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Foreword

A student once asked me after a lecture on climate change impacts to hydrology,
'Sir, What is the problem with increasing temperatures due to global warming.
Can’t we buy a bigger air conditioner and get back to normal?' The student was
correct—one can engineer the effect of temperature rise unless it gets out of hand.
The bigger problem is that temperature rise comes with change in rainfall, its
intermittency, its distribution in space and in time, and the nature of its extremes
that cause floods on one end and droughts on the other. Any change in rainfall will
require re-engineering the planet, something that may not even be possible if the
change gets too big.

This book by Prof. Srinivasa Raju and Prof. Nagesh Kumar is, to my knowledge,
one of the first text-cum-reference books to assess and redesign water resources
systems due to our changing climate. It will fill a timely gap to knowledge, given
climate change is no longer a topic of debate, but one which countries around the
world are learning to adapt to. Part of this adaption requires assessing change to risk
for existing water resources infrastructure, put in place to allow us to live in places
where water is too much or too little. Part of this adaption is also finding ways of
designing new infrastructure that will be needed to combat the new water scarcity
or excess a warmer climate will bring. The book draws heavily on the excellent
work reported in several PhDs supervized by the authors and their colleagues, along
with the considerable literature that has been published on this topic worldwide.
The book is meant for those familiar with the principles of water resources systems,
their design, management and operation, and for those wishing to learn on how they
should be redesigned to cope with the challenges ahead.

The book starts with an explanation of what causes warming, why it is
anthropogenic, what changes occur, why they are significant and irrefutable, and
what are the implications to hydrology and the design and operation of water
resources systems. It then shifts to how one can model future change, the challenges
this entails, how climate models should be selected and uncertainty quantified, and
how this uncertainty may be reduced through clever combination strategies. Fol-
lowing this, a comprehensive assessment of downscaling approaches is presented,
which is needed due to the coarse resolution of climate models. This is followed by
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chapters detailing the statistical techniques used in assessing model simulations, the
hydrologic models needed to simulate changes in flow, and soil moisture from the
changed rainfall and evapotranspiration conditions of the future, as well as a
number of carefully selected case studies that articulate the range of problems the
techniques presented can be used for.

I was especially pleased to see a set of questions at the end of each chapter,
providing lecturers examples of questions that could be posed to students, giving an
opportunity to assess for themselves what they have learnt and what remains. It is
these questions that push students and the rest of us to devise solutions to what is
turning out to be one of the biggest challenges humanity has faced till date. Many
of these numerical questions enable better understanding of the theory clearly and
systematically. While the climate has been changing since eternity, human-induced
change is real and significant, with the bigger changes yet unseen and requiring
careful assessment and planning. I feel this book is a step in the right direction, as it
will provide the knowledge needed to re-engineer the planet and ensure our water
resources systems continue to provide the security we have come to expect over the
years.

My congratulations to both authors on this excellent accomplishment, and I hope
this book forces its readers to ponder not only on the science behind climate change
but also the engineering that is required to combat its effects on our way of life and
existence.

March 2017 Ashish Sharma
Professor and Future Fellow (ARC)

School of Civil and Environmental Engineering
The University of New South Wales

Sydney, Australia

vi Foreword



Preface

Climate change has been emerging as one of the major challenges in the global
scenario. Changes in climate may lead to adverse negative impacts on both natural
and human systems. Continued emissions of greenhouse gases would further
amplify the existing risks and create new complications for people and ecosystems.
To analyze the possible impacts of climate change on a river basin, it is required to
predict the future climate changes. This ultimately will help in planning and
management of water resources in the basin. Effective decision-making to throttle
climate change and its risks can be addressed by broad range of analytical and
mathematical approaches by predicting the changes. General Circulation/Global
Climate Models (GCMs) are one of the most credible tools presently available for
modeling climate change. However, accuracy of GCMs, which generally run at
coarse grid resolution, decreases with increasingly finer spatial and temporal scales,
rendering them unable to represent sub-grid scale features. In other words, GCMs
are not able to effectively model sub-grid scale processes which are of prime
interest to hydrologists and water resources planners. Downscaling is one of the
approaches where GCM outputs are interpolated to the scale of hydrological
modeling or local scale requirement.

Over the years, various experts across the world have brought out a number of
books on the above subject. Most of the books published so far are rather theo-
retically based with limited number of examples and case studies. The present book
is an amalgamation of available resources and divided into various chapters and
information about the chapters are as follows: Chap. 1 provides introduction to
climate change and variability, climate feedback, forcing mechanism, atmospheric
chemistry, palaeo records, monsoon variability, Holocene, IPCC scenarios, tele-
connections, impact of climate change, and organization and utilization of the book.
The chapter concludes with revision questions and exercise problems, advanced
review questions, references, and suggested further reading. This sort of exercises is
provided to all the chapters in the book with exception of Chap. 6 in which case
studies are presented. Chapter 2 describes GCMs and their choice, performance
indicators for evaluating GCMs, weight estimation, multicriterion decision-making
techniques in deterministic and fuzzy scenario, Spearman rank correlation
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coefficient, and group decision-making. Ensembling methodology of GCMs is also
discussed. Chapter 3 describes downscaling techniques. Detailed discussion is
presented on statistical downscaling techniques such as multiple regression, artifi-
cial neural networks, Statistical Downscaling Model (SDSM), change factor tech-
nique, and support vector machine. Brief discussion on nested bias correction is
also made. Chapter 4 presents data compression techniques, namely, cluster and
fuzzy cluster analysis, Kohonen neural networks, and principal component analysis.
Trend detection techniques and optimization techniques, namely, linear and
non-linear programming and genetic algorithms, are also discussed. Chapter 5
describes hydrological models, SWMM, HEC-HMS, SWAT, and other modeling
techniques. Chapter 6 presents various real-world global case studies in AR3 and
AR5 perspective that are related to the theories and techniques explained in the
earlier chapters. Even through AR3 is relatively older than AR5, case studies are
presented to understand the impact of climate change with temperature anomaly
equivalent visualization paths, namely, SRES or RCPs.

Appendix A covers procedures for acquiring data from various sources.
Appendices B and C provide representative list of journals and books related to
climate. Index is also provided for efficient retrieval of topics.

PowerPoint presentations of selected topics are also provided as an additional
study material. Interested individuals can contact publishers for PowerPoint
presentations.

The present book can help undergraduate as well as postgraduate programs in
the field of hydrology, climate change, and allied fields and can be referred as a text
book. It can also be used as a reference book or as supplementary study material for
researchers working in this upcoming field. The case studies, PowerPoint presen-
tations, extensive references, limited but informative and illustrative problems, and
software information render this book as a valuable source of information for
researchers, experts, professionals, teachers, and others who are interested in the
field of climate, hydrology, and allied fields.

Special acknowledgements to Dr. Ashish Sharma, Professor and Future Fellow
(ARC), School of Civil and Environmental Engineering, The University of New
South Wales, Sydney, Australia who readily agreed to write a foreword for the
book.

The authors are inspired and motivated by the books, reports and publications of
esteemed experts, Dr. Ashish Sharma, Dr. B.C. Bates, Dr. Z.W. Kundzewicz, Dr. T.
J. Ross, Dr. S. Wu, Dr. J.P. Palutikof, Dr. D.R. Easterling, Dr. F. Johnson, Dr. R.L.
Wilby, Dr. Di Luzio M., Dr. G.S. Rao, Dr. R. Srinivasan, Dr. R. Mehrotra, Dr.
Sulochana Gadgil, Dr. R.S. Nanjundiah, Dr. V.V. Srinivas, Dr. S.K. Satheesh, Dr.
K.C.Patra, Dr. Danielle Costa Morais, Dr. Adiel Teixeira de Almeida, Dr.
Chong-yu Xu, Dr. Lankao, Dr. T.I. Eldho and many others and are greatly benefited
from various journal papers, Intergovernmental Panel on Climate Change (IPCC)
reports, various climate-related homepages such as IPCC, Climate Prediction
Center, Climate Research Unit, etc. It will not be surprising, if the reader finds some
of their flavor in this book.

viii Preface



The concerned experts and researchers have generously given permission to
utilize their study material. We have included in this book some portions of our own
publications and publications of other researchers published in various journals
(after obtaining copyright permissions) by giving due reference to the journals at
the appropriate places. We sincerely thank the publishers of these journals such as
Springer, Elsevier, IWA ASCE, Copernicus, De Gruyter, Inter-Research Science
Center (Germany), and Prentice Hall of India for giving us specific permissions to
reuse the material. Acknowledgements are also due to Dr. A. Anandhi, Dr. Son-
ali P., and Dr. T.V. Reshmi Devi, Prof. Ajit Pratap Singh, and Ms. Gayam Akshara
for permitting us to utilize material from their works. Special Acknowledgements to
Ms. V. Swathi for providing numerical problems in the chapter, hydrological
modeling.

Even though efforts were made to quote all the sources in the form of
acknowledgements or references, a few may have been missed inadvertently. We
sincerely apologize for any such inconvenience caused and assure that these will be
duly incorporated in the next edition on noticing the same.

Every effort is made to eliminate typographical calculation and methodological
errors but still, some may have been left out. We request the readers to bring it to
our notice to rectify them in the next edition. The software information provided
does not necessarily indicate that the authors are encouraging to use only those
particular software. Similar softwares may also be available which may perform as
efficiently as those mentioned or even better. Critical suggestions are welcome for
improvement of the contents.

The first author is grateful to Prof. G. Sundar, Director, Dr. A. Vasan, Associate
Professor, BITS-Pilani, Hyderabad campus, and Prof. A.K. Sarkar, Director,
BITS-Pilani, Pilani campus who provided constant motivation and encouragement
for preparing the book. The first author acknowledges the support given by his
parents Gopala Rao and Varalakshmi, wife Gayathri Devi, daughter Sai Swetha,
and son Sai Satvik. The second author acknowledges the support given by his
parents Subrahmanyam and Lakshmi, wife Padma, daughter Sruthi, and son Saketh.

We are also thankful to our colleagues for the encouragement and students for
their inquisitive queries.

Last but not the least, authors are grateful to Dr. John Dodson, Series editor,
Springer Climate for his valuable suggestions and Ms. Swati Meherishi, Ms.
Aparajita Singh, and Ms. Bhavana Purushothaman of Springer for diligently pro-
cessing the manuscript and for timely publication of the book.

Hyderabad, India Komaragiri Srinivasa Raju
Bangalore, India Dasika Nagesh Kumar
April 2017
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1Introduction

Abstract
This chapter provides information about atmospheric activities and impacts of
climate change. Causes for climate variability, such as El Niño Southern
Oscillation, and its two different phases, La Niña and El Niño for cooling and
warming, are discussed. Teleconnections, climate feedback, and forcing
mechanisms (radiative and non-radiative, periodic and random, and external
and internal) are also parts of the chapter. Direct and indirect effects of aerosols
that influence the visibility in the atmosphere are also discussed briefly but
critically. Greenhouse gases and consequences of global warming such as
variations in rainfall, ice caps and glacier melting, temperature, likelihood
increase in frequency of floods and droughts, and acidification due to carbonic
acid formation are also explained. In addition, importance of atmospheric
chemistry, Palaeo records, monsoon variability, and Holocene is also stressed.
Extensive discussion on Intergovernmental Panel on Climate Change (IPCC)
scenarios which relate to demographic, economic, technological, and social
changes, i.e., Special Report on Emissions Scenarios (SRES) A1, A2, B1, and
B2 and Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0, and 8.5 is
also made. Impact of climate change on hydrology, water resources, urbaniza-
tion, and hydrologic extremes is discussed extensively. In addition, climate
change impacts on India are also covered in three aspects: What we know, what
could happen, and what can be done? The reader is expected to understand
various atmospheric processes/activities, impacts of climate change, and
organization and utilization of the book by studying this chapter.
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1.1 Introduction

Hydrology deals with occurrence as well as distribution of water in the atmosphere,
surface, and below surface of the Earth (Definition of Hydrologic 2017). Clima-
tology is the scientific study of climate. It examines variations in atmosphere due to
the oceans’ circulation, atmospheric gases concentration, and intensity variations of
solar radiation both for the long term and short term. A systematic analysis focusing
on the spatiotemporal variation of climate in the hydrologic cycle is termed as
hydroclimatology. In hydroclimatological studies, complex space and time varia-
tions of physical processes by both hydrologic cycle and climate sciences are
observed and modeled together, and inferences are drawn for an improved
appraisal. Generally, the output of this complex physical process facilitates in
determining the impact of frequent extreme events on the primary components of
the hydrologic cycle by employing both statistical and deterministic techniques
(Global Change Hydrology Program: Hydroclimatology 2017).

The global hydrologic cycle is a logical unifying theme for hydroclimatology
and consists of two branches, viz., terrestrial and atmospheric. Terrestrial branch
deals with the natural process at or near the land surface (i.e., the common process
related to hydrology). The atmospheric branch explains transport of water in the
vapor phase, precipitation, and evaporation (Shelton 2009). These two branches are
interlinked at the interface of the atmosphere and Earth’s surface. Modern hydro-
climatology provides a holistic view on how climate changes occur over time with
respect to both human and natural actions. It perceives water as a connecting
element between hydrology and climatology (Chahine 1992). Continuous increase
in global temperatures may result in potential catastrophic events, warranting the
need of research on hydrological processes like evapotranspiration and streamflow.

In the present chapter, climate change and variability, climate feedback, forcing
mechanism, atmospheric chemistry, Palaeo records, monsoon variability, Holocene,
Intergovernmental Panel on Climate Change (IPCC) scenarios, teleconnections, and
impact of climate change are discussed (Kumar et al. 1995; Jain and Lall 2001).
Glossary of the terms relevant to climate is available at Glossary Relevant to
Climate (2017).

1.2 Climate Change and Variability

Average state of the atmosphere represented by temperature and precipitation is
termed as climate and it is based on hydrosphere, cryosphere, lithosphere, and
biosphere. A continuous increase or decrease in the statistical properties of climate
variables is termed as climate change. Climate variability can be caused by climate
patterns such as El Niño Southern Oscillation, and its two different phases La Niña
and El Niño for cooling and warming, respectively.

Climate change and variability have substantial practical significances associated
with climate forcing of the hydrologic cycle both in time and space. There are
contemporary studies pertaining to climate change and variability on water
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resources. Most of these studies focused on coupling hydroclimatic watershed
models with global and regional climate models using satellite imagery.

This knowledge will not only increase the awareness of how the hydrological
systems may change over the coming century but will also provide information
regarding the changes in the present climate and its impact on water resources.
Keeping this in view, Intergovernmental Panel on Climate Change (IPCC) was
constituted in 1988 by the United Nations Environment Program (UNEP) and
World Meteorological Organization (WMO) to conduct climate change research.
Till date, IPCC published five assessment reports in the years 1990, 1995, 2001
(IPCC 2001), 2007, (IPCC 2007), and 2014 (IPCC 2014), and prospects of sig-
nificant changes in the hydrological cycle due to climate change were covered in all
the IPCC assessment reports. These reports also address hydrological changes and
variability that may cause potential climate hazards. Among the several climate
variables, precipitation, temperature, relative humidity, and incident solar radiation
are frequently used for climate impact assessment (IPCC 2001). These variables are
significant in hydrology and some of their possible impacts are discussed. The
following sections elaborate the above discussion.

1.3 Climate Feedback

Climate system is subjected to incoming solar radiation, which is expected to be
balanced by the outgoing terrestrial radiation resulting in a situation where Earth
continues to neither indefinitely cool down nor heat up. When the climate system
responds to the forcing (imposed perturbation/Earth’s energy balance variation with
space), it results in inequilibrium state.

In a climate system, when a fraction of the output is added to the input of the
system, it further modifies the output. The resultant loop is called a feedback, which
may accelerate (positive feedback) or decelerate the process (negative feedback)
(Hansen et al. 1998). Positive feedback situation is possible when the reaction to
primary climate forcing follows the same direction as the initial forcing factor and
supplements the climate response to the forcing, which amplifies warming or
cooling trends. Example of this nature is ice-albedo feedback due to mountain
ranges (Umbgrove 1947). Negative feedback situation is possible when the reaction
to primary climate forcing acts in the opposite direction to that of the initial forcing
factor and reduces the climate response to the forcing. The various feedback pro-
cesses occurring in the atmosphere due to forcing cause complex climate changes.

1.4 Forcing Mechanism

Climate change is caused by forcing agents, which may be radiative or
non-radiative, periodic or random, and external or internal. It is essential to analyze
the climate change for various time steps, e.g., daily, monthly, and yearly.
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1.4.1 Radiative and Non-radiative Forcing

Radiative forcing mechanism is the difference between outgoing terrestrial radiation
and incoming solar radiation. It is caused due to variations in atmospheric com-
position, solar radiation, volcanic activity, and Earth’s orbit around the Sun.
Whereas non-radiative mechanisms do not directly affect the atmosphere energy
budget (Shine et al. 1990).

1.4.2 Random and Periodic Forcing

Randomness in climate variation is mainly due to the chaotic and complex climate
system behaviors resulting in a large proportion of the unpredictable climate vari-
ation (Goodess et al. 1992). In the case of periodic forcing, identifying the forcing
mechanisms and their impact on the global climate framework enables to ascertain
future climate changes. However, outcome depends on the response of a climate
system which cannot be described entirely either as a linear or a non-linear process.

1.4.3 External and Internal Forcing Mechanisms

External forcing mechanisms involve agents acting from the extraterrestrial systems
including galactic, orbital (obliquity, orbital shape, and changes in precession) and
solar variations (Berger 1978). Internal forcing mechanisms involve agents oper-
ating within the climate system (from ocean, atmosphere, and land systems) and are
caused by factors such as orogeny, volcanic activity, ocean circulation, land
use/land cover changes, and variations in atmospheric composition (including
aerosol content and greenhouse gases).

1.4.3.1 Aerosols
Increase in aerosols has two effects on the climate system. The aerosol effect can be
direct, due to scattering and absorption of solar radiation by aerosols thereby
influencing visibility in the atmosphere (direct radiative forcing). The indirect effect
increases the formation of clouds and influences the properties and gas chemistry of
aerosols. Aerosol content change in the atmosphere is due to both natural and
anthropogenic factors. Some of the challenges to assess their impact on climate
change are (a) tiny size of aerosols less than 1 lm (much less than diameter of
human hair *75 lm) and (b) high accurate instrumentation and precise modeling
requirements (Satheesh and Srinivasan 2002; Satheesh and Lubin 2003; Satheesh
and Krishna Moorthy 2005; Satheesh 2006; Sedlacek and Lee 2007; Khain et al.
2008; Aerosols 2017).

1.4.3.2 Greenhouse Gases
Solar radiation emitted by the surface of Earth is held by greenhouse gas molecules.
These are then diffused into the atmosphere in all directions causing warming of
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Earth’s surface. Carbon dioxide (CO2), water vapor (H2O), nitrous oxide (N2O),
chlorofluorocarbons (CFCs), and methane (CH4) are some of the greenhouse gases
that cause warming. Anthropogenic and natural factors are responsible for content
change in greenhouse gases in the atmosphere. Natural factors include changes in
atmospheric CO2 and CH4 concentrations, vegetation, and weathering of rocks,
whereas anthropogenic factors include forest clearing, fossil fuel burning, and other
industrial processes. CO2 is one of the important agents responsible for climate
warming due to its long persistence in the atmosphere (Houghton et al. 1996).
There are many consequences of global warming such as variations in rainfall, ice
caps and glacier melting, temperature, likelihood increase in frequency of floods,
and droughts and acidification due to carbonic acid formation.

Global Climate Models (GCMs) are developed to evaluate the plausible
responses of the climate system to the changes in the behavior of natural and
human systems either separately or together. Climate models perform better at
continental and large regional scales compared to smaller spatial scales. Coupled
Model Intercomparison Project (CMIP) was devised for analyzing the coupled
Atmosphere-Ocean General Circulation Models’ (AOGCMs) outputs. GCMs from
both phases 3 and 5 of CMIP, which are termed as CMIP3 and CMIP5, are used
extensively in the last couple of decades worldwide for climate impact assessment
studies. Detailed discussion on GCMs is presented in Chap. 2.

1.4.4 Atmospheric Chemistry

Atmospheric chemistry relates to chemistry of the Earth’s atmosphere and that of
other planets. Atmospheric chemistry has interdisciplinary applications in climatol-
ogy, meteorology, geology, oceanography, volcanology, physics, and many other
areas. This topic is gaining importance due to its scope of identifying and analyzing
atmospheric effects such as global warming, greenhouse gases, photochemical smog,
ozone depletion, and acid rain. Availability of advanced technology for observation,
laboratory infrastructure, high computing facilities, and interdisciplinary nature of
research is the reason for its growth (Atmospheric Chemistry 2017).

1.4.5 Palaeo Records

Palaeo/past records are expected to provide information about the past for analyzing
changes in the Earth’s system. Past records include historical (documented) or pre-
historical records, i.e., without documentation/further back in geological time that
can consider geomorphology, sedimentology, and ecology (Palaeo Records 2017).

1.4.6 Monsoon Variability

Significant and erratic seasonal spatiotemporal variation of monsoon rainfall affects
economy across the world; for example, crop production affects food security and
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gross domestic product (Gadgil et al. 1999). Gadgil (2003) addressed the chal-
lenging problem of relating convection over the surrounding ocean and Pacific to
the monsoon variability. This paper also quoted the work of Halley (1686) where
differential heating between ocean and land was mentioned as the cause for mon-
soon rainfall (Webster 1987). This paper also discussed the thought process of
Charney (1969), where “monsoon is considered as a manifestation of the seasonal
migration of the intertropical convergence zone.” This paper observed considerable
variation of rainfall over sub-seasonal scales between active and weak spells and
quoted the work of Blanford (1886), where the phenomena were described as the
fluctuation between spells “during height of rains” and “intervals of droughts”.
Close correspondence between El Niño and deficit Indian monsoon rainfall is
discussed by Sikka (1980) and Pant and Parthasarathy (1981).

1.4.7 Holocene

According to Wikipedia, Holocene is the geological epoch that began after the
Pleistocene at approximately 11,700 years Before Present (BP) (Holocene 2017)
and marked by variability over century to millennial both at low and high latitudes.
Gupta et al. (2006) in their study felt that evidences during historical, archeological,
and palaeoclimatic indicate significant dislocation of population and cyclic trend of
human migrations. deMenocal (2001) presented impact of late Holocene climate
change on population over various time zones: Collapse of Tiwanaku, Mochica,
Classic Maya, and Akkadian spanning over 1000, 1500, 1200, and 4200 calendar
years BP, respectively. He observed close interaction between human cultural
elements and persistent multi-century climate shift. Gupta et al. (2006) also
described chronology of events during the Holocene in the Indian subcontinent
which spread over seven time zones, anno Domini (AD) 1800 onward, AD 1400–
1800, AD 700–1200, 1700 onward, 4000–3500, 7000–4000, and 10,000–7000
calendar years BP, and covered information related to climate in the Indian sub-
continent, population response, and agriculture during those time zones.

Srivastava et al. (2003) in their study over central Ganga Plain found significant
changes in the morpho-hydrologic conditions during the latest Pleistocene–Holo-
cene. They concluded that hydrologic conditions in the Gangetic plains were
influenced largely by climatic changes supported by tectonic activity and observed
that increasing agricultural- and human-related activities substantially increased the
natural siltation rate of ponds for the past 2 kiloyear (ka). Singhvi and Kale (2009)
made extensive and informative studies on paleoclimate studies in India, whereas
Singhvi and Krishnan (2014) extensively discussed present and past climate of
India including variability of Indian monsoon over time. Saraswat et al. (2016)
constructed centennial-scale change in carbonate burial, seawater temperature,
upwelling-induced productivity, and evaporation–precipitation from the south-
eastern Arabian Sea using faunal and geochemical proxies and reported major shift
in proxies during the mid-Holocene (6.8–6.2 ka).
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1.5 IPCC Climate Scenarios

Various climate scenarios were constructed for assessing the possible impacts of
anthropogenic climate alterations and variations of natural climate in future. These
are neither predictions nor forecasts of climate conditions (Smith and Hulme 1998;
Mearns et al. 2001; Criteria for Selecting Climate Scenarios 2013). The suitability
of each scenario is based on its applicability in impact assessment, physical plau-
sibility and consistency with global projections, accessibility, and representation.
Various climate scenarios had been explored in impact assessments (Mearns et al.
2001) such as analog scenarios (spatial and temporal) (Bergthórsson et al. 1988)
and incremental scenarios (Smith and Hulme 1998). However, some of the limi-
tations of the scenarios based on GCMs are coarse spatial resolution which may not
suit regional or local impact assessments, inability to differentiate anthropogenic
effect, and different structures for various models.

1.5.1 AR3 Perspective

In 1992, IPCC developed a set of six global emission scenarios (IS92a–f), termed as
IS92. These scenarios provide approximate estimates of possible occurrences of
greenhouse gases. The IS92 scenarios were further updated in 2000 and the set of
updated/new emission scenarios was established in Special Report on Emissions
Scenarios (SRES) . Some of the aspects of SRES are (i) improvements of processes
of greenhouse gases, (ii) changed geopolitical landscape, and (iii) availability of
more driving force data on emissions (Nakicenovic et al. 2000). Four sets of sce-
narios, A1, A2, B1, and B2 (Table 1.1), were formulated on the basis of four
individual story lines which describe about each scenario relating to demographic,
economic, technological, and social changes (IPCC Special Report: Emission
Scenarios 2000; SRES Emissions Scenarios 2017a, b; Anandhi et al. 2013).

Table 1.1 Information about SRES scenarios (AR3 perspective)

Scenario Representative characteristics that may emerge in future

A1 Very rapid economic growth and global population that peaks in mid-century and
declines thereafter; More efficient and new technologies introduction
Sub-classifications: non-fossil energy sources (A1T), fossil intensive (A1F1),
balance across all sources (A1B)

A2 Very heterogeneous world with preservation of local identities and self-reliance as
underlying theme

B1 Convergent world (similar global population as that of A1) with reduction in
material intensity, rapid and significant changes in economic structures, and
initiation of clean as well as resource-efficient technologies

B2 Environmental, social, and economic sustainability with increase in global
population, more diverse and less rapid technological change, intermediate levels
of economic development
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1.5.2 AR5 Perspective

Representative Concentration Pathways (RCPs) consider alternative scenarios in
aerosol concentrations with greenhouse gas as their origin point. Emission and
socioeconomic scenarios were constructed in parallel, namely RCPs 2.6, 4.5, 6.0,
and 8.5 (Integrated Assessment Modeling Consortium 2017). RCP 2.6 outlines one
pathway where radiative forcing peaks at approximately 3 W/m2 before 2100 and
then decline. RCPs 4.5 and 6.0 outline two intermediate stabilization pathways
where forcing is stabilized at approximately 4.5 and 6.0 W/m2 after 2100. RCP 8.5
outlines one high pathway for which forcing is greater than 8.5 W/m2 by 2100 and
continues to rise for some more time. Temperature anomaly (°C), carbon dioxide
equivalent (ppm), and pathway shape for RCPs 2.6, 4.5, 6.0, and 8.5 are 4.9, 1370,
rising; 3.0, 850, stabilization without overshoot; 2.4, 650, stabilization without
overshoot; and 1.5, 490, peak and decline, respectively.

RCP 8.5, RCP 6.0, and RCP 4.5 are temperature anomalies equivalent to SRES
A1F1, SRES B2, and SRES B1 scenarios. This analogousness helps to understand
the parallelism between AR3 and AR5 scenarios (Representative Concentration
Pathways, Part 3: RCP Technical Summary 2017) .

Moss et al. (2010), Vuuren et al. (2011), and Wayne (2013) provided useful
information on RCPs. More information on RCPs is available in Representative
Concentration Pathways, Part 1: An Introduction to Scenarios (2017), Represen-
tative Concentration Pathways, Part 2: Creating new scenarios (2017), Represen-
tative Concentration Pathways, Part 3: RCP Technical Summary (2017),
Representative Concentration Pathways description (2017), Scenario Process for
AR5 (2017), and Glossary relevant to RCPs (2017).

1.6 Teleconnection Patterns

El Niño (warm) and La Niña (cold) phases together are known as El Niño–Southern
Oscillation (ENSO) cycle (Philander 1985, 1990). They describe temperature
fluctuations between the atmosphere and ocean in the east-central equatorial Pacific
which have large-scale impacts on global weather, ocean processes, and climate.
These activities generally last 9–12 months and on an average take place every
2–7 years. El Niño significantly influences marine fisheries, ocean conditions, and
weather patterns across significant portions of the globe, whereas La Niña effects
tend to be opposite. Kane (1998) related ENSO to Indian Summer Monsoon
Rainfall (ISMR). Ramachandran (2007) analyzed ENSO and other related param-
eters for Indian conditions. Numerous researchers explored ENSO to forecast
rainfall over the Indian subcontinent (Sikka 1980; Pant and Parthasarathy 1981;
Shukla and Paolino 1983; Parthasarathy et al. 1988; Rao 1997). Relevant infor-
mation on ENSO is available (Ashok et al. 2004; Gadgil et al. 2003, 2004; Wang
et al. 2012; Climate Prediction Center 2017; National Ocean Service 2017).
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Other related teleconnection patterns are North Atlantic Oscillation, East Atlantic
Pattern, Tropical/Northern Hemisphere, Pacific Transition Pattern, Equatorial
Indian Ocean Oscillation, Ocean–Land temperature contrast, etc. (Barnston and
Livezey 1987; Barnston et al. 1991; Bell and Basist 1994; Bell and Janowiak 1995;
Gadgil et al. 2003, 2004; Bell and Chelliah 2006; Maity and Nagesh Kumar 2006,
2007; Maity et al. 2007; Nanjundiah et al. 2013). In detail, descriptions of these
teleconnections are also available in Climate Prediction Center (2017).

1.7 Impact of Climate Change

IPCC reports provide an overview of how (positive/adverse) climate changes may
affect natural systems including water resources. Interestingly, water resources are
also affected by population size, land use pattern, aging insufficient infrastructure,
exploitation of groundwater and reuse of wastewater, dynamically changing eco-
nomic and social values, accessibility, quality, flood risk mitigation/flood control,
energy, hydropower, navigation, etc. Changing patterns may require modified
design, relook at/redevelop the operational constraints, infrastructure changes,
adaptive management, and extensive research to eliminate knowledge
gaps/technology gaps/uncertainties for improved understanding of climate change.
Infrastructure deficit if any should be addressed as priority to cater the expected
events. Following sections present climate change impact on hydrology, water
resources, urbanization, and hydrologic extremes.

1.7.1 Hydrology

• Greenhouse gases concentrations are expected to change the atmosphere
radiative balance, causing temperature changes and associated changes in pre-
cipitation patterns.

• Amount of precipitation, its spatial distribution, intensity, and its frequency
changes affect the runoff.

• Climate change affects discharge into rivers significantly stretching the infras-
tructure. Increase/decrease in discharge results in under-designed/over-designed
reservoirs (IPCC 2008).

• Water quality and temperature in the region are affected by warming of lakes
and rivers in the region.

• Climate change effect is visible in hydrological cycle parameters, i.e., precipi-
tation, temperature, evaporation, transpiration, etc.

The fourth assessment report (AR4) of IPCC contains detailed information on
the resultant climate change. These reports cover a wide range of topics in hy-
drology in climate change such as runoff generation, changes in groundwater
systems, lakes, floods and droughts, changes in physical and chemical aspects of
lakes and rivers, water quality, erosion and sediment transport, and water use.
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1.7.2 Water Resources

Numerous studies (Brekke et al. 2009) indicate that climate change is an alarming
event (for example, increase in temperature results in increase in evapotranspiration,
and decrease in the amount of available water). This necessitates continuous
assessment and quantification of impacts of climate change. Bates et al. (2008)in
their IPCC report opined that (a) “Observational records and climate projections
provide evidence that freshwater resources are most vulnerable and are strongly
impacted by climate change in turn have wide-ranging consequences on human
societies and ecosystems.” (b) “Climate change affects the functioning and opera-
tion of existing water infrastructure—including hydropower, structural flood
defenses, drainage and irrigation systems—as well as water management practices”
(Bates et al. 2008; Milly et al. 2008).

Natural Resources Defense Council (2010) suggested water supply response
measures in climate change such as use of climate-smart water management tools,
water management at regional level, system reoperation, climate change impact
consideration into project design, and incorporation of environmentally sound flood
management policies. Wateraid (2017), a water resource, organization, discussed
about climate change and its occurrence and highlighted its possible impacts on
health, food, land, water, environment, and large-scale changes for temperature rise
of 1–5 °C and more than 5 °C and discussed the impacts for Africa and Asia. Islam
and Sikka (2010), Gosain et al. (2011), Bhatt and Mall (2015), and India Envi-
ronment Portal (2017) performed similar studies.

Groundwater, largest available freshwater on Earth, is an integral part of
hydrological cycle and is a supporting source for domestic, agriculture, and
industrial sectors along with surface water. However, groundwater availability is
affected by indiscriminate pumping and unpredictable climate change (Bates et al.
2008; Siebert et al. 2010; Green et al. 2011). For example, drought situation may
result in unhealthy and unsustainable pumping of groundwater, which is irre-
versible. Panwar and Chakrapani (2013) in their extensive studies discussed about
India’s groundwater utilization and status, behavioral and structural adaptations,
promoting groundwater governance, risk zones of groundwater, mapping of climate
change, and CO2 sequestration. Saline water intrusion into groundwater in coastal
aquifers due to rise of sea level also affects groundwater quality (Shah 2009).
Treidel et al. (2012), Panigrahy et al. (2015), and Refsgaard et al. (2016) discussed
impacts on groundwater and resulting uncertainties. Groundwater and surface water
management are influenced by human activities and it is a major challenge to the
planners.

1.7.3 Urbanization

Lankao (2008) described climate change impact on urbanization. Salient aspects
discussed are as follows:
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• Climate change may result in change in precipitation levels, mean temperatures,
and sea level which impacts energy demand and reduction of the sewers’
capacity.

• Floods, droughts, heatwaves, and landslides affect livelihoods of urban popu-
lation, property, and quality of life.

• Extreme rainfall events escalate flood hazards and landslides and create stress on
existing infrastructure and health hazards leading to higher insurance expenses
and societal disturbances.

• Social and environmental factors, hazards, public finance, institualization pro-
cess, flexible climate adaptation, and mitigation strategies can be considered to
tackle the effects.

1.7.4 Hydrologic Extremes

Huge amount of damage occurs due to events such as extreme precipitation, tem-
perature, and rise in sea levels (Easterling et al. 2000), resulting in loss of life and
property, destruction, and increase in insurance claims. Numerous researchers
found that climate change impacts almost all climate variables and trend shows that
they impact extreme events also (IPCC 2012). Easterling et al. (2000) envisaged
climate extremes, namely more hot summer days and heavy 1-day precipitation,
higher maximum and minimum temperatures, increase in heat index, fewer frost
days, more intensity multiday precipitation events and heat waves and more intense
El Niño events, etc., for observed (twentieth century) and modeling
(twentieth-century end) conditions. Tohver et al. (2014), Taye et al. (2015), and Gu
et al. (2015) analyzed the impact on hydrological extremes for Pacific northwest
region of North America, Blue Nile Basin, and Yangtze River Basin, China,
respectively. Related studies on extreme rainfall are available (Haylock and
Nicholls 2000).

1.7.5 India: Climate Change Impacts

Impacts of likely temperature increase from 2 to 4 °C in India include extreme heat,
rainfall patterns, droughts, groundwater, glacier melt, sea level rise, agricultural
and food security, energy and water security, health, and mitigation and conflict
(Modified and Adapted from India: Climate Change Impacts 2017) and presented in
Table 1.2.
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Table 1.2 Climate change impacts on India

Characteristic What we know What could happen What can be done

Extreme heat India is already
experiencing a warming
climate

Unusual and
unprecedented spells of
hot weather are expected
to occur far more
frequently and cover
much larger areas
Under 4 °C warming, the
west coast and southern
India are projected to
shift to new,
high-temperature
climatic regimes with
significant impacts on
agriculture

With built-up urban areas
rapidly becoming
“heat-islands”, urban
planners will need to
adopt measures to
counteract this effect

Changing
rainfall
patterns

A decline in monsoon
rainfall since the 1950s
has already been
observed. The frequency
of heavy rainfall events
has also increased

A 2 °C rise in the
world’s average
temperatures will make
India’s summer monsoon
highly unpredictable
At 4 °C warming, an
extremely wet monsoon
that currently has a
chance of occurring only
once in 100 years is
projected to occur every
10 years by the end of
the century
An abrupt change in the
monsoon could
precipitate a major crisis,
triggering more frequent
droughts as well as
greater flooding in large
parts of India
India’s northwest coast to
the southeastern coastal
region could see higher
than average rainfall
Dry years are expected to
be drier and wet years
wetter

Improvements in
hydro-meteorological
systems for weather
forecasting and the
installation of flood
warning systems can
help people move out of
harm’s way before
weather-related disaster
strikes
Building codes will need
to be enforced to ensure
that homes and
infrastructure can
withstand projected
changes

Droughts Evidence indicates that
parts of South Asia have
become drier since the
1970s with an increase in
the number of droughts

Droughts are expected to
be more frequent in some
areas, especially in
northwestern India,
Jharkhand, Orissa and
Chhattisgarh

Investments in Research
and Development on the
development of
drought-resistant crops
can help reduce some of
the negative impacts

(continued)
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Table 1.2 (continued)

Characteristic What we know What could happen What can be done

Droughts have major
consequences. In 1987
and 2002–2003, droughts
affected more than half of
India’s crop area and led
to a huge fall in crop
production

Crop yields are expected
to fall significantly
because of extreme heat
by the 2040s

Groundwater More than 60% of
India’s agriculture is
rain-fed, making the
country highly dependent
on groundwater
Even without climate
change, 15% of India’s
groundwater resources
are overexploited

Although it is difficult to
predict future
groundwater levels,
falling water tables can
be expected to reduce
further on account of
increasing demand for
water from a growing
population, more affluent
lifestyles, as well as from
the services sector and
industry

The efficient use of
groundwater resources
will need to be
incentivized

Glacier melt Glaciers in the
northwestern Himalayas
and in the Karakoram
range––where westerly
winter winds are the
major source of
moisture––have
remained stable or even
advanced
On the other hand, most
Himalayan glaciers––
where a substantial part
of the moisture is
supplied by the summer
monsoon––have been
retreating over the past
century

At 2.5 °C warming,
melting glaciers and the
loss of snow cover over
the Himalayas are
expected to threaten the
stability and reliability of
northern India’s
primarily glacier-fed
rivers, particularly Indus
and Brahmaputra.
Ganges will be less
dependent on meltwater
due to high annual
rainfall downstream
during the monsoon
season
Indus and Brahmaputra
are expected to see
increased flows in spring
when the snows melt,
with flows reducing
subsequently in late
spring and summer
Alterations in the flows
of Indus, Ganges, and
Brahmaputra rivers could
significantly impact
irrigation, affecting the

Major investments in
water storage capacity
would be needed to
benefit from increased
river flows in spring and
compensate for lower
flows later on

(continued)
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Table 1.2 (continued)

Characteristic What we know What could happen What can be done

amount of food that can
be produced in their
basins as well as the
livelihoods of millions of
people (209 million in
the Indus basin, 478
million in the Ganges
basin and 62 million in
the Brahmaputra basin in
the year 2005)

Sea level rise Mumbai has the world’s
largest population
exposed to coastal
flooding, with large parts
of the city built on
reclaimed land, below
the high-tide mark. Rapid
and unplanned
urbanization further
increases the risks of sea
water intrusion

With India close to the
equator, the subcontinent
would see much higher
rises in sea levels than
higher latitudes
Sea level rise and storm
surges would lead to
saltwater intrusion in the
coastal areas, impacting
agriculture, degrading
groundwater quality,
contaminating drinking
water, and possibly
causing a rise in diarrhea
cases and cholera
outbreaks, as the cholera
bacterium survives
longer in saline water
Kolkata and Mumbai,
both the densely
populated cities, are
particularly vulnerable to
the impacts of sea level
rise, tropical cyclones,
and riverine flooding

Building codes will need
to be strictly enforced
and urban planning will
need to prepare for
climate-related disasters
Coastal embankments
will need to be built
where necessary and
Coastal Regulation Zone
codes enforced strictly

Agriculture
and food
security

Even without climate
change, world food
prices are expected to
increase due to growing
populations and rising
incomes, as well as a
greater demand for
biofuels
Rice: While overall rice
yields have increased,
rising temperatures with

Seasonal water scarcity,
rising temperatures, and
intrusion of sea water
would threaten crop
yields, jeopardizing the
country’s food security
If current trends persist,
substantial yield
reductions in both rice
and wheat can be

Crop diversification,
more efficient water use,
and improved soil
management practices,
together with the
development of
drought-resistant crops,
can help reduce some of
the negative impacts

(continued)
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Table 1.2 (continued)

Characteristic What we know What could happen What can be done

lower rainfall at the end
of the growing season
have caused a significant
loss in India’s rice
production. Without
climate change, average
rice yields could have
been almost 6% higher
(75 million ton in
absolute terms)
Wheat: Recent studies
show that wheat yields
peaked in India and
Bangladesh around 2001
and have not increased
since despite increasing
fertilizer applications.
Observations show that
extremely high
temperatures in Northern
India––above 34 °C––
have had a substantial
negative effect on wheat
yields, and rising
temperatures can only
aggravate the situation

expected in the near and
medium term
Under 2 °C warming by
the 2050s, the country
may need to import more
than twice the amount of
food grain than would be
required without climate
change

Energy
security

Climate-related impacts
on water resources can
undermine the two
dominant forms of power
generation in India––
hydropower and thermal
power generation––both
of which depend on
adequate water supplies
to function effectively
To function at full
efficiency, thermal power
plants need a constant
supply of fresh cool
water to maintain their
cooling systems

The increasing variability
and long-term decreases
in river flows can pose a
major challenge to
hydropower plants and
increase the risk of
physical damage from
landslides, flash floods,
glacial lake outbursts,
and other climate-related
natural disasters
Decreases in the
availability of water and
increases in temperature
will pose major risk
factors to thermal power
generation

Projects will need to be
planned taking into
account climatic risks

Water
security

Many parts of India are
already experiencing
water stress. Even
without climate change,

An increase in variability
of monsoon rainfall is
expected to increase

Improvements in
irrigation systems, water
harvesting techniques,
and more efficient

(continued)
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Table 1.2 (continued)

Characteristic What we know What could happen What can be done

satisfying future demand
for water will be a major
challenge
Urbanization, population
growth, economic
development, and
increasing demand for
water from agriculture
and industry are likely to
aggravate the situation
further

water shortages in some
areas
Studies have found that
the threat to water
security is very high over
Central India, along the
mountain ranges of the
Western Ghats and in
India’s northeastern
states

agricultural water
management can offset
some of these risks

Health Climate change is
expected to have major
health impacts in India––
increasing malnutrition
and related health
disorders such as child
stunting––with the poor
likely to be affected most
severely. Child stunting
is projected to increase
by 35% by 2050
compared to a scenario
without climate change
Malaria, dengue, yellow
fever, Chagas disease,
schistosomiasis, human
African trypanosomiasis
and leishmaniasis, and
diarrheal infections are a
major cause of child
mortality that are likely
to spread into areas
where colder
temperatures had
previously limited
transmission
Heat waves are likely to
result in a very
substantial rise in
mortality and death, and
injuries from extreme
weather events are likely
to increase

Health systems will need
to be strengthened in
identified hotspots

Improvements in
hydro-meteorological
systems for weather
forecasting and the
installation of flood
warning systems can
help people move out of
harm’s way before
weather-related disaster
strikes
Research and
Development on
vaccination to face the
projected risks is a
priority

Migration
and conflict

South Asia is a hotspot
for the migration of
people from

Climate change impacts
on agriculture and
livelihoods can increase

Regional cooperation on
water issues will be
needed

(continued)
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1.8 Organization of the Book

This book is divided into various chapters and information about the chapters are as
follows.

This chapter provides an introduction to climate change and variability, climate
feedback, forcing mechanism, atmospheric chemistry, Palaeo records, monsoon
variability, Holocene, Intergovernmental Panel on Climate Change (IPCC) sce-
narios, teleconnections, impact of climate change, and organization and utilization
of the book. The chapter concludes with revision questions and exercise problems,
advanced review questions, references, and suggested further reading. This sort of
exercises is provided to all the chapters in the book with exception of Chap. 6 in
which case studies are presented.

Chapter 2 describes GCMs and their choice, performance indicators for evalu-
ating GCMs, weight estimation, multicriterion decision-making techniques in
deterministic and fuzzy scenario, Spearman rank correlation coefficient, and group
decision-making. Ensembling methodology of GCMs is also discussed.

Chapter 3 describes downscaling techniques. Detailed discussion is presented on
statistical downscaling techniques such as multiple regression, artificial neural
networks, Statistical Downscaling Model (SDSM), change factor technique, and
support vector machine. Brief discussion on nested bias correction is also made.

Chapter 4 presents data compression techniques, namely, cluster and fuzzy
cluster analysis, Kohonen neural networks, and principal component analysis.
Trend detection techniques and optimization techniques, namely, linear and
non-linear programming and genetic algorithms are also discussed.

Chapter 5 describes hydrological models, SWMM, HEC-HMS, SWAT, and
other modeling techniques.

Chapter 6 presents various real-world global case studies in AR3 and AR5
perspectives that are related to the theories and techniques explained in the earlier
chapters. Even through AR3 is relatively older than AR5, case studies are presented

Table 1.2 (continued)

Characteristic What we know What could happen What can be done

disaster-affected or
degraded areas to other
national and international
regions
The Indus and the
Ganges–Brahmaputra–
Meghna Basins are major
transboundary rivers, and
increasing demand for
water is already leading
to tensions among
countries over water
sharing

the number of climate
refugees
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to understand the impact of climate change with temperature anomaly equivalent
visualization paths, namely, SRES or RCPs.

Appendix A covers procedures for acquiring data from various sources.
Appendices B and C provide representative list of journals and books related to
climate. Index is also provided for efficient retrieval of topics.

PowerPoint presentations of selected topics are also provided as an additional
study material. Interested individuals can contact publishers for PowerPoint
presentations.

1.9 Utilization of the Book

The present book can help undergraduate as well as postgraduate programs in the
field of hydrology, climate change, and allied fields, and can be referred as a
textbook. It can also be used as a reference book or as supplementary study material
for researchers working in this upcoming field. The case studies, PowerPoint pre-
sentations, extensive references, limited but informative and illustrative problems,
and software information render this book as a valuable source of information for
researchers, experts, professionals, teachers, and others who are interested in the
field of climate, hydrology, and allied fields.

Next chapter presents the selection of Global Climate Models.

Revision Questions

1:1 What is hydroclimatology? What is its significance?
1:2 Define climate system. What are the various components of global climate

system?
1:3 What is climate feedback? How many types of feedbacks are possible?

What is their impact?
1:4 How many reports are published by IPCC up to year 2015?
1:5 What is the forcing mechanism?
1:6 What is the difference between (a) radiative forcing, and non-radiative

forcing, and (b) random and periodic forcing, and (c) external and internal
forcing?

1:7 What is aerosol? What is its impact on atmosphere?
1:8 What are greenhouse gases? What are the factors affecting the changes in

the greenhouse gases in atmosphere?
1:9 What is the role of global climatic models?

1:10 What is the purpose of CMIP3 and CMIP5?
1:11 What are the roles of Palaeo records and atmospheric chemistry in climate

change?
1:12 What is monsoon variability? How it may affect agriculture?
1:13 What is Holocene?
1:14 What is climate scenario?
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1:15 What is story line? How many story lines exist in SRES perspective? What
is their practical significance?

1:16 What are scenarios in AR5 perspective?
1:17 What is the purpose of Representative Concentration Pathways? Compare

four Representative Concentration Pathways in terms of radioactive forcing,
concentration and pathway shape?

1:18 What are La Niña, El Niño, and ENSO?, How ENSO is different as com-
pared to El Niño and La Niña?

1:19 What are the possible teleconnections?
1:20 What is the impact of climate change on (a) surface and groundwater,

(b) urbanization, and (c) hydrologic extremes?
1:21 What are the characteristics affecting climate situation in India?

Advanced Review Questions

1:22 What is the difference between CMIP3 and CMIP5?
1:23 What are examples of forcing agents?
1:24 How uncertainties in temperature affect the estimation of greenhouse gases

or vice versa?
1:25 What are the guidelines for selection of climate scenario?
1:26 How climate scenarios help India to assess future greenhouse gases and

water availability?
1:27 Among four Representative Concentration Pathways, which is suitable for

India?
1:28 What are the limitations for using RCPs?
1:29 What is the difference between SRES scenarios and RCPs?
1:30 Do you feel that existing SRES and RCP scenarios are sufficient to assess

future climate situations for India? If yes, justify how they are sufficient? If
not, provide the reasons and possible improvements? Can you suggest story
lines other than the proposed?

1:31 What are the teleconnections impacting Indian monsoon rainfall?
1:32 Is there any activity affected by climate change other than discussed in this

chapter?
1:33 Which IPCC reports discussed about hydrologic extremes and water

resources?
1:34 Mention names of the two places in India where climate change affected the

water resources availability or any other impact preferably one case study in
South India and one case study in North India?
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2Selection of Global Climate Models

Abstract
This chapter describes Global Climate Models (GCMs), limitations and
uncertainties associated with the formulation of GCMs due to the effect of
aerosols which are differently parameterized in GCMs, initial and boundary
conditions for each GCM, parameters and model structure of GCMs, random-
ness, future greenhouse gas emissions, and scenarios leading to significant
variability across model simulations of future climate. This chapter discussed the
necessity of performance indicators for evaluating GCMs and explained
mathematical description of these indicators. It also emphasized on normaliza-
tion approach, weight computing techniques such as entropy and rating, ranking
approaches, namely, compromise programming, cooperative game theory,
TOPSIS, weighted average, PROMETHEE, and fuzzy TOPSIS. Spearman rank
correlation which measures consistency in ranking pattern and group
decision-making that aggregates individual rankings obtained by different
techniques to form a single group preference is also part of this chapter.
Ensembling methodology of GCMs is also discussed. Reader is expected to
understand various uncertainties associated, role of decision-making techniques
for ranking of GCMs by studying this chapter.
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2.1 Introduction

Multicriterion decision-making (MCDM) techniques are capable of selecting the
best global climate model (GCM). Selected GCMs can be explored for applications,
e.g., downscaling and adaptation studies (Bogardi and Nachtnebel 1994). The
present chapter discussed about GCMs, normalization, and weight estimation
techniques, MCDM techniques, Spearman rank correlation coefficient, group
decision-making, and methodology of ensembling of GCMs. The discussed tech-
niques are demonstrated with numerical examples in climate modeling situations. In
the present book, methods and techniques are used interchangeably.

2.2 Global Climate Models

The Earth climate system is the result of interaction between various components
such as atmosphere, snow, ice, land surface, ocean, and other water bodies, and
living beings like humans and animals. Human-induced factors such as deforesta-
tion and burning of fossil fuels also lead to change in atmospheric composition in
addition to various external factors. Due to this there will be climate change, which
affects the variability of the parameters that continue to exist for a long period. For
example, nitrous oxide, carbon dioxide, methane, ozone, hydrofluorocarbons, and
sulfur hexafluoride are the greenhouse gases that are increasing and affecting global
temperature over the past half century and are expected to follow the similar trend
in future. These greenhouse gases affect the absorption, scattering, and emission of
radiation in the Earth surface and atmosphere. These aspects necessitated to study
the relationship between greenhouse gases and the global climate. This is possible
through climate modeling or simply climate models. Various relevant climate
models are described by Thompson and Perry (1997), Goudie and Cuff (2001), and
Kendal and Henderson-Sellers (2013):

• Energy balance models are one dimensional in nature, which relate latitude and
sea surface-level temperature variation.

• Radiative-convective models are one dimensional in nature. They analyze
vertical temperature, explicit profile modeling of radiative process and con-
vective adjustment.

• General circulation or global climate models (GCMs) are sophisticated
numerical tools, which are three dimensional in nature. They simulate Earth’s
climate with different climate variables, initial and boundary conditions, and
structure. GCMs are increasingly being employed to solve or to assess
regional/local issues (What is a GCM 2013). Wilby et al. (2009) described
GCMs as numerical solutions of a partial differential equation(s). GCMs are
formulated on the principles of movement of energy, momentum of a particle,
and conservation of mass.

28 2 Selection of Global Climate Models



• Coupled atmosphere–ocean global climate models combine the interactions of
the atmospheric GCMs and oceanic GCMs.

Xu (1999) mentioned that GCMs are found to be capable of projecting average
precipitation, temperature, etc., over future decades or centuries. He and numerous
researchers, however, cautioned about the limitations of GCMs such as

• Accuracy of GCMs, which generally run at coarse grid resolution (*3° � 3°),
decreases with increasingly finer spatial and temporal scales, rendering them
unable to represent sub-grid-scale features. In other words, GCMs are not able to
effectively model sub-grid-scale processes which are of prime interest to
hydrologists and water resources planners.

• Accuracy of GCMs decreases from free tropospheric to surface variables,
whereas surface variables have significant application in water balance
computations.

The uncertainties associated with the formulation of GCMs arise due to the effect
of aerosols which are differently parameterized in GCMs, initial and boundary
conditions for each GCM, parameter and model structure of GCMs, randomness,
future greenhouse gas emissions, and Representative Concentration Pathways
(RCPs) leading to significant variability across model simulations of future climate
(Raje and Mujumdar 2010). These uncertainties accumulate from various levels
such as GCM to downscaling level and may propagate to the local levels, which
may affect the adaptation studies that would be used as the basis for implementa-
tion. In brief, the uncertainty begins at selection of suitable GCMs, selection of
downscaling technique(s), and selection of suitable hydrologic model(s). Numerous
authors suggested uncertainty minimization by employing ensembling of relevant
models, which may provide increased confidence while projecting climate change.
For example, instead of single GCM output, output of multiple GCMs can be used
as the basis to feed inputs to downscaling techniques. Similarly outputs from some
of the downscaling techniques such as Statistical Downscaling Modeling (SDSM)
(Wilby et al. 2002), Multiple Linear Regression (MLR), and Artificial Neural
Networks (ANN) can be ensembled (or these outputs can be studied) and can be
passed on to hydrologic models. Similar experimentation can be performed in
hydrologic modeling where few hydrologic models can be coupled or even
hybridized (Semenov and Stratonovitch 2010).

2.3 Performance Indicators for Evaluating GCMs

Pierce et al. (2009) in their studies raised the issues such as “What effect does
picking different global models have on the regional climate study? If different
global models give different downscaled results what strategy should be used for
selecting the global models? Are there overall strategies that can be used to guide
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the choice of models?” The above queries necessitated to evaluate the available
GCMs for accuracy and their adaptability (Legates and McCabe 1999). Hence, the
GCMs are to be evaluated to assess their performance by simulating the historic
observations. This enables to choose GCMs of higher performance so that the
relevant output obtained from the suitable/best GCMs can be used for further
analysis (Mujumdar and Nagesh Kumar 2012).

A performance indicator is a measure of any GCM to determine how well it
simulates the observed data. Simple, effective, and meaningful metrics are required
to evaluate the GCMs across space and time and to evolve a subset of models that
can be employed for hydrologic modeling applications. These indicators may
provide the basis to assess the confidence level of outputs of GCMs (Helsel and
Hirsch 2002; Gleckler et al. 2008; Johnson and Sharma 2009; Macadam et al. 2010;
Wilks 2011; Sonali and Nagesh Kumar 2013; Ojha et al. 2014).

Different researchers used various performance indicators, such as, Sum of
Squares of Deviation (SSD), Mean Square Deviation (MSD), Root Mean Square
Deviation (RMSD), Normalized Root Mean Square Deviation (NRMSD), Abso-
lute Normalized Mean Bias Deviation (ANMBD), Average Absolute Relative
Deviation (AARD), Pearson Correlation Coefficient (CC), Nash–Sutcliffe Effi-
ciency (NSE), and Skill Score (SS). Among all, SSD, MSD, RMSD, NRMSD,
ANMBD, AARD are of deviation/error category. The mathematical descriptions of
these indicators are as follows:

(a) SSD is addition of the squared difference between the observed values and the
GCM-simulated values. xi and yi are observed and simulated values respec-
tively. T is number of datasets.

SSD ¼
XT
i¼1

ðxi � yiÞ2 ð2:1Þ

(b) MSD is the average of squares of deviation.

MSD ¼ 1
T

XT
i¼1

ðxi � yiÞ2 ð2:2Þ

(c) RMSD is square root of mean square of deviation.

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
i¼1

ðxi � yiÞ2
vuut ð2:3Þ

(d) NRMSD is the ratio of RMSD and mean of observed values. Less value of
NRMSD is preferred.
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NRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
i¼1

ðxi � yiÞ2
s

�x
ð2:4Þ

(e) ANMBD is ratio of the mean of the differences between the observed and the
GCM-simulated values to the mean of observed values. Less value of
ANMBD is preferred.

ANMBD ¼
1
T

PT
i¼1

ðyi � xiÞ
� �

�x

��������

��������
ð2:5Þ

(f) AARD is the mean of the absolute values of relative deviation. Less value of
AARD is preferred.

AARD ¼ 1
T

XT
i¼1

ARDij j; where ARDi ¼ ðyi � xiÞ
xi

ð2:6Þ

(g) CC relates strength of the linear relationship between the observed and the
GCM-simulated values. Here, �x;�y are average of observed and simulated
values, whereas robs and rsim are the standard deviations. CC value near to 1.0
indicates good model performance. In all chapters wherever applicable, the
word “correlation coefficient” is used as a generalization.

CC ¼
PT
i¼1

ðxi � �xÞðyi � �yÞ
ðT � 1Þrobsrsim ð2:7Þ

(h) NSE is defined (Nash and Sutcliffe 1970) as:

NSE ¼ 1�
PT
i¼1

ðxi � yiÞ2

PT
i¼1

ðxi � �xÞ2
ð2:8Þ

NSE ranges from �1 to 1. If a model simulates the observed conditions perfectly,
NSE value will be 1 (Nash–Sutcliffe Efficiency 2017).

(i) SS (Maximo et al. 2008) measures the similarity between the Probability
Density Functions (PDFs) of the observed and simulated values across the
entire PDF and expressed as
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SS ¼ 1
T

Xnb
i¼1

minðfm; foÞ ð2:9Þ

where nb is number of bins used to calculate the PDF for a given region. fm, fo are
the frequencies of values in the given bin from the chosen GCM and of the
observed values. Skill score varies between zero and one.

Numerical Problem 2.1 Global climate model-simulated temperature data (in °K)
in a given region in India along with the observed/historic data are presented in
Table 2.1. Compute the performance of the GCM for its simulating capability with
that of historic data in terms of SSD, MSD, RMSD, CC, NRMSD, ANMBD,
AARD, NSE, and SS.

Table 2.1 Historic/observed data and simulated data by GCM

Datasets Historic/observed data (°K) GCM-simulated data (°K)

1 243 244

2 244 248

3 245 251

4 246 258

5 247 248

6 248 264

7 248 253

8 249 252

9 249 253

10 250 264

11 250 256

12 251 256

13 253 265

14 254 245

15 255 258

16 256 267

17 257 259

18 258 261

19 259 260

20 260 260

21 262 266

22 263 270

23 265 266

24 269 264

25 270 273

26 271 270

27 273 272
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Solution:
Notation:

xi Observed temperature value (°K)
yi Simulated value (°K)
�x Mean of the observed values (°K)
�y Mean of simulated values (°K)
T Number of observations recorded
robs Standard deviation of the observed value set (°K)
rsim Standard deviation of simulated value set (°K)

Estimated parameters

�x ¼ 255:37 �K
PT
i¼1

ðxi � yiÞ2 ¼ 1232 �K2

�y ¼ 259:37 �K
PT
i¼1

ðxi � �xÞ2 ¼ 2016:29 �K2

PT
i¼1

ðyi � �yÞ2 ¼ 1750:29 �K2 PT
i¼1

ðxi � �xÞðyi � �yÞ ¼ 1483:30 �K2

Standard deviation of a set of observations is calculated by the following
formula:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
i¼1

xi � �xð Þ2

ðT � 1Þ

vuuut

Standard deviation of observed data ¼ robs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2016:29

26

r
¼ 8:8062 �K

Standard deviation of simulated data ¼ rsim ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1750:29

26

r
¼ 8:2048 �K

Computation of performance indicators (Refer Table 2.2)
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SSD ¼
XT
i¼1

ðxi � yiÞ2 ¼ 1232 �K2

MSD ¼ 1
T

XT
i¼1

ðxi � yiÞ2 ¼ 1232
27

¼ 45:63 �K2

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
i¼1

ðxi � yiÞ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffi
45:63

p
¼ 6:7549 �K

CC ¼
PT
i¼1

ðxi � �xÞðyi � �yÞ
ðT � 1Þrobsrsim ¼ 1483:29

26 � 8:8062 � 8:2048
¼ 0:7896

NRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
i¼1

ðxi � yiÞ2
s

�x
¼ 6:7549

255:37
¼ 0:02645

ANMBD ¼
1
T

PT
i¼1

ðyi � xiÞ
�x

��������

��������
¼ 108

27 � 255:37

����
���� ¼ 0:0156

AARD ¼ 1
T

XT
i¼1

ARDij j ¼ 1
T

XT
i¼1

ðyi � xiÞ
xi

����
���� ¼ 0:5541

27
¼ 0:02052

NSE ¼ 1�
PT
i¼1

ðxi � yiÞ2

PT
i¼1

ðxi � �xÞ2
¼ 1� 1232

2016:29
¼ 1� 0:6110 ¼ 0:3890

Computation of Skill Score (SS)

• The maximum and minimum temperatures of the complete dataset (observed
and simulated as shown in Table 2.1) is found out. Here, in this case the
maximum value is 273 °K, whereas the minimum value is 243 °K.

• Now an appropriate bin width is to be chosen. Here it is chosen as 5 °K.
• Hence, the number of bins (nb) is calculated as: (maximum − minimum)/bin

width = (273 − 243)/5 = 6.

Then, the values are segregated into the bins, to find the frequencies fo and fm as
follows (Table 2.3):
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Sumof theminimum of fo & fm ¼ 4þ 4þ 4þ 4þ 1þ 4 ¼ 21

Skill Score ¼ 1
T

Xnb
i¼1

minðfm; foÞ ¼ 21
27

¼ 0:7777

Table 2.4 presents summary of performance indicators

2.4 Ranking of Global Climate Models

Procedural steps for selection of the best GCM are presented in Fig. 2.1 (Raju and
Nagesh Kumar 2014a; Duckstein et al. 1989).

Table 2.3 Computation of skill score

Bin fo (frequency of observed
datasets in the chosen bin)

fm (frequency of simulated
datasets in the chosen bin)

Minimum of
fo and fm

243–248 7 4 4

249–253 6 4 4

254–258 5 4 4

259–263 4 4 4

264–268 1 7 1

269–273 4 4 4

Table 2.4 Summary of computed performance indicators

Indicator Value Remarks

Sum of squares of deviation (SSD) 1232 (°K)2 Lower value is preferable. Near
to zero is ideal

Mean square deviation (MSD) 45.63 (°K)2 Lower value is preferable. Near
to zero is ideal

Root mean square deviation
(RMSD)

6.7549 (°K) Lower value is preferable. Near
to zero is ideal

Pearson correlation coefficient (CC) 0.7896 (no unit) Higher value is preferable. Near
to one is ideal

Normalized root mean square
deviation (NRMSD)

0.02645 (no unit) Lower value is preferable. Near
to zero is ideal

Absolute normalized mean bias
deviation (ANMBD)

0.0156 (no unit) Lower value is preferable. Near
to zero is ideal

Average absolute relative deviation
(AARD)

0.02052 (no unit) Lower value is preferable. Near
to zero is ideal

Nash–Sutcliffe efficiency (NSE) 0.3890 (no unit) Higher value is preferable. Near
to one is ideal

Skill score (SS) 0.7777 (no unit) Higher value is preferable. Near
to one is ideal
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2.4.1 Normalization Techniques

Normalization facilitates the conversion of different non-commensurable indicators
to the same space. In the present study, simple normalization technique (denoted as
type 3) is presented (Table 2.5). More details of normalization techniques are
available from Pomerol and Romero (2000) and Raju and Nagesh Kumar (2014a).

Identification of suitable performance indicators and GCMs  

Data collection such as simulated data from GCMs and observed 
data

Computation of performance indicators  

Application of group decision-making if necessary 

Start

Stop

Rating of performance indicators and generation of payoff matrix   

Ranking of GCMs using chosen MCDM technique(s)  

Fig. 2.1 Flowchart of procedural steps for selection of the best GCM

Table 2.5 Description of chosen normalization technique (Type 3)

Description Mathematical representation

Normalized value kaj kaj ¼ KjðaÞPT
a¼1

KjðaÞ

where KjðaÞ is the value of indicator j for GCM a; T represents
the total number of GCMs
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2.4.2 Weight Computing Techniques

A number of techniques are available for determination of weights. In the present
chapter, only two techniques are described, namely, entropy and rating.

2.4.2.1 Entropy Technique
The methodology is explained in Table 2.6 (Pomerol and Romero 2000; Raju and
Nagesh Kumar 2014a).

Numerical Problem 2.2 Eleven GCMs in Coupled Model Intercomparison Project
(CMIP3), namely, BCCR-BCCM2.0, INGV-ECHAM4, GFDL2.0, GFDL2.1,
GISS, IPSL-CM4, MIROC3, MRI-CGCM2, NCAR-PCMI, UKMO-HADCM3,
and UKMO-HADGEM1 are analyzed for the variable, precipitation. Five indica-
tors, namely, CC, NRMSD, ANMBD, AARD, SS are the performance indicators.
Payoff matrix (11 GCMs vs. 5 indicators] is presented in Table 2.7. Apply entropy
technique for determination of weights. Normalization technique 3 can be explored
(Raju and Nagesh Kumar 2014b).

Table 2.6 Methodology of entropy technique

Step Description Mathematical expression/remark

1 Normalize the payoff matrix if required kaj
2 Entropy for each indicator j

Enj ¼ � 1
lnðTÞ

PT
a¼1

kaj lnðkajÞ for j = 1, …, J

a is index for GCMs; (j = 1,2, …, J) where J is
number of indicators; T represents total number
of GCMs

3 Degree of diversification Ddj ¼ 1� Enj
4 Normalized weight of indicators rj ¼ DdjPJ

j¼1

Ddj

Table 2.7 Values of performance indicators obtained for the 11 GCMs

GCM CC NRMSD ANMBD AARD SS

BCCR 0.7751 0.7960 0.2744 1.7127 0.7717

ECHAM 0.7866 0.7573 0.1619 1.8639 0.6833

GFDL2.0 0.7868 0.8286 0.4157 0.8080 0.8150

GFDL2.1 0.7395 0.7871 0.1551 1.2731 0.8350

GISS 0.8275 0.8221 0.4786 0.7539 0.7783

IPSL 0.4740 1.2539 0.7082 1.0124 0.6583

MIROC3 0.8416 0.6224 0.0613 1.3811 0.8567

CGCM2 0.7708 0.9386 0.4985 0.6556 0.7550

PCMI 0.3553 1.1779 0.4899 1.6149 0.6283

HADCM3 0.8018 0.8793 0.5092 0.8002 0.8100

HADGEM1 0.8064 0.9422 0.5686 0.7010 0.7883
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Solution:

Applied normalization technique: 3 (Sect. 2.4.1, Table 2.5); Table 2.8 presents
values of transformed payoff matrix. Table 2.9 presents entropy values, degree of
diversification, and weight of indicators.

2.4.2.2 Rating Technique
Rating technique facilitates the rating of indicators on a numeral scale. However,
there is likely chance of subjectivity while rating the indicators by individual
experts and chosen numeral scales (Raju and Nagesh Kumar 2014a).

2.4.3 Multicriterion Decision-Making Techniques
in Deterministic Scenario

Number of MCDM techniques can be applied to rank GCMs. However, in the
present chapter only few techniques are discussed. Researchers are suggested to
refer to Raju and Nagesh Kumar (2014a) for more details about various MCDM
techniques.

Table 2.8 Transformed values of performance indicators obtained for the 11 GCMs

GCM CC NRMSDa ANMBDa AARDa SS

BCCR 0.7751 −0.7960 −0.2744 −1.7127 0.7717

ECHAM 0.7866 −0.7573 −0.1619 −1.8639 0.6833

GFDL2.0 0.7868 −0.8286 −0.4157 −0.8080 0.8150

GFDL2.1 0.7395 −0.7871 −0.1551 −1.2731 0.8350

GISS 0.8275 −0.8221 −0.4786 −0.7539 0.7783

IPSL 0.4740 −1.2539 −0.7082 −1.0124 0.6583

MIROC3 0.8416 −0.6224 −0.0613 −1.3811 0.8567

CGCM2 0.7708 −0.9386 −0.4985 −0.6556 0.7550

PCMI 0.3553 −1.1779 −0.4899 −1.6149 0.6283

HADCM3 0.8018 −0.8793 −0.5092 −0.8002 0.8100

HADGEM1 0.8064 −0.9422 −0.5686 −0.7010 0.7883
aMinimum NRMSD, ANMBD, AARD are desirable. Negative sign is incorporated before values
of indicators to represent in maximization perspective, i.e., (−min) = max

Table 2.9 Entropy values, degree of diversification, and weight of indicators

Characteristic of indicator j CC NRMSD ANMBD AARD SS

Entropy value Enj (Step 2,
Table 2.6)

0.9896 0.9922 0.9416 0.9719 0.9982

Degree of diversification Ddj (Step
3, Table 2.6)

0.0104 0.0078 0.0584 0.0281 0.0018

Weight rj
(Step 4, Table 2.6)

0.0976 0.0732 0.5484 0.2639 0.0169
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2.4.3.1 Compromise Programming (CP):
It is established on distance measure Lp metric (Raju and Nagesh Kumar 2014a).
The methodology is explained in Table 2.10.

Numerical Problem 2.3 Compute Lp metric values of GCMs and corresponding
ranking pattern for the payoff matrix presented in Table 2.11 using compromise
programming technique taking parameter p = 2. All the 36 GCMs of CMIP5
(Coupled Model Intercomparison Project 5), namely, ACCESS1.0, ACCESS1.3,
BCC-CSM1.1, BCC-CSM1.1-m, BNU-ESM, CCSM4, CESM1-BGC,
CESM1-CAM5, CESM1-FAST CHEM, CESM1-WACCM, CNRM-CM5,
CSIRO-Mk3.6, CanESM2, FGOALS-s2, FIO-ESM, GFDL-CM3, GFDL-ESM2G,
GFDL-ESM2M, GISS-E2-H, GISS-E2-R-CC, GISS-E2-R, HadCM3,
HadGEM2-AO, INM-CM4, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR,
MIROC4h, MIROC5, MIROC-ESM-CHEM, MIROC-ESM, MPI-ESM-LR,
MPI-ESM-MR, MPI-ESM-P, MRI-CGCM3, and NorESM1-M are evaluated on
three indicators, namely, SS, CC, and NRMSD on the climate variable maximum
temperature. Weight of indicators for SS, CC, and NRMSD are 0.0483, 0.0435, and
0.9083 respectively (Raju et al. 2017).

Solution:

Sample calculation for ACCESS 1.0
Values of SS, CC, NRMSD = 0.8280, 0.9269, −0.1664
Ideal values of SS, CC, NRMSD = 0.9378, 0.9875, −0.1104 (Step 2, Table 2.10)
Weights of SS, CC, NRMSD = 0.0483, 0.0435, 0.9083
Lp metric value for ACCESS 1.0 from ideal solution (Step 3, Table 2.10) is:

Table 2.10 Methodology of compromise programming

Step Description Mathematical expression/remark

1 Normalize the payoff matrix if
required

Choose suitable normalization technique (Sect. 2.4.1)

2 Ideal value for each indicator
j among available GCMs

k�j
j = 1,2, …, J where J is the number of indicators

3 Lp metric value for each
GCM a Lpa ¼

PJ
j¼1

rpj k�j � kjðaÞ
��� ���p

" #1
p

kjðaÞ = Value of indicator j for GCM a; rj = Weight
assigned to the indicator j; p = Parameter (1, 2, … 1)

4 Rank the GCMs built on the Lpa
values.

Lower Lpa indicates suitable GCM
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Table 2.11 Indicator values for 36 GCMs (inputs), Lp Metric value, and rank (outputs)

GCM (1) SS (2) CC (3) NRMSDa (4) Lp metric (5) Rank (6)

ACCESS1.0 0.8280 0.9269 −0.1664 0.0512 6

ACCESS1.3 0.8036 0.8699 −0.2907 0.1640 30

BCC-CSM1.1 0.9230 0.9110 −0.2933 0.1662 31

BCC-CSM1.1-m 0.9093 0.9267 −0.1835 0.0665 10

BNU-ESM 0.8166 0.9731 −0.2621 0.1380 25

CCSM4 0.8326 0.9738 −0.2025 0.0838 18

CESM1-BGC 0.8519 0.9755 −0.1753 0.0591 9

CESM1-CAM5 0.8715 0.9647 −0.1893 0.0717 12

CESM1-FAST CHEM 0.8405 0.9730 −0.2004 0.0819 17

CESM1-WACCM 0.7304 0.9250 −0.2713 0.1466 27

CNRM-CM5 0.9218 0.9772 −0.1104 0.0009 1

CSIRO-Mk3.6 0.8160 0.9081 −0.2474 0.1246 24

CanESM2 0.8007 0.9360 −0.1910 0.0736 13

FGOALS-s2 0.9378 0.9875 −0.1364 0.0237 3

FIO-ESM 0.8660 0.9216 −0.2874 0.1609 29

GFDL-CM3 0.8264 0.9210 −0.3898 0.2539 34

GFDL-ESM2G 0.7614 0.9428 −0.4552 0.3133 35

GFDL-ESM2M 0.8895 0.9425 −0.3555 0.2226 33

GISS-E2-H 0.6387 0.8448 −0.1698 0.0562 7

GISS-E2-R-CC 0.7172 0.8151 −0.1994 0.0819 16

GISS-E2-R 0.6283 0.8036 −0.1976 0.0810 15

HadCM3 0.9078 0.5585 −0.6980 0.5340 36

HadGEM2-AO 0.8928 0.9455 −0.1952 0.0771 14

INM-CM4 0.9050 0.9054 −0.2813 0.1553 28

IPSL-CM5A-LR 0.7442 0.9132 −0.1736 0.0582 8

IPSL-CM5A-MR 0.7374 0.9242 −0.3548 0.2222 32

IPSL-CM5B-LR 0.7801 0.8562 −0.2184 0.0985 19

MIROC4h 0.8852 0.9704 −0.1880 0.0706 11

MIROC5 0.9052 0.9031 −0.1625 0.0475 5

MIROC-ESM-CHEM 0.9002 0.9789 −0.1313 0.0191 2

MIROC-ESM 0.8968 0.9749 −0.1417 0.0285 4

MPI-ESM-LR 0.8245 0.9573 −0.2286 0.1075 20

MPI-ESM-MR 0.8812 0.9356 −0.2310 0.1096 21

MPI-ESM-P 0.8350 0.9634 −0.2400 0.1179 22

MRI-CGCM3 0.7919 0.8674 −0.2460 0.1235 23

NorESM1-M 0.8199 0.9822 −0.2623 0.1381 26

Maximum value 0.9378 0.9875 −0.1104
aMinimum NRMSD is desirable. Negative sign is incorporated before values of indicator to
represent in maximization perspective, i.e., (−min) = max
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½0:0483ð0:9378� 0:8280Þ�2 þ ½0:0435ð0:9875� 0:9269Þ�2 þ
½0:9083ð�0:1104þ 0:1664Þ�2

s" #
¼ 0:0512

Similarly, Lp metric value for other GCMs are computed. Suitable GCM is the
one, which is having minimum Lp metric value from ideal solution (Step 4,
Table 2.10). Columns 5 and 6 of Table 2.11 present the Lp metric values of GCMs
and corresponding ranking pattern.

• Rank of 1 to the lowest Lp metric value and last rank to the highest Lp metric are
to be given. The lower the rank, the better is the GCM, i.e., the GCM with rank
1 is the best and the GCM with rank 2 is the next best, and so on. The GCM
with the highest rank is the least suitable for the case.

• Lp metric value is varying between 0.0009 (first rank) and 0.5340 (least pre-
ferred) among 36 ranks.

• CNRM-CM5, MIROC-ESM-CHEM, and FGOALS-s2 are occupying the first
three positions with Lp metric values of 0.0009, 0.0191, and 0.0237, respec-
tively, and can be explored further for downscaling and adaptation studies
(Table 2.11).

• GFDL-ESM2G and HadCM3 with Lp metric values of 0.3133 and 0.5340
occupied 35th and 36th positions (Table 2.11), which are the least suitable for
the chosen data (Raju et al. 2017).

2.4.3.2 Cooperative Game Theory (CGT):
It is established on distance measure, i.e., as “far” as possible to “anti-ideal”
solution (Gershon and Duckstein 1983; Raju and Nagesh Kumar 2014a). The
methodology is explained in Table 2.12.

Table 2.12 Methodology of CGT

Step Description Mathematical expression/remark

1 Normalize the payoff matrix if
required

Choose suitable normalisation technique
(Sect. 2.4.1)

2 Anti-ideal value for each indicator
j among available GCMs

k��j
j = 1, 2, …, J where J is the number of indicators

3 Geometric distance for GCM a
Da ¼

QJ
j¼1

kjðaÞ � k��j
��� ���rj

kjðaÞ = Value of indicator j for GCM a; rj
= Weight assigned to the indicator

4 Rank the GCMs built on the Da

values
Higher Da indicates suitable GCM
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Numerical Problem 2.4 Solve Numerical Problem 2.3 using CGT. Use payoff
matrix data in Table 2.11.

Solution:

Sample calculation for ACCESS 1.0

Values of SS, CC, NRMSD = 0.8280, 0.9269, −0.1664
Anti-ideal values of SS, CC, NRMSD = 0.6283, 0.5585, −0.698 (Step 2,
Table 2.12)
Weights of SS, CC, NRMSD = 0.0483, 0.0435, 0.9083
Geometric distance value Da for ACCESS 1.0 from anti-ideal solution (Step 3,
Table 2.12) is:

Y3
j¼1

ð0:8280� 0:6283Þ0:0483ð0:9269� 0:5585Þ0:0435ð�0:1664� ð�0:698ÞÞ0:9083
��� ���

Da for ACCESS 1:0 ¼ 0:9251 � 0:9574 � 0:5633 ¼ 0:4989

Similarly, computation of Da values for other GCMs are made. Suitable GCM is
the one, which is having maximum value of Da (Step 4, Table 2.12). Table 2.13
presents the Da values of GCMs and corresponding ranking pattern.

Table 2.13 Da value and corresponding ranking pattern: CGT

GCM Da value Rank GCM Da value Rank

ACCESS1.0 0.4990 6 GISS-E2-H 0.4254 22

ACCESS1.3 0.3865 30 GISS-E2-R-CC 0.4457 18

BCC-CSM1.1 0.3961 28 GISS-E2-R 0.0000 35

BCC-CSM1.1-m 0.4924 8 HadCM3 0.0000 36

BNU-ESM 0.4176 25 HadGEM2-AO 0.4819 11

CCSM4 0.4711 15 INM-CM4 0.4053 26

CESM1-BGC 0.4968 7 IPSL-CM5A-LR 0.4793 12

CESM1-CAM5 0.4861 10 IPSL-CM5A-MR 0.3256 32

CESM1-FAST CHEM 0.4737 14 IPSL-CM5B-LR 0.4443 19

CESM1-WACCM 0.3956 29 MIROC4h 0.4888 9

CNRM-CM5 0.5599 1 MIROC5 0.5088 5

CSIRO-Mk3.6 0.4272 21 MIROC-ESM-CHEM 0.5399 2

CanESM2 0.4751 13 MIROC-ESM 0.5303 4

FGOALS-s2 0.5393 3 MPI-ESM-LR 0.4468 17

FIO-ESM 0.3977 27 MPI-ESM-MR 0.4491 16

GFDL-CM3 0.3038 33 MPI-ESM-P 0.4383 20

GFDL-ESM2G 0.2406 34 MRI-CGCM3 0.4232 23

GFDL-ESM2M 0.3397 31 NorESM1-M 0.4182 24
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• Rank of 1 to the highest Da and last rank to the lowest Da value are to be given.
The lower the rank, the better is the GCM, i.e., the GCM with rank 1 is the best
and the GCM with rank 2 is the second best, and so on. The GCM with the
highest rank is the least suitable for the case.

• Da value is varying between 0.0 (last rank) and 0.5599 (first rank) among 36
ranks.

• CNRM-CM5, MIROC-ESM-CHEM, and FGOALS-s2 with Da values of
0.5599, 0.5399, and 0.5393 are occupying the first three positions, respectively,
(Table 2.13) and can be explored further for downscaling and adaptation
studies.

• GISS-E2-R and HadCM3 with Da values of 0.0 occupied 35th and 36th posi-
tions respectively.

2.4.3.3 Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS)

It is established on the distance measure between ideal and anti-ideal solutions
(Opricovic and Tzeng 2004; Raju and Nagesh Kumar 2014a, 2015a). The
methodology is explained in Table 2.14.

Numerical Problem 2.5 Eleven GCMs in Coupled Model Intercomparison Project
(CMIP3), namely, BCCR-BCCM2.0, INGV-ECHAM4, GFDL2.0, GFDL2.1,
GISS, IPSL-CM4, MIROC3, MRI-CGCM2, NCAR-PCMI, UKMO-HADCM3,
and UKMO-HADGEM1 are evaluated for climate variables, precipitation (PR),
and temperature at 3 levels, i.e., 500, 700, 850 mb (and referred from now as T500,
T700, T850) on performance indicator SS. Equal weight of 0.25 is considered for
each skill score indicator, SPR, ST500, ST700, and ST850. Determine ranking of
GCMs using TOPSIS. Relevant data is presented in Table 2.15. Use abbreviations

Table 2.14 Methodology of TOPSIS

Step Description Mathematical expression/remark

1 Normalize the payoff matrix if required Choose suitable normalisation
technique (Sect. 2.4.1)

2 Ideal value and anti-ideal value for each
indicator j among available GCMs

k�j , k
��
j

j = 1, 2, …, J where J is number
of indicators

3 Separation measure DSþ
a of GCM a from the

ideal solution DSþ
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

rjðkjðaÞ � k�j Þ2
s

4 Separation measure DS�a of GCM a from the
anti-ideal solution DS�a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

rjðkjðaÞ � k��j Þ2
s

5 Relative closeness CRa CRa ¼ DS�a
ðDS�a þDSþ

a Þ
6 Rank the GCMs built on the CRa

values
Higher CRa indicates suitable
GCM
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BCCR, ECHAM, GFDL2.0, GFDL2.1, GISS, IPSL, MIROC3, CGCM2, PCMI,
HADCM3, and HADGEM1 for GCMs for easy computation (Raju and Nagesh
Kumar 2015a). Assume ideal values of each indicator as 1 and anti-ideal values of
each indicator as 0.

Solution:

Sample calculation for BCCR-BCCM 2.0

Values of SPR, ST500, ST700, ST850: 0.7717, 0.5533, 0.2583, 0.3300
Ideal values of SPR, ST500, ST700, ST850 = 1 each (Step 2, Table 2.14)
Anti-ideal values of SPR, ST500, ST700, ST850 = 0 each (Step 2, Table 2.14)
Weight of SPR, ST500, ST700, ST850 = 0.25 each
Separation measure of BCCR from ideal solution, i.e., DS+ for BCCR is (Step 3,
Table 2.14):

0:25 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:7717� 1:00Þ2 þð0:5533� 1:00Þ2 þð0:2583� 1:000Þ2 þ
ð0:3300� 1:000Þ2

s" #

¼ 0:2796

Separation measure of BCCR from anti-ideal solution, i.e., DS− for BCCR is
(Step 4, Table 2.14):

0:25 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:7717� 0:00Þ2 þð0:5533� 0:00Þ2 þð0:2583� 0:000Þ2 þ
ð0:3300� 0:000Þ2

s" #

¼ 0:2595

Relative closeness of BCCR with reference to anti-ideal solution, i.e., CRa for

BCCR is (Step 5, Table 2.14): DS�BCCR
ðDS�BCCR þDSþ

BCCRÞ
¼ 0:2595

ð0:2595þ 0:2796Þ ¼ 0:4814

Table 2.15 Skill score
values for the chosen 11
GCMs

GCM SPR ST500 ST700 ST850

BCCR 0.7717 0.5533 0.2583 0.3300

ECHAM 0.6833 0.3483 0.2800 0.3917

GFDL2.0 0.8150 0.5533 0.4000 0.4183

GFDL2.1 0.8350 0.5533 0.2633 0.3783

GISS 0.7783 0.2833 0.2033 0.3150

IPSL 0.6583 0.2833 0.2017 0.4167

MIROC3 0.8567 0.3583 0.3867 0.3800

CGCM2 0.7550 0.4517 0.2367 0.5250

PCMI 0.6283 0.3217 0.1783 0.3367

HADCM3 0.8100 0.3483 0.4100 0.4100

HADGEM1 0.7883 0.2850 0.2067 0.3983
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Similarly, CRa values for other GCMs are computed. Suitable GCM is the one
with maximum relative closeness CRa value from anti-ideal solution (Step 6,
Table 2.14). Table 2.16 presents the DSþ

a , DS�a , CRa value of GCMs and corre-
sponding ranking pattern.

• GFDL2.0, GFDL2.1, MIROC3 with CRa values of 0.5420, 0.5063, and 0.4961,
respectively, occupied the first three positions (Table 2.16).

• IPSL, PCMI with CRa values of 0.4022 and 0.3800 occupied the last the two
positions (Table 2.16).

2.4.3.4 Weighted Average Technique
It is utility-related technique (Raju and Nagesh Kumar 2014a). The methodology is
explained in Table 2.17.

Numerical Problem 2.6 Solve Numerical Problem 2.3 using weighted average
technique. Use payoff matrix data in Table 2.11.

Table 2.16 DSþ
a , DS�a , CRa

values and corresponding
ranking pattern: TOPSIS

GCM DSþ
a DS�a CRa Rank

BCCR 0.2796 0.2595 0.4814 6

ECHAM 0.2972 0.2264 0.4324 8

GFDL2.0 0.2414 0.2856 0.5420 1

GFDL2.1 0.2688 0.2757 0.5063 2

GISS 0.3228 0.2273 0.4132 9

IPSL 0.3170 0.2133 0.4022 10

MIROC3 0.2730 0.2688 0.4961 3

CGCM2 0.2703 0.2629 0.4931 5

PCMI 0.3272 0.2005 0.3800 11

HADCM3 0.2689 0.2638 0.4952 4

HADGEM1 0.3110 0.2377 0.4332 7

Table 2.17 Methodology of weighted average technique

Step Description Mathematical expression/remark

1 Normalize the payoff matrix
if required

Choose suitable normalization technique (Sect. 2.4.1)

2 Utility of GCM a
Va ¼

PJ
j¼1

rjkj

" #

kj = Value of indicator j for GCM a; rj = Weight
assigned to the indicator j

3 Rank the GCMs built on the
Va values

Higher Va indicates suitable GCM
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Solution:

Sample calculation for ACCESS 1.0

Values of SS, CC, NRMSD = 0.8280, 0.9269, −0.1664
Weight of SS, CC, NRMSD = 0.0483, 0.0435, 0.9083
Weighted Average value V for ACCESS 1.0 (Step 2, Table 2.17) is:

V for ACCESS 1:0 ¼ 0:8280 � 0:0483 þ 0:9269 � 0:0435 þ ð�0:1664Þ
� 0:9083

¼ �0:0708

Similarly, weighted average values for other GCMs are computed. Best GCM is
the one with maximum weighed average value Va (Step 3, Table 2.17). Table 2.18
presents the Va values of GCMs and corresponding ranking pattern.

• Utility value of GCMs are varying between −0.0132 (first rank) and −0.5658
(least preferred) among 36 ranks.

• CNRM-CM5, MIROC-ESM-CHEM, and FGOALS-s2 with utility values of
−0.0132, −0.0332, and −0.0356, respectively, are occupying the first three
positions.

• GFDL-ESM2G and HadCM3 with utility values of −0.3356 and −0.5658
occupied 35th and 36th positions respectively.

Table 2.18 Va value and corresponding ranking pattern: weighted average technique

GCM Va Rank GCM Va Rank

ACCESS1.0 −0.0708 6 GISS-E2-H −0.0866 11

ACCESS1.3 −0.1873 31 GISS-E2-R-CC −0.1110 17

BCC-CSM1.1 −0.1821 30 GISS-E2-R −0.1141 18

BCC-CSM1.1-m −0.0824 9 HadCM3 −0.5658 36

BNU-ESM −0.1562 26 HadGEM2-AO −0.0930 13

CCSM4 −0.1013 16 INM-CM4 −0.1724 28

CESM1-BGC −0.0756 7 IPSL-CM5A-LR −0.0820 8

CESM1-CAM5 −0.0878 12 IPSL-CM5A-MR −0.2464 33

CESM1-FAST CHEM −0.0991 15 IPSL-CM5B-LR −0.1234 19

CESM1-WACCM −0.1709 27 MIROC4h −0.0857 10

CNRM-CM5 −0.0132 1 MIROC5 −0.0645 5

CSIRO-Mk3.6 −0.1458 23 MIROC-ESM-CHEM −0.0332 2

CanESM2 −0.0941 14 MIROC-ESM −0.0429 4

FGOALS-s2 −0.0356 3 MPI-ESM-LR −0.1261 20

FIO-ESM −0.1791 29 MPI-ESM-MR −0.1265 21

GFDL-CM3 −0.2740 34 MPI-ESM-P −0.1357 22

GFDL-ESM2G −0.3356 35 MRI-CGCM3 −0.1474 24

GFDL-ESM2M −0.2389 32 NorESM1-M −0.1559 25
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Fig. 2.2 Types of various indicator functions and relevant preference function values in
PROMETHEE-2

2.4.3.5 Preference Ranking Organization Method of Enrichment
Evaluation (PROMETHEE-2)

It is built-in preference function concept (Pomerol and Romero 2000; Raju and
Nagesh Kumar 2014a, b; Brans et al. 1986). Preference function Prjða; bÞ depends
on the pairwise difference ej between the evaluations kjðaÞ and kjðbÞ of GCMs a
and b for indicator j, chosen indicator function and corresponding parameters such
as indifference and preference thresholds yj and zj. Six types of indicator functions
are available (Fig. 2.2). The methodology is explained in Table 2.19.
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Numerical Problem 2.7 Eleven GCMs in Coupled Model Intercomparison Project
(CMIP3), namely, BCCR-BCCM2.0, INGV-ECHAM4, GFDL2.0, GFDL2.1,
GISS, IPSL-CM4, MIROC3, MRI-CGCM2, NCAR-PCMI, UKMO-HADCM3,
and UKMO-HADGEM1, are evaluated on indicators CC, NRMSD, ANMBD,
AARD, and SS for climate variable precipitation. Payoff matrix (GCMs vs. indi-
cators) is presented in Table 2.20. Weights of the indicators obtained by entropy
technique are 0.0976, 0.0729, 0.5481, 0.2640, and 0.0174 respectively. Using
PROMETHEE-2 technique, determine the ranking of GCMs using the above
weights. Assume usual indicator function for all indicators. Use abbreviations
BCCR, ECHAM, GFDL2.0, GFDL2.1, GISS, IPSL, MIROC3, CGCM2, PCMI,
HADCM3, and HADGEM1 for GCMs for easy computations (Raju and Nagesh
Kumar 2014b).

Table 2.19 Methodology of PROMETHEE-2

Step Description Mathematical
expression/remark

1 Multi indicator preference index (MIPI)

pða; bÞ ¼
PJ
j¼1

rj Prjða;bÞPJ
j¼1

rj

2 Outranking index of GCM a in the T GCMs [T is
number of GCMs] /þ ðaÞ ¼

P
A

pða;bÞ
ðT�1Þ

3 Outranked index of GCM a in the T GCMs
/�ðaÞ ¼

P
A

pðb;aÞ
ðT�1Þ

4 Net ranking of GCM a in the T GCMs /ðaÞ ¼ /þ ðaÞ � /�ðaÞ
5 Rank the GCMs built on the /ðaÞ values Higher /ðaÞ indicates

suitable GCM

Table 2.20 Values of performance indicators obtained for the 11 GCMs

GCM CC NRMSDa ANMBDa AARDa SS

BCCR 0.7751 0.7960 0.2744 1.7127 0.7717

ECHAM 0.7866 0.7573 0.1619 1.8639 0.6833

GFDL2.0 0.7868 0.8286 0.4157 0.8080 0.8150

GFDL2.1 0.7395 0.7871 0.1551 1.2731 0.8350

GISS 0.8275 0.8221 0.4786 0.7539 0.7783

IPSL 0.4740 1.2539 0.7082 1.0124 0.6583

MIROC3 0.8416 0.6224 0.0613 1.3811 0.8567

CGCM2 0.7708 0.9386 0.4985 0.6556 0.7550

PCMI 0.3553 1.1779 0.4899 1.6149 0.6283

HADCM3 0.8018 0.8793 0.5092 0.8002 0.8100

HADGEM1 0.8064 0.9422 0.5686 0.7010 0.7883
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Solution:

Pairwise difference between values of GCMs and preference functions for indicator
CC:

Pairwise difference between values of GCMs for each indicator (five in this case)
are to be computed. For example, for indicator CC, the pairwise difference of values
in Table 2.21, between BCCR and GFDL2.0 is 0.7751 − 0.7868 = −0.0117
(Table 2.22a) and so the corresponding value of preference function under usual
indicator function is 0 (as −0.0117 < 0). Vice versa, pairwise difference between
GFDL2.0 and BCCR for CC is 0.0117 (Table 2.22a) and corresponding value of
preference function is 1 (as 0.0117 > 0) as in the case of usual indicator function
(Table 2.23a), elements of preference function matrix are either 0 or 1. Pairwise
preference function values are computed for each indicator in the similar format.
Table 2.22a–e presents pairwise difference matrix for CC, NRMSD, ANMBD,
AARD, SS whereas Table 2.23a–e present preference function values for CC,
NRMSD, ANMBD, AARD, and SS.

Multi Indicator Preference Index, pðECHAM;BCCRÞ for pairwise GCMs
(ECHAM, BCCR) is computed as follows (Step 1, Table 2.19):

Preference function values for ECHAM and BCCR for indicators CC, NRMSD,
ANMBD, AARD, SS are 1, 1, 1, 0, 0. Corresponding weights of indicators are
0.0976, 0.0729, 0.5481, 0.2640, and 0.0174 respectively.

Multi Indicator Preference Index for pair of GCMs (ECHAM and BCCR)

0:0976 � 1þ 0:0729 � 1þ 0:5481 � 1þ 0:2640 � 0þ 0:0174 � 0½ �
0:0976þ 0:0729þ 0:5481þ 0:2640þ 0:0174½ � ¼ 0:7186

1
¼ 0:7186

Computations are repeated for all possible pairs for all indicators resulting in
Table 2.24.

Table 2.21 Transformed values of performance indicators obtained for the 11 GCMs

GCM CC NRMSDa ANMBDa AARDa SS

BCCR 0.7751 −0.7960 −0.2744 −1.7127 0.7717

ECHAM 0.7866 −0.7573 −0.1619 −1.8639 0.6833

GFDL2.0 0.7868 −0.8286 −0.4157 −0.8080 0.8150

GFDL2.1 0.7395 −0.7871 −0.1551 −1.2731 0.8350

GISS 0.8275 −0.8221 −0.4786 −0.7539 0.7783

IPSL 0.4740 −1.2539 −0.7082 −1.0124 0.6583

MIROC3 0.8416 −0.6224 −0.0613 −1.3811 0.8567

CGCM2 0.7708 −0.9386 −0.4985 −0.6556 0.7550

PCMI 0.3553 −1.1779 −0.4899 −1.6149 0.6283

HADCM3 0.8018 −0.8793 −0.5092 −0.8002 0.8100

HADGEM1 0.8064 −0.9422 −0.5686 −0.7010 0.7883
aMinimum NRMSD, ANMBD, AARD are desirable. Negative sign is incorporated before values
of indicators to represent in maximization perspective, i.e., (−min) = max
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Computation of /þ (Step 2, Table 2.19)

/þ for BCCR ¼ 0þ 0:2814þ 0:6210þ 0:0976þ 0:6210þ 0:7360þ 0þ 0:7360þ 0:7360þ 0:6210þ 0:6210½ �
10

¼ 0:5071

Computation of /� (Step 3, Table 2.19)

/� for BCCR ¼ 0þ 0:7186þ 0:3790þ 0:9024þ 0:3790þ 0:2640þ 1þ 0:2640þ 0:2640þ 0:3790þ 0:3790½ �
10

¼ 0:4929

Computation of net / (Step 4, Table 2.19)

Net/ for BCCR = /þ for BCCR� /�for BCCR ¼ 0:5071� 0:4929 ¼ 0:0142

/þ , /�, net / values for GCMs are computed and presented in Table 2.25.
Suitable GCM is the one, which is having the highest net / value (Step 5,
Table 2.19). Table 2.25 presents /þ, /�, net /, and corresponding ranking pattern
of all GCMs.

• MIROC3 and GFDL2.1 with / values of 0.6304, 0.3848 occupied the first two
positions.

• IPSL with / value of −0.7130 occupied last position (Raju and Nagesh Kumar
2014b).

Table 2.25 Values of /þ , /�, net / and ranks of GCMs

GCM /þ /� Net / Rank

BCCR 0.5071 0.4929 0.0142 6

ECHAM 0.5564 0.4436 0.1127 5

GFDL2.0 0.5962 0.4038 0.1924 4

GFDL2.1 0.6924 0.3076 0.3848 2

GISS 0.6255 0.3745 0.2511 3

IPSL 0.1435 0.8565 −0.7130 11

MIROC3 0.8152 0.1848 0.6304 1

CGCM2 0.4848 0.5152 −0.0304 7

PCMI 0.2793 0.7207 −0.4413 10

HADCM3 0.4041 0.5959 −0.1918 8

HADGEM1 0.3955 0.6045 −0.2090 9
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2.4.4 Multicriterion Decision-Making Technique in Fuzzy
Scenario

Imprecision in indicator values that may arise due to interpolation, averaging
procedures, and approximations can be tackled through fuzzy logic. Extension of
TOPSIS in fuzzy named as Fuzzy TOPSIS is presented as an initiation. Table 2.26
presents the methodology (Opricovic and Tzeng 2004; Raju and Nagesh Kumar
2014a, 2015b).

Numerical Problem 2.8 Eleven GCMs in CMIP3 scenario mentioned in
Table 2.27 are analyzed for the variable, precipitation. CC, NRMSD, and SS are the
performance indicators. Payoff matrix (11 GCMs vs. 5 indicators] is presented in
Table 2.27. Rank the GCMs using fuzzy TOPSIS. Assume equal weights for
indicators. Ideal values of CC, NRMSD, SS as (1, 1, 1) each whereas anti-ideal
values of CC, NRMSD, SS as (0, 0, 0) each (Raju and Nagesh Kumar 2015b).

Table 2.26 Methodology of Fuzzy TOPSIS

Step Description Mathematical expression/remark

1 Input payoff matrix and
specification of
membership function; for
triangular membership
function ~Yij(pij; qij; sijÞ
where p, q, s are lower,
middle, and upper values

Payoff matrix will change depending on the chosen
membership function

Typical triangular membership function

2 Ideal value and anti-ideal
value for each indicator
j among available GCMs

Yj
��

(ideal), Yj
���

(anti-ideal) represent with elements
(p�j ; q

�
j ; s

�
j Þ, ðp��j ; q��j ; s��j Þ; j = 1, 2, …, J where J is the

number of indicators

3 Separation measure of
each GCM a from the
ideal solution

DSþ
a ¼ PJ

j¼1
dð~Yaj; Yj

��Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðpaj�p�j Þ2 þðqaj�q�j Þ2 þðsia�s�j Þ2 �

3

q

4 Separation measure of
each GCM a from the
anti-ideal solution

DS�a ¼ PJ
j¼1

dð~Yaj; Yj
���Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðpaj�p��j Þ2 þðqaj�q��j Þ2 þðsaj�s��j Þ2 �

3

q

5 Relative closeness CRa CRa ¼ DS�a
ðDS�a þDSþ

a Þ
6 Rank the GCMs built on

the CRa values
Higher CRa indicates suitable GCM

60 2 Selection of Global Climate Models



Solution:

Sample calculation for GISS

Values of CC, NRMSD, SS in triangular membership function: (0.670, 0.828,
0.985), (0.436, 0.534, 0.687), (0.704, 0.778, 0.853)
Ideal values of CC, NRMSD, SS = (1, 1, 1) each
Anti-ideal values of CC, NRMSD, SS = (0, 0, 0) each

(i) Separation measure of GISS from ideal solution (Step 3, Table 2.26):

DSþ
GISS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðpaj � p�j Þ2 þðqaj � q�j Þ2 þðsaj � s�j Þ2�

3

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð0:670� 1Þ2 þð0:828� 1Þ2þ ð0:985� 1Þ2�

3

s
for correlation coefficient

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð0:436� 1Þ2 þð0:534� 1Þ2 þð0:687� 1Þ2�

3

s
for normalized rootmean square deviation

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð0:704� 1Þ2 þð0:778� 1Þ2 þð0:853� 1Þ2�

3

s
for skill score

¼ 0:2150þ 0:4594þ 0:2299 ¼ 0:9043

(ii) Separation measure of GISS from anti-ideal solution (Step 4, Table 2.26):

Table 2.27 Indicators obtained for 11 GCMs

Model CC NRMSD SS

pij qij sij pij qij sij pij qij sij

UKMO-HAD
GEM1

0.649 0.806 0.964 0.390 0.466 0.578 0.714 0.788 0.863

GISS 0.670 0.828 0.985 0.436 0.534 0.687 0.704 0.778 0.853

GFDL2.0 0.629 0.787 0.945 0.433 0.529 0.680 0.741 0.815 0.889

BCCR-BCCM 2.0 0.617 0.775 0.933 0.448 0.551 0.717 0.697 0.772 0.846

IPSL-CM4 0.316 0.474 0.632 0.305 0.350 0.410 0.584 0.658 0.733

UKMO-HADCM3 0.644 0.802 0.960 0.413 0.499 0.631 0.736 0.810 0.884

GFDL2.1 0.582 0.740 0.897 0.452 0.557 0.727 0.761 0.835 0.909

INGV-ECHAM 4 0.629 0.787 0.944 0.466 0.579 0.765 0.609 0.683 0.758

MIROC3 0.684 0.842 0.999 0.544 0.705 1.000 0.782 0.857 0.931

MRI-CGCM2 0.613 0.771 0.929 0.391 0.467 0.581 0.681 0.755 0.829

NCAR- PCMI 0.198 0.355 0.513 0.322 0.372 0.441 0.554 0.628 0.703
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DS�GISS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðpaj � p��j Þ2 þðqaj � q��j Þ2þ ðsaj � s��j Þ2�

3

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð0:670� 0Þ2 þð0:828� 0Þ2þ ð0:985� 0Þ2�

3

s
for correlation coefficient

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð0:436� 0Þ2 þð0:534� 0Þ2 þð0:687� 0Þ2�

3

s
for normalized rootmean square deviation

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð0:704� 0Þ2 þð0:778� 0Þ2 þð0:853� 0Þ2�

3

s
for skill score

¼ 0:8376þ 0:5619þ 0:7807 ¼ 2:1802

(iii) Relative closeness of GISS with reference to anti-ideal measure (Step 5,
Table 2.26):

CRGISS ¼ DS�GISS
ðDS�GISS þDSþ

GISSÞ
¼ 2:1802

ð2:1802þ 0:9043Þ ¼ 0:7068

Table 2.28 presents DSþ
a , DS�a , CRa, and ranking pattern for 11 global climate

models.

• MIROC3 occupied first position with DSþ
a , DS�a , CRa values, 0.6732, 2.4833,

0.7867, respectively, followed by GFDL 2.1 with DSþ
a , DS�a , CRa values,

0.9024, 2.1776, 0.7070 respectively. Third position is occupied by GISS with,
DSþ

a , DS�a , CRa values, 0.9043, 2.1802, 0.7068 respectively.
• Relative closeness is almost same with slight difference of 0.0002 for GFDL 2.1

and GISS for both second and third positions (Raju and Nagesh Kumar 2015b).

Table 2.28 Ranking pattern of global climate models

Model DSþ
a DS�a CRa Rank

UKMO-HADGEM1 0.9804 2.0914 0.6808 7

GISS 0.9043 2.1802 0.7068 3

GFDL2.0 0.9076 2.1714 0.7052 4

BCCR-BCCM 2.0 0.9378 2.1424 0.6955 6

IPSL-CM 4 1.5351 1.5100 0.4959 10

UKMO-HADCM3 0.9296 2.1466 0.6978 5

GFDL2.1 0.9024 2.1776 0.7070 2

INGV-ECHAM 4 0.9869 2.0989 0.6802 8

MIROC3 0.6732 2.4833 0.7867 1

MRI-CGCM2 1.0413 2.0251 0.6604 9

NCAR-PCMI 1.6576 1.3906 0.4562 11
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2.4.5 Spearman Rank Correlation Coefficient

Spearman rank correlation coefficient (R) measures the correlation (Gibbons 1971)
between ranks (Table 2.29).

Numerical Problem 2.9 Ranking of 11 GCMs obtained by compromise pro-
gramming and TOPSIS are presented in Table 2.30. Compute Spearman rank
correlation coefficient (R).

Solution:

ea values are −2, −2, 0, −1, 1, 0, 0, −2, 0, 3, 3; ea
2 values are 4, 4, 0, 1, 1, 0, 0, 4, 0,

9, 9P
e2a value is 32 (Step 1, Table 2.29)

R ¼ 1� 6 � 32
11ð112 � 1Þ ¼ 0:8545

Spearman rank correlation coefficient value is 0.8545 (Step 1, Table 2.29).

Table 2.29 Methodology of Spearman rank correlation coefficient

Step Description Mathematical expression/remark

1 Spearman rank
correlation coefficient R ¼ 1�

6
PT
a¼1

e2a

TðT2�1Þ
ea is difference between ranks for the same GCM a; T is
number of GCMs; R value varies between −1 and 1

Table 2.30 Ranking pattern
obtained by compromise
programming and TOPSIS

GCM Compromise programming TOPSIS

1 6 8

2 5 7

3 4 4

4 2 3

5 3 2

6 11 11

7 1 1

8 7 9

9 10 10

10 8 5

11 9 6
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2.4.6 Group Decision-Making

Group decision-making is a procedure in which ranking pattern with reference to
individual ranking techniques are integrated to form a single group preference.
Table 2.31 presents the methodology (Morais and Almeida 2012; Raju et al. 2017):

Numerical Problem 2.10 Four MCDM techniques, namely, CP, TOPSIS, WA,
and PROMETHEE ranked 20 GCMs, G1 to G20 (Table 2.32). Compute the group
ranking of GCMs on strength and weakness perspective (Raju et al. 2017).

Table 2.31 Computation of strength, weakness, and net strength of each GCM

Step Description Mathematical expression/remark

1 Division of the ranks The descending order rankings are divided into upper and
lower portions: X = T/2 for even number of GCMs and
T/2 + 1 for odd number of GCMs and Y = X + 1 where
T is the number of the GCMs. The GCMs with rankings
from 1 to X constitute the upper portion

2 Strength of each GCM a
STa ¼

Pm
k¼1

PX
z
ðX � zþ 1Þqkaz 8a; k 8z ¼ 1; . . . x

where qkaz = 1 if GCM a is in the position z for the
ranking technique k and 0 otherwise. a corresponds to the
GCMs in the upper portion; z is the position in upper
portion ranging from the first position to the Xth position
(z = 1st, … xth) and k represents a ranking technique
(k = 1, 2, … m)

3 Weakness of the GCM
a WEa ¼

Pm
k¼1

PT
z¼y

ðz� Y þ 1Þqkaz 8a; k 8z ¼ y; . . . T

where, qkaz = 1 if GCM a is in the position z for the
MCDM technique k and 0 otherwise. a corresponds to the
GCMs in the lower portion; z is the position in lower
portion ranging from the first position to the lower portion
(Yth) up to the last ranking in the lower portion

4 Net strength of GCM a NSa ¼ STa �WEa

5 Rank the GCMs built on
the NSa values

Higher NSa indicates suitable GCM

Table 2.32 Ranking pattern by CP, TOPSIS, WA, PROMETHEE

GCMs CP TOPSIS WA PROMETHEE

G1 9 9 9 4

G2 7 7 7 9

G3 12 12 12 8

G4 2 2 2 5
(continued)
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Solution:

Table 2.33 presents GCMs in the descending order of ranking. Here X = T/2 where
T is number of GCMs; accordingly X is fixed as 10 (However, X can be fixed any
other value considering the intuition of decision maker). In this regard, upper
portion consists of GCMs having ranks from 1 to 10.

Table 2.32 (continued)

GCMs CP TOPSIS WA PROMETHEE

G5 6 6 5 14

G6 13 13 13 15

G7 5 5 6 12

G8 1 1 1 6

G9 8 8 8 1

G10 11 11 11 13

G11 16 16 16 16

G12 9 9 9 4

G13 10 10 10 2

G14 15 15 15 7

G15 4 4 4 3

G16 11 11 11 13

G17 9 9 9 4

G18 14 14 14 11

G19 14 14 14 11

G20 3 3 3 10

Table 2.33 Ranking of GCMs in the descending order

Rank CP TOPSIS WA PROMETHEE

1 G8 G8 G8 G9

2 G4 G4 G4 G13

3 G20 G20 G20 G15

4 G15 G15 G15 G1, G12, G17

5 G7 G7 G5 G4

6 G5 G5 G7 G8

7 G2 G2 G2 G14

8 G9 G9 G9 G3

9 G1, G12, G17 G1, G12, G17 G1, G12, G17 G2

10 G13 G13 G13 G20

11 G10,G16 G10, G16 G10,G16 G18, G19

12 G3 G3 G3 G7

13 G6 G6 G6 G10, G16

14 G18, G19 G18, G19 G18, G19 G5

15 G14 G14 G14 G6

16 G11 G11 G11 G11
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Strength of a GCM can be stated as the sum of the positional count of a GCM
(Step 2, Table 2.31). For example, strength of GCM G5 is explained as follows
(Table 2.34): G5 occupied fifth rank (z = 5) for WA which means that qkaz ¼ 1 and
(X − z + 1) is (10 − 5 + 1) = 6; Sixth rank (z = 6) for CP and TOPSIS; qkaz ¼ 1
and (X − z + 1) is (10 − 6 + 1) = 5: Note that G5 has occupied fifth and sixth
ranks in upper portion. According to Step 2, Table 2.31, strength of G5 is computed
as: 6 � 1 + 5 � 2 = 16 (Table 2.34). Similar procedure is repeated for lower portion
(weakness perspective; Step 3, Table 2.31). G5 occupied fourteenth rank (z = 14)
for PROMETHEE which means that qkaz ¼ 1 and (z − Y + 1) is (14 − 11 + 1) = 4.
Accordingly, weakness of G5 is 4 � 1 = 4 (Table 2.35).

Net strength of G5 is 16 − 4 = 12 (Step 4, Table 2.31). Similarly, strength,
weakness, and net strength of other GCMs are computed and presented in
Table 2.36. G8, G4, G15, G20 occupied first four positions with net strengths of 35,
33, 29, 25. However, the last position (fifteenth rank) is occupied by G11 with a net
strength of −24. GCM with high net strength is desirable. Accordingly, all the
GCMs were ranked.

Table 2.34 Computation of strength of GCM G5(X = 10)

Rank/z qkaz (X − z + 1) Strength
(STa) = (X − z + 1)* qkazCP TOPSIS WA PROMETHEE

1 0 0 0 0 (10 − 1 + 1) = 10 0

2 0 0 0 0 (10 − 2 + 1) = 9 0

3 0 0 0 0 (10 − 3 + 1) = 8 0

4 0 0 0 0 (10 − 4 + 1) = 7 0

5 0 0 1 0 (10 − 5 + 1) = 6 6 � 1 = 6

6 1 1 0 0 (10 − 6 + 1) = 5 5 � 2 = 10

7 0 0 0 0 (10 − 7 + 1) = 4 0

8 0 0 0 0 (10 − 8 + 1) = 3 0

9 0 0 0 0 (10 − 9 + 1) = 2 0

10 0 0 0 0 (10 − 10 + 1) = 1 0

Total strength of G5 16

Table 2.35 Computation of weakness of GCM G5 (X = 10; Y = X + 1 = 11)

Rank/j qkaz (z − Y + 1) Weakness
(WEa) = (z − Y + 1)* qkazCP TOPSIS WA PROMETHEE

11 0 0 0 0 (11 − 11 + 1) = 1 0

12 0 0 0 0 (12 − 11 + 1) = 2 0

13 0 0 0 0 (13 − 11 + 1) = 3 0

14 0 0 0 1 (14 − 11 + 1) = 4 4

15 0 0 0 0 (15 − 11 + 1) = 5 0

16 0 0 0 0 (16 − 11 + 1) = 6 0

Total weakness of G5 4
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Table 2.36 Strength, weakness and net strength of GCMs

GCMs Strength (STa) sum Weakness (WEa) sum NSa = STa − WEa Rank

G1 10(0) + 9(0) + 8
(0) + 7(1) + 6(0) + 5
(0) + 4(0) + 3(0) + 2
(1 + 1 + 1) + 1(0)

13 1(0) + 2(0) + 3(0) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) +10(0)

0 13 8

G2 10(0) + 9(0) + 8
(0) + 7(0) + 6(0) + 5
(0) + 4(1 + 1 + 1) + 3
(0) + 2(1) + 1(0)

14 1(0) + 2(0) + 3(0) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) + 10
(0)

0 14 7

G3 10(0) + 9(0) + 8
(0) + 7(0) + 6(0) + 5
(0) + 4(0) + 3(1) + 2
(0) + 1(0)

3 1(0) + 2(1 + 1 + 1) + 3
(0) + 4(0) + 5(0) + 6
(0) + 7(0) + 8(0) + 9
(0) + 10(0)

6 −3 10

G4 10(0) + 9
(1 + 1 + 1) + 8(0) + 7
(0) + 6(1) + 5(0) + 4
(0) + 3(0) + 2(0) + 1
(0)

33 1(0) + 2(0) + 3(0) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) + 10
(0)

0 33 2

G5 10(0) + 9(0) + 8
(0) + 7(0) + 6(1) + 5
(1 + 1) + 4(0) + 3
(0) + 2(0) + 1(0)

16 1(0) + 2(0) + 3(0) + 4
(1) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) + 10
(0)

4 12 9

G6 10(0) + 9(0) + 8
(0) + 7(0) + 6(0) + 5
(0) + 4(0) + 3(0) + 2
(0) + 1(0)

0 1(0) + 2(0) + 3
(1 + 1 + 1) + 4(0) + 5
(1) + 6(0) + 7(0) + 8
(0) + 9(0) + 10(0)

14 −14 14

G7 10(0) + 9(0) + 8
(0) + 7(0) + 6(2) + 5
(1) + 4(0) + 3(0) + 2
(0) + 1(0)

17 1(0) + 2(1) + 3(0) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) + 10
(0)

2 15 6

G8 10(1 + 1 + 1) + 9
(0) + 8(0) + 7(0) + 6
(0) + 5(1) + 4(0) + 3
(0) + 2(0) + 1(0)

35 1(0) + 2(0) + 3(0) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) + 10
(0)

0 35 1

G9 10(1) + 9(0) + 8
(0) + 7(0) + 6(0) + 5
(0) + 4(0) + 3
(1 + 1 + 1) + 2(0) + 1
(0)

19 1(0) + 2(0) + 3(0) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) + 10
(0)

0 19 5

G10 10(0) + 9(0) + 8
(0) + 7(0) + 6(0) + 5
(0) + 4(0) + 3(0) + 2
(0) + 1(0)

0 1(1) + 2(0) + 3(1) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) + 10
(0)

6 −6 11

G11 10(0) + 9(0) + 8
(0) + 7(0) + 6(0) + 5
(0) + 4(0) + 3(0) + 2
(0) + 1(0)

0 1(0) + 2(0) + 3(0) + 4
(0) + 5(0) + 6
(1 + 1 + 1 + 1) + 7
(0) + 8(0) + 9(0) + 10
(0)

24 −24 15

(continued)
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Table 2.36 (continued)

GCMs Strength (STa) sum Weakness (WEa) sum NSa = STa − WEa Rank

G12 10(0) + 9(0) + 8
(0) + 7(1) + 6(0) + 5
(0) + 4(0) + 3
(1 + 1 + 1) + 2(0) + 1
(0)

13 1(0) + 2(0) + 3(0) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) + 10
(0)

0 13 8

G13 10(0) + 9(1) + 8
(0) + 7(0) + 6(0) + 5
(0) + 4(0) + 3(0) + 2
(0) + 1(1 + 1 + 1)

12 1(0) + 2(0) + 3(0) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) + 10
(0)

0 12 9

G14 10(0) + 9(0) + 8
(0) + 7(0) + 6(0) + 5
(0) + 4(1) + 3(0) + 2
(0) + 1(0)

4 1(0) + 2(0) + 3(0) + 4
(0) + 5(1 + 1 + 1) + 6
(0) + 7(0) + 8(0) + 9
(0) + 10(0)

15 −11 12

G15 10(0) + 9(0) + 8
(0) + 7(1 + 1 + 1) + 6
(0) + 5(0) + 4(0) + 3
(0) + 2(0) + 1(0)

29 1(0) + 2(0) + 3(0) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) + 10
(0)

0 29 3

G16 10(0) + 9(0) + 8
(0) + 7(0) + 6(0) + 5
(0) + 4(0) + 3(0) + 2
(0) + 1(0)

0 1(3) + 2(0) + 3(1) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) + 10
(0)

6 −6 11

G17 10(0) + 9(0) + 8
(0) + 7(1) + 6(0) + 5
(0) + 4(0) + 3(0) + 2
(1 + 1 + 1) + 1(0)

13 1(0) + 2(0) + 3(0) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9(0) + 10
(0)

0 13 8

G18 10(0) + 9(0) + 8
(0) + 7(0) + 6(0) + 5
(0) + 4(0) + 3(0) + 2
(0) + 1(0)

0 1(1) + 2(0) + 3(0) + 4
(1 + 1 + 1) + 5(0) + 6
(0) + 7(0) + 8(0) + 9
(0) + 10(0)

13 −13 13

G19 10(0) + 9(0) + 8
(0) + 7(0) + 6(0) + 5
(0) + 4(0) + 3(0) + 2
(0) + 1(0)

0 1(1) + 2(0) + 3(0) + 4
(1 + 1 + 1) + 5(0) + 6
(0) + 7(0) + 8(0) + 9
(0) + 10(0)

13 −13 13

G20 10(0) + 9(0) + 8
(1 + 1 + 1) + 7(0) + 6
(0) + 5(0) + 4(0) + 3
(0) + 2(0) + 1(1)

25 1(0) + 2(0) + 3(0) + 4
(0) + 5(0) + 6(0) + 7
(0) + 8(0) + 9 (0) + 10
(0)

0 25 4

*3(1) means product of 3 and 1
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Numerous authors worked on various aspects of MCDM, entropy technique,
group decision-making, and Spearman rank correlation with relevance to GCM
selection and weight of performance indicators (Anandhi et al. 2011; Johnson et al.
2011; Taylor et al. 2012; Fu et al. 2013; Su et al. 2013; Perkins et al. 2013; Raju
and Nagesh Kumar 2014a, b, 2015a, b, 2016; Raju et al. 2017; Hughes et al. 2014).

2.4.7 Ensemble of GCMs

Forecasting future climate projections will be helpful for efficient planning in order
to mitigate and adapt to changing the climate. GCMs are widely used for this
purpose but the common practice is to employ output of a single GCM or single
scenario which ultimately results in various uncertainties. Policy decisions formu-
lated on these results cannot be agreed upon because they reflect only a partial
assessment of the risk involved.

Uncertainties in these projections have to be assessed to provide higher quality
and more quantitative climate change information. In order to address the under-
lying uncertainties in climate modeling, a number of GCMs and emission scenarios
are employed and termed as Multi Model Ensemble (MME). The process of inte-
grating and ensembling of models can be done by taking simple arithmetical
average or by following a weighting procedure developed on the performance of the
GCMs simulating historic climate data. The models considered in the ensemble
process should be reliable, i.e., they should represent the present-day climate fac-
tually and involves comparing GCM simulations with observed climate by con-
sidering performance measures. The best performing models can be employed for
formulating MME.

The present chapter dealt with a description of climate models, performance
evaluation, MCDM methodology. Forthcoming chapter discusses various down-
scaling techniques.

Software (Information as on 30.12.2016)

Researchers can write their computer programs in any of the programming envi-
ronment after ascertaining the structure of the algorithm discussed in various
chapters of the book. However, the following information is provided for better
understanding of the representative tools that may be employed.

PROMETHEE: Visual PROMETHEE 1.4: http://www.promethee-gaia.net/
software.html.

Spearman Rank Correlation Coefficient: SPSS (Statistical Package for Social
Sciences) (http://www-03.ibm.com/software/products/en/spss-statistics).

Revision Questions and Exercise Problems

2:1 What are different types of available climate models?
2:2 What is one-dimensional radiative-convective (RC) model?
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2:3 What are global climate models or general circulation models and their
purpose?

2:4 What is the opinion of researcher Xu on the GCMs?
2:5 What is a coupled atmosphere–ocean GCM?
2:6 What are the various components of GCMs?
2:7 What are the various uncertainties involved while handling GCMs and

related aspects?
2:8 What are the expansions of RCP and SDSM?
2:9 What is the purpose of SDSM?

2:10 What is the purpose of performance indicators? What are the ideal
requirements to be a performance indicator?

2:11 What are the available performance indicators?
2:12 Differentiate skill score, correlation coefficient, normalized root mean

square deviations, and Nash–Sutcliffe efficiency.
2:13 Name three deviation/error-related performance measures.
2:14 What are the limitations of GCMs? How can these be tackled for effective

application of GCMs?
2:15 What are issues raised by researchers Pierce and his team on climate

models?
2:16 What are greenhouse gases (GHG) and how changes in greenhouse gases

are attributed to natural and anthropogenic factors?
2:17 Mention four researchers who contributed extensively to evaluation of

GCMs.
2:18 Precipitation data simulated from a GCM is 2, 3, 6, 7, 8, 10, 11, 12.3, 16.3,

17.2, 18.3, 18.7, and 19.1 whereas observed data is 11.2, 15.8, 13.2, 17.2,
19.3, 8.2, 6.7, 17.3, 16.2, 9.3, 12.1, 13.2, and 23.1. Compute the sum of
squares of deviation, mean square deviation, root mean square deviation,
Pearson correlation coefficient, normalized root mean square deviation,
absolute normalized mean bias deviation, average absolute relative devia-
tion, skill score, and Nash–Sutcliffe efficiency. Use four bins while com-
puting skill score. Discuss the outcome in detail.

2:19 Relative humidity simulated from a GCM is 0.34, 0.56, 0.32, 0.23, 0.14,
0.10, and 0.23 whereas observed data is 0.23, 0.45, 0.42, 0.76, 0.33, 0.12,
and 0.32. Compute skill score, normalized root mean square deviations and
correlation coefficient.

2:20 What are the procedural steps for selection of best GCM?
2:21 Differentiate between compromise programming and cooperative game

theory. How are they efficient in ranking GCMs?
2:22 How can strength and weakness of each GCM be computed in group

decision-making?
2:23 How do the weights of indicators affect the ranking of GCMs? Is it nec-

essary to have different weights for different indicators?
2:24 Solve Numerical Problem 2.2 using entropy technique. Consider data from

Table 2.7 and consider only CC, ANMBD, AARD, NRMSD for analysis.
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2:25 Solve Numerical Problem 2.3 using compromise programming. Use data in
Table 2.11. Assume equal weights for all the indicators.

2:26 Solve Numerical Problem 2.3 using cooperative game theory. Use data in
Table 2.11. Assume equal weights for all the indicators.

2:27 Solve Numerical Problem 2.5 using TOPSIS. Use data in Table 2.15.
Assume weights of 0.2, 0.2, 0.5, 0.1 for the indicators respectively.

2:28 Solve Numerical Problem 2.3 using weighted average technique. Use data
in Table 2.11. Assume equal weights for all the indicators.

2:29 Solve Numerical Problem 2.7 using PROMETHEE. Use data in Table 2.20.
Assume equal weights for all the indicators. Analyze the numerical problem
assuming (a) usual indicator (b) quasi-indicator with indifference value as
0.2.

2:30 Solve Numerical Problem 2.8 using fuzzy TOPSIS. Use data in Table 2.27.
Assume weights of indicators CC, NRMSD, SS as (0.1, 0.1, 0.1), (0.2, 0.2,
0.2), (0.3, 0.3, 0.3).

2:31 Nine GCMs in CMIP3 environment as mentioned in Table 2.37 are ana-
lyzed for C1 and C2. Payoff matrix is trapezoidal membership function
(Nine GCMs vs. two indicators) is presented in Table 2.37. Rank the GCMs
using fuzzy TOPSIS. Assume equal weights for indicators. Take ideal
values of C1, C2 as (1, 1, 1, 1) each whereas anti-ideal values of C1, C2 as
(0, 0, 0, 0) each.

Hint: Distance between two trapezoidal fuzzy numbers isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðpaj�pjÞ2 þðqaj�qjÞ2 þðsia�sjÞ2 þðtia�tjÞ2�

4

q
Where (p, q, s, t) are elements of Trape-

zoidal fuzzy number.

2:32 Solve Numerical Problem 2.9 using Spearman rank correlation coefficient.
Use data in Table 2.30. Consider the first six GCMs for the analysis.

Table 2.37 Data matrix of 9 GCMs and random assignment of clusters

GCMs C1 C2

(1) (2) (3)

A1 (0.2, 0.3, 0.4, 0.5) (0.4, 0.55, 0.66, 0.88)

A2 (0.5, 0.6, 0.7, 0.8) (0.3, 0.5, 0.6, 0.8)

A3 (0.3, 0.6, 0.9, 1.0) (0.2, 0.4, 0.6, 0.8)

A4 (0.6, 0.7, 0.8, 0.9) (0.1, 0.2, 0.4, 0.8)

A5 (0.5, 0.7, 0.8, 0.9) (0.4, 0.6, 0.8, 1)

A6 (0.2, 0.4, 0.6, 0.8) (0.22, 0.44, 0.66, 0.88)

A7 (0.2, 0.3, 0.5, 0.8) (0.44, 0.8, 0.9, 1)

A8 (0.2, 0.4, 0.8, 1.0) (0.11, 0.44, 0.8, 0.9)

A9 (0.1, 0.4, 0.7, 0.9) (0.3, 0.5, 0.9, 1)
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2:33 Solve Numerical Problem 2.10 using group decision-making. Consider
ranking of CP and PROMETHEE only for group decision-making calcu-
lations. Use data in Table 2.32. Consider first ten ranks of GCMs for the
analysis. Compute strength, weakness, and net strength of each GCM.

Advanced Review Questions

2:34 Why the word global is affixed before climate while naming global climate
models?

2:35 Why the word circulation is suffixed after general while naming general
circulation models?

2:36 Name various laws on which GCMs are developed?
2:37 If given data is imprecise, it is expected that computed performance mea-

sures may not be accurate. How can this be encountered?
2:38 In your opinion, can any other performance measures be initiated or

developed? Discuss in detail the limitations of the existing performance
measures mentioned in the present chapter and possible improvements?

2:39 List the GCMs that are available under CMIP3 and CMIP5.
2:40 Mention two case studies where researchers used any of the performance

measures mentioned in the present chapter.
2:41 What are the similarities between CP and TOPSIS? Is there any way

PROMETHEE-2 and CP can be related?
2:42 How may ranking pattern differ for different p values in compromize pro-

gramming? Discuss mathematically?
2:43 How do ideal and anti-ideal values affect the outcome? Is it necessary to

normalize the indicator values?
2:44 How is Spearman rank correlation coefficient related to MCDM techniques?

Explain same in the present context?
2:45 Is there any relation between group decision-making and Spearman rank

correlation coefficient?
2:46 Is it possible to correlate output of entropy with rating techniques with

reference to weight estimation?
2:47 How may group decision-making affect if MCDM techniques are not of

equal importance? How can this be considered in the group
decision-making analysis?
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3Downscaling Techniques in Climate
Modeling

Abstract
Describes downscaling techniques where GCM outputs are interpolated to the
scale of hydrological modeling or local scale requirement. Statistical downscal-
ing techniques that facilitate statistical relationships that metamorphose
large-scale atmospheric variables/predictors simulated by GCMs to local scale
variables/predictand are discussed in detail. Techniques include Linear and
Non-linear regression, Artificial Neural Networks, Statistical Downscaling
Model (SDSM), Change Factor, Least-Square, and Standard Support Vector
Machines. Detailed discussion about Artificial Neural Networks that includes
information about preprocessing, weights, epoch, activation function, training,
learning rate, momentum factor, weight updation procedures, and challenges are
also presented. SDSM, combination of regression and conditional weather
generator techniques, Change Factor, and Support Vector Machine are also
briefed. Nested Bias Correction technique which addresses bias across
prespecified multiple timescales is also part of this chapter. Reader is expected
to understand various statistical downscaling techniques by studying this
chapter.

Keywords
Artificial neural networks � Change factor � Downscaling � Nested bias
correction � SDSM � Support vector machine
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3.1 Introduction

Accuracy of Global Climate Models (GCMs), developed for coarse grid resolution
decreases with increase in finer spatial and temporal scales, rendering them unable
to replicate sub-grid scale features. However, features at sub-grid scale are
important to hydrologists and water resources planners. Downscaling is one of the
approaches where GCM outputs are interpolated to the scale of hydrological
modeling or local scale requirement (Wang et al. 2004; Mujumdar and Nagesh
Kumar 2012). Two categories of downscaling exist, dynamic and statistical. In the
dynamic downscaling, Regional Climate Model (RCM) is integrated into GCM for
obtaining output at the location of user’s choice and this process is computationally
burdensome. Statistical downscaling uses mainly statistical and related relationships
for getting the output at the location of user’s choice and it is easier and flexible
compared to dynamic downscaling. In the present chapter, statistical downscaling
techniques are discussed in detail. Detailed description of downscaling techniques
is available in Fowler et al. (2007) and Sylwia and Emilie (2014).

3.2 Statistical Downscaling

The statistical downscaling techniques facilitate statistical relationships that meta-
morphose large-scale atmospheric variables/predictors simulated by GCM to local
scale variables/predictand. The hydrologic variable to be predicted is called pre-
dictand and the climatic variables used as input to the model are called predictors
(Karl et al. 1990; Wigley et al. 1990). Weather generators (Wilby et al. 2004; Wilby
and Dawson 2007), weather typing/weather classification schemes (Wilby et al.
2004), and transfer functions (Wilby and Dawson 2007) are under this category.
Techniques such as linear/non-linear regression, Artificial Neural Networks,
Change Factor, Least-Square, and Standard Support Vector Machines (Tripathi
et al. 2006) are under transfer function category which is the main focus of the
present chapter.

3.2.1 Multiple Regression

Regression is a statistical technique to investigate the relation between a dependent
variable y and number of independent variables x. There are many types of
regression techniques that can be explored. A regression model which relates
dependent variable and multiple independent variables is termed as multiple
regression model. Mathematical expression for multiple linear regression is (Wilby
et al. 2004; Milton and Arnold 2007; Anandhi et al. 2008):

y ¼ b0 þ b1x1 þ b2x2 þ . . .þ bnxn þ e ð3:1Þ
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where b1; b2; . . .:bn are coefficients of data x1; x2; . . .xn; b0 is the crisp constant and e
is the crisp error. Other forms of regression are multiple non-linear regression where
relationship between input and outputs is non-linear of any order.

Different types of regression available are as follows:

(a) Simple Linear Regression

y ¼ b0 þ b1x1 ð3:2Þ

b1 ¼ n
P

xy� ðP xÞðP yÞ½ �
n
P

x2 � ðP xÞ2 ; b0 ¼ �y� b1�x ð3:3Þ

Sxx ¼
n
P

x2 � ðP xÞ2
h i

n
; Syy ¼

n
P

y2 � ðP yÞ2
h i

n
; Sxy

¼ n
P

xy� ðP xÞðP yÞ½ �
n

ð3:4Þ

Estimated correlation between X and Y is:

R ¼ Sxyffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyy

p ð3:5Þ

Here �x;�y are mean of x and y observations; n is number of observations.
S represents standard deviation.

(b) Polynomial regression

y ¼ b0 þ b1xþ b2x
2 ð3:6Þ

Three equations are required to obtain three unknowns b0; b1; b2

nb0 þ b1
Xn
i¼1

xi þ b2
Xn
i¼1

x2i ¼
Xn
i¼1

yi ð3:7Þ

b0
Xn
i¼1

xi þ b1
Xn
i¼1

x2i þ b2
Xn
i¼1

x3i ¼
Xn
i¼1

xiyi ð3:8Þ

b0
Xn
i¼1

x2i þ b1
Xn
i¼1

x3i þ b2
Xn
i¼1

x4i ¼
Xn
i¼1

x2i yi ð3:9Þ
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(c) Multiple regression model linear in nature: y ¼ b0 þ b1x1 þ b2x2 (with two
variables). Three equations are required to obtain three unknowns b0; b1; and b2.

nb0 þ b1
Xn
i¼1

x1i þ b2
Xn
i¼1

x2i ¼
Xn
i¼1

yi ð3:10Þ

b0
Xn
i¼1

x1i þ b1
Xn
i¼1

x21i þ b2
Xn
i¼1

x1ix2i ¼
Xn
i¼1

xi1yi ð3:11Þ

b0
Xn
i¼1

x2i þ b1
Xn
i¼1

x2ix1i þ b2
Xn
i¼1

x22i ¼
Xn
i¼1

x2iyi ð3:12Þ

Detailed information on regression is available from Milton and Arnold (2007).

Numerical Problem 3.1 Maximum temperature (in °Celsius) data generated by
India Meteorological Department (IMD) is dependent on number of parameters that
are available from National Centers for Environmental Prediction (NCEP). Notable
among them are P5_U (Zonal Velocity Component at 500 Hpa Height in m/s) and
P5_V (Meridoinal Velocity Component at 500 Hpa Height in m/s). Data is presented
in Table 3.1. Establish (a) linear relationship between predictand (temperature) and
predictor (Zonal Velocity Component at 500 Hpa Height in m/s) (b) polynomial
relationship between predictand (temperature) and predictor (Zonal Velocity Com-
ponent at 500 Hpa Height in m/s) (c) multiple linear relationship between predictand
(temperature) and predictors (Zonal Velocity Component at 500 Hpa Height in m/s
and Meridoinal Velocity Component at 500 Hpa Height in m/s).

Solution

(a) Linear relationship between predictand (temperature) and predictor (Zonal
Velocity Component at 500 Hpa Height in m/s) in the form of y ¼ b0 þ b1x
(Table 3.2).

X
x ¼ 7:9808;

X
y ¼ 792:2191;

X
x2 ¼ 3:4202;X

y2 ¼ 25341:90;X
xy ¼ 253:49

�x ¼ 0:3192; �y ¼ 31:688
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b1 ¼ n
P

xy� ðP xÞðP yÞ½ �
n
P

x2 � ðP xÞ2 ¼ 25 � 253:49� 7:9808 � 792:2191
25 � 3:4202� 7:9808 � 7:9808 ¼ 0:674

b0 ¼ �y� b1�x ¼ 31:688� 0:674 � 0:3192 ¼ 31:47

Sxx ¼
n
P

x2 � ðP xÞ2
h i

n
¼ 25 � 3:4202� 7:9808 � 7:9808

25
¼ 0:8724

Syy ¼
n
P

y2 � ðP yÞ2
h i

n
¼ 25 � 25341:90� 792:2191 � 792:2191

25
¼ 237:45

Sxy ¼ n
P

xy� ðP xÞðP yÞ½ �
n

¼ 25 � 253:49� 7:9808 � 792:2191
25

¼ 0:5883

Table 3.1 Maximum temperature and velocity component data

Dataset P5_U (m/s) P5_V (m/s) Maximum temperature (°C)

1 0.0866 0.0006 29.2900

2 0.1498 0.8393 32.8321

3 0.4612 0.2654 35.7261

4 0.2085 0.4358 37.4637

5 0.2741 0.4124 35.4984

6 0.1776 0.4254 34.7860

7 0.2575 0.6898 29.8706

8 0.3961 0.3365 30.8523

9 0.1344 0.8079 30.5450

10 0.4620 0.6341 30.8277

11 0.3486 0.5329 29.0377

12 0.5922 0.5403 26.6316

13 0.4589 0.6936 28.4584

14 0.7945 0.2295 31.6171

15 0.2470 0.5656 34.1303

16 0.3151 0.0797 36.3697

17 0.4231 0.1995 38.2229

18 0.6213 0.1268 32.1490

19 0.1849 0.1248 30.4881

20 0.2417 0.6392 29.6145

21 0.3178 0.2921 30.8463

22 0.5320 0.4352 31.1348

23 0.0423 0.1007 29.5313

24 0.2335 0.0754 27.7787

25 0.0201 0.6405 28.5168
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Correlation R ¼ Sxyffiffiffiffiffiffiffiffiffi
SxxSyy

p ¼ 0:5883ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:8724�237:45p ¼ 0:0408 (very low value); preferred

value is 1.

Regression equation is

y ¼ 31:47þ 0:674 x ð3:13Þ

(b) Polynomial relationship between predictand (temperature) and predictor
(Zonal Velocity Component at 500 Hpa Height in m/s) in the form of y ¼
b0 þ b1xþ b2x2 (Table 3.3).
n = number of datasets = 25

Table 3.2 Computation of various intermediate outputs for case (a)

Dataset P5_U (m/s) (x) Maximum temperature
(°C) (y)

x2 y2 xy

1 0.0866 29.2900 0.0075 857.9041 2.5365

2 0.1498 32.8321 0.0224 1077.9468 4.9182

3 0.4612 35.7261 0.2127 1276.3542 16.4769

4 0.2085 37.4637 0.0435 1403.5288 7.8112

5 0.2741 35.4984 0.0751 1260.1364 9.7301

6 0.1776 34.7860 0.0315 1210.0658 6.1780

7 0.2575 29.8706 0.0663 892.2527 7.6917

8 0.3961 30.8523 0.1569 951.8644 12.2206

9 0.1344 30.5450 0.0181 932.9970 4.1052

10 0.4620 30.8277 0.2134 950.3471 14.2424

11 0.3486 29.0377 0.1215 843.1880 10.1225

12 0.5922 26.6316 0.3507 709.2421 15.7712

13 0.4589 28.4584 0.2106 809.8805 13.0596

14 0.7945 31.6171 0.6312 999.6410 25.1198

15 0.2470 34.1303 0.0610 1164.8774 8.4302

16 0.3151 36.3697 0.0993 1322.7551 11.4601

17 0.4231 38.2229 0.1790 1460.9901 16.1721

18 0.6213 32.1490 0.3860 1033.5582 19.9742

19 0.1849 30.4881 0.0342 929.5242 5.6372

20 0.2417 29.6145 0.0584 877.0186 7.1578

21 0.3178 30.8463 0.1010 951.4942 9.8030

22 0.5320 31.1348 0.2830 969.3758 16.5637

23 0.0423 29.5313 0.0018 872.0977 1.2492

24 0.2335 27.7787 0.0545 771.6562 6.4863

25 0.0201 28.5168 0.0004 813.2079 0.5732
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X
x ¼ 7:9808;

X
y ¼ 792:2191;

X
x2 ¼ 3:4202;

X
x3 ¼ 1:7436;

X
x4 ¼ 1:0022X

xy ¼ 253:49;
X

x2y ¼ 107:9448

nb0 þ b1
Xn
i¼1

xi þ b2
Xn
i¼1

x2i ¼
Xn
i¼1

yi

b0
Xn
i¼1

xi þ b1
Xn
i¼1

x2i þ b2
Xn
i¼1

x3i ¼
Xn
i¼1

xiyi

b0
Xn
i¼1

x2i þ b1
Xn
i¼1

x3i þ b2
Xn
i¼1

x4i ¼
Xn
i¼1

x2i yi

Table 3.3 Computation of various intermediate outputs for case (b)

Dataset P5_U
(m/s)
(x)

Maximum
temperature
(°C) (y)

x2 x3 x4 xy x2y

1 0.0866 29.2900 0.0075 0.0006 0.0001 2.5365 0.2197

2 0.1498 32.8321 0.0224 0.0034 0.0005 4.9182 0.7368

3 0.4612 35.7261 0.2127 0.0981 0.0452 16.4769 7.5991

4 0.2085 37.4637 0.0435 0.0091 0.0019 7.8112 1.6286

5 0.2741 35.4984 0.0751 0.0206 0.0056 9.7301 2.6670

6 0.1776 34.7860 0.0315 0.0056 0.0010 6.1780 1.0972

7 0.2575 29.8706 0.0663 0.0171 0.0044 7.6917 1.9806

8 0.3961 30.8523 0.1569 0.0621 0.0246 12.2206 4.8406

9 0.1344 30.5450 0.0181 0.0024 0.0003 4.1052 0.5517

10 0.4620 30.8277 0.2134 0.0986 0.0456 14.2424 6.5800

11 0.3486 29.0377 0.1215 0.0424 0.0148 10.1225 3.5287

12 0.5922 26.6316 0.3507 0.2077 0.1230 15.7712 9.3397

13 0.4589 28.4584 0.2106 0.0966 0.0443 13.0596 5.9930

14 0.7945 31.6171 0.6312 0.5015 0.3985 25.1198 19.9577

15 0.2470 34.1303 0.0610 0.0151 0.0037 8.4302 2.0823

16 0.3151 36.3697 0.0993 0.0313 0.0099 11.4601 3.6111

17 0.4231 38.2229 0.1790 0.0757 0.0320 16.1721 6.8424

18 0.6213 32.1490 0.3860 0.2398 0.1490 19.9742 12.4100

19 0.1849 30.4881 0.0342 0.0063 0.0012 5.6372 1.0423

20 0.2417 29.6145 0.0584 0.0141 0.0034 7.1578 1.7300

21 0.3178 30.8463 0.1010 0.0321 0.0102 9.8030 3.1154

22 0.5320 31.1348 0.2830 0.1506 0.0801 16.5637 8.8119

23 0.0423 29.5313 0.0018 0.0001 0.0000 1.2492 0.0528

24 0.2335 27.7787 0.0545 0.0127 0.0030 6.4863 1.5146

25 0.0201 28.5168 0.0004 0.0000 0.0000 0.5732 0.0115

Sum 7.9808 792.2191 3.4202 1.7436 1.0022 253.491 107.9448
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25b0 þ 7:9808b1 þ 3:4202b2 ¼ 792:2191 ð3:14Þ

7:9808b0 þ 3:4202b1 þ 1:7436b2 ¼ 253:49 ð3:15Þ

3:4202b0 þ 1:7436b1 þ 1:0022b2 ¼ 107:9448 ð3:16Þ

Solving simultaneous equations yields:

b0 ¼ 29:59; b1 ¼ 14:49; b2 ¼ �18:49

y ¼ b0 þ b1xþ b2x
2 ¼ 29:59þ 14:49x� 18:49x2

ð3:17Þ

(c) Multiple linear relationship between predictand (temperature) and predictors
(Zonal Velocity Component at 500 Hpa Height in m/s and Meridoinal Velocity

Table 3.4 Computation of various intermediate outputs for case (c)

Dataset P5_U
(m/s)
(xi1)

P5_V
(m/s)
(x2i)

Maximum
temperature
(°C) (yi)

xi1 * x2i xi1 * yi xi1
2 x2i

2 x2i * yi

1 0.0866 0.0006 29.2900 0.0001 2.5365 0.0075 0.0000 0.0176

2 0.1498 0.8393 32.8321 0.1257 4.9182 0.0224 0.7044 27.5560

3 0.4612 0.2654 35.7261 0.1224 16.4769 0.2127 0.0704 9.4817

4 0.2085 0.4358 37.4637 0.0909 7.8112 0.0435 0.1899 16.3267

5 0.2741 0.4124 35.4984 0.1130 9.7301 0.0751 0.1701 14.6395

6 0.1776 0.4254 34.7860 0.0756 6.1780 0.0315 0.1810 14.7980

7 0.2575 0.6898 29.8706 0.1776 7.6917 0.0663 0.4758 20.6047

8 0.3961 0.3365 30.8523 0.1333 12.2206 0.1569 0.1132 10.3818

9 0.1344 0.8079 30.5450 0.1086 4.1052 0.0181 0.6527 24.6773

10 0.4620 0.6341 30.8277 0.2930 14.2424 0.2134 0.4021 19.5478

11 0.3486 0.5329 29.0377 0.1858 10.1225 0.1215 0.2840 15.4742

12 0.5922 0.5403 26.6316 0.3200 15.7712 0.3507 0.2919 14.3891

13 0.4589 0.6936 28.4584 0.3183 13.0596 0.2106 0.4811 19.7387

14 0.7945 0.2295 31.6171 0.1823 25.1198 0.6312 0.0527 7.2561

15 0.2470 0.5656 34.1303 0.1397 8.4302 0.0610 0.3199 19.3041

16 0.3151 0.0797 36.3697 0.0251 11.4601 0.0993 0.0064 2.8987

17 0.4231 0.1995 38.2229 0.0844 16.1721 0.1790 0.0398 7.6255

18 0.6213 0.1268 32.1490 0.0788 19.9742 0.3860 0.0161 4.0765

19 0.1849 0.1248 30.4881 0.0231 5.6372 0.0342 0.0156 3.8049

20 0.2417 0.6392 29.6145 0.1545 7.1578 0.0584 0.4086 18.9296

21 0.3178 0.2921 30.8463 0.0928 9.8030 0.1010 0.0853 9.0102

22 0.5320 0.4352 31.1348 0.2315 16.5637 0.2830 0.1894 13.5499

23 0.0423 0.1007 29.5313 0.0043 1.2492 0.0018 0.0101 2.9738

24 0.2335 0.0754 27.7787 0.0176 6.4863 0.0545 0.0057 2.0945

25 0.0201 0.6405 28.5168 0.0129 0.5732 0.0004 0.4102 18.2650

Sum 7.9607 9.4825 763.702 3.0982 252.9178 3.4198 5.1662 299.1569
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Component at 500 Hpa Height in m/s) in the form of y ¼ b0 þ b1x1 þ b2x2
(Table 3.4).

nb0 þ b1
Xn
i¼1

x1i þ b2
Xn
i¼1

x2i ¼
Xn
i¼1

yi

b0
Xn
i¼1

x1i þ b1
Xn
i¼1

x21i þ b2
Xn
i¼1

x1ix2i ¼
Xn
i¼1

xi1yi

b0
Xn
i¼1

x2i þ b1
Xn
i¼1

x2ix1i þ b2
Xn
i¼1

x22i ¼
Xn
i¼1

x2iyi

25b0 þ 7:9607b1 þ 9:4825b2 ¼ 763:702 ð3:18Þ

7:9607b0 þ 3:4198b1 þ 3:0982b2 ¼ 252:9178 ð3:19Þ

9:4825b0 þ 3:0982b1 þ 5:1662b2 ¼ 299:1569 ð3:20Þ

b0 ¼ 25:11; b1 ¼ 10:51; b2 ¼ 5:52

y ¼ b0 þ b1x1i þ b2x2i ¼ 25:11þ 10:51x1i þ 5:52x2i
ð3:21Þ

In the present section, multiple linear regression is discussed. Similar study can
be extended to multiple non-linear regression.

3.2.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are emerging as familiar and prominent due to
their efficacy to establish non-linear relationships between inputs and outputs. In the
present chapter, Feed Forward with Back Propagation (FFBP) category neural
networks are described in brief. Mathematically, neural networks are composed of
numerous layers of neurons consisting of input layer; number of hidden layers
(minimum 1 is desirable) whereas it may extend to any number depending on the
chosen problem; output layer. Each layer of neurons gets its input from the pre-
ceding layer or from the network input layer. Output of each neuron provides the
information to the next layer/output of the network. Figure 3.1 presents ANN
architecture consisting of three layers. Note that input layer consists of a, b, and c
neurons, hidden layer (one in this case) consists of d, e, f, and g whereas output
layer consists of neuron h. Neurons can also be termed as nodes. The lines con-
necting the neurons represent the weights.
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Terminology

Some of the important terminology relevant to FFBP is described to explain the
methodology effectively (Rumelhart and McClelland 1986; ASCE Task Committee
on Application of Artificial Neural Networks in Hydrology 2000; Nagesh Kumar
2004; Ross 2011).

• Preprocessing is the procedure for data processing before applying to the
network.

• Weights: Each connection link has strength and is represented in the form of
weights and may vary from ð�1;1Þ and update these weights continuously in
the training process.

• Epoch is iteration and iteratively alters the network weights.
• Activation function estimates the output of a node/neuron from the total inputs

they receive. Sigmoid function is one of the frequently used activation functions
with characteristics of non-decreasing, bounded, and monotonic that provides
graded non-linear surface. Mathematical expression of sigmoid function is as
follows:

f ðtÞ ¼ 1

ð1þ e
P

�rixiÞ
ð3:22Þ

Here, ri and xi are weights and corresponding input values. Selection of acti-
vation function has significance on the output. Other forms of activation func-
tions are bipolar sigmoid and hyperbolic tangent.

a 

b 

c 

d 

e 

f 

g

h 

Input layer Hidden layer Output layer

# Input 1

# Input 2

# Input 3

Output

Fig. 3.1 Architecture of feed forward with back propagation
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• Training is a process through which network connection strengths/weights are
improved continuously. In other words, training or learning process is to
determine optimal weights that minimize the error. Error is the squared differ-
ence between the simulated values predicted by the network at output layer, and
the observed/targeted values (Eq. 3.23).

E ¼
X

ðO� PÞ2 ð3:23Þ

Here, P and O represent simulated output from ANN and observed/targeted
value, respectively. Analogous analysis can also be made for cross training,
testing, and validation using the optimized weights obtained from training.

• Learning rate increases the opportunity for the training process to reach global
minima instead of trapping at local minima which may result in erroneous
outputs. Learning rate varies from 0 to 1. The network learns and understands
slowly with low learning rate whereas weights and objective function diverge
with high learning rate.

• Momentum factor minimizes fluctuations in weights and improves training
process.

FFBP technique consists of two phases (Rumelhart and McClelland 1986; ASCE
Task Committee on Application of Artificial Neural Networks in Hydrology, 2000),
forward and backward phases: Phase 1 is related to forward movement/pass where
the impact of the input(s) is transmitted in forward direction to reach the last layer,
i.e., output layer. In phase 2, error/errors (Eq. 3.23; depending on the single output
or multiple outputs) are backpropagated toward the first/input layer with the
weights being modified progressively. The training initiates with weights which are
random in nature. Later they are modified throughout the process to achieve min-
imum error.

Weight adjustment is as follows: Change in weight at epoch n = −learning rate
* rate of variation of error with reference to weight + momentum rate * Change in
weight at epoch (n − 1). Mathematically, it can be expressed as:

DrijðnÞ ¼ �Lr � @E

@rij
þMr � Drijðn� 1Þ ð3:24Þ

where Lr and Mr are learning rate and momentum rate, respectively.
DrijðnÞ andDrijðn� 1Þ are increments of weights between node i and node j during
nth and (n − 1)th epochs.

rijðnewÞ ¼ rijðoldÞþDrij ð3:25Þ
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This process is necessary to determine the final weights and the process will be
terminated after reaching error tolerance/targeted number of epochs whichever is
earlier.

Establishment of non-linear relationship between input and outputs and adap-
tivity are always helpful to achieve better results. However, major challenges such
as hidden layers and corresponding neurons, initialization of momentum and
learning rates, initialization of weights and their ranges, scaling the parameters in
the form of normalization for better compatibility, and reasonably good training are
to be handled with more caution. In addition, number of input and output param-
eters is to be chosen efficiently. Fewer inputs and more outputs or vice versa
without physical significance and relevance to the chosen problem may not provide
the desired results. In this case, output cannot be transformed for implementation.

Numerical Problem 3.2 Three inputs of rainfall of magnitude, 1, 2, and 3 units are
producing runoff equivalent of 0.6996 units. Relationship between inputs and
outputs are expected to be established through ANN with backpropagation
methodology. Three-layered network is proposed. Input layer consists of three
nodes representing rainfall (named as a, b, and c), hidden layer of four nodes
(named as d, e, f, and g), and output layer for runoff of one node (named as h).
Figure 3.1 is presenting the architecture of the ANN. Notation for weights is rep-
resented as r. Table 3.5 presents initial weights between the inputs to hidden layer
as well as hidden to output layer. Assume learning rate as 0.4. Choose sigmoid as
the activation function. Estimate the error at the output node and update the
weights. Perform for one epoch.

Solution

Input values x1; x2; x3 are 1, 2, 3; Observed value O is 0.6996

Epoch 1

1. Predicted outputs from the second layer

Od ¼ 1

1þ e� rad�x1 þ rbd�x2 þ rcd�x3ð Þ ¼
1

1þ e� 0:03�1þ 0:04�2þ 0:05�3ð Þ ¼
1

1þ e�0:26
¼ 0:5646

Oe ¼ 1

1þ e� rae�x1 þ rbe�x2 þ rce�x3ð Þ ¼
1

1þ e� 0:13�1þ 0:07�2þ 0:03�3ð Þ ¼
1

1þ e�0:36
¼ 0:5890

Of ¼ 1

1þ e� raf �x1 þ rbf �x2 þ rcf �x3ð Þ ¼
1

1þ e� 0:12�1þ 0:06�2þ 0:09�3ð Þ ¼
1

1þ e�0:51
¼ 0:6248

Og ¼ 1

1þ e� rag�x1 þ rbg�x2 þ rcg�x3ð Þ ¼
1

1þ e� 0:08�1þ 0:06�2þ 0:05�3ð Þ ¼
1

1þ e�0:35
¼ 0:5866
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2. Predicted output from the third layer

Oh ¼ 1

1þ e� rdh�od þ reh�oe þ rfh�of þ rgh�ogð Þ

¼ 1

1þ e� 0:22�0:5646þ 0:24�0:5890þ 0:11�0:6248þ 0:12�0:5866ð Þ

¼ 1
1þ e�0:4047

¼ 0:5998

3. Error Eh ¼ Observed runoff − Predicted runoff = 0.6996 − 0.5998 = 0.0998
4. Distribution of errors is as follows:

Ej�1 ¼ Onð1� OnÞ
P

rnjEj [If j is h, j − 1 is d, e, f, g]

Assigning errors to elements in second layer

Ed ¼ Od � 1� Odð Þ � ðrdh � EhÞ
¼ 0:5646 1� 0:5646ð Þ � 0:22 � 0:0998ð Þ ¼ 0:00539

Ee ¼ Oe � 1� Oeð Þ � ðreh � EhÞ
¼ 0:5890 1� 0:5890ð Þ � 0:24 � 0:0998ð Þ ¼ 0:005798

Ef ¼ Of � 1� Of

� � � ðrfh � EhÞ
¼ 0:6248 � 1� 0:6248ð Þ � 0:11 � 0:0998ð Þ ¼ 0:00257

Eg ¼ Og � 1� Og

� � � ðrgh � EhÞ
¼ 0:5866 � 1� 0:5866ð Þ � 0:12 � 0:0998ð Þ ¼ 0:0029

Table 3.5 Node assignment
data and assumed weights

From node To node Notation for weight Assumed weight

a d rad 0.03

b d rbd 0.04

c d rcd 0.05

a e rae 0.13

b e rbe 0.07

c e rce 0.03

a f raf 0.12

b f rbf 0.06

c f rcf 0.09

a g rag 0.08

b g rbg 0.06

c g rcg 0.05

d h rdh 0.22

e h reh 0.24

f h rfh 0.11

g h rgh 0.12
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Update the weights based on the associated errors for all the elements in the
network using the following equation:

rijknew ¼ rijkoldþ Lr � Eiþ 1
k � xjk

where rijk is associated weight relating jth neuron of ith layer to the kth neuron of

(i + 1)th layer; Lr is learning rate (0.4). Eiþ 1
k error associated with the kth neuron of

(i + 1)th layer; xjk is input from the jth neuron in the ith layer to the kth neuron in
the (i + 1)th layer.

Table 3.6 presents updated weights connecting neurons in first and second layers
whereas Table 3.7 presents updated weights connecting neurons in second and third
layers.

Epoch 2

Od ¼ 0:5720; Oe ¼ 0:5969; Of ¼ 0:6282; Og ¼ 0:6254

Oh ¼ 0:6154

Table 3.6 Updated weights connecting neurons in first and second Layers

Notation for updated
weight

Updated equation Substitution Updated
weight

rad:new rad:old þ Lr � Ed � x1 0.03 + 0.4 * 0.0053 * 1 0.0321

rbd:new rbd:old þ Lr � Ed � x2 0.04 + 0.4 * 0.0053 * 2 0.0443

rcd:new rcd:old þ Lr � Ed � x3 0.05 + 0.4 * 0.0053 * 3 0.0565

rae:new rae:old þ Lr � Ee � x1 0.13 + 0.4 * 0.00579 * 1 0.1323

rbe:new rbe:old þ Lr � Ee � x2 0.07 + 0.4 * 0.00579 * 2 0.0746

rce:new rce:old þ Lr � Ee � x3 0.03 + 0.4 * 0.005798 * 3 0.0369

raf :new raf :old þ Lr � Ef � x1 0.12 + 0.4 * 0.00257 * 1 0.1210

rbf :new rbf :old þ Lr � Ef � x2 0.06 + 0.4 * 0.00257 * 2 0.0620

rcf :new rcf :old þ Lr � Ef � x3 0.09 + 0.4 * 0.00257 * 3 0.0931

rag:new rag:old þ Lr � Eg � x1 0.08 + 0.4 * 0.00290 * 1 0.0812

rbg:new rbg:old þ Lr � Eg � x2 0.06 + 0.4 * 0.00290 * 2 0.0623

rcg:new rcg:old þ Lr � Eg � x3 0.05 + 0.4 * 0.00290 * 3 0.0535

Table 3.7 Updated weights connecting neurons in second and third layers

Notation for
updated weight

Updated equation Substitution Updated
weight

rdh:new rdh:old þ Lr � Eh � Ed 0.22 + 0.4 * 0.0998 * 0.5646 0.2425

reh:new reh:old þ Lr � Eh � Ee 0.24 + 0.4 * 0.0998 * 0.5890 0.2635

rfh:new rfh:old þ Lr � Eh � Ef 0.11 + 0.4 * 0.0998 * 0.6248 0.1349

rgh:new rgh:old þ Lr � Eh � Eg 0.12 + 0.4 * 0.0998 * 0.5866 0.1434
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Error E = Observed runoff − Predicted runoff = 0.6996 − 0.6154 = 0.0842
Process continues until number of epochs is completed or error termination

criterion is reached whichever occurs earlier.

Numerical Problem 3.3 Three inputs of rainfall of magnitude, 0.8, 0.4, and 0.3 are
producing runoff equivalent of 1.0 units. Relationship between inputs and outputs
are established through ANN with backpropagation methodology. Three-layered
network is proposed. Input layer consists of three nodes representing rainfall
(named as 1, 2, and 3), hidden layer of three nodes (named as 4, 5, 6), and output
layer for runoff of one node (named as 7). Notation for weights is represented as r.
Table 3.8 presents initial weights between the inputs to hidden layer as well as
hidden to output layer. Assume learning rate as 0.45. Choose sigmoid as the ac-
tivation function. Estimate the error at the output node and update the weights after
incorporating the error. Perform for one epoch.

Solution

Input values x1; x2; and x3 are 0.8, 0.4, and 0.3; Observed value O is 1.0

Epoch 1

1. Predicted outputs from the second layer

O4 ¼ 1

1þ e� r14�x1 þ r24�x2 þ r34�x3ð Þ ¼
1

1þ e� 045�0:8þ 0:55�0:4þ 0:87�0:3ð Þ ¼
1

1þ e�0:841
¼ 0:6987

O5 ¼ 1
1þ e� r15�x1 þ r25�x2 þ r35�x3ð Þ ¼

1
1þ e� 0:57�0:8þ 0:62�0:4þ 0:92�0:3ð Þ ¼

1
1þ e�0:98

¼ 0:7271

O6 ¼ 1
1þ e� r16�x1 þ r26�x2 þ r36�x3ð Þ ¼

1
1þ e� 0:73�0:8þ 0:88�0:4þ 0:94�0:3ð Þ ¼

1
1þ e�1:218

¼ 0:7717

Table 3.8 Node assignment
data and assumed weights

From
node

To
node

Notation for
weight

Assumed
weight

1 4 r14 0.45

2 4 r24 0.55

3 4 r34 0.87

1 5 r15 0.57

2 5 r25 0.62

3 5 r35 0.92

1 6 r16 0.73

2 6 r26 0.88

3 6 r36 0.94

4 7 r47 0.8

5 7 r57 0.9

6 7 r67 1.0
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2. Predicted output of the third layer

O7 ¼ 1

1þ e� r47�o4 þ r57�o5 þ r67�o6ð Þ ¼
1

1þ e� 0:8�0:6987þ 0:90�0:7271þ 1:0�0:7717ð Þ

¼ 1
1þ e�1:985

¼ 0:8792

3. Error E7 ¼ Observed runoff − Predicted runoff = 1 − 0.8792 = 0.1208
4. Distribution of errors is as follows:

Ej�1 ¼ Onð1� OnÞ
P

rnjEj [If j is h, j − 1 is 4, 5, 6 ]

Assigning errors to elements in second layer

E4 ¼ O4 � 1� O4ð Þ � ðr47 � E7Þ
¼ 0:6987 1� 0:6987ð Þ � 0:80 � 0:1208ð Þ ¼ 0:0203

E5 ¼ O5 � 1� O5ð Þ � ðr57 � E7Þ
¼ 0:7271 1� 0:7271ð Þ � 0:90 � 0:1208ð Þ ¼ 0:0215

E6 ¼ O6 � 1� O6ð Þ � ðr67 � E7Þ
¼ 0:7717 � 1� 0:7717ð Þ � 1:0 � 0:1208ð Þ ¼ 0:0212

Update the weights based on the associated errors for all the elements in the
network using the following equation:

rijknew ¼ rijkoldþ Lr � Eiþ 1
k � xjk

where rijk is associated weight relating jth neuron of ith layer to the kth neuron of

(i + 1)th layer; Lr is learning rate (0.45). Eiþ 1
k error associated with the kth neuron

of (i + 1)th layer; xjk is input from the jth neuron in the ith layer to the kth neuron in
the (i + 1)th layer. Updated weights are presented in Table 3.9.

After the updated weights are incorporated output value is 0.8886 and error is
1 − 0.8886 = 0.1114 which is less than previous, i.e., 0.1208. However, the process
can continue until error is within tolerance limit.

3.2.3 Statistical Downscaling Model

Statistical Downscaling Model (SDSM) is a combination of regression and con-
ditional weather generator techniques. SDSM software handles downscaling of
daily weather series effectively. Calibrated modeling option formulates regression
model by taking predictand and predictor data. Coefficients of the regression
equations were determined using simplex algorithm. Screening option helps to keep
the predictor variables that are relevant and SDSM has a provision of handling 12
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predictors at a given time. Numerous authors suggested to enhance predictors’
selection procedure. Brief features of SDSM are as follows: (Wilby et al. 2002;
Wilby and Dawson 2007, 2013):

• Quality control identifies data errors, missing data and outliers.
• Transform provides selected data transformation.
• Screen variables operation is to select relevant downscaling predictor variables.
• Calibration of model establishes relationship between predictand and set of

predictor variables.
• Definition of model structure such as monthly, seasonal, or annual sub-models.
• Conditional or unconditional processing of data.
• Weather and Scenario Generators compute ensembles of synthetic daily weather

series with NCEP reanalysis/observed data and climate model atmospheric
predictor variables rather than observed predictors, respectively.

3.2.4 Change Factor Technique

Change factor technique is another simple but effective downscaling technique
which is explained as follows: (Hay et al. 2000; Anandhi et al. 2011; Sylwia and
Emilie 2014):

1. Computation of average values of GCM simulated baseline GCMBL (20C3M)
and future climates GCMFC

AVGCMBL ¼
P

GCMBLi
NBL

ð3:26Þ

Table 3.9 Updated weights

From
node

To
node

Notation for updated
weight

Substitution Updated
weight

1 4 r14:new 0.45 + 0.45 * 0.0203 * 0.8 0.4573

2 4 r24:new 0.55 + 0.45 * 0.0215 * 0.4 0.5536

3 4 r34:new 0.87 + 0.45 * 0.0212 * 0.3 0.8728

1 5 r15:new 0.57 + 0.45 * 0.0203 * 0.8 0.5773

2 5 r25:new 0.62 + 0.45 * 0.0215 * 0.4 0.6227

3 5 r35:new 0.92 + 0.45 * 0.0212 * 0.3 0.9228

1 6 r16:new 0.73 + 0.45 * 0.0203 * 0.8 0.7373

2 6 r26:new 0.88 + 0.45 * 0.0215 * 0.4 0.8838

3 6 r36:new 0.94 + 0.45 * 0.0212 * 0.3 0.9425

4 7 r47:new 0.8 + 0.45 * 0.1208 * 0.6987 0.8379

5 7 r57:new 0.9 + 0.45 * 0.1208 * 0.7271 0.9395

6 7 r67:new 1.0 + 0.45 * 0.1208 * 0.7717 1.0419
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AVGCMFC ¼
P

GCMFCi

NFC
ð3:27Þ

where AVGCMBL and AVGCMFC are average of GCM values of baseline and
future; NBL and NFC are number of values in baseline and future scenarios. For
example, for duration 1991–2010, NBL values are 20 on a monthly time step,
i.e., there are 20 values of March. Similarly, for 2021–2050, NFL values are 30
on a monthly time step.

2. Two types of change factors are explored in the present study, namely, additive
and multiplicative change factors that are expressed as follows:

CFadditive ¼ AVGCMFC � AVGCMBL ð3:28Þ

CFmultiplica ¼ AVGCMFC

AVGCMBL
ð3:29Þ

3. Estimation of local scale future values ðLSCFadditive; LSCFmultiplicaÞ using
CFadditive and CFmultiplica.

LSCFadditive;j ¼ LOBSj þCFadditive ð3:30Þ

LSCFmultiplica;j ¼ LOBSj � CFmultiplica ð3:31Þ

where LOBSj is observed values of the climate variables at jth time step for any
location; LSCFadditive; LSCFmultiplica are values of future scenario obtained using
additive and multiplicative change factors.

Numerical Problem 3.4 Local temperature (in °Celsius) data for 1971–1995
obtained from India Meteorological Department for January for a location in India
is presented in Table 3.10 (column 2). Corresponding historic (baseline) tempera-
ture data (20C3M) in °Kelvin obtained from ACCESS 1.3 is also presented in
column 4. Future temperature for 2021–2045 in °Kelvin obtained from ACCESS
1.3 is presented in column 6. Compute local temperature in °Celsius for the period
2021–2045 using Change factor analysis.

Solution

Local temperature (in °Celsius) in column 2 is converted to °Kelvin (column 3)
NBL and NFC = Number of values in baseline and future scenario = 25 and 25
Average of baseline data (Average of values in column 4) ¼ AVGCMBL ¼P

GCMBLi
NBL ¼ 7754

25 ¼ 310:16
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Average of future series data (Average of values in column 6) ¼ AVGCMFC

¼
P

GCMFCi

NFC ¼ 7910
25 ¼ 316:4

Change factor value in additive scenario ¼ CFadditive ¼ 316:4� 310:16 ¼ 6:24
Change factor value in multiplicative scenario ¼ CFmultiplicative

¼ AVGCMFC
AVGCMBL ¼ 316:40

310:16 ¼ 1:02

LSCFadditive;j ¼ LOBSj þCFadditive

LSCFmultiplica;j ¼ LOBSj � CFmultiplica

For example, local scale temperature in 2021 using additive change factor is
LSCF2021additive ¼ 302 °K (local observed temperature at

1971) + 6.24 = 308.24 °K or 35.24 °C
LSCF2021multiplica ¼ 302 °K (local observed temperature at

1971) * 1.02 = 308.04 °K or 35.04 °C
Local scale variables for 2021–2045 for additive (values in columns 7 and 8) and

multiplicative (values in columns 9 and 10) change factors are presented in
Table 3.10.

3.2.5 Support Vector Machine

Most of the traditional neural network models seek to minimize the training error by
implementing the empirical risk minimization principle, whereas the Support
Vector Machine (SVMs) implements the structural risk minimization principle,
which attempts to minimize an upper bound of the generalization error, by creating
a right balance between the training error and the capacity of the machine (i.e., the
ability of the machine to learn any training set without error). The solution of
traditional neural network models may tend to fall into a local optimal solution,
whereas global optimum solution is guaranteed in SVM (Haykin 2003; Anandhi
et al. 2008, 2009; Anandhi 2010). Further, the traditional ANNs have considerable
subjectivity in model architecture whereas, SVM’s learning algorithm automatically
decides the model architecture (number of hidden units). Moreover, traditional
ANN models do not give much emphasis on generalization performance, while
SVMs seek to address this issue in a rigorous theoretical setting. The flexibility of
the SVM is provided by the use of kernel functions that implicitly maps the data to
a higher, possibly infinite, and dimensional space. A linear solution, in the higher
dimensional feature space, corresponds to a non-linear solution in the original lower
dimensional input space. This makes SVM a plausible choice for solving a variety
of problems in hydrology, which are non-linear in nature (Vapnik 1995, 1998;
Schölkopf et al. 1998; Suykens 2001; Sastry 2003).

The Least Square Support Vector Machine (LS-SVM) provides a computational
advantage over standard SVM (Suykens 2001; Tripathi et al. 2006; Anandhi et al.
2008). Consider a finite training sample of N patterns xi; yið Þ; i ¼ 1; . . .;Nf g, where
xi represents the ‘i-th’ pattern in n-dimensional space (i.e. xi ¼ x1i; . . .; xni½ � 2 <n)
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constitutes the input to LS-SVM, and yi 2 < is the corresponding value of the
desired model output. Further, let the learning machine be defined by a set of
possible mappings x 7! f ðx;wÞ, where f ð�Þ is a deterministic function, for a given
input pattern X and adjustable parameters Wðw 2 <nÞ, always give the same
output. The training phase of the learning machine involves adjusting the param-
eters w. These parameters are estimated by minimizing the cost function wLðw; eÞ.

wLðw; eÞ ¼
1
2
wTwþ 1

2
C
XN
i¼1

e2i ð3:32Þ

Subjected to the equality constraint

yi � ŷi ¼ ei i ¼ 1; . . .;N ð3:33Þ

ŷi ¼ wT/ðxÞþ b ð3:34Þ

where C is a positive real constant and ŷi is the actual model output. The first term
of the cost function represents weight decay or model complexity. It is used to
regularize the weight sizes and to penalize the large weights. This helps in
improving the generalization performance. The second term of the cost function
represents penalty function.

The solution of the optimization problem is obtained by considering the
Lagrangian as:

Lðw; b; e; aÞ ¼ 1
2
wTwþ 1

2
C
XN
i¼1

e2i �
XN
i¼1

ai ŷi þ ei � yif g ð3:35Þ

where ai are Lagrange multipliers and b is the bias term defined in Eq. 3.34. The
conditions for optimality are given by

@L
@w ¼ w�PN

i¼1
ai/ðxiÞ ¼ 0

@L
@b ¼

PN
i¼1

ai ¼ 0

@L
@ei

¼ ai � Cei ¼ 0 i ¼ 1; . . .;N
@L
@ai

¼ ŷi þ ei � yi ¼ 0 i ¼ 1; ::;N

8>>>>>>><
>>>>>>>:

ð3:36Þ

The above conditions of optimality can be expressed as the solution to the
following set of linear equations after elimination of w and ei .

0 ~1
T

~1 XþC�1I

" #
b
a

� �
¼ 0

y

� �
ð3:37Þ
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where y ¼
y1
y2
..
.

yN

2
6664

3
7775; ~1 ¼

1
1
..
.

1

2
664

3
775
N�1

; a ¼
a1
a2
..
.

aN

2
6664

3
7775; I ¼

1 0 . . . 0
0 1 . . . 0
..
. ..

. ..
. ..

.

0 0 . . . 1

2
664

3
775
N�N

In Eq. (3.37), X is obtained from the application of Mercer’s theorem.

Xi;j ¼ Kðxi; xjÞ ¼ /ðxiÞT/ðxjÞ 8i; j ð3:38Þ

where /(�) represents non-linear transformation function defined to convert a
non-linear problem in the original lower dimensional input space to linear problem
in a higher dimensional feature space.

The resulting LS-SVM model for function estimation is:

f ðxÞ ¼
X

a�i Kðxi; xÞþ b� ð3:39Þ

where a�i and b� are the solutions to Eq. (3.37) and Kðxi; xÞ is the inner product
kernel function defined in accordance with Mercer’s theorem (Courant and Hilbert
1970; Mercer 1909) and b� is the bias.

3.3 Multisite Downscaling

Downscaling techniques discussed in this chapter are capable for single location.
However, multisite downscaling is conducted using Multivariate Multiple Linear
Regression (MMLR) (Jeong et al. 2012), Multisite multivariate statistical down-
scaling (Khalili et al. 2013), Modified Markov Model-Kernel Density Estimation
(MMM-KDE) modeling framework (Mehrotra and Sharma 2010; Mehrotra et al.
2013) or Support Vector Machine for Multisite downscaling (Srinivas et al. 2014).
Researchers can also refer research papers by Nagesh Kumar et al. (2000), Wilby
et al. (2004), Tripathi et al. (2006), Anandhi et al. (2008, 2012), Johnson and
Sharma (2012) for more information about multisite downscaling.

3.4 Nested Bias Correction

Nested Bias correction (NBC) (Johnson and Sharma 2011, 2012) is a technique that
compensates some of the shortcomings of GCM predicted rainfall values. It corrects
for systematic biases of GCM outputs (e.g., mean, standard deviation, lag-one
correlation, etc.) at multiple timescales and allows the use of GCM outputs directly
in hydrologic studies. When combined with spatial disaggregation, bias correction
techniques can provide model inputs suitable for hydrological studies (Hashino
et al. 2007; Johnson and Sharma 2009, 2011, 2012; Mehrotra and Sharma 2010;
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Mehrotra et al. 2013). In the present study, technique suggested by Johnson and
Sharma (2011, 2012) is employed with the provision that bias in the lag-one
autocorrelation statistic at the various time scales is neglected.

The NBC technique represents a nested procedure which addresses bias across
prespecified multiple timescales which is as follows: Denoting a variable for month
i in year k as yi;k:

1. Standardization to create y0i;k by subtracting the model monthly mean ðlmod;iÞ
and dividing by the standard deviation ðrmod;iÞ for that month as shown in
(3.40).

y0i;k ¼
yi;k � lmod;i

rmod;i
ð3:40Þ

2. Interposition of the mean ðlobs;iÞ and standard deviation ðrobs;iÞ of reanalysis
data to create a transformed time series y�i;k at the monthly level.

y�i;k ¼ y0i;krobs;i þ lobs;i ð3:41Þ

3. Aggregation of transformed monthly series ðy�i;kÞ into the annual scale zk. The
standardization and transformation steps are repeated at the annual time step.

4. Transform the annual time series to z�k which exhibits the mean and standard
deviation in the recorded annual data.

Subsequent to the above steps, raw GCM simulation at the monthly time step is
transformed by the NBC to

Yi;k ¼ yi;k
y�i;k
yi;k

� �
z�k
zk

� �
ð3:42Þ

where Yi;k represents NBC transformed variable. Using the transformation
Eq. (3.42), the corrections at monthly and annual scales can be applied to the
monthly time series and also to create a one-step correction (Srikanthan 2009). In

Eq. (3.42),
y�i;k
yi;k

h i
z�k
zk

h i
is a weighing factor, i.e., the ratio of the monthly corrected

value to the raw GCM value for month i and year k, multiplied by the ratio of the
yearly corrected value to the aggregated GCM rainfall for year k. Above equations
were used to transform the GCM simulations for the present climate.

The present chapter discusses various downscaling techniques including Nested
Bias Correction (NBC) that are very useful to climate modeling situations. Next
chapter discusses various statistical and optimization techniques.

Software (Information as on 30.12.2016)

Multiple linear/Non-linear Regression: Statistics and Machine Learning Tool box of
MATLAB (http://in.mathworks.com/products/statistics/)

100 3 Downscaling Techniques in Climate Modeling

http://in.mathworks.com/products/statistics/


• SPSS (http://www-03.ibm.com/software/products/en/spss-statistics)
• MINITAB; Statistical Analysis System (SAS) http://www.sas.com/en_in/home.

html
• XLSTAT (https://www.xlstat.com/en/)

Artificial Neural Networks: Neural Network Tool Box of MATLAB (http://in.
mathworks.com/products/neural-network/)

• Statistical Package for Social Sciences (http://www-03.ibm.com/software/
products/en/spss-statistics)

• MINITAB (https://www.minitab.com/en-us/)
• You can also view some of the related software through this link https://en.

softonic.com/s/neural-network-software

Statistical Downscaling Model: You can register at this site http://co-public.
lboro.ac.uk/cocwd/SDSM/index.html for downloading the software. You can mail
R.L.Wilby@lboro.ac.uk for any queries.

Support Vector Machine (SVM): Statistics and Machine Learning Tool box of
MATLAB.

• You can also access SVM-related software through this link http://www.
support-vector-machines.org/SVM_soft.html; http://www.svms.org/software.
html

Revision Questions and Exercise Problems

3:1 What is the purpose of downscaling? How many types of downscaling are
possible?

3:2 What are the various available Statistical downscaling techniques?
3:3 What is the difference between Statistical and Dynamical downscaling?
3:4 What are different types of regression models? On what basis these can be

differentiated?
3:5 What are the various steps in (a) regression (b) artificial neural networks?
3:6 What is the purpose of activation function and epoch in ANN?
3:7 What is the difference between training and learning ANN?
3:8 What is the purpose of momentum factor in ANN?
3:9 What is the procedure for weight adjustment in ANN?

3:10 Maximum temperature (in °Celsius) data generated from India Meteoro-
logical Department is dependent on number of parameters that are available
from National Centers for Environmental Prediction (NCEP). Notable
among them are P5_U (Zonal Velocity Component at 500 Hpa Height in
m/s), P5_V (Meridoinal Velocity Component at 500 Hpa Height in m/s).
Data is presented in Table 3.1. Establish (a) linear relationship between
predictand (temperature) and predictor (Meridoinal Velocity Component at

3.4 Nested Bias Correction 101

http://www-03.ibm.com/software/products/en/spss-statistics
http://www.sas.com/en_in/home.html
http://www.sas.com/en_in/home.html
https://www.xlstat.com/en/
http://in.mathworks.com/products/neural-network/
http://in.mathworks.com/products/neural-network/
http://www-03.ibm.com/software/products/en/spss-statistics
http://www-03.ibm.com/software/products/en/spss-statistics
https://www.minitab.com/en-us/
https://en.softonic.com/s/neural-network-software
https://en.softonic.com/s/neural-network-software
http://co-public.lboro.ac.uk/cocwd/SDSM/index.html
http://co-public.lboro.ac.uk/cocwd/SDSM/index.html
http://www.support-vector-machines.org/SVM_soft.html
http://www.support-vector-machines.org/SVM_soft.html
http://www.svms.org/software.html
http://www.svms.org/software.html


500 Hpa Height in m/s) (b) polynomial relationship between predictand
(temperature) and predictor (Meridoinal Velocity Component at 500 Hpa
Height in m/s. Take only 15 data sets for evaluation.

3:11 Solve Numerical Problem 3.2 related to Artificial Neural Networks using
data presented in Table 3.5. Consider only three nodes (d, e, and f) in
hidden layer. x1 ¼ 0:8; x2 ¼ 1:6; and x3 ¼ 2:4, Observed value O is 0.7.

3:12 Solve Numerical Problem 3.4 related to change factor technique. Analyze
the Numerical Problem from 1971 to 1985 for baseline and 2021–2035 for
future scenarios. Use data in Table 3.10.

3:13 What is the difference between Support Vector Machine and Neural
Networks?

3:14 What is SDSM? What is its purpose?
3:15 What is the change factor technique? What is the procedure for downscaling

using change factor technique?
3:16 What is Multisite downscaling? How it is advantageous? What are the

relevant techniques falling in this category?
3:17 What is difference between predictand and predictors?
3:18 What is purpose of Nested Bias Correction and how it is useful for

downscaling?

Advanced Review Questions

3:19 Is there any possibility such that output of regression can be input of arti-
ficial neural networks or vice versa? If so, how these techniques can be
complimented to each other? Provide examples of how these techniques
help in climate modeling with practical significance?

3:20 Discuss the limitations of regression techniques?
3:21 Mention any other techniques that are falling in regression category?
3:22 Is there any possibility to relate multiple linear regression with support

vector machine?
3:23 Mention names of six researchers who applied statistical techniques in the

field of climate modeling? Mention the technique of application and case
study of application.

3:24 Name relevant software that can be used for (a) regression (b) artificial
neural networks. Provide salient points of the software.

3:25 What are the limitations of GCM for implementing its output to impact
assessment?

3:26 How SDSM is different from other statistical downscaling techniques?
3:27 In your opinion, which downscaling technique is suitable for water

resources planning? Justify with discussion.
3:28 How extreme events can be handled while downscaling? Discuss the suit-

ability of statistical and dynamical downscaling in this regard.
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4Statistical and Optimization
Techniques in Climate Modeling

Abstract
This chapter presents data compression techniques, namely, cluster and fuzzy
cluster analysis, Kohonen neural networks for clustering GCMs and principal
component analysis for transforming a set of observations of possible correlation
into a set of linearly uncorrelated variables applying an orthogonal transforma-
tion. F–statistic test which can be used as the basis for finding optimal clusters is
also discussed. Trend detection techniques, namely, Kendall’s rank correlation
and turning point test along with mathematical background are also briefed with
the objective to ascertain the quality of the hydrological or climatological
records. In addition, optimization techniques, namely, linear and non-linear
programming and genetic algorithms along with mathematical description are
also discussed. The reader is expected to understand various statistical and
optimization techniques along with their applicability by studying this chapter.
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4.1 Introduction

Statistical and optimisation techniques are gaining importance in the field of climate
modeling due to their capability of analyzing the data in an effective manner. Data
compression techniques include Cluster and fuzzy cluster analysis, Kohonen Neural
Networks (KNN), Principal Component Analysis (PCA) as well as trend detection
and optimization techniques are discussed in this chapter.

4.2 Data Compression Techniques

Data compression techniques are explained with reference to GCMs and are as
follows:

4.2.1 Cluster Analysis

K-means algorithm is used for clustering GCMs. Procedural steps to conduct
K-means cluster analysis are presented in Fig. 4.1 (Jain and Dubes 1988; Raju and
Nagesh Kumar 2014; Bezdek 1981):

Numerical Problem 4.1 Nine GCMs are evaluated on three indicators and pre-
sented in Table 4.1. Use K-means algorithm to cluster the GCMs. Consider number
of clusters as 3.

Solution:

Goal: To group A1 to A9 into G1, G2, G3 based on the three indicators C1, C2,
and C3.

Iteration 0

• Number of clusters are 3. Initially, each GCM is assigned randomly to each
cluster (column 5) in Table 4.1.

• Knowing the GCMs in each group (3 in G1, 2 in G2, 4 in G2), compute the
mean of each group. Mean values are presented in Table 4.2.

• Column 2 of Table 4.3 corresponds to the Euclidean distance (error) of each
GCM to the mean of first group G1, and the column 3 is the distance of each
GCM to group G2. The process continues up to the last chosen group. For
example, Euclidean distance between GCM A1 (Table 4.1) and group G1
(Table 4.2) can be computed as (Table 4.3).

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð20� 33:33Þ2 þð30� 53:33Þ2 þð50� 40Þ2

q
¼ 28:67
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Table 4.1 Data matrix of 9 GCMs and random assignment of clusters

GCMs (1) C1 (2) C2 (3) C3 (4) Assigned random clusters/groups iteration 0 (5)

A1 20 30 50 G1

A2 60 70 40 G1

A3 20 60 30 G1

A4 20 70 32 G2

A5 30 42 22 G2

A6 72 43 31 G3

A7 22 11 12 G3

A8 16 18 21 G3

A9 21 17 19 G3

Identify Obj. Function for optimal partitioning of each GCM into a cluster K

Identify number of clusters, iterations, and termination criteria 

Random assignment of each GCM into a cluster and computation of mean 

Verify for optimal cluster size if applicable  

Start

Stop 

Finalize the groups of GCMs such that no significant change in the group 
mean between two successive iterations/ any other termination criteria 

Computation of squared error value for clusters K

Fig. 4.1 Flowchart of procedural steps for K-means cluster analysis

Table 4.2 Mean values of G1, G2, G3 based on random clusters for iteration 0

C1 C2 C3 Remark

G1 33.33
(20 + 60 + 20)/3

53.33
(30 + 70 + 60)/3

40.00
(50 + 40 + 30)/3

Average of A1, A2, A3
(G1)

G2 25.00 (20 + 30)/2 56.00 (70 + 42)/2 27.00 (32 + 22)/2 Average of A4, A5 (G2)

G3 32.75
(72 + 22 + 16 + 21)/
4

22.25
(43 + 11 + 18 + 17)/
4

20.75
(31 + 12 + 21 + 19)/
4

Average of A6, A7, A8,
A9 (G3)
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Iteration 1

Assign A1 to A9 to groups G1 to G3 based on the minimum Euclidean distance
(column 6, Table 4.3). Thus, A1 is assigned to G1 due to least distance among
28.67 (G1), 35.07 (G2), 32.84 (G3). Similar inferences can be made for other
GCMs (column 6) of Table 4.3.

It is also to be noted that membership of A1, A2, A6 in G1 is 1, whereas their
membership in G2 and G3 are 0. These memberships for each GCM are presented
in Table 4.3 in the form of parenthesis. Similar inferences can be made for other
GCMs (Table 4.3).

Iteration 2

Mean values and Euclidean distances are presented in Tables 4.4 and 4.5,
respectively. It is observed that A2, A6 falls into G1; A1, A3, A4, A5 falls into G2;
A7, A8, A9 falls into G3 (column 6 of Table 4.5).

Iteration 3

Mean values are presented in Table 4.6. It is observed that A2, A6 falls into G1;
A1, A3, A4, A5 falls into G2; A7, A8, A9 falls into G3 (Table 4.7). There is no
change in the grouping of GCMs as compared to iteration 2. The final grouping of
the GCMs is presented in Table 4.8.

Determination of an optimal number of clusters for a group of datasets is very
important for effective decision-making and notable techniques are Davies–Bouldin,

Table 4.3 Euclidean distance of each GCM to the means for iteration 0

GCM (1) G1 (2) G2 (3) G3 (4) Minimum value
among columns 2,
3, 4 (5)

Assigned group based on
the minimum value iteration
1 (6)

A1 28.67 (1) 35.07 (0) 32.84 (0) 28.67 G1

A2 31.45 (1) 39.87 (0) 58.25 (0) 31.45 G1

A3 17.95 (0) 7.07 (1) 40.90 (0) 7.07 G2

A4 22.79 (0) 15.68 (1) 50.69 (0) 15.68 G2

A5 21.53 (0) 15.68 (1) 19.98 (0) 15.68 G2

A6 41.02 (1) 48.93 (0) 45.57 (0) 41.02 G1

A7 52.01 (0) 47.53 (0) 17.85 (1) 17.85 G3

A8 43.70 (0) 39.51 (0) 17.28 (1) 17.28 G3

A9 43.74 (0) 40.01 (0) 12.99 (1) 12.99 G3

Table 4.4 Mean values of
G1, G2, G3 based on assigned
clusters for iteration 1

C1 C2 C3 Remark

G1 50.67 47.67 40.33 Average of A1, A2, A6 (G1)

G2 23.33 57.33 28.00 Average of A3, A4, A5 (G2)

G3 19.67 15.33 17.33 Average of A7, A8, A9 (G3)
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Dunn’s indices (Davies and Bouldin 1979; Dunn 1974; Raju and Nagesh Kumar
2014) and F-Statistic test (Burn 1989). Brief details of F-Statistic test is presented in
sub-Sect. 4.1.5 and information about Davies–Bouldin and Dunn’s indices is
available in Davies and Bouldin (1979), Dunn (1974), Raju and Nagesh Kumar
(2014).

Table 4.5 Euclidean distance of each GCM to the means for iteration 1

GCM (1) G1 (2) G2 (3) G3 (4) Minimum value
among columns
2, 3, 4 (5)

Assigned group
based on the
minimum value
iteration 2 (6)

A1 36.69 (0) 35.25 (1) 35.81 (0) 35.25 G2

A2 24.21 (1) 40.61 (0) 71.62 (0) 24.21 G1

A3 34.63 (0) 4.71 (1) 46.43 (0) 4.71 G2

A4 38.84 (0) 13.70 (1) 56.60 (0) 13.70 G2

A5 28.20 (0) 17.76 (1) 28.98 (0) 17.76 G2

A6 23.75 (1) 50.82 (0) 60.75 (0) 23.75 G1

A7 54.49 (0) 49.04 (0) 7.26 (1) 7.26 G3

A8 49.55 (0) 40.62 (0) 5.83 (1) 5.83 G3

A9 47.70 (0) 41.39 (0) 2.71 (1) 2.71 G3

Table 4.6 Mean values of G1, G2, G3 based on assigned clusters for iteration 2

C1 C2 C3 Remark

G1 66.00 56.50 35.50 Average of A2, A6 (G1)

G2 22.50 50.50 33.50 Average of A1, A3, A4, A5 (G2)

G3 19.67 15.33 17.33 Average of A7, A8, A9 (G3)

Table 4.7 Euclidean distance of each GCM to the means for iteration 2

GCM
(1)

G1 (2) G2 (3) G3 (4) Minimum value
among columns
2, 3, 4 (5)

Assigned group based
on the minimum value
iteration 3 (6)

A1 55.03 (0) 26.43 (1) 35.81 (0) 26.43 G2

A2 15.44 (1) 42.76 (0) 71.62 (0) 15.44 G1

A3 46.46 (0) 10.43 (1) 46.43 (0) 10.43 G2

A4 48.07 (0) 19.72 (1) 56.60 (0) 19.72 G2

A5 41.09 (0) 16.15 (1) 28.98 (0) 16.15 G2

A6 15.44 (1) 50.13 (0) 60.75 (0) 15.44 G1

A7 67.52 (0) 44.97 (0) 7.26 (1) 7.26 G3

A8 64.75 (0) 35.42 (0) 5.83 (1) 5.83 G3

A9 62.11 (0) 36.53 (0) 2.71 (1) 2.71 G3
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4.2.2 Fuzzy Cluster Analysis

The procedure of fuzzy cluster analysis remains same as that of cluster analysis
except that each dataset belongs to a cluster to degree (varies between zero and
one). Procedural steps to conduct fuzzy cluster analysis are presented in Fig. 4.2
(Ross 2011; Bezdek 1981).

Numerical Problem 4.2 Nine GCMs are evaluated on three indicators and presented
in Table 4.9. Data is following triangular membership function. Use fuzzy C-means
algorithm to cluster the GCMs. The number of clusters can be taken as 2. Constant a
value can be taken as 2. Compute membership function values after first iteration.

Solution:

Goal: To group A1 to A9 into G1 and G2 based on the three indicators C1, C2,
and C3.

Iteration 0

• A number of clusters is 2. Initially, each GCM is assigned randomly to each
cluster (column 5 in Tables 4.9 and 4.10).

• Knowing the GCMs in each group, compute the mean of each group, mean
values are presented in Table 4.11.
Distance between two fuzzy triangular numbers is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
paj � pj

� �2
þ qaj � qj

� �2
þ sia � sj

� �2
� �

3

vuuut

where (p, q, s) are elements of Triangular fuzzy number.

Table 4.8 Data matrix of 9 GCMs and assignment of clusters

GCM C1 C2 C3 Assigned random clusters/groups Final partition

A1 20 30 50 G1 G2

A2 60 70 40 G1 G1

A3 20 60 30 G1 G2

A4 20 70 32 G2 G2

A5 30 42 22 G2 G2

A6 72 43 31 G3 G1

A7 22 11 12 G3 G3

A8 16 18 21 G3 G3

A9 21 17 19 G3 G3
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• Table 4.12 incorporates the Euclidean distance (error) of each GCM to the mean
of first group G1 (columns 2, 3, 4), columns 6, 7, 8 correspond to the distance of
each GCM to group G2 mean. Process continues up to the last chosen
group. For example, Euclidean distance between GCM A1 (Table 4.9) and
group G1 (Table 4.11) can be computed as (Table 4.12):

,

and

and

f

Fig. 4.2 Flow chart of procedural steps for fuzzy C-means
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Table 4.9 Data matrix of 9 GCMs and random assignment of clusters

GCMs (1) C1 (2) C2 (3) C3 (4) Assigned random clusters/groups iteration 0 (5)

A1 (2, 3, 4) (4, 5, 6) (7, 8, 10) G1

A2 (5, 6, 7) (8, 9, 12) (4, 6, 8) G1

A3 (3, 6, 9) (8, 10, 12) (6, 8, 10) G1

A4 (6, 10, 12) (1, 2, 4) (4, 5, 8) G2

A5 (5, 6, 7) (4, 6, 8) (1, 4, 6) G2

A6 (3, 6, 9) (2, 4, 6) (1, 3, 5) G2

A7 (2, 3, 5) (4, 8, 12) (3, 7, 8) G1

A8 (2, 5, 8) (1, 4, 8) (2, 4, 8) G2

A9 (1, 4, 7) (5, 8, 9) (6, 8, 12) G1

Table 4.10 Random partition matrix/membership g of each GCM in groups G1 and G2

A1 A2 A3 A4 A5 A6 A7 A8 A9

G1 1 1 1 0 0 0 1 0 1

G2 0 0 0 1 1 1 0 1 0

Table 4.11 Mean coordinate for G1 and G2 based on random clusters for iteration 0

C1 C2 C3 Remark

G1 [2.6, 4.4, 6.4]
[2 + 5 + 3 + 2 + 1)/
5,
(3 + 6 + 6 + 3 + 4)/
5, (4 + 7 + 9 +
5 + 7)/5]

[5.8, 8, 10.2]
[4 + 8 + 8 + 4 + 5)/5,
(5 + 9 + 10 + 8 + 8)/5,
(6 + 12 + 12 + 12 + 9)/5

[5.2, 7.4, 9.6]
[7 + 4 + 6 + 3 + 6)/5,
(8 + 6 + 8 + 7 + 8)/5,
(10 + 8 + 10 + 8 + 12)/
5

Average of
A1, A2,
A3, A7,
A9 (G1)

G2 [4, 6.8, 9]
[6 + 5 + 3 + 2)/4,
(10 + 6 + 6 + 5)/4,
(12 + 7 + 9 + 8)/4]

[2, 4, 6.5]
[1 + 4 + 2 + 1)/4,
(2 + 6 + 4 + 4)/4,
(4 + 8 + 6 + 8)/4]

[2, 4, 6.75]
[4 + 1 + 1 + 2)/4,
(5 + 4 + 3 + 4)/4,
(8 + 6 + 5 + 8)/4]

Average of
A4, A5,
A6, A8
(G2)

Table 4.12 Euclidean distance of each GCM from the group mean G1 and G2

GCM
(1)

Distance from group mean of G1 Distance from group mean of G2

C1
(2)

C2
(3)

C3
(4)

Total error from
group 1 (5)

C1
(6)

C2
(7)

C3
(8)

Total error from
group 2 (9)

A1 1.64 3.16 1.12 5.92 (h11) 3.79 1.32 4.15 9.26 (h21)

A2 1.7 1.74 1.409 4.85 (h12) 1.36 5.52 1.79 8.67 (h22)

A3 1.78 2.01 0.622 4.41 (h13) 0.72 5.84 3.77 10.33 (h23)

A4 1.19 1.47 1.587 4.25 (h14) 3.37 4.09 1.96 9.42 (h24)

A5 1.01 0.83 1.501 3.34 (h15) 2.62 3.23 4.46 10.31 (h25)

A6 4.98 5.7 1.804 12.48 (h16) 2.8 1.94 1.48 6.22 (h26)

A7 1.7 2.01 3.749 7.46 (h17) 1.36 1.85 0.72 3.93 (h27)

A8 1.78 4 4.403 10.18 (h18) 0.72 0.29 1.3 2.31 (h28)

A9 1.05 3.82 2.85 7.72 (h19) 1.64 1.04 0.72 3.40 (h29)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðpaj � pjÞ2 þðqaj � qjÞ2 þðsia � sjÞ2�

3

s

Dþ
A1G1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðpaj � p�j Þ2 þðqaj � q�j Þ2 þðsaj � s�j Þ2�

3

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð2� 2:6Þ2 þð3� 4:4Þ2 þð4� 6:4Þ2�

3

s
for C1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð4� 5:8Þ2 þð5� 8Þ2 þð6� 10:2Þ2�

3

s
for C2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð7� 5:2Þ2 þð8� 7:4Þ2 þð10� 9:6Þ2�

3

s
for C3

¼ 1:64þ 3:16þ 1:12 ¼ 5:92

For example, membership function for GCM A1 is

gA1:1 ¼
h11
h11

� �2

þ h11
h21

� �2
" #�1

¼ 5:92
5:92

� �2

þ 5:92
9:26

� �2
" #�1

¼ 12 þ 0:63932
	 
�1 ¼ 1:4087½ ��1

¼ 0:7099

gA1:2 ¼ 1� 0:7099 ¼ 0:2901

Using similar computations, membership functions of other GCMs can be
computed (Table 4.13).

4.2.3 Kohonen Neural Networks

Kohonen Neural Networks (KNN) consists of input and output layers (Fig. 4.3)
(Kohonen 1989; Yegnanarayana 1998; Raju and Nagesh Kumar 2014) and Pro-
cedural steps to conduct KNN are presented in Fig. 4.4.

Numerical Problem 4.3 The following normalized data presents information
about three GCMs, namely, A1, A2, A3 for three evaluation indicators C1, C2, C3.
Climate expert felt that A1, A2, A3 can be classified into two categories (Fig. 4.3).
Weights of category G1 and G2 are (0.1, 0.2, 0.3) and (0.4, 0.5, 0.6). Assume
learning rate Lr as 0.45. Using KNN, cluster the GCM into two categories G1 and
G2. Use Data from Table 4.14.

Solution:

For classifying GCM A1

Input vector (GCM A1) Output neuron G1 Output neuron G2

C1 C2 C3 r11 r21 r31 r12 r22 r32
0.2 0.3 0.5 0.1 0.2 0.3 0.4 0.5 0.6

Learning rate Lr ¼ 0:45
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Computation of squared Euclidean distance:

hi ¼
XM
j¼1

½IjðtÞ � rijðtÞ�2; for i ¼ 1; 2; . . .;N

h1 = [(0.2 − 0.1)2 + (0.3 − 0.2)2 + (0.5 − 0.3)2] = 0.06 [Squared distance from
A1 to G1].

h2 = [(0.2 − 0.4)2 + (0.3 − 0.5)2 + (0.5 − 0.6)2] = 0.09 [Squared distance from
A1 to G2].

Table 4.13 Membership function information of GCMs

GCM Membership function
in G1 (g)

Membership
function in
G2 = 1 − g

Membership in
group g1 crisp
clustering

Membership in
group G2 crisp
clustering

A1
h11
h11

� �2
þ h11

h21

� �2
� ��1

=

1:4087½ ��1 = 0.7099

0.2901 1 0

A2
h12
h12

� �2
þ h12

h22

� �2
� ��1

=

1:3129½ ��1 = 0.7617

0.2383 1 0

A3
h13
h13

� �2
þ h13

h23

� �2
� ��1

=

1:1822½ ��1 = 0.8458

0.1542 1 0

A4
h14
h14

� �2
þ h14

h24

� �2
� ��1

=

1:2035½ ��1 = 0.8309

0.1691 1 0

A5
h15
h15

� �2
þ h15

h25

� �2
� ��1

=

1:1049½ ��1 = 0.905

0.0950 1 0

A6
h16
h16

� �2
þ h16

h26

� �2
� ��1

=

5:0257½ ��1 = 0.199

0.8010 0 1

A7
h17
h17

� �2
þ h17

h27

� �2
� ��1

=

4:6032½ ��1 = 0.2172

0.7828 0 1

A8
h18
h18

� �2
þ h18

h28

� �2
� ��1

=

20:421½ ��1 = 0.0490

0.9510 0 1

A9
h19
h19

� �2
þ h19

h29

� �2
� ��1

=

6:1555½ ��1 = 0.1625

0.8375 0 1
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C2

Input 
GCMs  
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Output 
Neurons

C3

Indicators

Fig. 4.3 Architecture of Kohonen neural networks

input initial

Fig. 4.4 Flowchart of procedural steps for Kohonen neural networks
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Best matching neuron is G1 with a minimum h1 of 0.06.
Weights updation for output neuron G1 (where distance is minimum)

r11updated ¼ r11 þ Lr½C1 � r11� ¼ 0:1þ 0:45 0:2� 0:1½ � ¼ 0:145

r21updated ¼ r21 þ Lr½C2 � r21� ¼ 0:2þ 0:45 0:3� 0:2½ � ¼ 0:245

r31updated ¼ r31 þ Lr½C3 � r31� ¼ 0:3þ 0:45 0:5� 0:3½ � ¼ 0:39

For classifying GCM A2

Input vector (GCM A2) Updated output neuron G1 Output neuron G2

C1 C2 C3 r11 r21 r31 r12 r22 r32
0.6 0.77 0.40 0.145 0.245 0.39 0.4 0.5 0.6

h1 = [(0.60 − 0.145)2 + (0.77 − 0.245)2 + (0.40 − 0.39)2] = 0.48275 [Squared
distance from A2 to G1]

h2 = [(0.60 − 0.4)2 + (0.77 − 0.5)2 + (0.40 − 0.60)2] = 0.1529 [Squared distance
from A2 to G2]

The best matching neuron is G2 with a minimum h2 of 0.1529.
Weights updation for output neuron G2 (where distance is minimum)

r12updated ¼ r12 þ Lr½C1 � r12� ¼ 0:40þ 0:45 0:60� 0:40½ � ¼ 0:49

r22updated ¼ r22 þ Lr½C2 � r22� ¼ 0:50þ 0:45 0:77� 0:50½ � ¼ 0:6215

r32updated ¼ r32 þ Lr½C3 � r32� ¼ 0:60þ 0:45 0:40� 0:60½ � ¼ 0:51

For classifying GCM A3

Input vector (GCM A3) Output neuron G1 Updated output neuron G2

C1 C2 C3 r11 r21 r31 r12 r22 r32
0.20 0.60 0.30 0.145 0.245 0.39 0.49 0.6215 0.51

h1 = [(0.20 − 0.145)2 + (0.60 − 0.245)2 + (0.30 − 0.39)2] = 0.1372 [Squared
distance from A3 to G1].

Table 4.14 Normalized
Data

GCM C1 C2 C3

A1 0.20 0.30 0.50

A2 0.60 0.77 0.40

A3 0.20 0.60 0.30
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h2 = [(0.20 − 0.49)2 + (0.60 − 0.6215)2 + (0.30 − 0.51)2] = 0.1286 [Squared
distance from A3 to G2].

Best matching neuron is G2 with a minimum h2 of 0.1286.
Weights updation for output neuron G2 (where distance is minimum)

r12updated ¼ r12 þ Lr½C1 � r12� ¼ 0:49þ 0:45 0:20� 0:49½ � ¼ 0:3595

r22updated ¼ r22 þ Lr½C2 � r22� ¼ 0:6215þ 0:45 0:60� 0:6215½ � ¼ 0:6118

r32updated ¼ r32 þ Lr½C3 � r32� ¼ 0:51þ 0:45 0:30� 0:51½ � ¼ 0:4155

Updated weights for output neuron G2 = [0.3595, 0.6118, 0.4155].
GCMs A1, A2, and A3 are falling into Group G1, G2, G2, respectively.

4.2.4 Principal Component Analysis

Principal Component Analysis (PCA) transforms a set of observations of possible
correlation into a set of linearly uncorrelated variables applying an orthogonal
transformation (Mujumdar and Nagesh Kumar 2012; Raschka 2015). Procedural
steps to conduct PCA are presented in Fig. 4.5.

PCA is also termed as Empirical Orthogonal Function (EOF) (The Climate Data
Guide: Empirical Orthogonal Function (EOF) Analysis and Rotated EOF Analysis
2017).

Numerical Problem 4.4 Precipitation data simulated from the 4 GCMs for various
runs are presented in Table 4.15. Use principal component analysis for data
reduction. Compute (a) correlation matrix (b) eigen values and eigen vectors for
each component (c) Final component matrix. Consider all four components.

Solution:

Step 1: See Tables 4.16, 4.17.
Step 2: Here correlation matrix is equal to the covariance matrix due to the stan-

dardization of data (Table 4.18).
Step 3: See Fig. 4.6, Table 4.19.
Step 4: The user can decide the number of components that can be considered. It
depends on the computed eigenvalues or percentage of variance. However, the
percentage of variance is the ratio of eigenvalues and number of components
(Table 4.20).
Step 5: See Table 4.21.
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   Estimate mean for every dimension of the whole dataset d  

Calculate the correlation and covariance matrix of the whole data 
set and eigenvectors and related eigenvalues. 

Prioritize the eigenvectors and choose n eigenvectors with the 
highest eigenvalues to form d x n dimensional/weight matrix which 
will help to transform the samples into the new subspace. 

Start

Stop 

Fig. 4.5 Flowchart of procedural steps for principal component analysis

Table 4.15 Given
precipitation data

Runs GCM1 GCM2 GCM3 GCM4

1 3 7 13 5

2 4 8 2 8

3 5 9 5 17

4 6 10 8 3

5 7 11 16 9

6 8 12 12 18

7 9 10 14 2

8 12 15 11 1

Table 4.16 Estimation of
mean, variance, and standard
deviation

Parameter GCM1 GCM2 GCM3 GCM4

Mean 6.75 10.25 10.125 7.875

Variance 8.5 6.214 22.696 42.98

Standard
deviation

2.915 2.493 4.764 6.555
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Table 4.17 Standardised
matrix (x-mean)/standard
deviation [X]

GCM1 GCM2 GCM3 GCM4

1 −1.286 −1.304 0.6 −0.44

2 −0.943 −0.9 −1.7 0.019

3 −0.6 −0.5 −1.07 1.392

4 −0.257 −0.1 −0.44 −0.744

5 0.0858 0.3 1.233 0.17

6 0.428 0.7 0.394 1.544

7 0.772 −0.1 0.81 −0.896

8 1.801 1.9 0.18 −1.05

Table 4.18 Correlation
matrix CM [(XTX)/ (n − 1)]

GCM1 GCM2 GCM3 GCM4

GCM1 1.000 0.934 0.404 −0.286

GCM2 0.934 1.000 0.322 −0.120

GCM3 0.404 0.322 1.000 −0.224

GCM4 −0.286 −0.120 −0.224 1.000
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Fig. 4.6 Pictorial
representation of eigenvalues

Table 4.19 Eigenvalues of
each component and
corresponding percentage of
variance

Component Initial eigenvalues

Total % of variance
[Eigen
values/number of
components]

Cumulative
%

1 2.261 56.529 56.529

2 0.959 23.979 80.508

3 0.730 18.261 98.769

4 0.049 1.231 100.000
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4.2.5 F-statistic Test

F-statistic is a statistical test which measures the variance reduction from clusters K
to K + 1 (Burn 1989) and expressed as

FK ¼ ERK

ERK þ 1
� 1

� �
ðT � Kþ 1Þ ð4:1Þ

where FK = F-statistic value for cluster K, T = Number of GCMs and ERK

+1 = Squared error value for (K + 1). Optimal K corresponds to FK value greater
than 10 (Burn 1989).

Numerical Problem 4.5 Squared error values for clusters 2 and 3 are 10.00 and
9.15. Number of GCMs are 10. Compute F-statistic value.

Solution:

F-statistic value FK ¼ ERK
ERK þ 1

� 1
� �

ðT � Kþ 1Þ

F-statistic value for cluster 2 ¼ F2 ¼ 10
9:15 � 1
� �ð10� 2þ 1Þ ¼ 0:836

Table 4.20 Eigenvalues and
corresponding eigenvector (in
the decreasing order of
eigenvalues)

Component

1 2 3 4

Eigen value 2.261 0.959 0.73 0.049

GCM1 0.955 0.193 −0.160 0.161

GCM2 0.901 0.375 −0.159 −0.151

GCM3 −0.410 0.833 0.370 0.027

GCM4 0.608 −0.296 0.737 −0.011

Table 4.21 Transformed
data using projection [XW]

Runs GCM1 GCM2 GCM3 GCM4

1 −2.917 −0.107 0.311 0.011

2 −1.003 −1.941 −0.321 −0.062

3 0.262 −1.607 0.806 −0.065

4 −0.607 −0.233 −0.654 −0.03

5 −0.05 1.106 0.52 0

6 1.817 0.216 1.104 −0.043

7 −0.23 1.051 −0.468 0.171

8 2.72 1.521 −1.298 0.019
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4.3 Trend Detection Techniques

It is necessary to check the availability and quality of the hydrological or clima-
tological records as erroneous and short length data records can lead to spurious
inferences in detecting trends (Sonali and Nagesh Kumar 2013). In the present
study, Kendall’s rank correlation and turning point test are discussed with
numerical examples. More information about trend detection techniques are
available in Mann (1945), Kendall (1975), and Patra (2010).

4.3.1 Kendall’s Rank Correlation Test

1. Analyze the data yi regarding number of times it is greater than the remaining
values sequentially in the data set (i = 1, 2,… I). For example, y1 is greater than
successive values Q1 times, y2 is greater than successive values Q2 times, etc.
Process of superiority of yi computation is continued until end. Total superiority
value Q is the summation of Q1 + Q2 + Q3 + ��� + Qn.

2. Kendall’s rank correlation s and variance of s are described as 4Q
TðT�1Þ � 1
h i

and

2ð2T þ 5Þ
9TðT�1Þ

h i
; respectively, where number of the data is T samples.

3. Compute standard normal variate Z ¼ sffiffiffiffiffiffiffiffiffiffi
VarðsÞ

p and test the same at desired level

of significance. If Z is in the range (for example, value of the range at 5%
significance is between �1:96) it can be concluded that there is no trend in the
data series.

Numerical Problem 4.6 Conduct the Kendall’s rank correlation test for the fol-
lowing rainfall data: 760, 840, 120, 684, 345, 231, 134, 110, 451, 138, 521, 615.
Verify existence of trend at 5% significance level.

Solution:

Total number of data = T = 12.
Superiority of 760 over other successive data = It is superior than 120, 684, 345,

231, 134, 110, 451, 138, 521, 615 (total number of times of superiority Q1 = 10)
Similarly, number of times of superiority of 840, 120, 684, 345, 231, 134, 110,

451, 138, 521, and 615 over successive data is 10, 1, 8, 4, 3, 1, 0, 1, 0, 0, 0

Total Q ¼ 10þ 10þ 1þ 8þ 4þ 3þ 1þ 0þ 1þ 0þ 0þ 0 ¼ 38

Kendall’s rank correlation s ¼ 4Q
TðT�1Þ � 1
h i

¼ 4�38
12�11 � 1
	 
 ¼ 0:1515

Variance of s ¼ 2ð2T þ 5Þ
9TðT�1Þ

h i
¼ 2�ð2�12þ 5Þ

9�12ð12�1Þ
h i

¼ 0:04882
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Value of Z ¼ sffiffiffiffiffiffiffiffiffiffi
VarðsÞ

p ¼ 0:1515ffiffiffiffiffiffiffiffiffiffiffi
0:04882

p ¼ 0:6865; since value of Z is within the range of

�1:96 (at 5% significance level), indicating no presence of trend at the chosen
significance level.

4.3.2 Turning Point Test

Objective of the test is to ascertain the number of turning points possible in a given
data (Patra 2010). Turning point value is 1 if the chosen data yi satisfies any one of
the following conditions (1) yi�1 � yi � yiþ 1 or (2) yi�1 � yi � yiþ 1 and otherwise
turning point value is zero. Procedural steps are as follows:

1. Analyze the data yi for turning point conditions and check for number of turning
points t.

2. Compute expected number of turning points EðtÞ and variance VarðtÞ being
2ðT�2Þ

3 and ð16T�29Þ
90 , respectively, where the number of data is T.

3. Compute standard normal variate Z ¼ ðt�EðtÞÞffiffiffiffiffiffiffiffiffi
VarðtÞ

p and test the same at desired level

of significance. If Z is in the range (for example, value of the range at 5%
significance is between �1:96) indicated, thus there is no trend in the data
series.

Numerical Problem 4.7

Verify existence of trend at 5% significance level for the following data: 760, 840,
120, 684, 345, 231, 134, 110, 451, 138, 521, 615. Use turning point test for
analysis.

Solution:

Data was arranged as follows for verifying the conditions 1 and 2.
Number of data points T = 12.
Sequencing of data and turning point value (which is in parenthesis): 760, 840,

120 (1); 840, 120, 684 (1); 120, 684, 345 (1); 684, 345, 231 (0); 345, 231, 134 (0);
231, 134, 110 (0); 134, 110, 451 (1); 110, 451, 138 (1); 451, 138, 521 (1); 138, 521,
615 (0)

Total number of turning points t = 6.

Expected number of turning points EðtÞ and variance VarðtÞ are 2ðT�2Þ
3 and

ð16T�29Þ
90 : By substituting T values 2ð12�2Þ

3 and ð16�12�29Þ
90 , resulting expectation, and

variance are 6.66, 1.811.

Standard normal variate Z ¼ ðt�EðtÞÞffiffiffiffiffiffiffiffiffi
VarðtÞ

p ¼ ð6�6:66Þffiffiffiffiffiffiffiffi
1:811

p ¼ �0:4904

124 4 Statistical and Optimization Techniques in Climate Modeling



Since value of Z is within the range of �1:96 (at 5% significance level), indi-
cating no presence of trend at the chosen significance level.

4.4 Optimization Techniques

Optimization is a process of finding the optimum value of a function for a given
condition (Loucks et al. 1981; Jain and Singh 2003; Vedula and Mujumdar 2005).
Detailed information about optimization techniques is available in Ravindran et al.
(2001), Rao (2003), Taha (2005), and Nagesh Kumar (2017).

4.4.1 Linear Programming Problem

If the objective function and all the constraints are “linear” functions of the design
variables, the optimization problem is termed as Linear Programming Problem
(LPP). Objective of the model is to determine X (x1; x2; . . .xn) and model formu-
lation is as follows:

Objective function:

Z ¼
Xn
i¼1

cixi ð4:2Þ

Constraints:

Xn
i¼1

aijxi 	 bj; j ¼ 1; 2; . . .m ð4:3Þ

xi 
 0 i ¼ 1; 2; . . .n ð4:4Þ

where ci; aij, and bj are constants.

Numerical Problem 4.8 Australian Water Resources expert interested to know the
cropping pattern of four crops A1, A2, A3, A4 for the year 2030 in Murray–Darling
Basin, Australia. GCM employed is ACCESS 1.0 and the chosen pathway is RCP
2.6. It is estimated from the GCM-RCP analysis that 15 ha-m from surface water
resources, 1.5 ha-m from groundwater resources and 1.5 ha-m from reuse of treat
wastewater is expected to be available in the command area. Keeping inflation and
expected fluctuations in the market, expected net benefits from crops A1 to A4 are
AUS$ 1200/ha, 1400/ha, 2200/ha, and 1600/ha. Expected land availability obtained
from Cellular Automata and other analyses are 140 ha. Fertilizer requirement for
crops A1 to A4 are 0.1 kg/ha, 0.12 kg/ha, 0.16 kg/ha, 0.20 kg/ha, respectively, and
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availability of fertiliser is expected to be 16 kg. Penman–Monteith technique esti-
mated water requirement of crops as 0.14 m, 0.22 m, 0.16 m, 0.22 m per hectare
for crops A1 to A4. Man-days required per hectare for the crops A1 to A4 are 45,
67, 35, 72 and total man power availability is 5000 Man-days. Lower and upper
limits for crops in hectare for A1, A2, A3, A4 are [25, 45], [24, 30], [16, 24], [20,
22]. Determine optimum cropping pattern for achieving maximum net benefits
using linear programming framework.
Solution:
Total water expected to be available = 15 + 1.5 + 1.5 = 18 ha-m.

A1, A2, A3, A4 represent crop acreage in hectares that can be optimally
determined (Table 4.22).
Outputs obtained from Linear Programming Solution solver LINGO (http://www.
lindo.com/index.php/products/lingo-and-optimization-modeling). Crop acreages of
A1, A2, A3, A4 are 25 ha, 24 ha, 23.628 ha, 20 ha and objective function value is
Aus $ 147582.9.

4.4.2 Non-linear Programming Problem

Non-linear Programming (NLP) can be applied when some or all of the objective
functions and/or constraints are non-linear in nature. A quadratic programming,
sub-case of non-linear programming problem with a quadratic objective function
and linear constraints is demonstrated with Numerical Problem 4.9.

Numerical Problem 4.9 Solve quadratic programming below using LINGO.

MaxZ ¼ 1200 � x21 þ 1400 � x22

Table 4.22 Linear programming model formulation

Information LINGO syntax

Objective function Max Z = 1200 * A1 + 1400 * A2 + 2200 * A3 + 1600 * A4;

Area constraint A1 + A2 + A3 + A4 <= 140;

Fertilizer constraint 0.10 * A1 + 0.12 * A2 + 0.16 * A3 + 0.2 * A4 <= 16;

Water constraint 0.14 * A1 + 0.22 * A2 + 0.16 * A3 + 0.22 * A4 <= 18;

Labour constraint 45 * A1 + 67 * A2 + 35 * A3 + 72 * A4 < = 5000

Crop area 1 bounds A1 >= 25;
A1 <= 45;

Crop area 2 bounds A2 >= 24;
A2 <= 30;

Crop area 3 bounds A3 >= 16;
A3 <= 24;

Crop area 4 bounds A4 >= 20;
A4 <= 22;

END
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Subject to

x1 þ x2 	 100

0:1 � x1 þ 0:12 � x2 	 10

45 � x1 þ 67 � x2 	 4000

x1 
 25

x1 	 40

x2 
 20

x2 	 100

Solution:

x1 ¼ 25 units; x2 = 21.43 units.
Objective function Z = 1392857 units.

4.4.3 Evolutionary Algorithms

Most of the real-world optimization problems involve complexities like discrete,
continuous or mixed variables, multiple conflicting objectives, non-linearity, dis-
continuity, and non-convex region are difficult to solve using existing linear or
non-linear techniques. Such problems can be solved using other techniques which
make use of Evolutionary Algorithms (EA) such as Genetic Algorithms (GA) (Deb
2002), Differential Evolution (Price et al. 2005; Das et al. 2016), Particle Swarm
Optimization (Khare and Rangnekar 2013), Firefly Optimization Algorithms
(Garousi-Nejad et al. 2016) and Harmony Search (Bashiri-Atrabi et al. 2015).
Extensive discussion on non-traditional optimization algorithms are available in
Yang (2010). In the present chapter, a brief description of GA is presented.

GAs are based on the principle of natural selection and natural genetics and
combine survival of the fittest with a randomized exchange of information to form a
search algorithm (Goldberg 1989; Deb and Agarwal 1995; Deb 1999, 2002).
Selection, crossover and mutation are the parameters that facilitate the generation of
a new population of points from the old parent population. A flowchart indicating
the steps of a simple GA is shown in Fig. 4.7.

Numerical Problem 4.10 Solve the following problem using GA (Raju and
Nagesh Kumar 2014)

Max z ¼ �x1 þ 2x2 þ 3x3
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Subject to

2x1 þ 3x2 � 1:5x3 
 26

� 2:5x1 þ 4:5x2 þ 3x3 	 65

2x1 þ 3:5x2 þ 1:5x3 	 57

x1 
 0; x2 
 0; x3 
 0

Generate Initial Population

Start

Encode Generated Population

Evaluate Fitness Functions

Meets         
Optimization     
Criteria? 

Best 
Individuals

Yes

Stop

Selection (select parents)

Mutation (mutate off-springs) 

Crossover (selected parents)

No

N
E
X
T

G
E
N
E
R
A
T
I
O
N

Fig. 4.7 Schematic Process of GA
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Solution:

GA tool box of MATLAB is employed to solve this problem (Genetic Algorithm
2017). Figure 4.8 presents appearance of the tool box where important information
is to be provided as input. Detailed input procedures with reference to the given
numerical problem are as follows:

Fig. 4.8 Basic screen of the GA Tool Box
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Step 1: Choose the solver. A number of solvers are available in the Combo
Box including linear programming. We chose solver GA for solving the given
problem.

Step 2: Fitness Function: Input file provided for this purpose is @ab_d.m (as
follows)

function f ¼ ab d xð Þ

x1 = double(x(1));
x2 = double(x(2));
x3 = double(x(3));
f = x1 – 2 * x2 – 3 * x3;

GA tool box handles only minimization problems. To make it compatible, given
objective function of maximization nature is multiplied with negative sign to rep-
resent it as minimization. You can see the equation for f in the minimization format.

Step 3: Provide number of variables; In this case 3 (x1, x2, x3).

Step 4: GA tool box handles equality and inequality (	 ) constraints. Any
inequality constraint of 
 nature can be multiplied with a negative sign to make it
compatible with GA tool box format.

See the first constraint 2x1 þ 3x2 � 1:5x3 
 26; Transformation is as follows:

�2x1 � 3x2 þ 1:5x3 	 � 26 Constraint 1
�2:5x1 þ 4:5x2 þ 3x3 	 65 Constraint 2
2x1 þ 3:5x2 þ 1:5x3 	 57 Constraint 3

Linear Inequalities Box:
Fill the information against block A: [−2−3 1.5; -2.5 4.5 3; 2 3.5 1.5] representing
coefficients of x1; x2; x3 for constraints 1, 2, and 3, respectively.

Fill the information against block B [−26; 65; 57] representing right-hand side
values of constraint 1, 2, and 3, respectively.
Linear Equalities Box:
Not applicable for the present problem as there are no equality constraints.

Bounds : Lower 0; 0; 0 Upper 100; 100; 100

After filling the above information, click on start button. After certain number of
iterations, it provides the value of the fitness function as well as the decision
variables. As observed, value of the fitness function is −43.4294 (negative sign is
representation of minimum). As per practical understanding of the problem, value
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of objective function is 43.4294 and corresponding x1, x2, x3 values are 3.424,
10.683, and 8.496, respectively.

Same problem was solved using linear programming and solution obtained was
[x1 ¼ 3:4418; x2 ¼ 10:6511; x3 ¼ 8:5581; z ¼ 43:5349� (Raju and Nagesh Kumar
2014).

Present chapter discusses about statistical and optimization techniques. Next
chapter presents hydrological models.

Software (Information as on 30.12.2016)

Cluster Analysis:

• Statistics and Machine Learning Tool box of MATLAB
• SPSS (http://www-03.ibm.com/software/products/en/spss-statistics)
• MINITAB (https://www.minitab.com)
• Statistical Analysis System (SAS) (http://www.sas.com/en_in/home.html)
• CVAP: Cluster Validity Analysis Platform (cluster analysis and validation tool)

(http://in.mathworks.com/matlabcentral/fileexchange/14620-cvap–cluster-
validity-analysis-platform–cluster-analysis-and-validation-tool-)

Fuzzy Cluster Analysis: Fuzzy Logic tool box of MATLAB (http://in.
mathworks.com/products/fuzzy-logic/)

Kohonen Neural Networks (KNN): Neural Network Toolbox of MATLAB
(http://in.mathworks.com/products/neural-network/)

Principal Component Analysis:

• Statistics and Machine Learning Tool box of MATLAB
• SPSS
• MINITAB
• SAS
• XLSTAT
• You can also access Statistics related software through the link http://statpages.

org/javasta2.html

Optimization Techniques (Handles linear, non-linear, and quadratic
programming):

• General Algebraic Modeling System (GAMS) (https://www.gams.com/)
• LINGO: LINGO 16.0—Optimization Modeling Software for Linear, Non-linear

and Integer Programming (http://www.lindo.com/index.php/products/lingo-and-
optimization-modeling)

• Global Optimization Tool box (http://in.mathworks.com/products/global-
optimization/).

• Optimization Tool Box: (http://in.mathworks.com/products/optimization/)
• Genetic Algorithm Tool box: (https://in.mathworks.com/help/gads/genetic-

algorithm.html)
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Revision Questions and Exercise Problems

4:1 What are different types of data compression techniques? On what basis
they can be differentiated?

4:2 What are the various steps in (a) principal component analysis (b) cluster
analysis, and (c) Kohonen Neural Networks?

4:3 Solve Numerical Problem 4.1 related to cluster analysis using only C1 and
C2. Weights of C1 and C2 are 0.4 and 0.6, respectively. Identify the group
of each GCM. Use data in Table 4.1.

4:4 Nine GCMs are evaluated on three indicators as presented in Table 4.23.
Data is following Trapezoidal membership function. Use fuzzy C-means
algorithm to cluster the GCMs. A number of clusters can be taken as 2.
Constant m’ value can be taken as 2. Compute membership function values
after first iteration?
Hint: Distance between two fuzzy trapezoidal numbers is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
paj � pj

� �2
þ qaj � qj

� �2
þ sia � sj

� �2
þ tia � tj

� �2
� �

4

vuuut
Where (p, q, s, t) are elements of Trapezoidal fuzzy number.

4:5 Table 4.24 presents normalized data information about four GCMs for three
evaluation criteria C1, C2, C3. Climate expert felt that 4 GCMs can be
classified into two categories. Weights of category 1 and 2 are (0.2, 0.4,
0.8), (0.2, 0.6, 0.8). Assume learning rate as 0.60. Using KNN, cluster the
GCMs into the two categories?

Table 4.23 Data matrix of 9 GCMs and random assignment of clusters

GCMs C1 C2 Assigned random clusters/groups iteration
0

(1) (2) (3) (4)

A1 (0.2, 0.3, 0.4, 0.5) (0.4, 0.55, 0.66, 0.88) G2

A2 (0.5, 0.6, 0.7, 0.8) (0.3, 0.5, 0.6, 0.8) G2

A3 (0.3, 0.6, 0.9, 1.0) (0.2, 0.40, 0.6, 0.8) G1

A4 (0.6, 0.7, 0.8, 0.9) (0.1, 0.2, 0.4, 0.8) G2

A5 (0.5, 0.7, 0.8, 0.9) (0.4, 0.6, 0.8, 1) G1

A6 (0.2, 0.4, 0.6, 0.8) (0.22, 0.44, 0.66,
0.88)

G1

A7 (0.2, 0.3, 0.5, 0.8) (0.44, 0.8, 0.9,1) G2

A8 (0.2, 0.4, 0.8, 1.0) (0.11, 0.44, 0.8, 0.9) G1

A9 (0.1, 0.4, 0.7, 0.9) (0.3, 0.5, 0.9, 1) G2
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4:6 Solve Numerical Problem 4.4 related to principal component analysis using
data presented in Table 4.15. Consider only three GCMs for evaluation.

4:7 What are various trend detection techniques available? How expectation
and variance are computed for each individual technique?

4:8 Verify existence of trend at 1% significance level for the following rainfall
data (mm): 860, 930, 320, 584, 445, 341, 154, 220, 481, 158, 541, 645. Use
turning point test for analysis.

4:9 Conduct the Kendall’s rank correlation test for the following rainfall data
(mm): 720, 810, 130, 674, 355, 241, 144, 180, 461, 178, 531, 625 to verify
existence of trend at 1% significance level.

4:10 Formulate linear/non-linear programming/ genetic algorithm in your
domain of interest (in similar aspects of Numerical Problem 4.8)? Mention
mathematically objective function, constraints, and bounds for the chosen
problem. Discuss the outcomes from the optimization problem and chal-
lenges for implementing the outcome in the field. You can assume suitable
relevant numerical data wherever applicable (For example, greenhouse
gases (GHGs) are increasing day by day resulting in an increase of global
warming and health hazards due to the growing population and pollution
from industries and vehicles. However, it is not possible to minimise the
GHGs emissions as sustainable industrial and societal development is
necessary. Solve for the hypothetical data, assuming an industrial envi-
ronment is emitting Carbon dioxide (CO2) and Methane (CH4)).

Advanced Review Questions

4:11 Is there any possibility that output of principal component analysis can be
input to cluster analysis or vice versa? If so, how these techniques can be
complemented to each other? Provide examples how these techniques help
in climate modeling with practical significance.

4:12 Discuss the limitations of data compression techniques?
4:13 Mention any other techniques that are falling in data compression category?
4:14 Name relevant software that can be used for (a) principal component

analysis (b) cluster analysis? Provide salient features of the software.
4:15 In your opinion, which trend detection technique is suitable for rainfall in

Indian conditions?
4:16 Mention various detection techniques that can be employed in climate

change studies.

Table 4.24 Normalised data GCM C1 C2 C3

A1 0.40 0.80 0.40

A2 0.30 0.82 0.55

A3 0.24 0.66 0.34

A4 0.32 0.76 0.42
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4:17 Mention two case studies in India where trend detection techniques were
employed. Name the trend detection technique employed?
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5Hydrological Modeling

Abstract
This chapter describes basic definitions, classification of models into various
categories, with procedures for solving water resources engineering problems
using hydrological models. Storm Water Management Model (SWMM),
Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS),
Soil and Water Assessment Tool (SWAT), and Variable Infiltration Capacity
(VIC) are discussed with mathematical background. Brief information about
MIKE-based models are also part of the chapter. The reader is expected to
understand various hydrological models along with their applicability by
studying this chapter.

Keywords
HEC-HMS � Hydrological models � MIKE � SWAT � SWMM � VIC

5.1 Introduction

Hydrological system is an action of biological/physical/chemical processes on input
variable(s) so as to generate outputs (Dooge 1992). Some of the variables are
precipitation, evaporation, soil moisture, and streamflow. Xu (2002) made an
extensive review on hydrological models whereas Francini and Pacciani (1991)
made comparative analysis of several conceptual rainfall–runoff models. Some of
the terminologies according to Xu (2002) are as follows:
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6110-3_5) contains supplementary material, which is available to authorized users.
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• Parameter is a measurable quantity that characterises a system which may be a
constant or varies with time or some other variable and to be quantified/deduced
from actual field measurements.

• Hydrological model describes hydrological cycle and simplifies representation
of complex real systems, with some assumptions (Dooge 1992) for assessing
hydrologic phenomena in a catchment in the laws of energy, momentum, and
continuity equations. Some of the specific functions include streamflow fore-
casting that supports reservoir operation, flood, and drought studies. Accuracy
of streamflow simulations are constrained by hydrologic model approximations,
availability of data of the catchment, and the quality of measurements. In
addition, some of the challenges include, choosing the most suitable model
structure for chosen catchment, and quantification of uncertainty in hydrologic
model simulations. This requires a thorough knowledge of the role of individual
components in each hydrologic model for better assessment of their applicability
and also to know the differences between simulations of various hydrologic
models.

Models are classified into various categories, which are as follows (Eldho 2017):

• Theoretical/physical models have logical structure as that of real hydrological
system. Examples include models related to infiltration built on two-phase flow
porous media, watershed runoff based on St. Venant equations, evaporation
established on turbulence and diffusion and groundwater on fundamental
transport equations. Empirical models can be computed by using concurrent
input and output measurements. Conceptual models are intermediate state
between theoretical and empirical models.

• Linear and non-linear models are built on the regression relationship between
inputs and output.

• Model is termed as time invariant, if relationship between input and output does
not vary with time.

• Lumped models treat the total basin as homogeneous whereas basin is divided
into elementary unit blocks/areas in case of distributed models. Intermediate
process is termed as semi-distributed.

• Models are said to be deterministic if all the variables are free from randomness
and vice versa for stochastic models.

• Models which concentrate on single floods and runoff series are termed as
event-based and continuous models, respectively.

Combinations of models are possible such as lumped conceptual models, dis-
tributed theoretical, distributed conceptual, etc. Some of the models of this category
are WASMOD (Water and Snow Balance Modeling System) a conceptual,
stochastic, lumped water balance model; HBV (Hydrologiska Byråns Vattenbal-
ansavdelning) model; a conceptual, deterministic, lumped (semi-distributed) daily
rainfall–runoff model; TOPMODEL (TOPology MODEL: a physically based,
semi-distributed model, and SHE (Systeme Hydrologique Europeen) model: a
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physically based, deterministic, distributed model. Extensive information on hy-
drological models are available (Singh and Woolhiser 2002; Xu 2002). Procedure
for solving a water resource engineering problem using hydrological models are as
follows:

1. Definition of the problem: Identification of the domain problem such as
groundwater, surface water, runoff and salt water intrusion.

2. Data availability: Precipitation and its duration, temperature, runoff guide the
choice of hydrological model.

3. Choice of model: Model choice may vary depending on the domain, problem
statement data availability, and procuring of software in terms of freeware or
commercial.

4. Calibrating the model: Establishing the values of parameters such that reason-
able agreement exists between simulated output and observed value.

5. Validation of the model with calibrated parameters (obtained from step 4) to
assess the hydrologic model efficacy.

6. Model application for simulation of the output after satisfying steps 4 and 5.

In the present study, Storm Water Management Model (SWMM), continuous
dynamic event model; Hydrologic Engineering Center-Hydrologic Modeling Sys-
tem (HEC-HMS), a physical semi-distributed event-based runoff model; Soil and
Water Assessment Tool (SWAT), a conceptual continuous simulation model;
Variable Infiltration Capacity (VIC), a physically distributed model and MIKE
models are discussed.

5.2 Storm Water Management Model

SWMM is used for single event or long-term/continuous simulation of both quality
and quantity of runoff from urban areas. Runoff component works on a group of
sub-catchments, which receive precipitation, and generates pollutant loads and
runoff. The routing portion transports generated runoff through channels, pumps,
regulators, pipes, and storage/treatment devices whichever are applicable as shown
in Fig. 5.1. SWMM tracks the flow depth and rate, and water quality in each
channel and pipe during a multiple time step simulation. SWMM is also extended to
model low impact development (LID) controls (Fig. 5.2) and facilitates hydrologic,
hydraulic, and water quality simulations and can estimate pollutant loads associated
with storm water runoff as shown in Fig. 5.3.

SWMM facilitates multiple modeling aspects including designing and sizing of
detention facilities, drainage system components for flood control and detailed
applications of SWMM are available in Barco et al. (2008). The Storm Water
Management Model Climate Adjustment Tool (SWMM-CAT) is a new addition to
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SWMM in AR3 perspective (Fig. 5.4). More information on SWMM is available in
Daniel et al. (2011) and SWMM (2017).

Numerical Problem 5.1 Demonstrate modeling in SWMM for a hypothetical
storm system as shown in Fig. 5.5.

Solution:

EPA SWMM 5.1 (epaswmm5.1.exe) can be downloaded from EPA website. The.
exe file should be RUN from the start menu. The path of the file can be browsed to
desired location. Shortcut of SWMM can be pinned to the desktop for an easy
access.

Steps to model in SWMM

1. Default set of options should be specified before starting a model and can be
selected from project option. ID labels, sub-catchments, and node default
options can be mentioned in the dialog box (Section 1).

Fig. 5.1 Various methods in SWMM
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2. Network diagram of storm network of the study area should be drawn in the
SWMM map window (Section 2).

3. Set of methods for each analysis have to be selected (Section 3).
4. Simulation and run option have to be selected for complete analysis of the

model (Section 4).
5. Results can be viewed through summary report, profile, and scatter plots in the

model (Section 5).

Section 1 (Fig. 5.6)

• Default set of options should be specified before starting a model.
• Default option can be selected from project option.
• Select Project � Defaults � Default dialog box.
• ID labels, sub-catchments, and node default options can be mentioned in the

dialog box.
• ID labels include prefixes for various objects, viz., sub-catchments, nodes,

junctions, outfall, etc.
• Sub-catchment properties include area, width, slope, etc.
• Nodes/links properties include geometry, roughness, routing methods, etc.

Fig. 5.2 LID control editor in SWMM
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For numerical problem,
In the ID Labels dialog box, the following details are given as input.
Rain gauges—R; Sub-catchments—C; Junctions—J; Outfalls—O; Conduits—

CO
In the sub-catchment dialog box, the following details can be given as input:
Area = 3; Width = 500; % Slope = 0.05; % Impervious = 20;

N-Impervious = 0.02.
N-Pervious = 0.05; Dstore-Imperv = 0.03; Dstore-Perv = 0.04; %

Zero-Imperv = 25

Infiltration Method—Horton
On the Nodes/Links default page
Node Invert
Node Max. Depth = 3

Fig. 5.3 Pollutant editor in
SWMM
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Node Ponded Area = 0
Conduit Length = 200
Conduit Geometry

– Barrels = 0
– Shape = Rectangular
– Max. Depth = 1.0

Conduit Roughness = 0.03
Flow Units = CMS
Link Offsets = DEPTH
Routing method Kinematic Wave

All the above details are input and OK is selected to apply them.

Fig. 5.4 Components in SWMM-CAT

Fig. 5.5 Example problem
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Section 2 (Fig. 5.7)

• Network diagram of storm network of the study area should be drawn in the
SWMM map window.

• Right click on the drawing window, select options, and set the annotations and
font size to display names of the objects.

• Select View � Dimensions to display the map dimensions dialog.
• To draw Sub-catchment in the drawing window.
• Select in the menu bar � option.
• Draw the sub-catchment and right click to finish the sub-catchment drawing.
• Double click on the sub-catchment to display the dialog box showing

sub-catchment properties.
• Input the sub-catchments, viz., area, width, slope, outlet, etc., as per the study

area.

Fig. 5.6 Default options
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• If there are two or more sub-catchments, the data should be input in the
sub-catchment dialog box for each sub-catchment, as these properties differ for
each individual catchment.

Next junctions are assigned (Fig. 5.8)

• Select � option to draw junctions wherever required.
• Select the desired junction by double clicking on it and input properties of the

junction in the dialog box displayed.
• Repeat the same, if multiple junctions exist.
• Draw the outfall, using Select � .
• Double click on the outfall to input its properties.

The storm system should be connected properly, viz connections between var-
ious junctions, junctions, outfalls, etc. This is done by connecting them with storm
conduits.

Fig. 5.7 Sub-catchment
details
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• Conduit establishes connection between two junctions, for example, to connect
junction J1 and J2 conduit CO1 is used

• Select � option to draw conduits
• When the conduit option is selected, the cursor changes as a pencil, the conduit

can be drawn at desired locations
• Repeat the procedure to draw conduits between various junctions

Now the study area drawing will be completed by assigning a rain gauge

• Select � option to locate rain gauge in the study area
• Double click on the rain gauge to input time series data and rainfall units
• To input time series data, Project � options � curves � time series
• The time series created above, should be further input into the rain gauge dialog

box

For the numerical problem, the following data can be given as input

Node Invert level

J1 98

J2 92

O1 85

Fig. 5.8 Details of junction and outfall
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For rain gauge
Rain format—Intensity
Rain Interval—0:30
Data Source—Time series
Series name—time series 1
Time series 1 data:

Time (HH:MM) Value (mm)

0:00 0

0:30 10

1:00 6

1:30 2

2 0

Now after inputting all the above details, the project can be named by Data
browser � project title. To save the file select File � Save as option and browse
to the required path.

Fig. 5.9 Various available methods
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Section 3

• There are several methods available in SWMM for infiltration, routing, etc.
• The user can chose the method based on his/her choice.
• From the side menu bar Project � Options � General.
• After selecting the models, click OK to apply.

Section 4 (Figs. 5.9, 5.10)

• Now as the complete network is created with all input values, the simulation can
be RUN.

• The simulation period requires details of wet weather, dry weather durations,
and analysis period can be given as input by the user.

• Select Project � � Run Simulation.
• If the models have errors and warnings, they would be displayed. On correcting

the errors, the model will RUN successfully.

Fig. 5.10 Various simulation options
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Section 5
To view results on map

• Select � Reports � Summary.
• To create Profile plot between various junctions Select � from the menu

bar.
• To compare two parameters for any two catchments, Scatter plot option can be

selected from the menu bar.
• For colour coding a parameter, Select �View � Legends.

5.3 Hydrologic Engineering Center-Hydrologic Modeling
System

Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) simu-
lates the precipitation runoff processes and can be applied to small urban or natural
watershed, large river basin water supply, and flood hydrology. Components of
HEC-HMS are as follows:

Watershed

Sub-basin, reach, junction, reservoir, diversion, source, and sink are the elements
(Fig. 5.11). Initial constant, Soil Conservation Service (SCS), and gridded SCS
curve number, exponential and Green Ampt options are available for computing
infiltration losses. Unit Clark, Snyder, and SCS approaches are available for gen-
erating surface runoff from excess precipitation (Fig. 5.12). Several routing meth-
ods are also available (Fig. 5.13).

Meteorology

Meteorological model includes component of snowmelt, precipitation, and evap-
otranspiration (Fig. 5.14).

Hydrologic Simulation

Control specifications consist of start and end date of simulation with specified time
intervals (Fig. 5.15). A simulation run is created by integrating relevant modules
and control specifications (Fig. 5.16). Other components include parameter esti-
mation, analyzing simulations, GIS connection. Researchers can refer Scharffen-
berg and Harris (2008), Merwade (2012), Silva et al. (2014) and HEC-HMS (2017)
for more details about software, user’s manual, and other relevant information.
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Numerical Problem 5.2 HEC-HMS Example Model

Data provided is hypothetical and is presented to demonstrate the software
application.

Figure 5.17 is a storm water network consisting of three junctions connected by
two conduits. Sub-basins 1, 2, and 3 have junction 1, junction 2, and junction 3 as
outfalls respectively. Determine peak discharge in m3/sec from each sub-basin, by
using the following data:

Reach 1 and Reach 2: Dimensions of conduits: Rectangle section with width
5 m and length 50 m, Slope—0.03, roughness coefficient—0.02

Sub� basin area� Sub� basin 1� 5 km2 Lag time : 60min
Sub� basin 2� 3 km2 Lag time : 40min
Sub� basin 3� 2 km2 Lag time : 20min

The total area is 85% impervious
Use SCS Curve method as loss method, SCS Unit Hydrograph for transform

method, Kinematic routing for flow routing.

Fig. 5.11 Elements in HEC-HMS window
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Fig. 5.12 Various surface
runoff methods

Fig. 5.13 Various routing
methods
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Fig. 5.14 Precipitation input
forms

Fig. 5.15 Control
specification components
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Fig. 5.16 Modeling results

Fig. 5.17 Example problem
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Rainfall can be mentioned as Specific Hyetograph with time series:

Day (time HH:MM) Rainfall (mm)

January 01, 2000, 00:00 0.00

January 01, 2000, 06:00 5.00

January 01, 2000, 12:00 10.00

January 01, 2000, 18:00 3.00

January 02, 2000, 00:00 2.00

Solution:

Steps to modeling

Step 1:

• Before starting a model, a new project has to be created by the user and it should
be given a name and saved at the required directory as shown in Fig. 5.18.

• File � New
• HEC—HMS has several objects to represent the watershed system..

Fig. 5.19 Creating objects in HEC-HMS

Fig. 5.18 Creating a new
project in HEC-HMS
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• These objects are available on the main window of HEC-HMS which include
sub-basin, reach, junction, reservoir, diversion, source, and sink as shown in
Fig. 5.19.

Step 2:

• The watershed can be divided into required number of sub-basins.
• Each sub-basin should be created separately and should be assigned a name as in

Figs. 5.20a, b, c.
• Components � Basin Model Manager.
• All the required data for each sub-basin should input separately by selecting the

desired sub-basin individually.

Draw the storm network in sequence using the objects on the menu (Fig. 5.20c).
For the present example, three sub-basins are created, i.e., sub-basin 1, sub-basin 2
and sub-basin 3.

Step 3:
Input the details of junctions, reaches, and sub-basins

Step 4:

In the present numerical problem, SCS Curve number, SCS Unit Hydrograph,
and Kinematic Routing are chosen as Loss, Transform (Fig. 5.21), and Routing
(Fig. 5.22) methods, respectively, and necessary data is given as input.

Step 5:

• Once the user has successfully created the objects and assigned connections
between objects, the user should then specify the precipitation details for which
a meteorological model manager should be created.

• Components � Meteorological Model Manager.
• There are many methods to define precipitation, here we have assigned specific

Hyetograph method for both the sub-basins as shown in Figs. 5.23a, b.

Step 6:

• The precipitation that has occurred over a period of time and date of the rainfall
event are to be input using time series manager, and the data should be assigned
to the rain gauge, defined by the user.

• Components � Time series manager.
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Fig. 5.20 a Basin model
manager b Creating basin in
HEC-HMS c Created basins
in HEC-HMS

156 5 Hydrological Modeling



Fig. 5.21 Transform method
selection

Fig. 5.22 Routing method
selection
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• Selection of time series manager > Precipitation gauge > gauge 1 > rainfall
values. The precipitation gauge should be assigned to all sub-basins
(Figs. 5.24a, b, c).

Step 7:

• After the precipitation data as input, the user should define control
specifications.

• Components � Control specifications.

Fig. 5.23 a Meteorological
model manager in HEC-HMS
b Precipitation input in
HEC-HMS
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Fig. 5.24 a Creating time
series manager in HEC-HMS
b Time series gauge in
HEC-HMS c Precipitation
data entry in HEC-HMS
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Fig. 5.25 a Creating control
specifications manager in
HEC-HMS b Start and end
data of modeling in
HEC-HMS

Fig. 5.26 Running the
model
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• Start time and end time of the model should be given as input to control
specifications to run the model for simulation.

• Here, we have to run the model from the start date of precipitation till 2 days for
every 15 min to know the runoff from sub-basins as in Figs. 5.25a, b.

Step 8:

• After all the above details are given as input, the model should be RUN, the
warning messages and errors should be corrected, if any.

• Compute � Create � Simulation RUN � Select required RUN.

Step 9:

• Running the model, Compute > Simulation run > Name and select the run
(Fig. 5.26).

Step 10:

• Viewing Results, Results > Global summary table for complete results of all
objects, Results > Element summary table for specific elements (Fig. 5.27).

Fig. 5.27 Peak discharge of sub-basins
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5.4 Soil and Water Assessment Tool

Soil and Water Assessment Tool (SWAT) is a river basin-scale model (Neitsch
et al. 2002a, b). It can predict the impact of land management practices on water,
agriculture, and sediment in complex watersheds with different soil categories, land
use, and management aspects over long time periods (Anandhi 2007; Akhavan et al.
2010). Watershed is partitioned into Hydrological Response Units (HRUs). Sim-
ulation in SWAT is separated into two major parts with first and second parts
handling land phase of the hydrologic cycle and routing phase respectively.
AVSWAT-2000 is an ArcView extension along with Graphical User Interface
(GUI) of the SWAT model (Di Luzio et al. 2002). Schematic view of AVSWAT is
presented in Fig. 5.28. Maps of digital elevation, soil, land use/land cover,
hydrography, and time series of weather variables along with their locations are the
required inputs (Anandhi 2007). SWAT-CUP is another calibration/uncertainty or
sensitivity program interface for SWAT, whereas QSWAT is a QGIS interface for
SWAT. User manual/information about SWAT, SWAT-CUP, and QSWAT is
available in SWAT (2017).

Fig. 5.28 Schematic of AVSWAT Source Di Luzio et al. 2002; Available at http://www.pcwp.
tamu.edu/reports/2002/tr193.pdf
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5.5 Other Modeling Techniques

Variable Infiltration Capacity (VIC) is another physical distributed model with
components such as land cover, soil, snow model, meteorology/meteorological
input data, frozen soil formulation, dynamic lake/wetland model, flow routing.
Detailed information on VIC is available (Lohmann et al. 1996 and 1998).
Researchers can refer VIC (2017) about software and manual.

MIKE has number of models, namely, MIKE URBAN (2017) covers water
distribution and storm water drainage systems. MIKE FLOOD (2017) includes a
specialised 1D and 2D flood simulation engines, enabling to model any flood
problem. MIKE 21 (2017) handles data assessment for coastal and offshore
structures. MIKE HYDRO Basin (2017) facilitates multisector solution alternatives
to water allocation and water shortage problems, climate change impact assess-
ments on water resources availability and quality. More detailed applications of
MIKE are available in their respective homepages.

Other related software available is XPSWMM (2017). Detailed information
about hydrological models are available in Singh and Woolhiser (2002), Devi et al.
(2015) and Hydrological Models (2017).

The present chapter discusses various hydrological models relevant to climate
change. Next chapter discusses about case studies.

Revision Questions and Exercise Problems

5:1 What is purpose of hydrological modeling?
5:2 What are the various features of SWMM?
5:3 What are the various features of HEC-HMS
5:4 What are the various features of SWAT?
5:5 Describe various MIKE-related hydrological models? Differentiate them

with reference to their purpose?
5:6 Using SWMM, obtain the flooded areas of the drain and the maximum depth

of flooding for maximum daily rainfall of 80 mm/day. Using Horton infil-
tration and dynamic routing for the storm network shown in Fig. 5.29.

Fig. 5.29 Storm network
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Supporting information is also provided in Tables 5.1, 5.2, and 5.3. Also
(a) obtain the flooded nodes of the storm network and the maximum depth of
flooding for an hourly rainfall of 20 mm, use Green Ampt infiltration and
dynamic routing, (b) Design the drainage network for no flooding scenario
(Using detention ponds, placing pumps at necessary locations), and
(c) Design the drainage network for no flooding scenario (Using low impact
developments).

Table 5.1 Details about storm network: node information

S.no Node no. Junction name Chainage (M) Elevation (m) Depth (m)

1 J1 Children’s park 0 520.13 2.2

2 J2 Super market 300 516.67 3.5

3 J3 Temple road 600 508.53 1.8

4 J4 MKR street 900 506.29 2.4

5 J5 Shopping plaza 1200 500.33 4.1

6 Outfall Lake 1500 498.22 3.0

Table 5.2 Details about storm network: conduits information

S.no Conduit Drain reach Chainage
(m)

Width (m) Depth (m) Manning’s
n

From To From To

1 CO1 Children’s park Super market 0 300 3 2 0.003

2 CO2 Super market Temple road 300 600 5 2 0.002

3 CO3 Temple road MKR street 600 900 8 1.5 0.002

4 CO4 MKR street Shopping plaza 900 1200 6 2.5 0.003

5 CO5 Shopping plaza Lake (Outfall) 1200 1500 3.5 1.6 0.002

Table 5.3 Details about storm network: sub-catchments information

S.
No

Sub-
catchment

Place Chainage
(m)

Area
(ha)

Slope
of
terrain

Weighted
(%)
impervious

Width
(m)

From To From To

1 C1 Children’s
park

Super
market

0 300 86.23 0.013 50 320

2 C2 Super
market

Temple
road

300 600 56.25 0.025 43 430

3 C3 Temple
Road

MKR
street

600 900 72.65 0.016 28 350

4 C4 MKR
street

Shopping
plaza

900 1200 62.67 0.056 65 220

5 C5 Shopping
plaza

Lake
(Outfall)

1200 1500 92.45 0.016 73 184
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5:7 Explore the HEC-HMS model using Muskingum–Cunge routing method for
the storm network data of numerical problem 5.2. Compare the difference in
results using kinematic routing and Muskingum–Cunge routing?

5:8 Explore the HEC-HMS model for a rainfall of 45 mm occurring for a day by
keeping the time series interval as 1 day and identify the critical reach
locations, if any. Use data of numerical problem 5.2 wherever necessary,
Consider impervious area of all sub-basins as 95%.

5:9 What are various components of VIC?

Advanced Review Questions

5:10 Compare SWMM, HEC-HMS, SWAT, and VIC on any three features?
5:11 In your opinion, which model is suitable for hydrological modeling? Why?

If not so, can you describe ideal hydrologic model and its proposed
components?

5:12 Can you provide idea of a new software/methodology that combines fea-
tures of SWMM, HEC-HMS, SWAT, and VIC?

5:13 Can you suggest 10 softwares related to hydrological modeling that were
not covered in this chapter?
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6Case Studies

Abstract
This chapter presents various real-world global case studies in AR3 and AR5
perspective that are related to the evaluation of GCMs for maximum andminimum
temperatures for India, intercomparison of statistical downscaling methods for
projection of extreme precipitation in Europe, downscaling of climate variables
using Support Vector Machine, Multiple Linear Regression for Malaprabha and
Lower Godavari Basins, India and applicability of large-scale climate Telecon-
nections and Artificial Neural Networks for Regional Rainfall Forecasting for
Orissa, India. In addition, the impact of climate change on semi-arid catchment
water balance using an ensemble of GCMs for Malaprabha catchment, India;
streamflow in four large African river basins; projection of rainfall–runoff for
Murray–Hotham catchment ofWesternAustralia; future changes inMekongRiver
hydrology are also parts of the chapter. The reader is expected to understand the
impact studies through various case studies by studying this chapter.

Keywords
Africa � Artificial neural networks � Australia � Climate change � India �
Precipitation � Teleconnections � Temperature

6.1 Introduction

In the present chapter, various case studies are presented to provide an overall view
regarding the applicability of various techniques studied in previous chapters of the
book. Eight case studies pertaining to India and Global context on various subjects

Electronic supplementary material The online version of this chapter (doi:10.1007/978-981-10-
6110-3_6) contains supplementary material, which is available to authorized users.

© Springer Nature Singapore Pte Ltd. 2018
K. Srinivasa Raju and D. Nagesh Kumar, Impact of Climate Change
on Water Resources, Springer Climate, https://doi.org/10.1007/978-981-10-6110-3_6
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are presented in this chapter (Table 6.1). In the present study, Precipitation and
rainfall are used interchangeably.

Table 6.2 presents various chapters and relevant topics covered in the case
studies. Detailed case studies are presented in the next sections.

6.2 Evaluation of Global Climate Models for Maximum
(Tmax) and Minimum (Tmin) Temperatures1

Summary: Thirty-six Coupled Model Intercomparison Project-5 (CMIP5)-based
global climate models (GCMs) are explored to evaluate the performance of max-
imum (Tmax) and minimum (Tmin) temperature simulations for India covering 40
grid points. Two perspectives are considered. In the first perspective, three per-
formance indicators are used for evaluating GCMs, namely, Correlation Coefficient

Table 6.1 Description of various case studies

Case Study
number

Title of the case study

6.2 Evaluation of global climate models for maximum (Tmax) and minimum
(Tmin) temperatures

6.3 Downscaling of climate variables using support vector machine and
multiple linear regression

6.4 Climate change impact on semi-arid catchment water balance using an
ensemble of GCMs

6.5 Comparing impacts of climate change on streamflow in four large African
river basins

6.6 Hydrologic impact of climate change on Murray–Hotham
catchment of Western Australia: a projection of rainfall–runoff for future
water resources planning

6.7 Intercomparison of statistical downscaling methods for projection of
extreme precipitation in Europe

6.8 Future changes in Mekong river hydrology: impact of climate change and
reservoir operation on discharge

6.9 Regional rainfall forecasting using large-scale climate teleconnections and
Artificial Neural Networks

1Adopted from
Raju KS, Sonali P, Nagesh Kumar D (2017) Ranking of CMIP5-based Global Climate Models

for India Using Compromise Programming, Theoretical and Applied Climatology, Springer, Vol.
128, No. 3, pp. 563–574, doi:10.1007/s00704-015-1721-6, https://link.springer.com/article/10.
1007/s00704-015-1721-6
Raju KS, Nagesh Kumar D (2016) Selection of Global Climate Models for India using Cluster

Analysis, Journal of Water and Climate Change, IWA, Vol. 7, No. 4, pp. 764–774, doi:10.2166/
wcc.2016.112, http://jwcc.iwaponline.com/content/7/4/764?etoc
With permission from the publishers. More details are available in the original publication.
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(CC), Normalised Root Mean Square Error (NRMSE) and Skill Score (SS).
Entropy technique is applied to compute weights of the three indicators. Com-
promise Programming (CP), a distance-based decision-making technique, is
employed to rank the GCMs. Group decision-making technique is used to aggregate
the ranking patterns obtained for individual grid points. In the second perspective,
applicability of K-Means cluster analysis is explored for grouping GCMs. Skill
score indicator is chosen for evaluation. Cluster validation techniques, namely,
Davies–Bouldin Index (DBI) and F-Statistic test are used to obtain an optimal
number of clusters of GCMs for India. Effective ensemble approach is also
suggested.

Table 6.2 Details of topics and relevant case studies

Chapter Title of chapter Topic wise remarks with relevance
to Chapter

Relevant
case
study
number

1 Introduction SRES A1B, A2, B1 and COMMIT 6.3, 6.6,
6.8

RCP 2.6, 4.5, 6.0, 8.5 6.3, 6.5

El-Niño southern oscillation
(ENSO)

6.9

2 Selection of global climate
models

Performance indicators 6.2, 6.4,
6.5, 6.8,
6.9

Entropy 6.2

Compromise programming 6.2

Group decision-making 6.2

Ensemble of GCMs 6.2, 6.4

3 Downscaling techniques in
climate modeling

Multiple linear regression 6.3

Artificial neural networks 6.9

Support vector machine 6.3

Bias correction 6.5, 6.7

Change factor approach 6.7

4 Statistical and optimisation
techniques in climate
modeling

Cluster analysis 6.2, 6.3

Principal component analysis 6.3

F-Statistic test 6.3

Linear programming 6.8

5 Hydrological modeling Arc GIS-Arc view extension of
soil and water assessment tool
(ArcSWAT)

6.4
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6.2.1 Problem Description, Case Study and Data (Raju et al.
2017; Raju and Nagesh Kumar 2016)

Objectives chosen are as follows:

• Development of methodology for determining weights of the indicators
• To study the applicability of decision-making techniques for ranking GCMs
• To study the applicability of group decision-making for aggregating the grid-

wise ranking of GCMs
• To study the applicability of cluster analysis and validation techniques for

optimal grouping of GCMs
• Suitable ensemble of GCMs for Tmax, Tmin and combination of Tmax and Tmin

(from now termed as Tmm) scenarios

Three indicators, Correlation Coefficient (CC), Normalized Root Mean Square
Error/Deviation (NRMSE), and Skill Score (SS) are analyzed for evaluating the
ability of 36 GCMs from CMIP5 (Taylor et al. 2012), namely, ACCESS1.0,
ACCESS1.3, BCC-CSM1.1, BCC-CSM1.1-m, BNU-ESM, CCSM4,
CESM1-BGC, CESM1-CAM5, CESM1-FAST CHEM, CESM1-WACCM,
CNRM-CM5, CSIRO-Mk3.6, CanESM2, FGOALS-s2, FIO-ESM, GFDL-CM3,
GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R-CC, GISS-E2-R,
HadCM3, HadGEM2-AO, INM-CM4, IPSL-CM5A-LR, IPSL-CM5A-MR,
IPSL-CM5B-LR, MIROC4h, MIROC5, MIROC-ESM-CHEM, MIROC-ESM,
MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P, MRI-CGCM3, NorESM1-M for both
Tmax and Tmin for India.

World Climate Research Programmes (WCRP’s) CMIP5 multi-model data set
for climate of the twentieth-century simulations have been used (Taylor et al. 2012).
CMIP5-based GCMs providing monthly Tmax and Tmin data were considered.
Outputs from 36 models from CMIP5 were used in this model evaluation.
Forty-one years (1969–2009) of observed gridded Tmax and Tmin is available. India
Meteorological Department (IMD) data is available at a 1° resolution (Srivastava
et al. 2009), while most of the climate models from CMIP5 have historical data up
to 2005 only (Taylor et al. 2012). Hence, 37 (1969–2005) years of the observed
data from IMD was considered. This data may be sufficient for model assessment
but could not be used for productive climate studies during first and second half of
twentieth century. For a trend analysis, short length data may not be sufficient and
may lead to erroneous conclusions. Due to this drawback, gridded Tmax and Tmin

data set from Climate Research Unit (CRU) developed by University of East Anglia
(Carter et al. 2004; Mitchell and Jones 2005) and reanalysis data from NCEP
(National Centers for Environmental Prediction) were additionally used as substi-
tutes (data record availability: IMD: 1969–2009; CRU2.1: 1901–2002; NCEP:
1948 till date). The three data sets were interpolated to common grid points of
2.5° � 2.5°. Using these re-gridded data sets, correlations and absolute gridded
mean differences between annual values were compared for CRU2.1 and NCEP in
relation to the IMD data set for a common period of 1969–2002. This exercise is
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repeated for all the months and all the seasons [January, February (JF), March,
April, May (MAM), June, July, August, September (JJAS), October, November,
and December (OND)] for both Tmax and Tmin. Significantly higher absolute
gridded average differences were obtained between NCEP and IMD compared to
CRU2.1 and IMD over most regions. CRU2.1 showed a better correlation with
IMD than for NCEP reanalysis data. Hence, the observed Tmax and Tmin data set
obtained from the CRU2.1 can be used as a proxy to IMD data set. Absolute
gridded average differences between CRU2.1 and IMD were found to be higher,
over Western Himalaya region and for a few grid points over Northeast region.
A similar pattern has been observed for all the seasons and months. Therefore, the
grid points over Western Himalaya region and the few over Northeast region were
not considered (as the observational data sets themselves had significant differ-
ences). The period between 1961–1999 is considered as the base period for the
present model evaluation study. Single ensemble realizations for each of the models
have been used.

6.2.2 Results and Discussion

6.2.2.1 Ranking of Global Climate Models (Raju et al. 2017)
Gridwise (various latitude and longitude combinations resulting in 40 grid points)
values of Tmax and Tmin are analyzed to assess how the individual GCMs can be
ranked with reference to the three indicators using compromise programming.
Weights are computed using entropy technique. The group decision-making tech-
nique is employed to aggregate the ranking patterns of GCMs for whole of India
(Morais and Almeida 2012). Related results are presented in the following sections.

Maximum Temperature Scenario: Statistics of weights of indicators over 40
grid points obtained by entropy technique are presented in Table 6.3. It is observed

Table 6.3 Distribution of weights over 40 grid points obtained by entropy technique into various
ranges for Tmax and Tmin

Weight range (in %) Tmax Tmin

CC SS NRMSE CC SS NRMSE

� 10 29 29 39 34

>10 and � 20 9 5 1 5

>20 and � 30 2 6

>30 and � 40

>40 and � 50 1 1

>50 and � 60

>60 and � 70 4

>70 and � 80 6

>80 and � 90 16 7

>90 and � 100 14 32
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that weights of performance indicators are varying for each grid point and are
expected to effect the ranking pattern of GCMs gridwise.

A glimpse of ranking pattern obtained over 40 grid points by compromise
programing is presented in Table 6.4. CESM1-CAM5, CNRM-CM5, FGOALS-s2
and MIROC5 are occupying first position, for 65% of grid points. Figure 6.1 shows
the spatial distribution of GCMs which are occupying first position. In case of
second position, BNU-ESM, CESM1-BGC, CESM1-CAM5, CESM1-WACCM,
CNRM-CM5, FGOALS-s2, MIROC4h and MIROC5 are occupying 77.5% of grid
points. However, there is a huge spread of GCMs in the third position. It is
interesting to note that HadCM3 occupied last position 27 times and has never
occupied first three positions.

Effort is also made to rank the GCMs for whole of India using group
decision-making technique (Morais and Almeida 2012). It is observed from Fig. 6.2
that first three-ranked ranked GCMs, i.e., CNRM-CM5, MIROC5, and FGOALS-s2
have net strength of 493, 440, and 339, respectively, whereas CESM1-BGC,
BNU-ESM, and CESM1-WACCM (4th, 5th and 6th ranks) have net strength of 253,
246, and 242, respectively, which are nowhere comparable to the first three GCMs.
Last position (rank 36) is occupied by HadCM3 (net strength of −616) whereas, 35th
position is occupied by ACCESS1.3 with a net strength of −477.

From the extensive studies (i.e., analyzing suitability of GCMs for 40 grid points
individually and as a group), it is inferred that no single GCM can be suggested for
India, so an ensemble of GCMs can be employed. As an initiation, the GCMs which
occupied the first three positions in group decision-making perspective, i.e.,
CNRM-CM5, FGOALS-s2, and MIROC5 are suggested for ensemble. This aspect
is also supported, as these GCMs occupied first position for 21 grid points among a
total of 40. However, GCMs occupying fourth, fifth and sixth positions were not
considered for ensemble due to their huge difference between the net strengths of
these GCMs compared to the first three.

Minimum Temperature Scenario: Impact of climate variable Tmin on ranking
of GCMs is explored. Statistics of weights of indicators and compromise pro-
graming results are presented in Tables 6.3 and 6.4. It is observed that
CESM1-CAM5, GFDL-CM3, MIROC4h, MIROC5, and Nor ESM-I occupied first
position for 60% of grid points. Figure 6.3 presents spatial distribution of GCMs
occupying the first position over 40 grid points for Tmin. CESM1-BGC,
CESM1-CAM5, CESM1-WACCM, MIROC4h, MIROC5 and NorESM1-M
occupied 70% of grid points for second position whereas CCSM4,
CESMI-FASTCHEM, CESM1-WACCM, FIO-ESM, MROC4h and NorESM1-M
occupied 52.5% of grid points for third position. Quite interestingly, HadCM3 and
INM-CM4 occupied the last position for 22 and 17 grid points, respectively.

In group decision-making perspective, four GCMs namely, MIROC4h,
NorESM1-M, MIROC5, and CESM1-CAM5 occupied first four positions with net
strengths of 430, 422, 338, 329, respectively, whereas the last position is occupied by
INM-CM4 with a net strength of −661 (Fig. 6.2). This can also be supported by the
fact that the abovementioned four GCMs occupied first position in several number of
grids (in this case 20) and can be considered for ensemble purpose in case of Tmin.
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Table 6.4 Number of grid points the GCMs occupied the first three positions and last position for
Tmax and Tmin

Model name Tmax Tmin

First Second Third Last First Second Third Last

ACCESS1.0 3 1 1

ACCESS1.3 1 4 1 1

BCC-CSM1.1 2 1 1 1

BCC-CSM1.1-m 1 1 2

BNU-ESM 3 3 3 3 1

CCSM4 2 2 2 4

CESM1-BGC 4 2 3 2

CESM1-CAM5 5 5 1 1 6 4 2

CESM1-FAST
CHEM

1 1 1 1 3

CESM1-WACCM 2 3 4 1 4 3

CNRM-CM5 7 7 4 1

CSIRO-Mk3.6

CanESM2 1 1 2

FGOALS-s2 7 3 4 1 1 1

FIO-ESM 2 4 1 1 1 3

GFDL-CM3 1 4 1

GFDL-ESM2G 1

GFDL-ESM2M 1

GISS-E2-H 1 3

GISS-E2-R-CC 1 1

GISS-E2-R 1 1

HadCM3 27 22

HadGEM2-AO 1 1 1 1

INM-CM4 1 17

IPSL-CM5A-LR

IPSL-CM5A-MR 1

IPSL-CM5B-LR 1 2 1

MIROC4h 3 1 4 5 5

MIROC5 7 3 1 5 7 1

MIROC-ESM-CHEM 1 1 1

MIROC-ESM 1

MPI-ESM-LR 1 2

MPI-ESM-MR

MPI-ESM-P 1 1

MRI-CGCM3 2 2

NorESM1-M 2 2 5 5 3
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6.2.2.2 Clustering of Global Climate Models (Raju and Nagesh
Kumar 2016)

Data matrix of 36 GCMs and skill scores for each grid point are developed for three
variables, i.e., Tmax, Tmin and Tmm (Raju and Nagesh Kumar 2016).

Cluster Validity Analysis Platform (CVAP) developed by Wang (2007) is used
for K-Means cluster analysis. Cluster analysis is performed for 2–9 clusters and
even beyond (Wang et al. 2009; Pennell and Reichler 2011; Raju and Nagesh
Kumar 2014). CVAP is run for 2–30 clusters (five times for each cluster) to assess
the occupancy of GCMs in each cluster for a total of 145 runs. It is observed that as
the number of clusters increased beyond nine, most of the clusters are empty.
Therefore, the analysis is restricted to nine clusters. For each chosen group, Davies–
Bouldin Index (DBI) (Davies and Bouldin 1979) and F-Statistic test (Burn 1989)
are evaluated and are used as basis for determining the optimal cluster.

Figure 6.4 presents the number of GCMs in clusters 2–9 and representative
GCM in each subcluster for Tmax. Notation for cluster 2 in Fig. 6.4 is as follows: 1
represents the sub-cluster, GFDL-ESM2M is a representative GCM in the

Fig. 6.1 Spatial distribution of GCMs occupying the first position over 40 grid points for Tmax

176 6 Case Studies



subcluster; 32 represents number of GCMs in that subcluster whereas 2 represents
the subcluster, GISS-E2-H is a representative GCM in the subcluster; 4 represents
number of GCMs in that subcluster. It is observed that as the number of clusters
increase, there is a wide spread in the number of GCMs. It is also interesting to note
that as the number of clusters increases to four and more, only one GCM (HadCM3)
is observed in subclusters belonging to clusters 4–9 and only two GCMs are
observed in few subclusters belonging to clusters 7–9. This outcome is on the
expected lines as GCMs are only 36 and number of clusters are too many. It is to be
noted that there is no specific trend while classifying GCMs from clusters 2–9.
Most of the times GCMs are in the same subcluster irrespective of increase in size
of cluster. This may be due to the similarities in their structure and a reason that
they are developed by the same agency. Substantial similarities are noticed between
GCMs from the same institution in the cluster analysis outcome. For example,
GISS-E2-H, GISS-E2-R, GISS-E2-R-CC developed by NASA Goddard Institute
for Space Studies are subclustering always jointly; similar to IPSL-CM5A-MR and
IPSL-CM5A-LR developed by Institute Pierre–Simon Laplace whereas
IPSL-CM5B-LR which is developed by the same institute is not part of the same
subcluster. Variation of total squared error for 2–9 clusters is shown in Fig. 6.5. It is
noticed from Fig. 6.5 that total squared error is reducing from 15.1453 (squared
error value for subclusters 1 and 2 are 11.248 and 3.8973 totalling 15.1453) to
4.1211 for clusters 2–9 with a range of 11.0242. Average squared error per cluster
is found to be 1.378. There is steep fall of squared error from cluster 2–3, i.e.,
4.4097. Thereafter difference is approximately of 1 unit each from clusters 3–8
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whereas it is very nominal from 8 to 9. Squared error values between group average
and the skill score values for each GCM in the subcluster are computed. The
summation of the squared error values for all 40 grid points gives the total squared
error value corresponding to each GCM in a subcluster. The GCM that gives the
minimum squared error value in a subcluster is chosen as the representative GCM
for that particular subcluster. The squared error value is one of the important input
parameters for computation of DBI and F-Statistic test which provides the basis for
optimal clusters. Figure 6.6 presents DBI values and these are varying from cluster
2 (1.2675) to cluster 7 (0.8261) but not in sequential order. According to DBI
principles, optimum cluster size is 7. However, it is also interesting to note that,
group 3, 7, and 9 have almost equal DBI values, i.e., 0.8829, 0.8261, and 0.8909,
respectively, with a nominal difference of 0.0568 (with reference to clusters 7 and
3) and 0.0648 (with reference to clusters 7 and 9). This aspect makes it difficult to
assume a reasonable margin of error to determine optimum clusters with

Fig. 6.3 Spatial distribution of GCMs occupying the first position over 40 grid points for Tmin
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confidence. This necessitates using complementarily the F-Statistic test (Burn 1989)
along with DBI to obtain optimality more effectively.

Figure 6.7 presents F-Statistic values for clusters 2–8. It is observed that
F-Statistic value is varying from 14.3764 (cluster 2) to 3.2060 (cluster 8) in a
sequential order. Optimal clusters are two (based on the philosophy of preferring
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Fig. 6.6 Variation of davies-bouldin index values for Tmax, Tmin and Tmm

Fig. 6.7 Variation of F-Statistic values for Tmax, Tmin, and Tmm
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cluster whose F-statistic value is greater than 10). However, optimum clusters are
fixed as 3 based on (a) preference of cluster 3 over 7 due to narrow marginal
difference of DBI values, (b) compatibility with the output of F-Statistic and
(c) steep error reduction from cluster 2–3. Accordingly, the ensemble of HadCM3,
IPSL-CM5A-LR and GFDL, ESM2M is suggested.

Figures 6.5, 6.6 and 6.7 also present squared error, DBI and F-Statistic infor-
mation for Tmin, Tmm which are in similar lines of Tmax.. Ensemble of ACCESS1.3,
HadCM3 for Tmin and ensemble of MPI-ESM-MR, HadCM3 can be chosen for
Tmm.

6.2.3 Summary and Conclusions

The following main conclusions are emanated from the study as follows:

• Ensembles of CNRM-CM5, FGOALS-s2, MIROC5 for Tmax and MIROC4h,
NorESM1-M, MIROC5, CESM-CAM5 for Tmin are suggested (from section
“Ranking of Global Climate Models (Raju et al. 2017”).

• Optimum cluster is two for both Tmin and Tmmwhereas it is three in case of Tmax on
the basis of F-Statistic test and DBI. Ensembles of (HadCM3, IPSL-CM5A-LR,
GFDL-ESM2M), (ACCESS1.3, HadCM3), and (MPI-ESM-MR, HadCM3) are
suggested for Tmax, Tmin, and Tmm, respectively, (from section “Clustering of
Global Climate Models (Raju and Nagesh Kumar 2016)”).

6.3 Downscaling of Climate Variables Using Support
Vector Machine and Multiple Linear Regression2

Summary: Support Vector Machine (SVM)-based models are developed to
downscale monthly sequences of hydrometeorological variables [Precipitation,
maximum temperature (Tmax) and minimum temperature (Tmin)] in Malaprabha
River catchment (upstream of Malaprabha reservoir), India. The large-scale atmo-
spheric variables simulated by CGCM3 for Special Report on Emissions Scenarios
(SRES) A1B, A2, B1 and COMMIT scenarios were used to prepare inputs for the

2Adopted from
Anandhi A, Srinivas VV, Nagesh Kumar (2013) Impact of Climate Change

on Hydro-meteorological Variables in a River Basin in India for IPCC SRES Scenarios, Chapter
12 in Climate Change Modelling, Mitigation and Adaptation, Rao YS, Zhang TC, Ojha CSP,
Gurjar BR, Tyagi RD, Kao CM (Editors), American Society of Civil Engineers, pp. 327–356,
doi:10.1061/9780784412718.ch12, http://ascelibrary.org/doi/10.1061/9780784412718.ch12
Akshara G (2015) Downscaling of Climate Variables Using Multiple Linear Regression-A Case

Study Lower Godavari Basin, India, M.E. Dissertation, BITS Pilani.
With permission from the publishers. More details are available in the original publication.
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SVM models. Precipitation, Tmax and Tmin are projected to increase in future for
A1B, A2 and B1 scenarios, whereas no trend is discerned with the COMMIT.

Similarly, Multiple Linear Regression (MLR)-based downscaling technique for
Lower Godavari basin, India is employed using GFDL-CM3 GCM. Two Repre-
sentative Concentration Pathways (RCPs) 4.5 and 6.0 are analyzed. The implica-
tions of climate change on monthly basis of each of the hydrometeorological
variables are assessed.

6.3.1 Problem Description, Case Study and Data (Anandhi
et al. 2008, 2012, 2013; Akshara 2015; Akshara et al.
2017)

Objectives chosen are as follows:

• Development of a Support Vector Machine (SVM) and Multiple Linear
Regression (MLR)-based downscaling models

• Exploring the developed models to obtain projections of Precipitation, Tmax and
Tmin

Case Study 1: The study region is Malaprabha River catchment (upstream of
Malaprabha reservoir), India. The region covers an area of 2093.46 km2 and is
situated between 15°30′ N and 15°56′ N latitudes, and 74°12′ E and 75°8′ E lon-
gitudes. It lies in the extreme western part of the Krishna River basin in India, and
includes parts of Belgaum, Bagalkot and Dharwad districts of North Karnataka
(Fig. 6.8). The average annual rainfall of the basin is 1051 mm. Malaprabha River
originates in a region of high rainfall, and it is the main source of surface water for
arid and semiarid regions downstream of Malaprabha reservoir.

The data consists of monthly mean atmospheric variables simulated by CGCM3.
The data comprised of the twentieth-century simulations (20C3M) for the period
1971–2000, and future simulations forced by four SRES scenarios namely, A1B,
A2, B1 and COMMIT for the period 2001–2100. Reanalysis data of the monthly
mean atmospheric variables prepared by National Centers for Environmental Pre-
diction (NCEP) for the period 1971–2000 were used. The data on observed pre-
cipitation were obtained from the Department of Economics and Statistics,
Government of Karnataka, India, for 1971–2000. The data on observed temperature
were obtained from IMD for 1978–2000. The GCM data were re-gridded to NCEP
grid using Grid Analysis and Display System (GrADS) (Doty and Kinter 1993).

Case Study 2: Lower Godavari Basin, India (Godavari river basin 2017) lies
between North latitudes 16o19′–19o03′ and East longitudes 80o01′–82o94′. GCM
chosen is GFDL-CM3 with Representative Concentration Pathways (RCPs) sce-
narios of 4.5 and 6.0 (Chaturvedi et al. 2012). Figure 6.9 presents Google Earth
image of Lower Godavari Basin. Three time periods 2020s (2020–2029), 2050s
(2050–2059) and 2080s (2081–2089) were considered in order to observe the
climatic changes occurring during these periods.
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Fig. 6.8 Location of the study region in Karnataka state, India. the latitude, longitude and scale of
the map refer to Karnataka State. The Data extracted at CGCM3 and 1.9° NCEP grid points are
re-gridded to the nine 2.5° NCEP grid Points. Among the nine grid points 1, 4 and 7 are on
Arabian sea, and the remaining points are on land

Fig. 6.9 Lower Godavari basin showing IMD grid points. (Source http://india-wris.nrsc.gov.in/
wris.html—processed using Arc GIS and Google Earth)
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6.3.2 Results and Discussion

6.3.2.1 Downscaling of Climate Variables Using Support Vector
Machine (Anandhi 2007; Anandhi et al. 2013)

Selection of Probable Predictors: The selection of appropriate predictors is one of
the most important step in a downscaling exercise (Fowler et al. 2007). The choice
of predictors could vary from region to region, and it also depends on the char-
acteristics of the large-scale atmospheric circulation and the predictand to be
downscaled. The number of probable predictors is referred as m1 in this chapter.

Stratification of Predictors: For stratification of predictors, the m2 climate
variables (potential predictors), which are realistically simulated by the GCM, were
selected from the m1 probable predictors, by specifying a threshold value (Tng1) for
correlation between the probable predictor variables in NCEP and GCM data sets.
For the estimation of correlation, Product moment correlation (Pearson 1896),
Spearman’s rank correlation (Spearman 1904a, b) and Kendall’s tau techniques
(Kendall 1951) were considered.

Depending on the predictand variable to be downscaled, the stratification of the
corresponding potential predictors was carried out in space (land and ocean) or in
time (e.g., wet and dry seasons). When precipitation was considered as predictand,
the stratification of the predictors was carried out in the time domain to form
clusters corresponding to wet and dry seasons. When Tmax and Tmin were consid-
ered as predictands, the stratification of predictors was carried out in space domain.

Stratification of Predictors for Downscaling Precipitation: The climate of any
region can be broadly classified into seasons for analysing precipitation. The pre-
dictor variables for downscaling a predictand could vary from season to season.
Further, the relationship between the predictor variables and the predictand varies
seasonally due to the seasonal variation of the atmospheric circulation (Karl et al.
1990). Hence, seasonal stratification has to be performed to select the appropriate
predictor variables for each season and to facilitate the development of an indi-
vidual downscaling model for each of the seasons. The seasonal stratification can be
carried out by defining the seasons as either conventional (fixed) seasons or floating
seasons. In fixed season stratification, the starting date and lengths of seasons
remain the same for every year. In contrast, in floating season stratification, the date
of onset and duration of each season is allowed to change from year to year. Past
studies have shown that floating seasons are better than the fixed seasons, as they
reflect “natural” scenario, especially under altered climate conditions (Winkler et al.
1997). Therefore, identification of the floating seasons under altered climate con-
ditions helps to effectively model the relationships between predictor variables and
predictands for each season, thereby enhancing the performance of the downscaling
model. In the present scenario, the floating technique of seasonal stratification is
considered to identify dry and wet seasons in a calendar year for both NCEP and
GCM data sets. In the floating technique of seasonal stratification, the NCEP data
are partitioned into two clusters depicting wet and dry seasons by using the
K-means clustering technique (MacQueen 1967), whereas the GCM data are par-
titioned into two clusters by using the nearest neighbor rule.
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From NCEP data of the m2 variables, n Principal Components (PCs), which
preserve more than 98% of the variance, are extracted using principal component
analysis (PCA). The PCs corresponding to each month are used to form a feature
vector for a month. The PCs are also extracted from GCM data, but along the
principal directions obtained for the NCEP data. They are used to form feature
vectors for GCM data. Each feature vector (representing a month) can be visualized
as an object having a specific location in multidimensional space, whose dimen-
sionality is defined by the number of PCs.

The feature vectors of the NCEP data are partitioned into two clusters (depicting
wet and dry seasons) using the K-means cluster analysis. The clustering should be
such that the feature vectors within each cluster should be close to each other as
possible in space, and as far as possible in space from the feature vectors of the
other clusters. The distance between each pair of feature vectors in space is esti-
mated using Euclidian measure. Subsequently, each feature vector of the NCEP
data is assigned a label that denotes the cluster (season) to which it belongs.
Following this, the feature vectors prepared from GCM data (past and future) are
labeled using the nearest neighbor rule to get the past and future projections for the
seasons. As per this rule, each feature vector formed using the GCM data is
assigned the label of its nearest neighbor among the feature vectors formed using
the NCEP data. To determine the nearest neighbors for this purpose, the distance
between each pair of NCEP and GCM feature vectors is computed using Euclidean
measure. Comparison of the labels of contemporaneous feature vectors formed
from NCEP and GCM past data is useful in checking if the GCM simulations could
represent the regional climate fairly well, during the past period.

Optimal Tng1 is identified as a value for which the wet and dry seasons are
formed for the study region using NCEP data, which are well correlated with the
possible true seasons for the region. For this analysis, the plausible true wet and dry
seasons in the study region are identified using a technique based on Truncation
Level (TL). In this technique, the dry season is considered as consisting of months
for which the estimated Theissen Weighted Precipitation (TWP) values for the
region are below the specified TL, whereas the wet season is considered as con-
sisting of months for which the estimated TWP values are above the TL. Herein,
two options have been used to specify the TL. In the first option, the TLs are chosen
as percentages of the observed Mean Monthly Precipitation (MMP) (70–100% of
MMP at intervals of 5%). In the second option, the TL is chosen as the mean
monthly value of the actual evapotranspiration in the river basin. The actual
evapotranspiration is obtained for Krishna basin from Gosain et al. (2006). The
potential predictors corresponding to optimal Tng1 are noted.

Stratification of Predictors for Downscaling Surface Temperature: The
surface temperature in a region is dominated by local factors such as evaporation,
sensible heat flux and vegetation in the region. Therefore the potential predictor
variables influencing surface temperature in the study region are stratified based on
the location of grid points (land and/or ocean) corresponding to the variables, to
assess the impact of their use on downscaled temperature. Out of the nine 2.5°
NCEP grid points considered in the study region, six are above land and the
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remaining three are over the sea. As there are no distinct seasons based on tem-
perature, seasonal stratification as in the case of precipitation is not relevant.

Support Vector Machine (SVM) Downscaling Model: For downscaling the
predictand, the m1 probable predictors at each of the NCEP grid points are con-
sidered as probable predictors. Thus, there are m3 (= m1 � number of NCEP grid
points) probable predictors. The potential predictors (m4) are selected from the m3

probable predictor variables. For this purpose, the cross-correlations are computed
between the probable predictor variables in NCEP and GCM data sets, and the
probable predictor variables in NCEP data set and the predictand. A pool of
potential predictors is then identified for each season by specifying threshold values
for the computed cross-correlations. The threshold value for cross-correlation for
variables in NCEP and GCM data sets are denoted by Tng2, whereas the same
threshold for NCEP variables and predictand are depicted as Tnp. The Tnp should be
reasonably high to ensure choice of appropriate predictors. Similarly, Tng2 should
also be reasonably high to ensure that the predictor variables used in downscaling
are realistically simulated by the GCM for the past so that the future projections of
the predictand obtained using GCM data would be acceptable.

The downscaling model is calibrated to capture the relationship between NCEP
potential predictors and the predictand. The data on potential predictors is first
standardised for each season or location separately for a baseline period. Such
standardization is widely used prior to statistical downscaling to reduce systemic
bias (if any) in the mean and variance of the predictors in the GCM data, relative to
the predictors in the NCEP reanalysis data (Wilby et al. 2004). This step typically
involves subtraction of mean and division by the standard deviation of the predictor
for the baseline period. The standardized NCEP predictor variables are then pro-
cessed using PCA to extract PCs which are orthogonal and which preserve more
than 98% of the variance originally present. A feature vector is formed for each
month using the PCs. The feature vector forms the input to the SVM model, and the
contemporaneous value of predictand is its output. The PCs account for most of the
variance in the input and also remove the correlations, if any, among the input data.
Hence, the use of PCs as input to a downscaling model makes it more stable and it
also reduces the computational load.

To develop the SVM downscaling model, the feature vectors obtained are par-
titioned into a training set and a testing set. The partitioning was initially carried out
using multifold cross-validation procedure in an earlier work (Haykin 2003; Tri-
pathi et al. 2006). In this procedure, about 70% of the feature vectors are randomly
selected for training the model, and the remaining 30% is used for validation.
However, in this study the multifold cross-validation procedure is found to be
ineffective as the time span considered for analysis is small and more extreme
events occurred in the past decades than in the recent decade. Therefore, the feature
vectors are formed from approximately first 70% of the available data, are chosen
for calibrating the model and the remaining feature vectors are used for validation.
The Normalized Mean Square Error (NMSE) is used as an index to assess the
performance of the model. The training of SVM involves selection of the model
parameters r and C. The width of Radial Basis Function (RBF) kernel r gives an

186 6 Case Studies



idea about the smoothness of the derived function whereas C controls the trade-off
between errors of the SVM on training data. Smola et al. (1998) explained the
regularisation capability of RBF kernel and have shown that a large kernel width
acts as a low-pass filter in the frequency domain. It attenuates the higher order
frequencies, resulting in a smooth function. Alternately, RBF with a small kernel
width retains most of the higher order frequencies leading to an approximation of a
complex function by the learning machine. In this study, grid search procedure
(Gestel et al. 2004) is used to find the optimum range for each of the parameters.
Subsequently, the optimum values of the parameters are obtained from within the
selected ranges, using the stochastic search technique of genetic algorithm (Haupt
and Haupt 2004). The feature vectors obtained from GCM simulations are pro-
cessed through the validated SVM downscaling model to obtain future projections
of the predictand, for each of the four emission scenarios considered (i.e., SRES
A1B, A2, B1 and COMMIT). Subsequently, for each scenario, the projected values
of the predictand are chronologically divided into five parts (2001–2020, 2021–
2040, 2041–2060, 2061–2080 and 2081–2100) to determine the trend in the pro-
jected values of the predictand. The procedure is illustrated as flowchart in
Fig. 6.10. Relevant results and discussion are as follows:

Predictor Selection: For downscaling precipitation, the predictor variables are
screened on the twin basis, i.e., monsoon rain is dependent on dynamics through
advection of water from the surrounding seas and thermodynamics through effects
of moisture and temperature, both of these can modify the local vertical static
stability. In a changed climate scenario, both the thermodynamic and dynamic
parameters may undergo changes. In the present study, probable predictor variables,
which incorporate both the effects, are chosen. Wind during southwest monsoon
season advect moisture into the region while temperature and humidity are asso-
ciated with local thermodynamic stability and hence these parameters are consid-
ered as predictors. Meridional wind has more local effects, and together these winds
are responsible for convergence of moisture and hence related to precipitation.
Temperature affects the moisture holding capacity of the wind and the pressure at a
location. The pressure gradient affects the circulation which in turn affects the
moisture of the place and hence the precipitation. Higher precipitable water in the
atmosphere means the presence of more moisture, which in turn causes statically
unstable atmosphere leading to more vigorous overturning, resulting in more pre-
cipitation. Lower pressure leads to huge winds and more precipitation. At 925 mb
pressure height, the boundary layer (near surface effect) is important. A pressure of
850 mb has a low-level response to regional precipitation. The 200 mb pressure
level depicts the global scale effects. Temperatures at 700 and 500 mb represent the
heating process of the atmosphere due to monsoonal precipitation. Monsoon pre-
cipitation is maximum at mid-troposphere for a constant pressure height. Geopo-
tential height represents the pressure variation, which reflects the flow, and in turn
moisture changes. Due to these reasons, fifteen probable predictors are extracted
from the NCEP reanalysis and CGCM3 data sets.

For downscaling temperature, large-scale atmospheric variables, such as air
temperature, zonal and meridional wind velocities at 925 mb are considered as
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Fig. 6.10 Methodology followed for SVM downscaling. Notations in figure: PCs and PDs denote
principal components and principal directions, respectively. Tng2 is the threshold between
predictors in NCEP and GCM data sets. Tnp denotes the threshold between predictors in NCEP
data and the predictand (Ta 925), 700 mb (Ta 700), 500 mb (Ta 500) and 200 mb (Ta 200)
pressure levels, geopotential height at 925 mb (Zg 925), 500 mb (Zg 500) and 200 mb (Zg 200)
pressure levels, specific humidity at 925 mb (Hus 925) and 850 mb (Hus 850) pressure levels,
zonal (Ua) and meridional wind velocities (Va) at 925mb (Ua 925, Va 925) and 200mb (Ua 200,
Va 200) pressure levels, precipitable water (prw) and surface pressure (ps)
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predictors. Surface flux variables, namely latent heat, sensible heat, shortwave
radiation and longwave radiation fluxes are also considered for downscaling tem-
perature, as these factors control the temperature of the Earth’s surface. The
incoming solar radiation heats the surface, while latent heat flux, sensible heat flux,
and longwave radiation cool the surface. Due to these reasons, seven probable
predictors are extracted from the NCEP reanalysis and CGCM3 data sets to
downscale temperature. The chosen predictors are air temperature, zonal, and
meridional wind velocities at 925 mb, and four fluxes: Latent Heat (LH), Sensible
Heat (SH), Short Wave Radiation (SWR), and Long Wave Radiation (LWR).

SVM Downscaling Models: From the selected potential predictors for each
season, PC are extracted to form feature vectors. These feature vectors are input to
develop SVM downscaling model. For obtaining the optimal range of each of the
SVM parameters (kernel width r, and penalty term C), the grid search procedure is
used. Typical results of the domain search to estimate the optimal ranges of the
parameters for wet and dry seasons are shown in Fig. 6.11 and the range of r and
C having the least NMSE is selected as the optimum parameter range. The NMSE
values are indicated in the bar code provided in Fig. 6.11. Using genetic algorithm,
the optimum parameter is selected from the parameter range. Thus, the optimal
values of SVM parameters C and r obtained are 550 and 50 for the wet season, and
850 and 50 for the dry season, respectively. The optimal values of SVM parameters
C and r for Tmax, are 2050 and 50 while for Tmin, these are 1050 and 50,
respectively. The results of downscaling are compared to observed variables as
shown in Fig. 6.12.

Projected Future Scenarios: The future projections of three meteorological
variables (Precipitation, Tmax and Tmin) were obtained for each of the four SRES
scenarios (A1B, A2, B1 and COMMIT) using the developed SVM downscaling
models. The projections were subsequently divided into five 20-year intervals
(2001–2020, 2021–2040, 2041–2060, 2061–2080, and 2081–2100). The mean
monthly values of observed and projected precipitation were estimated using the
Theissen Polygon technique. For each of the four SRES scenarios, average of the

Fig. 6.11 Illustration of the domain search performed to estimate optimal values of kernel width
(r) and Penalty (C) for the SVM, for dry and wet seasons
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Fig. 6.12 Comparision of the monthly observed meteorological variable with the corresponding
simulated variable using SVM downscaling model for NCEP data a Thiessen weighted
precipitation (TWP) b Tmax c Tmin
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mean monthly values of Theissen-weighted Precipitation, Tmax, Tmin are presented
as bar plots, for all the five 20-year intervals in Figs. 6.13, 6.14 and 6.15,
respectively. These plots facilitate in assessing the projected changes in each
meteorological variable across a period of 2001–2100 at 20 years interval with

Fig. 6.13 Mean monthly precipitation for the period 1971–2100 for the four scenarios considered
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respect to the past (20C3M), for each SRES scenario. From the figures, it is
observed that Precipitation, Tmax and Tmin tend to increase in future for A1B, A2
and B1 scenarios, whereas no trend is discerned with the COMMIT. The projected
increase is high for A2 scenario, whereas least for B1 scenario. This is because

Fig. 6.14 Mean monthly Tmax for the period 1978–2100 for the four scenarios considered
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among the scenarios considered, the scenario A2 has the highest concentration of
carbon dioxide (CO2) equal to 850 ppm whereas the values for A1B, B2 and
COMMIT scenarios are 720 ppm, 550 ppm and �370 ppm, respectively. Rise in
the concentration of CO2 in atmosphere causes the Earth’s average temperature to
increase, which in turn causes an increase in evaporation especially at lower

Fig. 6.15 Mean monthly Tmin for the period 1978–2100 for the four scenarios considered
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latitudes. The evaporated water would eventually precipitate. In the COMMIT
scenario, where the emissions are same as in the year 2000, no significant trend in
the pattern of projected future precipitation could be discerned. It is observed that
the change from past to future is gradual, and the change is high for A1B scenarios,
while it is the least for B1 scenario. In A2 scenario, the change is much higher and
different from A1B. In the case of COMMIT, no clear pattern change is visible.
Change in the variables is minimum in the first 20-year interval (2001–2020) and
maximum in the last 20-year interval (2081–2100).

6.3.2.2 Results and Discussion [Downscaling of Climate
Variables Using Multiple Linear Regression
(Akshara et al. 2017)]

Lower Godavari Basin was spread into five grid points based on the grid resolution
available for the IMD data, i.e., 17.5 N-80.5 E, 17.5 N-81.5 E, 18.5 N-17.5 E,
18.5 N-80.5 E, and 18.5 N-82.5 E. Tmax, Tmin and precipitation are selected as
predictands in downscaling methodology. Historical monthly data of Tmax, Tmin and
precipitation for all the five grids were obtained from IMD, for the period 1969–
2005 (baseline period). Accordingly, predictor variables are also chosen (Mujumdar
and Nagesh Kumar 2012; Akshara et al. 2017). The predictor variables of NCEP/
NCAR from 1969 to 2005 are used to develop the relationship with observed Tmax,
Tmin and precipitation obtained from IMD. The relationship obtained by Multiple
Linear Regression (MLR) is used to predict the monthly rainfall using the surface
predictors obtained from GCM outputs. Fifteen regression equations are formulated
with the three predictand variables, Tmax, Tmin and precipitation and five grids for
the study area.

The standardized GCM predictors for the period 2006–2100 for both RCP 4.5
and RCP 6.0 are used in the regression equations for predicting future Tmax, Tmin

and precipitation values. Three time periods 2020s (2020–2029), 2050s (2050–
2059) and 2080s (2081–2089) were considered in order to observe the changes
occurring during these periods. Related results for grid 1 are as follows:

RCP 4.5: Fig. 6.16 shows that there is a significant change in monthly tem-
peratures for future decades compared to the baseline period (1969–2005); Trend
followed in future time periods seems parallel and the change in temperature from
2020 to 2050 is high compared to changes during 2050–2080; The maximum Tmax

in the period 2020 is 44 °C, 2050 is 54 °C and 2080 is 57 °C.
RCP 6.0: Similar trend as that of RCP 4.5 is observed for RCP 6.0 as shown in

Fig. 6.17. Change in temperature from 2050 to 2080 is larger than the change in
temperature from baseline to 2020 as well as 2020–2050; Tmax value for 2080 is
nowhere comparable to either 2020 or 2050.

RCP 4.5: The projected Tmin as observed from Fig. 6.18 implies that the tem-
peratures tend to decrease further from February to August in 2020 compared to the
baseline and shows a significant increase in 2050 and 2080; trend followed in 2050
and 2080 is almost similar.
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Fig. 6.17 Tmax trend for RCP 6.0 for different time periods for grid 1 (17.5 N-80.5 E)
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Fig. 6.18 Tmin trend for RCP 4.5 for different time periods for grid 1 (17.5 N-80.5 E)
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Fig. 6.16 Tmax trend for RCP 4.5 for different time periods for grid 1 (17.5 N-80.5 E)
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RCP 6.0: Fig. 6.19 shows the same trend for Tmin for RCP 6.0 as that of RCP
4.5 and the maximum value reached in 2080 is around 38 °C compared to 26 °C in
the baseline period which clearly shows the effect of global warming; Change in
temperature from 2050 to 2080 is almost similar to the change from 2020 to 2050.

RCP 4.5: It is observed from Fig. 6.20 that there is minimum rainfall in January
and December and maximum in July and August; no similarities are observed in the
pattern of rainfall over years; the change in rainfall is significant from baseline
period to 2020 as well as 2020–2050.

RCP 6.0: It is observed from Fig. 6.21 that precipitation is increasing in the
future. Heavy rainfall may occur in July and August. Maximum rainfall observed in
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Fig. 6.19 Tmin trend for RCP 6.0 for different time periods for grid 1 (17.5 N-80.5 E)
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Fig. 6.20 Precipitation trend for RCP 4.5 for different time periods for grid 1 (17.5 N-80.5 E)
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2020, 2050 and 2080 are 9 mm/month, 14 mm/month and 19 mm/month,
respectively.

Similar observations were made for other grids also. Trend of the results are as
follows:

• Tmax for all the grids on an average has increased by 4–5 °C from 2020s to
2050s and 3–4 °C from 2050s to 2080s. Maximum temperatures are observed in
May and June. A change in trend is observed with respect to the baseline period
in pre monsoon and post monsoon temperatures. A slight decrease was observed
in pre monsoon temperatures and a considerable increase in post monsoon
temperatures resulting in an increase of warmer periods.

• Future Tmin is in the range of 8–16 °C (minimum) and 36–40 °C (maximum) for
all five grids considered.

• The region will become gradually warmer in the future periods and the warming
up is generally higher during the post monsoon and summer. No noticeable
difference between RCP 4.5 and RCP 6.0 is observed except for slight variations
of temperatures in few months.

• Precipitation predictions show that there is a significant increase in the amount
of precipitation. Precipitation for all the grids on an average has increased from
8–10 mm/month in the baseline period to 20–25 mm/month in 2080s. Con-
sidering the RCP’s, there is no noticeable difference between RCP 4.5 and RCP
6.0 except for slight variations of precipitation in few months. It is observed that
the amount of precipitation will be high in June, July and August compared to
remaining months of the year and there is very less amount of precipitation in
January and December.
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Fig. 6.21 Precipitation trend for RCP 6.0 for different time periods for grid 1 (17.5 N-80.5 E)
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6.3.3 Summary and Conclusions

The following main conclusions are emanated from the study:

• Precipitation, Tmax and Tmin are projected to increase in future for A1B, A2 and
B1 scenarios, whereas no trend is discerned with the COMMIT for Malaprabha.
The River catchment projected increase in predictands is high for A2 scenario
and is less for B1 scenario.

• The region will become gradually warmer in the future and the warming up is
generally higher during the post monsoon and summer for Lower Godavari
Basin whereas precipitation predictions show that there will be a significant
increase in the amount of precipitation in the future.

6.4 Climate Change Impact on Semi-arid Catchment
Water Balance Using an Ensemble of GCMs3

Summary: Impact of climate change on the Water balance for a Semi-arid
catchment in India is evaluated. Rainfall and hydro-meteorological variables for
current (20C3M from 1981 to 2000) and two future time periods: mid of the
twenty-first century (2046–2065) and end of the century (2081–2100) are simulated
using Modified Markov Model-Kernel Density Estimation (MMM-KDE) and
k-nearest neighbor downscaling models. An ensemble of five GCMs
(MPI-ECHAM5, BCCR-BCM2.0, CSIRO-mk3.5, IPSL-CM4 and MRI-CGCM2)
is used. Hydrologic simulations for current as well as future climates are carried out
using ArcSWAT hydrologic model. The results showed a marginal reduction in
runoff ratio and annual streamflow toward the end of the century. Increased tem-
perature and evapotranspiration project an increase in the irrigation demand toward
the end of the century. Rainfall projections for the future show marginal increase in
the annual average rainfall. Short and moderate wet spells are projected to decrease,
whereas short and moderate dry spells are projected to increase in the future.
Projected reduction in streamflow and groundwater recharge along with the increase
in irrigation demand is likely to aggravate the water stress in the region for the
future scenario.

3Adopted from
Reshmidevi TV, Nagesh Kumar D, Mehrotra R, Sharma A (2017) Estimation of the climate

change impact on a catchment water balance using an ensemble of GCMs, Journal of Hydrology,
Elsevier, doi:10.1016/j.jhydrol.2017.02.016, http://www.sciencedirect.com/science/article/pii/
S0022169417300963
With permission from the publishers. More details are available in the original publication.
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6.4.1 Problem Description, Case Study and Data (Reshmidevi
et al. 2017)

Objectives chosen are as follows:

• Exploring ensemble of five GCMs, Modified Markov Model-Kernel Density
Estimation (MMM-KDE) and k-nearest neighbor downscaling models and
ArcSWAT to evaluate the hydrologic impact of climate change for a semi-arid
Malaprabha catchment in India.

Details of Malaprabha are presented in case study 6.3. Digital elevation model
(DEM), digital soil map and land use/-land cover (LU/LC) map are used to rep-
resent the catchment heterogeneity for the hydrologic analysis. DEM of Malaprabha
catchment at 30 m spatial resolution is obtained from Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) Global DEM (GDEM) data
set released by the Japan’s Ministry of Economy, Trade and Industry (METI) and
NASA. Multi-season Landsat-7 ETM + imageries are used to extract LU/LC map
of the catchment. In this study, a combination of visual and digital image inter-
pretation technique is used to extract the LU/LC map from the satellite imagery
(Reshmidevi and Nagesh Kumar 2014). Seven main LU/LC classes’ viz., water,
agricultural land, barren/fallow land, rocky area, forest, urban settlement and grass
land are extracted in the first step. Appropriate bands that show unique band ratio
are identified for each land cover class. A combination of visual interpretation and
unsupervised classification using band ratio (Lillesand et al. 2004) is used to
identify the seven major land cover classes. The second level classification, i.e.,
classification of the crop types is achieved using multi-temporal satellite images
(Dutta et al. 1998) representing different cropping seasons. Depending upon the
presence or absence of crop in each image, different crop types are classified. Field
information and the district statistical information about the crop production are
used to substantiate the classification.

Soil map of the area is obtained from the National Bureau of Soil Survey and
Land Use Planning, Nagpur, India. Monthly inflow into the Malaprabha reservoir
for the period 1973–2000 is obtained from the Water Resources Development
Organisation, Bangalore, India and is used as the observed streamflow data to
calibrate the hydrologic model.

Rainfall and meteorological variables, viz. Tmax, Tmin, relative humidity and
wind speed at daily time steps are used for hydrologic simulation. Daily rainfall
data at these nine stations in the catchment are available for the period 1971–2000,
whereas observed meteorological data are available only for a short period 1993–
2000. Mass curve analysis of the rainfall data was performed, from which the
period 1993–2000 was found to be insufficient to represent the entire study period
1971–2000. Therefore, rainfall and meteorological variables are downscaled from
the National Centers for Environmental Prediction (NCEP) reanalysis data for the
period 1971–2000. In addition, for historic and future time periods, rainfall and
hydro-meteorological variables are downscaled from multiple GCMs. Modified
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Markov Model–Kernel Density Estimation (MMM–KDE) model (Mehrotra and
Sharma 2010) is used to downscale rainfall from large-scale atmospheric variables
and the k-nearest neighbor resampling technique is used to downscale the meteo-
rological variables to the single location. Daily data of the atmospheric variables is
obtained from five GCMs from the World Climate Research Programme’s Coupled
Model Intercomparison Project phase 3 (CMIP3), namely, BCCR-BCM2.0,
MRI-CGCM2, CSIRO-mk3.5, MPI-ECHAM5, and IPSL-CM4. The
twentieth-century climate experiment (20C3M) for the period 1981–2000 is
selected to represent the historic time period. Hydrologic impact of climate change
is also studied for two 20 year future time periods: 2046–2065 (referred hereafter as
mid of the century) to represent the mid-twenty-first century, and 2081–2100 (re-
ferred hereafter as end of the century) to represent the end of twenty-first century.

For each time period, required atmospheric variables at grid nodes over the
catchment are extracted from a single continuous (transient) run corresponding to
SRES A2 emission scenario. Hydrologic model ArcSWAT is used to simulate the
catchment hydrologic responses for historic and two future time periods under the
A2 scenario.

6.4.2 Results and Discussion

Statistical Downscaling of Rainfall and Meteorological Variables: The variable
convergence score (Johnson and Sharma 2009) is used to identify the GCM
atmospheric variables for use in downscaling daily rainfall. These variables include
Mean Sea Level Pressure (MSLP), North–South (N–S) gradient of MSLP, Tem-
perature Depressions (TD) at 850, 700, 500 hPa, N–S gradient of TD at 850 hPa, U
and V components of the wind velocities at 850 hPa, Equivalent potential tem-
perature (EPT) at 850 hPa, N–S gradient of the Geopotential Height (GPH) at
700 hPa, Specific Humidity (SPH) at 500 hPa, N–S gradient of SPH at 500 hPa
and EW gradient of SPH at 850 hPa (Mehrotra et al. 2013). The selected GCM
atmospheric variables for 20C3M (1981–2000) and future time periods (2046–2065
and 2081–2100) are then bias-corrected by adopting a nested bias correction pro-
cedure (Johnson and Sharma 2012).

ArcSWAT Calibration and Validation: ArcSWAT is applied at daily time
scale over the study area. The catchment is first divided into 12 sub-basins and each
subbasin is further divided into Hydrological Response Units (HRUs) using the
LU/LC, soil and slope information. Irrigated areas in the catchment are identified
and the irrigation application is defined when plant water stress exceeds a threshold
of 0.95. Daily values of rainfall at nine stations and hydrometeorological variables
at the single location are downscaled from the reanalysis data and are used for
model calibration and validation. Simulated discharge is compared with the
observed monthly streamflow data. The period 1971–2000 is selected in this study,
out of which the first two years are used as the warm-up period for the model and
the period 1973–2000 is used for model calibration and validation. Multiple real-
izations of the downscaled rainfall and climate variables produced by MMM–KDE
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technique is used in the hydrologic modeling. In order to derive stable values of
model parameters during calibration, concatenated data set is formed using multiple
realizations. From the ensemble of 20 realizations, first nine realizations are used
for calibration and the remaining 11 realizations are used for model validation. Each
realization being of 28 years (excluding the warm-up period) total length of the
calibration run is thus 252 years.

Model sensitivity analysis is performed using Latin Hypercube (LH) and
One-factor-At-a-Time (OAT) techniques included in the ArcSWAT (Van Griens-
ven, 2005) and the sensitive parameters are manually calibrated. Capability of the
model to accurately produce Flow-Duration Curve (FDC) for the annual and
monsoon (June–September) streamflows is considered as the evaluation criteria
during calibration. Using monthly streamflow simulations from the model, annual
and monsoon streamflows are calculated for each realization and the average FDCs
for the annual and monsoon periods are generated. Deviation of the simulated FDC
from the observed FDC is measured using Mean Absolute Relative Error (MARE).

Multi-model Ensemble Projection under the Future Scenario: Ensemble of
simulations from the hydrologic model, obtained by using rainfall and meteoro-
logical data from the five GCMs is used to evaluate the hydrologic impact of
climate change in the catchment by comparing hydrologic responses in the future
time periods with that obtained under 20C3M scenario. When the temporal periods
do not overlap, FDCs are commonly used for comparing the flow regimes in the
hydrologic analyses (Sugawara 1979; Yu and Yang 2000; Westerberg et al. 2011).
Since the temporal periods of the 20C3M and the future scenarios do not overlap,
FDCs of annual and monsoon flows are used here for the comparison.

A weighted ensemble average technique is used to derive ensemble average
streamflow simulation from the five GCMs. ArcSWAT is run using the downscaled
rainfall and meteorological data from each GCM, and FDCs for the annual and
monsoon flows are generated. Simulated FDCs for 20C3M scenario are then
compared against FDCs of the observed streamflow data for the same period.
Deviation of the simulated FDCs from the observed FDC, expressed in terms of
Mean Absolute Relative Error (MARE) is used as the evaluation criterion. For each
hydrologic simulation (using input from different GCMs), MARE of the annual and
monsoon FDCs are estimated and the mean of these two values is used to derive the
weight for each simulation.

GCMs simulating the historic scenario satisfactorily are expected to be capable
of simulating the future scenarios reasonably well (Reichler and Kim 2008; Errasti
et al. 2010). Therefore, the weights derived for the hydrologic simulations under
20C3M scenario are adopted for the future time periods as well. Hydrologic
responses of the catchment under the future time periods (mid of the century and
end of the century), are simulated by using the downscaled rainfall and meteoro-
logical variables from each GCM, and the FDCs of both annual and monsoon flows
are generated. Further, using the set of weights derived from the 20C3M scenario,
weighted average FDCs for the future scenarios are generated. Future projections
are compared with 20C3M simulations to quantify the streamflow variation under
future scenarios. A flowchart of the methodology is shown in Fig. 6.22.

6.4 Climate Change Impact on Semi-arid Catchment Water … 201



Hydrologic simulations from the five GCMs are aggregated to find variations in
other water budget components, viz. Potential Evapotranspiration (PET), Actual
Evapotranspiration (ET), irrigation demand and groundwater recharge in the future
time periods.

Test for Statistical Significance: Statistical significance of projected changes in
the mean annual and monsoon streamflows is evaluated using non-parametric
rank-based, Mann–Whitney test (Wilcoxon 1945; Mann and Whitney 1947). In this
study, the weighted average annual and monsoon streamflow series of the future
time periods are compared against the 20C3M scenario and the test statistic is
derived. This test statistic is used to find the corresponding a, which indicates the
statistical significance of difference between the medians of the two streamflow
series compared.

Hydrologic Responses in the Future: DEM, soil map and LU/LC map of the
Malaprabha catchment are used as spatially referenced input to ArcSWAT to
simulate the catchment hydrological processes. The model is run at daily time scale
using downscaled rainfall and hydrometeorological data from the reanalysis data
set. Streamflow simulations at daily time scale are aggregated to monthly scale, and
are compared with the observed data. MARE is found to be less than 0.1 both for

Fig. 6.22 Schematic representation of the methodology for estimating hydrologic impacts of
climate change
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calibration and validation phases for annual and monsoon flows. Further, monthly
streamflow data series is generated taking average of 20 realizations (used for
calibration and validation), and the same is compared with the observed monthly
streamflow data in Fig. 6.23. Simulated monthly streamflow series matches well
with the observed data, albeit slight underestimation of the peak flow values. Nash–
Sutcliffe Efficiency (NSE) coefficient is found to be 0.82, which is considered to be
excellent according to the general performance rating for monthly streamflow
recommended by Moriasi et al. (2007). Since, a simple averaged monthly flow is
used as the benchmark model in NSE, higher values of NSE may be due to the high
seasonality of the monthly data. Therefore, as recommended by Schaefli and Gupta
(2007), an additional index NSEB is also used in this study to evaluate the model
performance. Long-term average streamflow for each month is used as the
benchmark model to calculate NSEB. During the calibration period, NSEB is
obtained as 0.74 for the monthly streamflow simulations. Higher values of NSE and
NSEB indicate better performance of the current hydrologic model compared to the
selected benchmark models.

The calibrated hydrologic model is used to simulate hydrological responses
under 20C3M scenario. Simulated FDCs of annual and monsoon flows obtained
using the downscaled rainfall and meteorological data from the five GCMs are
compared with the FDCs of the observed data in Fig. 6.24. Table 6.5 shows the
MARE of the annual and monsoon flows for the five GCMs and the corresponding
weights. Using the set of weights, weighted average FDC for the 20C3M scenario is
derived, which is also plotted in Fig. 6.24. The weighted average annual FDC
matches well with the observed data with the exception of some underestimation of
moderate and low monsoon flows. This may be mainly due to the small differences
between the observed and the downscaled rainfall data in terms of annual wet days
and the amount of rainfall per wet day (Mehrotra et al. 2013).

Since bias-corrected GCM outputs are used in the downscaling, such variations
may be due to systemic errors from the downscaling model and therefore, may
persist for the future scenarios as well. Hence, to quantify the future changes in the

Fig. 6.23 Comparison of the monthly streamflow hydrograph simulated using the rainfall and
meteorological variables downscaled from the NCEP reanalysis data with the observed data
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streamflow, hydrologic responses in the future time periods are compared with the
weighted ensemble average streamflow for the 20C3M scenario.

Figure 6.25 presents the weighted ensemble average FDCs of the annual and
monsoon flows for the 20C3M, mid of the century and end of the century scenarios,
from which some interesting observations can be drawn. Moderate (corresponding
to 40–60% exceedance probability) and high (corresponding to 10% exceedance
probability) streamflows at both annual and monsoon timescales show nominal
increases for the mid of the century scenario, whereas low flows (corresponding to
90% exceedance probability) show some reduction in the future (Fig. 6.25a, b).
Streamflow projections for the end of the century show an overall reduction in
monsoon flows as seen from Fig. 6.25b. This may be attributed to the changes in
the rainfall pattern projected toward the end of the century and an increase in the
evaporation demand. Study conducted by Mehrotra et al. (2013) shows a plausible
reduction in the number of short (2–4 days duration) and moderate (5–7 days
duration) wet spells, whereas an increase in the rainfall amounts from short,
moderate and long (more than 7 days duration) wet spells over the study area by the

Fig. 6.24 Simulated flow-duration curves of the a Annual and b Monsoon flows for the 20C3M
scenario

Table 6.5 MARE values of the GCMs for the 20C3M scenario and the corresponding weights

MRI-CGCM2 BCCR-BCM2.0 CSIRO-mk3.5 IPSL-CM4 MPI-ECHAM5

Annual
MARE

0.039 0.081 0.095 0.063 0.068

Monsoon
MARE

0.066 0.064 0.109 0.132 0.058

Weight 0.28 0.20 0.14 0.15 0.23
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mid of the century. On the other hand, short (2–9 days duration) and moderate (10–
18 days duration) dry spells are projected to increase under the future scenarios
(Mehrotra et al. 2013). Projected increase in the dry spells is likely to cause a
reduction in the annual and monsoon low flows.

Using the weighted ensemble simulation, mean annual and monsoon flows are
calculated for mid of the century and end of the century scenarios. In addition,
annual and monsoon streamflow values corresponding to 10, 90 and 95% ex-
ceedance probability are also estimated from the FDCs, which are given in
Table 6.6. Since streamflow values with less than 10% exceedance probability
indicate peak flows, years corresponding to the peak flows are called wet years. On
the other hand, 90 and 95% dependable flows indicate lower annual flows, and the
years in which annual average flow corresponds to 90% or 95% dependable flows
are considered as the low flow years or dry years. The results show an increase in
the average annual and monsoon flows in the mid of the century scenario. The study
also shows an increase in peak flows as indicated by an increase in the annual and
monsoon streamflow values corresponding to 10% exceedance probability.
Accordingly, in the mid of the century, more number of years are projected to have
annual streamflow in excess of the current peak flow corresponding to 10%
exceedance probability. In other words, more number of wet years are projected
under the mid of the century scenario. Further, a reduction in the 90 and 95%
dependable flows indicate an increase in the number of dry years. In other words,
frequencies of both wet and dry years are projected to increase toward the mid of
the century. Some of the previous studies analysing the historic rainfall in the
twentieth century have also reported an increase in the wet and dry years in the
changing climate conditions (Changnon 1987; Sousa et al. 2009).

Fig. 6.25 Weighted ensemble average projections of the a Annual and b Monsoon streamflows
for the 20C3M, mid and end of the century scenarios
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Table 6.6 Annual and monsoon flow statistics simulated using the five GCMs for the 20C3M
scenario and the future time periods for the A2 scenario

GCM Scenario Flow statistics (M.cu.m)a

Annual Monsoon

1 2 3 4 5 6 7 8

MRI-CGCM2 20C3M 1028.5 1427.2 673.1 630.1 796.6 1143.9 480.4 425.8

Mid of the
century

1038.1 1441.8 668.3 605.8 793.1 1156.3 467.0 404.8

End of the
century

1064.3 1459.1 736.7 685.1 768.5 1096.9 494.9 444.6

BCCR-BCM2.0 20C3M 1050.9 1492.1 616.3 551.4 825.5 1233.9 446.0 381.2

Mid of the
century

1145.0 1809.5 508.2 432.8 871.4 1434.5 307.9 246.5

End of the
century

1145.5 1560.6 759.3 703.6 924.1 1313.4 574.8 522.6

CSIRO-mk3.5 20C3M 1002.2 1490.0 534.7 445.8 786.0 1239.9 379.8 305.9

Mid of the
century

991.1 1449.0 533.7 457.5 791.8 1203.5 383.4 314.6

End of the
century

795.3 1251.7 373.2 332.2 610.8 1031.4 242.3 205.4

IPSL-CM4 20C3M 964.0 1363.5 584.2 509.6 744.4 1098.0 412.8 346.6

Mid of the
century

994.5 1438.7 582.2 535.1 777.6 1170.2 388.4 334.4

End of the
century

986.4 1389.2 593.6 537.5 731.7 1097.3 401.0 343.8

MPI-ECHAM5 20C3M 1057.3 1517.8 643.8 598.0 838.2 1242.2 461.4 414.3

Mid of the
century

1087.0 1574.9 657.4 553.9 864.3 1292.1 489.3 401.9

End of the
century

987.7 1392.0 587.9 546.7 749.7 1110.8 394.9 350.9

Weighted
average

20C3M 1026.3 1460.5 622.1 562.8 802.7 1191.4 444.8 385.4

Mid of the
century

1057.6 1546.6 601.8 527.6 822.7 1252.1 416.7 349.2

End of the
century

1013.0 1424.0 633.9 584.7 767.4 1134.2 437.9 389.6

a(1) Average annual flow (2) Annual streamflow corresponding to 10% exceedance probability
(3) 90% dependable annual flow (4) 95% dependable annual flow (5) Average monsoon flow
(6) Monsoon streamflow corresponding to 10% exceedance probability (7) 90% dependable
monsoon flow (8) 95% dependable monsoon flow
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Streamflow simulations for the end of the century scenario show some reduction
in mean annual and monsoon flows corresponding to 10% exceedance probability,
whereas no significant changes in the lower flows (90 and 95% dependability). This
implies that frequency of wet years is likely to decrease toward the end of the
century. These changes, however, are insignificant as indicated by the Mann–
Whitney test. The test statistics and significance levels of the percentage changes in
the mean annual and monsoon flows are presented in Table 6.7.

Although the projected changes in mean annual and monsoon flows are not
significant, the intra-annual variation of flows needs to be analyzed. Box-whisker
plots of the weighted ensemble average monthly flows for the 20C3M and the two
future scenarios are shown in Fig. 6.26. These plots show some variations in the
monthly flows during the monsoon period. Median and the 75 percentile flows are
projected to increase in June while some reduction is noted during July and August
under the future scenario. Close to 25%, reduction in the streamflow is observed in
July toward the end of the century. Being the peak sowing period for the Kharif
crops in India, any drop in the water availability in July in the future scenario may
have an adverse impact on the agriculture.

Climate Change Impact on Water Budget Components: Monthly hydrologic
simulations of the catchment under the 20C3M and future scenarios are used to
analyze the changes in other catchment water budget components as well.

Table 6.7 Mann–Whitney Test Statistics for the Percentage Change in the Mean Annual and
Monsoon Flows in the Future

Mid of the century End of the century

Annual flow Monsoon flow Annual flow Monsoon flow

Test statistic 0.19 0.10 0.10 0.10

Significance level (a) 0.849 0.92 0.92 0.92

Fig. 6.26 Comparison of the weighted average monthly flows for the 20C3M scenario and the
future time periods. In the box plot, upper and lower hinges represent the 75 and 25 percentiles,
respectively. The whiskers show the other data points except the outliers. The line within the box
shows the median
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Variations in ET, irrigation demand and groundwater recharge are estimated under
the projected climate conditions. Figure 6.27 shows the variations in streamflow
and irrigation demand with the changes in rainfall and temperature. In general, an
increase in rainfall causes an increase in streamflow. Rainfall projections from
various GCMs vary from −10.9 to 8.4% with respect to the 20C3M scenario,
whereas the streamflow projections vary from −20.6 to 9.0% toward the end of the
twenty-first century (Fig. 6.27a). Likewise, the irrigation demand is projected to
increase by 3.2–15.7% across various GCMs by the end of the twenty-first century
(Fig. 6.27b). From Fig. 6.27a, b, it can be observed that changes in the streamflow
and irrigation demand are largely related to the variation in rainfall and the GCM.
Nevertheless, small deviations may be observed, which may be attributed to the
changes in Tmax and Tmin as shown in Figs. 6.27c–f. For example, using
BCCR-BCM2.0 larger increases in irrigation demand toward the end of the century
is projected, which may be attributed to the highest increase in Tmax as shown in
Fig. 6.27d. Likewise, results from CSIRO-mk3.5 project significant reduction in
streamflow and increase in irrigation demand, which may be attributed to the
combined effect of large increases in Tmax and Tmin, and significant reduction in
rainfall.

Figure 6.28 shows the catchment water budget components for the 20C3M
scenario at the annual time scale as well as for the monsoon period. ET is the major
abstraction from the rainfall amounting close to 70% annually and close to 45%
during the monsoon period. Irrigation supplements the crop water demand to a large

Fig. 6.27 Relationship between the projected changes in streamflow and irrigation demand with
projected changes in the climate from the five GCMs
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extent. Groundwater recharge is the amount of water that reaches the shallow
aquifer. A part of it appears as groundwater flow and contributes to the streamflow
at the watershed outlet.

Percentage changes in the water budget components projected under the future
scenario with respect to 20C3M scenario at the annual time scale are also analyzed.
Weighted ensemble average simulations show marginal increases in annual average
rainfall under the future scenarios (2.2% toward the mid of the century and 1.6%
toward the end of the century). Though the changes in the annual average rainfall
are nominal, the variations in the rainfall pattern in terms of number and durations
of wet and dry spells are of major concern. Tmax is projected to increase by 0.51 and
0.84 °C (1.8 and 2.9%) toward the mid of the century and end of the century,
respectively. Similarly, Tmin is projected to increase by 0.29 and 0.46 °C (1.5 and
2.4%) toward the mid of the century and end of the century, respectively. With
changes in temperature and rainfall pattern, evapotranspiration rates are projected to
increase by 2.3% and 4.1%, respectively, for the mid of the century and end of the
century scenarios. Runoff ratio (ratio of average annual runoff to average annual
rainfall) of the catchment is found to be 0.4184, 0.4178 and 0.4083 for 20C3M, mid
of the century and end of the century scenarios, respectively. The 2.5% reduction in
the runoff ratio shows 1.2% reduction in the annual average streamflow toward the
end of the century. In addition, groundwater recharge rates are also projected to
decline (by 7.3%) toward the end of the century.

6.4.3 Summary and Conclusions

The following main conclusions are emanated from the study:

• The results show only marginal changes in annual average rainfall in the
catchment under the future scenarios. Corresponding changes in the hydrologic
components are also found to be statistically insignificant both for the annual
and monsoon periods.

• Even though the changes in the streamflow and irrigation demand are strongly
related to the variation in rainfall, they are not directly proportional to each

Fig. 6.28 Water budget
components in the
Malaprabha catchment for the
20C3M scenario
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other. Such deviations may be attributed to the GCMs used, as well as the
changes in rainfall pattern and atmospheric temperature.

• With 0.84 and 0.46 °C increases in the daily maximum and minimum tem-
peratures toward the end of the century, evapotranspiration rate is projected to
increase by 4.1%, irrigation demand is projected to increase by 7.7% and
groundwater recharge is projected to decline by 7.3%.

• Streamflow projections for the end of the century scenario show nominal
reduction in the average annual and monsoon flows. Changes in rainfall and
temperatures are projected to reduce the runoff ratio by 2.5% by the end of the
century.

• Projected increase in the evapotranspiration and irrigation demand, associated
with the decrease in the groundwater recharge and streamflow is an indication of
possible aggravation of the water stress in the catchment in future.

6.5 Comparing Impacts of Climate Change on Streamflow
in Four Large African River Basins4

Summary: In this study, impacts of climate change on streamflow are studied in
four large representative African river basins: the Niger, the Upper Blue Nile, the
Oubangui and the Limpopo. Eco-hydrological model SWIM (Soil and Water
Integrated Model) was set up for all four basins individually. The validation of the
models for four basins shows results from adequate to very good, depending on the
quality and availability of input and calibration data. For the climate impact
assessment, the model was driven with outputs of five bias-corrected Earth system
models of Coupled Model Intercomparison Project 5 (CMIP5) for the representative
concentration pathways (RCPs) 2.6 and 8.5. This climate input is put into the
context of climate trends of the whole African continent and compared to a CMIP5
ensemble of 19 models in order to test their representativeness. Subsequently, the
trends in mean discharges, seasonality and hydrological extremes in the twenty-first
century were compared. The uncertainty of results for all basins is found to be high.
Still, climate change impact is clearly visible for mean discharges of the projections
and is the lowest in the Upper Blue Nile, where an increase in streamflow is most
likely. Attention to the possible risks of increasing high flows in the face of the
dominant water scarcity in Africa is felt. In conclusion, the study shows the impact

4Adopted from open access publication under the Creative Commons Attribution 3.0 License
V. Aich, S. Liersch, T. Vetter, S. Huang, J. Tecklenburg, P. Hoffmann, H. Koch, S. Fournet, V.

Krysanova, E. N. Müller, and F.F. Hattermann (2014) Comparing impacts of climate change
on streamflow in four large African river basins, Hydrol. Earth Syst. Sci., Copernicus, 18, 1305–
1321, doi: 10.5194/hess-18-1305-2014, http://www.hydrol-earth-syst-sci.net/18/1305/2014/
with permission from authors. More details are available in the original publication.
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that intercomparisons have added value to the adaptation discussion and may be
used for setting up adaptation plans in the context of a holistic approach.

6.5.1 Problem Description, Case Study and Data (Aich et al.
2014)

Objectives chosen are as follows:

• To investigate differences in the sensitivity of modeled annual discharge to
climate parameters among the basins

• To study climate impacts on river discharge for four basins in terms of quantity
and seasonality

• To explore changes in hydrological extremes (high flow, low flow) for the four
basins

• To analyze the uncertainties of the projections
• To identify and discuss the implications for adaptation.

The selected basins Niger, Upper Blue Nile, Oubangui and Limpopo are dis-
tributed all over sub-Saharan Africa, in the West, East centre and South (Fig. 6.29).
In addition, they cover all climate groups of sub-Saharan Africa according to the
Köppen (1900) classification after Strahler (2013). Besides the tropical humid
climates (A), dry climates (B), sub-tropical climates (C) and highland climates
(H) they also cover most of the climatic types and subtypes of the continent. All
four African basins were modeled using the eco-hydrological model SWIM
(Krysanova et al. 1998). SWIM is a process-based model and it simulates the

Fig. 6.29 Map of the four modeled basins a Niger. b Upper Blue Nile. c Oubangui. d Limpopo
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dominant eco-hydrological processes such as evapotranspiration, vegetation
growth, runoff generation and river discharge, and also considers feedbacks among
these processes (Krysanova et al. 2005) (Fig. 6.30). For all four regions, DEM was
derived from the Shuttle Radar Topography Missions (SRTM) with 90 m resolution
(Jarvis et al. 2008). Soil parameters were derived from the Digital Soil Map of the
World (FAO et al. 2012). Relevant soil data for SWIM include its depth, clay, silt
and sand content, bulk density, porosity, available water capacity, field capacity,
and saturated conductivity for each of the soil layers. Land use data were reclas-
sified from the global land cover (Bartholomé and Belward 2005). Land use classes
of SWIM include water, settlement, industry, road, cropland, meadow, pasture,
mixed forest, evergreen forest, deciduous forest, wetland, savannah (heather) and
bare soil. Climatic observations are generally sparse in Africa and homogeneously
distributed over the continent. Therefore, to compare the results, model was cali-
brated for four basins using a reanalysis climate data set produced within the EU
FP6 WATCH project (WFD 2011; Weedon et al. 2011). This data contains all
variables required for SWIM on a daily basis on a 0.5 � 0.5 grid. Observed river
discharge data from the Global Runoff Data Centre was used to calibrate and
validate the model (Fekete et al. 1999).

For analysing climate trends, output of an ensemble of 19 CMIP5 Earth System
Models (ESMs) was used. Of this ensemble, five ESMs’ (HadGEM2-ES, IPSL-5
CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M) outputs
were used for driving the hydrological model. The five chosen ESMs have been

Fig. 6.30 Structure of the Eco-hydrological model SWIM
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downscaled using a trend-preserving bias correction technique with the WFD
reanalysis data, and have been resampled on a 0.5 � 0.5 grid for the time period
1950–2099 (Hempel et al. 2013). Representative Concentration Pathways (RCPs)
covers different emission concentrations, and in this study, the RCP 2.6 and 8.5
scenarios were employed for all five ESMs to cover the low and high ends of
possible future climatic projections.

6.5.2 Results and Discussion

Calibration and Validation: Table 6.8 summarises the SWIM model setup and
calibration information as well as the results of the validation. The SWIM model
was validated for the gauging stations at the outlets of the four basins; the results are
presented in Fig. 6.31. Nash and Sutcliffe (1970), and Percent Bias (PBIAS) were
used for evaluating the model error, i.e., quantifying the efficiency of the model.
The SWIM model was basically able to reproduce the hydrological characteristics
of each basin reasonably well, with NSE of the monthly runoff rate ranging between
0.63 and 0.9 and the daily runoff rate ranging from 0.55 to 0.89.

Table 6.8 Characteristics of basin models and validation results

Niger Upper
Blue Nile

Oubangui Limpopo

Number of subbasins 1,923 558 377 2,020

Number of hydrotopes 13,883 1,700 1,734 13,085

Number of included reservoirs 5 0 0 8

Number of included irrigation
schemes

0 0 0 31

Number of gauging stations
used for calibration

18 1 1 2

Gauging station(s) used for
calibration/validation

Lokojaa El Diem Bangui Sicacate,
Oxenham Ranch

Calibration period 1972–
1982a

1961–
1970

1981–
1990

1971–1978

NSEb (daily) 0.92 0.81 0.66 0.72, 0.73

PBIASc 8.6 20.9 19.1 11.5, −6.7

Validation period 1983–
1992a

1971–
1980

1971–
1980

1980–1987d

NSEb (daily) 0.89 0.63 0.6 0.55

NSEb (monthly) 0.9 0.73 0.63 0.8

PBIASc 2.1 39 15.7 3.4
aIn the Niger basin 18 gauging stations have been used for the calibration
bNash–Sutcliffe Efficiency
cPercent bias of monthly average
dThe gauging station Oxenham Ranch was only used for calibration and not validated
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Climate Trends: Precipitation and temperature are the key drivers for the
hydrological regime of rivers, and climate change has its main impact on these two
variables. Figure 6.32 presents mean trends for these two parameters from 2006
until 2100 projected by 19 CMIP5 models for the whole African continent. Shown
are the results for RCP 8.5 in order to illustrate the most pronounced trends under
extreme scenario conditions. All models agree on a distinct temperature rise over

Fig. 6.32 Mean temperature (left) and precipitation (right) trends over the African continent for
19 CMIP5 Models from 2006–2100 for RCP 8.5. For precipitation, an agreement in trend direction
of 80% or more of the models is marked with a dot

Fig. 6.31 Validation of SWIM at the outlets of the four basins. In the top row the seasonality of
monthly runoff rate in validation period and PBIAS, in the middle row the monthly runoff rate and
in the bottom row the daily runoff rate in the validation period, both with Nash–Sutcliffe efficiency
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the whole African continent, while in the tropics much of the additional energy
input is converted to latent heat. The highest temperature increase of 6–7 °C and in
some parts even up to 8 °C, is projected over the already driest and hottest areas in
the Sahara and Southern African savannahs and deserts. For the projection of
streamflow, bias-corrected model output of five ESMs (HadGEM2-ES, IPSL-5
CM5ALR, MIROC-ESM-CHEM, GFDL-ESM2M and NorESM1-M) were used.

In Figs. 6.33 and 6.34, temperature and precipitation of these climate runs were
compared to the uncorrected runs and 14 other CMIP5 models in order to display
the influence of the bias correction and where the respective models lie in a larger
ensemble (i.e., if the model is especially dry or wet, warm or cold or in the middle
of the whole ensemble). In Fig. 6.33, the seasonal changes between mean monthly
temperatures show a distinctly homogeneous pattern. In all four basins, the tem-
perature rises between 3 and 6 °C. The bias correction hardly influenced the tem-
perature. The five selected model outputs cover the temperature range of the CMIP5
ensemble in all four basins well. Figure 6.34 presents monthly precipitation in the
same periods for the RCP 8.5. Figure 6.35 illustrates the sensitivity of river dis-
charge to climate variability and change in the four basins. Changes in precipitation
are shown in the range from −50 to 100%, and for discharge the range is from −100
to 200%. Values outside this range are not shown but are included in the calculation

Fig. 6.33 Difference in monthly mean temperature in the far projection period (2070–2099)
relative to the base period (1970–1999) for RCP 8.5 for five bias-corrected model projections
(coloured lines), the uncorrected ESMs (coloured dashed lines) and 14 ENSEMBLE ESMs (grey
dashed lines)
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of the fitted local regression, plotted as a black line. They also studied the impact of
climate change on discharge and seasonality, changes in extremes, differences in
climate change sensitivity among the basins, changes of streamflow under climate
change, changes in hydrological extremes, sources of uncertainties and implications
for adaptation.

6.5.3 Summary and Conclusions

The following main conclusions are emanated from the study:

• Large differences between the sensitivities of streamflow regimes to climate
variability among the four basins are observed.

• Most uncertainty exists in regional impact studies derived from climate models,
even after the application of bias correction to inputs.

It is also mentioned by Aich et al. (2014) that detailed future studies for planning
adaptation strategies are required to develop flood protection measures.

Fig. 6.34 Difference in monthly precipitation in the far projection period (2070–2099) relative to
the base period (1970–1999) for RCP 8.5 for five bias-corrected model projections (coloured
lines), the uncorrected ESMs (coloured dashed lines) and 14 ENSEMBLE ESMs (grey dashed
lines)
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Fig. 6.35 Climate sensitivity in the four basins. Change in modeled annual discharge [percent]
per change of precipitation [percent] for 2006–2099 compared to the mean of base period 1970–
1999 for five climate models in RCP 8.5 and WFD. Curve shows fitted local regression over all
values
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6.6 Hydrologic Impact of Climate Change on Murray–
Hotham Catchment of Western Australia: A Projection
of Rainfall–Runoff for Future Water Resources
Planning5

Summary: The hydrologic impact of climate change on the Murray–Hotham
catchment in Southwest Western Australia (SWWA) has been investigated using a
multi-model ensemble approach through projection of rainfall and runoff for the
periods mid (2046–2065) and late (2081–2100) of the century. The Land Use
Change Incorporated Catchment (LUCICAT) model was used for hydrologic
modeling. Model calibration was performed using (5 km) grid rainfall data from
the Australian Water Availability Project (AWAP). Downscaled and bias-corrected
rainfall data from 11 general circulation models (GCMs) for Intergovernmental
Panel on Climate Change (IPCC) emission scenarios A2 and B1 were used in
LUCICAT model to derive rainfall and runoff scenarios for 2046–2065 (mid this
century) and 2081–2100 (late this century). The results of the climate scenarios
were compared with observed past (1961–1980) climate. The mean annual rainfall
averaged over the catchment during recent time (1981–2000) was reduced by 2.3%
with respect to the observed past data (1961–1980) and the resulting runoff
reduction was found to be 14%. Compared to the past, the mean annual rainfall
reductions, averaged over 11 ensembles and over the period for the catchment for
A2 scenario are 13.6 and 23.6% for mid and late this century, respectively, while
the corresponding runoff reductions are 36 and 74%.

For B1 scenario, the rainfall reductions were 11.9 and 11.6% for mid and late
this century and the corresponding runoff reductions were 31 and 38%. Spatial
distribution of rainfall and runoff changes showed that the rate of changes were
higher in high-intensity rainfall areas compared to low-intensity rainfall areas.
Temporal distribution of rainfall and runoff indicates that high-rainfall events in the
catchment reduced significantly and further reductions are projected, resulting in
significant runoff reduction. A catchment scenario map has been developed by
plotting decadal runoff reduction against corresponding rainfall reduction at four
gauging stations for the observed and projected periods. This could be useful for
future water resources planning in the catchment. Projection of rainfall and runoff
result based on the GCMs varied significantly for the time periods and emission
scenarios. Hence, there is considerable uncertainty involved in this study even
though ensemble mean was used to explain the findings.

5Adopted from open access publication under the Creative Commons Attribution 3.0 License
S A. Islam, M. A. Bari, and A.H.M.F. Anwar (2014)Hydrologic impact of climate change

on Murray–Hotham catchment of Western Australia: a projection of rainfall–runoff for future
water resources planning, Hydrol. Earth Syst. Sci., Copernicus, 18, 3591–3614, doi: 10.5194/hess-
18-3591-2014, http://www.hydrol-earth-syst-sci.net/18/3591/2014/
With permission from authors. More details are available in the original publication.
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6.6.1 Problem Description, Case Study and Data
(Islam et al. 2014)

Objectives chosen are as follows:

• To analyze spatial and temporal variability along with probability of exceedance
of observed and projected rainfall and runoff data.

• To develop catchment scenario map plotting decadal rainfall and runoff changes
for observed and projected periods.

The Murray River catchment, with an area of 6,736 km2, lies within the Murray
river basin and the Peel–Harvey sub-region, around 110 km southwest of Perth in
Western Australia (Fig. 6.36). To distinguish this study area from the well-known
Murray–Darling catchment in Eastern Australia, it is referred to as the Murray–
Hotham catchment in reference to the two major rivers in the catchment. Geologi-
cally, the catchment is located in the Darling Plateau, the surface of Yilgarn Block.
The climate of the catchment is temperate based on the Köppen classification system
(Stern et al. 2000) with hot dry summers and cool winters with most of the rainfall

Fig. 6.36 Murray–Hotham catchment of Western Australia with major rivers and gauging
stations in the study area
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(around 75%) occurring during winter between May and September. Observed mean
annual rainfall varied across the catchment from East to West, low (400 mm) to high
(1100 mm) with a gradual increase. Mean annual evaporation ranges from 1600 mm
toward the Southwest to 1800 mm in the North East corner of the basin (Mayer et al.
2005). Mean annual rainfall and runoff from contributing catchments at the gauging
stations are presented in Table 6.9. The Murray River is one of the largest rivers in
terms of flow volume in SWWA which begins as the Hotham and Williams River
systems and drains into the Indian Ocean via the Peel Inlet near Mandurah. Murray is
the only free-flowing river (devoid of dam upstream of Baden Powell gauging
station) in the Northern Jarrah Forest in Western Australia (Fig. 6.36). Passing
through the hilly country, the rivers deepen and unite to form the Murray at South of
Boddington, then passing through the Darling Range and onto the coastal plain (Pen
and Hutchison 1999). Eleven GCMs provide consistent runs for the future simula-
tion period (2000–2100) and the twentieth century (1961–2000) for the emission
scenarios A2 and B1 (Christensen and Lattenmaier 2007). These models are also
found to be suitable for the Australian climate as studied by Bari et al. (2010).
The LUCICAT is a semi-distributed hydrologic model that divides the large
catchment into small Response Units (RUs) (Bari and Smettem 2003).

The hydrological impact of climate change on Murray–Hotham catchment is
assessed through projection of rainfall–runoff for the two IPCC emission scenarios
A2 and B1 for the periods 2046–2065 and 2081–2100, respectively. The LUCICAT
hydrologic model is applied to simulate future rainfall–runoff using downscaled and
bias-corrected rainfall data of GCMs. A conceptual diagram of the hydrologic
modeling using the LUCICAT model is shown in Fig. 6.37. At first, input files with
attribute of catchment, channels, nodes and rainfall stations were prepared through
processing of a DEM of the catchment using ArcGIS. The attribute files were

Table 6.9 Goodness of fit for daily streamflow simulations

Gauging
station

Measure
of fit

Nash–
Sutcliffe
efficiency
(E2)

Correlation
coefficient
(CC)

Overall
water
balance (E)

Flow-period
error index
(EI)

Baden
powell
water spout

Overall 0.70 0.84 0.07 1.00

Calibration 0.70 0.84 0.07 1.01

Validation 0.80 0.91 −0.03 0.98

Marradong
road bridge

Overall 0.48 0.80 −0.03 0.99

Calibration 0.47 0.79 −0.03 0.99

Validation 0.81 0.94 −0.03 0.99

Saddleback
road bridge

Overall 0.49 0.76 −0.04 1.02

Calibration 0.48 0.75 −0.03 1.02

Validation 0.84 0.92 −0.12 1.00

Yarragil
formation

Overall 0.56 0.75 −0.01 0.86

Calibration 0.56 0.75 −0.01 0.90

Validation 0.68 0.80 0.08 1.05
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developed by dividing the catchment into 135 RUs. Land use history and pan
evaporation data were considered as input for model calibration. The model was
calibrated at five gauging stations (Fig. 6.36) for 1960–2004 and validated for
2005–2009 with recently developed 5 km grid rainfall produced by the Bureau of
Meteorology, Australia (Jones et al. 2009). Next, downscaled GCM rainfall data
were processed for hindcast (1961–2000) and different climate scenarios (A2 and
B1) for 2046–2065 and 2081–2100. Downscaling of GCM data to a 5 km reso-
lution (compatible to hydrologic modeling) was carried out by the Bureau of
Meteorology Statistical Downscaling Model (BoMSDM) which works with an
analogue approach (Timbal et al. 2009). The downscaled rainfall data was subse-
quently used as input to the calibrated model for generating various rainfall and
runoff scenarios. The annual rainfall data processed for the hindcast period using
downscaled GCMs data was compared with observed annual rainfall data. A scale
factor was developed for each of the GCMs to match the hindcast annual rainfall
with the observed annual rainfall. The corresponding scaling factors are applied to
downscaled daily rainfall data (2046–2065, 2081–2100) for the emission scenarios
of A2 and B1. Processed rainfall and runoff scenarios along with historical data
were then analyzed, compared and presented. To address uncertainties involved
with the GCM data, a multi-model ensemble approach (with 11 GCMs’ data) was
adopted and the ensemble mean was derived.

LUCICAT
Hydrologic Model

Input:
Catchment attributes
Observed rainfall grid point data
Potential evapo-transpiration data
Land use data
Ground water storage attribute
Soil attributes

Output
LUCICAT processed rainfall
LUCICAT generated flow 

Calibrated 
LUCICAT

Model

Input
Rainfall data of 11 GCM run
(a) Historical (1961-1980, 1981-2000)
(b) Scenario A2: 2046-2065 & 2081-2100
(c) Scenario B1: 2046-2065 & 2081-2100

Output: (1) Rainfall for 11 GCM run
(2)  Flow for 11 GCM run

(a) Historical (1961-1980, 1981-2000)
(b) Scenario A2: 2046-2065 & 2081-2100
(c) Scenario B1: 2046-2065 & 2081-2100

Calibration of 
LUCICAT

Model

Calibration output

Change of 
(1) Catchment attributes
(2) Hydrological  & other 

parameter

Fig. 6.37 Conceptual diagram of the LUCICAT modeling process with climate change scenarios
(modified from Islam et al. 2011)
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6.6.2 Results and Discussion

Catchment Hydrology: The runoff rate (runoff divided by rainfall) has changed
across the catchment significantly in the last several decades. During the last three
decades, overall, total runoff declined due to the absence of high rainfall in last
three decades and this was found to be dominant in the high-rainfall receiving part
of the catchment. Similar changes in the total runoff were also observed in other
studies (CSIRO 2009; DoW 2010).

Calibration and Validation: The LUCICAT model has 29 model parameters
which are grouped as follows: (i) an estimated a priori group which do not need
calibration and (ii) a variable set of eight physically meaningful parameters, which
need calibration. The calibration criteria are (i) joint plot of observed and simulated
daily flow series, (ii) scatter plot of monthly and annual flow, (iii) flow period Error
Index (EI), (iv) Nash–Sutcliffe efficiency (E2), (v) explained variance, (vi) Corre-
lation Coefficient (CC), (vii) overall water balance (E) and (viii) flow-duration
curves.

The model was calibrated for daily flow. The model was found to be well fitted
for depicting daily flow (e.g., high, medium and low flow). Results also revealed
that the model is capable of describing peaks, duration of flow and recession for all
types of flow conditions (e.g., high, medium and low flow). The daily flow model
was validated with hydrographs at all gauging stations and it was found that it can
predict future daily streamflow for the catchment effectively. Table 6.9 presents a
summary of model performance based on observed and simulated daily flow.
Results also revealed that the model can predict future annual flow successfully
based on catchment rainfall.

Observed annual rainfall for the historical period (1960–2000) and projected
annual rainfall for the mid (2046–2065) and late (2081–2100) century at four
gauging stations of the catchment are presented in Fig. 6.38. Table 6.10 presents
observed and projected rainfall scenarios which are self-explanatory. In addition,
they studied spatial and temporal variation of rainfall and runoff. Table 6.11 pre-
sents observed and predicted runoff scenarios. Future projection for water resources
planning along with uncertainty and its implication are also discussed in detail.
According to the Islam et al. (2014) major causes of uncertainty that affect climate
change impact studies are GCMs, choice of downscaling techniques, selection of
the hydrologic model, appropriate model parameterization, assessing the assump-
tions and limitations of the model and estimation of uncertainty associated with the
modeling approach.
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Fig. 6.38 Observed and projected annual rainfall under scenarios A2 and B1 for the four gauging
stations: a and b at Baden Powell, c and d at Marradong Road Bridge, e and f at Saddleback Road
Bridge, g and h at Yarragil Formation. The average for projected rainfall is the ensemble mean of
11 GCMs, and A2 and B1 range represent the maximum and minimum of all the GCMs
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Table 6.10 Observed and projected rainfall scenarios

Gauging
stations

Percentile Observed rainfall (mm) Change in average
rainfall with respect
to the past (%)a

Historical
(1961–
2000)

Past
(1961–
1980)

Recent
(1981–
2000)

Change
(%)

2046–
2065

2081–
2100

A2 B1 A2 B1

Baden
Powell

Q90 726 779 696 −11 −13 −11 −24 −12

Q50 622 622 623 0 −15 −16 −24 −12

Q10 489 437 508 16 −9 −4 −15 0

Mean 616 623 609 −2 −13 −12 −24 −12

Marradong
Road Bridge

Q90 646 690 607 −12 −15 −10 −29 −11

Q50 550 549 556 1 −21 −15 −30 −12

Q10 439 381 445 17 −17 −5 −22 0

Mean 547 552 542 −2 −13 −12 −23 −12

Saddleback
Road Bridge

Q90 677 717 645 −10 −13 −10 −22 −12

Q50 566 585 566 −3 −16 −16 −25 −13

Q10 423 398 451 13 −8 −4 −12 0

Mean 564 573 555 −3 −13 −12 −22 −11

Yarragil
Formation

Q90 1140 1217 1114 −8 −15 −13 −27 −15

Q50 949 963 947 −2 −15 −14 −28 −11

Q10 765 729 815 12 −15 −10 −25 −8

Mean 964 975 953 −2 −15 −12 −27 −12

Table 6.11 Observed and projected runoff scenarios

Gauging
stations

Percentile Observed runoff (GL) Change in average
runoff with respect to
the past (%)a

Historical
(1961–
2000)

Past
(1961–
1980)

Recent
(1981–
2000)

Change
(%)

2046–
2065

2081–
2100

A2 B1 A2 B1

Baden
Powell

Q90 537 692 389 −44 −40 −35 −77 −50

Q50 220 233 210 −10 −43 −41 −79 −34

Q10 92 85 114 34 −54 −34 −80 −34

Mean 285 307 264 −14 −36 −31 −74 −38

Marradong
Road Bridge

Q90 280 334 167 −50 −44 −44 −79 −59

Q50 105 108 92 −16 −52 −53 −82 −49

Q10 34 23 49 109 −39 −21 −72 −12

Mean 129 136 121 −11 −41 −39 −76 −45

Saddleback
Road Bridge

Q90 163 173 105 −39 −39 −35 −72 −47

Q50 68 71 66 −7 −48 −45 −76 −44

Q10 24 23 30 30 −55 −39 −72 −27

Mean 76 80 72 −10 −36 −33 −69 −36

Yarragil
Formation

Q90 6.7 8.3 3.5 −58 −57 −50 −92 −66

Q50 1.9 3.4 1.6 −52 −81 −77 −98 −76

Q10 0.6 0.6 0.6 −1 −86 −81 −99 −80

Mean 3.0 4.1 1.9 −54 −64 −60 −93 −67
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6.6.3 Summary and Conclusions

The following main conclusions are emanated from the study:

• Declining trend of rainfall and runoff in SWWA is likely to continue during mid
and late this century, resulting in lower flow to the dams and a subsequent lower
availability of surface water. Hence, water resources managers and policy
makers will have to rely more on groundwater, desalination or other sources of
water (e.g., recycling) for Perth water supply.

• GCM-derived annual rainfall and runoff show extreme high or low value (which
is much higher or lower) beyond the observed range during a particular time
period. Hence, considerable bias remains in the findings of this study.

6.7 Intercomparison of Statistical Downscaling Methods
for Projection of Extreme Precipitation in Europe6

Summary: Present study compared eight Statistical Downscaling Methods (SDMs)
used in climate change impact studies. Four techniques are based on Change
Factors (CFs), three are Bias Correction (BC) techniques, and one is a perfect
prognosis technique. The eight techniques are used to downscale precipitation
output from 15 Regional Climate Models (RCMs) from the ENSEMBLES project
for 11 catchments in Europe. The overall results shown an increase in extreme
precipitation in most catchments in both winter and summer. For individual
catchments, the downscaled time series tend to agree on the direction of the change
but differ in the magnitude. Differences between the SDMs vary between the
catchments and depend on the season analyzed. General conclusions cannot be
drawn regarding the differences between CFs and BC techniques. The performance
of the BC techniques during the control period also depends on the catchment, but
in most of the cases, these techniques represent an improvement compared to RCM
outputs. Analysis of the variance in the ensemble of RCMs and SDMs indicates that
at least 30% and up to approximately half of the total variance is derived from the
SDMs. Recommendations are provided for the selection of the most suitable SDMs
to include in the analysis.

6Adopted from open access publication under the Creative Commons Attribution 3.0 License
M. A. Sunyer, Y. Hundecha, D. Lawrence, H. Madsen, P. Willems, M. Martinkova, K. Vormoor,

G. Bürger, M. Hanel, J. Kriauciuniene, A. Loukas, M. Osuch, and I. Yücel (2015) Intercomparison
of statistical downscaling methods for projectionof extreme precipitation in Europe, Hydrol. Earth
Syst. Sci., Copernicus, 19, 1827–1847, doi:10.5194/hess-19-1827-2015, http://www.hydrol-earth-
syst-sci.net/19/1827/2015/
With permission from authors. More details are available in the original publication.
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6.7.1 Problem Description, Case Study and Data (Sunyer
et al. 2015)

Objectives chosen are as follows:

• To assess and compare the changes in extreme precipitation obtained using a
range of SDMs and RCMs in 11 European catchments

• To assess the possibility of identifying general advantages and deficiencies of
different SDMs when applied to various catchments

• To assess whether there are common trends in projected changes in extreme
precipitation over Europe and main source of variation in the extreme
precipitation.

Figure 6.39 shows the location of the 11 catchments studied and the main
properties of each catchment are summarized in Table 6.12. The observational data
used are daily catchment precipitation. The climate model data used in this study is
an ensemble of 15 RCMs from the ENSEMBLES project (van der Linden and
Mitchell 2009). These 15 simulations are based on 11 RCMs driven by six different
GCMs. The spatial resolution of all the models is 0.22° (approximately 25 km). For
all the models, daily precipitation time series are available for the time period 1951–
2100. In this study, they considered 1961–1990 and 2071–2100 as the control and
future time periods, respectively. It must be noted that six RCMs do not have data
available for the year 2100. The future period used for these models is 2071–2099;
this is not expected to influence the results of this study. For each catchment, daily

Fig. 6.39 Location of the 11 catchments studied
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precipitation has been extracted from the 15 RCMs for both the periods using the
nearest neighbor interpolation centroid.

6.7.2 Results and Discussion

Eight SDMs are used to obtain downscaled RCM projections at the catchment
scale. These techniques are based on the idea to define a relationship between the
large-scale variables (RCM outputs) and local-scale variables (catchment precipi-
tation). Eight statistical downscaling techniques employed are: Bias correction of
mean, Bias correction of mean and variance, Bias correction by quantile mapping,
Expanded downscaling (XDS), Change factor of mean, Change factor of mean and
variance, Change factor quantile mapping, and Change factor quantile perturbation.

The outputs from all the SDMs are analyzed using an Extreme Precipitation
Index (EPI). This is defined as the average change in extreme precipitation higher
than a defined return period. In this study, the return period is set equal to 1 and
5 years. EPI is estimated separately for each SDM, RCM, catchment, threshold
return period, season, and temporal aggregation. Four seasons are considered:
winter (December to February), spring (March to May), summer (June to August),
and autumn (September to November). Additionally, the index is estimated con-
sidering the whole year, i.e., without dividing into seasons. The temporal aggre-
gations considered are 1, 2, 5, 10, and 30 days. These are estimated using a moving
average from the daily time series. The variability in the EPI values was found
when comparing the downscaled time series for control and future arises mainly
from three sources: GCMs, RCMs, and SDMs. A variance decomposition approach
is used to address the influence of each of these sources on the total variance for
each catchment, return level, season, and temporal aggregation. The approach
described in Déqué et al. (2007, 2012) is employed here.

The total variance of EPI, V, can be split into the different contributions as
V = R + G + S + RG + RS + GS + RGS, where R, G, and S are the individual
parts of the variance explained by the RCMs, GCMs, and SDMs, respectively; RG,
RS and GS are the variance due to the interaction of RCM–GCM, RCM–SDM, and
GCM–SDM, respectively, and RGS is the variance due to the interaction of all three
sources.

Extreme Precipitation Index and Variance Decomposition from all Catch-
ments to Three Selected Catchments: Fig. 6.40 summarizes the results of all the
SDMs and RCMs for all the catchments for winter and summer for a temporal
aggregation of first day. Additionally, it compares the results of the SDMs with the
changes between the control and future periods projected by the RCMs. Overall
results show that, in general, the SDMs do not modify the change projected by the
uncorrected RCMs significantly. Nonetheless, in some cases, the use of few
downscaling techniques might modify the magnitude of the change projected by the
uncorrected RCMs. Figure 6.40 does not differentiate between the variability due to
the use of different SDMs and different RCM–GCM simulations. The variance
decomposition approach is used to assess variance of each of the sources
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individually. Figure 6.41 shows the total variance decomposed arising from the
GCMs, RCMs, SDMs, and the interaction terms for all catchments for the 1- and
5-year levels and temporal aggregation of 1 day. The variance for the 5-year level is
higher for all catchments and seasons than the variance for the 1-year level. In
summer, the variance tends to increase from North to South for the 5-year level, and
to some extent also for the 1-year level. This trend is not observed in winter.

Fig. 6.40 EPI estimated from the comparison of the downscaled time series for control and future
periods for 1-year (light grey boxes) and 5-year levels (dark grey boxes). The boxes indicate the
25, 50, and 75th percentiles and the whiskers the 5 and 95th percentiles. The circles show the
median of all the values of EPI estimated from the comparison of the RCM outputs for the control
and future periods. All the results represent a temporal aggregation of 1 day
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The larger variance in the Southern catchments for the 5-year level may be partially
caused due to larger sampling variance (smaller number of extreme events).

Figure 6.41 shows that in most cases the variance due to the RCM–GCM
simulations is larger than the variance due to SDMs. However, the interaction term
is in both seasons and in most catchments similar or larger than the individual
sources of variance. In all cases, the percentage of the variance obtained by the
RCMs is larger than the percentage obtained by the GCMs. For both return levels,
in winter the average percentage explained by the GCMs is approximately 20%,
while in summer it is approximately 15%. The smaller percentage for the GCMs in
the summer is due to the larger relative influence of both the RCMs and SDMs.
This is likely due to the fact that in Europe, extreme precipitation from convective
storms occurs more frequently during summer (e.g., Lenderink 2010; Hofstra et al.
2009), and this has a larger influence on the outputs from the RCMs and SDMs due
to their higher spatial resolution. Several studies have shown that the errors of the
RCMs are even larger for daily extreme precipitation in summer over Europe (e.g.,

Fig. 6.41 In the top row, total variance decomposed in variance from GCMs, RCMs, SDMs, and
all the interaction terms (darkest to lighter grey colours). In the bottom row, percentage of the total
variance explained by GCMs, RCMs, and SDMs (darkest to lighter grey colours). All the results
are shown for 1- and 5-year levels in the left and right column of each catchment, respectively. All
the results are for a temporal aggregation of 1 day. In summary, the expected changes in extreme
precipitation when considering all the RCMs and SDMs are analyzed
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Frei et al. 2006; Fowler and Ekström 2009). The results of the variance decom-
position obtained for aggregation levels larger than 1 day (not shown) obtains a
smaller total variance. For these temporal aggregations, the main source of variation
is the RCM–GCMs, although the percentage explained by SDMs is slightly larger
than for the 1-day aggregation. The decrease in total variance and in the percentage
explained by RCM–GCMs mainly reflects that the model outputs are more similar
for larger temporal aggregations. The results from the variance decomposition
highlight the need for considering both ranges of SDMs and an ensemble of RCMs
driven by different GCMs for assessing the uncertainty in the projection of changes
in extreme precipitation.

Other Aspects: Authors analyzed expected changes in extreme precipitation,
comparison of observations and bias-corrected RCMs for the control period and
extreme precipitation for all the catchments, etc.

6.7.3 Summary and Conclusions

The outputs from all the statistical downscaling techniques are analyzed using an
extreme precipitation index. The following main conclusions are emanated from the
study:

• Extreme precipitation is expected to increase in most catchments in both winter
and summer. A decrease in extreme precipitation is only expected for both
winter and summer in CY and for summer in TR.

• In most catchments, larger changes are expected in winter than in summer.
• In most catchments for both winter and summer, the RCM–GCM projections are

the main source of variability in the results compared to the differences between
SDMs, although variability due to the SDMs explains at least 30% of the total
variance in all cases.

• In all cases, the RCMs represent a larger percentage of the total variability than
the GCMs, especially in summer. For this season, the total variance tends to be
higher for most of the Southern catchments.

• The eight statistical downscaling techniques agree on the direction of the change
but not the magnitude.

• There is a large variability in the changes estimated from different statistical
downscaling techniques and RCMs.

It is not possible to draw general conclusions regarding differences between the
downscaling techniques, as the differences depend on the physical geographical
characteristics of the catchment and the season analyzed. However, they recom-
mend the use of a set of statistical downscaling techniques as well as an ensemble of
climate model projections. According to them, the selection of statistical down-
scaling techniques should include: techniques that are able to project changes in
extreme precipitation, if they are expected to be different from other precipitation
properties; techniques based on different underlying assumptions, for example, BC
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and CF techniques; and techniques that use different outputs from the RCMs as, for
example, XDS, CF, or BC techniques include mean and variance of precipitation,
and range of quantiles.

6.8 Future Changes in Mekong River Hydrology: Impact
of Climate Change and Reservoir Operation
on Discharge7

Summary: The transboundary Mekong River is facing two ongoing changes that
are expected to significantly impact its hydrology and the characteristics of its
exceptional flood pulse. The rapid economic development of the riparian countries
has led to massive plans for hydropower construction, and projected climate change
is expected to alter the monsoon patterns and increase temperature in the basin. The
aim of the study is to assess the cumulative impact of these factors on the hydrology
of the Mekong River within next 20–30 years. They downscaled the output of five
General Circulation Models (GCMs) that were found to perform well in the
Mekong region. For the simulation of reservoir operation, they used an optimization
approach to estimate the operation of multiple reservoirs, including both existing
and planned hydropower reservoirs. For the hydrological assessment, they used a
distributed hydrological model, VMod, with a grid resolution of 5 km � 5 km.
They found a high variation in the discharge, results depending on which of the
GCMs is used as input. The simulated change in discharge at Kratie (Cambodia)
between the baseline (1982–1992) and projected time period (2032–2042) ranges
from −11 to +15% for the wet season and −10 to +13% for the dry season. Their
analysis also shows that the changes in discharge due to planned reservoir opera-
tions are clearly larger than those simulated due to climate change: 25–160% higher
dry season flows and 5–24% lower flood peaks at Kratie. The projected cumulative
impacts follow rather closely the reservoir operation impacts, with an envelope
around them induced by the different GCMs. Their results indicate that within the
coming 20–30 years, the operation of planned hydropower reservoirs are likely to
have a larger impact on the Mekong hydrograph than the impacts of climate change,
particularly during the dry season. On the other hand, climate change will increase
the uncertainty of the estimated reservoir operation impacts. Their results indicate
that even the direction of the flow-related changes induced by climate change is
partly unclear. Consequently, both dam planners and dam operators should pay
closer attention to the cumulative impacts of climate change, and reservoir opera-
tion on aquatic ecosystems, including the multibillion-dollar Mekong fisheries.

7Adopted from open access publication under the Creative Commons Attribution 3.0 License
H. Lauri, H. de Moel, P.J. Ward, T.A. Rasanen, M. Keskinen, and M. Kummu (2012) Future

changes in Mekong River hydrology: impact of climate change and reservoir operation
on discharge, Hydrol. Earth Syst. Sci., Copernicus, 16, 4603–4619, doi:10.5194/hess-16-4603-
2012, http://www.hydrol-earth-syst-sci.net/16/4603/2012/
With permission from authors. More details are available in the original publication.
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6.8.1 Problem Description, Case Study and Data
(Lauri et al. 2012)

Objectives chosen are as follows as follows:

• To assess in detail the individual and cumulative impacts of climate change (using
multiple GCMs) and reservoir operation on the hydrology of the Mekong River

The Mekong River extends from the Tibetan Plateau in China to the Mekong
Delta in Vietnam. The river basin is located between latitudes 8 and 34° N, con-
taining uplands with mountains over 5000 m and alpine climate in the Northern part
of the basin, and large tropical floodplains in the southern part of the basin. The
Mekong river basin covers an area of 795 000 km2, and has an average outflow of 15
000 m3 � s−1 (475 km3 � yr−1) (Mekong River Commission 2005). The basin is
usually divided geographically into the upper and lower parts, with the division point
at Chiang Saen, Thailand, which is the closest discharge measurement station at the
border with China (Fig. 6.42). The upper basin, from the headwaters up to
approximately Chiang Saen, is steep, and falls from elevations above 4500 m to
about 500 m over a distance of 2000 km, with an average slope of 2 m km−1. In the
lower basin, from Chiang Saen to Kratie, the river has a moderately steep slope, with
an elevation drop from 500 m to a few tens of meters over a course of 2000 km, or a
slope of about 0.25 m km−1 on average. Downstream from Kratie, on the Mekong

Fig. 6.42 Location of the Hydrometeorological stations used in the study. A precipitation
stations; B temperature stations; C main river discharge gauging stations over the DEM (digital
elevation model). GSOD stands for Global Surface Summary of Day data (NCDC, 2010); MRCS
stands for Mekong River Commission Hydrometeorological database (Mekong River Commis-
sion, 2011); and NCEP for NCEP-DOE Reanalysis 2 data (NOAA, 2011)
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floodplains and delta, the river bed is more or less flat, reaching the South China Sea
after a distance of 500 km with a fall in elevation of 15 m, giving this section of the
river an average slope of 0.03 m km−1 (Mekong River commission 2005). The
lower part of the basin belongs mostly to tropical savannah and monsoon climate
zones. The year is divided into dry and wet seasons. The wet season lasts approx-
imately from early May to October and the dry season from November to April. The
wet season climate is dominated by the summer monsoon, arriving partly from the
Southwest and partly from the Southeast. In addition to the monsoon, the climate is
affected by tropical cyclones coming from the East. These cyclones contribute to
precipitation mainly during August, September, and October months of the year
(Mekong River Commission 2005). The uppermost part of the basin is located in the
Tibetan plateau, where the precipitation distribution is similar to that in the lower
part of the basin, with most of the precipitation occurring during summer. The form
of precipitation in winter is mainly snowfall due to lower temperatures caused by
high elevation. In the upstream basin areas with highest altitudes, there are also
several glaciers with a combined surface area of ca. 320 km2 (Armstrong et al.
2005). Due to the monsoonal climate and the steepness of the riverbed in the upper
and lower basins, the hydrograph of the Mekong River is single-peaked, with large
differences between high and low flow values. At Stung Treng, where the River
enters the Cambodian plains from Lao PDR, the average annual flow is about 13
000 m3 s−1, while the average annual maximum is 51 500 m3 s−1 and the minimum
is 1700 m3 s−1 (computed from the years 1970–2002 observed data). Simulated
annual runoff in the catchment varies from less than 100 mm yr−1 in the Eastern part
of Thailand to over 2000 mm yr−1 in the Central part of Laos (computed from years
1982–1992 simulated data). Average annual runoff for the whole basin is about
600 mm yr−1 (Mekong River Commission 2005). Data requirement consists of
Meteorological, Discharge, Reservoirs related, and Climate change related. They
modeled the hydrology of the Mekong Basin using VMod, which is a distributed
hydrological model-based on a gridded representation of the modeled watershed.
A detailed description of the model computation techniques and model equations
can be found in the VMod model manual (Koponen et al. 2010). Delta technique is
used for downscaling precipitation and temperature data.

6.8.2 Results and Discussion

Reservoir Operation Rules: Linear programming (LP) (e.g., Dantzig and Thapa
1997) was used to estimate monthly outflows for each reservoir separately. The aim
of the LP objective function used is to maximise annual outflow from a reservoir
through hydropower turbines, using the reservoir active storage, estimated monthly
inflows, minimum outflow, and optimal outflow from the reservoir as parameters.
An additional term was included into the objective function to force the filling of
the reservoir during the wet season and emptying of the reservoir during the dry
season. Constraints were also required to keep the reservoir outflow constant during
the dry season. The monthly inflows for each reservoir, which are required in the
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optimization, were estimated from computed 24-year time series (April 1981–April
2005). The resulting operation rules aim to overestimate the reservoir usage and
find an upper limit to the possible impact of reservoirs on Mekong discharges.
Normal reservoir operation rules are often more careful and aim to make reservoir is
fill to full capacity each year. The optimization of all upstream reservoirs were
performed so that before optimising a given reservoir. The inflows to the reservoir
to be optimized were then computed with the upstream reservoirs being active.
They first performed the reservoir optimization for the baseline conditions. To
ensure correct operation of the reservoirs under the climate change scenarios, the
reservoir operation was optimized separately for each climate change scenario setup
(i.e., model run). Authors selected 1982–1992 as the baseline period and 2032–
2042 as the future time period so that both periods were of equal duration. The
hydrological model runs, with their associated GCM, emission scenario, and
reservoir configuration, are listed in Table 6.13.

Impact of Climate Change on Temperature, Precipitation, and Runoff: The
temperature, precipitation, and runoff of different model runs for the years 2032–
2042 were compared to the baseline data (1982–1992). Daily average temperature
for the whole catchment, computed as the mean of minimum and maximum tem-
perature, increased by 0.8–1.4° C in the model runs using the A1b emission sce-
nario, and 0.6–1.3° C in the runs using the B1 scenario. The spatial distribution of
annual average temperature increase is similar for all runs using the A1b emission
scenario. The increases are greater in the Southern and Northern parts of the basin
when compared to the middle part, and the largest temperature increases are found
in the southeastern part and in the narrow mid-north part of the catchment. For the
runs using the B1 emission scenario, the temperature changes show a similar pattern
compared to the runs using the A1b scenario, but the magnitude of change is
smaller in the former. Compared to temperature change, the spatial distribution of
precipitation change differs much more between the model runs. The modeled

Table 6.13 Hydrological model runs and their settings used in this study. BL stands for baseline
simulation, +rv stands for reservoirs (i.e., reservoir operation included in the simulations)

Group Model run GCM Emission scenario Reservoirs included

Baseline BL None None No

BL + rv None None Yes

A1b ccA (+rv) CCCMA_CGCM3.1 A1b No (yes)

cnA (+rv) CNRM_CM3 A1b No (yes)

giA (+rv) GISS_AOM A1b No (yes)

mpA (+rv) MPI_ECHAM5 A1b No (yes)

ncA (+rv) NCAR_CCSM3 A1b No (yes)

B1 ccB (+rv) CCCMA_CGCM3.1 B1 No (yes)

cnB (+rv) CNRM_CM3 B1 No (yes)

giB (+rv) GISS_AOM B1 No (yes)

mpB (+rv) MPI_ECHAM5 B1 No (yes)

ncB (+rv) NCAR_CCSM3 B1 No (yes)
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runoff for the whole catchment increases in six model runs and decreases in four
runs. The spatial pattern of runoff change in the lower part of the catchment is
similar for all hydrological model runs, but varies in the middle and upper parts of
the catchment. In the lower part, there is a decrease in runoff in the West, and
varying amounts of increase in runoff in the East. Under emission scenario A1b, in
the middle part of the catchment three model runs show increasing runoff while two
model runs show decreasing runoff. Also, in the uppermost part of the catchment
the model runs disagrees on the direction of change.

Other Perspectives: Authors also studied the impact of climate change and of
reservoir operations on main river discharge. The cumulative impact of climate
change and reservoir operations on main river discharge, Interannual variation of
the cumulative impacts of climate change and reservoir operation, impact of climate
change, and reservoir operation on selected flood pulse parameters are also studied.

6.8.3 Summary and Conclusions

The study assessed the impact of climate change and reservoir operation on the
hydrology of the Mekong River within the next 20–30 year. The following main
conclusions are emanated from the study:

• Climate change is likely to increase the precipitation and average temperature in
the basin. The range between GCMs is, however, relatively large for both
variables.

• Large variation in discharge results between the hydrological model using dif-
ferent GCMs is observed under the two emission scenarios, A1b and B1.

• Direction of climate change impacts on Mekong discharges remains uncertain.

Authors suggested the use of multiple GCMs for estimating the possible climate
change impacts on Mekong discharge.

6.9 Regional Rainfall Forecasting Using Large-Scale
Climate Teleconnections and Artificial Neural
Networks8

Summary: Artificial Neural Networks technique for regional rainfall forecasting
for Orissa state, India on monthly and seasonal time scales is proposed. The pos-
sible relation between regional rainfall and the large-scale climate indices like

8Adopted from
Nagesh Kumar D, Janga Reddy M, Maity R (2007) Regional Rainfall Forecasting using

Large-Scale Climate Teleconnections and Artificial Intelligence Techniques, Journal of Intelligent
Systems, De Grutyer, 16, 307–322, doi10.1515/JISYS.2007.16.4.307, https://www.degruyter.
com/view/j/jisys.2007.16.4/jisys.2007.16.4.307/jisys.2007.16.4.307.xml
With permission from the publishers. More details are available in the original publication.
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El-Niño Southern Oscillation (ENSO), Equitorial Indian Ocean Oscillation
(EQUINOO), and a local climate index of Ocean–Land Temperature Contrast
(OLTC) are used to forecast monsoon rainfall. The results showed reasonably good
accuracy for monthly and seasonal rainfall forecasting and emphasises the value of
using large-scale climate teleconnections for regional rainfall forecasting.

6.9.1 Problem Description, Case Study and Data
(Nagesh Kumar et al. 2007)

Objectives chosen are as follows:

• Explore Artificial Neural Networks (ANNs) for regional rainfall forecasting for
Orissa state, India on monthly and seasonal time scales using ENSO, EQUI-
NOO, and OLTC indices.

The study uses data of various parameters, viz. monthly NINO3.4, Sea Surface
Temperature Anomaly (SSTA), EQWIN index, OLTC index and monthly rainfall
anomaly over Orissa subdivision. Monthly Nino3.4 SSTA and SSTA for region
(10˚ S–10˚ N, 60˚ E–85˚ E) (1958–1990) data have been collected from the web site
of Climate Analysis Center, National Centers for Environmental Prediction (NCEP
2017); Wind data (1958–1990) have also been collected from NCEP (2017) to
obtain EQWIN index for EQUINOO. Monthly rainfall and temperature data (1901–
1990) have been collected from the web site of Indian Institute of Tropical Mete-
orology (2017), Maity and Nagesh Kumar (2006), Sahai et al. (2000, 2003).

6.9.2 Results and Discussion

Analysis of Data and Modeling Aspects: Genetic Optimizer (Nagesh Kumar et al.
2007) is used to optimize the ANNs architecture. In brief, genetic optimizer consists
of following processes: Initialize parameters, generate initial population, train the
network and evaluate fitness, propagation of networks, check for termination cri-
teria, output is the best solution obtained so far during the evolution.

The input and output patterns are scaled to 0–1 range through mapping with the
help of minimum and maximum values of the patterns, whereby it can be modeled
using Fermi function. Termination criteria is used to stop the learning process,
when either the epoch counter reaches 1000 or the maximum value of squared
deviation of neural networks output from the observed value among all training
patterns is less than 0.001. To avoid over fitting, the model is first trained with Back
Propagation ANN (BPANN) using training data set, then the model is cross vali-
dated, by testing its performance with a different validation data set. In this process
the model makes better generalisation of the new data set. To identify the months
that can be used as input to the ANNs model, cross correlation analysis is carried
out for predictor variables. The inputs driven to the ANNs are monthly Nino 3.4
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SSTA, EQWIN, and the OLTC indices. The output variable is rainfall. Table 6.14
gives a complete list of inputs that have been used for forecasting rainfall for June,
July, August, September (JJAS), and for the monsoon season.

The predictor variable data set is available for 33 years (1958–1990). To train
the ANNs, 23 years data set is selected and then to test the performance of the
trained model, the remaining 10 years data set is used. The models are trained with
different combinations of network architectures by using genetic optimizer. The
parameters considered for genetic optimizer are: population size (number of net-
works created per generation) = 50; maximum number of generations = 100;
probability of crossover (probability for a child network to be crossed over with
another child network), Pc = 0.6, and probability of mutation (probability for a
network to be modified during rollover to a new generation), Pm = 0.04. For
BPANNs, the parameters adopted are, learning parameter = 0.2; momentum
parameter = 0.1; and maximum number of epochs = 1000. The best suited network
architectures obtained for different monthly and seasonal models are given in
Table 6.15. By using the Genetic Optimiser-ANNs methodology, the regional
rainfall for Orissa state has been forecasted. For the month of June ANN model, the
CC values obtained are 0.9941 and 0.8349 for training and testing periods,
respectively. Figure 6.43a shows the comparison of ANN forecasted rainfall with
observed rainfall for June. It can be seen that except for one year (1986), the model
results are within reasonable accuracy and they well predict the low rainfall (1981,
1982, 1983 and 1987) and high rainfall (1984, 1989) values during the testing
period. For the month of July, the CC values obtained are 0.9994 and 0.8002 for

Table 6.14 Climate indices of predictor variables considered for rainfall prediction of June, July,
August, September, and for summer monsoon (JJAS)

Rainfall Predictor variables considered

June Nino 3.4 (February, March, April), EQWIN (May, June), OLTC (May, June)

July Nino 3.4 (February, March, April), EQWIN (June, July), OLTC (June, July)

August Nino 3.4 (February, March, April), EQWIN (July, August), OLTC (July,
August)

September Nino 3.4 (February, March, April), EQWIN (August, September), OLTC
(August, September)

JJAS Nino 3.4 (February, March, April), EQWIN (May, June), OLTC (May, June)

Table 6.15 Architecture of
ANNs selected and the
performance of the models for
rainfall forecasting in the
monsoon season for Orissa
sub-division

Month/season Network
architecture

Correlation
coefficient (CC)

Training Testing

June 7, 7, 7, 1 0.9941 0.8349

July 7, 8, 9, 1 0.9994 0.8002

August 7, 10, 1 0.9969 0.8102

September 7, 8, 1 0.9998 0.5775

JJAS 7, 8, 1 0.9975 0.8951

238 6 Case Studies



training and testing periods, respectively. Figure 6.43b compares ANN model
forecasted rainfall with observed rainfall for July during the testing period.

It is observed that, even though there are a few deviations from observed rainfall
(1981, 1982, 1985, 1989, and 1990), the model shows reasonable accuracy. For the
month of August, the CC values obtained are 0.9969 and 0.8102 for training and
testing periods, respectively. Figure 6.43c compares ANN model-forecasted rainfall
with observed rainfall for August during the testing period. The model results show
that for two years, ANN over forecasted (1984, 1985), and for other two years it
under forecasted (1983, 1989), and for the remaining years, the forecasts are in
reasonable agreement. For September, the CC values obtained are 0.9998 and
0.5775 for training and testing periods, respectively. Figure 6.43d shows the
comparison of ANN-forecasted rainfall with observed rainfall for September during
the testing period. It can be observed that the model has under forecasted for one
year (1981), over forecasted for four years (1986, 1987, 1988, and 1989) and for the
remaining years the results are in reasonable accuracy. Similarly, the ANN model is
trained for summer monsoon season, June to September rainfall forecasting. Fig-
ure 6.44 compares observed rainfall with ANN model forecasted rainfall for
monsoon season (JJAS) during testing period. The CC values obtained for JJAS
seasonal model are 0.9975 and 0.8951 for training and testing periods, respectively.
The model results are within reasonable accuracy with observed rainfall for most of
the seasonal rainfall values, except for few minor deviations for one year (1982). It
can be noticed that, when monthly rainfall forecasting is compared to seasonal
rainfall forecasting, seasonal rainfall model is performing better to monthly
models. This may be due to the dynamic nature of climate variables which lead to
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more uncertainty in monthly time scale than seasonal scale, thus larger variability
can be observed in intra-seasonal rainfall prediction.

6.9.3 Summary and Conclusions

The climate indices of ENSO (Nino 3.4 SSTA), EQUINOO (EQWIN), and Ocean–
Land Temperature Contrast (OLTC) have been used as predictor variables to pre-
dict the monthly and seasonal rainfall. The following main conclusions are ema-
nated from the study:

• The obtained results are encouraging and show improvement in rainfall
forecasting.

• Incorporation of global climate information in rainfall prediction is proved
useful.

• ANNs is found to be a suitable technique for this purpose.

In this chapter, various case studies related to ranking of GCMs, downscaling
techniques, and adaptation studies are presented.
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Appendix A: Representative Data Sources

A1. India Meteorological Department (IMD) (http://www.
imd.gov.in/pages/about_mandate.php)

National Data Centre (NDC), IMD (http://www.imdpune.gov.in) provides Meteo-
rological Data.

Data request format is available at http://www.imdpune.gov.in/ndc_new/Data_
Request/DATA_REQUISITON_FORM.pdf.

Based on the request received, NDC would intimate the cost, availability of the
data along with a format of undertaking certificate for the data utilization. More
details about data requisition are available at http://www.imdpune.gov.in/ndc_new/
Request.html.

Email: ndcsupply@imd.gov.in

A2. Water Resources Information System (WRIS)
(http://india-wris.nrsc.gov.in/wris.html)

Homepage consists of Accessibility, Tools, Metadata, WRIS Wiki, Publications
(includes project documents, Basin reports, River basin Atlas of India, Watershed
Atlas of India, Pre Generated Map, Other reports), Gallery, Mobile, FAQ, WRIS
Info discovery, WRIS explorer (which includes Geo-visualization, Sub-Info
System, Temporal Analyst, PMP module), WRIS connect (which includes Live
Telemetry data, Data Download, Reservoir Module, Automatic Map Generation,
Advanced Report Generation, Web Map Services), WR Planning and management,
and Input data builder. Information on other categories is also available in the
homepage.
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A3. Bhuvan: Indian Geo Platform of ISRO (http://bhuvan.
nrsc.gov.in/bhuvan_links.php#)

ISRO launched web-based GIS tool, Bhuvan which offers detailed imagery of
Indian locations compared to other Virtual Globe Software, with spatial resolutions
ranging up to 1 meter. At present, 177 cities high-resolution datasets are available,
while the other parts of the country are covered by 2.5-m-resolution imagery.
Locations can be viewed from different perspectives, and the software also provides
functionality for the measurement of distances and other geoprocessing capabilities
(https://en.wikipedia.org/wiki/Bhuvan).

Four categories of information are available in the homepage
Visualization and free download: Features include Bhuvan-2D, Bhuvan-3D,

Open data archive, Climate and Environment, Thematic Services, Disaster Services,
Ocean Services, and Create a Map/GIS.

Governance/Central Ministries: Chaman, Clean Ganga, SAT-AIBP, Flood
Warning, Census data, Deltas of India, Environment and Forests, CRIS,
Flycatchers distribution, Islands information, School Bhuvan, Toll Information,
Groundwater, Pipe grid, Watersheds, Urban survey, and Monuments.

Application Sectors: Agriculture, forestry, e-governance, water, tourism, urban,
rural, and tourism.

Special Applications: Data discovery, hydrological products, international
disasters, etc.

A4. CLIMWAT (http://www.fao.org/nr/water/infores_
databases_climwat.html)

CLIMWAT is a climatic database in combination with the computer program
CROPWAT and allows the calculation of crop water requirements, irrigation
supply, and irrigation scheduling for various crops for a range of climatological
stations worldwide. CLIMWAT provides long-term mean daily maximum and
minimum temperature in °C, mean relative humidity in %, mean wind speed in
km/day, mean sunshine hours per day, mean solar radiation in MJ/m2/day, monthly
rainfall in mm/month, monthly effective rainfall in mm/month, and reference
evapotranspiration calculated with the Penman–Monteith method in mm/day.

Select the Climwat 2.0 for Cropwat (See the download section). The data can be
extracted for a single or multiple stations in the format suitable for their use in
CROPWAT (http://www.fao.org/land-water/databases-and-software/cropwat/en).
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A5. GCMs Data from Coupled Model Intercomparison
Project 5 (CMIP5)

Coupled Model Intercomparison Project 5 (CMIP5) provides data of General
Circulation Models (GCMs) (http://cmip-pcmdi.llnl.gov/cmip5/availability.html).

Home page consists of Home (overview and history), News, CMIP3 (CMIP3
overview, CMIP3 home, Data archive, Variable list, Data availability, and
experiment design), CMIP5 (CMIP5 overview, experiment design, modeling info,
data access, more info, and contact), Accomplishments (CMIP3 download rate,
publications, usage, and awards), Links (exhaustive and very useful), and contacts.

Some of the important and relevant links are as follows:

• Guide to CMIP5: http://cmip-pcmdi.llnl.gov/cmip5/guide_to_cmip5.html
• CMIP5 data access/ availability (including GCMs): http://cmip-pcmdi.llnl.gov/

cmip5/availability.html
• CMIP5 publications: http://cmip.llnl.gov/cmip5/publications/allpublications
• CMIP5 citations information: http://cmip-pcmdi.llnl.gov/cmip5/citation.html
• Frequently asked questions: http://cmip-pcmdi.llnl.gov/cmip5/data_faq.html.

The following four links are useful, and by selecting on any one of the links they
are diverted to Earth System Grid Federation (ESGF) home page.

Program for Climate Model Diagnosis and Intercomparison PCMDI http://
pcmdi9.llnl.gov/.
British Atmospheric Data Centre (BADC) http://esgf-index1.ceda.ac.uk.
Deutsches Klimarechenzentrum (DKRZ) http://esgf-data.dkrz.de.
National Computational Infrastructure (NCI): http://esg2.nci.org.au.

Various steps for registration/acquiring the data

Step 1 ESGF will need details for login and to access data. To create a new
account, select create account option.
A new window will be displayed; all the details displayed are mandatory
and are to be provided, such as username, first name and last name,
email, password, confirm password, institution, department, city, state,
country, interest keywords, interest statement, etc.

Step 2 Once the above information is submitted, an account will be created and
the corresponding link is sent to the user’s registered email id. On
enabling the link successfully, the account will be activated and con-
nected to ESGF Login. After the above procedure, account details are
summarized on the screen.

Step 3 Select on the search button option which will contain many categories of
search.

Step 4 Select project option (for example CMIP5).
Step 5 Select models development centers and selection of the modeling center

(institution) option.
Step 6 Select GCM and experiment family options.
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Step 7 Select time frequency option.
Step 8 Selection of name of the Realm option (e.g., Atmos).
Step 9 Selection of the name of the variable option.

Step 10 Selection of Summarized Information and Data Cart Option.

Further steps are quite simple and self-explanatory including data downloading.

A6. National Centers for Environmental Prediction
(NCEP) and the National Center for Atmospheric
Research (NCAR) (http://rda.ucar.edu/)

• It is a joint product from the National Centers for Environmental Prediction
(NCEP) and the National Center for Atmospheric Research (NCAR).

• NCEP/NCAR reanalysis data can be downloaded from the CISL (Computa-
tional and Information Systems Lab) Research Data Archive managed by
NCAR’s Data Support Section.

• The downloaded files are in General Regularly-distributed Information in Bin-
ary (GRIB) format.

• Data Available: Maximum temperature, precipitation rate, geopotential height,
pressure, u and v-components of wind, etc.

Various steps for registration/acquiring the data

Step 1 Go to the website—http://rda.ucar.edu/.
Step 2 Under the Reanalyses section choose NCEP/NCAR Reanalysis Project.
Step 3 Now choose NCEP/DOE Reanalysis II (ds091.0).
Step 4 Select the Data Access tab (You will need to login to access data). If you

are not registered, email address, password, title, first name and last
name, organization name and type, and country can be provided for
registration purpose.

Step 5 In the table of contents, select “Web File Listing” which is against
“Union of Available Products”.

Step 6 Select the required NCEP/NCAR data along with appropriate time
period and click “continue”.

Step 7 Select two or more files of the corresponding Months/Years and click
“Download” to download them as a single UNIX tar file.

A7. Climate Research Unit (CRU)
(http://www.cru.uea.ac.uk/)

The Climatic Research Unit (CRU) was established in the School of Environmental
Sciences at the University of East Anglia (UEA), Norwich and home page consists
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of home, about CRU, data, academic programs, research, staff and students,
information sheets, publications, media, and news events.

Procedure for collecting data (http://www.cru.uea.ac.uk/cru/data):

Step 1 For example, select Temperature (5° � 5° gridded versions) (Select the
link: Main webpage for the temperature datasets).

Step 2 Proceed to Data for Downloading: Select NetCDF for downloading the
temperature data. Similar steps can be followed for other variables such
as precipitation, etc.

CRU research publications are available at https://ueaeprints.uea.ac.uk/view/
divisions/CRU.default.html.

List of reports published up to 2009 are available at http://www.cru.uea.ac.uk/
documents/421974/1245969/Reports.pdf/d9f96b4c-387c-4dba-83fe-7e0911eb73c6.

List of Ph.D. theses are available at http://www.cru.uea.ac.uk/publications/phd-
theses.

A8. University of Delaware Air Temperature
and Precipitation (UDEL)

Step 1 Log onto Udel (http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_
AirT_Precip.html).

Step 2 Select the links for downloading data.

A9. Tropical Rainfall Measuring Mission (TRMM)

The Tropical Rainfall Measuring Mission (TRMM) (http://trmm.gsfc.nasa.gov/) is
designed to measure rainfall for weather and climate research.

Section for frequently asked questions is available at http://pmm.nasa.gov/
resources/faq.

Precipitation Measuring Stations Glossary is available at http://pmm.nasa.gov/
resources/glossary.

Study material is available at http://pmm.nasa.gov/resources/documents/TRMM.

A10. Asian Precipitation-Highly Resolved Observational
Data Integration Towards Evaluation (APHRODITE)
(http://www.chikyu.ac.jp/precip/index.html)

The APHRODITE (http://www.chikyu.ac.jp/precip/index.html) project develops
state-of-the-art daily precipitation datasets with high-resolution grids for Asia. The
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datasets are created primarily with data obtained from a rain-gauge-observation
network.

APHRODITE home page consists of Home, Scope, Products, Download, Project
Members, Publication List, and Links.

A11. Koninklijk Nederlands Meteorologisch
Instituut KNMI (Dutch: Royal Netherlands Meteorological
Institute)

Step 1 Proceed to http://climexp.knmi.nl/start.cgi?id=someone@somewhere.
Step 2 Select the Monthly CMIP5 scenario runs.
Step 3 For example, select the surface variables.

All GCMs data is available in KNMI climate explorer.
Historical data, RCP 2.6 data, RCP 4.5 data, RCP 6.0 data, and RCP 8.5 data along

with number of variables are available for number of GCMs (Type the values of
latitude and longitude for which region you want, select make a time series, and select
the raw data). Data is available in ASCII and NetCDF formats and select on the
required formats to download the data (http://climexp.knmi.nl/selectfield_cmip5.cgi?
id=someone@somewhere) (Information last accessed on December 30, 2016).

Other Representative-Related Data Sources/Institutions/Home Pages

Description Homepage

British Atmospheric Data Centre (BADC) http://badc.nerc.ac.uk/home/index.html

Carbon Dioxide Information Analysis Center
(CDIAC)

http://cdiac.ornl.gov/climate/precip/precip_
table.html

Centre for International Earth Science
Information Network

http://ciesin.columbia.edu/

Climate Diagnostics Centre at NOAA http://www.cdc.noaa.gov/

Comprehensive Ocean-Atmosphere Data Set
(COADS) at NOAA

http://icoads.noaa.gov/Release_1/coads.html

Computational Information Systems
Laboratory

http://www2.cisl.ucar.edu/

ECMWF 40 Year Reanalysis (ECMWF
ERA-40)

http://apps.ecmwf.int/datasets/data/era40_
daily/

Emissions Database for Global Atmospheric
Research (EDGAR)

http://edgar.jrc.ec.europa.eu/

Extended Reconstructed Sea Surface
Temperature (ERSST)

http://www.ncdc.noaa.gov/data-access/
marineocean-data/extended-reconstructed-
sea-surface-temperature-ersst-v3b

Food and Agriculture Organization of the
United Nations (FAO)

http://www.fao.org/nr/climpag/pub/EN1102_
en.asp

(continued)
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(continued)

Description Homepage

GEWEX Asian Monsoon
Experiment-Tropics (GAME-T) data center

http://hydro.iis.u-tokyo.ac.jp/GAME-T/
GAIN-T/index.html

Global Environment Facility (GEF) http://www.gefweb.org/

Global Historical Climatology Network
(GHCN)

http://www.ncdc.noaa.gov/oa/climate/ghcn-
daily/

Global Precipitation Climatology Centre
(GPCC)

http://gpcc.dwd.de/

Historical Anthropogenic Sulfur Dioxide
Emission (HASO2); assessment

http://sedac.ciesin.columbia.edu/data/set/
haso2-anthro-sulfur-dioxide-emissions-1850-
25-v2-86

HYDE Land Use http://themasites.pbl.nl/tridion/en/themasites/
hyde/landusedata/index-2.html

IAMC RCP Database http://www.iiasa.ac.at/web-apps/tnt/RcpDb

India Water Portal http://www.indiawaterportal.org/

Integrated Assessment Modeling consortium http://www.iamconsortium.org/

International Comprehensive
Ocean-Atmosphere Data Set (ICOADS);
assessment

http://icoads.noaa.gov/

International Geosphere-Biosphere
Programme

http://www.igbp.net/

International Research Institute for Climate
Prediction/Lamont–Doherty Earth
Observation at University of Columbia

http://ingrid.ldeo.columbia.edu/

Japanese 55-year ReAnalysis (JRA-55) http://jra.kishou.go.jp/JRA-55/index_en.html

Land Use Harmonization http://luh.unh.edu/

Modern Era Retrospective-analysis for
Research and Applications (MERRA)

http://disc.sci.gsfc.nasa.gov/daac-bin/
DataHoldings.pl

National Aeronautics and Space
Administration

http://www.nasa.gov/

National Climatic Data Center (NCDC) http://www.ncdc.noaa.gov/oa/
documentlibrary/ds-doc.html

National Communications Support
Programme (UN)

http://ncsp.undp.org/

National Environment Research Council http://www.nerc.ac.uk/

NOAA CIRES Twentieth Century Global
Reanalysis Version
(NOAA_CIRES20thC_ReaV2)

http://rda.ucar.edu/datasets/ds131.1/#!access

NOAA Merged Land–Ocean Surface
Temperature Analysis (MLOST)

http://www.esrl.noaa.gov/psd/data/gridded/
data.mlost.html

UCAR Community Data Portal http://cdp.ucar.edu/

United Nations Framework Convention on
Climate Change (UNFCCC)

http://www.unfccc.int/

United Nations and Climate Change http://www.un.org/climatechange/

World Climate Research Programme http://www.wcrp-climate.org/
(continued)
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http://cdp.ucar.edu/
http://www.unfccc.int/
http://www.un.org/climatechange/
http://www.wcrp-climate.org/
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Description Homepage

World Data Centre for Climate http://www.dkrz.de/daten/wdcc/

World Meteorological Organization (WMO) http://www.wmo.int/pages/index_en.html

World Data Center for Meteorology http://www.ncdc.noaa.gov/wdc

Few available data is in NetCDF format. Information about software that process
NetCDF and other similar formats are available at http://www.unidata.ucar.edu/
software/netcdf/software.html.
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Advances in Atmospheric Sciences http://www.springer.com/earth+sciences+and
+geography/atmospheric+sciences/journal/
376

Advances in Meteorology, Hindwai
Publishing Corporation

https://www.hindawi.com/journals/amete/

Advances in Water Resources, Elsevier https://www.journals.elsevier.com/advances-
in-water-resources

Agriculture and Forest Meteorology https://www.journals.elsevier.com/
agricultural-and-forest-meteorology/

Agricultural Systems, Elsevier https://www.journals.elsevier.com/
agricultural-systems

Agricultural Water Management, Elsevier https://www.journals.elsevier.com/
agricultural-water-management

Atmospheric Environment, Elsevier https://www.journals.elsevier.com/
atmospheric-environment/

Atmospheric Research, Elsevier https://www.journals.elsevier.com/
atmospheric-research/

Atmospheric Science Letters, Wiley http://onlinelibrary.wiley.com/journal/10.
1002/(ISSN)1530-261X/homepage/
ProductInformation.html

Bulletin of the American Meteorological
Society

https://www.ametsoc.org/ams/index.cfm/
publications/bulletin-of-the-american-
meteorological-society-bams/

Climate and Development, Taylor & Francis http://www.tandfonline.com/action/
journalInformation?show=
aimsScope&journalCode=tcld20

Climate Dynamics, Springer http://www.springer.com/earth+sciences+and
+geography/geophysics/journal/382

Climate Policy, Taylor & Francis http://www.tandfonline.com/action/
journalInformation?show=
aimsScope&journalCode=tcpo20

Climate Research, Inter-Research Science
Center

http://www.int-res.com/journals/cr/about-the-
journal/
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https://www.journals.elsevier.com/atmospheric-research/
https://www.journals.elsevier.com/atmospheric-research/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1530-261X/homepage/ProductInformation.html
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1530-261X/homepage/ProductInformation.html
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1530-261X/homepage/ProductInformation.html
https://www.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/
https://www.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/
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Climate Risk Management, Elsevier https://www.journals.elsevier.com/climate-
risk-management/

Climatic Change, Springer http://www.springer.com/earth+sciences+and
+geography/atmospheric+sciences/journal/
10584

Current Climate Change Reports http://www.springer.com/environment/global
+change+_+climate+change/journal/40641

Dynamics of Atmospheres and Oceans,
Elsevier

https://www.journals.elsevier.com/dynamics-
of-atmospheres-and-oceans/

Earth Interactions, American Meteorological
Society

https://www.ametsoc.org/ams/index.cfm/
publications/journals/earth-interactions/

Earth and Planetary Science Letters https://www.journals.elsevier.com/earth-and-
planetary-science-letters

Earth Sciences Review, Elsevier https://www.journals.elsevier.com/earth-
science-reviews/

Economics of Disasters and Climate Change http://www.springer.com/economics/
environmental/journal/41885

Geophysical Journal International http://onlinelibrary.wiley.com/journal/10.
1111/(ISSN)1365-246X

Geophysical Research Letters, American
Geophysical Union, Wiley

http://agupubs.onlinelibrary.wiley.com/hub/
journal/10.1002/(ISSN)1944-87/

Global Environmental Change https://www.journals.elsevier.com/global-
environmental-change/

Hydrological Earth System Science,
Copernicus Publications

http://www.hydrology-and-earth-system-
sciences.net/about/aims_and_scope.html

Hydrological Processes, Wiley http://onlinelibrary.wiley.com/journal/10.
1002/(ISSN)1099-1085/homepage/
ProductInformation.html

Hydrological Sciences Journal, Taylor and
Francis

http://www.tandfonline.com/action/
journalInformation?show=
aimsScope&journalCode=thsj20

International Journal of Atmospheric
Sciences

https://www.hindawi.com/journals/ijas/

International Journal of Climate Change
Strategies and Management

http://www.emeraldgrouppublishing.com/
products/journals/journals.htm?id=ijccsm

International Journal of climatology, Wiley http://onlinelibrary.wiley.com/journal/10.
1002/(ISSN)1097-88/homepage/
ProductInformation.html

Irrigation and Drainage, Wiley http://onlinelibrary.wiley.com/journal/10.
1002/(ISSN)1531-0361/homepage/
ProductInformation.html

Journal of Applied Ecology, Wiley http://onlinelibrary.wiley.com/journal/10.
1111/(ISSN)1365-2664/homepage/
ProductInformation.html
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http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1085/homepage/ProductInformation.html
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1085/homepage/ProductInformation.html
http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=thsj20
http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=thsj20
http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=thsj20
https://www.hindawi.com/journals/ijas/
http://www.emeraldgrouppublishing.com/products/journals/journals.htm?id=ijccsm
http://www.emeraldgrouppublishing.com/products/journals/journals.htm?id=ijccsm
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-88/homepage/ProductInformation.html
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-88/homepage/ProductInformation.html
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-88/homepage/ProductInformation.html
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1531-0361/homepage/ProductInformation.html
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1531-0361/homepage/ProductInformation.html
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1531-0361/homepage/ProductInformation.html
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2664/homepage/ProductInformation.html
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2664/homepage/ProductInformation.html
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2664/homepage/ProductInformation.html
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Journal of Applied Meteorology and
Climatology, American Meteorological
Society

https://www.ametsoc.org/ams/index.cfm/
publications/journals/journal-of-applied-
meteorology-and-climatology/

Journal of Atmospheric and Oceanic
Technology, American Meteorological
Society

https://www.ametsoc.org/ams/index.cfm/
publications/journals/journal-of-atmospheric-
and-oceanic-technology/

Journal of the Atmospheric Sciences https://www.ametsoc.org/ams/index.cfm/
publications/journals/journal-of-the-
atmospheric-sciences/

Journal of Climate, American
Meteorological Society

https://www.ametsoc.org/ams/index.cfm/
publications/journals/journal-of-climate/

Journal of Computing in Civil Engineering,
ASCE

http://ascelibrary.org/page/jccee5/
editorialboard

Journal of Earth Science & Climatic Change,
OMICS

https://www.omicsonline.org/earth-science-
climatic-change.php

Journal of Geophysical Research, American
Geophysical Union, Wiley

http://agupubs.onlinelibrary.wiley.com/hub/
jgr/journal/10.1002/(ISSN)2156-2202/

Journal of Hydroinformatics, IWA
Publishing

http://jh.iwaponline.com/content/aims-scope

Journal of Hydrologic Engineering, ASCE http://ascelibrary.org/page/jhyeff/
editorialboard

Journal of Hydrology, Elsevier https://www.journals.elsevier.com/journal-of-
hydrology

Journal of Hydrology Research, IWA
Publishing

http://hr.iwaponline.com/content/aims-scope

Journal of Hydrometeorology, American
Meteorological Society

https://www.ametsoc.org/ams/index.cfm/
publications/journals/journal-of-
hydrometeorology/

Journal of Irrigation and Drainage
Engineering, ASCE

http://ascelibrary.org/page/jidedh/
editorialboard

Journal of Meteorological Research,
Springer

http://www.springer.com/earth+sciences+and
+geography/atmospheric+sciences/journal/
13351

Journal of Water and Climate Change, IWA http://jwcc.iwaponline.com/content/aims-
scope

Journal of Water Resources Planning and
Management, ASCE

http://ascelibrary.org/page/jwrmd5/
editorialboard

Journal of Southern Hemisphere Earth
Systems Sci Australian Meteorological and
Oceanographic Society

http://www.bom.gov.au/amm/

Meteorology and Atmospheric Physics http://www.springer.com/earth+sciences+and
+geography/atmospheric+sciences/journal/
703/PSE

Mitigation and Adaptation Strategies for
Global Change
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http://www.springer.com/earth+sciences+and
+geography/atmospheric+sciences/journal/
11027/PSE

Monthly Weather Review https://www.ametsoc.org/ams/index.cfm/
publications/journals/monthly-weather-
review/

Natural Hazards, Springer, Springer http://www.springer.com/earth+sciences+and
+geography/natural+hazards/journal/11069

Nature Climate Change, Springer http://www.nature.com/nclimate/about/index.
html

Open Water Journal, IWA Publishing http://iwaponline.com/content/iwa-open-
water-journal

Quarterly Journal of Royal Meteorological
Society

http://onlinelibrary.wiley.com/journal/10.
1002/(ISSN)1477-870X/homepage/
ProductInformation.html

Regional Environmental Change http://www.springer.com/environment/global
+change+-+climate+change/journal/10113/
PSE

Sustainability Science http://www.springer.com/environment/
environmental+management/journal/11625/
PSE

Tellus, Series A: Dynamic Meteorology and
Oceanography, Swedish Geophysical
Society: Munksgaard

http://www.tandfonline.com/action/
journalInformation?show=
aimsScope&journalCode=zela20

Theoretical and applied climatology,
Springer

http://www.springer.com/earth+sciences+and
+geography/atmospheric+sciences/journal/
704

Urban Climate, Elsevier https://www.journals.elsevier.com/urban-
climate/

Water Resources Management, Springer http://www.springer.com/earth+sciences+and
+geography/hydrogeology/journal/11269

Water Resources Research, American
Geophysical Union, Wiley

http://agupubs.onlinelibrary.wiley.com/hub/
journal/10.1002/(ISSN)1944-7973/

Weather, Climate, and Society, American
Meteorological Society

https://www.ametsoc.org/ams/index.cfm/
publications/journals/weather-climate-and-
society/

Weather and forecasting, American
Meteorological Society

https://www.ametsoc.org/ams/index.cfm/
publications/journals/weather-and-forecasting/

Wiley Interdisciplinary Reviews: Climate
Change, Wiley

http://onlinelibrary.wiley.com/journal/10.
1002/(ISSN)1757-7799/homepage/
ProductInformation.html
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Baldassarre GD, Brandimarte L, Popescu I, Neal JC, Bates PD, Fewtrell TJ (2013) Floods in a
changing climate: inundation modelling. Cambridge University Press

Barry RG, Hall-McKim EA (2014) Essentials of the Earth’s climate system. Cambridge University
Press

Beniston M (ed) (2002) Climatic change: implications for the hydrological cycle and for water
management. Springer advances in global change research

Bonan G (2015) Ecological climatology: concepts and applications. Cambridge University Press
Bridgman HA, Oliver JE, Allan R, Cerveny R, Glantz M, Mausell P, Liu D, Diaz N, Giles B,

Wendler G, Zielinski G, Grimmond S, Changnon S, Lau W (2014) The global climate system
patterns, processes, and teleconnections. Cambridge University Press

Bulkeley H, Newell P (2015) Governing climate change. Taylor and Francis
Cowie J (2012) Climate change biological and human aspects. Cambridge University Press
Cracknell AP, Krapivin VF (2009) Global climatology and ecodynamics: anthropogenic changes

to planet Earth. Springer environmental sciences
Dam JCV (2003) Impacts of climate change and climate variability on hydrological regimes.

Cambridge University Press
Dash SK (2017) Climate change: an Indian perspective, part of environment and development

series. Cambridge University Press
Dessler A (2015) Introduction to modern climate change. Cambridge University Press
Diaz HF, Markgraf V (eds) (2000) El Niño and the Southern oscillation multiscale variability and

global and regional impacts. Cambridge University Press
Diaz HF, Markgraf V, Kiladis GN, Cayan DR, Webb RH, Meehl GA, Branstator GW, Enfield DB,

Quinn WH, Nicholls N, Pulwarty RS, Anderson RY, Cook ER, Lough JM, Meko DM,
D’arrigo RD, Jacoby GC, Swetnam TW, Betancourt JL, Cleaveland MK, Cooke ER, Stahle
DW, Thompson LG, Mosley-Thompson E, Thompson PA, Michaelsen J, Cole JE, Shen GT,
Fairbanks RG, Moore M, Sharp GD, Anderson RY, Soutar A, Johnson TC, McGlone MS,
Kershaw AP, Hughes MK (2009) El Niño historical and paleoclimatic aspects of the southern
oscillation. Cambridge University Press

Dijkstra HA (2013) Nonlinear climate dynamics. Cambridge University Press
Dong W, Huang J, Guo Y, Ren F (2016) Atlas of climate change: responsibility and obligation of

human society. Springer atmospheric sciences
Eggleton T (2012) A short introduction to climate change. Cambridge University Press
Field CB, Barros VV, Stocker TF, Dahe Q (2012) Managing the risks of extreme events and

disasters to advance climate change adaptation: special report of the intergovernmental panel
on climate change. Cambridge University Press

Fitzroy FR, Papyrakis E (2015) An introduction to climate change economics and policy.
Routledge textbooks in environmental and agricultural economics

© Springer Nature Singapore Pte Ltd. 2018
K. Srinivasa Raju and D. Nagesh Kumar, Impact of Climate Change
on Water Resources, Springer Climate, https://doi.org/10.1007/978-981-10-6110-3

259



Glantz MH, Katz RW, Nicholls N (2009) Teleconnections linking worldwide climate anomalies.
Cambridge University Press

Goosse H (2015) Climate system dynamics and modelling. Cambridge University Press
Fell H-J (2016) Global cooling: strategies for climate protection. Taylor and Francis
Hill M (2013) Climate change and water governance: adaptive capacity in Chile and Switzerland.

Springer advances in global change research
Holton JR, Hakim GJ (2012) Introduction to dynamic meteorology. Academic Press
Houghton J (2015) Global warming: the complete briefing. Cambridge University Press
Incropera FP, Earley T, Peterson B, Majumdar A (2015) Climate change: a wicked problem:

complexity and uncertainty at the intersection of science, economics, politics, and human
behavior. Cambridge University Press

Intergovernmental Panel on Climate Change (2015) Climate Change 2014: Mitigation of Climate
Change Working Group III Contribution to the IPCC Fifth Assessment Report, Cambridge
University Press

Intergovernmental Panel on Climate Change (2014) Climate change 2014—impacts, adaptation
and vulnerability: part A: global and sectoral aspects working group II contribution to the IPCC
fifth assessment report. In: Global and sectoral aspects, vol 1. Cambridge University Press

Intergovernmental Panel on Climate Change (2014) Climate change 2014—impacts, adaptation
and vulnerability: Part B: regional aspects working group II contribution to the IPCC fifth
assessment report. In: Regional aspects, vol 2. Cambridge University Press

Intergovernmental Panel on Climate Change (2014) Climate change 2013—the physical science
basis working group I contribution to the fifth assessment report of the intergovernmental panel
on climate change

Kitchen DE (2016) Global climate change: turning knowledge into action. Taylor and Francis
Koppmann R (ed) (2014) Atmospheric research from different perspectives. The reacting

atmosphere series. Springer
Krishnamurti TN, Stefanova L, Misra V (2013) Tropical meteorology: an introduction. Springer

atmospheric sciences
Lal R, Uphoff N, Stewart BA, Hansen DO (eds) (2005) Climate change and global food security.

CRC Press
Latin HA (2012) Climate change policy failures: why conventional mitigation approaches cannot

succeed. World Scientific Publishing
Lau WKM, Waliser DE (2005) Intraseasonal variability in the atmosphere-ocean climate system.

Springer environmental sciences
Leroux M (2005) Global warming—myth or reality? Springer environmental sciences
Leroux M (2010) Dynamic analysis of weather and climate. Springer environmental sciences
Lininger C (2015) Consumption-based approaches in international climate policy. Springer climate

series
Martens P, Rotmans J (eds) (1999) Climate change: an integrated perspective. Springer advances

in global change research
Mcllveen R (1991) Fundamentals of weather and climate. Psychology Press
Mujumdar PP, Nagesh Kumar D (2013) Floods in a changing climate: hydrologic modeling.

Cambridge University Press
Neelin JD (2011) Climate change and climate modeling. Cambridge University Press
Parikh J (2016) Climate resilient urban development: vulnerable profile of Indian cities.

Cambridge University Press
Rapp D (2014) Assessing climate change. Springer environmental sciences
Ravindranath NH, Sathaye JA (2002) Climate change and developing countries. Springer

advances in global change research
Sarachik ES, Cane MA (2010) The El Niño-Southern oscillation phenomenon. Cambridge

University Press
Simonovic SP (2013) Floods in a changing climate: risk management. Cambridge University Press

260 Appendix C: Representative List of Books on Climate and Allied Fields



Sheppard S (2012) Visualizing climate change: a guide to visual communication of climate change
and developing local solutions. Routledge

von Storch H, Zwiers FW (2002) Statistical analysis in climate research. Cambridge University
Press

Wheeler SM (2012) Climate change and social ecology: a new perspective on the climate
challenge. Routledge

Teegavarapu RSV (2013) Floods in a changing climate: extreme precipitation. Cambridge
University Press

Trenberth KE (2010) Climate system modeling. Cambridge University Press

Appendix C: Representative List of Books on Climate and Allied Fields 261



Index

A
Absolute normalised mean bias, 30, 37, 70
Activation function, 86–88, 91
Aerosols, 4, 29
Africa, 10
Agriculture, 6, 10, 162
Annual discharge, 211, 217
Anomaly, 237
Anti-ideal, 43–47, 60–62, 72
AR3, 7, 8, 140
AR5, 8
Architecture, 85, 88, 91, 95, 237, 238
Artificial Neural Networks (ANN), 29, 78,

85–87, 236
Atmosphere-Ocean General Circulation

Models (AOGCMs), 5
Atmospheric chemistry, 2, 5
Australia, 125, 170, 219, 221
Average absolute relative, 30, 37, 71

B
Back propagation, 85, 86
Bias correction, 99, 171, 200, 215, 216, 228

C
Calibration, 93, 200, 201, 203, 213, 218, 222
Cambodia, 232, 234
Change factor, 78, 93–95, 228
Changing rainfall patterns, 12
China, 11, 233, 234
Climate change, 2–4, 6, 9–11, 18, 28, 29, 69,

182, 199, 202, 216, 222, 232
Climate feedback, 2, 3
Climate Research Unit (CRU), 172
Climate scenario, 7, 187, 218, 221
Climatology, 2, 5
Climwat, 248
Cluster analysis, 108, 112, 171, 172, 176, 177

Cluster Validity Analysis Platform (CVAP),
176

CMIP3, 5, 39, 45, 50, 60, 200
CMIP5, 5, 170, 172, 215
COMMIT, 181, 182, 187, 189, 194, 198
Compromise Programming (CP), 41, 63, 65,

171, 173, 174
Cooperative Game Theory (CGT), 43, 44
Correlation, 172, 184, 186, 237
Correlation Coefficient (CC), 170, 172, 222
Covariance matrix, 119, 120

D
Data compression, 108
Deterministic, 2, 98, 138, 139
Digital Elevation Model (DEM), 199, 233
Downscaling, 28, 29, 43, 45, 69, 78, 92, 93, 99,

100, 182, 184, 186, 187, 189, 194, 203,
228, 231

Droughts, 5, 6, 9, 11
Dynamic downscaling, 78

E
Eigen value, 119, 121, 122
Eigen vectors, 119, 122
El Niño, 6, 11
El Niño–Southern Oscillation (ENSO), 2, 8
Energy balance models, 28
Ensembling, 28, 29, 69
Entropy, 39, 40, 69, 170, 173
Epoch, 6, 86, 87, 91, 237
EQUINOO, 237, 240
Error, 30, 79, 87–89, 91, 92, 95, 122, 172,

177–179, 181, 203, 222, 230
Euclidean distance, 108, 110, 111, 113, 114,

116
Europe, 225, 226, 230
Evapotranspiration, 2, 10, 185, 198, 209, 210,

212

© Springer Nature Singapore Pte Ltd. 2018
K. Srinivasa Raju and D. Nagesh Kumar, Impact of Climate Change
on Water Resources, Springer Climate, https://doi.org/10.1007/978-981-10-6110-3

263



Evolutionary algorithms, 127
Exceedance probability, 204, 205, 207
Expanded Downscaling (XDS), 228
External forcing mechanism, 4
Extreme heat, 11
Extreme Precipitation Index (EPI), 228, 231

F
Feature vector, 185–187, 189
Feedback, 212
Feed Forward With Back Propagation (FFBP),

85–87
Flood, 232, 236
Flow-Duration Curve (FDC), 201, 204
Food security, 5, 11
Forcing mechanism, 2–4
Forecast, 237–239
Fossil, 5, 7, 28
F-statistic, 111, 122, 171, 176, 178, 180
Fuzzy, 52, 61, 72, 108, 112
Fuzzy cluster analysis, 112

G
General Circulation Models, Global Climate

Models (GCMs), 5, 28–30, 40, 41–44,
46–49, 51, 60, 61, 65, 67, 72, 78, 115,
122, 171–174, 176, 177, 179

Genetic Algorithms (GA), 127–130
Geometric, 43, 44
Glacier melt, 5, 11
Global warming, 5, 133, 196
Godavari river, 182
Green House Gases (GHGs), 70, 133
Grid, 29, 78, 170–174, 176, 182, 183
Groundwater, 9–11, 139, 198, 202, 208–210
Group decision-making, 28, 64, 69, 171–174,

177

H
Health, 10, 11, 133
Holocene, 2, 6
Hydrological model, 78, 137, 139, 212, 232,

234–236
Hydrological Response Units (HRUs), 162,

200
Hydrologic cycle, 2, 162
Hydrologic Engineering Center-Hydrologic

Modeling System (HEC-HMS), 139,
149, 150, 154, 156, 158–160

Hydrologic extremes, 9, 11
Hydrologic simulations, 198, 201, 202, 207
Hydrology, 2, 3, 9, 18, 86, 87, 95, 149

I
Ideal, 37, 41, 44–46, 61, 62
Impact, 2–10, 87, 162, 163
Imprecision, 52
India, 6, 10, 11, 94, 169, 170, 172–174, 181,

182
India Meteorological Department (IMD), 80,

94, 101, 172
Indicators, 30, 37, 39–41, 45, 46, 49, 50, 52,

61, 108, 112, 115, 132, 170, 172–174
Indifference, 49, 71
Infrastructure, 5, 9–11
Intercomparison, 5, 170, 200, 210
Intergovernmental Panel on Climate Change

(IPCC), 3, 7, 10, 11
Internal forcing mechanism, 4
Irrigation demand, 198, 202, 208
irrigation demand, 208–210
ISRO, 248
Iteration, 86, 109, 110, 112, 130, 132

J
Journals, 18

K
Kendall’s rank correlation, 123
Kernel function, 95, 99
K-means, 108, 176
Kohonen Neural Networks (KNN), 108, 115,

117, 132
Krishna River, 182

L
La Niña, 2, 8
Learning rate, 87, 88, 90–92, 115, 132
Least-Square Support Vector Machine

(LS-SVM), 95, 99
Linear Programming (LP), 126, 131, 234
Low Impact Development (LID), 139, 165
Lp metric, 41–43

M
Malaprabha, 181, 182, 199, 202, 209
Maximization, 40, 42, 51, 130
Mean square, 30
Mekong, 232, 234–236
Membership function, 61, 71, 112, 115, 116,

132
Meteorology, 5, 149, 163, 221
Migration, 6, 16
MIKE, 163
Minimization, 29, 95, 130

264 Index



Momentum factor, 87, 101
Momentum rate, 87
Monsoon variability, 2, 5, 6
Multicriterion Decision-Making (MCDM), 28,

40, 69
Multi Indicator Preference Index (MIPI),

49–51, 58
Multi Model Ensemble (MME), 69
Multiple regression, 78, 79
Multisite downscaling, 99

N
Nash–Sutcliffe Efficiency (NSE), 30, 37
National Center For Atmospheric Research

(NCAR), 194, 235, 250
National Centers for Environmental Prediction

(NCEP), 80, 93, 101, 172, 173,
182–190, 194, 199, 203, 233, 237, 250

National data center, 247
Nested Bias Correction (NBC), 99, 100, 102
Non-linear Programming (NLP), 126
Non-radiative forcing, 4
Normalised root mean square, 30, 37, 70, 171,

172
Normalization, 28, 38, 39, 88

O
Ocean–Land Temperature Contrast (OLTC), 9,

237, 240
Optimization, 98, 100, 108, 125, 127, 131
Outranked, 50
Outranking, 50

P
Palaeo records, 2, 5
Partition matrix, 114
Payoff matrix, 38–41, 43–45, 47, 50, 60, 61
Penalty, 189
Percent Bias (PBIAS), 213
Periodic forcing, 4
Position, 174
Precipitation, 2, 3, 6, 11, 29, 39, 45, 50, 149,

152, 158, 170, 181, 182, 184, 187, 191,
196, 197, 214, 215, 226–228, 231, 232

Predictand, 80, 82, 84, 92, 101, 184, 186, 187,
194

Predictor, 78, 84, 93, 184
Preference, 181
Preference function, 49, 50, 56–58

Pre processing, 86
Principal Component Analysis (PCA), 108,

185
PROMETHEE, 49, 50, 65, 66, 72

Q
Quality control, 93

R
Radiative–convective models, 28
Radiative forcing, 4, 8
Rainfall, 170, 182, 194, 196, 198–201, 203,

208, 209, 218, 220–223, 236
Random forcing, 4
Ranking, 37, 41, 43, 44, 47–49, 52, 62–65,

171, 172, 174
Rating, 38, 40, 203
Regional Climate Model (RCM), 3, 78, 225
Regression, 78, 80, 85, 92, 100, 138, 194, 216
Relative closeness, 45, 46, 62
Representative Concentration Pathways

(RCPs), 8, 29, 182, 210, 213
Representative list of books, 18
Reservoir operation, 138, 232, 235, 236
Runoff, 9, 88, 91, 138, 139, 149, 151, 161,

198, 209, 212–214, 218, 220–222, 225,
234, 236

S
Scenario, 172, 182, 184, 187, 189, 192
SDSM, 17, 29, 77, 92, 101
Sea level rise, 11
Separation measure, 45, 46, 60, 62
Skill Score (SS), 30, 32, 36, 37, 45, 170, 172,

176, 178
Smart water management, 10
Soil and Water Assessment Tool (SWAT), 139,

162
Soil And Water Integrated Model (SWIM),

210–214
Spearman rank correlation coefficient, 28, 63
Special Report on Emissions Scenarios

(SRES), 7, 8, 18, 181, 182
Stabilization, 8
Standardization, 186
Statistical downscaling, 78, 99, 186, 231
Storm Water Management Model (SWMM),

139–142, 144, 148
Stratification, 184, 186

Index 265



Streamflow, 138
Sum of squares, 37
Support Vector Machine (SVM), 78, 95, 181,

182, 186

T
Technique, 2, 15, 28, 29, 38–41, 47, 49, 64, 65,

69, 78, 93, 99, 100, 108, 110, 125, 127,
131, 163, 169, 170, 173, 174, 182, 184,
185, 189, 199, 201, 222, 225, 228, 231,
234, 236

Technique for Order Preference by Similarity
to an Ideal Solution (TOPSIS), 45, 47,
52, 61, 63, 65

Teleconnection patterns, 8, 9
Temperature, 2, 3, 5, 6, 8, 10–12, 18, 28, 29,

32, 33, 45, 80, 84, 94, 95, 139, 170,
182, 185, 187, 193, 194, 196, 198, 209,
210, 214, 215, 233–237

Testing, 87, 186, 237–239
Theissen Weight Precipitation (TWP), 185,

190
Threshold, 49, 184, 186, 188, 200, 228
Training, 86–88, 95, 98, 186, 237, 239
Trend detection, 108, 123
Tropical Rainfall Measuring Mission (TRMM),

251
Truncation Level (TL), 185

Turning point test, 124
20C3M, 93, 94, 182, 198, 200, 201, 203–209

U
Uncertainty, 29, 138, 162, 210, 216, 218, 222,

232, 240
Urbanization, 9, 10
Utility, 47, 48

V
Validation, 87, 131, 139, 171, 172, 186, 200,

201, 203, 210, 213, 214, 237
Variable convergence score, 200
Variable Infiltration Capacity (VIC), 139, 163

W
Water resource information systems, 125
Water security, 11, 15
Watershed, 3, 138, 149, 154, 155, 162, 209,

234
Weight, 39–41, 44–46, 48, 60, 86–88, 91, 92,

98, 170, 173, 201, 203, 205, 209
Weighted average, 27, 47, 48, 71, 201–203,

207
World Climate Research Programmes

(WCRPs), 172, 200

266 Index


	Foreword
	Preface
	Contents
	About the Authors
	1 Introduction
	Abstract
	1.1 Introduction
	1.2 Climate Change and Variability
	1.3 Climate Feedback
	1.4 Forcing Mechanism
	1.4.1 Radiative and Non-radiative Forcing
	1.4.2 Random and Periodic Forcing
	1.4.3 External and Internal Forcing Mechanisms
	1.4.3.1 Aerosols
	1.4.3.2 Greenhouse Gases

	1.4.4 Atmospheric Chemistry
	1.4.5 Palaeo Records
	1.4.6 Monsoon Variability
	1.4.7 Holocene

	1.5 IPCC Climate Scenarios 
	1.5.1 AR3 Perspective
	1.5.2 AR5 Perspective

	1.6 Teleconnection Patterns
	1.7 Impact of Climate Change
	1.7.1 Hydrology
	1.7.2 Water Resources
	1.7.3 Urbanization
	1.7.4 Hydrologic Extremes
	1.7.5 India: Climate Change Impacts

	1.8 Organization of the Book
	1.9 Utilization of the Book
	References
	Suggested Further Reading

	2 Selection of Global Climate Models
	Abstract
	2.1 Introduction
	2.2 Global Climate Models
	2.3 Performance Indicators for Evaluating GCMs
	2.4 Ranking of Global Climate Models
	2.4.1 Normalization Techniques
	2.4.2 Weight Computing Techniques
	2.4.2.1 Entropy Technique
	2.4.2.2 Rating Technique

	2.4.3 Multicriterion Decision-Making Techniques in Deterministic Scenario
	2.4.3.1 Compromise Programming (CP): 
	2.4.3.2 Cooperative Game Theory (CGT): 
	2.4.3.3 Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) 
	2.4.3.4 Weighted Average Technique
	2.4.3.5 Preference Ranking Organization Method of Enrichment Evaluation (PROMETHEE-2)

	2.4.4 Multicriterion Decision-Making Technique in Fuzzy Scenario
	2.4.5 Spearman Rank Correlation Coefficient
	2.4.6 Group Decision-Making
	2.4.7 Ensemble of GCMs

	References
	Suggested Further Reading

	3 Downscaling Techniques in Climate Modeling
	Abstract
	3.1 Introduction
	3.2 Statistical Downscaling
	3.2.1 Multiple Regression
	3.2.2 Artificial Neural Networks
	3.2.3 Statistical Downscaling Model
	3.2.4 Change Factor Technique 
	3.2.5 Support Vector Machine

	3.3 Multisite Downscaling
	3.4 Nested Bias Correction 
	References
	Suggested Further Reading

	4 Statistical and Optimization Techniques in Climate Modeling
	Abstract
	4.1 Introduction
	4.2 Data Compression Techniques
	4.2.1 Cluster Analysis
	4.2.2 Fuzzy Cluster Analysis 
	4.2.3 Kohonen Neural Networks
	4.2.4 Principal Component Analysis
	4.2.5 F-statistic Test

	4.3 Trend Detection Techniques
	4.3.1 Kendall’s Rank Correlation Test
	4.3.2 Turning Point Test

	4.4 Optimization Techniques
	4.4.1 Linear Programming Problem
	4.4.2 Non-linear Programming Problem
	4.4.3 Evolutionary Algorithms

	References
	Suggested Further Reading

	5 Hydrological Modeling
	Abstract
	5.1 Introduction
	5.2 Storm Water Management Model
	5.3 Hydrologic Engineering Center-Hydrologic Modeling System
	5.4 Soil and Water Assessment Tool 
	5.5 Other Modeling Techniques
	References
	Suggested Further Reading

	6 Case Studies
	Abstract
	6.1 Introduction
	6.2 Evaluation of Global Climate Models for Maximum (Tmax) and Minimum (Tmin) Temperatures
	6.2.1 Problem Description, Case Study and Data (Raju et al. 2017; Raju and Nagesh Kumar 2016)
	6.2.2 Results and Discussion
	6.2.2.1 Ranking of Global Climate Models (Raju et al. 2017)
	6.2.2.2 Clustering of Global Climate Models (Raju and Nagesh Kumar 2016)

	6.2.3 Summary and Conclusions

	6.3 Downscaling of Climate Variables Using Support Vector Machine and Multiple Linear Regression
	6.3.1 Problem Description, Case Study and Data (Anandhi et al. 2008, 2012, 2013; Akshara 2015; Akshara et al. 2017)
	6.3.2 Results and Discussion
	6.3.2.1 Downscaling of Climate Variables Using Support Vector Machine (Anandhi 2007; Anandhi et al. 2013)
	6.3.2.2 Results and Discussion [Downscaling of Climate Variables Using Multiple Linear Regression (Akshara et al. 2017)]

	6.3.3 Summary and Conclusions

	6.4 Climate Change Impact on Semi-arid Catchment Water Balance Using an Ensemble of GCMs
	6.4.1 Problem Description, Case Study and Data (Reshmidevi et al. 2017)
	6.4.2 Results and Discussion
	6.4.3 Summary and Conclusions

	6.5 Comparing Impacts of Climate Change on Streamflow in Four Large African River Basins
	6.5.1 Problem Description, Case Study and Data (Aich et al. 2014)
	6.5.2 Results and Discussion
	6.5.3 Summary and Conclusions

	6.6 Hydrologic Impact of Climate Change on Murray–Hotham Catchment of Western Australia: A Projection of Rainfall–Runoff for Future Water Resources Planning
	6.6.1 Problem Description, Case Study and Data (Islam et al. 2014)
	6.6.2 Results and Discussion
	6.6.3 Summary and Conclusions

	6.7 Intercomparison of Statistical Downscaling Methods for Projection of Extreme Precipitation in Europe
	6.7.1 Problem Description, Case Study and Data (Sunyer et al. 2015)
	6.7.2 Results and Discussion
	6.7.3 Summary and Conclusions

	6.8 Future Changes in Mekong River Hydrology: Impact of Climate Change and Reservoir Operation on Discharge
	6.8.1 Problem Description, Case Study and Data (Lauri et al. 2012)
	6.8.2 Results and Discussion
	6.8.3 Summary and Conclusions

	6.9 Regional Rainfall Forecasting Using Large-Scale Climate Teleconnections and Artificial Neural Networks
	6.9.1 Problem Description, Case Study and Data (Nagesh Kumar et al. 2007)
	6.9.2 Results and Discussion
	6.9.3 Summary and Conclusions

	References

	Appendix A: Representative Data SourcesA1. India
	Appendix B: Representative List of Journalson Climate and Allied Fields
	Appendix C: Representative List of Books onClimate and Allied Fields
	Index

