed yet compared to the 
one-dimensional case. In spite of the efforts made by Maslov and many other 
authors, it is still in a primitive ~ t a g e , ~ . ~ . " ~ ' ~  and no such theory exists that 
can be directly and effectively applied to ion-molecule collisions. 

There have been published quite a few review articles on ion-molecule 
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 collision^.^ 3-18  Most of them are concerned about the simple orbiting 
collision model of Langevin. Some others are basically based on the impact 
parameter method. Nice reviews are available by Kleyn and Los” and by 
Sidis.18 This chapter is written from a different view point, since the author 
understands that an important mission of this chapter is to review and 
introduce the basic semiclassical theories, especially those for nonadiabatic 
t r a n ~ i t i o n . ~ ” ~ , ’ ~ - ~ ’  Even these one-dimensional theories can be useful to 
comprehend the various phenomena and processes qualitatively or 
semiquantitatively. Since electronically nonadiabatic transition and particle 
rearrangement (reaction) are the two fundamental mechanisms of the 
charge-transfer ion--molecule collisions and reactions, we focus our attention 
on these basic subjects from the view point of semiclassical theory. 

This chapter is organized as follows: In Section I1 basic mechanisms of 
nonadiabatic electronic transitions associated with charge transfer are 
summarized and their qualitative characteristics are discussed. These are the 
Landau-Zener and the Rosen-Zener type of nonadiabatic transitions, and 
the transitions induced by Coriolis (rotational) coupling, spin-orbit 
interaction, and the coupling due to the electron momentum transfer or the 
ETF (electron-translation factor) in charge transfer. It is shown that the 
semiclassical theory can be utilized to analyze all these transitions uniformly 
by introducing the new (dynamical-state) representation. Qualitative 
discussions are also presented for reactive transition, or particle 
rearrangement by emphasizing the role of the potential ridge, the watershed 
dividing the reactant and product valleys. Section 111 summarizes the basic 
formulas for the two-state nonadiabatic electronic transitions and explains 
the dynamical-state representation mathematically in more detail. One of 
the important generalizations of the one-dimensional two-state semiclassical 
theories is the multichannel curve-crossing problem, which is discussed in 
Section IV. With use of the two state theories a general formalism is described 
for the multilevel system involving closed channels. The simplified treatment, 
that is, the BFG (Bauer-Fisher-Gilmore) model, for the vibronic transitions 
in ion-molecule collisions is also briefly touched upon. Some of the numerical 
applications reported so far are presented together. Section V is devoted to 
reaction. After briefly summarizing the historical orbiting model of 
ion-polar-molecule collisions and the classical S-matrix theory, the 
hyperspherical coordinate approach is explained and is demonstrated to be 
powerful for grasping the reaction mechanisms. In Section VI a simple 
semiclassical generalization of the trajectory-surface-hopping method is 
proposed. Essential idea is to use the well-developed one-dimensional 
semiclassical theories on the curvilinear one-dimensional classical trajec- 
tories. Other desirable challenging problems to be developed in future are 
also briefly discussed. Section VII summarizes this chapter. 
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11. BASIC MECHANISMS AND THEIR CHARACTERISTICS 

Qualitative explanations of the two basic mechanisms, that is, nonadiabatic 
electronic transition and particle rearrangement, are presented here before 
giving their detailed mathematical expressions. Since the region of potential 
curve (or surface) crossing where electronic transition predominantly occurs 
is generally located away from the so-called reaction zone where particle re- 
arrangement occurs, we can consider and treat these two mechanisms 
separately. " 

Let us first consider the one-dimensional case, namely, a diatomic system 
such as ion-atom collision process. At relatively low collision energies, it is 
generally better to use the Born-Oppenheimer adiabatic electronic states as 
the basis states to treat the dynamics. Then the best known nonadiabatic 
transition is the Landau-Zener type of transition at an avoided-crossing 
point of Born-Oppenheimer states induced by the non-Born-Oppenheimer 
radial derivative operator, or the relative radial motion of the colliding 
particles. Since the nature of the electronic states of the two 
Born-Oppenheimer states changes at the avoided-crossing point, the 
nonadiabatic transition is induced by the variation of the adiabatic parameter 
R (internuclear distance). The transition is very much spatially localized at 
the avoided-crossing point. This is because the energy transfer between 
different kinds of degrees of freedom is generally most effective when the 
amount of transferred energy is minimum, and also because the nonadiabatic 
(non-Born-Oppenheimer) coupling term has a maximum at the avoided- 
crossing point. As is well known, the original Landau-Zener formula for the 
nonadiabatic transition probability between two adiabatic states is given 
by 19-21,23,24 

where V, is the diabatic coupling strength, AF is the difference between the 
slopes of the two diabatic potential curves, and v, is the velocity of the relative 
motion at the crossing point R,. This is a useful formula to comprehend the 
qualitative features of the transition. We have to be careful, however, about 
its quantitative accuracy in application, since several conditions are assumed 
in the derivation of this formula. The details are discussed in the next section. 

There is another kind of radially induced nonadiabatic transition called 
Rosen-Zener (or Demkov) type.9,'0,'9-2'.25.26 This is a noncrossing 
near-resonant type in which two adiabatic states are parallel asymptotically. 
Although there is no rapid change in the nature of electronic states and no 
conspicuous avoided crossing, the nonadiabatic transition occurs in a 
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spatially localized region at the point where the two adiabatic potential 
curves start to diverge. The original Rosen-Zener formula for the transition 
probability is 

p r @  = [ 1 + exp(26f")l- = [ 1 + exp(7cA/hauX)] - (2.2) 

where A is the asymptotic energy difference of the adiabatic states and a is 
the exponent of the exponential diabatic coupling ( = Ae-"R). The limit of 
A + 0 is called the exact resonance case. In the adiabatic limit, that is, when 
the exponent Sky in Eq. (2.2) is large, the probability pk? behaves similarly 
as p;?, but in the other limit (6 +0) they behave quite differently. The similar 
care should be taken for the quantitative applications of this primitive formula 
(2.2). The more sophisticated formula is given in the next section. Both 
Landau-Zener and Rosen-Zener type of transitions are induced by the 
motion with respect to the internuclear distance R,  and thus occur only 
between the states of the same electronic symmetry, namely, the selection 
rules are AA = 0, f CI f and g(u)crg(u), where A is the ordinary quantum 
number of the electronic angular momentum. 

Coriolis coupling, on the other hand, causes a transition between the states 
of different electronic symmetry with the selection rules lAAl= 1, f t* f 
and g(u)trg(u). This is a nonadiabatic transition induced by the relative 
angular (rotational) motion of the colliding particles. This transition is of 
quite different nature from the radially induced one. First of all, the 
Born-Oppenheimer electronic states can cross with each other, since the 
symmetries are different. The transition is not spatially localized at the 
crossing point, even if a real crossing occurs and this position is most favorable 
for the transition from the energetics point of view as mentioned before. This 
is because the Coriolis (or rotational) coupling possesses very different nature 
from the radial coupling. The nonadiabatic coupling between C and Il states, 
for instance, is given by2'*** 

with 

(2.3b) 

where p is the reduced mass of the system, K is the total (electronic L plus 
rotational LR) angular momentum quantum number, and Vn represents the 
electronic matrix element with L ,  the raising angular momentum operator. 
As is seen from Eqs. (2.3), the coupling has basically the R - 2  dependence on 
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R and does not show any peak at the crossing point, but becomes strongest 
at the closest approach. There can be the following three typical cases:29 (1) 
real curve crossing of the Born-Oppenheimer adiabatic states, ( 2 )  
Rosen-Zener-type parallel states, and (3) crossing or degeneracy at united 
atom limit. Because of the peculiar properties mentioned above, the rota- 
tionally induced transitions cannot, in general, be treated by the semiclassical 
theories available for the radially induced transitions as far as we employ the 
Born-Oppenheimer state representation. This is an important thing to be 
kept in mind. The third case mentioned above seems to be all right for 
the application of the Landau-Zener formula, since the crossing point and 
the pole of the coupling coincide at R = 0. Even this is not true, however, 
because the analytical properties of the energies and the coupling as a 
function of R are different. The detailed discussions are given in the next 
section. Another important feature of the Coriolis coupling is the fact that 
this can lead to such states that cannot be reached by the radial coupling 
because of the different selection rule, although the coupling itself is not so 
strong compared to the latter especially at low collision energies. 

The next coupling to be considered here is the spin-orbit interaction. This 
coupling causes a transition among the states of different A and Z (molecular 
axis component of the spin angular momentum S )  within the manifold of 
the same Q = A + C. The more convenient representation is to define the 
Born-Oppenheimer states (a:,) of the electronic hamiltonian including the 
spin-orbit interaction. Then there remain again the two kinds of nonadiabatic 
(radially induced and rotationally induced) transitions. The selection rules 
are AQ = 0, k t, f and g(u)++g(u) for the radially induced transitions and 
IAQl = 1, f tt _t and g(u)++g(u) for the transitions induced by Coriolis 
coupling. Namely, all we have to do is just to replace the angular momenta 
L and K in the L.S coupling scheme by J = L + S  and J ,=J+L, ,  
respectively. 

Finally, the effective coupling peculiarly associated with charge transfer 
is discussed. This originates from the fact that momentum transfer of an 
electron inevitably accompanies charge transfer, namely, the electron changes 
its momentum abruptly at  the moment of transfer. In other words, this comes 
from the intrinsic nature of the three-body rearrangement collision problem. 
The ordinary close-coupling-type expansion in the Jacobi coordinates cannot 
satisfy the correct boundary condition, that is, the traveling electron boundary 
condition. In order to take this effect into account and to recover the Galilean 
invariance, the so-called electron translation factor (ETF) is incorporated 
into the expansion of the total wave f~nc t ion .~~  This effect of ETF was shown 
to be expressed as an additional coupling matrix and to give a correction 
to the original nonadiabatic couplings, both radial and r~ ta t iona l .~ ' .~ '  This 
effect corrects the origin dependence and the fictitious long-range coupling, 
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which sometimes occur and give serious errors in the rotational coupling 
matrix element. Apart from these the ETF effect generally becomes important 
at high collision energies. 

It is very important to note that the various couplings mentioned 
previously, which have different origins and characteristics, can be uniformly 
handled by the semiclassical theories developed for the radially induced 
transitions, if we introduce the new representation called “dynamical-state 
r e p r e ~ e n t a t i o n ” , ~ ~ . ~ ~ ~ ~ . ~ ~  the basis states of which are the eigenstates of the 
hamiltonian matrix composed not only of the original electronic hamiltonian 
matrix, but also of all the other coupling matrices except for the radial 
coupling matrix. That is to say, if we diagonalize the whole hamiltonian of 
the system except for the radial kinetic energy operator, then all kinds of 
transitions associated with this original hamiltonian can be dealt with by 
the semiclassical theories for the radially induced transitions. The more 
substantial mathematical explanations are given in the next section. So far 
discussion was made only to the nonadiabatic transition probabilities, but 
in the actual collision processes the various phases as well play an important 
role. This is discussed also in the next section. 

Let us next look into a multi-dimensional case. In general, a real surface 
intersection of dimension N - 2  is possible, when the potential energy surfaces 
of the same electronic symmetry are the functions of N independent variables. 
The cases of N = 2 can be classified into the following three cases:33 (1) 
avoided crossing, ( 2 )  conical intersection, and (3) glancing interaction. A 
typical example of the case (1) is shown in Fig. 1. The diabatic surfaces cross 
with each other along a line (this is called “seam”), and the adiabatic surfaces 
never cross and have the shape of hyperbolic cylinder oriented along the 
seam.34 Thus, in the direction perpendicular to the seam, we have the same 
situation as the one-dimensional avoided-crossing case and the nonadiabatic 
coupling has a sharp peak at the avoided crossing. In the direction along 
the seam, however, there is no nonadiabatic coupling. The conical intersection 
is schematically shown in Fig. 2.  The adiabatic surfaces are discontinuous 
at the crossing point. The Jahn-Teller intersection is one example of this. 
In all directions passing through the intersection point, real curve crossing 
occurs and the nonadiabatic coupling has a delta function peak at the crossing 
point. Along the lines passing nearby the crossing point, the ordinary 
one-dimensional avoided crossing scheme holds, namely, the nonadiabatic 
coupling has a Lorentzian shape with a peak at the minimum gap. The 
nonadiabatic transition probability along the trajectory passing through the 
apex of the cone is unity, although the measure of these trajectories is zero. 
The third case is shown in Fig. 3, where the two adiabatic surfaces are 
continuous everywhere. This corresponds to the Renner-Teller interaction. 
Along the trajectories passing through the point of contact, the nonadiabatic 
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Figure 1. Schematic view of an avoided crossing of the two-dimensional potential energy 
surfaces. 

Figure 2. Schematic view of a conical intersection of the two-dimensional potential energy 
surfaces 
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/ 
Figure 3. Schematic view of a glancing intersection of the two-dimensional potential energy 

surfaces. 

coupling vanishes. Since the hamiltonian matrix contains quadratic terms 
only, the Landau-Zener type of analysis is not adequate and a separate 
careful consideration is required. 

Coriolis coupling connects the states of different electronic symmetry also 
in the multidimensional case. In the case of triatomic system, for instance, 
the A' and A" states of the C, symmetry are coupled rotationally. A' (A") is 
symmetric (antisymmetric) in reflection with respect to the molecular plane. 
The idea of the unified treatment of radial and rotational couplings mentioned 
previously also holds true here. The angular parts can be diagonalized first 
to define a new set of effective potential energy  surface^.^' 

Let us finally consider briefly the mechanism of particle rearrangement 
(reaction). Reaction occurs in the so-called reaction zone where the particles 
get close together. Generally, the (conventional) transition state, or the saddle 
point of potential energy surface, is considered to be the most important 
representative point for reaction to occur. This point gives a potential barrier 
for reaction and is considered to represent its bottleneck. The potential ridge 
dividing the reactant and the product valleys, however, gives more general 
concept to represent the position for reaction to occur. In most cases a saddle 
point is actually contained within the ridge line as a limiting point. Sometimes 
the saddle point is located quite far away from the central reaction zone 
around the ridge line. In this case the saddle point represents, of course, the 
reaction barrier, but cannnot represent the position for rearrangement to 
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Figure 4. Shcematic two-dimensional potential energy contour 

occur. In the terminology of the classical trajectory method, the “recrossing” 
correction to the conventional transition-state theory becomes important in 
this case. This has actually motivated the construction of the variational 
transition-state theory.35 The effect and the role of potential ridge in reaction 
dynamics can be well visualized and incorporated into the theoretical 
framework by using the hyperspherical  coordinate^.^^ Figure 4 schematically 
shows a potential energy contour for a two-dimensional (collinear reaction) 
system. The hyperspherical coordinates in this case are nothing but the polar 
coordinates ( p ,  6). The cross sections of potential energy surface at constant 
hyperradius p are schematically shown in Fig. 5. At large p (Fig. 5 4  the 
reactant and the product valleys are well separated by a high potential barrier 
in between (fragmentation region). The vibrational states localized in each 
valley can hardly interact with each other, even though they can be 
accidentally degenerate. At small p (Fig. 5c), on the other hand, there is no 
potential barrier and all particles move collectively in a single well 
(condensation region). At intermediate p (Fig. 5b) the vibrational states, 
asymptotically corresponding to either reactant or product vibrational state, 
interact strongly through the potential barrier. The trace of this barrier 
constitutes the potential ridge, which provides the boundary of a transition 
from the condensation region to the fragmentation region.37 This transition 



SEMICLASSICAL APPROACH TO CHARGE-TRANSFER 253 

D x 
0, 

a, c 
w 

L 

0 

x 
0, 

a, 
C 
w 

L 

(b) ridge 

0 

0 

Figures. Potential energies as a function of hyperangle 0 at fixed p: (a) large p, (h)  
intermediate p, (c) small p. 

represents nothing but “reactive transition.” This feature can be better 
visualized by drawing the vibrational eigenvalues as a function of p .  Figure 6 
shows such an example. This is the case for the collinear C1+ HBr + HCI + Br 
reaction.36 It should be noted, however, that the LEPS potential energy 
surface employed is not designed to accurately mimic the real one for this 
system. This presents a rather peculiar system that the two levels HBr(u) and 
HCI(u + 2) are in near resonant and are well separated from the others, and 
the vibrational adiabaticity holds well. Reactions occur predominantly 
between these pairs of states. Besides, the reactive transition is very much 
spatially localized near the potential ridge. This is explicitly demonstrated 
in Fig. 7. This shows the numerically calculated accumulated reaction 
probability as a function of p .  Although Fig. 7. is the result of the 3-D reaction 
for (relative angular momentum) = 0 in the adiabatic-bend approximation 
explained in Section V C ,  the essential feature mentioned below is the same 
as in the collinear case. The transition clearly occurs in a very narrow region 
near the potential ridge. As is seen from Fig. 6, the two near-resonant levels 
start to diverge near the potential ridge because of this tunneling interaction. 
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Figure 6. Adiabatic vibrational potential energy curves of the collinear ClHBr system 
(from Ref. 36). 

This level diagram reminds us of the Rosen-Zener model. This reactive 
transition can actually be treated analytically by the semiclassical theory of 
nonadiabatic transition. More detailed discussions are given in Section V. 
Reaction can thus be viewed as a vibrationally nonadiabatic transition. 
Potential energy diagram such as Fig. 6 changes very much, of course, 
depending on potential energy surface topography and mass combination. 
In other words, this indicates that the hyperspherical coordinate approach 
is convenient to investigate these effects. Some more detailed explanations 
and examples are given in Section V. 
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Br (from Ref. 36). 

Ill.  SEMICLASSICAL THEORY OF NONADIABATIC 
TRANSITION 

Since the pioneering works done by Landau,23 Zener,24 St~eckelberg,~' and 
Rosen and Zener,2s a lot of effort has been paid for developing better 
semiclassical theories of nonadiabatic transition. Many review articles have 
been ~ r i t t e n . ~ ~ ~ ~ ' ~ ~ ' ~ - ~ '  B ecause of the interdisciplinarity of the concept as 
a basic mechanism of state or phase change, the significance of nonadiabatic 
transition has recently been more recognized in various  field^.^^*^^-^' H ere, 
the presently available best formulas for the most basic two-state problems 
are presented and compared with the original ones. First, the dynamical state 
(or generalized adiabatic state) representation is i n t r o d ~ c e d . ~ ' , ~ ~ ~ ~ ~  As was 
briefly explained in the previous section, this representation enables us to 
treat all kinds of coupling by the semiclassical theories for radially induced 
transition. This is because the representation transforms the analytical 
property of the energies and couplings as a function of complex-R into the 
same one as that of radial coupling problem. This is explained in this section 
in more detail. 
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A. Dynamical State (Generalized Adiabatic State) Representation 

The total hamiltonian of a diatomic system with the reduced mass p can be 
generally written as 

(3.la) 

(3.lb) 

where He1, H,,,, and H,,, represent the electronic hamiltonian, the Coriolis 
interaction, and the rotational motion, respectively, and 

(3.2) 

with L being the electronic angular momentum operator. The nonadiabatic 
radial and rotational (Coriolis) couplings originate from the first term of 
Eq. (3.la) and H,,,, respectively. The spin-orbit coupling can be included in 
Hel. H‘ couples the states of the same electronic symmetry, but its contribution 
is small and is usually neglected. 

The dynamical states (DS) are defined as the eigenstates of Hdyn,28329332 

HdynYf(r, k : R )  = Ef(R)Yf(r, k : R ) ,  (3.3) 

where r represents the electron coordinates collectively. Since Ifdyn is 
hermitian, and depends on R only parametrically, the eigenvalues E f ( R )  are 
real functions of R .  In this representation the ordinary quantum number A 
is not a good quantum number any more, and the eigenstates depend on 
the total angular momentum K ( = L + LR), since the Coriolis coupling is 
diagonalized. That is to say, the dynamical states are the eigenstates of the 
rotating complex of the whole system. As is clear from the definition, 
transitions among the dynamical states are exclusively induced by the radial 
coupling, 

The reason why the DS representation is convenient is explained 

avoiding the very oscillatory integral on the real R axis and going into the 
subsequently. Let us introduce first the original treatment of L a n d a ~ . ~ ~ * ~ ~  B Y 
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complex R plane, the nonadiabatic transition probability is given as 

with 

where E,(R) is the ordinary adiabatic (i.e., Born-Oppenheimer) state, and R ,  
is the complex crossing point, 

If we introduce the effective relative velocity 

then Eq. (3.5) can be rewritten as 

(3.9) 

with AE(R)  = E,(R)  - E , ( R )  > 0 for real R .  Here the following natural 
question arises: Why is the pre-exponential factor in Eq. (3.5) unity? If we 
employ the first-order perturbation theory in the adiabatic-state representa- 
tion, then there should naturally appear some kind of scar of the nonadiabatic 
radial coupling Tradr which does not seem to be unity at all. The “unity” is 
actually the result of renormalization of the higher-order terms of Trad. If we 
use the Hellmann-Feynman theorem, we obtain 

(3.10) 

With use of the diabatic potentials V J R )  and coupling V ( R ) ,  we have as usual 

AE(R)  = { [ V l ( R )  - V 2 ( R ) I 2  + 4 V 2 ( R ) } ” 2 .  (3.1 1) 

This implies that the complex zero R ,  of AE(R)  is of order one-half and that 
Trad has a pole of order unity at the same position. This “analytical property” 



258 HIROKI NAKAMURA 

TABLE I 
Analytical Properties of the Various Nonadiabatic Coupling Schemes 

Coupling Scheme 

Potential 
Energy Difference Coupling 

A E a  T a  

Adiabatic-State Representation 

Radial ( R  - R,)’I2 ( R  - R , ) -  

Rotational 
(R*:  complex) 

(a) Degeneracy at R = 0 
(b) Crossing at finite R = R ,  R - R ,  R - =  

R2 

(c) N o  crossing Constant 

Dynamical-State Representation 

Any transition 
(R,:  complex) 

( R  - Re)”’ ( R  - R , ) - ’  

underlies the Landau-Zener problem and is actually the reason why the 
preexponential factor is exactly unity. It is clear now why the Landau-Zener 
formula cannot be applied to the Coriolis coupling problem. The Coriolis 
coupling given by Eqs. (2.3) has no pole at crossing point, but has a pole of 
order 2 at R = 0. The DS representation can transform any coupling scheme 
into the same analytical structure as that of the ordinary radial coupling 
problem. Whatever the coupling V ( R )  is, AE(R)  and Trad in the new 
representation have a complex zero of order one-half and a pole of order 
unity at the same position, respectively. The various cases mentioned in the 
previous section are summarized in Table I.” Thus, once we move into the 
DS representation, the semiclassical theories well developed for the radial 
coupling problems can be utilized uniformly for the various coupling cases, 
no matter what the original coupling scheme is. It should also be noted that 
the nonadiabatic transition occurs in a spatially localized region at the new 
avoided-crossing point. This is a useful property for generalizing the two-state 
theory to a multilevel problem, as will be discussed in Section IV. The various 
coupling cases can be basically classified into the following two: 
Landau-Zener type (Fig. 8a)  and Rosen-Zener (or Demkov) type (Fig. 8b). 
The best available formulas for these cases are given in the following 
subsections. 

The idea of the DS representation can be generalized, at least conceptually, 
to a N-particle multidimensional system with use of the hyperspherical 
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2. 
P 
E 
W 

Figure 8. 
(Demkov) type. 

Schematic potential energy curves. (a) Landau-Zener type, (b)  Rosen-Zener 

coordinate system ( p ,  Q,). The total hamiltonian can be expressed as 

with 

(3.12) 

(3.13) 

where A(R,) represents the grand angular momentum operator with respect 
to the hyperangle variables R,, and pN is the reduced mass of the system. 
The hyperradius p and the eigenstates of Hdyn represent, respectively, the 
size of the system and the rotating collision complex at fixed p .  The eigenstates 
may be called “generalized adiabatic states.” 
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In the following discussions, DS representation or the generalized 
adiabatic-state representation is tacitly assumed whenever it is appropriate, 
and the superfix K to energies is omitted. 

B. Landau-Zener-Type Nonadiabatic Transition 

This is an avoided-crossing case. The nonadiabatic transition probability 
amplitudes are given as follows: 

4s = (d/x)log(h/n) - d/x + x/4 - arg r( 1 + i6/x), 

and 

R, = Re(R,). 

(3.14a) 

(3.14b) 

(3.14~) 

(3.14d) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

The derivation of these formulas is based on the comparison equation method 
or the phase integral method.399*49950 Since it is given elsewhere,2'"-' it is not 
repeated here. Unfortunately, Eq. (3.16) involves a complex integral in the 
complex R plane and presents an obstacle to understanding by the 
experimentalists. It should be kept in mind, however, that the preceding 
formulas are quite accurate. 

In the rest of this subsection let us focus our attention on the characteristics 
of the preceding formulas especially in comparison with the original 
Landau-Zener formula given by Eq. (2.1). First of all, it should be noted 
that the formulas are not based on the perturbation theory and interestingly 
depend only on the (generalized) adiabatic potentials E,(R), apparently not 
including any scars of Trad. This is actually one of the big advantages of 
going into the complex R plane. The effects of Trad are incorporated effectively 
to an infinite order. The second thing to be noted is that Eqs. (3.14) present 
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Figure9. Transition probabilities as a function of collision energy for a model of the 
exponentially coupled two attractive Morse potentials (from Ref. 32). ---: exact numerical 
calculation; - : two-state Landau-Zener-Stuckelberg formula; . ..: two-state Landau- 
Zener-Stuckelberg formula without I$~.  

not the probabilities, but the more fundamental transition probability 
amplitudes. The phases o0 and ds are the phases due to the nonadiabatic 
transition. These are totally missing in the original Landau-Zener formula. 
Sometimes these give a nonnegligible contribution. Figure 9 gives an example. 
The phase &. is usually called Stokes phase correction, since this originates 
in the Stokes phenomenon of asymptotic function in the complex R 

The exponent 6 defined by Eq. (3.16), which looks totally different 
from Sp! given in Eq. (2.1), can actually be reduced to 6L2 under the following 
assumptions: (1) linear diabatic potentials V,(R) = F,(R - R,) + V,, (2) 
constant diabatic coupling V ( R )  = V,, and (3) constant relative velocity 
u(R) = u, (i.e., straight line trajectory of relative motion). Using these 
simplifications and the transformation from Eq. (3.5) to Eq. (3.9), we have 

0-0 = 0, (3.19) 

and 

(3.20) 
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where yo = Im(R,) = 2VJAF. The preceding analysis clearly tells the limits 
of the original Landau-Zener formula (2.1). Namely, in the quantitative 
applications of this original formula (2. l), we have to pay attention to the 
validity of the preceding assumptions and the neglect of the various phases, 
not only o0 and dS but also other phases along the potentials E J R )  (see next 
section). For instance, it is clear that the formula is not applicable when the 
turning point coincides with or becomes larger than the crossing point R ,  
(classically forbidden case). This case gives a difficulty also to the accurate 
treatment described previously, but can be managed reasonably well by 
modifying the exponent 6. For instance, when both turning points T ,  and 
T2 of the two potentials are larger than R,, then 6 may be modified to54 

6 = Im [ k , ( R ) -  k , (R) ]dR + IT* Ik2(R)ldR - jR: Ik,(R)ldR. (3.21) 
j R 1  R x  

When the diabatic potentials have different signs of the slope and the energy 
is lower than the crossing point (nonadiabatic tunneling), even the accurate 
formulas given by Eqs. (3.14) are not applicable. The presently available 
semiclassical theory for this case is less accurate, unfortunately.21*ss We do 
not go into the details here. 

As was mentioned before, the Landau-Zener type of nonadiabatic 
transition is very much spatially localized around the avoided crossing point. 
This is demonstrated in Fig. 10. This is the case of rotationally coupled 

semiclassical 

dynamical-state 
represent. 

-__- - -. _--- . I 

- -- 
1.0 

0.0 
1.0 t 0.0 
crossing 
point 

(turning point) 

R-p (a.u.) 

crossing 
point 

Figure 10. Localization of rotationally induced transition in the dynamical-state repre- 
sentation (from Ref. 21c). 
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two-state p r ~ b l e m . ~ " * ~ ~ ~  Transitions occur very locally at the crossing points 
both on the way in and the way out in the DS representation. The step 
function is the semiclassical approximation in the DS representation. 
Interestingly, the transitions in the adiabatic (Born-Oppenheimer) state 
representation are not localized at all. This clearly demonstrates the 
advantage of the DS representation. 

C. Rosen-Zener (Demkov)-Type Nonadiabatic Transition 

This is a noncrossing case (Fig. 8b). In contrast to the Landau-Zener type, 
the potential energy difference does not diverge as a function of R, or not 
strongly dependent on R,  but. the coupling depends strongly on R.25*26 
Analytical properties of the (generalized) adiabatic potential energy difference 
and the nonadiabatic coupling are essentially the same as those in the 
Landau-Zener case (complex zero of order one-half and pole of order unity). 
The derivation of the formula is, however, different from the Landau-Zener 
case because of the previously mentioned differences in potential coupling 
scheme.56 The nonadiabatic transition probability amplitudes are given as 
follows:2 

rye, = IE, = JG, (3.22a) 

and 

(3.22b) 

(3.22~) 

with 

where go and S are the same as those defined by Eq. (3.16). It should be 
noted that the Stokes phase correction (ps  does not appear in this case. Exactly 
speaking, what was derived mathematically is the total transition probability 
sech2(S)/2 corresponding to a double (in and out) passage of the transition 
point.56 The expression (3.23) is just obtained by the physical interpretation 
of the double passage, that is, 2pR,( 1 - pRZ) = sech2(6)/2. 

The exponent S can be reduced to Sk? of Eq. (2.2) under the following 
assumptions: (1) constant potential energy difference A, (2) exponential 
dependence on R of the coupling potential ( =  Ae-aR),  (3) constant relative 
velocity u(R) = u,, and (4) neglect of the contributions from the complex 
crossing points except for the one closest to the real R axis. The complex 



264 HIROKI NAKAMURA 

crossing points R ,  in the upper-half plane of R are given by 

R , = R , + i  -+- ( i1=0,1 ,2  ,... ), 
(;a ::> (3.24) 

where 

(3.25) 
1 

R ,  = - log(2A/A). 
c1 

This indicates that R ,  corresponds to the position where A = 2V(R,) = 2Ae-aRx 
is satisfied. Sr? is obtained as follows: 

(3.26) 

here y = Im(R) and y o  = n/2a. It should be noted that the phase uo does not 
vanish in this case. 

As in the Landau-Zener case, in the quantitative applications we have to 
pay attention to the justification of the previously mentioned assumptions, 
although the fourth assumption is generally not bad. When the collision 
energy is low and the turning points become larger than R,, the modification 
of S should be made in the same way as in E q .  (3.21). 

IV. MULTICHANNEL CURVE CROSSING PROBLEM 

A. General Formulation of Electronic Transitions 
in Diatomic Systems 

Since the DS representation makes all transitions spatially localized at R,, 
a multichannel curve crossing problem can be decomposed into a series of 
two-state problems. This is not possible, however, if we employ the ordinary 
Born-Oppenheimer state representation for a collision system involving 
Coriolis couplings. Since a transition induced by Coriolis coupling is 
delocalized in between turning point and crossing point in the adiabatic state 
representation as was demonstrated in Fig. 10, other crossings located in 
that region can not be separated out and treated by the two-state theories. 
This is a big advantage of the DS representation. With use of this 
representation a multichannel curve crossing problem is formulated here. 
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1. The Case Without Closed Channel 

In order to facilitate understanding of the formulation, we employ an example 
shown in Fig. 11, which is a three-open-channel problem.54 This corresponds 
to the (Li + Na)' collision system and represents the three dynamical states 
at the total angular momentum quantum number K = 1700. The avoided 
crossing at R,, between E,(R) and E,(R)  is originally a real crossing between 
C and Il states coupled by Coriolis interaction. The noncrossing situation 
at R,, corresponds not only originally, but also in the DS representation to 
the Rosen-Zener type radial coupling problem. The potential E,(R) is, 

4 t  

31 

n l  
1 

W2L >, 

0- 
1 

I I\ K=1700 

TiT2T35 Cp 10 CJ5 
lnternuclear Distance R (a.u.1 

Figure 11. Lowest three dynamical-state potential energy curves for (Li + Na)' with 
K = 1700. Dashed line represents a possible path for the transition Li(2s) t Na' +Li+ t Na(3s). 
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however, modified, very slightly though, from the original adiabatic X state 
by the Coriolis coupling with the above l3 state at Rc2. This presents another 
nice thing about the DS representation: a third state effect can be 
incorporated. An interesting example is shown in Section IV C. 

Since R,, and R,, are well separated, the nonadiabatic transitions there 
can be described by the semiclassical two-state theories given in the previous 
section. Thus the present collision system can be expressed by a diagram 
shown in Fig. 12. The solid lines with arrow, the circles with T, the rectangular 
with I ( 0 )  represent, respectively, wave propagation along dynamical state 
without any transition, wave reflection at turning point, and nonadiabatic 
transition in the inward (outward) relative motion. The wave propagation 
means the phase accumulation along the specified distance. I ( 0 )  represents 
a matrix connecting the waves on the right and the left side of the transition 
point in the incoming (outgoing) segment. 

This physical picture of the scattering process can be embodied into the 
following explicit expression of S matrixz8: 

where P is a diagonal matrix, representing wave propagation in the region 
specified by the suffices. Equation (4.1) can be read from the right to the left. 
Explicit expressions of each matrix (3 x 3) are as follows: 

Figure 12. Diagram corresponding to Fig. 11. 



SEMICLASSICAL APPROACH TO CHARGE-TRANSFER 267 

and 

where 

RZ 
Inem, for n, m = 1,2, 

otherwise, 
(zcl )nm = 

LZ 
I,, +,,,, for n, m = 2,3, 

otherwise, 
( I C 2 ) n m  = 

(4.5) 

0, = I", (transposed), (4.7) 

1 
?$"(A) = 1; [ k , ( R )  - k , ( co ) ]  d R  - ik,( co)A + Kn, (4.8) 

2 

and Ift."t,(Zf;"t,) is the Rosen-Zener (Landau-Zener) type nonadiabatic 
transition amplitude for m + n  given by Eqs. (3.22) [Eqs. (3.14)]. It should 
be noted that k,(R) is defined by Eq. (3.6) with the dynamical state potential 
energy E f ( R ) .  The matrices I and 0 are defined as follows: When we write the 
semiclassical wave functions on the right and left sides of the transition point, 
R,, for instance, as 

'PiBh1 2 - Vn(p:(R:RcI)  + VLq,-(R:R,,)  (4.9a) 

and 

YFflz  - ULcp,'(R:R,,)+ Uiqn-(R:R, , ) , .  (4.9b) 

I and 0 connect the coefficient vectors as 

U"=IV" and V=OU',  (4.10) 

where V' is a column vector with component Vb, and so on and 

(4.1 1) 
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2.  General Case Involving Closed Channels 

In this subsection we consider a general case, which involves closed channels. 
The diagrammatic techniques7 explained in the previous subsection is still 
useful, of course, but unfortunately not straightforward to derive explicit 
expression of S matrix. This is especially so when the system contains three 
or more channels. Take, for instance, the system shown in Fig. 13. This is 
an elastic scattering problem with two closed channels. The corresponding 
diagram is given by Fig. 14. The total elastic scattering phase shift is 

Figure 13. Model three-state potential energy diagram. 

Figure 14. Diagram corresponding to Fig. 13. 
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expressed as 

L1 
(4.12) 

where V; and V ;  are the coefficients of the outgoing and incoming waves 
at R = R,, + 0 along the potential E , ( R ) ,  respectively. The derivation of 
V ; / V ;  from the diagram is not straightforward, as can be easily conjectured. 
A much easier and more direct general procedure is explained here. The idea 
is not to try to obtain S matrix directly, but to construct a x matrix, which 
spans not only open but also closed channels. This matrix is equivalent to 
the x matrix introduced by Seaton in his formulation of the multichannel 
quantum defect theorys8, and is related to the S matrix by 

S = xoo - xoc(xcc - 1) - xco. (4.13) 

The suffix O(C) means open (closed), and zoo represents the open 
channel-open channel block of the whole x matrix ( N  x N), and so on. The 
number of open (closed) channels is assumed to be No(N,)  with N = N o  + N, .  

A general way of constructing the x matrix is explained and the more 
convenient relation with S matrix than Eq. (4.13) is derived below. First, the 
x matrix can be expressed as 

x = xjx, (4.14) 

where 

x,, = x,, = 0, (4.15b) 

(Xcc)n, = 6,, exp[niv,(R$")] (n, rn = N o  + 1,. . . , N o  + N, = N ) ,  (4.1 5c) 

and 

(4.16) 

T: is the right-side turning point of the potential E,(R),  and Rg' is an 
appropriately chosen position larger than the right-most basic element along 
the state n in the diagram and is smaller than Tf if the latter exists (see 
Fig. 14 in the present example). The thus defined j matrix describes the 
dynamics at R < R,, and does not distinguish open and closed channels. 
Therefore, this matrix can be directly constucted in the same way as in the 



270 HIROKI NAKAMURA 

previous subsection. In the case of the example of Fig. 13, the ;C matrix is 
given explicitly as follows: 

where the matrices P,,, I , ,  and 0, are the same as before, 

6,,,,,exp(ij:Ikn(R)dR), forn,m= 1,2, 

(4.18) 
otherwise, P C I C 2  = 

6 n m  

and 

(4.19) 

In this case R, can be taken to be independent of the channel number n as 
R,, < R, < T:. It should be noted that the (3.3)-elements of PcIc2 and 
PCzTC2 are different from the other diagonal elements. Even though T i  is 
larger than RC2, the adiabatic propagation on E3(R) from R,, to T'; and 
back to R,, is put in PL2Tc2 for convenience. This element is, of course, 
interchangable with the (3.3) element (unity) of P;lIC2. 

Inserting Eq. (4.14) into Eq. (4.13) and using the fact that X,, = X,, = 0, 
then we obtain 

s = xoosxoo, (4.20) 

with 
- 

- 2  - 1 -  s = xoo - XOC(;rCC - x,, ) xco 

= joo - xoc(jcc - e - 2 " i v ) - 1 j C 0 ,  (4.21) 

where 

(e-2niv)nm = 6,,exp( - 27civn). (4.22) 

It is clear now that by the formulation described previously the effects of 
closed channels can be straightforwardly incorporated into the S matrix 
without difficulty. Resonances in the scattering correspond to the complex 
energy solutions of 

det [ j , ,  - e - ln iv  3 = 0. (4.23) 
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The real and imaginary parts of the solutions give the resonance position 
and width, as usual. 

The preceding method can further be generalized to the case that involves 
tunneling and nonadiabatic tunneling. We do not go into the details here. 
Furthermore, the present formulation can be shown to have a close 
connection with the multichannel quantum defect theory and to be suitable 
for uniformly describing the various processes: not only scattering, but also 
bound state and radiative (or half-collision) processes. More detailed 
discussions about the present formulation and the close connections to the 
quantum defect theory are presented elsewhere.59 

Once the scattering matrix is obtained in the DS representation, the 
calculation of not only total but also differential cross sections can be 
formulated without any ambig~i ty . ’~ The Coriolis coupling effect can be 
incorporated naturally. The scattering amplitude for the transition n -+ rn can 
be generally given by 

(4.24) 

where SE, is the S matrix element, P , ( X )  is the Legendre polynomial, and 
8 is the scattering angle. The differential cross section a,,(8) is given by 

For convenience we introduce the impact parameter b by b = ( K  + +)/k = 

( K  + $)/Jk,k, and the conventional approximation 

112 

cos [ ( K  + f)O - ~/4 ] ,  (4.26) 
2 

n(K + +)sin 8 

and express St, as 

(4.27) 

where the suffix CI distinguishes the possible paths which enter along the 
potential E,(R) and exit along E,(R), and P“,(b) and 4k,(b) represent the 
overall transition probability and the total phase along the path CI. Then 
from Eq. (4.24) we have 
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where 

Here we employ the stationary phase approximation to evaluate integrals 
over b. The phase stationary points are given by the solutions of 

(4.30) 

There is only one phase stationary point b, in the cp- branch (see Fig. 15), 
and the corresponding integral f!,,)(O) is given by 

b 

Figure 15. Schematic diagram ofdeflection function 0 as a function ofimpact parameter b. 
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where a:!,, is the classical cross section defined by 

(4.32) 

(4.33) 

Since there exist two phase stationary points b, and b,  (see Fig. 15) in the 
cp+ branch, the corresponding integral f(”(0) is evaluated by the uniform 
semiclassical approximation. The final result is 

where Ai( - Z) and A:( - Z )  are the Airy function and its derivative, and 

Thus the differential cross section is finally given by 

B. Vibronic Transition in Ion-Molecule Collisions 

In the case of ion-molecule charge-transfer collisions, we have to deal with 
the multiple curve crossings between the rovibrational level manifolds of the 
initial and the final electronic state. Since it is practically impossible to take 
into account all the rotational and vibrational levels, some kind of 
approximate reduction of the level numbers is inevitable. What is usually 
employed to this end is either to utilize the 1 0 s  (infinite-order-sudden) 
approximation with respect to rotational degree of freedom18.60,61 or to 
simply neglect that degree of freedom. In either case, however, we still have 
multiple crossings between the two vibrational manifolds. Each crossing 
represents a coupling between a certain vibrational state of the initial channel 
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and one of the final channel. The simplest model to this problem is the BFG 
(Bauer-Fischer-Gilmore) in which the overall transition probability 
is expressed in terms of a product of the Landau-Zener transition 
probabilities. If there are more than one possible paths connecting initial state 
and final state, then the overall probability is given by a sum over the paths. 
The exponent of the Landau-Zener probability is usually approximated by 
a product of the electronic part and the Franck-Condon factor.63 In the 
case of the 10s approximation, a certain function of molecular orientation 
angle is assumed in this exponent and an average over this angle is carried 
out finally.63 

This BFG model has been applied to various systems so far and seems to 
work reasonably we11.17-19~63-66 As is clearly understood from the 
discussions made so far in this chapter, however, there arise the following 
questions: (1) Is it all right to use the original Landau-Zener formula for 
nonadiabatic transition probability [Eq. (2 .  l)]? (2) All phases are completely 
neglected, and the interferences among possible paths are totally disregarded. 
(3) Vibrational transitions within the manifold of the same electronic channel 
are ignored. None of these questions has been seriously and satisfactorily 
investigated yet. The favorable situations, however, might fortunately hold 
in many cases. For instance, the linear crossing of potential curves is expected 
to hold well between covalent and ionic levels. When the colliding particles 
are heavy, the various phases accumulate easily and the random phase 

* 
Q, c 
W 
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E4 

E3 

E2 
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R 
Figure 16. Potential energy level scheme studied by Demkov and Osherov6’. 
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approximation might hold well. It is interesting to note that, in such a special 
level scheme as the one shown in Fig. 16, the overall transition probabilities 
can be simply expressed as a product of the transition probabilities at each 
crossing point without any phases, no matter how close to each other the 
levels are.67 In any case, this is a very special case, and more careful 
investigation is still required in general about the questions raised. 

C. Numerical Examples 

Some of the numerical examples relevant to the present section are presented 
here. 

1. Vacancy Migration in the Ne’ + N e  Collision-Catalysis Effect 

The collision system considered here imitates a vacancy migration from the 
2p shell to the 1s or the 2s shell in the Ne+-Ne system.29b There are two 
Coriolis couplings: one between In,(&,) and 2 a , ( ~ ~ ) ,  and the other between 
In, and la,(&,) (see Fig. 17). The model potentials employed are as follows 
(in atomic units): 

AS,, = ~ 1 -  ~2 = 2.71(1/1.5 - l/R), 

A&,, = - c3 = 536.9R2, 

V , ,  = -0.71vb/R2, (4.37) 

-- -- - _ _ _  ------ 

I 
0.0 0.5 1 .o 1.5 2.0 

INTERNUCLEAR DISTANCE (a.u.) 

Figure 17. Electronic energy diagram of the Iu”, In,, and 20, states of the Ne+-Ne system 
(from Ref. 29b). ---: variable screening model; ~ : model potential used. 
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and 

Vl, = - vb/R2,  

where en’s represent the adiabatic (Born-Oppenheimer) electronic energies 
without the nuclear Coulomb repulsion potentials. Since the collision velocity 
( v )  considered here is quite high, the impact-parameter (b) method with the 
straight line trajectory approximation is employed and the factor 
h [ ( K  - A)(K + A + 1)I1l2 p in Eq. (2.3a) is replaced by vb. The coupling 
between In, and la, corresponds to the Coriolis coupling at  united atom 
limit shown in Table I. In order to apply the semiclassical theory 
the model potentials are transformed into the dynamical states that can be 
obtained analytically by using the method of Cardano. The numerical results 
are presented in Figs. 18-20. Solid (dashed) lines are the results of the 
semiclassical approximation (numerical solution of coupled equations). These 
figures clearly show the effectiveness of the semiclassical theory in the DS 
representation. Without introducing the DS representation this problem can 
not be treated by the conventional semiclassical theories. Figure 20 
demonstrates another interesting phenomenon. The dotted line in this figure 
is the result of numerical solution of the two-state (lo, and ln,) coupled 
equations. The big difference between the solid line and the dotted line 
indicates interestingly an effect of the 20, state on the transition between In, 
and la,. This is called the catalysis effect of the 20, state. The lo, state was 

1 .o 

0.8 

4 0.6 m a 
0.4 

a 
0.2 

c 

0.0 

exact 
nurnerica t 

t 
0.5 1 .o 1.5 2.0 

IMPACT PARAMETER (a.u.) 

Figure 18. Impact-parameter dependence of the transition probabilities for In, + 2a, at 
li = 0.9 a.u. (from Ref. 29b). These are the three-state results, but the two-state results are 
practically the same as these. ~ : semiclassical approximation; ---: exact numerical 
calculation. 
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Figure 19. Total cross sections for ln,+2u, as a function of collision velocity (see the 
caption of Fig. 18) (from Ref. 29b). 

confirmed not to affect the transition between In, and 2a,. This catalysis 
effect is due to the fact that the Coriolis coupling between In, and 20, deforms 
the ln, state strongly near R = 0, since the Coriolis coupling diverges as 
R - 2 .  This interesting phenomenon leads to  the following conclusion: 
Rotational couplings not directly associated with the transitions concerned 
may affect these transitions if the avoided-crossing points corresponding to 
the transitions are located at small R. This phenomenon can be reproduced 
by the semiclassical theory based on the DS representation. It is true that 
the constant ( = 0.71) electronic angular momentum coupling matrix element 
is an approximation and probably exaggerates the catalysis effect, but this 
phenomenon can be expected to occur in such a situation mentioned 
above. 

2. Li+ + N a  and Li + Na' Collisions 

Collision processes considered here are 

Li(2s) + Na+ -P Li+ + Na(3s), 

and 

Li+ + Na(3s)+ Li(2s) + Na', Li(2p) + Na'. (4.38) 
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0 = 3  
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0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
COLLISION VELOCITY (a.u.) 

Figure 20. Total cross sections for lnu- la, as a function of collision velocity (from 
Ref. 29b). __ : semiclassical approximation; ---: exact numerical calculation (three-state); . ..: 
exact numerical calculation (two-state). 

The adiabatic potential energy curves are shown in Fig. 21. The lowest three 
states are enough to be considered for treating the processes (4.38). There is 
a Coriolis coupling between 2C and lII, and the coupling between 1C and 
2C represents the Rosen-Zener type. This problem can also be well treated 
by the semiclassical theory in the DS repre~enta t ion .~~ The coupling between 
2Z and I l l  presents a Landau-Zener-type problem in this representation. 
The dynamical states are shown in Fig. 11 for K = 1700. Some of the 
numerical results are shown in Figs. 22, 23, and 24. Figure 22 shows the 
validity of the semiclassical theory in the DS representation. These are the 
results just within the two-state (2C and In) approximation to test the 
semiclassical theory. Figures 23 and 24 show the differential cross sections for 
the lX+2Z transition (Fig. 23) and for the 2X + I l l  transition and the total 
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(Li- Na)' 

3 

279 

Figure 21. Adiabatic potential energy curves of LiNa' (from Ref. 54). 

charge transfer from 2X (2X + 1 C + 1 ll) (Fig. 24), in comparison with experi- 
ments. The calculations followed the method described in Section IV A 2. 
Since the experimentally observed differential cross sections are, however, 
the low-resolution cross sections, we have used the expression 

a,,(@ 2 lf:;)(m2 + lJ:;)(w2 (4.39) 

instead of Eq. (4.36). Considering the accuracy of the adiabatic potential 
curves employed in the calculations and the low resolution of the experiments, 
the agreement between theory and experiment is fairly good. Apart from the 
comparison with experiment, the more important thing is that the 
semiclassical theory proves to become an effective powerful method within 
the DS representation and that understanding of the mechanisms of 
rotationally induced transitions can be cast into the same level as that of 
the ordinary radially induced transitions. For instance, the DS representation 
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Figure 22. Transition probabilities as a function of impact parameter for 2 1 -  In 
(two-state approximation) (from Ref. 54). ___ : exact numerical calculation; ---: semiclassical 
theory. (a) EcoLl = 30eV; (b)  Ecol, = 750eV. 
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Figure 23. Differential cross section for 1Z -+2X at E,,, = 500eV (from Ref. 54). --: 
semiclassical theory; ---: experiment (see Ref. 54). 

enables us to incorporate the multitrajectory effect naturally, and thus to 
uniquely define the deflection functions for any transitions. 

Three- and Four-Level Model Systems 3. 

The semiclassical theory presented in Section IV A 1 has been applied to the 
model three- and four-state systems including the cases that the avoided 
crossings can not be regarded to be well separated from each other.55 The 
model diabatic potentials employed are (in atomic units) 

(4.40a) 

and 
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I \  

0 1.0 2.0 3.0 4.0 5.0 
8L ( m ra d ) 

Figure 24. Differential cross sections for 2C-ln and for the total charge transfer 
(22 + 12 + In) at E,,, = 1 keV (from Ref. 54). 1: semiclassical theory for 2 2  + 1I: + In; 2: 
experiment for 21: + 12 + In (see Ref. 54); 3: semiclassical theory for 22  + In. 

where V, = 129.62, V,, = 0.08 (three-state case), 0.06 (four-state case), 
V,, = 0.005-0.03, V,, = 0.004-0.02, a =0.3,c = 0.5915,d = 0.16, and R e =  6.0. 
The diabatic couplings are taken as follows: 

The potential curves are shown in Figs. 25 and 26. Numerical results for the 
transition probabilities are shown in Figs. 27 for the three-state models 
(V,, = 0.02 and 0.005) and in Figs. 28 and 29 for the four-state models 
[( Vz0,  V,,) = f0.03,0.004) and (0.01,0.004)]. Although the complex integrals 
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defined by Eq. (3.16) were performed for the three-state case, the 
approximations o,, N 0 and 6 2: i5Pj were used in the four-state case for 
simplicity. These approximations are not bad at all, because the model 
potentials are so designed. Exact numerical solutions are the results of close 
coupled equations. As can be seen from these figures, the semiclassical theory 
works very well, although it is slightly worse in the four-state case. It is not 
very surprising that the semiclassical theory works all right for the cases that 
the avoided crossings are well separated. However, it works surprisingly well 
even in the cases that the adjacent avoided crossings cannot be regarded to 
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Figure 25. Three-state model potentials (from Ref. 55). (a) V,,  = 0.02; (b) V,, = 0.005. 
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Figure 25. (Continued ) 

be well separated as shown in Figs. 25b and 26b. Actually, in the cases of 
V,, = 0.005 of the three-state model and (Vzo,  V4,) = (0.01,0.004) of the 
four-state model, the adjacent avoided-crossing points are located inside the 
half-maximum position of the Lorentzian function of nonadiabatic coupling. 
This surprisingly good behavior of the semiclassical approximation is 
probably due to the fact that the fundamental analytical properties of 
adiabatic potential energies and nonadiabatic couplings in the complex R 
plane are correctly taken into account in the basic two-state theory. However, 
this is still just a kind of case study and more extensive work is required. 
Finally, it is interesting to note the role of phase. If all the phases are neglected, 
no oscillation of transition probability as a function of collision energy 
appears as is seen in Figs. 28. The significant effect of the Stokes phase & 
can also be seen from Figs. 27b and 28a. 

4. Application of the BFG Model to Vibronic Transitions 

The BFG (Bauer-Fisher-Gilmore) model6’ has been applied to  various 
practical processes, since this is one of the simplest generalization of the 
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Landau-Zener theory to vibronic transition. This model seems generally to 
work all right at relatively low collision velocities and for the systems with 
widely spaced crossings. The transition between covalent and ionic states 
presents a good example, since the original Landau-Zener situation holds 
well in this case. Child and Baer introduced a parameter y as a measure of 
the validity of the BFG a p p r ~ x i m a t i o n . ~ ~  This parameter y is defined as 
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= ~ R A G R / ~ r A G r ,  (4.41) 

- E  _ _ _ - - - -  
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Four-state model potentials (from Ref. 55): (a) V,, = 0.03 and V,, = 0.02; 

- E  _ _ _ - - - -  

-it 

Four-state model potentials (from Ref. 55): (a) V,, = 0.03 and V,, = 0.02; 
(h)  V,,  = 0.01 and V,, = 0.04. 
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where 6, is the average translational (s = R) or the maximal vibrational (s = u)  
velocity, and AG,(s = I ,  R) is the derivative with respect to s of the potential 
energy difference at the crossing seam. The BFG approximation works all 
right at y << 1 .  Since there have been published quite a few articles on this 
appr~xirnat ion, '~- '~  we do not go into the details here and just give two 
recent examples. Application of the Rosen-Zener formula to multiple crossing 
problem has also been ~ o n s i d e r e d . ~ ' . ~ ~  

Using the BFG, or the multiple curve crossing model and the quasifree 
electron model, Desfrancois et a1.66 discussed the electronic transitions of 
alkali atoms ( A )  by collisions with diatomic molecules, 

A(nl)  + M -+A(n'l') + M .  (4.42) 
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Figure 27. Transition probabilities as a function of collision energy E for the three-state 

model (from Ref. 55). (a) Vzo =0.02, (b)  V,, = 0.005. Plz: ~ , semiclassical, 0 exact; P z 3 :  
---, semiclassical, A exact; P13: semiclassical, x exact. The dash-dot line is the semiclassical 
result for PI ,  with $s and so neglected. 
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Figure 28. Transition probabilities as a function of collision energy E for the four-state 
model with V,, = 0.03 and V,, = 0.004 (from Ref. 21c): (a)  P ~ , semiclassical, 0 exact; 
-.- , semiclassical with phases totally neglected; -**-, semiclassical with ds neglected; 

semiclassical, A exact, P ,4: ... semiclassical, W exact. (b)  P 2 3 :  __ , semiclassical, 
0 exact, ---, semiclassical with phases totally neglected; P 34: --- semiclassical, A exact; 
PZ4: ... semiclassical, x exact. 
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Figure 30. Cross sections for Rb(5d) + 0, -B Rb(7s) + 0, (from Refs. 66 and 70). ~ 

BFG model, experiment. t 
In this case the ionic states ( A +  - M - )  are assumed to play an important 
role of intermediate state, namely, the process (4.42) is mediated by the curve 
crossings with the ionic states. The authors found that the quasifree electron 
model appears as a first-order treatment of the multiple curve crossing model 
and their main difference arises from the determination of the ionic-covalent 
couplings. One of their results in comparison with experiment is shown in 
Fig. 30. This is the result for 

Rb(5d) + O,(U = O)+ Rb(7s) + 0,. 

The BFG result is the one obtained by Paillard et aL7' 
The second example is the charge-transfer c~l l is ion,~ '  

Ne2+('S)+ H2+Ne'(2S)+ Hl(u). 

The diabatic model potentials are shown in Fig. 31. Only the attractive 
polarization potential and the repulsive Coulomb potential are assumed for 
the initial and final channels, respectively. The diabatic coupling strength 
(electronic part) was estimated by the formula of Olson et al.72 Figure 32 
gives the relative distribution of the final vibrational states. As is clearly seen, 
the multichannel Landau-Zener model (BFG model) reproduces the 
experimental result very well, while the simple Franck-Condon factor fails 
to do 
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Figure 31. Simple diabatic potential energy curves for (NeH,)’+ (from Ref. 71). 

In spite of the various questions raised in Section IV B, the simple multiple 
crossing model seems to be working generally quite well. This is probably 
because in many circumstances the various conditions are satisfied to a good 
extent. For instance, as mentioned previously, the conditions for the validity 
of the original Landau-Zener formula are probably well satisfied in the 
ionic-covalent intersections, and the phase randomization occurs effectively 
in the case that heavy atoms and molecules are involved. Besides, the detailed 
structures in the transition probabilities are usually smeared out in the total 
cross section. In any case, however, more detailed careful studies are required 
on the applicability of the various versions of semiclassical theory. 

V. CHEMICAL REACTION-PARTICLE REARRANGEMENT 

Potential energy surface (avoided) crossing is usually located in either reactant 
or product region distant from the reaction zone where particle 
rearrangement occurs. In such a case, electronic transition and particle 
rearrangement can be separately treated; and the latter can be discussed on 
a single potential energy surface.” Some semiclassical methods for chemical 
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reaction are reviewed and explained here. First, the simplest orbiting 
(Langevin) model is briefly discussed.' 3-'6 The PRS (perturbed rotational 
state) theory proposed by Takayanagi and S a k i r n ~ t o ' ~ , ~ ~ - ~ ~  is introduced, 
which takes into account the discreteness of the rotational states. Next, the 
classical S matrix theory is briefly explained for later c ~ n v e n i e n c e . ~ . ~ ~  Finally, 
the hyperspherical coordinate approach is introduced and its power is 
d e m ~ n s t r a t e d . ~ ~  

A. Orbiting (Langevin) Model for Ion-Molecule Collision 

If a molecule is nonpolar and does not possess a dipole moment, the 
long-range interaction potential between an ion and the molecule is given 
by a sum of the polarization potential and the centrifugal potential, 

ae2 Eb2 
V ( R ) =  - ~ + -, 

2 ~ 4  ~2 
(5.1) 
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where a is the polarizability, e is the ion charge, 6 is the impact parameter, 
and E represents the relative kinetic energy. The orbiting m ~ d e l ' ~ - ' ~  simply 
assumes that the capture ( - reaction) probability P,(6, E )  is given by 

where 6, is such an impact parameter that 

max [ V(R)]  = E 
R 

(5.3) 

is satisfied. From Eqs. (5.1) and (5.3), we have 

b, = (2ae2/E)'/4, (5.4) 

and thus the capture cross section a,(E) is given by 

a,(E) = n65 = 7~e(2a /E) ' /~ .  ( 5 . 5 )  

If the molecule has a dipole moment D, then the interaction potential becomes 

ae2 De Eb2 
2 ~ 4  ~2 R2  

V ( R )  = - - - cos % + --, (5.4) 

where 8 is the angle that the dipole makes with the line of centers of the 
collision. Since the interaction potential is dependent on 8, it is not 
straightforward to calculate the capture cross section. If we lock the molecule 
at % = 0, then we have 

with E, = D2/(2a). If we take an average over 8, then b, is given by79 

(5.7) 

These approximations generally give larger cross sections than experiment. 
If we want to take into account the discreteness of the molecular rotational 
states at low energies, it is convenient to employ the PRS repre~entation.'~.~~-'' 
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This is the representation of the eigenstates {xi,} of the rotating collision 
complex, 

where B is the rotational constant of the molecule, j is the rotational angular 
momentum operator and E~,,,(R) is the adiabatic potential. In order to obtain 
cjm(R) semiclassically, saki mot^^^ used the following adiabatic invariant: 

Here pe  is the momentum conjugate to the polar coordinate 8 of the molecular 
orientation with the z axis along the intermolecular direction, and is equal to 

(5.1 1) 

8,  and 8, are the turning points of the 6 motion. The adiabatic potential 
energies ujm = E / B  are numerically obtained from Eq. (5.10) as a function of 
R.  Then the effective potential in this PRS representation is given by 

Eb2 u 
V ( x )  = ~ - __ + ujm(x) - ( j  + i)’, 

x2  2x4 
(5.12) 

where E = E/B,  x = R(B/De)”2, 6 = b(B/De)’l2, and K: = crB/D2. The critical 
(orbiting) impact parameter & is determined from the conditions 

E =  V(x) and dV(x)/dx = 0. (5.13) 

Then the jm-dependent cross sections can be obtained. This method has been 
proved to be very useful. 

B. Classical S-Matrix Theory 

The classical S-matrix theory is conceptually beautiful semiclassical theory, 
which can describe chemical reactions with the various quantum effects 
incorporated by using the feasible classical t r a j e c t o r i e ~ . ~ ’ ~ ~  The quantum- 
mechanical effects are (1) quantization of internal states, (2) resonance, (3) 
interference effect, (4) tunneling effect, and (5) electronically nonadiabatic 
transition. The outline of this theory is very briefly described here, especially 
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for the convenience in the discussions in the next section. The theory is well 
grounded by the Feynman’s path integral formulation of quantum 
mechanics.’’ From all the conceivable paths the classical trajectories are 
selected by using the stationary phase approximation. The final expression 
for the S matrix is given as 

(5.14a) 

with 

where n l ( n 2 )  represents collectively the initial (final) internal state quantum 
numbers (action variable), N is the total number of the degrees of freedom 
(one translational + N - 1 internal), and Qa(n2, n ,  : E )  is the phase (action 
integral) along the classical trajectory a defined by 

00 

Qa(n2, n,:  E )  = d t [  - R(t )P( t )  - q(t) .n( t ) Iu.  (5.15) 
J - m  

R(t) and P ( t )  are the ordinary translational coordinate and momentum, and 
q(t) are the angle variables conjugate to the action variables n(t). For 
simplicity, the ordinary nonreactive scattering process is assumed, namely, 
the translational coordinate remains the same during the scattering process. 
In the case of reaction, additional labels to distinguish arrangement channels 
are necessary. The generalization is, however, straightforward and is omitted 
here. One of the important features about this theory is that the classical 
trajectories chosen here satisfy the quantization of internal states at both 
ends (double-ended boundary conditions). The classical trajectories starting 
with the quantized condition n ,  = integer generally lead to the non integer 
final actions n 2 ( n , , q y )  as a function of the initial angle variable 4:”. By 
varying qy’, the trajectories which satisfy 

n,(n,,  4‘;)) = n,(integer) (5.16) 

are searched. The function 4:’) ( n , , n z )  is a multivalued function and these 
selected trajectories are distinguished by the level a. Since we are not dealing 
with probability, but with probability amplitude, the quantum-mechanical 
interference effect is taken into account as the interference between the 
selected trajectories. Quantum-mechanical tunneling effect is incorporated 
into the formalism by considering the complex-valued trajectories. The phase 
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@ possesses an imaginary part corresponding to barrier penetration and the 
transition probability becomes an exponentially decaying function of the 
imaginary phase. Electronic transitions can also be incorporated either by 
continuing the classical trajectories analytically into the complex coordinate 
space with branch cuts or by borrowing the method of semiclassical theory 
for nonadiabatic transition. This is discussed in the next section in a bit more 
detail. 

In addition to the conceptual beauty of the formalism, this theory had 
been very successful in explaining various phenomena such as threshold 
behavior (tunneling effect), interference effect, and resonance. Unfortunately, 
however, there have arisen some serious difficulties in the practical 
applications. These are the difficulties of finding the double-ended trajectories 
(especially in the case of complex-valued trajectories) and of the complex 
calculus with branch cuts, breakdown of the stationary phase approximation, 
and appearance of the chattering phenomenon. Because of these difficulties 
the practical applications have virtually disappeared. The chattering, first 
noted in collinear reactive scattering, is the phenomenon that a final quantity 
such as product vibrational action becomes randomly dependent on an initial 
quantity such as initial vibrational angle variable.81ss2 In this situation 
classical trajectories are very unstable against initial conditions: neighboring 
trajectories diverge exponentially in a finite time period. This phenomenon 
is closely related to the so-called classical chaos and irregular scattering, and 
is associated with a complex f ~ r m a t i o n . ~ ~ - ~ ~  Instability of classical trajectory 
is caused by other reasons also. Recently, we have devised a classical- 
mechanical method for decoupling collisional and vibrational variables (in 
phase space) in scattering process, in attempt to find a way to classify variables 
into relevant and irrelevant ones and also to elucidate the reaction 
dynamics". This method can be used to diagnose collision system and to 
find out whether it contains instabilities or not, and if so, what kind. However, 
as far as we use classical trajectories, there is no treatment to avoid the 
chattering. 

C. Hyperspherical Coordinate Approach 

The hyperspherical coordinate system is a unique system in the sense that 
there is only one radial coordinate p (hyperradius) and all the others are 
angle variables (collectively denoted as QH), three of which are usually taken 
as the Euler angles. The hyperradius p represents the size of the whole system, 
and the angle variables distinguish the various arrangement channels inside 
the sphere. This coordinate system is convenient to describe the reaction 
zone in which all particles get close together, and has recently attracted much 
attention in the study of reaction  dynamic^.^^,^^-^^ Th e hyperradius p in a 
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triatomic system is defined as 

where 3, represents the arrangement channel (A + K V ) .  R ,  and r ,  are the mass 
scaled Jacobi coordinates defined by 

R ,  = a; R; and r ,  = a,r; (5.18) 

with 

(5.19) 

Here R; and r; are the original translational and vibrational coordinates, 
and my is the mass of atom y. There is no unique definition of hyperangles. 
Johnson’s angle variables, for instance, are given by 

2 

P 
cos 9 = r i R ,  sin y,, 

and 

2R,r, 
R: - r: 

cot 4 = ~ - -  cos y,, 

(5.20a) 

(5.20b) 

where y ,  is the angle between the vibrational coordinate vector r, and the 
translational coordinate vector R,. 

The power of the hyperspherical coordinate approach may be summarized 
as follows: 

1. A unified treatment of various arrangement channels is possible, since 

2. The approach is numerically efficient. 
3. Reactive transition is localized in a region along the potential ridge. 
4. Even analytical treatment becomes possible in some cases. 
5. Various effects such as those of potential energy surface topography, 

mass combination of reactants (isotope effect), and internal energy of 
reactants, and steric effects can be visualized and comprehended much 
better by drawing a potential curve diagram. 

6. Thus the reaction mechanisms, in general, can be made more 
transparent. 

there is only one coordinate ( p )  that can be infinity. 
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Although accurate numerical solutions of some 3-D reactions are 
becoming p o s ~ i b l e , ~ ~ - ~ ~  we consider here rather a collinear reaction and the 
approximate treatments of 3-D reactions with an emphasis on facilitating a 
conceptual and qualitative understanding of the mechanisms. Most of the 
contents here can be found in the recent review article.36 Some basic concepts 
of the hyperspherical coordinate approach are already explained in Section 11. 
So by presenting some examples, these concepts and the power of the 
approach mentioned above are exemplified here. 

The first example is the collinear reaction C1+ HBr(u = 0) + HCl(u = 2) + Br, 
which was already briefly discussed in Section 11. Figure 33 shows the reaction 
probability as a function of collision energy. This clearly indicates that not 
only the two-state close coupling but even the two-state Rosen-Zener formula 
gives good results. The resonance near the threshold is not reproduced by 
the latter, but this is simply because the resonance effect is not built into the 
formula. This can also be treated analytically by the semiclassical theory as 
will be described. The vibrational adiabaticity well visualized by the potential 
curve diagram of Fig. 6 is thus substantiated by Fig. 33. It should be noted 
that the analytical fitting was made directly to the vibrationally adiabatic 
potential energies (actually to the sum and the square of the difference) in 

1 .0 .  

1 0 

I I I I 

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 

E (ev) 

Figure 33. Reaction probability as a function of translational energy for the collinear 
reaction CI + HBr(u = 0)- HCl(0 = 2 )  + Br (from Ref. 107). 
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Figure 34. Resonance peak in the collinear reaction CI + HBr(u = 0) -+ HCI(u = 2 )  + 

Br (from Ref. 94). x : Rosen-Zener formula without resonance. 

order to estimate the parameters o0, S, and phases. That is, the nonuniqueness 
problem of “diabatization” can be avoided. Localization of reactive transition 
in the region of potential ridge as demonstrated by Fig. 7 is confirmed here 
by the fact that px I Re@,) is equal to - 14.64a0. The resonance seen in 
Fig. 33 is an interesting one caused by a combination of the tunneling in the 
upper potential curve and the Rosen-Zener-type nonadiabatic transition 
between the two states. Neither one of these can produce resonance 
independently. Using the semiclassical theories mentioned in Section I11 and 
IV, this resonance effect can be incorporated into the Rosen-Zener formulag4. 
The procedure is not repeated here, and only numerical results are presented 
in Fig. 34. The agreement with the exact result is not perfect, but this clearly 
demonstrates that the semiclassical theory can elucidate the mechanism. 
Similar resonances were found and analyzed in other systemsg5. 

Next, we demonstrate how a difference of potential energy surface 
topography is visualized in the form of potential energy diagram. Potential 
energy contours shown in Fig. 35 are the model LEPS potentials used by 
Polanyi and S a t h y a m ~ r t h y . ~ ~  Both potentials have a saddle point of the 
same height at the same position, but differs in the slope up to the saddle 
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Figure 35. Model LEPS potentials (from Ref. 96). (a) LEPS-IIS; (b )  LEPS-IIG. 

point in the AB + C channel (S stands for sudden rise and G for gradual). 
Figure 36 is the corresponding potential curve diagrams for the mass 
combination mA = mH (hydrogen), m, = 19m, and m, = 2 3 ~ 1 , . ~ '  The dashed 
lines represent the ridge and the bottoms of the potential energy surface. The 
difference in topography, which can not easily be detected in Fig. 35, can be 
more clearly seen in Figs. 36. The AB curves are attractive in the case of I1 
S, while the corresponding curves in the case of I1 G are repulsive before 
reaching the potential ridge line. This means that the kinetic energy is 
inevitable for the reaction from the AB channel to occur in the latter case. 
Some other qualitative features of this system can be understood from these 
diagrams. For instance, vibrational excitation of AB is necessary for the 
reaction from the A B  channel to occur effectively, and the product BC is 
expected to be vibrationally excited. The reaction from the BC channel is 
generally not probable, because the AB curves are much more sparse and 
there is no appropriate adjacent AB level to most of the BC levels. This is 
called heavy-particle anomaly. If we change the mass combination with the 
potential energy surface kept the same, the potential curve diagrams change 
drastically and in te re~t ingly .~~ Figure 37 is the case of the heavy-light-heavy 
combination (mA = m, = 20mH and m, = wH), and Fig. 38 for the light-heavy- 
light combination (mA = m, = mH and mB = 20~2,). Vibrational adiabaticity 
holds well, as is expected, in the heavy-light-heavy system. A t  collision 
energies < 1.0eV only these transitions marked by rectangulars in Fig. 37 
are prominent because of the favorable level arrangement in the vicinity of 
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the potential ridge. In the light-heavy-light system, vibrational adiabaticity 
does not hold well and the various transitions become possible with more 
complicated dynamics. Hyperspherical mode is another example to 
demonstrate the power of this coordinate ~ys tem.~~- '~ ' '  This mode is a 
vibrational motion along or approximately along the hyperangle 0, namely, 
at constant or approximately constant hyperradius p. This corresponds to 
the antisymmetric stretching mode. One eminent feature about this mode is 
that this is expected to exist in a real system such as highly excited linear 
dihydride. Some resonances in collinear reactions are also as 
hyperspherical modes. 
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Figure 36. Vibrationally adiabatic potential energy curves of the LEPS potentials of Fig. 35 

for the mass combination mA = mH, m, = 19m, and m, = 23m, (from Ref. 97). (a) LEPS-IIS; 
(b)  LEPS-IIG. 
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Figure 36. (Continued) 

Finally, we give some examples of the approximate treatments of 3-D 
reactions. In the case of 3-D reaction, the potential energy surface at  fixed 
hyperradius p is mapped onto the two dimensional space. If we use the 
variables x = sin 9 sin 4 and y = sin 9 C O S ~ ,  for instance, then this mapping 
can be done onto the unit circle. There are generally three ridge lines, each 
of which represents the region for one of the three possible reactions to 
occur.36 See also the representation discussed by Aquilanti et a1.l" In the 
approximate treatments we concentrate our attention only on one of the 
reactions. Approximations usually employed are the 10s (infinite order 
sudden)lo2 and the adiabatic-bend (or reduced d i m e n s i ~ n a l i t y ) ' ~ ~ ~ ' ~ ~  
approximation. These treat the rotational degrees of freedom in the sudden 
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and the adiabatic way, respectively. That is to say, the molecu!ar rotational 
motion (y motion) is frozen in the sudden approximation and is solved first 
at fixed translational and vibrational coordinates in the adiabatic approxi- 
mation. In either case, the dimensionality of the dynamics is reduced to two, 
and the dynamics can be analyzed in the same way as in the collinear case. 
In the IOSA, the dynamics is solved at each y i ,  and y,-dependent S matrix 
and reaction probability (PIos) are obtained. The rotationally averaged and 
summed cross section for the vibrational transition ui --t of is given by 

lr 
dos(ui  + u f : E )  = (21 + 1) P:OS(ui  + o f : y i ,  E )  sin yidyi .  (5.21) 
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Figure 37. The same as Fig. 36 for mA = m, = 20m, and m, = mH. 
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Figure 31. (Continued) 

Since a reactive transition is spatially localized near the potential ridge, the 
centrifugal potential may be replaced by the constant value estimated at a 
certain representiative position (t) on the ridge line (constant centrifugal 
potential approximation: CCPA).'" In this approximation, the reaction 
probability PI(ui + of: y, E )  for nonzero I can be estimated from the s-wave 
reaction probability by 
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When we do  not have to pay much attention to the details of the dynamics 
such as a resonance at particular 1, this CCPA approximation provides us 
with a practically useful method for not only estimating cross section and 
rate constant, 'but also grasping the overall reaction mechanisms. The cross 
section and the rate constant in this approximation are given as follows: 
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Figure 38. The same as Fig. 36 for mA = m, = mH and m, = 20mH. 
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Figure 38. (Continued) 

where pa,Bc is the reduced mass and K is Boltzmann constant. In the 
adiabatic-bend approximation, the hindered rotational eigenvalues estimated 
at each grid point ( R l , r l )  are added to the original potential in collinear 
arrangement and then the dynamics is solved for each hindered rotational 
state n. The cross section for the transition ui+uJ is given by 

with 

( k u ; ) 2  = c 
j ,  =open 

(5 .27)  

where k,, j ,  is the wave number of the relative motion in the initial channel. 
If we use the CCPA, then the cross section and the rate constant are reduced 
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to 103-1 0 5  

and 

where fro, is the rotational partition function. Both 10s and adiabatic-bend 
approximations are big approximations, but are still quite useful for under- 
standing the mechanisms. The 10s approximation is considered to be a 
good approximation for light-heavy-light system'06, while the adiabatic- 
bend approximation should work better for heavy-light-heavy system at 
low energies.'" 

Here we show an example of application of the adiabatic-bend 
approximation to the reaction 0 + HCl +OH + C1.'08 Figure 39 shows the 
potential curve diagram obtained with use of the model potential LEPS-I 
of Persky and Broida."' The dashed lines represent the bottoms of the 
potential energy surface. From this figure we can see easily that the reactions 
0 + HCl(u = O)t*OH(u = 0) + C1 and 0 + HCl(u = 4)t*OH(u = 3) + C1 are 
favorable, and that the kinetic energy more than - 0.2 eV is necessary for 
the former reaction to occur effectively. Figure 40 demonstrates again the 
importance of the potential ridge in reaction. The sharply rising position 
(p E 9.6a0) roughly corresponds to the position where the two potential curves 
cross the potential ridge line. More accurately, the position is slightly shifted 
to the right of the ridge, reflecting the fact that the hydrogen atom tunnels 
through the barrier. Figure 41 shows the 1-dependence of the reaction 
probability at  several kinetic energies. At higher energies the probability 
oscillates. This is one of the characteristics of a heavy-light-heavy system, 
The reaction probabilities shown here are calculated quantum mechanically 
by solving the close coupled equations. Finally, the kinetic isotope effect, 
ko+Hcl/ko+Dc,, is plotted in Fig. 42 as a function of the inverse temperature. 
The CCPA approximation works fairly well in spite of the fact that the 
reaction probability shows an oscillatory behavior as a function of 1.. The 
present quantum-mechanical results (both h u m  and CCPA) are in fairly 
good agreement with the experiment by Brown and Smith."O The 
experimental result by Wong and Bell"' shows a temperature dependence 
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Figure 39. Vibrationally adiabatic potential energy curves for the 0 + HCI system for I = 0 

and n = 0 (ground hindered rotational state) (from Ref. 108). 

opposite to the others and seems to be contradictory to the normal behavior. 
Since the potential energy surface employed here is a model potential, the 
comparison between the theoretical results and the experiment can not have 
a great significance. The big difference between the present results and the 
quasiclassical trajectory results, however, indicates clearly the quantum- 
mechanical tunneling effect, because this reaction system has the potential 
barrier height of 8.12 kcal/mol. Thus the reaction system chosen here 
demonstrates the importance of the potential ridge, the significance of 
tunneling effect and the usefulness of the CCPA approximation. As is 
conceivable from what has been mentioned here, it would be significant and 
useful to develop the multidimensional semiclassical theory which can 
describe wave propagation in the region of (or along) the potential ridge. 
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Figure 40. Reaction probability at I = 0 as a function of hyperradius p at E = 0.4eV for 
0 + HCI(u = O)+OH(v = 0) + CI (from Ref. 108). 

VI. SEMICLASSICAL TREATMENT OF ELECTRONICALLY 
NONADIABATIC CHEMICAL 

REACTION-FUTURE DEVELOPMENTS 

As was mentioned in the Introduction there is no such multidimensional 
semiclassical theory, unfortunately, that can be straightforwardly and 
effectively applied to electronically nonadiabatic ion-molecule reactions. In 
this section, we first briefly review the semiclassical surface hopping method 
based on the classical S-matrix theory,78,' l 2  and then try to have a perspective 
view of possible future developments by taking what have been reviewed 
and discussed in the previous sections into consideration. 

The classical trajectory surface hopping (TSH) method, a review of which 
is given in this volume by Chaprnan,'l3 is the most convenient and actually 
the most commonly used procedure to investigate the practical ion-molecule 
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reaction processes. This method incorporates the effects of nonadiabatic 
transition into the ordinary classical trajectory procedure by using either the 
original Landau-Zener formula or the local numerical solution of 
time-dependent coupled equations.' l4 This is useful but possesses some 
drawbacks: all phases are completely ignored and only the probabilities (not 
the probability amplitudes) are handled, the detailed balance is not necessarily 
satisfied, and nonadiabatic tunneling is usually neglected. A more 
sophisticated one is the semiclassical surface hopping theory, which is a 
generalization of the classical S-matrix theory made by Miller and George.' '' 
The double-ended trajectories are analytically continued into the complex 
R plane in the (avoided) crossing region to go around the branch cut between 
the two electronic potential energy surfaces. This detour into the complex 
plane gives a complex action to the S matrix. The imaginary part of the 
action provides the corresponding nonadiabatic transition probability. 
Inspite of the conceptual beauty, however, this theory turned out to be very 
cumbersome and time consuming because of the necessity of handling the 
full complex trajectories and their complicated branching patterns. In order 
to remedy this drawback, Kormonicki et al.' l5 proposed a decoupling 
scheme in which the evaluation of electronic transition is decoupled from 
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the trajectory claculations. The electronic transition calculation is carried 
out by the local complex integral at the avoided crossing point as is given 
by Eq. (3.16). They have neglected the phases CT,, and &, however, and 
employed Eq. (3.1 5). Not many applications have been made since then 
except for some which were performed within the framework of TSH.' 1 6 * 1  l 7  

In the author's opinion, it is now worthwhile to revive the method with some 
modifications to be mentioned. Classical trajectory constitutes a curvilinear 
one-dimensional space, and thus the one-dimensional semiclassical theories 
described in Section I11 can be utilized. The transition probability amplitudes 
I given by Eqs. (3.14) or (3.22) accompanied by phases can be incorporated 
into the formalism. Probably in many occasions we do not have to rely on 
the complex integral of Eq. (3.16), but can simply use the original Landau- 
Zener formula Eq. (2.1). Before doing actual dynamics calculations we can 
analyze the geometry of potential energy surface crossing and know in what 
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situations of classical trajectories encountering the crossing region we can 
use Eq. (2.1) or we have to rely on Eq. (3.16). The square roots of the 
nonadiabatic transition probabilities & or f i  are multiplied to S:2,n, 
of Eq. (5.14b) and the phases associated with nonadiabatic transition are 
added to the phase OM along the relevant classical trajectory tl. It may be 
true that in many cases the effects of phases are smeared out and the 
random-phase .approximation seems to hold well. But the problem is that 
we can not know in advance whether this is really true or not. In any case, 
it is always valuable to carry out better calculations as far as they are feasible. 
With this semiclassical surface hopping method, a choice of initial condition 
for the trajectory which has hopped a surface becomes somewhat problematic. 
The conventional choice is, however, considered to be reasonable and 
acceptable."3 That is to say, only the momentum component perpendicular 
to crossing seam is changed by the amount corresponding to the adiabatic 
potential energy difference. As is conceivable from the discussions in 
Sections 111 and IV, we have now larger flexibility and versatility. Depending 
on the schemes of avoided crossing, a proper use can be made for the 
probability amplitude. For instance, not Eq. (3.15) but Eq. (3.23) should be 
used in the near-resonant case. Besides, with use of the dynamical-state (DS) 
representation, any kind of coupling can be equally handled in a unified way. 
This is important in the case of Coriolis coupling, for instance, because the 
nonadiabatic transition is delocalized and surface hopping can not be well 
defined in the Born-Oppenheimer representation. Once we move into the 
DS representation, all transitions are localized at new avoided crossings and 
the surface hopping procedure can be straightforwardly applied. As was 
mentioned in Section 111 B, the semiclassical theory can deal with the 
nonclassical case that a crossing point is located in the classically forbidden 
region. For instance, the modification of 6 by Eq. (3.21) is usable for the case 
that both turning points are larger than the crossing point. This kind of 
modification is not very accurate, of course, but is much better than simply 
neglecting the contribution of this case, since this case usually occurs at large 
impact parameters (or angular momenta of relative motion) and gives a 
significant contribution to the total transition probability. Furthermore, the 
nonadiabatic tunneling (tunneling through an adiabatic potential barrier 
created by the coupling with the other state) can also be treated by the 
semiclassical theory, again not very accurately though. As far as the author 
knows, this case has been totally neglected so far in the practical calculations. 
The one-dimensional semiclassical working equations for this case are not 
given in this chapter and the readers who are interested in these should refer 
to the other  reference^.^^ There is one difficult problem, however, in the 
application to a multidimensional system. That is, how to determine a 
tunneling trajectory in a multidimensional potential barrier. May be, we can 
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employ the idea from the recent development of the WKB method in 
multidimensional tunneling.’ ’ Thanks to the decoupling of electronic 
transition from classical trajectory, the latter can be run only on the real 
coordinate space. A search for the double-ended trajectories can be trouble- 
some, however, as in the case of the original classical S-matrix theory. 
In this case we may relax even the double-end boundary conditions. Reaction 
probability can be estimated by78 

or 

(6.la) 

(6.lb) 

where S,,,,, is a scattering matrix with i i j  ( j  = 1,2) continuous action variable. 
Equation (6.lb) can preserve the detailed balance. The last difficulty 
associated with the usage of classical trajectory is the chattering explained 
in Section V B. This has no direct connection with nonadiabatic transition, 
but is an inherent phenomenon in classical mechanics originated from its 
nonlinearity and is considered to be one possible manifestation of 
quantum-mechanical overlapping resonances. The semiclassical surface 
hopping method described above shares the similarity in basic idea with the 
generalized surface hopping procedure discussed by Herman’ ”,‘ 2o and the 
semiclassical theory in phase space of Takatsuka and Nakamura. The 
latter is a theory of phase-space distribution function into which the 
semiclassical theories given in Section 111 can be directly incorporated. The 
theory is essentially based on the wave packet expansion and its practical 
feasibility is still an open question. Herman’s idea is to propagate a 
multidimensional wavefunction, which is expanded with respect to non- 
adiabatic coupling. This perturbation expansion can be avoided and 
improved by using the semiclassical theories of Section 111 as was discussed 
previously. If a multidimensional wavefunction can be constructed effectively 
on a single potential energy surface, then we can pursue the same idea as 
that described in Section IVA and patch the basic matrices to build up the 
scattering matrix. Namely, the overall reaction S-matrix element is reduced 
to a sum of the products of a transition amplitude for inelastic (vibronic) 
transition in initial channel, that for reactive transition, and that for inelastic 
(vibronic) transition in final channel.” This method can be, in principle, free 
from the chattering phenomenon. However, the above mentioned “if” is still 
a big “if.” Multidimensional semiclassical mechanics has been discussed by 
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many authors,2~11*12*118 but still a lot of effort should be paid for its 
development especially with an emphasis on its practical usuability. This is 
one of the most challenging subjects. Much simpler treatment would be to 
approximate the transition amplitudes for the inelastic transitions by these 
discussed in Section IV and the one for reactive transition by one of those 
obtained from the methods of Section V. Further simplification is to 
approximate the total reaction probability in this way. 

VII. SUMMARY 

Basic mechanisms of charge transfer and particle rearrangement are 
summarized and clarified. They are radially induced nonadiabatic transition, 
rotationally induced nonadiabatic transition, spin-orbit interaction, electron 
momentum transfer effect, and vibrationally nonadiabatic transition around 
potential ridge. Fundamental semiclassical theories for the two-state radially 
induced nonadiabatic transitions are reviewed. It is shown that with use of 
the dynamical-state representation all the transitions mentioned above 
associated with charge transfer can be basically classified into either 
Landau-Zener type or Rosen-Zener type and can be treated in a unified 
way by the sophisticated semiclassical theories. Transitions in this 
representation are all well localized at the new avoided-crossing points and 
thus the basic two-state theory can be easily extended to a general multilevel 
curve-crossing problem. The latter problem involving closed channels can 
be conveniently formulated by introducing an x matrix, which spans not 
only open but also closed channels. This x matrix can be constructed by 
patching the element matrices that represent the basic phenomena such as 
wave propagation, nonadiabatic transition, and wave reflection. The 
most simplified version of this multilevel curve crossing model is the BFG 
(Bauer-Fisher-Gilmore) model for the vibronic transitions in ion-molecule 
collisions. Some numerical applications are presented for ion-atom and 
ion-molecule collisions. 

As for the particle rearrangement (chemical reaction), the simplest Langevin 
model, the classical S-matrix theory, and the hyperspherical coordinate 
approach are briefly reviewed. The PRS (perturbed rotational state) represent- 
ation proposed by Takayanagi and Sakimoto is explained to be useful to 
estimate the rotational-state-dependent capture cross sections in low-energy 
ion-molecule collisions. The hyperspherical coordinate approach is shown 
to be powerful to clarify the reaction mechanisms. Particle rearrangement, 
especially light-atom transfer, occurs in a spatially localized region around 
the ridge of potential energy surface. Reaction can be clearly viewed as a 
vibrationally nonadiabatic transition. Some numerical examples are 
presented. 
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The basic theories explained in Sections 111-V cannot be directly applied 
to the practical 3-D ion-molecule reactions. These theories must be useful, 
however, to grasp the physics of the reaction mechanisms at least 
qualitatively. Moreover, it seems to be worthwhile to formulate a kind of 
modified semiclassical surface hopping method by combining the 
sophisticated semiclassical theories given in Section I11 and the basic idea of 
the classical S-matrix theory, as is discussed in Section VI. This would be a 
realizable nice step forward to tackle a 3-D ion-molecule reaction. 
Semiclassical theory is always useful to comprehend the mechanisms, even 
when quantum-mechanical accurate calculations become feasible, which 
actually does not seem to be the case in near future for the 3-D electronically 
nonadiabatic reactions. On the other hand, it is very important to direct 
much effort to further develop and generalize the basic multidimensional 
semiclassical theories so that they can deal with tunneling and be practically 
useful in chemical reaction dynamics. 
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I. INTRODUCTION 

A number of new experimental techniques have made the field of 
ion-molecule charge transfer (CT) reactions very exciting in recent years. 
Several reviews'-6 have summarized much of this work. Particularly 
important are the new techniques that allow the state selection of reactants 
and the state analysis of products. For exampl'e, photoionization techniques 
including the threshold photoelectron-photoion coincidence method6-' 
have made it possible to measure absolute total CT cross sections as a 
function of the initial internal state of the reactants. In addition, laser-induced 
fluorescence has been used to analyze the rotational and vibrational product 
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state distributions from CT reactions.’ Crossed-molecular-beam apparatuses 
are now able to measure high-resolution angular and translational 
distributions for CT proceses. A number of laboratories have succeeded in 
resolving individual vibrational levels of molecular CT products.2 Perhaps 
the most remarkable experiments done to date are the measurements of 
state-to-state cross sections carried out in Ng’s laboratory.6 

The wide range of state-specific experimental data now available for CT 
processes presents many challenges and opportunities for theoreticians. Since 
these reactions always involve two or more potential energy surfaces, the 
theory of nonadiabatic  transition^^-'^ must be used to treat them. The wide 
variety of theoretical techniques that have been used to study CT processes 
has been reviewed by several authors.12-17 

The prototypical CT system is the reaction 

Ar+(’P3[,, 2 P l j z )  + N,(u = O)+Ar + N2+(u’) 

and its reverse. A wide variety of experimental results have been obtained 
for reaction (1).’ ,z*6~8~18 It would be desirable to calculate exact state-to-state 
total and differential cross sections for this process. This is not possible at 
the present time. Nevertheless, a set of potential energy surfaces has been 
computed for this ~ys t em. ’~  In addition, considerable progress has been made 
in the d ynamical  calculation^.^ 43 ’ 13 Th e results to date indicate that 
accurate results can only be obtained if the vibrational motion, as well as 
the electronic degrees of freedom, are treated quantum mechanically. Thus, 
until now, only two theoretical procedures have worked well for processes 
such as reaction (1). 

The first of these involves a quantum-mechanical treatment of all degrees 
of freedom of the system.’O In principle, this gives exact results, but in practice 
it is necessary to make approximations, such as the infinite-order-sudden 
(10s) approximation for molecular rotation. Even then, the calculations are 
time consuming and difficult to perform at high collision energies, owing to 
the large number of open channels. In addition, the 10s approximation is 
not expected to work well at high energies.” In spite of these problems, 
important contributions have been made using this p r ~ c e d u r e . ~ ’ - ~ ~  
Quantum-mechanical calculations of CT reactions are reviewed in Chapter 2. 

The other very useful procedure for studying processes such as reaction 
(1) is the classical path technique. As the name suggests, the translational 
and rotational motions are treated classically, while the vibrational and 
electronic motions are treated quantum mechanically. Although this method 
is not an exact procedure, it has the advantage of being easier to carry out 
than quantum-mechanical calculations, while still treating the vibrational 
and electronic degrees of freedom on an equal footing. This technique is the 
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subject of the present chapter. We restrict the discussion to positive ion CT 
involving at least one molecule; thus, atom-atom collisions are e~cluded.’~ 
In general, we consider only nonreactive systems such as reaction (1). The 
classical path technique has been widely used to study energy transfer on a 
single potential energy surface.25 The first application of this method to study 
ion-molecule CT processes was the paper by Bates and Reid, which appeared 
in 196926. Since that time many other papers have appeared that use the 
classical path technique, and this work has been reviewed a number of 

Theoretical calculations based on the classical path procedure for 
molecular CT processes have been carried out by a limited number of groups. 
After the work of Bates and Reid,26 Moran, Flannery, and co-workers carried 
out in the 1970s theoretical and experimental studies of a number of 
symmetric CT  reaction^^*-^' such as 

times. 12.13.16-1 8.27 

They also studied a few atom-molecule systems.39 In the early 1980s, more 
sophisticated calculations were carried out on symmetric systems by DePristo 
and coworker~,4~-~’  using more accurate potential energy  surface^.^' During 
this period the “semiclassical energy-conserving trajectory technique” was 
applied for the first time to CT  reaction^^^.^^. In 1985 and 1986 Kimura and 
co-workers reported calculations in the keV energy range for H +  + H249 
and Ar+ + H,.” At about the same time Spalburg and Gislason used 
the classical path technique to study reaction (1) and its reverse.14 They 
established the importance of fine-structure transitions in the Ar+(’P,) ion 
in Ar+-N2 collisions, and they were the first to point out the importance of 
adiabatic vibronic potential energy curves in determining the dynamics of CT 
processes at low collision energies.51 Finally, in 1985 the present authors, 
from the University of Paris at Orsay and the University of Illinois at Chicago, 
began a collaboration, which continues to the present time. During this 
period we have studied collisions of Ar+ + N, and its reverse,52-54,56,57 
Ar+ + C0,55  and H +  + 0258 using the classical path procedure. All of this 
work is based on potential energy surfaces computed by our colleagues at 

W e have also carried out calculations61 on the reactive 
system Ar + + H,, where the charge-transfer process 

Ar+(’P,) + H, +Ar + H: ( 3 4  

competes at  low collision energy with the reaction 

Ar+(’P,) + H, +ArH+ + H. (3b) 
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Henri et a1.62 have shown that a model which assumes that small 
impact-parameter collisions lead to reaction and that CT comes only from 
large impact-parameter collisions is consistent with the available 
experimental data. Based on this model we have calculated CT cross 
sections6' for reaction (3a) as well as reactive cross sections63 for reaction (3b). 

In recent years another area of ion-molecule CT reactions has become 
very active. This is the field of dissociative CT. A typical process is 

H l  +Mg+HT(b3X:)+Mgf(2S)+2H(ls)+ Mg'. (4) 

S i d i ~ " , ~ ~  has reviewed the experimental and theoretical work on these 
systems. A theoretical treatment of dissociative CT is difficult, because the 
product states lie in the vibrational continuum of the molecule. Nevertheless, 
the classical path procedure has proved to be very useful in studying these 
reactions. At high collision energies, one can use the sudden approximation, 
which assumes that the molecule does not rotate or vibrate during the 
collision.65 At lower energies, however, the molecule is in the process of 
dissociating while the collision is occurring. In this energy range Sidis and 
co-workers have developed a local complex potential approximation to treat 
the dissociation66 as well as the vibrational excitation67 that occurs. Very 
recently, Gauyacq and Sidis6' have reported a coupled wave packet 
procedure which, in principle, can be used to treat reaction (4) exactly. 

In this chapter we begin by reviewing the computational procedures for 
the classical path method. This includes calculations of both total and 
differential state-to-state cross sections. Next we give a thorough discussion 
of results that have been obtained using this procedure by the various groups 
named. We conclude by describing three general properties of CT processes 
that have emerged from the calculations carried out in our laboratory. First, 
we discuss the breakdown of the FC principle at low collision energies. Then 
we describe the importance of adiabatic vibronic potential energy curves for 
determining nonadiabatic behavior at low energies. Finally, we present a 
general theory of CT reactions that describes the change in mechanism as 
the collision energy is varied. This theory summarizes all of the work we 
have done to date. 

11. CLASSICAL PATH FORMULATION 

In this section for simplicity we will discuss only charge-transfer systems of 
the form ( A  + BC)+ ,  although the presentation can be extended with no 
difficulty to diatom-diatom encounters. 

As mentioned in the Introduction, state-specific experiments on CT are 
now run in several laboratories. '-' These results require interpretation at 
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Figure 1. Coordinates for collision of A + BC (Upper panel) Internal coordinates R, r, and 
y. (Lower panel) Coordinates in the laboratory reference frame @,, & b, and db. 

the level of individual (electronic and vibrational) quantum states of the 
collision partners. Despite its success in interpreting many molecular 
dynamics  experiment^^^, the classical trajectory method is not well suited 
to provide this kind of information. One reason is that, if only a small number 
of product quantum states are populated, the (discrete) product distribution 
is not well represented by the histogram obtained by binning the 
corresponding classical (continuous) quantities.” Another reason is directly 
related to the fact that CT is a nonadiabatic process. In terms of classical 
trajectories, such a process can be treated by the trajectory-surface-hopping 
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(TSH) m e t h ~ d , ~ , ' ~ , ~ ~ , ~ ~  which allows for hops between potential energy 
surfaces (PES) along the trajectory. For computational convenience, the 
transition probabilities are generally obtained by means of analytic models, 
such as the L a n d a ~ - Z e n e r ~ ~  and the D e m k ~ v ~ ~  models. Another important 
limitation of the TSH method is that the transitions can take place only on 
a well-specified hypersurface, generally the avoided intersection (seam) of two 
PES. No provision is made for nonlocalized transitions, although some 
 author^^'-'^ have recently developed modifications of the TSH method 
aimed at relaxing this constraint. 

Considering these limitations of the TSH technique, it appears desirable 
in the calculations to quantize degrees of freedom corresponding to the 
state-selected information obtained from experiments. This means that we 
will treat-in addition to the electronic motion of the whole system-the 
vibration of the diatomic target quantum mechanically, retaining the 
simplicity of classical mechanics for the relative translation and for the 
rotation of the diatom. In the following, the quantized coordinates will be 
called internal, and the classical coordinates, external.' This selection of 
internal/external coordinates is not the only choice available. 10*80 In 
particular, the dependencies of the cross sections on the rotational degrees 
of freedom of the target BC can be handled more rigorously if the rotational 
motion of BC is also quantized."-'7 

As we shall see, the semiclassical procedure developed in this section 
allows one to calculate vibronic transition probabilities systematically, 
without referring to any dynamical analytical models and without the need 
to localize transitions. The vibronic states of the diatomic molecule before 
and after the collision will be, of course, quantized. The method works 
extremely well for collision energies above lOeV, and with care good results 
can be obtained down to 1 eV. 

A. Classical Path Equations 

Let us consider the collision of an atomic projectile A with a diatomic target 
BC (Fig. 1). We denote by r the B-C vector, by R the vector joining A to 
the center of mass of BC, and by y the angle between r and R. The classical 
path (CP) method consists in solving the quantum motion of the internal 
coordinates q in the field of the external coordinates Q, which are constrained 
to follow a classical trajectory Q(t). With the present choice of coordinates, 
Q stands for R and the orientation i of BC in the space-fixed frame. This 
results in the following time dependent Schrodinger e q ~ a t i o n : ~  
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It can be ~hown' ' -~ '  that, under the JWKB conditions, this equation is 
equivalent to a fully quantum-mechanical stationary Schrodinger equation. 
In Eq. (5 ) ,  H ,  is the hamiltonian corresponding to the internal (that is, 
electronic and vibrational) coordinates, defined by 

where H is the total hamiltonian and TQ is the kinetic energy operator for 
the external coordinates. This operator does not figure in Eq. (5), since it 
refers to classical coordinates. With the present choice of internal/external 
coordinates, the wavefunction $, which describes the internal state of the 
system during the collision, can be expanded in a set of orthonormal basis 
functions as 

In this equation, a' identifies the electronic state and v' the vibrational level 
(in state u'). In addition, {pi} are the electronic coordinates in the ABC 
body-fixed frame, and the q,.'s are the electronic basis functions, which may 
depend parametrically on the internuclear distance of the diatom, r,  and on 
the relative coordinates R and y. The vibrational basis functions x,.,. may 
also depend parametrically on R and y. Finally, the (complex) probability 
amplitudes c,.,., which vary continuously along the trajectory, are to be 
calculated. We shall sometimes simplify c,,(Q(t)) to ca,(t) when the meaning 
is clear. 

At a particular collision energy a given trajectory is characterized by the 
impact parameter b = (b, &), the initial orientation i = (O,, 4r) of BC, and the 
initial rotational angular momentum vector J of BC. Equation (5) is solved 
with the condition that only the entrance channel (a,v) has a non zero 
amplitude at the beginning of the collision: 

The S-matrix element corresponding to the formation of the vibronic state 
(a', u') is simply equa1'2*24,88 to the appropriate probability amplitude at the 
end of the collision: 

Sa,u,.uu(b, i, J) = c,.,.(Q(b, i, J, t + + a)). (9) 

Finally, the various cross sections can be obtained from the S matrix. It is 
necessary to properly average over the initial parameters b, i, J. This 
calculation is discussed in detail in Section IIF. 
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B. Basis Set 

The electronic and vibrational basis functions can be chosen in various ways. 
The electronic states can be ~ b t a i n e d ~ ~ - ~ l  by means of quantum-chemistry 
techniques, by solving the Schrodinger equation for the electronic motion 
for a number of different fixed nuclear geometries (r,  R, y). These solutions 
form the adiabatic repre~enta t ion .~~ The wave functions cptd satisfy 

where H e ,  is the electronic hamiltonian of the whole system. In this 
representation the basis states are coupled by derivative coupling terms, 
which can be calculated as ~ e i l . ~ ~  Although it is well known, the adiabatic 
representation is not necessarily the best one to perform dynamics 
calculations with. This is because the sharp variation of derivative couplings 
in the vicinity of avoided crossings leads to computational difficulties.' * The 
treatment of collisional systems, as opposed to bound systems, is handled 
better by means of another electronic basis known as a diabatic 
representation. While the definition of adiabatic states is unique [Eq. (lo)], 
several diabatic representations can be defined.' 2,93 This subject has been 
developed at length in the literature and will be discussed only briefly here. 
It sufiices to say that diabatic states are constructed in order to minimize 
radial derivative couplings as much as possible. As a consequence, they are 
not eigenfunctions of He, .  Transitions between diabatic states are induced 
by the off-diagonal electronic hamiltonian matrix elements. This definition 
is closely related to another definition, which requires that diabatic states 
should conserve as much as possible their main characteristics along the 
nuclear coordinates. An example of such a representation would be the two 
states associated with ( A +  + BC) and ( A  + BC') with the charge constrained 
to stay on A or BC, respectively, as the collision partners get closer.93 This 
is the natural choice for diabatic states in ion-molecule systems. Until 
recently, however, there were no ab initia calculations of the diabatic 
wavefunctions. Now Levy and co-workers have developed an approximate 
method to directly calculate diabatic PES and couplings in an ab initio 
procedure. 

Following these considerations, we will make the assumption that the 
electronic basis functions do  not contain any parametric dependency on the 
nuclear coordinates. As for the vibrational basis, adiabatic and diabatic 
representations can also be defined. Similar to our choice for the electronic 
states, we will choose the diabatic basis set to be the vibrational eigenfunctions 
of the isolated BC (or B C + )  molecule. 
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C. Coupled Equations 

The solution of the time-dependent Schrodinger equation obtained by 
substituting Eq. (7) into Eq. (5) requires the numerical integration of a set of 
coupled first-order differential equations. Before discussing that, let us first 
specify our notation. The internal hamiltonian Hq [Eq. ( 6 ) ]  is written as 

where H e ,  is the electronic hamiltonian and 

represents the vibrational kinetic energy of the diatomic target. The reduced 
mass of BC is denoted p. The operator Tr is purely radial, since the rotational 
coordinates of BC are external. The matrix elements of H e ,  are defined as 

where the integration is done over the electronic coordinates only. The matrix 
element H,,., for the case a # a', is the coupling that generates nonadiabatic 
transitions (such as CT) between electronic states a and a'. Each diagonal 
element H,, represents a (diabatic) PES of the system. H,,  can be split into 
two parts, the potential energy function of the isolated molecule BC and the 
potential interaction between A and BC, denoted by U:iat and V F ,  
respectively: 

The function V;'(r, R ,  y) goes to zero when R + co. The (diabatic) vibrational 
basis functions xUu(r) are solutions of the Schrodinger equation 

with the associated vibrational energies eUv Finally, we define the vibronic 
quantities 
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and 

where the bracket in Eq. (15) means an integration over the variable r .  
Definition (16) is used to extract the main part of the phase of the probability 
amplitude c,, as follows: 

with 

1 rt 

The exponential term takes into account the rapid oscillations of cu,. As a 
consequence, except in strong coupling regions, the (complex) coefficients a,, 
should vary slowly with time, thus facilitating the numerical integration of 
the coupled equations. The total phase of c,, will be needed to calculate the 
differential cross sections (see Section I1 F).  

The system of coupled differential equations is obtained by insertion of 
Eq. (7) into Eq. (9, which is then multiplied by a particular vibronic 
wavefunction cpX( { pi} )z , , ( r )  and integrated over electronic and vibrational 
coordinates. This results in 

In deriving this equation, we used the fact that the vibronic basis states are 
diabatic, as stated in Section I1 B.  Consequently, the time-derivative operator 
has no effect on cp, and xu, since they do not depend on R or y. In addition, 
(P,, which is independent of r, is not modified by T,. With a different choice 
of basis states the coupled equations would look very similar with, however, 
additional (derivative) coupling terms.g The right-hand side of Eq. (1 8) 
exhibits two terms. The first one represents the interaction between the 
vibrational states of different electronic states (CIU -+ CI’U’).  In particular, in a 
two-state CT system it would correspond to charge exchange. The matrix 
element H,,.(r, R, y) is often assumed to be independent of r. Then it can be 
factored out of the bracket in Eq. (15b), which simply becomes a Franck- 
Condon overlap. This is the Franck-Condon approximation for vibronic 
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matrix elements. The second term corresponds to vibrational excitation on 
a single PES (MU + MU'). Note that it will be zero if V t ' ( r ,  R ,  y )  happens to be 
independent of r .  In general, the second term is important only at small 
values of R. Consequently, it is often neglected in systems that involve charge 
transfer at large distances. 

D. Vibrationally Sudden Approximation 

It is interesting to examine how the coupled equations simplify when the 
projectile velocity is so high that the target can be considered as frozen 
during the ~ o l l i s i o n . ' ~ ~ ' ~ ~ ~ ~  Similarly to what we did in the preceding section, 
let us insert the expansion (7) into the Schrodinger equation (5) and multiply 
by a particular electronic wavefunction cp:. After integrating over the 
electronic coordinates we obtain: 

To simplify this further, we introduce an average vibrational level E, for each 
electronic state M. The vibrationally sudden approximation should be valid 
when 

for all u in set M. When this condition is satisfied, the vibrational wave packet 
associated to electronic state M will not spread during T ~ , , ~ ~ .  Replacing E,, by 
Fa in Eq. (19) and defining 

where the subscript I designates the initial vibrational state of BC, we obtain: 

The first term on the right-hand side simply corresponds to the evolution 
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of state a, decoupled from the other states. [No similar term appears in 
Eq. (18) owing to the redefinition of the probability amplitudes in Eq. (17)]. 
This system of coupled equations is similar to those encountered in 
atom-atom collisions. However, it depends on r,  the internuclear distance 
of BC, and must be solved for each fixed value of this parameter. In the 
vibrationally sudden approximation, the collision time is a fortiori  much 
shorter than the rotational period of the target. The orientation of BC will 
thus be fixed in space. Each trajectory is then characterized by the impact 
parameter b, the initial orientation i, and a fixed internuclear distance r. 
After solving Eq. (22) for a set of r values, the probability amplitude for a 
product vibronic state av can be obtained by a quadrature over r :  

It should be noted that this result is more general than the Franck-Condon 
approximation, which makes the additional assumption that the matrix 
elements Ham, do not depend on Y. In this latter case Eq. (23) would simplify to 

where f is some mean value of r .  

E. Classical Trajectory 

In the classical path method the external coordinates execute a classical 
trajectory denoted Q ( t ) .  This determines the time behavior of the internal 
coordinates. As noted by Sidis, “the common trajectory itself is merely a 
device to extract the probability amplitudes c , ~ ’ ’ ~ ’  (from the coupled 
equations). We shall see (Section I1 F )  that the semiclassical derivation of 
the differential cross section O ~ , ~ , , ~ , ( O ,  6) using the sudden approximation for 
rotation does not even make use of the classical deflection angle obtained 
in the trajectory. Much of the scattering information is contained in the 
phase of tau. Sidis’s implication that the particular method to determine the 
trajectory is unimportant appears to be correct at collision energies above 
20eV,46 but at lower collision energies care must be exercised in this part 
of the calculation. 

Three procedures have been widely used to determine the classical 
trajectory. The first is to use straight-line trajectories. This method, which 
has been widely used in the past for high-energy collisions of all types, is 
commonly referred to as the impact-parameter method’. Test calculations 
by Lee et al.46 indicate that total state-selected CT cross sections for 
Hl(u) + H,(u = 0) are computed correctly by the impact-parameter method 
at relative energies above 10eV. Thus, we expect even state-to-state cross 
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sections to be accurate above 20eV. There may be a numerical problem with 
this method at small impact parameters, because the interaction potentials 
and couplings that appear in the coupled equations (see Section 11C) can 
become very large when the nuclei get close. 

A second procedure is to compute the trajectory along the diabatic 
entrance channel potential energy surface V:(R, y) defined in Eq. (1 5). This 
method was first used for CT processes by Parlant and Gi~lason.’~ The 
surface V;(R, y )  is typically weakly attractive at large R,  owing to ion-induced 
dipole and ion-quadrupole forces, and it is repulsive in the region where the 
electron clouds overlap. l 9  This procedure leads to a more realistic trajectory. 
For example, the nuclei never get too close, so there are fewer numerical 
problems with the solution of the coupled equations. It has never been tested 
against exact calculations, but it is likely that it leads to accurate state-to-state 
cross sections at collision energies above a few eV. 

A problem with the two trajectory methods described previously is that 
no effort is made to conserve the total energy of the system. For example, 
if the total vibronic energy of the system, as determined by the coupled 
equations, increases at some point along the trajectory, we would expect that 
the kinetic energy along the trajectory should decrease to conserve energy. 
Since a single trajectory couples many states with a wide range of energies, 
it is only possible to conserve energy on the average. 

Moran et al.38 and DePristo4’ have developed a third method to compute 
the classical trajectory. DePristo calls this the “semiclassical energy- 
conserving trajectory technique” (SCECT). The total average energy of all 
the internal coordinates at any instant t is equal to 

Here the vibronic coefficients c,, are defined in Eq. (7) and H ,  is given in 
Eq. (1 1). Then E(R,  y) in the SCECT procedure is the potential that determines 
the classical trajectory. DePristo has tested the classical path procedure using 
the SCECT method for the CT system 0;-0, against the exact 
quantum-mechanical calculations of Becker.2 He obtained perfect agreement 
at Ere, = 8 eV, and his calculations at 1 eV suggest that the total CT cross 
section is accurate there. We expect that state-to-state CT cross sections 
obtained with this method should be correct at energies of 2 eV and above. 

As we have emphasized several times, the classical path method should 
work well at high energies and can be extended down to the region of a few 
eV. It would be extremely useful to have an indicator during the calculations 
of how accurate the state-to-state cross sections are. One such indicator is 
the principle of microscopic re~ers ib i l i ty .~~ This relates the cross sections for 
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the state-to-state processes au -+ u‘v’ and a’u’ + au at the same total energy E .  
The relationship (for nonreactive scattering) is 

Here E,, and EuTu, are the internal energies and g,, and g,.,. are the 
degeneracies of the two states. The left-hand side refers to the processau + a’u‘ 
and the right-hand side to the reverse process. It is straightforward to show 
that microscopic reversibility must be satisfied when straight-line trajectories 
are used; in this case it serves as a useful check on the  computation^'^. 
For the other two methods described here the results obtained from the 
classical path calculations will not strictly verify the principle of microscopic 
reversibility, since the classical trajectory is not the same for the process 
uu -+ a’u‘ and a’u’ -+ au, even if all initial conditions (impact parameter, 
molecular orientations) are chosen to be the same. Consequently, a 
comparison of cross sections that should be related by Eq. (26) provides a 
powerful test of the classical path method. The available data for 
ion-molecule CT systems gives us considerable confidence in the classical 
path procedure using either of these trajectory methods. To cite one example, 
Parlant and Gislason determined that microscopic reversibility for Ar + + N, 
collisions is satisfied to better than 6% at Erel = 1 eV and to better than 1% , 

at Ere, = 3 eV and higher.52 
It would be useful to extend classical path calculations below Erel = 1 eV. 

At this point, however, any energy difference between the reactant state and 
product state of interest becomes a serious problem. A number of techniques 
have been suggested to correct approximatively for this problem. The 
procedures are based on the need to satisfy the principle of microscopic 
reversibility, and they require separate calculations for each pair of 
reactant-product channels, which greatly increases the computational effort. 
The various methods have been reviewed by Billing.25 To date none of these 
methods have been applied to CT processes. 

Finally, it is interesting to compare the trajectory calculations in the 
classical path method, discussed above, with those used in the TSH 
p r o c e d ~ r e . ~ . ’ ~ ~ ~  1 , 7 2  In the classical path method one common trajectory 
gives rise to a large number of product states. The advantage is that all 
internal coordinates are treated quantum mechanically and, in particular, 
all of the phase information is retained. A disadvantage is that the total 
energy is not conserved except on the average. By comparison, a typical 
TSH trajectory branches into many subtrajectories, and total energy is 
conserved along each subtrajectory. A disadvantage, however, is that all of 
the phase information is lost. In addition, most TSH calculations have not 
quantized the vibrational motion, so many interesting experimental results 



336 ERIC A. GISLASON ET AL. 

cannot be reproduced. One exception to this for CT processes is the 
calculation by Nikitin et al.94 who treated the (ArN,)+ system. In the future, 
we expect more TSH calculations on uibronic potential energy surfaces to 
be carried out for CT. 

F. Differential Cross Sections 

The quantum scattering amplitude r n a t r i ~ ~ ~ ’ ~ ~  f (0,4) for a transition from 
reactants to products is: 

Here 8 and 4 are the product polar deflection and azimuthal scattering 
angles. In addition, S is the scattering matrix, I is the unit matrix, and 
Y,,,,(O, 4) is a spherical harmonic function. The initial and final relative 
translational states are specified by the linear momenta hk and hk‘; the 
collisional angular momentum quantum numbers 1 and l’(A1 = 1’ - 1); and 
the corresponding azimuthal quantum numbers m = 0 and m’, respectively, 
which refer to projections along the initial relative velocity vector (chosen 
as the z axis). It is understood that S depends on l,l’, and m’ as well as the 
initial and final rovibronic states. The expression in Eq. (27) is a generalization 
of the result for elastic atom-atom scattering: 

(28) 
1 “  

2 i k 1 = 0  
f(e) = - C (21 + 1)[exp(2iql) - ~]P,(COS e); 

where P,(cosO) is a Legendre polynomial and ql is the phase shift. 
We now restrict the discussion to atom-diatom scattering and consider 

a transition from an initial rovibrational state I n J M )  to a final state I n’J’M’) .  
Here n identifies the initial electronic state a and the initial vibrational level 
u; similarly, n’ identifies the product values a’ and u’. A particular element 
of the f matrix is 

The state-to-state differential cross section is 

In Eq. (27) the sum over m‘ is only formal. The total angular momentum is 
conserved, so M = M’ + m‘. Since M and M’ are fixed, m’ is fixed, and the 
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sum over m' can be omitted. In addition, since the entire 4 dependence of 
Yl,m,(Q, 4) is eim'@, Eq. (27) can be written f(Q,4) = e'"'@F(Q). When this is 
substituted into Eq. (30), it is apparent that the state-to-state differential cross 
section is independent of 4.97 In fact this result holds true for any differential 
cross section provided that there is no polarizing field in the experiment, 
which establishes some other axis of quantization. 

If a classical path CT calculation is ever carried out that solves the time- 
dependent Schrodinger equation for all rovibronic states of the system (a 
monumental undertaking), Eqs. (27), (29), and (30) can be used to evaluate 
the state-to-state differential cross sections. In many cases one is not interested 
in the rotational states of the reactants and products. In that case, one can 
sum Eq. (30) over the product states ( J ' ,  M ' )  and average over the initial 
(thermal) distribution of ( J ,  M )  to obtain O ~ , , ~ ( Q , $ ) .  An important example 
of this is the state-selected differential cross section 

from a particular (n, J )  reactant state. 
The scattering formalism in Eqs. (27)-(31) is exact. When one uses it in 

conjunction with the classical path appro~imation,'~~'~~'~-~~~~~ it is 
customary to make a number of semiclassical approximations. The orbital 
angular momentum quantum numbers 1 and rn are replaced by the classical 
two-dimensional impact parameter b = (b, 4b). Here b has the usual meaning, 
and 4b is the azimuthal angle that initially locates the incoming projectile 
in the space-fixed coordinate system. In particular the relationship 

b = ( 1  + i ) / k  (32) 

is used. In addition, it is assumed that there is a relatively small transfer of 
translational momentum, I k' - kl<< k;  and a relatively small transfer of 
collisional angular momentum, I I' - I1 << 1. The latter approximation 
guarantees that the molecular and orbital angular momenta are decoupled. 

Finally, it is assumed that the scattering angle is relatively small. In this 
case, an asymptotic Bessel function approximation 97,98  can be used for the 
spherical harmonics, 

This approximation requires 1 >> rn. In most applications, the small-angle 
assumption is used to drop the c0sm(8/2) factor. In its simplest form, the 
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approximation can be written 

It is remarkable that Eq. (34) preserves the orthonormality of the spherical 
harmonics in the semiclassical sense, since97 

cqm,(o,  $)g,,,,(e, $ ) e m 4  = s,,,,,,,s(r - I), (35) 

where S(l’ - l) is the delta function. (Note that the 8 range has been extended 
from zero to infinity.) For ease of computation, the Bessel function is usually 
written in its integral repre~enta t ion .~~ 

When all of these approximations are substituted into Eq. (27), the classical 
path expression for the scattering amplitude becomes 

The differential cross section can be obtained using Eq. (30) with k = k‘. The 
S-matrix elements are obtained, as described in the previous section, by 
integrating the time-dependent Schrodinger equation along the classical path. 

All of the CT calculations done with the classical path procedure have 
made the sudden approximation for molecular r o t a t i ~ n . ~ ~ - ” ~  In this high- 
energy approximation it is assumed that the molecule does not rotate during 
the collision. From a quantum-mechanical point of view the rotationally 
sudden approximation is equivalent to assuming that 4), defined in 
Eq. (31), is independent of J .  In that case, it is simplest to carry out any 
calculations of 0,.,~(0,4) assuming that J = 0. The semiclassical equivalent of 
the rotationally sudden approximation is to assume that the diatomic 
molecule’s orientation in space is fixed throughout the collision. The angles 
(Or, d,.), defined in Fig. 1, describe this orientation. The differential cross 
section is computed for fixed values of (6r,4r), and then the results are 
averaged over all orientations. It should be emphasized that the sudden 
approximation for rotation does not assume that the complete state-to-state 
cross sections on,J,M,,nJM(O, 4) are independent of the various rotational 
quantum numbers. In fact, they are not. We shall discuss their calculation 
later. 

The final scattering variables depend upon the two-dimensional impact 
parameter b = (b, 4 b )  and on the two orientation angles (Or ,  4r). Note that 
the z axis is defined by the initial relative velocity vector and that the same 
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space-fixed axes are used to define (b, &) and (or, 4r)  (see Fig. 1). In this case 
we can  rite'^'-'^^ 

These functional relationships are implicit in the following equations. When 
all of the approximations and substitutions are made, the expression for the 
scattering amplitude for one orientation b e ~ ~ m e ~ ~ ~ , ~ ~ ~ - ~ ~ ~  

Note that the time-dependent Schrodinger equation is only solved for 
vibronic transitions (n + n’) along the trajectory. The rotational state-to-state 
differential cross section is obtained by projecting fn , , .  onto the rotational 
wave functions99, O O 2  

This involves a quadrature over 8, and 4r. Equation (31) can then be used 
to compute ~ , , , , ~ (0 ,+ ) .  The calculation is simplified considerably by the 
closure properties of the rotational wave function^.^^ The result is 

As expected, the result is independent of J .  To date only one complete 
calculation of 4) using Eqs. (38) and (40) for charge transfer has been 
carried 

can be obtained by integrating 
c , , , , ~ ( O , ~ )  over all 8 and 4 or, alternatively, by using 

but we expect it will be widely used in the future. 
The total state-to-state cross section 
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The function P,,,,,,(b, Or,  4,) is the probability that scattering from reactant 
state n with initial conditions (b, Or,  4r)  will give the product state n'. The 
total cross section on,,, is much easier to compute than the differential cross 
section, because it is only necessary to integrate over the three variables in 
Eq. (41). By contrast, the evaluation of 0,,,,~(0,4) using Eqs. (38) and (40) 
requires a four-dimensional quadrature. The integral over 4b in Eq. (38) is 
the most difficult, because there is a rapidly oscillating phase factor."' 
Numerical techniques to evaluate this integral exactly are discussed later in 
this section. This oscillating phase problem does not arise in Eq. (41). 

Here we summarize various approximation techniques that can be used 
to evaluate Eq. (38). Crosslo4 has used the stationary-phase approximation 
to simplify this integral. The most accurate approximation available to date 
is that of Grimbert et al.lo5. They approximated Eq. (38) for the case 4 = 0 
[recall that o,,,,,,(8,4) is independent of 41 by making the change of variables 
u = 2kb sin(8/2)cos bb. It is then clear that the major contribution to f,.,,(e, 4) 
comes from the regions cos 4b 2 ? 1. The integral is expanded in the limits 
1 large, 8 small and I8 >> 1 to give 

Here P:(cos 0) is an associated Legendre polynomial. Thus, cn,,,(6, 4) is 
obtained by carrying out this sum and averaging over Or and 4, [see Eq. (40)]. 

Even simpler results can be obtained if one assumes straight-line 
trajectories. In this case, it is possible to show using a limiting process on 
Eq. (27) with O - + O  and A1 + O  that Eq. (27) becomes: 

This is very similar to Eq. (28). Here S,,,n, defined in Eq. (37), is the S-matrix 
element evaluated along the straight-line trajectory. This result is easier to 
evaluate than Eq. (38), but it will only be valid at high collision energies 
where the scattering angles are very small. Spalburg et a1.lo6 used this 
procedure to compute differential cross sections for chemiionization 
processes. A similar expression has been given by Flannery and 



SEMICLASSICAL TIME-DEPENDENT APPROACH TO CHARGE-TRANSFER 34 1 

co-workers,’ 3 9 3 9  but where the Legendre polynomial has been approximated 
by a zeroth-order Bessel function. Flannery’s result has the advantage that 
it accounts to first order for the momentum transferred to the atom perpen- 
dicular to the trajectory. 

The simplest procedure to extract the differential cross section from a 
classical path method would be to use the deflection angle coming from the 
classical trajectory. It should be kept in mind that in the classical path 
procedure, a single trajectory generates a large number of product states. 
The most consistent way to proceed is to assume that all of these states 
appear at the same angle. It is not clear that this is physically reasonable, 
however. For example, suppose the potential energy surface that determines 
the trajectory has a rainbow at some angle O R .  Then the state-to-state cross 
sections will all show rainbows there. Studies of rotational rainbows, however, 
show that different product states have different rainbow angles. In spite of 
these concerns, it is likely that this procedure in conjunction with Monte 
Carlo sampling of reactant variables and the semiclassical energy-conserving 
trajectory technique42 will be used extensively in the future. A big advantage 
of this procedure is that there is no need to make the sudden approximation 
for rotational motion, so it can be used at lower energies. In addition, it is 
computationally simpler than the procedure in Eqs. (38) and (40). 

Cole and DePristo4’ have suggested a different method to avoid the 
problem of all product states from a particular trajectory appearing at the 
same angle. They assume that the scattering angle associated with each 
product channel is determined by the kinetic energy of the product in that 
channel; in general, exothermic channels are scattered to smaller c.m. angles 
than endothermic channels. The implementation of this procedure requires 
solving transcendental equations for each energy and set of initial conditions. 
In their paper, Cole and DePristo restricted the calculation to a single 
orientation in the space-fixed coordinate system for the two molecules. 
Consequently, the scattering was restricted to a plane, and the only important 
initial variable was the impact parameter b. In this case, the well-known 
formula 

(44) 

could be used. Here Pn,,”(bi) is the probability that a collision at a particular 
value of bi will give the product state n‘, and the sum is over all impact 
parameters that give scattering at angle 8 (with the understanding that for 
a given value of b, 6 also depends on n and n’). It is not clear how to implement 
this method for more general systems, such as atom-diatom collisions, where 
there are four independent variables to contend with. Thus, it is unlikely 
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that this procedure will be used for the more general problem in the near 
future. 

G. Numerical Procedures 

As discussed in Section I1 A, the time-dependent Schrodinger equation must 
be solved for a particular trajectory, characterized by a set of initial 
conditions. This calculation is repeated for a large number of trajectories 
with different initial conditions and the results are finally averaged in order 
to obtain the cross sections, as explained in section I1 G 2 below. The time- 
dependent problem is actually transformed into a set of coupled first-order 
differential vibronic equations (see Section I1 C), which is solved step-by-step 
on a computer. Since the trajectory provides the time dependency for the 
vibronic equations, and is propagated simultaneously with them, in the 
following the computation of the total system of equations (vibronic plus 
trajectory) will often be simply referred to as the “trajectory calculation.” 
The main ingredients of the problem are the matrix elements of the couplings, 
interaction potentials and their derivatives, which must be available at  each 
step of the integration. Fortunately, by making some approximations, the 
quadratures involving vibrational wavefunctions can be done before running 
the trajectories. This point is developed in Section I1 G 1. 

Although the semiclassical calculations discussed in this chapter can be 
done faster than fully quantum calculations, the effort in terms of computer 
time must not be underestimated. For example, for the ArC + CO system,’’ 
at a relative collision energy of 2eV, including 75 vibronic states, the 
calculation of total state-to-state cross sections takes several hours on an 
IBM 3090, depending on the required precision. Although the computer time 
can vary widely from one system to another, one sees that it is worth 
searching for a fast (and accurate) integrator. The choice of a numerical 
integrator is discussed in Section I1 G 3. 

1. Vibrational Matrix Elements 

Central to the set of coupled equations (18) are the matrix elements Hzz: and 
V;‘ of the couplings and interaction potentials, given in Eq. (15). The 
vibrational wavefunctions of BC used in the evaluation of these vibrational 
matrix elements {VME) are computed first. This is usually donelo7 by using 
a Numerov algorithm. For each vibrational level, the Numerov method is 
used to propagate a vibrational wavefunction for a trial eigenvalue, and the 
calculation is repeated iteratively to converge on the closest true eigenvalue. 
The vibrational eigenvalues are also utilized in the calculations of the phases 
[Eq. (17)]. Then, the quadratures in Eq. (15) can be evaluated by means of 
an extended Simpson rule.’” Other methods have been used to obtain 
vibrational wavef~nct ions . ’~~ One interesting technique is the so-called 
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distributed gaussian basis (DGB) method."' It consists in expanding the 
wavefunctions over a basis of gaussian functions. For better results, the 
gaussians are distributed unevenly along r, following a semiclassical criterion 
that ensures that the density of gaussians is everywhere sufficient, even if the 
vibrational wavefunctions exhibit rapid osc i l l a t i~ns . ' ~~  The eigenvalues are 
obtained by diagonalization of the vibrational hamiitonian. A great 
advantage of this method is that no iteration is necessary. The integration 
over r is also made easier because the functions to be integrated contain 
products of gaussians. In this case, the quadratures can be carried out with 
an excellent precision by a very low-order Gauss-Hermite p r o ~ e d u r e . ' ~ ~ ~ ' ~ '  

Now consider the calculation along a single trajectory. As apparent from 
Eq. (18) the VME H;;:(R(t),y(t)) and V;'(R(t),y(t)) must be available at any 
point (R(t), y ( t ) ) .  After the vibrational wavefunctions have been computed 
and stored, it would be, in principle, possible to calculate the couplings and 
potential interaction functions (CPIF), Haa,(r,  R, y) and V:t(r, R, y), and 
perform the quadratures to obtain the VME at each step along the trajectory. 
Obviously, the quadratures would considerably slow down the integration 
of the coupled equations. This is why, generally, interpolations and/or 
simplifications of the CPIF have to be implemented. 

A major problem in using couplings and potential interactions is to build 
accurate representations of these interactions which can be used relatively 
easily in dynamics calculations.' lo In some situations, the number of points 
available from electronic structure calculations is large enough to allow for 
interpolation of the CPIF at any point (r ,  R ,  y). This was done recently by 
Sizun et al.58b for the charge-transfer collision H +  + O z ( X  'Zg-) -P H + 
O l ( X  *lIg). For each point i of a grid (Ri,yi), the quadratures over r were 
carried out for 15 vibrational states of 0, and O i ,  using an interpolation 
between 15 points over the relevant domain of r .  The VME were evaluated 
on a grid containing 30 points along R and 10 points along, y ,  taking into 
account the symmetry of the oxygen molecule. The VME were stored on a 
computer file. Then it was possible to obtain the VME at any time along a 
trajectory from an interpolation over the ( R i ,  yi) grid. 

The calculation of ab initio data at every point needed in the dynamics 
calculation is rarely feasible. To stress this point, it should be noted here 
that not only the values of the CPIF are needed but also their derivatives, 
which govern the classical motion. Generally, the couplings and potential 
interactions are supplied as analytic formulas, resulting from a fit to a 
restricted number of ab initio points and/or from semiempirical calcula- 
tions.' lo  The y dependency is often expressed as an expansion over Legendre 
 polynomial^.^' Thus, the CPIF can be easily computed from analytic 
formulas at any point (r ,  R ,  y) but, if no other simplification is made, the 
VME still have to be interpolated over a grid (Ri,yi). In order to avoid 
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this interpolation, the r dependency of the CPIF can be approximated by 
an expansion about some mean value of r,  denoted f.  The vibrational matrix 
elements of (r - I ) ,  (r - I)', . . . , are evaluated prior to the calculation, and the 
VME can be obtained along the trajectory by simple multiplications. In 
many previous calculations the r dependence was not known, and therefore 
it was simply i g n ~ r e d ~ , , ~ ~  (see end of Section I1 C). 

2. Average Over Initial Conditions 

For a specified collision energy, the determination of the vibrational 
state-to-state cross section consists in evaluating an integral over b, & , O r ,  4r 
[Eqs. (38) and (40)], if the sudden approximation for the rotation of BC is 
assumed. (If the diatomic target is rotating classically, two more initial 
parameters are needed: the rotational angular momentum J and its orienta- 
tion angle". The calculation of this four-dimensional integral is greatly 
simplified by the fact that the S-matrix element S,,,, depends on the difference 
d 4  = I 4, - 4 b  I and not on c$r and $,, individually. This fact is exploited by 
Sizun et al.58b in their CT calculation on the H +  + 0, system. First, in order 
to evaluate the integral (38), for a fixed pair of variables-(O,, 4r), they carry 
out the dynamics calculations on a regular grid of points (b,64). For b,200 
points are used between 0 and 7 a.u. and 84 is scanned between 0 and 180" 
for symmetry reasons, with a stepsize of 15". The values of S,,." are then 
interpolated on the (b, S#) grid and the integral (38) is evaluated by a modified 
Simpson rule, using step sizes of 0.02 a.u. and 2.5" for b and d4,  respectively. 
The small step size for S4 is made necessary by the rapidly oscillating phase 
factor contained in Eq. (38). Kriiger and Schinke"' use an expansion of the 
integrand into a Fourier series to carry out this quadrature. Finally, taking 
into account the symmetry of O,, the integral over 8, and 4r [Eq. (40)] is 
also performed by means of an extended Simpson rule, using the following 
ranges and stepsizes: 0" < 6, < 90", 0" < # r  < 180°, Adr = 30°, A4,  = 2.5". 

It must be emphasized here that S,, , ,  depends on three parameters, not 
four. Nevertheless, the differential cross section is effectively a four- 
dimensional integral because 4b appears in the exponential term of Eq. (38). 
Moreover, this term is rapidly oscillating and, consequently, more points are 
needed along f$b than along the other three variables. 

As for the state-to-state total cross sections [Eq. (41)], the calculation is 
much easier because one has to evaluate an integral that is only 
three-dimensional, and that does not contain the oscillating term of Eq. (38). 
This three-dimensional integral could also be evaluated by means of a Monte 
Carlo a lg~r i thm,~ '  better adapted to the calculation of high-dimensional 
integrals. As opposed to trapezoidal-type methods, it uses random initial 
conditions for the trajectories. This gives a reasonably good estimation of 
the integral with a limited number of trajectories. The result can be further 
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improved by calculating more trajectories. This technique is widely used in 
standard classical trajectory calculations,70 and it can be implemented here 
exactly in the same way (for an example, see Gislason et al."). In the 
calculation of the differential cross section, however, the Monte Carlo method 
has not been used and would have to be tested. 

3. Numerical Solution of Coupled Equations 

The set of vibronic coupled differential equations (18) is solved simultaneously 
with the hamilton equations for the classical trajectory. These latter equations 
will not be given here, since they can be found in standard papers on classical 
trajectory calculations.70 (For the particular case of the SCECT method, see 
DePristo and Sears.41) The phase @,,(t) [Eq. (17b)l is differentiated to give 
d@,,(t)/dt = F;(t)/A, and this is added to the set of vibronic and trajectory 
differential equations. In order to organize conveniently the program, the 
total set of (complex) equations is rewritten in real form and the quantum 
numbers (a, v )  are remapped onto a single i n d ; ~ . ~ ~  

In principle, these differential equations present no serious stability 
problem. The standard integratorslo8 used to calculate classical trajectories 
have been discussed in detail by Truhlar and Muckerman7' and the same 
discussion should apply here. Since the speed of integration is an important 
parameter, an adaptive step-size integrator is highly recommended. In this 
kind of integrator, the stepping algorithm returns the truncation error and 
tries to keep it within some desired bounds by varying the integration step. 
In practice, this means that we demand that the coordinates, momenta, 
phases, and probability amplitudes stay within a specified tolerance. An 
excellent discussion of this adaptive mechanism can be found in Numerical 
Recipes."' In our experience, it is essential that this algorithm is implemented 
properly to avoid accuracy problems. A reason why accuracy problems could 
occur is that the integrator is used under highly variable conditions. For 
example, the integrator must work correctly for collisions energies varying 
from 1 eV to several keV. As an additional precaution, it is useful to check 
the conservation of total energy, total angular momentum, and total 
probability at the end of the integration. 

As discussed by Truhlar and M~ckerman,~ '  the choice of the optimum 
integrator depends on each specific problem, and in particular on the 
complexity of the couplings and potential interactions. The most popular 
integrator is certainly the Runge-Kutta integrator.lo8 Although it is slower 
than others, it is simple and robust and should work in every case. More 
sophisticated integrators, like Adams-Moulton and Bulirsch-Stoer, are 
supplied by most mainframe-computer libraries. Recently, we implemented 
(unpublished work) the Bulirsch-Stoer integrator described by Press et al.'"'. 
It was found to be much faster than the Runge-Kutta. It was also observed 
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that the Bulirsch-Stoer takes most of its advantage in regions of slowly 
varying potentials. It was concluded that a mixed algorithm using Runge- 
Kutta at short distances and Bulirsch-Stoer at large distances would be an 
efficient integrator. 

Finally, it is very important to test the convergence of the calculation. 
The results should stay unchanged after redoing the calculation with more 
vibronic states. 

4. Examples 

As discussed earlier the phases of the coefficients c,,(t) vary rapidly with time 
and, as in any quantum-mechanical calculation, the phase behavior can give 
rise to a number of interesthg interference effects. These are best seen in 
intermediate calculations before the averaging over molecular orientation is 
carried out. One example of this is the state-to-state probability P,,,,,,(b, Or, 4r), 
defined in Eq. (41b), plotted against b for a fixed orientation (Or, 4r). Plots 
of this type are discussed in detail by Spalburg et al."' for a chemiionization 
process, and Lee and D e P r i ~ t o ~ ~  have used them to illustrate their work on 

In Fig. 2 we show such plots computed by Sizun et al.58b for collisions of 
H +  + 02. It should be emphasized that their work includes the full r 
dependence for the electronic couplings H,,.(r, R, y) and for the diabatic 
potentials V F ( r ,  R,  y) defined in Eqs. (12) and (13), respectively. Consequently, 
vibrational excitation of C2 (or 0;) on a single (diabatic) electronic PES 
can occur. The calculations in Fig. 2 were carried out for the orientation 
(0, = 0, 4, = 0). Thus, the three atoms are collinear when b = 0, but not for 
other impact parameters. The first two panels show the probabilities for the 
transitions H++O,(u=O)+H++O,(v= 1) and H + + 0 2 ( v = O ) + H +  
0; (v = 2) obtained from a full solution of the coupled equations. We denote 
these two processes (a, 0) +(a, 1) and (a, 0) +(a', 2). The probabilities die off 
for b > 6 a.u., because the couplings are too weak there. Two distinct types 
of oscillations are observed, fast and slow. To investigate where these 
oscillations come from, two additional calculations were carried out for the 
same molecular orientation. Both were two (vibronic) state calculations, using 
only the four appropriate vibronic matrix elements from the full hamiltonian 
matrix. The first involved the direct vibrational excitation process 
(a,O)-+(a, 1). Here the two vibronic PES are parallel, and vibrational 
excitation is a Demkov-type process induced by the r dependence of the 
potential V F ( r ,  R,  y). The resulting probability distribution is shown in 
Fig. 2(c), and should be compared to Fig. 2(a). An inset shows a schematic 
of the two potential surfaces. One might expect that the slow oscillations 
observed in P,,,,, come from the phase difference shown in the second term 
in Eq. (18), which is approximately equal to exp[ -i(cU0 - c U l ) t / h ] .  However, 

W H 2 .  
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Figure 2. State-to-state probability Pn,"(B, 8, = O,+,  = 0) plotted against impact parameter 
B for collisions of H +  + O,(u = 0) at E,,, = 23 eV. (a) Results of full solution of coupled equations 
to give H +  + O,(u = 1). (b) Results of full solution to give H + O;(u = 2). (c) Result of two-state 
calculation to give H +  + O,(u = 1). The inset shows a schematic of the two relevant diabatic 
potential energy curves. (d) Result of two-state calculation to give H + Ol(u = 2). The insert 
shows the two relevant diabatic potential energy curves. See text for further details. (Taken 
from Ref. 58b, with permission.) 
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Sizun et al.58b have shown that this is not the case at this collision energy. 
In fact, if the interference were due to an exponential term of this type, the 
oscillations would go to zero at the minima. This is not observed in Fig. 2c. 
Rather, Sizun et al.5sb have shown that vibrational excitation for vibronic 
curves such as those shown in Fig. 2c is related to the linearly forced harmonic 
oscillator system. In addition, the slow oscillations observed in Fig. 2c are 
related to the semiclassical phase shift for scattering by the vibrational 
coupling potential VT' .  They also showed for this system that the couplings 
V;' can be estimated quite accurately from V:' using the harmonic oscillator 
model. 

The second two-state calculation is for the CT process (ct,O)+(ct', 2). The 
results are shown in Fig. 2(d), along with a schematic of the two diabatic 
surfaces, which cross in this case. This corresponds to a Landau-Zener 
transition. The P,,,,,, curve should be compared to the one in Fig. 2(b). For 
this process the energy difference, which appears in the phase factor in the 
first term of Eq. (18), can be very large, so the phase changes rapidly, and 
this generates the fast (Stueckelberg) oscillations in Fig. 2(d). The same type 
of oscillations are seen in the full calculation in Fig. 2(b), but other slow 
oscillations damp them out somewhat. It is apparent that the full calculations 
involve many Demkov transitions, induced by parallel diabatic PES, and, 
simultaneously, many Landau-Zener transitions, induced by diabatic PES 
which cross. The final result is sensitive to the relative importance of each 
crossing, and it is not apparent before doing the calculation what the final 
result will be. It should also be emphasized that many of the oscillations 
observed in Fig. 2 will be lost when the average over initial molecular 
orientation is carried out. 

A second example of quantum oscillations can be seen if one plots a 
specific probability for populating a state as a function of the time, along 
the trajectory. Such a figure is useful to see the regions of importance for 
the mixing of the probability amplitude and to see if there are one or more 
localized transitions. Examples of such plots have been shown for CT 
processes at high energy by Kimura and c o - ~ o r k e r s ~ ~ , ~ ~  and by Klomp 
et al.' l 2  for a chemiionization process. 

111. CLASSICAL PATH CALCULATIONS-TOTAL 
CROSS SECTIONS 

A. Paper of Bates and Reid 

As discussed earlier, the first application of the classical path method to 
molecular CT reactions was the paper of Bates and They calculated 
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cross sections for the processes 

Hl(ub) + H,(ug = 0) + Hl(u’) + H2(u”) (VE), (454 

+ H2(u”) + Hl(u‘) (CT). (45b) 

The first process involves inelastic vibrational excitation, whereas the second 
is a true CT process. The two reactions can be distinguished experimentally, 
because (45a) produces fast H l  ions, whereas (45b) generates ions with 
thermal velocities. For this system it should be kept in mind that at collision 
energies below Ere, = 2 eV chemical reaction can occur to give H l  + H. Bates 
and Reid used simple, isotropic potential interactions, and they made some 
approximations when calculating the cross sections. Nevertheless, they 
demonstrated that the cross sections for both processes are quite large. Their 
results reproduced the experimental data fairly well in the energy range of 5 to 
500eV (Lab). 

B. Work of Moran, Flannery, and Co-workers 

The group of Moran, Flannery, and co-workers has carried out a wide range 
of theoretical and experimental studies of symmetric molecular CT processes 
such as reactions ( 2 )  and (45).28-38 In addition, they studied several 
atom-molecule CT reactions involving Ar + ions.jg This work has been 
described in detail in a comprehensive review by M ~ r a n , ~ ~  and Flannery13 
has given an extensive discussion of the theoretical procedures used in their 
calculations. Because of this, we shall only highlight their work on reaction 
(45). The reader is referred to the original references for more details. 

The calculated CT cross sections for reaction (45b), with H l  (ub) initially 
in vibrational level ub = 0 or ub = 1, are shown as a function of the H l  ion 
energy in Fig. 3.27*32 The scattering at low energy is dominated by the 
presence of the symmetric CT product state, which has exactly the same 
energy as the reactant state. As an example, the initial state (ub = 1, u; = 0) 
is resonant with the final state (u‘ = 1, Y” = 0). The symmetric state is the 
major CT product channel at low collision energies. The H:-H2 system also 
has a number of accidental near resonances, owing to the fact that the 
vibrational frequency of H l  is approximately one half that of H, (see Table I). 
Thus, the reactant state (ub = 2, us = 0), which is resonant with (u’ = 2, u“ = 0), 
is also only 0.01 eV off-resonance with the product state (u’ = 0, u“ = 1). This 
also means that there is an inelastic product channel [Reaction (45a)], namely, 
(u’ = 0, u” = l), which is also only 0.01 eV away from the reaction state. This 
has important implications for the inelastic scattering. In addition to the 
resonances and near resonances, the low-energy CT cross section depends 
on the product of the Franck-Condon factors for the transition indicated 
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Figure 3. Absolute cross sections for charge transfer in Hi(ub) + H,($ = 0) collisions as 

a function of the square root of the H i  beam energy. The experimental data are dashed-dot-dot 
curve, Ref. 113; dashed curve, Ref. 114; solid curve at low energies, Ref. 115; open circles, Ref. 
116; dashed-dot curve, Ref. 117; solid circles, Ref. 118. In addition, the closed and open squares 
are data for ub = 0 and 1, respectively, from Ref. 119. The solid and dashed curves spanning a 
wide energy range are the computations from Ref. 32. (Taken from Ref. 27, with permission.) 

in Eq. (45b): 

Unfortunately, there are no simple rules to predict the CT cross sections 
without doing the calculations. Figure 3 also shows a number of experimental 
measurements’ ’ 3-1 l 9  of the CT cross sections. The agreement between theory 
and experiments is quite good. 

At high collision energies the presence of the symmetric CT product state 
becomes much less important. In the limit where perturbation theory should 
apply41, the state-to-state cross sections become proportional to the 
Franck-Condon product Pfi. In addition, the total CT cross section for a 
particular H: (ub)  reactant state becomes independent of ub.41953 The 
transition from low-energy to high-energy behavior is shown in Fig. 4,27*32 
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TABLE I 
Energy Defects and Franck-Condon Factors for the Charge-Transfer Reaction 

H ~ ( U ~ = O , ~ ) + H , ( U ~ = O ) + H , ( ~ " ) + H ; ( U ' ) "  

Ub = 0 Ub = 1 
Product 
levels Energy Franck-Condon Energy Franck-Condon 
(u". u ' )  Defect (eV) Factor Defect (eV) Factor 

0.000 
0.272 
0.516 
0.528, 
0.768 
0.788 
0.994 
1.003 
1.044 
1.206 
1.275 
1.284 

0.0082 - 

0.0145 
0.0252 
0.0158 
0.0139 
0.0443 
0.0108 
0.0306 
0.0482 
0.0080 
0.0538 
0.0422 

-0.272 
O.OO0 
0.244 
0.256 
0.497 
0.516 
0.722 
0.73 1 
0.112 
0.934 
1.003 
1.013 

0.0145 
0.0256 
0.0155 
0.0278 
0.0244 
0.0272 
0.0191 
0.0003 
0.0296 
0.0 140 
0.0005 
0.0260 

~ 

"Based on Table I of Ref. 27. Columns three and five give the product of the two relevant 
Franck-Condon factors for the transition; this product is defined in Eq. (46). 

which presents the state-to-state CT cross sections for H:(ub = 0) + 
H,(vg = 0) as a function of the ion energy. The relevant energy defects and 
Franck-Condon overlaps are summarized in Table I. It is particularly 
remarkable that the symmetric product state (0' = 0, u" = 0) becomes a minor 
product channel above 1000eV, due to its small value of Pfi. 

Flannery et al.33 have also calculated cross sections for vibrational 
excitation (VE) of H l  ions by H, [Reaction (45a)l. Their results for 

= 0) + H,(ug = 0) are shown in Fig. 5. The total cross section for VE 
rises to 6A2 at an ion energy of 400eV; this is nearly as large as the cross 
section for CT at that energy. Flannery et al. emphasize that the large VE 
cross sections are due to the presence of charge exchange in this system. 
Thus, if the electron transfers an odd number of times between the two 
molecules, CT results; an even number of hops leads to VE. The energy 
dependence of the total VE cross section in Fig. 5 is different from that of 
the CT process, shown in Fig. 3, at both low and high energies. As we have 
seen, CT at low energies is dominated by the presence of the symmetric 
product state. The equivalent state for VE is the reactant state itself, and 
this state contributes only to the elastic scattering. Therefore, the VE cross 
section for Hi(ub = 0) is quite low at ion energies below 20eV. As would be 
expected, reactant states such as Hl(ub = 2) + H,(ug = 0), which have near- 
resonant VE product states, have much larger VE cross sections at low 
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Figure 4. State-to-state charge-transfer cross sections for Hl(ub = 0) + H,(ui = 0) collisions 
as a function of the square root of the H i  beam energy. The vibrational quantum numbers of 
the respective neutral and ion products are shown (see also Table I). (Taken from Ref. 27, with 
permission.) 

energy. At high energies the short collision time reduces the effective charge 
exchange coupling between the two molecules. It becomes difficult for the 
active electron to make even one hop to the other molecule. Consequently, 
the CT cross sections begin to decline at ion energies above 2500eV; this 
decline can be seen in Fig. 3. By comparison, VE requires at least two electron 
hops, and this is very improbable at 2500 eV. This explains the rapid decline 
of the VE cross section observed in Fig. 5. 

C. DePristo’s Work 

The initial work by DePristo on molecular CT processes involved the 
development of scaling relationships to predict state-to-state cross sections 
from a limited set of cross section data.40,41 He then adapted the 
“semiclassical energy conserving trajectory technique” (SCECT) to CT 
proce~ses.~’ This is a classical path method that conserves energy, on the 
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Figure 5. State-to-state cross sections for vibrational excitation in collisions of 
H: cub = 0) f H,(vE = 0) as a function of the square root of the H: beam energy. The vibrational 
quantum numbers of the respective neutral and ion products are shown. The solid curve at the 
top of the figure is the total cross section for vibrational excitation (summed over all product 
states, but not including the elastic channel). (Taken from Ref. 33, with permission.) 

average, along the trajectory. A similar procedure was developed by Moran 
et al.38 DePristo pointed out that in the paper by Bates and Reid26 and in the 
early work by Moran et al.31 a number of simplifying approximations had 
been made, and it was not clear what effect they had on the accuracy of the 
calculations. Now that absolute state-selected CT cross sections were 
available, these approximations would be severely tested. Therefore, it was 
important to carefully check them. 

The approximations made by Bates and Reed26 were (1) straight line 
trajectories were used. (2) No effort was made to properly treat energy flow 
between classical (translation) and quanta1 (vibronic) degrees of freedom. 
(3) The electronic coupling between the two molecules was assumed to be 
independent of the molecular orientations. (4) This coupling was also assumed 
to be independent of the H, and H i  bond lengths. This is the Franck-Condon 
approximation for coupling elements. In later work Moran and Flannery 
added the approximation that (5) the interaction potentials were made up 
of simple Morse and anti-Morse potentials.28 And, finally, there was the 
general question of over what energy range the classical path technique 
should give accurate results. 
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DePristo4’ began by comparing calculations done with the SCECT 
against the exact quanta1 calculations of Becker.” The work was done for 
the processes 

O:(u, = 1) + O,(u, = O ) + O l ( u ; )  + O,(u;) inelastic, (47a) 

-O,(u;) + O,’(u;) CT, (47b) 

using the potentials constructed by Becker. A detailed comparison of the 
state-to-state cross sections at Ere, = 8eV is given in Table IL4’ The 
agreement between the two methods is excellent. Similar agreement was 
obtained at Ere, = 36 eV, which was expected, because the SCECT is expected 
to work best at high energies. DePristo also made a comparison at Ere, = 1 eV, 
where he found that the agreement was poor for off-resonance transitions. 
However, these transitions do not contribute significantly to the total CT 
cross section, so we expect that the state-selected CT cross sections would 
be fairly accurate. We conclude that the SCECT works very well at collision 
energies of 2eV and higher. 

The state-to-state cross sections shown in Table I1 are quite interesting. 
As expected, the symmetric CT product channel dominates the cross section 

TABLE I1 
State-to-State Cross Sections at E,,, = 8 eV” 

o;(u, = l)+O,(u, =o)-+o,+(u;)+o,(u;) Direct 
+o,(v;)+o:(u;) Exchange 

Direct Exchange 

(0; > 0; )  AE (eV) Sb  Q‘ Sb Q‘ 
0,o -0.232 0.11 0.11 0.14 0.14 

- 0.039 2.33 2.23 1.81 1.80 031 
1 ,o O.OO0 
02 0.151 0.89 0.90 1.33 1.16 
1,1 0.193 1.08 1.05 1.27 1.23 
2,o 0.228 0.03 0.03 0.05 0.05 

- d 26.34 26.40 

0,3 0.338 0.07 0.07 0.05 0.04 
192 0.383 0.03 0.02 0.10 0.10 
2,1 0.421 0.02 0.02 0.02 0.02 
3.0 0.452 0.01 0.0 1 0.01 0.01 
~ ~~~ 

“This table is based on Table VI of Ref. 42. AE is the energy defect between the reactant 
and product states. The cross sections are in A’. 

bSemiclassical results from Ref. 42. 
‘Quanta1 results from Ref. 21. 
dThe elastic cross section is not computed. 
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at this collision energy. The cross sections to other channels are approx- 
imately the same for both inelastic scattering and CT, but overall the CT 
cross section (31.1 A2) is seven times larger than that for inelastic scattering 
(4.6 A,). State-to-state cross sections for both product channels correlate well 
with the energy defects, but the pattern is by no means perfect. 

In the same paper DePristo4, compared his SCECT calculations to the 
work of Moran et al.38 on this system. During the course of this work he 
discovered that Moran et al. had neglected the diagonal elements of the 
diabatic potential between 0; and 0,. This potential is important in 
determining the energy-conserved trajectory. In particular, its neglect leads 
to differential cross sections that are too strongly peaked at small angles. 
However, DePristo's work shows that neglecting these potential terms has 
only a moderate effect on the state-to-state and state-selected CT cross 
sections at  Ere, = 8eV. DePristo also determined that there were some 
numerical inaccuracies in the calculations by Moran et al.38 Nevertheless, 
the overall conclusion from this work is that the SCECT works remarkably 
well down to collsion energies of a few eV. 

In the next paper on O;/O, D e P r i ~ t o ~ ~  compared his calculated cross 
sections for reaction (47b) with the experimental results of Baer et a1.I2O for 
0; vibrational levels u = 0-8. The comparison of the state-selected cross 
sections for Erel = 15 eV is shown in Fig. 6. The cross sections computed from 
the original potential of Flannery et a1.28 are too large and do not have the 
proper dependence on the vibrational level u1 of 0;. A second set of 
calculations was carried out with the electronic coupling between the two 
molecules reduced by a factor of 2.2. Figure 6 shows that this improves the 
overall agreement, but the dependence on u1 is still incorrect. D e P r i ~ t o ~ ~  
concluded that the potential energy surfaces for this system are not correct 
and, in particular, the orientation dependence of the interactions cannot be 
neglected. Thus, approximations (3) and (5) made in the early work on this 
system (see preceding discussion) must be rethought. 

DePristo has also carried out several studies of reaction (45). Lee and 
D e P r i ~ t o ~ ~  developed a simple model for the H:/H, interaction potentials, 
which agrees well with more accurate calculations.'2' As part of this work 
they showed that the Franck-Condon approximation for coupling elements, 
assumption (4) of Bates and Reid,26 works very well for this system. The 
H; /H, system presents a severe test of this approximation, because the bond 
lengths of H: and H, are quite different. It should work even better for 
other molecular systems. These potential surfaces were then used to carry out 
a series of calculations on the systems Hl/H, ,  Hi/D, ,  D,'/H2, and 
D; /D,.44-46 State-to-state CT cross sections were computed at several 
collision energies for five vibrational levels of the reactant molecular ion. 
The calculations were done for three space-fixed orientations of the two 
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Figure 6. Total state-selected charge transfer cross sections in for O l ( u , )  + O,(u, = 0) + 

0, + 0; plotted against u,  at E,,, = 15 eV. The calculated cross sections for the original potential 
and for the potential divided by 2.2 are shown as open circles and stars, respectively. The 
experimental cross sections measured in Ref. 120 are denoted by the “plus” symbols. (Taken 
from Ref. 43, with permission.) 

molecules. They determined that the effect of different orientations was to 
broaden the product vibrational distributions. They also observed that the 
relative contribution of the symmetric CT product state varied with the initial 
vibrational level of the H i  or D i  ion. The relative state-selected CT cross 
sections as a function of the reactant state for the four systems are shown 
in Fig. 7.45 It is seen that the dependence on vibrationai level u1 is fairly 
weak at all three collision energies. Nevertheless, this dependence on u 
persists even at Ere, = 400eV. At sufficiently high energies the cross sections 
should become independent of ti1 , 4 1 9 5 3  when Franck-Condon behavior is 
obtained. The calculations at Ere, = 16eV are compared with the experiments 
of Cole et a1.l” for H i / H ,  in Fig. 8. The agreement is very good. 
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Figure 7. Relative total charge transfer cross sections versus the initial ion vibrational state 
for three relative collision energies. The systems are solid line, H;/H, from Ref. 44, dotted line, 
H:/D,; dashed-dot line, D:/H,; dashed line, Dl/D2. (Taken from Ref. 45, with permission.) 

Figure 9 shows a comparison of absolute theoretical and experimental 
cross sections for the H l / H ,  system.46 The experimental results for 
H: (ub = 0,l) are shown as well as for H i  ions with a Franck-Condon 
distribution. In addition, SCECT calculations for ub = 0 are given. The 
agreement is not as good as for the relative cross sections shown in Fig. 8, 
but the theoretical and experimental cross sections do lie within the mutual 
uncertainties. In addition, the energy dependence of the two curves is very 
similar. Also shown are the results of a calculation using straight-line 
trajectories. It is seen that these results are similar to those for the SCECT 
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calculations at energies above Ere, = 10eV. We also note that Cole and 
DePristo computed angular distributions for CT in the H:/H, system and 
confirmed that the scattering distributions extend to fairly large c.m. angles 
due to the strong interactions in this system?’ This work is discussed further 
in Section IV. 

State-to-state cross sections for a CT process like reaction (45) are expected 
to depend primarily on the energy defect AE for the transition and on the 
product of Franck-Condon factors P f i  defined in Eq. (46). Figure 10 shows 
the various cross sections computed for the process 

D:(u~ = 2) + H,(ug = O)+D,(u”) + H:(u‘) 

plotted against the energy defect at two collision energies4’ It is seen that 
the data fall approximately on a straight line for both energies. Also shown 
are the cross sections divided by P f i .  At sufficiently high energy the CT cross 
sections ufi should be proportional to the Franck-Condon factors. In that 
case, the ratios o f i / P f i  are expected to fall on a single curve. As noted above, 
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Figure 9. Experimental and theoretical state-selected charge-transfer cross sections for 
H,’ cub) + H,(ug = O).46 Experimental values: dashed curve, electron impact values recommended 
by Barnett et a1.Iz3; “plus” symbols, ub = 0; triangles, ub = 1; solid circles, vb < 18; squares, vb = 0 
results scaled from Fig. 2 of Ref. 124. Theoretical values: open circles, ub = 0 with SCECT; Xs, 
ub = 0 with linear trajectories; half-darkened circles, vb = 0 with a two-state calculation. (Taken 
from Ref. 46, with permission.) 
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Figure 10. State-to-state cross sections in a.u. for the charge-transfer reaction 
D; (u; = 2) + H,(ui = 0) + DZ(u”) + H l  (u’) at two c.m. kinetic energies as a function of the energy 
gap between reactant and product states.45 The right-hand panel shows the cross section divided 
by the product P,; of the Franck-Condon factors for the transition. P,, is defined in Eq. (46). 
(Taken from Ref. 45, with permission). 

however, even 400eV is not high enough to be in the Franck-Condon limit. 
The wide scatter in the data points confirm this. We conclude that at low 
collision energy the state-to-state CT cross sections are primarily determined 
by the energy defect AE. 

In conclusion, the SCECT has been shown to work extremely well at 
energies of 2 eV and higher. Using this procedure, DePristo was able to test 
the approximations that had been made in previous molecular CT 
calculations. He confirmed that earlier potential energy surfaces were not 
accurate, and he was able to demonstrate that the Franck-Condon 
approximation for coupling elements works very well. Finally, he was able 
to obtain good agreement between experiment and ab initio theory for the 
H:/H, system. 
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D. Work of Kimura and Co-workers 

Kimura was one of the first to point out the importance of electron- 
translation factors in theoretical treatments of CT p r o c e s ~ e s . ~ ~ ~ ~ ~  These 
factors properly treat the momentum of the electron, which is transferred, 
and they are important for collision energies in the keV range. Without them, 
the scattering wavefunction does not display the proper Galilean invariance. 
Kimura has used his methodology to study CT in two ion-molecule systems, 
H +  + H, -rH + H: 49 and Ar+ + H, -r Ar + H l .  'O. In both cases, diatomics- 
in-molecules (DIM) potential energy surfaces49*' " were used in the 
calculations. At low energies these systems undergo chemical reaction, but 
the calculations were carried out in the keV range, and Kimura made the 
sudden approximation for both rotational and vibrational motion. The 
calculations paid particular attention to the variation in the CT cross section 
with molecular orientation. 

The calculated total CT cross sections for Ar+ + H, are shown in Fig. 1 1 .  
The results agree very well with the experimental cross s e ~ t i o n s ~ ~ ~ ' ~ ~ - ' ~ ~  for 
this system. The cross sections are large, because the ionization potentials 
of the two species are very similar. The decline from 18A2 at 400eV (lab) 
to 12A2 at lOkeV reflects the fact that it is more difficult for the electron 
transfer to occur as the collision time decreases. Note that the theoretical 
cross sections of Hedrick et al.39 are considerably higher than the 
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Figure 11. Charge-transfer cross sections for Ar+ + H,(u = 0)- Ar + H,+(u' = 0-20). 
Theory: solid curve, Ref. 50; dashed curve, Ref. 39. Experiments: solid circles, Ref. 39; Xs, Ref. 
126; squares, Ref. 127; solid triangles, Ref. 128 (Taken from Ref. 50, with permission.) 
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experimental values for this system. This is probably because the potential 
energy surfaces used in their work were not as accurate as the DIM 
surfaces. ' 

E. Work of Spalburg and Co-workers 

The second classical path study of an atom-molecule CT process, following 
the pioneering work of Hedrick et al.,39 was that of Spalburg and Gi~ la son . '~  
They studied the (Ar + N,)' system. At moderate collision energies a large 
number of state-to-state processes can occur; these are summarized in 
Table 111. In addition to CT, vibrational excitation or deexcitation can also 
occur in every collision. The Ni(A) state lies about 1 eV above the N l ( X )  
state, and transitions between them, known as intersystem crossing, can be 
observed. Finally, the two spin-orbit states of Ar' are only separated by 
0.18 eV, so the cross sections for fine-structure transitions are generally large. 
For reference the relative energies of the live lowest vibrational levels for 
each electronic state are shown in Table IV. Spalburg and G i ~ l a s o n ' ~  omitted 
the Ni(A) state in their work; otherwise, all of the processes indicated in 
Table I11 were studied. 

At the time they did this work, a number of intriguing experimental results 
had appeared. Several laboratories'29-' 31 had determined that the CT cross 

TABLE 111 
Possible Processes in (Ar + N,)+ System" 

State # 1  State #2 Processb 

Nl(X; u )  + Ar c* N2(u')+ Ar+('P,/') CT 

Nl(X;  u )  + Ar +P N2(u') + Ar+(2P,i2) CT 

N i  (A; u )  + Ar u N,(u') + Ar+('P,/,) CT 

Nl(A;u)+Ar ++ N,(u') + Ar+(zP,,2) CT 

Nf(X; u) + Ar +P N,(X; u') + Ar VE 

N l  (A; u )  + Ar u N,(A; u' )  + Ar VE 

N,(u) + Ar+(,P,/,) +P N,(u') + Ar+('P,/,) VE 

N,(u) + Ar+('P,,,) ++ N,(u') + Ar+('P,,,) VE 

N2(u) + Ar+(,P,,,) ++ N,(u') + Ar+(,P,/,) FST 

ground state and the 
A 'nu excited state, and u and u' indicate vibrational levels of 
N, or N i .  Only the 'Z: ground state of N, is considered here. 
The ground state of Ar+ is the ,P,/, state. 

bCT = charge transfer, VE = vibrational excitation (or 
deexcitation), ISC = intersystem crossing, and FST = line- 
structure transition. 

N l  (X; u )  + Ar +P Ni(A; u' )  + Ar ISC 

"The two states of N l  are the X 
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TABLE IV 
Energies of Vibronic States of the Ar+ + N,++Ar + N: System" 

0 Ar+(3/2)+N2(u) Ar+(1/2)+N2(v) Ar+Nl(X,u)  Ar+Ni(A,u) 

0 0.OOo 0.178 -0.178 0.940 
I 0.289 0.467 0.092 1.172 
2 0.574 0.752 0.358 1.401 
3 0.856 1.034 0.619 1.625 
4 1.134 1.312 0.876 1.847 

"The notation Ar+(3/2) and Ar+(1/2) means Ar+('P,,J and Ar+(2P1,2). The energy of the 
vibronic state Ar+(2P,,2) + N2(v = 0) is taken to be the zero of energy. The data were taken 
from Ref. 53. The energies are in electron volts. 

section for Nl(X; u = 0) + Ar at collision energies below 25 eV was nearly 
zero, whereas other vibrational levels of N l  had CT cross sections in excess 
of 20 A'. This surprising result is obtained, even though the Ar+(2P3,2) + 
N,(u = 0) product state is nearby (AE z 0.18 eV), and the Franck-Condon 
factor for that transition, I (010)12, is 0.9. In addition, the measured CT cross 
sections for the two spin-orbit states of Ar+('P,) are quite different at  low 
collision energies.' 8-1 32-1 34 S palburg and G i ~ l a s o n ' ~  gave an extensive 
review of earlier theoretical procedures to study CT processes and concluded 
that only the classical path method would be able to properly explain the 
new state-selected data. 

Their calculations used very simple potential energy surfaces. l 4  The 
diabatic surfaces V:'(r,R,y) [see Eq. (13)] were assumed to be constant, 
regardless of the atom-molecule configuration. This meant that long-range 
terms in the potential, such as the ion-induced dipole potential, were ignored, 
and the short-range repulsions were also omitted. In addition, they assumed 
that the electronic coupling Ham, between the two 'A' states corresponding 
to N:(X) + Ar and N, + Ar+(,P), defined in Eq. (12), was given by the simple 
formula'3s 

H,,.(R) = 27.6R exp( - 1.746R), (48) 

where Ham, is in eV and R is in A. Thus, Hma, was assumed to be independent 
of molecular orientation and the vibrational coordinate. Straight-line 
trajectories were used to compute the dynamics. An important part of the 
calculations was that the spin-orbit splitting of Ar+(,P,) was treated 
correctly.' 36 Thus, Clebsch-Gordan coefficients were used to transform the 
hamiltonian from the (L, S )  coupling case to the ( j ,  mi) coupling case. A total 
angular momentum of j = 1/2 gives rise to mj = f 1/2, whereas the value 
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j = 312 gives mj = f 1/2, f3/2. For the hamiltonian used in this work 

R = Imj( (49) 

is a good quantum number. The electronic state Nl(X) + Ar corresponds to 
C? = 112. Consequently, all collisions of Ar+(2P,i2) + N, can undergo CT, 
but only one-half of the Ar+(2P,12) + N, collisions can. In fact, the R = 312 
states of Ar+(,P3/,) + N, are completely inert in their calculations. Thus, 
Spalburg and G i ~ l a s o n ’ ~  carried out calculations only for R = 1/2, and the 
results for Ar+(’P3/,) + N, had to be divided by 2 before comparing with 
experiments. 

Some of the state-to-state CT cross sections obtained in their calculations 
are summarized in Table V. The principle of microscopic reversibility, 
summarized in Eq. (26), has been used to compress the results. Charge-transfer 
cross sections for Ar + Nl(u) are read in the various rows, and cross sections 
for Arf(2P,I,, + N2(u’) are read in the various columns. However, as 
discussed above, the CT cross sections for AI-+( ,P, /~)  + N, must be divided 
by 2. As an example, the cross section for the process Ar + N: ( u  = 2) --f 
Ar+(2P,12) + N,(u’ = 1) at 10.3 eV is 24.4 A2, but the value for Ar+(2P3,2) + 
N,(v’= I )+Ar+ Ni(u=2)  is 12.2A2. It is seen that the total CT cross 
section for N: (u = 0) + Ar is quite small at Ere, = 10.3 eV and is only 2.9 A2 
at 41.2 eV. By comparison, CT from the other N: (u) states gives much larger 
cross sections. This is consistent with the experimental results.’ 2 9 - 1 3 1  The re 
was, however, a problem with the cross section computed for N i ( u  = 4) + Ar; 
the calculated value of 46 A’ at 10.3 eV greatly exceeds the experimental 
value of 27 There are two likely explanations for the discrepancy. The 
first is that the electronic coupling term in Eq. (48) is too large. It was based 
on the formula of Olson et al.,’35 who emphasized that their results are 
typically uncertain by a factor of 2. Reducing H , ,  by two gives better 
agreement with the experiment~.’~ The other likely explanation is that the 
calculations omit the N:(A) state. The N:(X, u = 4) state is very close in 
energy to N i  (A ,  u = 0) (see Table IV). Thus omitting the N i  ( A )  state is likely 
to lead to inaccurate CT cross sections. 

Another remarkable result of the Spalburg calculations is that the cross 
sections for fine-structure transitions are quite large. l 4  The calculated results 
at four collision energies are summarized in Table VI. It should be emphasized 
that there is no direct coupling between Arf(2P3i2) and Ar+(’Pli2) in the 
interaction Hamiltonian, so the transition can only occur because of the 
presence of the charge-exchange state Ar + N:. The total fine-structure 
transition cross section for Ar+(ZP,i2) + N,(u = 0) exceeds 4 A’ at all collision 
energies; at energies of 4.1 eV and higher this product channel is even more 
important that the CT channel. 
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TABLE V 
State-to-State Cross Sections (AZ) at Erel = 10.3 and 41.2 eV for 

Ar + Nl(u)eAr+(2P,12, ’Pl12) + N,(u’)’ 

v‘ 
~ 

U 0 1 2 3 4 

Erel = 10.3 eV 
0 0.15 

0.01 
1 24.36 

1.87 
2 0.16 

1.24 
3 0.00 

0.02 
4 - 

- 

Erel = 41.2eV 
0 2.37 

0.56 
1 15.19 

4.29 
2 0.21 

0.51 
3 0.00 

0.01 
4 - 

- 

- 

- 

0.50 
0.02 

24.43 
2.64 
0.39 
3.09 
0.01 
0.10 

0.03 
0.01 
1.29 
0.33 

23.11 
5.65 
0.64 
1.50 
0.01 
0.06 

- 
- 

- 

- 

0.60 
0.03 

26.96 
2.98 
0.91 
5.78 

- 

- 

0.04 
0.01 
1.06 
0.23 

27.22 
5.34 
1.35 
3.13 

- 

- 

- 

- 

0.01 
0.00 
1.36 
0.05 

34.41 
3.22 

- 

- 

- 

- 

0.05 
0.01 
1.13 
0.20 

28.48 
4.45 

- 
- 

- 
- 

- 
- 

0.0 1 
0.00 
1.64 
0.06 

- 
- 

- 

- 
- 
- 

0.05 
0.01 
1.24 
0.19 

’Two cross sections are given for each pair of vibrational 
quantum numbers. The upper value refers to Ar+(ZP,12); the 
lower value refers to Ar+(2Pl12). If no numbers are shown, both 
cross sections are less than 0.01 A’. Because of microscopic 
reversibility the cross sections are the same for the forward and 
reverse reactions. However, as discussed in the text, cross 
sections shown here for the process Ar+(*P,,,) + N,(v’)+ 
Ar + N l  (u)  must be divided by two. The tables can be read from 
left to right to obtain cross sections for Ar + Nf or from top 
to bottom to obtain cross sections for Ar+ + N,. The data are 
taken from Ref. 14. 

A number of other interesting conclusions arise from the work of Spalburg 
and Gi~lason . ’~  They showed that the cross sections for vibrational excitation 
and deexcitation were small at all collision energies. It should be emphasized 
that the potential energy surfaces V:‘ used by Spalburg were independent 
of the vibrational coordinate r, so that vibrational excitation, like 
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TABLE VI 
State-to-State Cross Sections (A’) for Fine-Structure Transitions” 

E,,.(eV) 0 1 2 

Ar+(ZP,,z)+N,(u =O)+Ar+(ZP,,)+ N2(u’) 
1.2 0.05 3.83 0.3 1 
4.1 0.89 3.38 0.08 

10.3 3.95 2.62 0.02 
41.2 13.17 1.31 0.02 

Ar+(’P,,J + N,(u = O)+Ar’(2P,,,) + N,(u’) 
1.2 0.02 0.00 0.00 
4.1 0.44 0.00 0.00 

10.3 1.97 0.01 0.00 
41.2 6.59 0.04 0.00 

“Data taken from Ref. 14. 

fine-structure transitions, can only occur via the charge exchange inter- 
mediate. They also confirmed the conclusion of DePristo4’ that the long- 
range ion-induced dipole and ion-quadrupole forces do not play an important 
role in determining CT cross sections. Finally, they determined that the CT 
cross section ratio ~(1/2)/~(3/2) for Ar+(2P,!2, 2P3,2) + N2(v = 0) collisions 
was much less than one in the energy region considered by them. The 
fascinating story of this ratio and of the many theoretical and experimental 
attempts to pin it down is discussed in the following section. 

Spalburg, Los, and Gislason also published a paper5’ that discussed for 
the first time the calculation of adiabatic uibronic potential energy surfaces 
and their importance for low energy CT processes. This work is discussed 
in Section VB.  

F. Work of Parlant and Gislason on (Ar + N2)+ 

1. Introduction 

The work of Spalburg and c o - ~ o r k e r s ’ ~ * ~ ’  gave considerable insight into 
the system (Ar+N,)+.  However, they made a number of questionable 
approximations in their calculations. These include the neglect of any 
repulsive forces and the use of straight-line trajectories. In addition, the 
electronic coupling in Eq. (48) was only approximate, and it was assumed 
to be independent of the orientation angle y .  Perhaps the biggest problem, 
however, was their neglect of the Nl(A) state in their work. In 1986 Archirel 
and LevyIg computed diabatic potential energy surfaces and couplings for 
the (Ar + N2)+ system including the A state. Thus, for the first time it was 
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possible to carry out fully ab initio calculations of the cross sections for this 
reaction. This was done by Parlant and Gislason.52-54,56~57 

The computations were carried out at relative collision energies between 
1 and 4000eV. At the higher energies the Franck-Condon principle is expected 
to be valid. This principle, which is discussed further in Section V A, assumes 
that for a process such as 

Ar+(2P,i2) + N2(u) -P Ar + N: ( X ,  u’) (50) 

the state-to-state cross section is given by 

a ( u ,  u’) = a0 I ( u I u’ ) 1 2 .  (51) 

Here 1 ( u l u ’ )  1’ is the Franck-Condon factor for the transition N2(u) --t N l  (u’), 
and go, the cross section for the electron transfer, is independent of u and 
u‘. If we define a(o) to be the state-selected total cross section for producing 
Ar + N: ( X ) ,  regardless of the product vibrational level u‘, then Eq. (51) gives 

a(u) = 1 a(u, u’) = Do. 
u’ 

Here the closure property of the Franck-Condon factors has been used. Thus, 
whenever the Franck-Condon principle is valid, the cross section a(u) must 
be independent of u. Both Eqs. (51) and (52)  have been tested in the work 
of Parlant and Gislason. 

Another important principle used to interpret their calculations is the 
concept of a dynamic energy range 6 E  around the reactant state energy. To 
a first approximation all states within + 6 E  of the reactant energy are 
populated by the scattering event, but outside that range the product 
population is very small. Spalburg et al.51 have used a weak-coupling model 
to show that if the charge-exchange coupling is given by the formula 

H,, , (R)  = A exp( - aR), (53) 

then the energy width is given by 

6 E  = d i g .  (54) 

Here g is the relative velocity. For the (Ar + N2)+ system a reasonable choice 
for a gives 

6 E  = 0.038(E,,,)”2, (55 )  
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where 6E and Erel are in eV. Thus, 6E = 0.04eV at Erel = 1 eV, but it grows 
to 1.2eV at 1000eV. The Franck-Condon principle is only expected to be 
valid when 6 E  is large compared to the range of states populated in a 
Franck-Condon transition. 

2. Theoretical Procedures 

The calculations were carried out as described in Section 11. However, certain 
approximations were made. First, the computations were carried out for 
fixed values of the orientation angle y ,  and then the results were averaged 
over y .  Second, the classical trajectory was propagated on the reactant 
(diabatic) potential energy surface. Third, the Franck-Condon approxi- 
mation was made to evaluate the vibronic matrix elements (see Section I1 C). 
Other approximations as well as the full expressions for the hamiltonian 
matrix are detailed in the first paper by Parlant and G i ~ l a s o n . ~ ~  The two 
spin-orbit states were treated correctly, as described in Section 111 E. 

3 .  Potential Energy Surfaces and Couplings 

Parlant and Gislason used simple analytic fits to the potential energy surfaces 
and couplings calculated by Archirel and Levy." The fits are summarized 
in Ref. 52. In principle, there are six potential energy surfaces for (Ar + N,)', 
but Archirel and Levy" showed that one surface does not couple to the 
other five. They carried out calculations for y = 0 and y = 90" at r = re(N2). 
Parlant and co-workers fit these calculations to an expansion in Legendre 
polynomials and then diagonalized the five-dimensional electronic 
hamiltonian matrix at several values of R and y.59 The resulting adiabatic 
potential energy surfaces are shown in Fig. t 2 for R = i. [The 52 = 2 curves 
are less interesting, because only the Ar+('P,,,) + N, and Ar + N:(A) states 
can give R = $. In addition, the electronic couplings are weaker.] It is seen 
that the ground state, which correlates to Ar + Ni(X),  has an appreciable 
well in all orientations. The maximum bond energy is 0.785eV at 0". The 
best experimental estimate of this bond energy is 0.91 f 0.06eV,59 in fairly 
good agreement with the theoretical value. By comparison, the first excited 
state, which correlates to Ar+((2P,,2) + N,, has a negligible well in every 
orientation. It is also apparent that the three lowest potential energy surfaces 
are quite anisotropic. 

4. Calculations for N :  ( X ,  A )  + Ar 

In their first paper Parlant and G i s l a ~ o n ~ ~  presented extensive calculations 
at Erel = 20eV as well as a smaller number at 8 eV. The various processes 
that can occur in this system are summarized in Table 111. A large number 
of product states are populated in a typical collision at Erel = 20 eV. A typical 
example is shown in Table VII, which gives all state-to-state cross sections 
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Figure 12. Potential energy curves for the five lowest electronic states of (ArN,)’ for R = i, 

plotted against the Ar-N, distance R for fixed values of the orientation angle j?. The N, bond 
length is 1.098 A. At infinite separation the states correspond, in order of increasing energy, to 
Ar + Nl(X), Ar+(’P,/,) + N,, Ar+(2P,,,) + N,, and Ar + Ni(A), which is doubly degenerate. 
The zero of energy corresponds to ArC(2P,12)+N2 at R =  a. (Taken from Ref. 59, with 
- n n i e r i n n )  yv .... ..., 

which exceed 0.1 A2 for collisions of N:(A, u = 2) + Ar at 20eV. [Note that 
Nl(A) + Ar can give both R = 5 and i, and the results in Table VII have 
been properly averaged. J Also shown is the average energy transfer ( AE > 
and the standard deviation SAE for the energy transfer. It is seen that the 
state-to-state cross sections are largest when the energy gap AE is small, but 
even in the limit of a very close energy resonance the cross sections are not 
extremely large. In addition, the cross sections tend to be larger if the product 
state is directly coupled to the reactant state in the hamiltonian matrix. Thus, 
cross sections to produce Ar+(2P,,2) + N2(d), which is directly coupled, are 
larger than those to produce Ar + N l  (X, u’), which is not, for comparable 
values of AE. 

Table VII also shows that the average value of AE is very small, and the 
standard deviation 6AE is 0.24eV. This latter value, which corresponds to 

M p = 30” - 
2 3 4 5  

6i 
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TABLE VII 
State-to-State Cross Sections for Ni(A, u = 2) + Ar at Erel = 20eV“ 

Cross Section 
Product Ion State U’ AE (eV) (A2) 
Ar+(2P3/Z)  7 0.548 0.9 
Ni (X)  8 0.463 0.3 
Ar+(’PIlz) 6 0.457 0.8 

Ar+(ZP3,2) 6 0.280 3.0 

N:(X) 7 0.223 0.9 
Ar+(2P,/2) 5 0.186 1.4 

N,f(X) 6 -0.023 2.5 

1 - 0.229 3.5 
Ar+(2P3/Z) 4 -0.266 1.7 
N: (XI 5 -0.271 0.4 
Ar+(ZP,/2) 3 -0.367 0.4 

N:(A) 4 0.446 0.5 

N:(4 3 0.225 3.4 

Ar+(2p,/2) 5 0.009 5.5 

Ar+(ZPl:z) 4 -0.089 4.4 

N:(A) 0 - 0.461 0.2 

Total cross section’ 30.3 
( AE ) (eVT 0.05 
6AE (eVY 0.24 

“The various product states can be Ar+(*P3/J + N2(u’), Ar+(2P,i2) + N2(u‘), N:(X, 0’) + Ar, 
or N:(A,u’)+Ar; these are identified in the first two columns. AE is the energy difference 
between reactant and product states. The data are taken from Ref. 52. 

*Total cross section for producing all states other than the reactant state. 
‘(AE) is the average energy transferred during the collision and 6AE = (AE’) - (AE)z. 

about one vibrational quantum, is comparable to the dynamic energy width 
6 E  = 0.17 V computed from Eq. (55). The small value of ( A E )  justifies the 
use of the classical path method for this system down to relative energies of 
1 eV or so. The values of ( A E )  and 6AE are definitely not consistent with 
the Franck-Condon principle. Parlant and G i ~ l a s o n ~ ~  showed that a 
Franck-Condon distribution of products would correspond to ( A E )  = 
- 0.41 eV and 6AE = 0.66 eV. We shall see that the Franck-Condon principle 
is not expected to be valid at  such a low collision energy. 

Partial state-to-state cross sections for collisions of N l  (X, A; u) + Ar are 
given in Table VIII for several reactant states at a relative energy of 20eV. 
A more complete set of results is given in Table VIII of Ref. 52. It is seen 
that the CT cross section for N: (X, u = 0) + Ar is much smaller than for the 
other reactant states; this is consistent with the experimental datalZ9-l3l. 
Parlant and Gislasonsz argue that this occurs because 6 E  = 0.17eV at 
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TABLE VIII 
Partial State-to-State Cross Sections for N l ( X ,  A; u )  + Ar” 

Initial 
State 

x o  
x 2  
x 4  
X 6  
A 0  
A 2  
A 4  

~ 

Product State 

Ar+(2P3/2) Ar+(’PII2) VE VD ISC 

2.6 0.6 0.1 0.0 0.0 
21.5 6.5 1.3 1.1 0.1 
21.2 8.5 1.8 1.6 2.8 
15.9 8.5 2.5 2.0 9.0 
7.4 4.3 2.0 0.0 1.4 

11.2 7.2 3.9 3.8 4.4 
8.4 4.6 3.3 3.1 3.5 

“All cross sections are in A. The initial state of N l  is specified by the electronic state (X or 
A) and the vibrational quantum number u. The calculations were done for Ere, = 20eV. The 
various product states are Ar+(zP312) + N,, Ar+(2P,,2) + N,, vibrational excitation (VE) or 
deexcitation (VD), and intersystem crossing (ISC) between the N;(X) and N l ( A )  electronic 
states. In each case, the cross sections have been summed over all vibrational levels of the 
products. The data are taken from Ref. 52. 

Ere, = 20 eV, whereas the nearest product state for N; (X, u = 0) + Ar is 
0.18 eV away (Table IV). All other N l  (X, u) + Ar reactant states have CT 
product states within 0.09eV. Table VIII also shows that the CT cross 
sections for producing Ar+(’P,,J are always larger than for making 
Ar+(’Pli2). For the N: ( X ,  u)  reactants this occurs because the nearest 
product state is always Ar+(’P,,’) + N,(u’) (see Table IV). For collisions of 
N; (A ,  u)  + Ar the Ar+(ZP3i2) products are favored because CT collisions 
along the R = surfaces can only give Ar+(’P,,’). Intersystem crossing (ISC) 
is an important process for N i ( X , u 2 4 ) +  Ar and for all N:(A,u) +Ar  
collisions, since the energy gap (Table IV) is quite small. Cross sections for 
vibrational excitation and deexcitation are also fairly large. The values for 
the N:(A) state are larger, reflecting the smaller vibrational quantum in the 
A state. Parlant and Gislason5’ also carried out calculations at 8eV, and 
the results were similar. 

The total CT cross sections can be obtained by adding the values in the 
second and third column of Table VIII together. The results at Ere, = 20eV 
are shown in Fig. 13 for the eight lowest levels of N:(X) and the seven lowest 
levels of N:(A). Also shown are the experimental data of Govers et al.l3’ 
It must be emphasized that the theoretical calculations, which are based on 
ab initio potential energy  surface^,'^ involve no adjustable parameters. 
Overall, the agreement between theory and experiment is quite good. 

After the first paper on N: + Ar had been published by Parlant and 
Gi~lason,~’  Ng and co-workers carried out some very exciting  experiment^'^' 
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Figure 13. Total charge-transfer cross sections for N:(X, A; u)  + Ar + N, + Ar' at 
E,,, = 20eV are plotted against the internal energy of the N: ion. Theoretical results from Ref. 
52 for u = 0-7 of the X state and u = 0-6 of the A state are shown as open circles and squares, 
respectively. Experimental results from Ref. 130 are shown as solid circles and squares. The 
lines drawn through the theoretical values are only a guide for the eye. (Taken from Ref. 52, 
with permission.) 
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on the reactions 

In particular, they were able to determine the CT branching ratio for 
producing the two spin-orbit states of Ar+ at a range of collision energies. 
This allowed them to present absolute state-to-state cross sections. Because 
of this new work Parlant and G i ~ l a s o n ~ ~  decided to calculate the cross 
sections at the energies studied by Ng. The procedure was exactly the same 
as that used in the earlier paper.52 

State-to-state CT cross sections were computed for reaction (56) at 12 
relative collision energies between 1.2 and 320 eV.57 The state-selected cross 
sections, summed over product vibrational levels, are shown in Fig. 14, where 
they are compared with the measurements of Govers et al.’,’ and Shao 
et al.131b Overall, the agreement between theory and experiment is good, 
although the computed cross sections are systematically somewhat higher 
than the experimental values for u = 1 and 2. The cross section for u = 0 is 
quite small at low energy but rises monotonically up to 24 A2 at 320 eV. As 
discussed earlier, this behavior is seen because the nearest CT product state 
is 0.18 eV away, and the dynamic energy width 6E,  defined in Eq. (55),  only 
equals 0.18 eV at Ercl = 22eV. Thus, it is not surprising that the CT cross 
section is so small at lower collision energies. 

By comparison, both Ni(u = 1) and Ni(u = 2) colliding with Ar have 
product states Ar+(’P,,,) + N2(u’), which are much closer in energy 
(Table IV). The vibronic transition Ni(u = 1) + Ar + N,(u’ = 0) + Ar+(,P,,,) 
has been shown to behave like a two-state Landau-Zener system.54 The 
state-to-state cross section rises to a maximum at 4eV and then declines at 
higher energies. As a consequence, the calculated cross section in Fig. 14 for 
N:(u = 1) goes through a maximum of 26A2 at 6eV, declines to 14A2 at 
140 eV, and then rises again due to the growing importance of the two product 
channels Ar+(’P,/,, 2P1/2) + N,(u’ = 1). (These states are favored by the 
Franck-Condon factors.) The behavior of NZ(u = 2) + Ar is similar. At low 
energy the primary product channel is Ar+(ZP,I,) + N,(u’ = l), but at high 
energy the two product states Ar+(’P,/,, + N,(u’ = 2) become favored 
due to Franck-Condon considerations. 

The relative CT cross sections for the three reactant states are shown in 
Fig. 15 for the 12 collision energies considered by Parlant and G i ~ l a s o n . ~ ~  
The agreement between the theory and the experimental data of Liao et al.’ 
is quite good. At low energies the cross sections usually satisfy the inequalities 
a(u = 0) < a(u = 1) < a ( u  = 2). This is consistent with the ordering of the energy 
gaps between the reactant states and the nearest CT product states (Table IV). 
Above Erel = lOOeV the three cross sections are about the same (although 
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Figure 14. Absolute state-selected charge-transfer cross sections for the process 
N:(u) + Ar +N2 + Ar' plotted against the relative collision energy for ti = 0,1, and 2. The 
theoretical results from Ref. 57 are shown as points connected by straight-line segments. The 
open squares are the experimental data of Shao et al.I3lb; the solid squares are the cross sections 
measured by Govers et al.'30. (Taken from Ref. 57, with permission.) 
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Figure 15. Relative charge-transfer cross sections for Nl(u) + Ar plotted as a function of 
vibrational quantum number u for various relative collision energies. The theoretical results 
from Ref. 57 are shown as solid circles; the experimental results of Liao et al.'31" are shown as 
open circles. (Taken from Ref. 57, with permission). 

there is some variation in the experimental results), in agreement with the 
prediction of the Franck-Condon principle in Eq. (52). Clearly, the 
Franck-Condon principle is violated at lower energies. 

A number of experimental measurements have been made of the CT cross 
section for reaction (56), but using non state-selected beams of 
Nl(X).'26*137-144 The results are shown in Fig. 16. In most cases, the ions 
were made using electron bombardment ionization, so the vibrational 
distribution of the N: ions is uncertain. Nevertheless, Henri et a1.62 have 
made a reasonable estimate of u = 0, 77%; u = 1, 14%; u = 2, 5%; and higher 
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Figure 16. Absolute charge-transfer cross sections for the process N i  + Ar-N, + Art 

plotted against the relative collision energy. The theoretical results from Ref. 57 are shown as 
points connected by heavy straight-line segments. It was assumed that the N: (u) vibrational 
distribution was u = 0, 77%; u = 1, 14%; and u = 2, 9%. The experimental data are denoted by 
solid triangles, Ref. 126; open circles, Ref. 137; solid diamonds, Ref. 138; open squares, Ref. 139; 
crosses, Ref. 140a; open diamonds, Ref. 140b; solid diamonds, Ref. 141; solid circle, Ref. 142; 
Xs, Ref. 143; and solid squares, Ref. 144. (Taken from Ref. 57, with permission.) 

levels 4%. For the purposes of comparison Parlant and GislasonS7 assumed 
a distribution of 77%, 14%, and 9%, and their calculated cross sections based 
on this distribution are also shown in Fig. 16. Given the spread in the 
experimental data and the rough estimate of the vibrational distribution used 
in the theory, the agreement is very good. 

One problem did arise in the calculations of Parlant and Gi~lason.~ '  Ng 
and co -~orke r s '~ '  measured the branching ratio for producing the two 
spin-orbit states of Ar+ in reaction (56). For all three reactant states the 
fraction of Ar+(2Pliz) products is small, primarily because the Ar+(ZP3,2) + 
N2(u') product states are closer in energy to the reactant states (Table IV). 
However, the fraction of Ar + ( 2 P 1 1 2 )  products increases with energy, and it 
is expected to ultimately reach one. Both theory and experiments agree on 
this general behavior, but the experimental fraction of Ar+(2Pliz)  product^'^' 
is only two-thirds of the theoretical value5' at most collision energies. It is 
disappointing that the agreement is so poor. It is quite possible that 
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assumptions made in the theoretical calculations are causing errors in this 
calculation. It is also true that the experimental results are very sensitive to 
the CT cross section ratio for the reactions 

at Elab = 20eV. The difference in CT cross sections was used by Ng to 
differentiate the two spin-orbit states of Ar +. Three measurements of the 
ratio 0(1/2)/0(3/2) at this energy have given 3.3,’34 4.1,61 and 6.1.’45 It is 
possible that part of the disagreement in the branching ratio for reaction 
(56)  is due to the uncertainty in this ratio. 

Overall, the agreement between experiments and the theoretical calcu- 
lations by Parlant and G i s l a ~ o n ~ ~ * ~ ’  on the N l  + Ar system is quite good. 
The disagreement over the branching ratio for reaction (56)  is disturbing, 
however, and more work is called for on this question. 

5. Charge-Transfer Collisions Between A r + ( * P J )  + N ,  

In addition to their work on N l  + Ar, Parlant and G i ~ l a s o n ~ ~  also carried 
out a series of calculations on the reverse reaction 

Ar+(2p3,2, 2 p l p )  + N2(u = 0) -+ Ar + N l  ( X ,  A; 0’). (57) 

The calculations were carried out in the energy range between 1 and 4000 eV. 
This system has been studied experimentally by many groups, and this work 
has been reviewed several times.’*2,6*8~18 One of the most interesting questions 
that has arisen is the CT cross section ratio o(1/2)/0(3/2) for reaction (57). 
Different l a b ~ r a t o r i e s ’ ~ ~ ’ ~ ~ - ’  34 h ave obtained quite different results for this 
ratio. The calculations of Parlant and G i ~ l a s o n ~ ~  used the same potential 
energy surfaces and couplings and the same theoretical procedure as for the 
N: + Ar  computation^.^^^^^ In particular, the Nl(A)  state was included in 
all the calculations discussed here. 

The theoretical state-to-state and total CT cross sections for Ar+(’P3/,) 
and Ar+(’P,,,) colliding with N2(u = 0) are shown in Fig. 17. The results for 
Art(2P3i2) show a maximum near 3eV, a minimum at 30eV, and then a 
plateau above 300eV. The major product state at low collision energies is 
N: ( X ,  u’ = 1 )  + Ar. Parlant and G i ~ l a s o n ~ ~  have argued that these two 
vibronic states behave very much like a two-state Landau-Zener system with 
a peak in the cross section at Erel = 5eV. At energies above 5eV the 
production of Nl(u’ = 1) + Ar declines, so the total CT cross section also 
decreases. The subsequent increase in the total cross section is due to the 
growth of other product channels. At Erel = 100eV, N i  ( X ,  u’ = 0) + Ar, which 
is favored by Franck-Condon considerations, becomes the major product, 
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R E L A T I V E  C O L L I S I O N  ENERGY (eV)  

Figure 17. Theoretical state-to-state and total charge-transfer cross sections for (a) the 
Ar+(2P3i2) reactant state and (b) the Ar+(2P,iZ) reactant state are plotted as a function of 
relative collision energy.s4 Cross sections for the processes Ar+(2P,,2, + N,(u = 0)- 
Ar + Ni(X,  A; u’) are shown as open circles and solid circles for the X and A product states, 
respectively. The total cross sections are shown as open squares. The lines through the points 
are guides for the eyes. The maximum of the cross section calculated by means of a two-state 
Landau-Zener model is shown as a star in part (a). (Taken from Ref. 54, with permission.) 

and above 300eV the Nl(A) states also are important products. The opening 
up of new product channels as the collision energy rises can be attributed 
to the increase of the dynamical energy width 6 E ,  defined earlier in Eq. (55). 
The value of 6E is 0.04eV at Erel = 1 eV, 0.38 eV at Ere, = l00eV, and 2.40eV 
at Ere, = 4OOO eV. It is instructive to compare the values of 6 E  with the energy 
gaps for this system, summarized in Table IV. 
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The results for Ar+(2P, i2)+N2(u=0) shown in Fig. 17 are somewhat 
more complex. At Erel = 1 eV the major product state is N i  ( X ,  u' = 2) + Ar. 
This interesting result occurs even though the Nl (X ,  u' = 1) + Ar state is 
both closer in energy to the reactants (see Table IV) and is more favored by 
Franck-Condon considerations. This result can be understood by examining 
the adiabatic uibronic potential energy surfaces for this system (see Section V B). 
By Erel = lOeV, Nl (X ,  u' = 1) + Ar has become the primary product state, 
and then at Ere] = 100 eV the state favored by Franck-Condon consider- 
ations, N l  ( X ,  u' = 0) + Ar, is the major product channel. This remains the 
main product up to Ere, = 4000 eV, although various N l  ( A ,  u')  states become 
significant above 40eV. As in the case of Ar+(,P,/,) + N,(u = 0), this behavior 
reflects the increasing dynamic width 6 E  as the relative energy rises. 

One of the most interesting questions about reaction (57) is the CT cross 
section ratio for the two spin-orbit states of Ar'. A number of measurements 
of the ratio a(1/2)/0(3/2) at various collision energies have been 
made,'81'32-'34,146 and the results exhibit a large dispersion. The data are 
shown in Fig. 18. The explanation of the dispersion of the data is not clear, 
but it may involve fine-structure transitions involving the Ar+(,P,) ion, which 
are not recognized by the experimentalists.'8 The two measurements by Ng's 
group'33 differ considerably from each other, but both show a minimum 
near 10eV. The data from Guyon's laboratory" lie between the Ng data. 
Finally, Kato et al.13, and Lindsay and Latimer'34 measured ratios which 
lie above the results of Ng and Guyon. By comparison, the theoretical 
 calculation^^^ give a ratio of 0.4 at energies below 10eV. The ratio then rises 
to 0.75 at l00eV and to 1.0 at  4000eV. It is encouraging that measurements 
of Lindsay and la time^-,',^ which are the most recent results and where 
great care was taken to minimize the target thickness to avoid any problems 
of fine-structure transitions, are in good agreement with the calculations of 
Parlant and G i ~ l a s o n ~ ~  at all energies. 

In an experimental tour de force, Liao et al.133b were able to determine 
absolute state-to-state cross sections for reaction (57) by measuring the 
vibrational distribution of the N: (X) products at several collision energies. 
The results are shown in Fig: 19. Also shown are the calculations of Spalburg 
and G i ~ l a s o n ' ~  and of Parlant and G i ~ l a s o n . ~ ~  Overall, the agreement 
between experiments and the two theoretical calculations is excellent. As 
discussed earlier the major product channel for Ar + (2P3 ,2 )  + N, collisions 
is Ar + Nl(u  = 1) at all four collision energies, whereas for Ar+(,P,,,) + N, 
the favored product channel is Ar + N l ( u  = 2) at the two low energies 
considered here. There is a greater scatter in the results for Ar+('Pli2) + N,, 
but Liao et al.I3,' have reported larger uncertainties in these data. In our 
opinion, Fig. 19 provides striking evidence of how the field of ion-molecule 
reactions has matured. 
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Figure 18. The ratio of the charge-transfer cross sections u ( ' P , / ~ )  and a(*P,/,) for the two 
spin-orbit states of Ar+ colliding with N, is plotted as a function of the relative collision energy. 
The theoretical results of Parlant and Gislason (Ref. 54) are shown as solid circles; the lines 
between points are only guides for the eye. The upper and lower full curves are the experimental 
results of Liao et and of Liao et al.133a, respectively. The experimental uncertainties are 
estimated to be z 20%. The other experimental results are denoted by triangles, Ref. 132; squares, 
Ref. 18; and open circles, Ref. 134. 

6. Inelastic Collisions of Ar+('P,) and N ,  

Parlant and G i ~ l a s o n ~ ~  also carried out theoretical calculations of state- 
to-state cross sections for inelastic collisions of Ar+('P,/,, 2Plj2) + N,(u = 0). 
The computations were carried out at the same time as the CT work described 
in the previous section using exactly the same procedure. 

Two important processes studied were the fine-structure transitions 

Ar+('PIi2) + N,(u = O)+Ar+(2P312) + N,(u'), 

Ar+(2P,12) + N,(u = O ) + A T + ( ~ P ~ , ~ )  + N,(u'). 

(584 

(58b) 

The first process is denoted deexcitation or quenching; the second is 
excitation. Fine-structure transitions in neutral atoms induced by collisions 
with molecules such as N, have been well studied.'47 By comparison, only 
a few measurements have been made for ion-molecule systems. However, 
three recent 5 0  have been made of reaction (58). 
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Figure 19. Absolute state-to-state cross sections for the charge-transfer processes 
Ar+(’P,/,) + N,(u = O)+Ar + Nf(X, u‘) [panels(a),(c), (e), and (f)] and Ar+(’P,,,) + N,(v = 0)- 
Ar + Nl(X,  u’) [panels (b) and ( d ) ]  are plotted for various collision energies. The experimental 
results from Liao et al.133b are shown as open circles. The theoretical calculations by Parlant 
and GislasonS4 are shown as solid circles connected by solid lines; the calculations by Spalburg 
and G i ~ l a s o n ’ ~  are shown as circles connected by dashed lines. In (c) the two theoretical results 
are indistinguishable. The experimental relative collision energies are 1.2eV [(a) and ( b ) ] ,  4.1 eV 
[(c) and (41, 10.3eV [(e)], and 41.2eV [(f)]. The theoretical energies are either the same14 or 
close in energy.s4 (Taken from Ref. 54, with permission.) 
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2.0 

The theoretical state-selected cross sections for reactions (58a) and (58b) 
calculated by Parlant and Gislasons6 are shown in Fig. 20. The cross sections 
are surprisingly large. For example, at Ere, = 1 eV the cross section for the 
quenching of Ar+(ZP,,,) by N,(o = 0) is 1.6Az; this is about one-half of the 
calculated CT cross section for the same system.54 Between 10 and 4000eV 
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Relative Energy (eV) 
Total cross sections for the fine-structure transitions defined in Eq. (58)  plotted 

against the relative collision energy. The solid circles are the cross sections for deexcitation of 
Ar+(’Pl12) by N,(u = 0) computed by Parlant and G i ~ l a s o n ; ~ ~  the solid squares are the calculated 
cross sections for excitation of Ar+(’P,,,) by N,(u = 0). The lines between points are guides for 
the eye. The open circles and squares are the analogous cross sections by Spalburg and 
Gis1as0n.I~ The triangle is the experimental excitation cross section measured by Shao et al.lrs 
The short solid lines are the deexcitation (upper) and excitation (lower) cross sections measured 
by Nakarnura et al.149. (Taken from Ref. 56, with permission.) 
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the quenching cross sections, of the order of 12 A’, actually exceed the values 
for charge transfer. The cross sections for excitation of Ar+(ZP312) by 
N,(u = 0) are considerably smaller than the deexcitation cross sections, 
particularly at low energies. As a consequence, reaction (58b) is not the major 
process for Ar+(ZP3,z) at any collision energy. Nevertheless, it is important 
at all energies above Erel = 10eV. The calculations by Spalburg and 
G i ~ l a s o n ’ ~  for reactions (58a) and (58b) give very similar results. The one 
exception is the quenching reaction at  1.2 eV, where Spalburg’s result is twice 
that obtained by Parlant. Also shown in Fig. 20 is the total cross section for 
reaction (58b) measured by Shao et al.14* Their measured values of 
2.18 f 0.25 AZ agrees well with the calculated  value^.'^^^^ 

Parlant and G i ~ l a s o n ~ ~  also computed the vibrational distributions for 
the products in reactions (58a) and (58b). Since there is no change in the 
electronic state of the Nz product, the Franck-Condon principle predicts 
that the major product state should be u’=O. This is, in fact, found for 
reaction (58b) at  all collision energies. For the quenching of Ar+(’P,/,) by 
N,(u = 0) the product state Ar+(2P,iz) + N,(d = l), which is the state closest 
in energy to the reactants (Table IV), is favored below Erel = 10eV. At 
Ere, = lOeV and higher, the major product is Ar+(’P3/2) + N,(u’ = 0). By 
Ere, = 200eV, N2(v’ = 0) is the dominant product channel for both 
fine-structure transitions. Microscopic reversibility [Eq. (26)] then gua- 
rantees that the two cross sections shown in Fig. 20 should differ by a factor 
of 2, since the degeneracy of Ar+(’P3/2) is twice that of Ar+(’P,/,). The 
vibrational distributions computed by Spalburg and Gislason14 are very 
similar to those obtained by Parlant and G i s l a ~ o n . ~ ~  

Futrell and co-workers’” have measured the velocity vector distribution 
of the products of the two fine-structure transitions. They are able to resolve 
individual vibrational levels of the N2 molecular product. The differential 
cross sections cannot be directly compared to the total cross sections 
computed by Parlant and G i ~ l a s o n . ~ ~  Nevertheless, it is interesting to see 
which vibrational levels they observe. For the quenching process Futrell 
observes only N,(v’ = 0) products at Erel = 0.78 eV in the backward direction, 
but at Ere, = 1 S4eV he sees u‘ = 0,1,2, and 3. By comparison, the theoretical 
calculations at Erel = 1 eV give mainly u’ = 1 with appreciable populations 
in u’=O and 2. 

Parlant and G i ~ l a s o n ~ ~  also computed state-to-state cross sections for 
vibrational excitation for collisions of Ar+(2P31,, + N,(u = 0). The 
cross sections initially increase with collision energy, reaching 1 A’ at 
Ere, = 30eV, peaking at  -2A’ at 300eV, and then declining at higher 
energies. The calculations by Spalburg and Gislason14 give considerably 
smaller cross sections. As discussed earlier, for the potential energy surfaces 
calculated by Archirel and Levy,’ both fine-structure transitions and 
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vibrational excitation are second-order processes that go through the 
intermediate charge exchange states Nl(X,  A )  + Ar. The fact that both 
processes have substantial cross sections shows how strongly coupled the 
(Ar + N2)+ system is. At sufficiently high collision energies only first-order 
processes can occur, so the inelastic cross sections must fall off. The 
vibrational excitation cross sections are declining by Ere] = loo0 eV, but the 
fine structure transitions are not, even at Ere] = 4000 eV (Fig. 20). 

Cross sections for the inelastic processes considered by Parlant and 
G i s l a ~ o n ~ ~  were measured by Nakamura et al.149 in the energy range of 
200-800 eV. They determined the total scattered intensity of a particular 
product state entering their detector set nominally at 0" in the laboratory. 
The acceptance angle of the detector was 0.45", which corresponds to 1.09" 
in the c.m. system. Nakamura stated that this acceptance angle allowed them 
to detect all products, but the work of Birkinshaw et al.'50 as well as the 
calculations indicate that a certain fraction of the inelastically scattered Ar + 

products miss the detector. Consequently, Parlant and G i ~ l a s o n ~ ~  carried 
out two calculations on this system at Erel = 300eV. The first included all 
c.m. scattering angles 0 < 0 < 180", and the second only included products 
produced along trajectories where 0 < t.09". The results are compared in 
Table IX with Nakamura's experimental values. It is seen that the calculated 
cross sections for 0 < 1.09" are often much smaller than the full cross sections, 
especially for collisions involving transfers of more that one vibrational 
quantum. The agreement between Nakamura's data and the theoretical 
values corrected for the angular resolution are remarkably good. The 
experimental cross sections for fine-structure t r a n ~ i t i o n s ' ~ ~  are also shown 
in Fig. 20. Since they are being compared with the uncorrected cross sections, 
the agreement is poor. 

G. Work of Archirel, Gislason, Parlant, and Sizun on (Ar + CO)' 

1. Introduction 

The molecules CO and N, are isoelectronic. As a consequence, many 
properties of the molecules are quite similar. Thus, the Franck-Condon 
factors for the transition CO(X, u)  -, CO' (X, u') are nearly diagonal, as is 
the case for N,, since the bond lengths of CO(X) and CO'(X) are very 
similar. However, the ionization potential of CO is 1.6eV lower than for N,. 
This causes the CT process to be completely different for the two systems. 
The relative energies of selected states of the (Ar +CO)+ system are 
summarized in Table X. It is seen that Ar+('P,,,) + CO(v = 0) is nearly 
isoenergetic with the state Ar + CO'(X, v' = 7). However, the Franck- 
Condon factor for the transition CO(o = O)+CO+(v' = 7) is less than lo-''. 
As a consequence the CT cross section at low collision energy is extremely 
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TABLE IX 
Inelastic State-to-State Cross Sections at Ere, = 300eV" 

Cross Sections, This Work 
Cross Sections 

Transitionb Total 0 < 1.09" Nakamura' 

Fine-Structure Transitions 

;-;,o-*o 8.52 
+;,0-1 I .42 

++,0--.2 0.36 
r-+$,O-t3 0.09 
+;,o-+o 4.26 
$ - f , O + l  0.43 
+ $ , 0 - 2  0.12 

4.90 
0.70 

0.12 
0.01 
2.45 
0.11 

0.01 

6.0 
0.67 

0.23 
- 

2.8 
0.20 

Vibrational Excitationd 

u' = 1 2.26 0.46 0.61 
u( = 2 0.65 0.04 0.076 
ur = 3 0.18 0.005 - 

the product scattering angle was less than 1.09" c.m. See the text for further details. 
"All cross sections are in A'. The results in column 3 were obtained for trajectories where 

bThe notation 1/2-3/2, 0- 1 identifies the process Ar+(2P,I,)+N,(u =O)-+Ar+(2P3iz) + 

'Reference 149. 
dCross sections for vibrational excitation. The calculated crosss sections represent a weighted 

average for the two reactant states Ar+('P,,,) + N,(u = 0) and Arf(2P,I,) + N,(u = 0). 
Experiments cannot distinguish the two processes. 

N,(u' = 1). 

TABLE X 
Selected Energy Levels for the (Ar + CO)+ System" 

State Energy (eV) 

Ar + CO+(A, u = 7) 

Ar+(2P3i,) + CO(u = 0) 

2.040 
0.778 
0.178 
0.OOO 
0.046 

- 1.745 

Ar + CO+(A, u = 0) 
Ar+('PIIz) + CO(u = 0) 

Ar + CO+(X, u = 7) 
Ar + CO+(X, u = 0) 

~ 

"Energies defined relative to Arf(zP,,2) + CO (u = 0). The 
data are taken from Ref. 55. 
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~ma1l.l~ 1-153 The cross section grows as the collision energy increases, but 
it has only reached 3 A 2  at 200eV.39,128 

Gislason et al.55 have carried out calculations for the CT processes 

Ar+(2P3/2, 2P1,2) + CO(u = O)+ Ar + CO+(X, A; 0'). (59) 

A considerable amount of experimental data are available for comparison. 
In addition to the cross section r n e a s ~ r e m e n t s , ~ ~ ~ ' ~ ~ ~ '  51-153 information 
about the vibrational distribution of CO+(X, u') at low collision energies has 
been obtained by Marx and c o - ~ o r k e r s ~ ~ ~ - ' ~ ~  and by Leone and 
c o - ~ o r k e r s . ' ~ ~ * ' ~ ~  In addition, Kato et aI.l3' and Lindsay and Latimer134 
have measured the ratio a( 1/2)/0(3/2) of the CT cross sections for reaction (59). 

2. Theoretical Procedures 

The theoretical procedures used by Gislason et al.55 were very similar to 
those of Parlant and Gi~lason.~' The one difference was that the molecular 
orientation y (see Fig. 1) was no longer assumed to be fixed. Rather, the 
sudden approximation for molecular rotation, described in Section I1 F, was 
made. Thus, the molecular orientation was fixed in space for each trajectory. 
The trajectory itself was propagated along the reactant (diabatic) potential 
energy surface. The results were averaged over all molecular orientations, 
using Monte Carlo sampling, to obtain the state-to-state cross sections on,,,, 
following the procedure in Eq. (41). To be certain that the calculations were 
vibrationally converged it was necessary to use 15 levels for each electronic 
state. 

3. Potential Energy Surfaces and Couplings 

The potential energy surfaces and couplings used in the  calculation^^^ were 
semiempirical results computed from diabatic electronic wavefunctions using 
the procedure of Archirel and Levy.lg The calculations of the surfaces are 
described in the paper by Parlant et a15' The spin-orbit splitting of Ar + 

was properly taken into account. As in the case of (Ar + N2)+, the quantum 
number R, defined in Eq. (49), is a good quantum number for (Ar + CO)+. 
Consequently, transitions between R = 4 and R = f states are not allowed. 
The Franck-Condon approximation was used to evaluate the vibronic matrix 
elements. 

The five-dimensional electronic hamiltonian matrices can be diagonalized 
to obtain the adiabatic potential energy surfaces.59 The results for R = for 
fixed values of the molecular orientation angle p (this angle is denoted y in 
the rest of this review) are shown plotted against R in Fig. 21. (The results 
for R = $ 5 9  are less interesting, since the couplings between diabatic states 
are much weaker.) The vibrational coordinate was fixed at r = r ,  
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Figure 21. Potential energy curves for the five lowest electronic states of (Ar + CO)' for 

R = i, plotted against the distance R between Ar and the center of mass of CO for fixed values 
of the orientation angle b. Linear Ar-C-0 corresponds to B = W .  The CO bond length is 
1.128A. At R = cc the states correspond, in order of increasing energy, to Ar + CO'(X), 
Ar'(2P,12) + CO, Ar+('P,/*) + CO, and Ar + CO'(A), which is doubly degenerate. The zero 
of energy corresponds to Ar+('P,,*) + CO at infinite separation. (Taken from Ref. 59, with 
permission.) 

(CO) = 1.128 A. For the case R = there is strong electronic coupling between 
the Ar+-CO states and the two Ar-CO' states. As discussed by Gislason 
and Ferg~son, '~ '  this coupling can create a considerable bond energy in the 
ground state, which correlates at infinite separation to Ar + CO'(X). In 
addition, Baker and Buckingham16' have shown that the center of charge 
in C O + ( X )  resides at the C end of the molecule. These considerations explain 
why the complex has a deep well (0.82eV) as Ar approaches CO'(X) at the 
carbon end. By comparison, the electronic coupling is much smaller when 
Ar moves near the oxygen end of CO+(X), and the computed well depth is 
only 0.03 eV. The experimental measurement of the Ar-CO' well depth gave 
0.70 f 0.06 eV,I6l which is in reasonable agreement with the theoretical value. 

The first excited electronic state dissociates to Ar'('P,,,) + CO. The 
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calculations of Parlant et aLS9 show that this state is weakly coupled to 
Ar + C O + ( X )  for p 2 80", whereas the coupling to Ar + CO'(A) peaks near 
p = 90". As a consequence, the potential energy surface for this excited state 
has a substantial well at p = 100". The minimum occurs at R = 2.51 b;, where 
the well depth is 0.53 eV. It is remarkable that the two lowest surfaces of the 
same symmetry actually have deep wells. For comparison the isoelectronic 
system (Ar + N2)' does not have a well on the first excited potential energy 
surface (see Fig. 12). There is no direct experimental measurement of the well 
depth of the excited state of (Ar + CO)', since any of these ions would be 
formed in the continuum of the electronic ground state, and they would 
predissociate to give Ar + CO'(X, 0'). However, Norwood et were able 
to obtain a rough estimate of 0.66-0.97eV for the bond energy. This is in 
fair agreement with the calculated value. 

As discussed by Gislason and Ferguson,' 5 9  ion-molecule potential energy 
surfaces are expected to be quite anisotropic due to the orientation 
dependence of the electronic coupling terms Has,. The variation of the 
potential energy curves with angle shown in Fig. 21 confirms that this is the 
case for (Ar + CO)+.  This anisotropy can be seen even more clearly in the 
contour map59 for the ground adiabatic potential energy surface shown in 
Fig. 22. The surface is dominated by the deep well at the carbon end of CO 
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Figure 22. Potential energy contour map for the ground electronic state of (Ar + CO)' for 

Q =  f .  The CO molecule is fixed as shown ( r  = 1.128 A); the contours indicate the potential 
energy when Ar is located at a particular point. The zero of energy corresponds to Ar + C O + ( X )  
at infinite separation; the dashed-dot curve also shows E = 0. The dashed curves indicate negative 
energies, running from E = - 0.15 eV to - 0.75 eV in steps of 0.1 5 eV. The solid curves indicate 
positive energies, running from 0.15 eV to E = 0.75 eV in steps of 0.15 eV. (Taken from Ref. 59, 
with permission.) 
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which extends out to f l =  60”. At all other orientations the interaction is 
essentially repulsive. This strong angular dependence of the electronic 
couplings plays an important role in the CT process, discussed below. 

4. Calculations for Ar+(’P,) + CO Collisions 

State-to-state cross sections have been calculated for collisions of Ar+(’P,) 
with CO (u  = 0) at a relative energy of 2 eV. The results are summarized in 
Table XI. 5 5  Consider first the fine-structure transitions. The excitation cross 

TABLE XI 
Calculated Total Cross Sections for Ar+(’P,) + CO ( u  = 0) Collisions“ 

Reactant State Product State Total Cross Section (A’) 

Charge transfer 

co + (X) 
CO+(A) 

total CO+ 

co + (X) 
CO+(A) 

total CO+ 

0.64 & 0.09 
0.04 +_ 0.005 
0.68 k 0.09 

( < 0.01)* 
0.62’ 

0.20 f 0.02 
1.63 f 0.25 
1.83 k 0.25 

( < 0.01)b 

Fine-structure 
transitions 

A‘+(ZP1/2) 0.33 f 0.03 

Ar+(2P,,2) 6.29 ? 0.30 

(0.41 F 0.03)* 

(1.03 f 0.17)b 

Vibrational 
excitation 

Ar+(’P3/2) CO(0’ > 0) 0.13 f 0.01 

Ar+(2P,IZ) CO(u’ > 0) 0.64 +_ 0.07 

( < 0.01)b 

( < 0.01)b 

“Cross sections are calculated for Ar+(2P,12, + CO (u =0) at 2eV relative energy. The 
cross sections are summed over all product vibrational levels. For the calculated values of 
Gislason et al.55 the 68% confidence limits are shown. 

bTheoretical cross sections where the CO+(A) state has been omitted from the calculation 
(Ref. 55). 

‘Experimental value (Ref. 153). 
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section for Ar+(2P,12)+C0 is only 0.33A2, and the major product 
vibrational level is CO (u  = 0). The small cross section can be explained by 
the relatively large energy defect (0.18 eV) for this process. By comparison, 
the dynamic energy width 6 E  is only 0.054 eV. [This number was obtained 
from Eq. ( 5 9 ,  which should also be appropriate for (Ar + CO)+.] The cross 
section for the quenching process 

Ar+(2P,12)+ CO(u =O)+Ar+(2P,12)+ CO(u’) (60) 

is much larger (6.3A2). In fact, this is the major product channel for 
Ar+(2P,12) + CO(u = 0) collisions. The CO product in Eq. (60) is formed 
mainly in the level u‘ = 1. This product state is only 0.09 eV away from the 
reactant state. 

The calculated CT cross section for Ar+(2P3/2) + CO is 0.68 At,” which 
compares well with the experimental value of 0.62A2.153 The computed CT 
cross section for Ar+(2Pl12) is considerably larger (1.63 A2), but there is no 
direct measurement available for comparison. The ratio c( 1/2)/0(3/2) = 2.4 
is consistent with the experimental data of Lindsay and Latimer,’34 but it 
is somewhat larger than the measurement by Kato et al.’32 The experience 
with the system (Ar + N2)+ suggests that this ratio is very hard to measure 
(see Section I11 F 6). This is particularly the case for (Ar + CO)+, because the 
cross section for reaction (60) is more than three times larger than the CT 
cross section. The quenching process, which is not observed in the CT 
experiments, converts Ar+(’P,/,) ions to A T + ( ~ P , / ~ )  in the beam. This has 
the effect of lowering the CT ratio a(1/2)/0(3/2). It would be useful to have 
additional experiments done on this reaction. 

One of the most interesting predictions from the  calculation^^^ is that for 
CT collisions of AI-+(’P,/~) + CO, more than 90% of the products appear 
as CO+(X), whereas for collisions of A I - + ( ~ P ~ , ~ ) + C O ,  85% of the CT 
products appear as CO+(A). This occurs even though the spin-orbit states 
of Ar + are separated by only 0.18 eV (see Table X), whereas the two electronic 
states of CO+ differ by 2.5 eV. This remarkable result is made more plausible 
by an inspection of the potential energy curves for (Ar + CO)+ shown in 
Fig. 21. The curve that goes asymptotically to Ar+(’PII2) + CO comes very 
close to the two higher curves at small R when p z 0”. By comparison the 
Ar+(2P3iz) + CO curve approaches the ground state curve in the angular 
region around p = 100”. It would be very interesting to test this prediction 
experimentally. 

The authors55 also carried out a second set of calculations but with the 
CO’(A) state omitted. The results are shown in parentheses in Table XI. 
Under these conditions CT and vibrational excitation do not occur. This is 
particularly interesting for collisions of Ar+(2P,,2) + CO, where CT with the 



392 ERIC A. GISLASON ET AL. 

A state in the calculations gives mainly CO+(X) products. When the A state 
is removed, no CT occurs. It is clear that any theoretical treatment of this 
system which omits the C O  + ( A )  state will be seriously incomplete. Gislason 
et al.55 believe that the presence of the CO'(A) state, whose re value is shifted 
relative to r,(CO), allows the molecule to vibrate during the collision, thereby 
allowing the system to overcome the very poor Franck-Condon overlaps 
with the product states which are close in energy to the reactant state. A 
similar conclusion was drawn by Hamilton et al.'" 

The various theoretical results for (Ar + CO)' show how quantum 
mechanical these collisions are at low energy. The cross section for reaction 
(60) is large, proving that the Ar'('Pliz) + CO and Ar+(2P,i2) + CO states 
are strongly coupled during the collision. Nevertheless, CT from these two 
reactant states give completely different product states. At first glance, the 
two results contradict each other. They can occur only because the system's 
wavefunction retains a strong coherence throughout the collision. Thus, even 
though the two spin-orbit states of Ar ' are strongly mixed, the wavefunction 
remembers which state was the reactant state. 

The calculated vibrational d i ~ t r i b u t i o n ~ ~  for the CO'(X) products 
produced in CT are shown in Fig. 23. By comparison, the Franck-Condon 
factors for the transition CO(X, u = 0) + CO+(X, 0') are 0.964 and 0.036 for 
u' = 0 and 1, respectively. The factor for u' = 2 is 1 x and all of the 
others are much smaller. The distribution for CO'(X) produced from 
Ar+('P3/') peaks at u' = 1 and 2, which represents a compromise between 
energy resonance and Franck-Condon considerations. Two types of 
experiments have been carried out to determine this distribution for collisions 
at thermal or near-thermal energies. The ICR experiments of Marx and 
c o - w ~ r k e r s ' ~ ~ * ' ~ ~  indicate that almost all of the ions are produced in u' = 4. 
The laser-induced fluorescence experiments of Leone,' 7*1 58 ho wever, show 
a broader distribution which peaks at 0' = 5. This distribution is also shown 
in Fig. 23. 

Both experimental distributions peak at higher vibrational levels than 
does the theoretical c a l ~ u l a t i o n . ~ ~  The most likely explanation of this 
difference is that the mechanism for CT is different at thermal energies where 
the experiments were carried out. This is certainly suggested by the behavior 
of the rate constant for CT, which rises rapidly as the collision energy 
decreases.'53 This suggests that CT at low energy involves the formation of 
a long-lived (ArCO)' complex. The long life of the complex would allow 
highly forbidden but nearly energy-resonant processes such as Ar+('P,/J + 
CO(u = 0) + Ar + CO+(u' = 5) to occur. A similar mechanism has been 
invoked by Ferguson16' to explain vibrational quenching of small molecular 
ions. The failure of Norwood et a1.16' to observe (ArCO)' ions in the first 
excited electronic state also supports this complex mechanism. By contrast, 
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Figure 23. Probability of populating various vibrational levels of CO'(X) in charge transfer 
collisions of A r + ( * P J )  + CO(u = 0). The circles and squares are the calculated values of Gislason 
et at Ere, = 2eV for A r + ( * P S I 2 )  and Ar+(2P,,,), respectively. The triangles are the 
experimental results at thermal energy of Hamilton et al.I5*. (Taken from Ref. 55, with 
permission.) 

no complex could be formed in collisions at Ere, = 2eV where the calcu- 
l a t i o n ~ ~ ~  were carried out. The collision complex mechanism is discussed 
further in Section V B. 

H. Work of Sidis and Co-workers on Dissociative Charge Transfer 

In this chapter we have seen that the theory of atom-diatom CT processes 
using the classical path method is well developed. The calculations typically 
involve a moderate number of vibronic states (25-75), and it is not difficult 
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to obtain exact, vibrationally converged solutions to the scattering problem. 
The classical path method becomes less satisfactory for systems where 
chemical reaction or molecular dissociation is occurring, since it is not clear 
how to treat the vibrational continuum. Nevertheless, some progress has 
been made on reactive systems by making certain approximations.61 

In principle, the question of dissociative CT is even more difficult, since 
there is no way to avoid including the vibrational continuum in the classical 
path procedure. In spite of this difficulty, very good progress has been made 
on this problem by Sidis and co-workers. This work has been reviewed in 
detail r e ~ e n t l y , ' ~ * ' ~ * ~ ~ ~ ~ ~  and we shall only briefly discuss their work here. 

The first theoretical approach used by Sidis and DeBruijn6' was the 
vibrationally sudden approximation. This approximation, which assumes 
that all nuclear motion is frozen during the collision, should work well for 
collisions in the kilovolt energy range. The sudden approximation for 
molecular vibration is summarized in Section I1 D. The fundamental result 
for the transition probability from state I to state F is given by [see Eq. (23)] 

Here 1 xr ) and I xF ) are the initial and final nuclear wavefunctions, and A is 
the transition amplitude obtained by solving the electronic equations of 
motion for fixed nuclear orientation F and fixed bond length r. The vibrational 
part of the final wavefunction can be approximated by an Airy function or, 
more simply, by using the reflection approximation (or &function 
a p p r o x i m a t i ~ n ) . ~ ~ . ' ~ ~  In addition, if the CT process is close to energy 
resonant, the Demkov model can be used to solve for the amplitude A.164 
Sidis and De B r ~ i j n ~ ~  have applied the vibrationally sudden approximation 
to dissociative CT collisions of H: + Mg. The results for the differential cross 
section as a function of the kinetic energy of the H atom fragments are 
shown in Fig. 24. The experimental results16s are shown as a dashed curve. 
The theoretical curve labeled "b" gives the cross section for the direct 
dissociative CT process shown in reaction (4). The other important process 
that contributes to the experimental cross section is CT to produce the bound 
a "Cg' state, which then radiates to the b 'XC: state and dissociates. The 
calculated cross section for that process is shown as curve "a" in Fig. 24. 
The agreement between theory and experiment is quite good at all energies 
and is excellent above 4eV. 

In the collision energy range of l-lOOeV, it is no longer appropriate to 
make the vibrationally sudden approximation. At these energies the collision 
time is sufficiently long that the molecule can vibrate and, in fact, at least 
partially dissociate during the collision. The process of dissociative CT at 
these energies has been treated by Sidis and Courbin-Gaussorgues66 using 
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Figure 24. Kinetic energy spectrum of H atoms produced by dissociative charge transfer 
in collisions of H; + Mg at a lab energy of 5 keV. The two H atoms are scattered at an angle 
of 80" with respect to the incident direction. The dashed curve is the experimental curve.*6s 
The theoretical results of Sidis and D e B r ~ i j n ~ ~  are shown as solid and dashed-dot curves. The 
former used the Airy function approximation for the vibrational continuum wavefunction, and 
the latter was done with a &function approximation for that wavefunction. Curves a and b are 
described in the text. The vibrational energy distribution of the H: beam is that given in Ref. 
166. (Taken from Ref. 65, with permission.) 

a local complex potential approximation. The physical picture treated in 
their paper is that of a bound reactant vibrational state embedded in the 
dissociative continuum of the products. As the H i  approaches Mg, the 
electronic coupling induces an interaction with the continuum, which can 
be characterized by an energy width given by 

Here G, and F are the initial bound vibrational wavefunction of H i  (u)  and 
the continuum wavefunction representing the molecular dissociation of H,, 
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respectively. In addition, H I 2  is the electronic coupling between the initial 
and final states. The survival probability at time t along a particular trajectory 
is then given by 

Sidis and Courbin-Gaussorgues66 carried out a number of model calcu- 
lations for H:(u) + Mg collisions using this formalism. A typical example of 
their results is shown in Fig. 25. This shows the kinetic energy spectrum of 
the H atoms produced in dissociative CT for a collision with a large impact 
parameter (15 a.u.). The calculations were carried out at Elab = 1, 10, and 
100 eV. The exchange interaction was assumed to be isotropic, and the energy 
difference between bound and continuum states was assumed to be inde- 

p,i5a, 

Figure 25. Kinetic energy spectrum of H atoms produced by dissociative charge transfer 
for a (H; + Mg)-like prototype collision with impact parameter 15 a.u. for E,, ,  = 1 eV (solid 
curve), lOeV (dashed curve), and lOOeV (dotted curve). (Taken from Ref. 66, with permission,) 
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pendent of R. At low energies the spectrum is very sharp, but it broadens 
with increasing collision energy. At this large impact parameter the system 
should be in the weak-coupling limit; in this case the electronic equations 
of motion can be solved analytically. The model predicts that the peak height 
should scale as E;,’, and the width of the spectrum should increase as E:,”. 
Both predictions are shown to be satisfied in Fig. 25. The authors also 
observed a number of other interesting effects when the assumption of an 
isotropic exchange interaction was dropped, and when the energy difference 
was assumed to vary with R.  

In dissociative CT there are many vibrational states of the reactants 
embedded in the continuum. Sidis et aL6’ have treated the case of a few 
vibrational states of H l  interacting with the same dissociative continuum 
but not otherwise coupled to each other in a collision of H l  + Mg. 
Vibrational excitation in this case results via the coupling of each state with 
the continuum. A sample calculation at Elab = lOOeV for a (H: + Mg)-like 
prototype collision is shown in Fig. 26. The model parameters are the same 
as in Fig. 25, except that the exchange interaction has been multiplied by 
0.75. At large impact parameters neither dissociative CT nor vibrational 
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Figure 26. Survival 1aOl2 and vibrational excitation la,/’ ( u  = 1,2,3) probabilities for a 
(H: + Mg)-like prototype. collision plotted against impact parameter at a collision energy 
E,,, = 100eV. The H: was initially in u = 0. (Taken from Ref. 67, with permission.) 
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excitation occurs. At smaller values of b, CT becomes the major product 
channel, but at the same time vibrational excitation becomes important. For 
the system considered in Fig. 26 both u’ = 1 and 2 are more populated than 
u‘ = 0 for impact parameters less than 3 a.u. 

Although the local complex interaction method has proven to work very 
well, it is not clear that this procedure can be used to treat a case where the 
interaction couplings are very large. Because of this Gauyacq and Sidis68 
have developed a more general procedure to treat dissociative CT. They refer 
to this procedure as the “coupled wave packets” description. The calculations 
are carried out by expanding the vibrational wavefunction as a sum of 
wave packets. The wave packets are then propagated in time using a finite 
difference method. In principle, their procedure is exact. Calculations for an 
( H l  + Mg)-like prototype dissociative CT system are shown in Fig. 27 for a 
collision at Elab = 20eV.68 This shows the survival probability of the initial 
u = 0 level, lao12, as well as the total vibrational excitation probability plotted 
against impact parameter. Also shown is the calculation of I a, 1’ for the same 
system using the local complex potential method.66 The coupling for this 
system is large at small values of R, and it is seen that the local complex 

Figure 27. Survival la01’ and total vibrational excitation probabilities at E,,, = 20eV for 
an (Hl + Mg)-like prototype collision plotted against impact parameter. The calculations using 
the coupled wave packets procedure are shown as solid and dashed curves.68 The survival 
probability using the local complex potential approximation66 is shown as a dashed-dot curve. 
(Taken from Ref. 68, with permission.) 
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potential procedure does not work well under these circumstances. To date, 
Gauyacq and Sidis have only published a few model calculations using the 
method of coupled wave packets, but it is clear that this procedure will be 
widely used in the future. There are obvious applications to the process of 
collision-induced dissociation, and S i d i ~ ~ ~  also expects the method will work 
well on the more conventional CT problem dissussed in detail in this review. 
In addition, it should be possible to extend the coupled wave packets 
formalism to larger systems. 

IV. CLASSICAL PATH CALCULATIONS-DIFFERENTIAL 
CROSS SECTIONS 

The calculation of differential cross sections for both CT and nonreactive 
scattering presents a more severe test for the theory than total cross sections. 
A considerable number of differential cross sections have been measured for 
ion-molecule systems.' This work is reviewed in the chapters by Futre1116' 
and by Niedner-Schatteburg and Toennies168 in the companion volume. 
Only a small number of theoretical calculations using the classical path 
method have been carried out. 

A. Work of Grimbert, Sidis and Sizun 

To date there is only one theoretical calculation done in the semiclassical 
framework which can be compared directly to experiment. This is the work 
of Sizun et al.". The procedure they followed is described in Section 11. They 
used the classical path method to determine vibrational excitation and 
charge-transfer differential cross sections for the reactions 

H + + O,(X 'Xg-, u = 0) -, H + + O,(X 'X;, u'), (VE) 

(CT) + H + O l ( X  'nS, u'). 

Experimental vibrationally state-resolved measurements of the differential 
cross sections a,,.,,,(8) are available at Ere, = 23 eV.169 The experimental results 
show for the two channels a decrease with scattering angle which is rather 
steep in the region out to 8 = 7". The cross sections become somewhat flatter 
at higher scattering angles. A weak structure at  about 10-13" corresponds 
to a rainbow maximum. The total CT curve reaches a plateau near 8 = 0". 
At 8 = 0" the major product state is u' = 3. This result should be compared 
to the Franck-Condon distribution, which peaks at u' = 1, and resonant CT, 
which will give u' = 6. 

An unique aspect of the HO; collisional system lies in the availability of 
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potential energy surfaces and exchange interactions which are functions 
of the three internal coordinates (R ,  I ,  y). Grimbert et aL6' provided a grid of 
points from a model potential which can be fit by splines and introduced 
into the dynamical calculation. The two lowest adiabatic 3A" potentials are 
involved in the collision; they have an avoided crossing at about R z 4.7 a.u. 
when r = re(O,) and y = 45". This crossing facilitates CT. The ground state 
has a potential well of about 2.31 eV at y = 45". The depth varies somewhat 
with the geometry of the molecule. This well gives rise to the rainbow 
scattering observed experimentally in the two channels. Grimbert et aL6' 
also show the dependence on I of the potential energy surfaces and the 
couplings. The diabatic state H +  + 0, undergoes bond elongation of 0, 
when R decreases to about 3 a.u. In addition, the coupling between the two 
electronic states increases when the 0, bond length decreases between 2.77 
and 1.87 a.u. for y = 45" by almost a factor of 2. Contrary to other CT studies 
these dependences were taken into account in the dynamical calculation. 
Thus their .effects on the dynamics can be examined. 

The evolution of the system's vibronic wavefunction along the classical 
trajectory, chosen to move on the diabatic entrance channel potential, is 
described using an expansion over two asymptotic vibrational basis sets (15 
states each) associated with 0,(3X;) and 0; (*lI,). The calculations were 
done as discussed in Section I1 F, using Eq. (18) for the coupled equations, 
Eq. (41) to evaluate the total state-to-state cross sections, and Eqs. (38) and 
(40) to compute differential vibronic cross sections. The authorszzc also did 
quantum 10s calculations (QIOS) to study the same reaction, and this study 
allows a comparison between the two methods. 

There have been no measurements to date of the total state-to-state cross 
sections to compare to the theoretical results. Figure 2 shows two 
state-to-state probability functions P,,,,,,(b, Or,  d r )  computed for a fixed 
molecular orientation. These results were discussed earlier. Figure 28 presents 
the differential cross sections summed over product vibration levels for CT 
and vibrational excitation (VE). They are compared with earlier calculations 
and experimental results. A gratifying feature of Fig. 28 is the agreement in 
the overall shapes and magnitudes among the two theoretical and the 
experimental cross sections. It is not possible to determine which theoretical 
method gives the better agreement with experiment. Both work quite well. 
Nevertheless, several differences with the experiments are noticeable, namely, 
(1) the rainbow structure in the VE curve extends over a broader angular 
range than in the experimental data; (2) the classical path VE and CT 
rainbows occur at smaller angles than do the experimental and QIOS values; 
the differences are nearly 1" and 2", respectively. 

The relative state-to-state probabilities for CT processes are displayed in 
Fig. 29 as a function of scattering angle. These are calculated from the 
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Figure 28. Differential cross sections for vibrational excitation (VE) and charge transfer 

(VCT) plotted against the c.m. scattering angle for collisions of H +  + O,(u = 0) at Ere, = 23 eV. 
The cross sections in each case have been summed over all final vibrational levels. The solid 
curves show the classical path calculations of Sizun et a1.,58 and the dashed curves give the 
quanta1 results of Sidis et al.zzc The experimental data of Noll and T ~ e n n i e s ' ~ ~  are shown as 
asterisks. The experimental VE curve has been calibrated to the theoretical result at 0 = 8". In 
principle, the experimental VCT curve is also set by this calibration, but the mark of caution 
( x )  indicates that the estimated 1% neutral detection may be in error by a factor 
of 2, which would then shift the VCT curve up from what is shown. (Taken from Ref. 58a, with 
permission.) 
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Figure 29. Relative state-to-state probabilities for charge transfer, defined in Eq. (64), plotted 
against the the c.m. scattering angle for collisions of H +  + O,(u = 0) at E,,, = 23 eV. The “plus” 
signs show the classical path calculations from Ref. 58a, the x’s are the quanta1 calculations 
from Ref. 22c, and the circles are the experimental data from Ref. 169. The final 0; vibrational 
level is indicated in each panel. (Taken from Ref. 58a, with permission.) 
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where only CT states are included in the sum. The classical path results are 
generally closer to the experimental data than the QIOS values are. 
Nevertheless, the two theories underestimate charge transfer into low 



404 ERIC A. GISLASON ET AL. 

(u‘ = 0, 1) vibrational states and overestimate it for high (u’ = 4,5) states. It 
is possible that this disagreement could arise from the experimental detection 
efficiency of low-energy neutrals, since the lower the 0; vibrational level, 
the more energetic the scattered H atom will be. 

have only reported preliminary results so far, and full papers 
are being prepared. These will provide more detailed analyses of the role 
played by the angle y in the QIOS approach and of the influence of the r 
dependence on the CT and VE processes. 

Sizun et 

B. Work of DePristo 

As explained in Section I1 F, Cole and DePristo4’ carried out calculations 
of the state-to-state differential cross sections for CT processes for H l  on 
H, using the SCECT method. From the average scattering angle obtained 
from each energy-conserving trajectory, the average kinetic energy, and the 
state-to-state probabilities, they used a procedure to extract a different 
scattering angle for each vibronic channel. They assume that if a channel 
gives more kinetic energy than the average, its scattering angle will be smaller 
than the average angle. It is then possible to compute the classical differential 
cross section for each vibronic channel using Eq. (44). 

The main result for the Hl /H,  system is strong forward scattering at 
Ere, = 8 and 16eV with the range of scattering angles decreasing for the 
higher reactant vibrational states. A more general conclusion is that exoergic 
and slightly endoergic product channels will scatter at smaller angles than 
the average angle. This result is due to the fact that the calculation gives an 
average internal energy for the products, which is bigger than the reactant 
energy. Strongly endoergic products appear at larger angles. 

Unfortunately, no experimental results exist for the HZ/H, state-to-state 
angular distributions. Thus, no test of the assumptions made by Cole and 
DePristo4’ is possible. 

V. GENERAL FEATURES OF CHARGE-TRANSFER 
COLLISIONS 

The considerable theoretical work on CT processes reviewed in this chapter 
have led to certain general conclusions about the CT process which are the 
subject of this section. These include the range of validity of the Franck- 
Condon principle, the importance of adiabatic vibronic potential energy 
surfaces for describing low-energy collisions, and a general theory of CT 
collisions as a function of collision energy. These three topics are discussed 
in this section. 
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A. The Franck-Condon Principle 

The Franck-Condon principle (FCP) for nonadiabatic transitions is based 
upon the (questionable) assumption that electronic transitions occur so 
rapidly that the molecular vibrational coordinate does not have time to 
adjust. In that case, the state-to-state cross section for a process such as 
reaction (50) is given by 

This equation was given earlier, where it was noted that oo is independent 
of u and u‘ and that the last factor is the Franck-Condon factor for the 
transition. If o(u,u’) is summed over all product levels to obtain the 
state-selected cross section a(u), Eq. (52) shows that a(u) = ao, independent 
of the reactant vibrational quantum number u. 

The experimental and theoretical work for the (Ar + N2)+ system shows 
clearly that the FCP is not valid for collisions at low energy, but it does 
appear to be valid at higher energies. Sidis and c o - ~ o r k e r s ’ ~ ~ ’ ~ ~  have 
discussed the necessary conditions for the FCP to be valid. The first condition 
is that the electronic transition take place in such a short time that the 
vibrationally sudden approximation is valid. This normally means that the 
collision time must be much shorter than a vibrational period. In this case, 
the probability amplitude for a particular vibronic transition can be written 
as shown in Eq. (23). The second condition is that the electronic coupling(s) 
which induces the transition must be a weak function of the vibrational 
coordinate r. In this case, Eq. (24) becomes valid. Finally, there should be 
no vibrational excitation or deexcitation prior to or after the electronic 
transition occurs. This excludes both impulsive e~ci ta t ion’~’  as well as any 
excitation due to long-range interactions. (However, the effect of any long- 
range interaction will diminish at high collision ve l~c i t i e s ’~~ . )  We shall 
assume that the second and third conditions are always satisfied in what 
follows. Thus Eq. (51) is valid at sufficiently high collision energy. 

To examine the approach of a system to Franck-Condon behavior it is 
useful to consider a model calculation carried out by Spalburg et al.51 They 
treated a system with two electronic states whose diabatic potential energy 
surfaces are parallel. If the electronic coupling is given by the expression in 
Eq. (53), then the weak-coupling approximation gives the following result 
for the state-to-state cross sections: 
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Here g is the initial relative velocity of the collision, and AE is the energy 
difference between the reactant state (identified by vibrational level u) and 
the product state (identified by u’). This result was used to estimate the energy 
width 6 E  given in Eq. (54). For this system the FCP is not, in general, valid 
because AE depends on the vibrational levels u and u’. However, it is apparent 
that at higher energy, where 

is satisfied, the state-to-state cross section reduces to 

fJw = fJ* I (UI u ’ )  12, 

which is equivalent to Eq. (51). The weak coupling approximation is normally 
not satisfied in ion-molecule CT systems. Nevertheless, Eq. (65) does give a 
good qualitative description of the cross section behavior. From these 
considerations Spalburg et al.’l concluded that the FCP will be satisfied at 
high collision energies, but at low energies states with small AE values will 
have the largest cross sections. 

To test these predictions Gislason and Parlant53*54 carried out a series 
of calculations on the CT process 

Ar+(2P,,2) + N,(u = 0) -, Ar + Nl(X,  A; u’) 

over a wide range of collision energies. The computational procedures were 
the same as those described in Section I11 F. The reader is referred to Table IV 
for a listing of the system’s vibronic energies. Table XI1 gives the product 
vibrational distributions for the X and A states at the various collision 
energies; these can be compared with the Franck-Condon factors in the last 
column. At the lowest energy studied (Ere, = 1 eV) only the near-resonant 
N l  ( X ,  u‘ = 1) state is formed. By Ere, = 10 eV small amounts of u‘ = 0 and 2 
are produced as well. The state favored by Franck-Condon considerations, 
Ni (X,  u’ = 0), becomes the major product at Ere, = 100eV, even though the 
distribution is far from Franck-Condon. At this energy a small amount of 
N i  ( A )  products is formed as well. The vibrational distribution favors states 
such as u ‘ = O  and 1 which are closest in energy to the reactant state. It is 
interesting that Nl(X,  u’ = 3 and 4) are not formed, even though they are 
closer in energy to the reactants than any N l  ( A )  state. By Erel = lOOOeV the 
distribution of vibrational levels for N i (X)  is in agreement with the FCP, 
but the Nl(A) state is still skewed toward the lower vibrational levels. This 
effect persists at Ere, = 4000eV, although the distribution for Nl(A) is closer 
to Franck-Condon. 
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Table XI1 
Relative State-to-State Cross Sections for Arf(2P,,2) + N,(o = 0)- Ar + Ni(X,  A; u'y 

Relative Collision energy (eV) 
N i  Product Franck-Condon 
Ion State 1 10 100 lo00 4Ooo Factor 

X 0 
X 1 1 .o00 
X 2 
X 3 

A 0 
A 1 
A 2 
A 3 
A 4 
A 5 
4 A ) I 4 X )  O.OO0 

0.060 0.690 0.910 0.908 
0.935 0.296 0.086 0.092 
0.005 0.013 0.004 

0.706 0.671 0.391 
0.294 0.264 0.347 

0.064 0.174 
0.066 
0.022 

0.o00 0.046 0.154 0.798 

0.916 
0.079 
0.005 
0.0003 

0.264 
0.319 
0.220 
0.115 
0.05 1 
0.020 

"The first two columns identify the electronic state (X or A)  and the vibrational level of the 
N i  product. The next five columns give, at each collision energy, the fraction of the products 
in each vibrational level in the X state (first four rows) and in the A state (next six rows). These 
fractions can be compared directly with the Franck-Condon factors for the transition 
N,(u = O)+Ni(X, A; u') in the last column. If no entry is given, the calculated cross section 
was less than 0.01 A'. The last row gives the ratio of the total cross sections for producing the 
A state compared to producing the X state. 

A comparison of the N:(X) and Nl(A) vibrational distributions at 
Erel = lOOOeV leads to a surprising conclusion. For the model used to obtain 
Eq. (65) the collision time can be estimated as 

Naively, one would expect that the FCP will be satisfied when T ~ , , ~ ~  is much 
shorter than the vibrational period 

where vVib is the vibrational frequency. Since the vibrational frequencies of 
N i ( X )  and Ni(A) are nearly the same, one would expect both states to 
exhibit Franck-Condon behavior at the same collision energy (Erel = 10oO eV 
for Ar+ + N2). In fact, this is not observed. An examination of Eq. (65) 
suggests that it is also necessary to consider the electronic time 
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where AE,, is a typical energy difference between reactant and product 
electronic states. 

A comparison of the three times T,,, t v i b ,  and T ~ ~ , ,  determines the type of 
collision being considered. In the absence of an avoided crossing between 
two electronic states of the same symmetry (i.e., AE,, large) it is normally 
the case that 

In this case, the Born-Oppenheimer approximation is valid. At low collision 
energies, when T,ib << tco,,, the vibrational motion will be adiabatic. At higher 
energies, when Tvib % T ~ ~ , , ,  vibrational excitation will occur on the single 
electronic potential energy surface. At very high energy becomes 
comparable to rel, and electronic transitions occur. However, the cross 
sections will be small, because u* in Eq. (65) goes as Er;:. 

Cross sections for nonadiabatic transitions only become large when AEel 
is comparable to a few vibrational quanta. This is the case for reaction (66) 
giving N l  ( X ) .  In that case, 

Now there are three possible ranges of collision energy. When T ~ ~ , ,  z T,, 

C0.l eV d Ere, d lOOeV for reaction (66) ] ,  nonadiabatic transitions occur with 
large cross sections, and the vibrational distribution is not Franck-Condon- 
like. When T~~~~ << T,,(E~,, > 300eV), the FCP is obeyed. Finally, at very low 
energies [thermal for reaction (66) ] ,  >> T,,, and the cross sections for 
nonadiabatic transitions should become very small. We shall see, however, 
that a new mechanism for ion-molecule CT opens up at these low energies. 
To summarize, the FCP is only valid when both 

are satisfied. Since AE,, for reaction (66) giving Ni(A)  is about l e v ,  the 
FCP will not be satisfied until Erel 2 40 keV. 

B. Adiabatic Vibronic Potential Energy Surfaces 

At sufficiently low collision energies the dynamic energy width 6E,  defined 
in Eqs. (54) and (55),  becomes comparable to a vibrational quantum. In that 
case, calculations show that CT leads to at most a few vibronic product 
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states that are close in energy to the reactant state. Spalburg et aL5' have 
argued that in this energy range the best zero-order picture for CT is given 
in terms of adiabatic vibronic (AV) states. The AV potential energy surfaces 
can be obtained by diagonalizing the vibronic hamiltonian matrix defined 
in Eq. (15). There is one surface for each vibrational level of each electronic 
state. These surfaces have been computed by Spalburg et al.,51 Sonnenfroh 
and c o - ~ o r k e r s , ~ ~ ~ '  7 3  and by Parlant et aLS9. The implications of these 
surfaces for CT processes have been discussed in detail by these authors. In 
particular, Sonnenfroh and Leone l 7  have explained the rotational 
distribution of the vibronic products measured for the CT process 
Art ('P,,,) + N2(u = 0) + Ar + N:(X, u')  using the AV surfaces. Their 
qualitative discussion is supported by the quantum-mechanical calculations 
of Clary and S ~ n n e n f r o h . ~ ~  In this section we shall review two examples of 
AV surfaces and show how they relate to classical path calculations discussed 
earlier. 

The AV potential energy curves for (Ar + N 2 ) +  with a molecular 
orientation y = 90" are shown in Fig. 30 for the case C2 =+. These were 
calculated by Parlant et aLS9 using the surfaces of Archirel and Levy." 
Results at other angles are similar, but the ground-state well is deepest at 
y = 0". It is instructive to compare the curves in this figure with the electronic 
potential energy curves shown in Fig. 12. The ground vibronic level in Fig. 30, 
which correlates at infinite separation to N,'(X, u = 0) + Ar, does not 
approach other vibronic levels at any value of R. This explains the very small 
CT cross section for this state (Fig. 14), even at relative collision energies as 
high as 20 eV. The behavior of this state is unique, however. All other vibronic 
curves show one or more avoided crossings where the system can easily hop 
from one AV curve to another. The end result of these hops as the particles 
separate can be CT or fine-structure transitions or vibrational excitation or 
deexcitation. It is apparent that the nature of the asymptotic state is lost at 
small R where the electronic coupling is strong. 

The most dramatic avoided crossing in Fig. 30 is that between the first 
and second excited vibronic curves, which correlate to AT+(*P,~,)  + N,(u = 0) 
and Ar + N: ( X ,  u = l), respectively. As discussed earlier, these two curves 
behave very much like a two-state Landau-Zener system,54 and the 
state-to-state CT cross section shown in Fig. 17 is well fit by this model at 
energies below 20 eV. The third excited state, which correlates to 
Ar+('Pl12) + N,(u = 0), is seen to rise as R becomes smaller. This explains 
why CT from this state at Ere, = 1 eV gives Ar + Nl(X,  u' = 2) as the major 
product (see Fig. 17). This occurs even though Ar + Nl(X,  u' = 1) is closer 
in energy (Table IV) and has a larger Franck-Condon overlap with the 
reactants; this product state is not favored because it lies below the reactants. 
Another important product state which lies above Ar+('PII2) + N,(u = 0) is 



410 ERIC A. GISLASON ET AL. 

- 5  - 4  - 1  
- 3  

- 2  

- 1  

-0 

- 0  
- 4  -3 

- 3  -2 

- 1  

-0 

-2 

- 1  

-0 

2 3 4 5 6 

Intermolecular Distance (A) 
Figure 30. Adiabatic vibronic potential energy curves as a function of R for the (Ar + N2)+ 

system with a=$ for the orientation angle b=90". The zero of energy corresponds to 
Ar+(2Ps,2) + Nz(u = 0). The asymptotic states are indicated by the energy limits shown to the 
right. From left to right the four columns correspond to Ar + Ni(X, u), Ar+('P,,,) + N2(u), 
Ar+(ZP,,,) + N2(u), and Ar + Ni(A, u). In each case the vibrational level u is indicated. (Taken 
from Ref. 59, with permission.) 

+ N2(d = 1). The avoided crossing between the two curves gives 
rise to a large fine-structure transition cross section (see the discussion of 
Fig. 20). 

Parlant et al.59 have also computed AV potential energy surfaces for the 
= states of (Ar + CO)+.  The results for the orientation angle y = 100" are 

shown in Fig. 31. Collisions with this orientation play an important role in 
CT at low collision energies. To interpret the results it is useful to review 
the electronic curves for y = 100" shown in Fig. 21. The lowest electronic 
curve is purely repulsive, while the first excited state, which correlates to 
Ar+('P3/2) + CO(X), gives rise to a curve with a deep well which approaches 
the ground curve at R values less than 2.8 A. Returning to Fig. 31 it is apparent 
that there is a set of diabatic vibronic curves based upon the repulsive ground 
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Figure 31. Adiabatic vibronic potential energy curves as a function of R for the (Ar + CO)' 

system with the molecular orientation angle B = 110" and t2 = $. The zero of energy corresponds 
to Ar+('P,/,) + CO(u = 0). Linear Ar-C-0 corresponds to f l =  0". The asymptotic states are 
indicated by the energy limits shown to the right. From left to right the three columns correspond 
to Ar + CO+(X,  u). Ar+(2P,,2) + CO(u), and Ar+('P,,,) + CO(u). In each case the vibrational 
level u is indicated. Curves which correlate to CO+(A,o)  states are higher in energy and are 
not shown. (Taken from Ref. 59, with permission.) 

electronic curve; there is one curve for each asymptotic vibrational level of 
CO+(X) .  These curves are cut by a second set of attractive diabatic curves 
that are based on the excited electronic curve. The crossing between the two 
sets of curves are avoided, but the energy gaps are quite small. It is 
instructive to follow the lowest attractive vibronic curve, which correlates 
to Ar+('P3,J + CO(u = 0). At R = 5 A this curve is parallel to, but just below, 
the repulsive vibronic curve which dissociates to Ar + CO'(X, u = 7). For R 
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values less than 4 A, however, it becomes attractive and cuts repulsive curves 
which correlate to Ar + COf (X; u = 6,5,4, and 3). 

The behavior of this attractive diabatic vibronic curve suggests a likely 
mechanism5’ for CT in thermal energy collisions of Ar+(’P3,’) + 
CO(X, u = 0). The mechanism is similar to Ferguson’s mode116’ for 
vibrational relaxation of molecular ions. The distribution of orientation 
angles y is initially random, but the anisotropic nature of the vibronic 
potential energy surface puts a considerable torque on the CO molecule, 
favoring angles near y = 100” where the potential well is deepest (see Fig. 21). 
In many collisions this torque will induce rotational excitation of the CO 
molecule, which will trap the ion-molecule complex for a period of time. 
The system will pass through the weakly avoided crossings shown in Fig. 31 
many times, until a transition is made to a repulsive curve which correlates 
to Ar + CO+(X; u’ = 6,5,4, or 3). The complex will then quickly dissociate 
along this curve giving CT. The complex mechanism proposed by Parlant 
et al.” is supported by the fact that the measured rate constant for CT 
increases with decreasing temperature.’ In addition, it provides an 
explanation of Leone’s  experiment^,'^^,' 58 which show that CT of 
Ar+(’P,,’) + CO(u = 0) produces CO’(X) primarily in vibrational levels 
u’ = 3,4,5, and 6. By comparison, the classical path calculations at 
Ere, = 2eV,” discussed earlier, give mainly CO+(X;u’ = 1,2 and 3). This is 
an energy where a collision complex could not be formed. 

The calculations discussed here confirm Spalburg’s suggestion5 that AV 
states are the best zero-order states to describe CT at collision energies below 
20 eV. Theoretical work based on this framework should be very useful. One 
example is the quantum-mechanical treatment of the (Ar + N2)+ system by 
Clary and S~nnenfroh.’~ An alternative would be to carry out TSH calcu- 
lations on the AV surfaces. Some work along this line has been done by 
Nikitin et aLg4. 

C. Energy Dependence of Charge-Transfer Cross Sections 

Classical path calculations have given considerable insight into the CT 
process. In this section we summarize what we have learned about the energy 
dependence of state-to-state CT cross sections. We restrict the discussion to 
strongly coupled systems such as (Ar + N2)+, which typically have charge- 
transfer cross sections in excess of 15 A’. By strongly coupled we mean: (1) 
The electronic coupling between the two charge exchange states is large- this 
is usually the case if the interaction corresponds to a one-electron exchange; 
and (2) the reactant state is nearly energy resonant with one or two product 
vibronic states, and the Franck-Condon factors for the transitions are at 
least 0.01. We also assume that the electronic couplings are weak functions 
of the vibrational coordinate r. 
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The behavior of the state-to-state cross sections at high energies are best 
understood by reference to the weak-coupling result in Eq. (65). At high 
energies this equation reduces to the Franck-Condon limit shown in Eq. (51). 
Two other comments can be made. First, in this energy region the CT cross 
sections are falling off as Ere:, as shown in Eq. (65). Second, the dynamic 
energy width 6E,  defined in Eqs. (54) and (55), is growing with collision 
energy, which means that other electronic CT states will be populated. For 
example, when Ere, = 10,000eV, Eq. (55 )  shows that 6E = 3.8 eV. Thus, we 
expect that all electronic states of Ar + N l  within f 3.8 eV of the reactants 
will be produced with significant cross sections. This energy range includes 
the X ,  A,  and B states of N l .  

When the collision energy is lowered to between 50 and 1000 eV (medium 
energies), Eq. (65) shows that the state-to-state CT cross sections depend on 
the energy difference AE between reactant and product states. In particular, 
product states with small energy gaps are favored. The classical path 
calculations in general do not support the actual dependence on AE shown 
in Eq. (65). Rather, an exponential dependence of the type exp( - pAE)  is 
normally seen (see Fig. 10). State-to-state cross sections are also expected to 
be proportional to the Franck-Condon factors for the transition. 
Equation (65) predicts that if the state-to-state cross sections are divided by 
the Franck-Condon factors, the ratio should be a simple function of AE. 
This point was explicitly tested by Lee and D e p r i ~ t o ~ ~  at two collision 
energies, and the result are shown in Fig. 10. It is seen that most of the data 
lie on a single curve, but some points lie higher. Lee and DePristo pointed 
out that all of these points correspond to transitions with very small 
Franck-Condon factors. In our opinion, this result is obtained because even 
at Ere, = 400eV the H, and H l  molecules have enough time to undergo 
some vibrational motion during the collision, and the change in the r values 
allows transitions with small Franck-Condon factors to be more likely. We 
conclude that at medium energies the state-to-state cross sections are 
primarily determined by the energy gap AE, and they are approximately 
proportional to the Franck-Condon factors. 

At collision energies between 0.5 and lOeV (low energies) the molecule 
has time to vibrate several times during the collision. In this case Eq. (65) is 
no longer useful for understanding the scattering. As discussed in the previous 
section the best zero-order picture for CT in this energy range is the adiabatic 
vibronic (AV) formalism. The particles approach on the reactant AV potential 
energy surface, which has avoided crossings with other AV surfaces. The 
system can hop from one surface to another, and the probability for hopping 
can often be estimated from the Landau-Zener formula. Typically, only a 
few product states are important, and these are close in energy to the reactants. 
The AV surfaces often give a good clue as to which products are formed. 
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The final energy range to be considered is thermal, where the collision 
energy is less than the well depth of the ion-molecule intermediate. In this 
thermal energy range only exothermic processes can occur. The AV formalism 
remains the best way to consider these collisions. However, at these energies 
the collision velocities are often so low that the probability of hopping from 
one AV surface to another becomes very small. Thus CT cross sections are 
expected to decrease rapidly at low energies, and this is observed for many 
ion-molecule systems.'53 A good example of this is the CT reaction of 
Ar+(,P3,,) + N,(u = 0). The data of Lindinger et al.'74 shows that the rate 
constant for this process decreases by a factor of 100 as the collision energy 
falls from 3 to 0.03eV. We have seen that the major product is 
Ar + N i  (X, u = l), produced in a single curve crossing (Fig. 30), but which 
is endothermic by 0.092 eV. This product state cannot be made at low energy, 
so the rate constant might be expected to fall to zero. Instead, recent 
experiments by Rebrion et have shown that the rate constant begins 
increasing as the collision energy is lowered below 0.02eV. We believe the 
explanation for this behavior is that at very low energies collisions of 
Ar+ + N, form a long-lived complex. This complex lives long enough for 
the system to hop to the lower AV potential energy surface and dissociate 
as Ar + N i  (X, u = 0). A similar argument to explain the thermal CT results 
for Ar' + CO was described in the previous section. 

The relative importance of energy defects and Franck-Condon factors in 
determining state-to-state CT cross sections has been debated for many years. 
We have seen that at high energy the Franck-Condon factors dominate the 
scattering. At lower collision energies small energy defects are always favored. 
The role of Franck-Condon factors is less clear. They do enter into the 
calculation of the AV potential energy surfaces, because they are part of the 
vibronic hamiltonian matrix, but there is no direct relationship between cross 
section and Franck-Condon factor. 

VI. FUTURE DEVELOPMENTS INVOLVING THE CLASSICAL 
PATH PROCEDURE 

As is apparent from the companion volume to this book, it is now possible 
to carry out a remarkable variety of state-selected and state-to-state measure- 
ments of CT in ion-molecule collisions. In addition, we have emphasized in 
this chapter that classical path calculations of total state-to-state cross 
sections are fairly routine for nonreactive systems. Thus, we expect that future 
experimental work will inspire a large number of classical path calculations. 
There is, however, a need for more ab initio calculations of potential energy 
surfaces and  coupling^.^^ 
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The formalism for computing differential and doubly differential cross 
sections has now been developed by Sizun et al.58 for scattering at small 
angles. We expect that a large number of calculations will be carried out 
using this procedure in the near future. The same can be said for the problem 
of dissociative CT. The techniques developed by Sidis and c o - ~ o r k e r s , ~ ~ - ~ ~  
and especially the wave packet procedure,6s will be applied to many systems 
in the next few years. 

In the future we can expect that the classical path procedure will be 
extended into new areas where present methods are inadequate. The first is 
the energy range below 1 or 2eV. It is quite possible that the TSH method 
on adiabatic vibronic potential energy surfaces, discussed in Section V B, will 
prove to be useful in this energy range. The second area is CT collisions 
involving negative ions. We are not aware of any classical path calculations 
on this type of system, but in principle the procedures described in this 
chapter will work there. Any realistic calculation, however, must allow for 
the possibility of electron detachment. This complicates the calculations, but 
approximate techniques for treating the detachment have been developed.' " 
The third area is to extend the classical path method to treat polyatomic 
molecules and/or to treat molecular rotations quantum mechanically. Both 
cases can be treated within the existing formalism with no difficulty, but the 
computer requirements for these calculations will be extensive. In the case 
of quantum-mechanical rotations, it is likely that these calculations will wait 
until (if?) the rotational state-dependence of ion-molecule CT processes is 
determined experimentally. The fourth and most difficult area will be the 
calculations of CT cross sections in the presence of chemical reaction. 
Accurate calculations for this process using the classical path procedure are 
probably many years away. We note, however, that a classical path approach 
to reactive scattering on a single potential energy surface using hyperspherical 
coordinates has recently been developed by Muckerman, Gilbert, and 
Billing.'77,'78 Thi s technique will hopefully be extended in the future to 
include additional electronic states. 

In summary, the classical path method has proven to be a powerful method 
for studying CT processes. In the next 10 years we can look forward to many 
more systems being studied, and, in addition, a rapid development of new 
techniques to increase the range of processes that can be studied. 
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I. INTRODUCTION 

Classical trajectory methods have a number of attractive features for the study 
of the dynamics of molecular collisions. Classical mechanics is intuitive, the 
equations are relatively straightforward, and the size and complexity of the 
computer programs and demands on machine time increase much less 
dramatically with the size of the problem than with quantum methods. The 
quasiclassical trajectory method for simple bimolecular reactions is well 
established, and has been thoroughly reviewed.’-3 There are obvious 
shortcomings: classical trajectories do not tunnel, so calculations near 
threshold must be interpreted with care, and classical trajectories carry no 
phase information, so phase sensitive phenomena (interferences and some 
types of resonances) are absent. Semiclassical r n e t h ~ d s ~ - ~  overcome these 
problems and, for simple systems, have provided and excellent picture of why 
purely classical methods work as well as they do. If quantum mechanics is 
“classical dynamics plus quantum superp~sit ion,”~ then bimolecular 
collisions, where phase information is usually largely lost by extensive 
averaging over initial conditions, are well described classically. 

The potential energy surface (more precisely, for systems with three or 
more atoms, hypersurface of dimension rn = 3 N  - 6) lies at the core of a 
trajectory calculation. For many systems, the Born-Oppenheimer approxi- 
mation is valid over all relevant regions of configuration space: a single 
potential surface governs the dynamics. However, there are many interesting 
systems whose overall dynamics involves more than one surface. Such 
nonadiabatic behavior is particularly common in ion-molecule reactions: 
charge transfer between two fragments at a particular geometry is intrinsically 
nonadiabatic, the transfer of charge corresponding to a change in electronic 
configuration. It is often found that the breakdown of the Born-Oppenheimer 
approximation is local: that over most of configuration space the potential 
surfaces are well separated in energy. It was for such cases that Preston and 
Tully developed the trajectory-surface-hopping (TSH) method,6 and applied 
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it to the simplest of ion molecule reactions, H +  + H,. In earlier work, Bjerre 
and Nikitin7 had introduced a similar approach, but with reduced 
dimensionality, in a study of electronic to vibrational energy transfer in the 
collision of excited sodium with nitrogen molecules. 

The TSH method is simple in concept: in those regions of space where 
the Born-Oppenheimer approximation is valid, standard quasiclassical 
trajectory methods are applied, while in the localized regions of strong 
nonadiabatic coupling, the trajectories are permitted to hop between the 
coupled surfaces. With this method one can describe in a consistent 
framework competing processes that are frequently treated separately: for 
example, charge transfer and chemical reaction (that is, processes in which 
chemical bonds are broken or made). For this reason, while the title of this 
review emphasizes charge transfer, the multiplicity of processes which may 
occur in molecular collisions involving charged particles will be included. 

Some of the basic concepts and equations for nonadiabatic processes are 
reviewed in Section 11. The TSH method is described in Section 111, including 
a number of alternate procedures which have been developed for handling 
parts of the calculation. Applications are reviewed in Section IV, with 
emphasis on ion-molecule and ion-pair formation reactions. Some 
comments and speculations about future developments are made in Section V. 

11. NONADIABATIC MOLECULAR COLLISIONS BACKGROUND 

A. The Semiclassical Description of Nonadiabatic Transitions 

The theory of nonadiabatic transitions has been reviewed many times. 
Garrett and Truhlar' give an excellent survey of the subject with a particularly 
useful discussion of various diabatic representations. Delos' focuses on 
atom-atom and ion-atom collisions. Baer emphasizes quantum- 
mechanical treatments of nonadiabatic processes in atom- and ion-molecule 
collisions. The work of Nikitir~"-'~ provides a very clear exposition of the 
semiclassical theory of nonadiabatic dynamics. Following his notation, we 
give below a highly simplified version, in order to establish notation and 
terminology. 

We start with the electronic hamiltonian for fixed nuclear geometry 
He(r, R) which depends on both the electronic coordinates r and the nuclear 
coordinates R. He includes potential energy terms for both electrons and 
nuclei, but kinetic energy terms for electrons only. The solutions to the 
time-independent Schrodinger equation 

He(r9 R)@m(r; R) = Um(RPm(r; R) (2.1) 

are a set of adiabatic wavefunctions @Jr; R) that depend parametrically on 
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the nuclear coordinates R, and functions U,(R) that are the adiabatic 
potential energy  surface^.'^ Conventional electronic structure calculations 
may be used to solve Eq. (2.1). 

The semiclassical theory begins with the assumption that the nuclei follow 
some path in time, R(t). We postpone the definition of this trajectory. The 
time-dependent electronic Schrodinger equation 

ay 
at 

ih - (r, t )  = He(r, R)Y(r, t )  

gives a wavefunction for the entire system Y that depends on the nuclear 
coordinates through R(t). Because the solutions to Eq. (2.1) form a complete 
set, the total wavefunction may be written 

Y,,,(r, t )  = C ui(t)Qi(r)exp [ - - 1' Ui(R)dt]. 
i 

(2.3) 

Substituting in (2.2) and using the orthonormality of the mi gives a set of 
coupled equations for the time-dependent expansion coefficients ui(t): 

where, the overdot indicates a time derivative. Since the functions 
on time only through R, the matrix element in (2.4) can be rewritten 

depend 

( @ i l - i h $ l @ f )  =ih(@ilvRl@f).R.  (2.5) 

The final form for the coupled semiclassical equations is 

b, = - C ui (mil VRI @,).R erp[ - s' (Ui - U,)dr 1; (2.6) 
i 

Eq. (2.6) is very revealing. Aside from the phase factor, the nonadiabatic 
behavior depends on the term R, = (@ilVRl@,).R. (@ilVRl@,-) is the 
nonadiabatic coupling matrix element, which can be obtained in an electronic 
structure theory calculation, and R is the nuclear velocity. If the nonadiabatic 
coupling matrix element or the nuclear velocity is sufficiently small, the 
system will behave adiabatically: beginning in a particular electronic state 
(Di, and therefore on the energy surface Ui(R), it will remain on that surface 
for all time. 
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Solving Eqs. (2.6) to first order in perturbation theory gives a 
multidimensional generalization of the well-known Massey’ criterion fdr 
adiabatic behavior: 

AU, is the splitting between the levels i and f; the dimensionless quantity 
ti/ is known as the Massey parameter. If 5 >> 1 throughout, the system is 
adiabatic: a single potential surface governs the dynamics. However, there 
are many circumstances where 5 is small only in well-defined regions; it is 
for such situations that the TSH method was designed. 

Observe in Eq. (2.6) that (@i(VRl@’f) is a vector whose dot product with 
the nuclear velocity R governs the coupling. To understand nonadiabatic 
behavior for systems with more than two atoms, it is critical to consider 
both the magnitude and direction of this coupling. 

Equation (2.6) is the basis for many semiclassical calculations of 
nonadiabatic processes. To use it, one must define a nuclear trajectory R(t). 
At high energies when the relative motion is much faster than any internal 
nuclear motion, a simple straight-line collision may be appropriate; this is 
the basis for the well-studied impact parameter method.’ At lower energies, 
a more detailed trajectory is preferred. When the system is adiabatic, R(t) is 
logically a trajectory that obeys classical mechanics: a classical trajectory on 
the potential U,(R). For weak nonadiabatic coupling, a reasonable choice is 
again a trajectory that moves on surface i; the semiclassical coefficients are 
initiated accordingly (ak = Bik) and after the trajectory has passed through a 
region of strong coupling, Eq. (2.6) yields transition probabilities to other 
surfaces. However, when the coupling is strong, so that a, falls to zero as 
some other as rises while the trajectory passes through the interaction region, 
R(t) might more properly begin on surface i and end up on surface f :  a 
nonadiabatic path. In the region of strong nonadiabatic coupling, the very 
concept of motion in a single surface is breaking down; there is no unique 
R(t). This is a fundamental source of uncertainty in any trajectory-based 
semiclassical procedure. 

B. Two-State Systems 

1. Adiabatic and Diabatic States 

In the preceding discussion, no assumption was made about the nature of 
the potentials or the number of interacting states. Much can be learned about 
nonadiabatic dynamics by examining the case of two interacting states. Even 
in real systems with several interacting states, the regions of nonadiabatic 
coupling between pairs of states may be separate; when this is so, the dynamics 
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can be viewed as evolving through a sequence of two-state interactions. The 
study of two-state problems has a long history; we again borrow heavily 
from the work of Nikitin."-13 For simplicity, we consider a single nuclear 
coordinate R. 

Consider adiabatic energy levels U - ( R )  and U + ( R )  with corresponding 
wavefunctions @-(r, R) and @+(r, R). It is convenient to view these levels as 
the eigenvalues of a real symmetric 2 x 2 diabatic matrix Hij(R). The 
relationship between these is formally simple: 

The matrices U and H are related by a mixing angle 8(R): 

cos8 sin8 H,, H,, cos8 -sin8 

cos8 ("a :+)=( -sin8 cos8)(H,, Hz2)( sin8 

where 
tan28(R) = 2H1,/(H,, - Hll) .  (2.10) 

The nuclear derivative coupling between the adiabatic levels U + and U - is 
conveniently written in terms of the mixing angle 8(R): 

(2.1 1) 

While there exists this formal relationship between 2 x 2 adiabatic and 
diabatic matrices, it is important to observe that there is no unique way to 
specify three elements of the diabatic matrix Hij(R) given two adiabatic curves 
U , (R).  Hence, the definition of a diabatic representation is arbitrary. A useful 
criterion for a diabatic representation is that, as the system passes through 
a region of strong coupling, the diabatic states should change very little while 
the electronic character of the adiabatic states should change quite abruptly. 
One commonly used diabatic representation is that proposed by Smith: l 6  

the diabatic states are taken to be those for which the nuclear derivative 
coupling ( Q1 I d/dR 1 0, ) vanishes. The concept of diabatic states is convenient 
when discussing nonadiabatic collisions; for a thorough discussion of 
problems with various diabatic representations, the reader should consult 
Ref. 8 or 9. 

2. The Landau-Zener Model 

It is instructive to consider nonadiabatic behavior for certain assumed 2 x 2 
diabatic matrices. The first is the well-known Landau"-Zener'* model, 
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which describes the typical situation at an avoided crossing. One starts with 
a diabatic matrix in which H , ,  and H , ,  are linear functions of R and H , ,  
is constant. If R, is the position of the crossing of HI,  and H, ,  and AF is 
the difference of their slopes, then H , ,  - H ,  , = ( R  - R,)AF. The curves U + 

and U -  exhibit a classic avoided crossing: the energy gap W ( R )  = U + ( R )  - 
U - ( R )  passes through a minimum at R,; W(R, )  = 2H , ,. If the total energy is 
large compared to the energy at the crossing, Eq. (2.6) leads to the 
Landau-Zener transition probability' ': 

(2.12) 

where u is the nuclear velocity at R,. 
Consider the evolution of the mixing angle B(R) for this model, as a 

trajectory passes through the region of strong nonadiabatic coupling. 8 starts 
at zero away from the crossing, passes through n/4 at R,, and reaches n/2 
on the other side. Far from the crossing on one side, the diabatic and adiabatic 
states coincide; at the crossing the adiabatic states are an even admixture of 
the diabatic states; and, on the other side of the crossing, the states again 
coincide, but with opposite labeling. The nuclear derivative nonadiabatic 
coupling for this model is a Lorentzian with area 4 2  and width r = 4H, , /AF:  

d r14  
( R  - R,), + r 2 / 4 '  

( @ + I l l @ - > =  
d R  

(2.13) 

If H , ,  is small, we observe two signatures of a localized nonadiabatic 
transition: the energy gap W at R is small and the nuclear derivative coupling 
is very sharply peaked. The Lorentzian shape predicted by this simple model 
has been observed in ab initio calculations of avoided crossings in molecular 
systems: for example, the calculations of Deharing et aI.l9 on H 2 0 +  and 
Desouter-Lecomte et aL2' on CH;. 

3. The Demkov Model 

Localized nonadiabatic coupling can occur in a quite different situation, 
where there is no avoided crossing between the adiabatic levels. Demkov*l 
gave the first semiclassical description of this model, devised to describe 
near-resonant charge-transfer processes. The model again begins with an 
assumed 2 x 2 diabatic matrix. H and H , ,  are parallel curves; the spacing 
A between the diabatic levels is small. The coupling H I 2 ( R )  decreases 
exponentially: H , ,  = A exp( - AR). The diabatic levels do not cross, and there 
is no minimum in the gap W ( R )  between the adiabatic curves. At large R, 
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A >> H , ,  and the adiabatic curves are parallel; for smaller R, H , ,  increases 
and the gap grows. 

Although there is no avoided crossing, there is a well-defined region of 
strong nonadiabatic coupling where the term (a + 1 d/dR I - ) has a 
maximum. Consider again the mixing function O(R). At large R,  8 and dO/dR 
are zero: the adiabatic and diabatic states coincide. As R decreases, 8 increases. 
For sufficiently small R, HI, >>A, 13 % 7114, and d8JdR is nearly zero: the 
adiabatic levels are an even admixture of the diabatic states. The coupling 
term d8ldR passes through a maximum when H , ,  = A/2. If one linearizes 
H , ,  at this point R,, the shape is again Lorentzian, its width sensitive to the 
parameter 1, the steepness of the interaction. 

In the limit where the velocity u at R, is large, the transition probability 
takes a simple form: 

PI , = exp( - z A / h l v )  (2.14) 

with a somewhat more complicated semiclassical result at lower energies. 
These equations have been tested against exact quantum-mechanical 
results;22 the simple equations work quite well at higher energies. 

Mixing of spin-orbit states during a collision is an example of a 
Demkov-type process; a sharp coupling term with a Lorentzianlike shape 
was found for F(’P,) + H +  (or Xe) by Preston et al.23 and for F(’PJ) + H, 
by T ~ l l y . ’ ~  

111. TRAJECTORY-SURFACE-HOPPING METHODS 

A. Foundations 

1. The General Concept 

The TSH method was reviewed previously by Tully in 1973” and 1979.26 
The central idea common to all TSH calculations was described by Tully 
and Preston6 nearly 20 years ago. Classical trajectories are propagated on 
a single potential energy surface in the regions where the system is adiabatic. 
When a trajectory reaches a region of strong nonadiabatic coupling, the 
trajectory may hop to another surface; the hopping is vertical, and the 
momenta are adjusted to compensate for the discontinuous change in 
potential. Energy conservation governs the magnitude of the correction; 
conservation of total angular momentum is guaranteed if the correction is 
applied in the internal coordinate frame. The trajectory continues on the 
new surface; if it again encounters a region of strong coupling, it may hop 
again, and so on until the collision is over. If the number of possible hops 
along one trajectory is not too large, each branch of a trajectory may be 
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followed (one branch continues adiabatically, the other hops), the outcome 
of all branches weighted according to their accumulated probability. Preston 
and Tully called this the “ants” mode: many branches swarm across the 
manifold of surfaces. If the trajectories pass through regions of strong coupling 
too many times, the “anteater” mode may be preferred: a single trajectory 
results from each set of starting conditions. The trajectory either hops or not 
at each crossing, the decision made randomly weighted by the transition 
probability. 

For an N atom system with N 2 3, trajectories move in a rn = 3N - 6 
dimensional space; a three-dimensional space for N = 3. The function 
1 ( Q i l  VR laf) I’ is likewise m dimensional. The maximum of this function 
defines an (rn - 1)-dimensional object; a surface for N = 3. There may be 
several surfaces linking states i and f. Tully and Preston call such a surface 
a “seam,” and permit surface hopping only when a trajectory passes through 
the seam. Variations on the TSH method described below include slightly 
different definitions of the seam, and in some cases permit transitions in 
regions near the seam. There is, of course, no guarantee that the seam as 
defined above implies well-localized transitions: one can imagine situations 
in which regions of strong coupling extend in all directions through space; 
in such cases the TSH approach is probably not advisable. Finally, symmetry 
may place constraints on the function I(@ilVRlQ,-)12 at points, lines, or even 
surfaces in the rn-space; these must be considered with care.,’ 

The major differences between versions of the TSH method discussed 
below are the answers to two questions: (1) when and how the seam is defined, 
and (2) when and how the hopping probability is determined. To a large 
extent the choice is dictated by the problem: careful preliminary examination 
of the surfaces and couplings is essential; nevertheless, a number of useful 
strategies have been proposed. These are discussed in the remainder of this 
section. 

There are other variations in TSH procedures. Different choices have been 
made for the direction for the momentum correction when a hop occurs. 
Some workers have chosen to propagate the trajectories on diabatic surfaces. 
Various hybrid ants-and-anteater schemes have been used. These differences 
will be noted as individual applications are described in Section IV. 

2. Tully and Preston 

Tully and Preston6 (TP) studied the H +  + H, reaction. The potential surfaces 
were obtained by the valence-bond diatomics-in-molecules (DIM) method; 
the DIM method is particularly convenient for TSH calculations because it 
gives a consistent set of surfaces and couplings.28 Two potential surfaces are 
involved in the H l  problem, one correlating asymptotically to H +  + H,, the 
other to H + H l .  Preston and Tully observed that, for energies relevant to 
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their study, the nuclear coupling function I (@ilVRl@f) I is large only in 
narrow regions near the crossing of the diabatic surfaces. (The choice of 
diabatic basis is implicit in the DIM method.) When R, the separation between 
the atomic and diatomic fragments, is infinite, the diatomic HZ('Xg) and 
H;('C,) potential curves intersect at a point r,; see Fig. 1. As R decreases, 
interactions begin to couple these states, and the adiabatic curves in I exhibit 
an avoided crossing. For large R, the energy gap between the adiabatic levels 
is very small, and the nonadiabatic coupling very sharp. If R is sufficiently 
large, the dynamics is diabatic: when I passes through rC, the trajectory 
changes surfaces. As R decreases further, the interaction increases, the gap 
increases, 

0 

-1 

-2 - 
> 
a, - 
> 

-3 

-4  

and the coupling is broader. Trajectories may now pass 

1' 2' 3 
R ( 8 )  

Figure 1. Slices at infinite R of H: potential energy surfaces, showing asymptotic H, and 
H i .  The zero of energy is at H+ + H + H. Note that the crossing is well above the zero point 
energy for H,, only slightly above H: . 
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adiabatically: charge-transfer occurs. To reiterate: a surface hop (that is, 
transition from U ,  to U , )  means retention of the electronic configuration, 
adiabatic passage through the seam implies charge transfer. Preston and 
Tully6" found that, in the region where the Massey criterion suggests possible 
nonadiabatic behavior, the position of maximum coupling does not vary 
with R: the seam is well defined by the equation ( r - - r C ) = O .  They 
demonstrated that at the seam the vector (QilVRIQf) points along r; the 
direction of maximum coupling is normal to the seam. Therefore, vibrational 
energy is primarily responsible for inducing nonadiabatic transitions in this 
system, and the momentum correction is applied along the vibrational 
coordinate. 

Tully and Preston6' used semiclassical methods to confirm the dynamical 
picture inferred from examination of the surfaces and to investigate the 
hopping probability. Using Eq. (2.6), they ran semiclassical trajectory 
fragments through the seam for various initial conditions. They found that 
the Landau-Zener formula, Eq. (2.1 l), gives excellent agreement with the 
semiclassical results. In the Landau-Zener equation, HI is taken as one-half 
the energy gap at the seam, o is the velocity component normal to the seam, 
and AF is a constant, chosen to fit the semiclassical results. 

Based on this preliminary work, T P  implemented the TSH method as 
follows: (1) the seam was defined by a simple equation before the trajectories 
were begun and (2) the hopping probability was calculated using the 
Landau-Zener formula. The results will be described in Section IV A. 

3. Miller and George 

Shortly after the Tully and Preston6 work, Miller and George2' (MG) 
developed a general semiclassical theory of multidimensional nonadiabatic 
transitions. As their theory offers a more formal underpinning for some 
aspects of the TSH approach, and with some simplification suggests an 
alternate way of implementing the TSH model, we discuss it here briefly. 

Using the approach first introduced by Stuckelberg3' in his investigation 
of the Landau-Zener model, Miller and George exploit the analytic 
properties of the potential energy surfaces in the complex plane to induce 
nonadiabatic transitions. A trajectory does not hop to make a transition 
between surfaces; rather it follows a continuous path from the initial surface 
on the real axis, into the multidimensional complex plane, passing smoothly 
through the branch point where the pair of interacting surfaces is degenerate, 
and arrives back on the real axis, now on the other surface. The trajectories 
are still governed by Hamilton's equations, but propagate in a carefully 
controlled way into the complex plane by choosing a complex time path. 
The transition probability comes naturally from the semiclassical equations. 
In a very rough sense, the farther a branch point is from the real axis, the 
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larger the accumulated action in reaching the branch cut, and therefore the 
smaller the probability. 

This method takes skill to implement: simple vibrations grow 
exponentially depending on the complex time path, so the path must be 
chosen with great care. Moreover, there are constraints on the route a 
trajectory may take through a sequence of branch The search for 
root trajectories satisfying asymptotic boundary conditions, a standard part 
of the classical S-matrix4 method, is complicated by the possibility of many 
alternate routes through the sequence of branch cuts. Uniform techniques 
may be required3, if multiple root trajectories undergo several transitions 
close to one another in time. Implementation of the Miller-George approach 
for real systems without some simplification is probably impractical in most 
cases; root trajectories at sample energies were found for H +  + H, by Lin 
et a1.33*34 

MG theory has the interesting feature that it does not use the coupling 
terms (@ilVRl@f); all the necessary information is implicit in the analytic 
structure of the adiabatic surfaces. This surprising fact is discussed in Refs. 
31 and 35; that it is rigorously so for a two-state system was proven by 
D h ~ k n e . ~ ~  This has some advantages; couplings are not always available. 
Yet it is not without cost: one needs reliable complex potentials, generally 
obtained by analytic continuation of the real functions. 

Comparisons have been made of analytically continued potentials with 
those obtained by direct solution of the electronic structure problem in the 
complex plane;37 unless the functions on the real axis are very precise, direct 
analytic continuation may be perilous. The results are more satisfactory for 
Landau-Zener-type interactions than for Demkov-type interactions. 

One promising simplification of the Miller-George approach uses an 
approximate decoupling scheme.38 The coordinate most responsible for the 
transition (in Tully-Preston language: the direction normal to the seam) is 
identified first, and the complex part of the trajectory involves this coordinate 
alone. If quasiclassical quantization is imposed only at the beginning of the 
trajectory, this is effectively a.variant of the TSH method. When the trajectory 
reaches a seam, the transition probability is determined by a one-dimensional 
complex integral. This technique was applied to the three-dimensional 
F('PJ) + H, pr~blem.~'  

MG give a compact equation for the momentum correction to be applied 
when a trajectory hops in conventional TSH theory. If p is the momentum 
vector before the hop and p' after the hop 
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where AU is the energy gap between the final and initial surfaces, M - '  is 
the matrix of inverse masses, and ii is a unit vector in the direction in which 
the correction is to be applied. A sign error has been ~orrected.~' 

B. Alternate Methods for Locating the Seam and Predicting Hopping 

1. Stine and Muckerman 

The Tully-Preston implementation of TSH is convenient where functional 
representations of the seam and hopping probabilities are easily found. In 
general, however, the seam may be have a complicated shape, and there may 
be several energetically accessible seams. Stine and Muckerman4' (SM) 
devised a TSH procedure in which the location of the seam and the hopping 
probability are determined along with the dynamics. Their method requires 
no coupling functions; only the adiabatic surfaces are needed. While their 
approach is both convenient and powerful, it is applicable only to systems 
where the nonadiabatic coupling may be viewed as arising from an avoided 
crossing: the energy gap W between the interacting adiabatic surfaces must 
have a local minimum in one coordinate. The function W(R) is said to have 
a "troughlike" minimum.41 

The analysis of Stine and Muckerman begins with the multidimensional 
two-state problem. One assumption is made: that the off-diagonal diabatic 
coupling Hi, is (locally) constant. This defines a diabatic representation. It 
follows that the multidimensional surface intersection problem is reduced to 
an equivalent one-dimensional curve-crossing problem. From the adiabatic 
surfaces alone, it is possible to locate the seam and calculate the 
Landau-Zener transition probability, using information calculated along the 
trajectory. There are important practical advantages with this method there 
is no need to define a functional form for the seam, and nonadiabatic coupling 
terms are not needed. The method has limitations; this has been discussed 
in the l i terat~re . ,~ .~,  

The central assumption in the SM analysis is a constant diabatic coupling. 
The seam is defined as the ( m  - 1)-dimensional surface on which the (implicit) 
diabatic surfaces cross: A(R) = H , ,  - H, , = 0. On this seam the adiabatic 
energy gap function W(R) = U ,  - U ,  has zero gradient, and p, the hessian 
matrix of W ,  (pij = dz W/dRidRj), has a single nonzero eigenvalue, which is 
positive. Thus the interaction is one-dimensional: there is a unique direction 
along which W has nonzero (positive) cuvature. SM further demonstrate that 
this direction, specified by any nontrivial row of p evaluated at the seam, 
coincides with the vector normal to the seam. As -a trajectory evolves, the 
seam is identified by the condition VR W = 0 and its direction lies along the 
eigenvector corresponding to the unique nonzero eigenvalue of p. It is not 
even necessary to diagonalize p; the unique eigenvalue is simply the trace 
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of the hessian matrix. In the one-dimensional case, corresponds to AF, 
the difference in the diabatic force constants. The direction normal to the 
seam is 

where (/I1 ,, p,,,. . . , Pin) is any nontrivial row of P, and all terms are evaluated 
in the seam. H12, the coupling, is one-half of the adiabatic energy gap W at 
the seam. 

Since the multidimensional interaction has been reduced to an effective 
one-dimensional process, the transition probability is calculated using the 
Landau-Zener formula, Eq. (2.11). The denominator for the 1D case, uAF, 
is replaced with its vector equivalent, R-VRA.  Using notation corresponding 
to Eq. (3.1) and n defined by Eq. (3.2), SM show that 

R-V,A(R) = n.M-'-p ( 2 - [ 1 k 2 H , ,  ( ( " M y  i . M - l . *  2 )I1',). (3.3) 

The SM formalism is based on the assumption of constant If,,. How 
reasonable is this assumption? Globally, it is clearly wrong. Consider the 
troughlike intersection in H i  studied by Preston and Tully'": the interaction 
between the two asymptotic electronic systems (H' + H2) and (H + H:) 
obviously increases as the fragments approach one another. However, such 
variaton of H , ,  along a seam is often gradual. What about H , ,  normal to 
the seam? Desouter-Lecomte et al.*' carried out ab initio electronic structure 
calculations for CH;, in the region of an avoided intersection. Defining a 
diabatic basis using the nuclear derivative coupling matrix elements, they 
observed that H I 2  is very nearly constant through the coupling region. 

If H , ,  is slowly varying, modified versions of the Stine-Muckerman 
equations can be applied; this is the method as actually implemented. The 
bottom of the troughlike function W(R) is not flat, but may slope and curve 
somewhat. The condition V R W  = 0 is therefore relaxed; instead one looks for 
a minimum in W along the trajectory, that is, W = 0. Since W = VR W . k ,  
W may pass through zero for three reasons: VR W is zero, R is zero, or the 
vectors are ~r thogonal .~ '  The first two conditions are very improbable; the 
third is satisfied when the trajectory passes through the seam, but it is also 
satisfied elsewhere. A second condition is added: the magnitude of VR W must 
be below some tolerance. Finaiiy, to improve efficiency, these criteria are 
applied only in those regions where the Massey parameter indicates the 
likelihood of a nonadiabatic transition; the nonadiabatic couplings are 
required for this test. 

If H , ,  is not constant, the hessian matrix p has more than one nonzero 
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eigenvalue. The vector corresponding to the largest eigenvalue defines the 
direction normal to the seam. That one eigenvalue is significantly larger than 
all others should be a useful check on the validity of the method. Using DIM 
surfaces for H4+, Stine and Muckerman compared this definition to the 
Tully-Preston definition ofthe direction of the seam, ( @ilVRl@,.); the results 
are similar. 

The Stine-Muckerman procedure is designed for systems with avoided 
crossings. Can it be applied when there are conical intersections? Mead and 
Truhlar,’ raise this question. In practice, it depends of the system. Consider 
first a symmetric triatomic, A,. In equilateral configurations, it has 
intrinsically degenerate ( E )  electronic states. Motion along either of the two 
symmetry breaking nuclear coordinates lifts the degeneracy: the familiar 
conical intersection. Contours of the energy difference W around the 
equilateral point are roughly circular. This gap is not troughlike, so the 
Stine-Muckerman method would not apply. The conical intersection in H, 
was studied by Blais, Truhlar, and Mead4, using a variation of the TSH 
method described in Section I1 C. 

AB,  molecules also exhibit conical intersections. The electronic states are 
in general nondegenerate, but states of different symmetry may have an 
accidental degeneracy. Z and ll states may cross in collinear (Ca,,) and A ,  
and B ,  states in perpendicular (C,,,) configurations. When the symmetry is 
broken, these state can mix. As in A,,  there is a curve in configuration space 
where such surfaces are degenerate; they are split in the two transverse 
directions. However, what is different in this case is that the two 
degeneracy-breaking coordinates are not equivalent. Contours of A W in the 
symmetry-breaking coordinates around the point of degeneracy in this system 
may be quite elliptical, so the troughlike function required for the 
Stine-Muckerman procedure is a reasonable approximation. 

The Ar + H,’ system44 for which there are DIM surfaces45 has such a 
conical intersection. Define R as the Ar’ to H, distance, r as the H, bond 
length, and y as the angle between them. At large R, the curve along which 
there is a conical intersection is parallel to R. The gap between the two A’ 
states which are C and II in collinear (y = Oo) geometries remains very small 
for any value of the symmetry breaking coordinate y. On the other hand, 
the gap increases rapidly moving away from the crossing along r. Except for 
the numerical challenge of locating very sharp seams, the SM procedure 
should apply. 

2. Kuntz, Kendrick, and Whitton 

Kuntz, Kendrick, and W h i t t ~ n ~ ~  (KKW) devised another variant to the TSH 
method, which, like SM, allows the location of the seam and the hopping 
probability function to be determined along the trajectory. The KKW method 
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is not restricted to systems with troughlike energy gaps, but it does require 
nuclear coupling terms (mi I V, I Qf ) . 

The KKW method allows a trajectory to branch between surfaces i and 
f at the time t ,  when the quantity Q i f ( t )  = <QilVRIQf)*R(t) passes through 
a maximum. Recall that in the T P  prescription, the seam is at the maximum 
of I ( Oi/VRIQf)  I. Since the latter is sharply peaked, the KKW criterion is 
most easily met at the T P  seam. However, it may also be met in different 
circumstances: (1) the trajectory passes close to the TP seam, but is deflected 
away, that is, a classical turning point near the TP seam; (2) away from the 
TP seam, in a region where the magnitude of R and ( O i l V R J O f )  are slowly 
varying, the angle between them passes through a minimum; (3) away from 
the seam, the magnitude of (QilVRIQf) and the angle between the vectors 
are slowly varying, but R passes through a maximum; or (4) some combin- 
ation of (2) and (3). To eliminate (2) through (4), a second condition is imposed 
at t,: 

Situation (1) is more interesting: the trajectory has a turning point near the 
seam. In many cases, energy conservation will prevent a hop: if a trajectory 
on the lower surface has insufficient energy to reach the seam, is usually will 
have insufficient energy to reach the upper surface. However, in the case of 
an avoided crossing of two surfaces that slope in the same direction, or in 
the case of a Demkov seam, the KKW method may permit hopping near 
the T P  seam. This may well be an advantage: the same criterion is used in 
the TSH procedure of Parlant and Gislason,4’ discussed in section 11. C. 2, 
and the results for model systems were excellent. 

The hopping probability at t ,  is calculated using the equation48 

P, = exp( - $nAUifAt/h), (3.4) 

where At is the half-width at half-height of the function Qif( t ) .  This is 
determined assuming that a,,@) is Lorentzian, with parameters found along 
the trajectory. Note that the width At is sensitive to the velocity normal to 
the seam. Equation (3.4) reduces to the Landau-Zener and Demkov formulas 
when applied to those model systems. 

In applying this procedure to the N e + H e l  system, with has a seam 
running along the entrance valley, Kuntz et al.46 experienced numerical 
difficulties at large R when the coupling function (mi 1 VR I O ) is very narrow. 
A simple but effective solution was offered: when the neon was more than 
4.2 A from either helium, the trajectory was forced to follow the diabatic 
surfaces. 
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C. Combining TSH with the Time-Dependent Semiclassic:rl Equations 

1. Blais and Truhlar 

Blais and T r ~ h l a r ~ ~  (BT) introduced another TSH procedure in their study 
the electronic quenching reaction Na (3p2P)  + H, +Na(3s2S) + H,. Whereas 
Tully and Preston6* used the semiclassical equations (2.6) in preliminary work 
only, Blais and Truhlar incorporate these equations in the trajectory 
calculation. If the system starts in state i ,  the semiclassical coefficients are 
initiated as a, = 6ik. The trajectory code integrates both Hamilton’s equations 
on surface U i  and the semiclassical equations. At the first step after the 
coefficient (ai(t)12 falls below 0.5, a random decision is made whether to hop, 
weighted by the probabilities laj[ ’. If a hop is made to surface f ,  a momentum 
correction is applied, along the vector VRWi,-(R). Whether a hop is made or 
not, the coefficients are reset. The process continues until the trajectory is 
done. 

In a study of the effects of the conical intersection on collision-induced 
dissociation in H,, Blais, Truhlar, and Mead43 introduced some refinements 
to this method: locating accurately the exact position where Jail2 = 0.5 and 
applying the hop there, and making the correction for a hop between i and 
f along the vector (mi I VR I 0,- ) rather than along VR Wir. The former ensures 
that the hopping is not sensitive to the integration step size; the latter, now 
the same as TP, was motivated by analytical work by Herman.” For a small 
sample of trajectories, they compared the two choices of coupling direction: 
interestingly, even though the vectors were often nearly perpendicular, the 
results were not very different. 

The Blais-Truhlar procedure has a number of attractive features. Unlike 
SM, it can be applied for any kind of coupling; there is no restriction to 
troughlike energy gaps. Unlike TP, there is no need to define the seam before 
running the trajectories. While the semiclassical coefficients change 
significantly only in regions of strong coupling, the condition I ail = 0.5, and 
therefore the hop, will not necessarily occur at the maximum in ( Qi I VR I @,- ) . 
BT argue that this is more realistic: electronic transitions in quantum 
mechanics are not strictly localized. 

Nevertheless, the BT method is not completely general; Stine and 
Muckerman” discuss this when they compare several TSH procedures. The 
decision to hop when Jailz = 0.5 is quite arbitrary, and reinitializing the 
coefficients in the middle of a region of strong coupling is counterintuitive: 
contribution to a hopping probability from part of a strong-coupling region 
may end up forcing a hop at a different seam. This is not necessarily a problem: 
averaging over many crossings and trajectories may produce the more 
quantumlike nonlocalized hopping, which BT argue is realistic. There are 
two cases when the BT procedure would seem to give incorrect results. The 
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first is at a seam where passage between the relevant surfaces is essentially 
diabatic; for example, at large R for H +  + H, or Ar+ + H,. In this region, 
the semiclassical equations, integrated all the way through the seam coupling 
states i and f, would show essentially complete exchange between a, and af. 
The TP  or SM procedures would both force a hop, while the BT procedure 
would make only half of the trajectories hop, charge transfer occurring over 
physically unreasonable distances. This is, of course, an extreme example 
with a simple remedy; even without the unphysical adiabatic passage, 
considerations of numerical accuracy in solving the semiclassical equations 
would mandate that strictly diabatic behavior must be imposed in this region. 

The second situation where the BT method would also underestimate 
surface hopping is when many trajectories pass only once through a seam 
with moderately weak coupling. Imagine, for example, a two-state system 
for which the population in the initial state, lailz, falls to about 0.75 through 
the seam. The BT method would result in no hopping, instead of the 25% 
hopping which the semiclassical equations imply. 

Eakers2 compared the SM and BT variants of the TSH methods for 
quenching of the electronic excitation Na(,P) + H, -+ Na(’S) + H,. The 
coupling is entirely in the interaction region; there is no essentially diabatic 
region. Based on contour plots, the energy gaps appear to be troughlike, at 
least for the coordinates shown. Eaker found that the choice for the direction 
of the momentum correction was not important. The two methods use 
comparable computer time. However, hopping probabilities (and therefore 
quenching cross sections) did differ, by as much as 30%. SM trajectories 
hopped to one of the three surfaces much more readily. Which is better? 
Eaker argues in favor of BT, believing that the picture of nonlocal hopping 
is more realistic for this problem. However, uncertainties in the potentials 
make it impossible to use comparisons with experiment to make a definitive 
choice. 

2. Parlant and Gislason 

Quite recently Parlant and Gislason4’ (PG) have developed what they term 
an “exact” TSH method. Similar in spirit to BT, it avoids some of the problems 
of that method. It is only slightly more complicated to implement, and looks 
promising. The recipe for locating the seam is identical to that of KKW: the 
trajectory branches when the quantity R, = d.(OilVRlOf)  passes through 
a maximum. For reasons discussed previously, it is necessary to supplement 
this condition with the Massey condition. If the trajectory hops, the 
momentum is corrected along ( OiIVRlOf). 

The PG procedure differs from KKW in the method for calculating the 
hopping probability, and therefore the weights associated with the two 
branches. As in the Blais-Truhlar procedure, the semiclassical equations 
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are propagated along with the trajectory. The novel feature is that the 
coefffcients a,. are initialized at the point on a trajectory when R is at a 
minimum, and their evolution is followed until, having passed through a 
maximum, R again reaches a minimum. The transition probabilities are 
therefore determined by semiclassical equations on a trajectory segment that 
represents one complete passage through a region of strong coupling. PG 
applied this method to one-dimensional Landau-Zener and Demkov models, 
with impressive  result^.^' 

Parlant and Alexander53 applied this method to the system He + 
CN(A l-IJ). They eliminated some branches, using a modified “anteater” 
algorithm. They relaxed slightly the requirement that R pass through a 
minimum, replacing it with the requirement that it falls to times the 
energy gap; that is, that the Massey parameter exceeds lo4. The results were 
compared to quantum-scattering calculations, the agreement generally quite 
good. One problem they cite is the failure of the TSH results to satisfy 
microscopic reversibility; this is a common problem with classical trajectory 
methods. 

The PG method appears to eliminate some of the inconsistencies of the 
Blais-Truhlar procedure. There may be some ambiguities when several 
states interact (several R, exist, with separate maxima and minima). Never- 
theless, it is an interesting development. 

D. Electron-Detachment Processes 

Problems of electron detachment (Penning ionization, associative ionization, 
and so on) may be studied with a TSH-like approach if some assumption is 
made about the mechanism of the electron loss. MacGregor and Berrys4 
studied the following reaction, important in hydrocarbon flames: 

0 + CH+HCO+ + e-  

The assumption that the detached electron carries away no kinetic energy 
establishes the relative positions of the CHO and CHOf surfaces. The 
electron is assumed to detach only at the intersection of these surfaces. The 
Landau-Zener equation was used for the hopping probabilities. In this 
problem, the system can pass through a seam adiabatically only one time: 
once the electron detaches, it is gone. In this study the dynamics was simplified 
by neglecting CH rotation and vibration. A related strategy, but with full 
3D dynamics, was used for electron detachment in C1- + H, collisions by 
Sizun, Gislason, and ParlanP5; this study will be discussed in Section IV. 

Preston and C ~ h e n ~ ~  devised a model, called “trajectory surface leaking,” 
which allows electron detachment to occur over a broad region. They were 
interested in ionization processes in He*(2 ’ S )  + H, collisions. At any point 
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on a trajectory where the neutral surface (HeH:) is above the ionic surface 
(HeH:), there is a probability for the electron to detach, that is, for the 
system to leak to the lower surface. Assuming a function T(R), the probability 
for the system to leak in a time interval At is P,,,k=r(R)At/h. At each 
integration step of length At, if a random number is less that PIe&, the electron 
detaches, and carries off the energy difference as kinetic energy. With this 
model, they were able to simulate rate constants and branching ratios for 
the various ionized products quite well. 

IV. APPLICATIONS 

A. Ion-Molecule Reactions: Charge-Transfer and 
Competing Processes 

1. Hi 
The first detailed application of the TSH method was the study of the simplest 
ion-molecule reaction H +  + H, (and isotopic variants). Tully and Preston6 
reported results for H +  + D, at 4eV; Preston and Cross” for H + D l  at 
2eV; and Krenos et al? compared theory and crossed-beam experiment for 
H +  + D, at energies 3,4.5, and 6eV, and D +  + HD at enrgies 3,4, 5.5, and 
7 eV. Comparisons included total cross sections, product energy distributions, 
and velocity angle contour plots. The agreement between theory and 
experiment was very good; particularly in view of the fact that the 
comparisons were based on absolute cross sections: there are no adjustable 
parameters in this theory. 

The complexity of this “simple” system is illustrated by the range of 
processes that can occur at energies above about 2eV: 

H +  + D,-+D+ + HD A H  = 0.04 eV 

- + H + D i  A H  = 1.87eV 

-,D+HD+ A H  = 1.85eV 

with dissociative channels opening at higher energy. Moreover, some experi- 
mentally observable processes may include several microscopic mechanisms. 
The TSH method, distinguishing such contributions, can contribute signi- 
ficantly to the interpretation of the experimental results. 

The seam, located in the entrance (and by symmetry in the exit) channel 
normal to the vibrational coordinate, is inaccessible for the early part of an 
H +  + H,(u i )  trajectory unless the molecule is in a high vibrational state 
(Fig. 1). Motion in the strongly interacting region (where only one surface is 
energetically accessible) determines which valley the trajectory exits, that is, 
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the final arrangement of the nuclei. The nascent molecule may have 
considerable vibrational excitation, causing the trajectory to cross the seam 
as the products separate. The final position of the charge depends on the 
number of diabatic or adiabatic crossings of the seam. Therefore, products 
in the same valley (e.g., D' + HD and D + HD') have similar angular and 
energy distributions. 

H + Hi(ui) collisions are quite different: the seam (Fig. 1) is only slightly 
above ui = 0 reagents, so trajectories will cross the seam as the molecules 
approach. The deep H l  potential well correlates with reagents H +  + H,, 
not with H + H i .  Charge transfer must therefore precede rearrangement, so 
they will have a similar energy dependence. Both are strongly sensitive to 
the vibrational state. Energy must be channeled into vibration before the 
ui = 0 trajectories can undergo charge transfer, while for higher vibrations, 
charge transfer occurs as soon as the coupling is strong enough. 

New experimental methods capable of determining cross sections for ionic 
reactions with unprecedented precision inspired a recent resurgence of interest 
in the H +  + H, system. Schlier, Nowotny, and TeloyS9 report an extensive 
comparison of TSH calculations with guided-beam experimental integral 
cross sections. The TSH calculation is essentially as in Ref. 6: it includes a 
DIM potential (with slightly altered diatomic curves), Landau-Zener 
hopping probability, and a hybrid branching algorithm (both branches 
generated only when 0.05 -= P,, < 0.95, with anteaters evoked after four 
branches were started). Three isotopic combinations (H' + D,, D+ + D,, 
and D+ + H,) were studied for a range of translational energies, with the 
molecule initially in the u = 0, J = 1 state; 4000 trajectories were generated 
for each point. Agreement with the earlier TSH study5* was excellent; the 
newer results significantly better resolved because of a much larger number 
of trajectories. 

Figure 2 shows the cross sections for the observable channels in H +  + D,. 
The power of the TSH method (and the beautiful precision of the guided-beam 
results6') are evident. Recall that these are comparisons on an absolute scale, 
with no adjustable parameters. The overall shapes (and sizes) of each function 
o(E) are all well represented. Moreover, more-detailed structure is represented 
(albeit at slightly shifted energies): the doubly peaked structure in the HD' 
channel between 2.5 and 6eV, and a shoulder on the rising D: channel at 
about 3 eV. The agreement is not perfect: the threshold behavior for the D +  
and HD' channels is not correct. Classical trajectories are known to be 
unreliable near threshold because of tunneling; this is probably the expla- 
nation here. However, in this case the tunneling is not through an overall 
barrier to reaction on the potential energy surface (there is no such barrier), 
but rather through the barrier to the vibrational coordinate that the lower 
adiabatic surface has at the seam. A second serious discrepancy is the falloff 
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Figure 2. Integral cross sections for the H +  + D, reaction, labeled according to the ionic 
product. The TSH results of Schlier et are connected with a line. Error bars indicate typical 
TSH statistical uncertainty. The experimental results of Ochs and Teloy60 are shown as points. 
The comparison between theory and experiment is on an absolute scale. (Reproduced with 
permission from Ref. 59.) 

of the D: (charge-transfer) cross section at higher energy; the experimental 
falloff is markedly steeper than the TSH result. At this energy, the use of 
classical mechanics should not be a problem, so the fault is probably with 
the DIM potentials. As was argued previously, the shape of the repulsive 
wall on the ground-state surface in the interaction region has a profound 
effect on the charge-transfer process, since it determines the vibrational energy 
the receding molecule and therefore the curve crossing. Better H i  potentials 
exist,61 particularly for the lowest surface, so future calculations should 
resolve this discrepancy. 

Lower energy H +  + H, collisions are less likely to include nonadiabatic 
effects, and more likely to involve long-lived complexes. Very long-lived 
trajectories may present problems for the integration. Gerlich et a1.62 studied 
lower-energy collisions on a single surface for various isotopic combinations, 
and devised a useful criterion to identify a true complex, that is, one whose 
dissociation properties may quite reasonably be treated statistically. This 
criterion was used in the TSH calculations. Complex formation is a significant 
process (cross sections on the order of 0.5A2 or more) for energies below 
3.0 eV; by 4.5 eV is negligible. 
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Niedner, Noll, Toennies, and S ~ h l i e r ~ ~  studied charge transfer and inelastic 
collision in H +  + H,(u, = 0)  at 20eV, both with experiments and by the TSH 
method. Doubly differential cross sections for scattering angles out to 18” 
in the center-of-mass frame were obtained in a crossed-beam apparatus for 
both channels [H+ + H,(ui) and H + Hi(ui)]; separate peaks for the product 
vibrational states (0,) are clearly resolved. These results give direct 
experimental evidence for the two-step mechanism for charge transfer 
discussed previously: vibrational excitation to a level u, 2 4 on the 
ground-state surface followed by charge transfer between the receding 
products. This is seen is two ways; (1) the similarity of the angular distributions 
for the H + H l  and H +  + H, (higher ui) channels, and (2) nearly identical 
angular-dependent average vibrational energy transfer to the molecular 
product for H: and H,(uf 24);  the equivalent function for H, in lower 
vibrational states is markedly different. 

The TSH procedure was implemented as in Ref. 59. The calculation was 
done twice: one set with 50,000 trajectories with impact parameters selected 
randomly to a maximum of 4 A, and a second set with 2000 trajectories each 
at fixed b values 0.0.1,. . . , 1.0,1.25,. . . , 3  A. The latter set gives a higher density 
at  small b, and therefore a better resolved P(b). It was found that all 
trajectories for b 0.8 A were confined to the lowest surface. The results were 
compared as a check in the statistical error in the calculation. 

TSH and experimental results were compared for state-to-state differential 
cross sections; the results are shown in Fig. 3. For the inelastic channel, the 
results are satisfactory for the total cross section (all u,) and for lower 
vibrational states (u, < 3); somewhat less so for of = 4. Both the overall shape 
and the rainbow features (slightly displaced) are reasonably well reproduced. 
The comparison is poorer for the charge-transfer channel: while the overall 
and relative magnitudes for the different u,’s are reasonably good, there are 
significant disparities; in particular, the pronounced rainbow structure in the 
experiment is not seen in the TSH results. The angular dependence of average 
vibrational energy transfer is likewise in good agreement for the inelastic 
channel, less so for charge transfer. The discrepancies are larger in the 
comparison of integral vibrational cross sections. For the inelastic channel, 
TSH and experiment agree for u, = 1, but deviations increase quite signi- 
ficantly for larger u,’s, where the TSH values fall of faster than experiment. 
For the CT channel, the experimental cross sections fall rather steeply with 
u,, while the TSH results peak at u, = 1 and fall off more gradually above. 
While the discrepancy for u, = 0 may be attributed to tunneling, it is more 
difficult to understand the higher u, results. It should be noted that a recent 
IOSA calculation by Baer et al.64 using the same potential gets significantly 
better agreement with experiment for some of these more detailed results, 
clearly indicating that the failure is in the TSH dynamics, not the surface. 
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Figure 3. TSH and experimental state-to-state differential cross sections for H+ + H, at 
ECM = 20eV. Panel (a) shows representative inelastic channels, panel (b) the charge-transfer 
channels, The two versions of the TSH calculation bound the hatched areas, and the experimental 
results are shown by open circles. (Reproduced with permission from Ref. 62.) 

The H: system provides a stringent and largely successful test for the 
TSH method. As might be expected, as one examines more resolved data 
(vibrational, angular, or both), discrepancies with experiment increase, 
nevertheless, the classical model succeeds to a remarkable degree. The atoms 
are light, the experimental data are very precise, and highly accurate potential 
surfaces are possible (although not yet used). The successes are very promising. 
Yet in one important respect, this sytem does not challenge the TSH method. 
One might expect that results of a surface-hopping study will be sensitively 
dependent on precise definition of the surface hopping probability. However, 
as stressed in Refs. 6 and 59, this is not so for H l .  The seams are in the 
entrance valleys, parallel to the radial coordinate R. There is a rather narrow 
range of R,  4.5 f 1.0 A, where trajectories may branch at Iarger R the crossing 
is diabatic, and at smaller R adiabatic (the upper surface rises steeply out of 
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range). Depending on the translational energy, a typical trajectory passes 
through this branching window once or twice on its way to products. A 
change in the Landau-Zener coefficient AF shifts this window a bit (a factor 
of 2.5 shifts the window about 0.7 A59) but this has little effect on the results; 
this was tested in both studies. The effect might be somewhat larger for 
charge transfer cross sections in H + H l  collisions where the seam is 
encountered on the approach; but even here the effect of a 2.5 change in AF 
on charge transfer cross sections would probably be no larger that 33%. 

2. ArH: 

Study of the ion-molecule reaction Ar+ + H, has a long history, both 
experimentally and theoretically. At energies of a few eV, cross sections are 
quite large for both charge transfer (CT) and chemical reaction (R): 

Ar+ +H,+Ar+H: AH = -0.31 eV (CT) 

+ArH+ + H AH = - 1.53eV (R) 

Kuntz and Roach4' generated DIM potential energy surfaces for ArHl . The 
interacting surfaces are in some ways similar to H i :  a seam in the entrance 
channel arises from the crossing of the Ar' + H, and Ar + H l  states; but 
because Ar and H, have very similar ionization potentials, this crossing in 
the ArH: system is near the bottom of the H, well; see Fig. 4a. Thus, in 
contrast to H +  + H,, Ar' + H, trajectories encounter the seam as the 
reactants approach even for ui = 0. Like H +  + H,, the seam is normal to the 
vibrational coordinate r, and is well represented by a simple function: 
r - r, = 0. 

Chapman and Preston44 used the Kuntz and Roach surfaces as the basis 
of a TSH study of the reaction Ar+ + H,(ui = 0). While spin-orbit coupling 
is absent from these surfaces (and therefore from the dynamics), the directional 
properties of the Ar+ ion give rise to new complexities in the surfaces. In 
the presence of (but still distant from) the H, molecule, the degeneracy of 
the ' P  states of the Ar+ is lifted. Of the three states formed in arbitrary (C,) 
symmetry, two are 'A', symmetry with respect to the molecular plane, and 
one 'A". Ignoring spin-orbit and Coriolis coupling, the 'A" state cannot 
lead to either product above, and is excluded from the dynamical study. The 
remaining 'A' states can interact with the Ar + H i  state, which is also 'A'; 
the last correlates adiabatically with products. Thus there are three interacting 
states in the entrance channel, with two seams between them (Fig. 3b). 

The semiclassical equations (2.6) were used to study the behavior of the 
coupled three-state system as trajectories moved through the coupling region. 
It was observed that one of the couplings (labeled 2-3 in Fig. 4b) is essentially 
diabatic, so the three-state problem is effectively a two state problem. The 
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Figure 4, Views of the ArH: potential surfaces in the entrance (Ar-H2)+ valley. Panel a 
shows the asymptotic H, and H i  curves. The zero of energy is Ar+ + H + H; the H l  curves 
dissociate to Ar + H + H + .  Note that the crossing is near the bottom of both wells. Panel b 
shows the three-lying curves in the region where hopping begins, R x 1Obohr. States 1 and 3 
(solid curves) interact strongly, while state 2 (dashed) interacts weakly. Trajectories all hop at 
the 2-3 crossing. Panel c is a schematic picture of the two strongly interacting surfaces in the 
region where nonadiabatic behavior begins. (Reproduced from Ref. 68.) 

two interacting surfaces are shown schematically in Fig. 4c. Symmetry, as 
discussed in Section I11 B, plays an important role in this decoupling: the 
state (shown with a dashed line in Fig. 4b), which is uncoupled by symmetry 
in both C,,  and C,,, interacts so weakly in other geometries that the coupiing 
can be ignored. As in the H: system, the Landau-Zener formula with fixed 
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coefficient AF provided an excellent fit to the semiclassical transition 
probabilities for the remaining two interacting states. 

The initial TSH calculation was carried out at a single collision energy, 
E,, = 3.36 eV. Absolute cross sections for charge exchange and chemical 
reaction agreed quite well with experiment. Charge exchange dominated for 
larger impact-parameter collisions and rearrangement for smaller, as often 
assumed in simple models, but there was a significant region of overlap, 
underscoring the need for a self-consistent treatment of these processes. 

Because of several beautiful new experimental s t ~ d i e s ~ ~ , ~ ~ - ~ ~  on the ArHi 
system, the earlier TSH calculation was extended68 more that a decade later. 
The surface and the TSH procedure were as before. Ar’ + H, was studied 
from low (0.13 eV) to higher (3.44 eV) translational energies; cross sections 
were compared with a number of experiments. At energies above 1 eV, the 
agreement is satisfactory: CT cross sections ( z  20 A’) roughly constant, and 
reaction cross sections falling. Angular distributions of the ArH + product 
were strongly peaked at higher energy, reflecting a stripping mechanism, 
while forward-backward symmetry (and formation of short-lived complexes) 
was seen at lower energy; again in qualitative accord with e ~ p e r i m e n t . ~ ~  
Agreement with experiment is less satisfactory at the lower energies, 
particularly as compared with precise guided-beam results6’ published after 
the TSH study: at the lowest energy studied the experimental cross section 
is more than twice the calculated one. 

Ar + Hi(D:) was studied for a range of translational (1-9eV) and 
vibrational energies (ui = 0-4). Cross sections are compared with the results 
of Houle et a1.66 in Table I. These are absolute comparisons, with no scaling 
or flexible parameters. Agreement is better at higher energies than at lower; 
the calculated values again too small at lower energies. Experimental deter- 
mination of absolute cross sections is challenging; the calculated cross sections 
are closer to those of Ref. 67, which are generally smaller than those Ref. 66. 
One possible source of error in the calculations at lower energies is the shape 
of the attractive part of the potential: at long range the ion-molecule inter- 
action should go as R-4;  the DIM surface lack this. 

The trends in the cross sections are interesting. As in Ar+ + H,, both 
experiment and theory show that the CT channel has a weak translational 
energy dependence, while the reactive channel decreases. Vibrational energy 
effects are more pronounced. For the reactive channel, the dependence of 
the total cross section on ui is rather weak: a(ui) generally increases from 
ui = 0 to 2, and levels off thereafter; the TSH results generally capture this 
trend well. The charge-transfer channel exhibits a more striking vibrational 
dependence: increasing by an order of magnitude from ui = 0 to ui = 1. This 
was observed both in the experiment and the calculation. In the experiments 
the cross sections were higher still for ui = 2, falling off somewhat for higher 
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ui; the TSH'results decreased after ui = 1. For Ar + Dl(ui), both experimental 
and TSH cross sections were largest for vi = 2. 

The strong vibrational effect can be understood in terms of the interacting 
potential surfaces. The seam is normal to the vibrational coordinate, so 
vibrational energy governs hopping. The crossing of the asymptotic curves 
is between ui = 0 and ui = 1 for H,, and between ui = 1 and ui = 2 for D,. 

TABLE I 
Ar' + H,(D,) Cross Sections (A2) 

Ar + Hi(u)+ArH+ + H Ar + Hi(v)+Ar+ + H, 
V TSH" Exptb TSH" Exptb 

0 15.0f 1.3 51.8 1.9 f 0.5 3.06 
1 eV 

1 28.6 f 3.1 66.1 28.6 f 3.1 17.7 
2 26.2 f 2.9 69.1 22.4 f 3.6 47.2 
4 22.5 f 2.6 73.4 21.1 f 3.6 24.4 

0 5.1 k0.8 12.3 1.4 f 0.6 1.64 

2 11.1 f 1.7 44.6 24.1 f 3.7 44.9 

3 eV 

1 8.9 f 1.3 30.4 25.3 f 2.1 20.6 

6 eV 
0 4.1 f 0.8 4.95 2.0 f 0.8 1.51 
1 4.4 f 0.8 12.5 30.3 f 4.2 24.8 
8 4.1 f 0.8 18.2 17.5 f 2.9 38.9 

0 3.4 5 0.7 3.17 2.1 + 0.8 2.06 

Ar + Di(u)+Ar+ + D, 

9 eV 

Ar + Di(o)+ArD+ + D 
V TSH" Exptb TSH" Exptb 

1 eV 
0 14.4 f 2.1 50.7 1.5 f 0.6 2.32 
1 20.7 f 2.5 57.2 6.8 f 1.7 13.3 
2 29.3 f 3.2 60.8 30.1 f 4.3 32.8 
3 27.7 f 3.1 57.1 25.4 f 3.9 30.3 
4 22.2 2.6 58.1 24.9 f 3.7 25.5 

0 4.4 f 0.8 9.74 1.0 0.4 3.0 
1 5.1 f 1.1 17.5 8.3 f 2.5 13.3 
2 10.7 & 1.6 27.1 24.6 f 3.8 38.0 

3 eV 

3 10.8 f 1.8 26.5 28.8 f 4.0 35.9 
6 eV 

0 4.4 f 0.8 3.03 1.1 f0.4 1.89 
2 3.9 f 0.7 9.0 22.7 f 3.3 15.1 

"Reference 68. The uncertainities represent 5 1 standard deviation. 
Reference 66. 
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When the vibrational energy exceeds the crossing energy, facile charge transfer 
occurs as soon as the coupling permits adiabatic passage through the seam: 
the cross sections are large (and largely independent of translational energy). 
When the vibrational energy is below the crossing energy, such long-range 
charge transfer is prohibited. 

This important energy relationship offers a simple explanation of the main 
discrepancy between experiment and theory. Because the surfaces omit spin- 
orbit coupling, the energy of the state correlating to Ar+ + H, represents an 
average Ar + ('P) energy. If spin-orbit were included, this surface would split 
into two: the lower for 2P3,2 and the upper for see Fig. 5. While Ar+ 
spin-orbit coupling is small (0.1775 eV), its effect on the relative energies of 
the crossings and the vibrational levels is significant. A TSH calculation, 
using surfaces which incorporate these spin-orbit splittings, is clearly in order. 

Both Tanaka et al.67 and Houle et a1.66 emphasize the importance of a 
resonance: the particularly large charge-transfer cross section for 
Ar + H:(vi = 2) results from a near energy resonance with Ar+('PIl2) + 
Hz(vf = 0). A TSH calculation, even with spin-orbit coupling, would fail to 
give enhancement for such a resonance. Baer et al.70 recently reported a very 
promising new method to treat such problems quantum mechanically, an 

0.6 

w 

0.2 

I 

Figure 5. ArHl  curves at infinite R. The solid curves are those used in the DIM surfaces 
which neglect spin-orbit coupling. The dashed curves represent the locations of the corrected 
surfaces if spin-orbit were included. Note the shift in the crossings with respect to the energy 
levels of H i  or D:. (Reproduced from Ref. 68.) 
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applied it to the 3D Ar+ + H, reaction. Agreement with the TSH results 
using the Kuntz and Roach surfaces is quite satisfactory, and a three-state 
calculation, including the spin-orbit coupling has been completed. Detailed 
comparison with a TSH study on these improved surfaces would be 
interesting. The ArHi  system will challenge us for some time to come. 

3. H e H i  

Nonadiabatic effects in the HeH: system are very different from ArH: , since 
the ionization potential of He greatly exceeds that of Ar. Low-energy 
He + H i  collisions are adiabatic: the He+ + H, surfaces are higher in energy. 
The He' + H, reaction has nonadiabatic effects, but in this case, the 
asymptotic H, curve intersects the dissociative (,Xu) state of H:, rather than 
the bound ('XJ state. Preston, Thompson, and McLaughlan'l devised a 
simple model, using surface-hopping ideas but circumventing a detailed TSH 
calculation, to predict the effects of molecular vibration on the dissociative 
charge-transfer process: 

He' + H,(u)-+He + H + H+.  

They used ab initio electronic structure techniques to calculate properties of 
the surfaces near the seam. They found that the coupling is weak: for collinear 
geometries even at R H e - H  = 3 bohr, the gap at the avoided crossing is small, 
leaving a residual barrier to dissociation in the H, coordinate. The interaction 
is weak in H e H l ,  as compared to that in H:, because these two states have 
a symmetry allowed crossing in C,, geometry: a conical intersection. Recall 
the similar situation in ArHi .  

The dynamical model developed for this problem was based on several 
assumptions: (1) energy transfer between translation and vibration or trans- 
lation and rotation is negligible, (2) the curve-crossing dynamics involves the 
vibrational coordinate only, and (3) the collision induces transitions through 
the R dependence of the coupling. The one-dimensional predissociation 
coordinate was treated using a semiclassical solution to the nearly diabatic 
coupling problem of Nikitin," which, in effect, includes a tunneling correction 
to the Landau-Zener transition probability. Once a trajectory has crossed 
the seam adiabatically, the H i  flies apart, so there is no need to continue 
the trajectories. The cross sections were obtained by a two-dimensional 
quadrature over impact parameter b and separation R.  

The vibrational effect, which can be obtained in closed form, is pronounced: 
a 94-fold enhancement on the cross section from ui = 0 to ui = 1 .  This is 
another example of the strong effect of vibrational energy when a seam is 
normal to the vibrational coordinate. Thermal rate constants and isotope 
effects were in qualitative agreement with experiment, although it was 
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suggested that a more accurate treatment of the dynamics would be needed 
to obtain quantitative agreement. 

At low energies the ion-molecule reaction He + H l +  HeH+ + H is 
adiabatic, amenable to conventional quasiclassical trajectory methods. 
However, the process of collision-induced dissociation 

He + H; +He + H’ + H AH = + 2.66eV 

can exhibit some very interesting nonadiabatic behavior, as studied in work 
by Sizun and G i ~ l a s o n , ~ ~  and Sizun, Parlant, and G i ~ l a s o n . ~ ~  When the three 
fragments are infinitely separate, the ground-state surface is degenerate, 
corresponding to the arrangements He + H +  + H and He + H + H+. As the 
two hydrogens approach, the degeneracy is lifted, corresponding to the 2C, 
(bound) and ‘C, (dissociative) H l  states. The CID process starts on the lower 
of these surfaces, but as the fragments recede, there is the possibility of a 
nonadiabatic transition to the upper surface. There is no avoided crossing; 
this is a Demkov-type nonadiabatic event (see Section I1 B). 

This is an interesting phenomenon theoretically, but one might guess that 
it is not observable experimentally: the products and asymptotic energy are 
the same. Such a guess would be incorrect: Gislason and G ~ y o n ~ ~  argue 
that the He atom breaks the degeneracy of the two potential energy surfaces,. 
even if the hydrogen atoms are very far apart. At long range the He-H+ 
attraction (which has an r - 4  dependence) is stronger than that of He-H 
(which falls off as r P 6 ) .  The relative positions of the fragments thus label the 
final surface: the system is in the ground state if the charge is on the hydrogen 
atom nearer to the helium. This in turn can be observed: the fast protons in 
the center of mass frame imply upper state CID. 

Sizun and G i ~ l a s o n ~ ~  used the TSH method for this problem. The DIM 
potential energy surfaces for the two relevant states were developed by 
Whitton and K ~ n t z , ~ ’  but modified to give the proper long-range attractive 
form for the diatomic functions, essential for CID. The multidimensional 
generalization of the Demkov relationship 

(4.1) 

defines the surface of maximum nonadiabatic interaction (the term “seam” 
is not entirely appropriate here, since the diabatic surfaces are not stitched 
together, but will be used in for convenience). The seam cuts diagonally 
through the ridge at large R H e - H  and R H - H  where the upper surface is 
energetically accessible, roughly dividing the He-H and H-H regions. 

The trajectories begin on the lower surface. At each step, Eq. (4.1) is used 
to determine whether the seam has been crossed. If so, the trajectory branches, 
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with hopping probability calculated using the equation 

where a = Id h'H,,/drH-H~,ul is the component of velocity normal to the 
seam, and 0 is the angle between rH-H and the normal to the seam. Since 
H,, depends on rHPH only, the cose term projects the component of the 
coupling in the direction normal to the seam. A simple procedure is used to 
predict the contribution to CID products from quasibound trajectories, those 
trapped behind a centrifugal barrier with sufficient energy to dissociate. 
These represented as much as 15% of the product. 

Cross sections for reaction (HeH' + H  products) and for CID were 
calculated for initial vibrational states ui = 0,3,6, and 10 at energies 3.1,5, 
and 10eV. The results are shown in Table 11. The reactive cross sections are 
small and decrease with translational energy. The total cross sections for 
CID increase with trranslational energy for ui = 0, and increase with ui at all 
three translational energies. The results are in qualitative accord with previous 
single-surface trajectory calculations, with experiment, and with simple 
models for CID. The ui = 10 results show an interesting opposite trend: they 
are quite large, and decrease with translational energy. This was attributed 
to a different mechanism: most CID, requiring large energy transfer, involves 
small impact-parameter collisions. However, for ui = 10, only 0.53 eV below 
CID products, larger impact-parameter collisions, drawn in by the attractive 
force, can lead to dissociation of the highly extended H l  . 

TABLE I1 
He + H;(IJ) cross sections (A')'' 

3.1 0 0.51 0.03 1 0.016 
3 0.65 0.27 0.14 
6 0.61 0.99 0.59 

10 0.48 3.00 1.95 

5.0 0 0.39 0.27 0.19 
3 0.30 0.55 0.34 
6 0.24 0.97 0.66p 

10 0.14 2.39 1.98 

10.0 0 0.08 0.60 0.42 
3 0.05 0.73 0.57 
6 0.04 0.89 0.72 

10 0.02 1.73 1.51 

"Reference 72. R = reaction; D1 = dissociation on the ground 
surface; 0 2  = dissociation on the excited surface. 
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What is particularly interesting in this study is the role of the upper 
potential surface. At E = 3.1 eV and ui = 0, roughly one-third of the CID 
products emerged on the upper surface. This fraction increases with both 
translational and vibrational energy. Both trends can be explained in terms 
of the location of the Demkov seam. 

Velocity-angle differential scattering contour maps for the ionic product 
(as would be measured in a crossed-beam apparatus) were constructed from 
the TSH results at 5 eV for ui = 0,3, and 10. The reactive scattering was 
sharply forward peaked for ui = 10, and shifts to wider angles with lower 
vibrational energy. The CID products show a similar trend: for ui = 10 the 
angular distribution is quite sharp, with H +  scattered forward with respect 
to the initial H l  velocity vector. This is a further consequence of the higher 
impact-parameter contribution to the CID process at this high vibration. 
For lower vibrational states, the H +  scatters more widely, still mainly in the 
forward hemisphere for ui = 3, but sidewise peaked for ui = 0. However, it is 
again the contributions from the two surfaces which is of particular interest: 
the two contributions are barely distinguishable for ui = 10, whereas there 
are distinguishable peaks for the two components for lower ui.  These results 
were analyzed further and compared with experimental results in Ref. 73. 

4. N e H e l  

Kuntz, Kendrick, and W h i t t ~ n ~ ~  studied competing reactive (ion transfer: 
IT) and dissociative (collision-induced dissociation: CID, and collision- 
induced predissociation: CIP) processes for the reaction Ne + He: : 

Ne +He: +Ne + He+ + He AE = 2.47eV (CID) 

+NeHe+ + He = - 0.88 eV (IT) 

Ne+ + He + He = - 0.55 eV (CIP) 

By simple correlation arguments, it is clear that the first two processes are 
adiabatic: both may occur without surface hopping. CIP is nonadiabatic. 
This processes is equivalent to dissociative charge transfer described in 
He+ + H,. 

Diatomics-in-molecules surfaces for thus system were constructed and 
analyzed by Kuntz and W h i t t ~ n . ' ~  The surfaces for this system are similar 
in some ways to those described previously. As in H i ,  ArHl ,  and HeH:, 
an important avoided-crossing seam lies in the entrance channel, normal to 
the vibrational coordinate. Like the HeHi  system, this asymptotic crossing 
is between a bound (He:) and dissociative (He + He) state. When the neon 
approaches, these states are mixed; an electron jump (at the first adiabatic 
passage through the seam) results in immediate dissociation of the He,. As 
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TABLE I11 
Ne + He: Cross Sections (Ap 

Em, (ev) Evib(eV) CIP 

2.7 0.2 2.7 
0.8 31.8 
1.7 24.4 

6.0 0.2 17.5 
0.8 24.8 
1.7 14.6 

10.7 0.2 16.0 
0.8 22.3 
1.7 12.3 

CID IT 

0.48 
0.02 

0.68 0.06 

0.16 0.18 
1.74 - 

4.54 0.01 

0.50 0.01 
2.64 
5.13 0.01 

- 

- 

- 

"Reference 46; symbols defined in text. 

in ArH:, the picture is in principle complicated by the existence of three 
components of the Ne+(2P) state. However, as in that case, consideration of 
symmetry and approximate symmetry makes it possible to reduce the 
problem to one which effectively involves only two interacting states. Thus 
for the TSH calculations, the more elaborate DIM matrix76 was replaced 
with a simpler reduced one, effectively treating the Ne' ion as if it were ' S .  
As noted by the authors,46 it is exactly this simplification which produces 
the very popular LEPS semiempirical potential energy f ~ n c t i o n l - ~  for 
adiabatic A + BC reactions. 

The specific TSH procedure used by these authors was described in 
Section I11 B 2. They studied the Ne + He: process at three total energies 
(2.7, 6.0 and 10.7 eV) each for three vibrational energies (0.2, 0.8, and 1.7 eV); 
0.2eV in vibration is below the asymptotic crossing; 0.8 and 1.7 are above 
it. Cross sections for the three processes are given in Table 111. The reactive 
channel is very minor: NeHe' is weakly bound, so it is difficult to stabilize 
it. The results are in qualitative accord with experiment (in which the initial 
vibrational state is not well resolved). 

5. H e N :  

At high collision energies, the vibrational distribution in the products of the 
collision-induced electronic excitation reaction 

is Franck-Condon. At lower energies, deviations from FC are observed. 
Kelley and Harris77 used a TSH-like method to study this process. Diabatic 
surfaces for the two states govern the dynamics: the system changes from 
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one to the other at the crossing with a calculated probability. Since the 
diabatic surfaces cross at the seam, there is no discontinuous hop in the 
potential; hence, no need for a momentum correction. The forces change 
discontinuously if the trajectory changes diabatic surfaces, so if the integration 
routine uses past values, it must be restarted; this is a trivial matter. The 
probability for changing diabatic states at the seam (and therefore moving 
from surface X to surface B )  was calculated using a Landau-Zener-based 
equation 

P = 1 - exp(- H~,cos2  tl/(R.VRAU), 

where the denominator may be recognized as the velocity normal to the 
seam. The numerator is the coupling strength. The cos’8 term makes the 
coupling vanish for C,, geometries, where the two states have different 
symmetries: A ,  and B,. H,,  was taken to be constant, chosen to give a 
convenient amount of reaction. Two pairs of diabatic surfaces were used; 
one with the crossing 4 eV above reactants, the other 15 eV. 

Trajectories were run on both sets of surfaces for a wide range of 
translational energies, with a 300 K thermal distribution of internal states in 
the N l .  Cross sections rose steeply from threshold, but fell off at higher 
energies. As energy increases for both sets of surfaces, the Ni(B) vibration 
changes from broad to very narrow, moving towards a FC distribution. The 
product rotational distribution exhibits similar sharpening. 

6. ClH,  

Sizun, Gislason, and Parlant5’ used the TSH method to study the C1- + H, 
reaction. With the simple assumption that an electron (with a specified energy) 
will immediately detach when a trajectory reaches the diabatic crossing 
between the ClH; and ClH, systems, they describe a multiplicity of possible 
processes: elastic collision (EL), reaction (R), dissociative charge transfer 
(DCT), dissociation (D), reactive detachment (RD), simple detachment (SD), 
and dissociative detachment (DD): 

(EL) 

+ H C l + H -  = 2.91 (R) 

+C1+ H + H = 7.34 (DCT) 

-+ C1- + H + H = 4.49 (D) 

+ HCl + H + e -  = 3.66 (RD) 

+C1+ H, + e -  = 3.60 (SD) 

+C1+ H + H + e -  = 8.09 (DD) 

C1- + H, + C1- + H, AH = 0.0 eV 
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Barat et al.78 have carried out extensive experiments on this system, at 
collision energies ranging from 5.6 to 12eV. They found that the detached 
electron has energy in the range 0.0-0.4eV. Three sets of surfaces were 
therefore constructed, with asymptotic energies between the ionic and neutral 
surfaces corresponding to 0.0, 0.2, and 0.4eV. If a trajectory moves (with no 
change in momentum) from the ionic diabatic surface to the neutral surface 
at a seam where they cross, this implies ejection of a 0.0,0.2, or  0.4 eV electron. 

A LEPS function describes the neutral ClH, surface, while the ClH, 
surfaces were generated using a 5 x 5 DIM matrix. Three surfaces are relevant 
to the dynamics. Asymptotically, the neutral surface lies between the ionic 
surfaces; the crossings are in the interaction region. Since the trajectories run 
on diabatic surfaces, a procedure was devised to reduce the 5 x 5 DIM matrix 
for ClH; to a 2 x 2 whose eigenvalues (i.e., adiabatic surfaces) were a good 
approximation to the eigenvalues of the full matrix. 

Collinear slices of the ionic surfaces, including the locations of the seams 
for zero kinetic energy electrons, are shown in Fig. 6. The diabatic surface 
on which the C1- + H, system begins correlates to dissociative HCl-: if the 
trajectory stays on this surface only processes EL or D are possible. The other 
diabatic ionic surface allows the R and DCT channels. The seam between 
them runs along the product valley (i.e., normal to the HCl coordinate), and 
cuts diagonally through the interaction region. The neutral surface includes 
the detachment channels (RD, SD, and DD). The neutral surface crosses the 
lower ionic surface on a seam which runs parallel to the entrance valley 
(normal to the H-H coordinate), but at high enough energy that it is not 
encountered by incoming trajectories; this seam also cuts diagonally through 
the interaction region. If the electron carries away energy, the relative 
positions of the ionic and neutral surfaces are shifted. 

The trajectories follow diabatic surfaces. When a trajectory on an ionic 
surface encounters a seam with the neutral surface, it switches with unit 
probability (and irreversibly) to the neutral surface. When a trajectory 
encounters a crossing between ionic surfaces it branches, with probabilities 
calculated using the Landau-Zener formula, as implemented by Stine and 
M~ckerman.~’  All branches are carried to completion (“ants”). To test the 
sensitivity to the branching probability, results were compared in which the 
coupling strength in the potential between the ionic surfaces was doubled. 

The reaction was studied at 9.7 eV. All of the processes indicated previously 

~ 

Figure 6. The two ionic diabatic surfaces for collinear (H-H-CI)-. Coutours are shown on 
0.5 eV intervals. Reactants C1- + H, begin at the lower right in panel (a); products HCI- + H 
exit on the upper left of panel (b). The intersection between the ionic surfaces is shown with a 
dashed curve. Dotted curves show the intersection with the neutral CIH, surface, assuming the 
ejection of a zero kinetic energy electron. (Reproduced with permission from Ref. 55a.) 
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are quite endoergic, and all cross sections were found to be small, in accord 
with experiment. The surfaces that corresponded to 0.2 eV electrons was 
deemed most realistic, and for that case agreement with experiment was 
“fairly good.” The effect of doubling the coupling H I 2  is quite dramatic: the 
R and SD cross sections nearly double, while the RD channel falls. This is 
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Figure 7. Total cross sections for CI- + H2 products. The upper panel shows experimental 
results (Ref. 78) and the lower panel results of the TSH calculation (Ref. 56). Ze- is the sum of all 
electron detachment channels, ZH- all channels which produce H - .  (Reproduced with 
permission from Ref. 56.) 
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an important point: in the H: and ArHl  studies, it was observed that the 
results were not particularly sensitive to the hopping probability; here (and 
probably in many cases) the results are quite sensitive to the probability. 

Angle and internal energy distributions as well as energy-angle contour 
maps were examined and compared to experiment; agreement was quite 
satisfactory, including such interesting features as a sharp sidewise peak at 
about 35" for the SD channel. Details from the trajectories shed light on the 
mechanisms for the various processes. For example, a very distinctive 
dependence was found between the angle y (the angle between the reactant 
radial and diatomic vectors) at the first encounter of the ionic seam and the 
eventual outcome: near perpendicular orientations strongly favoring the 
detachment channels. Since the ionic states are uncoupled in C,,  geometries, 
the explanation is quite simple. Trajectories start on the lower ionic surface 
(Fig. 6a). They first encounter the (dashed) seam with the other ionic surface. 
If the geometry is near CZv, they continue diabatically, and almost 
immediately reach the neutral (dotted) seam, where their fate is sealed: the 
electron detaches. If the geometry is far from C2", they are more likely to 
move to the other ionic surface (Fig. 6b) where they bounce off the repulsive 
wall in any number of directions. 

Sizun, Parlant, and G i ~ l a s o n ~ ~ '  studied the same system at a number of 
energies between 6 and 20eV, comparing the results to e ~ p e r i m e n t . ~ ~  Their 
total cross sections are shown in Fig. 7. The agreement is generally good, 
the TSH calculation again providing excellent interpretive value. 

7. H,O-  

Herbst, Payne, Champion, and Doverspike7' studied a similar array of 
ion-molecule and electron-detachment processes in 0 - + D, collisions: 

O - + D , + O D - + D  A E  = - 0.2eV 

+ O D + D -  = + 0.9eV 

+O-  + D +  D = 4.6 eV 

+ O + D + D -  = 5.3 eV 

+D,O + e -  

+ 0 + D, + e -  

-0 + O D  + e -  

= - 3.5 eV 

= 1.5eV 

= 1.6eV 

They used the trajectory surface leaking model, described in Section I11 D, 
to describe the electron detachment. The electron can detach anywhere when 
the ionic surface is above the neutral; if it does so, the trajectory drops to 
the lower surface with its momentum unchanged, the electron implicitly 
carrying off the energy difference. 
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A LEPS surface was used for D,O-, and a Sorbie-Murrell" surface for 
D 2 0 .  As a simple approximation, Herbst et al. assume that the probability of 
detachment is independent of position: r is constant. They further simplify 
the calculation by not following trajectories on the neutral surface; thus they 
can obtain only the total cross section for detachment processes. With this 
simple model, they compare cross sections and simple properties of the 
velocity-angular distribution with experiment. Results at 6.9 and 8.6 eV agree 
satisfactorily with experiment; the agreement is rather poor at 1.2 eV, 
suggesting the need for either an improved treatment of the detachment 
process or for better surfaces. 

8. H,' 

The reaction H, + H l +  H l  + H, exothermic by about 2 eV, is of widespread 
theoretical, experimental, and applied interest. It is a facile process, with a 
thermal cross section on the order of 100A2, and is known by isotope studies 
to proceed either by proton or atom transfer. 

DIM surfaces for the H l  system have been constructed by several 
g r o ~ p s . ' ~ - ~ ~  The surfaces are the eigenvalues of an 8 x 8 DIM matrix; the 
studies differ only in the representation of the four required diatomic curves, 
H,(3C: and 'Xi), and H i  ('Xg and 'Xu). The DIM surfaces agree reasonably 
well with ab initio results: the minimum energy path for the reaction above 
goes smoothly and adiabatically to products; there is no barrier, but there 
is a shallow H a  minimum. There are several crossings and avoided crossings 
between the lower surfaces; symmetry alone demands this. 

There are two low-energy surfaces in the entrance valley. The seam between 
them is similar to that in H i  and ArH:; it connects the diabatic valleys 
representing the two charge arrangements. Using isotopic labeling to 
distinguish them, the two low-energy states correspond to H l  + D, and 
H, + D:. By symmetry, the equation for this seam is rH-H = Thus 
motion normal to the seam is diatomic vibration. As R,  the separation 
between the molecules, decreases, the gap at the avoided crossing grows, and 
the coupling becomes broader. Therefore, as in H l  and ArHl ,  the diabatic 
surfaces will govern the dynamics for sufficiently large R,  the adiabatic 
surfaces for sufficiently small R.  As before, the transition from diabatic to 
adiabatic behavior is found to be complete in a rather small range of R. Let 
us denote R,  as the midpoint in this range. 

Making the simple assumption that trajectories will pass through the seam 
diabatically if R > R,, and adiabatically otherwise, Eaker and SchatzB4 
studied H, + H l ,  and Eaker and Muzykae5 H, + D l  and H l  + D,. In the 
few cases where a trajectory was not on the lowest adiabatic surface as it 
crossed R,, it continued diabatically until it reached the lowest surface. The 
dynamics is much simplified; this is now effectively a single surface calculation. 
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For most cases R, was taken to be 8 bohr, in Ref. 84 it was found that the H: 
products were quite insensitive to this choice. 

Eaker and SchatzE4 studied the H i ( u + ,  J = 2) + H,(u = 0, J = 1) reaction 
at three translational energies (0.1 1,0.46, and 0.93 eV) for u ,  = 0 and u +  = 3. 
The H: product can be identified as resulting from either proton (PT) or 
atom transfer (AT); the contributions were nearly identical at all energies. 
The cross sections decrease with translational energy, in accord with 
experimentE6 Except at the highest energy, the calculated cross sections were 
larger than experiment. This discrepancy may represent incorrect long-range 
forces in the DIM potential. The effects of vibration are less pronounced: 
decreasing the cross sections at lower energy, and increasing at higher. 
Angular distributions showed that the PT and AT contributions peaked in 
opposite directions, the AT forward with respect to the H:; the PT backward. 
Both are evidence of a stripping mechanism: the former direct, the latter after 
an early charge transfer. 

The product energy distributions were examined in several ways. Most 
of the available energy emerged as vibration. Compared with a 
microcanonical statistical prediction, the trajectories had less translational 
and more rotational energy; vibration was roughly statistical for u ,  = 0, 
and higher for u+ = 3. 

Detailed internal-state distributions for the H: product were calculated 
by applying histograms to actions generated by a Fourier transform method 
developed by Schatz and c o - w ~ r k e r s , ~ ~ ~ ~ ~  and extended in Ref. 84 to 
rotating molecules. This method can be applied only to lower energy H: 
molecules whose motion is quasiperiodic. The results are decidedly 
nonstatistical; particular combinations of quanta in the symmetric and 
degenerate vibrational modes are preferred. The trajectories exhibited a 
strong (and nonstatistical) propensity for vibrational angular momentum 
I = 0, indicating that the preferred motion is more librational than 
precessional. 

Eaker and Muzyka” focused on the translational and vibrational energy 
dependence of the cross sections. Agreement with experiment89 was quite 
good. 

The preceding treatment84.8s simplifies the problem in several critical 
ways. it treats the seam in the entrance valley with a hopping probability 
that is a step function in R, and ignores any other surface interactions. In a 
careful analysis of their DIM surfaces, Stine and M ~ c k e r m a n ~ ~ , ~ ~  presented 
a number of slices through these six-dimensional functions. They argue that, 
while the lowest state in a perfect tetrahedral geometry is triply degenerate, 
the trajectories are very unlikely to explore this neighborhood, since the 
steepest descent reaction path (which falls steeply downhill) is planar. Thus, 
a dynamical treatment based on sequential pairwise interactions is deemed 
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satisfactory. Nevertheless, depending on the available energy, surfaces other 
than the lowest two may be encountered. 

Several full TSH studies of this system have been made. Using their version 
of TSH (as described in Section 111B) Stine and Muckerman4’ showed a 
representative trajectory, and Muckerman” reported cross sections. Eaker 
and S ~ h a t z ~ ~  compared the results of their simplified model to Muckeman’s 
data and to experiments6; these results are shown in Table IV. While the 
agreement for u ,  = 0 is excellent, for u ,  = 3 the cross sections are significantly 
larger for the simple trajectories. The results of the full TSH study are in 
better accord with experiment. 

Eaker and Schatz” subsequently reported a more detailed TSH study 
for this system, using the Stine-Muckerman version of TSH. The full TSH 

differ only in details of the input to the DIM surfaces, and the 
results agree. In comparing the simpler trajectory study to the full TSH, 
Eaker and Schatz show that the main problem in the simpler study was the 
treatment of the trajectories that are not on the ground-state surface as they 
pass R,. The simple trajectory program allowed these to fall diabatically to 
the lowest surface at  the first opportunity, and therefore contribute to H i  
products (making its cross section too large). In the full TSH study, these 
trapped trajectories continued on the upper surface until they eventually 
bounce back to give inelastic or charge transferred products. When u +  = 3, 
many more trajectories are trapped in this manner. Eaker and Schatz compare 
TSH results for H l (u+)  + D, and Dl(u+) + H, to e ~ p e r i m e n t . ~ ~  Results are 
shown in Table V. Even at the lowest energy, 0.23 eV, the agreement is good. 

There is currently a great deal of interest in properties of highly excited 
H:. In an experiment in which excited H i  moleules are fragmented with 
800-1 100 cm-’ photons, Carrington and Kennedy9’ observed some 27,000 
lines, which, when coarse-grained, exhibit a simple structure. Schatz, 
Badenhoop, and Eaker93s94 investigated the issue of highly excited H i  from 
the perspective of its formation, from H l  ( u + , J  = 2)  + H,(u = 0,J = 1) 
collisions; extending u +  much higher than in their earlier work. Extra care 
was taken with metastables: H i  products whose internal energy exceeded 
the dissociation energy. These were aged for an additional time T (during 
which some dissociate). The dependence of the cross sections on T (which 
was varied from 0 to 9.9 ps) gives a measure of the stability of these 
metastables. 

The H i  internal energy distributions from 0.5 eV translational energy 
collisions (with T=0.36ps) depend strongly on u + :  the maxima are at 
energies above dissociation for u +  = 13 and u +  = 17. These results are shown 
in Fig. 8. The metastables show substantial decay as they are aged up to 9.9 
ps; the decay appeared to have both a short- and a long-term component. 
The distribution of rotational angular momentum J peaks near J = 25 for 
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TABLE IV 
Cross Sections for H ~ ( u + , J = 2 ) + H , ( u = O , J =  1) 

E(eV) u +  PT" AT" Total" Totalb Total' 

0.11 0 137 127 261 8 I82 k 7 

0.46 0 55 54 109 f 5 1 1 7 f 6  89 f 9 
3 58 61 1 2 0 k 5  l o o k 6  71-7 

0.93 0 33 32 65 f 3 61 k 4  64 & 7 
3 39 43 8 2 k 3  6 9 + 6  61 f l  

3 124 125 249 8 150k 1 1  

"TSH calculation (Ref. 84) PT = proton transfer; AT = atom transfer. 
bTSH calculation (Ref. 90); values as interpolated in Ref. 84. 
'Experiment (Ref. 86). 

TABLE V 
Cross Sections (bohr') for Isotopic Variants of H:(u+) + H, 

H ~ ( u + ) + D , + D , H '  +H(PT), H,D+ +D(AT) 
E(eV) u ,  PA" PTb PT' AT" ATb 

0.23 0 31 31 29 17 17 
3 29 23 25 17 16 

1.1 0 8.2 8.2 13 6.7 6.7 
3 11 10 13 7.2 5.5 

2.1 0 5.3 5.3 5.8 4.6 4.6 
3 7.3 7.0 9.9 5.0 3.3 

4.1 0 2.1 2.1 3.0 2.4 2.4 
3 3.9 4.0 5.0 2.4 2.1 

6.1 0 1.6 1.6 2.2 1.4 1.4 
3 2.4 2.3 2.6 1.5 1.2 

D ~ ( o + ) + H , + H , D +  + D  (PT), DzHt +H(AT) 
E(eV) u +  P P  PT' P T  AT" ATb 

0.23 0 31 31 38 17 17 
3 30 26 28 15 14 

1.1 0 10 10 12 6 5 
3 14 12 15 5.5 5.0 

2.1 0 6.6 6.6 5.0 2.2 2.2 
3 8.8 8.1 7.9 2.4 2.4 

4.1 0 4.5 4.5 2.1 0.6 0.6 
3 5.3 4.3 2.1 1 .o 1.2 

6.1 0 3.3 3.1 1 . 1  0.1 0.1 
3 3.5 3.1 0.7 1 .o 0.8 

"TSH calculation (Ref. 91). 
'Single surface trajectory calculation (Ref. 85). 
'Experiment (Ref. 89.) 
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Figure 8. Cross sections (summed over J )  for Hl(u)  + H, + H i  + H versus the internal 
energy in the H,'. A histogram bin size of 0.124eV was used to generate the distributions. The 
vertical line at 4.95 eV indicates the dissociation energy of H i ,  products above the are metastable. 
(Reproduced with permission from Ref. 93.) 

TABLE VI 
Cross Sections for Isotopic Variants of H,f(u) + H, + H,' + H 

System 

H i  +H,+H: + H  

H: + D,-H,D+ + D 

H,f + D z + D , H +  f H  

D l + H 2 + H 2 D f + D  

D,f + H 2 + D z H + + H  

H,f + H 2 - * H l  + H  

U - 
13 
17 
13 
17 
13 
17 
18 
24 
18 
24 
18 
24 

D(H + ) b  

36 f 6 
98+9 
10+3 
1+2 

1 1  + 3  
20+4 
14+4 
41+8 

2 *  1 
5+2 

D(D+)b 

1 + 1  
1 + 1  
20+5 
56 f 8 
13f3 
3 0 + 7  
14+4 
13+4 
38+6 
95+9 

Q 
18 5 
6+3 
10+4 
3+2 
8+3 
3+2 
12+4 
10+3 
6+2 
5+2 
20+5 
6+2 

'TSH results of Ref. 94 
bD(H+,  D+):  H,' dissociatesin0.36-30ps;(H*, D*)givenoff. 
'Q = Quasistable; H i  has energy to dissociate, but 

lasts > 30 ps. 
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both u ,  = 13 and u ,  = 17; aging the metastable population does not shift 
this maximum. 

This process was studied in greater detail by Badenhoop, Schatz, and 
Eaker.94 They examined other isotopic combinations, and compared 0.05 eV 
with 0.50eV collision energies. Metastable products were aged for up to 
30ps. The comparisons are extensive, and rich in interesting detail; some 
cross sections are shown in Table VI. The fraction of metastables which 
survived for 30 ps was insensitive to isotopic substitution. The very long-lived 
metastables have, on average, higher average J than those which dissociate. 
For highly excited reagents, proton transfer is favored over atom transfer. 
The excited H l  products were examined in a number of other ways, including 
power spectra. While the simulation is not able to study lifetimes on the scale 
relevant to the experiment, the rich detail of this study provides important 
information about the motions in collisionally prepared highly excited H l  . 

B. Electron-Transfer Reactions 

1. Introduction 

Reactions of the type M + X , ,  where M is an alkali metal and X ,  is a 
molecule with a positive electron affinity, have a long history in molecular 
reaction dynamics. The neutral reactants interact weakly (and covalently) at 
long range. If an electron jumps, forming M +  + X ; ,  there is a strongly 
attractive (ionic) interaction, drawing the molecules together; the reactive 
channel, M X  + X frequently has a very large thermal cross section. This is 
the well-known and well-studied “harpooning” mechanism. The electron 
jump is, of course, the signature of a nonadiabatic process. Some of the 
earliest quasiclassical trajectory studies focused on such  system^,^^-^^ using 
a single potential energy surface which describes the covalent interaction in 
the asymptotic reactant channel, but switches to the ionic interaction at the 
crossing. 

In 1982, Kleyn, Los, and Gislasong8 reviewed the topic of vibronic coupling 
at intersections of covalent and ionic states, and discussed very thoroughly 
the range of theoretical methods which have been brought to bear on this 
problem. Included in their review were many trajectory-based approaches: 
classical path calculations where R( t )  followed a simplified path through 
space; calculations in which a radial trajectory follows potentials which 
combine the vibrational and electronic degrees of freedom (vibronic 
potentials), as well as TSH calculations. Calculations that were based on a 
simplified nuclear trajectory have been very important in elucidating the 
nature of these p r o c e s s e ~ . ~ ~ - ~ ~ ~  While these may all be characterized as 
surface-hopping trajectory methods, the focus below will be on TSH 
calculations in which a trajectory (when it is not hopping) is the exact 
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solution of Hamilton's equations for all the nuclear coordinates, subject to 
the electronically adiabatic potential. 

2. Alkali Plus Halogen 

Among the earliest TSH studies was a 1973 paper by DUren1O4 on ion 
pair formation in M + X ,  reactions, with parameters appropriate to K + Br,. 
The molecule X ,  was taken to be a harmonic oscillator in r. The ionic and 
covalent potentials, dependent on R and y only, were a Lennard-Jones (12-6) 
potential for the covalent surface, and a modified Rittner potential for the 
ionic. The angular dependence was produced by a Kihara-type core. The 
diabatic curves cross at a distance R,. Adiabatic curves were generated by 
subtracting (or adding) from the lower (or upper) diabatic curve a quantity 

AF is the difference in slopes of the ionic and covalent curves at R,. The 
angular dependence of the coupling AE was defined to approximate the loss 
of coupling in C,,  geometry: AE = AE"(1 + b cos2 7); b was usually taken to 
be 9; but was sometimes set to zero to suppress the angular dependence. The 
transition probability at R,  was calculated using the Landau-Zener formula. 

Differential cross sections were examined for a number of different sets 
of parameters: initial energy, coupling strength AE", its angular dependence 
b, depth of the ionic well, and energy gap between the asymptotic ionic and 
covalent surfaces. Suggestions were made about which parameters could be 
inferred from experimental results. In most cases, it was possible to distinguish 
two channels quite clearly in the ionic products: those who jumped to the 
ionic surface on the way in from those who jumped on the way out. The 
former give rise to a broader peak at larger angle, while the latter are sharply 
forward peaked. 

Evers and De Vries105 used the TSH method to study K + Br, using a 
much more detailed and realistic set of potentials. The potentials were the 
roots of a 2 x 2 matrid whose matrix elements were the ionic and covalent 
diabatic functions and the coupling HI,. The diabatic functions were written 1 

as sums of pairwise interactions: the ionic function including a Morse for 
the Br,, and distored dipole and ion-induced dipole terms for the K+-Br- 
and K+-Br, respectively. A three particle interaction term was added. The 
covalent diabatic potential included a Morse function for the Br,, and a 
Lennard-Jones (12,6) function for the K-Br terms. The ionic-covalent 
coupling term was H , ,  = A cosy exp[ - c(R,,, - R c ) ] ;  the crossing radius 
R ,  is strongly dependent on the Br, bond length. 

The Landau-Zener formula was used to calculate the hopping probability 
at R,; the radial velocity was used in this equation. HI, and AF were evaluated 
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from the potential at R,. When the Br, bond is near its equilibrium length, 
the crossing radius R, is small and H , is large; as a consequence, for energies 
below lOeV, few trajectories hop to the upper state (this is, remain on the 
covalent surface) as the particles approach. The Br, equilibrium bond length 
increases on the ionic surface, so forces encountered in the interacting region 
will stretch this bond. If the trajectory now returns to the entrance valley 
with a larger r, R ,  may be much larger, H , ,  smaller, so hopping can occur; 
sometimes several times in a trajectory. Trajectories which hop to the upper 
surface were not followed in this calculation, but the trajectory continuing 
on the lower surface weighted (at each crossing) by the probability (1 - P) .  

The results of this somewhat simplified surface-hopping calculation were 
compared to trajectories which were restricted to the ionic diabatic surface. 
Cross sections for formation of KBr at energies between 0 and 4eV were 
compared for the two calculations, and were compared to (scaled) 
experimental data. The surface-hopping results did an excellent job of 
following trends in u(E): fast decrease between 0 and 0.5 eV because of very 
large impact-parameter events, slower decrease between 0.5 and 1.8 eV due to 
recrossings, and a fast decrease at 1.8eV because of the opening up of the 
ion-pair channel. In contrast, the calculation using only the diabatic ionic 
curve showed a gradual unstructured decrease over this range. Thus, even 
though the trajectories in this calculation which reached the upper surface 
were not followed explicitly, the model did an excellent job of incorporating 
the relevant nonadiabatic behavior, and demonstrating the importance to 
the understanding of this reaction of the Br, bond length dependence of the 
crossing redius R,. 

Eversto5 extended the model and applied it to Na, K, and Cs + I, collisions 
in the 10-lOOeV range. The forms for the diabatic potentials and coupling 
were quite similar to the earlier paper; H , ,  had a somewhat more complicated 
dependence on R,, and a more precise expression for R,  used to ensure that 
it correspond to the point where H , ,  = H,,. The sensitive dependence of R ,  
on the halogen bond length r remains. 

The hopping procedure was also relined. Probabilities are calculated using 
the Landau-Zener equation, but using for uAF the equivalent vector dot 
product R-AF where F ( R )  = H , , ( R )  - H,,(R). A trajectory is allowed to 
follow both the lower and upper surface, using the “anteater” approach. 

In the K + Br, study, the stretching of the Br, bond on the ionic surface 
was shown to have a very important effect on the subsequent surface hopping. 
This “bondstretching” phenomenon, which had been explored with simplified 
t r a j ec t~ r i e s ’~ ’ - ’~~  was further explored in this study. A related effect is 
“prestretching”: the (weaker) stretching of the halogen bond, which occurs 
on the covalent surface before the first crossing is reached. At sufficiently 
large energies, if the collision time is too fast for the halogen vibration to 
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Representative laboratory differential cross sections for ion pair formation from 
Na(K) + I ,  collisions. E is the laboratory kinetic energy (ev), 8 the laboratory scattering angle 
of M ' .  The points are experimental results (Ref. 101), the curves the TSH calculation (Ref. 106). 
The curves have been scaled to the same maximum value. (Reproduced the permission from 
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Figure 9. 

respond, these effects will be unimportant. This, however, requires very high 
energy: more that lOOeV for the systems in this study. 

Evers obtained TSH data for the following properties of ion-pair formation 
which were then compared to experiment:"' absolute total cross sections, 
laboratory differential cross sections, and probability of ion dissociation. The 
agreement with experiment of the differential cross sections is qualitatively 
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good: the positions of the maxima and the energy dependence of their relative 
heights well reproduced. The relative heights themselves were not always 
in accord with experiment. Examples are shown in Fig. 9. For Na + I, there 
are two peaks. The wider angle (ionic) peak, which results from trajectories 
which pass the seam adiabatically and follow the ionic surface on the way 
in, hopping to the ion-pair state on the way out, decreases compared to the 
smaller angle (covalent) peak as energy increases. In the experiments, this 
peak was larger at all four energies, while in the calculations the more 
forward peak was larger at the highest energy. The covalent peaks grows 
with energy because more trajectories have sufficient velocity to hop at the 
seam on the way in. Three peaks can be distinguished for K + I, and Cs + I,: 
the covalent peak, an ionic rainbow, and the ionic peak. The energy 
dependence of the total cross sections and the dissociation probabilities 
agreed well with experiment: deviations were generally no more than 20%. 
The TSH results are not critically sensitive to the magnitude of the 
nonadiabatic coupling HI,: where a trajectory encounters the seam is the 
important factor. 

Aten, Evers, de Vries, and Los’O’ compared their molecular-beam 
experiments with the same TSH model and potentials for energy transfer 
and ion-pair formation in the reactions Na, K, and Cs + I, at around 8 eV. 
The differential cross section results again show excellent agreement between 
theory and experiment, particularly in the shapes and positions of maxima 
(the ionic peaks are sharper than at higher energy). Prestretching plays a 
significantly larger role in ion-pair formation in Na + I, and K + I, than in 
Cs + I, because of the smaller coupling HI, in the last case. 

Evers, de Vries, and LOS’~’  compared molcular-beam experiments to the 
same TSH model for K + Br, at 0-10eV. Differential cross sections were 
calculated at two energies Elab = 1.04 and 7.04eV. At each energy, 15,000 
trajectories were generated. Total inelastic cross sections, based on 2000 
trajectories each, were calculated at intermediate energies. (A collision is 
deemed inelastic, as opposed to elastic, if at least O.5eV of energy has been 
transferred.) 

The TSH calculations give important new insight into the nonreactive 
scattering process. In both experiment and theory, the function 
log[a(B)B sin 91 is linear with z = E9 at low T (up to a value T,); slopes and 
z, values agree to within 20%. There is a peak above T, that represents 
inelastic events. These distributions are interpreted in terms of three kinds 
of trajectories. The first, “noncrossing” trajectories never reach R,. They 
generally contribute to elastic scattering. The crossing trajectories are further 
divided into two classes: the “ionic” pass R, adiabatically while the “covalent” 
hop, remaining on the covalent surface. The covalent trajectories, most of 
which cross the seam in a near perpendicular configuration where H , ,  is 
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small, contribute to scattering in two regions: small angle scattering for large 
impact parameters, and larger angle scattering for small impact-parameter 
collisions. Ionic trajectories are likely to lead to KBr products, particularly 
at lower energies. However some can contribute to inelastic scattering by 
returning to the entrance valley, and passing through R, adiabatically once 
more. These tend to contribute to scattering at  intermediate angles. Covalent 
trajectories play an increasingly important role as energy increases. 

Evers"' extended the K + Br, TSH study, covering a range of 22 energies 
to 8000 eV. Cross sections were calculated for inelastic neutral scattering, 
reaction, ion-pair formation, dissociation to neutrals, and dissociation to 
ions. Various combinations of these were compared to experiment. Reactive 
and ion-pair formation cross sections and the fraction of Br; which 
dissociate are shown in Fig. 10. 

The reactive cross sections are quite similar to those in the earlier studylo5 
which used a somewhat simpler potential and hopping strategy; the shape 
of a,(E) was discussed previously. Inelastic scattering was approximately 
constant out to about 100eV, rising at higher energies. Above 100eV, the 
collision is sufficiently fast that stretching of the Br, no longer enhances 
hopping, and, owing to the increasing radial velocity, trajectories that hop 
both on the way in and the way out (that is, stay covalent throughout) 
increase in number. If such trajectories are deflected toward the product 
valley in the strongly interacting region, they lead to dissociated neutral 
atoms; this cross section generally rises with energy above its threshold. 

The total cross section for ion formation (ion-pairs and dissociated ions) 
and the fraction of ions which dissociate ( F )  both agree very well with 
e~per i rnent .~~, '  l o  The maxima in both functions reflect the energy at which 
the stretching of the Br, is most effective in promoting hopping; the collision 
time and the molecular vibrational period are roughly the same. This 
calculation shows that, while a single surface simplification can give 
satisfactory results for the reactive channel, a full TSH treatment is required 
to include these competing processes. 

3. Alkali Plus Oxygen 

Alkali-oxygen collisions are similar in many ways to alkali-halogen. Ion-pair 
(M' + 0;) formation is an important channel. The system is again 
conveniently described in terms of interacting ionic and covalent diabatic 
surfaces. Bond stretching is important: the ionic-covalent crossing is strongly 
dependent on the oxygen bond length whose equilibrium value is larger on 
the ionic surface. Peaks in the differential cross sections result from different 
sequences of diabatic and adiabatic passage through the seam. Trajectory 
models which include the preceding surface features but which uncouple the 
radial and diatomic motion" l 3  have been very informative. Oscillations 
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in the differential cross sections at energies where the collision time is 
comparable to the molecular vibrational period can be interpreted as 
"observation of molecular motion":' l4 depending on time, an average 
trajectory may cross the seam one or more times on the way out. 

Parlant, Schroeder, and Goursand115 carried out full TSH study of the 
K + 0, reaction at energies up to 100eV. Among the phenomena which 
they wished to explore was the K +  recoil energy distribution: two peaks are 
observed,' 16,'17 but with uncertainty about their origin; it had been 
suggested1I7 that excited electronic states are involved. 

Potential energy surfaces were constructed to correspond to the ,A'' states 
correlating with covalent K(2S) + O , ( X  '2) and ionic K+('S) + O ; ( X  ,II) 
reagents. The surfaces are the roots of a 2 x 2 matrix. The covalent surface 
was a sum of pairwise terms: Morse for the 0, and Lennard-Jones (12,6) 
for the K-0. The ionic surface, based on work by Alexander,'I8 includes a 
Morse for the 0; and an exponential-rational form for the K +  interacting 
with each partially charged 0 atom. The polarization of the anion charge is 
governed by a switching function dependent on the molecular conformation. 
The coupling term is H , ,  = c1 exp( - c,R,) sin 27. The angular part (sin 27) 
ensures that the coupling vanish both in C,, and in C,,, as required by 
symmetry. 

The Stine-M~ckerman~' implementation of the Landau-Zener formula. 
was used to calculate hopping probabilities, and all branches are followed. 
Most trajectories encounter the seam only twice, once on the way in and 
once on the way out, giving four branches. However in some cases, the 
oxygen oscillation is fast enough that more crossings occur. 

The differential cross sections show distinct contributions from ionic and 
covalent trajectories; the ionic peaks are significantly larger at all energies 
studied. Energy loss spectra, shown in Fig. 11, are double peaked at small 
scattering angles: the ionic trajectories suffering significantly larger energy 
losses. At higher angles, the two distributions are similar in shape, but the 
covalent contribution much less. These results are in excellent agreement 
with experiment.' l 6  The TSH calculation demonstrates that bimodal energy 
loss distributions need not be the result of excited electronic states. Differential 
cross sections for the neutral (elastic plus inelastic) channel were also 
presented. The contributions of ionic and covalent trajectories are again 
distinct, both in angular and energy loss distributions. 

C. Neutrals: A Sampling of Systems Studied 

The TSH method has been applied to a number of nonadiabatic systems 
that do not involve transfer of charge; a review of these is beyond the purview 
of this article, but some examples will be described briefly to indicate the 
wide applicability of this method. 
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Figure 11. Angular and energy loss differential cross sections for K +  formation from 
K + 0; collisions at a center of mass collision energy of I4eV. The contributions of the covalent 
(dotted) and ionic (dashed) trajectories are shown separately. For each angle range the 
distribution has been scaled to unity; scaling factors are shown. The striped area indicates the 0; 
Franck-Condon region. (reproduced with permission from Ref. 11 5.) 
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Quenching of electronically excited sodium in collisions with hydrogen: 

Na('P) + H, + Na('S) + H, 

was studied by Blais and T r ~ h l a r ~ ~  using an eight configuration DIM set 
of surfaces calculated by Truhlar et al.' l 9  with an improved parametrization 
by Blais, Truhlar, and Garrett.'" Their TSH procedure was discussed 
previously. Eaker5' compared the Stine-Muckerman and the Blain-Truhlar 
versions of TSH on the same system, but using a slightly different DIM 
formulation. 

Parlant and Alexander53 used the Parlant and G i ~ l a s o n ~ ~  TSH procedure 
to study electronic quenching of the fine-structure components in collisions 
of Helium with CN(A 2r13,2). 

Kinnessly and Murrell' '' studied branching between different product 
electronic states for the reaction 

C(3P) + 0,(3X;)-+O(3P or 'D) + CO('Z). 

Garetz, Poulsen, and Steinfeld' 22 studied collision-induced predissociation 
of electronically and vibrationally excited iodine: 

He + I,(OT, u)+  He + I,(O;)+He + I + I 
and compared the three-dimensional TSH results with an optical model and 
with collinear TSH result~. ' '~ 

There have been several TSH studies where the interacting surfaces were 
the results of interaction with radiation: the laser-dressed (and therefore 
energy-shifted) surface crossing and interacting with the undressed system. 
Miret-Artes, Delgado-Barrio, Atabek, and Lefebvre' 24 applied such a model 
to the photodissociation of ICN. Last, Baer, Zimmerman, and George'25 
studied the effect on the laser field on spin-orbit level changing collisions in 
F(,P) + H, collisions. Yamashita and Morokuma126 used the Stine- 
Muckerman version of TSH to study the transition state spectroscopy in 
laser-dressed K + NaCl and Na + KCl collisions. 

Zahr, Preston, and Miller 12' studied quenching in O('D) + N, collisions, 
using a model based on a TSH picture; detailed trajectories were used only 
to determine the cross section for formation of a long lived complex, whose 
subsequent dissociation was calculated statistically. 

V. DISCUSSION AND FUTURE DEVELOPMENTS 

The trajectory-surface-hopping model is a very useful generalization of the 
quasiclassical trajectory method to systems with nonadiabatic behavior. 
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When potential energy surfaces are available, the TSH method is relatively 
easy to implement and can provide rich detail for the interpretation of the 
systems studied. Several different procedures have been proposed; the choice 
among them depends largely on the information available and the kinds and 
locations of regions of strong nonadiabatic behavior. If the seams are easily 
fit to a simple function and preliminary investigation indicates that the 
Landau-Zener (or some other formula) is adequate, the Tully-Preston 
approach is very convenient and fast. If the seams are more complicated, 
but can be characterized as “troughlike” the Stine-Muckerman procedure 
is very attractive; it may be the method of choice if coupling terms are not 
available. The Kuntz, Kendrick, and Whitton procedure requires coupling 
terms, but it is efficient and makes no assumption about the kind of coupling. 

Possibly more time-consuming (in that a larger number of coupled 
equations is required in the trajectory calculation) but conceptually attractive 
are the combined classical-trajectorysemiclassical approaches of Blais and 
Truhlar and Parlant and Gislason. The latter seems to improve upon some 
of the possible inconsistencies of the former. 

There are situations in which a TSH approach is inadvisable. When a 
system must find its way through a complicated series of nearby crossings, 
the results may become unreliable. Some resonant processes are poorly 
described in the purely classical TSH model. If the electronic energy gap 
happens to coincide with some internal energy gap, the TSH method, which 
is treating the electron and nuclear coordinates in very different ways, will 
fail to see the strong resonant enhancement. Two important reactions in 
which this occurs are 

Ar+(2P3i2) + N2(u = 0)+Ar+(2P1/2) + N,(u = 1) 

and 

F(2P3/2) + H(u = 0, J = 2) + F(’PlI2) + H ~ ( u  = 0, J = 0). 

What is required in such a situation is a method which treats the resonant 
degrees of freedom in the same way. Nikitin’28 treated the ArNi  problem 
by combining the resonant vibrational and electronic coordinates to generate 
vibronic surfaces, and (in contrast to many other vibronic-surface based 
calculations) carried out full TSH dynamics on these surfaces. Miller, 
McCurdy, and Meyer, in a series of  paper^'^^-'^^ ha ve shown how to go 
the other way: how to construct an entirely classical picture for such processes 
which includes the electronic coordinates as extra classical motions. 

The TSH model is based on a number of simplifying assumptions, most 
importantly the notion of transitions taking place localized on seams between 
interacting surfaces. Herman,”.’ 34,1 3 5  based on earlier work of Laing and 
Freed,’ 36 has studied semiclassical nonadiabatic transitions in a more 
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formally rigorous way; his work has provided insight and guidance for simpler 
approaches. There has also been extensive relevant work on nonadiabatic 
effects in unimolecular reactions, some of which was reviewed by Desouter- 
Lecomte, Dehareng, Leyn-Nihant, Praet, Lorquet, and Lorquet.' 37 

The intuitive picture offered by the TSH model is sometimes usefully 
invoked even without explicit TSH calculations. Staemmler and Gianturco' 38 

calculated potential energy curves relevant to H +  + 0, collisions, and 
interpreted the large vibrational excitation observed in the inelastic channel 
in terms of trajectory motion on the H + 0 :  surface. Gianturco and 
S ~ h n e i d e r ' ~ ~  calculated DIM surfaces for H t  + BH(X 'C) collisions, 
indicating the possibility of nonadiabatic pathways. Full dynamical 
calculations with these surfaces would surely further enrich the interpretation 
of these systems. 

The editors of these volumes encouraged contributors to speculate about 
fucture developments. Certain statements can be made without risk. With 
more accurate potentials and faster computers we will be able to use the 
TSH approach to obtain better agreement with the increasingly detailed 
experimental data for ion-molecule reactions-and in so doing, to offer 
useful interpretation of the underlying processes. It is clear from the recent 
TSH studies on the H: system that the general approach can be very 
successful; for that problem, what remains is to use the very best potentials. 
The potentials need improving for ArHl also: spin-orbit must be included, 
and the long-range interaction corrected before one can clearly identify 
weaknesses in the TSH model. This system (when the three interacting 
surfaces are all included) has several features which are possible problems 
for TSH: nearby pairs of surface crossings, turning points near crossing seams, 
and resonant enhancement of certain state-to-state processes. 

The details of the hopping procedure proved to be unimportant in two 
cases where the seam followed the reactant valley, while for other systems 
with seams in the strongly three-body region, it was very important. As more 
systems are studied, and as new potentials and hopping procedures are tested 
on old and new systems, we should get a clearer understanding of the optimum 
strategies. Until then, this aspect of a TSH calculation should be examined 
carefully for each case. 

H: was the only system with N > 3 cited in this review. However, it seems 
that the primary impediment to studying larger systems is the same one 
which occurs in adiabatic quasiclassical trajectory studies, namely the 
availability of potential energy surfaces. It is striking that a very large fraction 
of the TSH studies completed to date are based on DIM surfaces; striking, 
but not surprising, since the DIM formalism is ideally suited to multiple 
surface dynamics. While complete DIM surfaces may be impractical for many 
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systems, fitting functions which employ DIM-like matrices may play an 
important role. 

Nevertheless, the richness in detail and the generally satisfactory agreement 
with experiment which has been obtained even with rather approximate 
potentials bodes well for future studies. 
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I. INTRODUCTION 

The quantitative treatment of reactive processes continues to be one of the 
greatest challenges in the field of chemical physics. A rigorous theory would 
require complete knowledge of the interaction forces between the reactants, 
that is, of the potential energy surfaces involved, and of the dynamics of the 
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process, that is, of the propagation of wave packets on these surfaces. Neither 
of these problems is solved today in a satisfactory manner: potential energy 
surfaces are generally known only to a limited extent; rigorous quantum- 
scattering calculations are often extremely difficult. 

In this situation statistical rate theories are of great value. They do not 
attack the problem of the potential energy surfaces, which still have to be 
implemented in rather crude and fragmentary ways, but they help to bypass 
the difficulties of dynamical theories such as quantum-scattering or classical 
trajectory calculations. Instead of considering the complete time evolution 
of the system, they concentrate on the rate- or flux-determining bottlenecks 
of the reaction. By assuming “equilibrium” or “statistical” populations of the 
states (or channels) of the system during the approach of the bottleneck, the 
time-consuming treatment of the evolution of the system before this final 
event is avoided. The price to pay for this considerable simplification is the 
loss of rigor: either the system behaves in this way, that is, it is “statistical”, 
or it does not, that is, it reacts “nonstatistically.” Only the comparison with 
rigorous treatments can ultimately justify the statistical approach. However, 
the gain in simplicity of the method is enormous and the practical success of 
statistical calculations strengthens the hope that this model is close to reality. 

Statistical rate theories have been formulated with different degrees of 
sophistication since the early days of reaction kinetics: The Arrhenius 
equation was based on statistical arguments; statistical models followed 
closely the advances in statistical mechanics and thermodynamics; transition 
state theory (TST), quasiequilibrium theory (QET), phase-space theory (PST), 
RRKM theory, SACM, Langevin, and many other theories fall into the 
category of statistical rate treatments. The question arises whether they all 
can be identified as special cases of one general statistical theory, just 
employing different types of avoidable or unavoidable simplifications, or 
whether the differences between theories, or theory and experiment, reflect 
basically different kinetic behavior. Because of their relatively simple 
long-range potentials, ion-molecule systems are particularly suitable for the 
investigation of this question. 

Statistical theories can rely on two different basic assumptions: one may 
postulate adiabatic reaction behavior near to the bottlenecks of the process, 
or one may allow for complete nonadiabatic distribution of the populations 
in this range. In the adiabatic approach, one fixes the distance r between 
the centers of mass of the reactants (or other coordinates characterizing the 
progress of reaction) and one calculates the energy eigenvalues V,(r) of the 
system at this point. The dependence of Vi(r) on r characterizes adiabatic 
channel potential curves, the maxima of these curves along r define state- or 
channel-resolved threshold energies EOi which are considered to correspond 
to the bottlenecks of the process. Calculating one-way fluxes through these 
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channel-resolved bottlenecks and assigning equal statistical weight to all 
open channels, completes a statistical adiabatic channel model (SACM) of the 
reaction. SACM represents the most general statistical treatment of the 
adiabatic type and thus appears most useful for a comparison with other 
approaches such as variational transition state, phase space, or RRKM theory 
which are either formulated in a less sophisticated way, are special cases of 
SACM, or implicitly contain some degree of nonadiabaticity. 

SACM revived the compound nucleus model of nuclear reactions (see 
Blatt and Weisskopf, 1952) and applied it to chemical reactions (Quack and 
Troe, 1974, 1975a, 1975b). It may be understood as a state-resolved 
transition-state theory going beyond microcanonical or canonical TST. Using 
simplified adiabatic channel potential curves Vi(r) of the bond-energy-bond- 
order type in the beginning (Jungen and Troe, 1970; Gaedtke and Troe, 1973; 
Quack and Troe 1974), it recently proceeded to more rigorous calculations 
of the Vi(r) (Troe, 1988; Troe, 1989; Nikitin and Troe, 1990; Maergoiz et al., 
1991; Quack, 1990). Applying the general theory of nonadiabatic processes, 
the validity of the adiabatic assumption has also been investigated (Maergoiz 
et al., 1991), indicating at which energies of the relative motion of the reactants 
nonadiabatic curve-hopping sets in. 

Obviously, uni- and bimolecular processes of ion-molecule systems in no 
way are special such that they could not be analyzed in the framework of 
general kinetic theories. There are, of course, different “individual 
chemistries,” different types of long-range potentials, and, perhaps, more 
frequent electronically nonadiabatic processes. However, this does not justify 
the long-lasting separation of the fields of neutral and ion-molecule reactions 
and the development of different formalisms. In this sense the present article 
provides a common view of neutral and ion-molecule reaction aspects. 
SACM has successfully been applied to ion-dipole capture processes (Troe, 
1987a) using the same formalism as applied earlier to complex-forming 
bimolecular reactions of neutral species (Quack and Troe, 1975a). However, 
more accurate adiabatic channel potential curves Vi(r) were used in the more 
recent work. Independent treatments in the field of ion-molecule reactions 
proved to coincide with the SACM treatment, partly being “reinventions,” 
partly applying particularly accurate calculations of the channel potential 
curves. Among these approaches are the perturbed rotational state method 
(Takayanagi, 1978, 1982; Sakimoto and Takayanagi, 1980; Sakimoto, 1980, 
1982, 1984, 1985), the adiabatic invariance method (Bates, 1982, 1983; Bates 
and Mendas, 1985; Morgan and Bates, 1987), the adiabatic rotational state 
calculations by Dubernet and McCarroll (1989, 1990), and the rotationally 
adiabatic capture calculations by Markovic and Nordholm (1989a). In the 
absence of an anisotropy of the potential between the reactants, phase-space 
theory forms a special case of SACM; Langevin and locked-dipole treatments 
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of ion-molecule capture fall into the same category. Detailed discussions of 
this limiting case have been given, for example, by Chesnavich and Bowers 
(1978,1982). Recent reviews of this field by Clary (1988) and Bates and Herbst 
(1 988) contain additional references to earlier reviews and articles. 

It is not surprising that statistical rate calculations for ion-molecule 
capture processes often coincide with dynamical calculations such as classical 
trajectory or quantum-scattering calculations. This was emphasized long ago 
for situations where the different theories lead to identical fluxes through the 
bottlenecks of the reaction, see, for example, Slater (1959). In this sense, the 
approach of the analytical representaton of classical trajectory results 
from Su and Chesnavich (1982) by SACM calculations (Troe, 1987a) is not 
unexpected. Likewise, the adiabatic capture centrifugal sudden approximate 
(ACCSA) or more accurate quantum-scattering capture calculations by Clary 
(1984, 1985, 1987a, 1987b) essentially agree with SACM calculations; some 
differences at  low temperatures (Troe 1987a) most probably are numerical 
artifacts of the ACCSA treatment. If equal fluxes through the bottlenecks 
are calculated anyway, of course, the more economic method appears 
preferable. This often is the statistical theory. 

So far we have only considered bimolecular ion-molecule reactions that 
are governed by capture of the reactants on an attractive potential energy 
surface. For these processes adiabatic statistical theories are very appropriate. 
If the reactions by association of the reactants form bound complexes, which 
can redissociate or dissociate toward the products by simple bond fission or 
complex elimination, the second stage of the reaction again can be treated 
by statistical rate theory. In this case, however, specific rate constants k ( E ,  J )  
for unimolecular decompositions of the complex (with total energy E and 
total angular momentum J )  have to be calculated. Obviously, capture and 
dissociation processes are reverse and, therefore, linked by microscopic 
reversibility, that is, describable by the same theoretical approach. As a 
consequence, unimolecular and complex-forming bimolecular reactions are 
treated by the same statistical theory. We do not concentrate in this chapter 
on the unimolecular fragmentation of energy- and angular-momentum- 
resolved molecular ions and their statistical analysis in terms of QET, TST, 
RRKM, or SACM calculations (for recent reviews see, for example, Lifshitz, 
1987). Unfortunately, in several of these theories the J-dependence of the 
dissociation rates has been treated inadequately. PST calculations 
(Chesnavich and Bowers, 1978) and their extension to anisotropic potentials 
by simplified SACM (Troe, 1983) provide more appropriate procedures. 
Although we do not go into the details of this problem here, the results are 
needed for the treatment of complex-forming bimolecular reactions 
considered later on. 

Complex-forming bimolecular ion-molecule reactions can be governed 
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by quite different potential energy surfaces and the literature is full of examples 
(see, for example, Henchman and Paulson, 1988, 1989), showing multiple 
intermediate structures with “loose” and/or “rigid” entrance and exit 
potentials and all types of intermediate rearrangement barriers. It is not the 
purpose of this chapter to look into the vast number of different possible 
cases. Instead, simple examples of a statistical treatment of such reactions 
are considered, which indicate the necessity of taking into account energy E 
and angular momentum J aspects of the process (Troe, 1987b). 

This chapter does not include collisional energy transfer processes contri- 
buting to ion-molecule reactions, either in complex-forming bimolecular 
reactions or in ion-molecule association reactions. However, it should be 
remembered that the high-pressure limiting bimolecular ion-molecule 
association is also a capture process for which the present statistical treatment 
applies. 

11. BASIC RELATIONSHIPS OF STATISTICAL RATE THEORIES 

A. Biomolecular Processes 

Scattering processes in statistical rate models are characterized (Quack and 
Troe, 1975a, 1981) by a statistical S matrix of the form 

W(E, J ,  . . . ) -  for strongly coupled channels, 

for weakly coupled channels, 
(2.1 ) 

where a process between the initial quantum state i and the final quantum 
state f is considered, E denotes total energy, J denotes total angular 
momentum, and the total number of strongly coupled channels W(E, J ,  . . . ) 
depends on E , J ,  and other good quantum numbers. Equation (2.1) describes 
matrix elements, which are averaged over a certain energy range such that 
enough resonances of the collision complex are included, and which are 
averaged over initial states with random phase distributions. The statistical 
postulate of equal weight for strongly coupled channels in Eq. (2.1) is easily 
identified. The scattering cross section from Eq. (2.1) follows as 

with 

where p is the reduced mass of the colliding pair and E, is its initial relative 
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translational energy. Averaging Eq. (2.2) over the not easily observable 
coordinates leads to the degeneracy averaged inelastic and reactive total 
cross section 

where a corresponds to the selectable initial state, b to the selectable final 
state, k, corresponds to ki from Eq. (2.3), and go is the degeneracy of the 
initial state. One has, for example, g ,  = (2ja1 + 1)(2ja2 + 1) for two colliding 
linear rotors with rotational quantum numbers jal and j a 2 .  W(E,J,a) and 
W(E, J ,  b) are those numbers of strongly coupled channels that emerge from 
the states a or b of the reactants or products and lead into the collision 
complex. W ( E , J )  is given by the sum W(E,J,a)  + W(E,J ,  b). 

The ratio W(E, J ,  b)/W(E, J )  denotes the probability that a collision 
complex with given E and J dissociates into the state b and not into the 
state a. If this probability approaches unity [i.e., WJE, J) >> W,(E, J ) ] ,  one 
has a capture situation such that 

I1 - 

a c (25 + 1) W(E, J ,  a). = ~ 

2 gaka J = O  

Experimentalists may be interested in state-resolved cross sections as a 
function of the translational energy E, such as given by Eqs. (2.4) or (2.5), in 
orientational effects described by the corresponding relationships omitting 
the degeneracy averaging, or in &-averaged quantities such as thermal rate 
constants for selected initial quantum states a or completely unselected 
reactants. The latter, with initial and final state selection, follow from 
Eq. (2.4) as 

(2.6) 
or, in the case of capture, as 

k, c a p - k T ( L ) 3 ' 2  -- f ( 2 J +  1 ) S a g e x p (  - E ) W ( E , J , u ) .  kT  (2.7) 
h 27~pkT J = O  0 kT  

If there is no resolution of the states of the reactants 1 and 2, and the products, 
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the additional averaging leads to 

or, in the case of capture, to 

a J = O  f ( 2 J + l ) ~ m ~ e x p (  0 k T  -E)W(E,J ,a) .  k T  (2.9) 

Qvibrot denotes rovibrational partition functions. Equations (2.7) and (2.8) 
only correspond to a single electronic potential surface. If the reactants are 
in degenerate or nearly degenerate electronic states, multiplication with the 
factor of Qe,/Qel,lQel.Z has to be performed, where Qel,l and Qe,,Z are the 
electronic partition functions of the reactions and QeI is that electronic 
partition function of the complex that is relevant for the reaction. It may 
well be that several of the electronic states of the reactants do not contribute 
to the considered reaction such that the factor Qel/Qel,lQe1,2 falls below 
unity and, in the case of near degeneracy, depends on the temperature. 

B. Unimolecular Processes 

A consequence of the symmetry of the scattering matrix ISfi12 = ISifI2 are 
the principles of microscopic reversibility abagak,2 = aabgbki and of detailed 
balancing kforward/kreverse = Keq, where K,, denotes the equilibrium constant. 
Capture or association processes correspondingly are linked to dissociation 
processes such that numbers of closely coupled, or “open,” channels 
W(E, J , .  . .) are the same for both directions of the reaction and form the 
key quantities of a statistical theory. Specific rate constants k(E, J, a) of species 
with given energy E and total angular momentum J ,  which dissociate 
unimolecularly into product states a, then are given by 

(2.10) 

Equation (2.10) represents the basic formula of statistical unimolecular rate 
theory. By considering microscopic reversibility (or detailed balancing) one 
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may show that Eq. (2.10) on all levels of averaging is consistent with the 
expressions for cross sections (or rate constants) of bimolecular processes 
that were given in Section I IA.  Combining Eq. (2.10) with an equilibrium 
population f ( E ,  J )  of the reactant, that is, 

the thermally averaged dissociation rate constant 

follows as 

with 

kdiss = f (25 + 1) 1 d E  f ( E ,  J)k(E, J )  
J = O  0 

(2.1 1 )  

(2.12) 

(2.13) 

Verifying the consistency of Eqs. (2.10), (2.12)-(2.14) with the 
corresponding capture quantities, one reproduces the principle of detailed 
balancing 

(2.15) 

where all partition functions have been calculated relative to the same 
arbitrary zero point of the energy scale. 

It should be noted that the fully state-resolved expression (2.10) contains 
information about product state distributions. As long as Eq. (2.10) is valid, 
therefore, the fraction P ( E ,  J ,  i )  ofdissociation products in state b is given by 

(2.16) 

It should also be noted that the ratio W(E,J ,b ) /W(E , J )  in Eq. (2.4) 
corresponds to the ratio k(E, J ,  b)/k(E, J )  and, hence, represents the 
probability that a reaction complex dissociates into the channel b. 
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The various statistical theories calculate the key quantity W ( E ,  J ,  i) on 
different levels of sophistication. In the most general case, for a single channel 
characterized by a complete set of quantum numbers, it should correspond 
to the transmission coefficient of a wave packet evolving in this channel. It, 
therefore, should include tunneling through and reflection above the channel 
energy barrier. Neglecting these effects, it would be set equal to zero at 
energies below the channel threshold energy Eoi ,  and equal to unity at energies 
above Eoi. The “activated complex partition function” Q* of Eq. (2.14) then 
can also be rewritten as 

(2.17) 

where the summation is extended over all channels. Equation (2.17) may be 
evaluated for fixed activated complexes as a “true” partition function or, for 
channels with maxima Eoi located at varying positions as a “pseudo”- 
partition function. 

The various statistical theories at this stage very easily can be classified: 
PST represents Eoi by the sum of centrifugal barriers and rovibrational energy 
levels of separated dissociation fragments in a unimolecular reaction or 
separated reactants in a bimolecular reaction. An anisotropy of the potential 
is neglected. Q* then can be factorized into 

with the centrifugal pseudo-partition function 

(2.18) 

(2.19) 

where E o ( J )  denotes the centrifugal barriers of the lowest reaction channels. 
Rigid RRKM theory assumes activated complexes that are localized at a 
fixed activated complex. In this approach angular momentum conservation 
would be difficult to obey rigorously if simple bond fissions are considered. 
RRKM theory with flexible transition states avoids this artifact by 
implementing more reasonable Hamiltonians and using variational transition 
state theory, that is, applying the old maximum free-energy criterion. 
Variational TST calculates Q* at fixed r and determines its minimum value 
along the reaction coordinate r .  Often simplified eigenvalues are employed 
in this calaculation. However, one could base a variational TST calculation 
also on accurate adiabatic channel potential curves Vi(r) and calculate Q* by 

Q* = min c exp (- F) 
r i  

(2.20) 
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such as proposed by Quack and Troe (1977). This would eliminate artifacts 
from variational TST which are due to oversimplified channel eigenvalue 
models. It is, however, also evident that variational TST and SACM are not 
identical. Variational TST may correspond to a larger degree of non- 
adiabaticity than included in SACM. The differences are particularly easy 
to elaborate for ion-dipole capture rates. They can amount to about f 50% 
(Markovic and Nordholm, 1989). 

111. ADIABATIC CHANNEL EIGENVALUES AND CHANNEL 
THRESHOLD ENERGIES 

According to Sections I and 11, the basic problem of statistical theories is 
the determination of the channel threshold energies Eoi and numbers of open 
channels W(E,J) ,  that is, the counting of channels whose Eoi are below a 
given energy E .  Neglecting tunneling and nonadiabatic behavior, these 
energies indicate when a channel is open ( E a E , , )  or closed ( E < E o i ) .  
Transmission coefficients for wave-packet evolution, tunneling, or reflection 
(which corresponds classically to recrossing trajectories), complete the picture. 
In adiabatic determinations of the EOi one chooses a “reaction coordinate.” 
For dissociation-association processes, most logically this is the distance r 
between the centers of mass of the fragments of the dissociation (or the 
reactants of the association). The choice of reaction coordinate has to be 
made in a way that minimizes nonadiabatic effects. 

At fixed r,  the solution of the eigenvalue problem in general will be very 
time consuming. It requires knowledge of the potential energy surface, and 
it corresponds to a multidimensional problem. However, in selected cases 
the problem has been solved to a sufficient accuracy such that the 
characteristic features of an accurate SACM treatment can be demonstrated. 

A. Rigid Activated Complexes 

The eigenvalue problem for “rigid activated complexes,” that is, potential 
energy surfaces with pronounced maxima in the forward and the reverse 
direction of the reaction, is common for many direct bimolecular reactions 
of the atom transfer type, isomerization, or complex elimination processes. 
It is of relevance for many ion-molecule reactions involving major 
rearrangements of the collision complex accompanied by the overcoming of 
internal energy barriers. A proper choice of the coordinate system and the 
reaction coordinate here is crucial in order to minimize vibrationally 
nonadiabatic effects. Curvilinear “natural” coordinates have long been 
investigated for this purpose (Hofacker, 1963; Marcus, 1964, 1965). There 
is a great lack of accurate ab initio calculations of the potential in barrier 
ranges of this type. Since the potential governs the eigenvalues problem in 
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a crucial manner, a great deal of ad hoc estimates or parameter fitting is still 
required at this point. However, for selected cases the problem was solved 
such that a guideline is provided. Reaction path methods provide an optimum 
approach (Miller et al., 1980) to the problem. As an example for adiabatic 
channel eigenvalues in the case of a potential that has a very steep 
maximum in the forward and reverse direction, the formaldehyde system 
should be mentioned. Ab initio calculations of activated complex frequencies 
for the elimination process H,CO + H, + CO here are available (Waite et 
al., 1983; Polik et al., 1990; Miller et al., 1990). These calculations show 
dramatic variations of the frequencies along the reaction coordinate. It would 
have been hopeless to estimate these frequencies without knowledge of the 
potential. Even having ab initio calculations of the frequencies in hand, some 
scaling of these frequencies, introducing of anharmonicity corrections, and 
fitting of the potential barrier was required in order to reproduce the very 
detailed experimental results of this system. For this reason, guessing of 
activated complex frequencies vf , of activated complex rotational constants 
At  and B i  (assuming a symmetrical top) and of the barrier height E ,  today 
cannot be avoided. Of course, one should limit the number of fit parameters 
to an absolute minimum and be aware of the ambiguity of the approach. 

Placing the maxima of the adiabatic channel potentials on the top of the 
barrier of the potential energy surface, in this case channel threshold energies 
have to be estimated by 

Equation (3.1) is used in all statistical theories, RRKM, SACM, or rigid TST, 
which all coincide for rigid activated complexes. There is no basic difference 
at this point between neutral or ionic reaction systems. 

B. Isotropic Potentials 

If there is no anisotropic contribution to the interfragment potential between 
two reactants 1 and 2, the adiabatic channel potential curves V ( I )  and the 
corresponding channel threshold energies EOi can very easily be determined. 
In this case, the eigenvalues of the reactants 1 and 2 do not change during 
their approach. Only the isotropic, “radial,” often attractive potential Y a d  ( I )  

and the centrifugal potential E,,,, ( I )  of the rotating reaction complex vary 
with r. In this case: the adiabatic channel potential curves are given by 

where Evibro(,il (1) denotes the complete set of rovibrational states of the 
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reactant 1 (analogous for 2). The position of the channel maxima now 
exclusively depends on Kad(r) + Ecent(r). In the simplest case of a dominant 
electrostatic attraction potential 

and a simple quasidiatomic centrifugal potential 

with the orbital rotational quantum number I ,  the channel potential curves 
have the form 

The maxima of these potentials are located at 

and have the values 

(3.6) 

One should note that, in the case of an ion-dipole potential with n = 2, the 
maxima are located at rOi = 00 as long as 

I ( I  + 1) Q 2p Cz/hZ (3.8) 

having the values 

Otherwise, they are located at roi = 0 with EOi = 00. Equations (3.4) and (3.5) 
and the corresponding results for more complex radial potentials vad(r) form 
the basis of loose activated complex theory, PST, or the Gorin model. The 
Langevin model for ion-induced dipole capture, or the locked-dipole capture 
model are based on Eqs. (3.6)-(3.9) as well, see below. 
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C. Cos 8 Anisotropies for Atom + Linear Reactant Systems 

In the following we assume that the anisotropy of the potential is strong 
enough to lift the degeneracy of the rotational states of the reactants 1 and 
2, but not suffciently strong to modify the vibrational states of 1 and 2. For 
simplicity, we then omit the eigenvalues of these vibrational states 
Evib(l) + EVib(2) in most of the following equations. At first, we consider a 
quasiatomic reactant colliding with a linear species or, in the reverse direction, 
a linear species dissociating into a quasiatomic and a linear fragment. One 
may formulate the Hamiltonian either in a body-fixed or in a space-fixed 
frame. At first, we consider a potential energy surface with a simple cost) 
anisotropy (8=angle between the axis of the linear reactant and the line 
connecting the centres of mass of the reactants). The potential then may be 
represented in the form 

V(r, 8)  = Kad(r) + 3@! [ 1 - cos 81. 
2 

(3.10) 

Here, K a d ( r )  again denotes the radial potential, that is, the potential minimum 
upon variation of 9, and Vo(r) denotes the barrier height of the angular 
potential upon variation of 8. In the field of ion-molecule reactions, the 
simplest potential of the cos8 anisotropy is that of the charge-dipole 
interaction. In this case, the radial potential is directly related to the angular 
barrier by Kad(r) = - V0(r)/2. For simplicity we consider this case in the 
following, but we emphasize that different relations between Kad(r) and Vo(r) 
can also easily be accounted for. 

The Hamiltonian of the system is written as 

(3.1 1) 

with the radial kinetic energy fikin set equal to zero in order to calculate 
adiabatic channel eigenvalues. H,,, corresponds ,to the rotational energy of 
the linear reactant (rotational constant B), L to the relative angular 
momentum. The solution of the eigenvalue problem for small values of the 
ratio V,(r)/B is obtained by second-order perturbation theory (second-order 
Stark effect). For large values of the ratio Vo(r)/B, anharmonic oscillator 
expansions can be used, the intermediate range is bridged by numerical 
matrix diagonalizations. 

The appropriate correlation diagrams for the transition from free rotor 
through weakly perturbed rotor to anharmonic oscillator states have been 
derived by Nikitin and Troe (1990). In the range of perturbed rotor states, 
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the good quantum numbers are the total angular momentum J ,  the linear 
rotor angular momentum j, and, if one neglects the Coriolis interaction, the 
projection R of j on the line connecting the centers of mass. 2’ has also 
off-diagonal matrix elements in Q which connect different by Coriolis 
coupling. This contribution has been evaluated numerically and, for special 
cases, analytically (Nikitin and Troe, 1990; Turulski and Niedzielski, 1990). 
It was found to be negligible as far as rate constants are concerned. However, 
it influences the distribution of R sublevels of j, for example, the orientation 
of diatomic fragments in triatomic dissociation systems (Dashevskaya et al., 
1990). 

In the present work we neglect Coriolis coupling, emphasizing, however, 
the possibility of its simple quantitative estimate. Without going into the 
finer details of accurate adiabatic channel calculations (Nikitin and Troe, 
1990), we only retain the leading contributions. For sufficiently large 1 (with 
1 z J ) ,  in the perturbed rotor range one obtains (for the charge-linear dipole 
case) 

with 
3R2 - j( j + 1)  

j ( j +  1)(2j- 1)(2j+3) 
F(j ,R)  = 

(3.12) 

(3.13) 

and F(0,O) = 1/3. The coeffcient of the next term of the series, a V: term, is 
also known analytically (Wollrab, 1967; Troe, 1989). In the anharmonic 
oscillator range, the channel potential curves approach 

+(Q2+2(Rlj-2j2 + lRl-Zj-2)B/4. (3.14) 

The coefficient of the next term (a V;”’ term) again is known analytically 
(Wollrab, 1967; Troe, 1989). The intermediate range is conveniently bridged 
by numerical matrix inversion (Shirley, 1963). An analytical switching 
approximation has also been proposed (Troe et al., 1991) that indicates at 
which r one has to switch from the perturbed rotor expansions V(r) to the 
anharmonic oscillator expansions Vm (I). Replacing the r dependence by the 
reduced parameter 1 = V0(r)/2B, the expressions for VP(r) should be used at 
1 < A x ,  where the switching value Ax of 1 is given by 

Ax sz 1.6j2 + 1.8. (3.15) 
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For the charge-dipole potential [with Kad(r) /B = -1 and Vo(r)/2B = 1, 
omitting the centrifugal energy], for example, for the lowest channel 
( j ,  R) = (0,O) one has the following analytical approximation: 

V: /B% -1’/6+ 11A4/1080-9.03 x lOP4A6, (3.16) 

For the ( j ,  t2) = (1,O) channel, one has 

V; /B  z 2 + 1 2 / 1 0  - 7314/7000 + 5.8 x 10-426, (3.18) 

V“B = - A  + 3 f i a  - 3/2 - 9/(16J2;1) - 0.736/~, (3.19) 

and, for the (j,R) = (1, f 1) channels, one has 

V,?/B z -11 + 2 @  - 1/2 - 1/(16&) + 0364/A. (3.21) 

Equations (3.16)-(3.21) are accurate to better than about 1%. They can easily 
be transformed to situations where the radial potential K a d  differs from 
Kad/B = - 1. Similar expressions for higher channels are also available (Troe 
et al., 1991). 

We illustrate the adiabtic channel potential curves for the charge-linear 
dipole interaction (i.e., Kad = - V0/2)  in Figs. 1-4 (neglecting the appearance 
of avoided crossings because of symmetry restrictions). Figure 1 shows the 
lowest channel curves in the absence of centrifugal energy. The channels with 
IRJ = j are purely attractive, the channels with R = 0 (and small IRI for larger 
j )  have maxima at  varying values of 1, that is, varying values of r. Obviously, 
each channel has its individual activated complex, placed at quite different 
distances rl .  Variational procedures in TST, therefore, can only try to identify 
an “average position” of rt .  Because of the wide range of r x  values, variational 
TST will in general not lead to the same results as SACM. Depending on 
the sign of F(j ,R) from Eq. (3.13), at large r (or small A), the channels are 
either attractive or repulsive. With increasing j ,  the fraction of attractive 
channels decreases from 1 to about 1/3, see Fig. 2. 

The presence of overall rotation of the system ( J  >> 1) adds the centrifugal 
energy Ecent(r) to the channel potential curves y ( r ) .  Figure 3 shows the result 
for the ( j ,  0) = (0,O) channel. Centrifugal barriers arise, which strongly modify 
the activated complex positions rl for the attractive channels, whereas r* 
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Figure 1. Adiabatic channel potential curves for charge-linear dipole interactions (orbital 

rotational quantum number I = 0,1= qpD/Br2). 
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Figure 2. Fraction f,,,,, of attractive adiabatic channel potential curves for charge-linear 

dipole interactions ( I  = 0). 
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Am- 

Figure 3. Dependence of the adiabatic channel potential curve for ( j , Q )  = (0,O) on orbital 
angular momentum [G  = / ( I +  l)h2/2pqp,]. 

varies much less for the repulsive channels. Whereas channel maxima in 
Figs. 1 and 3 are located in the range A < 100, for repulsive channels with 
higher j values they move into the range I >  100. Figure 4 shows channel 
potential curves with large j values, again calculated by matrix inversion. 

The question arises where, with increasing ;1 at the channel maxima and 
decreasing r t ,  the range of the electrostatic multiple potential is left. Ab initio 
calculations of potential energy surfaces show that the multipole long-range 
potentials dominate at r values larger than about 3-8A (see, e.g., Troe, 
1986, Lester, 1972; Kutzelnigg et al., 1973, Harding, 1989, 1990), whereas 
valence forces take over at small r. We, therefore, estimate the r values that 
correspond to a given A value. As a typical example, we choose the H l  + HCN 
charge-dipole system characterized by a rotational constant of B/hc = 
1.48 cm- and a dipole moment p D  = 2.98 D for HCN. In the charge-dipole 
case one has 

( q  = elementary charge), such that r % 70A for A =  100. At I = 10,000 and 
r = 7 A, one therefore leaves the range of applicability of the charge-dipole 
potential. Figures 1, 3, and 4 show when this is going to happen. Then, the 
actual radial potential Yad(r) and the anisotropy barrier V,(r) may be 
introduced into the relations for the adiabatic channel potential curves such 
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\ 

Figure 4. As Fig. 1, for ( j , Q  = (30,0), (30, lo), (30,20), and (30,30). 

as before. Finally, the oscillator range of the complex with its BEBO-type 
channel pattern and different types of anisotropy of the potential is reached. 

The appearance of a charge-induced dipole contribution, in addition to 
the charge-permanent dipole interaction considered before, to the radial 
potential is easily accounted for, since only Vrad(r) but not V&) has to be 
modified. Figures 1, 3, and 4 then are simply changed by the addition of a 
j-independent charge-induced dipole term. Of course, the positions of the 
channel maxima will change. According to Eq. (3.22), for a given value 
of 2, smaller I values are obtained for molecules with smaller pD and larger 
B. For instance, HCl instead of HCN has B/hc = 10.6 cm-' and pD = 1.08D. 
Figure 5 shows adiabatic channel potential curves which, already for j = 5, 
have channel maxima approaching the range of valence forces. 

Figure 6 shows the threshold energies EOi of the lowest attractive channels 
of the charge-linear dipole system as a function of the overall angular 
momentum; Fig. 7 gives the corresponding EOi for repulsive channels. Some 
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Figure 5. Adiabatic channel potential curves for charge-HCI interaction (from Markovic, 
1989). 
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Figure 6. Adiabatic channel threshold energies for charge-linear dipole interactions 
(a = perturbed rotor limit, b = accurate, c = oscillator limit). 
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(a = 

Figure 7. As Fig. 6, for repulsive channels 
oscillator limit, b = accurate). G- 

higher channels are illustrated in Figs. 8 and 9. The accurate values (curves b) 
are compared with perturbed rotor and anharmonic oscillator approxima- 
tions (curves a and c), which can be derived analytically from Eqs. (3.12)- 
(3.14). One has (Troe, 1987) 

(3.23) 

in the perturbed rotor approximation (charge-linear permanent + induced 
dipole, polarizability a, dipole moment p D ,  reduced mass p, J 
u, where G is given by 

1 >>j) 

and for the anharmonic oscillator approximation 

E , ~ F z B { ( ~ ~ - I Q ~ +  1)’/(2[1 -G])+(R2+2101j-2j2+101-2j-2)/4}.  

(3.25) 

One notes that Eqs. (3.23)-3.25) are relevant for attractive channels, 
whereas only Eqs. (3.24) and (3.25) apply to repulsive channels. One realizes 
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Figure 8. As Fig. 6, for higher channels 

easily that perturbed rotor and anharmonic oscillator ranges both contribute. 
Rate constant calculations based purely on perturbation treatments 
(Turulski and Niedzielski, 1990), therefore, will fail at higher temperatures. 
One also notes that the channel threshold energies cannot be separated into 
the sum of a centrifugal barrier of the type of Eq. (3.7) and a (j,R)-dependent 
term. Therefore, averaging over large ranges o f j  and R, such as required in 
rate constant calculations, can only be done by numerical techniques. The 
analytical channel eigenvalues approximations of Eqs. (3.12)-(3.21), however, 
simplify this procedure. The results agree with the accurate calculations to 
an excellent degree, because switching errors between perturbed rotor and 
anharmonic oscillator expressions are averaged out. 

D. Cos 0 Anisotropies for Atom + Symmetric Top Reactant Systems 

If, instead of an atom + linear reactant system, an atom + symmetric top 
system is considered, the techniques of Section 1II.C can be extended. The 
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Figure 9. As Fig. 6, for higher channels. 

perturbed rotor expansion of Eq. (3.12) now is modified by replacing Bj(j  + 1) 
by the free symmetric top energy levels Bj(j + 1)  + (A - B)kZ (with k 5 j). 
The coefficient F(j,R) of Eq. (3.13) is replaced by 

(3.26) 
[(j+ 1)’-k2][(j+ 1)z-i12] - ( j 2 - k z ) ( j 2 - 0 2 )  

F ( j ,  Q, k) = 
(j + 1)3(2j + 1)(2j + 3) j3(2j - 1)(2j + 1)  

and a term - V0(r)kR/2j(j + 1) is added, whereas the anharmonic oscillator 
expansion of Eq. (3.14) takes the form 

J(J + 1)hZ 
V,m(r) z 2 p 2  + Vrad(r) + (2j - IQ + kl + 1)dm; (3.27) 

see Peter and Strandberg (1957), Shirley (1963), and Troe (1987). Tabulated 
eigenvalues up to j = 4 are available (Shirley, 1963). Possibly, the switching 
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condition of Eq. (3.15) can be extended to this case as well. In any case, the 
limiting channel threshold energy expressions of Eqs. (3.23)-(3.25) can be 
directly transferred to this case by replacing F(j,R) in Eq. (2.23) and IRI in 
Eq. (3.25). 

E. Cos’ 0 Anisotropies for Atom + Linear Reactant Systems 

Charge-quadrupole interactions are characterized by cos’ 0 anisotropies. 
Adiabatic channel potential curves for this case have been elaborated to 
much smaller extent (Troe, 1987). However, in principle, the necessary 
derivations are all available. The eigenvalue problem here corresponds to 
that of the spherical wave equation. Perturbed rotor and anharmonic 
oscillator eigenvalue expansions here are available in analytical form 
(Abramovitz and Stegun, 1965). Also complete tabulations for small j have 
been published. Numerical matrix inversions obviously can also be performed 
easily. We do not discuss this case in further detail in the following, partly 
because the approach would be quite analogous to Section III.C, but also 
because the detailed relationships have not yet been elaborated (for some 
results, see Troe (1987). 

F. Nonadiabatic Effects 

In order to estimate quantitatively the validity of statistical adiabatic channel 
calculations, an estimate of nonadiabatic “channel-hopping’’ probabilities is 
required. This can be obtained by the use of the well-developed general 
theory of nonadiabatic processes (see, e.g., Nikitin and Umanski, 1984). One 
may distinguish various types of nonadiabaticity: (1) Coriolis coupling mixing 
adjacent R channels; (2) nonadiabatic coupling at curve crossings or 
pseudocrossings (Landau-Zener nonadiabaticity); and (3) nonadiabatic 
transitions between distant channels (global nonadiabaticity). Because 
Coriolis mixing becomes important only when the channels are very close 
to each other at large r, channels barriers probably are not avoided by this 
effect (Dashevskaya et al., 1990). We, therefore, do not consider this type of 
nonadiabaticity in the following. Global nonadiabaticity sets in when the 
Massey parameter 5 falls below about 3, where 

5 = A Vi(r/hu). (3.28) 

Here AVi is the energy difference of the channels between which the transition 
is to occur, r is the corresponding distance between the reactants, and u is 
the relative velocity. Transitions in the range of the channel maxima are 
most relevant. Identifying Vi with 2B and r with IO-lOOA, one estimates 
that “global” nonadiabaticity in general sets in only at collision energies 
exceeding several 1000cm- (see also Maergoiz et al., 1991). Landau-Zener 
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“accidental” nonadiabaticity can be more important, such as elaborated in 
detail for dipole-dipole collisions (Maergoiz et al., 1991). However, Fig. 1 
shows that the corresponding by-passing of the channel threshold energies 
nevertheless will be a relatively rare event in the lowest channels. We, 
therefore, assume that adiabatic treatments of ion-molecule capture rate 
constants in the thermal range are not markedly influenced by nonadiabatic 
effects such that SACM gives accurate results. 

IV. CAPTURE RATE CONSTANTS AND CROSS-SECTIONS 

Having discussed adiabatic channel potential curves Vi(r)  and the 
corresponding adiabatic channel threshold energies EOi ,  one may directly 
proceed to the calculation of capture rate constants and cross sections. The 
general treatment of complex-forming bimolecular reactions also requires 
the determination of numbers of open channels, which will be presented in 
the next section. At first we consider purely isotropic potentials where the 
rate constants correspond to those of loose activated complex theory 
including Langevin and locked dipole expressions. Afterward we discuss 
“rigidity effects” due to anisotropies of the potential. 

A. Isotropic Potentials 

In the case of isotropic, “loose” potentials the reactant rovibrational energy 
levels Evibrot,il( 1) + Evibrot,i2(2) are r independent additive terms in the adia- 
batic channel potential curves Vi(r)  and the threshold energies Eoi. 
Therefore, their contributions cancel in capture rate constant calculations, 
that is, Qvibroi,l Qvibrot,2 in Eq. (2.9) cancells against 
and integral over W(E, J ,  a) exp ( - E / k T )  such that 

QLi, kcap - k’( h2 >” 
h 2npkT 

the corresponding sum 

(4.1) 

with the centrifugal partition function 

m 

For a charge-permanent + induced dipole potential (omitting the aniso- 
tropy) 

V(r,  0) = - qpD/r2 - qa/2r4 (4.3) 

the centrifugal maxima Eo(l) then are equal to zero for 
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and equal to 

otherwise. Because large ranges of I are relevant under all practical conditions, 
the sum in Eq. (4.2) can be replaced by an integral such that the result 

is obtained. Combining this with Eq. (4.1) leads to 

The first term is identical with the Langevin capture rate constant, the second 
with the "locked-dipole'' rate constant. Equation (4.7) and its derivation, 
thus, demonstrate the identity between simple ion-molecule capture theories 
and loose transition state or phase-space theory (Troe, 1985). 

Quite analogously, charge-locked quadrupole capture rate constants are 
calculated with the radial potential 

(Q = quadrupole moment). Centrifugal maxima now are equal to 

2qQ / ( I +  l )h2 

Eo(1)=27( pqQ ) 
The corresponding centrifugal partition function follows 

c r( 4 / 3 )  (27k Tp3q * Q ' /2h6)  l3  

(4.9) 

as 

(4.10) 

such that the charge-locked quadrupole capture rate constant is equal to 

k T  2nh2 3/2 27kTp3q2Q2 
k"P=--(--) h p k T  r ( 4 / 3 ) (  2h6 ) . (4.1 1) 
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For radial potentials with sums of several multipole components, in general 
no analytical expressions for charge-locked multipole capture rate contants 
are obtained. However, their numerical treatment by analogy to the foregoing 
procedure is trivial. 

The calculation of cross sections for locked-multipole capture is likewise 
simple. Because the contributions of different a states in Eq. (2.5) cancel, one 
has 

whre I,,, is that value of 1 for which E, = Eo(l), that is, for which E, is still 
sufficient to overcome the centrifugal barrier. For the locked-dipole case, this 
leads to 

oCap(Et) = w d E t  + w & a / E t ,  

for the locked-quadrupole case, to 

(4.13) 

(4.14) 

B. Anisotropic Charge-Linear Dipole Potentials 

The anisotropy of the potential introduces “rigidity” (in the language of TST) 
and leads to a reduction of the capture rate constants from Section IVB 
through an increase of the channel threshold energies Eoi.  This effect can be 
represented by a “rigidity factor” frigid (smaller than unity) to be multiplied 
with the corresponding rate expression from phase-space theory (or loose 
TST), see Cobos and Troe (1985). Su and Bowers (1973) expressed this 
phenomenon by a dipole-locking constant C (smaller than unity), which was 
multiplied with the second term at the r.h.s. of Eq. (4.7). For a = 0, frigid and 
C coincide. The average dipole orientation (ADO) method for calculating C 
(Su and Bowers, 1973, 1975; Su et al., 1978) led to capture rate contants that 
are somewhat lower than SACM or classical trajectory results (Su and 
Chesnavich, 1982; Troe, 1985). Today the ADO model, therefore, is 
superseded by the latter methods. There are also a series of other models 
with simplifying assumptions about the extent of locking, which differ from 
SACM or trajectory calculations and are, therefore, not considered here. 

In the following we determine capture rate constants and cross-sections 
for the charge-linear dipole case and obtain rigidity factors or dipole-locking 
constants by comparison with the results of Section IV B. At first, we consider 
limiting low temperature results. For state-resolved capture rate constants, 
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one has 

with (at J w I >> 1) 

(4.15) 

(4.16) 

where EOOn denotes the energy of state n for separated reactants. For attractive 
channels, Eq. (3.23) applies such that, by integration over G, 

k F ~ ~ ( T + 0 ) = 2 n q f l p + p ~ F ( j , R ) / 3 p B  (4.17) 

is obtained. For repulsive channels [i.e., F( j ,  R) < 01, at T -r 0 the capture 
rate constants approach zero because of nonvanishing barrier heights for 
these channels (at 1 = 0). 

The result of Eq. (4.17) is remarkable in the sense that it removes the 
divergence of the charge-locked dipole capture rate constant of Eq. (4.7) at 
T - r  0. This is due to the modification of the r - 2  radial potential by the added 
adiabatic zero point energy of the anisotropy-induced hindered rotation of 
the reactants relative to each other. At the same time the corresponding 
rigidity factor frigid( T -r 0) and dipole locking constant C( T + 0) go to zero. 

Next, we consider limiting high-temperature results for the charge-linear 
permanent dipole case. With increasing collision energies and angular 
momenta, all channel threshold energies Eoi(C) now approach the results 
given by the harmonic oscillator approximation of Eq. (3.25). In this case, 
the calculation of the overall capture rate constant 

312 Q* 

kCap(kT >> B) = ~ ~ ~ ‘:( ZnhrkT) k T / B  

with an “activated complex” partition function 

again is straightforward, leading to 

(4.18) 

(4.19) 

Q* z 1 vdu 1 dG exp ( - v 2 B  ) (4.20) 
h 2 ( 1  - G)kT 
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and. hence. 

(4.21) 

One should note that Eq. (4.20) contains the degeneracy factor 
gV,[ = gu.gl = 421 + 1) because the bending oscillator of the linear complex 
is doubly degenerate. k c a p  follows as 

kCap(kT >> B )  = n q p D , / ' m  (4.22) 

such that a high-temperature limiting rigidity factor 

f r i g i d  = 1/2 (4.23) 

arises. Equation (4.23) also follows from more general considerations (Troe, 
1989), which are not limited to the charge-dipole potential but to arbitrary 
potentials for which the anisotropy barrier V,(r) is proportional to the radial 
potential Vrad(r). Not all of these cases can be treated analytically such as 
the charge-dipole problem, but the numerical solution is also straightforward. 
The charge-quadrupole case, for example, has to be treated numerically. 

After considering limiting low- and high-temperature rate constants for 
charge-linear dipole capture, we now proceed to intermediate temperature 
conditions. Approximate analytical solutions were discussed by Troe ( 1  987a). 
However, accurate numerical adiabatic channel calculations or numerical 
calculations, based on the sufficiently accurate approximate eigenvalue 
expressions of Section III.C, are also feasible relatively easily. We express 
the result in terms of the rigidity factor frigid = kcaP(T)/kr:f(T), where the 
capture rate constant for the isotropic potential kr:f is given by Eq. (4.7). The 
numerical result is shown in Fig. 10. The given curve can be approximated 
empirically by 

frigid z 0.5[1 - exp( - (1 + 5nkT/3B)J4?tkT/3B)].  (4.24) 

Our results shown in Fig. 10 agree quantitatively with results by Markovic 
(1989). 

It appears important to note a yet unexplained discrepancy between the 
SACM results of Fig. 10 and classical trajectory calculations. The analytical 
representation of the trajectory results by Su and Chesnavich (1982) gave 

kcap z 2nqfi(0.62 + 0 . 3 3 7 1 y m T )  for kT/B < y2/8, 

kcap z 2nqfi(0.9754 + 0.19[yJB/kT + 0.71981') for kT/B > y2/8, 
(4.25) 
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Figure 10. Rigidity factors of thermal charge-linear dipole capture rate constants [example 
H i  + HCN, solid line: SACM, eq. (4.24), dashed line: classical trajectory results by Su and 
Chesnavich (1982), and Markovic and Nordholm (1989b)l. 

where y = pD/@. For ci + 0, this corresponds to a temperature-independent 
rigidity factor frigid = 0.422. This result has been reproduced in classical 
trajectory calculations by Markovic and Nordholm (1989b), which seems to 
rule out numerical artifacts. Therefore, the discrepancy between the trajectory 
result and the high-temperature SACM limit frigid = 0.5 from Eq. (4.23) waits 
for an explanation. The low-temperature drop of frigid from SACM is 
clearly a quantum effect not accounted for by classical trajectory calculations. 

In reality, at high temperatures the short-range components of the 
potential become increasingly important. Figure 1 1 compares SACM, 
classical trajectory, and ACCSA quantum-scattering calculations with 
experimental results for the H: + HCN reaction. In the range of the SIFT 
measurements, the agreement between all approaches is better than 10%. 
The mentioned 20% discrepancy between SACM and classical trajectory 
calculations for the pure charge-permanent dipole case looses its importance 
because the charge-induced dipole contribution starts to dominate at these 
relatively high temperatures. Figure 1 1  also documents the failure of the old 
ADO approach. Although being not completely accurate in the charge- 
permanent + induced dipole case (neglected coupling), Eq. (4.7) with the 
second term multiplied by the rigidity factor (or dipole locking constant) 
from Eq. (4.24) today probably provides the most reliable (and quickest) 
prediction of charge-dipole capture rates. 

The discrepancy between SACM and classical trajectory calculations at 
kT< B is not unexpected because the latter method neglects quantum effects. 
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Figure 11. Thermal rate constants for the reaction H: + HCN-H, + H2CN+ [l: phase 
space theory, C = dipole locking constant = 1; 2: classical trajectory calculations, from Su and 
Chesnavich (1982); 3: SACM, from Troe (1987a); 4 ACCSA calculations by Clary (1984, 1985); 
5: ADO results, from Su and Bowers (1973, 1975); 6 SIFT experiments from Clary et al. (1985); 
7: Langevin rate constant, C = 0). 

However, at the lowest temperatures one also notes a discrepancy between 
SACM and ACCSA quantum scattering calculations. This becomes even 
more pronounced if state-resolved rate constants are considered (Troe, 1987, 
Dubernet and McCarroll, 1989). Figure 12 compares adiabatic rotational 
state rate constants forj = 0 and j = 1, which are identical with SACM results, 
for the reaction H: + HCl with ACCSA results. Since the ACCSA results 
even exceed the low-temperature SACM result of Eq. (4.17), one has to 
conclude that there is a low-temperature artifact of the ACCSA approximation. 
It appears also worth noting the shallow rate constant minimum near 5 K 
of the kcap( j=  1) curve. This is due (Troe, 1987a) to the maximum of the 
(j, Q) = (1,O) adiabatic channel potential curve whereas the (1, f 1) curves are 
purely attractive. 

We briefly also look on the effect of anisotropy on the capture cross 
sections elaborated in Eqs. (4.12)-(4.14) for isotropic potentials. Again, the 
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Figure 12. State-resolved thermal capture rate constants for charge + HCI interaction [solid 
lines: adiabatic rotational state calculations from Dubernet and McCarroll (1989) in agreement 
with SACM calculations; discrete points: ACCSA results from Clary (1984, 1985)l. 

anisotropy effects reducing the cross sections are largest at low collision 
energies where only the attractive channels contribute. Evaluating Eq. (4.12) 
with lmax(E,) obtained by inversion of Eq. (3.23) gives 

(4.26) 

which, for the isotropic charge-induced dipole case, agrees with Eq. (4.13) 
and, for the charge-permanent dipole case, gives 

acap( E,  = 0) = x q p J 2 F ( j ,  SZ)/(E,B). (4.27) 

The Er- divergence at E,  + 0 is, thus, replaced by an Er- l i 2  divergence. Cross 
sections for high temperatures can be elaborated in a similar fashion. An 
energy-independent rigidity factor jrigid(Ef) % 1/2 arises. A comparison with 
the classical trajectory results by Bei et al. (1989) is also illustrative, confirming 
conclusions from the earlier discussion of rate constant results. The availability 
of reliable experimental ion-molecule reaction rate contants, in particular 
at low (see Rebrion et al., 1988) and very low (Mazely and Smith 1988; see 
also rigorous quantum-scattering calculations by Sakimoto, 1989) temper- 
atures, allows for meaningful comparisons with theory. We do not give 
such a comparison here. However, we note some particularly typical aspects. 
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Often the experimental data fall below the theoretical capture calculations. 
This can be explained by redissociation without reaction of the collision 
complex (see Section V). An extreme example of this type can be encountered 
with open-shell systems where several different electronic states correlate 
with the separated reactants. It has been argued (Troe, 1988) for neutral 
reaction systems, such as 0 + OH + HO: + 0, + H, that only the lowest 
bonding of the potential energy surfaces lead to reaction and that higher 
surfaces do not contribute at all. Similar behavior might also be observed 
for reactions of open-shell ions (Clary et al., 1990). A quantitative estimate 
of the nature (attractive or repulsive at short ranges) of the electronic surfaces 
involved requires quantum-chemical calculations. For collisions of C + ions, 
2/3 of the electronic states correlating with C+  were calculated by Clary et al. 
(1990) to be attractive whereas for N +  ions a ratio of 1/3 was obtained. More 
work in this field needs to be done. 

C. Anisotropic Charge-Nonlinear Dipole Potentials 

The treatment of charge-nonlinear dipole capture follows on the same lines 
as that given for the charge-linear dipole case. However, the calculations 
become more complicated due to the higher dimensionality of the eigenvalue 
problem involved. The charge + symmetric top dipole case has been 
elaborated in detail in the past, adiabatic channel potential curves were 
discussed in Section I11 D where analytical expressions were given for the 
limiting perturbed rotor and harmonic oscillator ranges. 

In the following, at first, we consider the symmetric top case. With the 
channel potential curves of Section 111 D, the channel threshold energies can 
easily be derived. In the perturbed rotor limit, they are equal to 

EOi = Bj( j + 1) + (A - B)k2 (4.28) 

as long as k R  2 0 (with 0 < k < j )  and 

41 + 1) < ( 2 p q p D / h 2 ) k R / j (  j + 1 ) .  (4.29) 

For kR 0 and Z(1+ 1) different from Eq. (4.29), they are 

(4.30) 
B[G - k R / j (  j + l)], 
~ C W ,  Q, k )  + EW&I' 

EOi % B j ( j  + 1) + ( A  - B ) k ,  + 

Where the harmonic oscillator limit is approached, that is, at large I or for 
repulsive channels (kR < 0), one has 

Eoi z B(2j- (R + k (  + 1)'/2(1 - G). (4.3 1) 
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Obviously, for k = 0, all results from the charge-linear dipole case are repro- 
duced. For k # 0, different relationships are obtained. The repulsive channels 
kSZ < 0 do not contribute to the capture rate constants in the low temperature 
limit. For the attractive channels with kC2 > 0, where Eqs. (4.28) and (4.29) 
dominate, with these equations alone one would obtain 

kf$”,( T + 0) = 2xqp, J m k S Z / j (  j + 1). (4.32) 

One notes a divergence of Pp, which, however, is removed in further thermal 
averaging. Since kSZ/j(j + 1) also corresponds to the important top orientation 
parameter ( cos’ 0)  (Bernstein and Levine, 1988), important state-specific 
orientation effects are predicted. Specific examples are given by Morgan and 
Bates (1987), Clary (1987b), Troe (1987a), and others. In high-temperature 
thermal averaging, the state-specific effects are completely washed out and 
the limiting high-temperature results of the charge-linear dipole case are 
approached. 

State-specific effects become even more pronounced for the general 
charge-asymmetric top dipole case. A few sufficiently detailed treatments are 
now available such as the charge + H,O calculations by Sakimoto (1982) 
and the N +  + H,O calculations by Dubernet and McCarroll (1990). The 
latter work, in particular, discusses under which conditions the asymmetric 
top can be replaced by an average symmetric top. Figure 13 illustrates the 

5 -  
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Figure 13. State-resolved thermal capture rate constants for the reaction N +  + H,O (from 
Dubernet and McCarroll, 1990). 
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strong state-specificity at low temperatures. Because of the repulsive character 
of some channel potential curves, the corresponding rate constants become 
very small at T-OK. Near to 300K, the state specificity is nearly lost. 

V. BIMOLECULAR ION-MOLECULE REACTIONS WITH 
REDISSOCIATING COLLISION COMPLEXES 

If two reactants have formed a collision complex, which proceeds without 
redissociation toward the products, one has the capture situation discussed 
in Section IV. If there is redissociation, the reduction of the rate below the 
capture value is governed by the competition between unimolecular processes 
of the complex, forward-reaction and redissocation, such as discussed in 
Section 11. A detailed description of this dynamics requires the (generally 
not available) knowledge of the complete potential energy surface. Therefore, 
in the following, we only can give illustrative examples for possible 
"scenarios." We first briefly discuss number of open channels W(E,J)  and 
the corresponding specific rate constants. Afterward, the reaction yields 
W(E, J ,  b)/W(E, J )  in Eqs. (2.4), (2.6), and (2.8) are considered and implemented 
in the overall rate parameters. 

A. Specific Rate Constants for Rigid Activated Complexes 

If there are pronounced barriers in the forward and reverse direction for 
rearrangement of the complex, the channel threshold energies of rigid 
activated complexes of Section I11 A are relevant and standard rigid activated 
complex theory applies. W(E, J )  is then determined by accurate state counting 
following the Beyer-Swinehart routine (Stein and Rabinovitch, 1973; Astholz 
et al., 1979). The J dependence also has to be accounted for (see Troe, 1984). 
The possibility of convoluting low-frequency, nearly classical modes with 
high-frequency harmonic oscillators (Astholz et al., 1979, see appendix of 
this reference) should particularly be mentioned. A counting procedure 
analogous to that for W(E, J )  leads to the density of states p(E, J )  and, hence, 
with Eq. (2.10), to the specific rate constants k(E ,J ) .  Because the formalism 
is completely routine today, we do not go into the details, but we emphasize 
that the treatment remains as uncertain as the activated complex parameters 
in reality are. 

One interesting, perhaps hypothetical, case deserves particular attention. 
One may imagine that a weakly bound complex is formed, which either 
redissociates or rearranges over a mild barrier involving only few low- 
frequency oscillators, whereas the majority of high-frequency skeleton 
oscillators of the complex are energetically practically not accessible. In this 
case, W(E, J ) ,  omitting convolution with the high-frequency modes, is given by 
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+ J  

W(E,J )x  W S ( E - E , , ( J ) - ( A X - B f ) K 2 ) ,  for E - E , ( J )  > (AX-Bf )K2 ,  

and 

K = - J  

( 5 4  

+ Kmax 

W(E,  J )  z 1 W ~ ( E  - E,,(J) - ( ~ f  - E ~ ) K ~ )  (52)  
K = - Kmax 

otherwise, with E - E,,(J)  x ( A f  - Bt)KL,,, and with the activated complex 
parameters such as explained in Section 111. A, and E,, denoting the threshold 
energy of the process. Equation (5.1) and (5.2) may be relevant in relation to 
the corresponding expressions for a redissociation of the loose bond fission 
type. 

B. Specific Rate Constants for Loose Activated Complexes 

For simple bond fissions, in general, numbers of open channels for loose 
rotor-type coordinates have to be convoluted with those for rigid skeleton 
vibrations. The convolution procedure is as mentioned in the previous section 
(Astholz et al., 1979). We, therefore, only have to consider expressions for 
W(E, J )  for the loose coordinates with the various possible reactant 
combinations. 

With an isotropic interaction potential, this problem has been solved by 
phase-space theory. We summarize the results in the following, as far as 
analytical results have been derived (Chesnavich and Bowers, 1978; Troe, 
1983). For an atom + linear reactant pair, one has (partly in classical form) 

W ( E , J )  x (25 + 1) x Jm - J 2  for 0 6 J 6 ,/- (5 .3 )  

For an atom + spherical top reactant pair, one has 

W(E, J )  x (25 + 1)(E - E,JB - 4J3/3 for 0 d J d 4- (5 .5 )  

and 

For a linear +linear reactant pair, only the limiting low-J and high-J 
expressions have been elaborated analytically. One has for small J 
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and 

W(E, J )  % ( E  - EOa)’/2B, B, for large J .  (5.8) 

A plausible extension of Eqs. (5.3)-(5.6) would be the use of Eq. (5.8) 
at J>,,,/(E-EE,,)/JB,B,; and the use of Eq. (5.7) for smaller J ,  sub- 
tracting a suitable term from the r.h.s. such that Eq. (5.8) is met at  

Likewise, for linear (B,)  + spherical top (B,) reactants, one has for small J 
J = J ( E  - E,,)/,/B, B,. 

and 

W(E, J )  = 8 ( E  - E0a)5~Z/15B1B~/2 (5.10) 

for large J .  Again, the transition between the low-J and high4 expressions 
can be approximated like for the linear + linear case and in analogy to 
Eqs. (5.3) and (5.4). The corresponding expressions for spherical 
top + spherical top reactants are, for small J ,  

W(E, J )  = (25 + 1)8(E - E0,)5’2/[  1 5B, B ,  ,,/-I (5.1 1 )  

and, for large J ,  

W(E,J) % (E - E0,)3/6B~’2B:’2. (5.12) 

The anisotropy of the potential leads to a reduction of the W(E, J )  below 
the PST expressions of Eqs. (5.3)-(5.12). This effect has not yet been elaborated 
in detail by rigorous SACM calculations. However, the trends of these rigidity 
effects can already be recognized. At energies close to the threshold energy, 
due to the large fraction of loose adiabatic channel potential curves such as 
illustrated in Fig. 2 for the charge + linear reactant case, the W(E, J )  curves 
follow the PST results of Eqs. (5.3)-(5.12). With increasing energy, however, 
they fall below this result such as observed experimentally in some cases and 
interpreted in the present way (Troe, 1988, 1989). If the potential energy 
surface with decreasing r would keep its long-range character, W(E, J )  would 
be reduced by an energy-independent rigidity factor frigid(E, J ) .  However, 
a short-range increase of the anisotropy could result in an increasing drop 
below the PST result at increasing energy. Since this effect needs a more 
careful elaboration, we do not go into further details here. 
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We repeat that the numbers of open channels from Eqs. (5.3)-(5.12), with 
the mentioned rigidity corrections, in general have to be convoluted with 
harmonic oscillator contributions corresponding to the vibrations of the 
separated reactants. 

C. Reaction Yields for Vibrational and Rotational Channel Switching 

In the following we consider some examples of potential energy surfaces that 
can lead to strong deviations of the ion-molecule reaction rate constants 
from the capture rates discussed in Section IV. For instance, we consider 
the loose entrance/rigid exit potential suggested to apply to the 
CH, + 0: + H  + CH,O,H+ reaction (Barlow et al., 1986); see Fig. 14. 
CH, + 0; capture is characterized by W(E, J ,  a), reorganization of the 
CH,.O; complex to C H 3 0 2 H +  is characterized by W(E,J,b).  The value of 
the energy gap AEg = E,, - EOa here is of crucial importance. It sensitively 
enters the yields ratio W(E, J ,  b)/W(E, J )  and thus governs the experimental 
rate constant. Depending on the value of AEg, one may have stronger or 
weaker negative temperature coefficients of the rate constant, or rate constant 
minima may appear. Figure 15 gives an example for this behavior. 

There are essentially two mechanism that can be responsible for the 
mentioned effects such as the rate constant minima shown in Fig. 15: 
vibrational channel switching and rotational channel switching (Troe, 1987b). 
In rotational channel switching, the threshold energies E ,  for the entrance 
[E , , (J ) ] ,  and the exit [E , , (J ) ]  channels may show different J dependences. 
Quite generally, a rigid activated complex will have a stronger J dependence 

Reoc tion coordi note 

Figure 14. Schematic representation of the potential diagram for the reaction 
CH, + 0; + H  + CH,O,H+. 
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T / K  - 
Figure 15. Experimental rate constants for the reaction CH, + 0; + H  + CH,O,H+ 

(upper points) and CD, + 0, + D  + C D 2 0 2 D f  (lower points) from Barlow et al. (1986). 

of Eo(J)  than a loose activated complex. Figure 16 gives an example for the 
CH,+ 0; reaction, assuming EOa(J)  to be dominated by an isotropic 
charge-induced dipole interaction 

EOa(J)  x h4[J(J + 1)]2/(8p2aq2) (5.13) 

and assuming Eob(J) to be given by 

where C, corresponds to the rotational constant of a rigid activated complex, 
which is probably close to that of the CH,O; collision complex. At a certain 
J value depending on the magnitude of AEg,  there is a “rotational channel 
switching that is, Eob(J)  exceeds E,,(J),  although E,,(J = 0) < E,,(J = 0). As 
a consequence, there is an increasing amount of redissociation of the complex 
with increasing J at increasing temperatures. For an illustration of this effect, 
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Figure 16. Rotation-dependent loose entrance and rigid exit channel threshold energies for 
pure rotational channel switching CAE, = E,, - E,,, from Troe (1987b), see text]. 

we put W(E,J,b) /W(E,J)  equal to unity at E 2 E,,(J)  and equal to zero at 
E < E,,(J). The corresponding thermal rate constant k can be evaluated 
analytically (Troe, 1987b) with the results shown in Fig. 17. Owing to 
redissociation of the collision complex, there arises a change of k from the 
temperature independent Langevin capture rate constant k, = 2 q f i  to 
a k with a negative temperature coefficient. Rate constant minima are also 
observed at relatively low temperatures as long as )AE,I is sufficiently small. 
In practice, vibrational effects will be superimposed on this “pure rotational 
channel switching” behavior; however, the effect of competing J dependences 
of E,,(J) and Eo,(J) will always be there, such as illustrated by the examples 
of Figs. 16 and 17. A number of possible vibrational effects in rotational 
channel switching were considered by Troe (1987b). 

In the following, we proceed to a discussion of pronounced “vibrational 
channel switching” situations, neglecting additional rotational effects. 
Vibrational channel switching can be the result of different energy 
dependences of specific rate constants for dissociation involving loose 
activated complexes and for rearrangements involving rigid activated 
complexes (see Sections V A  and VB). For the loose activated complexes, 
with W(E,J)  contributions such as given by Eqs. (5.3)-(5.12), there will be 
often much larger values of W(E,J)  near to threshold than for the rigid 
activated complexes. This is due to the more rotational character of loose 
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Figure 17. Thermal rate constants for rotational channel switching (example of Fig. 16, 

k, = Langevin capture rate constant). 

activated complexes compared to the vibrational character of rigid activated 
complexes. On the other hand, in the classical limit, rotor-type W ( E , J )  
expressions often have a weaker energy dependence than oscillator-type 
expressions. With EOII(J = 0) > E,,(J = 0), this can lead to double crossings 
of the corresponding k(E,  J )  curves. Figure 18 gives a qualitative illustration 
of this effect. Double crossings of k ( E , J )  or W ( E , J )  curves result in yield 
functions Y ( E , J )  = W(E,J ,b ) /W(E,J )  that have minima of the type shown 
qualitatively in Fig. 19. Convolution of such Y(E,  J )  with W(E, J ,  a) in thermal 
rate constants, see Eq. (2.8), then can result in increased negative temperature 
coefficients of k at low temperatures and in rate constant minima. The 
phenomenon obviously is complicated because the double crossings of k(E ,  J )  
will be strongly influenced by J .  In addition, rotational and vibrational 
channel switching effects may be superimposed. However, the two switching 
mechanisms often will operate in the same direction and enhance each other. 

A quantitative treatment of specific reaction systems today is still not 
possible as long as detailed knowledge from potential surface calculations, 
about entrance and exit activated complexes, is not available. In this situation, 
simple calculations for hypothetical reaction systems appear illustrative. In 
the following we give such an example. We assume that, for spherical 
top + spherical top reactants at large J ,  Eq. (5.12) applies for W ( E ,  J ,  a), and 
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E o b  E -  

Figure 18. Schematic representation of specific rate constants for loose (a) and rigid (b) 
activated complex processes (see text). 

that no convolution with reactant oscillators is required in the considered 
energy range. Likewise, we assume that the six rotor-type modes of relative 
motion of the two reactants are converted into five oscillator-type and one 
rotor-type ( K  rotor) mode at the rigid activated complex exit without that 
other high-frequency modes would have to be convoluted in. The considered 
case would correspond to a shallow energy minimum of the collision complex. 
Using classical expressions for numbers of open channels of rotor-type and 
low-frequency modes, then Y ( E ,  J )  = W(E, J ,  b)/[ W(E,  J ,  a) + W(E, J ,  b)] can 
take the form 

at E > max [E,,(J), E,,(J)] and Y ( E ,  J )  = 0 otherwise [Ez, and EZ, denote 
“semiclassical” zeropoint energy corrections, see Troe (1983)l. Depending 
on the values of AE, = Eon - E,,, Era, Erb, and C ,  quite different Y ( E ,  J )  can 
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Figure 19. Reaction yield function for complex forming bimolecular reaction with loose 
entrance/rigid exit activated complexes (see text). 

be simulated with different magnitudes of minima. However, in all cases a 
qualitative behavior similar to that of Fig. 19 is obtained. 

If the yield function Y ( E , J )  is of the form of that sketched in Fig. 19, it 
can be approximated by a function of the type 

Y ( E , J )  z exp(- E / a l )  + [l - exp(- E/a2) ] ,  (5.16) 

with u2 >>a1. The parameters a, and a2 are fitted empirically to the result 
of complete W(E, J )  calculations (Eoa = 0). Neglecting a J dependence and 
assuming an energy dependence of W(E, J ,  a) a Es in Eq. (2.8), thermal 
averaging over Y ( E , J )  leads to 

- ala2 + 2u,kT + (kT)2 

ulu2 + (ul + a2)kT + (kT)'' 
- (5.18) 

The minimum of Y ( E , J ) ,  being given by 
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Ymin w U l / U 2  + [l - (u1/u2)al’~*] (5.19) 

at E(min Y) = ul In a2/a1, corresponds to a rate constant minimum of 

(5.20) 

at kT(min klk,,,) = m. 
The model calculations of Eqs. (5.16)-(5.20) only correspond to simplified 

vibrational channel switching. In reality, rotational channel switching will 
be superimposed. Furthermore, SACM rigidity effects will reduce the PST 
expressions for W(E, J ,  a) with increasing energy to an increasing extent. All 
of these effects result in an enhancement of negative temperature coefficients 
of k at low temperatures. For example, Eq. (5.18) for vibrational channel 
switching at most contributes with T -  to k/kCap, rotational channel switching 
can add another factor T-’ (see Fig. 17), energy-dependent rigidity effects 
may add about another factor of T-’. Therefore, there may be negative T 
coefficients of up to about k/kCap K T - j .  The experimental results of Fig. 15 
are consistent with this order of magnitude. 

It should be emphasized that the given discussion of redissociation effects 
has to remain of illustrative character. More quantitative treatments would 
require assistance from quantum-chemical calculations of activated complex 
structures. As long as these are not available, only qualitative interpretations 
of experimental data are possible. Before closing this chapter, it should be 
remembered that the discussed redissociation effects appear in thermal rate 
constants as well as in kinetic energy dependent reaction cross sections. 

In summary, the present review has demonstrated the versatile possibilities 
of a statistical approach to ion-molecule reactions. The method is very 
powerful and its results are probably close to reality. However, quantitative 
predictions have to rely on the quality of the input data, that is, of the 
properties of the potential energy surfaces involved. It was not possible to 
include collision-associated processes such as termolecular ion-molecule 
association, processes involving electronically nonadiabatic transitions or 
radiative associations. It should be emphasized that these reactions also 
present considerable statistical aspects, which would deserve a separate 
analysis. 
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systems, 162-167 

redissociating collision complexes, 

Biomolecular processes, statistical rate 
theories, 489-491 

Blais-Truhlar procedure, trajectory-surface- 
hopping (TSH), 439-440 

Body-fixed (BF) frame methods: 

518-526 

Hamiltonian, 83-86 
nonadiabatic interactions, 30-35 
potential energy surfaces, 82-83 

Boltzmann constant, charge-transfer 
reactions, 306-307 

Bondstretching phenomenon, trajectory- 
surface-hopping (TSH). 469-470 

Born-Oppenheimer approximation: 
atom-diatom systems, quasi-diabatic 

orbitals, 113-1 14 
breakdown of, 75-77 
charge-transfer reactions: 

collisions, 408 
mechanisms, 248-254 
quantum-mechanical treatment 

semiclassical approaches, 246 
188-1 89 

diabatic states, 128 
electronically nonadiabatic reaction, 3 12 
multichannel curve crossings, 276-277 
nondiabatic interactions: 

applications, 40 
electronic states, 5-6 
potential energy surfaces (PES), 2-3 

potential surfaces, DIM method. 

trajectory-surface-hopping (TSH). 
139-140 

424-425 
Born-Oppenheimer diagonal corrections: 

body-fixed-frame methods, 34-35 
nonadiabatic interactions, 7 

Born-Oppenheimer potential energy curve 
(PEC), lithium hydride, adiabatic 
correction. 41-45 

reactions, 486-487 

calculations. 377-378 

techniques, coupled equation 
solutions, 345-346 

Bottleneck equations, ion-molecule 

Branching ratios, classical path 

Bulirsch-Stoer integrator, classical path 
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Capture cross sections, ion-molecule 

Capture rate constants, ion-molecule 

anisotropic charge-linear dipole 

anisotropic charge-nonlinear dipole 

isotropic potentials, 508-510 

reactions, 514-516 

reactions, 508-518 

potentials, 510-516 

potentials, 516-5 18 

Catalysis effect. multichannel curve 
crossings, 275-277 

Center-of-mass fixed frame (CMFF). 
nonadiabatic interactions, 30-35 

CEPA calculations, DIM method and, 

Channel threshold energies, ion-molecule 
reactions, 494-508 

Character presentation, diabatic potential 
energy surfaces, 121-124 

Character preservation, diabatic potential 
energy surfaces, 124-125 

Charge-induced dipole interactions, 
adiabatic channel eigenvalues. 
atom + linear reactant systems, 

158-160 

501-503 
Charge-linear dipole potentials, 

Charge-locked quadrupole capture 
ion-molecule reactions, 510-516 

rate constants, ion-molecule reactions, 
509-5 10 

Charge-nonlinear dipole potentials, 
ion-molecule reactions, 516-518 

Charge-transfer collisions, classical path 
calculations. 378-381 

Charge-transfer cross sections, 
energy-dependence, 412-414 

Charge-transfer reactions, see also 
Rovibronic charge transfer 

adiabatic vibronic PES, 408-412 
cross-section energy dependence, 

Franck-Condon principle, 405-408 
potential energy curves (PEC), 136-138 
potential energy surfaces, two-state 

quantum-mechanical treatment: 

collision research, 404-414 

412-414 

model cases, 92-98 

argon-hydrogen systems, 2 16-236 
exchange vs. charge transfer, 236 
high-energy region CT, 220-223 
low-energy regions, 223-236 

3-surface systems, 217-220 

adiabatic-diabatic transformation, 

quasi-adiabatic-diabatic 

Schrodinger equation, 190-191 
two-surface case, 199-202 

diatomic-in-molecules potential. 

collinear case, 190-202 

191-195 

transformation, 195-199 

203-206 
reactive systems, 204-206 

high-energy regions, 220-223 
hydrogen-deuterium systems, 210-216 

differential cross sections, 21 1-213 
integral cross sections, 213-214 

hydrogen-oxygen systems, 236-237 
hydrogen systems, 215-216 

vibronic states, 215-216 
infinite-order approximation-3-D 

system, 206-209 
low energy regions, 223-236 
Schrddinger equation, 189-190 
specific systems, 210-238 

semi-classical approach: 
background, 244-245 
basic mechanisms, 246-254 
chemical reaction-particle 

rearrangement, 291-309 
hyperspherical ordinates, 296-309 
orbiting model, 292-294 
S-matrix theory, 294-296 

reaction, 309-314 
electronically nonadiabatic chemical 

multichannel curve crossing, 264-291 
nonadiabatic transition, 255-264 

dynamical state representation. 

Landau-Zener type, 260-263 
Rosen-Zener (Demkov) type, 

256-260 

263-264 
semiclassical time-dependent approach: 

background, 322-325 
classical path formulation, 325-349 

basis set. 329 
classical trajectory, 333-336 
coupled equations, 330-332 
differential cross sections, 336-342 
equations, 327-328 
future trends in, 414-415 
numerical procedures, 342-349 
vibrationally sudden approximation, 
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Charge-transfer reactions (Continued) 
332-333 

collision features, 404-414 
adiabatic vibronic PES, 408-412 
Franck-Condon principle, 405-408 

412414 
cross section energy dependence, 

differential cross sections, 399-404 
total cross section calculations, 

trajectory-surface-hopping (TSH), 
349-399 

447-452 
background, 424-425 
electron-detachment processes, 

electron-transfer reactions, 467-474 
future trends, 476-478 
ion-molecule reactions, 447-452 
Kuntz, Kendrick and Whitton 

Miller and George techniques for, 

neutral samplings, 474-476 
nonadiatic molecular collisions, 

seam location and hopping prediction. 

time-dependent semiclassical 

Tully and Preston techniques for. 

441-442 

technique, 437-438 

433-435 

425-430 

435-438 

equations, 439-441 

431-433 
Chemical reactions, trajectory-surface- 

hopping (TSH), ion-molecule 
reactions, 447-452 

techniques, 340-341 

surface-hopping (TSH). ion-molecule 
reactions, 457-461 

“CI contribution,” molecular-orbital 
derivatives. 19 

Clamped orbitals, separated-partner 
orbitals, 107-1 12 

Classical path technique: 

background, 323-325 
basis set, 329 
classical trajectory, 333-336 
coupled equations, 330-332 

numerical procedures. 345-346 
differential cross sections, 336-342 

Chemiionization processes, classical path 

Chloride-hydrogen reaction, trajectory- 

charge transfer reactions, 325-349 

equations, 327-328 
numerical procedures, 342-349 

average over initial conditions, 

examples, 346-349 
vibration matrix elements, 342-344 

344-345 

differential cross sections, 399-404 
future research, 414-415 
total cross sections, 349-399 
Archirel/Gislason/Parlant/Sizun 

argon-CO research, 385-393 
DePristo’s research, 353-361 
dissociative charge transfer research, 

Kimura’s research, 362-363 
Moran-Flannery research, 350-353 
Parlant-Gislason argon-nitrogen 

393-399 

work 367-3235 
Clebsch-Gordan coefficients: 

classical path calculations, total cross 

DIM method, 144 
triatomic ion-molecule systems, H$ 

models, 149-150 

treatment, 190-202 

sections, 364-365 

Collinear case, quantum-mechanical 

adiabatic-diabatic transformation, 

quasi-adiabatic-diabatic transformation, 

SchrBdinger equation, 190- 19 1 
two-surface case, 199-202 

Collinear geometries, DIM methods, 

Collinear reactions, hypospherical 
coordinate system, 298-299 

Collision complexes, statistical rate 
theories, 490-491 

Collision-induced dissociation (CID): 
ion-molecule reactions, 455-456 
trajectory-surface-hopping (TSH). 

191 - 195 

195-199 

17 1- 174 

453-455 

trajectory-surface-hopping (TSH). 
Collision-induced predissociation (CIP). 

455-456 
Collision theory: 

charge-transfer, 404-414 
adiabatic vibronic potential energy 

energy-dependence, 4 12-4 14 
Franck-Condon principle. 405-408 

surfaces, 408-412 
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classical path calculations: 
argon-carbon monoxide systems, 

dissociative charge transfer, 394-395 
390-393 

diabatic states, 78 
Comparison equation method, charge- 

transfer reactions, 260-263 
Complete-active space (CAS). molecular- 

orbital derivatives, 20 
Complex-forming bimolecular 

ion-molecule reactions, 488-489 
Composite functions, symmetry-adapted 

basis functions, 140-142 
Configuration interaction (CI) 

wavefunctions: 
DIM methods, 146.170-176 
first derivative coupling matrix, 4-5 
helium-hydrogen reaction, 50-5 1 
large-scale rough diabatic prototypes 

and, 119-121 
many-electron systems, subspace 

orthogonality, 116-1 18 
molecular-orbital derivatives, 16-19 
nonadiabatic interactions, 8 
potential energy surfaces (PES), 3-4 
Tr(MU) form, atomic-orbitals, 56-57 

Born-Oppenheimer potential energy 

diabatic state construction. 99 

Configuration state functions (CSF): 

curve (PEC), 44 

history, 78-79 
states differing by two orbitals. 99-103 

many-electron systems, mutual 
orthogonalization of shells, 114-1 15 

molecular-orbital derivatives: 
additional constraints, 20 
coupled-perturbed MCSCF equations, 

16-19 
nonadiabatic interactions, 7, 13 

body-fixed-frame methods, 34-35 
diabatic bases, 38-39 

coupling, 22-23 
Conical intersections. trajectory-surface- 

hopping (TSH), 437 
Constant centrifugal potential 

approximation (CCPA), charge-transfer 
reactions, 304-306 

state construction, 99 

second derivative nonadiabatic 

Constant linear combinations. diabatic 

Coordinates, potential energy surfaces, 

80-83 
Coriolis coupling: 

adiabatic representation, 86-88 
body-fixed frame Hamiltonian, 85 
charge-transfer reactions: 

mechanisms for, 247-254 
nonadiabatic transition, 256-260 

closed channels, 271-273 
electronic transition, 265-267 

BH; systems, 164-167 
FH'; interaction, 160-162 

diatomic systems: 

DIM method, 145 

trajectory-surface-hopping (TSH), 
447-452 

Correlation diagrams, diabatic states, 78-79 
Coupled equations: 

classical path techniques, 330-332 
numerical solutions, 345-346 

diabatic representation, 88-89 
Coupled-perturbed state-averaged 

(SA-MCSCF) equations: 

body-fixed-frame methods, 33-34 
molecular-orbital (MO) derivatives, 

nonadiabatic interactions. 60-62 

15-20 
second derivatives, 64-66 

nonadiabatic coupling, 25-26 

4-5 

frame methods, 34-35 

Couple-perturbed CI (CP-CI) equations, 

nonadiabatic interactions, body-fixed- 

second derivative nonadiabatic coupling, 
23-24 

first and second order, 21-29 
Coupled wave packet procedure, charge 

transfer reactions. 324-325 
Couplings and potential interaction 

functions (CPIF). 343-344 
Crossed-molecular-beam apparatus, charge 

transfer reactions, 323-325 
Cross-sections, ion-molecule reactions. 

capture rate constants, 508-518 

Demkov model, nonadiabatic molecular 

Density matrices, Tr(MU) form. 

Derivative quantities: 

derivative. 64-66 

collisions. 429-430 

atomic-orbitals, 56 

CP-SAMCSCF equations, second 
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Derivative quantities (Continued) 
inequivalent active orbitals, 64 
nonadiabatic interactions, 57-59 

nonadiabatic interactions. 38-39 
potential energy surfaces, 125-126 

prototype improvement, 115-121 

Diabatic bases: 

Diabatic construction: 

CI in orthogonal subspaces, 116-1 18 
overlap between large-scale CI and 

rough, 119-121 
Diabatic MO crossings, history of, 79 
Diabatic orbitals, see Orbitals 
Diabatic representation: 

classical path basis sets, 329 
nonadiabatic molecular collisions, 428 
potential energy surfaces, 88-92 

arbitrary representation transformation, 

nontrivial strictly diabatic bases, 91-92 
89-91 

Diabatic states, historical background, 

Diabatic surface trajectories. ion-molecule 

Diabatic vibronic bases, potential energy 

Diabatization, separated-partner orbitals, 

Diatomic-in-molecules (DIM) method: 
charge-transfer reactions, 203-206 
classical path calculations, 362-363 
potential surfaces, 138-146 

formalism, 139-140 
Hamiltonian, 142-144 
implementations, 145- 146 
nonadiabatic coupling, 144-145 
symmetry-adapted basis functions, 

77-78 

reactions, 458-461 

surfaces, 126-127 

11 1-1 12 

140-142 
separated-partner orbitals, 104 
trajectory-surface-hopping (TSH), 

43 1-433 
Htmodels, 146-154 
ion-molecule reactions, 456 

triatomic ion-molecule systems: 
BH; systems, 162-167 
FHf interaction, 157-162 
HeH; system, 154- 157 

crossing, 264-273 
closed channel, 267-271 
open channel, 265-267 

Diatomic systems, multichannel curve 

Difference density matrices, nonadiabatic 
interactions, 36-37 

Differential cross sections: 
classical path calculations, 336-342, 

Grimbert-Sidis-Sizun research, 
399-404 

399-404 
quantum-mechanical treatment. 217-220 

hydrogen-argon systems, 233-236 
hydrogen-deuterium systems, 21 1-213 

trajectory-surface-hopping (TSH), 474 
alkali plus halogen, 468-472 
ion-molecule reactions, 443-447. 

462-467 
triatomic ion-molecule systems, 167-176 

Dissociation constants, statistical rate 

Dissociative charge transfer, classical 

Distributed gaussian basis (DGB) method, 

Divided difference procedures, 

Dynamical states (DS) representation: 

theories, 491-494 

path calculations, 393-399 

343-344 

nonadiabatic interactions, 39-40 

charge-transfer reactions, nonadiabatic 

electronically nonadiabatic reaction, 3 12 
electronic transition, diatomic systems. 

transition, 256-260 

265-267 

Eigenstate, BO electronic wavefunction, 75 
Eigenvalues: 

adiabatic channels, ion-molecule 

BO electronic wavefunction, 75 
DIM method, potential surfaces, 143-144 

reactions. 494-508 

Electron detachment, trajectory-surface- 
hopping (TSH), 441-442 

Electronically nonadiabatic reaction, 
trajectory surface hopping (TSH) 
method, 309-3 12 

Electronic motion, nuclear motion and, 74 
Electronic quenching, nondiabatic 

Electronic-structure theory, potential 

Electron-transfer reactions: 

interactions, 2-3 

energy surfaces (PES), 3-4 

many-electron states, 114-121 
diabatic prototypes, 115-121 
mutual orthogonalization of shells, 

114-115 
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trajectory-surface-hopping (TSH), 

alkali plus halogen, 468-472 
alkali plus oxygen, 472-474 
neutral sampling, 474-476 

Electron translation factor (ETF): 

467-474 

charge-transfer reactions, semiclassical 

separated-partner orbitals. 107-1 12 
approach to, 248-254 

clamped orbital expansions. 108-1 11 
common ETFs. 108-109 
diabatization, 11 1-1 12 
traveling orbitals, 107-108 

methods. 181 -183 

quantum-mechanical treatment, 

Energy difference gradient, nonadiabatic 

Exchange process, quantum-mechanical 

External coordinates, classical path 

Embedded atom method (EAM). DIM 

Energy-dependent cross sections, 

225-227 

interactions, 35-37 

treatment, 236 

techniques. 327 

Feynman's path integral formulation, 

FH; interaction, triatomic ion-molecule 

Fine-structure transitions. classical path 

S-matrix theory, 295-296 

systems. 157-162 

calculations charge-transfer: 
collisions, 380-381 
inelastic collisions, 381-385 
total cross sections. 365-366 

Finite electronic substances. diabatic 

Four-level models, multichannel curve 

Fragmentation region, charge-transfer 

Franck-Condon approximation: 

representation, 89 

crossings. 281-284 

reactions. 252-253 

classical path techniques: 
argon-carbon monoxide systems. 

charge-transfer collisions, 378-381 
coupled equations, 331-332 
SCECT technique, 356-359 
total cross sections. 350-353 
vibrationally sudden approximation, 

385-393 

332-333 
electronic transition models. 274-275 

Franck-Condon principle: 
charge-transfer collisions. 405-408 
charge-transfer cross sections, 413-414 
classical path calculations: 

inelastic collisions, 384-385 
total cross sections, argon-nitrogen 

systems, 368-378 

Generalized adiabatic states, charge- 
transfer reactions, nonadiabatic 
transition, 259-260 

Geradehngerade combinations, 

Gradient-driven techniques. nonadiabatic 
148- 149 

coupling. 54 

Hamiltonian matrices: 
body-fixed (BF) frame, 83-86 
DIM methods: 

potential surfaces, 142-144 
rare-gas clusters, 177-180 

Hartree-Fock calculations, diabatic 
potential energy surfaces, 124-125 

Heavy-light-heavy systems, diabatic states, 
127 

Heavy water reactions, trajectory-surface- 
hopping (TSH), 461-462 

Helium-hydrogen systems: 
nonadiabatic interaction, 45-51 
potential energy surfaces, triatomic 

ion-molecule systems, 154-157 
trajectory-surface-hopping (TSH). 

Helium-nitrogen systems, trajectory- 
surface-hopping (TSH), 456-457 

Hellmann-Feynman theorem: 
charge-transfer reactions: 

452-455 

nonadiabatic transition, 257-258 
quantum-mechanical treatment, 

first derivative coupling matrix, 4-5 
Hopping probability prediction, trajectory- 

surface-hopping (TSH), 435-438 
Hybrid branching algorithms, trajectory- 

surface-hopping (TSH). ion-molecule 
reactions, 443-447 

Hydrogen-deuterium systems, quantum- 
mechanical treatment, 210-216 

differential cross sections. 211-213 
integral cross sections, 213-214 

Hydrogenic states, diabatic states, 127 

203-206 
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Hydrogen-oxygen systems: 
classical path techniques, 346-349 
quantum-mechanical treatment, 

236-237 
Hydrogen system, classical path 

calculations, differential cross 
sections, 404 

Hydrogen systems: 
potential energy surfaces, 146-154 
quantum-mechanical treatment, charge- 

transfer mechanism, 215-216 
trajectory-surface-hopping (TSH), 

ion-molecule reactions, 442-447, 
42-46? 

Hypospherical coordinate system, charge- 
transfer reactions, 296-308 

Improved virtual orbitals (NO): 
configuration state functions (CSF) 

diabatic potential energy surfaces, 125 
preservation, 101-103 

Inelastic collisions, classical path 

Inelastic product channel, classical path 

Infinite-order sudden approximations 

calculations, 381-385 

calculations, 350-353 

(IOSA): 

hypospherical coordinate system, 

quantum-mechanical treatment, 

charge-transfer reactions: 

302-308 

188- 189 
3-D systems, 206-209 

time-dependent approaches, 323-325 
quantum-mechanical treatment: 

hydrogen-argon systems, 224-236 
hydrogen-deuterium systems: 

differential cross sections, 21 1-213 
integral cross sections, 213-214 

quasi-diabatic orbitals, 113-1 14 
trajectory-surface-hopping (TSH), 

ion-molecule reactions, 445-446 
vibronic transition, ion-molecule 

collisions, 273-275 
Integral cross sections, quantum- 

mechanical treatment, 213-214 
Intermolecular distances, separated-partner 

characters, 103-104 
Internal nuclear coordinates: 

classical path techniques, 327 
diabatic representation, 89 

Intersystem crossing (ISC) collisions, 

classical path calculations, 
argon-nitrogen systems, 372-374 

adiabatic correction, 42-44 
Inverted perturbation approach (IPA), 

Ion-molecule reactions: 
adiabatic channel eigenvalues and 

threshold energies, 494-508 
isotropic potentials, 495-496 
rigid activate complexes, 494-495 

bimolecular, redissociating collision 
complexes, 5 18-526 

capture rate constants and cross-sections, 
508-518 

anisotropic potentials, 510-518 
isotropic potentials, 508-510 

orbiting (Langevin) model, 292-294 
vibronic transition, 273-275 

collisions: 

redissociating collision complexes, 

statistical aspects of, background, 

statistical rate theories, 489-494 

518-526 

485-489 

biomolecular processes, 489-490 
unimolecular processes, 491-494 

trajectory-surface-hopping (TSH), 
442-467 

argon-hydrogen system, 447-452 
chloride-hydrogen reactions, 457-461 
heavy water reactions, 461-462 
helium-hydrogen reactions, 452455 
helium-nitrogen reactions, 456-457 
hydrogen ions, 442447,462-467 
neon-helium reactions, 455-456 

hopping (TSH), 470-47 1 
Ion-pair formation, trajectory-surface- 

Isolated-partner orbitals, diabatization, 

Isotropic potentials: 
113-114 

adiabatic channel eigenvalues, ion- 

ion-molecule reactions, capture rate 
molecule reactions, 4954% 

constants, 508-510 

Jahn-Teller intersections: 
charge-transfer reactions, 249-251 
diabatic states, 78 
nonadiabatic interactions, body-fixed- 

frame methods, 34-35 
JWKB theory: 

charge-transfer reactions, 244 
classical path equations, 328 
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Kihara-type core, trajectory-surface- 

Kinetic coupling, DIM method, 144- 145 
Kinetic energy operator, potential energy 

KKW procedures, trajectory-surface- 

Krypton-boron reaction, trajectory- 

hopping (TSH), 468-469 

surfaces, 81-82 

hopping (TSH), 437-438 

surface-hopping (TSH), 468-472 

Lagrangian functions: 
nonadiabatic interactions, configuration- 

second derivative nonadiabatic coupling, 

Tr(MU) form, atomic-orbitals, 55-57 

charge-transfer reactions, 244-245 

interaction wavefunctions, 12-13 

29 

Landau-Zener transition: 

mechanisms, 246-254 
nonadiabatic transitions. 260-263 

classical path techniques, 349 
electronically nonadiabatic reaction, 

lithium-sodium collisions, 278-281 
multichannel curve crossings, BFG 

model, 285-286 
trajectory-surface-hopping (TSH), 474 

DIM method and, 433 
ion-molecule reactions, 443-447 
multidimensional nonadiabatic 

nonadiabatic molecular collisions, 

311-312 

transitions, 433-435 

428-429 
Langevin capture rate constant, 

ion-molecule reactions, 509 
Legendre polynomials: 

classical path techniques, differential 
cross sections, 336-342.340-341 

diatomic systems, closed channels, 

potential energy surfaces, charge-transfer 
27 1-273 

reactions, 96-97 
Lennard-Jones potential, trajectory- 

surface-hopping (TSH), 468-469 
LEPS potentials: 

charge-transfer reactions, hypospherical 
coordinate system, 299-300 

trajectory-surface-hopping (TSH), 
ion-molecule reactions, 456,458 

Born-Oppenheimer potential energy 
Lithium hydride: 

curve, 41-45 

DIM analysis, 151-153 
Lithium-sodium collisions, multichannel 

Locked-dipole rate constant, ion-molecule 

Loose activated complexes, rate constants, 

Lorentzian functions: 

curve crossings, 277-281 

reactions, 509 

519-521 

nonadiabatic molecular collisions, 
trajectory-surface-hopping (TSH), 429 

potential energy surfaces, charge-transfer 
reactions, 94-99 

Many-electron states, electron-transfer 

diabatic prototype improvement, 

mutual orthogonalization of shells, 

Massey parameter, trajectory-surface- 

processes, 114-121 

115-121 

114-115 

hopping (TSH): 
DIM method and, 433 
nonadiabatic molecular collisions, 426 
semiclassical theory, 426-427 

active orbitals, derivative quantities, 

nonadiabatic interactions, applications, 

MCSCF wavefunctions: 

63-64 

40 

(TSH), 467 
Metastables, trajectory-surface-hopping 

Microscopic reversibility: 
SCECT technique, 334-336 
statistical rate theories, 491-494 

MIES charge-transfer structure. helium- 
hydrogen reaction, 45-5 1 

Molecular-beam experiments. trajectory- 
surface-hopping (TSH). 471-472 

Molecular orbitals (MOs): 
additional constraints, 19-20 
configuration state functions (CSF) 

coupled-perturbed MCSCF equations, 

diabatic states, history, 78-79 
nonadiabatic interactions. 8-9, 15-20. 

promotion model, 79 
second derivative nonadiabatic 

coupling, 24-26 

techniques, 344-345 

preservation, 101-103 

15-19 

57-59 

Monte Carlo algorithm, classical path 
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Multichannel curve crossing: 
charge-transfer reactions, 264-291 

BFG model for vibronic transitions, 

diatomic electronic transitions, 
284-291 

264-273 
closed channels, 268-273 
open channels, 265-267 

lithium-sodium collisions, 277-28 1 
numerical examples, 275-291 
three- and four-level model systems, 

vacancy migration in neon collision, 

vibronic transitions: 

281-284 

275-277 

BFG model, 284-291 
ion-molecule collisions. 273-275 

Multichannel quantum defect theory. 

Multidimensional nonadiabatic 
diatomic systems, 269-27 1 

transitions, 433-435 

Negative imaginary arrangement 
decoupling potentials (NIADP) 
quantum-mechanical treatment. 

infinite-order sudden approximation 
204-206 

(IOSA), 207-209 
Neon-helium interactions, trajectory- 

Neutrals, trajectory-surface- hopping (TSH). 

Newton-Raphson procedure, 
actual/avoided crossings, 37-38 

Node-conservation rule, diabatic potential 
energy surfaces, character presentation. 
124 

surface-hopping (TSH), 455-456 

474-476 

Nonadiabatic coupling matrix: 
adiabatic representation, 86-88 
DIM method, 144-145 
helium-hydrogen reaction, 49-5 1 

Nonadiabatic molecular collisions, 
trajectory-surface-hopping (TSH), 
425-430 

semiclassical theory, 425-427 
two-state systems, 427-430 

Nonadiabatic radial coupling, DIM 

Nonadiabatic states: 
adiabatic channel eigenvalues, 507-508 
applications, 39-51 

methods, 174-176 

body-fixed-frame methods. 30-35 
charge-transfer reactions, 136- 138 
first derivative coupling matrix. 8-15 
molecular-orbital (MO) derivatives, 

nonadiabatic molecular collisions, 

second derivative nonadiabatic coupling, 

statistical rate theories, 486-487 

15-20 

427-428 

20-30 

Nonadiabatic transition, charge-transfer 
reactions: 

dynamical state representation, 256-260 
Landau-Zener transition, 260-263 
Rosen-Zener (Demkov-type) transition, 

semiclassical theory. 255-264 
263-264 

Nonreactive scattering process, trajectory- 
surface-hopping (TSH), 47 1-472 

Nontrivial strictly diabatic bases, 91-92 
Nonvanishing matrices, separa ted-partner 

Nuclear geometry: 
orbitals, 11 1-1 12 

deformations. potential energy surfaces, 

fixed geometry, adiabatic representation, 
82-83 

86-88 
Nuclear kinetic energy operators, 75-76 
Nuclear motion, electronic motion and. 74 
Numerical procedures: 

classical path techniques, 342-349 
average over initial conditions, 

coupled equations, 345-346 
examples. 346-349 
vibrational matrix elements W E ) ,  

344-345 

342-344 

Occupied states, coupled-perturbed state- 
averaged (SA-MCSCF) equations, 
60-62 

Orbitals: 
configuration state functions (CSF), 

nonadiabatic interactions. 57-59 
99- 103 

inequivalent core and virtual orbitals. 
57-59 

separated-partner characters, 103-1 14 
multiple orbitals in atom-atom 

systems, 107-1 12 
clamped orbital expansions, 109-1 I I 
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common ETFs, 108-109 
diabatization, 11 1-1 12 
traveling orbitals, 107-108 
quasidiabatic orbitals for 

atom-diatom systems, 112-1 14 
two orbitals in atom-atom systems, 

Orbiting (Langevin) model. ion-molecule 

Orthogonality: 

104-107 

collisions, 292-294 

many-electron systems: 
CI in subspaces, 116-1 18 
mutuality of, 114-1 15 

separated-partner orbitals, 105-107 

charge-transfer interactions, 167- 176 
classical path calculations, SCECT 

Oxygen systems: 

technique. 356-357 

Parlant-Gislason (PG) procedure, 
trajectory-surface-hopping (TSH), 441 

Particle rearrangement reaction, charge- 
transfer reactions, semiclassical 
approach to, 251-252 

Perturbed rotational state (PRS) theory: 
charge-transfer reactions, 292 
orbiting (Langevin) model for 

ion-molecule collision, 292-294 

reactions, 260-263 

techniques, 366-342 

ion-molecule systems, 147-148 

Born-Oppenheimer curve. adiabatic 
correction, 41-45 

charge-transfer reactions, 299-300 
diabatic states, 77-78 

actualiavoided crossings, 37-38 
adiabatic representation, 86-88 

Phase integral method, charge-transfer 

Phase shift measurements, classical path 

Polyatomic basis functions (PBF), triatomic 

Potential energy curve (PEC): 

Potential energy surfaces (PES): 

vibronic charge-transfer collisions, 

body-fixed frame Hamiltonian. 83-86 
classical path calculations: 

argon-carbon monoxide systems, 

examples, 346-349 
total cross sections, 368-378 

408-412 

387-390 

complex surface interactions. 180-183 

coordinates, 80-83 
diabatic representation, 88-92 

arbitrary representation 
transformation. 89-91 

nontrivial strictly diabatic bases, 91-92 
two-state model cases, 92-98 

basis changes, 125-126 
character definition. 12 1 - 124 
character presentation, 124-125 
CSF preservation, 99-103 
exotic hydrogen states, 127 
many-electron diabatic states for 

electron-transfer, 114-121 
practical construction, 98-127 
separated-partner characters, orbitals, 

vibronic bases. 126-127 
helium-hydrogen reaction, 45-5 1 
nondiabatic interactions, 2-3 
nuclear motions and, 75 
rare gas clusters, 176-180 
trajectory-surface-hopping (TSH), 474 
triatomic ion-molecule systems. 

diabatic states: 

103-1 14 

146- 1 76 
BHZ surfaces, 162-167 
FH; interaction, 157-162 
H;case and related models, 146-154 
HeH; system, 154-157 
02H' charge-transfer interactions. 

167-176 
Product state distributions, statistical rate 

theories, unimolecular processes, 

Projected valence bond (PVB) functions, 

Proton transfer (PT), trajectory-surface- 

492-494 

115 

hopping (TSH), ion-molecule reactions, 
463-467 

Quantum-chemistry techniques, classical 

Quantum dynamics, diabatic states, 128 
Quantum 10s calculations (QIOS), 

Quantum-mechanical treatment: 
argon-hydrogen systems, 216-236 

high-energy region. 220-223 
low-energy region, 223-236 
3-surface systems. 2 17-220 

path basis sets, 329 

400-404 

collinear case. 192-202 
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Quantum-mechanical treatment 
(Conrin ued) 

adiabatic-diabatic transformation. 

quasi-adiabatic-diabatic 

Schrbdinger equation, 190-191 
two-surface case, 199-202 

191-195 

transformation, 195-199 

diatomic-in-molecules potential, 203-206 
hydrogen-deuterium systems, 210-216 

differential cross sections, 21 1-213 
integral cross sections, 213-214 

hydrogen-oxygen system, 236-237 
hydrogen systems, 215-216 
infinite-order sudden approximation. 

Schrodinger equation, 189-190 
techniques. 188-189 
time-dependent approaches, 323-325 
tunneling effect, S-matrix theory, 295-296 

3-D system, 206-209 

Quantum numbers, diabatic potential 

Quantum-scattering capture calculations, 

Quasi-adiabatic-diabatic transformation, 

Quasicoulombic systems, diabatic 

Quasi-diabatic orbitals, atom-diatom 

Quasidiabatic states, configuration state 

Quenching techniques, helium-hydrogen 

energy surfaces, 123-124 

488 

194-199 

potential energy surfaces, 123-124 

systems, 112-1 14 

functions (CSF) preservation, 101-102 

reaction, 45-51 

Rare-gas clusters, DIM methods, 176-180 
Rate constants: 

loose activated complexes, 519-521 
redissociated collision complexes. 

Reactant-product channels, classical 

Reactive systems: 

518-519 

trajectories. 335-336 

cross sections. trajectory-surface-hopping 

quantum-mechanical treatment, 204-206 

bimolecular ion-molecule reactions. 

rigid-activated complexes rate constants. 

(TSH), 472 

Redissociating collision complexes: 

518-526 

51 8-5 19 

Reduced dimensionality, charge-transfer 

Relative cross sections, classical path 

Renner-Teller interaction, charge-transfer 

Resonances: 

reactions, 204 

calculations. 374-378 

reactions, 249-251 

diatomic systems, multichannel curve 

quantum-mechanical treatment, 23 1-236 

ion-molecule reactions, adiabatic 
channel eigenvalues, 494-495 

redissociated collision complexes, 

crossings, 270-271 

Rigid activated complexes: 

518-519 
Rigidity factors, ion-molecule reactions, 

Rosen-Zener transition: 
5 10-5 16 

charge-transfer reactions, 245 
hypospherical coordinate system, 

mechanisms, 246-254 
nonadiabatic transition, 263-264 

multichannel curve crossings: 
BFG model, 286-290 
diatomic systems, 265-267 

Rotational channel switching, redissociated 
collision complexes, reaction yields, 

299-300 

52 1-526 
Rotationally sudden approximation, 

Rotational rainbows, classical path 

Rotational wavefunctions, classical path 

Rovibronic charge transfer, quasimolecular 

RRKM theory, unimolecular processes, 

Runge-Kutta integrator, 345-346 
Runge-Lenz operator, 123-124 

classical path techniques, 338-342 

techniques, 341-342 

techniques, 339-342 

model, 74 

493-494 

Scattering information: 
classical trajectories, 333-336 

statistical rate theories, 489-491 
differential cross sections, 336-342 

Schmidt procedure, separated-partner 

Schrodinger equations: 
orbitals, 105-106 

adiabatic representation, 86-88 
body-fixed frame Hamiltonian. 85-86 
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charge-transfer reactions: 
collinear case, 190-191 
quantum-mechanical treatment, 

189-190 
classical path techniques, 328 

coupled equations, 330-332 
vibrationally sudden approximation, 

332-333 
diabatic vibronic bases, 126-127 

nonadiabatic interactions, 7 
potential energy surfaces. 91-92 

DIM method, 139-140 
symmetry-adapted basis functions, DIM 

method, 140-142 
trajectory-surface-hopping (TSH), 

differential cross sections, 337-342 

426-427 
molecular collisions. 426 
semiclassical theory, 426-427 

200-202 

(TSH), 435-438 

Seam definition, charge-transfer reactions, 

Seam location. trajectory-surface-hopping 

Second-order CI (SOCI) wavefunctions: 
adiabatic correction, 44 
nonadiabatic coupling, 52-53 

Self-consistent-field (SCF) calculations, 
diabatic potential energy surfaces, 
character preservation, 124-125 

Semiclassical energy-conserving trajectory 
technique (SCECT): 

charge transfer reactions, 324-325 
classical path techniques, 334-336 
total cross sections, 353-361 

nonadiabatic transition. 255-264 
terminology, 244-245 
trajectory-surface-hopping (TSH): 

Semiclassical theory: 

nonadiabatic molecular collisions, 

time-dependent equations. 439-441 
Semiempirical concepts, charge-transfer 

reactions, 137-138 
Separated-partner orbitals: 

425-427 

characterization of, 103-104 
electron translation factor (ETF) 

problem, 107-1 12 
clamped orbital expansions, 109-1 11 
common ETFs, 108-109 
diabatization. 11 1-1 12 
traveling orbitals, 107-108 

nonorthogonality. 104 
quasidiabatic orbitals for atom-diatom 

systems, 112-1 14 
two orbitals in atom-atom systems. 

104-107 
Simplified model concepts, charge-transfer 

Simpson rule, classical path techniques, 

Slater determinants: 

reactions, 137-138 

342-344 

configuration state functions (CSF) 

diabatic state construction, 99 

charge-transfer reactions, 294-296 
classical path techniques, initial 

condition averaging, 344-345 
electronically nonadiabatic reaction, 

preservation, 99-102 

S-matrix theory: 

313-314 
Space-fixed frame (SFF) coordinates. 

nonadiabatic interactions, body-fixed- 
frame methods, 30-35 

techniques. 337-338 

charge-transfer reactions: 

Spherical harmonics, classical path 

Spin-orbit coupling: 

nonadiabatic transition, dynamical 

semiclassical approach to, 248-254 
trajectory-surface-hopping (TSH). 

ion-molecule reactions, 447-452 
Spin transition, quantum-mechanical 

treatment, 223-226 
State-averaged MCSCF equations: 

active orbital derivatives, 63-64 
nonadiabatic interactions, molecular- 

second derivative nonadiabatic coupling, 

states (DS) representation, 256-260 

orbital (MO) derivatives. 15-20 

25-26 
State-to-state cross sections: 

charge-transfer collisions, 406-408 
classical path techniques, 344-345 

argon-nitrogen systems, 370-378 
charge-transfer collisions, 378-38 1 
differential cross sections, 337-338 
SCECT technique, 355-356 

classical trajectories, 333-336 
trajectory-surface-hopping (TSH). 

445-446 

path techniques, 340-341 
Stationary-phase approximation, classical 
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Statistical adiabatic channel model 
(SACM): 

adiabatic channel eigenvalues, 499-500 
ion-molecule reactions, 487,510-516 
redissociated collision complexes. 

520-521 
Statistical rate theories: 

biomolecular processes. 489-490 
ion-molecule reactions, 486-487 
unimolecular processes, 491-494 

Stine-Muckerman procedures, trajectory- 
surface-hopping (TSH), 435-437 

Stokes phase correction, Landau-Zener 
nonadiabatic transition, 261-263 

Straight line trajectories, classical path 
calculations, total cross sections. 
354-355 

Surface crossing, nonadiabatic interactions. 
35-38 

Surface interactions, DIM methods. 

Symmetry-adapted basis functions 
180- 183 

potential surfaces. DIM method. 
140-142 

Temperature conditions, ion-molecule 
reactions, 5 12 

Three-dimensional systems, quantum- 
mechanical treatment, 206-209 

Three-level models, multichannel curve 
crossings, 281-284 

Three-surface argon-hydrogen system, 
quantum-mechanical treatment, 
2 17-220 

Threshold photoelectron-photoion 

Time-dependent semiclassical equations, 

Total cross sections. classical path 

coincidence method, 322-325 

439-441 

calculations, 349-399 
argon-carbon monoxide systems, 

collision calculations. 390-393 
PES and couplings, 387-390 

argon-nitrogen systems, 367-385 
calculations, 369-378 
charge-transfer reactions. 378-381 
inelastic collisions. 381-385 
potential energy surfaces and 

385-393 

couplings, 369 
Bates-Reid research. 349-350 

DePristo research, 353-361 
dissociative charge transfer, 393-399 
Kimura research, 362-363 
Moran-Flannery research, 350-353 
Spalburg research, 363-367 

Tr(MU) form, atomic-orbital basis. 55-57 
Trajectories, classical path techniques, 

Trajectory surface hopping (TSH) method, 
333-336 

80 
background. 424-425 
charge-transfer reactions, 309-3 12 
classical path technique and, 326-327 

DIM method and, 431-433 
electron detachment processes, 441-442 
electron-transfer reactions, 467-474 

trajectories. 335-336 

alkali plus halogen, 468-472 
alkali plus oxygen, 472-474 
neutrals, 474-476 

future trends in, 476-478 
ion-molecule reactions, 442-467 

argon-hydrogen systems. 447-452 
chloride-hydrogen systems, 457-461 
heavy water systems, 461-462 
helium-hydrogen systems, 452-455 
helium-nitrogen systems. 456-457 
hydrogen ions, 442447,462-467 
neon-helium systems, 455-456 

Miller and George (MG) method, 
433-435 

nondiabatic molecular collisions. 
425-430 

semiclassical description, 425-427 
two-state systems, 427-430 

seam location and hopping prediction. 

time-dependent semiclassical equations. 

Trajectory surface-hopping model (TSHM), 

435-438 

439-441 

quantum-mechanical treatment, 
188-189 

Transition density matrices: 
coupled-perturbed CI (CP-CI) equations. 

nonadiabatic interactions. 8 
second derivative nonadiabatic coupling. 

29 

22-23 
Traveling orbitals, electron translation 

Triatomic ion-molecule systems: 
factor (ETF). 107-108 
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DIM method, 146-176 
BH; systems, 162-167 
FH; interaction, 157-162 
H 3' models, 146- 154 
HeHz system, 154- 157 
0: charge-transfer interactions. 

167-176 
Two-electron rearrangement. configuration 

state functions (CSF) preservation. 
99-102 

Two-state systems: 
nonadiabatic molecular collisions. 

potential energy surfaces, 92-98 
Two-surface cases, charge-transfer 

427-430 

reactions. 199-202 

Unimolecular processes, statistical rate 
theories. 491-494 

Vacancy migration, multichannel curve 
crossings, 275-277 

Valence bond (VB) molecules, DIM 
methods, 176 

Valence-Rydberg interactions, 
nonadiabatic coupling, 54 

Velocity-angle differential scattering 
trajectory-surface-hopping (TSH), 455 

Velocity-dependent interactions. electron 
translation factor (ETF), 110-1 11 

Velocity vector distribution, inelastic 
collisions. 384-385 

Vibrational adiabaticity, charge-transfer 

reactions, 300-302 

collision complexes, 521-526 
Vibrational channel switching, redissociated 

Vibrational distributions: 
classical path calculations, inelastic 

quantum-mechanical treatment, 

Vibrational effect, trajectory-surface- 

Vibrational excitation (VE): 

collisions, 384-385 

227-23 1 

hopping (TSH), 448-455 

classical path calculations: 
differential cross sections, 399-404 
dissociative charge transfer, 397-398 
total cross sections. 352-353.366-367 

quantum-mechanical treatment, 
hydrogen vibronic states, 216 

Vibrationally sudden approximation. 
classical path techniques, 332-333 

Vibrational matrix elements (VME). 
classical path techniques, 342-344 

Vibronic charge transfer. 
Born-Oppenheimer approximation 
breakdown, 76-77 

Vibronic coupling, trajectory-surface- 
hopping (TSH), 467-474 

Vibronic spectroscopy. nonadiabatic 
coupling, 54 

Vibronic transition: 
multichannel curve crossings: 

BFG model, 284-291 
ion-molecule collisions, 273-275 

von Neumann-Wigner noncrossing rule, 38 


