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Chapter 1
Theoretical Model of Magnetic Skyrmions

Abstract Skyrmions were originally proposed by Tony Skyrme in the 1960s to
account for the stability of hadrons in particle physics as a topological solution of
the non-linear sigma model. Bogdanov and his collaborators theoretically predicted
their realisation in chiral-lattice ferromagnets with finite Dzyaloshinskii–Moriya
interaction due to the lack of spatial inversion symmetry. In this chapter, an overview
of theoretical aspects of magnetic skyrmions is provided.

1.1 What Is a Skyrmion?

Keen competition among interactions in magnets often gives rise to non-collinear
or non-coplanar spin structures such as vortices, domain walls, bubbles and spirals.
These spin structures endow hosting materials with interesting physical properties
and useful device functions, which have attracted intense research interest from
viewpoints of fundamental science and technical applications. For example, domain
walls and vortices in metallic ferromagnets can be driven by spin-polarised electric
currents [1–3], and their application to magnetic storage devices such as race-track
memory is anticipated [4]. Magnetic spirals in insulating magnets often exhibit
rich magnetoelectric cross-correlation phenomena due to the coupling between
magnetism and electricity through the generation of ferroelectric polarisation via a
relativistic spin–orbit interaction [5–7]. In addition to these spin structures, magnetic
skyrmions, vortex-like swirling spin structures characterised by a quantised topo-
logical number, are attracting considerable research attention because it has turned
out that their peculiar response dynamics to external fields hold highly promising
properties with applications to spintronic device functions [8–10].

Skyrmions were originally proposed by Tony Skyrme in the 1960s to account for
the stability of hadrons as quantised topological defects in the three-dimensional
(3D) non-linear sigma model [11, 12]. They have now turned out to be highly
relevant to a spin structure in condensed-matter systems. A magnetic skyrmion
comprises spins pointing in all directions wrapping a sphere similar to a hedgehog,
as shown in Fig. 1.1a. The number of such wrappings corresponds to a topological
invariant, and thus, the skyrmion has topologically protected stability. It has been
found that skyrmions are indeed realised in quantum Hall ferromagnets [13, 14],

© Springer International Publishing Switzerland 2016
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in Physics, DOI 10.1007/978-3-319-24651-2_1
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2 1 Theoretical Model of Magnetic Skyrmions

Fig. 1.1 (a) Schematic of the original hedgehog-type skyrmion proposed by Tony Skyrme in
the 1960s, whose magnetisations point in all directions wrapping a sphere. (b) Schematic of the
helical state realised in chiral-lattice magnets as a consequence of the competition between the
Dzyaloshinskii–Moriya and ferromagnetic exchange interactions. (c) Schematic of a skyrmion
recently discovered in chiral-lattice magnets, which corresponds to a projection of the hedgehog-
type skyrmion on a two-dimensional (2D) plane. Its magnetisations also point in all directions
wrapping a sphere. (d) Schematic of the skyrmion crystal realised in chiral-lattice magnets under
an external magnetic field in which skyrmions are hexagonally packed to form a triangular lattice

ferromagnetic monolayers [15], doped layered antiferromagnets [16], liquid crys-
tals [17] and Bose–Einstein condensates [18]. Recently, the realisation of magnetic
skyrmions in chiral-lattice magnets was theoretically predicted [19–21] and later
experimentally discovered [6, 22].

1.2 Stabilisation of Magnetic Skyrmions

There are several mechanisms for skyrmion formation in magnets. One major
mechanism is the competition between the Dzyaloshinskii–Moriya and ferromag-
netic exchange interactions [19–21]. In chiral-lattice ferromagnets without spatial
inversion symmetry, such as B20 compounds (MnSi, FeGe, Fe1�xCoxSi) and copper
oxoselenite Cu2OSeO3, the Dzyaloshinskii–Moriya interaction, which originates
from the relativistic spin–orbit coupling, becomes finite [23, 24]. In a continuum
spin model, the Dzyaloshinskii–Moriya interaction is expressed by
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HDM /
Z

drM � .r � M/; (1.1)

where M is the classical magnetisation vector. This interaction alone favours a
rotating magnetisation alignment with a turn angle of 90ı and competes with
the ferromagnetic exchange interaction that favours a collinear ferromagnetic spin
alignment. As a result of their competition, a helical spin order with a uniform
turn angle shown in Fig. 1.1b is realised in the absence of an external magnetic
field [25–28]. On the application of a weak magnetic field, skyrmions appear as
vortex-like topological spin textures shown in Fig. 1.1c in a plane normal to the
field irrespective of field direction. In a skyrmion, magnetisations are parallel to
an applied magnetic field at its periphery but antiparallel at its centre. This spin
structure corresponds to a projection of the original hedgehog-type skyrmion on a
2D plane. The topological nature of this projected skyrmion is characterised by the
topological invariant

G D
Z

d2r

�
@ On
@x

� @ On
@y

�
� On; (1.2)

where On D M=jMj is the unit vector pointing in the direction of magnetisation. This
quantity is a sum of solid angles spanned by three neighbouring magnetisations; for
a single skyrmion, its value is given by 4�Q, with Q.D ˙1/ being the skyrmion
number. The sign of Q corresponds to that of magnetisation at the skyrmion core,
i.e. Q D C1 (Q D �1) for up (down) magnetisation at the core. Skyrmions
often form a hexagonal lattice, the so-called skyrmion crystal shown in Fig. 1.1d.
Magnetisations align ferromagnetically in a stacking direction to form rod-like
or tube-like structures. Typically, skyrmions in chiral-lattice ferromagnets are
3–100 nm in size, which is determined by the ratio of the Dzyaloshinskii–Moriya
interaction D to the ferromagnetic exchange interaction J.

Another major mechanism of skyrmion formation is the competition between
magnetic dipole interaction and easy-axis anisotropy [29–32]. In thin-film spec-
imens of ferromagnets with perpendicular easy-axis anisotropy, the anisotropy
favours out-of-plane magnetisations, whereas a long-range magnetic dipole interac-
tion favours in-plane magnetisations. Their competition results in a periodic stripe
with spins rotating in a thin-film plane. An application of a magnetic field normal
to the thin-film plane turns the stripe into a periodic arrangement of magnetic
bubbles or skyrmions. Skyrmions or bubbles of this origin tend to be large, typically
3–100 �m in size, which is orders of magnitude larger than skyrmions in chiral-
lattice ferromagnets. In addition to these two mechanisms, frustrated exchange
interactions [33] and four-ring exchange interactions [15] have been theoretically
proposed as origins of skyrmion formation. Skyrmions of these origins tend to be
atomically small.
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1.3 Model and Phase Diagrams

To describe the magnetism in MnSi as a prototypical chiral-lattice ferromagnet, the
continuum spin model that was proposed by Bak and Jensen in 1980 [34] is as
follows:

H D
Z

d3r

�
J

2a
.rM/2 C D

a2
M � .r � M/

� 1

a3
B � M

CA1

a3
.M4

x C M4
y C M4

z /

� A2

2a
Œ.rxMx/

2 C .ryMy/
2 C .rzMz/

2�

�
: (1.3)

The first and second terms represent the ferromagnetic exchange interaction (J > 0)
and the Dzyaloshinskii–Moriya interaction, respectively. The third term denotes the
Zeeman coupling to an external magnetic field B. The fourth and fifth terms are
magnetic anisotropies allowed by a cubic crystal symmetry, but they turn out to
play a minor role as far as realistically small values of A1 and A2 are considered.
Here, a is the lattice constant.

In Ref. [35], the stability of a skyrmion-crystal phase was theoretically studied
based on this model by writing the Ginzburg–Landau free energy functional near
Tc as

FŒM� D
Z

d3r
�
r0M2 C J.rM/2 C 2DM � .r � M/

CUM4 � B � M
�

: (1.4)

When a uniform component of magnetisation Muniform is induced by a magnetic
field, we obtain the term

X
q1;q2;q3

.Muniform � mq1 /.mq2 � mq3 /ı.q1 C q2 C q3/ (1.5)

from the quartic term in Eq. (1.4), where mq is the Fourier component of M.r/.
Wave vectors q1, q2 and q3 should have a fixed modulus determined by two
competing gradient terms, i.e. the ferromagnetic exchange term and Dzyaloshinskii–
Moriya term. In addition, the energy change should be proportional to Muniform � On
by symmetry, where On is a vector normal to the plane spanned by the three wave
vectors. Therefore, one can gain energy from this term for the skyrmion-crystal
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structure characterised as a superposition of three helices with equal pitch length,
equal chirality and a relative angle of 120ı propagating in the plane normal to a
magnetic field. Magnetisation in this structure is expressed by

M.r/ � Muniform C
3X

iD1

MQi.r C �ri/ (1.6)

where

MQi.r/ D A Œni1 cos.Qi � r/ C ni2 sin.Qi � r/� (1.7)

is the magnetisation of a single helix with amplitude A and Qi ��ri is its phase. Two
unit vectors, ni1 and ni2, are orthogonal to each other as well as to Qi. The three
wave vectors, Qi (i D 1; 2; 3), satisfy the relation

3X
iD1

Qi D 0: (1.8)

It is revealed that within the mean-field analysis of the Ginzburg–Landau theory,
the skyrmion-crystal phase is always higher in energy than the conical spin phase
with a propagation wave vector parallel to an applied magnetic field. The free energy
is given by

exp.�G/ D
Z

DMe�FŒM�; (1.9)

and G.B/ is equal to minFŒM� within the mean-field approximation. It is found that
the appropriate treatment of thermal fluctuations beyond the mean-field approxima-
tion is necessary to reproduce the skyrmion-crystal phase. Indeed, the incorporation
of the Gaussian thermal fluctuation turns out to reproduce the skyrmion-crystal
phase in a narrow window of temperature and magnetic field on the verge of a
paramagnetic-conical phase boundary. Here, the free energy is given by

G � FŒM0� C 1

2
log

"
det

�
ı2F

ıMıM

�
MDM0

#
(1.10)

where M0 is the mean-field spin configuration.
Although the skyrmion-crystal phase is rather unstable in a 3D model and in bulk

specimens, it turns out to have greater stability in a 2D system [36]. The continuum
model in two dimensions is given by
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H D
Z

d2r

�
J

2
.rM/2 C D

a
M � .r � M/

� 1

a2
B � M

CA1

a2
.M4

x C M4
y C M4

z /

�A2

2
Œ.rxMx/

2 C .ryMy/
2�

�
: (1.11)

Starting from this continuum model, we obtain a lattice spin model (i.e. a classical
Heisenberg model on a square lattice) by dividing the space into square meshes:

H D �J
X

i

mi � .miCOx C miCOy/

�D
X

i

.mi � miCOx � Ox C mi � miCOy � Oy/

�B �
X

i

mi

CA1

X
i

Œ.mx
i /

4 C .my
i /

4 C .mz
i /

4�

�A2

X
i

.mx
i mx

iCOx C my
i m

y
iCOy/; (1.12)

where Ox and Oy are bond vectors on the square lattice. Here, mi is a classical
vector with a constant norm of jmij D m, which represents magnetisation at the
ith lattice site occupying an area of a2. As far as magnetic structures with long
spatial modulation, such as helices and skyrmions, are considered, influence from a
background lattice structure becomes negligible, which justifies the simple meshing
of space into squares without considering real complicated crystal structures.

For slowly varying magnetic orders, we can regard an assembly of magnetisa-
tions in a larger area of .xa/2 as a coarse-grained magnetic unit. When one represents
this magnetic unit as mi with a norm of jmij D m, model parameters (J, D, Bz,
A1, A2) given by Eq. (1.12) should be rescaled as (J, xD, x2Bz, x2A1, A2) so as to
make the energy scale unchanged. A Monte-Carlo analysis of this lattice spin model
reveals a rich phase diagram at T D 0, as shown in Fig. 1.2, which includes not only
a hexagonal skyrmion-crystal phase but also various phases of unusual magnetic
patterns [36].

Figure 1.3 displays a phase diagram in plane of temperature and magnetic field
(a T-B phase diagram) obtained by Monte-Carlo calculations for this 2D lattice
spin model without anisotropy terms (A1 D 0 and A2 D 0) [22]. We find that the
skyrmion-crystal phase occupies a wide region in the phase diagram and occurs
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Fig. 1.2 Theoretical phase diagram in the plane of the anisotropy A2 and the magnetic field B at
T D 0 for the 2D classical Heisenberg model given by Eq. (1.12) with B D (0, 0, B) obtained by
Monte-Carlo calculations. The calculations are performed for a system with 18 � 18 sites with a
periodic boundary condition. Parameters are set to be J D 1, D D p

6, A1 D 0:5 and m D 1. Sk1
is a triangular skyrmion-crystal phase, whereas Sk2 and Sk3 are different types of skyrmion-crystal
phases. HL and FM denote helical and field-polarised ferromagnetic phases, respectively

even down to very low temperatures. Moreover, it turns out that the skyrmion-crystal
phase emerges even at T D 0. The zero-temperature phase diagram as a function
of magnetic field B was obtained by a combination of Monte-Carlo technique and
Landau–Lifshitz–Gilbert simulation (see Fig. 1.4), in which the skyrmion-crystal
phase emerges in the range of moderate field strength sandwiched between helical
and ferromagnetic phases. In the absence of a magnetic field, a helical order
with a propagating wave vector Q confined within the plane occurs. Spins in this
state are rotating in a plane perpendicular to Q to form a proper screw structure.
As Bz increases, this helical state turns into a triangular skyrmion-crystal state.
As Bz further increases, a field-polarised ferromagnetic order, in which all spins
point parallel to B, occurs. This phase diagram reproduces experimental phase
diagrams for thin-film samples of MnSi and Cu2OSeO3. We can indeed find that
these three phases successively appear in the experimental B-T phase diagram along
a vertical line at the lowest temperature.

The enhanced stability of the skyrmion-crystal phase in the 2D system can be
understood as follows: when the magnetic field B is applied to a 3D system, the
conical order with propagating wave vector Q k B and net magnetisation M k B
becomes stabilised. However, spins can no longer rotate to form a conical order
in the 2D system when B is applied normal to the plane. As a result, the skyrmion-
crystal phase attains relative stability against the conical state. Such a destabilisation
of the conical state occurs not only in a pure 2D system but also in thin-film systems
with thicknesses less than the helical wavelength. This prediction is confirmed by
the real-space observation of a triangular skyrmion crystal in Fe0:5Co0:5Si specimens
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Fig. 1.3 Theoretical phase diagram in the plane of temperature and magnetic field B for the 2D
classical Heisenberg model given by Eq. (1.12) with A1 D 0, A2 D 0 and B D (0, 0, B) obtained
by Monte-Carlo calculations, in which the phase change of a spin texture is represented by the
contour mapping of skyrmion density. H, helical structure; SkX, skyrmion-crystal structure; FM,
ferromagnetic structure. FM+SkX and H+SkX denote coexistences of the two magnetic structures
(Reproduced from Ref. [22])

of conventional film thickness (several tens of nanometres) using the Lorentz force
microscopy in a wide temperature and magnetic field range [22].

Modulation periods of helical and skyrmion-crystal structures are determined by
the ratio D=J, i.e. the Dzyaloshinskii–Moriya interaction to ferromagnetic exchange
interaction. Writing the energy as a function of the turn angle � in the helical
structure, we obtain the relation from the saddle-point equation as follows:

Dp
2J

D tan � D tan.2�=�m/; (1.13)

where �m is the pitch length of the helix in units of the lattice constant. For
example, �m takes �100 sites for jD=Jj D 0:09 and �35 sites for jD=Jj D 0:27;
if one assumes a typical lattice constant of 5 Å, these pitch lengths correspond to
50 and 17.5 nm, respectively, which reproduce those in Cu2OSeO3 (�m D 50 nm)
and MnSi (�m D 18 nm). On the other hand, the period of the skyrmion crystal is
approximately 2=

p
3 times as long as that of the helix.
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0.231 0.778 BJ/D 2

Fig. 1.4 Theoretical phase diagram as a function of magnetic field B at T D 0 for the 2D classical
Heisenberg model given by Eq. (1.12) with A1 D 0, A2 D 0 and B D (0, 0, B) obtained by a
combination of Monte-Carlo technique and Landau–Lifshitz–Gilbert simulation. The hexagonal
skyrmion-crystal phase emerges in a moderate field strength region sandwiched between helical
and field-polarised ferromagnetic phases (Reproduced from Ref. [37])

A lattice spin model in three dimensions is also studied. After dividing the space
into cubic meshes, we obtain a classical Heisenberg model on the cubic lattice from
the continuum model:

H D �J
X

i

mi � .miCOx C miCOy C miCOz/

�D
X

i

.mi � miCOx � Ox C mi � miCOy � Oy C mi � miCOz � Oz/

�B �
X

i

mi

CA1

X
i

Œ.mx
i /

4 C .my
i /

4 C .mz
i /

4�

�A2

X
i

.mx
i mx

iCOx C my
i my

iCOy C mz
i m

z
iCOz/: (1.14)

In the case of three dimensions, model parameters (J, D, Bz, A1 and A2)
Eq. (1.14) should be rescaled by (xJ, x2D, x3Bz, x3A1 and xA2) when one represents
an assembly of magnetisations in a larger volume of .xa/3 with coarse-grained
magnetisation mi. This 3D lattice model with A1 D 0 and A2 D 0 is analysed using
Monte-Carlo technique to examine the phase diagram in the temperature–magnetic
field plane [38]. The obtained phase diagram is displayed in the inset of Fig. 1.5. In
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Fig. 1.5 Theoretical phase diagram in the temperature–magnetic field plane obtained by Monte-
Carlo calculations for the 3D classical Heisenberg model, in which further neighbour interactions
J0 and D0 are added to the model given in Eq. (1.14) so as to compensate for induced anisotropies
due to spatial discretisation. The calculations are performed for a system with 30 � 30 � 30 sites
with a periodic boundary condition with A1 D 0, A2 D 0 and B D (0, 0, B). Parameters are set to
be J D 1, D D 0:727, J0 D J=16, D0 D D=8 and m D 1. We find that the skyrmion-crystal phase
exists only in a small window near a conical-paramagnetic phase diagram, which is in agreement
with experiments. The inset shows a theoretical phase diagram for a 3D lattice spin model without
anisotropy compensation. Conditions for the calculations are equivalent to those for the above case
except that J0 D 0 and D0 D 0. We find that the skyrmion-crystal phase remains even down to
T ! 0, which contradicts the experimental results (Reproduced from Ref. [38])

the simulations, the ratio D=J is fixed at D=J � 0:727, which gives a pitch length of
�10 lattice sites in the helical phase. The simulation is performed for a system with
N D 30 � 30 � 30 sites, with a periodic boundary condition where nine skyrmion
tubes are hexagonally packed into the obtained skyrmion-crystal phase. Apparently,
there is a discrepancy between this theoretical phase diagram and the experimental
ones for the bulk specimens of MnSi and Cu2OSeO3, as shown in Fig. 1.6a and c.
Experimentally, the skyrmion-crystal phase in the bulk specimens appears only at
finite temperatures on the verge of a paramagnetic-helical phase boundary. In turn,
the skyrmion phase remains stable even for T ! 0 in the theoretical phase diagram
shown in the inset of Fig. 1.5.

In Ref. [38], this discrepancy was attributed to the finite-size effect or
anisotropies due to the discretisation of the continuum model. The ferromagnetic
exchange term and Dzyaloshinskii–Moriya term in Eq. (1.14) on the cubic lattice
after Fourier transformation read
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Fig. 1.6 Experimental phase diagrams in the temperature–magnetic field plane for (a) a bulk
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where

˛k D J
�
cos.kxa/ C cos.kya/ C cos.kza/

	

D �3J C a2J

2
.k2

x C k2
y C k2

z /

�a4J

24
.k4

x C k4
y C k4

z / C O.k6/; (1.16)

ˇ�k D �D sin.k� a/ D �aDk� C a3D

6
k3

� C O.k5/: (1.17)

These expressions contain terms of higher order in momentum. In contrast, the
Fourier transform of the ferromagnetic exchange term in the continuum model con-
tains only quadratic terms, whereas that of the Dzyaloshinskii–Moriya term contains
only a linear term. For magnetic orders with finite wave vectors, contributions of
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higher-order terms are not negligible in a lattice model, and we need to add further
neighbour interactions H 0 to the Hamiltonian so as to compensate for induced
anisotropies and to achieve better approximation to the continuum model without
breaking symmetries of an underlying system. The term H 0 is given by

H 0 D J0X
i

mi � .miC2Ox C miC2Oy C miC2Oz/

CD0X
i

.mi � miC2Ox � Ox C mi � miC2Oy � Oy C mi � miC2Oz � Oz/: (1.18)

Consequently, the full ˛k and ˇ�k are respectively given by

˛k D �3.J � J0/ C a2

2

�
J � 4J0	 .k2

x C k2
y C k2

z /

� a4

24

�
J � 16J0	 .k4

x C k4
y C k4

z / C O.k6/; (1.19)

ˇ�k D �a.D � 2D0/k� C a3

6
.D � 8D0/k3

� C O.k5/: (1.20)

These expressions indicate that anisotropies can be compensated by selecting
J0 D J=16 and D0 D D=8. A Monte-Carlo simulation of this anisotropy-
compensated lattice spin model successfully reproduces a phase diagram with a tiny
skyrmion-crystal phase, as shown in Fig. 1.5, which is in excellent agreement with
the experimental phase diagrams for bulk specimens.
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Chapter 2
Observation of Skyrmions in Magnetic Materials

Abstract Experimentally, skyrmion spin textures are observed in various magnetic
systems with distinctive characteristics. In this chapter, some typical material
environments, i.e. (1) non-centrosymmetric ferromagnets, (2) centrosymmetric
ferromagnets with uniaxial anisotropy and (3) surface/interface of ferromagnetic
monolayers, are introduced for realising skyrmion spin textures. (1) and (3) are
systems with broken space-inversion symmetry, and thus, the Dzyaloshinskii–
Moriya interaction is active and serves as a key source for stabilising skyrmion
spin textures. For (2), in contrast, the breaking of space-inversion symmetry is
not relevant, but an interplay between the dipole–dipole interaction and magnetic
anisotropies is important for the realisation of magnetic skyrmions. In all cases,
the typical size of a magnetic skyrmion ranges from sub-micrometre to nanometre,
which implies that specific experimental techniques are required to identify the
emergence of skyrmion spin textures directly.

2.1 Skyrmions in Non-centrosymmetric Magnets

We first introduce skyrmions in non-centrosymmetric ferromagnets [1–3]. In such
environments with broken space-inversion symmetry, the Dzyaloshinskii–Moriya
interaction favouring a canted spin arrangement becomes active [4, 5] and often
stabilises a modulated spin texture. In this class of materials, all experimental reports
of skyrmion formation have been made for chiral cubic ferro/ferrimagnets thus
far. In Fig. 2.1, two material systems hosting skyrmion spin textures are indicated.
One representative example is a series of metallic or semiconducting materials
called B20 alloys (such as MnSi [6–10], Fe1�xCoxSi [11–14], FeGe [15] and
Mn1�xFexGe [16, 17]), which have a common lattice form, as shown in Fig. 2.1a.
They are usually characterised by an itinerant ferromagnetic exchange interaction.
Another example is insulating Cu2OSeO3 [19–22]. This material contains two
distinctive magnetic Cu2C (S D 1=2) sites, as shown in Fig. 2.1b, and shows a
local ferrimagnetic spin arrangement between them. These two systems belong to
the same chiral cubic space group P213, indicating that the global symmetry or
the overall nature of the Dzyaloshinskii–Moriya interaction is common between
them. In both cases, their magnetic interactions consist of three hierarchical energy
scales [23]. The strongest is the ferromagnetic or ferrimagnetic exchange interaction

© Springer International Publishing Switzerland 2016
S. Seki, M. Mochizuki, Skyrmions in Magnetic Materials, SpringerBriefs
in Physics, DOI 10.1007/978-3-319-24651-2_2

15



16 2 Observation of Skyrmions in Magnetic Materials

Se

O Cu

a

b
c

a

b
c

Mn

Sia b

c d

e f

Fig. 2.1 (a), (b) Crystalline structures of (a) MnSi and (b) Cu2OSeO3, both of which belong to
the chiral cubic space group P213. (c), (d) Temperature versus magnetic field phase diagrams for
bulk samples of (c) MnSi and (d) Cu2OSeO3. Because of the isotropic nature of a cubic lattice,
similar magnetic phase diagrams can be obtained for any direction of B. (e) Development of a
helical spin texture characterised by a single magnetic modulation vector q as a function of an
applied magnetic field B. (f) Schematic of a triangular lattice of skyrmions (i.e. skyrmion crystal)
found for the above-mentioned materials, which is characterised by triple magnetic modulation
vectors qn (n D 1; 2; 3) within a plane normal to the B direction. Background colour indicates the
out-of-plane component of local magnetisation mz. Local magnetisation at the core (edge) of each
skyrmion is anti-parallel (parallel) to the B direction (Reproduced from (c) Ref. [6] and (d)–(f)
Ref. [19])

favouring a collinear spin arrangement, which is followed by the Dzyaloshinskii–
Moriya interaction giving rise to a long-period modulation of spin texture. Magnetic
anisotropy is relatively weak as compared with the above two interactions but still
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plays an important role in determining the spin modulation direction. Because
the two systems are characterised by similar magnetic phase diagrams shown in
Fig. 2.1c, d, we focus initially on the case of B20 alloys.

Figure 2.1c shows the phase diagram for a bulk sample of MnSi in the
temperature (T)–magnetic field (B) plane [6]. Below the magnetic ordering temper-
ature Tc � 29 K without an applied magnetic field, a helical spin order characterised
by a single magnetic modulation vector q shown in Fig. 2.1e is stabilised as a result
of the competition between the ferromagnetic exchange and Dzyaloshinskii–Moriya
interactions. The favourable q direction is determined by magnetic anisotropy, and
multiple equivalent helimagnetic q domains coexist because of the original cubic
lattice symmetry. The period of the helical spin modulation � � 190 Å is much
larger than the crystallographic lattice constant a � 4:56 Å, implying a rather weak
coupling of magnetic and atomic structures. The application of a magnetic field
leads to a single-domain helical spin state so as to satisfy the relation B k q because
anti-ferromagnetically aligned spins favour lying normal to an external B. Here,
a helical spin texture has a uniform magnetisation component along an applied B
direction and thus can be considered to be conical. A further increase of the applied
B realises a forced ferromagnetic state, as shown in Fig. 2.1e.

Another distinctive magnetic phase, the so-called ‘A phase’, has also been
identified in a narrow B–T region just below Tc with a moderate magnitude of
B, which causes anomalies in several macroscopic properties such as magnetic
susceptibility, magnetoresistance [24], electronic spin resonance [25] and ultra-
sonic absorption [26]. While the spin texture in this A phase remained unresolved
for several decades, Pfleiderer and co-authors revealed skyrmion lattice formation
via small-angle neutron-scattering (SANS) experiments in 2009 [6]. In this method,
an incident neutron beam was scattered by a sample and magnetic Bragg reflections
within a reciprocal plane normal to the neutron-incident direction could be detected
(see Fig. 2.2c). Figure 2.2a and b indicate the typical SANS data recorded for the
magnetic A phase. Six-fold magnetic Bragg reflections always appear within a
plane normal to B irrespective of the B direction. On the basis of these data, the
spin texture m.r/ described by the summation of three magnetic helices

m.r/ / ezMf C
3X

aD1

Œez cos.qa � r C �a/ C ea sin.qa � r C �a/�; (2.1)

was proposed. qa denotes one of the three magnetic modulation vectors normal to
B, which forms an angle of 120ı with respect to one another. ez is a unit vector
parallel to B, and ea is a unit vector orthogonal to both ez and qa, defined such that
all qa � .ez � ea/ have the same sign. Mf scales with the relative magnitude of net
magnetisation along the B direction. When the phase shift of each of the magnetic
helices �a takes some specific value, the spin texture of Eq. (2.1) can be considered
to be a triangular lattice of skyrmions, i.e. the skyrmion crystal (SkX) shown in
Fig. 2.1f. Combined with an additional theoretical calculation of free energy as
well as the observation of the topological Hall effect [27], the formation of such
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Fig. 2.2 Results of small-angle neutron-scattering (SANS) measurements performed at the
magnetic A phase of bulk MnSi under a magnetic field (a) normal and (b) parallel to an observation
plane. The background colour indicates the intensity of magnetic Bragg reflections at each point of
reciprocal space. (c) Schematic of the experimental setup for the SANS experiment (Reproduced
from Ref. [6])

a skyrmion crystal has been established for the A phase of bulk MnSi. Note that
theories also predict that thermal fluctuation is essential for stabilising the skyrmion
crystal state over a helical spin state in a chiral cubic ferromagnet (Sect. 1.3), which
explains why a skyrmion crystal appears only in a limited temperature range just
below Tc.

This breakthrough finding in the bulk sample is further followed by a real-space
observation of a skyrmion crystal in thin-plate-shaped samples [12]. For this pur-
pose, the Lorentz transmission electron microscopy (LTEM) technique is employed.
When an electron beam passes through a magnetic material, each electron slightly
changes its propagation direction as it experiences Lorentz force from local
magnetisations in the sample. As a result, by taking over- and under-focused images
and performing some additional numerical analysis (solving the magnetic transport-
of-intensity equation (TIE)), we can obtain the real-space distribution of in-plane
components of local magnetisations [28]. Figure 2.3a–f indicate the LTEM data
taken for a Fe1�xCoxSi (x D 0:5) single crystal with a thickness of several tens
of nanometres [12]. Here, the thin-plate-shaped sample is prepared by thinning a



2.1 Skyrmions in Non-centrosymmetric Magnets 19

H + SkX

FM + SkX

60

80

40

20

10 20 30 40

T (K)

5 15 25 35

SkX

H

SkX FM + SkXH + SkX

a b c

d e f

g

F
M

S
kX

H

60
0

120
60

FM
Experimental

100 nm

100

0

B
 (

m
T

)

50 mT 70 mT20 mT

0

90 nm 90 nm 30 nm

Fig. 2.3 Lorentz transmission electron microscopy (LTEM) data for Fe0:5Co0:5Si with a thickness
of several tens of nanometres. (a)–(c) Experimentally observed real-space images of lateral
magnetisation distributions obtained through the transport-of-intensity equation (TIE) analysis of
LTEM data: (a) Helical spin structure with H D 0, (b) skyrmion crystal structure for H D 50 mT
applied normal to a thin plate and (c) a magnified view of (b). The colour map and white arrows
represent magnetisation direction at each point. (d)–(f) Magnetic field dependence of LTEM
(overfocus) images. (g) Temperature versus magnetic field phase diagram, where H, SkX and
FM denote helical, skyrmion crystal and ferromagnetic spin states, respectively. The colour bar
indicates skyrmion density per 10�12 m2 (Reproduced from Ref. [12])
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Fig. 2.4 LTEM data for FeGe with a thickness of several tens of nanometres. (a) Crystal structure,
magnetic moment configurations of helical order, in-plane magnetic moment configuration of
skyrmions when an external magnetic field B is applied downward and the corresponding over-
focused LTEM images for left- and right-handed crystals. (b) Lateral magnetisation distribution
and (c) under-focused image of the skyrmion crystal state obtained by LTEM observation at the
boundary of left- and right-handed crystallographic domains. (d) Sample thickness dependence of
temperature versus magnetic field phase diagram, where H, SkX and FM denote helical, skyrmion
crystal and ferromagnetic spin states, respectively. The background colour indicates skyrmion
density (Reproduced from (a) Ref. [16] and (b)–(d) Ref. [15])

bulk single crystal to obtain an observable amount of electron transmission, and a
magnetic field is applied normal to the sample plane. Real-space images of lateral
magnetisation distributions in helical (B D 0) and skyrmion crystal (B D 50 mT)
states are shown in Fig. 2.3a, b, respectively. Consistent with the previous SANS
data and the proposed spin texture shown in Fig. 2.1f, skyrmions form a triangular
lattice. Here, the spin helicity, i.e. the clockwise or counter-clockwise manner of
spin rotation, is fixed by the chirality of an underlying crystal via the sign of the
Dzyaloshinskii–Moriya interaction in both magnetic states.

When the spin helicity changes sign, grey-scale contrasts in over- and under-
focused images are reversed, as shown in Fig. 2.4a. Figure 2.4b, c indicate lateral
magnetisation distributions as well as under-focused LTEM images obtained around
the boundary between two opposite chiral crystallographic domains in FeGe. The
spin helicity or the grey-scale contrast in under-focused images of skyrmions is
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clearly reversed for the opposite chiral crystallographic domain, which experimen-
tally confirms the coupling between spin helicity and crystallographic chirality.
The LTEM technique can also capture formation and annihilation processes of
skyrmions, as shown in Fig. 2.3d–f. At the phase boundary between ferromagnetic
and skyrmion crystal states, a magnetic skyrmion can exist as an independent defect
rather than a crystallised form, as shown in Fig. 2.3f. Figure 2.3g summarises the
B–T phase diagram for the thin-plate-shaped single crystal of Fe1�xCoxSi (x D 0:5).
Here, the skyrmion crystal state is stabilised down to the lowest temperature, which
is in sharp contrast with the case for the bulk crystal shown in Fig. 2.1c where
skyrmions appear only in a narrow temperature range just below Tc. This finding
demonstrates that the stability of a skyrmion state essentially depends on the
dimension or sample thickness of the system. Such a tendency is more clearly
observed in the sample thickness t dependence of B–T phase diagrams for FeGe,
as shown in Fig. 2.4d. The skyrmion crystal state is stable in a relatively wide
B–T region for t � 15 nm, whereas it gradually shrinks for larger t and finally
turns into a narrow magnetic A phase in a bulk limit [15]. When a magnetic
field is applied normal to the sample plane, the helical spin order with q k B
can no longer be stabilised given that the sample thickness is smaller than the
helimagnetic modulation period. Such destabilisation of the helical spin state leads
to the relative stabilisation of the competing skyrmion crystal state in the thin-plate-
shaped sample; the possible relevance of additional uniaxial strain has also been
proposed [29].

Similar magnetic phase diagrams and their sample thickness dependences are
commonly observed for other B20 alloys. Despite many differences in atomic
arrangement, Cu2OSeO3 can also be regarded as an insulating analogue of B20
alloys by considering the similarity in the crystal symmetry and magnetic phase
diagram characterised by a narrow A phase (skyrmion crystal state) just below
Tc (Fig. 2.1d). This implies that chiral-lattice cubic ferro/ferrimagnets may ubiq-
uitously host skyrmion spin texture regardless of their metallic or insulating
nature. The list of materials showing a skyrmion spin texture is summarised in
Table 2.1. Depending on the material, various magnetic transition temperatures
(up to Tc � 280 K for FeGe) and helimagnetic modulation periods (ranging from
3 nm (MnGe) to 200 nm (Fe1�xCoxSi)) have been reported. Note that theories
predict that a skyrmion crystal can be stabilised down to T D 0 in the case of
uniaxial non-centrosymmetric ferromagnets [1] and the emergence of magnetic
skyrmions in non-centrosymmetric anti-ferromagnets has also been discussed [30].
Because various unique forms of magnetic skyrmions with different spin textures
have been proposed for these systems [31], further searches for new materials and
the establishment of a material design strategy are highly anticipated.

In addition to SANS for bulk samples and LTEM for thin-plate samples, the
magnetic force microscopy (MFM) technique can be employed for the real-space
imaging of spin textures at the surface of bulk magnetic materials with typical spatial
resolutions of �20 nm [14]. Figure 2.5a, b indicate the real-space distribution of
vertical magnetisation components obtained by MFM measurement under various
magnitudes of a magnetic field along the out-of-plane direction for Fe1�xCoxSi
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Table 2.1 List of materials hosting skyrmion spin texture. Magnetic ordering temperature Tc and
spin modulation period �m are also indicated

Category Material Tc (K) �m (nm) Conductivity Ref.

Chiral-lattice ferromagnets MnSi 30 18 Metal [6, 10]

Fe1�xCoxSi <36 40 � 230 Semiconductor [11, 12]

MnGe 170 3 Metal [18]

FeGe 278 70 Metal [15]

Cu2OSeO3 59 62 Insulator [19, 22]

Centrosymmetric Y3Fe5O12 560 >500 Insulator [32]

ferromagnets RFeO3 >600 >100;000 Insulator [32]

BaFe11:79Sc0:16Mg0:05O19 >300 200 Insulator [40]

La1:37Sr1:63Mn2O7 100 160 Insulator [41]

Interface Fe/Ir(111) .>300/ 1 Metal [43]

FePd/Ir(111) .>300/ 7 Metal [44]

(x D 0.5). The triangular lattice of skyrmions is observed at H D 20 mT, and they
gradually turn into a helical spin texture when B is reduced. In this process, two
skyrmions appear to merge into a single elongated skyrmion. The corresponding
Monte-Carlo simulation suggests that the original spin texture in the skyrmion
crystal state is rod-like (i.e. almost uniform along the applied B direction), as
shown in Fig. 2.5c, and the transition into the helical spin state is accompanied
by the merging of two skyrmion lines (Fig. 2.5d). Because this causes a change
of the topological winding number, hedgehog-like point defects with finite winding
number (˙1) will always appear at a merging point. Thus, the observed merger of
skyrmions in MFM measurements implies that such defects pass through the sample
surface. This topological point defect can be considered to be an emergent magnetic
monopole or anti-monopole and will have profound effects on the dynamics of
associated conduction electrons.

2.2 Skyrmions in Centrosymmetric Magnets

Next, we discuss skyrmions in centrosymmetric ferromagnets with easy-axis
anisotropy [33–37]. Here, the Dzyaloshinskii–Moriya interaction is no longer
relevant, and an interplay between a magnetic dipole–dipole interaction and
uniaxial magnetic anisotropy causes the formation of a skyrmion spin texture.
In conventional ferromagnets, the exchange interaction favours a uniform
spin alignment, whereas the dipole–dipole interaction favours closed loops of
magnetisation alignment. Combined with magnetic anisotropy, such competition
leads to the formation of a rich variety of magnetic domain structures. When
ferromagnetic domains with ˙M magnetisations are separated by a domain wall
parallel to the M axis (180ı domain wall), two main types of spin textures can
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Fig. 2.5 Typical magnetic force microscopy data at the surface of Fe1�xCoxSi (x D 0:5). Blue
(red) colours correspond to magnetisation pointing parallel (anti-parallel) to the line of sight into
(out of) the surface. (a) Data recorded as a function of a magnetic field after field cooling at
C20 mT down to T D 10 K. Panel (A1) displays data immediately after field cooling. After
the initial cool down, the field is reduced at a fixed temperature of 10 K (A2–A5). During this
process, skyrmions, visible as blue spots, merge and form elongated line-like structures. The left
inset shows the Fourier transform of a real-space signal. Magnified images at corresponding field
strengths are also shown in (b). (c) Typical spin configuration of a skyrmion lattice obtained by
Monte Carlo simulation. (d) Sketch of a magnetic configuration describing the merging of two
skyrmions. Magnetisation vanishes at a singular merging point. This defect can be interpreted as
an emergent magnetic anti-monopole, which acts similar to the slider of a zipper connecting two
skyrmion lines (Reproduced from Ref. [14])

emerge in a domain wall region. Magnetic moments generally show a screw-like
continuous rotation within a plane parallel to the domain wall, and this type of
domain wall is called a ‘Bloch wall’ (Fig. 2.6a). In contrast, magnetic anisotropy
often stabilises the cycloidal continuous rotation of magnetic moments within a
plane normal to the domain wall, and this type is called a ‘Néel wall’ (Fig. 2.6b).
Because clockwise and anti-clockwise manners of spin rotations are degenerated in
centrosymmetric magnets, two types of spin helicities can randomly occur for each
type of magnetic domain wall.
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Fig. 2.6 Schematic of spin configurations at a ferromagnetic domain wall: (a) Bloch wall and
(b) Néel wall, where spins rotate within a plane parallel and normal to the domain wall plane,
respectively. (c) Magnetic bubble domain and its variation with different spin configurations at
a domain wall region: (d) Soft bubble and (e) hard bubble. (f) and (g) Lateral magnetisation
distribution obtained by LTEM observation for Sc-doped barium hexaferrite: (f) Stripe-like
ferromagnetic domains and (g) bubble domains. The background colour indicates the direction
of lateral magnetisation, and the numbers ˙1 and 0 indicate the soft bubbles with clockwise or
counter-clockwise spin rotation and the hard bubble, respectively (Reproduced from Ref. [39])

When a thin epitaxial layer of a ferromagnet has sufficiently large easy-axis mag-
netic anisotropy perpendicular to a film plane, the application of B normal to the film
leads to the formation of a cylindrical ferromagnetic domain, as shown in Fig. 2.6c,
which is called a ‘magnetic bubble’. Here, the magnetisation direction at the inside
(outside) of the bubble is anti-parallel (parallel) to the B direction, and thus, the
boundary of a magnetic bubble consists of 180ı domain walls. When a domain
wall consists of a Bloch wall and its spin helicity is sustained throughout the
cylindrical domain wall region, as shown in Fig. 2.6d, this magnetic bubble is called
a ‘soft bubble’ and can be considered to be a type of skyrmion spin texture with a
topological skyrmion number of �1. Here, unlike the case for skyrmions in chiral-
lattice magnets in which the spin helicity is fixed by the crystallographic chirality,
skyrmions or soft bubbles in centrosymmetric ferromagnets can have either type of
spin helicity at random [38]. Under the spatial gradient of an external magnetic field,
soft bubbles can be moved along the field gradient direction. Combined with the
topological stability of these bubbles, the existence/absence of a magnetic bubble
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at a specific position can be used as information in a 0/1 bit. Such a concept has
indeed evolved into a magnetic storage device called ‘bubble memory’, which
was commercially available in the 1970s–1980s [34]. The representative material
examples employed here are epitaxial films of orthoferrite RFeO3 or garnet RFe5O12

[32, 33].
Because the centrosymmetric ferromagnets have a spin-helicity degree of free-

dom that is absent in chiral-lattice ferromagnets, magnetic bubbles in these materials
can be endowed with additional inner details. For example, a cylindrical domain
wall often contains two types of Bloch walls with opposite spin helicities, and their
boundary forms a one-dimensional line called the ‘Bloch line’ characterised by
Néel-wall-like spin modulation. The magnetic bubble containing such Bloch lines is
called a ‘hard bubble’ (Fig. 2.6e) and is a topologically different object from a soft
bubble or a magnetic skyrmion because its skyrmion number is zero. The response
of hard bubbles against an external field has been known to be different from that
of soft bubbles, which often prevents the proper operation of bubble memory [38].
Figure 2.6f and g indicate typical real-space lateral magnetisation distributions for
stripe-like and bubble ferromagnetic domains revealed by LTEM observation [39].
Soft bubbles with either type of spin helicity (denoted as ‘˙1’) as well as hard
bubbles (denoted as ‘0’) appear, thereby forming a triangular lattice in combination.

Apart from such hard bubbles characterised by Bloch lines, the recent advance-
ment of the LTEM technique has also revealed several unique spin textures
associated with soft bubbles, i.e. skyrmions. For example, in the case of skyrmions
in M-type hexaferrite BaFe12�x�0:05ScxMg0:05O19 (x D 0:16), the spin texture at a
cylindrical domain wall region shows Bloch-wall-like screw magnetisation rotation
but with multiple helicity reversals (Fig. 2.7) [40]. This means that the in-plane
component of magnetisation changes its spin rotation manner depending on the
distance from bubble centre (Fig. 2.7g), thereby giving rise to multiple rings within a
single skyrmion in its LTEM image (Fig. 2.7f). Here, even with such random helicity
reversals, the overall skyrmion number remains �1. Another interesting example
is bilayered perovskite La2�2xSr1C2xMn2O7 [41]; in this material, two skyrmions
with opposite spin helicities spontaneously make a pair and form a molecule-like
structure called a biskyrmion (Fig. 2.8). When neighbouring skyrmions have the
same spin helicity, the overlapping area magnetises in an anti-parallel manner over
a short distance, thereby causing a large increase in exchange energy. In contrast, if
their spin helicities are opposed, only a moderate modification of spin orientation is
necessary in the overlapping region. This difference makes the observed biskyrmion
spin texture relatively stable. Because each single-skyrmion particle has a skyrmion
number of �1, the skyrmion number of a biskyrmion is �2. Biskyrmions further
form an anisotropic triangular lattice spontaneously and can be driven by external
electric current two orders of magnitude smaller (<108 A/m2) than that for a
conventional ferromagnetic domain wall.

As demonstrated above, the additional spin-helicity degree of freedom in cen-
trosymmetric ferromagnets can provide a relatively richer variety of spin textures
associated with magnetic skyrmions. The further investigation of their zoology as
well as their interaction with an external field is the issue for the future.
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Fig. 2.7 LTEM data for BaFe12�x�0:05ScxMg0:05O19 (x D 0:16). (a) Temperature versus magnetic
field phase diagram of magnetic domain structure. (b)–(e) Magnetic field dependence of domain
structure at room temperature, where B is applied normal to the observed (001) plane. (f) Lateral
magnetisation distribution for the observed skyrmion (soft bubble), and (g) mapping of spin
orientation in the skyrmion to the Mx-My-Mz plane (Reproduced from (a)–(e) Ref. [39] and (f)–(g)
Ref. [40])

2.3 Skyrmions at Interface

As introduced in Sect. 2.1, the Dzyaloshinskii–Moriya interaction emerging under
the non-centrosymmetric environment can stabilise helimagnetism and skyrmion
spin texture. This scenario is valid not only for ferromagnetic materials endowed
with a non-centrosymmetric crystal lattice but also for interfaces or surfaces of
ferromagnets where the spatial inversion symmetry is always broken. Here, we
mainly discuss two material systems: (i) Fe monolayer on an Ir(111) surface [43]
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Fig. 2.8 LTEM data for La2�2xSr1C2xMn2O7. (a) Lateral magnetisation distribution for a
biskyrmion lattice derived from the TIE analysis of LTEM data. (b) The in-plane magnetic
component (yellow arrows) distribution in the biskyrmion lattice. (c) Over-focused and (d) under-
focused LTEM images as well as (e) the corresponding lateral magnetisation distribution for a
single biskyrmion. In (b)–(e), ‘plus’ (C) and ‘minus’ (�) indicate magnetic helicity, i.e. clockwise
and anti-clockwise rotating directions of in-plane magnetisations around the core, respectively.
Note that they are not directions of magnetisation along the z axis. The scale bar in (c) corresponds
to 100 nm (Reproduced from Ref. [41])
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and (ii) a PdFe bilayer on an Ir(111) surface [44]. The Fe (PbFe) layer provides
magnetic moments with a ferromagnetic exchange interaction whose thickness
is just one (two) atomic units. The large nuclear number of the underlying Ir
leads to a strong spin–orbit coupling and thus can serve as a source of signifi-
cant Dzyaloshinskii–Moriya interaction. Because magnitudes of relevant magnetic
interactions are different between cases (i) and (ii), each system shows distinctive
properties in the resultant spin texture and its development under an external field.

To investigate the detail of the spin texture at the surface of a magnetic
mono/bilayer with atomic-scale spatial resolution, the spin-polarised scanning
tunnelling microscopy (SP-STM) technique has been employed. The ferromagnetic
tip used for this measurement is magnetised along some specific direction
in advance, and spin-polarised tunnel current scales as the cosine of the angle
between the tip and local sample magnetisation. As a result, this method enables
the detection of a local magnetisation component parallel to the tip magnetisation
direction. The pioneering work by Wiesendanger et al. for a Mn monolayer on a
W(110) surface revealed the emergence of a helical spin texture of fixed spin helicity
with the period of 12 nm, confirming the importance of the Dzyaloshinskii–Moriya
interaction at the surface or interface [42]. They further discovered the formation of
a square lattice of skyrmions (with skyrmion number C1) for the Fe/Ir(111) system
(Fig. 2.9a) by taking SP-STM images with various directions of tip magnetisation
(Fig. 2.9c, e) and comparing them with simulated patterns (Fig. 2.9d) [43]. This
unique skyrmion spin texture appears even without the application of an external
magnetic field and is characterised by two orthogonal magnetic modulation vectors
within a film plane (see insets of Fig. 2.9c). The typical size of an individual
magnetic skyrmion is as small as �1 nm, with a magnetic modulation period
incommensurate with the underlying crystalline lattice. The following theoretical
analysis suggests that the short-range four-spin interaction

Hfour D
X
ijkl

KijklŒ.Mi � Mj/.Mk � Ml/ C .Mi � Ml/.Mj � Mk/ � .Mi � Mk/.Mj � Ml/�;

(2.2)

as well as the Dzyaloshinskii–Moriya interaction play crucial roles in the stabilisa-
tion of the observed skyrmion lattice.

In contrast, the magnetic behaviour for the PdFe/Ir(111) system is rather close
to that for the film of chiral-lattice ferromagnets, as introduced in Sect. 2.1 [44].
Without an external magnetic field, this system shows a helical spin order charac-
terised by unidirectional spin modulation with a period of 6 � 7 nm (Fig. 2.10a,
d, e). The application of H � 1:4 T normal to the film leads to the formation of a
hexagonal lattice of skyrmions (Fig. 2.10f) whose lateral magnetisation components
are not vortical but rather radiative (Fig. 2.10b). A further increase of B (>2 T)
stabilises the uniform ferromagnetic state, while isolated skyrmion particles often
survive through pinning at atomic defects (Fig. 2.10f). Notably, when B is tuned
around the phase boundary between ferromagnetic and skyrmion spin states, the
local injection of electrons through a ferromagnetic tip enables the reversible
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Fig. 2.9 Skyrmion lattice observed by a spin-polarised scanning tunnelling microscopy (SP-STM)
measurement for the Fe monolayer on Ir(111). (a) Sketch of the nanoskyrmion lattice: cones
represent atoms of a hexagonal Fe layer and point along their magnetisation directions; red and
green represent up and down magnetisation components, respectively. (b) Atomic-resolution STM
images of a pseudomorphic hexagonal Fe layer at an Ir step edge. Upper inset: The Fourier-
transformed image. Lower inset: A side view of the system. (c) and (e) SP-STM images obtained
with a tip magnetised along the (c) out-of-plane and (e) in-plane directions, respectively. Bright
(dark) spots indicate areas with magnetisation parallel (anti-parallel) to tip magnetisation. In the
latter case, images corresponding to three 120ı rotational domains are obtained for different square
regions shown in the upper panel. The tip magnetisation direction is indicated by arrows. In (c),
the Fourier transformation of the experimental SP-STM image is also indicated. (d) Simulations of
SP-STM images of a skyrmion lattice with the tip magnetised in different directions as indicated.
Here, the image size and unit-cell position are identical to those in (a). Simulated patterns are
also overlaid on experimentally obtained images in (c) and (e), which agree well with each other
(Reproduced from Ref. [43])

writing and deleting of single magnetic skyrmions (Fig. 2.10h, i). The probability of
skyrmion formation after current injection strongly depends on the sign of applied
electric current, suggesting that the spin-transfer torque provided by spin-polarised
tunnelling current affects the directionality of switching. The above procedures
enable the local ‘writing’ and ‘reading’ of individual skyrmion particles of an
extremely small size, i.e. less than 10 nm, which demonstrates the potential of
magnetic skyrmions as an information carrier for high-density storage/logic devices.
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Fig. 2.10 Magnetic field dependence of a PdFe bilayer on the Ir(111) surface at 8 K. (a)–(c)
Perspective sketches of magnetic phases. (d) Overview image obtained by SP-STM, perspective
view of constant-current image colorized with its derivative. (e)–(g) Distribution of the out-
of-plane component of magnetisation for a PdFe bilayer at different magnetic fields along the
out-of-plane direction. (e) Coexistence of spin spiral and skyrmion phases. (f) Pure skyrmion
phase. (g) Ferromagnetic phase. A remaining skyrmion is marked by the white circle. In (h)
and (i), the manipulation of magnetic states by a local current injection through a magnetic tip
is demonstrated at 4.2 K. (h) SP-STM image of the initial state at B D C1.8 T after sweeping the
magnetic field down from C3 T. Four skyrmions are marked by circles. (i) Successive population
of an island with skyrmions by injecting higher-energy electrons through local voltage sweeps
(Reproduced from Ref. [44])
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Chapter 3
Skyrmions and Electric Currents in Metallic
Materials

Abstract In metallic materials, non-collinear or non-coplanar spin textures such as
skyrmions, helices or domain walls give rise to intriguing phenomena via coupling
to conduction electrons. In this chapter, we introduce the emergent electromagnetic
fields generated by a skyrmion spin texture acting on conduction electrons. These
cause the topological Hall effect and the electric-current-driven motion of skyrmions
with a significantly small threshold current density jc of 105–106 A/m2, which is five
or six orders of magnitude smaller than that of a ferromagnetic domain wall and a
helical magnetic structure.

3.1 Emergent Electromagnetic Fields

In metallic magnets, spatially varying structures of localised magnetisation generate
emergent magnetic and electric fields acting on conduction electrons via coupling
between localised spins and conduction-electron spins [1], thereby giving rise to
interesting electron transport phenomena [2, 3]. The simplest model to describe this
situation is given by

i„ @

@t
	 D

�
p2

2me
� Jex� � m.r; t/

�
	; (3.1)

where the Pauli matrix � denotes the conduction-electron spin and the unit vector
m.r; t/ represents the direction of local magnetisation. The magnetisation vector
m.r; t/ is given in polar coordinates as

m.r; t/ D .sin �.r; t/ cos 
.r; t/; sin �.r; t/ sin 
.r; t/; cos �.r; t// : (3.2)

Here, a quantisation axis is selected to be parallel to the z axis. When a fer-
romagnetic (anti-ferromagnetic) coupling Jsd or the Hund’s rule coupling JH

is sufficiently strong, the conduction-electron spin always points parallel (anti-
parallel) to localised magnetisation m.r; t/ as it flows and follows the spatial and
temporal variations of m. On the basis of this assumption, we rotate the local
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quantisation axis from the fixed axis ez to the axis parallel to m at a given .r; t/
by introducing

	 D U.r; t/' (3.3)

with

U D exp.�i
�

2
� � n/; (3.4)

where � is the angle of rotation, and the axis of the rotation n is

n D ez � m
jez � mj : (3.5)

Substituting Eq. (3.3) into Eq. (3.1), we obtain

i„ @

@t
' D

�
.p C eAs/2

2me
� Jex�z � eVs

�
'; (3.6)

where e.> 0/ is the elementary charge. The vector potential As is given by

As D � i„
e

U�rU; (3.7)

and the scalar potential Vs is given by

Vs D i„
e

U�@tU: (3.8)

As long as the spin texture m.r; t/ is slowly varying in space and time, the vector
potential and scalar potential can be treated as perturbations of the unperturbed
Hamiltonian:

H0 D p2

2me
� Jex�z: (3.9)

This Hamiltonian describes the spin-up band with respect to the local magnetisation
direction.

Effective magnetic and electric fields can be introduced as

Bem
i D �ijk

�
@jA

s
k � @kAs

j

	 D „
2e

�ijk m � �@jm � @km
	

; (3.10)

and

Eem
i D �@iV

s � @tA
s
i D „

e
m � .@im � @tm/ ; (3.11)
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respectively, with (@i, @j, @k)D(@=@x, @=@y, @=@z) and @tD@=@t. Here, ˙ denotes
the spin-up or spin-down bands and �ijk is the totally anti-symmetric tensor. These
expressions indicate that these emergent magnetic and electric fields are associated
with the Berry phase as the effective Aharonov–Bohm phase given by solid
angles covered by m for infinitesimal loops in space and space-time dimensions,
respectively.

Because the magnetisation m of a single skyrmion winds around the unit sphere
once, the total flux is given by

Z
Bemdxdy D �4�

„
2e

D � h

2qe
; (3.12)

which corresponds to one flux quantum with qe.D e=2/ being the effective charge.
In analogy with Faraday’s law of induction, a skyrmion drifting with velocity vd

induces an electric field given by

Eem D �vd � Bem; (3.13)

where Eem=vd inherits its quantisation from Bem.
The total force acting on a conduction electron with velocity vs is therefore

given by

F D �e.Eex C Eem/ � e.vs � vd/ � .Bex C Bem/; (3.14)

where Bex and Bem (Eex and Eem) are external and emergent magnetic (electric)
fields, respectively, and vs and vd are velocities of an electron and a moving
skyrmion. The Lorentz force �evs � Bem due to the emergent magnetic field Bem

gives rise to a Hall motion of conduction electrons, which is called the topological
Hall effect. Notably, because the relation Eq. (3.13) holds, contributions �eEem and
Cevd � Bex in Eq. (3.14) are perfectly cancelled.

3.2 Electric-Current-Driven Motions of Skyrmions

The magnetisation dynamics driven by spin-polarised electric current is described
by the Landau–Lifshitz–Gilbert–Slonczewski equation [4] as follows:

dM
dt

D ��M � Beff
r C ˛G

M
M � dM

dt

Cpa3

2e

�„
M

.j � r/M � pa3ˇ

2e

�„
M2

ŒM � .j � r/M� ; (3.15)

where M.r/=��S.r/ represents local magnetisation at position r and S.r/ is the
local spin. Here, � D gB=„.> 0/ and e.> 0/ are the gyromagnetic ratio
and elementary charge, respectively. This equation describes the magnetisation
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dynamics in the presence of spin-polarised electric current j [5]. The first term
(the gyrotropic term) depicts the gyrotropic motion of M, where the effective
magnetic field Beff is calculated from a derivative of the Hamiltonian H with
respect to M as

Beff D �@H

@M
: (3.16)

The second term (the Gilbert damping term) describes the phenomenologically
introduced Gilbert damping, whose strength is represented by the coefficient ˛G.
The third and fourth terms represent the coupling between magnetisations M and
spin-polarised electric current j. Here, p and a are the spin polarisation of electric
current and the lattice constant, respectively. Microscopically, conduction-electron
spins interact with M via a local exchange interaction Jsd or the Hund’s rule coupling
JH. Because spin-polarised electric current has a flux of angular momentum, it works
as a torque acting on M in non-collinear spin structures. The third term, the so-called
spin-transfer-torque term, is derived under the assumption that conduction-electron
spins are always parallel to M in the limit of strong JH and Jsd. On the other hand, the
fourth term, the so-called non-adiabatic or ˇ term, represents the coupling between
M and spin-polarised electric current via the non-adiabatic effect whose strength is
represented by the coefficient ˇ.

To solve Eq. (3.15) numerically, the spatial gradient r in the third and fourth
terms should be defined on a discretised lattice space. In addition, because the
time derivative dM

dt appears in both the left- and right-hand sides of the equation,
a linearlisation of the equation is needed to apply numerical techniques such as
the Runge–Kutta and Heun methods. After discretisation and linearlisation, the
equation is rewritten in a dimensionless form as

dmi

d�
D 1

1 C ˛2
G

(
�mi �

 
�@ QH

@mi

!
C

 QAi C QBi

�

C˛G

m
mi �

"
�mi �

 
�@ QH

@mi

!
C

 QAi C QBi

�
;

#)
(3.17)

where

QAi D pa2„
2emJ



jx

miCOx � mi�Ox
2

C jy
miCOy � mi�Oy

2

�
;

QBi D � pa2„
2emJ

ˇ

m

h
mi �



jx

miCOx � mi�Ox
2

C jy
miCOy � mi�Oy

2

�i
: (3.18)

Here, mi D Mi=�„ D �Si=„ is dimensionless local magnetisation at the ith site
and � D tJ=„ and QH D H =J are the dimensionless time and the Hamiltonian,
respectively. The details of the derivation are presented in the appendix of this
chapter.
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To describe the magnetic system in a thin-film specimen of a chiral-lattice magnet
with distributed magnetic impurities, we employ a classical Heisenberg model on
the square lattice:

H D �J
X

i

mi � .miCOx C miCOy/

�D
X

i

.mi � miCOx � Ox C mi � miCOy � Oy/

�B
X

i

miz � A
X
i2I

m2
iz: (3.19)

The last term represents magnetic anisotropy with its easy magnetisation axis
(A > 0) perpendicular to the plane at randomly distributed impurity sites. Here, I
denotes a set of impurity positions. As discussed in Chap. 1, the model without
the last term reproduces the successive emergence of helical, skyrmion crystal
and ferromagnetic phases as a function of magnetic field B in agreement with the
experiment. Note that a helical phase can be regarded as a sequence of ferromagnetic
Bloch walls, enabling us to compare the current-driven motion of skyrmions on
equal footing with that of magnetic domain walls by varying the strength of B
without changing any other parameters.

Figure 3.1a displays simulated velocities vk (the components parallel to j) of a
skyrmion crystal and helical spin structure as functions of electric current density
j for several values of ˇ, i.e. ˇ D 0, 0.5˛G, ˛G and 2˛G [6]. Both the clean case
without impurities (x D 0) and dirty case with impurities (x D 0:1 %) are examined,
with x being the impurity concentration. Remarkably, the current–velocity (j-vk)
relation for a skyrmion crystal, represented by blue and light-blue data points, is
quite universal and independent of the non-adiabatic effect ˇ, the Gilbert damping
˛G and impurities. We find that all plots overlap within the accuracy of the numerical
simulation.

In contrast, the j-vk relation for a helical structure, represented by red and
purple data points, depends sensitively on these three factors, similarly to the case
of the single ferromagnetic domain wall. A helical structure cannot move when
ˇ D 0 because it is prevented by the intrinsic pinning effect. With a finite ˇ, j-vk
characteristics nearly obey the relation vk / .ˇ=˛G/j in the clean case with x D 0. In
the presence of impurities, the pinning effect suppresses the velocity vk and a finite
threshold current density jc appears, whose order is 1010–1011 A/m2 when x D 0:1 %
in the present model.

A reason why skyrmions are scarcely pinned by impurities is their flexibility in
shape and their particle-like nature. The triangular form of a skyrmion crystal and
each individual skyrmion can be flexibly deformed during motion, which enables
them to move in such a manner as to avoid pinning centres. Figure 3.1b shows
a trajectory of one moving skyrmion and depicts the skyrmion as a particle-like
object, winding its trajectory to avoid impurities indicated by green dots.
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Fig. 3.1 (a) Simulated longitudinal velocities vk of electric-current-driven motions of helical (HL)
and skyrmion crystal (SkX) spin structures as functions of electric current density j for several
values of ˇ. Parameters J D 1 meV, D=J D �0:18, A=J D 0:2, p D 0:2 and C˛G D 0:01 are used
in the simulation, and both the clean case without impurity (x D 0) and dirty case with impurities
(x D 0:1 %) are examined, where x is the impurity concentration. Red and purple points and
lines represent the data of the HL structure, whereas blue and light-blue points and lines represent
the data of the SkX structure. All lines for an SkX overlap within the accuracy of numerical
simulations. (b) One example of a simulated trajectory of a skyrmion in a skyrmion crystal during
electric-current-driven motion. The skyrmion moves to avoid impurities (green dots). (c) Another
example of a simulated skyrmion trajectory. Because a skyrmion in the moving skyrmion crystal is
pushed by other surrounding skyrmions, a situation where a skyrmion cannot avoid impurity sites
sometimes arises. In such a case, a skyrmion rushes to the impurity site so as to let its core run over
it because core magnetisation pointing downwards is also energetically favourable for magnetic
anisotropy with an easy axis perpendicular to the plane (Reproduced from Ref. [6])

The topological nature of a skyrmion is also of crucial importance for the
universal j-v relation with less influence from the non-adiabatic effect ˇ, the
Gilbert damping ˛G and impurities. This can be understood as follows [6].
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The centre-of-mass motion of a rigid spin texture is described by Thiele’s equa-
tion [7], which is derived from the Landau–Lifshitz–Gilbert–Slonczewski equation
by assuming that the spin texture never deforms during its drift motion. The equation
is given by [8, 28] as

G � .vs � vd/ C D.ˇvs � ˛Gvd/ C Fpin � rU D 0; (3.20)

where vd is the drift velocity of the spin texture and vs is the velocity of conduction
electrons. The first term on the left-hand side describes the Magnus force, whereas
the second term depicts the dissipative force. The third term Fpin denotes the
phenomenologically introduced force due to the impurity pinning [8, 28]:

Fpin � �4�vpinf .vd=vpin/vd=jvdj: (3.21)

Here, f is a scaling function and vpin is a velocity characterising the pinning
strength. The last term represents a force due to the potential from the surrounding
environment. The gyromagnetic coupling vector G D .0; 0;G / is given by

G D
Z

unit cell
d2r

�
@ On
@x

� @ On
@y

�
� On D 4�Q; (3.22)

where Q(D ˙1) is the skyrmion number and On D M.r/=M. On the other hand,
components of the dissipative force tensor D are given by

Dij D
Z

unitcell
d2r@i On � @j On D

�
D .i; j/ D .x; x/; .y; y/;

0 otherwise:
(3.23)

The details of the derivation are presented in the appendix of this chapter. Impor-
tantly, the first term of Eq. (3.20) contains the topological number G . The crucial
difference between a skyrmion and a helix is the value of G . It is ˙4� for a single
skyrmion but zero for a helix and a domain wall. Because values of ˛G.� 10�2/

and ˇ.� ˛G/ are much smaller than unity, the second term of Eq. (3.20) becomes
negligible if jG j D 4� and the electric-current-driven motion is governed by the
first term. Then, the motion of a skyrmion is well described by

G � .vs � vd/ � �Fpin: (3.24)

From this equation, we find that the skyrmion motion is not affected by values of
ˇ and ˛G. In particular, when the impurity pinning is absent or sufficiently weak
(Fpin � 0), Eq. (3.24) gives

vk D vs; (3.25)
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Fig. 3.2 Snapshots of magnetisation distribution during skyrmion creation with an electric current
of j D 3:6 � 1011 A/m2. Parameters used for the simulation are J D 1 meV, D=J D �0:18,
B D 0:0278J and ˛ D 0:04 (Reproduced from Ref. [10])

for the electric-current-driven motion of skyrmions in agreement with the
ˇ-insensitive universal j–v relation obtained by the numerical simulation in the
clean case.

On the other hand, when G D 0, the electric-current-driven motion is governed
by the second term of Eq. (3.20). Hence, motions of helices and ferromagnetic
domain walls are well described by

D.ˇvs � ˛Gvd/ � �Fpin: (3.26)

This is the reason why the motion of a helix strongly depends on ˇ and ˛G. When
Fpin � 0, Eq. (3.26) gives

vk D ˇ

˛G
vs / ˇ

˛G
j: (3.27)

This relation is again in agreement with the simulated results for the HL state in the
clean case.

The numerical simulation of the Landau–Lifshitz–Gilbert–Slonczewski equation
also demonstrates that skyrmions can be created with spin-polarised electric
currents [10]. As shown in Fig. 3.2, by injecting electric current into a stripline-
shaped sample with a small rectangular notch, one can create isolated skyrmions
successively. Here, the strength of the external magnetic field B is fixed at B D
0:0278J, which slightly exceeds the critical field for the phase transition between
a skyrmion crystal and ferromagnetic phases, where the ground state of the
system is ferromagnetic. In bulk specimens, topological spin textures cannot be
created by continuous twisting or gradual variation of the spatial distribution of
magnetisations starting from a uniformly-polarised ferromagnetic state. One needs
to flip local magnetisation to change the topological number from zero to 4�

and create a skyrmion, which costs a large amount energy whose order is in J.
However, taking advantage of discontinuity in the distribution of magnetisations
at the notch, one can avoid such a high-energy-consuming procedure and easily
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create a topological spin texture. In such a process, skyrmions can be created only
with electric current flowing in a certain direction determined by the sign of the
magnetic field because magnetisation precession occurs in a certain direction. It is
also demonstrated that one can eliminate skyrmions by colliding them against an
edge of the sample through electric current injection. Here, the discontinuity of
magnetisation distribution at the edge is again harnessed to change the topological
skyrmion number from 4� to zero.

3.3 Topological Hall Effect

Herein, we introduce the experimental detection of emergent electromagnetic fields
associated with conduction electrons interacting with the skyrmion spin texture. As
discussed in Sect. 3.1, conduction electrons passing through a non-coplanar spin
texture characterised by the non-zero scalar spin chirality Si � .Sj � Sk/ gain a
quantum-mechanical Berry phase, which often acts as an emergent magnetic field
and gives rise to additional contributions to the Hall resistivity or conductivity. This
phenomenon is called the topological Hall effect. To obtain the finite topological
Hall resistivity due to a non-coplanar spin texture, (i) a crystallographic lattice with
a non-trivial geometry characterised by multiple inequivalent loops in the unit cell
or (ii) a special topology of the spin texture characterised by a non-zero skyrmion
number is required [13]. The topological Hall effect due to mechanism (i) was
reported in pyrochlore Nd2Mo2O7 [14], where the emergent magnetic field Bem

k in
the momentum space provided anomalous velocity v D .e=„/E � Bem

k and thus
an additional contribution to the Hall conductivity �T

xy / P
f .�/Bem

kz . Here, f .�/

is the Fermi distribution function and the summation is taken over relevant bands.
In contrast, the topological Hall effect due to the latter scheme (ii) is induced by
the emergent magnetic field Bem

r in real space. It gives a fictitious Lorentz force
F D �evs � Bem

r , with vs being electron velocity and thus an additional contribution
to the Hall resistivity �T

yx / Bem
rz . This latter process (ii) becomes dominant when the

spin modulation period �m is much larger than the crystallographic lattice constant
(a), which corresponds to the case for B20 compounds with a � 0:5 nm and a
skyrmion spin texture of 30 nm < �m < 200 nm.

Figure 3.3b, c indicate the magnetic field dependence of the Hall resistivity �xy

measured for a bulk MnSi sample at various temperatures close to Tc [12]. For this
system, �xy can be decomposed into three contributions:

�xy D �N
xy C �A

xy C �T
xy (3.28)

D R0B C SA�2
xxM C PR0Bem

rz ; (3.29)

where �N
xy, �A

xy and �T
xy correspond to the normal Hall term proportional to the

external magnetic field B, the anomalous Hall term proportional to magnetisation
M and the topological Hall term proportional to the emergent magnetic field Bem

rz .
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Fig. 3.3 (a) Schematic of the topological Hall effect caused by skyrmion spin texture. (b) Hall
resistivity for single-crystal MnSi, where a magnetic field is applied parallel to [110] and current
is applied along [001]. (c) Hall resistivity �xy near Tc in the temperature and field range of the A
phase. (d) Additional Hall contribution ��xy in the A phase (Reproduced from (a) Ref. [11] and
(b)–(d) Ref. [12])

Here, R0 and SA are coupling coefficients and P (0 < P < 1) is the spin polarisation
ratio of conduction electrons. Bem

rz is given by

Bem
rz D ˚0˚

z; (3.30)

with a single emergent magnetic flux quantum ˚0 D h=e and skyrmion density ˚ z

defined as

˚ D 1

8�
���m � .@�m � @�m/: (3.31)

Here, ��� is the totally anti-symmetric tensor and m D M=jMj. This means that
each skyrmion induces exactly one quantum of emergent magnetic flux and that
the resultant topological Hall resistivity �T

xy is proportional to skyrmion density ˚ z.
Figure 3.3d indicates the contribution of �T

xy for MnSi, estimated by subtracting the
B-linear term in �xy. Consistent with the negative skyrmion number

R
dxdy˚ z D �1

in the A phase (i.e. the skyrmion crystal state) and
R

dxdy˚ z D 0 in the helical
magnetic phase, the finite �T

xy of the sign opposite from �N
xy is observed only in the

former spin state.
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Fig. 3.4 (a) and (b) Magnetic field dependences of the Hall resistivity �yx at various temperatures
for MnGe. Solid lines are the fitting curves of �yx using the relation �yx D R0B C SA�xxM with
fitting parameters R0 and SA. (c) Magnetic field dependence of the topological Hall resistivity �T

yx.
(d) A contour map of �T

yx in the plane of temperature and magnetic field. The white curve represents
the temperature variation of the critical field Hc, at which a ferromagnetic spin-collinear state is
realised. (e) Schematic of a cubic skyrmion lattice proposed as the magnetic ground state of MnGe
(Reproduced from (a)–(d) Ref. [15] and (e) Ref. [16])

Note that Eq. (3.30) predicts that a higher skyrmion density (i.e. a smaller
skyrmion size) gives larger values of Bem

rz and �T
xy. Compared with �T

xy �
0:004 �˝ cm for MnSi with a spin modulation period �m � 17 nm, a 40-times-
larger �T

xy � 0:16 �˝ cm has been reported for MnGe with �m � 3 nm (Fig. 3.4c).
For MnGe, the topological Hall effect is observed in a much wider H–T range than
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the case for other B20 compounds characterised by a narrow magnetic A phase with
a triangular lattice of skyrmions (Fig. 3.4d) [15]. Combined with a recent analysis
by neutron-scattering experiments, the possible emergence of a unique cubic or
square lattice of skyrmions has been proposed for MnGe (Fig. 3.4e) [16].

Interestingly, the topological Hall effect originating from a scalar spin chirality
has also been reported for several material systems without a long-range magnetic
order, such as pyrochlore Pr2Ir2O7 with a “chiral spin liquid” state [17] and
MnSi under high pressure [20]. When hydrostatic pressure is applied to MnSi,
the helical magnetic order is gradually suppressed and finally disappears above
the critical pressure pc � 14:6 kbar (Fig. 3.5a). Despite the absence of a long-
range magnetic order above pc, neutron diffraction experiments have revealed the
existence of magnetic Bragg scattering intensity everywhere on the surface of a
sphere with radius jqj � 0:043 Å in the reciprocal space below 10 K [18]. In this
high-pressure state, several anomalous transport properties such as non-Fermi liquid
behaviour (�xx / T1:5) [19] and the topological Hall effect have been reported [20].
Figure 3.5b, c respectively show the T–H phase diagram and the corresponding
development of �xy taken at various pressures. The continuous evolution of the
topological Hall resistivity from the A phase to the non-Fermi liquid state implies
that topological characteristics of a skyrmion lattice remain in the latter exotic, non-
Fermi liquid state even without a long-range magnetic order.

3.4 Manipulation by Electric Current

Next, we discuss the current-induced dynamics of skyrmions in metallic materials.
Conduction electrons with finite spin polarisation can interact with local magnetic
moments through the exchange process of their spin angular momentum and provide
the effective torque on a local spin object such as a ferromagnetic domain wall
[4, 21–23]. This process is called spin-transfer torque and is now widely used to
realise the current-induced reversal of magnetisation for commercially available
MRAM devices [24]. Here, the magnetic domain wall is driven parallel to the
current direction and the threshold current density required to de-pin the domain
wall is around 1011 A/m2.

Similarly, skyrmions should be dragged along the current direction through the
spin-transfer torque. As discussed in Sect. 3.2, however, the topological winding
in a skyrmion spin texture causes an additional Magnus force, which drives
skyrmions along the direction normal to external current. These phenomena were
first investigated by Jonietz et al. through neutron diffraction experiments [25]. For
the skyrmion crystal state of bulk MnSi, they simultaneously applied a temperature
gradient and electric current along the same direction normal to an external magnetic
field (Fig. 3.6g). This caused a spatial gradient of the Magnus force and induced
the rotation of a skyrmion lattice observed as a rotational shift of magnetic Bragg
reflections in the reciprocal space (Fig. 3.6). Later, Yu et al. successfully observed
the current-induced translational motion of skyrmions in real space for FeGe by
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a

b c

Fig. 3.5 (a) Temperature–pressure phase diagram under zero magnetic field for MnSi.
(b) Temperature–magnetic field phase diagrams for MnSi with various magnitudes of hydrostatic
pressure. Here FL, NFL and PM denote the Fermi liquid state, the non-Fermi liquid state and
the paramagnetic state, respectively. (c) Magnetic field dependence of Hall resistivity measured at
various temperatures and pressures (Reproduced from Ref. [20])

employing LTEM (Fig. 3.7) [26]. Notably, the threshold current density to drive
skyrmions was �106 A/m2, which is five orders of magnitude smaller than that for
typical magnetic domain walls (Fig. 3.6h and Fig. 3.7b). Such an ultra-low threshold
current density is partly due to the particle nature of skyrmions, which allows them
to effectively avoid pinning caused by impurity or defects, as discussed in Sect. 3.2.

According to Faraday’s law of induction, the time development of magnetic
flux induces electromotive force. By analogy, the generalisation of Faraday’s law
predicts that the time-dependent change of the Berry phase, i.e. the emergent
magnetic flux, causes the emergent electric field Eem, as discussed in Sect. 3.1.
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Fig. 3.6 Typical scattering intensity patterns for MnSi observed in neutron-scattering measure-
ments with a neutron beam parallel to an applied magnetic field. The red lines serve as a guide
to the eye. (a) Pattern for a skyrmion crystal in the absence of electric current. (b) Pattern in the
presence of electric current flowing in the vertical direction (arrow). (c) When both current and a
small anti-parallel temperature gradient are present, the scattering pattern rotates anti-clockwise.
(d) Pattern when reversing current direction in (c). Those for reversed direction of the temperature
gradient are shown in (e) and (f). (g) Schematic of spin-transfer-torque effects on a skyrmion
lattice. A temperature gradient induces inhomogeneous Magnus and drag forces and therefore a
rotational torque. (h) Change of the azimuthal angle of the rotation of the scattering pattern as a
function of current density for three different temperatures (Reproduced from Ref. [25])

This emergent electric field is often called the spin-motive force [29], and its exper-
imental detection has been reported for moving ferromagnetic domain walls [30]
as well as an oscillating magnetic vortex in a ferromagnetic nanodisk [31]. Since
the skyrmion spin texture is characterised by a quantised emergent magnetic flux,
a skyrmion moving with velocity vs induces an emergent electric field Eem D
�vs � Bem

r . When this skyrmion motion is driven by external current, the induced
Eem partially cancels the electrical voltage induced by the topological Hall effect
(Fig. 3.8a). Figure 3.8b shows the temperature dependence of �xy measured by an
alternating current lock-in method under the application of various magnitudes of
additional direct current bias j [28]. The magnitude of �xy in the skyrmion crystal
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Fig. 3.7 (a) Schematic and cross-sectional view of a micro-device with a trapezoidal FeGe plate
composed of a 100-nm-thick thinner terrace for electron beam transmission and another trapezoidal
thicker part for supporting the thinner part. (b) Temperature dependence of critical current densities
for skyrmion motion. (c) LTEM images of variations of a skyrmion crystal in slowly increasing
current, as indicated by elapsed time and current values. The right panel indicates a magnified
view of the left panel. Skyrmion positions are marked by red circles for clarity (Reproduced from
Ref. [26])

state shows a sudden drop above the critical current density jc � 4 � 105 A/m2

(Fig. 3.8c). This jc value agrees well with the threshold current density to drive a
translational skyrmion motion reported by the LTEM observation, suggesting that
the observed drop of the �xy-value above jc indeed reflects the Eem induced by the
skyrmion motion.
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a

b c

Fig. 3.8 (a) Schematic of skyrmion motion and associated physical phenomena under the flow of
electrons. Electron current drives the flow of a skyrmion via the spin-transfer-torque mechanism.
Electrons are deflected by the Lorentz force due to an emergent magnetic field Bem

r of the skyrmion,
which results in the topological Hall effect. The velocity of the skyrmion has its transverse
component, i.e. the skyrmion Hall effect. The motion of the skyrmion is accompanied by the
time-dependent emergent magnetic field Bem

r and hence the emergent electric field Eem
r . (b) The

temperature dependence of the Hall resistivity �xy in the skyrmion lattice phase of MnSi measured
under various magnetic field magnitudes and applied d.c. electric currents. (c) Change of the Hall
resistivity of MnSi as a function of the applied d.c. current at 250 mT. Above the critical current
density jc, the magnitude of �xy suddenly decreases (Reproduced from (a) Ref. [27] and (b) and
(c) Ref. [9])

Appendix 1: Landau-Lifshitz-Gilbert-Slonczewski Equation

The Landau–Lifshitz–Gilbert–Slonczewski equation containing the spin-transfer-
torque term and non-adiabatic term (the so-called ˇ term) introduced in Sect. 3.2
describes the magnetisation dynamics in the presence of spin-polarised electron cur-
rents. To analyse this equation numerically, we need to rewrite it in an appropriate
form. In this Appendix, how to rewrite the equation in linearised, discretised and
dimensionless forms is explained.
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We start with the equation for local magnetisations M.r/ (=��S.r/) as follows:

dM
dt

D ��M �
�

�@H

@M

�
C ˛

M
M � dM

dt

Cpa3

2e

�„
M

.j � r /M � pa3ˇ

2e

�„
M2

ŒM � .j � r /M� : (3.32)

Redefining the spatial gradient r on a discretised square-lattice space, the third term
is rewritten as

pa2

2e

�„
M

�
jx

MiCOx � Mi�Ox
2

C jy
MiCOy � Mi�Oy

2

�
� Ai; (3.33)

whereas the fourth term is written as

� pa2ˇ

2e

�„
M2

�
Mi �

�
jx

MiCOx � Mi�Ox
2

C jy
MiCOy � Mi�Oy

2

��
� Bi: (3.34)

Then, the equation in the discretised form is as follows:

dMi

dt
D ��Mi �

�
�@H

@Mi

�
C ˛

M
Mi � dMi

dt
C Ai C Bi: (3.35)

Substituting this equation into dMi
dt on its right-hand side, we obtain the equation in

the linearised form as

dMi

dt
D 1

1 C ˛2

�
��Mi �

�
�@H

@Mi

�
C Ai C Bi

C ˛

M
Mi �

�
��Mi �

�
�@H

@Mi

�
C Ai C Bi

�
: (3.36)

In the course of the derivation, we used a relation

Mi �
�

Mi � dMi

dt

�
D �M2 dMi

dt
; (3.37)

which comes from a vector formula A�.B�C/ D B.A�C/�C.A�B/: Introducing
dimensionless local magnetisation mi D Mi=�„, the equation in the dimensionless
form is derived as

dmi

d�
D 1

1 C ˛2

(
�mi �

 
�@ QH

@mi

!
C

 QAi C QBi

�

C ˛

m
mi �

"
�mi �

 
�@ QH

@mi

!
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 QAi C QBi

�#)
; (3.38)
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with

QAi D pa2„
2emJ



jx

miCOx � mi�Ox
2

C jy
miCOy � mi�Oy

2

�
; (3.39)

QBi D � pa2„
2emJ

ˇ

m

h
mi �



jx

miCOx � mi�Ox
2

C jy
miCOy � mi�Oy

2

�i
; (3.40)

where � � tJ=„ is the dimensionless time and QH � H =J is the dimensionless
Hamiltonian.

To transform the time unit, we need to multiply the dimensionless simulation
time by the factor „=J. For example, „=J � 6:6 � 10�13 s for J D 1 meV. On the

other hand, the dimension of the constant K D pa2„
2emJ ;which appears in QAi and

QBi, is ŒA�1 � m2�. For example, K D 0:82 � 10�13ŒA�1 � m2� when J D 1 meV
a D 5 Å D 5�10�10 m p D 0:2 and m D 1. Therefore,K j becomes dimensionless,
where jŒA � m�2� is the electric current density.

Appendix 2: Derivation of Thiele’s Equation

Thiele’s equation describes the centre-of-mass motion of a spin texture such as a
skyrmion or a vortex under the assumption that its shape is rigid and never changes
during the motion. The equation is derived from the Landau–Lifshitz–Gilbert–
Slonczewski equation. In this Appendix, we derive Thiele’s equation for a system
with spin-polarised electric currents.

The Landau–Lifshitz–Gilbert–Slonczewski equation for the dynamics of local
magnetisations M.r/ (D��S.r/) is given by

dM
dt

D ��M �
�

� ıU

ıM

�
C ˛G

M
M � dM

dt

Cpa3�„
2eM

.j � r /M � pa3�„
2eM

ˇ

M
ŒM � .j � r /M� ; (3.41)

where � D gB

„ .> 0/is the gyromagnetic ratio, e.> 0/ is the elementary charge,

a is the lattice constant and ˛G is the Gilbert damping coefficient. Here, the spin
polarisation p represents the extent to which electric current is spin polarised as

p D j" � j#
j" C j#

D j" � j#
j

; (3.42)
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with j" and j# being the electric current density for up-magnetised and
down-magnetised electrons (or equivalently for spin-down and spin-up electrons),
respectively.

Let us consider the factor in the third and fourth terms:

� pa3�„
2eM

j: (3.43)

This factor turns out to be a velocity of conduction electrons multiplied by a certain
factor. The current density j is given by

j D �e�ve; (3.44)

where � is the electron number density and ve is the averaged electron velocity. The
contribution to j from the up-magnetised electrons is written as

j" D �e�"ve; (3.45)

whereas that from the down-magnetised electrons is written as

j# D �e�#ve: (3.46)

According to the definition of spin polarisation p, we obtain

pj D j" � j# D �e.�" � �#/ve: (3.47)

Because each electron has a magnetisation of m D �„=2 D 1B (s D „=2 spin),
the magnetisation current density jm is given by

jm D ��„
2e

pj D ��„
2e

.j" � j#/ D �„
2

.�" � �#/ve: (3.48)

A local magnetisation M.r/ on each site occupies a spatial volume of a3. Therefore,
the total conduction-electron magnetisations acting on M.r/ per unit time is
given by

� pa3�„
2e

j D �„
2

a3.�" � �#/ve D �„
2

.n" � n#/ve � Meve; (3.49)

where n" (n#) is the number of up-magnetised (down-magnetised) electrons in the

spatial volume a3 and the quantity �„
2

.n" � n#/ represents the total conduction-
electron magnetisation Me in the volume a3. Dividing this equation by M D jMj,
we obtain
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� pa3�„
2eM

j D Me

M
ve � vs: (3.50)

This equation indicates that the factor � pa3�„
2eM jis the averaged velocity of conduction

electrons multiplied by a factor Me=M.
Using this notation, the Landau–Lifshitz–Gilbert–Slonczewski equation is

rewritten as

dM
dt

D ��M �
�

� ıU

ıM

�
C ˛G

M
M � dM

dt

�.vs � r /M C ˇ

M
ŒM � .vs � r /M� : (3.51)

Dividing both sides of this equation by M and introducing n D M=M, we obtain

Pn D n � �

M

�
ıU

ın

�
C ˛Gn � Pn � .vs � r /n C ˇ Œn � .vs � r /n� ; (3.52)

where Pn � dn=dt. After multiplying by the vector n, the equation reads

n � Pn D n �
�

n � �

M

�
ıU

ın

��
C ˛Gn � .n � Pn/

�n � .vs � r /n C ˇn � Œn � .vs � r /n� : (3.53)

Using the vector formula A � .B � C/ D .A � C/B � .A � B/C;the first term of the
right-hand side reads

n �
�

n � �

M

�
ıU

ın

��
D
�

n � �

M

�
ıU

ın

��
n � �

M

ıU

ın
; (3.54)

whereas the second term reads

˛Gn � .n � Pn/ D ˛G Œ.n � Pn/ n � .n � n/ Pn� D �˛G Pn: (3.55)

Here, we used the relations n � n D 1 and n � Pn D 0. The latter relation holds because
the vector n has a constant norm (D 1), and thus, the vector Pn has only a component
normal to the radial direction. The fourth term reads

ˇn � Œn � .vs � r /n� D ˇ Œn � .vs � r/n� n � ˇ.vs � r/n: (3.56)

Note that we used the above vector formula again.



Appendix 2: Derivation of Thiele’s Equation 53

At present, we have

n � Pn D
�

n � �

M

�
ıU

ın

��
n � �

M

ıU

ın
� ˛G Pn

�n � .vs � r/n C ˇ Œn � .vs � r/n� n � ˇ.vs � r /n: (3.57)

Now, we introduce the assumption that the magnetic structure is never deformed
during its motion. That is, we assume that a function n.r; t/, which describes a
magnetisation direction at time t and position r, depends only on relative coordinates
�.t/ � r � R.t/ measured from centre-of-mass coordinates R.t/ as

n.r; t/ D n.�.t// D n.r � R.t//: (3.58)

Under this assumption, the relation that holds is as follows:

Pn.r � R.t// D
X

j

P�j
@n
@�j

D �
X

j

PRj
@n
@�j

D �
�

PX @n
@x

C PY @n
@y

C PZ @n
@z

�

D �.vd � r/n; (3.59)

where R D .R1; R2; R3/ D .X; Y; Z/ are centre-of-mass coordinates of the magnetic
structure, � D .�1; �2; �3/ D .x; y; z/ are relative coordinates and PR D . PX; PY; PZ/ �
vd is the velocity of the centre-of-mass motion. Hereafter, we omit the summation
sign

P
j.

Substituting this relation into Eq. (3.59), we obtain

n � Œ.vs � vd/ � r � n C Œ.ˇvs � ˛Gvd/ � r � n C �

M

ıU

ın

D
�

n � �

M

�
ıU

ın

��
n C ˇ Œn � .vs � r /n� n: (3.60)

Taking the inner product with �@n=@�i, we get

� @n
@�i

�
�

n � .vs � vd/j
@n
@�j

�
� @n

@�i
� .ˇvs � ˛Gvd/j

@n
@�j

� �

M

@n
@�i

� ıU

ın
D 0:

(3.61)

Note that the relation @n
@�i

� n D 0 holds because a spatial variation @n
@�i

always occurs
a in the direction normal to the vector n.



54 3 Skyrmions and Electric Currents in Metallic Materials

Using the vector formula A � .B � C/ D .A � C/B � .A � B/C;we obtain

n �
�

@n
@�i

� @n
@�j

�
.vs � vd/j � @n

@�i
� @n

@�j
.ˇvs � ˛Gvd/j � �

M

@n
@�i

� ıU

ın
D 0:

(3.62)

After integrating both sides of the equation in three-dimensional space and multi-
plying by M=� , the equation reads

M

�
.vs � vd/j

Z
n �
�

@n
@�i

� @n
@�j

�
d3r � M

�
.ˇvs � ˛Gvd/j

Z
@n
@�i

� @n
@�j

d3r

C rRU D 0; (3.63)

because the third term is calculated as

�
Z

@n
@�i

� ıU

ın
d3r D �@U

@�i
D @U

@Ri
D rRU: (3.64)

When magnetisations stack ferromagnetically along the z direction in thin-plate
specimens with a thickness of d, the integration with respect to z can be replaced by
multiplication by the number of stacked layers d=a:

Md

�a
.vs � vd/j

Z
n �
�

@n
@�i

� @n
@�j

�
dxdy � Md

�a
.ˇvs � ˛Gvd/j

Z
@n
@�i

� @n
@�j

dxdy

C rRU D 0: (3.65)

This equation can be rewritten as

Gij .vs � vd/j � Dij .ˇvs � ˛Gvd/j � Fi D 0; (3.66)

where

Gij.�/ D Md

�a

Z
n �
�

@n
@�i

� @n
@�j

�
dxdy

D
8<
:
G for .�i; �j/ D .x; y/

�G for .�i; �j/ D .y; x/

0 otherwise

(3.67)
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Dij.�/ D Md

�a

Z
@n
@�i

� @n
@�j

dxdy

D
�
D for .�i; �j/ D .x; x/; .y; y/

0 otherwise

(3.68)

Note that the factor Md
�a becomes unity for the two-dimensional system (d=a D 1)

when the norm of the dimensionless magnetisation vector M=� is taken to be unity.
For topological spin textures such as skyrmion and vortices, G becomes finite.

The first term of the above equation can be rewritten as

Gij .vs � vd/j D

8̂
<
:̂

Gxx .vs � vd/x C Gxy .vs � vd/y C Gxz .vs � vd/z for i D x
Gyx .vs � vd/x C Gyy .vs � vd/y C Gyz .vs � vd/z for i D y
Gzx .vs � vd/x C Gzy .vs � vd/y C Gzz .vs � vd/z for i D z

D
8<
:
G .vs � vd/y for i D x
�G .vs � vd/x for i D y
0 for i D z

D �G � .vs � vd/ ; (3.69)

where G D .0; 0;G /is referred to as the gyromagnetic coupling vector.

According to Eq. (3.68), the third term can be rewritten as

� Dij .vs � vd/j D �D .vs � vd/ : (3.70)

Eventually, the expression for Thiele’s equation is obtained as

G � .vs � vd/ C D .ˇvs � ˛Gvd/ C F D 0; (3.71)

or

G � .vs � vd/ C D .ˇvs � ˛Gvd/ � rU D 0; (3.72)

where G D .0; 0;G /. In the latter equation, the sign rR D @
@Ri

D . @
@X ; @

@Y ; @
@Z /is

simply rewritten as r .
For a skyrmion, G is given by G D 4�nQ � Md

�a , where the winding number
n expresses the number of times magnetisations wrap a sphere and Q.D ˙1/

represents the direction of magnetisation at the skyrmion core, i.e. Q D C1 for
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up magnetisation and Q D �1 for down magnetisation. On the other hand, G is
G D 2�Q � Md

�a for a magnetic vortex, whereas G D 0 for helices and ferromagnetic
domain walls.
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Chapter 4
Skyrmions and Electric Fields
in Insulating Materials

Abstract In insulating materials, conduction electrons and associated emergent
fields are absent; instead, magnetic skyrmions in insulators induce spatially inhomo-
geneous charge distributions through the relativistic spin-orbit interaction. Depend-
ing on the symmetry of an underlying crystallographic lattice, skyrmions carry
electric dipoles or quadrupoles and can be manipulated by an external electric
field. This property may provide an energetically more efficient method to control
skyrmions because the electric field in an insulating system causes only negligible
Joule heat loss compared with the current-driven approach in a metallic system.
In this chapter, this magnetoelectric nature of skyrmions is discussed. Skyrmions
also show resonant oscillation against both ac magnetic and electric fields of
gigahertz frequency. The interference of these excitations causes unique optical
responses called directional dichroism, where the sign reversal of light (microwave)
propagation direction gives different absorption spectra.

4.1 Magnetoelectric Skyrmions and Manipulation
by Electric Fields

The control of magnetism by electric fields E and of dielectric properties by
magnetic fields H are called magnetoelectric (ME) effects and have long been
studied since their first prediction by P. Curie more than 100 years ago [1]. When
both time reversal and space-inversion symmetries are simultaneously broken in a
material, the emergence of linear ME effects (Pi D ˛ijHj and Mi D ˛jiEj, with
P representing the macroscopic electric polarisations) can be allowed. While the
magnitude of the linear ME coefficient ˛ij is generally very small, the employment
of materials with strongly coupled magnetic and dielectric orders (i.e. multiferroic
materials) can lead to more versatile and gigantic ME responses [2, 3]. For
example, in some frustrated magnets such as perovskite TbMnO3, the emergence of
helical spin order is found to induce ferroelectric polarisation [4]. Such spin-driven
ferroelectricity originates from symmetry breaking by spin textures [5–7], and the
utilisation of this strong ME coupling has enabled the H-induced reversal of P [8]
and the E-induced reversal of M [9].

Similarly, the generalised concept of ME coupling can be also applied to
skyrmion spin texture. Here, we discuss the case for the insulator Cu2OSeO3, whose
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crystal lattice is characterised by the chiral cubic space group P213 (Fig. 2.1b). This
compound contains two distinctive magnetic Cu2C (S D 1=2) sites surrounded by
different oxygen coordinations with a ratio of 3 W 1, leading to the stabilisation
of three-up, one-down-type local ferrimagnetic ordering [10]. The magnetic phase
diagram of Cu2OSeO3 is shown in Fig. 2.1d. While a helical spin order is realised
in a ground state, the application of a finite magnetic field H stabilises a skyrmion
lattice state in a narrow temperature region just below Tc � 59 K [11]. In Fig. 4.1m,
the H dependence of electric polarisation P measured with H k Œ111� at 57 K
is shown. For all ferrimagnetic, helimagnetic and skyrmion lattice spin states,
the emergence of P k H k Œ111� can be observed but with different signs and
magnitudes. We can also observe P k Œ001� for H k Œ110� (Fig. 4.1i), while no
electric polarisation can be detected for H k Œ001� (Fig. 4.1e) [12].

These behaviours can be well explained from the viewpoint of symmetry. The
original crystal lattice of Cu2OSeO3 belongs to the non-polar space group P213

and does not have electric polarisation by itself (Fig. 4.1a). Similarly, the skyrmion
lattice spin texture characterised by the orthogonal arrangement of the six-fold
rotation axis parallel to H and 20 (two-fold rotation followed by time reversal)
axes normal to H is also non-polar (Fig. 4.1b). However, when this skyrmion lattice
spin texture is placed on the crystal lattice of Cu2OSeO3, most of the symmetry
elements are broken and the system can become polar. In the case of H k Œ111�,
only a three-fold rotation axis parallel to H remains unbroken and the emergence of
P k H k Œ111� is allowed (Fig. 4.1n). For H k Œ110�, only the screw axis normal to H
survives and P k Œ001� emerges normal to H (Fig. 4.1j). In contrast, with H k Œ001�,
the orthogonal arrangement of three screw axes remains and the induction of P
is prohibited (Fig. 4.1f). The above symmetry-based analyses well reproduce the
experimental observations.

Because the magnetic modulation period (�62 nm) is much longer than the
crystallographic lattice constant (�8.9 Å) for Cu2OSeO3, spin directions within a
single crystallographic unit cell can be considered to be almost collinear. When a
local magnetic moment mi D .mia; mib; mic/ is assumed for the ith crystallographic
unit cell, the P213 symmetry of the crystal lattice allows the emergence of a local
electric polarisation pi of the form

pi D .pia; pib; pic/ / .mibmic; micmia; miamib/; (4.1)

from Neumann’s law and cluster expansion up to second order. In Fig. 4.2b, c,
the expected relation between local directions of mi and pi is visualised. This
local correspondence between mi and pi directly gives a macroscopic relation
between M and P for a collinear ferrimagnetic state with uniformly oriented local
magnetisation. To confirm the validity of Eq. (4.1), the H direction dependence
of P is measured at 2 K for the collinear ferrimagnetic state (Fig. 4.2d, e). The
experimental data agrees with the theoretical fit given by Eq. (4.1), which proves
that this equation well describes the local ME coupling for Cu2OSeO3. Here, a
microscopic origin of the ME coupling can be ascribed to the so-called spin-
dependent d-p hybridisation mechanism [13, 14]. This model assumes a pair of
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Fig. 4.1 (continued)
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magnetic ions (accompanied by a magnetic moment si) and a ligand ion (Fig. 4.2a).
Because the direction of si affects the strength of covalence between these sites
through the spin-orbit interaction, the local electric polarisation pij is induced along
the bond direction. When the unit vector along the bond direction is defined as eij,
the relation

pij / .eij � si/
2eij (4.2)

can be expected. By taking the summation
P

ij pij over all Cu–O bonds within
a crystallographic unit cell of Cu2OSeO3 assuming a collinear spin arrangement,
we can reproduce Eq. (4.1). The validity of this ME-coupling mechanism for
Cu2OSeO3 has also been supported by a recent calculation based on the density
functional theory [15].

By identifying the manner of the local ME coupling, the spatial distribution of
electric charge �.r/ D �r � p.r/ for the given spin texture m.r/ can be estimated
using Eq. (4.1). In Fig. 4.3, electric charge distributions estimated for a skyrmion
spin state with various directions of H are summarised. We can see that skyrmions
under H k Œ110� (H k Œ001�) carry local electric dipoles (quadrupoles), which
strongly suggests that the translational motion of individual skyrmion particles can
be driven by the spatial gradient of an external electric field. Recently, through a
small-angle neutron diffraction experiment under the application of an electric field,
the E-induced rotation of a skyrmion lattice has been reported [16, 17]. While a
microscopic origin of the latter phenomena has not yet been completely resolved,
the above results clearly demonstrate that the manipulation of skyrmions by electric
fields in insulators is indeed possible. Because this approach is free from energy
losses due to Joule heating in principle, the ME nature of skyrmions in insulators
may contribute to further reduction of energy consumption associated with skyrmion
manipulation.

J
Fig. 4.1 Symmetry elements compatible with (a) a crystal lattice of Cu2OSeO3 with chiral cubic
space group P213 and (b) a magnetic skyrmion lattice formed within a plane normal to an
applied magnetic field (H). In (b), the skyrmion lattice holds 6 (six-fold rotation) axes parallel
to H and 20 (two-fold rotation followed by time reversal) axes normal to H. (c)–(e) Magnetic
field dependence of (c) magnetisation M, (d) ac magnetic susceptibility �0, and (e) electric
polarisation P for bulk Cu2OSeO3 measured at 57 K with H k Œ001�. Corresponding profiles
for H k Œ110� and H k Œ111� are also indicated in (g)–(i) and (k)–(m), respectively. The
letter symbols f, s, h and h’ indicate the ferrimagnetic, skyrmion-crystal, helimagnetic (single
q-domain) and helimagnetic (multiple q-domains) states, respectively. (f), (j), (n) Magnetically-
induced ferroelectric polarisation (P) under various directions of H for Cu2OSeO3, predicted by
symmetry analysis (see text) (Reproduced from Ref. [11] and Ref. [12])
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Fig. 4.2 (a) Schematic of the spin-dependent d-p hybridisation model. (b) and (c) Three-
dimensional representation of the general correspondence between M and P directions in a
collinear spin state for Cu2OSeO3 , deduced based on Eq. (4.1). Arrows at the same position in
(b) and (c) represent the M vector and corresponding induced P vector, respectively. (d) [110]
and [001] components of electric polarisation P simultaneously measured under H rotating around
the ŒN110� axis at 2 K with H D 0:5 T (i.e. collinear ferrimagnetic state). Dashed lines indicate
theoretically expected behaviours based on Eq. (4.1), and arrows denote the direction of H rotation.
In (e), experimentally obtained relations between P and M directions in a ferrimagnetic state as well
as the definition of � (the angle between the H direction and [001] axis) are summarised. Here, M
and P directions are indicated; the cross symbol � denotes P D 0 (Reproduced from Ref. [12])
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a b c d

Fig. 4.3 Calculated spatial distributions of (a) the local magnetisation vector m and (b)–(d) the
local electric charge � for the skyrmion lattice state (see text). The magnetic field is along the out-
of-plane direction, and the results for (b) H k Œ001�, (c) H k Œ110� and (d) H k Œ111� are indicated.
The background colour represents the relative value of mz for (a) and � for (b)–(d). Here, mz

indicates the out-of-plane component of m. The dashed hexagon indicates a magnetic unit cell of
the skyrmion lattice or a single skyrmion quasi-particle (Reproduced from Ref. [12])

4.2 Magnetoelectric Resonance of Skyrmions

Thus far, the response of skyrmions to a static external field has mainly been
discussed. Hereafter, we introduce the dynamics of skyrmions under oscillating
magnetic and electric fields (H! and E!). In general, the appropriate frequency of
H! induces the coherent resonance precession of magnetic moments in a long-range
spin-ordered state. In conventional ferromagnets, such a magnetic resonance mode
can be excited by H! applied normal to a static magnetic field H.

For the skyrmion lattice spin state, theoretical studies have predicted several
magnetic resonance modes characterised by different selection rules [18, 19].
For the H ? H! (H k H!) configuration, the clockwise or anticlockwise
rotational modes (breathing modes) of skyrmions are expected (Fig. 4.4a, d). To
experimentally identify these skyrmion resonance modes, a microwave absorption
spectrum has been obtained for Cu2OSeO3 under various directions of H and
H! [20]. Figure 4.4b indicates the H dependence of the absorption spectrum at
57.5 K (i.e. just below Tc � 59 K) with the H ? H! setup. Here, the application of
H induces the successive magnetic phase transitions (helical ! skyrmion ! helical
! ferrimagnetic). While a helical spin state is always characterised by magnetic
resonance at around 1.5 � 1.8 GHz, the emergence of a new resonant mode at
1.0 GHz is clearly observed for the intermediate field region from 140 Oe to 320 Oe.
The peak intensity of this new mode is plotted as a function of temperature and
magnetic field in Fig. 4.4c, and we can see that it appears only in the skyrmion
lattice spin state. On the basis of the previous theoretical prediction, this new mode is
identified as the rotational mode of skyrmions. Moreover, a similar measurement has
been performed for the H k H! setup. The absorption peak by magnetic resonance
is observed only in an intermediate field region from 50 Oe to 120 Oe (Fig. 4.4e)
and is confirmed to appear only in the skyrmion lattice spin state (Fig. 4.4f). From its
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Fig. 4.4 (a) Clockwise and anticlockwise rotational modes and (d) breathing modes of magnetic
skyrmions excited by H ? H! and H k H! , respectively. The microwave absorption spectra under
various magnitudes of a static magnetic field at 57.5 K for bulk Cu2OSeO3 ((b) and (e)), as well
as the temperature versus magnetic field phase diagram with background colour indicating the
absorption intensity of skyrmion resonant modes ((c) and (f)), are indicated for each experimental
configuration of H ? H! and H k H! , respectively (Reproduced from; (a) and (d) Ref. [27], (b),
(c), (e), (f) Ref. [20])
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selection rule, we can identify this mode as being the breathing mode of skyrmions.
Later, experimental observation of similar skyrmion resonance modes has also been
reported for MnSi and Fe1�xCoxSi [21].

Because skyrmions in insulators are strongly coupled with a local electric charge
distribution (especially an electric dipole), the resonant oscillation of ME skyrmions
can be excited not only by H! but also by E! . Such a magnon excitation active
to E! is called an electromagnon and has been identified for several magnetic
materials with strong ME couplings [22, 23]. When a resonant absorption mode
is both magnetic- and electric-dipole active, the interference of these excitations
leads to a unique optical response known as directional dichroism. This is a type
of one-way window effect, which means that the reversal of the light-propagation
direction k provides different absorption spectra. In general, directional dichroism
can be considered to be an extension of the linear ME effect into the dynamical
regime. By considering the relation H / k � E for electromagnetic waves, the
electric susceptibility �zz D @Pz=@Ez contains the term linear to kz˛xy. This suggests
that the absorption spectrum depends on the sign of k (k z) when an off-diagonal
component of the linear ME coefficient ˛xy is non-zero. From the viewpoint of
symmetry, this condition is satisfied when the relation .P � M/ k k holds [24, 25].
Because H k Œ110� induces P k Œ001� for Cu2OSeO3, the emergence of directional
dichroism can be expected for light propagating along k k Œ1N10� (Fig. 4.5a) [26, 27].
In Fig. 4.5c, the difference in the absorption spectra between ˙k measured for the
skyrmion lattice state is indicated. The skyrmion resonance mode shows clear non-
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reciprocity up to 3 %, and its sign is confirmed to be reversed on the sign reversal
of H. The successful observation of directional dichroism inversely proves that
skyrmion resonance can be excited by an oscillating electric field, which suggests
that the ultra-fast electric manipulation of skyrmions is possible.

Recently, the dynamics of skyrmions has been detected not only in the frequency
domain but also in the time domain using the pump–probe technique [28]. Here,
a circularly polarised light pulse induced local magnetisation through the inverse
Faraday effect, and the ensuing time development of magnetisation was detected
by measuring the Faraday rotation of linearly polarised probe light (Fig. 4.6a).
The time dependence of the Faraday rotation angle measured at 165 Oe with various
temperatures for Cu2OSeO3 is plotted in Fig. 4.6c. A clear magnetisation oscillation
is always observed below Tc � 59 K, and the skyrmion lattice state (58.5 K
> T > 56.5 K) is characterised by a longer magnetisation oscillation period than
the helical magnetic state below 56 K. The corresponding oscillation frequency for
each magnetic state is consistent with that obtained from previous frequency domain
measurements, which proves the successful detection of skyrmion dynamics as a
function of time.
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Chapter 5
Summary and Perspective

Herein, we will describe several future directions for the study of magnetic
skyrmions.

One important issue is the complete understanding of the relation between
material parameters (the underlying crystallographic lattice symmetry as well as
relative magnitudes of various magnetic interactions such as symmetric exchange
interaction, Dzyaloshinskii–Moriya interaction, dipole–dipole interactions and
magnetic anisotropy) and the skyrmion-ordering pattern. Despite several promising
material design guidelines introduced in Chaps. 1 and 2, the number of material
systems reported to host skyrmion spin texture has been very limited. Theories
predict that skyrmions can take on various internal spin textures (including vortex,
anti-vortex, radiative or hedgehog-like) and ordering forms (including lattice forms
with hexagonal, tetragonal and cubic symmetry, isolated particle form and “liquid”-
like form) with very different temperature–magnetic field phase diagrams [1–4].
The realisation of smaller skyrmions at room temperature under zero magnetic field
would be very essential for future applications of skyrmions to ultra-high-density
magnetic storage devices. From a more fundamental viewpoint, it has recently
been proposed that nucleation and annihilation of magnetic skyrmions, as well as
the associated change in topological number, is controlled by singular magnetic
point defects, which can be viewed as quantised emergent magnetic monopoles and
anti-monopoles [5]. The concept of a magnetic monopole has been employed to
describe several other spin-related issues such as localised excitations in a spin-
ice system [6] or an anomalous Hall effect originating from a momentum-space
emergent magnetic field [7]. Combined with recent experimental efforts to identify
magnetic monopoles [8], a further investigation of their dynamics and responses
against external fields as well as the utilisation and enhancement of associated
emergent electromagnetic fields will be attractive.

The development of methods to create, annihilate, drive and identify individual
skyrmions with ultra-fast speed and minimal energy consumption is another impor-
tant issue. The creation and annihilation of a single skyrmion has been reported
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using irradiation by a circularly polarised laser pulse (�150 fs) [9] as well as using
spin-polarised current injection through STM tips (�1 s) [10], although the latter
approach requires a further enhancement of its operational speed. As discussed in
Sect. 3.4, spin-polarised electric current in conductive materials can be also used
to drive the translational motion of skyrmions, with a threshold current density
five orders of magnitude smaller than that of a conventional ferromagnetic domain
wall. Although this feature alone will significantly contribute to the reduction of
energy consumption, the further suppression of Joule heat loss will be possible
through the employment of other external stimuli such as electric fields or spin
waves (magnons) in insulators. Note that both spin waves in insulators and spin-
polarised electric currents in conducting materials are considered to be a flow of
spin angular momentum (i.e. “spin current”) [11] and can interact with skyrmions
in an analogous manner. In general, spin waves can be excited by various methods
such as magnetic resonance [11], thermal gradient [12] and light irradiation[14].
Theoretical studies suggest that skyrmions interacting with magnons propagating
along the k direction are driven along the �k direction and are also deflected along
the transverse direction with the skew Hall angle strongly dependent on the ratio of
skyrmion size to magnon wavelength [15–17]. These phenomena can be naturally
explained by considering the momentum exchange process between skyrmions
and magnons under the total momentum conservation law. Recently, the ratchet
rotational motion of a skyrmion crystal has been reported for metallic MnSi and
insulating Cu2OSeO3 under a concentric thermal gradient, which can be understood
within the framework of magnon-driven skyrmion Hall effects[13]. The direct
experimental observation of translational skyrmion motion under magnon flow or
electric field in insulators is yet to be achieved.

Several device structures have been proposed to employ skyrmions in magnetic
information storage [18]. They commonly consider the presence or absence of
skyrmions at a specific position to be the non-volatile information of a 0/1 bit. One
notable prototype was ‘magnetic bubble memory’, which utilised magnetic bubbles
(the rod-shaped ferromagnetic domain as discussed in Sect. 2.2) as an information
carrier and was commercially available through the 1970s–1980s. The bubble
memory consisted of the interconnection of small bubble tracks comprising a closed
loop of guide pieces, reading and writing elements and a driving electromagnet [19].
The magnetic field generated by the electromagnet caused the translational motion
of a bubble sequence along the guide. Bubbles were written by the pulse of a local
electric current loop (and associated magnetic field) and read magnetoresistively.
Because a magnetic skyrmion can be considered to be a type of magnetic bubble,
it is compatible with existing bubble devices in terms of structure but with a
vastly miniaturised scale and thus a dramatic enhancement of information density.
Recently, Parkin et al. proposed a similar but more sophisticated form of magnetic
storage called ‘racetrack memory’ [20]. The element of racetrack memory is
made up of a closed loop of a one-dimensional ferromagnetic wire and a pair
of reading/writing elements. Here, information is stored as the "/# direction of a
local magnetic moment at that specific position. The application of electric current
in the ferromagnetic wire causes a translational shift of information sequence
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(corresponding to the movement of the ferromagnetic domain wall pattern) through
spin-transfer torque. The reading of a local magnetisation direction is possible with
a tunnel magnetoresistance (TMR) device, and the writing is achieved by the local
injection of spin-polarised current. This simple structure needs only one TMR
device per �1,000 bits, which is regarded as a strong advantage in comparison
with an existing MRAM device that requires a TMR device for every bit. By
replacing the ferromagnetic domain wall with skyrmions, the critical current density
and accompanying energy consumption necessary to drive racetrack memory will
be further reduced [21]. Several theoretical investigations support the concept
behind such a skyrmion-based magnetic storage device [18, 22], and corresponding
experimental demonstrations of the reading, writing and driving of skyrmions
confined in nano-structured circuits are in high demand. The development of
skyrmion-based information-processing devices is another future issue.
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