


Hydrology

Water in its different forms has always been a source of wonder, curiosity and practical
concern for humans everywhere. This textbook presents a coherent introduction to many
of the concepts and relationships needed to describe the distribution and transport of
water in the natural environment.

Continental water transport processes take place above, on and below the Earth’s
surface, and consequently the book is split into four main parts. Part I deals with water in
the atmosphere. Part II introduces the transport of water on the surface. Water below the
surface is the subject of Part III. Part IV is devoted to flow phenomena at the basin scale
and statistical concepts useful in the analysis of hydrologic data. Finally, the book closes
with a brief history of ideas concerning the hydrologic cycle. Hydrologic phenomena
are dealt with at spatial and temporal scales at which they occur in nature. The physics
and mathematics necessary to describe these phenomena are introduced and developed,
and readers will require a working knowledge of calculus and basic fluid mechanics.

Hydrology – An Introduction is a textbook that covers the fundamental principles of
hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University
for the past 30 years. The book will be invaluable as a textbook for entry-level courses
in hydrology directed at advanced seniors and graduate students in physical science
and engineering. In addition, the book will be more broadly of interest to professional
scientists and engineers in hydrology, environmental science, meteorology, agronomy,
geology, climatology, oceanology, glaciology and other Earth sciences.

Wilfr ied Brutsaert is William L. Lewis Professor of Engineering at Cornell
University. In a long and prestigious career in the research and teaching of hydrology,
Professor Brutsaert has received many awards and honors, including: the Hydrology
Award and Robert E. Horton Medal, American Geophysical Union; President, Hydrology
Section, American Geophysical Union, from 1992 to 1994, Fellow of the American
Geophysical Union and American Meteorological Society; the Ray K. Linsley Award,
American Institute of Hydrology; Walter B. Langbein Lecturer, American Geophysical
Union; International Award, Japan Society of Hydrology & Water Resources; Jule G.
Charney Award, American Meteorological Society. He is a member of the National
Academy of Engineering and has published two previous books, Evaporation into the
Atmosphere: Theory, History and Applications (D. Reidel Publishing Company, 1982),
and Gas Transfer at Water Surfaces (with G. H. Jirka, D. Reidel Publishing Company,
1984). He has authored and co-authored more than 170 journal articles.
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F O R E W O R D

Water in its different forms has always been a source of wonder, curiosity and practical
concern for humans everywhere. The goal of this book is to present a coherent intro-
duction to some of the concepts and relationships needed to describe the distribution
and transport of water in the natural environment. Thus it is an attempt to provide a
more thorough understanding, and to connect the major paradigms that bear upon the
hydrologic cycle, that is the never-ending circulation of water over the continents of the
Earth.

Continental water transport processes take place above, on and below the Earth’s
landsurfaces. Accordingly, in Part I, water is considered as it passes through the lower
atmosphere; this part consists of a general description of atmospheric transport in
Chapter 2, followed by the application of these concepts to precipitation and evapo-
ration in Chapters 3 and 4, respectively. In Part II, water transport on the Earth’s surface
is dealt with; this part consists of a general description of the hydraulics of free sur-
face flow in Chapter 5, which is then applied to overland runoff and streamflow routing
in rivers in Chapters 6 and 7, respectively. Water below the surface is the subject of
Part III; again, a general introduction to flow in porous materials in Chapter 8 is
followed by applications to phenomena involving infiltration and capillary rise in
Chapter 9, and groundwater drainage and baseflow in Chapter 10. Part IV is devoted
to flow phenomena, mostly fluvial runoff, in response to precipitation at the catchment
and river basin scales, which result from the combination of flows both above and below
the Earth’s surface, already treated at smaller scales separately in Parts II and III. Various
interactions of these flow phenomena and the major paradigms regarding the subscale
mechanisms are described in Chapter 11. This is followed by a treatment of the available
parameterizations in Chapter 12. In Chapter 13 the fourth part of the book concludes
with a brief description of some of the more common statistical concepts that are useful
in the analysis of hydrologic data. Finally, as an afterword, Chapter 14 closes the book
with a brief history of the ideas on the water cycle, which over the centuries evolved to
our present understanding; Santayana’s dictum may be a bit worn by now, but several
recent reinventions of the hydrologic wheel could have been avoided, if the past had
been better remembered.

These transport phenomena in the hydrologic cycle on land are treated at spatial and
temporal scales, at which they are commonly encountered in everyday life and at which
they are tractable with presently available data. Hydrology is a physical science, and the
language of physics is mathematics. Accordingly, plausible assumptions are introduced
and the mathematical formulations and parameterizations are derived, which describe the
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more relevant mechanisms involved in the different phases of the continental hydrologic
cycle. The resulting equations are then examined and, if possible, solved for certain
prototype situations and boundary conditions. The motivation for this is, first, to gain a
better understanding of their structure and underlying assumptions, and of the physics
they are intended to represent; and second, to provide the basis and background for more
complex modeling exercises, simulations and predictions in practical applications.

The subject material covered in this book grew out of the lecture notes for my courses
in hydrology and related topics in the School of Civil and Environmental Engineering,
at Cornell University. I have not tried to cover all possible angles and points of view
of the subject matter. Rather, I have followed a line of thought, which over the years
I have come to find effective in conveying a broad understanding of the more impor-
tant phenomena, and in stimulating further inquiry in the subject. Similarly, no attempt
has been made to compile a complete bibliography. But the references that are listed
refer to other works, so that it should be possible to trace back the more important
developments.

As its subtitle indicates, this book is intended as an introduction; as such, it should
be suitable as a textbook for an entry-level course in hydrology directed at advanced
seniors and beginning graduate students in engineering and physical science, who have
a working knowledge of calculus and basic fluid mechanics. The book contains much
more material than can reasonably be covered in a first course. Thus it will depend on the
objectives of the course, and on the orientation and level of the students, which specific
topics should be selected for coverage. Naturally, the instructor should be the ultimate
judge in this. However, to facilitate this selection, the text is printed in two different type
formats. The main subject matter, which in the experience of the author can be suggested
for inclusion in a first course, is presented in regular type. An effort has been made to lay
out this part of the text in such a way that the student should be able to grasp the material
with little or no reliance on the more advanced sections. For certain topics, clarification
by an experienced instructor in the lectures will undoubtedly be helpful. Subject matter
of a more advanced or specialized nature, is printed as indented text in a slightly smaller
type and with a grey rule on the left-hand side of the page. This material is intended either
as optional or explanatory reading for the first course, or as subject matter to be covered
in a second and more advanced course. Sections of this second type of material have
also been used as major portions in more specialized courses, namely in Groundwater
Hydrology (Chapters 8, 9 and 10) and in Boundary Layer Meteorology (Chapters 2, 3
and 4) at Cornell.

The book is intended mainly for students of hydrology; it should, however, also
be more broadly of interest to professional scientists and engineers, who are active
in environmental matters, meteorology, agronomy, geology, climatology, oceanology,
glaciology and other Earth sciences, and who wish to study some of the underlying
concepts of hydrology, relevant to their discipline. In addition, it is hoped that the book
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will be of use to workers in fluid dynamics, who want to become acquainted with
applications to some intriguing and fascinating phenomena in nature.

Wilfried Brutsaert

Ter nagedachtenis van mijn ouders Godelieve S. G. Bostijn (-B.) en Daniel P. C. B.

And to the life of Siska, Hendrik, Erika and Karl.



N OT E O N T H E T E X T

Readers should note that more advanced material in this book is printed in smaller type
than the main subject matter, with a grey rule in the left-hand margin. A fuller explanation
may be found in the Foreword.



1 I N T RO D U C T I O N

1 . 1 D E F I N I T I O N A N D S C O P E

Hydrology is literally the science of water. Etymologically, the word has its roots in
ancient Greek, and is a composite, made up of �́υδωρ, water, and λóγ oς , word. Obvi-
ously, defined this way, the term is much too broad to be very useful, as it would have
ramifications in all scientific disciplines.

Actually, the word hydrology has not always been well defined and even as recently
as the 1960s it was not very clear exactly what hydrology was supposed to cover and
encompass. Price and Heindl (1968), in a survey of many of the definitions that had
appeared in the literature over the previous 100 years, were compelled to conclude that
the question “What is Hydrology?” had not been resolved by their review. Still, they felt
that, in general, there seemed to be a consensus that hydrology is a physical science,
which is concerned mainly with the water cycle of land and near-shore areas; moreover,
there had been a tendency to broaden the term rather than to narrow it, even to the point
of including socio-economic aspects.

Over the past few decades, however, with the growing activity level and the increasing
maturity of this field of endeavor, a more precise definition has emerged. Hydrology is
now widely (see, for example, Eagleson, 1991) accepted to be the science that deals with
those aspects of the cycling of water in the natural environment that relate specifically
with

– the continental water processes, namely the physical and chemical processes along
the various pathways of continental water (solid, liquid and vapor) at all scales,
including those biological processes that influence this water cycle directly; and
with

– the global water balance, namely the spatial and temporal features of the water
transfers (solid, liquid and vapor) between all compartments of the global system,
i.e. atmosphere, oceans and continents, in addition to stored water quantities and
residence times in these compartments.

Because it is defined as being concerned specifically with continental water processes,
hydrology is a discipline distinct from meteorology, climatology, oceanology, glaciology
and others that also deal with the water cycle in their own specific domains, namely the
atmosphere, the oceans, the ice masses, etc., of the Earth; at the same time, however,
hydrology integrates and links these other geosciences, in that through the global water
balance it is also concerned with the exchanges of water between all these separate
compartments.
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With this definition it is now also possible to delineate the practical scope of hydrologic
analysis in engineering and in other applied disciplines. It consists of the determination
of the amount and/or flow rate of water that will be found at a given location and at
a given time under natural conditions, without direct human control or intervention.
The latter specification, that no human control be involved, is necessary to distinguish
hydrology from the related discipline of hydraulics. Hydraulics is concerned with the
study of controlled fluid motion in well-defined and often in human-made environments.
For instance, problems involving pipe flow, irrigation water distribution or pumping of
groundwater are not hydrologic in nature, but are more properly assigned to the realm
of hydraulics.

1 . 2 T H E H Y D RO L O G I C C Y C L E

The water cycle, also called the hydrologic cycle, refers to the pathway of water in nature,
as it moves in its different phases through the atmosphere, down over and through the land,
to the ocean and back up to the atmosphere. When atmospheric water vapor condenses
and precipitates over land, initially it moistens the surface and some amount of it is
stored as interception, which later evaporates. As precipitation (and in a similar way
snowmelt) continues, part of it may flow over the surface in the form of overland flow
or surface runoff, and part of it may enter into the soil as infiltration. This surface runoff
soon tends to collect locally, either in puddles or small ponds as depression storage, or
in gullies or larger channels where it continues as streamflow, which ultimately ends up
in a larger water body, such as a lake or the ocean. Streamflow is normally described
by a hydrograph, that is the rate of flow at a gaging station as a function of time. The
infiltrated water may flow rapidly through the near-surface soil layers to exit into springs
or adjacent streams, or it may percolate more slowly through the profile to join the
groundwater, which sooner or later seeps out into the natural river system, lakes and
other open water bodies; part of the infiltrated water is retained in the soil profile by
capillarity and other factors, where it is available for uptake by the roots of vegetation.

Soil layers and other geologic formations, whose pores and interstices can transmit
water, are called aquifers. When an aquifer is in direct contact with the land surface, it is
referred to as unconfined. The locus of points in an unconfined aquifer, where the water
pressure is atmospheric, is called the water table. Although the water table is not a true
free surface separating a saturated zone from a dry zone, it is sometimes assumed to be the
upper boundary of the groundwater in an unconfined aquifer. The partly saturated zone
in an unconfined aquifer, between the water table and the ground surface, is sometimes
referred to as the vadose zone. In an unconfined aquifer, the term groundwater refers
usually to the water found below the water table; soil water or soil moisture refers to the
water above the water table. A water bearing geologic formation, that is separated from
the surface by an impermeable layer, is referred to as a confined aquifer. Streamflow is
fed both by surface runoff and by subsurface flow from riparian (i.e. located along the
banks) aquifers. The streamflow, resulting from groundwater outflow is often called base
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Fig. 1.1 Sketch of some of the main processes in the land phase of the water cycle.

flow; in the absence of storm flow or storm runoff caused by precipitation, base flow is
also referred to as drought flow or fair weather flow.

Finally, the hydrologic cycle is closed by evaporation, which returns the water, while
in transit in the different flow paths and stages of storage along the way, back into
the atmosphere. When evaporation takes place through the stomates of vegetation, it
can be referred to as transpiration. Direct evaporation from open water or soil surfaces
and transpiration of biological water from plants are not easy to separate; therefore
the combined process is sometimes called evapotranspiration. Evaporation of ice is
commonly referred to as sublimation. While these distinctions are useful at times, the
term evaporation is usually adequate to describe all processes of vaporization. Some of
the main processes are drawn schematically in Figure 1.1.

1 . 3 S O M E E S T I M AT E S O F T H E G L O BA L WAT E R BA L A N C E

Numerous studies have been carried out to estimate the magnitude of the most important
components of the water budget equations on a global scale. Because the available data
base required for this purpose is still far from adequate, several of the methods used in
these estimates may be open to criticism. Nevertheless, there is a fair agreement among



introduct ion 4

Table 1.1 Estimates of world water balance (m y–1)

Land Oceans
(1.49 × 108 km2) (3.61 × 108 km2)

Global
Reference P R E P E P = E

Budyko (1970, 1974) 0.73 0.31 0.42 1.14 1.26 1.02
Lvovitch (1970) 0.73 0.26 0.47 1.14 1.24 1.02
Lvovitch (1973) 0.83 0.29 0.54 − − −
Baumgartner and

Reichel (1975)
0.75 0.27 0.48 1.07 1.18 0.97

Korzun et al. (1978) 0.80 0.315 0.485 1.27 1.40 1.13

some of the calculated values and, within certain limits, they provide a useful idea of the
long-term average balance in different climatic regions of the world.

As shown in Table 1.1, the average annual precipitation and also evaporation are of
the order of 1 m for the entire Earth. Over the landsurfaces the average precipitation
intensity, P , is about 0.80 m y−1, whereas the corresponding average evaporation, E ,
is around 0.50 m y−1 or about 60% to 65% of the precipitation. Under steady condi-
tions, that is for long time periods, the remainder can be considered to be runoff from
the landsurfaces into the oceans, R (expressed as height of water column per unit of
time), or

R = P − E (1.1)

Averaged over all continents and over long time periods, the annual runoff R is therefore
around 35% to 40% of the precipitation. Except for South America and Antarctica (see
Table 1.2), the values for the individual continents are not very different from the global
values. Precipitation and streamflow runoff measurements have been and are being made
routinely in many places on Earth. In contrast, evaporation has not received as much
attention and no systematic measurements are available.

Estimates of the average distribution of water in different forms expressed as depth of
water covering the globe, assumed to be a perfect sphere, are given in Table 1.3. These
indicate that the 1 m of average annual precipitation is relatively large as compared to
the active fresh water on Earth, that is the water which is not stored in permanent ice
and deep groundwater. This means that the turnover of the active part of the hydrologic
cycle is rather fast, and that the residence times in some of the major compartments of
the water cycle are relatively short; the mean residence time can be taken as the ratio
of the storage and the flux in or out of storage. For example, a continental runoff rate of
0.30 m y−1 (Table 1.1) and a storage in the rivers of (0.003/0.29) m of water on the 29%
of the world occupied by land, gives a mean residence time of the order of 13 days for
the rivers of the world. Similarly, a global evaporation rate of 1 m y−1, with 0.025 m of
storage in the atmosphere, leads to a mean residence time of the order of 9 days for the
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Table 1.2 Some estimates of the mean precipitation (and river runoff) from available data for the continents

(in m y–1) (∗)

North South
Australia
and

Europe Asia Africa America America Oceania Antarctica

Percent of land area 6.7 29.6 20.0 16.2 12.0 6.0 9.5

Reference
Lvovitch (1973) 0.734 0.726 0.686 0.670 1.648 0.736 −

(0.319) (0.293) (0.139) (0.287) (0.583) (0.226) −
Baumgartner and 0.657 0.696 0.696 0.645 1.564 0.803 0.169

Reichel (1975) (0.282) (0.276) (0.114) (0.242) (0.618) (0.269) (0.141)
Korzoun et al. 0.790 0.740 0.740 0.756 1.600 0.791 0.165

(1977) (0.283) (0.324) (0.153) (0.339) (0.685) (0.280) (0.165)

∗The corresponding evaporation values can be determined with Equation (1.1).

Table 1.3 Estimates of different forms of global water storage (as depth in m over entire earth surface)

Lvovitch Baumgartner and
Source of data (1970) Reichel (1975) Korzun et al. (1978)

Oceans 2686 2643 2624
Ice caps and glaciers 47.1 54.7 47.2
Total ground water 117.6 15.73 45.9

(excluding Antarctica)
(Active ground water) (7.84) (6.98) —
Soil water 0.161 0.120 0.0323
Lakes 0.451 0.248 0.346
Rivers 0.002 35 0.002 12 0.004 16
Atmosphere 0.0274 0.0255 0.0253

atmosphere. These are very short residence times. Moreover, as the oceans occupy about
71% of the Earth surface, the active fresh water in the hydrologic cycle is continually
being distilled anew through ocean evaporation.

Maps depicting the approximate distribution of components of the water balance in
different parts of the world have been presented by Lvovitch (1973), Budyko (1974),
Baumgartner and Reichel (1975), Korzoun et al. (1977), and Choudhury et al. (1998). The
relative and absolute magnitudes of the main components of the hydrologic cycle, namely
P, R and E , can vary over a wide range from one location to another. Obviously, the
long-term mean values of all three are negligible in desert locations. At the other extreme,
maximal annual precipitation values of up to 26.5 m have been recorded in a mountainous
monsoon environment (Cherrapunji, Meghalaya). Maximal mean evaporation values of
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Table 1.4 Estimates of mean global heat budget at the earth surface in W m–2

Land Oceans Global

Reference Rn Le E H Rn Le E H Rn Le E H

Budyko (1974) 65 33 32 109 98 11 96 80 16
Baumgartner and

Reichel (1975)
66 37 29 108 92 16 96 76 20

Korzun et al. (1978) 65 36 29 121 109 12 105 89 16
Ohmura (2005) 62 36 26 125 110 15 104 85 19

up to 3.73 m y−1 have been inferred for the Gulf Stream in the western Atlantic (Bunker
and Worthington, 1976) and up to 4 or even 5 m y−1 for the Gulf of Aqaba (Assaf and
Kessler, 1976). Much research has been directed in recent years to study the evolution of
today’s climate in response to increasing greenhouse gases in the atmosphere. Although
the issue is far from resolved, there are some indications of an accelerating hydrologic
cycle in several regions (see, for example, Brutsaert and Parlange, 1998; Karl and Knight,
1998; Lins and Slack, 1999).

The strong linkage between the water cycle and climate is further illustrated by the
estimates of the mean global surface energy budget in Table 1.4. Over large areas and over
sufficiently long periods, when effects of unsteadiness, melt and thaw, photosynthesis
and burning, and lateral advection can be neglected, this surface energy balance can be
written as

Rn = Le E + H (1.2)

where Rn is the specific flux of net incoming radiation, Le is the latent heat of vapor-
ization, E is the rate of evaporation, and H is the specific flux of sensible heat into the
atmosphere. The major portion of the incoming radiation is absorbed near the surface
of the Earth, and it is transformed into internal energy. The subsequent partition of this
internal energy into long-wave back radiation, upward thermal conduction and convec-
tion of sensible heat H , and latent heat Le E , is one of the main processes driving the
atmosphere. Table 1.4 indicates that the net energy is mainly disposed of as evaporation.
Over the oceans, the latent heat flux Le E is on average larger than 90 percent of the net
radiation. But even over the land surfaces of the Earth, Le E is on average still larger than
half of Rn.

Because the global patterns of heating force the circulation of the planetary atmo-
sphere, the implications of this large latent heat flux are clear. As a result of the relatively
large latent heat of vaporization Le, evaporation of water involves the transfer and redis-
tributiuon of large amounts of energy under nearly isothermal conditions. Because, even
at saturation, air can contain only relatively small amounts of water vapor, which can
easily be condensed at higher levels, the air can readily be dried out; this release of energy
through condensation and subsequent precipitation is the largest single heat source for the
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atmosphere. Thus processes in the water cycle play a central role in governing weather
and climate.

1 . 4 M E T H O D O L O G I E S A N D P RO C E D U R E S

This book aims primarily to describe the occurrence and the transport of water in its
continuous circulation over the landsurfaces of the Earth. Before starting this task, it is
worthwhile to review briefly the different strategies that are available and that can be
used for this purpose.

1.4.1 Statistical analysis and data transformation

As observed in Section 1.2, one of the main practical objectives of hydrologic analysis
is the determination of the quantity of water, in storage or in transit, to be found at
a given time and place, free of any direct human control. When a reliable record of
observed hydrologic data is available, a great deal can be learned simply by a statistical
analysis of this record. Although such an approach is proper for stationary systems in
the prediction of long-term behavior for general planning purposes, it cannot be used
for short-term and emergency forecasting, for example, during floods, or for day-to-day
resource management decisions. Furthermore, reliable records are available for only a
few locations over a limited period of time, and practically never where needed. Therefore
in hydrology the problem is often such, that a method must be devised to transform some
available data, which are of no direct interest, to the required hydrologic information.
For instance, the problem may consist of determining the rate of flow in a river at a given
location either from a known flow rate at some other point upstream or downstream,
or from a known rainfall distribution over the upstream river basin. In other cases, the
problem may consist of deducing the basin evapotranspiration from soil and vegetation
on the basis of available meteorological data.

1.4.2 The “physical” versus the “systems” approach

The hydrologic literature is replete with attempts at classifying the methodologies and
paradigms that have been used to transform hydrologic input into hydrologic output
information. Until a few years ago it had become customary to consider two contrasting
approaches, namely the “physical” approach and the “systems” approach. In the physical
approach the input–output relationship is sought by the solution of the known conser-
vation equations of fluid mechanics and thermodynamics with appropriate boundary
conditions to describe the flow and transport of water throughout the hydrologic cycle.
This approach has obvious limitations; the physiographic and geomorphic characteristics
of most hydrologic systems are so complicated and variable, and the degree of uncertainty
in the boundary conditions so large, that solutions are feasible only for certain highly
simplified situations. In other words, the properties of natural catchments can never be
measured accurately enough, and solutions, based on internal descriptions starting from
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first principles of fluid mechanics, can be obtained only for grossly idealized conditions,
which are coarse approximations of any real situation.

The hydrologic “systems” (also “operational” or “empirical”) approach is presumably
based on a diametrically opposite philosophy. In this approach the physical structure
of the various components of the hydrologic cycle and their inner mechanisms are not
considered; instead, each component, however it may be defined, is thought of as a “black
box,” and the analysis focuses on discovering a mathematical relationship between the
external input (e.g. rainfall, air temperature, etc.) and the output (e.g. river flow, soil
moisture, evaporation, etc.). The structure of this mathematical relationship is mostly
quite remote from the physical structure of the prototype phenomena in nature. This lack
of correspondence between the inner physical mechanisms and the postulated functional
formalisms makes this approach quite general operationally, because it permits the use of
well-known algorithms and objective criteria in identification and prediction. However,
this also underlies the main limitations of this approach. First, in assigning cause and
effect the definition of input and output variables is mostly based on intuition guided by
past experience, and the danger exists that some important phenomena are overlooked.
Second, the best that can ever be expected with a black box approach is a satisfactory
reproduction of a previously obtained input–output record; even when such data are
available, it is difficult to accommodate fully the nonstationary effects in the system,
and it is impossible to anticipate subsequent hydrologic changes, such as those resulting
from urbanization, deforestation, reclamation, or climate change.

Because many hydrologic methods do not really fit in this physical-versus-empirical
classification, a third possible approach was taken to be an intermediate one. In this
view the performance of a hydrologic unit, say a catchment, is represented in terms of
some idealized components or “grey boxes,” which correspond to recognizable ele-
ments in the prototype, whose input–output response functions are structured after
solutions of some tractable or suitably simplified situations of the physical processes
perceived to be relevant. This third way was often called the “conceptual model”
approach.

At first sight, a classification based on three distinct approaches, namely physical,
empirical and conceptual, may appear reasonable. However, it is less than obvious how
this classification can be applied to specific cases. Indeed, one might ask what the dif-
ference is between physical and empirical. After all, the essence of physical science
is experimentation and conceptualization. Moreover, the physical approach of one dis-
cipline is usually the empiricism or the conceptual model of another. For example,
Newton’s “law” of viscous shear constitutes the physical basis of a wide area of fluid
mechanics, whereas it represents a mere black box simplification in molecular physics.
Darcy’s law is the physical basis of much of groundwater hydrology, but in fluid mechan-
ics it can be considered an operational approach, to avoid the complexity of flow analysis
in an irregular and ill-defined pore network. The same dilemma is inherent in most other
special concepts used in hydrology. This ambiguous difference between physical, empir-
ical and conceptual shows that the classification of the methodologies should be based
on other criteria.
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1.4.3 Spatial scale and parameterization

General approach
All natural flow phenomena are governed by the principles of conservation of mass,
momentum and energy, which can be expressed by a number of equations to provide a
mathematical description of what goes on. However, because there are normally more
dependent variables than available conservation equations, in order to close the system,
additional relationships must be introduced. These closure relationships, also called
parameterizations, relate some of the variables with each other to describe certain specific
physical mechanisms; the mathematical form of these relationships, and the values of
the material constants or parameters are usually based on experimentation.

A second point is that any physical phenomenon must be considered at a given scale;
this scale is the available (depending on the data) or chosen (depending on the objectives
of the study) resolution. It will become clear later on in this book that, while the funda-
mental conservation equations remain unaffected by the scale at which the phenomenon
is being considered, most closure relationships in them are quite sensitive to scale.
Indeed, a parameterization can be considered as a mathematical means of describing
the subresolution (or microscale) processes of the phenomenon, in terms of resolvable
scale (or macroscale) variables; these macroscale variables are the ones, which can be
treated explicitly in the analysis or for which measured records are obtainable. Thus,
the details of the microscale mechanisms are not considered explicitly, but their statis-
tical effect is formulated mathematically by a parameterization in terms of macroscale
variables.

All this suggests that a sound criterion to distinguish, in principle at least, one approach
from another, may be the spatial scale at which the internal mechanisms are parame-
terized. For example, Newton’s equation for viscous shear stress (see Equation (1.12)
below) is a parameterization in terms of variables typically at the millimeter to centimeter
scale; however, it reflects momentum exchanges at molecular scales, which are orders
of magnitude smaller. The hydraulic conductivity is a parameter at the so-called Darcy
scale (see Chapter 8), namely a scale somewhere intermediate between the Newtonian
viscosity (or Navier–Stokes) scale for water and air inside the soil pores, on the one hand,
and the field scales for infiltration and drainage, on the other. Several spatial scales are
illustrated with the corresponding characteristic temporal scales in Figure 1.2 for some
general types of water transport processes as they have been considered in hydrologic
studies.

On the land surfaces of the Earth, the catchment or river basin sizes appear as scales of
central importance. The terms basin, catchment, watershed and drainage area are roughly
synonymous and are often used interchangeably. A basin can be defined as all of the upstream
area, which contributes to the open channel flow at a given point along a river. The size of the
basin depends on the selection of the point in the river system under consideration. Usually
this point is taken, where the river flows into a large water body, such as a lake or the ocean,
or where it changes its name as a tributary into a larger river. However, a basin or catchment
can also defined by any point along the river, where the river flow is being measured. Basins
are delineated naturally by the land surface topography, and topographic ridges are usually
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taken as their boundaries; they can be considered as the natural conveyance systems for
mass and energy on the land surfaces of the Earth. In meteorology, the concern is more on
atmospheric motions and weather systems, and this has led to a somewhat different scale
classification; an example of a commonly used classification is shown in Table 1.5.

Table 1.5 A common scale classification in the

atmosphere (after Orlanski, 1975)

Nomenclature Scale range

Micro γ <20 m
Micro β 20–200 m
Micro α 200 m–2 km
Meso γ 2 km–20 km
Meso β 20 km–200 km
Meso α 200 km–2000 km
Macro γ >2000 km

Time scale

106 m 103 km

103 m 1 km

100 m

10 m

1 m

100 s 102 s 104 s 106 s 108 s
second minute hour day week month year

H
or

iz
on

ta
l l

en
gt

h 
sc

al
e

Atmospheric Sand column
turbulence experiments

Thunderstorms

ABL convection
Evaporation

Overland flow

Infiltration

Frontal
rains

River storm Deep
runoff Base groundwater

flow
Soil drainage

and Vegetation
soil changes

moisture
drying

Synoptic
weather
systems

Global
weather
patterns

Seasonal
regimes

Continental
scale

River
basin
scale

Headwater
catchment

scale

Hillslope
or field

scale

Local
scale

Fig. 1.2 Approximate ranges of spatial and temporal scales of some common physical processes that are

relevant in hydrology.
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To summarize, these observations indicate that, in deciding on a strategy to describe
a hydrologic phenomenon, the relevant question is probably not so much whether a
physical, a black box or a conceptual approach should be used. Rather, it is more useful
to determine what scales are appropriate for the available and measurable data, and for
the problem at hand. In other words, what is the appropriate level of parameterization?

Spatial variability and effective parameters
As mentioned above, a parameterization can be defined as a functional relationship
between the variables describing the phenomenon in question. This relationship invari-
ably contains one or more constant terms, reflecting material and fluid properties and
vegetational, geomorphic, geologic and other physiographic features; these are called
parameters and they are normally determined by experiment. Most hydrologic parame-
ters tend to be highly variable in space. It stands to reason, therefore, that the experimental
determination of any such space-dependent parameter must be carried out at the scale at
which it is to be applied to describe the flow.

A second important issue is that any given parameterization is usually valid only
over a certain finite range of spatial scales, and that the computational scale, that is the
integration domain or the discretization of the equations, must lie within that range.
Because the necessary data may be available only at a coarser resolution, in practical
application a parameterization may have to be applied at scales, for which it was not
intended originally and which are larger than permissible. This means in such a case that
the spatial variability of the parameters at the finer scales, which is normally present in
the natural environment, cannot be accounted for with the available data. This difficulty
is often resolved by assuming that the parameterization is still valid at the larger scale,
and that it can be implemented with averaged or effective values of the parameters.
This approach is not always satisfactory, and it is still the subject of intense research.
Some aspects of this issue related to land surface–atmosphere interactions are discussed
elsewhere (Brutsaert, 1998).

Requirements
To be useful, a parameterization must satisfy several requirements. First, a parameteriza-
tion must be valid, that is, it must be able to give a faithful description of the phenomenon
in question. The word comes from the Latin “validus,” which means healthy or strong,
and thus reliable. Validation is the term, which refers to the testing of a parameterization,
and it consists usually of the application of some goodness of fit measure to results of
calculations with the parameterization relative to observations. Beside being valid, a use-
ful parameterization must satisfy the dual requirements of parsimony and robustness.1 A

1 The law of parsimony, also known as Ockham’s razor, comes to mind here. Actually, the principle was already
promulgated by Aristotle, and the razor is essentially Ockham’s (1989; pp. 17, 20, 128) paraphrase of it.
More than 2300 years ago Aristotle (1929) wrote, for instance, in Physics (I, 6, 189a,15) “inasmuch as it can
be done from the limited, the limited is better,” and in (VIII, 6, 259a,10) “for when the outcome is the same,
the limited is always to be preferred, and indeed in matters of nature, the limited, being the better, occurs more
when possible.”
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given parameterization is said to be more parsimonious than another one, when it needs
fewer variables and parameters to describe the phenomenon.

A parameterization can be called robust when the outcome is relatively insensitive
to its structure and to errors and uncertainties in the input variables and parameters.
In hydrology, a model usually refers to a combination of several parameterizations to
simulate more complicated phenomena and their interactions.

1.5 Conservation laws: the equations of motion

1.5.1 Rate of change of fluid properties

Consider a fluid in motion with a velocity field v = ui + vj + wk, in which (u, v, w) are the
velocity components and (i, j, k) are the unit vectors in the (x, y, z) directions, respectively,
and let C(x, y, z, t) denote some property of this fluid. The rate at which this property
changes for a given particle of the fluid located at (x, y, z) at time t , can be determined by
tracking the particle to its new position (x + uδt, y + vδt, z + wδt), a small distance away
at time t + δt . The fluid property has then become

C(x + uδt, y + vδt, z + wδt) = C + ∂C
∂x

uδt + ∂C
∂y

vδt + ∂C
∂z

wδt + ∂C
∂t

δt

Thus after the small displacement, the property of the fluid assumes the new value C +
(DC/Dt)δt . This shows that the rate of change of the property C of the moving fluid particle
is given by

DC
Dt

= ∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

(1.3)

DC/Dt is commonly referred to as the substantial time derivative, and is also variously
called the fluid mechanical time derivative, the time derivative following the motion, or
the material or particle derivative. Physically, Equation (1.3) is the total rate of change
in the property, as seen by an observer moving with the fluid. The first term on the right
describes the changes taking place locally at (x, y, z). The last three terms describe the
changes observed while moving between locations with different values of C ; the rate of
change depends on the speed of the motion, (u, v, w).

1.5.2 Conservation of mass: the continuity equation

Because hydrology is concerned with amounts of water observed at different times and
locations, conservation of mass is the main governing principle. There are several ways of
deriving a formulation that embodies this principle.

At a point
One way, after Euler’s 1755 derivation (Lamb, 1932), is to consider an element of fluid
mass, which occupies a small volume δ∀ = (δx δy δz) at time t , shown as ABCD in two
dimensions in Figure 1.3, and whose center moves at a velocity v = ui + vj + wk. If the
mass of fluid per unit volume, that is its density, is ρ, the mass of the element is given by
(ρδ∀). In the absence of chemical reactions or sources and sinks, the mass of this element
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δz

δx

A

CD

B

x

z

A′
B′

C′
D′

E

F

G

H

u δt

w δt

Fig. 1.3 At time t the mass ρδ ∀ occupies the volume ABCD, and at time t + δt this same fluid

mass has moved to A′B′C′D′. The center of the volume has moved from (x0, y0, z0) to

(x0 + uδt, y0 + vδt, z0 + wδt). The figure is shown in two dimensions for clarity; the third

coordinate y can be imagined as pointing into the plane of the drawing.

does not change and must remain the same. Therefore, if the fluid property is taken as the
mass of the fluid, or C = (ρδ∀), one has with Equation (1.3) that

D(ρδ∀)

Dt
= 0

or

ρ
D(δ∀)

Dt
+ δ∀ Dρ

Dt
= 0

(1.4)

The rate of change of the fluid element volume D(δ∀)/Dt can be derived by tracking the
fluid element, shown in Figure 1.3, as it moves from ABCD to A′B′C′D′ during the small
time interval δt . The point H is then located at

x = x0 − δx
2

+
(

u − ∂u
∂x

δx
2

+ ∂2u
∂x2

(
δx
2

)2 1

2
− · · ·

)
δt

and at

z = z0 +
(

w − ∂w

∂x
δx
2

+ ∂2w

∂x2

(
δx
2

)2 1

2
− · · ·

)
δt

The point F is at

x = x0 + δx
2

+
(

u + ∂u
∂x

δx
2

+ ∂2u
∂x2

(
δx
2

)2 1

2
+ · · ·

)
δt
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and

z = z0 +
(

w + ∂w

∂x
δx
2

+ ∂2w

∂x2

(
δx
2

)2 1

2
+ · · ·

)
δt

Therefore, the length of the segment HF, as projected on the x-axis, is given by [δx +
(∂u/∂x)δxδt]; in a similar way, one obtains for the projection of the length of the segment
EG on the z-axis the value [δz + (∂w/∂z)δzδt], and for the length of the segment in the
y-direction (not shown in Figure 1.3) [δy + (∂v/∂y)δyδt]. If δx, δy, δz and δt are all small
enough, higher-order terms can be neglected, and the volume occupied by the mass at time
t + δt can be taken as the product of these three segments. Thus the change in volume
during δt becomes

D(δxδyδz)

Dt
δt =

(
1 + ∂u

∂x
δt

)
δx

(
1 + ∂v

∂y
δt

)
δy

(
1 + ∂w

∂z
δt

)
δz − δxδyδz

so that

D(δ∀)

Dt
=

(
∂u
∂x

+ ∂v

∂y
+ ∂w

∂z

)
δ∀ (1.5)

In more concise vector notation this can also be written as

D(δ∀)

Dt
= ∇ · v δ∀ (1.6)

where ∇ is the operator ∇ = (∂/∂x) i + (∂/∂y) j + (∂ /∂z) k. Equations (1.5) and (1.6)
show that the divergence ∇ · v is indeed, as its name suggests, the fractional rate of change
of the fluid element volume. With this result, Equation (1.4) can be written as

Dρ

Dt
+ ρ

(
∂u
∂x

+ ∂v

∂y
+ ∂w

∂z

)
= 0 (1.7)

or again, in vector notation, as

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.8)

Equations (1.7) and (1.8) are forms of the classical continuity equation. The form of (1.8) is
applicable to describe the conservation of mass of any substance at a given point (x, y, z),
provided (ρv) is made to represent the specific mass flux F, that is the transport of mass
of that substance per unit cross sectional area and per unit time. Whenever the density of
the substance in question can be considered constant, the continuity equation assumes its
well-known form

∇ · v = 0 (1.9)

Note that the continuity equation is not usually derived this way; the present derivation is
used to maintain unity and consistency of treatment with the conservation of momentum
in Section 1.5.3; moreover, it is relevant to the study of deforming porous media later on
in Chapter 8. A more common way to derive the continuity equation consists of setting up
a mass balance for a certain volume fixed in space, also called a control volume. The mass
balance states that the sum of all the inflow rates into the control volume minus the sum of
all the outflow rates is equal to the time rate of change of mass stored in the control vol-
ume. For an infinitesimally small control volume this procedure also yields Equation (1.8).
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Regardless of the derivation, however, it should be remembered that Equations (1.8) and
(1.9) describe the flow at a point; therefore, in principle, the integration of (1.8) or (1.9)
should allow the determination of the distribution of the amount and transport of water in
space and in time.

Finite control volume
In a second but equally valid approach, the control volume is assumed to occupy the entire
flow domain by integrating out the spatial dependence of the flux terms. Thus all flux terms
are located on the boundaries of the flow domain and they can be grouped into bulk inflow
rates Qi and outflow rates Qe. As a result, the continuity equation takes on the lumped form
of the storage equation, as follows

Qi − Qe = d S
dt

(1.10)

where S is the amount of water stored in the control volume, and the ordinary derivative
indicates that the time t is the only remaining independent variable. When Equation (1.10)
describes the flow of liquid water with an assumed constant density, these variables can
have the dimensions of [Q] = [L3/T] and [S] = [L3], where L and T represent the basic
dimensions of length and time, respectively; if the Q-terms include precipitation and evap-
oration, it is often convenient to take these dimensions as [Q] = [L/T] and [S] = [L]. In
the lumped formulation of Equation (1.10), all interior variables and parameters represent
spatial averages over the entire control volume.

1.5.3 Conservation of momentum: Euler and Navier–Stokes equations

The flow of a fluid is also subject to the principle of conservation of momentum. Again,
there are several ways of obtaining a mathematical formulation of this principle.

At a point
The simplest method is probably to consider, as before, a small element of an ideal fluid with
a mass (ρδ∀), as illustrated in Figure 1.4, and to apply Newton’s second law to it. This states
that the rate of change of momentum is equal to the sum of the impressed forces. The pres-
sure and the velocity at the center (x, y, z) of this element are p(x, y, z, t) and v(x, y, z, t),
respectively. Accordingly, the property of the fluid element in this case is its momen-
tum, or C = (ρδ∀ v), and the rate of change is D(ρδ∀v)/Dt , as given by Equation (1.3).
Because the fluid is assumed to be ideal, the only relevant forces are those owing to pres-
sure and to the acceleration of gravity. The latter is a vector, g = igx + jgy + kgz , whose
direction defines the local vertical, and whose absolute value is commonly denoted by g;
the coordinates shown in Figure 1.4 are oriented in such a way that gx = −g sin θ , gy = 0
and gz = −g cos θ . As illustrated in Figure 1.4, the x-component of the net force acting
on the fluid element is the sum of the forces acting on AD and BC plus the force due the
Earth’s gravity; this sum equals −[(∂p/∂x) + ρg sin θ ]δxδyδz. Similarly, the sum of the
impressed forces in the z-direction is −[(∂p/∂z) + ρg cos θ ]δxδyδz. Adding to these an
analogous y-component, one has in vector notation,

D
Dt

(ρδ∀v) = −(∇ p − ρg)δ∀
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Fig. 1.4 Definition sketch for the conservation of momentum of a fluid element occupying the volume

δ∀ = (δx δy δz), with its center at (x, y, z). The element is subject to pressure forces and the

acceleration of gravity. The y-coordinate, which is not shown, points into the plane of the

drawing.

Making use of Equation (1.4), one obtains immediately

Dv

Dt
= − 1

ρ
∇ p + g (1.11)

which is a form of Euler’s equation. Inclusion of the effect of viscosity into Euler’s equation
produces the Navier–Stokes equation; expanding the substantial derivative according to its
definition (Equation (1.3)), one can write it as follows

∂v

∂t
+ v · ∇v = − 1

ρ
∇ p + g + f (1.12)

where f denotes the frictional force (per unit mass); for an incompressible Newtonian
fluid it can be shown that this is given by f = ν∇2v, where ν is the kinematic viscosity.
To repeat briefly, the first term on the left represents the change in momentum (per unit
mass) of the fluid due to local acceleration, i.e. changes in velocity at the point (x, y, z)
under consideration. The second term represents the momentum changes resulting from
acceleration (or deceleration) experienced by the fluid as it moves between points with
different velocities. The first term on the right represents the force resulting from the pressure
gradient, and the second the force resulting from the gravity field of the Earth. If the z-axis
represents the vertical and points upward (or θ = 0 in Figure 1.4), Equation (1.12) can be
written as

∂v

∂t
+ v · ∇v = − 1

ρ
∇ p − gk + f (1.13)

in which, it should be recalled, k is the unit vector in the z-direction.
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The viscosity of a liquid at standard pressure depends on temperature. For most practical
purposes, in the range 0 ≤ T ≤ 40 ◦C the kinematic viscosity of water (in units of m2 s−1)
as a function of temperature (in ◦C) can be calculated with sufficient accuracy by means
of ν = 10−6 (1.785 − 0.057 89T + 0.001 128T 2 − 0.9671 × 10−5T 3); this yields roughly
1.00 × 10−6 m2 s−1 at 20 ◦C . This expression is based on measurements at the National
Bureau of Standards, made available by J. F. Swindells. Similarly, for most applications
in hydrology the density of water (in units of kg m−3) at 1 atmosphere can be calculated
in the same temperature range by means of ρ = (999.8505 + 0.060 01T − 0.007 917T 2 +
4.1256 × 10−5T 3).

Finite control volume
Like Equations (1.8) and (1.9), also here Equations (1.11), (1.12) and (1.13) describe the flow
phenomenon at a point. Again, they can be extended to a larger control volume by integrating
out the spatial dependence of the terms. This can be accomplished by multiplication of each
term in Equation (1.13) by the differential volume ds · dA (in which ds and dA represent
the differential flow path and cross-sectional area vectors, the latter pointing in the direction
of flow) and by subsequent integration along all flow paths inside the control volume and
across all areas of entry and exit of the control volume. For example, in the case of a conduit
fixed in space occupied by a fluid volume S of constant density ρ, this yields for, say, the
x-direction, approximately,

ρ
d(S Vx )

dt
+ ρ(QeVxe − QiVx i) = Fx (1.14)

where F is the sum of all forces acting on the fluid in the control volume, Qi and Qe are
the inflow and outflow rates of the control volume, V is the average fluid velocity inside
the control volume, Vi and Ve the average fluid velocity over the entry and exit section,
respectively, of the control volume, and the subscript x denotes the component direction of
the momentum and of the forces.

1.5.4 The kinematic approach

In principle, the description of fluid flow phenomena should involve conservation of mass,
conservation of momentum, and conservation of energy. However, whenever, the relevant
phenomena are isothermal, most of the energy is mechanical, and the energy conservation
equation becomes redundant, so that it is often not included in the formulation. In this book,
the energy conservation equation will be used only in relation to atmospheric phenomena,
where it will be discussed further. In hydrologic applications, whenever both mass and
momentum conservation principles are made use of, the mathematical description of the
flow phenomena is called a dynamic formulation. However, in some situations, momentum
changes, both temporal and spatial, are so small that they can be neglected. In such cases,
the terms on the left-hand side of Equation (1.12) can be omitted and this greatly simplifies
the formulation. In practice, the right-hand side of Equation (1.12) can then often be param-
eterized by an explicit functional relationship between the flow velocities in the system and
some other variables such as pressure, water depth or water level height. Whenever only the
continuity equation is required, and the momentum equation can be replaced by this type of
relationship, the mathematical description is referred to as a kinematic formulation. The
same idea can also be applied to larger control volumes. In this case, the combination of the
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storage equation (1.10) with a simple functional relationship between S and Qe and/or Qi

is called a lumped kinematic formulation.
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P RO B L E M S

1.1 Assuming that the average volume of water storage in the soil equals 0.05 m (if spread over the
entire Earth surface; see Table 1.3), and that the average precipitation on the land surfaces of the
Earth is equal to 0.8 m y−1 (Table 1.1), give an estimate (expressed in days) for the mean residence
time of soil water. Consider conditions to be steady, so that precipitation is in balance with runoff
and evaporation, and assume that all the precipitation infiltrates into the soil. What would this
residence time be, if it is assumed that only one half of the precipitation infiltrates directly into the
soil, and that the remaining half immediately evaporates as interception or runs off on the surface?

1.2 Recent estimates of the average surface energy fluxes at the global scale (Table 1.4) are as follows;
the net radiation Rn = 104 W m−2, the latent heat flux Le E = 85 W m−2, and the turbulent sensible
heat flux H = 19 W m−2. Express these fluxes as equivalent quantities of liquid water evaporated
in units of mm y−1. Assume that the latent heat of vaporization of water is roughly Le = 2.5 ×
106 J kg−1 and the density ρw = 103 kg m−3.





I WAT E R I N T H E AT M O S P H E R E





2 WAT E R A L O F T : F L U I D M E C H A N I C S
O F T H E L OW E R AT M O S P H E R E

On account of the short residence time and great mobility of water vapor in air, the lower
atmosphere is one of the critical pathways in the global hydrologic cycle; it transports
water and energy around the globe without regard to continental boundaries and thus links
the continents, the upper atmosphere, and the oceans. The transport and distribution of
water vapor in the lower atmosphere, where it is most abundantly present, are among the
main factors controlling precipitation and evaporation from the surface; these processes,
in turn, determine soil and groundwater storage and the different runoff phenomena.

2 . 1 WAT E R VA P O R I N A I R

2.1.1 Global features

The global amount of water vapor contained in the air is roughly (see Table 1.3) equivalent
with a layer of liquid water covering the earth, with a thickness of around 25 mm on
average. The thickness of this layer, which is the total liquid equivalent of water vapor
in the atmospheric column at a given location, is also called the precipitable water, Wp.
However, this quantity of water vapor is not distributed uniformly and it can greatly vary
over a wide range of scales in space and in time. For instance, the water vapor content
of the atmosphere, just like the temperature, generally tends to decrease with increasing
latitude. Available data (Randel et al., 1996) show that the precipitable water is more
likely to be well below 5 mm near the Poles, and close to 50 mm near the Equator.
But this is not always the case; even at similar latitudes there can be huge regional
variations, the most extreme example being the warm dry deserts of the world. Most of
the atmospheric water vapor is found relatively close to the ground, and at any given
location water vapor decreases sharply with height; typically, about half the total water
vapor in the atmospheric column can be found below a height of 1 or 2 km.

Because the global annual evaporation is around E = 1 m, the average atmospheric
residence time of water vapor Wp/E is only about 9 days. This time scale governs
the hydrologic interactions and water transfers between the atmosphere and the other
two compartments of the global system, the oceans and the continents. This time scale
is especially fundamental to the transport of atmospheric water vapor from its source
regions – mainly evaporation from the oceans – to sinks in precipitating weather systems.
Indeed, the excess precipitation on the continents, which does not evaporate, ultimately
runs off to the seas and oceans of the world. A balance is maintained in the global system
by the fact that over the oceans the situation is reversed and that evaporation is generally
larger than precipitation, allowing the excess oceanic water vapor to be transported back
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to the continents. This transport of water from the oceans to the land areas, also called
advection, takes place mostly in the form of water vapor and not as clouds; actually, in
the atmosphere the total amount of water in the liquid and ice phases is less than 0.5%
of the water in the vapor phase.

But beside its central role in the hydrologic cycle, water vapor strongly affects other
aspects of the Earth’s weather and climate as well. It is one of the main agents in the
overall energy budget of the atmosphere in a number of ways. Globally, as seen in
Table 1.4, the phase changes from liquid and solid to vapor are the main energy transfer
mechanisms from the Earth’s surface to the atmosphere; the subsequent condensation
of this vapor in the air furnishes a large portion of the energy needed for the circula-
tion of the atmosphere. Thus, the large-scale transport of water vapor as latent heat is
one of the main redistribution mechanisms for the uneven radiative input from the Sun.
In addition, the concentration and spatial distribution of the atmospheric water vapor
are major factors controlling the amount and type of cloud, which in turn determine the
solar radiation reaching the Earth’s surface. Finally, as the most abundant greenhouse
gas, water vapor absorbs and thus “traps” terrestrial infrared radiative energy, and then
re-emits it at a lower temperature.

2.1.2 Some physical properties

For many practical purposes, the air of the lower atmosphere can be considered as a mixture
of perfect gases; in the present context these may conveniently be assumed to be dry air of
constant composition and water vapor. The water vapor content of the air can be expressed
in terms of the mixing ratio, defined as the mass of water vapor per unit mass of dry air,

m = ρv/ρd (2.1)

where ρv is the density of the water vapor and ρd the density of the air without the water
vapor. The specific humidity is defined as the mass of water vapor per unit mass of moist
air,

q = ρv/ρ (2.2)

where ρ = ρv + ρd. The relative humidity is the ratio of the actual mixing ratio and the
mixing ratio in water vapor saturated air at the same temperature and pressure,

r = m/m∗ (2.3)

This is nearly equal to (e/e∗), the ratio of the actual vapor pressure and the saturation vapor
pressure; the latter is the pressure of the vapor, when it is in equilibrium with a plane surface
of water or ice at the same temperature and pressure.

According to Dalton’s law, the total pressure in a mixture of perfect gases equals the
sum of the partial pressures, and each of the component gases obeys its own equation of
state. Thus, the density of the dry air component is

ρd = p − e
RdT

(2.4)

where p is the total pressure in the air, e is the partial pressure of the water vapor, T is the
(“absolute”) temperature, and Rd, which is given in Table 2.1, is the specific gas constant
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Table 2.1 Some physical constants

Dry air
Molecular weight: 28.966 g mol−1

Gas constant: Rd = 287.04 J kg−1K−1

Specific heat: cpd = 1005 J kg−1K−1

cvd = 716 J kg−1K−1

Density: ρ = 1.2923 kg m−3

(p = 1013.25 hPa, T = 273.16 K)

Water vapor
Molecular weight: 18.016 g mol−1

Gas constant: Rw = 461.5 J kg−1K−1

Specific heat: cpw = 1846 J kg−1 K−1

cvw = 1386 J kg−1K−1

Note. The values listed in Tables 2.1, 2.4 and 2.5, are adapted from
the Smithsonian Meteorological Tables (List, 1971), where the orig-
inal references are cited.

for dry air. Similarly, the density of water vapor is

ρv = 0.622e
RdT

(2.5)

where 0.622 = (18.016/28.966) is the ratio of the molecular weights of water and dry air.
The density of moist air from Equations (2.4) and (2.5) is

ρ = p
RdT

(
1 − 0.378e

p

)
(2.6)

showing that it is smaller than that of dry air at pressure p. This means that water vapor
stratification plays a role in determining the stability of the atmosphere. The equation of
state of moist air can be obtained by eliminating e from Equations (2.4) and (2.5)

p = ρT Rd (1 + 0.61 q) (2.7)

This indicates that the air mixture behaves as a perfect gas provided it has a specific gas
constant

Rm = Rd(1 + 0.61 q) (2.8)

that is a function of the water vapor content. Therefore, Equation (2.7) is often expressed
as

p = Rdρ TV (2.9)

where TV is the virtual temperature defined by

TV = (1 + 0.61 q) T . (2.10)

The virtual temperature is the temperature that dry air should have in order to have the same
density as moist air with given q, T and p.
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Table 2.2 Some useful units

SI (mks) cgs

Length meter centimeter
m cm

Mass kilogram gram
kg g

Time second second
s s

Force newton dyne
N = kg m s−2 dyn = g cm s−2

Pressure pascal microbar
Pa = N m−2 μbar = dyn cm−2

Energy joule erg
J = N m erg = dyn cm

Power watt
W = J s−1 erg s−1

Table 2.3 Conversion factors

Pressure millibar 1 mb = 102 Pa = 1 hPa = 103μbar = 103dyn cm−2

millimeter mercury 1 mm Hg = 1.333 224 hPa
atmosphere 1 atm = 1.013 25 105Pa

Energy calorie (IT) 1 cal = 4.1868 J = 4.1868 107 erg
(Energy/area) (langley) (1 ly = 1 cal cm−2)

The precipitable water is the total mass of water vapor in a vertical atmospheric column;
if it is assumed that the pressure is negligible at the top of the atmosphere, it can be written
as

Wp =
po∫

0

q dp/g (2.11)

where po is the surface pressure. Recall that the basic dimensions of these variables are
[q] = [Mw/Ma], [p] = [MaL

−1T−2], and [g] = [LT−2], in which it is convenient to dis-
tinguish between the mass of air Ma and the mass of water substance Mw. Therefore
the basic dimensions of precipitable water are [Wp] = [MwL−2], i.e. water mass per
unit area. In SI units this can be expressed in kg m−2, which is roughly equivalent
with mm of vertical liquid water column, because the density of liquid water is around
1000 kg m−3.

For convenient reference, some common units and conversion factors are listed in
Tables 2.2 and 2.3.
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Table 2.4 Some properties of water

Temperature cw Le e∗ de∗/dT
(◦C) (J kg−1 K−1) (106 J kg−1) (hPa) (hPa K−1)

−20 4354 2.549 1.2540 0.1081
−10 4271 2.525 2.8627 0.2262

0 4218 2.501 6.1078 0.4438
5 4202 2.489 8.7192 0.6082

10 4192 2.477 12.272 0.8222
15 4186 2.466 17.044 1.098
20 4182 2.453 23.373 1.448
25 4180 2.442 31.671 1.888
30 4178 2.430 42.430 2.435
35 4178 2.418 56.236 3.110
40 4178 2.406 73.777 3.933

cw: specific heat; Le: latent heat of vaporization; e∗: saturation vapour
pressure.

Table 2.5 Some properties of ice

Temperature ci L fu L s e∗
i de∗

i /dT
(◦C) (J kg−1 K−1) (106 J kg−1) (106 J kg−1) (hPa) (hPa K−1)

−20 1959 0.2889 2.838 1.032 0.09905
−15 — — — 1.652 0.1524
−10 2031 0.3119 2.837 2.597 0.2306
−5 — — — 4.015 0.3432

0 2106 0.3337 2.834 6.107 0.5029

ci: specific heat; L fu: latent heat of fusion; L s: latent heat of sublimation; e∗
i :

saturation vapor pressure over ice.

2.1.3 Saturation vapor pressure

The saturation vapor pressure depends only on the temperature, or e∗ = e∗(T ). Some values
are presented in Tables 2.4 and 2.5. These values were obtained from the Goff–Gratch
formulation (see List, 1971), which has been used as the international standard for some
time. For water this formulation is

log e∗ = −7.902 98(Tst/T − 1) + 5.028 08 log(Tst/T )

− 1.3816 × 10−7
(
1011.344(1−T/Tst) − 1

)
+ 8.1328 × 10−3

(
10−3.191 49(Tst/T −1) − 1

) + log e∗
st (2.12)

where log( ) denotes the decimal logarithm, T is the temperature in K, Tst is the steam-point
temperature 373.16 K, and e∗

st is the saturation vapor pressure at the steam-point temperature,
i.e. 1013.25 hPa; the relationship is also sketched in Figure 2.1. For ice the saturation water
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vapor is

log e∗
i = −9.09718(T0/T − 1) − 3.56654 log(T0/T ) (2.13)

+ 0.876793 (1 − T/T0) + log e∗
io

where T0 is the ice-point temperature 273.16 K, and e∗
i0 the saturation vapor pressure at

the ice-point temperature, i.e. 6.1071 hPa. Lowe (1977), who has also compared other
currently used expressions for the saturation vapor pressure, has presented polynomials for
e∗, de∗/dT, e∗

i , and de∗
i /dT, which are quite accurate and suitable for rapid computation.

For computational speed these polynomials should be used in nested form; for e∗ the
representation takes the form

e∗ = a0 + T (a1 + T (a2 + T (a3 + T (a4 + T (a5 + T a6))))) (2.14)

where the polynomial coefficients are as follows when T is in K,

a0 = 6984.505 294, a1 = −188.903 931 0, a2 = 2.133 357 675,

a3 = −1.288 580 973 × 10−2, a4 = 4.393 587 233 × 10−5,

a5 = −8.023 923 082 × 10−8, and a6 = 6.136 820 929 × 10−11.

2 . 2 H Y D RO S TAT I C S A N D AT M O S P H E R I C S TA B I L I T Y

The first law of thermodynamics states that the heat added to a system equals the sum
of the change in internal energy and the work done by the system on its surroundings. If
these quantities are taken per unit mass and in differential form, this is for partly saturated
air

dh = du + pdα (2.15)

where α = ρ−1 is the specific volume, ρ is the density of the air, and (in this Section 2.2
only) u represents the internal energy. The equation of state (2.7), which on account



hydrostat ics and atmospher ic stab il ity 29

of (2.8) can also be written as

p = Rm T/α (2.16)

relates the three variables, α, the temperature T and the pressure p; thus only two of the
three are needed to define the state. If α and T are chosen as these independent variables,
Equation (2.15) becomes

dh =
(

∂u
∂T

)
α

dT +
[(

∂u
∂α

)
T

+ p
]

dα (2.17)

Since by definition the specific heat capacity for constant volume is cv = (∂u/∂T )α
and since it can be shown that (∂u/∂α)T = 0, combination of the differential form of
Equations (2.16) with (2.17) produces

dh = (cv + Rm) dT − αdp (2.18)

or

dh = cpdT − αdp (2.19)

where by definition cp = (∂h/∂T )p is the specific heat for constant pressure. With the
hydrostatic law, giving the pressure change with height in a fluid at rest, i.e.

dp = −ρgdz (2.20)

one finally obtains from Equation (2.19)

dh = cpdT + gdz (2.21)

Equation (2.21) is derived here by a combination of the principle of conservation of
energy with the equation of state and the hydrostatic equation. This result was obtained
for air containing water vapor; however, the moisture content dependency of the specific
heat at constant pressure, namely cp = qcpw + (1 − q)cpd, is very weak and therefore
Equation (2.21) is usually applied with the specific heat for dry air, i.e. cpd.

The criterion for the stability of an atmosphere at rest can be obtained by the following
thought experiment. Consider a small parcel of air with a temperature T1 that undergoes
a small vertical displacement without mixing with the surrounding body of air; this
displacement is sufficiently small and fast, so that the pressure of the particle adjusts to
its new environment in an adiabatic fashion, that is as a reversible process without heat
exchange with its surroundings. Two cases are of interest, depending on the degree of
saturation of the air.

2.2.1 Stability of a partly saturated atmosphere

Dry adiabatic lapse rate
If the atmosphere can be assumed to remain partly saturated during this process, there
is no vaporization or condensation, and the change in heat of the parcel is dh = 0. With
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Equation (2.21) this yields for the temperature change of the parcel, as it moves up or
down,

dT1/dz = −g/cp (2.22)

which is of the order of 9.8 K km−1. The vertical rate of decrease in temperature of the
atmosphere, −dT/dz, is the lapse rate of the air, denoted here by �. A lapse rate of the
atmosphere, that is equal to g/cp, is called a dry adiabatic lapse rate, �d.

Whenever the actual lapse rate in the atmosphere � is larger than �d, a particle
undergoing a small upward displacement δz and changing its temperature according
to Equation (2.22), will be warmer and therefore lighter than its surroundings; this
means that it will have a tendency to continue its upward motion (see Figure 2.2). By
the same token, a particle undergoing a small downward displacement δz under the
same lapse rate conditions, will be colder and thus heavier than the surrounding air;
again, it will have a tendency to continue its downward movement. In both situations,
once displaced however slightly, air parcels tend to continue their motion and amplify
their displacements both upward and downward: under such lapse rate conditions the
atmosphere is unstable. Conversely, in an atmosphere with � < �d, the upward-moving
parcel, whose temperature change is given by Equation (2.22), becomes surrounded by
air that is relatively warmer (see Figure 2.3); thus it is heavier and it will tend to return to
its original position, where it was in equilibrium with its surroundings. In this case, the
parcel resists being moved away from its original position and vertical displacements are
suppressed: the atmosphere is said to be stable. Under conditions when the actual lapse
rate in the air is dry adiabatic, the atmospheric stability is neutral. In summary, one has
for unsaturated air the following criteria:

� > �d unstable
� = �d neutral
� < �d stable
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Unstable conditions typically occur whenever the atmosphere is being heated by the
surface below, for example, as a result of solar radiation on days with clear sky, or as
relatively cold air moves over a relatively warmer surface, such as a lake or the ocean
in fall and early winter. An unstable atmosphere is subject to more intense mixing and
turbulence than a neutral one; this also results in larger turbulent transport. Under certain
conditions an unstable atmosphere will even give rise to various types of organized
motions, with scales ranging from mere local updrafts and dust devils to large tropical
storms. The atmosphere is often stable when the air is being cooled from below. This
typically occurs at night under clear skies, when the surface is cooled by outgoing long-
wave radiation or when relatively warm air flows over a relatively colder lake or ocean
surface in spring. In addition, stable conditions, also called inversions, may result from
larger-scale weather patterns, when relatively warmer air masses move over colder layers.
Not surprisingly, stable conditions have the opposite effect of unstable conditions. Thus
mixing and turbulence are suppressed, and atmospheric transport is normally smaller.
Under extreme conditions, the turbulence may be eliminated altogether and the flow
of the air may be laminar. Such conditions are sometimes visible in the evening of a
calm sunny day, around sunset, when the air near the ground becomes chilly and the
smoke from a chimney can be seen moving slowly through the tree tops of a forest. On
a somewhat larger scale, as a result of the reduced turbulence and dispersion, inversion
conditions also tend to aggravate pollution problems in populated areas.

Potential temperature
To repeat briefly, during small displacements, parcels of air undergo adiabatic tempera-
ture changes in accordance with Equation (2.22). In a perfectly neutral atmosphere the
lapse rate of the atmosphere is also −g/cp; therefore under such conditions a displaced
parcel will, on average at least, always be surrounded by air at the same temperature and,
as a result, there is no net exchange of heat. This means that even though there is a verti-
cal temperature difference under neutral conditions, the heat flux is zero; consequently,
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the temperature used in heat transfer formulations should be corrected to account for
that fact. This can be done by using the potential temperature θ instead of the actual
temperature T . The potential temperature is the temperature that would result if air were
brought adiabatically to a standard pressure level p0 = 1000 hPa; for such a process
dh = 0, and Equation (2.19), after substitution of α with (2.16), can be integrated to
yield Poisson’s equation

θ = T (p0/p)Rd/cp (2.23)

which can serve to define the potential temperature θ and also to calculate it for a given
pressure p and temperature T ; note that in Equation (2.23) Rm is replaced by Rd for
convenience. During an adiabatic process the potential temperature is conserved and
therefore under perfectly neutral conditions in a dry atmosphere, or when the specific
humidity is constant with height, the potential temperature should be a constant. A dry
atmosphere is unstable when θ decreases, and stable when it increases with height. Nev-
ertheless, the difference between T and θ is usually rather small, especially in the lower
layers of the air near the ground surface, where most measurements are made. Therefore
in many situations, when the height difference of the temperature measurements is only
a few meters, the use of the actual temperature T is allowed; otherwise θ must be used
in heat transfer formulations.

Density stratification due to water vapor
In the above considerations of atmospheric stability, the density stratification due to vertical
humidity gradient ∂q/∂z was not taken into account. Under some conditions this can be an
important factor, but it can be readily shown (see, for example, Brutsaert, 1982) that this
may be incorporated in the analysis by means of the virtual potential temperature, defined as
θV = (1 + 0.61q)θ ; the virtual potential temperature is related to the potential temperature,
in the same way the virtual temperature is related to the actual temperature, as indicated
in Equation (2.10). Thus, strictly speaking, in the presence of humidity stratification, the
atmosphere can be considered statically neutral, not when θ is constant, but only when
θV is constant; it is unstable when θV decreases, and stable when it increases with height.
Put differently, under such conditions the stability criterion for an atmosphere is not the lapse
rate of the temperature, but the lapse rate of the virtual temperature; in practice, however,
this difference is often ignored.

2.2.2 Stability of a saturated atmosphere

When the air is saturated, any increase in heat content dh of a parcel of air during an
adiabatic process can only be the result of condensation, that is a decrease in the water
vapor content of the air; this can be written as dh = −Ledq, in which Le is the latent heat
of vaporization and q , defined in Equation (2.2), is the specific humidity. With Equation
(2.21) one obtains now

−dT1

dz
= �d + Le

cp

dq
dz

(2.24)
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The quantity on the right-hand side of (2.24) is called the saturated adiabatic lapse rate,
�s. Since normally dq/dz < 0, the saturated adiabatic lapse rate must be smaller than
the dry adiabatic lapse rate. Moreover, (Le/cp)(dq/dz) depends on the temperature. At
high temperatures, near the Equator, it is of the order of �s ≈ 0.35 �d, whereas at lower
temperatures, for example around −30 ◦C, it has approximately the same value as �d,
i.e. 9.8 ◦C km−1. In the lower layers of the atmosphere it is on average of the order of
5.5 ◦C km−1. If in a rising air mass the condensed moisture is being removed (e.g. through
precipitation), the rate of temperature decrease is called the pseudo-adiabatic lapse rate.
However, under most conditions the heat loss by the removal of this condensed water is
fairly negligible, and the saturated adiabatic lapse rate is a satisfactory approximation.
Thus, for saturated air, one has the following stability criteria:

� > �s unstable
� = �s neutral
� < �s stable

2.2.3 Conditional instability

It often happens that the actual lapse rate in the atmosphere is intermediate between the
dry and the saturated adiabatic lapse rate, that is �s < � < �d; this case is referred to as
conditional instability. When a partly saturated parcel of air is raised in such an atmo-
sphere, it will initially change its temperature at the dry adiabatic rate in accordance
with Equation (2.8), and thus remain colder than the surroundings (see Figure 2.4).
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This situation is still stable. However, if the particle is made to rise further, and con-
tinues to cool down, it may reach the level zC, where condensation takes place; above
the condensation level zC it will change its temperature at the saturated adiabatic lapse
rate. If the rise continues, eventually above the level zF the temperature of the particle
will exceed that of the surroundings; the rising air is now lighter than its surroundings,
and an unstable situation has been established. The air, which was originally forced to
rise, will now take off by free convection and continue to rise without any outside agent.
The height zF is the free convection level. Thus whether or not a vertical displacement
results in instability depends largely on the moisture content of the atmosphere. In a
moist atmosphere the condensation level is low, and relatively small vertical displace-
ments readily produce unstable conditions. In a dry atmosphere, the level zC is higher,
and the atmosphere is more likely to remain stable, even with relatively large vertical
displacements.

2 . 3 T U R B U L E N T T R A N S P O RT O F WAT E R VA P O R

The flow of the atmosphere is almost invariably turbulent. In a turbulent flow molecular
diffusion can usually be neglected, and water vapor is moved from one place to another
by advective transport, that is, by being linked to the motions of the air that contains
it. One exception, when molecular diffusion may be of some consequence, occurs near
a wall where the no slip condition reduces the velocity of the moving air to zero and
the turbulence is largely suppressed. Thus in turbulent air flow, the specific mass flux of
water vapor is given by

Fv = ρvv = ρqv (2.25)

where v is the velocity of the air, ρv is the water vapor density, and q is the specific humid-
ity. The variables Fv = iFvx + jFvy + kFvz and v = iu + jv + kw are both vectors, with
x denoting the direction of the mean wind near the ground and z the vertical.

Note that the transport described by Equation (2.25) can also be referred to as con-
vection in fluid mechanics. However, this usage may lead to some confusion because,
especially in the atmospheric sciences, convection is commonly reserved to describe
transport involving gravity effects, resulting from unstable density stratification. To avoid
such confusion in this regard, in this book any transport that is linked to the motion of
the fluid is called advection.

Turbulent flux of water vapor
In turbulent flow the detailed description of the velocity field and also the temperature,
the content of water vapor, or other admixtures of the air, at any given point in time
and space, is practically impossible and it can only be accomplished in a statistical
sense. The simplest and probably most important statistic is the mean. Accordingly,
ever since Reynolds introduced the idea, it has been common practice in the analysis
of turbulent flow phenomena to decompose the relevant variables into a mean and a
turbulent fluctuation, namely Fvx = Fvx + F ′

vx , . . . , u = u + u′, . . . , q = q + q ′, etc.
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After applying the customary time averaging over a suitable time period, one obtains
from Equation (2.25) for the mean flux components of water vapor

Fvx = ρ(u q + u′q ′)

Fvy = ρ(v q + v′q ′)

Fvz = ρ(w q + w′q ′)

(2.26)

The first terms on the right of these three equations represent the advective transport of
water vapor by the mean motion of the air. The second terms are the components of the
advective vapor transport by the turbulence; they are also often called the Reynolds fluxes,
and statistically speaking, they are covariances. The estimation and parameterization of
these flux components is one of the core problems of hydrology.

Conservation equation of water vapor
The standard procedure for a more thorough analysis of the water vapor transport consists
of combining the expressions for the fluxes, Equations (2.26), with the principle of mass
conservation (1.8) applied to water vapor. This is accomplished by substituting ρv for ρ and
Fv for (ρv) in Equation (1.8); since in this derivation, the bulk air itself is of less concern, it
can be assumed to have a constant density, which allows use of Equation (1.9) for the mean
velocity v. Thus, one obtains the conservation equation for the mean specific humidity,
q (see Brutsaert, 1982), as follows

∂q
∂t

+ u
∂q
∂x

+ v
∂q
∂y

+ w
∂q
∂z

= −
[

∂

∂x

(
u′q ′) + ∂

∂y

(
v′q ′) + ∂

∂z

(
w′q ′)] (2.27)

in which, it should be noted again, the molecular diffusion term is neglected. In princi-
ple, it should be possible to solve Equation (2.27) with appropriate boundary conditions to
describe water vapor transport in the atmosphere. However, this equation presents several
difficulties, which make its solution extremely difficult. First, since the fluxes in (2.26)
are intrinsically dependent on the velocity of the air and the turbulence, it is necessary to
consider the dynamics of the flow and to include the conservation equations for momen-
tum and temperature in the solution process as well. A second and more fundamental
difficulty is that this conservation equation for the mean specific humidity contains not
only q as a dependent variable, which is the first moment, but also the covariances of q ′

with the velocity fluctuations u′, v′ and w′, which are second moments. This means that
Equation (2.27) has more than one unknown; this fact is an instance of the notorious closure
problem of turbulence and it indicates that, without additional relationships, this equation
cannot be solved mathematically.

Fortunately, it is possible to simplify the general problem, as formulated with the
above fluxes, considerably and still obtain meaningful results. This is accomplished,
first, by assuming that the atmosphere nearest the surface can be considered as a steady
boundary layer above a quasi-homogeneous surface (Section 2.4), and, second, by the
application of similarity assumptions to alleviate the turbulence closure problem by
appropriate parameterization (Section 2.5).
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2 . 4 T H E AT M O S P H E R I C B O U N DA RY L AY E R

2.4.1 Quasi-homogeneous conditions

In the atmosphere the largest changes in wind velocity, temperature and humidity are
usually found in the vertical direction and in a distinct region near the surface. In contrast,
horizontal changes are relatively mild, and tend to occur over distances of the order of
tens of kilometers. For this reason the air near the surface may be regarded as a boundary
layer, a concept set forth by Prandtl (1904) for momentum transport in the neighborhood
of a solid wall. The atmospheric boundary layer (or ABL) can be defined as the lower part
of the atmosphere, where the nature and properties of the surface affect the turbulence
directly. Accordingly, the horizontal scales of most atmospheric flow phenomena of
interest in hydrology are much larger than the vertical, so that the horizontal gradients
are usually small compared to the vertical gradients, and the vertical velocities are small
relative to the horizontal velocities. Thus, many problems can be solved by simply
assuming that(

∂

∂x
,

∂

∂y

)
= 0 and w = 0 (2.28)

In addition, since x is the direction of the mean wind velocity near the ground, the mean
velocity in the lateral y-direction can also be discarded, or v = 0. Strictly speaking (2.28)
is valid only when the surface is perfectly homogeneous or uniform. Such conditions
are rare, and the properties of most natural landsurfaces are spatially quite variable;
fortunately, in many situations of interest they can be considered to be at least statistically
homogeneous (see, for example, Brutsaert, 1998), and the assumptions of (2.28) can still
be used to describe the flow.

More generally (2.28) is tantamount to assuming that, as the air moves parallel to
a homogeneous surface, on average (in the turbulence sense) the concentration of any
property or admixture advected by the air changes only in the vertical and remains
constant in the horizontal direction. The fact that the mean concentrations change only
vertically is evidence that there is a source or a sink of the admixture at the surface, and
thus the only turbulent fluxes of consequence are the vertical components. In the case
of humidity with mean concentration (per unit mass of bulk air) q, Equations (2.26) are
thus effectively reduced to

Fvz = ρ w′q ′ (2.29)

in which henceforth the overbar on Fvz is omitted for convenience of notation.
While mathematically Equations (2.26) and (2.29) are unambiguous, a more intu-

itive sense of their physical significance can be obtained by considering the mechanism
sketched in Figure 2.5. A particle of air, which undergoes a vertical velocity fluctuation
w′, travels a distance w′δt during a time interval δt . After that air parcel has risen a
small distance w′δt from a level, where the mean specific humidity is q, it has a specific
humidity which is q ′ larger than the mean of its new environment; thus the rate (distance
per unit time) at which this particular parcel transports absolute humidity upward is
(ρ q ′w′) times its volume. There are many such parcels – or eddies – in turbulent flow
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Fig. 2.5 Sketch illustrating a small fluid
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humidity q is lower by an amount

q′ than at its original position.

moving in all directions and the transport rate by all of them, i.e. the vertical transport
of water vapor mass per unit horizontal area and per unit time is on average as indicated
in Equation (2.29).

Similar expressions can be written for the fluxes of other properties or admixtures of
the flow. The vertical flux component of horizontal momentum, with mean concentration
u, is

Fmz = ρw′u′ (2.30)

and that of sensible heat, with mean concentration cpθ , can be written as

Fhz = ρcpw′θ ′ (2.31)

Under steady conditions in the lowest few meters of the air above a uniform surface,
on account of continuity the inflow rate equals the outflow rate, which means that these
vertical fluxes must be constant with elevation. Hence the water vapor flux in Equation
(2.29) is in fact equal to the rate of evaporation E from the surface, or Fvz = ρw′q ′

0 ≡ E ,
in which the 0 subscript denotes the value near the surface. In the case of momentum,
there is a sink at the surface in the form of a shear stress, so that close to the surface it
can also be assumed that Fmz ≡ −τ = −τ0, in which τ0 is the shear stress at the surface.
Similarly the flux in Equation (2.31) equals the sensible heat flux H at the surface, or
Fhz = ρcpw′θ ′

0 ≡ H . For convenience of notation, the surface shear stress, which is
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Fig. 2.6 Sketch of the typical structure of the atmospheric boundary layer (ABL) above three different types of

uniform surfaces. The atmospheric surface layer (ASL) is the region where Monin–Obukhov

similarity (MOS) is usually valid; h0 is a typical height of the roughness obstacles. Under unstable

conditions the outer region is called the mixed layer, and it is capped by an inversion layer. (The

vertical axis scale is distorted.)

introduced here, is often expressed also as the friction velocity defined as

u∗ ≡ (τ0/ρ)1/2 (2.32)

This shows that in light of Equation (2.30), under steady or nearly steady conditions,
one has to a good approximation near the ground that u2

∗ = −w′u′.

2.4.2 General structure of the ABL

In the analysis, it is convenient to assume that the atmospheric boundary layer consists
of a number of sublayers, in which different sets of variables are important to different
degrees in governing turbulent transport. The main subdivision is into an inner and an
outer region. In the outer region or defect layer the flow is strongly dependent on the
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Fig. 2.7 Sketch of the typical diurnal evolution of a fair weather atmospheric boundary layer (ABL) over land

under clear sky around the time of the equinox. The inner region or atmospheric surface layer (ASL)

is unstable during the daytime as a result of solar heating at the surface; the ASL is stable at night as a

result of radiative cooling. During the day the outer region is characterized by convective turbulence,

fed by heating through the surface layer; after sunset this outer layer becomes virtually uncoupled

from the surface, by the development of the stable nocturnal boundary layer.

free stream velocity outside the boundary layer, whereas in the inner region, also called
variously atmospheric surface layer (or ASL), Prandtl layer or wall layer, the flow is
more strongly affected by the nature of the surface (see Figure 2.6).

In the atmosphere, under conditions not very different from neutral, the outer region
is affected both by the pressure gradients, reflecting larger scale weather patterns, and
by the Coriolis forces, reflecting the effect of the rotation of the Earth. Under unstable
conditions, the effects of the pressure and Coriolis forces are relatively small, and the
outer region is more characterized by thermal convective turbulence; the outer region
may then be referred to as the mixed layer or the convection layer. The upper limit
of the unstable boundary layer is typically indicated by a sharp inversion, that is, a
layer of stable air. Over land, the thickness of the boundary layer tends to vary in the
course of the day. Consider for instance a typical evolution at mid-latitudes, in the
absence of rapidly changing weather with passing fronts or precipitation activity. As
stable conditions develop during the night, the boundary layer may range from a few
tens of meters in the evening to about 500 m by early morning; then after sunrise, a new
unstable boundary layer develops which may eventually reach a thickness of 1–2 km
at full maturity by the middle of the day. This evolution is sketched in Figure 2.7.
Figure 2.8 shows an example of the evolution of the temperature profile in the course
of a sunny day. As a rule of thumb, the thickness of a typical boundary layer can be
assumed to be of the order of 1 km; it is usually larger under unstable than under neutral
conditions.

The thickness of the atmospheric surface layer (or ASL) is usually taken as the lower
one tenth of the boundary layer. While there are several ways of defining this thickness
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Fig. 2.8 Example of profiles of potential temperature in and above the atmospheric boundary layer. The
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(see below), it coincides approximately with the region where the direction of the wind
remains constant with height; this absence of “turning” confirms that it is indeed the
region where the effect of the rotation of the Earth is of little consequence. The surface
sublayer is also sometimes assumed to be the layer where the vertical turbulent fluxes
do not change appreciably from their value at the surface, say less than 10%. Although
the ASL occupies the lower part of the turbulent boundary layer, it does not extend all
the way down to the surface. As illustrated in Figure 2.6, the height of the lower limit
of the ASL can be assumed to be of the order of 30ν/u∗ in the case of smooth flow, and
of the order of 3 to 5h0 in the case of rough flow; h0 is the characteristic height of the
roughness obstacles.

In general, under non-neutral conditions the air flow and the momentum transport
are greatly affected by the transport of sensible heat and, to a lesser extent, water vapor,
and vice versa. However, in the lower part of the atmospheric surface layer it is found
that sensible heat and water vapor may be considered as merely passive admixtures,
and that the effects of the density stratification resulting from temperature and humidity
gradients are negligible. This lower region of the atmospheric surface layer is referred
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to as the dynamic sublayer. Under neutral conditions, the whole surface layer behaves
as a dynamic layer.

Finally, in the immediate vicinity of the surface, the turbulence is strongly affected by
the structure of the roughness elements, or it is greatly damped by the viscous effects; in
most cases it is subjected to both effects. The region nearest to the surface where these
effects are most important, is sometimes referred to as the interfacial (transfer) sublayer.
In the case of smooth flow, as may occur for example over snow, water or salt flats, it
is referred to as the viscous sublayer. Experiments have shown that its thickness is of
the order of 5ν/u∗, in which ν is the viscosity of the air; the flow may be considered
smooth when (u∗h0/ν) < 1, approximately, in which again h0 is the average height
of the surface roughness elements. Experiments have also shown that a surface can
be considered rough, when (u∗h0/ν) > 15, approximately; in this case the interfacial
sublayer may be referred to as a roughness sublayer, and its thickness is of the order
of the mean height of the roughness obstacles. When the roughness obstacles consist of
vegetation, which is more or less porous or permeable for the air stream, the interfacial
sublayer is commonly referred to as the canopy sublayer.

2 . 5 T U R B U L E N C E S I M I L A R I T Y

Over the past century or so, various turbulence closure schemes have been proposed,
essentially by invoking similarity on the basis of dimensional analysis. In this type of
approach, after the relevant physical quantities are identified, either from the governing
equations or simply by inspection, they are organized into a reduced number of dimen-
sionless quantities. Dimensional analysis only establishes the possible existence of a
functional relationship between these dimensionless quantities, and it is incapable of
providing the specific form of the functional relationship; the form of that function must
usually be determined by experiment or on the basis of some conceptual transport model
or other theoretical considerations. This section does not present an exhaustive review
but only a few ideas that will be useful in the determination of evaporation in Chapter 4.

2.5.1 Parameterization of the turbulent transport

Most similarity formulations of turbulent flux have the common feature, that the mean
of the product of temporal fluctuations in expressions such as (2.29), (2.30) and (2.31),
i.e. the second moment, is replaced simply by the product of the spatial changes of
the corresponding mean quantities, i.e. of the first moments. In the case of the specific
humidity flux this is in general

w′q ′ = −Ce(u2 − u1)(q4 − q3) (2.33)

where the subscripts 1 through 4 refer to the measurement heights above the surface
and Ce is a dimensionless parameter, also called the water vapor transfer coefficient,
or the Dalton number; Ce depends on the heights of the reference levels 1 through 4,
beside a number of other (dimensionless) factors, as will be shown below; the minus
sign indicates that the flux points in the direction of negative increments of q. Note that
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the four heights in Equation (2.33) need not all be different; thus levels 4 and 3 could be
the same as 2 and 1, respectively. In the case of the vertical momentum flux, one obtains
in the same way

w′u′ = −Cd(u2 − u1)2 (2.34)

where Cd is the transfer coefficient for momentum, also called the drag coefficient; in
the case of the vertical sensible heat flux, one has similarly

w′θ ′ = −Ch(u2 − u1)(θ4 − θ3) (2.35)

where Ch is the heat transfer coefficient, also called the Stanton number.
In many applications the lowest reference level of the wind speed is taken at the

surface where u = 0. When in addition the vertical water vapor flux refers to that at the
ground surface, namely E , Equation (2.33) assumes the common form

E = −Ce ρu
q (2.36)

where u is the wind speed at a certain reference height above the ground and 
q is
the difference between the mean specific humidity at two other reference heights (one
of which may also be at the water or ground surface level), whose values will, again,
affect the magnitude of Ce. In the same way, for the surface shear stress, Equation (2.34)
becomes

τ0 = Cd ρu2 (2.37)

and, for the surface sensible heat flux, Equation (2.35) becomes

H = −Ch ρcpu
θ (2.38)

Recall that the difference between T and θ is often small in the lower layers of the surface
layer, where most measurements are made. Therefore in many situations, when the height
difference of the temperature measurements is only a few meters, in expressions like
(2.35) and (2.38) the use of T is allowed instead of θ .

2.5.2 Some specific implementations: flux-profile functions

The dimensionless transfer coefficients Ce, Cd and Ch, and their dependence on other
dimensionless variables, have been the subject of much research. Major progress was
made in the thirties by means of mixing length theory, as a result of contributions by
Prandtl, von Karman, and Taylor in the framework of the turbulent diffusion approach;
this led initially to the formulation of the logarithmic profile equations for the mean
wind speed, the potential temperature, the specific humidity and other admixtures of
the flow (see Monin and Yaglom, 1971; Brutsaert, 1982; 1993) and subsequently to
further developments by Monin and Obukhov and others. In this section a few similarity
approaches are reviewed that have been useful in the practical estimation of surface
fluxes.
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Neutral atmospheric surface layer
It is now generally agreed, and almost accepted by definition, that in the dynamic sublayer,
and under neutral conditions in the whole atmospheric surface layer, the concentration
of any admixture of the flow is a logarithmic function of height above the ground. Many
different derivations of this relationship have appeared in the literature but the simplest is
no doubt that given by Landau and Lifshitz (1959) in the 1944 edition of their book (see
also Monin and Yaglom, 1971). The derivation is based strictly on dimensional analysis
and on the observation that in plan-parallel flow an increase in velocity in the z-direction,
(du/dz), is evidence of a downward momentum flux and a sink at the surface. Thus, the
mean velocity gradient in a fluid of density, ρ, is determined by the shear stress at the
wall, τ0, and the distance from the wall, (z − d0); in the last variable the (zero-plane)
displacement height d0 is introduced to account for the uncertainty of the position of the
wall in the case of irregular and uneven surfaces. These variables can be combined into
a single dimensionless quantity as follows,

u∗
(z − d0)(du/dz)

= k (2.39)

where u∗ is defined as in Equation (2.32). Experimentally, this combination k has been
found to be nearly invariant and close to 0.4 under many different conditions; it is referred
to commonly as von Karman’s constant. The logarithmic profile follows upon integration
of Equation (2.39).

In general, this logarithmic profile can be written as

u2 − u1 = u∗
k

ln

(
z2 − d0

z1 − d0

)
(2.40)

where the subscripts 1 and 2 refer to two levels within the neutral surface layer. This
result produces immediately the drag coefficient, as it appears in Equation (2.34), namely
Cd = {k/ ln [(z2 − d0)/(z1 − d0)]}2. Equation (2.39) can also be integrated as follows

u = u∗
k

ln

(
z − d0

z0

)
(2.41)

where z0 is an integration constant, whose dimensions are length; it is usually referred to
as the momentum roughness parameter or the roughness length. Its value depends on the
conditions at the lower boundary of the region of validity of Equation (2.39). Graphically,
it may be visualized as the zero velocity intercept of the straight line resulting from a
semi-logarithmic plot of mean velocity data versus height in a neutral surface layer (see
Figure 2.9). Equation (2.41) leads to the drag coefficient, as it appears in Equation (2.37),
namely Cd = {k/ln[(z − d0)/z0]}2.

Dimensional arguments, similar to those leading to the profiles of the mean wind
speed, produce for the mean specific humidity gradient

E/ρ

u∗(z − d0)(dq/dz)
= −k (2.42)



water aloft 44

ln(z−d0)

Mean velocity, u

Dynamic
sublayer

Surface
sublayer

(ASL)

ln(z0)

stable

neutralunstable

Fig. 2.9 Schematic illustration

of the mean wind

profile u = u(z) in the

dynamic sublayer and

in the atmospheric

surface layer (ASL,

also called the surface

sublayer).

Once again, integration yields a logarithmic profile as follows,

q1 − q2 = E
ku∗ρ

ln

(
z2 − d0

z1 − d0

)
(2.43)

This result, combined with Equations (2.33) and (2.37), produces a mass transfer coeffi-
cient for water vapor; in the case where wind speed and specific humidity are measured
at the same two levels z1 and z2 one obtains Ce = {k/ln[(z2 − d0)/(z1 − d0)]}2; it is
remarkable that this transfer coefficient has the same form as that for momentum, i.e.
Ce = Cd, as derived above. The fact, that under certain conditions transfer coefficients
of different admixtures in turbulent flow are the same, is also referred to as the Reynolds
analogy. The alternative form of Equation (2.43), when one of the specific humidity
values is taken at the surface, z = 0, is

qs − q = E
ku∗ρ

ln

(
z − d0

z0v

)
(2.44)

where qs is the value of q at the surface and z0v is the (scalar) roughness for
water vapor (see Figure 2.10). In this case the transfer coefficient can be written as
Ce = k2/{ln[(z2 − d0)/z0]ln[(z1 − d0)/z0v]}, in which the subscript 2 refers to the height
of the wind measurement and the subscript 1 refers to that of the specific humidity. In this
formulation Ce would be equal to Cd only if the two roughness parameters z0 and z0v

have the same value, which is rarely the case above land.
It would be possible to define a similar logarithmic relationship between the tem-

perature and the surface sensible heat flux H ; however, since under neutral conditions
the temperature differences and the sensible heat flux are relatively small, this is not
very meaningful. In what follows under non-neutral conditions the scalar roughness for
sensible heat in the temperature profile will be denoted by z0h.
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Table 2.6 Typical roughness values for various surfaces

Surface description z0 (m)

Large water surfaces (“average”)
Snow, mud flats 0.0001–0.0005
Smooth runways

Short grass 0.008–0.02
Long grass, prairie 0.02–0.06
Short agricultural crops 0.05–0.10
Tall agricultural crops 0.10–0.20

Prairie or short crops with scattered bushes and tree clumps
0.20–0.40

Continuous bushland

Bushland in rugged and hilly (50–100 m) terrain 1.0–2.0
Mature pine forest 0.80–1.5
Tropical forest 1.5–2.5
Fore-Alpine terrain (200–300 m) with scattered tree stands 3.0–4.0
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In practical applications the roughness parameters z0,z0h, z0v and d0 are best deter-
mined experimentally for each specific surface. However, in the absence of measure-
ments, it may be necessary to estimate them from simple geometric characteristics of
the surface; numerous such relationships have appeared in the literature (e.g. Brutsaert,
1982). Wieringa (1993) has presented a review of available experimental determinations
of z0 over homogeneous terrain. A few typical values of z0 taken from the literature
for various surfaces are given in Table 2.6. As a useful first approximation for surfaces
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with densely placed obstacles such as natural vegetation with average height h0, the
momentum roughness z0 can be assumed to be of the order of h0/10, d0 of the order of
h0/2 to 2h0/3, and z0h and z0v of the order of h0/100 or smaller. The scalar roughness
parameters z0h and z0v continue to be the subject of research (see, for example, Brutsaert
and Sugita, 1996; Qualls and Brutsaert, 1996; Sugita and Brutsaert, 1996; Cahill et al.,
1997).

Monin–Obukhov similarity in the surface layer
Neutral conditions occur only seldom in the atmospheric boundary layer. Therefore, it is
practically always necessary to include the effect of the stability, i.e. the density stratification,
of the atmosphere in the formulation of the profile equations and of the corresponding
transfer coefficients. One of the more common ways of doing this is based on the Monin–
Obukhov (1954) approach, which assumes that the effect of the density stratification of
the flow can be represented by the production rate of turbulent kinetic energy, resulting
from the work of the buoyancy forces; it can be shown (see Monin and Yaglom, 1971;
Brutsaert, 1982) that near the ground this rate is given by (g/Ta)[(H/cpρ) + 0.61 Ta E/ρ].
The dimensionless variables in Equations (2.39) and (2.42) have the variables (z − d0) and
u∗ in common. Accordingly one can hypothesize that in a stratified turbulent flow any
dimensionless characteristic of the turbulence depend only on the following: the height
above the virtual surface level, (z − d0); the shear stress at the surface, τ0; the density, ρ

and the turbulent energy production rate by the buoyancy. These four quantities, which can
be expressed in terms of three basic dimensions, viz. time, length and air mass, can be
combined into one dimensionless variable. This variable, which was proposed by Monin
and Obukhov (1954) (originally for d0 = 0), is

ζ = z − d0

L
(2.45)

where L is known as the Obukhov stability length, defined by

L = − u3
∗

k(g/Ta)(w′θ ′
0 + 0.61 Taw′q ′

0)
(2.46)

in which Ta is a mean reference temperature (in K) of the air near the ground and the
subscript 0 refers to near-surface values of the fluxes, so that by definition these fluxes
represent (H/cpρ) and (E/ρ), respectively. In the original formulation of L the turbulent
water vapor flux term did not appear; although in many cases the effect of the water vapor
on the density stratification can be neglected, it is still is advisable to include it whenever
possible.

With this hypothesis the dimensionless gradients of the mean wind, of the temperature
and of the humidity, can be written as

k(z − d0)

u∗

du
dz

= φm(ζ ) (2.47)

−ku∗(z − d0)

w′θ ′
0

dθ

dz
= φh(ζ ) (2.48)

−ku∗(z − d0)

w′q ′
0

dq
dz

= φv(ζ ) (2.49)
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in which the subscripts m, h and v refer to momentum, sensible heat and water vapor,
respectively. To be consistent with Equations (2.39) and (2.42), in the dynamic sublayer or
under neutral conditions, when ζ � 1 (but z − d0 � z0) these φ-functions become equal
to unity. It is usually assumed that φv = φh, and thus that Reynolds’s analogy is valid for
scalar admixtures of the flow.

Equations (2.47)–(2.49) are formulated in terms of the gradients; these are not easy to
determine from field measurements, which more often than not tend to be noisy. To avoid
this problem, Equations (2.47)–(2.49) can be expressed in integral form as follows

u2 − u1 = u∗
k

[ln(ζ2/ζ1) − m(ζ2) + m(ζ1)] (2.50)

θ1 − θ2 = w′θ ′
0

ku∗
[ln(ζ2/ζ1) − h(ζ2) + h(ζ1)] (2.51)

q1 − q2 = w′q ′
0

ku∗
[ln(ζ2/ζ1) − v(ζ2) + v(ζ1)] (2.52)

in which each of the -functions, with its respective subscript, is defined by

(ζ ) =
ζ∫

0

[1 − φ(x)]dx/x (2.53)

and x is the dummy integration variable. Under neutral conditions, when |L| → ∞ and
ζ → 0, the -functions approach zero and Equations (2.50) and (2.52) reduce to the
logarithmic profiles (2.40) and (2.43). It is also clear that, whenever u1, θ 1 and q1

refer to the surface values 0, θs and qs, the dimensionless height ζ1 must be taken as
z0/L , z0h/L and z0v/L , respectively (as can be seen for the analogous neutral case in (2.41)
and (2.44)). In the present case, Equations (2.50), (2.51) and (2.52) assume the form

u = u∗
k

[
ln

(
z − d0

z0

)
− m

(
z − d0

L

)
+ m

( z0

L

)]
(2.54)

θs − θ = H
ku∗ρcp

[
ln

(
z − d0

z0h

)
− h

(
z − d0

L

)
+ h

( z0h

L

)]
(2.55)

qs − q = E
ku∗ρ

[
ln

(
z − d0

z0v

)
− v

(
z − d0

L

)
+ v

( zov

L

)]
(2.56)

The profiles described by Equations (2.54) and (2.56) are illustrated as the non-neutral, i.e.
both stable and unstable, curves in Figure 2.9 and 2.10, respectively.

The nature of the “universal” functions, especially φm and φh, but less so φv, has been
the subject of much theoretical and experimental research. One of the earliest forms of these
φ-functions, intended for near-neutral conditions, i.e. small |ζ |, was proposed by Monin
and Obukhov (1954) simply by a series expansion and retention of the first term only,
or φ = (1 + βsζ ), in which βs is a constant. Subsequent experimental investigations have
revealed, however, that this form of φ is applicable only under stable conditions, but not
under unstable conditions. It was also observed later on (see Webb, 1970; Kondo et al.,
1978) that this form can describe experimental data only over the range 0 ≤ ζ ≤ 1 with a βs

value of the order of 5, but that φ remains approximately constant for ζ > 1. Accordingly, on
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Fig. 2.11 The dependence of (φm − 1) and (φh − 1) on ζ under stable conditions, as determined in

Cheng and Brutsaert (2005) from experimental wind profile data (circles) and temperature

profile data (triangles) over a flat grassy surface (z0 = 0.0219 m, d0 = 0.110 m) in Kansas in

October, 1999. The solid curve represents Equation (2.60) and the dashed straight line segments

represent Equation (2.57).

the basis of the data then available (see Brutsaert, 1982) for stable conditions, the following
was assumed

φm(ζ ) = φh(ζ ) = φv(ζ )

{
= 1 + 5ζ for 0 ≤ ζ ≤ 1
= 6 for ζ > 1

(2.57)

Equation (2.57) can be integrated with (2.53) to yield the stability correction functions 

needed for (2.50)–(2.52). These integral functions are

m(ζ ) = h(ζ ) = v(ζ )

{
= −5ζ for 0 ≤ ζ ≤ 1
= −5 − 5 ln ζ for ζ > 1

(2.58)

Equations (2.57) and (2.58) can be compared with some more recent experimental data in
Figures 2.11 and 2.12. With these same data a single formulation was proposed by Cheng
and Brutsaert (2005) to cover the entire stable range ζ ≥ 0, namely

m(ζ ) = −a ln
[
ζ + (1 + ζ b)1/b] (2.59)

in which a and b are constants, whose values were found to be a = 6.1 and b = 2.5. Equa-
tion (2.59) is also illustrated in Figure 2.12. It can be seen that Equation (2.59) exhibits
nearly the same behavior as the first of Equation (2.58) for small ζ , and nearly the same as
the second for large values of ζ . The corresponding φ-function for the wind profile can be
obtained by differentiation, as indicated by (2.53), to yield

φm(ζ ) = 1 + a
ζ + ζ b(1 + ζ b)−1+1/b

ζ + (1 + ζ b)1/b
(2.60)

As illustrated in Figure 2.11, this equation behaves like (1 + aζ ) for small values of ζ and
it approaches a constant (1 + a) for large ζ , in accordance with (2.57). Figure 2.11 also
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(2005) from experimental wind profile data over grass (z0 = 0.0219 m, d0 = 0.110 m) in

Kansas in October, 1999. The solid curve represents Equation (2.59) and the dashed curve

represents Equation (2.58).

indicates that, although the φh(ζ ) data points for temperature exhibit more scatter, Equation
(2.60) can represent these points practically as well as the φm(ζ ) data points for wind
speed; this suggests that it is safe to assume that under stable conditions the ASL similarity
functions for sensible heat and for momentum are the same. Moreover, experimental and
theoretical evidence by Dias and Brutsaert (1996) supports the turbulence similarity of
scalars under stable conditions. Thus the Reynolds analogy appears to be valid and one can
put φm(ζ ) = φh(ζ ) = φv(ζ ) and m(ζ ) = h(ζ ) = v(ζ ) for a stably stratified ASL.

For unstable conditions, Kader and Yaglom (1990) used a more fundamental approach;
they reasoned, and were able to support with experimental evidence, that the surface layer
can be subdivided into three sublayers, namely a dynamic, a dynamic–convective and a
convective sublayer, for each of which they derived simple power laws to describe the
turbulence. However, the resulting φ-functions cover only certain ranges, corresponding
to these sublayers. Again, to cover the entire ζ -range, an interpolation formulation should
be developed; accordingly, Brutsaert (1992; 1999) combined the functional behavior of
φm and φh in each sublayer, and proposed the following expressions

φm(ζ ) = (a + by4/3)/(a + y) for y ≤ b−3

φm(ζ ) = 1.0 for y > b−3 (2.61)

and

φh(ζ ) = (c + dyn) / (c + yn) (2.62)

in which y = −ζ = −(z − d0)/L , and a, b, c, d and n are constants. After considering
available data collections, the constants were assigned the following values a = 0.33,

b = 0.41, c = 0.33, d = 0.057 and n = 0.78. Figure 2.13 shows these φ-functions. The
corresponding stability correction functions can be obtained in integral form by means of
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Equation (2.53) as follows,

m(−y) = ln(a + y) − 3by1/3 + ba1/3

2
ln

[
(1 + x)2

(1 − x + x2)

]

+ 31/2ba1/3 tan−1[(2x − 1)/31/2] + 0 for y ≤ b−3

m(−y) = m(b−3) for y > b−3 (2.63)

and

h(−y) = [(1 − d)/n]ln[(c + yn)/c] (2.64)

in which x = (y/a)1/3 and, as before, y = −ζ = −(z − d0)/L and a, b, c, d and n are con-
stants. The symbol 0 is a constant of integration, given by 0 = (−ln a + 31/2ba1/3π/6);
in applications it is usually unimportant, because it cancels out in Equations (2.50) and
(2.54). Figure 2.14 shows Equations (2.63) and (2.64) with the values of the constants given
above behind (2.62). Also for unstable conditions, it is usually assumed that φh(ζ ) = φv(ζ )
and h(ζ ) = v(ζ ).

There is still no universal agreement on the vertical extent of the surface layer. However,
numerous experimental observations (see, for example, Brutsaert, 1998, 1999) mostly under
neutral and unstable conditions suggest that the lower limit zsb can be estimated from
(zsb − d0) = αbz0, in which αb is of the order of 50, ranging roughly between 40 and
60. Its upper limit zst can be estimated by the rule of thumb, specifying that it is either at
(zst − d0) = αthi, in which αt = 0.12, or at (zst − d0) = βtz0, in which βt = 120, whichever
is larger; the variable hi is the height of the bottom of the inversion capping the atmospheric
boundary layer. Note that the former value of zst is for a moderately rough surface, whereas
the latter is for very rough terrain; with a typical value of hi = 1000 m, the cut-off value
between very rough and moderately rough terrain is around z0 = (αt/βt)hi = 1 m.

Bulk ABL similarity formulation
As mentioned, the atmospheric surface layer typically occupies only the lowest 10% or
so of the boundary layer. Numerous attempts have also been made to formulate similarity
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hypotheses for the entire boundary layer. In this approach, the surface fluxes are commonly
related to “bulk” variables, namely values of the variables at the top and bottom of the ABL,
or their averages over all or part of the ABL. The basic form of the equations is essentially
similar to that of Equations (2.50)–(2.52), or (2.54)–(2.56), but extended for larger heights
aloft above the surface layer. Ideas on the application of similarity to the entire ABL,
including the outer region were put forth early on by Rossby and Montgomery (1935) and
Lettau (1959), and subsequent developments can be traced through the work of Kazanski
and Monin (1961), Clarke and Hess (1974), Zilitinkevich and Deardorff (1974), Yamada
(1976), Garratt et al. (1982), Brutsaert (1982), Sugita and Brutsaert (1992), and Jacobs et al.
(2000), among others. The various versions of this approach can be written in a general
form as follows,

ub = u∗
k

[ln ((hb − d0)/z0) − B]

vb = −u∗
k

A
(2.65)

θs − θb = w′θ ′
0

ku∗
[ln ((hb − d0)/z0h) − C] (2.66)

where A, B and C are functions of a number of dimensionless variables that affect transport
in the outer region and where the subscript b indicates bulk or characteristic scale variables of
the ABL. Thus hb denotes a characteristic thickness or height scale of the ABL; the variables
ub and vb are characteristic horizontal wind velocity components in the x- and y-directions,
respectively (x is the direction of the near-surface wind; because it may involve the Earth’s
rotation, usually y points to the left of x in the Northern Hemisphere, and to the right in the
Southern Hemisphere), such that u2

b + v2
b = V 2

b , in which Vb is a characteristic wind speed
aloft. These bulk variables have been given different definitions in the past, depending on
the specific implementation of the approach. In the early applications ub, vb and θb were
taken as the values of these variables near the top of the ABL, in general, or just below the
capping inversion, under unstable conditions.
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Fig. 2.15 Example of a wind profile measured above moderately hilly prairie terrain (z0 = 1.05 m,

d0 = 26.9 m) in Kansas at 1500 CDT on August 14, 1987, by means of a radiosonde; the circles

represent the wind speed, and the triangles and squares represent the x- and y-components of

the wind velocity, respectively. The arrow indicates the height of the inversion. (From Brutsaert

and Sugita, 1991).

The more recent implementations (see, for example, Brutsaert, 1999) have been mostly
for unstable conditions with mean values of the variables in the mixed layer, and with the
wind speed as a scalar. The rationale for this choice of bulk variables is that, indeed, as
illustrated in Figure 2.15, owing to convection with vertical mixing the y-component of
the velocity is nearly negligible, so that the x-component is practically equal to the wind
speed; moreover, wind speed measurements aloft can be noisy, so that a height-averaged
value is likely to be more robust. Figure 2.16 shows the corresponding temperature profile.
Thus, with this choice of variables, the formulation for momentum and sensible heat can
be written as

Vm = u∗
k

[ln ((hi − d0)/z0) − Bw] (2.67)

θs − θm = w′θ ′
0

ku∗
[ln ((hi − d0)/z0h) − C] (2.68)

in which Vm and θm are the mean wind speed and potential temperature, respectively, in the
mixed layer of the unstable ABL; hi is the height of the top of the mixed layer, that is the
bottom of the inversion above the ground, and Bw has been given a subscript w to indicate
that the wind speed V is used, instead of the wind velocity components u and v.
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Fig. 2.16 Example of the profile of potential temperature measured with the same radiosonde as that of

the wind shown in Figure 2.15. The solid circle shows the median value of the surface

temperature. The arrow indicates the height of the inversion. (From Brutsaert and Sugita,

1991.)

Until now, no general definitive form has been derived for these functions Bw and C . An
example of a formulation for unstable conditions, that has produced good results (Brutsaert,
1999), is summarized in what follows. It is based on the assumption of an ABL consisting
of two layers, namely a surface layer, with profiles given by Equations (2.63) and (2.64),
and above it a mixed layer as a slab with uniform profiles; it is further also based on the
assumption explained behind (2.64) regarding the position of the top of the surface layer,
where it meets the mixed layer. For moderately rough terrain, i.e. when z0 ≤ (αt/βt)hi, the
resulting functions are

Bw = −ln(αt) + m(αt(hi − d0)/L) − m(z0/L)

C = −ln(αt) + h(αt(hi − d0)/L) − h(z0h/L)
(2.69)

For very rough terrain, when z0 > (αt/βt)hi, the functions are

Bw = ln ((hi − d0)/(βtz0)) + m(βtz0/L) − m(z0/L)

C = ln ((hi − d0)/(βtz0)) + h(βtz0/L) − h(z0h/L)
(2.70)

The similarity functions Bw and C given by Equations (2.69) and (2.70) are illustrated in
Figures 2.17 and 2.18. In the derivation of Equations (2.69) and (2.70) it was assumed that
the outer region is a perfectly mixed slab layer; this assumption has its limitations. In fact,
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Fig. 2.17 Dependence of the bulk similarity function Bw on [−(hi − d0)/L] and on [(hi − d0)/z0];

the latter values are shown as numbers at the corresponding curves. The curves for

[(hi − d0)/z0] ≥ 103 are obtained with Equation (2.69), and those for [(hi − d0)/z0] ≤ 103

are obtained with Equation (2.70); it is assumed that αt = 0.12 and βt = 120.

under unstable conditions the potential temperature often tends to increase slightly with
elevation, roughly from about the middle of the mixed layer (e.g. Figures 2.8 and 2.16); this
is mostly the result of entrainment of warmer air into the ABL from above. Similarly the
wind speed u is often affected by this entrainment. Therefore, in the practical application
of these equations, it may be advisable to obtain the mean wind and temperature difference
from measurements over the lower half of the mixed layer, that is below (hi/2), in order to
minimize any possible entrainment effects.

The temperature difference term in Equation (2.68) has the lower value at the surface.
As in (2.51), the lower value can also be taken at some level ζ in the surface layer; the
proper formulation for this case can be obtained by simply subtracting (2.55) from (2.66)
or (2.68), so that θs is eliminated. As a further alternative, an example of the application
of the bulk ABL similarity approach with the lower value not at the surface, but at shelter
level, has been presented by Qualls et al. (1993).

The bulk ABL similarity approach (also called BAS), as formulated here for unstable
conditions, has several features which make it attractive to obtain surface fluxes u∗ and H
from soundings in the upper reaches of the boundary layer. First, the mixed layer variables
Vm and θm, which are averages over the mixed layer, are more robust than the profiles
u(z) and θ (z); such profiles often tend to be erratic and noisy. Second, since these mixed
layer variables are averages over a layer extending roughly between heights of the order
of 100 m and 1 km above the ground, they reflect mean surface conditions over upwind
distances of the order of 1–10 km; this provides the main justification and appeal of this
approach to describe surface fluxes at the mesogamma scale (see Table 1.5), which is often
the relevant spatial scale for hydrologic catchments.

The bulk similarity approach can also be applied to water vapor. However, because water
vapor is not as well mixed in the outer region as potential temperature or wind speed, it is



surface boundary condit ion 55

0

2

4

6

8

0 100 200 300 400

C

–(hi – d0)/L

1E5
3E4
1E4
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βt = 120.

less meaningful to use the average specific humidity qm. The approach has only been used
with qb = q i, the value of q at z = hi, as follows

qs − q i = w′q ′
0

ku∗
[ln ((hi − d0)/z0v) − D] (2.71)

where, as before in the case of Bw and C , D is a function of a number of variables; the only
one that has been considered so far is (hi − d0)/L , but beside this effect, Equation (2.71)
has been studied very little (see Brutsaert, 1982).

2 . 6 S U R FAC E B O U N DA RY C O N D I T I O N : T H E E N E R G Y
B U D G E T C O N S T R A I N T

The turbulent fluxes of water vapor and sensible heat near the Earth–atmosphere interface
are linked not only by similarity relationships in the turbulent air, but also by the energy
budget. Indeed, both evaporation E , as a latent heat flux, and the related sensible heat
flux H require the supply of some other form of energy. Therefore their magnitudes
are constrained by this available energy. The question can be treated quantitatively by
considering the energy budget for a layer of surface material. Depending on the nature
of the surface, this layer may consist of water, or of some other substrate like soil,
plant canopy or snow; although this layer can be taken to be infinitesimally thin, it may
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Fig. 2.19 Example of the daily cycle of (a) the energy balance (in W m−2), with (b) the mean wind speed at 2 m,

u2 (in m s−1, solid line), and the friction velocity u∗ (in dm s−1, dashed line), for an irrigated grass

covered surface at Davis, California, on June, 2–4, 1965. The balance equation was assumed to be

Rn = Le E + H + G. The evaporation was measured with a weighing lysimeter (Pruitt and Angus,

1960) and the surface shear stress with a floating drag plate lysimeter (Goddard, 1970). The data are

drawn from Brooks and Pruitt (1966); the roughness of the grassy surface was estimated to be

z0 = 0.97 ± 0.14 cm (Morgan et al. 1971).

sometimes even comprise a lake or a vegetational canopy over its entire depth. For many
practical purposes, the energy budget equation can be written as

Rn − Le E − H + Lp Fp − G + Ah = ∂W
∂t

(2.72)



surface boundary condit ion 57

In words, Equation (2.72) states that the difference between incoming and outgoing
energy fluxes is equal to the rate of increase of the energy stored in the layer under
consideration; the sign convention is such that the energy fluxes toward the layer are
taken as positive and those away from it as negative. In (2.72) the quantity Rn is the net
radiative flux density at the upper surface of the layer, Le is the latent heat of vaporization,
Lp is the thermal conversion factor for fixation of carbon dioxide, Fp is the specific flux
of CO2, G is the specific energy flux leaving the layer at the lower boundary, Ah is the
energy advection into the layer expressed as specific flux, and ∂W/∂t is the rate of energy
storage per unit horizontal area in the layer; in the case of an ice or snow layer this last
term may include the energy consumed by fusion, and Le may have to be replaced by
Ls, the heat of sublimation. At present in the SI system all these surface energy fluxes
are commonly expressed in units of W m−2.

Example 2.1. Some features of the surface energy budget

The order of magnitude and the diurnal variation of the main terms in the energy budget
for different surfaces are illustrated in Figures 2.19–2.22. Figure 2.19 shows the terms
in an irrigated environment under clear sky in the summer. Figure 2.20a illustrates the
response of the turbulent heat fluxes in response to varying cloudiness in the course of a
spring day, whereas Figure 2.20b shows a typical clear sky situation, which is generally
similar to Figure 2.19. In contrast to what happens over land, Figure 2.21 shows how
over deep water the turbulent heat fluxes Le E and H do not follow the diurnal cycle of
the solar radiative energy supply; as a result of the large heat capacity of the water body,
the surface temperature tends to remain more constant, and less affected by the radiative
energy input. Figure 2.22 illustrates the gradual evolution of the three main terms of the
energy budget in natural prairie during a period of prolonged drying in the fall season
during the First ISLSCP Field Experiment. As the soil moisture content is decreasing the
evaporation rate exhibits a steady decrease. On the other hand, the sensible heat flux is
not increasing in the same steady way, as one might expect if the available energy were
constant; it is more erratic and is more responsive to the vagaries of the weather while
the radiation is steadily declining as winter approaches.

2.6.1 Net radiation

This quantity can be broken down into several components, viz.

Rn = Rs(1 − αs) + εs Rld − Rlu (2.73)

where Rs is the (global) short-wave radiation, αs is the albedo of the surface, Rld is the
downward long-wave or atmospheric radiation, εs is the emissivity of the surface and
Rlu is the upward long-wave radiation. The downward long-wave radiation is multiplied
by the emissivity εs, because this is equal to the absorptivity, which is the fraction of the
incoming long-wave radiation absorbed by the surface. The net radiation can be measured
directly, and at present fairly reliable instruments are available for this purpose. In the
absence of direct measurements, or when great accuracy is required, Rn can be obtained
from measurements of its components on the right-hand side of Equation (2.73). When
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Fig. 2.20 Example of the daily cycle of the energy balance for a young (a) and a mature (b) maize canopy near

Versailles, France. EBBR indicates the latent heat flux obtained by the Bowen ratio method (after

Perrier et al., 1976).

these measurements are not available, the components can be obtained by theoretical
methods or simpler empirical formulae.

Short-wave radiation
Rs is the radiant flux resulting directly from the solar radiation. This incoming solar
radiation has most of its energy contained in the wavelength range from 0.1 to 4 μm.
At the outside of the atmosphere this flux, i.e. the solar constant, has been measured on
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Fig. 2.21 Examples of the daily course of the energy balance in (W m−2) at the surface of a deep water body.

The data were obtained over the East China Sea during the Air Mass Transformation Experiment

(AMTEX) on February 15(a) and 25(b), 1974; the time is Japanese Standard Time. (After Yasuda,

1975.)

satellites (e.g. Liou, 2002) to be of the order of Rso = 1366 W m−2 (or around 1.958
cal min−1cm−2). As it passes through the atmosphere, the solar radiation is modified
by scattering, absorption, and reflection by different types of molecules and colloidal
particles; thus at the Earth’s surface the global short-wave radiation consists of direct
solar radiation and diffuse sky radiation. The short-wave radiation can be measured and
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turbulent fluxes were

measured by means of

the eddy correlation
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data are available from national weather services and agricultural agencies. In the event
that suitable data are not available, it may be necessary to make an estimate by means of
one of several theoretical models or simpler empirical formulae that relate short-wave
radiation with other physical factors, such as extraterrestrial radiation, optical air mass,
turbidity, water vapor content of the air, amount and type of cloud cover. However, these
should be used with caution.

A simple equation which can be used for daily averages, was proposed by Prescott
(1940) in terms of daily total extraterrestrial radiation Qse as follows

Qs = Qse[a + b (n/N )] (2.74)

where a and b are constants which depend on the location, the season and the state of the
atmosphere; their values have been determined for many locations and on average they
appear to be around a = 0.25 and b = 0.50. In Equation (2.74) n is the actual number of
hours of bright sunshine and N the number of daylight hours; as a first approximation for
steady weather conditions n/N can be related to the mean fractional cloud cover mc by

a(n/N ) + bmc = 1 (2.75)

in which a and b are different constants, for which values averaging around 1.1 and 0.85,
respectively, have been observed in the Netherlands and in Japan (e.g. De Vries, 1955;
Kondo, 1967).

Many other regression equations like (2.74), also for instantaneous values Rs, have been
proposed in the literature, but such simple equations can be only poor substitutes for direct
measurements. Nevertheless, it is possible to obtain fairly accurate radiation estimates by
better empirical and partly theoretical methods, which are, however, more difficult to apply.
Examples of such methods, which can give useful results, are those presented by among
others, Kondo (1967; 1976), Paltridge and Platt (1976, p. 137) and Meyers and Dale (1983).
Because such approaches often rely on the extraterrestrial radiation, it is appropriate to take
a quick look at it.

Extraterrestrial radiation
The extraterrestrial radiation Rse can readily be calculated for a given latitude, time of day
and day of the year from the solar constant. For a horizontal surface, instantaneous values
can be calculated from

Rse = Rso(dso/ds)
2 cos β (2.76)

in which β is the zenith angle, that is the angular distance between the sun and the vertical,
and in which ds and dso are the instantaneous distance and the annual mean distance of the
Earth from the Sun, respectively; however, ds and dso differ by at most 3.5%, so that this
effect is often neglected in hydrologic applications. It can be readily shown that the zenith
angle can be calculated as follows

cos β = cos φ cos h cos δ + sin φ sin δ (2.77)

where φ is the latitude and h is the hour angle, such that its origin h = 0 is local noon
or 1200, and 24 h = 2π. The angle δ is the solar declination, that is the angular distance
of the Sun north (or south when negative) of the Equator. Daily values of Equation (2.76)
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Fig. 2.23 Daily values of solar radiation on a horizontal plane without atmosphere Qse in (W m−2 ). The

solar constant was taken as Rso = 1366 W m−2. The vernal equinox (VE), the summer solstice

(SS) and the autumnal equinox (AE) are indicated by solid vertical lines; the dashed line shows

the solar declination. (From Liou, 2002.)

can be obtained by integration of (2.77) over dt = dh/ω between sunrise h = −hs and
sunset h = +hs, in which ω = 2π rad d−1 = (π/12) rad h−1. This yields for a horizontal
surface

Qse = (2Rso/ω) (cos φ sin hs cos δ + hs sin φ sin δ) (2.78)

in which the variation in distance from the sun has been neglected. The sunrise and
sunset angle hs can be calculated by putting β = π/2 or cos β = 0; this produces
cos hs = −tan φ tan δ. The declination δ moves between its extreme values of roughly plus
and minus 23.439◦ between the solstices on approximately June 21 and December 21. It
can be calculated from sin δ = sin ε sin λ, in which ε is the oblique angle (23◦17′) and λ is
the true longitude angle of the earth with respect to the sun, which varies between 0 at the
spring equinox and π at the fall equinox; the matter is somewhat complicated by the fact
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that the Earth moves on an ellipse around the Sun, but as noted above the eccentricity of
this ellipse is small. The declination is usually determined as a function of day of the year
(see Paltridge and Platt, 1976; Liou, 2002). Figure 2.23 gives an idea of the variability of
the daily totals of solar radiation Qse; the Earth is closest to the Sun in the month of January,
so that the curves are somewhat asymmetric between North and South, with the maximal
radiation occurring in the South.

Surface albedo
This is the ratio of the global short-wave reflected radiative flux and the flux of the
corresponding incident radiation; in contrast to the term reflectivity, the albedo also
includes the diffuse portion of the radiation. In energy budget studies the albedo usually
refers to an integral value over all wave lengths; however, sometimes, to distinguish it
from the spectral albedo, it is called the integral albedo. In the case of an ideal rough
surface, the albedo should be independent of the direction of the primary beam. For
most natural surfaces the fraction of directly and diffusely reflected radiation depends
on the direction of the incoming beam. Therefore, on days with sunshine, the albedo
of most surfaces depends on the altitude of the Sun, but this dependence decreases
with increasing cloudiness. For example, for water surfaces it appears that the albedo
can be represented well by a power function of the solar altitude (see Anderson, 1954;
Payne, 1972). The albedos of other surfaces obey similar relationships. However, for
daily totals it is common practice to use a mean value of the albedo. Table 2.7 presents
a brief summary of mean albedo values for various surfaces obtained from summaries
of available data (see Van Wijk and Scholte-Ubing, 1963; Kondratyev, 1969; List, 1971;
Budyko, 1974)

Long-wave or terrestrial radiation
Also sometimes called nocturnal radiation, this is the radiant flux resulting from the
emission of the atmospheric gases and the land and water surfaces of the Earth. All
materials on Earth and around it have a much lower temperature than the Sun, so that
the radiation they emit has much longer wavelengths than the global radiation. There
is practically no overlap, since most of the radiation emitted by the Earth is contained
in the range from 4 to 100 μm. Long-wave radiation can be measured, but the needed
measurements for a particular area of interest are rarely available, so that it must often
be calculated from other measurements. It is convenient to consider two components of
the terrestrial radiation at the Earth’s surface separately, namely a component of upward
radiation from the surface Rlu, and that of downward radiation from the atmosphere Rld.

The upward component is usually obtained by assuming that the ground, the canopy
or the water surface under consideration is equivalent with an infinitely deep grey body of
uniform temperature and emissivity εs which is close to unity. This allows the following
formulation

Rlu = εsσ T 4
s (2.79)

in terms of the (absolute) surface temperature Ts; σ (= 5.6697× 10−8 W m−2 K−4 =
1.354 × 10−12 cal cm−2 s−1 K−4) is the Stefan–Boltzmann constant. Table 2.8
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Table 2.7 Approximate mean albedo values for various natural surfaces

Nature of surface Albedo

Deep water 0.04–0.08
Moist dark soils; ploughed fields 0.05–0.15
Gray soils, bare fields 0.15–0.25
Dry soils, desert 0.20–0.35
White sand; lime 0.30–0.40
Green grass and other short vegetation (e.g. alfalfa,

potatoes, beets)
0.15–0.25

Dry grass; stubble 0.15–0.20
Dry prairie and savannah 0.20–0.30
Coniferous forest 0.10–0.15
Deciduous forest 0.15–0.25
Forest with melting snow 0.20–0.30
Old and dirty snow cover 0.35–0.65
Clean, stable snow cover 0.60–0.75
Fresh dry snow 0.80–0.90

Table 2.8 Values of the emissivities εs of some natural surfaces

Nature of surface Emissivity

Bare soil (mineral) 0.95–0.97
Bare soil (organic) 0.97–0.98
Grassy vegetation 0.97–0.98
Tree vegetation 0.96–0.97
Snow (old) 0.97
Snow (fresh) 0.99

summarizes a few values of εs for different surfaces compiled from the literature (see,
for example, Van Wijk and Scholte-Ubing, 1963; Kondratyev, 1969). In many practical
applications it is simply assumed that εs = 1. Moreover, since Ts is rarely known, for
daily or longer averages over land, Equation (2.79) is often applied by using the air
temperature Ta instead of the surface temperature Ts.

The downward long-wave radiation Rld can be calculated accurately on the basis
of vertical profile data of humidity and temperature. Such data are not always available
where the long-wave radiation is needed; as a result simpler methods have been developed
that rely on readily available measurements, such as air temperature and humidity near
the ground. For clear sky conditions, they are mostly based on an equation of the type

Rldc = εacσ T 4
a (2.80)
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where Ta is the air temperature near the ground, usually taken at shelter level, and εac is
the atmospheric emissivity under clear skies.

Several expressions have been proposed for this emissivity. Most of these are strictly
empirical, but it is also possible to derive εac from physical considerations. In one such
derivation (Brutsaert, 1975; 1982), the equation for radiative transfer in a plane stratified
atmosphere is solved by assuming first, a simple power function slab emissivity, and
second, a near-Standard Atmosphere to obtain the temperature and humidity profiles.
With typical average values of the parameters, the resulting atmospheric emissivity can
be written as

εac = a(ea/Ta)b (2.81)

where a and b are constants; these were derived to be a = 1.24 and b = 1/7, when
the vapor pressure of the air ea is in hPa (= mb) and T is in K. Equation (2.81) has
been found (see Mermier and Seguin, 1976; Aase and Idso, 1978; Daughtry et al.,
1990) to yield satisfactory results under conditions which, on average, are fairly well
represented by a Standard Atmosphere. With instantaneous measurements in the Great
Plains of the USA, Equation (2.81) with the original constants was also found to perform
well (see Figure 2.24), but somewhat better with values of the constants a = 0.980 and
b = 0.0687 (Sugita and Brutsaert, 1993). Culf and Gash (1993) using the same derivation
of (2.81) as in Brutsaert (1975), but with actually recorded profiles (instead of a Standard
Atmosphere), obtained a = 1.31 and b = 1/7 for the dry season in Niger. Crawford
and Duchon (1999) were able to improve the performance of (2.81) with b = 1/7 in
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the Great Plains by expressing a as an empirical sinusoidal function of month of the
year.

The downward long-wave radiation is affected by cloudiness. Several empirical
methods of incorporating this effect (see Bolz, 1949; Budyko, 1974) can be expressed
in the form

Rld = Rldc
(
1 + amb

c

)
(2.82)

where mc is the fractional cloudiness and a and b are (different) constants. On the
basis of measurements in Germany, Bolz (1949) obtained b = 2 and different values
of a depending on cloud type, with an average of a = 0.22. More recently, with visual
cloudiness observations in the Great Plains, Sugita and Brutsaert (1993) derived values
a = 0.0496 and b = 2.45, without consideration of cloud type, and different values of
a and b for different cloud types. Their analysis also showed that the standard error
of prediction with Equation (2.80) was of the order of 10–15 W m−2 for clear sky
conditions and of the order of 20–25 W m−2 for various sky (including cloudy) conditions
without cloudiness correction; incorporation of a cloudiness correction with (2.82) and
these constants improved the Rld estimate with (2.80), i.e. reduced the standard error,
by roughly 5 W m−2 on average (see Figure 2.25), and by an additional amount of
roughly the same magnitude when also information was included on the type of cloud.
Deardorff (1978) proposed a simple weighting parameterization, namely an atmospheric
emissivity for cloudy sky given by εa = [mc + (1 − mc)εac]; this is equivalent to (2.82)
with a = [(1/εac) − 1] and b = 1.
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2.6.2 The energy flux at the lower boundary of the layer

The nature of G and the optimal method of its determination depend on the type of
substrate layer to which the energy budget equation is applied. For a thin layer of soil,
for a vegetational canopy or for a whole lake or stream, the term G in Equation (2.72)
represents the heat flux into the ground. For a water surface, G is the heat flux into
the underlying water body. Over land covered with vegetation the daily mean value
of G, that is the ground heat flux, is often one or more orders of magnitude smaller
than the major terms in the energy budget, Rn, H and Le E . The main reason for this is
that positive daytime values of G (warming) often tend to be compensated by negative
nighttime values (cooling). Therefore, in design calculations, the daily values of G are
often neglected.

Measurement of the soil heat flux
Several methods are available to determine G for a landsurface (see Brutsaert, 1982), but
a detailed review is beyond the scope of this book. One of the more reliable methods to
measure G considers changes in heat storage in the upper layer of the soil, as described by
the equation

QH1 − QH2 =
z2∫

z1

Cs(z)
∂T
∂t

dz (2.83)

where QH1 and QH2 are the heat flux densities at levels z1 and z2, respectively, Cs is the
volumetric heat capacity of the soil and T is the temperature in the soil. On the basis of a
compilation of thermal properties of soil components by De Vries (1963), this heat capacity
(in J m−3 K−1) can be calculated as follows

Cs = (1.94θm + 2.50θc + 4.19θ ) × 106 (2.84)

where θm, θc and θ are the volume fractions of mineral soil, organic matter and water,
respectively. Thus if z1 refers to the soil surface and z2 to some lower level where QH2 is
known, the surface heat flux G = QH1, during a certain time interval, may be calculated by
numerical integration of (2.83) for measured soil temperature and moisture content profiles
at the beginning and at the end of the interval. If the depth z2 is large enough, QH2 can be
assumed to be negligible; if it is not sufficiently large to allow this assumption, the heat
flux QH2 must be determined. In the so-called combination method, suggested by C. B.
Tanner of Wisconsin, QH2 is measured by means of a heat flux plate placed at a depth of
5–10 cm below the surface. The integral in Equation (2.83) is then determined from suc-
cessive temperature profile measurements above the level of the heat flux plate (see also
Hanks and Tanner, 1972).

Empirically based methods to estimate the soil heat flux
When necessary measurements are not available, the surface soil heat flux may be estimated
on the basis of empirical relationships. The simplest assumption is that it is proportional to
some other term in the energy budget equation. An obvious choice is the sensible heat flux
into the air; thus

G = cH H (2.85)
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Fig. 2.26 Relationship between hourly values of soil heat flux G and net radiation Rn, both in W m−2,
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1800; the clusters of negative flux values represent the data points for the remaining 11 hours

on each day. The regression equations were found to be G = 0.334Rn − 34.9 for the wet soil

and G = 0.346Rn − 39.8 for the dry soil. (After Fuchs and Hadas, 1972.)

where cH is a constant; for bare soil Kasahara and Washington (1971) have taken cH = 1/3.
The soil heat flux can also be assumed to be proportional to net radiation, or

G = cR Rn (2.86)

where, again, cR is an empirical constant. From available experimental observations, it
appears that on average for bare soil cR can be given a value around 0.3 (see, for exam-
ple, Fuchs and Hadas, 1972; Nickerson and Smiley, 1975; Idso et al., 1975) (see also
Figure 2.26); however, for any given soil it can be expected to vary with moisture content.
For surfaces covered with vegetation cR will normally be smaller and it will depend not
only on the soil moisture state of the soil but also on the type of vegetation; for example,
a value of 0.2 has been measured for maize (Perrier, 1975), and most measurements for
grass have yielded values around cR = 0.1. To reduce the dependency of cR on the type of
vegetation, Choudhury et al. (1987) considered the attenuation of the radiation by the plant
canopy and found that the following empirical adjustment

cR = cR0 exp(−aLa) (2.87)

yields improved results. The parameter cR0 is the value of cR in (2.86) for bare soil, La is the
leaf area index, which is the area (one side) of foliage per unit area of ground surface, and a
is a parameter; with data over the midday hours, they found that cR0 = 0.4 and a = 0.5 for
wheat, with an inferred variation between 0.45 and 0.65 for different types of vegetation.
With measurements around midday on bare soil, soybeans, alfalfa and cotton, Kustas et al.
(1993) obtained cR0 = 0.34 and a = 0.46 for La < 4, and cR = 0.07 on average for larger
values of La. A few typical values of the leaf area index La are listed in Table 2.9 for a
number of plant communities from the data collection of Scurlock et al., 2001. Because the
leaf area index is not always easily estimated, several studies have also investigated the use



Table 2.9 Leaf area index by biome

Biome
Number of
observations Mean

Standard
deviation Minimum Maximum

ALL 878 4.51 2.52 0.002 12.1
FOREST 53 2.58 0.73 0.6 4.0
Boreal deciduous

broadleaf
FOREST 86 2.65 1.31 0.48 6.21
Boreal evergreen

needleleaf
CROPS 83 3.62 2.06 0.2 8.7
Temperate and tropical
DESERTS 6 1.31 0.85 0.59 2.84
GRASSLANDS 25 1.71 1.19 0.29 5.0
Temperate and tropical
PLANTATIONS 77 8.72 4.32 1.55 18.0
(managed forests)
Temperate deciduous

broadleaf, Temperate
evergreen needleleaf,
and Tropical deciduous
broadleaf

SHRUBLAND 5 2.08 1.58 0.4 4.5
Heath or

Mediterranean-type
vegetation

FOREST 17 4.63 2.37 0.5 8.5
Boreal temperate

deciduous needleleaf
FOREST 184 5.06 1.60 1.1 8.8
Temperate deciduous

broadleaf
FOREST 57 5.70 2.43 0.8 11.6
Temperate evergreen

broadleaf
FOREST 199 5.47 3.37 0.002 15.0
Temperate evergreen

needleleaf
FOREST 18 3.92 2.53 0.6 8.9
Tropical deciduous

broadleaf
FOREST 60 4.78 1.70 1.48 8.0
Tropical evergreen

broadleaf
TUNDRA 11 1.88 1.47 0.18 5.3
Circumpolar and alpine
WETLANDS 6 6.34 2.29 2.5 8.4
Temperate and tropical
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of remotely sensed surrogates for La, such as the normalized difference vegetation index
(NDVI), and other measures of surface greenness; for instance, with measurements over the
same types of vegetation, Kustas et al. (1993) derived cR = 0.40 − 0.33NDVI.

The daytime variations of the major energy fluxes at land surfaces are often quite simi-
lar, exhibiting some kind of self-preservation, which keeps them proportional to each other
through the day (see Section 4.3.4). Nevertheless, both (2.85) and (2.86) are oversimpli-
fications, since G is related not to one but to all terms in Equation (2.72); therefore, such
simple relationships should be calibrated anew for each given problem, and the values of the
constants can be considered accurate only for certain specific conditions. One point in their
favor is that, much more so than the other major fluxes in the energy budget Rn, H and Le E ,
the soil heat flux G tends to be highly variable in space (see Kustas et al., 2000), so that
a dense network of measurements would be needed to obtain a meaningful areal average.
Therefore, expressions like (2.85) and (2.86) can be useful to obtain averages over larger
areas, especially, when used with remotely sensed observations. In the past, attempts have
also been made to determine G on the basis of analytical solutions of the linearized heat
flow equation with effective parameters for the thermal conductivity and the specific heat
of the soil profile (see Brutsaert, 1982, p. 151). However, also this approach can produce
only rough estimates.

2.6.3 Minor terms in the energy budget

Although they may be quite important under certain conditions, the energy absorption by
photosynthesis, the energy advection, and the rate of change of energy storage are usually
relatively small in most applications in hydrology.

The flux of CO2 is usually neglected, although under favorable conditions, say on a
sunny summer day, it can be of the order of 5% of the global radiation, and up to 8% to
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10% of the latent heat flux. An example of the fluxes of carbon dioxide and water vapor,
estimated by means of the energy budget method with the Bowen ratio (cf. Equation (4.11))
on a day of intense photosynthetic activity, is shown in Figure 2.27.

The advected energy term Ah comprises all the energy changes resulting from water
flowing in or out of the system to which Equation (2.72) is applied. Precipitation is a source
of advection; rainfall may be important in the case of the energy budget of a snow cover,
and snowfall may affect the energy balance of a warm lake. Advection by river flows may
sometimes have to be considered in the energy budget of a lake, especially when it is shallow.

The term (∂W/∂t) can be omitted from (2.72) when it is applied to a thin layer of water,
soil or canopy. In the case of tall vegetation, however, it may have to be considered; for
example, it has been observed (Stewart and Thom, 1973) that this term can be especially
significant after sunrise and near sunset, when it may be of the same order of magnitude as
the net radiation Rn. Still, on a daily basis it can be safely neglected. When the layer under
consideration is a snow pack, this term is generally important (McKay and Thurtell, 1978)
since, as formulated in Equation (2.72), it includes the energy used in fusion. In the case
of an entire lake, (∂W/∂t) can be determined from successive water temperature profile
surveys.

2.6.4 Global climatology of the surface energy budget

To give a rough idea of their magnitude, Figure 2.28 shows the global long term averages
of the main components of the energy budget calculated by Ohmura (2005) from the

19 85 169 25 345 385
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Fig. 2.28 Mean global energy budget fluxes in W m−2, estimated from an extensive observational data base by

Ohmura (2005). The incoming short-wave radiation at the top of the atmosphere is 342 W m−2, which

is one quarter of the solar constant.
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available data. Also shown are the radiative flux values at the top of the atmosphere
and their attenuation on their way down. It can be seen that globally the net radiation
at the Earth’s surface is Rn = 104 W m−2, which is also roughly equal to the sum of
the sensible and latent turbulent heat fluxes H + Le E . The evaporative flux is shown
to be Le E = 85 W m−2; because 1 W m−2 produces an evaporation rate of roughly
1.07 mm of water per month, this is equivalent with an annual evaporation of 1.09 m,
which agrees with the values listed in Table 1.1. If it is assumed that there is no global
warming (or cooling), the sum of the incoming and outgoing radiative fluxes at the top
of the atmosphere must also be zero. The ratio of the outgoing and incoming short-
wave radiation shows that the average albedo of the Earth–atmosphere system for extra-
terrestrial radiation is of the order of 0.3. Globally, the atmosphere is being warmed by
the short-wave radiation at a rate of 342 − 169 + 25 = 96 W m−2; however, the rate of
net long-wave radiation input into the atmosphere is 385 − 345 − 240 = −200 W m−2,
which results in a cooling. Thus the net cooling rate of the global atmosphere due to
radiation is −96 + 200 = 104 W m−2, and this is balanced by the energy input into the
atmosphere by the surface turbulent heat fluxes H + Le E .

The energy fluxes at the surface and at the top of the atmosphere, as shown in
Figure 2.28, were derived with the constraint that they would exhibit a perfectly balanced
steady state. In fact, the separately measured fluxes do not exhibit a perfect balance, but
the discrepancy is only of the order of a few W m−2; the issue continues to be the subject
of intense investigations.
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P RO B L E M S

2.1 Multiple choice. Indicate which of the following statements are correct. An unstable
atmosphere:
(a) causes turbulence to be damped;
(b) usually results in a vertical profile of the horizontal wind velocity that is more uniform than

that of a stable atmosphere;
(c) causes the mean horizontal wind velocity to be larger (on a regional scale) than that of a

neutral atmosphere;
(d) in the surface layer is favorable to disperse the pollutants;
(e) is likely to be found over a deep lake in the spring, when warm air blows over the water;

2.2 Multiple choice. Indicate which of the following statements are correct. Stable conditions in the
atmosphere near the Earth’s surface:
(a) result in increased turbulent mixing (as compared to unstable conditions);
(b) are necessarily the result of smoothness of the surface;
(c) are often observed under nearly windless conditions with surface cooling by long-wave

radiation;
(d) would be expected over an extensive and deep-water body in early spring under a cloudy

sky, when warm air moves over the water;
(e) are more likely to be accompanied by dew (negative evaporation) than unstable conditions

(over land);
(f) indicate that there is a high likelihood for thunderstorm activity.

2.3 For the ocean and for large lakes, typical values of the drag coefficient and the water vapor transfer
coefficient (both with wind and specific humidity measurements at 10 m above the surface) are of
the order of Cd10 = 1.4 × 10−3 and Ce10 = 1.2 × 10−3, respectively. Calculate the roughness
parameters z0 and z0v from these transfer coefficients for neutral conditions.

2.4 From observations at an ocean station, it has been determined that the estimation of the drag
coefficient, Cd10 (with wind speed measurements, in m s−1, at 10 m above the surface), can be
improved by assuming that it is a function of the wind speed, namely, Cd10 = (0.80 + 0.05 u10) ×
10−3. In contrast, the heat transfer coefficient, Ch10 (with wind speed, in m s−1, and temperature
both measured at 10 m), is a constant, namely Ch10 = 1.2 × 10−3. Determine the range of the
roughness parameters, z0 and z0h, in the wind speed range, 4 ≤ u ≤ 21 m s−1. Assume neutral
atmospheric conditions.

2.5 Solve the previous problem but with a drag coefficient assumed to be given by Cd10 =
0.50 (u10)0.45 × 10−3, again, with the wind speed in m s−1.

2.6 For wind speed measurements at z1 and z2, and specific humidity measurements at z3 and z4,
derive an expression for the water vapor transfer coefficient, Ce, in terms of z1, z2, z3 and z4,

valid under neutral conditions. Make use of Equations (2.40) and (2.43).
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2.7 Evaporation measurements on Lake Ontario have revealed that the mass transfer coefficient in
Equation (2.36) is Ce = 1.1 × 10−3, on average, under neutral conditions, with measurements at
10 m above the surface. If the momentum roughness of a water surface can be assumed to be
z0 = 0.02 cm, estimate the scalar roughness for water vapor, z0v.

2.8 In practical applications, the wind profile in the lower atmosphere is sometimes approximated by
a power-type equation, as follows: u = Cp u∗(z/z0)m . In this equation, Cp and m are constants,
whose values can be assumed to be around 6 and (1/7), respectively, under neutral conditions.
(a) Derive an expression for the drag coefficient, Cd, with this equation. (b) Calculate its magnitude
if the surface roughness is z0 = 0.02 cm and the wind speed, u, is measured at 10 m above the
surface. (c) Next, consider the mass transfer coefficient, Ce, as given by Equation (2.36) in which
−
 q = qs − q, qs is the value of the specific humidity at the surface and q is the value at
height z. Under conditions of light winds above open water, it can be assumed that Ce = Cd. With
this assumption, derive the power-type equation for the specific humidity profile (qs − q), which
is the analog of that for wind, given above.

2.9 The stability of the lower atmosphere is commonly characterized by means of the dimensionless
variable, ζ = (z − d0)/L , defined in Equation (2.45). An alternative variable to do this is the
Richardson number, defined as Ri = (g/Ta)[(dθ/dz)/(du/dz)2]. Derive the relationship between
ζ and Ri, in terms of φm and φh, defined in (2.47) and (2.48). Assume that the water vapor flux
term, w′q ′, in L is negligible.

2.10 Derive an expression for the specific humidity profile, similar to Equation (2.43), but applicable to
stable conditions. Note that (2.43) is valid only for neutral conditions. Assume that the flux profile
relationship for stable conditions is given by (2.49) with (2.57). Check your result by comparing
with (2.52) and (2.58).

2.11 During a field experiment above a grassy surface, the following mean values were measured over a
1 h period: the temperature at 1.5 m above the ground, T1.5 = 31.29 ◦C; at 3.0 m above the ground,
T3 = 30.87 ◦C; and the wind speed at 2.0 m, u2 = 3 m s−1. The surface roughness was estimated
to be z0 = 0.01 m, and the displacement height, d0, was found to be negligible. (a) Calculate, by
iteration, the friction velocity, u∗(m s−1), and the sensible heat flux, H

(
W m−2

)
. The evaporation

term w′q ′ in L can be assumed to be negligible. (b) If the net radiation is Rn = 392 W m−2,
calculate the rate of evaporation from Le E = Rn − H , first in W m−2 and then in mm month−1.

2.12 In a neutral atmosphere, a northerly wind (i.e. blowing to the south) has a velocity, u = 8 m s−1, at
2 m above prairie terrain; the surface parameters are z0 = 0.09 m and d0 = 0.50 m. (a) Calculate
the x- and y-components and the direction of the “free stream wind,” (i.e. ub and vb at z = hb) by
using A = 4.5 and B = 1.5 in Equation (2.65). Assume that the ABL has a thickness, hb = 800 m.
(b) If the rate of evaporation is 0.6 mm h−1, the air temperature is 15 ◦C, and the relative humidity
is 70% at 2 m, what is the specific humidity at z = hb = hi = 800 m above the ground? Assume
D = 0 in (2.71). Hint: combine (2.71) with (2.44).

2.13 Derive an expression for (θ1 − θm) over very rough terrain as the analog of (2.68) in which θs

is replaced by θ1; the latter is the potential temperature at a height, z1, within the atmospheric
surface layer. Hint: subtract (2.55) from (2.68) and substitute (2.70) for C .

2.14 The magnitude of the solar declination angle depends on the day of the year; it varies between
roughly ±23.28◦ on the solstices and 0◦ on the equinoxes. (a) What is the zenith angle of the Sun,
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i.e. β, at noon when h = 0? (b) When and where on Earth is the day length 12 hours, i.e., h = π/2
when the Sun rises and sets? Show with (2.77) that there are two possible situations for this to
occur.

2.15 Prove Equation (2.78) by integration of (2.77) over one day.

2.16 Calculate the total daily solar radiation (W m−2) on a horizontal plane in the absence of an
atmosphere for a latitude of 45◦ on June 21. Compare with the value shown in Figure 2.23.

2.17 The following data are averages for a typical summer day in a temperate climate: air tem-
perature, Ta = 17.94 ◦C; relative humidity, 66%; and incoming, short-wave radiation, Rs =
468 cal cm−2 d−1. Calculate the net radiation, Rn (in W m−2), for a surface covered with vibrant,
but short vegetation. (To a first approximation, assume that the daily average of the surface tem-
perature, Ts, is the same as the air temperature, and that cloudiness does not affect the long-wave
radiation, when it is derived from Ta.)

2.18 Same as Problem 2.17 but with the following data: air temperature, Ta = 20.45 ◦C; relative humid-
ity, 64%; and incoming, short-wave radiation, Rs = 477 cal cm−2 d−1.

2.19 The following data are available for a deep lake in a temperate climate (latitude 42.5◦ N) for
typical days respectively in the months of December (not frozen) and July: mean air temperature,
Ta = −2.78 and 20.56 ◦C; mean water surface temperature, Ts = 6.12 ◦C and 19.20 ◦C; relative
humidity for the region, 76% and 64%; and fraction of sunshine hours for the region, n/N =
0.33 and 0.63. Estimate the daily incoming short-wave radiation, Qs(in W m−2), by using cli-
matological methods with (2.74) and Figure 2.23. With this value as an estimate of Rs, calculate
the mean daily net radiation, Rn(in W m−2). Assume a surface emissivity of unity, and that the
temperatures remain roughly constant through the day.

2.20 During the night, a cloud layer, whose temperature is 4 ◦C, moves over an area covered with snow,
whose temperature is −3 ◦C. Calculate the maximal rate of evaporation of the snow cover, which
is due to the radiation from the clouds, if the absorptivity of the cloud is 0.93 and that of snow,
0.99. Assume that the atmosphere is transparent, that the air temperature is also −3 ◦C and that
steady conditions prevail. The latent heat of sublimation is 2.8 × 106 J kg−1. Give the result in
W m−2 and mm day−1.

2.21 Give an estimate of typical values of cR = G/Rn in Equation (2.86), that can be expected for (a)
cropland and (b) grassland, on the basis of (2.87).

2.22 Show why the global incoming short-wave radiation is one fourth of the solar constant, as indicated
in Figure 2.28.
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Because the entire hydrologic cycle is basically driven by it, precipitation has to be con-
sidered the main component. Indeed, it is a truism that wherever there is no precipitation,
there is also not much of a hydrologic cycle. The detailed study of precipitation and of all
its aspects is properly the domain of meteorology. In hydrology, precipitation is primarily
of interest after it reaches the ground surface, and this is reflected in the organization of
this chapter. However, to gain a better understanding of the occurrence and distribution
of precipitation and its temporal and spatial scales, it is also useful to have a knowl-
edge of at least some elementary aspects of its generation mechanisms and of its major
types.

3 . 1 F O R M AT I O N O F P R E C I P I TAT I O N

3.1.1 Mechanisms

Several processes take place jointly in the formation of precipitation. In brief, these are
the production of supersaturation of the air, condensation of water vapor into ice crystals
and droplets, the subsequent growth of these condensation products, and the supply of
moist air to where the first three processes occur. These processes involve a number of
different mechanisms, which are briefly reviewed in what follows.

Cooling of the air
As indicated in the previous chapter, the water-holding capacity of air decreases, as its
temperature decreases. Thus, air can become supersaturated by being cooled down. Such
cooling can occur by advection, for instance, as warmer air moves over a colder surface,
by radiative cooling or also as a result of the mixing of two different air masses; but these
are generally not very effective mechanisms and only capable at most of fog formation or
light drizzle. A more effective mechanism of cooling of the air consists of its being lifted
to higher elevations; in the generation of precipitation this is by far the main mechanism.
Air can be forced to rise by being heated from below, by moving over mountainous
terrain, or by frontal activity, that is by having to move over relatively heavier, that is
colder air. When the vertical air motions are relatively weak and gentle, for example
in the case of stable air in a warm front, the lifting may result in what is referred to
as stratiform precipitation. On the other hand, when the air is already unstable, and the
vertical motions are relatively strong, the resulting precipitation tends to be of the so-
called convective type. Under certain conditions the movement of air over mountainous
terrain can involve a combination of both stratiform and convective precipitation.
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Condensation and growth of condensation products
When the air reaches or exceeds saturation, water vapor may start to condense in the form
of liquid drops or ice crystals on the small nuclei, such as dust, smoke and various types of
salt particles, that are invariably present in the atmosphere. Initially, these condensation
products are small enough to be kept afloat in the atmosphere as cloud. Condensation
generates latent heat. Therefore, any further growth of these droplets and ice crystals
depends on the rate of diffusion of water vapor to their surface from the surrounding air
and on the rate of conduction of latent heat away from their surface into the air; in the
case of liquid droplets, there are also hygroscopic effects due to some nuclei, surface
tension and for the larger sizes, accretion. It can be shown (see, for example, Fleagle and
Businger, 1963) that the growth of droplets is primarily controlled by condensation up
to radius sizes of the order of 15 μm. Full-grown raindrop development to radii larger
than 20 μm requires accretion by collisions and coalescence with neighboring drops of
different sizes and fall velocities; this process, in turn, is affected by the turbulence of
the air, the temperature distribution in the clouds and electrical effects. In contrast, the
growth of ice particles depends only on vapor diffusion and on heat removal, and not
on accretion; however, on account of the lower vapor pressure characteristics of ice, the
water vapor diffusion process is much more effective than in the case of liquid water. If the
particle sizes continue to increase, eventually they become too heavy and precipitation
takes place. The onset of precipitation on the ground depends on a number of conditions;
most obvious among them is that the condensation products must be large enough to
fall down against the entrainment of updrafts, and to overcome evaporation while falling
down to the ground. A rough rule of thumb for the demarcation between precipitation
and cloud particle diameters is around 0.1 mm. Substantial rates of precipitation usually
can take place only when the cloud thickness is 1200 m or more.

Blanchard (1972) has written an enlightening history of the discovery of the main
mechanisms of raindrop and ice crystal formation.

Moisture supply
Calculation of the precipitable water, as defined in Equation (2.11), shows that even
under the most favorable conditions an atmospheric column at rest can hold only a very
limited quantity of water vapor. For instance (List, 1971), for a near-surface temperature
of 20 ◦C and a surface pressure of about p0 = 1000 hPa, a saturated atmosphere with a
pseudoadiabatic lapse rate can at most hold an amount, which is equivalent with about 5
cm of liquid water; for 10 ◦C this precipitable water is only about half as much. Heavy
precipitation amounts regularly exceed such values. But even so, it is well known that the
humidity of the air tends to remain relatively constant during precipitation events. This
means that it is not so much the local precipitable water, but the horizontal influx of moist
air into an area, that controls the local intensity and the total amount of precipitation.
The specific nature of this moisture influx depends on the weather system.

Water recycling
In the study of regional water budgets over seasonal or longer time periods it is often of
interest to determine the origin of the water vapor producing the precipitation. Part of this
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Table 3.1 Annual precipitation recycling ratio for different regions

Region
Square root of
area (km) Recycling ratio Reference

Amazon 2300 0.25 Brubaker et al. (1993)
Amazon 2500 0.25–0.35 Eltahir and Bras

(1994)
Mississippi 1800 0.10 Benton et al. (1950)
Mississippi 1400 0.24 Brubaker et al. (1993)
Eurasia 2200 0.11 Budyko (1974)
Eurasia 1300 0.13 Brubaker et al. (1993)
Sahel 1500 0.35 Brubaker et al. (1993)

water vapor originates from evaporation outside the region, while the remainder results
from evaporation within the region in question. The precipitated water produced by the
evaporation inside the region can be referred to as recycled water. Water recycling has been
the subject of intensive investigations (see, for example, Eltahir and Bras, 1996; Gong and
Eltahir, 1996). Table 3.1 shows some estimates for a few regions of the world. Recycling
of precipitation, or lack thereof, resulting from the soil moisture conditions can be a strong
feedback mechanism leading to persistence of weather and climate patterns.

3.1.2 Types of precipitation

Precipitation can reach the ground surface in different forms.

Drizzle is a very light, usually uniform, precipitation consisting of numerous
minute droplets with diameters in excess of 0.1 mm but smaller than
0.5 mm.

Rain is precipitation consisting of water drops larger than 0.5 mm. It can be
classified as light rain when the intensity is smaller than 2.5 mm h−1, mod-
erate when it is between 2.5 and 7.5 mm h−1, and heavy when it exceeds
7.5 mm h−1.

Snow is precipitation in the form mainly of branched hexagonal or star-like ice
crystals, resulting from direct reverse sublimation of the atmospheric water
vapor; snow particles can reach the ground as single crystals, but more often
than not they do so after agglomerating as snowflakes. These flakes tend to
be larger at temperatures close to freezing. The specific gravity of snow can
vary over a wide range (Judson and Doesken, 2000), but as a rule of thumb
for fresh snow it is often taken around 0.1.

Sleet (North American usage) is precipitation consisting of fairly transparent
pellets or grains of ice, formed as a result of the passage of raindrops
through a layer of colder air near the ground. In British usage the word sleet
refers to precipitation consisting of melting snow or a mixture of snow and
rain.

Glaze or freezing rain is ice deposited by drizzle or rain on cold surfaces.
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Snow pellets (also called granular snow or graupel) are a form of precipitation
consisting of white, opaque, small grains with diameters between roughly
0.5 and 5 mm.

Small hail is precipitation consisting of white, semitransparent or translucent grains
with diameters ranging from about 2 to 5 mm. These grains are mostly
round, and sometimes conical in shape, and they have a glazed appearance.
Small hail falls usually accompanied by rain, when the temperature is above
freezing.

Soft hail consists of round, opaque grains in the same size range as small hail, but
they are softer in appearance and tend to disintegrate more easily.

Hail consists of balls or irregular chunks of ice with diameters between 5 and
50 mm, or even larger. These lumps of ice can be transparent or they can
consist of concentric layers of clear and opaque ice; such layered structure
is the result of the alternating rising and falling movements during the hail
formation. Hail usually falls during violent and prolonged convective storms
under above-freezing temperature conditions near the ground; it can cause
severe damage.

Dew consists of moisture in the form of liquid drops on the ground surface and on
the vegetation and other surface elements, as a result of direct condensation
of atmospheric water vapor. It typically occurs at night on surfaces that have
been cooled by outgoing long-wave radiation.

Hoar frost forms in the same way as dew, but the water vapor condenses directly
into ice. These ice crystals can assume a wide variety of shapes.

3 . 2 M A J O R P R E C I P I TAT I O N W E AT H E R S Y S T E M S

3.2.1 Extratropical cyclones and fronts

These types of systems normally result from the interaction of two contrasting air masses.
An air mass can be defined as a body of air with approximately uniform physical char-
acteristics such as (potential) temperature and humidity. The interface between two
different air masses is called a cold front when relatively colder air displaces and moves
beneath relatively warmer air, and a warm front in the opposite case. Cold fronts tend
to be relatively steep, with average slopes on the order of 0.015; in the Northern Hemi-
sphere they are often oriented from the southwest to the northeast and move toward the
east and southeast. An approaching cold front is usually announced by increasing wind
speeds and the appearance of altocumulus clouds (Figure 3.1). All the while the pressure
decreases, and lower clouds, mainly of the cumulonimbus type, move in with the onset
of precipitation. As the front comes closer the precipitation intensity increases. After the
passage of the front the pressure rapidly rises and the temperature falls sharply; the wind
direction changes, typically from a southerly or southwesterly direction to a more west-
erly or northerly direction. Cold fronts are often followed by drier and cooler weather.
The stability of the warm air mass determines the type of precipitation generated by a
cold front. If the warm air is stable the clouds are of the stratiform type. The clouds are
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Cold air Warm air

Fig. 3.1 Cross section of a typical
cold front. (Vertical scale
is exaggerated.)

Cold airWarm air

Fig. 3.2 Cross section of a
typical warm front.

of the cumuliform type and the precipitation convective (see Section 3.2.2), if the warm
air is conditionally unstable (see Figure 3.1). In this case, scattered thunderstorms and
showers may develop, and in extreme cases the front may evolve into a continuous line
of thunderstorms, called a squall line.

Warm fronts are usually not as steep, with slopes that are on average of the order
of 0.01; they also move more slowly than cold fronts, and are not as well defined. As
the warm air moves over the cold air a broad band of clouds develops (Figure 3.2),
extending up to several hundreds of kilometers ahead of the front’s position on the
ground. Also in the case of a warm front, it is the stability of the warm air that determines
the type of precipitation produced by the front. When the warm air in the approaching
frontal air mass is moist and stable, the sequence of cloud types is cirrus, cirrostratus,
altostratus, and nimbostratus, and the precipitation increases gradually. When the air is
moist and conditionally unstable, the same sequence may occur, but altocumulus and
cumulonimbus, often with thunderstorms, will also be observed.

The interface between contrasting air masses tends to be unstable and it often evolves
further, through the rotation of the Earth, into a spiraling stream called a cyclone. A
cyclone is a large low-pressure zone, and it is usually accompanied by cloud systems
and precipitation. An anti-cyclone is the opposite case, namely a high-pressure zone,
which usually brings fair weather; it is also normally characterized by subsidence, a
slow downward air motion resulting from the horizontal divergence of the air away from
the pressure high.

Although there is an infinite variability in the occurrence of cyclones, they have certain
features in common; a typical life cycle of a cyclone is sketched in Figures 3.3, 3.4
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Fig. 3.3 Evolution of a typical extratropical cyclone (in the Northern Hemisphere), as derived from surface
weather maps, with the geostrophic wind velocity vectors shown parallel to the isobars; (a) illustrates
an assumed initial state as a stationary front with wind shear; this interface is unstable and it
gradually develops into a frontal wave with growing amplitude as shown in (b) and (c). In (d) the warm
front has been overtaken by the cold front and the cyclone has become occluded. From then on the
cyclone loses its strength and the fronts gradually dissolve.
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A--A′
warm air

cold air cold air

cold air cold airwarm air

B--B′

Fig. 3.4 Vertical cross sections along the lines A–A′ and B–B′ indicated in Figure 3.3c. (Vertical scale is
exaggerated.)

cold air cool air

warm air
C--C′

Fig. 3.5 Vertical cross section along the line C–C′ indicated in Figure 3.3d, showing a cold-front occlusion.

and 3.5. In the initial stage the winds on both sides of a stationary front are blowing in
parallel but opposite directions. As a result of the shear and small disturbances, surface
roughness or heating irregularities, the front may gradually assume a wave-like shape,
which may persist and increase in amplitude, and eventually evolve into a counterclock-
wise (in the Northern Hemisphere) flow pattern, called a frontal wave. By now there
is a well-defined cold front and a warm front, and the cyclonic circulation continues
to intensify. The cold front section usually moves faster and eventually overtakes the
warm front. At this point, which is the time of maximal intensity of the cyclone, the
combined front is referred to as an occlusion or an occluded front. In the later stages of
the occlusion, the intensity of the cyclone and the frontal movement gradually decrease;
finally the occlusion vanishes while a new stationary front may be formed. Observe that,
in contrast to the cold and warm fronts sketched in Figures 3.1 and 3.2, those shown in
Figure 3.4 are assumed to involve a stable warm air mass, so that the clouds shown are
of the stratiform type. Many different factors control the evolution of occluded fronts. It
has been shown (Stoelinga et al., 2002) that, more than the temperature contrasts, it is
the stability contrasts across the fronts which govern the dynamics of occlusions.
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Frontal cyclones dominate the weather in the mid- and high latitudes, mainly in the
colder season, when the contrasts between the equatorial and the polar regions are the
most pronounced. In the warmer seasons, such cyclonic systems are generally weaker.
They typically involve length scales of the order of 103 km, also referred to as the
mesoalpha (see Table 1.5), macro, or synoptic scale and their highest incidence is around
55◦ latitude.

3.2.2 Extratropical convective weather

Unstable atmospheric conditions have the potential of generating organized systems of
convective quasi-vortical movement of air, over a wide range of scales. Recall that an
ideal vortex is a flow in which the streamlines are concentric circles. In the atmosphere,
however, convective systems are considerably more complex than an inverted bathtub
vortex. Under the right moisture conditions of the atmosphere, these systems can develop
into thunderstorms, and may consist of a single storm cell, or of several cells as part of a
mesoscale convective system. The spatial extent of these systems tends to cover mainly
the mesobeta into the mesoalpha scales, typically ranging from about 50 to 500 km, but
individual cells can be as small as only a few kilometers. Individual cells are characterized
by strong local updrafts and downdrafts. Simply put, the updrafts are a manifestation of
the unstable conditions of the air (see Figures 2.2 and 2.4) and lead to condensation in the
cooling air resulting in precipitation. The downdrafts, on the other hand, result not only
from the entrainment by falling precipitation and some evaporative cooling, but also from
return flows required by continuity to compensate for the upward motions (Vonnegut,
1997); some of these are produced after updrafts reach their highest level and then fall
back as downward currents. Most systems of this type are accompanied by a specific
surface pressure pattern, first described by Fujita (1955) from time-to-space conversion
of barograph data. In brief, this pattern consists of a high-pressure zone or mesohigh,
trailed by a low-pressure zone, also called a mesodepression or wake low. Some of the
mechanisms involved have subsequently been further elucidated (see Johnson, 2001)
and are sketched in Figures 3.6 and 3.7. It is generally believed that the high pressure is
a result of evaporative cooling in precipitation downdrafts below cloud base; additional
effects may be caused by the impinging of the downdrafts on the ground, causing a
pressure nose, and by hydrometeor loading. Williams (1963) showed that the observed
pressure deficit could be the result of a descending, or subsiding, dry current to the rear of
the convective air, but the causes for this remain unclear. The nose, also known as a cold
air outflow leading edge or gust front, often assumes the form of a surge; some 20 cases
have been studied with a 461 m tower by Goff (1976) (see Figures 3.8 and 3.9), which
indicate that they have some features in common with the open channel surges discussed
in Chapter 7 (see also Simpson, 1997). At present, the details of storm development, and
the possible roles of gravity currents and gravity waves in the observed pressure patterns,
are still not completely understood.

Mesoscale convective systems of thunderstorms can be organized as squall lines
or as mesoscale convective complexes. Squall lines or instability lines are relatively
narrow bands of convective elements, like that illustrated in Figure 3.7; they are often
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Fig. 3.6 Typical surface pressure pattern and vertical structure of a convective system. The top shows the case
of weak and the bottom the case of sharp pressure gradients, in association with rear-inflow jets that
proceed forward toward the leading convective line or are blocked, respectively. (From Johnson, 2001.)

accompanied by brief and sudden wind storms or “squalls,” and tend to occur along sharp
cold fronts. Mesoscale convective complexes are a major mechanism for the production
of heavy precipitation at the midlatitudes during the warmer seasons of the year (Maddox,
1980; Fritsch et al., 1986; Houze et al., 1989).

3.2.3 Seasonal tropical systems

These systems occur in the zone of convergence of the northerly and southerly trade
winds and as wave-like structures in the zone between the subtropical high-pressure
belts and the Equator; they are mostly responsible for the well-known tropical rainfall
and the abundant natural vegetation in those regions. They typically produce deep cloud
clusters and, intermittent with fair weather, heavy precipitation of the convective type.
These systems tend to have a seasonal character, as they follow the sun between the two
tropics.
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Fig. 3.8 Sketch of thunderstorm circulations associated with cold air outflow at the leading edge. Several
surges are shown. The darkened area consists of falling or suspended precipitation. The dashed line is
the upper boundary of the outflow at the rear in the wake of the storm. The insert shows the horizontal
wind coordinates relative to the front. (From Goff, 1976.)

Fig. 3.9 Sketch of the leading edge of the cold air outflow. The presence of cloud depends on the height of the
condensation level. The indicated flows are relative to the gust front. Plus and minus signs indicate
direct and indirect circulations, and the dotted line indicates separation due to local shear. (From Goff,
1976.)

Where they are combined with monsoon winds and orographic effects, as in Megha-
laya in the eastern parts of India, they have produced some of the largest long-term
rainfall amounts on record. Monsoons are large-scale quasi-steady wind regimes, often
resulting from specific geographic and topographic features of the regions where they
occur, and characterized by a seasonal reversal of wind direction. In response to the
differential heating by the surface, they blow from land to sea in winter, and from sea to
land in summer, producing a wet–dry season cycle.

3.2.4 Large-scale tropical convective systems

These are well-developed low-pressure systems, of tropical ocean origin, which can
travel long distances accompanied by strong winds and heavy rainfall. As they move
away from their origins, they can cause severe weather in the coastal regions. As long as
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the wind speeds remain below 40 km h−1, they are referred to as tropical depressions; they
are called tropical storms for wind speeds between 40 and 120 km h−1, and hurricanes
for winds above that range. In the western Pacific Ocean they are known as typhoons.
Such systems have also generated some of the largest rainfalls ever recorded. Amounts
of 15–25 cm in a 24 h period are not uncommon over level land.

3.2.5 Orographic effects

The precipitation resulting from each of the general weather types discussed here can
be markedly affected by topographic features, such as elevation, slope and aspect of
the land surface. The result tends to be increased precipitation on windward slopes,
and smaller precipitation on leeward slopes, also called rain shadows. In some regions
with identifiable prevailing wind directions, such as the coastal ranges of western North
America or the foothills of Meghalaya in eastern India, the windward slopes can be
readily identified. On the other hand, as noted by Gilman (1964), in the Appalachian
mountains, the windward and leeward sides can be quite variable, depending on the
wind direction. Smith (1979) specified that there are three independent mechanisms
of orographic precipitation, as follows. (i) Large-scale upslope precipitation, which is
generated by forced vertical motion of the stratiform type or by triggered convection as
the air moves over rising terrain. (ii) Small-scale redistribution of precipitation from pre-
existing clouds by small hills; over the hill tops the precipitation is increased, because
their higher surface can intercept the falling drops before they evaporate, and apparently
also because the drops undergo increased accretion by washout of low-level clouds.
(iii) Generation of upslope winds in a conditionally unstable air mass as a result of slope
heating by the Sun; these develop into rising thermals, which in turn can grow into
cumulonimbus clouds above the lifting condensation level.

In general, because there are several other factors beside elevation, the effect of orog-
raphy by itself in causing increased precipitation is not always obvious; physically, its
main effect is as a trigger mechanism for convective activity. Accordingly, as observed by
Suzuki et al. (2002), the relationship between precipitation and elevation is usually more
pronounced for convective than for stratiform rainfall. The relationship is also stronger
and more apparent for larger accumulated rainfall amounts, for longer accumulation time
scales, and for larger rainfall intensities. For instance, in the analysis of hourly rainfall
data, the random effects of other factors may dominate the measured precipitation, so
that the effect of topography may go undetected. With daily rainfall data topographic
effects gradually emerge, albeit with large variations from one day to the next. With
monthly data the effects of the other factors tend to become averaged out and the effect
of elevation is more apparent. Numerous studies reviewed by Daly et al. (1994) have
reported linear relationships between precipitation and elevation, but other relationships,
such as loglinear functions have also been documented. In the mid-latitudes the climato-
logical precipitation maxima tend to occur at or near the crest of mountainous barriers.
However, in warmer regions (e.g. Hawaii), or in large-scale precipitation events (e.g.
the Sierras in California) the maximal precipitation may occur somewhat lower, ahead
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Fig. 3.10 Moist air passing over rising terrain may result in a downslope wind which is warmer and drier. The
graph on the right shows the changes in temperature T (solid line) and specific humidity q (dashed
line) of a parcel of air with height z; the lapse rate of the solid line segments AB and CD is very close to
dry adiabatic, and that of the segment BC is close to saturated adiabatic. The height zC is the
condensation level, where precipitation starts and the rate of temperature decrease changes from dry
adiabatic to saturated adiabatic.

of the topographic barrier; this may be due to upwind “rainout.” On the other hand, in
some situations of steep and narrow mountain ridges, the precipitation maxima may be
delayed, and may occur downwind from the crest of the barrier.

Example 3.1. Passage over mountain barriers

In the previous chapter the concepts of adiabatic lapse rate and the resulting atmospheric
stability were in introduced. Figure 2.4 illustrates how air, which is initially stable,
can be made unstable by being forced to rise. This is called conditional instability.
As another illustration, consider this time an air mass that is forced to rise by moving
over rising terrain, as sketched in Figure 3.10. Again, initially the temperature of an
air parcel will decrease at a rate roughly equal to the dry adiabatic lapse rate. Above
the condensation level this rate will become smaller, and roughly equal to the saturated
adiabatic lapse rate. As the saturated air continues to rise, it cools further down and its
moisture gradually precipitates out. After it passes the peak, and goes back down, through
its descent the air warms up at the dry adiabatic lapse rate and gradually becomes less
and less saturated. Finally, after its passage downwind from the mountain the air is both
warmer and drier than it was originally upwind. This type of phenomenon is variously
referred to as Föhn in the Alpine regions of Europe, Santa Ana in southern California
and Chinook east of the Rocky Mountains of North America. Again, as was the case
with frontal systems, when the entire incoming air mass is initially stable and moves
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Fig. 3.11 Sketch illustrating the
application of the
Thiessen polygon method
to estimate the subareas
Ai assigned to the
precipitation gages on the
map of a catchment. The
subareas are bounded by
the boundaries of the
catchment and by the
lines drawn midway
between the stations. The
locations of the stations
are indicated by the
numbered circles.

uniformly over the rising terrain, the resulting precipitation can be expected to be of the
stratiform type. However, in situations when the incoming air is already unstable, much
higher convective type precipitation intensities develop; this may be especially the case
with irregular topography and uneven surface heating, when some parts of the air mass
have higher temperatures than others at the same height, so that locally the convection
mechanisms, as illustrated in Figure 2.4, come into play.

3 . 3 P R E C I P I TAT I O N D I S T R I B U T I O N O N T H E G RO U N D

3.3.1 Spatial distribution

Areal average from precipitation gages
In hydrologic analyses at the basin- or catchment-scale, the input is of necessity taken
as the average precipitation over the entire area. Different weighting methods have been
used in the past to estimate this average from the available precipitation gage network.
When no other information is available, the only possible method is to take the regular
average value, i.e. the arithmetic mean, with equal weights assigned to all gage stations.
When the locations of the stations are known on a map, the Thiessen polygon method
(Thiessen, 1911) has been commonly used. Here each gage represents a subarea, Ai ,
which is determined as the area bounded by the perpendicular bisectrices between the
station and those surrounding it (see Figure 3.11); the spatial average is calculated by
weighting the individual stations with their representative area, namely

〈P〉 = 1

A

n∑
i=1

Ai Pi (3.1)
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Fig. 3.12 Sketch illustrating the application of the inverse distance method. For example, the precipitation over
subarea 17 is determined as

∑4
i=1 d−2

i,17 Pi/
∑4

i=1 d−2
i,17. The average precipitation over the entire

catchment is then obtained as the weighted average of all subarea values, as shown in Equation (3.2).
The locations of the stations are indicated by the numbered circles.

where n is the number of rain gage stations in the area, and A is the surface area of the
catchment, that is the sum of the subareas, or A = ∑n

i=1 Ai .
The inverse distance method is equally simple in principle, but it is easier to imple-

ment. It is based on the assumption that the precipitation at any given point is influenced
by all stations in the area, each weighted by the inverse of a power of its distance from
the point. Note, as an aside, that the principle can also be used to calculate missing
data. To obtain the areal average, the method is applied by subdividing the area into m
rectangular subareas, each with an assumed uniform precipitation as calculated for the
point at its center; the resulting mean precipitation is then

〈P〉 = 1

A

m∑
j=1

A j

(
n∑

i=1

d−b
i j

)−1 n∑
i=1

d−b
i j Pi (3.2)

in which A j is the surface area of the j th subarea, A is the total surface area of the
catchment, and n the total number of precipitation stations; di j is the distance of the center
of the j th subarea from the i th rain gage in the catchment and b is a constant, which
in most applications has been taken as 2. It can be seen that, for b = 0, Equation (3.2)
produces the arithmetic mean. Dean and Snyder (1977) found that b = 2 yielded the
best results in the Piedmont region of the southeastern United States, whereas Simanton
and Osborn (1980) concluded from measurements in Arizona that b can range between
1 and 3 without significantly affecting the results. Figure 3.12 illustrates the application
of this method.
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Fig. 3.13 Sketch illustrating the
application of the
isohyetal method to
estimate the average
precipitation over a
catchment. The
subareasAi are bounded
by the isohyets and by
the boundaries of the
catchment. The locations
of the stations are
indicated by the
numbered circles.

Still another graphical procedure is known as the isohyetal method (see Reed and
Kincer, 1917), which consists of drawing isohyets or contour lines of equal precipitation
(Figure 3.13), by interpolation between the measured values at the rain gage stations. The
method can be applied with Equation (3.1), in which the Ai values are the areas bounded
by the isohyets and by the boundaries of the catchment, and the Pi values are the average
precipitation of the two isohyets bounding the corresponding Ai . Some of the difficulties
in the derivation of areal averages in mountainous terrain have been addressed by Peck
and Brown (1962).

Many more methods have been proposed in the literature. Although they can be quite
different in principle, a comparison of 13 of them has shown (Singh and Chowdhury,
1986) that over longer, say monthly or annual, periods they all produce comparable
results; the shorter the time period, the more they can be expected to produce different
results.

Objective analysis
The simple averaging methods just described are fairly arbitrary in their design and not
based on well-defined criteria. However advances, in what is variously called objective
analysis (see Gandin, 1963; Kagan, 1997) and geostatistics (Journel and Huijbregts, 1978;
Delhomme, 1978; Kitanidis, 1997), have led to a more objective interpolation technique,
namely the best linear unbiased estimator, also known as kriging. This is a weighting
procedure, in which the weights are determined on the basis of the spatial structure of
the rainfall fluctuations, and on the basis of the dual criteria that the estimation error, i.e.
difference between the estimated value and the true but unknown value, at any point be zero
on average, and that the corresponding mean square error be minimal. For details on the
application of this method the reader is referred to the specialized literature.

Complex and mountainous terrain poses some additional challenges in the estimation
of the precipitation distribution and its mapping. Attempts have been made to incorporate
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orographic effects in objective analysis in the derivation of areal averages (Chua and Bras,
1982; Phillips et al., 1992). In a different approach, Daly et al. (1994) relied on digital
elevation data, including height and aspect, to derive local regression equations with which
to distribute point measurements of monthly and annual precipitation to regularly spaced
grid cells.

Some distribution functions
The areal distribution of precipitation over different time scales has been the subject
of intensive research and numerous relationships have been proposed in the literature
(see, for example, Court, 1961; Burns, 1964; Huff, 1966; Fogel and Duckstein, 1969)
to reduce the estimated point precipitation, when it is to represent a larger area. In some
of these, correlation studies were carried out relating the decay with increasing distance
from a gage at a central location (Huff and Shipp, 1969; Hutchinson, 1969). For design
purposes for use with point rainfall frequency data (and not with individual storms), in
the United States the reduction factors shown graphically in Figure 3.14, developed by
the US Weather Bureau (1957–1960; Miller, 1963; Myers and Zehr, 1980), have been
widely used. Various aspects of areal rainfall reduction procedures have subsequently
been studied by Rodriguez-Iturbe and Mejia (1974), Eagleson et al. (1987), Smith and
Karr (1990), Omolayo (1993), Sivapalan and Blöschl (1998), Asquith and Famiglietti
(2000), DeMichele et al. (2001), and Allen and DeGaetano (2005) among others. Several
of these investigations have shown that the reduction factor dependency on area is also a
function of the severity, i.e. the return period of the event. However, it was also generally
found that for several reasons the curves shown in Figure 3.14 are on the safe side, and
therefore are likely to result in a more conservative design. Thus actual precipitation
tends to decrease more rapidly with area covered, as the return period increases, than
indicated in the figure; also, convective type storms exhibit a more rapid decrease with
area than those of the stratiform type. Finally, although the reduction factors shown in the
figure appear to level off at around 1000 km2, it has been found that in fact the reduction
factor continues to decrease in an exponential manner as the area increases beyond that,
even up to 20 000 km2.

3.3.2 Temporal distribution

Precipitation is normally recorded on an hourly or daily basis, and in the data records
it can be reported over different averaging periods. The description of the evolution of
precipitation over time depends largely on the adopted temporal resolution. In applied
hydrology, a record of precipitation intensity with time for individual storm events is
commonly referred to as a hyetograph; a hyetograph is usually presented as a bar graph
with an hourly time step. The accumulated precipitation over time, is called a mass curve.

A double mass curve is a graph of seasonal or annual accumulated precipitation
at a given station plotted against the mean accumulated precipitation for a number of
neighboring or surrounding stations. Double mass analysis was introduced by Merriam
(1937) to check the consistency of the record at a station that has undergone changes
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Fig. 3.14 Depth–area reduction curves for use with point rainfall frequency data. (After standard NOAA charts;
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Fig. 3.15 Example of a double mass analysis,
showing the accumulated precipitation
at a single station (Spencer, West
Virginia) against the mean accumulated
values of 13 neighboring stations in the
same climatic division area. Exposure
conditions at Spencer changed around
1964 (after Chang and Lee, 1974).

in exposure and location of the gage, in instrumentation or in measurement procedures
(see also Chang and Lee, 1974).

Example 3.2. Double mass curve

Figure 3.15 shows accumulated annual precipitation at Spencer, West Virginia, against
the mean accumulated precipitation values for 13 stations within the same climatic area in
southwestern West Virginia. The figure illustrates that a change in measuring conditions
occurred around 1964; the data prior to that date can be adjusted to these new conditions
by multiplying them by a factor in accordance with the change in slope �y/�x , as
shown.
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for Washington DC,
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Double mass curve analysis can also be used to interpolate missing data (Paulhus
and Kohler, 1952), and it has been applied to other types of hydrologic data, such as
streamflow, sediment records and precipitation–runoff relations (Searcy and Hardison,
1960).

3.3.3 Runoff design rainfall data

For engineering design purposes, mainly related to the rational method or the unit hydro-
graph (see Chapter 12), point rainfall data are often organized according to the intensity,
the duration and the frequency of the storm events. Such analyses have been published
for many different locations. Hershfield (1961), Miller (1963) and Bruce (1968) have
published maps covering North America. Similar maps have been produced for other
regions of the world as well. Because rainfall-generating mechanisms can be quite sim-
ilar in different hydrologic regions, many attempts have been made to generalize this
type of information in the form of empirical functions. Some pertinent results can be
found, for example, in the studies by Bell (1969), Chen (1983), Ferreri and Ferro (1990),
Kothyari and Garde (1992), Ferro (1993), Pagliara and Viti (1993) and Alila (2000). This
topic continues to be the subject of research (see, for example, Madsen et al., 2002).

A widely used equation, whose evolution can be traced through the work of Meyer
(1917, p. 149), Sherman (1931) and Bernard (1932), can be written as follows

P = Kp
T a

r

(D + b)c
(3.3)

in which P is the intensity [L/T] of a rainfall episode of duration D [T] and with a return
period Tr (see Chapter 13), and Kp, a, b, and c are constants for a given location.

Example 3.3. Intensity–duration–frequency relationship

Figure 3.16 shows an example of Equation (3.3) with the constants Kp = 40, a = 0.2,
b = 0.19 h and c = 0.79 (with P in mm h−1, D in h, and Tr in years) for
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Table 3.2 Greatest known observed point rainfall

Duration (mm) Location Date

1 min 38 Barot, Guadeloupe Nov. 26, 1970
5 min 63 Haynes Camp, California Feb. 2, 1976
8 min 126 Fussen, Bavaria May 25, 1920
15 min 198 Plumb Point, Jamaica May 12, 1916
20 min 206 Curtea-de-Arges, Roumania Jul. 7, 1889
30 min 280 Sikeshugou, Hebei Jul. 3, 1974
42 min 305 Holt, Missouri Jun. 22, 1947
60 min 401 Shangdi, Inner Mongolia Jul. 3, 1975
1 h 12 min 440 Gaoj, Gansu Aug. 12, 1985
2 h 30 min 550 Bainaobao, Hebei Jun. 25, 1972
2 h 45 min 559 D’Hanis, Texas (17 miles NNW) May 31, 1935
3 h 600 Duan Jiazhuang, Hebei Jun. 28, 1973
4 h 30 min 782 Smethport, Pennsylvania Jul. 18, 1942
6 h 840 Muduocaidang, Inner Mongolia Aug. 1, 1977
10 h 1400 Muduocaidang, Inner Mongolia Aug. 1, 1977
18 h 1589 Foc Foc, Reunion Jan. 7–8, 1966
24 h 1825 Foc Foc, Reunion Jan. 7–8, 1966
2 d 2467 Aurere, Reunion Apr. 8–10, 1958
3 d 3240 Grand Ilet, Reunion Jan. 24–27, 1980
4 d 3721 Cherrapunji, Meghalaya Sep. 12–15, 1974
5 d 3951 Commerson, Reunion Jan. 23–27, 1980
7 d 4653 Commerson, Reunion Jan. 21–27, 1980
10 d 5678 Commerson, Reunion Jan. 18–27, 1980
15 d 6083 Commerson, Reunion Jan. 14–28, 1980
31 d 9300 Cherrapunji, Meghalaya Jul. 1–31, 1861
2 mon 12767 Cherrapunji, Meghalaya Jun.–Jul. 1861
4 mon 18738 Cherrapunji, Meghalaya Apr.–Jul. 1861
6 mon 22454 Cherrapunji, Meghalaya Apr.–Sep. 1861
1 y 26461 Cherrapunji, Meghalaya Aug. 1860–Jul. 1861
2 y 40768 Cherrapunji, Meghalaya 1860–1861

Source: World Meteorological Organization (1986).

Washington, DC; these values were obtained from the data presented in US Weather
Bureau (1955). Interestingly, some 20 years earlier Bernard (1932) reported for
Washington the values Kp = 34.4, a = 0.2, b = 0 and c = 0.78 for rain events longer
than 1 h; this illustrates how P values, with a certain probability of occurrence, may
increase as the available period of record becomes longer.

While the constants in (3.3) can be expected to change from place to place, the
values reported in the literature for a, b and c vary within relatively narrow ranges,
namely 0.15 < a < 0.3, 5 < b < 10 min and 0.6 < c < 0.8. Thus when no other
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Fig. 3.17 The largest observed cumulative point rainfall values P D (in m) (circles) and some near-record
values (triangles). Most of the largest values are also listed in Table 3.2. The upper envelope is given by
PD = 0.0584 D0.48 (in m), with D in min (adapted from World Meteorological Organization,
1986).

information is available, for durations D ≤ 24 h the typical values a = 0.2, c = 0.7 can
be adopted; b is of the order of minutes only, so that it is usually omitted from (3.3)
for durations D in excess of 1 or 2 h. Attempts have been made to relate Kp to climate
indices. For instance, Kothyari and Garde (1992) showed that it can be related with the
rainfall depth of D = 24 h and Tr = 2 y, namely (24 P2

24), as follows

Kp = Cp
(
24 P2

24

)0.33
(3.4)

where Cp is a local constant, which covers the relatively narrow range 6 < Cp < 9, if P
is in mm h−1, D in h, and Tr in years. When they applied Equation (3.3) with a = 0.2
and c = 0.7 and with Kp = 40.1 to the data from 78 stations in India, the resulting
multiple correlation coefficient was 0.90; however, application of (3.3) with (3.4),
in which Cp = 8.31, produced a much improved multiple correlation coefficient of
0.96.

As a reference, which may serve as guide for the maximum possible precipitation,
Table 3.2 (from World Meteorological Organization, 1986) and Figure 3.17 show some of
the largest point rainfall values ever observed for different durations. The upper envelope
shown in Figure 3.17 is given by

P = 416.6 D−0.52 (3.5)

if the rainfall rate P in mm h−1 and the duration D is in hours (h).
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3.4 Interception

3.4.1 Definition and observed magnitudes

Interception is the part of precipitation that moistens the different surface elements, mainly
vegetation, and is temporarily stored on them. When the surface elements are fully saturated,
so that they have reached their full interception storage capacity, any excess intercepted
water on them flows or drips down to the ground. In practice, the interception storage
capacity is usually defined more specifically as the amount of water left on the canopy at
the end of a storm, under conditions of zero evaporation and after all drip has ceased; thus
during a storm the stored depth of water can exceed the storage capacity. The precipitation
that reaches the ground is often called net precipitation. In the case of vegetation, most
of the net precipitation filters through the canopy as throughfall; a small part flows down
along major branches and stems as stemflow, and tends to concentrate over the roots. The
interception of precipitation by a vegetation canopy can greatly affect the hydrologic budget
at the ground surface. The water held by the foliage elements that evaporates before it can
reach the ground is thus no longer available for infiltration and runoff. Therefore, the amount
of intercepted precipitation, that returns to the atmosphere by evaporation, is often called
the interception loss.

Most interception studies have focused on forested surfaces, where the largest values
occur. Both the type of vegetation and the type of precipitation appear to play a role.
Indeed, tall or dense vegetation tends to incur larger interception losses than short or sparse
vegetation. Also, interception losses as a fraction of precipitation are usually larger when the
precipitation events are of moderate intensity and longer duration, than when they occur in
the form of short intense bursts and downpours. For example, in tall dense forest vegetation
at temperate latitudes interception losses have been observed that are as large as 30% to 40%
of the gross precipitation (Gash et al., 1980). In tropical forests with high intensity rainfall,
however, the observed losses have tended to be more of the order of 10% to 15% (see Lloyd
and Marques, 1988; Lloyd et al., 1988; Ubarana, 1996), even though the evaporation rates
during rainfall were not very different. Similarly, sparse forests also tend to have lower
values of interception, namely around 10% to 20% of the precipitation (see Gash et al.,
1995; Valente et al., 1997). Interception losses in heather and shrub covered terrain are
smaller than one third of the values in dense forest (Calder, 1990) under the same climatic
conditions.

3.4.2 Interception loss mechanisms in vegetation

For a single precipitation event the total interception loss is the sum of the evaporation
from the wet vegetation during the event and the evaporation of the water remaining on
the vegetation after the precipitation has ceased. Horton (1919) was probably the first to
formulate this, for a storm duration D, which is long enough to saturate the vegetation, as
follows

L i =
D∫

0

Eidt + Sic (3.6)

where Ei is the rate of evaporation of intercepted water [L/T], and Sic the interception
storage capacity of the vegetation [L]. When the precipitation ceases before the vegetation
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Fig. 3.18 Sketch illustrating the
water balance of a
vegetation canopy.

is fully saturated, the precipitation amount lost by interception is

L i =
D∫

0

Ei dt + S (3.7)

in which S is the amount of water stored on the partly saturated vegetation. Before this
equation can be used to estimate the loss, the variables S and Ei must be known.

A common way to determine S is to treat the vegetation as one or more storage elements,
representing the canopy and the trunks, to which the lumped storage equation (1.10) can
be applied. In the simplest approach, when a single element is assumed to represent the
evolving canopy storage S, one can take the precipitation as the inflow, and the evaporation
and liquid drainage as the two outflow rates (Figure 3.18); thus,

d S

dt
= cP − Ei − O for 0 ≤ S ≤ Sic (3.8)

where c is the horizontal density or fractional cover of the intercepting vegetation, P the
precipitation intensity, and O the liquid drainage outflow rate from the vegetation. Note that
Equation (3.8) should be applied only to stands of vegetation that are sufficiently uniform at
the scales under consideration; thus it would not be applicable, for example, in the case of
chessboard-like surfaces consisting of forest stands and clearings with different vegetation,
or to sparse stands of trees in a grassy or bare soil environment. In such situations the
analysis may have to be applied separately to each type of land cover and the results can
then be weighted according to the fraction of the area each one occupies.

Integration of Equation (3.8) yields for the storage

S = c

D∫
0

Pdt −
D∫

0

Eidt −
D∫

0

Odt for S ≤ Sic (3.9)
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Hence for short precipitation events that are not long enough to saturate the vegetation,
Equation (3.7) produces a loss

L i = c

D∫
0

Pdt −
D∫

0

Odt for S ≤ Sic (3.10)

Equation (3.10) is valid as long as the cumulative precipitation is smaller than the amount
needed to saturate the vegetation, and (3.6) is valid after that, when S = Sic.

To allow the practical implementation of Equations (3.6) and (3.10), various assumptions
have been proposed by different authors, regarding c, Ei, and O . The main difficulties in
assessing these assumptions are the complexity of the vegetation cover precluding more
thorough analysis and the absence of experimental support for most of the processes involved
in interception. Some of these assumptions are briefly discussed in the following.

Some common assumptions
The fractional vegetation cover c is often assumed to be simply related with the free through-
fall coefficient p, as c = (1 − p); this coefficient is the portion of the precipitation that
reaches the ground without hitting the canopy (Gash and Morton, 1978). Both c and p can
be measured (see Section 3.4.3). The drainage rate O has been estimated in various ways.
The simplest way to describe it is with the assumption that as long as the canopy is partly
saturated there is no drip, and that once it is saturated at the end of the storm the amount
of water on the canopy rapidly falls to its storage capacity Sic (Gash, 1979; Noilhan and
Planton, 1989). These can be written as

O = 0 for S < Sic (3.11)

and, from Equation (3.8)

cP − Ei − O = 0 for S = Sic (3.12)

The rate of evaporation from the intercepting vegetation Ei is the most critical but also the
most difficult variable to determine. For operational purposes, it is now commonly (Noilhan
and Planton, 1989; Gash et al., 1995) assumed that, when the vegetation is saturated, it can
be estimated by means of a suitably chosen potential evaporation Epo (see Chapter 4) from
the fraction c of the surface occupied by intercepting vegetation and that the evaporation
from the remaining fraction (1 − c) can be ignored. For partly saturated surfaces during
the wetting up phase of the interception process, it has mostly (see Rutter et al., 1971)
been assumed that the evaporation is proportional to the relative saturation (S/Sic). (This
assumption is an application of Equation (4.33) with (4.34).) Both assumptions can be
combined as

Ei = c(S/Sic)Epo (3.13)

The main problem with these underlying assumptions is that it is still not very clear exactly
how this potential evaporation should be defined or estimated; this issue will require fur-
ther study. In any event, these assumptions lead now to the following expressions for the
interception loss. If t0 denotes the time to saturation, the loss for short precipitation events



intercept ion 103

follows directly from (3.10) with (3.11), namely

L i = c

D∫
0

Pdt for S ≤ Sic and D ≤ t0 (3.14)

For long events Equation (3.6) can be rewritten as

L i =
t0∫

0

Eidt + Sic +
D∫

t0

Eidt for S = Sic and D > t0 (3.15)

or, upon substitution of the first two terms on the right by (3.9) with (3.11), and of the third
by (3.13),

L i = c

⎛
⎝ t0∫

0

Pdt +
D∫

t0

Epodt

⎞
⎠ for S = Sic and D > t0 (3.16)

Equations (3.14) and (3.16) can be readily solved numerically by also keeping track of S
by means of (3.9).

Lumped kinematic solution
The assumption that the vegetation, as a hydrologic flow system, can be represented by a
storage element governed by Equation (3.8) (with O = 0), and with a storage–outflow rela-
tionship given by Equation (3.13), is a perfect example of the lumped kinematic approach.
Gash (1979; Gash et al., 1995) made use of this simple structure to derive a closed form solu-
tion for the evolution of S with time; by assuming constant (or averaged) values of P and Epo

during the precipitation event of duration D, he obtained

D = Sic

cEpo
ln

(
1 − Epo S

P Sic

)
(3.17)

The time to saturation is therefore

t0 = (Sic/cEpo) ln [1 − (Epo/P)] (3.18)

which can be used immediately with (3.14) and (3.16) to estimate the interception loss. For
constant (or averaged) values of P and Epo during the precipitation event, (3.14) and (3.16)
can be written simply as

L i = cPD for S ≤ Sic and D ≤ t0 (3.19)

and

L i = c [Pt0 + (D − t0) Epo] for S = Sic and D > t0 (3.20)

where (PD) is the cumulative precipitation at the end of the precipitation event, and (Pt0)
is the cumulative precipitation needed to saturate the vegetation.
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Stemflow and interception loss from the trunks
In several past analyses of interception the water balance of the trunks and stems has been
treated separately from that of the leaves (Rutter et al., 1975; Gash et al., 1995). Since
the evaporation from the trunks is usually very small compared with the evaporation from
the canopy, the resulting losses consist mainly of the evaporation of the water remaining
on the trunks after the end of stemflow. Thus, for precipitation events long enough to
saturate the trunk storage, the total loss is equal to the maximal trunk storage Stic. When the
precipitation does not quite saturate the trunk storage, by analogy with (3.14) or (3.19), the
loss may be taken as (pt PD), where pt is the proportion of the precipitation that is diverted
to stemflow.

In most situations, however, these losses are considerably smaller than those from the
leaves of the canopy. For example, for pine forests in Great Britain (Gash, 1979; Gash et al.,
1980), the trunk losses were found to be about 2% to 9% of the total interception loss; for
the Amazonian rain forest a value of about 9% was observed (Lloyd et al., 1988).

3.4.3 Experimental determination of the vegetation structure parameters

The main surface parameters controlling the interception loss are Sic and c; the surface
roughness z0 probably plays only a minor role through its effect on the evaporation rate.
The storage capacity Sic is usually estimated with a procedure proposed by Leyton et al.
(1967; see also Gash and Morton, 1978). The method is based on the observation that, as
indicated in Equation (3.6), the loss is equal to the canopy storage when evaporation is equal
to zero. As before, let P represent the average rainfall rate during an event of duration D.
Then, in a plot of the gross, i.e. total precipitation (PD), versus the net precipitation, i.e.
throughfall [(1 − c)PD], for a number of observed precipitation events, Sic can be taken
as the intercept of the lower envelope with a slope of unity; the lower envelope repre-
sents the events with minimal Ei, so that PD = (1 − c)PD + Sic. The data points must be
taken from events of sufficiently long duration, to ensure that the canopy is fully saturated.
This is illustrated in Figure 3.19. Observe, however, that the vertical axis should represent
(1 − pt)PD, instead of PD, to account for stemflow, but the difference is usually small and
can be neglected. The free throughfall coefficient p can be determined from throughfall
measurements for small storms insufficient to saturate the canopy (Gash and Morton, 1978)
and the canopy cover can then be obtained by assuming c = (1 − p).

Typical values of the specific canopy storage capacity (Sic/c) (i.e. the storage capacity
per unit area of cover) and of c are respectively, 0.8–1.2 mm and 0.68–1.00 for dense pine
forest (Gash and Morton, 1978; Gash et al., 1980), around 0.56 mm and 0.45 for sparse
pine forest (Gash et al., 1995), 0.8 mm and 0.92 for Amazonian rain forest (Lloyd et al.,
1988), and 0.64 mm and 0.64 for sparse pine forest and 0.35 mm and 0.60 for eucalyptus
forest (Valente et al., 1997). For grasses ranging in height between 0.1 m and 0.5 m, (Sic/c)
values ranging between 0.43 and 2.8 mm have been reported (Merriam, 1961).

The stemflow parameters Stic and pt can be determined as, respectively, the mean slope
and the intercept of the regression of stemflow versus precipitation for each tree on which
measurements are made (see, for example, Gash and Morton, 1978). Typical values for Stic

and pt are, respectively, 0.014–0.74 mm and 0.016–0.29 for dense pine forest, 0.17 mm and
0.0275 for sparse pine forest, 0.15 mm and 0.036 for Amazonian forest, 0.019 mm and
0.0038 for Mediterranean sparse pine forest and 0.027 mm and 0.017 for eucalyptus forest.
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3.4.4 Empirical equations

In the past many attempts have been made to relate interception empirically to the cumu-
lative precipitation (PD) by linear regression equations (Helvey and Patric, 1965; Jackson,
1975), which can produce useful results in certain applications (Gash, 1979). Comparison
of Equation (3.19) (or (3.14)) with (3.20) (or (3.16)) suggests that this may be a reliable
approach for the early stages of a storm, but not later on, after the canopy is saturated. Once
the canopy is saturated, Equation (3.20) indicates that the duration of the storm may be a
better predictor than the amount of precipitation. The issue has been discussed by Horton
(1919), who felt that expressing interception in terms of shower duration would be more
logical than in terms of amount of precipitation; nevertheless he proposed a linear regression
equation in terms of cumulative precipitation, after he found that this is close to linearly
related with shower duration.

As a rough estimate for interception over longer time periods, Equation (3.6) suggests
that the following may be useful with standard hourly rainfall data

Li = n(Sic + cEpo D) (3.21)

where D is the average duration of the n precipitation events during the period, and Epo the
average rate of evaporation from a wet surface during the same events. Detailed calculations
with more complex formulations have shown that in the growing season on average Epo is
relatively invariant over a wide range of climatic conditions (Gash et al., 1980; Lloyd et al.,
1988; Valente et al., 1997) and that good results can be obtained with values mostly around
0.2 mm h−1 and ranging only between 0.15 and 0.30 mm h−1. For c and Sic the typical
values can be used that are mentioned above. The vegetation cover fraction c is usually
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Table 3.3 Effective film thickness ft for different plants (kg m−2 or mm)

Species Thickness

Big bluegrass 0.203
Slough grass 0.102
Monterey pine 0.0762
Baccharis pilularis (Coyote Brush,

evergreen ground-cover shrub)
0.1778

Chaparral (dense thicket, California) 0.152
Annual ryegrass 0.127

between 0.6 and 1.0; a rough estimate of Sic can be obtained from

Sic = c ftLa (3.22)

where La is the leaf area index, which is the area (one side) of foliage per unit area of ground
surface, and ft is the maximum storage of water per unit area of foliage. Table 3.3 shows
a few values of ft for different plant species, collected by Merriam (1961); these values
suggest that 0.2 kg m−2 can be taken as an upper value. Table 2.9 shows values of the leaf
area index La for a number of plant communities.

Thus, with these assumptions, Equation (3.21) can also be written in terms of the leaf
area index as

L i = 0.2 nc (La + D) (3.23)

3 . 5 R E L I A B I L I T Y O F O P E R AT I O NA L P R E C I P I TAT I O N
M E A S U R E M E N T S

Precipitation was probably the first hydrologic variable to be measured regularly on a
routine basis, and in many places in the world such measurements started more than a
century ago. Thus for a variety of purposes in hydrology, the availability of this historic
data base presents a useful opportunity. In principle the measurement of precipitation
should be a simple matter. It is important to be aware, however, that most of the available
records of precipitation from the past suffer from substantial systematic error and that
caution is required in their use. This has, of course, been known for a long time (see, for
example, Larson and Peck, 1974; McGuiness and Vaughan, 1969; Neff, 1977; Golubev
et al., 1992; Duchon and Essenberg, 2001), but it is only in relatively recent years that
steps have been taken to remedy the situation. Although much remains to be done to
solve the archival precipitation data correction problem (Groisman and Legates, 1994),
a better understanding is gradually emerging.

Standard precipitation gages are usually placed with their orifice at some height above
the ground (from 0.5 m on up, depending on the type), primarily for convenience and to
avoid raindrop splash and snow drift. Thus one of the main factors is the distortion of the
wind field by the presence of the precipitation gage as an obstacle, which results in a wind
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Fig. 3.20 Normalized velocity contour lines, derived from wind-tunnel measurements in and around a standard
British Mk2 precipitation gage, in its vertical plane of symmetry parallel to the flow. The reference air
velocity in the tunnel was 3 m s−1 from left to right; the dimensions are normalized with the outer
diameter of the gage, which is 136.6 mm. The wind velocities above the gage orifice can be seen to be
about 35% higher than the free-stream velocity. (From Nespor and Sevruk, 1999.)

speed increase above its orifice and the development of wake eddies around it. This, in
turn, tends to carry the finer precipitation particles over the orifice, thus decreasing their
number entering the gage. This effect increases with height of the orifice. Therefore, it can
be expected that the discrepancy between actual and measured precipitation will increase
with increasing wind speed, with decreasing precipitation intensity and with increasing
height of the gage orifice above ground level. Figure 3.20 illustrates the distortion of
the wind field above a rain gage, as derived from wind-tunnel measurements by Nespor
(1993; see also Nespor et al., 1994; Nespor and Sevruk, 1999); it can be seen how in
this case the velocity of the air above the gage is about 20% to 30% higher than in the
approaching undisturbed wind field. The losses in precipitation due to wind range on
average between 2% and 10% for rain, and between 20% and 50% for snow; however,
they may be much larger during individual precipitation events. Typical catch deficiencies
in relation to wind as the only factor are shown in Figure 3.21. A more detailed analysis
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Fig. 3.21 Curves of gage catch deficiency against wind speed for liquid precipitation (curve 1); for solid
precipitation with a single shield around the gage (curve 2); and for solid precipitation with an
unshielded gage (curve 3). The curves represent a summary of data from different sites in the United
States, Russia and England, collected by Larson and Peck (1974). For rain the catches of shielded and
unshielded gages were nearly the same.

0

2

4

6

8

10

0 0.02 0.04 0.06 0.08

Wind 3–4 m s−1

2–3 m s−1

1–2 m s−1

0–1 m s−1

mm min−1

0 1.2 2.4 3.6 4.8 mm h−1

P

(%)

Fig. 3.22 Class averaged percentage difference (%) between precipitation measurements by elevated (at 1 and
1.5 m) Hellmann gages, and a ground-level gage, observed by Sevruk (1993a) as a function of mean
precipitation intensity P for different wind speeds. Based on data obtained at Les Avants, Switzerland,
April–September, 1938–1947.

of rainfall data by Sevruk (1993a) allowed him to derive the average wind induced error
as a function of rainfall intensity, as shown in Figure 3.22; these observations indicate
that the error increases rapidly with wind speed for small intensities, but more slowly
for larger intensities.

Different measurement techniques have been tried to solve this problem (see Rodda,
1967; Robinson and Rodda, 1969; Sevruk, 1974). The best is probably to use pit gages
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Fig. 3.23 Cut-away sketch of the two reference standard precipitation gages recommended by the World
Meteorological Organization (WMO) for calibration purposes. The pit gage, which is surrounded by
an anti-splash grid, is for rain; the shielded gage (3), which is surrounded by two fences of 4 and 12 m
diameter (2 and 1), is for snow; the heights of the fences are 3 and 3.5 m. (From Sevruk, 1993b.)

(Duchon and Essenberg, 2001) with their orifice at ground level. Wind shields are
also being used, but most of the designs can only alleviate the problem and never
eliminate it; while they are useful in reducing the catch deficiency for snow, they
appear to have much less of an effect for rain. For the purpose of calibration of pre-
cipitation gages of different types of design, the World Meteorological Organization
(WMO) has recommended the use of two reference standard gages, which have been
found to have negligible wind error (Sevruk, 1993b) and which are shown schemat-
ically in Figure 3.23. The reference gage for rain consists of a Mk2 gage (British
Meteorological Office), installed in a pit with the orifice flush at ground level and
surrounded by a grid to avoid splash. The reference gage for snow is a Tretyakov
gage (Russian Meteorological Services) with a shield and surrounded by two octag-
onal lath-fences, respectively 3 m high and 4 m diameter, and 3.5 m high and 12 m
diameter.

Additional losses may be caused by initial wetting of the gage (i.e. interception),
evaporation, and by the mechanisms of recording gages. Methods have been devel-
oped to correct for these systematic errors of undercatch (see, for example, Legates and
DeLiberty, 1993; Sevruk, 1993a; 1996; Sevruk and Nespor, 1998; Yang et al., 1998;
Nespor and Sevruk, 1999). These studies have led to the consensus that beside mean
wind speed, also the rainfall rate and the drop size distribution should be considered
in applying corrections to the measured data. Some of these effects are illustrated
in Figures 3.22 and 3.24. A study by Habib et al. (1999) showed that the averaging
time should be considered in the error estimation; an hourly time scale or smaller was
recommended.
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Integral wind-induced error – Hellmann gage
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Fig. 3.24 Example of calculated wind-induced error for the (a) Mk2, (b) Hellmann, and (c) the tipping bucket
ASta (Automatic Station) precipitation gages, as a function of the rate of rainfall P in mm h−1. The
error was calculated for three wind speeds, as indicated, and for two types of raindrop size
distributions, namely orographic (κ = −1), and thunderstorm (κ = 1). (From Nespor and Sevruk,
1999.)
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Integral wind-induced error – ASTA gage
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Fig. 3.24 (cont.)
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P RO B L E M S

3.1 Sketch the potential temperature versus height, z, for the air parcel undergoing the changes depicted
in Figure 3.10. Indicate the different segments of the curve with the same letters A, B, C and D as
it passes over the ridge.

3.2 Show how the inverse distance method expression (3.2) produces the arithmetic mean for b = 0.

3.3 Using the principle underlying the inverse distance method (see Equation (3.2)), derive an expres-
sion to calculate missing precipitation data at one of the n rain gages in the area under consideration.
In other words, estimate the precipitation at the, say, pth station, with the missing data, from the
measured precipitation at the other (n − 1) rain gages, which are separated from it by respective
distances, d1,p, d2,p, . . . dn−1,p .

3.4 Estimate the return period, Tr (in years), of a rain storm in which 60 mm fell over a period of
90 min, at a location where Kp in Equation (3.3) is of the order of 36. Use typical values for the
parameters a and c.

3.5 Suppose that rainfall intensity–duration–frequency data, for a region with a humid, temperate
climate, can be described by Equation (3.3) with the constants, Kp = 30, a = 0.2, b = 0.05 h
and c = 0.70 (with P in mm h−1, D in h, and Tr in years). Estimate the 50 y rainfall with a
duration of 70 min.

3.6 Estimate the maximal depth ever recorded on Earth for a duration of 90 min.

3.7 By comparing Figures 3.21 and 3.22, estimate roughly what the average rainfall intensity was in
the data from which Figure 3.21 was derived; in other words, for what value(s) of P are these two
figures in agreement? Assume that the various gages, whose measurements were used in these two
figures, have similar hydrodynamic characteristics affecting the gage deficiencies.



4 E VA P O R AT I O N

In terms of the water quantities transported on a global basis, evaporation is the sec-

ond most important component of the hydrologic cycle, after precipitation. The general

climatology of the hydrologic cycle reviewed in Chapter 1, indicates that over the land-

surfaces of the Earth evaporation amounts on average to approximately 60% to 65% of

the average precipitation. But this estimate provides only an idea of the order of mag-

nitude to be expected; the actual evaporation rate at any given time and place is likely

to be quite different from the climatological mean, and more thorough analysis is often

called for.

4 . 1 E VA P O R AT I O N M E C H A N I S M S

As a physical phenomenon, evaporation is the transition of water from the liquid phase

to the vapor phase. This transition requires first, an energy supply to provide water

molecules the necessary kinetic energy to escape from the liquid surface; and second,

some mechanism to remove the escaped molecules from the immediate vicinity of the

liquid surface thus preventing that they would return to condense (see Figure 4.1). These

two requirements have traditionally given rise to two classes of methods to describe

evaporation, namely

(i) mass transfer or aerodynamic formulations, which consist primarily of the descrip-

tion of the water vapor transport mechanisms in the near-surface air of the atmo-

sphere, and

(ii) energy budget formulations, in which the main focus is on the energy supply

aspects of the phenomenon.

Actually, this classification scheme is somewhat unsatisfactory, because it is almost

never possible to consider mass transfer and energy aspects of evaporation in isolation

from each other; as will become clear below, energy budget methods usually cannot

avoid mass transfer considerations in their application, and vice versa. Nevertheless, this

classification will be used in what follows, mainly for historic reasons. In addition, a

third class of methods is considered, namely

(iii) water budget formulations, in which evaporation is treated as the unknown rest

term in the continuity equation (1.7) or (1.8) for various types of control volumes

that include the landsurface–atmosphere interface as a boundary.

Among these three, the formulations in class (i) are based on the most direct descrip-

tion of the water vapor transport mechanisms, so that whenever possible they should



evaporat ion 118

Vaporization by
kinetic energy

Condensation

Vapor removal by
turbulent air

Liquid water

∇ Surface

Fig. 4.1 Liquid water molecules with sufficient kinetic energy escape from the liquid surface by vaporization.
A removal mechanism is needed to prevent the establishment of an equilibrium state in which
vaporization would become balanced by condensation.

have priority. The formulations in class (ii) are indirect since they make use of quantities

that are physically quite different from water vapor transport, as such; however, since

none of these quantities is part of the hydrologic cycle, energy budget methods still allow

independent estimates of the water vapor flux. This is not the case for the formulations

in class (iii). Although conceptually the most obvious and appealing among the three,

water budget formulations require a knowledge of all the other components in the water

budget; thus they are unsuitable whenever the objective is closure of the hydrologic cycle

and independent estimates of all its components are required.

4 . 2 M A S S T R A N S F E R F O R M U L AT I O N S

4.2.1 In terms of turbulent fluctuations

Direct or eddy-correlation method
Equation (2.29) constitutes the basis for the direct measurement of the rate of evaporation

[ML−2T−1], or

E = ρ q ′w′ (4.1)

In practice E is determined by measuring the fluctuations w′ and q ′ and then computing

the cross-correlation over a suitable averaging period, which is usually taken on the

order of 15–30 min, sometimes up to 1 h at most. While the theoretical basis of this

method is straightforward, the requirements on the instrumentation are quite stringent.

For instance, for measurements at a few meters above the ground, the upper frequency

response limit should be at least of the order of 5–10 Hz. Therefore, it is only in recent

years that sufficient progress has been made in the development of suitable instrumen-

tation, that is commercially available. However, because the instrumentation is costly

and requires special skill to operate, at present this method is a realistic option only in

special experimental settings.
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Variance methods
When the data needed for Equation (4.1), and temperature fluctuations θ

′
are available, they

can also be used to calculate the variances of the fluctuations

σ 2
q = (q ′)2 ; σ 2

w = (w′)2 ; σ 2
θ = (θ ′)2 (4.2)

These may then be related to the covariance given in (4.1), i.e. the rate of evaporation, by

means of simple similarity assumptions. These relationships form the basis of the variance

method, which can be used as a complement or as an alternative to the eddy correlation

method to determine turbulent surface fluxes E , u∗ and H . The variance method was prob-

ably first proposed by Tillman (1972) and further elaborated upon by Wesely (1988) and

others (see, for example, Asanuma and Brutsaert, 1999; Eng et al., 2003). One disadvantage

of the eddy correlation technique is that (4.1) is very sensitive to the vertical orientation of

the velocity sensor to measure w′; variance-based techniques do not suffer this drawback.

The dissipation method is another alternative method that makes use of the same kind of tur-

bulence measurements to derive the surface fluxes (see Champagne et al., 1977; Brutsaert,

1982).

4.2.2 Methods in terms of mean variables

Over a uniform surface with adequate fetch, formulations in terms of mean variables are

based directly on the similarity principles for the atmospheric boundary layer discussed

in Chapter 2. The word “mean” as used here, refers to the fact that the q, u and θ data

are obtained by averaging over a certain time period, in the same way as was explained

for the second moments in the previous section. These methods can be classified into

two general types, namely bulk transfer methods and mean profile methods.

Bulk-transfer approach
In this approach the flux is determined by means of equations, whose general form is

given by (2.33) for water vapor, and by (2.34) and (2.35) for its analogs momentum and

temperature, respectively. One of the more common forms of (2.33) used in practical

applications is as follows

E = Ce ρ u1(qs − q2) (4.3)

where the subscripts 1 and 2 refer to measurement levels z1 and z2 above the ground,

the subscript s refers to the ground surface at z = 0 and Ce can be determined theoreti-

cally or empirically. The specific humidity at the surface qs must be known in Equation

(4.3); therefore it is used mostly over water where qs can be taken simply as q∗(Ts), the

saturation value at the temperature of the water surface. The main practical advantage

of this mass-transfer approach, usually with a constant-known coefficient Ce, lies in the

fact that it can be applied on a routine basis with regular and easily obtainable data of

mean wind speed, water surface temperature and humidity of the air.

As discussed already in Section 2.5.2, Equation (4.3) can be justified readily by the

form of the flux-profile functions (2.41), (2.44), (2.54), (2.55), and (2.56). However,

these functions also show that any empirical mass transfer coefficient Ce for data taken

in the atmospheric boundary layer, can only be constant if the roughness parameters are
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constant, and either if the atmosphere is neutral, or if the effect of stability as reflected

in ζ is negligible or constant.

Example 4.1. Mass-transfer coefficient in neutral atmosphere

Under neutral conditions by virtue of (2.41) and (2.44), the water vapor transfer coeffi-

cient, as it appears in Equation (4.3), is simply

Ce = k2

ln [(z2 − d0)/z0v] ln [(z1 − d0)/z0]
(4.4)

in which z1 and z2 are the heights of the measurement of the wind speed and of the specific

humidity, respectively, and in which d0 can be taken to be zero over a water surface.

Within a certain range of normal wind speeds, neutral conditions are apparently often

satisfied over ocean and sea surfaces. Indeed, numerous experimental determinations

have shown that on average the ocean transfer coefficients are of the order of Ce10(∼=
Ch10) ∼= 1.2 (±0.30) × 10−3, in which the subscript indicates that the measurements are

taken at z1 = z2 = 10 m above the surface. Generally, the corresponding drag coefficient

is a little larger, and of the order of Cd10
∼= 1.4 (±0.3) × 10−3, on average; it also tends

to be more sensitive to the sea state.

The scatter among many of the experimental estimates of the transfer coeffi-

cients Ce10, Ch10 and Cd10 over water is considerable. This means that when accurate

results are required the use of some average coefficient may not be adequate and it

may be necessary to include the effects of atmospheric stability and of the roughness

lengths, and therefore in the case of water surfaces, also of sea state. Numerous expres-

sions have been proposed relating Cd10 to wind speed or surface shear stress for large

water surfaces (see Brutsaert, 1982). Over water surfaces of limited size, such as small

lakes, Ce can be expected to depend on fetch, that is the distance from the upwind

shore. However, in the case of medium size lakes, with fetches of the order of 1–10 km,

Ce is quite insensitive to fetch, provided the specific humidity of the air and the wind

speed are determined over the center of the lake surface. Thus Equation (4.3) with

Ce10 = 1.2 × 10−3 can also be used for such conditions as a first approximation. For

more accurate results, however, it may be advisable to calibrate Ce in (4.3) for each

individual lake.

The form of (4.3) is, in a sense, also suggestive of many other types of mass transfer

equations, mostly empirical, which have been proposed in the past. One such evaporation

equation, originally proposed by Stelling in 1822 (see Brutsaert, 1982) and still in use

today, can be written as

E = (a + b u1)(es − e2) (4.5)

where ē is the mean vapor pressure and the subscripts refer to the heights of the mea-

surements. From the definition of the specific humidity q = ρv/ρ, with the equation of

state for water vapor (2.5) and for bulk air (2.6), it follows that to a good approximation

q = 0.622 e/p (4.6)
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This shows that the vapor pressure e is closely proportional to the specific humidity q.

The introduction of the additional constant a in (4.5) may be viewed as a means of improv-

ing the curve-fit between the mean wind speed and the rate of evaporation. Although

their theoretical justification is marginal, equations like Stelling’s (4.5) have been found

useful to describe evaporation from water or wet surfaces. Some examples for various

problems and surfaces can be found in papers by Penman (1948, 1956), Brutsaert and Yu

(1968), Shulyakovskiy (1969) and Neuwirth (1974) among many others. Mass-transfer

equations, in terms of the vapor pressure difference, are sometimes written in a more

general form as follows

E = fe(u1)(es − e2) (4.7)

where, as before, the subscripts refer to the levels above the surface z1 and z2 at which the

measurements are made, and fe(u) is called the wind function, which can be obtained

experimentally or from similarity; obviously, in the case of (4.5), one has fe(u) = a +
bu.

Mean profile methods
The available flux-profile functions for the boundary layer given in Section 2.5.2 allow

the calculation of the surface fluxes from measurements of mean concentration at two

or more levels. The specific form of the profile functions depends on the level above the

surface, i.e. the specific sublayer, where the measurements are made (see Figure 2.6).

Profile methods are most useful in the atmospheric surface layer, where they can be

based on the Monin–Obukhov similarity. Recall that the surface sublayer is the fully

turbulent layer, located between a height zsb, which is well above the surface roughness

elements – say at least four to five times their height h0 – and a height zst, which is

roughly of the order of one tenth of the thickness of the boundary layer; a more precise

estimate of the extent of the surface layer is presented in Section 2.5.2. The profiles in this

layer are given by Equations (2.50)–(2.52) (or (2.54)–(2.56)). The subscripts 1 and 2 in

these equations refer to a lower and upper level at which the respective measurements of

q, u and θ are made; clearly, these elevations need not be the same in all three equations.

The �-functions appearing in (2.50)–(2.52) are given in (2.58), (2.59), (2.63) and (2.64).

In this approach, the flux of any admixture, be it E, u∗ or H, cannot be calculated simply

from measurements of its corresponding concentration, q, u or θ , only; indeed, except

under neutral conditions, each of Equations (2.50)–(2.56) contains also the momentum

flux u∗, and the Obukhov length L, defined in (2.46), which, in turn, contains the three

fluxes. In practice there are two alternative methods of closing a flux determination

problem.

The first method consists of the simultaneous solution of Equations (2.50)–(2.52)

(or (2.54)–(2.56)) for the three unknown surface fluxes u∗, H and E, with known mea-

surements at least at two levels of mean specific humidity, mean wind speed and mean

temperature. This numerical problem may be solved in different ways. One simple way

is by iteration, as follows; it is assumed initially that the profiles are logarithmic, i.e. that

L = ∞ so that the �-functions are zero. This permits the calculation of a first estimate of

the fluxes with (2.50)–(2.52) (or (2.54)–(2.56)), from which a first estimate can be made
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of the Obukhov length L in (2.46). This first estimate of L allows next the calculation

of a second estimate of the fluxes by means of (2.50)–(2.52) (or (2.54)–(2.56)), which

in turn allow the calculation of a second estimate of L, and so on. The iteration can be

stopped when successive estimates cease to change appreciably. When measurements

of u, q, and θ are available at more than two elevations, at each iteration u∗, E and

H can be obtained as the slopes from (2.50)–(2.52) (or (2.54)–(2.56)) by least squares

regression through the origin.

Example 4.2. Evaporation by profile method in a neutral atmosphere

In a neutrally stratified atmosphere, the turbulent heat flux is relatively small; therefore the

Obukhov length L , defined in (2.46), is large, and thus ζ small, so that the �-functions

become negligible. As a result, Equations (2.50)–(2.52) reduce to the logarithmic pro-

file equations (2.40) and (2.43). Combination of these two equations allows the direct

calculation of the evaporation rate by means of the following expression

E = k2ρ(u2 − u1)(q3 − q4)

ln

(
z2 − d0

z1 − d0

)
ln

(
z4 − d0

z3 − d0

) (4.8)

in terms of measurements of the wind speed at levels z1 and z2, and measurements of

specific humidity at levels z3 and z4 above the ground. An equation similar to this result

was first presented by Thornthwaite and Holzman (1939). While this derivation provides

a good didactic illustration of the profile method, it should be noted that Equation (4.8) is

of limited practical applicability, because over land the atmosphere is only rarely neutral.

Thus, in most cases the profile method requires solution of the full set of equations

(2.50)–(2.52) (or (2.54)–(2.56)).

The second method consists of using the known mean profile and the surface flux of

another but similar scalar, in addition to the mean profile of the scalar under consider-

ation. The requirement of similarity refers in this context to the equality of the transfer

coefficients Ce and Ch in Equations (2.33) and (2.35) or in (2.36) and (2.38) for the

scalars; in this sense, it also refers to the equality of the functions �h and �v in the

profile equations (2.51) and (2.52) (or (2.55) and (2.56)). Probably the oldest application

of this principle is the Bowen ratio (Bowen, 1926)

Bo = H/Le E (4.9)

in which Le is the latent heat of vaporization of water. Hence, if similarity is valid, this

ratio, which is used mostly in the energy budget method (see Section 4.3) can also be

written in terms of profile measurements as follows

Bo = cp(θ1 − θ2)

Le(q1 − q2)
(4.10)

Over water the surface values θ s and qs are commonly used instead of values in the

air θ1 and q1, respectively. The Bowen ratio concept thus leads to a simple expression
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for evaporation in terms of the sensible heat flux and of mean specific humidity and mean

temperature measurements in the surface layer, as follows

E = H ( q1 − q2)

cp(θ1 − θ2)
(4.11)

As an aside, in a similar way the surface flux F of any other passive admixture of the

air (e.g. CO2) can be estimated by means of (4.11), by replacing the measurements of q
in this expression by measurements of the mean concentration c of the admixture under

consideration. Alternatively, the surface flux F of any admixture can also be expressed in

terms of, say, measurements of mean specific humidity and concentration c, and a known

rate of evaporation, as follows

F = E(c1 − c2)

(q1 − q2)
(4.12)

So far in this section, the mean profile method has been explained for application with

profile data in the surface layer. In principle, the method can also be applied with upper air

data measured in the outer region of the boundary layer by means of bulk ABL similarity

equations of the type given by Equations (2.65), (2.66) (or (2.67) and (2.68)) and (2.71). For

the same reason, the simultaneous solution of these bulk similarity equations may require

an iteration method, like the one described above for the surface layer (Mawdsley and

Brutsaert, 1977). A more recent formulation of the functions suitable for this purpose under

unstable conditions is given in Equations (2.69) and (2.70). One unresolved difficulty with

this approach, however, is that in the outer region temperature and humidity do not exhibit

similarity, so that, as shown by Brutsaert and Chan (1978), C is not equal to D.

4 . 3 E N E R G Y B U D G E T A N D R E L AT E D F O R M U L AT I O N S

4.3.1 Standard application

When the main objective is the determination of evaporation E (or the sensible heat flux

into the air H ), it is convenient to rewrite the energy budget equation (2.72) as

Le E + H = Qn (4.13)

where Qn is defined as the available energy flux density

Qn = Rn − G + Lp Fp + Ah − ∂W/∂t (4.14)

whose terms are discussed in Section 2.6. As mentioned, in many applications the last

three terms in (4.14) are of little consequence, so that it is often sufficiently accurate to

put Qn = Rn − G.

In hydrology it is common practice to express the specific energy fluxes as equivalent

rates of evaporation; Equation (4.13) can then be written as

E + He = Qne (4.15)

where He = H/Le and Qne = Qn/Le. Observe, however, that with a typical value of

Le = 2.466 × 106 J kg−1 (at 15 ◦C in Table 2.4), 1 W m−2 is roughly equivalent with an

evaporation of 1.07 kg m−2 per month. Thus as a rule of thumb, to have a rough idea of
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the magnitudes of the fluxes involved, energy flux units of W m−2 can be interchanged

with hydrologic units of millimeters per month (mm mo−1) of liquid water evaporation.

When Qn and either H or E can be determined independently, Equation (4.13)

provides directly the remaining unknown flux. Usually, however, both H and E are

unknown, and an indirect method must be used. From the methodological point of

view, these indirect energy budget methods are analogous to the mean profile meth-

ods of Section 4.2.2. In both, essentially three equations are used which contain

three unknowns E , u∗ and H implicitly. In the profile methods these are the equa-

tions for q, u and θ . In the energy budget methods, (4.13) is used either with equations

for q and θ , or with equations for u and θ or q, as will be shown next.

With Bowen ratio (EBBR)
When Qn is known, the combination of the energy budget equation (4.13) with the

Bowen ratio defined in Equation (4.9) produces

E = Qne

1 + Bo
(4.16)

Similarly, for the sensible heat flux one has

He = Bo Qne

1 + Bo
(4.17)

Bo can be determined as shown in (4.10), from profile data of temperature and specific

humidity in the atmospheric surface layer. As discussed in Section 4.2.1, these data

should be taken as averages over 15–30 min, approximately. Equation (4.16) shows that

the energy budget with Bowen ratio (EBBR) method is most accurate when Bo is small.

Both (4.16) and (4.17) produce a singularity when Bo = −1; but, as pointed out by

Tanner (1960), over an active vegetation this is not a problem, as this situation usually

occurs when H is low, around sunrise, sunset and occasionally at night. The situation

does occur more often over cold water, and it may be necessary to use an alternative

method when −1 < Bo < −0.5 to avoid the problem of a very small denominator in

Equations (4.16) and (4.17). Tanner (1960) suggested the use of a bulk-transfer method

for these special conditions. Another way consists of using mean values of Bo corrected

by means of wind measurements, as outlined by Webb (1964); this method is especially

useful when some terms in the available energy Qn are only known for daily periods or

longer.

The EBBR method has the advantage that no similarity functions for the atmospheric

turbulence appear explicitly in the formulation. With Equation (4.10) no measurements

of turbulence or of the mean wind speed are required, and the formulation, as written

in (4.16) with (4.10), is independent of atmospheric stability. In addition, when Bo is

small, the EBBR method may be less susceptible, albeit not immune, to imperfect fetch

conditions, than mean profile methods, in which such effects are more directly apparent.

The validity of the EBBR method depends critically on the similarity of the temperature

and humidity profile; for the surface layer this requires the equality of the terms in the

square brackets of Equations (2.51) and (2.52) (or (2.55) and (2.56)). The latest evidence
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supports the view that �v = �h, even under stable conditions (see Dias and Brutsaert,

1996).

With profiles of wind and of a scalar (EBWSP)
If the profile data, either of the mean temperature or of the mean specific humidity, are

lacking to apply the EBBR, the energy budget method can be applied instead with the mean

wind speed profile. In fact, this procedure is potentially more powerful than the Bowen ratio

method, because it yields not only E and H but also u∗.

As an illustration of this method, suppose that the specific humidity measurements are

not available. It is then possible to use Equation (4.13) together with profile equations

(2.50) and (2.51) (or (2.54) and (2.55)) in the surface layer, as a system of three equations

with three implicit unknowns E , u∗ and H . This system can be solved with measurements

of Qn, θ1 − θ2 (or θs − θ ) and u2 − u1 (or u and zo). The method can equally be applied

with measurements higher up aloft in the mixed layer of the boundary layer. Thus in this case

the system of three equations is (4.13) with (2.67) and (2.68). Similarly, if only humidity

but no temperature measurements are available, to apply the method with surface layer data,

the system of equations can consist of (4.13) with (2.50) and (2.52) (or (2.54) and (2.56)),

or in the case of mixed layer data even with (2.67) and (2.71).

This EBWSP method and its simpler derivatives (see next section) are sometimes referred

to as combination methods on the grounds, that both energy budget and hydrodynamic

aspects of evaporation are considered. But this is misleading, since the Bowen ratio method

is no less dependent on the validity of the hydrodynamics underlying (say) Equations

(2.50)–(2.52) (or (2.54)–(2.56)), than the formulation of the mean wind speed profile.

4.3.2 Evaporation from wet surfaces: simplified expressions

The EBWSP method with measurements at one level
When the surface is wet, the surface specific humidity may be assumed to be the saturation

value at the surface temperature, i.e. qs = q∗ (Ts). This allows an approximation, first

introduced by Penman (1948) and given in Equation (4.20) below; the main advantage

of this approximation is that it eliminates the need for measurements of q, u and θ at

two levels, as in the profile methods (Section 4.2.2) and standard energy budget methods

(Section 4.3.1) and that measurements at one level suffice.

The equation derived by Penman (1948) was intended for an open water surface. Here

a somewhat more general derivation is presented, which is applicable to any wet surface,

but which retains the essential features. By virtue of Equation (4.6), the Bowen ratio

(4.10) can also be written in terms of the vapor pressure; with lower measurements at

the surface, where es = e∗ (Ts), the Bowen ratio is

Bo = γ
(T s − T a)

(es − ea)
(4.18)

where ea and Ta are the vapor pressure and temperature in the air, respectively, at some

reference level, and where

γ = cp p

0.622 Le

(4.19)
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Table 4.1 Values of (γ/Δ) at 1000 mb (γ is defined by Equation (4.19)

and Δ can be obtained from Table 2.4)

Air temperature Ta (◦C) (γ /	)

−20 5.864

−10 2.829

0 1.456

5 1.067

10 0.7934

15 0.5967

20 0.4549

25 0.3505

30 0.2731

35 0.2149

40 0.1707

is commonly referred to as the psychrometric constant; at 20 ◦C and p = 1013.25 hPa it

is γ = 0.67 hPa K−1. Note that the θ difference is replaced by that of T , since they are

often practically the same in the surface layer. The crucial step in Penman’s analysis is

the assumption

e∗
s − e∗

a

T s − T a

= 	 (4.20)

where 	 = (de∗/dT) is the slope of the saturation water vapor pressure curve e∗ = e∗(T )

at the air temperature Ta (see Figure 2.1); e∗
a = e∗(Ta) is the corresponding saturation

vapor pressure and e∗
s = e∗(Ts) is the vapor pressure at the temperature of the surface,

as indicated by the subscript. Since es for a wet surface is the value at saturation, the

Bowen ratio (4.18) is thus, approximately

Bo = γ

	

[
1 − (e∗

a − ea)

(es − ea)

]
(4.21)

In this expression 	 depends only on temperature and γ depends on both temperature

and pressure. Values of (γ /	) for different temperatures at p = 1000 hPa are presented

in Table 4.1 and Figure 4.2; they were obtained by means of (4.19) and values of 	

and Le listed in Table 2.4. Substitution of (4.21) into (4.16) produces

Qne =
(

1 + γ

	

)
E − γ

	

(
e∗

a − ea

es − ea

)
E (4.22)

In the second term on the right of Equation (4.22), a bulk-transfer equation can be used,

such as (4.7), to replace the unknown E/(es − ea) by a wind function fe(ur). Thus (4.22)

yields the desired result, the Penman (1948) equation in its usual form

E = 	

	 + γ
Qne + γ

	 + γ
EA (4.23)
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Fig. 4.2 Temperature dependence of (γ/Δ) and Δ/(Δ + γ) at 1000 hPa; γ is defined by Equation (4.18)
and Δ = de∗/dT is shown in Figure 2.1, and can be obtained from Equation (2.12) or from Table 2.4.

where EA, a drying power of the air, is defined by

EA = fe(ur)(e
∗
a − ea) (4.24)

The ratio 	/(	 + γ ) is illustrated in Figure 4.2 for a pressure of 1000 hPa. Note that in

Penman’s (1948) original derivation it was assumed that Qne = Rn/Le and that all the

other terms in Equation (4.14) are negligible. As mentioned, from the practical point of

view, the main feature of this result is that it requires measurements of mean specific

humidity, wind speed and temperature at one level only. This is a direct consequence

of the approximation introduced in (4.20). For this reason, Penman’s equation is useful

when measurements at more than one level, needed for profile methods or standard

energy budget methods, are unavailable or impractical.

Equation (4.23) has been widely used, but there is still no generally accepted way

to formulate fe(ur), the wind function in EA. Its definition in (4.24) suggests that any

suitable mass transfer coefficient can be used for this purpose (see Section 4.2.2). Penman

(1948) originally proposed an equation of the Stelling-type (4.5) as follows

fe(u2) = 0.26 (1 + 0.54 u2) (4.25)

where u2 is the mean wind speed at 2 m above the surface in m s−1, and the constants

require that EA in Equation (4.24) is in mm d−1 and the vapor pressure is in hPa. There

are indications that Equation (4.25) yields reasonable results for natural terrain with

small to moderate roughness (see Thom and Oliver, 1977); on the basis of experimental

observations, it has also been suggested (Doorenbos and Pruitt, 1975) that for irrigated

crops, the constant 0.54 should be replaced by 0.86. In calculations of long-term mean
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values of EA with equations like (4.25), to a first approximation the wind speed at 2 m

can be estimated by assuming a power dependency on height, or

u2 = ur (2/zr)
1/7 (4.26)

where zr is the height (in m) at which the available wind data are measured.

A more fundamental approach to determine the wind function is based on turbulence

similarity. Thus in terms of the bulk water vapor transfer coefficient as defined, for

example, in (4.3), in which z1 is the height of the measurement of u1 and z2 that of ea,

one obtains by virtue of (4.6), the wind function

fe(u1) = 0.622 ρ p−1Ce u1 (4.27)

Ce can be determined by means of the similarity profile functions of Chapter 2. Under

neutral conditions, on account of Equations (4.4), (4.6) and (4.7) this is (to a good

approximation)

fe(u1) = 0.622 k2 u1

RdTa ln [(z2 − d0)/z0v] ln [(z1 − d0)/z0]
(4.28)

where, again, z1 is the level of the wind speed measurement and z2 that of the water

vapor pressure.

When Penman’s equation is applied to calculate mean values of E over periods of a day

or longer, the use of wind functions like (4.25), (4.27) or (4.28) may be adequate. However,

when hourly values are required, the effect of atmospheric stability, which varies through

the day, may be important. It is possible to include the effect of the atmospheric stability in

the wind function, by writing the drying power of the air (4.24) in a form similar to (2.56)

(see also Brutsaert, 1982) as follows

EA = ku∗ρ(q∗
a − qa)

[
ln

(
za − d0

z0v

)
− �v

(
za − d0

L

)
+ �v

( z0v

L

)]−1

(4.29)

where qa and q∗
a are the specific humidity of the air and the saturation specific humidity at air

temperature, respectively. The problem can be solved by the following iteration procedure.

An initial value of E is calculated in the usual way by means of Equation (4.23) using a

neutral EA, say (4.24) with (4.28); it is also possible to use (4.29) with �v = 0, and u∗ is

calculated by means of (2.54) with �m = 0. The initial value of E is used to obtain H by

means of (4.13). These initial values of E , u∗ and H provide a first estimate of the Obukhov

length L by means of (2.46). This value of L allows now the calculation of a second estimate

of u∗ by means of (2.54) and a second estimate of EA by means of (4.29), which produces

a second estimate of E by means of (4.23), and so on. An example of the application of this

method has been presented by Katul and Parlange (1992).

Evaporation from wet surfaces in the absence of advection
The two-term structure of Equation (4.23) suggests an interpretation which may serve

as an aid in understanding the effect of regional or large-scale advection. When the air

has been in contact with a wet surface over a very long fetch, it could be argued that it

may tend to become vapor saturated, so that EA, shown in (4.24), should tend to zero.
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Accordingly, Slatyer and McIlroy (1961) reasoned that the first term on the right of

Equation (4.23) may be considered a lower limit for evaporation from moist surfaces.

Thus

Ee = 	

	 + γ
Qne (4.30)

was referred to as equilibrium evaporation, and the second term of (4.23) may be inter-

preted a departure from that equilibrium. In the absence of cloud condensation or radia-

tive divergence, this departure would stem from large-scale or regional advection effects,

involving horizontal variation of surface or atmospheric conditions.

Subsequent investigations have shown, however, that over wet surfaces, true equilib-

rium conditions are encountered only rarely, if ever. The main reason for this is that the

atmospheric boundary layer is never a perfectly homogeneous boundary layer, as would

be the case in channel flow; rather, it is continually responding to unsteady large-scale

weather patterns, involving condensation aloft and dry air entrainment, which tend to

maintain a humidity deficit even over the ocean. Nevertheless, the idea underlying Equa-

tion (4.30) has led Priestley and Taylor (1972) to use equilibrium evaporation as the basis

for an empirical relationship to describe evaporation from a wet surface under conditions

of minimal advection, Epe. With data obtained over ocean and moist land surfaces they

concluded that it is roughly proportional to Ee, that is

Epe = αe

	

	 + γ
Qne (4.31)

where αe is a constant, which they found to be about 1.26. This value was later confirmed

in many other studies (see Brutsaert, 1982) and αe is now generally accepted to be of the

order of 1.20–1.30, on average, for advection-free water surfaces and moist landsurfaces

with short vegetation. Equation (4.31) is equivalent with a Bowen ratio

Bope = α−1
e [(γ /	) + 1] − 1 (4.32)

which is illustrated in Figure 4.3 for different αe values, together with some experimental

data points.

These values of αe indicate that over the ocean or other moist surfaces the second term

of (4.23), that is the large-scale advection, accounts on average for about 20% to 23% of

the evaporation rate. But this is only an average and large variations have been observed in

different experimental settings. Still, it is remarkable that so many landsurfaces covered

with fairly short vegetation, such as grass, which is not actually wet but with ample water

available to the roots, yield about the same average values, ranging between 1.20 and

1.30, as open water surfaces. This may be the result of a fortuitous compensation of the

specific humidity of non-wet leaf surfaces, which is lower than saturation, by a larger

effective roughness, and thus transfer coefficient, of the vegetative surface. Still, in some

studies drastically different values of αe have been reported. This has been especially

the case for very rough surfaces; for instance McNaughton and Black (1973) obtained

αe = 1.05 for a young, 8 m high fir forest.
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Related empirical equations, but with Rs instead of Qn as in (4.31), have been pro-

posed by Makkink (1957), Jensen and Haise (1963), and Stephens and Stewart (1963).

The short-wave radiation is often well correlated with the net radiation, which is the main

component of Qn over daily periods or longer. Such equations, which provide a good

alternative to (4.31) when only short-wave radiation and temperature are available, have

been used to determine irrigation requirements and as climatological indices of potential

evaporation. However, the physical significance of such indices is not always clear, as is

shown next.

Potential evaporation
Because several of the simple energy budget-type methods for wet surfaces are often used

as measures of potential evapotranspiration, a few comments are in order on this concept.

The term potential evapotranspiration appears to have been introduced by Thornthwaite

(1948) in the context of the classification of climate. It is now generally understood

to refer to the maximal rate of evaporation from a large area covered completely and

uniformly by an actively growing vegetation with adequate moisture at all times. The

area is specified as large to avoid the possible effects of advection. Although the concept

is widely used, it has also caused confusion, because it does not encompass all possible

conditions and it involves several ambiguities. The concept requires closer specification

if it is to serve as an unequivocal parameter.

Transpiration, even at the potential rate, involves such biological effects as stomatal

impedance to the diffusion of water vapor, and the stage in the growth cycle of the

vegetation. For this reason, the term potential evaporation is probably preferable. It can

be defined to refer to the evaporation from any large uniform surface that is sufficiently

moist or wet, so that the air in contact with it is fully saturated. Note that a wet or moist

surface is not the same as one that has an adequate moisture supply for the roots of an

actively growing vegetation; over short non-wet vegetation with adequate moisture the
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evapotranspiration is often fairly similar to the evaporation from open water under the

same conditions. As mentioned above, a possible explanation for this is that the stomatal

impedance to water vapor diffusion may be compensated by the larger roughness values,

resulting in larger transfer coefficients, of the vegetational surface.

Another point of ambiguity is that potential evaporation is often estimated by means

of meteorological data observed under nonpotential conditions. Because the air interacts

with the underlying surface, this is not the same rate as that which would be calculated

or observed, if the surface had been moist or adequately supplied with water. There-

fore, potential evaporation estimated on the basis of measurements carried out under

nonpotential conditions should be called “apparent” to reflect this fact. Examples of

apparent potential evaporation are the estimates made by means of an evaporation pan or

by means of the Penman equation (4.23), on the basis of measurements in the actual, i.e.

non-potential or arid, environment. Another example of apparent potential evaporation

would be that obtained by means of Equation (4.3), in which qs at the dry surface is

assumed to be given by q∗(Ts), i.e. the saturation specific humidity at the temperature

of that surface. In what follows the “true” potential evaporation will be denoted by Epo,

and the apparent potential evaporation by Epa.

4.3.3 Operational methods for landsurfaces

Many operational procedures used in applied hydrology to predict evaporation involve

some type of potential evaporation, used in conjunction with a procedure to derive the

actual evaporation from it for the prevailing non-potential conditions.

Proportional fluxes with surface moisture “bucket”
Probably the oldest method, which follows work by Budyko (1955; 1974) and Thornth-

waite and Mather (1955), is based on the following proportionality

E = βe Ep (4.33)

where Ep is a potential evaporation rate, and βe a reduction factor reflecting the mois-

ture availability. As mentioned above, potential evaporation is a somewhat ambiguous

concept; not surprisingly, therefore, in practice Equation (4.33) has been applied with

two different classes of Ep, such as Epa, the apparent potential evaporation as defined in

the previous section, and Epe, the Priestley–Taylor equation given in (4.31).

The reduction factor βe is often assumed to be a function of soil water content. In

the application of (4.33) with such expressions for apparent potential evaporation Epa as

(4.3) and (4.23), a common assumption has been

βe = 1 for w > w0

βe = (w − wc)/(w0 − wc) for w ≤ w0

(4.34)

where w0 is a critical soil water content above which E equals Ep, and wc is a lower

cut-off value below which E is zero. This is illustrated in Figure 4.4. The value of w

can be determined on the basis of a soil water budget (see Thornthwaite and Mather,
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1955; Budyko, 1974, p. 335; Manabe, 1969; Carson, 1982). The values of w0 and wc

must be determined by calibration; for a surface soil layer with an assumed thickness of

about 1 m, w0 is generally taken to be of the order of 10–20 cm of water. The reduction

factor βe can also be related to some other surface moisture indices beside w, such as

the accumulated actual evaporation minus precipitation (Priestley and Taylor, 1972),

the local near-surface soil moisture content (see Davies and Allen, 1973; Crago and

Brutsaert, 1992; Chen and Brutsaert, 1995), the soil moisture deficit (Grindley, 1970)

and the antecedent precipitation index (Choudhury and Blanchard, 1983; Mawdsley and

Ali, 1985; Owe et al., 1989), again through calibration of the model with available data.

In some implementations of the same idea, the actual evaporation E is expressed in

terms of the equilibrium evaporation Ee, by combining Equation (4.33) with (4.31), as

follows

E = (βeαe)Ee (4.35)

in which Ee can be determined by means of (4.30). For instance, Figure 4.5 shows the

results of Davies and Allen (1973) expressed as the product (βeαe) versus volumetric

water content of the upper 5 cm of the soil. Although a nonlinear function is fitted to

the data, it is similar to Equation (4.34). With data measured over prairie terrain it was

found by Chen and Brutsaert (1995) that, with θ10 as the volumetric moisture content in

the upper 10 cm of the soil profile, the relationship between E and Ee can be described

by the following linear function

(βeαe) = 1.26(θ10 − 0.05)/0.22 (4.36)

in the range 0.05 ≤ θ10 ≤ 0.27, and (βeαe) = 1.26 for higher moisture contents; how-

ever, it was also observed that the relationship could be improved markedly by

making (βeαe) not only dependent on soil moisture content but also on the density of the

grassy vegetation cover, as expressed by the leaf area index La and the green vegetation

fraction.
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One difficulty in applying the formulation (4.33) with an apparent potential

evaporation Epa is that, as the surface dries out, the two quantities on the right-hand

side of (4.33) move in opposite directions. Indeed, whenever βe approaches zero, Epa

tends to become large; this may lead to an unstable product of a large with a small quan-

tity, each with considerable noise. On the other hand, Epe depends mainly on radiation

and temperature, and not on the dryness of the air; hence application of (4.33) with Epe

is likely to be more robust and therefore preferable.

Surface resistance concept
A second procedure of reducing Ep to E is based on the realization that the release of

water vapor from a vegetation is controlled by the stomata of the leaves. This is illustrated

schematically in Figure 4.6. The underlying idea is that the air is assumed to be saturated

with water vapor inside the stomatal cavities but not at the outside surface of the leaves, and

the stomata provide an obstruction or a resistance to the diffusion of the water vapor from the

inside to the outside of the leaves. This is often referred to a stomatal resistance rst. Because

evaporation also takes place from the soil surface, beside the leaves, the basic idea is usually

extended to include this transport as well; thus the soil air at some depth below the surface

can be assumed to be saturated and the soil pores can then be visualized as providing

a resistance to the diffusion of water vapor to the soil surface. Hence more generally,

the resistance approach is based on the concept of one or more resistance parameters

in parallel and/or in series, which may account for the moisture stress in the vegetation

and/or soil, and which relate saturation specific humidity q∗
s , at the temperature Ts of the

evaporating surface, to the actual (non-saturated) specific humidity qs at the evaporating

surface.

Several such resistance parameters have been used for this purpose (see, for example,

Monteith, 1973). The one given by Thom (1972) is instructive as an illustration and can be
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defined by

rs = ρ (q∗
s − qs)/E (4.37)

in which rs is the surface resistance, and qs is the actual (not saturated) mean specific

humidity at the evaporating surface; the basic concept is illustrated in Figure 4.7. For

practical use there have generally been two types of evaporation equation based on the

resistance concept. In the derivation of the first type, qs, which is unknown, is eliminated

between Equation (4.37) and the standard mass transfer equation (4.3) to yield the expression

E = Ce u1

(1 + rsCe u1)
ρ (q∗

s − q2) (4.38)

In the derivation of the second type, Equation (4.38) is used (instead of (4.3)) to obtain an

expression in a way analogous to (4.23), namely

E = 	Qne + γ Ce u1ρ (q∗
2 − q2)

[	 + γ (1 + rsCe u1)]
(4.39)
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Equation (4.39) is in the form of the Penman–Monteith equation (see, however, Monteith,

1973; 1981; Thom, 1975)

Numerous experiments have been conducted to determine resistance values for different

types of vegetation. This has been mostly done in the context of expressions related to

Equation (4.39). A few examples are beans (Black et al., 1970), sugar beets (Brown and

Rosenberg, 1977), tropical rainforest (Dolman et al., 1991), eucalyptus forest (Dunin and

Greenwood, 1986), pine forest (Gash and Stewart, 1975; Lindroth, 1985), maize (Mascart

et al., 1991), barley (Monteith et al., 1965), sorghum (Szeicz et al., 1973), and fir forest

(Tan and Black, 1976). In addition, many attempts have been made to relate resistance

parameters with such factors as Bowen ratio, soil moisture suction in the root zone, soil

moisture deficit, humidity deficit in the air, solar radiation, temperature, leaf area index

and others (see VanBavel, 1967; Szeicz and Long, 1969; Federer, 1977; Garratt, 1978;

Lindroth, 1985; Stewart, 1988; Gash et al. 1989). The relationships developed so far are

mainly statistical, so that they are vegetation and site dependent. Therefore, the resistance

formulation is probably not yet sufficiently general to be practical for predictive purposes,

but it has been useful as a diagnostic index in certain simulation studies (for example, to

calculate missing data).

As a note of caution, in previous studies the resistance formulation has not always been

used with consistent definitions for Ce (or rav) and rs (Thom, 1972; Brutsaert, 1982, p. 111).

For instance, the drag coefficient Cd (or the related so-called aerodynamic conductance)

is often used instead of Ce, as required in the rigorous derivation of Equation (4.23) with

(4.24) and (4.27). This drag coefficient is defined in (2.37). Because it is not likely that

above vegetation z0 = z0v, nor that �m = �v(or �h), Cd is rarely equal to Ce. As a result

of this inappropriate use of Cd (instead of Ce), it is not clear how the turbulence aspects

of the transport, normally embodied in Ce, can be partitioned or separated from the strictly

vegetational and/or soil moisture aspects of the transport supposedly embodied in rs. This

has undoubtedly contributed to the difficulty in deriving general relationships for both Ce

and rs on the basis of (4.39).

Although the resistance formulation with rs may appear conceptually quite different

from Equation (4.33) with the reduction factor βe, both approaches are, in fact, practically

the same. Indeed, (4.38) is equivalent with (4.33) (in which (4.3) is used to represent Ep for

a wet surface) and a reduction factor

βe = (1 + rsCe u1)−1 (4.40)

Similarly, (4.39) is the same as (4.33) with (4.23) and a reduction factor

βe = [1 + rsCe u1 γ /(	 + γ )]−1 (4.41)

and as (4.33) with (4.31) and a reduction factor

βe = α−1
e [1 + γ Ce u1ρ (q∗

2 − q2)/	Qne] [1 + rsCe u1γ /(	 + γ )]−1 (4.42)

In practical applications of Equations (4.38) and (4.39) a knowledge of the parameters Ce

and rs is essential. The physical nature of Ce is well understood and based on sound turbu-

lence theory. But the conceptual significance of the resistance concept remains problematic,

in spite of the many studies devoted to it.
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Complementary fluxes with advection–aridity
This concept was first proposed by Bouchet (1963), who postulated, almost in diametrical

opposition to Equation (4.33), a certain complementary relation between the actual

evaporation E , and what we now recognize as the apparent potential evaporation Epa.

The underlying argument may be developed as follows. If for one or other reason,

independent of the available energy, the actual evaporation E decreases below its true

potential value Epo, a certain amount of energy not used up in evaporation becomes

available. This manifests itself as an increase in the sensible heat flux 	H , or

Epo − E = 	H (4.43)

At the regional scale this decrease of E , relative to Epo, affects primarily the temperature,

humidity and turbulence of the air near the ground, but it probably has a smaller effect

on the net radiation. This increased sensible heat flux 	H , causes an increase in the

apparent potential evaporation Epa inferred for these drier and warmer conditions. In

general, to a first approximation this increase can be assumed to be proportional to 	H ,

so that one has

Epa = Epo + εa	H (4.44)

in which εa is an effectiveness parameter, which may depend on the adopted defi-

nition of Epa. Combination of Equations (4.43) and (4.44) yields then Epa + εa E =
(1 + εa)Epo. In the original derivation, Bouchet (1963) assumed that in (4.44) Epa is

increased by exactly 	H ; in this case, combination of (4.43) and (4.44) yields immedi-

ately the simple complementary relationship

E + Epa = 2 Epo (4.45)

This result can be rearranged to yield the actual evaporation in dimensionless form

E

Epo

= 2E/Epa

1 + E/Epa

(4.46)

and similarly the apparent potential evaporation

Epa

Epo

= 2

1 + E/Epa

(4.47)

In Equations (4.46) and (4.47) the ratio (E/Epa) may be considered as a moisture or

humidity index, which depends on such factors as soil moisture and vegetation density;

both relationships are illustrated in Figure 4.8. It can be seen that the dependence

of (E/Epo), as given by Equation (4.46) and shown in Figure 4.8, has a similar trend as

those shown in Figures 4.4 and 4.5.

Applications of Equation (4.45) have been made over different time scales, namely

monthly (Morton, 1976; 1983), daily (Brutsaert and Stricker, 1979) and hourly (Parlange

and Katul, 1992). In the application of Equation (4.45) by Brutsaert and Stricker

(1979), Epa can be estimated by means of (4.23), and Epo can be taken as Epe and esti-

mated by (4.31). Thus it was assumed that the effect of the aridity on the performance

of (4.23) under non-potential conditions would mainly show up in the second term, and
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Fig. 4.8 Sketch illustrating the complementary relationship between the actual evaporation E and the
apparent potential evaporation Epa, for varying conditions of moisture availability, as expressed by
their ratio E/Epa. Both E and Epa are normalized with the true potential evaporation Epo.

not at all in the first term on the right-hand side. Substitution of (4.23) and (4.31) into

(4.45) yields the practical result

E = (2αe − 1)
	

	 + γ
Qne − γ

	 + γ
EA (4.48)

As before, there are several ways of estimating EA, the drying power of the air. It can

simply be estimated in terms of the vapor pressure deficit by means of Equation (4.24)

with Penman’s wind function (4.25). It can also be estimated in terms of the specific

humidity deficit of the air by means of the mass transfer coefficient Ce defined in Equation

(4.3). In this case the actual evaporation is given by

E = (2αe − 1)
	

	 + γ
Qne − γ

	 + γ
Ce u1ρ(q∗

2 − q2) (4.49)

The main advantage of (4.48), (4.49) and other equations like them based on the com-

plementary approach, is that they do not require any information related to soil moisture,

canopy resistance, or other measures of aridity, because they rely on meteorological

parameters only. The main limitation is that, while the idea underlying (4.45) is simple

and plausible, it was not arrived at in a rigorous theoretical or experimental way. Equa-

tions like (4.48) and (4.49) have been applied in a number of studies in widely different

climates. The approach appears to perform best under conditions with relatively mild

advection. However, under strongly advective conditions with large saturation humid-

ity deficits, it seems that the validity of the assumptions on which it is based become

questionable. Sugita et al. (2001) concluded that (4.45) is only approximately valid in

most cases; Hobbins et al. (2001) showed how the basic approach can be improved

by calibration of the parameters αe and EA (or Ce) in Equation (4.49). Although the
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complementary approach shows specific promise as a practical tool, it still awaits a

definitive physical analysis to make it fully effective.

A unified parametric formulation
As reviewed here, several of the procedures in current practice, can be cast in a single form

as follows

E = βe

[
a

	

	 + γ ′ Qne + b
γ

	 + γ ′ Ce u1ρ(q∗
2 − q2)

]
(4.50)

in which a and b are weighting constants for the first and second terms, respectively, which

together with the remaining parameters βe and γ ′ depend on the chosen model. As before,

βe is used if actual evaporation is obtained by reduction of potential evaporation Epe or Epa;

in the potential evaporation given by Penman’s equation (4.23), the remaining parameters

are a = b = 1, and γ ′ = γ , whereas in that given by Priestley and Taylor’s equation (4.31)

they are a = αe, b = 0, and γ ′ = γ . In the Penman–Monteith equation (4.39), for actual

evaporation, βe = a = b = 1 and γ ′ = γ (1 + rs Ce u1). In the advection–aridity version of

Brutsaert and Stricker (4.49) they are βe = 1, a = 2αe − 1, b = −1 and γ ′ = γ . Equation

(4.50) indicates that the different formulations are related, but the parameters can vary

considerably.

4.3.4 Diurnal cycle over land: the self-preservation approximation

It is well known that under certain favorable conditions, when horizontal advection is not too

strong, the daytime variations of the major energy fluxes at land surfaces are quite similar.

This similarity in the diurnal cycle of the different energy flux components over land is

illustrated in Figures 2.19 and 2.20, and in Figure 4.9. This means that during any given

day the ratios of these fluxes remain approximately constant, which may be considered a

manifestation of some kind of “self-preservation.” Because evaporation is usually relatively

small during the night, this self-preservation can sometimes be useful to relate daily averages

with instantaneous or hourly values. This idea was made use of by Jackson et al. (1983) by

means of (Le E/ Rs), in order to estimate the total daily latent heat flux on the basis of a

one-time-of-day value. The idea was also used for the same purpose by Shuttleworth et al.
(1989), Sugita and Brutsaert (1991), and Nichols and Cuenca (1993) by means of the

evaporative fraction EF = Le E/(Rn − G) or EF = Le E/(Le E + H ). Crago (1996) applied

the idea with still another dimensionless evaporation rate, namely αe = E/Ee, where Ee is

the equilibrium evaporation defined in Equation (4.30).

In more general terms (Brutsaert and Sugita, 1992), the assumption of self-preservation

requires that the evaporative flux ratio,

ER = Le E/F (4.51)

be taken as a constant during the daytime hours. In (4.51) F is some other flux term

(beside Le E) in the surface energy budget, which exhibits a similar diurnal cycle as Le E ,

so that it can serve as a reference. The assumption of similarity can be assessed for differ-

ent flux terms in Figures 4.10 (mainly the curves with the open symbols) and 4.11, with

data measured during FIFE, the First ISLSCP Field Experiment conducted in hilly tallgrass

terrain in eastern Kansas; it appears to work well when F is taken as the available energy
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Fig. 4.9 Diurnal variation of mean components of the surface energy budget on July 6, 1987, measured
at six stations over a 15 km × 15 km experimental area in a hilly prairie region in northeastern
Kansas. (a) Le E, Rn, Rn − G and Rs; (b) G, H and αs Rs; (c) Rlu and Rld. The time is Central
Daylight Savings Time. (From Brutsaert and Sugita, 1992.)
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Fig. 4.10 Diurnal variation of half-hourly values of different evaporative flux ratios, obtained from the
flux data shown in Figure 4.9; Le E/αs Rs (inverted open triangles); Le E/(Rn − G) (open
triangles); Le E/Rn (open squares); Le E/Rs (open circles); Le E/H(≡ Bo−1, solid
squares); Le E/G (solid circles); Le E/(Rld − Rld(night)) (solid triangles); and Le E/

(Rlu − Rlu(night)) (solid diamonds). Note that the curves of the inverted open triangles, but
especially those of the open triangles, the open squares and the open circles are nearly
coincident during the daytime hours, so that they may not be easy to distinguish. (From
Brutsaert and Sugita, 1992.)

flux (Rn − G) or (Le E + H ), net radiation Rn, incoming short-wave radiation Rs and also,

but less so, the reflected short-wave radiation αs Rs. The fact that equilibrium evaporation Ee

is strongly related with the available energy flux (Rn − G) (see Equation (4.30)), explains

that Equation (4.51) also works well when F is taken as that quantity. Note that when F
is taken as the sensible heat flux H , so that ER−1 is the Bowen ratio Bo, self-preservation

appears to be considerably less robust than in the case of F = (Rn − G). It was shown in

Crago and Brutsaert (1996) that this is caused by the different error propagation properties

of EF and Bo. Figure 4.11 also shows that self-similarity is not applicable at night. As a

further illustration, Figure 4.12 shows the evolution of the daytime evaporative fraction EF

during a long drying period over the same tallgrass prairie terrain at station 26; on any day

EF remained fairly invariant during the daytime hours, but it decreased from day to day as

the soil moisture was gradually declining (see also Figure 2.22).

In practical applications, this concept of self-similarity is implemented as follows. If ER

is sufficiently constant during the day, the instantaneous evaporation rate at any moment

during the daytime can be estimated with (4.51), that is

Le Ei = ERd Fi (4.52)
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Fig. 4.11 Same as Figure 4.10, but only the evaporative fraction, i.e. the evaporative flux ratio
with F = (Rn − G), is shown. The error bars indicate the mean and standard deviation for the
six measuring stations. (From Sugita and Brutsaert, 1991.)
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Fig. 4.12 Evolution of the diurnal cycle of the evaporative fraction EF = Le E/(Rn − G) over a period of
drying from Sept. 19 (DOY 262) through Oct. 12 (DOY 285), 1987, in a hilly prairie region in
northeastern Kansas. The time is Central Daylight Savings Time and the line numbers indicate
the day of the year, DOY. (From Brutsaert and Chen, 1996.)
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Conversely the total daytime evaporation rate can be estimated from

Le Ed = ERi Fd (4.53)

in which subscript i refers to the instantaneous values and d refers to the daytime totals,

such that Ed = Ei and Fd = Fi represent the sums of their respective instantaneous (in

practice, hourly or half-hourly) values during the day.

4.4 Water budget methods

Water budget methods are based on the principle of conservation of mass applied to some part

of the hydrologic cycle. Conservation of mass can be formulated as a budget equation, such

as Equation (1.10), for a suitable control volume; evaporation can then be determined as the

only unknown rest term among the outflow rates Qo in the budget equation, if all the other

terms in Qi, Qo and S can be determined independently. Although water budget methods

are by far the simplest in principle, their application is often difficult and impractical.

Therefore, they are less commonly used than mass transfer or energy budget methods. Still,

their conceptual simplicity is an appealing feature and they can be very useful for certain

purposes, such as climatological calculations or the validation of other methods over longer

periods.

4.4.1 Terrestrial water budget

Over a landsurface of area A, the mean evaporation rate can be expressed in terms of the

water balance equation (1.10), which for the present purpose can be rewritten as follows

E = P + [(Qri + Qgi) − (Qro + Qgo)] − d S

dt
(4.54)

where P is the areal mean rate of precipitation, Qri and Qro are the total surface inflow and

outflow rates (in the river system), Qgi and Qgo are the total groundwater inflow and outflow

rates, respectively, all per unit area, and S is the water volume stored per unit area. If the area

is a natural river basin or some other hydrologic catchment, bounded by natural divides, the

groundwater terms are normally negligible and the surface inflow Qri is zero or, in case of

artificial interbasin water exchange, it is usually known exactly. Hence, if R = (Qro − Qri)

is the mean net surface runoff rate per unit area from the basin, Equation (4.54) can be

simplified to

E = P − R − d S

dt
(4.55)

Even with reliable data on precipitation and runoff, Equation (4.55) still contains the two

unknowns E and S; thus to close (4.55), either it must be applied over sufficiently long

periods, so that dS/dt becomes less important, or an additional equation is required to

determine S. The water storage in the basin is not easily determined. It can often be assumed

that the storage returns to the same value at the end or the beginning of the same season in

the previous year; therefore, an annual period is usually considered long enough to make

dS/dt negligible. Several methods have been proposed to apply Equation (4.55) to periods

shorter than a year by using indirect methods to estimate the change in storage.
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Closure by relating storage to evaporation
In this class of methods the additional equation is obtained by relating E to S. For instance,

Budyko (1955; 1974, p. 97) took as the additional equation (4.33) with (4.34), in which w

was assumed to represent the water storage S in the basin and the value of w0 was taken

as a layer of 10–20 cm water, to be obtained by calibration with seasonal and regional

variations. The method can be applied with average monthly values of E, P, R, S = (S1 +
S2)/2 and (d S/dt) = (S2 − S1), in which the subscripts 1 and 2 refer to the beginning and

the end of the month. The calculations can be carried out by successive approximations

as follows. An initial value of S1 is chosen at random for the first month. Substitution

of (4.33) into (4.55) yields an equation for S2 and without E ; with an initial value of S1

chosen at random for the first month this produces a first estimate of S2, which when

substituted in (4.33) produces E for the first month. The same procedure is carried out for

the second month, with S2 of the first serving as S1 of the second, and so on. The sum of

all these monthly E values can be compared with the total annual value of (P − R). The

ratio of the two should allow a proportional adjustment of the assumed value of S1 of the

first month, and the process can be started over again and continued until the calculated

annual E equals the recorded (P − R). The main weakness of any method based on a

relationship such as (4.33) is, beside the question of the validity of this proportionality,

first the unknown value of the maximal water content parameter w0, and second the rather

ambiguous meaning of the potential evaporation concept. Budyko’s method has been applied

extensively over various regions of the former USSR. A very similar method has also

been proposed by Thornthwaite and Mather (1955; see also Steenhuis and VanderMolen,

1986).

Closure by relating storage to stream flow
In a second class of methods the additional equation is obtained by relating S with the

runoff R from the basin, usually during recessions of the river flow, i.e. during drought

flows in the absence of precipitation, so that P does not have to be considered in Equation

(4.55). In past studies (see Tschinkel, 1963; Daniel, 1976; Brutsaert, 1982) this has mostly

been done by means of kinematic functions, which can be written in the form

S = Kn Rm (4.56)

where Kn and m are constants (cf. Equation (12.48)). This combination of (4.55) and (4.56)

is another example of the lumped kinematic approach; after elimination of S, in principle

it should thus be possible to determine E from streamflow data. The parameters Kn and m
can be determined by calibration under conditions of negligible E . The main drawback

of the application of Equation (4.56) in this context, is that the storage S in (4.56) refers

mainly to groundwater storage and not to near-surface soil moisture which feeds most of

the evaporative processes in the basin. This means that recession flows are sensitive only to

evaporation from areas, where the roots of the vegetation are in direct contact with the water

table. Hence the evaporation determined this way originates mostly from the riparian zone,

and not from areas further away from the stream channels, where the vegetation and the

groundwater are essentially uncoupled. The S variable in Equation (4.56), which drives the

streamflow R, can be assumed to represent total basin storage, only after the soil moisture

has been totally depleted, that is after a long recession.

This difficulty can be avoided, as shown by Dias and Kan (1999), by integrating Equa-

tion (4.55) over sufficiently long budget periods 	t , at the end of which most of the water
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storage consists of groundwater only, so that (4.56) can be used to determine S. The begin-

ning of the budget period can be taken as the end of the previous recession, when again

(4.56) can be used to determine S. The integral of (4.55) is simply the equation rewritten

with values of E, P and R averaged over the budget period 	t and with d S/dt replaced

by (Sf − Si)/	t . Thus Si and Sf, which are the initial and final values of the storage, can be

determined from streamflow data by means of (4.56), and E remains as the only unknown

in (4.55). In this approach the budget periods 	t are of variable duration, and are taken to

be at least one month long. The method was implemented by assuming that the system is

linear, that is m = 1 in (4.56), and Kn was determined from the lower envelope of a plot

of daily flows versus the flow on the next day, i.e. Qi versus Qi+1 during long recessions,

while P = 0 (cf. Figure 10.30); the lower envelope was assumed to represent conditions of

small or negligible evaporation from the basin. Some results obtained with this approach

are illustrated in Figure 4.13; in this particular case, it can be seen that even though the

rainfall does not display a seasonal dependency, the seasonal signal is well reflected in the

calculated evaporation. A similar approach to derive evaporation was used by Wittenberg

and Sivapalan (1999).

Finally, in a third class of methods the additional equation needed to close (4.55) is

derived from the atmospheric water budget. In this approach the atmospheric water con-

vergence allows the estimation of (P − E), which then yields dS/dt for basins where R is

known. This is discussed next.

4.4.2 Atmospheric water budget

In this method evaporation is determined as the, preferably only, unknown term in the water

budget equation for a suitably chosen finite-size control volume in the atmosphere. Just

like the terrestrial water budget, it is based on an integral form of Equation (1.10), which

states that the total inflow minus outflow of water mass equals the time rate of change of

stored water in the control volume. Thus for a control volume consisting of an atmospheric
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column of base area A with periphery C , this can readily (Brutsaert, 1982) be shown

to be

E − P = ∂W

∂t
+ 1

Ag

ps∫
pt

∫
C

(q Vn) dC dp (4.57)

where E and P are evaporation and precipitation intensity averaged over A, W is the total

water vapor content per unit surface area of the control volume, q is the specific humid-

ity along the vertical boundary, Vn is the horizontal wind component normal to the same

boundary pointing outward, p is the pressure, with subscripts s and t referring to the surface

and the top of the column, and the water content in the solid and liquid phases is neglected.

Equation (4.57) states that the difference between the average rate of evaporation and pre-

cipitation over a given area of the Earth’s surface equals the rate of increase of water vapor

over the area plus the total flux directed away from the region.

In the past this method has been used primarily over water surfaces (for a review of

the early work, see Brutsaert, 1982). Among the first applications over land was the anal-

ysis of Benton and Estoque (1954) for the North American continent, followed by those

of Rasmusson (1971) and Magyar et al. (1978) for the USA. In the early studies, the data

needed were usually obtained from the operational radiosounding network, with twice-daily

observations, so that ∂W/∂t was taken as the difference over 12 h. This world-wide grid

was originally not designed for the purpose of budget calculations, but rather to observe

synoptic-scale features with time scales of a few days and length scales of the order of

103 km. Figure 4.14 shows a comparison between results obtainable with this method

over water using radiosonde observations every 6 h at four stations with an enclosed

area A = 17 × 104 km2, and values obtained using a mean-profile method by Kondo (1976).

Rasmusson (1977) has made a detailed analysis of the errors in flux divergence computa-

tions resulting from the usual limits of spatial and temporal resolution and of instrumental

accuracy in typical radiosonde observations in networks of different scales. He concluded

that with the operational network and current observational schedules, the applicability of

the method to basins with an area smaller than 25×104 km2 is limited, and that the results

are likely to be unreliable; with such data the method can yield good results for areas of the

order of 25×104 to 106 km2, but it is best suited for areas larger than 106 km2. In recent years,

however, the situation has been changing. With the advent of improved data assimilation

schemes, in which observational data can be combined with model calculation output, it is

expected that the accuracy of the method may be improved considerably. As a result the

method has been receiving renewed interest in the past decade (see, for example, Brubaker

et al., 1994; Oki et al., 1995; Rasmusson and Mo, 1996; Berbery et al., 1996; Yarosh et al.,
1996). The appeal of the method stems mainly from the simplicity of the budget concept.

It is the only approach that can estimate evaporation over larger areas, and it can be useful

to compare or extend the results of more local methods.

4.4.3 Soil profile water budget

With soil moisture measurements
It is also possible to consider the soil profile as a control volume, to determine its water

budget. In this case, the integral of the continuity equation (1.8) (see also Equation (8.54))

for a soil column of thickness hso and unit horizontal area, without lateral inflows or outflows
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Fig. 4.14 Comparison of mean daily values of the total turbulent heat flux H + Le E in (W m−2) at the
sea surface obtained by means of the atmospheric water budget (solid lines) by Nitta (1976) and
by Murty (1976), with the averaged values obtained by a mean-profile method over water
(dashed lines) at several stations in the East China Sea. Because the data were not taken at the
same locations, the areas to which both methods were applied coincided only approximately.
The experiment took place in February of 1974 and 1975, and the area enclosed for the
atmospheric water budget was of the order of 17 × 104 km2; its shape was roughly rectangular
with center at Okinawa. (After Kondo, 1976.)

and with all flux terms taken as mean values over a sampling period, gives an evaporation

rate

E = − 1

hso

hso∫
0

∂θ

∂t
dz + P − qzd (4.58)

where θ is the soil water content as volume fraction, z is the vertical coordinate pointing

down from z = 0 at the surface, P is the rate of precipitation (or irrigation), and qzd the rate of

downward seepage or drainage through the lower boundary of the soil layer at z = hso. Mean

values of the finite difference form of (∂θ/ ∂t) over a sampling period, as a function of z, can

be determined by various methods. In the earlier field experiments related to irrigation of

agricultural crops (see Israelsen, 1918; Edlefsen and Bodman, 1941), the method consisted

of soil sampling and gravimetric analysis before and after drying of the samples in an oven.

More recently, the neutron scattering method, TDR and other techniques (see, for example,

Schmugge et al., 1980) have become available that allow in situ soil moisture measurements.
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The method is probably most useful in situations where qzd is negligible, so that evapo-

ration is the only depletion mechanism of the moisture content of the soil profile. Still, with

some additional information it may be possible to obtain reliable estimates of qzd. If data

are available on the vertical water pressure gradient (∂pw/∂z) (in finite difference form)

and on the hydraulic conductivity k = k(z), the downward drainage rate can in principle

be calculated with Darcy’s law (Equation (8.19)). However, in several field studies (see

Davidson et al., 1969; Nielsen et al., 1973) it has been observed that during the vertical

redistribution of soil water at depths of 1 m or more, where there is no direct influence of

surface evaporation, the hydraulic gradient is rarely very different from unity. An example

of this phenomenon is shown in Figure 4.15. This allows the approximation of Equation

(8.9) by

qzd = k (4.59)

Thus in such a case, qzd may be estimated with only a measurement of the soil water content

at z = hso, provided, of course, k = k(θ ) is known. In many situations, however, especially

during the second stage of drying (see Chapter 9), the downward drainage rate at some

depth may simply be neglected (see Jackson et al., 1973); but this needs to be checked in

each particular case.

Measurements of soil water content and water pressure at several levels in the profile are

not easy and they require many precautions. The soil water depletion method is probably

only useful for special experimental situations under favorable conditions, and it is clearly

not generally applicable on a routine basis. It may be hard, if not impossible, to apply when

the following conditions are present: a water table close to the surface, frequent and large

precipitation, non-negligible or net lateral inflows, a large drainage rate, and considerable

variability in the soil properties. Thus the accuracy obtainable with this method depends

largely on the local conditions. Some other practical aspects of the soil sampling have been

discussed by Jensen (1967).

A water budget-based instrument: the lysimeter
A lysimeter is a container placed in the field and filled with soil, on which vegetation can be

maintained for the purpose of studying various soil–water–plant relationships under natural
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conditions. The rate of evapotranspiration from this instrument is obtained by solution of

Equation (4.58). In order to produce the same rates of evapotranspiration as the surrounding

area, a lysimeter should be representative of the conditions of the natural soil profile and

of the vegetation around it. In other words, when designing and installing a lysimeter, care

must be taken to insure the same water fluxes at the soil surface and the same developments

of the plant roots in the soil profile. This means that its surface should be flush with the

surrounding ground surface, and that it should be at least as deep as the rooting depth of the

vegetation; moreover, the profiles of the soil structure, soil texture, soil water content and

soil temperature in the lysimeter must be made as similar as possible to those on the out-

side. These conditions are not always easily met (Brutsaert, 1982). Various methods can be

used to determine the different terms in Equation (4.58). One of the more complete designs

(Pruitt and Angus, 1960) has a circular surface area of 6.1 m diameter and a depth of

0.91 m and it is equipped with temperature control; the integral term in (4.58) is deter-

mined by continuous monitoring of weight changes and qzd is measured as the outflow by

maintaining soil water suction control at the bottom of the container.

Other parameterizations
Water budget considerations can also be used to express soil surface evaporation as a

capillary rise phenomenon in terms of soil properties and other variables beside soil water

content. However, such derivations require some understanding of the physics of flow in

partly saturated soils and also the solution of the Richards equation for various boundary

conditions. This topic is therefore delayed until Chapter 9, after the principles of flow in

porous media have been presented in Chapter 8.

4 . 5 E VA P O R AT I O N C L I M ATO L O G Y

In Chapter 1 it was pointed out that on a global basis the annual evaporation is of the order

of 1 m, which balances the annual precipitation. Table 1.1 indicates that the evaporation

from the land surfaces of the Earth is around 0.5 m, which is roughly two-thirds of the

mean annual precipitation.

Interestingly, practical experience and folk wisdom suggest values similar to those

given in Tables 1.1 and 1.2. For example, irrigation engineers, when lacking better

information, sometimes use the rule of thumb that the duty of water for a well-irrigated

crop is around 1 l s−1 ha−1. Similarly, farmers in the northeastern United States are said

to require a weekly rainfall of about one inch, that is 2.5 cm, to maintain field crops in

good condition during their active growing period. With typical irrigation efficiencies

of 25% to 40%, and a growing season of 4–5 months, both practical estimates of the

evaporative requirements in agriculture are consistent with global climatological values

of around 0.50 m y−1.

However, because precipitation and the radiative energy supply are highly variable

over the surface of the Earth, the actual evaporation is usually quite different from these

long-term climatological mean values. Over periods shorter than a year, deviations of

evaporation from the mean can be characterized by a cyclic or periodic behavior, namely

with a daily and with a seasonal time scale. In the extreme case of an arid, warm climate,

with a pronounced dry and wet season, the seasonal evaporation cycle is similar to the
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Fig. 4.16 Measured monthly evapotranspiration rates in mm/d for meadow covers on lysimeters at four
locations in the eastern United States. The data at Seabrook, NJ (diamonds), Waynesville, NC
(triangles) and Raleigh, NC (plus signs) represent maximal or near-maximal values, but the data at
Coshocton, OH (circles) are actual values, possibly affected by irregular rainfall and moisture deficits
in the soil profile. The annual mean values are 2.44 mm d−1 at Seabrook, 2.16 mm d−1 at Waynesville,
and 2.29 mm d−1 at Coshocton. (After VanBavel, 1961.)

rainfall cycle. In a humid climate, or over water, the seasonal march of the evaporation

rate follows closely the cycle of energy available for evaporation. In most climates over

land the seasonal evaporation cycle is affected both by the available water and by the

available energy. As an example, in Figure 4.16 the monthly mean evaporation rates are

shown for several locations in the eastern United States. Thus, the cyclic behavior here

is similar to the solar radiation input and to that of the air temperature. The same holds

true for shallow water bodies. But over deep water bodies the evaporation cycle does

not coincide with the solar winter–summer cycle. In contrast to a landsurface, a water

body can store and release large amounts of heat and thus its temperature responds only

slowly to energy inputs, not unlike the way a fly wheel responds to torque; as a result

the cycle of available energy for evaporation may lag several months behind the solar

input cycle. For example, the rate of evaporation from Lake Ontario is maximal in fall

and early winter, and minimal in late spring and early summer (Phillips, 1978), as is

also shown in Figure 4.17; the corresponding net radiation and heat storage are shown

in Figure 4.18.

The daily evaporation cycle is usually more pronounced over land than over water.

Over land, where much less heat is conducted below the surface, the daily cycle generally

follows the daily march of the solar radiation. Illustrations of the daily cycles of evapo-

transpiration from different surfaces are shown in Figures 2.19–2.22 and in Figure 4.9,

together with other components of the surface energy budget. In Figure 4.19 an example

is shown of the daily cycle of evaporation from bare soil. This figure also illustrates the

general behavior of evaporation after a rainfall or after irrigation, when the available

water stored in the soil profile is gradually being depleted. Because the experiment took

place during a drying period, the daily cycle is superimposed on a trend of decreasing
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Fig. 4.19 Rate of evaporation from a bare soil surface during a drying cycle, measured with a weighing
lysimeter in Arizona. (From Van Bavel and Reginato, 1962.)
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precipitation. (After Ohmura, 1982)

daily mean evaporation; this general feature is similar to the drying shown in Figures 2.22

and 4.12, and it provides the justification for the assumption of self-preservation discussed

above in Section 4.3.4. Finally, Figure 4.20 shows an example of the cyclic behavior of

evaporation as observed under the extreme conditions of an arctic tundra environment.

Remarkably, in spite of the harsh environment, the annual evaporation of 140 mm still

amounts to more than one quarter of the global mean value over land.
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Bouchet, R. J. (1963). Evapotranspiration réelle, évapotranspiration potentielle, et production agricole.

Ann. Agron., 14, 743–824.

Bowen, I. S. (1926). The ratio of heat losses by conduction and by evaporation from any water surface.

Phys. Rev., 27, 779–787.



evaporat ion 152

Brown, K. W. and Rosenberg, N. J. (1977). Resistance model to predict evapotranspiration and its

application to a sugarbeet field. Agronomy J., 65, 341–347.

Brubaker, K. L., Entekhabi, D. and Eagleson, P. S. (1994). Atmospheric water vapor transport and

continental hydrology over the Americas. J. Hydrology, 155, 409–430.

Brutsaert, W. (1982). Evaporation into the Atmosphere: Theory, History and Applications. Dordrecht,

Holland/Boston, USA: D. Reidel Pub. Co.

Brutsaert, W. and Chan, F. K.-F. (1978). Similarity functions D for water vapor in the unstable

atmospheric boundary layer. Bound.-Layer Met., 14, 441–456.

Brutsaert, W. and Chen, D. (1996). Diurnal variation of surface fluxes during thorough drying (or

severe drought) of natural prairie. Water Resour. Res., 32, 2013–2019.

Brutsaert, W. and Stricker, H. (1979). An advection-aridity approach to estimate actual regional

evapotranspiration. Water Resour. Res., 15, 443–450.

Brutsaert, W. and Sugita, M. (1992). Application of self-preservation in the diurnal evolution

of the surface energy budget to determine daily evaporation. J. Geophys. Res., 97(D17),

18 377–18 382.

Brutsaert, W. and Yu, S.-L. (1968). Mass transfer aspects of pan evaporation. J. Appl. Met., 7,

563–566.

Budyko, M. I. (1955). On the determination of evaporation from the land surface. Meteorol. Gidrol., 1,

52–58 (in Russian).

(1974). Climate and Life. New York: Academic Press.

Carson, D. J. (1982). Current parametrizations of land-surface processes in atmospheric general

circulation models. In Land Surface Processes in Atmospheric General Circulation Models, ed.

P. S. Eagleson. New York: Cambridge University Press, pp. 67–108.

Champagne, F. H., Friehe, C. A., LaRue, J. C. and Wyngaard, J. C. (1977). Flux measurements, flux

estimation techniques and fine-scale turbulence measurements in the unstable surface layer over

land. J. Atmos. Sci., 34, 515–530.

Chen, D. and Brutsaert, W. (1995). Diagnostics of land surface spatial variability and water vapor flux.

J. Geophys. Res., 100(D12), 25, 595–525, 606.

Choudhury, B. J. and Blanchard, B. J. (1983). Simulating soil water recession coefficients for

agricultural watersheds. Water Resour. Bull., 19, 241–247.

Crago, R. D. (1996). A comparison of the evaporative fraction and the Priestley–Taylor parameter α for

parameterizing daytime evaporation. Water Resour. Res., 32, 1403–1409.

Crago, R. D. and Brutsaert, W. (1992). A comparison of several evaporation equations. Water Resour.
Res., 28, 951–954.

(1996). Daytime evaporation and the self-preservation of the evaporative fraction and the Bowen

ratio. J. Hydrol., 178, 241–255.

Daniel, J. F. (1976). Estimating groundwater evapotranspiration from streamflow records. Water
Resour. Res., 12, 360–364.

Davidson, J. M., Stone, L. R., Nielsen, D. R. and La Rue, M. E. (1969). Field measurement and use of

soil-water properties. Water Resour. Res., 5, 1312–1321.

Davies, J. A. and Allen, C. D. (1973). Equilibrium, potential and actual evaporation from cropped

surfaces in southern Ontario. J. Appl. Met., 12, 649–657.

Dias, N. L. and Brutsaert, W. (1996). Similarity of scalars under stable conditions. Bound.-Layer Met.,
80, 355–373.

Dias, N. L. and Kan, A. (1999). A hydrometeorological model for basin-wide seasonal

evapotranspiration. Water Resour. Res., 35, 3409–3418.



references 153

Dolman, A. J., Gash, J. H. C., Roberts, J. M. and Shuttleworth, W. J. (1991). Stomatal and surface

conductance of tropical rainforest. Agr. Forest Meteor., 54, 303–318.

Doorenbos, J. and Pruitt, W. O. (1975). Crop water requirements. Irrigation and Drainage Paper No. 24.

Rome: FAO (United Nations).

Dunin, F. X. and Greenwood, A. N. (1986). Evaluation of the ventilated chamber for measuring

evaporation from a forest. Hydrol. Process., 1, 47–61.

Edlefsen, N. E. and Bodman, G. B. (1941). Field measurements of water movement through a silt loam

soil. J. Amer. Soc. Agron., 33, 713–731.

Eng, K., Coulter, R. L. and Brutsaert, W. (2003). Vertical velocity variance in the mixed layer from

radar wind profilers. J. Hydrol. Engineering (ASCE), 8, 301–307.

Federer, C. A. (1977). Leaf resistance and xylem potential differ among broadleaved species. Forest
Sci., 23, 411–419.

Garratt, J. R. (1978). Transfer characteristics for a heterogeneous surface of large aerodynamic

roughness. Quart. J. Roy. Met. Soc., 104, 491–502.

Gash, J. H. C. and Stewart, J. B. (1975). The average resistance of a pine forest derived from Bowen

ratio measurements. Bound.-Layer Met., 8, 453–464.

Gash, J. H. C., Shuttleworth, W. J., Lloyd, C. R., Andre, J.-C., Goutorbe, J.-P. and Gelpe, J. (1989).

Micrometeorological measurements in Les Landes forest during HAPEX-Mobilhy. Agr. Forest
Met., 46, 131–147.

Grindley, J. (1970). Estimation and mapping of evaporation. Symposium on Water Balance, Vol. I,

Intern. Assoc. Hydrol. Sci., Publ. 92, 200–213.

Hobbins, M. T., Ramirez, J. A. and Brown, T. C. (2001). The complementary relationship in estimation

of regional evapotranspiration: an enhanced advection-aridity model. Water Resour. Res., 37,

1389–1403.

Israelsen, O. W. (1918). Studies on capacities of soils for irrigation water, and on a new method of

determining volume weight. J. Agric. Res., 13, 1–37.

Jackson, R. D., Kimball, B. A., Reginato, R. J. and Nakayama, F. S. (1973). Diurnal soil-water

evaporation: time–depth–flux patterns. Soil Sci. Soc. Amer. Proc., 37, 505–509.

Jackson, R. D., Hatfield, J. L., Reginato, R. J., Idso, S. B. and Pinter, P. J. (1983). Estimation of daily

evapotranspiration from one time of day measurements. Agric. Water Manage., 7, 351–362.

Jensen, M. E. (1967). Evaluating irrigation efficiency. J. Irrig. Drain. Div., Proc. ASCE, 93(IR1), 83–98.

Jensen, M. E. and Haise, H. R. (1963). Estimating evapotranspiration from solar radiation. J. Irrig.
Drain. Div., Proc. ASCE, 89(IR4), 15–41.

Katul, G. G. and Parlange, M. B. (1992). A Penman–Brutsaert model for wet surface evaporation.

Water Resour. Res., 28, 121–126.

Kondo, J. (1976). Heat balance of the East China Sea during the Air Mass Transformation Experiment.

J. Met. Soc. Japan, 54, 382–398.

Lindroth, A. (1985). Canopy conductance of coniferous forests related to climate. Water Resour. Res.,
21, 297–304.

Magyar, P., Shahane, A. N., Thomas, D. L. and Bock, P. (1978). Simulation of the hydrologic cycle

using atmospheric water vapor transport data. J. Hydrol., 37, 111–128.

Manabe, S. (1969). Climate and ocean circulation, 1. The atmospheric circulation and the hydrology of

the earth’s surface. Mon. Weath. Rev., 97, 739–774.

Makkink, G. F. (1957). Ekzameno de la formulo de Penman. Netherl. J. Agric. Sci., 5, 290–305.

Mascart, P., Taconet, O., Pinty, J.-P. and BenMehrez, M. (1991). Canopy resistance formulation and its

effect in mesoscale models – a HAPEX perspective. Agr. Forest Met., 54, 319–351.



evaporat ion 154

Mawdsley, J. A. and Ali, M. F. (1985). Estimating nonpotential evapotranspiration by means of the

equilibrium evaporation concept. Water Resour. Res., 21, 383–391.

Mawdsley, J. A. and Brutsaert, W. (1977). Determination of regional evapotranspiration from upper air

meteorological data. Water Resour. Res., 13, 539–548.

McNaughton, K. G. and Black, T. A. (1973). A study of evapotranspiration from a Douglas fir forest

using the energy balance approach. Water Resour. Res., 9, 1579–1590.

Monteith, J. L. (1973). Principles of Environmental Physics. New York: American Elsevier Publ. Co.

(1981). Evaporation and surface temperature. Quart. J. Roy. Met. Soc., 107, 1–27.

Monteith, J. L., Szeicz, G. and Waggoner, P. E. (1965). The measurement and control of stomatal

resistance in the field. J. Appl. Ecol., 2, 345–355.

Morton, F. (1976). Climatological estimates of evapotranspiration. J. Hydraul. Div., Proc. ASCE, 102,

275–291.

(1983). Operational estimates of areal evapotranspiration. J. Hydrology, 66, 1–76.

Murty, L. K. (1976). Heat and moisture budgets over AMTEX area during AMTEX ’75. J. Met. Soc.
Japan, 54, 370–381.
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P RO B L E M S

4.1 Derive Equation (4.4) from (2.41) and (2.44).

4.2 The local vertical vapor flux over a large, uniform, grass surface is measured to be 4 mm d−1.

At 2.0 m above the surface, the air temperature, the relative humidity and the wind speed are

20 ◦C, 60% and 5 m s−1. Calculate the value of the wind speed and the specific humidity at 10 m,

assuming a neutral practically isothermal atmosphere and a surface roughness of 1 cm. Ignore the

displacement height.

4.3 Suppose you are given the local evaporation rate, E (in mm d−1), from a wet surface at ground

level. The surface temperature and the surface specific humidity are Ts and qs, respectively. The

corresponding values at 2 m elevation are T2 for temperature and q2 for specific humidity. Derive

an expression for the local turbulent sensible heat flux, H (in W m−2), near the ground in terms

of these variables. (Do not use Bowen’s ratio or the psychrometric constant as a variable in your

final expression.)

4.4 Prove Equation (4.6).

4.5 Show a derivation of Equation (4.28) from (4.4), (4.6) and (4.7).

4.6 Multiple choice. Indicate which of the following statements are correct. The empirical mass-

transfer approach consists of determining mean evaporation from a water surface by means of an

equation of the type of (4.7), in which fe (u1) is some known function of the mean wind speed at

a given elevation.

(a) For long-term (say 1 d or longer) averages, the wind function, which appears in Equation

(4.7), is also needed to calculate the Bowen ratio.

(b) Equation (4.7) is less useful over crop-covered land, because it requires the determination

of qs at a surface, which is often irregular and ill defined.
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(c) Equation (4.7) can be adapted to determine the turbulent sensible heat flux at the surface,

if the temperatures at the surface and in the air are known.

(d) In principle (not in practice), the wind function should incorporate the effect of the surface

roughness, z0.

(e) But, on an hourly basis, fe (u1) cannot be improved by including the effect of the stability

of the atmosphere.

4.7 Multiple choice. Indicate which of the following statements are correct. In the case of a uniform,

horizontal surface, evaporation can be expressed by the following equations. The subscripts 1 and

2 refer to the reference levels, z1 and z2, respectively, within an atmospheric-surface layer under

neutral conditions. Assume d0 = 0.

(a) E = u2
∗ρ(q1 − q2)

(u2 − u1)

(b) E = −(ku∗z)ρ
dq

dz

(c) E = −u2
∗ρ

(dq/dz)

(du/dz)

(d) E = ρk2(u2 − u1)(q1 − q2)

[ln(z2/z1)]2

(e) E = ρk2u2(qs − q2)

[ln(z2/z0)][ln(z2/z0v)]

4.8 Consider the empirical mass transfer equation (4.24) as developed by Penman (1948). Calculate

the value of the scalar roughness, z0v, which is implied by that equation for a neutral atmosphere

above a surface with a momentum roughness of z0 = 0.05 m, for an air temperature of 20 ◦C, and

for a typical wind speed of u2 = 5 m s−1.

4.9 How many millimetres per month (mm month−1) of liquid water can be evaporated at 25 ◦C by

an energy supply of 1 W m− 2? Prove your answer.

4.10 The following measurements were recorded at a micrometeorological site: net radiation, Rn = 200

W m−2; heat flux into the ground, G = 40 W m−2; and evaporation rate, E = 5 × 10−8 m s−1.

(a) Calculate the turbulent sensible heat flux, H, in W m−2. (b) How large was Bowen’s ratio?

(c) Was the atmosphere stable or unstable? Why? (d) Was the soil warming up or cooling? Why?

4.11 The following measurements were recorded at a micrometeorological site: net radiation, Rn = 250

W m−2; heat flux into the ground, G = 30 W m−2; and sensible, heat flux, H = ρcp w′T ′ = 55

W m−2. (a) Calculate the evaporation rate, E , in kg m−2s−1 and in mm d−1. (b) How large was

Bowen’s ratio? (c) Was the atmosphere stable or unstable? Why? (d) Was the soil warming up or

cooling? Why?

4.12 Calculate, in mm d− 1, for a typical summer day, the different measures of evaporation listed below.

The data for that day and, thus also, Rn, are given and calculated in Problem 2.17, and the wind

speed at 10 m above the ground was measured as 10.4 km h−1. Assume that the average daily ground

heat flux, G, is negligible. (a) Potential evaporation by means of Penman’s method; use Penman’s

wind function. (b) Potential evaporation under conditions of minimal advection according to
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Priestley and Taylor (1972); use αe = 1.27. (c) Actual evaporation, assumed to be given by the

equilibrium evaporation; use αe = 1.0. (d) Actual evaporation by the advection–aridity approach of

Equation (4.48).

4.13 Same as Problem 4.12 but with the data of Problem 2.18; assume that the wind speed at 10 m

above the ground was 8.96 km h−1.

4.14 Give an expression for the Bowen ratio, implied by the equilibrium evaporation concept, as

formulated in Equation (4.30)? What is the numerical value of this Bowen ratio at 25 ◦C?

4.15 Multiple choice. Indicate which of the following statements are correct. The Penman equation

(4.23):

(a) has the advantage, in practical applications, that only measurements at one level (instead

of vertical gradients or differences) above the ground are needed;

(b) is well suited to calculate actual watershed evapotranspiration under drought conditions,

because it takes account of the moisture saturation deficit of the air;

(c) should, in principle, be adjusted for any given surface, as a function of the surface

roughness, z0, and of the atmospheric stability to yield an accurate result;

(d) is applicable even in the tropics;

(e) for calculations over land covered with vegetation for periods of a day or longer, the ground

heat flux, G, can often be neglected.

4.16 Consider the same lake as in Problem 2.19, and the following additional data for December and

July: mean heat flux into the lake water body, G = −430 and 390 cal cm−2 d−1; and mean wind

speed at 10 m above the water surface, u10 = 15.3 and 10.1 km h−1. Calculate the mean evaporation,

in mm d−1, from the lake for these typical days in December and July, by means of: (a) the energy

budget method with the Bowen ratio; (b) Penman’s method; (c) Priestley and Taylor’s method.

4.17 (a) Calculate the mean evaporation from the lake considered in Problems 2.19 and 4.16 for the

same two days, by using the mass-transfer method (in mm d−1). To a first approximation, assume

that conditions are neutral, so you can use transfer coefficients, Ce10 = 1.2 × 10−3. (b) Is this a

reasonable assumption for these two cases? Why not?

4.18 Derive the expression for βe, as given by Equation (4.40), by equating (4.38) and (4.33) (with (4.3)

to representEp for a wet surface).

4.19 Estimate the time of local (i.e. solar) noon in Central Daylight Savings Time (CDT) for the location

of the measurements shown in Figures 4.9–4.12. The longitude of this location is approximately

96◦31′ W and CDT is 5 h behind Universal Time, or (UTC−0500).

4.20 Suppose the following measurements are available in the atmospheric surface layer under unstable

conditions: net radiation, Rn; ground heat flux, G; mean wind speed at two levels, u1, u2; and

potential temperature at two levels, θ 1 and θ 2. Write down three equations that will allow you

to solve for the three unknowns, viz., the rate of evaporation, E; the sensible heat flux, H; and

the surface shear stress, u∗. Make sure that the answer contains, beside some constants, only the

variables listed here (or functions thereof).
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5 WAT E R O N T H E L A N D S U R FAC E :
F L U I D M E C H A N I C S O F F R E E
S U R FAC E F L OW

Owing to the irregular topography of the Earth’s continents, surface runoff, that is the
flow of water over land, takes place in many different ways. When for some reason,
such as rainfall, snowmelt, the overtopping of small depressions, or the emergence of
groundwater at a source, surface flow is initiated, it may at first proceed as a thin sheet
flow; however, as a result of local irregularities, the flow soon gathers in small gullies and
rills, which in turn join to form rivulets in the fashion of a tree-like network. Eventually
these merge with others to become larger rivers, which finally end up in some lake or in
the ocean. Thus the flow system consists of an intricate combination of many different
types of flow regimes, in channels of different geometries and sizes. For purposes of
analysis, to describe the basic hydraulic elements of landsurface runoff, it is convenient
and useful to distinguish between two major types of free surface flow; these are first,
sheet flow or overland flow, which is most likely to occur under conditions of heavy
precipitation in source areas where runoff is being generated which feeds into streams;
and second, the flow that occurs in larger permanent open channels. Both types of flow
are usually unsteady and spatially varied. In this chapter a general description is given of
free surface flow. The general principles are then applied to overland flow and to channel
flow and streamflow routing in the next two chapters.

5 . 1 F R E E S U R FAC E F L OW

The flow of water on a solid surface is governed by the usual conservation equations
of fluid mechanics, namely the continuity equation for mass and the Navier–Stokes
equations for momentum. One important condition on the boundaries can be formulated
by observing that once a fluid particle is on an impermeable surface, it stays on it (see
Lamb, 1945, p. 7). In other words, it moves with the surface, and its velocity relative to
the surface is either purely tangential or zero (in the case of no slip), for otherwise a finite
flow of fluid would take place across the surface. Thus, if the surface is described by a
function F = F(x, y, z, t) = 0, then any displacement occurring with the fluid particles
should leave that function unchanged, i.e.

DF
Dt

= 0 (5.1)

The operator D/Dt , already defined in Equation (1.3), is the time derivative following the
motion, also called the fluid mechanical time derivative, the substantial time derivative,
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Fig. 5.1 Definition sketch for two-dimensional

free surface flow. FS indicates the free

surface of the flowing water.

or the material or particle derivative; for the mean motion it can be defined as

D
Dt

= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(5.2)

where, as in Chapter 2, u, v and w are the mean (in the turbulence sense) velocity
components of the fluid in the x , y and z directions, respectively, of the velocity vector
v = (v + v′).

To simplify the argument, consider a two-dimensional motion of water with a free
surface, which is located at a distance, taken normally to the bottom surface, z = zs(x, t)
from an arbitrary reference; the water is flowing over a bottom, which is located at a
normal distance z = zb(x, t) from that same reference (see Figure 5.1). Observe that,
contrary to its usage in Chapter 2, here the z-axis is not vertical, but has an angle θ

with it. For the situation shown in the figure the function defining the position of the
water surface is F(x, z, t) = [zs(x, t) − z] = 0; therefore, condition (5.1) becomes for
the water surface

u
∂zs

∂x
− w + ∂zs

∂t
= 0 at z = zs (5.3)

Similarly, the bottom surface can be described by F(x, z, t) = [zb(x, t) − z] = 0, in
which the time dependency allows, in principle at least, for bottom sediment accretion
or erosion; thus Equation (5.1) leads to an analogous condition for the bottom interface
of the fluid, which looks the same as Equation (5.3), but with the subscript s replaced by
a subscript b. Usually, however, the bottom can be treated as a solid wall without slip,
so that this bottom condition reduces to u = w = 0. With the latter bottom condition,
the condition for the free surface (5.3) can also be written in terms of the water depth as
follows

u
∂h
∂x

− w + ∂h
∂t

= 0 at z = h (5.4)

in which the water depth is defined as h = zs − zb and the reference level z = 0 is placed
at the bottom.
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5 . 2 H Y D R AU L I C T H E O RY : S H A L L OW WAT E R E Q UAT I O N S

In most situations of free surface flow encountered in hydrology, it is possible to make
certain simplifications. The main assumption is that the path- or streamlines are only
slightly curved so that the accelerations normal to the direction of mean flow are neg-
ligible. This means that the pressure distribution may be taken as hydrostatic along the
z-direction, i.e. normally to the bottom, or

∂p
∂z

+ γ cos θ = 0 (5.5)

where θ is the slope angle of the bottom and γ (≡ ρg) is the specific weight of the water.
With z = 0 at the bottom surface, the integral of (5.5) is

p = γ cos θ (h − z) (5.6)

where as before h = h(x, t) = (zs − zb) is the water depth measured normally to the
bottom. If the bed slope angle θ is constant in the main direction of flow, Equation (5.6)
yields immediately upon differentiation

∂p
∂x

= γ cos θ
∂h
∂x

(5.7)

As this pressure gradient is not a function of z, the corresponding acceleration of the
water particles is independent of z as well. Therefore the velocity parallel to the bottom
u preserves its dependence on z, independently of x and t . Accordingly, it is permissible
to replace u = u(x, z, t) by its average over z, namely V = V (x, t) defined by

V = 1

h

h∫
0

u dz (5.8)

These two simplifications, namely the hydrostatic pressure distribution and the
assumption of an average velocity V , constitute the basis of the so-called hydraulic
theory of free surface flow; as will become clear below, it reduces the two-dimensional
problem to a one-dimensional problem. The theory is usually referred to as shallow
water theory or the theory of long waves. It consists of reducing the continuity and the
momentum or Reynolds equations to the shallow water equations. This will be shown
in what follows.

5.2.1 Equation of continuity

The equation of continuity of an incompressible fluid is given by Equation (1.9). For
turbulent flow this can be equally applied to the mean and to the turbulent velocity
components; if there is also a source inflow φl at the point under consideration, the
equation of continuity for the mean velocity components becomes in the case of two-
dimensional motion

∂u
∂x

+ ∂w

∂z
− φl = 0 (5.9)
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Integration over z produces

h∫
0

∂u
∂x

dz + [ w ]h
0 −

h∫
0

φldz = 0 (5.10)

and insertion of condition (5.4) for a solid bottom surface

h∫
0

∂u
∂x

dz + u|z=h
∂h
∂x

+ ∂h
∂t

−
h∫

0

φl dz = 0 (5.11)

By virtue of Leibniz’s rule (see Appendix) for the differentiation of an integral, the first
term can be rewritten as

∂

∂x

h∫
0

udz − u |z=h
∂h
∂x

(5.12)

The equation of continuity becomes finally

∂h
∂t

+ ∂

∂x
(V h) − i = 0 (5.13)

in which i is the net lateral inflow per unit width of flow, which results from the integration
of φl in (5.11). Equation (5.13) was probably first derived by Dupuit (1863; p. 149) for
i = 0.

5.2.2 Conservation of momentum

The conservation of momentum at a point in a moving Newtonian fluid is given by the
Navier–Stokes equation. When the flow is turbulent, this is conveniently transformed
into the Reynolds equation for the mean quantities. The Reynolds equation can be readily
obtained from Equation (1.12), by replacing each of the dependent variables by the sum
of its mean and fluctuation, both in the turbulence sense, and by subsequently applying
the time-averaging operation over a suitable time period. For the two-dimensional case
of incompressible flow under consideration, and with a source inflow φl, the component
of Equation (1.12) parallel to the bottom surface can be written as follows

∂u
∂t

+ u
(

∂u
∂x

+ φl

)
+ w

∂u
∂z

= −g sin θ − 1

ρ

∂p
∂x

+ ν∇2u − (∇ · v′) u′ (5.14)

in which v′ = (u′i + v′j + w′ k) is the turbulent fluctuation in the velocity vector v =
(v + v′). Observe that (5.14), without the last two terms on the right-hand side, is in
the form of Euler’s equation (1.11); these two terms represent respectively the stresses
due to viscosity and the Reynolds stresses due to the turbulence. To obtain a momentum
equation in terms of the average velocity V defined in (5.8), it is necessary to integrate
(5.14) over z, as follows. For convenience, first, the zero quantity, consisting of (5.9)
multiplied by u, is added to (5.14) to obtain

∂u
∂t

+ ∂

∂x

(
u2) + ∂

∂z
(w u) = −g sin θ − 1

ρ

∂p
∂x

+ ν∇2u − (∇ · v′)u′ (5.15)
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By using Leibniz’s rule (see Appendix), one can write the integral of the first term on
the left of Equation (5.15) as

h∫
0

∂u
∂t

dz = ∂

∂t
(V h) − u|z=h

∂h
∂t

(5.16)

In the same way, by also using surface condition (5.4) and the assumption that

h∫
0

u2dz = V 2h (5.17)

one obtains the integral of the second term on the left of (5.15) as

h∫
0

∂(u2)

∂x
dz = ∂

∂x
(V 2h) − w u|z=h + u|z=h

∂h
∂t

(5.18)

On account of the definition of V in (5.8), the assumption of (5.17) can be valid only if
u is uniform, that is, constant along z. With a no-slip condition at z = 0, this is never the
case; nevertheless, in turbulent open channel flow, which is well mixed in the vertical,
it is usually an acceptable approximation. However, for laminar and transitional flows,
a correction coefficient (often associated with the name of Boussinesq; see Bakhmeteff,
1941), namely,

βc =
h∫

0

(u/V )2dz/h (5.19)

may have to be applied to the first term on the right-hand side of (5.18), i.e. the advective
acceleration term.

The integration of the other terms in Equation (5.15) is straightforward. The third
term on the left yields upon integration simply the product of w and u at z = h. If
it can be assumed that θ is small, the first term on the right can be approximated by
replacing − sin θ by − tan θ = S0, which is the slope of the bottom surface, so that its
integral becomes (gS0h). Similarly, the pressure gradient in the second term on the right
can be replaced by the water depth gradient on account of (5.7), provided the slope angle
θ is small enough.

In the hydraulic approach to free surface flow, the integral of the last two terms
of Equation (5.15) is usually expressed in terms of the friction slope Sf, as a closure
parameterization to account for the effects of the viscosity and the turbulence. For the
present case of two-dimensional flow, this is

h∫
0

ν

(
∂2u
∂x2

+ ∂2u
∂z2

)
dz −

h∫
0

(
∂(u′u′)

∂x
+ ∂(w′u′)

∂z

)
dz = −ghSf (5.20)



water on the land surface 166

With (5.16), (5.18) and (5.20), the integral of (5.15) becomes finally

∂

∂t
(V h) + ∂

∂x
(V 2h) + hg

(
∂h
∂x

+ Sf − S0

)
= 0 (5.21)

which is the momentum equation of the hydraulic theory of free surface flow. This result
is often written in an alternative form, which is obtained by subtraction of continuity
(5.13) multiplied by V , and by subsequent division by h; thus the momentum equation
is often written as follows

∂V
∂t

+ V
∂V
∂x

+ g
(

∂h
∂x

+ Sf − S0

)
+ iV

h
= 0 (5.22)

Equations (5.13 and (5.22) are known as the shallow water equations; a simpler
version was first presented by Saint Venant in the nineteenth century, so that they are
often named after him. To recapitulate briefly, the shallow water equations are based
on the following assumptions. (i) The pressure distribution in the water is hydrostatic
leading to Equation (5.5); (ii) the bed slope S0 is constant and small, which leads from
Equation (5.6) to (5.7), and allows replacement of sin θ by tan θ = −S0; (iii) the effects
of viscous and turbulent stresses can be parameterized and combined in a friction slope
Sf, defined in Equation (5.20); (iv) the velocity is not very dependent on z, so that βc in
Equation (5.19) can be taken as unity.

Example 5.1. Steady flow

The meaning of the different terms in Equation (5.22) can be illustrated by considering
steady flow conditions in the absence of lateral inflow. Thus, after putting both ∂V/∂t
and i equal to zero, (5.22) can be readily integrated over a flow distance δx to yield

V 2
1

2
+ gh1 + gS0δx = V 2

2

2
+ gh2 + gSfδx (5.23)

in which the subscripts 1 and 2 refer to the entrance and exit of the flow section δx .
Figure 5.2 shows the balance of the left- and right-hand sides of this equation. Recall
that the bed slope is sufficiently small, so that x , the coordinate along the bed, can be
represented as horizontal in the figure. Because the integration of a force (or rate of
momentum change) over distance yields work, the terms of Equation (5.23) may be
considered as different forms of energy. In open channel hydraulics the energy per unit
weight with respect to the channel bottom is called the specific energy; in the present
notation this is [h + V 2/(2g)]. As shown in Figure 5.2, its elevation defines the energy
grade line (EGL); the friction slope Sf is the slope of the energy grade line. The quantity
[z + p/(ρg)] in any cross section defines the hydraulic grade line (HGL); because this
is equal to the water depth h, the HGL coincides with the water surface.

Equations (5.13) and (5.22) were derived for two-dimensional flow, i.e. an infinitely
wide channel. It can, however, readily be shown that for a channel with finite cross
section of arbitrary shape, but wide enough so that the flow is approximately still
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Fig. 5.2 Illustration of the

different terms in
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the integrated shallow

water momentum

equation under steady

conditions.

two-dimensional, they assume the form (see, for example, Stoker, 1957)

∂ Ac

∂t
+ ∂

∂x
(V Ac) − Ql = 0 (5.24)

and

∂V
∂t

+ V
∂V
∂x

+ g
(

∂h
∂x

+ Sf − S0

)
+ QlV

Ac
= 0 (5.25)

where Ac is the wetted cross-sectional area and Ql the lateral inflow per unit length of
channel.

In hydrology the average velocity is often of less importance than the rate of flow,
Q = V Ac. For a wide channel of surface width Bs = (∂ Ac/∂h), (5.13) and (5.22) assume
the form

∂ Ac

∂t
+ ∂ Q

∂x
− Ql = 0 (5.26)

and

A2
c
∂ Q
∂t

+ 2Ac Q
∂ Q
∂x

+ (
g A3

c − Q2 Bs
) ∂h

∂x
+ g A3

c(Sf − S0) = 0

5 . 3 F R I C T I O N S L O P E

In the determination of the friction slope in the shallow water equations, it is commonly
assumed that the resistance to flow, resulting from the last two terms of Equation (5.15),
acts in the same way in unsteady nonuniform flow as it does in steady uniform flow.
Thus, from inspection of (5.21) or (5.22) for such conditions one has

Sf = S0 (5.27)

The definition of Sf for two-dimensional flow, as given in Equation (5.20), can be
written for uniform flow, when ∂()/∂x = 0, as

Sf = −1

ρgh

h∫
0

∂τzx

∂z
dz (5.28)
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in which here

τzx = ρ

(
ν
∂u
∂z

− (w′u′)
)

(5.29)

is the shear stress and in which the subscript z denotes the direction normal to the plane
on which the stress acts and the subscript x denotes the direction of this stress itself.
Equation (5.28) is readily integrated with the boundary condition that the shear stress at
the water surface is zero. If τ0 is the shear stress at the bottom wall where z = 0, this
integration yields

Sf = τ0

γ h
(5.30)

or, in terms of the friction velocity Sf = u2
∗/gh. Unfortunately, an expression for Sf

in terms of the shear stress at the wall is not of much help at this point. Instead, to
be able to solve the shallow water equations an expression is required in terms of the
main dependent variables, namely h and V . Hence, to repeat briefly, first a relationship is
obtained relating the slope S0 with the flow variables h and V (or the analogous variables,
such as Ac and Q) under uniform steady conditions. In accordance with Equation (5.27),
this relationship obtained for S0 is then used in the shallow water momentum equation
to parameterize Sf in terms of the same flow variables. In the following two sections,
relationships are presented for laminar and turbulent flow.

5.3.1 Laminar flow

The case of two-dimensional steady uniform flow, that is plan-parallel flow down a plane
surface, can be solved exactly for laminar conditions, when both u′ and w′ are zero. For
such conditions all terms in Equation (5.14) (or (5.15)) are zero, except the first and third
on the right-hand side. Integrating these remaining two terms twice (with the conditions
that ∂u/∂z = 0 at z = h and that u = 0 at z = 0) and making use of Equation (5.27) or
−sin θ = Sf, one obtains the velocity profile

u = gSf

ν
(hz − z2/2) (5.31)

After normalization with the maximal velocity uh at z = h, this velocity profile can be
written as u/uh = 2(z/h) − (z/h)2, which is illustrated in Figure 5.3. Integrating (5.31)
over z, according to (5.8), one obtains the average velocity,

V = gSfh2

3ν
(5.32)

In the absence of lateral inflow by precipitation the applicability of Equation (5.32)
depends mainly on the Reynolds number Re ≡ (V h/ν); as Re increases the flow will
become turbulent, but the transition may also depend on the smoothness of the surface,
the uniformity and stationarity of the flow, and possibly other factors. Experimentally,
Equation (5.32) has been found to fail for Re values as low as 300, and for flows over
smooth surfaces without lateral inflow it has also been observed to be valid up to Re =
1000 (see, for example, Chow, 1959; Woo and Brater, 1961). An upper limit of
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Re ≡ (V h/ν) = 500 can be taken as a typical value. The case of rectangular channels
with finite width has been studied by Woerner et al. (1968).

The effect of rainfall impact at the free surface on the friction slope was considered
by Yoon and Wenzel (1971). Their experimental results over smooth surfaces can be
summarized by a simple formula proposed in Brutsaert (1972),

V = gSfh2

ν
(
3 + cSd

f Pe
) for Re <800, S0 ≤ 0.03 (5.33)

where P is the rainfall intensity in cm h−1 and c, d, e are constants, whose values were
estimated to be c = 5.36, d = 0.16 and e = 0.36. With additional data Shen and Li
(1973) subsequently concluded that c = 2.32, d = 0 and e = 0.40.

5.3.2 Turbulent flow

For Reynolds numbers larger than 1000, free surface flow in nature may generally be
considered fully turbulent and rough, with little or no effect from the impact of lateral
inflow. Unlike laminar flow, however, even when it is steady and uniform, there is no
exact solution available for turbulent flow. As was the case for the analogous turbulence
closure problem in the atmosphere discussed in Chapter 2, the main difficulty here is
the presence of the second moments of the velocity fluctuations, that is the Reynolds
stress, in Equations (5.14) and (5.29). At present, the only practical way to eliminate (or
determine) this unknown shear stress τzx is either to invoke similarity theory or to rely
entirely on empirical results.

Similarity for two-dimensional turbulent flow
Uniform two-dimensional turbulent flow can be considered as a fully developed boundary
layer. For rough flow conditions, which are usually the case for flow over a natural land-
surface, the velocity profile in the inner region of the neutral boundary layer is given by
Equations (2.40) or (2.41). Strictly speaking, one can apply this logarithmic profile only in
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the lower 10% to 20% of the boundary layer thickness; in the outer reaches of the boundary
layer, some type of velocity defect law is more appropriate. However, in two-dimensional
free surface flow this defect law (see, for example, Keulegan, 1938) is often assumed to be

uh − u = −u∗
k

ln

(
z − d0

h − d0

)
(5.34)

which implies that Equation (2.40) can be used over the whole depth of the flow. This
is apparently only an approximation, but in laboratory type turbulent boundary layers the
difference between Equations (2.40) or (5.34) and observed velocity profiles in the outer
region is quite small (see, for example, Hinze, 1959, p. 473; Monin and Yaglom, 1971,
pp. 300–301, 315–317; Kisisel et al., 1973). Thus, in light of (2.41) and (5.30), the mean
velocity can be expressed roughly (for h � z0) as

V = (gSf)1/2(h − d0)

kh1/2

[
ln

(
h − d0

z0

)
− 1

]
(5.35)

or (when also h � d0),

V = (gSfh)1/2

k
[ln (h/z0) − 1] (5.36)

As an aside, it should be mentioned that one possible problem with the application of
(2.40) to open channel flow is that z0 may be a function of Froude number Fr = V/(gh)1/2

(Iwagaki, 1954; Chow, 1959); this means that the structure of the turbulent boundary layer
of water flowing down a slope may also be affected by gravity, g, beside the variables that
were considered in the derivation of Equation (2.40). A second potential difficulty is the
effect of the raindrop impact. For instance, Kisisel et al. (1973) showed that for shallow
flows with h values around 15 mm and a high rainfall intensity of P = 125 mm h−1, the
measured velocity profiles (uh − u) were logarithmic, but the resulting V values would be
only about half the magnitude predicted by (5.36). For less shallow flows, however, the
effect of rainfall impact is likely to be small.

For certain applications it has on occasion been found convenient to express the turbulent
velocity profile by a simple power function of height, instead of by (2.40). Among the more
recent forms, for z � d0, the following has been used

u = Cpu∗

(
z
z0

)m

(5.37)

in which Cp and m are constants. The use of power functions to describe wind speed profiles
in the lower atmosphere goes back at least to the work of Stevenson in the 1870s (see
Brutsaert, 1982, for a review). An equation similar to (5.37) was implicit in the work of
Prandtl and Tollmien (1924; see also Brutsaert, 1993), and it has subsequently been applied
by many in the solution of various turbulent transport problems. The parameters Cp and m
may be determined by fitting Equation (5.37) to the more accurate (2.41) over the range of
heights z that are of interest; values of m tend to lie in the range from 1/6 to 1/8, with a
typical value of 1/7, and Cp is of the order of m−1. Integration of (5.37) according to (5.8)
and substitution of the friction velocity u∗ (see (2.32)) by (5.30) yields the average velocity

V =
[

Cpg1/2

(m + 1)zm
0

]
S1/2

f hm+1/2 (5.38)

A derivation of Equation (5.38), somewhat different from the present one, was first published
by Keulegan (1938). The main point of interest is that (5.38) can serve as a theoretical basis
for some of the empirical equations for Sf that will be reviewed next.
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Empirical equations
Most empirical equations derived from uniform steady flow measurements are of the
form

V = Cr Ra
h Sb

f (5.39)

where Cr is a resistance factor, which ideally depends only on the nature of the channel,
and a and b are constants; Rh is the hydraulic radius defined as

Rh = Ac

Pw
(5.40)

in which Ac is the cross-sectional area of the channel, and Pw the wetted perimeter of
that area. In two-dimensional flow situations and wide channels, the hydraulic radius
equals the depth of the flow, or Rh = h.

Example 5.2

This can be seen in the case of a channel with a trapezoidal cross section with a water
depth h, a bottom width Bb and a water surface width Bs (see Figure 5.4); according to
(5.40), this has a hydraulic radius

Rh = h(Bs + Bb)/2

[(Bs − Bb)2 + 4h2]1/2 + Bb

which approaches h as both Bs and Bb become large (compared to h) and practically
equal to each other.

Probably the oldest form of open channel equation (5.39) is the one developed in
France by Chézy around 1770 in which a = b = 1/2 (Mouret, 1921). Numerous expres-
sions have been proposed for Cr (see Chow, 1959, p. 94, for a review). Some insight can
be gained in the nature of Cr, by comparing Chézy’s equation with the more theoretically
based expressions for turbulent flow. It can be seen from the similarity expression for
wide channels (5.36), that in the Chézy equation the resistance factor Cr is given by
Cr = (g/k)1/2[ ln (h/z0) − 1]; this indicates that Cr depends not only on the roughness
but also on the hydraulic radius. It can also be seen from the power function expression
(5.38), that Cr is independent of h, and therefore of Rh, only if m = 0, that is when
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Table 5.1 Some typical values of the roughness coefficient n for natural channels

Channel type n

Earth, straight, with short vegetation 0.02–0.03
Gravel bed, straight 0.03–0.04
Earth and gravel, winding with some weeds on banks 0.03–0.05
Sand and gravel bed with boulders or with brush and overhanging

trees on banks
0.035–0.06

Boulders and banks of exposed rock 0.05–0.08
Earth overgrown with weeds 0.07–0.09

the velocity is uniform along the vertical. This suggests that for a given channel Cr can
only be truly constant for highly turbulent flow, or for very high Reynolds numbers
Re ≡ V h/ν.

Another very popular formula is the Gauckler–Manning (GM) equation, named after
the two engineers who contributed most to its development (see Powell, 1962; 1968;
Williams, 1970; 1971). It is usually written as

V = 1

n
S1/2

f R2/3
h (5.41)

The constant n is referred to as the channel roughness coefficient, when the variables
are expressed in SI units. Numerous experiments have been carried out to determine it
for all kinds of channels and surfaces. Some values are shown in Table 5.1, but more
detailed results for a wider range of conditions can be found in Chow (1959) and in
Barnes (1967). Comparison with Equation (5.38) shows that the GM formula (5.41) can
be derived theoretically by assuming a power law such as (5.37) with m = 1/6. This
indicates that the GM formula can be expected to be valid over a range of lower Reynolds
numbers than Chézy’s, which requires the extreme value m = 0 for a perfectly uniform
velocity profile. Equation (5.38) also shows that n is directly proportional to z1/6

0 ; it
should be recalled from Section 2.5.2 that, as a first approximation, z0 may be assumed
to be of the order of one tenth of the size of the roughness elements of the wall. In any
event, the power law assumption, on which the GM equation is implicitly based, should
be adequate for most practical applications. This is illustrated in Figure 5.5, which gives
a comparison between the dependence of the average velocity V on the water depth
(h/z0), as calculated with the logarithmic profile (5.36) and that calculated with the
power profile (5.38). The two curves display satisfactory agreement for the value of the
constant Cp = 5.4. Comparison of the GM equation (5.41) with (5.38) produces then
the following relationship between the channel roughness coefficient and the boundary
layer roughness height,

n = 0.0690z1/6
0 (5.42)

in which z0 is expressed in metres.
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The equations of Chézy and Gauckler–Manning suggest that a in (5.39) normally lies
in a range between 0.5 and 0.7 under fully turbulent flow conditions. On the other hand,
Equation (5.32) shows that a = 2 for laminar flow. In some studies of high Reynolds
number sheet flow over surfaces covered with short vegetation, such as grass, it has
been concluded that a, as the power of h, may have an intermediate value close to unity.
Horton (1938) adopted a = 1 to derive the rising hydrograph; he conjectured that this
might represent a flow that is 75% turbulent and 25% laminar. Horner and Jens (1942)
derived this value of a = 1 from experimental data by different investigators. An analysis
by Henderson and Wooding (1964) of data published by Hicks (1944) confirmed that
a may indeed be close to unity over a very rough or grass-covered surface. Wooding
(1965) interpreted this phenomenon by noting that, owing to fluctuations in depth and
roughness over an irregular surface, the flow regime can vary spatially and temporally
between laminar and turbulent; in addition, even when the flow near the water surface
is turbulent, the flow within the lower layers between the grass stems and leaves may be
more like laminar seepage through a porous medium.

5.3.3 Summary of friction slope parameterizations

Equation (5.39) can be used as a general expression for the friction slope Sf. For two-
dimensional flow or for wide channels, it assumes the form

V = Crha Sb
f (5.43)

which can also be formulated conveniently in terms of the rate of flow per unit width,
q = V h. The values of the parameters for laminar and turbulent flow are summarized in
Table 5.2
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Table 5.2 Values of the parameter constants in the friction slope Sf as given by Equations (5.39) or (5.43)

Regime

Laminar Turbulent

Parameter Without rain With rain (Gauckler–Manning) (Chézy)

Cr
g

3ν

g
ν(3 + cSd

f Pe)
n−1 Cr

a 2 2 2/3 1/2
b 1 1 1/2 1/2

Note: P is the rainfall intensity and values of the constants c, d and e are given following
Equation (5.33).

5 . 4 G E N E R A L C O N S I D E R AT I O N S A N D S O M E F E AT U R E S
O F F R E E S U R FAC E F L OW

The solution of the shallow water equations (5.13) and (5.22) (or (5.24) and (5.25)) is not
easy, and most flow problems encountered in natural situations have to be analyzed by
numerical methods. The availability of digital computation technology in recent decades
has greatly facilitated this, and rapid advances have been made in this field (see Liggett
and Cunge, 1975; Cunge et al., 1980; Tan, 1992; Montes, 1998). Nevertheless for a better
understanding of their structure and the physical implications, it is useful to consider
simpler forms of these equations; these are valid in certain special situations, for which
solutions may be more easily obtainable, or for which important features of the flow can
be deduced by inspection.

5.4.1 Complete system of the shallow water equations: small disturbances

As can be seen in the second term and in the term containing Sf, Equation (5.22), describing
the conservation of momentum, is a nonlinear partial differential equation. However, if the
flow is a small departure from an initially uniform steady state, it is possible to linearize the
shallow water equations, which greatly facilitates the solution. More importantly, however,
not only is the solution easier, but it also brings out clearly some of the general physical fea-
tures, regarding the coexistence of different wave types, which are inherent in the nonlinear
system as well.

Consider for this purpose a small departure from uniform steady flow, by the substitution
of V = V0 + Vp and h = h0 + hp, in which the subscript 0 refers to uniform steady condi-
tions and the subscript p refers to a small perturbation or disturbance. This is illustrated in
Figure 5.6 for the water depth h. Thus Equations (5.13) and (5.22) become, after retention
of the first-order terms,

V0
∂hp

∂x
+ h0

∂Vp

∂x
+ ∂hp

∂t
− i = 0

and (5.44)

∂Vp

∂t
+ V0

∂Vp

∂x
+ g

∂hp

∂x
+ g(Sf − S0) = 0
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Solutions of the dynamic part
If the departures Vp and hp are assumed to be small, one can, as a further approximation,
neglect the effect of the additional turbulence resulting from the perturbation, and put
Sf = S0. This leaves then only the purely dynamic part of the momentum equation, i.e. the
first three terms of the second of Equations (5.44). Differentiating the second of (5.44) with
respect to x , and eliminating (∂Vp/∂x) by means of the first, one can combine these two
equations into one, or in the absence of lateral inflow,

∂2hp

∂t2
+ 2V0

∂2hp

∂x∂t
+ (

V 2
0 − gh0

) ∂2hp

∂x2
= 0 (5.45)

Because the undisturbed flow is uniform and steady, it is convenient to describe the motion of
the small disturbance relative to a reference moving with the velocity V0 of this undisturbed
flow. This can be done by substituting xm = (x − V0t) and tm = t , where the subscript m
refers to the moving reference; thus the partial derivatives are ∂/∂x = ∂/∂xm and (∂/∂t) =
(∂/∂tm) − V0(∂/∂xm), and Equation (5.45) becomes

∂2hp

∂t2
m

− gh0
∂2hp

∂x2
m

= 0 (5.46)

Similarly, by differentiating the first of (5.44) with respect to x , substituting (∂hp/∂x) from
the second of (5.44) and by using the same coordinate transformation, one obtains

∂2Vp

∂t2
m

− gh0
∂2Vp

∂x2
m

= 0 (5.47)

The same type of equation can also be derived for the rate of flow q = V h. Putting q = q0 +
qp, one has q0 = V0h0 and qp = V0hp + Vph0, because Vphp is negligible. Thus one obtains,
by adding Equations (5.46) and (5.47), after multiplying each by V0 and h0, respectively,

∂2qp

∂t2
m

− gh0
∂2qp

∂x2
m

= 0 (5.48)

Equations (5.46), (5.47) and (5.48) are in the form of the classical linear wave equation

∂2 y
∂t2

m

− c2
0

∂2 y
∂x2

m

= 0 (5.49)
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in which the dependent variable y can represent hp, Vp or qp, and in which

c0 ≡ (gh0)1/2 (5.50)

is a constant introduced at this point for conciseness of notation. The general solution of
this wave equation can be written as

F1 [xm − c0tm] + F2 [xm + c0tm] (5.51)

where F1 and F2 are arbitrary functions, which must be determined from the initial and
boundary conditions. It can be readily verified that Equation (5.51) is indeed a solution
by substituting it back into (5.49) and carrying out the differentiations. It can also be
shown, that the solution must have the form of (5.51), as follows. Consider for this purpose
the coordinate transformations ξ = xm − c0tm and η = xm + c0tm, which lead from y as a
function of xm and tm to (say) Y as a function of ξ and η, or

y(xm, tm) = Y (ξ, η)

By applying the chain rule of differentiation to (5.49) with this equality, one obtains the
differential equation for Y , or

∂2Y
∂ξ∂η

= 0

This shows that (∂Y/∂ξ ) is independent of η, and conversely that (∂Y/∂η) is independent
of ξ . Hence if Y is to depend on both ξ and η it must have the form Y = F1(ξ ) + F2(η),
which is the same as (5.51).

The form of Equation (5.51) describes actually two waves, each with a speed of prop-
agation c0 (relative to a reference moving with the fluid velocity V0 of the undisturbed
flow), but traveling in opposite directions. To distinguish the speed of propagation of a
disturbance or of a wave, from the velocity of the fluid itself, it is common to refer to it
as celerity. As an illustration, consider now the case where y represents the water surface
elevation hp, which is the easiest to visualize. In this case, initially at tm = 0, the function
F1(xm − c0tm) defines a water surface configuration hp = F1(xm); at a later time tm = tm1 it
describes the configuration hp = F1(xm − c0tm1). However the water surface shape is still
the same, except that during the tm1 units of time it has moved to the right without distortion
over a distance c0tm1. The same can be said about the function F2(xm + c0tm), which defines
a water surface configuration moving in the opposite direction, with the same celerity c0.
The actual displacement of the water surface is the sum of these two waves. Equation (5.50)
is commonly referred to as Lagrange’s celerity equation.

Example 5.3. Long channel with arbitrary initial conditions

To determine the arbitrary functions F1 and F2, initial and boundary conditions are needed.
Consider a wide uniform channel extending to xm = ±∞ from the (moving) origin at
xm = 0. Assume as initial conditions that the variable y = f (xm) and also its time derivative
(∂y/∂tm) = g(xm) are known for any value of xm. Thus with (5.51) one has

y(xm, 0) = f (xm) = F1(xm) + F2(xm)

∂y
∂tm

∣∣∣∣
xm,0

= g(xm) = c0

[−F ′
1(xm) + F ′

2(xm)
] (5.52)
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Division of the second of Equations (5.52) by c0 followed by integration and subsequent
combination with the first of (5.52), yields the following form for the two functions

F1(xm) = 1

2
f (xm) − 1

2c0

xm∫
xm0

g(s)ds

F2(xm) = 1

2
f (xm) + 1

2c0

xm∫
xm0

g(s)ds

(5.53)

in which s is the dummy integration variable. Thus the solution (5.51) can be written for
this case as

y = 1

2
[ f (xm − c0tm) + f (xm + c0tm)] + 1

2c0

xm+c0tm∫
xm−c0tm

g(s)ds (5.54)

which is commonly attributed to d’Alembert. This result (5.54) is equally applicable to the
water surface depth hp, the velocity Vp and the rate of flow qp. However, in each case the
functions f (xm) and g(xm) should represent the initial conditions of the intended variable.

Example 5.4. Infinitely long channel with zero initial time derivative

If the value of the time derivative of the variable in question is initially equal to zero, or
g(xm) = 0, d’Alembert’s solution (5.54) becomes simply

y = 1

2
f (xm − c0tm) + 1

2
f (xm + c0tm) (5.55)

As an illustration, consider the following function to describe the initial disturbance,

f (xm) = [
α
(
1 + 10x2

m

)]−1
(5.56)

In this expression α is a constant, which should be large to ensure that the perturbation
is small, compared to the undisturbed part of the variable, i.e. h0, V0 or q0, describing the
steady uniform flow. With this initial condition, the solution is, in accordance with Equation
(5.55),

y(xm, tm) = 1

2α

[(
1 + 10(xm − c0tm)2

)−1 + (
1 + 10(xm + c0tm)2

)−1
]

(5.57)

This solution is shown in Figure 5.7 for the values c0tm = 0, 0.2, 0.4, 0.8 and 1.2, and
illustrates the propagation of the disturbance with time, relative to the reference point
xm = 0, which is moving with the velocity V0.

If the initial disturbance is a unit impulse y = δ(xm) (see Appendix) (and ∂y/∂t = 0),
Equation (5.55) yields the unit response function for an infinitely long channel as

u = 1

2
[δ(xm − c0tm) + δ(xm + c0tm)]

or, in the original coordinate system

u = 1

2
[δ (x − (V0 + c0)t) + δ (x − (V0 − c0)t)] (5.58)

This describes a translatory motion of two delta functions, one with, and one against the
flow V0. Equation (5.56) is not a delta function, but Figure 5.7 gives an idea of how the two
unit impulses in (5.58) proceed.
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Fig. 5.7 Illustration of the motion of a disturbance, whose initial distribution is given by

Equation (5.55). This disturbance is made up of two components, which are one half of the

original disturbance and which are moving away in opposite directions from the origin xm = 0.

The origin itself is moving downstream with a velocity V0. The curves are obtained with

Equation (5.56) for c0tm = 0, 0.2, 0.4, 0.8, and 1.2.

Example 5.5. Semi-infinite channel with known upstream inflow

A situation which has been the subject of many studies is that of a channel reach, with a
given inflow at its upstream end. If the upstream end is taken as the origin, where x = 0,
the boundary and initial conditions can be written as

y(0, t) = yu(t); x = 0, t > 0

y(∞, t) finite; x → ∞, t > 0

y(x, 0) = 0; x > 0, t = 0

∂y(x, 0)

∂t
= 0; x > 0; t = 0

(5.59)

These conditions can now be used with Equation (5.49) to solve the problem. However,
rather than to attempt a frontal attack, it is convenient here to make use of the d’Alembert
solution (5.58) for the unit impulse derived in the previous example, and by inspection of
Figure 5.7. This shows immediately that the component of that solution moving to the left
away from x = 0 can be considered an image, and that the component moving into the
domain x > 0 is the desired result. Thus one has the unit response function, that is the
solution for an input δ(t) at x = 0,

u = u(x, t) = δ(x − (V0 + c0)t) (5.60)

If the input at x = 0 is actually y = yu(t) instead of a delta function, the solution can be
readily obtained by convolution. For instance, in the case where y(t) represents the flow
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rate disturbance qp, the solution resulting from an inflow qu(t) at x = 0 is

q = q(x, t) = q0 +
t∫

0

qu(τ )δ(x − (V0 + c0)(t − τ ))dτ (5.61)

or, upon integration,

q = q(x, t) = q0 + qu(t − x/(V0 + c0)) (5.62)

To repeat briefly the results of this section, general solutions of the dynamic part of
the shallow water equations result in two waves; their speed of propagation c0 = (gh0)1/2

relative to the mean motion, is also known as Lagrange’s celerity equation (cf. Equation
(5.50)). One of these “dynamic” waves is moving in the direction of the current and the
other against the current. Thus two observers, one moving downstream with a velocity
c01 ≡ (V0 + c0) and the other with a velocity against the current c02 ≡ (V0 − c0), would
see the small disturbance as a stationary, i.e. non-moving, displacement of the surface from
equilibrium. Recall in this context, that the ratio V0/c0 defines the Froude number for steady
uniform flow, that is

Fr0 = V0

(gh0)1/2
(5.63)

Therefore, when c02 < 0, or Fr0 < 1, the flow is subcritical and this disturbance (or the
observer) actually moves upstream; when c02 > 0, the flow is supercritical, and while this
disturbance still moves against the current, it is smaller than V0 and is thus swept down-
stream. The paths of these two observers traced on the x–t plane are called characteristics.
From the above analysis it follows that these characteristics can be defined by the ordinary
differential equations

dx
dt

= V0 + (gh0)1/2 = c01

and (5.64)

dx
dt

= V0 − (gh0)1/2 = c02

The concept of characteristics, which is being introduced here in an offhand way, arises
formally in the theory of partial differential equations. However, this is beyond the scope
of the present discussion. For an introduction to the mathematics, the reader is referred to
such books as Sommerfeld (1949), and on the application of characteristics to free surface
flow to Stoker (1957) or Abbott (1975).

Solutions of complete system: two types of wave
If the last term in the second of Equations (5.44) is not neglected, it must also be expressed
in terms of the initial steady uniform flow variables and their perturbations; making use of
(5.39) for flow in a wide channel, with Rh = h (or (5.43)), one obtains

Sf = (V0 + Vp)2

C2
r (h0 + hp)2a

= V 2
0

C2
r h2

0

[(1 + 2Vp/V0 + · · ·)(1 − 2ahp/h0 + · · ·)]
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or, neglecting higher-order terms,

Sf − S0 = b−1 S0[(Vp/V0) − (ahp/h0)] (5.65)

for which values of a and b can be taken from Table 5.2. In many applications in hydrology,
the discharge rate q is of greater interest than the water depth h or the velocity V . Hence,
replacing V by q/h and making use of q = q0 + qp, one can rewrite (5.44) for turbulent
flow with b = 1/2 as follows

∂hp

∂t
+ ∂qp

∂x
− i = 0

and (5.66)

(
gh3

0 − q2
0

) ∂hp

∂x
+ 2q0h0

∂qp

∂x
+ h2

0

∂qp

∂t
+ 2gh3

0 S0

(
qp

q0
− (1 + a)hp

h0

)
= 0

These may be combined into one equation by operating with (∂/∂t) on the second of (5.66)
and then substituting (∂hp/∂t) from the first, or

h2
0

∂2qp

∂t2
+ 2q0h0

∂2qp

∂t∂x
+ (

q2
0 − gh3

0

) ∂2qp

∂x2
+ (

2gh3
0 S0/q0

) ∂qp

∂t

+ 2 (1 + a) gS0h2
0

∂qp

∂x
= (

q2
0 − gh3

0

) ∂i
∂x

+ 2 (1 + a) gh2
0 S0i

(5.67)

This equation reduces to the one first derived by Deymie (1938) for the special case
without lateral inflow, i.e. for i = 0, and with Chézy’s formula, i.e. for a = 1/2. The solution
of Deymie’s equation for the propagation of a disturbance resulting from a known qp = qu(t)
at x = 0, has been obtained by different methods (see Deymie, 1939; Massé, 1939; Lighthill
and Whitham, 1955; Dooge and Harley, 1967).

The more general solution, for an inflow qp = qu(t) at x = 0 and an arbitrary non-
zero lateral inflow i = i(x, t), has been presented by Brutsaert (1973) and the reader is
referred to the journal article for the mathematical details. The conditions, that must be
satisfied by (5.67) to describe this situation, remain the same as in (5.59), and can be applied
to qp, or

qp(0, t) = qu(t); x = 0, t > 0

qp(∞, t) finite; x → ∞, t > 0

qp(x, 0) = 0; x > 0, t = 0

∂qp(x, 0)

∂t
= 0; x > 0; t = 0

(5.68)

The solution of this problem is

qp(x, t) =
t∫

0

∞∫
0

G(ξ, τ ; x, t) i(ξ, τ )dξdτ

−(
gh3

0 − q2
0

) t∫
0

qu(τ )

[
∂G(ξ, τ ; x, t)]

∂ξ

]
ξ=0

dτ (5.69)
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The symbol G() denotes Green’s function, which can be shown (Brutsaert, 1973) to be in
this case

G(ξ, τ ; x, t) = −(
4gh5

0

)−1/2
exp[d1(x − ξ ) − d2(t − τ )]

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I0

[
d3

(
t − τ − (x − ξ )

c01

)1/2 (
t − τ − (x − ξ )

c02

)1/2
]

× H

[
t − τ − V0(x − ξ )

c01c02
+ (gh0)1/2 |ξ − x |

c01c02

]

− I0

[
d3

(
t − τ − x

c01
+ ξ

c02

)1/2 (
t − τ − x

c02
+ ξ

c01

)1/2
]

× H

[
t − τ − x

c01
+ ξ

c02

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.70)

The constants in (5.70) are d1 = (aS0/h0); d2 = (S0V0/h0)(aFr2
0 + 1)/Fr2

0; and d3 =
(S0V0/h0)[(1 − Fr2

0)(1 − a2Fr2
0)]1/2/Fr2

0; the steady uniform Froude number Fr0 is defined
in Equation (5.63) and the dynamic wave celerities c01 and c02 in (5.64). The symbol H( )
is the Heaviside step function (see Appendix) and I0( ) is the modified Bessel function of
the first kind of order zero.

Example 5.6. Semi-infinite channel with known upstream inflow

In many situations of practical interest, the lateral inflow does not have a large effect on the
solution; therefore, to bring out the most important features of the solution (5.69), in what
follows its simplest form is considered, that is the case i = 0. When the lateral flow i is
absent, only the second term on the right of (5.69) remains. After carrying out the operations
the result can be given as a simple convolution integral (see Appendix)

q(x, t) = q0 +
t∫

0

qu(τ )u(x, t − τ )dτ (5.71)

As before, u(x, t) denotes the unit response of this channel, that is the flow rate qp(x, t) at
any time t and at any point x , resulting from an upstream inflow at x = 0 given by a unit
impulse (or Dirac delta function) qu(t) = δ(t). This can be written as consisting of two parts

u = u1 + u2 (5.72)

The first part of u is given by

u1 = exp(−d4x)δ

(
t − x

c01

)
(5.73)

where

d4 = S0

h0

(1 − a Fr0)(
Fr0 + Fr2

0

)
and the Froude number for steady uniform flow is defined in Equation (5.63). The second
part of u in (5.72) is given by

u2 = d3

2t0

(
x

c01
− x

c02

)
exp(d1x − d2t) I1(d3t0) H

(
t − x

c01

)
(5.74)
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where t0 = [(t − x/c01) (t − x/c02)]1/2, and where d1, d2 and d3 are constants already
defined below Equation (5.70). The symbol I1( ) denotes the modified Bessel function
of the first kind of order one, and H( ) is the Heaviside step function (see Appendix).

The solution (5.72) consists of two wave like motions that modify the steady uniform
flow q0. The first part, given by Equation (5.73), is identical to the solution of the analogous
dynamic case given in (5.60), except that it also contains an exponential decay term in x .
This part retains the form of a delta function and the argument of this delta function shows
that it has the celerity of a dynamic wave, namely the same as given by Equation (5.60) or
the first of (5.64). The amplitude of u1 decreases exponentially, provided d4 > 0. However,
when d4 < 0, that is when Fr0 > a−1, the wave grows exponentially; this is the well-known
criterion for bore formation, namely Fr0 > 2 (in the case of Chézy) or Fr0 > 3/2 (in the case
of GM). For small Froude numbers the amplitude of u1 decays as exp[−S0x/(Fr0h0)] =
exp[−g1/2 S0x/(h1/2

0 V0)] . This means that the dynamic part of the disturbance decays rapidly
and becomes unimportant over short distances x , whenever the bed slope is large and the
flow velocity small. Interestingly, a very similar result was obtained by an analysis of the
nonlinear equations (5.13) and (5.22) by Lighthill and Whitham (1955; see also Stoker,
1957, p. 505), who showed that the dynamic front of any surface disturbance decays as
exp(−gS0t/V0), for small Froude numbers.

The second part, u2 given by Equation (5.74), constitutes the main body of the wave.
Mathematically, the Heaviside step function eliminates singularities from this part of the
solution. Physically, the unit step function guarantees that this part will never forge ahead
faster or further than the position of the dynamic front x = (c01t), given by Equation (5.73),
and it ensures that the first part given by (5.73) represents indeed the leading edge of the
disturbance caused by the unit impulse at x = 0. The celerity of the main body of the wave
can be determined from the mean travel time of the wave. This mean time of occurrence
of a wave is the first moment about the origin, denoted as m ′

1 or μ; this is also called its
centroid or center of area. Therefore, the travel time is the difference between the mean
time of occurrence of the wave at the point of observation and that at the origin x = 0, that
is the time for its center of gravity to reach x . The upstream inflow at x = 0 is given by a
delta function, whose first moment about the origin is zero. Therefore, mathematically the
mean travel time is the first moment of the outflow rate qp(x, t) about t = 0 for a given x , or

m ′
1 =

+∞∫
−∞

tq(x, t)dt (5.75)

The Laplace transform of (5.72) can be used as a moment generating function (Dooge,
1973). Accordingly, the first moment is the first derivative of the Laplace transform at the
origin in the transform domain, and it can be readily shown that it is given by

m ′
1 = x

(1+a) V0
(5.76)

This yields a celerity x/m ′
1 for the main body of the disturbance

ck0 = (1 + a) V0 (5.77)

For reasons which will become clear in Section 5.4.3, a wave with a celerity [(1 + a)V ] is
referred to as a kinematic wave; Equation (5.77) represents its linearized form, as indicated
by the 0 subscript.
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Fig. 5.8 Dimensionless representation of the second part of the unit response function

u+2 = h0u2/ (S0V0) for the upstream inflow problem, as obtained by solution of the linearized

complete shallow water equations. Each curve is shown as a function of time t+ at different

distances x+ downstream from the release point of the unit impulse. The values of the ordinate

and the abscissa are multiplied and divided, respectively, by (e2x+) to allow convenient

comparison between the three curves. The constant is e2 = Fr0/(Fr0 + 1) and the Froude

number is taken as Fr0 = 0.5.

Several features of the solution can be brought out in a more general way by considering
it in a similarity framework. Inspection of the solution suggests that for this purpose one
can define a dimensionless distance along the channel, and a dimensionless time, as follows

x+ = S0x
h0

and t+ = S0V0t
h0

(5.78)

Recalling the definitions given in Equations (5.50), (5.63) and (5.64), one can readily express
the two parts of the solution in terms of these dimensionless variables. Thus one obtains
from (5.73),

u1 = exp(−e1x+)δ(t+ − e2x+) (5.79)

in which the constants depend only on the Froude number, namely e1 = (1 − aFr0)/(Fr2
0 +

Fr0) and e2 = Fr0/(Fr0 + 1). In a similar way, (5.74) yields the second part of the unit
response in terms of the dimensionless variables

u2 = S0V0

h0

e4x+
τ+

exp (ax+ − e5t+) I1 (e6τ+) H (t+ − e2x+) (5.80)

where τ+ = [(t+ − e2x+)(t+ − e3x+)]1/2, a is defined in Equations (5.39) and (5.43),
and the remaining constants are e3 = Fr0/(Fr0 − 1), e4 = [(1 − a2Fr2

0)/(1 − Fr2
0)]1/2/Fr0,

e5 = (aFr2
0 + 1)/Fr2

0, and e6 = [(1 − a2Fr2
0)(1 − Fr2

0)]1/2/Fr2
0. This second part is shown in

Figure 5.8 as a function of t+, as it would be observed at different distances x+ from the
point of release of the unit impulse. To allow an easier display of the evolution of the shape
of this wave and a comparison between the different curves, in the figure t+ is scaled in
the abscissa with x+, and u2 is scaled in the ordinate with x−1

+ ; therefore the horizontal
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axis is made to shrink and the vertical axis is made to stretch, as x+ increases. As men-
tioned, the first part u1 becomes negligible very quickly. For the case shown in Figure 5.8,
Equation (5.79) indicates that at x+ = (0, 1, 5, 20), the relative volume of u1 decreases as
exp(−e1x+) = (1.0, 0.411, 0.0117, 1.9 × 10−8).

The main point of this simple example of a linear analysis, leading to the solution (5.72)
with (5.73) and (5.74) or with (5.79) and (5.80), is to show how in the propagation of free
surface disturbances there are two main types of wave, namely dynamic and kinematic
waves. As shown in Equations (5.60) and (5.64), the former are the result of the first three
terms in (5.22) (or in the second of (5.44)); as shown in (5.77), the latter arise when also the
two slope terms are included in the analysis. Except in unusual cases, such as supercritical
flow (when Fr0 > 1) or dynamic shock (see Chapter 7), the former are normally faster than
the latter, but they tend to decay relatively quickly; comparing (5.64) with (5.77), one sees
that the kinematic wave is faster than the dynamic wave, only when (aV0) > (gh0)1/2, or
Fr0 < (1/a); as noted, two paragraphs earlier, this is also the criterion for bore formation or
dynamic shock. Moreover, when 1 < Fr0 < (1/a), both e4 and e6 become imaginary; this
changes the modified Bessel function I1( ) to a regular Bessel function J1( ), which exhibits
oscillatory behavior. In the linear analysis the two types of waves appear separately, and the
total disturbance is the result of their simple superposition, as shown in (5.72). Because the
momentum shallow water equation (5.22) is quite nonlinear, in real world situations one
can expect these two special types of propagation to interact with each other. Nevertheless,
the linear analysis has clearly illustrated some of their most important features.

As an aside, it is of interest to point out that the ratio of the celerity of the dynamic
waves relative to the mean velocity V , and the relative celerity of the kinematic wave (aV )
is also referred to as the Vedernikov number, namely Ve = (gh)1/2/(aV ) (Vedernikov, 1946;
Chow, 1959). As shown above for the linear case, Ve > 1 is the criterion for bore formation.

5.4.2 The diffusion analogy: a first approximation

In many situations encountered in nature, the flow velocities change relatively slowly, so
that the acceleration (inertia or dynamic) terms (∂V/∂t) and V (∂V/∂x) often are rather
small compared to the other terms in the governing equations. For example, it was noted
by Iwasaki (1967), that in the upper Kitakami, a river some 195 km long draining an
area of 7860 km2 in northern Honshu, these inertia terms were observed to be at most
1.5%, and usually smaller than 1% of the stage gradient g[(∂h/∂x) − S0]. Similarly,
the following values were presented in the Flood Studies Report (Natural Environment
Research Council, 1975) as being typical for British rivers.

Sf

S0
∼ 0.9

∂h/∂x
S0

∼ 2 × 10−2

∂V/∂t
gS0

∼ V ∂V/∂x
gS0

∼ 1.7 × 10−3

(5.81)

Recall that the governing equations of free surface flow describe the conservation of
mass and the conservation of momentum. In this section the consequences are considered
of neglecting these inertia terms in the momentum equations (5.22) or (5.25). However,
the continuity equations (5.13) or (5.24) are left intact.
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The diffusion equation of free surface flow
Consider again the case of a very wide channel. Omission of the acceleration terms
reduces the momentum equation (5.22), in the absence of lateral inflow, to

∂h
∂x

+ Sf − S0 = 0 (5.82)

If Equation (5.39) can be assumed to be valid, the friction slope can be written concisely
as

Sf = αrq1/b (5.83)

where αr = (Crha+1)−1/b, and where as before q = (Vh) is the flow rate per unit width.
Thus (5.82) can be written as

αrq1/b − S0 + ∂h
∂x

= 0 (5.84)

Proceeding in the same way as for Equation (5.67), that is applying ∂/∂t to the momentum
equation (5.84) and ∂/∂x to the continuity equation (5.13), and subtracting one from the
other, one obtains

b−1αrq−1+1/b ∂q
∂t

− ∂2q
∂x2

+ q1/b ∂αr

∂t
= 0 (5.85)

Because αr depends only on the geometry of the cross section, which in turn is related
to the water depth h, the derivative in the third term becomes

∂αr

∂t
= dαr

dh
∂h
∂t

Making use of the continuity equation (5.13) to replace this partial time derivative of h,
i.e. (∂h/∂t) = −(∂q/∂x), and making use of (5.83) to eliminate q1/b, one obtains from
(5.85)

∂q
∂t

−
(

bq
αr

dαr

dh

)
∂q
∂x

=
(

bq
Sf

)
∂2q
∂x2

(5.86)

The same derivation carried out for a channel with wide rectangular cross section Ac =
(Bch) can be shown to yield a similar result, namely

∂ Q
∂t

−
(

bQ
αr

dαr

d Ac

)
∂ Q
∂x

=
(

bQ
BcSf

)
∂2 Q
∂x2

(5.87)

Equations (5.86) and (5.87) are in the form of a nonlinear advective diffusion equa-
tion. Accordingly, the term D = bq/Sf (or bQ/BcSf) can be referred to as diffusivity;
for convenient reference, the term cd = −[(bq/αr)(dαr/dh)] = Sb

f (dα−b
r /dh) (or cd =

−[(bQ/αr)(dαr/d Ac)] = BcSb
f (dα−b

r /d Ac)) will henceforth be called the advectivity.
As usual, the dimensions of the diffusivity are [L2 T−1], and those of the advectivity
[L T−1]. In general descriptive terms, the magnitude of the advectivity reflects the speed
of propagation of a flow disturbance (in q or h), whereas the diffusivity is related to the
speed with which this disturbance will spread out streamwise or, which is equivalent,
dissipate its magnitude.
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Solution of the linearized equation
In most practical applications of this approach, a linearized form of the equation has been
used. This is readily obtained from (5.87) by proceeding as before in Section 5.4.1; thus,
decompose the variables into a uniform steady part and a perturbation, or q = q0 + qp

and h = h0 + hp, and retain only the first-order terms, to obtain

∂qp

∂t
+

(
dq0

dh0

)
∂qp

∂x
=

(
bq0

S0

)
∂2qp

∂x2
(5.88)

This is a linear diffusion equation, in which the constant diffusivity is

D0 =
(

bq0

S0

)
(5.89)

with b = 1/2 for turbulent flow, and the constant advectivity is

cd0 = dq0

dh0
(5.90)

In a linear diffusion channel, this advectivity is clearly the same as the celerity (a + 1)V0

of the main body of the wave of the complete linear solution, given by Equation (5.77).
This will become clear in Section 5.4.3, but it can already be verified by determining
(dq0/dh0) from (5.43) for uniform steady flow. This means that, as will be shown below,
the advectivity of the diffusion equation is also the kinematic wave celerity ck0, or

cd0 = ck0 (5.91)

The linear diffusion formulation in (5.88) was derived for a very wide channel; for a
channel cross section Ac = Ac0 + Acp with a flow rate Q = Q0 + Qp, the basic equation
can be written as

∂ Qp

∂t
+ ck0

∂ Qp

∂x
= D0

∂2 Qp

∂x2
(5.92)

which is the linearized form of (5.87). The diffusivity is now

D0 =
(

bQ0

BcS0

)
(5.93)

and the advectivity is, in light of (5.91),

ck0 = d Q0

d Ac0
(5.94)

This can again be approximated by ck0 = (a + 1)V0, if the channel is wide enough.
The diffusion approximation of free surface flow has been the subject of numerous

investigations (see Schönfeld, 1948; Hayami, 1951; Appleby, 1954; Daubert, 1964; Van
de Nes and Hendriks, 1971; Dooge, 1973). The general case, with an inflow qu(t) at the
upstream boundary of the channel at x = 0 and a nonzero lateral inflow i = i(x, t), has
been presented by Brutsaert (1973) as a special case of (5.69) with (5.70). To allow a
comparison with the solution of the complete shallow water equations, consider again the
same example as before with zero lateral inflow and with a known value of the upstream
inflow qu(t).
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Example 5.7. Semi-infinite channel with known upstream inflow

In the diffusion approach the governing equation is now (5.88), but the boundary conditions
remain essentially the same as given in Equation (5.68) (or (5.59)). As was the case for
the complete formulation in Section 5.4.1, the solution of the linear diffusion analogy is
most conveniently given by its unit response. This is the outflow rate qp(x, t) = u(x, t)
at a distance x downstream from the point x = 0 where the flow rate perturbation is a
delta function or qp(0, t) = qu(t) = δ(t). The unit response can then be used with (5.71)
to calculate the result for any arbitrary function qu(t). The diffusion equation has been
thoroughly studied (see, for example, Carslaw and Jaeger, 1986) for various boundary
conditions. It can be readily shown that this unit response function can be written as

u = x
(4π D0t3)1/2

exp

(−(x − ck0t)2

4D0t

)
(5.95)

This solution has a form which is closely related to the Gaussian or normal distribution in
which the position of the mean is x = (ck0t) and the spatial variance σ 2 = (2D0t). Thus
this unit response confirms that the main body of this wave, that is its centroid, moves
downstream with a celerity, given by the advectivity ck0 of Equation (5.91). It also shows
how the diffusivity causes dispersion or spreading of the wave as it moves along.

To generalize this result it is useful to express it in terms of the dimensionless variables
introduced in (5.78). Substitution of ck0 and D0 (with b = 1/2) from (5.77) and (5.89),
respectively, yields

u = S0V0

h0

x+(
2π t3+

)1/2 exp

{− [x+ − (a + 1)t+]2

2t+

}
(5.96)

This solution of the diffusion approach is compared in Figure 5.9 with the main unit response
u2 in the analogous solution of the complete shallow water equations, as given in (5.80). It
can be seen that there is little difference between the two formulations for larger values of
the dimensionless distance x+. In fact, Figure 5.9 suggests that the diffusion approximation
should be adequate in practical calculations for x+ > 5. However, comparison of Equations
(5.79) and (5.80) with (5.96) also indicates that the agreement between the two sets of curves
in Figure 5.9 is perforce affected by the magnitude of the Froude number Fr0. As mentioned
earlier, the solution of the complete shallow water equations exhibits singular behavior as
Fr0 ≥ 1; therefore it can be expected that the diffusion approach becomes less accurate as
the Froude number approaches unity, i.e. as the flow velocity V0 becomes critical. Finally,
Figure 5.9 illustrates how for small values of x+ the volume under the u2 curve is smaller
than unity; for instance, the u2 curve at x+ = 1.0 is lower than the corresponding diffusion
result. This merely illustrates the fact that for small values of x+ the dynamic wave part u1

is still not negligible; for instance, as mentioned above, at x+ = 1.0, in Equation (5.79) the
term exp(−e1x+) is still 0.411; but it rapidly decays with increasing x+.

The main point of this analysis of the diffusion analogy of free surface flow is that it has
further illustrated how the inertia terms, i.e. the first two terms in Equation (5.22) which
represent acceleration, are the ones that generate the dynamic waves, shown in (5.64) and
(5.73). These waves are absent from the solution given by (5.95) and (5.96). The motion of
the main body of the wave is essentially controlled by the last three terms of Equation (5.22);
both the solution of the complete system and that of the diffusion analogy indicate that the
main body moves with the celerity of a kinematic wave; this will be further discussed in
Section 5.4.3.
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Fig. 5.9 Comparison between the unit response function u+2 = h0u2/ (S0V0) for the upstream inflow

problem, obtained with the complete shallow water equations (solid line) and u+ = h0u/ (S0V0)

obtained with the diffusion approximation (thin line). Each unit response curve is shown as a

function of time t+ at different distances x+ downstream from the release point of the unit

impulse. The constant is a = 2/3 and the Froude number is taken as Fr0 = 0.5. The shallow

water results for x+ = 1, 5 and 20 are the same as those shown in Figure 5.8.

An improved linear diffusivity
Equation (5.88) was derived here simply by neglecting the first two terms in the momentum
equation (5.22) and then linearizing. This way it can be seen that it is mainly the third
term in (5.22), namely g(∂h/∂x), which is responsible for the diffusion character of the
resulting equation. Indeed, when this third term is also omitted, the resulting formulation
loses its diffusion character, as will be shown in Section 5.4.3. However, it should be
noted that this is not the only way to obtain a linear diffusion equation for free surface
flow. It is also possible to start from the complete linear system (5.67) and to modify
(rather than eliminate) the second derivatives involving time by means of the quasi-steady-
uniform flow or kinematic wave assumption (see Section 5.4.3; also Brutsaert, 1973). As
will become clear below (see Equation (5.118)) this assumption allows the substitution
(∂q/∂t) = (a + 1)V0[−(∂q/∂x) + i] in the second derivatives involving time in (5.67).
This leads then to a diffusion equation with a diffusivity, different from (5.89), namely

D0 =
(

bq0

S0

) (
1 − a2Fr2

0

)
(5.97)

or, for a channel of width Bc,

D0 =
(

bQ0

Bc S0

) (
1 − a2Fr2

0

)
(5.98)

In the case of the upstream inflow treated in Example 5.7, the unit response (5.96) becomes
with this improved diffusivity

u = S0V0

h0

x+[
2π

(
1 − a2Fr2

0

)
t3+

]1/2 exp

{
−[x+ − (a + 1)t+]2

2
(
1 − a2Fr2

0

)
t+

}
(5.99)
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Fig. 5.10 Comparison between the unit response function u+ = h0u/ (S0V0) for the upstream inflow

problem, obtained with the complete shallow water equations (1) and obtained with the

diffusion approximation (2 and 3). The curves indicated by 2 are obtained with the diffusivity

D0 =
(
bq0/S0

) (
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0

)
and those indicated by 3 with D0 =

(
bq0/S0

)
. Each unit response

curve is shown as a function of time t+ at different distances x+ downstream from the release

point of the unit impulse. The constant is a = 2/3 and the Froude number is taken as

Fr0 = 0.5. Some of the curves indicated by 1 and 3 are also shown in Figures 5.8 and 5.9.

As can be seen in Figure 5.10, for Fr0 = 0.5, the diffusivity (5.97) leads to an improved
agreement with the solution of the full shallow water equations. However, for smaller values
of Fr0, or for large values of x+, the effect of this difference in diffusivity between Equations
(5.89) and (5.97) can be expected to be small.

5.4.3 The quasi-steady-uniform flow approach: a second approximation

It was indicated earlier (see (5.81), for example) that typically the first three terms
in the momentum equation (5.22) (or (5.25)), tend to be some two to three orders of
magnitude smaller than those representing the effects of gravity and of friction, namely
S0 and Sf. In the previous section the dynamic terms were omitted, but the term ∂h/∂x
was kept in the formulation, and this was shown to lead to the diffusion analogy. Often,
however, under conditions that turn out to be quite common in nature, it is possible to
neglect that term as well, and to keep only S0 and Sf. In other words, it is assumed that
water flows downhill but it is prevented from accelerating or decelerating very much,
because the frictional resistance of the bed is overwhelming all other factors. Thus
under such conditions the momentum equation (5.22) (or (5.25)) can be simplified to the
following

Sf = S0 (5.100)

Again, as in the previous section, the continuity equation (5.13) (or (5.24)) is left intact.
This is the basis of the so-called quasi-steady-uniform flow or kinematic wave approxi-
mation.
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The kinematic wave approach for free surface flow
In view of the form of the various expressions for the friction slope discussed in
Section 5.3, Equation (5.100) is tantamount to assuming that, at a given location x
along the flow channel, the average velocity V is a function of the hydraulic radius only,
that is

V = V (Rh) (5.101)

For a given cross section, the hydraulic radius is uniquely related to the mean depth of
flow and to the cross-sectional area; thus V can also be expressed as a function of one
of those variables, and one can use

V = V (h) or V = V (Ac) (5.102)

as well.
As before, the most important features of the flow can be deduced by considering a

wide channel. Equation (5.102), which now represents the momentum equation, indicates
that the flow rate per unit width q = (V h) is a function of h only; thus, the continuity
equation (5.13) can be written as

∂h
∂t

+ dq
dh

∂h
∂x

= i (5.103)

Conversely, on account of (5.102) one has h = h(q) as well, and therefore substituting
this in Equation (5.13) one obtains in a similar manner

∂q
∂t

+ dq
dh

∂q
∂x

= dq
dh

i (5.104)

Equations (5.103) and (5.104) both have a structure, which is similar to that of the total
time derivative of h and of q , namely

∂h
∂t

+ dx
dt

∂h
∂x

= dh
dt

(5.105)

and

∂q
∂t

+ dx
dt

∂q
∂x

= dq
dt

(5.106)

Hence it follows that

dq
dh

= dx
dt

(5.107)

defines a wave speed; for the sake of conciseness this can be denoted by dx/dt = ck, so
that

ck = dq
dh

(5.108)

The speed of this wave represents the rate of displacement of any point along x , where
the depth (or the cross-sectional area) and the rate of flow increase respectively as

dh
dt

= i and
dq
dt

= cki (5.109)
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Put differently, comparison of Equations (5.103) and (5.104) with (5.105) and (5.106),
respectively, shows that to an imaginary observer, moving along x with a velocity defined
by (5.108) and (5.107), it would appear that the cross-sectional area and the flow rate
change as indicated by (5.109). In the absence of lateral inflow, when i = 0, the velocity
defined by (5.108) and (5.107) is the speed of propagation of points where dh/dt = 0 and
where dq/dt = 0, that is the speed of propagation of points of a given value of h and q.
These observations are somewhat similar to the comments made in connection with
Equations (5.51), (5.55) and (5.64). Thus (5.107), describing the path of the observer,
defines the characteristics of the problem. Because (5.103) and (5.104) are of the first
order, there is only one set of characteristics, namely in the forward direction.

One practical result obtainable with this approach is the celerity of a small monoclinal
rising wave in an open channel. In a channel with an arbitrary cross section, in light of
(5.24), the differential equations (5.103) and (5.104) assume the following form

∂ Ac

∂t
+ ck

∂ Ac

∂x
= Ql (5.110)

and

∂ Q
∂t

+ ck
∂ Q
∂x

= ck Ql (5.111)

where the wave celerity (5.108) is now given by

ck = d Q
d Ac

(5.112)

For a wide channel Rh = h and Ac = (Bch) to a good approximation; thus, with V in
q or Q given by (5.39), both (5.108) and (5.112) yield immediately

ck = (a + 1) V (5.113)

in which (a + 1) is of the order of 1.5 to 1.7, depending on whether Chézy or GM is
adopted to describe the flow. However, when the cross section does not have a wide
rectangular shape, the wave celerity (5.112) yields, with (5.39),

ck = (a + 1) V − aQ
Bs Pw

d Pw

dh
(5.114)

where Bs is the width of the channel at the water surface; d Pw/dh is the rate of increase
in the wetted perimeter Pw with depth, which is zero for a wide channel.

Apparently, the quasi-steady-uniform flow approximation has been used as early as
1857 by Kleitz (1877, p. 172) and his fellow engineers on the Rhone River, and by Breton
in 1867 (Forchheimer, 1930). Equation (5.108) was also applied successfully with gage
heights on the Mississippi and Missouri Rivers by Seddon (1900); it is now sometimes
referred to as the Kleitz–Seddon law. The full implications of the approximation were
investigated by Lighthill and Whitham (1955). They called the wave motion kinematic,
because it arises from the elimination of the dynamic aspects of the momentum equation,
namely the first three terms of Equation (5.22), leading to the assumption of (5.101) and
(5.102).
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Significance of the approximation
Within the validity range of hydraulic theory, Equations (5.13) and (5.22) (or (5.24) and
(5.25)) describe the phenomenon of free surface flow; therefore, as the solutions of (5.44)
and (5.67) indicate, dynamic waves always occur, but as shown in (5.73), gravity modifies
their amplitude. Thus in general, small forerunners of a disturbance move with veloci-
ties given approximately by (5.64). However, as a result of gravity and friction, the main
part of the disturbance usually moves with a much smaller velocity, namely as given by
(5.107), (5.108) and (5.113) (or (5.77) and (5.91) for the linearized case). When (gS0t/V )
is large, the dynamic waves are damped sufficiently that the kinematic waves, which usu-
ally move at a slower speed, assume the dominant role. It is under such conditions that
Equations (5.105) and (5.106) describe the flow. As will be shown in Chapters 6 and 7,
the kinematic wave approach is useful in the solution of several problems of practical
interest.

Solution of the linearized equation
As before, when the disturbances around a steady uniform reference flow are not excessive,
one can decompose the variables into an undisturbed part and a perturbation, and the
continuity equation is the first of (5.66), rewritten here for convenience

∂hp

∂t
+ ∂qp

∂x
= i (5.115)

According to (5.43) with (5.100), the rate of flow can be written in terms of the decomposed
variables as

q0 + qp = Cr Sb
0 (h0 + hp)a+1 = q0

(
1 + hp

h0

)a+1

Hence, because q0 = V0h0, and presumably hp << h0, one can write

qp = (a + 1) V0hp (5.116)

This shows that, since qp is a function of hp only (V0 is constant), just like (5.103) and
(5.104), (5.115) can be written as a total time derivative of hp, that is

∂hp

∂t
+ dqp

dhp

∂hp

∂x
= i (5.117)

or, alternatively as a total time derivative of qp, as

∂qp

∂t
+ dqp

dhp

∂qp

∂x
= dqp

dhp
i (5.118)

From (5.117) and (5.118) one can define a wave celerity (dqp/dhp); however, by virtue of
(5.116) and (5.43), this is equal to (dq0/dh0). Hence one has

dqp

dhp
= dq0

dh0
= ck0 (5.119)

or

ck0 = (a + 1)V0 (5.120)

As anticipated, this result is the same as the celerities given by (5.77) and (5.91).
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This result was obtained for a wide channel of rectangular cross section; for other cross-
sectional geometries, one can formulate the rate of flow in terms of decomposed variables
in a way similar to Equation (5.116), namely

Q0 + Qp = Cr Sb
0 (Ac0 + Acp)a+1(Pw0 + Pwp)−a

= Q0

(
1 + Acp

Ac0

)a+1 (
1 + Pwp

Pw0

)−a

Again, because Acp << Ac0 and Pwp << Pw0, one obtains the analog of (5.116)

Qp = (a + 1) V0 Acp − aQ0
Pwp

Pw0
(5.121)

With the equation of continuity one can, as before, define a celerity, (d Qp/d Acp) which
now assumes the form

ck0 = (a + 1) V0 − aQ0

Pw0

d Pw

d Ac
(5.122)

Note that this result shows that also here (d Qp/d Acp) = (d Q0/d Ac0).

Example 5.8. Semi-infinite channel with known upstream inflow

The general solution of Equation (5.118) (and of (5.117)) is especially simple in the absence
of lateral inflow, when i = 0, namely

qp = qp(x − ck0t) (5.123)

Equation (5.123) shows that, in a linear kinematic channel, an upstream disturbance is
merely translated downstream. Unlike a disturbance in a linear dynamic channel and in a
linear diffusion channel, it does not undergo any deformation as it propagates downstream.
Thus, in contrast to Equations (5.72) and (5.95), the unit response that is the outflow, at a
time t and at a distance x downstream from a point x = 0, where the flow disturbance at
t = 0 is a unit impulse δ(x, t), is now simply

u(t) = δ(x − ck0t) (5.124)

This describes a translation of the input without distortion, as it moves down along the
channel. But it should be remembered that this represents a disturbance over and above the
steady uniform flow q0.

5.4.4 The lumped kinematic approach for free surface flow: a third approximation

Besides the approximations that led to the analysis of the kinematic wave in Section
5.4.3, the lumped formulation has the additional feature that the spatial dependency
of the continuity equation (5.13) (or (5.24)) is eliminated. This is accomplished by
integrating out the x-variable, so that q or Q becomes located on the boundaries of the
flow domain, in the form of inflows, and outflows, and ∂h/∂t becomes the rate of change
of the water depth averaged over the entire flow domain, that is the stored water. As
already explained in Chapter 1, this produces the (lumped) storage equation

Qi − Qe = d S
dt

(5.125)
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in which all inflow and outflow rates are grouped in Qi and Qe, respectively, and S rep-
resents the stored water volume in the flow domain under consideration. By analogy with
(5.101) and (5.102), a kinematic relationship between S and the flow rate Qi and /orQe

is then invoked to allow solution of Equation (5.125) (i.e. (1.10)). Applications of this
concept will be presented in Chapters 6 and 7.
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P RO B L E M S

5.1 Derive the x-component of the Reynolds equations, namely (5.14), from the corresponding com-
ponent of the Navier–Stokes equations (1.12).

5.2 Derive Equation (5.35) from (5.34); show the intermediate steps.

5.3 Calculate the Boussinesq correction factor, βc, for the logarithmic velocity profile in a wide open
channel. Thus, integrate (5.19), in which the velocities are given by (5.34) and (5.36). What is its
value for (h/z0) = 100?

5.4 Calculate the Boussinesq correction factor, βc, for the power-type velocity profile in a wide, open
channel. Thus, integrate (5.19), in which the velocities are given by (5.37) and (5.38). What is its
value for m = 1/6?

5.5 Write down the expression for the hydraulic radius, Rh using Equation (5.40) for a channel (a)
with a triangular cross section (Bb = 0),, and (b) with a rectangular cross section (Bs = Bb).

5.6 What would be the values of the powers a and b in Equation (5.43), if the velocity profile in a very
wide, open channel were given by (5.37) with the classical value, m = 1/7.

5.7 Consider flow in a channel with a trapezoidal cross section and side banks having a slope, 1 vertical
to 2 horizontal, and a bottom width, Bb = 5 m; the channel roughness coefficient is n = 0.015,

and the bed slope is S0 = 0.001. Given the water depth, at the center as h = 2 m, under uniform,
steady-state conditions, calculate the velocity, V ; the rate of flow, Q = V Ac; and the Reynolds
number, Re = V Rh/ν.

5.8 For a channel with the same characteristics as in Problem 5.7, with a flow rate of Q = 60 m3 s−1,
calculate the depth of flow, h, at the center of the channel. Use trial and error.

5.9 Consider a very wide open channel in which the velocity profile is given by the logarithmic
equation (5.34); assume that the displacement height is negligible or d0 = 0. At what fraction
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of h does the mean velocity V occur? (Note: in hydrologic practice, this depth is often taken as
z = 0.4 h.)

5.10 Consider a very wide channel in which the velocity distribution is given by the power-type equation
(5.37); assume m = 1/6. At what fraction of the depth h does the mean velocity V occur? (Note:
in hydrologic practice, this depth is often taken as z = 0.4 h.)

5.11 In hydrologic practice, it is common to determine the mean velocity, V, as the average of mea-
surements at 0.2 h and at 0.8 h; thus, V = (u0.2 + u0.8) /2. Calculate what the error would be if
the velocity profile were logarithmic as given by Equation (5.34); assume that d0 = 0.

5.12 Demonstrate that Equation (5.51) is a solution of (5.49).

5.13 Consider the diffusion approximation describing flow in a wide open channel, as given by (5.87)
with αr = (Cr ha+1)−1/b, in which the parameters are defined in (5.43). Show for a linearized
channel that the coefficient of the second term on the left, namely (bQ/αr) (dαr/d Ac), is equivalent
with the Kleitz–Seddon equation for the celerity, i.e. ck0 = (d Q0/d Ac0). Hint: linearization is
accomplished by putting Ac = Ac0 + Acp and Q = Q0 + Qp, and by assuming Acp and Qp

to be relatively small perturbations.

5.14 The diffusion equation for open channel flow can be written in the form of (5.92) with (5.93) and
(5.94). Consider a flood routing problem, in which the equation becomes (in m and s):

∂ Q
∂t

+ 2.17
∂ Q
∂x

= 1365
∂2 Q
∂x2

(a) Give a rough estimate of the mean velocity of the flow, V (not the flood wave), from this
equation. (b) Show how you derive the equation, which you use to estimate V . (c) What is the
significance of the magnitude of the coefficients (namely 2.17 and 1365 in this case) in regard to
the shape of the flood wave? In other words, what would be the effect of each coefficient, if it
were larger or smaller, on the evolution of the shape of the flood wave? Discuss the effect of each
coefficient separately (one sentence each).

5.15 (a) Derive Equation (5.114) from the Kleitz–Seddon equation (5.112). (b) Implement (5.114) to
calculate the celerity of a kinematic wave in a channel with a triangular cross section. Make use
of the GM equation, (5.41), in which Sf = S0.

5.16 Multiple choice. Indicate which of the following statements are correct. The derivation of the
shallow-water equations, (5.13) and (5.22), requires the following.
(a) The lateral inflow does not depend on x ; in other words, it must be uniform along the

direction of flow.
(b) The pressure distribution is hydrostatic along z, the direction normal to the bottom.
(c) The velocity profile obeys a power law, u = a zm , where a and m are constants.
(d) The slope of the channel bottom must be small, in the direction of flow, to allow substitution

of −sin θ by S0.
(e) The roughness of the channel must be constant in the direction of flow.



6 OV E R L A N D F L OW

This type of flow, also variously called sheet flow or shallow flow, is likely to occur in the
initial stages of surface runoff. It is usually observed on surfaces with low permeability
and in areas with a saturated soil profile and with the water table close to the surface. Over-
land flow has been one of the central problems in urban hydrology and it has been the sub-
ject of much research. Interest in this phenomenon has been largely the result of its rele-
vance in the design of small engineering structures for roads, highways, airports and other
urban and industrial settings and also in the design of some surface irrigation systems.

6 . 1 T H E S TA N DA R D F O R M U L AT I O N

The main objective in the analysis is usually the determination of the flow at the down-
stream end of a sloping plane for a known lateral inflow or outflow, for example, owing to
rainfall, irrigation and/or infiltration. This type of situation is sketched in Figure 6.1. In
general, flow of water with a free surface over a plane bed, with a constant slope S0 and
with a length L, receiving a uniform, but possibly unsteady lateral inflow i = i(t), whose
velocity component in the direction of flow is negligible, can be described by the shallow
water equations (5.13) and (5.22); for the present purpose these can be rewritten here as

∂h
∂t

+ ∂

∂x
(V h) − i = 0 (6.1)

for the conservation of mass, and

∂V
∂t

+ V
∂V
∂x

+ g
(

∂h
∂x

+ Sf − S0

)
+ iV

h
= 0 (6.2)

for the conservation of momentum. The dependent variables are the vertically averaged
velocity V and the height h of the water surface above the bed; g is the acceleration of
gravity and Sf is the friction slope. As the lateral inflow rate may consist of rainfall P
(or irrigation), and infiltration f, one has i = P − f.

When the plane is initially dry, the essential features of the problem can be captured
by the following boundary conditions

0 ≤ x ≤ L, t = 0, V = 0, h = 0

and (6.3)

x = 0 t > 0 V = 0, h = 0

Although analytical solutions can be obtained for certain special conditions (see
Brutsaert, 1968), the complete solution can be obtained only by numerical methods.
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S0

Vh

Upstream
boundary

Downstream
boundary

x=0 x=L

Lateral inflow, i

Fig. 6.1 Definition sketch of a plane with lateral inflow.

Using this approach Woolhiser and Liggett (1967) and Liggett and Woolhiser (1967)
have presented a thorough analysis of this problem for a steady uniform lateral inflow i.

For the general problem defined by the boundary conditions (6.3), it is convenient to
scale the variables with the length of the plane L and with the normal depth h0L and
the corresponding velocity V0L at the downstream end x = L , where (h0L V0L ) = (i L).
(Recall that the normal depth is the depth produced by uniform flow at a given dis-
charge rate q, as given by Equation (5.43) with Sf = S0) This scaling leads to the
following dimensionless variables, x+ = (x/L), t+ = (V0L t/L), h+ = (h/h0L ) and
V+ = (V/V0L ). Equations (6.1) and (6.2) assume then the dimensionless form

∂h+
∂t+

+ ∂(V+h+)

∂x+
− 1 = 0

and (6.4)

∂V+
∂t+

+ V+
∂V+
∂x+

+ 1

Fr2
0L

∂h+
∂x+

+ Ki0

[(
V+

(ha+)

)1/b

− 1

]
+ V+

h+
= 0

In (6.4), the symbol Ki0 represents the kinematic flow number at x = L, defined as

Ki0 = S0L

Fr2
0L h0L

(6.5)

and Fr0L is the corresponding Froude number (cf. Equation (5.63))

Fr0L = V0L

(gh0L )1/2
(6.6)

Except for the presence of the Froude number, Ki0 has nearly the same form as (d4x) in
(5.73) or (e1x+) in (5.79), where it plays essentially the same role, in that it is a measure
of the rate of attenuation of the dynamic waves. In dimensionless equations all terms
normally tend to be of order one, except those that involve a dimensionless number like
Fr or Ki. Thus the second of Equations (6.4) shows that the motion becomes kinematic
when Ki0 >> 1.
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Fig. 6.2 The rising hydrograph at the lower end of a plane x = L, calculated with the full shallow water

equations for Ki0 = 1 and for different values of the Froude number as indicated at each curve. The

hydrograph is given as the scaled rate of flow per unit width qL+ = (VL+hL+) against scaled time t+.

The kinematic wave result is indicated by Ki0 = ∞. (After Woolhiser and Liggett, 1967.)

Fig. 6.3 The same as Figure

6.2, for Ki0 = 10.

(After Woolhiser and

Liggett, 1967.)

On the basis of numerical simulations, Woolhiser and Liggett (1967) reported that for
large values of Ki0 the kinematic approach can produce practically the same accuracy
in the solution as the full system of the shallow water equations (6.4); when Ki0 = 10,
the maximal error in the outflow hydrograph was found to be of the order of 10%, but
also to decrease rapidly as Ki0 increases. They concluded from this that the kinematic
wave result is a good approximation for most overland flow situations, because Ki0
rarely falls below 10. Some of their results are illustrated in Figures 6.2 and 6.3. Because
the kinematic approach is considerably simpler and allows closed-form solutions, it is
investigated next.
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6 . 2 K I N E M AT I C WAV E A P P ROAC H

With the kinematic approximation, only the two slope terms in Equation (6.2) (or the sec-
ond of (6.4)) are of any importance (cf. Equation (5.100)); thus the momentum equation
becomes

Sf = S0 (6.7)

Physically, Equation (6.7) states that the water surface is assumed to be parallel to the
bed. Substitution of (6.7) into (5.43) yields immediately the kinematic relationship

q = Krha+1 (6.8)

where q = (V h) is the rate of flow per unit width of plane [L2T− 1], and Kr can be
defined with (5.43) as Kr = CrSb

0, in which the values Cr, a and b are listed in Table 5.2
for different flow conditions.

Equation (6.8) implies a unique relationship between q (or V ) and h. Hence, as already
indicated in Section 5.4.3, the continuity equation (6.1) is suggestive of the mathematical
form of a total derivative

∂h
∂t

+ dx
dt

∂h
∂x

= dh
dt

(6.9)

with the following equalities

dx
dt

= dq
dh

and
dh
dt

= i (6.10)

The quantity dx/dt defines a kinematic wave celerity, which by virtue of (6.8) is

dx
dt

= ck = (a + 1) Krha = (a + 1) K 1 /(a+1)
r qa /(a+1) (6.11)

To an observer moving forward at this rate dx/dt, both equalities in (6.10) will appear
to hold. Recall from Chapter 5, that the path of such an imaginary observer traced on the
x–t plane is called a characteristic of the wave motion.

6.2.1 Unsteady lateral inflow

Consider first the case of an arbitrary unsteady, but uniform, lateral inflow i = i(t), and
consider an imaginary observer moving with a velocity dx/dt given by Equation (6.11).
To this observer, that is along the characteristics, on account of (6.10), it will appear

(i) that the water depth h changes at a rate i = i(t), so that at any time this depth is
the integral of i , namely

h =
t∫

t0

i dt (6.12)
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or, with (6.8),

q = Kr

⎛
⎝ t∫

t0

i dt

⎞
⎠

a+1

(6.13)

in which t0 is the starting point of the characteristic; and
(ii) that dq/dt = (dq/dh)(dh/dt) = i(dx/dt), which yields the following integral

for the rate of flow

q =
x∫

x0

i dx (6.14)

where again the lower limit x0 is the starting point of the characteristic.
(iii) The equation of the characteristics x = x(t) is obtained by integration of (6.11),

or with (6.13),

x = (a + 1) Kr

t∫
t0

dτ

⎛
⎝ τ∫

t0

i dσ

⎞
⎠

a

+ x0 (6.15)

where τ and σ are dummy variables of integration.
The integrals presented in (6.13), (6.14) and (6.15) were first derived by Ishihara and

Takasao (1959) in a critical analysis of the unit hydrograph concept. Smith and Woolhiser
(1971) studied overland flow on an infiltrating surface; they obtained numerical solutions
for the kinematic wave formulation with a lateral inflow i(t) as the difference between
rainfall rate and infiltration rate obtained from numerical solution of Richards’s equation.
Parlange et al. (1981) and also Giraldez and Woolhiser (1996) considered different cases
of unsteady lateral inflow and infiltration, i.e. i = i(t), and derived analytical solutions.
The runoff resulting from a steady inflow rate, which was first studied by Henderson
and Wooding (1964), is the key to understanding more general situations. This case is
treated next.

6.2.2 Steady lateral inflow

When the lateral inflow remains constant with time, there are two phases of hydrologic
interest. The first is the buildup of the flow on a plane that is initially dry in accordance
with Equation (6.3); the second is the subsidence of the flow after the lateral inflow has
ceased and i = 0.

Buildup phase: the rising hydrograph
Since h = 0 for t = 0 according to Equation (6.3), the integral of (6.12) is
simply

h = i t (6.16)
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Fig. 6.4 Water depth profiles 0A1B1C, 0A2B2C, etc., during the buildup phase, obtained with the kinematic

wave approach (for fully turbulent flow with a = 2/3) ; the profiles are shown as functions of

downstream distance at different times after the start of the lateral inflow i . The water depth is

normalized with the equilibrium depth at x = L, which is given by Equation (6.19), or

hsL = (i L/Kr)1/(a+1).

On the other hand, the integral of (6.14) is

q = i(x − x0) (6.17)

in which x0 is the starting point of the characteristic (i.e. the initial position of the
“observer” invoked above) at t = t0 = 0. Because x0 can assume any value over the
length of the plane 0 ≤ x ≤ L , there is an infinity of characteristics on which (6.17)
is valid, each depending on x0. The boundary characteristic starting at x = x0 = 0, is
however of special interest. On that particular characteristic (6.17) assumes the form

q = i x (6.18)

By virtue of Equation (6.8), (6.18) gives the position of a given depth, x = x(h), as

x = (Kr/ i) ha+1 (6.19)

Thus on this particular characteristic starting at t = 0 and x = 0 in the x−t plane,
i.e. at h = 0 and x = 0 on the physical h−x plane, both (6.16) and (6.19) hold. This
trajectory on the h−x plane is shown in Figure 6.4 as going from 0 to A1, A2, etc., for
different values of t. For all the other characteristics, at x values larger than given by
(6.19), (6.17) is not very useful, because x0 is left unspecified, but (6.16) still indicates
the water depth h as a function of time, independently of x0. Therefore, downstream
from the point x, given by (6.19), h is independent of x (see Figure 6.4).

Actually, Equations (6.18) and (6.19) also represent the continuity condition that
must be satisfied under equilibrium conditions, that is when the flow rate at any point
x equals the total lateral inflow upstream from that point. This means that equilibrium
conditions are established upstream from any point x where the boundary characteristic
has passed and that the entire plane is at equilibrium as soon as that characteristic has
reached x = L. From then on, (6.18) and (6.19) are valid over the entire flow domain,
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namely 0 ≤ x ≤ L. The time required to reach this steady state equilibrium is obtained
by combining (6.16) with (6.19) at x = L, or

ts = (L/Kri a)1/(a+1) (6.20)

When the duration of lateral inflow exceeds the time to equilibrium, the outflow hydro-
graph at x = L can be readily obtained. Prior to the time to equilibrium, it is obtained
from (6.8) combined with (6.16); once equilibrium is established it can be obtained from
(6.18). Thus the rising hydrograph at x = L is given by

qL =
{

Kri a+1ta+1 for t ≤ ts
i L for t ≥ ts

(6.21)

Equation (6.21) is the main result of this section. The performance of (6.20) has been
compared with experimental data on turbulent sheet flow from the literature by McCuen
and Spiess (1995); they concluded that its use should be restricted by the criterion
(nL/

√
S0) < 30 m.

To generalize the result shown in Equation (6.21), it is useful to express it in terms
of dimensionless variables. The simplest way to proceed here is to take the equilibrium
discharge rate (i L) from the plane and the time to equilibrium ts as scaling variables.
This reduces Equation (6.21) to

qL+ =
{

(t+)a+1 for t+ ≤ 1
1 for t+ ≥ 1

(6.22)

where now qL+ = (qL/qsL) and t+ = (t/ts), in which qsL = (i L) is the equilibrium out-
flow rate at x = L; this rising hydrograph is illustrated in Figure 6.5. Figures 6.6 and
6.7 show a comparison between the kinematic wave rising hydrograph and experimental
data of Izzard (1944, 1946) scaled in the same manner. It can be seen that some of the
hydrographs in Figure 6.6 initially start out as laminar flow, and change to turbulent
flow later on around t+ = 0.4; also, around t+ = 0.9 some dynamic effects, which are
neglected in the kinematic formulation, appear to enter into play.

Decay phase: recession hydrograph after rain stops
As soon as i = 0, according to Equation (6.10) one has (dh/dt) = 0. Hence, to the
observer moving at a celerity given by (6.11) it now appears that h remains constant. In
other words, (6.11) is the velocity of a point of the water surface with the given value of
h. Thus on the h−x plane the characteristics describe straight lines parallel to the surface
of the plane where h = 0. One such characteristic is shown in Figure 6.8, as going from
A1 to A2, A3, etc., for successive values of time t after the lateral inflow has ceased.
Because h remains constant, Equation (6.11) can be integrated immediately to yield

x = (a + 1) Krhat + x0 (6.23)

where x0 is the starting value of x, i.e. its initial value at the time t = 0, when the rain
stops and the recession starts.

In case the duration of the rain is longer than the time to equilibrium ts, i.e. D > ts,
initially the water surface has an equilibrium profile as given by Equation (6.19), so that
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Fig. 6.5 Rising (AC) and receding (EF) hydrographs at the lower end x = L of a plane, obtained with the

kinematic wave approach (for turbulent flow with a = 2/3). The rate of flow is scaled with the

equilibrium rate of flow qsL = i L and the time is scaled with the time to equilibrium given by

Equation (6.20), so that qL+ = (qL/qsL) and t+ = (t/ts). The area ABC represents the volume stored

on the plane under equilibrium flow conditions, and it is equal to the area DEF.
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Fig. 6.6 Comparison between scaled rising hydrograph obtained with the kinematic wave approach (for

turbulent flow with a = 2/3) and scaled experimental data obtained by Izzard (1944) on a plane

covered with turf. The solid line represents qL+ = t
5/3
+ . The data points are derived from several

different experimental combinations, namely rainfall intensities P = i = 91.4 and 45.7 mm h−1,

slopes S0 = 0.01, 0.02 and 0.04, and plane lengths L = 22, 15, 7.3 and 3.7 m. (After Morgali,

1970.)
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Fig. 6.7 Comparison between scaled rising hydrograph obtained with the kinematic wave approach (for

laminar flow with a = 2) and scaled experimental data obtained by Izzard (1944) on a plane covered

with asphalt. The solid line represents qL+ = t3
+. The data points come from several different

experimental combinations, namely rainfall intensities P = i = 91.4 and 45.7 mm h−1, slopes S0 =
0.001, 0.005, 0.01 and 0.02, and plane lengths L = 22, 15, 7.3 and 3.7 m. (After Morgali, 1970.)
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Fig. 6.8 Water depth profiles 0A1 B1 C, 0A2 B2 C, etc., during the decay phase, obtained with the kinematic

wave approach (with a = 2/3) ; the profiles are shown as functions of downstream distance at

different times after the cessation of the lateral inflow i . The water depth is normalized with the

equilibrium depth at x = L, which is given by Equation (6.19) or hsL = (i L/Kr)1/(a+1) . The initial

profile is the equilibrium, i.e. steady state, profile shown in Figure 6.4. The characteristic starting at A1

successively passes A2, A3, etc., and maintains a constant h, until it is swept off the plane at x = L.
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Fig. 6.9 Comparison between scaled receding hydrograph obtained with the kinematic wave approach (6.28)

(solid line for laminar flow with a = 2 and dashed line for turbulent flow with a = 2/3) and

experimental data obtained by Izzard (1944) on a plane covered with turf. The solid line represents

t+ = (1/3)q
−2/3

L+ (1 − qL+) and the dashed line t+ = (3/5)q
−2/5

L+ (1 − qL+). The experimental data

points were obtained for the same experimental combinations as those of Figure 6.6. (After Morgali,

1970.)

(6.23) becomes

x = (a + 1) Krhat + (Kr/ i)ha+1 (6.24)

As before, it is convenient to recast this in dimensionless form, by scaling the water
depth with the equilibrium depth (i.e. the initial depth prior to the recession phase) at
x = L. Thus Equation (6.24) assumes the form

x
L

= (a + 1)ha
+t+ + ha+1

+ (6.25)

where t+ is defined behind (6.22); the dimensionless water depth is h + = (h/hsL) in
which the equilibrium depth at the outlet is hsL = (i L/Kr)1/(a+1), in accordance with
(6.19). Equation (6.25) is illustrated in Figure 6.8, and shows successive water surface
profiles for increasing values of the time t after the cessation of the lateral inflow i.

Upon substitution of h by means of Equation (6.8), at the outflow point x = L, (6.24)
becomes

L = (a + 1) K 1/(a+1)
r qa/(a+1)

L t + qL/ i (6.26)

This allows the calculation of the recession hydrograph qL = qL (t), or rather in this case
implicitly as t = t(qL ),

t = [
(a + 1)K 1/(a+1)

r iqa/(a+1)
L

]−1
(i L − qL ) (6.27)

which is the main result of this analysis. Henderson and Wooding (1964) found that
(6.21) and (6.27) gave a good description of the experimental data for a grass-covered
surface published by Hicks (1944) and that the best fit for his three cases was obtained
with a = 0.8, 0.8 and1.0, respectively.
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Again, with the same scaled variables as in (6.22), (6.27) can be expressed in a more
universal way, as follows

t+ = [
(a + 1)(qL+)a/(a+1)]−1

(1 − qL+) (6.28)

The recession hydrograph described by Equation (6.28) is illustrated graphically in
Figure 6.5 for the case of fully turbulent flow with a = 2/3. Figure 6.9 shows a com-
parison between (6.28), both for laminar flow with a = 2 and for turbulent flow with
a = 2/3, and experimental data obtained by Izzard (1946) on a turf surface for the same
experimental set-up combinations shown in Figure 6.6; it can be seen that while the
rising hydrographs exhibited turbulent flow, the recessions were somewhat closer to the
laminar curve, except initially.

Runoff sequence for a short rainfall burst
In the case that the rainfall duration D is shorter than the time to equilibrium, i.e. for D < ts,
the water surface profile at the end of the rain, (i.e. the initial profile at the beginning of the
decay phase) is typically represented by one of the profiles 0ABC shown in Figure 6.4. Let
in what follows the reference t = 0 indicate the beginning of the rainfall. If h = h0(= i D)
(cf. Equation (6.16)) denotes the largest depth achieved during the buildup phase, once the
rainfall stops, the point A moves downstream at a constant velocity [(a + 1)Krha

0] and it
will reach x = L at a time (see Equation (6.24))

D + tp = D + (
L − (Kr/ i)ha+1

0

) / (
(a + 1) Krha

0

)
(6.29)

Thus as long as D ≤ t < D + tp, the water depth and the outflow rate at x = L remain
constant at, respectively, h = h0 and

qL = Krha+1
0 (6.30)

After that, for t ≥ tp + D, the outflow rate is given by (6.27), but with the addition of a time
shift D to account for the duration of the lateral inflow.

To summarize, the hydrograph sequence for the case, when the rain stops before full
equilibrium is reached, is as follows in terms of scaled variables. As the lateral inflow starts,
the outflow rate at x = L is given by the first of Equations (6.22). At the moment t = D,
that is t+(= t/ts) = D+, when the lateral inflow ceases, the outflow rate is

qL+ = (D+)a+1 (6.31)

where, as before, qL+ = (qL/qsL ), in which qsL = i L , and D + = (D / ts). The rate of flow
at x = L will remain constant at the value given by (6.31) for a duration (cf. (6.29))

tp+ = (
1 − ha+1

0+
) [

(a + 1)ha
0+

]−1
(6.32)

where tp+ = (tp/ts), and h0+ = (h0/hsL ). Because h0 = (i D), this duration of constant flow
can also be expressed more conveniently in terms of the relative rainfall duration D+, as
follows

tp+ = (
1 − Da+1

+
) [

(a + 1)Da
+
]−1

(6.33)

From then on, i.e. for t+ ≥ (D+ + tp+) after the onset of the rain, the rate of flow is given by
Equation (6.28). Since the time reference t = 0 is taken at the onset of the rain, here (6.28)
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Fig. 6.10 Hydrograph at the lower end x = L of a plane (heavy line), resulting from a uniform rainfall of

duration D+, obtained with the kinematic wave approach (with a = 2/3). The rate of flow is

scaled with the equilibrium rate of flow qsL = (i L) and the time is scaled with the time to

equilibrium given by Equation (6.20), so that q L+ = (q L/qsL), t+ = (t/ts) and D+ = D/ts. In

this example D+ = 0.6 and tp+ = 0.483.

should be recast as

t+ = D+ + [
(a + 1)(qL+)a/(a+1)

]−1
(1 − qL+) (6.34)

As an example, this outflow sequence is shown in Figure 6.10 for a rainfall duration D =
0.6ts; in this case (6.33) yields tp+ = 0.483.

Effect of raindrop impact
In the analysis so far it was assumed that Kr in (6.8) is unaffected by the impact of
the raindrops on the water surface. Under conditions of turbulent flow this assumption
may be a good approximation but, as seen in Table 5.2, under conditions of laminar
flow the additional resistance may be considerable. This effect can be incorporated in
the recession analysis as follows. Let Krr denote the parameter in Equation (6.8) under
conditions of rainfall impact, and Krn the same parameter in the absence of rain. Both
parameters can be determined, for example by means of Equations (5.33) and (5.32),
respectively. Equation (6.24) must now be adjusted to

x = (a + 1)Krnhat + (Krr/ i)ha+1 (6.35)

which, at x = L becomes, instead of (6.26),

L = (a + 1)K 1/(a+1)
rn qa / (a+1)

L t + (Krr/Krn)qL/ i (6.36)

As before, this result yields immediately the outflow hydrograph, i.e. t = t(qL), as follows

t = [
(a + 1)K 1/(a+1)

rn iqa/(a+1)
L

]−1
[i L − (Krr/Krn)qL ] (6.37)



overland flow 210

Equation (6.37) indicates how at t = 0, when the rainfall ceases abruptly, the rate of
flow qL immediately becomes larger than i L by an amount (Krn/Krr); this increase
is caused by the sudden decrease of the flow resistance in the absence of the impact
of the rainfall drops. With the expressions given in Table 5.2, this increased flow rate
is roughly (1 + cSd

0 Pe) times the equilibrium flow rate i L; for instance, with a slope
S0 = 0.001 and a rainfall intensity P = 0.3 cm h−1 , this indicates a sudden increase of
38%. But in actual flow situations this sudden increase is unlikely to be that large, and
the value predicted by Equation (6.37) can only be considered as an upper limit. Indeed,
a sudden change in shear stress resulting from the cessation of the rainfall, must also
involve accelerations, which are neglected in the kinematic approach leading to (6.37),
and which will tend to offset this effect. Moreover, even if it were to occur, the spike is
rapidly dissipated. Finally, natural rainfall events never cease suddenly, but they tend to
decrease rather gradually. Brief increases in runoff, upon the cessation of rainfall have
been observed experimentally and reported by Izzard (1946), but they were much smaller
than those predicted here by Equation (6.37).

6.3 Lumped kinematic approach

Although this approach is now dated, as it was developed prior to the more fundamental
analyses described above, the lumped kinematic approach is still of some interest because
it has often been used as the framework to analyze valuable experimental data. It was devel-
oped by Horton (1938) in his pioneering analysis of overland flow; it was subsequently
applied by Izzard (1944) in processing the data from his extensive experimental investiga-
tions on rain runoff from paved and grassy surfaces. In this approach the continuity equation
is replaced by the storage equation (1.10) or (5.125). In the notation of overland flow this
storage equation can be written as

i L − qL = L
d〈h〉
dt

(6.38)

where

〈h〉 = 1

L

L∫
0

hdx (6.39)

denotes the spatial average of the water depth over the plane. To close (6.38), qL must be
related with 〈h〉; this can be done for steady equilibrium flow conditions by combining (6.8)
and (6.18) to obtain

qL = K l〈h〉a+1 (6.40)

where K l = {[(a + 2)/(a + 1)](a+1) Kr}. If it is now assumed that (6.40) is also valid under
non-steady conditions during buildup or subsidence as well, its substitution in (6.38) yields

i L − qL = L K −1/(a+1)
l

dq1/(a+1)
L

dt
(6.41)

To determine the outflow rate qL at the downstream end of the surface, (6.41) must be
integrated for the imposed input i = i(t). The essential features of the problem can again be
obtained readily by considering the buildup phase and the decay phase for a lateral inflow
rate i , which is constant in time.
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Fig. 6.11 Comparison between the rising hydrographs obtained with the lumped kinematic approach

(heavy lines) and the kinematic approach (thin lines). The same scaling is used in both cases.

The heavy curve for a = 1 represents the solution proposed by Horton (1938), and the heavy

curve for a = 2 is essentially the same as the solution used by Izzard (1946) to develop his

dimensionless hydrograph.

The rising hydrograph
For the case when i is applied starting at t = 0 on an initially dry plane, Equation (6.41) can
be rewritten in terms of the scaled variables defined behind (6.22); in fact, mathematically
this scaling appears to be the most obvious option. The resulting differential equation is

1 − qL+ = (a + 1)d
(a + 2)

(
q1/(a+1)

L+
)

dt+
(6.42)

with the condition that qL+ = 0 for t+ = 0. Equation (6.42) can be integrated in closed
form for values of (a + 1) equal to 1, 2, 3, 4, 3/2 and 4/3, but only 2 and 3 appear to
be relevant for surface runoff. As indicated in Chapter 5, the value (a + 1) = 2 has been
derived from several data sets of overland flow on grass covered surfaces (see Wooding,
1965), and (a + 1) = 3 is the theoretical value for laminar flow.

For a = 1 the solution of (6.42) is

q+
L = tanh2 (1.5t+) (6.43)

Similarly, for a = 2 the solution can be shown to be

t+ = 0.125 ln[(1 + y + y2) (1 − y)−2] + (
√

3/4) tan−1[(2y + 1) /
√

3]

−(
√

3/4) tan−1[1/
√

3] (6.44)

in which y = q1/3
L+ . Both (6.43) and (6.44) are shown in Figure 6.11, where they can be

compared with the results obtainable with Equation (6.22). Prior to the development of the
kinematic wave approach, these two solutions have been widely used in practical design.

Horton (1938) proposed Equation (6.43), with the justification that (a + 1) = 2 repre-
sents a flow, which is 75% turbulent. The equation was subsequently used as the basis for the
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design of urban and airport storm drainage facilities (see Horner and Jens, 1942; Hathaway,
1945; Jens, 1948). The study by Izzard (1946), which built on Horton’s approach, is also
well known and its results have been widely applied (Linsley et al., 1975). On the basis of
extensive experiments, Izzard (1946) concluded that for i L < 3.8 m2 h−1 the flow can be
described by the lumped kinematic formulation with Equation (6.40) in which (a + 1) = 3
for laminar flow. The value of the other parameter, namely Kl, was derived from his experi-
mental data as a function of surface roughness and of rainfall intensity. For the rising phase
of the outflow he obtained the solution presumably by numerical means, and presented it
graphically as a dimensionless hydrograph. The time variable t was scaled with the time
to equilibrium, which Izzard took as the time required to produce an outflow rate which
is 97% of the equilibrium outflow rate, or qL = 0.97(i L). By assuming (see the curve for
a = 2 in Figure 6.11) that the volume of water detained in surface storage on the plane is
roughly half of the volume of inflow during the time required to reach equilibrium te, he
was able to propose the following expression

te = 2 〈hs〉
i

(6.45)

in which te is the time to equilibrium after the start of the rain and 〈hs〉 is the average water
depth after equilibrium has been reached.

Figure 6.11 illustrates that the lumped kinematic approach does not really produce a
very good mathematical description of overland flow, as compared with the kinematic wave
solution, which is known to provide a close approximation to the exact solution. Thus
the question can be raised how the experimental results could be described so well by
the lumped approach in Izzard’s (1946) study. The explanation of this discrepancy proba-
bly lies in the method used to scale the experimental rising hydrographs. As illustrated in
Figure 6.11, qL+(≡ qL/ i L) approaches unity asymptotically in the lumped kinematic solu-
tion, so that with noisy data the identification of qL+ = 0.97, to determine the time to
equilibrium, is not easy. However, Izzard (1946, p. 148) noted that with the above definition
of te in (6.45), for a = 2 the lumped kinematic solution indicates that at the time t = 0.5te

the outflow rate is roughly qL+ = 0.55; therefore, he decided instead to non-dimensionalize
the experimental rising hydrographs with the criterion te = 2t0.55, in which t0.55 is the time
at which the outflow is 0.55 the equilibrium value. As shown by Woolhiser and Liggett
(1967; Fig. 8), with this time scaling the agreement is improved considerably. This should
not be surprising because this way the curves are forced to coincide at t/te equal to 0 and
to 0.55.

The recession hydrograph
After the rain stops i = 0, and Equation (6.41) can immediately be integrated for any value
of a. Again, in dimensionless terms, this can be written as

qL+ =
(

a (a + 2)

(a + 1)
t+ + (qLi+)−a /(a+1)

)−(a+1)/a

(6.46)

in which the subscript i indicates the initial value of the dimensionless outflow rate, that
is at t = 0, when the rain stops; for the case D >> ts, when the rainfall duration is much
larger than ts (see Equation (6.20)) this initial outflow rate can be taken equal to one. Izzard
(1946) used a recession function, which is essentially the same as (6.46) with a = 2, but
with different scaling, to analyze his experimental data.
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P RO B L E M S

6.1 Derive Equations (6.4) from (6.1) and (6.2) by making use of the appropriate scaling variables.

6.2 Consider a smooth plane with slope, S0, on which it has been raining for a long time, so that steady
flow has been established. Derive a relationship between the rainfall rate, P, and the downstream
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distance, x, where the flow will change from laminar to turbulent. Assume that this occurs at a
critical Reynolds number, V h/ν = 500.

6.3 (a) Derive the water surface profile, h = h (x), once steady state has been established, on a plane,
L = 30 m long, with a slope, S0 = 0.0015, resulting from a rainfall rate, P = 37 mm h−1. Assume
that the kinematic wave assumption is valid. (b) What is the depth, h, of the flow, at x = L = 30 m,
in this analysis?

6.4 In the previous problem, use is made of the kinematic wave assumption. If this simplification were
not valid, which terms would still be negligible in the shallow water equations (6.1) and (6.2)?
Thus, write these equations in their simplest form, which would allow the solution of the same
steady-state problem, but without the kinematic wave assumption. In doing so, express Sf in terms
of the dependent variables, V and h, for a wide channel.

6.5 Assume that free-surface flow over a plane uniform surface resulting from a steady rain intensity,
P, can be described by the kinematic-wave method, so that (6.1) is the governing equation, with
i = P . Assume that the flow is fully turbulent, and that its dynamics can be described by the GM
equation, (5.41). With what celerity does a point on the free surface, with a given depth, h = Dg,
move downstream, after the rain ceases? Assume that the roughness coefficient n is not affected
by the impact of the raindrops. Show how you obtain this answer.

6.6 Show that the area, ABC, in Figure 6.5 represents, indeed, the volume stored on the plane under
equilibrium flow conditions, and that it is equal to the area DEF. (Hint: perform the integration∫

q dt = ∫
t dq between the appropriate limits.)

6.7 A concrete pavement is L = 40 m long, and it has a slope of S0 = 0.0015. A uniform rainfall starts
at t = 0, and continues for a long time at a steady rate of P = 25mm h−1. (a) First, determine
whether the maximum flow, at x = L , is laminar or turbulent. (b) Compute the rising hydrograph
(in mm h−1 to make it comparable to the rainfall rate), at the lower end of the pavement, after this
rainfall starts. Use the kinematic wave method, with and without the effect of the rain. (c) Plot the
two results on one figure as q = q (t) in mm h−1, and t in hours. Note: under turbulent conditions,
the effect of the rainfall on the flow is usually neglected. Under laminar conditions, (5.33) can be
used to incorporate this effect.

6.8 Same as the previous problem for a plane soil surface with a short grassy vegetation and with
L = 45 m, S0 = 0.02, and P = 85 mm h−1.

6.9 A concrete pavement is L = 35 m long, and it has a slope of S0 = 0.005. A steady rainfall lasts
for a long time at a rate of P = 30 mm h−1. (a) First, determine whether the maximum flow, at
x = L , is laminar or turbulent. (b) Compute the recession hydrograph (in cm h−1) at the lower end
of the pavement after this rainfall stops. Use the kinematic wave method, and neglect the effect of
the raindrop impact and the temporary increase at t = 0 (when the rain stops). Plot the hydrograph
in mm h−1 to match the units of P . (c) On the basis of the result obtained in (b), what is the flow
rate, in mm h−1, at x = L , 15 min after the rain stops?

6.10 Consider the same situation as described in the previous problem. Initially, after the rain stops,
the runoff, at x = L , is likely to increase a little on account of the decreased resistance. Calculate
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the maximal value of this brief increase, as a fraction of the equilibrium flow, using the empirical
formula (5.33) in (6.36) or (6.37).

6.11 For a steady rainfall on a uniform, plane surface of length L , the average depth of the water on the
plane, 〈h〉, is related to the depth at the outlet (x = L), as: 〈h〉 = [(a + 1) / (a + 2)] hL , where a
is the power defined in (5.43). Show the validity of this relationship. Note: this relationship is the
basis for Equation (6.40) to develop the lumped, kinematic approach.

6.12 Multiple choice. Indicate which of the following statements are correct. The kinematic wave
method differs from the approach based on the complete (i.e. shallow water or St. Venant) equations,
because:
(a) the equation of continuity is always replaced by the lumped storage equation;
(b) the flow is assumed to be laminar;
(c) it is assumed that there exists a single-valued (i.e. unique) relationship between rate of flow

and water depth;
(d) gravity effects are assumed to be balanced completely by frictional effects;
(e) it is only applicable if dynamic (i.e. acceleration of the fluid) effects are negligible.



7 S T R E A M F L OW RO U T I N G

Also called flood routing and channel routing, this is one of the classical problems in
applied hydrology. The word routing refers in general to the mathematical procedure
of tracking or following water movement from one place to another; as such, the word
also includes the description of the conversion of precipitation into various subsurface
and surface runoff phenomena. However, streamflow routing refers specifically to the
description of the behavior of a flood wave as it moves along in a well-defined open
channel. In practical terms, the problem consists of the determination of the discharge
hydrograph Q = Q(t) at a given point along a stream, from a known hydrograph fur-
ther up- or downstream and from a knowledge of the physical characteristics of the
channel. The wave may be the result of inflows into the channel following various
events such as heavy rainfall, snowmelt, failure or overtopping of natural or artificial
dams due to landslides or earthquakes, tidal interactions and releases from artificial
reservoirs.

Over the years different methods have evolved. The more fundamental approaches
are based on hydraulic theory of open channel flow and consist of ad-hoc solutions of
some form of the complete shallow water equations by numerical techniques on digital
computer. A detailed treatment of such techniques is beyond the scope of this book and
good reviews of available methods to solve the complete Saint Venant equations have
been presented by, among others, Liggett and Cunge (1975) and others in Mahmood
and Yevjevich (1975), Cunge et al. (1980), and Montes (1998). When accuracy is of
primary concern, a good numerical technique with the complete shallow water equations
should be the method of choice. However, to use any of the available numerical codes,
it is essential to have a thorough understanding of the underlying fluid mechanical
principles.

Some crucial aspects of the routing problem can be clarified by analytical solution
and inspection of simplified formulations that are applicable in certain special situations.
Simplified approaches can also be adequate, and sometimes even preferable for planning
and preliminary design purposes. In this chapter major attention is given to one such
scheme, the Muskingum method; it was developed, in principle, by means of the lumped
kinematic approach and has been found to yield good results under a wide range of
conditions of practical interest in natural rivers. It also has some theoretical ramifications,
which are relevant for a deeper understanding of the complete shallow water equations.
First, however, the behavior is considered of the shallow water equations for the two
extremes of momentum transfer, namely under dynamic and kinematic conditions, in
the case of large waves.
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7 . 1 T W O E X T R E M E C A S E S O F L A R G E F L O O D
WAV E P RO PAG AT I O N

In Chapter 5 it was shown how different types of wave can result from small disturbances
of the water surface, depending on which terms are important and which terms can be
omitted in the momentum equation. Special types of large wave can also be simulated,
again depending on which are the main factors controlling the momentum budget of the
flow.

7.1.1 Surge or dynamic shock

Under certain conditions the water surface exhibits an obvious and visible disturbance,
also variously called an abrupt wave, a surge, a bore or a moving hydraulic jump. Similar
phenomena occur in other situations in the environment as well, and they constitute the
front of what are broadly referred to as gravity currents (Simpson, 1997). For instance,
in Chapter 3 analogous surges were seen to occur as the gust front of thunderstorms (see
Figures 3.8 and 3.9).

Any such disturbance may be interpreted, if not as a discontinuity, at least as a
point where the water depth h is not a smooth function; this interpretation means that the
derivative (∂h/∂x) is discontinuous, i.e. indeterminate. In general, it depends on the nature
of the flow around such a wave, whether it will amplify or decay. As already noted in
Chapter 5 on the basis of the solution of the linear case, the criterion for bore formation
is Fr > a−1 (where a is the power in Equations (5.39) and (5.43)), or Fr > 1.5 ∼ 2.
However, the instantaneous speed of propagation cs of such a wave depends solely on
the magnitude of the discontinuity itself, as will now be shown.

Types of abrupt wave
In general, there are four different types of abrupt wave. A simple way of visualizing
them makes use of a thought experiment illustrated in Figure 7.1. Consider a sluice
gate under well-established steady flow conditions, whose opening is suddenly changed.
If the gate is raised, the downstream flow can be seen to develop situation A and the
upstream flow develops situation C. If the sudden change is downward, situations B and
D develop, respectively upstream and downstream from the gate. Waves in class A move
downstream as positive surges; these types of bore are the ones of primary interest in
hydrology, as they can transport large amounts of water and have caused some major
flooding events in the past. Waves of type B are also positive surges, but in contrast
to A, they advance upstream. They are typical for tidal bores, which are observed in
some estuaries and rivers affected by tidal action. Such bores can be formed when the
rising tide reverses the river flow and the tidal water enters into a gradually narrowing
and shallowing channel, usually with a small bed slope; this narrowing environment
slows down the leading edge of the tide, and allows it to be overtaken by the deeper and
faster traveling water of the continually rising tide coming up from the rear. Although
the survey was not totally exhaustive, at last count (Bartsch-Winkler and Lynch, 1988),
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AC

DB

Fig. 7.1 Generation of the four different types of abrupt wave by the sudden movement of the sluice gate.

Waves of type A and B are stable positive surges. Waves of type C and D are relatively short lived

(i.e. unstable) negative surges. The dashed lines indicate the original positions prior to the movement

of the gate.

some 67 localities were identified worldwide, where well-defined tidal bores occur, with
reported heights ranging between 0.2 and 6.0 m. Waves of type C are upstream moving
negative surges, which have on occasion been observed in hydropower supply canals,
when the water demand is drastically stepped up. Waves of type D are downstream
moving negative surges, which can result on occasion from a suddenly decreased water
supply in an open channel.

As will be seen below, waves travel faster in deeper water than in shallow water. In the
positive surges of type A and B, which result in a higher water surface, the deeper water
tends to overtake the more shallow leading edge water; therefore, the surge maintains
itself and can be considered stable. In the case of the negative (or receding) surges of
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Fig. 7.2 Definition sketch for the analysis of the four types of abrupt surges.

type C and D, which result in a depressed water surface, the deeper leading edge flees
away from the more shallow water which follows behind more slowly; therefore, the
sharp front cannot maintain itself and soon spreads out: the wave is unstable. In spite
of these differences, the initial stages of all four types of waves can be analyzed in the
same way, as will be shown next.

Analysis of flood wave
The problem is most easily analyzed from a reference moving at the same velocity cs as
the wave, so that the phenomenon becomes one of steady state. One may thus assume that
h and V become functions of a single variable ξ = (x − cst) , and the partial derivatives
become ordinary derivatives as follows

∂( )

∂t
= d( )

dξ

∂ξ

∂t
= −cs

d( )

dξ
and

∂( )

∂x
= d( )

dξ

∂ξ

∂x
= d( )

dξ
(7.1)

Because the velocity V and depth h vary markedly and abruptly across the wave, the inertia
and hydrostatic pressure gradient terms are predominant in the momentum equation
and, as a first approximation, the friction term gSf and the gravity term gS0 can both be
neglected. In the absence of lateral inflow, the momentum equation for a wide channel,
(5.22), becomes then with (7.1)

−(cs − V )
dV
dξ

+ g
dh
dξ

= 0 (7.2)

Upon multiplication by (h dξ ) and integration between two points 1 and 2, respectively,
some small but finite distance upstream and downstream from the abrupt wave (see
Figure 7.2), Equation (7.2) assumes the form

−
2∫

1

(cs − V ) h
dV
dξ

dξ + g
2

2∫
1

dh2

dξ
dξ (7.3)

The same operations can be applied to the continuity equation for a wide channel, (5.13),
without lateral inflow. Thus, with the coordinate transformation (7.1), Equation (5.13)
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becomes

−cs
dh
dξ

+ d(V h)

dξ
= 0 (7.4)

After integration across the wave, this becomes in turn

(cs − V ) h = constant

or (7.5)

(cs − V1) h1 = (cs − V2)h2

Equation (7.5) can now be substituted into (7.3) to integrate the latter. According to (7.5)
part of the first term in (7.3) is independent of ξ . Therefore after taking that part outside
the integral sign, (7.3) becomes

(cs − V1) h1(V1 − V2) + g
2

(
h2

2 − h2
1

) = 0 (7.6)

Equation (7.5) can also be used to eliminate V2 from (7.6); after substitution of V2 =
[cs − (cs − V1)h1/h2] into (7.6) and some algebra, one obtains finally

cs = V1 ±
(

g h2(h2 + h1)

2 h1

)1/2

(7.7)

The square root term in Equation (7.7) represents the celerity of the bore relative to the
velocity at cross section 1. Because of symmetry, the subscripts 1 and 2 in Equation (7.7)
can be interchanged, to yield the celerity relative to the velocity at section 2. Whenever
sections 1 and 2 are defined respectively as the section upstream and the downstream
from the abrupt wave, the plus sign in Equation (7.7) describes the downstream motion
of surges of type A and D, and the minus sign upstream moving surges of type B and C.
Thus flood waves, as encountered in hydrology require the plus sign in (7.7).

It can be verified that, if the analysis had been carried out for a channel with arbitrarily
shaped cross sections at points 1 and 2, the result would have been

cs = V1 ±
(

g (A2h2 − A1h1)

2A1(1 − A1/A2)

)1/2

(7.8)

When h is large, or when the disturbance is small, h1 ≈ h2, and (7.7) relative to V1

(≈V2), reduces to Lagrange’s celerity equation (5.50), as was to be expected. When
cs = 0, Equations (7.7) and (7.8) describe a stationary hydraulic jump.

The analysis presented here is simplified considerably, in that the effects of bed slope
and resistance have been omitted. When the wave travels over large distances in a natural
river these factors can play an important role; nevertheless Equation (7.8) can sometimes
provide worthwhile first order information on the main features of such waves.

Disastrous floods
Abrupt waves of type A have been associated with some extreme flooding events in the
past. For instance, in the United States, the Johnstown flood is still among the largest
natural disasters on record (see McCullough, 1968; Degen and Degen, 1984). The flood
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Fig. 7.3 The broken South Fork dam, as seen from inside the empty reservoir. The opening was about 130 m

wide near the top; the spillway can be seen on the right just below the bridge. It took the flood surge

roughly 53 min to reach Johnstown. Drawing by Schell and Hogan. (From Harper’s Weekly, 1889.)

took place in the afternoon of May 31, 1889, after a night of heavy rain, and was caused
by the failure of a badly maintained dam on South Fork Creek, some 23 km upstream
along the Little Conemaugh River and some 135 m higher than the town itself. After the
dam suddenly gave way completely (at 1510) (Figure 7.3), a wall of water, exceeding
15 m in some places, raged down the valley; as it reached Johnstown (at 1607), in a little
less than an hour, it spread out somewhat over a wider area, but its center was still at
least 10 m high. While the main event in Johnstown was over in 10 min, it left more than
2200 dead in its aftermath and near total destruction of the city.

Example 7.1. Some features of the Johnstown flood

Interestingly, the reported features of the Johnstown flood are not unreasonable in light
of Equation (7.7), and some of them can be reconstructed with a few rough estimates of
the effective parameters. Dam breach problems like this are highly unsteady in nature,
and they have been the subject of intensive study (see, for example, Yevjevich, 1975).
However, assume for the present example that the reservoir was large enough, resulting
in a steady inflow into the river channel after the dam had failed. From the eyewitness
accounts, the height of the surge appears to have been of the order of h1 = 10 m. With a
mean slope of S0 = (135/23 000) and an assumed roughness of n = 0.07 (see Table 5.1),
Equation (5.41) yields a velocity of the water behind the surge of V1 = 5.08 m s−1.
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Assuming also (as a first approximation) that the valley cross-sectional area did not vary
appreciably along the flow path, and (for want of better information) that in the valley
ahead of the surge the effective water depth was of the order of h2 = 1.0 m, according to
Equation (7.7) one finds that the surge came down at cs = 7.4 m s−1; thus, it would have
taken the wave about 52 min to cover the 23 km, which in fact it did. Admittedly, this
result is obtained with unknown and therefore assumed values of n and h2, and it would
be possible to obtain the same value of cs with other equally plausible combinations. For
instance, roughly the same result would be obtained with assumed values of n = 0.05
and h2 = 0 m, representing a smoother channel with negligible depth of flow prior to the
disaster (cf. Problem 7.1). It would require a more detailed field survey and analysis to
estimate which values of n, h1 and h2 would be appropriate for the dam-break event that
took place in this valley.

A notorious but less disastrous flash flood occurred on Willow Creek in the town of
Heppner in Oregon, in the late afternoon on Sunday June 14, 1903. According to Morrow
County records (see also Taylor and Hatton, 1999), it was generated by a cloudburst,
which was later estimated to amount to about 35 mm over an area of some 50 km2,
mainly around Balm Fork, in the hills 10–15 km south of town. The flood waters raced
into town around 1700, causing the death of some 247 inhabitants, nearly 20% of the
population, and destroying one third of all structures. The Heppner Gazette of June 18,
1903, reported that the flood struck, “without a second’s warning, a leaping, foaming
wall of water, 40 feet in height.” This surge height may well have been an overestimate.
Without detailed information on the temporal and spatial distribution of that rainfall
event, it is hard to know exactly how the runoff was funneled into a surge in the Willow
Creek valley. Nevertheless, the suddenness and power of the flood were no doubt also
exacerbated by the presence of a laundry at the upstream end of town; combined with
accumulating debris, this structure at first blocked passage of the water somewhat, only
to give way after a short while, abruptly releasing the built-up water mass.

Other examples of this type of flood are the glacier lake outbursts caused by ice
avalanches in Peru, where they are known as aluviónes (see Lliboutry et al., 1977;
Morales-Arnao, 1999). Typically, they are triggered with almost no warning and bring
down ice blocks, boulders and mud, leaving death and destruction in their path. In the
past three centuries more than 22 major outburst floods have destroyed a number of
towns and villages in the region. In 1941 one such aluvión, caused by the failure of a
moraine dam higher up in the Cordillera Blanca, destroyed about one third of the city of
Huaraz and resulted in an estimated 5000–7000 deaths.

7.1.2 Monoclinal rising wave or kinematic shock

While the surge considered in the previous section is obtained by considering only the
dynamic terms in the momentum equation (5.22), the monoclinal rising wave is obtained
from a balance of the other two terms in that equation, i.e. Sf = S0 (in the absence of lateral
inflow). In other words, the accelerations are considered to be so gentle that the flow
can be assumed to be quasi-steady-uniform and that the only forces of any consequence
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h2

h1

cs

Fig. 7.4 Monoclinal wave, as a

gentle transition

between two uniform

quasi-steady regimes.

Its rate of

propagation is given

by Equation (7.9).

are frictional resistance and gravity. It is often considered the kinematic equivalent of
the dynamic shock, because the wave front constitutes a moving transition between two
regions of essentially uniform flow.

Again, the problem can be analyzed within a reference frame moving at the same
velocity as the wave (Figure 7.4). This yields, as before, Equation (7.5) for the continuity
equation, or

cs = q2 − q1

h2 − h1
(7.9)

In a perfect kinematic system this result suggests a discontinuity in h or in its deriva-
tive, because in order to keep cs a constant, dq/dh must also be constant, even though
q = q(h) is nonlinear. This is the reason why the monoclinal rising wave has also been
referred to as a kinematic shock. In actual rivers, however, flood rises, which are subject
mainly (but never only) to the effects of gravity and friction, usually do not display any
such discontinuities and they are quite continuous and smooth; they usually extend over
large distances and the transition or shock thickness may be considerable. In view of this
ambiguity, the question arises whether the type of motion predicted by Equation (7.9)
can even exist or maintain itself in the real world. The matter can be resolved by consid-
ering the full equation of motion (5.22) to determine under what conditions diffusion and
wave steepening might be in balance, to allow the stability of the uniformly progressive
flow assumed in the derivation of (7.9). By means of a moving coordinate system it
can be shown that the monoclinal wave profile is actually stable, as assumed, provided
h1 > h2 > hcr, in which hcr is the critical depth, and provided the wave front extends an
infinite distance downstream. It can also be shown that in most practical cases on large
rivers the wave will rise to 0.90( h1− h2) within a distance of the order of h2/S0, which
is usually of the order of some tens of kilometers; this means that the monoclinal rising
wave is often well approximated on long rivers. The details of the analysis, although
straightforward, are beyond the present scope and various aspects can be found elsewhere
(Lighthill and Whitham, 1955; Henderson, 1966).
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For a small rise, Equation (7.9) reduces to (5.108), that is, the Kleitz–Seddon principle,
and the kinematic shock velocity cs approaches the kinematic wave celerity ck, as defined
in (5.108) and (5.112). Thus one obtains (5.113), or

ck = (a + 1) V (7.10)

for a wide channel, or (5.114) otherwise; values of a are listed in Table 5.2.

7 . 2 A L U M P E D K I N E M AT I C A P P ROAC H :
T H E M U S K I N G U M M E T H O D

This streamflow routing method is named after the Muskingum Watershed Conservancy
District in Ohio, where it was evidently first applied. The Muskingum River is a tributary
of the Ohio River. Ever since it was presented by McCarthy (1938), this method and
several of its derivatives and variants have been widely used in hydrologic applications.
There are several other streamflow routing methods that are based on the lumped kine-
matic approach, among which the lag-and-route method (Meyer, 1941) and the method
of Kalinin and Milyukov (see, for example, Apollov et al., 1964, p. 53) are probably the
better known (see also Chow, 1959; Dooge, 1973). The Muskingum method has been
the subject of much research and its performance characteristics and limitations are well
understood so that it can serve as the prototype of this approach.

7.2.1 Conceptual derivation

The method is based on the storage equation (1.10) or (5.125), which can be rewritten
here for convenience as

Qi − Qe = d S
dt

(7.11)

where Qi and Qe are the rate of flow, respectively, at the inlet and at the outlet section of
the channel reach under consideration. When the hydrographs of Qi and Qe are plotted
on the same graph, S, the water stored in the reach during the passage of the flood wave,
is the cumulative area between the two curves, as shown in Figure 7.5. In the Muskingum
method, closure of (7.11) is achieved by the assumption that S is a weighted function of
both inflow rate and outflow rate of the channel reach control volume. This function can
be derived as follows.

Muskingum storage function
At the point of inflow the flow rate can often be approximated by a power function of
the cross sectional area, and the same holds true for the point of outflow, or

Qi = αi A
β

ci and Qe = αe Aβ
ce (7.12)

where α and β are constants and the subscripts denote the inflow and outflow section
of the channel reach under consideration. For example, according to Equation (5.39)
for a wide channel with an average width Bc, these constants are α = (CrSb

0 B−a
c ) and

β = (a + 1). The water volume stored in the reach S is equal to its length �x times the
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dS/dt>0

dS/dt<0

Time, t

Qi

Qe

Fig. 7.5 Illustration of the inflow hydrograph Qi = Qi (t) and the outflow hydrograph Qe = Qe (t) in a channel

reach, together with the rate of change of water stored in the reach during the passage of a flood wave.

As long as the inflow rate is larger than the outflow rate, i.e. Qi > Qe the storage is increasing, and as

soon as the opposite occurs, i.e. when Qi < Qe, the storage decreases. The shaded area indicates how

the storage itself increases with time, as S =
∫∫

(Qi − Qe) dt.

average cross sectional area of the reach, or

S = [X Aci + (1 − X )Ace]�x (7.13)

where X is a constant reflecting the relative weight, which the cross sections at the inflow
end and at the outflow end exert on the average cross section (see Figure 7.6). Substituting
(7.12) in (7.13), one obtains

S = [
X α

−1/β

i Q1/β

i + (1 − X ) α−1/β
e Q1/β

e

]
�x (7.14)

If it is further assumed that the cross sections at the inflow and outflow end exhibit
similarity, so that all the constants can be combined into one constant, say K, and
that the system is linear so that β = 1, one obtains finally the Muskingum storage
function

S = K [X Qi + (1 − X ) Qe] (7.15)

The constant K is also referred to as the storage coefficient. Substitution of (7.15) into
the storage equation (7.11) yields the governing differential equation

Qe + K (1 − X )
d Qe

dt
= Qi − K X

d Qi

dt
(7.16)

Interpretation of the parameters
Some insight can be gained in the nature of the parameters K and X by considering the
two main features of the flood wave in progress. These features are the time it takes
for the flood wave to pass through the reach, and the change in shape the flood wave
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Fig. 7.6 Water stored in the

channel reach control

volume of length Δx.

The cross-sectional

areas are Aci and Ace

at the inflow and at

the outflow end,

respectively. The

corresponding

average water depths

at these sections are hi

and he.

Fig. 7.7 The time of travel tt of

the flood wave through

the reach is the time

between the centroids

of the inflow and

outflow hydrographs.

In the linear

Muskingum storage

function this is given

by tt = K.

undergoes, as it travels through the reach. The moments, which are used in what follows,
are defined in Chapter 13.

The mean time of occurrence of a flood wave is the first moment about the origin,
denoted as m′

1 or μ; this quantity is also referred to as the centroid or center of area of
the hydrograph. Therefore, the travel time is the difference between the mean time of
occurrence of the wave at the exit section and that at the inflow section of the reach,
that is tt = m ′

e1 − m ′
i1, as shown in Figure 7.7; as before, the subscripts e and i refer to

the outflow and inflow sections of the reach. In other words, that travel time is the time
between the centers of area of the inflow wave Qi(t) and of the outflow wave Qe(t), or

tt =

∞∫
0

t Qe dt

∞∫
0

Qe dt
−

∞∫
0

t Qi dt

∞∫
0

Qi dt
(7.17)
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The integrals in the denominators of (7.17), which are the zeroth moments, are required
to normalize Q; ideally, they should equal each other, if there are no lateral inflows or
outflows in the reach. Substitution of (7.16) in (7.17) produces

tt = −K

∞∫
0

t
d
dt

[X Qi + (1 − X ) Qe]dt

/ ∞∫
0

Qi dt (7.18)

Integration by parts, and imposition of the condition that both Qi and Qe are zero for t at
infinity, leads finally to the desired result

tt = K (7.19)

In words, Equation (7.19) states that the parameter K can be interpreted as a measure of
the lag or the time of travel tt of the flood wave through the reach. Accordingly, when
the channel reach has a length �x, the celerity of a Muskingum wave is

cm = �x/K (7.20)

The width or average duration of a flood wave hydrograph, which is one of the more
obvious measures of its shape, can be conveniently characterized by its standard deviation
σ, that is, the square root of its second moment about the mean,

√
m2. Thus, the change in

shape of a flood wave hydrograph, after passing through a channel reach, can be described
by the difference between the second moments of the outflow and inflow hydrographs,
namely (me2 − mi2). Since the second moment about the mean is related to the moments
about the origin as indicated in Equation (13.12), this difference can be written as

(me2 − m i2) = (m ′
e2 − m ′

i2) − (m ′
e1)2 + (m ′

i1)2 (7.21)

in which the difference between the two moments about the origin is

(m ′
e2 − m ′

i2) =

∞∫
0

t2 Qe dt

∞∫
0

Qe dt
−

∞∫
0

t2 Qi dt

∞∫
0

Qi dt
(7.22)

As before, in (7.22) the two terms in the denominators should be equal to each other,
when there are no additional in- or outflows in the reach. Substitution of Equation (7.16)
into (7.22) produces now

(m ′
e2 − m ′

i2) = −K

∞∫
0

t2 d
dt

[X Qi + (1 − X )Qe]dt

/ ∞∫
0

Qi dt (7.23)

Integrating (7.23) by parts, and making use of the same operations that led from (7.18)
to (7.19), one finds

(m ′
e2 − m ′

i2) = 2K (m ′
e1 − K X ) (7.24)

Finally, substituting (7.24) into (7.21), and recalling that according to (7.19) m ′
e1 − m ′

i1 =
K , one obtains

(me2 − m i2) = K 2(1 − 2X ) (7.25)



streamflow routing 228

In the conceptual derivation of Equation (7.15), X was introduced simply to weight
the relative effects of the inflow and outflow sections. Accordingly, in cases of pure
reservoir action, that is, when the flood passes through a level pool whose stage (or level)
is controlled by a spillway at the downstream end, the storage S should be independent of
the inflow rate, and therefore X = 0. On the other hand, in a uniform rectangular channel
with a plane water surface the two sections should be weighted equally and ideally
X = 0.5. Equation (7.25) allows now a fuller interpretation of X. Equation (7.19) already
showed that the parameter K is the mean residence time of the flood wave in the reach;
both second moments and K2 in (7.25) have the basic dimensions [T2]. Hence

√
1 − 2X

reflects the rate of increase of the (streamwise) width of the wave as it travels through
the reach; because mass is conserved,

√
1 − 2X must also reflect the rate of decrease of

its height, that is, the rate of subsidence of the peak discharge of the flood hydrograph.
According to (7.25), the difference between the two second moments is maximal when
X = 0, that is under conditions of pure reservoir action. On the other hand, (7.25) indicates
that, when X = 1/2, the wave does not undergo deformation, but it retains its original
shape as it travels. Because the peak of a flood wave normally decreases along its path,
in principle X should be smaller than 0.5.

7.2.2 Analytical solution

The ordinary differential equation (7.16) can be readily solved. One common technique is
to multiply both sides by exp[t/K (1 − X) ]. This allows it to be written as

d
dt

(
et/K (1−X ) K (1 − X )Qe

) = −K X
d
dt

(
et/K (1−X ) Qi

) + K
1 − X

et/K (1−X ) Qi (7.26)

Finally, the integral of (7.26) provides the outflow rate Qe resulting from a given inflow
rate into the reach Qi = Qi(t), as follows

Qe = e−t/K (1−X )

K (1 − X )2

∫
Qi(τ )eτ/K (1−X )dτ − X

(1 − X )
Q i(t) + constant (7.27)

in which the value of the constant depends on the values of the flow rates at some reference
time.

Unit response function
This is the outflow from the channel reach in response to a unit impulse inflow into the
reach at the inflow section at t = 0 (see Appendix). Thus with a Dirac delta function inflow,
Qi = δ(t), Equation (7.27) immediately yields

u(t) = e−t/K (1−X )

K (1 − X )2 − X δ(0)

(1 − X )
(7.28)

The first two moments of the unit response
An alternative way to describe a function is by means of its moments. These can be deter-
mined for the unit response function (7.28) as follows. The first moment of the unit response
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about the origin is (see Chapter 13)

m ′
u1 =

∞∫
0

t u dt

∞∫
0

u dt
(7.29)

With the unit response (7.28), one can check that the integral in the denominator of (7.29),
i.e. the zeroth moment, equals one, as it should; moreover, the first moment of the delta
function δ(0) is zero. Therefore, after insertion of (7.28), Equation (7.29) can be rewritten
as

m ′
u1 =

∞∫
0

t
e−t/K (1−X )

K (1 − X )2 dt (7.30)

After integration by parts, one finds that the first moment of the unit response is simply
equal to the Muskingum parameter K, or

m ′
u1 = K (7.31)

The second moment of the unit response about the origin is

m ′
u2 =

∞∫
0

t2u dt

∞∫
0

u dt
(7.32)

Proceeding in the same way as for the first moment, one finds that this second moment
about the origin can be written in terms of the Muskingum parameters as

m ′
u2 = 2K 2(1 − X ) (7.33)

Since the second moment about the mean is related to the first two moments (see Equation
(13.12)), one obtains finally

mu2 = K 2(1 − 2X ) (7.34)

The higher moments can be derived in the same way.
As an aside, comparison of Equations (7.31) and (7.34) with (7.19) and (7.25), respec-

tively, reveals that m ′
u1 = (m ′

e1 − m ′
i1) and mu2 = (me2 − mi2). This is not unexpected.

Indeed, the Muskingum channel reach is a linear system, to which the theorem of moments,
as given by Equations (A22) and (A28) should be fully applicable.

7.2.3 Standard implementation

Numerical calculations
Although the analytical solution provides insight into the structure of the Muskingum
formulation, it is difficult to use with observed streamflow data. In hydrologic practice,
the Muskingum method is normally applied over finite time increments �t; for this
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purpose Equation (7.11) can be approximated as

1

2
(Qi1 + Qi2)�t − 1

2
(Qe1 + Qe2)�t = S2 − S1 (7.35)

in which the subscripts 1 and 2 refer to the beginning and the end of the time period �t.
Upon substitution of (7.15) this becomes

1

2
(Qi1 + Qi2)�t − 1

2
(Qe1 + Qe2)�t

= K{[X Qi2 + (1 − X )Qe2] − [X Qi1 + (1 − X )Qe1]} (7.36)

After collecting the terms, (7.36) can be written as a coefficient equation

Qe2 = c0 Qi2 + c1 Qi1 + c2 Qe1 (7.37)

in which

c0 = −2X + �t/K
2(1 − X ) + �t/K

, c1 = 2X + �t/K
2(1 − X ) + �t/K

and

c2 = 2(1 − X ) − �t/K
2(1 − X ) + �t/K

(7.38)

with the obvious requirement that (c0 + c1 + c2) = 1.

Constraints on the parameters
In practical applications, the parameters in the Muskingum method must satisfy a num-
ber of constraints, if it is to perform well. When the method was originally developed not
much attention was paid to this issue, as the basic underlying assumptions were not fully
understood; therefore, the method sometimes produced unreasonable results (such as neg-
ative flow rates). The values of the weighting parameter X, of the time step �t, and of the
length of the channel reach �x, affect the outcome of the calculations, so that some attention
should be given to their choice.

(i) As already discussed earlier, Equation (7.25) indicates that X should not exceed 0.5;
indeed values in excess of 0.5 would indicate that the flood peak magnitude increases
as it moves downstream; this never occurs in situations where the lumped kinematic
approach is applicable. Moreover, a negative value of X would indicate in (7.15) that
a larger inflow rate into the reach results in a smaller storage. Thus, one can constrain
X as follows

0 ≤ X ≤ 0.5 (7.39)

(ii) The Muskingum method involves several time scales, namely the finite time step of
the numerical solution �t, the time of travel through the channel or lag K, and the
characteristic life time of the incoming flood wave, say its time to peak tp. To allow
sufficient resolution of the temporal behavior of the flood wave, it stands to reason
that �t should be small compared with the life time of the incoming flood. Therefore
it is usually assumed (see Jones, 1981; Ponce and Theurer, 1982) that

�t ≤ atp (7.40)

in which a is a number of the order of 4 to (preferably) 5.
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(iii) Several studies have dealt with the optimal length of the length of the reach �x, but
there is no general consensus in the literature. As can be seen in Equation (7.20),
�x and K are related, so that the magnitude of �x plays a role in the calculations
with (7.37) and (7.38). In the original applications of the Muskingum method �x
was taken as the total length of channel through which the routing was applied. In
more recent applications the total length of channel is usually subdivided in a number
of subsections of length �x, and the calculations are carried out for each of these
subsections. One simple constraint, which would obviously avoid negative outflows
and which was suggested by Miller and Cunge (1975), is that the coefficients in
Equation (7.37) should all be positive. Hence, from (7.38) and (7.20) one can deduce
that, strictly speaking, the following should be satisfied.

�x
�t

≤ cm

2X

and

�x
�t

≥ cm

2(1 − X )

(7.41)

With Equation (7.39) this allows construction of the diagram shown in Figure 7.8.
In practical applications the flood hydrographs needed for calibration may not be
available at the desired distances along the reach. However, a coarse spatial resolution
in available hydrograph data can sometimes be remedied by interpolation, to generate
a smaller step �x. Laurenson (1959) has shown an example how such interpolation
can be implemented to achieve improved results.

In some situations it may prove impossible to adhere strictly to these conditions (i), (ii)
and (iii). Fortunately, however, the Muskingum method can be fairly robust and violation of
criteria like (7.41) does not necessarily lead to useless results. For instance, Weinmann and
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Laurenson (1979) reported that they did experience negative outflows in their calculations,
but as long as the criterion

�x ≤ tpcm

2X
(7.42)

was satisfied, these negative outflows were found to be small and short enough to be ignored
for practical purposes. Note that in light of Equation (7.40) this criterion is a relaxed version
of the first of (7.41).

7 . 3 E S T I M AT I O N O F T H E M U S K I N G U M PA R A M E T E R S

7.3.1 Calibration with previously recorded flood wave events

Estimation with the Muskingum storage function
Especially in the early applications of the method, the parameters X and K were usually
estimated from available data of inflow and outflow in a given reach of interest. In this
approach, the flow data are used to determine the storage in the reach, from which the
storage function (7.15) can be derived. In practice, the first step consists of obtaining S
from Qi and Qe by means of Equation (7.35) as shown in Table 7.1. The initial value S1

is unknown, but its value is immaterial; in the computations, it can usually be set at zero
by using (7.15) with a zero intercept.

The next step consists of plotting the S values against the weighted values of the inflow
and the outflow, that is [X Qi + (1 − X)Qe], for different trial values of X. That value
of X is then selected, which produces the relationship that most closely approximates
a single-valued straight line without a loop. The value of K is the slope of that straight
line, and ideally its intercept is −S1. The main drawback of this method is that it does
not rely on objective criteria to determine optimality; rather, it involves a trial-and-error
adjustment of X by fitting a straight line to a loop, which is usually not straight but curved.
Nevertheless, the procedure is simple and easy to carry out, as shown in the following
example.

Table 7.1 Estimation of the storage S from inflow and outflow hydrographs

Inflow Averaged inflow Outflow Averaged outflow
Difference
in storage Storage

Qi1 Qe1 from (7.35) S1

(Qi1 + Qi2) / 2 (Qe1 + Qe2) / 2 (S2 −S1)
Qi2 Qe2 S2

(Qi2 + Qi3) / 2 (Qe2 + Qe3) / 2 (S3 −S2)
Qi3 Qe3 S3

(Qi3 + Qi4) / 2 (Qe3 + Qe4) / 2 (S4 −S3)
Qi4 Qe4 S4

etc.
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Table 7.2 Application of the Muskingum channel routing method in Example 7.2

XQi + (1 − X)QeQi Qe �S S
time (h) (m3 s−1) (m3 s−1) (m3h s−1) (m3h s−1) X = 0.1 X = 0.3 X = 0.5

0 172 139 0 143 149 156
1 250 124 79 79 137 162 187
2 438 220 172 251 241 285 329
3 736 342 306 557 382 460 539
4 1077 542 464 1021 596 703 810
5 1622 805 675 1696 887 1050 1214
6 2090 1271 818 2514 1353 1517 1681
7 2294 1684 714 3229 1745 1867 1989
8 2247 1973 442 3670 2001 2055 2110
9 2090 2169 98 3768 2161 2145 2130

10 1622 2090 −273 3495 2044 1950 1856
11 1271 1895 −546 2948 1833 1708 1583
12 1015 1622 −615 2333 1561 1440 1318
13 844 1333 −548 1785 1285 1187 1089
14 711 1077 −428 1357 1040 967 894
15 627 891 −315 1042 864 812 759
16 549 759 −236 806 738 696 654
17 488 651 −186 620 634 602 569
18 433 558 −143 477 545 520 495
19 388 496 −116 360 485 464 442
20 343 434 −100 261 425 407 389
21 313 396 −87 174 388 371 355
22 283 350 −75 99 343 330 317
23 266 319 −60 39 314 303 293
24 249 296 −50 −12 291 282 272
25 236 265 −38 −50 263 257 251
26 224 235 −20 −70 234 232 230
27 213 220 −9 −79 219 218 216
28 201 204 −5 −84 204 203 203
29 192 197 −4 −88 196 195 194
30 182 189 −6 −94 188 187 186

Example 7.2. Standard application of the Muskingum method

Consider, as an illustration, the flow rates Qi and Qe for a channel reach; these are
listed in Table 7.2. Also listed are the results of the calculations required to estimate
the parameters as outlined already in Table 7.1. The values of incremental storage �S
were calculated by means of Equation (7.35), and were summed in the next column to
obtain the values of the storage S in the reach. These values can then be plotted against
X Qi + (1 − X)Qe for different trial values of the weighting parameter X. The value
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and K = 1.99 h.

X = 0.3 appeared to yield the best single valued relationship, required by (7.15). This is
illustrated in Figure 7.9; also shown are the curves for the extreme values X = 0.1 and
0.5 to illustrate the evolution of the relationship as a function of X. The regression line
in the form of (7.15) for the value of X = 0.3 is S = 1.99 (0.3 Qi + 0.7 Qe) − 489. (This
suggests that initially the storage in the reach could have been assumed to be S = 489
m3h s−1, instead of the value S = 0 adopted in Table 7.2, in order to force the regression
in Figure 7.9 through the origin in accordance with Equation (7.15)). The time of travel
through the reach is K = 1.99 h. With these values of X and K, Equation (7.37) can be
written as Qe2 = −0.051Qi2 + 0.579Qi1 + 0.472Qe1; the calculated outflow hydrograph
can be compared in Figure 7.10 with the original data of Qe (i.e. the values listed in Table
7.2) used in the calibration.
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Estimation with optimization techniques: the method of least squares
For the purpose of parameter estimation, the Muskingum channel can also be treated
as a black box, to which more objective systems techniques (cf. Section 12.2.1) can be
applied. In what follows, the method of least squares is presented as an example.

The simple form of Equation (7.37) immediately suggests that it should be possible
to estimate the constant coefficients by multiple linear regression. There is, however, one
small complication, in that the coefficients must satisfy the constraint c0 + c1 + c2 = 1.
This constraint can be incorporated by defining the variables y = Qe2 − Qe1, x1 =
Qi2 −Qe1 and x2 = Qi1 − Qe1, and by recasting (7.37) as follows

y = c0x1 + c1x2 (7.43)

which can be considered as a linear regression equation of y on x1 and x2, forced through
the origin. By applying the method of least squares to Equation (7.43) it can readily be
shown that optimal values of the coefficients can be calculated with the following

c0 =
∑

yx1
∑

x2
2 − ∑

yx2
∑

x1x2∑
x2

1

∑
x2

2 − (∑
x1x2

)2

and (7.44)

c1 =
∑

yx2
∑

x2
1 − ∑

yx1
∑

x1x2∑
x2

1

∑
x2

2 − (∑
x1x2

)2

and, of course, c2 = 1 − c0 − c1. The summations can be performed over the time range
for which the hydrographs are available; this will yield values of the coefficients, which
perform well “on average” (in the least squares sense). However, if certain features of
the hydrograph require greater accuracy, such as for example the flows in the vicinity of
the peak discharge, it may be desirable to perform the summation over a more narrow
time range.

With these three coefficients c0, c1 and c2 determined, Equation (7.37) can be applied
to solve any routing problem. In case the Muskingum parameters are needed for one or
other reason, they can be calculated from these coefficients by inversion of (7.38), that
is by using

K = (c1 + c2)/(c0 + c1)

and (7.45)

X = 0.5(c1 − c0)/(c1 + c2)

Example 7.3. Application of the multiple regression method

The Qi and Qe hydrographs of Example 7.2, as listed in Table 7.2 and shown in Figure
7.10, can be used to illustrate the method. The reader can verify that the sums needed
in (7.44) have the following values:

∑
yx1 = 2 772 315,

∑
yx2 = 1 942 872,

∑
x2

1 =
8 383 823,

∑
x2

2 = 3 838 571, and
∑

x1x2 = 5 454 548 (in the units of Table 7.2 squared).
With Equation (7.44) these yield the following values of the coefficients c0 = 0.018,
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c1 = 0.480 and c2 = 0.502; with Equation (7.45) the corresponding Muskingum param-
eters are K = 1.97 h and X = 0.24. All these values are close to the corresponding ones
obtained in Example 7.2 using the standard trial-and-error procedure; in fact, a plot of
the resulting hydrograph Qe would be difficult to distinguish from the curve shown in
Figure 7.10 for K = 1.99 h and X = 0.3.

7.3.2 From physical characteristics of the channel

Diffusive behavior of the Muskingum wave
Among the properties of the linear kinematic wave is the fact, explained in Section 5.4.3,
that it propagates along the channel with a celerity ck0, but without any change in shape.
Therefore, it was puzzling to practitioners for some time in the past that this is apparently
not the case for the Muskingum wave, even though it is based on the same approximation
as outlined in Section 5.4.4. Indeed, as illustrated in Figure 7.10, a Muskingum flood
wave undergoes not only translation in time but also a change in shape.

It is now realized that the change in shape of the calculated wave is not the result of
the underlying physics, but rather the result of numerical diffusion caused by the approx-
imation of derivatives by ratios of finite differences. Any lumped kinematic approach is
based on the storage equation (7.11); that equation is a discretized form of the continuity
equation, in which the spatial derivative is approximated by a difference over a distance
�x. As pointed out by Cunge (1969), it is this approximation that causes the spreading
of the calculated wave.

The diffusion introduced by finite difference approximations can be determined by
trying to recover the partial differential equation (5.111), without lateral inflow, from
(7.37). Recall that the subscripts 1 and 2 refer to the beginning and end of the time
interval �t; similarly, the subscripts i and e refer to the inflow and exit end of the spatial
reach �x. For the present purpose, the four Q terms can be expressed in terms of the rate
of flow Q(x, t) by a Taylor expansion as follows

Qi1 = Q

Qi2 = Q + ∂ Q
∂t

�t + 1

2

∂2 Q
∂t2

(�t)2+ · · ·

Qe1 = Q + ∂ Q
∂x

�x + 1

2

∂2 Q
∂x2

(�x)2+ · · ·

Qe2 = Q + ∂ Q
∂t

�t + 1

2

∂2 Q
∂t2

(�t)2+ · · ·

· · · + ∂

∂x

(
Q + ∂ Q

∂t
�t + · · ·

)
�x + 1

2

∂2

∂x2
(Q · · ·) (�x)2 + · · ·

(7.46)

where the terms of order higher than 2 have been neglected. Substitution of (7.46)
into (7.37) and division by [(1 − c0)�t] produces the following partial differential
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equation

∂ Q
∂t

+ �x(1 − c2)

�t(1 − c0)

∂ Q
∂x

+ (�x)2(1 − c2)

2�t(1 − c0)

∂2 Q
∂x2

+ �t
2

∂2 Q
∂t2

+ �x
(1 − c0)

∂2 Q
∂x ∂t

= 0 (7.47)

This result is obtained from Equation (7.37). In principle, (7.37) is merely a finite differ-
ence form of the kinematic wave equation (5.111) (in the absence of lateral inflow Ql).
The kinematic wave equation contains only first-order derivatives. Hence, this suggests
that the first two terms of (7.47) must represent the corresponding derivative terms in
the kinematic wave equation (5.111); it also suggests that the additional three terms in
(7.47), which contain second-order derivatives, were somehow introduced spuriously by
the finite difference approximation. This can be verified as follows. Upon substitution of
(7.38) for the constants, the coefficient of the second term of (7.47) reduces to (�x /K);
since �x is the length of the reach, and K the time of travel of this flood wave, their ratio
is the Muskingum celerity cm, already defined in (7.20). The corresponding coefficient in
the kinematic wave equation (5.111) is ck. This means that the Muskingum wave celerity
is in fact the kinematic wave celerity, or

cm = ck (7.48)

The remaining three terms in (7.47) can be combined into one term by means of the
following kinematic wave identities (obtained by taking derivatives of (5.111) (for Ql =0)
and making use of (7.48)),

∂2 Q
∂x ∂t

= − (�x/K )
∂2 Q
∂x2

∂2 Q
∂t2

= (�x/K )2 ∂2 Q
∂x2

(7.49)

Finally, with some algebra (7.47) becomes

∂ Q
∂t

+ �x
K

∂ Q
∂x

− (�x)2(1 − 2X )

2K
∂2 Q
∂x2

= 0 (7.50)

This is the standard advective diffusion equation with an advectivity, given by the kine-
matic wave celerity,

cko = �x/K (7.51)

and with a diffusivity

D0 = ck0(1 − 2X ) �x/2 (7.52)

in which, as before, the subscript 0 indicates linearity. Equation (7.52) illustrates how the
discretization �x is responsible for the diffusion effect inherent in the storage equation.
In the limit, when �xis made to approach zero to obtain a derivative, the diffusivity
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disappears; this is not the case for the celerity in (7.51), because the time of travel K then
also goes to zero.

Physically based estimation of the parameters: the MCD method
The MCD acronym stands for the Muskingum–Cunge–Dooge method and it refers to
the names of the two investigators who contributed independently to its development.

As proposed by Cunge (1969), the numerical diffusion in the Muskingum formulation
can be put to good use in the estimation of the parameters X and K; this is done simply
by requiring this numerical diffusion to be equal to the physical diffusion resulting from
the hydraulic characteristics of the flow. Accordingly, equating (7.51) and (7.52) with
(5.94) and (5.93), respectively, one obtains

K = �x
d Q0/d Ac0

(7.53)

which for wide channels is equal to �x/[(a + 1)V0], and

X = 1

2
− bQ0

ck0 BcS0�x
(7.54)

The symbol Q0 is a typical reference flow rate in the channel, b the parameter of (5.39)
which is normally taken as 1/2 for turbulent flow (see Table 5.2), ck0 is the kinematic
wave celerity, Bc is the channel width, S0 is the bed slope, and �x is the length of the
channel reach. With the more accurate expression (5.98) for the diffusivity, this is

X = 1

2
− bQ0

ck0 BcS0�x

(
1 − a2Fr2

0

)
(7.55)

In cases when the channel is sufficiently wide, the Kleitz–Seddon principle (5.108) can
be used to express (7.55) in even simpler terms, namely

X = 1

2
− bh0

(a + 1)S0�x

(
1 − a2Fr2

0

)
(7.56)

All these expressions for X indicate that it is normally smaller than 0.5.
In a different development, Dooge (1973) determined the parameters K and X of the

Muskingum formulation by equating its first two moments (7.31) and (7.34) with the first
two moments obtainable from the unit response (5.72); recall that this response function
is obtained by the exact solution of the linearized complete shallow water equation
(5.67). The details of this derivation are beyond the present scope, but it is easy to show
that the resulting expressions are the same as (7.53) and (7.56). This indicates that the
application of the Muskingum formulation with (7.53) and (7.56) will ensure that it
produces a wave motion whose average speed of propagation and dispersion are the
same as those obtainable with the exact solution. It also means that the expressions for
the Muskingum parameters in Equations (7.53)–(7.56) are even better than would be
suggested by a cursory review of Cunge’s (1969) derivation. These expressions conform
not only with the diffusion approximation, but with the exact solution of the linearized
complete shallow water equation (5.67), as well.
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Practical implementation: linear or nonlinear?
In the standard application of the Muskingum method the parameters K and X are usually
considered as constants, and treated as characteristics of the channel reach in question.
However, the physically based expressions (7.53) and (7.54) show how in reality K and
X depend on the reference rate of flow Q0, once �x has been decided upon. As long as
the actual flow rates Q are only small deviations from the reference flow Q0, a linearized
algorithm can be expected to perform well. Flood waves normally involve large deviations,
and since the Muskingum method is essentially linear, the question arises what value should
be assigned to Q0 in Equations (7.53) and (7.54) to ensure optimal results. A few studies
have focused on this issue.

Actually, the form of (7.53) and (7.54) opens up the possibility of applying the Musk-
ingum method in a nonlinear way. Cunge (1969) already suggested that Q0 be adjusted to
allow extrapolation of the Muskingum parameters beyond the range of previously observed
events. Miller and Cunge (1975, p. 226) subsequently treated the parameters as functions
of time K = K(Q(t)) and X = X(Q(t)), by assigning to Q0 and (dQ0/d Ac0) the values cor-
responding to the flow rate Q at that time and adjusting them at every time step of the
computation; they applied this technique to a channel with a compound cross section. In the
same vein, Koussis (1978) proposed an adjustment of K at each computational time step,
by means of the uniform rating curve to estimate (dQ0/d Ac0) in (7.53); but while X can
also be easily adjusted as a function of Q, he found from his analysis of wave propagation
on the Rhine, that the results tend to be relatively insensitive to the exact value of X and
that therefore a constant value should be adequate. On the other hand, Ponce and Yevjevich
(1978) concluded that the overall difference between a linear and nonlinear application of
Equations (7.53) and (7.54) in (7.37) is usually quite small. In addition, they obtained better
results using an average value of Q to represent Q0, but opined that the use of the peak value
of the hydrograph as Q0 might be easier to implement in practice.

Example 7.4. Application of the MCD method

Consider again the inflow and outflow hydrographs of Example 7.2 and illustrated in
Figure 7.11. Assume that these flow rates took place in a river channel with an effective
width of Bc = 170 m, an effective slope S0 = 0.0004 and an effective roughness n =
0.035. The length of the reach, that is the distance between the inflow and outflow section
was taken as �x = 23 km. In Example 7.2 the Muskingum parameters were found to be
K = 1.99 h and X = 0.30. It is easy to check that Equations (7.53) and (7.54) produce
the same values of these parameters with an assumed reference value of the discharge
rate of roughly Q0 = 2000 m3 s−1; by means of the Gauckler–Manning equation (5.41)
this can be shown to correspond with a water depth h0 = 6.14 m and a reference velocity
V0 = 1.92 m s−1. The hydrograph calculated with these values of K and X has already
been compared in Figure 7.10 with the observed outflow hydrograph. The sensitivity of
the MCD method to the value of the assumed reference discharge rate Q0 can be tested by
carrying out the calculations with two different values, say Q0 =1500 and 2500 m3 s−1.
In the case of Q0 = 1500 m3 s−1, in the same river channel (5.41) produces a velocity
V0 = 1.71 m s−1 and a water depth h0 = 5.17 m. With these values one obtains
with (7.53) and (7.54) the parameter values K = 2.24 h and X = 0.34. In the case of
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Q0 = 2500 m3 s−1, the corresponding values are V0 = 2.09 m s−1, h0 = 7.02 m, K = 1.83 h
and X = 0.27. As illustrated in Figure 7.11, the calculated outflows are not strongly
affected by the choice of the reference flow rate Q0. Not surprisingly, a lower value of
Q0 results in a generally slower wave motion through the reach, and a somewhat delayed
arrival of the peak discharge.

7.3.3 Adjustment of calibration parameters on physical grounds

The expressions for the Muskingum parameters derived in the previous section require
a knowledge of the effective channel hydraulic parameters of the channel reach. In this
case, “effective” means that the hydraulic parameters should have values, which produce
the optimal results with the Muskingum procedure. Therefore, effective parameters may
not be easy to ascertain from the available information on the channel characteristics or
even from field surveys. Rather, for a given flood event, they are probably best obtained by
calibration, by means of the procedures explained in Section 7.3.1. However, the parameters
in the Muskingum formulation are not constants, so that for some other flood that must
be routed through a reach for design or forecast purposes, they are not likely to be the
same as those obtained by calibration with past events. Nevertheless, the physically based
expressions (7.53)–(7.56) obtained in the previous section can still be used to adjust or scale
the parameters obtained by calibration, to render them applicable to any other flood event
with different flow rates. This can be done conveniently by taking the peak flow rate, or
some other characteristic flow rate as reference.

The adjustment can be applied to channels of any cross-sectional shape, but it is especially
simple for wide channels, so that Rh = h. Let the parameters obtained by calibration with
a flood event on record be denoted by Kr and Xr, and those for the design or forecast flood,
that is to be routed, by Kd and Xd; use the same subscripts also for the corresponding flow
characteristics in these two events. For example, if the peak velocity Vipd at the inflow end
of the reach is known, one obtains immediately by means of (7.53) the time lag in the reach
for the design or forecast event

Kd = Kr
Vipd

Vipr
(7.57)
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In (7.57), Vipr is the flow velocity at the peak of the flood event on record at the inflow end
of the reach. In a similar way, one obtains from Equation (7.54) the adjusted weighting
parameter

Xd = 1

2
+ (X r − 0.5) hipd/hipr (7.58)

where hipr is the peak water depth at the inflow section of the reach, measured or calculated
for the reference flood event used in the calibration, and hipd is the corresponding peak water
depth at the entrance section for the flood event for which the parameter Xd is sought; values
of a are listed in Table 5.2. With the more accurate expression (7.56) and (5.63) one obtains
in a similar way

Xd = 1

2
+ (X r − 0.5)

(
ghipd − a2V 2

ipd

ghipr − a2V 2
ipr

)
(7.59)
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P RO B L E M S

7.1 In Example 7.1, it is assumed that the effective depth, h2, in the river just ahead of the surge,
was 1.0 m, and that the GM roughness in the river was n = 0.07. (a) What depth, h2, would be
required (i.e. prior to the sudden failure of the dam) if the GM roughness were in reality n = 0.08
(instead of 0.07) to obtain the same time of travel of the surge, namely 57 min, as observed in the
case of the Johnstown flood? Keep the same values of the slope and of the height of the surge, as
adopted in Example 7.1. (b) What would be the required depth, h2, if the roughness were actually
n = 0.09?

7.2 A steady flow, with depth h = 2 m, is maintained by means of a sluice gate in a concrete-lined
canal with a uniform rectangular cross section; its width is Bc = 5 m, the bed slope is S0 = 0.0008
and the GM roughness is n = 0.015. Calculate the downstream celerity of the surge caused by a
sudden rise of the water level to h = 4 m by opening the gate.

7.3 Take the outflow, Qe, listed in Table 7.2, as the inflow into the next reach downstream from the
one, considered in Example 7.2. Using the values, X = 0.3 and K = 2 h, calculate the outflow from
this next reach by means of the Muskingum method.
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7.4 The following hydrographs, Qi and Qe, respectively, were measured at the entrance and exit sections
of a reach on the Conecuh River in Alabama between Andalusia and Brooklyn in March–April of
1944 (Carter and Godfrey, 1960).

Date Qi Qe Date Qi Qe

(at noon) (m3 s−1) (m3 s −1) (at noon) (m3 s −1) (m3 s −1)

1944 March 16 120.64 118.38 29 982.70 1013.86
17 216.65 158.59 30 1280.06 1022.35
18 314.35 205.89 31 1390.51 994.03
19 472.94 272.44 1944 April 1 1169.62 1090.32
20 611.71 481.44 2 957.22 1263.07
21 594.72 518.26 3 580.56 1135.63
22 753.31 549.41 4 416.30 849.60
23 1302.72 719.33 5 322.85 583.39
24 1699.20 965.71 6 263.09 387.98
25 1634.06 1263.07 7 221.75 291.70
26 1356.53 1449.98 8 176.43 241.57
27 977.04 1469.81 9 172.19 218.35
28 614.54 1180.94

(a) Determine the routing coefficients, c0, c1, and c2, of Equation (7.37) by multiple regression. (b)
Estimate the values of the Muskingum parameters, K and X, from these coefficients. (c) Using the
coefficients obtained in (a), route the inflow through this reach, and compare the routed outflow
with the measured outflow. Present this comparison graphically.

7.5 Consider the 1944 event listed in Problem 7.4. (a) Determine the values of the Muskingum param-
eters, K and X, by the technique illustrated in Example 7.2. (b) Route the measured inflow
through this reach, and compare the routed outflow with the measured outflow. Present the results
graphically.

7.6 Consider the hydrographs listed for Problem 7.4. For a design peak inflow rate, Qi = 3000 m3 s−1,
predict the design peak outflow rate by the following two methods. (a) As a first approximation,
assume strict linearity and similarity between the design flood wave and the 1944 event. (b) Assume
that the river has a constant and large width, that its bed slope is S0 = 0.002, that its GM roughness
is n = 0.04, that the length of the reach is 35 km, and that the Muskingum parameters for the 1944
event are Kr = 2 days and Xr = 0.2; find the design values of the parameters by using Equations
(7.57) and (7.58). (c) With these design values, calculate the design peak outflow, Qe resulting
from an inflow hydrograph Q i whose values are 1.766 times those listed in Exercise 7.4. Compare
this result with that obtained in (a).

7.7 Making use of the data given in Problems 7.4 and 7.6, give an estimate of the cross-sectional area
of the flow, Ac, at the time of the outflow peak at Brooklyn in 1944.

7.8 The Muskingum flood routing method is a finite difference implementation of the diffusion equa-
tion. Determine the numerical value of K, in the Muskingum storage equation, for the flow situation
described in Problem 5.14, if the length of the channel section is L = 2.5 km.
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7.9 A hydrograph at the downstream end of a river section (after a period of heavy rain over upland
catchments) was recorded as follows.

Time (h) 0 2 4 6 8 10 12 14 16 18 20

Rate of flow
(m3 s−1)

1.5 1.4 16.9 54.1 72.8 62.4 46.3 31.7 20.7 13.9 9.6

Assume that there were no intermediate inflows (nor losses) in this river channel. From previous
events, the travel time in this reach is known to be 4 h, and the storage-weighting factor is X = 0.25.
(a) Determine the flood hydrograph at the upstream end of the reach for this event by means of
the Muskingum method. Hint: start computations at t = 20 h and go backwards. (b) If the width
of the river is 15 m and the water depth (at the downstream end) at the time of peak is 3.5 m,
what is the average velocity of the water (at the downstream end) at the time of peak? (Assume
a rectangular cross section.) (c) From the available information, give an estimate of the length of
the river reach.

7.10 Using the following hydrograph of a historical flood event at the entrance and exit sections of a
river reach:

Day Qi inflow Qe outflow Day Qi inflow Qe outflow
(at noon) (m3 s−1) (m3 s−1) (at noon) (m3 s−1) (m3 s−1)

1 668 611 9 2109 2895
2 1685 785 10 1668 2256
3 4647 1951 11 1325 1776
4 7906 4641 12 1098 1402
5 7864 7102 13 962 1125
6 5547 7392 14 869 966
7 3792 5657 15 781 854
8 2721 4098 16 708 811

(a) Determine the routing coefficients, c0, c1 and c2, of Equation (7.37) by multiple regression.
(b) Estimate the Muskingum parameters, K and X, from these coefficients. (c) Use these coefficients
to route the inflow through the reach, and compare the result with the measured outflow.

7.11 Assume that the following flood hydrograph was observed at the upstream end of a 40 km long
river reach.

Time (h) 0 2 4 6 8 10 12 14 16 18 20

Discharge
rate (m3 s−1)

0 16.7 53.7 72.2 61.9 45.9 31.4 20.5 13.7 9.49 0

(a) If you know that the channel is uniform with a rectangular cross section and that the wetted
cross-sectional area at the peak discharge (i.e. after 6 h) is 42.0 m2, show that the celerity of the
flood wave is approximately 10 km h−1 (i.e. 2.78 m s−1). (b) Assume that the celerity remains
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constant through the reach and that the weighting factor in the storage function is X = 0.25. First,
estimate the value of the Muskingum parameter K from (a); then calculate the peak flow at the
downstream end of the reach.

7.12 Derive the diffusion equation (7.50) from (7.46), via (7.47).

7.13 Derive the expression for the design weighting factor, Xd, given by (7.59) from (7.56).

7.14 Multiple choice. Indicate which of the following statements are correct.
(a) In general, the diffusion approach to describe flow in open channels can be considered

intermediate (in regard to the underlying assumptions) between the case of the moving
hydraulic jump (or bore) and that of the monoclinal rising wave.

Some of the underlying assumptions are:
(b) that gravity effects are balanced completely by shear stress effects;
(c) that the lateral inflow rate must be negligible;
(d) that the channel is infinitely wide;
(e) that the slope of the water surface relative to the channel bottom is negligible.

7.15 Multiple choice. Indicate which of the following statements are correct. The Muskingum flood
routing method makes use of storage function given by (7.15). This method:
(a) works often well to predict the propagation of flood waves, involving slow and gradual

momentum changes;
(b) has the advantage of not requiring any previous flood data, since the necessary parameters

can also be derived from information on channel roughness and channel geometry;
(c) in its general form requires that the peak of the outflow, Qe, from a channel reach occur at

the time when the inflow wave has the same rate of flow;
(d) is rather restricted in its applicability, because it is based on the assumption that storage is

a function of the inflow and outflow with hysteresis;
(e) can be applied to an ungated linear reservoir, provided the storage is made a function of

outflow only.

7.16 Multiple choice. Indicate which of the following statements are correct. During the passage of
a flood wave through a reservoir (whose outflow rate is controlled by a fixed weir), the peak of
the outflow hydrograph occurs (if both inflow, Qi, and outflow hydrograph, Qe, are plotted on the
same graph):
(a) at the time of the inflection point of the inflow hydrograph;
(b) at the time t = K, where K is a constant in S = K [XQi + (1 − x)Qe];
(c) at the time where the slope of the outflow hydrograph goes from positive to negative;
(d) at the time of the intersection with the inflow hydrograph;
(e) at a time K units later than the peak of the inflow hydrograph.

7.17 Multiple choice. Indicate which of the following statements are correct. The motion of a flood
wave in a medium-size river:
(a) is usually more like that of a bore (or moving hydraulic jump) than like that of a monoclinal

rising wave;
(b) is always such, that the rate of flow is a unique, single-valued function of the water

depth.
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(c) often takes place with a celerity that is approximately proportional to the square root of the
bed slope;

(d) usually has a sufficiently high Reynolds number so that the effect of bed roughness becomes
negligible;

(e) can be predicted fairly well by solving the continuity equation together with the complete
shallow water momentum equation;

(f) is usually not greatly affected by the impact of the raindrops on the flowing water in the
river;

(g) can be described by the kinematic wave approach only when the channel bed is relatively
smooth, so that the GM roughness, n, is small;

(h) can be described by the kinematic wave approach: the approximation is better for a channel
with a small slope than for one with a larger slope (assume everything else is the same);

(i) can be described by the shallow water equations even when the river is not very wide.

7.18 Multiple choice. Indicate which of the following statements are correct. The classical, Muskingum
flood routing method:
(a) is not suitable to describe diffusion (i.e. “broadening” and “flattening”) of a flood wave as

it travels downstream, because it is based on the kinematic wave assumption;
(b) is not suitable to predict the propagation of bores or moving hydraulic jumps, because

it neglects change-in-momentum effects (in other words, it is based on the assumption
(DV/Dt) = 0;

(c) can be used to describe a stationary hydraulic jump by adjusting the velocity of the moving
coordinate system;

(d) is based on the assumption that the storage of water in the channel is a linear function both
of inflow rate and of outflow rate;

(e) in its general form requires that the peak of the outflow flood occur at the time when the
inflow flood has the same rate of flow.



I I I WAT E R B E L OW T H E S U R FAC E





8 WAT E R B E N E AT H T H E G RO U N D :
F L U I D M E C H A N I C S O F F L OW
I N P O RO U S M AT E R I A L S

8 . 1 P O RO U S M AT E R I A L S

The great majority of all near-surface geologic formations, in which water is stored and
transported, are unconsolidated porous rocks made up of particles of different sizes. This
type of formation is usually referred to as a soil close to the surface, and as an aquifer at
greater depths. However, the terms soil and aquifer material are often used interchange-
ably. Many of these formations consist of alluvial and colluvial deposits, which as ripar-
ian aquifers are major contributors to streamflow. Although in some regions underlain
by limestone or karst formations, large quantities of water can be transported through
solution channels and caves, globally they are of much less importance. Formations
consisting of volcanic rock, shale and clay layers, which are porous but which transmit
water relatively slowly, are often considered impermeable for hydrologic purposes; as
such they are referred to as aquicludes.

The voids or open spaces between the particles of soils and other granular materials
are referred to as pores. An important property of such water-bearing formations is their
porosity. This can be defined as follows

n0 = lim
�∀→0

(
volume of voids in �∀

�∀
)

(8.1)

where �∀ is a small volume of porous material. This definition is subject to the continuum
paradox: on the one hand, the limit is necessary to allow the description of phenomena
at a point by means of infinitesimal calculus; on the other hand, the volume �∀ must
be kept large enough so that n0 represents a meaningful ensemble average over pores
of many different sizes. The porosity of a soil depends primarily on its particle size
distribution and on its structure. Some of these features are illustrated in Figures 8.1 and
8.2. A soil with a wide distribution of particle sizes tends to have a smaller porosity than
a soil consisting of particles or grains of a more uniform size. The structure of a granular
porous material refers to the arrangement of the particles among one another and to their
aggregation into larger structures. Thus the porosity can be increased by agricultural
operations, such as ploughing or raking, or by frost; these processes “open up” the soil
simply by rearranging the relative positions of the particles. Similarly, the porosity of the
soil can be decreased by compaction. In principle, in the case of soils consisting of inert
material, their texture, that is the size of the particles, should not affect the porosity, as
long as their structure, particle size distributions and chemical composition are similar.
However, actual soils are not inert, but the surfaces of their particles carry electrical
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(a)

(d)

(b)

(c)

Fig. 8.1 Illustration of the effect of texture and of

particle size distribution on the porosity. In

boxes (a), (c) and (d) the spherical particles

of uniform size arranged in a cubic packing

(i.e. a similar structure) result in aggregates

with exactly the same porosity, regardless

of the sizes of the particles. The particles in

box (b), which are of different sizes, result

in an aggregate with smaller porosity.

(a) (b)

(c)

Fig. 8.2 Illustration of the effect of

structure of spherical

particles of uniform size on

porosity. Among the regular

arrangements, the cubic

packing in (a) is the most

open and the rhombohedral

packing in (b) is the tightest;

(c) shows how secondary

structures (crumbs) can be

formed, resulting in larger

porosities.

charges; these charges affect the structure of the soil, and are increasingly effective with
decreasing particle size. Moreover, their chemical composition can vary widely. Some
of the soil constituents, such as colloidal clay, organic matter, lime, and colloidal oxides
of iron and aluminum, can act as cementing agents, which further the aggregation of
particles into larger structures. As a result, clayey soils tend to have higher porosities
than sandy soils.
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The volumetric water content of a soil can be defined in a similar way as Equation
(8.1), namely

θ = lim
�∀→0

(
volume of water in �∀

�∀
)

(8.2)

Clearly, when a soil is fully saturated, its water content, denoted by θ0, is by definition
equal to the porosity, or θ0 = n0.

8 . 2 H Y D RO S TAT I C S O F P O R E - F I L L I N G WAT E R
I N T H E P R E S E N C E O F A I R

Water in the pores of near-surface soils and other geologic formations is usually in
intimate contact with atmospheric air. Although for most hydrologic purposes water and
air can be treated as immiscible fluids, it is still necessary to consider their interaction
in the description and formulation of the different water transport mechanisms. In this
section hydrostatic conditions are explored, i.e. when both fluids, water and air, are at
rest.

8.2.1 Pressure in relation to water content

As the water content of a soil is reduced, the pressure of the remaining soil water generally
becomes smaller than that in the atmospheric air, which displaces the water in the pores.
This process can be illustrated by the following thought experiment.

A thought experiment
Consider, as shown in Figure 8.3, a sample of soil SS to be tested; it is placed on a
porous plate PP in a container C, to which a flexible tube FT is connected. (In a real
experiment a Büchner filter with fritted disk with sufficiently small pores can be used
for this purpose.) The pores of the porous plate PP are much smaller than those of the
sample SS (see Figure 8.4). Set up the experiment in such a way that initially the entire
system, i.e. soil sample, container and tube, are filled with water, and that the vertical
distance d between the center of the sample and the outlet of the tube is zero. Assume
for this simple experiment that the soil sample is incompressible so that it maintains its
original volume throughout, and that the water has a constant density ρw. Now increase
d stepwise by small increments and wait after each step until equilibrium is established,
that is, until water stops flowing out at the lower end of the tube. Record after each step
the value of d and the total volume ∀d of water drained during all previous steps. If �∀
is the volume of the sample SS, this total volume ∀d of drained water can be converted
to the volumetric water content of the soil sample simply by θ = (n0 − ∀d/�∀). Note
that, relative to atmospheric pressure, the pressure of the water in the soil pores is given
by pw = −γwd , where γw = ρwg is the specific weight of the water. In practice, when
the density of the water is constant, it is often convenient to express the pressure as
equivalent height of water column ψw; in these units the pore water pressure in this
experiment can simply be written as ψw = pw/γw. Thus the pressure is negative relative
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S S

PP

FT

FT

C

d

B-U

Fig. 8.3 Sketch of a thought experiment on a

soil sample SS, supported on a porous

plate PP in a receptacle C. The

average pressure in the water in the

sample is equal to −(ρwgd). The

blow-up section B-U is shown in

Figure 8.4.

Fig. 8.4 Blow-up view of the porous plate (or membrane) supporting the porous material,

as shown in Figure 8.3. The volume occupied by water is shown as dark area.

to the atmospheric pressure; this negative pressure is often also called soil water suction
or soil water tension. In the remainder of this chapter the soil water suction, whenever
expressed as a positive height of water column, will also be denoted by H (= −ψw).

Typically, the relationship between the soil water pressure and the water content is
of the form shown in Figure 8.5. This relationship is also variously referred to as the
soil water characteristic, the soil water suction relationship and the soil water reten-
tion relationship. Some other examples of soil water characteristic curves are shown in
Figure 8.6.

Equilibrium moisture content profile in a homogeneous soil
If the variable z = d(= −pw/γw = H ) refers to the height above the water table, the
soil water characteristic also provides a description of the water content distribution in a
homogeneous soil profile, which occurs under hydrostatic conditions, that is when there
is no flow. This is illustrated in Figure 8.7. As defined in Chapter 1, the water table is



hydrostat ics of pore-f ill ing water 253

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

S

H = − pw/γw(cm)

Fig. 8.5 Soil water characteristic

curve for a fine sand (Oso

Flaco) measured during a

stepwise drainage process,

showing the degree of

saturation, S = θ/n0, against

negative pressure in the water

H = −pw/γw, expressed in

cm of equivalent water

column; in this particular

experiment the porosity was

n0 = 0.405.
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Fig. 8.6 Soil water characteristic

curves for two loam soils

(Adelanto, circles, and

Pachappa, diamonds)

during drainage (1 hPa is

roughly equivalent with

1.02 cm of water column).

(After Jackson et al., 1965.)

the locus of points in the soil profile, where the water pressure is atmospheric, and thus
pw = 0, whenever atmospheric pressure can be taken as the reference. Below the water
table the water pressure pw is positive, and above the water table it is negative. The
pressure of the water in the soil profile above a water table can be measured by means of
a tensiometer; this instrument appears to have been introduced by Richards (1928). An
example of a tensiometer is illustrated in Figure 8.8; in this case it is simply a tube filled
with water, closed at one end by a sensing element consisting of a porous material, and
connected at the other end to a manometer. The material of the sensing element must have
pores that are sufficiently fine to ensure continuous contact (without air leakage) between
the water in the soil and that in the tube; recall that this is the same requirement as that
of the porous plate PP in Figure 8.3. The porous tip of the tensiometer is installed at the
point where the water pressure is to be measured and that pressure can then be recorded
with the manometer at the surface. Although many different types of tensiometer have
been developed, with various types of pressure gauges, they all function in essentially
the same way. A smaller soil water content is indicated by a larger suction, that is a larger
negative pressure measurement by the tensiometer.
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0 0.5 1.0
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z

0.5
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CF

Fig. 8.7 Vertical distribution of the degree of saturation S under equilibrium conditions in a uniform soil

profile. SS indicates the soil surface, WT is the position of the water table, and CF the approximate

height of the capillary fringe. The height z above the water table is in meters; in this example the soil is

a fine sand and the curve is the same as shown in Figure 8.5. “Equilibrium” indicates that there is no

flow and that the soil water pressure distribution is hydrostatic.
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d1

d2

d3

Fig. 8.8 Sketch of a tensiometer installed in the field; a manometer fluid

has a column height d1 above that of the reservoir surface d2; the

porous cup at the end of the tube, which is placed at depth d3, is

filled with water in contact with the soil water; at A, the main tube

can be opened to fill it with water or to bleed it of air bubbles.

8.2.2 Mechanisms of water retention

Water or any other fluid can be held in natural soils by several types of mechanism, involv-
ing different forces at the molecular level. Some of the more important mechanisms can
be ranked, according to increasing energy required to remove the water, as follows.
(i) As water is removed from a non-shrinking saturated soil, it is replaced by air, and
water–air interfaces develop in the pore space; the energy required to form these
interfaces, and thus to withdraw the water, is directly related to surface tension.
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(ii) Natural soils, especially those with finer texture, consist of particles that are not
inert, but active as a result of electrical charges at their surfaces. In the presence of
water such surface-active particles interact, repelling each other and attracting in the
intervening spaces ions, and thus also more water to relieve the osmotic pressure; this
osmotic pressure difference, between the water in the immediate vicinity of the particles
and that in the larger pores of the soil, in turn gives rise to hydrostatic pressure differ-
ences. This may also be accompanied by swelling during wetting, and shrinking during
subsequent drying. (iii) Water molecules also behave as dipoles, and as such they may
undergo attraction by the electrical surface charges of the soil particles. (iv) When the
soil contains clay particles (especially montmorillonite), water can be held between the
“sandwich” layers of these clayey minerals in a quasi-crystalline fashion; actually, the
water is held so strongly by this mechanism that it could be debated whether the water
should be considered “free” or “chemically bound.”

Surface tension
Among these mechanisms, those involving surface tension are probably the most impor-
tant in the context of hydrology. Surface tension or capillarity acts at the interface between
two fluids. In simple terms, one can visualize the molecules in a liquid as being subject
to attraction by their neighbors. Far from boundaries the field is symmetrical and these
molecular effects are balanced. However, near the interface with another fluid whose
molecules are less attracting, the balance is broken and the molecules are pulled more
toward their own bulk. In order to increase the interfacial area of the liquid in question,
work is necessary. The surface tension is a measure of this work and, thus, of the energy
required to maintain that interface. In the case of the interface between water and air,
in the range of 0 ≤ T ≤ 30 ◦C, the surface tension can be estimated approximately by
σ = (75.6 − 0.14 T ) × 10−3 J m−2 (or N m−1), with the temperature T in ◦C (degrees
celsius). The word capillarity is derived from the Latin capilla, or hair, because surface
tension is manifested by the phenomenon of the rise of water in hair-thin glass tubes. In
the soil profile the zone above the water table, where the water content is near saturation
even though the pressure is negative, is often referred to as the capillary fringe (see
Figure 8.7). Similarly, whenever the soil water pressure pw is negative, it is also called
capillary pressure.

Equation of Laplace
As a result of surface tension, any pressure difference across the interface of two immis-
cible fluids that are in contact with each other is accompanied by a curvature of their
interface. It can readily be shown that this phenomenon is described by

�p = σ

(
1

r2
± 1

r1

)
(8.3)

in which �p(= pa − pw) is the pressure difference across the interface, and r1 and r2

are the two principal radii of curvature of the interface; the plus sign between the two
terms inside the brackets applies to synclastic interfaces, and the minus sign to anticlastic
surfaces. A surface is said to be synclastic when the centers of the two radii of curvature
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δθ2
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Fig. 8.9 Isometric view of a small

anticlastic water–air

interface element (heavy

lines), with a surface area

r1δθ1r2δθ2. After a small

virtual displacement δr

(with δθ1 and δθ2 held

constant), the element

has an area (r1 + δr )

δθ1(r2 − δr )δθ2.

are on the same side of the interface; it is called anticlastic when they are on opposite
sides. Equation 8.3 is commonly attributed to Laplace and can be derived as follows.

Derivation of the Laplace equation
Because the surface tension σ represents the energy required to maintain the interface, it is
convenient to make use of the principle of virtual work. Thus consider a small anticlastic
surface element (δxδy) = (r1δθ1r2δθ2) as shown in Figure 8.9. Let this element now undergo
a virtual displacement δr, such that the angles δθ1 and δθ2 are constrained to remain the
same infinitesimal fraction of π , but the radii of curvature become (r1 + δr ) and (r2 − δr ).
As a result of this displacement the area of the element becomes [(r1 + δr )δθ1(r2 − δr )δθ2].
With these preliminaries, the work required to perform this displacement can be equated
with the energy required to maintain the change in surface area of the element, as
follows

−�p (r1δθ1r2δθ2) δr = σδθ1δθ2[(r1 + δr )(r2 − δr ) − r1r2] (8.4)

After canceling the superfluous terms, and after neglecting the remaining term in δr ,
Equation (8.3) results immediately. A similar derivation can be constructed for a synclastic
interface.
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Fig. 8.10 Blow-up sketch of a water–air interface in a cylindrical

capillary tube of inside radius R; the radius of curvature of this

meniscus is r = R/ cosα, in which α is the wetting angle. The

pressure in the water at the meniscus in the center of the tube is

pw = −γw Hc.

Example 8.1. Special case of a capillary tube

In the case of the capillary tube, in which water is in contact with air at atmospheric
pressure, as illustrated in Figure 8.10, the pressure increase �p = (pa − pw) in the tran-
sition from water to air equals the suction (i.e. negative pressure) in the water (−pw). If
the radius of the tube R is small enough so that the interface can be assumed to have the
curvature of a sphere, the radii of curvature are both equal to R/cosα, where α is the
wetting angle of water with the glass. The wetting angle between water and quartz-like
materials and other soil minerals is usually (except in the presence of impurities) small;
the water pressure according to Equation (8.3) becomes then simply

pw = −2σ/R (8.5)

and the capillary rise is Hc = −pw/γw(= H ) or roughly Hc = (0.149/R) at 18 ◦C when
both Hc and R are in cm and the specific weight is constant. Equation (8.5) is valid for
the ideal case of a tube of circular cross section with a radius R. Figure 8.4 illustrates
how the water can be held in an analogous way in the pores of an irregular array of
particles; for such pores of irregular cross section, Equation (8.5) can be used to define
an effective radius: this is the radius R of a capillary tube of circular cross section, with
the same value of �p = −pw across its water–air interface.

Pore size distribution
In numerous studies the effective radius of curvature R of the air–water interface in a
pore, as used in Equation (8.5), has also been taken as a measure of the size of that
pore; by analogy with pipes with a circular cross section, R is usually taken to be equal
to twice the hydraulic radius Rh, as defined in Equation (5.40), that is the ratio of the
cross-sectional area of the pore to its wetted perimeter. Equation (8.5) indicates that
the pressure drop across the air–water interface in any pore is inversely proportional
to the size of the pore. This means that with increasing negative pressures or suctions
−pw(= γw H ) increasingly smaller pores are being emptied. The soil water characteristic
relates the suction H with the water content θ , that is the water still left in the soil. Hence,
if it is assumed that at a given suction H all pores above size R are empty, the soil water
characteristic with (8.5) is equivalent with a cumulative pore size distribution. In other



water beneath the ground 258

0
0

0.2

0.4
1.0

0.5

Se

SeSe

50 100 0 50 100

1.0

0.5

0
0

(cm −1)

200

100

300

50 100 0 50 100

H (cm)

R (μm) R (μm)

H (cm)

q

Fig. 8.11 Illustration of the successive coordinate transformations to derive the effective pore size density

function from the soil water characteristic. First, the water content is normalized to Se; next, the

negative pore water pressure is transformed into the equivalent pore radius R by Laplace’s equation;

finally, the density function is obtained from the pore radius distribution as se = d Se/d R. The soil

water characteristic of this example was obtained during drainage of a fine sand.

words, the degree of saturation S = (θ/θ0) may be considered an index of the fraction
of the total pore volume, that is occupied by pores smaller than R.

To avoid the limitations of the capillary model in the range of lower water contents,
where other water retention forces are predominant, in this context it is convenient to
use a linear transformation, defining an effective saturation,

Se = θ − θr

θ0 − θr
= S − Sr

1 − Sr
(8.6)

where θ0 is the water content at atmospheric pressure, i.e. at H = 0; the subscript r
refers to the residual water content or residual degree of saturation, which is mainly
a normalizing parameter but which may also be visualized as the moisture present in
dead end pores or otherwise so strongly held that it is unavailable for flow. The effective
pore size density se= dSe(R)/dR can be obtained by determining the slope of Se(R) as a
function of R. Figure 8.11 illustrates how such effective pore size distribution and density
functions can be obtained from the soil water characteristic by means of Equations (8.5)
and (8.6).

This approach to obtain a pore-size distribution probably dates back to the work of
Donat (1937), who used his results to characterize the structure and stability of soils.
Similar early studies were also undertaken by Schofield (1938), Bradfield and Jamison
(1938), Leamer and Lutz (1940), Childs (1942), Russell (1941) and Feng and Browning
(1946). As discussed further in Section 8.3.4, this type of pore size distribution has also
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Fig. 8.12 Illustration of hysteresis in capillary tubes with

expansions. The water levels fall to positions 1 if the

tubes are initially already filled with water when

inserted into the water bath; the water levels rise to

positions 2 if the tubes are initially empty when

inserted into the water.
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Fig. 8.13 Illustration of hysteresis in an aggregate of

soil particles. The menisci indicated by 1

are obtained during drying, and those

indicated by 2 during wetting. All menisci

in the sketch have the same curvature, and

therefore the fluid pressure at each of these

interfaces is the same, even though the

water content, when the fluid is at position

1, differs from that at position 2.

been related to permeability by, for example, Childs and Collis-George (1950), Marshall
(1958), Mualem (1978) and many others (see Brutsaert, 1967, 1968a,b). The basic idea
of a pore size distribution of a soil obtained in this way clearly has its shortcomings. As
shown in Figure 8.4, the water–air interfaces, or menisci, tend to occur at the narrower
openings or “necks” of the pores. It is thus incorrect to assume that at a given suction
all pores with effective sizes larger than that given by Equation (8.5) are filled with air.
Nevertheless, in the past the concept has been useful for comparative purposes and in
order-of-magnitude estimates.

8.2.3 Hysteresis

The relationship between water content and capillary pressure exhibits hysteresis. This
means that this relationship depends on the sequence of events of wetting and drying, by
which the current water content of the soil is attained. It also means that single-valued soil
water characteristic curves, such as those shown in Figures 8.5 and 8.6, are applicable
only either for sustained drying events, or (but with a different shape) for sustained
wetting or infiltration events, but not for situations involving alternate wetting and drying.
The word hysteresis is derived from the ancient Greek word �́υστερoς , meaning slow,
lagging behind or delayed. Figure 8.12 shows that the water–air interface can be found
at different levels in capillary tubes with expansions, depending on the manner, in which
these tubes have been filled. Similarly, Figure 8.13 illustrates schematically how for the
same water pressure, with menisci occurring at pore necks of the same size, it is possible
to have a different water content, depending on whether the pressure is achieved by filling
the pores upward or by emptying them downward. In Figure 8.14 some examples are
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Fig. 8.14 Soil water characteristic relationship showing hysteresis with boundary and primary scanning curves

for (a) Adelaide dune sand, draining; (b) Adelaide dune sand, wetting; (c) Molonglo sand, draining;

and (d) Molonglo sand, wetting. The lines are best-fit through the data; ψw denotes pressure expressed

as equivalent water column. (After Talsma, 1970.)

presented of hysteresis for different sandy soils. The bounding curves of the hysteresis
regions shown in these figures are called wetting and drying boundary curves; any point
inside the hysteresis region can be reached by scanning curves; the scanning curves
starting from the drying and wetting boundary curves can be called primary wetting and
drying scanning curves, respectively. It is obvious by now that there is an infinity of
possible scanning curves in the hysteresis region. To describe these quantitatively, some
type of interpolation scheme must be devised.
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A general discussion of hysteresis in physical terms was already presented by
Haines (1930). However, one of the first attempts to treat capillary hysteresis in soils
quantitatively was published by Poulovassilis (1962), who made use of the concept of
the independent domain, proposed by Néel (1942, 1943) and Everett (1954; 1955).

The effect of entrapped air
One obvious manifestation of hysteresis is often observed in experiments involving suc-
cessive and repeated drying and wetting cycles. As an illustration, consider the following
sequence illustrated in Figure 8.15. Assume that initially the soil is fully saturated and
that its water content is θ = θ01; thus all its pores are filled with water so that θ01 = n0

which is the true porosity as defined in Equation (8.1). Consider that, next, the soil
is drained down to θ = θr by imposing a negative water pressure, and that it is then
subsequently rewetted by bringing the pressure back to zero. At this point the water
content will invariably not be θ01, but somewhat smaller, say θ02. This difference can
be attributed largely to the presence of entrapped air in dead-end pores, from which it
cannot escape during the rewetting cycle. Usually, all subsequent drying and wetting
cycles will continue to take place between θ02 and θr, and normally it will be impossible
to recover the original water content at θ01. In carefully controlled experimental set-ups
in the laboratory the full saturation can only be achieved by taking special precautions,
such as the use of deaerated water or the passage of CO2 through the soil prior to the
application of the water, or prolonged soaking or immersion. The water content θ02 is
often referred to as satiation, to distinguish it from the full saturation, θ01. The two terms
are often used interchangeably. However, in field situations involving normal wetting
and drying processes, the water content at H = 0 is usually satiation.
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The independent domain approach
In brief, this concept involves the assumption that each element (or pore) of the total pore
space is specified completely by the (negative) pressure range over which it is emptied,
and that over which it is filled. Implicit in this is that any such element is either full or
empty, with a transition sometimes referred to as a Haines jump. With this assumption,
one can define a function F = F(Hd, Hw), which represents the fraction of the pore space,
which drains at a negative pressure or suction Hd and wets or is filled at a suction Hw. This
function can be represented graphically by the isometric projection shown in Figure 8.16.
All pores require either the same or a larger suction to be emptied than that required to
fill them, so that Hd ≥ Hw. The symbol Hm denotes the maximal tension to be experienced
in the soil water. The function F can now be related to the soil water characteristic as
follows.

As illustrated in Figure 8.15, the fluid volume that enters the soil during wetting between
Hw + δHw and Hw amounts to

δθ = ∂θ

∂ Hw
δHw

On the other hand, as shown in Figure 8.16, in terms of F this volume equals

δθ =

⎡
⎢⎣

Hm∫
x=Hw

F(x, Hw)dx

⎤
⎥⎦ δHw (8.7)

in which x is the dummy variable of integration. Thus, one obtains for the slope of the
wetting boundary curve of the soil water characteristic

∂θ

∂ Hw
=

Hm∫
x=Hw

F(x, Hw) dx (8.8)

Similar equalities can be obtained by considering the amount of water drained between
Hd and Hd + δHd, which yield the slope of the drying boundary curve of the soil water
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Fig. 8.17 Example sequence showing how an initially saturated material is drained to a suction H1, after

which it is refilled to H2 and subsequently drained again to H3 and rewetted to H4. The area to

the left of the line dividing the inside of the triangle represents empty pore space and the area to

the right is pore space filled with water.

characteristic as

∂θ

∂ Hd
=

0∫
x=Hd

F(Hd, x) dx (8.9)

Hence one has finally

F = ∂2θ

∂ Hd∂ Hw
(8.10)

This can be integrated to yield different primary and secondary scanning curves during
wetting and drying.

Example 8.2. Sequence of alternate wetting and drying

To illustrate the procedure, assume as shown in Figure 8.17, that an initially satiated material
is drained to a suction H1, after which it is refilled to H2 and subsequently drained again to
H3 and rewetted to H4. The successive integrations can be performed as follows to obtain
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Fig. 8.18 Illustration of how the fractional volume of water δθ, which is extracted during drying (BC),

re-enters the soil during wetting, as the soil water suction decreases from H + δH to 0. The

vertical difference between the primary wetting scanning curve CA and the curve CB′A′ is

shown as the curve DE.

the successive water contents

θ1 = θ0 −
H1∫
0

x∫
0

F(x, y)dy dx

θ2 = θ1 +
H1∫

H2

H1∫
x=y

F(x, y)dx dy

θ3 = θ2 −
H3∫

H2

x∫
H2

F(x, y)dy dx

θ4 = θ3 +
H3∫

H2

H3∫
x=y

F(x, y)dx dy +
H2∫

H4

H1∫
x=y

F(x, y)dx dy

(8.11)

The hysteresis function F can be determined from the primary wetting scanning curves
on the basis of the following considerations. In Figure 8.18, δθ is the water content drained
between Hd and Hd + δHd and (δθ/δHd) is the rate of drainage, that is the amount of
water content drained per unit drainage suction increase. The primary wetting scanning
curve BA shows how the water content which drained between 0 and Hd is redistributed
during rewetting; similarly, the primary wetting scanning curve CA shows how the water
content that drained between 0 and Hd + δHd is redistributed during rewetting. Hence,
subtraction of the amount of water entering the pore space as described by curve BA from
the amount entering, as described by curve CA, shows how the amount δθ redistributes
itself during rewetting. Graphically, this difference is the vertical (in Figure 8.18) distance
between curves CA and CB′A′, which is also shown as the curve DE. It follows that the rate
of change of this rate of drainage, namely δ(δθ/δHd)/δHw is the increase in refilled water
content per unit wetting suction decrease. In other words, for a given Hd, F is the value
of the increase in refilled water content for each increment δHw. Therefore, in Figure 8.18



hydrostat ics of pore-f ill ing water 265

Table 8.1 Example of the F distribution of the independent domain approach for the porous

material studied by Poulovassilis (1962). F is expressed as drainable porosity in percent

per (4 cm)2

Hw(cm)
28

0.95
24

2.38 0.01
20

1.90 2.38 0.95
16

1.43 4.29 6.19 1.90
12

0.01 4.76 17.14 9.05 0.95
8

0.95 4.29 8.57 8.57 3.81 0.95
4

3.81 3.33 5.24 2.86 1.90 0.48 0.95
0

Hd

(cm)
0 4 8 12 16 20 24 28

(see also Equation (8.10) for a given Hd, F is the slope of the curve DE. Table 8.1 shows
an example of the F function obtained experimentally by Poulovassilis (1962); another
example is presented in Problem 8.3.

The independent domain model was concluded to compare favorably with experimental
data by Poulovassilis (1962) and Talsma (1970), but not so favorably by Topp (1971). An
early example of the application of this model to the problem of intermittent infiltration with
redistribution of soil water can be found in the numerical study of Ibrahim and Brutsaert
(1968).

It is not easy to obtain the experimental data needed to estimate the F function. For
this reason several attempts have been made to simplify the independent domain model
with various similarity assumptions by, among others, Parlange (1976), Mualem and Miller
(1979), and Braddock et al. (2001). In what follows a brief description is presented of
Parlange’s (1976) proposal, which has been useful in many practical applications.

The main assumption is that F is independent of Hw, so that F(Hd, Hw) can be replaced
by F(Hd). This means that, for example in Table 8.1, the F values in each column can be
replaced by their averages. In Table 8.1, the values in the column between Hd values 20
and 24 cm, all become equal to 4.05%. It also means that, for example in Figure 8.18, DE
would be represented by a straight line. The main advantage of this simplification is that
it becomes possible to calculate all the scanning curves from the boundary drying curve,
which is also the easiest to determine experimentally. For instance, the function F(Hd) can
be determined immediately by integration of Equation (8.9) as

F = 1

Hd

∂θ

∂ Hd
(8.12)
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Fig. 8.19 Soil water characteristic curves in a sequence of wetting and drying paths following the same

sequence as in the example shown in Figure 8.17. The solid curves were obtained using the

experimental F function of Table 8.1, and the dashed curves were obtained by applying the

similarity assumption to the same data.

The wetting boundary curve can be calculated from (8.8) as

δθ =

⎡
⎢⎣

Hm∫
x=Hw

F(x) dx

⎤
⎥⎦ δHw

or

θ =
Hm∫

y=Hw

Hm∫
x=y

F(x)dx dy (8.13)

Other scanning curves can be calculated as before in the manner shown in the example with
Equations (8.11).

Example 8.3. Numerical calculation

The numerical procedure can be illustrated by using the same sequence as shown in
Figure 8.17. Assume for the present example H1 = 20 cm, H2 = 8 cm, H3 = 16 cm, and
H4 = 4 cm. The calculations can be readily carried out by summing and subtracting the
values in Table 8.1, as indicated in Figure 8.17. The results for the regular independent
domain procedure using the values of Table 8.1 and those for Parlange’s (1976) simplified
procedure using averaged columns in Table 8.1 can be compared in Figure 8.19.

While the determination of hysteresis curves is difficult enough with data obtained in
the laboratory, it is even more so with field data (see Royer and Vachaud, 1975; Watson
et al., 1975). Therefore, although the independent domain approach and its simpler versions
may perhaps be considered crude approximations, they should be quite useful in practical
simulations of soil water flow problems. Certainly, the error resulting from this approxi-
mation will be much smaller than the unavoidably large errors resulting from uncertainties
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1Fig. 8.20 Soil water characteristic curve for a fine sand

(Oso Flaco) during drainage, showing the

effective saturation, Se = (θ − θr)/(n0 − θr),
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equivalent water column. The curve represents

Equation (8.15) with n0 = 0.405, θr = 0.0381,
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represent the experimental curve, already

shown in Figure 8.5.

in the values of soil water flow parameters and from ignoring hysteresis altogether, as is
currently still almost universal practice.

8.2.4 Some expressions for the soil water characteristic function

Several empirical functions have been proposed in the literature to describe the soil water
characteristic. Among the better known is the power function introduced by Brooks and
Corey (1964),

Se = 1 for 0 < H < Hb

Se = (H/Hb)−b for H ≥ Hb
(8.14)

where as usual H [= (−pw/γw) = −ψw] denotes the suction expressed as height of water
column, where Se is defined in (8.6), and where b and Hb are constants which are charac-
teristic for a given soil; the latter is also referred to as the bubbling or air entry suction.
Finer textured soils tend to have smaller values of b and larger values of Hb than coarser
textured soils. A disadvantage of Equation (8.14) is its two-part structure and the singular
behavior of its derivative at Hw = Hb.

In order to obtain a smooth transition from Se = 1 (or θ = θ 0) down to Se = 0
(or θ = θ r), Brutsaert (1966) proposed instead

Se = (1 + (aH )b)−1 (8.15)

where again a and b are constants for a given soil. In Equation (8.15) the constant a has
the dimensions of inverse length [L−1], which represents the inverse of negative capillary
pressure expressed as height of water column; observe that the value of a−1 happens to be the
capillary suction where the effective degree of saturation Se is at 50%. Figure 8.20 illustrates
the shape of Equation (8.15) for Oso Flaco sand, when plotted with logarithmic scales;
the parameters used for this were found to be n0 = 0.405, Sr = 0.094, a = 0.0280 cm−1

and b = 6.7. Equation (8.15) was extended by Van Genuchten (1980) by introducing an
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additional constant parameter c as follows

Se = (1 + (aH )b)−c (8.16)

The choice of the particular function will mostly have to depend on the desired balance
between parsimony and flexibility of the parameterization. The price of greater flexibility is
usually a larger number of parameters: Equations (8.14) and (8.15) require three parameters
whereas Equation (8.16) needs the estimation of four parameters for its application.

8 . 3 WAT E R T R A N S P O RT I N A P O RO U S M AT E R I A L

8.3.1 Dynamics of pore-filling fluids: the law of Darcy

The original experiments
In a report on the public fountains and water supply for the City of Dijon in Burgundy,
Darcy (1856) presented the results of his experiments on the seepage of water through
a pipe filled with sand, with a 0.35 m inside diameter and a 3.00 m effective length (see
Figure 8.21). In brief, he found that the rate of flow Q through the sand layer was directly
proportional to the cross-sectional area A of the sand column and to the difference of
hydraulic head h across the layer, and inversely proportional to the length �L of the
sand column. In this notation his result can be formulated as

Q = k A (h1 − h2)/�L (8.17)

in which the subscripts 1 and 2 refer to the entrance and the exit section of the column,
respectively. The symbol k represents a constant of proportionality, which is now com-
monly referred to as the hydraulic conductivity, and which has the dimensions [L T−1].
In the experiments of Darcy the water had essentially a constant specific weight and the
hydraulic head can be defined as usual, namely

h = z + pw

γw
(8.18)

where z is the vertical coordinate. When the negative pressure is expressed as equivalent
water column, Equation (8.18) can also be written concisely as h = z − H .

Any instrument used to measure the hydraulic conductivity k, that is similar to the set-
up originally used by Darcy, is often referred to as a permeameter. Over the years many
different designs have been developed, but they are all nearly the same in principle, in
that they provide the measurements of Q and (h1 − h2) needed to invert Equation (8.17)
in order to estimate k. Some types of permeameters are also available commercially.

Formulation at a point
Under the assumption that the porous material can be treated as a continuum, both A and
�L can be allowed to become infinitesimally small, so that Equation (8.17) describes
the flow at a point and can be written concisely in common vector notation as

q = −k∇h (8.19)

where q = qxi + qyj + qzk is the specific volumetric flux, that is the volumetric rate of
flow per unit area of porous material, ∇ = (∂/∂x)i + (∂/∂y)j + (∂/∂z)k the gradient
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Fig. 8.21 Drawing of

the original

experimental

set-up as

presented by

Darcy (1856).

operator. With subscripts representing the vector components, this is also often written
as

qi = −k
∂h
∂xi

(8.20)

where xi represents x , y and z for i = 1, 2 and 3, respectively. For a fluid of density ρ

at a pressure p in an infinitesimal control volume, the forces that drive the flow are (per
unit volume) the pressure gradient ∇ p and gravity (ρgk), if z is the vertical coordinate
so that k is the unit vector in the vertical direction. Therefore, whenever the fluid density
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varies over the flow region, the hydraulic head cannot be given by Equation (8.18), but
it must be defined in gradient form as follows,

∇h = k + 1

ρg
∇ p (8.21)

In the same notation as Equation (8.20) this gradient can be written as

∂h
∂xi

= ∂x3

∂xi
+ 1

ρg
∂p
∂xi

(8.22)

in which x3 is specified as the vertical coordinate.

The (intrinsic) permeability
It stands to reason that the ease or difficulty with which a fluid flows through a porous
medium depends on the sizes and the arrangement of the pores and also on the prop-
erties of the fluid. Therefore the hydraulic conductivity must be affected by both fac-
tors. Whenever it is desirable to separate the effects of the fluid from those of the
porous matrix, use can be made of the permeability, also called intrinsic permeability, k ′

with dimensions [L2]. This is defined as

k = k ′γ
μ

= k ′g
ν

(8.23)

where γ = ρg is the specific weight, ρ the density, μ the dynamic viscosity and ν = μ/ρ

the kinematic viscosity of the fluid in question, respectively. One way to arrive at the form
of Equation (8.23) is by simple dimensional analysis; thus one observes that the ease with
which the fluid moves through the porous material, that is the hydraulic conductivity
k, [L T−1], is in fact the ratio −q/∇h; it is then reasonable to assume that this ratio
should be affected by the following three variables: the area available for the flow in the
pores, as characterized by some effective or average pore radius Re, [L], and the two fluid
properties that govern the dynamics of low Reynolds number (or creeping) flows, namely
the viscosity μ, [M L−1T−1], and in light of (8.21) the specific weight γ, [ML−2T−2]. The
only way to combine these three variables to obtain the same dimensions as the hydraulic
conductivity is as k = (Ge R2

e γ /μ), in which Ge is a dimensionless constant introduced
to represent the geometrical shape of the pores; hence, on dimensional grounds Darcy’s
equation assumes the form

qi = −Ge R2
e γ

μ

∂h
∂xi

(8.24)

The main point of (8.24) is that it shows first, how the fluid property effects on the flow
can be separated from those of the porous matrix; and second, how the porous matrix
itself affects the flow, not only by the sizes of the pores in terms of Re, but also by
their geometrical shape in terms of Ge. The sizes of the pores depend mainly on the
sizes and the distribution of the sizes of the solid particles of the porous material. The
geometrical shapes of the pores, in turn, depend largely on the arrangement of these same
particles. This explains how the hydraulic conductivity of soils can be greatly reduced
by compaction, as carried out for road or dam construction purposes, or also greatly
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increased by ploughing, harrowing and other agricultural operations. But the concept
has its limitations, and should be used with caution, especially in the case of clayey
soils. Depending on the type of clay, the pore structure of some soils may be sensitive to
the type of electrolytes or salts that are in solution in the water; for instance, sodium is
notorious in this regard. This means that it is not always possible to separate the effects
of the fluid on the hydraulic conductivity completely from those of the porous matrix.

It is of interest to observe that in the form of Equation (8.24), Darcy’s law can be
considered as a generalization of several well-known creeping flow equations, obtainable
for certain flow regions with a regular geometry, to the case of a totally irregular pore
geometry resulting from the random assemblage of the particles of soils and other gran-
ular materials. For instance, in the case of flow through a straight pipe of circular cross
section, creeping flow is described by the Hagen–Poiseuille equation; this is equivalent
with (8.24) if qi is taken to represent the average velocity in the pipe, Re is the radius of
the pipe and Ge = (1/8). (Tubes with other cross-sectional shapes have been analyzed by,
among others, Boussinesq (1868; 1914) and Graetz (1880).) It is also easy to show (see,
for example, Lamb, 1932, p. 582) that Equation (8.24) can describe the flow between
parallel plates (as used in the Hele–Shaw model) by putting Ge = (1/3) and Re as half
the spacing of the plates, again if qi is made to represent the average velocity. Similarly,
Equation (8.24) can be used to describe the average velocity of flow down a plane as in
(5.32), provided Ge = 1/3, Re is taken as the depth of flow h and the hydraulic gradient
is the slope of the plane S0. All three expressions just mentioned are exact solutions of
the Navier–Stokes equations (1.12) for creeping flow, and can be found in elementary
textbooks in fluid mechanics. (Recall that creeping flow is flow with a very low Reynolds
number so that (Dv/Dt)becomes negligible.) In the literature there have been numerous
attempts to derive Darcy’s law from the Navier–Stokes equations, mostly by analogy
with these exact solutions. On account of the irregular geometry of the pores resulting
from random packings of particles, to arrive at the desired result any such derivation must
involve some kind of ensemble averaging and other stochastic assumptions, which may
not always be valid. But regardless of such considerations, pragmatically it is probably
preferable to adopt Darcy’s law simply as it is, that is as an experimentally obtained and
verified relationship, in which k or k ′ is best obtained from measurements.

True velocity
As defined in Darcy’s equation, q or qi is the volumetric rate of flow per unit bulk area
of porous material. Thus even though it has the basic dimensions of [L T−1] it does not
represent the average velocity of the fluid particles. The “true” average velocity inside
the pores is usually assumed to be given by (qi/n0) under fully saturated conditions, and
by (qi/θ ) under partly saturated conditions.

Anistropy
As formulated in Equation (8.19) (or (8.24)), qi and −∂h/∂xi are vectors pointing in the
same direction and k (or k ′) is a scalar quantity, that is independent of direction. Porous
materials in which this holds true are referred to as isotropic. A material is said to be
anisotropic when its properties, such as the hydraulic conductivity or the permeability,
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depend on direction. Most soils and other water-bearing formations tend to be anisotropic
to some degree. In some cases larger permeabilities in the horizontal may be the result
of layering of sediments during their deposition in the soil formation process; in other
situations cracking during drying of clayey soils, and subsequent filling of the vertical
cracks by coarser wind-blown loess, may have resulted in relatively larger permeabilities
in the vertical.

In an anisotropic material the two vectors qi and −∂h/∂xi do not necessarily point in
the same direction. It can be shown that the only way to formulate a linear relationship
between such vectors is by means of a second-order tensor or a dyad. Thus Darcy’s law for
anisotropic material must be of the form

qx = −kxx
∂h
∂x

− kxy
∂h
∂y

− kxz
∂h
∂z

qy = −kyx
∂h
∂x

− kyy
∂h
∂y

− kyz
∂h
∂z

qz = −kzx
∂h
∂x

− kzy
∂h
∂y

− kzz
∂h
∂z

(8.25)

Alternatively, this can be written more concisely in the subscript notation as

qi = −
3∑

j=1

ki j
∂h
∂x j

(8.26)

In general, the second-order tensor ki j has nine components. Symmetry of such a tensor
quantity, i.e. ki j = k ji , is known to be a sufficient condition to allow it to be diagonalized,
such that it has only three components, along three principal axes. The hydraulic conductivity
tensor is usually assumed to be symmetrical.

Example 8.4. Directions of the gradient and of the flux vector

To bring out some of the implications of anisotropy, consider the flux vector q and the
negative hydraulic gradient vector −∇h, which drives it, in a principal axes system, as
shown in Figure 8.22. The gradient consists of two components, and can therefore be
broken down as follows

∇h = ∂h
∂x

i + ∂h
∂z

k = |∇h| (cos αi + sin αk) (8.27)

Similarly, the specific flux can be written as

q = qx i + qzk = |q| (cos βi + sin βk) (8.28)

These two vectors are related by Darcy’s law (8.25), so that by virtue of (8.27) the flux can
also be written as

q = −|∇h|(kxx cos αi + kzz sin αk) (8.29)
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Fig. 8.22 Definition sketch of the directions of the specific flux and

gradient vectors in an anisotropic material, in which

kxx > kzz , and x and z are principal axes.

Thus, since the x and z components must be the same in Equations (8.28) and (8.29),
respectively, one obtains

tan β = kzz

kxx
tan α (8.30)

This shows that the directions of the specific flux and of the (negative) hydraulic gradient
can be the same only when the porous medium is isotropic. In an anisotropic material these
two vectors point in different directions.

Scale dependence of the hydraulic conductivity
It has been noted in numerous applications of Darcy’s law to field conditions, that the
values of k, required to reproduce the observed flow rates, tend to depend on the size
of the domain over which Equation (8.19) is integrated or averaged. In other words, the
magnitude of k is scale dependent. Thus values of the hydraulic conductivity for a given
soil are often larger when obtained from auger hole measurements in the field, than from
small column measurements in the manner of Darcy (see Figure 8.21) or in other types
of permeameters. Values of k obtained by inversion methods with data from small river
catchments (see Brutsaert and Lopez, 1998) tend to be still larger. Permeameters involve
a flow domain with typical length scales of the order of 1.0 m at most, while auger hole
measurements and pumping tests tend to have zones of influence with length scales of
the order of 10–102 m, respectively; small catchments usually involve scales of the order
of 103 m or more.

There are several possible reasons for this scale dependence. One is that most per-
meameter measurements are carried out on disturbed samples; thus the soil is scooped
up and placed in the permeameter in a way that usually does not replicate the origi-
nal soil structure in the field. Moreover, under natural conditions in the field, most soils
have macropores and other additional conduits resulting from decaying plant roots, from
worms and from burrowing animals; even if undisturbed samples are used, it is nearly
impossible to include such macropores and other larger channels within the relatively
small confines of a permeameter. Finally, even within a supposedly homogeneous soil
type, all soil properties display pronounced spatial variability. At field scales of the order
of 102 m, the hydraulic conductivity is usually close to lognormally distributed (see
Rogowski, 1972; Nielsen et al., 1973; Hoeksema and Kitanidis, 1985); this means that
the larger k values in the domain have a relatively larger effect on the overall flow than
the smaller values. But regardless of the distribution, in a two- and three-dimensional
flow situation, regions of smaller conductivity can be bypassed by the flow, resulting
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Fig. 8.23 Experimental values of relative permeability k′/k′
0 (or relative conductivity) of water (wetting fluid –

circles) and of air (non-wetting fluid – triangles), as a function of the degree of saturation S = θ/θ0, in

a sandy soil and in a silty clay loam. The curves for water represent Equations (8.36) with (8.45) and

those for air represent the analogous expression for a non-wetting fluid. (After Brooks and Corey,

1966.)

in a larger effective conductivity for the entire flow domain, than a simple average
value would suggest (see El-Kadi and Brutsaert, 1985). In flow simulation calcula-
tions, the variability of the soil characteristics is usually avoided by the assumption that
the entire flow domain is homogeneous and that effective parameters can be used (see
Section 1.4.3), to represent the flow domain. The scale dependency of the hydraulic
conductivity is a direct result of this assumption.

8.3.2 Partly saturated flow

Extension of Darcy’s law
It was probably Buckingham (1907) who first postulated that Darcy’s law (8.19) is also
valid for a soil that is only partly saturated with water, and that in this case the hydraulic
conductivity is a function of water content, or k = k(θ ). As the water content of the soil
is reduced, k decreases. Reasons for this are that fewer pores are available for flow, and
that the flow paths become more tortuous and thus longer, as the water can no longer
move through emptied pores and must move around them. Because the larger pores are
emptied first, the initial decrease in conductivity for a certain decrease in water content
is larger than that later on at lower water contents.

Actually, the water of the empty pores has been replaced by air. Under such conditions
Darcy’s law is also valid to describe the flow of air; but it must be applied with an “air
head” gradient as given by Equation (8.21) with the density of air. This is illustrated in
Figure 8.23, which shows the relative permeabilities κr = (k ′/k ′

0) for water and for air in
two soils, as examples. In what follows k0 and k ′

0 will usually denote the hydraulic con-
ductivity and permeability, respectively, at saturation or satiation. Under partly saturated
conditions the hydraulic conductivity k is also often called the capillary conductivity. In
hydrology mainly the water is of interest, because it can usually be assumed that the air
movement takes place under negligibly small pressure gradients.
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Fig. 8.24 Details of experimental set-up to measure capillary conductivity. (From Nielsen and Biggar, 1959.)

Fig. 8.25 Capillary conductivity of

Columbia Silt Loam, as a

function of pressure and

water content, as measured

with the apparatus shown

in the previous figure. The

difference between the first

and second drying cycle

was mainly due to the

initial soil consolidation

resulting from the negative

pressure in the water

(1 hPa is roughly

equivalent to 1.02 cm of

water column). (After

Nielsen and Biggar, 1961.)

Determination of the capillary conductivity
In principle, the capillary conductivity can be measured by column experiments, similar
to those conducted by Darcy, provided the water content θ or the mean water pressure
pw in the column can be measured or otherwise maintained at the desired value. An
example of such an experimental set-up is shown in Figure 8.24 (Nielsen and Biggar,
1959), and the corresponding measured values of k = k(−pw) and k = k(θ ) are shown
in Figure 8.25. It can be seen that the relationship between capillary conductivity k
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Fig. 8.26 Capillary conductivity as a

function of negative pressure

k = k(−pw) for the drainage

(desorption) cycle for different

soils: (1) Pachappa sandy loam,

(2) Indio sandy loam, (3) Fort

Collins loam, (4) Aiken clay

loam, (5) Chino clay (10 kPa is

roughly equivalent to 1.02 m of

water column). (After Gardner

and Miklich, 1962.)

and water suction H (= −pw/γ ) displays hysteresis; however, the relationship between
conductivity and water content θ is fairly free of hysteresis. Many studies in the literature
have confirmed that k = k(θ ) exhibits very little, if any, hysteresis (see Jackson et al.,
1965; Talsma, 1970; Topp, 1971). Some additional examples of k = k(H ) are presented
in Figure 8.26.

For the purpose of simulating flow problems in nature, however, it is clearly preferable
to determine k(θ ) for the undisturbed soil profile. To date most experimental determi-
nations have been restricted to vertical flow. Various studies, consisting mostly of the
inverse application of finite difference forms of the governing differential equation (see
Section 8.4.1), in the absence of precipitation and by preventing evaporation at the sur-
face, have been carried out, for example, by Ogata and Richards (1957), Nielsen et al.
(1973), Davidson et al. (1969), Baker et al. (1974), Libardi et al. (1980) and Katul et al.,
(1993). However, measurements of soil water content and water pressure, at several
levels in the profile and over extended periods of time, are not easy and require many
precautions. Thus, field methods are usually hard, if not impossible, to apply when one of
the following conditions is present: a water table close to the surface, frequent and large
precipitation, non-negligible or unknown net lateral inflows, a large vertical drainage
rate at the lower end of the profile, and large variability in the soil properties. Because
field methods are only feasible under exceptionally favorable conditions, many attempts
have also been made to develop conceptual prediction methods. Some of these methods
will be touched upon in Section 8.3.4.

Soil water diffusion formulation
In the solution of certain flow problems in partly saturated soils, it has been found
convenient to reformulate Darcy’s law as a diffusion equation. Thus the pressure gradient
in (8.19) is replaced by a water content (i.e. concentration) gradient, and Darcy’s law
can be written as

qi = −Dw
∂θ

∂xi
− k

∂x3

∂xi
(8.31)
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Fig. 8.27 Soil water diffusivity as a function

of water content, Dw = Dw(θ)

during desorption for the same

soils as in Figure 8.26. (After

Gardner and Miklich, 1962.)

by defining (Klute, 1952) the soil water diffusivity Dw(θ ) by

Dw = −k
d H
dθ

(8.32)

or also Dw = k(dψw/dθ ). From the physical point of view, Equation (8.31) does not
contain any more information than (8.19), and in many practical simulations there may
be no significant advantage in this diffusion formulation. In fact, when part of the flow
domain is saturated, (8.31) with (8.32) may present some difficulties on account of the
singular nature of Dw when θ is constant; these are avoidable with (8.19). Nevertheless,
as will be seen in the next chapter, the diffusion formulation continues to be of interest
because it has greatly simplified the analytical treatment of a number of important soil
water problems. Some examples of the dependence of soil water diffusivity on water
content are shown in Figure 8.27.

8.3.3 Limitations of Darcy’s law

Upper limit
In light of the analogy between Darcy’s law and other creeping flow equations of fluid
mechanics, it should not be surprising that experiments have shown that, as the Reynolds
number increases beyond a certain limit, the specific flux q gradually deviates from its
linear proportionality with the hydraulic gradient ∇h. Indeed, by definition, creeping flow
is flow for which the appropriate Reynolds number is sufficiently small, so that the accel-
eration terms, both temporal and advective, in the Navier–Stokes equations are negligible.
Any Reynolds number definition requires the adoption of a characteristic velocity and
of a characteristic length of the flow geometry. The definition of the permeability k ′ in
Equation (8.23) indicates that it has the basic dimensions of [L2] and that it can be con-
sidered proportional to a characteristic or typical cross-sectional area of flow; thus, since
the specific flux has the basic dimensions [L T−1], it is convenient to define the Reynolds
number for flow in a porous medium as follows

Rep = |q|√k ′

ν
(8.33)
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x

Fig. 8.28 Converging section of a duct illustrating inertia effect in

a pore with variable cross section and with the resulting

convective acceleration∂V / ∂x; Vi and Vo are the mean

inflow and outflow velocity, respectively. At higher

velocities this effect becomes more pronounced; the flow

ceases to be creeping and Darcy’s equation is no longer

valid.

The Reynolds number is a measure of the relative magnitude of the inertial forces over the
viscous forces; this means that Darcy’s law cannot be expected to be valid for values of Rep

that are much in excess of order one. It should be emphasized that this initial deviation
from Darcy’s law is not caused by the onset of turbulence, but solely by the effects of fluid
accelerations. These accelerations result from the irregular and tortuous flow paths in the
pores, as illustrated in Figure 8.28.

Forchheimer (1930, p. 54) was among the first to analyze experimental data and in 1901
he proposed the following to describe them

|∇h| = α |q| + βq2 (8.34)

where α and β are constants for any given soil. Some insight can be gained in the nature of
these constants by dimensional inspection of the Navier–Stokes equation (1.12). The term
on the left and the first term on the right in Equation (8.34) correspond to the three terms
on the right of Equation (1.12); thus α represents the effect of viscosity and in terms of the
permeability it is α = ν/(gk ′). The second term on the right, βq2, corresponds to the terms
on the left-hand side of (1.12) and therefore, it represents the inertia effects on the flow.
For steady conditions the left-hand side of (1.12) is v · ∇v. Dimensionally, the two velocity
terms are proportional to q2. On the other hand, the dimensions of ∇ are [L−1]; because

√
k ′

is the characteristic length scale of the pores, this suggests that β is inversely proportional
to it, or

β = C

g
√

k ′ (8.35)

where C is a constant, which can be expected to depend on the geometry and shape of the
pore spaces. Equation (8.35) has been confirmed in numerous experimental investigations.
For instance, Arbhabhirama and Dinoy (1973) have reported values of C ranging between
approximately 0.6 (sand) and 0.2 (angular gravel).

Lower limit
Several experiments with clayey soils have shown that Darcy’s law also fails to describe
the measurements when the flow rates become very small (see Miller and Low, 1963;
Swartzendruber, 1968). These experiments indicate that under conditions of low flow rates
(or small h-gradients), the measured specific fluxes q are smaller than −k∇h would require.
The issue has been somewhat controversial (Olsen, 1966) and is still far from resolved
(Neuzil, 1986). Nevertheless, this phenomenon may possibly result from the fact that in the
neighborhood of clay particles, which invariably have electrical charges, the water molecules
may become oriented in a quasi-regular fashion, on account of their dipole characteristics;
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as a result the viscosity of the water may no longer be Newtonian, a necessary condition
for the validity of the Navier–Stokes equations and Darcy’s law. Also, in many situations
additional driving mechanisms may be at play, beside the hydraulic gradient ∇h; these may
cause flow even when ∇h = 0.

Additional driving forces
For most purposes in hydrology it can be assumed that the driving forces are primarily
mechanical in nature, which means that the flow is driven by gravity and by a pressure
gradient in accordance with Darcy’s law. However, in general, water transport in a porous
medium can be influenced by several other factors, involving thermal, osmotic and some-
times even electrical effects. For instance, changes in temperature at some point in a partly
saturated soil may result in changes in surface tension which affect the pressure pw for a
given water content, and thus the liquid transport. An input of heat can be accompanied
by local vaporization, which in turn sets up a specific humidity gradient, and thus a water
vapor transport in the air filled pore space; this vapor may then condense further down and
affect the liquid water flux.

On account of the complexity of the various phenomena and their interaction within the
soil, at present there is apparently no theory available, which is generally accepted. Nev-
ertheless, in recent years many problems, involving simultaneous heat and water transport,
have been studied within a framework developed by Philip and DeVries (1957; DeVries,
1958; DeVries and Philip, 1986), but with mixed results (Jackson et al., 1974; Kimball
et al., 1976). Raats (1975) and Nakano and Miyazaki (1979) have explored the theoretical
and practical compatibility of the formulation of Philip and DeVries with concepts of irre-
versible thermodynamics; more recently, Cahill and Parlange (1998) have clarified the role
of the vapor transport. By numerical simulations Milly (1984) has investigated the relative
importance of the temperature gradient on the water transport; he concluded that, for many
practical purposes, it is sufficiently accurate to assume that the water transport is essentially
isothermal and driven only by the hydraulic gradient ∇h.

8.3.4 Expressions for the conductivity and the soil water diffusivity functions

Conductivity of saturated materials
In the past, numerous equations have been proposed to predict the hydraulic conductivity
of porous materials, mostly on the basis of measurements of the particle sizes or their dis-
tribution or also of the pore size distribution, as obtained from Equation (8.5). However,
such equations were usually obtained from permeameter measurements of k and are there-
fore valid only at the local scale. As noted earlier, k tends to be scale dependent, so that
these methods cannot be used when the hydraulic conductivity is to be used at the field
or catchment scale, as is often the case in hydrology. For applications over larger areas it
is therefore advisable to obtain k by means of inverse methods with measurements at the
appropriate scale. One such inverse method, based on drought flow recession analysis, will
be considered in Chapter 10.

Conductivity of partly saturated materials
As seen earlier, under partly saturated conditions the determination of k(θ ) is not an easy
task. However, while in many flow calculations the accuracy of k at high water contents is
fairly critical, at lower water contents some inaccuracies can be tolerated. Therefore, it has
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been found useful to represent k(θ ) by relatively simple parametric equations. As illustrated
in Figure 8.23, it is not surprising that the following has been used widely,

k = k0 Sn
e (8.36)

where k0 is the hydraulic conductivity at saturation and n is a constant; the effective
saturation Se is defined in (8.6). Equation (8.36) requires the determination of four param-
eters, namely k0, θ0, θr and n. Inspection of past determinations of n shows that it may be
as low as 1 and as high as 20, but that typical values lie around 3–5; n appears to be small
for materials with a narrow pore size distribution and larger for wider pore size distribu-
tions. Interestingly, this power form equation has been derived on the basis of some widely
different theoretical models. It is tempting, therefore, to conclude that the power form is
independent of its method of derivation. Some of these models are reviewed in Section 8.3.5.
For instance, Averyanov (Polubarinova-Kochina, 1952) proposed Equation (8.36) with
n = 3.5, and Irmay (1954) proposed it with n = 3; more recently, it was found (Brut-
saert, 2000) that n = (2 + 2.5/b), where b is the same as in Equation (8.14), provides the
best description of the available experimental data.

Equation (8.36) is one of the oldest and still among the most widely used expressions
today. Recently it has also received renewed theoretical interest because it arises naturally
in the fractal characterization of soils. Other parameterizations have been proposed for k(θ ),
but they are all fairly similar to (8.36).

Since the water content θ is a function of the negative water pressure H (= −pw/γw), it
is also possible to express k as a function of H . Gardner (1958) has proposed an empirical
function, which can be fitted to data for many different soils, viz.

k = a
b + H c

(8.37)

where a, b and c are constants; note that (a/b) is equal to k0, the hydraulic conductivity at
satiation and b is the value of H c for k = k0/2. The range of c was found to lie between
about 2 for clayey soils and 4 or more for sandy soils. It can be seen that Equation (8.37)
is of the right general shape to fit to experimental data such as shown in Figure 8.29. As
already mentioned and illustrated in Figure 8.25, however, k(H ) normally exhibits marked
hysteresis, so that the constants have to be adjusted to reflect this.

In some applications it is convenient to describe the hydraulic conductivity by an expo-
nential function as follows

k = k0 for H ≤ Hb

k = k0exp[−a(H − Hb)] for H > Hb

(8.38)

where a and Hb are constants for a given soil; Equation (8.38) was introduced by Gardner
(1958) without Hb; this constant was added later by P. E. Rijtema to allow incorporation
of the capillary fringe. The spatial variability and physical significance of the parameter a
in (8.38) have been investigated (White and Sully, 1992); at the field scale, a appears to be
lognormally distributed, like k0.

Soil water diffusivity
A diffusivity function, which has been useful in the solution of a number of problems, is of
the following exponential form

Dw = Dwiexp[β(θ − θi)/(θ0 − θi)] (8.39)
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Fig. 8.29 Capillary conductivity k (cm d−1) of Santa Ana river bottom sand and of Diablo loam

measured as functions of negative pressure H (cm water column) in the water during drying.

The curves represent Equation (8.37) of Gardner with a, b and c, respectively, equal to 1.7 ×
108, 2.5 × 106, and 4 for the sand, and to 700, 1450, and 2 for the loam. (After Willis, 1960.)

where β is a constant, Dwi is the diffusivity at some initial or other reference moisture content
θi, and θ0 is the moisture content at satiation. Gardner and Mayhugh (1958) used Equation
(8.39) in the numerical solution of the problem of sorption, or horizontal infiltration (see
Chapter 9). Reichardt et al. (1972) made use of Equation (8.39) to scale experimental data on
horizontal infiltration obtained from eight different air-dry soils, so that they could represent
the results by a single regression equation in terms of dimensionless variables (see Figure
8.30). Miller and Bresler (1977), who reconsidered the analysis of Reichardt et al. (1972),
showed that for many soil types β in Equation (8.39) may be fairly constant and not very
different from 8. They also found by linear regression that, if θi is taken as the air-dry water
content of the soil, Dwi is in fact related to the rate of advance of the wetting front during
horizontal infiltration or sorption. It was subsequently shown by Brutsaert (1979), how
theoretically this relationship is a direct consequence of the physical nature of sorption; in
addition, it was shown that Dwi must also be related to the infiltrated volume of water during
sorption and that the constants involved in these two relationships are unique functions of β.
It should be mentioned that the value of β = 8 was obtained with repacked laboratory soil
columns. Field measurements by Clothier and White (1981; 1982) yielded a much lower
value; actually, while on average the data could be represented by Equation (8.39) with
β = 3, in the moisture range 0.20 ≤ θ ≤ 0.36, Dw was found to be nearly constant. In any
event, Equation (8.39) should be considered a two-parameter expression, as indicated. This
issue will be reexamined in Chapter 9.

A second diffusivity equation has a simple power form and follows directly from
Equation (8.32), implemented with (8.14) and (8.36). The result can be written as

Dw = k0αSβ
e (8.40)

where α = Hb[(θ0 − θr)b]−1, and β = (n − b−1 − 1). A somewhat less simple form, which
has been used to parameterize soil properties for hydrologic purposes (Brutsaert, 1968b),
results from the similar combination of Equation (8.36) with (8.15) or (8.16), by means of
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Fig. 8.30 Soil water diffusivity Dw (cm2 min−1) as a function of normalized water content

Sn = (θ − θi)/(θ0 − θi) during horizontal infiltration (see Equation (9.25) and Figure 9.2)

into uniform air-dry soil columns. The points are the experimental values and they represent

Fresno fine sand (triangles), Hanford sandy loam (diamonds), Yolo clay loam (circles), and

Sacramento clay (squares); the straight lines are the exponential approximations by means of

Equation (8.39) with the parameters θ0, θi, β and Dwi, respectively, equal to 0.31, 0.007, 7.97,

and 0.004 58 for Fresno, 0.35, 0.012, 8.36, and 0.000 90 for Hanford, 0.42, 0.04, 7.85, and 0.000 56

for Yolo, and 0.55, 0.07, 8.02, and 0.000 14 for Sacramento. (Data from Reichardt et al., 1972.)

(8.32), to wit

Dw = k0αSβ
e

(
1 − Sδ

e

)γ
(8.41)

where α = [(θ 0 – θ r)ab]−1, β = (n − b−1 − 1), γ = (b−1 − 1) and δ = 1 in the case of
(8.15), or α = [(θ0 − θr)abc]−1, β = [n − (bc)−1 − 1], γ = (b−1 − 1) and δ = c−1 in the
case of Equation (8.16).

8.3.5 Some models for permeability

The experimental determination of the hydraulic conductivity is never easy for saturated
soils, but it is especially difficult for unsaturated soils as a function of soil water content.
For this reason, many attempts have been made to develop simple conceptualizations of the
flow process and to represent k = k(θ ) by simple parametric equations, in terms of other
properties of the soil that are easier to determine.

Uniform pore size models
In one common approach the porous medium is assumed to be analogous to a bundle of
uniform and parallel capillary tubes with circular cross section. Around 1950, Averyanov
(Polubarinova-Kochina, 1952) analyzed the flow of an annulus of wetting fluid in a single
tube, the central part of which was occupied by stagnant air. The solution of this flow
problem yielded an equation that could be approximated closely by (8.36) with a power
n = 3.5. By making the slightly different assumption that the non-wetting fluid at the center
of the tube moves under the same pressure gradient as the wetting fluid along the wall,
Yuster (1951) obtained Equation (8.36) with n = 2. In a different approach, use is made
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of the hydraulic radius concept; it was proposed originally by Kozeny (1927) for saturated
materials and can be defined as the ratio of pore volume to particle area. Irmay (1954)
extended this to unsaturated porous media and derived (8.36) with n = 3.

Parallel models
In this approach the pore system is assumed to be equivalent with a bundle of uniform
capillary tubes of many different sizes. The distribution of the pore sizes is derived from
the soil water characteristic, i.e. Se = Se(H ), through Equation (8.5), i.e. H = H (R), as
explained after Equation (8.6). The true mean velocity in each pore can be described by a
Hagen–Poiseuille type equation for creeping flow, namely (8.24) with a value of Ge around
(1/8).

Because se(R) = d Se(R)/d R represents the pore size density, δθ (R) = (dθ/d R)δR =
θ0(1 − Sr)(d Se/d R)δR = θ0(1 − Sr)se(R)δR is the portion of the pore volume occupied by
“active” pores, with radius between (R − δR/2) and (R + δR/2), where δR denotes a very
small increment of R. It follows that [θ0(1 − Sr )se(R)δR] is also the area, per unit bulk
cross-sectional area of porous material, occupied by openings whose sizes are between
(R − δR/2) and (R + δR/2). The flow rate through this elemental area is, by virtue of
(8.24),

−Ge g
ν

∂h
∂xn

[θ0 (1 − Sr)] se(R)R2δR (8.42)

in which the subscript n refers to the direction normal to the area under consideration.
With se(R)d R = d Se and with Laplace’s equation (8.5), i.e. R = 2σ/(γ H ), one obtains the
intrinsic permeabilty, by integration over all pores filled with water,

k ′ = (2σ/γ )2Ge[θ0(1 − Sr)]

Se∫
0

[H (x)]−2 dx (8.43)

where x is the dummy variable representing Se.
Purcell (1949) and Gates and Tempelaar-Lietz (1950) were among the first to apply

this approach, and came up with expressions similar to Equation (8.43). However, because
(8.43) tended to yield values considerably larger than available experimental data, several
subsequent authors included a tortuosity factor in the formulation to account for the limita-
tions inherent in this model of straight parallel tubes. The tortuosity concept had originally
been introduced by Carman (1937; 1956) as an improvement on the uniform hydraulic
radius model of Kozeny (1927), and it can be expressed as T = (Le/L)2, in which Le is the
actual or microscopic path length of the fluid particles in the pores, and L is their apparent
or macroscopic path length along the Darcy streamlines. In several studies this tortuosity
was assumed to depend on the water content, i.e. Se; in this case the relative permeability
κr = k ′/k ′

0(= k/k0) can be written as

κr =
⎡
⎣β

Se∫
0

[H (x)]−2dx

⎤
⎦

/⎡
⎣β0

1∫
0

[H (x)]−2dx

⎤
⎦ (8.44)

where the variable β = β(Se) is related to the tortuosity and β0 is its value at Se = 1.0.
Burdine (1953) proposed on the basis of his experimental data that (β/β0) = S2

e .
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Example 8.5. Calculation with the power function

A well-known application of the parallel model is the result of Brooks and Corey (1966),
who adopted Burdine’s assumption in (8.44) and integrated it with (8.14) for the soil water
characteristic, to derive Equation (8.36) with the value of the exponent

n = 3 + 2

b
(8.45)

Observe that without Burdine’s assumption for tortuosity the parallel model would have
yielded n = 1 + 2/b instead of (8.45). Equation (8.36) applied with (8.45) can be compared
with experimental measurements for two soils in Figure 8.23. For the Poudre sand the
wetting fluid curve was calculated with the parameters Sr = 0125 and b = 3.4; for the
Amarillo silty clay loam the values used were Sr = 0.250 and b = 2.3.

Series-parallel models
The theoretical construction of these types of model also starts with a bundle of parallel
pores, each with a different but uniform size. However, these pores are then cut normally to
the direction of flow with two resulting faces, and finally after some random rearrangement
of the tubes the faces are joined again. This way account is taken of the random variations
of the pore sizes, not only in the plane normal to the direction of flow, but also along the
direction of flow. In the original version of this model the discharge rate in each single
pore, which consists of two sections in series, is assumed to be governed by the section
with the smaller diameter. Again, the distribution of the pore sizes is derived from Se =
Se(H ), by means of Laplace’s equation for capillary rise (8.5), i.e. H = 2σ/(γ R); also,
the true velocity in each pore is obtained by means of a Hagen–Poiseuille like equation,
as shown in (8.24). This approach was pioneered by Childs and Collis-George (1950) in a
finite-difference scheme to calculate the permeability from experimental H = H (θ ) data.
The model was subsequently reformulated in integral form by Brutsaert (1968a), to allow
the derivation of more concise analytical expressions for k; this formulation is presented
next.

One of the implicit but basic assumptions of the original approach is that the sizes of the
pores in flow sequence are completely independent of each other. As noted, this is visualized
in the construction of the model, by considering that the porous medium is equivalent with
an array of parallel tubes or flow channels of different sizes, which is first cut into two parts
by a plane section normal to the direction of flow; this section produces two surfaces, which
are subsequently joined together again after some random rearrangement of the tubes. It
was shown earlier that [θ0(1 − Sr)se(R)δR] is the area, per unit bulk cross-sectional area of
porous material, which is occupied by openings whose sizes are between (R − δR/2) and
(R + δR/2); this is also equal to the probability of a point in any cross section through the
medium being found in a pore with that size. Therefore, the fraction of the area of this section
occupied by the sequence of flow pores with size between (y − δy/2) and (y + δy/2) of the
first surface with pores with size between (z − δz/2) and (z + δz/2) of the second surface
is equal to

[θ0 (1 − Sr)]
2 se(y)se(z) δyδz

If it is assumed that the flow between two pores in sequence is controlled by the smaller
of the two, say with size y, then the rate of flow that takes place through a fraction of the
cross-sectional area, occupied by the sequences of pores with size between (y − δy/2) and



water transport in a porous mater ial 285

(y + δy/2) that are in contact with the pores with size between (z − δz/2) and (z + δz/2),
is

−Ge g
ν

∂h
∂xn

[θ0 (1 − Sr)]
2 se(y)se(z) y2δyδz

in which the subscript n indicates the direction normal to the section. The pores with a
size between (y − δy/2) and (y + δy/2) of the first surface are in contact with pores of all
possible sizes of the second surface. The discharge rate through these pores is

−Ge g
ν

∂h
∂xn

[θ0 (1 − Sr)]
2

[
se(y)

∫ y

0
se(z)z2dzδy + se(y)y2

∫ R

y
se(z)dzδy

]

where R is the size of the largest pores that are still available for flow at the given degree
of saturation. The first term gives the flow rate from the pores of the first surface with size
between (y − δy/2) and (y + δy/2) into all the pores of the second surface that are smaller
than y; the second term gives the flow rate into the pores of the second surface that are
larger than y. Integration over y yields finally the total discharge per unit cross-sectional
area of porous medium. Hence the intrinsic permeability, defined in Equation (8.23), can
be written as

k ′ = Ge [θ0(1 − Sr)]
2

[∫ R

0
se(y)

∫ y

0
se(z) z2dzdy +

∫ R

0
se(y)y2

∫ R

y
se(z) dzdy

]
(8.46)

where y and z are dummy variables representing R. This result can be applied to fully
saturated media simply by putting R = ∞. It can also be expressed directly in terms of
the soil water characteristic function, by means of (8.5), Laplace’s equation for capillary
rise,

k ′ = Ge [(2σ/γ ) θ0(1 − Sr)]
2

[∫ Se

0

∫ x

0
[H (y)]−2 dydx +

∫ Se

0
[H (x)]−2

∫ Se

x
dy dx

]
(8.47)

where now x and y are the dummy variables representing Se. One can show by integration
by parts that the first double integral on the right is identical with the second; thus (8.47)
can be expressed in a more condensed form as

k ′ = (2 Ge) [(2σ/γ ) θ0 (1 − Sr)]
2

Se∫
0

(Se − x) [H (x)]−2 dx (8.48)

Equations (8.47) and (8.48) can now be applied immediately with suitable expressions
for Se(R) or Se(H ) (see Brutsaert, 1968a). Although they can be applied to fully saturated
media to obtain k0 by putting R = ∞ and Se = 1.0, respectively, they have been applied
mostly to obtain the relative permeability κr = k ′/k ′

0.

Example 8.6. Calculation with the power function

As before, the integration is especially simple with Equation (8.14) and it produces

k ′ = Ge[(2σ/γ ) θ0(1 − Sr) b]2

(b + 1) (b + 2) H 2
b

S2+2/b
e (8.49)
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For the relative permeability this results again in (8.36) with the value of the exponent

n = 2 + 2/b (8.50)

The original version of the series-parallel model, both in its finite difference forms and
in the integral forms (8.47) and (8.48), has been tested with experimental data (see Childs
and Collis-George, 1950; Marshall, 1958; Millington and Quirk, 1964; Nielsen et al., 1960;
Jackson et al., 1965). Although there is a wide variation for different soils, it appears to
produce reasonable results for unstructured soils (without macropores). However, it also
tends to overestimate the relative permeability somewhat under drier conditions.

Several shortcomings of the model are obvious from the assumptions invoked in its
derivation. These are that: (i) the sizes of pores in sequence are independent of each other;
(ii) the flow rate in a pore sequence is controlled by the smallest diameter; and (iii) the pores
in sequence are lined up perfectly, and they are straight without tortuosity. Assumptions
(i) and (ii) will not cause any overestimate in the calculated result. As regards (i), this can
be seen by considering that in the parallel models the sizes of the pores in sequence are
assumed to be totally dependent on each other, since each flow channel is assumed to have a
uniform cross section over its whole length; parallel models, without tortuosity correction,
severely overestimate the permeabilty. Thus the assumption of any partial correlation would
result in a further overestimate. Similarly, as regards (ii), inclusion of the larger pore size
in the sequence into the expression for the fluid velocity would also result in a larger rate
of flow. This means that the overestimate is not the result of assumptions (i) and (ii) but
mainly of assumption (iii).

To compensate for these shortcomings, in several studies use was made of the concept
of tortuosity. Although the concept is intuitively clear, there has been no unanimity in
defining it conceptually or mathematically. Clearly, the drier the soil is, the less perfect the
remaining pores with water line up, and the more tortuous the flow paths become. For this
reason, a common way of implementing the tortuosity effect has consisted of assuming
that it is directly proportional with some power of the size of the largest pores, that contain
water, and thus of the water content of the soil (see Millington and Quirk, 1964; Mualem,
1976), saySc

e , where c is an empirical constant. As noted, this assumption was already
used earlier in several of the parallel models (Burdine, 1953; Brooks and Corey, 1966).
Subsequently, however, it was observed (Brutsaert, 2000) that this assumption is incapable
of producing agreement with experimental data. Rather, it was found necessary to assume
that the tortuosity of a flow path through any given pore depends on the characteristic
spatial scale of that specific pore, and not just on the scale of the largest pores. Actually, this
assumption had already been used by Fatt and Dykstra (1951), in their parallel model, with
the physical justification that liquid flowing through smaller pores travels a more tortuous
path; accordingly, they assumed that the tortuosity is inversely proportional to a power of
the pore size, say rc, in which c is another constant to be determined experimentally.

It is straightforward to incorporate this assumption into the series-parallel model pre-
sented above, to adjust it for tortuosity and possibly other factors that may not be fully
taken into account. Thus, in Equation (8.46) the power of z and y should be taken as (2 + c)
instead of 2, so that instead of (8.48) one obtains

k ′ = (2 Ge)[(2σ/γ ) θ0 (1 − Sr)]
2

Se∫
0

(Se − x) [H (x)]−2−c dx (8.51)
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Fig. 8.31 Dependence of n in Equation (8.36) on the exponent b in the power form of the soil-water

retention relationship (8.14). The points are the experimental values from Mualem’s (1978)

data collection. The regression line is n = 2.18 + 2.51/ b. Also shown are the lines obtained with

Equations (8.44) and (8.49). (The parameter b tends to be smaller for finer-textured soils.)

Example 8.7. Calculation with the power function

Again, this result can be readily integrated with (8.14) to yield

k ′ = 2Ge[(2σ/γ ) θ0(1 − Sr) b]2

(2b + c + 2) (b + c + 2) H 2+c
b

S2+(2+c)/b
e (8.52)

which is in the form of (8.36) with n = 2 + (2 + c)/b. A comparison with available exper-
imental data for the relative permeability collected by Mualem (1978), revealed (Brutsaert,
2000) that a value of c = 0.5 produces good agreement, or

n = 2 + 2.5

b
(8.53)

As illustrated in Figure 8.31, Equation (8.53) yields practically the same fit with the data as
the regression relationship n = 2.18 + 2.51/b, with a correlation coefficient of r = 0.75.

8 . 4 F I E L D E Q UAT I O N S O F M A S S A N D M O M E N T U M
C O N S E RVAT I O N

8.4.1 Constant-density fluid in a rigid porous material

Equation of continuity
In a porous medium, the infinitesimally small control volume, for which the continuity
equation (1.8) is derived, consists of both pore space and solid matter. Therefore, the
amount of fluid mass per unit volume is given by (ρwθ ) in the case of water. Similarly,
the mass flux per unit area of bulk porous material, comprising pores and solid matter, is
given by (ρwq), in which q (or qi ) is the specific flux as used in Darcy’s law (8.19). Thus
the equation of continuity (1.8), for a fluid with constant density but variable saturation,
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becomes in the notation of porous media flow

∇ · q = −∂θ

∂t
(8.54)

Conservation of mass and momentum: Richards’s equation
Substitution of Darcy’s law (8.19) in the equation of continuity (8.54) produces imme-
diately

∇ · (k∇h) = ∂θ

∂t
(8.55)

or, written out in full,

∂

∂x

(
k
∂h
∂x

)
+ ∂

∂y

(
k
∂h
∂y

)
+ ∂

∂z

(
k
∂h
∂z

)
= ∂θ

∂t
(8.56)

which is now usually referred to as the Richards (1931) equation. As such, Equation (8.55)
is valid only for isotropic materials; it would be a straightforward exercise to extend the
formulation to anisotropic materials. Under conditions of steady flow or under conditions
of fully saturated flow, the right-hand side of (8.55) becomes zero. Under conditions of
fully saturated flow in a uniform material, so that θ = θ0 and k = k0 = constant, (8.55)
reduces to the equation of Laplace, that is ∇2h = 0, or written out in full

∂2h
∂x2

+ ∂2h
∂y2

+ ∂2h
∂z2

= 0 (8.57)

8.4.2 General case of two immiscible fluids in an elastic porous material

Biot (1941, 1955, 1956a, b) was probably the first to present a general theory of elasticity
of a porous material saturated with an elastic fluid for the three-dimensional case with an
arbitrary and variable load. This theory was subsequently (Brutsaert, 1964; Brutsaert and
Luthin, 1964) extended to describe the elasticity of an unconsolidated granular material,
containing two fluids in its interstices. Later Verruijt (1969) showed that Biot’s theory for
a saturated material can be simplified to describe groundwater movement in most cases of
practical interest; he thus demonstrated that Biot’s theory can often be reduced to Jacob’s
(1940) simple equation but also that in some cases the general theory is the only one that
succeeds in explaining experimental results. In what follows, Verruijt’s (1969) develop-
ment is combined with Brutsaert’s (1964) two-fluid extension of the theory to obtain a
general formulation for unconfined and confined groundwater flow. Although the matter is
straightforward, a careful exposition is desirable to bring out the significance of the under-
lying assumptions of the various more special groundwater equations used in the technical
literature.

Strains
It is convenient to consider a fixed (Eulerian), infinitesimally small cubic element of a porous
material, containing both water and air (or, more generally, a wetting fluid and a non-wetting
fluid) in a Cartesian coordinate system. In this section the displacement vector of the solid
part relative to its initial position is denoted by u(= ux i + uyj + uzk). The corresponding
displacement of the water w(= wx i + wyj + wzk) and that of the air v(= vx i + vyj + vzk)
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Fig. 8.32 Some of the displacements of a porous material subjected to deformation. Before the

deformation the solid mass ρs(1 − n0)δ∀ occupies the volume element δ∀ = (δxδyδz) at

ABCD, and after the displacement this same solid mass has moved to A′ B′ C′ D′. The center of

the mass has moved from (x0, y0, z0) to (x0 + ux, y0 + uy, z0 + uz). The figure is shown in

two-dimensions for clarity; the third coordinate y can be imagined as pointing out of the plane

of the drawing.

are defined such that, when multiplied by the total or bulk cross-sectional area of porous
material, they produce the displaced water and air volume, respectively.

The strain components of the solid are defined as exx = ∂ux/∂x , exy = (∂ux/∂y +
∂uy/∂x)/2, etc. Their physical significance is illustrated in Figure 8.32. The position of
the center of the cube shown in the figure is at (x0, y0, z0) prior to the deformation, and the
displacement components (ux , uy, uz) refer to the displacement of the center of the cube.
After the deformation the position of the point H is at

xH = x0 − δx
2

+ ux − ∂ux

∂x
δx
2

+ ∂2ux

∂x2

(
δx
2

)2 1

2
− · · ·

and

zH = z0 + uz − ∂uz

∂x
δx
2

+ ∂2uz

∂x2

(
δx
2

)2 1

2
− · · ·

The position of the point F is

xF = x0 + δx
2

+ ux + ∂ux

∂x
δx
2

+ ∂2ux

∂x2

(
δx
2

)2 1

2
+ · · ·

and

zF = z0 + uz + ∂uz

∂x
δx
2

+ ∂2uz

∂x2

(
δx
2

)2 1

2
+ · · ·
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The normal strain is defined as the change in length of an element in a certain direction
as a result of deformation, divided by the original length, in the limit for an infinitesi-
mally small element. In the x-direction, the original length is δx and the deformed length
(xF − xH), which yields immediately exx = ∂ux/∂x ; the same reasoning, mutatis mutandis,
produces ezz and eyy . Note that the reasoning is similar to the derivation of Equations (1.5)
and (1.6). The sum of the normal strains, which equals the fractional change in volume of
the deformed cube of solid skeleton, is the volume strain, also called the dilatation, i.e.,

e = ∇ · u = exx + eyy + ezz (8.58)

The shear strain is by definition one half the change in angle between two originally per-
pendicular elements, as deformation takes place, again in the limit for an infinitesimally
small element. In the case of A′B′C′D′ the shear strain is one half the sum of the angle of
HF with the x-axis and the angle of EG with the z-axis; the angle of HF with the x-axis is
(zF − zH)/δx and the angle of EG with the z-axis is (xG − xE)/δz, so that the (xz)-component
of the shear strain is exz = ezx = (∂ux/∂z + ∂uz/∂x)/2; the two other shear strain compo-
nents exy and eyz are obtained in a similar way.

The relevant strains for the fluids are the changes in volume of fluid per unit bulk volume
of porous material, that is, for the water,

ew = ∇ · w = ∂wx

∂x
+ ∂wy

∂y
+ ∂wz

∂z
(8.59)

and similarly, the dilatation of the air,

ea = ∇ · v = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
(8.60)

Because the fluid displacements represent fluid volume per unit bulk area of porous material,
the corresponding changes in volume of fluid per unit volume of fluid are ew/(n0 S) and
ea/[n0(1 − S)], respectively.

The displacements can readily be shown to satisfy the following equations of continuity,
in accordance with Equation (1.8); namely, for the water:

∂

∂t
(ρwn0 S) = − ∇ ·

(
ρw

∂w

∂t

)
(8.61)

for the air,

∂

∂t
[ρan0(1 − S)] = − ∇ ·

(
ρa

∂v

∂t

)
(8.62)

and for the solid,

∂n0

∂t
= ∇ ·

[
(1 − n0)

∂u

∂t

]
(8.63)

in which ρw and ρa are the density of the water and of the air, respectively, n0 is the porosity,
and S = θ/n0 is the degree of saturation of the material with water, that is, the volume of
water per unit volume of pore space and θ the volumetric water content. Observe that
Equation (8.63) is based on the assumption that the density of the solid phase (namely, the
grains but not the solid frame) is constant.
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y

τzy − (∂tzy /∂z)(dz/2)

)

tzz+(∂tzz/∂z)(dz/ 2)

tzy+(∂tzy/∂z)(dz/ 2)

tyz+(∂tyz/∂y)(dy/2)

tyy+(∂tyy /∂y)(dy/2)

tzx−(∂tzx/∂z)(dz/2)

tzx+(∂tzx /∂z)(dz/2)

txz+(∂txz/∂x)(dx/2)

txx+(∂txx/∂x)(dx/2)

tzz−(∂tzz /∂z)(dz/2)

txy+(∂txy/∂x)(dx/2)
tyx+(∂tyx/∂x)(dx/2)

Fig. 8.33 Some of the effective or intergranular stress components acting on an elementary cube of porous

material with dimensions (δxδyδz), when the stresses at the center are τxx, τxy , τxz , τyx, τyy ,

etc.; the first subscript indicates the direction of the surface on which the stress component acts,

and the second subscript is the direction of the stress component itself.

Stresses
The total stress related to the aforementioned displacements, u, w, and v, consists of three
parts, corresponding to the forces acting on each of three phases at a point in space. It
can be written as (Biot, 1955; Brutsaert, 1964) τxx + τw + τa, τxy, τxz, τyx , τyy + τw +
τa, τyz, τzx , τzy, and τzz + τw + τa. The τxx , τxy, etc., components, namely those with two
subscripts, represent the stress tensor acting on the solid part of the material, also known as
the intergranular or effective stress. A few of the components of the effective stress tensor
are illustrated in Figure 8.33, as they act on the sides of a small cubic element with volume
(δxδyδz). The first subscript of each effective stress component indicates the direction of
the surface on which it acts, and the second subscript is the direction of the stress component
itself. A component is taken as positive, when it acts in a positive direction on a positive
surface, or in a negative direction on a negative surface. The part of the total stress tensor
applied to the water is τw, given by

τw = −χp′
w (8.64)

where p′
w is the incremental fluid pressure over and above the initial hydrostatic pressure

under equilibrium conditions prior to the displacement. This initial pressure is denoted bypwi

and the total pressure is pw = pwi + p′
w. The term χ is the effective stress function, a concept

introduced for partly saturated soils by Bishop (1961) in 1955. It is generally accepted that χ
equals zero when S = 0 and that it is close to unity when S = 1 at saturation, in accordance
with Terzaghi’s (1925, 1943) effective stress concept. It should be added that Terzaghi’s
concept (i.e. χ = 1 for S = 1) is valid only for granular materials, if the grains are in point
contact with each other, and if (see Bishop and Blight, 1963) the grains are incompressible.
It would seem that besides the effect of partial occupancy of the pores by water, χ is also
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affected by the effective stress path, the pore geometries, the wetting angle, and probably
other factors. The nature of χ has been the subject of uncertainty (see McMurdie and Day,
1960; Blight, 1967; Snyder and Miller, 1985). For the sake of simplicity, for small elastic
displacements it has been assumed earlier (Brutsaert, 1964) that χ = S. In general, it is
probably safe to assume that χ is a unique function of S, i.e. χ = χ (S). By applying
Bishop’s proposal to the air phase, one can write for the part of the total stress acting on the
air

τa = −(1 − χ )p′
a (8.65)

where p′
a is the incremental air pressure over and above the initial pressure pai, existing

prior to the displacement. Thus the total air pressure is pa = pai + p′
a.

When the two immiscible fluids are in a “funicular” state, that is, consisting of connected
filaments without isolated drops or occluded bubbles of entrapped gas, the total pressure
pw can be related to the total pressure pa by the capillary pressure pc, which is defined as
follows:

pw = pa + pc (8.66)

This capillary pressure equals the pressure decrease across the air–water interface considered
in the derivation of Laplace’s equation (8.3) via (8.4). Hysteresis (see Section 8.2.3) is
always present. However, if the process in question involves only wetting, or only drying,
so that hysteresis effects are avoided, pc = pc(S, n0) can be taken as a function only of the
saturation and of the porosity.

The components of the stress tensor and the changes of the displacements of the three
phases must satisfy the equations of motion (Brutsaert, 1964) or for slow displacements
the simpler equilibrium equations (Verruijt, 1969). However, these are not needed in the
present derivation.

Stress–strain relationship
If the solid strains and the changes in fluid content are small and if the processes involved
are reversible, the stress components may in general be assumed to be linear functions of the
strain components (Biot, 1941, 1955). This assumption yields a generalization of Hooke’s
law (Brutsaert, 1964) in the case of an isotropic porous material:

τxx = 2μexx + λe + cswew + csaea

τyy = 2μeyy + λe + cswew + csaea

τzz = 2μezz + λe + cswew + csaea

τxy = 2μexy τxz = 2μexz τyz = 2μeyz (8.67)

τw = cswe + cwew + cwaea

τa = csae + cwaew + caea

in which μ, λ, csw, csa, cw, ca, and cwa are constants characterizing the elastic behavior of
the material. These equations reduce to Biot’s (1955) when the pores are saturated with one
fluid and to Hooke’s law for isotropic bodies if only the solid were present. Thus μ and λ

represent the behavior of the solid. A fluid displacement does not result in a shear stress,
only the rate of displacement does; therefore the fluid strains do not appear in the shear
stress components. The coefficient cw can be understood by considering the situation where
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wetting fluid is forced into the porous material, while the total volume of the other two is
somehow kept constant, i.e. when e and ea are kept zero. This means that owing to (8.67),

cw = χ Kw/n0 S (8.68)

where Kw = β−1
w is the bulk modulus of the wetting fluid and βw its compressibility.

Similarly, for the non-wetting fluid

ca = (1 − χ ) Ka/n0(1 − S) (8.69)

where Ka is the bulk modulus of the non-wetting fluid. The coefficients csw, csa, and cwa

indicate that, in principle at least, there should be a coupling between the volume changes
of the three constituents as indicated by the subscripts. However, as is now shown, these
coefficients are equal to zero if the density of the solid grains can be assumed to be constant.
To see this, eliminate the fluid strains from Equation (8.67) to obtain an alternative form of
the generalized Hooke law, namely,

τxx = 2μexx + (λ + c1)e + c2τw + c3τa

τyy = 2μeyy + (λ + c1)e + c2τw + c3τa (8.70)

τzz = 2μezz + (λ + c1)e + c2τw + c3τa

together with the fourth, fifth, and sixth of (8.67). The new constants are

c1 = (
2cswcsacwa − c2

swca − c2
sacw

)
c, c2 = (cswca − csacwa)/c, c3 = (csacw − cswcwa)/c,

and c = (
cwca − c2

wa

)
Consider now a thought experiment in which τxx , the effective stress, is held constant

but the fluid pressures are increased. In the case of a porous material containing only one
fluid, this can be accomplished by placing an unjacketed saturated sample in the fluid and
then increasing the fluid pressure. In the case of material containing air and water, this can
be accomplished by increasing pw and pa in such a way that their difference pc remains
constant. It is clear that if the solid grain density is constant, this process does not increase the
effective stresses, nor does it result in any solid displacement. Thus Equation (8.70) shows
that c2 = c3 = 0. In other words, if the solid material (not the solid frame) is incompressible,
one has also csw = csa = 0, which immediately results in c1 = 0 as well. Moreover, if this is
the case, one can relate μ and λ to the bulk modulus of the solid frame, as follows:

Ks = 2

3
μ + λ (8.71)

Stress versus rate of strain relationships for fluids
As noted in Section 8.3.1, Darcy’s law represents the equation of creeping motion in porous
material. When the motion takes place within the pores while the porous material itself
is being subjected to deformation, the Darcy flux must be taken as the relative motion
between the solid matrix and the fluids. Apparently (Verruijt, 1969), this concept was first
proposed for liquid saturated media by Gersevanov around 1934. Biot did not use it in
his original paper (Biot, 1941), but he introduced it in his generalized theory of elastic-
ity (Biot, 1955). The displacement vector of the solid is an actual displacement length,
whereas the displacement vectors of the two fluids are defined herein as volumes when
multiplied by the total bulk cross-sectional area normal to them. Thus the relative velocity
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of the wetting fluid with respect to the solid is {[(∂w/∂t)/(n0 S)] − (∂u/∂t)} and an anal-
ogous expression for the nonwetting fluid, so that the respective Darcy fluxes are given
by [(∂w/∂t) − n0 S(∂u/∂t)] and [(∂v/∂t) − n0(1 − S)(∂u/∂t)].

When there are two fluids within the same pores, it is clear that the relative motion
between the fluids may give rise to an additional “head” loss. This means that Darcy’s law,
which expresses a linear relationship between flux and the gradient of pressure and body
force, can be written in a general form as follows:

−∇hw = μwn0 S
γw

{
1

kw

[
1

n0 S
∂w
∂t − ∂u

∂t

] + 1
kwa

[
1

n0 S
∂w
∂t − 1

n0(1 − S)
∂v
∂t

]}
−∇ha = μan0(1 − S)

γa

{
1
ka

[
1

n0(1 − S)
∂v
∂t − ∂u

∂t

] + 1
kwa

[
1

n0(1 − S)
∂v
∂t − 1

n0 S
∂w
∂t

]} (8.72)

where k is the (intrinsic) permeability and μ is the Newtonian viscosity. (Note that in what
follows in this section for convenience of notation the prime symbol is omitted from the
permeability terms kw, ka, and kwa.) Recall that the total pressure is the sum of the initial
and the incremental pressures, or pw = pwi + p′

w. Since the initial pressure is hydrostatic,
so that ∇z + (∇ pwi/γw) = 0, it follows that

∇hw

(
≡ ∇z + 1

γw
∇ pw

)
= 1

γw
∇ p′

w (8.73)

where z is the vertical coordinate and γw = ρwg the specific weight; the quantity hw is
defined in Equation (8.21). The subscript w refers to the wetting fluid; the same quantities,
but with the subscript a, refer to the nonwetting phase. The cross-permeability term kwa arises
from the relative motion between the two fluids. For most practical problems, the effect
of this relative motion is probably negligible. It is conceivable, however, that it becomes
important under conditions of counterflow; this would be the case, for example, of water
infiltration into a soil profile in which the displaced air is being prevented from escaping
downward so that it bubbles upward while the wetting front moves down. The possibility
of momentum exchange as a result of this relative motion has been considered already by
Yuster (1951) and Scott and Rose (1953). Mainly because it is practically impossible to
determine experimentally at present and probably small, it is omitted in what follows. Then
Equations (8.72) become

∂w

∂t
− n0 S

∂u

∂t
= − kw

μw
∇ p′

w

∂v

∂t
− n0(1 − S)

∂u

∂t
= − ka

μa
∇ p′

a

(8.74)

The equations presented so far form a complete system. They can be combined to
eliminate certain less useful variables and to leave only those pertinent to most practical
problems. One way of accomplishing this is to consider the solid displacements and the
fluid pressures. Together with the porosity and the degree of saturation, these are seven
variables: u, p′

w, p′
a, n0, and S. If it is assumed that the porous matrix is homogeneous

and inert, so that μ and λ are constant and independent of S and thus of space and time (this
would not be the case, for example, in a clay–water–air system), substitution of (8.67) or
(8.70) into the well-known equilibrium equations (for incompressible grains) yields

μ∇2u + ∇[(μ + λ)e − χp′
w − (1 − χ )p′

a] = 0 (8.75)
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The fluid displacement terms in Darcy’s law can be eliminated by multiplying each of
(8.74) first by ρw and ρa, respectively, and then taking the divergence, after which substi-
tution of the continuity equations (8.61) and (8.62) gives

∂

∂t
[ρwn0 S] + ∇ ·

[
ρwn0 S

∂u

∂t

]
= ∇ ·

(
kwρw

μw
∇ p′

w

)

∂

∂t
[ρan0(1 − S)] + ∇ ·

[
ρan0(1 − S)

∂u

∂t

]
= ∇ ·

(
kaρa

μa
∇ p′

a

) (8.76)

Equations (8.75) and (8.76), together with solid continuity (8.63), form a closed system.
Hence it should be possible to solve it for any consolidation or flow problem involving an
elastic porous material occupied by two elastic fluids. Fortunately, for many problems this
formulation is more general than necessary (see, however, Verruijt (1969)), and it is often
possible to simplify it considerably as follows.

Simple case of constant vertical load
In soil mechanics and groundwater hydraulics the problem formulation is commonly sim-
plified by two basic assumptions that were introduced by Terzaghi (1925, 1943) and Jacob
(1940, 1950). First, compression is assumed to be strictly vertical without any horizontal
solid displacements, and second, any changes in vertical compressive effective stress are
balanced by equal and opposite changes in fluid stresses. These assumptions may be diffi-
cult to justify, but the resulting formulation has been used quite successfully in the solution
of many problems in porous media saturated with one fluid. This suggests that the concept
may also be valid in the simplification of certain problems involving two immiscible fluids.
In the present notation the first assumption can be written as ux = uy = 0, so that ezz = e
and the third of Equations (8.67) or (8.70) (for incompressible grains) yields

τzz = (2μ + λ) e (8.77)

The second assumption can be written as τzz = − (τw + τa), which yields with (8.64) and
(8.65)

τzz = χp′
w + (1 − χ )p′

a (8.78)

Note as an aside, that Equation (8.78) agrees with the general observation that soils that are
close to saturation do not easily disintegrate, but exhibit a certain degree of consistency and
coherence. Indeed, if the effect of the air pressure can be neglected, in a soil that is close
to saturation, the water pressure p′

w is negative and the effective stress factor χ is close to
unity; hence the intergranular stress τzz is also negative, which means that the soil grains
are drawn together and the soil exhibits a greater firmness. This effect can also be seen, for
example, on a sandy beach just after the sea water has withdrawn during ebb tide; at that
time the sand forms a harder surface than when it is submerged, with p′

w > 0, or than when
it is totally dry.

Combining Equations (8.77) and (8.78) one obtains, instead of (8.75), simply

(2μ + λ) e = χp′
w + (1 − χ ) p′

a (8.79)

Substitution of (8.63) into the first of (8.76) yields

ρw S
∂e
∂t

+ n0 Sρwβw
∂p′

w

∂t
+ n0ρw

∂S
∂t

= ∇ ·
(

kwρw

μw
∇ p′

w

)
(8.80)
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in which βw[= (∂ρw/∂t)/(ρw∂p′
w/∂t)] is assumed to be a constant, as a measure of the

compressibility of the water, and in which (∂u/∂t) · ∇(ρw S) is assumed to be negligible on
account of the small solid velocity. Similarly, the second of (8.76) reduces to

ρa (1 − S)
∂e
∂t

+ n0(1 − S)ρaβa
∂p′

a

∂t
− n0ρa

∂S
∂t

= ∇ ·
(

kaρa

μa
∇ p′

a

)
(8.81)

in which now (∂u/∂t) · ∇ [ρa(1 − S)] is assumed negligible. The combination of (8.79)
with (8.80) and (8.81) yields the following diffusion-type equations:

ρw Sα
∂

∂t
(χp′

w) + ρw Sn0βw
∂p′

w

∂t
+ ρw Sα

∂

∂t
[(1 − χ ) p′

a] + n0ρw
∂S
∂t

= ∇ ·
(

kwρw

μw
∇ p′

w

)

ρa(1 − S)α
∂

∂t
[(1 − χ ) p′

a] + ρa(1 − S)n0βa
∂p′

a

∂t
+ ρa(1 − S)α

∂

∂t
(χp′

w) − n0ρa
∂S
∂t

= ∇ ·
(

kaρa

μa
∇ p′

a

)
(8.82)

in which, on account of (8.77), α can be defined as the vertical compressibility of the solid
frame

α = (2μ + λ)−1 (8.83)

Note that this is different from the volumetric compressibility K −1
s [≡ 3e/(τxx + τyy + τzz)],

that is, the inverse of Equation (8.71).
The physical significance of the terms in Equations (8.82) can be explained as follows.

The entire left-hand side of both equations represents the local rate of change of storage of
the fluid in question at a point. In the case of the first of (8.82), which describes the flow
of the water (i.e. the wetting fluid), the first term on the left is the rate of change of storage
resulting from compression (or expansion) of the solid matrix caused by pressure changes
in the water; the second term represents the storage rate of change caused by compression
(or expansion) of the water; the third term is the rate of change of storage resulting from
bulk volume changes of the solid matrix caused by pressure changes in the air. The fourth
term shows the rate of change of water storage resulting from local changes of the degree of
saturation. Finally, the right-hand side, which is a divergence of the Darcy flux, represents
the storage rate of change as the difference between the inflow and outflow rate of water at
the point in question. The different terms of the second of (8.82), which describes the flow
of air, represent, mutatis mutandis, the same mechanisms as those in the first.

Before proceeding, for a better understanding of Equations (8.82) and their limitations,
the basic assumptions may be briefly repeated.

1. The grains are incompressible.
2. The effective stress is obtainable by means of Bishop’s parameter χ = χ (S).
3. The solid displacements are sufficiently small, so that the solid frame is elastic

within the range of u; when this is not the case, this can sometimes be remedied. For
example, as shown in Brutsaert and Corapcioglu (1976) the basic derivation leading
to Equation (8.84) can be readily extended to flow in a viscoelastic aquifer.

4. The solid displacements are vertical only, with a constant total load. Verruijt (1969)
has described situations of saturated flow when this assumption is not valid.
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5. The fluid compressibility β is defined in Equation (8.80) in terms of partial time
derivatives.

6. The terms (∂u/∂t) · ∇ (ρw S) and (∂u/∂t) · ∇ [ρa(1 − S)] are negligible.

Equations (8.82) are the main result of this section. In principle it should be possible to
solve them for appropriate boundary conditions, provided the values of the parameters are
known. However, for many common situations they are more general than necessary, and
they can be simplified considerably.

Some special cases
(i) Flow of one partially saturating, elastic fluid in an elastic porous material. Whenever

the air pressure can be assumed to be constant, the second equation of (8.82) becomes
irrelevant; the first equation of (8.82) can then be written as

ρw Sα
∂

∂t
(χw p′

w) + ρw Sn0βw
∂p′

w

∂t
+ n0ρw

∂S
∂t

= ∇ ·
(

kwρw

μw
∇ p′

w

)
(8.84)

This equation was examined in Brutsaert and El-Kadi (1984) to study the relative
effects of partial saturation and compressibility on the flow in unconfined systems.
It may be noted that in the groundwater literature, various derivations have been
presented; these have yielded results somewhat different from (8.84), mainly in the
first term on the left. Some reasons for the discrepancies between these other equations
and (8.84) stem from the neglect of the relative velocity in Darcy’s law (8.72) and
of the equation of continuity of the solid (8.63). The latter assumption is especially
serious, since (8.63) involves the compression of the solid, which in turn gives rise to
the compressibility α. Other differences result from the use of the total pressure pw,
rather than p′

w, as is done here, and also from the neglect of χw.
(ii) Flow of one elastic fluid in an elastic porous material. This case is the one to which

the theory of Biot (1941; 1955) is applicable. Because the pores are filled with one
fluid only, one has S = 1.0, and χw = 1.0; this reduces Equation (8.84) immediately
to

ρw(α + n0βw)
∂p′

w

∂t
= ∇ ·

(
ρwk ′

μw
∇ p′

w

)
(8.85)

in which the symbol kw has been replaced by the more common k ′ for the permeabil-
ity. If now also the hydraulic conductivity k = (ρwgk ′/μw) is assumed to be constant,
(8.85) assumes the well-known linear form:

Ss
∂p′

w

∂t
= k∇2 p′

w (8.86)

where Ss = ρwg[n0βw + (2μ + λ)−1]. This form is the same as that of the equa-
tions describing heat conduction and diffusion (cf. also Equations (5.88) and (5.92)).
Equation (8.86), but with various expressions for Ss, has been applied widely in the
description of soil consolidation and of flow in confined aquifers. It was proposed
for one-dimensional consolidation by Terzaghi (1925), who later (1943) extended it
to three dimensions. Independently, Theis (1935) adopted the heat flow equation to
analyze horizontal unsteady flow in an elastic artesian aquifer, but he justified it only
on the basis of heuristic arguments concerning the analogy between Fourier’s law
and Darcy’s law. But it was Jacob (1940; 1950) who derived this heat flow equation
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for confined aquifer flow in terms of the physical properties of the aquifer and the
fluid. Subsequently, however, the exact derivation of Equation (8.86) remained the
subject of controversy, until Verruijt (1969) showed how it can be reconciled with
Biot’s (1941; 1955) analysis.

In addition to the limitations inherent in Equation (8.84), the Terzaghi–Jacob equa-
tion (8.86) is also restricted by the assumption of a constant hydraulic conductivity.
As shown earlier in this chapter, the permeability k ′ is dependent on the porosity n0;
for instance, in Equations (8.48) and (8.51) k ′ is proportional to n2

0. Thus, in deriving
(8.86) from (8.85), it is assumed that n0 and ρw = ρw(pw) are constant, even though
they are in fact unknown dependent variables. In other words, it is assumed that the
fluid and the porous matrix are compressible on the left side of (8.85) but not on the
right. This assumption may have its limitations whenever ∇ p′

w is not small. Still,
in spite of this inconsistency, for most problems the exact formulation of (8.86) in
terms of physical properties of the porous material and the fluid is probably not very
crucial, since (Ss/k) is usually determined from field experiments. Consequently, as
irrotational or unidirectional displacement and the constancy of k ′ and ρw may be
difficult to justify, the main problem is not how to express Ss in terms of n0, βw, μ, λ,
etc., at the micro- or Darcy scale, but rather whether the heat flow equation (8.86) is
adequate to solve the practical problem at hand at the larger scale of the aquifer.

(iii) Flow of two immiscible fluids in an incompressible porous material. In this special
case, the solid phase cannot move, so that the displacement u and the rate of displace-
ment (∂u/∂t) of the solid aggregate are equal to zero; therefore Equations (8.76) can
be written as:

n0
∂

∂t
(ρw S) = ∇ ·

(
ρwkw

μw
∇ p′

w

)
(8.87)

and

n0
∂

∂t
(ρa (1 − S)) = ∇ ·

(
ρaka

μa
∇ p′

a

)
(8.88)

These equations are equivalent to those first proposed by Muskat and Meres (1936)
but taking account of the solubility of the non-wetting fluid in the wetting fluid.
Equations (8.88) have been used to study the effect of soil air movement on the infiltration
of water (Le Van Phuc and Morel-Seytoux, 1972; Morel-Seytoux, 1973).

Whenever the effect of the non-wetting fluid is negligible, owing to small viscosity μa

and small pressure changes ∇ p′
a, only the wetting fluid is of interest; if the density of this

fluid ρw is constant, (8.87) reduces to

n0
∂S
∂t

= ∇ · (k∇ p′
w)/γw (8.89)

which is equivalent to Equation (8.55), first derived by Richards (1931) for soil water
movement.
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Donat, J. (1937). Das Gefüge des Bodens und dessen Kennzeichung. Trans. Intern. Congr. Soil Sci.,

6th Congr., Paris, B, pp. 423–439.
El-Kadi, A. I. and Brutsaert, W. (1985). Applicability of effective parameters for unsteady flow in

nonuniform aquifers. Water Resour. Res., 21, 183–198.
Everett, D. H. (1954). A general approach to hysteresis, 3. Trans. Faraday Soc., 50, 1077–1096.

(1955). A general approach to hysteresis, 4. Trans. Faraday Soc., 51, 1551–1557.
Fatt, I. and Dykstra, H. (1951). Relative permeability studies. Trans. Amer. Inst. Min. Engrs., 192,

249–255.
Feng, C. L. and Browning, G. M. (1946). Aggregate stability in relation to pore size distribution. Soil

Sci. Soc. Amer. Proc., 11, 67–73.
Forchheimer, Ph. (1930). Hydraulik, 3. Aufl. Leipzig & Berlin: B. G. Teubner.
Gardner, W. R. (1958). Some steady-state solutions of the unsaturated moisture flow equation with

application to evaporation from a water table. Soil Sci., 85, 228–232.
Gardner, W. R. and Mayhugh, M. S. (1958). Solutions and tests of the diffusion equation for the

movement of water in soil. Soil Sci. Soc. Amer. Proc., 22, 197–201.
Gardner, W. R. and Miklich, F. J. (1962). Unsaturated conductivity and diffusivity measurements by a

constant flux method. Soil Sci., 93, 271–274.
Gates, J. I. and Tempelaar Lietz, W. (1950). Relative permeabilities of California cores by the

capillary-pressure method. Drilling and Production Practice, American Petroleum Institute,
pp. 285–298.
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P RO B L E M S

8.1 Calculate the capillary rise between two parallel glass plates spaced a distance, d, apart. The fluid
has a surface tension σ and a specific weight γ . Assume that the wetting angle is negligible.

8.2 Laboratory tests have revealed that, for a given sandy soil, the water content, θ, is related to the
suction in the water (H = −pw/γw) by the following empirical formula:

θ = n0

[
1400

1400 + 0.1H )6

]

where n0 is the porosity, and H is expressed in cm of water column. (a) Consider a field situation
with a stationary (i.e., not moving) horizontal water table at a depth of 1.0 m below the soil
surface. If the soil profile is in equilibrium (i.e., no flow) and evaporation is negligible, what is
the water content at 0.5 m below the soil surface? (b) Consider (several months later), again, a
horizontal water table at 1.0 m depth in that same soil profile. You know that the soil moisture
profile was originally (say one day earlier) in equilibrium (with the water table at some unknown
depth), but you suspect that the water table is now moving vertically. If the water content at the
soil surface is 0.5 n0, decide whether the water table is rising or falling. (There is no precipitation
and evaporation at the surface.) Prove your answer.

8.3 The following table shows the F-distribution of the independent domain approach for Adelaide
dune sand obtained by Talsma (1970). F is expressed as drainable porosity in percent per (10 cm)2.
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Hw

(cm)
100

4.06
90

4.94 0.48
80

5.26 0.56 1.43
70

6.85 0.96 1.67 1.75
60

6.14 0.16 2.23 4.38 5.42
50

6.61 1.43 1.35 2.47 5.18 4.22
40

5.90 0.00 1.12 9.16 0.88 3.11 0.56
30

1.59 −3.90 −1.12 4.78 0.16 3.75 0.80 0.32
20

1.51 0.32 0.56 −0.96 0.00 0.00 −1.35 2.47 0.24
10

1.43 0.48 0.24 0.40 0.00 0.00 0.00 0.00 0.00 0.00
0

Hd 0 10 20 30 40 50 60 70 80 90 100
(cm)

(a) Plot the wetting and drying boundary curves. (b) On the same graph, plot the following sequence:
starting with a dry material at 100 cm suction, wet to 50 cm; drain again to 80 cm; wet again to
20 cm.

8.4 Use the same F-distribution as shown in the previous problem. (a) Plot the wetting and drying
boundary curves. (b) On the same graph, plot the following sequence: starting with a fully saturated
soil, drain to 70 cm; wet again to 30 cm; drain finally to 90 cm.

8.5 Consider the F-function used in Example 8.3 and shown in Table 8.1. (a) Calculate and plot the
wetting and drying boundary curves. (b) On the same graph, plot the following sequence: starting
with a dry soil, wet to 8 cm; then drain the soil to 20 cm; finally, wet again to 4 cm.

8.6 A two-dimensional flow is taking place with a pressure gradient, γ −1
w ∇ pw = 0.02i − 0.03j, at a

point in a soil whose hydraulic conductivity tensor is:

k =
(

kxx kxy

kyx kyy

)
=

(
1.2 0.003
0.003 0.2

)

The pressure is expressed as height of equivalent water column; the hydraulic conductivity is in
cm h−1; the x-axis is horizontal; and the y-axis is vertical. (a) What is the angle between the
pressure gradient and the x-axis? (b) What is the angle between the hydraulic head gradient and
the x-axis? (c) What is the specific flux (i.e., the rate of flow per unit bulk area normal to the
direction of flow) vector? (d) What is the angle this flux vector makes with the x-axis?
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8.7 You are given a two-dimensional flow net in a principal axes system describing the steady flow
in a homogeneous, anisotropic soil. The equipotential lines (i.e., lines of constant h) are a set
of equidistant straight lines making an angle of −20◦ with the x-axis (or +70◦ with the y-axis).
The stream lines (i.e., lines tangent to the local direction of the flow) are also a set of equidistant
straight lines, making an angle of +40◦ with the x-axis (or −50◦ with the y-axis). (a) Sketch
this flow net. (b) If h increases from bottom to top in your sketch, and if kxx = 10−5 cm s−1,
determine kyy .

8.8 Derive the expression (8.41) for the soil-water diffusivity from its component functions (8.36) and
(8.15).

8.9 Derive the pore size probability density function, se(R) = d Se/d R, implied by the soil-water
characteristic functions (8.14) and (8.15). Plot these two functions for Hb = 33 cm and b = 5.7,
and for a = 0.03 cm−1 and b = 5.7, respectively.

8.10 Extend the Richards equation (8.56) to the general case of an anisotropic material. Use
Equation (8.54) as your starting point.

8.11 Derive Equation (8.45) from (8.44).

8.12 Derive Equation (8.49) from (8.47).

8.13 (a) Apply Equation (8.49) with Ge = 1/8 to calculate the intrinsic permeability at saturation
(in cm2) of the sandy soil, whose soil-water characteristic is shown in Figures 8.5 and 8.20.
Assume that the parameters are θ0 = 0.405, Sr = 0.1, b = 5.7 and Hb = 0.33 m in Equation (8.14).
(b) Calculate the saturated, hydraulic conductivity at 20 ◦C from the permeability obtained in part
(a). (Note that, experimentally, it was measured to be k0 = 1 cm min−1, approximately.)

8.14 Prove Equation (8.70) starting from (8.67).

8.15 Derive the first of Equations (8.82) from the first of (8.74) (via the first of (8.76)).

8.16 Multiple choice. Indicate which of the following statements are correct. Hysteresis in the moisture
content–suction curve of a soil (suction is negative pressure):
(a) is related to the geometry of the pores;
(b) can be determined by using only a tensiometer;
(c) is an important factor to be considered in the determination of the flow rate, when the soil

is saturated;
(d) suggests that the flow takes place below the water table;
(e) must be considered in the analysis of problems involving alternate wetting and drying.

8.17 Multiple choice. Indicate which of the following statements are correct. Darcy’s law is not
applicable:
(a) to describe extremely unsteady phenomena;
(b) when the soil is non-homogeneous;
(c) when the hydraulic head becomes large;
(d) when the pressure is zero (i.e. atmospheric);
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(e) when the pore-filling fluid is non-Newtonian (i.e. when the shear stress is a nonlinear
function of the rate of strain);

(f) when the porous matrix is non-elastic in the sense of Hooke’s law. Note: porous matrix
refers to the bulk solid, but not to the material out of which the grains are made.

8.18 Multiple choice. Indicate which of the following statements are correct. A large, geological forma-
tion consisting of a uniform, partly saturated, anisotropic non-swelling porous sand has a hydraulic
conductivity, that may be characterized as follows:
(a) k = k(θ, x, y, z) and independent of direction;
(b) ki j = ki j (x, y, z) consisting of 22 = 4 components;
(c) ki j = ki j (x, y, z) consisting generally of 3 components regardless of the orientation of the

axes system;
(d) ki j = ki j (θ ) in which the form of the functional relationship with θ does not depend on

x, y, z;
(e) it is usually assumed that ki j = k ji .

8.19 Multiple choice. Indicate which of the following statements are correct. The hydraulic conductivity
of a partly saturated clayey soil (i.e., the capillary conductivity):
(a) is sharply reduced in the initial stages of reduction of water content;
(b) as a function of water pressure usually displays marked hysteresis;
(c) increases with increasing hydraulic gradient;
(d) is temperature dependent;
(e) may depend on the type of salt that is in solution in the water.

8.20 Multiple choice. Indicate which of the following statements are correct. It is known that Darcy’s
law fails to describe the flow in a porous medium when the Reynolds number increases into the
range between 1 to 10 and up. This initial deviation is the result of:
(a) the presence of electrically charged clay particles;
(b) the fact that water is non-Newtonian at low velocities;
(c) the effect of inertia (i.e. convective acceleration of fluid particles);
(d) the onset of local turbulence;
(e) flow instabilities in the pore necks so that the flow develops local separation eddies;
(f) the fact that the flow is non-laminar but still creeping.

(8.21) Multiple choice. Indicate which of the following statements are correct. Assume that the flow of
a wetting fluid in an elastic porous material can be described by the first of Equations (8.82). A
simplified form of that equation, namely Laplace’s equation, ∇2 pw = 0, is valid to describe flow
in a uniform (prior to flow), isotropic, fully saturated porous material whenever:
(a) the flow is steady, the fluid compressible and the porous matrix compressible;
(b) the flow is unsteady, the fluid incompressible and the porous matrix incompressible;
(c) the flow is steady, the fluid compressible and the porous matrix incompressible;
(d) the flow is unsteady, the fluid compressible and the porous matrix incompressible;
(e) the flow is steady, the fluid is incompressible and the porous matrix compressible;
(f) the flow is steady, the fluid and the porous matrix are both incompressible.



9 I N F I LT R AT I O N A N D R E L AT E D
U N S AT U R AT E D F L OW S

This chapter deals with the flow of water in the partly saturated zone of the near-surface
soil, and with the transfer through the atmosphere–soil interface. At the local scale, as
precipitated water reaches the ground surface, infiltration into the soil takes place. In
between precipitation events, the atmosphere exerts its drying effect, and the water in
the soil profile may move to the surface by vapor diffusion and by liquid capillary rise,
where it evaporates.

As illustrated in Figure 8.23, a small decrease in water content below saturation
can cause a significant decrease in conductivity, so that in most soils the difference
in hydraulic conductivity above and below the water table can be large. At an inter-
face between soils with different conductivities, the streamlines are known to exhibit a
pronounced refraction; therefore, in many situations unsaturated flow above the water
table can be assumed to be nearly vertical, whereas the saturated flow below the water
table can be assumed to be more horizontal or parallel to underlying impervious layers.
Accordingly, in this chapter, infiltration and related flow phenomena in the partly satu-
rated zone of the soil are analyzed in a one-dimensional vertical framework. Similarly,
in Chapter 10, it is shown how many saturated flow situations can be analyzed in the
one-dimensional framework of hydraulic groundwater theory. Because the infiltration
capacity constitutes an upper limit of maximal rate of entry into the soil, it is treated first
in Sections 9.2 and 9.3; rain infiltration is treated in Section 9.4. Various parameteriza-
tions of the infiltration of precipitation and related processes at the catchment scale are
covered in Section 9.5. Finally, Section 9.6 describes a few elementary mechanisms of
capillary flow during inter-storm periods.

9 . 1 G E N E R A L F E AT U R E S O F T H E I N F I LT R AT I O N P H E N O M E N O N

Infiltration can be defined as the entry of water into the soil surface and its subsequent
vertical motion through the soil profile. In most situations of practical interest, the soil
profile is initially less than saturated. Therefore, if it can be assumed that the displaced
air can escape freely, the flow of the infiltrating water in the soil is governed by the
Richards equation (8.55). For vertical downward movement of water this can be written
as

∂θ

∂t
= − ∂

∂z

(
k
∂ H
∂z

)
− ∂k

∂z
(9.1)
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In Equation (9.1) H = H(θ ) is the water suction or negative pressure expressed as
equivalent water column, and z (contrary to its normal usage) denotes the depth, that is
the vertical coordinate pointing down.

Infiltration can take place in one of two possible ways. When the surface water supply
rate resulting from precipitation or other sources is intense enough, part of it remains
ponded or runs off, and part of it infiltrates at the maximal rate; this maximal rate of
infiltration is the infiltration capacity. When the intensity is low, all of the precipitated
water seeps into the pores; this is rainfall infiltration.

9.1.1 Infiltration capacity

For the purpose of analysis, consider the simple case of a deep uniform soil profile. The
soil surface is assumed to be covered by a layer of water, which is sufficiently thin, so
that at the soil surface the water pressure is atmospheric and the soil saturated; also, the
initial water content is assumed to be constant throughout the profile. The corresponding
boundary conditions are then as follows

θ = θi H = Hi z > 0 t = 0
θ = θ0 H = 0 z = 0 t ≥ 0

(9.2)

The first of these two conditions represents the initial situation at t = 0 characterized
by a constant water content θi and water pressure Hi, throughout the soil profile. The
second represents the condition at the soil surface z = 0, maintained indefinitely after
the onset of the infiltration. As an illustration of the kind of solution that can be expected,
Figure 9.1 shows the water distribution during infiltration into a soil column, observed
in a laboratory experiment. Without going into the details of the solution of (9.1) subject
to (9.2), at this point it is useful to make some general observations regarding the short
and long time nature of the flow.

Short-time behavior
In Equation (9.1), the first term on the right represents the flow caused by the pressure
gradient owing to capillarity and the second term represents the flow caused by the
Earth’s gravity field. As the water starts to enter the relatively dry soil, the pressure
differences in the water at the surface and in the soil are quite large and, as a result,
the second term on the right is practically negligible compared to the first one. Therefore
in its early phase, infiltration can be described by the following

∂θ

∂t
= − ∂

∂z

(
k
∂ H
∂z

)
(9.3)

When cast in the form of a diffusion equation by means of (8.32), (9.3) subject to (9.2)
is referred to as a sorption problem. More detailed aspects of the short-time behavior of
infiltration capacity are treated in Section 9.2.
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Fig. 9.1 Measured (points) and calculated (lines)

soil water content distribution during

vertical infiltration into a vertical column

of air-dry Columbia silt loam, with

θ0 = 0.45. (From Davidson et al., 1963.)

Long-time behavior
As illustrated in Figure 9.1, after longer times of infiltration, the water content profile
near the surface gradually becomes more uniform and it eventually assumes the satiation
value, or θ → θ0; similarly, the pressure in the upper layers of the soil becomes gradually
atmospheric, or H → 0. Hence, their vertical gradients ∂θ/∂z and ∂ H/∂z both approach
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zero. This means that (∂h/∂z) → −1, so that from Darcy’s law (8.19) it follows that the
rate of infiltration fc approaches the value of the saturated hydraulic conductivity, or

lim
t→∞( fc) = lim

z=0
t→∞

(qz) = k0 (9.4)

The problem of intermediate times of infiltration capacity is dealt with in Section 9.3.

9.1.2 Rainfall infiltration

Like the infiltration capacity, the infiltration of precipitation on the soil surface is gov-
erned by the Richards equation (9.1), but the boundary conditions are quite different
from (9.2). Because in this case the water supply rate at the surface is smaller than the
maximal rate the soil is capable of taking in, the surface water content θs is smaller than
θ0 by an unknown amount; the only known feature of the flow at the surface is the supply
rate or precipitation intensity, and thus the flow rate into the soil. As long as the water
supply rate is maintained, this unknown surface water content θs gradually increases.
If the precipitation rate is large enough, eventually the surface water content reaches
the maximum possible value θ0; after this occurs, water starts to pond the surface. If tp
denotes the time from the start of the rainfall until the inception of ponding, the boundary
conditions can be formulated as follows

θ = θi H = Hi z > 0 t = 0

−Dw
∂θ

∂z
+ k = P k

∂ H
∂z

+ k = P z = 0 0 < t ≤ tp

θ = θ0 H = 0 z = 0 t ≥ tp

(9.5)

where P = P(t) is the intensity of the precipitation. The first condition represents again
an initially constant water content θi throughout the soil profile. The second condition
indicates that the flux is known at the surface; the third shows that, after ponding starts,
the surface is satiated but the flux is no longer known. If the precipitation rate is small,
however, the surface soil layer never becomes fully satiated; thus tp → ∞ and the third
condition of Equation (9.5) is redundant. Further details on the solution of the rain
infiltration problem are covered in Section 9.4.

9 . 2 I N F I LT R AT I O N C A PAC I T Y I N T H E A B S E N C E
O F G R AV I T Y : S O R P T I O N

Sorption, that is horizontal infiltration of water into a partly but uniformly saturated soil,
when the movement of the displaced air is unimpeded, is a problem of long standing
in the hydrologic literature. Although by itself this type of one-dimensional horizontal
flow may not be very common in nature, the solution of this problem is of practical
importance. First, it gives a good description of the initial stages of vertical infiltration
of water ponded on the soil surface, that is the short-time behavior, while the effects of
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capillarity totally dominate those of gravity. Second, it has been useful as an essential
part, or building block, of solutions for the later stages, obtained by various techniques.

9.2.1 Diffusion formulation of this horizontal flow process

Consider a uniform soil profile, which has an initial water content θi; the flow is allowed
to start, when the water content at the soil surface is suddenly increased to θ0(>θi). The
problem may be formulated by the one-dimensional form of Richards’s (1931) equation
without gravity term, that is Equation (9.3); to indicate that it describes horizontal flow,
in what follows it is expressed in terms of the x-coordinate. Upon substitution of (8.32)
this can be written in the form of a diffusion equation as

∂θ

∂t
= ∂

∂x

(
Dw

∂θ

∂x

)
(9.6)

The boundary conditions are still (9.2); these may be recast in terms of the horizontal
coordinate as

θ = θi x > 0 t = 0

θ = θ0 x = 0 t ≥ 0
(9.7)

in which θi is the initial water content and θ0 is the water content maintained at the
surface x = 0, where the water enters the soil. A simple experimental setup to study this
problem is illustrated in Figure 9.2, and the experimental data that can be obtained with
it are illustrated in Figure 9.3.

In the formulation of infiltration problems it is often convenient to normalize the water
content, as follows

Sn = θ − θi

θ0 − θi
(9.8)

With this normalized water content the governing equation and boundary conditions
become

∂Sn

∂t
= ∂

∂x

(
Dw

∂Sn

∂x

)
(9.9)

and

Sn = 0 x > 0 t = 0
Sn = 1 x = 0 t ≥ 0

(9.10)

Similarity approach
By the application of Boltzmann’s (1894) transformation, which combines the space and
time variables into one independent variable,

φ = x t−1/2 (9.11)



inf iltrat ion and related unsaturated flows 312

Fig. 9.2 Laboratory set-up to study the problem of sorption experimentally. The graduated cylinder maintains

the water at the point of entry (x = 0), at constant pressure in the manner of a Mariotte bottle. At the

start of the experiment (t = 0), the water supply through the flexible tubing is opened; after a certain

time t , at the end of the experiment, the 1 cm sections of the horizontal soil column tubing can be

rapidly taken apart, to determine their soil water content as θ = θ(x). (From Nielsen

et al., 1962.)

Fig. 9.3 Soil water content distribution θ = θ(x) in Columbia silt loam, obtained after three different times of

horizontal infiltration by means of the apparatus shown in Figure 9.2, with the pressure at the inlet

maintained at −2 hPa (or roughly 2.04 cm of water column). The curve for 740 min is the best fit line

through the data points (circles); the curves for 88 min and 344 min are calculated from the curve for

740 min on the basis of Boltzmann similarity, that is by multiplying it by (88/740)1/2 and

(344/740)1/2, respectively. (After Nielsen et al., 1962.)
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Equation (9.6) can be simplified to an ordinary differential equation; this can be accom-
plished through the following steps

∂θ

∂t
= dθ

dφ

∂φ

∂t
= −1

2
x t−3/2 dθ

dφ

∂θ

∂x
= dθ

dφ

∂φ

∂x
= t−1/2 dθ

dφ

∂

∂x

(
Dw

∂θ

∂x

)
= ∂

∂x

(
Dwt−1/2 dθ

dφ

)
= t−1/2 d

dφ

(
Dw

dθ

dφ

)
∂φ

∂x

= t−1 d
dφ

(
Dw

dθ

dφ

)
(9.12)

Equating the first and third of (9.12), one obtains the desired ordinary differential equation

d
dφ

(
Dw

dθ

dφ

)
+ φ

2

dθ

dφ
= 0 (9.13)

The boundary conditions (9.7) become now

θ = θi (or Sn = 0) φ → ∞
θ = θ0 (or Sn = 1) φ = 0

(9.14)

The applicability of the Boltzmann transform indicates that the space variable x
controls the flow in a similar manner as the time variable t−1/2. Conversely, the use of
this similarity in (9.11) requires a certain symmetry in the boundary conditions, to allow
the combination of the two independent variables x and t into a single one φ. In the
present case of (9.7), this is satisfied, in that θ assumes the same value for t = 0 as it does
for x → ∞, that is far away from the point of entry, where the water content will remain
at θi; similarly, θ assumes the same value at x = 0 as it does for t → ∞, that is after a long
time, when the water content in entire soil profile will approach θ0. Figure 9.3 illustrates
the experimental validation of Equation (9.11); it confirms that if the experimental data
were plotted as θ = θ (φ) (instead of as θ = θ (x) for different values of time), all the
points would collapse onto one single curve.

Infiltration
The solution of Equations (9.13) and (9.14) can be formulated as φ = φ(θ ). Before
actually knowing that solution, it is already possible to infer some essential features of
the infiltration phenomenon. Indeed, without specifying the actual form of the solution,
as illustrated in Figure 9.4 for the vertical case, the cumulative volume of infiltration can
obtained by integration of the total water volume that has entered the soil; this can be an
integral either of (z dθ ), or of (θ dz). Hence, the cumulative volume of infiltration, with
dimensions [L3 L−2], can be written in general as

F =
θ0∫

θi

x dθ (9.15)
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θ0

θ i

z=0 z=zf

θ δz

z δθ

δz

δθ

Fig. 9.4 Sketch illustrating the

calculation of the

infiltrated volume F as

the area under the

θ = θ(z) curve, that is

the water content

profile in the soil at a

given instant in time t .

This can be done by

integrating either the

elemental area (z dθ) or

the elemental area

(θ dz). The coordinate z

points down into the

soil; z = 0 is where the

water infiltrates, and

z = zf is the position of

the wetting front.

in which x is used instead of z to indicate the absence of gravity in the present case. With
the solution in terms of the Boltzmann variable (9.11), this assumes the form

F = t1/2

θ0∫
θi

φ dθ (9.16)

The integral in this equation has constant limits and is therefore also a constant. Thus, for
conciseness of notation it is often convenient to express horizontal infiltration in terms
of the sorptivity, defined by Philip (1957a) as

A0 =
θ0∫

θi

φ dθ (9.17)

The cumulative infiltration (9.16) can now be written as

F = A0 t1/2 (9.18)

and the rate of infiltration f = dF/dt

f = 1

2
A0 t−1/2 (9.19)

The point here is that both equations indicate unequivocally how horizontal infiltration
capacity proceeds in time, even though the solution is left unspecified so far.

Note that, because that solution can also be written as θ = θ (φ), the rate of infiltration
can be expressed alternatively as a Darcy flux, or because ∂φ/∂x = t−1/2,

f = −Dw
∂θ

∂x

∣∣∣∣
x=0

= −Dw
dθ

dφ

∣∣∣∣
φ=0

t−1/2 (9.20)
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which provides an alternative expression for the sorptivity. A second point of interest
is that the form of Equations (9.17), (9.18) and (9.19) is already suggestive of a way to
scale the variables that govern the sorption phenomenon. Indeed, because f has the same
dimensions as the hydraulic conductivity, it is only natural to make it dimensionless with
that variable; with (9.19) this produces then immediately a dimensionless time variable,
as well. Thus one can construct the following dimensionless variables

f+ = f
k0

, t+ = k2
0 t

A2
0

, and F+ = k0 F
A2

0

(9.21)

Over the years, the sorptivity has come to be considered as one of the more funda-
mental flow properties of a soil whose relevance extends well beyond the phenomenon
of sorption. As will become clear later in this chapter, the sorptivity also arises naturally
in the formulation of vertical infiltration capacity and in the formulation of different
facets of rainfall infiltration. Methods have been developed to measure the sorptivity in
the field (see Talsma, 1969; Talsma and Parlange, 1972; Clothier and White, 1981; Cook
and Broeren, 1994). It has also been used by White and Perroux (1987) to derive other
field soil hydraulic properties such as the diffusivityDw(θ ), the hydraulic conductivity
k(θ ) and the soil water characteristic H (θ ). As an illustration of the orders of magnitude
of this quantity, the following values (in cm min−1/2) were measured by Talsma and
Parlange (1972) in the field: 0.97 (Bungendore sand), 0.08 (Pialligo sand), 0.17 (Barton
clay loam); the respective satiated hydraulic conductivities, k0 were 0.092, 1.08 and
0.093 cm min−1.

Wetting front
In certain applications it is of interest to determine the position of the wetting front. The
position of this front can be defined as the value of x = xf, where the water content assumes
a certain value θ = θf(>θi). Experimentally, this water content may be taken as the value
at which the soil changes color as the water infiltrates. Mathematically, because the front
can be quite sharp in many soils, it is often convenient to assume simply that it is located
where the water content approaches θ = θi, or Sn = 0. Since φ is a function of θ , it is clear
in light of Equation (9.11), that the position of the wetting front is directly proportional
to t1/2, or

xf = φft1/2 (9.22)

in which φf = φ(θf) is a constant for a given choice of θf. An experimental illustration of
Equation (9.22) is shown in Figure 9.5.

9.2.2 Some applications of the first integration

Equation (9.13) can be integrated once, subject to the first of (9.14), to yield immediately

−2Dw
dθ

dφ
=

θ∫
θi

φ(y) dy (9.23)
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Fig. 9.5 Distance to the wetting front xf against the square root of time t for the three experiments of

horizontal infiltration into Columbia silt loam, already shown in Figure 9.3; the measurements

of the front position were made by visual inspection of the change in color of the soil in the

apparatus shown in Figure 9.2. The infiltration was allowed to proceed to distances of 25

(diamonds), 50 (triangles) and 75 cm (circles), respectively; the bulk densities were around

1.3 g cm−3. (After Nielsen et al., 1962.)

in which y is a dummy variable of integration representing θ . As probably first shown by
Matano (1933), Equation (9.23) yields the following expression for the diffusivity,

Dw = −1

2

dφ

dθ

θ∫
θi

φ(y) dy (9.24)

This integral has been useful in several ways, most notably in the experimental determination
of the soil water diffusivity, and also in the derivation of certain exact solutions for sorption
and horizontal infiltration capacity.

Direct measurement of the soil water diffusivity
Equation (9.24) was the basis for the method of Bruce and Klute (1956) to determine the
diffusivity Dw = Dw(θ ) directly from a sorption experiment. Substitution of the Boltzmann
transformation (9.11) into (9.24) produces the diffusivity in terms of the original variables
x and t , as follows

Dw = − 1

2t

(
dx
dθ

) θ∫
θi

x dθ (9.25)

This expression can be applied with a measured soil water content profile curve θ = θ (x)
obtained in a horizontal infiltration experiment of duration t , in a set-up like that shown
in Figure 9.2. The diffusivity Dw = Dw(θ ) can be readily calculated from any curve like
those shown in Figure 9.3. As illustrated in Figure 9.6, this is done by estimating both the
area under the curve of x vs θ and the slope of that same curve, at a series of values θ ,
for the given value of the elapsed time t . These numerical values of the integral and of the
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θ0

θi

x=0 x=xf

tan−1(δθ/δx)

θ

Fig. 9.6 Graphical illustration of the numerical calculation of the soil water diffusivity Dw = Dw(θ) by

means of Equation (9.25) with the soil water profile θ = θ(x) obtained from a horizontal

infiltration experiment of duration t . In (9.25) the integral is the shaded area and (dx/dθ) is the

inverse of the slope at θ.

derivative can then be used in Equation (9.25) to calculate the diffusivity at each of these
values of θ . Another illustration of the method is the study by Clothier and White (1982);
with the profile data shown in Figure 9.7 they applied it to compare the diffusivity function
Dw = Dw(θ ) in undisturbed and repacked soil columns, as shown in Figure 9.8.

An exact solution for soil water sorption
Equation (9.24) indicates that Dw = Dw(θ ) can be determined when φ is known; in other
words, (9.24) can also be applied in an inverse mode, to derive the form, which the diffusivity
Dw = Dw(θ ) must have, to produce any assumed functional form of the solution φ = φ(θ ).
This way Philip (1960) was able to list a large class of exact solutions of the nonlinear dif-
fusion equation (9.6) subject to (9.7) for corresponding functional forms of the diffusivity.
At the time, none of the obtained φ(θ ) functions seemed to be applicable to infiltration into
soils, and they received relatively little attention in the hydrologic literature. However, it was
subsequently shown that in certain cases by proper scaling, one such solution is adaptable
to describe sorption in real soils, and that it can thus be made compatible with experi-
mental data (Brutsaert, 1968; 1976). The simplest form of that solution is φ = (1 − Sm

n ),
which corresponds according to (9.24) with a diffusivity Dw = mSm

n [1 − Sm
n /(1 + m)]/2.

To obtain Dw = Dw0, that is the diffusivity at satiation for Sn = 1, this result must be scaled
as follows

Dw = Dw0(1 + m)
[
Sm

n − S2m
n

/
(1 + m)

]
/m (9.26)

and the corresponding exact solution becomes

φ = [
2Dw0 (1 + m) /m2

]1/2 (
1 − Sm

n

)
(9.27)



inf iltrat ion and related unsaturated flows 318

Fig. 9.7 Distribution of the water content θ during sorption in Bungendore fine sand, as a function of

the scaled distance x/xf (or φ/φf), in which xf is the distance to the wetting front. The curve

and cross points represent the mean (with the standard deviations) of the measurements in

seven undisturbed field cores, and the circles are the data obtained in four repacked

cores. The respective sorptivities for the two sets of experiments were on average

A0 = 6.5 × 10−4 m s−1/2 and A0 = 1.26 × 10−3 m s−1/2, and the respective positions

of the wetting front [see (9.22)] were on average φf = 3.43 × 10−3 m s−1/2 and φf =
4.45 × 10−3 m s−1/2. (After Clothier and White, 1982.)

Fig. 9.8 The scaled soil water diffusivity Dw/D0 as a function of the water content θ for Bungendore

fine sand as obtained from the water content profiles shown in Figure 9.7 by means of

Equation (9.25); in this case the normalizing diffusivity D0 is the assumed constant value, which

would produce the same sorptivity (see Equation (9.59)), and thus the same infiltration rate.

The curve and cross points represent the log mean of the results (with their standard deviations)

obtained from the θ profiles in the seven undisturbed field cores, and scaled with

D0 = 4.09 × 10−6 m2s−1; the circles represent the results obtained from the profiles in the four

repacked cores and scaled with D0 = 1.34 × 10−5 m2s−1. (After Clothier and White, 1982.)
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Fig. 9.9 Comparison between soil moisture profiles during sorption, namely water content θ as a

function of φ(≡ x t−1/2), computed with the exact solution of Equation (9.27) (solid lines) and

experimental data after Peck (1964) (dashed lines), for different values of the pressure in the

water supply at x = 0 expressed as equivalent height of water column. For the case of

atmospheric pressure H = 0 in the source of water, the sorptivity was measured to be

A0 = 0.7 cm min−1/2. (After Brutsaert, 1968.)

A comparison is shown in Figure 9.9 between soil water profiles calculated with this
result and experimental data of Peck (1964). The curve for a water supply pressure of 0 cm
at x = 0 is given by φ = 2.09(1 − S4

n ) cm min−1/2 (Brutsaert, 1968); the curves for −39 cm
and −60 cm (at x = 0) were obtained by renormalizing Sn with the water content at those
pressures.

Although Equation (9.27) is an exact solution, its main shortcoming is that the required
diffusivity (9.26) may not be flexible enough to provide a precise representation of the
actual soil water diffusivity. The main advantage of (9.27) is that it can be used in testing
the accuracy of other methods of solution. The sorptivity for this exact solution is readily
found by means of (9.17),

A0 = (θ0 − θi) [2Dw0/ (m + 1)]1/2 (9.28)

By combining (9.27) with (9.28) the water content profiles obtained with this exact solution
can be expressed in dimensionless form, as shown in Figure 9.10. It can be seen that the
wetting front becomes steeper with increasing values of m. The fractional values of m,
namely m = 0.25 and 0.50 result in solutions with a shape, which is not very different from
that of the linear case (9.56) (see below).

The position of the wetting front can be taken as the value of φ at Sn = 0; thus one
obtains from (9.27)

φf = [2Dw0(1 + m)/m2]1/2 (9.29)

Comparing this result with (9.28) one sees that the cumulative volume of infiltration is
directly proportional with the position of the wetting front, or

F = (θ0 − θi)
m

(m + 1)
xf (9.30)
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Fig. 9.10 The soil water content distribution obtained with the exact solution (9.27) in the scaled form

x(θ0 − θi)/(A0t1/2) = [(1 + m)/m](1 − Sm
n ) for different values of the parameter m. The

heavy line represents the solution of the linear case (9.56).
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Fig. 9.11 The scaled sorptivity A0 /[(θ0 − θi)D
1/2

w0 ] (curve 1), the position of the wetting front φf/D
1/2

w0

(curve 2), and the ratio of the infiltrated volume over the wetting front position F/[(θ0 − θi)xf]

(curve 3), obtained with the exact solution (9.27), as functions of the parameter m in the

diffusivity function (9.26). Dw0 is the diffusivity at satiation.

These expressions for the sorptivity A0, the position of the wetting front φf, and the ratio
F/xf, obtained with the exact solution (9.27), are illustrated in Figure 9.11 as functions of
the shape parameter m.

Integral constraint for approximate solutions
In some methods of solution the governing equation (9.13) is changed slightly to make it
more amenable to mathematical analysis. Because physically (9.13) is based on the validity
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of Darcy’s equation and the principle of mass conservation, any changes to it result in a
violation of these physical principles. Therefore, in some cases it has been found useful to
consider the integral of (9.13), with both of (9.14), namely,

2 (Dw dθ/dφ)θ=θ0
+

θ0∫
θi

φ dθ = 0

or, in terms of Sn

2 (Dwd Sn/dφ)Sn=1 +
1∫

0

φ d Sn = 0

(9.31)

and use it as a constraint on the approximate solution. An example of the application of this
approach is found in the next section.

9.2.3 A nearly exact solution for strongly nonlinear soils

In the hydrologic literature many numerical solutions of (9.13) with (9.14) have been
published starting with those of Klute (1952) and Philip (1955). Such solutions can be quite
accurate, but their implementation in practical simulations, especially over larger areas,
is still a cumbersome task. Therefore, it is often useful to describe the phenomenon with
parameterizations that satisfy the dual requirement of physical realism and computational
simplicity. Over the years a number of simple analytical solutions have been formulated,
which satisfy this requirement. Although these solutions are not exact, their accuracy is
still reasonable, and they involve much smaller mathematical error than those generated
by the uncertainty of the parameter functions k = k(θ ) and H = H (θ ). Moreover, they are
closed form and concise so that they are easy to apply. It can be shown (Brutsaert, 1976)
that several of these solutions are special cases of the following general form

φ =
⎛
⎝2

/ 1∫
0

Dw Sa
n d Sn

⎞
⎠

1/2 1∫
Sn

Dw(y)ybdy (9.32)

where a and b are constants. The specific values of a and b depend on the nature of the
approximation used in the solution. For example, in the quasi-steady state solution (Landahl,
1953; Macey, 1959; Parlange, 1971), a = 1 and b = 0; in a second approximation of the
quasi-steady state solution (Parlange, 1973), a = 0 and b = −1; in the sharp-front solution
(Brutsaert, 1974), a = b =−1; finally, in a first weighting solution a = −b = 1/2 (Parlange,
1975), and in a second weighting solution a = b = −3/2. By comparing them with the
exact solution (9.28), it was found (Brutsaert, 1976) that the error involved in all these
solutions for φ is at most of the order of 3% or 4%; however, as will be shown next, the first
weighting solution with a = −b = 1/2 is accurate within a few thousandths.

Derivation of general form
The general form of Equation (9.32) can be obtained by direct integration of (9.13), with
the assumption that in its second term on the left, φ can be replaced by a power function of
Sn. With this approximation (9.13) becomes

d
dφ

(
Dw

d Sn

dφ

)
+ d

dφ

(
cS−b

n

) = 0 (9.33)
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where c and b are constants. Integrating (9.33) with the first of conditions (9.14) (provided
b ≤ 0), one finds

Dw
d Sn

dφ
+ c S−b

n = 0 (9.34)

A second integration of (9.33) with the second of (9.14) yields

φ = c−1

1∫
Sn

yb Dw dy (9.35)

The constants b and c remain to be determined. As shown elsewhere (Brutsaert, 1976), c can
be determined in several ways. But the more accurate form, for the purpose of infiltration
calculations, can be obtained by means of the integral condition (9.31). Substitution of
Equation (9.34) for Sn = 1 into the first term and (9.35) into the second term of (9.31)
produces upon integration by parts by means of Leibniz’s rule (see Equation (A1))

−2c + c−1

⎡
⎣Sn

⎛
⎝ 1∫

Sn

yb Dw(y)dy

⎞
⎠

⎤
⎦

1

0

+ c−1

1∫
0

S1+b
n Dw(Sn)d Sn = 0 (9.36)

Because the second term of (9.36) is zero, this results in

c =
⎡
⎣ 1∫

0

S1+b
n Dw(Sn)d Sn/2

⎤
⎦

1/2

(9.37)

The solution (9.35) can therefore be written as

φ =
⎛
⎝2

/ 1∫
0

Dw S1+b
n d Sn

⎞
⎠

1/2 1∫
Sn

Dw(y)ybdy (9.38)

Comparison with the more general form (9.32) shows that this method to determine c
produces a = 1 + b.

Some comments on this approximate method of solution are in order. Richards’s equation
in the form of Equation (9.13) is derived from the equation of continuity and Darcy’s law,
and thus it embodies the principles of mass and momentum conservation. Because (9.33)
is only an approximation of (9.13), it may no longer satisfy these conservation principles.
However, by constraining the solution of (9.33) with (9.31) in the determination of b and
c, one ensures that this solution satisfies them at least in an integral or average sense.

Optimal value of the exponent b
The procedure to derive an optimal value of b can be understood by recalling that Equation
(9.27) represents an exact solution for a possibly approximate diffusivity function (9.26),
whereas Equation (9.38) represents an approximate solution for an unspecified but presum-
ably exact diffusivity function. Therefore, that value of b can be adopted, which makes
(9.38) come closest to the exact result. Because infiltration is the phenomenon of interest,
the sorptivity should be used for this purpose.
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The sorptivity can be calculated by integration of (9.38) in accordance with (9.17); this
readily produces

A0 = (θ0 − θi)

⎛
⎝2

1∫
0

Dw S1+b
n d Sn

⎞
⎠

1/2

(9.39)

The optimal value of b can now be estimated by solving (9.39) with the special diffusivity
(9.26) and by comparing the result with the exact sorptivity (9.28); this yields

b = [(4m2 + 8m + 5)1/2 − (2m + 3)]/2 (9.40)

Because the numerical value 5 in Equation (9.40) may be approximated by 4, when m is
not small, it is clear that b is close to −0.5. As mentioned, with this value of b it can be
shown that the error in the sorptivity tends to be smaller than 1%.

Accordingly, in its most accurate form, i.e. with b = −1/2, the solution (9.38) becomes

φ =
⎛
⎝2

/ 1∫
0

Dw S1/2
n d Sn

⎞
⎠

1/2 1∫
Sn

Dw y−1/2dy (9.41)

Similarly, the sorptivity (9.39) becomes simply

A0 = (θ0 − θi)

⎛
⎝2

1∫
0

Dw S1/2
n d Sn

⎞
⎠

1/2

(9.42)

The position of the wetting front (9.22) follows directly from (9.41) with the lower limit of
the integral taken as Sn = 0, or

φf =
⎛
⎝2

/ 1∫
0

Dw S1/2
n d Sn

⎞
⎠

1/2 1∫
0

Dw S−1/2
n d Sn (9.43)

Implementation with parametric diffusivity functions
Whenever it can be assumed that θ i = θ r (or Se = Sn), which is usually a good approximation
when initially the soil is quite dry, the diffusivity functions (8.39) and (8.41) can be used to
perform the above integrations of (9.32) and (9.39).

Example 9.1. Exponential diffusivity

In the case of the diffusivity (8.39), the sorptivity (9.42) can be shown to be (Brutsaert,
1976)

A0 = D1/2
w0 (θ0 − θi)C1(β) (9.44)

in which Dw0 is the diffusivity at satiation, when Sn = 1.0. The term C1(β) depends on the
value of the parameter β in (8.39); this can be calculated from the following

C1(β) = β−1 ((2β − 1) + exp(−β)M(−0.5, 0.5, β))1/2 (9.45)

in which M(a, b, z) is the confluent hypergeometric function, conveniently tabulated by
Abramowitz and Stegun (1964, pp. 516−535). The dependency of C1(β) on β is illustrated
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in Figure 9.12; typical values are C1(8) = 0.4828 and C1(3) = 0.7256. Equation (9.44)
can provide a first estimate of A0, when no other information is available. Because Dw0 =
Dwi exp(β), in which β is a constant, it follows that (9.44) also allows the formulation of the
diffusivity function (8.39) in terms of the sorptivity, as shown in Brutsaert (1979). Similarly,
substitution of the same diffusivity in Equation (9.43) produces immediately the position
of the wetting front, namely

φf = D1/2
w0 C2(β) (9.46)

in which

C2(β) = 2 (1 − exp(−β)M(−0.5, 0.5, β) · ((2β − 1)

+ exp(−β)M(−0.5, 0.5, β))−1/2 (9.47)

This result is illustrated in Figure 9.12. Again, (9.46) with (9.47) shows how the diffusivity
function (8.39) for a given soil can be expressed in terms of the position of the wetting front,
once β is known (Miller and Bresler, 1977; Brutsaert, 1979). Recalling the definitions of A0

in (9.18) and of φf in (9.22), and also comparing (9.44) with (9.46), one can see that A0/φf =
(θ0 − θi)C1(β)/C2(β); this means that when the soil water diffusivity is exponential, the
cumulative horizontal infiltration F is related with the position of the wetting front xf, as
follows

F = C3(β)(θ0 − θi)xf (9.48)

where C3(β) = C1(β)/C2(β) is a number whose value depends on β. This result is also
illustrated in Figure 9.12; typical values are C3(8) = 0.862 and C3(3) = 0.626.
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Example 9.2. Power-form diffusivity

In the same way, in the case of the diffusivity (8.40), Equation (9.42) can be integrated
readily to yield a sorptivity

A0 = (2Hb(θ0 − θi)k0/b)1/2 (n − b−1 + 0.5)−1/2 (9.49)

where Hb and b are the parameters of (8.14) and n is the power in (8.36).
With the diffusivity given by the somewhat more complex (8.41), the integral in (9.42)

is a complete beta function, which can also be written as follows

A0 = (2k0/a)1/2 (θ0 − θi)(�(n − b−1 + 0.5)�(b−1 + 1)/�(n + 0.5))1/2 (9.50)

In Equation (9.50) a and b are the parameters of (8.15), n is the power in (8.36) and �( )
is the gamma function (see Abramowitz and Stegun, 1964). For most soils when n varies
between 2 and 10 and b between 1 and 10, the square root term in (9.50) containing the
gamma functions is likely to be of the order of unity. For instance, for a typical case of
n = b = 3 it is equal to 0.7938. The position of the wetting front can be obtained from
Equation (9.43) by a similar integration, to produce

φf = (2k0/[(θ0 − θi)a])1/2

(
�(n − b−1 + 0.5)�(b−1 + 1)

�(n + 0.5)

)1/2 (n − 0.5)

(n − b−1 − 0.5)
(9.51)

Comparison of (9.50) with (9.51) indicates that with this diffusivity function, the infiltrated
volume is proportional with the position of the wetting front as

F = C(n, b)(θ0 − θi)xf (9.52)

in which the proportionality constant is given by C(n, b) = (n − b−1 − 0.5)/(n − 0.5); for
example, C(3, 3) = 0.867, which is similar to the result given by Equation (9.48).

9.2.4 A nearly exact solution for mildly nonlinear soils: linearization

For some soils the diffusivity can be assumed to be nearly independent of the water content
θ ; an example of this is shown in Figure 9.8. In such a case Equation (9.6) can be linearized
and it reduces to the linear diffusion equation; accordingly, (9.13) can be written as

D0
d2θ

dφ2
+ φ

2

dθ

dφ
= 0 (9.53)

where D0 is the constant soil water diffusivity. By means of the ad-hoc substitution p =
dθ/dφ, (9.53) can be integrated to yield

p = C1 exp(−φ2/4D0) (9.54)

A second integration yields

θ = C12D1/2
0

∫
exp(−y2)dy + C2 (9.55)

where y is the dummy variable of integration representing φ/2D1/2
0 and C1 and C2 are

constants to be determined from the boundary conditions (9.14). The integral term with
limits between zero and infinity equals (π 1/2/2); therefore, imposing these conditions, one
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obtains finally the solution

θ = (θ0 − θi) erfc
(
φ/2D1/2

0

) + θi (9.56)

in which the complementary error function is, by definition,

erfc(y) = 2

π1/2

∞∫
y

exp(−z2)dz (9.57)

The normalized water content Sn = (θ − θi)/(θ0 − θi) given by this solution is shown graph-
ically in Figure 9.10. Application of (9.20) with Leibniz’s rule (see Appendix) to (9.57),
and comparison with (9.19) produce the following expression for the sorptivity

A0 = 2(θ0 − θi)(D0/π )1/2 (9.58)

Most natural soils have a soil water diffusivity, which is markedly dependent on the
water content; therefore, the results obtained in this section with a linearized soil may
appear suspect at first sight. However, as illustrated in Figure 9.8, this θ -dependency is
not always strong, so that a linear model may still come close to describing the situation.
Indeed, linearization tends to simplify the analysis considerably, and should therefore be
of interest. The question remains what value should be assigned to the constant diffusivity
D0, to ensure that the linear model will reproduce the more important sorption features
of the prototype. One possibility is to assign the value, which would reproduce the same
infiltration rate and volume with the linearized soil as the nonlinear prototype soil. In this
case one obtains immediately from Equation (9.58)

D0 = π A2
0

4(θ0 − θi)2
(9.59)

in which A0, the sorptivity of the prototype, is to be determined independently. As another
possibility, if no independent estimates of A0 are available, one can use an empirical approx-
imation proposed by Crank (1956, p. 256); from his calculations he had found that the
weighted mean

D0 = (5/3)(θ0 − θi)
−5/3

θ0∫
θi

(θ − θi)
2/3 D(θ )dθ (9.60)

can yield initial rates with good accuracy for diffusivity functions D = D(θ ) which increase
with θ over several orders of magnitude.

9 . 3 I N F I LT R AT I O N C A PAC I T Y

The infiltration capacity, or the potential infiltration rate, was defined above as the max-
imal rate at which the soil surface can absorb water. Such conditions prevail when the
soil at the surface is saturated, that is whenever its water pressure is at least atmospheric.
The problem is usually analyzed by assuming that the surface is ponded with a very thin
layer of water, so that the water pressure is essentially atmospheric.
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9.3.1 Diffusion formulation of vertical infiltration of ponded water

The vertical downward movement of water into a dry soil, when the displaced air escapes
freely, is described by Equation (9.1), the one-dimensional version of Richards’s (1931)
equation (8.55). Making use of Equation (8.32), one can express this as a diffusion
equation, or

∂θ

∂t
= ∂

∂z

(
Dw

∂θ

∂z

)
− ∂k

∂z
(9.61)

To provide the maximal water supply rate at the point of entry z = 0, the soil surface is
considered to be covered by a thin layer of water, so that at the surface the soil water
pressure is atmospheric and the soil saturated. The initial water content is assumed to be
uniform throughout the profile. This situation is described by the boundary conditions
(9.2). Because the pressure H is eliminated in the diffusion formulation of the flow, these
are simply

θ = θi z > 0 t = 0

θ = θ0 z = 0 t ≥ 0
(9.62)

The solution of this problem is normally expressed as θ = θ (z, t). Once this solution is
known, it can be used in the form z = z(θ, t) to obtain the cumulative infiltration volume.
As illustrated in Figure 9.4, this can be written as follows

Fc =
θ0∫

θi

z dθ + ki t (9.63)

where ki is the capillary conductivity at θ = θi; the symbol Fc is given the subscript
c to indicate that it describes infiltration capacity. The second term on the right of
Equation (9.63) represents the downward motion of the water initially present in the
soil, under the influence of gravity; this is presumably negligibly small in most cases, if
the soil is initially dry enough. The infiltration rate can then be immediately calculated
as fc = d Fc/dt . Alternatively, as before, the infiltration rate can also be determined as
the Darcy flux at z = 0, that is in its diffusion form,

fc =
[
−Dw

∂θ

∂z
+ k

]
z=0

(9.64)

For this problem, that is (9.61) subject to (9.62), numerous numerical methods of solution
have been presented in the literature. Again, however, in applications at the scale of a
catchment and of a region, it is often desirable to describe the phenomenon by a concise,
yet physically realistic, parameterization. Several such parameterizations are treated in
what follows.

9.3.2 Vertical infiltration as horizontal flow perturbed by gravity

The time expansion by Philip (1957b; 1969) is a method of solution that has received
much attention, as it was probably the first realistic attempt at solving the infiltration
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problem; it has also stimulated subsequent advances in this field. This solution of (9.61),
which is equivalent to a perturbation series around the solution of (9.6) for a deep
homogeneous soil profile with the same boundary conditions, can be written as follows

z = φ t1/2 + χ t + ψ t3/2 + ωt2 + · · · (9.65)

where the functions φ = φ(θ ) (see Equation (9.11)), χ = χ (θ ), ψ = ψ(θ ) and ω =
ω(θ ), etc., are each governed by a separate ordinary differential equation, one of which
is (9.13) for φ; for each of these equations Philip (1957b) presented a numerical method
of solution. The time expansion solution has been reported to produce good agreement
with experimental data in the laboratory by Davidson et al. (1963) (see Figure 9.1). The
functions φ, χ and ψ that were obtained in this calculation are shown in Figure 9.13.

Substitution of (9.65) into (9.63) produces the rate of infiltration fc = dFc/dt as follows

fc = 1

2
A0 t−1/2 + (A1 + ki) + 3

2
A2 t1/2 + 2A3t + · · · (9.66)

where A0 is the sorptivity defined in (9.17), and A1 =
θ0∫
θi

χdθ, A2 =
θ0∫
θi

ψdθ

and A3 =
θ0∫
θi

ω dθ.

The main shortcoming of any series solution like (9.65) is that eventually, i.e. for
large values of t , it fails to behave properly. This can be readily seen by comparing the
rate of infiltration obtained by using Equation (9.66) with the actual rate given by (9.4).
Although eventually the infiltration rate should approach the finite value k0, the time
expansions (9.65) and (9.66) fail to converge for large values of t ; therefore, they can
only be expected to be applicable for small and intermediate values of time.

9.3.3 A closed form of the series solution

Even though the series expansion (9.65) itself diverges, for some cases it can be shown
(Brutsaert, 1977) to lead to a formulation for infiltration which is well behaved both for
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small and for large t . This formulation can be obtained by making use of an approximate –
but quite accurate – method for solving the differential equations for φ, χ, ψ and ω. By
using the power-form functions (8.36) and (8.41), for the asymptotic case of very large
b (which in (8.15) represents soils with a narrow pore size distribution) one finds that
the infiltration rate (9.66) can be approximated quite closely by

fc = k0 + 1

2
A0 t−1/2(1 − 2y + 3y2 − 4y3 · · ·) (9.67)

where y = k0 t1/2β0/A0 and A0 is the sorptivity, as before; β0 is a constant that depends
on the pore size distribution of the soil, which for most soils is of the order of 2/3. The
main point of interest in Equation (9.67) is that for y2 < 1 it can be expressed in closed
form as a two-parameter algebraic infiltration equation, viz.

fc = k0 + 1

2
A0 t−1/2[1 + β0(k0 t1/2/A0)]−2 (9.68)

which does not diverge for large t but instead tends to the proper limit fc = k0, as
required by (9.4); also, for small t , Equation (9.68) approaches the proper limit, viz.
fc = (1/2)A0 t−1/2, as required by (9.19). This correct behavior at low and high values
of t is also an indication that (9.68) is relatively insensitive to the exact value of β0. The
cumulative infiltration corresponding to (9.68) is

Fc = k0t + A2
0

β0k0
{1 − [1 + β0(k0t1/2/A0)]−1} (9.69)

For a more general comparison, it is again convenient to express these results in terms
of dimensionless variables; Equation (9.68) confirms the scaling already formulated
in (9.21) for horizontal infiltration; accordingly for infiltration capacity one has the
following

t+ = k2
0 t

A2
0

, fc+ = fc

k0
and Fc+ = k0 Fc

A2
0

(9.70)

Thus the scaled rate of infiltration can be written as

fc+ = 1 + 1

2
t−1/2
+ [1 + β0t1/2

+ ]−2 (9.71)

and the corresponding cumulative infiltration as

Fc+ = t+ + β−1
0 [1 − (1 + β0t1/2

+ )−1] (9.72)

Equation (9.71) is illustrated in Figure 9.14, where it can also be compared with the time
expansion expression (9.67), with the short time expression (9.19), i.e. fc+ = t−1/2

+ /2,
and with the long time expression (9.4), i.e. fc+ = 1.

The convergence criterion for (9.67), that is y < 1 or t+ < β−2
0 , suggests that the

“small to intermediate values of time” as mentioned behind (9.66), for which (9.65) is
valid, should satisfy at least

t < (1.5 A0/k0)2 (9.73)
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Major advantages of (9.68) and (9.69) are that they contain only the two parameters k0

and A0 and that a number of measurement and simple calculation (see Section 9.2.3)
methods are available for these parameters.

9.3.4 Additional effects

The formulation of potential infiltration, as reviewed here, is for a rather idealized case
of a deep homogeneous soil profile. In field situations there may be such important
complications as the effect of air movement, areal variability and stratification of soil
properties, an impermeable layer at shallow depth, the effect of crusting at the soil
surface, fingering, non-uniform initial water content after redistribution during a period
of drainage and evaporation, and others. Some are briefly touched upon in what follows.

Flow of air
Under certain conditions the movement of air can greatly reduce the movement of infiltrating
water. For example, it is not unusual that, when there is a shallow impermeable layer or a
shallow water table below a relatively flat surface ponded with water, bubbling of air can
be observed; this is evidence of a counterflow of air, which undoubtedly (see Linden and
Dixon, 1975) reduces the water intake rate. Several mathematical formulations have been
developed to describe infiltration as a flow problem of two immiscible fluids. Examples
of these can be found in the studies by McWhorter (1971) and Sonu and Morel-Seytoux
(1976). When the objective is a rigorous physical description of the flow at the Darcy
scale, infiltration should be considered as a two-phase flow phenomenon. However, when
the objective is the derivation of a parametric equation to describe the phenomenon at the
field scale, the one-phase flow assumption, with Richards’s equation (8.46), is likely to be



inf iltrat ion capac ity 331

quite adequate as a first approximation. This is especially true when the soil profile is deep,
without a shallow water table, or when, as is often the case in the field, there is some surface
connected macroporosity (not accounted for by the soil moisture characteristic) as a result
of shrinkage cracks, worm holes or root channels. Parlange and Hill (1979) have studied the
air effect by comparing solutions in which the air movement is considered with that resulting
from Richards’s equation. For the case where the soil column is sealed at the bottom, the
difference was found to be quite large; however, their results showed a difference of only
2% in water intake for the case where the air can move ahead of the wetting front without
an appreciable pressure buildup. In experiments dealing with natural soils, a difference of
2% is very difficult to detect.

Soil variability
The spatial variability of soil properties has been studied with measurements in the field
(see Nielsen et al., 1973; Rogowski, 1972; Warrick et al., 1977); more recently attempts
have been made with remotely sensed data (Cosh and Brutsaert, 1999). However, it is still
very difficult to use this type of information to determine infiltration over a larger area.
The effects of stratification or layering of soil properties and of crusts at the surface have
received considerable attention (Miller and Gardner, 1962; Philip, 1967; Bouwer, 1969;
Hillel and Gardner, 1970; Ahuja and Swartzendruber, 1973; Bruce et al., 1976). The details
of instabilities at the wetting front during infiltration into stratified soils have also been
investigated (White et al., 1977; Selker et al., 1992; Liu et al., 1994a;b).

9.3.5 Some other expressions for potential infiltration

For most practical applications Equations (9.68) and (9.69) should be adequate as a
parameterization of infiltration capacity. However, over the years, several other equations
have been proposed and used in applied hydrology.

Truncated series expansion
A number of well-known equations can be considered truncated versions of Philip’s
time expansion series (9.66). Probably the oldest formulation was developed by Kozeny
(1927), and can be written as

fc = a tb (9.74)

where a and b are constants. Kozeny (1927) arrived at this form with b = −1/2, by
making use of the analogy with flow into vertical capillary tubes, and by showing that this
agrees with Wollny’s (1884) experimental data. Equation (9.74) was later also proposed
by Kostiakov (1932) and others (see, for example, Lewis, 1937) on empirical grounds.
Theoretically, if (9.74) is considered as the first term of (9.66) the constants should be
a = A0/2 and b = −1/2, but with these values it would only be valid for short times.
On the other hand, if (9.74) is to be used for large values of time, the constants should
be a = k0 and b = 0, in accordance with Equation (9.4). Equation (9.74) can be useful
for certain purposes, but only over relatively limited time ranges, with values of a and b
intermediate between these extremes and dependent on the range of interest.
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Because the series (9.66) diverges for large values of time, Philip (1957a) proposed

fc = a t−1/2 + b (9.75)

where, a and b are constants. On the basis of the analysis leading to Equation (9.66),
these constants can be estimated as a = A0/2 and b = (A1 + ki) at least for short to
intermediate values of time. However, these values of a and b cannot serve to describe
the phenomenon for large values of time; indeed, calculations of A1 for different soils
(Brutsaert, 1977; see also Equation (9.67)) show that it is usually of the order of k0/3;
thus with b = (A1 + ki) in (9.75), fc will also approach this value, rather than k0, as
required by Equation (9.4). This means that, strictly speaking, (9.75) can be applicable
only over a limited time range, and that the values of a and b depend on that range. But
in many situations of practical interest this should not be a serious obstacle, provided
the constants a and b are considered curve-fitting parameters to suit the time range of
interest.

Exponential decay equation
Horton (1939; 1940) proposed an empirical equation that has received wide attention in
hydrology, in the form of an exponential decay function,

fc = a + (b − a) e−ct (9.76)

where a, b and c are constants, which have to be estimated (Horton, 1942). Clearly, b is
the initial infiltration rate and a should be equal to k0. Although the exponential function
is mathematically convenient in practical applications, this time dependency is hard to
reconcile with the results of the theoretical analyses based on Richards’s equation.

9 . 4 R A I N I N F I LT R AT I O N

Observed rainfall rates in nature only rarely exceed the initial infiltration capacity of
the soil. Therefore, in most situations, for a certain initial period at least, all the rainfall
that reaches the ground surface without being intercepted infiltrates into the soil profile.
During this initial phase, the surface water content gradually increases and the absorptive
capacity of the soil decreases. There are two possible scenarios for what happens next,
depending on the intensity of the precipitation (see Figure 9.15). Consider the simple case
of a constant rate of precipitation on the surface of a deep homogeneous soil profile. If the
rainfall intensity is smaller than the satiated hydraulic conductivity, i.e. P ≤ k0, it will
never exceed the ability of the soil to absorb the rainwater. Eventually, the surface water
content will tend to reach a value θs, such that the hydraulic conductivity at that water
content is equal to the precipitation rate, or k(θs) = P . In the limiting case, if P = k0,
the soil surface will eventually, as t → ∞, reach full satiation, or θs → θ0. The second
scenario occurs when P > k0. Although initially following the onset of precipitation all
the rainwater infiltrates, after a finite period of time t = tp the soil surface becomes fully
satiated, i.e. θs = θ0. From that moment onward, conditions change markedly: as the
surface soil is satiated and the rainfall intensity exceeds the infiltration capacity, ponding
takes place and the excess precipitation may be evacuated by overland flow.
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Fig. 9.15 Different precipitation intensities P+(= P/k0) (dashed lines) superimposed on the scaled infiltration

capacity fc+ = fc+(t+) of a homogeneous deep soil profile (solid curve). When P > k0 the soil surface

becomes satiated after a finite period of time t = tp, and ponding starts. When P = k0 the soil surface

becomes satiated eventually as t → ∞, but the rain can always seep into the soil and no ponding

occurs. When P < ko the soil surface remains always unsaturated; eventually it reaches a water

content θ = θs, such that the near-surface hydraulic conductivity satisfies k(θs) = P , and ponding

never occurs.

These changing conditions at the surface also have ramifications in the prediction,
and possibly control, of erosion and related processes. Prior to ponding the surface
soil is unsaturated, and therefore the soil water pressure is negative; this results in an
effective stress (cf. Equations (8.64) and (8.78)), which provides some cohesion to the
soil particles. Once the surface soil becomes saturated however, this effective stress
vanishes, and the particles can be more easily carried away by the runoff. Thus the onset
of ponding conditions may also mean the onset of erosion.

Another interesting feature of the solution of the rain infiltration problem is that it can
provide estimates of some hydraulic properties of the soil by inverse calculations with
measurements obtained in simple sprinkler irrigation experiments.

9.4.1 Mathematical formulation

During rainfall infiltration, the flow is again governed by Richards’s Equation (9.1).
Consider the case when P > k0, which eventually results in a satiated soil surface.
As already described briefly in Section 9.1.2, initially prior to ponding, the boundary
condition at z = 0 is of the flux type; once the surface soil moisture becomes satiated and
ponding starts, that boundary condition changes to a concentration-type condition. These
conditions are formulated as the second and third of (9.5), respectively, and they indicate
how the phenomenon takes place in two distinct phases. In principle, the complete
solution of (9.1) subject to (9.5), should be of the form θ = θ (z, t), which is the water
content distribution in the soil profile.
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Although numerical methods of solution can be obtained (Rubin, 1966; Smith, 1972),
the problem remains a difficult one. A number of simpler approaches have provided ways
of obtaining more concise parameterizations for certain aspects of the phenomenon.
These have consisted of extensions of the approach of Green and Ampt (Mein and Larson,
1973; Swartzendruber and Hillel, 1975; Chu, 1978); empirical equations derived from
the numerical solution of Equation (9.1) (Smith, 1972; Smith and Chery, 1973); and
equations derived by the analytical solution of (9.1) on the basis of the quasi-steady state
or other approximations (Parlange, 1972; Smith and Parlange, 1978; Broadbridge and
White, 1987; White and Broadbridge, 1988; White et al., 1989).

Probably the most important part of any solution, for practical purposes, is the deter-
mination of the time to ponding tp and the subsequent infiltration rate. In the following
two sections, parameterizations are developed for this purpose.

9.4.2 Time to ponding

Consider for this analysis the simplest possible case of precipitation on the surface of a
deep uniform soil profile. One of the oldest approximate methods for solving nonlinear
diffusion equations like (9.1) consists of considering the problem as a succession of
steady states. In groundwater theory it was used as early as 1886 by K. E. Lembke
(Polubarinova-Kochina, 1962, p. 573) to approximate the Boussinesq equation (10.30),
that is (9.6) with Dw ∼ θ , in the analysis of the drainage or desorption problem. Later,
essentially the same method was applied by Landahl (1953) in the solution of the linear
diffusion equation and was then generalized by Macey (1959) to the nonlinear diffusion
equation (9.6) for sorption; Parlange (1971) applied the concept to derive a first estimate
of the soil water profile φ = φ(θ ) for sorption, that is (9.32) with a = 1 and b = 0.
Parlange (1972) and Parlange and Smith (1976) then explored the same approach to
study rainfall infiltration; this quasi-steady state approach is described next.

Sharp front approach
The approach is based on the assumption of a sharp wetting front, such that, once this front
has passed a point, the water content θ is already so close to satiation that it does not change
much from then on. Thus the term (∂θ/∂t) in the Richards equation (9.1) can be neglected,
so that the term on the right-hand side becomes zero; this means that the specific flux is the
same at all z, including at the surface, z = 0, where it is equal to the precipitation intensityP .
Therefore, after one integration, (9.1) in its diffusion form (9.61) yields

P = −Dw
∂θ

∂z
+ k (9.77)

This is in accordance with the second of (9.5), and can be integrated a second time to yield

z = −
θ∫

θs

Dw

P − k
dθ (9.78)

where θs is the water content at the soil surface z = 0, which changes with time as the
precipitation proceeds. In Equations (9.15) and (9.63) the infiltrated volume F is obtained
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by integration of (z dθ ); as illustrated in Figure 9.4, this can also be accomplished by
integration of (θ dz), so that one can write instead

F =
zf∫

0

(θ − θi)dz + ki t (9.79)

where zf is the position of the wetting front. In the present situation F is also the time
integral of the precipitation rate, or

F =
t∫

0

P dt (9.80)

These two expressions for the cumulative infiltration, namely (9.79) and (9.80) can be
combined to yield

t∫
0

P dt = −
θs∫

θi

(θ − θi)(∂z/∂θ )dθ (9.81)

in which it is assumed that ki, the conductivity at the initial water content, is negligibly
small, and the limits are θs at z = 0 and θi at z = zf. Substitution of (9.77) (or (9.78)) into
(9.81) produces

t∫
0

P dt =
θs∫

θi

(θ − θi)Dw

(P − k)
dθ (9.82)

This is an important result in that it represents a relationship between the water content at
the soil surface and time, θs = θs(t) prior to ponding.

The time to ponding t = tp can be derived from Equation (9.82), by considering it as
the time necessary for the surface soil moisture content to reach satiation, or θs = θ0. Thus
one has

tp∫
0

P dt =
θ0∫

θi

(θ − θi)Dw

(P − k)
dθ (9.83)

Both Dw and k are functions of the water content θ , so that, when they are known, it should
in principle be possible to carry out the integration in Equation (9.83) for any arbitrary time
distribution of the precipitation P = P(t). The integration becomes especially simple if it
can be assumed that Dw and k change rapidly in the vicinity of θ = θ0. Take for example
(8.36) for k and (8.40) forDw; these are simple power functions, but the result would be the
same with any other functions, such as for example exponential functions, which exhibit a
similar behavior near θ = θ0. After normalization of the water content with Equation (9.8)
and substitution of these two functions, (9.83) becomes

tp = Hb(θ0 − θi)k0

〈P〉b

1∫
0

Sn−1/b
n d Sn(

P − k0 Sn
n

) (9.84)

in which 〈P〉 is the average precipitation rate during the event until the onset of pond-
ing. After bringing the term Sn−1/b

n inside the differential, one recognizes immediately the
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presence of a number of terms which resemble the sorptivity (9.49) for the same power
diffusivity (8.40), provided the exponent n is not small. Therefore to a good approximation;
Equation (9.84) can be rewritten as

tp = A2
0

2〈P〉

1∫
0

d Sn−b−1+1
n(

P − k0 Sn
n

) (9.85)

Whenever b = 1 or both n and b are large, (9.85) can be integrated to yield the main
result

tp = A2
0

2〈P〉k0
ln

(
Pp

Pp − k0

)
(9.86)

where Pp is the precipitation rate at the time of ponding, t = tp. Equation (9.86) was first
presented by Parlange and Smith (1976); they derived it from (9.83) in a somewhat different
way, namely without the specific expressions for k and Dw used here. Indeed, it can be seen
that this result is independent of the parameters in the two power expressions (8.36) for k
and (8.40) for Dw.

Practical implementation
In many situations of practical interest, the rainfall intensity can be assumed to be
constant during the storm or at least prior to the onset of ponding; in this case one has
P = 〈P〉 = Pp = constant and Equation (9.86) can be written as

tp = A2
0

2Pk0
ln

(
P

P − k0

)
(9.87)

As usual, Equation (9.87) can be made more general by expressing it in terms of
dimensionless variables. Its form suggests immediately the same scaling of the time
variable, already used in (9.21) and in (9.70); in addition, it suggests that the precipitation
rate be scaled with the hydraulic conductivity, so that

tp+ = k2
0 tp
A2

0

, and P+ = P
k0

(9.88)

With these scaled variables (9.87) can be expressed as

tp+ = αp

P+
ln

(
P+

P+ − 1

)
(9.89)

where αp is a constant equal to 0.5. As expected, both (9.87) and (9.89) show how the
ponding is instantaneous at the beginning of the rainfall event, i.e. tp = 0, when P 	 k0,
that is when the rainfall intensity is much larger than the satiated hydraulic conductivity
of the soil. On the other hand, ponding never occurs, i.e. tp → ∞, when the hydraulic
conductivity k0 is equal to or larger than the precipitation rate P . These features are
illustrated in Figures 9.15 and 9.16.

In the derivation of the results given in Equations (9.86), (9.87) and (9.89) it was
pointed out that the same would be obtained with any other functions for k and for Dw

in (9.83), as long as they change rapidly in the vicinity of Sn = 1. This kind of k and



rain inf iltrat ion 337

0

0.5

1

1.5

2

1 1.5 2 2.5 3

tp+

P+

Fig. 9.16 Scaled time to ponding tp+ = (k0/A0)2tp against scaled rainfall rate P+ = (P/k0); the rainfall rate is

assumed to be constant during the rainfall event. The heavy line represents the solution obtained by

the quasi-steady state approach, i.e. Equation (9.89) with αp = 0.50 (Parlange and Smith, 1976); the

thin line is the relationship recommended by Broadbridge and White (1987) for field soils whose

hydraulic properties are not well known, i.e. Equation (9.89) with αp = 0.55.

Dw behavior is typical for repacked soils in the laboratory and for undisturbed field soils
at greater depth, which have little secondary structure. However, as illustrated in Figure
9.8, this is not always the case for the diffusivity Dw of undisturbed field soils near the
surface, where secondary structure may affect the hydraulic characteristics. Broadbridge
and White (1987) analyzed the performance of several approximate expressions for tp
by comparing them with the results of an exact solution for a special functional form
of k(θ ) and Dw(θ ). They concluded that among them Equation (9.87) of Parlange and
Smith (1976), or Equation (9.89) with αp = 0.50, is indeed quite accurate for soils with
a structure similar to that of repacked soils; they also found that Equation (9.89) can
be made to describe the time to ponding for most soils with a different structure by
adjusting the constant αp within a range between 0.50 and 0.66. For field soils, whose
hydraulic properties are unknown, they recommended the use of (9.89), and they felt that
αp = 0.55 would be a reasonable choice which would result in errors of at most ±10%.
Equation (9.89) with αp = 0.55 is also illustrated in Figure 9.16.

9.4.3 Infiltration after the start of ponding: time compression approximation

Prior to the time of ponding, the precipitated water can readily enter into the soil, and
the rate of infiltration is equal to the precipitation rate, as indicated by the second of
Equations (9.5). Once ponding starts, the soil surface is satiated, that is θ = θ0, so that
the boundary condition at z = 0 becomes the third of (9.5), which is the same as the
second of (9.62) for the infiltration capacity problem. However, the initial condition at the
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start of ponding is quite different from the initial condition used to describe the infiltration
capacity, i.e. the first of (9.62). In fact, the initial soil water content distribution at the
start of ponding cannot be prescribed in general beforehand, because it will depend on
the specifics of the duration and intensity of infiltration prior to ponding for each rainfall
event. Because a detailed solution of Richards’s equation for each rainfall occurrence is
neither practical nor feasible, it is useful to explore further simplification of the problem.

Several parameterizations of rainfall infiltration that have been proposed in the past
involve the concept of time compression (also called time condensation), or some assump-
tion similar to it. Briefly, the underlying assumption is that the potential infiltration rate,
at any given time after the onset of ponding within a rain storm period, depends only
on the previous cumulative infiltration volume, regardless of the previous infiltration or
rainfall history during that same storm. The time compression approximation (TCA) was
introduced in the 1940s (see Sherman, 1943; Holtan, 1945) in the context of partitioning
the rainfall on a watershed into runoff and infiltration, and was later applied in many
other studies (see Reeves and Miller, 1975; Sivapalan and Milly, 1989; Salvucci and
Entekhabi, 1994; Kim et al., 1996).

Conceptually, TCA can be considered another instance of the application of the
lumped kinematic approach, as formulated in Equation (1.10). Thus the soil profile
is a one-dimensional control volume, the rate of infiltration f is the inflow rate Qi, and
the cumulative infiltration F is the storage S. After the inception of ponding, the inflow
rate f is assumed to be a function of the storage F only, independent of the precipitation
history.

General formulation
Let f = f (t) and F = F(t) denote the actual infiltration rate and actual cumulative
infiltration, respectively; as these are functions of time, one also has the inverse functions
t = t( f ) and t = t(F). Similarly, fc = fc(t) and Fc = Fc(t) denote the same functions
for the infiltration capacity, that is under potential conditions, as analyzed in Section 9.3.
and subject to boundary conditions (9.2); their inverse can be written, respectively as
t = t( fc) and t = t(Fc). The basic assumption of TCA can be expressed as follows

f = P for t < tp
f = fc (t(Fc = F)) for t ≥ tp

(9.90)

With a constant (or average) rate of rainfall P , the cumulative infiltration at the time
of incipient ponding is (P tp). Define now the (fictitious) compression reference time tcr

as the time period after the start of rainfall that would be required to produce the same
infiltrated volume, but under potential conditions. Thus one has

F(tp) = P tp = Fc (tcr) (9.91)

from which tcr or tp can be estimated. Once tcr and tp are known, the cumulative infiltration
is given by

F(t) = Pt for t < tp
F(t) = Fc(t − (tp − tcr)) for t ≥ tp

(9.92)
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In light of (9.90), the rate of infiltration is

f (t) = P for t < tp
f (t) = fc(t − (tp − tcr)) for t ≥ tp

(9.93)

In Equations (9.92) and (9.93) the time to ponding and the compression reference time
remain to be determined. These two variables are related by (9.91); as this is one equa-
tion with two unknowns, additional information is needed to solve for tp and tcr. The
time to ponding is a real physical quantity, whereas the compression reference time tcr

is essentially a parameter, arising in the TCA approximation. There are two possible
procedures of estimating tcr. In the first, it is obtained from the time to ponding; the
latter is estimated independently, from measurements or with expressions like Equations
(9.86) or (9.89). In the second procedure, use is made of the precipitation intensity to
solve for both tp and tcr by means of the TCA approximation.

Estimation with the correct time to ponding
In the first procedure the value of tp is determined independently and with a known
or tolerable accuracy. The time to ponding can be measured directly, as in controlled
situations during irrigation, or by appropriate observations; also, as reviewed in the
previous section, there are reliable expressions available for this purpose, which are
based on the solution of Richards’s equation (see Parlange and Smith, 1976; Broadbridge
and White, 1987). With tp known, one obtains then as the inverse of Equation (9.91)

tcr1 = t(Fc = P tp) (9.94)

in which the subscript 1 indicates that tcr is obtained by the first alternative procedure.
Note that with this procedure the infiltration rate has a discontinuity at t = tp (see Figure
9.17). This is unavoidable, and is a result of the approximate nature of TCA. However,
the basic assumption of TCA, expressed in Equation (9.90), is satisfied.

Estimation from the precipitation intensity
In past applications of TCA, it has usually not been assumed that the time to ponding tp
can be determined independently. Rather, tp has usually been estimated by assuming, that
under potential conditions tcr is the time after the start of rainfall that would be required
to produce not only the same infiltrated volume, i.e. (P tp) as at the time of ponding, but
also the same infiltration rate, i.e. P . Thus one has the additional equation,

P = fc (tcr2) (9.95)

from which the compression reference time is obtained as the simple inverse function
tcr2 = t( fc = P); the subscript 2 indicates that it is estimated by this second alternative
procedure. The time to ponding can then be calculated by means of Equation (9.91) as

tp = Fc (tcr2) /P (9.96)

This procedure is illustrated in Figure 9.18.
In the real world, it is certainly the case that at the time of ponding both F = Ptp and

f = P must be satisfied. But it should be kept in mind that the TCA concept is only
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Fig. 9.17 Illustration of the time compression method, as given by Equation (9.92), to estimate the cumulative

infiltration F (heavy line), resulting from precipitation rate P . In this version of the method the time to

ponding is determined independently, and presumed to be correct. At the time of ponding t = tp, the

value of F is equal to that of the Fc curve at t = tcr, but its slope is not equal to that of the Fc curve at

t = tcr; thus, the infiltration rate f has a discontinuity at t = tp, but the infiltrated volume F satisfies

the main premise of time compression.
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Fig. 9.18 Illustration of the time compression method as given by (9.92), to estimate the cumulative infiltration

F (heavy line), resulting from precipitation rate P . In this version of the method, the time to ponding

is calculated by assuming that, beside Equation (9.91), Equation (9.95) also holds. At the time t = tp

both F and its slope, i.e. the infiltration rate f , are equal to the corresponding values of the Fc curve

starting at t = 0. However, this procedure does not produce the correct value of tp.
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an approximation; therefore, it is impossible that both (9.91) and (9.95) are valid. This
means that tp, as obtained with Equation (9.96), is not valid either. The time to ponding
is such a crucial parameter in describing rainfall infiltration, that the first procedure
to determine the compression reference time should be used, if at all possible. Because
TCA is mainly concerned with mass conservation and cumulative infiltration, and less so
with infiltration rate, Equation (9.91) should have priority over (9.95). In other words, as
pointed out by J.-Y. Parlange (Liu et al., 1998), the first procedure with tcr1 is preferable
over the second with tcr2. The following example should give an idea of the practical
implementation of the TCA concept and of the error involved in the estimation of tp by
means of the second procedure.

Example 9.3. Application with truncated time expansion

The above equations for rainfall infiltration can be applied with any of the available equa-
tions for infiltration capacity fc or Fc discussed in Section 9.3. The calculations become
especially simple when time t can be expressed explicitly as a function of infiltration
capacity. Consider as an example the truncated time expansion (9.75) proposed by Philip
(1957a). By using the procedure, with the correct value of tp determined independently,
one obtains from (9.94) for the compression reference time, implicitly

P tp = 2a t1/2
cr1 + b tcr1

and, after solution, explicitly

tcr1 = [−a + (a2 + P btp)1/2]2/b2 (9.97)

in which a and b are the constants appearing in Equation (9.75).
With the second procedure, which is based on the infiltration rate constraint, by

combining (9.95) with (9.75) one obtains the following

tcr2 = [a/(P − b)]2 (9.98)

The time to incipient ponding can be calculated by substitution of (9.98) into (9.91),
which yields with the cumulative infiltration corresponding to (9.75),

tp = a2 (2P − b)

P (P − b)2 (9.99)

With the values of tp and tcr known, by either of the two procedures, the cumulative
infiltration (9.92) can now be written, for this example with (9.75), as

F (t) = P t for t < tp

F (t) = 2a[t − (tp − tcr)]1/2 + b[t − (tp − tcr)] for t ≥ tp
(9.100)

and in a similar way, the rate of infiltration (9.93).
The error involved in the second TCA procedure can be determined by comparing the

resulting expression for tp, i.e. Equation (9.99), with the more accurate (9.89) derived in
the previous section. As before, for the sake of generality, especially in this comparison
with another expression, it is useful to express (9.99) in dimensionless form. It should be
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Fig. 9.19 Curve 1 shows the scaled time to ponding tp+ = (k0/A0)2tp against scaled rainfall rate

P+ = (P/k0), as calculated with the second procedure in the TCA approximation, i.e.

Equation (9.101); the rainfall rate is assumed to be constant during the rainfall event. Curve 2

represents the negative error of this result relative to Equation (9.89) with αp = 0.55 (which is

shown in Figure 9.16), and thus indicates that tp+ is underestimated with this procedure.

recalled that the constants in the infiltration equation (9.75), used in this example, can be
taken as a = A0/2 and b = k0/3; with these values of the constants and in terms of the
scaled variables shown in (9.88), Equation (9.99) can be written as

tp+ = 0.5 (P+ − 1/6)

P+ (P+ − 1/3)2 (9.101)

This result is illustrated in Figure 9.19, and can be compared with the more accurate result
shown in Figure 9.16. Also shown is the error inherent in Equation (9.101) relative to (9.89);
it can be seen that the error in this second procedure can be considerable, and that it results in
underestimates of the time to ponding, ranging between roughly 10% and 70%, depending
on the rainfall intensity. As seen in Equations (9.92) and (9.100), an underestimated time
to ponding tp produces an underestimate of the infiltration F .

Accuracy of the TCA approximation
Several studies allow an assessment of the time compression approximation. One is the
analysis of intermittent infiltration by Ibrahim and Brutsaert (1968), on the basis of the
numerical solution of Equation (9.1) for conditions representing alternating potential infil-
tration and drainage (or redistribution) cycles. The hysteresis in the soil water characteristic
was taken into account by means of the concept of independent domain. Inspection of
the results shows that the cumulative infiltration, after restarting it following a drainage
period of a given duration, can be obtained by merely time-shifting the initial (i.e. prior to
the drainage) cumulative potential infiltration curve over a certain time period; however,
the required time-shift period tends to be shorter than the drainage period, which is the
time-shift assumed under TCA. This means that TCA usually underestimates infiltration.
Similar results were obtained by Reeves and Miller (1975); although in some extreme cases
the reported error was as large as 15% to 20%, in most cases it was considerably smaller.
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Liu et al. (1998) estimated the error in the TCA solution by comparing it with the exact
solution of rainfall infiltration for the special case of the linearized Richards equation with-
out gravitational effect, that is Equation (9.6) with a constant Dw = D0. The differences
between the two solutions were very small, with the largest occurring near ponding. The
maximal error in cumulative infiltration was found to be an underestimate of only 1.3% for
the first TCA procedure with (9.94), and about 2.5% for the second procedure with (9.95)
and (9.96); similarly small errors were obtained for the rates of infiltration. On the other
hand the second procedure underestimated the time to ponding obtained with (9.96) by
about 19%. This illustrates that tp can be a sensitive parameter and that conversely, errors
in tp will cause much smaller error in the resulting F or f . The sensitivity issue was also
dealt with by White et al. (1989).

9 . 5 C AT C H M E N T - S C A L E I N F I LT R AT I O N A N D OT H E R “ L O S S E S ”

So far in this chapter, infiltration has been considered effectively as a point process. In
applied hydrology it is usually necessary to estimate the process over larger areas, often
with typical length scales on the order of kilometers. Over the years engineers, faced with
the task of predicting storm runoff from precipitation, have developed various, mostly
heuristic, approaches to deal with this problem. Some of these are reviewed in what
follows.

9.5.1 Infiltration capacity methods

This approach consists of the simple extension of the available information on point
infiltration over a larger area. It is currently implemented in many catchment water bal-
ance models, by subdividing the catchment area into appropriate subareas with assumed
uniform infiltration characteristics; for each subarea an average or typical infiltration
capacity relationship is adopted, which is then applied with the time compression approx-
imation to deal with precipitation events. The main difficulties with this approach are the
large spatial and temporal variability of soil properties and soil moisture content, that are
normally encountered even in so-called homogeneous field situations. This means that
it is never an easy matter to define an average fc(t) function for application over a larger
area. As already pointed out in Section 9.3.4, this problem is still poorly understood and
will have to be the subject of more research.

9.5.2 The loss rate concept

In many of the methods that have been in use to predict streamflow from rainfall obser-
vations for flood-control purposes (see Feldman, 1981), it is necessary to determine a
rainfall excess, that is the part of the precipitation which generates the direct storm runoff.
This is usually done by applying a loss rate to the observed precipitation intensity. Most of
this “loss” is assumed to consist of infiltration; however, because it is difficult to consider
them separately, other processes such as initial rainfall detention storage in depressions
and rainfall interception, are usually included in the total loss. Because generally much
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of the infiltrated water participates actively in the runoff generating process, the loss
rate concept is of questionable validity and not soundly based. Nevertheless, as long
as its limitations are kept in mind, the concept can be useful, especially in situations
with limited data and for design purposes involving large flows and floods. There have
been two major ways of applying the loss rate concept; in the first, which is used more
commonly for large basins, it is assumed that the loss is independent of the rainfall, while
in the second one, which is more widely used for smaller areas, the loss is assumed to
be proportional to the rainfall.

Loss rate independent of rainfall
In this approach the loss rate is usually taken as a constant rate throughout the rainstorm
event, and it is subtracted from the actual rainfall intensity to obtain the excess rainfall
intensity. The underlying idea is that this loss rate represents mainly the space- and time-
averaged behavior of the infiltration capacity which is controlled by the properties of the
soil and which is independent of the rainfall intensities, as long as they are large enough.
Several such indices have been proposed in the past, but Horton’s (1937) method has
probably been most widely used.

In brief, the loss rate is determined as the constant value that must be subtracted
from the actual rainfall rate so that the resulting excess rainfall volume over the entire
catchment is equal to the actual storm runoff volume; this storm runoff is derived from
the streamflow hydrograph by subtracting the (assumed) baseflow from the total runoff.
When rainfall is observed at several gages, their input must be properly weighted with
their respective areas of influence (see Section 3.3.1) and several trial loss rates are
required to obtain the solution.

This method is often applied in modified form, by the inclusion of an initial loss,
which is a certain amount that is subtracted from the rainfall at the beginning of the
storm event. The principle is illustrated in Figure 9.20. The initial loss can be defined as
the loss that takes place before the onset of storm runoff in the stream, and it is usually
envisioned to consist of interception storage, depression storage and initial high rate
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infiltration. Various methods have been in use to determine the initial loss, but all of
them have drawbacks. In the most obvious method the initial loss is taken as all the
rain prior to the start of the rise in the stream flow; but this is not always applicable,
because often the rain may be finished before the stream flow hydrograph shows any
rise. This difficulty can be avoided by considering as initial loss the maximal isolated
burst of rainfall observed in the record, which was not reflected in an obvious rise in
the streamflow hydrograph. Another way is to make use of a “typical delay period,”
which can be derived from the record as the delay between short, intense storms and the
subsequent start of the rise in the streamflow hydrograph; when the storm is sufficiently
intense, the initial loss can be assumed to be negligible. This period can then serve to
determine the start of the rainfall excess, i.e. the end of the initial loss period, in storms of
longer duration. Examples of the application of the loss rate methodology can be found
in the papers by Cook (1946) and Laurenson and Pilgrim (1963). Cordery (1970) has
shown how the initial loss can be related to an antecedent precipitation index, which he
used as a measure of the wetness of the catchment.

To give an idea of the values that can be expected for the constant loss rate,
Figure 9.21 presents a summary of the data collection of Pilgrim (1966). The circles
represent the loss rate frequency as a weighted average of 460 values from 101 water-
sheds in the United States, 150 values from 24 Australian watersheds and 116 values
from 8 watersheds in New Zealand; the results for the three data sets were sufficiently
similar so that they could be combined in one single curve. The triangles in Figure 9.21
represent the frequency of the smallest loss rates observed in 60 watersheds in the United
States.

Loss rate proportional to rainfall intensity: the runoff coefficient
In the Rational Method, the peak runoff rate (Qp/A) (expressed as volume rate of flow
per unit catchment area) at the outlet of a catchment is assumed to be a fraction of the
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rainfall intensity,

Qp/A = C P (9.102)

where A is the area of the catchment; C is a constant, also called the runoff coefficient,
which ranges between 0 and 1 (see Table 12.2), depending on the nature of the surface.
Although the basic approach was proposed some 150 years ago (Mulvany, 1850; Dooge,
1957), various versions of the Rational Method are still in common use in the design
of road culverts and other structures draining small areas of a few square kilometers at
most. Equation (9.102) suggests that the rainfall loss rate is simply proportional to the
rainfall intensity, and equal to [(1 − C)P]. Physically, the assumption of proportional
losses appears to be more compatible with the early stages of rainfall infiltration (see the
second condition of Equations (9.5)) combined with interception losses (see Equations
(3.14) and (3.19)) for short precipitation events. In contrast, the constant loss rate methods
appear to reflect conditions during longer lasting events (see the third of Equations (9.5))
with eventually a near-constant infiltration capacity. It probably also explains the dif-
ferences in the sizes of the catchments for which both methods have been applied in
engineering. The Rational Method is treated in greater detail in Section 12.2.2.

9.6 Capillary rise and evaporation at the soil surface

The water that evaporates at the soil surface is transported to the surface through the under-
lying layers of the soil profile. This transport takes place both in the liquid and in the vapor
phase; moreover, as evaporation is driven by radiation and other energy inputs, the transport
involves not only water pressure gradients, but often also temperature gradients with a soil
heat flux. However, as already discussed in Section 8.3.3, in many situations of hydrologic
interest, some important features of the evaporation at the soil surface can be obtained on
the basis of the isothermal flow equation, viz. Darcy’s law (8.19). In particular, two flow
problems have been the subject of previous research, that have practical relevance to soil
surface evaporation; these are steady capillary rise from a water table to the surface, and
unsteady desorption from a deep soil profile without a water table.

9.6.1 Steady capillary rise from a water table

This situation occurs when the water table is maintained at a constant level, from which
water flows upward through the soil profile to the soil surface, where it is taken away
by evaporation under constant atmospheric conditions. Under steady conditions in the soil
profile (∂θ/∂t) = 0, and the vertical flux is everywhere given by qz = E . Thus, for a vertical
coordinate system pointing upward with z = 0 at the water table where pw = 0, one obtains
from Equation (8.19)

z = − 1

γw

x=pw∫
0

dx
[1 + E/k(x)]

(9.103)

in which x is a dummy variable representing the water pressure. This can be readily inte-
grated for a uniform soil profile, provided the capillary conductivity k = k(H ) is known as
a function of the soil water suction H (= −pw/γw). Gardner (1958) presented solutions of
(9.103) with (8.37) for values of the parameter c = 1, 3/2, 2, 3 and 4.
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Equation (9.103) produces the vertical pressure distribution of the soil water for any
given rate of evaporation E . For relatively low values of E or for a soil profile with a
water table at a shallow depth dw below the surface, the value of H at the soil surface is
relatively small, i.e. close to zero, and the soil surface is close to saturated. Hence, in such
a case the rate of evaporation is governed by the prevailing atmospheric conditions, and not
by the ability of the soil profile to transmit water. For a given depth of the water table dw,
as the drying power of the air is increased, the suction H at the soil surface will increase; with
this increased gradient the rate, at which water moves upward and evaporates at the surface,
will also increase. But eventually a limit is approached beyond which E cannot increase; in
the limit E is totally controlled by the ability of the profile to transmit water, regardless of
the drying power of the air. For most practical purposes it is probably sufficiently accurate
to assume that the actual evaporation at any time is the lesser of the potential evaporation
and of the limiting evaporation Elim.

A satisfactory approximation of this limiting value Elim can be obtained by assuming
that the soil surface at z = dw is nearly dry or at field capacity, so that one can assume that
H → ∞ and k → 0. Integration of Equation (9.103) with (8.37) then produces in general
(Cisler, 1969) the following relationship between the limiting rate of evaporation and the
depth of the water table,

dw = πa
c sin(π/c) (a + bElim)

(
a + bElim

Elim

)1/c

(9.104)

in which a, b and c are the parameters of Equation (8.37). Since in many cases a > (bElim),
this is to a good approximation

Elim = a
(

π

c sin(π/c)

)c

d−c
w (9.105)

The assumption of isothermal capillary flow is clearly an oversimplification. Espe-
cially near the soil surface, transport in the vapor phase is also likely to play a role, so
that the limiting evaporation rate is probably larger than the predicted value. However,
Gardner (1958) has estimated that this increase is not likely to exceed 20%. In any event,
Equation (9.105) indicates that the limiting evaporation is proportional to d−c

w . As shown
in Figure 9.22, experimental results by Gardner and Fireman (1958) appear to confirm this.
This gives some support to the isothermal flow assumption. (Note that in Figure 9.22 the
curve is similar to, but not quite the same as (9.105), because the depth of the water table
was simulated in the experiment by maintaining the bottom of the 1 m long column at a
negative pressure rather than zero; however, the difference was shown to be small.) Equation
(9.103) was used by Willis (1960) to study the steady flow from a water table in the case
of a soil profile consisting of two layers of different texture. He concluded that the effect
of stratification was pronounced for a system with the coarse-textured soil overlying the
fine-textured soil, but not for the reversed condition.

9.6.2 Unsteady drying of the soil profile and desorption-based parameterizations

A high water table at a constant depth, as assumed in the previous section, is not a common
occurrence; more often than not the water that evaporates from the soil surface is supplied
by a release from storage in the soil profile. To facilitate the solution of this problem, it is
instructive first to consider this drying process with constant atmospheric conditions.
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Fig. 9.22 Comparison between the experimental rate of steady evaporation from a column of clay soil

and the curve calculated by means of Equation (9.103) with (8.37) in the form

k = 1100/[565 + (−pw)2] cm d−1, where pw is in hPa. (After Gardner and Fireman, 1958.)

The first and second stages of evaporation from soil
Ever since the studies of Fisher (1923) and Sherwood and Comings (1933), among others,
it has been customary to classify bare soil evaporation under constant external conditions
in the laboratory into several stages of drying; from the hydrologic point of view, the first
two of these stages are the more important ones. In the first stage, which prevails as long as
the soil is sufficiently moist, the evaporation rate is primarily controlled by the atmospheric
conditions. It is therefore best expressed in terms of measurements in the atmosphere. For
a moist surface under natural conditions, several well-known formulations are available,
which make use of atmospheric variables and which are treated in Chapter 4. Obviously,
for constant atmospheric conditions, the rate of drying is constant. The duration of the first
stage depends on the rate of evaporation and the ability of the soil profile to supply this
rate.

As the soil near the surface dries out, the water supply to the surface eventually falls
below that required by the atmospheric conditions. In this second or falling-rate stage, the
rate of evaporation is mainly limited by the soil moisture conditions and the soil properties,
and much less by the available energy. The transition from the first stage to the second stage
may be quite abrupt at a given point on the surface; on a wider scale it is usually more
gradual, because local transitions at different locations tend to occur at different times. It
was noted by Jackson et al. (1976) that the transition from the first to the second stage can
be observed visually by changes in color and in albedo.

In the second stage of drying, water moves also through the profile by diffusion of water
vapor. And especially after the soil has become quite dry, the water transport through the
profile is sensitive to the temperature gradients in the soil as well. Nevertheless, at least
initially in the falling rate stage, it appears that the water moves primarily as a liquid.
Although the matter is more complicated (Philip, 1957c; Cary, 1967), just like for the
steady case, experimental evidence has shown that some of the more important features
of the falling-rate stage can be obtained by means of the isothermal flow description with
Richards’s equation.
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Isothermal flow in the absence of gravity: desorption
In a number of studies the formulation has been further simplified by considering the
second stage of drying as a problem of desorption. This formulation, which was first used
by Gardner (1959), is based on several additional assumptions, beside that of isothermal
liquid flow. First, it is assumed that the effect of gravity is negligible. In other words, it is
assumed that the drying rate of a vertical soil column is the same as that of a horizontal
column, so that Equations (9.3) or (9.6) govern the flow. Second, the boundary conditions
are taken to be same as given in (9.7), except that in desorption, instead of θ0, let θs represent
the water content at the dry soil surface, so that θi > θs; thus, when applied to this case,
in the first of (9.7) it is assumed that the initial water content is uniform, and in the second
that the water content at the surface is always very low. These conditions are equivalent with
the assumption that the energy-limiting drying rate is so large, that the duration of the first
stage of drying is negligibly short. Third, vapor transfer in the drier soil near the surface is
neglected.

As was the case for the sorption problem, by applying the Boltzmann transform (9.11),
Equation (9.6) can be reduced to the ordinary differential equation (9.13). Because θi > θs,
in desorption the water content is normalized as

Sn = θ − θs

θi − θs
(9.106)

so that, instead of (9.14), the boundary conditions are

θ = θi (or Sn = 1) φ → ∞
θ = θs (or Sn = 0) φ = 0

(9.107)

To date no general exact solution has been obtained for this problem, but only approximate
solutions or exact solutions for certain types of diffusivity functions. Gardner (1959) made
use of two solutions. One was the linearized solution obtained by means of a weighted
mean diffusivity calculated by Crank’s method; his second solution, which was presented
graphically, was obtained by iteration for the exponential-type diffusivity (8.39). Parlange
et al. (1985) proposed an approximate, but quite accurate method of solution for arbitrary
diffusivity functions Dw(θ ), in a manner similar to the techniques used for sorption. Finally,
it has been shown by Brutsaert (1982) that there is a large class of Dw(θ ) functions that
admit exact solutions for desorption as formulated by Equations (9.13) and (9.107); one
such function, in particular appeared to have practical relevance to flow in soils and other
porous materials. A detailed discussion of these methods of solution is beyond the scope of
the present treatment.

In the present context, however, the most interesting feature of any solution by means of
the Boltzmann transform, regardless of the solution method and regardless of the assumed
diffusivity function Dw(θ ), is that the total water volume lost from the soil profile is pro-
portional to the square root of time. Actually, by analogy with (9.19) and (9.17), for any
solution x = φ(θ )t1/2 it can readily be shown that the flux at the surface, that is the rate of
evaporation can be written as

E = 1

2
De0t−1/2 (9.108)

where De0 can be referred to as the capillary desorptivity, and is defined by

De0 =
θi∫

θs

φ dθ (9.109)

which is a constant for a given soil and given values of θ i and θ s.
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Good agreement was obtained by Gardner (1959) between (9.108) and the evaporation
rate from an initially uniformly moist column of clay soil, 100 cm in length, subjected
in the laboratory to a large potential evaporation rate of about 4 cm d−1. These results are
shown in Figure 9.23. Evidently, the column was long enough to be effectively semi-infinite
for about 100 d. Similar results were presented by Gardner and Hillel (1962); in addition
they observed that soon after the end of the first stage of drying, the rate of evaporation is
independent of the initial drying rate, and that it depends primarily on the water content
of the soil. These successful experimental tests of the desorption approach were obtained
under constant atmospheric conditions in the laboratory, and should lend support to the
underlying assumptions. Nevertheless, it can be expected that the neglect of gravity will
somehow result in an overestimate of the evaporation rate, whereas the neglect of the vapor
transfer must result in an underestimate of the evaporation. While these effects may be
compensating each other to some extent, this will require more study.

9.6.3 Applications in the field

Under field conditions soil evaporation is more complicated than described in the previous
section. Clearly, with a diurnal cycle of radiation, the surface boundary condition on θ is not
simply a constant θ s as given in Equation (9.107), and the hourly changes of the surface water
vapor flux even from dry soil are not given by (9.108) (see Jackson et al., 1973; Idso et al.,
1974). Hourly values of near-surface θ and evaporation depend markedly on net radiation
even after the soil surface has dried considerably. A simple explanation for this is that during
the night in the absence of the driving solar radiation, the soil moisture is able to redistribute
into some new equilibirum by early morning; this process involves hysteresis with drying
from above during the day, and wetting from below during the night, resulting in the distinct
diurnal pattern of the surface evaporation in the course of the following day. All this would
appear to suggest that, under conditions of a diurnally varying evaporative demand, the
two stages of bare soil evaporation and also the desorption approach may not be physically
relevant; even relatively dry soil surfaces continue to change from an energy-limiting state to
a soil-limiting state during the same day, and the transition is not instantaneous. Additional
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Fig. 9.24 Cumulative evaporation from a bare sandy soil surface as a function of the square root of time

in days, obtained in the field by means of a weighing lysimeter in Wisconsin. The straight

line represents the integral of Equation (9.108) with a desorptivity De0 = 0.496 cm d−1/2.

(Adapted from Black et al., 1969.)

effects come into play when the surface is not bare but, as is usually the case under natural
conditions, covered with vegetation. Nevertheless, as will be shown below, under certain
conditions the assumption that soil surface evaporation takes place in two stages, and that
the second stage can be described by a desorption formulation, is still a useful construct to
describe drying phenomena. But it should be kept in mind that, whenever (9.108) is applied
under conditions other than those specified by (9.6) and (9.107), it does not really represent
a capillary desorption phenomenon, in the strict sense of the word. Therefore, the value of
De0 obtained this way is probably better referred to as “effective” desorptivity.

Daily evaporation from bare soil
In several field studies it was found that E = E(t) could be described reasonably well as a
desorption phenomenon by Equation (9.108), provided this was done with daily time steps.
In Wisconsin, Black et al. (1969) obtained good agreement between (9.108), in which t
was set to zero after each heavy rainfall, and daily evaporation from a bare soil lysimeter
measured during an entire summer. The measurements illustrated in Figure 9.24 suggested
an effective desorptivity of around De0 = 0.496 cm d−1/2. Interestingly, this value was also
not very different from the desorptivity De0 = 0.43 cm d−1/2, calculated by means of Crank’s
linearized solution. In light of the natural variability of the soil, and also of the likely errors
stemming from the problem formulation and its linearization, the difference is small. Black
et al. (1969) suspected that after a rainfall the evaporation would eventually depart from the
t−1/2 relationship, because of the finite depth of wetting. Still, it was possible to simulate an
entire summer of evaporation this way. In a similar study in California, Parlange et al. (1992)
assumed that daily evaporation from a bare soil lysimeter followed the pattern of (9.108)
immediately after irrigation of the field; with this assumption their measurements suggested
an effective desorptivity De0 = 0.58 cm d−1/2. In Arizona, Jackson et al. (1976) found that
Equation (9.108) could be used to describe the second stage of drying on a daily basis from
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those portions of a field whose surface moisture content was below a certain threshold value;
however, they also found that De0 exhibits a strong dependency on temperature, varying by
a factor of about 2 from winter to summer. In Figure 9.25 these measured values of De0 can
be compared with the normalized temperature dependency of the water vapor diffusivity;
the similarity of both dependencies suggests that vapor diffusion contributes substantially
to the total water transport in the top layer of the soil.

In these three field studies with daily time steps, the transition between the first and second
stage of drying appears to have been relatively abrupt. Jackson et al. (1976) concluded that
at the field scale any gradual transition was mainly caused by the variability of the surface
soil moisture, so that the field was partly in the first and in the second stage of drying. In the
analyses of the bare-soil lysimeter measurements by Black et al. (1969) and by Parlange
et al. (1992), the desorptive stage was assumed to have started immediately after the water
application had ceased, and the first stage was dispensed with.

Time compression approximation
In the two bare-soil lysimeter studies just mentioned, the desorption formulation was imple-
mented by simply plotting the cumulative evaporation

∑
E against the square root of time

t1/2 to fit a linear relation through the origin, and the end of the precipitation or the irriga-
tion was taken as the starting point. Whenever the first stage is short or nonexistent, this
procedure may be acceptable. However, because Equation (9.108) is a nonlinear function
of t , the choice of the starting point of the second drying stage, i.e. t = 0, is critical for
its proper performance. In many situations considerable evaporation can take place under
first stage drying conditions and the transition can also be long; thus in general, this starting
point is not known and a different approach is needed.

To obtain a more objective procedure, it was proposed by Brutsaert and Chen (1995)
that Equation (9.108) should be recast in terms of a relative time tr = (t − t0), in which t0 is
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Fig. 9.26 Sketch of a method to determine the two stages of drying by means of Equation (9.110).

(After Brutsaert and Chen, 1995.)

a time shift parameter. Then after fitting data of E−2 against t , in accordance with (9.108)
or

E−2 = (2/De0)2 tr (9.110)

one can derive De0 and t0 from the slope and intercept as sketched in Figure 9.26. In order
to represent the cumulative evaporation as a function of t1/2

r in the range of validity of
(9.108), the sketch illustrates that the starting point of the integration should be tr = tr0,
i.e. t = (t0 + tr0), marking the end of the transition, rather than tr = 0. At t = (t0 + tr0), the
variable E−2 starts its linear relation with tr. The cumulative evaporation after the onset of
the desorptive regime is then∑

E2 = De0(t1/2
r − t1/2

r 0 ) (9.111)

in which the subscript 2 indicates the second stage of drying. The value of tr0, marking the
beginning of the second stage, can be related to the value of the cumulative evaporation at
the end of the first stage, or of the transition if there is one, say

∑
E1, as follows

tr0 =
(∑

E1/De0

)2
(9.112)

Thus (9.111) can also be expressed as∑
E2 = De0t1/2

r −
∑

E1 (9.113)

As mentioned, (9.110) can be used as a regression equation with experimental data to
estimate the values of the effective parameters De0 and t0; with a known or decided upon
value of

∑
E1, Equation (9.113) allows the prediction of the cumulative evaporation after

the onset of the second stage of drying.
Conceptually, it can be seen that this procedure is in fact based on a time compression

assumption, which is analogous with that used to describe rainfall infiltration after the
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start of ponding, as described in Section 9.4.3. This means that the evaporation rate at the
beginning of its desorptive phase is assumed to depend mostly on the water left in the soil
profile and much less on the prior evaporation history. This assumption is consistent with the
observations of Gardner and Hillel (1962) under constant laboratory conditions, mentioned
in Section 9.6.2.

The effect of vegetation
The two-stage concept with the desorption approach for the second stage was originally
developed for evaporation from bare soil. However, it was concluded by Brutsaert and
Chen (1995) that the desorption formulation can also be put to use in the description of
daily evaporation from grassland and other similar types of short vegetation. From their
analysis of experimental data obtained during several drying episodes in a natural tallgrass
prairie area in Kansas during FIFE, the First ISLSCP Field Experiment (see Sellers et al.,
1992), the following sequence of events appears to take place. Initially after rain, both soil
surface and vegetation evaporate at a rate governed by the available supply only; this can be
considered as a first stage of drying. (In this particular experimental setting, the first-stage
behavior lasted as long as the volumetric soil moisture θ in the top 10 cm was in excess
of 27%.) As the surface soil moisture becomes depleted below this first critical level, the
water supply rate to the soil surface becomes a limiting factor, but at first the plant roots are
still able to extract water from the soil at the energy-limiting rate. This may be referred to
as the transition stage. In this stage the combined rate of evaporation from the surface and
from the vegetation continues to decrease, until a second critical state of soil moisture is
reached. (In the experiment this second critical state was reached when the moisture content
went below about 17% and the vertical gradient started to exceed about 1.15% cm−1 at
5 cm.) At this point the vegetation becomes so stressed and relatively inactive that the
drying takes place mainly from the soil surface; from that point on the daily evaporation
proceeds like in a second stage of drying and it can be described simply by a desorption
formulation, that is proportional to the square root of time. The transition period can last
from several days to two weeks, depending on the soil moisture conditions and on the
season. The longer transition periods were observed under conditions of lower net radiation
and of higher soil moisture content at depths in excess of 50 cm. These results were in
contrast with the observations of relatively abrupt transitions for bare soil.

Example 9.4. A monthlong drought period in tallgrass prairie

The longest documented drying episode during the FIFE experiment occurred in the fall
of 1987. After a major rainfall event on day 253 (September 10) and minor rainfalls on
days 258 and 259, no rain fell until day 288 (October 15). (See also Figures 2.22 and 4.12.)
The recorded daily evaporation remained larger than the equilibrium evaporation Ee (see
Equation (4.30)) until day 258, when the near-surface soil moisture content θ was 0.303.
The evaporation rate became equal to Ee on day 259 and it dropped below it after that;
therefore, day 260 was taken to be the start of the transition stage. In order to determine
the end of the transition, the data were then analyzed as suggested by Equation (9.110),
and linear regression yielded, as shown in Figure 9.27, (Le E)−2 = 2.0 (t − 271) × 10−4, in
which (Le E) is the average daily latent heat flux in W m−2 and t the time as day of the year.
By choosing day 273 as the starting point for the integration, the cumulative evaporation
after the onset of the second stage could be obtained by Equation (9.111) (or (9.113)), as
shown in Figure 9.28. The fact that the data could be fitted to a straight line supports the
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Fig. 9.27 Evolution of measurements of daily mean values of (Le E)−2 (with Le E in W m−2) over a

natural tallgrass prairie surface in eastern Kansas during a prolonged drying period in 1987.

The straight line represents the relationship for the second stage of drying, namely

(Le E)−2 = 2.0(t − 271) × 10−4. The data were measured during the FIFE experiment. In the

episode shown here, the last major rainfall had taken place on day 253 and minor rainfalls on
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in which the summation starts on day 273, that is with tr0 = 2 days. (After Brutsaert and Chen,

1995.)

use of the desorption formulation in this case. The effective desorptivity derived from the
slopes in Figures 9.27 and 9.28 is approximately De0 = 0.495 cm d−1/2.

Although this value of De0 was obtained for a grassy surface, it is of the same order
as values reported for other studies with bare soil. As mentioned, for a sandy soil Black
et al. (1969) derived De0 = 0.496 cm d−1/2 from lysimeter measurements. Ritchie (1972)
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FIFE experimental area in eastern Kansas during the later stages of a major drying episode in

1987; the time shift was taken as t0 = 271. The solid lines represent the measurements, and the

dashed lines represent the calculated values. (From Brutsaert and Chen, 1996.)

inferred the effective desorptivity for bare soil from several other studies; for a clay loam
soil he reported 0.508 cm d−1/2, for loam 0.404 cm d−1/2, and for a black clay soil
De0 = 0.350 cm d−1/2. In the study by Parlange et al. (1992) the reported value was
De0 = 0.58 cm d−1/2. This similarity suggests that by the time evaporation from a grassy
surface comes down to this stage, the vegetation becomes quite inactive, and most of the
drying takes place from the surface, as if it is bare. The similarity for the different soil types
also suggests, as already indicated by the results of Jackson et al. (1976) shown in Figure
9.25, that vapor diffusion plays an important role in the second stage of drying, in addition
to the capillary rise of liquid water. Clearly, this phenomenon will require further study.

Diurnal variation by self-preservation approximation
In catchment hydrology the daily times scale is a common one; nevertheless, in many
applications a daily time resolution is too coarse, and time steps of 30 min to 1 h are required.
Further analysis of the same data observed over natural prairie, discussed in the previous
section, also indicated (Brutsaert and Chen, 1996) that, while the total daily evaporation
could be described with a t−1/2 dependency, this day-to-day evolution is modulated during
the day by the available energy at the surface, that is by the hourly radiation input. Moreover,
during the daytime hours the surface energy budget often displays self-similarity or self-
preservation, in the sense discussed in Section 4.3.4. This dual structure of the evaporative
evolution during very dry conditions suggests that it can be described, by combining the
desorption parameterization (9.108) for the total daily evaporation, or for any dimensionless
counterpart (such as the evaporative fraction EF, the Priestley–Taylorαe and possibly others),
with the assumption of self-preservation as expressed in Equation (4.51). The combination
of these two concepts yields the following evaporation rate at time t = ti of day td,

Ei = 1

2
De0d (td − t0)−1/2 F−1

d Fi (9.114)
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where t0 is the time shift parameter, and the subscripts d and i refer to daily and instantaneous
(say in practice, hourly or half-hourly) variables, respectively; Fd is the average flux on day
td of some other flux term (beside the latent heat flux) in the surface energy budget, which
can be assumed to exhibit a similar diurnal variation as the evaporation rate; Fi is that flux
at time t = ti of the same day. Thus Equation (9.114) contains two time scales, td in units
of days, and ti in units of hours. As illustrated in Figure 9.29, by assuming F = Rn − G
this formulation was able to reproduce daytime hourly flux values over a period of 2 weeks
during the second stage of drying already considered in Example 9.4. The approach was
subsequently applied again and validated in a different experiment by Porté-Agel et al.
(2000), who obtained similar results. Under the right circumstances, the approach based on
Equation (9.114) may be useful in the disaggregation of daily, or even weekly, evaporation
into hourly values, when more complete information is lacking.
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P RO B L E M S

9.1 Suppose that an approximate (but sufficiently accurate) solution of the Richards equation (9.1),
describing infiltration into an initially dry soil, with a thin layer of water ponded at the surface, can
be written as follows: z = 2.87 (1 − S9) t1/2 + 0.04 (1 − S20)t . The variable S = θ/θ0 is the degree
of saturation, z is the depth into the soil in cm, t is the time in min and θ0 is the water content at
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satiation. Calculate the following. (a) The cumulative infiltration volume (per unit area of ground
surface) as a function of time. (Specify the units of your result.) (b) The rate of infiltration as a
function of time. (c) The depth of the wetting front after one minute. The wetting front is the depth
below the surface, where the soil is just beginning to be wetted.

9.2 Calculate the same items, (a), (b) and (c), as in the previous problem; however, here the approximate
solution of the Richards equation is as follows: z = 2.90 (1 − S4) t1/2 + 0.05(1 − S9)t . The variable
S = θ/θ0 is the degree of saturation, z is the depth into the soil in cm, t is the time in min and θ0

is the water content at satiation.

9.3 Derive Equation (9.71) from (9.68), by scaling the variables.

9.4 Derive an expression for the cumulative infiltration volume Fc from Horton’s exponential equation
(9.76).

9.5 Derive an expression for the cumulative infiltration volume from Horton’s exponential equation
(9.76). Try to give physical meaning to the parameters, b and c, by expressing them as functions
of the sorptivity A0 and of the hydraulic conductivity at saturation k0. To accomplish this, compare
Fc from the Horton equation with (9.69), such that both expressions produce the same infiltrated
volume for very large values of t. Recall that β0 = 2/3 in Equation (9.69) and that a = k0 in
Equation (9.76).

9.6 Assume that the infiltration capacity rate in a given soil can be described by fc = 0.5 A0 t−1/2 +
k0/3, in which A0 is the sorptivity and k0 is the hydraulic conductivity at satiation. Derive an
expression for the cumulative infiltration capacity Fc.

9.7 A steady light rain P = 0.45 cm h−1 is infiltrating into a deep homogeneous soil, whose hydraulic
conductivity (in cm d−1) is given by Equation (8.37) (see also Figure 8.29), with a = 170 × 106,
b = 2.5 × 106, c = 4, and H in cm. Two tensiometers measure the pressure at 0.5 m and at 1.0 m
below the ground surface. If the manometers of these two tensiometers are located at 0.5 m above
the ground, what is the pressure reading in each of these manometers? Express the result in cm of
equivalent water column.

9.8 Consider the soil whose infiltration characteristics are given in Problem 9.6. (a) Calculate the
time to ponding in terms of A0 and k0, for a rainfall intensity 1.3 times as large as the hydraulic
conductivity, that isP = 1.3 k0. (b) Using this value of tp, calculate the compression reference
time tcr1 in terms of A0 and k0 by means of (9.91). (c) Write down an expression for the actual
cumulative infiltration F(t) making use of Equation (9.92). (d) Estimate the time to ponding for this
case if the hydraulic conductivity is k0 = 0.08 cm min−1 and the sorptivity is A0 = 1 cm min−1/2.

9.9 Multiple choice. Indicate which of the following statements are correct. The hydraulic conductivity
of a partly saturated soil:
(a) becomes smaller when the soil becomes drier;
(b) is minimum near the wetting front during infiltration of ponded water (in contrast to near

the surface);
(c) may increase with time during infiltration, as air, entrapped initially, goes into solution;
(d) is a function of the water content gradient;
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(e) is a function of the suction (p < 0) in the water in the soil;
(f) the latter function exhibits hysteresis.

9.10 Multiple choice. Indicate which of the following statements are correct. The surface of a soil
is kept ponded by a thin layer of water. The cumulative infiltration volume (not the rate) into a
homogeneous, initially dry soil profile of infinite depth:
(a) eventually (i.e. after a very long time;) becomes a linear function of time;
(b) eventually becomes a constant and independent of time;
(c) initially varies as t−1/2 because mainly capillary forces are acting;
(d) is initially equal to the hydraulic conductivity;
(e) decreases as a smooth function with time.

9.11 Multiple choice. Indicate which of the following statements are correct. Infiltration capacity (which
is the rate of vertical infiltration when the water supply at the soil surface is not limiting):
(a) may vary considerably with time;
(b) may depend on the rainfall rate (e.g. drizzle);
(c) is a function of the permeability of the soil;
(d) becomes, theoretically, equal to a constant after a long time of infiltration when the soil

profile is very deep (i.e. without an impermeable layer at shallow depth) and uniform;
(e) is largely independent of the vegetative cover of the surface or of the season of the year.

9.12 Assume that it is known that the similarity variable φ = x t−1/3 allows the reduction of the following
partial differential equation:

2x
∂θ

∂t
= ∂

∂x

(
θ4 ∂θ

∂x

)
to an ordinary differential equation, whose solution is θ = θ (φ). (a) Obtain that ordinary differen-
tial equation. (b) What are the restrictions on the problem geometry (time and space), as expressed
in the boundary conditions, to permit this type of similarity variable (two to three sentences only)?

9.13 Consider the differential equation (9.13) and the boundary conditions (9.14). If the solution of
this problem is φ = (1 − θ )n for 0< φ < 1, and θ = 0 for φ ≥ 1, in which n is a positive
constant, what is the diffusivity, Dw = Dw (θ )?

9.14 You are given the results of a horizontal infiltration experiment as shown in Figure 9.2. Initially,
the soil is totally dry or θi = 0 and its satiation water content is θ0 = 0.4. After t = 100 min, the
following water content distribution was obtained.

x
(cm)

0 5 10 15 17 19 20 20.5 21

θ 0.4 0.38 0.34 0.29 0.26 0.22 0.18 0.14 0

Calculate Dw = Dw(θ ) (in cm2 min−1) for values of θ = 0.10, 0.25, 0.30, 0.35 by solving
Equation (9.25) graphically or numerically.

9.15 Same as previous problem for θi = 0.02, θ0 = 0.45. After t = 740 min, the water content distribution
was:
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x
(cm)

10 30 40 50 60 70 72 75 76

θ 0.45 0.45 0.45 0.44 0.42 0.36 0.33 0.20 0.10

Calculate Dw = Dw(θ ) (in cm2 min−1) for θ = 0.2, 0.3, 0.4, 0.45 by solving Equation (9.25)
graphically or numerically.

9.16 Consider the horizontal infiltration experiment of Problem 9.15, which was allowed to run for
t = 740 min. Tabulate the water content distribution θ = θ (x), that would be observed, if the
experiment were allowed to run for only t = 370 min.

9.17 Derive the expression for the sorptivity (9.28) from the exact solution (9.27). From this, derive an
expression for the horizontal infiltration rate f .

9.18 Derive (9.39) from (9.38). Hint: use integration by parts, and follow up with Leibniz’s rule (see
Appendix).

9.19 A fairly accurate solution of the sorption problem is Equation (9.38) with b = 0. (It is not as accurate
as (9.43), but it is easier to handle analytically.) Use this solution to calculate the sorptivity A0 by
means of (9.39) and also the position of the wetting front φf; give a simple relationship between
F and xf, as a function of β, if the diffusivity is given by (8.39). Compare with the more accurate
result given in (9.48), and also presented in Figure 9.12, for the values β = 3 and 8.

9.20 Derive Equation (9.104) from (9.103).

9.21 Consider a homogeneous sandy soil profile, whose conductivity is given by (8.37) in cm d−1, with
a = 170 × 106, b = 2.5 × 106 and c = 4. Assume a potential evaporation of 0.4 cm d−1 from
the bare soil surface; what is the smallest depth of the water table for which the soil (instead of
the atmosphere) totally controls the evaporation?

9.22 Consider the Diablo loam, whose hydraulic conductivity is depicted in Figure 8.29. Use the values
of the parameters a, b and c in Equation (8.37) from the figure, and calculate the maximal rate
of evaporation (by steady capillary rise) from a bare soil surface for the following three cases; the
water table is (a) at 0.5 m, (b) at 1.0 m and (c) at 1.5 m below the surface.

9.23 Multiple choice. Indicate which of the following statements are correct. The motion of a wetting
fluid in two-phase immiscible flow problems is often described by Richards’s equation. This
formulation requires the following assumptions:
(a) Darcy’s law is valid;
(b) conservation of thermodynamic energy;
(c) the non-wetting fluid is inviscid, so that it moves freely without pressure gradient;
(d) The effects of capillarity are negligible;
(e) The porous matrix is incompressible.

(9.24) Multiple choice. Indicate which of the following statements are correct. During vertical infiltration
of ponded water (the water is maintained as a very thin layer of constant thickness) into a deep
homogeneous dry soil:
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(a) the effect of gravity predominates initially, to become nearly negligible after a very long
time;

(b) the specific flux at the surface is equal to the infiltration rate;
(c) the hydraulic conductivity is nearly constant at and on the wetting front;
(d) the water pressure in the top layers of the soil becomes a constant with depth after a very

long time;
(e) initially, the infiltration volume changes linearly with time.



10 G RO U N DWAT E R O U T F L OW
A N D BA S E F L OW

A major portion of the precipitation that percolates into the soil profile eventually finds
its way into creeks, rivers, lakes and other open water bodies. After the precipitation or
other input has ceased for some time, the entire streamflow can be assumed to consist
of the cumulative outflow from all upstream phreatic aquifers. The prediction of base
flow is of some practical importance because it is the rate of flow, that a given river
basin can sustain in the absence of precipitation and in the absence of artificial storage
works. Accordingly, this type of flow is variously known as base flow, drought flow, low
flow and sustained or fair-weather runoff. In engineering such flows have been studied
in connection with problems of water supply and water quality in rivers during drought
periods, and general basin and agricultural drainage.

During, and in response to, precipitation or snowmelt, the different pathways and the
detailed mechanisms, by which water reaches the stream, are more complex than during
drought flow episodes. Still, as will be seen in Chapter 11, it is generally agreed that also
storm runoff from natural basins with vegetation is largely supplied into the streams by
subsurface transport. Thus, subsurface drainage from the aquifers along the banks is one
of the key elements in catchment hydrology, not only under drought conditions but also in
response to precipitation. In this chapter, the subsurface outflow is first considered locally
at the point where it enters the stream, by analysis of the groundwater flow process in
the riparian unconfined aquifer; the first five sections describe the different formulations
that are available for this purpose. In the last section of the chapter, the phenomenon is
treated at the basin scale, by integration of these local groundwater outflows along the
streams and channels in the basin.

1 0 . 1 F L OW I N A N U N C O N F I N E D R I PA R I A N AQ U I F E R

10.1.1 General formulation

A typical cross section of an unconfined aquifer, whose water flows into the adjoining
stream, is sketched in Figure 10.1. As this flow system is usually relatively shallow
and exposed to the atmosphere through a partly saturated soil moisture zone, the water
pressures and effective stresses are rarely very large, so that the water and the solid
matrix can be assumed to be incompressible (see Brutsaert and El-Kadi, 1984, 1986).
Therefore, if the material can be assumed to be effectively isotropic, the flow, which
involves combined saturated and partly saturated conditions, is in principle governed by
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Soil surface

Impermeable layer

WT
p

w
<0

p
w
>0

Divide

Fig. 10.1 Sketch of the cross section of an unconfined riparian aquifer. WT refers to the water table, which is the

locus where the water pressure is atmospheric; above the WT the soil is partly saturated. The divide is

assumed to be the catchment boundary.

the Richards equation (8.56) (or also (8.89)) rewritten here for easy reference,

∂

∂x

(
k
∂h
∂x

)
+ ∂

∂y

(
k
∂h
∂y

)
+ ∂

∂z

(
k
∂h
∂z

)
= ∂θ

∂t
(10.1)

in which h = (z + pw/γ w) is the hydraulic head, z the vertical coordinate, k the hydraulic
conductivity and θ the water content of the aquifer. The boundary conditions can be
prescribed in broad terms as follows. At the bedrock or impermeable bed underlying the
aquifer and at the catchment divide, the flux is usually parallel to the boundary, or if n is
the coordinate normal to the boundary, ∂h/∂n = 0. At the ground surface, the specific
flux q across the boundary can be given as the evaporation E , as the infiltration rate f ,
or as a combination of both; for simplicity, however, in the analysis of base flow it is
often assumed to be zero, so that here also ∂h/∂n = 0. At the stream channel boundary,
the hydraulic head h is a constant that is equal to the height of the water surface in the
stream above the reference level of the elevation, z = 0. Along the stream banks there
is often a seepage surface, where the pressure is atmospheric, so that h = z. The initial
conditions may vary, depending on the assumed initial moisture content distribution.

This problem is not easy to solve. Aquifer properties are generally not spatially
uniform and may even change with time; thus beside θ = θ (x , y, z, t) as the dependent
variable, two additional nonlinear functions come into play; these are k = k(x, y, z, t, θ )
and H = H (x, y, z, t, θ ), in which, as before, H = −pw/γw is the suction expressed
as equivalent water column. At present there are no methods available to determine
the spatial variability of these parameter functions. Moreover, in geological deposits
with an irregular geometry like that of the aquifer profile shown in Figure 10.1, the
boundary conditions prevail underground, and they are invisible; they are therefore nearly
impossible to validate or to formulate precisely. A general solution of this problem is
obviously unattainable. Nevertheless, some crucial features of the flow phenomena can
be brought out by the solution of special cases and simplified geometries.

One common simplification consists of the adoption of “effective” parameter
functions; the basic concept was introduced in Section 1.4.3. In brief, it is based on the
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Fig. 10.2 Schematic representation of the cross section of an unconfined riparian aquifer, lying on a horizontal

impermeable layer. The origin of the coordinates is taken at the stream (x = 0) and at the

impermeable layer (z = 0); Dc is the water depth in the adjoining stream, D is the aquifer thickness,

and B is the aquifer breadth, that is the distance from the stream to the divide. The water table (WT),

is the locus where the water pressure pw is atmospheric, or pw = 0. Above the WT the soil is partly

saturated, and the water pressure smaller than atmospheric; below the WT the water pressure is

larger than atmospheric.

assumption that it is possible to define (or imagine) a spatially uniform model aquifer,
with effective parameter functions k = k(θ ) and H = H (θ ) which, upon solution of
Equation (10.1) with appropriate boundary conditions, produces the same flow charac-
teristics of interest, as the real spatially variable prototype aquifer. A second simplifi-
cation is based on the observation that the vertical dimensions of unconfined riparian
aquifers tend to be much smaller than their horizontal extent. This has led to the assump-
tion that the boundary conditions of real aquifers are rarely very different from those
of a two-dimensional model aquifer of rectangular cross section; for purposes of flow
analysis, the aquifer depicted in Figure 10.1 can thus be represented schematically as
shown in Figure 10.2. These two simplifications have allowed some standardization of
the groundwater outflow problem, while maintaining its main characteristics.

10.1.2 Some common approximate formulations

Even with the simplifications just mentioned, the governing Richards equation (10.1)
remains highly nonlinear and most problems involving combined saturated and partially
saturated flow must be analyzed by numerical methods. With the availability of high
speed digital computers, at present there is no dearth of efficient numerical codes for this
purpose, and rapid advances continue to be made in this field. One drawback of such
exact solutions of (10.1), however, is that they cannot be easily parameterized in practical
terms for incorporation in basin-scale analyses. Thus further simplifications, which may
be valid under special conditions and for which solutions may be more readily obtained,
are often called for.

In a first approximation the flow in the zone above the water table, where pw < 0, is
neglected, and the water table is treated as a true free surface; with the assumption of
an effective hydraulic conductivity and porosity, the governing equation (10.1) reduces
then to Laplace’s. This case is discussed in Section 10.2. In a second approximate for-
mulation, beside the free surface assumption, the distribution of the water pressure in the
general direction normal to the flow is assumed to be hydrostatic; these two assumptions,
also called the Dupuit assumptions, are the basis of the hydraulic groundwater theory,
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which is covered in Section 10.3. Linearization of the hydraulic groundwater approach
constitutes a third approximate formulation, and this is covered in Section 10.4. Finally,
the additional assumption that the hydraulic head gradient is equal to the slope of the
land surface produces a kinematic wave formulation, which is the fourth approximation,
treated in Section 10.5. But before looking more closely into these common simplified
approaches in the remainder of this chapter, it is useful first to consider briefly some
implications of solutions of Equation (10.1) itself.

10.1.3 A few features of combined saturated–unsaturated flow

Unsteady flow formulation
Some results of a numerical solution of Equation (10.1) were presented by Verma and
Brutsaert (1970; 1971b) for the two-dimensional case of outflow from a horizontal
unconfined aquifer with a rectangular cross section, after the cessation of recharge; this
situation is illustrated in Figure 10.2. The soil water characteristic was assumed to be
given by Equation (8.15) and the hydraulic conductivity by Equation (8.36). With the
effective saturation Se defined in Equation (8.6), the boundary conditions for this problem
can be specified as follows

h = Dc Se = 1.0 x = 0 0 ≤ z ≤ Dc

h = z Se = 1.0 x = 0 Dc ≤ z = h
∂h
∂x

= 0
∂Se

∂x
= 0 x = 0 h ≤ z ≤ D

∂h
∂x

= 0
∂Se

∂x
= 0 x = B 0 ≤ z ≤ D

∂h
∂z

= 0
∂Se

∂z
= 0 0 ≤ x ≤ B z = 0

∂h
∂z

= 0
∂Se

∂z
= 0 0 ≤ x ≤ B z = D

(10.2)

The first boundary condition is a result of the hydrostatic pressure distribution in the
stream. At the seepage surface the pressure is zero (i.e. atmospheric) and the hydraulic
head is equal to the height z, as indicated in the second condition. Above the seepage
surface the water pressure is negative, and because no outflow is physically possible
unless the pressure is at least atmospheric, this surface acts as an impermeable boundary
as indicated in the third of (10.2). The boundary conditions given by the fourth and fifth
of (10.2) express the no-flow or impermeable boundaries of the aquifer at the divide and
at the underlying bed rock. As it is assumed that there is no evaporation or recharge, the
ground surface acts like an impermeable boundary after the drainage starts, as indicated
in the last condition; however, this condition at the ground surface can be readily replaced
by the evaporative flux or recharge rate, if it is known.

The initial conditions, for t = 0, can be assumed to be those of a fully saturated
aquifer, in which the water table coincides with the ground surface. This situation is
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Fig. 10.3 Initial state for the unconfined riparian aquifer, shown in Figure 10.2. The water table (WT) is

assumed to be at the soil surface and the entire aquifer is saturated.

formulated as

∇2h = 0 Se = 1.0 0 ≤ x ≤ B 0 ≤ z ≤ D

h = D 0 ≤ x ≤ B z = D
(10.3)

Since k = k0 at Se = 1.0, which is assumed to be an effective hydraulic conductivity that
is constant over the whole flow domain, Equation (10.1) reduces to the Laplace equation,
as indicated in Equation (10.3). This initial state of the aquifer is shown in Figure 10.3.

Similarity criteria
By scaling the variables, it can readily be seen, that the only relevant (dimensionless)
parameters in this problem are: (i) those related to the soil, viz. n and b; (ii) those related to
the geometry of the flow, viz. B+ = B/D and Dc+ = Dc/D; and (iii) one related to both soil
and geometry, viz. (aD). Because a−1 in Equation (8.15) can be considered a measure of
the thickness of the capillary fringe, (aD)−1 expresses the relative importance of capillarity,
and thus of the partly saturated flow zone, with respect to the vertical dimensions of the
aquifer.

Results of some example calculations for Dc+ = 0, B+ = 1.0, with n = 3, (aD)−1 =
0.36, and b = 1.5 are shown in Figure 10.4, with n = 3, (aD)−1 = 0.1, and b = 3 in
Figure 10.5, and with n = 8, (aD)−1 = 0.36, and b = 1.5 in Figure 10.6. The values of
the parameters (mainly (aD)−1 and b) for Figures 10.4 and 10.6 could represent, for exam-
ple, a loam soil in an aquifer of approximately 3 m depth; those of Figure 10.5 a somewhat
coarser material in an aquifer of roughly the same depth. These calculations show that the
water table tends to fall faster for higher values of (aD)−1, and for smaller values of b;
but the value of n does not appear to affect this very much. This illustrates that in real
situations where capillary effects are important, it may be deceiving to use the water table
as an upper boundary of the flow domain, because a large amount of water may be left in
the unsaturated zone above the water table. It can also be observed that for large values
of n and after large t the lines of equal hydraulic head are close to horizontal outside the
zone of saturation, whereas they are more nearly vertical within this zone. This refraction
phenomenon is mainly the result of the fact that the upper boundary of the saturated zone
constitutes a boundary between a zone of high and a zone of low conductivity.

The results of these numerical experiments can be used to derive similarity criteria to
determine different regimes of flow in unconfined aquifers by comparing them with the
results of special solutions for each of these regimes (Verma and Brutsaert, 1971a, b). In
principle, all three parameters n, b and (aD)−1, which involve soil characteristics, should
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(a) t+ = 0.013 (b) t+ = 0.518

(c) t+ = 2.274 (d) t+ = 4.762

Fig. 10.4 Successive positions of the water table (dashed line) and of lines of equal hydraulic head

h+ = h/D (solid lines), in an aquifer with Dc+ = 0, B+ = 1.0, (aD)−1 = 0.36,

n = 3 and b = 1.5. The indicated time values are scaled with [(θ0 − θr)D]/k0. (From Verma

and Brutsaert, 1970.)

represent some aspect of the transport in the partly saturated flow zone. However, the
numerical calculations show that the effect of a change in b alone is very small, and also
that the calculated outflow rates are relatively insensitive to changes in n of only a few
units. Because n and b usually vary within a modest range for most soils, they are relatively
unimportant as compared with (aD)−1. This is illustrated in Figures 10.7, 10.8, 10.9 and
10.10. In Figures 10.9 and 10.10 the outflow rate is shown for an aquifer whose breadth B+
has been increased from 1 to 5. (The saturated two-dimensional case with a free surface (see
Section 10.2 below) is shown for comparison.) Comparing these two figures, one sees that
the difference between curve 1 and 2 decreases as B+ increases. Thus the effect of decreasing
(aD)−1 from 0.36 to 0.10 becomes less pronounced as B+ increases. This suggests that in
nature, where the values of B+ are usually much larger than the values considered here,
the effect of capillarity is likely to be even more pronounced than these numerical results
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(a) t+ = 0.013 (b) t+ = 0.518

(d) t+ = 4.762(c) t+ = 2.274
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Fig. 10.5 Same as Figure 10.4 for an aquifer with Dc+ = 0, B+ = 1.0, (aD)−1 = 0.10, n = 3 and b = 3.

(From Verma and Brutsaert, 1970.)

indicate, and that probably a smaller value of (aD)−1 is required before capillarity above the
water table can be neglected in the calculation of outflow rates. In any event, these results
show that it is mainly (aD)−1 that can be used to determine whether or not the capillary
flow above the water table is important.

Equation (8.15), from which the parameter a was obtained for these numerical exper-
iments, may not always be the optimal way to parameterize the soil-water characteristic.
Therefore, it is useful to broaden this criterion by defining a capillary zone number

Ca = Hc

D
(10.4)

in which Hc is a characteristic suction (negative pressure) required to reduce the degree of
saturation of the soil to a certain fraction. This dimensionless quantity Ca can be imple-
mented with the other expressions presented in Section 8.2.4 as well. For instance in the
case of Equation (8.14) one can simply put Ca = (Hb/D). It should be recalled that in
Equation (8.15) the parameter a−1 represents the (negative) pressure head to reduce the



flow in an unconf ined r ipar ian aquifer 373

(a) t+ = 0.013 (b) t+ = 0.518

(c) t+ = 2.274 (d) t+ =  4.762
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Fig. 10.6 Same as Figure 10.4 for an aquifer with Dc+ = 0, B+ = 1.0, (aD)−1 = 0.36, n = 8 and

b = 1.5. (From Verma and Brutsaert, 1970.)

water content to 1/2 of its value at saturation. In general, when Ca or (aD)−1 is small,
the partly saturated zone is relatively thin, and vice versa. As can be deduced from (8.5),
the characteristic negative pressure Hc is larger for fine-textured materials, and smaller for
coarse-textured soils. Put in practical terms, capillary flow effects are probably negligible
in a 100 m deep sandy aquifer, but they are likely to be more important in a 2 m deep clayey
soil profile.

The remaining two parameters, B+ = B/D and Dc+ = Dc/D, can be used to satisfy the
usual criteria for geometric similarity.

10.1.4 Initial state at the onset of drainage

The maximal outflow rate from an unconfined aquifer into an adjoining stream occurs when
the aquifer is fully saturated. Such a situation can be assumed to exist at the end of heavy or
prolonged precipitation, irrigation or snowmelt, and it can be taken to represent the initial
state of the aquifer when drainage is about to start. As indicated in Equations (10.3), the
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Fig. 10.7 Scaled outflow rate q+ from an aquifer with

rectangular cross section and with Dc+ = 0,

B+ = 1, plotted against scaled time t+. The rate

of flow is scaled with (D k0) and the time

variable with [(θ0 − θr)D]/k0. Curve 1

describes the outflow hydrograph for soil

properties (aD)−1 = 0.36, n = 3 and b = 2;

curve 2 for (aD)−1 = 0.36, n = 3 and b = 6;

curve 3 represents the case in which the partly

saturated zone above the water table is neglected

(see Section 10.2). (After Verma and Brutsaert,

1971b.)

Fig. 10.8 Same as Figure 10.7. Curve 1 describes the

outflow hydrograph for soil properties

(aD)−1 = 0.36, n = 3 and b = 1.5; curve 2 for

(aD)−1 = 0.36, n = 8 and b = 1.5; curve 3

represents the case in which the partly saturated

zone above the water table is neglected (see

Section 10.2). (After Verma and Brutsaert,

1971b.)

initial state of the unsteady drainage problem is thus taken to be a fully saturated aquifer,
in which the water table is assumed to be at the ground surface; such a condition can be
obtained by maintaining an infinitesimally thin layer of water on the surface at atmospheric
pressure. The exact solution of this classical steady state problem was derived by Kirkham
(1950).

Mathematical formulation
With the assumption of an effective hydraulic conductivity, the flow is governed by Laplace’s
equation (8.57), or for a two-dimensional cross section

∂2h
∂x2

+ ∂2h
∂z2

= 0 (10.5)
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Fig. 10.9 Scaled outflow rate q+ from an aquifer with

rectangular cross section and with

Dc+ = 0.5, B+ = 1, plotted against scaled time

t+. The rate of flow is scaled with (D k0) and the

time variable with [(θ0 − θr)D]/k0. Curve 1

describes the outflow hydrograph for soil

properties (aD)−1 = 0.36, n = 3 and b = 1.5;

curve 2 for (aD)−1 = 0.1, n = 3 and b = 3;

curve 3 represents the case in which the partly

saturated zone above the water table is neglected

(see Section 10.2). (After Verma and Brutsaert,

1971b.)

Fig. 10.10 Scaled outflow rate q+ from an aquifer with

rectangular cross section and with

Dc+ = 0, B+ = 5, plotted against scaled time

t+. The rate of flow is scaled with (D k0) and the

time variable with [(θ0 − θr)D]/k0. Curve 1

describes the outflow hydrograph for soil

properties (aD)−1 = 0.36, n = 3 and b = 1.5;

curve 2 for (aD)−1 = 0.1, n = 3 and b = 3;

curve 3 represents the case in which the partly

saturated zone above the water table is neglected

(see Section 10.2). (After Verma and Brutsaert,

1971b.)

The boundary conditions (see Figure 10.3) are a combination of Equations (10.2) and (10.3),
namely

h = Dc x = 0 0 ≤ z ≤ Dc

h = z x = 0 Dc ≤ z ≤ D
∂h
∂x

= 0 x = B 0 ≤ z ≤ D

∂h
∂z

= 0 0 ≤ x ≤ B z = 0

h = D 0 ≤ x ≤ B z = D

(10.6)

The solution can be obtained in several different ways. Kirkham (1950) derived it by
generalizing an earlier solution in cylindrical coordinates for the problem of flow into an
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auger hole. It can also be derived by conformal mapping (Polubarinova-Kochina, 1952).
However, separation of variables in the present coordinate system is probably the most
straightforward. The result for the hydraulic head can be written as follows

h = D −
∞∑

n=1,3,5,...

8D
(nπ )2

cos

(
nπ Dc

2D

)
cos

(nπ z
2D

)

× cosh

(
nπ (B − x)

2D

) /
cosh

(
nπ B
2D

)
(10.7)

Outflow rate
The rate of flow into the open channel or water body at x = 0, expressed as volume of water
per unit time and per unit length of channel (i.e. per unit width of aquifer normal to the
main direction of the flow in the aquifer), can be derived by applying Darcy’s law to the
solution (10.7), to wit

q = −k0

D∫
0

(
∂h
∂x

)
x=0

dz or q = −k0

B∫
0

(
∂h
∂z

)
z=D

dx (10.8)

which yield in either case

q = −k0

∞∑
n=1,3,. . .

(−1)(n−1)/2 8D
(nπ )2

cos

(
nπ Dc

2D

)
tanh

(
nπ B
2D

)
(10.9)

The minus sign in front of the right-hand side indicates that the outflow is in the negative x
direction. To allow comparison with other solutions and with experimental data, it is once
again convenient to scale the variables and express the result in dimensionless terms. The
form of Equation (10.9) suggests immediately the following

Dc+ = Dc/D

B+ = B/D

q+ = q/(k0 D)

(10.10)

Thus (10.9) assumes the form

q+ = −
∞∑

n=1,3,. . .

(−1)(n−1)/2 8

(nπ )2
cos

(
nπ Dc+

2

)
tanh

(
nπ B+

2

)
(10.11)

In many situations of practical interest, the aquifer thickness D is much smaller than its
horizontal dimensions, or B+ → ∞ and the water depth in the adjoining open channel
is very small compared to the aquifer thickness, so that Dc+ → 0. These two conditions
simplify (10.11) to the following

q+ = −8

π 2

(
1 − 1

9
+ 1

25
− · · ·

)
= −0.742 45 (10.12)

The significance of (10.12) is that it represents the maximal outflow rate from a fully
saturated shallow extensive aquifer into an empty channel. As an aside, the sum inside the
brackets is also known as Catalan’s constant, which equals 0.915 965.
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Fig. 10.11 Schematic representation of the flow domain some time after the onset of drainage in a

two-dimensional unconfined riparian aquifer, lying on a horizontal impermeable layer. The flow above

the water table (WT) is assumed negligible, so that the water table is a true free surface (FS). The

effect of capillarity is parameterized by means of the drainable porosity (or specific yield). The initial

position of the free surface is at the soil surface (SS), or η = D as shown in Figures 10.2 and 10.3.
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Whenever the effects of capillarity can be assumed to be relatively unimportant, the flow
in the partly saturated zone above the water table, in which pw < 0, can be neglected. The
moving water table can then be treated as a true free surface, which represents the upper
boundary of the changing flow domain. As noted above, the dimensionless capillary
zone number can provide an indication of the relative importance of the capillary effects
in an unconfined aquifer. This capillary zone number is defined in Equation (10.4)
as Ca = Hc/D, in which D is an average thickness of the unconfined aquifer under
consideration, and Hc is a characteristic capillary rise above the water table in the aquifer,
that is, a characteristic capillary suction, which reduces the degree of saturation of the
soil to a certain fraction, say 50%. Thus, whenever Ca is small, the partly saturated zone
above the water table can be eliminated from the flow domain, and the flow is assumed
to take place only below the moving water table.

10.2.1 General formulation

Differential equation and boundary conditions
Because in this approximation the flow region below the free surface is fully saturated, the
governing equation is again Laplace’s Equation (10.5). For the simple two-dimensional
case of an unconfined aquifer on a horizontal bed, which is initially fully saturated, the
boundary conditions can be taken as (10.2) and (10.3) from which the partly saturated
zone is eliminated (see Figure 10.11). They can be written as follows

h = Dc x = 0 0 ≤ z ≤ Dc t ≥ 0

h = z x = 0 Dc ≤ z = h t ≥ 0

∂h
∂x

= 0 x = B 0 ≤ z ≤ D t ≥ 0

∂h
∂z

= 0 0 ≤ x ≤ B z = 0 t ≥ 0

h = D 0 ≤ x ≤ B z = D t = 0

(10.13)
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Fig. 10.12 Illustration of the concept of drainable porosity (or specific yield) ne for the vertical soil column above

a water table, in which the maximal water suction is (−pw)max at the top of the column. The value of

ne can be defined by taking the area [ne × (−pw)max] as the difference between the area

[(θ0 − θu) × (−pw)max] and the area ABCD under the soil water characteristic curve. The water

drained from the soil at the top of the column is (θ0 − θu); thus ne is the average amount drained per

unit volume of soil in the column and (θ0 − ne) is the corresponding amount of water left in the soil.

Although this is a problem of unsteady flow, the time variable does not appear in the
governing Laplace equation. As already hinted in the second of (10.13), which describes
the seepage surface, the time variable enters the problem through the condition at the free
surface, which constitutes the moving upper boundary. Before deriving this free surface
condition, it is necessary to introduce the concept of the drainable porosity.

Drainable porosity
As the water table passes a point, say in the case of drainage when it is falling, the pores
do not empty immediately, but the water is retained by capillarity and other mechanisms
mentioned in Section 8.2.2; it is only when the water pressure decreases further, i.e. with
increasing suction, as illustrated in Figures 8.3–8.6, that water drains from the pores. In
the free surface approximation, the reality of this gradual transition is replaced by the
assumption of the drainable porosity, ne. This drainable porosity, which is also called
the effective porosity or the specific yield, can be defined as the volume of water per unit
volume of porous material, that is released or imbibed, as the free surface passes a given
point. In general, the amount of water present in the pores at a point depends on the
local water pressure. From this it follows that the drainable porosity must depend on the
prevailing water pressure distribution above the water table and therefore on the nature of
the flow situation. Figure 10.12 further illustrates how the concept can be interpreted with
reference to the soil water characteristic. It can be seen that ne depends on the value of the
maximum suction in the soil column above the water table; because (−pw)max changes
with time during unsteady flow, in principle ne may also be time dependent to some
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extent. As shown, the soil water characteristic curve in Figure 10.12 describes drainage;
obviously, consideration of repeated draining and wetting cycles with hysteresis would
complicate the matter even more. This means that the drainable porosity ne cannot be a
unique physical property of a given porous material, and that it must be considered as
a mere parameter that is to be adjusted and calibrated depending on the flow problem.
This is its main limitation, which should be kept in mind in practical applications of the
free surface approach in flow in porous media. But if this limitation is kept in mind, the
concept can yield useful results in the parameterization of groundwater flow processes
at the field and catchment scales.

Free surface condition
In principle, the condition at the free surface in a porous material is again Equation (5.1)
as presented in Chapter 5. If the function F = 0 describing the free surface is taken as
F = F(x , z, t) = [η( x , t) – z] = 0, in which η denotes the height of the free surface above
the reference level z = 0, this can be written as

u
∂η

∂x
− w + ∂η

∂t
= 0 at z = η (10.14)

in which, as before, u and w represent the x- and z-components of the true fluid velocity,
which is also that of the free surface.

The velocity of a fluid is its volumetric rate of flow per unit cross-sectional area occupied
by this fluid. Because the specific flux q in Darcy’s equation is the volumetric flow rate
per unit cross-sectional area of total or bulk porous material, it does not represent the true
velocity of the fluid particles (cf. Section 8.3.1). Rather, with the assumption of a drainable
porosity, the actual velocity of the fluid particles must be taken as (q/ne). Therefore, with
(qx/ne) and (qz/ne) as the x- and z-components of the velocity of the fluid and also of the
free surface, Equation (10.14) becomes, in terms of the Darcy flux,

qx
∂η

∂x
− qz + ne

∂η

∂t
= 0 at z = η (10.15)

With Darcy’s law one obtains finally

ne

k0

∂η

∂t
= ∂h

∂x
∂η

∂x
− ∂h

∂z
at z = η = h (10.16)

There is also a second way of implementing Equation (5.1) in a porous material to
formulate the condition at the free surface. If the adopted free surface function is F = F
(x , z, t) = [h(x , z, t) – z] = 0, one has instead of Equation (10.14)

u
∂h
∂x

+ w
∂h
∂z

− w + ∂h
∂t

= 0 at z = η = h (10.17)

from which one obtains the free surface condition, as an alternative to Equation (10.16),

ne

k0

∂h
∂t

=
(

∂h
∂x

)2

+
(

∂h
∂z

)2

− ∂h
∂z

at z = η = h (10.18)

Either (10.16) or (10.18) can be used in the solution of the problem; the choice depends
usually on the specific mathematical aspects to be investigated.
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Example 10.1. Displacement of a free surface

The physical significance and the application of Equation (10.16) can be illustrated for the
situation shown in Figure 10.13. An infinitesimally small portion of the water table AB
moves along the streamlines AA′ and BB′ to a new position A′B′ during a short increment
of time δt . If β is the slope of the water table and θ the angle between the streamlines and
the vertical, then it can be seen that the vertical component of the distance of the water table
fall AD is given by

AC = AA′(cos θ − sin θ tan β) (10.19)

According to Darcy’s law the total distance traveled by the point A during δt is

AA′ = − k0

ne

∂h
∂s

δt (10.20)

where ∂h/∂s is the hydraulic gradient along AA′. Substitution of Equation (10.20) into
(10.19) with the observation that

∂h
∂s

cos θ = ∂h
∂z

and
∂h
∂s

sin θ = ∂h
∂x

(10.21)

results in

AC = k0

ne

(
∂h
∂x

tan β − ∂h
∂z

)
δt (10.22)

This result, which was first derived by Kirkham and Gaskell (1951), is essentially a finite
difference form of Equation (10.16).

10.2.2 Some features of free surface flow solutions

Probably the earliest solution of this type of problem was presented by Kirkham and Gaskell
(1951) for the very similar flow situation of a falling water table during tile and ditch
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Fig. 10.14 Scaled outflow hydrographs q+ = q+(t+) from an aquifer with rectanglar cross section on a

horizontal impermeable bed, calculated with the free surface water table assumption for

Dc+ = 0. The scaled rate of flow is defined as q+ = q/(D k0) and the scaled time variable as

t+ = k0t/(ne D). Curve 3 describes the result of the two-dimensional analysis (see Section 10.2)

with Laplace’s equation and the free surface condition (10.16) or (10.22) for B+ = 6. Curves 1

and 2 are the results obtained with the one-dimensional hydraulic approach (see Section 10.3)

with Boussinesq’s equation (10.30) for B+= 6 and 8, respectively. The circles and the triangles

are experimental results for B+= 6 and 8, respectively. (After Verma and Brutsaert, 1971b.)

drainage. They derived the positions and shapes of a falling water table as a succession of
steady flow conditions. Thus the distribution of the hydraulic head h for an initially known
water table position was found by a numerical solution of Laplace’s equation by means of a
relaxation procedure. The next water table position, for a time δt later, was then determined
by means of Equation (10.22), and so on. The method was extended in Brutsaert et al. (1961)
by the inclusion of a partly saturated zone above the water table, and Laplace’s equation
was solved by an electrical network analog. Subsequently, other methods have been used to
solve this and similar free surface flow problems in porous materials, namely perturbation
techniques allowing linearization of Equation (10.16) (see Dagan, 1966; VandeGiesen et al.,
1994), finite difference methods (see Verma and Brutsaert, 1971a) and boundary integral
methods (Liggett and Liu, 1983).

The dimensionless number Ca can be used as the decisive criterion for the applicability of
the free surface approach, as compared to the complete description of saturated–unsaturated
flow. For example, Figures 10.7–10.10 illustrate how, unless Ca = (aD)−1 is small, the
neglect of the capillary zone results in an overestimate of the outflow rate for small times,
but in an underestimate for long times. As mentioned earlier, the other two parameters,
B+ = B/D and Dc+ = Dc/D, represent the criteria for geometric similarity. If the breadth of
an unconfined aquifer B, that is the distance from stream to divide, is at least 10 times larger
than the depth D, the outflow from a saturated aquifer can be satisfactorily reproduced by
the application of hydraulic groundwater theory (see Section 10.3). Figure 10.14 illustrates
this for an aquifer with B+ = (B/D) = 6 and 8, in which the partly saturated zone above the
water table is neglected; the experimental points were obtained with a Hele-Shaw viscous
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analog model (Ibrahim and Brutsaert, 1965). Figure 10.14 shows how, as time increases, the
outflows obtained with the one-dimensional hydraulic approximation become practically
the same as with the two-dimensional Laplace equation.

1 0 . 3 H Y D R AU L I C G RO U N DWAT E R T H E O RY :
A S E C O N D A P P ROX I M AT I O N

Free surface representations of flow in unconfined aquifers, as outlined in Section 10.2,
are usually easier to solve than those based on Richards’s equation, which include also
flow in the partly saturated zone above the water table. Nevertheless, the implementation
of this simplification for problems in catchment hydrology is rarely straightforward and,
even when obtainable, the resulting solutions can usually not readily be parameterized
for this purpose. Therefore, further simplifications are called for. One very common
approach is based on the observation that unconfined aquifers in natural catchments tend
to be relatively thin compared to their horizontal extent. Thus beside the assumption that
the water table is a true free surface, it is also assumed that under such conditions, the flow
is essentially parallel to the ground surface and/or to the underlying impermeable bed.
Specifically, the first assumption requires that the capillary zone number Ca = Hc/D
is small, whereas the second requires that the aquifer is shallow, so that B+ = B/D is
large. These two assumptions constitute the basis of the hydraulic groundwater theory.
It will become clear below that the hydraulic approach is considerably simpler and more
parsimonious than the more complete formulations described in Sections 10.1 and 10.2;
moreover, in many situations it produces a solution which is quite close to that obtainable
by a more complete formulation. Hence not surprisingly, this approach continues to be the
method of choice in many investigations. The hydraulic approach is usually attributed
to Dupuit (1863). It has also been referred to as the Dupuit–Forchheimer theory, to
acknowledge the fact that Forchheimer (1930) applied it to many different problems.

10.3.1 General formulation

The governing differential equations for this approach can be derived by combining the
continuity equation with Darcy’s law adjusted for the hydraulic assumptions.

Adjustment of Darcy’s law
The main assumption is essentially the same as that commonly made for open channel
flow. It is that the curvature of the streamlines is very small, so that the pressure distri-
bution is practically hydrostatic in the direction normal to the impermeable bed. For the
two-dimensional cross section of the aquifer shown in Figure 10.15, Equation (5.5) is
directly applicable and can be rewritten as

∂pw

∂z
+ γw cos α = 0 (10.23)

in which α is the slope angle of the underlying impermeable layer, and z is the coordinate
normal to that layer. Observe that with a sloping bed x and z are related with the vertical
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coordinate ζ by ∂ζ/∂z = cos α and ∂ζ/∂x = sin α. Integration of Equation (10.23)
yields

pw = γw cos α (η − z) (10.24)

where η = η(x, t) is the height of the water table, again measured in the direction normal
to the impermeable bed. From Equation (10.24) it follows that, for a constant bed slope α,
the pressure gradient in the direction of flow x is given by

∂pw

∂x
= γw cos α

∂η

∂x
(10.25)

This shows that this gradient depends only on the slope of the free surface, and is
independent of z; put differently, ∂pw/∂x is a constant along the direction normal to the
impermeable bed. For a fluid of constant density the hydraulic head is Equation (8.18)
or in the present notation h = ζ + pw/γw. With (10.25) the hydraulic gradient becomes

∂h
∂x

= cos α
∂η

∂x
+ sin α (10.26)

Hence, under the assumption of hydraulic flow, Darcy’s equation yields the specific flux

qx = −k0

(
cos α

∂η

∂x
+ sin α

)
(10.27)

which, as observed below Equation (10.25), is a constant in any given cross section
normal to the underlying bed at a distance x from the origin. A derivation of (10.27) was
first presented by Boussinesq (1877), and was later clarified by Childs (1971); however,
in both instances the approach differed somewhat from the one given here.
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Equation of continuity
Because qx is a constant along z, it is identical with the average, and the continuity
equation (5.13) derived for free surface open channel flow is also directly applicable here.
In (5.13) the term representing the displacement rate of the free surface ∂h/∂t becomes
∂η/∂t in the present notation. Because this is an actual velocity of the interface, the
average velocity V in (5.13) must be replaced here by the “true” velocity in the porous
material (qx/ne); similarly, the lateral inflow i must be replaced by a true recharge
velocity (I/ne), where I is the recharge rate, representing a source term as a volumetric
flux per unit ground surface area of porous material. Thus one obtains

∂η

∂t
+ ∂

∂x

(
qxη

ne

)
− I

ne
= 0 (10.28)

With (10.27) this assumes the form

∂η

∂t
= k0

ne

[
cos α

∂

∂x

(
η

∂η

∂x

)
+ sin α

∂η

∂x

]
+ I

ne
(10.29)

in which it is assumed, as is commonly done, that k0, ne and α are constant or can be
treated as effective parameters. In the absence of lateral inflow and for a horizontal
impermeable layer, Equation (10.29) becomes

∂η

∂t
= k0

ne

∂

∂x

(
η

∂η

∂x

)
(10.30)

Both (10.29) and (10.30) are forms of what is usually referred to as the Boussinesq
equation. To repeat, the Boussinesq equation is based on the following assumptions.
(i) The effect of unsaturated flow above the water table is negligible and it can be
parameterized by an effective porosity or specific yield ne; this is also the basis of the
free surface approach (i.e. the first approximation). (ii) The pressure distribution in the
direction normal to the bed is hydrostatic, which leads to (10.27), which is the basis of
the hydraulic approach (i.e the second approximation).

The derivation of Equations (10.29) and (10.30) is presented here for a two-
dimensional cross section of an unconfined aquifer. It is straightforward to consider
the more general case of three-dimensional flow, with x as the coordinate pointing up
the slope along the impermeable bed, and y as the horizontal lateral or span-wise coor-
dinate, to obtain a more general form of the Boussinesq equation, namely

∂η

∂t
= k0

ne

[
cos α

∂

∂x

(
η

∂η

∂x

)
+ sinα

∂η

∂x
+ ∂

∂y

(
η
∂η

∂y

)]
+ I

ne
(10.31)

Mathematically, Equation (10.31) can be characterized as a nonlinear advective diffusion
equation, with a variable (i.e. a function of η) and anisotropic hydraulic (groundwater)
diffusivity, whose two principal components are Dhx = k0η cos α/ne and Dhy = k0η/ne,
and with a hydraulic (groundwater) advectivity ch = −k0 sin α/ne.

A basic feature of the hydraulic approach is that two-dimensional flow is represented
by a one-dimensional formulation in Equations (10.29) and (10.30); thus the unknown
hydraulic head h = h(x , z, t) is replaced by the unknown position of the water table
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Fig. 10.16 Schematic representation of the cross section of an unconfined riparian aquifer, lying on a horizontal

impermeable layer, under steady flow conditions. The position of the water table results from a steady

and constant recharge rate Ic, and it has the shape of an ellipse without seepage surface at x = 0, when

determined with the hydraulic approach.

η =η (x , t). Similarly, three-dimensional flow is simplified to a two-dimensional problem
in Equation (10.31), as the unknown hydraulic head h = h(x , y, z, t) is replaced by the
unknown height of the water table η = η (x , y, t).

10.3.2 Steady flow described with hydraulic theory

Over the years hydraulic groundwater theory has been a powerful tool to solve a large
number of important practical problems under steady state conditions. The main reason
for its wide use is that under steady state conditions the Boussinesq equation becomes
linear in η2, which greatly simplifies the mathematical analysis. For instance, under
conditions of steady flow over a horizontal bed and in the absence of lateral inflow,
Equation (10.31) reduces to

∂2η2

∂x2
+ ∂2η2

∂y2
= 0 (10.32)

This is Laplace’s equation in η2, for which many solution methods are available. More-
over, because the problem is linear, known solutions for η2 obtained for relatively simple
boundary conditions can be extended to more complicated situations by the application
of image methods and other methods of superposition. Two examples of steady aquifer
outflow are presented in what follows.

Steady outflow resulting from a uniform precipitation
Under steady conditions and for an aquifer cross section with horizontal bed, as shown
in Figure 10.16, one can write Equation (10.29) as

∂

∂x

(
η

∂η

∂x

)
= − Ic

k0
(10.33)

where Ic is a constant recharge rate; this is usually taken as a climatological average
rainfall for design purposes, but it may also represent irrigation or a negative rate of
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evaporation from the water table or seepage through the bed, or any combination of
several of these rates. The following boundary conditions

η = Dc x = 0

∂η

∂x
= 0 x = B

(10.34)

indicate, as before in Equations (10.2) and (10.6), that the water level in the channel
is Dc, and on account of (10.27) that the divide represents an impermeable boundary.
Integrating (10.33) twice, one obtains for the height of the water table

η2 = Ic

k0
(2Bx − x2) + D2

c (10.35)

Actually, this result can also be derived directly without formal recourse to the Boussinesq
equation, by simply observing that at any point x according to (10.27) the rate of flow
through the area η is [−ηk0(∂η/∂x)]; this equals the rate of recharge at the surface, which
is given by [−Ic(B − x)], and solution of this equality yields Equation (10.35).

Equation (10.35) can be generalized, to facilitate comparison with experimental
results and other theoretical approaches, by scaling the variables as follows

η+ = η

B
, x+ = x

B
, Dc+ = Dc

B
and I+ = Ic

k0
(10.36)

This transforms (10.35) into

η+ = [
I+

(
2x+ − x2

+
) + D2

c+
]1/2

(10.37)

This result is illustrated in Figure 10.17 for a few examples.
Application of Equation (10.35) to x = B, where the water table has its maximal

height η = ηmax, yields immediately

B2 = k0

Ic

(
η2

max − D2
c

)
(10.38)

Equation (10.38) was originally intended as a design equation, to determine the spacing
(2B) of drainage ditches or underground pipe drainage systems of agricultural lands;
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Fig. 10.18 Schematic representation of the cross section of an unconfined aquifer, lying on a horizontal

impermeable layer between two open channels with constant water levels. If the water table (WT) is

assumed to be a free surface, the resulting steady flow rate q between the two channels is given exactly

by the Dupuit formula (10.43). The solid curve represents the true WT with a seepage surface and the

dashed curve the WT obtained with the hydraulic approach.

in fact, with a number of subsequent improvements it still provides the basis for many
of the soil drainage design procedures in use today. In order to apply it in its original
form, the variables on the right-hand side of Equation (10.38) must be known or decided
upon. Thus k0 is the hydraulic conductivity of the soil, Ic is taken as the average rate
of precipitation or other input during the period when drainage is needed most, Dc is
the depth of the water in the drainage channel or, to a first approximation, the height
of the drainage pipe above the impermeable layer, and ηmax is the main design vari-
able, namely the maximal allowable height of the water table above the impermeable
layer.

Equation (10.38) has a long history. It is now often referred to as the ellipse equation,
on account of the shape of the water table given by Equation (10.35) (see Figure 10.17).
It was probably first derived by A. Colding in Denmark before 1872 for the case Dc = 0,
after he became aware of earlier experimental results published in 1859 by S. C. Delacroix
in France; interestingly, he also recommended a 10% reduction of any B value obtained
with Equation (10.38), to make it agree better with these experimental data. Hooghoudt
(1937), who knew indirectly of Colding’s result through the work of others, was proba-
bly the first to derive (10.38) for arbitrary values of Dc; he later (Hooghoudt, 1940)
adjusted it to make it more suitable for drainage with pipes. A detailed history of
the equation and its more recent derivatives has been presented by VanderPloeg et al.
(1999).

Steady flow between two parallel channels without precipitation
In this problem, as shown in Figure 10.18, the flow in the unconfined aquifer is described
by the one-dimensional Laplace equation

∂2η2

∂x2
= 0 (10.39)

The boundary conditions are

η = Dc1 x = 0

η = Dc2 x = B
(10.40)
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where Dc1 and Dc2 are the depths in the two channels. Integrating (10.39) once, one
obtains

η
∂η

∂x
= C1 (10.41)

where C1 is an integration constant. Comparison with Equation (10.27) for a horizontal
bed shows immediately that C1 = −q/k0, in which q = (ηqx ). The variable q is the
rate of flow in the aquifer between the two channels per unit length of channel [L2/T].
Because the flow is steady, in the present situation q is a constant, that is, independent of x .
A second integration, with the first of (10.40), yields the position of the free surface

η2 = −2q
k0

x + D2
c1 (10.42)

Application of the second of (10.40) yields the rate of flow between the two channels, in
terms of the hydraulic conductivity and the known water levels in the two channels, or

q = −k0
(
D2

c2 − D2
c1

)
2B

(10.43)

Again, the negative sign in Equation (10.43) merely indicates that the flow is taking
place in the minus x direction. Equation (10.43) is known as the Dupuit formula (see
also Dupuit, 1863, p. 236). This result is of considerable theoretical interest, because
it can be shown to be exact. In other words, even though in the derivation of (10.43)
use is made of the hydraulic assumptions, it has the same form as the solution for the
same free surface problem, obtained when no use is made of the hydraulic assumptions.
The fact that, in some cases, it produces the exact result, suggests that the hydraulic
approach can be a powerful and reliable tool in the derivation of the groundwater flow
rates. This has been confirmed in other instances as well. However, it is now also known
that the hydraulic approach is not as accurate in the prediction of the geometry of the free
surface. One obvious reason for this is that an inherently two-dimensional flow pattern
is being described by a one-dimensional formulation. This precludes then, for example,
the inclusion of a seepage surface in the boundary conditions, as was done in the second
of (10.13). In hydraulic groundwater theory, there is no way to include the existence of
a seepage surface and the first two of (10.13) must of necessity be combined into one
condition, namely the first of (10.40) (or of (10.34)).

Exactness of the Dupuit formula
The proof proceeds as follows, for the situation sketched in Figure 10.18. Without consid-
eration of the hydraulic approximation, the rate of flow through a vertical section at any
point x between the two open channels is given by

q = −k0

η∫
0

∂h
∂x

dz (10.44)

Recall that h = h(x, z) and η = η(x); application of Leibniz’s formula (see Appendix,
Equation (A2)) therefore allows (10.44) to be rewritten as

−q = k0
d

dx

η∫
0

hdz − k0h(x, η)
dη

dx
(10.45)
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Since h(x, η) = η(x) defines the free surface, (10.45) can be integrated to yield

−qx = k0

η∫
0

h(x, z) dz − k0
η2

2
+ C (10.46)

The constant C can be determined by applying the boundary condition at x = 0, where
h = Dc1 for 0 ≤ z ≤ Dc1 and h = z for Dc1 ≤ z ≤ η. (The lower part of this boundary
condition describes the hydrostatic conditions and constant hydraulic head in the canal, and
the higher part the seepage surface; thus this condition differs from the first of (10.40), i.e.
the corresponding condition of the hydraulic approach, which is incapable of incorporating
a seepage surface.) After breaking up the integral in Equation (10.46) over the two parts of
its range, one obtains

C = −k0

Dc1∫
0

Dc1dz − k0

η0∫
Dc1

zdz + k0
η2

0

2
(10.47)

in which η0 is the value of η at x = 0, or finally upon integration

C = −k0
D2

c1

2
(10.48)

Application of the second boundary condition, namely at x = B, where h = η = Dc2 over
the whole range 0 ≤ z ≤ Dc2, with insertion of (10.48), changes (10.46) into

−q B = k0

Dc2∫
0

Dc2 dz − k0
D2

c2

2
− k0

D2
c1

2
(10.49)

Upon integration of (10.49), the desired result, namely the Dupuit formula (10.43), follows
immediately. This confirms that, even though the Dupuit formula was originally obtained
by means of the hydraulic approximation, it is in fact identical to the result obtainable with
a more rigorous derivation. This fact should instill some confidence in the more general
applicability of the hydraulic approach, as a very close approximation to describe flow rates
in other situations as well.

The exact derivation of the Dupuit formula was probably first presented by I. A. Charnii,
and it can also be found in the book by Polubarinova-Kochina (1952, p. 281). Later a similar
proof was presented by Hantush (1962; 1963).

10.3.3 Unsteady flow described with standard hydraulic theory

It is again instructive to consider the phenomenon of outflow from an unconfined aquifer
on a horizontal bed into a stream. This situation is still like the one described schemat-
ically in Figure 10.11; however, because now the hydraulic approximation is made use
of, the two-dimensional problem has been reduced to a one-dimensional problem, and
the z-coordinate is no longer part of the formulation.

Basic formulation
This flow problem was shown to be subject to boundary conditions (10.2) and (10.3)
or, after a first approximation, to (10.13); when these conditions are translated to the
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hydraulic approach with a horizontal aquifer, they become

η = Dc x = 0 t ≥ 0

∂η

∂x
= 0 x = B t ≥ 0

η = D 0 ≤ x ≤ B t = 0

(10.50)

The governing equation of this one-dimensional horizontal flow is the Boussinesq equa-
tion (10.30). However, even in this simple form, the equation is still nonlinear; this means
that, in contrast to linear problems, there are no general solutions available, and that a
specific ad hoc method must be devised for each new problem. Equation (10.30) subject
to (10.50) can, of course, be solved numerically (Verma and Brutsaert, 1971a); in Figure
10.14 some results, obtained this way with (10.30) subject to (10.50), are compared with
calculations with the complete free-surface formulation. There are, however, also two
exact analytical solutions available for boundary conditions, that may be considered as
short-time and long-time cases of Equations (10.50) with Dc = 0, and that are of interest
in practical situations. These solutions are treated in the next two sections.

Outflow rate
Once the solution of this problem has been obtained as η = η(x, t), the outflow rate q
from the aquifer into the stream at x = 0 can be determined by applying the hydraulic
form of Darcy’s equation (10.27), as follows

q = −k0

[
η

∂η

∂x

]
x=0

(10.51)

Recall that in this chapter q denotes the volume of water per unit time and per unit length
of channel (i.e. per unit span or per unit width of aquifer normal to the main direction
of the flow in the aquifer), so that its dimensions are [L2T−1]. In some cases it is more
convenient to follow a procedure, analogous with that used to obtain Equation (9.15)
for infiltration. Accordingly, as sketched in Figure 10.19, from continuity considerations
the cumulative outflow volume per unit span (with dimensions [L2]) from the aquifer at
x = 0 can be written in general as

∀ = ne

D∫
Dc

xdη (10.52)

which produces the outflow rate as q = d∀/dt . Both (10.51) and (10.52) are used in
the remainder of this chapter. The second approach to obtain the outflow is especially
useful, whenever the method of solution is based on Boltzmann’s transform, as was the
case for sorption and infiltration in Chapter 9.

10.3.4 Short-time outflow behavior

As will become clear below, the short-time outflow behavior of an unconfined aquifer
can be studied by analyzing the case of an infinitely wide aquifer, that is for B → ∞
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Fig. 10.19 Sketch illustrating the calculation of the drained volume as the area outside the η = η(x) curve, that is

the water table height at a given instant in time t . This can be done by integrating either the elemental

area (x dη) or the elemental area (D − η)dx. The point x = 0 is where the ground water exits the

aquifer, and B is the breadth of the aquifer or the distance of the divide from the stream channel.

x=0
Dc=0

D

x=B

WT

Fig. 10.20 Sketch illustrating the short-time water table configuration in an unconfined hydraulic aquifer, while

the boundary condition at x = B can be assumed to have no effect. The boundary conditions for this

situation are Equations (10.53), and Boltzmann’s transform is applicable.

(see Figure 10.20). If initially the aquifer is fully saturated, it can be assumed that as the
outflow starts the flow condition at x = 0 is not “felt” further away from the channel,
and that the flow proceeds as if the aquifer is infinitely wide. Subsequently, however, as
drainage continues, the effect of this condition diffuses, not unlike a wave, away from
x = 0, and as it approaches x = B, the short time solution gradually becomes invalid.
The boundary conditions, describing flow from such an infinitely wide, initially saturated
aquifer into an empty channel, can be formulated as

η = 0 x = 0 t ≥ 0

η = D x > 0 t = 0
(10.53)

Similarity considerations
Like in the sorption problem in Section 9.2, the nature of the semi-infinite flow domain
and these boundary conditions imply a certain symmetry; because the aquifer must be
empty after a very long time of drainage, the water level for t → ∞, is the same as at
x = 0 for all times; similarly, very far from the channel, i.e. for x → ∞ the water will
not “feel” the effect of the drainage and will remain at the original level it had at t = 0.
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Hence, Boltzmann’s transform, i.e.

φ = xt−1/2 (10.54)

can be used here as well. As will be shown next, this greatly simplifies the solution.
In the manner shown in Equations (9.12), the Boltzmann transformation (10.54)

allows the reduction of the Boussinesq equation (10.30) to the following ordinary
differential equation

k0

ne

d
dφ

(
η

dη

dφ

)
+ φ

2

dη

dφ
= 0 (10.55)

The boundary conditions (10.53) now become

η = 0 φ = 0
η = D φ → ∞ (10.56)

Regardless of the method used, the solution of (10.55) with (10.56) is of the form
η = η(φ) or φ = φ(η). The cumulative outflow volume from the aquifer at x = 0 is
given by Equation (10.52). Thus, once the solution φ = φ(η) is known, in light of the
Boltzmann transform, this outflow volume becomes

∀ = t1/2ne

D∫
0

φ(η)dη (10.57)

Because the integral in (10.57) is a constant, for conciseness of notation, the outflow
volume can be expressed in terms of the hydraulic desorptivity, defined as

Deh = ne

D∫
0

φ(η)dη (10.58)

The rate of outflow from the aquifer at x = 0, that is q = −d∀/dt , can now be written
as

q = −1

2
Deht−1/2 (10.59)

This can probably serve as a more tangible and practical definition of the desorptivity
than (10.58). Note that the outflow rate q can also be obtained by applying the hydraulic
extension of Darcy’s law at x = 0, namely Equation (10.51); naturally, for a known
solution η = η(x, t), the result should be the same as that obtained with (10.59) and
(10.58).

Before any solutions are discussed in detail, some interesting features of the hydraulic
desorptivity Deh can be derived from additional similarity considerations. It stands to reason
that the water table height η should be normalized with its initial value D; insertion of this
normalized depth into Equation (10.55) reveals then immediately the dimensionless form
of φ. Thus the problem can be cast in terms of the following scaled variables

η+ = (η/D)

φ+ = (ne/k0 D)1/2φ
(10.60)
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In terms of these dimensionless variables, the desorptivity (10.58) can now be written as

Deh = a (k0ne)
1/2 D3/2 (10.61)

In Equation (10.61) a represents the definite integral

a =
1∫

0

φ+dη+ (10.62)

which is a dimensionless constant, and thus simply a number whose value depends on the
solution.

To summarize, this brief analysis has shown how, except for a constant a, the exact
functional form of the rate of outflow from the aquifer, that is (10.59) with (10.61), can be
obtained by using similarity, that is almost by inspection, without actually deriving the solu-
tion. Two types of similarity were invoked here. The first, Boltzmann’s transform, which
results from the nature of the boundary conditions, involves a combination of the indepen-
dent variables; it states that the dependency of η on x is similar to its dependency on t−1/2.
The second type of similarity involves the scaling of the variables to make the formulation
dimensionless, and thus universally applicable to any aquifer, with any dimensions and
consisting of any type of porous material.

Solutions
Several solutions of this problem have been derived. Polubarinova-Kochina (1952, p. 507)
was able to obtain a solution, by transforming Boussinesq’s Equation (10.30) to the Blasius
equation for the viscous boundary layer. From her result it can be shown that

a = 0.664 12 (10.63)

but the details of the derivation are beyond the present scope. A similar but slightly more
accurate procedure was later used by Hogarth and Parlange (1999). There are also several
approximate solutions available, that while less accurate, still yield values of a close to
(10.63). One such solution, based on an approximation of Equation (10.30) by successive
steady states, was proposed in 1886 by K. E. Lembke (cited by Polubarinova-Kochina,
1952, p. 573); this assumption can be shown to lead to a = (1/3)1/2, which is within 13% of
Equation (10.63). Incidentally, the assumption of successive steady states is equivalent with
the quasi-steady approach, which was used in the solution of the horizontal infiltration prob-
lem by Parlange (1971). A second approximate solution can be obtained by linearization;
in 1947 J. H. Edelman (cited by Kraijenhoff, 1966) proposed its use to describe free surface
groundwater flow; this solution yields a = (4p/π )1/2, in which p is a parameter used to
compensate for the approximation due to the linearization and discussed further in Section
10.4. Comparison with Equation (10.63) shows that the linear solution can produce the
same result as the exact outflow rate, provided p = 0.3465.

Outflow rate
The rate of outflow from the aquifer into the adjacent stream or some other type of open
water body is the main item of interest in catchment hydrology; on the basis of simple
similarity, it was already shown to be given by Equation (10.59), in which Deh was
defined as a constant but unspecified hydraulic desorptivity. By combining (10.59) with
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Fig. 10.21 Successive scaled positions

of the water table

η+ = η/D in an

unconfined riparian

aquifer, as calculated with

Boussinesq’s solution
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(10.61) and (10.63), for convenient reference the outflow into the stream can now be
expressed in terms of the original values and parameters as

q = 0.332 06(k0ne D3)1/2t−1/2 (10.64)

10.3.5 Long-time outflow behavior

As formulated in Equation (10.50), the third condition describes an initially saturated
aquifer over the entire width of the aquifer, i.e. for 0 ≤ x ≤ B. Boussinesq (1904) showed
how, by relaxing this condition and by specifying the initial value of η only at x = B,
it becomes possible to obtain an exact solution of (10.30). Thus instead of (10.50), the
relaxed boundary conditions are the following

η = 0 x = 0 t ≥ 0

∂η

∂x
= 0 x = B t ≥ 0

η = D x = B t = 0

(10.65)

As will be shown below, Boussinesq’s method of solution implicitly requires the assump-
tion of self-preservation of the x-dependency of the water table height η, so that the shape
of the water table remains the same with time. This water table shape is not arbitrary, but
it results from the solution. As illustrated in Figure 10.21, that solution produces a water
table that is curvilinear throughout the drainage process, from the beginning at t = 0 to
the end when the outflow finally ceases. Normally, an initially saturated aquifer (cf. the
third of (10.50)) will exhibit this kind of shape only after drainage has proceeded for
some time; it is for this reason that the solution obtained in what follows is referred to
as a long-time solution.

Similarity considerations
As was the case for the short-time solution, useful insight can be gained by making
the formulation dimensionless. Again, it is reasonable to normalize the length variables
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η and x with their respective maximal values D and B, as suggested by the boundary
conditions (10.65). Insertion of these normalized variables in the governing differential
equation (10.30) yields then the appropriate scaling of the time variable. Thus one ends
up with the following scaled variables

x+ = x/B

t+ = [k0 D/(ne B2)]t

η+ = η/D

(10.66)

These dimensionless variables allow the Boussinesq equation (10.30) to be simplified as

∂η+
∂t+

= ∂

∂x+

(
η+

∂η+
∂x+

)
(10.67)

and the boundary conditions (10.65) as

η+ = 0 x+ = 0 t+ ≥ 0

∂η+
∂x+

= 0 x+ = 1 t+ ≥ 0

η+ = 1 x+ = 1 t+ = 0

(10.68)

This problem can be solved by separation of variables, that is, by assuming that the
solution η+ = η+(x+, t+) is a product of two functions, one dependent only on x+ and one
dependent only on t+, or

η+ = F1(x+)F2(t+) (10.69)

Substitution of (10.69) into (10.67) produces

1

F2
2

d F2

dt+
= 1

F1

d
dx+

(
F1

d F1

dx+

)
= C1 (10.70)

in which C1 must be constant; since x and t are independent of each other, the F1 and F2

dependent parts of Equation (10.70) can only be equal to each other if they are constant.
The solution of the differential equation for F1 cannot be expressed in terms of common
functions, but for the purpose of the present discussion it is not needed, so let it be assumed
that it is known; it will be derived below. However, the solution of the differential equation
for F2 yields immediately

−F−1
2 = C1t+ + C2 (10.71)

where C2 is a second constant. Thus, putting −F1(x+)/C2 = F(x+) and a = (C1/C2), one
can write the solution (10.69) in the following form

η+ = F(x+)

1 + a t+
(10.72)

where a is a dimensionless constant, and F(x+) is a function of x+ that satisfies the same
differential equation as F1(x+) and the conditions F = 0 for x+ = 0, and F ′ = 0 and F = 1
for x+ = 1, according to the boundary conditions (10.68). This solution indicates similarity,
in that the initial shape of the water table is preserved throughout. In other words, once the
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water table has a certain shape, it keeps that shape; the height of the water table only becomes
lower with time.

The outflow rate from the aquifer, Equation (10.51), can be written in terms of the
dimensionless variables defined in (10.66) as

q = −k0 D2

B
η+

∂η+
∂x+

∣∣∣∣
x+=0

(10.73)

Observe that this suggests that the outflow rate be scaled with (k0 D2/B), defining a dimen-
sionless outflow rate

q+ = Bq
k0 D2

(10.74)

With the solution (10.72) and putting

F
d F
dx+

∣∣∣∣
x+=0

= b (10.75)

one obtains in dimensionless form

q+ = −b
(1 + at+)2

(10.76)

In (10.76) a and b are dimensionless constants, whose values depend on the solution of
(10.70) for F(x+).

Again, as in the previous section, this brief derivation shows how, save for these two
constants, it is possible to obtain the exact form of the outflow rate, without actually solving
for F(x+), and mainly on the basis of two types of similarity considerations. The first type
involves self-preservation of the shape of the water table; this follows from the fact that the
solution can be obtained by separation of variables. The second type involves dimensional
analysis to scale the variables.

Solution
As mentioned, Boussinesq (1904) presented the exact solution to this problem. This solution
is greatly simplified by the use of the scaled variables and it proceeds as follows. The function
F2(t+) in Equation (10.70) has been solved for, and only F1(x+) remains to be determined.
With the transformations given below Equation (10.71) this requires the solution of the
following ordinary differential equation

d2

dx2+
(F2/2) = −aF (10.77)

Putting p = d(F2/2)/dx , one can readily check that the left-hand side of Equation (10.77)
can be written as p dp/d(F2/2). A first integration of this result yields

p2

2
= −aF3

3
+ C3 (10.78)

where C3 is a third constant of integration. Performing a second integration one obtains
from (10.78)

x+ =
F∫

0

ydy
(2C3 − (2a/3)y3)1/2

(10.79)
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in which use has been made of the first of the boundary conditions (10.68), namely F = 0
at x+ = 0. The two constants a and C3 will be determined next by imposing the remaining
two boundary conditions (10.68). Imposition of the second of (10.68) requires the derivative
of F . Thus, by means of Leibniz’s rule (see Appendix) one obtains from (10.79)

1 = F
(2C3 − (2a/3)F3)1/2

d F
dx+

(10.80)

At x+ = 1 the derivative d F/dx+ must equal zero, according to the second of (10.68);
moreover, in light of (10.72) at x+ = 1 the function F must be equal to one, according to
the third of (10.68). Hence, for the left-hand side of (10.80) to be unity, it is necessary that
C3 = (a/3). Finally, imposing the third of (10.68), i.e. F = 1 at x+ = 1, also on (10.79),
one obtains

1 =
(

3

2a

)1/2
1∫

0

y(1 − y3)−1/2dy (10.81)

By putting u = y3, it is easy to show that the integral in Equation (10.81) is equal to
B(2/3, 1/2)/3, where the B( ) symbol denotes the complete beta function; hence (10.81)
yields the following expression for the constant a = [B(2/3, 1/2)]2 /6. The value of
this beta function can be readily calculated by expressing it in terms of gamma func-
tions (see, for example, 6.2.2 in Abramowitz and Stegun, 1964), to obtain B(2/3, 1/2) =
�(1/2)�(2/3)/�(7/6) = 2.587 11, which produces immediately a = 1.1155. Substitution
of these values of the constants a and C3 into Equation (10.79) yields the x+-dependent
part of the solution as

x+ = 3

B(2/3, 1/2)

F∫
0

y(1 − y3)−1/2dy (10.82)

or, in a slightly different form,

x+ = 1

B(2/3, 1/2)

F3∫
0

u−1/3 (1 − u)−1/2 du (10.83)

In the form of Equation (10.83) the solution is an incomplete beta function for the variable
F3. Numerical values of this solution for F(x+) have been presented by Aravin and Numerov
(1953); they also indicated that in 1934 L. S. Leibenzon developed the approximation
F = (1.321x1/2

+ − 0.142x3/2
+ − 0.179x5/2

+ ); evidently, this expression involves a standard
error of estimate for F of 10−3. The function F(x+), as given by (10.82) or (10.83), is the
curve for t+ = 0 in Figure 10.21. Actually, Figure 10.21 shows the complete solution for the
height of the water table η+, as given by Equation (10.72), for different values of the time
t+. It can be seen that, indeed, with (10.72) the water table exhibits self-preservation and
that it maintains the same curvilinear shape throughout the whole drainage process, from
beginning to end. If the aquifer were initially saturated, as required in (10.50) and (10.53),
the water table would only become curvilinear after enough water has drained; therefore,
the solution of (10.30) with (10.65), is only be applicable to describe “long-time” outflow
behavior.

Having obtained the solution , F(x+), one can now determine the value of the constant b,
needed for the outflow rate in Equation (10.76). Again, to obtain b, as defined in
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Equation (10.75), it is necessary to apply Leibniz’s rule to (10.82), in the same manner
as done earlier to obtain (10.80); this yields

1 = 3

B(2/3, 1/2)
(1 − F3)−1/2 F

d F
dx+

(10.84)

Imposition of the boundary condition at x+ = 0, i.e. F = 0 to this result, produces imme-
diately b = B(2/3, 1/2)/3 = 0.862 37.

Outflow rate
With the two constants determined, for future reference it is convenient to rewrite the
outflow rate (10.76) in terms of the original variables as

q = −bk0 D2

B

(
1 + ak0 D

ne B2
t
)−2

(10.85)

in which the two constants have the following values

a = 1.115
b = 0.862

(10.86)

The applicability of this solution for large values of t has been confirmed experimen-
tally by means of a Hele–Shaw model (Ibrahim and Brutsaert, 1965, 1966). Apparently,
equations with the same and similar functional forms as (10.85) were first used by Maillet
(1905; Boussinesq, 1904) in his analysis of drought flows of the Vanne River.

1 0 . 4 L I N E A R I Z E D H Y D R AU L I C G RO U N DWAT E R T H E O RY :
A T H I R D A P P ROX I M AT I O N

A major disadvantage of all formulations to describe unconfined groundwater flows,
discussed so far in this chapter, is that they are nonlinear. Even the simplest, those based
on the hydraulic approach, still suffer from this, and there is no general methodology
available for their solution. It is understandable, therefore, that attempts have been made
in the past to remedy this by linearization. Because the solution to a linear problem
can be represented as a unit response function, it can be generalized and extended
to many different boundary and initial conditions by simple superposition. Moreover,
once obtained, such unit response functions can provide a direct link between the main
underlying physical mechanisms captured by the Boussinesq equation, and the more
abstract mathematical aspects of general linear systems (i.e.unit hydrograph) approaches
at the catchment scale (see Chapter 12).

10.4.1 General formulation

The common way to linearize the Boussinesq equation, in the case of its simplest form,
Equation (10.30), is to expand the second derivative on the right-hand side as follows

∂η

∂t
= k0

ne

[(
∂η

∂x

)2

+ η
∂2η

∂x2

]
(10.87)
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The basic assumption in the linearization is that position η of the free surface is never
very different from an unperturbed average value, say η0. Thus, because η remains close
to constant, in (10.87) the first term on the right becomes negligible, and η in the second
term can be replaced by η0. Equation (10.87) then becomes

∂η

∂t
= k0η0

ne

∂2η

∂x2
(10.88)

Equation (10.88) is in the form of the standard diffusion equation, with a constant
hydraulic (groundwater) diffusivity

Dh = k0η0

ne
(10.89)

In a similar way, the more general form (Equation (10.31)) of the Boussinesq equation can
be linearized to produce

∂η

∂t
= k0η0

ne

(
cos α

∂2η

∂x2
+ ∂2η

∂y2

)
+ k0 sin α

ne

∂η

∂x
+ I

ne
(10.90)

in which, as before, α is the slope of the underlying impermeable bed.
A second but less common way of linearizing the Boussinesq equation consists of

multiplying both sides by η, and then bringing it inside the first derivatives or replacing it
by η0, whichever appears more appropriate. For instance, in the case of Equation (10.30)
this yields

∂η2

∂t
= k0η0

ne

∂2η2

∂x2
(10.91)

which is linear in η2. This approach was probably first used by N. A. Bagrov and later
by N. N. Verigin (Polubarinova-Kochina, 1952; Aravin and Numerov, 1953). A theoretical
advantage of Equation (10.91) over (10.88) is that for steady conditions it reduces to (10.39)
as it should; this means that it accords better with the hydraulic assumptions on which the
Boussinesq equation is based. Nevertheless, the few studies on this have not been conclusive
(Polubarinova-Kochina, 1952, p. 501; Brutsaert and Ibrahim, 1966) as to which of the two
linearizations is preferable; but for some practical applications (see below) this may be
immaterial.

A few comments are in order on the optimal value of η0 to be used in the linearization.
It stands to reason that the optimal value of η0 should never be very different from the
average water table height, namely

〈η〉 =
B∫

0

η dx/B (10.92)

The difficulty with this is that η is unknown. Nevertheless, two known solutions for
special situations may give some indication. One occurs when D and Dc in the boundary
conditions (10.50) have nearly the same value. Inspection of the Dupuit formula (10.43)
for steady flow shows that it can be considered in some way as a finite difference form of
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Darcy’s law, with a hydraulic head gradient (Dc2 − Dc1) /B, and an average thickness
of the flow zone given by (Dc2 + Dc1) /2; this suggests that when D and Dc have nearly
the same value, a good approximation should be η0 = (D + Dc) /2. The second case is
encountered when the depth in the channel is negligible so that Dc = 0, and D is the
only remaining parameter that can be used to characterize the average thickness of the
flow zone. For such situations it is convenient to put

η0 = pD (10.93)

in which p is a constant adjustment parameter to compensate for the linearization. The
linearized solution a = (4 p/ π )1/2 for the short-time unsteady outflow rate by Edelman,
mentioned earlier in Section 10.3.4, shows that it can simulate the exact result (10.63)
provided p = 0.3465. This suggests that in the initial stages p probably lies in the vicinity
of 1/3. However, this value of p = 0.3 ∼ 0.4 is applicable only for small to intermediate
times, at most; for larger times, as the water table height η continues to decrease, the
optimal value of η0 is likely to become smaller as well.

10.4.2 Flow from a horizontal aquifer

Consider again the standard case of outflow from an initially saturated aquifer, after the
cessation of rainfall or recharge, as described by boundary conditions (10.50). In the
linearized system the governing differential equation is now (10.88).

Similarity considerations
As before in (10.66), it is convenient to scale the variables. The form of (10.88) and of
(10.50) suggest that this be done as follows

x+ = x/B

t+ = [k0η0/(ne B2)]t

η+ = (η − Dc) / (D − Dc)

(10.94)

These scaled variables allow the differential equation (10.88) to be written as

∂η+
∂t+

= ∂2η+
∂x2+

(10.95)

Similarly, the boundary conditions (10.50) can be expressed in terms of the scaled
variables as follows

η+ = 0 x+ = 0 t+ ≥ 0

∂η+
∂x+

= 0 x+ = 1 t+ ≥ 0

η+ = 1 0 ≤ x+ ≤ 1 t+ = 0

(10.96)
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Solution
Separation of variables in the form of a product solution like (10.69), and substitution in
(10.95) produce in this case

1

F2

d F2

dt+
= 1

F1

d2 F1

dx2+
= −C1 (10.97)

where C1 is a constant for the same reason as in (10.70), which is positive because η+ and
F2 must always remain finite; this can be seen from the solution for the t+-dependent part
of (10.97), that is

F2 = C2 exp(−C1t+) (10.98)

The solution of the differential equation for F1 in (10.97) produces

F1 = C3 sin(
√

C1x+) + C4 cos(
√

C1x+) (10.99)

where C3 and C4 are constants. Application of the first of (10.96) indicates that C4 = 0.
Application of the second of (10.96) indicates that the constant C1 must satisfy

cos(
√

C1) = 0 (10.100)

This is the case, provided√
C1 = (2n − 1)π/2 (10.101)

in which n can assume any value n = 1, 2, 3, . . . , ∞. Combining (10.98) and (10.99), with
(10.101), one obtains

η+ = Cn sin ((2n − 1)πx+/2) exp(−(2n − 1)2π 2t+/4) (10.102)

where Cn = (C2C3) is a constant which depends on the particular value of n used. Equa-
tion (10.102) satisfies the first two conditions of (10.96); the third remains to be satisfied.
Inspection of (10.102) at t+ = 0, shows that it is impossible to obtain η+ = 1 with any single
sine function, and that this is only possible if the solutions for the different values of n are
summed as an harmonic series; the system is linear, and thus a sum of solutions is also a
solution. Imposing the third of (10.96) on that series, one obtains

∞∑
n=1,2,. . .

Cn sin

(
(2n − 1)π

2
x+

)
= 1 (10.103)

The values of the constants Cn can be readily determined by the method of Fourier. This
method consists of multiplying both sides of (10.103) by sin ((2m − 1)πx+/2) dx+, and
then integrating over the flow domain, which in this case covers the range 0 ≤ x+ ≤ 1. This
produces

Cm = 4

π (2m − 1)
(10.104)

Finally, after insertion of (10.104) into the series of (10.102), the solution can be written as

η+ =
∞∑

n=1,2, . . .

4

π (2n − 1)
sin

(
(2n − 1)π

2
x+

)
exp

(
− (2n − 1)2π2

4
t+

)
(10.105)
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Fig. 10.22 Successive scaled positions of the water table η+ = (η − Dc)/ (D − Dc) in an unconfined

riparian aquifer, as calculated with the linear Boussinesq solution (10.105), for the indicated

values of the scaled time t+ = [k0η0/(ne B2)] t . The variable x+ = x/B is the scaled distance

from the stream; for t+ > 0.2, the solution is essentially reduced to the fundamental harmonic,

(10.107), that is the first term in the series expansion.

Equation (10.105) is displayed for several values of the time t+ in Figure 10.22. Reverting
back to the original (dimensional) variables, by means of (10.94), one obtains from (10.105)

η = Dc + 4(D − Dc)

π

∞∑
n=1,2,...

1

(2n − 1)
sin

(
(2n − 1)π

2B
x
)

× exp

(
− (2n − 1)2π 2k0η0

4ne B2
t
)

(10.106)

This solution was already implicit in the work of Boussinesq (1903, 1904), who compared
the problem to the “cooling of a prismatic homogeneous rod, laterally impermeable, of
length L , having its extremity x = 0 immersed in melting ice and its other extremity,
x = L , impermeable to the heat just like the sides.” But he felt that the solution would
“reduce more or less rapidly to the simple fundamental solution of Fourier,” that is, the
first term in the series, so that the higher-order terms would be negligible. It was probably
not until the work of Dumm (1954) and Kraijenhoff (1958) that the full series was used in
hydrology.

The arguments of the exponential functions in the series in (10.105) (and in (10.106))
increase rapidly as 1, 9, 25, . . . Moreover, the amplitudes of the sine functions in the series
decrease as 1, 1/3, 1/5, . . . These are the two features which made Boussinesq observe,
that with time only the first term in the series survives. Thus the water table (10.105)
gradually assumes the shape of the first sine function, and the long-time linear solution is
the fundamental harmonic

η+ = 4

π
sin

(πx+
2

)
exp

(−π2t+
4

)
(10.107)
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Comparison between the first and second term in the series of (10.105) shows that this
long-time solution can be assumed to be valid when t+ > 0.2, where the error drops well
below 1%. In terms of the original variables the long-time solution is from (10.107) and
(10.94)

η = Dc + 4(D − Dc)π
−1 sin

(πx
2B

)
exp

(−π2k0η0t
4ne B2

)
(10.108)

Outflow rate
After linearization, the outflow rate (10.51) from a hydraulic aquifer into the adjoining
open water body becomes

q = −k0η0
∂η

∂x

∣∣∣∣
x=0

(10.109)

In terms of the scaled variables of (10.94) this can be written as

q+ = − ∂η+
∂x+

∣∣∣∣
x=0

(10.110)

in which the rate of outflow is scaled with k0η0(D − Dc)/B, so that by definition

q+ = Bq
k0η0(D − Dc)

(10.111)

Application of (10.110) with the general solution (10.105) yields

q+ = −2
∞∑

n=1,2,. . .

exp

(
− (2n − 1)2π2

4
t+

)
(10.112)

This result is illustrated in Figure 10.23. In terms of the original variables, after trans-
formation with (10.94), the rate of outflow from the unconfined aquifer (10.112) can be
written as

q = −2k0η0(D − Dc)B−1
∞∑

n=1,2,. . .

exp

(−(2n − 1)2π2k0η0t
4ne B2

)
(10.113)

As already noted, eventually with increasing time only the first term of the series remains,
as the terms in n = 2, 3, . . . become negligible. Therefore, the long-time expression of
the outflow rate is from (10.112)

q+ = −2 exp

(
−π2

4
t+

)
(10.114)

As shown in Figure 10.23, (10.114) becomes applicable for t+ > 0.2, that is for t >

0.2ne B2/(k0η0). Thus, when this criterion is satisfied, (10.113) yields the long-time
outflow rate in terms of the original variables

q = −2k0η0(D − Dc)B−1 exp

(
−π2k0η0t

4ne B2

)
(10.115)

If, as is often the case in small upland catchments, the water in the stream is shallow
compared to the water table levels in the aquifer, it can be assumed that Dc = 0. With
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Fig. 10.23 Scaled outflow hydrograph q+ = q+(t+)

from a linearized hydraulic aquifer into an

adjoining open water body (heavy line) as

given by Equation (10.112); also shown is the

long-time version (thin straight line), that is

the first term in the series expansion, as given

by Equation (10.114). The scaled variables

are defined in Equations (10.94) and (10.111).

(10.93) this further simplifies (10.115) to

q = −2k0 pD2 B−1 exp

(
−π2k0 pDt

4ne B2

)
(10.116)

Unit response and response to an arbitrary input
Although (10.113) (or (10.116)) was obtained for rather specific boundary conditions, it
is still broadly applicable. Indeed, as pointed out by Kraijenhoff (1958), it represents in
fact the unit response, that is the Green’s function for the linear hydraulic aquifer. The unit
input applied over the whole aquifer (in two dimensions, that is per unit length of stream
channel or per unit span), causing this response, is [ne(D − Dc)B]δ(t); per unit area of
ground surface this is [ne(D − Dc)]δ(t). Therefore, the response of a linearized hydraulic
aquifer to a delta function input, that is the unit response, from (10.113), is

u = −2k0η0(ne B)−1
∞∑

n=1,2,. . .

exp

(−(2n − 1)2π2k0η0t
4ne B2

)
(10.117)

Arbitrary inputs into the aquifer by precipitation, snowmelt, etc., or negative inputs by
evaporation at the surface, leakage through the impermeable bed, etc., can be dealt with by
simple convolution (see Appendix). Thus if this input per unit horizontal area is I = I (t),
with dimensions [L/T], applied uniformly over the aquifer, i.e. independently of x , the
resulting outflow rate at x = 0 is

q =
t∫

t−tm

I (τ )u(t − τ )dτ (10.118)

where u = u(t) is given by (10.117) and tm is the memory inherent or assigned to the flow
system. It should be noted that in a similar way, on account of the assumed linearity of the
system, the solution for the position of the water table, namely (10.106), can in principle
also serve as the basis for a unit response function resulting from a delta function input; this
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can then be used to predict the evolution of the water table resulting from arbitrary inputs
(e.g. steady rainfall as in the following example) by convolution, i.e. with the analog of
(10.118) applied to η instead of q. However, as noted earlier, the position of the water table
in hydraulic groundwater theory is quite unreliable, and need therefore not be of further
concern here.

Example 10.2

The application of (10.118) can be readily illustrated by considering the case of a constant
input of unit intensity I (t) = Ic. The resulting outflow rate becomes steady when this input
has been applied for a very long time. Thus one has from (10.118) with (10.117)

q = −2k0η0

ne B

t∫
−∞

Ic

∞∑
n=1,2, ...

exp

(−(2n − 1)2π2k0η0(t − τ )

4ne B2

)
dτ (10.119)

which upon integration becomes

q =
∞∑

n=1,2

−8B Ic

(2n − 1)2π2
exp

(−(2n − 1)2π 2k0η0t
4ne B2

) [
exp

(
(2n − 1)2π2k0η0τ

4ne B2

)]t

−∞
(10.120)

Applying the integration limits, and recalling that 1 + 1/9 + 1/25 + · · · = π 2/8, one
obtains finally

q = −B Ic (10.121)

as expected. It goes without saying, that this case is the linearized version of the case already
treated earlier, for which the position of the water table was shown to be given by Equations
(10.35) and (10.37), illustrated in Figures 10.16 and 10.17.

Example 10.3

The next case to be considered is the outflow rate some time after a steady input Ic has
ceased. This represents the outflow rate from the aquifer, with the initial shape of the water
table given by (10.37) resulting from a steady infiltration, rather than by the third of (10.50)
describing fully saturated conditions. This case is of practical interest, as the steady input
may represent prolonged rainfall or irrigation. Indeed, the onset of drainage after prolonged
rainfall or irrigation, which does not fully saturate the aquifer, is a common occurrence in
humid regions. If t = 0 is the time when the steady input stops, the input I = I (t) can be
formulated as follows

I = Ic for −∞ < t < 0
I = 0 for 0 ≤ t

(10.122)

Thus (10.118) can be written as

q =
0∫

−∞

Icu(t − τ )dτ +
t∫

0

0 u(t − τ )dτ (10.123)
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Fig. 10.24 Scaled outflow hydrograph q+ = q+(t+) from

a linearized hydraulic aquifer into an

adjoining open water body (heavy line) as

given by (10.126), and the first term in the

series expansion (thin straight line). Here the

outflow rate is scaled with the initial outflow

rate q = BIc; this initial outflow rate results

from a steady input Ic prior to t+ = 0, as

described in Example 10.3.

The second term on the right yields zero; therefore, upon integration of the first term on the
right of (10.123) with (10.117), one can write

q = −
∞∑

n=1,2

8B Ic

(2n − 1)2π2
exp

(−(2n − 1)2π 2k0η0t
4ne B2

) [
exp

(
(2n − 1)2π2k0η0τ

4ne B2

)]0

−∞
(10.124)

or, finally, after application of the limits of integration,

q = −
∞∑

n=1,2

8B Ic

(2n − 1)2π 2
exp

(−(2n − 1)2π2k0η0t
4ne B2

)
(10.125)

At t = 0, when the steady input ceases, this solution yields the initial condition (10.121),
as it should. A feature worth noting in (10.125) is that it converges much more quickly to
the first term in the series than (10.113), on which the unit response (10.117) is based. This
rapid disappearance of the higher-order terms in (10.125) is best illustrated by expressing
it in dimensionless form. By scaling the outflow rate with the initial flow rate, so that in the
present case q+ = q/(B Ic), (10.125) becomes

q+ = −
∞∑

n=1,2

8

(2n − 1)2π 2
exp

(−(2n − 1)2π 2t+
4

)
(10.126)

where t+ is as defined in (10.94). Equation (10.126) is illustrated in Figure 10.24, where it can
be seen that only the first term survives, when t+ > 0.08; this is in contrast with (10.112),
illustrated in Figure 10.23 where the same can be seen to occur only for t+ > 0.2. The
difference between these two cases stems from the different initial condition. For (10.112)
the aquifer is assumed to be initially fully saturated, whereas for (10.126), the water table
is initially assumed to be described by the linearized version of (10.35).

Example 10.4

Consider now the outflow resulting from rainfall as an arbitrary input function of time
I = P(t). In principle there should be no problem in carrying out the convolution integration,
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analytically or numerically. However, rainfall data are usually recorded as bar graphs, that
is as constant values over finite time intervals, hourly or daily. This simplifies the analysis
somewhat, as it allows the formulation of the input function in the same way as in the
previous example. In this example assume the following rainfall sequence

P = 0 for 0 ≤ t < t1

P = 0.2Pc for t1 ≤ t < t2

P = 0.9Pc for t2 ≤ t < t3

(10.127)

in which Pc is a reference intensity rainfall (e.g. 5 mm h−1).
Consider the case when the aquifer is dry at t = 0. Application of (10.118) with (10.127)

and (10.117) produces different expressions q(t) depending on the magnitude of t relative
to t1, t2 and t3. For instance, when t1 < t < t2 the outflow is

q = q(t) = −2k0η0 Pc

ne B

t∫
t1

0.2
∞∑

n=1,2, . . .

exp

(−(2n − 1)2π2k0η0(t − τ )

4ne B2

)
dτ (10.128)

and after integration

q = −
∞∑

n=1,2

8B Pc

(2n − 1)2π 2
0.2

[
1 − exp

(−(2n − 1)2π2k0η0(t − t1)

4ne B2

)]
(10.129)

Similarly, for the case when t > t3 one has

q = q(t) = −2k0η0 Pc

ne B

⎡
⎣ t2∫

t1

0.2
∞∑

n=1,2, ...

exp

(−(2n − 1)2π 2k0η0(t − τ )

4ne B2

)
dτ

+
t3∫

t2

0.9
∞∑

n=1,2, ...

exp

(−(2n − 1)2π 2k0η0(t − τ )

4ne B2

)
dτ

⎤
⎦ (10.130)

or, upon integration

q = −
∞∑

n=1,2

8B Pc

(2n − 1)2π 2

[
0.2

[
exp

(−(2n − 1)2π2k0η0(t − t2)

4ne B2

)

− exp

(−(2n − 1)2π 2k0η0(t − t1)

4ne B2

)]
+ 0.9

[
exp

(−(2n − 1)2π2k0η0(t − t3)

4ne B2

)

− exp

(−(2n − 1)2π 2k0η0(t − t2)

4ne B2

)]]
(10.131)

The outflow rate produced by (10.127) is illustrated in Figure 10.25, for time values t1 =
2 days, t2 − t1 = t3 − t2 = 1 day. In Figure 10.25, for conciseness of notation, q is scaled
with B Pc and it is expressed in terms of scaled time t+ defined in (10.94). Note that t+ = 0.1
corresponds to roughly 1 day here; this conversion is obtained for typical (Brutsaert and
Lopez, 1998; Eng and Brutsaert, 1999) field values for small catchments k0 = 0.001 m s−1,
ne = 0.02, η0 = 2 m, and B = 300 m.
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Fig. 10.25 Scaled outflow hydrograph q+ = q/(BPc) from a linearized hydraulic aquifer into an adjoining

open water body resulting from the precipitation event (10.127) given in Example 10.4. The full

series solution is represented by the heavy line and the first term in the series expansion by the

thin line. In this example t+ = 0.1 is taken to be roughly equivalent with one day.
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Fig. 10.26 Definition sketch of the cross section of an unconfined hillslope aquifer. The distance along the land

surface from the stream to the divide is Bx = B/ cosα.

10.4.3 Flow from a hillslope aquifer

Again, to derive the unit response function, it is convenient to consider the problem of
outflow from an initially saturated aquifer (Figure 10.26). While the aquifer empties out,
there is no surface recharge, so that the differential equation governing this phenomenon
is (10.90) with I = 0. In the case of a sloping aquifer, the total flow rate at any distance
x from the channel can be determined from (10.26); after linearization, this is

(qxη) = −k0

(
η0 cos α

∂η

∂x
+ sin αη

)
(10.132)

Therefore, the boundary condition at the divide, where x = Bx, is not simply the second
of (10.50), but it must be adjusted to simulate the impermeable barrier in accordance
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with (10.132). Moreover, in hilly terrain, torrential streams tend to be shallow, and they
usually have no effect on the groundwater flow in the adjoining hillslopes, so that it is
safe to assume that Dc = 0. Hence, instead of (10.50), for an initially saturated sloping
aquifer the boundary conditions can be formulated as follows

η = 0 x = 0 t ≥ 0

η0 cos α
∂η

∂x
+ sin αη = 0 x = Bx t ≥ 0

η = D 0 ≤ x ≤ Bx t = 0

(10.133)

For the present two-dimensional case of flow down the slope, and in the absence of lateral
inflow, with I = 0, the linearized form of the governing equation (10.31) (i.e. (10.90))
can be written as

∂η

∂t
= k0η0 cos α

ne

∂2η

∂x2
+ k0 sin α

ne

∂η

∂x
(10.134)

Notice again that this equation is in the form of the linear advective diffusion equation,
which was already encountered in the diffusion approach of open channel flow (cf.
Equations (5.88) and (5.92)). In the present case of a sloping aquifer the hydraulic
diffusivity is not simply (10.89), but it contains the slope effect, or

Dh = k0η0 cos α

ne
(10.135)

In addition (10.134) contains a hydraulic (groundwater) advectivity

ch = −k0 sin α

ne
(10.136)

By analogy with flood wave propagation in open channels, a disturbance of the water
table height η in a sloping aquifer can be visualized as undergoing two types of changes.
The first is a deformation of its shape, which is governed by the diffusivity (10.135); the
second is a displacement of this disturbance down the slope, whose rate of propagation
is given by the advectivity (10.136).

Similarity considerations
The boundary conditions (10.133) and the form of the governing differential equation
(10.134) suggest that the variables be scaled as follows (cf. Equation (10.94))

x+ = x/Bx

t+ = [
k0η0 cos α/

(
ne B2

x

)]
t

η+ = η/D

(10.137)

Equation (10.134) becomes in terms of these variables

∂η+
∂t+

= ∂2η+
∂x2+

+ Hi
∂η+
∂x+

(10.138)
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In (10.138) Hi can be called the groundwater hillslope flow number, which is defined
as

Hi = Bx tanα

η0
(10.139)

Equation (10.138) is in the form of the advection diffusion equation; because it is dimen-
sionless it has a unit diffusivity. From a comparison between Equations (10.95) and
(10.138), it can be seen that the dimensionless parameter Hi, represents the relative mag-
nitude of the slope term, that is the effect of gravity, versus the diffusion term. This ratio
increases with the slope α and with the “shallowness” Bx/D of the aquifer. For large
values of Hi the diffusion term, i.e. the first term on the right of Equation (10.138), is
negligible, and the kinematic flow approximation (see Section 10.5) is valid. For small
values of Hi (i.e. a small slope α and/or a relatively deep aquifer with large D/Bx )) the
problem can be treated as one of horizontal flow, and the solution can be approximated
by (10.106).

Solution
The boundary conditions (10.133) can be written in dimensionless form

η+ = 0 x+ = 0 t+ ≥ 0

∂η+
∂x+

+ Hi η+ = 0 x+ = 1 t+ ≥ 0

η+ = 1 0 ≤ x+ ≤ 1 t+ = 0

(10.140)

The solution of (10.138), subject to (10.140) can be obtained by means of the Laplace
transform. This can be shown (Brutsaert, 1994) to be

η+ =
∞∑

n=1,2,3...

2zn[exp(−Hi/2) − 2cos(zn)]sin(zn x+) exp
[− (

z2
n + Hi2/4

)
t+ + (1 − x+)Hi/2

]
(
z2

n + Hi2/4 + Hi/2
)

(10.141)

In (10.141) zn is the nth root of

tan(z) = z
−Hi/2

(10.142)

which has an infinity of roots, say z1, z2, . . . zn , . . . ; Equation (10.142) arises in many
problems and its roots zn have been tabulated (see Carslaw and Jaeger, 1959, p. 492;
Abramowitz and Stegun, 1964, p. 224). Note that for very small values of Hi, one has
zn = [(2 n −1)π/2] which is in agreement with (10.101) for the horizontal case. For large
values of Hi, the roots approach zn = (n π ).

Outflow rate
The outflow rate can be obtained by applying (10.132) to (10.141) at x = 0. This yields

q+ = −2
∞∑

n=1,2,3 . . .

z2
n[1 − 2 cos(zn)exp(Hi/2)] exp

[ −(
z2

n + Hi2/4
)
t+

]
(
z2

n + Hi2/4 + Hi/2
) (10.143)



l inear ized hydraulic groundwater theory 411

0.1

1

10

100

0 0.1 0.2 0.3 0.4 0.5
t+

q+

0

1
2

4
10

20

Fig. 10.27 Scaled outflow hydrograph q+ = q+(t+) from a linearized sloping hydraulic aquifer into an

adjoining open channel as given by (10.143), for the values of the hillslope flow number

Hi = 0, 1, 2, 4, 10 and 20; Hi = 0 represents the horizontal case. The scaled time variable is

defined in (10.137) and the aquifer is initially fully saturated.

where the scaled outflow rate is defined as q+ = Bx q/(k0η0 D cos α) and the scaled time t+ is
defined in (10.137). The reader can verify that, when the hillslope flow number vanishes, or
Hi = 0, this expression reduces immediately to the solution for the horizontal case (10.113)
with Dc = 0.

The outflow hydrograph from a sloping aquifer (10.143) is illustrated in Figure 10.27
for different values of the hillslope flow number Hi. The long-time behavior of this outflow
rate displays the typical exponential decay with time of linear systems, but the exponential
function has two extinction coefficients; the first (z2

n) reflects the diffusive character of the
flow, and the second (Hi2/4) reflects its kinematic character, that is the effect of the steepness
of the slope. As a result, the outflow rate displays two features which are worth noting. First,
as is the case with (10.101), the values of zn increase rapidly with n in the higher-order
terms, so that these terms decay rapidly, regardless of the value of Hi. This means that for
large values of t only the first term in the series survives, producing the straight lines in the
semi-logarithmic plot of Figure 10.27; thus for larger values of t the rate of flow q decays
exponentially in approximately the same way as in the horizontal case as a result of diffusion,
but this rate is increased by the presence of the term containing Hi. The second feature is
that, as the hillslope flow number Hi increases, the outflow hydrograph gradually displays
a “hump,” or rather a “pause” in its progress. Mathematically, this phenomenon results
from the fact that, as Hi becomes larger, the relative importance of the diffusion term in
Equation (10.138) (the first term on the right) decreases compared to the advective term (the
second term on the right). This means that the nature of the flow in the aquifer becomes less
diffusive and more kinematic, that is, increasingly driven by gravity on account of the slope.
As will be discussed further in Section 10.5, kinematic motion is purely translatory without
change in shape of the water table. In the present case described by Equation (10.138),
in the early stages, while all the higher order terms in the series solution are still active,
diffusion causes the water table near the outlet to spread out, a behavior not unlike that of
flood waves in open channels, discussed in Chapter 7; but later on, as the kinematic effect
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takes over, the bulk of the water left in the aquifer tends to move down more as a translatory
wave, causing the appearance of a “pause” in the hydrograph during the transition between
the two regimes. The occurrence of this pause is related to the time when the height η+ of
the water table approaches zero at the divide, where x+ = 1. The rate at which the water
table height approaches zero at the divide, like the strength of the pause illustrated in Figure
10.27, depends mainly on the magnitude of the hillslope flow number Hi. Actually, it can be
seen that Equation (10.141) predicts that at the divide η+ can never become zero, and that
with time it can only approach it exponentially. This is somewhat counterintuitive, because
the hydraulic groundwater approach is based on the assumption that the water table is a
true free surface and thus a sharp interface; therefore physically, there is no reason why
such a sharp interface η+(x+, t+) would not be able to become 0 at x+ = 1, and it would be
expected that after this occurs, the point of η+ = 0 would slide down along the bottom of
the aquifer from x+ = 1 in the direction of x+ = 0. Originally, the fact that (10.141) does
not predict such a sequence of events was thought to be caused by the shortcomings of the
hydraulic approach with the Boussinesq equation; it was recently (Stagnitti et al., 2004)
shown, however, that this is not the case, and that it is in fact the result of the linearization
of that equation. This should not be surprising, as it is well known that solutions of the
linear diffusion equation usually do not exhibit sharp fronts, but rather long exponential
tails; other examples of this or similar features can be found in applications of the linear
diffusion equation in open channel flow (Equation (5.95) and Figure 5.9) and in infiltration
(Equation (9.56) and Figure 9.10). Nevertheless, in the present context, the inability of
Equation (10.141) to allow the water table height η+ = 0 to move down along the bottom
of the aquifer past x+ = 1, may not be a crucial issue in hillslope hydrology. In real aquifers,
the falling water table is not a sharp drying front, and the flow is more closely described by
the Richards equation, than by the Boussinesq equation. This means that the solution of the
linearized formulation, viz. Equation (10.141), with its asymptotic approach to zero, may
not necessarily provide a worse approximation than the sharp interface description. Still,
regardless of these shortcomings, the analysis of the linearized problem shows how with
increasing Hi, the diffusive aspects of the phenomenon gradually become less important,
and perhaps even irrelevant in the description of hillslope flows in actual catchments; this
suggests that for large values of Hi, say in excess of 10, it may be preferable to use the
considerably simpler kinematic approach outlined below in Section 10.5.

The short time limit of Equation (10.143) can be shown (Brutsaert, 1994) to be simply

q = − (k0η0ne cos α/π )1/2 Dt−1/2 (10.144)

This is Equation (10.59) with (10.61), as expected, with a value of the constant a given by

a = [4η0 cos α/(π D)]1/2 (10.145)

Actually, Equation (10.144) is the exact solution of (10.138) without the second term on
the right, subject to (10.133), in which B → ∞ and sin α = 0. This means that after a
sudden cessation of the water supply (e.g. from rainfall) at the soil surface, the outflow
proceeds initially as a diffusion phenomenon in an infinitely long aquifer. This is not unex-
pected. Recall that a similar type of behavior with initial t−1/2 dependency occurs in other
phenomena described by the advection diffusion equation as well; one example, covered
in Chapter 9, is vertical infiltration of ponded water into a dry soil profile. Note also, that
Equation (10.144) with (10.145) for α = 0 is the solution for drainage from an infinitely
long horizontal aquifer proposed by Edelman (cited by Kraijenhoff, 1966).
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Unit response and response to an arbitrary input
Equation (10.143) represents the outflow rate following complete saturation of the hillslope
aquifer. Therefore it is the unit response, that is Green’s function, or the instantaneous unit
hydrograph for a sloping aquifer. Again, the input applied over the whole aquifer (in two
dimensions, that is per unit length of stream channel), causing the response (10.143), is
(ne DBx)δ(t); per unit area of ground surface this is (ne D)δ(t). Therefore, the response of a
linearized hydraulic hillslope aquifer to a delta function input, that is the unit response, is

u(t) = −2k0η0 cos α

(ne Bx )

∞∑
n=1,2,3 . . .

z2
n[1 − 2 cos(zn)exp(Hi/2)]exp[ −(

z2
n + Hi2/4

)
t+

]
(
z2

n + Hi2/4 + Hi/2
)

(10.146)

This means that, just like Equations (10.113)–(10.116) for the horizontal case, this solution
can also accommodate arbitrary inputs such as infiltration of precipitation or snowmelt
and leakage through the bottom bed, by convolution by means of (10.118). As before, this
arbitrary input per unit ground surface area can be taken as I = I (t), with dimensions [L/T],
applied uniformly over the aquifer, i.e. independently of x . However, because of the slope
some caution is called for; if I represents an input per unit horizontal area (as would be the
case for rainfall), in (10.118) it should be replaced by (I cos α).

The observations regarding the unit response function for the position of the water table,
made below Equation (10.118) for horizontal aquifers, are equally applicable to the present
case of sloping aquifers.

Example 10.5

Consider the same situation as described previously in Example 10.3. This problem concerns
the formulation of the outflow rate from a hillslope aquifer after a long-duration steady
precipitation event has ceased. The application of Equation (10.118) can follow along the
same steps as outlined in (10.122) and (10.123). If the steady input rate per unit horizontal
area is given by Ic, the input rate used in the convolution integral should be (Ic cos α); with
the unit response (10.146), this integral yields the following result

q(t) = −2Bx Ic cos α

∞∑
n=1,2,3...

z2
n[1 − 2 cos(zn)exp(Hi/2)]exp

[ −(
z2

n + Hi2/4
)
t+

]
(
z2

n + Hi2/4 + Hi/2
) (

z2
n + Hi2/4

)
(10.147)

Observe that Equation (10.125) represents the special case of (10.147) for a horizontal
aquifer with α = 0. Equation (10.147) is illustrated in Figure 10.28, for different values of
Hi; to allow easy comparison, as before in (10.126) the flow rate is scaled with its initial
value, namely as q+ = q/(Ic Bx cos α).

Example 10.6

Consider in this example the same input sequence as given in (10.127). By means of the
unit response (10.146), the calculations can be carried out in the same way as in Example
10.4. As an illustration, the aquifer outflow rate for the case when t > t3 can be written as
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Fig. 10.28 Scaled outflow hydrograph q+ = q+(t+) from a linearized sloping hydraulic aquifer into an

adjoining open channel as given by Equation (10.147), for the values of the hillslope flow

number Hi = 0, 1, 2, 4, 10 and 20. Hi = 0 represents the horizontal case (see Example 10.3).

The outflow rate is scaled with the initial outflow rate q = (Ic Bx cosα), so that

q+ = q/(Ic Bx cosα); this initial outflow rate results from a steady input Ic prior to t+ = 0, as

described in Example 10.5. The time is scaled as indicated in Equation (10.137).

[by analogy with (10.130)]

q = q(t) = −2k0η0 Pc cos2 α

ne Bx

⎧⎨
⎩

t2∫
t1

0.2
∞∑

n=1,2, . . .

z2
n[1 − 2 cos(zn)exp(Hi/2)](

z2
n + Hi2/4 + Hi/2

)

× exp

[
−(

z2
n + Hi2/4

)
[k0η0 cos α] (t − τ )(

ne B2
x

)
]

dτ

+
t3∫

t2

0.9
∞∑

n=1,2, . . .

z2
n

[
1 − 2 cos(zn)exp(Hi/2)

]
(
z2

n + Hi2/4 + Hi/2
)

× exp

[
−(

z2
n + Hi2/4

)
[k0η0 cos α] (t − τ )(

ne B2
x

)
]

dτ

}
(10.148)

This result can be readily integrated to yield (by analogy with Equation (10.131) for the
horizontal case)

q = −2Bx Pc cos α

∞∑
n=1,2, . .

[
z2

n

[
1 − 2 cos(zn)exp(Hi/2)

]
(
z2

n + Hi2/4
) (

z2
n + Hi2/4 + Hi/2

)
]

× [
0.2

[
exp

(−(
z2

n + Hi2/4
)
(t+ − t+2)

) − exp
(−(

z2
n + Hi2/4

)
(t+ − t+1)

)]
+ 0.9

[
exp

(−(
z2

n + Hi2/4
)
(t+ − t+3)

) − exp
(−(

z2
n + Hi2/4

)
(t+ − t+2)

)]]
(10.149)

in which the scaled time variable is defined in Equation (10.137).
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10.4.4 Incorporation of capillary flow zone

Attempts have been made to incorporate certain features of the partly saturated flow above
the water table into the linearized hydraulic approach. In principle, such an approximation
can be used for any type of free surface formulation, but until now mainly the linear
Boussinesq equation has been considered. Examples of such studies are presented in the
journal articles by Pikul et al. (1974) and Parlange and Brutsaert (1987).

1 0 . 5 K I N E M AT I C WAV E I N S L O P I N G AQ U I F E R S :
A F O U RT H A P P ROX I M AT I O N

Equations (10.26) and (10.27) show how the flow is driven by a pressure gradient,
as manifested by the inclination of the water table with respect to the underlying bed
∂η/∂x , and also by gravity, as manifested by the magnitude of the bed slope sin α. The
pressure gradient term results in diffusive transport, which appears as a second derivative
in the Boussinesq equation; the bed slope term results in advective transport. For large
values of the slope, and thus of the hillslope flow number Hi, the effect of advection
overwhelms the diffusion. This can also be seen in Equations (10.134) and (10.138). In
the kinematic wave approach, Hi is assumed to be sufficiently large that the pressure
gradient term, leading to the diffusive term, can be simply neglected; thus the hydraulic
gradient in (10.128) is assumed to be equal to the bed slope sin α, and (10.29) reduces
to a first-order linear equation, as follows

∂η

∂t
− k0 sin α

ne

∂η

∂x
= I

ne
(10.150)

This approach was briefly introduced by Boussinesq (1877) for steep slopes; in the
simple case of outflow without recharge I , he pointed out that, because (10.150) is in
the form of a total derivative

dη

dt
= ∂η

∂t
+ ∂η

∂x
dx
dt

= 0,

a water table height η travels down the slope at a speed

ck = dx
dt

= −k0 sin α

ne
(10.151)

Conversely, to an imaginary observer traveling down the slope at a speed given by
Equation (10.151), it would appear that the height of the water table η does not change
with time. This result is not unexpected, and it is analogous with open channel flow, in that
the advectivity of the diffusion equation (10.136) and the celerity of the kinematic wave
(10.151) are identical, or ck = ch. In contrast to the kinematic wave in open channel flow,
Boussinesq’s result (10.151) has the following two features. First, it can be seen that ck is
independent of η. This means that all values of η travel at the same speed, and the water
table maintains its original shape as it moves downhill. For example, a rectangular input
pulse of precipitation, which enters the aquifer instantaneously at the soil surface, will
flow out from the aquifer into the stream channel as a time-delayed rectangular output
pulse. Second, it could be argued that Equation (10.151) does not really describe a wave;
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indeed, to the extent that the drainable porosity ne represents the mobile water in the
soil (so that (θ0 − ne) can be considered immobile water as indicated in Figure 10.12),
Equation (10.151) is also the true velocity of the water in the aquifer. Therefore, it is
perhaps preferable to refer to this phenomenon as kinematic flow, rather than kinematic
wave. It can be seen that the reason for this equality of fluid and wave velocity is the
inherent linearity of (10.150). On the other hand, it should also be remembered that, in
spite of its name, the real physical significance of ne is not obvious; it was introduced
as a mere parameter to compensate for the neglect of the partly saturated flow above
the water table in the soil by the free surface approximation. While the fraction of the
soil volume below the water table occupied by flowing water is not as large as the total
porosity n0, it is probably larger than ne, because not all the flowing water is removed
by the drainage process. Therefore, the true velocity of the water in the aquifer is not
likely to be as large as (10.151). This means that it can be expected that the water table
motion down a steep slope may still have certain features of a wave; but on account of
the obscure physical nature of ne, these features are unclear and the phenomenon will
require further study.

The applicability of the kinematic wave approach was studied by Henderson and
Wooding (1964), by comparing their results presented in Section 6.2.2 applied to ground-
water, i.e. for the case a = 0, with those obtainable with the full Boussinesq equation.
They concluded that the differences can be significant for the decay phase, as obtain-
able, for example, from the groundwater analog of Equation (6.27). As mentioned, in
the kinematic approach the hydraulic gradient is assumed to be equal to the bed slope;
in practice, this is usually taken to be the same as the ground surface slope. The main
practical drawback of this approach is that it is unsuitable when a wide range of slopes
has to be considered, including very small ones in relatively flat terrain. However, for
steep slopes or large values of the hillslope flow number Hi this approach can be a useful
tool to describe the flow. Because the motion is strictly translatory, it also provides some
justification for the application of the rational method (see Section 12.2.2) to describe
subsurface storm runoff from very permeable hillslopes in hilly catchments for engineer-
ing design. The kinematic approach has been used in some catchment scale simulations
of hillslope storm runoff (Beven, 1981).

1 0 . 6 C AT C H M E N T - S C A L E BA S E F L OW PA R A M E T E R I Z AT I O N S

10.6.1 General features

Base flow is the discharge rate in a river that results from the natural release of the water
stored in the upstream river channels and adjoining riparian aquifers in the absence of
precipitation, snowmelt, or other inputs. In general, this type of flow depends primarily
on the physiographic characteristics of the basin, on the distribution of water storage in
river channels and in groundwater aquifers, and possibly also on the evaporation from
the basin. These physiographic characteristics are mainly the geomorphology of the
landscape and of the stream network, and the configuration and nature of the riparian
aquifers and near-surface soils; these characteristics reflect the geology and the climate
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Fig. 10.29 Schematic plan view of a first-order catchment illustrating the integration of the local outflow rates

from the riparian unconfined aquifers to derive the total outflow from the area according to Equation

(10.152). The symbol s denotes the lineal coordinate along the river; BL = BL(s) and BR = BR(s) are

the breadths of the aquifers on the left and right banks, respectively; the dashed lines indicate the

height contour lines of the land surface.

of the basin, which can be considered as time invariant at the usual time scales of the
major components of the hydrologic cycle. The effect of the channel storage under
base flow conditions is normally quite small. Indeed, the water stored in river channels
is usually several orders of magnitude smaller than that stored in active groundwater
aquifers (see also Table 1.3). Moreover, typical travel times of water in a river tend
to be orders of magnitude smaller than those in the adjoining groundwater aquifers.
Under certain conditions, groundwater evaporation can have a seasonal effect; however,
because groundwater evaporation can take place only from limited areas, usually near
the river banks, where the water tables are close enough to the surface, this effect is often
negligible (see Zecharias and Brutsaert, 1988b).

From these considerations, it is apparent that the base flow at any point in the
river, Q = Q(t), is mainly the result of groundwater drainage; thus it can usually be
assumed to represent the instantaneous integral of all upstream local groundwater out-
flows, taken along the river channels all the way to the headwaters. With this assumption
the flow rate in a river at the outlet of a catchment under base flow conditions can be
formulated as

Q(t) =
L∫

0

(|qL| + |qR|) ds (10.152)

where s is the upstream lineal coordinate along all river channels in the basin, L is the total
length of these channels, and qL = qL(s, t) and qR = qR(s, t) the groundwater inflows
from the left and the right bank, respectively (see Figure 10.29). Since the physiography
of the basin does not change with time, the local groundwater outflow rates qL and qR are
likely to be unique and time-invariant functions of the local groundwater storage. Because
qL and qR depend on the coordinate s, Equation (10.152) indicates that the basin-scale
base flow Q(t) depends not only on the total water storage in the basin, but also on
the areal distribution of that storage over the basin. However, the storage distribution
does not always remain the same and it evolves, usually as a direct result of the spatial
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distribution of the antecedent precipitation. This means that Q(t) need not be a unique
function of time. Over smaller catchments, when the precipitation can be assumed to be
sufficiently uniform, this may not be a problem. However, for larger basins it is not easy
to define a unique base flow function from experimental data. This difficulty of non-
uniqueness is aggravated by the fact that also the time reference, that is t = 0, is almost
impossible to define. Indeed, in the case of a long-term streamflow record with base
flow episodically interrupted by stormflow events resulting from precipitation, it is not
a simple matter to identify the start of each base flow episode. In the past, this difficulty
of non-uniqueness and uncertainty in time origin has been avoided mainly in two ways,
namely by assuming that the low-flow recession hydrograph can be represented as an
exponential decay or some other a priori adopted function, or by casting the recession
hydrograph in differential form.

10.6.2 Average base flow recession as an exponential decay process

Whenever the time dependence of the flow rate in a river can be assumed to be an
exponential decay process, this can be written in the following form

Q = Q0 exp(−t/K ) (10.153)

where Q0 is the flow rate at t = 0, and K is a constant, representing a characteristic
storage delay in the watershed; both can be considered as parameters to be determined
from observations. An important feature of Equation (10.153), and the main reason for
its wide usage in practice is that, if (10.153) truly describes the flow, the value of K , as
determined by regression or other techniques, should be totally insensitive to the choice
of the time reference, t = 0. This means that in a semi-logarithmic plot of Q versus t ,
it should be possible to identify a base flow recession graphically, as the (straight) lower
envelope of a number of tail end sections of low flow recession hydrographs, after shifting
them horizontally until the best coincidence is obtained; the value of −K −1 is obtained
from the slope of that envelope.

Early representations of base flow by an exponential decay function have been
reviewed by Hall (1968). In Barnes’s (1939; 1959) approach, which is often quoted,
the total recession hydrograph in a stream channel was assumed to be the sum of three
exponential decay functions, namely the contribution by surface runoff, the contribu-
tion by interflow, and the contribution by the groundwater outflow from the watershed;
eventually, after surface runoff and interflow are depleted, the recession consists only
of ground water drainage. Some other examples of the wide practical application of
Equation (10.153) in characterizing base flows can be found in the studies by Laurenson
(1961), Feldman (1981) and Dias and Kan (1999), among many others.

Equation (10.153) is essentially in the form of (10.115), (10.116), and also the first
term of (10.143), that is the first harmonic of the solution of the linearized Boussinesq
equation. It is, of course, also the response of a lumped linear storage element, as used
in the hydrologic systems approach (see Section 12.2.2). The fact that (10.153) has the
same exponential form as these physically based expressions of Section 10.4 provides a
strong indication that the storage delay constant K can be expected to depend on the soil
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properties k0 and ne, the thickness D and the breadth B of the riparian aquifers, their
slopes α, and possibly other basin characteristics. This will be further investigated in
Section 10.6.3.

In some applications, the exponential outflow function is represented in a different
form, as

Qn = Q0 K n
r (10.154)

in which Kr = Qi/Qi−1 is the depletion ratio, n = (t/�t) is the number of time intervals
of duration �t since the start of the recession, when t is taken as zero, and Qi is the rate of
flow at the i th time interval. Equation (10.154) is derived by assuming that the decrease
in flow rate from any time t to time (t + �t) is constant, so that Q1 = Q0 Kr, Q2 =
Q1 Kr = Q0 K 2

r , and so on. This shows that (10.154) is just another form of (10.153)
with ln(Kr) = −�t/K . It also means that, in light of the similarity of (10.153) with
(10.115), (10.116) (and also the first term of (10.143)), Kr can be expected to depend on
the same soil, aquifer, and basin characteristics as K .

The applicability of (10.153) or (10.154), that is the linearity of the basin for base
flow, can be checked graphically by plotting Qi versus Qi+1 for available recession flow
data. An example of such data is shown in Figure 10.30. The upper envelope of these
points describes the fastest rate of decrease in flow rate on record; it can therefore be
assumed to be caused by the depletion of channel storage during a storm flow event
and, as will be discussed below, depletion of the steeper hill slopes in the basin. On the
other hand, the lower envelope, which describes the slowest rate of decrease on record,
can be assumed to represent base flow recession, due to the depletion of groundwater
storage in the riparian aquifers. If the base flow recession is truly linear and given by
Equation (10.154), Kr must be constant; because Kr is the slope of the lower envelope,
it should be a straight line. In the example shown in Figure 10.30, the points do not
quite have a straight line lower envelope, and therefore for this basin the possibility of
a nonlinear base flow regime cannot be excluded. This procedure of plotting Qi versus
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Qi+1 with the upper envelope was probably introduced by Langbein (1938), who applied
it to characterize channel storage recession. It was later extended by Linsley et al. (1958)
to characterize also the base flow recession by using the lower envelope.

10.6.3 Base flow decline rate: recession slope analysis

Under conditions when freezing, thawing and snowmelt do not play a role, long-term
streamflow records normally consist of base flow episodes that alternate with episodes
of storm flow resulting from precipitation. In general, except when it is an exponential
function of time, the functional form of the base flow obtained from streamflow data
is sensitive to the choice or definition of t = 0, that is the assumed start of each base
flow episode. This uncertainty in the determination of a consistent time reference can be
avoided by eliminating the time variable t from the analysis of the data, and by taking
instead its differential dt. This can be done by considering not the hydrograph Q(t) itself,
but rather its slope as a function of Q, as follows

d Q
dt

= f (Q) (10.155)

where f ( ) is a function that is characteristic for a given catchment. With actual stream-
flow measurements Qi versus Qi+1 at successive times �t apart, this function can be
approximated by

Qi+1 − Qi

�t
= f

(
Qi+1 + Qi

2

)
(10.156)

The rate of decline of groundwater outflow is markedly slower than that of other
streamflow input components, resulting from precipitation related events, such as over-
land runoff or channel storage depletion. Therefore in the application of Equation
(10.155) it can be assumed that base flows represent the smallest |d Q/dt | for a given
Q (or the largest rate of flow Q for a given |d Q/dt |). This means that in any graphical
representation of (Qi − Qi+1)/�t data versus (Qi + Qi+1)/2 data points, for base flows
the function f ( ) in (10.155) can be taken as the lower envelope. The main objective of
such a procedure is to capture some characteristics of the ensemble of many recessions,
which cannot possibly be seen or detected by analyzing individual recessions. Indeed,
in a natural catchment, hydrographs and their recessions come in many different shapes
and they can vary greatly from one runoff event to the next. The shape of a hydrograph
depends on many factors, such as the spatial distribution of the initial soil moisture
content, the spatial distribution of the water table levels, and the spatial and temporal
distribution of the prior precipitation events over the catchment. This infinity in possible
outcomes and the large variability and non-uniqueness of shapes is illustrated by the fact
that when one plots daily values of d Q/dt vsQ for a natural watershed one obtains a
broad cloud of points. Figure 10.31 shows an example.

Thus the lower envelope is the locus of points for the slowest recession rate d Q/dt ;
conversely, it represents also the largest flow rate Q for any given recession rate d Q/dt .
In principle, this largest flow rate is the one that would be observed (even though this may



catchment-scale base flow parameter izat ions 421

−d
Q

/d
t 

(c
fs

 d
−1

)

−d
Q

/d
t 

(m
3 

s−
1 

d
−1

)

Fig. 10.31 Data points −d Q/dt plotted against Q observed during the period 1961–1974 on Tonkawa Creek in

Oklahoma, with the lower envelope lines with slopes 1 and 3, respectively, in accordance with Equation

(10.157). The drainage area of this basin is A = 67 km2, the total length of all stream channels is

L =70 km, and the estimated mean depth of the surface aquifers is D =1.6 m. (From Brutsaert and

Lopez, 1998.)

never occur) if the entire watershed were initially and uniformly saturated. In natural
catchments, the exact form of the base flow function Q = Q(t) is usually unknown,
especially when the characteristics of the riparian aquifers deviate markedly from those
of the idealized cases considered above in Sections 10.3, 10.4 and 10.5. Thus, beside the
avoidance of the time origin problem, the procedure based on Equations (10.155) and
(10.156) also has the advantage that it will give some insight into which of the above
theoretical expressions may be applicable, if at all. Unfortunately, however, because it
involves derivatives, this procedure is also sensitive to unavoidable inherent errors in
the data. It is therefore advisable to constrain such envelopes somewhat on the basis of
available theoretical considerations, as shown next.
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s=0 stream
δs

s=L

B

Fig. 10.32 Simplified schematic representation of the catchment shown in Figure 10.29, illustrating the use of the

spatially constant effective parameters q and B to describe the catchment-scale groundwater outflow

rate Q. Thus it is assumed that Q = 2q L and A = 2LB.

Application with available groundwater outflow solutions
For several well-known solutions of the Boussinesq equation, describing groundwa-
ter outflow from an unconfined aquifer based on the hydraulic approach, it can be
shown (Brutsaert and Nieber, 1977), that Equation (10.155) can be expressed as a power
function,

d Q
dt

= aQb (10.157)

where a and b are constants.
Equation (10.157) is obtainable from each of these solutions by assuming geometric

similarity of the drainage pattern and the channel network within the catchment. With
this assumption, and by defining an equivalent or effective lateral inflow rate q into the
stream, one can immediately integrate (10.152) as follows

Q = 2L |q| (10.158)

As before, L is the total length of all tributary and main channel sections upstream from
the gauging station where the stream flow is Q. Likewise one can define an effective
aquifer breadth B, as the distance from channel to divide (see Figure 10.32) by

B = A/ (2L) (10.159)

in which A is the drainage area of the catchment, and (L/A) is known as the drainage
density. Equation (10.159) is the same as the relationship proposed by Horton (1945) for
the average overland flow distance in a catchment whose channel slope is much smaller
than the land surface slopes.

The first of these solutions, that can be put in the form of (10.157), is the short-time
outflow rate (10.64), which was obtained by Boltzmann similarity and which exhibits
the characteristic t−1/2 behavior. Upon substitution of (10.158), (10.64) yields the basin-
scale outflow rate

Q = 0.664 12
(
k0ne D3L2)1/2

t−1/2 (10.160)
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Operating on this result in the manner of (10.157), one obtains in this case for its constants

b1 = 3

a1 = −1.1336
(
k0ne D3L2

)−1
(10.161)

in which the subscripts 1 indicate that it is the first solution which is considered here.
The second solution is the long-time outflow rate derived from the nonlinear Boussi-

nesq equation, namely (10.76) or (10.85) with (10.86). After applying (10.158) and
(10.159), this solution can be written in terms of basin-scale parameters as

Q = 3.448L2k0 D2

A

(
1 + 4.46L2k0 D

ne A2
t
)−2

(10.162)

With this expression the resulting constants for Equation (10.157) are

b2 = 3/2

a2 = −4.8038k1/2
0 L(ne A3/2)−1

(10.163)

The third solution of interest is the long-time outflow rate (10.115) or (10.116)
obtained from the fundamental harmonic of the linear solution. In the case of (10.116),
substitution of (10.158) and (10.159) immediately produces the outflow rate in terms of
catchment-scale parameters

Q = 8k0 pD2L2 A−1 exp

(
−π2k0 pDL2t

ne A2

)
(10.164)

Thus with this result Equation (10.157) has the constants

b3 = 1
a3 = −π2k0 pDL2(ne A2)−1 (10.165)

A fourth expression in the form of (10.157) can be obtained for a sloping aquifer, from
the first term of (10.143). With (10.158) and (10.159) this can be written as

Q = 8k0 pD2 L2 cos α

A
z2

1[1 − 2 cos(z1)exp(Hi/2)](
z2

1 + Hi2/4 + Hi/2
)

× exp

[
−(

z2
1 + Hi2/4

)
4k0 pDL2 cos α

(ne A2)
t

]
(10.166)

In this case the constants of (10.157) are

b4 = 1

a4 = −(
z2

1 + Hi2/4
)
4k0 pDL2 cos α

(ne A2)

(10.167)

The three solutions for horizontal aquifers can also be combined into a single expression,
that can be applied with arbitrary values of b. This expression can be obtained by scaling
Equation (10.157) with the dimensionless variables implicit in the Boussinesq equation and
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defined in (10.66) and (10.74). Application of (10.158) and (10.159) yields the following
scaled time and the scaled outflow rate in terms of basin-scale parameters,

t+ = 4k0 DL2t/(ne A2)

Q+ = AQ/(4k0 D2 L2)
(10.168)

Thus (10.155) assumes the form

d Q+
dt+

= a+ Qb
+ (10.169)

where a+ is a (dimensionless) constant whose value depends only on b. As noted by Michel
(1999), the numerical value of a+ can be readily calculated for each of the theoretical values
of b = 1, 3/2 and 3 from the respective expressions for a given in Equations (10.161),
(10.163) and (10.165). The following interpolation formula (Brutsaert and Lopez, 1999)
provides a close estimate of these theoretical values and may be useful for intermediate
values of b over that range,

a+ = 10.513 − 15.030b1/2 + 3.662b (10.170)

Hydraulic aquifer characteristics at the basin scale
Equation (10.157) with (10.161)–(10.165) can be used to obtain an estimate of the
effective hydraulic parameters of the riparian aquifers in the basin (see also Brutsaert and
Nieber, 1977; Brutsaert and Lopez, 1998; Eng and Brutsaert, 1999). In the application
of this approach a decision must first be made whether (10.161) or (10.163) is the
more appropriate expression to describe the long-time outflow behavior of the basin.
In past applications, this was done by inspection of the slope of the lower envelope of
the low flows as they appear on a log–log plot of |d Q/dt | vs Q. This is illustrated in
Figure 10.31, in which the slope of the envelope happens to be close to one, or b = 1
in Equation (10.157). This has also been done by linear regression with all the data
points of log(−d Q/dt) against log(Q). Neither procedure appears to be objective, and
at present, it is still not clear how an appropriate a priori value of b can be determined,
which describes the long-time behavior of a given basin. In the catchment studies by
Brutsaert and Nieber (1977) and Troch et al. (1993), it was concluded that b = 3/2,
whereas in Vogel and Kroll (1992), Brutsaert and Lopez (1998) and Eng and Brutsaert
(1999) it was decided to be b = 1. This will require further study.

Once the appropriate long-time outflow expression and its value of b have been
decided upon, the value of a1 and a3 (or a2) can be determined from the lower envelopes
with slopes 3 and 1 (or 3/2), respectively, on a log–log plot of the available |d Q/dt |
vs Q data. Examples of the procedure are shown in Figures 10.31 and 10.33. In what
follows, the determination of the basin-scale aquifer parameters is outlined for the linear
case with b = 1; however, the analogous analysis with b = 3/2 is straightforward, and
can be left as an exercise for the reader.

The value of a3 is related to the extinction coefficient of the exponential outflow
equation (10.153) by

a3 = −K −1 (10.171)
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Fig. 10.33 Same as Figure 10.31, but for the period 1966–1977 on Salt Creek in Oklahoma. The drainage area of

this basin is A = 62 km2, the total length of all stream channels is L = 76 km, and the estimated mean

depth of the surface aquifers is D = 1.4 m. (From Brutsaert and Lopez, 1998.)

Thus, −a−1
3 can be considered as a characteristic time scale for base flow drainage of

a basin, from which also the storage half-life can be derived, as − ln(2)/a3. It is also
related to the hydraulic diffusivity defined in Equation (10.89). Comparison between
(10.165) and (10.89) with (10.93) produces immediately

Dh = −a3π
−2 (A/L)2 (10.172)

In a similar way, the value of a1 for the short-time envelope can be related to the hydraulic
desorptivity defined in Equation (10.59). In this case, comparison between (10.161) and
(10.61) with (10.63) shows that

Deh = (2a1L)−1/2 (10.173)

Equations (10.165) (or (10.163)) and (10.161) can also be combined to determine the
effective aquifer parameters from a3 (or a2) and a1. However, because there are three
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Fig. 10.34 Distribution of the hydraulic diffusivity Dh (in m2 s−1) defined in Equation (10.89) and calculated with

(10.172) from base flow measurements on 22 subbasins within the Washita River watershed complex in

central Oklahoma. The scales of the coordinate axes are lognormal; the abscissa axis shows F as the

probability of being smaller than or equal to, estimated by means of the Weibull plotting position

m/(n + 1). (From Brutsaert and Lopez, 1998.)

parameters, namely k0, ne and D, with only two equations, one of the three must
be known or must be estimated by some other independent method. For example, in
case the mean aquifer thickness D can be assumed known (say, from soil maps or
other surveys), the hydraulic conductivity and the drainable porosity can be immediately
obtained by combining Equations (10.161) and (10.165), namely

k0 = 0.5757 (a3/a1)1/2 A (L D)−2

and (10.174)

ne = 1.9688 (a3a1)−1/2 (D A)−1

Analogous equations can be derived by combining (10.161) and (10.163) for the non-
linear case of the long-time outflow rate.

Example 10.7. Estimation of basin aquifer parameters

As an illustration of the results obtainable with this approach, Figure 10.34 displays
the values of Dh derived with (10.172) from the a3 values that were obtained in a
study by Brutsaert and Lopez (1998); the study made use of streamflow data from 22
subbasins of the Washita River watershed in Oklahoma, with values of A ranging roughly
between 1 and 500 km2 and L between 2 and 670 km. These −a3 values had a mean of
0.0316 d−1 (with a standard deviation of 0.0167 d−1), which amounts to a mean storage
half life of roughly 22 days. Figure 10.35 shows the values of the desorptivity Deh

obtained with (10.173) from the a1 values for the same 22 catchments.
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Fig. 10.35 Distribution of the hydraulic desorptivity (in m2 s−1/2) defined in Equation (10.59) and calculated by

means of (10.173) from the same river flow data and plotted as in Figure 10.34. (From Brutsaert and

Lopez, 1998.)

Figures 10.36 and 10.37 show the ranges of values of k0 and ne, that were obtained
by means of Equations (10.174) in the Washita River watershed. The values of these two
parameters obtained with this method appear to lie well within the accepted ranges for
field measurements in other studies. It is also not surprising that the hydraulic conduc-
tivities are several orders of magnitude larger than values to be expected on the basis of
laboratory measurements or by “sandbox” standards. This is because of macropores and
preferential flow paths that become operative at larger spatial scales. More importantly,
however, the values shown in the figures are within a reasonable range from one another;
this suggests that the arguably oversimplified hydraulic approach and the method of
slope analysis can serve a useful purpose.

The same study also showed that the characteristic outflow time (a3)−1 (= K ) is well
correlated with spatial scale L , that is the length of all stream channels in the basin;
the obtained correlation coefficient was r = 0.66. This is not unexpected in light of
Equation (10.165), but as the drainage density L/A does not vary widely in this region,
the predictive power of the relationship between a3 and L was found to be weak. The
short-time constant a1 was found to be strongly related with stream length L; actually, the
regression equation was calculated to be a1 = −5.46 × 103L−1.81 (in m) with r = 0.91,
in good agreement with the L− dependency in Equation (10.161). If the power of L
is assumed to be exactly the same as in (10.161), the resulting median line through the
data is

a1 = −3.50 × 104L−2 (10.175)

As illustrated in Figures 10.36 and 10.37, use of Equation (10.175) can constrain the
erratic behavior of a1 somewhat, and it results in considerably less variation (or scatter) in
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Fig. 10.36 Distribution of the hydraulic conductivity k0 (in m s−1) calculated by means of Equation (10.174) from

the same river flow data and plotted in the same way as in Figure 10.34. The circles represent the k0

values calculated with the individual a1 values of each of the 22 catchments, and the triangles

represent k0 calculated with a1 from Equation (10.175). (From Brutsaert and Lopez, 1998.)

Fig. 10.37 Distribution of the drainable porosity (or specific yield) ne calculated by means of Equation (10.174)

from the same river flow data and plotted in the same way as in Figure 10.34. The circles represent the

ne values calculated with the individual a1 values of each of the 22 catchments, and the triangles

represent ne calculated with a1 from Equation (10.175). (From Brutsaert and Lopez, 1998.)
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the estimated values of k0 and ne. Among the other parameters, the hydraulic conduc-
tivity was found to be only weakly (if at all) scale correlated in that range of scales of
L (> 2 km). The hydraulic diffusivity Dh, the hydraulic desorptivity Deh, and the drain-
able porosity or specific yield ne showed no evidence of any scale dependency in the
same range of scales.

The effect of mean aquifer slope
From the analyses developed in this chapter it is clear that the slope of the riparian aquifers
can be expected to exert a strong influence on the magnitude and evolution of the base flow
from a basin. Cursory inspection of the unit response function of a hill slope (10.146) with the
accompanying Figures 10.27 and 10.28 indicates that Hi can indeed play a major role. This
was also brought out in the investigation of measured drought flow data from 19 watersheds
in a mountainous section of the Appalachian Plateau by Zecharias and Brutsaert (1985;
1988a); the results of a factor analysis indicated that, among the geomorphic parameters
that are related to groundwater outflow, total length of perennial streams, drainage density
and average basin slope are most closely related to the process. Moreover, the influences
of these three parameters on groundwater outflow behavior are independent of each other;
thus, the inclusion of additional parameters would not necessarily yield a better relationship,
and may result in redundancy. This empirical result is consistent with the linear basin-scale
formulation of the phenomenon in Equations (10.166) and (10.157) with (10.167), which
indicates that L , L/A and Hi are the only three geomorphic parameters which control the
flow. For the present purpose, geomorphic parameters may be considered the ones that can
be derived from topographic maps.

Unfortunately, in contrast to stream length and drainage density, until now attempts to
include slope in basin-scale parameterizations have been less than successful. The problem
was addressed in Zecharias and Brutsaert (1988b) in the context of the applicability of
Equation (10.157) in hilly terrain. The same 19 representative catchments in the Allegheny
Mountain section of the Appalachian Plateau, mentioned above, were analyzed on the basis
of (10.157) with b = 1. The results showed that a, taken as the slope of the lower envelope of
(linearly) plotted d Q/dt vs Q data, is dependent on drainage density (L/A) and on (k0/ne),
in agreement with Equation (10.167), but surprisingly not on land surface slope. However,
the results also showed, that in these same plots both the slope of the upper envelope and the
mean slope through all the data points, decrease with time. For instance, in one watershed
in the region, with flow values that occurred 2, 4, 6, and 7 days following a rainfall event,
the slopes of the upper envelopes were observed to evolve as a = 0.33, 0.23, 019, and
0.15 d−1, respectively, whereas the lower envelopes remained at around 0.063 d−1. As
illustrated in Figure 10.38, a similar evolution of a of the upper envelopes was observed in
the Washita River Basin.

The value of the rate of flow Q of a receding hydrograph depends mainly on the storage
of water in the watershed. But the upper envelope in graphical representations like Figure
10.38 provides information on the groundwater outflow regime in the early stages of a dry
period when the rates of recession, i.e. −d Q/dt , are high. The successive values of a show
that there are aquifers in the basin whose recession rates are initially large, but decrease
sensibly as the rainless period continues. Advanced states of the outflow process, which
are accompanied by small recession rates, are represented by the lower envelopes, whose
a values in the successive scatter diagrams remain essentially the same. It is likely that
the variation of the parameter a of the upper envelopes with time is largely the result of
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Fig. 10.38 Data points −d Q/dt plotted against Q observed over drought flow episodes with the first day

taken 1 (top), 3 (center) and 6 (bottom) days after rain. The flow measurements were made

during the period 1962–1977 on West Bitter Creek within the Washita River basin in

Oklahoma. The drainage area of this basin is A = 154 km2, the total length of streams is L =
161 km, and the estimated mean depth of the surface aquifers is D = 1.3 m. (From Brutsaert

and Lopez, 1998.)
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the nonuniform distribution of the physical characteristics within a catchment. Equation
(10.167) indicates that the steeper parts of a basin, where Hi is larger, must have faster
depletion rates, and therefore larger values of a; such areas are usually located near the
headwater sections of a basin. In contrast the downstream regions of a basin have smaller
inclinations, hence relatively lower rates of depletion.

All this shows that, although the characterization of a basin as a single lumped unit
with basin scale parameters is a useful paradigm, it has definite limitations. The total
outflow rate is the sum of flow contributions from aquifer sections with unequal response
characteristics. This total flow is initially dominated by the discharges of channel storage
and of the steeper aquifers, which contribute a large fraction of the total flow during the
first few hours or days of a recession period. As the recession progresses, however, these
storage elements become rapidly depleted and the gentler parts of the aquifer, now being
the main contributors, determine the outflow. This also means that the determination of
the basin scale aquifer properties by means of an analysis of the lower envelopes is valid
mainly in relatively flat and even terrain. In more rugged catchments the lower envelope
tends to reflect the properties of the broader valley sections in the lower parts. Therefore, in
practical applications for design purposes in hilly watersheds, it may be advisable to adopt
an average value of a and b in Equation (10.157), say by regression through all the data
points (rather than from the lower envelope alone), to describe representative basin scale
parameters. These issues will require further study.
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P RO B L E M S

10.1 Show that the two lines enveloping the data points plotted in Figure 10.30, must be straight, if the
storm flow recession and the base flow recession in the basin are exponential functions of time.
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10.2 Suppose that recession outflow data for a certain basin can be described by Equation (10.157)
with b = 2. Derive the recession outflow hydrograph as a function of time, i.e. Q = Q (t), for this
case. Use two parameters in this function, namely a of (10.157) and Q0, that is the flow rate at
t = 0.

10.3 (a) Suppose that for a design project it is necessary to express the base flow recession as an
exponential equation in the form of (10.153). Determine the value of K (in days) for Tonkawa
Creek (see Figure 10.31) for which it is known that, for b = 3 in Equation (10.157), a = −2.74 ×
10−5 s m−6, and for b = 1 in Equation (10.157) a = −3.24 × 10−7 s−1. (b) Determine the value
of Kr in Equation (10.154) for this basin.

10.4 Solve the previous problem, 10.3 (a) and (b), for Salt Creek (see Figure 10.33) for which it is
known that for b = 3 in Equation (10.157), a = −3.90 × 10−5 s m−6, and for b = 1 in Equation
(10.157) a = −3.82 × 10−7 s−1.

10.5 (a) Derive Equation (10.160) from (10.64) by using the geomorphic relationship (10.158). (b)
Derive from (10.160) the corresponding values of a1 and b1 for (10.157), as given by (10.161).

10.6 Derive Equation (10.162) from (10.85) with (10.86) using the geomorphic relations (10.158) and
(10.159). (b) Then use (10.162) to derive (10.163) for a2 and b2.

10.7 (a) Derive Equation (10.164) from (10.116) by making use of the geomorphic relationships
(10.158) and (10.159). (b) Then derive the corresponding values of a3 and b3 of (10.157), as
given by (10.165).

10.8 Calculate the value of a+ in Equation (10.169) for the case b = 3 by scaling (10.157) and (10.161)
with (10.168). Compare this dimensionless number with that obtainable with the interpolation
formula (10.170).

10.9 Combine Equations (10.165) and (10.161) to derive expressions for the effective hydraulic con-
ductivity k0 and for the effective unconfined aquifer thickness D in terms of a1 and a3. Assume
that the drainable porosity ne is known.

10.10 The recession flow data for Tonkawa Creek shown in Figure 10.31 yielded the parameters
a3 = −3.24 × 10−7 s−1 and a1 = −2.74 × 10−5 s m−6. This watershed has an area A = 67.3 km2,
total stream length L = 70.1 km and an average surface aquifer thickness D = 1.6 m. Calculate
effective values of the hydraulic conductivity k0 and of the drainable porosity ne.

10.11 By combining (10.161) with (10.163), derive expressions for the regional values of k0 and ne,

which can be used with the results of hydrograph analyses in which the slopes of the logs of
d Q/dt versus those of Q, are b = 3 and b = 3/2 (cf. (10.174)). Assume that the mean near-
surface aquifer thickness D is known.

10.12 Select a stream gauging station in your region of interest, preferably with a drainage area A
smaller than 200 km2. Obtain the daily flow data during periods of recession, for a number of
years sufficient to produce an adequate data base. Plot these data, according to Equation (10.156)
with logarithmic scales as illustrated in Figure 10.31. Estimate the length of all stream channels
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upstream from the station, from a map, if the drainage density is not known. Use Equations (10.174)
to estimate effective regional values of k0 and ne. Test the sensitivity of this result to the assumed
value of the effective regional aquifer depth D. (In the United States, such data records can be
found on the web at http://waterdata.usgs.gov/usa/nwis/sw).

10.13 Multiple choice. Indicate which of the following statements are correct. The partly saturated zone
above the water table during base flow, i.e. during drainage of an unconfined aquifer in the absence
of rainfall:
(a) has a water pressure which is lower than atmospheric;
(b) obeys Laplace’s equation ∇2h = 0, when the aquifer is uniform and homogeneous;
(c) is sometimes described approximately by means of the hydraulic groundwater

theory;
(d) is most important in shallow (instead of deep) aquifers consisting of fine textured (instead

of coarse) materials;
(e) is thicker while flow is taking place, than after the complete cessation of base flow

(assume that throughout the outflow process the water table is well below the ground
surface);

(f) has an attenuating effect, such that the outflow from the aquifer is initially (shortly after
the cessation of storm runoff) smaller than the value calculated by neglecting the partly
saturated zone (and keeping the saturated flow parameters the same);

(g) is subject to the principle of continuity and Darcy’s law;
(h) necessitates the consideration of hysteresis when the unconfined aquifer is initially fully

saturated.

10.14 Multiple choice. Indicate which of the following statements are correct. Unconfined aquifers:
(a) prevent the deep seepage of water;
(b) containing water both at pressures larger and at pressures smaller than atmospheric, usually

have a free surface, which is a sharp interface between a fully saturated and a completely
dry region;

(c) can be an important source of base flow into rivers and lakes;
(d) can suffer water depletion due to evapotranspiration;
(e) always behave as linear reservoirs, whose outflow, in the absence of rain or other recharge,

is given by an exponential decay function.

10.15 Multiple choice. Indicate which of the following statements are correct. Hydraulic groundwater
theory requires that:
(a) Darcy’s law is valid only in the partly saturated zone;
(b) the hydraulic head h does not vary along the impermeable layer;
(c) the impermeable layer is horizontal;
(d) the flow rate is proportional to the slope of the free surface;
(e) recharge from infiltration is to be neglected;
(f) the magnitude of the specific flux is constant (i.e. uniform) along the coordinate that is

normal to the impermeable layer.

10.16 Multiple choice. Indicate which of the following statements are correct. The Boussinesq equation
(10.30):
(a) requires the assumption that a practically saturated capillary fringe cannot be

considered in the analysis;

http://waterdata.usgs.gov/usa/nwis/sw
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(b) in this form implies that the aquifer has a uniform drainable porosity that may however
depend on t ;

(c) in this form implies that the aquifer has a constant and uniform hydraulic conductivity;
(d) yields Laplace’s equation under steady flow conditions;
(e) is based on the assumption that the specific flux is not a function of x ;
(f) is applicable only when the horizontal length scale of the aquifer is much larger than the

vertical scale.

10.17 Multiple choice. Indicate which of the following statements are correct. The recession curve
of base flow, or drought flow, as a function of time observed at a streamflow gauging
station:
(a) is relatively (i.e. as compared with storm runoff) insensitive to the temporal storm and

rainfall pattern over the basin;
(b) depends primarily on the characteristics of the effluent ground water aquifers in the basin;
(c) is often plotted as a straight line on log–log paper for engineering applications;
(d) can sometimes be used to separate the amount of storm runoff due to a given storm, from

the observed hydrograph;
(e) may conceivably be affected by the rate of evapotranspiration from the basin.

10.18 Derive the solution (10.7) from Laplace’s equation (10.5) for the boundary conditions (10.6). Hint.
Use the method of separation of variables in a manner analogous to that leading to the solution
(10.105).

10.19 Derive the expression (10.9) for the steady outflow rate from a saturated unconfined riparian
aquifer, from the solution (10.7). Use either the first or the second of (10.8).

10.20 Show how Equation (10.72) is obtained from (10.70).

10.21 Determine the ratio of the second over the first term in the scaled outflow rate (10.112) obtained
in the linear solution. For what value of the scaled time t+, does it become smaller than
1%?

10.22 Consider an extensive unconfined aquifer on a horizontal impermeable layer bounded by a straight
open channel (similar to Figure 10.20, with B = ∞); after the channel and the aquifer have both
been dry (empty) for a very long time, this channel is suddenly (to alleviate flooding elsewhere)
at t = 0 filled up to a level Dc = 0.9D. The flow in the aquifer is assumed to be governed by
Boussinesq’s equation (10.30). (a) State three boundary conditions for the Boussinesq equation
(one of which is an initial condition), describing this situation. (b) Suggest a method of reducing
the partial differential equation to an ordinary differential equation, which is permitted by these
boundary conditions. (c) Give the functional relationship between x and t (except for one or more
undetermined constants) for a given specific value of η. In other words, if the solution of the
problem η = η (x, t) is known and if η is given a certain value, what is the remaining relationship
x = x (t)? Note. Do not try to find that solution; just assume that it is known and use it as such.

10.23 In Example 10.4, expressions are presented for q = q (t), over the time intervals t1 < t < t2

and t > t3 in Equation (10.129) and (10.131), respectively. Derive the expression for the time
interval t2 < t < t3.
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10.24 Reduce the linearized Boussinesq equation (10.88) to an ordinary differential equation, which can
describe the short-time outflow behavior with boundary conditions (10.53). Hint. Follow the same
steps as those used to obtain Equation (9.13).

10.25 Multiple choice. Indicate which of the following statements are correct. In the case of steady
ground water flow above a horizontal impermeable layer, the hydraulic ground water theory implies
that:
(a) the streamlines are orthogonal to the free surface;
(b) the pressure distribution is hydrostatic in the vertical;
(c) the equipotentials (lines or surfaces of constant hydraulic head) are horizontal;
(d) ground water recharge at the free surface cannot be taken into account;
(e) potential flow theory with Laplace’s equation is still applicable;
(f) the horizontal scale of the problem is of the same order of, or smaller than, the vertical scale

(e.g. the depth of the impermeable layer);
(g) the flow region is fully saturated;
(h) the water table is a true free surface;
(i) effects of horizontal anisotropy can still be taken into account by adjusting the Boussinesq

equation (10.31); in other words, if x and y are horizontal coordinates, kxx need not be
equal to kyy, and they can be used to replace k0 in the formulation;

(j) however, flow in a soil profile with vertical anisotropy (i.e., when kxx = kyy �= kzz) cannot
be described by hydraulic ground water theory.
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11 S T R E A M F L OW G E N E R AT I O N :

M E C H A N I S M S A N D

PA R A M E T E R I Z AT I O N

Streamflow is one of the main manifestations of the hydrologic cycle in nature. It is

normally characterized by a hydrograph, that is the rate of flow in the stream channel as

a function of time,

Q = Q(t) (11.1)

A streamflow hydrograph at any point along a river is the integrated result of all flow pro-

cesses upstream in the catchment, in response to precipitation, and possibly to snowmelt

and other water inputs. Therefore, streamflow is not a local but a basin-scale phenomenon.

In the previous chapters some of the more important transport phenomena and their math-

ematical formulations, that are amenable to analysis, have been considered. Most of these

mechanisms are fairly well understood individually. However, at present there is still no

unifying theory available that provides a coherent and satisfactory explanation for the

integration of these different local mechanisms into the streamflow generation process.

The main reason for this uncertainty is undoubtedly the large variation in drainage basins;

each drainage basin behaves in many respects almost as if it were a law unto itself, and this

has made it difficult to derive general relationships that are broadly applicable. But even

for any given basin, it is often difficult to identify and quantify the different mechanisms

that produce the observed Q(t); the decomposition of an integral into its constituent

parts, that is its inversion to obtain the integrands, like “unscrambling an omelet,” is not

a simple matter.

1 1 . 1 R I PA R I A N A R E A S A N D H E A DWAT E R BA S I N S

The transformation of precipitation, after it hits the land surface, into streamflow gen-

erally takes place over an area of land along the river channel that extends from the

channel banks to the nearest divide. Thus each channel segment of a river system can be

visualized as lying between two strips of riparian land on either side that feed water into

it. While the mechanisms involved in the transformation from precipitation to stream

flow depend on many factors, an important one to consider is the relative size of the river

segment within the river and tributary system of the basin.

In geomorphology, it is customary to classify stream channels in a hierarchy of

orders, in which the order of a stream depends on the number of upstream trib-

utaries or bifurcations. Horton (1932; 1945) was probably the first to propose a

downstream-moving ordering procedure. In this system, tributaries without branches

are called first-order streams; the branches that receive only first-order streams are des-

ignated second-order streams, and those that receive one or more second-order and also
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Fig. 11.1 The order numbers of river channel segments in a
natural basin drainage network according to the
Horton–Strahler method.

first-order streams are considered third-order streams, and so on. The definition of first-

and second-order streams is clear and unambiguous in Horton’s procedure, but the def-

inition of third- and higher-order streams required some subjective decisions. To avoid

these and to ensure that only one stream would bear the highest-order number in the

basin, Strahler (1952) adjusted the procedure by stipulating that third-order streams

can only be formed by the joining of any two second-order segments, and so on. The

Horton–Strahler method, as it is now called, is illustrated in Figure 11.1; in this exam-

ple, there are 18 first-order streams, five second-order streams, and one third-order

stream.

Larger-order river channels usually do not receive much water locally from the riparian

surfaces along their banks, but they receive most of their water from upstream through

lower-order streams. The catchments that are drained by lower-order streams with no

or very few tributaries can be called headwater basins, source area watersheds, or also

upland watersheds. Because they feed into channels of progressively higher order, these

lower-order catchments are crucial for a better understanding of runoff mechanisms

in larger basins as well. An important feature for the analysis of runoff from such

headwater catchments is that lower-order river channels tend to have relatively short

residence times; thus any storm runoff hydrograph from a source area watershed is

affected primarily by the nature of the soil mantle areas surrounding the stream and very

little by the nature of the stream itself. Further downstream, however, as more and more

tributaries join, the shape of the hydrograph evolves, and it will increasingly reflect the

hydraulic characteristics of the channel network. The flow mechanisms in riparian areas

and headwater basins, a topic often referred to also as hillslope hydrology, have been the

subject of intense research in the past few decades. A knowledge of these mechanisms

and of their interactions is not only essential to describe streamflow generation, but it is

also the key to a better understanding of solute transport in the human environment and

of the evolution of landforms and erosion.
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Fig. 11.2 Illustration of the overland flow
(OF) mechanism as infiltration
excess. The precipitation rate P
exceeds infiltration capacity, and
the water table is at the ground
surface.

1 1 . 2 S TO R M RU N O F F M E C H A N I S M S I N R I PA R I A N A R E A S

11.2.1 Overland flow

Infiltration excess overland flow
This type of flow occurs when the rainfall rate is larger than the infiltration capacity, so that

there is an excess which runs off over the surface. Although this flow generation concept

is sometimes associated with the name of Horton (1933), it goes back much earlier.

It was already the basis of the well-known rational method, introduced 150 years ago

by Mulvany (1850), and of the various runoff routing procedures subsequently derived

from it by Hawken and Ross (1921) and others (see also Dooge, 1957; 1973). It is also

implicit in the unit hydrograph, as originally proposed by Sherman (1932a; b). In these

and other early studies concerned with maximal rates of runoff in problems of flooding

and erosion, it was assumed that the infiltration rate is smaller than the precipitation rate

over the entire catchment. In the rational method, the infiltration is taken as a fraction

of the precipitation, whereas in the unit hydrograph approach and in Horton’s work,

the infiltration capacity or a related index is subtracted from the precipitation. Thus it

was assumed that the infiltrated water is “lost” and that virtually all stormflow results

from the overland flow of the precipitation excess (see Figure 11.2). In the prediction

of extreme flows for design purposes in disaster situations, this assumption of overland

flow was not unreasonable.

It is now understood that overland flow is not a universally occurring phenomenon,

that in many situations it may not occur at all, and that its prevalence depends on the

nature of the catchment and of the intensity of the precipitation. But it can be expected

to be the main mechanism in catchments with relatively impermeable surfaces, and with

only a thin soil layer; such surfaces cover mostly urban environments, factory and farm

yards and other trampled soil areas, and rocky and stony areas with little or no soil or

vegetation, as seen in arid and desert environments. Thus it occurs most frequently in

areas where people live and work and in denuded arid regions. It can also occur on other

more permeable surfaces, provided the rainfall is sufficiently intense. For instance, in a

study of a 20 ha first-order agricultural catchment with steep slopes in semi-arid Shanxi

(China), Zhu et al. (1997) reported that most storms generate no overland flow. However,
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Fig. 11.3 Schematic illustration of

the overland flow (OF)
mechanism as saturation
excess: (a) the position of
the water table (WT) prior
to the onset of precipitation
and (b) during the
precipitation event.
The precipitation rate
P is smaller than the
infiltration capacity over
the unsaturated portion of
the land surface; overland
flow takes place where the
water table has risen to the
ground surface.

in 8% of the precipitation events infiltration excess overland flow was the predominant

runoff process; rainfall intensity, rather than rainfall amount, was the decisive factor for

its occurrence, although soil surface crusting also played a role. Occurrence and yield of

overland flow varied spatially on account of the variability of the infiltration capacity.

In general, infiltration excess overland flow appears to be rare in natural basins covered

with a thriving vegetation in more humid climates.

Saturation excess overland flow
This type of surface runoff occurs over land surfaces that are saturated by emerging

subsurface outflow from below and perched water tables, regardless of the intensity

of the rainfall (or snowmelt) (see Figure 11.3). It is a rapid and almost immediate

transport mechanism to the stream channel, for the seepage outflow water and for the

rainwater falling (or snow melting) on such areas. It usually takes place in conjunction

with subsurface flow to the channel, but the relative magnitudes of surface and subsurface

flows into the channel depend largely on the nature of the catchment and the precipitation.

It is most often observed over limited areas in the immediate vicinity of the river channel

where downslope subsurface flows emerge, and in wetlands, where the water table can

rise rapidly to the surface; but it can also occur higher up in slope hollows, where elevation

contours display strong curvature, thus forcing convergence of the flow paths. Outside

of these saturated areas all the precipitation and other input can generally enter the soil

surface.
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(c)

(b)

(a)

Fig. 11.4 Schematic plan view of a second-order
catchment illustrating the extent of the
variable source areas (inside the dashed line)
on which overland flow takes place: (a) under
drought flow conditions; (b) and (c) after the
onset of precipitation. The stream channels
and the saturated areas near the stream
channels expand as the precipitation
continues.

For instance, as early as 1961, US Forest Service hydrologists (Hewlett, 1974; Hewlett

and Hibbert, 1967) reported that in forested hilly catchments in the Coweeta section in

the southern Appalachians of North Carolina, the streamflow hydrograph rises as a result

of precipitation on the channel itself and as a result of the expansion of these saturated

areas in its immediate vicinity. The expanding and shrinking areas are often referred

to as variable source areas (see Figure 11.4). On the basis of hill slope measurements

in Vermont, Dunne and Black (1970a; b) also concluded that the stormflow originated

from surface flow on limited areas along the stream channel. However, their interpretation

of the mechanism was that this surface runoff was not fed significantly by subsurface

outflow, but resulted mostly from rainfall on the expanding streamside areas; the role of

the subsurface flow was mainly to control the expansion and subsequent contraction of

the source areas.

But saturation excess overland flow does not always occur in the immediate vicinity of

the stream. In a tropical rainforest in northeast Queensland, Bonnell and Gilmour (1978)

and Elsenbeer et al. (1995a) observed that high intensity rainfalls generate widespread

perched water table conditions close to the soil surface, which emerge easily; this results

in saturation excess overland flow accompanied by subsurface flow within the top 20 cm.

Evidence for this was taken to be the presence of pre-event water in the streamflow, that is
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water which was present in the soil profile prior to the rainfall event; if infiltration excess

overland flow had been the only mechanism, all the storm runoff would have been event

water, that is water furnished by the rainfall event. The ratio of event to pre-event water

in the streamflow was found to depend on the rainfall duration and intensity. Because

overland flow was so widespread, they concluded that in this type of tropical rainforest

the variable source area concept does not apply. Elsenbeer (2001) subsequently surmised

that overland flow may be a common flowpath in tropical rain forest catchments with

“acrisol” profiles; these are soils, in which the clay content increases with depth, resulting

in a decreasing hydraulic conductivity.

11.2.2 Subsurface stormflow

In many catchments under natural conditions infiltration is never exceeded, and the

precipitation and other input can readily enter into the ground surface; thus the sub-

sequent flow to the stream channel takes place below the surface, presumably through

the soil mantle of the catchment. Lowdermilk (1934) and Hursh (1936) appear to have

been among the first to propose subsurface flow as the main streamflow generation

mechanism in forested hill slopes (see also Hewlett, 1974). It was later confirmed in sev-

eral experimental investigations that subsurface flow can even be the only mechanism

under certain conditions (see Roessel, 1950; Hewlett and Hibbert, 1963; Whipkey, 1965;

Weyman, 1970).

The notion that subsurface flow is an important, and sometimes the only process

of water transmission, was resisted by many on the grounds that porous media flow

is generally much too slow compared with overland flow to be able to produce the

observed streamflows. One early explanation of this paradox was suggested by Hursh

(1944), who assumed that the transport takes place through secondary porosity of particle

aggregates, forming a three-dimensional lattice pattern, and through hydraulic pathways

consisting of dead root channels and animal burrows (see also Section 8.3.1). At the

time, this possibility of macropore flow and piping seems to have been largely dismissed

as unrealistic by experimentalists and mostly ignored by modelers. However, subsequent

experimental work in the field, some of it with chemical and isotopic tracers, has produced

ample and incontrovertible evidence not only for macropore flow and its importance, but

for several other mechanisms enhancing subsurface flow as well. These are considered

more closely in what follows.

Macropores and other preferential flow paths
The concept of preferential flow paths or macropores is an old one; “little channels” and

“light soil, mixed with pebbles and roots of trees” were invoked as early as the 1680s

by Mariotte to explain infiltration and to refute the claims of Seneca and Perrault that

rain water cannot possibly penetrate the soil to be the source of springs. In general,

macropores can be defined as secondary, often pipe-like structures of the soil matrix,

that are the remains of purely physical processes, such as erosion initiated by desiccation

cracking, and different forms of biological activity, such as decaying plant root channels
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Fig. 11.5 Schematic representation of a soil profile with a fragipan horizon. (From Smalley and Davin, 1982,
after Van Vliet and Langohr, 1981.)

and animal burrows of various sizes. Reviews on the subject have been presented by Jones

(1971) and Beven and Germann (1982). Because soil drying and biological activity tend

to take place near the ground surface, pipes and macropores are usually most abundant

in the top soil layers and they tend to become less frequent with depth. Such structures

are usually obvious features of soil profiles at banks and road cuts.

In addition to these macropores, different other types of preferential flow paths have

been observed, which may also have ramifications for the relative transport of pre-event
and event water to the stream channel. Recall that pre-event water, also called old water,

is the water present in the soil mantle before the onset of the precipitation, whereas the

event water, often called new water, is the water resulting from the precipitation. In one

type of preferential flow, the paths can often be observed at the surface of clayey and

loamy soils as cracks or fractures resulting from the shrinkage of the clay particles during

drying episodes. At least during the initial stages of a precipitation event, before clay

swelling closes them again, such cracks can facilitate the downward water movement in

the profile. A somewhat related type of preferential flow has been observed in fissured

fragipan horizons (Parlange et al., 1989), as illustrated in Figure 11.5. A fragipan is
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typically a loamy clay layer with very low conductivity and higher bulk density than

the overlying layers. However, in some cases during their evolution, fragipan horizons

became fractured into a polygonal columnar structure with a network of interconnected

vertical fissures, again, as a result of shrinkage of the clay particles; these cracks are

then believed to have been filled with more permeable soil material from above, greatly

facilitating water transport. The cracks are typically 10–20 cm wide. In another type of

preferential flow, the paths are initially established as instabilities or fingers at infiltrating

wetting fronts in coarse soils, when the infiltration rate is smaller than the saturated

conductivity. A crucial point, however, is that, once established, these paths usually

become permanent features of the profile, each time the soil is being rewetted (Glass

et al., 1989); exceptions may occur when the soil has undergone complete drying out or

complete saturation, both of which are rare if not unlikely in nature. Figure 11.6 shows an

example of the initial growth of fingers observed in the laboratory. Such fingers are not

so obvious in the soil profile, but they become visible with dyes or other tracers. Other

aspects of the nature and origin of this type of preferential paths have been clarified (see

Selker et al., 1992; Liu et al., 1994a; b).

Although the existence of macropores has been known for a long time, the precise

nature of their contribution to the streamflow generation processes has been emerging

only gradually. A few examples follow of investigations in which macropores were

observed to play a major role.

In a small (0.022 km2) basin in east-central Honshu, Tanaka et al. (1981; 1988)

observed that more than 90% of the storm runoff came from below the ground surface

mainly through pipe flow; some saturation overland flow occurred over the gentler slopes

(S0
∼= 0.12) of the valley floor, when the rainfall exceeded 50 mm; the saturated area

varied somewhat in location and extent from storm to storm, but it never occupied more

than 4.5% of the total area (see Figures 11.7 and 11.8). No overland flow was ever

observed on the steep (S0
∼= 0.50) hillsides.

In a 0.47 ha forested catchment in Tennessee, Wilson et al. (1991) found that the

initial subsurface stormflow water in moderate to high intensity events consisted mainly

(>70%) of new, i.e. event water; they concluded from this that it had bypassed the

unsaturated soil matrix, in which the pre-event water was stored, via macropores without

ever reaching the water table. Later on, however, as the flow continued, the fraction of

old water gradually increased.

In a catchment under pasture in southern Australia, Smettem et al. (1991) and Leaney

et al. (1993) observed that winter stormflow reaches the channel mainly through macrop-

ores, bypassing the soil matrix, and creating perched water table conditions immediately

around these pores. In summer, however, overland flow was found to be dominant; they

did not observe evidence of partial area sources, as only a negligible fraction of the

catchment was occupied by wetland.

On a steep forested hillslope with cedar and cypress in Ibaraki in east-central Honshu,

Tsuboyama et al. (1994) observed a dynamic system of macropores, which expanded

and conducted increasing amounts of water as antecedent conditions became wetter.

Continued studies on that same catchment (Noguchi et al. 1999; Sidle et al., 2001) led
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Fig. 11.6 Typical development of an unstable wetting front resulting in a persistent fingered flow pattern; the
round holes indicate the positions of the tensiometers in the two-dimensional sand-filled chamber to
monitor the water pressures during the experiment, and the numbers indicate time (s) after the start
of the infiltration. (From Selker et al., 1992.)
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Fig. 11.7 Maximal extent of the saturated areas and distribution of subsurface outflow points at the peak
discharge rate of a 195 mm storm in September 1980 on a steep 0.022 km2 catchment within the source
region of the Tama River. The saturated area occupied roughly 3.3% of the basin area and the area
shown represents roughly one quarter of the basin area. (From Tanaka et al., 1981.)

to the more specific view that, while individual macropore segments are usually shorter

than 0.5 m, they tend to self-organize, as wetness increases, into larger flow systems with

such preferential flow connections between them as buried pockets of organic material

and loose soil, small depressions of bedrock substrate, and fractures in the weathered

bedrock.

Chemical analysis of measurements on a 0.75 ha forested first-order catchment in

the sub-Andean foreland basin of Peru by Elsenbeer et al. (1995b) indicated that the

stormflow response is dominated by event water. This water traveled to the stream

channel as a combination of overland flow and through pipes. Some pipe flow reached

the stream directly, but some emerged to the surface before reaching the stream. The

overland flow was thus generated by emerging pipe flow and directly by the rain.

This made them observe that, from the perspective of the catchment, the distinction

between pipe flow and overland flow is meaningless, as both mechanisms produced event

water.

From observations in a semiarid pine forest in New Mexico, Newman et al. (1998)

concluded that most of the lateral subsurface flow takes place in the B horizon through

macropores. Thus throughout most of the year, the soil profile behaves like a two-domain
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Fig. 11.8 The precipitation
and runoff
hydrograph of the
195 mm storm
event on the
catchment shown
in Figure 11.7.
(From Tanaka
et al., 1981.)

system; this consists of a macropore domain, which provides rapid subsurface flow that

is not in equilibrium with the soil matrix, and of a matrix domain, in which the trans-

port is very slow and in which evaporative processes cause major water losses and

increased salinity (see Figure 11.9). Variations in the ratio of old to new water in the

runoff were seen to depend mainly on the size of the precipitation event; macropores can

conduct the flow directly or they may also feed shallow perched saturated zones overly-

ing low permeability bedrock. Whenever the entire profile is fully saturated, as during

snowmelt episodes, the two domains are connected, and large subsurface flow rates are

produced.

In the above studies it was shown how subsurface flow through macropores and other

preferential flow paths can play a major role in storm runoff generation. However, the

specific interpretations of the measurements, especially on the relative roles of old and

new water in this process, differed somewhat, and in some cases they were contradictory.

Although this is largely the result of the wide variety in catchments that were being

studied, it is no doubt also related to the differences in experimental techniques used

in these studies. This was brought out, for example, in the long-term observations,

carried out on the steep mixed evergreen forest catchments (1.63–8.26 ha) in a humid

climate (2600 mm y−1) at Maimai in New Zealand; a succession of detailed studies has



streamflow generat ion 452

Organic litter and grass cover

Sandy loam—A horizon

Clay—B horizon

Restrictive layer (inferred)

Bandelier Tuff

Matrix flow

Preferential flow

A-horizon lateral flow has a higher
matrix flow component than B horizon,
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through preferential flow paths with some
matrix flow during saturated periods.

Flow into tuff appears to be minor
compared with that in the A and B
horizons.

New water

New
water

Vertical
bypassing

Fig. 11.9 Perceptual flow mechanisms in a semiarid forested slope in New Mexico. The lateral matrix flow in
the A horizon is larger than that in the B horizon, possibly as a result of some ponding on top of the
B horizon; in the B horizon the flow takes place mainly through preferential flow paths, with some
matrix flow and leakage into the underlying tuff. (From Newman et al., 1998.)

illustrated how such interpretations can evolve over time, as more and better measurement

techniques are brought to bear on the analysis (McGlynn et al., 2002). In the early studies

by Mosley (1979) it was concluded from local flow and dye tracer measurements in pits

that macropore flow of mostly new water, in storms of moderate to large intensity, can

bypass the soil matrix, where the pre-event water is normally stored, and is capable

of generating the channel stormflow. On the basis of subsequent investigations with

electrical conductivity and natural tracers, Pearce et al. (1986) and Sklash et al. (1986)

arrived at a different conclusion; they deduced from the measurements that it was mainly

old water throughflow that was responsible for hydrograph generation, and that the flow

of new water above the ground surface or below it through the soil matrix or through

macropores could not explain the streamflow response. To resolve these discrepancies,

a third set of studies was carried out by McDonnell (1990; McDonnell et al., 1991a) in

which a chemical tracer analysis was supplemented with soil water pressure observations

by means of tensiometers installed in near-stream, mid-hollow and upslope positions. It

was observed that the soil water pressure response was dependent on storm magnitude,

intensity and antecedent water content. For storm events producing peak runoff less

than 2 mm h−1, the water appeared to infiltrate downward as a wetting front in the soil

matrix without appreciable macropore bypass flow; no water table developed along the

slope and the streamflow consisted of old water issuing mainly from the near stream

valley bottom groundwater. For events with peak storm runoff in excess of 2 mm h−1,
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Fig. 11.10 Perceptual runoff production mechanisms in a midslope hollow of a humid catchment in New Zealand.
As shown, the precipitation rate (P) exceeds the hydraulic conductivity (k0) of the mineral soil, and
moves down through vertical cracks. The invading new water perches at the soil–bedrock interface,
and backs up into the newly saturated soil matrix, where it mixes with the much larger volume of
stored old water. Once free water (with positive pore water pressures) exists, the larger pipes in the
lower soil zones quickly dissipate transient water tables laterally downslope, producing a rapid
throughflow response of well-mixed, albeit mainly pre-event water. (From McDonnell, 1990.)

the lower soil horizons along the slope responded almost instantaneously, indicating a

rapid macropore flow, as Mosley (1979) had already surmised. The predominance of

old water in the streamflow runoff was explained by McDonnell (1990) by the fact that

the rapid flow of new rainwater through downward crack macropores backs up into the

soil matrix at the soil–bedrock interface, which is still dry; this rapidly causes saturated

conditions, and results in the emergence of well-mixed old water from the matrix into

lateral pipe macropores and rapid downslope transport (see Figure 11.10). In a fourth set

of experiments, Woods and Rowe (1996) dug a trench 60 m long and 1.5 m deep along

the toe of a hillslope hollow, with 30 subsurface flow collection points along its length.

The outflow from the hillslope was found to be very variable; this led to the conclusion

that outflow data from single hillslope throughflow pits should not be extrapolated to an

entire hillslope and further (Woods et al., 1997) that this variability depends on wetness

and surface topography. The latter conclusion was refuted by McDonnell and associates
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Fig. 11.11 Schematic illustration of the
rapid subsurface storm flow
(SF) through various types of
preferential flowpaths,
pipes and macropores. The
relative amounts of new
(dashed arrows) and old water
(solid arrows) in the mixing
process depend mainly on the
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(McGlynn et al., 2002) on the basis of a fifth set of hillslope-scale tracer measurements

with bromide at the same catchment. The main conclusion from that study was that it

is not the surface topography, but rather the spatial pattern of the bedrock topography,

with local preferential flow and mobile and immobile regions, conditioned by small

local depressions in the bedrock, which controls the tracer outflow variability; tracer

material and old water may remain trapped temporarily in such depressions and become

mobilized only by a new storm event.

From measurements in a forested Canadian Shield basin in Ontario, Peters et al.
(1995) concluded that preferential flow channels brought the water vertically down,

after which it flowed laterally over the bedrock and that practically all the lateral flow

occurred within a thin weathered zone near the soil–bedrock interface. The conductivity

of this preferential flow layer appeared to be so large that some of the fast flows and

peak runoff were suspected to be of the non-Darcy type. The storm runoff in the channel

consisted of a mixture of event and pre-event water. This was interpreted to show that

the fast infiltration of the event water caused saturated soil conditions above the bedrock,

which in turn resulted in the downhill flow of both event and pre-event water; moreover,

during the hillslope transport, there was ample opportunity for interaction between the

event runoff water and the soil matrix.

In summary, the subsurface stormflow, observed in several of the hillslope experiments

reviewed here, exhibited the common feature of unimpeded entry by new water from

rainfall into the soil, followed immediately by rapid downslope flow through preferential

paths, pipes and other macropores; this flow involved mixing with the old water already

present in the soil profile (see Figure 11.11), to varying degrees depending on the intensity

of the rain and on the initial moisture status of the soil mantle.

Throughflow in a shallow permeable layer
In many catchments covered with natural vegetation the soil mantle has a relatively

permeable top layer consisting of organic debris and mineral soil with high organic

content; typically, this layer has a thickness of only a few tens of centimeters and its

bottom interface is characterized by an abrupt decline in hydraulic conductivity in the

underlying mineral soil. Thus infiltrating rainwater tends to flow and build up along



storm runoff mechanisms 455

this interface and develop a perched water table and fully saturated conditions, although

deeper layers may remain partially saturated. In several experimental studies it has

been observed that such layers can be effective enough to be a major, and sometimes

even the main transport medium for stormflow. As noted above, this type of flow was

observed to occur by Bonnell and Gilmour (1978), in conjunction with saturation over-

land flow, in a catchment in Queensland. The chemical signatures of hillslope waters in

a catchment in Wales made also Chappell et al. (1990) conclude that this can indeed

be the dominant mechanism for water and ion transport to lower near-stream riparian

zones. Similarly, Jenkins et al. (1994) used natural tracers to characterize rain water,

soil water and ground water in a moorland catchment in northeast Scotland. The inter-

face between mineral soil layers and the upper organic layers of peaty podsol were

identified as preferential pathways. Flow of water in this upper layer was observed to

be triggered nearly instantaneously by the onset of the rain, and also to stop nearly

as suddenly as the rain ceased; the water in this layer had a chemistry very similar

to that of the rain. In the runoff hydrograph, the peak flow was found to be domi-

nated by rain and soil water, whereas the recession part was dominated by pre-event

groundwater.

Although they did not consider this type of flow as being representative of the entire

catchment, McDonnell et al. (1991b) did observe it on small portions of the Maimai

catchments in New Zealand. During a rain storm event of some 47 mm and with the

soil water suctions initially ranging between H = 60 and 150 cm water column, most

of the water was seen to flow out from the organic soil layer perched on the mineral soil

profile; all the while, the lower soil profile remained only partly saturated. More recently,

from an experimental study on seven nested (from 8 to 161 ha) forest catchments in the

Catskill Mountains of New York, Brown et al. (1999) concluded that a large fraction of

the rapid delivery to the stream took place through this same mechanism. Event water

appeared to be most prevalent in the stormflow especially during dry conditions, with

relative contributions between 50% and 62% near peak flow.

Wavelike mobilization of the water table
As illustrated in Figures 8.5, 8.6 and 8.7, for most soils within the nearly saturated

capillary fringe, a small change in water content can result in a relatively large change in

pore water pressure. This has led to the view that the addition of a very small amount of

water to a relatively moist soil can raise the water table rapidly, almost as a pressure wave

type of propagation, to produce a saturated soil profile. Wherever the profile becomes

fully saturated this way, subsurface flow may emerge and saturation excess overland

flow is also bound to occur. This type of water table rise may be especially fast in the

lower parts of the hillslope and may result in the build up of an emerging groundwater

mound, exhibiting greatly increased hydraulic gradients and groundwater discharge to

the channel, and forming a partial or variable source area producing saturation excess

overland flow as well. Thus the phenomenon is not unlike that depicted in Figure 11.3,

except that here the water table rise is presumed to involve very little actual water

movement.
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Phenomena interpreted to be the result of this type of mechanism were observed, for

example, in a swampy area by Novakowski and Gillham (1988) and in a grass-covered

low relief basin by Abdul and Gillham (1989), both in Ontario. In these studies, the

rise of the water table was most pronounced in the near-stream areas. The mechanism

has also been inferred to occur in more rugged terrain. During a sprinkler irrigation

experiment on a very steep (43%) forested hillslope near Coos Bay in Oregon, Torres

et al. (1998) applied a sudden input spike, after the system had been driven to a steady

state flow and the soil water pressures were mostly between 0 and −10 cm. They

supposed that the timing and magnitude of the pore water pressure and of the dis-

charge rate response to this sudden input were much faster than could be expected

from advective water movement, and concluded that the fast response was triggered

by a pressure wave moving undetected through the unsaturated zone; thus a small

amount of rain on a wet soil profile can supposedly result in a rapid rise in the satu-

rated zone, with a relatively slight increase in hydraulic gradient and a large increase

in hydraulic conductivity. They also observed some preferential flow, but they felt that

in this particular soil, this effect was minor compared to that of the soil water retention

characteristics.

The concept that suction-saturated capillary fringe water can be easily converted into

water below the water table, that is from a negative to a positive pressure, by a relatively

small amount of rain, is undoubtedly realistic. Clearly, only a little additional water is

required to mobilize the soil water, when the soil is already close to saturation. But the

importance of this mechanism should be kept in perspective. For example, it can only

be expected to be effective when the pore water pressure in the top layers of the soil

is arrived at during a drainage phase and not during a wetting phase; as illustrated in

Figures 8.14, 8.18 and 8.19, the capillary fringe is usually much smaller in the wetting

cycle. Similarly, in the absence of any macropores or pipes, the water table (i.e. the locus

of atmospheric- or zero-pore water pressure) can only be expected to move rapidly down

a steep slope, if it is already close to the surface. As illustrated in Figure 10.12, the

drainable porosity ne is smaller when the water table is closer to the surface, that is when

(−pw)max is smaller. While not a perfect representation, hydraulic groundwater theory,

as formulated by the Boussinesq equation (10.29) and its linearized form (10.134), is also

fully consistent with this. This can be seen by considering the advectivity in Equation

(10.29) (also (10.136)); rewritten here for convenience

ch = −k0sin α

ne

(11.2)

it describes the speed of propagation of a given water table height η (or of a disturbance

of the water table resulting from rainfall) down the slope. This shows that, in the absence

of preferential flow paths, large values of ch can result only when the drainable porosity

is small. As seen in Equation (10.151), this is equally consistent with the kinematic wave

approximation.

Capillarity induced flow enhancement has also been linked to soil stratification. In sit-

uations where a fine-textured soil layer overlies a more coarse-grained material, the inter-

face between the two layers can develop into a capillary barrier (Ross, 1990; Steenhuis
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et al., 1991). On account of the different soil water characteristics in the two layers, for

a given water pressure at the interface, at equilibrium the soil water content in the upper

layer is normally larger than in the lower coarse-textured layer. As a result, the hydraulic

conductivity in the upper layer may be considerably larger than in the lower layer; this

is illustrated in Figure 8.26. In such a case infiltrating rain water will not readily enter

into this lower layer but will tend to be diverted laterally and may cause a rapid rise

in water table further down the slope if the water in the upper layer is already close

to suction-saturated. Field observations within the source region of the Tama River in

east-central Honshu by Marui (1991; Tanaka, 1996) on a hillslope unit, characterized

by a 4 m thick fine-grained loam layer underlain by 15 m thick gravel layer, were con-

sistent with this sequence of events. He observed a large-scale groundwater ridge along

the steep hillslope. In addition, the air in the underlying partly saturated gravel seemed

to be confined by the surrounding groundwater body, and by the saturated zone in the

loam layer. In a separate study, Onodera (1991; Tanaka, 1996) inferred that the result-

ing air pressure increase may have led to increased groundwater outflow at the slope

surface.

In conclusion, it stands to reason, that mechanisms related to capillarity can lead to

so-called groundwater “ridging” not only in riparian areas, but also along hillslopes,

wherever the capillary fringe is already close to the ground surface. However, until now

no experiments have demonstrated that by itself this type of phenomenon is related

to the hydrograph; thus, whether or not this mechanism can explain large subsurface

stormflows remains to be answered.

1 1 . 3 S U M M A RY O F M E C H A N I S M S A N D

PA R A M E T E R I Z AT I O N O P T I O N S

11.3.1 General considerations

The brief review in Section 11.2 has shown that on the Earth’s land surfaces one can

encounter a bewildering range of hydrologic, climatic, topographic and soil conditions,

which will favor widely different storm generation mechanisms. These mechanisms can

be overland flow due to infiltration excess precipitation, or to saturation excess near the

soil surface, resulting either from return outflow from the subsurface, or from rapidly

mobilized capillary fringe water in the soil profile to full saturation. On steep slopes

overland flow is more likely on converging sections in hollows. The mechanisms can

also be subsurface flow of water in a number of different ways. Especially during large

rainfall events, this can involve different types of macropores and preferential flow paths,

namely as vertical bypass flow to some depth, and then as lateral flow through pipes or

through a shallow porous soil layer with high organic content or at the soil bedrock

interface. At the same time a slower and less localized throughflow takes place in the

soil matrix. Several of these mechanisms have been found to be more than adequate to

produce high-intensity runoff events. It is also striking that these mechanisms are not

mutually exclusive and that in many situations they coexist and operate interactively in

the production of streamflow; their relative importance then depends on the prevailing
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conditions, such as initial moisture conditions in the catchment and the magnitude of the

precipitation.

In some cases the coexistence of different mechanisms can give rise to some unusual

phenomena. For instance, under low initial conditions in a watershed in central Côte

d’Ivoire, Masiyandima et al. (2003) observed double-peaked hydrographs resulting from

the same rainfall burst; the first peak, which occurred while it rained, was produced by

the rainfall on the saturated valley bottom; the second peak, which came minutes to hours

after the first, resulted from the rain that had fallen on the area surrounding the valley

bottom and that had traveled to the stream channel by subsurface flow.

All this underscores again the extreme complexity of the stream generation process.

These observations suggest that a single unifying runoff model may not be possible nor

even desirable, and they have profound implications for the development of modeling

strategies for predictive purposes in applied hydrology.

Identification of major mechanisms
In order to keep the formulation sufficiently simple and parsimonious, it may be necessary

to identify and include only the dominant mechanisms for any given set of conditions, and

to accept some inevitable uncertainty resulting from the omission of the remaining minor

mechanisms. On the basis of a knowledge of these local conditions, the analyst must

then decide which mechanisms are the major ones that must be considered to represent

a particular catchment. The insight gained by the recent field observations can also give

some guidance in this. For instance, different kinds of subsurface flow can be assumed

to dominate the runoff process in humid areas with an active vegetation. Well-developed

mineral soils undoubtedly favor the development of preferential flow paths, whereas thin

porous soils with organic litter probably lead to shallow lateral flow of the perched water

above the less permeable soil or bedrock. Wetland areas near the stream may allow rapid

mobilization or ridging of the water table, and the development of partial and variable

source areas, on which saturation excess overland flow can take place. Infiltration excess

overland flow will be prevalent during large precipitation events on unvegetated surfaces

in arid regions and in areas subject to intense human activities.

Objectives of the analysis
This wide variety in possible mechanisms also means that, in the development of mod-

eling strategies for engineering and other applied purposes, for a given catchment it may

be advisable to adopt different formulations depending on the objectives of the analysis.

For example, the prediction of disastrous flash flooding, under extreme precipitation

conditions, may require an entirely different approach from those needed to describe

solute transport and water quality in the environment, to analyze possible climate change

scenarios under more normal flow regimes, or to assess the potential for erosion or land-

slides. For flood prediction, mainly the flows at a certain point along the river may be of

interest; for climate change scenarios, surface–atmosphere interactions are of paramount

importance; and for water quality purposes it may be crucial to know the pathways, in

order to determine the fate and transport of admixtures and water pollutants; finally,
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erosion and landslide hazards tend to be related to the pore water pressure distribution

and the local flow velocities.

Appropriate parameter values
But even for the same formulation, it may also be necessary to adopt different parameter

values depending on the flow regime. The formulation of river flow usually requires dif-

ferent values of the roughness parameter in the Gauckler–Manning or Chézy equations,

depending on whether it is low flow within the regular channel or high flow with flooding

outside the banks. Similarly, in the description of hillslope outflow by some of the sub-

surface parameterizations of Chapter 10, the appropriate values of the effective hydraulic

conductivity k0 and of the thickness of the flow region η0, used to represent stormflow

conditions with active macropores, will be considerably larger than those appropriate

for conditions of baseflow, after the water tables have subsided and many of the macro-

pores in the upper soil layers have emptied and are no longer active. Actually, because

of the high flow velocities, subsurface stormflows may not be of the Darcy type, and it

may be necessary to use Forchheimer’s Equation (8.34) with an additional transmission

parameter beside the hydraulic conductivity.

Ultimately, the performance, in a general sense, of any kind of parameterization

and of the resulting model, has to be judged on the basis of its ability to simulate or

replicate observations of the variables of interest. As mentioned in Chapter 1, parsimony

and robustness are important additional considerations. Different aspects of the modeling

issue have been treated by Klemes (1986), Morton (1993), and Woolhiser (1996), among

others.

11.3.2 How to put it all together? Distributed versus lumped approach

As already explained in Chapter 1, scale is the appropriate criterion to classify the

different methodologies. Accordingly, one can distinguish two general classes of models

that have been used in the past to simulate streamflow generation. In the distributed
models, also called runoff routing models, the computational scales are much smaller

than the flow domain characterizing the catchment, whereas in the lumped models the

computational scale is essentially of the same order as that of the catchment.

The main feature of the distributed approach is that the basin outflow is obtained by

tracking the water through its different transport phases in the basin interior. In brief,

these phases are surface and subsurface transport into the stream channel network, in

response to precipitation after it reaches the ground surface, and the subsequent open

channel flow to the basin outlet; between precipitation episodes the basin outflow is

dominated by baseflow and evaporation processes. The different mechanisms in each of

these transport phases may be described by combining some of the formulations of the

relevant processes, as presented in Chapters 2–10. These formulations invariably involve

a number of assumptions neglecting certain aspects of the flow, which are considered to

be less important; this means that they can be only simplified representations of reality.

The distributed approach has been receiving increasing acceptance in recent years with

the advent of digital computation and with the growing availability of higher-resolution
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data from digital terrain and other geographical information systems; rapid advances

continue to be reported in the literature.

Among the main advantages of distributed models one can note that they allow the

exploration of the consequences of various simplifying assumptions; as a result, they

can lead to a better understanding of the various pathways and of the interplay between

the main processes and related aspects of complex hydrologic systems in the real world.

They can also be useful in the prediction of outflow from headwater catchments, pro-

vided their parameters can be determined. But this requirement subsumes also one of

their main shortcomings. Ideally, the parameters should be determined a priori, that is

independently from the model’s performance. In many cases, however, this is impossible

and the parameters must be estimated by calibration. But then, distributed models tend to

contain so many parameters that it becomes practically impossible to estimate them all in

objective and physically consistent ways. Another major drawback is that the underlying

mathematical rigor of the parameterizations of the model components may instill in the

practitioner a confidence and a sense of realism about their performance, that they do not

deserve, on account of the many simplifications and uncertainties involved. As a result,

the limitations of such models may not be fully understood by uninitiated users and they

may be applied to situations for which they were not intended.

In contrast, the lumped models, whose computational scales are of the same order of

magnitude as the catchment scales, rely on fewer parameters, which are generally easier

to estimate from the available data. Therefore, they are easier to apply in basin outlet flow

simulations for prediction and forecasting purposes. Unfortunately, as the computational

scale increases, it becomes increasingly difficult to give a physical interpretation to these

parameters, in the sense of the processes described in Chapters 2–10. This means that it

is usually impossible to predict changes in these parameters, as the catchment undergoes

physical changes, such as those resulting from an evolving land use or changing climate.

Another drawback is that even when the catchment characteristics remain unchanged,

catchment-scale parameters are incapable of accommodating spatial variability of the

input (e.g. rainfall) and of the flow processes (e.g. infiltration and evaporation). Moreover,

it is impossible to use this approach to describe the detailed flow paths required in the

prediction of pollutant transport or erosion. In spite of all these shortcomings, the lumped

approach continues to be useful in the prediction of streamflow for certain operational

and design purposes. Specific implementations of this approach are further treated in

detail in Chapter 12.

Again, in closing this review, it should be understood that, although a classification

into distributed and lumped models is useful to bring some order in the multitude of

possible approaches, it is also somewhat artificial. Comparison of the different methods

treated in Chapters 5–10 has made it clear that the lumped kinematic approach is merely

the simplest extreme in a continuous range of complexity levels, which can be applied in

up-scaling the analysis from the finest resolution of the full space- and time-dependent

conservation equations of momentum, energy and mass to the coarsest resolution, that is

the scale of the catchment itself. However, the level of model complexity necessary for a

specific application is still not well known; nor is it clear what scenarios warrant the use

of more complex models or under what conditions a distributed model will consistently
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outperform lumped models. In other words, there is still no general consensus regarding

the optimal simplifying assumptions that are most appropriate to describe streamflow

generation under a given set of conditions. Although it could be argued that there never

will be a consensus, this field is in an active state of development and rapid advances

continue to be made.
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12 S T R E A M F L OW R E S P O N S E AT T H E
C AT C H M E N T S C A L E

In this chapter different formulations are considered that are available to transform
the lumped water input by rainfall or melt events directly into streamflow output from
the catchment area. The basic philosophy of this type of approach is that the physical
processes are assumed to take place at the scale of the catchment, without consideration
for the detailed subscale processes or for the intricacies of the flow paths inside the
watershed. In a sense, this is analogous with the view espoused in continuum mechanics
or thermodynamics (albeit in their own respective scale ranges), where only the “macro”
or “everyday” properties of the fluids are taken into account, without consideration of
their properties at the molecular or nuclear scales. Because by far most applications of
the lumped approach in the past have been based on the assumptions of linearity and
stationarity, these will be treated first and in greatest detail.

1 2 . 1 S TAT I O NA RY L I N E A R R E S P O N S E : T H E U N I T H Y D RO G R A P H

12.1.1 Basic concept

Definition
The unit hydrograph, or unit graph, can be defined as the hydrograph of unit volume
of storm runoff produced by a unit volume of uniform (in space and in time) intensity
excess rainfall over a unit period Du, with the basic assumptions of linearity and time
invariance. As defined here, the unit hydrograph is the response function of a linear
system, which is treated in more general terms in the Appendix, and can be denoted by
u(Du; t). Similarly, in what follows in this chapter, y = y(t) and x = x(t) will denote,
respectively, the storm runoff per unit of catchment area and the intensity of excess
rainfall or other input per unit catchment area, which directly produces this storm runoff;
note that in some practical applications, the determination of y and x may require the
abstraction of baseflow and of the interception or deep infiltration of the precipitation.
According to the definition of Equation (A9), in the present context the assumption of
linearity or superposition means that the hydrograph, resulting from any input pattern of
rainfall or snowmelt, can be built up from separate unit hydrographs by superposition,
that is, after scaling them in magnitude and after sequencing them in time. In light of
the definition (A10), the assumption of invariance or stationarity means that the runoff
from a given catchment due to a given input pattern is the same, regardless of the
particular circumstances; thus there are no effects or feedbacks resulting from current
conditions (e.g. season) or antecedent input during the event. The unit volume and unit
period are arbitrary, but they can be taken, for example, as 1 cm over the entire area of the
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Fig. 12.1 Example of a unit hydrograph u = u(Du; t); its volume is 1 cm over the catchment area and it results

from a unit volume precipitation excess with an intensity P = 0.5 cm h−1 lasting a unit duration

Du = 2 h.

catchment and 1 h or a multiple thereof, respectively. The concept of the unit hydrograph
was introduced by Sherman (1932a,b) as a method of extending available data, in order
to predict floods resulting from more complex and higher intensity storms, than those
on record.

Example 12.1. Application of unit hydrograph

To illustrate this concept, Figure 12.1 shows an example of a 2 h unit hydrograph for
a certain catchment; the numerical values are listed in Table 12.1. This hydrograph
represents the storm runoff from the catchment, produced by a rainfall excess which
has a unit volume, i.e. 1 cm, and a unit duration Du = 2 h. To achieve this unit volume,
the rainfall intensity is of necessity x = 0.5 cm h−1 over the 2 h period. This unit
hydrograph can now be used to calculate the storm runoff produced by any pattern of
spatially uniform excess rainfall. Consider the following sequence: x = 1 cm h−1 for
0 < t ≤ 2 h, x = 2 cm h−1 for 2 < t ≤ 4 h, and x = 1.5 cm h−1 for 4 < t ≤ 6 h. The
first rainfall burst, i.e. 1 cm h−1, has twice the intensity of the input that produces the
unit hydrograph; therefore it produces a storm runoff hydrograph, whose magnitude is
twice that of the unit hydrograph. The second burst, i.e. 2 cm h−1, has four times the
intensity of the input that produces the unit hydrograph, and so on. The ordinates of the
resulting three hydrographs are then added to yield the storm hydrograph, as illustrated
in Figure 12.2.

Practical limitations
The assumptions of linearity and invariance have their limitations, and the requirements
of uniformity are rarely met. For example, the assumption of linearity implies that the
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Table 12.1 Values of the 2 h unit hydrograph used in Example 12.1

Time (h) Flow rate (cm h−1) Time (h) Flow rate (cm h−1)

0 0.0000 6.5 0.0654
0.5 0.0080 7 0.0477
1 0.0414 7.5 0.0342
1.5 0.0963 8 0.0242
2 0.1610 8.5 0.0169
2.5 0.2195 9 0.0118
3 0.2471 9.5 0.0081
3.5 0.2433 10 0.0055
4 0.2190 10.5 0.0037
4.5 0.1851 11 0.0025
5 0.1494 11.5 0.0017
5.5 0.1164 12 0.0011
6 0.0883 12.5 0.0008
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Fig. 12.2 Example of the storm runoff (heavy line) calculated by means of the 2 h unit hydrograph shown in

Figure 12.1, resulting from a storm with excess precipitation rates of 1 cm h−1 for 0 < t ≤ 2 h, 2 cm

h−1 for 2 < t ≤ 4 h, and 1.5 cm h−1 for 4 < t ≤ 6 h; these successive pulses and their responses are

indicated by a, b and c. The respective volumes are 2, 4 and 3 cm over the catchment area.

time scales of runoff remain independent of the magnitude of the input. This assumption
is acceptable as long as the flow rates do not deviate too much from some average or
characteristic values. However, nonlinearities can be expected to show up when the flow
rate magnitudes of interest cover a wide range; this holds especially true over smaller
catchments. For instance, in the case of free surface flow, the Chézy and GM equations,
(5.39) and (5.41), indicate that the velocity depends on the water depth. This means
that the more water is flowing in the rills, gutters and creek channels of the basin, the
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Fig. 12.3 Illustration of the nonlinear features of the unit response u(Du; t) of a very small (0.11 km2)

agricultural catchment in Illinois, when the excess precipitation input rate x (denoted here as P) varies

over a wide range between 2.4 and 12.1 cm h−1. The unit duration Du was nearly the same for all five

cases and ranged between 10 and 14 min; the indicated time is from the start of the excess

precipitation. (After Minshall, 1960.)

shorter the time to peak of the outflow hydrograph will be, and thus also the higher the
peak flow rate will tend to be. This type of nonlinearity is illustrated in Figure 12.3. The
unit hydrographs were derived from field data in a study by Minshall (1960) on a small
agricultural catchment of 0.11 km2. The durations Du were nearly the same for all five
cases and ranged between 10 and 14 min, but the rainfall rates changed five-fold over
a range between 24 and 121 mm h−1. This type of response may be called superlinear.
However, watersheds need not always behave this way. For instance, in the extreme case
of a large flood, when the water spills over the banks of the channel onto the flood plain, it
may happen that the flow is retarded by the larger roughness of the flood plain obstacles;
the peak is then likely to arrive later than predicted by the unit hydrograph obtained
from flows under more moderate flow conditions. This would be a case of sublinear
response. The requirement of a spatially uniform rainfall input imposes an upper limit
on the catchment area; for practical applications, an upper limit of the order of 1800 km2

has been suggested by O’Kelly (1955).

12.1.2 Extensions of original approach: alternative response functions

S hydrograph
This type of response function results from a uniform input of unit intensity, which con-
tinues indefinitely. Thus with the same assumptions, as those used in the definition of
the unit hydrograph, the S hydrograph can be obtained by superposing the unit hydro-
graphs resulting from an uninterrupted sequence of unit rainfall volumes of unit duration.
Observe that for a unit duration Du the input intensity is of necessity (1/Du), if the total
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Fig. 12.4 Construction of the S hydrograph with the example unit hydrograph shown in Figure 12.1. Several

unit hydrographs are time-shifted by an amount Du = 2 h and then summed; this result (thin line)

simulates the outflow rate from the catchment, caused by a steady uniform input rate of x = 1/Du =
0.5 cm h−1. The S-hydrograph for a steady input rate of unit magnitude of 1 cm h−1 (heavy line) is

obtained by multiplying this sum by 2 (i.e. Du).

input is to be a unit volume. Therefore, the superposed unit hydrographs must be scaled,
that is divided by this intensity (or multiplied by Du), to obtain the S hydrograph for a
continuous input of unit intensity.

The main feature of the S hydrograph is that it allows the determination of the unit
hydrograph for any other adopted unit period, say D′

u. This is accomplished graphically
by time-shifting the S hydrograph D′

u time units to the right and by then subtracting
the time-shifted from the original S hydrograph. Again, however, because the unit volume
input pulse of duration D′

u must have an intensity equal to (1/D′
u), the resulting difference

must be multiplied by this amount to produce the output resulting from a unit volume
input. Accordingly, the unit hydrograph for the new unit period is

u(D′
u; t) = 1

D′
u

[Su(t) − Su(t − D′
u)] (12.1)

in which Su = Su(t) is the S hydrograph.

Example 12.2. Scaling of the S and unit hydrographs

Consider again the 2 h unit hydrograph of Example 12.1, which is listed in Table 12.1 and
shown in Figure 12.1. The S hydrograph can be derived as follows. First the outflow rates
from several 2 h hydrographs, all of them time-shifted by 2 h, are summed; as illustrated
in Figure 12.4, this simulates the outflow rate from the catchment caused by a steady
rainfall excess rate of x = (1/Du) = 0.5 cm h−1. To obtain the outflow rate resulting
from a steady uniform input rate of x = 1 cm h−1, this summed hydrograph must be
scaled by multiplying it by Du, which is 2 in the case of the 2 h unit hydrograph. This
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Fig. 12.5 Construction of the half hour unit hydrograph from the S hydrograph example developed in

Figure 12.4. Two S hydrographs are time-shifted by an amount D′
u = 0.5 h and then the difference

between their ordinates is determined; this result (thin line 1) simulates the outflow rate from the

catchment, caused by a uniform input rate of x =1.0 cm h−1 lasting for 0.5 h. The unit hydrograph for

a total input volume of unit magnitude of 1 cm (heavy line 2) is obtained by multiplying this difference

by 1/D′
u = 2.

S hydrograph can be used to derive a unit hydrograph of any unit time period D′
u. If the

unit hydrograph is sought for a unit period of, say, D′
u = 0.5 h, the operation described by

Equation (12.1) is performed. As illustrated in Figure 12.5, first an S curve, time-shifted
by half an hour, is subtracted from the original one. An input rate of x = 1 cm h−1 lasting
for half an hour produces a total volume of 0.5 cm. Therefore this difference must be
scaled by multiplying it by 1/D′

u = 2, to obtain a unit runoff volume of 1 cm.

The instantaneous unit hydrograph
This is the outflow hydrograph resulting from an input of unit volume placed instanta-
neously and uniformly over the entire catchment surface, again under the assumptions of
linearity and time-invariance. Clark (1945) was probably the first to apply this concept
in runoff computations. As shown in the Appendix, an instantaneous input can be repre-
sented by a Dirac delta function. Hence the instantaneous unit hydrograph is in fact the
impulse response or Green’s function of the catchment. In the notation of the Appendix,
it can be represented by u = u(t). It also means that the outflow from the catchment, in
response to a uniform rainfall input of intensity x = x(t), can be obtained by means of
the convolution integral, in any one of the forms (A11)–(A16), whichever is appropriate.
For instance in the case of Equation (A14) this is

y(t) =
t∫

0

x(τ ) u(t − τ )dτ (12.2)

in which y = y(t) is the output, x = x(t) the input, and u = u(t) the unit response of
the catchment. Recall that y = y(t) is the storm runoff rate per unit area of catchment;
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Fig. 12.6 Convolution operation with an instantaneous

unit hydrograph u = u(t), as the analog of

the summation shown in Figure 12.2, in the

limit as Du → dt → 0. (The values of y and u

are not drawn to scale.) (See also Figure A5.)

hence, for a streamflow rate Q = Q(t) at the outlet of a catchment of area A, the function
y represents Q/A, so that it has the dimensions [L/T], just like x = x(t). This means
that the dimensions of the unit response function in Equation (12.2) are [u] = [T−1],
corresponding, for example, with the units of cm per hour of runoff per cm of rainfall
input. In the operation represented by the convolution integral (12.2), t = 0 is defined
as the start of the input rate x = x(t). At any given value of time t , the total output rate
y is the result of all past inputs from the start of the input at τ = 0 until τ = t , weighted
at each instant τ with the unit response, as indicated in Figure 12.6, with the argument
(t − τ ). In the integration τ is the dummy time variable of integration, and t is treated
as a constant. (A more mathematical illustration of this convolution or folding is given
in Figure A5.)

Relationships between these different response functions
The instantaneous unit hydrograph u(t) can be used to derive the finite duration unit
hydrograph u(Du; t) by applying Equation (12.2) with the following input

x = 1

Du
for 0 ≤ t ≤ Du

x = 0 for t > Du

(12.3)

This yields, say, for t > Du

u(Du; t) =
Du∫

0

1

Du
u(t − τ )dτ (12.4)

After putting (t − τ ) = s, so that dτ = −ds, Equation (12.4) becomes

u(Du; t) = 1

Du

t∫
t−Du

u(s) ds (12.5)

This indicates that the finite duration unit hydrograph at time t is the average of the
instantaneous unit hydrograph taken over the period between (t − Du) and t . This is
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Fig. 12.7 Relationship between the 2 h unit hydrograph of Example 12.1 (UH) and the corresponding

instantaneous unit hydrograph (IUH) for the same catchment. For example, the ordinates of the UH at

points A and B are, respectively, the averages of the segments CD and EF on the IUH, in accordance

with Equation (12.5).

illustrated in Figure 12.7. Because of this one-to-one relationship between the finite
duration unit hydrograph and the instantaneous unit hydrograph, no distinction need be
made between the two, and both can be referred to as unit response function.

The instantaneous unit hydrograph can also be used to derive the S hydrograph by
simply applying Equation (12.2) with a constant unit input rate, x(t) = 1.00, starting at
t = 0, that is a unit step function as defined in Equation (A8), or

Su(t) =
t∫

0

u(t − τ )dτ (12.6)

Note that [x(t) = 1.00] = [L/T], so that also [Su(t)] = [L/T]. Application of Leibniz’s
rule (A2) shows readily that the instantaneous unit hydrograph is the slope of the S
hydrograph. Actually this also follows directly from Equation (12.1), as can be seen by
letting the unit duration Du approach zero, or in the limit as Du → 0

u(t) = d Su(t)
dt

(12.7)

1 2 . 2 I D E N T I F I C AT I O N O F L I N E A R R E S P O N S E F U N C T I O N S

12.2.1 From available data

Simple storm events
In principle, it should be relatively straightforward to determine the unit hydrograph,
whenever the rainfall occurs as a single burst of acceptably uniform intensity and of a
suitable duration, and is accompanied by an easily identifiable streamflow hydrograph.
This may be done by first subtracting the baseflow from the observed hydrograph and by
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then scaling the remainder hydrograph to the desired unit volume, that is by dividing it by
the observed excess rainfall depth. Trial and error may be required in the determination
of the baseflow and of the precipitation losses, to ensure that the excess rainfall volume
equals the storm runoff volume over the catchment area. Several unit hydrographs derived
from different storm events of a similar duration can be averaged in order to obtain a
more representative result. If necessary, a common duration can also be obtained by
means of their respective S hydrographs.

Complex storm events
More often than not, precipitation events do not have a uniform intensity in time and
the resulting runoff hydrograph may be quite irregular. The unit hydrograph must then
be estimated by considering its mathematical operation in some detail. Precipitation
and also streamflow data are usually given with discrete time steps. According to
Equation (A18), the discrete analog of the convolution integral is

y(t) =
n∑

k=0

x(k �τ ) u(�τ ; t − k �τ )�τ (12.8)

in which τ = n�τ (≤ t) is the time of the last input pulse prior to the designated response
time τ = t . If the unit period �τ is literally taken as one, and the output and input times
are discretized with the same resolution, this can be rewritten as

yi =
i∑

k=1

xk ui−k+1 (12.9)

Note that by analogy with Equation (A16) this can also be written as

yi =
i∑

k=1

xi−k+1 uk (12.10)

It should further be noted that yi and ui can designate either their respective average
values over the i th time period, or their actual values at the end of that same period,
depending on how the discretization is specified. Equation (12.9) (or (12.10)) leads to
the following set of equations

y1 = x1u1

y2 = x1u2 + x2u1

y3 = x1u3 + x2u2 + x3u1

...

yi = x1ui + x2ui−1 + · · · + xiu1

... (12.11)

yp−1 = x1u p−1 + x2u p−2 + · · · + x p−1u1

yp = x1u p + x2u p−1 + · · · + x pu1

...

ym−1 = x p−1un + x pun−1

ym = x pun
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in which the subscript m denotes the number of discretized streamflow hydrograph
ordinates, p the number of input pulses, and n the number of unit response function
ordinates. Clearly, the number of ordinates of each of the functions must satisfy

m = p + n − 1 (12.12)

which is illustrated in the following example.

Example 12.3. Numerical convolution

Consider a rainfall event consisting of p = 3 rainfall input pulses, and m = 6 measured
output hydrograph ordinates; this implies a discretized response function with n = 4
ordinates. Equations (12.9) and (12.10) become for this case

y1 = x1u1

y2 = x1u2 + x2u1

y3 = x1u3 + x2u2 + x3u1 (12.13)

y4 = x1u4 + x2u3 + x3u2

y5 = x2u4 + x3u3

y6 = x3u4

This is illustrated in Figure 12.8. for a storm with successive hourly input pulses
xi = 2.0, 4.0, 1.0 cm h−1, on a catchment whose discretized unit response function
has the successive ordinates ui = 0.3, 0.4, 0.2, 0.1.

In the identification of the response characteristics of the system, as formu-
lated in Equations (12.9)–(12.13), the ordinates u1, u2, . . . , un are the unknowns
that need to be determined. Because there are m (>n) equations available, the sys-
tem is over-determined. Nevertheless, one might be tempted to determine these
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u-values algebraically by forward substitution, for example with Equation (12.11) as
follows

u1 = y1

x1

u2 = y2 − x2u1

x1

(12.14)

and so on for u3, u4, . . . , un . This could also be done by backward substitution, starting
with un, as follows

un = ym

x p

un−1 = ym−1 − x p−1un

x p

(12.15)

and so on for the remaining values un−2, un−3, . . . , u1. This procedure would be fine if the
data were accurate and if the real system in nature were indeed to perform as formulated
in these equations. Unfortunately, hydrologic data are invariably subject to considerable
error and natural catchments tend to exhibit some nonlinear and non-stationary features
in their response characteristics. Therefore, an optimal solution must be sought, which
makes use of all m available equations. Among the more common solution methods of
a set of equations like (12.9) and (12.11) are those based on the least squares criterion
(see Snyder, 1955) and on other mathematical programming techniques (see Deininger,
1969; Diskin and Boneh, 1973, Box et al., 1994).

The method of least squares
The underlying criterion in this method consists of the minimization of the sum of
the squares of the differences between the measured data yi and the calculated values∑

xk ui−k+1 in Equation (12.9). These differences are called the residuals, say εi . A
simple example will illustrate how their squares can be minimized.

Example 12.4. Application of least squares method

Consider again the simple case described by Equation (12.13) and illustrated in Figure
12.8. The sum of the squares of the residuals is∑

i
ε2

i = (y1 − x1u1)2 + (y2 − x1u2 − x2u1)2 + (y3 − x1u3 − x2u2 − x3u1)2

+ (y4 − x1u4 − x2u3 − x3u2)2 + (y5 − x2u4 − x3u3)2 + (y6 − x3u4)2

(12.16)

This sum can be minimized by putting ∂
∑

ε2
i /∂ui = 0 for each value of i . This yields

respectively for i = 1 and 2

(y1 − x1u1)x1 + (y2 − x1u2 − x2u1)x2 + (y3 − x1u3 − x2u2 − x3u1)x3 = 0

and

(y2 − x1u2 − x2u1)x1 + (y3 − x1u3 − x2u2 − x3u1)x2

+ (y4 − x1u4 − x2u3 − x3u2)x3 = 0 (12.17)
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and analogous equations for i = 3 and 4. These constitute a system of four linear equa-
tions for the four unknown values of ui , which can readily be solved.

The technique may also be used in the solution of even more complex cases; various
algorithms involving operations of matrix transposition and inversion are available and
can be found in textbooks on numerical analysis.

Transform methods of identification
Beside the direct solution methods of Equations (12.9) and (12.11), numerous other
methods are available to derive optimal ui values. In several of these, by using a different
formulation or a transformation of the original functions y(t), x(t), and u(t), a simpler,
usually algebraic, relationship between the three is obtained, which is more tractable for
computation than the convolution integral (12.2) or (12.9). In the method of moments,
the functions are characterized by their moments. The optimal ui values, or the optimal
constants in the function, that is used to describe u(t), are determined such that the
moments of the calculated output function are equal to the moments of the observed
output function y(t). In principle, this method is based on the application of the theorem
of moments, as given by Equations (A22) and (A28). In harmonic analysis, the functions
are described as Fourier series expansions. The optimal ui values or the constants in u(t),
are determined such that the constants of the Fourier series expansion of the calculated
output are exactly the same as those of the observed output. In Fourier and Laplace
transform methods, the functions are formulated, respectively, in the frequency domain
and in the s (i.e. the Laplace transform) domain.

A review of the application of many of the identification methods investigated in
earlier years in catchment hydrology has been presented by Dooge (1973). In practice,
however, some of these techniques of direct identification from available data result in
response functions, which can be quite sensitive to small errors in the measurements,
exhibiting such “non-physical” features as severe oscillations or negative values. Ways
of coping with such problems have been discussed by, among others, Neuman and de
Marsily (1976) and Singh (1976).

12.2.2 More concise parameterizations by linear runoff routing

The data needed to derive the unit hydrograph for a given basin are not always available.
Therefore, it should be no surprise that over the years many attempts have been made
to develop methods enabling the prediction of this unit response function from basin
characteristics. The goal of these studies was to derive unit hydrographs for ungaged
watersheds from maps and from some other readily available physical attributes. In one
class of methods, empirical equations and empirical curves were used to describe the
unit hydrograph, with parameters in terms of basin characteristics. However, because of
their strictly empirical nature, their applicability tends to be limited to the region where
they were developed, and they will not be considered any further here.

In another class of methods, which are of a more fundamental interest, various theoret-
ical forms of the response function were proposed by postulating different combinations
of model elements, which replicate the most important flow mechanisms to transform
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the precipitation into steamflow. In general, the response function is derived by routing
a lumped rainfall excess input through a number of elements of storage and translation,
which are patterned after the different processes as described in Chapters 2–10; therefore,
such methods might, in a certain sense, be considered physically based. One of the main
advantages of these methods is, that the resulting response functions usually require only
few parameters; this makes them more general and also easier to calibrate. On the down-
side, however, since their computational scale is so large, the correspondence with the
actual physical processes is not always clear. Indeed, as the computational scale becomes
much larger than the variability scales of the basin, the parameters gradually lose their
original physical meaning. Because of this ambiguity, these types of parameterizations
have also been called conceptual models (see Dooge, 1973).

Linear translatory transport: the Rational Method
This is probably the earliest attempt to relate precipitation with the resulting runoff
from a catchment. Evidently (Dooge, 1957), the method was pioneered already some
150 years ago by Mulvany (1850) in Ireland, but versions of it are still being used today
in the design of small drainage structures. The underlying concept of the method is that
each catchment has a (constant) time of concentration, tc, which is the time needed for
the water to flow from the most distant point of the catchment to the outlet. The peak
discharge rate Qp takes place when the entire catchment area A contributes to the outflow,
and this occurs at the time t = tc after the onset of the rain at t = 0. Thus for a mean
input intensity I (rainfall or snowmelt) over that period, the peak rate of flow is

Qp = C I A (12.18)

or, in input–output notation,

yp = x (12.19)

in which yp = Qp/A, such that [yp] = [L/T], and x = C I . The symbol C denotes the
runoff coefficient, that is the fraction of the input resulting in direct storm runoff (see also
Section 9.5.2). Note again that if Qp is in m3 s−1, I in (mm h−1) and A in km2, Equation
(12.18) should be written as

Qp = 0.278 C I A (12.20)

In principle, (12.18) (or (12.20)) should be applicable to drainage basins of any size, but in
engineering practice its use is normally restricted to small catchments with A ≤ 15 km2.

In its standard form the Rational Method can be applied as follows. The size of the
drainage area A can be readily measured on topographic maps, after determining the
ridge boundary line of the catchment. The value of C can be estimated from a knowledge
of the surface conditions of the catchment by means of Table 12.2. For example, in urban
areas a commonly used value is C = 0.8. The determination of the design input intensity,
I , is probably the most difficult aspect in practice. Consider the case of rainfall input,
so that I = P. First the duration of the design storm D is to be estimated; this is usually
assumed to be equal to the time of concentration tc, that is D = tc. Several empirical



streamflow response at the catchment scale 478

Table 12.2 Some values of C

Description of area Runoff coefficients

Business
Downtown 0.70 to 0.95
Neighborhood 0.50 to 0.70

Residential
Single-family 0.30 to 0.50
Multi-units, detached 0.40 to 0.60
Multi-units, attached 0.60 to 0.75

Residential (suburban) 0.25 to 0.40
Apartment 0.50 to 0.70
Industrial

Light 0.50 to 0.80
Heavy 0.60 to 0.90

Parks, cemeteries 0.10 to 0.25
Playgrounds 0.20 to 0.35
Railroad yard 0.20 to 0.35
Unimproved 0.10 to 0.30
Pavement

Asphaltic and concrete 0.70 to 0.95
Brick 0.70 to 0.85

Roofs 0.75 to 0.95
Lawns, sandy soil

Flat, 2% 0.05 to 0.10
Average, 2% to 7% 0.10 to 0.15
Steep, 7% 0.15 to 0.20

Lawns, heavy soil
Flat, 2% 0.13 to 0.17
Average, 2% to 7% 0.18 to 0.22
Steep, 7% 0.25 to 0.35

(From ASCE and WPCF, 1982.)

equations are available for this purpose. The equation proposed by Kirpich (1940), on
the basis of Ramser’s (1927) data, is often quoted; this can be expressed as follows

tc = 0.062
(
L/S1/2

a

)0.80
(12.21)

where tc is in hours, L is the length of the main channel from the furthest divide to the
outlet in km, and Sa is the average (dimensionless) slope, that is the ratio of the fall of
the main channel from the divide to the outlet and its length. As an alternative for very
small catchments, the time of concentration can also be taken as the time to equilibrium
(6.20) obtained analytically by means of the kinematic wave method. For turbulent flow,
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with the Gauckler–Manning formula (5.41), one has a = 2/3 and Kr = S1/2
0 n−1, so that

Equation (6.20) can be written as

tc = (n0.60 P−0.40)
(
L/S1/2

0

)0.60
(12.22)

It is remarkable that the powers of L and S0 are not very different from those in the
strictly empirical formula (12.21). Note, however, the different conceptual origins of
Equations (12.21) and (12.22); the former refers to the time required by the fluid particles
to travel the length of the drainage area, whereas the latter refers to a wave motion,
that is the time for the steady state signal to cover that same distance. Recall also that
on the basis of experimental data on tc reported in the literature, McCuen and Spiess
(1995) recommended that Equation (12.22) should not be used when (nL/

√
S0) exceeds

30 m.
Next, a decision must be made regarding the return period of the event Tr. This is

usually taken as the expected lifetime of the structure. To give an idea, ASCE and WPCF
(1982) suggest, depending on the economic justification, typical values of 5 y for storm
sewers in residential areas, 20 y in commercial and high value districts, and 50 y or more
for flood protection works.

Finally, with the duration of the rainfall event, i.e. D, and the return period of the
design storm, i.e. Tr, both decided upon, the intensity P can be determined from the
available intensity–frequency–duration data for the site. Figure 3.16 shows an example
of such data. If deemed necessary, the rainfall intensity at the point can be converted to
an area value by such means as illustrated in Figure 3.14.

The justification for equating the time of concentration with the duration of the selected
design rainfall event is illustrated in Figure 12.9. This shows that, if it is assumed that
D < tc, only part of the drainage area can contribute to the outflow. On the other hand,
if one assumes that D > tc, the intensity P obtained for this longer duration, would be
too small; indeed, as illustrated in Figure 3.16, for a given return period Tr, the rainfall
rate P decreases with increasing duration D. Thus to allow the entire drainage area to
contribute to the outflow rate, and to obtain the maximal intensity for the selected return
period, it is reasonable to put D = tc.

The Rational Method with Equation (12.21) (or (12.22)) and most of its subsequent
variations in the engineering literature are based on the notion that storm runoff consists
primarily of overland flow. As discussed in Chapter 11, on hillslopes with permeable
soils, this is often a tenuous assumption, as most of the runoff takes place through
subsurface flow paths. If for such situations Darcy’s law is valid, the kinematic flow
speed (10.151) yields the following time of concentration

tc = ne Bx

k0 sin α
(12.23)

in which Bx is the hillslope length (see Figure 10.26), and ne, k0 and α are effective values
of the drainable porosity, the hydraulic conductivity and the slope angle, respectively.
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Linear translation with the time–area method
The rational method provides only the peak discharge rate, and over the years attempts
have been made to broaden the approach, in order to allow a more complete description
of the entire hydrograph including its rise and subsequent recession. This was done, for
instance by Hawken and Ross (1921), who considered the effects of the drainage area
shape and of the time variation of the storm rainfall. The effects of the shape of the
drainage area and of the drainage net were accounted for by the introduction of the time–
area(–concentration) function, or time–area diagram, which represents the distribution
of the travel times in the basin to the outlet. This function is obtained by first establishing
a travel time for each point in the basin, and by then sketching isochrones, which are lines
connecting points of equal travel time. The time–area function Ar = Ar(t) is a plot of the
relative areas (as fractions of the total basin area) between different isochrones (equally
spaced in time), against their respective travel times; thus it is the density function of
the travel times to the outlet (Figure 12.10). In this approach, the time variation of the
rainfall input was accounted for by a procedure, which, as pointed out by Nash (1958),
was in fact a numerical convolution operation.

Just like in the standard version of the Rational Method, the basic assumption is that
the entire catchment is equivalent with a plane on which the rainfall is transported to
the outlet by translation. Because the system is linear, the transformation mechanism
is that of a linear kinematic channel as formulated in Chapter 5. Since it is normalized,
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Fig. 12.10 Sketch of a time–area function Ar = Ar(t), as an

extension of the rational method. The dashed
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Fig. 12.11 A linear translation element, as a

mechanistic metaphor for the runoff

derived by convolution (or routing) of the

instantaneous input δ(t) through a

time–area function.

the time–area curve represents outflow resulting from an instantaneous unit input applied
uniformly over the catchment area. Hence, the time–area function Ar = Ar(t) is the unit
response function of this type of catchment (see Figure 12.11), and the outflow resulting
from a rainfall input x(t) is given by Equation (12.2), or

y(t) =
t∫

0

x(τ ) Ar(t − τ )dτ (12.24)

Note with Dooge (1973) that, while this approach made use of an instantaneous unit
hydrograph in the form of the time–area function, it predated the formal invention of the
unit hydrograph by Sherman (1932a,b) by about a decade. But the time–area approach
never gained wide acceptance, probably because it takes insufficient account of storage
mechanisms in the basin. In natural drainage basins precipitation cannot be immediately
translated to the outlet, but a portion of it first must build up some water as storage on
the vegetation and on the soil surface and in the pores of the soil profile, before any
flow can take place. Therefore, it can be expected that, when the travel times in a basin
are estimated on the basis of known velocities of overland flows and channel flows, the
calculated peak outflow rates will tend to be severely overestimated. This realization led
to increased efforts to include storage effects in subsequent developments.

In recent years the concept of translation, underlying the time–area–concentration
function, has continued to be studied and used in a more formal way. This is done by
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means of what is now usually called (see Kirkby, 1976) the width function w = w(s);
this function can be defined as the density function of the channel flow distances in
the catchment from the outlet, and it describes the (normalized) number of links, or
channel segments, as a function of distance s from the outlet. This distance variable s
has variously been taken as the actual distance along the channels, as geometric distance,
that is the piecewise straight line joining junctions, or as the number of links, that is the
topological distance. (On average, these distances are related; apparently (Shreve, 1974),
in large networks the longest topological distances differ only slightly from the longest
geometrical distances.) The number of links is strongly related with basin area; moreover,
average stream velocities are known (Wolman, 1955; Pilgrim, 1977; Rodriguez-Iturbe
et al., 1992) to remain relatively constant in the downstream direction, in spite of the
decreasing slopes. Therefore, as the distances from the outlet can be taken to be roughly
proportional to the travel times, the width function concept is essentially equivalent with
the time–area function. However, because the width function is based on well-defined
morphological characteristics of the river network, it can be determined more objectively
and is therefore better suited for analysis. The correspondence between this concept and
the time–area function as a unit response function was probably first pointed out by
Surkan (1969), who used it to study the effect of stream channel pattern on the flow at
the outlet of the basin. Subsequently, the width function has proved to be a useful tool for
studying the stochastic properties of stream networks (see Kirkby, 1976; Veneziano et al.,
2000) and implicitly some of their translatory response characteristics (see Gupta and
Waymire, 1983; Troutman and Karlinger, 1985; Rodriguez-Iturbe and Rinaldo, 1997).

Example 12.5. Construction of a width function

Consider again the hypothetical catchment shown in Figure 11.1. The number of channel
links at topological distances 1, 2, 3, etc., from the outlet can readily be counted; they
are respectively 1, 2, 2, 4, 6, 8, 4, 4, 2, 2. The density at each distance can be calculated
by dividing the number of links by 35, that is the total number of channel links in this
catchment. The results are shown in Figure 12.12.
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Linear translation in series with one linear storage element
The transformation of a rainfall input hyetograph into a streamflow output hydrograph
involves both a delay as a result of translatory effects and a deformation and attenuation
as a result of storage effects. In a linear context, the simplest way of incorporating both
effects is simply to add them. Thus it stands to reason that historically the next step
in the development of linear runoff routing procedures consisted of the superposition
of a linear time–area function, representing pure translation, with a linear reservoir,
representing pure storage. In one of the better known implementations of this idea,
Clark (1945) derived the instantaneous unit hydrograph from streamflow records by
numerically routing the time–area concentration function of the basin through a single
concentrated storage element by means of the Muskingum method with X = 0. Hence,
in light of Equation (7.15), this type of storage element is characterized by

S = K y (12.25)

where y is the outflow rate, and S the storage, both per unit catchment area, so that
[y] = [L/T], [S] = [L] and [K ] = [T]; the parameter K is commonly referred to as the
storage coefficient.

A similar approach was also applied successfully in the development of large-scale
drainage schemes in a number of Irish catchments by O’Kelly (1955) and his fellow
engineers at the Office of Public Works. However, in the early stages of this work
it became clear that the routing through the concentrated storage element had such a
smoothing effect on the time–area function, that the exact shape of the time–area function
was not very critical, and that there was little loss in accuracy when it was replaced by
an isosceles triangle. The main parameters in the applications of this concept were the
time of concentration tc, which is the time base needed to scale the triangular time–area
function, and the storage coefficient K , or the delay, in the routing procedure by means
of Equation (12.25). O’Kelly’s report is noteworthy and it suggests that in many studies
the importance of the time–area function, and of the width function, may have been
exaggerated.

Various procedures have been used in the past to estimate the two parameters tc and K.
In Clark’s (1945) application, it was assumed that the direct effect of the rainfall ceases
at the inflection point of the recession limb of the outflow hydrograph, and that, from that
time on, the outflow is merely a release from storage in the basin; accordingly he took
tc as the time between the end of rainfall and the inflection point of the falling leg of the
hydrograph, and the storage coefficient from the recession after the inflection point with
K = −y/(dy/dt), which is obtained from Equation (1.10) (or (7.11)) with (12.25) and
x = 0. In the procedure described by O’Kelly (1955) the shape of the instantaneous unit
hydrograph is uniquely determined by the ratio K/tc (see also Example 12.6); thus the
general shape of the experimentally obtained unit hydrographs for the basin provided
an estimate of this ratio, which allowed then in turn the estimation of the value of tc
(or K ) by matching the peak outflow rates. Because the shapes could not always be
fitted well, often various K/tc ratios were tried yielding different tc and K values. A
review of some of the earlier methods to estimate these parameters has been presented
by Dooge (1973, pp. 198–200). In several of these studies tc and K were expressed in
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time–area (or width) function and through a concentrated storage function.

terms of powers of basin characteristics, such as L , Sa and A. Note that both (12.21)
and (12.22) suggest that tc should be proportional to a power of the combined variable
(L/

√
Sa).

To derive the unit response function of this model, it is necessary to consider first the
unit response of a concentrated storage element. The flow through a linear storage element
can be represented by the storage equation (1.10) (or (7.11)), or in the catchment-scale
notation with an input x(t), an output y(t) and a storage per unit area S(t), as

x − y = d S
dt

(12.26)

After substitution of the concentrated storage function (12.25), this can be rearranged as(
d
dt

+ 1

K

)
y = x

K

which, upon multiplication of both sides by exp(t/K ), yields the solution

y = exp(−t/K )

K

∫
x(t) exp(t/K ) dt + constant (12.27)

With a delta function input, that is x(t) = δ(t), the output of (12.27) is the unit response
function for a single storage element; in light of (A7) this has the form

u(t) = exp(−t/K )

K
(12.28)

As could be expected, this is the same as the Muskingum response function (7.28) for
X = 0.

The model of Clark (1945), O’Kelly (1955), and others (Dooge, 1973), in which
the storm runoff is derived by successively routing the rainfall input through trans-
lation and storage, can thus be formulated by simply putting Ar(t) in sequence with
Equation (12.28). Hence, Ar(t), which is the output from the translation operation,
becomes the input into the storage element, whose unit response is (12.28). This is
illustrated in Figure 12.13. The routing is accomplished by a convolution operation,
which produces immediately the unit response function of this combined system,

u(t) =
t∫

0

Ar(τ ) exp[ − (t − τ )/K ] dτ/K (12.29)
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Fig. 12.14 Unit response function resulting from a time–area function with the shape of an isosceles triangle Ar(t)

routed through a linear storage element for different values of the time-scale ratio K/tc. Both

u(t) and t are made dimensionless with tc. The time scale tc is the time of concentration of the

time–area function (dashed line) and the time scale K is the coefficient of the linear storage element.

Example 12.6

Consider a hypothetical diamond-shaped catchment with the stream channel running
along one of the diagonals; in the present context this produces a triangular time–area
function (or width function), which can be formulated as follows

Ar = 4t
t2
c

for 0 ≤ t ≤ tc/2

Ar = −4t
t2
c

+ 4

tc
for tc/2 < t ≤ tc

Ar = 0 for tc < t

(12.30)

where tc is the time of concentration. Observe that the area under Ar = Ar(t) equals
unity, as it should. The unit response is calculated by applying (12.29) with (12.30).
Thus, one has for t ≤ tc/2

u(t) = 4

t2
c K

t∫
0

τe−(t−τ )/K dτ (12.31)

which upon integration results in

u(t) = 4

t2
c

(t + K (e−t/K − 1)) (12.32)

Similarly for tc/2 < t ≤ tc, one can write

u(t) = 4

t2
c K

tc/2∫
0

τe−(t−τ )/K dτ − 4

t2
c K

t∫
tc/2

τe−(t−τ )/K dτ + 4

tc K

t∫
tc/2

e−(t−τ )/K dτ (12.33)
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figure, for the case of
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which yields

u(t) = − 4

t2
c

(t − K − tc) + 4K e−t/K

t2
c

(
1 − 2etc/(2K )) (12.34)

It can be readily checked that Equations (12.32) and (12.34) yield the same value for u at
t = tc/2, as they should. For t > tc, (12.33) must be integrated again, but with the upper
limit at τ = tc in the second and third integral, because Ar is zero beyond that point; this
produces

u(t) = 4K e−t/K

t2
c

(
1 − 2etc/(2K ) + etc/K )

(12.35)

Again, it can be seen that both (12.34) and (12.35) produce the same result at t = tc, as
they should. The resulting instantaneous unit hydrograph, obtained by patching (12.32),
(12.34) and (12.35) together over their respective time ranges, is shown in Figure 12.14.
In principle, it should be possible to use this three-component unit response function
with any input function x(t) in the convolution integral (12.2), to calculate the actual
outflow y(t) analytically. However, because this u(t) consists of three parts, this is rather
involved, so that in practical applications it may be more convenient to convert u(t) into
tabular form and carry out the calculations numerically. An idea of the effect of the shape
of the time–area function on the resulting unit response can be gained by comparing
this result with the response function obtained with a right-angled triangle shown in
Figure 12.15.

Combinations of linear storage elements
In yet another class of models, the basin outflow is derived by routing the rainfall input
solely through a number of storage elements, without any formal or explicit translation in
the formulation. Equation (12.28) is used as the response function of each of the storage
elements. In what follows, a few examples are reviewed of this type of representation.
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Fig. 12.16 A tank model representation of the Kitakami

River in northern Honshu by Sugawara and

Maruyama (1956). Both tanks are linear storage

elements with a unit response function given by

Equation (12.28). The bottom part of the fast

response tank represents 20 mm of initial loss.

x(t)

y(t)

BF

SSF

Fig. 12.17 A tank model representation of daily flows consisting of

baseflow (BF) and interflow (or subsurface stormflow SSF) by

Sugawara and Maruyama (1956). All three tanks are linear

storage elements with unit response functions given by

Equation (12.28) but different storage coefficients K .

In the earliest description of this approach, now also known as the tank model,
Sugawara and Maruyama (1956) and Sugawara (1961) gave a number of examples
of combinations of linear storage elements, which had been used to describe basin out-
flows. For instance, Figure 12.16 shows the arrangement used to describe flood flows of
the Kitakami River in northern Honshu; the basin was represented by two elements in
parallel, one with K = 33 h that receives 60% of the input, and one with K = 2.9 h that
receives 35% of the input; 5% of the total input and 20 mm of the initial input into the
fast response tank were assumed to be “lost.” Unlike in flood flows, in the description
of daily flows, interflow and baseflow are more important; to simulate these, a differ-
ent arrangement was used, which is illustrated in Figure 12.17. Initially after a drought
period, precipitation flows out of the first tank into groundwater storage, from which the
water flows out as baseflow. Only after the first tank has become full, does the overflow
into the second tank result in subsurface stormflow runoff. Several arrangements were
also proposed by Sugawara and Maruyama (1956) to accommodate spatial variation of
the input characteristics of the basin. One of these is considered in the following example.

Example 12.7. Tank model allowing for spatial variability

Figure 12.18 illustrates an arrangement by which each storage element represents a
subarea of the basin. Thus each tank receives as input the output from the upstream tank,
in addition to the rainfall on the subarea it represents. Let α1, α2 and α3 be the fractions
of the total area represented by each tank. Then, for an input into the first tank given
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u(t)

α1
α2

α3

α1 δ(t )

α3 δ(t )

α2 δ(t )

Fig. 12.18 Example of a tank arrangement used by Sugawara

and Maruyama (1956) to accommodate spatial

variability of the input over the catchment area, to

derive the unit response u = u(t).

by α1δ(t), one finds that the unit response of the first tank, u1(t), is Equation (12.28)
multiplied by α1. Similarly, the unit response from the second tank can be calculated
by routing the output from the first tank, i.e. u1(t), plus the instantaneous rainfall on the
second subarea, i.e. α2δ(t), through the tank representing this second subarea,

u2(t) =
t∫

0

[
α1

exp(−τ/K )

K
+ α2δ(τ )

]
exp[−(t − τ )/K ]

K
dτ

or (12.36)

u2(t) = exp(−t/K )

K

(
α1

t
K

+ α2

)
In the same way, one can show that the outflow from the third tank, resulting from an
instantaneous input over the entire area, which is the unit response of the catchment, is
given by

u(t) = u3(t) = exp(−t/K )

K

[
α1

2

(
t
K

)2

+ α2
t
K

+ α3

]
(12.37)

In a similar approach, Nash (1957) assumed that the transformation of catchment
input into streamflow output is equivalent with a succession of routings through a series
of n linear storage elements; thus, the input enters the first tank and is then successively
routed through the second, the third, and so on (see Figure 12.19). The unit response
of the Nash cascade, as it is sometimes called, can be derived as follows. The input of
an instantaneous rainfall of unit volume produces an output given by Equation (12.28).



ident if icat ion of l inear response funct ions 489

u(t)

δ(t)

1

2

...3

n

Fig. 12.19 The tank cascade, proposed by Nash

(1957), consisting of n equal storage

elements placed in series, as a metaphor

for the response u = u(t) of a catchment

to an instantaneous input x = δ(t).

When this is taken as input into the second storage element, the output from that second
storage is

u2(t) =
t∫

0

exp(−τ/K )

K
exp[−(t − τ )/K ]

K
dτ = t exp(−t/K )

K 2
(12.38)

This, in turn, is input into the third storage element and produces an output

u3(t) =
t∫

0

τ exp(−τ/K )

K 2

exp[−(t − τ )/K ]

K
dτ = t2 exp(−t/K )

2K 3
(12.39)

The same process can be continued to obtain the outflow from the last storage element,

un(t) = (t/K )n−1 exp(−t/K )

(n − 1)!K
(12.40)

which is the response function of the entire system. In order to allow the use of fractional
values of n, the factorial can be replaced by the complete gamma function. Finally, the
unit response of the entire catchment can be written as

u(t) = (t/K )n−1 exp(−t/K )

K�(n)
(12.41)

Equation (12.41) is known as the integrand of the incomplete gamma function or as the
gamma density function. It has only two parameters, but it is quite flexible as it can
accommodate a wide variety of hydrograph shapes; as illustrated in Figure 12.20, K can
be considered a scale parameter and n a shape parameter. Equation (12.41) has been
applied widely in watershed hydrology to parameterize unit hydrographs in terms of
drainage basin characteristics.
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(12.40) or (12.41) as

u = u(t/K ), for

different values of the

parameter n.

For example, Nash (1960) used Equation (12.41) to determine the instantaneous unit
hydrographs for a number of British catchments by means of the method of moments. It
can readily be shown (cf. Equation (13.9)) that its first moment about the origin is

m ′
u1 = nK (12.42)

and that its second moment about the mean, or center of gravity (cf. Equations (13.10)
and (13.12)), is

mu2 = nK 2 (12.43)

Note that with n = 1 and X = 0 these are the same as Equations (7.31) and (7.34)
for the Muskingum formulation. Because the moments of u(t) can be calculated from
available rainfall and streamflow records by means of the theorem of moments, as given
by Equations (A22) and (A28), Nash (1959) was able to relate the parameters K and n
directly with relevant basin characteristics; in this case, these were found to be drainage
area, mean slope and length of the main channel. A similar study was carried out by Wu
(1963) with catchments in Indiana. Actually, prior to its conceptual derivation by Nash,
the incomplete gamma function had already been used by Edson (1951) on different
grounds, to describe finite duration unit hydrographs. It was subsequently also used for
this purpose by Gray (1961).

Several features of the tank cascade may help to explain, perhaps, why the inte-
grand of the incomplete gamma function has been used so widely in applied hydrology.
First, consider the case where n is allowed to increase indefinitely. As indicated by
Equation (12.42), the center of gravity of the flood wave will then occur at a finite value
of the time t , only if the storage coefficient of each tank in the cascade, K , is made to
become very small. But if K is made to become very small, the second moment (12.43)
indicates that the duration of the flood wave will become very short. At the same time, if
the area under the wave curve is to maintain a magnitude of one, the magnitude of the peak
must become very large. This is illustrated in Figure 12.21, for the case nK = 1. Thus, in
the extreme case of n → ∞, K → 0, but finite nK , the unit response function (12.41)
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Fig. 12.21 The unit response function (12.41) (i.e. the gamma density function) approaches a delta function as n

becomes very large. The curves shown are for n = 2, 5, 10, 20, 40, 80 and 120. To allow easy

comparison between the different curves as n increases, their centers of gravity, i.e. the first moments

(12.42), are maintained at t = 1 by putting K = 1/n in Equation (12.41).

assumes the characteristics of a delta function, as defined in Equations (A5)–(A7); it
should be recalled that the delta function is also the unit response function of the linear
kinematic channel, as formulated in Equation (5.124). This means that a tank cascade
consisting of a finite number of storage elements is in fact intermediate between two
extremes, namely “pure” storage action with n = 1, and “pure” translatory action with
n → ∞, and that Equation (12.41) provides some weighted average of both effects. Put
differently, a finite set of storage elements is capable of accommodating not only storage
effects but also the translatory effects of the hillslopes and of the channel network in the
catchment.

A second feature is that, while Equation (12.41) is derived for a cascade consisting
of storage elements with the same value of the storage coefficient K , this result is not
very sensitive to this restriction. The following example illustrates this.

Example 12.8. Cascade with unequal storage elements

In the case of n = 2 tanks, each with a different value of the storage coefficient, namely
K1 and K2, instead of Equation (12.38), the unit response function becomes

u2(t) =
t∫

0

exp(−τ/K1)

K1

exp[−(t − τ )/K2]

K2
dτ

or, upon integration,

u2(t) = exp(−t/K1) − exp(−t/K2)

K1 − K2
(12.44)
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Fig. 12.22 Dimensionless unit response function K u(t/K ) of a cascade of three storage elements (1) with

equal storage coefficients K , as given by Equation (12.41) with n = 3 or Equation (12.39), (2) with

unequal storage coefficients, namely Equation (12.45) with K1 = K2 = 0.75K and K3 = 1.5K , and

(3) with unequal storage coefficients, namely Equation (12.45) with K1 = 0.4, K2 = 1.0K and

K3 = 1.6K .

In the same way, for n = 3 tanks, with three different storage coefficients K1, K2 and K3,
instead of Equation (12.39), one obtains the following expression

u3(t) = K1[exp(−t/K1) − exp(−t/K3)]

(K1 − K2) (K1 − K3)
− K2[exp(−t/K2) − exp(−t/K3)]

(K1 − K2) (K2 − K3)
(12.45)

This process can be continued for any number of tanks. For n = 3 as an example,
Figure 12.22 shows a comparison between Equations (12.39) and (12.45) with K1 =
K2 = 3K/4, K3 = 3K/2 and also with K1 = 0.4K , K2 = K , K3 = 1.6K ; the main
point is that the difference between these response functions is not very large, because
the total lag time, that is the first moment m ′

u1 has been kept the same in all three cases,
such that K1 + K2 + K3 = 3K (cf. Equation (12.42)). The agreement would have been
even better, if also the second moment had been kept the same in all three cases. This
calculation illustrates why the passage of rain water through a succession of storage
elements, such as interception and detention, soil moisture and groundwater, overland
and channel flows, may still be described reasonably well by Equation (12.41), even
though each one of these storage elements may have a different storage coefficient K .

Stochastic interpretations
Several of the above response functions, as combinations of storage tanks with or with-
out linear channels, have been used with good results in the solution of a number of
engineering problems. In some of these studies of specific catchment situations, ad hoc
empirical relationships were derived for the parameters in these runoff representations.
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However, because no direct link could be established between the parameters and the
physical mechanisms in the catchment, like any other unit hydrograph they suffer from a
lack of generality and they must always be calibrated to be of any use. For this reason the
quest has continued for better formulations of the catchment scale processes involved in
the transformation of precipitation into runoff.

One of the more active lines of endeavor has made use of stochastic concepts to
describe the instantaneous unit hydrograph as the distribution of the arrival times of
water at the catchment outlet. These approaches have typically consisted of linear rout-
ing of precipitation through topologically random channel networks with various prob-
ability distributions for the channel segments and with different assumptions regarding
the holding time or travel time distributions of the water in the channel segments. As
different concepts have matured, the width function has gradually emerged as the tool
of choice to describe the structure of the channel network (Snell and Sivapalan, 1994;
Marani et al., 1994; Veneziano et al., 2000), and has replaced earlier methods based on
Horton–Strahler stream ordering (see Figure 11.1) and the resulting order ratios. Simi-
larly, different attempts have been made to improve the formulation of the holding times
from exponential distributions (Rodriguez-Iturbe and Valdes, 1979; Gupta et al., 1980)
to more realistic response functions, such as obtained from the complete linear solution
(5.72) (see Kirshen and Bras, 1983; Troutman and Karlinger, 1985), or from the dif-
fusion approximation (5.95) (see Troutman and Karlinger, 1985; Rinaldo et al., 1991).
The inclusion of hillslope outflows into the channel network has also been explored
(see VanderTak and Bras, 1990; Robinson et al., 1995) with different hillslope response
functions. Note that the assumption of an exponential distribution of residence times
in a channel segment is equivalent with the assumption of a linear storage element as
formulated by Equation (12.28). An overview of advances in this stochastic approach
has been presented by Rodriguez-Iturbe and Rinaldo (1997).

With the growing complexity of such representations and the increasing number of
the required parameters, these approaches are gradually evolving into direct simulation
models; however, in the process the appeal of parsimony of the unit hydrograph is being
lost, while its main limitations, namely linearity and time invariance are being kept. Also,
although the description of the channel network is becoming increasingly realistic, the
simulation of some critical processes at the catchment scale, involving the inclusion of
hillslope mechanisms, with such thorny aspects as preferential flow and simultaneous
transport of new and old water (see Chapter 11), has not received much attention so far;
its inclusion in linear theory remains an elusive goal and will require more research.

1 2 . 3 S TAT I O NA RY N O N L I N E A R L U M P E D R E S P O N S E

It is generally recognized that the transformation of precipitation and other inputs into
streamflow can be quite nonlinear and non-stationary, so that the unit hydrograph is not
always the proper method of approaching this problem. This is especially true in the
case of extreme deviations, such as catastrophic floods, when rainfall–runoff systems
tend to exhibit considerable nonlinearities, as manifested by the fact that runoff fails
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to be simply proportional to precipitation intensity. Over the past few decades various
attempts have been made to incorporate nonlinearities in response formulations at the
catchment scale. These can be subdivided into two broad categories, which are briefly
considered in this section.

12.3.1 Functional analysis with nonlinear convolution

As outlined in the Appendix, a logical way to generalize the convolution operation to
nonlinear systems is to make use of a Volterra integral series. In the case of a stationary,
non-anticipatory system with no zero input response and with a finite memory m, this is
Equation (A31), or

y(t) =
m∫

0

u1(τ )x(t − τ )dτ +
m∫

0

m∫
0

u2(τ1, τ2)x(t − τ1)x(t − τ2)dτ1dτ2

+
m∫

0

m∫
0

m∫
0

u3(τ1, τ2, τ3)x(t − τ1)x(t − τ2)x(t − τ3)dτ1dτ2dτ3 + · · ·

(12.46)

As before, the discrete analog of Equation (12.46) can be formulated by assuming that
both rainfall and streamflow consist of piecewise constant values xi and yi , respectively,
within the i th interval of time, where (i − 1)�t ≤ t ≤ i�t . For the purpose of numerical
analysis, Equation (12.46) can therefore be rewritten

yi =
m/�t∑
j=1

u1, j xi− j+1 +
m/�t∑
j=1

m/�t∑
k=1

u2, jk xi− j+1xi−k+1

+
m/�t∑
j=1

m/�t∑
k=1

m/�t∑
l=1

u3, jkl xi− j+1xi−k+1xi−l+1+ · · · (12.47)

Different methods have been used in the past to apply the Volterra series formulation in the
rainfall–runoff context. The main difficulty has invariably consisted of the identification
of the response functions, u1, u2, u3, . . . , etc., in the case of Equation (12.46) or
u1,i , u2,i j , u3,i jk, . . . , etc., in the case of Equation (12.47). Among the more practical
examples of its application have been the studies by Amorocho and Brandstetter (1971),
Bidwell (1971), Hino et al. (1971), Diskin and Boneh (1973), Liu and Brutsaert (1978)
and Hino and Nadaoka (1979). Figure 12.23 shows an example of the results that were
obtained with a two-term approximation of Equation (12.47) in the study by Diskin and
Boneh (1973). In most of these studies one of the conclusions was that the nonlinear
formulation is better able to simulate rainfall–runoff behavior of catchment areas than
linear methods. This should not be surprising, as a representation with more adjustable
parameters normally tends to produce a better fit. However, the numerical complexities
of the computations are increased considerably.
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Fig. 12.23 Observed (circles) and simulated (solid line) flood hydrographs (in mm d−1) on the Cache River at

Forman, Illinois, resulting from a 103 mm storm over four days in March 1943. The simulation was

carried out with the first two terms of the Volterra series (12.46); thus the total hydrograph is the sum

of the first-order (linear) response (dashed line) and of the second-order response (dash-dotted line).

(After Diskin and Boneh, 1973.)

12.3.2 Nonlinear runoff routing

This method of transforming rainfall into basin streamflow has mostly made use of
concentrated storage elements, and is therefore also referred to as storage routing. In
most cases the nonlinear storage function was assumed to be of the power type,

S = Kn ym (12.48)

where Kn and m(�= 1) are adjustable parameters; in this form the storage function can
be considered a generalization of Equation (12.25). After substitution of (12.48) in the
lumped equation of continuity (12.26) (or (1.10) or (7.11)) one obtains

x = y + Kn
d(ym)

dt
(12.49)

In what follows a few examples are presented of past attempts to include this type of
nonlinearity in the catchment response behavior.

Horton (1941) was the first to use this approach; he proposed that flood hydrographs
can be considered the result of a triangular “virtual channel inflow graph” produced by
rainfall on the adjoining land, which is then routed through nonlinear channel storage by
means of Equation (12.49). Horton (1936; 1937) estimated the parameters of the storage
function (12.48) from quasi-steady open channel flow considerations. From analysis of
a large number of flood events on different rivers, he showed that during a recession
the channel storage behaves nearly the same as if the entire volume were concentrated
in a single reservoir; but during rising stages it behaves as a reservoir of somewhat
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larger capacity. He reasoned by means of the GM equation (5.41) that m should lie
around (3/5) for channels with a rectangular section, and around (3/4) for channels
with a triangular section; although there was some scatter, an analysis of river recession
flow data (cf. Equation (12.54)) confirmed that m was mostly between 0.6 and 0.8.
Interestingly, although it was nonlinear, Horton’s approach provided the impetus for
the linear lag-and-route procedures of Clark (1945) and O’Kelly (1955), described in
Section 12.2.2.

A second type of nonlinear runoff model, which has been used in a number of studies,
consists of arrays of nonlinear storage elements, like Equation (12.48), in series and in
parallel representing different components of the basin; the storage arrays are usually
structured in the same arrangement as the actual stream channel network. Such arrays
can be considered nonlinear analogs of the linear ones, examples of which are shown in
Figures 12.16–12.19. One such routing procedure was described by Rockwood (1958),
who used it to forecast streamflow in the entire Columbia River Basin on the basis
of preceding streamflows and forecasts of basin inputs from snowmelt and rainfall.
This large basin was assumed to consist of a number of subbasins, lakes and stream
channels. Each subbasin was assumed to consist of two nonlinear storage elements in
series representing surface runoff, which are placed in parallel with two storage elements
in series representing subsurface runoff. Channel segments, mostly between 30 and
80 km long, were represented by three nonlinear storage elements in series. The routing
procedure consisted essentially of the numerical solution of Equation (12.49) for each
storage element, in which it was assumed that m = 0.8 and Kn was derived by trial
routings.

Different arrays of nonlinear storage elements, each representing a subarea and each
receiving the excess rainfall input on that subarea plus the outflow from the upstream
storage elements, were devised by Laurenson (1964) and subsequently by Mein et al.
(1974) to simulate storm flows from catchments in Australia. In this approach the catch-
ment area is first subdivided in a number of approximately equal subareas along the
major tributaries, and a nonlinear tank is then located at the center of gravity of each of
the subareas and assigned a relative lag time of that location. At first this relative lag – or
storage delay – time was assumed to be proportional to

∑
(L/S1/2

0 ), where L and S0 are
the length and slope of the reach through the subarea, and the summation was carried
out from the location of the subarea to the outlet; however, it was subsequently found
that putting it proportional to the distance from the outlet, i.e.

∑
L , yielded the same

results; this shows that the effects of slope, flow depth and surface roughness become
irrelevant in this type of idealization. The parameter m was estimated by observing from
comparison of (12.25) with (12.48) that

K = Kn ym−1 (12.50)

Then in accordance with Equation (7.19), logarithmic regression was carried out for
a number of storms between the time from the centroid of the excess rain to that of
the storm runoff and the average storm runoff during the event, 〈y〉; the slopes of the
regression lines were assumed to represent (m − 1) of (12.50), and produced (see also
Askew, 1970) a range of roughly 0.60 ≤ m ≤ 0.81. These values are very similar to those
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of Horton (1941) and Rockwood (1958); Mein et al. (1974) concluded that m = 0.71
could be used as a typical value. As indicated in Equation (12.50), Kn is proportional to
the time of travel; accordingly, this parameter was estimated by putting

Kn = C1 K1 (12.51)

in which K1 was taken to be the value of the relative travel time through the subarea
represented by that particular storage tank, i.e. (L/S1/2

0 ) or L mentioned earlier. With
m and K1 known, C1 remained as the only unknown parameter of the model; this was
estimated by trial-and-error routings with available data. A more optimal estimation of
the parameters in this model was subsequently developed by Kuczera (1990) and Kuczera
and Williams (1992). A similar nonlinear storage routing procedure was developed by
Boyd et al. (1979). However, following Askew’s (1970) findings, the storage coefficient
(or lag) was made to depend also on the area A represented by the storage element,
namely as K = a Ab ym−1; in their case the constants were taken as b = 0.57 and the
slightly different value m = 0.77.

Physical justification of nonlinear tanks
In the past, the nonlinear storage relationship (12.48) has been justified on physical
grounds, mostly by considering open channel storage. The argument usually follows that
originally developed by Horton (1936; 1937), based on a lumped kinematic analysis for
quasi-steady, quasi-uniform flow. Thus the volume of water stored in a channel reach of
length L is assumed to be given by Sc = AcL , in which Ac is the average cross-sectional
area in the reach. The channel is assumed to be wide enough, so that the hydraulic radius
equals the mean water depth, or Rh = h, and the cross-sectional area of the channel
equals the depth times the width, or Ac = h Bc. For steady uniform conditions, (5.39) (or
(5.43)) produces then the outflow rate from the reach as Q = Cr BcSb

0 ha+1; the channel
storage is in terms of the outflow from the reach

Sc =
(

Ba
c La+1

CrSb
0

)1/(a+1)

Q1/(a+1) (12.52)

in which a and b are the parameters in the open channel equation (5.39). Hence, if it is
assumed that all the storm runoff water in the catchment is stored in the stream channels,
so that S = Sc/A, one has

S =
(

Ba
c La+1

CrSb
0 Aa

)1/(a+1)

y1/(a+1) (12.53)

in which, as before, y = Q/A, L is now the length of all stream channels in the catchment
upstream from the point where Q is determined, and in which the other variables are
assumed to be averages over the catchment area A. This result is in the form of (12.48),
with m = (a + 1)−1 = 0.60 for the GM equation, and m = 0.67 for the Chézy equation.

But this derivation of Equation (12.53) is not wholly convincing, first, because obvi-
ously not all the storm runoff water is stored in channels, and second, because it is
well known that a major part of most storm flows is generated by subsurface runoff,
as explained in Chapter 11. Some estimate of groundwater storage can be obtained
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by considering unconfined flow under the hydraulic assumption. Under drainage condi-
tions (i.e. without inflow), the outflow rate from a Dupuit–Boussinesq aquifer is given by
Equations (10.85) with (10.86). These can be converted to outflow from a catchment area
A with a stream channel length L by putting Q = 2Lq and B = A/2L . With y = Q/A
as the outflow rate per unit area and x = 0, the lumped equation of continuity (12.26) (or
(1.10) or (7.11)) produces the storage expressed as a layer of water of average thickness
as follows

S =
∞∫

t

y(t)dt (12.54)

Upon integration of (12.54) with (10.85) and (10.86), one obtains readily

S = 0.416ne A

Lk1/2
0

y1/2 (12.55)

which is in the form of (12.48) with m = 1/2. In this result ne is the effective drainable
porosity, k0 the effective hydraulic conductivity, A the drainage area of the catchment,
and L the length of all the stream channels into which aquifer drainage takes place. If
the system can be linearized, the solution is given by (10.113) and after longer times by
(10.116). Integration of Equation (12.54) with the latter produces in the same way

S = ne A2

π2k0L2 pD
y (12.56)

Again, this is in the form of (12.48), but now m = 1, in accordance with (12.25), as
expected for a linear system.

In summary, most of the m values from field data reviewed here not only conform
with the values expected for open channels, but they appear to be intermediate between
the values for nonlinear and linear groundwater aquifers as well.

1 2 . 4 N O N - S TAT I O NA RY L I N E A R R E S P O N S E

In the definition of the unit hydrograph the two stipulated assumptions are linearity and
time invariance. Until now, these two assumptions have mainly been studied separately,
and their combined effect has not yet been fully explored. The incorporation of nonlinear
effects into stationary systems, which is treated in Section 12.3, seems to have received
more attention in the literature and relatively few studies have been devoted to nonsta-
tionary effects on linear catchment response. Yet, several experimental investigations
reviewed in Chapter 11 have indicated that, for instance, the ratio of old and new water
in the catchment outflow is affected not only by the intensity of the rain, but also by such
factors as seasonal moisture status and the time since the start of the rain. Hence, as the
catchment contains more or less water, different flow paths and mechanisms come into
play in the production of the runoff, and this results in a non-stationary response.

In general, one can distinguish two ways of describing non-stationarity. One type
of formulation makes use of a coarse time variable describing changes in catchment
response at monthly and annual time scales; these changes could conceivably be cyclical,
that is seasonal, or in the nature of a trend in the case of changes in land use or climate.
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The second type of approach uses a finer time variable to describe response changes
during the event itself, as a result of physical changes inside the catchment resulting
from continued rain, snowmelt or flooding. These two types can be combined formally
in a convolution integral, as an extension of Equation (12.2), namely

y(t) =
t∫

0

x(τ ) u(χ, τ, t − τ )dτ (12.57)

in which, as before, y(t) is the output resulting from an input x(t). In contrast to the
stationary case of Equation (12.2), here the unit response u(χ, τ, t − τ ) is a function
of three time variables; the first variable χ is the coarse time scale in terms of months,
seasons or years. The second, τ , is the dummy variable of integration, such that 0 ≤ τ ≤ t ;
however, as argument in the unit response, it denotes the time of the input x(τ ), and thus
specifies the response for the input at that time. The third, t , is the time for which
the output is to be determined and (t − τ ) is the time elapsed since the input x(τ ).
The convolution operation of Equation (12.57) describes superposition, which is the
essence of linearity. However, as pointed out by Diskin and Boneh (1974), in contrast
to the stationary case, here the convolution (or superposition) operation is generally not
commutable. This means, for example, that two non-stationary systems connected in
series, say A followed by B, will produce a different output when their order is reversed,
B followed by A.

For the first type of non-stationarity the unit response in Equation (12.57) depends only
on χ and (t − τ ); thus it does not depend on the time τ , but only, say, on the season or the
year. This means that during the input event the response can be considered stationary, and
the concepts discussed in Sections 12.1 and 12.2 are applicable. Therefore, the second
type is the one usually considered, when time variance effects are to be included. In this
case, the unit response depends only on τ and (t − τ ), and (12.57) can be simplified to

y(t) =
t∫

0

x(τ )u(τ, t − τ )dτ (12.58)

This is illustrated in Figure 12.24. In discrete form (cf. Equation (12.9)) this can be
written as

yi =
i∑

k=1

xkuk,i−k+1 (12.59)

or alternatively (cf. Equation (12.10)), as

yi =
i∑

k=1

xi−k+1ui−k+1,k (12.60)

where the first subscript of the response function refers to the time of the input, and the
second indicates its role in the numerical convolution.

In several applications of the nonstationary linear approach in the past, the form of
the unit response function has been assumed a priori. For example, Snyder et al. (1970)
derived the catchment response by routing, what was essentially a time–area diagram
through a linear storage element with time-dependent storage coefficient K = K (τ )
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t−τ3

t

y

y(t)

u(τ1,t−τ1)

x τ
τ1 τ2 τ3

u(τ2,t−τ2)

u(τ3,t−τ3)

Fig. 12.24 Illustration of the convolution

operation y(t) =
∫ t

0
x(τ )u(τ, t − τ )dτ ,

with a nonstationary unit response

u = u(τ, t). (The values of y and u are

not drawn to scale.) The variable t

denotes the time for which the runoff y

is calculated and τ is the time since the

start of the precipitation input x. The

unit response, which is shown at only

three instants of time τ , continually

changes its shape as the precipitation

continues. Compare this with the

stationary case of Figure 12.6.

(see Equation (12.25)). In a similar vein, Mandeville and O’Donnell (1973) consid-
ered different combinations of time-variant linear channel and time-variant linear stor-
age elements, one among them being a cascade of equal storage elements. Diskin and
Boneh (1974) developed numerical least squares procedures to derive more general, i.e.
not with a preconceived mathematical form, response functions ui−k+1,k , as shown in
Equation (12.60), from available rainfall–runoff data. Chiu and Bittler’s (1969) study is
probably the only one that considered both fine-scale and coarse-scale non-stationarity as
formulated in Equation (12.57). The unit response function was obtained by routing the
input through a single linear storage element, as given by (12.25) with a time-dependent
storage coefficient K = K (τ ) in the form of a power function

K = aτ−b (12.61)

in which a and b were assumed to be functions of the coarse time variable χ . Rainfall–
runoff data obtained in Pennsylvania indicated that a was a function of b and that b could
be described well by a sine function of χ . Equation (12.61) indicates that in this study the
storage coefficient K was observed to decrease as the precipitation continued; because
K is the time of travel through the system (cf. Equations (7.19), (7.31) and (12.42)), this
means that the unit response tended to become faster with storm duration. The approach
was later extended by Chiu and Huang (1970) to include nonlinear effects by replacing
(12.25) by its nonlinear analog (12.48).
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P RO B L E M S

12.1 (a) Derive the 1 h unit hydrograph from the 2 h unit hydrograph given in Table 12.1. (b) Calculate
the runoff in cm h−1 resulting from the following pattern of excess rainfall: x = 15 mm h−1

for 0 < t < 1 h; x = 25 mm h−1 for 1 < t < 2 h; and x = 39 mm h−1 for 2 < t < 3 h.

12.2 The table lists a storm runoff hydrograph resulting from a 4 h storm of presumably uniform
(in space and time) but unknown intensity on a basin of 29.5 km2. (a) Construct the S hydrograph,
and determine the intensity of the storm rainfall (in cm h−1) from the (smoothed) equilibrium flow
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rate of the S hydrograph. (b) Determine the 2 h unit hydrograph from the S hydrograph; be careful
to scale the intensity over 2 h to ensure a volume of 1 cm. (c) Calculate the peak storm runoff
(in m3 s−1) resulting from three successive 2 h periods of rainfall producing volumes of 0.4, 1.0
and 1.6 cm of runoff, respectively.

Time (h) Storm runoff (m3 s−1) Time (h) Storm runoff (m3 s−1)

0 0 8 19.70
1 4.01 9 15.76
2 15.26 10 11.62
3 36.55 11 8.30
4 45.40 12 5.30
5 40.48 13 3.33
6 31.99 14 1.56
7 24.40 15 0

12.3 Below is a 6 h unit hydrograph (UH) from a drainage area of 875 km2 on Goose Creek, near
Leesburg, Virginia.

Time (h) UH (m3 s−1) Time (h) UH (m3 s−1) Time (h) UH (m3 s−1)

0 0.00 28 27.34 54 1.00
2 0.13 30 13.34 56 0.87
4 0.40 32 10.00 58 0.67
6 1.80 34 7.34 60 0.60
8 7.34 36 5.34 62 0.53

10 17.34 38 5.27 64 0.47
12 29.34 40 4.20 66 0.40
14 44.68 42 3.47 68 0.33
16 66.69 44 2.80 70 0.27
18 104.03 46 2.20 72 0.20
20 113.37 48 1.80 74 0.13
22 112.04 50 1.47 76 0.07
24 81.36 52 1.20 78 0
26 59.35

(a) Check what the unit volume is of this unit hydrograph from the (smoothed) steady equilibrium
flow rate of the S hydrograph. (b) Find the peak flow (in m3 s−1) resulting from three successive 4 h
periods of rainfall producing volumes of 5.1, 30.5, 16.5 mm of runoff, respectively
(ignore base flow). (The above UH is derived from data in Corps of Engineers,
(1963).)

12.4 Consider the following excess rainfall time sequence on a hypothetical catchment: x1 = 0.5 cm
h−1 from 1400 to 1500; x2 = 1.5 cm h−1 from 1500 to 1600; x3 = 0.75 cm h−1 from 1600 to 1700.
This rainfall produced the following storm runoff hydrograph.
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Time Runoff (cm h−1) at that time

1330 0
1430 0.250
1530 0.917
1630 0.958
1730 0.500
1830 0.125
1930 0

Calculate the 1 h unit hydrograph: in other words, determine the ordinates of the unit graph u1, u2,

etc. for hour 1, hour 2, etc., respectively. (The calculation can be done exactly; assume that the
system is perfectly linear, and that the data contain no errors.)

12.5 Multiple choice. Indicate which of the following statements are correct. The unit hydrograph:
(a) is the hydrograph of unit volume storm runoff generated by a storm of unit duration, under

the assumption of linearity (or proportionality);
(b) method is also commonly applied in drought flow analysis;
(c) method always overpredicts the peak flow of very large events;
(d) tends to overpredict the time of the peak of very large events in hilly terrain;
(e) method can only be derived for a unit duration for which previous data happen to be

available; in other words, to construct a 1 h unit hydrograph, one needs runoff data that
were produced by 1 h storms;

(f) is sometimes derived synthetically from geomorphological data used in conjunction with
empirical relationships;

(g) is based on the assumption that the time of peak depends on the rainfall intensity (i.e.
proportionality);

(h) is based on the assumption that the baseflow mechanism is such that it gives a straight line
on semi-log paper [i.e., q = β exp(−αt) where α and β are constants];

(i) is not suitable for watersheds that are smaller than 4000 km2;
(j) can, in principle, also be derived from a frequency analysis of stream flow data;
(k) can be derived from the S hydrograph that characterizes the watershed;
(l) for 2 h can be obtained by halving the unit hydrograph for 1 h;
(m) eventually (for large values of t) becomes equal to zero after the cessation of rainfall;
(n) curve is usually maximal at t = 0 (i.e. when rainfall starts) and decreases smoothly after

that.

12.6 Assume that the S hydrograph for a continuous excess rainfall of constant intensity on a given
watershed can be expressed by the following: Su(t) = 9000 t/ (2 + t), where Su is in m3 h−1 and t
in h. (a) Derive the instantaneous unit hydrograph for this watershed. Reduce to 1 cm, i.e. convert the
outflow rate units into cm h−1. (b) Given the following rainfall pattern x = 5 cm h−1 for 0 < t < 1 h,
and x = 7.5 cm h−1 for 1 < t < 2 h; calculate (by means of the instantaneous unit hydrograph
and convolution) the resulting discharge after 3 h.

12.7 Assume that the instantaneous unit hydrograph for a given watershed is u (t) = (t + 1)−2 (its
units are h−1, if t is in h). (a) Derive an equation for the S hydrograph (specify the units) resulting
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from a uniform steady excess rainfall of 1 cm h−1 lasting indefinitely. (b) Calculate the runoff rate
y (specify the units) after t = 5 h resulting from a uniform excess rainfall rate of 2 cm h−1 that

lasts for 3 h (i.e. x = 2 for 0 < t ≤ 3 h). (c) Calculate the runoff rate (specify the units) after
t = 5 h resulting from a uniform excess rainfall rate of 2 cm h−1 lasting for 3 h, that is followed by a

rainfall rate of 1.8 cm h−1 lasting for 7 h (i.e. x = 2 for 0 < t ≤ 3 h) and x = 1.8 for 3 < t ≤ 10 h.
Note: use the convolution integral and integrate to obtain the answers.

12.8 Multiple choice. Indicate which of the following statements are correct. The unit hydrograph
method:
(a) is used mainly to calculate the return period of relatively rare events;
(b) results from the detailed physical analysis of watershed runoff phenomena;
(c) tends to yield more correct answers for very rare events, than it does for common events;
(d) in its usual form produces the total runoff, that is storm runoff together with long-term

groundwater runoff;
(e) makes use of typical storm runoff hydrographs produced by uniform excess rainfall and

reduced to a unit volume under the assumption of superposition and invariance;
(f) derives its practical appeal from the underlying principle of linearity;
(g) could, under certain conditions, also be applied to calculate groundwater outflow from a

catchment, as explained in Chapter 10.

12.9 Consider the rainfall event of Example 12.3, in which xi = 2.0, 4.0, 1.0 cm h−1; assume that the
measured runoff is yi = 0.63, 1.97, 2.35, 1.38, 0.6, 0.12. Calculate the unit hydrograph ordinates
ui by the method of least squares, with Equations (12.17) and their analogs for i = 3 and 4, and

compare with the “exact” values given in Example 12.3.

12.10 Multiple choice. Indicate which of the following statements are correct. For a given location and
a given time of year, maximum rainfall:
(a) intensity of a certain duration decreases with increasing exceedance interval (i.e. return

period, Tr);
(b) intensity for a given return period decreases with increasing duration of the rain;
(c) volume for a given return period increases with increasing duration of the rain;
(d) intensity needed in the rational method is determined on the basis of a knowledge of a

design return period and a duration equal to the time of concentration;
(e) can be determined for an ungauged site by areal interpolation of available data.

12.11 Multiple choice. Indicate which of the following statements are correct. The rational method in
its classical form, Qp = C I A:
(a) is normally used to calculate runoff resulting from infiltrated rainfall;
(b) will work better to calculate surface runoff from catchments larger than 100 km2;
(c) is normally used to obtain a design peak runoff but not a design hydrograph;
(d) is based on the assumption that the infiltration rate is a constant loss rate, independent of

rainfall intensity;
(e) is based on the simplest type of linear runoff model, namely a model consisting of pure

storage.

12.12 Multiple choice. Indicate which of the following statements are correct. The rational method gives
the flow rate in terms of the rainfall intensity.
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(a) The basic formula, Qp = C I A, can be used to determine storm outflow from confined
aquifers.

(b) But its main application is in the design of highway culverts, sewers and other smaller
structures.

(c) It is commonly used to compute the spillway design flood on larger basins in conjunction
with the 1000 y rainfall.

(d) The runoff coefficient, C, tends to be smaller for rural areas than for urban areas.
(e) This method is more appropriate for flood prediction from areas larger than 10 km2 than

for smaller areas, because it is based on the assumption that watershed characteristics can
be averaged.

(f) It is based on the implicit assumption (among some others) that the input (rain) is merely
translated by means of a time lag to produce the output (runoff).

(g) It can also be justified on the basis of the kinematic wave equation with a linear rating curve,
so that the velocity, V, is independent of water depth.

(h) It has the advantage of not requiring any information at all on the surface characteristics of
the watershed.

(i) It is based on the assumption that the infiltration and other losses are a fraction of the
rainfall.

12.13 In a manner similar to Example 12.6, derive the mathematical expression for the unit response
function, u(t), of a system consisting of a width function in the shape of a right-angled triangle
(representing translation effects) placed in sequence with a linear storage element representing
storage effects. (This case is shown graphically in Figure 12.15.) Thus, (a) give the equation
describing Ar(t), and (b) use this in the convolution integral with the unit response (12.28); the
parameters of the system are K and tc.

12.14 Derive the unit response function (12.37) of the system illustrated in Figure 12.18 by showing
(and solving) the convolution operation needed to obtain (12.37) from the second of (12.36).

12.15 What would be the unit response function, u(t), if the system shown in Figure 12.18 had four
(instead of three) subareas, such that α1 + α2 + α3 + α4 = 1?

12.16 Show that the first moment about the origin of the unit response function (12.41) is (12.42), i.e.,
m ′

u1 = nK . (The moments are defined in Chapter 13.)

12.17 Show that the second moment about the mean of the unit response function (12.41) is (12.43), i.e.
mu2 = nK 2. Make use of the fact that the second moments about the mean and about the origin

are related as shown in Equation (13.12).

12.18 Determine the value of the power m in Equation (12.48) for storage in a reach of an open channel
with triangular cross section. Hint. Follow the same reasoning as that leading to Equation (12.53).

12.19 Prove Equation (12.55) by carrying out the integration outlined in the text.

12.20 Prove Equation (12.56) by carrying out the integration outlined in the text.

12.21 In the analysis of the outflow record from the downstream end of a lake during a drought period
(when the inflow Qi is zero), it is found (surprisingly) that t versus Q−1/3

e plots as a straight
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line. (a) How would the relationship between d Qe/dt and Qe look like? In other words, derive
a functional relationship, d Qe/dt = f (Qe). (b) Determine the power m of the storage–discharge
equation (12.48), namely S = Kn Qm

e , which is to be used in the routing of floods through this lake
by means of the equation Qi − Qe = d S/dt .

12.22 Multiple choice. Indicate which of the following statements are correct. The volume (not the rate)
of direct storm runoff produced in a given watershed:
(a) as a result of a given storm, is largely independent of the initial moisture conditions of the

surface soils;
(b) is always the same fraction of the rainfall volume;
(c) as a result of a given storm, is totally independent of the baseflow that occurs at the time of

the rainfall producing this event;
(d) tends to become larger as the watershed becomes urbanized;
(e) for engineering design purposes, is often estimated by subtracting the volume of baseflow

from the total runoff volume.



13 E L E M E N T S O F F R E Q U E N C Y
A NA LY S I S I N H Y D RO L O G Y

One of the core questions in hydrologic data analysis is how to assign a probability
of future occurrence or a risk estimate to an event of a given magnitude, on the basis
of an available record of measurements. Over the years a number of concepts have
been developed for this purpose, which are not usually part of standard treatments of
elementary statistics. A few of these are reviewed in this chapter, together with some
other indispensable fundamentals.

1 3 . 1 R A N D O M VA R I A B L E S A N D P RO BA B I L I T Y

In practical terms, a random variable may be defined as the magnitude of an event, which
is the outcome of an experiment; the variable is called random because this magnitude
cannot be predicted with certainty. Random variables can be classified as discrete or as
continuous, or sometimes as a combination of the two.

When an event A occurs n A times in an experiment, that is carried out n times, its
relative frequency is the ratio (n A/n). The probability of this event can then be defined
as the limit of its relative frequency, when n is allowed to increase indefinitely, or

P(A) = lim
n→∞

n A

n
(13.1)

To be sure, this definition is intuitively appealing, as it gives a “feel” for the meaning
of probability in everyday life. However, in any physical experiment the number n can
only be finite, so that this limit is only a hypothesis. For this reason, the probability
of an event is preferably defined axiomatically (Papoulis, 1965), as a number linked to
the event, with the properties, that (i) the probability cannot be negative, orP(A) ≥ 0;
(ii) the probability of all possible outcomes, i.e. the probability of certainty, equals unity;
(iii) if A and B are mutually exclusive events, the probability of A or B occurring equals
the sum of their probabilities, or P(A or B) = P(A) + P(B). Clearly, the frequency
definition (13.1) satisfies these axioms. In this sense, the word relative frequency usually
refers to the empirical probability, that is the probability estimated from a finite sample,
which is presumably drawn from an infinitely large population.

A random variable is called discrete when it can assume only certain values xi , with
i = 1, 2, . . . ; then the probability, that a discrete random variable X will assume a given
value xi , can be written as

pi = P{X = xi } (13.2)
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Fig. 13.1 Example of a rod graph,

showing the relative

frequency of a discrete

random variable

X for different values

xi = . . . ,−2,−1, 0, 1,

etc.

in which the symbol P denotes the probability of the event stated between the curly
brackets. A rod graph is a natural way to represent the distribution of the probabilities
as relative frequencies of a discrete variable (see Figure 13.1).

A random variable is called continuous when it can assume any value x in a certain
range of real numbers, which may or may not be unbounded. In this case, since the
variable X can assume an infinity of values, it is more appropriate to consider the
probability that it is smaller than or equal to a given value x . This defines the (probability)
distribution function as

F(x) = P{X ≤ x} (13.3)

where again P{ } is the probability of the event between the curly brackets. For all values
of x , where the distribution function is smooth, the ( probability) density function can be
defined by

f (x) = d F(x)

dx
(13.4)

Thus the probability that X ≤ x can also be written in terms of the density function as

P{X ≤ x} =
x∫

−∞
f (y)dy (13.5)

in which y is the dummy variable of integration. This is illustrated in Figure 13.2. In the
same way the probability, that the random variable occur in a certain range x1 < X ≤ x2,
is given by

F(x2) − F(x1) =
x2∫

x1

f (x)dx (13.6)
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Fig. 13.2 Illustration of the relationship

between the distribution

function F(x) and the density

function f (x). The density

function is the slope of the

distribution function; conversely,

in accordance with Equation

(13.5), F(x0) equals the area

under the f (x) curve to the left of

x0 shown in the lower figure.

1 3 . 2 S U M M A RY D E S C R I P TO R S O F A P RO BA B I L I T Y
D I S T R I B U T I O N F U N C T I O N

13.2.1 Moments

In the case of a discrete variable X , the nth moment about the origin is defined as

m ′
n =

∑
all i

xn
i pi (13.7)

whereas the nth moment about the mean μ is

mn =
∑
all i

(xi − μ)n pi (13.8)

For a continuous type variable X , the nth moment about the origin, x = 0, can be defined
as

m ′
n =

+∞∫
−∞

xn f (x)dx (13.9)
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and that about the mean x = μ, as

mn =
+∞∫

−∞
(x − μ)n f (x)dx (13.10)

Moments about the mean are also called central moments. In principle, the zeroth
moments equal unity, or m ′

0 = m0 = 1. The first moment about the origin is the mean,
by definition, or m ′

1 = μ; this is also called the expected value of the random variable,
E{X}. From Equation (13.10) with n = 1, it follows that the first moment about the mean
is zero, or m1 = 0. The second moment about the origin is called the mean square devi-
ation. The second moment about the mean is called the variance, and is usually denoted
by m2 = σ 2; its square root σ is called the standard deviation. When the standard devi-
ation is made dimensionless with the mean, it is called the coefficient of variation, or
Cv = (σ/μ). These parameters related to the second moment can be used to characterize
the dispersion of the random variable. All odd central moments of distributions with
a symmetrical distribution function are zero, or m3 = m5 = · · · = 0. The lack of sym-
metry or skew is commonly expressed by the third moment about the mean, m3. The
coefficient of skew is defined by Cs = (m3/σ

3). A distribution function is symmetrical
about the origin x = 0, if

F(x) = 1 − F(−x) (13.11)

so that also f (x) = f (−x). The central moments can be readily obtained from the
moments about the origin. For the second and third central moments the relationships
can be shown to be

m2 = m ′
2 − m ′

1
2

m3 = m ′
3 − 3m ′

1m ′
2 + 2m ′

1
3

(13.12)

The same relationships also hold when m ′
1, m ′

2 and m ′
3 denote the moments about any

arbitrary reference, say x = a.
The moments of a distribution can be estimated directly from a set of n observa-

tions, Xi , with i = 1, · · · , n. Sample estimators of the mean μ, variance σ 2, and skew
coefficient Cs, are, respectively,

M = Xi =

n∑
i=1

Xi

n

S2 =

n∑
i=1

(Xi − M)2

n − 1

gs =
n

n∑
i=1

(Xi − M)3

(n − 1)(n − 2)S3

(13.13)
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The factors (n − 1) for S, and (n − 1)(n − 2) for g, rather than n and n2, are introduced
to reduce the bias in these estimators (Weatherburn, 1961).

13.2.2 Quantiles

By definition, the quantiles are the (n − 1) values of the random variable, which par-
tition the probability function domain (normally between 0 and 1), into n equal parts.
Accordingly, the mth quantile, say x , is obtained by solving the following integral for x

m
n

=
x∫

−∞
f (y)dy or

x∫
−∞

d F(y) (13.14)

The median is the most widely used quantile; it is the value of the variable where the
probability distribution equals 1/2, and it is often used as another measure of the central
tendency of the population, beside the mean. Thus, for a sample of n items, the sample
median is the value of the item, which is found in the middle after all items have been
ranked. The lower quartile of the sample is the value of x for which m/n = 1/4 in
Equation (13.14), and the upper quartile that for which m/n = 3/4. When n = 100,
quantiles (times 100) are also called percentiles.

13.2.3 Return period

The reciprocal of the probability that a certain value x will be exceeded is referred to as
the return period, also called the recurrence interval or the exceedance interval, or

Tr(x) = 1

1 − F(x)
(13.15)

This return period is the expected number of observations required until x is exceeded
once.

This can readily be shown as follows. Let p (= F(x)) denote the probability that, at
any trial in an experiment, the magnitude of the event will not be larger than x ; then, the
probability, that this magnitude will not be exceeded in the first (k − 1) trials and finally
will be exceeded in the last trial, is given by

P{k trials until X > x} = pk−1(1 − p) (13.16)

This probability function is known as the geometric distribution (see Section 13.3.1
below). The average number of trials is the first moment, or from Equation (13.7),

k = m ′
1 =

∞∑
k=1

kpk−1(1 − p) (13.17)

Except in case of certainty, one has 0 < p < 1, so that (1 + p + p2 + · · ·) = (1 −
p)−1; hence (13.17) reduces to k = (1 − p)−1, which proves the statement below
Equation (13.15).

Equation (13.15) shows how the return period is uniquely related to F(x). It can there-
fore be considered as an alternative to, and equivalent with, the probability distribution
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function. The term “return period” stems from the fact that, whenever the observations
are made at regular intervals in time, the number of observations is a time expressed
in the same units. It should be emphasized that the return period represents the average
number of observations. This does not mean that the event will occur once every Tr

number of observations. Thus a 100 y flood need not occur every 100 y. In fact, it may
very well occur next year, or again, it may not occur at all for another 1000 y, although
that is unlikely.

In practical applications, the return period as given by Equation (13.15) is normally
used to characterize phenomena whose severity increases with their magnitude x . For
example, a 500 y flood is more severe and causes more damage than a 100 y event. When,
on the other hand, the severity of the event decreases with its numerical magnitude, the
return period should be defined as

Tr(x) = 1

F(x)
(13.18)

This will ensure that, for instance in the case of a drought, lower flows and lower rainfall
amounts, as measures of drought severity, will be characterized by longer return periods.
The theoretical significance of Equation (13.18) is, mutatis mutandis, the same as (13.15).

13.2.4 Empirical probability plots

It is often useful to plot the data from a hydrologic measurement record to gain a general
idea of their statistical characteristics. The (empirical) probability plot, also known as
the frequency plot or frequency curve, and sometimes as the quantile plot, is a common
tool for this purpose. This plot is a graphical representation of the probability (of non-
exceedance or exceedance) of the individual data in the record against their respective
magnitudes, i.e. F = F(x).

For a data record, consisting of n items, normally measured at regular intervals, the
procedure is as follows. (i) Tabulate the n data, Xm , ranked in increasing magnitude,
so that X1 ≤ X2 ≤ · · · ≤ Xm ≤ · · · ≤ Xn; (ii) assign an order number to each item, in
accordance with its respective subscript, namely 1, 2, . . . , m, . . . , n; (iii) estimate the
(empirical) probabilityPm , that the magnitude of the item will not be exceeded, for each
item by means of a suitable plotting position formula. This plotting position Pm is used as
an estimate of the value of the unknown probability F(x = Xm) for the observed event
Xm . In the past numerous plotting position formulae have been suggested. Cunnane
(1978) has presented a critical review of the history and properties of some of the more
common ones.

Plotting position
Probably the oldest and intuitively the simplest is Pm = m/n. The problem with this
expression is that the largest item on record is assigned a probability of one, that is
certainty; in other words, with this formula it is assumed that the magnitude of the largest
will never be exceeded in the future. Because this is impossible, the use of this plotting
position is tantamount to discarding the largest item in the record. This difficulty may be
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avoided by the formula Pm = (m − 1)/n, but this yields certainty for the smallest item in
the record. Hazen (1930) proposed an intermediate position, namely Pm = (m − 1/2)/n.
An obvious feature of Hazen’s choice is that with Equation (13.15) it produces a return
period Tr = 2n for the largest item in the record; in other words, the resulting return
period is twice as long as the period over which the data have been recorded. This is
unacceptable, according to Gumbel (1958), because the estimated return period of the
largest event should approach the length of the period of record, as n becomes large.
These difficulties are not encountered in the Weibull formula

Pm = m
n + 1

(13.19)

Gumbel (1958), and many after him, have recommended Equation (13.19), by noting
that beside the avoidance of difficulties for m = 0 or 1, so that all data can be plotted, it
also has the following advantages: (i) it is independent of the distribution function F(x);
(ii) the return period of the largest (or smallest, as the case may be) observation approaches
the number of observations n; (iii) all observations are equally spaced on the frequency
scale, which means that the difference between the plotting positions of the mth and
the (m + 1)th observation is a function only of n; (iv) it is intuitively simple and can be
readily implemented. Its main advantage, however, is that it can be theoretically justified
as the mean of the probability of the mth smallest observation; this can be proved as
follows.

Derivation of Weibull plotting position
Consider again a sample of n observations, after they have been ranked in increasing
magnitude, so that X1 < X2 < · · · < Xm < · · · < Xn . The probability distribution of
the mth smallest observation by itself is given by Equation (13.3), or

F(Xm) =
Xm∫

−∞
f (x)dx (13.20)

and the density of this observation by itself is

f (Xm) (13.21)

However, Xm does not occur by itself, but in conjunction with (n − 1) other observations;
among these remaining (n − 1) observations, [(n − 1) − (m − 1)] observations exceed
Xm and (m − 1) do not. The probability of this occurrence is given by the binomial
distribution (see Section 13.3.2 below), and equals

P{(m − 1)successes, (n − m)failures} = (n − 1)!

(n − m)!(m − 1)!
Fm−1

m (1 − Fm)n−m

(13.22)

in which the symbol Fm = F(Xm) is introduced for conciseness of notation, and
“success” refers to non-exceedance. The probabilities of each observation are inde-
pendent. Moreover, the mth smallest observation, Xm , can occupy n different places in
the sequence of the remaining (n − 1) observations, namely in front of all of them and
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behind each one of them. Hence the density function of the mth smallest observation
Xm , occurring in conjunction with the occurrence of the remaining (n − 1) observations,
is equal to n times the probability given by (13.22), multiplied by the density of Xm by
itself (Equation (13.21)), or

φ(Xm) = n!

(n − m)!(m − 1)!
Fm−1

m (1 − Fm)n−m f (Xm) (13.23)

It is known (see Mood and Graybill, 1963) that, if y is a function of z, y = y(z), and
if y has a density function f (y), then the density function of z is given by

g(z) = f [y(z)]

∣∣∣∣d[y(z)]

dz

∣∣∣∣ (13.24)

Applying this to the present case by putting y = Xm and z = Fm , one obtains the density
function of Fm = Fm(Xm) from (13.23), namely

g(Fm) = n!

(n − m)!(m − 1)!
Fm−1

m (1 − Fm)n−m (13.25)

The mean of Fm is the first moment, or, since 0 ≤ Fm ≤ 1,

m ′
1 = Fm =

1∫
0

Fm g(Fm)d Fm

or

Fm = n!

(n − m)!(m − 1)!

1∫
0

ym(1 − y)n−mdy (13.26)

in which y is a dummy variable of integration. The integral in this expression is a complete
beta function, which can be expressed in terms of factorials (e.g. Abramowitz and Stegun,
1964, p. 258) as m!(n − m)!/(n + 1)!. This yields immediately Fm = m/(n + 1), which
proves that the assumed plotting position of Equation (13.19) is in fact the mean of the
probability of non-exceedance of the mth observation, that is Pm = Fm .

Probability graph paper
An empirical probability plot on graph paper with linear scales usually results in an
S-shaped curve, with considerable curvature. To facilitate interpretation of the plotted
data and interpolation, it is desirable to eliminate or reduce this curvature by stretching or
shrinking the scale in the appropriate range of values of Pm , so that the points plot more
nearly along a straight line. A common way to accomplish this is the use of probability
paper. Hazen (1914b) appears to have been the first to advocate the use of probability
paper in hydrology.

Probability graph paper, for any given probability function F(x), is designed in such
a way that, when that function or the corresponding return period Tr(x) is plotted against
x , one obtains a straight line. The most common types of probability paper involve a
probability function with two parameters, say a and b, whose values depend on the data
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under consideration; thus to make the probability paper generally applicable to any data
set it is necessary to eliminate the dependency on these parameters. This can be done
with a linear transformation of the type

y = a(x − b) (13.27)

in which the nature of a and b depends on the particular function F(x) that is being
used. For instance, in the case of the normal distribution one has b = μ and a = σ−1. In
the case of the first asymptote for largest values, as will be seen below, b is the mode,
that is the value of x where the density f (x) is a maximum, and a = (π/

√
6)σ−1. This

transformation results in a distribution function, say FY (y), given by

FY (y) = F(b + y/a) (13.28)

which is independent of the parameters. In principle, probability paper is constructed as a
plot of x versus y, with the values of a and b left unspecified; when F(x) is symmetrical,
y = 0 is placed at the center of the scale. Parallel to the y-scale, a FY (y)-scale is plotted
and in some types of probability paper a third scale is shown with Tr(y)[= (1 − FY )−1]
values. However, most types of probability paper do not show the y-scale, and only
one scale, either FY (y) or Tr(y), is displayed. While normal probability paper, which
is based on the normal probability distribution, has been made available commercially
in the past, nowadays normal scales can be generated by standard computer programs.
For some applications, the x-variable is transformed logarithmically, so that it is log(x)
which is plotted against FY (y) or Tr(y). Figures 10.34–10.37 illustrate applications of
lognormal probability paper.

Example 13.1. Probability paper based on an extreme value distribution

The first asymptotic distribution for largest values, which is treated in detail below in
Section 13.4.5, can be used here to illustrate the construction of probability paper. This
function is given by F(x) = exp[− exp(−y)] in which y is the linearly scaled or reduced
variable defined in Equation (13.27). This distribution can be immediately inverted to
yield y = − ln[ ln(F−1)] and y = − ln [ ln[Tr/(Tr − 1)]]. One starts with graph paper in
which one of the coordinate axes is designated as the y coordinate axis. Values of y can
then be calculated for selected values of F covering the entire F range of interest, and
marked with their F value on the y-axis, or (which is preferable to avoid clutter) on a
separate axis parallel to y. The same is done for selected Tr values covering the entire
Tr range of interest. As mentioned, on most types of probability paper not all three axes
are shown, but only the resulting F- or Tr-axis. Figure 13.3 shows a lay-out with a y-axis
and a Tr-axis.

13.2.5 Theoretical probability distribution functions

Countless mathematical functions are consistent with the definition of probability given
above, which can be used to describe data sets. In frequency analysis, it is often useful
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Fig. 13.3 Probability paper with the abscissa based on the first asymptote for largest values. Both the y-scale

and the Tr-scale are shown. (See Example 13.1.)

to fit a mathematical probability distribution function to the available data; indeed such
functions provide a smooth and succinct description of the data and they allow the
formulation of objective confidence criteria. Moreover, although the procedure may be
hazardous and should only be applied with great caution, a mathematical function may
also allow some degree of extrapolation to estimate probabilities outside the range of the
available data.

The application of most theoretical distribution functions can be justified on strict
probabilistic considerations. Unfortunately, it is rare that such considerations are rigor-
ously valid for data sets of hydrologic concern, and in most cases the actual mathematical
form of the distribution function, that represents the population, is unknown. Thus the
best that can be hoped for is that the selected distribution is simple enough and also
physically plausible to be useful in practice.

Several procedures are available to determine the parameters in these distributions.
Among them the method of maximum likelihood is commonly considered to be the
best, in principle; however, several studies (see, for example, Stedinger, 1980; Martins
and Stedinger, 2000) have revealed that this is not always the case, particularly in small
samples. The present treatment concentrates mainly on the method of moments, which is
usually simpler to apply. An additional feature of the method of moments is that it weights
the larger observations more heavily, so that it may be more suitable in the analysis of
large values. In the following two sections a few of the more common functions are
considered which have been useful in the analysis of hydrologic events.
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1 3 . 3 S O M E P RO BA B I L I T Y D I S T R I B U T I O N S F O R
D I S C R E T E VA R I A B L E S

13.3.1 The geometric distribution

This distribution was already discussed briefly in connection with the return period. For
convenience, the reasoning can be briefly repeated here. Consider an experiment in which
there are two possible outcomes, namely success with a probability p, and failure with
a probability q = (1 − p). If the trials are independent of one another, then it follows
that the probability that (k − 1) successes will be followed by one failure is given by
Equation (13.16), or as formulated here

P{k trials until first failure} = pk−1(1 − p) (13.29)

Equation (13.29) can be used next, for example, to calculate the probability that it will
take k or fewer trials to incur failure. This is simply the sum of the probabilities, or if K
denotes the number of trials needed to experience failure, as a random variable,

P{K ≤ k} =
k∑

i=1

pi−1(1 − p) (13.30)

which yields immediately 1 − pk . It can also be seen that Equation (13.30) yields unity,
that is certainty, when k → ∞. Actually, (13.30) could also have been obtained by
considering first the probability that failure would not occur for k trials; since the trials
are independent, this is equal to pk . Its complement is the probability that it will take k
or fewer trials for failure to occur.

Example 13.2. Probability of exceedance of a flood of a given return period

Assume that “success” means that the annual maximum flow X in a river, also called the
annual flood, does not exceed a given magnitude x , so that p = F(x). As an example,
consider the event for which p = 0.98; from Equation (13.15) it can be seen that this is a
50 y flood. Figure 13.4 shows the probability, that it will take exactly k years before that
event is exceeded as a function of k, calculated with Equation (13.29). The probability
that it will be exceeded the first year is 0.02. The probability that it will be exceeded after
exactly 50 y is 0.9849 × 0.02 = 0.007 43. Figure 13.5 shows the probability calculated
with Equation (13.30), that it will take k or fewer years to exceed x , that is, the probability
of the occurrence of a flood in excess of the same magnitude x . It can again be seen that
the probability of this occurrence in the first year is 0.02; also, the probability that it will
be exceeded before 50 y have passed is 1 − 0.9850 = 0.636. The probability approaches
one as k becomes large.

Example 13.3. Probability of sequences of dry or rainy days

The geometric distribution has been used by Hershfield (1970a, b; 1971) to study the
probability of periods of a given length with or without precipitation. In this type of
application p denotes the conditional probability of a success being followed by a success.
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In general, a success can refer to a day without rain, a day with rain, or some other
desirable event, whatever the case may be. For the sake of illustration, let p denote
the probability that a day without rain be followed by a day without rain. In this case,
the form of Equation (13.29) arises again as the simple product of the probabilities
of a dry day being succeeded by a dry day for a sequence of k days, multiplied by
the probability of a dry kth day being succeeded by a rainy (k + 1)th day; in other
words, (13.29) represents the probability of experiencing a sequence of exactly k dry
days.

This product in (13.29) involves the assumption that the events are independent, or
which is the same, that p remains constant and does not change with k, the duration of
the period of dry days. Whether or not this is the case can be examined on the basis of
the following considerations. In the present context, the probability that the dry period
will last at most k days is the sum of the probabilities of all dry periods shorter than
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Fig. 13.6 Numbers of dry day sequences lasting at least k + 1 days, plotted against the numbers of sequences

lasting at least k days, as observed over the period 1951–1960 at Portland, Maine, on the basis of the

analysis by Hershfield (1970a). The dry days are defined for three thresholds of daily precipitation,

namely P < 0.254 mm (circles), P < 2.54 mm (squares), and P < 6.35 mm (triangles). The respective

values of the slopes of the best-fit straight lines through the origin are 0.708, 0.815 and 0.868; these are

nearly the same as the respective values of the conditional probabilities p obtained with the method of

moments, namely 0.708, 0.816 and 0.870. For clarification, values of k are indicated next to the points

of the seven shortest dry day sequences with P < 0.254 mm (circles).

or equal to k days; this is given by Equation (13.30), which can readily be shown to
yield 1 − pk . Conversely, the probability that a dry day sequence will last at least k + 1
days, that is, that it will be equal to or longer than k + 1 days, is the complement of
(13.30), or pk . Similarly, the probability that a dry day sequence will last at least k days
is pk−1. Hence, the validity of the assumption, that p is independent of k, can be readily
examined empirically in any given situation by checking whether or not the ratio of the
number of sequences, that last at least k days, over the number of those that last at least
(k − 1) days is a constant for all k, or

Sk

Sk−1
= const. (13.31)

where the constant should in principle be equal to p. As an illustration, Figure 13.6 shows
a plot of the numbers of dry day sequences Sk+1 against Sk observed at Portland, Maine,
over the period 1951–1960, on the basis of precipitation data analyzed by Hershfield
(1970a). A “dry” day or a day “without rain” was defined here as a day with precipitation
less than a certain finite threshold; three such thresholds were considered, namely days
with less than 0.254 mm, 2.54 mm and 6.35 mm. The slopes of the regression lines
through the origin are 0.708, 0.815 and 0.868, respectively, which should be reasonable
estimates of p for each of these three thresholds.

The more common way, however, to estimate the parameters is the method of
moments. Because the geometric distribution (13.29) has only one parameter, viz. p,
a knowledge of the mean of k will suffice. The mean duration of a dry period is given by

k = NDD

NDS
(13.32)
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in which NDD is the total number of dry days in the data record under considera-
tion, and NDS is the number of dry periods in the same record. As can be seen from
Equation (13.17), this mean duration is also given by k = (1 − p)−1, which shows how
p can be determined immediately from the record by means of (13.32). The respective
conditional probabilities of dry day sequences obtained this way with the data from
Portland, Maine, on which Figure 13.6 is based, were found to be 0.708, 0.816 and 0.870
for the three thresholds; as was to be expected, these values are nearly the same as those
obtained from the slopes of the lines through the points mentioned above.

This example was presented for sequences of dry days, or rather days with precipita-
tion less than a certain finite threshold. The same reasoning also holds, mutatis mutandis,
if p represents the probability of a rainy day (i.e. in excess of a certain threshold) being
succeeded by a rainy day. Finally, it should be kept in mind that p, as used here in this
example, is different from the probability of a dry day; the latter is defined as the ratio
of the number of dry days over the total number of days (dry and rainy) of the record.
However, Hershfield (1970b) has shown how the two may be related.

13.3.2 The binomial distribution

Consider again an experiment with two possible outcomes, namely success and failure,
whose respective probabilities are p and q = (1 − p). This distribution provides the
answer to the question what the probability is of k successes and (n − k) failures in n
trials. This question is similar to the one leading to the geometric distribution. Indeed,
if the sequence of independent successes and failures were made to occur in a certain
specified order, the probability of the outcome would be given by pkqn−k ; however,
there are n!/[k!(n − k)!] ways to select k items out of a total of n items. Therefore, if
K denotes again the random variable for the number of successes, the total probability
is the sum, or

P{K = k} = n!

k!(n − k)!
pkqn−k (13.33)

As before, it is assumed that the events are independent of one another.

Example 13.4. Probability of a year without freezing

An obvious application of the binomial distribution could be the following problem.
From a 45 y temperature record at a certain location it is known that in 26 y (out of 45)
the temperature did not go below 0 ◦C. Thus the probability of a frost-free year can be
estimated to be p = (26/45). Equation (13.33) then provides the probability of k frost-
free years during a period of n years; in Figure 13.7 the results are illustrated for the
different values of k during an 8 y period. A related problem is the determination of the
probability of at least a certain number of years without freezing temperatures during a
period of n years; for instance, what is the probability that during the next 5 y the site
will experience a year with freezing temperatures not more than twice? The answer is
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the probability of 3, 4, or 5 successes, that is the sum of the probabilities of respectively
3, 4, and 5 successes, or

P{K ≥ 3} =
5∑

i=3

5!

i!(5 − i)!

(
26

45

)i(19

45

)5−i

which equals 0.643.

1 3 . 4 S O M E P RO BA B I L I T Y D I S T R I B U T I O N S F O R C O N T I N U O U S
VA R I A B L E S

In flood and drought frequency analysis, the variable in question can usually assume
any value, so that, within certain limits, it can be considered as being continuous. In this
section some of the more common distribution functions are considered.

13.4.1 The normal distribution

This is a well-known function, but it is useful to consider it briefly, mainly as a reference
or benchmark to compare other less common distribution functions with it later on. The
normal or Gaussian density function has two parameters, namely the first two moments,
and it can be written as follows

f (x) = 1

σ
√

2π
exp

[
−1

2

(
x − μ

σ

)2
]

−∞ < x ≤ ∞ (13.34)

in which μ denotes the mean, and σ is the standard deviation. This is a symmetrical bell-
shaped curve that extends from minus to plus infinity on the x-scale; thus its median,
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Table 13.1 Values of the normal distribution function, expressed as [F (x) − 0.5] according to Equation (13.36)

y = (x − μ)/σ 0 0.5 1.0 1.5 2.0 2.5 3.0
0.5 erf(y/

√
2) 0 0.1915 0.3413 0.4332 0.4772 0.4938 0.4987

mode and mean values coincide, and its skew coefficient equals zero. The distribution
function is the integral of Equation (13.34) or, according to (13.5),

F(x) = 1

σ
√

2π

x∫
−∞

exp

[
−1

2

(
y − μ

σ

)2
]

dy (13.35)

This can also be written more concisely as

F(x) = 1

2
+ 1

2
erf[(x − μ)/

√
2σ ] (13.36)

in which the error function (cf. Equation (9.57)) is defined as

erf(y) = 2√
π

y∫
0

exp(−z2)dz (13.37)

Note that erf(−y) = −erf(y). The error function cannot be expressed in closed form;
however, it has been tabulated and close approximations are available for computation
(Abramowitz and Stegun, 1964, p. 299); it is also available in most computational soft-
ware. For convenient reference a few values are presented in Table 13.1. As will be seen
below, the values listed in Table 13.2 for zero skew (i.e. for Cs = 0) are the quantiles of
(x − μ)/σ of the normal distribution for the indicated probabilities.

The use of this distribution can be justified by means of the Central Limit Theorem;
this states that, if a random variable is the sum of n random, not necessarily independent,
variables, each with its own, not necessarily normal, density function with a finite mean
and variance, then the density of this random variable tends to the normal function
(13.34) as n increases. In hydrology the normal distribution is commonly assumed to be
applicable in the description of various types of central tendency observations, such as
mean annual temperatures, annual river discharge rates, among others.

Example 13.5. Probability distribution of annual mean streamflows

In Figure 13.8 the annual mean values are plotted on normal probability paper for the
Susquehanna River, as measured near Waverly, NY, for 57 years over the period 1938–
1994, and for the Chemung River, measured at Chemung, NY, for 90 years during 1907–
2000. Both stations are operated by the US Geological Survey. The Susquehanna River
station is located in Bradford County, Pennsylvania, at approximately 41◦59′05′′ N,
76◦30′05′′ W, with the gage at 227 m above sea level, but the drainage area of
12 362 km2 is in New York State; after correction (Korzoun et al., 1977) the long term
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Fig. 13.8 Annual means of the rate of flow of the Susquehanna River near Waverly, NY (circles), and of the

Chemung River at Chemung, NY (triangles), plotted on normal probability paper. The theoretical

straight line for the Susquehanna is calculated with a sample mean M = 214.7 m3 s−1 and a sample

standard deviation S = 46.8 m3 s−1, and for the Chemung with M = 72.8 m3 s−1 and

S = 20.8 m3 s−1. Both the y-scale and the F(x)-scale are shown. (See Example 13.5.)

average annual precipitation over this basin appears to be of the order of 1200 mm.
After sorting the streamflow data in ascending order, the non-exceedance probability
F(x) of each data point shown in the figure was estimated in accordance with Equa-
tion (13.19) as Pm = m/58. The sample mean and standard deviation of these data are
respectively M = 214.7 m3 s−1 and S = 46.85 m3 s−1, and these were used to calculate
the theoretical distribution (13.35), which is also shown in Figure 13.8. The Chemung
River station is located at approximately 42◦00′08′′ N, 76◦38′06′′ W, and 237 m above
sea level; the contributing drainage area is 6491 km2; over this second basin the aver-
age annual precipitation is probably closer to 1100 mm. For this basin each of the data
points was assigned the non-exceedance probability m/91. The sample estimates of the
moments of the Chemung record are M = 72.79 m3 s−1 and S = 20.81 m3 s−1. The
Chemung River is a major tributary of the Susquehanna, and the two rivers merge a short
distance south of the two stations; thus while the two stations are located closely, the
drainage areas do not overlap. The main point is that most of the data appear to obey the
normal distribution fairly well, although it can also be seen that the wettest years plot
above the best-fit line. As an aside, note that the largest mean flow rates at both stations
were recorded for the year of Tropical Storm Agnes. This event took place in June of
1972; the total precipitation varied, with reported maxima of up to 450 mm, but over
these two areas it was of the order of 150–250 mm over three days (Bailey et al., 1975).
It caused the most severe flood ever experienced in the entire Susquehanna basin and
resulted in the loss of some 120 lives; at the time, this flood was the most destructive and
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costly natural disaster in the United States. Tropical storms or hurricanes rarely pene-
trate this far north in full strength, but when they do they can materially affect the annual
mean.

13.4.2 The lognormal distribution

Many natural phenomena, which have a lower bound and exhibit positive skew, cannot
be described well by the normal distribution, but in some cases their logarithms can.
According to the Central Limit Theorem, this would be the case when the random
variable is the product of n variables, each with its own arbitrary density function with a
finite mean and variance. Upon applying Equation (13.24) with y = ln z to (13.34), the
lognormal density function results, and it can be written as

f (x) = 1

σn x
√

2π
exp

[
−1

2

(
ln(x) − μn

σn

)2
]

−∞ < ln(x) ≤ ∞ (13.38)

where μn and σn are the mean and the standard deviation of ln(x). When the logarithms
of the data do not quite follow the normal distribution, introduction of a lower bound c,
different from zero, may improve the fit. The density function becomes in this case

f (x) = 1

σnc(x − c)
√

2π
exp

[
−1

2

(
yn − μnc

σnc

)2
]

−∞ < yn ≤ ∞ (13.39)

in which yn = ln(x − c), and μnc and σnc are the mean and standard deviation of yn .
When c is known (e.g. from physical considerations about the lower bound), these two

parameters can be estimatated by means of the first and second of (13.13), after replacing
Xi by ln(Xi − c); alternatively, they can also be estimated directly from μ and σ , by
inversion of the following two equations (see, for example, Chow, 1954)

μ = c + exp
(
μnc + 0.5σ 2

nc

)
σ 2 = (μ − c)2

[
exp(σ 2

nc) − 1
] (13.40)

However, because the moments of the Xi values are different from those of the ln(Xi − c)
values, these two procedures yield different results; Stedinger (1980) has shown that for
smaller samples the procedure with the moments of the logs yields better parameter
estimates than that based on Equations (13.40).

The determination of c is not always easy. A rough idea of its value can be obtained
graphically by plotting the data on log-normal probability paper, i.e. ln(Xi − c) versus
FY (y) (see Equation (13.28)) for different trial values of c; that value of c is selected which
produces the best straight line. The value of c can in principle be obtained by the method
of moments. Since the first two moments are already used in (13.40) to determine μ and σ ,
the third moment is needed. In the case of the lognormal distribution (see, for example,
Chow, 1954), this is related to the second as follows

Cs = 3Cv + C3
v (13.41)
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in which the coefficient of variation is given by Cv = [exp(σ 2
nc) − 1]1/2. The value of Cs

can be calculated from the data by means of the third of (13.13), and with that value (13.41)
can be solved for Cv as follows

Cv = [
0.5

(
Cs + (

C2
s + 4

)1/2)]1/3 + [
0.5

(
Cs − (

C2
s + 4

)1/2)]1/3
(13.42)

The value of c can then be obtained from the second of (13.40), by substitution of this
value of Cv for [exp(σ 2

nc) − 1]1/2. It should be pointed out that this technique does not always
produce good results; indeed, the third- and higher-order moments for most hydrologic data
sets tend to be unreliable, so that some other method to estimate the parameters may be
preferable. For instance, Stedinger (1980) has proposed a quantile method using the median
and the smallest and largest observed values.

The idea of the lognormal distribution appears to have been introduced into hydrologic
practice by Horton (1914) after a suggestion by his uncle George W. Rafter in the 1890s.
But Hazen (1914a) was probably the first to state explicitly, “. . . that if the logarithms of
the numbers representing the several floods are used instead of the numbers themselves,
the agreement with the normal law of error is closer.” For many years after that the
lognormal distribution was the main function used in the United States to describe
annual maximal river discharges for design purposes.

Example 13.6. Lognormal distribution applied to annual peak streamflows

The flow rate in the Cayuga Inlet near Ithaca, NY, has been measured since 1935
and the data have been published by the US Geological Survey (see also the web site
http://waterdata.usgs.gov/nwis). The gaging station is located at 42◦23′35′′ N, 76◦32′43′′

W, at 133 m above sea level, and it has a drainage area of 91.2 km2; after correction of
the original precipitation data (Korzoun et al., 1977) the average annual precipitation
was estimated to be of the order of 1100 mm. After sorting the annual peak flows of the
66 available years of record, each of them was assigned a probability m/67; the resulting
data points are plotted with lognormal coordinates in Figure 13.9. The sample estimates
of the moments of these flow rates were then calculated by means of (13.13) and found
to be M = 44.16 m3 s−1, S = 33.51 m3 s−1 and gs = 1.969. For the logarithms the val-
ues of these moments were found to be M = 3.557, S = 0.6793 and gs = 0.1281. The
small skew coefficient gs of the logarithms suggests that the data are close to lognormally
distributed and that c in (13.39) can probably be neglected. This is confirmed by the fact
that the theoretical line, i.e. (13.35) or (13.36) applied with the logarithms of the data and
with the values of M and S of the logarithms, and shown as the heavy straight line 1 in
Figure 13.9, provides a good fit to the data. For comparison, some other theoretical
curves are also shown in Figure 13.9. The generalized log gamma distribution (see
Section 13.4.4) was calculated with the first three moments of the logarithms mentioned
a few sentences earlier. The first asymptotic distribution (see Section 13.4.5 below) was
calculated with the parameter values αn = 0.038 27 and un = 29.08 m3 s −1, and the gen-
eralized extreme value distribution (see Section 13.4.7 below) with the parameter values
a = −0.1057, b = 22.24 and c = 28.75 m 3 s−1; the power distribution was applied with
the parameters a = 28.23, and b = 0.4745.

http://waterdata.usgs.gov/nwis
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Fig. 13.9 Estimates of the probability distribution of the annual maxima of the rate of flow of the Cayuga Inlet

near Ithaca, NY, plotted on lognormal probability paper. The heavy straight line 1 represents the

lognormal distribution, which was calculated with the first two sample moments of the logarithms

M = 3.557, and S = 0.6793. Also shown are the generalized log-gamma distribution (dashed line 2

curving upward), the first asymptote for largest values (thin solid line 3 curving downward), the

generalized extreme value distribution (dashed line 4 curving downward) and the power distribution

(solid curve 5). Both the y-scale and the F(x)-scale are shown. (See Example 13.6.)

13.4.3 The generalized gamma distribution

This distribution, which is often referred to as the Pearson Type III distribution, is a
generalized form of the incomplete gamma function, by the inclusion of a lower bound
c. Its density can be written as follows

f (x) = 1

b�(a)

(
x − c

b

)a−1

exp

(−(x − c)

b

)
(13.43)

Except for the shifted origin, this has the same form as Equation (12.41). The three
parameters can be related to the first three moments by c = μ − σa0.5, b = σa−0.5, and
a = 4/C2

s , with a > 0, and b > 0 when x > c; if c is known, only the first two of these
are needed (cf. Equations (12.42) and (12.43)). Once the parameters are known, the
distribution function, which is the integral of (13.43), can be obtained from tables of
the incomplete gamma function (Abramowitz and Stegun, 1964) applied to the variable
(x − c). An alternative method determines the probability function from its quantiles
xp, which in turn are obtained from the tabulated quantiles of the reduced variable
yp = (xp − μ)/σ ; Table 13.2 shows these quantiles as functions of the skew coeffi-
cient, i.e. yp = yp(Cs). Note that Table 13.2 yields the values of the normal distribution
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Table 13.2 The value of the reduced quantile yp = (xp − μ)/σ as a function of skew coefficient Cs (or its sample

estimate gs) for the generalized gamma distribution

Return period, Tr

1.25 2 5 10 25 50 100 200

Probability of non-exceedance, F(xp)
0.20 0.50 0.80 0.90 0.96 0.98 0.99 0.995

Skew
Cs

3.0 −0.636 −0.396 0.420 1.180 2.278 3.152 4.051 4.970
2.5 −0.711 −0.360 0.518 1.250 2.262 3.048 3.845 4.652
2.0 −0.777 −0.307 0.609 1.302 2.219 2.912 3.605 4.298
1.5 −0.825 −0.240 0.690 1.333 2.146 2.743 3.330 3.910
1.0 −0.852 −0.164 0.758 1.340 2.043 2.542 3.022 3.489
0.5 −0.856 −0.083 0.808 1.323 1.910 2.311 2.686 3.041
0 −0.842 0 0.842 1.282 1.751 2.054 2.326 2.576

−0.5 −0.808 0.083 0.856 1.216 1.567 1.777 1.955 2.108
−1.0 −0.758 0.164 0.852 1.128 1.366 1.492 1.588 1.664
−1.5 −0.690 0.240 0.825 1.018 1.157 1.217 1.256 1.282
−2.0 −0.609 0.307 0.777 0.895 0.959 0.980 0.990 0.995
−2.5 −0.518 0.360 0.711 0.771 0.793 0.798 0.799 0.800
−3.0 −0.420 0.396 0.636 0.660 0.666 0.666 0.667 0.667

when Cs = 0, i.e. when the skew is zero. For 0.01 ≤ F(x) ≤ 0.99 and Cs < 2, the
reduced quantiles can also be calculated with the Wilson–Hilferty approximation,
namely

yp = 2

Cs

[(
1 − C2

s

36
+ Cs ynp

6

)3

− 1

]
(13.44)

in which ynp is the corresponding quantile of the reduced or standardized normal variable;
thus ynp values are the ones listed in Table 13.2 for Cs = 0, or may be obtained as the
inverse of Equation (13.35) for ynp = (x − μ)/σ . The accuracy of (13.44) and methods
to improve it have been studied by Kirby (1972) and by Chowdhury and Stedinger
(1991).

The application of the incomplete gamma distribution for flood frequency analysis,
in the manner of Table 13.2, goes back to the work of Foster (1924). This distribution
function has also been widely used for the same purpose in the Former Soviet Union
(Sokolov, 1967). Matalas (1963) has observed that it can be used with success to represent
low flow data, and that it performs equally well as the third asymptote for smallest values
(see Section 13.4.6 below).
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13.4.4 The generalized log-gamma distribution

A random variable is said to be described by the log-gamma distribution, also called the
log-Pearson Type III distribution, when its logarithms obey a three-parameter gamma
distribution. A common way (see Benson, 1968) of determining the probability with this
distribution consists of the application of Table 13.2 with the first three moments of the
logarithms of the data, as calculated with Equation (13.13).

In the late 1960s this distribution was recommended by a Federal interagency group for
adoption by all government agencies in the United States for flood frequency analysis;
this recommendation was arrived at (Benson, 1968; Thomas, 1985) to foster greater
consistency and uniformity in planning for flood-plain management and water-resources
development. It is now still widely used in the United States for this purpose. Further
details and recommendations by this interagency group for the practical application of
this distribution can be found in Bulletin 17B (Interagency Advisory Committee on
Water Data, 1982). Beside the standard application of the method, Bulletin 17B also
contains suggestions on plotting historical data (i.e. dating from prior to the period
of record), and regionalization with data from hydrologically similar watersheds. A
more comprehensive treatment of this distribution was presented by Bobée and Ashkar
(1991).

As noted earlier, the skew coefficient tends to exhibit greater variability between
samples than the mean and the variance. This may be overcome by regionalization
(see Section 13.5.2 below). Several techniques have been used in the past to obtain a
regional value, in place of the locally calculated value, if the data record is short. These
include the construction of a map with iso-lines obtained by interpolation of the values
computed at the existing gaging stations in the region; another possibility is the derivation
of a regression relationship between the available skew values in the region and basin
characteristics; finally, as a third possible approach, the skew may simply be taken as
the average of all available skew values from the records in the region with long records;
the average can also be weighted by multiplying each available value by the number of
years of record at that gaging station divided by the average number of years of record
of all stations in the region. Hardison (1974) has presented regional values of the skew
coefficient for the annual peak flow rates in rivers in the United States, but with the
availability of additional data since then, these results have gradually become obsolete.
Tasker and Stedinger (1986) have further improved the estimation procedure of regional
skew values.

Example 13.7. Log-gamma distribution applied to annual peak flows

In Council Creek, near Stillwater, Oklahoma, the flowrates have been measured from
1934 until 1993, but some peak flow information is also available for 1912; the data have
been published by the US Geological Survey (see also http://waterdata.usgs.gov/nwis).
The station is located at an elevation of 252 m above sea level, at 36◦06′58′′ N and
96◦52′03 W in the Prairie region of North America and has a drainage area of 80.3 km2;
the corrected average annual precipitation was estimated (Korzoun et al., 1977) to be

http://waterdata.usgs.gov/nwis
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Fig. 13.10 Estimates of the probability distribution of the annual maxima of the rate of flow of Council Creek

near Stillwater, Oklahoma, plotted on lognormal probability paper. The heavy straight line 1

represents the lognormal distribution, which was calculated with the first two sample moments of the

logarithms M = 4.199, and S = 0.9145. The generalized log-gamma distribution (dashed line 2

curving upward) was obtained with these same moments and with the sample skew gs = 0.3217. Also

shown are the first asymptote for largest values (solid line 3 curving downward), the generalized

extreme value distribution (dashed line 4 curving downward) and the power distribution (curve 5).

Both the y-scale and the F(x)-scale are shown. (See Example 13.7.)

of the order of 1000 mm. The 61 available peak flow data points, which are displayed
in Figure 13.10, have a sample mean M = 104.5 m3 s−1, a standard deviation S =
127.9 m3 s−1 and a skew coefficient gs = 2.964; for the logarithms these same quantities
are respectively 4.199, 0.9145, and 0.3217. The theoretical curve obtained with these
moments of the logarithms by means of Equation (13.44) is shown as the upward curving
dashed line 2 in Figure 13.10. Also shown in the figure are the theoretical curves for the
lognormal distribution (with c = 0) (1), the first asymptote (3), the generalized extreme
value distribution (4), and the power distribution (5). The parameters for the extreme
value distributions obtained with the appropriate sample moments are respectively αn =
0.01003 m−3 s and un = 46.97 m3 s−1, and a = −0.1751, b = 74.01 m3 s−1 and c =
46.45 m3 s−1; for the power distribution the parameters are a = 39.91 and b = 0.7511.

13.4.5 The first asymptotic distribution of extreme values

Extreme values and their initial distribution
When several samples consisting of, say, n items are taken from the same population,
the mth smallest item in each sample is a random variable, which follows a certain
distribution function. The form of this distribution function of the mth quantile depends
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on m and n, and on the distribution function of the population from which the samples
are drawn. When the distribution function of the population as a whole is mentioned
in reference to the distribution function of the quantiles, it is often called the initial
distribution. The extreme values of the samples are their smallest and their largest items.
Obviously, the distribution functions of these extreme values of the samples depend only
on n, the number of items in the samples, and on the initial distribution. When the size
of the samples is very large, i.e. in the limit when n → ∞, the distribution functions of
the extreme values are called asymptotic distribution functions or asymptotes. Clearly,
an extreme value asymptote no longer depends on m and n, but only on the nature of its
initial distribution.

In the study of extreme values three general types of initial distribution F(x) have been
considered (Gumbel, 1954a; 1958). Each of these types results in a different functional
form of the extreme value asymptotes. The first type, which is called the exponential
type, comprises those distributions that for large x converge to unity at least as fast as the
exponential function itself; all their moments exist. These types of distribution satisfy

f (x)

1 − F(x)
= − f ′(x)

f (x)
and

f (x)

F(x)
= f ′(x)

f (x)
(13.45)

for very large and for very small values of x , respectively. Since both numerator and
denominator in these ratios are very small, this suggests the application of de L’Hospital’s
rule; hence one can continue the process, to obtain for very large x ,

f (x)

1 − F(x)
= − f ′(x)

f (x)
= − f ′′(x)

f ′(x)
= · · · (13.46)

and so on, and an analogous result for very small x . Examples of this type of distri-
bution are the normal, the logistic, the gamma, and their logarithmically transformed
distributions.

The distributions of the second type are also referred to as Cauchy type distributions;
these are distributions, which do not have moments above a certain order. The lim-
ited distributions belong to the third type of initial distributions; these are distributions
with an upper or lower bound or with both. In hydrology they are mainly of interest in
the analysis of low flows and droughts. This brings up the point that the classification
into these three separate types of initial distributions is not always rigid. For exam-
ple, the lognormal distribution is of the exponential type at the upper end, since x can
assume values all the way to infinity; however, it is of the limited type at the lower
end of the distribution, because x cannot be smaller than zero or c, as can be seen in
Equations (13.38) and (13.39).

The first asymptote for largest values
This distribution is also often referred to as the Gumbel distribution after the statistician
who clarified and promoted its use (Gumbel, 1954a; 1958). Several derivations have
been presented in the literature. One of the simpler derivations proceeds as follows. The
starting point is the Taylor expansion of the initial distribution about some characteristic
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large value of x , denoted by un , or

F(x) = F(un) + f (un)(x − un) + f ′(un)
(x − un)2

2!
+ f ′′(un)

(x − un)3

3!
+ · · ·

(13.47)

From the definition of exponential type distributions (13.45) for large values it follows
that

f ′(un) = −[ f (un)]2

1 − F(un)
; f ′′(un) = +[ f (un)]3

[1 − F(un)]2
; etc. (13.48)

The value of un is fairly arbitrary, but if it is defined such that its probability is given
by F(un) = 1 − 1/n, the derivation becomes especially straightforward. (Note that this
is almost, but not quite, the average probability of the largest event in the sample,
namely 1 − 1/(n + 1) shown in Equation (13.19)). After substitution of (13.48) and
some algebra, (13.47) can be written as

F(x) = 1 − [1 − F(un)]

[
1 − αn(x − un) + α2

n(x − un)2

2!
− α3

n(x − un)3

3!
+ · · ·

]

in which, by definition αn = f (un)/[1 − F(un)], which can be considered a constant
parameter; thus, with the definition of un , this series becomes

F(x) = 1 − 1

n
exp[−αn(x − un)] (13.49)

Recall that F(x) is the initial distribution of the population from which the n items of
the sample were taken, and that it indicates the probability that any item of the sample
is smaller than or equal to x . The probability that all n items are smaller than or equal to
x , is

G(x) = [F(x)]n (13.50)

provided the items are independent of one another. Combination of Equations (13.49)
and (13.50) produces

G(x) =
(

1 − 1

n
exp[−αn(x − un)]

)n

(13.51)

In the limit, as the size of the sample is allowed to increase indefinitely, so that n → ∞,
one obtains (Abramowitz and Stegun, 1964, 4.2.21) the asymptotic distribution function
of the largest values

G(x) = exp[− exp(−y)] (13.52)

and the corresponding density function g(x) = G ′(x), or

g(x) = αn exp[−y − exp(−y)] (13.53)

where y = αn(x − un) is the reduced largest value. The distribution and the density func-
tion of the extremes are denoted in this section by G(x) and g(x), merely to distinguish
them from the initial distribution function and the initial density function, respectively.
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Probability paper based on (13.52), often referred to as Gumbel paper, is illustrated in
Figure 13.3.

In the derivation of Equation (13.52) its two parameters un and αn were related to
the properties of the initial distribution F(x). In practice, however, the parameters are
determined directly from the observed largest values. By means of the moment generating
functions (Gumbel, 1958) the first two moments of (13.52) can be shown to be

μ = un + γ /αn and σ = π/(αn

√
6) (13.54)

where γ = 0.577 22 is known as Euler’s number. Thus the parameters un and αn can be
determined immediately from the first two moments of the largest values, as calculated
with (13.13). Observe that, since the mean of the reduced variable is given by y = γ on
account of the first of (13.54), it follows that G(μ) = exp[− exp(−0.577 22)]=0.570,
so that Tr(μ) = 2.328; in other words, the first asymptote (13.52) predicts that the return
period of the mean is 2.33 time units (e.g. years in the case X , the random variable
in question, represents the annual flood). Note also that by putting ∂g(x)/∂x = 0 with
(13.53), it is readily found that the mode is equal to un . Similarly, by putting G(x) = 0.5
with (13.52) one finds that the median is given by (un + 0.36651/αn).

The first asymptote has been widely applied in the description of maxima. In hydrol-
ogy, it has been especially useful in the analysis of annual floods, i.e. the yearly maximal
discharges on record. It is useful to restate the assumptions on which the derivation is
based, to gain a better understanding of its applicability. These are (i) the initial dis-
tribution is of the exponential type; (ii) the events, from among which the largest are
considered, must be independent; (iii) the sample size n is infinitely large. In the case
of the yearly floods, i.e. the maxima of the daily flows, these conditions are not really
met. There is no doubt a strong correlation between successive daily flows; thus the
truly independent events in one year are likely to last much longer than a single day;
this greatly reduces their number from n = 365 to a value, which is probably not large
enough to allow the use of an asymptote; this fact also obscures the nature of the initial
distribution, which may not be exponential.

One of its practical disadvantages is that, since it has only two parameters, all moments
above the second are related to the first two; this means, for example, that it has a third
moment about the mean m3 = 2.404 11/α3

n , and therefore a constant skew coefficient,
namely Cs = m3/σ

3 = 1.1395. Only rarely does the estimated skew coefficient gs of a
record of annual floods have this value. Of course, other two-parameter distributions,
such as the lognormal or gamma distributions, suffer the same drawback.

Another point of interest is the behavior of the first asymptote for extremely large
events. Inversion of (13.52) with (13.15) yields the reduced variable as a function of the
return period

y = − ln{ln[1/(1 − 1/Tr )]} (13.55)

Since ln(1 + z) = z − z2/2 + · · · (provided z ≤ 1 and z 	= −1)) (Abramowitz and
Stegun, 1964, 4.1.24), it is readily shown that, for large Tr, Equation (13.55) can be
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written as

y = ln(Tr) − 1

2Tr
(13.56)

or, to a good approximation,

x = un + α−1
n ln Tr (13.57)

This shows that, if the largest events are plotted against Tr on semi-log graph paper, they
should tend to a straight line in the range of very large values of Tr. This may be a useful
procedure to apply, when no probability paper is available. It is remarkable also that
Equation (13.57) is in the same form of, and thus provides a theoretical justification for,
the equation proposed by Fuller (1914) to describe annual floods. Indeed, Fuller found
empirically, “. . . by plottings of the existing data on American rivers” available to him,
that the largest 24 h average rate of flow to be expected in Tr years is

Q = Qav(1 + 0.8 log Tr) (13.58)

in which Qav is the average annual flood and log denotes the decimal logarithm;
Fuller (1914) also observed that Qav is proportional to A0.8, where A is the drainage
area.

The first asymptote for smallest values
Whenever the initial distribution F(x) is symmetrical about the origin, in accordance with
Equation (13.11), the probability that an observation is larger than −x is given by [1 −
F(−x)]; hence the probability that the smallest in a sample of n independent observations
is larger than −x is

1 − 1G(−x) = [1 − F(−x)]n (13.59)

Proceeding in the same way as for the largest values, from (13.47) through (13.52), and
making use of this symmetry, one obtains

1G(x) = 1 − exp[− exp(y)] (13.60)

where as before y = αn(x − un). Thus the first asymptote for smallest values can be obtained
from that for the largest values by replacing x and un by −x and −un , respectively. Most
initial distributions are not symmetrical; but Gumbel (1958) has indicated how in the case
of asymmetrical distributions the symmetry principle can be extended simply by adopting
new parameters, say u1 and α1, instead of un and αn . In other words, Equation (13.60) can
still be applied but the reduced variable is y = α1(x − u1), and the parameters are derived
from observations of the smallest values.

13.4.6 The third asymptotic distribution of extreme values

The third asymptote for largest values
This distribution is also known as the Weibull distribution for the Swedish engineer who
first used it to analyze breaking strengths (Gumbel, 1954a; 1958). This third asymptote
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is applicable to describe maxima when their initial distribution has an upper bound; if
this upper bound is denoted by ω, it follows that the initial distribution is subject to

F(x) = 1 for x = ω

Several different derivations have been presented in the literature for this asymptote
(see Gumbel, 1958, p. 273 ff.), which require certain assumptions regarding the manner
in which F(x) approaches unity. Probably the simplest, after Kimball (1942), consists
of observing that the bounded variable x ≤ ω can be transformed into an unbounded
variable z as follows

ω − x = a exp[−b(z − c)] (13.61)

where a, b and c are constants; this shows how z → ∞ as x → ω. If it can be assumed
that the resulting distribution function of z is of the exponential type, then according to
(13.49), the initial distribution of x in the neighborhood of the upper bound x = ω, can
be described by

F(x) = 1 − 1

n

(
ω − x
ω − v

)k

(13.62)

where the parameters in (13.61) have been changed to a = ω − v, b = αn/k and c = un .
Proceeding as before, one finds immediately that the probability that all items in a very
large sample are smaller than or equal to x , in the limit as n → ∞, is

G3(x) = exp

[
−

(
ω − x
ω − v

)k
]

(13.63)

The corresponding third asymptotic density function g3(x) = G ′
3(x) is

g3(x) = k
ω − v

(
ω − x
ω − v

)k−1

G3(x) (13.64)

The moments of the third asymptote are treated in detail below for the smallest
values.

The third asymptote for smallest values
In hydrology it is mainly the third asymptotic distribution for smallest values that has
been of interest. Indeed while, in principle at least, different types of common events,
such as rainfall amounts, wind speeds or river flows, can often be assumed to be unlimited
in magnitude, even the smallest of such events can never be smaller than zero. Thus the
smallest values often have a definite lower limit below which they cannot go. As for the
first asymptote, the symmetry principle (13.60) can be applied to derive the distribution of
the smallest values from that of the largest values. The procedure consists of changing the
sign of x, ω and v, and then assigning different values to the parameters, say ω1 and v1,
to obtain

1G3(x) = 1 − exp

[
−

(
x − ω1

v1 − ω1

)k
]

(13.65)
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in which ω1 is the lower limit, such that x ≥ ω1 and v1 ≥ ω1 and also 1G3(ω1) = 0. The
corresponding density function is

1g3(x) = k
v1 − ω1

(
x − ω1

v1 − ω1

)k

[1 − 1G3(x)] (13.66)

The nth moment about ω1 can be determined as follows

m ′
n =

∞∫
0

(x − ω1)n
1g3(x)dx

= −
∞∫

0

(x − ω1)nd[1 − 1G3(x)]

(13.67)

which yields, with (13.65),

m ′
n = (v1 − ω1)n� (1 + n/k) (13.68)

Hence the mean is

μ = ω1 + (v1 − ω1)� (1 + 1/k) (13.69)

Similarly, since the second moment about ω1 is m ′
2 = (v1 − ω1)2�(1 + 2/k); in light of

(13.12), the variance is

σ 2 = (v1 − ω1)2 [�(1 + 2/k) − �2(1 + 1/k)] (13.70)

Higher-order moments can also readily be derived by means of Equation (13.68). In
addition, it is easy to show that the median is given by [ω1 + (v1 − ω1)(ln 2)1/k] and the
mode, which exists only for k > 1, by [ω1 + (v1 − ω1)(1 − 1/k)1/k].

In practical applications, generally the only known fact is that the initial distribution
is bounded on the left but that distribution itself is unknown. Thus, as was the case
with the first asymptote for the largest values, the parameters can only be determined
from the available smallest values. In case one out of the three parameters is known
(usually the lowest value ω1), the method of moments will require only the first two
moments (13.69) and (13.70). If all three parameters have to be determined, the first
three moments could be used, in principle. However, as noted earlier, the third moment
is often unreliable, and a different approach may be desirable. Gumbel (1954a) has
described a rapid method after a procedure developed by Weibull. First the value of v1

is determined; since 1G3(v1) = 1 − exp(−1), one can take v1 as the value of x which
has an observed probability of 0.632 or, which is the same from Equation (13.18), a
return period of Tr = 1.58 time units. For example, in the case of annual low flows or
“droughts,” v1 can be taken as the magnitude of the 1.58 y event. The value of k can
be determined from the probability of the mean 1G3(μ), as observed from its plotting
position. Thus k is the solution of the combination of (13.65) with (13.69), that is

1G3(μ) = 1 − exp[−�k(1 + 1/k)] (13.71)

The value of the lower limit ω1 can then be determined from the variance, as given by
Equation (13.70), in which v1 and k are already known.
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Finally, it should be noted that, just like the corresponding distributions for the largest
values in (13.61), the first asymptote for smallest values is linked to the third by a
logarithmic transformation, as follows

ln

(
x − ω1

v1 − ω1

)
= b(z − u1) (13.72)

where now b = α1/k. Hence, with (13.60) one obtains

1G(z) = 1 − exp

[
− exp

(
ln

(
x − ω1

v1 − ω1

)k
)]

= 1G3(x) (13.73)

as given in (13.65). This shows how probability paper constructed for the first asymptote
can be used for the third asymptote by plotting the logarithms of the magnitudes of
the events, i.e. log x instead of x (see Example 13.1). Hence, the lay-out shown in
Figure 13.3 can be used for this purpose, by changing the scale of the ordinate from
linear to logarithmic.

Applications of this distribution to low flows in rivers have been presented by Gumbel
(1954b) and Matalas (1963).

13.4.7 The generalized extreme value distribution

The first and third asymptotes were already shown in Equations (13.61) and (13.72) to
be related by a logarithmic transformation. It should not be surprising, therefore, that
the three asymptotes can be combined into a single expression. So far in hydrology, this
idea has mostly been applied to the largest values. In this case the distribution function
is usually written in the following form

F(x) = exp[− (1 − a(x − c)/b)1/a] for a 	= 0 (13.74)

in which a, b and c are constants. Clearly, when a → 0, the term inside the square
brackets approaches an exponential function, and Equation (13.74) reduces to the first
asymptote (13.52). But in (13.74), a is not necessarily equal to zero; thus in this form
the extreme value distribution has three parameters, and can therefore be considered
more general. When a > 0, (13.74) is just another form of the third asymptote for
largest values (13.63), with an upper bound at x = c + b/a; the parameters of the
two forms are related by k = a−1, ω = c + b/a, and v = c. When a < 0, (13.74) has
a lower bound at x = c + b/a but it is unbounded for large x ; therefore, this case
is the one mostly used for the largest values. The density function corresponding to
Equation (13.74) is

f (x) = 1

b
(1 − a(x − c)/b)−1+1/a F(x) for a 	= 0 (13.75)

The central moments can be derived by first considering the nth moment about x = x1 =
c + b/a; in the case of a < 0, when x1 is the lower bound, this is

m ′
n =

∞∫
x1

(x − c − b/a)nd F(x) (13.76)
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or

m ′
n =

∞∫
x1

(x − x1)n exp[−(−a/b)1/a(x − x1)1/a]d[−(−a/b)1/a(x − x1)1/a]

(13.77)

This produces finally

m ′
n = (−b/a)n�(1 + an) with a > −1/n (13.78)

Hence the mean is m ′
1 + x1, or

μ = c + (b/a) (1 − �(1 + a)) (13.79)

Similarly, on account of (13.12) the variance is

σ 2 = (b/a)2[�(1 + 2a) − (�(1 + a))2] (13.80)

and the third central moment is

m3 = −(b/a)3[�(1 + 3a) − 3�(1 + a)�(1 + 2a) + 2 (�(1 + a))3] (13.81)

As before, these first three moments can be used to estimate the parameters a, b and c.
First, the parameter a can be determined by iteration from the sample skew coefficient gs

(see Equation (13.13)), expressed in terms of the ratio of Equations (13.81) and (13.80);
a rough idea of the magnitude of a can be obtained from Figure 13.11. With this result
b can be obtained from the sample variance S2 and (13.80), and then c from the sam-
ple mean M with (13.79). If the data record is so short that the third moment must be
considered unreliable, one can also apply the Weibull procedure, explained earlier for
the third asymptote for smallest values. In brief, this consists of observing that Equa-
tion (13.74) produces F(c) = exp(−1); thus the parameter c can be estimated immedi-
ately from the available data as the value of x , which corresponds with a probability
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m/(n + 1) = 0.368, or with a return period of Tr = 1.58 time units. The two remain-
ing parameters a and b can then be determined from the first two moments (13.79) and
(13.80).

The generalized extreme value distribution in the form of (13.74) was introduced in
the environmental sciences by Jenkinson (1955), and it has subsequently found wide
application in the prediction of various extreme phenomena, such as floods, rain events,
wind speeds and wave heights; it has also come to be used in the estimation of regional
flood frequencies (see, for example, Lettenmaier et al., 1987; Stedinger and Lu, 1995;
Madsen et al., 1997; Martins and Stedinger, 2000). Its full potential continues to be
explored (Katz et al., 2002).

Example 13.8. Extreme value distributions applied to annual peak flows

In this example a stream in a more arid climate is considered. At Palominas in Arizona
the San Pedro River drains an area of some 1909 km2, almost all in Sonora; the corrected
average annual precipitation in this area was estimated (Korzoun et al., 1977) to be of the
order of 400 mm. This gaging station is located at 31◦22′48′′ N, 110◦06′38′′ W, at an ele-
vation of 1276 m above sea level. The 61 available annual peak flows measured from 1930
through 1999 are plotted against Tr = 62/(62 − m) with first asymptotic coordinates in
Figure 13.12. The first three moments of these data were estimated with Equation (13.13)
as M = 180.2 m3 s−1, S = 115.2 m3 s−1 and gs = 1.436; the corresponding moments of
the logarithms were calculated to be, respectively, 5.000, 0.6466 and −0.2444. By means
of Equation (13.54) the two parameters of the first asymptotic distribution for largest val-
ues were estimated as αn = 0.011 13 sm−3 and un = 128.4 m3 s−1; the curve calculated
with (13.52) is shown in Figure 13.12 as the solid heavy straight line 3. Interestingly, it can
be seen in the graph that the mean M = 180.2 m3 s−1 corresponds closely with a a value of
the reduced variable y = 0.58, and with a return period Tr = 2.33 y; this is to be expected
in light of the first of (13.54). The parameters of the generalized extreme value distribu-
tion were calculated with (13.79) through (13.81) as a = −0.044 92, b = 84.38 m3 s−1

and c = 127.6 m3 s−1; the curve calculated with these parameters in (13.74) is shown as
the heavy dashed line 4 in Figure 13.12). Again, it can be seen that, as expected from
(13.74), the value of c corresponds closely with a return period of Tr = 1.5 y. For com-
parison, the curves based on the lognormal (with c = 0) (1), the generalized log-gamma
(2), and the power distribution (5) are also shown in the figure. For the power distribution
the parameters were taken as a = 134.4 and b = 0.3854.

13.4.8 Power law (or fractal) distribution

Many natural phenomena exhibit a type of self-similarity or scale invariance in their
magnitudes, such that, for instance, the ratio of the event with return period Tr = 100
and that with Tr = 10, is equal to the ratio of those with Tr = 1000 and Tr = 100.
Phenomena with this type of behavior are referred to as fractals (Turcotte, 1992). From
this observation it follows that such phenomena obey a power law. Indeed, in this example
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Fig. 13.12 Estimates of the probability distribution of the annual maxima of the rate of flow of the San Pedro

River at Palominas, Arizona, plotted with first asymptotic coordinates. The heavy straight line

(3) represents the first asymptotic distribution for largest values, which was calculated with the first

two sample moments M = 180.2 m3 s−1, and S = 115.2 m3 s−1; the heavy dashed curve (4)

represents the generalized extreme value distribution calculated with the same moments and with

gs = 1.436. Also shown are the lognormal distribution (thin solid curve 1), the generalized log-gamma

distribution (dashed curve 2), and the power distribution (solid curve 5). Both the y = αn(x − un)

scale and the Tr(x) scale (in years) are shown. (See Example 13.8.)

x = x(Tr) satisfies

x(10)

x(1)
= x(100)

x(10)
= · · · = x(10n)

x(10n−1)
= K10 (13.82)

where K10 is a constant, in which the subscript indicates the ratio of the return periods.
Thus, for the case of, say, a ratio of 2, the magnitude of an event with Tr = 2n is, by
analogy with (13.82),

x(Tr ) = K n
2 x(1) (13.83)

Because n = ln Tr/ ln 2, the logarithm of (13.83) can be rewritten as

ln x(Tr) = (ln K2/ ln 2) ln Tr + ln x(1)

which immediately results in a power law

x(Tr) = aT b
r (13.84)

with the constants a = x(1) and b = [ln K2/ ln 2] . Observe that the result obtained in
(13.84) can be derived for any ratio of the return periods. Equation (13.84) with (13.15)
yields the probability distribution function

F(x) = 1 − (x/a)−1/b (13.85)
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which has a lower bound at x = a. The corresponding density function is

f (x) = a1/b

b
x−1−1/b (13.86)

In the practical application of this function, the parameters a and b can be derived
simply by least squares linear regression of the logs of the observed values X against the
logs of their return periods Tr, in accordance with Equation (13.84).

The power distribution has been found useful in the description of numerous phe-
nomena, such as fragmentation, earthquakes, volcanic eruptions, mineral deposits, and
land forms, among others. In hydrology, the power distribution probably found its ear-
liest application in the description of rainfall intensities. Equation (3.3), whose origins
go back at least to the work of Meyer (1917), is in the form of (13.84). (See also
Figure 3.16.) A noteworthy feature in this particular application of Equation (13.84) is
that its coefficient a is also a power function of the duration D of the rainfall event,
for values of D in excess of 2 h. In a different context, namely in the description of
capillary retention of water in soils, the form of Equations (8.14), (8.15) and (8.16), after
substitution of (8.5), suggests a power distribution and fractal features of the smaller
pores; this is illustrated for a sand in the example of Figure 8.20, indicating a straight
line for large values of the capillary suction H .

More recently, the power distribution has also been used to describe flow maxima.
Turcotte (1994) and Malamud et al. (1996) have presented cases where it provided a
better fit with flood data than the generalized log-gamma distribution. However, the
distribution appears to be more applicable to partial duration flow data than to annual
flow maxima. Partial duration flow series contain all the data above a given pre-defined
base, whereas annual flow series contain only the peak discharge rates observed during
each year of the record. The main disadvantage of an annual series is that in some years
a number of events may be larger than the annual event in other years. In the analysis of
very large events this is rarely a problem, because the two types of data series tend to be
nearly the same for events with return periods in excess of about three time units, years in
this case. Hence, in the estimation of the parameters a and b in the power distribution for
annual peak flows, it is advisable to use only the data whose return period is larger than
3 y, or whose probability of non-exceedance is larger than 0.67. This is illustrated below
in Example 13.9. The performance of the power distribution, to describe annual peak
flows in comparison with other distributions, is also illustrated Figures 13.9, 13.10, 13.12
and 13.14. It can be seen that it tends to produce smaller values of the non-exceedance
probability and of the return period, and therefore will usually lead to more conservative
design values.

Example 13.9. Power law distribution applied to annual peak flows

The Sheepscot River, at North Whitefield, Maine, drains a basin which is subject to
strong maritime influence. The gaging station is located at 31 m above sea level at
44◦13′23′′ N and 69◦35′38′′ W; the upstream drainage area covers 376 km2, and the cor-
rected (Korzoun et al., 1977) long term average annual precipitation is around 1300 mm.
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Fig. 13.13 Estimates of the probability distribution of the annual maxima of the rate of flow of the Sheepscot

River at North Whitefield, Maine, plotted with log–log coordinates. The heavy straight line

(5) represents the power distribution, which was calculated with the parameters a = 48.10, and

b = 0.3657. Also shown are the lognormal distribution (thin solid curve 1), the generalized log-gamma

distribution (dashed curve 2), the first asymptotic distribution for largest values (solid curve 3) and

the generalized extreme value distribution (dashed line 4). The Tr(x) scale is shown in years. (See

Example 13.9.)

Measurements started in 1939, and the data have been published by the US Geological
Survey (see also http://waterdata.usgs.gov/). The 62 available values of the annual peak
flows are plotted against Tr = 63/(63 − m) with log–log coordinates in Figure 13.13,
and with first asymptotic coordinates in Figure 13.14. It can be seen in Figure 13.13
that the data plot roughly along a straight line relationship for Tr > 3 y. Accordingly,
linear regression of the logs of the flow rates against the logs of the return periods in
excess of 3 y yielded the values of the parameters a = 48.10, and b = 0.3657. Equation
(13.84) with these parameters is plotted in Figures 13.13 and 13.14 as the heavy line 5.
Also shown in these two figures are the curves representing the lognormal distribution
(with c = 0), the generalized log-gamma distribution, the first asymptotic distribution
and the generalized extreme value distribution. The first three moments of the flow
rates used in the estimation of the parameters of these distributions were obtained with
Equation (13.13) as M = 65.27 m3 s−1, S = 36.00 m3 s−1 and gs = 1.926, and the same
moments of the logarithms as 4.063, 0.4630 and 0.6788, respectively.

1 3 . 5 E X T E N S I O N O F AVA I L A B L E R E C O R D S

13.5.1 Historical information

So far in this chapter the different methods of analysis have focused on data that are part
of a regular record of measurements carried out for a certain well defined purpose. In
many situations, however, additional information on the frequency of occurrence of the

http://waterdata.usgs.gov/
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Fig. 13.14 Estimates of the probability distribution of the annual maxima of the rate of flow of the Sheepscot

River at North Whitefield, Maine, plotted with first asymptotic coordinates. The heavy solid line

(5) represents the power distribution, which was calculated with the parameters a = 48.10, and

b = 0.3657. Also shown are the lognormal distribution (thin solid curve 1), the generalized log-gamma

distribution (dashed curve 2), the first asymptotic distribution for largest values (solid straight line 3)

and the generalized extreme value distribution (dashed line 4). Both the y = αn(x − un) scale and the

Tr(x) scale (in years) are shown. (See Example 13.9.)

hydrologic phenomenon in question may be derived from a knowledge of events that
date back to the time prior to the beginning of the systematic measurements. Because
most hydrologic records are notoriously short, it is desirable to include such information
whenever possible. Historical information may be derived from archived documents, or
from evidence of a botanical or paleo-event (see Kochel and Baker, 1982; Stedinger and
Baker, 1987) nature found in the natural environment.

Return periods
In practice, inclusion of information from the period prior to the start of the record is
concerned with the assignment of a plotting position to each historical event, whose
magnitude is known, in order to estimate the return period. As an illustration of pos-
sible scenarios for annual floods, consider the three cases discussed by Dalrymple
(1960).

(i) A single historical event, larger than any event during the regular period of record,
is known to have occurred earlier. If N is the number of years since that historical
event or, better, the time since the beginning of recorded historical information,
the return period of the historical event can be taken as (N + 1), and its probability
as [N/(N + 1)]. The regular record of duration n is treated as usual.
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(ii) An historical event is known to have occurred and is the largest ever, until an even
larger event occurs during the period of record. In this case the largest event during
the period of record is assigned the return period Tr = (N + 1), and the historical
event Tr = [(N + 1)/2]. The remainder of the record is treated as usual with the
second largest during the period of record assigned a value of Tr = [(n + 1)/2],
and so on for the third, etc.

(iii) An historical record is available of all events above a certain base, such as for
example “bankful stage,” and it can be assumed that the distribution of the lesser
events during the regular period of record is typical for that of the entire histor-
ical period. When the return periods or the corresponding plotting positions are
obtained as outlined in the previous two cases (i) and (ii), there is a gap between
data points of the regular record and those of the historical events, which causes
some difficulty in deriving a best-fit curve. Such difficulty can be avoided, or at
least alleviated, by means of Benson’s (1950) procedure; this consists of weight-
ing the lesser events (i.e. those below base) of the period of record more heavily
by adjusting or “stretching” their order numbers, so that they cover the historical
period. Consider H to denote the length of the historic period (e.g. the number of
years since the first historical information became available until the present), Z
the total number of events above base over that period, N the number of events
below base during the period of record, and L the number of events that cannot be
used (e.g. incomplete or missing records due to faulty equipment, etc.) during the
period of record. Thus the weight assigned to each of the N lesser events is

W = (H − Z )

(N + L)
(13.87)

and their adjusted order number is

m ′ = W m (13.88)

For example, if the regular record consists of annual observations, by this procedure
each data point below base is made to represent W years instead of 1 y. The plotting
positions and return periods of the lesser events can now be determined as before in
Section 13.2.4 but with the adjusted order number m ′; for instance, with the Weibull
plotting position, these are Pm = m ′/(H + 1) and Tr = (H + 1)/(H + 1 − m ′).
The larger events (i.e. those above base) are not weighted, but treated as usual,
and their order numbers are not adjusted; thus they are in increasing magnitude
(H − Z + 1), (H − Z + 2), . . . , (H − 1), H .

Estimation of moments
The same weighting method was also recommended in Bulletin 17B (Interagency Advi-
sory Committee on Water Data, 1982) to adjust the moments for the parameter estimation
of the generalized log-gamma distribution. From Equation (13.13) it follows immedi-
ately that, when the lesser observations are weighted in accordance with (13.87), the
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adjusted moments can be calculated from the data as follows

M̂ =
W

N∑
i=1

XBi +
Z∑

i=1
XAi

H − W L

Ŝ2 =
W

N∑
i=1

(XBi − M̂)2 +
Z∑

i=1
(XAi − M̂)2

H − W L − 1

ĝs = (H − W L)

(H − W L − 1)(H − W L − 2)̂S3

[
W

N∑
i=1

(XBi − M̂)3 +
Z∑

i=1

(XAi − M̂)3

]

(13.89)

where the circumflex denotes the adjusted moment, XBi is one of the N observations
below base during the period of record, and XAi one of the Z observations above base
during the entire historical period to the present.

Although commonly used in practice, the weighting method leading to
Equation (13.88) for the plotting positions and to Equations (13.89) for the moments
has its drawbacks (Hirsch and Stedinger, 1987). Better but more intricate methods have
been proposed in the literature to accomplish the same objective. For instance, Cohn et
al. (1997; 2001) have developed a procedure to estimate the parameters by means of the
method of moments for the generalized log-gamma distribution, which was found to be
more efficient than Equations (13.89), and which is nearly as efficient as the method of
maximum likelihood.

13.5.2 Regionalization

Hydrologic data records are rarely available where they are needed. Moreover, even
at the locations where a record is available, it is often too short to allow the reliable
determination of the true distribution of the phenomenon of interest. Regional analysis,
or regionalization, refers to the extension of available records in space. Its dual objective
is to improve the record at regular measuring sites, and to provide estimates of frequency
characteristics at sites, where no data are available. In what follows several methods are
reviewed which have been found useful in the analysis of flood peaks.

Index-flood method
This method is probably the oldest and, as described by Dalrymple (1960), for many years
it was the standard procedure used by the US Geological Survey. The underlying idea is
that in a hydrologically homogeneous region the flood distribution functions for different
streams are similar; in this case similarity means that, when the distribution functions
are scaled with their respective index-flood, the resulting dimensionless distributions of
all basins in the region can be assumed to have the same shape, which is independent of
drainage area and of any other basin characteristics. Accordingly, the method comprises
two components. The first component consists of a regional flood frequency curve. To
derive this curve, first the flood distribution curve of each streamflow gaging site in
the region is made dimensionless, that is normalized, by dividing the flow rates by the
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index-flood of the site; this index-flood is usually taken as the sample mean annual
flood, but other measures, such as quantiles (Smith, 1989), have also been suggested.
The regional flood frequency curve is then constructed as the average or the median curve
of the available dimensionless curves. The second component of the method consists of
a relationship between the magnitude of the index-floods and easily obtainable basin and
climate characteristics. In principle, many different characteristics can be used for this
purpose; however, in past practice usually only the drainage area has been considered
as the significant characteristic. To summarize, the end products of the analysis of the
available flow data are a dimensionless regional frequency curve, and a graph or a
regression equation relating the index event with drainage area. These two relationships
can then be used to predict the frequency curve for any ungaged catchment. In practical
applications, the index event is first estimated from the drainage area of the ungaged
catchment, and as mentioned possibly from other relevant characteristics; this index
event is used in turn to dimensionalize the regional frequency curve. While the analysis
to develop these two relationships is simple in principle, it also requires adjustment of all
available records to a common base period, normally that of the station with the longest
record. Examples of the application of this method can be found in Cruff and Rantz
(1965) for coastal basins in California, and in Robison (1961) for New York State. In
many studies based on this approach the mean floods, often taken as the events with
Tr = 2.33 y (cf. Equation (13.54)), were found to be related to the drainage area by an
equation of the power type

Q2.33 = a Ab (13.90)

where a and b are constants for a hydrologically homogeneous region. For most regions
b was typically found to lie in the range between roughly 0.65 and 1.00; this is consistent
with Fuller’s (1914) earlier finding in relation to Equation (13.58).

The main difficulty experienced in applying the method is that, although tests have
been proposed for this purpose, it is not immediately clear how a homogeneous region
can be defined or delineated in terms of frequency curves with a similar shape and in
terms of hydrologically relevant basin characteristics. A more serious problem is that
the frequency is scaled with only one parameter, namely the index event, usually taken
as the first moment. Thus it is implicitly assumed that higher moments have no effect,
or that these higher moments (when made dimensionless as Cv and Cs) are constant
within the region of hydrologic homogeneity. The limitations of this assumption have
been studied (see Smith, 1992; Gupta et al., 1994; Stedinger and Lu, 1995; Robinson
and Sivapalan, 1997a, b; Blöschl and Sivapalan, 1997). The method continues to be
investigated (Hosking and Wallis, 1997).

Quantile estimation with multiple regression
In this approach, first the frequency curves are constructed for the stations for which data
are available within the region of hydrologic homogeneity. On all these frequency curves
the values of the quantiles QT are noted at several selected return periods, say, Tr = 2
(or 2.33), 5, 10, 20, 50, 100 and even 200 y. Each set of QT values is then related with
relevant basin, climate or other characteristics, B, C, D, . . . , as explanatory variables,
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by linear regression in a stepwise manner with an equation of the type

QT = aBbCc Dd . . . (13.91)

in which b, c, d, . . . , are constants, whose values depend on the return period of the
quantile. Characteristics to be considered may include drainage area, main channel slope,
main channel length, mean annual precipitation, fraction of area with lakes and ponds,
mean annual runoff, Tr y 24 h rainfall, mean basin altitude, fraction of basin area covered
with forest, basin shape as ratio of main channel length and area, mean basin elevation,
and possibly others. The final selection of the characteristics to be included can be made
on the basis of their respective statistical significance and on the basis of the reduction
of the standard error caused by their inclusion.

The basic idea and early applications of the method to the quantiles of annual floods
were described by Benson (1962a, b) and Cruff and Rantz (1965). The method was also
explored for other streamflow characteristics, beside the annual maxima, by Thomas
and Benson (1970). The quantile regression procedure has subsequently been refined
by means of a generalized least squares (GLS) procedure (Tasker and Stedinger, 1986;
1989) to take account of the fact that the stations may have records of unequal lengths
and that concurrent observations at different stations may not be independent, but cross-
correlated. With these improvements the method has become the main tool of the US
Geological Survey to derive the frequency of flood flows for selected return periods Tr

on a regional basis in different states. A nationwide summary of the information derived
as of 2002 was compiled by Ries and Crouse (2002). However, as more information is
becoming available and the streamflow records become longer, the regression equations
are periodically being revised. For some examples of recent updates by state the reader is
referred to the studies for Washington (Sumioka et al., 1998), Maine (Hodgkins, 1999),
Colorado, (Vaill, 2000), West Virginia (Wiley et al., 2000) and North Carolina (Pope
et al., 2001).

In these more recent studies the frequency relationships for each of the individ-
ual gaged sites were commonly derived on the basis of the generalized log-gamma
distribution with a regionalized skew. In most cases the delineation of hydrologic
regions within the state and the identification of the important explanatory variables for
Equation (13.91) were next carried out in a stepwise manner by means of ordinary least
squares regression. The regions were usually delineated by inspection of the statewide
regression residuals. Once the explanatory variables were identified for each region, the
final predictive equations for the different quantiles in terms of the basin characteristics
were calculated by means of the GLS procedure, as outlined by Tasker and Stedinger
(1989). The explanatory variables that were found to affect the flow peak quantiles varied
greatly from one region to another, but the number of adopted variables was usually kept
as small as possible and restricted to two or three at most. In all regions the size of the
drainage was found to be the most important variable and key basin descriptor; for some
regions it was actually concluded to be the only significant one (Pope et al., 2001; Wiley
et al., 2000). It has also been suggested on the basis of scaling arguments (Gupta et al.,
1994) that the sole dependency of QT on drainage area A, and on nothing else, can be
used as the criterion to define a hydrologically homogeneous region. In regions with
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hilly and mountainous terrain the annual precipitation was often found to have some
secondary relevance (Sumioka et al., 1998) but sometimes it was the mean drainage
basin slope which played this role (Vaill, 2000). In other regions the secondary variable
was the fraction of the area occupied by lakes and wetlands (Hodgkins, 1999). In all past
studies the quantiles were found to be related to drainage area A by a power function, as
follows

QT = aT AbT (13.92)

in which aT and bT are constants depending on the return period Tr of the quantile in
question. The order of magnitude and tendency of these constants are illustrated for
several regions in Figures 13.15 and 13.16. In most regions the constant bT lies in the
range between 0.5 and 0.9; again, this is consistent with Fuller’s (1914) value of 0.8,
and with the values reported for (13.90). However, bT is usually not a constant, and
typically it decreases with increasing Tr, as illustrated in Figure 13.16. This tendency
indicates that the peak flow rate dependency on A decreases with increasing severity
of the flood; put differently, it means that the runoff per unit area (QT /A) decreases
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more rapidly with increasing size of the drainage area as the severity of the flood
increases.

As an aside, if Equation (13.92) is valid, it follows that, unless bT is independent of
Tr and aT is a power function of Tr, the underlying assumption of the power distribution
(13.82) cannot be generally valid. For example, substitution of (13.92) into (13.82), yields
the following criterion for the validity of the power distribution

a100

a10
Ab100−b10 = a50

a5
Ab50−b5 (13.93)

This shows that in this case the ratio K10 in (13.82) depends on the drainage area; in other
words, the equality in (13.93) needed for the validity of the power distribution requires a
certain size A of the basin, so that it is practically never satisfied. For instance, in the case
of the typical values obtained for Maine (see Figure 13.16), for A = 100 km2, the left-hand
side of (13.93) is 1.67, and the right-hand side is 1.82; for A = 1000 km2, the left-hand side
of (13.93) is 1.54 and the right-hand side is 1.65.

Theoretical distribution functions with regionalized moments
The underlying assumption of this approach is that the moments in a hydrologically homo-
geneous region depend on known or measurable basin and climate characteristics. Thus,
once the moments can be estimated for an ungaged basin within the region on the basis of
these characteristics, it becomes possible to calculate the parameters of the selected prob-
ability distribution function. In principle, because several moments, namely the mean, the
variance and the skew coefficient can be related to basin characteristics, the method is less
restrictive than the index-flood method, which makes use of only the first moment. For two-
parameter distributions the skew is not needed, and for three-parameter distributions, as it
tends to be unreliable, a regional value can be assumed. The method has not been widely
applied. For example, in their application to the Klamath Mountains in northern California,
Cruff and Rantz (1965) found that the sample mean M and the sample standard deviation
S are both related to the catchment area A and to the mean annual basinwide precipitation,
respectively, by power functions similar to Equation (13.91).
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P RO B L E M S

13.1 Prove both equations in (13.12).

13.2 Determine the second moment m2 = σ 2 for the exponential distribution in terms of λ. The expo-
nential distribution has a density f (x) = λe−λx for x ≥ 0 and f (x) = 0 for x < 0.

13.3 Determine the fourth septile (i.e. n = 7) and the fifth octile (i.e. n = 8) for the exponential distri-
bution as defined in the previous problem.

13.4 Calculate the mean μ and the variance σ 2 for the power distribution defined in Equations (13.85)
and (13.86) in terms of a and b.

13.5 Calculate the 95th percentile for the power distribution defined in Equations (13.85) and (13.86)
in terms of a and b.

http://water.usgs.gov/pubs/wri/wri004080/pdf/wri00-4080.pdf
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13.6 What is the probability that a 100 y flood will be exceeded after exactly 100 y? What is the
probability that it will be exceeded some time in the coming 100 y?

13.7 Multiple choice. Indicate which of the following statements are correct. When a flood of a certain
magnitude is called the 50 y event, it means that:
(a) the probability that it will be exceeded in any given year is 98%;
(b) the probability that it will be exceeded once in any 3 y period is 5.8%;
(c) after it has been exceeded, it will take on the average 50 y before it will be exceeded again.
(d) it is the largest event that will occur during any period of record of 50 y;
(e) the probability that it will be exceeded during the course of a 1 y period is approximately

20%.

13.8 Multiple choice. Indicate which of the following statements are correct. Among the disadvantages
of using Pm = m/n (where m = 1 is the smallest and m = n is the largest) to obtain the frequency
of annual floods one has the following:
(a) the return period of the smallest event is 1 y;
(b) the return period of the largest event is equal to twice the period of record;
(c) the probability of the smallest event is equivalent to the assumption of certainty of a larger

event;
(d) the probability of the largest event is equivalent to the assumption that a larger event cannot

happen;
(e) it can be applied only to small samples.

13.9 Multiple choice. Indicate which of the following statements are correct. The Weibull plotting
position m/(n + 1) (in which m is the order number for the items ranked in increasing magnitude,
and n is the sample size):
(a) is the mean of the probability (“that the event will be smaller than or equal to . . .”) of the

mth event of the sample;
(b) is exactly the probability that in any occurrence the magnitude of an event will be smaller

than or equal to the mth event of the sample;
(c) is the probability of the mean of the mth event of the sample;
(d) can be used as an estimate of the probability that the mth event will not be exceeded;
(e) is applicable in the analysis only of the largest values but not of the smallest.

13.10 From a long-term rainfall record for a given location, we know that in summer on average 3 weeks
out of 12 are without rain. What is the probability of having 6 weeks out of 12 without rain this
coming summer? Assume, as a first approximation, that the likelihood of rainfall in summer is
independent from one week to the next.

13.11 Multiple choice. Indicate which of the following statements are correct. For yearly events, the
return period or recurrence interval Tr:
(a) in the case of floods, corresponds to the inverse of the probability that the event will be

smaller than a given magnitude;
(b) signifies that, once the Tr year event has occurred, we are safe from any event exceeding it

for the next Tr years;
(c) can be calculated from the probability that an event be smaller than, or equal to, a given

magnitude;



problems 555

(d) can be used to calculate the probability of exceeding the Tr year flood each year during 5
subsequent years; that probability is [(Tr − 1)/Tr]5;

(e) the probability of not exceeding the Tr year event during the first 3 y of a 5 y period, and of
exceeding that event in each of the remaining 2 y is (1/Tr)2 (1 − 1/Tr)3.

13.12 An annual flood record for a certain river is given below.

Maximum flow rate Maximum flow rate

Year (m3 s−1) Year (m3 s−1)

1991 269 1998 331
1992 374 1999 309
1993 207 2000 427
1994 241 2001 204
1995 393 2002 402
1996 289 2003 229
1997 535

These data represent a sample from a population with some unknown probability distribution. Do
not assume that the data obey some a priori distribution for parts (a), (b), (c) and (d). (a) Estimate
the median flood from this sample. (b) Estimate the mean flood from this sample. (c) Estimate
the 7 y flood from this sample. (d) Estimate, from this sample, the probability that next year the
maximum flow rate will lie between 331 and 393 m3 s−1. (e) Assume now that these data can
be fitted by the exponential distribution. The density function is f (x) = λ e−λx for x ≥ 0, and
f (x) = 0 otherwise. Estimate the parameter λ of this function from the available record by means
of the method of moments.

13.13 What is the probability that a single observation will exceed the mean μ when the probability
distribution function is the first asymptote (13.52)?

13.14 At a river gaging station, which has been operated for a very long time, it has been found that the
probability distribution of the annual maximal flows can be described by F(Q) = Q/(A + Q),
in which Q is the magnitude of these annual events and A is a constant. Derive the probability
distribution for decadal peak discharges (i.e. the maximal flows experienced in non-overlapping
periods lasting 10 successive years) from the distribution of the annual peaks. Give the result in
terms of A and Q.

13.15 It has been observed that the annual peak discharges Q (in m3 s−1) for a given river can be described
by Fuller’s formula, as follows Q = 294 (1 + 0.3 ln Tr), where Tr is the recurrence interval (in
years) of the peak discharge of magnitude Q. (a) Derive the probability distribution function
F = F(Q) from Fuller’s formula. (b) What is the probability that 700 m3 s−1 will be exceeded
every single year of a given 4 y period? (c) What is the probability that the 700 m3 s−1 flood will
be exceeded only once, namely at the end of this 4 y period? In other words, what is the probability
that this flood will not be exceeded during the first 3 y and then will be exceeded during the last
year?
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13.16 Select a river gaging station in your region of interest, preferably with a period of record in
excess of 50 y. Tabulate the annual peak discharges for each water year on record. Calculate
the first three moments of these discharges and of their logarithms. Then, carry out several or
all of the following. (a) Determine for the generalized log-Pearson Type III distribution, the
quantiles for the selected probabilities listed in Table 13.2 with these moments of the logarithms.
(b) Repeat (a) with skew assumed to be zero. (c) Calculate the parameters αn and un of the first
asymptotic distribution for the largest values. (d) Calculate the parameters, a, b, and c, of the
generalized extreme value distribution. (e) Plot the data and these four theoretical curves on log-
normal probability paper. (f) Plot the data and these four theoretical curves on probability paper
based on the first asymptote (see Figure 13.3). (In the United States, data records can be found on
the web at http://waterdata.usgs.gov/usa/nwis/sw)

13.17 In the design of a bridge opening (i.e. clearance), it is necessary to determine the 40 y flood. Give
the estimates according to the distributions determined in parts (a), (b), (c) and (d) of Problem
13.16.

13.18 Multiple choice. Indicate which of the following statements are correct. As defined in
Equation (13.3), the theoretical distribution functions F(x) that are used to describe the occurrence
of hydrologic events:
(a) have a magnitude, which ranges in general between −∞ and +∞;
(b) have parameters that can be determined from observed data by the method of moments;
(c) can never assume a value smaller than zero;
(d) are symmetrical about the mean;
(e) yield unity [i.e. F(x) = 1] when future events cannot be smaller than x .

http://waterdata.usgs.gov/usa/nwis/sw


14 A F T E RW O R D – A S H O RT H I S TO R I C A L
S K E T C H O F T H E O R I E S A B O U T T H E
WAT E R C I R C U L AT I O N O N E A RT H

1 4 . 1 E A R L I E S T C O N C E P T S : T H E AT M O S P H E R I C WAT E R C Y C L E

For as long as humans have been on Earth, they must have been acutely aware of their
dependency on different forms of water in their environment. Water was literally vital
for their health and sustenance but it could also be destructive and even lethal in severe
weather, floods, and the other hazards they faced in their daily lives. Already in the earliest
writings there are indications that among natural peoples in their primal stage it was a
common notion that water in nature moves continually between different states in some
repetitive, if not cyclical, fashion. Whatever is left of these early writings is not always
easy to interpret, mainly because the meanings of even the most elementary concepts
have evolved in the meantime. Nor is it always easy to distinguish profane views and
naturalistic descriptions from the more sacred narratives and religious interpretations.
Nevertheless, a cursory scan of some better known early writings yields several instances
of water related imagery even in widely different cultural settings, in which the evidence
is fairly clear, and which provide some idea on the thinking of early humans.

As early as the eighth century BCE in Greece, the poet Hesiod presented a remarkable
description. In a passage with advice to farmers to get dressed warmly and to finish the
work in time (Hésiode, 1928; also Hesiod, 1978; vv. 547–553), he wrote the following.

For the morning is cold when Boreas [the north wind] bears down; in the morning from the starry
sky over the earth a fertilizing mist spreads over the cultivations of the fortunate; this [mist], drawn
from ever flowing rivers, and lifted high above the earth by a storm wind, sometimes falls as rain
toward evening, or sometimes blows as wind, while Thracian Boreas chases the heavy clouds.

This passage contains interesting features; it explains that mist is derived from river
water, and that it may lead to rain; on the other hand, it implies that evaporation may be
both a result and a cause of the wind. Apart from the reference to Boreas, the god of the
north wind, Hesiod’s passage appears quite naturalistic.

Several water cycle related passages appear in the Hebrew Bible. The oldest among
them, written in the eighth century BCE, is probably (5,8) in the Book of Amos; it reads
as follows (see, for example, Oxford Study Edition, 1976).

He . . . who turned darkness into morning and darkened day into night; who summoned the waters
of the sea, and poured them over the earth; . . . he who does this, his name is the Lord.

Amos, a native of Judah, was by his own account originally a shepherd and a pruner of
sycamore fig trees. From the context, that is from the first part of this quotation which
refers to the cycle of day and night, it is possible that the second part refers to some kind
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of cyclical process as well; but if so, it is a cyclicity in the sense of periodicity and not in
the sense of a water cycle. Here also, rain over the Earth results from evaporation from
a water surface. A second, more recent, biblical passage of interest is (55,10–11) in the
Book of Isaiah, namely, the following.

This is the very word of the Lord . . . and as the rain and the snow come down from heaven and
do not return until they have watered the earth, making it blossom and bear fruit, and give seed
for sowing and bread to eat, so shall the word which comes from my mouth prevail; it shall not
return to me fruitless without accomplishing my purpose or succeeding in the task I gave it.

Isaiah also lived in the eighth century BCE but this chapter is now generally considered
a later addition and attributed to an unknown prophet, who wrote in Babylon toward the
end of the exile in the sixth century BCE. In this passage the physical phenomena serve
mainly an allegorical purpose and their description is fairly naturalistic; they appear to
occur on their own and not as a result of direct divine intervention. The description
involves unambiguously some kind of cycle by which water returns to where it came
from.

Notions on various cyclical processes were also held in ancient China. In a naturalist
work “Chi Ni Tzu,” probably of the late fourth century BCE (Needham, 1959, p. 467),
atmospheric phenomena are described as follows.

Wind is the qi [or chhi, spirit, mind] of heaven, and the rain is the qi of earth. Wind blows according
to the seasons and rain falls in response to wind. We can say that the qi of the heavens comes down
and the qi of the earth goes upwards.

Because the rain is deemed to originate from the Earth even though it falls from above, the
direct connection between evaporation and precipitation seems to be taken for granted
here.

A passage in the Chandogya Upanisad (VI, 10), an important text in Hinduism, which
was composed between 800 to 400 BCE, is less explicit; but it is suggestive of the same
theme. The passage is an allegory to illustrate the essence of the Self or Being (see
Anandatirtha, 1910, p. 458; Radhakrishnan, 1953, p. 460; Swahananda, 1965, p. 458)
and can be translated as follows.

These rivers, my son, flow, the eastern toward the east, the western toward the west. They go from
sea to sea. They become the sea itself, and while there, they do not know which river they are.

This text can be interpreted in different ways. The sentence “They go from sea to sea”
could conceivably refer to sea currents, or to some underground seawater filtration as the
origin of river springs, like that visualized by some in ancient Greece. Still, it is equally
plausible that it refers to the evaporation of these waters from the sea and their subsequent
precipitation back to the sea. The main point is that it implies a cyclical process.

The above descriptions are merely a few examples. A common feature of most of
these early descriptions is that, wherever they imply a water cycling process, they refer to,
or hint at, the atmospheric phase of the water cycle. Wherever evaporation is mentioned
explicitly it is mostly, though not exclusively, assumed to take place from rivers and the
sea. While some of the descriptions include flowing streams, they are silent on the origin
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of these streams or on whether or how the water returns to where the streams originated.
The earliest speculations on this problem, which were not of an obvious mythical nature
but based on observations, were probably those of the Greek natural philosophers.

14.2 Greek antiquity

The ancient Greeks are renowned for the large effort their natural philosophers made to arrive
at a rational explanation of the world within that same world, without animistic or direct
divine intervention. Inspection of their writings and other transmitted evidence indicates
that water and various aspects of the water cycle played a central role in their cosmology.
As seen in Hesiod’s passage, the atmospheric phase of the hydrologic cycle was already
a common concept among the Greeks in pre-philosophic times (see also Brutsaert, 1982).
Therefore, it is mainly the evolution of their opinions on the origins of springs and rivers,
that will be examined in what follows.

14.2.1 The Presocratics

The earliest Greek philosophers who were active in the sixth and fifth centuries BCE are
customarily referred to as the Presocratics. Some of their writings were handed down to us
in the form of fragments and some were paraphrased by later writers. Among these natural
philosophers two competing theories prevailed on the origin of the water in springs, streams,
and other fresh water bodies. These are the seawater filtration theory, which was probably
the earlier of the two, and the rainfall percolation theory, which contains the essence of our
present understanding.

Seawater filtration theory
The basic idea of this theory is that seawater seeps upward through the Earth, loses its salt
by filtration and becomes the source of the springs and other surface waters (Figure 14.1).
The written evidence points to Hippon as the earliest proponent of this view. Hippon of
Rhegion, in what is now southern Italy, also called Hippon of Samos, was a contemporary of
Pericles, so he must have flourished around the middle of the fifth century BCE. His opinion
on the matter, in the only surviving fragment by him (Diels, 1961, p. 388) is formulated as
follows.

Indeed all drinking waters originate from the sea; for the wells from which we drink are not deeper
than the sea. So should the water not be from the sea, then from somewhere else. Now, the sea is deeper
than the waters. Thus whatever waters are above the sea, all originate from it.

This fragment is rather terse and not very explicit. However, it should be seen in light of the
fact that Hippon’s other views were nearly identical with those of Thales, presented at least
a century earlier. The following passage by Theophrastos in his Physical Opinions (Diels,
1879, p. 475) is revealing.

Of those who say that the original principle (arche) is one and movable, whom he (Aristotle) calls
physicists, some contend that it is bounded; for instance, Thales of Miletos and Hippon, who appears
even to (have) become an atheist, said that water is the first principle, being led to this by the observation
of the phenomena; for heat thrives in moisture, dead matter dries out, the seeds of everything are moist,
and all food is succulent; and naturally each thing is nourished by that from which it originates. Water
is the principle of the moisture and the bond of everything. Therefore, they maintained that water is
the first principle of everything and that the earth evidently rests on water.
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Fig. 14.1 Sketch of the seawater filtration theory of the Presocratic philosophers in ancient Greece. The

written evidence points to Hippon as the earliest proponent of this concept, but it was probably

Thales with whom it originated.

Thales of Miletos in Ionia flourished around 585 BCE, and he is generally considered
to be the first Greek natural philosopher, with whom the formal inquiry started into the
reality behind the changes in the Universe. He does not appear to have committed his ideas
to writing, and no actual quotations of him have survived. While there is nothing on the
origin of rivers or springs, the essence of Thales’ views is well known and two of the most
important ones are contained in the above passage; these are that the first principle of
everything is water, and that the Earth rests on water. Hippon is mentioned here in the
same breath as Thales, so it would be surprising if Hippon’s opinion on the origin of
rivers were very different from that of the old master. It is, therefore, difficult to dis-
agree with Gilbert’s (1907) opinion that Thales can reasonably be considered, as the
actual originator of the seawater filtration theory, at least among the Greeks. But the roots
of this theory may actually be much older. It is now known (see Eliade, 1978) that as
early as the third millennium BCE, that is some 2000 years before Thales, in Sumer in
lower Mesopotamia it was already a well established view that the Earth rests on the
ocean.

Hippon’s fragment does not mention the removal of the salt. But this aspect of the theory
can be deduced from Aristotle’s (1952, II 354 b,15) description, in his objections to this
theory, some 200 years later.

It was this difficulty which led people to suppose that the sea was the primary source of moisture and
of all water. So some say that rivers not only flow into it but out of it, and that the salt water becomes
drinkable by being filtered.

This is a clear indication that the theory was around at the time of Aristotle and that it was
taken seriously by many of his contemporaries.

Rainfall percolation theory
The earliest seeds of this second theory appear in the philosophical views of Anaximander
of Miletos; Anaximander, a younger associate of Thales, was born around 610 BCE, and
must have been in his prime around 565 BCE. While the issue of the origin of streams
and rivers is not addressed directly, his main views can be deduced from the remaining
evidence (see also Gilbert, 1907, p. 405). On the nature and the origin of the sea, Alexander
of Aphrodisias, a well-known commentator, who flourished around 200 CE, summarized
Anaximander’s views as follows (Diels, 1879, p. 494).
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Some of them (natural philosophers) say that the sea is the leftover of the original moisture. As the
region around the earth was wet, the first of that moisture was evaporated by the sun and became the
winds, and from it the turnings of the sun and of the moon as well; thus, as the turnings are caused by
the same vapors and by their exhalations, it becomes then the provider of the same (moisture) for those
revolving around them. The part of it (the moisture) that is left behind in the hollow places is the sea;
therefore, it decreases, as it is continually evaporated by the sun, and eventually it will perhaps have to
be dry. Anaximander and Diogenes (of Apollonia) arrived at this view, thus reports Theophrastos.

Anaximander’s opinion on what happens to this continual evaporation was summarized
by Hippolytus, a Christian writer of the early third century, who died in 235 CE; in his
Refutation (see Mansfeld, 1992), Hippolytus described it as follows (Diels, 1879, p. 560,
6, 7; 1961, p. 84, 6, 7).

Winds are generated when the finest vapors of the air are separated off and whenever they are put into
motion as they gather; rains are generated from the vapor that is released upward from the earth by the
sun.

These two passages indicate that Anaximander considered the sea to be the remainder of
the original water around the Earth; the evaporation from the sea is the cause, instead of the
result, of the winds and also the cause of the rains. There is no specific mention of streams.
Anaximander did not assume, as Thales did, that the Earth floats on water, which would then
flow upward to the surface to feed springs and streams; instead, he is known to have posited
that the Earth does not rest on anything and that it is suspended in the sky in some sort of
equilibrium, because it is equidistant from everything on all sides. Therefore, it is unlikely
that he would have assumed that the sea feeds the streams by some upward filtration, as
asserted by Thales and Hippon. Rather, it would seem more natural in his scheme that it is
a different source of water, perhaps rainwater, which is feeding the streams that flow into
the sea. On the other hand, it is clear that he did not think that all the evaporated water ends
up in streams and rivers, because the sea is gradually drying out; thus, he definitely did
not propose a closed cycle. In any event, he seems to have started, or at least stimulated, a
productive line of thought, as can be seen from the views of Xenophanes.

Xenophanes of Colophon (c. 570−460 BCE) was probably in his prime c. 530 BCE,
which is roughly some 35 years after Anaximander. According to Aetius (in Diels, 1879,
p. 371, 4; 1961, p. 125, III, 4, 4), a doxographer who probably lived in the first century CE
(Mansfeld and Runia, 1997), Xenophanes said that

. . . what happens in the sky is caused by the heat of the sun; for, when the moisture is drawn out of
the sea, the sweet part, which is distinguished by its fine texture, forms a cloud, and drips out as rain
by compression like that of felt, and the winds vaporize it around. And he wrote emphatically

(an actual fragment follows in verse, Diels,1961, p. 136)

The sea is the source of the water, the source of the wind. For in the clouds, neither would the force of
the wind, which blows outward, originate without the great sea, nor the flowing of the streams, nor the
rainwater from the sky; but the great sea is the generator of the clouds, winds and streams. . . .

Regarding the saltiness of the sea, the opinion of Xenophanes is described by Hippolytus
(Diels, 1879, p. 565, 14, 4; 1961, p. 122, 33, 14, 4) as follows.

The sea is salty, he says, because of the many admixtures which flow together into it.

All this indicates that Xenophanes had some idea of the hydrologic cycle, as we now know
it. He not only includes streams in his description, but he specifies that together with the
winds, with the rain and with the clouds, the streams are caused by the evaporation from
the sea. The only possible interpretation is that this occurs indirectly through the rain on
the land surface. This is further supported by his explanation that the saltiness of the sea is
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Fig. 14.2 Sketch of the rainfall percolation theory of the Presocratic philosophers in ancient Greece on

the origin of rivers. The concept appears to have evolved from rough but seminal ideas by

Anaximander, followed by more complete formulations by Xenophanes and Anaxagoras.

caused by the streams which flow into it carrying different salty admixtures picked up along
the way. Clearly, the views of Xenophanes are a further development of Anaximander’s.

Anaxagoras of Clazomenae (c. 500–428 BCE), who came some 70 years after Xeno-
phanes, appears to have been even more explicit on the matter. It is again from Hippolytus
(Diels, 1879, p. 562, 8, 4–5) that Anaxagoras is known to have said

. . . that the sea began to exist from the moist parts on the earth, that it originated this way as the waters
in it were being evaporated or settled down, and also from the downflowing rivers; that the rivers take
their substance from the rains and out of the waters that are in the earth; for this is hollow and that it
has water in the caves.

But the most solid proof that Anaximander, Xenophanes, Anaxagoras and perhaps other
Presocratics developed the notion, that the origin of streams and rivers can be accounted
for by rain (see Figure 14.2), is found in its attempted refutation by Aristotle in his
Meteorologica, some one to two centuries later. Evidently, at the time of Aristotle, the
rainfall percolation theory was well enough established, that he considered it necessary to
mount a head-on attack against it. Aristotle (1952, I 349 b,2) summarized the theory as
follows.

Some people hold similar views about the origin of rivers. They suppose that the water drawn up by
the sun when it falls again as rain is collected beneath the earth into a great hollow from which the
rivers flow, either all from the same one or each from a different one: no additional water is formed
in the process, and the rivers are supplied by the water collected during the winter in these reservoirs.
This explains why rivers always run higher in winter than in summer, and why some are perennial,
some are not. When the hollow is large and the amount of water collected therefore great enough to
last out and not be exhausted before the return of the winter rains, then rivers are perennial and flow
continuously: when the reservoirs are smaller, then, because the supply of water is small, rivers dry up
before the rainy weather returns to replenish the empty container.

The statement, that “no additional water is formed in the process,” is a clear indication that
the rainfall percolation theory had eventually led to the concepts of a water cycle and of
water mass conservation. From the space devoted to it in Aristotle’s Meteorologica, the
rainfall percolation theory was undoubtedly the more widely accepted at the time.

Both Anaxagoras and Aristotle refer to caves and hollows as the main underground
storage spaces of water. This should not be surprising. About 65% of the terrain of Greece
is limestone; this is easily eroded, resulting in a karst landscape (Higgins and Higgins,
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Fig. 14.3 Sketch of Aristotle’s theory on the origin

of rivers. While rain percolation provides

a source of water, this is inadequate to

supply the necessary amounts. Another

important mechanism, not unlike the

generation of rain above the Earth, is the

formation of water resulting from cooling

and condensation of rising vaporous air

inside the Earth.

1996), with sinks, underground streams and caverns. Present day Greece is known to be
among the regions of the world most endowed with caves, some seven thousand of them
and of all kinds, large and small, vertical, horizontal, inland and along the coast.

14.2.2 Aristotle

It is generally agreed that Greek philosophy culminated with Aristotle (c. 384–322 BCE).
Even though in antiquity he was acclaimed more as a logician than as a natural philosopher,
his influence over the ensuing 18 centuries was to be so large, that it is necessary briefly to
review his ideas here.

On the origin of rivers and springs
After having described the Presocratic rainfall percolation theory in the previous quotation,
he immediately proceeds to present his own view (Aristotle, 1952, I 349 b,16).

But it is evident that if anyone tries to compute the volume of water constantly flowing each day and
then to visualize a reservoir for it, he will see that to contain the whole yearly flow of water it will have
to be as large as the earth in size or at least not so much smaller.

And though it is true that there are many such reservoirs in different parts of the earth, yet it is
absurd for anyone not to suppose that the same cause operates to turn air into water below the earth
as above it. If then cold condenses vaporous air into water above the earth, the cold beneath the earth
must be presumed to produce the same effect. So not only does water form separately within the earth
and flow from it, but the process is continuous.

Aristotle does not reject the rainfall percolation mechanism altogether; but he feels that
the available underground storage and the amount of rain are inadequate to supply the
observed river flows, so that there must be another important mechanism at work. That
mechanism is the formation of water out of vaporous air beneath the Earth’s surface (see
Figure 14.3). Aristotle is correct in that water vapor does condense under the ground in
caves; they are often wet and damp and water can be seen to drip from their walls and
ceilings. It is now known, however, that the amounts produced this way are very small, and
that regular precipitation exceeds by far any kind of condensation beneath the surface as the
water supply for springs and streams. Compared to the rainfall theory of the Presocratics,
Aristotle’s explanation is definitely a step backward in the development of hydrologic
theory.

Apparently, however, at this point Aristotle (1952, I 349 b,28) still does not feel that he
has presented his argument strongly or clearly enough, because he continues as follows.
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Besides, even if one leaves out of account water so produced and considers only the daily supply of
water already existing, this does not act as a source of rivers by segregating into subterranean lakes, as
it were, in the way some people maintain: the process is rather like that in which small drops form in
the region above the earth, and these again join others, until rain water falls in some quantity; similarly
inside the earth quantities of water, quite small at first, collect together and gush out of the earth, as it
were, at a single point and form the sources of rivers. A practical proof of this is that when men make
irrigation works they collect the water in pipes and channels, as though the higher parts of the earth
were sweating it out. So we find that the sources of rivers flow from mountains, and that the largest
and most numerous rivers flow from the highest mountains. Similarly the majority of springs are in the
neighborhood of mountains and high places, and there are few sources of water in the plains except
rivers. For mountains and high places act like a big sponge overhanging the earth and make the water
drip through and run together in small quantities in many places. For they receive the great volume of
rain water that falls (it makes no difference whether a receptacle of this sort is concave and turned up
or convex and turned down: it will contain the same volume whichever it is); and they cool the vapor
as it rises and condense it again to water.

Thus the argument is repeated and clarified by contrasting it with yet another theory which,
as he explains, holds that rivers originate from preexisting or primal water stored in under-
ground lakes. Reference is undoubtedly made here to the Tartarus theory of his teacher Plato
(1975; 1993, 111 d, ff.), which Aristotle discusses and refutes more thoroughly later on (see
355 b,38). The passage is noteworthy in that it indicates that there were others who held this
view. But this Tartarus, which also appears in Homer’s poetry, is more a throwback to Greek
mythology rather than natural philosophy and its discussion is beyond the present scope.
Aristotle concludes the paragraph by summarizing once again his own opinion: springs and
the sources of rivers result both from rainfall and from condensation inside the Earth.

On why the sea does not overflow
Beside the origin of rivers, Aristotle also concerned himself with the problem why the sea
does not overflow, even though all rivers flow into it (Aristotle, 1952, II 355 b,15).

The place occupied by the sea is, as we say, the proper place of water, which is why all rivers and all
the water there is run into it: for water flows to the deepest place, and the sea occupies the deepest place
on earth. But one part of it is all quickly drawn up by the sun, while the other for the reasons given
is left behind. The old difficulty why so great an amount of water disappears (for the sea becomes no
larger even though innumerable rivers of immense size are flowing into it every day) is quite a natural
one to ask, but not difficult to answer with a little thought. For the same amount of water does not take
the same time to dry up if it is spread out as if it is concentrated in a small space: the difference is so
great that in the one case it may remain for a whole day, in the other, if for instance one spills a cup of
water over a large table, it will vanish as quick as thought. This is what happens with rivers: they go on
flowing in a constricted space until they reach a place of vast area when they spread out and evaporate
rapidly and imperceptively.

He calls it an “old difficulty,” so it must have been a problem of long standing in Greek
philosophy; indeed as seen earlier, Anaximander had already thought about it and had
concluded that the sea may eventually dry up altogether. While Aristotle seems to have been
the first on record to resolve the issue successfully by providing the correct explanation, it
was considered elsewhere as well.

For instance, it appears to have been of concern in ancient China (see Lin, 1949). In the
third century BCE during the Zhou (or Chou) dynasty, in the chapter “Autumn Floods”,
Zhuang Zi (or Chuangtse, d. 275 BCE), raised the issue, as follows.

There is no body of water beneath the canopy of heaven which is greater than the ocean. All streams
pour into it without cease, yet it does not overflow. It is being continually drained off at the Tail-Gate,
yet it is never empty. Spring and autumn bring no change; floods and droughts are equally unknown.
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According to Lin (1949, p. 120), the editor of the treatise, this tail-gate (Wei-Lou or Wei Lu)
is a mythical hole in the bottom or end of the ocean; this depletion mechanism to balance
the river inflows is clearly different from the Hippon–Thales seawater filtration mechanism
and from Aristotle’s evaporation. The same issue was touched upon in the book Lü Shi
Qun Qiu (or Lu-Shih-Chun-Chiu), written a few decades later during the Qin (or Chin)
dynasty by a team of scholars under Prime Minister Lü Bu Wei (or Lu Buwei, d. 235 BCE)
(P. K. Wang, 1996; personal communication, 2000), in the following passage (Needham,
1959, p. 467).

The waters flow eastwards from their sources, resting neither by day nor by night. Down they come
inexhaustibly, yet the deeps are never full. The small (streams) become large and the heavy (waters in
the sea) become light (and mount to the clouds). This is (part of) the Rotation of the Tao.

The terms within brackets probably represent the interpretation of the text by the translators;
but this interpretation is not unreasonable and it would be difficult to come up with a different
meaning. Thus here the invoked evaporation mechanism is the same as Aristotle’s, and the
authors clearly have some kind of hydrologic cycle in mind.

The problem was to continue to receive much attention throughout Western history,
and this preoccupation stemmed directly from (1, 7) in Ecclesiastes (Oxford Study Edition,
1976) as follows

All streams run into the sea, yet the sea never overflows; back to the place from which the streams ran
they return to run again.

Ecclesiastes dates from the third century, about a century after the death of Aristotle and
of Alexander (the Great), when Hellenistic influences had been spreading like wildfire all
over the Mediterranean world. The first part of this passage is so reminiscent of Aristotle’s,
that one has to wonder if the author of Ecclesiastes somehow had not been affected by
Greek ideas. Ecclesiastes, like all the other Wisdom books, probably originated in the
Jewish diaspora following the Babylonian exile, and possibly even in Alexandria, the very
center of Hellenism. To be sure, the book is generally acknowledged to be quite different
in literary style from the earlier books of the Hebrew Bible, and it has even been said that
some ancient rabbis were distressed by its pessimism. On the other hand, however, the
description in the second part is not quite the same as the explanation given by Aristotle.
Aristotle unequivocally attributes the fact that the sea does not overflow to evaporation; in
Ecclesiastes the way by which “they return” is not specified, but one cannot help inferring
some kind of seawater filtration mechanism. At any rate, this passage shows that the “old
difficulty” was of concern in Judaism. This preoccupation was also shared later by most
Christian writers, and it was to endure well into the Middle Ages. But the theme kept
recurring: Dobson (1777) contended that his data supported the wisdom in this biblical
passage and, as recently as 1877, Huxley (1900, p. 74) used the passage in his description
of the hydrologic cycle.

14.2.3 The Later Peripatetics

Upon Alexander’s death in 323, Aristotle decided to leave Athens and he handed over the
leadership of the Peripatetic School at the Lyceum to Theophrastos (c. 372–287 BCE). From
the present vantage point, it would appear that Aristotle’s Meteorologica continued to be
held in high esteem because it was an essential part of the Aristotelian body of works, as
it came to the Arab world and later to Western Europe in the thirteenth century. Evidently,
however, not all the ideas of the old master were accepted uncritically later on by his
successors, and some of them even seem to have been rejected outright. For instance, in the
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treatise On Plants, which is still formally attributed to Aristotle (1936; II 822b, 25) although
it is known to be spurious, one reads the following.

Rivers which arise under the ground from mountains behave in the same way. For the matter of which
they are composed is rain; and when the water grows large in quantity and is forced into a narrow
channel within, the excess of vapor rises from them, which cuts through the earth by pressure from
within; and in this way springs and rivers make their appearance.

On Plants became associated with Aristotle’s name probably because it was a product of the
Lyceum and because it reflected the teaching at the school he had founded. But contrary to
Aristotle’s explanation in the Meteorologica, this passage unambiguously asserts that rivers
are composed of rain, and there is no mention of underground condensation. Thus, among
later generations at the Peripatetic School, it appears that it was the rainfall percolation
theory which gained the upper hand, in spite of its original rejection by Aristotle.

To summarize at this point, Greek antiquity produced essentially four competing theories
on the origin of rivers and springs, namely first and foremost, the rainfall percolation theory,
which is the one still held today; in addition, there were the seawater filtration theory and
the underground condensation theory. Finally, there was also the concept, quite likely based
on early popular beliefs and mythology and seemingly less accepted by the philosophers,
that rivers originate from underground reservoirs of primal water.

14.3 The Latin era

14.3.1 The Romans

The Romans are mainly praised for their engineering feats and their accomplishments in law
and public administration. They are less known for their contributions to natural philosophy
and as a result their writings often tend to be dismissed as mere reviews and commentaries
on the Greeks. This may be true in general, but it is an oversimplification. With their practical
orientation, the Romans usually relied more on observation than on speculation, arriving
at interesting insights in some cases. Moreover, for several centuries their writings were
the only source of ancient philosophy available in Western Europe; they are therefore an
indispensable background to understand and trace the thought currents that brought about
the scientific revolution.

The views of Lucretius (c. 99–55 BCE) in his work On Nature provide a revealing
example of some aspects of natural philosophy in Rome. In the following passage Lucretius
(1924, V, 261) deals with the problem of why the sea does not overflow and with the origin
of springs.

Moreover, there is no need to say how sea, rivers, and springs for ever well up in abundance with fresh
waters and their streams flow unceasing: the great pouring down of waters from all sides makes it clear.
But, bit by bit, whatever comes first of the water is taken off, and the result is that there is no excess
of liquid in the sum total: partly because strong winds sweep the surface and diminish it, as does the
sun on high unraveling it with his rays; partly because it is distributed abroad through all the earth
underneath; for the pungency is strained off, and the substance of the water seeps back, and all meets
at the sources of each river, whence it returns over the earth in a column of sweet water along the path
which has once been cut for it in its liquid course.

A more elaborate but similar account is given in VI, 608–638. In contrast to Aristotle’s
explanation, evaporation is not the only reason why the sea does not overflow; seawater also
flows back underground to feed the springs, in accordance with the original theory of Hippon
and Thales. Also in contrast to Aristotle, who only considered the sun (Brutsaert, 1982),
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Lucretius allows for the wind to be involved in the evaporation process. One of Lucretius’
aims in writing his book was to promulgate the doctrines of Epikouros, whose natural
philosophy, in turn, was derived from the atomic theory of Demokritos and Leukippos; this
passage fully reflects this. The main principles of this theory are that nothing can be created
out of nothing (or vice versa), which is equivalent with the principle of mass conservation,
and that everything is made up of indivisible particles. This explains his view that on the
whole there is no excess of water over the original amount, and that the winds are capable
of sweeping water particles by evaporation. Unfortunately, beside the works of Lucretius
and of Diogenes Laertius (1925) (third century CE), little is left that might give a better
idea of what the Greek atomists themselves thought about these hydrologic phenomena.

A completely different example of Roman thought is the comprehensive treatise on
architecture by Vitruvius (Marcus V. Pollio), a contemporary of Lucretius in the first century
BCE. He composed it after having served as a military engineer under Julius Caesar in Gaul
and in Spain. On the generation of spring water he wrote (see Vitruve, 1986, 8, 1) the
following.

We see, in fact, that the rain waters congregate in the hollows found at higher levels in the mountains,
where the trees, which grow there in great number, keep the snow for a long time and where, as it melts
little by little, it flows out imperceptibly through the veins of the earth; it is this water which, after it
reaches the foot of the mountains, produces springs there.

Vitruvius is explicit and specific in attributing springs to rain water and snowmelt which,
after infiltrating into the ground, flow out at lower levels. He undoubtedly gained this
insight during his military campaigns up north in Gaul, where rainfall and all kinds of
seepage outflow phenomena from hillsides are more obvious and more plentiful than in the
more arid Mediterranean regions.

Similarly, the writings of Seneca (c. 4 BCE−65 CE), born in Cordoba, and teacher and
later advisor of Emperor Nero, also give a good idea of the status of natural philosophy
among educated Romans. In his work Natural Questions he quoted some 40 references, five
among them Latin authors, but the remainder Greek. Book Three is devoted to the waters
of the earth. He successively discusses five theories on “. . . how the earth supplies the
continuous flow of rivers, and where such great quantities of water come from” (Seneca,
1971, III, 4–10.1). Before doing this, he also specifies “Whatever explanation we give of
a river, the same will be so of streams and springs.” In brief, these five theories are (i) the
seawater enters the land by hidden paths (that is why the sea does not increase) and is
filtered of its salinity while in transit; (ii) whatever rainfall the Earth receives is sent out
again through the rivers; (iii) rivers are supplied by primal fresh water in vast underground
reservoirs; (iv) within the deep cavities inside the Earth the stagnant cold air ceases to
maintain itself and changes into water; (v) “. . . all elements come from all others: air from
water, water from air, fire from air, air from fire . . . so why not water from earth?” Evidently,
there are no precedents of this fifth theory, so this must be Seneca’s own. The first two are, of
course, the theories of the Presocratics, the third apparently a cleaned up version of Plato’s
Tartarus theory, and the fourth Aristotle’s underground condensation theory. While Seneca
seems to be willing to admit more than one theory, he is totally opposed to the rainfall
percolation mechanism. Because Seneca was to exert such a profound influence on later
thinkers, it is important to present his arguments in his own words (Seneca, 1971, III, 7).

It is obvious that much can be said against this theory. First of all, as a diligent vine-gardener myself I
assure you that no rainfall is so heavy it wets the ground to a depth beyond ten feet. All the moisture
is absorbed in the outer surface and does not get down to the lower levels. How, then, is rain able to
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supply an abundance to rivers since it only dampens the surface soil? The greater part of rain is carried
off to sea through river-beds. The amount which the earth absorbs is scanty, and the earth does not
retain that. For the ground is either dry and uses up what is poured into it or it is saturated and will pour
off any excess that has fallen into it. For this reason rivers do not rise with the first rainfall because the
thirsty ground absorbs all the water.

What about the fact that some rivers burst out of rocks and mountains? What will rains contribute to
these rivers, rains which pour down over bare rock and have no ground in which to settle? Besides, in
very dry localities wells are driven down to a depth beyond a distance of two hundred or three hundred
feet and find copious veins of water at a level where rainwater does not penetrate. So you know that
no water from the sky exists there nor any collection of moisture, but what is commonly called living
water. The theory that all water comes from rain is disproved by another argument: the fact that certain
springs well up on the high tops of mountains. It is obvious that they are forced up or are formed on
the spot, since all rainwater runs down.

Seneca apparently admits that most rainwater makes its way to river channels, but he feels
that this is a short-lived phenomenon and that these quantities are insufficient to maintain
a continuous river flow. He bases this argument on observations in his vineyards, which
are certainly perceptive, and similar to the findings of Perrault and de LaHire in the late
seventeenth century, as will be seen below.

In the later stages of the Roman era Judaic and Christian views gradually gained in
influence. In their writings the fathers, or early leaders, of the Christian church displayed a
broad knowledge both of biblical accounts and of classical philosophy. But in their eclec-
ticism among the different philosophical concepts they invariably accepted only those that
could be reconciled with the biblical narrative. The set of homilies On the Hexaemeron, i.e.
the six days (of creation), by Basileios of Cappadocia (c. 330–379 CE), is an example of
this. Basileios had been educated in the classical tradition at Caesarea, Constantinople and
Athens, and his writings generally reflect this background. In reference to Genesis (I,1,9)
and Ecclesiastes (1, 7), he (Basil, 1963; 4,3) wrote the following.

For this reason, according to the saying of Ecclesiastes ‘All the rivers run into the sea, yet the sea doth
not overflow.’ It is through the divine command that waters flow, and it is due to that first legislation,
‘Let the waters be gathered into one place,’ that the sea is enclosed within boundaries. Lest the flowing
water, spreading beyond the beds which hold it, always passing on and filling up one place after another,
should continuously flood all the lands, it was ordered to be gathered into one place.

Then, in (4, 6) he had this to say on the origin of rivers and springs.

In the first place, the water of the sea is the source of all the moisture of the earth. This water passing
through unseen minute openings, as is proved by the spongy and cavernous parts of the mainland into
which the swift sea flows in narrow channels, is received in the curved and sinuous paths and hurried
on by the wind which sets it into motion. Then, it breaks through the surface and is carried outside;
and, having eliminated its bitterness by percolation, it becomes drinkable.

Evidently, Basileios judged that among all available theories, the Hippon–Thales view was
the main one in harmony with the creation events in Genesis and with the water cycle
in Ecclesiastes. Similar views were promulgated some seventeen years later, around 389,
by Ambrosius (c. 333–397) in his own Hexameron, which was partly inspired by that of
Basileios. Ambrosius was then Bishop of Milan, but he had been converted to Christianity
only at the age of 41, and his early education had been in the classical Latin tradition of
the Roman upper class. His descriptions of the origin of rivers (Ambrose, 1961; 3, 2, 10; 3,
5, 22) are nearly the same as those of Basileios. The writings of Basileios and Ambrosius
show how the fundamental concept of natural philosophy, as Thales had initiated it, was
retained. Thus the Greek tradition of searching for an explanation of the physical world
within that same world, without animistic or direct divine intervention, was continued. But
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the emphasis had shifted somewhat, since this knowledge had to serve as an aid for the
transmission of the Christian doctrine and as an illustration of the wisdom of the Creator.

14.3.2 The Early Middle Ages in the Latin West

The Book on Nature, written around 613 by Isidorus Hispalensis of Sevilla (c. 560–636) for
the benefit of Sisebut, king of Visigothic Spain at Toledo, illustrates how this interpretation
and approach evolved and were transmitted into the early Middle Ages. Isidore (1960, 41,1)
explains why the sea does not grow as follows.

Bishop Clemens says that it is because the naturally salty water consumes the flow of fresh water which
it receives, in such a way that, however large the masses of water it receives, this salty element of the
sea nevertheless absorbs them totally. Add to this what the winds take away, and what the evaporation
and the heat of the sun absorbs. Finally, we see lakes and many ponds being consumed in a short time
by the blowing of the wind and the glowing of the sun. And then Solomon says: the streams return to
where they come from.

From which it can be understood that the sea does not increase also because, after being returned
to their sources through some conduits hidden in the deep, the waters flow back and run back along
the usual course through their rivers. But the sea was made purposely so it would receive the runs of
all rivers. While its depth is variable, the equality of its surface, however, cannot be discerned. As a
result, it is believed that it is called a plain, because its surface is even. But the physicists say that the
sea is higher than the land.

The title of Isidore’s book is nearly the same as that of Lucretius; also, as noted by Fontaine
(in Isidore, 1960) its outline is in many places similar to those of Aristotle, Lucretius, Pliny
and Aetius. So to organize his subject matter, Isidore must have had some doxographic
references at his disposal, or at least a monastery school manual of such material. But it is
striking how in this particular instance, Isidore’s treatment on the origin of streams comes
closest to the opinion of Lucretius, quoted earlier. (Note that in the past Ecclesiastes has
often, evidently mistakenly, been attributed to Solomon). Less than a decade later around
620, Isidore (Isidorus, 1911; 13, 14) again gave a similar account in his book Etymologies.

Therefore, the reason why the sea does not increase, although it receives all the streams and all the
springs, is as follows: in part, because its own magnitude does not feel the inflowing streams; further,
because the salty water consumes the fresh water flows; or because the clouds attract to themselves a
large portion of the water; also partly because the winds sweep it up, or partly because the sun dries
it up; finally, because after having percolated through some hidden openings of the earth and having
been returned to the head of the streams and to the springs, it runs back.

Isidore’s writings rapidly spread all over Western Europe, and they had a huge impact.
Bede (c. 673–735), a Benedictine monk at Jarrow in England, who lived some 100 years
later, also wrote a book On Nature, which seems to be strongly inspired by Isidore’s. His
section 40 on why the sea does not increase (Beda, 1843) is an almost literal summary
of Isidore’s descriptions quoted above. Isidore’s influence is also evident in the work of
Hrabanus Maurus (c. 776–856) of Mainz. Entitled variously On Nature or On the Universe,
it was written around 844, at the height of the Carolingian Renaissance. Intended as an aid
for preparing sermons, the text is replete with biblical references and Christian allegories
and Hrabanus comes across as a well-read author; however, for his explanation on why the
sea does not increase and on the origin of streams and springs, his main source was clearly
Isidore. His section on this topic (Rabanus Maurus, 1852; 11, 2) is taken nearly verbatim
from Isidore’s (13, 14) quoted above.

These few examples show how by the end of the first millennium of the present era a
number of concepts of Greek natural philosophy had been propagated in Western Europe
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through Isidore’s writings. If Isidore deserves a place in this history, it is not on account of
the originality or correctness – by today’s standards – of his cosmological views. However,
he was part of a tradition that has some scientific merit. To judge from his specification that
the wind is a cause of evaporation, Isidore’s hydrologic and meteorologic descriptions were
inspired indirectly by those of Lucretius; they are thus related to the views of the earlier
atomists Demokritos and Leukippos, rather than those of Aristotle.

14.3.3 The High Middle Ages and the Renaissance

These prevailing concepts in natural philosophy remained roughly the same until the begin-
ning of the thirteenth century, when Aristotle’s philosophical works began to draw greater
attention in Western Europe. The Latin translations of these works were derived from Greek
originals, as a result of intensified contacts with Constantinople during the crusades, and
from Arabic translations mostly in Moorish Spain (see Jourdain, 1960; Peters, 1968). In
contrast to Western Europe, where his theories had somehow been overlooked until then,
possibly as a result of the emphasis on Epicureanism and Stoicism among the Romans,
in the Arab world Aristotle had been held in high esteem once his works had become
available in translation. This is witnessed by the fact (cf. Mieli, 1966; pp 95, 102) that the
famous philosophers Al-Farabi (d. 950) from Turkestan, and the Iranian Ibn-Sina (“Avi-
cenna,” 980–1037) have also been called the second and the third master, respectively,
after Aristotle. The history of Aristotle’s theories in the Arabic world, their subsequent
acceptance by the Latins, and their eventual penetration into the vernacular, make for some
fascinating reading. In the case of the Meteorologica, the first three books were translated
early on from a partly abbreviated and corrupted Arabic version by Gerardus Cremonensis
(d. 1187), and the fourth book, which does however not deal with meteorologic phenom-
ena, directly from Greek by Henricus Aristippus [d. 1162] (Grabmann, 1916). Roughly a
century later, around 1260, a more faithful version of the first three books was produced
from the original Greek by Guillelmus de Morbeka (Willem van Moerbeke, c. 1215–1286)
(Brams and Vanhamel, 1989). As a result, in the course of the thirteenth century, copies
of these Latin translations started to appear in Western Europe, and gradually made their
influence felt. Also, not long after the Latin translation by Willem, toward the end of the
thirteenth century a Norman cleric, Mahieu le Vilain, made a translation of the Meteoro-
logica into the French vernacular. An indication of the tremendous influence Aristotle’s
works must have had, is the fact that for the period between 1200 and 1650 Lohr (1967–
1973) lists more than 85 commentaries on the Meteorologica, some of them by famous
scholars like Alfred of Sareshel (1988), Albertus Magnus, Thomas de Aquino, Johannes
Buridanus, Nicholaus Oresme, Themo Judaei de Monasterio (Münster) and others (see also
Thorndike, 1954; 1955; Ducos, 1998). Aristotle’s influence continued for the next three
centuries and at the height of the Renaissance European literature had become fully imbued
with many of his physical theories. These theories served not merely as physical explana-
tions, but they were also used as a rich source of metaphors and poetic imagery (Heninger,
1960).

But while Aristotle’s ideas were ubiquitous and known by most scholars, they were
far from universally accepted. The main effect of Aristotle’s Meteorologica, like his other
works, it seems, was that it generated a common vocabulary, within a coherent system of
logic, which stimulated more thorough discussion and the formulation of new questions,
but not necessarily the answers, about the nature of the Universe. Thus, contrary to what is



the lat in era 571

usually assumed about medieval scholarship, Aristotle’s theories were not always blindly
accepted but they often provided the impetus for more correct interpretations. The writings
of Buridanus (Jean Buridan, c. 1295–1358) from Béthune in Picardy, are a case in point. He
is probably best known for his proverbial ass (asinus) and also for the fact that, in rebuttal to
Aristotle and some 350 years before Newton, he had some idea of the principle of momentum
conservation. In his book Questions on the three books of Aristotle’s Meteorologica (Ducos,
1998, p. 82), Buridanus wrote the following.

For it is also said to be possible that the water of the sea is evaporated and that the vapor is changed
into air, which is carried by the wind to a distant place, and descends there to the earth to replenish the
pores to avoid a vacuum, and is there condensed and changed into water, which comes to the spring
and then flows to the sea.

In this passage he seems to admit that Aristotle’s mechanism of condensation inside the
Earth may be possible, but then he continues in direct contradiction of Aristotle, pointing
to the rain as the substantial source of the springs.

The waters of springs come from the rains in this manner, because there are in the earth large hollow
spaces which receive much rain water in winter, which for some hollow spaces suffices to flow out
through the year until the winter rains return, and thus they are perpetual springs, which flow from
these hollow spaces. There are other smaller hollow spaces which cannot receive in themselves so
much water, which would suffice to flow out through the whole year; therefore, the springs which flow
from them dry up in summer.

In other words, if the condensed water could be a substantial source of spring water, springs
would not dry up in summer. This shows that among some influential scholars at the
University of Paris, rain was taken as the main, if perhaps not the sole, agent in the generation
of springs.

Later examples, indicating that the rainfall percolation concept was not uncommon
throughout this period, are the accounts by Bernard Palissy (1510–1589) (Palissy, 1888;
1957) and Guillaume de Salluste du Bartas (1544–1590) (du Bartas, 1988, p. 78). Both
gave descriptions of the origin of springs and rivers that come generally quite close to
the rainfall percolation mechanism as it is known today. It is worth noting that, just like
Vitruvius, neither one was famous for his philosophical ideas; Palissy was known mostly
for his practical and artistic talents as a ceramist, and Bartas, a soldier and diplomat, for his
poetry. Although both were Huguenots, their specific ideas on the origin of springs do not
appear to be literal biblical accounts.

But disagreement with Aristotle among some did not necessarily lead to improved
concepts among others. For instance, Leonardo Da Vinci (1452–1519), in his notebooks
(see MacCurdy, 1938, p. 22) first describes how heat raises water vapor to higher elevations,
where it condenses and falls as rain and hail; he then explains how in a similar way the
same heat also draws up water from the roots of the mountains, through channels inside
these mountains like through the veins inside the human body, to their summits, where the
water can flow out through cracks and crevices to create rivers. He also concludes “. . .
that the water passes from the rivers to the sea, and from the sea to the rivers, ever making
the self-same round . . .” thus implying the seawater filtration mechanism to arrive back at
the roots of the mountains. Another example is the description given by Descartes (1596–
1650) (1637, p. 179), which was also nearly the same as the seawater filtration theory of old.
Hence, the fresh waters which flow into the sea, do not make it any larger because as many
others leave it continuously. Some of these waters are raised in the air after being changed
into vapors, and then proceed to fall back down as rain or snow on the earth; however, most
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of these waters penetrate through underground conduits to beneath the mountains; from
there the heat, which is in the earth, raises them as vapor to the peaks, where they replenish
fountains and rivers. Seawater moving through sand becomes fresh because the salty parts,
which are larger, more rigid and interlaced, cannot follow the tortuous paths around the
sand grains as easily as the more slippery and smaller fresh water parts, and they are left
behind.

14.4 From philosophy to science by experimentation

In the course of the seventeenth century the general approach to science started to change,
and gradually experimentation became an essential part of it. Pierre Perrault (1608–1680)
and Edme Mariotte (1620–1684) were two central figures at this juncture of the history of
hydrology. Their main merit was that, in contrast to the earlier writers on the subject, both
relied on experiment and quantitative arguments. But to put their work in proper context,
it is necessary to bear in mind the various opinions on the causes and mechanisms of river
runoff, as they were then known to them.

14.4.1 The Common Opinion at the end of the seventeenth century

The book On the Origin of Springs by Perrault (1674) can provide some insight in this;
the first half of it, covering 146 pages, is devoted to a thorough review of the better-known
theories and explanations of the day. The authors discussed by Perrault are Plato, Aristo-
tle, Epikouros, Vitruvius, Seneca, Pliny, Thomas de Aquino, Scaliger, Cardano, Agricola,
Dobrzenski, Van Helmont, Lydiat, Davity, Descartes, Papin, Gassendi, Du Hamel, Schot-
tus, Rohault, François and Palissy. For each of these authors Perrault first gives a brief
description of the main features of the propounded theory, followed by his own critique and
reasons for rejection. After completing the survey, he then singles out one of these theories
and further specifies (p. 148) how those, who support this particular view,

. . . believe that the waters of the rains & of the melted snows, which fall on the earth, penetrate it until
they encounter heavy (lit. greasy) soil or some other matter, which stops them; whereupon they flow
to some opening on the slope of a mountain . . . They believe that the waters, which fall on the high
plains, are the cause of the springs, by means of this penetration, which they assume (to take place). . . .
They believe that the rains, which fall on the slope of hills, are lost & of no use for the springs, for the
reason that from there they fall into the rivers which carry them to the sea . . . They also believe that
it is the springs, which being joined together produce rivers, & that if there weren’t any springs, there
wouldn’t be any rivers.

This description of the sequence of processes, which is elaborated on further on pp. 151–
152, could have been written today, and it would not be out of place among the descriptions
reviewed in Chapter 11. It is remarkable, therefore, that in 1674 Perrault calls this the
“Opinion Commune” or “Common Opinion.” But even more remarkable is the fact that
he also points out that among his 22 “authors,” by which he means the learned men and
authorities on the subject, only four espoused this opinion, to wit Vitruvius, Gassendi,
Palissy and François. In other words, although only a small minority among the expert
natural philosophers held this view, he chooses to call it the Common Opinion. Could this
mean that toward the end of the seventeenth century, almost everyone else, that is the person
“in the street,” was already of the opinion that springs and rivers are produced by rainfall
percolation?
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14.4.2 The first experimental analyses

Perrault’s interpretations
Not much is known about the life of Pierre Perrault (1608–1680). He was born into a
bourgeois family, had at least seven siblings and appears to have spent most of his life in Paris
(see Hallays, 1926; Delorme, 1948; A. Picon in Perrault, 1993). Actually, more is known
about several of his younger brothers: Claude (1613–1688), one of the original members of
the Académie Royale des Sciences, was a physician, a naturalist and an architect; Nicolas
(1623–1661) was a doctor in theology, who was expelled from the Sorbonne around 1655
for his Jansenism and known for his denunciation of the Jesuits; Charles (1628–1703) was
controller of the King’s buildings and author of the Mother Goose fairy tales. Like his father
Pierre and his older brother Jean (1610–1669), Pierre Perrault was originally educated for
the legal profession. With this background, he purchased the position of Receiver General
of Finances for Paris. But because of some unexpected changes in the tax arrangements,
around 1664 he came heavily into debt with the royal treasury and was subsequently forced
to give up this post. At this point he was essentially broke and turned to hydrology and
literature. It is unclear exactly why he set out to focus on the origin of springs. Was it a
coincidence that around the same time his brother Claude translated the work of Vitruvius
(Vitruve, 1986)? It should be recalled that Book 8 of that work is devoted to this very topic
and that Pierre classified Vitruvius (correctly) as one of the proponents of the Common
Opinion.

In any event, in the second half of his 1674 book he starts immediately (p. 148) by
contrasting his own views with the Common Opinion, as quoted in the previous section,
and then (p. 150) he states the two main difficulties with it, as he sees them.

The first is this supposed penetration of the earth by the waters of the rain, which to me does not seem
possible in the manner they mean; the second is that I don’t think that enough rain and snow water
falls to soak the earth to the extent necessary, nor that there would still be enough left over to make the
springs and rivers flow, which are produced by it, as they say, and in the manner they assume.

To support these two objections and to shed some light on the matter, Perrault proceeds to
describe a soil water flow experiment he conducted. He took a 65 cm (2 pieds) long lead
pipe with a diameter of 4.5 cm (20 lignes), closed off at the bottom with permeable cloth
and filled with coarse river sand, and he inserted it about 1 cm (4 lignes) into the water
contained in a wide shallow vessel (see Figure 14.4). (The stated dimensions are converted,
here and in what follows, by assuming that 1 French inch or 1 pouce = 2.707 cm (Petit
Larousse, 1964); also, 1 inch = 12 lines =1/12 foot.) After 24 h he observed that the water
had risen and moistened the sand up to a level of 49 cm (18 pouces). To verify whether
the risen water could flow out sideways to form springs, he made an opening in the pipe
with a diameter of about 1.8 cm (7–8 lignes) at a height of about 5.4 cm (2 pouces) above
the water surface, where he attached a small 5.4 cm long gutter, sloping down, in which he
placed a strip of paper covered with a thin layer of sand in contact with that of the column.
To his surprise, although the paper and the sand in the gutter became moist, never a single
drop fell from this little gutter. To check further whether any water would ever flow out, he
withdrew the sand column from the water and suspended it for half a day above an empty
tray, but again no water flowed out of all that had earlier risen 49 cm. He then poured some
water on the top of the column to soak the sand, but only three quarters of it came through
at the bottom. The next day, after having poured on again the same amount, all the water
passed through. Finally, the following day, he shook all the sand from the bottom of the
pipe and observed that the soil which came out first was wet like mortar, whereas that which
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Fig. 14.4 Reconstruction of the experimental set-up described

by Perrault (1674) to measure the movement of water

in a sandy soil. The soil was placed in a lead pipe with

a length of 65 cm and a diameter of 4.5 cm; the

bottom was closed off with permeable cloth. At a

height of about 5.4 cm above the water surface an

opening was made in the pipe to check whether any

water, that had risen into the soil after the bottom had

been inserted in the bath, would be able to flow out in

the manner of a spring.

came out last was not so moist, even though he had twice poured water on the sand of the
top, which came out last. He repeated the experiment with several other types of soil and
set-ups, but the results were similar.

After drawing a number of general conclusions from this experiment, he returns to the
two difficulties, which he raised earlier against the Common Opinion (p. 162).

As regards the first one, which is this penetration, which I don’t think can take place, as they believe,
I will say first, that if we are to believe Seneca and Lydiat. . . . the earth does not allow itself to
be penetrated by the rain with such ease as is believed . . . but I add to this reasoning the everyday
experiences one encounters with this penetration of the earth.

He further illustrates this inability of water to penetrate by describing the numerous drainage
problems encountered by farmers and others dealing with soil water management. Following
these general observations in the country side he turns once more to Seneca (p. 166).

The same Seneca asserts that the waters of the rain don’t enter into the earth beyond ten feet, which he
vouches for as a good wine-grower, which he says he is, who has often dug into the earth.

This shows again the profound influence Seneca’s description of his vineyard experience
(see Seneca, 1971) continued to have even after 17 centuries. Perrault then recounts how
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he himself conducted similar experiments and had pits dug in the earth on mountains, on
hillslopes, in bottom lands, in cultivated gardens, after long and heavy rains, but he never
found the earth moistened beyond a depth of 2 ft. Perrault next invokes the results from his
own sand column experiments described above (p. 175).

The second difficulty with this Common Opinion is, that I do not believe that the rains, which fall on the
high plains, suffice to maintain the springs, not because of their smallness . . . but because of the waste
& the loss of nearly everything which falls on these plains, without any of it benefiting the springs &
live fountains . . . For before a certain quantity of water can traverse a certain quantity & thickness of
earth, all the particles of this earth must be moistened, each one in particular & with all their surfaces;
& this is a pure loss, for this water will only leave by evaporation, because of its adherent property,
which causes it to attach itself to everything it touches, and to stay there suspended without moving
downward, where its weight should normally attract it, as can be seen by our experiment.

With the Common Opinion disposed of, Perrault turns to the statement of Aristotle,
quoted earlier, that the volume of the yearly flows of the rivers is “. . . as large as the earth
in size, or at least not so much smaller.” Thus he will allow the reader to judge

. . . that these waters of the rivers will not equal the mass of the earth in one year, as he says, but even
in a thousand years.

Follows now Perrault’s celebrated analysis of the comparison of the flow in the head-
waters of the Seine River in Burgundy with the rainfall on the upstream watershed. In
brief, he estimated the distance between the source of the river and Ainay le Duc (now
Aignay-le-Duc) as roughly 13.5 km (3 lieues) with an average distance to the divides on
either side of roughly 4.5 km (1 lieue); with an average annual precipitation estimated at
51.96 cm (19 pouces, 2.333 lignes), this made him conclude that the total annual volume
of precipitation over that area was of the order of 224 899 896 muids. (Units of length and
volume were not always standardized and they tended to vary in different periods and in
different regions; therefore it is not easy to check Perrault’s calculations. However, since 1
muid equals 8 ft3, adopting the conversion that 1 ft is equivalent to 32.484 cm, one finds that
this volume is equivalent to roughly 6.167 × 107 m3; to obtain this volume with the 51.96
cm of precipitation requires the magnitude of the lieue (i.e. the league) in this calculation
to be about 4447.7 m. This result is remarkably accurate and shows that Perrault used the
“lieue de terre” (land league), which according to the Petit Larousse (1964) has a formal
length of 4445 m or 1/25 of a degree on a great circle.) He did not have any discharge
measurements for the Seine at Ainay le Duc, but by comparing the flow situation to that of
the Gobbelins River near Versailles, he guesses it to be about 36 453 600 muids per year,
which is roughly equivalent with 1.0 × 107 m3 per year or 8.42 cm of annual rainfall.
This allows Perrault to conclude that

. . . only one sixth of the water which falls as rain and snow on the upstream catchment is needed to
make this river run continuously for an entire year . . .

and the remaining five sixths will serve to supply the losses, diminutions and wastes which
one observes, as nourishment of vegetation, evaporation and useless outflows. The case of
this one river also suggests that rain and snow should suffice for all the other rivers of the
world as well, provided one takes the wastes into account.

After thus having shown that the Common Opinion cannot possibly be correct, also
that the river flows are not as large as Aristotle had supposed and that the rains are more
than adequate to feed the rivers, Perrault (p. 207 ff.) is ready to formulate his views on the
origin of springs, the central topic of his treatise. In brief, water cannot penetrate the Earth
directly to any appreciable depth. As a result, most of the rain and snow waters, which fall
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Fig. 14.5 Symbolic representation of the origin of

springs in Perrault’s (1674) book, showing

how nymphs carry water from the river to

the mountain top where it can start to flow

as a spring. (Courtesy Mandeville

Collections Library, University of

California, San Diego.)

on the mountains and hills, flow down from the slopes and end up in the rivers and in the
creeks; under these rivers and the plains, which they drain, there are layers of clay and other
impermeable material; therefore the river waters enter into the more permeable top layers
of the plains, mostly laterally, often also by overflowing and flooding. Inside the Earth the
water vaporizes by various mechanisms, namely by heat, by cold and by the movement of
the air particles, whereupon this vapor rises inside the Earth to the summits of the mountains,
where it condenses again to make springs. In support of this explanation, he also invokes the
authority of several of the authors of his literature review, among whom Aristotle, Seneca,
and Descartes, who had proposed similar mechanisms. His overall conclusion is that, while
both springs and rivers are caused by precipitation, in the case of the springs the relationship
is indirect, because the water must first enter into the rivers before it can produce springs.
Hence springs are not the cause of rivers, but rivers are the cause of springs, so that if there
were no rivers there would also be no springs. This imagined transport from rivers to springs
was illustrated allegorically in Perrault’s book, as reproduced in Figure 14.5.

Considering the state of measurement technology and of open channel hydraulics,
Perrault’s comparison between river runoff and precipitation was a remarkable feat. So,
not surprisingly, in most reviews of the history of hydrology Perrault’s work, with its
emphasis on experimentation, is rightfully acclaimed as one of the significant landmarks
of this science. On the other hand, however, it is usually overlooked, or not fully realized,
that in fact one of the main objectives of Perrault’s (1674) book, was to refute the largely
correct Common Opinion. Thus in this sense, a large part of his work was also a major step
backward. Perrault arrived at his erroneous notion mainly on the basis of a sand column
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experiment and of field observations similar to Seneca’s. By today’s standards and with
present understanding of the underlying physics, his interpretation of these observations
was wrong. The reason for this was Perrault’s inability to grasp the effects of surface ten-
sion on the flow of water in a partly saturated soil. Clearly, the time was not ripe yet and
a satisfactory explanation of his column experiment and his field observations would only
be possible some 200 years later in the nineteenth century. In any event, whatever damage
may have been caused by Perrault’s book was soon undone by the more fundamental and
perceptive work of Mariotte.

Mariotte’s reaffirmation and proof of the Common Opinion
Few facts are known with certainty about the life of Edme Mariotte (Picolet, 1986). He was
born around 1620 in Til-Châtel (or Tilchâtel) near Dijon in Burgundy and died in Paris in
May 1684; he appears to have spent most of his early life in Burgundy, probably until 1666,
when he was elected one of the original members of the newly founded Académie Royale
des Sciences (de Condorcet, 1773) and he had to move to Paris. By 1634 he had received
tonsure and was therefore a cleric, but there is no evidence that he received higher orders
or was ever ordained into the priesthood. Perhaps as early as 1634 he was also appointed
prior of St. Martin de Beaumont-sur-Vingeanne, which provided an annual income of some
300 pounds. But this did not involve major responsibilities and his life was essentially
devoted to science. While he had many diverse interests (see Davies, 1974), he is now
remembered mostly for the law of gases that bears his name, his discovery of the blind spot
in the human eye, and his work on the laws of impact between bodies, among many other
contributions. A fine example is the constant head device shown in Figure 9.2, which to
this day is called a Mariotte flask. As member of the Académie he was also involved in the
hydraulic works for the fountains at the king’s new castle in Versailles. But it is his major
work on this subject, namely Treatise on the Movement of the Waters and of the Other Fluid
Bodies (Mariotte, 1686), published posthumously, which is of interest here. In the section
“On the origin of springs,” he first treats the formation of rains, and then unambiguously
specifies what happens next (p. 19)

Having fallen, the rains penetrate the earth through little channels which they find there; thus, when
one digs somewhat deeply into the earth, one usually encounters these little channels, whence the
water, which gathers at the bottom of what one has excavated, makes the water of wells; but the water
of the rains, which fall on the hills & on the mountains, after having penetrated the surface of the
earth, mainly where it is light & mixed with pebbles & roots of trees, often encounters clayey soil or
continuous rocky formation, which it cannot penetrate and along which it flows to the bottom of the
mountain or some considerable distance from the summit, where it comes out again into the open, &
forms the springs. This effect of nature is easy to prove, because firstly the water of the rains falls all
year long in sufficiently large abundance to maintain the springs & the rivers, as we shall show later on
by calculation; secondly, we observe every day that springs increase or decrease according to whether
it rains or doesn’t rain; & if two months go by without considerable rain, they decrease most of them by
one half; & if the drought continues for another two or three months, most of them dry up & the others
decrease down to one quarter. From this one may conclude that if there were a whole year without
rain, there would be very few springs left, most of which would be very small, or that they would cease
altogether.

With his own view clearly explained, Mariotte proceeds in detail to refute some of the
mechanisms proposed by others and to provide proof of his own assertions. He first deals
with those philosophers who assume that vapors rise from the depths of the Earth to condense
into water inside the mountains when they encounter the upper vaults like in an alembic,
whence the water flows out to form springs. Mariotte rejects this hypothesis by indicating,
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Fig. 14.6 Sketch in support of

Mariotte’s assertion,

that water condensed

inside a mountain

cannot possibly flow

out as a spring.

(From Mariotte,

1686; courtesy

Division of Rare and

Manuscript

Collections, Cornell

University Library.)

as illustrated in Figure 14.6, that if ABC is a vault in a mountain DEF, the water condensed
on this concave surface ABC would fall down to HGI, instead of to L or M, so that it would
be incapable of making a spring; he also rejects that there are many such caves. He counters
the argument of some that there is earth beside or below ABC, by explaining that in this case
the vapors will escape toward A and C, and will yield very little water; moreover, because
there is always clayey soil where there are springs, it is unlikely that these condensed waters
will be able to pass through from the inside of the mountains.

Next, without mentioning them, he deals with those, like Seneca and Perrault, who
claimed that rain cannot penetrate into the soil.

Still others object that the summer rains, although very big, enter the earth only about half a foot,
which one can observe in the gardens & in the tilled fields: I remain in agreement with the experiment.
However, I maintain that in non cultivated soils & in the woods there are some little channels, which
are quite close to the surface, in which rain water enters, & that these channels extend down to great
depths, as one sees in deep dug wells, & that when it rains ten or twelve days in a row, at the end the top
of the tilled soils becomes completely wet, & the remainder of the water passes in the little channels,
which are below & which have not been broken by tillage.

He goes on to illustrate this with his own observations in the cellars of the Royal Observatory
and inside several quarries. In these places water would drip down from the ceiling, but
invariably this water could be seen to issue from small holes, crannies and cracks in the
rocky vault, while the rest of the surface remained dry; also, this dripping was mostly in
response to rain, and would cease during droughts, which suggests that springs are made in
the same way. Among many other examples, he notes that during the dry summer of 1681
many wells and springs dried up, and that after a cold spell in the fall they continued to
decrease; they would not have done this if the water had been formed by vapors raised from
below and condensed by the cold of the surface. Furthermore springs, which are high up
in the mountains, are always adjacent to even higher areas, and their flows are larger when
these areas are larger; again, this indicates that they are produced by the rains which fall on
these higher surfaces.

Finally (p. 30), he addresses the objection by some that the total yearly rain may not be
able to supply enough to the great rivers which flow into the sea. He resolves the problem,
like Perrault, by comparing river flow with the rainfall on the upstream watershed area;
however, his watershed area is much larger and his estimation of the river discharge is
also much more rigorous. From measurements over an eight-year period, he estimates the
rainfall at Dijon to be about 46 cm (17 pouces), adding that a similar measurement by
the “author of the book entitled ‘On the Origin of Springs”’ yielded a value of 51.96 cm
(19 pouces, 2.33 lignes); but for the purpose of the exercise he decides to adopt a conservative
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value of 40.61 cm (15 pouces). (In his calculations Mariotte assumes that one lieue (league)
contains 2300 toises (fathoms); as 1 toise equals 6 pieds, the length of his league is about
4482.8 m, which is slightly different from Perrault’s assumed length.) With this value, and
assuming that the Seine catchment upstream from Paris occupies roughly 60 286.27 km2

(3000 square leagues), he figures that this catchment would receive roughly 24.479 km3

(7.1415 × 1011 ft3) of rain per year, on average. He estimates the average velocity of the
Seine at the Pont Rouge in Paris from float velocity observations of around 1.35 m s−1

(250 ft min−1), which he reduces to 0.54 m s−1 to account for the effect of bottom and side
friction. With a cross-sectional area of the river of 211.04 m2 (2000 ft2) this velocity yields
an average annual discharge of 3.6032 km3 (1.0512 × 1011 ft3); this is equivalent with about
6 cm of water over the whole catchment and is less than 1/6 of the annual rainfall. From
this result Mariotte deduces that, even when evaporation, the moistening of surface soils
and the replenishment of groundwater are taken into account, there is enough rainwater to
produce springs and rivers.

Lest his readers not be convinced and still feel that this result applies only to rivers and
not to fountains and springs, as Perrault had argued, Mariotte proceeds next (p. 34) to apply
the same analysis to the great spring at Montmartre. He estimates its catchment area as
113 963 m2 (30 000 square toises) and assumes a rainfall of 48.726 cm (18 pouces), which
is equivalent to 55 529 m3 per year or roughly 0.105 m3 min−1 (107 pintes per minute; there
are 35 pintes in a cubic foot). He then explains what happens in the field.

Now, the terrain of this mountain is sandy to a depth of 0.65 to 1.0 m (2 to 3 feet), & the bottom is clay
soil; part of the water of the large rains first runs to the bottom of the mountain, part of the rest stays
in the sand near the surface, and the rest flows between the sand and the clay; so, if we assume that it
would be only the fourth part of the total, which is . . . 105 l/min (107 pintes per minute), that quarter
would be around 26 l/min, which that spring should yield, & that’s pretty close to what it yields, when
it is running well.

Mariotte’s work is without question one of the highlights in the history of hydrology.
His treatment is clear and sound enough that it would not be out of place in present-day
descriptions, like those reviewed in Chapter 11. His determination of the river discharge rate
is based on solid reasoning, and therefore his comparison between precipitation and river
flow is a marked improvement over Perrault’s calculation a decade earlier. In addition, he
shows cogently by different examples that rain water does penetrate the soil in sufficiently
large quantities and to sufficiently large depths to be the only possible cause of springs.
In this connection, his description of the “little channels or conduits” through which the
water penetrates into saturated soil, should establish him as the originator of the concept
of macropores. He further supports his ideas on the origin of springs by a mass balance
comparison between rainfall and outflow rate from the spring at Montmartre. The reference
to Perrault’s rainfall measurements shows that Mariotte was familiar with Perrault’s book;
actually, it would be surprising if he had not been, because he had been working so closely
with his brother Claude Perrault at the Académie. This probably also explains why he
merely presented his own views, dispassionately, without criticizing or even mentioning
Perrault’s outlandish theory on the origin of springs.

14.4.3 Lingering doubts and slow acceptance of the Common Opinion . . .

It might be thought that, after the work of Mariotte had put the rainfall percolation theory
for rivers and springs on a sufficiently firm foundation, the issue had been settled once and
for all. On the other hand, while Mariotte’s arguments were sound and indisputable, he had
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Fig. 14.7 Reconstruction of the experimental set-up

described by de La Hire (1703), which was

intended to verify the downward

movement of water in the soil profile at the

lower terrace of the Observatory. A lead

basin of 0.422 m2, with 16 cm high

sidewalls, was placed at 2.6 m below the

surface; at one of its corners a 3.9 m long

pipe was attached to permit outflow of

captured water into an adjacent ditch.

only addressed the issue of infiltration in the field, and had totally ignored the puzzling
and paradoxical outcome of Perrault’s column experiments (Figure 14.4). Because he put
the emphasis on the role of macropores, perhaps he felt that the soil column set-up was
irrelevant for field conditions.

This apparently did not escape de La Hire (1640–1718), who had in fact been the one to
see to it that Mariotte’s (1686) book was published posthumously. So, a few years later de
La Hire (1703) published the results of another experiment, with a set-up that he specifically
designed to check whether precipitation can penetrate the Earth until it would encounter
some impermeable layer; he described it as follows (see Figure 14.7).

I chose a place on the lower terrace of the Observatory, and in 1688 I had a leaden basin with a surface
area of 0.422 m2 (4 feet) installed in the ground at a depth of 2.60 m (8 feet). This basin had sides
(“rebords”) of 16 cm (6 pouces) height, and it was slightly inclined toward one of its corners, where I
had a 3.90 m (12 foot) long leaden tube soldered, which had a considerable slope and which entered
in a small excavation at the other end. The basin was kept far from the wall of the excavation, in order
that it would be surrounded by a greater quantity of soil similar to that which was on top, and that it
would not dry out by the proximity of the wall.

From the present vantage point this set-up, which appears as a forerunner of the lysimeter,
had serious shortcomings for its intended purpose; evidently, the basin side walls did not
extend to the soil surface, so that percolating rainwater could move away laterally. With
present day understanding of the flow in a partly saturated soil, it is no wonder that de La
Hire had to report, that “not a single drop of water has come out through the tube in 15 years.”
He also conducted some experiments with a smaller basin at more shallow depths and under
conditions of minimal evaporation, but here some water would only be collected after heavy
rainfall and large snowmelt. From these percolation experiments he deduces that rainwater
cannot penetrate the earth very deeply. He then proceeded to determine the evaporative loss
from two individual fig leaves inserted in water, and this leads him to infer that rain alone
is not sufficient to support vegetation in summer, let alone to feed the rivers. In the end de
La Hire concludes that the rainfall percolation theory of Mariotte cannot be generally valid;
rather, the explanation can only be that there are huge quantities of vapor inside cavities or
hollows in the Earth in the form of an alembic, which rise from the waters at the level of
the closest rivers or the sea through cracks in the rocks, and that these condense higher up,
as a result of the cold at the surface of the Earth, and flow out as springs. Like Seneca’s
and Perrault’s explanations before him, de La Hire’s interpretation of his experiments was
wide of the mark; indeed a correct explanation of his puzzling seepage phenomena would
have to wait for the fundamental work of Laplace (1749–1827) in surface tension and its
subsequent application by Buckingham (1907) in soil physics.
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The works of Perrault and Mariotte promptly crossed the Channel and were deemed
remarkable enough to be reported in the Philosophical Transactions of the Royal Society
(Anonymous, 1675; 1686) immediately after their publication. But it is clear that not every-
body accepted Mariotte’s theory there. Edmond Halley’s (1656–1741) reaction is a case
in point. Without a doubt Halley was thoroughly familiar with developments in France. In
1681 he had already spent 6 months in Paris where he had become acquainted with several
members of the Académie and other learned persons, and had purchased many books of
interest to ship back to England (see Cook, 1998); in 1686, at the time of the publication
of Mariotte’s book, Halley was Clerk of the Royal Society and maintained an extensive
international correspondence; he was also editor and publisher of the sixteenth volume of
the Philosophical Transactions, which contained the review of Mariotte’s book. All this
makes him almost certainly the author of Anonymous (1686); it must also be his familiarity
with this book, no doubt combined with his experiences at sea, which prompted Halley
(1687) to engage in the study of evaporation, an aspect of the water cycle, which both
Perrault and Mariotte had only dealt with obliquely in qualitative terms. From weight
changes during evaporation of water from a small pan he deduces that, on warm days, evap-
oration amounted to approximately 2.5 mm (0.1 in) in 12 h; this was a reasonable result, as
can be seen in Figure 4.16. Halley next uses Mariotte’s method to determine the discharge
rate of the Thames at Kingston Bridge; the determination of the flow rate this way was far
from obvious at the time, as witnessed by the fact that some 15 years earlier Perrault had
not quite known how to deal with this same problem. Estimating that the Mediterranean is
fed by nine rivers, each of which is ten times larger than the Thames, he concludes that the
total inflow into that sea amounts to hardly more than one third of the daily evaporation
of 2.5 mm. At a first glance this conclusion is but a confirmation of Aristotle’s (correct)
explanation of why the sea does not overflow, some 20 centuries earlier. What was new,
however, was that now an earnest attempt was made to base Aristotle’s speculation on exper-
imental evidence, and not just on everyday observation on a kitchen table. Although his pan
evaporation measurements could provide only rough estimates of the actual values for the
Mediterranean, Halley’s study was probably the first in which evaporation was considered
quantitatively in relation to streamflow.

What happens to this evaporated seawater in the global water cycle was the subject
of a second paper (Halley, 1691). In brief, all of these vapors are eventually returned to
the sea in various ways and this explains why the sea does not decrease even though the
evaporation is so much larger than the river inflows. The greater part of these vapors is
returned immediately to the sea as rains or dews without ever touching land. Part of the
vapors, which are blown off the sea, falls on the lower lands where either it nourishes plants
and is exhaled again, or it finds its way into the rivers, after the earth is saturated with
moisture, to return to the sea. But most of these vapors are carried by the winds over the low
lands to mountain ridges, where part of them precipitates “. . . gleeting down by the crannies
of the stone . . .”, and part enters the caverns of the hills, inside of which the vapors are
collected “. . . as in an alembic, into basins of stone they find there . . .”; this condensed water
then breaks out through the hillsides to form springs, which unite further down into rivulets,
and eventually into rivers. (Halley’s ideas on the origin of springs are also detailed in the
Journal Books of the Royal Society (MacPike, 1932, pp. 217, 227).) Thus rain is not the only
source of all springs. One may wonder why Halley rejected the explanation of Mariotte,
whose book most likely had prompted his study in the first place, and why he was misled into
invoking, beside rain, direct condensation on the ground and also Aristotle’s underground
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vapor condensation and transport theory for the origin of springs. The explanation appears
further down in the text, where he describes the earlier experience that had led him to this
condensation theory. In 1677 he had been on an expedition to the Island of St Helena to
chart the stars of the Southern Hemisphere; when he was carrying out nighttime celestial
observations there on top of a hill some 800 m above sea level, the condensation was so
heavy and fast that the droplets on his glasses had to be wiped off every 5–10 min, and the
paper on which he recorded his observations became immediately so wet that it would not
bear ink.

A more egregious example of reactionary science is Woodward’s (1695) explicit reliance
on the biblical Abyss or Plato’s Tartarus as the ultimate water supply for the springs, rivers,
vapors and rains of the earth. Woodward was a Fellow of the Royal Society, and also
Professor of Physics at Gresham College in London; he was thus acquainted with Halley.
Indeed in 1686 Halley had been elected Clerk of the Royal Society, which held its meetings at
Gresham, and it was at that same college that he conducted his pan evaporation experiments
(Halley, 1694). The learned men at Gresham College appear to have held various opinions
on the origins of springs and rivers, but the Common Opinion was evidently not their favorite
one.

Fortunately, the situation was not as dismal everywhere. One influential proponent of
the Common Opinion in England was John Ray (1627–1705), naturalist and Cambridge
professor until 1662, when he resigned out of religious principle (Raven, 1950). Early on,
in fact one year before the publication of Perrault’s book, he (Ray, 1673, pp. 296–300)
expresses the view “. . . that all springs and running waters owe their rise and continuance to
rain, seems to me more than probable . . .”; and he gives as specific reasons that he had never
seen running waters breaking out near the top of hills unless there was enough earth above
them to feed these springs, that springs generally abate in dry summers, that one seldom
finds springs in clay grounds where water sinks in with difficulty, and that those, who would
have fountains be fed by the sea, have still not given a satisfactory account of the ascent of
water to the mountain tops and its efflux there; with filters and even pumps no such high
ascents have ever been produced. He further argues that it is also unlikely that fountains
can be attributed to “. . . watery vapors elevated by subterraneous fires, or . . . diffused
heat . . . , and condensed by the tops and sides of the mountains as by an Alembick head,
and so distilling down and breaking out where they find issue”, because the heat required to
raise those vapors “through so thick a coat of earth” would be way too large. Finally, he also
considers the general statement “. . . that rain sinks not above a foot or two deep into the
earth . . .” as manifestly false; as evidence for his assertion he lists the internal flooding of
coal mine pits and shafts during wet weather, the near complete absence of surface runoff
on sandy and “heathy” grounds even during the heaviest rains, and the fact that the water
outflows from caves in the sides of mountains generally increase in the rainy season and often
stop completely in dry weather. In a later work Ray (1692; 1693) elaborates on this same
theme but in more detail and with additional evidence. For instance, he mentions, without
further specifics the “Ingenious French Author”, who demonstrated in the Seine that rain
may suffice to feed ordinary springs. It is unlikely that Ray had personally read Perrault’s
book. Rather, as a Fellow of the Royal Society since 1667, he was probably familiar only
with the brief review by Anonymous (1675), which contains Perrault’s comparison between
rainfall and river flow in Burgundy, but nothing on Perrault’s theory that springs originate
from rivers, a view so at odds with his own. Ray also mentions his own observations on a
little brook near his dwelling at Black Notley in Essex, which support his hypothesis that
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“. . . all its water owes its original to rain.” In addition, he specifically addresses Halley’s
condensation theory. While he admits that Halley’s condensation mechanisms may be partly
valid in “fervid regions,” he feels that they should be of little interest in the production of
springs in more temperate countries. The Alps, which are above the fountains of four of the
greatest rivers in Europe, are a case in point. Although the Alps are covered heavily with
snow for six months of the year, and therefore cannot have any access to vapor, the rivers
issuing from them continue to run, albeit low, all winter long without interruption; when the
snow melts in spring, some of these Alpine rivers overflow their banks, although no rains
fall; but later on after the snow has melted, the streams decay in spite of the vapors that
condense on them, and in summer the streams flood again only when it rains; this proves
that they are mainly fed by melted snow, as is also indicated by their “sea-green” color.

Ray’s writings show that also in England, Halley’s and Woodward’s views notwithstand-
ing, the Common Opinion was a well-established theory at the time. However, their main
importance in the history of ideas stems from the fact that they are among the earliest and
more articulate in the renewal of the long tradition, in which use is made of the hydrologic
cycle as evidence for God’s wisdom in the creation of the world. In this renewed form of the
tradition, or “physical theology,” which was to last nearly another 150 years, the hydrologic
cycle served as a unifying and ordering concept to explain the wisdom behind a number of
disparate phenomena on earth, such as mountains, floods and the size of the oceans, which
might otherwise have appeared chaotic and paradoxical, in light of, and in contrast to, the
obvious perfection of the new Newtonian mechanics. At the time, several others (see, for
example, Bentley, 1693, pp. 31–32) were writing on the same theme; but Ray was by far the
most popular and widely read author on the subject especially through his book The Wisdom
of God Manifested in the Works of Creation. This book, first published in 1691, went through
twelve editions (Ray, 1759) and continued to be issued until apparently as late as 1827. The
underlying idea, namely that the ceaseless circulation of water on Earth is proof of a divine
design, became almost a cliché and seems to have exerted a definite imprint on the thinking
of intellectuals in England well into the nineteenth century; evidence for this fascination
can be found (see Tuan, 1968) in the works of such well known intellectuals as, among
others, W. Derham (1657–1735), A. Cooper (3rd Lord Shaftesbury) (1671–1713), J. Hutton
(1726–1797), O. Goldsmith (1728–1774), J. Wesley (1703–1791), W. Paley (1743–1805),
W. Buckland (1784–1856), J. Kidd (1775–1851), W. Whewell (1794–1866) and even the
scientist John Dalton (1766–1844) (1793, p. 145). During the same period similar ideas in
physical theology were popular also on the continent with, for instance, such authors as
N.-A. Pluche (1688–1761), G. L. L. Buffon (1707–1788) in France, J. A. Fabricius (1668–
1736) in Germany (who used the term “Hydrotheology”), and C. Linnaeus (1707–1778) in
Sweden.

That the Common Opinion continued to deserve its name is also attested to in the
books by the physicist Pieter Van Musschenbroek (1692–1761), the well-known inventor
of the Leyden Jar, who held successive professorships at the Universities of Duisburg in
Westphalia, and Utrecht and Leyden in Holland. In his description of water, Van Musschen-
broek (1739, p. 417) asserts the following.

As the rain, the snow, hail and all the vapors fall on the earth, they penetrate it, & flow through the
pores, the openings & the cracks, like through underground pipes to the lowest places. If these pipes
or conduits are open at the top at one of their ends, fountains are formed thereof, from which the water
gushes more or less high, depending on whether the opening in the earth is larger or narrower, or
depending on whether the water in the underground conduits presses higher above this opening. But if
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the rain flows out on the surface of the earth into deep hollows, it forms the lakes & the swamps there,
from which then rivers are born, which also owe their origin to the waters gushing from the fountains.
Consequently, river water is either rain water, or fountain water, or both together.

In a later treatment of the same topic Van Musschenbroek (1769, p. 281) seems to have
become aware that this rainfall penetration had presented some difficulties with others in
the past. He now addresses the controversy, listing Seneca, Varin, de La Hire, and Buffon,
as those who claim that rain cannot penetrate the earth beyond 4–10 ft; he then counters
them with his own experience in Holland, as well as with that of Erndetl in Poland, and le
Monnier in Auvergne, and repeats essentially his earlier description.

But in spite of the frequent appearance of the hydrologic cycle in physics and in physical
theology alike, in none of the treatments reviewed here was there even a hint of calcula-
tions, of the kind made earlier by Perrault, Mariotte and Halley; in fact, during the century
following their writings the basic notions on the origins of springs and streams did not
undergo drastic changes, and many of the disagreements and uncertainties lingered on, it
seems. This is brought out in Dalton’s (1802a) paper, which he presented in 1799 before the
Manchester Literary and Philosophical Society, and which he starts off with the following
observation.

Naturalists, however, are not unanimous in their opinions whether the rain that falls is sufficient to
supply the demands of springs and rivers, and to afford the earth besides such a large portion for
evaporation as it is well known is raised daily.

This is followed by Dalton’s rough estimates for all of England and Wales of average
annual precipitation as P = 787 mm (31 in), on the basis of measurements at some 23
different sites; of annual dew, as 127 mm (5 in), on the basis of measurements by one
Dr. Hales (probably Stephen Hales (1677–1761)); of river runoff, as R = 330 mm (13 in),
by extending and correcting Halley’s estimate for the Thames; and finally of evaporation,
as E = 635 mm (25 in) per year, on the basis mainly of his own measurements with a
simple lysimeter over a 3 y period at Manchester, which combined with the dew amounts
to 762 mm annually “raised into the air.” Combining these terms in a water budget (cf.
Equation (1.1)), in which the dew fluxes cancel out, Dalton ends up with an annual deficit
of (330 + 635 − 787) = 178 mm (7 in); he attributes this failure to close the budget to a
possible underestimate of the average precipitation and, which he feels is more likely, to
certain features of his lysimeter, which somehow lost water in heavy storms and which
usually kept the soil surface more moist, and therefore must have evaporated more, than the
earth around it. He summarizes this part of the paper.

Upon the whole then I think we may fairly conclude – that the rain and dew of this country are equivalent
to the quantity of water carried off by evaporation and by the rivers. And as nature acts upon general
laws, we ought to infer, that it must be the case in every other country, till the contrary is proved.

All this is fair enough, but evidently in Dalton’s opinion, the closure of the water budget
is a separate issue from the origin of springs and not a persuasive argument to prove that
precipitation is their sole source. Thus he points out next (p. 367) that at the time

. . . There are three opinions respecting the origin of springs which it may be proper to notice.

1st. That they are supplied entirely by rain and dew.
2d. That they are principally supplied by large subterranean reservoirs of water.
3d. That they derive their water originally from the sea, on the principle of filtration.

It is obvious that before we pay any attention to the latter two opinions, the causes assigned in
the first ought to be proved insufficient by direct experiment. M. de la Hire is the only one who has
attempted to do this . . .
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It is remarkable that, at the dawn of the nineteenth century, these are still essentially the
opinions which were being discussed among the Presocratics and Aristotle more than 2300
years earlier. Dalton proceeds then to show that the experimental disproof of the first opinion
by de La Hire (1703), was in fact invalid and unwarranted, and this leads him finally to
conclude (p. 371) as follows.

The origin of springs may still therefore be attributed to rain, till some more decisive experiments
appear to the contrary; and it becomes unnecessary to controvert the other two opinions respecting this
subject.

1 4 . 5 C L O S I N G C O M M E N T S

This previous quotation was probably the last time that any other “opinions” on the
origin of springs were brought up in the scientific literature. Still, although the debate
on the main issue was closed, details of this “rainfall percolation” continue to be the
subject of enquiry to this day, as seen in Chapter 11. In any event, Dalton’s (1802a)
analysis was a sign that the time was ripe for the rapid developments in the nineteenth
century, that laid the foundations for the emergence of hydrologic science in its present
form. For instance, it was Dalton (1802b) who introduced next several of the principles
on which modern evaporation theory is based (see Brutsaert, 1982, p. 31). He proposed
the law of partial pressures in gases and he determined the saturation vapor pressure of
water as a function of temperature; he was then the first to express surface evaporation
as a mass transfer equation nearly in its current form, and in recognition of this the
mass transfer coefficient is still called the Dalton number. Fundamental developments
by others followed in rapid succession throughout the nineteenth century, and several of
the highlights are mentioned in the previous chapters of this book. But most of this is
well-trodden terrain in the history of science, so there is no need to repeat the details.

Among the more striking facts of this historical sketch is that, while humans were
able to grasp the essence and the significance of the atmospheric phase of the water cycle
very early in prehistoric times, a full understanding of the origin of springs and streams
took much longer.

The perceptions and opinions of those who commented on the movement of water
in nature, were usually strongly affected by the specific hydrologic conditions in their
immediate environment. Some of the early civilizations developed in rather arid and
semi-arid climates, where rain, springs and streamflow were not always abundant, so
that the linkages of the terrestrial water cycle were not very obvious. A case in point
is the eastern Mediterranean region, where karst phenomena are ubiquitous and play a
pronounced role. In this perspective many of the early concepts, such as the underground
Tartaros or Abyss of Homer and Plato, and the caves of Anaxagoras and Aristotle, can
be explained and are not as far-fetched as a superficial review might suggest. Similarly,
to Thales or to the writer of Ecclesiastes, who must have known about underground
seawater intrusion near the coast or in the Nile delta, the seawater filtration mechanism
would not have been unreasonable.

The concept that finally survived, the rainfall percolation mechanism, is not a recent
invention. In recorded history it can be followed as a thread running through the works of
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the pre-Socratics, the post-Aristotelian Peripatetics, Vitruvius in ancient Rome, Buridan
and other medieval Schoolmen at the university of Paris, Bartas, Palissy and Gassendi
in the Renaissance, and finally Mariotte, Ray and Van Musschenbroek, at the dawn
of modern science. But all along it was only one of several competing theories. It is
noteworthy that in many instances the rainfall percolation mechanism was advocated
by active persons of a more practical inclination, rather than by philosophers. Also, its
supporters often tended to have spent their formative years in the countryside in more
humid climates with vegetation, and less in denuded arid regions or urban areas, where
ubiquitous puddles and overland flow during rain indicate an almost total absence of
infiltration. For example, Vitruvius, a rain and snow penetration advocate, had been
a military engineer with Caesar’s army in Gaul as a young man, before his career in
architecture in Rome; during the Renaissance, Palissy was known mostly as a ceramic
artist and du Bartas as a soldier and a diplomat. Both Perrault and Halley had grown up
in urban environments, while Mariotte and Ray, who were proponents of the Common
Opinion, had spent their youth in more rural settings. All this is consistent with the more
recent findings on the occurrence of the different flow paths in the streamflow generation
processes described in Chapter 11.
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A P P E N D I X
S O M E U S E F U L M AT H E M AT I C A L
C O N C E P T S

A 1 D I F F E R E N T I AT I O N O F A N I N T E G R A L

Consider an integral, whose upper and lower limits h = h(x) and g = g(x) are differen-
tiable functions of x , that is

F(x) =
h(x)∫

g(x)

f (y, x)dy (A1)

If f (y, x)is continuous and smooth, the derivative of this integral can be written as

d F
dx

=
h(x)∫

g(x)

∂ f (y, x)

∂x
dy + f [h(x), x]

∂h(x)

∂x
− f [g(x), x]

∂g(x)

∂x
(A2)

which is commonly known as Leibniz’s formula. For a proof of the Leibniz formula the
reader is referred to any good calculus textbook.

A 2 T H E G E N E R A L R E S P O N S E O F A L I N E A R
S TAT I O NA RY S Y S T E M

The unit impulse
Physically, this can be described as an input or excitation of unit magnitude, imposed
either suddenly and lasting a very short time over a wide area, or imposed locally and
acting over a very small distance or area but in a steady fashion; of course, it can also be
a combined spike action in both time and space. Typical examples are a hammer blow
on a mechanical system, a more steady type of concentrated load, a voltage surge on an
electrical system, a lightning stroke on a transmission line, or a sudden rainfall burst on
a catchment. For example, as illustrated in Figure A1, one can construct a unit excitation
applied over a finite interval �t around t0 as follows

E(t0) =
⎧⎨
⎩

0 for t < t0 − �t/2
I/�t for t0 − �t/2 < t < t0 + �t/2
0 for t > t0 + �t/2

(A3)

Note that in this example I is taken as a constant; this need not be, and for the present
purpose, the unit excitation can be equally well described by a function with a vari-
able intensity I = I (t) (such as, for example, an error function or a triangle) over
the same interval t0 − �t/2 < t < t0 + �t/2 as in Equations (A3). Note further that,
while t usually denotes time, in the present context it can also denote a spatial variable.
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I

Δt
Δt

tt0

Fig. A1 Example of an impulse function of magnitude

I, uniform intensity I/Δt , and duration Δt .

1 ΔtΔt

tt0

Fig. A2 Illustration of the limit with a rectangular

impulse (i.e. with uniform intensity), making

Δt gradually approach zero to obtain a

(Dirac) delta function.

The unit impulse or the (Dirac) delta function can be obtained from (A3), in the limit,
as �t is made to approach zero, as illustrated in Figure A2. Thus one has in this case

δ(t − t0) = lim
�t→0

⎧⎨
⎩

0 for t < t0 − �t/2
1/�t for t0 − �t/2 < t < t0 + �t/2
0 for t > t0 + �t/2

(A4)

A similar procedure can be applied for other excitation functions as well; this is illustrated
in Figure A3 for a triangular function.

In general, following these preliminaries, the delta function is often expressed a

δ(t − t0) =
{

0 for t �= t0
∞ for t = t0

(A5)

+∞∫
−∞

δ(t − t0)dt = 1 (A6)
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2

Δt

Δt

/2

tt0

Fig. A3 Illustration of the limit with a triangular

impulse, making Δt gradually approach zero

to obtain a (Dirac) delta function.

Equations (A4) and (A5) represent singular behavior, and they indicate that δ(t − t0) is
not continuous and not differentiable at t =t0. Therefore, this definition cannot be taken
literally, but it must be interpreted as suggestive of the limiting process involved. A better
way to define the delta function is in the following integral form

+∞∫
−∞

δ(t − t0) f (t)dt = f (t0) (A7)

in which f (t) is a continuous and smooth function. While the Dirac delta function is
not a well-behaved function in the usual sense, it is classified as a generalized function.
As explained in Greenberg (1971), one never talks about the values of a generalized
function, but only about its action on the function f (x), as indicated in Equation (A7).

The unit step function
A function closely related to the Dirac delta function is the Heaviside step function which
can defined as follows

H (t − t0) =
{

0 for t < t0
1 for t > t0

(A8)

and is illustrated in Figure A4. It is often convenient to think of the unit step function
as the integral of the unit impulse function or, vice versa, of the impulse function as the
derivative of the step function.

Unit response and actual response of a system
The transformation of input into output is called the response of a system. In general,
a transformation or an operation T is said to be linear when the operation on the sum of
two functions is the sum of the operations of each individual function; in mathematical
terms, T is linear if the equality

T [a x(t) + b y(t)] = a T [x(t)] + b T [y(t)] (A9)
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H

tt0

1

0

Fig. A4 Illustration of the (Heaviside) unit step function

H = H(t − t0).

is valid for all constants a and b and for all x and y, such that T [x(t)] and T [y(t)]
exist. A transformation or operation is said to be stationary or invariant, if for the same
conditions at t = 0, it produces the same result under a coordinate translation; thus the
transformation z(t) = T [x(t)] is stationary if

z(t − t0) = T [x(t − t0)] (A10)

remains valid for any value of t0.
The unit response of a linear system u = u(t) is its response to the unit impulse

function δ(t). The unit response is also variously called the impulse response, the Green’s
function, and the influence function of the system. If these response characteristics are
invariant in time or space (whatever domain t denotes), the response is u(t0 − t), when
the input is δ(t0 − t). Because the system is linear, it follows that the response becomes
x(t) u(t0 − t) when the input is x(t) δ(t0 − t). By the same token, upon multiplication of
this response and of this input by dt and integration of both, comparison of the resulting
input with Equation (A7) shows that when the input is x(t), the response or output of the
system is given by

y(t) =
+∞∫

−∞
x(τ ) u(t − τ )dτ (A11)

where τ is a dummy variable of integration. The operation shown in (A11) is called the
convolution integral.

The upper and lower limits of Equation (A11) indicate that the output from the
system is affected by input values of x(t) for t all the way from minus to plus infinity.
Time dependent hydrologic systems are causal and non-anticipatory; this means that
they only depend on the values of present and past (but not future) values of the input
function; such systems are also referred to as hereditary (Volterra, 1913). Thus whenever
t denotes time, in hydrologic applications the upper limit of the integral in (A11) should
be t , and one can write

y(t) =
t∫

−∞
x(τ ) u(t − τ )dτ (A12)
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Fig. A5 Illustration of the convolution or

folding operation for a

hereditary or causal system,

with t = 0 defined as the start of

the input rate x = x(t). At any

given value of time t , the total

output rate y is the result (i.e.

integral) of all past inputs from

the start of the input until t ,

weighted at each instant with the

unit response folded backwards.

In this operation t is treated as a

constant and τ is the dummy

time variable of the integration.

Equation (A12) describes the output from a system with a memory going back to −∞.
If the system only has a finite memory m, the lower limit of the integral can be changed
to (t − m), or

y(t) =
t∫

t−m

x(τ ) u(t − τ )dτ (A13)

Equation (A13) also describes the response of a system, in which the input starts
m time units prior to t . Hence, if the input starts at t = 0, the convolution integral
becomes

y(t) =
t∫

0

x(τ ) u(t − τ )dτ (A14)

In Equations (A12)–(A14), τ should be interpreted as the general time variable in the
convolution operation, whereas t is the designated time at which the response is to be
determined. The meaning of the name convolution or folding integral is illustrated for
(A14) in Figure A5.

Because τ can be replaced by (t − τ ) in Equations (A11)–(A14), each of these con-
volution integrals can be written in a form which is sometimes more convenient. For
instance, in the case of Equation (A13) this is simply

y(t) =
m∫

0

u(τ )x(t − τ ) dτ (A15)

and in the case of Equation (A14) it is

y(t) =
t∫

0

u(τ )x(t − τ ) dτ (A16)
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Fig. A6 Approximation of a function x = x(τ )

by a sequence of pulses of width Δτ .

In numerical applications of the convolution integral, the input function x(t) can be
represented by a histogram consisting of pulses of width �τ , as illustrated in Figure A6.
The contribution to the total response by the input pulse at τ = (k �τ ) is given by

x(k �τ ) u(�τ ; t − k �τ )�τ

in which u(�τ ; t − k �τ ) represents the response of the system to an input pulse of
width �τ . The total response at t is the sum of the contributions by all input pulses, or

y(t) =
+∞∑

k=−∞
x(k �τ ) u(�τ ; t − k �τ )�τ (A17)

which is the discrete analog of the general convolution integral (A11). Again, if t repre-
sents time, and the system is non-anticipatory with an input starting at t = 0, one obtains
the discrete analog of (A14), or

y(t) =
n∑

k=0

x(k �τ ) u(�τ ; t − k �τ )�τ (A18)

in which τ = n �τ (≤ t) is the time of the last input pulse prior to the designated response
time τ = t .

Relationships between the moments
The convolution integral provides also convenient relationships between the moments
of the three functions involved, namely the input function x(t), the output function y(t)
and the unit response function u(t). Denote the mean values of t (or centers of area) of
these three functions respectively as m ′

y1, m ′
x1 and m ′

u1 and the nth moments about these
means of the three functions, respectively as myn, mxn and mun . Assume for convenience
that these functions are properly scaled, so that their zero-order moments

∫
y dt ,

∫
x dt

and
∫

u dt are equal to unity. The center of area of the output function, which is the first
moment about the origin, can be calculated as

m ′
y1 =

∞∫
−∞

t y(t)dt (A19)

Making use of the convolution integral (A11) one obtains
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m ′
y1 =

∞∫
−∞

t

∞∫
−∞

x(τ )u(t − τ )dτdt (A20)

Inversion of the order of integration, and substitution of s = t − τ , so that dt = ds,
changes Equation (A20) into

m ′
y1 =

∞∫
−∞

x(τ )dτ

∞∫
−∞

(τ + s) u(s)ds

=
∞∫

−∞
τ x(τ )dτ

∞∫
−∞

u(s)ds +
∞∫

−∞
x(τ )dτ

∞∫
−∞

s u(s)ds (A21)

Because the zeroth moments are equal to one, this yields the following relationship
between the first moments about the origin

m ′
y1 = m ′

x1 + m ′
u1 (A22)

The nth moment of the output y(t) about its center of area m ′
y1 can be written, after

substitution of the convolution integral (A11) and of (A22), as follows

myn =
∞∫

−∞

∞∫
−∞

(t − m ′
x1 − m ′

u1)n x(τ )u(t − τ )dτdt (A23)

Again, inverting the order of integration, and putting s = t − τ , so that dt = ds, one can
rewrite (A23) as

myn =
∞∫

−∞
x(τ )dτ

∞∫
−∞

[(τ − m ′
x1) + (s − m ′

u1)]nu(s)ds (A24)

The term with the square brackets can be expanded as follows

[(τ − m ′
x1) + (s − m ′

u1)]n = (τ − m ′
x1)n + n(τ − m ′

x1)n−1(s − m ′
u1)

+ n(n − 1)

2!
(τ − m ′

x1)n−2(s − m ′
u1)2 + · · · + (s − m ′

u1)n (A25)

This allows Equation (A24) to be written as

myn =
∞∫

−∞
x(τ )[(τ − m ′

x1)n + n(τ − m ′
x1)n−1mu1

+ n(n − 1)

2!
(τ − m ′

x1)n−2mu2 + · · · + mun]dτ (A26)
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from which one obtains the main result

my,n = mx,n + n mx,n−1mu,1 + n(n − 1)

2!
mx,n−2mu,2 + · · · + mu,n (A27)

The commas have been introduced in the subscripts in this expression merely for clarity
of notation. The first moments about the mean are zero; hence, for the smaller values of
n, which are the ones of practical importance, one obtains from (A27)

my2 = mx2 + mu2

my3 = mx3 + mu3 (A28)

my4 = mx4 + mu4 + 6mx2mu2

Equations (A22) and (A27) (or (A28)) are jointly sometimes referred to as the theorem of
moments; it was introduced in the hydrologic literature by Nash (1959) for the purpose
of deriving the moments of the unit response function from observed records of effective
rainfall and storm runoff.

A 3 T H E G E N E R A L R E S P O N S E O F A N O N L I N E A R S Y S T E M

The response of a nonlinear system can be described by a generalization of the convolu-
tion integral operation. This type of approach goes back to the work of Volterra (1913;
1959; also Barrett, 1963) who showed that a hereditary system can be described by a
convergent series of integrals,

y(t) = F(x = 0) +
t∫

−∞
u1(t, τ )x(τ )dτ

+ 1

2!

t∫
−∞

t∫
−∞

u2(t, τ1, τ2)x(τ1)x(τ2)dτ1dτ2+ · · ·

· · · + 1

n!

t∫
−∞

· · ·
t∫

−∞
un(t, τ1, . . . , τn)

n∏
i=1

x(τi )dτi + · · · (A29)

in which the ui ( ) terms are the kernels of the integrals and the subscripts indicate their
order. As before, y(t) and x(t) are the output and input of the system, as functions of
time. If the system does not generate any output, when the input is zero, the first term
on the right of (A29) can be omitted. Also, when the system is time invariant, it can be
shown that the kernels must be of the form u1(t, τ ) = u1(t − τ ), etc. The lower limit of
(A29) indicates that the system has an infinite memory. Thus, assuming that the system
has, first, no zero input response, second, time-invariant response characteristics, and
third, a finite memory m, one can rewrite Equation (A29) (by analogy with (A13)) as
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follows

y(t) =
t∫

t−m

x(τ ) u1(t − τ )dτ

+ 1

2!

t∫
t−m

t∫
t−m

x(τ1)x(τ2) u2(t − τ1, t − τ2)dτ1dτ2

+ 1

3!

t∫
t−m

t∫
t−m

t∫
t−m

x(τ1)x(τ2)x(τ3)

× u3(t − τ1, t − τ2, t − τ3)dτ1dτ2dτ3 + · · · (A30)

To facilitate numerical computations, one can replace τ by (t − τ ), etc., in (A30) to
obtain, as in (A15) (after absorbing the factorials in the kernels),

y(t) =
m∫

0

u1(τ )x(t − τ )dτ +
m∫

0

m∫
0

u2(τ1, τ2)x(t − τ1)x(t − τ2)dτ1dτ2

+
m∫

0

m∫
0

m∫
0

u3(τ1, τ2, τ3)x(t − τ1)x(t − τ2)x(t − τ3)dτ1dτ2dτ3 + · · · (A31)
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abrupt waves, see surges
advection–aridity approach 136–138

example of implementation 136–137
albedo 57, 63
anisotropy in porous materials 271–273

Darcy’s law 272
antecedent precipitation index 132, 345
aquifer 2, 249

confined 2
unconfined 2

atmospheric boundary layer 36–41
bulk similarity 50–55
general structure 38
similarity functions 42–55

atmospheric surface layer 39
neutral 43
with density stratification 46

baseflow
definition 2, 366
effect of evaporation 417
sources 416–418

baseflow, catchment-scale
parameterizations 416–431

aquifer slope effects 429–431
exponential decay process 418–420
geomorphic assumptions 422
recession rate analysis, in terms of basin

characteristics 422–424
recession rate analysis, of hydrograph

data 420–421
related to local aquifer outflows 416–418,

422
to derive aquifer parameters 424–429

basin 9
see also catchment

binomial distribution 522–523
Boltzmann transform

for desorption 349
for hydraulic groundwater outflow

392
for sorption 311–313

Boussinesq, correction coefficient 165
Boussinesq equation 384

linearized form 398–399
steady state form 385

Bowen ratio 122
bulk transfer method 119–121

capillarity, see surface tension
capillary barrier 456–457
capillary conductivity 274

calculation with conceptual models 282–287
determination 275–276
empirical functions 279–280
hysteresis 276

capillary rise 257, 259
capillary rise with evaporation 346–357

field applications 350–357
steady flow from water table 346–347
time compression approximation 352–354
unsteady drying as desorption process 347–350

capillary zone number 372, 377, 381
catchment 9
catchment-scale response parameterizations to

precipitation
linear non-stationary 498–500
linear stationary, see unit hydrograph and unit

response
nonlinear, stationary 493–498

celerity 176
characteristics, propagation of disturbances 179,

191, 201–202, 203–204
channel roughness (Gauckler–Manning) 172–173
Chézy equation 171
Chinook 91
cloud cover 61
conservation, equation of

energy 28
mass 14
mass and momentum in hydraulic groundwater

theory 382–385
mass and momentum in porous

materials 287–298
mass in hydraulic theory 163–164, 167
mean specific humidity 35
momentum 16
momentum in hydraulic theory 166, 167
water vapor 35

continuity, equation of
at a point 14
constant density fluid in rigid porous material 287



index 600

continuity, equation of (cont.)
finite control volume 15
in hydraulic theory 163–164, 167, 384
water, air and solid in deformable porous

material 290
convolution integral 593

causal, or non-anticipatory system 593
discrete formulations 473, 595
finite memory system 594
illustration of folding 594
moments 595–597
nonlinear (stationary) series 494, 597–598
non-stationary (linear) 499
regular (linear, stationary) 470

creeping flow 270, 277
in a tube (Hagen–Poiseuille) 271
with free surface

cyclone 83

Dalton number 41, 585
Darcy’s law

additional driving forces 279
at a point 268
dimensional basis for creeping flow 270–271
in a sand column 268
in anisotropic medium 272
in deformable materials with two immiscible

fluids 294
in hydraulic theory 382–383
in partly saturated materials 274
limitations for high flows 277–278
limitations for low flows 278–279

delta function (Dirac) 591–592
density

dry air 24
moist air 25
water 17
water vapor 24, 25

density function (probability) 510
depression storage 2
desorption

as model for field soil evaporation 349–357
boundary conditions 349, 392
solutions 349, 393

desorptivity
capillary 349
hydraulic 392

diffusion approximation of free surface
flow 184–189

advectivity 185, 186
advecitivity and kinematic wave celerity 186
and the Muskingum method 238
applicability 187
diffusivity 185, 186, 188–189

displacement height 43
distribution function (probability) 510

applications of theoretical functions 519–543
initial 531–532
parameter estimation 518
symmetrical 512
theoretical 517–518

double mass curve 96
drag coefficient 42
drainable porosity 378–379
drainage area 9

see also catchment
drought flow 3, 366
Dupuit formula 388

exactness of 388–389
dynamic sublayer 41, 43

eddy correlation 118
effective stress in soil 291, 295, 333
elastic porous material

case of constant vertical load 295–297
stresses and strains 288–293
stresses and strain rates of fluids 293–295

energy budget at the surface
diurnal self-preservation 138–142, 356–357
equation 55, 123
global long-term averages 6, 71
local examples 57
minor terms 70

energy budget method
for wet surfaces 125–128
for wet surfaces without advection 128–130
with Bowen ratio 124–125
with profiles of wind and scalar 125

equilibrium evaporation 129
as basis for empirical equations 129–130

evaporation
average values 4
climatology and examples 148–151
definition 3
maximal values 5
mechanisms 117
methodologies 117
operational methods 131–138

evaporation, daily from soil
as desorption processes 349, 351–352
disaggregation with diurnal

self-preservation 356–357
effect of vegetation 354
first and second stage of drying 348
two stages with time compression

approximation 352–354
evapotranspiration, definition 3
event water 445–447
expected value 512
extreme value distributions 531

asymptotic 532
first asymptote 531–535



index 601

generalized 538
third asymptote 535–538

extreme values 531–532

fair weather flow 3
Föhn 91
Forchheimer’s equation 278
free surface

approximation in unconfined aquifer 377–382
condition 161–162
condition in porous material 379–380, 381

free surface wave celerity
dynamic 176, 182, 220
kinematic 182, 184, 190–193
Lagrange’s 176, 220

frequency (relative) 509
frequency curve 514

see also probability plots (empirical)
friction slope 165, 167–173

effect of rain drop impact 169, 170
empirical equations 171–173
from similarity considerations 169–170

friction velocity 38
as related to friction slope 168

fronts
cold 82
occluded 85
warm 83

Froude number 170, 179, 199

gas constant (specific)
dry air 24
moist air 25
water vapor 25

Gauckler–Manning (GM) equation 172
generalized gamma distribution 528–529
generalized log-gamma distribution 530
geometric distribution 519–522
groundwater 2
groundwater advecitivity, hydraulic 409, 415, 456
groundwater diffusivity, hydraulic 399, 409

headwater basins 441–442
hillslope flow number (groundwater) 410
historical information on hydrologic data 543–546
hurricanes 90
hydraulic conductivity 268

effective values 274
empirical functions 279–280
in partly saturated materials 274

see also capillary conductivity
scale dependence 273–274
second-order tensor 272

hydraulic head in porous material 268
gradient 270, 294

hydraulic theory

assumptions in open channel flow 166
assumptions in unconfined aquifer 382, 384
groundwater flow 382–385
open channel flow 163–167
steady groundwater flow 385

hydrograph 2, 441
hydrologic analysis

methodologies 7
practical scope 2

hydrologic cycle
changes in 6
definition 2

hydrologic cycle, origins of the concept 557–586
Aristotle’s views 563–566
atmospheric 557, 558
Common Opinion 572
rainfall percolation theory 560–563

hydrologic data
inclusion of historical information 543–546
regionalization of flood data 546–550

hydrology, definition 1
hysteresis

effect of entrapped air 261
in soil water characteristic 259–267
independent domain 262–267

infiltration 2, 307–346
infiltration and other losses at catchment

scale 343–346
independent of rainfall 343–345
initial loss 344
proportional to rainfall intensity 345–346

infiltration capacity, local 308–310, 326–332
a closed-form solution 328–330
cumulative 313, 327
effects of air and soil variability 330–331
empirical expressions 331–332
horizontal, see sorption
rate 314, 327
scaling 315, 329
wetting front 315

infiltration, local rainfall 310, 332–343
boundary conditions 310
compression reference time 338
sharp wetting front approximation 334–337
time compression approximation 337–343
time to ponding 334–337

instability, conditional 91
instantaneous unit hydrograph (IUH) 470–471

related to S hydrograph 472
related to unit hydrograph 471
see also unit response at catchment scale

interception 2, 100–106
amounts 100, 104
empirical methods 105–106
evaporation 102
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interception (cont.)
loss 100
loss mechanisms 100–104
vegetation structure parameters 104

Karman constant, von 43
kinematic approach 18
kinematic flow number 199
kinematic wave approximation of free surface flow

celerity 190, 191, 415–416, 456
in unconfined sloping aquifer 415–416
linear case 192–193
linear kinematic channel 193, 491
overland flow 199, 201–210

Kleitz–Seddon law 191, 224

Laplace equation
as steady state form of Boussinesq equation 385
describing initial state at onset of drainage 374
for mass and momentum conservation in porous

materials 288
for surface tension 255–257

lapse rate
definition 30
dry adiabatic 30
saturated adiabatic 33

latent heat
CO2 fixation 57
fusion 27
sublimation 27, 57
vaporization 6, 27, 57

leaf area index 68, 69, 106
Leibniz formula 590
logarithmic profile

in free surface flow 169–170
in lower atmosphere 43–44

lognormal distribution 526
loss rate 343–346
lumped kinematic approach

definition 18
free surface flow in open channels 193–194
interception 103
overland flow 210–212
streamflow routing 224–241

lysimeter 147, 580

macropores 446, 579
mean 512
mean profile methods 121–123
median 513
mixed layer 39
mixing ratio 24
moments 511–513

adjustment with historical information 545–546
method of 518
regionalization for floods 550
theorem of 597

momentum equation
at a point 16
finite control volume 17
in hydraulic theory 166, 167

monoclinal rising wave 222–224
monsoons 89
Muskingum streamflow routing 224–241

adjustment for nonlinearity 240–241
conceptual derivation 224–228
estimation of parameters by calibration 232–236
estimation of parameters from channel

characteristics 236–241
implementation 229–232
numerical diffusion 236–238
storage function 225
time of travel 227
unit response function and moments 228–229

Muskingum–Cunge–Dooge method (MCD) 238
application 239–240

Navier–Stokes equation 16, 164
new water 447
nonlinear response parameterizations at catchment

scale
functional analysis with nonlinear

convolution 494, 597–598
physical rationale for nonlinear storage

elements 497–498
runoff routing with nonlinear storage

elements 495–497
normal distribution 523–526
normalized difference vegetation index (NDVI) 70

Obukhov length 46
occlusion 85
old water 447
overland flow 2, 161, 198–212, 443–446

as basis for design parameterizations 443
infiltration excess 443–444
kinematic wave 200, 201–210
lumped kinematic approach 210–212
occurrence 443, 444–446
saturation excess 444–446

overland flow, kinematic approach
recession hydrograph (steady inflow) 204–208
rising hydrograph (steady inflow) 202–204
short rainfall burst 208–209
time to steady equilibrium 204
unsteady lateral inflow 201–202

parameterization, definition 9
parameterizations (concise) of catchment unit

response 476–493
cascade of several storage elements 488–492
combinations of storage elements 486–492
kinematic channel 193, 491
rational method 477–479



index 603

single concentrated storage element 484
stochastic interpretations 492–493
tank models 486–492
translation in series with storage

element 483–486
translation with time–area function 480–482
with basin characteristics 476–477

parameters
effective 11, 274
requirements 11–12

Pearson Type III distribution, see generalized
gamma distribution

Penman approach 126
adjustment for atmospheric stability 128

percentiles 513
permeability (intrinsic)

definition 270
dimensional basis for creeping flow 270–271

permeameter 268
photosynthesis 70
plotting position 514–516

Weibull 515–516
pore

size 257
size distribution 257–259, 542
volume, see porosity

porosity 249
potential evaporation 130–131

apparent 131, 136
apparent as complement of actual

evaporation 136–138
of interception 102
Penman approach 126
proportional to actual evaporation 131–132
true 131–138

power law (or fractal) distribution 540–543
precipitation

areal average 92–95
average values 4
data for design 95, 97–99
data reliability 106–109
duration 97–99, 477–479
excess 343, 345, 443, 465
maximal values 5
measurement techniques 108
mechanisms 79–81
net 100
orographic effects 90–92
recycling 80
return period 97–99, 542
spatial distribution 95
temporal distribution 95–97
types 81–82

precipitation gages
minor losses 109
wind effect on catch 106

preciptiable water 23, 26

pre-event water 445, 447
preferential flow paths 446–448

capillary barrier 456–457
catchment experimental studies 448–454
fingering flows 448
fragipan cracks 447
shrinking clay soils 447

probability 509
probability (graph) paper 516–517
probability plots (empirical) 514–517

quantiles 513
estimation from basin characteristics

(floods) 547–550

radiation
extraterrestrial 61
long-wave 57, 63–66
net 57
short-wave 57, 58

rainfall
excess 343, 345, 443, 465
see also precipitation

random variable 509
continuous 510
discrete 509

rational method 345–346, 477–479
design duration of rainfall event 477–479
design intensity 479

recurrence interval
see return period

regionalization of flood data 546–550
quantiles from multiple regression with basin

characteristics 547–550
relative humidity 24
residence times 4, 23
return period 513–514

adjustment with historical information 544–545
Reynolds

analogy 44
equation 164
fluxes 35
stresses 164

Reynolds number 168
in porous material 277

Richards equation 288, 298
for flow in riparian aquifier 367
for infiltration 307

riparian aquifer outflow rate as function of time
for long times 398, 423
for short times 393, 422
from a hillslope 410–412, 413, 423
from linear horizontal aquifer 403, 405–406, 423

roughness (length)
for momentum 43, 45, 46
for sensible heat 44, 46
for water vapor 44, 46
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roughness (length) (cont.)
in free surface flow 170, 172
scalar 46

routing 216
runoff coefficient 345, 477
runoff, average values 4

S hydrograph 468–469
Saint Venant equations, see shallow water

equations
satiation 261
saturation

degree of 258
effective 258
residual degree of 258

scale, definition 9
scaling

atmospheric stability effects 46–55
capillary effects 372
catchment-scale baseflow 424
hillslope aquifer outflow 409, 410
linear aquifer outflow 400, 403
long-time aquifer outflow 395, 396
overland flow 199
short-time aquifer outflow 392
slope effects 409–410
steady-state aquifer outflow from rain 386
steady-state saturated aquifer outflow 376
unit- and S hydrograph 469–470

shallow water equations 163–164, 166, 167, 198
numerical solutions 212, 216
relative magnitude of terms 184
scaled for overland flow 199
steady flow 166
see also hydraulic theory (open channel flow)

shallow water equations, linearized
complete system 179–184
diffusion analogy 186–189
dynamic part 175–179
general form 174, 180
kinematic approach (quasi-steady-uniform

flow) 192–193
sheet flow, see overland flow
shock waves

dynamic, see surges
kinematic, see monoclinal rising wave

similarity, turbulence 41
bulk ABL 50–55
for turbulent fluxes 41
Monin–Obukhov 46–50
neutral surface layer 43

skew, coefficient of 512
soil heat flux

empirical methods 67–70
measurement 67

soil moisture 2

see also soil water
soil water characteristic 252

empirical functions 267–268
hysteresis 259–267

soil water content (volumetric) 251
residual 258

soil water diffusion formulation 276–277
for infiltration capacity 327
for rainfall infiltration 334
for sorption 311–315

soil water diffusivity 277
direct measurement 316–317
empirical functions 280–282, 323–325
for exact solution of sorption 317
of linearized soil 326

sorption, as description of infiltration capacity 308,
310–326

an exact solution 317–320
nearly exact solution for nonlinear soil 321–325
solution for linear soil 325–326
wetting front 315

sorptivity 314
role in infiltration capacity 328, 329

specific heat of air
for constant pressure 25, 29
for constant volume 25, 29

specific heat of water
ice 27
liquid 27

specific heat of water vapor 25, 29
squall line 83
stability of atmosphere 29–34
state, equation of 24–25
stemflow 100, 104
storage equation 15

vegetation canopy 101
see also lumped kinematic approach

storm runoff 3
mechanisms 443–457, 458
parameterization options 457–461
subsurface flows 2, 446

stream orders 441–442
sublimation, definition 3
sunshine duration 61
surface flux, specific

any passive admixture of the air 123
latent heat 6, 55
sensible heat 6, 37
water vapor 6, 36

surface resistance to evaporation 133–135
surface runoff 2
surface tension 255–257
surges 217–222

analysis 219–220
flood disasters 220–222
types 217–219
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temperature
potential 32
virtual 25
virtual potential 32

tensiometer 253
Terzaghi–Jacob equation 297–298
throughfall 100, 102
throughflow, in permeable soil layer 454–455
time of concentration 477–479
time of travel

Muskingum channel 227
time to ponding, during rain infiltration

334–337
scaling 336

time to saturation for interception 102, 103
time to steady equilibrium overland flow

kinematic wave 204
lumped kinematic approach 212

time, compression reference 338
example calculation 341
from correct time to ponding 339
from precipitation intensity 339–341

time–area function 480
transfer coefficients 41, 42
transpiration, definition 3
true velocity in porous materials 271
turbulent fluctuations 34
turbulent fluxes, see Reynolds fluxes and Reynolds

stresses
typhoons 90

unconfined riparian aquifers
boundary conditions 369–370
common assumptions 368–369
effective parameter functions 368
importance of capillary zone 370–373, 381
initial fully saturated state 373–376
similarity criteria 370–373
simplified geometry 368
unsteady flow in 366–376

unconfined riparian aquifers, steady hydraulic flow
from

as a result of uniform precipitation 385–387
between two parallel open channels

387–389
unconfined riparian aquifers, unsteady

hydraulic flow from
general boundary conditions 390
hillslope, lineralized case 408–413
incorporation of capillary zone 415
linearized case, horizontal bed 400–405
linearized formulation 398–400
long-time behavior 394–398
outflow rate in general 390
short-time behavior 390–394

unit hydrograph 465
direct determination from available data 472–476
instantaneous 470–471
limitations 466–468
parameterization with characteristics of ungaged

catchments 476–477, 493
rescaling 469–470
see also unit response at catchment scale

unit impulse 590–592
see also delta function

unit response 593
see also convolution integral

unit response at catchment scale
concise parameterizations 476–493
to calculate outflow in response to arbitrary

input 470–471, 473–474
see also unit hydrograph

unit response for different linearized channels
complete St Venant channel 181
diffusion channel 187
kinematic channel 193
Muskingum channel 228
purely dynamic channel 177

unit response for linear riparian aquifers
hillslope 413
horizontal bed 404

vadose zone 2
vapor pressure 24

saturation 27
variance 512
variance methods 119
variation, coefficient of 512
Vedernikov number 184
viscosity

water
Volterra series 494, 597–598

water budget
atmospheric at mesoscale 144–145
closure techniques at catchment scale 143
global scale 4
methods to estimate evaporation 117, 142–148
soil moisture profile at local scale 145–148
terrestrial at catchment scale 142–144

water table 2
watershed, see catchment
wave-like motion of water table 415–416, 455–456
weather systems with precipitation

extratropical convective 86–87
fronts 82–86
large-scale tropical convective 89
seasonal tropical 87–89

width function 482
construction 482
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