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Preface

The finite element method has become an indispensible tool in structural
analysis, and tells an unparalleled success story. With success, however, came
criticism, because it was noticeable that knowledge of the method among prac-
titioners did not keep up with success. Reviewing engineers complain that the
method is increasingly applied without an understanding of structural behav-
ior. Often a critical evaluation of computed results is missing, and frequently
a basic understanding of the limitations and possibilities of the method are
nonexistent.

But a working knowledge of the fundamentals of the finite element method
and classical structural mechanics is a prerequisite for any sound finite element
analysis. Only a well trained engineer will have the skills to critically examine
the computed results.

Finite element modeling is more than preparing a mesh connecting the
elements at the nodes and replacing the load by nodal forces. This is a popular
model but this model downgrades the complex structural reality in such a
way that—instead of being helpful—it misleads an engineer who is not well
acquainted with finite element techniques.

The object of this book is therefore to provide a foundation for the finite
element method from the standpoint of structural analysis, and to discuss
questions that arise in modeling structures with finite elements.

What encouraged us in writing this book was that—thanks to the inten-
sive research that is still going on in the finite element community—we can
explain the principles of finite element methods in a new way and from a new
perspective by making ample use of influence functions. This approach should
appeal in particular to structural engineers, because influence functions are a
genuine engineering concept and are thus deeply rooted in classical structural
mechanics, so that the structural engineer can use his engineering knowledge
and insight to assess the accuracy of finite element results or to discuss the
modeling of structures with finite elements.

Just as a change in the elastic properties of a structure changes the Green’s
functions or influence functions of the structure so a finite element mesh effects
a shift of the Green’s functions.

We have tried to concentrate on ideas, because we considered these and
not necessarily the technical details to be important. The emphasis should
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be on structural mechanics and not on programming the finite elements, and
therefore we have also provided many illustrative examples.

Finite element technology was not developed by mathematicians, but by
engineers (Argyris, Clough, Zienkiewicz). They relied on heuristics, their in-
tuition and their engineering expertise, when in the tradition of medieval
craftsmen they designed and tested elements without fully understanding the
exact background. The results were empirically useful and engineers were
grateful because they could suddenly tackle questions which were previously
unanswerable. After these early achievements self-confidence grew, and a sec-
ond epoch followed that could be called baroque: the elements became more
and more complex (some finite element programs offered 50 or more ele-
ments) and enthusiasm prevailed. In the third phase, the epoch of “enlight-
ment” mathematicians became interested in the method and tried to analyze
the method with mathematical rigor. To some extent their efforts were futile
or extremely difficult, because engineers employed “techniques” (reduced inte-
gration, nonconforming elements, discrete Kirchhoff elements) which had no
analogy in the calculus of variations. But little by little knowledge increased,
the gap closed, and mathematicians felt secure enough with the method that
they could provide reliable estimates about the behavior of some elements.
We thus recognize that mathematics is an essential ingredient of finite ele-
ment technology.

One of the aims of this book is to teach structural engineers the theoretical
foundations of the finite element method, because this knowledge is invaluable
in the design of safe structures.

This book is an extended and revised version of the original German ver-
sion. We have dedicated the web page http://www.winfem.de to the book.
From this page the programs WINFEM (finite element program with focus on
influence functions and adaptive techniques), BE-SLABS (boundary element
analysis of slabs) and BE-PLATES (boundary element analysis of plates) can
be downloaded by readers who want to experiment with the methods. Addi-
tional information can also be found on http://www.sofistik.com.

FriedelHartmann@uni-kassel.de Casimir.Katz@sofistik.de

Kassel Friedel Hartmann
Munich August 2003 Casimir Katz
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One of the joys of writing a book is that the authors learn more about a sub-
ject. This does not stop after a book is finished. So we have added additional
sections to the text
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• How to predict changes
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• Generalized finite element methods (X-FEM)
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• Sensitivity analysis
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1. What are finite elements?

1.1 Introduction

In this introductory chapter various aspects of the FE method are studied,
initially highlighting the key points.

1.2 Key points of the FE method

• FE method = restriction

Analyzing a structure with finite elements essentially amounts to constraining
the structure (see Fig. 1.1), because the structure can only assume those
shapes that can be represented by shape functions.

Fig. 1.1. The building can only execute movements that can be represented by
shape functions
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Fig. 1.2. Shear wall: a) support reaction B; b) the displacements observed at x if
the support B moves in the vertical direction are a direct measure of the influence
a (nearly concentrated point) load P = [Px, Py]T has on the support B. About 85%
of Py and 6% of Px will contribute to B. The better an FE program can model the
movement of the support B, the better the accuracy

This is an important observation, because the accuracy of an FE solution
depends fundamentally on how accurately a program can approximate the
influence functions for stresses or displacements. Influence functions are dis-
placements: they are the response of a structure to certain point loads. The
more flexible an FE structure is, the better it can react to such point loads,
and hence the better the accuracy of the FE solution; see Fig. 1.2.

• FE method = method of substitute load cases

It is possible to interpret the FE method as a method of substitute loadings
or load cases, because in some sense all an FE program does is to replace the
original load with a work-equivalent load, and solve that load case exactly.
The important point is that structures are designed for these substitute loads
not for the original loads.

• FE method = projection method

The shadow of a 3-D vector is that vector in the plane with the shortest
distance to the tip of the vector.

The FE method is also a projection method, because the FE solution is the
shadow of the exact solution when it is projected onto the trial space Vh, where
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Fig. 1.3. Plate with alternating edge load: a) system and load; b) equivalent nodal
forces

Vh contains all the deformations the FE structure can undergo. The metric
applied in the projection is the strain energy: one chooses that deformation
uh in Vh whose distance to the exact solution u measured in units of strain
energy is a minimum.

Let u denote the exact equilibrium position of a plate (subjected to some
load), and let uh be the FE approximation of this position. Now to correct the
FE position, that is, to force the plate into the correct shape, a displacement
field e = u− uh must be added to uh.

Let σ e
ij and ε e

ij denote the stresses and strains caused by this displacement
field e. The FE solution guarantees that the energy needed to correct the FE
solution is a minimum

a(e,e) =
∫

(σe
xx εe

xx + σe
xy γe

xy + σe
yy εe

yy) dΩ → minimum . (1.1)

This is equivalent to saying1 that the work needed to force the plate from its
position uh into the correct position u is a minimum. The effort cannot be
made any smaller on the given mesh.

In a vertical projection the length of a shadow is always less than the
length of the original vector (see Bessel’s inequality [232]); this implies that

The situation is different if a support of a structure is displaced. Then the
FE projection is a skew projection (see Sect. 1.38, p. 187), that is, the shadow
is longer than the original vector. This means that a greater effort is needed to
displace a support of a more rigid structure than of a more flexible structure.
But it will be seen later that even then a minimum principle still applies.

Because the FE solution is the shadow of the true solution, it cannot be
improved on the same mesh. This is also why some load cases cannot be solved
on an FE mesh. Each projection has a blind spot; see Fig. 1.3. The equivalent
nodal forces at the free nodes cancel and so K u = 0.
1 a(u, u) = a(uh, uh) − 2 a(uh, e) + a(e, e) and a(uh, e) = 0

mates the stiffness of the structure.

the strain energy of the FE solution is always less than the strain energy
of the exact solution. An engineer would say that the FE solution overesti-
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Fig. 1.4. Theoretically these load cases cannot be solved with the FE method

• FE method = energy method

An FE program thinks in terms of work and energy. Loads that contribute
no work do not exist for an FE program. Nodal forces represent equivalence
classes of loads. Loads that contribute the same amount of work are identical
for an FE program.

In modern structural analysis, zero is replaced by vanishing work. In clas-
sical structural analysis a distributed load p(x) is identical to a second load
ph(x) if at each point 0 < x < l of the beam the load is the same:

p(x) = ph(x) 0 < x < l strong equal sign . (1.2)

In contrast, identity is based on a weaker concept in modern structural anal-
ysis. Two loads are considered identical if the virtual work is the same for any
virtual displacement δw(x):∫ l

0

p(x) δw(x) dx =
∫ l

0

ph(x) δw(x) dx for all δw(x) . (1.3)

This is the weak equal sign. If all really means all then of course the weak equal
sign is identical to the strong equal sign. But in all other cases there remains
a specific difference, in that equivalence is established only with regard to a
finite set of virtual displacements δw.

Because the FE method is an energy method, problems in which the strain
energy is infinite—theoretically at least—cannot be solved with this method;
see Fig. 1.4.

• FE method = method of approximate influence functions

We will see that a mesh is only as good as the influence functions that can be
generated on that mesh. According to Betti’s theorem, the displacement u(x)
or the stress σx(x) at a point x is the L2-scalar product of the applied load p
and the corresponding influence function (Green’s function)

b) concrete block placed on line supports
because the strain energy is infinite: a) Concentrated forces acting on a plate;
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Fig. 1.5. FE analysis of a taut rope

u(x) =
∫ l

0

G0(y, x) p (y) dy , σx(x) =
∫ l

0

G1(y, x) p (y) dy . (1.4)

All an FE program does is to replace the exact Green’s functions with ap-
proximate Green’s functions Gh

0 and Gh
1 , respectively. Therefore the error in

an FE solution is proportional to the distance between the approximate and
the exact Green’s function:

u(x)− uh(x) =
∫ l

0

[
G0(y, x)−Gh

0 (y, x)
]

p (y) dy , (1.5)

σx(x)− σh
x(x) =

∫ l

0

[
G1(y, x)−Gh

1 (y, x)
]

p (y) dy . (1.6)
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1.3 Potential energy

To see these principles applied, we analyze a very simple structure, a taut
rope (see Fig. 1.5).

Imagine that the rope is pulled taut by a horizontal force H and that it
carries a distributed load p. The distribution of the vertical force V within
the rope and the deflection w of the rope are to be calculated. The deflection
w is the solution of the boundary value problem

−Hw′′(x) = p(x) 0 < x < l w(0) = w(l) = 0 . (1.7)

The vertical (or transverse) force T is proportional to the slope w′

T = Hw′ , (1.8)

and the vector sum of H and T is the tension S in the rope

S =
√

H2 + T 2 . (1.9)

The potential energy of the rope is the expression

Π(w) =
1
2

∫ l

0

H(w′)2 dx−
∫ l

0

p w dx =
1
2

∫ l

0

T 2

H
−
∫ l

0

p w dx . (1.10)

For completeness we also note Green’s first identity for the operator −H w′′:

G(w, ŵ) =
∫ l

0

−H w′′ ŵ dx + [T ŵ]l0 −
∫ l

0

T T̂

H
dx = 0 (1.11)

because it encapsulates the structural mechanics of the rope.
To approximate the deflection w(x) of the rope, the rope is subdivided

into four linear elements: see Fig. 1.5. The first and the last node are fixed
so that only the three internal nodes can be moved. Between the nodes the
deflection is linear, that is the rope is only allowed to assume shapes that
can be expressed in terms of the three unit displacements ϕi(x) of the three
internal nodes (see Fig. 1.5)

wh(x) = w1 · ϕ1(x) + w2 · ϕ2(x) + w3 · ϕ3(x) . (1.12)

The nodal deflections, w1, w2, w3, play the role of weights. They signal how
much of each unit deflection is contained in wh.

All these different shapes—let the numbers w1, w2, w3 vary from −∞ to
+∞—constitute the so-called trial space Vh.

The space Vh itself is a subset of a greater space, the deformation space
V of the rope. The space V contains all deflection curves w(x) that the rope
can possibly assume under different loadings during its lifetime. It is obvious
that the piecewise linear functions wh in the subset Vh represent only a very
small fraction of V .
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The next question then is: what values should be chosen for the three
nodal deflections w1, w2, w3 of the FE solution? What is the optimal choice?

According to the principle of minimum potential energy, the true deflection
w results in the lowest potential energy on V

Π(w) =
1
2

∫ l

0

H(w′)2dx−
∫ l

0

p w dx . (1.13)

But if the exact solution w wins the competition on the big space V , it
seems a good strategy to choose the nodal deflections wi in such a way that
the FE solution

wh(x) =
3∑

i=1

wi ϕi(x) (1.14)

wins the competition on the small subset Vh ⊂ V . Then Π(wh) is as close as
possible to Π(w) on Vh.

Because each function wh in Vh is uniquely determined by the nodal de-
flections wi at the three interior nodes, i.e. the vector w = [w1, w2, w3]T , the
potential energy on Vh is a function of these three numbers only

Π(wh) = Π(w) =
1
2

wT Kw − fT w

=
1
2

[w1, w2, w3]
4 H

l

⎡
⎣ 2 −1 0
−1 2 −1

0 −1 2

⎤
⎦
⎡
⎣w1

w2

w3

⎤
⎦− [f1, f2, f3]

⎡
⎣w1

w2

w3

⎤
⎦

=
4 H

l
[w2

1 − w1 w2 + w2
2 − w2 w3 + w2

3]− f1 w1 − f2 w2 − f3 w3 ,

(1.15)

where the matrix K and the vector f have the elements

k ij =
∫ l

0

Hϕ′
i ϕ′

j dx f i =
∫ l

0

p ϕi dx = p le = p
l

4
. (1.16)

Finding the minimum value of Π on Vh is therefore equivalent to finding the
vector w—the “address” of wh ∈ Vh—for which the function Π(w) becomes
a minimum. A necessary condition is, that the first derivatives of the function
Π(w) vanish at this point w:

∂Π

∂wi
=

3∑
j=1

k ij wj − f i = 0 , i = 1, 2, 3 , (1.17)

which leads to the system of equations

Kw = f (1.18)
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Fig. 1.6. The error e is orthogonal to
the plane

or

4 H

l

⎡
⎣ 2 −1 0
−1 2 −1

0 −1 2

⎤
⎦
⎡
⎣w1

w2

w3

⎤
⎦ =

p l

4

⎡
⎣1

1
1

⎤
⎦ , (1.19)

which has the solution w1 = w3 = 1.5 p l2/(16 H) , w2 = 2.0 p l2/(16 H). Hence
the deflection

wh(x) =
p l2

16 H
[1.5 · ϕ1(x) + 2.0 · ϕ2(x) + 1.5 · ϕ3(x)] (1.20)

is the best approximation on Vh.

1.4 Projection

Work is a scalar quantity, as are temperature and pressure. This is nearly the
most important statement that can be made about work. Work is force ×
displacement. Work and energy are the same. The integral

1
2

∫ l

0

T 2

H
dx , T = Hw′ , (1.21)

is the internal energy of the rope. It measures the strain energy stored in the
rope.

Energy can also serve as a scale. It is the scale FE methods work with.
Having a scale means having a topology, which in turn defines “far away” and
“nearby”. To measure the length of a vector the Euclidean norm is used:

|x| =
√

x2
1 + x2

2 + x2
3 . (1.22)
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Fig. 1.7. All vectors have the same
shadow x′

In this topology two cities A and B are close neighbors if the difference between
their position vectors a and b (with reference to the origin of a map) is small:

|a− b | “small” =⇒ A and B are neighbors . (1.23)

Projections only make sense if distances can be measured. The shadow x′ of a
3-D vector x is the vector in the plane which has the smallest distance to the
tip of x; see Fig. 1.6. The distance between the original vector and its shadow
is the length of the vector

e = x− x′ , (1.24)

which points from the tip of the shadow to the tip of the vector x. The shadow
x′ renders this distance a minimum

|e| =
√

(x1 − x′
1)2 + (x2 − x′

2)2 + (x3 − 0)2 = minimum . (1.25)

Any other vector x̃′ in the plane has a greater distance from the vector x

|ẽ| = |x− x̃′| > |e| = |x− x′| . (1.26)

This is the first feature of a projection: the shadow solves a minimum problem.
The second feature is that the residual vector, the error e, is orthogonal to

the x1−x2-plane (assuming that the sun shines from straight above), because
the scalar product between the error and the shadow is zero:
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eT x′ = 0 . (1.27)

This is equivalent to saying that the shadow of the error e has no physical ex-
tent, but only if the line of sight coincides with the direction of the projection!
Seen from any other direction the length of e is not zero. Hence a projection
method is blind with respect to errors which lie in the line of sight. All vectors
x̃ that lie “above” the vector x, which differ from x only by an additive term

The third feature is that the result of a projection cannot be improved.
Repeating a projection changes nothing: the shadow of the shadow is the
shadow. Which means that a projection method freezes after the first step,
while other operations, such as squaring a number, can be repeated infinitely
often.

The fourth feature of a projection is that the length of the shadow is
shorter than the length of the original vector; see Fig. 1.7. This is not only
true for vectors, but also for functions: the Fourier series fn(x) of a function
f(x) is the projection of f(x) onto the trigonometric functions in the sense

2

(= 2 n is less than the L2-norm of f :

||fn|| 0 = [
∫ l

0

f2
n(x) dx]1/2 ≤ [

∫ l

0

f2(x) dx]1/2 = ||f || 0 . (1.28)

All this applies now to the FE method as well: the exact deflection curve w ∈ V
is projected onto a subspace Vh, and the shadow wh is the FE solution.

In the case of the rope the space Vh contains all the deformations which
are expansions in terms of the three unit displacements ϕi(x),

wh(x) = w1 · ϕ1(x) + w2 · ϕ2(x) + w3 · ϕ3(x) , (1.29)

and the FE solution is the solution of the following minimum problem:

Find the deflection

wh(x) = w1 · ϕ1(x) + w2 · ϕ2(x) + w3 · ϕ3(x) (1.30)

in Vh which has the shortest distance (= strain energy) from the exact deflec-
tion w.

In FE analysis the strain energy is usually expressed

a(w,w) :=
∫ l

0

H (w′)2 dx =
∫ l

0

T 2

H
dx . (1.31)

If

e(x) = w(x)− wh(x) (1.32)

Fig. 1.7.
parallel to the line of sight (i.e., projection), have the same shadow; see

L -norm) of the Fourier series f
of the L -scalar product, and according to Bessel’s inequality the length
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is the error of the FE solution, then the FE solution is that function in Vh for
which the strain energy of the error e(x) becomes a minimum:

a(e, e) =
1
2

∫ l

0

(T − Th)2

H
dx = minimum . (1.33)

Any other function wh in Vh has a larger distance—in terms of energy—than
the FE solution. This property of the FE solution wh can also be expressed
as follows, see (7.413) p. 572,

a(e, e) ≤ a(w − vh, w − vh) for all vh ∈ Vh . (1.34)

We also know that the strain energy of the FE solution is always less than
the strain energy of the exact solution:

a(wh, wh) =
∫ l

0

T 2
h

H
dx <

∫ l

0

T 2

H
dx = a(w,w) , (1.35)

h

0 < a(w,w) = a(wh + e, wh + e)
= a(wh, wh) + 2 a(e, wh)︸ ︷︷ ︸

= 0

+ a(e, e)︸ ︷︷ ︸
> 0

, (1.36)

where

a(e, wh) =
∫ l

0

(T − Th)Th

H
dx = 0 (1.37)

is a consequence of the Galerkin orthogonality

a(e, ϕi) = 0 i = 1, 2, 3 (1.38)

i.e., the fact that the error e is orthogonal in terms of the strain energy to all
unit displacements ϕi, and therefore also to wh = w1 · ϕ1 + w2 · ϕ2 + w3 · ϕ3.

Hence the strain energy or internal energy is the metric FE methods work
with. Distance is measured in this metric and therefore also convergence.

The internal energy induces a topology on the space V which is even a
norm on this space, because it separates the elements of V . Two functions w1

and w2 are identical if and only if their distance in terms of the strain energy
is zero:

1
2

∫ l

0

(T1 − T2)2

H
dx =

1
2

∫ l

0

H (w′
1 − w′

2)
2 dx = 0 ⇔ w1 = w2 (1.39)

that is if w1 − w2 has zero energy.

inequality follows directly from
has a shorter length (= strain energy) than w. Thisi.e., the shadow w
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Fig. 1.8. A small deflection
curve can hide a large strain
energy

A function w is small in this metric if its energy (essentially the square of
the first derivative) is small, and the exact deflection w and the FE solution
wh are close in this metric if the strain energy of the error

e(x) = w(x)− wh(x) (e = error) (1.40)

is small

1
2

∫ l

0

T 2
e

H
dx =

1
2

∫ l

0

H(w′ − w′
h)2 dx = small =⇒ e(x) = small . (1.41)

This energy metric makes more sense than a naive metric that considers a
function such as w(x) = sin(8π x) a “small” function (see Fig. 1.8), while for
the FE method it is a “large” function, because the strain energy due to the
rapid oscillations is large∫ 1

0

w(x)2 dx = 0.5 ,
1
2

∫ 1

0

Hw′(x)2 dx = 316 ·H . (1.42)

Hence from an engineering standpoint it makes more sense to classify functions
with regard to the strain energy than their amplitude or their L2-norm.

A better strategy would it be to base the metric on both components, the
zero-order and the first-order derivative. This leads to the so-called Sobolev
norms, which, depending on the index n, measure the derivatives up to order

||w||n =

[∫ l

0

[
w(x)2 + w′(x)2 + . . . + w(n)(x)2

]
dx

]1/2

(1.43)

and classify functions according to this metric. By increasing the index n
different topologies can be generated on V . In the same way the distance
between two vectors does not depend on the difference of the first two com-
ponents alone, |a− b| = √

(a1 − b1)2 (which would be a very crude topology)
but on the difference of all components

n
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the FE program can represent
constitute a subset Vh of V

|a− b| =
√

(a1 − b1)2 + (a2 − b2)2 + . . . + (an − bn)2 . (1.44)

This metric generates the finest possible topology, just as in a lottery the prize
money increases, the more figures on a ticket agree with the number drawn.

Remark 1.1. Later it will be seen that in so-called load cases δ when displace-
ments are prescribed the projection is no longer orthogonal but “skew” this
implies that the length of the shadow (the strain energy) will be greater than
the strain energy of the exact solution; see Sect. 1.38, p. 187. This is to be
expected: the stiffer a structure the greater the strain energy developed by
displacing a support.

1.5 The error of an FE solution

• the deflection w
• the vertical force T = Hw′

• the load p = −Hw′′

i.e., the zero-order, first-order, and second-order derivative of the deflection
w. All three derivatives of w are relevant to the structural analysis, and hence
it is legitimate to ask which of the three errors

Fig. 1.9. The shapes which

The FE method is an approximate method, see Fig. 1.9. As such it must
approximate three functions:
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Fig. 1.10. The error in the displacement is zero at the nodes, while the error in
the stresses is zero at the midpoints of the elements. This is a typical pattern in FE
analysis

w−wh error in the deflection
T − Th error in the internal action
p− ph error in the load

is to be minimized? In principle we have already given the answer. The FE
solution aims at minimizing the square of the error of the internal action
T − Th, ∫ l

0

(T − Th)2

H
dx =

∫ l

0

H(w′ − w′
h)2 dx → minimum . (1.45)

Hence an FE solution does not tend to win a beauty contest by imitating
the original shape w as closely as possible nor does it aim to simulate the
loading; rather, the solution tends to minimize the error in the strain energy
(the internal energy).

The load case ph

A closer study of the FE solution reveals that wh is the equilibrium position
of the rope if the distributed load were concentrated at the nodes, fi = p le.
This load case is called the FE load case ph, (see Fig. 1.10).
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Of course we would like to know what the consequences are. How far are
the results of the load case ph (= nodal forces) from p (= distributed load)?
Stated otherwise: given the error in the load

r := p− ph (residual forces) (1.46)

how large is the error in the vertical force

Te := T − Th (1.47)

and the difference in the deflection

e := w − wh ? (1.48)

In other words what can be said about the error in the first-order, T − Th =
H(w−w′

h), and zero-order derivative, w−wh, if the error in the second-order
derivative p− ph is known?

The normal procedure is to differentiate the deflection w, yielding the
vertical force T , and to differentiate T to find the load p

w ⇒ T = H w′ ⇒ p = −H w′′ . (1.49)

In a reverse order, the functions must be integrated

w =
∫∫
− p

H
dx dx ⇐ T =

∫
−p dx ⇐ p = −H w′′ (1.50)

and integration smoothes the wrinkles; see Fig. 1.10.
But is there a reliable method to make predictions about the distance

in the first-order derivatives by looking at the distance in the second-order
derivative? The answer is no. Otherwise it would suffice to calculate an ap-
proximate solution on a coarse mesh, and extrapolate from this solution to
the exact solution. In general this seems not to be possible, certainly not in
one step. There exist only different techniques which provide upper or lower
bounds for the error. The development of such error estimators is the subject
matter of adaptive methods.

1.6 A beautiful idea that does not work

• An FE solution cannot be improved on the same mesh.

Once it is understood that the error of an FE solution can be traced back to
deviations in the load, could the situation not be improved by applying the
residual forces p − ph, solving this load case again with finite elements, and
repeating this loop as long as the error is greater than a preset error margin
ε?

This idea does not work, because the residual forces
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Fig. 1.11. The FE solution
of this load case is zero

r = p− ph (1.51)

leave no traces on the mesh, i.e., all the equivalent nodal forces fr
i vanish,

fr
i =

∫ l

0

p ϕi dx−
3∑

j=1

fj · ϕi(xj) = fi − fi = 0 for all ϕi , (1.52)

so that the rope will not deflect, because zero nodal forces mean zero deflec-
tion:

Ku = 0 ⇒ u = 0 . (1.53)

This riddle is easily solved by recalling that the exact curve w is projected
onto the trial space Vh. But because the error w − wh is orthogonal (in the
energy sense) to the space Vh,∫ l

0

H(w′ − w′
h) ϕi

′ dx = 0 for all ϕi , (1.54)

it casts no shadow, i.e., e = 0.
It follows that there are load cases which cannot be solved on an FE mesh

(see Fig. 1.11) namely all load cases where the load p is so arranged that it
contributes no work. This is the case if all equivalent nodal forces fi are zero:

fi = δWe(p, ϕi) = 0 , i = 1, 2, . . . n . (1.55)

Loads that happen to be parallel to the line of sight have a “null shadow”.

1.7 Set theory

In their lowest level, many systems are at their most stable position. Many
processes in physics are governed by a minimum principle. The same holds
in beam analysis: the deflection curve w of a continuous beam minimizes the
potential energy of the beam

Π(w) =
1
2

∫ l

0

M2

EI
dx−

∫ l

0

p w dx → minimum (1.56)
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Fig. 1.12. The potential energy Π(wh) of the FE solution always lies to the right
of the exact potential energy Π(w)

on V , which is the set of all functions w that satisfy the support conditions,
i.e., that have zeros, w = 0, at all supports. All such functions w compete for
the minimum value of Π(w).

The winner is the deflection curve w of the continuous beam. According
to Green’s first identity, G(w,w) = 0 (see Sect. 7.2, p. 508)∫ l

0

M2

EI
dx =

∫ l

0

p w dx (2 Wi = 2We) , (1.57)

hence the minimum of the potential energy is

Π(w) =
1
2

∫ l

0

M2

EI
dx−

∫ l

0

p w dx = −1
2

∫ l

0

p w dx . (1.58)

Obviously the potential energy is negative in the equilibrium position, because
the integral (p, w) itself is positive. It is the work done by the distributed load
p inducing its own deflections, and such work (eigenwork) is always positive.

If no load p is applied, but instead displacements δ are prescribed at one
or more supports then the potential energy is

Π(w) =
1
2

∫ l

0

M2

EI
dx > 0 , (1.59)

(support displacements δ never enter into the potential energy—they only
appear in the definition of the space V ), i.e., the minimum value of Π must
be greater than zero, because the integral of M2 is positive. Hence the two
types of load cases differ by the sign of the potential energy:

• load cases p Π < 0
• load cases δ Π > 0 .

Now if a continuous beam is placed on additional supports as in Fig. 1.13, the
set V “shrinks” because the candidates—the deflection curves w that compete
for the minimum value of Π(w)—must have zeros, w = 0, at additional points.
In contrast if supports are removed, then V increases, because the numbers
of constraints w = 0 shrinks. Therefore the “size” of V is proportional to
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ports, the smaller the space
V

and |Π(u)|
increase

potential energy must decrease (V shrinks) or increase (V grows).

increases, because then also those displacement fields that are discontinuous at
the faces of the crack can compete for the minimum value of Π(u) whereupon
the minimum value of Π(u) decreases, which actually means that |Π(u)|
increases [115].

The opposite tendency is observed in FE analysis where one seeks the
minimum value of Π(u) only on a subset Vh of V . On the subset the minimum
value cannot be less than the minimum on the whole space V .

A second observation can be added to this: in a load case p, the strain
energy of the FE solution is always less than the strain energy of the exact
solution, see (1.36),∫ l

0

M2
h

EI
dx ≤

∫ l

0

M2

EI
dx (load case p) , (1.60)

while in a load case δ the situation is just the opposite, because the strain
energy of the FE solution exceeds the strain energy of the exact solution∫ l

0

M2

EI
dx ≤

∫ l

0

M2
h

EI
dx (load case δ) . (1.61)

Both effects suggest that an FE solution tends to overestimate the stiffness of
a structure.

Fig.

the number of constraints and consequently the absolute value |Π(w)| of the

both the space V

1.13.

Or imagine that a crack develops in a plate; see Fig. 1.14. Then the space V

The more sup-

Fig. 1.14. With each crack,
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The potential energy of the exact solution is always less than the potential
energy of the FE solution:

Π(w) < Π(wh) because Vh ⊂ V (1.62)

or if we identify Π with numbers on the x-axis, the point Π(wh) will always
lie to the right of the point Π(w); see Fig. 1.12.

This implies that in a load case p the potential energy of the FE solution
will not be as low as the potential energy of the true solution and the structure
will not deflect as much—the displacements will be smaller.

The fact that Π(wh) lies to the right of Π(w) means in a load case δ
that more strain energy is “stored” in the FE solution than the true solution.
Obviously because more energy must be supplied, to displace the support of
a stiffer structure. To sum it up we have:

• in a load case p Π(wh) is closer to zero than Π(w)
• in a load case δ Π(wh) lies farther from zero than Π(w)

But these observations do not imply that FE displacements are smaller than
the exact displacements! This certainly will be true for some nodes, but in
general it cannot be guaranteed to be true for all nodes.

There is only one example where this conclusion—at least for one node—
holds, namely if a single force P acts at a point xP of a Kirchhoff plate. In
the equilibrium position the potential energy is just the (negative) work done
by the force P

− 1
2
P w(xP ) = Π(w) < Π(wh) = −1

2
P wh(xP ) (1.63)

and this inequality can only be true if the FE deflection at xP is less than the
exact value, wh < w.

A similar result can be observed in a beam which is loaded at midspan,
x = l/2, with a single force P , so that

Π(w) = −1
2
P w(

l

2
) . (1.64)

What happens next is exactly what is predicted by set theory. The more
supports that are added (see Fig. 1.15), the smaller the deflection w(l/2) at
the center of the beam. Then V decreases, as does the absolute value |Π(w)|
of the potential energy and thus the deflection w(l/2).

The same effect can be observed if the beam is placed on one or two
additional elastic supports. Springs are different, in that they do not change
the size of V , because springs have no hard supports such as w(0) = 0.

Braces and diaphragms also enable the absolute value of the potential
energy of a structure to decrease. The more plates, beams, columns and slabs
a structure contains per cubic meter, the closer the absolute value of the
potential energy of the structure in a load case p will be to zero, while in a
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Fig. 1.15. The greater the number of supports, the smaller the value of |Π|, the
smaller the deflection w, and the smaller the size of the space V

load case δ the opposite will be true. If in addition such a complex structure
is modeled with just the bare minimum of elements, the structure will be very
stiff.

Minimum or maximum ?

In some sense the principle of minimum potential energy could also be called a
maximum principle—at least for load cases p. Calling it a minimum principle is
attractive, because many processes in nature follow a principle of least action,
but in reality the load p on a beam tends to push the beam downwards as far
as possible, transforming positional energy into potential energy:

Π(w) = −1
2

∫ l

0

p w dx , at w = equilibrium point (1.65)

in mathematical terms, it pushes the point |Π(w)| as far away from zero as
possible.

The movement stops at the equilibrium point. This is the point at which
the external work We equals the internal energy Wi,

We =
1
2

∫ l

0

p w dx =
1
2

∫ l

0

M2

EI
dx = Wi at the equilibrium point w .

(1.66)

The more the load presses the beam down (We increases), the more resistance
the load feels because the beam bends; the bending moments increase, thereby
increasing the internal energy Wi; see Fig. 1.16. The equilibrium point is the
point at which the two trends balance.

Only in load cases δ does the minimum keep its original meaning. Then
the structure tries to avoid any excess strain energy, and follows with as little
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Fig. 1.16. Because the internal energy Wi increases quadratically with u, while the
external work We increases only linearly, Wi always catches up with We, and there
will always be an equilibrium point where Wi = We

resistance as possible, i.e., Π(w) is as close to zero as possible the movements
imposed by the displaced supports.

But regardless of whether the minimum is positive or negative the potential
energy is in any case a concave-up parabola meaning that energy must be
added to the structure to move the structure out of its equilibrium position.
In both types of load cases, p and δ, the equilibrium is stable.

Structural mechanics in a nutshell

Figure 1.16 is a nice illustration of the so-called ellipticity of a spring. Because
the stiffness k of the spring is greater than zero, the strain energy is positive
definite

a(u, u) = k u2 > 0 u 	= 0 , (1.67)

and if P is bounded, the external work P · u is a continuous, linear function
of u. This guarantees that there is always a solution u = P/k, because the
parabola 1/2 k u2 will ultimately rise faster than the straight line 1/2 P u. The
parabola will catch up with the straight line; that is, there is always a balance
between internal energy and external work:

Wi =
1
2

k u2 =
1
2

P u = We at u = P/k . (1.68)

Note that at first the external work 1/2 P u grows faster (and must grow
faster!) than the parabola 1/2 k u2 of the internal energy. If that were not
the case, we would see no movement! Hence in some sense—let P = k = 1—
structural mechanics is rooted in the fact that u > u2 in the interval (0, 1),
and that beyond the end point the opposite is true. The transition point u = 1
is the equilibrium point.
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Fig. 1.17. The support

beam with it

Skew projection

The attentive reader will recall our remark that in a load case δ the strain
energy of the FE solution exceeds the energy of the exact solution. When the
potential energy is minimized in a load case δ

Π(w) =
1
2

∫ l

0

M2

EI
dx → minimum (1.69)

the solution is sought in the solution space S. This space contains all deflec-
tions w which at the proper point, say the end of the beam, exhibit the correct
deflection w(l) = δ; see Fig. 1.17.

In contrast to the space S the test or trial space V consists of all those
functions w which have zero displacement, w(l) = 0, at the end of the beam,
and which of course also satisfy the other support conditions w(0) = w′(0) = 0
of the beam.

Normally, that is in load cases p, the two spaces coincide, S = V , because
normally support conditions are of homogeneous type, w(0) = 0 or w′(0) = 0
etc.. Only in load cases δ the two spaces are different. Then S is simply a shift
of V in a certain direction.

The setup of this space S can be illustrated as follows: one deflection wδ

with the property w(l) = δ is chosen and a curve from V is repeatedly added
to this curve until the whole space S is generated from wδ plus V . This may
be denoted by

S = wδ ⊕ V . (1.70)

In one regard, the space S is different from V . The sum of two curves w1 and
w2 from S is a curve with double the deflection at the end of the beam, 2 δ;
that is, the sum w1 +w2 does not lie in S. Hence, if a test function ŵ is added
to w to see whether the value of Π(w) can be reduced, Π(w + ŵ) < Π(w),
then ŵ must be from V if the property w(l) = δ is to be retained.

Hence the minimum problem can be formulated as follows: given a fixed
but otherwise arbitrary function wδ, find the minimum of

settles and takes the
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Π(wδ + w) =
1
2

∫ l

0

(Mδ + M)2

EI
dx

=
1
2

∫ l

0

M2
δ

EI
dx +

∫ l

0

Mδ M

EI
dx +

1
2

∫ l

0

M2

EI
dx

=
1
2

∫ l

0

M2
δ

EI
dx︸ ︷︷ ︸

I1

+
∫ l

0

pδ w dx +
1
2

∫ l

0

M2

EI
dx︸ ︷︷ ︸

Π̃(w)

(1.71)

by varying the additive term w ∈ V , where pδ = EI wIV
δ is the load which be-

longs to wδ. (Depending on the character of wδ, the work integral (pδ, w) must
eventually be supplemented with contributions of single forces or moments.)

Now the FE solution wh of the subproblem: find the extreme point wex of
Π̃(w) on V

Π̃(w) =
1
2

∫ l

0

M2

EI
dx−

∫ l

0

(−pδ) w dx → minimum (1.72)

satisfies the inequality Π̃(wex) < Π̃(wh). Hence, given that

0 < Π(wδ + wex) = I1 + Π̃(wex) < I1 + Π̃(wh) = Π(wδ + wh) (1.73)

the strain energy of the FE solution of a load case δ exceeds the strain energy
of the exact solution, precisely because the “FE shadow” (of the homogeneous
part) has a shorter length than the original function. The respective contri-
butions at wex ∈ V and wh ∈ Vh are negative:

Π̃(wex) < Π̃(wh) < 0 , (1.74)

because they are solutions of a load case p.
In 2-D and 3-D problems, things are a little more complicated. To satisfy

the geometric boundary condition w = w̄ 	= 0 on a part ΓD of the boundary,
a deflection surface wδ must be constructed (mainly out of the nodal unit
deflections of the nodes xi which happen to lie on ΓD) which interpolates w̄
on ΓD. Now if w̄ is too complex, wh

δ will only be an approximation, and the
trial space will have a slightly different focus, because Sh = wh

δ ⊕V is different
from S = wδ ⊕ V .

1.8 Principle of virtual displacements

The preceding text began with the principle of minimum potential energy
and derived the FE method and the structural system K u = f from this
principle. But there are other variational formulations which lead to the same
equations.
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checks the equilibrium of the
arm of a scale with the prin-
ciple of virtual displacements

The most prominent of these is probably the principle of virtual displace-
ments. It is more general, because there are situations where a potential energy
expression does not exist, while a variational statement can still be formulated.
Furthermore, the concept of an equivalent nodal force, or more generally, of
the equivalence of different load cases, is based on the principle of virtual
displacements, and therefore this principle is central to the FE method.

From a formal perspective the principle of virtual displacements is trivial.
If 3 × 4 = 12, then δu × 3 × 4 = 12 × δu for arbitrary δu. This basically
is the principle of virtual displacements. Things become more exciting if a)
integration by parts (with functions) is performed and b) the equation δu ×
3× u = 12× δu is read as a variational problem to find the “strong solution”
u = 4.

Consider first a spring with stiffness k = 3 kN/m to which a force f = 12
kN is applied. The elongation u of the spring satisfies the equation 3u = 12.
But if 3u = 12 then δu× 3 u = 12× δu as well, whatever the value of δ u.

Or if the vector u of the nodal displacements of a truss solves the system
K u = f , then δuT K u = δuT f , for any vector δu.

Or if the deflection curve w of a beam solves the differential equation
EI wIV = p, then (δw, EI wIV ) = (δw, p) for arbitrary virtual deflections δw.

3 u = 12 ⇒ δu× 3 u = 12× δu for all δu

K u = f ⇒ δuT K u = δuT f for all δu

EI wIV (x) = p(x) ⇒
∫ l

0

δw EI wIV dx =
∫ l

0

δw p dx for all δw .

(1.75)

Fig. 1.18. A shopkeeper

placements, these are displacements which are compatible with the support
If the virtual displacements δw of the beam are admissible virtual dis-



1.8 Principle of virtual displacements 25

2 ∫ l

0

δw EI wIV dx =
∫ l

0

M δM

EI
dx (1.76)

and the third equation in (1.75) becomes

EI wIV (x) = p(x) ⇒
∫ l

0

M δM

EI
dx︸ ︷︷ ︸

δWi

=
∫ l

0

δw p dx︸ ︷︷ ︸
δWe

. (1.77)

The equations on the left-hand side in (1.75) are the Euler equations. The

ments, i.e., equilibrium in the weak sense:

If a structure is in a state of equilibrium, then for any virtual dis-
placement δu, the virtual internal work δWi is the same as the virtual
external work δWe.

In classical structural mechanics conclusions are drawn from left to right,
while in modern structural mechanics the opposite is true:

Euler equation ⇒ δWi = δWe classical structural mechanics
Euler equation ⇐ δWi = δWe modern structural mechanics

Today the search for the equilibrium position is cast in the form of a vari-
ational problem. The elongation u of the spring, the vector u of the nodal
displacements of the truss, the deflection w of the beam are solutions of the
following variational problems: find a number u, a vector u, a function w ∈ V
such that

δu× 3 u
↑

= 12× δu for all δu ,

δuT K u
↑

= δuT f for all δu ,

∫ l

0

↓
M δM

EI
dx =

∫ l

0

δw p dx for all δw ∈ V .

The next question then is: under what conditions is a variational solution also
a classical solution?

3 u = 12 ⇐ δu× 3 u = 12× δu , (1.78)

K u = f ⇐ δuT K u = δuT f , (1.79)

EI wIV (x) = p(x) ⇐
∫ l

0

M δM

EI
dx =

∫ l

0

δw p dx . (1.80)

2 This is Green’s first identity G(w, δw) = 0 with M(0) = M(l) = 0; see Sect. 7.2,
p. 508.

equations on the right-hand side formulate the principle of virtual displace-

(no springs), then
conditions, and if for simplicity all the supports are assumed to be rigid



26 1 What are finite elements?

Fig. 1.19. A mechanic checks the eccentricity of a cylinder by rolling the cylinder
across a flat surface

Fig. 1.20. The approximate shape is equiva-
lent to a cylinder for all rotations which are
multiples of 45

How many times must the spring be moved or a virtual displacement δu be
applied to the truss or a virtual deflection δw to the beam before it is correct
to say that the variational solution is also a solution in the classical sense?

The spring has one degree of freedom, so a test with one virtual displace-
ment δu 	= 0 suffices. If the truss has n degrees of freedom, then δWi = δWe

must be verified for at least (and at most) n linear independent virtual dis-
placements δu to draw the conclusion that equilibrium holds in the classi-
cal sense, K u = f . But a beam has infinitely many degrees of freedom, so
δWi = δWe must be verified for infinitely many virtual deflections δw be-
fore we can claim that the variational solution w(x) satisfies the differential
equation EI wIV (x) = p(x) at any point 0 < x < l.

Elementary examples

When a shopkeeper checks the equilibrium of the arm of a scale

Pl hl = Pr hr , (1.81)

she lightly tips the arm with her finger (Fig. 1.18), and if this slight disturbance
does not start a hefty rotation of the arm then she gathers that the work done
by the two loads Pl and Pr must be the same, and she concludes that (1.81)
must hold:

Pl hl = Pr hr ⇐= Pl hl tanϕ = Pr hr tanϕ for all ϕ . (1.82)

The same principle is applied by a mechanic who checks the eccentricity of a
cylinder by rolling the cylinder back and forth on a flat surface. He knows that

0
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Fig. 1.21. The trial
space Vh ⊂ V and its
“dual”Ph ⊂ P

perfect cylinder ⇒ vertical deviation vanishes for all rotations ϕ

and he concludes that if he senses no vertical movement with his fingers, the
cylinder must be perfect:

perfect cylinder ⇐ vertical deviation vanishes for all rotations ϕ .

Like the mechanic, the shopkeeper uses the principle of virtual displacements,
which originally had the direction

Pl hl = Pr hr =⇒ δWe = δWi (1.83)

in the opposite direction. If the two loads Pl and Pr satisfy the variational
statement δWe = δWi then they must also satisfy the equilibrium conditions
in the classical sense

Pl hl = Pr hr ⇐= δWe = δWi . (1.84)

This is also the approach of modern structural analysis. The FE method begins
with the principle of virtual displacements, and it constructs an equivalent load
case ph which is work-equivalent to the original load case p with respect to a
finite number of virtual displacements.

Likewise the mechanic would start with an iron bar with a quadratic cross
section double the radius R of the cylinder, (2R×2 R). This shape is equivalent
to the cylinder (= maintains the vertical position of its center) with regard to
all rotations which are a multiple of 900, that is ϕi = i×(360/4)0, i = 1, 2, . . ..
By refining the shape, 4 → 8 → 16 → . . . (sides), the mechanic enlarges the
“test and trial space Vh” and consequently the shape more and more begins
to resemble a true cylinder; see Fig. 1.20.

for any rotation angle ϕ of a perfect cylinder the axis maintains its (vertical)
position, (see Fig. 1.19),
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Fig. 1.22. The virtual work done by the distributed load p and the equivalent nodal
forces is the same for any unit displacement ϕi: δWe(ph, ϕi) = δWe(p, ϕi)

Remark 1.2. The virtual internal work δWi of the arm of the balance is zero,
because the arm is a rigid body, but this does not change the logic. A rigid
body is in a state of equilibrium if and only if the virtual external work is
zero:

Pl hl = Pr hr ⇐⇒ δWe = δWi = 0 . (1.85)

Equivalence

The set of shapes w that a taut rope can assume over its lifetime constitute
the deformation space V . The shapes wh that the shape functions ϕi can
generate constitute a small subspace Vh within V .

Now with any shape w of the rope (Fig. 1.21), we can associate a load case
p. If w ∈ C2(0, l), the load is simply the right-hand side corresponding to w,
i.e., p = −H w′′. If w is not that smooth, point forces can appear where w′ is
discontinuous. The set of all these load cases constitutes the “dual space” P .

By this mapping

deflection curve w ⇒ load case p (1.86)

the subspace Vh is also mapped onto a subspace Ph of P , and true to the nature
of the shape functions ϕi the load cases in the subspace Ph ⊂ P consist of
nodal forces only .

Because the original load case p (Fig. 1.5), is not among these load cases
in Ph, the FE method chooses a substitute load case ph in Ph, that can be
solved on Vh.
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• That load case ph in Ph is chosen which is work-equivalent to the original
load case with regard to the virtual displacements ϕi ∈ Vh:

δWe(ph, ϕi) = δWe(p, ϕi) for all ϕi ∈ Vh . (1.87)

In other words, the substitute loads, the nodal forces, must—upon acting
through any virtual displacement ϕi ∈ Vh—contribute the same virtual work
as the original load p; see Fig. 1.22.

The simplest application of this idea can be seen in Fig. 1.23. Over every
cycle of the see-saw, father (load case p) and son (load case ph) (or is it vice
versa?) contribute the same virtual work. With regard to all possible cycles
of the see-saw, father and son represent two equivalent load cases. They are
indistinguishable on Vh.

1.9 Taut rope

In the following we will show how this idea (1.87) is applied to a taut rope.
The FE solution is a linear combination of the three unit deflections

wh(x) = w1 · ϕ1(x) + w2 · ϕ2(x) + w3 · ϕ3(x) . (1.88)

Each unit deflection ϕi represents a particular load case p i ∈ Ph, i.e., a
particular arrangement of nodal forces. Take for example the unit deflection
ϕ1 of the first node (Fig. 1.24). The rope assumes this shape if at the first
node a force f1 = −P = H/le pointing upward is applied, at the next node a
force double that size pointing downward f2 = 2P , and at the third node a
force f3 = −P again pointing upward:

f1 = −H

le
↑ f2 = 2

H

le
↓ f3 = −H

le
↑ (1.89)

where H is the horizontal force that pulls the rope taut. In the same sense,
two load cases p2 and p3 can be associated with the other two unit deflections
ϕ2 and ϕ3. Hence, given any shape

wh = w1 · ϕ1(x) + w2 · ϕ2(x) + w3 · ϕ3(x) (1.90)

there is a load case ph

Fig. 1.23. The work

the see-saw

done by father and
son is the same over
every cycle turn of
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Fig. 1.24. The three unit load
cases p1, p2, p3 and the three unit
deflections ϕ1, ϕ2, ϕ3

ph = w1 · p1 + w2 · p2 + w3 · p3

= w1 · (↑ ↓ ↑)1,2,3 + w2 · (↑ ↓ ↑)2,3,4 + w3 · (↑ ↓ ↑)3,4,5 ,

(. . .)1,2,3 = (. . .) at the nodes 1,2,3 (1.91)

that produces the shape wh.
By an appropriate choice of the weights wi (the nodal deflections!), the

FE load case ph can be scaled in such a way that it is work-equivalent to the
distributed load p in the sense of the principle of virtual displacements. This
is the basic idea.

Because the substitute load case ph consists of only three nodal forces, the
balance between those forces and the original load p cannot be maintained
with regard to all possible virtual deflections of the rope. Rather, the number
of tests must also be restricted to three, and therefore the three unit deflections
of the three nodes are chosen as test functions (virtual deflections).

The virtual work done by the distributed load p acting through unit de-
flection ϕi is the integral

δWe(p, ϕi) =
∫ l

0

p ϕi dx , (1.92)

and the virtual work of the three nodal forces fi at the three nodes x1, x2, x3

acting through the same unit deflection is the sum

δWe(ph, ϕi) = f1 · ϕi(x1) + f2 · ϕi(x2) + f3 · ϕi(x3) . (1.93)

The virtual work must be the same for any virtual deflection ϕi, hence
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δWe(p, ϕi) = δWe(ph, ϕi) , i = 1, 2, 3 . (1.94)

Next comes an important idea:

• The FE solution wh is itself an equilibrium solution, and therefore it too
satisfies the principle of virtual displacements.

Hence, for any ϕi, the virtual internal work of the FE solution wh

δWi(wh, ϕ1) =
∫ l

0

ThT1

H
dx Th = Hw′

h, T1 = Hϕ′
1 , (1.95)

is equal to the virtual external work done by the nodal forces:

δWi(wh, ϕ1) = δWe(ph, ϕ1) . (1.96)

This means that the internal virtual energy of the FE solution can be added
to the string of equations (1.94)

δWe(p, ϕ1) = δWe(ph, ϕ1) = δWi(wh, ϕ1)︸ ︷︷ ︸
principle of virtual displacements

(1.97)

or if the term in the middle is dropped

δWe(p, ϕ1) = . . . = δWi(wh, ϕ1) , (1.98)

and the whole equation turned around

δWi(wh, ϕ1) = δWe(p, ϕ1) (1.99)

and the original notation used, then the result is∫ l

0

ThT1

H
dx = f1 . (1.100)

If these steps are repeated with ϕ2 and ϕ3, a system of three equations

Kw = f , (1.101)

is obtained, where K is just the stiffness matrix of the rope

K =
4 H

l

⎡
⎣ 2 −1 0
−1 2 −1

0 −1 2

⎤
⎦ . (1.102)

The element k ij of K is the strain energy product between the two unit
deflections ϕi and ϕj

k ij =
∫ l

0

Hϕ′
i ϕ′

j dx , (1.103)
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Fig. 1.25. Taut rope:
with regard to a sine-

h

equivalent to the load
case p

while the component fi of the vector f is the work done by the load p acting
through ϕi

fi =
∫ l

0

p ϕi dx . (1.104)

Because the distributed load p is constant, all the equivalent nodal forces are
the same

f1 = f2 = f3 =
p l

4
. (1.105)

Hence the nodal deflections are

w1 = 1.5
p l2

16 H
, w2 = 2.0

p l2

16 H
, w3 = 1.5

p l2

16 H
, (1.106)

and the solution is

wh =
p l2

16 H
[1.5 · ϕ1(x) + 2.0 · ϕ2(x) + 1.5 · ϕ3(x)] , (1.107)

which coincides with (1.20).
What we did in the end is that we replaced the original load case p with a

load case ph. A reviewing engineer who checks the FE solution with the unit
deflections would not find any difference between the two load cases p and
ph. On each test with one of the unit deflections, he would recognize that the
response of the rope, measured in units of virtual work, is the same.

Only by refining the tools and testing the FE solution with a sine wave

δw = sin
πx

l
(1.108)

∫ l

0

p sin
πx

l
dx 	=

3∑
i=1

fi sin
πxi

l
xi = location of fi . (1.109)

the FE loadwave,
case p is not work-

will he realize that the two load cases cannot be the same, because the virtual
work is not the same, (see Fig. 1.25),
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Force method

To complete the picture, note that the force method of structural mechanics
is based on the principle of minimum complementary energy

Πc(w) = −1
2

∫ l

0

M2

EI
dx + V · δ → minimum . (1.110)

(The term δ denotes a possible displacement of a support.) This principle
is essentially the opposite of the principle of minimum potential energy. The
minimum value of Πc is sought among all functions w = w0+X1 w1+. . . Xn wn

that are particular solutions of the equation EI wIV = p. The solution consists
of a curve w0, which is a particular solution of the equation EI wIV

0 = p, and
the deflections wi caused by the redundants Xi, EI wIV

i = 0. Better known
is the bending moment distribution M of this solution

M = M0 + X1 M1 + X2 M2 + . . . + Xn Mn . (1.111)

The condition ∂ Πc/∂ Xi = 0 leads to the system of equations

F x = − δ0 (1.112)

where F is the flexibility matrix with elements fij = (Mi,Mj), the vector
x = [X1, X2, . . . , Xn]T contains the redundants, and the vector δ0 embodies
the interaction between M0 and the Mi, because in the principle of mini-
mum complementary energy the “equivalent nodal forces” are just the scalar
product3 of the bending moment M0 (moment distribution of the statically
determinate structure) with the curvature Mi/EI of the redundants

δi0 =
∫ l

0

M0 Mi

EI
dx . (1.113)

Theoretically one could write an FE program that starts with a particular
state w0 enriched with n redundants wi. In frame analysis, where n is equal
to the degree of static indeterminacy this method would always yield the exact
solution, while in plate or shell analysis infinitely many Xi would be needed.

1.10 Least squares

In FE analysis, the movements of a structure are constrained, because the
structure is only allowed to assume shapes that can be expressed as piecewise
linear, piecewise quadratic, or similar shape functions.

We then find that the FE solution is that deformation of the structure
which among all remaining movements renders the potential energy a mini-
mum. This is equivalent to the statement that the associated load case ph is
3 From now on we simply say scalar product instead of L2-scalar product.
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Fig. 1.26. Best fit with a
straight line

work-equivalent to the original load case p. Finally the distance (in terms of
energy) between the exact solution u and the FE solution uh is a minimum:

a(e, e) = a(u− uh, u− uh) ≤ a(u− vh, u− vh) vh ∈ Vh . (1.114)

No other function vh ∈ Vh comes closer to u in this sense than uh. But a
minimum in energy means (in the case of a beam for example)

a(e, e) =
∫ l

0

(M −Mh)2

EI
dx → minimum , (1.115)

that the least-squares error of the internal actions is a minimum.
Least squares is a concept of numerical analysis. When a straight line

Mh(x) = a x + b is drawn through a number of points (Fig. 1.26)

a x1 + b = M(x1) ,

a x2 + b = M(x2) , (1.116)
. . . = . . . ,

a xn + b = M(xn) ,

as to minimize the sum of squared errors

F =
n∑

i=1

(Mh(xi)−M(xi))2 → minimum , (1.117)

∂ F

∂ a
= 0 ,

∂ F

∂ b
= 0 , (1.118)

we obtain a least-squares solution. Solving (1.118) is equivalent to solving the
2× 2 system of equations

AT
(2×n)A(n×2)

[
a
b

]
= AT

(2×n) m(n) , (1.119)

the normal equations, where A is the coefficient matrix of (1.116) and the
vector m = [M(x1),M(x2) . . .] is the right-hand side of (1.116).

In FE analysis, the bending moment is a function

Mh(x) =
∑

i

wi Mi(x) , Mi(x) = −EI ϕ′′
i (x) , (1.120)
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and because the FE solution is minimized with respect to all points 0 < x < l
of a beam, the sum is replaced by an integral (see (1.115)).

The equation Ku = f is the associated normal equation [232]. This equa-
tion is obtained if the infinitely many equations Mh(x) = M(x) (there are
infinitely many points x1, x2, . . . in the interval [0, l]) basically a matrix A∞×n

is multiplied by the transposed matrix AT
n×∞ from the left, and the diagonal

matrix C∞×∞ with weights Cii = EI is placed in between:

AT
(n×∞) C(∞×∞)A(∞×n) = K(n×n) . (1.121)

Weighted least squares

The term EI comes from the strain energy product

a(w, ŵ) =
∫ l

0

M M̂

EI
dx , (1.122)

because in FE analysis the bending moments are scaled in such a way that in
the weighted least-squares sense the discrepancies between Mh and the exact
bending moment M are minimized

F :=
∫ l

0

(M −Mh)2

EI
dx =

∫ l

0

(M −Mh) (κ− κh) dx → min. (1.123)

which means that the error in the bending moments is multiplied by the error
in the curvature, and that this product is minimized.

Of course if the bending stiffness EI is constant, then there is no difference
between least squares and weighted least squares.

Global and local

In least squares the global picture—the error over the whole interval [0, l]—is
studied. But the algorithm also incorporates a local match, as we will see in
the following. To simplify the derivation it is assumed that EI = 1, and the
short-hand notation for integrals (see Chap. 7) is used.

For the integral

F = (M −Mh,M −Mh) = (M,M)− 2 (M,Mh) + (Mh,Mh)

= (M,M)− 2
∑

i

(M,Mi) wi +
∑
i,j

(Mi,Mj) wi wj (1.124)

to attain a minimum at w it is necessary that the gradient of F vanishes at
this point with respect to the nodal values wi:

∂F

∂wi
= 2

∑
j

(Mi,Mj) wj − 2 (M,Mi) = 2 (Mh,Mi)− 2(M,Mi) = 0 .

(1.125)
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Fig. 1.27. Cantilever beam and FE load case. At the Gauss points the error in the
bending moment is zero

Hence the solution of (1.123) is equivalent to making the error M −Mh or-
thogonal to the functions Mi, with EI reinserted∫ l

0

(M −Mh)Mi

EI
dx = 0 , i = 1, 2 . . . (local match) . (1.126)

Test range

The test range for the local match between M and Mh is not a single element,
but the support of the individual hat function Mi. (This is what the bending
moments of the unit deflections ϕi look like.) Outside of the support Ωi the
hat function is zero, and therefore the local test is an integral over the interval
Ωi = [xi−1, xi+1]:∫ l

0

(M −Mh) Mi

EI
dx =

∫ xi+1

xi−1

(M −Mh)Mi

EI
dx = 0 . (1.127)

In the case of a continuous beam the test range of an individual hat function
Mi consists of two consecutive elements. And the positive and negative errors
M −Mh must be distributed in such a way that in the weighted average sense
the error over any two neighboring elements disappears, see Fig. 1.27.
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1.11 Distance inside = distance outside

The central equation of the FE method—in the case of a beam for example,
is

a(e, e) =
∫ l

0

(M −Mh)2

EI
dx → minimum . (1.128)

The FE solution is scaled in such a way that the mean squared error attains
the smallest possible value; see Fig. 1.28. This is achieved by projecting the
exact solution onto the subspace Vh in such a way that the error in the bending
moments is orthogonal to all ϕi in Vh:

a(e, ϕi) =
∫ l

0

(M −Mh) Mi

EI
dx = 0 , i = 1, 2, . . . n . (1.129)

But how can the error be controlled if the exact bending moment distribution
M(x) is not known? How does the program measure M −Mh? The answer is
simple: the virtual internal energy is equal to the virtual external work. Hence
if the error in the bending moments is orthogonal to the curvature produced
by each ϕi

δWi =
∫ l

0

(M −Mh)︸ ︷︷ ︸
unknown

Mi

EI
dx =

∫ l

0

(p− ph)︸ ︷︷ ︸
known

ϕi dx = δWe = 0 , (1.130)

the residual forces p − ph must be orthogonal to each ϕi as well. The terms
on the right-hand side are∫ l

0

(p− ph) ϕi dx =
∫ l

0

p ϕi dx−
∫ l

0

ph ϕi dx

= fi −
n∑

j=1

k ij uj = fi − fh
i = 0 , (1.131)

i.e., from the equivalent nodal force fi of the load case p, the equivalent nodal
forces fh

i of the load case ph are subtracted

∫ l

0

ph ϕi dx =
∫ l

0

(
n∑

j=1

wj pj) ϕi dx =
n∑

j=1

∫ l

0

pj ϕi dx wj

=
n∑

j=1

k ij wj = fh
i (1.132)

and because fi = fh
i it follows that δWe(e, ϕi) = δWi(e, ϕi) = 0.

In a plate, the same equations are
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Fig. 1.28. Original
load and substitute
load

δWi =
∫

Ω

(σ − σh)︸ ︷︷ ︸
unknown

• εi dΩ =
∫

Ω

(p− ph)︸ ︷︷ ︸
computable

• ϕi dΩ

+
∫

Γ

(t− th)︸ ︷︷ ︸
computable

• ϕi ds +
∑

k

∫
Γk

t∆︸︷︷︸
computable

• ϕi ds = δWe (1.133)

where the integrals ∑
k

∫
Γk

t∆ • ϕi ds (1.134)

are the virtual work done by line loads t∆, which represent the jumps in the
stresses on the interelement boundaries Γk.

The orthogonality in the stresses is equivalent to the fact that the unit
load cases pi—the action behind the displacement fields ϕi—contribute no
work on acting through the error e(x) = u(x)− uh(x)

δWi =
∫

Ω

(σ − σh) • εi dΩ =
∫

Ω

(p− ph) • ϕi dΩ + . . . = δWe = 0 .(1.135)

This is the right occasion to recall how we argue in the force method. The
bending moment distribution M = M0 +X1 M1 +X2 M2 + . . . of a continuous
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beam is orthogonal to all redundants Xi∫ l

0

M Mi

EI
dx = 0 ⇒ w(xi) = 0 or ∆w′(xi) = 0 , etc. (1.136)

which means that the previously eliminated constraints at the supports, i.e.,
conditions such as w(xi) = 0 or ∆w′(xi) = 0 (relative rotation), are satisfied
by the exact solution.

Now it might be assumed that the orthogonality (1.133) means just this:
that the error in the displacements is zero at the nodes∫

Ω

(σ − σh) • εi dΩ = 0
?⇒ u(xi)− uh(xi) = 0 . (1.137)

But this is not true. The FE solution does not interpolate the exact solution
at the nodes.

Only in one-dimensional problems, as in beam problems, is the condition

δ Wi =
∫ l

0

(M −Mh) Mi

EI
dx = 0 , (1.138)

equivalent to the fact that the error in the deflection is zero at the nodes. Here
Mi is the bending moment corresponding to the unit deflection ϕi, and the
conclusion is correct, because (due to δWe = δWi) the orthogonality (1.138)
is equivalent to

0 = δWi = δWe = (w(xi)− wh(xi)) · P = 0 · P . (1.139)

The nodal force P is the force that causes the unit nodal deflection at xi. (If
the distance from the node to the neighboring nodes is not the same, then an
additional moment M can appear, but this moment does not contribute any
work, because the rotation of the node is zero, ϕ′

i(xi) = 0.)
In plates, slabs and shells, it is not possible to associate a single point force

with a unit nodal displacement ϕi. Instead such a displacement is generated
by a diffuse cloud of surface loads and line forces in the neighborhood of
the nodes, and therefore the sharp point condition u(xi) = uh(xi) is not
guaranteed.

It is not the intention of an FE program to interpolate the exact displace-
ment field u at the nodes, but rather to minimize the error in the stresses.
From an engineering point of view, this certainly makes more sense than to
interpolate the true displacement field u at the nodes. Only in 1-D problems
do we get both: interpolation at the nodes + minimal distance in terms of
energy.

Remark 1.3. By 1-D problems are meant here and in the following the classical
differential equations −H w′′ (rope), −EAu′′ (bar), and EI wIV (beam) of
structural mechanics. With regard to extended equations such as −EAu′′+c u
or EI wIV + cw, see the remark at the end of Sect. 3.1 on p. 292.



40 1 What are finite elements?

1.12 Scalar product and weak solution

In classical structural mechanics the deflection curve w of a beam is deter-
mined by solving the differential equation EI wIV = p and adjusting the
solution to the boundary conditions. According to the principle of virtual dis-
placements (Green’s first identity), the classical solution is also a solution of
a variational problem: find a function w such that∫ l

0

M δM

EI
dx =

∫ l

0

p δw dx for all δw ∈ V . (1.140)

The variational form and the differential equation are equivalent formulations.
The differential equation EI wIV = p is the Euler equation of the variational
principle. The variational solution is called a weak solution, because for the
variational statement∫ l

0

Mh Mi

EI
dx =

∫ l

0

p ϕi dx , i = 1, 2, . . . n , (1.141)

to make sense the solution must only have square-integrable second deriva-
tives, Mi = −EI ϕ′′

i , while the Euler equation requires the solution w to have
fourth-order derivatives.

This is the official (?) version. But we think that the person who first spoke
of a weak solution had more in mind than counting derivatives.

In mathematics there is the concept of weak convergence, and this concept
is closely related to the scalar product (or principle of virtual displacements),
and ultimately to the way the shopkeeper checks the arm of a balance and
modern structural engineers argue.

To determine the mass of a brick we throw it in the air. Sensing the force
f , the acceleration a and knowing that f = m a we guess the mass m of the
brick. Basically we draw our conclusion indirectly4.

And this is how an FE program proceeds. To judge the load on a structure
an FE program “shakes” the structure. It applies virtual displacements and it
measures the virtual work done by the load. This is what the scalar product
is for.

With the scalar product duality enters the stage, and therewith the distinc-
tion between displacements and forces. An A is tested by holding it against a
B, where A(= p) might be a distributed load and B(= δw) a virtual displace-
ment, and the work done by p acting through the displacement δw provides
a measure to judge p.

If we drive a truck over a bridge and then shake the bridge by applying
a series of virtual deflections δw, the truck performs virtual work. If in this
scalar product
4 According to a quote in [74] p. 172 Germain [93] expressed similar ideas:

’

When we
wish to see if a suitcase is heavy, we lift it. To estimate the tension in a (stationary)
transmission belt, we try to draw it aside from its equilibrium position. The
essential underlying mathematical idea is that of “duality”’.
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1.29.
nodal force (= work) of truck
B is the wheel load × the
deflection under the wheel.
The influence of truck A is
zero

∫
Ω

p δw dΩ =: p (δw) p = truck (1.142)

the load p is kept fixed and the virtual displacement δw is varied, the scalar
product becomes a functional p (δw)5. This is an expression into which a
function δw is substituted and which returns a number. Any truck and any
load case p constitutes a functional in this sense.

If p is the original truck and ph the FE truck, then the FE method consists
in replacing the functional p () on Vh by a functional ph () in such a way
that the real truck p() and the pseudo-truck ph(), the two functionals, are
equivalent with respect to all virtual displacements ϕi ∈ Vh:

p (ϕi) = ph (ϕi) , i = 1, 2, . . . , n , (1.143)

and the FE truck ph eventually will converge to the real truck p (if the mesh
size h tends to zero) if in the limit the functional ph agrees with the functional
p with respect to all virtual displacements:

lim
h→0

ph (δw) = p (δw) for all δw of the structure . (1.144)

This is what weak convergence means, and in this sense the FE solution is a
weak solution.

The distance between p and ph, the original truck and the FE truck, is
not judged directly, i.e., by comparing the pressure per square inch on the
bridge |ph(x) − p(x)|, but by studying the effects which the two trucks ph

and p trigger with regard to the same virtual displacements. Our judgement
is based on the belief that if the effects are the same then the agents behind
these effects must be the same.

This conclusion is—if the reader will allow this remark—typical of our
time where substance has been replaced by function. We no longer care what
something is, but are only interested in how it interacts with other objects.
5 Usually we denote the functional by the same letter as the load.

Fig. The equivalent
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Fig. 1.30. Reduction of the load into the nodes. The equivalent nodal forces are
equal to the work which the two forces P contribute acting through the unit dis-
placements

1.13 Equivalent nodal forces

No concept better expresses the nature of the FE method than the notion of
an equivalent nodal force, because an FE program does not think in terms of
forces but in terms of work. This is the medium whereby an FE program es-
tablishes contact with the outside world, and forces that contribute the same
work when acting through the same displacement are the same for an FE pro-
gram. They all belong to the same equivalence class, and the representatives
of these equivalence classes are the equivalent nodal forces:

fi =
∫

Ω

p ϕi dΩ (kN m ) = (kN/m2)(m)(m2) . (1.145)

How much a load contributes to an equivalent nodal force depends on how
much of the movement of the node is felt at the location of the load. The
influence of a node extends precisely as far as the nodal unit displacements;
see Fig. 1.29. Hence nodal unit displacements are influence functions. They
are influence functions for equivalent nodal forces (Fig. 1.30).

Now virtual work is a fuzzy measure, because given any load p there is ob-
viously a second, (third, fourth, ...), load p̃ not identical to p, that contributes
the same amount of work as p:
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44.32 25.04 15.16 7.30 2.32 0.31

30.31 28.29 17.47 9.92 4.80 1.63

47.45 23.55 14.48 7.22 2.34 0.32

Fig. 1.31. All three
load cases are equiv-
alent:a) The original
load case p; b) the
FE-load case ph; c)
the equivalent nodal
forces represent the
equivalence class to
which the two load
cases belong

∫ l

0

p ϕi dx = fi =
∫ l

0

p̃ ϕi dx . (1.146)

Hence a single nodal force fi represents a whole class of loads, namely all the
loads that contribute the same work acting through ϕi. Because they are all
equivalent with respect to ϕi, we call fi an equivalence class of loads (see Fig.
1.31) and we come to understand that the accuracy of the FE results cannot
exceed the resolution of the FE mesh.
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Reverse engineering

In soil mechanics the soil is not stress free and so we must associate with the
stress state Ss (stress tensor) of the soil a set of equivalent nodal forces. But
this is easy because the equivalent nodal forces are simply

fi = a(us,ϕi) =
∫

Ω

Ss • Ei dΩ (1.147)

where Ei is the strain tensor of the nodal unit displacement ϕi and us (which
actually is not required) is the deformation of the soil.

This example also demonstrates that there is an “external” or an “inter-
nal” approach to calculating equivalent nodal forces. According to Green’s
first identity which is here formulated for an elastic solid

G(u,ϕi) =
∫

Ω

p • ϕi dΩ +
∫

Γ

t • ϕi ds︸ ︷︷ ︸
fi = δWe

− a(u,ϕi)︸ ︷︷ ︸
δWi

= 0 (1.148)

both approaches yield the same result. If the volume forces p and surface
tractions t are known then fi = p(ϕi) but because of (1.148) we have as well
fi = a(u,ϕi). This is what we do in reverse engineering.

1.14 Concentrated forces

A Kirchhoff plate (which ignores transverse shear strains) sustains the attack
of a concentrated force, while a Reissner–Mindlin plate does not: the force
simply cuts through the plate. The same happens if a plate is put on a point
support (an infinitely sharp needle). The plate simply ignores the support.
Why this happens and why structures react differently to point forces will be
discussed in the following.

Assume a concentrated force at the middle of a plate. If we draw a circle Γ
with radius r around the force, the horizontal stresses tx on the circle Γ must
tend to infinity as 1/(2πr) (Fig. 1.32 a), because only this behavior guarantees
that in the limit as r tends to zero, the stresses balance the horizontal force
P = 1:

lim
r→0

∫
Γr

tx ds = lim
r→0

∫ 2π

0

tx r dϕ = lim
r→0

∫ 2π

0

1
2πr

↑

↓
r dϕ = 1 . (1.149)

The more the circles close in on the force, the tighter the lines of force are
packed, the more lines pass through each square inch of the cross section of
the plate, and the more singular the stresses become.

In a Kirchhoff plate (Fig. 1.32 b) the Kirchhoff shear vn exhibits the same
behavior, and for the same reason:
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Fig. 1.32. The edge

tain the balance with

plate; b) slab

lim
r→0

∫
Γr

vn ds = lim
r→0

∫ 2π

0

vn r dϕ = lim
r→0

∫ 2π

0

1
2π r

r dϕ = 1 . (1.150)

If this experiment is done in a 3-D elastic solid, the stresses must tend to
infinity as 1/r2, because the integration is carried out over a sphere and the
surface S of a sphere shrinks as S = 4π r2 as r tends to zero.

The spatial dimension

The rate at which stresses tend to infinity thus depends on the dimension
of the continuum. In physics, everything that tends to a point source, the
electrical forces that converge on a point charge e, the gravitational forces
that converge on a point mass m, the stresses that converge on a point load
P must be consistent with the dimension n of the continuum, or rather the

S = 2π r (circle) , S = 4π r2 (sphere) , (1.151)

and therefore must counterbalance the rate at which the sphere shrinks, i.e.,
the fields must behave as 1/(2 π r) or 1/(4 π r2), respectively to reach the
target6 [242]. (The factors 2 π and 4 π are the magnitude of the unit sphere
in R2 and R3 respectively).

But if the strains εxx = σxx/E in a plate (we take ν = 0) behave as 1/r,
then the horizontal displacement u behaves as ln r, the anti-derivative of 1/r.
Hence the displacement at the foot of the concentrated force also becomes
infinite, the point disappears from the screen. But if the force P = 1 has
infinite range then the work done is also infinite, We = (1/2) P × ∞, and
because of Wi = We the strain energy is infinite as well. Hence in the load
case P = 1, the stress and strain field must have infinite energy.

The reason why a Kirchhoff plate sustains the impact of a concentrated
force though the Kirchhoff shear vn (the third derivatives) also tends to infinity
as 1/r is that the deflection w is the triple indefinite integral of vn, and if 1/r
is integrated three times then the result is the function w = 0.5 r2 ln r−3/4 r2

6 Only the 1/r2-law of gravitation makes it possible to concentrate the mass of the
Earth at its center. Given any other law say 1/r or 1/r3 the center of gravity
would not lie at the center of the Earth, [232].

stresses must main-

the point load: a)

size of the sphere that surrounds the target, see Fig. 1.33,
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Fig. 1.33. Near a single point source the line of forces are packed so tightly that a
plastic zone develops. If the load is spread over a short distance then the singularity
is weaker and no plastic zone will develop

which is zero at r = 0 (in the limit as r → 0), that is, the deflection is bounded.
Note that the total deflection is not zero, because the plate deflection is the
sum of this singular function and a regular function; see Equ. (2.5) in Sect.
2.1, p. 242.

Everything hinges on three numbers

i = order of the singularity, the point source
n = dimension of the continuum (1.152)
m = order of the strain energy

The force, or in more general terms the singularity, that deflects the plate
contributes external work which is just the product of the action and its con-
jugate quantity (we may neglect the factor 1/2 typical of eigenwork, because
it is irrelevant in this context)

We = force× deflection We = moment× rotation
We = rotation×moment We = dislocation× force .

(1.153)

Because of the principle of conservation of energy, We = Wi, the internal
energy Wi is bounded if and only if the external work We = action × conjugate
quantity is bounded. Because the action, the force P , the moment M , etc., is
always finite—for simplicity it can be assumed that the source has magnitude
1.0—the question of whether We is infinite or not depends on the magnitude
of response of the structure, i.e., the magnitude of the conjugate quantity.
This comprises the subject of the following section.

Sobolev’s Embedding Theorem

If Ω is a bounded domain in R
n with a smooth boundary and if 2 m > n, then

Hi+m(Ω) ⊂ Ci(Ω̄) (1.154)

and there exist constants ci <∞ such that for all u ∈ Hi+m(Ω)
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Table 1.1. Admissible (ok) and inadmissible (no) loads

n = 1 n = 2 n = 3

singularity rope, bar, plate,
m = 1 Timoshenko beam Reissner–Mindlin 3-D

i = 0 : ↓ ok no no

i = 1 :
�

� no no no

singularity
m = 2 Euler–Bernoulli beam Kirchhoff plate

i = 0 : ↓ ok ok

i = 1 : � ok no

i = 2 : �� no no

i = 3 :
�

� no no

||u||Ci(Ω̄) ≤ ci ||u||Hi+m(Ω) . (1.155)

The norm of a function u

||u||Ci(Ω̄) := max
0≤|j|≤i

∣∣∣∣∂|j|u(x)
∂xj

∣∣∣∣ (1.156)

Ω̄.
This theorem implies that the strain energy due to a point load is bounded

and the conjugate quantity is finite (and continuous) if the three numbers in
(1.152) satisfy the inequality [115]

m− i >
n

2
. (1.157)

The order of the energy is

m = 1 Timoshenko beams, Reissner–Mindlin plates, Elasticity theory
m = 2 Euler–Bernoulli beams, Kirchhoff plates

and the index of the singularity for second-order equations (2m = 2)

i = 0 force i = 1 dislocation

is the maximum absolute value of u and its derivatives up to the order i on
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Fig. 1.34. The four singularities of a beam, ′1 ′ ≡ tan ϕl + tan ϕr = 1

and fourth-order equations (2m = 4)

i = 0 force i = 1 moment
i = 2 rotation i = 3 dislocation

The spatial dimensions are n = 1 for ropes, bars, beams, n = 2 for plates, and
n = 3 for elastic solids. Table 1.1 summarizes the inequality (1.157).

If the action is a force, then the shear forces (the third derivatives of a
slab) must behave as 1/r, the bending moments (the second derivatives) as
ln r, the rotations wn (first derivative) as r ln r, and the deflection w finally
as 1/2 r2 ln r − 3/4 r2.

If this is done systematically for all possible point loads (actions), the
following list with the derivatives and antiderivatives respectively of the two
singular functions 1/r (2D) and 1/r2 (3D) is obtained:

→ differentiate

r2 ln r � r ln r � ln r � r−1 � r−2 � r−3 � r−4

← integrate

To better concentrate on the essential parts, we have dropped all constant
factors and all non-essential parts.

Hence the characteristic singularities in a Kirchhoff plate are the following:

force moment rotation dislocation

w r2 ln r r ln r ln r r−1 ←
w,i r ln r ln r r−1 ← r−2

m ij ln r r−1 ← r−2 r−3

qi r−1 ← r−2 r−3 r−4

and we learn that for example in the neighborhood of a single moment the
shear forces qi behave as r−2, the moments m ij as r−1, the rotations w,i as
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ln r (the moment rotates infinitely often, a Kirchhoff plate does not sustain
the attack of a moment), while the deflection, w � r ln r, is bounded.

Traversing the table from left to right, the characteristic 2-D singularity
1/r rises one level higher with each step to the right. The same tendency can
be observed in a beam (Fig. 1.34). In a beam the 1/r discontinuity wanders
from the lower left (influence function for w) to the upper right (influence
function for V ).

In a Reissner–Mindlin plate the deformations are w, θx, θy, and the shear
forces are defined to be

qx = K
1− ν

2
λ̄2 (θx + w,x ) , qy = K

1− ν

2
λ̄2 (θy + w,y ) , (1.158)

and because these shear forces must behave as 1/r in the neighborhood of a
concentrated force, the deflection will behave as ln r, that is w will be infinite
at r = 0, and the rotations θx, θy will be infinite too.

Remark 1.4. Sobolev’s Embedding Theorem deserves some remarks. Let i = 0,
then this theorem states that

Hm(Ω) ⊂ C0(Ω̄) ||u||C0(Ω̄) ≤ c0 ||u||Hm(Ω) , (1.159)

which means that functions u with the property ||u||m < ∞ are continuous,
and so is the embedding of the space Hm(Ω) into C0(Ω̄)—this is the meaning
of the second part of (1.159).

Hence for each spatial dimension n there is a certain index m beyond which
all functions in Hm(Ω) are continuous, Hm(Ω) ⊂ C0(Ω̄), and this index m
only depends on the dimension n of the space, namely m must be greater than
n/2.

That is if the strain energy of the structure is bounded, ||u||m <∞, then
the displacements are continuous—no cracks. But for this conclusion to be
true it must be m > n/2, i.e., it is true for Kirchhoff plates, 2 > 2/2, but not
for Reissner–Mindlin plates, 1 	> 2/2 or elastic solids, 1 	> 3/2.

Let R
3 be all vectors x = [x1, x2, x3]T . The embedding of R

3 into R
2—

simply the vertical projection of the vectors x onto the plane—is continuous
because

||x||2 =
√

x2
1 + x2

2 ≤ ||x||3 =
√

x2
1 + x2

2 + x2
3 . (1.160)

So if two vectors x and x̂ are close in R
3 then they are also close in R

2. That
is a continuous embedding preserves the topological structure of the original
space.

For additional remarks about Sobolev’s Embedding Theorem and its con-
sequences for structural mechanics, see Sect. 7.10, p. 552.
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Working with point forces

As structural engineers we are well versed in the art of extracting information
from a structure by applying point loads P = 1 or similar singularities. For-
mally this information gathering is an application of Green’s first or second
identity

G(G0, u) = 0 B(G0, u) = 0 etc. (1.161)

or stated differently, an application of the principle of virtual forces or Betti’s
theorem.

In light of Sobolev’s Embedding Theorem, it might seem that care must be
taken if these techniques are applied to 2-D and 3-D solids. But the situation
is not so dramatic. One must distinguish between the formulation of Green’s
first identity on the diagonal, G(u, u) = 0, and formulations G(u, û) = 0 where
u 	= û that are on the secondary diagonal.

If u = G0(y,x) is the displacement field due to a point load in an elastic 3-
D solid the stresses behave as 1/r2. When G(u, u) is formulated with this field
u then the strain energy density σij εijdΩ at x has double that singularity,
and therefore the strain energy in a ball with radius R = 1 is infinite∫

Ω

σij εijdΩ ≡
∫ 1

0

O(
1
r2

) O(
1
r2

) O(r2) dr =
∫ 1

0

1
r2

dr =∞ . (1.162)

But if û 	= u and the field û has bounded stresses, the strain energy density at
x is of the order O(1/r2)O(1)O(r2), and therefore the strain energy product
between the field G0 and the field û is finite.

Similar considerations hold in the case of Betti’s theorem. It is possible
to apply a point load P = 1 to extract information about a regular displace-
ment field û as in B(G0, û) = 0, but this would fail if we try to formulate
B(G0,G0) = 0, because then the singularities would cancel each other and we
would be left with two meaningless boundary integrals (τ 0 = traction vector
of the field G0)

lim
ε→0

B(G0,G0)Ωε
=
∫

Γ

τ 0 • G0 ds−
∫

Γ

G0 • τ 0 ds = 0 . (1.163)

Hence every situation is different, and the presence of singularities requires a
careful study of the limit [115]

lim
ε→0

G(G0, û)Ωε = 0 lim
ε→0

B(G0, û)Ωε = 0. (1.164)

Remark 1.5. Not all is well with point forces. There is one prominent victim
of Sobolev’s Embedding Theorem: Castigliano’s Theorem, which states that
the derivative of the strain energy is the displacement in the direction of the
point load Pi, makes no sense in elastic solids,
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∂

∂Pi
a(u,u) ?= ui (1.165)

because both the strain energy and the displacement are infinite [115].

Energy estimates involving Green’s functions

In this book we will operate freely with energy estimates involving Green’s
functions with infinite energy. One such inequality is for example

|ux(x)− uh
x(x)| ≤ ||G0[x]−Gh

0 [x]||E ||u− uh||E (1.166)

which is an estimate for the (horizontal) displacement error of the FE solution
in a plate. (The [x] is to denote that G0 is the Green’s function for ux(x) at
the point x). Theoretically this equation makes no sense because the strain
energy of the exact Green’s function G0 is infinite (we drop the [x] in the
following because it is not essential here)

||G0||2E := a(G0,G0) =
∫

Ω

σij · εij dΩ (1.167)

and so the distance of the FE Green’s function Gh
0 from G0 in terms of the

strain energy

||G0 −Gh
0 ||2E := a(G0 −Gh

0 ,G0 −Gh
0 ) =

∫
Ω

(σij − σh
ij) · (εij − εh

ij) dΩ

(1.168)

would be infinite as well—regardless of how close Gh
0 is to G0. But if we

read ux(x) as the average value of the horizontal displacement over a small
disk centered at x the corresponding Green’s function G0 would have finite
energy and then (1.166) would make sense. So in this book whenever we use
an expression such as (1.166) we understand this as a statement about the
average value of u(x) (or other terms) over a small disk Ωε with a radius ε
very close to zero.

We should not be deterred too much by the fact that most Green’s func-
tions have infinite energy. The FE method is surprisingly good at approxi-
mating Green’s functions. Most output we see on the screen is based on the
solution of ill posed problems...

1.15 Green’s functions

Point solutions or Green’s functions represent the response of a structure to
point loads P = 1. The best known point solution is perhaps the triangular
shape G0(y, x) of a guitar string (Fig. 1.35 a) when the string is plucked:
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Fig. 1.35. a) Green’s
function; b) the curve

dP = p dy

G0(y, x) = deflection at x, force P = 1 at y . (1.169)

The importance of the point solutions is that any distributed load p can be
approximated by a series of equally spaced (∆y) point loads ∆Pi = p(yi) ∆y,
and the envelope of all these triangles G0(yi, x)∆P i (as the subdivision ∆y
tends to zero) is the integral

w(x) =
∫ l

0

G0(y, x) p(y) dy . (1.170)

This holds for any structure, and is the reason that Green’s functions play
such a central albeit hidden role in structural mechanics. A Green’s function
is the visible embodiment of the differential equation. The structural analysis
of a string or a taut rope could begin as well with the triangular shape and
only in the second step would we search for the differential equation that is
solved by this unit response.

Weak and strong influence functions

The right-hand side of (1.170) is an expression of external virtual work∫ l

0
0 e 0 w solves the load case p (1.171)

and because of Green’s first identity

G(w,G0) = δWe(w,G0)− δWi(w,G0) = δWe(w,G0)− a(w,G0) = 0
(1.172)

the external virtual work can be expressed as well by internal virtual work,
the strain energy product between G0 and w,

δWe(w,G0) =
∫ l

0

G0(y, x) p(y) dy = a(G0, w) = δWi(w,G0) (1.173)

and so there is a “strong” and a “weak” influence function for the deflection
w(x) of the guitar string

w(x) is the envelope
of all the Green’s
functions of the dif-
ferent point loads

G (y, x) p(y) dy = δW (G ,w)
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w(x) =
∫ l

0

G0(y, x) p(y) dy︸ ︷︷ ︸
strong

= a(w,G0[x])︸ ︷︷ ︸
weak

=
∫ l

0

H w′ G′
0(y, x) dy . (1.174)

The proof of Tottenham’s equation (1.210) p. 64 is based on this switch. For
more on the subject see Sect. 7.7, p. 535.

Singularities of Green’s functions

Green’s functions being point solutions are of course subject to the conditions
set forth by physics: the singularity of the stresses must be consistent with
the dimension n of the continuum. To study the consequences this entails, let
a force Pj = 1 act at a point y = (y1, y2, y3) in 3-D space. A force in the yj

direction will cause the displacements

Uij(y,x) =
1

8 π G (1− ν) r
[(3− 4 ν) δij + r,i r,j ] i = 1, 2, 3 (1.175)

at a remote point x = (x1, x2, x3) where the first index i indicates the direction
of the displacement. The term δij is the Kronecker delta, and the r,i are
the directional derivatives of the distance r = |y − x| with respect to the
coordinates yi of the source point

δij =
{

1 i = j
0 i 	= j

r,i :=
∂r

∂yi
=

yi − xi

r
. (1.176)

Of course there is only one system of coordinates and therefore only one origin
but to distinguish the source point y (the load) from the field point x (the
observer) the coordinates are labeled differently.

As can be seen from (1.175), the displacements Uij behave as 1/r, because
in 3-D the stresses and therefore the strains must tend to infinity as 1/r2 and
the antiderivative of 1/r2 (the strains) is 1/r (the displacement).

The 3× 3 functions Uij form a symmetric matrix U = [Uij ], the columns
of which are the three Green’s functions (displacement fields), corresponding
to the three unit forces acting at y

U = [G(1)
0 ,G

(2)
0 ,G

(3)
0 ] G

(i)
0 =

⎡
⎣U1i

U2i

U3i

⎤
⎦ . (1.177)

Line loads l(y) can be simulated by a succession of point forces, and volume
forces p(y) can be simulated by a 3-D grid of point forces, so that the corre-
sponding displacements can be considered the scalar product of the Green’s
functions and these loads:

ui =
∫

Γ

G
(i)
0 (y,x) • l(y) dsy ≡

∫
Γ

1
r

l(y) dsy (1.178)

ui =
∫

Ω

G
(i)
0 (y,x) • p(y) dΩy ≡

∫
Ω

1
r

p(y) dΩy (1.179)
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1.36.

’

Dirac deltas
do exist, don’t they?’ (La-
Ferté pedestrian bridge in
Stuttgart, Germany)

where in the second part of each equation we have retained only the charac-
teristic singularity 1/r. The factor 1/r is the reason that a block of concrete
cannot be prestressed with a (mathematical) wire.

To explain this behavior, let us assume that on the y1-axis (this is the
normal x-axis) and within the interval [0, 1] there acts a constant line load
l = [0, 0, l3]T pointing in the y3 direction (the z-axis), and the observer x is
located at the origin of the coordinate system, at the front of the line load.
The observer will not be able to remain in place, because he will experience
a shift of infinite magnitude in vertical direction

u3(0) =
∫ 1

0

U33(y,0) l3 dy1 =
l3(3− 4ν)

8 π G (1− ν)

∫ 1

0

1
y1

dy1 =∞ . (1.180)

(Note that 1/r = 1/y1, ds = dy1 and r,3 = (y3 − x3)/r = 0, because the load
and the observer are on the same level, x3 = y3 = 0).

This holds at any point x that happens to lie in the load path [0, 1], while
outside the load path the displacements are bounded because r > 0.

Hence a line element dr = O(1) cannot counterbalance a singularity that
goes as 1/r. Only an area or surface element dΩ = r dr dϕ = O(r) can cope
with such a singularity. This is why a rope that exerts only the lightest pressure
cuts through the thickest concrete, while a surface load (theoretically at least)
cannot crush a block of concrete.

Fig.
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In plane elasticity the situation is not so dramatic, because in 2-D the
stresses are O(1/r) and the displacements are O(ln r), so that a line element
dr sustains the attack of the prestressing forces l within a rope

ui(x) = l ·
∫ 1

0

ln r dr = O(1) . (1.181)

The more the load spreads, point → line → surface, the weaker the singular-
ity, r−1 → ln r → O(1), as Fig. 1.35 so aptly illustrates: the peak under the
point load vanishes immediately if the load is evenly spread.

The importance of Green’s functions for structural mechanics probably
cannot be overestimated. Engineers often claim that point loads are imaginary
quantities which do not exist in reality , see however Fig. 1.36. This is true of
a mechanical model, but it must also be recognized that line loads or surface
loads are simply iterated point loads, and that therefore any displacement field
is just a superposition of infinitely many Green’s functions, each representing
the influence of an infinitesimal portion dP of the total load p.

1.16 Practical consequences

Now there is no need to put up stop signs, because if a node is kept fixed,
it is not a point support, and a nodal force is not a point load. This is a
consequence of the inherent fuzziness of the FE method. For an FE program,
a nodal force fi is always an equivalent nodal force. It represents a load which
upon acting through a nodal unit displacement ϕi contributes work fi × 1.
The FE program neither knows nor cares whether the load is a line load, a
surface load, or a point load, and therefore nodal forces lose much of their
seemingly dangerous nature.

The same is true of point supports. For a node to be a point support it
must not only be fixed, but the support reaction must also resemble the action
of a truly concentrated force. But if the stress field near such a fixed node
is studied, it soon becomes apparent that the support reaction more closely
resembles a diffuse cloud of volume forces, surface loads, and line forces (jumps
in the stresses at interelement boundaries) than a distinct point force fi.

Near and far

It makes no sense to refine the mesh beyond a certain limit in the neighborhood
of a point support or a point load, as this can actually force the node out of
the region of interest. And it also makes no sense to design the structure
for the stresses that appear in the FE output, because these numbers are
“random” numbers whose magnitude indicates the presence of a hot spot in
the structure but which, in and of themselves, provide no lower or upper
bound for the stresses.
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Fig. 1.37. We cannot make
a 3-D model of a hinged plate

But at some distance from the point load P , it no longer matters whether
the applied load is a point load or a volume force p, as may be illustrated by
the following (somewhat simplified) equations of 2-D elasticity:

ui(x) = ln rP · P rP = |yP − x| (1.182)

ui(x) =
∫

Ω

ln r p(y) dΩy � ln rP

∫
Ω

p dΩ = ln rP · P . (1.183)

In words, at some distance from the source, the effect of a point load is es-
sentially identical to a one-point quadrature of the influence integral of the
volume forces.

Capacity

The integrals∫ π

0

sin x dx = 2
∫ π

0

∫ π

0

sin(x y) dx dy = 2.90068 (1.184)

do not change if the integrand sinx is changed at one point x0 or if sin(x y)
is changed along a whole curve. Similar results hold true in the theory of
elasticity because

• in plates (2-D elasticity) points have zero capacity,
• in elastic solids (3-D elasticity) curves (line supports!) have zero capacity.

This means that point supports or line supports (in 3-D problems) are simply
ignored by a structure. No force is necessary to displace a single point in a
plate, which implies that the displacement cannot be described at a point
support. And in makes no sense to specify the displacement field of an elastic

Virtually the same can be said about Reissner–Mindlin plates. A point load
effects an infinite deflection, w = ∞, and no force is necessary to displace a
single point in vertical direction.

A Kirchhoff plate would not tolerate this. But if a single moment M = 0
(or almost zero) is applied at a point, the point will start to rotate infinitely
rapidly. Hence if a slab is coupled with a beam via a torsional spring, the
neighborhood of the spring should not be refined too much (Fig. 1.38) lest the
rotational stiffness of the slab be lost.

Fig. 1.37.
solid along a curve. That is, an elastic solid ignores line supports; see
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Fig. 1.38. The FE model
cannot be refined too much,

Summary

What is possible:

• Kirchhoff plate: point loads, line moments m kN m/m, surface loads
• Reissner–Mindlin plate: line loads, surface loads
• plates (2-D elasticity): line loads, surface/volume forces
• elastic solids (3-D elasticity): surface loads, volume forces

What is not allowed (theoretically):

• Kirchhoff plate: single moments
• Reissner–Mindlin plate: point loads, single moments
• plates (2-D elasticity): point loads
• elastic solids (3-D elasticity): point loads, line loads

Hence it is also clear which supports are admissible and which are not (theo-
retically).

In actual practice, an FE structure can be placed on point supports, and it
is legitimate to work with point forces and single moments. Only the stresses
close to such points are not reliable, and depend on the mesh size: the finer
the mesh, the more singular the stresses.

1.17 Why finite element results are wrong

The reason is simply that an FE program uses the wrong influence functions.

Taut rope

Recall (Sect. 1.15) that if a force P = 1 is applied at a point y, the rope
assumes a triangular shape denoted by the capital letter G as in Green’s
function

G0(x, y) , y = source point of the load, x = field point, variable .

(1.185)

lest a plastic hinge develop
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,

Fig. 1.39. The Green’s function for the deflection w of the rope is piecewise linear.
If the Green’s function of a point x lies in Vh then the deflection wh(x) is exact

If a distributed load p is approximated by a sequence of small point loads
p(yi)∆y, the deflection is

w(x) �
n∑
i

G0(x, yi) p(yi) ∆y (1.186)

and in the limit the sum becomes an integral:

w(x) =
∫ l

0

G0(x, y) p(y) dy . (1.187)

Because the Green’s function is symmetric, G0(y, x) = G0(x, y), the points x
and y can be exchanged, and this means that the tip of the triangle now stays
fixed at x, whereas in (1.186) it moved with yi:

w(x) =
∫ l

0

G0(y, x) p(y) dy =
∫ l

0
������ dy . (1.188)

This influence function for the deflection w(x) is the scalar product between
the kernel G0(y, x) and the distributed load p(y).

The finite element tries to imitate (1.188); to calculate the deflection at a
point x the program (theoretically at least) proceeds as follows:

• It tries to find in Vh the Green’s function for the deflection at the point x.
If that is not possible, if G0 does not lie in Vh, then it substitutes for G0

an approximate function Gh
0 (y, x) ∈ Vh.
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• With this approximate kernel the program calculates the deflection

wh(x) =
∫ l

0

Gh
0 (y, x) p(y) dy . (1.189)

The result is exact if Gh
0 = G0, i.e., if the Green’s function G0 of the point

x lies in Vh. This is true for the nodes xk. Because if a point force P = 1 is
applied at one of the nodes xk the shape can be modeled with the three unit
deflections ϕi exactly (see Fig. 1.39 b)

G0[xk] := G0(y, xk) =
3∑

i=1

ui ϕi(y) ui = ui(xk) = G0(yi, xk) (1.190)

and therefore (1.189) will be exact at the nodes, wh(xk) = w(xk).
This is a simple consequence of the Galerkin orthogonality of the error

e(x) = w(x)− wh(x):

a(e, ϕi) =
∫ l

0

(T − Th)Ti

H
dx = 0 for all ϕi ∈ Vh (1.191)

where

T − Th = H w′ −H w′
h = H e′ Ti = Hϕ′

i . (1.192)

Hence with T0(y, xk) := H G′
0(y, xk) =

∑3
i=1 ui Ti(y) and switching from the

internal formulation to the external formulation, see (1.174) p. 53,

0 = a(e,G0[xk]) =
∫ l

0

(T (y)− Th(y))T0(y, xk)
H

dy = w(xk)− wh(xk) .

(1.193)

At an intermediate point x the situation is different (Fig. 1.39 c), because
the Green’s function of a point x that is not a node does not lie in Vh. The
three nodal unit deflections do not allow the rope to have a peak between the
nodes. Hence the FE program cannot solve the load case P = 1 if x is an
intermediate point.

Therefore the program splits the force P = 1 into two equal parts and
places these at the two neighboring nodes, because this is a load case it can
solve. But the solution Gh

0 (y, x) will only be an approximation, and therefore
the result of (1.189) will in general be wrong; see Fig. 1.39 e and f.

Remark 1.6. The notation ui = ui(xk) in (1.190) is to indicate that the coef-
ficients ui are different for each nodal Green’s function G0(y, xk) and so they
are functions of the nodal coordinate xk. This is the typical pattern in the FE
approximation of influence functions

Gh
0 (y, x) =

∑
i

ui(x) ϕi(y) . (1.194)
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d) Mh(x); e) Green’s function for M(0.5l); f) Green’s function for Mh(0.5l)

Beam

In the following example the logic is the same but the focus is on the error
in the bending moment of a beam. The beam in Fig. 1.40 is modeled with
just one element (u1 = u2 = 0 at the fixed end and u3 and u4 at the free
end). Hence the equivalent nodal forces representing the triangular load are a
vertical force f3 = 3p l/20 and a moment f4 = p l2/30 at the end of the beam;
see Fig. 1.40 b. The exact bending moment distribution M(x) is the scalar
product between the Green’s function G2(y, x) and the distributed load p(y):

M(x) =
∫ l

0

G2(y, x) p(y) dy = −p (l − x)3

6 l
(1.195)

and the bending moment Mh(x) of the FE solution is

Mh(x) =
∫ l

0

Gh
2 (y, x) p(y) dy =

3 l p

20
x− 7 l2 p

60
(1.196)

where the kernel

Gh
2 (y, x) = x(

3y2

l2
− 2y3

l3
)− 2y2

l
+

y3

l2
(1.197)

is the influence function for Mh(x). That is, if a point load P acts at y, the
FE bending moment at x is Mh(x) = Gh

2 (y, x)× P .

Fig. 1.40. a) Beam with triangular load; b) equivalent nodal forces; c) M (x);
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In the next paragraph we will see that the function Gh
2 (y, x) is the de-

flection of the beam if the equivalent nodal forces f3 = −EI ϕ′′
3(x) and

f4 = −EI ϕ′′
4(x) are applied at the end of the beam7. The nodal displace-

ments u3 = u3(x) and u4 = u4(x) in this load case (the x is the x in Mh(x))
are the solutions of the system (row 3 and 4 of K u = f)

EI

l3
(12 u3 + 6 l u4) = EI (

12
l3

x− 6
l2

) | × l3

6 EI
(1.198)

EI

l3
(6 l u3 + 4 l2 u4) = EI (

6
l2

x− 2
l
) | × l3

2 EI
(1.199)

or if these two equations are modified as indicated

2 u3 + l u4 = 2x− l (1.200)
3 l u3 + 2 l2 u4 = 3 l x− l . (1.201)

The solution is u3(x) = x− l and u4(x) = 1, so that Gh
2 (y, x) = u3(x) ϕ3(y)+

u4(x)ϕ4(y); see (1.197).
The influence functions for M(x) and Mh(x) at x = 0.5 l are displayed in

Fig. 1.40 c and d. Obviously the approximate Green’s function Gh
2 (y, x) tries

to imitate the sharp bend of G2(y, x) at x = 0.5 l, but it fails, because there
is no such function in Vh (= third-degree polynomials).

Summary

The preceding examples might have given the impression that the FE program
employs the influence functions (1.189) and (1.196) to calculate the deflection
wh(x) of the rope or the bending moment Mh(x). But it is much simpler: any
result at any point x has just the same magnitude it would have if it had been
calculated with the approximate Green’s function.

It is very important that the reader understand this concept of a Green’s
function. Normally we do not employ the Green’s function to calculate, for
example, the deflection curve of a hinged beam which carries a constant dis-
tributed load p

w(x) =
p l4

24 EI
(
x

l
− 2

x3

l3
+

x4

l4
) =

∫ l

0

G0(y, x) p(y) dy (1.202)

but the result is the same as if we had used the Green’s function. That is, the
kernel G0(y, x) stays in the background invisible for the user but it controls
the exact solution, and in the same sense the approximate Green’s function
Gh

0 (y, x) controls the FE solution. Hence

• Any value in an FE solution is the scalar product of an approximate
Green’s function Gh

i and the applied load.
7 Here the points y are the points of the beam and x acts as a parameter. The

kernel Gh
2 (y, x) in Fig. 1.40 f was plotted by keeping x = 0.5l fixed and letting y

vary, 0 ≤ y ≤ l.
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Fig. 1.41. Plate: a) nodal forces that generate the approximate Green’s function for
σxx at point A; b) approximate Green’s function for σxx at point A; c) horizontal
nodal displacements of the approximate Green’s function for σxx at A

Values at a point

It seems then that FE stresses never can be exact,

σ(xk)
?
= σh(xk) , (1.203)

because the Green’s function G1(y, xk) for the stress σ at a point xk is a
dislocation, and such a discontinuous displacement u(x) is nonconforming and
therefore it does not lie in Vh. Anything else would constitute a variational
crime [230].

But it might be that the conforming approximation Gh
1 in Vh accidentally

fits perfectly, because the integral is the same, i.e., G1[xk] 	= Gh
1 [xk], but

σ(xk) =
∫ l

0

G1(y, xk) p(y) dy =
∫ l

0

Gh
1 (y, xk) p(y) dy = σh(xk). (1.204)

This also explains why the stresses are correct if the FE solution is exact.
If the plate in Fig. 1.41 a is stretched horizontally with uniform forces ±1



1.17 Why finite element results are wrong 63

kN/m2, bilinear elements will produce the exact solution, and thus the correct
horizontal stress σxx = 1 kN/m2. But why are the stresses correct if Gxx

1 does
not lie in Vh?

To generate the shape Gxx,h
1 , i.e., the Green’s function for the stress σxx at

point A, for example, the equivalent nodal forces in Fig. 1.41 must be applied.
Of course the shape produced by these forces (Fig. 1.41 b) is not the exact
kernel Gxx

1 , but this kernel has the remarkable property that the integral of
the horizontal displacements (of the kernel Gxx,h

1 ) along the vertical edges on
the left (ΓL) and right (ΓR) side yields the exact stress σxx = 1.0 (Fig. 1.41
c), because the trapezoidal rule yields

σh
xx(xA) =

∫
ΓL

Gxx,h
1

• t ds +
∫

ΓR

Gxx,h
1

• t ds (t = ∓e1)

= 0.5 · (−0.3000) + 0.2295 + 0.5 · 1.4990
+0.5 · 0.0802 + 0.0857 + 0.5 · 0.0910 = 1.000 . (1.205)

The same holds with regard to the influence function for σxx at the point B
(of course the horizontal displacements are now different)

0.5 · (−0.0997) + 0.5479 + 0.5 · (−0.0997)
+0.5 · 0.2771 + 0.2748 + 0.5 · 0.2771 = 1.000 = σxx(xB) (1.206)

and to convince even the most skeptical reader also at point C (Fig. 1.41)

0.5 · 0.5004 + 0.0 + 0.5 · (−0.5004)
+0.5 · 0.6727 + 0.5000 + 0.5 · 0.3273 = 1.000 = σxx(xC) . (1.207)

This remarkable property is based on the following theorem.

• In any load case which can be solved exactly on Vh, the error in the Green’s
functions is orthogonal to the applied load, i.e.,∫ l

0

[G1(y, xk)−Gh
1 (y, xk)] p(y) dy = σ(xk)− σh(xk) = 0 . (1.208)

Basically this theorem states that regardless of whether or not the Green’s
function lies in Vh, any point value calculated with an approximate Green’s
function is exact if the exact solution lies in Vh. This is not so trivial as
it sounds. Rather it is an interesting statement about approximate Green’s
functions and the FE method.

In the notation of Chap. 7, the proof of (1.208) is simple:

(G1 −Gh
1 , p) = a(G1 −Gh

1 , u) = a(G1 −Gh
1 , uh) = 0 . (1.209)

First the principle of virtual displacements is invoked, then the fact that
u = uh and finally the Galerkin orthogonality of the error in the Green’s
function. Of course (1.209) holds for any Green’s function, not just for G1.
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Fig. 1.42. A truck on a bridge: a) The truck is the load case p; b) the load case
ph, which is equivalent to the truck; c) the load case δ0 (= single force); d) the load
case δh

0 , the work-equivalent substitute for the single force

It would seem that if the exact solution u does not lie in Vh, there is little
chance for σh

xx = σxx, because (i) Gxx,h
1 	= Gxx

1 and (ii) the orthogonality
(1.209) does not hold. But if the stress field is simple, then it might happen
that the value of σxx at the centroid of the element coincides with the average
value of σxx over the element, so that there might be a good chance to catch
this stress, because the Green’s functions for average values of stresses are
much easier to approximate; see Sect. 1.21, p. 86.

Remark 1.7. We should also not be too critical of the FE method on account
of a certain mismatch between values at a point and the strain energy (=
integral). In the end we want to have results at points, but can we expect such
sharp results from an energy method? Can we expect that unbounded point
functionals yield accurate results if the primary interest of an FE program
is to minimize the error in the energy and not to achieve high accuracy at
a single point? Though one could object that nature too only minimizes the
strain energy but nevertheless each single value is exact ...

1.18 Proof

It is now time to prove that the FE solution is indeed the scalar product of
the approximate Green’s function Gh

0 (which is never calculated explicitly)
and the applied load p. The proof fits on one line8.

Tottenham’s equation

wh(x) = (δ0, wh)︸ ︷︷ ︸
δWe(δ0,wh)

= a(Gh
0 , wh)︸ ︷︷ ︸

δWi(Gh
0 ,wh)

= (p, Gh
0 )︸ ︷︷ ︸

δWe(Gh
0 ,p)

, (1.210)

8 A paper published by Tottenham in 1970 [245] is the earliest reference to this
equation known to the authors.
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Fig. 1.43. Influence function for the force in the column in the middle of the plate,
and the truck

or in a more conservative notation

wh(x) =
∫

Ω

δ0(y − x)wh(y) dΩy = a(Gh
0 , wh) =

∫
Ω

Gh
0 (y,x) p(y) dΩy .

(1.211)

First wh is considered to be the FE solution of the load case p and Gh
0 ∈ Vh

assumes the role of a virtual displacement:

a(Gh
0 , wh) =

∫
Ω

Gh
0 (y,x) p(y) dΩy (1.212)

then Gh
0 is considered to be the FE solution of the load case δ0, and wh

assumes the role of a virtual displacement:

wh(x) =
∫

Ω

δ0(y − x) wh(y) dΩy = a(Gh
0 , wh) (1.213)

which explains the left-hand side. The symmetric strain energy a(Gh
0 , wh)

plays the role of a turnstile.
Because (1.210) contains so much structural analysis, it is perhaps best to

repeat the proof in single steps.
Assume a truck is parked in the middle of a bridge; see Fig. 1.42. The

truck constitutes the load case p. Next two FE solutions are calculated: a) the
FE solution wh of the load case p; b) the FE solution Gh

0 , which simulates a
single force δ0 in the middle of the bridge. Both solutions, wh and Gh

0 , lie in
Vh. Because Gh

0 lies in Vh, it follows that

a(Gh
0 , wh) = p(Gh

0 ) Gh
0 is a virtual displacement in the load case p

(1.214)
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Fig. 1.44. The truck causes the force A in the column while the substitute load ph

causes the force Ah. The force Ah is obtained if the truck is placed on the influence
function Gh

0

but it must also be true that

a(Gh
0 , wh) = (δ0, wh) wh is a virtual displacement in the load case δ0

(1.215)

and because (δ0, wh) = wh(x), the proof is complete.
Next assume the truck traverses a plate supported in the middle by a

column; see Fig. 1.43. The influence function for the force A in the column
is the deflection P · G0 of the plate if the column is removed and instead a
concentrated force P is applied (for simplicity in the following it is assumed
that P = 1) which pushes the plate down by one unit of deflection. If p denotes
the truck, the force in the column is

A =
∫

Ω

G0(y,xA) p(y) dΩy . (1.216)

Concentrated forces are out of reach for an FE program, so the program
replaces the concentrated force with an equivalent load δh

0 that is an aggregate
of surface and line loads, which in the sense of the principle of virtual work is
equivalent to the concentrated force P acting at xA (see Fig. 1.44):

δh
0 (ϕi)︸ ︷︷ ︸

δWe(ph,ϕi)

= fi = (δ0, ϕi)︸ ︷︷ ︸
δWe(p,ϕi)

= P · ϕi (xA) i = 1, 2, . . . n . (1.217)

The deflection surface Gh
0 of this equivalent load case δh

0 is an approximate
influence function, and if now the truck is placed on a contour plot of this
deflection surface and the contour lines covered by the wheels of the truck are
traced with a planimeter, the result is exactly the support reaction Ah of the
FE program:

Ah =
∫

Ω

Gh
0 (y,xA) p(y) dΩy . (1.218)
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Fig. 1.45. Plate: a) point load δ0; b) FE approximation δh
0 with bilinear elements.

In Vh the two deltas yield the same result uh(x) = (δ0, uh) = (δh
0 , uh)

A converse statement

Consider a plate as in Fig. 1.45 which is subjected to a volume force p (not
shown). In a second load case a horizontal force P = 1 is applied at a point
x; see Fig. 1.45 a. Let ph

0 and jh
0 be the element residual forces and jump

terms, respectively, of the FE solution Gh
0 of this second load case (Fig. 1.45

b). According to Betti’s theorem

W1,2 =
∫

Ω

Gh
0 • p dΩy =

∫
Ω

ph
0 • u dΩy +

∑
k

∫
Γk

jh
0 • u dsy = W2,1

(1.219)

and because of ∫
Ω

Gh
0 • p dΩy = uh

x(x) (1.220)

we have as well

uh
x(x) =

∫
Ω

ph
0 • u dΩy +

∑
k

∫
Γk

jh
0 • u dsy =: (δh

0 ,u) (1.221)

which means that the horizontal displacement uh
x(x) is equal to the work

done by the “approximate Dirac delta” δh
0 = {ph

0 , jh
0} acting through the true

displacement field u. In the limit the volume forces more and more resemble
a true Dirac delta, ph

0 → δ0, and the stress jumps vanish, jh
0 → 0, so that

ux(x) =
∫

Ω

δ0(y − x) • u(y) dΩy . (1.222)
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Fig. 1.46. Effect of
a small perturbation
∆h of the fulcrum on

cient G0 = l1/l2 for
the leverage K

Hence the residual forces {δ0−ph
0 , jh

0} are to be minimized. Note that (1.221)
holds for any FE solution. The statement

uh(x) = (δh
0 ,u) (1.223)

where δh
0 stands for {ph

0 , jh
0} is just the converse of

uh(x) = p(Gh
0 ) . (1.224)

Proxies

More will be said about this subject in Chap. 7. For now it suffices to state
that

• the approximate Green’s function Gh
0 is a proxy for the exact function G0

on Ph = the set of all load cases based on the unit load cases pi;
• the approximate Dirac delta δh

0 is a proxy for δ0 on Vh.

In other words the Galerkin orthogonality a(u−uh, ϕi) = 0 also holds for the
Green’s functions a(G0 − Gh

0 , ϕi) = 0, or after integration by parts (Green’s
first identity)

a(G0 −Gh
0 , ϕi) = pi(G0)− pi(Gh

0 ) = ϕi(x)− pi(Gh
0 ) = 0 (1.225)

which implies that Gh
0 on Ph is a perfect replacement for the kernel G0, and

because

(δ0, ϕi) = (δh
0 , ϕi) = ϕi(x) (1.226)

the same holds with regard to δh
0 and δ0 on Vh. This means that to calculate

the horizontal displacement uh
x(x) of any displacement field uh ∈ Vh, instead

the influence coeffi-
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of the exact Dirac delta in Fig. 1.45 a, the substitute Dirac delta in Fig. 1.45
b may be invoked. This is a remarkable—but obvious—result. It is obvious
because in the FE method the original Dirac delta δ0 (the load case p) is
replaced by a substitute Dirac delta δh

0 (a load case ph) that is equivalent
with respect to all ϕi ∈ Vh and in a load case such as p = δ0 work equivalence
just means that

ϕi(x) = (δ0, ϕi) = (δh
0 , ϕi) = ϕi(x) . (1.227)

Summarizing all these results, we can state that the FE solution uh(x) ∈ Vh

can be written in six different ways

uh(x) = ph(G0) = ph(Gh
0 ) = p(Gh

0 ) = (δ0, uh) = (δh
0 , uh) = (δh

0 , u) .

(1.228)

To better pick up the pattern in these equations we use the short hand notation
(ph, G0) instead of ph(G0) for the virtual external work so that

uh(x) = (ph, G0) = (Luh, G0) = (uh, L∗G0) = (uh, δ0) (1.229)
uh(x) = (ph, Gh

0 ) = (Luh, Gh
0 ) = (uh, L∗Gh

0 ) = (uh, δh
0 ) (1.230)

where L is the differential operator and L∗ = L is the adjoint operator which
is the same operator as L because in structural analysis L is (most often)
self-adjoint.

1.19 Influence functions

As in many engineering problems (Fig. 1.46) the accuracy of an FE solution
depends on how well the influence functions for the displacements, stresses,
or support reactions can be approximated (Fig. 1.47). The nature of these
Green’s functions is therefore to be discussed next.

All influence functions are displacements or deflections. In a beam the in-
fluence functions for w(x), w′(x),M(x), or V (x) at a point x are the deflection
curves of the beam if a dual load , i.e., a force P = 1, a moment M = 1, a sharp
bend w′(x+)− w′(x−) = 1 or a dislocation w(x+)− w(x−) = 1, is applied at
x (see Fig. 1.34, p. 48).

In an energy method the focus is not on the loads themselves, but rather
on the work done by the loads acting through the virtual displacements. The
characteristic property of a single force P = 1 at x is that it contributes work
δw(x) upon acting through a virtual displacement δw.

A convenient symbol to describe such an action (point load) is the Dirac
delta

δ0(y − x) = 0 for all y 	= x ,

∫ l

0

δ0(y − x)ϕi(y) dy = ϕi(x) .

(1.231)
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+

-

Fig. 1.47. The scalar product of the load p and the approximate Green’s function
Gh

1 is the normal force Nh of the FE solution

This is a function that is zero almost everywhere—up to the point x—and
that acting through a nodal unit displacement ϕi(y) or any other virtual
displacement contributes work ϕi(x) (= the value of ϕi(y) at x). This is what
a single force looks like in energy methods.

To have symbols for the other dual quantities, higher Dirac deltas are
introduced:

δ1(y − x) moment
∫ l

0

δ1(y − x)ϕi(y) dy = ϕ′
i(x)

δ2(y − x) sharp bend
∫ l

0

δ2(y − x)ϕi(y) dy = Mi(x)

δ3(y − x) dislocation
∫ l

0

δ3(y − x)ϕi(y) dy = Vi(x) ,

where Mi(x) and Vi(x) are the moment and shear force, respectively, of ϕi at
the point x.

The equivalent nodal forces fi that belong to a Dirac delta δ0 are



1.19 Influence functions 71

fi =
∫ l

0

δ0(y − x) ϕi(y) dy = ϕi(x) (1.232)

and the same holds for the higher Dirac deltas. Because each Dirac delta
extracts from the virtual displacement ϕi just the term conjugate to δi, the fi

are just the values of ϕi at x conjugate to δi. Hence if the influence function
for a quantity Q(x) is to be calculated, the equivalent nodal forces fi are just
fi = Q(ϕi)(x).

Table 1.2. Equivalent nodal forces for influence functions in beams and slabs

Beam dual quantity fi Kirchhoff plate fi

w δ0 force ϕi(x) w ϕi(x)
w′ δ1 moment ϕ′

i(x) w,x , w,y ϕi,x (x), ϕi,y (x)

M δ2 sharp bend Mi(x) mxx, mxy, myy m
(i)
xx(x), m

(i)
xy(x), m

(i)
yy (x)

V δ3 dislocation Vi(x) qx, qy q
(i)
x (x), q

(i)
y (x)

Table 1.2 lists the equivalent nodal forces fi for Euler–Bernoulli beams
and Kirchhoff plates; quantities for second-order equations are listed in Table
1.3.

Table 1.3. Equivalent nodal forces for influence functions of bars and plates

Bar dual quantity fi plate fi

u δ0 force ϕi(x) ux, uy ϕi(x)

N δ1 dislocation Ni(x) σxx, σxy, σyy σ
(i)
xx(x), σ

(i)
xy (x), σ

(i)
yy (x)

Deflection of a taut rope

To calculate the influence function for the deflection w of the rope in Fig. 1.39
p. 58 at a node xk, a single force P = 1 is applied at xk. The equivalent nodal
forces fi are

fi =
∫ l

0

δ0(xk − y) ϕi(y) dy = ϕi(xk) =
{

1 i = k
0 i 	= k

(1.233)

so that f is identical to the unit vector ek, and with u = K(−1)ek the Green’s
function becomes

Gh
0 (xk, y) =

∑
i

ui ϕi(y) =
∑

i

(K(−1) ek)i ϕi =
∑

i

k
(−1)
ik ϕi(y) . (1.234)

In a load case p the deflection wh(xk) at the node xk is therefore
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i

wh k

∫ l

0

Gh
0 (xk, y) p(y) dy =

∑
i

k
(−1)
ik

∫ l

0

ϕi(y) p(y) dy

=
∑

i

k
(−1)
ik fi (1.235)

where the fi are now the equivalent nodal forces belonging to the distributed
load p.

b)
Fig. 1.48. a) Influence function for the normal force at the center of the bar;

(x ) =

FE approximation. The equivalent nodal forces f are the normal forces of the
nodal unit displacements at the point x = l/2
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Fig. 1.49. Influence function for the FE shear force Vh at the center of the beam

Normal force in a bar

The influence function for the normal force N at the center of the bar in Fig.
1.48 is the longitudinal displacement of the bar if the bar is split at the center,
u(x+)− u(x−) = 1; see Fig. 1.48. The equivalent nodal forces fi that belong
to this load case are

fi =
∫ l

0

δ 1(
l

2
− y) ϕi(y) dy = EAϕ′

i(
l

2
) = Ni(

l

2
) . (1.236)

Evidently the FE solution of this load case, the shape in Fig. 1.48 b, is not
the exact influence function for N(l/2).

But it is the exact influence function for the average value Na of the
normal force N(x) in the center element having end points x2 and x3 and
length le = x3 − x2. To see this, note that

Na =
1
le

∫ x3

x2

N(x) dx =
1
le

∫ x3

x2

∫ l

0

G1(y, x) p(y) dy dx

=
1
le

∫ x3

x2

∫ l

0

EA
d

dx
G0(y, x) p(y) dy dx

=
EA

le

∫ l

0

[G0(y, x3)−G0(y, x2)] p(y) dy (1.237)

and this kernel EA/le[G0(y, x3)−G0(y, x2)] is just the shape in Fig. 1.48 b.
Namely to reproduce this kernel in Vh the following equivalent nodal forces
must be applied

fi =
EA

le

∫ l

0

[δ0(y − x3)− δ0(y − x2)]ϕi(y) dy =
EA

le
[ϕi(x3)− ϕi(x2)]

(1.238)
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which are just the forces, f2 = −EA/le, f3 = EA/le, that were applied pre-
viously to approximate G1.

Remark 1.8. Because the normal force is defined as N(x) = EAu′(x), the
influence function G1(y, x) for N(x) is

G1(y, x) = EA
d

dx
G0(y, x) . (1.239)

So if σij = Op(u), where Op() is some differential operator and G0 is the
Green’s function for u, then the Green’s function for σij is Op(G0) and dif-
ferentiation is carried out with respect to x.

Shear force in a beam

To obtain the influence function for the shear force V (l/2) in the middle of
the beam (see Fig. 1.49) a dislocation w+ − w− = 1 must be applied so that
the equivalent nodal forces

fi =
∫ l

0

δ3(
l

2
− y)ϕi(y) dy = Vi(

l

2
) (1.240)

are the shear forces of the nodal unit displacement ϕi at the point x = l/2.
Obviously the FE influence function is not correct. Could the situation be

saved by claiming that the FE approximation is the exact influence function
for the average value of V (x)? No, this time the previous logic fails by a narrow
margin. The influence function for the average value Va of V (x) in the center
element is

Va =
1
le

∫ x3

x2

V (x) dx =
1
le

∫ x3

x2

∫ l

0

G3(y, x) p(y) dy dx

=
1
le

∫ x3

x2

∫ l

0

d

dx
G2(y, x) p(y) dy dx =

1
le

∫ l

0

[G2(y, x3)−G2(y, x2)] p(y) dy

(1.241)

where 1/le[G2(y, x3) − G2(y, x2)] is almost the figure in Fig. 1.49. “Al-
most” because the influence functions for bending moments have a sharp bend
at x that is not to be seen at the end points x3 and x2. But it is obviously
possible to come very close to this shape in Vh. In other words, FE solutions
gain in accuracy if averages are studied, rather than point values.

To approximate the shape of the kernel 1/le[G2(y, x3)−G2(y, x2)] in Vh,
the same equivalent nodal forces must be applied as in Fig. 1.49, because the
third-order difference quotient and the third-order derivative of a third-degree
polynomial ϕi at any point x̄ ∈ (x2, x3) are the same:
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Fig. 1.50. How a
commercial FE pro-

the shear force V at
the center of a beam

result

fi =
1
le

∫ l

0

[δ2(y − x3)− δ2(y − x2)]ϕi(y) dy =
∫ l

0

δ3(y − x̄) ϕi(y) dy

=
Mi(x3)−Mi(x2)

le
= Vi(x̄) . (1.242)

Remark 1.9. A commercial FE program calculates the influence function for
V (l/2) as follows. First it keeps all nodes fixed and it applies the dislocation
(= ϕ1) (see Fig. 1.50 c) to the second element. Next it applies the fixed end
forces (×(−1)) of this load case to the structure and adds to the resulting
deflection curve which is just Gh

3—the deflection caused by the dislocation in
element 2. The result is the exact solution (Fig. 1.50).

The deflection in the first element agrees with the exact solution

w
(1)
h = −0.5x = wexact = G3 (1.243)

but to the deflection in the second element the program adds the beam solution
ϕ1 (= dislocation at the left end of the fixed beam)

w
(2)
h = −0.5− 0.5x + 3 x2 − 2 x3

+ 1.0 − 3 x2 + 2 x3 (= ϕ1)
wexact = +0.5− 0.5x (1.244)

influence function for

it obtains the correct

gram calculates the

(EI = 1), and how
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Fig. 1.51. a) FE influence function for the shear force qh
x at node 99; b) FE mesh

and deflection at node 65, E = 3.0 E7 kN/m2, ν = 0.16, thickness d = 0.20 m,
element size = 0.5 m × 0.5 m

In 2-D and 3-D problems the displacement field cannot be split into a homo-
geneous and a particular displacement field, so this technique is not applicable
to such problems.

Note that in the FE model of the beam we must distinguish between the
shear force V h on the left-hand side (V h

l ) and on the right-hand side (V h
r )

of the center node. Gh
3 is the influence function for V h

r . This explains the
asymmetry of Gh

3 (see Fig. 1.50 b).

Shear force in a slab

The influence function Gh
3,x for the shear force qx at node 99 of the slab in

Fig. 1.51 was calculated with conforming Kirchhoff elements by applying a
unit dislocation at that node. The deflection at node 65 was −0.041618 m,
which is exactly the value of qh

x at node 99 if a unit force P = 1 is placed at
node 65.
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and d), and Green’s function for σxx, c) and b). The scalar product of the nodal
vectors a) f i (gravity load) and b) uG

i (Green’s function) gives the stress σh
xx of the

FE solution or—alternatively—of the nodal vectors c) fG
i (Green’s function) and

d) ui (gravity load)

Nodal influence functions

Nodal influence functions is short for nodal form of influence functions and
by this we mean that in FE analysis the evaluation of the two equivalent
influence functions

uh(x) =
∫ l

0

Gh
0 (y, x) p(y) dy =

∫ l

0

uh(y) δ0(y − x) dy (1.245)

can be done by summing over the nodes. This is a key point of the FE method.
We have

Fig. 1.52. Nodal forces and nodal displacements of two load cases: gravity load, a)
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uh(x) =
∫ l

0

Gh
0 (y, x) p(y) dy =

∫ l

0

∑
i

ϕi(y) uG
i (x) p(y) dy =

∑
i

uG
i (x) fi

= uT
G f = uT

G K u = uT
G KT u = fT

G u =
∑

i

fG
i (x)ui

=
∑

i

ϕi(x) ui =
∫ l

0

∑
i

ui ϕi(y) δ(y − x) dy =
∫ l

0

uh(y) δ0(y − x) dy .

(1.246)

So the displacement uh(x) is the scalar product between the nodal dis-
placements of the Green’s function and the equivalent nodal forces of the load
case p or—vice versa—between the nodal displacements of the FE solution
uh and the nodal forces fG

i of the Green’s function

uh(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑

i

ϕi(x)ui =
∫ l

0

uh(y) δ0(y − x) dy = fT
G u∫ l

0

Gh
0 (y, x) p(y) dy = uT

G f .

(1.247)

So when we evaluate uh(x) or σh(x) then we apply the corresponding Dirac
delta to each shape function ϕi and multiply the result (= fG

i ) with the weight
ui of the shape function. That is the equivalent nodal forces fG

i of the Green’s
functions are simply the displacements or stresses, etc., of the shape functions
at the point x. This is clearly seen in the middle of the long chain of equations
(1.246) because the identity∑

i

fG
i (x) ui =

∑
i

ϕi(x) ui ⇒ fG
i (x) = ϕi(x) (1.248)

just means that.
For example the stress σh

xx(x) of the plate in Fig. 1.52 is equal to the
work done by the equivalent nodal forces f i on acting through the nodal
displacements uG

i of the Green’s function (a and b in Fig. 1.52)

σh
xx(x) =

∫
Ω

Gh
1 (y,x) • p(y) dΩy =

∑
i

uG
i • f i ≡ b× a . (1.249)

Because of Betti’s theorem (K = KT ) this result is equivalent to

σh
xx(x) =

∑
i

f G
i • ui =

∑
j

σxx(ϕj)(x) uj ≡ c× d . (1.250)

The first sum extends over all nodes i = 1, 2, . . . N of the structure while the
second sum extends over all degrees of freedom j = 1, 2, . . . 2×N of the nodes.

This result means that in FE methods we calculate stresses as in finite
difference methods, see Sect. 7.6 p. 533.
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The inverse of K

The entries in the inverse K−1 of the stiffness matrix of a structure are the co-
efficients gij of the projections (= FE approximations) of the n nodal Green’s
functions G0[xi], i = 1, 2, . . . n onto Vh:

Gh
0 (xi,y) =

n∑
j=1

gij ϕj(y) K(−1) = [gij ] . (1.251)

That is to each node i belongs a Green’s function G0(xi,y) (= influence
function for the displacement ui = u(xi) at xi) and the entries gij in row i
of K−1 describe the expansion of the FE Green’s function in terms of the
ϕj . In 1-D problems the gij would be just the nodal values of the Green’s
function G0(xi, y) that is gij = G0(xi, yj), j = 1, 2, . . . n, where y1, y2, . . . are
the coordinates of the nodes.

Equation (1.251) is easily verified if the analytic result

ui = uh(xi) =
∫

Ω

Gh
0 (xi,y) p(y) dΩy =

∑
j

∫
Ω

gij ϕj(y) p(y) dΩy

=
∑

j

gij fj (1.252)

is compared with the computer output

ui =
∑

j

k
(−1)
ij fj (1.253)

and if the n unit vectors, f = ej are substituted consecutively for f . This
establishes k

(−1)
ij = gij .

Linear algebra provides the same result: let u and û any two vectors; then
ûT Ku = u K û which implies that if K u = f , ûT f = u K û. Next let gi

be the solution of K gi = ei; then it follows that ui = gT
i f . If this is compared

with (1.252), it follows that the coefficients gij are the solutions of K gi = ei,
which is equivalent to saying that K(−1) = [gij ].

Commercial codes

Commercial codes normally provide no routines for to calculate influence func-
tions but a diligent user can circumvent this problem. The issue is to determine
the equivalent nodal forces fi which will produce the influence function.

Let us assume that the influence function for the shear stress σxy at the
center of a bilinear element which is part of a larger structure is to be calcu-
lated.

The analysis is done on a single bilinear element which has the same shape
and size as the original element. In this case the element has eight degrees of
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Fig. 1.53. Influence functions in a plate for a) the horizontal displacement ux,
b) xx

freedom. In the first load case we let u1 = 1 and all other ui = 0. The shear
stress σxy at the center of the element in this load case is the equivalent nodal
force f1, etc. So by solving eight different load cases u = ei, i = 1, 2, . . . 8, we
can calculate the eight stresses σxy(ϕi)(x) = fi which—as equivalent nodal
forces fi—produce the FE influence function for σh

yx(x).
Because the equivalent nodal forces depend only on the element which

contains the point x the formulas in Sect. 4.8 p. 357 would have provided
the stresses more easily but if the elements which are implemented are of an
unknown type or if the elements are curved or not affine to the master element
then this technique can help.

The influence functions for nodal stresses, which are usually average values

σh
xy =

σ
(1)
xy + σ

(2)
xy + σ

(3)
xy + σ

(4)
xy

4
(1.254)

are obtained in the same way: it is only that the 8× 4 nodal forces—for each
of the four element stresses σ

(i)
xy at the node—must be applied simultaneously

and must be weighted with 1/4.

1.20 Accuracy

Each displacement u, v, w, and each stress or stress resultant

σxx, σxy, σyy mxx,mxy,myy, qx, qy (1.255)

the stress σ
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Fig. 1.54. Influence functions for a) the deflection w, b) the slope w,x, c) the
bending moment mxx, and d) the shear force qx at the center of the slab

at a node or a Gauss point (see Fig. 1.53) is the scalar product of the associated
Green’s function Gj (the index j corresponds to the index j of the Dirac delta
δj) and the applied load p

mxx(x) =
∫

Ω

G2(y,x) p(y) dΩy . (1.256)

The FE program replaces—as shown previously—the exact Green’s function
with an approximation Gh

2 , with what it “considers” to be the exact Green’s
function, and therefore the error in the bending moments is proportional to
the distance between G2 and Gh

2 :

mxx(x)−mh
xx(x) =

∫
Ω

[G2(y,x)−Gh
2 (y,x)] p(y) dΩy . (1.257)

This holds true for any other value as well.
Hence the real task of an FE program is not the solution of a single load

case, but an optimal approximation of the Green’s functions, because normally
more than one load case is solved on the same mesh. The truck drives on, but
the Green’s functions, being mesh-dependent , are invariant with respect to
the single load cases that are solved on the mesh, although the accuracy may
depend on where the truck is parked because the error in the Green’s function
varies locally.

X
Y

Z

X
Y

Z

X
Y

Z

X
Y

Z
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The shift

In plate bending (Kirchhoff) problems the Green’s functions for

w,w,x , w,y ,mxx,mxy,myy, qx, qy (1.258)

at a specific point x are generated if a point source conjugate to w,w,x , w,y
etc. is applied at x. A source conjugate to w is a single force, a source conjugate
to w,x is a single moment, etc.

As can be seen in Fig. 1.54, the complexity of the deflection surfaces gen-
erated by these sources increases with the order of the derivative. The higher
the derivative the more narrow and focused the influence function and there-
fore the more difficult it is to approximate these surfaces with simple shape
functions.

This tendency of the influence functions has to do with the shift of the
kernel functions.

The surface load p that acts on a slab is (in somewhat simplified terms)
the fourth-order derivative of the deflection surface w. The influence function
for the deflection

w(x) =
∫

Ω

G0(y,x)︸ ︷︷ ︸
kernel

p(y) dΩy (1.259)

extracts from p—which is the “fourth-order derivative”—the zeroth order de-
rivative. Thus the kernel G0 integrates four times. Its shift is of order −4.

Table 1.4. The kernels Gi and their shifts

Magnitude Derivative Kernel Action Shift

w(x) 0 G0 force -4
w,i (x) 1 G1 moment -3
m ij(x) 2 G2 kink -2
qi(x) 3 G3 dislocation -1

Hence, influence functions are integral operators. They transform the load
p into the deflection w, the normal (or more general directional) derivative
w,n etc. The more they achieve, the more they integrate p, the more negative
the shift, and the more these functions spread in all directions; see Fig. 1.54.

Therefore if the deflection at a point x is to be calculated very precisely the
mesh must have the same quality everywhere, because the integral operator
integrates four times, although because the operator is a very smooth function
a coarse mesh probably is sufficient. But if the focus is on the shear force qx,
the mesh in the neighborhood of the point is critical, because the integral
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Fig. 1.55. a) Influence function for the bending moment at x = l/2, and b) the
horizontal displacement at the same point. c) Influence function for the deflection
at the quarter point x = l/4. The dashed curves are the FE approximations

operator in the influence functions for the shear force has the low shift -1.

An operator which does nothing (it has shift zero) is the Dirac delta,
which is usually identified with a point force. Now it must be considered a
displacement, because all influence functions are displacements. In the case
of a Kirchhoff plate it would be the deflection surface w(x) = K ∆∆ g0(y,x)
with g0 = 1/(8 π K)r2 ln r, which in a 3-D picture would be a lone peak
hovering over the mesh. This peak neither integrates nor differentiates what
is placed under the integral sign:

p(x) =
∫

Ω

δ0(y − x) p(y) dΩy . (1.260)

It just reproduces the function. Its shift is of order zero. It is truly a local
operator.

There are also integral operators that differentiate, which have a positive
shift. If a bar is stretched by u units of displacement, then the normal force
N(0) is

N(0) = EA
u

l
. (1.261)

The operator u → N = EAu′ is an integral operator which differentiates.
Actually, to see an integral sign would require a 2-D model of the bar, but
evidently u/l is a difference quotient.

It integrates only once. This makes it a nearly local operator.
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The bending moment in a beam fixed on the left-hand side and simply
supported on the right-hand side is, if the simple support moves downward
by δ units,

M(0) = −3 EI

l2
δ . (1.262)

This integral operator differentiates twice as can be seen from the l2 in the
denominator.

The maximum error in the Green’s functions

It is not easy to predict where the maximum error in the displacements or
stresses will occur, because the accuracy depends on the accuracy of the ap-
proximate Green’s function and the nature of the load which is applied. It is
only guaranteed that if the exact Green’s function lies in Vh, then the value
will be exact. But the opposite need not be true: recall that if the exact solu-
tion lies in Vh, then the stresses are exact even though the Green’s function
does not lie in Vh.

We thus concentrate on the error in the Green’s function alone. In Figure
1.55 two influence functions are plotted, one for the bending moment of a beam
at x = l/2 and the other for the longitudinal displacement at the same point
if the bar is stretched or compressed. The dashed curves are the approximate
Green’s functions if just one element is used. Obviously the maximum error
occurs at the source point x = l/2 itself. It is easy to see why this happens:
outside of the element Gi = Gh

i , and within the element Gh
i is essentially the

curve obtained if Gi is interpolated at the nodes with a third-degree polyno-
mial (a homogeneous solution), while the essential part wp, which contains
the peak, EI wIV

p = δi(y − x), is neglected. Obviously the distance between
the smooth interpolating function Gh

i and the peak is at its maximum at the
source point x. This is even more evident in plate bending problems. Recall
the infinite peaks in the influence functions for the bending moments mij in
a slab! Clearly the maximum error will occur at the source point.

Hence the stresses at the foot of a single force are the least reliable, inde-
pendent of the problematic nature of single forces. Can we say then that the
more a load is spread, the better the accuracy of the FE results? Do gravity
loads therefore have an advantage over traffic loads?

It is not guaranteed that the maximum error always occurs at the source
point. One counterexample is the influence function for the deflection at the
first quarter point of a beam with fixed ends; see Fig. 1.55 c. The FE approx-
imation Gh

0 is zero, so that the maximum error is identical to the maximum
deflection of G0, which occurs at some distance from the quarter point. But
it can be assumed that this “mismatch” occurs only in influence functions for
displacements, and not resultant stresses, because the peaks in the latter func-
tions are more pronounced. But note that the influence functions for support
reactions are also of displacement type.
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Fig. 1.56. Plate: a) system and loading; b) influence function for the stress σyy near
the corner point; c) influence functions for the internal action Ny in cross-section
A–A

Fig. 1.57. Influence function
for σyy and Ny
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1.21 Why resultant stresses are more accurate

Near points where stresses become singular it is better to concentrate on
resultant stresses than single values:

Ny =
∫ l

0

ny dx =
∫ l

0

σyy d dx My =
∫ l

0

myy dy . (1.263)

The lower left corner point of the left opening in the plate in Fig. 1.56 is just
such a singular point. An influence function for the singular stress σyy at this
point does not exist, see Sect. 7.6, p. 532.

The stress σyy at the corner point increases steadily when the mesh is
refined while the resultant stress Ny in the cross section A−A is much more
stable [146]. The reason is that the influence function for Ny has a simple
shape. It is the displacement field of the plate if all the points in the cross
section are spread simultaneously; see Fig. 1.56 c. Even a coarse mesh suffices
to approximate this shape, and this is why Ny changes little when the mesh
is refined.

Next consider the plate in Fig. 1.57. The influence function for the stress
σyy at a single point, for example at the lower edge of the plate, certainly
does not lie in Vh, but the influence function for the normal force Ny must lie
in V +

h (= Vh plus the rigid-body motions of the plate), because it represents
a rigid-body motion of the plate, and therefore the FE program finds (as it
must!) the correct result for the stress resultant Ny.

In plate-bending problems the situation is the same, as can be seen in

Equilibrium

The resultant force Rh of the FE solution in a cross section will balance the
external load if the Green’s function for R lies in Vh, see Sect. 1.37, p. 184.
The Green’s function for the sum of the horizontal forces and the vertical
forces are simple movements, ux = 1 and uy = 1 respectively. In the case of
the plate in Fig. 1.59 the influence function for Nx in the cross section A−A
is a rigid-body motion of the part to the right of A−A, i.e., a unit dislocation
of all points on the line A−A.

The equivalent nodal forces fi that try to generate this shape are the
integrals of the stresses of the nodal unit displacements fields ϕi along the
line A−A:

fi =
∫

A−A

∫
Ω

δxx
1 (y − x) • ϕi(y) dΩy ds =

∫
A−A

σ(i)
xx(x) ds . (1.264)

The FE solution (Fig. 1.59 c) is not exact, because displacement fields ϕi in
Vh cannot model step functions.

Fig. 1.58. The influence function for a resultant bending moment is much easier
to approximate than for a single value.
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Fig. 1.58. Slab: a)

yy; b) influ-

integral of myy

The equilibrium condition
∑

H = 0 is a simple condition because the in-
fluence function is simple, ux = 1. The condition that the sum of the moments
is zero,

∑
M = 0, is more difficult because it involves rotations. If a vertical

force P = 1 kN is applied at the end of the plate in Fig. 1.60, the maximum
bending stresses of the FE solution in the cross section A−A are ±10 kN/m2,
so the bending moment is

Mh =
∫ +0.5

−0.5

z · (−20 z︸ ︷︷ ︸
σxx

) dz = −1.6̄ kN m (1.265)

which is less than the exact value of −2.5 kNm. The reason is that the FE
program cannot model the exact influence function (see Fig. 1.60 b) so it
operates with the shape in Fig. 1.60 c instead, which it obtains when it applies
the moments of the nodal unit displacement ϕi in cross section A − A as
equivalent nodal forces:

fi =
∫ +h/2

−h/2

∫
Ω

δxx
1 (y − x) • ϕi(y) dΩy · z dz

=
∫ +h/2

−h/2

σ(i)
xx(z) · z dz . (1.266)

ence function for the
for m
influence function

XY

Z

XY
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Fig. 1.59. Influ-
function for

x

A-A: a) equivalent

act solution, c) FE
approximation

This pseudorotation lifts node 10 vertically by uy = −1.6̄ m, which is exactly
the bending moment Mh = 1 · (−1.6̄) kNm of the FE solution in section A−A
(see Equ. (1.265)).

1.22 Why stresses at midpoints are more accurate

The simpler a Green’s function the better the chance that the Green’s function
lies either in Vh or at least not too far away from it so that the error in the
FE results will either be zero or small. This holds in particular for the Green’s
function of average values.

To calculate the average stress σxx in a region Ωe of a plate, the stress is
integrated and divided by the size Ωe of the region9:

σa
xx =

1
Ωe

∫
Ωe

σxx dΩ =
E

Ωe

∫
Ωe

(εxx + ν εyy) dΩ . (1.267)

Because the strains are derivatives, εxx = ux,x and εyy = uy,y, the domain
integral can be transformed into a contour integral
9 We simply write Ωe instead of |Ωe| or similar expressions.

N in cross section

nodal forces, b) ex-

ence
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z

A

A

influence function for

FE approximation

σa
xx =

E

Ωe

∫
Ωe

(εxx + ν εyy) dΩ =
E

Ωe

∫
Γe

(ux nx + ν uy ny) ds (1.268)

over the boundary Γe of Ωe. To keep the formulas short let us assume in the
following that ν = 0, so that

σa
xx =

E

Ωe

∫
Ωe

εxx dΩ =
E

Ωe

∫
Γe

ux nx ds . (1.269)

The influence function for ux at a point x ∈ Γe is the displacement field due
to a single force Px = 1 acting at x. Hence the influence function for the
integral

E

Ωe

∫
Γe

ux nx ds (1.270)

is the displacement field of the plate if distributed horizontal forces E/Ωe×nx

are acting along the edge Γe; see Fig. 1.61.

tilever plate; b) exact
Fig. 1.60. a) Can-

the moment M ; c)
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1.61. The

average value of σxx

in a region Ωe is a

horizontal forces on

Fig. 1.62. Influence function for the average value of σxx in the boxed region. The
plate is fixed on all sides, a) the “Dirac delta”, b) horizontal displacements

In Sect. 1.19, p. 69, we saw that the FE influence function for the normal
force N(x) at the mid-point of an element (Fig. 1.47) is the exact influence
function for the average value Na of the normal force N(x) in that element.

A similar result holds, as we will see, for rectangular bilinear plane ele-
ments; there is no difference between the FE influence function for the stress
σxx at the centroid xc of an element and the FE influence function for the
average value of σxx over the element.

To obtain the influence function for σxx(xc), the stresses σxx(ϕi)(xc) of
the nodal unit displacements at the center xc of the element must be applied
as equivalent nodal forces. The stresses σxx in a bilinear element are (Sect.
4.8, p. 357),

Fig. “Di-
rac delta” for the

boundary layer of

the edge of the region
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Fig. 1.63. A bilinear element does not distinguish between a) the influence function
for σxx at the center and b) the influence function for the average value σa

xx in the
element (3-D visualization of the horizontal displacements). The equivalent nodal
forces and therefore the approximate influence functions are the same

σxx(x, y) =
E

a b (−1 + ν2)
×
[
b (u1 − u3) + a ν (u2 − u8) +

+ x ν (−u2 + u4 − u6 + u8) + y (−u1 + u3 − u5 + u7)
]

(1.271)

so that (Fig. 1.63)

f3 = σxx(ϕ3)(xc) = f5 = σxx(ϕ5)(xc) = +
E b

2 Ωe
(1.272)

f1 = σxx(ϕ1)(xc) = f7 = σxx(ϕ7)(xc) = − E b

2 Ωe
(1.273)

where Ωe = a b is the area of the element. Note that f2 = f4 = f6 = f8 = 0,
because ν = 0.

The average value of σxx is (see (1.269))

σa
xx =

1
Ωe

∫
Ωe

σxx dΩ =
E

Ωe

∫
Γe

ux nx ds =
E

Ωe

[∫
ΓR

ux ds−
∫

ΓL

ux ds

]
(1.274)
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Fig. 1.64. The in-

function is l times
the midpoint value

where ΓL and ΓR are the left and the right side of the element—at the upper
and lower edge nx = 0—and ux is the horizontal displacement of the edge.
Hence to generate the influence function for σa

xx we must apply as equivalent
nodal forces fi = σa

xx(ϕi) the average stresses of the unit displacement fields
ϕi.

Let us do this for example with the unit displacement field ϕ3(x, y) that
describes the horizontal displacement of the lower right corner, u3 = 1 (see
Fig. 1.63 b). The shape function of this corner point (see Eq. (4.30) p. 338)

ψe
2(x, y) =

1
4 Ωe

(a + 2 x) (b− 2 y) , (1.275)

is the ux in the nodal unit displacement field ϕ3(x, y) = [ux, 0]T . The shape
function is zero on ΓL, so that the integral (1.274) is

E

Ωe

∫
ΓR

ux ds =
E

Ωe

∫ b/2

−b/2

ψ2(
a

2
, y) dy =

E b

2 Ωe
= f3 ,

(1.276)

which is the same f3 as in (1.272).
From these formulas, it follows that an element has the property

FE influence function for σxx(xc) = FE influence function for σa
xx

if the average value of the strains is equal to the value at the centroid xc of
the element (see Fig. 1.64):

1
Ωe

∫
Ωe

εxx(ϕi) dΩ = εxx(ϕi)(xc) i = 1, 2, . . . n (1.277)

and likewise for εyy and εxy.

tegral of a linear
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Fig. 1.65. Influence function
for the average value of mxx

in the boxed region

Hence a CST element has this property, as does a quadratic triangle
(straight sides, midside nodes, and six quadratic shape functions), because
quadratic displacements imply linear strains, and the integral of a linear func-
tion εxx is εxx(xc) ·Ωe where xc is the centroid of the element.

The strains of the six shape functions corresponding to u1, u2, . . . , u6 are10

1
2Ωe

(4ξ1 − 1) y23
1

2Ωe
(4ξ2 − 1) y31

1
2Ωe

(4ξ3 − 1) y12 (1.278)

2
Ωe

(ξ2 y23 + ξ1 y31)
2

Ωe
(ξ3 y31 + ξ2 y12)

2
Ωe

(ξ1 y12 + ξ3 y23)(1.279)

The centroid has the natural coordinates ξ1 = ξ2 = ξ3 = 1/3, and integration
is done with the formula∫

Ωe

ξk
1 ξl

2 ξm
3 dΩ = 2Ωe

k! l!m!
(2 + k + l + m)!

k, l,m ≥ 0 . (1.280)

Hence

εxx(ϕ1)(xc) =
1

2Ωe
(
4
3
− 1) y23 (1.281)

is the same as

1
Ωe

∫
Ωe

εxx(ϕ1) dΩ =
1

2Ω2
e

∫
Ωe

(4 ξ1 − 1) y23 dΩ =
1

2Ωe
(
4
3
− 1) y23

(1.282)

10 [70] p. 158
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function for

M(x) in the center
element

or

εxx(ϕ4)(xc) =
2

Ωe
(
1
3
y +

1
3
y31) (1.283)

is the same as

1
Ωe

∫
Ωe

εxx(ϕ4) dΩ

=
2

Ω2
e

∫
Ωe

(ξ2y23 + ξ1 y31) dΩ =
2

Ωe
(
1
3

y23 +
1
3

y31) . (1.284)

Of course the same can be said about the strains εyy and εxy, so the
generalization to the case ν 	= 0 is obvious.

Kirchhoff plates

The average value of the bending moment mxx can be expressed by a boundary
integral,

1
Ωe

∫
Ωe

mxx dΩ =
K

Ωe

∫
Ωe

(w,xx +ν w,yy ) dΩ =
K

Ωe

∫
Γe

(w,x nx + ν w,y ny) ds

(1.285)

and if we let ν = 0,

ma
xx =

1
Ωe

∫
Ωe

mxx dΩ =
K

Ωe

∫
Γe

w,x nx ds (1.286)

which means that the influence function for the average value of mxx inside
the boxed region (Fig. 1.65) is the deflection surface of the slab under the
action of pairs of opposing line moments (kN m/m), which rotate the plate
inwards.

In a beam, two single moments would even yield the exact influence func-
tion for the average value Ma because (see Fig. 1.66)

the bending moment
the average value of

23

Influ-Fig. 1.66.
ence
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Ma =
1
le

∫ x3

x2

M(x) dx =
1
le

∫ x3

x2

∫ l

0

G2(y, x) p(y) dy

=
1
le

∫ x3

x2

∫ l

0

−EI
d

dx
G1(y, x) p(y) dy

=
−EI

le

∫ l

0

[G1(y, x3)−G1(y, x2)] p(y) dy (1.287)

where G1 is the Green’s function for the rotation.
Note that as the length of the element tends to zero, le → 0, the moments

M = EI/le tend to ∞, while at the same time their distance shrinks to zero.
Hence, a sharp bend develops at the center point xc, i.e., the influence function
for the average bending moment becomes the influence function for M(x) at
the midpoint of the element.

These two moments are also the equivalent nodal forces for the influence
function of the FE bending moment Mh(0.5 le) at the center of the element,
as follows from

M(ϕe
1)(0.5 le) = 0 M(ϕe

2)(0.5 le) =
−EI

le
(1.288)

M(ϕe
3)(0.5 le) = 0 M(ϕe

4)(0.5 le) =
+EI

le
. (1.289)

Hence, in beam analysis as well the two influence functions for Mh(0.5 le) and
the average value Ma

h coincide. This is simply a consequence of the fact that
the nodal unit displacements are cubic polynomials, and therefore the bending
moments are piecewise linear.

More generally the condition

1
Ωe

∫
Ωe

mxx(ϕi) dΩ = mxx(ϕi)(xc) i = 1, 2, . . . n (1.290)

(and for myy likewise) is sufficient for the FE influence functions of mxx(xc)
and the average value ma

xx to be the same. In conforming elements where the
bending moments mij are linear functions, this condition is satisfied.

In a Reissner–Mindlin plate the bending moments are defined as

mxx = K (θx,x +ν θy,y ) (1.291)

and therefore the rotations θx and θy must be linear polynomials.

Summary

To give credit to our claim that the stresses at midpoints are more accurate,
we argue as follows:
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Fig. 1.67. The average values of the stresses or moments are zero in structures with
fixed or clamped edges: a) bar, b) beam, c) plate, d) but not in a plate with free
edges; e) in plates with different elastic properties the influence functions also are
not zero

• The stresses at the centroid of an element are approximately identical
to the average stresses in the element. This follows from a simple Taylor
expansion

σxx(x) = σxx(xc) +∇σxx(xc) (x− xc) + O(h2) (1.292)

because

1
Ωe

∫
Ωe

σxx(x) dΩ = σxx(xc) +
1

Ωe

∫
Ωe

O(h2) dΩ . (1.293)

Hence if the element gets small enough the stresses at the centroid are
nearly identical to the average value, σxx(xc) � σa

xx.
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Fig. 1.68. Equivalent nodal forces for the influence function of N = σ A at the
center of the element

• If the element stresses are linear, the FE influence function for the stress at
the centroid and for the average stress are the same so that σh

xx(xc) = σh,a
xx .

• Because the influence function for the average stress σa
xx is relatively sim-

ple (see Fig. 1.62 p. 90) the error σa
xx − σh,a

xx will be small, and because
σxx(xc) � σa

xx also the error σxx(xc)− σh
xx(xc).

Remark 1.10. It follows that the average stresses are zero over any structural
element with fixed or clamped edges, because the edge forces or edge mo-
ments which generate the influence functions will effect nothing when they
are applied to fixed edges; see Fig. 1.67. An elementary analysis shows that
this is no longer true if the material properties change; see Fig. 1.67 e. In that
case the influence function is generated by placing tractions Ei/Ω separately
around the edges of the two subdomains and the resulting action (E1−E2)/Ω
at the interface makes that the plate deforms and so the influence function is
not zero.

Remark 1.11. Many interesting things can be learned about the nature of
influence functions if the transition from average values to point values is
studied. Basically the action behind the influence function for σxx involves
two opposing forces ±1/∆x which point in opposite directions which become
infinite if the distance ∆x between the two forces becomes zero. In physics
this is called a dipole, [221]. At distances far from the source point, the effects
cancel, but near the source point the material is stretched in two opposing
directions, so that two opposing peaks in the horizontal displacement u as in
the influence function for qx in a slab develop. This dipole nature of the kernel
is the reason why the influence function for the stress has this local character.

We can actually see how the tendency 1/∆x→∞ develops. To calculate the
influence function for σxx at the center of an element, the stresses σxx(ϕi) are
applied as equivalent nodal forces. Now the more the element size h (= ∆x)
shrinks, the more the derivative of the nodal unit displacement

d

dx
ϕi(x) =

1
h

(1.294)

tends to infinity. This is best seen in the 1-D problem of a bar: the smaller
the elements, the better the FE program can simulate the action of a dipole
at the center of an element with two opposing forces at the neighboring nodes
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Fig. 1.69. Construction of the influence function for the stress discontinuity at the
center node

f = ± 1
h
× EA (1.295)

where the change in sign is due to the fact that the unit displacement of the
node on the left-hand side has a negative slope at the center of the element
while for the opposing node the opposite is true; see Fig. 1.68.

Influence functions for average values of displacements

These influence functions follow the same logic. If a single force P = 1 is placed
at a point x of a prestressed membrane Ω (Poisson equation −∆u = p), the
average deflection u in a region Ωe is

ua =
1

Ωe

∫
Ωe

u dΩ =
1

Ωe

∫
Ωe

G0(y,x) dΩy . (1.296)

Hence the Green’s function for ua is simply the shape of the membrane if a
constant pressure p = 1 is applied to the region Ωe, so that the equivalent
nodal forces for the Green’s function are

fi =
1

Ωe

∫
Ωe

ϕi × 1 dΩ =
1
3

(1.297)

where 1/3 is the result for the node of a CST element Ωe. So that if the size
Ωe shrinks to zero, the action of the three nodal forces increasingly resembles
the action of a true point load P = 1/3 + 1/3 + 1/3 = 1.
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1.23 Why stresses jump

This seems a trivial question. Stresses jump, because the displacements are
only C0, so the derivatives are discontinuous at interelement boundaries. But
perhaps it is worthwhile to study the phenomenon from the perspective of
influence functions. To keep things simple we consider a bar (Fig. 1.69). The
influence function for the jump

σR
x − σL

x (1.298)

in the stress at the center node is the influence function for σR
x minus the

influence function for σL
x , and because this compound influence function is

not zero, the stress jumps.
At an interior point of an element the two influence functions are identical,

and therefore they cancel. In other words jumps in the stresses do not occur
at any interior point.

But this is no surprise; rather, it smacks of a circular argument. Because
the equivalent nodal forces for the influence functions of the stress σx are, up
to the factor E, the first derivative of the shape functions, the jump in the
stresses will always be zero if the first derivative is the same on both sides of
the point, i.e., if the stress is continuous ...

But there are two interesting points to make looking at Fig. 1.69. Obviously
the maximum jump occurs if the load is applied directly at either side of the
node and the jump will be zero if the load alternates, +p in the first element
and −p in the second element. This is probably also true in 2-D and 3-D
problems. Checkerboard loads leave few traces in Vh, i.e., the equivalent nodal
forces fi are relatively small.

1.24 Why finite element support reactions are relatively
accurate

When the same problem is solved with various FE programs, it is often found
that agreement in the support reactions is quite good, and it is soon recognized
that they change little when the mesh is refined. The reason is that influence
functions for support reactions have a particularly simple shape. They are the
deflection curves or surfaces if the support settles by one unit of deflection;
see Fig. 1.70. These simple shapes are easy to approximate, even on a coarse
mesh.

Things are different if the wall is not isolated, but is instead in contact
with other walls. Now if the wall settles, the slab cracks in the transition zone
between the rigid supports, w = 0, and the sagging wall, w = 1; see Fig. 1.71.
In practice the neighboring walls will not be perfectly rigid, but will move too,
so the discontinuity in the transition zone will not be so sharp. But accuracy
will certainly suffer. Short intermediate supports will be affected more than
longer walls.
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Fig. 1.70. Slab: a) plan view; b) influence function for the sum of the support
reactions in wall W1; c) in wall W2
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X

Y

Z

Fig. 1.71. Floor plate: a) plan view; b) influence function for the support reaction
in the wall extending vertically; c) 3-D view of the FE approximation; d) contour
lines of the influence function

Example

Consider the slab in Fig. 1.71. The exact influence function G0 for the support
reaction of the wall (the one extending vertically) is displayed in Fig. 1.71 b,
and the FE approximation is shown in Fig. 1.71 d. The latter is the shape of
the slab if the nodes of the FE mesh that lie on the wall are pushed down by
w = 1 cm. This produces the deflection w = 1.85 cm at the distant node yk;
see Fig. 1.71 d. This number is exactly the sum of the equivalent nodal forces
of the wall if a force P = 1 kN is placed at this node

∑
i

fi =
∫

Ω

Gh
0 (y) p(y) dΩ = Gh

0 (yk) · 1 kN = 1.85 kN . (1.299)

The exact value (on a very fine mesh) for the support reaction is 2.2 kN, so
the FE solution underestimates the support reaction on this mesh by about
16%. When a uniform load is applied, the error in the support reaction is
about 5%.
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Fig. 1.72. Floor plate on rigid supports: a) plan view and FE mesh; b) support
reactions under gravity load; c) influence function for the nodal force A, and d) for
the nodal force B

Peaks

Support reactions tend to oscillate and end in high peaks—in particular near
the ends of free-standing walls and at corner points; see Fig. 1.72. This is
easily understood by looking at the influence functions for the nodal force
directly at the end of the wall, node A, and at a node further back, node B.
The node up front has a much larger influence area than the node behind it,
and the force at node B is most often negative, simply because a movement
w = 1 of this node lifts the part in front upwards.

Point supports

A Kirchhoff plate is about the only 2-D structure that can safely be placed on a
point support. A Reissner–Mindlin plate or a plate (shear wall) simply ignores
point supports, because a single point can travel freely in any direction; see
Fig. 1.73. A Kirchhoff plate will finally succumb to even the smallest moment
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Fig. 1.73. a) The exact influence function for the support reaction B is zero. One
single point of the plate (= the support) can move downward by one unit length
without disturbing the plate b) The FE approximation to the influence function
closely follows the beam solution

M , and will not try to prevent the point of attack from rotating. Rather it
will let it loose so that it can rotate freely. Polynomial shape functions cannot
accomplish such remarkable feats. If one point moves, the whole neighborhood
follows suit, and therefore such influence functions always turn out wrong.

But the situation can be saved if the mathematical idea of a point support
is abandoned, and instead the supports are allowed to have finite extent. Then
the support reaction acts over a small surface area, and it may be assumed
that the influence function for such a patch of forces comes close to the shape
if the node is moved by one unit of displacement.

Cantilever plate

According to the theory of elasticity, the support reaction of the cantilever
plate in Fig. 1.74 should be zero. The reason that it is not zero is that an FE
program cannot generate the exact influence function; see Fig. 1.73 a. Instead
it produces the shape in Fig. 1.73 b which closely follows the deflection curve
of a beam. This is also why the FE support reaction B is identical to the beam
solution. At least for bilinear elements (Q4), this tendency prevailed even when
the mesh was refined (8 → 32 → 128 → 512 elements) as illustrated by the
results in Table 1.5. While the support reaction hardly changed, the stresses
near the point support increased with each refinement step.

Hence, point supports can be freely used, and the results are also reason-
able, in the sense of beam analysis, only stresses in the neighborhood of such
supports are meaningless.
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Fig. 1.74. Cantilever plate with a point support and equivalent beam model

Table 1.5. Results for the plate (beam) in Fig. 1.74

Elements Support reaction B (kN) Min σ (kN/m2) near the support

8 47.72 −480
32 47.54 −963
128 47.49 −1960
512 47.46 −3854

1.25 Gauss points

It is often found that the accuracy of the FE solution is superior at the Gauss
points. To understand this phenomenon, it is best to begin with 1-D prob-
lems. In 1-D problems the FE solution agrees with the exact solution at the
nodes. Hence also the approximate Green’s function Gh

0 coincides with G0 at
the nodes. We then have: (i) the unit nodal displacements ϕi are piecewise
homogeneous solutions; (ii) the Green’s functions are homogeneous solutions
(except at x); and (iii) homogeneous solutions are determined by their nodal
values. Hence it follows that the error in the Green’s function Gh

0 is zero out-
side the element that contains the source point x (see Fig. 1.75) so a 1-D FE
solution is exact at all points x that happen to lie on a load-free element.

Now what happens if x lies on an element that carries, say, a uniform
load p ? The exact deflection curve w in each element can be split into a
homogeneous solution w0 and a particular solution wp (corresponding to fixed
ends):

w(x) = w0(x) + wp(x) EI wIV
0 (x) = 0 EI wIV

p = p . (1.300)
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Fig. 1.75. In 1-D problems the error is zero in any element that carries no load

Because of the special nature of the trial space Vh and the FE method, this
string of homogeneous solutions (element per element) is identical to the FE
solution: wh = w0 on every element. The error e(x) in the FE solution is
therefore e(x) = w(x)− wh(x) = wp(x), so the error in the bending moment
within an element is just the bending moment distribution in an element with
fixed ends:

Mp(x) = −EI w′′
p (x) =

p l2e
2

(
1
6
− x

le
+

x2

l2e
) le = length . (1.301)

Now we are in for a surprise! Evidently the error is zero where Mp(x) = 0,
and (we let le = 1) these two points x1 = 0.21132 and x2 = 0.78868 are just
the Gauss points! How does this happen?

(i) The integral of Mp is zero because the ends are fixed, i.e., because
w′

p(0) = w′
p(le) = 0:∫ le

0

Mp(x) dx =
∫ le

0

−EI w′′
p (x) dx = −EI [w′

p(le)− w′
p(0)] = 0 . (1.302)

This is the key to the problem.
(ii) Mp(x) is a symmetric second-degree polynomial. Therefore the func-

tion must vanish at the n = 2 Gauss points of a 2n− 1 = 3 formula,∫ le

0

Mp(x) dx = w1 Mp(x1) + w2 Mp(x2) = 2 w1 Mp(x1) = 0 (1.303)
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1.76. The Gauss

zeros of Mp(x)

Fig. 1.77. The error in the bending moments is zero at the Gauss points

where the wi are the weights at the Gauss points xi.
When other types of loads are applied, it is not guaranteed that Mp is

zero at the Gauss points. Then the super-convergent points (the zeros of Mp)
must be found by studying the graph of Mp in engineering handbooks. Some
hidden symmetries still apply, however. If for example the distributed load in
the interval [−1, 1] were a triangular load, p(x) = (1 + x)/2, then because of∫ +1

−1

Mp(x) dx =
∫ +1

−1

[− 1
12
− x

20
+

x2

4
+

x3

12
] dx

= 1.0 ·Mp(−0.5775) + 1.0 ·Mp(0.5775) = 0 (1.304)

Mp must have opposite values at the two Gauss points.
Note also that the error in the shear force V (x) = −EI w′′′(x) is zero at the

center of the element if the distributed load is constant, p = c. The reason is

points coincide with the
Fig.
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basically the same as before: the integral of V (x) = M ′(x) is zero because the
bending moments at the fixed ends are the same, so that M(le)−M(0) = 0,
and because V (x) is a linear function, which can be integrated with one Gauss
point exactly.

Next let us study a rectangular slab clamped along its edge. Because the
slope wn = ∇w • n = 0 and the tangential derivative wt = ∇w • t = 0 are zero
on the boundary, the gradient ∇w = [w,x , w,y ]T must be zero too so that the
integral of mxx vanishes:∫

Ωe

mxx dΩ =
∫

Ωe

(w,xx +ν w,yy ) dΩ =
∫

Γe

(w,x nx + ν w,y ny) ds = 0

(1.305)

as do the integrals of myy and mxy. Note that∫
Ωe

w,i dΩ =
∫

Γe

w ni ds (integration by parts) . (1.306)

In a beam the bending moment M(x) would be a quadratic polynomial if
a constant load p = 1 were applied. If the same were true of a slab, the
bending moments mij assuming that they were perfect symmetric second-
order polynomials would vanish at the four Gauss points. But this is only
approximately true; see Fig. 1.78.

In a plane rectangular element with fixed edges, u = 0, the integral of the
stress σxx = εxx + ν εyy = ux,x +ν uy,y must vanish,∫

Ωe

σxx dΩ = E

∫
Ωe

(ux,x +ν uy,y ) dΩ = E

∫
Γe

(ux nx + ν uy ny) ds = 0

(1.307)

as must the integral of σyy and σxy as well. When a horizontal volume force
p = [1, 0]T is applied the horizontal stresses σxx are approximately linear
functions and the vertical stresses σyy quadratic functions; see Fig. 1.79. Per-
fectly linear stresses σxx would have a zero at the center of the element, and
perfectly quadratic stresses σyy would have zeros at the four Gauss points.

To summarize, if the edges of an element are kept fixed, the integrals of the
stresses (and bending moments) must be zero. If the stresses σij are linear,
symmetry conditions imply that they vanish at the centroid of the element,
and if the stresses are quadratic, they vanish at the four Gauss points of a
rectangular element.

The relevance of this insight is best illustrated by studying a triangular
plane element (Fig. 1.80) with fixed edges subjected to a horizontal volume
force p = [1, 0]T . Notice that the principal stresses vanish near the Gauss
point. This means that if the edges are first kept fixed and then released—so
that the effects of the load can spill over into the neighboring elements—and if
it is assumed that the exact displacement field within the element is the sum
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Fig. 1.78. Clamped plate, the position of the four Gauss points, and plots of mxx,
mxy, and myy

of a linear displacement field (CST element) and a particular solution up of
the load case p = [1, 0]T then the error in the principal stresses will be zero at
the Gauss point. These are very many if’s, but obviously these assumptions
are more often true than not.

If we let in (1.307) for simplicity ν = 0∫
Ωe

σxx dΩ = E

∫
Ωe

εxx dΩ = E

∫
Γe

ux nx ds , (1.308)

and if we apply it to an unconstrained element Ωe (not fixed at its edges),
then the equation states that the integral of σxx equals the integral of the
edge displacement of the element in the horizontal direction. Because the
average bending stress σxx in the plane element in Fig. 1.81 a is zero, the
overall extension of the element—the amount it stretches to the right and to
the left—must be zero as well. In its simplest form this equation states that
the integral of the normal force N in a bar equals the relative displacement
u(l)− u(0) of the end points.

One is tempted to employ these equations as well to study the error of
an FE solution. Let σe

xx = σxx − σh
xx denote the error in the stresses, then a

non-vanishing error∫
Ωe

σe
xx dΩ =

∫
Γe

(ux − uh
x)nx ds 	= 0 (ν = 0) (1.309)
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Fig. 1.79. Plane element with fixed edges subjected to a horizontal volume force
p = [1, 0]T ; σxx and σxy are approximately linear functions, and σyy a quadratic
function

implies that the shape of the deformed finite element differs from the true
shape of the deformed region Ωe of the structure (shape discounts rigid-body
motions). The non-averaged stresses σxx − σh

xx are responsible for the (hor-
izontal) offset of an element. But care must be taken: (i) it cannot be said
that the element as a whole is displaced, only that there is an excess or lack
of horizontal movement; (ii) two elements with the same average stresses σa

xx

must not have the same shape. When the bending stresses in the element in
Fig. 1.81 are doubled, the average stress remains zero, but the shape certainly
changes. Only the converse is true: if two elements differ in σa

xx, then they
must also differ in shape.

The same holds for σa
yy and σa

xy, and the extension to plate bending prob-
lems is also straightforward. In plate bending problems, the integral of the
bending moment mxx equals the boundary integral of the slope on Γ in the
x-direction w,x nx ∫

Ω

mxx dΩ =
∫

Γ

w,x nx ds (ν = 0) . (1.310)
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fixed edges,

[1, 0]T

Fig. 1.81. The average value of σxx is zero, and therefore the average horizontal
edge displacement ux is zero as well (ν = 0)

Imagine a unit vector fixed to the edge of the slab and pointing outward.
Under load, the slab curves inward or outward, so that the vector rotates
about an angle ψ = arctan(w,x nx + w,y ny). If upon circling the slab, the
excursions of this indicator × the arc length ds are counted, and if the count
is zero, then the integral of mxx +myy, or more appropriately of the curvature
terms κxx + κyy, will be zero as well.

1.26 The Dirac energy

Energy plays a fundamental role in mechanics. We speak of the strain energy,
U = uT K u, that is stored in a truss and we know that it must be equal to
the work done by the exterior load, uT f ,

U = uT K u = uT f . (1.311)

with

Fig. 1.80. Principal
stresses in a triangle

volume forces p =
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Here we want to show that also each single displacement u(x), each sin-
gle stress σ(x) is an energy quantum which represents a specific amount of
energy—the Dirac energy11

The pulley in Fig. 1.82 is momentarily at rest and also the scale of the
market woman in Fig. 1.18, p. 24, has come to a stop. But how is the balance
maintained when the forces are not the same, when G 	= H or Pl 	= Pr? The
answer is: because each side knows that it cannot win. If the weight Pl on the
left side of the scale moves down by δu units Pr moves up by hr/hl δu units
and so the total effort Pl · δu − Pr · (hr/hl δu) = 0 is zero. In the classical
sense equilibrium means actio = reactio or ut tenso sic vis (Hooke). The force
that pulls at a rod or a spring is equal to the force that holds the rod or
proportional to the elongation of the spring (Hooke). But in a more precise
sense equilibrium is defined by zero virtual work, which means that the forces
must be orthogonal to the rigid-body motions r, these are the functions r such
that a(r, u) = 0 for all u,

G(u, r) =
∫ l

0

−EAu′′ r dx + [N r]l0 − a(u, r) =
∫ l

0

−EAu′′ r dx + [N r]l0 = 0 .

(1.312)

So we may conclude that work = force × displacement is the common denom-
inator in mechanics.

Sure, we say we calculate displacements or stresses, but what we actually
calculate is work

u(x) · 1 = . . . σxx · 1 = . . . (1.313)

because behind each quantity stands an influence function which is based
on energy principles and so the result is of the dimension work = force ·
displacement .

To repeat: for to calculate the shear force V (x) in a beam we apply a
dislocation δ3 = 1 at x. The beam tries its best to lessen the strain by assuming
the shape G3(y, x). According to Betti’s theorem the work done by the two
shear forces Vl(x−) and Vr(x+) on both sides of x, which equals V (x) · 1, plus
the work done by the applied load p on acting through G3 is zero

δWe = −V (x) · 1 +
∫ l

0

G3(y, x) p(y) dy = 0 (1.314)

and so V (x) must be equal to the work done by the load on acting through
the Green’s function G3. We call this work or energy the Dirac energy

V (x) · 1 = Dirac energy =
∫ l

0

G3(y, x) p(y) dy . (1.315)

11 We understand that there is also a Dirac energy in quantum mechanics but be-
cause structural mechanics operates on a very different length scale we think there
is very little danger of getting things mixed up.
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Fig. 1.82. Pulley

So to each displacement u(x), each stress σ(x), belongs a certain mechanism
which, if released, induces a certain displacement in the structure and the
work done by the load on acting through this displacement is u(x), is σ(x), is
the Dirac energy. The Dirac energy is specific for each point x and each value
u(x), σ(x).

This energy balance δWe = 0—which is a natural extension of Newton’s
law

actio = reactio ⇒ δ u · actio = reactio · δ u (1.316)

is a basic law of structural mechanics and a simple application of the idea
behind a pulley. A pulley is characterized by its transmission ratio. The hand
H that pulls the rope downward by one unit length moves the weight G
upward by η units

δWe = H · 1−G · η = 0 . (1.317)

It is only that in structures the ratio, η = G3(y, x), is not constant but depends
on y, that is where the load is applied.

In a well designed structure the maximum values of the influence functions
for the support reactions are less than one, |GR(y, x)| ≤ 1, because otherwise
the structure amplifies the load. Archimedes knew this: ’Give me a place to
stand and I will move the Earth’ .

Statics is not static

Statics is static, isn’t it? Nothing is supposed to move. Otherwise it would
be called dynamics’. No—statics is not static, it is kinematics’.

The tourist gazing in wonder at the Eiffel tower does not realize this. The
mighty tower does not move. How then should the tourist understand that

‘
‘
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the forces in each member are well tuned, that they reflect the kinematics of
the tower from the foundation up to the very top. If the tourist drives up to
the uppermost platform then each frame element of the tower will support
her or his weight G with a fraction f which is equal to the movement of the
platform in vertical direction if a corresponding hinge is introduced in the
frame element and spread by one unit in vertical direction and obviously all
members have decided to bear the load jointly and in fair shares because in
each cross section the sum of all factors fi equals 1.0

G = (f1 + f2 + . . . fn) ·G . (1.318)

That is a structure consists of infinitely many mechanisms—all bolted and
fixed so that the structure can carry the load. But if we release one mechanism,
apply a unit rotation or dislocation, then this will induce a movement in the
structure and the work done by the load on acting through this movement is
equal to M(x) · 1 or V (x) · 1, is equal to the Dirac energy. In FE analysis we
hinder the movements of the structure and so the mechanism gets the wrong
signal of how large the Dirac energy really is, and consequently Mh(x) 	= M(x)
and Vh(x) 	= V (x).

So the kinematics of a mesh determines the accuracy of an FE solution

• mesh = kinematics = accuracy of influence functions = quality of results .

Remark 1.12. Actually, once a structure has found the equilibrium position
we could remove the bolts and nuts from all the internal mechanisms without
having to fear that the structure would collapse because for any movement
that is compatible with the kinematics of the structure δWe would be zero,
so the structure would be “safe”.

1.27 How to predict changes

How will cracks in a beam, that is changes in the stiffness of single elements,
affect the stress distribution in a structure? How will the Dirac energy change?
This is the topic of this section.

Betti would say that the effects of the cracks can only be predicted by
meticulously evaluating at each integration point y (that is effectively the
whole structure if p = gravity load) the changes in the influence function for,
say, the bending moment M(x)

Mc(x)−M(x) =
∫ l

0

[Gc
2(y, x)−G2(y, x)] p(y) dy . (1.319)

Here G2 and Gc
2 are the influence functions for M(x) in the uncracked and

Mc(x) in the cracked structure respectively.
But we want to show that there is a better approach which effectively

restricts the analysis to those members which change. This approach may be
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Fig. 1.83. Bridge structure

summarized as follows: To determine the change in a quantity u(x), σ(x), ...
due to a change EI → EI + ∆ EI in a certain member it suffices to evaluate
the increase/decrease in the strain energy product in that member only

Mc(x)−M(x) = −
∫ x2

x1

∆EI w′′ (Gc
2)

′′(y, x) dy = −
∫ x2

x1

∆EI

EI

M M c
2

EI
dy .

(1.320)

Here Gc
2 is the Green’s function for Mc(x) in the structure after the beam has

cracked and w is the deflection of the element before the beam cracked. Note
that x can be any point of the structure, that is we can effectively predict
the changes in any member by integrating over the cracked element only . Of
course the trick is that the distant member is present under the integral sign
via the Green’s function.

Remark 1.13. The bending moments of a Green’s function are very large—
even when they are “small”—but because we divide by the stiffness EI, see
(1.320), the effects cancel.

Localization

In the following we want to do the localization more systematically.
Assume the stiffness in the center span of a bridge deviates from the stiff-

ness EI in the outer spans by a term ∆EI, see Fig. 1.83.
The weak formulation of the original problem (uniform EI)∫ l

0

EI w′′ v′′ dx︸ ︷︷ ︸
a(w,v)

=
∫ l

0

p v dx︸ ︷︷ ︸
(p,v)

v ∈ V (1.321)

and the weak formulation of the changed problem∫ l

0

EI w′′
c v′′ dx︸ ︷︷ ︸

a(wc,v)

+
∫ x2

x1

∆EI w′′
c v′′ dx︸ ︷︷ ︸

d(wc,v)

=
∫ l

0

p v dx︸ ︷︷ ︸
(p,v)

v ∈ V (1.322)

differ only by one additional term, the integral from x1 to x2.
Hence in an abstract setting modifications of the stiffness of a structure

lead to weak formulations with an additional symmetric term d(u, v)
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uc ∈ V : a(uc, v) + d(uc, v) = (p, v) v ∈ V . (1.323)

The notation we adopted here is short for: find uc ∈ V such that ... for all
v ∈ V . In FE methods we restrict the search to the FE functions in Vh ⊂ V .

How then does the solution u of the original problem

u ∈ V : a(u, v) = (p, v) v ∈ V (1.324)

differ from the solution uc of the changed/cracked model (1.323)? Or more to
the point: how does J(uc) differ from J(u) where J(.) is any output functional,
that is the displacement or the stress or ...

J(u) = u(x) J(u) = σ(x) J(w) = M(x) etc. (1.325)

at a specific point?
Let eu = uc − u the difference between the two solutions. Recall that—

where applicable—

J(u) = a(G, u) ≡ w(x) =
∫ l

0

EI G′′(y, x) w′′(y) dy (1.326)

and hence

J(eu) = a(G, eu) ≡ wc(x)− w(x) =
∫ l

0

EI G′′(y, x) (w′′
c (y)− w′′(y)) dy

(1.327)

as well.
Obviously we have, subtract (1.324) from (1.323),

a(eu, v) = −d(uc, v) v ∈ V (1.328)

and therefore also, choose v = G,

J(eu) = a(eu, G) = −d(uc, G) (1.329)

or in terms of the beam

wc(x)− w(x)︸ ︷︷ ︸
J(ew)

= −
∫ x2

x1

∆ EI G′′(y, x) w′′
c (y) dy︸ ︷︷ ︸

d(wc,G)

. (1.330)

Eq. (1.329) is the central equation.
To express the same result with u and Gc, the Green’s function of the

linear functional J(u) in the cracked model, we note that

Gc ∈ V : a(Gc, v) + d(Gc, v) = J(v) v ∈ V . (1.331)
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A. Not

decay!

Hence the error in the output functional is as well

J(eu) = a(eu, Gc) + d(eu, Gc) = −d(uc, Gc) + d(eu, Gc) = −d(u, Gc)
(1.332)

so we can express J(eu) = −d(uc, G) = −d(u, Gc) both ways. Either combi-
nation uc ×G or u×Gc will do.

Remark 1.14. By applying the same arguments to the FE equations the results
can be extended to eh

u = uh
c − uh

J(eh
u) = −d(uh

c , Gh) = −d(uh, Gh
c ) (1.333)

Summary

The change in any output value

J(eu) := J(uc)− J(u) (1.334)

Fig. 1.84. Influence
function for support

all Green’s functions
reaction R
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can be expressed by an energy integral, the d-scalar product between u and
Gc or—vice versa—between uc and G. Because d(Gc, u) only extends over the
elements affected by the change, see (1.320), this formula is superior to Betti’s
formula

J(eu) = − d(Gc, u)︸ ︷︷ ︸
local analysis

=
∫ l

0

[Gc −G] p(y) dy︸ ︷︷ ︸
global analysis = Betti

(1.335)

or

wc(x)− w(x) = −
∫ x2

x1

∆ EI G′′
c w′′ dy =

∫ l

0

[Gc −G] p(y) dy

(1.336)

where the second formulation requires that we trace the deviations between
Gc and G over the whole structure—at least in the load case p = dead weight.

Recall that all quantities in linear mechanics are energies, u(x)×1, σ(x)×1,
see Sect. 1.26 p. 110, and so when the stresses and displacements change then
the Dirac energy , (u(x)+∆u)×1—that is the work done by the exterior load
on acting through the Green’s function—changes and this change in energy,
∆u× 1, is just

− d(u, Gc) = ante× post = −d(uc, G) = post× ante (1.337)

so we only need to look at the single spring, the single member, the single
plate or slab element where the change occurs

−J(eu) = d(uc, G) = ∆k G(l, x) wc(l) spring k (1.338)

= ∆EI

∫ x2

x1

G′′ w′′
c dy beam (1.339)

= ∆t

∫
Ωe

σG
ij εc

ij dΩy plate (1.340)

= t

∫
Ωe

∆CijklεG
kl ε

c
ij dΩy plate (1.341)

= ∆ K

∫
Ωe

mG
ij κc

ij dΩy slab (1.342)

to assess the change in u(x) or σ(x) at an arbitrary point x of the structure.
The stresses in the element induced by the Dirac delta—which may be

located at some very distant point x—act like weights. That is if the concrete
cracks under tension in a slab element, K → K + ∆K, then typically the
effects will be scaled by some negative power r−1, r−2, . . . of the distance r
between the element and the point x.

But please note that not all Green’s functions decay. If rigid-body motions
are involved then the opposite may be true; see Fig. 1.84 and also Fig. 1.60
p. 89.
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Simplification

To apply the formula (1.332) for J(eu) we must know the solution u of the
original problem and the Green’s function Gc of the changed problem (or vice
versa). This is not very practical because once we have set up the equations
for both systems we could compare the two solutions u and uc directly.

So let us try a different approach. With the Green’s function G of the
original problem

G ∈ V : a(G, v) = J(v) v ∈ V (1.343)

we obtain the formula

J(eu) = −d(u, Gc) = −d(u, G)− d(u, Gc −G) (1.344)

or if we drop the second term

J(eu) � −d(u, G) . (1.345)

This approximate formula has the advantage that all terms come from the
original model.

Force terms

In Sect. 7.7 p. 535 we will see that if the Green’s function G is the influence
function for a force term (a stress or any other internal action) at a point x
then the formula

J(w) = a(G, w) ≡ M(x) ?=
∫ l

0

M2 M

EI
dy = 0 (1.346)

makes no sense—at least not in the naive sense. We cannot calculate M(x) or
V (x) at a point x with Mohr’s integral. Rather what (1.346) means is this: if
there is a sequence of Green’s functions {Gh} which converges to G then we
have

lim
h→0

a(Gh, w) = a(G, w) + J(w) = 0 + J(w) (1.347)

that is in the limit out of a(Gh, w) pops J(w) but a(G, w) itself is zero, that is
a computer cannot calculate J(w) by evaluating a(G, w) a posteriori that is
when all is done. Rather the computer must follow the action from the start
only then will it have a chance to catch J(w)—as the limit of all expressions
a(Gh, w).

But luckily in FE analysis we have Tottenham’s equation which guarantees
that the weak formulation and Betti are identical

J(wh) =
∫ l

0

Gh(y, x) p(y) dy = a(Gh, wh) (1.348)



1.27 How to predict changes 119

Fig. 1.85. Cracks in a continuous beam. The integral over the shaded areas,
(M, M2) × (EI)−1 = −13.3 kNm, is approximately ∆M = −11.84 kNm

whatever the type of Green’s function G—even if J(wh) is a force term. So in
FE analysis we must not be concerned with such “subtile” distinctions. The
equation

Mh(x) =
∫ l

0

Mh
2 Mh

EI
dy (1.349)

simply works—because we make it work, see (7.221) p. 535. This guarantees
also that

J(eh
u) = −d(uh

c , Gh) = −d(uh, Gh
c ) (1.350)

for any functional J(.).

Example—cracks in a beam

Under the action of the point load the concrete cracks (see Fig. 1.85) so that
the bending stiffness drops from EI = 90, 625 kNm2 to EI + ∆ EI = 46, 400
kNm2 which is a drop of nearly 50 % (∆EI = −44, 225).

To predict the change in the hogging moment at support B we use the
approximation

J(ew) = −d(w,Gc
2) � −d(w,G2) (1.351)
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that is we substitute for the exact Green’s function Gc
2 (cracked beam) the

original Green’s function G2 (sans cracks) so that the change in M is approx-
imately the d-scalar product between the two deflections, w and G2, of the
uncracked beam

Mc −M = −
∫ x2

x1

∆ EI

EI

M M2

EI
dy = −13.3 kNm (1.352)

while the true value is −11.84 kNm.

Remark 1.15. The study of the equation

J(ew) = Mc(x)−M(x) = −
∫ x2

x1

∆ EI

EI

M M c
2

EI
dy = −d(w,Gc

2)

(1.353)

makes for an interesting subject.
If in a continuous beam the change, EI → EI + ∆EI, is the same in all

cross sections then [x1, x2] is the whole beam [0, l] and so d(w,Gc
2) essentially

coincides with a(w,Gc
2)

J(ew) =
∆ EI

EI

∫ l

0

M M c
2

EI
dy =

∆ EI

EI
a(w,Gc

2) = 0 (1.354)

but because a(w,Gc
2) is zero, see Sect. 7.7 p. 535, the change in the bend-

ing moment must be zero too. Hence the bending moment distribution in a
continuous beam—with a uniform EI—is independent of the magnitude of
EI.

Vice versa, if the bending stiffness EI in a continuous beam varies locally
then the bending moment distribution is sensitive to such variations in EI.

In a statically determinate beam the Green’s function for M(x) is piecewise
linear so that M2 = 0 and so J(ew) = 0 for any ∆EI, that is in a statically
determinate beam M(x) does not depend on EI.

Nodal form of J(eu)

The nodal form of a functional J(.) is

J(uh) = uT
G K u (1.355)

where uG is the nodal vector of the Green’s function and the nodal form of
the change J(eu) = J(uh

c − uh) in a functional is—as we will show

J(eu) � −uT
G K∆ u . (1.356)

To start we observe that the vector-and-matrix form of the two equations
(1.323) and (1.324) is
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Fig. 1.86. Contributions of element Ω1 to the stress σxx a) stresses from the edge
load b) strains from G1

.

uc ∈ R
n vT K uc + vT K∆ uc = vT f for all v ∈ R

n (1.357)

and

u ∈ R
n vT K u = vT f for all v ∈ R

n (1.358)

where the matrix K∆ encapsulates the change in the stiffness matrix. It cor-
responds to the d-scalar product.

By subtracting these two equations we obtain

vT K(uc − u) = −vT K∆ uc v ∈ R
n (1.359)

or if we let v = uG, the nodal vector of a Green’s function which belongs to
a functional J(.)
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Fig. 1.87. Change of Young’s modulus in a single element and influence on the
vertical displacement of node N : a) nodal displacements under gravity load;
b) incremental equivalent nodal element forces f∆, e

G(i) in element Ωe due to the

.

J(uh
c − uh) = uT

G K(uc − u) = −uT
G K∆ uc � −uT

G K∆ u . (1.360)

In most cases the stiffness of an element Ωe changes, E → E + ∆E, and then
the d-scalar product is

d(uh
G,uh) =

∆ E

E
a(uh

G,uh)Ωe
(1.361)

so that the stiffness matrix of the modified structure is (E is a common factor
of all entries ke

ij)

Kmod = K + K∆ (K∆)ij =
∆ E

E
ke

ij (1.362)

where the additional matrix K∆ contains only contributions (ke
ij) from the

element Ωe weighted with ∆ E/E —in all other elements ∆ E = 0—and so

J(uh
c − uh) � −d(Gh,uh) = −uT

GK∆ u = −uT K∆ uG . (1.363)

Because of the “local” character of K∆ this triple product can be identified
with the work done by the equivalent element nodal forces f∆, e

G = Ke
∆ uG

of the change of the Green’s function on Ωe on acting through the nodal
displacements u or vice versa, that is the d-scalar product reduces to

− d(Gh,uh) = −uT
(8)(K

e
∆)(8×8) (uG)(8) (1.364)

(e.g. bilinear element with eight degrees of freedom) or (see Fig. 1.87)

− d(Gh,uh) = −uT
(8)(f

∆, e
G )(8) . (1.365)

Dirac delta at node N
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If only one entry in the stiffness matrix changes, say the entry k11,11 →
k11,11 + ∆ k of an elastic support, then the change in the output functional is
simply

J(uh
c − uh) = fG

11 ·∆ k · u11 (1.366)

where fG
11 is the nodal force (= support reaction) in the spring due to the

action of the Dirac delta (located somewhere else) and u11 is the nodal dis-
placement under load.

Nonlinear problems

In nonlinear problems there are no Green’s functions and so the equation

J(uc)− J(u) = −d(z,uc) (1.367)

is not applicable. But if we substitute for the missing z the Green’s function
z at the linearization point,

aT (u; z,v) = J ′(u; v) v ∈ V (1.368)

—in an FE setting this would be

KT (u) z = j (1.369)

where KT is the tangential stiffness matrix—it follows, [50], that

J(uc)− J(u) = −d(u, z)− 1
2
{d(u, ez) + d′(u)(eu,z)−R} (1.370)

where d′ is the Gateaux derivative of d and R is a remainder that is cubic in
eu = uc − u and ez = zc − z.

The error in the output functional of a nonlinear problem can be expressed
as, see Sect. 7.5, p. 526,

J(u)− J(uh) =
1
2
ρ(uh)(z − zh) +

1
2
ρ∗(uh,zh)(u− uh) + R

(3)
h (1.371)

where the first term

ρ(uh)(z − zh) = (p− ph,z − zh) (1.372)

is the work done by the residual forces on acting through the error, z−zh, in
the Green’s function and the second term is—in a somewhat symbolic notation

ρ∗(uh,zh)(u− uh) = (δ0 − δh
0 ,u− uh) (1.373)

h
(3)
h

remainder.
the error in the functional J(.) evaluated at u − u and R is a cubic
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By combining the discretization error (1.371) with the model error (1.370)
it follows that

J(uc)− J(uh) = −d(uh,zh)

+
1
2
{(p− ph,z − zh) + (δ0 − δh

0 ,u− uh)}

− 1
2
{d(uh,ez) + d′(uh)(eu,zh)}+

1
2

R (1.374)

or if we neglect higher order terms

J(uc)− J(uh) = −d(uh,zh)

+
1
2
{(p− ph,z − ih z) + (δ0 − δh

0 ,u− ih u)} .
(1.375)

Here uc is the exact solution of the modified problem, E → E + ∆E, and uh

is the FE solution of the original (or simplified) problem. The terms ihu and
ih z signal that uh and zh respectively can be replaced by any two functions
that interpolate u and z on Vh—or come close to u and z in what sense
ever—so that they provide a tight upper bound on the error.

To make this formula applicable the unknown functions z and u are ap-
proximated by higher-order interpolations of the FE solutions zh and uh

z − ih z � i
(2)
2h zh − zh (1.376)

u− ih u � i
(2)
2h uh − uh (1.377)

that is if Vh exists for example of piecewise linear functions then a quadratic
interpolation may be used. For additional details see [50].

Remark 1.16. To put these results in a better perspective we add some re-
marks: In some sense analysis is all about inequalities, about bounds, about
estimates or—as we might say as well—about errors. The error in a linear
interpolation uI of a regular function u is bounded by the maximum value of
the second derivative u′′(x) and the element length h

|u(x)− uI(x)| ≤ h2 ·max |u′′| . (1.378)

That is these two parameters control the error. The aim of any numerical
analysis must be the search for such estimates.

With the influence function for u(x)

u(x)− uI(x) = −
∫ h

0

G0(y, x) (u′′ − u′′
I ) dy = −

∫ h

0

G0(y, x) (u′′ − 0) dy

= −
∫ h

0
������ u′′ dy . (1.379)
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it should not be too difficult to prove that h2 · max |u′′| is a bound for the
interpolation error. The proof never mentions the influence function explicitly
but it relies of course on the properties of the triangle G0(y, x), see Sect. 7.11,
p. 560.

Now in a nonlinear problem there is no Green’s function z such that

J(u) =
∫

Ω

z(x,y) · p(y) dΩy . (1.380)

But we know that the error

J(u)− J(uh) (1.381)

of the FE solution is small if the error z − zh in the Green’s function at
the linearization point can be made small. This is the important observation.
The Green’s function z at the linearization point is of no direct use—in the
sense of (1.380)—but it seems reasonable to assume that if the error z−zh is
small (and the error u − uh) then also the error J(u) − J(uh) will be small.
Obviously the error in the Green’s function is—strangely enough—correlated
with the discretization error J(u)− J(uh) and also, as shown above, with the
modeling error.

For more on the discretization error J(u) − J(uh) in nonlinear problems,
see Sect. 7.5 p. 526.

Linear versus nonlinear

The variational formulation of a nonlinear problem, see Sect. 4.21 p. 401,

a(u,v) :=
∫

Ω

Eu(v) • S(u) dΩ = (p,v) (1.382)

and a linear problem

a(u,v) :=
∫

Ω

E(v) • S(u) dΩ = (p,v) (1.383)

differ only in the term

d(u, v) =
∫

Ω

(Eu(v)−E(v)) • S(u) dΩ

=
∫

Ω

(∇uT∇v +∇vT ∇u) • S(u) dΩ (1.384)

and so it should not be too far-fetched to assume that nonlinear effects can
be predicted by the formula

J(uc)− J(u) � −d(z,uc) = −
∫

Ω

(∇uT
c ∇z +∇zT ∇uc) • S(uc) dΩ

(1.385)



126 1 What are finite elements?

c

element Ωe is differ-

c

where the Green’s function z is taken from the linear model and uc is the
solution of the nonlinear problem.

In FE analysis we would substitute also for uc the FE solution of the linear
problem and so

J(uc)− J(uh) ≈ −d(zh,uh) = −
∫

Ω

(∇uT
h∇zh +∇zT

h ∇uh) • S(uh) dΩ .

(1.386)

1.28 The influence of a single element

The influence of a single element Ωe on, say, the displacement uh
x(x) at a point

x in a plate is the contribution∫
Ωe

Gh
0 (y,x) • p(y) dΩy (1.387)

of the element to the sum total

Fig. 1.88. Influence
of an element: The
shape u of the single

ent from the shape

Figure a). The new
shape u would fill
the void in Figure b)

it originally had in
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uh
x(x) =

∑
e

∫
Ωe

Gh
0 (y,x) • p(y) dΩy . (1.388)

If we employ a weak form of the influence function (“Mohr’s integral”), see
Sect. 7.7 p. 535,

uh
x = a(Gh

0 ,uh) =
∫

Ω

[σxx · εxx + 2 σxy · εxy + σyy · εyy] dΩy (1.389)

then the contribution of a single element (see Fig. 1.86)∫
Ωe

[σxx · εxx + 2 σxy · εxy + σyy · εyy] dΩy (1.390)

is the strain energy product between the stress field of the Green’s function
Gh

0 and the strains of the FE solution uh in this element or vice versa, because
the strain energy product is symmetric, a(Gh

0 ,uh) = a(uh,Gh
0 ).

The important point to note is that influence depends on two quantities.
The strains (or stresses) from the load case ph are weighted with the stresses
(or strains) from Gh

i . Only if both quantities are large will the contribution
be significant. And typically influence depends on the distance r = |y − x|
between the two points, G0(y,x) = G0(y − x), (and the angular orientation
between the two points x/|x| and y/|y| on the unit sphere) so that influence
functions act like convolutions.

But the influence of a single element could also be understood in the
following sense: how would the results change if the element were removed
from the structure? Or stated otherwise: how important is a certain element
for a structure?

This question can be answered with the same formulas as before, it is only
that the displacement field uh of the element must be replaced by the field
uc

h which is the shape of the element if it were drained of all its stiffness.
If a frame element [x1, x2] is removed from a structure then the change in

any output functional J(w) at any point x is, see Sect. 3.8,

J(ew) := J(wc)− J(w) =
∫ x2

x1

Mc Mi

EI
dx (1.391)

where

• Mi is the bending moment of the influence function Gi for J(w) .
• Mc is the bending moment in the spline wc that reconnects the released

nodes.

The spline wc is that curve that bridges the gap after the frame has found its
new equilibrium position. It attaches seamlessly to the two released nodes.

Equation (1.391) holds true for other structures as well; see Fig. 1.88. The
change in any output functional J(u) due to the loss of an element Ωe is
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Fig. 1.89. The influ-

Gauss point depends

c of

the Gauss point

J(eu) := J(uc)− J(u) = a(uc,Gi)Ωe
(1.392)

where uc is the shape of the “phantom element” that bridges seamlessly the
void left by the original element Ωe.

Because of

|J(eu)| = |a(uc,Gi)Ωe
| ≤ |a(uc,uc)Ωe

| · |a(Gi,Gi)Ωe
| (1.393)

we conclude that the strain energy of the displacement field uc and the strain
energy of the influence function Gi (which also is a displacement field) provide
an upper bound for the change.

To repeat: the displacement field uc is that displacement field which recon-
nects the edges of the void after the structure has found its new equilibrium
position. It is the shape the element would assume if it were slowly drained of
all its stiffness but would cling to the structure. Alternatively one could imag-
ine a single element with the original stiffness which by prestressing forces is
bent into the shape uc so that it gives the impression as if it would bridge the
gap.

The energy a(uc,uc) is just the strain energy in this element. If the pre-
stressing forces on the edge of the element would be applied in opposite di-
rection on the edge of the void the structure would assume the shape it had
before the element was removed.

Hence the importance of a single element Ωe for a single value J(u) de-
pends on the strain energy of the fields uc and Gi inside that element. The
more the phantom element must stretch to fill the void and the more in-
tense the strain energy of the Green’s function Gi is in the element the more

ence of the element
on the stresses at the

(1) on the shape u

leaves if it is removed
and (2) the magni-
tude of the stresses
in the element caused
by the dislocations at

the void the element

important is Ωe for J(u), see Fig. 1.89.
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settlement of a pier

Every structural engineer knows that the elements that get stretched or
bent the most are the most important for a structure. But with (1.392) we
can quantify this feeling and give it a precise mathematical expression. And
as it turns out it is not exactly the shape u of the element we see on the
screen but the shape uc of the element when it is drained of all its stiffness
which is decisive. The larger the gap the drained element must bridge the
more important the element is.

The logic can also be applied to a planned excavation if we want to know
how much the cavity will affect the foundation of a nearby pier; see Fig. 1.90.
Do the following:

1. Apply a vertical point load P = 1 at the foot of the foundation and
calculate the strain energy a(G0,G0) of the region ΩX which is to be
excavated with a one-point quadrature that is

a(G0,G0) � [σxx(xc) εxx(xc) + . . . + σyy(xc) εyy(xc)]×ΩX

(1.394)

where xc is the center of the cavity and ΩX is the area of the cross section.
2. Excavate ΩX , determine the edge displacement (= uc) of the cavity un-

der load and apply these displacements to a plate which has the same
extension as ΩX .

3. Calculate as before the strain energy in this plate. The product of these
two energies provides a rough upper bound for the additional settlement
of the pier due to the excavation.

Of course this is purely theoretical and impractical because in step 2 we
very nearly have the answer. But these steps may provide a clue as to how we

excavation of a tunnel
Fig. 1.90. Planned

and influence on the
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Fig. 1.91. Retrofitting a Vierendeel girder a) bending moments from the traffic
load b) bending moments from the point load P = 1 (Dirac delta δ0) c) proposed
modifications

argue when we try to make predictions. Foremost it is the distance between the
foundation and the cavity which interests us—the energy a(G0,G0) depends
on this distance—and the shape uc of the cavity when the load is applied to
the surface of the halfspace.

1.29 Retrofitting structures

Green’s functions are also an ideal tool to find the zones in a structure where
retrofit measures will be the most effective. The Vierendeel girder in Fig. 1.91
may serve as an introductory example. Which parts of the girder should be
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Fig. 1.92. Continuous beam, fixed on the left side a) moment M(x) from distributed
load b) moment M2(x) of the influence function for M(0.5 l) at the center of the
first span c) moment M3(x) of influence function G3 for the shear force V (0.5 l) at
the same point; ⊕ and � indicate where ∆EI must be positive or negative if the
bending moment M(0.5 l) is to be increased by a change EI + ∆ EI in the stiffness

retrofitted, EI → EI + ∆EI, to reduce the deflection (at the bottom of the
girder) due to a uniform load on the upper part of the girder?

The bending moment distribution caused by the load is plotted in Fig.
1.91 a and the bending moment of the Dirac delta is plotted in Fig. 1.91 b.
According to the equation

J(ew) = wc(x)− w(x) = −∆EI

EI

∫ x2

x1

Mc M0

EI
dy M0 = −EI

d2

dy2
G′′

0

(1.395)
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Fig. 1.93. Retrofitting a plate to reduce the vertical displacement and the horizontal
stress σxx at the bottom of the plate. Depicted are the principal stresses a) of the
original load case (gravity load), b) of the Dirac delta δ0 and c) of the Dirac delta
δ1. The plate is fixed on both sides. In the last figure the stresses near the source
point have been masked out because they would outshine all other stresses

the parts where both contributions are large should be retrofitted and these
are obviously the joints of the frame; see Fig. 1.91 c. (As is customary we
approximate Mc by the bending moment distribution M of the unmodified
frame).

This result is typical for frame analysis. In a clamped one-span beam which
carries a uniform load p the bending moment at mid-span is p l2/24 while the
bending moment at the ends is double that value, p l2/12. So that retrofitting
measures at the ends of frame elements will be more effective in general.

But note that the change has a also direction which depends on the sign
of Mc ×Mi

J(wc)− J(w) = −∆EI

EI

∫ x2

x1

Mc(y) Mi(y, x)
EI

dy (1.396)
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Fig. 1.94. Cantilever plate, fixed on the left side. To reduce the deflection the
thickness t should be increased where indicated a) main stresses from edge load

0

a(G0, u)Ωe

Where the sign is negative an increase ∆ EI will effect a positive change,
J(wc)− J(w) > 0 and vice versa.

In the case of the Vierendeel girder things are simple because the correla-
tion between M and M0 is very strong. In the case of the continuous beam in
Fig. 1.92, which carries a uniform load in the first two spans, things are a bit
more complicated. Plotted are the bending moment distribution M from the
traffic load, Fig. 1.92 a, the moment M2 of the influence function G2 for the
bending moment at the center of the first span, Fig. 1.92 b, and the moment
M3 of the influence function G3 for the shear force V (0.5 l) at the same point,
Fig. 1.92 c. Assume the goal is to increase the bending moment M(0.5 l) at
the center of the first span

b) main stresses from point load (δ ) c) contour lines of element strain energy product
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Mc(0.5 l)−M(0.5 l) = −∆EI

EI

∫ x2

x1

Mc(y)M2(y, 0.5 l)
EI

dy (1.397)

then EI must be increased, ∆EI > 0, where the product of Mc × M2 is
negative and EI must be decreased, ∆EI < 0, where Mc ×M2 is positive.
The symbols ⊕ and � respectively indicate these regions.

Though it is almost too trivial to mention: a change ∆EI in the last
span, the cantilever beam, would effect nothing in the first span because the
indicator function M2 = 0 is zero in that part of the beam.

Note also that these predictions are based on the simplifying assumptions
Gc

i ∼ Gi and therewith M c
i ∼ Mi. So if the change ∆EI becomes too large

the indicator functions Mi may be too far off from the true M c
i .

As a third example we consider the plate in Fig. 1.93. A local (Ωe) change
in the thickness t→ t + ∆ t effects a change

J(eu) = −∆t

∫
Ωe

σG
ij · εc

ij dΩy (1.398)

in any quantity J(u) of the plate in Fig. 1.93. Hence the regions where the
strain energy product of the field u ∼ uc and the Green’s function is the
largest are the most important. According to Fig. 1.93 these are the regions
near the fixed edges and the bottom of the plate. Similar considerations hold
true for the cantilever plate in Fig. 1.94 where the aim is the reduction of the
deflection at the end of the plate.

To evaluate the strain energy product, (we let uc = u),

∆t

∫
Ωe

σG
ij · εij dΩy = ∆t · fe • uG (1.399)

in a single element Ωe we could either use Gaussian quadrature or we could
calculate the vector of element nodal forces fe = Ke ue and multiply this
vector with the vector uG of the nodal displacements of the Green’s function.

In some cases the solution u itself is the Green’s function for the output
functional. Consider for example a cantilever plate to which an edge load
p = {0, 1}T is applied at the upper edge Γu so that

u ∈ V : a(u,v) =
∫

Γu

p • u ds =
∫

Γu

uy ds v ∈ V . (1.400)

If the output functional is the average value of the edge displacement

J(u) =
∫

Γu

uy ds (1.401)

then J(u) = a(u,u) and so to reduce the deflection

J(eu) =
∫

Γu

uc
y ds−

∫
Γu

uy ds = −
∑

e

∆t · a(u,u)Ωe
(1.402)
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1.95.

exact solution at the

eglob
h = uI − uh = 0

the thickness, t→ t + ∆t, should be increased in all those elements Ωe where
a(u,u) is large.

We can generalize this: the displacement field u of a structure is the
Green’s function for the weighted average—the load p is the weight—of the
displacement field taken over the region Ωp where the load p is applied

J(u) =
∫

Ωp

u • p dΩ =
∫

Ωp

(ux · px + uy · py) dΩ = a(u,u) . (1.403)

Because in this case the indicator function G is identical with u, the corre-
lation between G = u and u is of course optimal. But also in the first two
examples—the Vierendeel girder and the cantilever plate—the Green’s func-
tion and the original displacement field are of similar type and so in these two
cases a(u,u) would be nearly as good an indicator as a(G,u): simply where
the stresses are large the thickness t should be increased.

Fig. Local er-
ror and global error
in two shafts, u is the
axial displacement a)
the FE solution does
not interpolate the

nodes while in b) the
drift is zero and so
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1.30 Local errors and pollution

It seems intuitively clear that the error eh(x) = u(x)−uh(x) of an FE solution
can be split into a local and a global error:

eh(x) = u(x)− uI(x) + uI(x)− uh(x) = eloc
h (x) + eglob

h (x) . (1.404)

The local error is that part of the solution remaining after, say, a linear inter-
polation uI ∈ Vh and the drift of the element—the mismatch between u and
uh at the nodes—is the global error, s. Fig. 1.95,

eloc
h (x) = u(x)− uI(x) eglob

h (x) = uI(x)− uh(x) . (1.405)

Closely related to this splitting of the error in two parts is the concept of the
local solution. In 1-D problems the local solution uloc

h is the function on any
element Ωe that minimizes the error in the strain energy of the element under
the side condition that it agrees with the exact solution at the nodes of the
element.

If the FE solution interpolates the exact solution at the nodes, then the
FE solution uh is also the local solution, uh = uloc

h , and the local error

eloc
h = u− uloc

h (1.406)

within an element Ωe (a bar element) simply the particular solution−EAu′′
p =

p if both sides of the element are fixed.
Because in standard 1-D problems the interpolating function is identical

with the FE solution, uI(x) = uh(x), the global error is zero while in 2-D and
3-D problems we observe a drift at the nodes. The drift in Fig. 1.95 a is due
to the fact that the cross section A = A0 + A1 · x of the shaft changes, (see
Chap. 3 p. 292).

In some 2-D and 3-D problems the exact nodal displacement is infinite, for
example u = ln(ln 1/r) at r = 0, (double the logarithm for u to have bounded
strain energy a(u, u) = (∇u,∇u)) and so the solution cannot be interpolated
at such a node that is uI in (1.404) must be replaced by a slightly different
function, [19], but for our purposes we may neglect these special cases.

Interest often focuses on the error of the solution in a certain patch Ωp of
the mesh, and then local and global may refer to contributions to the error
from sources inside or outside the patch, respectively. And in this context the
local error is also termed the near-field error and the global error is referred
to as the far-field error .

If for example linear triangles are used in the FE analysis of a plate that
carries an edge load only, then given any patch ΩP we may consider the dis-
placement field due to the line forces jh within the patch (the jump in the
traction vectors at interelement boundaries) the local error and the displace-
ment field due to the line forces outside the patch the global error.

Or imagine a beam element with a local solution wloc which produces the
exact curvature in the beam, but which is saddled onto an FE solution with
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Fig. 1.96. Drift of an FE solution = mismatch at the nodes. Because the FE
structure is too stiff the Dirac deltas δ0 at the nodes (= influence functions for the
nodal displacements) effect too little—that is the edge deflects too little—so that
the nodes get the wrong message from the edge of how large the load really is and
consequently also the nodes deflect less than necessary

a large drift at the nodes. This is the situation most often found in 2-D and
3-D FE analysis. Locally an FE solution fits relatively well because often the
load is either only applied at the edge or in a small region of the problem
domain Ω so that the FE solution—in most parts—must “only” approximate
a homogeneous displacement field but the stress discontinuities between the
elements produce a drift which spoils the picture; see Fig. 1.96.

Pollution

Hence we can give pollution a name, it is the drift at the nodes caused by
the element residuals and jump terms on the element edges. Because we know
that the dip (displacement) caused by a single force ebbs away as

ln r 2-D elasticity
1
r

3-D elasticity

r2 ln r point load, slab r ln r moment, slab (1.407)

and because a one-point quadrature rule, xp = center of Ωp, r = |x− xp|,

w(x) =
∫

ΩP

1
8 π K

r2 ln r p dΩy � 1
8 π K

r2 ln r · p(xp) ·Ωp

(1.408)

will not change the picture much the disturbances introduced by one non-
matching edge load alone and similar errors would ebb away rather quickly
but the sheer multitude of these edge loads causes a noticeable drift. (For a
more detailed picture see Sect. 1.32 p. 172).
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Fig. 1.97. FE influence function for σx(xc) a) fixed end forces in a single element
(BE solution) b) FE loads ph; these loads are equivalent to the Dirac delta δ1 on
Vh that is (ph, uh) = (δ1, uh) = σh

xx(xc); the single values are the resultants of the
volume forces ((px, px) + (py, py))1/2 in each element
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Fig. 1.98. The drift of the FE influence function for σxx(xc) on the rectangular mesh
in the previous Fig. 1.97. The “exact solution” is a BE solution. The displacements
are greatly exaggerated

The drift of influence functions

Influence is measured in units of work = force × displacement . Where the
displacement is the displacement in the structure due to the action of the
Dirac delta δi, say δ1 at the Gauss point x (= influence function for σxx(x)).
If we get the displacement caused by the Dirac delta at the foot y of a point
load wrong then the influence of the point load on the stress σxx(x) at the
Gauss point x will be wrong, that is σh

xx 	= σxx. It is as simple as that.
Imagine that we apply a dislocation δ1 = 1 in horizontal direction at the

center xC of a bilinear element (which is part of a larger structure) to calculate
the influence function for the stress σxx at the center of the element; see Fig.
1.97. To be as accurate as possible we remove the element from the structure,
generate a very fine mesh on this isolated element (we keep the edges fixed)
and solve this load case “exactly”; see Fig. 1.97 a. Then we apply the fixed
end actions to the edge of the cut-out in the opposite direction.

Because we cannot reproduce all the fine details of the fixed end actions
on the edge of the cut-out there will be a mismatch between the original edge
loads t and the FE edge loads th. If we neglect for a moment the element
residuals and jumps in the stresses of the FE solution at elements farther
away then these “parasitic” edge loads rh = t − th are (mainly) responsible
for the drift at the nodes, s. Fig. 1.98.

The magnitude of the drift is exactly equal to the magnitude of the error
in the stress σxx at the center of the element when we apply a point load at
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any of the nodes. And in this example the drift is negative at all nodes so that
in the FE model the stress σh

xx at the center is too large.
Things become really bad if parts of a structure can perform nearly rigid

body motions because then even a small erroneous rotation can cause large
drifts.

Recall the problem of the cantilever plate in Fig. 1.60, p. 89, where the
drift of the FE solution, -2.5 m - (-1.66 m) = - 0.84 m, is nearly one meter or
three yards! A purely local error analysis in, say, the last element Ωe would
probably yield only a small L2 residual (the integral of the square of the
errors)

||p− ph||2Ωe
+ ||t− th||2Γe

(1.409)

because at the far end the real plate and the FE plate essentially only perform
rotations, u = a + x × ω, which are stress free so that p � ph � 0 and also
t � th � 0 and so we would be led to believe that the error is small—while
the opposite is true.

By adding elements to the plate that is by extending the plate in horizontal
direction we could even make the error (= the vertical displacements at the end
nodes) in the FE solution arbitrarily large and at the same time the residual
(1.409) in the last element arbitrarily small. A truly paradoxical situation—we
would easily win any contest “for the worst of all FE solutions”, [18].

Okay, measuring only the residual in the last element is not fair. The real
estimate for the displacement error at the end nodes is the inequality

|uy(x)− uh
y(x)| ≤ ||GM −Gh

M ||E · ||G0||E (1.410)

—in a beam problem this equation would read

|w(x)− wh(x)| ≤
[∫ l

0

EI (G′′
M − (Gh

M )′′)2 dx

]1/2

·
[∫ l

0

EI (G′′
0)2 dx

]1/2

(1.411)

—where the field GM is the influence function for the bending moment—it
effects a rotation of the cross section by tan ϕ = 1—while G0 is the influence
function for the vertical displacement at the end nodes, that is if a point load
P = 1 is applied at one of the end nodes12.

The inequality (1.410) is based on

uy(x)− uh
y(x) =

∫
Ω

[G0(y,x) • (δM − δh
M )] dΩy = a(G0,GM −Gh

M )

(1.412)

12 We tacitly assume that the fields GM and G0 have finite strain energies, see the
remark on p. 51
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Fig. 1.99. The more the structure extends outward the larger the displacement
error gets at the far end—in practically all load cases

where the “Dirac delta” δM is the action that effects the rotation tan ϕ = 1
and δh

M is its FE approximation. So the Dirac deltas are loads, (δM − δh
M ) ≡

(p−ph). The fields GM and Gh
M respectively are the response of the structure

to these actions.
The integral ∫

Ω

G0(y,x) • δM dΩy (= −2.5 kNm) (1.413)

which is the lift (uy(x) · 1 kN = work) produced at the far end by the Dirac
delta δM is according to Betti’s theorem equal to the bending moment M in
cross section A − A (see Fig. 1.60) produced by the point load δ0 (P = 1)
sitting at the far end of the plate and∫

Ω

G0(y,x) • δh
M dΩy (= −1.66 kNm) (1.414)

is an approximation of this integral—with a relative large error.

|a(G0,GM −Gh
M )| ≤ a(G0,G0)1/2 · a(GM −Gh

M ,GM −Gh
M )1/2

= ||G0||E · ||GM −Gh
M ||E . (1.415)

Now it is evident what happens: with each element that we add to the plate
the lever arm of the point load P = 1 increases that is with each element the
maximum stress of the field G0 will increase and therewith the strain energy
and the energy norm

||G0||E = a(G0,G0)1/2 =
{∫

Ω

[σxx · εxx + 2 σxy · εxy + σyy · εyy] dΩ

}1/2

.

(1.416)

After applying the Cauchy-Schwarz inequality to (1.412) Equ. (1.410)
follows directly
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Fig. 1.100. Gravity load in a Vierendeel girder. In structures with large overhanging
parts the results must be checked very carefully

At the same time the energy of the error, that is ||GM −Gh
M ||E , remains the

same because the elements added are stress free in the load case tan ϕ = 1—
they will only perform rigid body rotations. Hence the estimate (1.410) will
deteriorate with each element that we add to the plate.

So if a part of a structure can perform large rigid body motions (or very
nearly such motions) then it pays for this “liberty” with large lever arms
for the Dirac delta δ0 which automatically deteriorate the estimates for the
nodal displacements (see Fig. 1.99) which means that also the accuracy of the
numerical influence functions suffers.

But we must also keep an eye on the equilibrium conditions in such struc-
tures. The left part of the Vierendeel girder in Fig. 1.100 behaves like a can-
tilever beam so that the displacements in that part will be relatively large.
Hence the FE results should be checked very carefully. Because the equilibrium
conditions, which play an important role here, are not guaranteed—rather the
error probably will be quite pronounced—a frame analysis with beam elements
would be a much better choice.

In 1-D problems only loads which act on elements through which the cut
passes contribute wrongly to the equilibrium conditions (see Fig. 1.75 p. 105)
so the possible error is much smaller than in 2-D analysis. Commercial FE
codes eliminate also this small error by adding the fixed end actions to the
FE results and so the equilibrium conditions are satisfied exactly.

Pollution due to singularities on the boundary

The drift, so far, stems from the mismatch on the right-hand side, p − ph.
An additional source are singular points on the boundary. At such points the
exact solution, for example,

u(r, ϕ) = k r0.5f(ϕ) + smooth terms k = stress intensity factor
(1.417)
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1.101. The
slope of the Green’s
function for the end
displacement u(l) is

typically sharply drops to zero as in Fig. 1.122 a, p. 175 (or any other value,
if the edge with the corner point itself is displaced), so that the steep slope,
ε = r−0.5, leads to infinite stresses at the corner point.

Why such a corner singularity has a negative influence on the accuracy
of the solution in other regions of the mesh is best illustrated by the one-
dimensional example of a stepped bar; see Fig. 1.101. The left end of the bar
is fixed, and the other end abuts a spring with a certain stiffness α2. The
Green’s function for the end displacement u(l) is displayed in Fig. 1.101. Note
that the slope in the Green’s function is proportional to 1/EA. Because of
the steep slope at the beginning, a slight change or error in the stiffness EA1

of the first bar element Ω1 will lead to a rather large error at the other end
of the bar.

This problem was studied by Babuška and Strouboulis [19] where it was
assumed that the stiffness of the bar varies according to the rule

E A(x) = E xϑ 0 < ϑ = 0.75 < 1 E = 1, α2 =
5
2
, l = 1 (1.418)

which gives the bar the shape in Fig. 1.102. The first bar element is now
infinitely thin and infinitely short, so to speak, because the stiffness has a
zero at x = 0. Note that the normal stress σ = P/A becomes infinite at x = 0,
but that the stress resultant N = σ A = P = 1 remains bounded.

proportional to 1/EA

Fig.
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x

x

Fig. 1.102. Model problem with EA = x0.75. The Green’s function for u(l) is
proportional to x0.25, and therefore the gradient has a singularity at x = 0. The
drawings are not to scale, [19] p. 8

The Green’s function for the end displacement u(l) = u(1) is G(l, x) =
0.364x0.25 (see Fig. 1.102 b). Its slope is infinite at x = 0.

The local and the global error of a piecewise linear FE approximation of the
Green’s function on a uniform mesh is displayed in Fig. 1.103 (The annotations
in the figure are due to the present authors). Only in the first element is the
local error larger than the pollution error. This is the important observation
and it directly contradicts St. Venant’s principle, which seemingly guarantees
that given a large enough distance from the disturbance all negative effects
vanish. This is not true if pollution is a problem. St. Venant’s principle applies
so to speak only if the FE solution is close to the exact solution. But what is
displayed here is the numerical solution of a singular problem.

Note that averaging techniques would scarcely address this problem, be-
cause the global error that dominates the problem is relatively smooth. The
L2-projections would only have an effect on the small local error; see Fig.
1.103 b. But if the “ground wave” is large, it will not help much to smooth
out the wrinkles.

Or to cite Babuška and Strouboulis, [19] p. 278,

•

’

Nevertheless any local refinements of the mesh in an area of interest reduce
only the local error, and the magnitude of the pollution error is determined
by the density of the mesh in the area of interest compared with the density
of the mesh in the rest of the domain. Thus, unless special care is taken
to design the global mesh and the local meshes to balance the pollution and
local error in the area of interest, the pollution error may be the domi-
nant component of the error and, if this is the case, only minimal gains
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Fig. 1.103. FE results with linear elements ([19], p. 275)

in accuracy may be achieved by local refinements. The justification of the
global/local or zooming approaches used in engineering is based on an intu-
itive understanding of Saint Venant’s principle for the error. The error is
the exact solution of the model problem loaded by the residuals in the finite
element solution ... and since the residuals are oscillatory, it is argued that
they influence the error only locally and hence the pollution error cannot
[be] significant. This intuitive understanding of Saint Venant’s principle
could be misleading, and a quantitative analysis is needed.’ [end of quote]

Other possible sources of pollution are

• sudden changes in the right-hand side p, the applied load (a mild problem
in statics)
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• discontinuities in the coefficients of the differential equation when, for ex-
ample, the stiffness changes—this produces a kink in the Green’s function;
see Fig. 1.101.

• a non-uniform mesh, i.e., a very large element followed by a series of very
small elements, may also cause pollution in the numerical solution. The
small elements never recover from the gross error—the drift—they inherit
from the large element.

Because our problems are usually set in domains with corners and changing
boundary conditions, one simply must expect the solution to have singulari-
ties, and therefore most often these disturbances aggravate the pollution ad-
ditionally. The pollution error can be successfully controlled by refining the
mesh in the neighborhood of the singularities. But because one cannot detect
pollution by any local analysis adaptive refinement must employ energy error
measures for the whole mesh.

Each node and each Gauss point is—implicitly—a source of
pollution

On a given mesh we are not just finding the equilibrium position of the struc-
ture but implicitly we solve n additional load cases δi for the n Green’s func-
tions of the n values which the program outputs at the nodes and Gauss points.
Most often the singularities of these Green’s functions are much stronger than
the singularities at the corner points. That is pollution is a major problem for
the numerical Green’s functions and the source of these adverse effects are not
primarily the corner points but the innocent looking nodes and Gauss points
of the mesh.

Verification and validation

• Verification asks whether the equations were solved correctly; validation
asks whether the right equations were solved.

As these examples demonstrate, any error in the coefficients of the governing
equations (the elastic constants) will cause a drift, a global error, in the FE
solution. Simple examples of this phenomenon are displayed in Fig. 1.104. A
change in the elastic constants EA,EI or the spring stiffness cϕ will directly
affect the solutions:

u(l) =
P l

EA
w(l) =

P l2

cϕ
+

P l3

3 EI
. (1.419)

Note that the error in the internal actions, N = σ A, V , and M is zero because
the structures are statically determinate. If it were otherwise changes in the
elastic constants would most often also lead to changes in the internal actions.

From an engineering standpoint, the choice of a correct model is at least
as important as an asymptotic error analysis. How sensitive is a solution to
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Fig. 1.104. The solutions depend on the parameters of the model

the modeling assumptions? How do the Green’s functions change if the elastic
constants are altered?

Model deficiencies can only be detected by measuring the response of the
actual structure and comparing it to the computed results. This process is
called parameter identification. Such a calibration can be done, for example,
by studying the eigenfrequencies of a slab. Any deviation between the first
three or four eigenfrequencies of the FE model and the slab is an indication
of a modeling error. The problem the analyst faces is that FE models can
be very complex, and the sheer number of parameters that might possibly
affect the solution make it difficult to identify those parameters to which the
eigenfrequencies are most sensitive.

1.31 Adaptive methods

In a plate the residual forces r = p − ph and the jumps t∆
h of the traction

vector at interelement boundaries are assumed to be an appropriate measure
of the quality of an FE solution; see Fig. 1.105. Where these a posteriori error
indicators are large, the size of the elements is diminished or the order of the
polynomial shape functions is increased. Repeating this loop for many cycles,
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5.54 24.91

25.41 68.41 5.74 56.18 41.37 21.60 10.21 5.84 28.08 5.80

10.71 15.46 13.04 22.23 7.47 20.28 23.42

51.02 14.52 22.66 10.14

22.75 21.87 13.35 19.91 13.98 9.72 44.82

4.62 5.84 8.92 12.73 11.92 14.32 35.03 35.94 19.52 20.08

6
.0

0

Fig. 1.105. Plate analysis with bilinear elements. a) System and load case p (edge
load); b) load case ph; the numbers are the resulting volume forces (kN)

one hopes the solution improves; see Fig. 1.106. This is the idea of adaptive
methods.

Although this whole process seems rather straightforward, it is not quite
clear how to weight the various errors. Would it suffice to look only at the
residual forces ri and neglect the jumps t∆

h , or do the jumps carry the mes-
sage? In a beam which is subjected to a uniform load p, the nodal forces
fk = p l/(n+1) (shear force discontinuities) get smaller and smaller the more
elements n are used, but because ph = 0 the element residuals remain the

∫ l

0

(p− 0)2 dx = ||p ||20 , (1.420)

same throughout the refinement, see Fig. 1.107,
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Fig. 1.106. Adaptive refinement

1.107. The residual

the same, although the FE

exact solution for n → ∞

although we are convinced that the FE solution wh tends to the exact solution
w. This is an indication that in this example the jump terms—which tend to
zero as the mesh is refined—are a more sensitive error indicator than the
element residuals. In a beam, the jump terms are the discontinuities in the
second- and third-order derivatives, fi = M(x+

i )−M(x−
i ) and fj = V (x+

j )−
V (x−

j ), while the element residuals measure the discrepancies in the fourth-
order derivative r = EI wIV − EI wIV

h .
The relevance of the two errors depends on the degree p of the shape

functions. For even order, p = 2, 4, . . ., the residual r dominates while for odd
order, p = 1, 3, . . ., the jump terms dominate (“dichotomy”), see [19] p. 424.

Plate analysis

Following these heuristic remarks, we now concentrate on the adaptive refine-
ment of plates for the details. The model problem is a plate which is subjected
to volume forces p and to traction boundary conditions t on the part ΓN of
the boundary Γ = ΓD + ΓN . The boundary value problem consists of finding

forces in each element remain
Fig.

solution converges to the
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the solution u = [u1, u2]T of the system

−Lu := −µ∆u− µ

1− 2ν
∇ div u = p (1.421)

where u is subject to the following boundary conditions

u = 0 on ΓD, Sn = t on ΓN . (1.422)

Let Ω =
∑

i Ωi be a suitable partition of Ω into finite elements Ωi with
diameters hi and with edges Γi. The FE solution uh ∈ Vh is the solution of
the variational problem

a(uh,vh) = p(vh) :=
∫

Ω

p • vh dΩ +
∫

ΓN

t̄ • vh ds for all vh ∈ Vh. (1.423)

Evidently the error e = u− uh satisfies on V the equation

a(e,v) = p(v)− a(uh,v) = p(v)− ph(v) =: r(v) v ∈ V (1.424)

with

r(v) =
∑
Ωi

{∫
Ωi

r · v dΩ +
∫

Γi

j · v ds

}
(1.425)

where r are the element residual forces,

r := p− ph = p + L uh on Ωi (1.426)

and j are the (evenly distributed) jumps of the tractions at the element bound-
aries

j =

⎧⎪⎨
⎪⎩

1
2 (S+

h n+ + S−
h n−) on Γi 	⊆ Γ

t− Shn on ΓN

0 on ΓD.

(1.427)

Recall that for test functions vh ∈ Vh the fundamental Galerkin orthogonality

a(e,vh) = r(vh) = 0 vh ∈ Vh (1.428)

holds. The single error terms in an element

||ri||20 =
∫

Ωi

r • r dΩ ||ji||20 =
∫

Γi

j • j ds (1.429)

are weighted with h2
i and hi respectively to produce a resulting error term

η2
i := h2

i ||ri||20 + hi ||ji||20 . (1.430)

Under suitable assumptions this measure η2
i is an upper bound for the strain

energy of the field e in a single element Ωi (see Sect. 7.11, p. 565)
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||ei||2E := a(e,e)Ωi
≤ c η2

i (1.431)

where c is an unknown constant. Evidently

||e||2E = a(e,e) ≤ c η2 := c
∑

i

η2
i (1.432)

and so the ratio between η and the energy norm of the exact solution u defines
a global error indicator

ηrel :=
η

||u||E . (1.433)

Because of u = uh +e and the Galerkin orthogonality, a(uh,e) = 0, we have,
(see Sect. 7.12, p. 568, and the “Pythagorean theorem”)

||u||2E = a(uh + e,uh + e) = a(uh,uh) + 2 a(uh,e) + a(e,e)
= a(uh,uh) + a(e,e) = ||uh||2E + ||e||2E (1.434)

so that

ηrel =
η√||uh||2E + ||e||2E

. (1.435)

The relative error in a single element is defined to be the ratio between ηi and
the energy norm ||ui||E := a(u,u)1/2

Ωi
of the exact solution in that element:

ηrel
i :=

ηi

||ui||E . (1.436)

Locally the Galerkin orthogonality must not be true, a(e,uh)Ωi
	= 0, so that

η̄rel
i =

ηi√||uhi||2E + ||ei||2E
(1.437)

is not the same as (1.436), but it is an obvious approximation and to make
it computable ||ei||2E is replaced by η2

i . Hence the idea is to refine all those
elements where the (so-modified) relative error

η̃rel
i =

ηi√||uhi
||2E + η2

i

(1.438)

exceeds a certain threshold value η0 [145]. Normally only the first 30% of all
elements on the list are refined; otherwise the problematic zones will not crys-
tallize so well. Often the element residual forces r are also neglected because
the contributions of the jump terms are more significant.

How the energy error is typically distributed can be seen in Fig. 1.108,
where dark regions symbolize high errors and light regions small errors in the
strain energy. The critical regions are simply those with stress concentrations,
so that eventually an engineer can easily predict where the program will refine
the mesh.
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Fig. 1.108. Distribution of error
indicators in a plate (gravity load)

L2-projections

Another popular way to quantify the error is to compare the raw FE stresses
with averaged stresses. This is known as the method of Zienkiewicz and Zhu
or simply as Z2 [261].

The averaged stresses are written in terms of the shape functions ψi,

σ̄h(x) =
n∑
i

σ̄i ψi(x) or

⎡
⎣ σ̄h

xx(x)
σ̄h

yy(x)
σ̄h

xy(x)

⎤
⎦ =

n∑
i

⎡
⎣ σ̄xxi

σ̄yyi

σ̄xyi

⎤
⎦ ψi(x) (1.439)

and the nodal values σ̄xxi
(analogously for σ̄yyi

, σ̄xyi
) are determined in such

a way that the square of the error ||σh
xx− σ̄xx||20 is minimized (L2-projection),

which leads to the system of equations∑
j

∫
Ω

ψi ψj dΩ σ̄xxj
=
∫

Ω

ψi σh
xx dΩ, i = 1, 2, . . . n . (1.440)

Often this system is only solved approximately, by diagonalizing the mass
matrix. The energy error in each element is then
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Fig. 1.109. Oscillating lon-
gitudinal displacements pro-
duce oscillating stresses

η2
i =

∫
Ωi

(σ̄hi
− σhi

) • (ε̄hi
− εhi

) dΩ . (1.441)

The method can be improved by interpolating not at the nodes, but at
the superconvergent points [262], [263]. In many cases this method is very
successful.

The weak point of the Z2-method though is the implicit assumption that

• oscillations indicate errors
• smooth stresses mean accurate stresses

and so the method breaks down if the false stresses are smooth as in Fig. 1.103,
p. 136, where pollution produced a large but smooth error in the stresses.

In the following problem [2]

− EAu′′(x) = µ sin(2m π x) u(0) = u(1) = 0 , m > 0 , (1.442)

a bar is stretched and compressed by rapidly oscillating longitudinal forces
having an amplitude µ. If this problem is solved on a uniform mesh of 2n, n ≤
m, linear elements so that the nodes are located at the points

xk =
k

2n
k = 0, 1, . . . , 2n , (1.443)

the piecewise linear FE solution is uh = 0, because we know that it interpolates
the exact solution (we let EA = 1)

u(x) =
µ

4m π2
sin(2m π x) , sin(2m π xk) = sin(2(m−n) π k) = 0 (1.444)

at the nodes xk, where the exact solution is zero; see Fig. 1.109. Hence the
FE stress σh = 0 is infinitely smooth—so all seems well—while in truth the
exact stress oscillates rapidly

σ(x) = E ε(x) =
µ

2m π
cos(2m π x) . (1.445)
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Fig. 1.110. Green’s function for σxx at a node after an adaptive refinement

Of course, the fact that all fi = 0 are zero should have warned us, but this
problem is apt to illustrate, that deformations caused by oscillating loads are
hard to catch with finite elements; see Fig. 1.3, p. 3. The contributions to
the fi tend to cancel, and also the influence functions for the jumps in the
stresses at the nodes are symmetric (see Fig. 1.69, p. 98) so that oscillating
loads—paradoxically enough—produce smooth FE stress fields.

Additional methods

In FE adaptivity we essentially distinguish between

• h-methods, which reduce the element size
• p-methods, which increase the degree p of the polynomial shape functions .

A combination of the two methods is the hp-method, where an increase in the
order p is combined with a refinement of the mesh.

There are other methods, such as r-adaptivity or remeshing , where the

The latter two methods acknowledge that it makes no sense to make the
solution error smaller than the modeling error. In transition zones, there might
occur effects which cannot be handled with a reduced model (3D → 2D), but

adaptivity means that the model is changed and the constitutive equations
are amended, while d-adaptivity means that the dimension of the problem is
changed.

In particular, an increase in the order of the polynomials should probably
be reserved for regions where the solution is smooth. In regions where the
model does not fit well, it often makes more sense to shrink the elements and
surmount thus the hurdles. In zones were the thickness changes, it is often
much more effective to increase the number of elements than to increase the
degree of the polynomials.

d-adaptivity (dimension), and m-adaptivity (model), [227].

where a switch back to the original 3-D model is necessary. The term m-

layout of a mesh is changed without changing the number of elements,
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Fig. 1.111. Conventional adaptive refinement of a plate (bilinear elements), two
load cases wind load and gravity load a) system and wind load; b) optimal mesh
for σxx(x) (wind load); c) for σyy(x) (gravity load)
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Fig. 1.112. Goal-oriented refinement (duality techniques), optimal meshes for
σxx(x) under wind load; b) σyy(x) under gravity load

Duality techniques

Let us assume that the displacement at a particular point x is to be calcu-
lated to high accuracy. We know that the distance between the exact and
approximate Green’s function is responsible for the error of the FE solution:

e(x) = u(x)− uh(x) =
∫

Ω

[G0(y,x)−Gh
0 (y, x) ] p(y) dΩy

= a(G0 −Gh
0 , u) . (1.446)

So what is needed is a good approximation of the Green’s function. This is
the strategy of duality techniques: We optimize the mesh in such a way that
the error in the Green’s function G0 becomes small. To achieve this goal first
a point load P = 1 is placed at the point x where u(x) is to be calculated, and
the mesh is refined for this load case by a conventional adaptive procedure.
The solution of this load case is the approximate Green’s function Gh

0 for

a)
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Fig. 1.113. A very uneven mesh but Maxwell’s theorem implies that the displace-
ments are the same, δh

1,2 = δh
2,1

.

u(x). Then in the second step the original load case is solved on this optimized
mesh. And because the mesh refinement in the first step has reduced the error
G0 − Gh

0 (which is an intrinsic property of the mesh) the displacement error
e(x) in the original load case at the point x should be markedly reduced. This
is the basic idea, see Fig. 1.110, Fig. 1.111 and Fig. 1.112.

But in doing so we also incorporate information about the error in the
original problem, u− uh, or—as it is called—the error in the primal problem.
That is the mesh is refined where the error u−uh is large and where the error
G0 −Gh

0 is large. Both errors steer the refinement process.
To understand this strategy recall that influence functions are based on

Betti’s principle, W1,2 = W2,1. In Fig. 1.113 a single force P1 = 1 is applied at
the point x1. We want to calculate the horizontal displacement at the point
x2 caused by this force

ux(x2) =
∫

Ω

G0(y,x2) • p(y) dΩy = P1 ·Gx
0(x1,x2) . (1.447)

Gx
0 is the horizontal component of the displacement field G0 = [Gx

0 , Gy
0]

T ; in
the following we write simply G0 and also u instead of ux.

The Green’s function takes only samples where the load p is applied and if
the load happens to be a point load then it samples at only one point! Hence
to minimize the error in the displacement at the point x2

e(x2) = P1 · [G0(x1,x2)−Gh
0 (x1,x2)] = P1 · [δ1,2 − δh

1,2] (1.448)

we have to minimize—so it seems—only the error [. . .] in the Green’s function
at the point x1 where the load is applied.



158 1 What are finite elements?

Now the Green’s function G0(y,x2) takes off from the point x2 where the
Dirac delta, the single force P2 = 1 in Fig. 1.113, presses against the plate
to generate the influence function for u(x2). So would it not make sense to
refine the mesh near this point too so that the effect felt at the distant point
x1 becomes more accurate? The answer is yes! The two points (or rather the
displacements at the two points) are like twins, are adjoint, because according
to Maxwell’s theorem (see p. 550) we have

δh
1,2 = δh

2,1 . (1.449)

Assume we turn the whole situation around: the point load acts at the center
of the “Gargantuan” element Ω2 and we inquire about the displacement u(x1)
at the point x1. According to the previous logic the result should not be too
good because we failed to refine the neighborhood of the point load P2. But
then δh

1,2 = δh
2,1 and so if the second problem is poorly solved then also the

first!
Hence to carry the information from a point A (where the action is) to a

point B where the observer is standing the neighborhood of both points must
be refined. This is an inherent requirement in self-adjoint problems.

But note that the refinement at the two points must not be of the same
order, see Fig. 1.114. It depends on the strength of the singularity at A and
at B, that is what the action is at A (a point force, a single moment, a bend,
a dislocation, a twist) and what we measure at B (the deflection, the slope,
the bending moment, etc.).

If the load is not a point load but spread over a region A then the inte-
gration

∂i u(xB) =
∫

A

Gi(y,xB) • p(y) dΩy (1.450)

will lower the order of the singularity and then only the refinement at the
point B will be noticeable. (∂i u is short for u, σ, . . .).

The incorporation of the defect p − ph, the error in the primal problem,
is easy, because due to the Galerkin orthogonality (1.446) is equivalent to13

e(x) = u(x)− uh(x) =
∫

Ω

[ G0(y,x)−Gh
0 (y,x) ] • (p(y)− ph(y)) dΩy

= a(G0 −Gh
0 ,u− uh) . (1.451)

We essentially have added a zero to (1.446), because the error in the Green’s
function is orthogonal to each vh ∈ Vh and therefore also to uh

0 = ph(G0[x])− ph(Gh
0 [x]) = a(G0[x]−Gh

0 [x],uh) . (1.452)

13 Our tacit assumption is that the load case ph consists of volume forces ph only.
We shall make this assumption whenever appropriate to simplify the notation.
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Fig. 1.114. Adaptive refinement a) standard refinement ηp ≤ εTOL b) goal oriented
refinement ηp × ηG ≤ εTOL
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After applying the Cauchy-Schwarz inequality to (1.451) we obtain the fun-
damental estimate

|u(x)− uh(x)| ≤ ||G0[x]−Gh
0 [x]||E ||u− uh||E (1.453)

where ||.||E is the standard energy norm, ||u||2E := a(u,u).
This result is motivation to minimize the error in the Green’s function and

the error in the solution uh simultaneously. That is, at each refinement step
an error indicator ηe

G for the Green’s function and an error indicator ηe
p for

the original problem is calculated on each element and the combined error
indicator on each element is then ηe = ηe

G · ηe
p.

This last step is based on

|u(x)− uh(x)| = |
∑

e

a(G0 −Gh
0 ,u− uh)Ωe

|

≤
∑

e

|a(G0 −Gh
0 ,u− uh)Ωe

|

≤
∑

e

a(G0 −Gh
0 ,G0 −Gh

0 )1/2
Ωe︸ ︷︷ ︸

ηe
G

· a(u− uh,u− uh)1/2
Ωe︸ ︷︷ ︸

ηe
p

(1.454)

so that the sum of the local errors ηe = ηe
G · ηe

p provides an upper bound for
the error

|u(x)− uh(x)| ≤
∑

e

ηe
G · ηe

p . (1.455)

The energy norms of the fields eG = G0−Gh
0 and eu = u−uh are calculated

by measuring the eigenwork done by the element residual forces and jump
terms on the element edges as on page 149, so that for example

ηp = a(eu,eu)1/2
Ωe

= r(eu)1/2 . (1.456)

Because this technique consists in applying a quantity (a Dirac delta)
conjugate to the original value, we speak of duality techniques. In particular
the method is well adapted to problems where the focus is on one or two
values that are approximated to a high degree of accuracy [22], [67], [132].
Which is why the technique is also called goal-oriented recovery .

The interesting point about the duality technique is that the error in the
Green’s function serves as a weight to the error in the primal problem. The
consequences of this can be seen in Fig. 1.114. The first mesh, the mesh in
Fig. 1.114 a, is the result of a standard adaptive refinement

ηe
p ≤ εTOL . (1.457)

To push the error below the preset error margin the program has to refine all
those elements—in practice only the first, say, 30%—where the error ηe

p of the
primal problem exceeds this margin. It has no other choice.
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The mesh in Fig. 1.114 b is based on weighting the primal error ηp with
the error ηG of the Green’s function elementwise

ηe
G · ηe

p ≤ εTOL . (1.458)

In most parts of the mesh the error ηe
G of the numerical Green’s function

is so low that this inequality is automatically satisfied. That is many of the
refinements in Fig. 1.114 a are not necessary if we are only interested in the
stress σyy at x.

For a more detailed analysis of duality techniques and the concept of gen-
eralized Green’s functions see Sect. 7.4, p. 519.

Remark 1.17. Clearly the duality technique is based on Tottenham’s equation.
But historically the duality technique was developed independently, see [19]
and [22]. Only latter it was discovered that the fundamental equation had
already been published by Tottenham, [67]. Probably there are also other
precursors as, for example, the L∗L-method of Kato-Fujita where to obtain
bounds for a solution at a point a similar technique is applied [174].

Nonlinear problems

Although the duality technique is motivated by Betti’s theorem, it can be
applied successfully to nonlinear problems as well, [22], [67], [200]. Near an
equilibrium point a nonlinear structure essentially exhibits a linear behavior
with regard to load increments and this suffices to establish a connection
between the error in the functional, J(u)−J(uh), and the error in the Green’s
function, z − zh, at the linearization point.

By doing a “Taylor expansion” of Green’s first identity it follows, see Sect.
4.21 p. 403, that the displacement increment u∆ and the load increment p∆

satisfy—to first order—the variational statement

aT (u; u∆,v) = (p∆,v) v ∈ V (1.459)

where aT is the Gateaux derivative of the strain energy product, that is the
gradient of a(u,v) at u in the direction of u∆.

The Newton-Raphson algorithm for the solution of the nonlinear system
of equations k(u) = f is based on this expansion

KT (ui) ui+1 = f − k(ui) (1.460)

where the tangential stiffness matrix KT corresponds to aT .
If the Gateaux derivative aT is linear in the second and third argument

the associated Euler equation

L∆ u∆ = p∆ (1.461)

is linear which means that near an equilibrium point the response of the
structure to load increments is linear and so for each functional J(u∆) there
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is a (generalized) Green’s function z such that the effect of a load increment
on any functional value of the displacement increment can be predicted as in
the linear theory, J(u∆) = (p∆,z).

Now the key point is—we have discussed this before in Sect. 1.27—that
the error in the output functional of a nonlinear problem can be expressed as

J(u)− J(uh) =
1
2
ρ(uh)(z − zh) +

1
2
ρ∗(uh,zh)(u− uh) + R

(3)
h (1.462)

where the first term

ρ(uh)(z − zh) = (p− ph,z − zh) (1.463)

is the work done by the residual forces on acting through the error, z − zh,
in the Green’s function and the second term is

ρ∗(uh,zh)(u− uh) = (δ0 − δh
0 ,u− uh) (1.464)

h and R
(3)
h

So the error z−zh in the Green’s function at the linearization point is one
part of the error J(u)− J(uh) or else: if the error z − zh can be made small
and the error u− uh then automatically also the error J(u)− J(uh) will be
small—at least that is what we hope. This is the idea; see also the Remark
on p. 124.

To repeat: the Green’s function z at the linearization point can not be
used to calculate

J(u) =
∫

Ω

z(y,x) • p(y) dΩy . (1.465)

This does not work. But the study of the error z − zh allows to adapt the
mesh so that eventually the error J(u)− J(uh) will become small.

Hence basically what is done is, see Box 1.1, that at the actual equilib-
rium point the tangential stiffness matrix is solved for the generalized Green’s
function,

KT (u) z = j (1.466)

corresponding to

aT (uh;zh,ϕi) = J ′(uh; ϕi) ϕi ∈ Vh (1.467)

and the error in the primal problem is weighted with the error in this dual
problem. For an application see the example in Sect. 4.21, p. 412 and for a more
detailed analysis of goal-oriented refinement applied to nonlinear problems see
Sect. 7.5 p. 526.

remainder.
the error in the functional J (.) evaluated at u − u is a cubic
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Start with an initial mesh Tk and let k = 0

(A) For t = 1 to M (loop over all load increments M)

λ = t · 1

M
actual load parameter

1. Newton-Raphson: Let i = 0, u∆k = 0, u
(0)
k = uk−1 and solve the equations

KT (u
(i)
k ) u

(i+1)
∆k

= λ · f − k(u
(i)
k )

u
(i+1)
k = u

(i+1)
∆k

+ u
(i)
k

Let i = i + 1 and repeat iteration till convergence is achieved.
2. Calculate the error indicators of this primal problem η

(p)
e .

3. Formulate and solve the dual problem at the actual equilibrium point uk:

KT (uk) zk = jk

4. Calculate the error indicators of the dual problem η
(z)
e .

5. Mesh refinement:
• Determine the weighted error indicator

ηe = η(p)
e · η(z)

e .

• Calculate the error estimator

J(e) ≈ η =
∑
Ωe

ηe .

• IF |η| ≤ TOL (global error margin) → t = t + 1, GOTO (A).
• IF ηe > TOLe (local error margin) → refine element Ωe.
• Generate a new mesh Tk+1, transfer data, let k = k + 1.
• GOTO 1.

Box 1.1: Goal oriented refinement of nonlinear problems

Model adaptivity

Often the FE model of a structure is based on simplifying assumptions and
so we would like to have estimates for the modeling error and also indicators
which could steer an adaptive process by which the model can be updated if
necessary14. The equation

J(uc)− J(u) = −d(uc, G) � −d(u, G) , (1.468)

14

’

One should make a model as simple as possible but not simpler’ (A. Einstein).
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Fig. 1.115. Effect of the modeling error on the bending moment M(x) at the center
of the first span a) original design b) simplified model c) M(x) d) bending moment
of the influence function G2 for M(x) e) elements

which allows to asses changes in any output functional J(u) due to changes in
the stiffness of a structure serves just this purpose. That is Green’s functions
and the d-scalar product allow to estimate how sensitive the results in a part
ΩA of a structure are to the choice of the elastic parameters in a part ΩB of
the structure.

An introductory problem, the bridge in Fig. 1.115 a, may illustrate the
basic idea. The simplified FE model consists of three beam elements with a
uniform stiffness EI. The goal is the evaluation of the bending moment M(x)
at the center of the first span. The error in M(x) is approximately

Mex(x)−M(x) � −
∫ l

0

∆ EI

EI

M M2

EI
dy = −(0.4− 1.4 + 0.2) (1.469)
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Fig. 1.116. Change of Young’s modulus, E = 1 · 107 → 1 · 105 kN/m2 a) stress
distribution under gravity load, uniform E, b) change in σxx along section A−A if
E changes in element # 181 c) change of σxx in element # 184 if E changes—one
element at a time—in section A − A
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Fig. 1.117. Shear wall, 10 m × 3 m. Change of Young’s modulus, E = 1·107 → 1·105

kN/m2 a) stress distribution under gravity load, uniform E, b) change in σyy in
element # 112 if E changes elementwise in section A−A c) change of σxx in element
# 12 if E changes elementwise in section B − B

where the three numbers are the contributions of the three spans to the error.
Because the error is largest in the second span in the next step this span
should be subdivided into, say, three separate elements with more realistic
values of EI and then the analysis should be repeated.

Of course the modeling error

ηm =
∑

e

|d(uc, G)Ωe | �
∑

e

|d(u, G)Ωe | (1.470)
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should be combined with the discretization errors ηp and ηG of the primal and

η = ηp · ηG + ηm (1.471)

may serve as an engineering error indicator.
In Figure 1.116 this technique was applied to a cantilever plate. In the

element # 181, which gets stressed the most, the modulus of elasticity was
reduced from E = 1 · 107 to E = 1 · 105 kN/m2. Plotted in Fig. 1.116 b are
the true change of the horizontal stress σxx in cross section A − A and the
change as predicted by the d-scalar product

σc
xx − σxx � −d(Gh

1 ,uh) (1.472)

where both fields, Gh
1 and uh, were taken from the original unmodified model.

Next the modulus of elasticity was changed in cross-section A − A—one
element at a time—and the change in the stress σxx at the center of element
# 184 was studied. The effects on σxx are plotted in Fig. 1.116 c.

Similar modifications were done to the plate in Fig. 1.117 and also the
results are similar.

It is clearly visible (1) that the influence of local changes, E → E + ∆ E,
on the stress field is limited and that (2) in most of the cases the d-scalar
product d(Gh

1 ,uh) with both fields taken from the unmodified structure is
capable of predicting the effects of the change.

Nonlinear problems

Model adaptivity can be applied to nonlinear problems as well because the
change in any output functional can be approximately predicted by applying
Equ. 1.375 in Sect. 1.27, p. 123.

Fundamental solutions

The formula

uh(x) =
∫

Ω

Gh
0 (y,x) p(y) dΩy (1.473)

suggests, that all that is needed is a good approximation to G0(y,x). To ease
the burden for the FE program, to approximate the function G0 it can be
split into a fundamental solution g0 and a regular part uR,

G0(y,x) = g0(y,x) + uR(y,x) (1.474)

and then only the regular part uR needs to be approximated with finite el-
ements. The regular part uR is a homogeneous solution of the differential

dual problem so that—eventually after some proper scaling—the expression
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Fig. 1.118. Improved goal-oriented refinement with fundamental solutions, optimal
meshes for a) σxx(x) under wind load; b) σyy(x) under gravity load

equation, and its boundary values are such that g0 + uR satisfies the same
boundary conditions as G0.

In the following, this split will be exemplified with the kernels for the
stresses σij in a plate:

Gij
1 (y,x) = uij

R(y,x) + gij
1 (y,x) . (1.475)

The three fundamental solutions form a matrix

D(y,x) = [g11
1 (y,x), g12

1 (y,x), g22
1 (y,x)] (1.476)

with the elements [116]

Dkij(y,x) =
1
r
{(1− 2 ν)[δkir,j +δkjr,i−δijr,k ] + 2r,i r,j r,k } 1

4π(1− ν)
.

(1.477)
The index k is the vector component, and the indices ij ≡ {11, 12, 22} denote
the stresses. The traction vectors of these fields have the components (k)
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Skij(y,x) =
2µ

r2
{2 ∂r

∂n
[(1− 2 ν)δijr,k +ν(δikr,j +δjkr,i )− 4r,i r,j r,k ]

+ 2 ν (nir,j r,k +njr,i r,k ) + (1− 2 ν)(2nkr,i r,j +njδik

+ niδjk)− (1− 4 ν)nkδij} 1
4π(1− ν)

. (1.478)

If the boundary conditions are assumed to be homogeneous on Dirichlet (ΓD)
and Neumann (ΓN ) boundaries, the regular solution must satisfy the equations

Gij
1 = uij

R + gij
1 = 0 on ΓD, (1.479)

t(Gij
1 ) = tij

R + tij
1 = 0 on ΓN . (1.480)

The approximate regular part is the solution of the variational problem

a(uij
R,h,ϕi) = −

∫
ΓN

tij
1

• ϕi ds ϕi ∈ Vh . (1.481)

The improved Green’s function is

Gij+
1,h (y,x) = uij

R,h(y,x) + gij
1 (y,x) , (1.482)

and the stresses are

σ+
ij,h(x) =

∫
Ω

Gij+
1,h (y,x) • p(y) dΩy . (1.483)

Note that the error in the Green’s function is replaced in (1.453) by the error
in the regular solution uR

|u(x)− uh(x)| ≤ ||uR[x]− uh
R[x]||E ||u− uh||E , (1.484)

which will speed up the convergence, because at points not too close to the
boundary the error in the regular part will be much smaller than the error
in the Green’s function. As before two error indicators ηR (indicating the
error in the regular part) and ηp are calculated and the combination of both
indicators, η = ηR · ηp, steers the adaptive refinement.

Although there is one subtle difference between the new approach and the
previous technique. In the new approach we actually construct for, say, the
stress σxx at a point x an approximate Green’s functions G+

1,h and we calculate
the stress with this function, see (1.483). While in the previous method we
simply calculate the FE stress σh

xx(x) =
∑

i σxx(ϕi)(x)ui (after the mesh
has been improved) knowing that in so doing we inherently form the scalar
product between the improved kernel Gh

1 and the applied load.

Comparative study

The plate in Fig. 1.111 on p. 155 was analyzed with all three methods
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• conventional energy-norm refinement
• goal oriented refinement
• goal oriented refinement based on fundamental solutions

The plate was subject to a wind load and gravity load. The aim of the re-
finement was to predict the horizontal stress σxx at the point x = (4.8, 2.1)
under wind load and the vertical stress σyy at the same point under gravity
load to high accuracy. Hence each load case required a different refined mesh.
The “exact” values in Tables 1.6 and 1.7 are the results of a BE analysis.

As is typical for goal-oriented methods the adaptive refinement concen-
trates on the neighborhood of the point x; see Fig. 1.112. While if the Green’s
function is split into a fundamental solution and a regular part then the re-
finement spares the neighborhood of x because the fundamental solution is
already the quasi-optimal solution near this point (see Fig. 1.118), and all
effort goes into minimizing the energy error of the regular part, see (1.484).

Table 1.6. Gravity load, σyy, exact = −87.126 kN/m2

d.o.f. Energy norm d.o.f. Goal-or. d.o.f. Fund. sol.

350 −73.9557 350 −73.9557 350 −85.1865
558 −74.2296 528 −84.0145 576 −85.8080
900 −74.9279 823 −87.7160 870 −86.0676
1462 −74.6239 1206 −85.5208 1235 −86.2783
2325 −85.0523 1619 −85.0156 1694 −86.4994

Table 1.7. Wind load, σxx, exact = −43.634 kN/m2

d.o.f. Energy norm d.o.f. Goal-or. d.o.f. Fund. sol.

350 −45.2505 350 −45.2505 350 −43.7053
538 −45.2789 518 −42.5768 537 −43.7753
858 −45.0542 716 −43.4873 766 −43.6761
1370 −45.0911 982 −44.0888 1065 −43.6685
2079 −45.0155 1254 −43.8960 1378 −43.6596

– – 1565 −43.6094 – –

Changes in the elastic parameters

Even if the material is not homogeneous, the Green’s function can still be
split into a fundamental solution and a regular part. It is merely necessary
that additional forces must be applied at the interface of the different zones.
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Fig. 1.119. The Green’s function is split into a fundamental solution and a regular
solution, which consists of two parts

These forces account for the discontinuities in the material parameters. The
1-D problem of a simple bar will suffice to illustrate the technique.

The bar in Fig. 1.119 consists of two elements with different cross sections
A1 and A2. The Green’s function for the longitudinal displacement at the
center of the second element is to be calculated. The displacement g0 in Fig.
1.119 a is an appropriate fundamental solution because it corresponds to the
application of a single force P = 1 at the center of the second element. Now the
Green’s function has to have (i) zero displacement at x = 0, (ii) a zero normal
force N(l) = 0 at the free end of the bar and (iii) the jump in the normal
force must be zero at the transition point x1 between the two zones. Note
that the fundamental solution does not and cannot satisfy this last condition
because the slope g′0 of the fundamental solution is continuous at x1. Its value
is 1/(2EA2), so

N+(x1)−N−(x1) = EA2 g′0(x1)− EA1 g′0(x1)

=
1
2
(1− A1

A2
) = −A1 −A2

2
. (1.485)
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Because A1 > A2, the net effect is that a force (A1−A2)/(2A2) pulls the node
x1 to the left:

1
2

A1

A2
← • → 1

2
. (1.486)

(Multiply the right-hand side by A2/A2.) Now to correct this defect and
enforce N(l) = 0 at the end of the bar (currently N(l) = −1/2) the reg-
ular solution must solve the load case in Fig. 1.119 c, and in addition a
constant term 1/EA2 must be added to correct the nonzero displacement,
g0(0, xc) = −1/EA2, of the fundamental solution at x = 0:

G0 = g0 + u(Fig 1.119 c) + 1/EA2 . (1.487)

1.32 St. Venant’s principle

According to St. Venant’s principle, the difference between the stresses due
to statically equivalent loads becomes insignificant at distances greater than
the largest dimension of the area over which the loads are spread.

St. Venant’s principle is valid for elliptic differential equations, i.e., for
most of the equations of structural mechanics. Typically, for static or harmonic
loads, the solutions decay very rapidly outside of the loaded region, as can be
seen for example, from the influence function for the bending moment mxx of
a hinged slab:

mxx(x) =
∫

Γ

[
g2 · vν + mν · (g2)

∂w

∂ν

]
dsy +

∫
Ω

g2 · p dΩy

+
∑

c

g2(yc) · Fc . (1.488)

Note that the subscript ν indicates that the functions depend on the normal
vector ν = [ν1, ν2]T at the integration point y. This vector must be distin-
guished from the normal vector n at the observation point x.

The contributions to this influence function come from the support reac-
tion vν , the slope ∂w/∂ν, the surface load p, and the corner forces Fc; the
influence decays as ln r or r−2:

g2(y,x) = O(ln r) mν(g2(y, x)) = O(r−2) . (1.489)

moment:
In a typical FE solution, many more sources contribute to the bending
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Fig. 1.120. a) Influence functions for the support reaction A; b) only the average
value matters; c) antisymmetric loads are orthogonal to the kernel of the influence
functions

mh
xx(x) =

∫
Γ

[ g2 · vh
ν + mν(g2) · ∂wh

∂ν
]︸ ︷︷ ︸

influence of boundary values

dsy

+
∑

e

∫
Ωe

g2 · ph dΩy +
∑

i

∫
Γi

[ g2 · v∆
h −

∂g2

∂ν
·m∆

h ] dsy︸ ︷︷ ︸
influence of sources in the domain

+
n∑

k=1

g2(yk) · Fh
k︸ ︷︷ ︸

influence of nodal forces

+
∑

c

g2(yc) · Fh
c︸ ︷︷ ︸

influence of corner forces

(1.490)

namely the element load ph, the jumps in the Kirchhoff shear, v∆
h , the dis-

continuities m∆
h in the bending moments, the nodal forces Fh

k (due to the
corner discontinuities of the twisting moment mh

xy) and the corner forces Fh
c .

All these forces together constitute the load case ph.
This influence function looks very complicated, but in the end it is the

same polynomial that is obtained when the shape functions are differentiated
directly:

mh
xx = 3.14 + 2.72x + 9.81 y =

∫
Γ

[ g2 vh
ν −

∂

∂ν
g2 mh

ν − . . . (1.491)

The strange thing is that n data cells (n = number of degrees of freedom of
the plate element) obviously suffice to store all the influence that the distant
sources have on a single element.

If the two expressions (1.488) and (1.490) are subtracted, a representation
of the FE error is obtained:
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Fig. 1.121. The fastest connection between two points A and B is a cycloid. Because
the initial acceleration at the points A1 or A2 is less than at A, it takes the same
time to travel to B from A1 or A2 as from A [231]

mxx(x)−mh
xx(x) =

∫
Γ

[ g2(vν − vh
ν ) + mν(g2)

∂

∂ν
(w − wh) ] dsy − . . .

(1.492)

The error cannot be calculated because the support reactions vν and the slope
on the edge, ∂w/∂ν, are not known, but the formula provides a glimpse into
how the error propagates, which depends on the nature of the kernel functions:

g2 = O(ln r) = deflection surface due to Mx = 1 at x

∂

∂ν
g0 = O(r−1) = slope at the edge

mν(g2) = O(r−2) = bending moment at the edge
vν(g0) = O(r−3) = Kirchhoff shear

These kernel functions decay very rapidly. The later increase of the logarithm
comes too late to be of any significance (ln 100 = 4.6).

St. Venant’s principle depends on this rapid decay of the kernels and the
averaging effect of integration, as can be illustrated by a simple example.

The support reaction A of the cantilever beam in Fig. 1.120 is the scalar
product of the influence function ηA = 1 and the distributed load p:

A =
∫ l

0

ηA(x) p(x) dx . (1.493)

Because ηA is constant the support reaction A is simply the average value pa

of the distributed load p times the length l:

A =
∫ l

0

p(x) dx = pa × l . (1.494)

That is, the kernel ηA = 1 eliminates all “harmonics” of p which are anti-
symmetric with respect to the center x = l/2 of the beam (see Fig. 1.120 c)
because they are orthogonal to the kernel ηA.
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1.122. De-

bounded

punch the stresses in the soil

strains are infinite

1.33 Singularities

Stresses are infinite where the strains are infinite, ε = du/dx =∞, i.e., where
the displacements change “on the spot”. Why this happens is best explained
by the problem of the brachistochrone, the problem to find the fastest route
between two points A and B. The solution of this famous problem is a cycloid ;
see Fig. 1.121.

“It is better to start out vertically and pick up speed early, even if the path
is longer” [231]. This is also the tendency we observe in structures. The ma-
terial tries to escape as fast as possible from the dangerous zones by starting
with an infinite slope u′(0) =∞. Such an abrupt growth where the displace-
ments change stante pede, on the spot, (see Fig. 1.122 a) is described by a
function as

u = rα α < 1 ⇒ σ =
E

r1−α
, (1.495)

whose derivative du/dr for values of α < 1 is infinite at the start. If the
displacement decays in a soft slope as in Fig. 1.122 b, then α is greater than
one and the stresses remain bounded.

The best known example for abruptly changing deformations of type b is
the rigid punch (Fig. 1.123). Outside the compression zone the displacement
of the soil shoots straight up to taper off very rapidly. This abrupt decrease in
the settlement is the reason for the infinite stresses at the edge of the punch.

In traffic accident research it is said if the braking distance is zero then the
force is infinite. The same holds in structural mechanics. What for a speeding

Fig.
pending on how the
displacements tend
to zero, the stresses
are either infinite or

become infinite because the

Fig. 1.123. Rigid punch on a
half-space. At the edge of the
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1.124.

zero and they must assume

car is the acceleration a = dv/dt15 is the strain ε = du/dx or the curvature
κ = d 2w/dx2 for a structure. If a plate cracks, then the strain is infinite,
because in the uncracked concrete the two faces of the crack had the distance
dx = 0 and even an infinitely small crack opening du will result in infinite
strains, du/dx = du/0 = ∞. The same holds for a slab. At a sharp bend the
radius R is zero, and therefore the curvature κ = 1/R is infinite.

Stress singularities occur primarily at the edge, at reentrant corners, or at
points where the boundary conditions change. Some singularities are simply
the result of contradictory boundary conditions. Above the point where the
cantilever beam intersects the wall (Fig. 1.124), the horizontal stress σxx must
be zero, while directly below that point the bending stress σ = M/W attains
its maximum value.

This conflict is not the result of a “discretization error”, which could be
circumvented with a simple trick, but the treatment of the problem is not
adequate. Each abrupt change in the boundary conditions is not in agreement
with the fact that partial differential equations are to be solved.

All abrupt changes in the boundary conditions should theoretically be
replaced by more “blurred” formulations, were it not that an FE program has
its own interpretation of boundary conditions: geometric boundary conditions
are satisfied exactly, but static boundary conditions only in the L2-sense.

In the vicinity of a singularity, the displacement field of a plate consists of
a “non-polynomial” singular part uS and a regular “polynomial” part uR,

u(x, y) = k rα

[
u(ϕ)
v(ϕ)

]
+ uR(x, y) = uS(x, y) + uR(x, y) . (1.496)

The factor k is the so-called stress intensity factor , and the exponent α < 1
depends on the angle of the corner point and the boundary conditions. Because
α < 1 the stresses become singular:

σ ij = k
1√
r

. . . (for α = 0.5) . (1.497)

15 If a car hits the wall with a speed v = 100 km/h and is brought to a halt in 0
seconds, the negative acceleration is a = ∆ v/∆t = −100/0 = −∞.

Fig.

the maximum value

point the stresses must be
At the same
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Fig. 1.125. Column and shear wall

The idea to handle only the regular part uR with finite elements implies
that the exact shape of the singular part is known, because when, say, instead
of the exact function r0.5 the function r0.4 is subtracted, not much is gained,
as the FE program still must approximate the missing singular part r0.1 (ac-
tually things are a bit more complicated we cannot simply add and subtract
exponents).

If the solution cannot be split into these two parts, the FE program must
also approximate the singular part, and then one must be careful. One can
then make snapshots of the stress state, which are “correct” for one mesh but
which—in the neighborhood of the singularity—bear no resemblance to the
subsequent stress states as soon as the mesh is refined adaptively.

1.34 Actio = reactio?

We expect that the stresses on the two faces of a cut are the same. But this
must not be true in FE analysis. This does not contradict Newton’s principle,
because equilibrium in the FE sense means only that the virtual work done
by the stresses on the two faces and the surface loads or volume forces on the
left- and right-hand side of the cut is the same: δW+

e + δW−
e = 0.

Any load in the neighborhood which senses the movement contributes to
the virtual work and thereby blurs the picture, so that δW+

e + δW−
e = 0 in

general does not imply that the resultant stresses on the two faces are the
same, R+ = R−.

Consider for example the masonry wall and the column in Fig. 1.125. If
the column is modeled with linear elements, concentrated forces will act at
the nodes and line loads at the opposing face if the wall is modeled with CST
elements; see Fig. 1.125. What these different forces though have in common
is that they are work-equivalent with respect to the nodal unit displacements
of the interface nodes (volume forces are absent from this model).

Or imagine that a slab is modeled with Kirchhoff plate elements, and a T
beam (Fig. 1.126) with beam elements. Evidently it is not possible, to simply
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1.126.

transfer the nodal moments from the beam to the slab. Reissner–Mindlin
elements would not even tolerate a transfer of the nodal forces.

Add to this that usually the displacements on the two faces are not the
same because the shape functions on the two sides are different. Such inconsis-
tencies are much more common than users are aware of. But they should only
occur at the interfaces of different structural elements, because a structure
can hardly be modeled with a series of gaps.

Equivalent nodal forces

What is the same though are the equivalent nodal forces at the interface
between two structural components because at any such node N

fL + fR = fN (1.498)

where fN is the equivalent nodal force applied at the node. The components
fi of the two nodal forces (L) and (R) are the strain energy products between
the stress field Sh of the FE solution uh and the nodal unit displacements ϕi

of the node on the left and on the right

fi = a(uh,ϕi) =
∫

Ω

Sh • E(ϕi) dΩ =
∫

Ω

[σ11 · ε11 + 2 σ12 · ε12 + σ22 · ε22] dΩ .

(1.499)

This is also the technique how equivalent nodal forces can be assigned to the
nodes of interelement boundaries if a structure is split into different parts; see
Fig. 1.127.

If no force is applied at the node, fN = 0, then the sum of the two forces,
the two “energy quanta”, is zero. Note that this result is independent of the
shape of the elements on both sides of the interface. Large elements bordering
on small elements possess the same nodal forces as the small elements.

What the small elements miss in size they make good in strains (not the
strains from the FE solution uh but from the fields ϕi) because the smaller an
element gets the larger the strains from the unit displacements of the nodes
will be, this is the 1/h effect (see Fig. 1.68 p. 97) so that

fL
i =

∫
small

Sh • E(ϕL
i )︸ ︷︷ ︸

large

dΩ =
∫

large

Sh • E(ϕR
i )︸ ︷︷ ︸

small

dΩ = fR
i . (1.500)

Fig. The coupling
between a beam and a slab
is a work-equivalent coupling
but not a mechanical coupling
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Fig. 1.127. The equivalent nodal forces on both sides are the same. This is inde-
pendent of the shape of the elements on both sides. Even a thin layer of elements
on the left would produce the same forces as the large elements on the right

Note also that the support reactions RA and RB of the plate are uniquely
determined by the stress state in the two shaded elements bordering on the
supports. For example the horizontal component (RA)x of RA is the scalar
product between the stress state Sh in the element ΩA and the strains of
the unit displacement in horizontal direction of the node that attaches to the
support

(RA)x =
∫

ΩA

Sh • E(ϕA
1 ) dΩ . (1.501)

The more the mesh is refined the smaller ΩA gets but the loss in size is easily
balanced by the increase in the stresses Sh—the elements gets closer to the
hot spot.

Example

The plate in Fig. 1.128 a carries a horizontal edge load of magnitude 2P
and is modeled with two bilinear elements. The equivalent nodal forces are
f1 = f2 = P while all other fi (also the vertical components) are zero. The FE
solution is the solution of the load case in Fig. 1.128 g. The stress state Sh of
the FE solution on acting through the strains E(ϕi) of the unit displacement
fields ϕi yields the same equivalent nodal forces fi as the original load
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11.49

3.83

3.00

2
.0

0

Fig. 1.128. Plate and shear forces: a) system and loading, b) - e) horizontal nodal
unit displacements, f) equivalent horizontal nodal forces, g) FE solution

1.129. TheFig.
raw shear stresses
between the elements
must not be the same
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fi = a(uh,ϕi) =
∫

Ω

Sh • E(ϕi) dΩ =
{

P i = 1, 2
0 i = 3, 4 .

(1.502)

(Of course the plate has more than four degrees of freedom). At the interface
between the two elements the sum of the shear stresses is not zero (d =
thickness)

N (1)
yx + N (2)

yx = d

∫ l

0

σ(1)
yx dx + d

∫ l

0

σ(2)
yx dx 	= 0 , (1.503)

because the shear forces must balance the horizontal component of the line
force that acts at the interface. The obvious remedy (see also Fig. 1.129) is to
work with averaged stresses. Let

j = t
(1)
h + t

(2)
h (= ↓ + ↑) on ∂Ω1 ∩ ∂Ω2 (1.504)

the jump in the tractions, the improved (ˆ) averaged tractions are

t̂
(1)

= t
(1)
h −

1
2

j t̂
(2)

= t
(2)
h −

1
2

j . (1.505)

Unlike the resultant stresses N
(i)
yx the equivalent nodal forces f

(i)
3 on the two

sides of the interface balance

f3 = f
(1)
3 + f

(2)
3 =

∫
Ω1

Sh • E(ϕ3) dΩ +
∫

Ω2

Sh • E(ϕ3) dΩ = 0 . (1.506)

1.35 The output

To assess the accuracy of FE results correctly, it must be understood how an
FE program processes the raw output and how it displays it on the screen.

The load case ph

In general the equivalent load case ph is not displayed on the screen, because
a user not well-acquainted with FE techniques would be irritated.

Support reactions

One would assume that an FE program outputs the support reactions of the
FE load case ph. These forces plus the forces that have been reduced to the
supports at the start would be the true support reactions. But instead what
is displayed on the screen are the equivalent support reactions, the equivalent
nodal forces spread along the supports to simulate a continuous support.
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1.130. On-

nodal forces fi

Formally, what happens is that the program converts the element volume
loads ph and interelement line loads lh into equivalent nodal support reac-
tions by letting these loads act through the nodal unit displacements of the
supports:

fi =
∫

Ω

ph ϕi dΩ +
∫

Γ

lh ϕi ds

ϕi = unit displacement of a support node .

Because in the neighborhood of supports there are probably more loads ph

and lh pointing upward (having a negative sign) the net result will be a series
of equivalent nodal forces that point upward, i.e., which support the slab.

Basically all this was already done when the global stiffness matrix was
assembled. Hence the stiffness matrix K must only be multiplied by the nodal
unit displacements:

K u = f ← list of equivalent nodal forces . (1.507)

These equivalent nodal forces fi (kN m) are then transformed into equivalent
line forces (kN/m). Assuming a linear distribution between two nodes, this
would result in a distribution such as

l(x) =
1
2
×
[
fi

le
(1− x

le
) +

fi+1

le

x

le

]
0 < x < le . (1.508)

In Fig. 1.131 and Fig. 1.130 the two versions can be seen side by side. The
first figure shows the distribution of the support reactions as they appear

tions are the evenly
The support reac-
screen appearance.

spread equivalent

Fig.
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Fig. 1.131. Slab a) system and loading, b) principal moments, c) element surface
loads, d) vertical forces along the interelement boundaries

on-screen—these are the transformed equivalent nodal forces fi—while the
second figure displays the “true” support reactions, where it is seen that the
slab is not only supported by the walls but by negative element surface loads
as well. Note also that the support reactions do not end abruptly at the ends
of the walls, but continue beyond these points.

1.36 Support conditions

An FE solution satisfies geometric boundary conditions such as

plate: u = 0, v = 0 slab: w = 0 w,n = 0 (1.509)

pointwise, while static boundary conditions

plate: S n = t̄ slab: mn = m̄ vn = v̄ (1.510)
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Fig. 1.132. The resultant forces are the same, R = Rh

are only satisfied in the weak sense, i.e., along a free edge of a slab it is only
guaranteed that the support reaction vn together with the surface load ph and
interelement jump terms v∆

n in the neighborhood of the edge (see Sect. 1.34,
p. 177) contribute no work through any of the nodal unit displacements of
the edge nodes:∫

Ω

ph ϕi dΩ +
∑

k

∫
Γk

v∆
n ϕi ds +

∫
Γ

vn ϕi ds = 0 . (1.511)

The same holds for the bending moment mh
n, which is nonzero along a free or

hinged edge. The distribution of mh
n is skillfully balanced in such a way that

mh
n annihilates the work done by the other terms:

fi =
∫

Ω

ph ϕi dΩ +
∑

k

∫
Γk

m∆
n

∂ϕi

∂n
ds +

∫
Γ

mh
n

∂ϕi

∂n
ds = 0 . (1.512)

The same logic applies of course to edge loads. The substitute FE edge loads
are only weakly equivalent to the true load.

1.37 Equilibrium

Statements such as

• Global equilibrium is satisfied
• Equilibrium is usually not satisfied within an element
• Equilibrium is usually not satisfied across interelement boundaries
• Equilibrium of nodal forces and moments is satisfied (?)

do not boost our confidence in the FE method, but they lose much of their
alarmism if we recall that in the FE method the original load case p is replaced
by a work-equivalent load case ph and it is therefore quite natural for the stress
resultants of the load case ph not to maintain equilibrium with the forces of
the load case p.

An FE program commits only one error, and this at the very start: it
replaces the original load case by a work-equivalent load case. Everything else
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1.133. Because the

maintained

that follows is classical structural analysis. An FE program solves the work-
equivalent load case exactly. Therefore both the whole structure and every
individual part maintains equilibrium—with the forces of the work-equivalent
load case.

Global equilibrium

This term has a very special meaning in the FE method. After the global
stiffness matrix K is assembled it contains the contributions of the nodal unit
displacement of all the nodes of the structure. Next, those rows and columns
are deleted that belong to fixed degrees of freedom (ui = 0), and the so-called
reduced stiffness matrix is obtained. The entries kij = a(ϕi, ϕj) in the reduced
stiffness matrix are the strain energy products of the nodal unit displacements
in Vh, while the entries in the full matrix K are the strain energy products of
the ϕi in the space V +

h , which is the space Vh plus all nodal unit displacements
of the fixed nodes, the support nodes.

Because all rigid-body motions u0 = a×x+b of the structure do lie in V +
h ,

the resultant force Rh of the substitute load ph coincides in size, direction,
and position with the resultant force R of the original load distribution p.
This follows simply from the fact that p(ϕi) = ph(ϕi), i = 1, 2, . . . n, and that
any rigid-body motion u0 can be written in terms of the ϕi. Hence global
equilibrium in FE terminology means Rh = R.

If A is the resultant support reaction in the load case p, then R + A = 0,
and the same holds for the FE solution Rh + Ah = 0. Because Rh = R,
it follows that Ah + R = 0 must be true as well. In this last equation we
are comparing apples (Ah is from the load case ph) with oranges (R is from
the load case p), but because of global equilibrium, Rh = R, it makes no
difference.

Local equilibrium

Why is it that the Kirchhoff shear vh
n of an FE solution integrated along the

edge of an arbitrary patch Ωp of elements does not balance the original load
acting on that patch? The reason is that the rigid-body motions of the patch

Let us consider a patch Ωp of a slab which is subjected to a uniform surface
load p that vanishes outside the patch. Let Rp the resultant force and let Rp

h

the resultant force of the FE load ph acting on this patch. If the resultant

Fig.
footprint of the nodal unit
displacements extends beyond
the patch, equilibrium is not

extend beyond the patch, see Fig. 1.133.
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forces were the same, Rp = Rp
h, the integral of the Kirchhoff shear along the

perimeter of the patch would also be the same, (vn − vh
n, 1)Γ = 0 (we neglect

the corner forces). The equation Rp = Rp
h is valid if and only if∫

Ωp

p u0 dΩ =
∫

Ωp

ph u0 dΩ (1.513)

for all rigid-body motions u0 of the patch. The problem is that the rigid-body
motions of the patch do not lie in Vh. For to lift the patch by one unit of
displacement the movement

u0(x) =
{

1 x ∈ Ωp

0 else (1.514)

would have to lie in Vh. But such a discontinuous function is nonconforming.
Imagine that a tablecloth is spread over the slab and that the patch is

lifted while we try to hold down the rest of the tablecloth. This shape is as
close as we can get on Vh to the lift of the patch.

Because both load cases p and ph are equivalent with respect to all ϕi

they are also equivalent with respect to the shape of the “tablecloth”. In a
somewhat symbolic notation this means∫

Ωp+1

p (� � ) dΩ =
∫

Ωp+1

ph (� � ) dΩ , (1.515)

where Ωp+1 denotes that part of the slab where the height of the tablecloth
is not zero. This is Ωp plus one row of elements (probably). According to
our assumptions p is zero outside of Ωp—this simplifies the derivation—and
therefore equilibrium is “almost” established∫

Ωp

p dΩ =
∫

Ωp+1

ph (� � ) dΩ . (1.516)

Specifically the weight of the load p on the patch Ωp is the same as the weight
of the load “1/2ph + ph + 1/2ph” on the patch Ωp+1, and therefore Rp

h (the
integral of vh

n along the edge of the patch Ωp) cannot be the same as the
weight of p on Ωp, that is

Rp =
∫

Ωp

p dΩ 	=
∫

Γp

vh
nds = Rp

h . (1.517)

The reviewing engineer would like to have∫
Ωp

p dΩ =
∫

Ωp

ph dΩ , (1.518)

which would only be true if ph were zero in the neighboring elements, which is
very improbable. We can only hope that the smaller the elements become, the
smaller the ramp becomes, and the closer we come to a true local equilibrium.
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Nodal forces

The structural equation Ku = f is not an equilibrium condition. To speak
of nodal equilibrium is misleading because the layperson takes this statement
literally. Rather it expresses the equivalence of the FE load case ph with the
original load case p,

ph(ϕi) = fh
i =

∑
j

kij uj = fi = p(ϕi) i = 1, 2, . . . n , (1.519)

i.e., virtual work (kN m) is equated, not forces (kN); see Eq. (7.92), p. 515.

1.38 Temperature changes and displacement of supports

To get things straight let us repeat the constitutive equations for a bar [0, l]
with mechanical and thermal loading, [115],

u′ − ε = αT ∆T

EAε−N = 0 (1.520)
−N ′ = p .

u = uel + uT (1.521)

where uel = u − uT is the part that corresponds to the mechanical loading.
We assume that the bar is fixed on the left side, u(0) = 0, and that it carries
additionally a single force P at the other end at x = l. Green’s first identity
G(uel, v) = (p, v) + P · v(l)− a(uel, v) = 0 then implies

a(uel, v) =
∫ l

0

p v dx + P · v(l) v ∈ V (1.522)

so that with uh
el = uh − uT

a(uh
el, ϕi) = a(uh − uT , ϕi) =

∫ l

0

p ϕi dx + P · ϕi(l) ϕi ∈ Vh (1.523)

or

a(uh, ϕi) = a(uT , ϕi) + fi ϕi ∈ Vh (1.524)

it follows

Ku = fT + f (1.525)

where

The longitudinal displacement of the bar is, see Fig. 1.134,
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Fig. 1.134. Change of temperature and a displaced support

Fig. 1.135. Temperature changes should leave the bridge stress-free

k ij = a(ϕi, ϕj) fTi
= a(uT , ϕi) fi =

∫ l

0

p ϕi dx + P · ϕi(l) .

(1.526)

In the following we employ a two-node bar element and we assume for sim-
plicity that the mechanical load is zero, p = 0, P = 0.

When the thermal loading is constant as in (1.520) then uT = α ∆T x and
consequently the equivalent nodal forces are

fT1 = a(uT , ϕ1) = EA

∫ l

0

u′
T ϕ′

1 dx = EA

∫ l

0

αT ∆T · −1
l

dx

= −EAαT ∆T = −fT2 = −a(uT , ϕ2) . (1.527)

Hence the system

EA

l

[
1 −1
−1 1

] [
u1

u2

]
=
[

fT1

fT2

]
(1.528)

has the solution u1 = 0, u2 = αT ∆T l and so the elastic part uel is—as we
expect—zero

uh
el = uh − uT = αT ∆T l · ϕ2(x)− αT ∆T x = αT ∆T (

x

l
· l − x) = 0

(1.529)
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Fig. 1.136. Change of temperature in one element only

which means that the bar is stress free σ = N/A = E ε = E (uh
el)

′ = 0 .
Next let the thermal loading increase with the distance x from the fixed

support, αT ∆T x, then

uT =
1
2

αT ∆T x2 (1.530)

and so

fT1 = −1
2
EAαT ∆T l = −fT2 . (1.531)

Now the system (1.528) has the solution u1 = 0, u2 = 1/2 αT ∆T l2. But
because uh is linear and uT is quadratic the elastic solution is not zero

uh
el = uh − uT =

1
2

αT ∆T (x l − x2) (1.532)

and so spurious stresses σ = E (uh
el)

′ appear in the bar which should be stress-
free.

This means that temperature fields must have the same polynomial order
as the strains of the shape functions. If necessary higher order fields must be
interpolated by lower order functions: if the shape functions are quadratic the
temperature fields must be linear, if they are linear the temperature fields
must be constant, etc., see Fig. 1.135.
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Example

In Fig. 1.136 the temperature increases in the second element only, so that
uT = αT ∆ T x in the second element and uT = 0 in the first and the third
element. In these elements the elastic solution uel = uh − uT coincides with
uh and in the second element

uel = uh − uT = αT ∆ T (
2
3

x− x) = −αT ∆ T
x

3
(1.533)

so that N = −αT ∆ T (EA/3) in that element.

Supports

If the support of a beam settles, w(l) = δ, the procedure is virtually the same.
The solution is

w(x) = wδ(x) + wel(x) , (1.534)

where wδ is a deflection curve with the property wδ(l) = δ and wel(x) corre-
sponds to the mechanical load p.

As before we have

a(wh
el, ϕi) = a(wh − wδ, ϕi) =

∫ l

0

p ϕi dx (1.535)

and so

Ku = f δ + f (1.536)

where

k ij = a(ϕi, ϕj) fδi
= a(wδ, ϕi) fi =

∫ l

0

p ϕi dx . (1.537)

In both cases the equivalent nodal forces

fTi
= a(uT , ϕi) = δWe(pT , ϕi) (1.538)

fδi
= a(wδ, ϕi) = δWe(pδ, ϕi) , (1.539)

can be identified, via Green’s first identity

G(uT , ϕi) =
∫ l

0

−EAu′′
T ϕi dx + [NT ϕi]l0︸ ︷︷ ︸

δWe(pT ,ϕi)

−a(uT , ϕi) = 0 , (1.540)

with the virtual work done by external forces pT and pδ, respectively. Note
that NT (x) = EAu′

T (x). In 1-D problems the loads pT are just the fixed end
forces ×(−1) due to the change in temperature α ∆T ,
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i el, ϕi) = 0,

plied

Fig. 1.138. The FE solution wFE = vh
f + wδ

a(uT , ϕi) =
∫ l

0

−EA (α ∆ T x)′′ ϕi dx + [NT ϕi]l0 = NT (l) ϕi(l)−NT (0)ϕi(0)

(1.541)

that is the forces (← →) the bar would exert on the confining walls if it were
fixed on both sides

← −f1 = NT (0) = EAα ∆ T → f2 = NT (l) = EAα ∆ T (1.542)

and the forces pδ result from the movement of the displaced node wi = δ,
because wδ is constructed by picking an appropriate nodal unit displacement
ϕi of the structure.

The solution technique can be summarized as follows:

• First all nodes are kept fixed, and the fixed end forces fTi and fδi due to
the temperature change or the movement of a node are calculated.

Fig. 1.137. Even in
load cases δ where
δW (w
projections are ap-
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• The system Ku = f + f δ is solved, and with the nodal displacements ui

the elastic displacements and the elastic stresses are calculated.
• The stresses caused by the temperature change and the displaced support

respectively are added to the elastic stresses.

Projection

Also load cases δ are solved by a projection method, even when (seemingly)
p = 0. To see this, note that the strain energy product of the part wh

el of the
FE solution (1.534) with any ϕi ∈ Vh must be zero:

a(wh
el, ϕi) = a(wh, ϕi)− a(wδ, ϕi) = 0 . (1.543)

To achieve this we proceed as follows: for the beam to assume the shape
wδ = δ · ϕe

3 (we let δ = 1), the nodal forces in Fig. 1.137 b must be applied.
These forces, so to speak, are the fixed end actions of the load case δ. Next
the opposite of these forces are applied to the original beam (see Fig. 1.137
c) i.e., when w(l) = 0. Let this load case be called −p0

δ and the associated
deflection curve vf . When this load case −p0

δ is solved with finite elements,
the deflection curve vf is projected onto the set Vh (see Fig. 1.138), and to
this function vh

f the deflection curve wδ is added. The result is the FE solution
wFE = wδ + vh

f .
Note that here—as in all standard 1-D problems—vh

f = vf because vf is
a piecewise third-order polynomial which lies in Vh.

Influence functions

If a support of a beam settles by 5 mm the Green’s function for the deflection
w(x) at any point x is

w(x) · 1 = R0(x) · 5 mm (1.544)

where R0(x) is the support reaction due to the point load P = 1, the
Dirac delta δ0, acting at x, s. Sect. 7.3 p. 516. For any other quantity,
w′(x),M(x), V (x), R0 must be replaced by the appropriate support reaction
Ri corresponding to δi.

If the temperature in a frame element changes (α T = temperature strain)
or if an element is prestressed (N+) the influence function for the axial dis-
placement is

u(x) =
∫ l

0

[N0 α T + ε0 N+ ] dx , (1.545)

where N0 and ε0 are the normal force and the strain respectively due to the
Dirac delta δ0. This result is based on a mixed formulation, see Sect. 4.19 p.
399, which provides the theoretical background for such problems. Though in
practice it is much simpler to think in terms of equivalent nodal forces and to
apply the negative end fixing forces to the structure and to follow their effects
with the standard influence functions for load cases p.
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Fig. 1.139. Stability problem
and stress problem

1.39 Stability problems

In practice there are no stability problems, because even in “perfect” structures
we find eccentricities. But then also in stress problems, failure occurs if the
critical load level is reached, as in the example of the Euler beam I in Fig.
1.139. If the horizontal force H is absent, it is a stability problem, and with
the force H it becomes a stress problem, but the critical load

Pcrit =
π2

4
EI

l2
(1.546)

also dominates the stress problem, because when the load reaches Pcrit, which
corresponds to ε = π/2, the bending moment at the base of the column
becomes infinite

M = −H l

ε
tan ε , ε2 = l2

|P |
EI

, (1.547)

because tan ε =∞ for ε = π/2.
In a true stability problem there are no lateral loads p. The only external

load, the compressive force P , enters the problem via the differential equation.
Formally it does not count as an external load.

In stability problems the potential energy Π consists only of the internal
energy Π(w) = 1/2 a(w,w), and Π is zero when the structure buckles (!)

Π(wcrit) =
1
2

a(wcrit, wcrit) =
1
2

∫ l

0

[
M2

crit

EI
− P (w′

crit)
2] dx = 0 (1.548)

so that wcrit cannot be found by minimizing the potential energy. It also
makes no sense to search for a work-equivalent load case ph, because in sta-
bility problems p = 0. Instead Galerkin’s method (weighted residual method)
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is applied. The buckled shape wcrit of the beam must satisfy the differential
equation

EIwIV (x) + P w′′(x) = 0 (1.549)

and homogeneous boundary conditions such as w(0) = 0 and/or w′(0) = 0,
etc. All elastic curves w which satisfy the geometric boundary conditions form
the space V .

The beam is subdivided into m finite elements and allowed to assume
under compression only those shapes that can be expressed by the n nodal unit
displacements of the free nodes,

∑
i uiϕi, where the ϕi are usually the nodal

unit displacements of the first-order beam theory (!). These shape functions
form the basis of the subspace Vh ⊂ V .

Because of (1.549), the right-hand side of the exact deflection curve w =
wcrit is orthogonal to all shape functions ϕi ∈ Vh:∫ l

0

[EIwIV (x) + P w′′(x)] · ϕi dx = 0 . (1.550)

After integration by parts, it follows—because the shape functions ϕi ∈ Vh

satisfy the boundary conditions—that the strain energy product between w
and the shape functions must also be zero:

a(w,ϕi) =
∫ l

0

[EIw′′ϕ′′
i − P w′ϕ′

i] dx = 0 i = 1, 2, . . . , n . (1.551)

The FE solution wh tries to imitate this property of the true solution. That
is, the nodal displacements ui must satisfy the system

(K − P ×KG) u = 0 (1.552)

where

k ij =
∫ l

0

EI ϕ′′
i ϕ′′

j dx kG
ij =

∫ l

0

ϕ′
i ϕ′

j dx . (1.553)

The trivial solution would be u = 0, which is the neutral position of the
beam. Because the right-hand side is zero, a solution u 	= 0 can only exist if
the determinant of the matrix is zero:

det (K − P ×KG) = 0 . (1.554)

The smallest positive number P > 0, for which this holds is the approximate
buckling load Ph

crit.
We know that the pitch of a guitar string will increase with the tension

in the string. The opposite tendency we observe in a column. The frequency
will decrease if the compression increases and if the column finally buckles
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Fig. 1.140. The buckling load and the first eigenmode

the return frequency has reached its lowest possible value, namely zero, which
means that it takes the column infinitely long to perform one full swing.

Not all stability problems possess a distinctive lowest eigenvalue. In some
cases a geometric nonlinear analysis with proper imperfections is not only
more concise but sometimes also the only possible way to predict the limit
state of a structure.

Rayleigh quotient

In FE analysis the buckling load Ph
crit is an overestimate. This follows from

the fact that the buckled shape wcrit minimizes the Rayleigh quotient on V ,
and that the minimum value is just Pcrit:

Pcrit =

∫ l

0

EI(w′′
crit)

2 dx∫ l

0

(w′
crit)

2 dx

. (1.555)

But because the minimum on a subspace Vh is always greater than the mini-
mum on the whole space V , it follows that Ph

crit ≥ Pcrit.
Usually the eigenvector u that belongs to the eigenvalue Ph

crit is normalized
in the sense that |ui| ≤ 1. If the associated shape

wh =
∑

i

ui ϕi (1.556)

is substituted element-wise into the differential equation EIwIV (x)+Pw′′(x)=
0 and the associated nodal forces and moments are studied, the FE load case
ph is recovered. The latter is an expansion in terms of the unit load cases p i

ph =
∑

i

ui pi . (1.557)

Because the nodal unit displacements ϕi of first-order beam theory as for
example

ϕ1(x) = 1− 3x2

l2
+

2x3

l3
, (1.558)
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Fig. 1.141. The load case ph solved by the first eigenmode

are not homogeneous solutions of the differential equation of second-order
beam theory

(EI
d4

dx4
+ P

d2

dx2
) ϕ1(x) = P (

12 x

l3
− 6

l2
) (1.559)

lateral loads hold the “buckled” beam in place. That is, the FE solution is
the solution of a stress problem, even though it shares with the exact curve
the property that it is orthogonal to all ϕi ∈ Vh. In normal FE analysis such
functions would be called spurious modes, because they do not interact with
the other shape functions ϕi.

In FE analysis to the “buckled” shape of a beam or a plate belongs a load
case ph 	= 0 which is orthogonal to all nodal unit displacements.

If the homogeneous solution of second-order beam theory were used as
shape functions, the FE program would be an implementation of the second-
order slope-deflection method, and the buckled shape would be exact because
then wcrit would lie in Vh.

Example. An FE analysis of the continuous beam in Fig. 1.140 with two
elements yielded for the buckling load the value

Ph
crit =

16.48EI

l2
>

12.7EI

l2
= Pcrit (1.560)

and the buckled shape [
u4

u6

]
=
[−0.707

1

]
. (1.561)

If the FE solution wh is substituted into the differential equation and the
jumps in the shear force V and the bending moment M are measured at the
nodes, then this gives an impression of the load case ph (see Fig. 1.141). But
note that this arrangement is only a snapshot because the load case ph can
be scaled in an arbitrary way, since any multiple of the “buckling mode” wh

is also a possible solution.
As can be seen in Fig. 1.141 forces are necessary to hold the buckled

beam in place. This is equivalent to saying that the opposing forces prevent
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object than a perfect
circle

the beam from buckling. This explains why the approximate buckling load
is greater than the exact load. The same phenomenon is experienced by two
acrobats in Fig. 1.142. The acrobat on the perfect circle finds himself in an
unstable position, while his colleague profits from the fact that the vertices of
the polygon hamper rotation, and are marginally stabilizing his position.

1.40 Interpolation

In some sense the FE method is structural analysis with polynomials, i.e.,
functions such as

u(x) = x + 3 x2 u(x, y) = 1 + x y + x5 y7 . (1.562)

Polynomials are very versatile functions, and easy to handle, but if the dis-
placement u is assumed to be zero in the first span and to increase linearly
in the second span, two distinct polynomials are needed. Interpolation with
piecewise polynomials, as in Fig. 1.143, is therefore the basic procedure of FE
analysis.

For a mathematician these hat functions, or more generally these nodal
unit displacements ϕi, are the real finite elements.16 The structural elements
are only considered a convenient tool to generate the nodal unit displacements,
the “real” finite elements.

Indeed the term finite element is not unique. When we speak of linear
elements we mean the shape functions. But when we speak of plate or shell
elements we mean the structural element.

The characteristic feature of the FE method is that the shape functions
have a finite support , because they are nonzero only over a small region of the
structure while the basis functions of a Fourier series such as
16 “The use of the concept finite element may seem deceptive. In principle we subdi-

vide the domain into elements, that is geometric objects, while by finite elements
we mean functions.” [51]

Fig. 1.142. A poly-
gon is a more stable
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Fig. 1.143. Construction of a polygon from hat functions ϕi

wn(x) =
n∑

k=1

(
ak · sin kπ x

l
+ bk · cos

kπ x

l

)
, (1.563)

are everywhere oscillatory.
Hence, in this sense the FE method is actually a method of finite functions.

This is similar to the three-moment equation, where by a smart choice of
redundants the bandwidth of the flexibility matrix F = [δij ] can be kept
small (Fig. 1.144 a). If instead all interior supports were removed (Fig. 1.144
b), the structure would be statically determinate as well but the flexibility
matrix

δ ij =
∫ l

0

Mi Mj

EI
dx (1.564)

would be fully populated and certainly ill-conditioned, and therefore suscepti-
ble to rounding errors, because—given that the number of spans is large—the
moments Mi and Mj , and thus the numbers δij of adjacent nodes, would be
nearly identical.
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Shape functions ϕi that extend over the whole structure—like the deflec-
tion curves of the redundants Xi = 1 in Fig. 1.144 b—are not a good choice for
the FE method. The overlap between the shape functions must be kept small.
In this sense the nodal unit displacements are a better choice, because they
are almost orthogonal , and hence lead to much better-conditioned systems of
equations.

The FE method could rightly be called an interpolation method if there
were not the problem that the function to be interpolated is not known. It
would not be claiming too much to say that

The whole theory of finite elements is only concerned with the question of
what the best choice for the unknown nodal deflections wi might be?

Here best does not necessarily mean that the interpolating function passes
through the nodes of the original curve, just that the difference between the
FE stresses and the true stresses is minimized. This is the difference between
a “normal” interpolation and an FE interpolation.

1.41 Polynomials

Each function can be expanded in a Taylor series

u(x) = u(0) + u′(0)x + u′′(0)
x2

2
+ u′′′(0)

x3

3!
+ . . . (1.565)

and in the same fashion the displacements within an element can be approxi-
mated by constant, linear, or quadratic functions. The shape functions of the

c) optimal choice
Fig. 1.144. Continuous beam: a) system, b) unfavorable choice of redundants,
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Fig. 1.145. Linear and quadratic shape functions

single nodes xj

ϕi(xj) = δ ij =
{

1 i = j
0 i 	= j

(δ ij = Kronecker delta) (1.566)

are polynomials of degree ≤ n. A Lagrange element has internal nodes and
edge nodes, while serendipity elements only have edge nodes. Lagrange ele-
ments are based on Lagrange polynomials; see Fig. 1.145.

It is not guaranteed that the shape functions form a complete set, i.e., that
they can represent all possible polynomials of degree n on the element

f(x) = a0 + a1 x + a2 x2 + . . . + an xn
?
=

n+1∑
i=1

ui ϕi(x) . (1.567)

The number of terms needed for a complete polynomial of degree n in the
x−y-plane increases rapidly, as can be seen from Pascal’s triangle:

1
x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

x5 x4y x3y2 x2y3 xy4 y5
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1.146. The

ments of a beam ele-

polynomials

A complete polynomial of order zero, one, two, three, four, or five (last row
in the triangle) must have 1, 3, 6, 10, 15, or 21 terms which means that only
elements with 1, 3, 6, 10, 15, or 21 nodes are complete.

In Euler–Bernoulli beams, Hermite polynomials are used, which enable

In the sense of backward error analysis, the shape an element assumes tells
us which load the element carries, as in Fig. 1.147. If a rope is slung around
a wheel, then the pressure p is inversely proportional to the radius R of the
wheel

p = −Hw′′ = −H
1
R

. (1.568)

And if wh(x) = (1 + 0.2x + 3 x2 − 5 x3 + 3 x5 − x6)/EI is the deflection of an
element, the element obviously carries the distributed load

ph(x) = EI wIV
h (x) = 360 (x− x2) kN/m , (1.569)

which is balanced by the shear forces V and moments M at the ends of the
beam element (see Fig. 1.148, p. 203) because

• Each polynomial satisfies the equilibrium conditions.

This is true for all elements. The resultant stresses at the edge of an element
always balance the distributed load to which the element is subjected. The
proof is based on Green’s first identity: for any smooth function u—not just
polynomials (!)—G(u, r) = δWe − δWi = δWe = 0, where r = a + x b is a
rigid-body motion.

Mapped polynomials

In FE analysis mostly isoparametric elements are used, i.e., each element Ωe

is generated by mapping a master element onto the region Ωe of the structure

ment are third-degree

nodal unit displace-
Fig.

Fig. 1.146.
one to interpolate the deflection and the first derivative at the nodes; see
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Fig. 1.147. Piecewise linear shape functions in a bar

where the element is located and the polynomials that define the mapping are
the same polynomials that define the nodal unit displacements.

Let us assume that on the master element ΩM = [−1, 1] two nodal unit
displacements are defined,

ϕ̂1(ξ) =
1− ξ

2
ϕ̂2(ξ) =

1 + ξ

2
, (1.570)

and that this master element is mapped onto the interval Ωe = [3,7] of the
x-axis:

x(ξ) = 3 · ϕ1(ξ) + 7 · ϕ2(ξ) = 5 + 2 ξ . (1.571)

Now to map the nodal unit displacements onto the element Ωe, the inverse
ξ(x) = 0.5x− 2.5 of this mapping function

ϕ1(x) =
1− ξ(x)

2
=

3.5− 0.5x

2
ϕ2(x) =

1 + ξ(x)
2

=
0.5x− 1.5

2
(1.572)
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Fig. 1.148. Each polynomial satisfies the equilibrium conditions

must be applied. These functions are called mapped polynomials. Formally the
mapped polynomials are compositions of the “pullback” function ξ(x) and the
original shape functions ϕ̂i(ξ):

ϕi = ϕ̂i ◦ ξ . (1.573)

In isoparametric elements all nodal unit displacements are such mapped poly-
nomials. The interesting question then is: When are the mapped polynomials
actually polynomials? When does the transformation ξ → x leave the nature
of the shape functions invariant? This is true if the master element ΩM and
the actual finite element Ωe are affine, that is, if the finite element Ωe is sim-
ply a blow-up of the master element. To stretch an element, linear mapping
functions

x(ξ, η) = a0 + a1 ξ + a2 η y(ξ, η) = b0 + b1 ξ + b2η (1.574)

suffice. Therefore in such elements the determinant of the Jacobi matrix is
constant, that is the ratio dΩ/dΩM is at all points the same and it is sim-
ply a scaling factor. In a mesh consisting of simple triangular or rectangular
elements with linear or bilinear shape functions, this is guaranteed. But if
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Fig. 1.149. FE analysis of a plate with bilinear elements. The four nodal unit
displacements of the two nodes and the associated unit load cases. The element
loads are not displayed

a rectangular bilinear element is mapped onto a skew-edged element, or if a
single node is intentionally displaced, then it is not.

What is more important, though is that the mapping between the master
element ΩM and the element Ωe is one-to-one and onto so that every point
in Ωe can be uniquely identified with a point in ΩM and vice versa. That
being the case, the mapped polynomials, the composition of the pullback
functions ξ(x, y), η(x, y), and the master-element shape functions ϕi(ξ, η), are
all smooth functions, even though they might not be polynomials [121].
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Unit load cases

Typically the unit load cases pi which can be associated with the nodal unit
displacements have the same polynomial character as the displacement fields—
only some orders lower; see Fig. 1.149.

Interpolation

At first glance the FE method can be considered interpolation of an unknown
function with piecewise polynomials (or mapped polynomials). But caution is
in order here, because the right strategy is not to interpolate but to minimize!
Suppose the deflection surface w of a slab were interpolated at the nodes:

wI(x) = w(x1) ϕ1(x) + w,x (x1) ϕ2(x) + . . . + w,y (x3n) ϕ3n(x) .(1.575)

This interpolating function wI would then be an inferior solution, as its dis-
tance from the exact solution in terms of potential energy

Π(w) < Π(wh) < Π(wI) ← wI is not as close to w as wh (1.576)

and also in terms of strain energy

a(e, e) = a(w − wh, w − wh) < a(w − wI , w − wI) = a(eI , eI) (1.577)

would exceed the distance of the FE solution (see Eq. (7.412), p. 572).
Many asymptotic error estimates are based on this property and on Céa’s

lemma which states that

||w − wh||m ≤ c inf
vh∈Vh

||w − vh|| (inf = infimum) . (1.578)

This lemma essentially means that the error in the FE solution is propor-
tional to the minimum distance of w from Vh and so the problem of estimating
the error ||w − wh||m is reduced to a problem in approximation theory. Be-
cause the strain energy product a(w,w) and ||w||2m are equivalent norms we
may write as well

a(e, e) = a(w − wh, w − wh) ≤ c̃ inf
vh∈Vh

||w − vh|| . (1.579)

Hence if the interpolation error on the space Vh is of order

||w − wI ||m ≤ ht−m ||w||t (1.580)

then this automatically provides an upper bound of the error in the FE solu-
tion because the FE solution is closer in the sense of the strain energy to the
exact solution than the interpolating function wI

a(e, e) = a(w − wh, w − wh) ≤ ĉ ht−m ||w||t . (1.581)
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Fig. 1.150. Weights fG
i for σxx in a bilinear element, σxx =

∑4
i=1 fG

i
• ui

So if the mesh is well qualified to interpolate the deflection surface then we
might have a good mesh.

The difference between the interpolating function wI and the FE solution
wh lies only in the coefficients wi, because the shape functions ϕi are the same.
The coefficients wI

i of the interpolating function wI are the nodal values of
w(x), while the FE coefficients wh

i are the solution of the system Kw = f ,
which guarantees that the FE solution minimizes the distance in the strain
energy. If the interpolating function wI were a better solution the nodal values
of the exact solution would solve the system Kw = f . Because this is not
true in 2-D and 3-D problems, the interpolating function must be an inferior
solution.

Superconvergence

The nodes (with regard to displacements) and the Gauss points or the mid-
points (with regard to stresses) of the elements are called superconvergent
points because the accuracy of an FE solution is often superior at these points.

From an engineering standpoint it seems clear why the displacements are
superior at the nodes. Simply because the dip caused by a point load δ0

(Green’s function) can best be represented at a node, while a dislocation can
best be modeled, so it seems, if the source point lies halfway between the
nodes.

The latter point is best understood by looking at the nodal influence func-
tion for the stresses, say,

σxx(x) =
∑

i

fG
i • ui =

∫
Ω

G1(y, x) • p(y) dΩy . (1.582)

Recall that the equivalent nodal forces fG
i are the stresses σxx(ϕj)(x) of the

shape functions at x. If the mesh consists of a regular array of bilinear elements
of size h× h then at the node x itself the vector fG

i is zero, if we let σxx(x)
the average stress at the node, because the stresses of the four neighboring
element shape functions on the four sides of the node cancel, similar to
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1
h
− 1

h
+

1
h
− 1

h
= 0 (1.583)

and so only the fG
i at the edge of the larger patch [2h×2 h] are non-zero, but

this means that by averaging the stresses at the nodes we artificially double
the mesh width, h→ 2 · h, we loose accuracy.

If the point x lies inside an element then only the four nodes of the element
[h×h] contribute to the formula (1.582); see Fig. 1.150. If x is the center of the
element then the weights in the finite difference scheme for σxx are all the same
(see Fig. 1.150 c) but if x wanders away from the center the node with the
shortest distance to the source point x gains the upper hand, it contributes
the most to σxx(x), and if the point x crosses the line that separates two
elements then the weights change abruptly, which explains the typical jumps
in FE stresses.

Ideally the weights in the finite difference scheme for σxx(x) should be the
same at each point in Ω. That they are not the same is a simple consequence of
the fact that the FE solution is an expansion in terms of nodal basis functions
and the derivative of uh is simply the sum of the derivatives of the shape
functions

u′
h(x) = u1 ϕ′

1(x) + u2 ϕ′
2(x) + . . . = u1 · weight1 + u2 · weight2 + . . .

(1.584)

that is the weights are the slopes of the shape functions at the point x.
Note that the weights for a displacement, say ux(x), are not that sensitive

to the question of which element contains the point. When the point x is close
to a node then 90% of the weight is concentrated in that node—regardless of
on which side of the node the point x lies.

In narrower terms, superconvergence means that in some cases the FE
solution wh approximates the interpolating function wI ∈ Vh of the exact
solution (wI = the function which agrees with w at the nodes) with a higher
rate of convergence than the solution w itself. This is no surprise given that
both approximate solutions are based on the same functions ϕi and so the
error

eI−h(x) = wI(x)− wh(x) =
∑

i

ei ϕi(x) (1.585)

can be traced back to the error in the output of the approximate nodal Green’s
functions

ei = wI
i − wh

i =
∫

Ω

(G0(y,xi)−Gh
0 (y,xi)) p(y) dΩy (1.586)

(for rotational degrees of freedom G0 would have to be replaced by G1) so that
if the error at the nodes is small the two solutions will also be close between
the nodes.
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two opposing forces
1/∆x. The horizon-

downwards (+) and
upwards (-) respec-
tively

1.42 Infinite energy

If a bar is stretched by two opposing forces which increase in magnitude with
decreasing distance ∆x between the two forces (Fig. 1.151)

P =
1

∆x
P = − 1

∆x
(1.587)

then as the distance ∆x tends to zero the horizontal displacement u of the bar
becomes discontinuous; see Fig. 1.151. At the collision point of the two forces
a gap of size u(x+) − u(x−) = 1/EA opens up. It is no surprise that in the
final stage of this experiment the strain energy becomes infinite (EA = 1):

1
2

∫ l

0

N2

EA
dx =

1
2

∫ l

0

1
∆x2 dx =

1
2

1
∆x2 ∆x =

1
2

1
∆x

=∞ ∆x �→ 0 .

(1.588)

M =
1

∆x
M = − 1

∆x
(1.589)

then in the limit ∆x �→ 0 a plastic hinge will form at the collision point and
the strain energy will become infinite:

1
2

∫ l

0

M2

EI
dx =

1
2

∫ l

0

1
∆x2 dx =

1
2

1
∆x

=∞ ∆x �→ 0 . (1.590)

What these examples are saying is that infinite forces are necessary to tear a
bar apart or to form a plastic hinge in a beam, and by virtue of the energy
balance, Wi = We =∞× gap, the strain energy Wi must also be infinite.

In mathematical terms, a fracture or a plastic hinge is a discontinuity in
a displacement, and the message is that discontinuous displacements mean

Fig. 1.151. Effect of

tal displacements
are plotted vertically

Similar things happen in a beam, see Fig. 1.152. If two opposing moments
are applied to a beam, and if these moments increase in magnitude as the
distance ∆x between the two moments shrinks,

infinite energy, see Fig. 1.153.
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Fig. 1.152. The closer the moments,
the larger they become

Fig. 1.153. A linear
interpolation requires
plastic hinges

Remark 1.18. Note that when the work done by these forces or moments 1/∆x
via functions u or w is calculated and we take the limit, we are actually
differentiating u or w′, because

lim
∆x→0

u(x + 0.5∆x)− u(x− 0.5∆x)
∆x

= u′(x) (1.591)

lim
∆x→0

w′(x + 0.5∆x)− w′(x− 0.5∆x)
∆x

= w′′(x) . (1.592)

1.43 Conforming and nonconforming shape functions

Elements are called conforming if the functions ϕi—more accurately the dis-
placement terms of the ϕi—are continuous across interelement boundaries.

What counts as a displacement term depends on the order of the dif-
ferential equation. In a second-order equation such as −EAu′′, the zero-th
order derivative u is a displacement and the first-order derivative N = EAu′

is a force. In a fourth-order equation like EI wIV , the deflection w and the
slope w′ are displacement terms and the second- and third-order derivatives
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1.154. Point

oshenko beam

M = −EI w′′ and V = −EIw′′′ are force terms. Accordingly, conforming

C0 − elements : for second-order equations
C1 − elements : for fourth-order equations

Because discontinuous displacements imply infinite energy, it might seem that
nonconforming shape functions could not be a proper choice for an energy
method, because only the finite part of the energy can be considered in the
analysis. But a whole range of nonconforming elements are successfully em-
ployed in FE analysis. There are different reasons for this:

• The elements are basically conforming elements, and only by enriching
the shape functions with additional terms do they become nonconforming
(Wilson’s element).

• Hybrid variational principles are used or other modifications are applied.

One member of the first class is Wilson’s plane element, which is based on
a conforming bilinear element to which two internal modes are added; see
Sect. 4.4, p. 338. Because these two internal modes ensure that the deformed
elements overlap, the element is nonconforming. But the element is superior
to a standard bilinear element, and if the element size tends to zero h → 0,
the element becomes conforming.

The second class of nonconforming elements is based on hybrid or modified
variational principles, where the “defect” of the element, i.e., the jump in the
displacements at the interelement boundaries, is built into the functional with
the help of Lagrange multipliers. Instead of the principle of minimum potential
energy

Π(u) =
1
2

∫
Ω

E • S dΩ −
∫

Ω

p • u dΩ , (1.593)

beam and b) a Tim-

load applied to a)
Fig.

an Euler–Bernoulli

elements are classified as C0 or C1 elements, (see Fig. 1.154),
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a hybrid form of this principle is employed:

Π(u, tσ) =
1
2

∑
e

∫
Ωe

E • S dΩ −
∫

Ω

p • u dΩ +
∑

i

∫
Γi

tσ • (u+ − u−) ds

(1.594)

where u+ − u− are the jump terms of the displacement field at the interele-
ment boundaries Γi, and the traction vector tσ plays the role of a Lagrange
multiplier.

Now it is of no concern that the displacement field is discontinuous. Hence,
what is a conforming element and what is not depends on the variational
principle employed. The error committed if nonconforming shape functions
are used in the standard functional (1.593) is that the penalty terms at the
interelement boundaries Γi are neglected.

The message is that the “measuring device” that is the strain energy in
the functional Π(u), must be compatible with the peculiarities of the shape
functions; see Eq. (1.594).

The so-called spurious modes also belong in this context. These are shape
functions ϕi(x) 	= 0 with zero strain energy:

δWi(ϕi, ϕi) =
∫ l

0

EI (ϕ′′
i )2 dx = 0 but ϕi 	= 0 . (1.595)

The entries on the main diagonal of the stiffness matrix vanish for such shape
functions:

kii = δWi(ϕi, ϕi) = 0 . (1.596)

Spurious modes normally only occur if a program author tinkers with the
basic algorithm, if the author reduces the sensitivity of an FE program by
using, for example, reduced integration.

But in mixed formulations or multi-physics problems spurious modes are
not that seldom observed. They are an indication that either the implemen-
tation is not adequate or that the mathematical model is very sensitive to the
physical parameters as for example in the analysis of a nearly incompressible
fluid.

1.44 Partition of unity

There is a logic built into influence functions: the influence functions for the
support reaction A and B of the beam in Fig. 1.155 add to 1 at every point
x:

ηA(x) + ηB(x) = 1.0 at all points x . (1.597)
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Fig. 1.155. The sum of the two influence functions for the support reactions RA

and RB is 1.0 at every point

It cannot be 1.10 or 0.90; it must be exactly 1 otherwise the beam would be
a wonderful machine that could increase or decrease the load at will.

The same logic applies to the nodal unit displacements, because they are
influence functions for the equivalent nodal forces. To perform a unit transla-
tion w = 1 of a slab, the value w = 1 is assigned to the translational degrees
of freedom. The virtual work done by the surface load representing the weight
g is the integral ∑

i

∫
Ω

g ϕi dΩ . (1.598)

This integral is only equal to the work done by the total weight G

G · 1 =
∑

i

∫
Ω

g ϕi dΩ , (1.599)

if the nodal unit displacements add to 1 at every point x:∑
i

ϕi(x) = 1 for all x . (1.600)

In other words if the value ui = 1 is assigned to all translational degrees of
freedom of a structure, the structure must undergo a true rigid-body motion
and no point may lag or may rush ahead, i.e., the shape functions must form a
partition of unity in the domain Ω. This is a very important property, because
without it there would be no global equilibrium.

In Euler–Bernoulli beams and Kirchhoff plates it is also required that the
nodal unit displacements represent (pseudo) rotations such as

w(x) = a x (beam) w(x, y) = a x + b y (slab) (1.601)

exactly, because without that property the resulting moments would not be
the same,

∑
Mh =

∑
M .

In plates the symmetry of the stress tensor σxy = σyx implies M = 0. This
is why in 2-D elasticity only translations such as r = [1, 0]T or r = [0, 1]T

count as rigid-body motions.
A mesh inherits the ability to represent rigid-body motions from the indi-

vidual elements. This means that if an individual element has this property,



1.45 Generalized finite element methods 213

then so does the whole mesh if the nodal unit displacements are C0 or C1

respectively (beams and slabs), that is, if the elements are conforming.

The logic behind all this is the following:

1. If rigid-body motions can be represented exactly on the mesh, they also
lie in V +

h , because V +
h contains all deformations that can be “reached” by

the nodal unit displacements—with a proper choice of the coefficients ui

this is possible (V +
h = Vh + rigid-body motions).

2. Because the two load cases p and ph are equivalent with respect to the
ϕi ∈ V +

h they are also equivalent with respect to all rigid-body motions

δWe(p, r) = δWe(ph, r) r = rigid-body motion . (1.602)

3. We have

δWe(p, r) =
∑

H . . . =
∑

V . . . =
∑

M (1.603)

depending on what kind of rigid-body motion r = a + ω × x is.
4. But (1.602) and (1.603) imply that

→
∑

H =
∑

Hh ↓
∑

V =
∑

Vh �

∑
M =

∑
Mh

(1.604)

which is just the statement that R = Rh.

Next to rigid-body motions, constant stress states are the most important
stress fields which an FE program must be able to represent exactly. Only
then will an FE program have a chance to come close to the exact solution if
the element size h shrinks to zero.

1.45 Generalized finite element methods

In the past decade the FE method has been extended in various directions.
Most of these extensions, as the Element Free Galerkin (EFG) method or the
X-FEM method, can be characterized in the framework of the Generalized
Finite Element Method (GFEM) or as it was called previously the Partition
of Unity Method (PUM).

According to the GFEM common to all these techniques is that the domain
Ω is divided into different regions ωj and that to each region belongs a local
space Vj of functions, not necessarily polynomials, that match the (assumed)
character of the solution and thus ensure good local approximation. Then a
partition of unity is used to “paste” these spaces together to form the trial
space Vh. The partition of unity of the domain Ω may be based on a simple
triangulation and so it offers more freedom when compared to standard FE
methods, [20], where the shape functions and the mesh are closely linked.
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Fig. 1.156. X-FEM and horizontal displacement in a cracked bar: a) regular mesh
and discontinuous shape function; b) point load on the left side and c) on the right
side of the crack; d) half-sided load p e) linear load p(x) = p0 · x/l
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Meshless methods

A significant stimulus in the development of meshless methods comes from
the problem of moving boundaries as in crack growth. The Element Free
Galerkin (EFG) method and the Particle or the Finite Point method attempt
to overcome this problem.

The EFG is based on a moving least squares scheme that is a method
of reconstructing continuous functions from a set of “arbitrarily” distributed
point samples via the calculation of a weighted least squares measure which is
biased towards the region around the point at which the reconstructed value
is requested.

The advantages of meshfree methods compared to finite elements are
the higher order of the shape functions, simpler incorporation of h- and p-
adaptivity and certain advantages in crack problems. The most important
drawback of meshfree methods though is their higher computational cost.
The calculation of the strain energy products kij of “free floating” meshless
shape functions is anything but trivial.

X-FEM

The idea of the so-called extended FE method (X-FEM) is to model cracks and
other discontinuities by locally enriching the trial space Vh with discontinuous
shape functions through a partition of unity method.

To fix ideas we consider the bar in Fig. 1.156 a which is subdivided into
four linear elements. We want to model a crack—or rather a fracture—of the
bar at node 2. To this end we introduce at this node an additional shape
function

ψ2(x) = J(x2) · ϕ2(x) J(x2) :=
{

0.5 x > x2

−0.5 x < x2
(1.605)

which is the product of a step function and the unit displacement ϕ2(x) of
the node x2.

The five standard linear shape functions ϕi(x), i = 0, 1, 2, 3, 4, form a par-
tition of unity ∑

i

ϕi(x) = 1 0 ≤ x ≤ l , (1.606)

that is an assemblage of nodal influence functions, and by multiplying the
step function J(x2) with ϕ2(x) the step function is restricted to the imme-
diate neighborhood of the node x2. That is any additional function which is
introduced to enrich the trial space Vh lives under the umbrella of one of the
nodal shape functions. In the X-FEM terminology this is written as

uh(x) =
∑

i

ϕi(x) · (ui +
∑

j

ψj(x) ui
j)

=
∑

i

ϕi(x) · ui +
∑

i

ϕi(x) · (ψ1(x)ui
1 + ψ2(x)ui

2)) . (1.607)



216 1 What are finite elements?

Fig. 1.157. Shape functions and derivatives of the shape functions

The extra functions are the functions ψj(x) and the coefficients ui
j are the

additional degrees of freedom. At nodes i where no functions are added the
ui

j are zero. In (1.607) we assumed that two extra functions are added at each
node. Of course the ψj(x) can vary from node to node and some of the ui

j can
be zero.

Our numbering scheme is simply the following:

uh(x) = u1 · ϕ1(x) + u2 · ϕ2(x) + u3 · ψ2(x) + u4 · ϕ3(x) . (1.608)
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The problem we face is that the new function ψ2(x) is discontinuous at x2

which means that the strain energy product

k33 =
∫ l

0

EA (ψ′
2(x))2 dx =∞ (1.609)

is infinite. Now we could simply ignore the infinite slope and split the integral
into two parts

k33 =
∫ x2−ε

0

. . . dx +
∫ l

x2+ε

. . . dx =
(

0.5
le

)2

· le +
(

0.5
le

)2

· le = EA · 0.5 le

(1.610)

or we could argue as follows: the discontinuous shape function ψ2(x) can be
considered the limit of the zig-zag function ψε

2(x) in Fig. 1.156 if ε tends to
zero. And if we take the strain energy of the zig-zag function the integral in
the middle

k33 =
∫ x2−ε

0

. . . dx +
∫ x2+ε

x2−ε

EA [(ψε
2(x))′]2 dx +

∫ l

x2+ε

. . . dx (1.611)

explodes if ε→ 0∫ x2+ε

x2−ε

EA [(ψε
2(x))′]2 dx � EA · 0.52

ε2
· 2 ε . (1.612)

To prevent this from happening we let EA = 0 in that part of the bar. The
result is of course the same as before but our treatment of the singularity
seems better justified because that is what we want to model: a bar where
EA = 0 at one point. We will see in the following that the structure follows
exactly this argument.

The stiffness matrix of the bar is calculated as usually, (see Fig. 1.157),
by forming the strain energy products of the shape functions—the fact that
EA = 0 at x2 has no influence on the other values kij

K =
EA

le

⎡
⎢⎢⎣

2 −1 0.5 0
−1 2 0 −1
0.5 0 0.5 −0.5

0 −1 −0.5 2

⎤
⎥⎥⎦ . (1.613)

For a first try a point load P = 1 is applied at the node x1 and the FE
program promptly produces the shape in Fig. 1.156 b. Obviously does the
program understand what we want. Simply by adding a discontinuous shape
function the structure develops a crack! And if the point load acts on the
other side of the “crack” the situation is simply reversed, see Fig. 1.156 c.
Also the response to a half-sided constant load p, Fig. 1.156 d, and a load
p(x) = p0 · x/l, Fig. 1.156 e, is correct.
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Fig. 1.158. X-FEM and crack between two nodes: a) regular mesh and discontin-
uous shape function; b) horizontal displacement due to the point load on the left
side and c) on the right side of the crack

If the crack lies between two nodes (see Fig. 1.158) the discontinuous shape
function extends only from node x1 to x2, (H(ξ) = Heaviside function, which
is zero for ξ < 0 and +1 for ξ > 0),

ψ2(x) = ϕ1(x) ·H(x− 1.5) + ϕ2(x) · (H(x− 1.5)− 1) (1.614)

(H(ξ)− 1) = Heaviside on the negative axis) so that

uh(x) = u1 · ϕ1(x) + u2 · ψ2(x) + u3 · ϕ2(x) + u4 · ϕ3(x) . (1.615)

Now the stiffness matrix is

K =
EA

le

⎡
⎢⎢⎣

2 1 −1 0
1 1 −1 0
−1 −1 2 −1

0 0 −1 2

⎤
⎥⎥⎦ . (1.616)

And as before do the actions of the point loads stop at the crack, see Fig.
1.158 b and c.

The extension of this technique to 2-D and 3-D problems is straightfor-
ward, see Fig. 1.159,
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Fig. 1.160. Crack-tip functions

Fig. 1.159. Crack between nodes, [169]
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Fig. 1.161. Various elements

uh(x) =
∑

i

ui ϕi(x) +
∑
j∈J

uH
j ϕj(x)H(x) +

∑
k∈K

ϕk(x) (
4∑

l=1

cl
k Fl(x))

(1.617)

where the Heaviside function H(x) which models the discontinuity at the
crack is multiplied with the shape functions of the circled nodes, set J , and
the asymptotic crack-tip displacement field which consists of four modes (see
Fig. 1.160)

F1(x) =
√

r sin
θ

2
F2(x) =

√
r cos

θ

2
(1.618)

F3(x) =
√

r sin
θ

2
· sin θ F4(x) =

√
r cos

θ

2
· sin θ (1.619)

r =
√

x2 + y2 θ = arctan
y

x
(1.620)

is multiplied with the shape functions of the set K of squared nodes, [77],
[169].

1.46 Elements

Element displacements are represented in general by polynomials. The
higher the degree of the polynomials, the more flexible an element is, the more

The type of an element, (see Fig. 1.161), is determined by the strains and
stresses which result if the element is deformed; that is, the type depends
foremost on the definition of the strain energy of the element.
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stress and strain states it can represent, and flexibility—think of the Green’s
functions—is very important in the FE method. There are three requirements
which any element must meet:

• Rigid-body motions: the element must be able to represent rigid-body mo-
tions and constant strain states exactly, that is, it must be capable of
following the element through the first two terms in the Taylor series of
the displacement field, u(x) = u(0) +∇u(0) x.

• Isotropy and rotational invariance: Theoretically a solution should not
depend on the orientation of the element, that is the elements should
not prefer particular directions. This is guaranteed if the polynomials are
complete.

• Continuity: At the interelement boundaries the displacements must be
continuous. Such elements are called C0-elements. If two neighboring

eral the displacements along the interelement boundary are the same. In
plate theory (Kirchhoff plates, K ∆∆ w) and beam theory (Euler–Bernoulli
beam, EI wIV ) the first-order derivatives must be C1 across interelement
boundaries.

The requirement that the polynomial shape functions be complete can be
relaxed: to have isotropy and rotational invariance it suffices that all terms
which are symmetric to the diagonal of Pascal’s triangle be included.

1.47 Stiffness matrices

A stiffness matrix K is quadratic and symmetric. The number of rows and
columns is equal to the number of degrees of freedom of the element. The
elements of a stiffness matrix, as for example of a bar element or a beam

K =
EA

l

[
1 −1
−1 1

]
, K =

EI

l3

⎡
⎢⎢⎣

12 −6l −12 −6l
−6l 4l2 6l 2l2

−12 6l 12 6l
−6l 2l2 6l 4l2

⎤
⎥⎥⎦ ,

(1.621)

are the strain energy products between the nodal unit displacements:

k ij = a(ϕi, ϕj) =
∫ l

0

EAϕ′
i ϕ′

j dx =
∫ l

0

σi εj A dx bar (1.622)

k ij = a(ϕi, ϕj) =
∫ l

0

EI ϕ′′
i ϕ′′

j dx =
∫ l

0

mi κj dx beam . (1.623)

The same holds for plates and slabs (Kirchhoff):

elements have the same displacements at the common nodes then in gen-

element, see Fig. 1.162,
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Fig. 1.162. A bar and a beam element, and the nodal unit displacements

k ij = a(ϕi,ϕj) =
∫

Ω

Si • Ej dΩ =
∫

Ω

σi • εj dΩ (1.624)

k ij = a(ϕi, ϕj) =
∫

Ω

M i • Kj dΩ =
∫

Ω

mi • κj dΩ , (1.625)

where the corresponding terms are the scalar product between the stress tensor
of the field ϕi and the strain tensor of the field ϕj , or the moment tensor M i

of ϕi and the curvature tensor Kj of ϕj .
If the stress vectors σi and strain vectors εi of the element nodal unit

displacement fields ϕi are written as row vectors, then

B(n×3) = [εT
1 , εT

2 , εT
3 , . . . , εT

n ]T S(n×3) = [σT
1 ,σT

2 ,σT
3 , . . . ,σT

n ]T ,

(1.626)

and the stiffness matrix becomes

K(n×n) =
∫

Ω

B(n×3) ST
(3×n) dΩ =

∫
Ω

B(n×3) D(3×3) BT
(3×n) dΩ ,

(1.627)

where D is a 3×3-matrix which transforms the strains into stresses, σi = D εi:⎡
⎣σxx

σyy

σxy

⎤
⎦ =

E

1− ν2

⎡
⎣ 1 ν 0

ν 1 0
0 0 (1− ν)/2

⎤
⎦
⎡
⎣ εxx

εyy

2 εxy

⎤
⎦ . (1.628)

This matrix D is for plane stress problems. For plane strain problems it has
the form
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D =
E

(1 + ν)(1− 2 ν)

⎡
⎣ (1− ν) ν 0

ν (1− ν) 0
0 0 (1− 2 ν)/2

⎤
⎦ . (1.629)

In plate bending the procedure is analogous.
The symmetric triple product in (1.627) has its origin in the structure of

the differential equation17

G(u, û) =
∫ l

0

− d

dx
EA

d

dx
u · û dx + [EA

d

dx
u · û]l0

−
∫ l

0

d

dx
u · EA · d

dx
û dx = 0 . (1.630)

Virtual work

The setup of a stiffness matrix can also be explained as follows. First all nodes
are kept fixed and the first degree of freedom, u1 = 1, (only) is activated.
The forces necessary to force the structure into this particular shape, u =
e1, constitute the unit load case p1. Next we let these forces consecutively
act through the nodal unit displacements ϕ1,ϕ2, . . . ,ϕn, and each time the
virtual work is calculated. These n numbers

δWe(p1,ϕi) = work done by p1 on acting through ϕi i = 1, 2, . . . n

(1.631)

form the first column of the stiffness matrix. Then the next degree of freedom,
u2, is activated (all other ui are zero) and the procedure is repeated. The result
is the stiffness matrix K.

Because the product K u = u1 c1 +u2 c2 + . . .+un cn is the weighted (ui)
sum of the columns ci of K and because

K ei = ci ei = i-th unit vector , (1.632)

the columns ci of K are just the equivalent nodal forces that belong to the
single nodal unit displacements.

Three properties

Each stiffness matrix has the following three properties:

ûT K u = uT K û symmetry

uT
0 K u = 0 equilibrium
K u0 = 0 u0 = rigid-body motion .

17 Gilbert Strang has written nearly a whole book—and very readable book—about
this subject, [232].
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Because of the latter property the stiffness matrix of an unconstrained struc-
ture or element is singular. If the rows and columns in K which correspond
to fixed degrees of freedom are deleted, then a regular matrix, the so-called
reduced stiffness matrix K, is obtained.

Energy

The elastic energy stored in the FE structure is

Wi =
1
2

uT Ku (1.633)

and if a virtual displacement ϕi is applied then the virtual work is the scalar
product of row ri of the stiffness matrix and the vector u

δWe(ph, ϕi) = ri u =
n∑

j=1

k ij uj . (1.634)

1.48 Coupling degrees of freedom

If two elements are joined at a node, the displacements must be the same
at the node. Conversely this implies that a force that acts at the node must
work against the stiffness of both elements. Hence if two degrees of freedom
are coupled, their stiffness adds as in springs working in parallel.

• This simple coupling of even the most diverse elements is the real advan-
tage of the FE method with regard to other numerical methods.

To understand why the stiffness adds let us first recall two rules of matrix
algebra.

a) If the columns of a unit matrix I are permuted in an arbitrary fashion
I → IP , and if a matrix K (having the same size) is multiplied from the right
by this matrix IP , the columns of K are permuted in the same way. If the
matrix K is multiplied from the left by the transposed matrix IT

P , the rows
of K are interchanged in the same way.

b) If a 2 × 2 matrix is multiplied from the right by a vector [1, 1]T the
columns of the matrix are added. If the same is done from the left, the rows
are added:[

a b
c d

] [
1
1

]
=
[

a + b
c + d

] [
1, 1

] [a b
c d

]
=
[
a + c, b + d

]
. (1.635)

Next consider the bar in Fig. 1.163, which consists of two elements, so that
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Fig. 1.163. Bar consisting of
two elements

⎡
⎢⎢⎣

k1 −k1 0 0
−k1 k1 0 0

0 0 k2 −k2

0 0 −k2 k2

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎣

u
(1)
1

u
(1)
2

u
(2)
1

u
(2)
2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f
(1)
1

f
(1)
2

f
(2)
1

f
(2)
2

⎤
⎥⎥⎥⎦ or Kl ul = f l . (1.636)

In matrix algebra the coupling between the global, ui, and local degrees of
freedom, u

(j)
i , can be written as⎡

⎢⎢⎢⎣
u

(1)
1

u
(1)
2

u
(2)
1

u
(2)
2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 1 0
0 0 1

⎤
⎥⎥⎦
⎡
⎣u1

u2

u3

⎤
⎦ or ul = A u , (1.637)

and because

uT
l Kl ul = uT AT Kl A u = uT K u (1.638)

we have

⎡
⎣1 0 0 0

0 1 1 0
0 0 0 1

⎤
⎦
⎡
⎢⎢⎣

k1 −k1 0 0
−k1 k1 0 0

0 0 k2 −k2

0 0 −k2 k2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0
0 1 0
0 1 0
0 0 1

⎤
⎥⎥⎦ =

⎡
⎣ k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

⎤
⎦ = K .

(1.639)

Due to the multiplication from the right, columns 2 and 3 are added; due to
the multiplication from the left, rows 2 and 3 are added. This is the algebra
which governs the assemblage of the global stiffness matrix.

Rigid elements should be modeled by formulating coupling conditions,
and not by raising the stiffness. The displacements ux, uy, uz of a node x =
(x, y, z) in a rigid element can easily be expressed in terms of displacements
ux,ref , uy,ref , uz,ref and rotations ϕx, ϕy, ϕz of a reference node

uz = uz,ref − (x− xref ) · ϕy,ref + (y − yref ) · ϕx,ref . (1.640)

Implicit formulations as in the case of a skew roller support

u • n = ux nx + uy ny + uz nz = 0 (1.641)
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Fig. 1.164. Coupling of a beam and a slab

must be transformed into an explicit form to be able to distinguish between
master and slave degrees of freedom. A master degree of freedom is a genuine
degree of freedom which has its place in the structural system of equations,
while a slave is eliminated either at the element level or later, when the global
system of equations is assembled. Elimination at the element level only makes
sense if the coupling condition is a genuine property of the element, and if the
number of equations in the global stiffness matrix does not increase. Repeated
application of the explicit form can raise the rank of the matrix.

T beams

If a girder is modeled by a beam as in Fig. 1.164, the movements of the beam
must follow the movements of the slab:⎡

⎢⎢⎢⎢⎢⎢⎣

u5

u6

u7

u8

u9

u10

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −e 0 0
1 0 0 0
0 1 0 0
0 0 0 e
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ or uB

(6) = A(6×4)u
S
(4) . (1.642)

Correspondingly a modified beam element matrix is obtained

AT
(4×6) K(6×6) A(6×4) = K(4×4) , (1.643)

which can be incorporated directly into the global stiffness matrix of the slab.
A different approach to formulating coupling conditions between degrees

of freedom is provided by Lagrange multipliers. Their application is simple,
but it is often difficult to obtain stable solutions with this technique.

1.49 Numerical details

When it comes to the solution of the structural equation K u = f , two things
can happen: the system of equations cannot be solved because the matrix K
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Fig. 1.165. All of these structures are statically underdetermined, and therefore
the reduced stiffness matrix K is singular

is either singular or ill-conditioned . In the first case no solution exists, and in
the second the solution may be sensitive to rounding errors.

Singular matrices

If a matrix is singular, exist vectors u 	= 0, which are mapped by K onto
the zero-vector. In general these are the rigid-body motions u0 which do not
cause any strains in the structure:

a(u0,u0) = uT
0 K u0 = uT

0 0 = 0 u0 = rigid-body motion . (1.644)

The opposite of singular matrices are regular matrices. For any right-hand
side f there is a unique solution u. In particular, zero strain energy implies
zero displacement:

a(u,u) = uT K u = 0 ⇒ u = 0 . (1.645)

Because singular matrices have at least one eigenvalue λ = 0, an inspection
of the distribution of eigenvalues can provide clues to the “stability” of a
structure. Nevertheless the calculation of the first three, four eigenvalues is
rather expensive, and in addition it is not at all evident whether an eigenvalue
is “nearly zero” or definitely greater than zero. Solvers are very sensitive to
even hidden or infinitesimal movements.

Element matrices are singular because they let rigid-body motions pass
through. The stiffness matrix of a bar ignores simple translations such as
u0 = [1, 1]T , i.e., the equivalent nodal forces f are zero:

EA

l

[
1 −1
−1 1

] [
1
1

]
=
[

0
0

]
. (1.646)

If the whole structure or parts of it can perform rigid-body motions, (see Fig.
1.165), then no equilibrium position u can be found, because the stiffness
matrix K is singular. The computer stops the triangular decomposition of
K u = f when it is instructed to divide by zero.
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Fig. 1.166. Steel cables carry the weight of the glass panels and bear the force of
the wind: a) system, b) position of the poles, c) deformations under dynamical load

The global assembled stiffness matrix of a structure is singular. Only if the
structure is constrained, and rows and columns deleted which belong to fixed
degrees of freedom—the support nodes—is the so-called reduced global stiff-
ness matrix obtained, which normally is a regular matrix.

The structure in Fig. 1.166 consists of two ropes held apart by rigid bar
elements. This structure was to bear the weight of glass panels and a wind
load. The whole structure is kinematically unstable (see Fig. 1.166 b), even
though the results of a first-order analysis seemed plausible. Obviously, the FE
program assumed that the ropes were (mildly) prestressed. This seems to be a
common approach, because other FE programs rendered similar results. Only
a second-order analysis was sensitive enough to raise concerns. A dynamic
analysis (Fig. 1.166 c) finally revealed the instability of the whole structure.

Reduced integration

A stiffness matrix is regular if and only if zero strain energy (a(u,u) =
uT Ku = 0) implies u = u0. Energy is an integral, but in FE programs
this integral is calculated by evaluating the strain energy density σ ij ε ij dΩ
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at n Gauss points xk and multiplying the point values by the integration
weights wk:

a(u,u) =
∫

Ω

σ ij ε ij dΩ =
∑

k

σ ij(xk) ε ij(xk) dΩ(xk) wk . (1.647)

If reduced integration is used it can happen that there are certain modes
u 	= 0 whose strain energy density happens to be zero at the reduced set of
Gauss points. These modes u 	= 0 (but a(u,u) = 0) are called zero-energy

Rounding errors

A vector u is an eigenvector of the matrix K if K u is a multiple of u,
K u = λ u. The scalar λ is called the eigenvalue. An n×n matrix has exactly
n eigenvalues, which can all be different. Likewise some may coincide, and
sometimes they can even all be the same, as in the case of a unit matrix
I, where all λi = 1. If a matrix is symmetric and positive definite, then all
eigenvalues are positive, λi > 0.

The condition number c of the reduced stiffness matrix K is the ratio of
the largest eigenvalue to the smallest eigenvalue:

c =
λmax

λmin
. (1.648)

The greater this ratio, the worse the condition of the matrix. The condition
number of the unit matrix I is c = 1/1 = 1. If the matrix is singular, as for
example the matrix

K =
EA

l

[
1 −1
−1 1

]
eigenvalues λ1 = 0 , λ2 = 2

EA

l
, (1.649)

then the condition number is c = ∞, because λmin = 0. This is the worst
case.

The worse the condition number of the matrix K in the system K u =
f , the more susceptible the solution u is to rounding errors. The condition
number of a stiffness matrix is always large if the structure or parts of it
can perform movements which come close to rigid-body motions, i.e., if the
structure sits on very soft supports, or if some parts of the structure are
very stiff compared to others. The reason for this behavior is the principle of
conservation of energy or equivalently Green’s first identity

1
2

G(w,w) = We −Wi = 0 . (1.650)

Let us study the nearly rigid beam in Fig. 1.169. The internal energy of
the beam is

hourglass modes because of their shape, see Fig. 1.167 and Fig. 1.168.
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Fig. 1.169. The greater the stiffness EI, the more the deflection curve assumes the
shape of a rigid-body motion. This is a consequence of the principle of conservation
of energy

Wi =
1
2

uT {EI

l3

⎡
⎢⎢⎣

12 −6l 6l −6l
−6l 4 l2 6l 2 l2

−12 6l 12 6 l
−6 l 2 l2 6 l 4 l2

⎤
⎥⎥⎦

︸ ︷︷ ︸
KB

+

⎡
⎢⎢⎣

k 0 0 0
0 0 0 0
0 0 k 0
0 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
S

}u

=
1
2
{
uT KB u + uT S u

}
=

1
2

uT K u =
1
2

a(w,w) , (1.651)

because the stiffness matrix K is the sum of the beam matrix KB plus the
“spring matrix”S. If the beam stiffness becomes very large, EI → ∞, Wi

too will become very large. On the other hand, the internal energy Wi can
never, because of (1.650), exceed the external eigenwork We = 1/2 ·P · δ. The
beam avoids this dilemma by performing mostly a rotation, i.e., the vector u
more and more resembles a rigid-body motion, u → u0, and this preserves
the energy balance, because rotations lie in the kernel18 of the beam matrix
KB , and the beam can thus (even in the case EI = ∞) preserve the energy
balance:

1
2

uT
0 K u0 =

1
2

[u2
1 k + u2

3 k]︸ ︷︷ ︸
Wi

=
1
2

P δ︸ ︷︷ ︸
We

. (1.652)

Clearly the transition must be smooth. Obviously, the more a vector u resem-
bles a vector u0, the smaller the strain energy 1/2uT KB u.

It is evident that for large values of EI the difference between the end
rotations of the beam, w′(0) − w′(l), is small but on this difference depends
the energy of the nearly rigid beam.

An elementary example of the difficulties that can result from large differ-
ences in element stiffness is that of two bar elements that differ in longitudinal
18 The kernel of a matrix K contains all vectors that are mapped onto the null

vector by K .
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Fig. 1.170. Favorable and unfavorable arrangement

stiffness, ki = EAi/li, k1 = 100 and k2 = 1, as in Fig. 1.170. If the stiffer
element is supported by the weaker element, the system of equations for the
ui is[

k1 −k1

−k1 k1 + k2

] [
u1

u2

]
=
[

P
0

] [
100 −100
−100 100 + 1

] [
u1

u2

]
=
[

P
0

]
.

(1.653)

The solution of this system of equations is the point in the u1−u2-plane where
the two straight lines k1 u1−k1 u2 = P and −k1 u1+(k1+k2) u2 = 0 intersect;
see Fig. 1.170. Because of the nearly identical slopes, the intersection is hard
to localize.

A computer adds these two equations and thus eliminates the unknown u1

[(k1 + k2)− k1]u2 = P . (1.654)

If the computer uses only three decimal places, the result is (k1 + k2)− k1 =
100.01− 100 = 1.001× 102 − 1× 102 = 0.000 or u2 = 0.

If the two bar elements are rearranged so that the weaker element is sup-
ported by the more rigid element[

1 −1
−1 1 + 100

] [
u1

u2

]
=
[

P
0

]
, (1.655)

i.e., if the structure is better “grounded” then the problem is well conditioned,
and the intersection of the two lines is easy to spot.
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Fig. 1.171. Rigid-body motions

A sounder approach is to replace nearly rigid zones of a structure by
formulating coupling conditions. For example, if the coupling condition of
the first bar element were ue

1 = ue
2, the stiffness of this bar element would

vanish

[
1, 1

] [ k1 −k1

−k1 k1

] [
1
1

]
= 0 , (1.656)

and the structural system would reduce to the equation

k2 u2 = P , (1.657)

which would yield the exact solution for u2.

In the case of a beam, such a rigid-body constraint (see Fig. 1.171 c) would
result in ⎡

⎢⎢⎣
ue

1

ue
2

ue
3

ue
4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0
0 1
1 −l
0 1

⎤
⎥⎥⎦
[

ue
1

ue
2

]
or u = T uM . (1.658)

Because the columns of the matrix T represent rigid-body motions, the mod-
ified stiffness matrix

T T K T =
[

0 0
0 0

]
(1.659)

is zero.
In Fig. 1.172 the coupling conditions are⎡

⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

u6

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 1 −l2 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

u1

u2

u3

u6

⎤
⎥⎥⎦ or u = T uM . (1.660)
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Fig. 1.172. The beam in the middle is assumed to be inflexible

If the stiffness matrix⎡
⎢⎢⎢⎢⎢⎢⎣

k1
22 k1

23 k1
24 0 0 0

k1
32 k1

33 + k2
11 k1

34 + k2
12 k2

13 k2
14 0

k1
42 k1

43 + k2
21 k1

44 + k2
22 k2

23 k2
24 0

0 k2
31 k2

32 k2
33 + k3

11 k2
34 + k3

12 k3
13

0 k2
41 k2

42 k2
43 + k3

21 k2
44 + k3

22 k3
23

0 0 0 k3
31 k3

32 k3
33

⎤
⎥⎥⎥⎥⎥⎥⎦ (1.661)

is multiplied from the right by the matrix T , then

• column 4 is added to column 2
• column 4 ×(−l2) is added to column 3
• column 5 is added to column 3
• column 6 is added to column 4 ,

Multiplication from the left by T T effects the same operations with the rows.
The result is a 4× 4 matrix T T K T which only contains contributions from
the first and last beam elements:⎡

⎢⎢⎣
k1
22 k1

23 k1
24 0

. . . k1
33 + k3

11 k1
34 − l2 k3

11 + l2 k3
12 k3

13

. . . . . . k1
44 + l22 k3

11 − 2 l22k
3
12 + k3

22 −l2 k3
13 + k3

23

sym. . . . . . . k3
33

⎤
⎥⎥⎦ . (1.662)

Hence if rigid-body motions are enforced, the element matrix shrinks. No other
solution is possible because, even infinitesimal displacements would produce
infinite strain energy in the constrained beam, and the total strain energy of
the beam in Fig. 1.172

a(w,w) = a(w1, w1) + a(w2, w2) + a(w3, w3) < ∞ (1.663)

remains bounded for EI2 → ∞ only if the center element performs a rigid-
body motion w2(x) = a x + b.



1.50 Warning 235

Note that the reduction of the equivalent nodal forces obeys the rule
T T

(4×6) f (6) = f (4), as follows from

K(6×6)u(6) = f (6) → T T
(4×6) K(6×6)T (6×4)u(4) = T T

(4×6)f (6) = f (4) .

(1.664)

1.50 Warning

We want to close this introductory chapter with a warning note. A reviewing
engineer who has followed our analysis up to this point is perhaps now tempted
to request that in the future the design engineer document the FE load case
ph so that he, the reviewing engineer, can quickly check how close the FE
solution is to the true solution. Theoretically such a proposition makes sense,
but on the other hand one must be careful not to overinterpret the FE load
case ph.

In real structures the load case ph is seemingly miles away from the orig-
inal load case p. If we really take the trouble to plot the load case ph, we
are surprised how little the FE load case and the original load case have in
common. This is why commercial FE programs do not show the load case ph.
Any user not well acquainted with FE theory would doubt the FE results.

The real secret of the FE method is that nonetheless the results are accu-
rate, and if we as structural engineers want to have more faith in FE methods,
we must deal with this question more intensively. Foremost this is a problem
of structural mechanics and not of mathematics.

What do we mean by near and far in structural mechanics? What level of
uncertainty can we allow, and when would we lose focus?19

What we see, if we concentrate on plate bending problems, and what we
can compare are the loads, the load case p, and the load case ph, i.e., (we
simplify somewhat) the fourth-order derivatives of the two deflection surfaces
wh and w. But the bending moments are the second-order derivatives

m =
∫ ∫

p dΩ dΩ , mh =
∫ ∫

ph dΩ dΩ , (1.665)

and because integration smoothes out the wrinkles, the bending moments
of the FE solution are in relatively good agreement with the exact bending
moments. No reviewing engineer has the tools to make guesses about the
deviations in the bending moments by looking at the discrepancies in the
load, the fourth-order derivatives.

If on the uppermost floor, the fourth floor, the walls deviate by 20 cm
from their position, how large then is the deviation on the second floor? The
19 Read the paper by Bürg and Schneider [55] on the design of a simple flat garage

roof by 32 different professional engineers!
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Fig. 1.173. Beam: a) load case p, b) load case ph and nodal unit displacements

deviation on the fourth floor we can measure. The deviation on the second
floor we cannot. About the latter we can only speculate. This is the problem.

There are examples in mathematics which should warn us. A linear system
of equations K u = f can only be solved approximately on a computer. It
seems then that the residual r = K uc − f is an appropriate measure for the
error of the computed solution uc. But there are examples where a solution uc

with a larger residual is closer to the exact solution than a computer solution
with a smaller residual.

Fortunately such ill-conditioned problems are rare in structural mechanics.
Most of our problems are well behaved. We solve elliptic boundary value
problems and we may assume that a small residual (probably) indicates a
small error. Instinctively we also rely on St. Venant’s principle.

In boundary element analysis the residual forces p − ph are zero because
the BE solution satisfies the differential equation. Hence it seems that BE
solutions should be more accurate than FE solutions. They are in general but
only by a rather small margin. If we compare the stress resultants between
a BE solution and an FE solution, then we are surprised to see how good
for example the agreement between the bending moments of an FE solution
and a BE solution are. This is the point where one begins to speculate: how
significant are the residual forces p − ph really? Is the whole interpretation
not too naive?

Yes and no. The FE solution is the solution of a load case ph. This inter-
pretation is correct, and as demonstrated by adaptive methods it makes sense
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to refine the mesh in regions where the residual forces p− ph are large. Could
it then be that we are looking at the wrong data because an FE program does
not focus on the distance p− ph but on the distance in the strain energy? No,
the data we inspect are correct, only an FE program looks at the data from
a slightly different perspective.

As engineers, we tend to say the distance is large if the distributed loads
p and ph deviate by a large margin. But not so the FE program. It does not
compare the shape of p and of ph, it does not measure the gap |p − ph|, but
it measures the action.

The FE program lets the residual forces p− ph act through the nodal unit
displacements ϕi, and only if the residual forces are orthogonal∫ l

0

(p− ph)ϕi dx = 0 , i = 1, 2, . . . , n (1.666)

to all functions ϕi is the distance p− ph well tuned.
Imagine that a triangular area (p) is to be covered with a stack of needles

(point forces fi). Calculus provides no tool to measure the distance between
the triangular area and the area covered by the needles, because (mathemat-
ical) needles are infinitely thin. But FE analysis offers an ingenious way to
give a meaning to it by applying the principle of virtual displacements.

The beam problem in Fig. 1.173 may exemplify this. In the naive sense,
ph will never converge to the triangular load p, because ph = 0. But the nodal
forces fi and moments which are the real ph do converge to p in the finite
element sense, i.e., in the weak sense∫ l

0

p ϕi dx =
∞∑

j=1

fj ϕi(xj) i = 1, 2, . . . ,∞ . (1.667)

Hence we may not take the residual forces prima facie to insist on a good match
between p and ph. In FE analysis, action is what counts—we approximate
actions not functions (!)—and the action we do not see on the screen.



2. What are boundary elements?

The boundary element method (BE method) is an integral equation method,
or as we could say as well an influence function method. It is based on the
fact that in linear problems the boundary values uniquely determine the dis-
placements and stresses inside a structure such as the frame in Fig. 2.1, so
that it suffices to discretize the edge with boundary elements only.

In one form or the other the idea is applied each day. If for example two
moments, M(0) and M(l), act at the ends of a beam the bending moment
M(x) can be generated from these boundary values with the help of a simple
ruler; see Figure 2.2. If the beam carries also a distributed load p, then a
curved ruler is used instead, see Fig. 2.2.

The key to this technique is that the linear bending moment M(x) =
a x+b is a homogeneous solution of the equation −M ′′ = 0, and the quadratic
bending moment is a particular solution of the differential equation −M ′′ = p.

Technically the BE method applies influence functions (= integrals) to
relate the displacements and tractions on the boundary with the displacements
and stresses at internal points.

Fig. 2.1. The boundary values w, w′, M, V and the distributed load p suffice to
calculate any value in the interior



240 2 What are boundary elements?

Fig. 2.2. Influence functions for bending moments

2.1 Influence functions or Betti’s theorem

Beams

To calculate the deflection w(x) at the center of a beam with the principle
of virtual forces the scalar product of the two bending moments M(x) and
M̄(x) is formed (see Fig. 2.3):

1 · w(x) =
∫ l

0

M̄ M

EI
dx Mohr’s integral . (2.1)

But according to Betti’s theorem the scalar product of the distributed load p
and the deflection curve G0(y, x) (= Green’s function) which belongs to the
load case P̄ = 1 would provide the same result:1

W1,2 = 1 · w(x) =
∫ l

0

G0(y, x) p(y) dy = W2,1 . (2.2)

Betti’s theorem remains valid if the span of the second beam is larger than
the span of the first beam. It is only necessary to cut off the protruding
parts before Betti’s theorem is formulated, and to compensate for this loss
the previous internal actions must be applied as external forces.

Those external forces then contribute external work too, so that Betti’s
theorem becomes rather lengthy, as is seen if the reciprocal statement W1,2 =
W2,1 is solved for w(x):

1 One could also simply integrate (2.1) by parts: (M̄, M/EI) = (G0, p ).
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Fig. 2.3. Calculation of the deflection δ a) with the principle of virtual forces, b)
with Betti’s theorem (the same beam), c) with Betti’s theorem (a different beam)

w(x) =
∫ l

0

g0(y, x) p(y) dy

+ M̄(0)w′(0)− M̄(l) w′(l) + V̄ (l) w(l)− V̄ (0)w(0)︸ ︷︷ ︸
−work on the boundary W1,2

+M(0) g′0(x, 0)−M(l) g′0(x, l) + V (0) g0(x, 0)− V (l) g0(x, l)︸ ︷︷ ︸
work on the boundary W2,1

.

(2.3)

The deflection curve w = g0(y, x) of the second beam (see Fig. 2.3 c) is
called a fundamental solution, because unlike the Green’s function G0 it does
not satisfy the support conditions of the original beam. But both curves g0

and G0 share the property that the shear force jumps at the source point,
V (x+)−V (x−) = 1. To construct influence functions—to have w(x) emerge—
only the jump in the shear force V is needed.

Kirchhoff plates

The procedure is virtually the same as before: to calculate the deflection at a
point x a single force P̄ = 1 is applied at this point and the scalar product of
the deflection surface G0(y,x) and the load p is formed:
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Fig. 2.4. Circular plate serving as auxiliary problem

W1,2 = 1 · w(x) =
∫

Ω

G0(y,x) p(y) dΩy = W2,1 . (2.4)

The problem with this approach is that in general the Green’s function G0 is
unknown. Only if a single force P̄ is applied directly at the center of a circular

w(r) =
P̄

16 K π

[
3 + ν

1 + ν
R2 (1− r2

R2
)− 2 r2 ln

R

r

]
. (2.5)

But this suffices. First the radius R of the plate is extended to infinity, R =∞,
so that all plates that will eventually be considered fit into the interior of the
circular plate. That is, (2.5) is simply stripped of all unnecessary parts and
only the fundamental solution is retained:

g0(y,x) =
1

8 π K
ln r . (2.6)

Next the source point x—the center of the infinite circle—is moved to the
point at which the deflection w(x) is to be calculated. Then that part of the
circular plate which coincides in shape and position with the original plate is
cut out of the circular plate, the previous internal actions are applied at the
new edge as external forces, and finally the reciprocal work of the pair {w, g0}
is calculated. The result is an expression of the form

w(x) =
∫

Ω

g0(y,x) p(y) dΩy − work on the boundary W1,2

+work on the boundary W2,1 (2.7)

or

plate of radius R (see Fig. 2.4) is the deflection surface known:
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c(x)w(x) =
∫
Γ

[ g0(y,x) vν(y)− g0ν(y,x)mν(y)

−vν(g0)(y,x) w(y) + mν(g0)(y,x) wν(y)] dsy

+
∫
Ω

g0(y,x) p(y) dΩy

+
∑

c

[ g0(yc,x) F (w)(yc)− w(yc) F (g0)(yc,x)] , (2.8)

where the underlined terms are the boundary values of the plate:

vν = support reaction mν = bending moment
wν = rotation w = deflection

and the F are the corner forces. The influence coefficients or kernel functions

↓ g0(y,x) � g0ν(y,x) � mν(g0)(y,x) ↓ vν(g0)(y,x)
(2.9)

are, in this sequence, the deflection, slope, bending moment and Kirchhoff
shear of the fundamental solution g0 on the boundary. The so-called char-
acteristic function c(x) on the left-hand side has the value 1 at all interior
points, and the value c(x) = ∆ϕ/2 π at boundary points where ∆ϕ is the
angle of the boundary point.

By replacing the kernel g0 (single force) with the kernel g0n = ∂g0/∂n
(moment), an influence function for the slope ∂w/∂n can be derived in the
same way.

If the observation point x is located on the boundary, these two influ-
ence functions become—in a somewhat simplified notation—a system of two
integral equations:∫

Γ

H(y,x) u(y) dsy =
∫

Γ

G(y,x) t(y) dsy

+
∫

Ω

U(y,x) p(y) dΩy + R(yc,x) rc x ∈ Γ, (2.10)

for the boundary values of a slab

u = {w(x), wn(x)} t = {mn(x), vn(x)} rc = {wc, Fc} . (2.11)

The subscript c in the vector rc indicates that these terms are the corner
deflections wc and the corner forces Fc.

To solve this system approximately, the boundary functions are interpo-
lated with polynomial shape functions, and the unknown nodal values are
determined by a collocation procedure, so that the two coupled integral equa-
tions are equivalent to a linear system of equations
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Fig. 2.5. BE analysis of a shear wall
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Hu = Gt + d (2.12)

for the nodal values u and t.
If the equation is multiplied from the left first by G−1 and then by the

mass matrix F ,

F G−1Hu = F G−1t + F G−1d (2.13)

and terms are collected, we obtain the system

Ku = f + p (2.14)

which is formally identical to the structural equation in FE analysis, even
though the matrix K is a slightly unsymmetric stiffness matrix.

Linear elasticity

The influence functions for the displacement field u(x) of a plate as in Fig.
2.5 is

C(x)u(x) =
∫

Γ

[U(y,x) t(y)− T (y,x)u(y)] dsy

+
∫

Ω

U(y,x) p(y) dΩy (2.15)

where t = t(y) is the traction vector Sν = t at the integration point y on the
boundary with the normal vector ν = [ν1, ν2]T . The fundamental solutions
are

U ij(y,x) =
1

8πµ(1− ν)
[(3− 4ν) ln

1
r

δ ij + r,i r,j ] (2-D) , (2.16)

U ij(y,x) =
1

8πµ(1− ν)r
[(3− 4ν) δ ij + r,i r,j ] (3-D) , (2.17)

and the tractions of these solutions on the boundary are

T ij(y,x) = − 1
4απ(1ν)rα

[
∂r

∂ν
((1− 2ν) δ ij + β r,i r,j )

−(1− 2ν){r,i νj(y)− r,j νi(y)}] , (2.18)

where α = 1, β = 2 in 2-D, α = 2, β = 3 in 3-D, and

r,i :=
∂r

∂yi
= − ∂r

∂xi
=

yi − xi

r
. (2.19)

The columns i (or rows) of the symmetric matrix U(y,x) are the displacement
fields of the elastic continuum if a concentrated force P = ei acts at a point
x, and the columns of the matrix T (y,x) are the associated tractions at a
point y with the normal vector ν.
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Fig. 2.6. Shear wall: a) system and loads, b) principal stresses, c) boundary ele-
ments
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Technical details

The boundary discretization poses no difficulties. The elements should form a
piecewise smooth approximation and the boundary functions should be C0 or
where necessary C1 functions (the deflection w in plate bending). Essentially
the whole technology can be carried over from the FE literature.

More important is an efficient integration of the influence integrals. If the
elements are straight, then in general the integrals can be evaluated analytic-
ally. Analytic integration will not eliminate all problems because in a very
small region near the boundary nodes the solution will still deteriorate, but
these effects can be attributed to the kinks (higher-oder discontinuities) in
the boundary displacements or tractions.

Another problem is that not all the stresses on the boundary can be de-
termined directly from the integral equations. The traction vector t has two
components, while the stress tensor S has three. In plate bending problems
the moment mt (which requires reinforcement in the tangential direction) and
in some sense also the twisting moment mnt must be recovered artificially from
the boundary values w and w,n by finite differences.

2.2 Structural analysis with boundary elements

Some examples may serve to highlight the application of BE methods in struc-
tural analysis, and the potentials of the method.

Shear wall

The shear wall in Fig. 2.6 carries its own weight plus line loads coming from
different structural elements that are connected to the wall. The wall rests on
a series of narrow supports, which in FE analysis would be modeled as point
supports. Here they are modeled as short boundary elements.

The outer boundary plus the edges of the openings were subdivided into
a total of 123 quadratic boundary elements. Some minor inconsistencies arise
at the supports, because at the transition point between the free edge and a
support, the physical tractions are discontinuous, while C0 shape functions
cannot model this behavior—but these are very minor details.

The unknowns are the boundary displacements ux, uy along the free edges,
while at the supports, some (at a roller support) or all of the tractions tx, ty
are unknown. After the support reactions and the shape of the deformed
structure are determined by solving the system H u = G t + d, the influence
function (2.15) makes it possible to calculate the displacements and stresses
in the interior.
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Fig. 2.7. Wall on point supports: a) system and loading, b) principal stresses

Two-span wall

The two-span beam in Fig. 2.7 was modeled as a plate. To compare the results
with a beam solution, the plate was placed on point supports. Theoretically
the support reactions should be zero, because the influence of a support reac-
tion P on the displacement of the support itself is −P ln r = −P ln 0 = ∞,
since the distance is zero (r = 0). This implies that the support reaction must
be zero, P = 0, since in a set of equations such as[∞ b

c d

] [
P
x

]
=
[

e
f

]
(2.20)

P must be zero.
But in reality the BE program replaces the function call ln r for values of

r < 10−3, (= one millimeter) with ln 10−3 = −6.9077 to avoid overflow. This
is equivalent to replacing the point support with a very short line support,
which suffices to make P equal to the beam solution.

Slabs

Engineering plate-bending problems are much more complex than the bihar-
monic problems usually discussed in the mathematical literature. Add to this
that the correct modeling of a complex floor plate depends on so many pa-
rameters, and so many assumptions must be made by the analyst, that these
assumptions tend to have much more influence on the results than, say, the
order of the boundary elements or other mathematical “subtleties”. Hence
programming the biharmonic equation K∆∆w = p for the analysis of slabs
is a real challenge, but the results are rewarding; see Fig. 2.8.
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Fig. 2.8. Slab: a) system and 274 boundary elements, b) principal moments under
gravity load, c) 3-D plot of the deflection surface
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The choice of boundary elements for interpolating the boundary values
w,wn,mn, vn is dictated by the regularity assumptions made in the derivation
of the integral equations [116]. The deflection w must be C1 on any smooth
part of the boundary, while for the other functions C0-continuity suffices.

Support conditions are usually of mixed type, not jut w = mn = 0 (hinged)
or w = wn = 0 (clamped). Most supports are modeled as elastic supports, so
that a hinged support becomes cw + vn = mn = 0 and a clamped support
becomes cw + vn = cϕwn + mn = 0, where c and cϕ are elastic constants.
Add to this that at corner points, because of the continuity of the gradients
∇w, ∇∇w etc., boundary conditions on both sides of a corner point cannot
be formulated independently of each other. If in addition the thickness of
a plate changes at the corner point, then things can become really compli-
cated. In a BE program, all the modeling is done on the boundary, and the
boundary of a Kirchhoff plate is a very thin layer. But luckily the biharmonic
equation—being of elliptic type—is a very patient equation, so that for en-
gineering purposes the accuracy attainable with BE methods is more than
sufficient, and at least on the same level as FE results.

Walls and T beams

Internal supports are subdivided into boundary elements (or rather line el-
ements) to model the distribution of the support reaction s with piecewise
linear functions; see Fig. 2.9. The nodal values are so determined that the
deflection w of the plate is zero at the nodes of the wall (or that cw + s = 0 if
the walls are elastic). As in FE analysis, it can be assumed that the calculated
support reactions are relatively accurate.

The support reactions s of T beams are determined such that the deflection
of the plate and the T beams are the same at the nodes of the T beams. The
T beams are modeled with finite elements, and the reduced stiffness matrices
K are inverted to provide flexibility matrices F = K(−1), which better fit a
boundary element scheme, because F s = w.

Columns

The BE method can assess the magnitude of the bending moments near
columns very accurately, because the correct singularity is built into a BE
program; see Fig. 2.10. If p = P/Ωc is the pressure in the contact zone Ωc,
where P is the support reaction, the influence of the support reaction P on
the bending moment mxx(x) is the integral∫

Ωc

[−K(g0,x1x1 + ν g0,x2x2 )] p dΩy , g0,x1x1 =
∂2g0

∂2x1
(y,x) , (2.21)

and these kernel functions (g0(y,x)),xixj are part of the BE code, and must
not be approximated with piecewise polynomials as in the FE method. The
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Fig. 2.9. Slab: a) principal moments, and b) contour plot of the deflection

surface integral in (2.21) also ensures that the bending moments are automat-
ically rounded out; see Fig. 2.11.

The same can be said about the shear forces. The contribution of the
support reaction in the column is the integral∫

Ωc

[−K(g0,x1x1x1 +g0,x2x2x1 )] p dΩy , (2.22)

where
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Fig. 2.10. Slab on
point supports

(g0(y,x)),x1x1x1 =
2

8πK r

[−2 r,22 r,1−r,31−r,1 r,22
]

, (2.23)

(g0(y,x)),x2x2x1 =
1

8πK r

[−r,32−2 r,22 r,1−r,31
]

. (2.24)

The resolution attainable with these influence functions depends solely on how
tightly the observation points x are packed; see Fig. 2.12.

The internal actions are smooth continuous functions, because each indi-
vidual value is calculated by evaluating the proper influence function. Theo-
retically there is a loss of accuracy close to the boundary, but for engineering
purposes this loss is negligible; see Fig. 2.13.
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345.09 kN

127.58 kN

304.22 kN

123.73 kN



2.2 Structural analysis with boundary elements 253

Fig. 2.11. Slab 40 m × 30 m on a grid of columns 5 m × 5 m, p = 10 kN/m2;
comparison of bending moments with building code

Fig. 2.12. Distribution of the shear forces qx between the columns. The resolution
can be made so fine that the variation of qx across the column head is detailed out
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gravity load 5 kN/m2

Fig. 2.13. Slab with a large opening a) system and loads, b) principal moments;
the loss of accuracy close to the boundary is negligible
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Loads

Formally it is of no concern which load is applied and where, because every
load makes its own contribution to the influence function; see Fig. 2.13. The
influence of a force P is the term g0(yP ,x) · P + regular parts. If it is a line
load, the influence is a line integral, and if it is a surface load on a patch Ωp,
the influence function is a surface integral:

g0(yP ,x) · P︸ ︷︷ ︸
single force

∫
ΓL

g0(y,x) l(y) dsy︸ ︷︷ ︸
line load

∫
Ωp

g0(y,x) p(y) dΩy︸ ︷︷ ︸
surface load

.(2.25)

In particular, a BE program is well-qualified to calculate influence functions,
because it must only approximate the regular part of the solution.

Foundation slabs

In the Winkler-model the soil is treated as a grid of springs that can move
independently, and that exert a force cw, where c (kN/m3) is the modulus of
subgrade reaction, so that

K∆∆w + cw = p . (2.26)

The simplest approach to solving this equation is it to actually place the slab
on a grid of springs and determine the unknown spring forces by extending
the collocation equations to the springs. In many cases the accuracy attain-
able with this technique is sufficient. Its advantage is that it can be directly
incorporated into an existing BE code with very slight modifications.

A more scientific approach is it to employ the two Fourier–Bessel integrals

g0(y,x) =
a2

2πK

∫ ∞

0

t

t4 + k
K a4

J0(t
r

a
) dt (2.27)

and

g1(y,x) =
a rn

2πK

∫ ∞

0

t

t4 + k
K a4

J1(t
r

a
) dt rn = ∇xr • n (2.28)

which are fundamental solutions of (2.26) [126]. Formally the influence func-
tion for the deflection w(x) is nearly identical to the influence function (2.8),

c(x)w(x) =
∫
Γ

[ g0(y,x) vν(y)− g0ν(y,x)mν(y)

−vν(g0)(y,x) w(y) + mν(g0)(y,x) wν(y)] dsy

+
∫
Ω

g0(y,x) p(y) dΩy +
1

8
√

c K̂
F (w)(x)

+
∑

c

[ g0(yc,x) F (w)(yc)− w(yc) F (g0)(yc,x)] , (2.29)
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except for an extra free term (F/8
√

c K̂) where K̂ = a4 c/K.
The Fourier–Bessel functions

Ti,j :=
1

2 π

∫ ∞

0

ti

t4 + K̂
Jj(t

r

a
) dt (2.30)

can be represented in the form of zero-order Kelvin or Thomson functions
kei(x) and ker(x) and their respective derivatives

T1,0 = − 1
2 π

kei(
r

a
) T3,0 =

1
2 π

ker(
r

a
) , (2.31)

which can be calculated using rapidly convergent expansions [127].

Half-space model

In the year 1885 Boussinesq [49] found the solution for an elastic half-space
loaded at is surface with a vertical force P :

uB := u3(x,y) =
1 + ν

2π E

[
(x3 − y3)2

r3
+ 2

1− ν

r

]
P . (2.32)

If the interface between the foundation slab and the soil is subdivided into
rectangular elements, the soil pressure can be expanded with regard to the n
nodal shape functions giving the expression

wS(x) =
∑

i

∫
Ω

uB(y,x) ϕi(y) dΩy · pi (2.33)

for the deflection of the soil. The nodal values p i are found by requiring that
the deflection of the slab and the soil be the same at each node:

w(xi) = wS(xi) i = 1, 2, . . . n . (2.34)

By this very simple technique, a coupled analysis of a foundation slab on
top of an elastic half-space can be modeled; see Fig. 2.14. What is striking is
how different the deformation patterns of a foundation slab are, depending on
which model—the Winkler model or the half-space model—is used; see also
Sect. 5.17, p. 469.

If the soil consists of different layers with moduli Ei and Poisson ratios νi,
the total settlement beneath a point force P is the sum of all the individual
contributions si within the single layers:

uΣ
B(x) =

∑
i

si(x)P . (2.35)

The contribution si = si(Ei, νi, hi) of one layer can be calculated approxi-
mately as follows:
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Fig. 2.14. Foundation plate: a) system and loads, b) deformation according to the
Winkler model, c) deformation according to the half-space model
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Fig. 2.15. Piled raft foundation

si(x) = [uB(x,yi
u)− uB(x,yi

l)]|Ei,νi,hi
(2.36)

|yi
u − yi

l| = hi thickness of the layer , (2.37)

where the points yi
u and yi

l are the projections of the surface point x onto the
upper and lower cover of the layer i. That is, the contribution of an individual
layer is calculated as if the total half-space had the elastic properties Ei, νi.

Piled raft foundations

In a piled raft foundation the contribution of the piles as well as the raft is
taken into account to transfer the building load. The piles transfer a part of
the loads into deeper and stiffer layers of soil and thereby allow the reduction

To model such foundations it must be possible to predict the soil defor-
mation if a vertical point force acts in the interior of the elastic half-space.
Mindlin found the following solution for this problem [166]:

uM := u3(x,y) =
P

16 π E (1− ν)

[
3− 4 ν

R3
1

+
8 (1− ν)2 − (3− 4 ν)

R2

+
(x3 − y3)2

R3
1

+
(3− 4 ν)(x3 + y3)2 − 2 y3 x3

R3
2

+
6 y3 x3 (x3 + y3)2

R5
2

]
, (2.38)

where

R1 =
√

x2
1 + x2

2 + (x3 − y3)2 R2 =
√

x2
1 + x2

2 + (x3 + y3)2 . (2.39)

The coupled problem of the foundation plate and the elastic half-space can be
stated as follows: on the free surface the tractions must vanish, t = 0, while

settlement and differential settlement in a very economic way; see Fig. 2.15.
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at the interface between the slab and the soil surface the deflection must be
the same, and the vertical stresses must have opposite signs:

u3 = w t3 − pS = 0 . (2.40)

Here pS is the soil pressure, which also appears on the right-hand side of the
plate equation

K ∆ ∆ w = p− pS . (2.41)

Modeling the slab

The unknowns are the boundary values w and wn of the slab, the soil pressure
distribution pS under the slab and the shear forces s along the piles so that
for example the first integral equation becomes

c(x)w(x) =
∫

Γ

[−Vν(g0)w + Mν(g0)
∂w

∂ν
] dsy +

∫
Ω

g0(p− pS) dΩy

−
∑

i

Qi g0[yi] +
∑

c

[−w(yc)F (g0)(yc,x)] (2.42)

where the Qi are the pile forces.

Modeling the soil

The soil pressure distribution pS is interpolated with piecewise linear shape
functions

pS(x) =
∑

i

pi ϕi(x) , (2.43)

and to simplify the notation it is assumed that the same is done with the
surface load p coming from the building.

When the edge of the slab is divided into boundary elements and the first
and second integral equation (2.42) formulated at the collocation points, the
pertinent system of equations is

C u = H u + D (p− pS) + L q (2.44)

or if the unknowns are placed on the left-hand side and an index B is attached
to denote either that the terms are boundary terms, u = uB , or to indicate
that the collocation points lie on the boundary

CB uB −HB uB + DB pS −LB q = DBp . (2.45)

The vector q = [Q1, Q2, . . .]T contains the pile forces. The matrices H,D,L
are influence matrices that describe the influence of the nodal values ui, pi, pSi
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and the pile forces Qi at the collocation points xi on the boundary. The matrix
CB is nearly identical to 1/2×I. Only at corner points are the entries different.

The soil pressure pS and frictional stress fsi
=: fi along the individual

piles are responsible for the deflection of the surface of the elastic half-space
so that the deformation is a superposition of Boussinesq’s solution uB and
Mindlin’s solution uM :

u3(x) = u(x) =
∫

Ω

uB(y,x) pS(y) dΩy +
∑

i

∫
Γi

uM (y,x) fi(y) dsy (2.46)

where Γi is the surface of the individual piles i = 1, 2, . . . and fi is the frictional
stress acting along pile i.

Let uI denote the deflection of the soil surface at the nodes of the grid,
that is the points at which the soil pressure pS is interpolated. The influence
of the soil pressure pS and the frictional stress fi as expressed by (2.46) can
then be written as

usoil
I = BI pS + M I f . (2.47)

At the grid points the deflection of the soil (2.47) and the deflection of the
slab

uslab
I = HI uB + DI (p− pS) + LI q (2.48)

must be the same, uslab
I − usoil

I = 0, which gives

HI uB −DI pS + LI q −BI pS −M If = −DIp . (2.49)

Modeling the piles

At the interface between the piles and the soil, the pile displacement u and the
vertical soil displacement u3 must be the same (slipping is neglected), which
means that the deformations must be the same,

u3(xi) = uB(xi) + uM (xi) = u(xi) , (2.50)

at the k collocation points along the axis of each of the n piles. At one indi-
vidual pile i therefore,

BPi
pS + MPi

f = ui = K−1
i N if i = F i f i (2.51)

where F i is the flexibility matrix of the pile and the matrix N i has the
elements

Nkj = π d

∫ li

0

ψk ψj dx d = diameter of the pile . (2.52)
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Fig. 2.16. Study of a piled raft foundation a) settlement, b) pile forces

The ψk are the shape functions of the pile. The vector N i f i = si represents
the equivalent nodal forces si, due to the frictional stress f . Because each pile
has an influence on all the others it follows that

BP pS + (MP − F N) f = 0 (2.53)

where the diagonal entries in the matrix F are the flexibility matrices F i

of the individual piles and the subscript P on the Boussinesq and Mindlin
influence matrices indicates that the control points, the collocation points, lie
on the piles.
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Finally at each pile the sum (the integral) of the shear forces fi must be
equal to the resultant pile force Qi which, with an abstract matrix Σ whose
somewhat simplified entries are the lengths li of the single bar elements, can
be stated as

Σ N f = q . (2.54)

If the results are collected, the following system of equations is obtained:⎡
⎢⎢⎣

CB −HB DB −LB 0
HI −DI −BI LI −M I

0 BP 0 MP − F N
0 0 I −Σ N

⎤
⎥⎥⎦
⎡
⎢⎢⎣

uB

pS

q
f

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

DB p
−DI p

0
0

⎤
⎥⎥⎦

(slab)
(soil)
(piles)
(sum)

The slab in Fig. 2.16 was analyzed with this technique [117].

2.3 Comparison finite elements—boundary elements

In the BE analysis of a plate at each point the influence that all the different
sources have on that particular point must be calculated separately. Typically
the influence a source exerts depends on the distance between the source point
y and the observation point x. This means that it typically fades away like
ln r (in the near term) or like r−1 or r−2, and the influence depends on the
angle ϕ between the two points. A change in the position, (r, ϕ) → (r̂, ϕ̂),
makes that the influence coefficients change, and thereby also the stresses.

In the FE method the situation is basically the same. It is only that the
FE method plugs all the information on how the influence changes when a
point (r, ϕ) moves to a new location (r̂, ϕ̂) into the nodal displacements ui

of an element, and interpolates the element displacement field using linear or
quadratic polynomials. Because of this technique the element is autonomous.
The price the FE method pays for this technique is that it is not as sensitive
as the BE method. If for example a cantilever plate is modeled with bilinear
elements and Poisson’s ratio is zero, ν = 0, then the FE bending moment is
the same in any vertical plane of an element, which is impossible. Obviously
the 2 × 4 data cells ui of a bilinear element are not sufficient to register the
change in the influence coefficients if the observer moves from x to x̂ = x+∆x.

But one can also view things differently: an FE program replaces the orig-
inal load case p only with a load case ph that is compatible with its limited
means.

Green’s function

The FE solution, uh(x) = (G0[x], p), is based on a mesh-dependent approxi-
mation of the Green’s function. Does this also hold true for BE solutions? To
answer this question let us study the Poisson equation −∆u = p in a domain
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Fig. 2.17. Influence function for qx a) BE solution Gxx
3 = gh,xx

3 + uh
R, b) regular

part uh
R = Gxx

3 − gh,xx
3

Ω with boundary conditions u = 0 on ΓD (fixed edge) and ∂u/∂n = 0 on ΓN

(free edge) (Γ = ΓD ∪ΓN ). It is assumed that the solution can be represented
by the formula

u(x) =
∫

Ω

G0(y,x) p(y) dΩy =
∫

ΓD

g0(y,x) t(y) dsy

−
∫

ΓN

∂g0

∂ν
(y,x) u(y) dsy +

∫
Ω

g0(y,x) p(y) dΩy (2.55)

where t = ∂u/∂ν is the slope (traction) on the boundary at the integration
point y with normal vector ν and Green’s function G0. The function g0 in the
second integral representation is a suitable fundamental solution, for example
g0 = −1/(2π) ln r. If the BE solution
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uh(x) =
∫

ΓD

g0(y,x) th(y) dsy −
∫

ΓN

∂g0

∂ν
(y,x) uh(y) dsy

+
∫

Ω

g0(y,x) p(y) dΩy (2.56)

is compared with the FE solution

uh(x) =
∑

i

ui ϕi(x) =
∫

Ω

Gh
0 (y,x) p(y) dΩy , (2.57)

there seems not to be much agreement. But the BE solution (2.56) is just the
formula

uh(x) =
∫

Ω

Gh
0 (y,x) p(y) dΩy (2.58)

u(x) =
∫

Ω

G0(y,x) p(y) dΩy

=
∫

Ω

g0(y,x) p(y) dΩy +
∫

Ω

uR(y,x) p(y) dΩy (2.59)

from which it follows that the boundary integrals in the influence function
(2.55) are just an equivalent expression for the work done by the distributed
load p acting through the regular part uR:∫

Ω

uR(y,x) p(y) dΩy =
∫

ΓD

g0(y,x) t(y) dsy −
∫

ΓN

∂g0

∂ν
(y,x) u(y) dsy .

(2.60)

Hence it can be assumed that the boundary integrals in the BE solution (2.56)
play the same role,∫

Ω

uh
R(y,x) p(y) dΩy : =

∫
ΓD

g0(y,x) th(y) dsy −
∫

ΓN

∂g0

∂ν
(y,x) uh(y) dsy ,

(2.61)

and so we arrive at (2.58), which makes the two methods look alike, even
though the FE Green’s function is only mesh dependent, while the BE Green’s
function is also load-case dependent.

The difference between the two methods is that the FE method must
approximate both parts of the Green’s function G0 = g0 + uR while the BE
method must only approximate the regular part uR because the fundamental
solution g0 is part of the code.

in disguise, of course with a different Gh
0 . To see this note that the Green’s

function G0 can be split (see Fig. 2.17) into a fundamental solution g0 and a
regular part uR,
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Note that the BE method uses an ingenious approach: it does not approx-
imate uR(y,x)—this would be simply too laborious, because at every point
x it would have to approximate a new function uR(y,x)—but instead sub-
stitutes for the work integral (uR[x], p) the work done by the Cauchy data u
on ΓN and t on ΓD via the conjugate terms of the fundamental solution g0.
That is, the program knows that it suffices to approximate the “static” data
u and t leaving the effects caused by a change in the observation point x to
the fundamental solution g0(y,x). This is the essence of (2.61).

Note also that the boundary values

ũh(x) = uh(x) + ε(x) t̃h(x) = th(x) + η(x) (2.62)

of uh(x) in (2.56) differ (slightly) from the values under the integral signs,
because the solution (2.56) satisfies the integral equation

c(x)u(x) =
∫

ΓD

g0(y,x) th(y) dsy −
∫

ΓN

∂g0

∂ν
(y,x) uh(y) dsy

+
∫

Ω

g0(y,x) p(y) dΩy x ∈ Γ (2.63)

only at the collocation points xi. On ΓD the left-hand side is zero, u(x) = 0,
while on ΓN the left-hand side is c(x)uh(x) where uh(x) is the same function
as under the second boundary integral.

Accuracy

Can we expect the same tendency as in the FE method, namely that the
accuracy reflects the nature of the Green’s function? To check this let us apply
Betti’s theorem to the pair {uh, G0}, where uh is the BE solution (2.56) of
the Poisson equation −∆u = p with boundary conditions u = 0 on ΓD and
t = 0 on ΓN and where G0 is the Green’s function for u(x) at a point x. Then∫

Ω

G0 p dΩy +
∫

ΓN

t̃h G0 dsy = uh(x) · 1 +
∫

ΓD

t0 ũh dsy (2.64)

and

u(x) =
∫

Ω

G0 p dΩy +
∫

ΓN

G0 t dsy −
∫

ΓD

t0 u dsy , (2.65)

or

u(x)− uh(x) =
∫

ΓN

G0 (t− t̃h) dsy −
∫

ΓD

t0 (u− ũh) dsy (2.66)

where t0 are the tractions of the Green’s function on Γ . Obviously the BE
solution will be exact if ũh = u on ΓD (which is only true at the collocation
points xi), and if t̃h = t on ΓN .
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In view of our previous interpretation it can be stated as well that the
error is attributable to the approximation error in uh

R:

u(x)− uh(x) =
∫

Ω

(uR − uh
R) p dΩy . (2.67)

Compare this with the FE error

u(x)− uh(x) =
∫

Ω

(G0 −Gh
0 ) p dΩy , (2.68)

and the difference between the two methods becomes apparent. In the FE
method the accuracy is linked to the nature of the Green’s function, and in
the BE method the accuracy is linked to the character of the regular solution
uR, which clearly deteriorates the closer the point comes to the boundary.
(Hence “regular solution” may be an euphemism.)

This is confirmed by (2.66), because the propagation of the error is gov-
erned by the Green’s function G0 = O(ln r) and the traction t0 = O(1/r) of
the Green’s function. Both functions “live” on the boundary. Seemingly, the
closer the point x comes to the boundary Γ , the more negative the influence
of the boundary error on the results. This agrees with our observations.

The load case ph

In FE methods p is replaced by a work-equivalent load case ph. In BE anal-
ysis the choice of ph is not so simple to explain. But the BE method bears
some resemblance to the force method. The volume potential (G0, p) of a BE
formulation corresponds to the deflection curve w0 of the statically determi-
nate structure and the boundary potentials are the deflection curves wi of the
redundant forces Xi.

Because the BE solution satisfies the differential equation in any patch
ΩP —“a truck remains a truck”—local equilibrium is satisfied in any patch
ΩP . But this is not true if ΩP = Ω because on the boundary there are
“parasitic” stresses (the η in (2.62)) that ensure that R 	= Rh, that is, that
the resultant Rh of the BE load (p + parasitic stresses) deviates from the
true resultant R, and therefore the sum of the BE support reactions deviates
from −R; see Tab. 2.1.

These parasitic stresses on Γ are a result of the deviations between the
tractions of the BE solution and the tractions of the exact solution. Usually
the imbalance R−Rh 	= 0 is very small (less than 3%).

Theoretically the BE method is restricted to linear problems, because the
scalar product is distributive∫

Ω

G0(p1 + p2) dΩ =
∫

Ω

G0 p1 dΩ +
∫

Ω

G0 p2 dΩ (2.69)
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Table 2.1. FE versus BE

FE BE

differential equation satisfied no yes
geometric boundary conditions yes (no)
static boundary conditions no no
“global equilibrium” yes no
local equilibrium no yes

but in practice the BE method can also be successfully applied to many such
problems by placing the nonlinear terms on the right-hand side and solving
the equations iteratively [257].

The ideal application for boundary elements are dynamic problems in un-
bounded domains. An example of such a problem is the analysis of displace-
ments of the surface of an elastic half-space if a (very) fast train is speeding
across the surface; see Fig. 2.18. The velocity of propagation for the p- and
s-waves respectively is, cp = 995.1 m/s, cs = 300.0 m/s, and the density
of the half-space is ρ = 2000 kg/m3, from which follows that the speed of
propagation for Rayleigh waves is cR = 284.7 m/s. The train is a point load
simulated by a triangular stress distribution. The train moved at different
speeds v across the surface:

0 < v < cR Figure a cR < v < cs Figure b
cs < v < cp Figure c cp < v < +∞ Figure d .

At v < cR (see Fig. 2.18 a) a symmetric depression appeared (as in the static
case on both sides of the point load the deformation was the same) which
moved at speed v across the surface. At speeds cR < v < cs (see Fig. 2.18 b),
a wave front builds up ahead of the moving point load. At speeds cs < v < cp

the wave front becomes wedge-like (see Fig. 2.18 c) while at the same time
the impression the triangular “point load” makes become smaller. At speeds
cp < v = 1350 m/s <∞, which exceed the p-wave velocity, deformations only
occur after the point load has passed, i.e., they trail the point load (see Fig.
2.18 d).



268 2 What are boundary elements?

Fig. 2.18. Moving point load and surface waves: a) v < cR, b) cR < v < cs,

s < v < cp, d) cp < v < ∞c) c



3. Frames

3.1 Introduction

In frame analysis the FE method is basically identical to the slope-deflection
method. But the FE method extends beyond this method, insofar it can
solve problems approximately which cannot be solved by the slope-deflection
method or other classical methods, as the force method.

Frame analysis itself is an approximation as certain effects like axial (EA =
∞) or shear deformations (GA = ∞) are often neglected. An interesting
example of how we mask certain effects is the example of an eccentric moment
applied to the middle of a beam with fixed ends; see Fig. 3.1.

According to beam theory, the moment vector can be moved in arbitrary
fashion along its axis. The bending moment in the beam will always be the
same. But when we calculate influence functions, such an eccentric moment
is also the derivative of the influence function of an eccentric force that gen-
erates non-constant torsional moments. This implies that torsional moments
of magnitude M · a/L will be observed within the beam.

If the same load is applied to an FE structure (Fig. 3.2) the deflection
of the bridge deck will cause a twist of the longitudinal axis and therewith a
torsional moment. And indeed if the resultant stresses are summed a torsional
moment of this magnitude is obtained.

Fig. 3.1. Torsional moment



270 3 Frames

Fig. 3.2. Eccentric moment creates torsion in the bridge deck

3.2 The FE approach

Many engineers consider frame analysis settled for good because all prob-
lems of frame analysis are solved. No one expects new results, more complex
structures are analyzed with finite elements, and the benefit of 1-D models
seems questionable. But the main advantage of 1-D analysis lies in the clear
and descriptive representation of structures because results are immediately
presented in integral form. This gives many engineers the false impression that

• 1-D elements are exact
• 1-D elements are simple

But the more effects that must be considered in the analysis, the more baroque
1-D analysis becomes. It is far easier to program a 2-D finite element than to
consider all the intricacies when a 2-D structure is reduced to a series of 1-D
elements.

Degrees of freedom

In a typical analysis, the x-axis follows the long dimension of the element and
the coordinates y and z point in orthogonal directions. Displacements, and
rotations, forces and moments respectively are defined analogously; see Fig.
3.3. Simple formulations for 1-D elements are only obtained if the descrip-
tion concentrates on the axis. Preferably resultant internal actions refer to
the centroids of the cross sections. But different construction stages possibly
mean changes in the location of the centroids, and often the inclination of
the neutral axis changes as well. At every stage the axes can differ in length,
and the normal force and shear forces can point in different directions. Then
the quantities must either be transformed, or one works with average values.
Occasionally when transferring data from the CAD-model to the structural
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Fig. 3.3. Internal actions in a beam

model, new axes or surfaces must be generated that will not coincide with the
CAD-model.

To avoid these difficulties it is a good strategy to allow from the start for
eccentricities in the position of the centroid and the shear center with respect
to the axes. And it is also a good approach to refer the resultant internal
actions to the user-provided y and z axes, and not to the centroidal axes of
the cross section, because the position of the principal axes within a tapered
beam may rotate.

In such a beam (see Fig. 3.4), the internal actions can be referred to at
least three different coordinate systems. The simplest choice are the main axes
shown in Fig. 3.4 a. This is the classical treatment, where the normal force
and shear forces follow the dashed line, indicating the longitudinal axis. These
components N and V are also the components referred to when the stresses
are calculated and the reinforcement is designed.

But it would be a more elegant and also more efficient approach if the
longitudinal force and the transverse forces of second-order beam theory which
refer to the axes of the undeformed system, were used (see Fig. 3.4 b and c).

Superposition of the stresses when the centroid changes position is only
easy in case (c) because in the other two cases the position of the centroid
must be known, and in case (a) the inclination of the longitudinal axis must be
known as well. But the superposition of internal actions to calculate resulting
stresses only makes sense if the cross section does not change. Therefore the
longitudinal and transverse forces are better referred to the centroid of the
cross section, as in Fig. 3.4 b, because if an arbitrary point of reference is
chosen as in Fig. 3.4 c, it is much harder to interpret the results. Add to
this that if the internal actions are to be plotted, then besides the bending
moment the transverse forces, the longitudinal force, and the rotation of the
beam axis according to second-order theory must also be known.

At each end of the element lies one node whose displacements are given
in terms of the global coordinate system. It is helpful to transform these
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Fig. 3.4. Possible
coordinate systems

deformations into the local element coordinate system. In accordance with
Fig. 3.4 b, we choose as internal reference nodes the centroids of the cross
sections at both ends of the element. Each of these nodes can have up to
seven degrees of freedom:

1. the longitudinal displacement ux at the centroid of the cross section
2. local transverse deformations uy and uz as well as rotations ϕy and ϕz

3. the twist ϕx and the angle of twist per unit length ϕ′
x

The displacements and rotations of the two nodes are determined by the global
displacements (uX , uY , uZ) and rotations (ϕX , ϕY , ϕZ) if the position of the
local nodes with respect to the global nodes are known (see Fig. 3.5). While
the rotations are identical for the local and the associated global node, the
displacements must be transformed by taking the eccentricities into account.
The longitudinal displacements at the centroid xc, for example, are

ux0(xc) = ux(xi) + ϕy ∆ z − ϕz ∆ y xi = node . (3.1)

To consider effects due to warping, matching transition conditions must be
formulated at corner points and at rigid joints. The choice of components is
arbitrary, insofar as also higher derivatives of the displacements could be used
as nodal values, although these would be difficult to control.

Along the beam axis these displacements are interpolated as follows:

1. Linear interpolation of the axial displacement ux

2. Coupled interpolation of the displacement uy and the rotation ϕz

3. Coupled interpolation of the displacement uz and the rotation ϕy

4. Coupled interpolation of the twist ϕx and the angular twist per unit length
ϕ′ (linear interpolation of ϕx if warping torsion is neglected)

The coupled interpolation can be done with cubic splines, in which case the
rotations and the warping effects respectively are simply the derivatives of the
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Fig. 3.5. Position of the
centroidal axis

displacements and the rotations. Then it is convenient to choose the shape
functions of a beam

H1 = (1− ξ2) (1 + 2 ξ) H2 = l (1− ξ2) ξ (3.2)

H3 = ξ2(3− 2 ξ) H4 = −l (1− ξ) ξ2 ξ = x/l (3.3)

so that

uz(x) =
∑

i

Hi(x) · uzi ϕy =
∑

i

H ′
i(x) · uzi (3.4)

uy(x) =
∑

i

Hi(x) · uyi ϕz =
∑

i

H ′
i(x) · uyi . (3.5)

Here uyi and uzi are nodal displacements in the local coordinate system at
the two ends of the element.

But the coupling can also be done by considering the shearing strains
according to Timoshenko:

θy =
Vz

G Az
, ϕy = uz,x + θy , (3.6)

θz =
Vy

G Ay
, ϕz = uy,x + θz . (3.7)

The displacements within a cross section are then obtained by a product
approach,

uj =
7∑

i=1

Nij(y, z) · ui(x) (3.8)

or if we substitute for ui(x) the interpolating functions

uj =
2∑

k=1

7∑
i=1

Nij(y, z) ·Hik(x) · uik . (3.9)

In general the following functions are used to model the displacements and
higher-order terms within the cross section:
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ux(y, z) = ux0 + ϕy · (z − zs)− ϕz · (y − ys)
+ Uw · (θx − ϕ′

y ϕz + ϕy ϕ′
z) + Uy · θy + Uz · θz + Uw2 · θt2 ,

(3.10)

uy(y, z) = uy0 − ϕx · (z − zm)− 1
2

(ϕ2
x + ϕ2

z) · (y − ym) , (3.11)

uz(y, z) = uz0 − ϕx · (y − ym)− 1
2

(ϕ2
x + ϕ2

y) · (z − zm) . (3.12)

Here ux0, uy0 and uz0 are the displacements of the centroid, ys, zs are the
cross-sectional coordinates of the centroid, and ym, zm are the coordinates of
the shear center.

The first three terms of the longitudinal displacement are determined
by the requirement that the cross section remain flat, in agreement with
Bernoulli’s hypothesis. Next the unit warping functions Uw, Uy, Uz are added,
and finally terms (Uw2, θt2), which take into account deformations caused by
shear forces and secondary torsional moments. The latter add complex pat-
terns of warping, which in general are not easy to investigate.

Displacements orthogonal to the axis are simple translations and rota-
tions (rigid-body motions), that is, it is assumed that the cross section keeps
its shape. To allow for changes in the cross section would require either a
sophisticated 3-D model of flat shell elements—think of a double T beam—or
the single terms must be decoupled.

The strains are the derivatives of the displacements. If the higher-order
terms coming from second-order theory are neglected, the stresses become

σx = E εx = E u,x = E [u,x +ϕy,x (z − zs)

−ϕz,x (y − ys)− zs,x ϕy + ys,x ϕz +
∑

(Ui,x · θi + Ui · θi,x ) x] ,

(3.13)
τxy = G γxy = G[ux,y +uy,x ] = G [(uy0,x−ϕz)

+
∑

(Ui,y · θi)− (z − zm) ϑ,x +zm,x ϑ] , (3.14)

τxz = G γxz = G[ux,z +uz,x ] = G [(uz0,x−ϕy)

+
∑

(Ui,z · θi)− (y − ym) ϑ,x−ym,x ϑ] , (3.15)

σy = σz = τyz = 0 . (3.16)

Note that the last three stress components vanish, because the movements
orthogonal to the axis are assumed to be only rigid-body motions.

When the derivatives are calculated, the product rule ensures that terms
appear which are absent in a prismatic member, because in such members the
position of the centroidal axis and the axis of the shear center do not change.
In a tapered beam these terms should not be neglected, because the element
will benefit from their inclusion.
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With regard to the shear stresses two approaches are possible. If Tim-
oshenko’s and Mindlin’s approach is applied, the terms in the first bracket
effect a constant shear distribution, and the cross section remains flat.

A shear distribution which instead satisfies the equilibrium conditions lo-
cally as well (differential equation) is determined by the warping of the cross
section. But this approach can also be used for the classical beam (if the first
bracket becomes zero). The shear stresses then simply depend on the unit
warping deformations, which must be scaled in such a way that equilibrium
is satisfied with regard to the total shear force in the cross section.

In frame analysis the focus is on the resulting stresses, that is, the so-called
internal actions

N =
∫

A

σx dA = EA (u,x−zs,x ϕy + ys,x ϕz) + EAz ϕy,x−EAy ϕy,x

(3.17)

My =
∫

A

z σx dA = EAz (u,x−zs,y ϕy + ys,x ϕz) + EAzz ϕy,x−EAyzϕy,x

(3.18)

Mz =
∫

A

y σx dA = EAy (u,x−zs,x ϕy + ys,x ϕz) + EAyz ϕy,x−EAyyϕy,x

(3.19)

Vy =
∫

A

τxy dA , Vz =
∫

A

τxz dA (3.20)

Mt =
∫

A

[(y − ym) τxz − (z − zm) τxy] dA (3.21)

where

EA =
∫

E dA EAzz =
∫

E z2 dA (3.22)

EAy =
∫

E y dA EAyy =
∫

E y2 dA (3.23)

EAz =
∫

E z dA EAyz =
∫

E y z dA . (3.24)

The centroid of the cross section is the point at which the area integrals EAy

and EAz vanish. In addition, the unit warping functions Ui are scaled in such
a way that their contributions to the first three integrals vanish. The cross-
sectional centrifugal moment E Ayz should be retained in any case, because a
transformation of the cross section to the principal axes is neither appropriate
nor always possible in the presence of shear deformations.

Cross sectional values

The cross-sectional values can be easily determined if the cross section is
polygonal (see Fig. 3.6)
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Fig. 3.6. Cross section

A =
n∑

i=0

1
2

(zi+1 + zi) (yi+1 − yi) (3.25)

Iy =
n∑

i=0

1
12

(zi+1 + zi) (yi+1 − yi) (z2
i+1 + z2

i ) . (3.26)

Sometimes a correction term in the form of an effective width is added if
Bernoulli’s hypothesis seems too crude an approximation. But these correction
terms depend on what is to be corrected, that is, they are different if cross-
sectional values and thereby the stiffnesses are to be modified, or if they
modify terms which are relevant for the design. In such situations one must
be careful to group the correct position of the centroidal axes with the correct
cross-sectional values. For example it is a conventional approach in the design
of prestressed concrete to derive the internal actions for a cross section, which
is different from the approach that is later used for design purposes.

Because shear stresses do not appear in the constitutive equations of an
Euler–Bernoulli beam, they are usually introduced by formulating an equilib-
rium condition:

τ,s = σ,x , τ =
V Z

I b
. (3.27)

But unfortunately this formula has many drawbacks:

• The shear force V is only correct if the normal force is constant and the
beam has a constant cross section (no tapered beam).

• The section modulus Z is only correct if the cross section is simply con-
nected.

• Shear stresses must especially not be constant across the width of the
beam.

• Eventually I must be replaced by Swain’s formula for skew bending.

Mainly the second remark indicates the basic problem namely that the force
method is not very appropriate for computer programs.

The natural choice would be a displacement method in which the primary
variable is the warping of the cross section. The constitutive equation for this
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model is either the principle of minimum potential energy, or equivalently the
set of equations that formulates the equilibrium conditions:

τxy = G (w,y −z θx,x ) (3.28)
τxz = G (w,z +y θx,x ) (3.29)

G ∆w = G (w,xx +w,yy ) = −σx,x (3.30)
τxy ny + τxz nz = 0 on the edge . (3.31)

This problem can either be solved in one step or divided into four sub-
problems:

• The primary torsion problem: dθ/dx = warping ; σx = 0
• The two shear problems: dθ/dx = 0; σx = from the shear force V
• The secondary torsion problem: dθ/dx = 0 ; σx = from the warping mo-

ment

In the case of thin-walled cross sections where the stresses in thickness direc-
tion are nearly constant, the problem is easily solvable. Otherwise the Poisson
equation must be solved numerically.

The result of such an advanced analysis is a precise shear stress distribu-
tion, which facilitates the design. By employing an equivalence principle, the
internal strain energy can also be used to calculate the shear deformations,
and the shear stress distribution also defines the unit warping functions Ui.

Stiffness matrix

If the interaction between the mixed terms of the stresses and the unit warping
functions are neglected, the strain energy of the element can be written

Πi =
1
2

∫
E ε2 dV =

1
2

∫
(EA

[
(u′

0)
2 − 2 u′

0 [ϕy z′s − ϕz y′
s]
]

+ EA
[
ϕ2

y (z′s)
2 + ϕ2

z (y′
s)

2 − 2 ϕy z′s ϕz y′
s

]
+ EIy (ϕ′

y)2 + EIz (ϕ′
z)

2 − 2 EIyz ϕ′
y ϕ′

z) dx . (3.32)

This integral yields a stiffness matrix that not only takes into account the
normal displacements and the bending stiffness, but also the stiffening effect
of a tapered beam.

If the shape functions satisfy the differential equations, the stiffness matrix
is exact. If this is not the case, as for example in the presence of an elastic
foundation or if the beam is tapered or second-order theory effects must be
considered, the beam must be subdivided into small elements to improve the
approximation.

In the case of a tapered beam (see Fig. 3.7) the results obtained with dif-
ferent elements are displayed in the following table.



278 3 Frames

Fig. 3.7. Tapered beam

w(mm) Ne (kN) Nm (kN) Mye (kN m) Mym (kN m)

Inclined axis

* 1 element 0.397 −80.5 −78 −73.58 31.91

* 8 elements 0.208 −46.3 −43.8 −94.87 19.17

** 1 element 0.172 −39.8 −37.3 −93.65 22

** 8 elements 0.206 −45.8 −43.3 −95.02 19.14

Horizontal axis

1 element 0.168 −37.9 −37.9 −93.01 22.52

8 elements 0.204 −44.2 −44.2 −94.85 19.1

Here * indicates that the shape of 1/EI was interpolated, while ** indicates
that the shape of EI was interpolated and e = end and m = middle refer to
the position of the cross section.

Shear stresses and shear deformations

Shear deformations are neglected in classical beam theory. It would not be
correct to simply add strain energy terms that account for the equivalent shear
cross sections, because these add stiffness to the system but not flexibility.
This can only be done in a formulation based on the complementary energy
approach.

The simplest approach is it to reduce the bending stiffness in such a way
that the deformations become the same. But this technique is limited to pris-
matic members, and would only achieve the intended effect for one particular
load case. Also an extension to tapered beams is not so easy.

Timoshenko proposed to do the coupling of the rotations and the derivative
of the deflection with a Lagrange multiplier. Hence the equations

M = −EI w′′ , V = −EI w′′′ , (3.33)

are replaced by the two equations
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M = −EI ϕ,x , V = −GA θ = GA (ϕ− w,x ) . (3.34)

If the rotations and displacements are interpolated with linear polynomials,
the bending moment is constant and the shear force is linear. This leads to
two new problems that need attention:

• For large values of GA locking becomes a problem. A possible remedy is
the introduction of a so-called Kirchhoff mode, which guarantees that at
one point on the axis the derivative M ′ equals the shear force V . This
condition relates u to ϕ, which enables one to modify the shape functions
accordingly. If Hughes’ approach is adopted [121] then

M = −EI ϕ,x (3.35)

V = −GA θ = GA [
ϕi + ϕj

2
− wj − wi

L
] . (3.36)

• In addition, the element can no longer model simple problems correctly, as
for example a cantilever beam that carries a single force at the free end. The
rotations and the internal actions are correct, but the deflection is not. To
overcome this problem the beam must be subdivided into many elements,
which is hardly a sound approach from the standpoint of the user. In this
case it helps to supplement the rotations with a nonconforming quadratic
function ϕm so that—considering the Kirchhoff-condition—it follows

ϕ = ϕi (1− ξ) + ϕj ξ + ϕm (4 ξ (1− ξ)) , (3.37)

M = −EI

L
[(ϕj − ϕi) + 1.5ϕm (8 ξ − 4)] , (3.38)

V = −GA θ = −GA [
ϕi + ϕj

2
+ ϕm − wj − wi

L
] . (3.39)

The function produces exactly the missing linear variation of the bending
moment. The shear force stays at its maximum value, which requires a
correction factor 1.5 for the bending moment.

But even such an advanced model as a Timoshenko beam cannot accom-
modate all effects. In numerical tests the results depended for some cross-
sectional shapes on the orientation of the coordinate system, because if the
shear force vector as well as the vector of the shearing strains is transformed,
the tensor of the inverse shear areas is obtained[

θy

θx

]
=
[

1/GAy 1/GAyz

1/GAyz 1/GAz

] [
Vy

Vz

]
. (3.40)

On the one hand the introduction of a mixed shear area 1/Ayz removes the
inconsistency in the results; on the other hand, this additional area cannot
simply be added to the Timoshenko beam as an additional stiffness, because
normally it is infinite, and it would lead to a coupling of the bending moments
about the two axes.

There is no easy way to account for this matrix in the classical beam
element. There are only two possibilities:
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Fig. 3.8. Shear stresses

• The first is to use a flexibility matrix. This may be established via nu-
merical integration of the differential equations. Extra shear deformations
are simply added and eventually included when this matrix is inverted to
derive the stiffness matrix.

• The other solution based on the Timoshenko beam operates with the in-
verse of the above matrix, which yields the following term for the potential:

[Vy, Vz]
1

1− a

[
Ay −b
b Ay

] [
Vy

Vz

]
a =

Ay Az

Ayz
b =

Ay Ay

Ayz
. (3.41)

In the Timoshenko model the shear stresses are constant within the cross
section, while they have a parabolic shape in rectangular cross sections. The
shear areas for the deformations and for the maximum stresses are therefore
in general not identical:

θ =
V

GA
(A = 0.833 · b · h for a rectangle) ,

τ =
V

A
(A = 0.666 · b · h for a rectangle) .

One aspect deserves our particular attention: normally the prismatic bar has
a constant cross section and in calculating the shear stresses it is assumed
that they vanish at the edge of the cross section. But in the case of a tapered
beam this is not correct; see Fig. 3.8.

Shear stresses appear at the edge of a tapered beam (see Fig. 3.9). In a
plane orthogonal to the reference axis the distribution of the shear stresses is
asymmetric, (Fig. 3.10 a), while in a plane orthogonal to the centroidal axis
the shear stress distribution is more harmonic (Fig. 3.10 b).

In the cross section x = 1.0 the transverse force is 40 kN, hence the shear
force is 39.95 kN. If the cross section were rectangular with a height of 93.75
cm, the shear stress would be 63.92 kN/m2. Because the bending moment in
this cross section is 52.6 kN m, the shear force M/d · tan α is reduced by 5.6
kN, so that the real value is 54.9 kN/m2. The FE shear stress is 53 kN/m2 at
the center and 30 kN/m2 at the edge. Hence this reduction of the shear force
comes close to the maximum value, but the distribution over the cross section



3.2 The FE approach 281

Fig. 3.9. Shear stresses τxy

Fig. 3.10. Shear stresses: a) τxy in a vertical plane, b) τnq in a plane orthogonal
to the centroidal axis

is only an approximation, so it is questionable whether the calculated principal
tensile stresses or the maximum von Mises stresses are always correct.

Influence of the shear center, warping torsion

If the influence of warping torsion is to be considered as well (and assuming
that the shear center axis changes its location) so many terms contribute to
the strain energy integral that no complete analysis seems to have been done
yet. In the simpler case that the reference axis coincides with the rotational
axis, use could be made of the following formula for the strain energy:

Πi2 =
1
2

∫ l

0

(E CM (ϑ′′)2 + G I (ϑ′)2

+ N [2ϑ′ zm v′m + 2 ϑ′ ym w′
m + (v′m)2 + (w′

m)2 + im (ϑ′)2]
+ My [−2ϑ w′′

m + rMy
(ϑ′)2] + Mt [2ϑ v′′

m + rMz
(ϑ′)2]

+ Mb [rMw
(ϑ′)2] + Mt [v′m w′′

m − v′′m w′
m]) dx . (3.42)

Of course these terms are to be supplemented with additional terms that
depend on the load.
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With regard to the torsional moment, two components are now to be
considered. The total moment can be split into a Saint-Venant part and a
part that stems from secondary torsion:

Mt = Mtv + Mt2 = G IT ϑ′ − E CM ϑ′′′ . (3.43)

Evidently a cubic polynomial is now needed to model the twist of the longi-
tudinal axis. This is best achieved by introducing two additional degrees of
freedom for the warping of the cross section. Then the same standard third-
degree Hermite polynomials are also used to model the twist. As in the case
of the shear force, one obtains in each element a constant and a stepped dis-
tribution of the secondary torsional moment. These formulas are also valid if
no warping occurs (CM = 0).

With regard to the shearing deformations due to warping, the same obser-
vations are true as for the shear deformations. They can either be incorporated
directly, or one can use an approach similar to the approach used in a Timo-
shenko beam.

The general beam element

In the most general case—if arbitrary loads are to be applied, if the cross sec-
tion can have any shape and support conditions can be rather complicated—
use can be made of transfer matrices. The transfer matrix for a beam with
constant values of EI, GAs and a constant load p is

⎡
⎢⎢⎣

w
w′

M
V

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 −x x2

2 EI
x3

6 EI −
x

G As

0 1 − x
EI − x2

2 EI
0 0 −1 −x
0 0 0 −1

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

w0

w′
0

M0

V0

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

x4

24 EI + x2

2 GAs

− x3

6 EI

−x2

2−x

⎤
⎥⎥⎥⎥⎥⎦ p .

(3.44)

From an abstract point of view these equations can be interpreted as the
result of a direct or numerical integration of the differential equations. Nu-
merical integration is best done with Runge–Kutta methods. In simple cases
the exact solution is obtained after just one step and the additional effort is
minimal. In the worst case a stiff system of differential equations is obtained,
and then the beam must be subdivided into many elements to control the nu-
merical solution. The advantage of transfer matrices over variational methods
is that by using transfer matrices a flexibility matrix can be derived, which
corresponds to the principle of minimum complementary energy. This is an
important property when it comes to a correct assessment of the shear defor-
mations. An additional advantage is that the differential equation is easier to
program.
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Resistance factor design

There are other areas where a generalization of the current models opens up
new possibilities. Some building codes allow to work in cross sections with
plastic limit loads. Here too we have in principle the possibility of using finite
elements and to apply elasto-plastic laws, or the whole analysis can be done
in the cross section. In the case of thin-walled cross sections a complete de-
scription of the interaction of all resultant stresses is feasible [143]. If a general
nonlinear procedure is employed, then the analysis must be done iteratively
due to the changing stiffnesses, and the need to handle the interaction in the
partially plasticized zones.

Frame analysis is usually based on the following assumptions:

• linear elastic distribution of the normal stresses and the stresses caused by
torsional warping

• linear elastic distribution of the shear stresses due to shear forces and
torsional moments

• a plane strain state plus warping
• a yield condition

To calculate the linear distribution of shear stresses in the cross section ad-
vanced methods—based either on a displacement or a force method—are nec-
essary to determine the shear flow.

In the first step, given a certain combination of loads, a linear equivalent
stress distribution can be calculated, and these stresses can then be related
to the yield stresses.

In the second step one might “somehow” reduce these stresses. Besides the
special case where the shear force is taken care of separately, other techniques
are available.

In the third step, the stresses can be transformed by numerical integration
into resultant internal actions, and these can then be used to calculate effective
nonlinear stiffnesses. By an iterative procedure based on the stiffnesses, the
equilibrium of the internal actions ultimately is maintained [141].

To control the yield condition it suffices to check just the normal stress
σx and the shear stresses τxy and τxz, because the shear stresses τyz and the
stresses σy and σz will only be noticeable near the loaded regions, and they
are probably not influenced by changes in the stiffness of the cross section.
For an investigation into the local limit load of such regions, 1-D analysis is
not appropriate. Rather this would require experimental tests or an elaborate
FE analysis with flat shell elements.

With regard to the intended reduction of the stresses, in principle three
methods are conceivable. Common to all three methods is that each stress
point is independent of the neighboring points. Plastic strains that might lead
to additional stresses because the movement in y or z direction is impeded
are therefore ignored, and perhaps this provides an additional safety factor
with respect to experimental results. Formally this is in agreement with other
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engineering approaches, as for example the Winkler model. We can choose
between three methods:

• Prandtl solution In adopting Prandtl’s yield conditions, we calculate
the plastic strains, which are orthogonal to the yield surface. To this end
[72], [258], first the onset of the development of a plastic zone is calculated
by a uniform reduction according to the first method, and then for the
remaining plastic strain increments an elasto-plastic elasticity matrix is
calculated by considering the elasticity matrix C:

σ =
[
C − q · C · q′

q′ · C · q
]
· ε , q =

∂F

∂σ
. (3.45)

• Isotropic reduction Shear and normal stresses are relaxed in the same
ratio, so that the equivalent stress just reaches the yield stress:

σ =

[
fy

σv, elastic

]
· σv, elastic , τ =

[
fy

σv, elastic

]
· τv, elastic . (3.46)

• Shear stresses Shear stresses are absorbed fully and therefore normal
stresses are reduced. This is the usual strategy in manual calculations. It
remains unsatisfactory in the presence of strong shear stresses, because it
can lead to situations where an increase in the curvature has no effect on
the system

τ = min
{

fy√
3
, τ elastic

}
, σ = min

{√
f2

y − 3 τ2, σ elastic

}
. (3.47)

With one of these methods, the resulting internal actions can be calculated
by numerical integration.

If these internal actions exceed the actual internal actions, the structure is
safe. If we do an elastic–plastic analysis, we have only to check the slenderness
ratio (or a similar criterion) to pass the design check. Otherwise an iterative
analysis must follow to allow for a redistribution of the forces.

If plastic zones develop in a cross section, the stiffnesses change. To assess
the rearrangement of internal forces, these changes must be considered in the
analysis. In bending-dominated problems, the equations can easily be modified
if the following equation is either solved for the plastic curvature κ0 or used
to calculate a secant stiffness:[

My

Mz

]
=
[

E Iy E Iyz

E Iyz E Iz

] [
κy

κz

]
+
[

κy0

κz0

]
. (3.48)

With regard to shear strains, it is important to decide whether a rearrange-
ment of the shear strains is possible or desirable. In some cases a reduction in
the bending stiffness alone will lead to a reduction in the shear strains. But
in general a static analysis must incorporate the shear deformations, because
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Fig. 3.11. Nonlinear analysis of a beam

only then can the shear stiffnesses be reduced. But unlike the situation in
bending problems, there is no simple rule to determine nonlinear shear defor-
mations. Nevertheless one can simply reduce the shear stiffness according to
the ratio between internal and external shear force, but note that during the
iteration the stiffness can increase again if the shear forces decrease.

Nonlinear analysis

In nonlinear analysis the stiffness of a structure depends on the actual strains
and stresses within the structure. By introducing an equivalent secant modulus
the nonlinear problem can be reduced to an elastic problem but then an
iterative analysis must be performed to find the strains which are compatible
with the internal actions. In the final step of such an iterative analysis it must
be checked whether the internal actions are compatible with the iteratively
determined stiffnesses. We perform this check for the beam in Fig. 3.11, grade
C 20 concrete and grade S 500 reinforcement steel (Eurocode), [180].

If the origin of the system of coordinates does not coincide with the elastic
centroid the matrix which describes the relation between the strains and the
internal actions is fully populated⎡

⎣Nx

My

Mz

⎤
⎦ =

⎡
⎣ EA EAz −EAy

EAz EAzz −EAyz

−EAy −EAyz EAyy

⎤
⎦
⎡
⎣ u′

−w′′

v′′

⎤
⎦ . (3.49)

For a definition of the terms EA,EAz, etc. see (3.22). A nonlinear analysis
with an FE program rendered a value of 4.70 cm2 for the reinforcement and
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Fig. 3.12. σ − ε diagram

for the strains the values

εu = −2.0� εl = 11.12� εm =
11.12− 2.0

2
= 4.56� (3.50)

so that the curvature of the cross sections is

− w′′ =
2.0� + 11.12�

0.6 m
= 21.87 · 10−3 m−1 . (3.51)

The nonlinear analysis was based on the following stress-strain law for the
concrete (see Fig. 3.12)

σc = ε · (1− ε

4
) · α · fcd α = 0.85 , fcd =

20
1.5

= 13.3 MN/m2 (3.52)

so that the secant stiffness becomes

E =
σc

ε
= (1− ε

4
) · α · fcd . (3.53)

Both the concrete (b = 30 cm)

EAc :=
∫ zu

z=0

(1− ε

4
) · α · fcd · b dz = 234.5 MN (3.54)

and the steel

EAs :=
σs

εs
·As = 20.65 MN (3.55)

contribute to the longitudinal stiffness

EA :=
∫

E dA = EAc + EAs = 234.5 + 20.65 = 255.15 MN . (3.56)

In the same sense the statical moment is the sum of two parts
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Fig. 3.13. An FE analysis of a standard frame: a) linear analysis; b) nonlinear
analysis; c) nonlinear analysis + axial displacements; d) plus tension stiffening

EAz :=
∫

E z dA = EAz,c + EAz,s = −58.37 + 5.16 = −53.21 MN

(3.57)

and the moment of inertia as well

EAzz :=
∫

E z2 dA = EAzz,c + EAzz,s = 14.69 + 1.29 = 15.98 MNm

(3.58)

so that
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Fig. 3.14. An FE analysis of standard frames yields the exact values

⎡
⎣Nx

My

Mz

⎤
⎦ =

⎡
⎣ 255.15 −53.21 −EAy

−53.21 15.98 0
−EAy 0 EAyy

⎤
⎦
⎡
⎣ 4.56 · 10−3

21.87 · 10−3

0

⎤
⎦ =

⎡
⎣ 0

107
0

⎤
⎦ . (3.59)

The result agrees with the internal actions, N = 0,My = 107 kNm,Mz = 0.
The constant strain εm of the x-axis causes a horizontal displacement

ux =
∫ l

0

εm dx = 4.56� · 1.0 m = 4.56 mm . (3.60)

Often the horizontal displacements are neglected but their influence on the
structural reaction can be considerable and sometimes they produce quite
surprising results.

Today it is standard that FE programs allow to consider shear deforma-
tions in frame analysis. It is hoped that in the future it will be possible to
include the effects of nonlinear axial strains and tension stiffening as well in
the analysis. The influence of these different effects

• linear analysis
• nonlinear analysis
• nonlinear analysis + axial displacements
• nonlinear analysis + axial displacements + tension stiffening

on the bending moment distribution of a concrete frame is depicted in Fig.
3.13.
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3.15. Any deflection
curve can be split into two
parts

3.3 Finite elements and the slope deflection method

If a frame is analyzed with an FE program, is the solution an approximation
or is it exact?

The solution is exact if the frame could also have been analyzed with the
slope deflection method, because in standard frames—no tapered beams, con-
stant stiffness—the FE result is identical to the results of the slope deflection-

The deflection curve w = w0 + wp of a beam can be split into two parts,
a homogeneous deflection curve w0 and a particular deflection curve wp (see
Fig. 3.15), where

w0 = u1 · ϕ1(x) + u2 · ϕ2(x) + u3 · ϕ3(x) + u4 · ϕ4(x) (3.61)

and where wp is a solution corresponding to fixed ends.
The homogeneous solution solves EIwIV

0 = 0, while the particular deflec-
tion curve wp solves the equation EIwIV

p = p. The deflection w0 “carries” the
end displacements ui while the deflection wp “carries” the load p. The second
function is “mute” at the ends of the beam.

Correspondingly the deformation of a frame (see Fig. 3.16) can be split
into two parts: deformations resulting from the movement of joints (nodal
displacements), and local deformations, i.e., displacements between the nodes
caused by the distributed load p. The local deformations would also occur if
all nodes were fixed. The nodal displacements are the decisive terms, because
they establish the interaction between the individual beams.

Hence, if in the FE method the movements of a frame are expanded with
regard to the unit displacements ϕi of the nodes,

Fig.

method; see Fig. 3.14. The reason is that the reduction of the load into the
nodes does not change the nodal displacements, as is explained below.
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3.16. The FE defor-

terms of the nodal unit dis-

uh(x) =
∑

i

ui · ϕi(x) , (3.62)

the local contributions wp are neglected, i.e., it is assumed that p = 0.
Because such unit displacements can only yield the exact shape if the load

is concentrated at the nodes, the FE method reduces all distributed loads
to the nodes. To this end, it lets the distributed load p act through the unit
displacements ϕi(x), and it places nodal forces f̄i at the nodes that contribute
the same amount of work,

δWe(p, ϕi) = f̄i · 1 , (3.63)

which means that the nodal displacements u satisfy

Ku = f̄ . (3.64)

But the vector f̄ on the right-hand side

f̄ = f + p (3.65)

is identical to the right-hand side in the slope deflection method, because when
the nodes are released and the forces (reactio) which previously prevented any
movement of the nodes are applied in the opposite direction (actio), and when
the equilibrium position u of the frame is determined, then this system (3.64)
is solved.

The first vector f in (3.65) is the vector of the true nodal forces, i.e., the
concentrated loads applied directly at the nodes, while the second vector p
contains the equivalent nodal forces resulting from the distributed load. But

Fig.
mation is an expansion in

placements of the joints. The
expansion is exact if only
nodal forces act on the frame
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Fig. 3.17. Beam and constant load

these equivalent forces are just the fixed end forces ×(−1) of the distributed
load, because

(−1)× fixed end forces = p i =
∫ l

0

p ϕi dx

=
∫ l

0

p ϕi dx = p i = equivalent nodal force .

(3.66)

For this to be true, it is of course necessary that the shape functions be the
exact unit displacements ϕi

Hence, an FE program which employs exact unit displacements is an
implementation of the slope deflection method (in one step). Whether the
distributed load is left out on the beam or reduced to the nodes makes no
difference—the nodal displacements are the same. This remarkable result only
holds for 1-D problems (ordinary differential equations—but see the remark
on the next page).

Of course, between the joints the exact solution (distributed load) and the
FE solution (equivalent nodal forces) differ, but this is of no consequence,
because (3.64) is only used to calculate the nodal displacements. To calculate
the stress resultants and the displacements in the individual beam elements,
for each element (e) we invoke the relation

K eu e = f e + p e ⇒ f e = K e u e − p e . (3.67)

This provides the beam end forces f e that belong to the end displacements
u e and once the fe

i are calculated, the internal actions between the nodes can
be calculated with influence functions or transfer matrices.

A study of the displacements of a simple one span beam with a constant
load will explain this (see Fig. 3.17). The beam has a length of 15 m, the
bending stiffness is EI = 34, 167 kNm2, and the applied load is p = 10 kN/m.
The following table shows results for an analysis with one or two elements.

Exact 1 element 2 elements

Max. moment 281.25 281.25 281.25 kNm
End rotations 41.147 41.147 41.147
Center deflection 19.2876 15.4301 19.2876 mm

of the beam, because these functions are also the in-
fluence functions for the fixed end forces. This duality is the reason why the two
sides in (3.66) are the same, why the equivalent nodal forces are also the fixed
end forces.
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The maximum bending moments and the rotations are identical, but the
center deflections are not. This is no surprise, given that the shape functions
are cubic polynomials. The deflection curve must be a symmetric function
with respect to the center of the beam, it must be a second-order polynomial!
The end rotations are correct, because a reduction of the distributed load into
the nodes will have no effect on the nodal displacements.

Remark 3.1. The necessary condition that the FE solution interpolates the
exact solution at the nodes is that the Green’s functions of the nodes lie in
Vh. The Green’s functions are piecewise homogeneous solutions. In equations
such as

− EAu′′(x) + c u(x) = p(x) EI wIV (x) + cw(x) = p(x) (3.68)

the homogeneous solutions

u(x) = c1 ex
√

c/EA + c2 e−x
√

c/EA (3.69)

and

w(x) = eβ x(c1 cos β x + c2 sin β x) + e−β x(c3 cos β x + c4 sin β x) (3.70)

β = 4

√
c

EI
(3.71)

are not the typical shape functions of the FE space Vh. Hence, in these cases
the FE solution does not interpolate the exact solution at the nodes. Theoret-
ically it can also happen that Vh is too “smooth” i.e., for to generate a Green’s
function of the equation −EAu′′ = p, we must allow for a discontinuous first-
order derivative at the nodes. The FE space Vh of an Euler–Bernoulli beam
would not do us the favor.

Hence, in some sense in FE analysis we must strike a balance between
the regularity that is required by the energy and the non-regularity that is
necessary in order to come close to the Green’s functions. And the latter we
achieve by letting h → 0 because then we can model a nearly infinite slope,
1/h→∞, with a nodal unit displacement u = 1.

3.4 Stiffness matrices

To calculate the stiffness matrix of the bar in Fig. 3.18, the differential equa-
tion that relates the axial load p to the axial displacement u(x),

− EAu′′(x) = p(x) (3.72)

and the general homogeneous solution of this equation

uh(x) = a0 + a1x (3.73)
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3.18. Unit displace-

downwards

must both be known. By a proper choice of the coefficients a0 and a1, the
unit displacements

ϕ1(x) =
1− x

l
ϕ1(0) = 1 , ϕ1(l) = 0 ,

ϕ2(x) =
x

l
ϕ2(0) = 0 , ϕ2(l) = 1

(3.74)

are derived. Finally Green’s first identity is formulated,

G(u, û) =
∫ l

0

−EAu′′û dx + [Nû] l
0︸ ︷︷ ︸

δWe

−
∫ l

0

EAu′ û′dx︸ ︷︷ ︸
δWi

= 0 N = EAu′

(3.75)

to provide the definition of the strain energy product δWi, because the ele-
ment k ij of the stiffness matrix K is the strain energy product between the
unit displacements, ϕi and ϕj

k ij =
∫ l

0

EAϕ′
iϕ

′
j dx =

∫ l

0

NiNj

EA
dx , (3.76)

so that

K =
EA

l

[
1 −1
−1 1

]
(3.77)

or K u = f + p, where the fi are the end forces, and the pi are the fixed-end
forces (×− 1) resulting from the distributed load

p 1 =
∫ l

0

p ϕ1 dx p 2 =
∫ l

0

p ϕ2 dx . (3.78)

Fig.

displacements are plotted
ments of the bar. Horizontal
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Fig. 3.19. Variable stiffness
EA = EA(x)

Tapered beam

In a tapered beam with a cross-sectional area such as

A(x) = A0 + A1x , (3.79)

the differential equation for the longitudinal displacement is

− EA(x)u′′(x)− EA′(x)u′(x) = p(x) . (3.80)

With Maple or Mathematica, the homogeneous solution

u(x) = c2 + c1
lnA(x)

A1
(3.81)

can be found, and thereby the unit displacements

ϕ1(x) =
lnA(x)− lnA(l)
lnA(0)− lnA(l)

, ϕ2(x) =
lnA(0)− lnA(x)
lnA(0)− lnA(l)

. (3.82)

Upon substituting these into the strain energy product

k ij =
∫ l

0

EA(x)ϕ′
iϕ

′
j dx , (3.83)

the stiffness matrix is obtained:

K = k

[
1 −1
−1 1

]
k = A1 E

lnA(l)− lnA0

(lnA1 − lnA0)2
. (3.84)

According to the formula for the fixed-end forces

p1 =
∫ l

0

p ϕ1 dx , p2 =
∫ l

0

p ϕ2 dx (3.85)

a single force P will generate the following actions at the fixed ends

p1 = P · ϕ1(xP ) , p2 = P · ϕ2(xP ) , xP = location of P . (3.86)
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Fig. 3.20. Unit displacements of a
beam

The sum of the support reactions pi must equal P = p1 + p2, i.e., at each
point x the sum of ϕ1(x) and ϕ2(x) must be 1

ϕ1(x) + ϕ2(x) = 1 (100%) . (3.87)

If the cross-sectional area varies as

A(x) = A0 + A1x = 1 + 1 · x length l = 1 (3.88)

and if a single force P acts at the center of the shaft (see Fig. 3.19), then
because

ϕ1(0.5) = 0.415 ϕ2(0.5) = 0.585 (3.89)

about 41% of P will pull at the left end and about 59% will press on the other
end of the shaft.

Euler–Bernoulli beam

This technique for the derivation of stiffness matrices can be applied to all
possible deformations in a beam, such as the twist ϕ(x) of the axis, shear
deformations ws(x), or simply the deflection w(x) in which case the differential
equation is

EIwIV (x) = p(x) . (3.90)

Starting with the homogeneous solution

wh(x) = a0 + a1x + a2x
2 + a3x

3 , (3.91)
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the four unit displacements (see Fig. 3.20) are found:

ϕ1(x) = 1− 3x2

l2
+

2x3

l3

ϕ2(x) = −x +
2x2

l
− x3

l2

ϕ3(x) =
3x2

l2
− 2x3

l3

ϕ4(x) =
x2

l
− x3

l2
.

(3.92)

Green’s first identity is

G(w, ŵ) =
∫ l

0

EIwIV ŵdx + [V ŵ −Mŵ′]l0︸ ︷︷ ︸
δWe

−
∫ l

0

EIw′′ŵ′′dx︸ ︷︷ ︸
δWi

= 0 (3.93)

(3.94)

and the element k ij of the stiffness matrix K is the strain energy product
between the unit displacements ϕi and ϕj

k ij =
∫ l

0

EI ϕ′′
i ϕ′′

j dx , (3.95)

so that

K =
EI

l3

⎡
⎢⎢⎣

12 −6l −12 −6l
−6l 4l2 6l 2l2

−12 6l 12 6l
−6l 2l2 6l 4l2

⎤
⎥⎥⎦ . (3.96)

The (negative) end-fixing forces p i (= equivalent nodal forces) of a distributed
load p are the scalar product of p and the unit displacements:

p i =
∫ l

0

p ϕi dx . (3.97)

Timoshenko beam

In the following it is assumed that the bending stiffness EI, the effective shear
cross section As and the shear modulus G are constant. The deformations of
the beam are described by the deflection w and the rotation θ (see Fig. 3.21).
The constitutive equations are

strains θ′ − κ = 0 w′ + θ − γ = 0 (3.98)
material law GAsγ − V = 0 EI κ−M = 0 (3.99)
equilibrium M ′ − V = 0 −V ′ = p (3.100)
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Fig. 3.21. Timoshenko beam

or

− EI θ′′ + GAs (w′ + θ) = 0 (3.101)
−GAs (w′′ + θ′) = p . (3.102)

The latter system can be read as the application of an operator −L (minus
because of second order) to the vector-valued function u = [w, θ]T . Green’s
first identity for this operator −L is

G(u, û) =
∫ l

0

−L u • û dx +
[
V ŵ + M θ̂

]l

0
− a(u, û) = 0 (3.103)

where

a(u, û) =
∫ l

0

[V γ̂ + M κ̂] dx

=
∫ l

0

[GAs(w′ + θ) (ŵ′ + θ̂) + EI θ′ θ̂′ ] dx (3.104)

is the strain energy product. By some simple algebra, it follows that the
homogeneous solutions of the system (3.101) and (3.102) must satisfy the
equations

wIV = 0 w′ = −θ +
EI

GAs
θ′′ . (3.105)

The homogeneous solutions of the first equation are

w(x) = c1 + c2 ξ + c3 ξ2 + c4 ξ3 , ξ = x/l (3.106)

and the matching function θ(x) is found to be

θ(x) = c1 · 0− c2
1
l
− 2 c3

ξ

l
− c4(

η

2 l
+

3
l

ξ2) , η =
12
l2

EI

GAs
. (3.107)

By a proper choice of the constants ci, the following nodal unit deflections for
the two ends of a beam are found [198]:



298 3 Frames

↓ w1(x) =
1

1 + η
[1− 3 ξ2 + 2 ξ3 + η (1− ξ)] (3.108)

� w2(x) =
l

1 + η
[−ξ + 2 ξ2 − ξ3 − η

2
(ξ − ξ2)] (3.109)

↓ w3(x) =
1

1 + η
[3 ξ2 − 2 ξ3 + η ξ] (3.110)

� w4(x) =
l

1 + η
[ξ2 − ξ3 +

η

2
(ξ − ξ2)] . (3.111)

The corresponding rotations are

θ1(x) =
1

1 + η
[−6

l
ξ (ξ − 1)] (3.112)

θ2(x) =
1

1 + η
[1− 4 ξ + 3 ξ2 + (1− ξ) η] (3.113)

θ3(x) =
1

1 + η
[−6

l
ξ (1− ξ)] (3.114)

θ4(x) =
1

1 + η
[−ξ (2− 3 ξ − η)] . (3.115)

The strain energy products, kij = a(ui,uj), of the nodal unit deformations

u1 =
[

w1

θ1

]
u2 =

[
w2

θ2

]
u3 =

[
w3

θ3

]
u4 =

[
w4

θ4

]
(3.116)

constitute the stiffness matrix

K =
EI

l3 (1 + η)

⎡
⎢⎢⎣

12 −6 l −12 −6 l
−6 l (4 + η) l2 6 l (2− η) l2

−12 6 l 12 6 l
−6 l (2− η) l2 6 l (4 + η) l2

⎤
⎥⎥⎦ . (3.117)

The nodal degrees of freedom ui have the same meaning as in an Euler–
Bernoulli beam (see Fig. 3.20).

3.5 Approximations for stiffness matrices

A stiffness matrix is exact if the strain energy product a(., .) is exact, if the
unit displacements ϕi are exact, and if the integration is done exactly:

a(ϕi, ϕj) =
∫ l

0

Mi Mj

EI
dx . (3.118)

Green’s first identity explains how the strain energy product is defined. It
is more difficult to find the homogeneous solution of the differential equa-
tion. The unit displacements are based on this solution. Approximate stiff-
ness matrices are usually based on approximate unit displacements, which are
substituted into the correct strain energy product.
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Fig. 3.22. Variable width

In a belly-shaped beam (Fig. 3.22) for example, the bending stiffness
E I(x) varies with x, so the beam equation becomes lengthy:

EI ′′(x)w′′(x) + 2EI ′(x) w′′′(x)︸ ︷︷ ︸
additional terms

+EI(x)wIV (x) = p(x) , (3.119)

while in the strain energy product little changes, only that I(x) now depends
on x:

a(w, ŵ) =
∫ l

0

M M̂

EI(x)
dx =

∫ l

0

EI(x) w′′ ŵ′′ dx . (3.120)

If the width h varies linearly,

EI(x) = E
bh3(x)

12
h(x) = a0 + a1 x (3.121)

it is possible to find the homogeneous solution of (3.119). But even Maple or
Mathematica will have difficulty finding the homogeneous solutions of more
complicated shapes.

Then the only way out is to substitute the unit displacements of the beam
with a constant bending stiffness EI into the exact strain energy product and
to work with this approximate matrix K̃:

k̃ ij =
∫ l

0

EI(x)ϕ′′
i (x)ϕ′′

j (x) dx . (3.122)

Because the unit displacements are not exact, also the equivalent nodal forces
(or negative end-fixing forces p i) will not be consistent, i.e., they are only
approximations of the real fi:

f̃ i =
∫ l

0

p ϕi(x) dx . (3.123)

In the case of a beam on an elastic foundation (see Fig. 3.23),

EIwIV (x) + cw(x) = p(x) , (3.124)

the exact unit displacements are well known, but program authors prefer
to use the unit displacements of the standard beam element, because this
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Fig. 3.23. Beam on an elastic
foundation (Winkler)

facilitates program maintenance. That is, they calculate the elements of the
stiffness matrix

k ij =
∫ l

0

[
MiMj

EI
+ c ϕi ϕj ] dx (3.125)

with the unit displacements ϕi(x) of the standard beam element. This yields
the approximation

K̃ =
EI

l3

⎡
⎢⎢⎣

12 −6 l −12 −6 l
−6 l 4 l2 6 l 2 l2

−12 6 l 12 6 l
−6 l 2 l2 6 l 4 l2

⎤
⎥⎥⎦+

c

420

⎡
⎢⎢⎣

156 l −22 l2 54 l 13 l2

−22 l2 4 l3 −13 l2 −3 l3

54 l 13 l2 156 l 22 l2

13 l2 −3 l3 22 l2 4 l3

⎤
⎥⎥⎦ .

(3.126)

Hence the FE program connects the end points of the deformed beam (end
displacements ui) with a curve w that is the sum of the four unit displacements
of the standard beam,

w(x) =
4∑

i=1

ui ϕi(x) . (3.127)

This elastic curve deviates from the exact shape because it is not a homoge-
neous solution of (3.124). Rather, a residual force appears,

EIwIV (x) + cw(x) = c[u1ϕ1(x) + u2ϕ2(x) + u3ϕ3(x) + u4ϕ4(x)] ,
(3.128)

which is just the distributed load p that must be applied to force the beam
into the shape w(x) (see Eq. (3.127)).

In second-order beam theory,

EIwIV (x) + P w′′(x) = p , (3.129)

the procedure is virtually the same. If the unit displacements ϕi(x) of the
standard beam are substituted into the exact strain energy product

a(w, ŵ) =
∫ l

0

[EIw′′ŵ′′ − P w′ŵ′] dx , (3.130)
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Fig. 3.24. Second-order
beam theory

the resulting approximate stiffness matrix

K̃ =
EI

l3

⎡
⎢⎢⎣

12 −6l −12 −6l
−6l 4l2 6l 2l2

−12 6l 12 6l
−6l 2l2 6l 4l2

⎤
⎥⎥⎦− P

30 l

⎡
⎢⎢⎣

36 −3 l −36 −3 l
−3 l 4l2 3 l −l2

−36 3l 36 3 l
−3 l −l2 3 l 4 l2

⎤
⎥⎥⎦ , (3.131)

is the sum of the first-order stiffness matrix and the so-called geometric matrix.
This procedure amounts to a Taylor expansion of the exact stiffness matrix
K = K(P ) at the point P = 0.

If in a Timoshenko beam element [−1, 1] the deflection w(ξ) and the rota-
tion θ(ξ) are linear

[
w(ξ)
θ(ξ)

]
=

1
2

[
1− ξ 0 1 + ξ 0

0 1− ξ 0 1 + ξ

] ⎡⎢⎢⎣
w1

θ2

w3

θ4

⎤
⎥⎥⎦ (3.132)

then the resulting stiffness matrix is only an approximation

K =
EI

le

⎡
⎢⎢⎣

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤
⎥⎥⎦+

G As

6 le

⎡
⎢⎢⎣

6 3 le 6 3 le
3 le 2 l2e −3 l2 l2e

6 −3 le 6 −3 le
3 le l2e −3 l2 2 l2e

⎤
⎥⎥⎦ (3.133)

because the linear shape functions do not satisfy the differential equations
(3.105).

Equilibrium ?

In first-order beam theory the load and the support reactions maintain equi-
librium with regard to the undeformed structure and in second-order beam
theory with regard to the deformed structure—correct? No. Second-order the-
ory actually is a mixture of both; see Fig. 3.24. The lateral deformation is
considered, but the longitudinal displacement of the axis is neglected.

Theoretically it is therefore not possible to check the equilibrium of a
frame, that was analyzed with second-order beam theory, because first-order
and second-order effects contribute to the movements of the joints. If we ignore
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Fig. 3.25. Buckling

this and check the equilibrium conditions by employing the nodal displace-
ments of the deformed structure then the check will fail. The reason that it
does not fail in practice is that normally the displacements are so small, that
the deviations are considered to be rounding errors.

Buckling length

Many design codes allow to establish the stability of a structure by determin-
ing the buckling loads of the individual members. The critical load Pcrit of a
frame member is expressed in the form

Pcrit =
π2 EI

(K · l)2 (3.134)

where K is termed effective length factor . That is the load Pcrit is expressed in
terms of the critical load of an equivalent pin-ended frame member of length
sK = K · l.

The standard FE-approach instead is a global approach based on 2nd order
theory and usually also including possible imperfections of the structure. The
result of the analysis are the eigenvalues λ of the structure based on the elastic
stiffness matrix K and the geometric stiffness matrix KG

(K + λ KG) u = 0 u 	= 0 . (3.135)



3.5 Approximations for stiffness matrices 303

Fig. 3.26. Flag pole

However it is not always easy to determine the critical eigenvalues, sometimes
even negative eigenvalues are observed which pose a problem for most of the
algorithms, [215].

In the case of a multi-story building as in Fig. 3.25, with a slender antenna
on top of the roof, we clearly see that it is not the smallest eigenvalue which is
the critical eigenvalue but that we have to check a whole range of eigenvalues.

Another problem pose those structures where the length of the individual
members can change. In the case of the flag pole in Fig. 3.26 the maximum
bending moment occurs just above the horizontal support. The analysis of the
upper part of the structure is standard, but in the lower part, the short beam,
the buckling length is quite small, and it is not possible to find a correct stress
in that part. If the horizontal support also carries vertical loads the normal
force in the lower part is zero and then it is not possible to apply the buckling
length approach to the design of this part.

This holds also true for the structure in Fig. 3.27 where

N1 = F N2 = N3 = N4 = N5 = −S ε := l

√
F

EI
. (3.136)

The work done by the two forces F and the moment Ma on acting through
the displacements in Fig. 3.27 b (= influence function for Ma) must be zero

δWe = (Ma + F · l) · 1− S · L · (−0.5) · (−0.5) · 2− S · L · 0.5 · 0.5 · 2
= Ma + F · l − S · L = 0 . (3.137)

Given a horizontal force H, see Fig. 3.28, the bending moments are

M I
a = H · l M II

a = Ma = H · l · tanh ε

ε
≤ H · l . (3.138)
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Fig. 3.27. What is the critical load? a) structure; b) influence function for Ma,
displacements not to scale

Fig. 3.28. The line of action of R in-
tersects the frame element only once

The difference between M I
a and M II

a is due to the force F

M I
a −M II

a = Ma · ( ε

tanh ε
− 1) = F · l · 1.0 (3.139)

where we assumed that—as in the influence function—the tip of the element
moves sideways by ∆w = l · tanψ = l · 1.0 units. So that with

Ma =
F · l · 1.0

ε/ tanh ε− 1
S = − F

2 · sinα
(3.140)

it follows

tanh ε

ε
= cos (2 · α) . (3.141)
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Fig. 3.29. Cable

Because of

tanh ε

ε
≤ 1 ⇒ cos(2 · α) ≤ 1 ⇒ α ≤ π

4
(3.142)

the system is stable if α > π/4 while for α ≤ π/4, the system will buckle if
F exceeds the critical load Fcrit = Fcrit(α). But because the line of action of
the resultant R intersects the buckled frame element only once (see Fig. 3.28)
the buckling length approach is not applicable to this problem, [210].

3.6 Cables

In the first chapter a rope served us well to introduce the basic principles of
the finite element technique. Here we want to add some more details to the
analysis of ropes and cables.

The cable in Fig. 3.29 carries a vertical load p(x) and is prestressed by a
force S. If the angle of the chord is zero, α = 0, the prestressing force S acts
in horizontal direction, S · cos α = H = S · 1, as in chapter one.

In the following the bending moment M(x) is the bending moment in a
beam which carries the same load p and the forces RA and RB in Fig. 3.29
are identical with the support reactions of the beam.

Because the bending stiffness of the cable is neglected, EI = 0, the bending
moment must be zero at any point x (let p(x) = p a uniform load, though it
can be any load)

�

x
∑

M : RA · x− p · x2

2︸ ︷︷ ︸
M(x)

−S · sinα · x + S · cos α · y = 0 (3.143)
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Fig. 3.30. Cable element

or

M(x)− S · sin α · x + S · cos α · y = 0 M(x) + H y = 0 (3.144)

(the second equation applies to a horizontal cable) from which follows the
equation for the shape of the cable

y(x) = tan α · x− M(x)
S · cos α

y(x) = −M(x)
H

. (3.145)

Note that the y-axis in Fig. 3.29 points upward. In this system the differential
equation for the deflection has a positive sign

y(x) = −M(x)
H

⇒ H y′′(x) = −M(x)′′ = p(x) (3.146)

while if y points downward as in chapter one the sign is negative, −H y′′(x) =
p(x).

The maximum tension in the rope is

SB =
√

(S cos α)2 + (RB + S sin α)2 . (3.147)

With

y′ = tan α− 1
S cos α

·M ′ = tan α− V

S · cos α
(3.148)

the expression for the length s of the rope becomes

s =
∫ l

0

√
1 + (y′)2 dx =

∫ l

0

√
1 + (tanα− (

V

S · cos α
)2) dx . (3.149)

The length s is equal to the length s0 of the unstretched cable plus its elastic
elongation

∆ s =
∫ s

0

ε dx =
S · cos α

EA

∫ l

0

(1 + (y′)2) dx

=
S · cos α

EA

∫ l

0

(1 + (tanα− V

S · cos α
)2) dx (3.150)
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Fig. 3.31. Single lap joint

plus—eventually—thermal effects

s = s0 + ∆ s + s0 αT ∆ T (3.151)

or

s =
∫ l

0

√
1 + (tanα− V

S · cos α
)2) dx

= s0 (1 + αT ∆ T ) +
S · cos α

EA

∫ l

0

(1 + (tanα− V

S · cos α
)2) dx︸ ︷︷ ︸

∆ s

.

This equation allows to determine for any type of load the prestressing force
S and then with (3.145) the shape y of the cable.

A horizontal cable with cross section A assumes under gravity

g(x) =
g

cos ϕ
g = γ A , ϕ = arctan y′ (3.152)

the shape of a catenary (the origin, x = 0, y = 0, is the deepest point of the
cable)

y(x) =
H

g

(
cosh

x · g
H
− 1

)
(3.153)

or if we let g(x) � g as in a shallow cable the shape of a parabola (x and y as
in Fig. 3.29)

y(x) = − g

2 H
(l − x) x . (3.154)

The two parts of the stiffness matrix of a cable element (2-D) (see Fig.
3.30) represent the longitudinal stiffness (EA/l) and the so-called geometric
stiffness (S/l) of the cable, c = cos α, s = sin α,

K =
EA

l

⎛
⎜⎜⎝

c2 −c · s −c2 c · s
−c · s s2 c · s −s2

−c2 c · s c2 −c · s
c · s −s2 −c · s s2

⎞
⎟⎟⎠+

S

l

⎛
⎜⎜⎝

s2 c · s −s2 −c · s
c · s c2 −c · s −c2

−s2 −c · s s2 c · s
−c · s −c2 c · s c2

⎞
⎟⎟⎠ .

(3.155)
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Fig. 3.32. Linear analysis: normal forces in a) a truss and b) a frame, c) a sway
frame with cables

While a cable element is straight the real cable will sag and create its own
prestress by its own weight. The effect can easily be described by a subdivision
of the cable in different elements and an updated Lagrangian approach.

If we consider for example a horizontal cable with a length of 10.0 m, a
cross section of 84 mm2 and prestressed by a force of 1 kN the displacement
of the straight prestressed rope under gravity load will be about 8 � of the
length. If we take into account the nonlinear effects of the displacements the
tensile force will increase by a factor of 2 and the deformations and the eigen
frequencies will change considerably, see Table 3.1.

Table 3.1. Linear and nonlinear analysis of a cable

N u f1 f2 f3

linear 1.0 83.36 1.928 3.809 5.596
nonlinear 1.9 43.95 2.374/3.468 4.690 6.890

Of special interest is the doubling of the first eigen value. Introduced by
the deformation we have unsymmetric stiffness and different frequencies for
a movement up and down. As far as we know these effects are not included
automatically in finite element programs. So it is up to the user to detect such
behaviour. There are many examples where those nonlinear effects (which are
favorable in general) have not been included. Even for a simple problem as
in Fig. 3.31 where a single lap joint was modeled with shell elements. The
geometric non linear effects markedly reduced the eccentricity of the load and
so the bending stress was reduced by a factor of 2.

Even if we stick to linear analysis the analysis of cable structures is any-
thing but simple. Take for example a sway frame with bracings by two diagonal
cables; see Fig. 3.32. The system is defined in general without prestress. In
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ment extending from

ϕ1(x), ϕ2(x) and the

ϕ3(x), ϕ4(x), ϕ5(x)

a linear analysis both elements will stay effective. The vertical payload will
shorten the cables and both cables will thus carry compressive forces and
consequently they will be deactivated in a nonlinear analysis. Then we might
have a kinematic system, and it is only an additional horizontal force which
will introduce a tensile stress in one of the cables and thus stabilize the whole
structure. In the construction process the cables will be inserted at a time
when some of the vertical loading has been already applied and for true ca-
bles a small prestress will be applied. To be able to cope with those problems
a series of modifications and assumptions has to be made.

3.7 Hierarchical elements

In the p-method the element size is kept fixed while the degree p of the poly-
nomial expansion is increased to order 2, 3, . . .. If the added shape functions
are orthogonal in the sense of the strain energy product to the previous set of
functions the new stiffness matrix is simply obtained by amending the previ-
ous matrix. Such elements are called hierarchical elements.

Consider a bar element [−1, 1]. To its two linear shape functions

ϕ1(x) =
1
2

(1− x) ϕ2(x) =
1
2

(1 + x) (3.156)

we add three shape functions which vanish at the end points of the element
[−1,+1] (see Fig. 3.33)

ϕ3(x) =
1√
6
[−1 +

1
2

(−1 + 3x2)] ϕ4(x) =
1√
10

[−x +
1
2

(−3x + 5 x3)]

ϕ5(x) =
1√
14

[
1
2

(1− 3 x2) +
1
8

(3− 30 x2 + 35 x4)] . (3.157)

Fig. 3.33. Bar ele-

−1 to +1. The lin-
ear shape functions

hierarchical functions
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Fig. 3.34. Approximation of the Green’s function for the support reaction at the left
end with linear elements and hierarchical elements (increasing order of p = 2 . . . 10)

These new functions are orthogonal to the first two functions ϕ1 and ϕ2

k1j = a(ϕ1, ϕj) = k2j = a(ϕ2, ϕj) = 0 j = 3, 4, 5 (3.158)

and they are also mutually orthogonal

kij = a(ϕi, ϕj) = δij · EA i, j = 3, 4, 5 (3.159)

so that the amended matrix is simply, [26] p. 252,

K =
EA

2

⎡
⎢⎢⎢⎢⎣

1 −1 0 0 0
−1 1 0 0 0

0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

⎤
⎥⎥⎥⎥⎦ . (3.160)

For an application we consider a bar [−1,+1] fixed at the left end and
stretched by uniform forces p = 1

− EAu′′(x) = 1 u(−1) = 0 N(1) = EAu′(1) = 0 . (3.161)

Because the left end is fixed u1 = 0 but the other four ui are unknown. The
equivalent nodal forces are
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Fig. 3.35. In the p-

order p of the shape
functions

f2 =
∫ +1

−1

1 · ϕ2(x) dx = 1 f3 =
∫ +1

−1

1 · ϕ3(x) dx = −
√

2
3

f4 =
∫ +1

−1

1 · ϕ4(x) dx = 0 f5 =
∫ +1

−1

1 · ϕ5(x) dx = 0 . (3.162)

The solution of the system

K =
EA

2

⎡
⎢⎢⎣

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

u2

u3

u4

u5

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f2

f3

f4

f5

⎤
⎥⎥⎦ (3.163)

is (we let EA = 1)

u = {2,−
√

2/3, 0, 0}T (3.164)

so that

uh(x) = 2 · ϕ2(x)−
√

2
3
· ϕ3(x) =

3
2

+ x− x2

2
(3.165)

which is the exact solution.
Note that the sum of the equivalent nodal forces

5∑
i=1

fi =
∫ +1

−1

p · (ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5)︸ ︷︷ ︸
	=1

dx = 1.1835

	= 2.0 =
∫ +1

−1

p dx =
∫ +1

−1

p · (ϕ1 + ϕ2)︸ ︷︷ ︸
=1

dx = f1 + f2 (3.166)

is not the sum of the applied load (2.0) because the extended set of shape
functions does not form a partition of unity

method the support
reaction oscillates
considerably with the
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5∑
i=1

ϕi(x) = 0.62− 0.79x− 0.79x2 + 0.79x3 + 1.17x4 (3.167)

—simply said the sum is not 1 at each point x. So in checking the global equi-
librium condition in the p-method we must restrict the count to the original
fi.

Point loads and hierarchical elements

The p-method will improve the accuracy considerably if the exact solution is
smooth but it can run into difficulties in the presence of point loads, [238] p.
196.

The model problem is a bar [−1,+1] that is fixed at both ends and is
subjected to a horizontal point load P = 1 at the quarter point x = −0.5. We
study the support reaction at the left end of the bar, at x = −1. The exact
Green’s function of the support reaction is the straight line G1(x) = −0.5x+
0.5, dropping from + 1 at the left end to zero at the right end of the bar. The
triangle in Fig. 3.34 is the best approximation with 10 linear elements. For our
purposes it is perfect because the FE Green’s function Gh

1 is exact at x = −0.5
so that the linear model gives the correct answer, Nh(0) = N(0) = 0.75.

If we solve the same problem with the p-method — just one element but
different orders p of shape functions (Pi = Lagrange polynomial)

ϕi(x) =
Pi+1(x)− Pi−1(x)√

2
√

2(i + 1)− 1
i = 1, 2, 3, . . . p (3.168)

then the support reaction oscillates considerably (see Fig. 3.35) because in
the p-method the approximate Green’s functions Gh

1 tend to wobble; see Fig.
3.34. Note that the exact solution u(x) does not lie in the trial space Vh of
the p-method because all ϕi(x) have continuous first-order derivatives and
also the Green’s function G1(x) is not contained in Vh—linear functions are
excluded because of the boundary conditions—so we must expect an error in
the support reaction.

If we would place a node where the single force is applied the solution
would lie in Vh so the problem could have readily been resolved — in this case
— but evidently care must be taken in the presence of point loads.

Remark 3.2. We add some details. The stiffness matrix in the foregoing prob-
lem is EA × I (the unit matrix), the equivalent nodal forces for Gh

1 are
fi = N(ϕi)(−1) = EAϕ′

i(−1) so that the nodal values ui of the Green’s
function Gh

1 are the derivatives ϕ′
i of the shape functions at x = −1 and thus

Gh
1 (x) =

p∑
i=1

ϕ′
i(−1)ϕi(x) . (3.169)
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Fig. 3.36. Change
in the stiffness of a
spring

If the load p is uniformly distributed all is well. In the influence integral (Gh
1 , p)

only the integral of the first term of the series (3.169) is not zero and because
the slope of ϕ1 at x = −1 and the integral of ϕ1 are well tuned the result

Nh(−1) =
∫ +1

−1

Gh
1 (x) p dx = p ϕ′

1(−1)
∫ +1

−1

ϕ1(x)dx

= p · 0.816 · 1.22474 = p · 1.0 (3.170)

is exact—the total load is p · 2.0.

3.8 Sensitivity analysis

In sensitivity analysis we want to predict how changes in a structure affect
the internal actions in a structure. The essential tool for this analysis are, as
we want to show, the Green’s functions.

If the stiffness of a member changes then the response of a structure will
change too, as in a spring, k u = f ; see Fig. 3.36. The response of the spring
to the unit load f = 1 is G = 1/k and an increase in the stiffness, k + ∆ k,
changes the response to Gc = 1/(k + ∆ k) so that for any load f the response
before and after the change is

u =
1
k

f uc =
1

k + ∆ k
f . (3.171)

If we do a Taylor expansion of the updated “Green’s function”

1
k + ∆ k

=
1
k
− 1

k2
∆ k + . . . (3.172)

then we better understand how a structure reacts to such changes

uc �
[

1
k
− 1

k

∆ k

k

]
f = u− 1

k
∆ k × u︸ ︷︷ ︸

force

. (3.173)
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Fig. 3.37. A drop in the bending stiffness in the central member will lead to an
increase in the bending moment in the leftmost member a) original bending moment
distribution M b) influence function G2 for M(x) c) bending moment M2 of G2
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The stiffening of the spring, k → k + ∆ k, makes that the original u produces
too large a reaction (k + ∆ k) u = f + ∆ k u in the spring and to annihilate
this excess force the opposite movement ∆ u = ∆ k u/k (approximately) must
be superimposed on u.

In stiffness matrices the Taylor expansion has the following form, [75],

(K + ∆ K)−1 = K−1 −K−1∆ K K−1 + . . . (3.174)

and the analogue between (3.173) and

uc = (K + ∆ K)−1f � u−K−1∆ K u (3.175)

is evident.
Let us apply some heuristic arguments to this equation

uc − u = −K−1∆ K u (3.176)

and let us consider a beam with a change EI → EI +∆EI. If we simply give
(3.176) an integral form then we obtain

wc(x)− w(x) = −
∫ l

0

G0(y, x)︸ ︷︷ ︸
K−1

∆ EI
d4

dy4︸ ︷︷ ︸
∆K

∫ l

0

G0(y, z) p(z) dz︸ ︷︷ ︸
u

dy (3.177)

which even makes sense if the change EI → EI + ∆EI is uniform because
then

wc(x)− w(x) = −
∫ l

0

G0(y, x)
∆ EI

EI
p(y) dy (3.178)

that is a negative change, ∆EI < 0, is like an increase in the load that the
beam must carry. And a local change obviously means a local increase in p.

Single values

To trace the change of single values J(u) (= u(x), σ(x), . . .) we can adopt the
approach in Sect. 1.27 p. 113

J(uc)− J(u) = −d(u, Gc) = −d(uc, G) � −d(u, G) (3.179)

where d(., .) is the symmetric term which we add to the strain energy product
of the structure, a(., .) + d(., .), to incorporate the change in the stiffness.

In the following we will consider some typical examples.
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Cracks in a beam, EI → EI + ∆EI

If a single member, [x1, x2], in a frame cracks, EI → EI + ∆EI, then the
change in the bending moment M(x) at a point x—which must not lie on the
cracked element, it can be any point of the frame—is

Mc(x)−M(x) = −
∫ x2

x1

∆EI w′′
c G′′

2 dy = −
∫ x2

x1

∆EI

EI

Mc M2

EI
dy

(3.180)

where integration is done along the cracked member—only . The deflection
wc is the deflection of the cracked beam and the influence function G2 (=
deflection of the member under the action of the Dirac delta δ2 at x) is from
the uncracked frame. If the cracks are not too large we may approximate wc by
the original deflection w of the frame element. We tested this with the frame
in Fig. 3.37 where the bending stiffness in the central member, EI = 16, 296
kNm2, dropped by nearly 1/3 to EI + ∆EI = 11, 358 kNm2. According to
(3.180) the change of the bending moment M in the leftmost member should
be approximately

∆M � −∆EI

EI
x

∫ l

0

M M2

EI︸ ︷︷ ︸
ante

dy = 0.4 kNm (3.181)

while the true change is ∆M = 0.5 kNm.

Rule #1 : If the stiffness changes in a part [x1, x2] of a frame then the
change in any quantity ∂i w (w,w′,M, V ) at any point x is

∂i wc(x)− ∂i w(x) � −
∫ x2

x1

∆ EI

EI

M Mi

EI
dx (3.182)

where Mi is the bending moment of the influence function Gi for ∂i w and M
is the bending moment due to the load p.

Change in an elastic support, k → k + ∆ k

If the stiffness of a spring changes, k → k+∆k, then the strain energy product
of a beam transforms as follows:

a(w, ŵ) + k w(l) ŵ(l) ⇒ a(w, ŵ) + (k + ∆ k) w(l) ŵ(l) (3.183)

so that in this case d(w, ŵ) = ∆k w(l) ŵ(l) and we have:

Rule #2 : If the stiffness of a spring changes then the change in any
quantity ∂i w (w,w′,M, V ) at any point x is

∂i wc(x)− ∂i w(x) � −∆k ·Gi(l, x) · w(l) (3.184)
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Fig. 3.38. Failure of support B and study of the changes in M(x)

where Gi is the movement in the spring due the action of the Dirac delta δi

(influence function for ∂i w) and w(l) is the movement of the spring due to
the load p.

Of course if the increase is too large, say if ∆ k →∞, then only the exact
formula

J(wc)− J(w) = −d(w,Gc) = −∆ k ·Gc(l, x) · w(l) = −RG · w(l)
(3.185)

can predict the change correctly. Note that RG =∞·0 (or very nearly), which
is the support reaction in the spring due to the Dirac delta at x, tends to a
value corresponding to a fixed support.

Loss of a support

How we argue if the support of a structure fails—here the support B of the
beam in Fig. 3.38—may be illustrated by studying the consequences for the
bending moment M at the mid-point x. The influence function for the bending
moment M(x) is the response of the beam to the action of a Dirac delta, δ2

at x; see Fig. 3.38 b.
The support reaction RG due to δ2 equals the bending moment M(x) at x

if the support B settles by one unit length. This follows from Betti’s theorem
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Fig. 3.39. The thoughtful engineer, [41]

(we ignore the actions on the left side at the fixed ends because they contribute
no work)

W1,2 = Ml w
′
∆(x−)−Mr w′

∆(x+)︸ ︷︷ ︸
= 0

+RG · 1 = +RG · 1

= M(x) · 1 + R∆ · 0 = W2,1 . (3.186)

The two moments Ml and Mr are of the same size but rotate in opposite
directions and because the slope w′

∆(x) is continuous at x the work done by
the pair Ml and Mr is zero, so that indeed M(x) = RG.

Now if the support B is removed in the load case p then to compensate for
this loss the support reaction Rp must be applied in the opposite direction.
This will cause the deflection w(l) = Rp l3/(3 EI) and hence the change in
the bending moment is

∆ M = −RG · w(l) = −RG ·Rp︸ ︷︷ ︸
ante

· l3

3 EI
← 1

kS
. (3.187)

Rule #3 : If a support fails then the change in any quantity ∂i w
(w,w′,M, V ) at any point x is

∂i wc(x)− ∂i w(x) = −RG ·Rp · 1
kS

(3.188)

where RG is the support reaction due the action of the Dirac delta δi (influence
function for ∂i w), Rp is the support reaction due to the load p and kS is the
stiffness of the structure in the direction of the missing support.

Let us apply this result to the problem of the thoughtful engineer which
Galileo mentions in his discorsi , [41]: Il mecanico places a heavy marble col-
umn on an additional support (see Fig. 3.39). But in so doing he unwillingly
lifts the left end of the column from its support and so instead of lowering the
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bending moment by a factor of four as intended his maneuver effects only a
change in the sign of the bending moment M = Mmax.

Because if the weight of the column is g = 10 kN/m and its length l = 8
m then

M =
10 · 82

8
= 80︸ ︷︷ ︸

2 supp.

M = −10 · 42

8
= −20︸ ︷︷ ︸

3 supp.

M = −1
2

10 · 42 = −80︸ ︷︷ ︸
cantilever

(3.189)

so nothing is gained.
In the transition from the 2-span beam to the cantilever the change of the

bending moment is according to (3.188)

Mc(x)−M(x) = −RG ·Rp · 1
kS

= −8, 480 · 15 · 1
2, 120

= −60 kNm

(3.190)

which agrees with (3.189). A point load P = 1 kN at the end of the cantilever
beam effects the deflection 0.4708 mm and so kS = 1/0.4708 · 103 = 2, 120
kN/m. The force RG = 8, 480 is the support reaction in the 2-span beam from
the Dirac delta δ2 (≡ tanϕ = 1).

If a rigid support yields

If a rigid support turns soft (∞ → kS) the logic is the same. It is only that
the end of the beam is now working against the bending stiffness of the beam
(3EI/l3) and the soft support with its relic stiffness kS so that—the two
springs are working in parallel—the resulting stiffness is

k =
3 EI

l3
+ kS (3.191)

and consequently

∆ M = −RG · w(l) = −RG ·Rp︸ ︷︷ ︸
ante

·1
k

(3.192)

where RG and Rp have the same meaning as before. It is evident that this logic
applies to all types of supports and to internal nodes as well. If a previously
fixed support begins to rotate then (3.192) would have to be replaced by

∆ M = −MG · ϕ(l) = −MG ·Mp︸ ︷︷ ︸
ante

· 1
kϕ

(3.193)

where MG is the fixed end reaction in the load case δi and Mp is the fixed end
reaction in the load case p and kϕ is the rotational stiffness of the support.
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Fig. 3.40. Loss of a member—the energy needed to bend a spline into the shape
wc in the second span is indicative of the effect the loss will have on the structure
a) deflection w and wc b) bending moment M0 of the Green’s function G0

Rule #4 : If a rigid support softens then the change in any quantity ∂i w
(w,w′,M, V ) at any point x is

∂i wc(x)− ∂i w(x) = −RG ·Rp · 1
k

(3.194)

where RG is the support reaction due the action of the Dirac delta δi (influence
function for ∂i w), Rp is the support reaction due to the load p and k is the
relic stiffness of the structure in the direction of the support.

Loss of a frame member

A complete loss of a frame member corresponds to EI = 0 or in terms of the
equation EI + ∆ EI = 0 means ∆ EI = −EI so that in the end

− d(wc, G) = −
∫ l

0

∆ EI w′′
c G′′ dy =

∫ l

0

EI w′′
c G′′ dy (3.195)

where wc is the shape of the member when it has lost all the stiffness; see Fig.
3.40 a. Its curvature −w′′

c is the quotient of the bending moment Mc in the
member and the residual stiffness EI + ∆ EI
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− w′′
c = lim

∆ EI→−EI

Mc

EI + ∆ EI
≡ 0

0
. (3.196)

The deflection wc in the frame member can be found as follows: remove the
member and let the frame find its new equilibrium position. Next bridge the
gap by a spline which attaches seamlessly to the two displaced nodes on both
sides of the gap and which has the stiffness EI. This is correct, not EI = 0,
because we need the bending moment Mc = −EI w′′

c in the second equation
(3.195). Also the spline is not really attached to the nodes, rather prestressing
forces at the ends of the spline keep the element in the shape wc. If we would
reattach the member and release the prestressing forces in the member then
the structure immediately would snap back into its original shape.

The effect EI = 0 is cared for by releasing the two nodes that is by letting
the structure find its equilibrium position without the member. After that
we calculate how much the member must be prestressed to position its ends
opposite to the displaced nodes of the structure.

• The energy needed for this maneuver is an indication of how important
the element is for the structure that is how much J(w) will change if the
member fails.

The two-span beam in Fig. 3.40 loses its member in the second span. How
much will this affect the deflection at the center of the first span? The rotation
of the beam at the end of the first span is w′

c(4.0) = −0.00018 so that the
spline wc in the next span is the solution of the following problem

EI wIV
c = 0 wc(4.0) = wc(8.0) = Mc(8.0) = 0 w′

c(4.0) = −0.00018 .

(3.197)

The bending moment distribution of this spline is linear, Mc(4.0) = −12.24
kNm and Mc(8.0) = 0, so that according to (3.195)

wc(2.0)− w(2.0) =
∫ 8

4

EI w′′
c G′′

0 dy =
∫ 8

4

Mc M0

EI
dy

=
1
3

(−0.21) · (−12.24) · 4.0 · 1
90, 480

= 0.04 mm

(3.198)

which agrees with the exact result

wc(2.0)− w(2.0) = 0.18 mm− 0.14 mm = 0.04 mm . (3.199)

Of course (3.195) is purely theoretical because the spline wc requires the
calculation of the displacements and rotations of the two neighboring nodes
after the member has been removed but then one can compare the two systems
directly.
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Fig. 3.41. Release of the connection between two frames. The energy needed to
reconnect the spline wc with the two released nodes is an indication of how much
influence the stiff element exerts on the structure

The idea to substitute for wc � w the original deflection would be in most
cases too crude an approximation—here 0.02 mm instead of the exact 0.04
mm—but it could suffice to signal the trend into which direction things will
be moving if the member fails.

Note that

|d(wc, G)| ≤ d(wc, wc) · d(G, G) =
∫ l

0

EI (w′′
c )2 dx ·

∫ l

0

EI (G′′)2 dx

(3.200)

so that the product of the strain energy of the spline wc and the Green’s
function G in the member is an upper bound for the change J(wc)− J(w). If
either of these two terms is small the change will not be very pronounced.

On the other hand imagine a short bolt which ties two structures together
and forces the structures to move in unison; see Fig. 3.41. Assume this bolt
fails—technically a very stiff, very short frame element—then the released
nodes will probably undergo large displacements and rotations and so the
spline wc which later must reconnect with the two released nodes will have
to assume a serpent like shape and to stretch a long way. Consequently the
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Fig. 3.42. A prestressed member a) is placed under the end of the cantilever beam
and b) then released. This is the same logic as in the case of a loss of a member—only
in the other direction. If the prestressing forces are released the element assumes its
original shape c) and the gap δ10 must be closed d) by the redundant X1 = −δ10/δ11.

strain energy in this very stiff spline will be quite large, that is the change
(3.195) will no longer be negligible.

Rule #5 : If a member [x1, x2] fails, EI → 0, then the change in any
quantity ∂i w (w,w′,M, V ) at any point x is

∂i wc(x)− ∂i w(x) =
∫ x2

x1

EI w′′
c G′′

i dy (3.201)

where wc is the shape the member assumes if it is drained of all its stiffness
and Gi is the influence function for ∂i w.

Adding a member to a structure

All this can be applied in the opposite direction as well: if the end of a can-
tilever beam is placed on a vertical pin-jointed frame element (see Fig. 3.42)
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Fig. 3.43. Footprint of a Green’s function or sensitivity map: which changes do
influence M(x) the most? EI = 90, 625 kNm2, members 0.5 · 0.3 · 6.0 m

this can be done in two ways: (1) the length of the new frame element is
h − w(l) where h is the height of the cantilever beam before the load was
applied or (2) the length of the new element is h. In the first case the beam
would only benefit from the support when it carries additional loads. In the
second case the element first must be compressed so that it fits under the
beam—this would be the shape uc (in axial direction). Next the end of the
element is released so that it presses the cantilever beam upward. The change
in any quantity of the beam would then be

J(ew) = −
∫ l

0

EAG′
i u′

c dy = −
∫ l

0

Ni Nc

EA
dy (3.202)

where Ni is the normal force in the frame element due to the Green’s func-
tion for ∂iw and Nc is the prestressing force. Not surprisingly all quantities
wc, w

′
c,Mc, Vc would be just as large as if the additional support had been
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present from the start. (In some sense the technique to prestress an element—
so that it fits into the statically determinate structure—and then to release it
is the force method in disguise).

So we better understand the role of the splines wc in Fig. 3.195 and Fig.
3.41. They act like batteries, they provide the energy to restore the original
shape of the structure. By removing an element from the frame the strain
energy of the structure increases which means that additional energy can be
gained from the sagging load. To restore the original shape we must give this
energy back to the structure, that is the load must be pushed up to its previous
level. The energy needed for this maneuver comes from the prestressing forces
in the splines.

The case of the missing member

If in the construction phase of a structure a member has been omitted unwill-
ingly the defect can be amended by prestressing the member so that it fits
into the deformed structure and by then releasing the prestressing force. The
shape of the structure is then the same as if the member would have been
present from the beginning.

We follow a similar procedure when we replace structural members, say,
the rusty old pier of a bridge. When the hydraulic jacks on top of the new
pier have lifted the bridge just enough to release the old pier the new pier
is prestressed by precisely the right amount to replace the old pier without
affecting the stress distribution in the bridge.

The important point is, of course, that the unstressed member has the
correct length. So eventually the sequence of the single construction stages
must be taken into account.

Summary

A change in any quantity J(u)→ J(u)+∆ J(u) means an increase or decrease
in the Dirac energy. In the case of a support this means

∆J(u) · 1 = force · displacement increment . (3.203)

The force is the support reaction RG due to the Dirac delta and the displace-
ment is the incremental (additional) movement of the support induced by the
change of the stiffness. So if the support of a node fails completely (or par-
tially) and the load p presses the node downward by w(xi) additional units
then the change is RG · w(xi).

In (3.187) the original movement is zero (rigid support). With the loss of
the support the system becomes a cantilever beam which deflects at its end
by Rp/k units; this is the deflection increment.

In (3.192) the original movement is zero too. But this time the support
does not yield completely and so Rp must work against the stiffness of the
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node plus the relic stiffness of the support so that the deflection increment
will be somewhat lower.

The sensitivities in a structure are encapsulated in the “footprints” of the
Green’s functions; see Fig. 3.43. In this figure are plotted the bending mo-
ment distribution (M2) and the support reactions of the influence function
for M(x), which is the bending moment at the center of the upper left hori-
zontal member. From this figure we can learn for example that if the central
support yields by 1mm in vertical direction then the change in M(x) is−1, 590
kN·0.001 m = - 1.59 kNm. Or a slip of 0.001 m in horizontal direction would
effect a change of 233 · 0.001 m = 0.23 kNm. And a rotation tan ϕ = 0.001 of
the support would change M(x) by −303 · 0.001 = -0.3 kNm.

But also the bending moments M2 of the influence function tell a story. If
at the upper left node, on the side A of the node, the concrete cracks—so that
the fixed end begins to resemble a rotational spring—then for any differential
degree ϕ of rotation between the horizontal member and the vertical member
the change in M(x) is 8, 237 kNm · tan ϕ.

Safety of structures

So the failure of a support is critical for the safety of a structure if (1) the
support reaction Rp is large because then the incremental movement w(l) will
be large too (probably) and if (2) the support reaction RG in the load case
δi (= influence function for the internal actions M(x) or V (x) at x) is large,
see (3.187).

Hence, to assess the safety of a structure we could adopt the following
strategy: (1) Find the points x where the internal actions, M(x), V (x), etc.
attain their maximum values. (2) Calculate the influence functions for M(x)
and V (x). (3) Study how changes in the stiffness of the structure would in-
fluence the distribution of the influence function and therewith the maximum
values of M(x) and V (x). The same can be done with the support reactions.

Of course a seasoned structural engineer needs no computer to see where
the weak points of a structure are but this is not the point here. Rather
this technique eventually could allow us to assess the safety of a structure
computationally.



4. Plane problems

We start with an elementary example to explain the FE technique in detail.

4.1 Simple example

The cantilever plate in Fig. 4.1 is subject to an edge load and subdivided into
four bilinear elements of length l and width h.

Each of the four nodes of an element has two degrees of freedom ue
i , so

that the stiffness matrix Ke is of size 8 × 8. If Poisson’s ratio is zero, ν = 0,
then the matrix is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l
6h

+ h
3l

l
12h

− h
3l

− l
12h

− h
6l

− l
6h

+ h
6l

1
8

− 1
8

− 1
8

1
8

l
6h

+ h
3l

− l
6h

+ h
6l

− l
12h

− h
6l

1
8

− 1
8

− 1
8

1
8

l
6h

+ h
3l

l
12h

− h
3l

− 1
8

1
8

1
8

− 1
8

l
6h

+ h
3l

− 1
8

1
8

1
8

−1
8

l
3h

+ h
6l

l
6h

− h
6l

− l
6h

− h
12l

− l
3h

+ h
12l

sym. l
3h

+ h
6l

− l
3h

+ h
12l

− l
6h

− h
12l

l
3h

+ h
6l

l
6h

− h
6l

l
3h

+ h
6l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.1)

All values are to multiplied by E · t, the product of the modulus of elasticity
E and the thickness t of the plate.

In case the dimensions are l = 2, h = 1, the matrix Ke becomes very
simple:

Ke =
E t

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 −1 −2 −1 −2 1
1 6 1 2 −1 −3 −1 −5
0 1 4 −1 −2 −1 −2 1
−1 2 −1 6 1 −5 1 −3
−2 −1 −2 1 4 1 0 −1
−1 −3 −1 −5 1 6 1 2
−2 −1 −2 1 0 1 4 −1

1 −5 1 −3 −1 2 −1 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.2)

The product of the element matrix Ke and the nodal displacements ue yields
the equivalent nodal forces fe:

Ke ue = fe (4.3)
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1

1

x

y

Fig. 4.1. Cantilever plate: a) system and load, b) equivalent nodal forces: these
fictitious nodal forces are work-equivalent to the edge load with respect to the unit
nodal displacements of the edge nodes as plotted in c), d), and e). A unit force of
20 kN at the center node of the edge contributes the same work as the distributed
load in panel d) on acting through the nodal unit displacement

or

Ke ue = u1

[
c1

]
+ u2

[
c2

]
+ . . . + u8

[
c8

]
= fe , (4.4)

i.e.,

u1

⎡
⎢⎢⎣

k11

k21

. . .
k81

⎤
⎥⎥⎦+ u2

⎡
⎢⎢⎣

k12

k22

. . .
k82

⎤
⎥⎥⎦+ . . . + u8

⎡
⎢⎢⎣

k18

k28

. . .
k88

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f1

f2

. . .
f8

⎤
⎥⎥⎦ . (4.5)

Obviously the eight columns ci of K are the equivalent nodal forces of the
eight unit displacements ue = ei, i = 1, 2, . . . , 8.

The nodal displacements of the individual elements and of the nodes of
the plate are the same, so that if u(18) = [u1, u2, . . . , u18]T is the list of the
nodal displacements and ul

(32) = [u(1),u(2),u(3),u(4)]T the list of the element
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Fig. 4.2. Subdivision into elements and nodes. The dark circles are the nodes of
the mesh and the bright circles are the nodes of the elements

nodal displacements, then there exists a boolean matrix A that maps the nodal
displacements onto the nodal element displacements

ul
(32) = A(32×18) u(18) . (4.6)

The information in the matrix A is also provided by the following table

1 2 3 4 5 6 7 8

Element 1 1 2 3 4 5 6 7 8
Element 2 3 4 9 10 11 12 5 6
Element 3 7 8 5 6 13 14 15 16
Element 4 5 6 11 12 17 18 13 14

(4.7)

which shows for each element how the eight element degrees of freedom (top

In the reverse order, the equivalent nodal forces fi at each node are bal-
anced by the element nodal forces. Because (A u)T K A u = uT AT K A u,
this equilibrium condition amounts to

f (18) = AT
(18×32) f l

(32) . (4.8)

row) are associated with the global degrees of freedom; see Fig. 4.2.
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If the element matrices are placed on the diagonal of a 32× 32 matrix

Kl
(32×32) =

⎡
⎢⎢⎣

Ke
1 0 0 0

0 Ke
2 0 0

0 0 Ke
3 0

0 0 0 Ke
4

⎤
⎥⎥⎦ , (4.9)

the global stiffness matrix becomes

K(18×18) = AT
(18×32) Kl

(32×32)A(32×18) (4.10)

or

K =
Et

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 −1 −2 −1 −2 1 0 0 0 0 0 0 0 0 0 0
1 6 1 2 −1 −3 −1 −5 0 0 0 0 0 0 0 0 0 0
0 1 8 0 −4 0 −2 1 0 −1 −2 −1 0 0 0 0 0 0

−1 2 0 12 0 −10 1 −3 1 2 −1 −3 0 0 0 0 0 0
−2 −1 −4 0 16 0 0 0 −2 1 0 0 −4 0 −2 1 −2 −1
−1 −3 0 −10 0 24 0 4 1 −3 0 4 0 −10 1 −3 −1 −3
−2 −1 −2 1 0 0 8 0 0 0 0 0 −2 −1 −2 1 0 0

1 −5 1 −3 0 4 0 12 0 0 0 0 −1 −3 −1 −5 0 0
0 0 0 1 −2 1 0 0 4 −1 −2 −1 0 0 0 0 0 0
0 0 −1 2 1 −3 0 0 −1 6 1 −5 0 0 0 0 0 0
0 0 −2 −1 0 0 0 0 −2 1 8 0 −2 1 0 0 −2 −1
0 0 −1 −3 0 4 0 0 −1 −5 0 12 1 −3 0 0 1 −5
0 0 0 0 −4 0 −2 −1 0 0 −2 1 8 0 0 −1 0 1
0 0 0 0 0 −10 −1 −3 0 0 1 −3 0 12 1 2 −1 2
0 0 0 0 −2 1 −2 −1 0 0 0 0 0 1 4 −1 0 0
0 0 0 0 1 −3 1 −5 0 0 0 0 −1 2 −1 6 0 0
0 0 0 0 −2 −1 0 0 0 0 −2 1 0 −1 0 0 4 1
0 0 0 0 −1 −3 0 0 0 0 −1 −5 1 2 0 0 1 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.11)

Of course the matrix multiplication (4.10) is never carried out in an FE pro-
gram. Instead the entries kij are simply assembled by adding the correspond-
ing stiffnesses of the element nodes, as would be done in a system of springs
connected in parallel. This global stiffness matrix (18× 18) embodies the in-
teraction of the nodal displacements and the equivalent nodal forces of the
plate:

K u = f or AT
(18×32) Kl

(32×32)A(32×18)u(18) = f (18) . (4.12)

Stream model

The nature of the assembled system of equations (4.12) is best understood
in terms of a stream model, where it is assumed that each node possesses a
certain potential ui. Because the individual nodes have different potentials
and the elements different physical properties, strains (and thus stresses) will
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Fig. 4.3. FE analysis
of a plate: a) system

ph

Ω =
[(ph

x, ph
x)+(ph

y , ph
y)]1/2

develop between the nodes. These stresses flow back to the nodes in the form
of element nodal forces, and these forces in turn are balanced by the external
nodal forces fi [232].

In the first step, A u (Equ. (4.12) must be read from right to left), the
nodal potentials ui are distributed over the element nodes, ui → ue

i . In each
element the different nodal potentials generate stresses, resulting in element
nodal forces fe = Ke ue. In the second step all these element nodal forces are
bundled at the nodes, AT f l and are balanced by the external nodal forces f ,
i.e., AT Kl A u = f , or simply K u = f .

Equivalent nodal forces

To transform the edge load into equivalent nodal forces fi the work is cal-
culated which the edge load contributes on acting through the nodal unit

and original load
case, b) deformed
plate, c) load case

with resulting
volume forces p
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displacements of the degrees of freedom (d.o.f.) u16 = 1, u14 = 1, and u18 = 1
on the upper edge:

f14 =
1
2
· 1 · (−10) · 2 · 2 = −20 (4.13)

f16 = f18 =
1
2
· 1 · (−10) · 2 = −10 . (4.14)

Note that u16 is also activated even though this d.o.f is fixed. Only this guar-
antees that the sum of the equivalent nodal forces is equal to the applied load.
Hence, some part of the load flows directly to the support nodes and will not
contribute any strains and stresses; see Fig. 4.1 b.

Because the support nodes are fixed, six degrees of freedom are zero:

u1 = u2 = u7 = u8 = u15 = u16 = 0 , (4.15)

so that 12 (out of 18) nodal displacements ui are unknown. This is the degree
of kinematic indetermancy of the structure. The set of equations

K(12×12) u(12) = f (12) (4.16)

for these 12 nodal displacements ui is obtained if in the global stiffness ma-
trix (4.12) the rows and columns that belong to fixed degrees of freedom are
eliminated:

Et

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 0 −4 0 0 −1 −2 −1 0 0 0 0
0 12 0 −10 1 2 −1 −3 0 0 0 0
−4 0 16 0 −2 1 0 0 −4 0 −2 −1

0 −10 0 24 1 −3 0 4 0 −10 −1 −3
0 1 −2 1 4 −1 −2 −1 0 0 0 0
−1 2 1 −3 −1 6 1 −5 0 0 0 0
−2 −1 0 0 −2 1 8 0 −2 1 −2 −1
−1 −3 0 4 −1 −5 0 12 1 −3 1 −5

0 0 −4 0 0 0 −2 1 8 0 0 1
0 0 0 −10 0 0 1 −3 0 12 −1 2
0 0 −2 −1 0 0 −2 1 0 −1 4 1
0 0 −1 −3 0 0 −1 −5 1 2 1 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u3

u4

u5

u6

u9

u10

u11

u12

u13

u14

u17

u18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0

−20
0

−10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.17)

Results and interpretation

The shape of the deformed structure is displayed in Fig. 4.3 b, and the distri-
bution of the bending stresses at the fixed edge is plotted in Fig. 4.4. In Table
4.1 the FE solution is compared to a BE solution and a beam solution. The
plate was subdivided into 4, 8 and 32 elements, respectively. The material
properties were E = 29 000 MN/m2, t = 0.2 m, and ν = 0.0.
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Table 4.1. Comparison of the deflection at the lower corner and the normal stresses
at the fixed edge

Elements Deflection Compression Tensile stresses
(mm) (kN/m2) (kN/m2)

4 6.83E-02 −248 251
8 8.67E-02 −413 420

32 9.51E-02 −546 567
Beam 8.28E-02 −600 600

BE 9.86E-02 −828 1055

Fig. 4.4. Bending stresses

The relatively small vertical displacement at the lower right corner and the
slow convergence of the bending stresses is an indication that bilinear elements
have difficulties with bending-dominated problems. The stress distribution of
the BE solution on the other hand deviates from the linear stress distribution
of the beam theory, and the extreme values seem to tend to ±∞, which are
obviously the exact bending stresses in the extreme fibers according to the
theory of elasticity.

This simple problem is an indication that questions concerning the model-
ing are at least as important in FE analysis as questions concerning numerical
details: What is to be calculated? What do we expect from the FE model? Is
it the beam solution

σxx =
M h

2 EI
=

±80 · 2.0
2 · 2.9 · 107 · 0.13̄

= ± 600 kN/m2 (4.18)

or is it the stress concentration factor, or is it the size and location of the
plastic zones?
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Fig. 4.5. Plate

4.2 Strains and stresses

The deformation of a plate is described by the displacement vector

u(x, y) =
[

u(x, y)
v(x, y)

]
horizontal displacement
vertical displacement (4.19)

εxx =
∂u

∂x
εyy =

∂v

∂y
γxy =

∂v

∂x
+

∂u

∂y
εxy =

1
2

γxy . (4.20)

⎡
⎣σxx

σyy

τxy

⎤
⎦

︸ ︷︷ ︸
σ

=
E

1− ν2

⎡
⎣ 1 ν 0

ν 1 0
0 0 (1− ν)/2

⎤
⎦

︸ ︷︷ ︸
E

⎡
⎣ εxx

εyy

γxy

⎤
⎦

︸ ︷︷ ︸
ε

(4.21)

and in a state of plane strain,⎡
⎣σxx

σyy

τxy

⎤
⎦ =

E

(1 + ν)(1− 2 ν)

⎡
⎣ (1− ν) ν 0

ν (1− ν) 0
0 0 (1− 2 ν)/2

⎤
⎦
⎡
⎣ εxx

εyy

γxy

⎤
⎦. (4.22)

To recover the strains from the stresses, the formula⎡
⎣ εxx

εyy

γxy

⎤
⎦ =

⎡
⎣ 1/E −ν/E 0
−ν/E 1/E 0

0 0 1/G

⎤
⎦
⎡
⎣σxx

σyy

τxy

⎤
⎦ (4.23)

of the individual points. The stresses (see Fig. 4.5) are not proportional to
the magnitude of the displacements, but to the change in the displacements
per unit length, that is the gradient (strains) of the displacement field

In a state of plane stress (see Fig. 4.6), where σzz = τyz = τxz = 0,
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Fig. 4.6. Stress distribution in a wall. The distance between the stress resultants
is proportional to the magnitude of the internal bending moment

Fig. 4.7. Principal stresses in a plate

Fig. 4.8. At free edges the principal stresses always run parallel to the edge. This
provides a visual check on the FE results
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is used, where G = 0.5E/(1 + ν) is the shear modulus of the material.
In rubber-like materials where Poisson’s ratio is close to 0.5, the stresses

become infinite in a state of plane strain. Special efforts are necessary to
deliver useful results with an FE program close to this point; see Sect. 4.17,
p. 393.

Table 4.2. Critical angles for a plate; stresses become infinite if the angle of the
boundary point exceeds these values.

Boundary conditions angle

fixed–fixed 180◦

fixed–roller 90◦

fixed–tangential 90◦

fixed–free 61.7◦ ν = 0.29 plane stress state
roller–roller 90◦

roller–tangential 45◦

roller–free 90◦

tangential–tangential 90◦

tangential–free 128.73◦

free–free 180◦

The angle

tan 2ϕ =
2 τxy

σxx − σyy
(4.24)

defines the orientation of the principal planes where the principal stresses

σI,II =
σxx + σyy

2
±
√[

σxx − σyy

2

]2

+ τ2
xy (4.25)

are acting. The shear stresses are zero in these planes. They attain their
maximum values if the planes are rotated by 45◦. The stress trajectories (see
Fig. 4.7 and Fig. 4.8) provide a graphic description of the stress state.

If un and us denote the edge displacements in the normal and tangential
direction and tn and ts the tractions in these directions, four combinations of
support conditions are possible

un = us = 0 fixed edge
un = 0 , ts = 0 roller support
us = 0 , tn = 0 tangential support
tn = ts = 0 free edge

The stress singularities at corner points depend on these boundary conditions
and on the angle of the corner points; see Table 4.2 [206], [252].
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Fig. 4.9. CST element, E = 2.1 · 109 kN/m2, ν = 0.2, t = 0.1 m. Displayed are the
edge loads (kN/m) necessary to push the lower left node to the right while all other
nodes are kept fixed

4.3 Shape functions

An element Ωe with n nodes xi is usually equipped with n local shape func-
tions ψe

i , i = 1, 2, . . . , n with the property ψe
i (xj) = δij . By continuing these

shape functions across interelement boundaries, global shape functions ψi are
generated.

With these global shape functions, “monochrome” displacement fields can
be generated which represent unit displacements fields of the nodes:

ϕ1 =
[

ψ1

0

]
ϕ2 =

[
0
ψ1

] ← horizontal displacement
← vertical displacement (4.26)

These are called monochrome because to portray a horizontal displacement
of a node, no vertical component is needed, and vice versa, even though such
monochrome displacement fields will also cause stresses in the other direction.

The FE displacement field is an expansion in terms of these 2n unit dis-
placement fields ϕi:

uh(x, y) =
2n∑
i=1

ui ϕi(x, y)

=

node 1︷ ︸︸ ︷
u1

[
ψ1

0

]
︸ ︷︷ ︸
ϕ1 →

+u2

[
0
ψ1

]
︸ ︷︷ ︸
ϕ2 ↑

+

node 2︷ ︸︸ ︷
u3

[
ψ2

0

]
︸ ︷︷ ︸
ϕ3 →

+u4

[
0
ψ2

]
︸ ︷︷ ︸
ϕ4 ↑

+ . . . (4.27)

The unit load case pi which can be associated with a unit displacement field
ϕi is simply the set of all forces necessary to force the plate into the shape
ϕi; see Fig. 4.9.
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Furthermore the superposition of all these load cases p i is the FE load
case

ph =
2n∑
i=1

ui p i , (4.28)

which is tuned in such a way—by adjusting the nodal displacements ui—
that it is work-equivalent to the original load case p with respect to all unit
displacement fields:

δWe(p,ϕi) = δWe(ph,ϕi) for all ϕi . (4.29)

4.4 Plane elements

The unit displacement fields of the assembled structure should be able to rep-
resent rigid-body motions exactly, as well as constant strain and stress states,
because otherwise the FE solution will not converge to the exact solution as
the mesh size h tends to zero. Of course the unit displacement fields must
be continuous across interelement boundaries, because no gap is allowed in
the structure (C0-elements). Depending on the order of the polynomial shape
functions, the elements are called linear, quadratic, or cubic elements.

Preferably the shape functions should be complete, i.e., they should contain
all terms xi yj up to order n = 1, 2 or 3 (cubic elements). If not, they should
at least contain the correlated terms x y2 and y x2, for example, in order that
the element be geometrically isotropic—if the load is rotated by 90◦ then the
stresses should follow—and it should be guaranteed that the quality of the
interpolation is invariant with respect to rotation of the elements (rotational
invariance).

CST element

The simplest element is a triangular element, with three nodes and linear
shape functions (see Fig. 4.10)

ψe
1(x, y) =

1
2 Ae

[(x2 y3 − x3 y2) + y23 x
↑

+ x32 y
↑
] (4.30)

ψe
2(x, y) =

1
2 Ae

[(x3 y1 − x1 y3) + y31 x + x13 y ] (4.31)

ψe
3(x, y) =

1
2 Ae

[(x1 y2 − x2 y1) + y12 x + x21 y ] (4.32)

where

x ij = xi − xj y ij = yi − yj 2 Ae = x21 y31 − x31 y21 (4.33)
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Fig. 4.10. Plane elements: a) CST element, b) bilinear element

so that the displacement field of the element is an expansion with respect to
the six nodal displacements:

ue(x, y) =
[

ue

ve

]
=
[

ψe
1 0 ψe

2 0 ψe
3 0

0 ψe
1 0 ψe

2 0 ψe
3

]
⎡
⎢⎢⎢⎢⎢⎢⎣

u1

v1

u2

v2

u3

v3

⎤
⎥⎥⎥⎥⎥⎥⎦ or ue = Ψ e de . (4.34)

As the name of the element implies, the strains are constant:

⎡
⎣ εxx

εyy

γxy

⎤
⎦ =

1
2 Ae

⎡
⎣ y23 0 y31 0 y12 0

0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y21

⎤
⎦
⎡
⎢⎢⎢⎢⎢⎢⎣

u1

v1

u2

v2

u3

v3

⎤
⎥⎥⎥⎥⎥⎥⎦ or ε = B d . (4.35)

The stress vector σ = [σxx, σyy, τxy]T is σ = E ε = E B d, where E is the
matrix in (4.21) and the stiffness matrix of the element is

Ke = t

∫
Ωe

BT E B dΩ t = element thickness .

The elements ke
ij are the strain energy products between the unit displacement

fields ϕe
i and ϕe

j :

ke
ij = a(ϕe

i ,ϕ
e
j) = t

∫
Ωe

σ(i) • ε(j) dΩ

= t

∫
Ωe

[
σ(i)

xxε(j)
xx + τ (i)

xy γ(j)
xy + σ(i)

yy ε(j)
yy

]
dΩ . (4.36)

The CST element is the simplest plane element, but certainly not a very good
one, as can be seen in Fig. 4.11.



340 4 Plane problems

+

-

with end moment; analysis
CST elements. The

of the plate oscillates

Bilinear elements

The simplest choice for a rectangular element are bilinear shape functions, i.e.,
shape functions that are products of linear polynomials, (c1 +c2 x) (d1 +d2 y).
If 2a denotes the length and 2b the width of the element, then the shape
functions of the four nodes are (see Fig. 4.10)

ψe
1 =

1
4 a b

(a− 2x)(b− 2y) ψe
2 =

1
4 a b

(a + 2x)(b− 2y) (4.37)

ψe
3 =

1
4 a b

(a + 2x)(b + 2y) ψe
4 =

1
4 a b

(a− 2x)(b + 2y) . (4.38)

In such an element the strains and stresses vary linearly,

εxx = a1 + a3 y , εyy = b2 + b3 x , γxy = (a2 + b1) + a3 x + b3 y ,

(4.39)

but in the “wrong direction” if the x-axis is assumed to be the principal di-
rection. In the case ν = 0 the normal stresses are constant in the x-direction
while they vary linearly in the y-direction. Only the shear stress varies in both
directions (see Fig. 4.12).

This element is too stiff (Fig. 4.13), because the element cannot display
any curvature. If two end moments M rotate the ends of a beam by an angle
ϕ in a bilinear element with ratio a/b, the moments

MFE =
1

1 + ν

[
1

1− ν
+

1
2

(a

b

)2
]

M

are needed to achieve the same effect. It is easy to see that MFE > M . If
the length of the element and thus the ratio a/b increases, then the moments
MFE increase quadratically; in other words the element will lock.

Fig. 4.11. Cantilever plate

with
normal stress along the axis
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with end forces, analysis with
bilinear elements, ν = 0.

4.13. The sides of
a bilinear elements remain
straight

LST element

A more flexible element is the linear strain triangle (LST element) which is
based on quadratic polynomials,

u(x, y) = a0 + a1x + a2y + a3x y + a4 x2 + a5 y2 (4.40)
v(x, y) = b0 + b1x + b2y + b3x y + b4 x2 + b5 y2 , (4.41)

so that the strains εxx and εyy vary in both directions x and y

εxx = a2 + 2 a4 x + a5 y , εyy = b2 + b3 x + 2 b5 y , (4.42)
γxy = (a2 + b1) + (a3 + 2 b4) x + (2 a5 + b3) y . (4.43)

Bilinear + 2

Wilson [253] had the idea to enrich the bilinear element in each direction with
two quadratic shape functions

Fig. 4.12. Cantilever plate

Fig.
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Fig. 4.14. Quadratic shape
functions u = (1 − η2) q2 and
v = (1 − ξ2) q3

Fig. 4.15. Cantilever
beam with edge load

Table 4.3. Deflection v at the end of the cantilever plate, see Fig. 4.15, Q4 =
bilinear element, Q4 + 2 = Wilson’s element. The exact value is v = 1.024 cm

Mesh Q4 Q4+2

1 x 8 0.715 cm 1.035 cm
2 x 16 0.939 cm 1.036 cm
4 x 32 1.010 cm 1.038 cm
8 x 80 1.021 cm 1.039 cm

u = . . . + (1− ξ2) q1 + (1− η2) q2 ξ = x/a η = y/b (4.44)
v = . . . + (1− ξ2) q3 + (1− η2) q4 , (4.45)

which can display constant curvatures (see Fig. 4.14), so that the element can
curve upwards and sidewards. Because no coordination exists between neigh-
boring elements—the qi are internal degrees of freedom which by static con-
densation (= Gaussian elimination) of the element matrix are later removed—
the elements penetrate or gaps develop between them.

If the element size shrinks, the strains become nearly constant, i.e., the
displacements are at most linear, and therefore the sides of the element might
still rotate, but they will remain straight, hence the incompatible terms be-
come superfluous (qi = 0). This is probably also the reason why this element
is so successful and why it is used in many commercial codes. If the imple-
mentation is done correctly, the elements are very stable elements [154].

The plate in Fig. 4.15 was analyzed with bilinear elements. Eight layers
(rows) of elements, each comprising eighty elements, were necessary to come
close to the exact deflection w = 1.024 cm at the end of the cantilever plate
(see Table 4.3), while Wilson’s element achieved the same result with just eight
elements. Typical of a nonconforming element, the FE solution overestimates
the deflection.
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4.16. Plane

eight-node serendipi-

tions

Because the internal degrees of freedom qi are later eliminated by static
condensation, the associated equivalent nodal forces are set to zero. Before
the condensation, the basic set of equations is[

Kuu Kuq

Kqu Kqq

] [
u(8)

q(4)

]
=
[

f (8)

0(4)

]
(4.46)

and afterwards it separates into two parts

K(8×8)u(8) = f (8) q(4) = Q(4×8) u(8) , (4.47)

with

K = Kuu −KT
uq K−1

qq Kqu , Q = −K−1
qq Kuq , (4.48)

where the qi are the dependent degrees of freedom.
In the standard FE notation see Sect. 1.47, p. 221, the strain vector ε

which results from a deformation u, q is

ε = Bu u + Bq q , (4.49)

and after condensation it becomes

ε = B u B := Bu + Bq Q . (4.50)

Lagrange and serendipity elements

In Lagrange elements the shape functions are Lagrange polynomials. These
elements are rectangular elements with edge nodes and internal nodes. Seren-
dipity elements dispense with internal nodes, but they are therefore incom-
plete. The square eight-node element Q8 (Fig. 4.16 a) is such an element. The
shape functions of this element are obtained if the quadratic polynomials of
the LST element (4.40) and (4.41) are enriched with cubic terms:

u(x, y) = . . . + a6 x2 y + a7 x y2 , (4.51)
v(x, y) = . . . + b6 x2 y + b7 x y2 . (4.52)

quadratic shape func-

Fig.
elements: a) square

ty-element Q8, b)
9-node Lagrange
element with bi-
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Higher-order elements

In elements with higher-order polynomials (cubic, etc.) derivatives u,x or v,y
appear as nodal degrees of freedom, which will cause difficulties if the stresses
are discontinuous at a node. Also the coupling of such elements with other
elements can lead to difficulties, because the displacements are no longer com-
patible at interelement boundaries.

Drilling degrees of freedom

The nodes of a plate have no rotational stiffness, which makes it difficult to
couple a plate to a beam.

To add such a stiffness, one starts for example with an LST-element (trian-
gular element with quadratic polynomials and additional nodes at the sides),
and pretends that the element has rotational degrees of freedom at the corner
points. Such rotational degrees of freedom would enable one to calculate the
displacements at the mid-side nodes. Hence, it seems possible to sacrifice the
degrees of freedom at the mid-side nodes to establish rotational degrees of
freedom at the corner nodes instead. This is the basic idea, though some ad-
ditional mathematical tricks are necessary to make this idea work ([69], [42],
[5]).

The invaluable advantage of these elements is the incorporation of rota-
tional degrees of freedom, which makes these elements suitable for modeling
folded plates or shells. But because only one rotational degree of freedom is
added at the corner nodes, while the mid-side nodes actually have two degrees
of freedom, the possibilities of this modified element are somewhat restricted
compared with either a fully isoparametric or nonconforming element.

4.5 The patch test

Irons proposed the patch test originally to check the convergence of non-
conforming elements [125]. Although passing a patch test—theoretically at
least—is neither necessary nor sufficient for the convergence of an FE solu-
tion [235], it is a very good test to check and compare elements.

The patch test is based on the observation that the stress distribution
becomes more and more uniform the smaller the elements become. Therefore
convergence can only be expected if an FE program can solve load cases with
uniform stress states exactly.

In a wider sense, a patch test is simply a test to reproduce a certain stress
distribution on a given mesh.

Wilson’s improved bilinear element Q4 + 2 often yields better results than
the original bilinear element Q4, even though it is a nonconforming element.
To study the behavior of these two elements side by side, a cantilever plate
was subjected to three standard load cases, producing
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Fig. 4.17. These meshes should have no difficulty reproducing simple stress states:
a) regular mesh, b) irregular mesh

• a constant moment
• linear bending moments = constant shear forces
• quadratic bending moments = linear shear forces

Each load case was solved on a relatively coarse mesh consisting of eight
rectangular elements, and alternatively on a distorted mesh; see Fig. 4.17 b.

When the plate is stretched uniformly, this will produce a constant normal
force, and this load case must be solved exactly. This is the original patch test.
Both elements passed this test. But in the other three load cases, distinct
deviations from the beam solution appeared; see Table 4.4. As expected the

Table 4.4. Normal stress σ (kN/m2), R = regular mesh, I = irregular mesh,
= bilinear element, Q4 + 2 = Wilson

Moment Constant Linear Quadratic

Mesh x = 0.0 x = l/2 x = 0.0 x = l/2 x = 0.0 x = l/2

Exact 1500 1500 1200 600 1200 300

R. Q4 + 2 1500 1500 1051 600 940 337

I. Q4 + 2 1322 1422 940 701 773 452

R. Q4 1072 1072 745 428 659 240

I. Q4 687 578 454 187 393 172

stresses at edge nodes were not as accurate as stresses at internal nodes, but
nevertheless it is remarkable how much difficulty the bilinear element had
in modeling the bending states on such a coarse mesh. In particular, the
errors in the shear stresses were large; see Table 4.5. On the regular mesh

Q4
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Table 4.5. Shear stress τ (kN/m2)

Moment Constant Linear Quadratic

Mesh x = 0.0 x = l/2 x = 0.0 x = l/2 x = 0.0 x = l/2

Exact 0 0 50 50 100 50

R. Q4 + 2 0 0 50 50 87.5 50

I. Q4 + 2 58 28 65 80 130 73

R. Q4 438 0 364 8 376 8

I. Q4 502 220 380 294 366 11

Fig. 4.18. Displacements produced on the irregular mesh under constant horizontal
volume forces: a) nonconforming element Q4+2 (Wilson), b) conforming element
Q4 (bilinear)

the nonconforming Wilson element yielded the exact solution (the value 87.5
instead of 100 in the last column is due to the fact that some of the load is
reduced directly into the support nodes). In the bilinear element the incorrect
shear forces have nearly the same magnitude as the normal stresses. In the
nonconforming solution they are a factor of 4 to 10 smaller.

The poor properties of the bilinear element also become apparent if a
constant horizontal volume force is applied; see Fig. 4.18. Though the stresses
of the two solutions, Q4 and Q4 + 2, are similar, the lateral displacements of
the bilinear elements must cause concern. These displacements are due to a
Poisson ratio ν > 0. They are not that large, but they cause asymmetries—
even in the stresses—and if the structure is statically indeterminate, we should
be very careful.

4.6 Volume forces

Volume forces are transformed into equivalent nodal forces by letting the load
act through the nodal unit displacements
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Fig. 4.19. Equivalent nodal forces in load case g as a fraction of the total dead
weight G = γ Ae t for different elements. Note that the corner forces of the LST -
element are zero, and those of the Q8 element even have a negative sign

fi =
∫

Ω

p • ϕi dΩ . (4.53)

These equivalent nodal forces are in agreement with the elementary rules of
structural mechanics. Constant volume forces as g = [0, γ]T (gravity load) are
distributed in equal parts onto the nodes of a CST element (see Fig. 4.19),
while the corner nodes of a quadratic LST element are load-free, because the
integrals of the shape functions are zero in this load case; see Fig. 4.19. Note
that the corner forces of the Q8 element point upward, because the integrals of
the pertinent shape functions are negative. Of course the sum of all equivalent
nodal forces fi is equal to the total weight G · 1.

4.7 Supports

Fixed supports are perfectly rigid by nature. Such supports can be point
supports or line supports. While point supports are ambiguous in nature, line
supports are legitimate constraints, see Fig. 4.20 and Fig. 4.21.

At a roller support, the displacements normal to the support are zero,
uT n = 0. If the roller support is inclined, kinematic constraints couple the
horizontal and vertical displacements. A slight misalignment of the supports
can lead to dramatically different results. Plates are very sensitive to geomet-
rical constraints or other such incompatibilities.

Care should also be taken not to constrain a structure unintentionally in
the horizontal direction, because it could easily suggest a load bearing capacity
that later fails to materialize because of nonexistent abutments.

Therefore a correct assessment of the support characteristics is very im-
portant. Only if the supports of the continuous beam in Fig. 4.22 are perfectly
rigid will the support reactions agree with the ratios 0.36:1:1:0.36 that we ex-
pect in a continuous beam. If instead the four rigid supports are replaced by
four 0.24 m × 0.24 m × 2.88 m columns with vertical stiffness
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Fig. 4.20. Wall: a) loading, b) displacements, c) principal stresses, d) qualitativ
representation of the horizontal reinforcement as-x cm2/m
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Fig. 4.21. Stresses and reinforcement: a) σxx b) τxy c) σyy d) part of the rein-
forcement as-y cm2/m in the vertical direction
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Fig. 4.22. Influence of the support stiffness: a) rigid support, b) stresses σxx,

xx kN/m2c) soft support (brickwork columns), d) stresses σ
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Fig. 4.23. A shear wall: a) on soft supports the wall tends to behave like a long
flat arch held taut by a tie rod; b) hard supports allow the plate to carry the load
directly to the intermediate supports

k =
E A

h
=

30 000MN/m2 · 0.24 · 0.24 m2

2.88 m
= 6.0 · 105kN/m , (4.54)

the support reactions are much more evenly distributed, as indicated by the
ratios 0.72:1:1:0.72.

The softer the supports, the closer the structural behavior of the plate to
a long flat arch held taut by a tie rod; see Fig. 4.23.

Whenever possible, the support reactions should be compared with the
support reactions of an equivalent beam model (see Fig. 4.24) and the rein-
forcement should be checked by working with approximate lever arms z [103].
In the following formulas d denotes the width of the wall, l the length of
the span, and zF and zS the lever arms in the span and at the intermediate
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Fig. 4.24. Shear wall and equivalent beam

supports:

One span

zF = 0.3 · d · (3− d/l) 0.5 < d/l < 1.0
zF = 0.6 · l d/l ≥ 1.0

Two-span beams and last span of a continuous beam

zF = zS = 0.5 · d · (1.9− d/l) 0.4 < d/l < 1.0
zF = zS = 0.45 · l d/l ≥ 1.0

Interior spans of continuous beams

zF = zS = 0.5 · d · (1.8− d/l) 0.3 < d/l < 1.0
zF = zS = 0.4 · l d/l ≥ 1.0

Cantilever beam with length lk

zS = 0.65 · lk + 0.10 · d 1.0 < d/lk < 2.0
zF = 0.85 · lk d/l ≥ 2.0

If M is the bending moment of an equivalent beam, the tensile force T = M/z
and the reinforcement are

As =
T

βs/γ
=

T kN
28.6 kN/cm2 . (4.55)
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Fig. 4.25. Plate analysis of a beam with bilinear elements (Q4): a) system and
load, where the point supports were modeled by keeping two nodes fixed, and the
single forces were input as nodal forces; b) principal stresses, for which the support
reactions agree with the beam theory

Here 28.6 kN/cm2 is the allowable steel stress.
A check of the plate in Fig. 4.22 with these formulas shows a good agree-

ment

Span 1 Support Span 2

Moment (kN/m2) 64 −80 20
Lever arm z (m) 1.8 1.8 1.6
Tensile force T (kN) 35.6 44.4 12.5
As (cm2) 1.24 1.55 0.43

As FE (cm2) 1.35 1.60 0.60

Point supports

True point supports are not compatible with the theory of elasticity, because
the exact support reaction would be zero. But if a node is kept fixed, it
is not a point support (see Sect. 1.16, p. 55, and 1.24, p. 99). Instead the
resulting support reaction agrees with the beam solution (see Fig. 4.25). Only
the stresses signal that the solution is singular.
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Fig. 4.26. Symmetric structures and symmetric loads

Symmetries

If the system and load are symmetric the FE analysis can be restricted to parts
of a structure. Loads that happen to lie on the symmetry axis, are halved as
is the stiffness of supports that lie on the axis (see Fig. 4.26).

Displaced point supports

The situation is the same as for point supports. According to the theory of
elasticity, no force is necessary to displace a single point of a plate while an
FE program produces the beam solution.

Tangential supports

A shear wall that is connected to floor plates experiences a deformation im-
pediment in the tangential direction (see Fig. 4.27). Without this constraint
(see Fig. 4.27 b and c; principal stresses and reinforcement), the structural
behavior of the wall is similar to an arch held taut by a tie rod, while if the
upper and lower floor plate constrain the wall, the distribution of the stresses
in the wall is much more homogeneous and the reinforcement required is only
about half as much as before.
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Fig. 4.27. Shear wall: a) system and load, b) principal stresses, c) reinforcement—
only qualitatively—without tangential support, d) and e) with such a support at
the upper and lower edge
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Fig. 4.28. The transfer of the shear force in the chords requires the compressive and
tensile forces to be inclined. The shear forces lead to asymmetric bending moments
in the chords

-

+

Fig. 4.29. Internal forces and bending moment
distribution in the chords

Beam-like elements

Door or window lintels carry shear forces (see Fig. 4.28). The normal forces
(compression and tension) in these elements are

C = T =
M

z
z = vertical distance of the lintels , (4.56)

and it can be assumed—if the concrete is not cracked—that the shear force
V is evenly carried by both elements Vu = Vl = 0.5V , so that the bending
moment in one element becomes (see Fig. 4.29)
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Melement = 0.5V
l

2
l = length of the element . (4.57)

If the concrete in the lower element cracks, the stiffness will shrink, and it can
then be assumed that all the shear force is carried by the upper beam which
makes it necessary to provide hanger reinforcement to carry the shear force
to the upper element.

To investigate how Wilson’s element can represent such bending states,
the column in Fig. 4.30 was analyzed. The height of the column is 3 m and
its width is 50 cm. It is fixed at the base and it can slide horizontally at the
top where a horizontal force P = 20 kN is applied. The structural system
corresponds to the system in Fig. 4.30 c. As can be seen from the following
table

Elements
Width (m) × Height (m) M (kNm) u (mm)

0.500 × 0.600 25 0.74
0.250 × 0.250 27.6 0.76
0.125 × 0.150 28 0.76

exact 30 0.72

with elements of size 25 cm × 25 cm, two elements across the width of the
column, good results are achieved. The error in the bending moments at the
top is about 8%.

4.8 Nodal stresses and element stresses

In a bilinear element of length a and width b as in Fig. 4.10, the stresses are

σxx(x, y) =
E

a b (−1 + ν2)
·
[
b (u1 − u3) + a ν (u2 − u8) +

+ x ν (−u2 + u4 − u6 + u8) + y (−u1 + u3 − u5 + u7)
]

(4.58)

σyy(x, y) =
E

a b (−1 + ν2)
·
[
b ν (u1 − u3) + a (u2 − u8) +

+ x (−u2 + u4 − u6 + u8) + y ν (−u1 + u3 − u5 + u7)
]

(4.59)

σxy(x, y) =
−E

2 a b (1 + ν)
·
[
b (u2 − u4) + a (u1 − u7) +

+ x (−u1 + u3 − u5 + u7) + y (−u2 + u4 − u6 + u8)
]

. (4.60)

The stresses in Wilson’s element are
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Fig. 4.30. Analysis of a column with Wilson’s element

σxx(x, y) = − E

a2b2(−1 + ν2)

[
8 b2q1 x + a2ν(b(−4 q4 + u2 − u8) + 8 q4 y)

+ a b(b(−4 q1 + u1 − u3) + ν x(−u2 + u4 − u6 + u8)

+ y(−u1 + u3 − u5 + u7)
]

(4.61)

σyy(x, y) = − E

a2b2(−1 + ν2)

[
8 b2νq1 x + a2(b(−4 q4 + u2 − u8) + 8 q4 y)

+ a b(bν(−4 q1 + u1 − u3) + x(−u2 + u4 − u6 + u8)

+ νy(−u1 + u3 − u5 + u7)
]

(4.62)

σxy(x, y) = − E

2a2b2(1 + ν)

[
− 8 b2νq3 x + a2(b(−4 q2 − u1 + u7)− 8 q2 y)

+ a b(b(4 q3 − u2 + u4) + x(u1 − u3 + u5 − u7)

+ y(u2 − u4 + u6 − u8)
]

. (4.63)

Remark 4.1. The origin of the coordinate system in these expressions is as-
sumed to be the lower left corner of the element while in Fig. 4.10 it is the
center of the element.

These equations can be simplified further. Because of (4.47),
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q1 =
a ν

8 b
[u2 − u4 + u6 − u8] q2 =

b

8 a
[u2 − u4 + u6 − u8] (4.64)

q3 =
a ν

8 b
[u1 − u3 + u5 − u7] q4 =

b ν

8 a
[u1 − u3 + u5 − u7] (4.65)

so that

σxx(x, y) = − E

2 a b (−1 + ν2)

[
b(2(u1 − u3) + ν2(−u1 + u3 − u5 + u7))

+ a ν(u2 + u4 − u6 − u8) + 2(−1 + ν2)

(u1 − u3 + u5 − u7) y

]
(4.66)

σyy(x, y) = − E

2 a b (−1 + ν2)

[
a(2(u2 − u8) + ν2(−u2 + u4 − u6 + u8))

+ b ν(u1 − u3 − u5 + u7) + 2(−1 + ν2)

(u2 − u4 + u6 − u8) y

]
(4.67)

σxy(x, y) = − E

4 a b(1 + ν)

[
a(u1 + u3 − u5 − u7)

+ b(u2 − u4 − u6 + u8)
]

(4.68)

and here it is seen that the horizontal stresses σxx only depend on y, the
vertical stresses σyy only on x (in a bilinear element this is true only if ν = 0),
and σxy is constant (whereas it varies in a bilinear element). Therefore the
volume forces in Wilson’s element are zero (!):

− σxx,x−σxy,y = 0 (4.69)
−σyx,x−σyy,y = 0 . (4.70)

Stress averaging

If the stress distribution is linear, the stresses are discontinuous at the element
edges. This is straightened out by interpolating the stresses at the midpoints
of the elements. Even in the presence of gross stress discontinuities, the results
at the centers are often acceptable; see Sect. 1.22, p. 88. Similar behavior is
shown at the Gauss points; see Sect. 1.25, p. 104.

According to the FE algorithm, the weighted average of the error in the
stresses is zero on each patch Ωi,∫

Ωi

(σ − σh) • εi dΩ = 0 i = 1, 2, . . . . (4.71)

where εi = [ε(i)
xx, ε

(i)
yy , γ

(i)
xy ]T are the strains that belong to the unit displacement

fields ϕi, and the patch Ωi is the support of the field (where the strains
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Fig. 4.31. Gauss points: a) the stresses at the Gauss points are extrapolated to
the boundary, b) contour lines of the stresses σxx, the jumps are a measure of the
quality of an FE mesh (Bathe)

are nonzero). Hence we may expect that the error in the stresses σ − σh =
[σxx − σh

xx, σyy − σh
yy, τxy − τh

xy]T changes its sign on Ωi repeatedly. Good
candidates for these zeros are obviously the centers of the elements and the
Gauss points; see Sect. 1.25, p. 104.

For the same reason the stresses at the edge of an element are the least reli-
able, and they are often replaced by values extrapolated from the Gauss points
out to the edge; see Fig. 4.31. In the next step the solution is “improved” by
averaging the stresses between the elements and at the nodes, because this is
what a user wants to see. But one has to be careful.

In between two elements with different thickness (see Fig. 4.32 a), the
normal force N

(1)
n = σ

(1)
nn · t1 = σ

(2)
nn · t2 = N

(2)
n (orthogonal to the common

edge) is the same, but the strains are discontinuous, ε
(1)
nn 	= ε

(2)
nn . If the thickness

is the same but the modulus of elasticity changes, the stresses σtt parallel to
the common edge are discontinuous. Because the strains εtt parallel to the
edge are the same, if we let ν = 0, then

σ
(1)
tt = E1 εtt 	= E2 εtt = σ

(2)
tt . (4.72)

This means that eventually the reinforcement parallel to the edge is different
(see Fig. 4.33). Initial stresses σ0

ij would complicate things even more. A good
FE program will average the stresses only if the elements have the same elastic
properties and the elements are load free, and no supports interfere with the
stress distribution.
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Fig. 4.32. Stress distribution in a vertical cross section of a shear wall with varying
thickness under gravity load

not the same

Fig. 4.33. a) The thickness
of the plate changes; b) the
modulus of elasticity changes,
and therefore the stresses
parallel to the interface are
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pulls at the support:
system, b) nor-

averaging (each time
with two elements)

A small example will illustrate the implications a smoothing process can
have when it ignores the structural context. If two elements—one placed upon
the other—are fixed along their common boundary, the gravity load will pro-
duce compression in the upper element and tension in the lower element; see
Fig. 4.34.

If the nodal stresses are averaged, the stresses at the fixed nodes will be
zero. Hence if the system consists of just two elements, the stresses at all
the nodes will be zero, and therefore—if the results are extrapolated into the
interior—the stresses will be zero everywhere. If the two elements are split
into two elements each, the stresses will still be halved. Only if very many
elements are used will the averaging process leave no trace.

The misalignment of the contour lines of the raw stresses at the interele-
ment boundaries offers a good visual control of the quality of a mesh (see
Fig. 4.31). But very often these discontinuities are so strong that the user is
irritated, and therefore program authors tend to display only the averaged
stresses. Nevertheless stress discontinuities in the range 5 to 15% are in no
way unusual, and not a warning sign. Even discrepancies of up to 40% can
be tolerated if the design is based on the stresses at the midpoints of the
elements.

Averaging the stresses at the edges and the nodes is the simplest way
to improve the results. More sophisticated methods use an L2 projection to
improve the stresses; see Sect. 1.31, p. 147.

What is seen on the screen is often not the raw output; see Fig. 4.35. Hence
to judge an FE program one must know which filters the program uses, how
it displays the result, and what smoothing algorithms are employed.

Fig. 4.34. The up-
per element presses

the lower element

a)
mal stresses in the
element without av-
eraging, c) with

on the support and



4.9 Truss and frame models 363

Fig. 4.35. Only the tensile stresses are displayed. The shear wall is fixed on the
left- and right-hand side

4.9 Truss and frame models

If a truss is used to approximate a plate (similar to Fig. 4.36), then in each
bar element the longitudinal displacement is a linear function

ue(x) = u1 (
l − x

l
) + u2

x

l
(4.73)

and the deformed shape of the truss is found by minimizing the potential
energy

Π(u) =
1
2

∑
e

∫ l

0

N2
e

EA
dx−

∑
e

∫ l

0

p ue dx . (4.74)

In an FE analysis with plate elements, the expression for the potential energy
is instead
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Fig. 4.36. Frame model of a shear wall

Π(u) =
1
2

∫
Ω

S • E dΩ −
∫

Ω

p • u dΩ . (4.75)

These two equations are not that different. If the plate Ω were subdivided in
accordance with the direction of the principal forces into elements of constant
width, and if all elements with stresses below a certain threshold limit were
neglected, and if it were assumed that the stresses across the elements are
constant, then the result would be Eq. (4.74). Hence truss or frame models of
2-D and 3-D continua are simplified FE models. Or stated otherwise, a truss
model is not per se a better or more authentic engineering model than an
FE model. It even has severe defects because it does not register the stress
concentrations at the corner points, see Fig. 4.36. And if we ignore these
stresses and other finer details what is an FE analysis of a plate good for?

But the true value of a truss model is that it enables us to visualize easily
how the loads are carried by a structure. The more FE technology advances
and the more massively parallel computing power is employed, the more a
sound analysis tool is needed that is capable of filtering the essential and
important information from the vast output produced by a computer pro-
gram. Thus, it seems clear that we will soon see a revival of the old manual
methods—but under a different name. Experienced structural engineers have
always trusted these methods more than FE methods...
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Table 4.6. Support reactions (kN) of the wall in Fig. 4.37, Q4 = bilinear elements,
Q4+2 = Wilson’s element

support Q4 Q4+2 BE beam
A 87 87 86 75
B 281 282 284 302
C 132 131 130 123

sum 500 500 500 500

4.10 Two-bay wall

The two-bay wall in Fig. 4.37, which carries a constant edge load of 50 kN/m
on the upper edge, was analyzed with bilinear elements (Q4), Wilson’s element
(Q4 + 2), and boundary elements. As expected (see Table 4.6), the support
reactions of the three solutions are nearly identical, but also the stresses in
section A − A do not deviate very much; see Fig. 4.38. This is a bit of a
surprise, considering the seemingly large distance between the load case ph

(Q4) and the original load case p; see Figure 4.37 a and b.

4.11 Multistory shear wall

The multistory shear wall in Fig. 4.39 can serve as an illustration for how the
results of a larger FE analysis can be checked with simple models [32].

The thickness of the wall is 25 cm. The modulus of elasticity is 30 000
MN/m2, and Poisson’s ratio is ν = 0.0. The load consists of gravity loads,
floor loads, and wind loads; see Fig. 4.39. The FE analysis is based on Wilson’s
element (Q4 + 2).

As a first check, the support reactions were calculated for an equivalent
two-span beam with equivalent stiffness

EI = E · h
3 · b
12

=
30 000MN/m2 · (13.06 m)3 · 0.25 m

12
= 1 392 225MNm2 (4.76)

placed on elastic supports (see Fig. 4.40)

cw =
EA

h
=

30 000 MN/m2 · 0.4 m · 0.25 m
4.74 m

= 633 MN/m (4.77)

and carrying a corresponding equivalent load. The results agree quite well
with the FE/BE results; see Table 4.7.

The internal actions were checked in two sections (see Fig. 4.41), x = 3 m
and x = 10 m; see Table 4.8 and Fig. 4.42. The normal force N = Nx and the
shear force V = Nxy were calculated by integrating the stresses σxx and σxy,
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Fig. 4.37. Analysis of a shear wall with bilinear elements (Q4): a) the original load
case p, b) the FE load case ph consists of line loads and volume forces, c) principal
stresses

A B C
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Fig. 4.38. Bending stresses σxx and shear stresses σxy in a vertical section; study
of three different results

Table 4.7. Support reactions (kN) of the shear wall in Fig. 4.39

support FE beam deviations % BE

AH 41 41 0.0 41
AV 1493 1536 2.90 1498
BV 1701 1589 6.60 1686
CV 1503 1570 4.50 1511

Table 4.8. Comparison of the resultant stresses in the shear wall in Fig. 4.39

x = 3.0 m FE beam deviations %

N (kN) 0 0 0
V (kN) 330 425 29
M (kNm) 4506 4898 8.7

x = 10.0 m FE beam deviations %

N (kN) 0 0 0
V (kN) −458 −590 28.8
M (kNm) 2461 2787 13.2

respectively. In the section x = 10.0, the compressive force C and the tensile
force T were ±584.6 kN. The distance between the two forces C and T was
4.21 m, so the moment is

M = 584.6 kN · 4.21 m = 2461.1 kN m , (4.78)

which agrees quite well with the beam moment of 2787 kNm.
A check of the lintels above the doors is not simple, because it is not

clear what portion of the total shear force in the cross section is carried by
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gravity load 6.25 kN/m2

50.80 kN/m

50.60 kN/m

50.60 kN/m

48.60 kN/m

39.50 kN/m

80.60 kN

144.00 kN

220.00 kN

410.00 kN

195.00 kN

313.00 kN 96.00 kN

12.90

1
7

.8
0

Fig. 4.39. Multistory shear wall

an individual lintel. With regard to the lintel above the ground floor, it was
assumed that the concrete is cracked and that it therefore does not carry any
shear force. If it is assumed that all stories carry the same load, the shear
force grows linearly in the vertical direction. Hence the uppermost lintel on
the fourth floor carries a shear force V4, the next lintel a force 2 · V4, etc., so
that the total shear force across the height of the building is distributed as
follows:

V = V4 + V3 + V2 + V1

= V4 + 2 · V4 + 3 · V4 + 4 · V4 = 10 · V4 . (4.79)

Similar considerations can be applied to check the compressive and tensile
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V

M

1341 kN

- 1114 kN

163 kN

- 1474 kN

2426 kNm

5173 kNm

4189 kNm

center of open ing

3278 kNm

3318 kNm

7.5 m 5 m

327 kN/m

2426 kNm

313 kN

195 kN 96 kN

Fig. 4.40. Equiva-
lent system

forces in the lintels. It is simply assumed that in the upper lintels—down to
the second floor—only compressive forces act, which are neglected because
they would reduce the reinforcement, while it is assumed that in the two
lower lintels tensile forces are acting. The lever arm z is equal to the distance
between the uppermost and lowermost lintel:

z = 13.06 m− 1
2

0.7 m− 1
2

0.26 m = 12.58 m . (4.80)

The tensile force T = M/z is split evenly into two parts, which are carried by
the two lintels

T1 = Tfloor =
1
2

M

z
. (4.81)

According to beam theory the moment M and the shear force V in the cross
section are (see Fig. 4.40)

M = 4189.2 kN m V = −802.9 kN , (4.82)

which yield the following forces:

V4 =
1
10

(−802.9 kN) = −80.3 kN (4.83)

V3 = −160.6 kN , V2 = −240.9 kN , V1 = −321.2 kN (4.84)

Z1st floor = Zground floor =
1
2

4189.2 kN m
12.58 m

= 166.5 kN . (4.85)
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Fig. 4.41. Principal stresses

4.12 Shear wall with suspended load

Next a shear wall with a large opening is considered; see Fig. 4.43. The sup-
ports of the walls have a width of 25 cm. To be on the safe side the FE model
has a span of 7.75 m and the plate is placed on two point supports.

The focus is on two details: the chord below the opening and the stress
singularities at the corner points. In a beam with the same length and carrying
the same distributed load the bending moment M at the center of the opening
is 531 kN m, so it can be assumed that the compressive and tensile force in
the upper and lower chord is approximately
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C

C

T

T

4
.
2

1
m

6
.
7

2
m

670 kN

670 kN

585 kN

585 kN

3 m

10 m

xx

sections, and result-
ing forces

C = T = ± 531
3.51

= 151.3 kN z = 3.51 m (distance of the chords) .

(4.86)

According to beam theory the stress resultants in the lower chord are

M =
(40 + 5 · 0.33) · 3.32

8
= 56.7 kN m , V =

41.65 · 3.3
2

= 68.7 kN .

(4.87)

Displayed in Fig. 4.44 are the values of the horizontal reinforcement as-x
(cm2/m). The total value is

As =
6 cm2/m + 16.5 cm2/m · 2 + 60.6 cm2/m

2
· 0.33 m = 16.4 cm2 ,

(4.88)

Fig. 4.42. Stresses
σ in two vertical
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Fig. 4.43. Shear wall a) system and load, b) FE mesh, c) principal stresses
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4.44. Hori-
zontal and vertical
reinforcement as-x
and as-y (cm2/m)

Fig. 4.45. Stresses σxx (kN/m2) in horizontal sections

Fig.

in the lower chord
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Fig. 4.46. Reinforcement a) as-x (cm2/m) and b) as-y (cm2/m), based on an
average element length of 0.5 m

which exceeds the value obtained with beam analysis. Substituting the shear
force of the beam solution for V the necessary shear reinforcement is1

1 According to Eurocode
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τ0 =
V

b · z =
0.687 MN

0.2 m · 0.85 · 0.28 m
= 1.44 MN/m2 < τ02 = 1.80 MN/m2

(4.89)

τ =
1.442

1.80
= 1.15 MN/m2 as =

1.15 · 20
2.86

= 8 cm2/m . (4.90)

The integral of as-y across the width of the lower chord yields, according to
Fig. 4.44 ∫ 0.33

0

as-y dy =
1
2
· 4.13 + 2 · 17.3 + 0

2
· 0.33 = 3.20 cm2 . (4.91)

The length of the elements—and therewith the distance of the nodes in x-
direction—is 0.25 m and hence the shear reinforcement is 3.20 · 4 = 12.8
cm2/m. This too exceeds the reinforcement in the equivalent beam. These
checks may suffice.

The second topic is the singular stresses at the corner points of the opening;
see Fig. 4.45. The hope to catch the singular stresses by refining the mesh is
illusory. The more the elements are refined, the greater the stresses. But the
integral of the stresses should be relatively stable; see Sect. 1.21, p. 86.

Along a horizontal line 50 cm long extending inwards from the lower left
corner of the opening, the resultant stresses for three different element lengths
0.5 m, 0.25 m, and 0.20 m, are

Nx = 238 kN (0.50 m) (4.92)
Nx = 246 kN (0.25 m) (4.93)
Nx = 254 kN (0.20 m) . (4.94)

The maximum value would require the reinforcement

As =
254 kN

28.6 kN/cm2 = 8.9 cm2 (4.95)

where 28.6 kN/cm2 is the allowable steel stress.
In the same way, the vertical reinforcement can be checked. To this rein-

forcement must be added the hanger reinforcement for the suspended load.
Analogously the other corner points can be treated. Outside these critical

regions the reinforcement calculated by the FE program is sufficient. In most
parts of the shear wall only the minimum reinforcement is required; see Fig.
4.46.

4.13 Shear wall and horizontal load

The shear wall in Fig. 4.47 must sustain four different loadings. First gravity
loads, then the live load of the floor plates. In the third load case (see
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Fig. 4.47. Shear wall: a) displacements, b) load, c) principal stresses, and
d) vertical reinforcement (designed for a total of 4 load cases)
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Fig. 4.48. Detail a) rein-
forcement as-x in cm2/m
and b) reinforcement as-y
in cm2/m in the columns

=280
kNm on the upper edge, which is represented by an antisymmetric line load
p = ±95.24 kN/m; see Fig. 4.47 b. The fourth load case is the same load case,
except that the forces act in the opposite direction.

In the third load case the four columns must sustain a shear force V =
180 + 100 = 280 kN. If it is assumed that only the three short columns carry
the load then each column carries a shear force V of 93.3 kN. The height of
the columns is 1.5 m, so the bending moment becomes

M = 93.3 kN m · 1.5 m
2

= 70 kN m . (4.96)

The moment resulting from the antisymmetric line load on the upper edge is
split into two vertical forces:

C = T = ±280 kN m
3.9 m

= 72 kN z = 3.9 m . (4.97)

Hence the design moment for the column with the heaviest load is

Ms = 70 kN m− 72 kN · 0.1 m = 62.8 kN m , (4.98)

Fig. 4.47 b), the wall is subject to horizontal forces and to a moment M
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and with2

kh =
25√

62.8/0.3
= 1.73 → ks = 4.5 (4.99)

we have

As = 4.5 · 62.8
25

+
72

28.6
= 13.8 cm2 . (4.100)

A check of Fig. 4.48 shows that the reinforcement

As =
1
2
· (102.7 cm2/m + 3.0cm2/m) · 0.3 m = 15.8 cm2 (4.101)

is sufficient. The same holds for the shear reinforcement.

4.14 Equilibrium of resultant forces

In general the resultant stresses of the FE solution in any cross section do not
balance the exterior load, because FE programs cannot generate the exact
influence functions for the resultant stresses; see Sect. 1.21, p. 86.

The influence function for the horizontal force Nyx (the shear force) in
section A − A in Fig. 4.49 is a dislocation of the upper part of the structure
by one unit of displacement to the right.

To produce this influence function the resultant shear stress σ
(i)
xy of the

unit displacement fields ϕi in the section A−A must be applied as equivalent
nodal forces:

fi =
∫

A−A

σ(i)
xy dx . (4.102)

The resulting shape (see Fig. 4.49 c) is not the exact influence function, be-
cause the horizontal displacement at the upper left corner is 2.09 units of
displacements instead of the exact 1.0. A simple test confirms this result:
when a point load P is applied at the upper left corner, the stress resultant
in section A−A is exactly∫

A−A

σh
yx dx = 2.09P . (4.103)

This is a large error.
Next we let the section A−A pass right through the center of the elements

and—to our surprise—now the upper part of the wall moves sideways by
exactly one unit of displacement, i.e., the resultant shear force Nxy in the
section A−A is exactly 1.0P .
2 According to Eurocode
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Fig. 4.49. Shear wall: a) section A − A, b) exact influence function for Nyx in
section A − A, c) FE approximation

Fig. 4.50. Single bilinear element: a) degrees of freedom; equivalent nodal forces
for b) the influence function for Nyx at the center, and c) at the upper quarter
point, all horizontal forces are the same, fi = E a/4 b
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Fig. 4.51. Influence function
Nxy at y = 3.25: a)

bilinear element, b) Wilson’s
element. Lateral deformations
not to scale

To understand this phenomenon it is best to study a single bilinear element
(see Fig. 4.50), and to begin with the shear force Nyx in a horizontal section
which passes through the center of the element. The equivalent nodal forces
that will generate the (approximate) influence function for Nyx are the same
forces that effect a pure shear deformation of the element (see Fig. 4.50 a),

u(x, y) =
y + 0.5 b

b
v(x, y) = 0 εxy =

1
2 b

εxx = εyy = 0. (4.104)

Note that at the upper edge u(x, y = 0.5 b) = 1. The proof is given below.
Next it is assumed that the line intersects the element at a distance of 0.25 b

units from the upper edge; see Fig. 4.50 b. The equivalent horizontal nodal
forces do not change, but the vertical forces do, and they effect a rotation
which is responsible for the large error, 2.09 versus 1.0, that was observed
previously at the upper left corner of the shear wall.

To formalize these observations let

fkj
i =

∫ l

0

σkj(ϕi)ds (= Nkj(ϕi)) (4.105)

for
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denote the resultant stresses of the unit displacement fields. Then the follow-
ing condition can be formulated.

Shape condition An element satisfies the shape condition in a particular
cross section if the shape generated by the equivalent nodal forces fkj

i is in
agreement with the equilibrium conditions.

That is, under the action of the fyx
i (Nyx), the upper edge should slide

sidewards, u = 1, and the fyy
i (Nyy = normal force) should lift the upper edge

by one unit, v = 1, etc. If the shape condition is satisfied, the resultant stress
in the cross section maintains equilibrium with an edge load.

It follows that the shape condition is satisfied if the forces that effect a
unit displacement of the element edge can be recovered in the pertinent cross
section, which is just the same as saying that

∑
H = 0,

∑
V = 0.

While the bilinear element satisfies the shape condition for Nyx only at the
center, Wilson’s element satisfies the shape condition for Nxy in any horizontal
section; see Fig. 4.51. Regardless of where the cut passes through Wilson’s
element, the fxy

i are always the same, and because the fxy
i at the center yield

the correct shape, any other section has this property as well.
It is evident that the influence functions for the normal forces Nxx and

Nyy in an element satisfy the shape condition. The associated equivalent nodal
forces stretch the element in the horizontal or vertical direction by one unit of
displacement regardless of where the element is intersected. More difficult is
the situation—as seen—for the shear force Nxy while with regard to rotations
(
∑

M = 0) the situation is hopeless, because the influence functions (see Fig.
1.60 p. 89) definitely do not lie in Vh.

Proof

We show that the equivalent nodal forces that effect the shear deformation (see
Fig. 4.50 b) are the same equivalent nodal forces fxy

i that provide the influence
function for Nxy at the center. The unit displacement field ϕ7(x) = [u, v]T of
the upper left node has the components

u =
(0.5 a− x)(0.5 b + y)

a b
v(x, y) = 0 (4.106)

εxy =
1
2
u,y =

0.5 a− x

2 a b
εxx = . . . εyy = . . . (4.107)

so that with the displacement field u of (4.104), the equivalent nodal force f7

becomes

f7 = a(u,ϕ7) =
∫

Ω

2 εxy σxy dΩ = 2E

∫
Ω

1
2 b

(0.5 a− x)
2 a b

dΩ =
a

4 b
E

(4.108)
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which is the same as the resultant shear stress of the displacement field ϕ7(x):

f7 =
∫ +a/2

−a/2

σxy dx = E

∫ +a/2

−a/2

(0.5 a− x)
2 a b

dx =
a

4 b
E = Nxy . (4.109)

Equivalent nodal forces for influence functions

In principle, it is easy to arrange for an FE program code to display the FE
influence functions on the screen. This can provide a better understanding of
the behavior of the discretized structure. The implementation is simple be-
cause the equivalent nodal forces can be calculated on an element-per-element
basis, as explained in the following.

First let us recall how the influence function G1 for, say, the stress σxx at
the center xc of an element is calculated. The equivalent nodal forces fi are
the stresses σ

(i)
xx(xc) of the nodal unit displacement fields ϕi at the center.

This is consequence of

a(G1[xc],ϕi) = (δ1[xc],ϕi) = σ(i)
xx(xc) . (4.110)

If these equivalent nodal forces fi are applied at the four nodes of a bilin-
ear element, the result is a displacement field Gh

1 [xc] that simulates a point
dislocation u(x+

c )− u(x−
c ) = 1 in the horizontal direction at xc.

To obtain the FE influence functions for the resultant stresses

Nx =
∫ b

0

σxx dy Nxy =
∫ b

0

σxy dy (4.111)

Nyx =
∫ a

0

σyx dx Ny =
∫ a

0

σyy dx (4.112)

in a vertical or horizontal section of an element, the integrals of these stresses
must be applied as equivalent nodal forces fi. In a horizontal section passing
through the point (x, y) of a bilinear element, we have [96]∫ a

0

σyy dx =
E

2 b (−1 + ν2)
·
[
2 b ν (u1 − u3) +

+ a (u2 + u4 − u6 − u8) + 2 y ν (−u1 + u3 − u5 + u7)
]

(4.113)∫ a

0

σxy dx =
E

4 b (1 + ν)
·
[
a (−u1 − u3 + u5 + u7) +

− 2 (b (u2 − u4) + y (−u2 + u4 − u6 + u8))
]

(4.114)

and in a vertical section
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0

σxx dy =
E

2 a (−1 + ν2)
·
[
b (u1 − u3 − u5 + u7) +

+ 2 ν (a (u2 − u8) + x (−u2 + u4 − u6 + u8))
]

(4.115)∫ b

0

σxy dy =
E

4 a (1 + ν)
·
[
− 2 a (u1 − u7) +

+ b (−u2 + u4 + u6 − u8) + 2 x (u1 − u3 + u5 − u7)
]

. (4.116)

Here a denotes the length of the element, b is the width of the element, and
the origin of the coordinate system lies in the lower left corner. To obtain the
nodal force fe

1 for the influence function for Ny in a horizontal section passing
through the point (x, y), for example, let u1 = 1 in (4.113) and let all other
ui = 0.

4.15 Adaptive mesh refinement

The plate in Fig. 4.52 was analyzed with bilinear elements, with an attempt
to improve the results by adaptively refining the mesh in three steps. At the
start the mesh consisted of 160 elements, and the final mesh consisted of 1231
elements. At that stage in the analysis, the energy error was about the same
in most of the elements.

The thickness of the plate was t = 0.25 m, and the material properties
were E = 3.4 · 104 MN/m2, ν = 0.167.

The energy norm (squared) of the FE solution is the strain energy product
between the stresses and the strains,

||uh||2E =
∫

Ω

σh • εh dΩ , (4.117)

and the energy norm squared of the error e = u− uh is

||eh||2E =
∫

Ω

(σ − σh) • (ε− εh) dΩ . (4.118)

Because the exact solution u is unknown the energy norm is replaced—as
discussed in Sect. 1.31, p. 147—by the following estimate [132],

||eh||2E ≤ η2 =
∑

i

η2
i =

∑
i

0.42 h2

λ + 5 µ
||ri||20 +

1.22 h

λ + 5 µ
||ji||20 (4.119)

where ri = p−ph are the residual forces within an element Ωi, and where ji

are the jumps of the traction vector × 0.5 on the edges of the element Ωi:

||ri||20 =
∫

Ωi

(p− ph)2 dΩ ||ji||20 = 0.5
∫

Γi

t2∆ ds . (4.120)
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Fig. 4.52. Adaptive refinement of a shear wall: a) original mesh, b) final mesh

At the start of the adaptive refinement the relative error is

ηrel :=
η√||uh||2E + η2

=

√
1.78

25 + 1.78
· 100% = 25.78% (4.121)

and then it slowly decreases as can be seen in Table 4.9.
Theoretically the mesh should be refined further near the supports and

the base of the single force—if this makes sense. Close to these critical points,
the grey is a very dark grey.
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Table 4.9. Adaptive refinement

Step ||uh||2E ||eh||2E ηrel Nodes Elements d.o.f.

0 2.50E+06 1.78E+05 25.78% 199 160 388
1 2.77E+06 1.59E+05 23.30% 407 328 802
2 3.01E+06 1.49E+05 21.68% 821 685 1630
3 3.25E+06 1.43E+05 20.53% 1442 1231 2872

The form of the resulting mesh essentially depends on the percentage of
elements that are refined. Usually only the first 20, 30 or 50% of the elements
that exceed the critical value are refined. The lower the percentage the better
the refinement process will concentrate on the truly singular points. Here only
the first 50% were refined. The relative error ηrel dropped from about 25% to
20.53% which is not a great gain.

In a second analysis only the first 30% were refined and at the end the
estimated relative error was η = 20.87%. This level was reached with 781
elements, while the 50% strategy required 1,231 elements—a larger effort for
practically the same result. This observation indicates that the two hot spots,
the point support and the single force, dominate the error.

The corner points of the openings, where the stresses oscillated, were also
critical points (see Table 4.10), while the results at the more backward interior
point C, for example, were stable. The refinement of the mesh hardly had any
effect on the stresses at that point. The same holds for the section 1− 1; see
Table 4.12.

Table 4.10. Stresses (kN/m2) at selected nodes at the beginning (0) and after
three refinements (3) and BE stresses

Nodes A B C D

σ
(0)
xx −39.87 32.26 16.23 7.43

σ
(3)
xx −106.96 90.44 16.76 9.36

σBE
xx −76.814 68.94 16.41 11.84

σ
(0)
yy −54.33 22.88 −1.66 −12.32

σ
(3)
yy −127.28 79.52 −1.24 −15.39

σBE
yy −99.95 56.96 −0.91 −16.71

To confirm that stress resultants are more stable than isolated stresses, the
stresses were integrated along three sections; see Table 4.11. These resultant
forces also vary, but they are more stable than the stresses at the isolated
points.

Hence the presence of singular points does not necessarily imply that the
whole solution is worthless. Rather the results show that in regions where the
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Table 4.11. Integral of the stresses σyy (kN/m) along three sections

Cross section a-a b-b d-d

Step 0 −26.80 5.12 −11.63
Step 3 −32.1 9.85 −12.64
BE −29.32 6.92 −13.48

solution is smooth, the stresses are stable, although this doesn’t necessarily
mean that they are accurate! It is difficult to judge how large the influence
of the corner singularities is, that is how large the pollution error is, but we
think that in structural analysis—considering the error margins we are accus-
tomed to—pollution is a secondary effect. In standard situations, modeling
errors will probably have a more negative impact on the accuracy of, say, the
support reactions or the bending moments than an unresolved singularity on
the boundary.

Table 4.12. Stress distribution (kN/m2) in section 1-1

Level y = 2.5 y = 2.0 y = 1.5 y = 1.0 y = 0.5 y = 0.0

σ
(0)
xx 7.86 13.09 18.11 23.43 28.96 34.44

σ
(3)
xx 8.72 13.67 18.38 23.36 28.54 33.64

σ
(BE)
xx 8.9 13.62 18.18 22.97 27.91 32.69

4.16 Plane problems in soil mechanics

It is easier to work in soil mechanics with plane models than with full 3-D
models. In this context there are three topics to be discussed.

Self-equilibrated stress states and primary load cases

In soil mechanics particular attention must be paid to the various construction
stages, because in nonlinear analysis it must be possible to define a primary
stress state to assess the stress history correctly. Elements are removed or
their stiffness is reduced, if for example, an injection is washed out or a certain
segment of the soil is defrosted. Then the vanishing stresses generate loads. To
handle these stresses in a program it must be possible to identify the stresses
with certain loads, which are so tuned that the sum of these loads cancels
in the undisturbed zones, while they produce true loads at the edge of the
disturbed zone.
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Fig. 4.53. Primary stress state and additional load

The nodal forces of the primary state are determined using the principle
of virtual displacements. Let us assume that as in Fig. 4.53, the stresses due
to the gravity loads are zero at the upper edge, 20 kN/m2 at the interface
between the two elements, and 40 kN/m2 at the lower edge. At the centers of
the elements the stresses are 10 kN/m2 and 30 kN/m2, respectively. Hence in
the primary state there results a pair of opposing forces: at the upper edge a
force of 10 kN and at the lower edge one of 30 kN; the length of the elements
is assumed to be 1.0 m. If the gravitational forces of 10 kN are added to all
element nodes, the resultant forces vanish at the upper nodes, while at the
bottom the nodal forces equal the total load.

If the gravity load had not been applied, the loads obtained would have
pointed upward and been of the same magnitude as the external load, hence
the displacements and stresses in the primary stress state would be zero.

There is a peculiar effect with regard to the horizontal stresses. Because
these stresses do not enter the equilibrium conditions directly they can only
be recovered if the vertical stresses are multiplied by ν/(1−ν). But very often
the so-called lateral pressure ratio of the soil will not agree with Poisson’s
ratio because of geologic preloads and possible plastifications. Even after a
complete removal of the vertical load the soil will not be stress free.

Settlements

A strange effect also exists with regard to the calculation of the settlements
under a footing: the more the mesh extends in all directions the greater the
settlements.

This effect has to do with the behavior of the natural logarithm, ln r. When
a single surface load P = 1 is applied at the edge of the elastic half-plane,
the deflection on the left- and right-hand side of the point load essentially
resembles ln r, that is, at the base of the source point r = 0 the deflection is
infinite, w = −∞. (The y-axis points upward, the load P points downward.)
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Fig. 4.54.

edge of the elastic
half-plane

The strange thing is that there is also a singularity at the other end: moving
away from the source point, the absolute value of the deflection |w| will first
decrease, and then after a while it will increase again, and will tend to +∞
as r →∞.

Let us assume that a load p(x) = p(x1, x2) acts at the edge (x2 = 0)
of the half-plane in the interval −1 ≤ x1 ≤ +1 (see Fig. 4.54). The vertical
displacement of the soil at a point x = (x1, x2) is, if we simplify somewhat
and concentrate on the essentials,

v(x) =
∫ +1

−1

1
2 π

ln r p(y) dsy . (4.122)

From the standpoint of a mole that burrows into the soil, the edge load at
the surface more and more resembles a point force, so that at a large enough
distance r from the surface the deflection becomes

v(x) =
1

2 π
ln r

∫ +1

−1

p(y1, 0) dy1 =
1

2 π
ln r P ,

where P is the resultant force of the edge load.
This means that in any system of loads that are not self-equilibrated, any

increase in the radius of the mesh will increase the displacements, and if the
radius tends to infinity, so will the displacements.

For this tendency to prevail to the very end the lateral parts of the mesh
must not be chopped off, because otherwise the sheet piling (u = 0) might
act as an abutment, and the load would be carried by an arch which develops
beneath the footing. Therefore an unimpeded expansion of the soil must be
possible.

Various remedies overcome this problem: firstly one could simply set a
limit on the mesh size and set the vertical displacement to zero at the bottom
of the mesh, v = 0. Secondly one could modify the load to make it self-
equilibrated. Thirdly one could let the modulus of elasticity increase in the
vertical direction. This would lead to finite displacements.

Distri-
buted load at the



4.16 Plane problems in soil mechanics 389

Fig. 4.55. Building bricks

Discontinuities

A foundation slab and the soil have different material properties. This alone
may cause trouble. Putting a building brick on top of a second brick (see
Fig. 4.55) looks harmless, but at the interface between the two bricks, stress
peaks and even singularities may be observed. The magnitude of the stress
peaks depends on the stiffness ratio of the two bricks. The extreme values are
marked by an infinitely flexible slab and a perfectly rigid slab.

In the first case—if the modulus of elasticity of the lower brick is distinc-
tively greater—the pressure on the lower brick will be nearly constant and
the singularity will be hardly noticeable. Outside the loaded region, the ver-
tical stress abruptly drops to zero, but this discontinuity soon gives way to a
continuous stress field near the interface.

But the stress discontinuity at the interface between the two blocks can-
not be modeled, because the condition that the two blocks have one edge in
common enforces a constant strain in both elements over the whole length,
which leads to a conflict; see Fig. 4.55.

In the second case (rigid punch on a half-space) the soil pressure becomes
infinite at the edges of the punch. To see these stress peaks, the mesh must
be sufficiently refined. The problem was analyzed with a coarse and a fine
irregular mesh. Because of the minor irregularities in the layout of the mesh
(Wilson’s element), the stresses on the left- and right-hand side were slightly
different, even though the system and the load were symmetric. Asymmetries
in the displacements were not noticeable. Different ratios of the modulus of
elasticity were tested. Table 4.13 lists the vertical stresses at the outer contact
nodes under a total load of 100 MPa.

The results are remarkable. Even though no inferior elements were used,
the bandwidth of the results is surprising. In the case of a soft slab, the stress
at the extreme node of the interface is 50 MPa, which is simply the average
value of 0 and 100. The more the mesh is refined, the greater the stresses
become. Even on the finest mesh, there are noteworthy deviations between
the results for the two corner nodes on the left- and right-hand side. But it
would make no sense to put more effort into the analysis in order to drive
the stresses towards infinity. To assess the crack sensitivity, the results of a
medium-sized mesh are in general sufficient.
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Table 4.13. Vertical stresses left/right (M Pa) at the extreme nodes in the contact
area for different ratios of η = Eupper/Elower

elements η = 0.01 η = 0.1 η = 1.0 η = 10 η = 100

521 44 / 55 55 / 67 102 / 107 138 / 133 143 / 136

884 39 / 72 56 / 94 152 / 179 226 / 216 222 / 208

2308 52 / 61 88 / 103 303 / 341 404 / 459 321 / 398

Fig. 4.56. The prin-

around the tunnel

Tunnels

Shallow tunnels are designed to carry the full weight of the soil. But with in-
creasing depth—beginning at a distance of about a full diameter, and depend-
ing on the quality of the soil material or the rock—the stresses are redirected
around the tunnel (see Fig. 4.56), so that the load is carried by the rock, and
the tunnel shell simply provides shelter for the traffic passing through the
tunnel.

Modeling the soil with a 3-D mesh and simulating the complete construc-
tion process by successively deactivating the tunnel elements and activating
new shell elements (tunnel lining) brought into the tunnel results (even in the
case of a short tunnel) in a very large system of equations. After each step,
this system must be rearranged and solved iteratively, due to the nonlinear
effects. Therefore a conventional 3-D analysis will be restricted to short sec-
tions of the tunnel at the very front of the excavation, near crossings, and
crevices.

Thus, the stress analysis of tunnels nowadays is mostly based on plane
models, where by suitable modifications one also tries to take into account
the redistribution of the internal forces in the direction of the tunnel axis.
The various construction stages and the sequence of excavations complicate

cipal stresses flow
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Fig. 4.57. 2-D analysis: a) global mesh, b) two excavation steps, c) cross section

the numerical analysis even of the plane model, because (see Fig. 4.57) the
front of the tunnel is divided into a variety of different cross sections, and the
nonlinearity of the strains and stresses in the rock near the tunnel front must
be considered.

In an FE model, this sequence of events is normally modeled by an iterative
procedure, where a new step in the analysis starts with the stress state of the
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Fig. 4.58. 3D-model of the excavation

previous steps, and where the stiffness of the elements is reduced according
to the construction process by a suitable empirical factor 0 < α < 1.

The alternative to a plane model is a 3-D model with a so-called excavation
by driving, where the excavation sequence is modeled by a special 3-D mesh
(see Fig. 4.58). Imagine a sequence of, say, 20 tunnel “slices” (cross sections
with a thickness of about 1 m) that wander as a package through the rock.
Because the mesh is moving with the excavation—from the point of view of
the mesh, the rock is moving—the mesh can be kept relatively small. The
iteration proceeds as follows:

1. First the primary stress state in the untouched rock is calculated. Next the
sequence of excavations follows and the complete tunnel lining is activated.
The first step in this sequence yields unrealistic results.

2. By iteratively rearranging the results the stresses in the rock are moved
towards the tunnel opening.

3. This modified stress state then serves as the starting point for the next
calculation. This reanalysis is repeated until the modifications become
negligible.

In this manner, the actual front of analysis advances through the rock in
concert with the excavation. The unrealistic results of the first step move
towards the tunnel opening and leave the rock zone.

The advantage in comparison with a conventional 2D-analysis is that both
structural behavior in the longitudinal direction and the relaxation of the rock
are accounted for by the analysis.
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4.17 Incompressible material

The constitutive model in linear elasticity depends on two parameters, most
often the modulus of elasticity E and Poisson’s ratio ν. In soil mechanics the
bulk modulus and the shear modulus are preferred instead:

K =
E

3(1− 2 ν)
, G =

E

2(1 + ν)
. (4.123)

The stresses are split into deviatoric shear stresses and a uniform pressure
σ = (G EG + K EK) ε, or⎡
⎢⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

σxy

σxz

σyz

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G

⎡
⎢⎢⎢⎢⎢⎢⎣

4/3 −2/3 −2/3 0 0 0
−2/3 4/3 −2/3 0 0 0
−2/3 −2/3 4/3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦+ K

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

εxy

εxz

εyz

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(4.124)

Near ν = 0.5, the bulk modulus exceeds the modulus of elasticity and the
shear modulus by a large margin. Theoretically the bulk modulus K becomes
infinite (see Fig. 4.60). This is why the material is said to be incompressible
even though water, for example, retains a bulk modulus of about 2,000 MPa.
Close to ν = 0.5, special techniques are necessary to avoid locking, as for
example by using so-called enhanced strain elements, or by introducing three-
field mixed formulations [258].

In a Lagrangian approach of the dynamic analysis of nearly incompressible
fluids the rotational derivatives of the deformations have to be suppressed with
a penalty function to avoid spurious modes (see Fig. 4.59) because the mass
matrix has still modes which are suppressed in the stiffness matrix.

4.18 Mixed methods

In FE methods we distinguish between displacement-based approaches and
mixed methods. In displacement methods, the structural behavior is solely
governed by the displacements, so approximate displacements suffice. The
classical FE methods are displacement-based methods. But these technologies
are limited in scope, in that incompressible material or simply Kirchhoff plates
and shell structures pose serious problems [26]. Mixed methods can overcome
these difficulties.

In mixed methods separate approximations are chosen for the displace-
ments and the stresses, so that for example a bar element has four degrees of
freedom: the two end displacements u1, u2 and the stresses σ1, σ2 at the end
cross sections; see Fig. 4.61.
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Fig. 4.59. Spurious displacement field in a water tank and regular field

like support – the vol-
ume does not change

On first glance this approach might look strange, but the mixed approach is
in good agreement with the nature of structural mechanics because structural
mechanics is “mixed”, the displacements ui, the strains εij , and the stresses
σij in a plate are coupled by a system of first-order differential equations:

E(u)−E = E+

C[E]− S = S+ (4.125)
−div S = p

where

E(u) =
1
2
(∇u +∇uT ) =

1
2

[
2 u1,1 u1,2 +u2,1

u2,1 +u1,2 2 u2,2

]
(4.126)

Fig. 4.60. Rubber-
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4.61. A bar element

and C[ ] is the elasticity tensor

C[E] = 2 µE + λ (tr E) I . (4.127)

Here I is the unit matrix, λ = 2 µ ν/(1−2ν), and trE = ε11 +ε22 is the trace
of E. The terms on the right-hand side in (4.125) are initial strains ε+

ij and
stresses σ+

ij .
If we call S = {u,E,S} an elastic state, (4.125) can be read as the appli-

cation of a differential operator A to the elastic state S.
When the same operator A is applied to the FE solution Sh = {uh,Eh,Sh},

the result is

E(uh)−Eh = E+
h

C[Eh]− Sh = S+
h (4.128)

−div Sh = ph .

The operator A satisfies the identity

G(S, Ŝ) = 〈A(S), Ŝ〉+
∫

Γ

S n • û ds︸ ︷︷ ︸
δWe

− a(S, Ŝ)︸ ︷︷ ︸
δWi

= 0 (4.129)

where the angular brackets denote the scalar product of A(S) and the virtual
elastic state Ŝ

〈A(S), Ŝ〉 : =
∫ l

0

(E(u)−E) • Ŝ dΩ +
∫

Ω

(C[E]− S) • Ê dΩ

+
∫

Ω

−div S • û dΩ (4.130)

and the strain energy product is

a(S, Ŝ) =
∫

Ω

(E(u)−E) • Ŝ dΩ +
∫

Ω

C[E] • Ê dΩ

+
∫

Ω

S • (E(û)− Ê) dΩ . (4.131)

If the initial stresses are zero, σ+
ij = 0, the strains εij are determined by

the stresses

Fig.

for displacements and stresses
with independent functions
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E = C−1[S] . (4.132)

and the states S contain only two independent quantities—the displacements
ui and the stresses σij :

S = {u,C−1[S],S} . (4.133)

This is the starting point for the so-called Hellinger–Reissner principle. Mixed
methods are mostly based on this principle.

The FE state

Sh = s1 S1 + s2 S2 + . . . =
∑

i

si Si (4.134)

consists of a series of “unit states”, to which weights si are attached. It is best
to split the unit states into u-states Su and σ-states Sσ:

Su = {ϕi,0,0} , Sσ = {0,C−1[Si],Si} . (4.135)

The u-states only represent displacements, while the σ-states only represent
strains + stresses, so the FE solution looks like

Sh =
n∑

i=1

ui {ϕi,0,0}+
m∑

i=1

σi {0,C−1[Si],Si} , (4.136)

where the ϕi(x) are the unit displacements and the Si(x) the stress states.
A unit state like Su = {ϕi,0,0} is stress-free if there exists initial strains

E+
i that annihilate the strains induced by the displacement field ϕi, i.e., if

E = E(ϕi) + E+
i = 0. Hence, the Su can be considered the solutions of

problems A(S) = [−E(ϕi),0,0]T .
Similar things can be said about the states Sσ. The strains induced by the

stresses are

E = C−1[Si] + C−1[S+] . (4.137)

Normally these strains induce displacements. But if S+ = −Si the strains are
zero and therefore a plate must not undergo any compensating movement,
u = 0, i.e. the Sσ solve problems like A(S) = [0,−S+

i ,−divSi]T .
The strain energy product associated with the Hellinger–Reissner principle

is

a(S, Ŝ) =
∫

Ω

[C−1[S] • Ŝ + E(u) • Ŝ + S • E(û)] dΩ , (4.138)

hence the stiffness matrix k ij = a(Si,Sj) is[
0(n×n) A(n×m)

AT
(m×n) B(m×m)

]
=
[

u(n)

σ(m)

]
=
[

p(n)

0(m)

]
, (4.139)
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where

aij =
∫

Ω

Sj • E(ϕi) dΩ bij =
∫

Ω

C−1[Si] • Sj dΩ (4.140)

and

p i =
∫

Ω

p • ϕi dΩ . (4.141)

The first set of equations corresponds to the equilibrium condition−div S = p.
It is the task of the stress states to balance the external load p:

A σ = p . (4.142)

The second set of equations

AT u + B σ = 0 (4.143)

corresponds to the compatibility condition E(u) − E = 0. As long as there
are no initial strains this is an internal affair between the displacements and
stresses, which is why the zero vector appears on the right-hand side.

Of course the compatibility condition is only satisfied in the L2-sense, not
in a strict pointwise sense, because in the second set of equations it is only
required that the error be orthogonal to the test functions Sj , the stress states:∫

Ω

(E(uh)−E) • Sj dΩ = 0 j = 1, 2, . . .m . (4.144)

Hence the difference between E(uh) and the strains Eh—which come from
the stresses Eh = C−1[S]—is zero only in the weighted L2 sense. The residual
can be interpreted as initial strain E+

h :

E(uh)−E = E+
h . (4.145)

Hence in mixed methods (based on the Hellinger–Reissner principle) the
substitute load case that is work-equivalent to the original load case [0,0,p ]T

solved by the FE program consists of substitute loads ph, and includes initial
strains in each element, [E+

h ,0,ph].
Now the model has u- and σ-degrees of freedom and the next question

then is how many to choose of each (see Fig. 4.62):

n = number of displacement degrees of freedom
m = number of stress degrees of freedom .

Linear algebra provides the answer. For the system Aσ = p to have a solution,
the right-hand side, the vector p, must be orthogonal to all solutions u of the
adjoint system
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Fig. 4.62. a) Not

stress functions than

solution

AT u = 0 . (4.146)

The vectors u that solve this homogeneous system of equations form the so-
called kernel of the matrix AT , and two vectors are orthogonal if their scalar
product is zero, pT u = 0.

If the system (4.146) is regular, i.e., if the columns of AT are linearly
independent, the problem AT u = 0 has only the trivial solution u = 0, and
the right-hand side p is then orthogonal to the kernel of AT . One need not
worry that there are load cases that the FE program cannot solve.

The columns are linearly independent if and only if

AT u = 0 =⇒ u = 0 (4.147)

i.e., if the fact that the scalar product between all the strains

E =
n∑

i=1

ui E(ϕi) (4.148)

and all the stresses Si(x) is zero,

n∑
i=1

ui

∫
Ω

E(ϕi) • Sj dΩ = 0 j = 1, 2, . . .m , (4.149)

implies that the nodal displacements ui are zero.
Obviously this can only happen if there are more stress states Si than

displacement states ϕi, because otherwise one could easily construct, say, a
12-term displacement field that is so balanced that the scalar product with,
say, all seven stress states is zero, even though the displacement field—or
rather its strains—is not.

enough stress func-
tions, the Babuška-
Brezzi-condition is
violated, b) more

displacement func-
tions, the condition
is satisfied, c) FE
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Fig. 4.63. Elastic bar a) system and load, b) Green’s function G0 c) strain ε0

Hence the referee must always have more degrees of freedom than that
which he is to check, i.e., there must always be more stress degree of freedoms
than displacement degrees of freedom.

The columns of the matrix AT are linearly independent if and only if there
exists a constant β such that

0 < β |u| < inf
δ

sup
σ

σT AT u

|σ| . (4.150)

This is the Babuška–Brezzi condition.
The lower bound β ensures that there is always a large enough distance

from zero. When the elements shrink in size, i.e., if the vectors δ and σ grow
in length, the angle between the two vectors will definitely be greater than
zero.

4.19 Influence functions for mixed formulations

To simplify the formulation, let us switch to a 1-D problem, an elastic bar.
The governing equations

u′ − ε = ε+

EAε−N = N+ (4.151)
−N ′ = p
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have the same structure as before, S = {u, ε, N},

G(S, Ŝ) = 〈A(S), Ŝ〉+ [N û]l0 − a(S, Ŝ) = 0 (4.152)

and

a(S, Ŝ) =
∫ l

0

(u′ − ε) N̂ dx +
∫ l

0

EAε ε̂ dx +
∫ l

0

N (û′ − ε̂) dx . (4.153)

First we need Betti’s theorem

B(S, Ŝ) = 〈A(S), Ŝ〉+ [N û]l0 − [u N̂ ]l0 − 〈S,A(Ŝ)〉 = 0 . (4.154)

Next let S = {u, ε, N} the solution of A(S) = [ε+, N+, p ]T (see Fig. 4.63 a),
and let Ŝ = S0 = {G0, ε0, N0} the point solution (see Fig. 4.63 b) where

ε0 =
d

dy
G0(y, x) N0 = EAε0 . (4.155)

Because the point solution lacks the necessary regularity, we formulate Green’s
second identity (4.154) on the punctured interval Iε := [0, x−ε]∪ [x+ε, l] and
take the limit. Note that on Iε the right-hand side of the Green’s function S0

is zero, A(S0) = [0, 0, 0]T , so that

lim
ε→0

B(S,S0)Iε
= 〈A(S),S0〉+ [N G0]l0 − [uN0]l0 − u(x) = 0 , (4.156)

where the single term u(x) is the limit of

lim
ε→0
{N0(x− ε) u(x− ε)−N0(x + ε) u(x + ε)} = 1 · u(x) . (4.157)

If we take the boundary conditions into account, it follows

u(x) = 〈A(S),S0〉 =
∫ l

0

[N0 ε+ + ε0 N+ + G0 p ] dx , (4.158)

and in the same way we obtain the influence function for the normal force

N(x) = 〈A(S),S1〉 =
∫ l

0

[N1 ε+ + ε1 N+ + G1 p ] dx . (4.159)

It is not possible to derive an influence function for the strain ε, because
there are only two boundary operators in the “boundary integral” [N û]—the
identity and the normal force operator, N = EAdu/dx; see Sect. 7.6, p. 529.
But of course N and ε are—up to the factor EA—the same. This problem and
its solution (ε � N) has its origin in the nature of the system (4.151): first we
define the strains (one differential operator), then the stresses (no differential
operator only the “elasticity tensor” is applied!), and finally we define what
equilibrium means (one differential operator).
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4.20 Error analysis

Let ℘ denote the right-hand side A(S) = ℘ and let Vh = {Si} the trial space.
Regardless of whether we use the Hu-Washizu principle or the Hellinger–
Reissner principle the FE solution Sh is characterized by the property

a(Sh,Si) = 〈℘,Si〉 Si ∈ Vh (4.160)

where a(., .) represents a symmetric bilinear form and 〈., .〉 a linear form. To
make statements about the existence and uniqueness of an FE solution we
would need to see that these forms are continuous and coercive. We simply
assume that this is the case.

Most of the variational properties which we are used to attribute to FE
solutions, see Sect. 7.12, p. 568, can be carried over to mixed problems, because
to a large extent they are simply based on Green’s first identity and some
simple algebra. Hence it is evident that also the FE solution of mixed problems
satisfies the Galerkin orthogonality

a(S − Sh,Si) = 0 Si ∈ Vh , (4.161)

and also Tottenham’s equation holds for the solution of mixed problems, i.e.,

uh(x) =
∫ l

0

[Nh
0 ε+ + εh

0 N+ + Gh
0 p ] dx . ( • • ) (4.162)

The proof is done as in the case of the original equation (1.210) on p. 64.
Recall (1.228) on p. 69, where we stated that

uh(x) = ph(G0) = ph(Gh
0 )︸ ︷︷ ︸

•

= p(Gh
0 )︸ ︷︷ ︸

• •

= (δ0, uh) = (δh
0 , uh) = (δh

0 , u)

(4.163)

and therefore we have for example as well

uh(x) =
∫ l

0

[Nh
0 ε+

h + εh
0 N+

h + Gh
0 ph ]dx . ( • ) (4.164)

Of course also the basic formula for goal-oriented recovery techniques holds
as well

|e(x)| = |a(S0 − Sh
0 ,S − Sh)| ≤ ||S0 − Sh

0 ||E ||S − Sh||E (4.165)

where ||S||2E = a(S,S).

4.21 Nonlinear problems

In the triple {u,E,S} we let now E the Green-Lagrangian strain tensor
and S the second Piola-Kirchhoff stress tensor, and we assume the material
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to be hyperelastic, i.e., there exists a strain-energy function W such that
S = ∂W /∂E. Given volume forces p the elastic state S = {u,E,S} satisfies
at every point x of the undeformed body the system

E(u)−E = 0
1
2

(ui,j +uj ,i +uk,i uk,j )− εij = 0

W ′(E)− S = 0
∂W

∂εij
− σij = 0 (4.166)

−div(S +∇u S) = p −(σij + ui,k σkj),j = pi

and satisfies displacement boundary conditions u = ū on a part ΓD of the
boundary and stress boundary conditions t(S,u) = t̄ on the complementary
part ΓN where

t(S,u) := (S +∇u S) n (4.167)

is the traction vector at a boundary point with outward normal vector n.
With symmetric stress tensors S we have the identity∫

Ω

−div(S + ∇u S) • û dΩ

= −
∫

Γ

t(S,u) • û ds +
∫

Ω

Eu(û) • S dΩ (4.168)

where

Eu(û) :=
1
2

(∇û +∇ûT +∇uT ∇ û +∇ ûT ∇u) (4.169)

is the Gateaux derivative of the matrix E(u)

d

dε
[E(u + ε û)]|ε=0 = Eu(û) . (4.170)

Collecting terms we can formulate Green’s first identity of the operator A(S),
that is the system (4.166)

G(S, Ŝ) = 〈A(S), Ŝ〉+
∫

Γ

t(S,u) • û ds︸ ︷︷ ︸
δWe

− a(S, Ŝ)︸ ︷︷ ︸
δWi

= 0 (4.171)

where 〈A(S), Ŝ〉 is similar to (4.130) and where

a(S, Ŝ) =
∫

Ω

(E(u)−E) • Ŝ dΩ

+
∫

Ω

(W ′(E)− S) • Ê dΩ +
∫

Ω

Eu(û) • S dΩ . (4.172)
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The identity (4.171) is the basis of many variational principles in nonlinear
mechanics and can be formulated in the same way also for beams and slabs,
[115].

In the case of a pure displacement formulation S = {u,E(u),W ′(E(u))}
and it is û = 0 on ΓD, so that (4.171) reduces to

G(u, û) =
∫

Ω

p • û dΩ +
∫

ΓN

t̄ • û ds−
∫

Ω

Eu(û) • S dΩ = 0 , (4.173)

where S = W ′(E(u)).
Next let uh =

∑n
j uj ϕj(x) the FE solution and let û = ϕi a virtual

displacement then∫
Ω

Euh
(ϕi) • W ′(E(uh)) dΩ︸ ︷︷ ︸

ki

=
∫

Ω

p • ϕi dΩ +
∫

ΓN

t̄ • ϕi ds︸ ︷︷ ︸
fi

(4.174)

or

k(u) = f (4.175)

where u is the vector of nodal coordinates.

Linearization

For computational purposes a linearization of (4.175) is necessary. Let p∆ and
t̄∆ be load increments, and let u+u∆ be the displacement field corresponding
to p + p∆ and t̄ + t̄∆ then

G(u + u∆, û) =
∫

Ω

(p + p∆) • û dΩ +
∫

ΓN

(t̄ + t̄∆) • û ds

−a(u + u∆, û) = 0 , (4.176)

where

a(u + u∆, û) :=
∫

Ω

Eu+u∆
(û) • W ′(E(u + u∆)) dΩ . (4.177)

The Gateaux derivative of the strain energy product

a(u, û) :=
∫

Ω

Eu(û) • W ′(E(u)) dΩ (4.178)

with respect to a displacement increment u∆ is

aT (u, u∆, û) :=
[

d

dε
a(u + ε u∆, û)

]
ε=0

=
∫

Ω

[∇u∆ W ′(E(u)) •∇û + Eu(û) • C[Eu(u∆)]] dΩ , (4.179)
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Fig. 4.64. Truss element

where the tensor

C =
∂2W

∂E ∂E
=

∂

∂E
S (4.180)

is the second derivative of W , which is to be evaluated at u. Note that
aT (u,u∆, û) is linear in the second and third argument, u∆ and û.

We then let

a(u + u∆, û) � a(u, û) + aT (u,u∆, û) , (4.181)

so that (4.175) becomes

KT (u) u∆ = f − k(u) , (4.182)

where now u∆ is the vector of nodal displacements of the field u∆ and KT

is the tangential stiffness matrix:

(KT )ij = aT (u,ϕj ,ϕi) . (4.183)

A truss element

We consider a truss element, that extends along the x-axis; see Fig. 4.64. The
deformation of the element is

ϕ(x, y, z) = (x + u(x))e1 + (y + v(x))e2 + (z + w(x))e3 , (4.184)

where u(x) = [u(x), v(x), w(x)]T is the displacement vector. By definition the
deformation gradient is
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F = ∇ϕ =

⎡
⎣1 + u′ 0 0

v′ 1 0
w′ 0 1

⎤
⎦ = I +∇u , (4.185)

and the Green-Lagrangian strain tensor

E(u) =
1
2

(F T F − I) =

⎡
⎢⎢⎣

εx
1
2 v′ 1

2 w′

1
2 v′ 0 0
1
2 w′ 0 0

⎤
⎥⎥⎦ , (4.186)

where

ε(u) := εx(u) =
1
2

((1 + u′)2 + (v′)2 + (w′)2 − 1)

= u′ +
1
2

((u′)2 + (v′)2 + (w′)2) ( )′ =
d

dx
. (4.187)

Green’s first identity reads, if all functions are functions of x only,

G(u, û) =
∫ l

0

−div (S +∇u S) • û A dx + [(S +∇u S) e1 • û A ]l0

−
∫ l

0

Eu(û) • S A dx = 0 . (4.188)

We then let simply σ = σxx = E ε, where E is Young’s modulus, and we let
all other σij = 0, so that with N = A(σ + u′ σ)

G(u, û) =
∫ l

0

−N ′ û dx + [N û ]l0 −
∫ l

0

εu(û)σ A dx︸ ︷︷ ︸
a(u, û)

= 0 , (4.189)

where

εu(û) = (1 + u′) û′ + v′ v̂′ + w′ ŵ′ . (4.190)

The Gateaux derivative of the strain energy product a(u, û) is

aT (u,u∆, û) :=
[

d

dε
a(u + εu∆, û)

]
ε=0

=
∫ l

0

[εu∆
(û) σ + εu(û) σ]A dx , (4.191)

where

εu∆
(û) =

[
d

dε
εu+εu∆

(û)
]

ε=0

= u′
∆û′ + v′∆ v̂′ + w′

∆ ŵ′ (4.192)
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and

σ =
[

d

dε
σ(u + ε u∆)

]
ε=0

= E εu(u∆) . (4.193)

The elements of the tangential stiffness matrix are therefore

(KT (u))ij = aT (u,ϕi,ϕj) , (4.194)

where the vector-valued functions ϕi(ξ) are the nodal unit displacements
(three at each node).

With linear shape functions on an element Ωe with length le

ue(x) =
2∑

i=1

ue
i ϕe

i (ξ) , ve(x) =
2∑

i=1

ve
i ϕe

i (ξ) , we(x) =
2∑

i=1

we
i ϕe

i (ξ) , (4.195)

we obtain for the nodal vector ue = [u1, v1, w1, u2, v2, w2]T the 6×6 tangential
stiffness matrix [255]

Ke
T (u) =

[
(A1 + A2) −(A1 + A2)
−(A1 + A2) (A1 + A2)

]
, (4.196)

where

A1 =
E A

le

⎡
⎣ (1 + u′

e)
2 (1 + u′

e) v′e (1 + u′
e)w′

e

(1 + u′
e) v′e (v′e)

2 v′e w′
e

(1 + u′
e)w′

e v′e w′
e (w′

e)
2

⎤
⎦ (4.197)

and

A2 =
σ A

le

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , (4.198)

so that after the assemblage

KT (u) u∆ = f − k(u) . (4.199)

For an extension of these concepts to 3-D beam problems see [104].

Plane problem

Let X denote the initial coordinates of a point and x the coordinates of the
current configuration (see Fig. 4.65)

x = X + u , or xi = Xi + ui , (4.200)

where u is the displacement vector.
The deformation gradient is
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Fig. 4.65. Deformations of a
plane element

F =
∂x

∂X
= I +∇u =

⎡
⎣1 + u1,1 u1,2 0

u2,1 1 + u2,2 0
0 0 1

⎤
⎦ , (4.201)

so that the Green-Lagrangian strain tensor

E =
1
2
(F T F − I) =

[
E11 E12

sym. E22

]
(4.202)

has the components

E11 = u1,1 +
1
2

(u2
1,1 + u2

2,1)

E22 = u2,2 +
1
2

(u2
2,2 + u2

1,2) (4.203)

E12 =
1
2

(u1,2 + u2,1) +
1
2

(u1,1 u1,2 + u2,2 u2,1) .

The FE displacement field can be written in two ways

uh =
DOFS∑
i=1

ui ϕi(x) ≡
∑

i

ui

[
.
.

]
, uh =

NODES∑
i=1

ui ψi(x) ≡
∑

i

[
.
.

]
ψi ,

(4.204)

where the sum extends either over the degrees of freedom ui or the nodes
of the structure. The ϕi(x) are the nodal unit displacement fields associated
with the ui, see (4.27) on p. 337, while the ψi in the second formula are the
scalar-valued shape functions of the nodes (ψi(xj) = δij) and the vectors
ui = [u(i)

1 , u
(i)
2 ]T are the nodal displacements at node i. Here, we use the

second notation so that, for example, the virtual exterior work of the volume
forces p becomes
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δWe =
∫

Ω

p • uh dΩ =
n∑

i=1

∫
Ω

p • ui ψi dΩ =
n∑

i=1

uT
i

∫
Ω

pψi dΩ =
n∑

i=1

uT
i f i .

(4.205)

The gradient of the FE displacement field is then

∇uh =
n∑

i=1

ui ⊗∇ψi (4.206)

and the deformation gradient,

F = I +∇uh = I +
n∑

i=1

ui ⊗∇ψi . (4.207)

The gradient of the virtual displacement field ûh =
∑

i ûi ψi follows (4.206)
so that Gateaux derivative becomes (we drop the subscript h on uh and ûh

for a moment)

Eu(û) : =
1
2

(∇û +∇ûT +∇uT ∇ û +∇ ûT ∇u)

=
1
2

(F T ∇û +∇ ûT F )

=
1
2

n∑
i=1

[F T (ûi ⊗∇ψi) + (∇ψi ⊗ ûi)F ] .

(4.208)

As in the linear theory where E • S = ε • σ the symmetry of Eu(û) and S is
motivation to introduce a “Gateaux strain vector”

εu(û) :=

⎡
⎣ (Eu(û))11

(Eu(û))22
2 (Eu(û))12

⎤
⎦ =

n∑
i=1

BLi ûi , (4.209)

where

BLi
=

⎡
⎣ F11 ψi,1 F21 ψi,1

F12 ψi,2 F22 ψi,2

F11 ψi,2 + F12 ψi,1 F21 ψi,2 + F22 ψi,1

⎤
⎦ . (4.210)

Given a St. Venant type material

S = C[E] = 2µE + λ(trE) I (4.211)

the stress vector of the second Piola-Kirchhoff stress tensor is:

σ =

⎡
⎣S11

S22

S12

⎤
⎦ =

⎡
⎣λ + 2µ λ 0

λ λ + 2µ 0
0 0 µ

⎤
⎦
⎡
⎣ E11

E22

2E12

⎤
⎦ , (4.212)
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where

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
. (4.213)

Hence the weak form of the equilibrium conditions is

G(uh, ûh) =
n∑

i=1

ûT
i [
∫

Ω

BT
Li

• σ dΩ︸ ︷︷ ︸
ki

−
∫

Ω

pψi dΩ −
∫

ΓN

t̄ ψi ds︸ ︷︷ ︸
f i

] = 0

(4.214)

or

k(u)− f = 0 . (4.215)

As on p. 403 we linearize this equation with the help of a Gateaux derivative
of the strain energy product in the direction of u∆

aT (u,u∆, û) =
∫

Ω

[∇u∆ S •∇û + Eu(û) • C[Eu(u∆)]] dΩ . (4.216)

The discretization of the first term in (4.216) yields with

∇u∆h
=

n∑
j=1

u∆j ⊗∇ψj , ∇ûh =
n∑

i=1

ûi ⊗∇ψi (4.217)

the so-called initial stress stiffness matrix∫
Ω

∇u∆ S •∇û dΩ =
n∑

i=1

n∑
j=1

ûT
i

∫
Ω

Gij I dΩ u∆j (4.218)

where

Gij := ∇T ψi S∇ψj =
[
ψi,1 ψi,2

] [S11 S12

S21 S22

] [
ψj,1

ψj,2

]
. (4.219)

With

Euh
(u∆) =

1
2

n∑
j=1

[F T (u∆j ⊗∇ψj) + (∇ψj ⊗ u∆j)F ] =
n∑

j=1

BLj u∆j

(4.220)

the second term in (4.216) becomes:∫
Ω

Eu(û) • C[Eu(u∆)] dΩ =
n∑

i=1

n∑
j=1

ûT
i

∫
Ω

BT
Li

CBLj
dΩ u∆j . (4.221)
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Fig. 4.66. Nonlinear analysis of a cantilever plate that carries an equivalent nodal
force; large displacements, small strains

Adding all terms we obtain

aT (u,u∆, û) =
n∑

i=1

n∑
j=1

ûT
i KTij u∆j (4.222)

where

KTij
:=

∫
Ω

[
Gij I + BT

Li
CBLj

]
dΩ . (4.223)

In the case of a bilinear element the (2×2) sub matrices KTij
of the tangential

stiffness matrix of a single element are arranged as follows:

Ke
T =

⎡
⎢⎢⎣

KT11 KT12 KT13 KT14

KT21 KT22 KT23 KT24

KT31 KT32 KT33 KT34

KT41 KT42 KT43 KT44

⎤
⎥⎥⎦ . (4.224)

After the assemblage, the resulting system of equations

KT (u) u∆ = f − k(u) , (4.225)

is solved with the Newton-Raphson method.

A cantilever plate

A cantilever plate of length l = 10 m, width h = 1 m and thickness t = 1 m,
is loaded at its end with a vertical point force P = 50, 000 kN; see Fig. 4.66
and 4.68. The parameter of the St. Venant type material are E = 107 kN/m2

and ν = 0. The analysis was done with plane bilinear elements. The vertical
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Table 4.14. Deflection w (m) at the foot of the point load

element linear nonlinear

mixed shell elements 19.950 7.533
bilinear plate elements 13.413 7.307
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Fig. 4.67. Deflection

point load
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Fig. 4.68. Maxwell’s

true

deflection w at the base of the point load is plotted in Fig. 4.67. For small
values of P the linear and the nonlinear results coincide. But if the load P
increases the increase in the deflection slows down, i.e., in linear analysis the
deflections are overestimated! This was confirmed in independent tests with
ADINA. The reference solution in Table 4.66 is based on a mixed four-node
shell element [45]. The nonlinear results agree quite well, while in the linear
case—one is tempted to say: as usual—the deviations are larger. Obviously the
bilinear element fares better in nonlinear problems than in linear problems!

at the foot of the

theorem is no longer
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Goal-oriented refinement

In nonlinear problems the dual problem for the generalized Green’s function
z is formulated at the equilibrium point u, see Sect. 7.5, p. 526,

z ∈ V a∗
T (u; z,v) = J ′(u; v) ∀ v ∈ V . (4.226)

and a∗
T corresponds to the tangential form aT of the original problem at the

equilibrium point, see (7.181) p. 528, so that zh is the solution of

KT (uh) z = j (4.227)

where KT (uh) is the tangential stiffness matrix at uh and the components

jk = J ′(uh; ϕk) . (4.228)

of j are the equivalent nodal forces. While in linear problems the equivalent
nodal forces jk are simply the values J(ϕk) of the different shape functions we
now must evaluate the Gateaux derivative (with respect to u) of the functional
J(.) for each single ϕk.

Let us assume we calculate the stress σij(x) at a point x, that is

J(u) = σij(u)(x) . (4.229)

The Gateaux derivative of this functional is

J ′(u;v) :=
[

d

dε
J(u + ε v)

]
ε=0

=
[

d

dε
σij(u + ε v)

]
ε=0

(4.230)

or with S = C[E(u)],[
d

dε
S(u + ε v)

]
ε=0

= C

[
d

dε
E(u + ε v)

]
ε=0

= C[Eu(v)] =: Ŝ

(4.231)

where Eu(v) is the Gateaux derivative of the Green-Lagrangian strain tensor,
see (4.208). Hence the equivalent nodal forces

jk = J ′(uh; ϕk) = σ̂ij(ϕk)(x) (4.232)

are the component σ̂ij of the “tangential” stress tensor C[Euh
(ϕk)]. These

are the stress increments at the actual equilibrium point uh resulting from
the displacement field ϕk.

For a second example we consider the integral of the stresses along a cross
section A-A

J(u) =
∫

A−A

σij(u) ds . (4.233)
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The Gateaux derivative of this functional is

J ′(u;v) =
∫

A−A

σ̂ij(v) ds (4.234)

so that the equivalent nodal forces are the integrals of the stresses σ̂ij resulting
from the unit displacement fields ϕk

jk = J ′(uh; ϕk) =
∫

A−A

σ̂ij(ϕk) ds (4.235)

The aim of goal oriented methods is to improve the accuracy of the output
functional J(u) by minimizing the energy error in the associated generalized
Green’s functional and in the solution u itself.

Now how do we proceed? We apply the first load increment p1 (let p =
p1+p2+. . .) and we find the equilibrium point u1 and the generalized Green’s
function z1. Then the mesh is adaptively refined so that both errors (in u1

as well as in z1) are below a certain threshold value. This completes the cycle
and we apply the next increment p2 and repeat the process, etc. At the end
we have a mesh which is optimal for the output value J(u).

As in the linear case the final values of the stresses σij(x) are computed
directly by differentiating the FE solution. Actually, we have no other choice.
Unlike linear problems where

J(u) =
∫

Ω

p • z dΩ (4.236)

no such formula exists in nonlinear problems. And also such formulations as

J(u) �
∫

Ω

p1 • z1 dΩ +
∫

Ω

p2 • z2 dΩ +
∫

Ω

p3 • z3 dΩ + . . . (4.237)

or

J(u) �
∫

Ω

p • zn dΩ zn = final Green’s function (4.238)

lead to nowhere.
The results in Fig. 4.69 illustrate nicely how the actions of the Green’s

functions automatically (!) follow the movement of the structure—a cantilever
plate to which a nodal force is applied. Depicted is the orientation of the nodal
forces of the FE Green’s functions for the two functionals

J(u) = σij(u)(x) J(u) =
∫

A−A

σij(u) ds (4.239)

at the final stage. For not to complicate the drawings the meshes were not
refined. Just a normal nonlinear iterative analysis was performed for each of
the two solutions u and z.
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Fig. 4.69. Nonlinear analysis of a cantilever plate a) original load b) deformed
structure c) equivalent nodal forces of the dual problem for σyy(x) at the equilibrium
point d) FE approximation of the dual solution for σyy(x) e) equivalent nodal forces
for

∫
A

σxy ds in cross-section A-A f) FE approximation of the dual problem for∫
A

σxy ds, [162]



5. Slabs

The bending theory of plates can be viewed as an extension of beam theory.
In an Euler–Bernoulli-beam, EIwIV = p, shear deformations are neglected,
i.e., a straight line that is initially normal to the neutral axis remains so after
the load is applied. In a Timoshenko beam, the line instead rotates by an
angle γ; see Fig. 5.1 b.

The extension of the Euler–Bernoulli-beam to plate theory is the Kirch-
hoff plate, K ∆ ∆ w = p, and the extension of the Timoshenko beam is the
Reissner–Mindlin plate. The first finite elements developed for plate bending
problems were based on the Kirchhoff plate theory. But the problem that the
shape functions must be C1 and must be easy to be implement at the same
time soon favored Reissner–Mindlin plate elements, where C0 suffices for the
shape functions, see Fig. 5.2.

Normally slabs are relatively thin with negligible shear deformations, so
that good Reissner–Mindlin plate elements tend to produce the same results

Fig. 5.1. Cantilever beams: a) Euler–Bernoulli beam b) Timoshenko beam

Fig. 5.2. A Kirchhoff plate cannot be
folded like sheet metal
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Fig. 5.3. Resultant stresses in a slab

as Kirchhoff plate elements, with the exception possible of zones close to the
boundary. The switch to the Reissner–Mindlin plate theory in FE program-
ming therefore probably remained unnoticed in the engineering community,
even though the most popular plate elements, like the DKT element and the
Bathe–Dvorkin element are not genuine Reissner–Mindlin plate elements but
rather an ingenious mixture of Kirchhoff and Reissner–Mindlin plate theories.

5.1 Kirchhoff plates

The deflection w, the three curvature terms κ ij and the three bending mo-
ments m ij are coupled by a system of seven differential equations, which in
indicial notation reads

κ ij − w, ij = 0 , (3 eqs.),
K{(1− ν)κ ij + νκkkδ ij}+ m ij = 0 , (3 eqs.), (5.1)

−m ij ,ji = p , (1 eq.) .

The constant

K =
Eh3

12(1− ν2)
, h = slab thickness (5.2)

is the plate stiffness and ν is Poisson’s ratio.
This system is equivalent to the biharmonic differential equation

K(w,xxxx +2w,xxyy +w,yyyy ) = K∆∆w = p (5.3)

for the deflection surface w(x, y) of the slab.
The similarity of (5.3) to the beam equation EIwIV = p is obvious. As in

a beam, the bending moments in a slab are proportional to the curvature of
the deflection surface (see Fig. 5.3)
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Fig. 5.4. Bending moments and shear forces

mxx = −K(w,xx +ν w,yy ) , myy = −K(w,yy +ν w,xx ) ,

mxy = −(1− ν)Kw,xy ,

and the shear forces are proportional to the third derivatives:

qx = −K(w,xxx +w,yyx ) , qy = −K(w,xxy +w,yyy ) .

The bending moments mxx are accounted for by reinforcement in the x-
direction and the bending moments myy by reinforcement in the y-direction.

The extreme values of the normal curvature κ11 and κ22 at a given point
on a surface are called the principal curvatures, and they occur in the direction

tan 2ϕ =
2 myy

mxx −myy
. (5.4)

The principal curvatures determine the maximum and minimum bending of
a slab at any given point (see Fig. 5.5):

mI,II =
mxx + myy

2
±
√[

mxx −myy

2

]2

+ m2
xy . (5.5)

In an arbitrary direction the resultant stresses are, in indicial notation,

mnn = m ij ni nj , mnt = m ij ni tj , qn = qi ni ,

where n = [nx, ny]T is the normal vector and t = [tx, ty]T = [−ny, nx]T is the
tangent vector.

All resultant stresses are resultant stresses per unit length; see Fig. 5.4.
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Fig. 5.5. Slab: a) plan view, b) support reactions, c) principal moments
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Fig. 5.6. Poisson’s ratio leads to
transverse compression in the flexural

sion in the flexural tension zone

Fig. 5.7. Influence of Poisson’s ratio ν on the bending moments, the deflection at
midspan and the corner forces F of a hinged slab. Plotted are the ratios with respect
to ν = 0. The bending moments increase if ν increases while the corner force F and
the deflection w decrease

Poisson’s ratio

Poisson’s ratio ν ensures that the concrete widens in the compression zone
and that it narrows in the tension zone; see Fig. 5.6.

The larger ν gets, the more the bending moments increase, while the de-
flection and also the corner forces F decrease; see Fig. 5.7. The deflection w
becomes smaller because the slab stiffness K increases; see Eq. (5.2).

In uncracked concrete ν has a value of about 0.2. Many tables are based
on ν = 0.0, and the bending moments for ν 	= 0 are obtained with

mxx(ν) = mxx(0) + ν myy(0) , myy(ν) = myy(0) + ν mxx(0) . (5.6)

The effects of an incorrect Poisson’s ratio ν may well exceed the approxi-
mation error, as the following example of a quadratic slab with clamped edges
shows. The correct value of Poisson’s ratio is assumed to be ν = 0. Plotted in
Fig. 5.8 is the error in the FE bending moment mxx = myy at the center of
the plate, as a function of the number of elements and ν. Obviously the error
due to deviations in Poisson’s ratio is larger than the approximation error. If
the analysis were based on ν = 0.3, the best FE result would overestimate the
bending stresses for ν = 0 by about 30%. Even at ν = 0.1, which is relatively

compression zone, and transverse ten-
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Fig. 5.8. Error in the
midspan FE bending
moment as compared

elements

Fig. 5.9. Slab with edge anchorage

close to the true value ν = 0 the error on a fine mesh with 144 elements is still
relatively high, 10.96%, while on a mesh with 16 elements but with the correct
value ν = 0 the approximation error is only 9.65%. These results suggest that
a correct assessment of the elastic constants and parameters is very important
for accurate analysis.

Equilibrium

The Kirchhoff shear vn rather than the shear forces qn, maintains the equilib-
rium with the applied load. The Kirchhoff shear vn is the shear force qn plus
the derivative of the twisting moment mnt with regard to the arc length s on
the edge,

vn = qn +
dmnt

ds
, (5.7)

so that along a vertical (|) or a horizontal (– ) edge, respectively,

vx = qx +
dmxy

dy
vy = qy +

dmxy

dx
. (5.8)

(ν = 0), as a function
to a series solution

of the number of
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The additional force

dmnt

ds

(
kN m/m

m
= kN/m

)
(5.9)

is easily understood if the twisting moment is split into pairs of opposing
forces; see Fig. 5.3.

Because the equivalent nodal forces are work-equivalent to the resultant
stresses along the edge of an element, the nodal forces represent the action of
the Kirchhoff shear, and not of the shear forces qn.

The shear force qn and the twisting moments mnt are not zero along a free
edge, but they are so tuned that the change in mnt is balanced by qn, so that
the total effect vanishes

vn = qn +
dmnt

ds
= 0 . (5.10)

On a clamped edge the twisting moment is zero, mnt = 0, so the shear force
qn coincides with the Kirchhoff shear vn. For other support conditions the two
are not the same, qn 	= vn, but the difference is usually not very large.

Corner force

The jump in the twisting moment at a corner point

F := m+
nt −m−

nt (5.11)

can be identified with a corner force F ; see Fig. 5.3. If the corner is not held
down, no physical reaction is possible and the slab will tend to move away
from the support. This is the source of the “corner lifting” phenomenon that
can be observed on a laterally loaded square slab with simply supported edges
that do not prevent lifting; see Fig. 5.9. This effect does not appear if the edges
meeting at the corner point are clamped, mnt = 0.

5.2 The displacement model

In an ideal slab model the unit deflections ϕi(x, y) of the nodes describe what
happens to the plate if a node deflects, w = 1, or if it rotates by 45◦ about
the y- or x-axis, w,x = 1 and w,y = 1.

These unit deflections form the basis of the trial space Vh, and the FE
solution is an expansion in terms of these 3n unit deflections,

wh(x, y) =
3n∑
i=1

ui ϕi(x, y) , (5.12)

where the nodal degrees of freedom ui (in this sequence: u1 = w, u2 =
w,x , u3 = w,y etc.) denote a deflection and two rotations.
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A unit load case p i can be associated with each of these unit deflections
and so, as before, the FE load case can be considered a superposition of these
3n unit load cases,

ph(x, y) =
3n∑
i=1

ui p i , (5.13)

where the weights ui are chosen in such a way that the FE load case ph is
work-equivalent to the original load case in terms of the 3n unit deflections

δWe(ph, ϕi) = δWe(p, ϕi) i = 1, 2, . . . 3n . (5.14)

Conforming shape functions are C1 but not C2, therefore the curvatures on
opposite sides of the interelement boundaries are different. In a beam, such
abrupt changes in the curvature would be attributed to the action of nodal
moments

− EI κ(x−
i ) + EI κ(x+

i ) = M(x−
i )−M(x+

i ) = M(xi) , (5.15)

while here these discontinuities are attributed to the action of line moments
(kNm/m), and jumps in the Kirchhoff shear to the action of line loads (kN/m),
so that the attributes of a typical FE load case ph (as in Fig. 5.10) are

• line loads—along the interelement edges (kN/m)
• line moments—along the interelement edges (kN m/m)
• surface loads—on each element (kN/m2)
• (eventually) forces Pi—at the nodes (kN)

The forces P i result if the corner forces F e of the individual elements are
added at the nodes.

The slab in Fig. 5.10 gives the impression of such a load case ph. The orig-
inal loading consists of a uniformly distributed surface load p = 6.5 kN/m2.
The element is a conforming rectangular element with 16 degrees of freedom
which is based on the shape functions of a beam; see Eq. (5.17).

5.3 Elements

The natural choice for a plate element would be a triangular element with
degrees of freedom w,w,x , w,y at each of the three corner nodes, and a cubic
polynomial to interpolate w between. This would result in a linear variation
of the bending moments and constant shear forces. But because a complete
cubic polynomial has 10 terms instead of the 3 × 3 = 9 terms, the element
would be nonconforming, that is, the first derivatives would not be continuous
across interelement boundaries.

A conforming rectangular element can be derived from the unit deflections
ϕi(x) of a beam (see Fig. 5.11)
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Fig. 5.10. Slab: a) uniform load p = 6.5 kN/m2 and the equivalent FE load case ph,
b) element loads, c) vertical forces, and d) moments along interelement boundaries

ϕ1(x) = 1− 3x2

l2
+

2x3

l3

ϕ2(x) = −x +
2x2

l
− x3

l2

ϕ3(x) =
3x2

l2
− 2x3

l3

ϕ4(x) =
x2

l
− x3

l2
,

(5.16)

using a product approach

ϕe
..(x, y) = ϕi(x) ϕj(y) i, j = 1, 2, 3, 4 , (5.17)

so that each node has four degrees of freedom w,w,x , w,y , w,xy. Unfortunately
this approach is limited to rectangular slabs. Also the degree of freedom w,xy

is not easily accounted for if the element is coupled to other elements.
A truly isoparametric conforming quadrilateral element also requires that

the mapping of the master element onto the single elements be C1. Because
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Fig. 5.11. Shape functions based on Hermite polynomials

of the chain rule

w,x = w,ξ ξ,x +w,η η,x (5.18)

the derivatives ξ,x and η,x, etc., of the mapping functions x(ξ, η) and y(ξ, η)
and the inverse functions ξ(x, y) and η(x, y) must be continuous. This means
that the coordinate lines ξ = const. and η = const. cannot change direction
abruptly (no kinks!) upon crossing the interelement boundaries. It is very
costly to establish this property numerically.

six degrees of freedom at the vertices,

w, w,x , w,y , w,xx , w,xy , w,yy (5.19)

and the normal derivatives at the mid-side nodes as additional degrees of
freedom. This conforming element has 21 degrees of freedom.

Stiffness matrices

The strain energy product of two deflection surfaces w and ŵ is the scalar
product of the bending moment tensor M = [m ij ] of w and the curvature
tensor K = [κ ij ] of ŵ,

Theoretically the simplest method of deriving a conforming triangular ele-
ment is to choose a complete fifth-order polynomial [215] with the following
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a(w, ŵ) =
∫

Ω

M • K̂ dΩ =
∫

Ω

m ij κ̂ ij dΩ (5.20)

=
∫

Ω

[mxxκ̂xx + 2 mxyκ̂xy + myyκ̂yy] dΩ , (5.21)

or in equivalent notation the scalar product of the vector m =[mxx,myy,mxy]T

and the vector κ̂ = [κxx, κyy, 2 κxy]T ,

a(w, ŵ) =
∫

Ω

m • κ̂ dΩ =
∫

Ω

mi κ̂i dΩ

=
∫

Ω

[mxxκ̂xx + 2 mxyκ̂xy + myyκ̂yy] dΩ , (5.22)

where ⎡
⎣mxx

myy

mxy

⎤
⎦

︸ ︷︷ ︸
m

=

⎡
⎣ K ν K 0

ν K K 0
0 0 (1− ν)K/2

⎤
⎦

︸ ︷︷ ︸
D

⎡
⎣ κxx

κyy

2 κxy

⎤
⎦

︸ ︷︷ ︸
κ

. (5.23)

Hence if mi and κi denote the “bending moment” and “ curvature” vector of
the element shape function ϕe

i , an individual element of the stiffness matrix
is

ke
ij =

∫
Ωe

mi • κj dΩ =
∫

Ωe

mT
i κj dΩ =

∫
Ωe

(D κi)T κj dΩ

=
∫

Ωe

κT
i D κj dΩ (5.24)

and the stiffness matrix of an element with n degrees of freedom is

Ke
(n×n) =

∫
Ωe

BT
(n×3)D(3×3) B(3×n) dΩ , (5.25)

where column i of matrix B contains the curvatures κxx, κyy, 2 κxy of the
deflection surface ϕe

i .

5.4 Hybrid elements

By a special technique triangular elements can be developed which have only
the three degrees of freedom w,w,x , wy at the three nodes, but which yield
better results than simple nonconforming displacement-based elements. The
best known elements of this type are the triangular HSM element (hybrid-
stress-model), [29], and the DKT element. The latter is a modified Reissner–
Mindlin plate element which will be discussed later. First we discuss the HSM
element.



426 5 Slabs

The starting point is the principle of minimum complementary energy. Ac-
cording to this principle, the moment tensor M = [mij ] of the exact solution
minimizes the complementary energy of the slab,

Πc(M) = −1
2

∫
Ω

M • C−1[M ] dΩ = −1
2

∫
Ω

mij κij dΩ (5.26)

on the set Vc, which is the set of all bending moment tensors M that satisfy
the equilibrium condition

− div2 M = p or −mij ,ji = p (5.27)

and if necessary, static boundary conditions such as

mij ni nj = m̄n ,
d

ds
mij ni tj + mij ,i nj = v̄n on ΓN . (5.28)

Here n = [nx, ny]T and t = [tx, ty]T are the normal- and tangent vectors
at the edge of the slab. The boundary conditions (5.28) mean that along a
portion ΓN of the edge, the moments m̄n and forces v̄n are prescribed. Other
combinations of static boundary conditions are possible as well. Geometric
boundary conditions like w = 0 (hinged support) or w = w,n = 0 (clamped
edge) are of no concern for the purpose of this principle.

To construct a subset V c
h of the space V c, a moment tensor Mp is cho-

sen which satisfies the equilibrium condition (5.27) and the static boundary
conditions (5.28), and this tensor Mp is paired with a string of homogeneous
tensors M i

V c
h ≡Mp ⊕

∑
i

σi M i − div2M i = 0 , (5.29)

where homogeneous also implies that the tensors M i satisfy the boundary
conditions (5.28) in a homogeneous form, i.e., v̄n = m̄n = 0 on ΓN .

This is the same solution technique as in the force method, where

M = M0 + Xi Mi −M ′′
0 = p −M ′′

i = 0 . (5.30)

The tensor Mp corresponds to the bending moment M0 of the primary state
and the σi are the redundants Xi.

If the bending moments mkj in the tensors M i are first-order polynomials,
the equilibrium condition −div2 M i = 0 is satisfied in each element, but the
bending moments are discontinuous at the interelement boundaries, which
violates the definition of Vc.

To overcome this obstacle the continuity requirement for the bending mo-
ments is added to the functional Πc, using Lagrange multipliers:

Πc(M , w) = −1
2

∫
Ω

M • C−1[M ] dΩ

+
∑

i

∫
Γi

[(m+
n −m−

n )w,n +(v+
n − v−n ) w] ds +

∑
k

Fk w(xk) , (5.31)
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where the Γi are the interelement boundaries and the superscripts + and -
denote the force terms on the left- and right-hand side of the interelement
boundary. Each Fk is the sum of the corner forces (discontinuity of mnt) of
the single elements at the nodes xk. The two Lagrange multipliers are the
deflection w and the rotation w,n at the interelement boundary Γi.

The corner forces Fc appear in Green’s first identity if the boundary inte-
gral of mnt ŵ,s is integrated by parts∫

∂Ωe

mij ni tj∂tŵ ds = −
∑

c

Fc ŵ(xc)−
∫

∂Ωe

d

ds
(mij ni tj) ŵ ds . (5.32)

Here ∂Ωe is the edge of the element and the xc are the corner points of the
element. If this procedure is reversed, the corner forces can be brought under
the integral sign, and because the normal vectors on two adjacent element
edges point in opposite directions, the sum of (v+

n − v−n ) w, etc., over the in-
terelement boundaries Γi can be written as a sum over the element boundaries
Γe, so that the following equation is equivalent to Eq. (5.31)

Πc(M , w) = −1
2

∑
e

∫
Ωe

M • C−1[M ] dΩ

+
∑

e

∫
∂Ωe

[w qn − w,n mn − w,s mnt] ds . (5.33)

The FE program constructs the tensors M i by linearly interpolating the bend-
ing moments mij . This guarantees that the equilibrium condition

− div2 M = div (div M) = mij ,ji

= m11,11 +m12,12 +m21,21 +m22,22 = 0 (5.34)

is satisfied in each element. The deflection w at the edge is interpolated with
cubic polynomials, and therefore the complementary energy of an element
becomes

Πc = −1
2

σT B σ + σT C w , (5.35)

with σ and w as the nine nodal variables of the bending moments, and the
nodal deformations wi, w,ix , w,iy. The condition that the first variation with
respect to the parameters σi of the bending moments must vanish,

∂Πc

∂σ
= −B σ + C w = 0 , (5.36)

implies σ = B−1 C w, and therefore the stiffness matrix can be expressed in
terms of the nodal values of the deflection w alone:

K(9×9) = CT B−1 C . (5.37)
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Fig. 5.12. Support reactions of a hinged trapezoidal slab subject to a uniform load.
a) At an obtuse corner point the support reactions become singular. b) These effects
vanish if the rotations w,x and w,y are set free at these points

By this detour a stiffness matrix in terms of the natural nodal degrees of
freedom of a triangular plate element is derived. The whole technique is very
similar to the derivation of a DKT element, and as in the case of a DKT
element, a consistent approach for the calculation of the equivalent nodal
forces is not defined. Theoretically we should proceed as in the force method,
where the terms on the right-hand side (called δi0 in the force method and not
fi) are the scalar product between the bending moment M0 and the bending
moments Mi,

δi0 =
∫ l

0

M0 Mi

EI
dx , (5.38)

that is, the scalar product of the bending moment tensor Mp of the particular
solution and the tensors M i should define the equivalent nodal forces:

fi =
∫

Ω

Mp • M i dΩ . (5.39)

But instead, to achieve the “same effect” a) the deflection w that originally
only lives on the interelement boundaries is continued by a choice of appro-
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5.13. Hinged

singular, mxx → −∞
and myy → +∞

priate global shape functions wi(x) across the whole slab, and b) the scalar
product of the load and these shape functions is calculated

f̃i =
∫

Ω

p wi dΩ . (5.40)

In practice this means that the principle of minimum complementary energy
is only used to derive the stiffness matrix, and that we later switch back to
the principle of minimum potential energy.

5.5 Singularities of a Kirchhoff plate

The handicap of a Kirchhoff plate is its lesser inner flexibility. Unlike a Reiss-
ner–Mindlin plate, in which cross-sectional planes can rotate independently of
the position of the mid-surface, in a Kirchhoff plate the rotations are wedded
to the rotations of the mid-surface.

A Reissner–Mindlin plate can lie flat on the ground, giving no notice that
the cross-sectional planes in the interior tilt to the left; see Fig. 5.19, p. 434.
Or at a clamped edge the slab can perform a feat which is impossible for a
Kirchhoff plate: it can fold like sheet metal, and descend steeply.

This (relatively) inflexible behavior of a Kirchhoff plate can lead to prob-
lems at corner points (see Table 5.1), as for example at angular points of a
hinged slab (see Fig. 5.12), because the gradient ∇w = [w,x , w,y ]T vanishes
at a hinged corner point. This is a consequence of the fact that the derivatives
in the direction of the two hinged edges (tangent vectors tR and tL) are zero:

Fig.
slab. At the corner
points the bending
moments become
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Table 5.1. Corner singularities of a Kirchhoff plate, [165]

Support conditions Bending moments Kirchhoff shear

clamped–clamped 180◦ 126◦

clamped–hinged 129◦ 90◦

clamped–free 95◦ 52◦

hinged–hinged 90◦ 60◦

hinged–free 90◦ 51◦

free–free 180◦ 78◦

Fig. 5.14. At the obtuse-angled corner points, the support reactions and bending
moments mxx become infinite
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∇w • tR = 0 ∇w • tR = 0 ⇒ ∇w = 0 . (5.41)

At such points the plate is clamped:

w = w,x = w,y = 0 . (5.42)

The singularity vanishes immediately if the rotations w,x and w,y are set free.
In a hinged plate with a rhombic shape, a strange singularity is observed

at the wide-angled corner points. The bending moment mxx tends to −∞
and the bending moment myy to +∞; see Fig. 5.13. Again by releasing the
rotations w,x and w,y the singularity disappears.

A skew bridge mainly carries the load from its lower wide-angled cor-
ner to the upper wide-angled corner—this is the shortest path between the
two supports. Unfortunately the bending moments and the support reaction
(Kirchhoff shear) become singular precisely at these corner points; see Fig.
5.14.

If the lower edge of the bridge coincides with the x-axis (because w = 0)
the rotations w,x in the tangential direction are zero. In the terminology
of Reissner–Mindlin plates this would be a hard support , while it would be
considered a soft support if the rotations w,x were released. In a Kirchhoff
plate hinged supports are normally modeled as hard supports, w = w,x = 0,
but it eventually helps to release the rotations near critical points.

Whenever possible the flexibility of the supports should be taken into
account, because this helps to avoid stress peaks.

5.6 Reissner–Mindlin plates

A Reissner–Mindlin plate forms a kink if it is loaded with line loads, as il-
lustrated by analogy with the Timoshenko beam in Fig. 5.16 b. The shearing
strain γ = w/0.5 l activates the shear stress τ = Gγ, which keeps the balance
with the applied load, P/2 = τA = GAγ. If the load is evenly distributed, the
shearing strain varies linearly and the result is a well-rounded deflection curve.
Because kinks are a natural feature of a Reissner–Mindlin plate C0-elements
are sufficient for such plates; see Fig. 5.17.

The deformations of a Reissner–Mindlin plate are described by the de-
flection and rotations of the planes x = constant and y = constant (see Fig.
5.18):

w, θx, θy . (5.43)

In a Kirchhoff plate the rotations θx and θy are not independent quantities,
because the planes maintain their position with respect to the midsurface
(which deflects) and the planes rotate by the same angle by which the deflec-
tion surface w rotates: θx = −w,x and θy = −w,y. The expressions

γx = w,x + θx γy = w,y + θy (5.44)



432 5 Slabs

Fig. 5.15. Singular-

angle of a Kirchhoff

moments, b) shear
forces

Fig. 5.16. Timoshenko beam a) subjected to a distributed load and b) a single
force

are the shearing strains. In a Kirchhoff plate the shearing strains are zero.
The system of differential equations for w, θx, θy in indicial notation is

ities at the obtuse

a)plate: bending
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5.17. A Reissner–

kinks

K(1− ν){−(
1
2
(θα,β + θβ,α) +

ν

1− ν
θγ,γ δαβ),β

+ λ̄2(θα + w,α )} =
ν

1− ν

1
λ̄2

p,α α = 1, 2 (5.45)

− 1
2
K(1− ν)λ̄2(θα + w,α ),α = p

where

K =
Eh3

12(1− ν2)
, λ̄2 =

10
h2

, h = slab thickness . (5.46)

The terms on the right-hand side are the gradient ∇p = [p,x , p,y ]T of the
vertical load and the vertical load p itself.

In the same way as the displacement components of an elastic solid form
a vector u the displacement components of a Reissner–Mindlin plate can be
assembled into a vector

u(x, y) = [w(x, y), θx(x, y), θy(x, y)]T . (5.47)

This is not a true displacement vector because x + u is not the position of
the point x after the deformation; the coordinates of the new position x′ are
instead

x′ = θx z y′ = θy z z′ = w . (5.48)

Fig.

Fig. 5.18. The shearing strain γ

Mindlin plate can have
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5.19.
of a Mindlin type

beam element. a) Type 1:
w = ax, θ = 0; b) Type 2:
w = 0, θ = ax

mxx = K (θx,x + ν θy,y) , myy = K (θy,y + ν θx,x) ,

mxy = (1− ν) K (θx,y + θy,x) , (5.49)

while the shear forces also depend on the gradient of the deflection w:

qx = K
1− ν

2
λ̄2 (θx + w,x ) , qy = K

1− ν

2
λ̄2 (θy + w,y ) . (5.50)

Unlike a Kirchhoff plate, a Reissner–Mindlin plate does not sustain the attack
of a single force. It shares this property with a wall beam or simply with 2-D
and 3-D elastic solids.

But otherwise the structural analysis of a Reissner–Mindlin plate is not
different from a Kirchhoff plate, because as long as the thickness to length
ratio is small, the shear deformations are small, and then it hardly matters
(apart perhaps from the results in a zone close to the boundary) which of the
two slab models is used; see Sect. 5.20, p. 480.

Because the differential system of equations (5.45) is of second order, the
symmetric strain energy

a(u, û) =
∫

Ω

[mxx θ̂x,x +mxy θ̂x,y +myx θ̂y,x +myy θ̂y,y

+qx (θ̂x + ŵ,x ) + qy (θ̂y + ŵ,y )] dΩ

contains only first-order derivatives.
Formally the solution of a Reissner–Mindlin plate is a vector-valued func-

tion (see Eq. (5.47)), hence the FE solution becomes

uh = u1

⎡
⎣ψ1

0
0

⎤
⎦+ u2

⎡
⎣0

ψ2

0

⎤
⎦+ u3

⎡
⎣0

0
ψ3

⎤
⎦

︸ ︷︷ ︸
node 1

+u4

⎡
⎣ψ4

0
0

⎤
⎦+ u5

⎡
⎣0

ψ5

0

⎤
⎦+ u6

⎡
⎣0

0
ψ6

⎤
⎦

︸ ︷︷ ︸
node 2

. . . , (5.51)

Possible move-Fig.

The bending moment depends only on the rotations of the planes,

ments
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Fig. 5.20. Boundary conditions

where the three degrees of freedom ui and the three associated shape functions
ψi(x, y) at each node are the deflection and the rotations in x-direction and
y-direction, respectively, so that the basic pattern which repeats at each node
is a sequence of three special unit deformations:⎡

⎣w
0
0

⎤
⎦

⎡
⎣0

θx

0

⎤
⎦

⎡
⎣0

0
θy

⎤
⎦ . (5.52)

First the element inclines (see Fig. 5.19) but the planes remain vertical, be-
cause θx = θy = 0 means that the shearing strains γx = w,x and γy = w,y
counterbalance the rotations of the plate mid-surface. In the second and third
deformation the element remains flat, w = 0, but the planes rotate; see Fig.
5.19.
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5.7 Singularities of a Reissner–Mindlin plate

Slab models are usually developed by starting with a 3-D elastic continuum
and then simplifying the kinematics. Depending on the assumptions made in
this process, the result is either a Kirchhoff plate or a Reissner–Mindlin plate.

The loss of accuracy in the transition from a 3-D model to a 2-D model
is often felt the most near the boundary where the models differ most. With
regard to the Reissner–Mindlin plate we speak of a boundary layer effect [9],
[238]. To some extent this effect seems to be due to the fact that we cannot put
an elastic solid on a line support such as a hinged support (see Sect. 1.16, p.
55), and the Reissner–Mindlin plate—not surprisingly—seems to suffer more
from such adverse effects.

In a Reissner–Mindlin plate we have a choice of two support conditions
for a hinged edge: the hard support , w = w,t = 0, which corresponds to the
hinged support of a Kirchhoff plate, and the soft support , w = 0, where the
slope w,t = w,x tx + w,y ty in the tangential direction is released, w,t 	= 0; see
Fig. 5.20.

As in a Kirchhoff plate, the boundary conditions and the angle of the
boundary points determine when and where singularities will develop; see
Table 5.2 [205].

Table 5.2. Corner singularities of a Reissner–Mindlin plate

Boundary conditions Bending moment Shear force

clamped–clamped 180◦ 180◦

sliding edge–sliding edge 90◦ 180◦

hard support–hard support 90◦ 180◦

soft support–soft support 180◦ 180◦

free-free 180◦ 180◦

clamped–sliding edge 90◦ 180◦

clamped–hard support 90◦ 180◦

clamped–soft support ≈ 61.70◦ (ν = 0.29) 180◦

clamped–free ≈ 61.70◦ (ν = 0.29) 90◦

sliding edge–hard support 45◦ 90◦

sliding edge–soft support 90◦ 180◦

sliding edge–free 90◦ 90◦

hard support–soft support ≈ 128.73◦ 180◦

hard support–free ≈ 128.73◦ 90◦

soft support–free 180◦ 90◦



5.7 Singularities of a Reissner–Mindlin plate 437

Shear locking

The main advantages of a Reissner–Mindlin plate are essentially the relaxed
continuity requirements for the shape functions, and its inner “richness” of
kinematic variables. On the other hand shear locking can become a problem.
The transition from a Reissner–Mindlin plate model—relatively thick slabs
(foundation slabs)—to a Kirchhoff plate model, which is the standard model
for thin slabs, can cause problems.

Clearly the Reissner–Mindlin plate theory subsumes the Kirchhoff slab
theory, because the transition from the former to the latter model is simply
achieved by setting the shearing strains to zero:

γx = w,x + θx = 0 γy = w,y + θy = 0 . (5.53)

Because in normal slabs shear deformations are negligible, a Reissner–Mindlin
plate should behave like a Kirchhoff plate. But this does not happen. The
more the slab thickness h shrinks, the more a Reissner–Mindlin plate tends
to stiffen, until the slab ultimately seems to freeze.

This is primarily a problem of the finite elements. If the equations could be
solved exactly, then if h tends to zero the Reissner–Mindlin results should tend
(in the sense of the strain energy [238], p. 263) to the results of a Kirchhoff
plate.

Shear locking is best explained by studying the example of a Timoshenko
beam, u = [w, θ]T , see Fig. 5.21. The strain energy product is

a(u, û) =
∫ l

0

[EI θ′ θ̂′ + GAs (w′ + θ) (ŵ′ + θ̂)] dx , (5.54)

so that with appropriate unit displacements (2 at each node)

ϕ1(x) =
[

w1

0

]
ϕ2(x) =

[
0

θ2

]
︸ ︷︷ ︸

node 1

ϕ3(x) =
[

w3

0

]
ϕ4(x) =

[
0

θ4

]
︸ ︷︷ ︸

node 2

. . .

(5.55)

for example linear functions

wi(x) =
l − x

l
θj(x) =

x

l
(5.56)

a result like

(KB + KS)u = f (5.57)

is obtained, where the entries in the matrix KB come from the bending terms,
and the entries in KS from the shear terms:
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Fig. 5.21. Cantilever beam

kB
ij =

∫ l

0

EI θ′i θ′j dx kS
ij =

∫ l

0

GAs (w′
i + θi) (w′

j + θj) dx . (5.58)

If the cantilever beam in Fig. 5.21 is modeled with just one element, the
end deflection is [70],

w(l) =
12(h/l)2 + 20
12(h/l)2 + 5

· 1.2
Pl

GAs
(5.59)

where As is the equivalent shear cross-sectional area. For a short beam, l 1,
the first fraction is approximately 1 and the end deflection is identical to the
shear deformation

w(l) = 1.2
Pl

GAs
. (5.60)

If l ! h, i.e., if the length l is much greater than the width h of the beam,
the first fraction is about 20/5 and the end deflection will be much too small:

w(l) = 4 · 1.2
Pl

GAs
= 9.6

Pl

E bh
(G = 0.5E, ν = 0) (5.61)

compared with the exact value (let l/h = 8)

w(l) =
Pl3

3 EI
= 4

Pl

E bh

(
l

h

)2

= 256
Pl

E bh
. (5.62)

This is shearlocking.
The reason for this stiffening effect is the different sensitivity of the bending

stiffness EI and the shear stiffness GAs with respect to the width h of the
beam:

EI =
b h3

12
GAs � G b h (rectangular cross section) . (5.63)

If the width h—and thus the shear deformations γ = w′ + θ—tend to zero,
the bending stiffness decreases much faster than the shear stiffness. As in an
equation such as
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Fig. 5.22. Plate elements: a) Bathe–Dvorkin element b) DKT element. At the nodes
of a DKT element, the shearing strain is zero, θxi = −∂w/∂xi, θyi = −∂w/∂yi

(1 + 105) u = 10 (solution u = 9.9999 · 10−5 ≈ 0) , (5.64)

where the large second term enforces a nearly zero solution, the matrix KS—
because of the rapidly increasing influence of GAs—tends to dominate (5.57).
If (5.57) could be solved exactly, the increasing influence of GAs would be
canceled by the opposing tendency of w′ + θ = γ �→ 0.

All this holds for slabs as well: the transition from a Reissner–Mindlin
plate model (average to large slab thickness) to a Kirchhoff plate model (small
thickness) does not succeed numerically.

A whole catalog of measures has been proposed to circumvent shearlock-
ing. Reduced integration is the best-known remedy. Although a better and
simpler approach is to raise the order of the polynomials. This holds in simi-
lar situations as well, where internal constraints force an element to sacrifice
all the degrees of freedom to satisfy the constraints, so that nothing is left to
describe the movements of the element [70].

5.8 Reissner–Mindlin elements

A multitude of plate elements are based on the Reissner–Mindlin plate model.
Only three such elements, the Bathe–Dvorkin element, the DKT element and
the DST element, will be discussed here because they are probably the most
popular.

Bathe–Dvorkin element

It seems that this element (see Fig. 5.22 a) was first developed by Hughes and
Tezduyar [122], and later extended by Bathe and Dvorkin [27] to shells.

The element is an isoparametric four-node element with bilinear functions
for the deflection w and the rotations θx and θy. According to the equations

γx = w,x + θx γy = w,y + θy , (5.65)
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the polynomial shape function for w should have a degree one order higher
than the rotations. To begin, one chooses for w a ninth-order Lagrange
polynomial—4 corner nodes + 4 nodes at the mid-sides + 1 node at the
center of the element—and a matching bilinear polynomial for the rotations.
The idea is to calculate the shearing strains γx and γy independently of the de-
flection at the center and deflections at the mid-side nodes. Hence the stiffness
matrix only depends on the deflections w at the four corner points, therefore
bilinear functions for w suffice. This simplification is based on the observation
that the shearing strains parallel to the sides of the element at the mid-side
nodes are independent of the deflections at the mid-side nodes and at the
center of the element.

The main advantage of this element is the easy transition from thick slabs
to thin slabs, so that the element is universally applicable. The bending mo-
ment mxx in the principal direction—which is assumed here to be the x-axis—
is constant, and the bending moment myy is linear. As in the Wilson element,
quadratic terms can be added, so that the bending moments also vary linearly
in the x-direction. The shear forces qx and qy are of course constant.

DKT element

The DKT element (see Fig. 5.22 b) can be considered a modified Kirchhoff
plate element or a modified Reissner–Mindlin plate element [236].

The derivations starts with a Reissner–Mindlin plate element and the as-
sumption is that the shearing strains in the element are zero [29]. Hence the
strain energy product is simply the scalar product of the bending moments
and the curvature terms:

a(u,u) =
∫

Ω

[mxx θx,x + mxy θx,y + myx θy,x + myy θy,y ] dΩ . (5.66)

But the element shape functions satisfy the condition γx = γy = 0 only at
discrete points, namely the corner points of the triangular element and the
mid-side nodes of the element, which is why this element is called a discrete
Kirchhoff triangle.

For the rotations, linear functions are chosen:

θx =
3∑

i=1

θxi ϕi(x) θy =
3∑

i=1

θyi ϕi(x) . (5.67)

The deflection w is instead only defined along the edge, and interpolated
by Hermite polynomials. Next one assumes: a) linear rotations θn (= slope)
on each side, b) zero shearing strains at the corner points and at the mid-
side nodes. In particular the latter assumption, θα = w,α, makes it possible to
couple the rotations to the deflection w, and it is thereby possible to reduce the
model to the 3×3 degrees of freedom wi, w,xi , w,yi at the three corner points,
so that the result is a triangular plate element with the nine “natural” degrees
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of freedom. Because there are no shape functions for the deflection w inside
the element, a calculation of consistent equivalent nodal forces is not possible.
In other words, it is up to the user how to distribute the load over the nodes.
To calculate shear forces additional assumptions must be introduced.

The DKT element is very popular, because with minimal effort (C0-
functions suffice) a triangular element with the nodal degrees of freedom
w,w,x , w,y is obtained. But of course this element also is nonconforming [51].

DST element

The DST element is closely related to the DKT element [31]. Unlike the DKT
element, the shearing strains γi are not zero at the nodes. The starting point
is a weak formulation of the Reissner–Mindlin equations using a Hellinger–
Reissner functional with w,ϕx, ϕy, γx, γy, qx, qy as independent variables. By
a corresponding weak coupling of the terms (L2 orthogonality), a triangular
element can be derived in which each of the three nodes has degrees of freedom
w,ϕx, ϕy. The name discrete is justified: as in a DKT element the shearing
strains γx and γy are coupled at only three points (the mid-side nodes) to the
other degrees of freedom w,ϕx, ϕy.

5.9 Supports

Standard support conditions are

hinged: w = 0,mn = 0
clamped: w = 0, wn = 0
free: mn = vn = 0

Hinged or clamped supports are often idealized as being completely rigid.
But the correct assessment of the stiffness of a load-bearing wall or an edge
beam is important, because the distribution of the support reactions strongly
depends on the stiffness of the supports; see Fig. 5.23. In Fig. 5.24 a point
load is applied at the end of the load-bearing wall. If the support were really
rigid, the applied load would cause no stresses in the slab.

The more flexible the supports, the more “beautiful” the results, because
the slab has a chance to circumvent constraints that might otherwise lead to
singularities; see Fig. 5.25.

It seems that intermittent supports which typically occur at doors and
window openings (see Fig. 5.26) can be modeled as continuous supports as
long as l/h ≤ 7, where l = length of the opening, h = slab thickness. The effect
of a sleeping beam on the structural behavior is often overrated. The increase
in stiffness due to additional reinforcement is too little to be noticeable.

The vertical stiffness of a load-bearing wall with modulus of elasticity
E is
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Fig. 5.23. Support reactions of a slab (8m× 8 m) under gravity load g = 9 kN/m2

having a free edge on the right-hand side. a) Rigid supports, b) soft support (brick-
work)

k =
E d

h
(kN/m2) , (5.68)

where d is the thickness of the wall and h is its height. This coefficient k times
the displacement w of the wall yields the support reaction (kN/m). In the
same sense,

k =
E A

h
(kN/m) (5.69)

is the stiffness of a column with cross-sectional area A, height h, and modulus
of elasticity E.

The rotational stiffness cϕ of a wall is the bending moment (kN m/m) that
effects a rotation of 45◦ of the upper edge. The rotational stiffness of the head
of a column depends on the support conditions at the bottom of the column:

kϕ =
3 EI

h
hinged support (5.70)

kϕ =
4 EI

h
clamped support . (5.71)

It is obvious that if a column forms a rigid joint with the slab, the support
reaction will increase, because the influence function for the support reaction
will widen.
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Fig. 5.24. Slab on a system of brickwork walls. a) System and single force applied
at the end of an interior wall; b) deflection surface of the slab; c) principal moments;
d) support reactions and assumed punching shear

5.10 Columns

Reliable estimation of the magnitude of the bending moments near columns
and similar point supports is one of the main problems in FE analysis.

Near a point support the bending moments can be split into smooth poly-
nomial (p) parts and singular parts (s),

m ij(x) = mp
ij(x) + P ms

ij(yc,x) yc = center of the column (5.72)

where P is the support reaction. The singular parts (for simplicity it is as-
sumed that ν = 0 and polar coordinates x→ r, ϕ are used)
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Fig. 5.25. Support reactions (kN/m) a) produced by rigid supports, EA = ∞, and
b) by masonry walls
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Fig. 5.26. Slab with intermittent support, slab thickness h = 0.2 m. a) System
and gravity load g; b) bending moments mxx kNm/m; c) principal moments;
d) bending moments in the slab along the interior walls

ms
xx(r, ϕ) = − 1

8 π
[(3 + 2 ln r) cos2 ϕ + (1 + 2 ln r) sin2 ϕ] , (5.73)

ms
yy(r, ϕ) = − 1

8 π
[(3 + 2 ln r) sin2 ϕ + (1 + 2 ln r) cos2 ϕ] , (5.74)

ms
xy(r, ϕ) = − 1

8 π
[(4 + 4 ln r) sin ϕ cos ϕ] , (5.75)

are independent of the shape and size of the slab, and of the support conditions
[116]. Only the smooth parts differ.

These singular parts would also be dominant if the single force P were
replaced by the bearing pressure p = P/Ωc at the head of the column,

m ij(x) = mp
ij(x) +

∫
Ωc

ms
ij(y,x) p dΩy , (5.76)
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Fig. 5.27. Modeling of a point support

because not too far from the column, this integral would be identical to the
influence of the single force P∫

Ωc

ms
ij(y,x) p dΩy ∼= P ms

ij(yc,x) . (5.77)

The problem of the FE method is that polynomial shape functions are not
very good at approximating the singular functions ms

ij .
The best strategy would be to add the singular functions to the FE code.

Otherwise the mesh must be refined (see Fig. 5.27), or techniques such as

• spreading the point support onto multiple nodes (multiple nodes model)
• multiple nodes + elastic support
• multiple nodes and plate stiffness K =∞ near the column
• a single rigid plate element (K =∞) which can rotate freely placed on an

elastic pinned support

may be employed to ease the burden for an FE program to approximate
singular bending moments with polynomial shape functions; see Fig. 5.28.

Recommendations

To keep a reasonable ratio between effort and accuracy we make the following
recommendations:

• Columns should always be modeled with their natural stiffness.
• If no special coupling elements are used, as in Fig. 5.31 d, the element size

should decrease gradually towards the column center.
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Fig. 5.28. Slab with opening: a) gravity load g = 6.5 kN/m2, single force 50 kN
+ edge load 10 kN/m, b) bending moments (kNm/m) caused by the single force,
c) shear forces (kN/m) caused by the single force in two sections, d) reinforcement
as-x at the bottom (qualitative)
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Fig. 5.29. Widening of the elements above the
column head
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Fig. 5.30. Square slab with column: a) system; b) influence function for the support
reaction; c) influence function for the bending moment mxx

• It is a good idea to subdivide the region near the column into a patch of
four elements, so that the midpoint of the patch is the column, and to let
the thickness of the elements increase from the edge of the patch to the
center; see Fig. 5.29.

• If possible the center of the elements should coincide with the vertices of
the column cross section.

• It is sufficient if the center node is supported. A multinode model does
not increase accuracy. In particular a multinode model can easily lead to
unilateral rotational constraints, or simulate a rigid joint.

• In no case should a rigid multi-node model be used.

Other strategies and refinement techniques are possible. The important point
is that something should be done to alleviate for an FE program the task to
approximate the influence functions for the bending moments at the columns
(see Fig. 5.30 c), because these are the functions an FE program must ap-
proximate if it is to calculate the bending moments.

Things are different with regard to the support reaction in the column. The
influence function for the support reaction (see Fig. 5.30 b) is much smoother
and more regular. If the focus were only on the column reactions, no mesh
refinement near point supports would be necessary.
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Fig. 5.31. Hinged square slab with interior column 0.25 m × 0.25 m, length l = 2.75
m. a) Uniform load; b) traffic load on one side; c) FE mesh; d) rigid plate element

Boundary elements

In a BE program the correct singularities (influence functions, Eq. (5.75)),
are built into the code. The column reaction P is so determined that the
deflection of the slab and the compression of the column at the center of the
column are the same, and later—when the bending moments are calculated—
the single force P is replaced by the load bearing pressure p = P/Ωc to avoid
the bending moments becoming singular; see Fig. 5.31.
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Fig. 5.32. Slab, h = 0.4 m, columns 0.4 × 0.4 × 2.45 and columns with drop panels
0.2 ×0.2 × 0.2. a) Bending moments mxx, b) bending moments myy, c) bending
moments mxx, d) bending moments myy

Example

As mentioned earlier one possibility for modeling the column–slab interaction
is to use a rigid slab element, K = ∞, which sits on top of the column on a
pinned support so that it can rotate freely.

A hinged square slab 6 m × 6 m, supported at its center by a single column
25 cm × 25 cm with a length of 2.75 m was analyzed with such an element.
The modulus of elasticity was 30 000 MN/m2, the slab thickness was h = 0.2
m, and Poisson’s ratio ν = 0.2. In the first load case the loading consisted of
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a constant surface load p = 20 kN/m2, and in the second load case the same
load was applied only to the left portion of the slab. The agreement with a
BE solution is very good (see Fig. 5.31 and the following table).

Uniform load Rigid Elastic

FE BE FE BE
mxx column −37 −43.6 −35.2 −38.8 kN m

mxx span 14.2 14.4 14.8 14.9 kN m
Support reaction 253 257 240 241 kN

One-sided load Elastic

FE BE
mxx column, left −16.8 −17.8 kN m

mxx column, right −18.5 −20.8 kN m
mxx span 16.5 16.6 kN m

Support reaction 120 120 kN

Rigid means stiff supports, EA = ∞, and elastic that the stiffness of the
column was EA = 6.82 · 105 kN/m and the walls had a stiffness of 2.62 · 106

kN/m2, corresponding to a modulus of elasticity of 30 000 MN/m2, a wall
thickness of 24 cm, and a height of 2.75 m.

Drop panels and column capitals

Drop panels and column capitals ensure that the bending moments migrate to
the column capitals, as can be seen in Fig. 5.32. The discontinuity in the slab
thickness ensures that the bending moments in a cross section perpendicular
to the discontinuity jump (see Fig. 5.39).

5.11 Shear forces

Shear forces are the least reliable quantities in FE analysis. They easily oscil-
late and tend to exhibit erratic behavior; see Fig. 5.33.

In a Kirchhoff plate model the shear forces are the third-order derivatives
of the unit deflections,

qx = −K(w,xxx +w,yyx ) , qy = −K(w,xxy +w,yyy ) (5.78)

while in a mixed model they are the first-order derivatives of the bending
moments,

qx = mxx,x +mxy,y qy = myy,y +myx,x , (5.79)

and they are therefore often constant because in mixed methods mainly linear
functions are used to approximate the bending momente mxx,mxy,myy.
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Fig. 5.33. Distribution of shear forces in a slab near the supports

In a Reissner–Mindlin model the shear forces are proportional to the shear-
ing strains γx and γy, and thus proportional to the rotations θx, θy, and the
derivatives of w:

qx = K
1− ν

2
λ̄2 (θx + w,x ) qy = K

1− ν

2
λ̄2 (θy + w,y ) . (5.80)

In slabs, no shear reinforcement is necessary if the shear stresses remain
below some threshold limits like τ ≤ 0.5 MN/m2; see Fig. 5.34. Only at
certain critical points the shear stresses exceed these limits. But even then it
is questionable whether it is really necessary to provide shear reinforcement,
because while the numbers indicate a trend, the magnitude of the numbers
itself is dubious.

In Fig. 5.35 the distribution of the shear forces in a horizontal (qx) and a
vertical (qy) cross section in front of a wall is plotted. While the shear force qx

exhibits normal variability the shear force qy grows exponentially to a peak
value of 104 kN/m. At such points it is more appropriate to calculate an
equivalent punching strain, as in the case of the slab in Fig. 5.36. Nowadays
this is done routinely by most FE programs; see Fig. 5.37.

5.12 Variable thickness

If a slab has a smooth surface but the thickness varies the midsurfaces of the
single panels will lie at differing levels; see Fig. 5.38 a. To accurately model
such a plate would require elements for which such a shift of the midsurface
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Fig. 5.34. Slab: a) system, b) shear stresses at the supports usually remain below
the threshold values for shear reinforcement, here 0.5 MN/m2

is possible. Conventional plate elements model such a slab with a uniform
midsurface; see Fig. 5.38 e.

Variations in the thickness of the slab will produce jumps in the internal
actions; see Fig. 5.38. At the interface between two such zones the bending
moment mxx and the curvature κyy = w,yy must be the same,

mL
xx = −KL(wL,xx +ν w,yy ) = −KR(wR,xx +ν w,yy ) = mR

xx , (5.81)

while the bending moment myy will be discontinuous.
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x

qy in a horizontal and

supports, EA = ∞;
b) 3-D view of qx

If Poisson’s ratio is assumed to be zero, ν = 0, then the ratio of these two
bending moments becomes approximately

mL
yy

mR
yy

=
KL

KR

(w,yy +ν wL,xx )
(w,yy +ν wR,xx )

� KL

KR
=

h3
L

h3
R

=
0.23

0.43
=

1
8

. (5.82)

Hence if the thickness h doubles, then because of the h3 the bending moment
increases by a factor of eight.

At column capitals or drop panels, the bending moments peak at an earlier
stage, and they stay at that level for a longer time; see Fig. 5.39.

In the slab in Fig. 5.40 the singularity in the support reactions is very
pronounced and mainly due to the rather large change in the thickness of
the slab from 0.25 m to 0.60 m. Such situations are not uncommon in the
analysis of slabs and then elaborate mathematical theories will not help very
much—rather a sound engineering judgement must cope with such problem-
atic results.

Fig. 5.35. Slab on
masonry walls: a)
shear forces q and

respectively. The val-
ues in brackets are
the results for rigid

a vertical section,

3.13.2
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y
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8
.0
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Fig. 5.36. Support reactions and equivalent punching shear for assumed columns
0.4 × 0.4 and 0.2 × 0.2 respectively at the end of a wall
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Fig. 5.37. Nowadays punching shear checks are done routinely by FE programs at
the end points of load-bearing walls
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Fig. 5.38. Hinged slab: a) cross section; b) system; c) principal moments;

xx and myy; e) 3D-viewd) bending moments m
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Fig. 5.40. The edge load rotates the slab downward but the slab is stabilized by the
torque built up by the support reactions: a) slab and loading b) support reactions of
the continuous support c) support reactions with an intermission in the supporting
wall
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Fig. 5.41. Slab with an attached balcony load case g + p (balcony): a) system,
bending moments mxx in various sections, c) 3-D view of the deflection surface,
bending moment mxx

5.13 Beam models

One must be careful when FE results are checked with beam models. The
gravity load of the slab in Fig. 5.41 is g = 9.5 kN/m2 and the live load on
the balcony (overhang) p = 5 kN/m2. According to beam theory, the bending
moment in the balcony should be mxx = −(g+p) l2/2 = −14.5·1.52/2 = −16.3
kNm/m, while the FE result is mxx � 0.0 kN m/m at the middle of the
transition zone between the slab and the balcony.

A 3-D view of the deflection surface (see Fig. 5.41 c) explains why it makes
no sense to compare the two bending moments. The two solutions happen to
agree only at the quarter points; see Fig. 5.41 d.

At the upper and lower end of the transition zone, the bending moments
mxx of the FE solution considerably exceed the beam results. This makes
sense because the integral of the bending moments in the vertical direction
must be identical to the bending moment in a cantilever beam with the same
vertical extension b,

M =
∫ b

0

mxx dy =
(g + p) b l2

2
, (5.83)

tion and beam solution

b)
d) in the transition zone between slab and balcony, slab solu-

gravity load g = 9.5 kN/m2
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Fig. 5.42. Bending moments in the transition zone between the slab and the balcony
when the balcony is supported in the transition zone by a rigid wall

and these two sides will only match if the bending moment mxx of the slab
increases towards the end points.

If a rigid support is placed under the balcony in the transition zone (see
Fig. 5.42), the bending moments show the opposite tendency: they increase
towards the middle and decrease towards the end points!

5.14 Wheel loads

Let us assume that the contact area of a tire is 40× 20 cm and that the load
it carries is 50 kN. If the slab thickness is 60 cm then at the midsurface the
load carrying area has widened to 100× 80 cm; see Fig. 5.43.

Figure 5.44 gives an impression of how an FE program resolves six such
wheel loads representing a heavy truck traversing a hinged rectangular slab
into a series of line loads that push and pull at the slab; see Fig. 5.44. The
bending moments (see Fig. 5.45) instead give the impression that the slab
carries the original wheel loads.

The elements are conforming square elements based on the shape functions
in (5.17). The element size is 50 cm which means—if the load distribution in
the lesser direction of the tire is neglected—that the equivalent nodal force at
the node directly under the tire is 25 kN and that the two neighboring nodes
carry a load of 12.5 kN.
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Fig. 5.43. Wheel load

line moments. Shown here are

forces, ↑ = tensile forces

5.15 Circular slabs

As noted earlier, zero deflection (w = 0) at the corner point of a hinged
slab implies that the gradient of the deflection surface is also zero, ∇w = 0.
Hence, if the edge of a hinged circular slab is approximated by an n-sided
polygon, then at n + 1 points on the boundary the slab is no longer able
to rotate, w,x = w,y = 0 (see Fig. 5.46). The strange thing is that the finer

Fig. 5.44. An FE program
replaces the wheel loads with
line loads, element loads, and

only the line loads = jumps in
the Kirchhoff shear between
the elements. The arrows
indicate the direction of the
line loads: ↓ = compressive
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Fig. 5.45. The bending moments generated by the truck

the subdivision becomes, the more the edge will appear to be clamped, and
therefore the error in the approximate solution increases, Babuškas paradoxon
[17].

The problem can be ameliorated by switching to a soft support w = 0, i.e.,
when the rotations are set free, w,x 	= 0, w,y 	= 0. Hence, a Reissner–Mindlin
plate should have less trouble with such slabs, but see [9].

5.16 T beams

Hardly any problem attracts so much attention as the modeling of T beams;
see Fig. 5.47. Basically the interaction between a T beam and a slab is a
complex three-dimensional problem. But even though computers are becoming
more and more powerful, true 3-D solutions are much too complicated and
simply require too much effort. Engineers always tried to handle the complex
situation with simplified models, by working with an effective beam width or
other approximate models. The choice of the model depends heavily on the
accuracy to be achieved. Therefore, a multitude of possible models exist, with
differing degrees of accuracy:

X

Y

Z

X

Y

Z
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Fig. 5.46. Hinged circular slab, bending moments (kNm/m)

• The slab and the beam are modeled as folded plates (also called the shell
model).

• The slab is modeled as a folded plate, and the T beam as an eccentric
beam or plate.

• The slab is modeled as a slab, and the T beam as an eccentric beam (with
a normal force).

• The slab is modeled as a slab, and the axis of the T beam lies in the
midsurface of the slab.

The fact that some engineers model T beams as rigid supports (EI =∞)
suggests just how wide the range of possible models is. This approach may
be sufficient to assess the limit load of a beam, but it does not suffice to
produce an affordable solution, or to accurately predict the displacements of
the structure.

The first two models differ in how they treat the web. In the first model
the web is made up of plate elements, i.e., the distribution of the normal
stresses in the web is nonlinear. In the second model, the classical linear stress
distribution of beam theory prevails.

Both models are capable of predicting the distribution of the normal
stresses in the slab very accurately because the effective width is a result of
the analysis. On the screen it can be seen how the effective width bm increases
in the span and how it shrinks near the supports.

In all other cases the models simulate the coupling between a separate T
beam and a slab (see Fig. 5.48), where the slab is either treated as a folded
plate (m ij , qi, n ij) or “simply” as a slab (m ij , qi).

The coupling in the finite element sense means that the movements of
the beam and the movements of the slab are synchronized at the nodes, and
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Fig. 5.47. Slab with T beams: a) system, b) bending moments in the T beams
(kNm)

Fig. 5.48. The nodes of the slab lie atop the nodes of the T beam
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that the work done on both sides of the joints is the same for any virtual
displacement (energy coupling).

If u, w, and ϕ (= rotation) denote the corresponding degrees of freedom
of the slab (S) and beam (B), then

wB = wS uB = uS + ϕS e ϕB = ϕS , (5.84)

or if it is assumed that EA = ∞ in the slab, then the longitudinal displace-
ments uB are simply uB = ϕP · e, where e is the distance of the neutral axis
of the beam from the midsurface of the slab. That is, the slab and the beam
are imagined to be connected by a rigid bar of length e, so that rotations in
the slab lead to longitudinal displacements in the beam.

Depending on whether the eccentricity e is considered or not, we speak of
a centric or eccentric beam model. The models distinguish how the normal
forces resulting from this eccentricity are introduced into the analysis.

As a result of the coupling of various structural elements, a whole series of
incompatibilities and errors arise. Recall that at the interface of two structural
elements, the stresses are no longer pointwise opposite (see Sect. 1.34, p.
177). Only the virtual work of the resultant stresses (plus the volume forces,
etc.) is the same. Furthermore the beam and slab deflect differently, because
the deflection curve w of the beam will in general not be the same as the
deflection surface w(x, y) of the slab. Often a Reissner–Mindlin plate that
exhibits shear deformations is coupled to an Euler–Bernoulli beam that knows
no such deformations. Any idea of a pointwise match between stresses on the
two sides of the interface is misleading.

What is more, we will also see an error in the transfer of the shear stresses,
because the part of the longitudinal displacements resulting from the eccen-
tricity is normally of quadratic type, while the displacements due to the nor-
mal force are most often only linear. This error decreases quadratically, but
it requires that the span be subdivided into several elements, and makes its
presence felt by a stepwise distribution of the normal force.

Even if the stiffnesses are added only at the nodes, it is helpful to think in
terms of the flexural rigidity of the whole system. The flexural rigidity of the
slab increases if the corresponding terms of the beam elements are added:

kw = bm · Eh3

12(1− µ2)
+ EI + EA · e2 . (5.85)

This is also seen if the modified stiffness matrix of the beam is studied:

K =

⎡
⎢⎢⎢⎢⎢⎣

12EI/l3 −6EI/l2 −12EI/l3 6EI/l2

. 4EI/l + EA/l · e2 6EI/l2 2EI/l − EA/l · e2

. . 12EI/l3 6EI/l2

sym. . . 4EI/l + EA/l · e2

⎤
⎥⎥⎥⎥⎥⎦ (5.86)
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Fig. 5.49. Position of the T
beam with respect to the slab

Next most important is—besides the choice of the eccentricity e—which
moment of inertia I is attributed to the T beam. i.e., which cross-sectional
parts we apportion to the T beam; see Fig. 5.49.

If the T beam reaches the upper surface of the slab (Fig. 5.49 b) then

AB = bU d0 e =
d0 − d

2
IB =

bU d3
0

12
− bU d3

12
. (5.87)

If it is assumed that the stiffness of the T beam corresponds to the cross-
sectional values, then

AB = bU dU + bm d e =
bU dU

bU dU + bm d

d0

2
(5.88)

IB =
bU d3

U

12
− bU dU bm d

bU dU + bm d

d2
0

4
. (5.89)

If only the cross-sectional area of the web is attributed to the T beam (see
Fig. 5.49 a) then

IB =
bU d3

U

12
+ bU dU

d2
0

4
. (5.90)

Before any discussion about what the right choice might be we should
pause and recall how “virtual” the coupling is, because neither are the resul-
tant stresses between the beam and the slab the same, nor are the displace-
ments the same. In other words, the only chance we have is to think in terms
of equivalent nodal forces. But then the effects that an error in the coupling
has on the results is no longer so serious and studies have shown that the
simplest strategies often yield the best results.

Therefore, not too much effort should be put into the modeling of the
coupling of T beams and slabs. The trouble taken by the engineer is not
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Fig. 5.50. Deformations of slab and T beam

honored by the FE program. Whether the contributions of the parallel axis
theorem are considered or not, whether cross-sectional areas are considered
twice, and whether the neutral axis runs in the midsurface or below the slab
is only important insofar as the flexural rigidity EI of the T beam and thus
its rotational and lateral flexibility is modeled more accurately; see Fig. 5.50.

The best strategy emerges if the sum of the individual stiffnesses corre-
sponds to the actual stiffness. By choosing a certain effective width from which
the joint stiffness of the combined system (slab + T beam) follows—if the slab
stiffness is subtracted—and an eccentricity e is chosen, the stiffness of the T
beam can be calculated. Normally the effective width has little influence on
the results; a choice of l0/3 is sufficient in most cases, [139].

In the BE method, a T beam is simply a beam (with the same bending
stiffness as the actual T beam) that supports the slab, and as in the force
method, the support reactions are determined such that the deflection of the
slab is the same as that of the T beam.

A study of various FE models—A = T beam as centric beam, B = T beam
as a centric beam, bm =∞, C = T beam as eccentric beam, D = T beam as
rigid support—has shown that the results of the various models are not much
different.
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Model M in the beam myy (kN m/m) mxx (kNm/m) f (mm)

FE A 481 4.7 −30.0 1.8
FE B 493 4.5 −31.2 1.5
FE C 490 4.3 −30.9 1.6
FE D - 0.0 −36.4 0.0
BE 485 5.3 −31.4 1.7

The slab was a two-span slab with the T beam running down the middle of
the plate in the vertical direction (y-direction). The values f are the maximum
deflections of the T beam, M is the maximum bending moment in the T beam,
and myy and mxx are the bending moments in the slab.

If we consider how much uncertainty we must cope with in the design of
reinforced concrete, the choice of the model does not seem that important. But
in a commercial program, the limiting values of the design variables must also
yield reasonable results, and in that respect a systematic disregard of certain
effects, for example the axial displacements of the slab or the postulate that
the design value of the stiffness corresponds to the actual stiffness of the
coupled system, can lead to deviations in the results that cannot be neglected
in the extreme cases.

Recommendations

The best results are obtained if the T beam is modeled as an eccentric beam—
with an increase in the stiffness corresponding to the eccentricity e—and if
axial displacements in the slab are taken into account, because then the effec-
tive width is a result of elasticity theory, i.e., it is automatically determined
by the FE program. In most cases however, it will be sufficient to neglect axial
displacements in the slab and work with an approximate effective width. In
that case one should choose the equivalent moment of inertia Ĩ in such a way
that the sum of the flexural rigidities is equal to the flexural rigidity of the
full T beam:

EItot = bm · E · d3

12(1− ν2)
+

b0 · du
3

12
+ E · bm · d · e2

p + E · b0 · du · e2
b ,

(5.91)

EItot = bm · E · d3

12(1− ν2)
+ EĨ . (5.92)

Here ep and eb denote the distances of the slab midsurface and neutral axis
of the beam from the center of gravity. This implies that Ĩ is the moment of
inertia of the total cross section of the T beam minus the stiffness of the slab
itself.

In any case we recommend that every engineer test his model with regard
to the limits of the design variables.
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Fig. 5.51. Winkler

load

Resultant stresses

Once the nodal displacements are determined, the resultant stresses m ij , qi, n ij

in the slab and MB , VB , NB in the beam, can be calculated. The next prob-
lem is that many programs calculate the resultant stresses separately for the
slab and the beam, because no other strategy exists. If one tries to avoid this
dilemma by modifying the stiffnesses, nothing is gained in the end; rather, the
confusion increases. The result are designs in which the reinforcement lies in
the compression zone of the slab, or where it is simply ignored, which leads
either to unsafe or to wasteful designs.

A design can only be considered correct if the reinforcement is determined
for the complete cross section, and if the fact that the neutral axis lies below
the midsurface of the slab is taken into account:

M = Mbeam + Nbeam · eb +
∫

slab

(myy + nxx · ep) dz , (5.93)

V = Vbeam +
∫

slab

qz dz . (5.94)

With these resultant stresses, the correct reinforcement for the T beam can
be designed.

5.17 Foundation slabs

Winkler model

In the Winkler model it is assumed that the soil acts like a system of isolated
springs that move independently and exert a force cw on the underside of the
slab. This leads to the differential equations

EIwIV + cw = p beam (5.95)
K∆∆ w + cw = p slab . (5.96)

The strain energy products associated with these two equations are

model and gravity
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Fig. 5.52. Concentrated forces acting
on the surface of the half-space

a(w, ŵ) =
∫ l

0

M M̂

EI
dx + c

∫ l

0

w ŵ dx (5.97)

a(w, ŵ) =
∫

Ω

m • κ̂ dΩ + c

∫
Ω

w ŵ dΩ . (5.98)

Hence to the stiffness matrix K of a beam or plate element must only be
added the mass matrix M ,

m ij =
∫

Ω

ϕi ϕj dΩ , (5.99)

so that

(K + cM) u = f . (5.100)

A consequence of this simple spring model is that under gravity load G, the
slab deflection w = G/c is constant and the bending moments are zero; see
Fig. 5.51. Because the individual springs move independently, the soil outside
the loaded region simply retains its original level; see Fig. 5.51.

Inasmuch as this model does not properly replicate even the most basic
aspects of actual soil behavior, it is no surprise that the modulus of sub-
grade reaction c is not a genuine physical quantity, but an artificial (albeit
convenient) tool to simplify the design of foundation slabs. Theoretically the
coefficient not only depends on the soil, but also on the extensions of the
foundation slab. And in principle it is also not a constant, because otherwise
it would not be possible to recover the rapidly increasing soil pressure p near
the edge of a rigid punch from the formula p(x) = c(x) w; see Fig. 1.123 on
p. 175.

Various strategies have been proposed to circumvent these defects. Mostly
these techniques modify the modulus of subgrade reaction c iteratively and
locally in such a way that the shape of the deformed slab and the soil are
approximately the same; see Fig. 5.53.

Half-space model

In a linear elastic isotropic half-space, the displacement field u(x) is the
solution of the system
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Lij uj := −µui,jj − µ

1− 2 ν
uj ,ji = pi (5.101)

where the pi are volume forces and µ and ν are elastic constants.
The displacement field due to a concentrated normal force P on the edge of

the elastic half-space was found by Boussinesq [49]. The vertical displacement
is (see Fig. 5.52)

uB := u3(x,y) =
1 + ν

2π E

[
(x3 − y3)2

r3
+ 2

1− ν

r

]
P (5.102)

and the stresses are

σij = − P

2 π r

r,i r,j r,2
r

r,i =
∂r

∂yi
=

yi − xi

r
. (5.103)

Note that the stresses σij are independent of the modulus of elasticity E. How
this solution can be extended to layered soils was explained in Sect. 2.2, p.
256.

Next let us consider the coupled problem of a foundation slab and the soil.
On the free surface the tractions must be zero, t = 0, while at the interface
between the slab and the soil the deflection must be the same, and the vertical
stresses must have opposite signs,

w = wS t3 − pS = 0 (5.104)

where pS is the soil pressure, which also appears on the right-hand side of the
plate equation with a negative sign because it opposes the load p coming from
the building:

K ∆ ∆ w = p− pS . (5.105)

If the soil pressure p(y) is expanded in terms of nodal shape functions ψi(y)
(hat functions)

p(y) =
∑

i

ψi(y)p i , (5.106)

the soil deflection at a point x is

wS(x) =
∑

i

∫
Ω

uB(x,y)ψi(y) dΩy pi =
∑

i

ηi(x) pi (5.107)

and the stress in the soil is

σzz(x) =
∑

i

∫
Ω

3
2π

(x3 − y3)3

r3
ψi(y) dΩy pi =

∑
i

θi(x) pi . (5.108)

Hence the coupled problem leads to the system
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Fig. 5.53. Deformation patterns

[
K(nn) L(nm)

Iw
(mn) −J (mm)

] [
u(n)

p(m)

]
=
[

f (n)

0(m)

]
FE with soil pressure

wslab − wsoil = 0 (5.109)

where

k ij = a(ϕi, ϕj) l ij =
∫

Ω

ψi ϕj dΩ J ij = ηj(xi) . (5.110)

The matrix Iw results if the n × n unit matrix I is reduced to an m × m
matrix by deleting certain rows and columns. Because only the deflections at
the soil interface are equated, the rotational degrees of freedom in the vector
u are meaningless. So that if the underlined rows

1, 2, 3, 4, 5, 6, 7, 8, 9, . . . (5.111)

in the unit matrix are deleted, the result is the matrix Iw.
With the equivalent nodal forces −L p of the soil pressure the extended

set of equations becomes Ku = f −L p, or K u + L p = f .
The Boussinesq solution is based on the linear theory of elasticity, so E

is Young’s modulus, while in soil mechanics a one-dimensional modulus Es is
used instead, which corresponds to consolidation or oedometer testing, and is
therefore also called the constrained modulus. The two moduli are related via
elasticity theory:

E =
(1 + ν)(1− 2 ν)

(1− ν)
Es , (5.112)
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Fig. 5.54. Foundation slab: a) model; b) cross section; c) bending moments mxx

in the half-space model; d) Winkler model

where ν is the (drained) Poisson’s ratio. For ν = 0 this becomes E = Es

and for ν = 0.2 Young’s modulus E is 90 percent of Es so there is not much
difference between the two.

Comparisons of the Winkler model and half-space model

Ultimately there is little agreement between results based on the Winkler
model and the half-space model, as in the case of the slab in Fig. 5.54 or the
slab in Fig. 5.55, which is stiffened by a ring of shear walls.
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Fig. 5.55. Modified Winkler model: a) plan view and load; b) bending moments
mxx in two sections, constant modulus of subgrade reaction: c) half-space model;
d) in a 1 m strip the modulus of subgrade reaction was raised by a factor of 4

In the half-space model the soil pressure increases towards the edge of the
slab, while in the Winkler model the deflection increases near the edge; see
Fig. 5.55 b. In a first analysis, the modulus of subgrade reaction was assumed
to be constant, c = 10 000 kN/m3 (Fig. 5.55 b), and in a second analysis the
modulus was increased by a factor of 4 in a 1 m strip along the edge. In this
second improved model the agreement of the bending moments mxx with the
half-space model (ES = 50 000 kN/m2) (Fig. 5.55 c and d) is much better.
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Fig. 5.56. 3-D model of a multi-story building on an elastic foundation: a) global
view of the deformed model (the deformation are of course not to scale); b) partial
view
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3-D models

A 3-D analysis of a multi-story building itself is a complex undertaking. Even
for an experienced structural engineer it is not easy to verify the results of
a 3-D FE analysis with independent models. Too many effects combine—the
modeling of the girders, the floor plates, shear walls, columns, etc. usually has
a much larger influence on the accuracy than questions of mathematical rigor:’

If the mechanical model is false high-precision arithmetic will not save the
analysis’.

Given the large deviations between the Winkler model and the half-space
model it should be no surprise then that the choice of the foundation model has
a great impact on practically all results in a 3-D model of a building, see Fig.
5.56. This shows clearly in numerical studies, [94]. Placing a sophisticated 3-D
model of a building on a simple Winkler foundation cannot be recommended.

5.18 Direct design method

The direct design method is a simplified method for the design of concrete
slabs that is applicable if the slab consists of (not too overlong) rectangular
panels and meets other nominal requirements; see for example ACI 318R-95.
Although the method is restricted to evenly distributed loads, it allows an
easy check of FE calculations; see Fig. 5.57.

Other techniques are grid-framework methods and the elastic frame method.
The simplest technique is the slab strip method, in which the slabs are as-
sumed to carry the load in only one direction (one-way slabs).

The slab in Fig. 5.58 was analyzed a) with finite elements, b) the direct
design method, and c) as a system of one-way slabs. The original design called
for a slab with a thickness of 14 cm. In the “manual method” (one-way slabs),
the T beams had to be analyzed separately. To meet the limitations of the di-
rect design method the slab thickness was changed to 18 cm. In the following
table the total weight of the reinforcement resulting from the different design
procedures are listed.

Upper Lower Total Difference
Area = 171.53 m2 kg kg kg kg/m2 kg

FE h = 14 cm 378.1 678.0 1056.1 6.16 +20.9
FE h = 18 cm 350.1 664.7 1035.2 6.03 0

Direct design method 557.5 688.1 1245.6 7.26 +210.4
Uniaxial 599.9 662.2 1262.1 7.36 +226.9



5.19 Point supports 477

boundary elements

5.19 Point supports

Slabs on a regular grid of point supports are often modeled by subdividing
the slab into column strips and middle strips, so that the bending moments
at characteristic points

mss = support moments in the column strip
msf = negative support moments in the middle strip
mfg = midspan bending moment in the column strip
mff = midspan bending moment in the middle strip

can be calculated with plate strip methods. A comparative study of the results
of a plate strip method and an FE analysis (see Figure 5.59) shows good
agreement between the two methods. Influence functions (see Fig. 5.60) can
be a great help in understanding the structural behavior of such slabs.

Fig. 5.57. Compar-
ison between direct

fi-
nite elements and
design method,
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5.58. Three

direct design method,
and c) one-way slabs

design methods: a)
Fig.

finite elements, b)
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Fig. 5.60. Influence functions
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5.20 Study

The slab in Fig. 5.61 a was analyzed with two different FE programs
(SOFiSTiK and Nemetschek) and a BE program [24].

The agreement between the results is very good; see Figs. 5.62, 5.63, 5.64.
Both FE programs used Reissner–Mindlin elements, although the elements
themselves were not identical. The BE solution is based on Kirchhoff’s plate
theory. That the Kirchhoff results agree so well with the Reissner–Mindlin re-
sults demonstrates how small the difference is between the two plate theories,
as long as slabs of normal thickness are considered. Reissner–Mindlin plate
elements essentially behave like Kirchhoff plate elements if shear deformations
are negligible. The quality of the shear forces is also surprisingly good; see Fig.
5.65.

5.21 Sensitivity analysis

The ideas which we developed in Section 1.27 can also be applied to slabs. If
the stiffness ks of a line support Γ—typically a wall—changes, ks → ks+∆ ks,
then the increment in the Dirac energy is the integral

− d(Gc
i , w) = −

∫
Γ

∆ks Gc
i (y,x)w(y) dsy

� −
∫

Γ

∆ks Gi(y,x)w(y) dsy (5.113)

or if we use a one-point quadrature rule

− d(Gc
i , w) � −∆ ks · RG

ks
· Rp

ks
· 1
lΓ

(5.114)

that is if we replace the distributed forces by their resultants, RG = (Gi, ks)
and Rp = (w, ks) along the wall [0, lΓ ].

We applied this idea to the slab in Fig. 5.66 where each single value next
to a wall signals by how much the bending moment myy(x) at the mid point
of the central slab will change if the stiffness of this wall drops by 50 %.
The changes are very small probably because with ks → 0.5 ks the load is
transferred to the neighboring walls which—in this model—are assumed to
retain their original stiffness.
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Fig. 5.61. Slab: a) system, b) FE SOFiSTiK mesh
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Fig. 5.66. Sensitivity analysis: the single numbers indicate how much myy will
change if the stiffness of the walls change by 50 %



6. Shells

Shell elements are the most sophisticated elements because they must repre-
sent membrane and bending stresses equally well, and they must also model

analysis can be discussed in this chapter. Instead we concentrate on the typical
features.

Fig. 6.1. Shell roof

6.1 Shell equations

The midsurface of the shell is represented by the position vector

x(θ1, θ2) = [x1(θ1, θ2), x2(θ1, θ2), x3(θ1, θ2)]T , (6.1)

which depends on the two parameters θ1 and θ2. If either of these is kept fixed,
the position vector traces out parameter curves θi = c on the shell midsurface;
see Fig. 6.2. The two tangent vectors

a1 =
∂x

∂θ1
, a2 =

∂x

∂θ2
(6.2)

and the associated normal vector

the coupling between these two stress states due to the curvature of the ele-
ment; see Fig. 6.1. The topic is so complex that not all aspects of FE shell
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Fig. 6.2. Representation of the shell midsurface by a function x(θ1, θ2)

a3 =
a1 × a2

|a1 × a2| (6.3)

form the basis vectors of a system of curvilinear coordinates. The symmetric
tensor

aik = ai • ak

[
a11 a12

a21 a22

]
=
[

E F
F G

]
(6.4)

is called the first fundamental form of the surface, and the symmetric tensor

bαβ =
∂aα

∂θβ

• a3 = aα,β • a3 (6.5)

is the second fundamental form of the surface (curvature tensor).
The basic property of a shell, as can be seen from the following equations,

which are based on Koiters shell model,

− (n̄
↑

α β − bβ
λ m̄λ α)|α + bβ

α m̄λ α|λ = pβ β = 1, 2

−bα β (n̄α β − bβ
λ m̄λ α)− m̄

↑
α β |α β = p3 , (6.6)

is that membrane and bending effects are coupled. Without the curvature
terms bα β and bβ

α = bβ ρ aρ α, the system would be decoupled. The displace-
ments of the midsurface would be the solutions of a system of second-order
differential equations, and the deflection w—in this model—would be the so-
lution of the biharmonic equation (m̄α β |α β = p or K ∆∆w = p). Other
shell models adopt the Reissner–Mindlin theory for the lateral deflection, but
basically many aspects of 2-D elasticity theory can be carried over to shell
theory—in particular, what was said about about concentrated forces, point
supports, and infinite strain energy.
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The strain energy product

a(u, û) =
∫

S

[
n̄αβ(u) γα β(û) + m̄αβ(u) ρα β(û)

]
ds (6.7)

contains strains

γα β = γβ α =
1
2

(uα|β + uβ |α)− bα β u3 (6.8)

and curvature terms

ρα β = ρβ α = − [u3|α β − bλ
α bλ β u3 + bλ

α uλ|β + bλ
β uλ|α + bλ

β |α uλ

]
(6.9)

that are multiplied by the conjugate resultant stresses

n̄α β = t Cα β λ δ γλ δ m̄α β =
t3

12
Cα β λ δρλ δ , (6.10)

where t is the shell thickness. The elasticity tensor

Cα β λ δ = Cλ δ α β = µ

[
aα λ aβ δ + aα δ aβ λ +

2 ν

1− ν
aα β aλ δ

]
(6.11)

depends like the strain and curvature terms on the metric tensor aik = ai • ak

of the shell midsurface.
What is different in shell theory is that in general the geometry of the shell

midsurface must be approximated as well.

Fig. 6.3. The membrane stress state of a hyperboloid
is governed by a system of hyperbolic differential equa-
tions

Membrane stresses

In a membrane stress state the load is carried solely by normal forces and
plane shear forces:
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nxx =
∫ t/2

−t/2

σxx dz nyy =
∫ t/2

−t/2

σyy dz nxy =
∫ t/2

−t/2

σxy dz . (6.12)

Whereas in structural mechanics the differential equations are normally of
elliptic type, the type of the equations that govern membrane stress states
depend on the curvature of the shell. At each point of the shell midsurface,
two orthogonal directions exist with respect to which the curvature κ = 1/R
attains its maximum (κ1) and minimum (κ2) value, respectively. The Gaussian
curvature

K = det bβ
α =

1
κ1 κ2

(6.13)

determines the type of the differential equations that relates the displacements
to the load.

In cooling towers the Gaussian curvature is negative, K < 0 (see Fig. 6.3)
and therefore the differential equations are of hyperbolic type. In cylindrical
shells the Gaussian curvature is zero (K = 0), so that the equations are of
parabolic type and only in a sphere where K > 0 are the equations of elliptic
type; see Table 6.1. The problem is that St. Venant’s principle holds only

Table 6.1. Gauss curvature and type of differential equations

Gauss curvature type of equations example

positive elliptic sphere
zero parabolic cylindrical shell
negative hyperbolic cooling tower

for systems of elliptic equations, i.e., in a cooling tower, local disturbances
at the lower edge of the shell propagate along a generator straight up to the
rim of the shell. (In reality, cooling towers are not pure hyperbolic shells.) In
bending-dominated problems the situation is different, because the equations
are of elliptic type [189] and St. Venant’s principle applies.

6.2 Shells of revolution

In an axisymmetric shell and in a stress state with rotational symmetry only
displacements normal to the meridian w, and in the tangential direction u
will develop; see Fig. 6.4. Therefore a subdivision of the meridian (= the
generator) into beam-like straight or curved elements suffices.

The relations between the arc length s on such an element and the char-
acteristic quantities of a shell of revolution are (see Fig. 6.4)
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Fig. 6.4. Shell of revolution

Rϑ =
r

cos ϕ
, Rs = − ds

dϕ
, sin ϕ =

dr

ds
, cos ϕ = −dz

ds
. (6.14)

Here Rϑ and Rs are the principal radii of curvature. If straight elements are
used, as in a frustum or cylindrical shell the radius of curvature in the plane
of the meridian is infinite, Rs =∞. The strains are

εs =
d u

d s
+

w

Rs
εϑ =

u sinϕ + w cos ϕ

r
(6.15)

κs =
d

ds

( u

R

)
− d2w

d s2
κϑ =

sin ϕ

r

(
u

Rs
− dw

d s

)
, (6.16)

where εs and εϑ are the strains of the midsurface in the direction of a merid-
ian (arc length s) or in the tangential direction (ϑ) and κs and κϑ are the
curvatures.

The strain energy product of an element is

a(u, u) = εT

∫ l

0

[
DM 0
0 DK

]
2 π r ds ε (6.17)

where with C = E t/(1− ν2), D = E t3/(12(1− ν2)),

DM = C

[
1 ν
ν 1

]
DK = D

[
1 ν
ν 1

]
ε =

⎡
⎢⎢⎣

εs

εϑ

κs

κϑ

⎤
⎥⎥⎦ , (6.18)

and the resultant stresses are[
ns

nϑ

]
=

E t

1− ν2

[
1 ν
ν 1

] [
εs

εϑ

]
(6.19)[

ms

mϑ

]
=

E t3

12 (1− ν2)

[
1 ν
ν 1

] [
κs

κϑ

]
. (6.20)

In the sense of isoparametric elements, the element is interpreted as the C1

map of a master element −1 ≤ ξ ≤ +1 on which four cubic shape functions
corresponding to the two nodes ξ1 = −1, ξ2 = +1 and ξ0 = ξi ξ, are defined:
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ϕ
(1)
i (ξ) =

1
4
(ξ0 ξ2 − 3 ξ0 + 2) ϕ

(2)
i (ξ) =

1
4
(1− ξ0)2 (1 + ξ0) . (6.21)

These make it possible to interpolate the shape of the element, i.e., the func-
tions r and z,

r(ξ) =
2∑

i=1

[
ϕ

(1)
i (ξ) r(ξi) + ϕ

(2)
i (ξ)

dr

dξ
(ξi)

]
(6.22)

(as well as z(ξ)), and the displacements u and w of the meridian in a C1

continuous fashion. The degrees of freedom at the element nodes are the dis-
placements and the first-order derivative with respect to the arc length s

ue = [ui, wi, u
′
i, w

′
i]

T
. (6.23)

The C1 continuity of the displacement u is unusual, and must be dropped at
nodes where the thickness of the shell changes, because then the strains εs

are discontinuous [258].

6.3 Volume elements and degenerate shell elements

If shells are approximated by volume elements, the number of degrees of free-
dom easily becomes very large, and the large differences in the membrane and
bending stiffnesses make the element sensitive to rounding errors.

A better strategy is to design special degenerate shell elements (see Fig.
6.5) by modifying volume elements. Because these shell elements inherit their
properties from 3-D elements, they are of Reissner–Mindlin type, and are also
called Mindlin shell elements.

Fig. 6.5. Degenerate shell element, reduction
of a volume element with 20 nodes to a shell
element with 8 nodes

The reduction is essentially done by mapping all terms to the shell mid-
surface while maintaining contact with points outside by means of a vector
v3 � n:

x(ξ, η, ζ) =
∑

i

xi ϕi(ξ, η) +
∑

i

ϕi(ξ, η)
ζ

2
v3i . (6.24)
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The first sum is an expansion in terms of the intrinsic shell coordinates ξ, η of
the nodes, and the second sum is the part that extends beyond the midsurface.

In the same sense the displacement field of the shell is developed by starting
at the midsurface (ζ = 0)

u(ξ, η) =
∑

i

ui ϕi(ξ, η) +
∑

i

ϕi(ξ, η)
ζ ti
2

[v1i αi − v2i βi] , (6.25)

and letting the second part translate the rotations αi and βi (axes v1i and
v2i in the tangential plane) into displacements at levels ζ ti/2 above the mid-
surface.

Next one can derive a stiffness matrix for a shell element by letting σ33 = 0:

Ke =
∫ +1

−1

∫ +1

−1

∫ +1

−1

BT E B det J dξ dη dζ . (6.26)

Here too one must be careful, because as t → 0 shear-locking might set in,
and if the element is curved, then so might membrane locking. But there is a
whole catalog of countermeasures with which to improve the situation [26].

6.4 Circular arches

The problem of shear locking in shell elements is best explained by studying
the modeling of arches with finite elements.

Fig. 6.6. Circular
arch

The displacement of a point on the neutral axis can be split into a tan-
gential movement u and a movement w orthogonal to the axis; see Fig. 6.6.
To first order, the strains in a fiber at a distance z from the axis are [70]

εs = εm + z κ , where εm = u,s +
w

R
κ =

u,s
R
− w,ss . (6.27)
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Taking the integral of the strain energy density E ε2
s across the arch thickness

t, the strain energy product becomes

a(u,u) =
∫ l

0

EAε2
m ds +

∫ l

0

EI κ2 ds u = {u, w} , (6.28)

where E is the modulus of elasticity, A = b t is the cross-sectional area and
I = b t3/12 is the moment of inertia of the cross section of the arch.

In the case of rigid-body motion, the strains and curvatures are zero,
εm = κ = 0, so that

u = b1 cos ϕ + b2 cos sin ϕ + b3 , w = b1 sin ϕ− b2 cos ϕ , ϕ =
s

R
.

(6.29)

The constants b1 and b2 represent displacements in two orthogonal directions
and b3 is a rotation about the center of the circular arch. Upon such a rotation
of the arch w = 0, and all points move in a tangential direction, u = b3.

In a thin arch the strain εm of the neutral axis is essentially zero, and all
variations in u are mainly attributable to the deflection w:

εm = 0 → u,s +
w

R
= 0 . (6.30)

Employing linear polynomials for u, and cubic for w,

u = a0 + a1 s w = b0 + b1 s + b2 s2 + b3 s3 , (6.31)

we have

εm = (a1 +
b0

R
) +

b1

R
s +

b2

R
s2 +

b3

R
s3 . (6.32)

Next, if the thickness t of the arch tends to zero, then so must the strains
in the neutral axis of the arch, εm = 0,

a1 +
b0

R
= b1 = b2 = b3 = 0 , (6.33)

implying that the flexibility of the arch must tend to zero, because only the
term w = b0 is left to model the deflections. All derivatives of this deflection
curve are zero (w,s = w,ss = w,sss = 0). As t→ 0 the element stiffens. This is
the so-called membrane locking . The term EA tends to dominate the term EI
in the strain energy product and any attempt to achieve εm = 0 by increasing
the ratio EA/EI →∞ ensures that the deflection becomes much too small.

These effects can be minimized by reduced integration. The curvature terms
in (6.28) are integrated with a two-point formula, but for the membrane part
only a one-point formula is used, which means that the integrand is only
evaluated at the center point, s = 0. At this point

a1 +
b0

R
= 0 , (6.34)

and therefore only one degree of freedom must be sacrificed to comply with
the constraint.
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Fig. 6.7. Analysis of a water tank with flat plate elements

6.5 Flat elements

Flat elements are plate elements in which membrane and bending action are
both included. The coupling between these two actions occurs at the nodes,
and is due to the varying orientation of the elements.

Most shells are probably analyzed with such flat plate elements (see Fig.
6.7, 6.12 and 6.13), because the modeling is easy and the accuracy in most
cases is sufficient. It is guaranteed that flat elements can represent rigid body
motions and because the membrane and bending stresses within an element
are decoupled it easy to understand and control the behavior of such elements.

The first idea is to use triangular elements; see Fig. 6.8. If each node of
the triangle has three degrees of displacement and three degrees of rotation,
then such an element has 18 degrees of freedom,

u = [ui,vi,ϑzi,wi,ϑxi,ϑyi]
T

, (6.35)

where the individual vectors ui = [u1, u2, u3]
T and ϑzi = [ϑz1, ϑz2, ϑz3]T , etc.

are respectively the displacements and rotations of the nodes.
Let the matrix KM be the associated 9 × 9 stiffness matrix accounting

for the membrane stresses of the element. For simplicity, a DKT element is
chosen for the bending stresses. If KB denotes the associated stiffness matrix,
then membrane and bending stresses are indeed decoupled:

Ke u =

[
KM

(9×9) 0(9×9)

0(9×9) KB
(9×9)

]
⎡
⎢⎢⎢⎢⎢⎢⎣

ui

vi

ϑi

wi

ϑxi

ϑyi

⎤
⎥⎥⎥⎥⎥⎥⎦ = f . (6.36)

Only if the midsurfaces of the neighboring elements do not lie in the same
plane will the two stress states (in general) become coupled.
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Fig. 6.8. Flat elements

Fig. 6.9. An orig-

plane [160]

Fig. 6.10. Twisted
beam problem [160]

If the CST element is used for membrane stresses, there are no rotational
degrees of freedom about the vertical axes,

KM u =
[

KCST
(6×6) 0(6×3)

0(3×6) 0(3×3)

]⎡⎣ui

vi

ϑzi

⎤
⎦ , (6.37)

which means that a “flat” node causes the global stiffness matrix to become
singular. To avoid such unconstrained modes, artificial rotational degrees of

where the four nodes
no longer lie in a

inally flat element
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freedom are built in:

α E V

⎡
⎣ 1.0 −0.5 −0.5
−0.5 1.0 −0.5
−0.5 −0.5 1.0

⎤
⎦
⎡
⎣ϑz1

ϑz2

ϑz3

⎤
⎦ =

⎡
⎣Mz1

Mz2

Mz3

⎤
⎦ . (6.38)

Here E and V are the modulus of elasticity and the volume of the element,
and α is a scaling factor (< 0.5) [258]. In other words the null matrix on
the diagonal in (6.37) is replaced by this matrix. One easily recognizes that
rigid-body motions such as ϑz1 = ϑz2 = ϑz3 will not give rise to couples at
the nodes.

6.11.

structure under gravity load

A good choice for flat elements is a combination of the Wilson Q4+2 el-
ement and a four-node Reissner–Mindlin element. But one must be careful:
while the nodes of a triangular element always lie in a plane this is not guar-
anteed in quadrilaterals. Therefore one must modify the stiffness matrix of
the element to account for the chance that the nodes do not lie in a plane; see
Fig. 6.9. One idea is to write

K̂ = ST K S , (6.39)

where the matrix S represents the coupling between the degrees of freedom
of the displaced nodes and the nodes in the plane of the element,

Fig. Analysis of a
curved staircase with flat ele-
ments: view of the deformed
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Fig. 6.12. Clarifier, analysis with flat elements: a) system, b) deformations due to
nonuniform temperature changes

u = S û , (6.40)

and the transposed matrix ST transforms the equivalent nodal forces f of the
element into the equivalent nodal forces f̂ of the displaced nodes:

f̂ = ST f , f i = [N (i)
x , N (i)

y , P (i)
z ,M (i)

x ,M (i)
y , 0]T . (6.41)

Here it is assumed that the displaced nodes are connected to the element via
small rigid bars of length h, and that the equilibrium conditions can thus be
employed to formulate a relation between the equivalent nodal forces f and
f̂ , i.e., to establish the matrix ST .

The lever h will give rise to moments
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Fig. 6.13. Intersection of two tubes, analysis with flat elements: a) system,
b) deformations

M̂x = ±h Ny , M̂y = ±h Nx (6.42)

at the nodes. But as explained in [160], this technique is not to be recom-
mended, because the nodal moments tend to disturb the pure membrane stress
state. Therefore it is more appropriate to account for the moments due to the
displaced nodes by means of vertical couples. In this way, for example, the
moment due to the two forces F14 and F41 (see Fig. 6.9) is accounted for by
two opposing forces:

F1z = −F4z =
h

l14
(F14 − F41) . (6.43)
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If the twist of a plate strip is to be modeled (twisted beam problem), then
by transferring the moment to the nodes, a moment Mz will also be generated
about the vertical axis, which because there is no corresponding stiffness will
lead to a failure of the model. To avoid this behavior, one can balance the
z-component of the moment M1 (see Fig. 6.10) with a pair of vertical forces:

FA = −FB =
sin α

lAB
M1 . (6.44)

Flat elements model a shell as a faceted surface, and these models are more
sensitive to singularities than a curved shell. This can be seen in the model
of a steel staircase in Fig. 6.11, where under gravity load, stress singularities
develop at those points where the curvature of the structure is large; see Fig.
6.11.

6.6 Membranes

Tents or similar space-like membranes can be analyzed with special flat ele-
ments by combining the structural behavior of a prestressed membrane with
a rigid cloth.

If it is assumed that the horizontal prestressing force H in the membrane
is uniform in all directions, the deflection of the membrane satisfies the dif-
ferential equation

−H (w,xx +w,yy ) = p p = wind pressure . (6.45)

As expected, this is the extension to 2-D problems of the one-dimensional
equation −H w′′ = p of a taut rope. If the model is extended and it is assumed
that the prestressing force in the x-direction Hx is different from the force Hy

in the y-direction, then it seems reasonable to modify the differential equation
as follows

−Hx w,xx−Hy w,yy = p . (6.46)

Green’s first identity for this equation is

G(w, ŵ) =
∫

Ω

(−Hx w,xx−Hy w,yy ) ŵ dΩ (6.47)

+
∫

Γ

(Hx w,x nx + Hy w,y ny) ŵ ds− a(w, ŵ) = 0 , (6.48)

where the strain energy product is

a(w, ŵ) =
∫

Ω

(Hx w,x ŵ,x +Hy w,y ŵ,y ) dΩ . (6.49)

To understand how the analysis proceeds, let us consider a bar element.
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Fig. 6.14. Rotation of a bar element

Originally the stiffness matrix of the bar element is a 2 × 2-matrix, which
is enlarged to a 4× 4-matrix to account for possible rotations of the element
(see Fig. 6.14):

EA

le

[
1 −1
−1 1

] [
u1

u2

]
⇒ EA

le

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0
−1 0 1 0

0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ . (6.50)

Assuming that the bar element is stabilized by a horizontal force H, we obtain

Ku =

⎧⎪⎪⎨
⎪⎪⎩

EA

le

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0
−1 0 1 0

0 0 0 0

⎤
⎥⎥⎦+

H

le

⎡
⎢⎢⎣

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭
⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ = f .

(6.51)

The horizontal force H adds vertical stiffness to the bar, because the force H
tends to pull the bar straight.

The structure of this matrix resembles the stiffness matrix of a beam in
second-order beam theory. The first part is the linear stiffness matrix, and the
second is the so-called geometric stiffness matrix, which is just the stiffness
matrix of the rope,

H

le

[
1 −1
−1 1

] [
u1

u2

]
=
[

f1

f2

]
, (6.52)

extended to 4× 4. Hence the stiffness matrix of a membrane element consists
of the stiffness matrix KS of the cloth (orthotropic material) and a membrane
matrix KM :

K = KS + KM . (6.53)

An appropriate choice for the membrane part is the rectangular Q4+2 ele-
ment, and to these four bilinear shape functions are added the unit deflections
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Fig. 6.15. Roofing of sand boxes with a prestressed membrane: a) system,

b) deformations due to gravity load + live load + snow

of the four nodes, so that the membrane matrix KM contains the strain energy

kM
ij =

∫
Ω

(Hx ϕi,x ϕj ,x +Hy ϕi,y ϕj ,y ) dΩ . (6.54)

Hence, a prestressed membrane is analyzed in two steps: first the shape is
found, then the stresses are calculated.

In the first step only the geometric matrix due to the prestressing forces is
activated. In other words, in this step the extensional stiffness is assumed to be
zero. To prevent the nodes from swimming on the surface of the membrane, as
if on a soap film, the nodes are stabilized in the tangential direction by small
springs. In the second step the stresses within the membrane are calculated.

Figure 6.16 a illustrates finding the shape of a tightly stressed rope. The
deflection of nodes 1 and 4 is given: u1 = 1.0 m, u4 = 1.4 m. The unknowns are
the associated nodal forces f1, f4 and displacements u2, u3 of the free nodes,
so that the system for the unknowns is

found, then the stresses are calculated; see Fig. 6.15.
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Fig. 6.16. Determining the shape a) of a taut rope, and b) of a membrane

Fig. 6.17. Determining the shape of a membrane supported along its edge:

H

le

⎡
⎢⎢⎣

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1.0
u2

u3

1.4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f1

0
0

f4

⎤
⎥⎥⎦ . (6.55)

The starting point for finding the shape of a membrane can either be a
3-D system (see Fig. 6.17) or a plane system. If the analysis starts with a
3-D shape, the individual elements are initially flat. If it starts with a plane

a) starting position, b) final shape



502 6 Shells

Fig. 6.18. Wind load: a) undeformed system, b) deformations due to wind load;
(the maximum deflection at the center of the membrane was about 30 cm)

Fig. 6.19. Wind load a) undeformed system b) deformations under wind load, the
maximum deflection at the center of the membrane was about 30 cm

system as in Fig. 6.16 b, the edge of the membrane is moored at the supports
and pulled upwards.

Once the shape has been found, the stresses resulting from wind loads and
snow must be determined. While snow is a simple load case, the wind load
depends on the height, position and orientation of the individual elements; see
Figs. 6.18 and 6.19. Under the action of high wind pressure, the magnitude of
the tensile stresses from the prestressing forces may not be great enough and
wrinkles will develop in the membrane. Because the full wind load does not
converge in one step, the wind load must be applied in single steps instead.



7. Theoretical details

7.1 Scalar product

Small boldface letters denote vectors and capital bold letters matrices,

u =
[

ux

uy

]
E =

[
εxx εxy

εyx εyy

]
S =

[
σxx σxy

σyx σyy

]
(7.1)

with the exception of G0 which denotes the vector-valued Green’s function
(displacement field) of a plate.

The gradient of a scalar-valued function u is a vector, and the gradient of
a vector-valued function u = [u1, u2]T is a matrix,

∇u =
[

u,1
u,2

]
∇u =

[
u1,1 u1,2
u2,1 u2,2

]
ui,j :=

∂ui

∂xj
(7.2)

while the operator div does the opposite. The divergence of a matrix-valued
function is a vector-valued function, and the divergence of a vector-valued
function q = [q1, q2]T is a scalar-valued function:

div S =
[

σ11,1 +σ12,2
σ21,1 +σ22,2

]
div q = q1,1 +q2,2 . (7.3)

The following identity that relates these two operators∫
Ω

div S • û dΩ =
∫

Γ

S n • û ds−
∫

Ω

S •∇ û dΩ (7.4)

is fundamental for structural mechanics. Note that if S = ST , then∫
Ω

−divS • û dΩ +
∫

Γ

S n • û ds =
∫

Ω

S •∇ û dΩ

=
∫

Ω

S •
1
2
(∇ û +∇ ûT ) dΩ , (7.5)

which is just the statement that δWe = δWi if û is considered to be a virtual
displacement field.

Vector fields u obey the same rule,
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Ω

div u û dΩ =
∫

Γ

(u • n) û ds−
∫

Ω

u •∇û dΩ , (7.6)

and in 1-D problems div = ()′ and ∇ = ()′ are the same:∫ l

0

u′ û dx = [u û]l0 −
∫ l

0

u û′ dx . (7.7)

By default all vectors are column vectors, and a dot indicates the scalar prod-
uct of two vectors:

f • u = fxux + fyuy . (7.8)

Occasionally the notation f • u = fT u is also used. The dot also denotes the
scalar product of the strain and stress tensor, as in

Wi =
1
2

∫
Ω

E • S dΩ

=
1
2

∫
Ω

[εxx σxx + εxy σxy + εyx σyx + εyy σyy]︸ ︷︷ ︸
scalar product

dΩ . (7.9)

Other notations used in the literature for the scalar product of matrices are

E • S = tr (E ⊗ S) = E : S (tr = trace) . (7.10)

where E ⊗ S is the direct product of the two tensors E and S. The direct
product of two vectors is a matrix

f ⊗ u =
[

fx

fy

]
⊗
[

ux

uy

]
=
[

fx · ux fx · uy

fy · ux fy · uy

]
= A (7.11)

where aij = fi · uj .
The scalar product of a strain and stress vector

ε =

⎡
⎣ εxx

εyy

γxy

⎤
⎦ σ =

⎡
⎣σxx

σyy

τxy

⎤
⎦ γxy = 2 εxy , τxy = σxy , (7.12)

is—because of the factor 2 in γxy = 2 εxy—the same as the scalar product of
the tensors; E • S = ε • σ.

The scalar product

a(u, û) =
∫

Ω

S • Ê dΩ =
∫

Ω

C[E(u)] • E(û) dΩ (7.13)

is called the strain energy product between two displacement fields. It is a
bilinear form, because for any numbers ci, di,
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a(c1u1 + c2u2, d1û1 + d2û2) =
2∑

i,j=1

ci dj a(ui, ûj) . (7.14)

The scalar product between the vector u and the vector f is the projection
of the vector u onto the vector f

u • f = |u| |f | cos ϕ . (7.15)

Because the projection of u onto f should be the same as the projection of
f onto u we expect the scalar product to be symmetric, cos(ϕ) = cos(−ϕ),
which the scalar product (7.13) is. According to Green’s first identity—here
in an abbreviated symbolic notation

G(u, û) = p(û)− a(u, û) = 0 , (7.16)

the strain energy product between u and û is equivalent to the work done
by the load p acting through û and because of the symmetry of the scalar
product this can also be expressed as

p(û) = a(u, û) = a(û,u) = p̂(u) (7.17)

which is Betti’s theorem.
The integral ∫ l

0

p(x) w(x) dx =: (p, w) (7.18)

is called the L2 scalar product of p and w. The notations

(p,u) =
∫

Ω

p • u dΩ =
∫

Ω

[pxux + pyuy + pzuz] dΩ (7.19)

and

(S,E) =
∫

Ω

S • E dΩ

=
∫

Ω

[σxx εxx + σxy εxy + σyx εyx + σyy εyy] dΩ (7.20)

are extensions of this concept to vector-valued and matrix-valued functions,
respectively. The expression

||f || 0 := (f, f)1/2 =

[∫ l

0

f(x)2 dx

]1/2

(7.21)

is the L2-norm of the function f(x). The space of all functions defined on (0, l)
with a finite L2-norm, ||f ||0 < ∞, is called L2(0, l). Note that the function
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f(x) = 1/
√

x can be integrated but its L2-norm is infinite because of the
square in (7.21) ∫ 1

0

1√
x

dx = 2
∫ 1

0

1
x

dx =∞ . (7.22)

On the other hand if two functions f and g lie in L2, then the scalar product
of f and g exists, it is bounded

||f ||0 <∞, ||g||0 <∞ ⇒
∫ l

0

f g dx <∞ . (7.23)

Note that ||f ||0 = ||g||0 does not imply that ||f − g||0 = 0. In the Euclidean
norm, for example, all unit vectors ei have the same length, ||ei|| = 1 but of
course their tips do not touch, so that ||e1 − e3|| 	= 0.

Hence, if the FE solution seems to converge, because the variations in the
strain energy a(uh,uh) = fT u come to a halt, then (theoretically at least)
this does not imply that two consecutive solutions are the “same”:

||uh(1) ||E ∼ ||uh(2) ||E 	⇒ ||uh(1) − uh(2) ||E  1 . (7.24)

The inequality

|
∫ l

0

f g dx| ≤
[∫ l

0

f2dx

]1/2 [∫ l

0

g2dx

]1/2

(7.25)

or

|(f, g)| ≤ ||f ||0 ||g||0 (7.26)

is known as Cauchy-Schwarz inequality .
The extension of the space L2(Ω) to higher derivatives constitutes the

Sobolev spaces. Imagine that we form a one-dimensional array that contains
the function u and all its derivatives up to the order m, for example

u(1) := [u, u,x , u,y ]T m = 1 . (7.27)

The Sobolev space Hm(Ω) then consists of all functions u for which the L2

scalar product of these vectors is bounded,

||u||2m =
∫

Ω

u(m) • u(m) dΩ :=
∫

Ω

[uu + u,x u,x + . . . ] dΩ <∞ (7.28)

i.e., u and all its derivatives up to order m are square integrable (they lie in
L2(Ω)):

||u||21 =
∫

Ω

u(1) • u(1) dΩ =
∫

Ω

[uu + u,x u,x +u,y u,y ] dΩ <∞ . (7.29)
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The space Hm(Ω) can also be seen as the completion of C∞(Ω) in the norm
||.||m, and the space Hm

0 (Ω) ⊂ Hm(Ω) is the completion of C∞
0 (Ω) (= the

functions in C∞(Ω) which vanish near the boundary).
On H2(Ω) the scalar product of two functions is defined as

(u, v)H2 =
∫

Ω

u(2) • v(2) dΩ =
∫

Ω

[u v + u,x v,x +u,y v,y

+u,xx v,xx +u,xy v,xy +u,yx v,yx +u,yy v,yy ] dΩ (7.30)

and the norm is

||u||2 =
√

(u, u)H2 . (7.31)

The extension of these concepts to other spaces Hm(Ω) is obvious.
An expression such as

|u|2 :=
[∫

Γ

(u,2xx +u,2xy +u,2yx +u,2yy ) dΩ

]1/2

(7.32)

would be called a semi-norm, because |u|2 = 0 with u = a+ b x+ c y does not
imply that u = 0.

In abstract terms the FE displacement field uh is the solution of the vari-
ational problem

a(uh,v) = p(v) for all v ∈ Vh ⊂ V , (7.33)

where V is a Hilbert space usually endowed with a Sobolev norm ||.||m, and
p(v) is a continuous linear functional.

An important property of the strain energy product is that it establishes
an equivalent norm on V ,

c1 ||u||m ≤
√

a(u,u) ≤ c2 ||u||m (7.34)

where c1 and c2 are independent of u. Formally this so-called energy norm

||u||E :=
√

a(u,u) = (S,E)1/2 =
[∫

Ω

S • E dΩ

]1/2

(7.35)

is a only a semi-norm. To actually be a norm on V , the space V must not
allow rigid-body motions (that is, enough supports must be provided), because
otherwise the energy norm cannot separate the elements of V . This property
guarantees that if the norm of u− û is zero, then u = û:

||u− û||E = 0 ⇒ u = û . (7.36)

In this book the same letter p is used for the loads that constitute the load case
p and the load case p itself. In an abstract sense, any load case p constitutes
a functional p(ϕi) on Vh,
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p(ϕi) :=
∫

Ω

p ϕi dΩ = (p, ϕi) (7.37)

where it is understood that the functional may contain additional terms, as
in

p(ϕi) :=
∫

Ω

p ϕi dΩ +
∫

Γ

t ϕi ds + P ϕi(x) , (7.38)

if edge loads, t, and point loads, P , are also present but the simplest form is
(7.37).

7.2 Green’s identities

’The principle of virtual displacements is nothing else than integration by
parts’ and so we start this section with repeating the rules for integration by
parts before we formulate Green’s identities which are based on integration
by parts. These identities encapsulate the basic principles of mechanics and
play a fundamental role in finite element analysis.

Integration by parts

Let u and û be two functions with continuous first derivatives in the interval
(0, l) then ∫ l

0

u′ û dx = [u û] l
0 −

∫ l

0

u û′ dx (7.39)

and in higher dimensions with functions u and û from C1(Ω),∫
Ω

u,xi
û dΩ =

∫
Γ

uni û ds−
∫

Ω

u û,xi
dΩ , (7.40)

where ni is the i-th component of the normal vector n on the edge Γ of the
domain Ω.

For example let û = 1 and u′ = ε the strain in a rod then∫ l

0

ε dx = u(l)− u(0) . (7.41)

In a plate where εxx = ux,x the same statement is∫
Ω

εxx dΩ =
∫

Γ

ux nx ds . (7.42)

If for example Ω = a× b is a rectangle with nx = ±1 on the vertical edges ΓL

and ΓR and nx = 0 on the horizontal edges then the result resembles the 1-D
result ∫

Ω

εxx dΩ =
∫

ΓR

ux ds−
∫

ΓL

ux ds . (7.43)



7.2 Green’s identities 509

of a bar element dN+p dx = 0

Bars

The equilibrium condition
∑

H = 0 for a bar element dx (see Figure 7.1)
leads to the differential equation

− EAu′′ = p , (7.44)

where u(x) is the longitudinal displacement, p is the applied load, and EA
is the (constant) stiffness of the bar. If the left-hand side of the differential
equation is multiplied by a virtual displacement δu and we integrate by parts∫ l

0

−EAu′′ δu dx = [−EAu′ δu] l
0 −

∫ l

0

−EAu′ δu′ dx , (7.45)

the result is Green’s first identity:

G(u, δu) =
∫ l

0

−EAu′′ δu dx︸ ︷︷ ︸
start

+ [N δu] l
0 −

∫ l

0

EAu′ δu′ dx︸ ︷︷ ︸
transformed terms

=
∫ l

0

−EAu′′ δu dx + [N δu] l
0︸ ︷︷ ︸

δWe

−
∫ l

0

EAu′ δu′ dx︸ ︷︷ ︸
δWi

= 0 . (7.46)

The terms in brackets

[N δu]l0 = N(l) δu(l)−N(0) δu(0) (7.47)

are the virtual external work done by the normal forces N = EAu′ at the
ends of the bar.

The expression B(u, û) = G(u, û)−G(û, u) = 0− 0 = 0 is Green’s second
identity,

B(u, û) =
∫ l

0

−EAu′′ û dx + [N û] l
0︸ ︷︷ ︸

W1,2

− [u N̂ ] l
0 −

∫ l

0

u (−EA û′′) dx︸ ︷︷ ︸
W2,1

= 0

,(7.48)

and it formulates Betti’s theorem.

Fig. 7.1. Static equilibrium
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Fig. 7.2. Archimedes’ dilemma: all effort is consumed by the strain energy a) the
Earth will not move one iota b) the rubber band will stretch and stretch and ...

Green’s first identity basically is of the form

G(u, û) = p(û)− a(u, û) = δWe(u, û)− δWi(u, û) = 0 (7.49)

or if it is solved for the strain energy product

a(u, û) = p(û) . (7.50)

Note that a(u, û) is the first-order derivative of the quadratic form

F (u) =
1
2

a(u, u) , (7.51)

that is

F ′(u) :=
[

d

dε

1
2

a(u + εû, u + εû)
]

ε=0

= a(u, û) . (7.52)

Beam

The differential equation of a beam with constant bending stiffness EI is

EI wIV (x) = p(x) . (7.53)

The bending moment is M(x) = −EI w′′(x) and the shear force is V (x) =
−EI w′′′(x). Green’s first identity for the beam equation is

G(w, ŵ) =
∫ l

0

EI wIV ŵ dx + [V ŵ −M ŵ′] l
0︸ ︷︷ ︸

δWe

−
∫ l

0

M M̂

EI
dx︸ ︷︷ ︸

δWi

= 0 , (7.54)

and B(w, ŵ) = G(w, ŵ)−G(ŵ, w) = 0 is Betti’s theorem.
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An application—Archimedes’ dilemma

A place to stand does not suffice to move the Earth. Archimedes needs also a
lever with EI =∞; see Fig. 7.2 a. Otherwise the lever will only bend. Because
of Green’s first identity G(w,w) = We −Wi = 0 the exterior work is at any
moment equal to the strain energy in the beam

We = Pr · wr − Pl · wl = a(w,w) =
∫ l

0

M2

EI
dx = Wi (7.55)

or

Pr · wr = Pl · wl + a(w,w) . (7.56)

So that all of Archimedes’ effort, Pr · wr, will be consumed by the internal
energy a(w,w) and very little—effectively nothing—remains to lift the Earth.

The same happens if you try to pull a heavy weight across the wet sand
on the beach (see Fig. 7.2 b)

We = Pr · ur︸ ︷︷ ︸
your effort

−Pl · ul = a(u, u) =
∫ l

0

N2

EA
dx = Wi . (7.57)

The rubber band (EA) will stretch and stretch and stretch, ur → 1, 2, 3, . . .,
that is a(u, u) will increase but the weight will hardly move, ul � 0.

Poisson equation

Green’s first identity for the differential equation −∆u = p is

G(u, û) =
∫

Ω

−∆u û dΩ +
∫

Γ

∂u

∂n
û ds︸ ︷︷ ︸

δWe

−
∫

Ω

∇u •∇û dΩ︸ ︷︷ ︸
δWi

= 0 , (7.58)

where

a(u, û) =
∫

Ω

∇u •∇û dΩ =
∫

Ω

(u,x û,x +u,y û,y ) dΩ (7.59)

is the strain energy product.

Kirchhoff plate

The differential equation of the Kirchhoff plate is the biharmonic equation

K ∆∆ w = p K =
E h3

12 (1− ν2)
. (7.60)
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The curvature tensor K = [κij ] has elements κij = w,ij , and the bending
moment tensor is M = K {(1− ν) K + ν(trK) I}, or

mxx = −K (w,xx +ν w,yy ) , myy = −K (w,yy +ν w,xx ) , (7.61)
mxy = −(1− ν)K w,xy . (7.62)

The shear forces are

qx = −K (w,xxx +w,yyx ) qy = −K (w,xxy +w,yyy ) , (7.63)

and the resultant stresses on the boundary are, in indicial notation,

mn = mij ni nj mnt = mij ni tj (7.64)

qn = qi ni vn =
d

ds
mnt + qn . (7.65)

Green’s first identity is

G(w, ŵ) =
∫

Ω

K∆∆w ŵ dΩ +
∫

Γ

[vn ŵ −mn ŵ,n ] ds +
∑

i

Fi ŵ(xi)︸ ︷︷ ︸
δWe

− a(w, ŵ)︸ ︷︷ ︸
δWi

= 0 , (7.66)

where the strain energy product is the expression

a(w, ŵ) =
∫

Ω

[w,xx (ŵ,xx +ν ŵ,yy ) + 2(1− ν)w,xy ŵ,xy

+w,yy (ŵ,yy +ν ŵ,xx )] dΩ =
∫

Ω

M • K̂ dΩ (7.67)

and the Fi are the corner forces resulting from the jumps in the twisting
moment mnt:

Fi := F (w)(xi) = mnt(x+
i )−mnt(x−

i ) . (7.68)

Reissner–Mindlin plate

The terms of a Reissner–Mindlin plate are the rotations ϕ = [ϕx, ϕy]T , the
deflection w, the shearing strains γ = [γx, γy]T , the curvature tensor K, the
bending moment tensor M , and the shear forces q = [qx, qy]T which are
governed by the equations

strains: K(ϕ)−K = 0 ϕ +∇w − γ = 0 (7.69)
material law: C[K]−M = 0 aγ − q = 0 (7.70)
equilibrium: −div M + q = b∇p −div q = p (7.71)
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where

K(ϕ) =
1
2

(∇ϕ +∇ϕT ) =
1
2

[
2 ϕx,x ϕx,y +ϕy,x

ϕy,x +ϕx,y 2 ϕy,y

]
(7.72)

C[K] = K (1− ν) E + ν K (trK) I (7.73)

and

K =
E h3

12 (1− ν2)
, a = K

1− ν

2
λ̄2 , b =

ν

1− ν

1
λ̄2

, λ̄2 =
10
h2

, (7.74)

where h is the plate thickness. These equations are equivalent to the system

− div C[K(ϕ)] + a(ϕ +∇w) = b∇p (7.75)
−div (a (ϕ +∇w)) = p (7.76)

or in indicial notation

−mα β ,β +a qα = b p,α , α = 1, 2 (7.77)
−a qβ ,β = p (7.78)

where

mα β = K(1− ν)
1
2
(ϕα,β +ϕβ ,α ) + ν K ϕγ ,γ δα β (7.79)

qα = ϕα + w,α . (7.80)

If this system is interpreted as the application of an operator −L to the
vector-valued function u = [ϕx, ϕy, w]T we have the identity

G(u, û) =
∫

Ω

−L u • û dΩ +
∫

Γ

[M n • ϕ̂ + q • n ŵ ] ds− a(u, û) = 0

(7.81)

where

a(u, û) =
∫

Ω

[M • K̂ + q • γ̂] dΩ . (7.82)

Linear elasticity

The governing equation is

L u := −
[
µ∆ +

µ

1− 2 ν
∇ div

]
u = p , (7.83)

or in tensor notation
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separately on each element

− µui,jj − µ

1− 2 ν
uj ,ji = pi i = 1, 2 (7.84)

which is equivalent to

− σij ,j = pi i = 1, 2 . (7.85)

Green’s first identity is

G(u, û) =
∫

Ω

−L u • û dΩ +
∫

Γ

τ (u) • û dΩ − a(u, û) = 0 , (7.86)

where τ (u) = S n is the traction vector on the boundary and

a(u, û) =
∫

Ω

[σxx ε̂xx + 2 σxy ε̂xy + σyy ε̂yy] dΩ =
∫

Ω

S • Ê dΩ (7.87)

is the strain energy product. For more identities see [115].

Regularity

Because the identities are based on integration by parts, the functions u and
û must be sufficiently regular. If that is not the case, the interval (0, l) or the
domain Ω can be subdivided into as many intervals or partitions as necessary:

G(u, û)(0,l) = G(u, û)(0,l1) + G(u, û)(l1,l2) + . . . + G(u, û)(ln,l) = 0 .

(7.88)

Typically the partitions are the individual elements; see Fig. 7.3.

Green’s first identity and stiffness matrices

Substituting two nodal unit displacements (not necessarily the actual dis-
placements but “any” displacements ϕi) into Green’s first identity for a beam
yields

G(ϕi, ϕj) =
∫ l

0

EIϕIV
i ϕj dx +

[
Vi ϕj −Mi ϕ′

j

]l
0︸ ︷︷ ︸

p ij

−
∫ l

0

EIϕ′′
i ϕ′′

j dx︸ ︷︷ ︸
k ij

= 0

(7.89)

Fig. 7.3. Problems of reg-
ularity can be overcome by
formulating Green’s identity
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which means that

δWe(pi, ϕj) = p ij = k ij = δWi(ϕi, ϕj) (7.90)

or that the strain energy product (virtual internal energy) k ij between two
such nodal unit displacements ϕi and ϕj is equal to the virtual external work
p ij done by the unit load case pi via the virtual displacements ϕj .

The load case pi simply consists of all forces that produce the shape ϕi, i.e.,
the distributed load EI ϕIV

i , the shear forces Vi(0), Vi(l), and the moments
Mi(0),Mi(l) at the ends of the beam. The double subscripted term p ij is the
virtual external work δWe(pi, ϕj) corresponding to the load case pi and the
virtual displacement ϕj .

With uh =
∑

j uj ϕj and the n-fold identity

G(uh, ϕi) = 0 i = 1, 2, . . . n (7.91)

this is equivalent to

P u−K u = 0 or fh −K u = 0 (7.92)

where fh := P u.

Strain energy = nodal forces × nodal displacements

It should be obvious by now that the strain energy in a single element

a(uh,uh)Ωe =
∫

Ωe

σij · εij dΩ =
∫

Ωe

ph • uh dΩ +
∫

Γe

th • uh ds = fT
e ue

(7.93)

is the same as the scalar product between the equivalent nodal forces of that
element

fe
i =

∫
Ωe

ph • ϕe
i dΩ +

∫
Γe

th • ϕe
i ds (7.94)

—the th are the tractions on the edge of the element—and the vector ue of
nodal displacements. Summing the contributions from all elements we obtain
the well known formula for the strain energy stored in a structure

a(uh,uh) = uT K u = fT u . (7.95)

Green’s first identity and projections

The FE solution uh is the projection of the exact solution u onto Vh

uh ∈ Vh : a(u− uh, ϕi) = 0 ϕi ∈ Vh (7.96)
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or

uh ∈ Vh : a(uh, ϕi) = a(u, ϕi) = δWe(u, ϕi) = fi ϕi ∈ Vh (7.97)

where δWe(u, ϕi) is short for

G(u, ϕi) =
∫ l

0

−EAu′′ ϕi dx + [N ϕi]l0︸ ︷︷ ︸
δWe(u,ϕi)

−a(u, ϕi) = 0 (7.98)

so that Green’s first identity allows to replace the term a(u, ϕi) by an expres-
sion of external virtual work. This is the vector f .

7.3 Green’s functions

To solve the equation

3 · x = 12 ⇒ x =
1
3
· 12 (7.99)

the right-hand side is multiplied by the “Green’s function”xG = 1/3, which
is the solution of 3 · x = 1.

The Green’s functions are the solutions of the adjoint equations. Consider
for example the system K u = f and the identity

B(u, û) = ûT K u− uT KT û = 0 , (7.100)

where KT is the adjoint (= transpose) of the matrix K. Clearly if gi is a
solution of KT gi = ei then ui = gT

i f .
In linear structural mechanics the equations are self-adjoint (or symmet-

ric K = KT ) so that the Green’s functions are the solutions of the same
equations, EI GIV

0 = δ0, as in the original problem, EI wIV = p.
The complement of the Green’s function is Green’s second identity (Betti’s

theorem), which in the case of the Laplacian reads

B(u, û) =
∫

Ω

−∆ u û dΩ +
∫

Γ

∂u

∂n
û ds−

∫
Γ

u
∂û

∂n
ds−

∫
Ω

u (−∆û) dΩ = 0 .

(7.101)

From this equation we can see what boundary conditions must be imposed on
the Green’s functions; see Fig. 7.4. In a Dirichlet problem

−∆u = p , u = g on Γ (7.102)

things are easy:

−∆G0 = δ0 , G0 = 0 on Γ (7.103)
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Fig. 7.4. Influence function for a beam: a) when a support is displaced, b) Green’s
function, c) theoretically no Green’s function exists for a beam with no supports

and so

u =
∫

Ω

G0 p dΩy −
∫

Γ

∂G0

∂ n
g ds . (7.104)

In a mixed problem

−∆u = p , u = g on ΓD ,
∂u

∂n
= t on ΓN (7.105)

we require that

−∆G0 = δ0 , G0 = 0 on ΓD ,
∂G0

∂n
= 0 on ΓN (7.106)

and so

u =
∫

Ω

G0 p dΩy −
∫

ΓD

∂G0

∂ n
g ds +

∫
ΓN

G0 t ds . (7.107)

The support conditions of the beam in Fig. 7.4 a are of such a mixed type,
because geometric, w(0) = w′(0) = w(l), as well as static boundary conditions,
M(l) = 0, are prescribed. Hence if the Green’s function of the beam in Fig.
7.4 a solves the boundary value problem

EI GIV
0 = δ0(y − x) , G0(0) = G0(l) = G′

0(0) = −EI G′′
0(l) = 0 ,(7.108)

then Betti’s theorem yields
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B(w,G0) =
∫ l

0

p G0 dy + [V G0 −M G′
0]

l
0 − [V0 w −M0 w′]l0

−
∫ l

0

w δ0 dy =
∫ l

0

p G0 dy + B0(x) δ − w(x) = 0 (7.109)

where −V0(l) w(l) = B0(x) δ with the sign convention in Fig. 7.4.
But influence functions for the solution of Neumann problems do not exist,

because one cannot place a force δ0 on Ω and require at the same time that
all the tractions on the boundary vanish

−∆G0 = δ0
∂G0

∂n
= 0 on Γ ? (7.110)

The reason is that the solution of a Neumann problem is only unique up to a
constant uc as for example in the case of the beam in Fig. 7.4 c, that gives the
impression of a beam on an elastic foundation, EIwIV + cw = p, but it is a
standard beam EIwIV . It is only that the sum of the distributed load on both
sides of the beam happens to be the same, so that no supports are necessary.
Of course Green’s functions for beams on an elastic foundation exist.

Naturally all these problems go away if the solution is made unique by
specifying single values of the solution as w(0) = w(l) = 0, or in terms of
structural mechanics, by adding supports to a structure.

Elastic supports

To be complete let us also discuss the case that the structure rests on an
elastic support. Imagine that the hinged support in Fig. 7.4 is replaced by
a spring with stiffness k. The decisive term in Betti’s theorem (7.109) is the
work term

V0(l) w(l) = k G0(l, x) w(l) = G0(l, x) Vp =
1
k

V0 Vp (7.111)

which encapsulates the interaction between the compression G0(l, x) of the
spring due to the point load P = 1 and the support reaction Vp in the load
case p or—vice versa—the interaction between the support reaction V0 due
to P = 1 and the compression w(l) of the spring in the load case p, so that
the influence function becomes

w(x) =
∫ l

0

G0(y, x) p(y) dy + V0(l)w(l) (7.112)

which for the special case w(l) = δ is identical with (7.109). Note that
V0(l)w(l) comes from the “boundary integral” [...]. Such edge contributions
always appear in the influence functions if the structure rests on soft supports.
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7.4 Generalized Green’s functions

In an abstract sense the right-hand side of the weak formulation: find a func-
tion u ∈ V such that

a(u, v) = p(v) for all v ∈ V (7.113)

is a functional on V . Hence we are tempted to associate with any functional
J(v) an element z of V in the sense that

a(z, v) = J(v) for all v ∈ V . (7.114)

We have switched names, u→ z (= generalized Green’s function) and p(v)→
J(v), to adopt the notation used in the literature.

Because of Green’s first identity—here for a bar

G(v, z) =
∫ l

0

−EAv′′ z dx + [N z]l0︸ ︷︷ ︸
p(z)

−
∫ l

0

EAv′ z′ dx︸ ︷︷ ︸
a(v, z)

= 0 (7.115)

the strain energy product can be replaced by p(z) so that

p(z) = a(z, v) = J(v) v ∈ V . (7.116)

That is, the value of the functional J(v) is identical to p(z) (= work done by
the applied load p = {−EAv′′, N(l), N(0)} on acting through z where p is the
load case that belongs to v. If, for example, v is the solution of the problem

− EAv′′ = p N(l) = P v(0) = 0 (7.117)

and z is the Green’s function then

p(z) :=
∫ l

0

p z dx + P · z(l) . (7.118)

Note that (7.116) is simply Betti’s theorem with the symmetric strain energy
product in between.

An engineer would say that z is the solution of the load case J or rather
δ0 as in the case J(u) = (δ0, u) and z is the Green’s function G0

p(G0) = a(G0, v) = J(v) = (δ0, v) v ∈ V . (7.119)

The advantage of this abstract approach (7.114) is, that we can associate with
any functional—not just the Dirac deltas

J(v) =
∫

Ωe

v dΩ J(v) =
∫

Ω

δ0 v dΩ J(v) =
∫ l

0

σyydx (7.120)
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a Green’s function z in the sense that J(u) = p(z).
To make the mechanism more transparent, let L be a linear operator, let

L∗ be the adjoint operator, let u be the solution of Lu = p and assume, that
j is some functional, which by pairing it with u yields a result J(u) = (u, j).
Let z be the solution of the adjoint problem L∗z = j then

J(u) = (u, j) = (u, L∗z) = (Lu, z) = (p, z) . (7.121)

In the case j = δ0 and z = G0, for example, we have

u(x) = (u, δ0) = (u, L∗G0) = (Lu,G0) = (p, G0) . (7.122)

Because of Tottenham’s equation (1.210), p. 64, we know that the FE program
evaluates J(uh) by substituting for z the approximate generalized Green’s
function zh

J(uh) = p(zh) . (7.123)

Hence, the more accurate zh the more accurate J(uh). The strategy of the
goal oriented recovery or simply duality technique can then be summarized as
follows:

• Say you are interested in some point value or integral value of the solution.
• Interpret the value as the result of a functional applied to the solution

J(u) = (δ0, u) point value (7.124)

J(u) =
∫ l

0

σyy dx integral value (7.125)

which implies that there is a generalized Green’s function z such that
J(u) = p(z).

• Formulate two weak boundary value problems: one for the original solu-
tion u and one for the generalized Green’s function z and determine the
corresponding FE solutions

a(uh, ϕi) = p(ϕi) ϕi ∈ Vh , (7.126)
a(zh, ϕi) = J(ϕi) ϕi ∈ Vh . (7.127)

• Calculate on each element Ωe error indicators η
(p)
e and η

(z)
e for the two

problems, multiply the two indicators ηe = η
(p)
e · η(z)

e and refine the mesh

• By following this procedure the FE result J(uh) is automatically improved.
• Note that it is not necessary to actually calculate p(zh)

J(uh) = p(zh) , (7.128)

because according to Tottenham’s equation a direct evaluation of the FE
solution yields the same result

J(uh) = (δh
0 , u) = uh(x) J(uh) =

∫ l

0

σh
yy dx . (7.129)

where ηe ≥ TOL (some tolerance); see Fig. 7.5.



7.4 Generalized Green’s functions 521

1828724 kN

2586207 kN

1828724 kN

2586207 kN

2586207 kN

2586207 kN

2586207 kN

2586207 kN

1828724 kN
1828724 kN

10.00

4
.0

0

xy:
a) initial mesh, b)

mesh

If we can associate with each functional a generalized Green’s function, the
basic FE statement

a(u, v) = p(v) v ∈ V (7.130)

implies that the equilibrium position u of a structure is the generalized Green’s
function of the functional p(u) = (p, u) where p is the applied load. That is,
the whole concept of a generalized Green’s function is simply an application of
the Riesz’ representation theorem: for each linear (bounded) functional J(v)
there is an element z ∈ V such that a(z, v) = J(v) for each v.

The engineer’s version would go like this: for each load p there is a strong
solution Lu = p, where L is the differential equation. In FE methods the load
p becomes a functional p(u) and the strong solution becomes a weak solution,
a(u, v) = p(v). Hence for each functional p(v) there is a weak solution u. Now
we extend this approach to just any (linear and continuous) functional J(v),
which not necessarily must be associated with a load case p, and we claim, that
for any such functional there is a weak solution z such that a(z, v) = J(v)
for every v ∈ V . Finally we apply integration by parts, so that the virtual
strain energy a(z, u) becomes virtual external work a(z, u) = (p, z), and so
J(u) = (p, z) where Lu = p.

Essentially it is again Betti’s theorem which allows to proceed from the
symmetric middle term a(z, u) in either direction

(p, z)
←
= a(z, u)

→
= (J, u) = J(u) , (7.131)

Fig. 7.5. Influence
function for N

adaptively refined
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Fig. 7.6. Taut rope: a) unit load case pi, b) equivalent nodal forces that generate
the pseudo rigid-body motion wh = 1, c) a distributed load, d) equivalent nodal
forces

where J = Lz is the “load” (as for example J = δ0) in the functional J(u).
That is (J, u) = (δ0, u) with J = Lz is the “load form” of the functional

and J(u) = u(x) is the abstract form. The abstract form is that version where
we directly evaluate the solution u while the load forms—actually there are
two

J(u) = (δ0
↑
, u) = (L z, u) = (z, L∗u) = (z, p

↑
) , (7.132)

are those versions where we evaluate J(u) indirectly by forming e.g. the scalar
product between z and p.
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Examples

Consider the equation −Lu = p of 2-D elasticity, see (7.83) p. 513. The
functional which provides the sum of the horizontal forces,

∑
H, in a patch

Ωp is J(u) = a(u,e1)Ωp
, because

G(u,e1)Ωp = p(e1)Ωp − a(u,e1)Ωp

=
∫

Ωp

p • e1 dΩ +
∫

Γp

t • e1 ds︸ ︷︷ ︸∑
H

−a(u,e1)Ωp
= 0 , (7.133)

so that the generalized Green’s functions z is the solution of the variational
problem

a(z,v) = J(v) = a(v,e1)Ωp
v ∈ V . (7.134)

Clearly the solution is the step function z = e1 (inside Ωp and z = 0 outside
of Ωp). The FE approximation zh solves the variational problem

a(zh,ϕi) = a(ϕi,e1)Ωp
ϕi ∈ Vh . (7.135)

It has the shape of the “ramp” in Fig. 1.133 p. 185, i.e., zh = e1 inside Ωp

and then it slowly—and not abruptly—drops to zero outside Ωp.
The equivalent nodal forces fi = a(ϕi,e1)Ωp are zero if the support of

the nodal unit displacement ϕi is contained in Ωp, because the external loads
which constitute the associated unit load case pi are self-equilibrated, fi =
a(ϕi,e1) = p(e1) = 0. This is best seen in the case of a taut rope; see Fig.
7.6. The sum of the three nodal forces, that constitute the typical unit load
case is zero, and therefore fi = −F + 2 F − F = 0. Only at the edge nodes of
the patch Ωp the balance is disturbed, because the nodal forces, that happen
to lie outside of Ωp are not taken into account, so that fi = −F + 2 F = F ;
see Fig. 7.6 b.

In the same sense the functional

J(v) = a(v,urot)Ωp
urot = tan ϕ e3 × x (7.136)

yields the resulting moment for the right portion Ωp of the plate in Fig. 1.60,
p. 89, for a given displacement field v. Here it is assumed, that the point
x = 0 is the point about which the right portion is rotated by an angle ϕ.
The FE solution zh ∈ Vh of the variational equation

a(zh,ϕi) = a(ϕi,urot)Ωp
ϕi ∈ Vh (7.137)

is not the true solution z = tan ϕ e3×x, and this is why the resulting moment
is wrong

Mh = 1.6̄ kNm =
∫

Ωp

zh • p dΩ 	=
∫

Ω

z • p dΩ = 2.5 kNm = M . (7.138)
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Error analysis

So any point value or integral value is obtained by applying a linear functional
J(u) to the solution

J(u) = u(x) J(u) = σxx(x) J(u) =
∫ l

0

σyy dx , (7.139)

and the values we see on the computer screen are obtained by applying the
same functionals to the FE solution uh. Hence in linear problems the error of
an FE solution is simply J(e) = J(u− uh) and this error is—as we will show
in the following—“symmetric”.

The Galerkin orthogonality implies

J(e) = a(e, z) = a(e, z − zh) = a(u− uh, z − zh)
= a(u, z − zh) = p(z − zh) , (7.140)

so that, for example, in the case J(v) = (δ0, v)

J(e) = u(x)− uh(x) =
∫

Ω

p (G0 −Gh
0 ) dΩy . (7.141)

Now we have as well

J(e) = a(e, z) = (δ0, u− uh) (7.142)

so that

J(e) =
1
2

p(z − zh) +
1
2

(δ0, u− uh) , (7.143)

that is we can look at the error J(e) in both ways, either we attribute it to
the error in the generalized Green’s function z − zh or to the error in the FE
solution u−uh; see Fig. 7.13, p. 547. According to Betti’s theorem both errors
are the same. In nonlinear problems the two errors are different, see Sect. 7.5,
p. 526.

Error bounds

Next let us derive error bounds. To this aim we consider the equation−Lu = p
of 2-D elasticity with boundary conditions u = 0. Let e = u − uh the error
of the FE solution uh then

G(e,ϕk) :=
∑

i

G(e,ϕk)Ωi =
∑

i

{
∫

Ωi

ri • ϕk dΩ +
∫

Γi

ji • ϕk ds

−a(e,ϕk)Ωi} = 0 ϕk ∈ Vh (7.144)

where on each element Ωi
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ri := p + Luh ji :=
1
2

[t+ + t−] (7.145)

are the element residuals and the evenly split jumps of the tractions between
the elements.

Next let J(v) be any functional and z ∈ V the associated generalized
Green’s function, the value of J(e) is just the virtual work of the right-hand
side of e acting through z or

J(e) =
∑

i

{(ri,z)Ωi
+ (ji,z)Γi

} =
∑

i

{(ri,z − zh)Ωi
+ (ji,z − zh)Γi

}

(7.146)

where in the last equation we made use of the Galerkin orthogonality. Note
also that because of z = zh = 0 on Γ the boundary integrals are zero on each
portion Γi ⊂ Γ .

By applying the Cauchy-Schwarz inequality if follows [22]

|J(e)| ≤ ηω :=
∑

i

η
(p)
i η

(z)
i , (7.147)

where with the diameter hi of the single elements Ωi

η
(p)
i : = (||ri||20,Ωi

+
1
hi
||ji||20,Γi

)1/2 (7.148)

η
(z)
i : = (||z − zh||20,Ωi

+ hi||z − zh||20,Γi
)1/2 . (7.149)

Equation (7.147) is the basis of the duality approach or the goal-oriented
techniques, see Sect. 1.31, p. 156.

The two special functionals

J(v) : =
a(v,e)
||e||E → J(e) =

a(e,e)
||e||E =

||e||2E
||e||E = ||e||E (7.150)

J(v) : =
(v,e)
||e||0 → J(e) =

(e,e)
||e||0 =

||e||20
||e||0 = ||e||0 (7.151)

coincide at v = e with ||e||E and ||e||0 respectively and consequently the dual
weighted residual error estimate (7.147) can be applied to these global norms
as well.

In a classical L2-error estimate appears a constant cI , that reflects the
interpolation properties of the space Vh and a global stability constant cS

||e||0 ≤ ηL2 := cI cS

(∑
i

h4
i (η(p)

i )2
)1/2

cS := ||a(z,z)||E,Ω , (7.152)

which represents the global energy norm of the generalized Green’s function,
while in the duality approach
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||e||0 ≤ ηω
L2

:= cI

∑
i

h2
i η

(p)
i η

(z)
i η

(z)
i := ||a(z,z)||E,Ωi

(7.153)

the weights η
(z)
i reflect the local character of the generalized Green’s function

and “it can be beneficial to keep the dual weights within the error estimator
rather than condensing them into just one global stability constant” [22].

7.5 Nonlinear problems

In a constrained minimization problem

J(u)→ min A(u) = 0 constraints (7.154)

the Lagrangian functional

L(u, λ) = J(u)+ < λ,A(u) > < ., . > “duality pairing” (7.155)

is stationary at the minimum point u0, see e.g. [202], i.e.,

δJ(u0) + λ d(u0) = 0 . (7.156)

This technique is now adopted1 to estimate the error J(u)−J(uh) in nonlinear
problems by introducing a “dual” variable z.

As a model problem we choose the linear Poisson equation on V = {u ∈
H1(Ω) |u = 0 on Γ}

A(u) := −∆u− p = 0 . (7.157)

We let

A(u)(ψ) := a(u, ψ)− (p, ψ) a(u, ψ) := (∇u,∇ψ) (7.158)

the weak form and we intend to evaluate the solution at a point x so that

J(u) = (δ0, u) = u(x) . (7.159)

The Gateaux derivatives of these functionals are

J ′(u)(ϕ) :=
[

d

dε
J(u + ε ϕ)

]
ε=0

= (δ0, ϕ) = J(ϕ) (7.160)

and

A′(u)(ϕ, z) :=
[

d

d ε
A(u + εϕ)(z)

]
ε=0

= a(ϕ, z) . (7.161)

1 The following is based on Sect. 6.1 in [22]. Added in proof: a good summary can
also be found in Ern A, Guermond J-L (2004) Theory and Practice of Finite
Elements, Springer-Verlag
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Next we define the Lagrangian functional

L(u, z) = J(u)−A(u)(z) (7.162)

and we seek for a stationary point {u, z} ∈ V × V of L(., .), i.e.,

L′(u, z)(ϕ, ψ) =
{

J ′(uh)(ϕh)−A′(uh)(ϕh, zh)
−A(u)(ψ)

}
= 0 (7.163)

for all {ϕh, ψh} ∈ V × V .

Evidently in the linear case these two equations are identical to the standard
approach

J(ϕh)− a(ϕh, zh) = 0 for all ϕh ∈ Vh → zh (7.164)
a(uh, ψh)− p(ψh) = 0 for all ψh ∈ Vh → uh . (7.165)

Under appropriate assumptions we have the error representation

J(u)− J(uh) =
1
2
ρ(uh)(z − zh) +

1
2
ρ∗(uh, zh)(u− uh) + R

(3)
h (7.166)

where

ρ(uh)(z − zh) : = −A(uh)(z − zh) (7.167)
ρ∗h(uh, zh)(u− uh) : = J ′(uh)−A′(uh)(u− uh, zh) (7.168)

and where the remainder term R
(3)
h is cubic in the “primal” and “dual” errors

e := u − uh and e∗ := z − zh and involves second and third order Gateaux
derivatives of J(.) and A(.).

In the case of the linear model problem (7.157) we have

−A(uh)(z − zh) = −a(uh, z − zh) + p(z − zh) = −a(uh, z) + p(z)
= −ph(z) + p(z) = −uh(x) + u(x) (7.169)

and

J ′(u − uh)−A′(uh)(u− uh, zh) = (δ0, u− uh)− a(u− uh, zh)
= (δ0, u)− a(u, zh) = (δ0, u)− (δh

0 , u) = u(x)− uh(x) (7.170)

and of course R(3) is zero in this case so that indeed

J(u)− J(uh) =
1
2
(u(x)− uh(x)) +

1
2
(u(x)− uh(x)) . (7.171)

In the case of a nonlinear equation such as

A(u) := −∆u− u3 − p = 0 (7.172)

the weak form is
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A(u)(ψ) := (∇u,∇ψ)− (u3, ψ)− (p, ψ) (7.173)

and

A′(u)(ϕ, z) := (∇ϕ,∇ z)− (3u2 ϕ, z) (7.174)

so that the generalized Green’s function z is the solution of

(∇ϕ,∇ z)− (3u2 ϕ, z) = J ′(ϕ) for all ϕ ∈ V (7.175)

and the FE approximation zh solves the variational problem

aT (u,zh,ϕh) = J ′(ϕh) for all ϕh ∈ Vh (7.176)

where we have written aT (., ., .) for the Gateaux derivative, i.e., the left-hand
side of (7.175). If J is linear then J ′ = J so that

KT (u)z = j ji = J(ϕi) (7.177)

where KT is the tangential stiffness matrix and z is the vector of nodal values
of the field z.

A more pedestrian, engineering approach would go like this: let a(u,v) =
p(v) the nonlinear equation and let u = uh + e then

a(uh + e,v) = p(v) for all v ∈ V (7.178)

or if we do a “Taylor expansion”

a(uh,v) + aT (uh; e,v) + . . . = p(v) (7.179)

and neglect the higher order terms (. . .)

aT (uh;e,v) = p(v)− a(uh,v) = p(v)− ph(v)

=
∑

i

{∫
Ωi

r • v dΩ +
∫

Γi

j • v ds

}
:= r(v) (7.180)

where r and j are defined as in (1.425) p. 150.
Next, let a∗

T (uh;e,v) the dual bilinear form defined by switching the last
two arguments in aT

a∗
T (uh; e,v) := aT (uh; v,e) . (7.181)

If aT is symmetric in the last two arguments—as in hyperelasticity—then
a∗

T = aT . Now let J(v) a linear functional on V and z the solution of

a∗
T (uh; z,v) = J(v) (7.182)

then
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J(e) = a∗
T (uh; z,e) = aT (uh; e,z) = r(z) . (7.183)

If zh is the FE solution of (7.182), we can invoke the Galerkin orthogonality

0 = a∗
T (uh;z − zh,v) = aT (uh; e,z − zh) = r(z − zh) (7.184)

and so we arrive at

J(e) =
∑

i

{∫
Ωi

r • (z − zh) dΩ +
∫

Γi

j • (z − zh) ds

}
. (7.185)

Remark 7.1. In the mathematical literature the Gateaux derivative aT is often
replaced by a secant form

aS(u,uh;e,v) :=
∫ 1

0

aT (uh + se; e,v) ds , (7.186)

which can be interpreted as the average Fréchet derivative of a(u,v). In this
case the error e = u− uh is the solution of the linear variational problem

aS(u,uh;e, v) = a(u,v)− a(uh,v) = r(v) v ∈ V . (7.187)

Often this approach leads to identical formulation—because the exact solution
u is unknown and therefore compromises must be made—though in specific
circumstances this formulation can be advantageous [153].

7.6 The derivation of influence functions

Influence functions or influence lines are based on Betti’s theorem, B(w1, w2) =
0. Because the idea behind influence functions is central for the understanding
of the distribution of the internal actions and also the support reactions in a
structure we start with a short repetition of classical structural analysis.

Influence function for V (x)

To obtain the influence function for the shear force V (x) we introduce a shear
hinge at x and to keep the balance with the applied load the prior internal
actions Vl(x) and Vr(x) now act as external forces. In a second load case two
opposite forces spread the two faces of the shear hinge by one unit length,
G3(x−, x)−G3(x+, x) = 1, apart. According to Betti’s theorem the reciprocal
external work of the two systems must be the same

W1,2 = −V (x) · 1 +
∫ l

0

G3(y, x) p(y) dy = 0 = W2,1 (7.188)
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Fig. 7.7. The punctured domain: a) a point inside Ω, b) a point on the edge

or

V (x) =
∫ l

0

G3(y, x) p(y) dy . (7.189)

This is the standard procedure for influence functions. The work W1,2 = 0
because the two opposite forces that spread the shear hinge apart are of the
same size so when they act through the same deflection w(x) their effort is
nil.

To see how influence functions in 2-D are derived, we consider the solution
u of the Poisson equation

−∆ u = p on Ω = unit disk , u = 0 on Γ = unit circle , (7.190)

which can be identified with the deflection of a circular prestressed membrane
which bears a pressure p.

The Green’s function for the deflection at the center x = 0 of the unit
disk

G0(y,x) = − 1
2 π

ln r (7.191)

is a homogeneous solution of the Laplace equation at all points y 	= x,

−∆G0(y,x) = 0 y 	= x . (7.192)

Next a small circular hole Nε with radius ε is punched in the unit disk. The
center of the hole is the center of the disk, x = 0, and ΓNε is the edge of the
hole. At a point y on this circle the normal vector n = n(y) points to the
center x = 0, and it has components n1 = − cos ϕ and n2 = − sin ϕ if polar
coordinates (r, ϕ) centered at x = 0 are used. For all points y on the circle,
the distance r = |y − x| from the center x is the same. The gradient ∇yr of
the distance r points in the direction opposite the normal vector n, because
this is the direction into which the point y must be pushed if the distance
from x = 0 is to increase at the fastest rate possible. Hence

− 1
2 π

∂

∂n
ln r = − 1

2 π

1
ε
∇yr • n =

1
2 π

1
ε

n • n =
1

2 π

1
ε

. (7.193)
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Next Betti’s theorem is formulated on the domain Ωε = Ω −Nε(x). On the
outer edge Γ both solutions are zero, u = G0 = 0, so that:

B(G0, u)Ωε =
∫

Ωε

−∆G0 u dΩy −
∫

ΓNε

1
2 π

∂

∂n
ln r u dsy

+
∫

ΓNε

∂u

∂n
G0 dsy −

∫
Ωε

G0 p dΩy

(7.194)

The first integral is zero because −∆G0 = 0 in Ωε and the third integral is of
order O(ε)

∂u

∂n
· ln ε · ε · dϕ = O(1) · ln ε · ε = O(ε) (7.195)

so that

B(G0, u)Ωε
=
∫

ΓNε

1
2 π

∂

∂n
ln r u dsy + O(ε)−

∫
Ωε

G0 p dΩy

=
∫ 2 π

0

1
2 π ε

u(x + ε n(ϕ)︸ ︷︷ ︸
y(ϕ)

) ε dϕ + O(ε)−
∫

Ωε

G0 p dΩy

(7.196)

which in the limit becomes

lim
ε→0

B(G0, u)Ωε
= u(x)−

∫
Ω

G0(y,x) p(y) dΩy . (7.197)

The important observation is that in this approach u(x) is not the limit of a
domain integral, as the notation

−∆ G0(y,x) = δ0(y − x) (7.198)

seems to suggest, and Betti’s theorem evidently seems to confirm

B(G0, u) =
∫

Ω

−∆ G0 u dΩ −
∫

Ω

p G0 dΩy

=
∫

Ω

δ0(y − x) u(y) dΩy −
∫

Ω

G0(y,x) p(y) dΩy

= u(x)−
∫

Ω

G0(y,x) p(y) dΩy . (7.199)

But juggling with Dirac’s delta is not mathematics, rather it is an application
of symbolic algebra. The Dirac delta is a handy symbol to express the algebraic
properties of the Green’s function, but the real properties can only be clarified
by doing mathematics as in (7.194).
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So all the single terms, the point values ∂0u ≡ u(x), ∂1u ≡ σxx(x), in the
influence functions are the limits of certain boundary integrals over the edge
of the hole

lim
ε→0

∫
ΓNε

∂i u ∂j û ds = 1 · ∂iu(x) i + j = 2m− 1 (7.200)

where the conjugate kernel ∂j û that makes ∂iu(x) emerge has the property

lim
ε→0

∫
ΓNε

∂j û ds = 1 . (7.201)

In 1-D the neighborhood ΓNε
consists of two points, in 2-D it is a circle

lim
ε→0

∫
ΓNε

Vn ds = 1 Vn = Kirchhoff shear (7.202)

and in 3-D it is a sphere — two points become a circle become a sphere.
Hence one cannot monitor a dislocation in a slab by checking, say, the

deflection only at two points, w(x + ε) − w(x − ε) 	= 1. Rather one must
complete a full circle to sense a bend δ2 or a dislocation δ3 in a slab

δ2 : lim
ε→0

∫
ΓNε

∂G2

∂n
ds = 1 δ3 : lim

ε→0

∫
ΓNε

G3 ds = 1 . (7.203)

Remark 7.2. For a detailed analysis of the derivation of the hyper-singular in-
fluence function for the slope in a slab (Kirchhoff plate, biharmonic equation)

∂w

∂n
= lim

ε→0
B(G1, w) = 0 (7.204)

see [116] p. 375.

Influence functions for crack tip singularities - don’t exist

If there were an influence function for the singular stresses at a crack tip

σyy(x) =
∫

Ω

Gyy
1 (y,x) • p(y) dΩy =∞ , (7.205)

then because the load p is finite, the stress could only become infinite if the
kernel Gyy

1 is infinite, but infinite displacements |Gyy
1 | =∞ (each kernel is a

displacement field) in almost any patch Ωp of a plate make no sense, as they
would tear the plate apart.

Hence there cannot exist an influence function for the stresses at a crack
tip, only for the stress intensity factor [47].
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The mathematical reason is the following: To derive an influence function
for σyy(x) at a point x, first a small circular region of the point x must be
excluded, and only then are we allowed to let the radius ε tend to zero. In
standard situations, a single term σyy(x) ·1 will be recovered in the limit, but
if the stress field is infinite at x, the effect of the infinite stress is canceled
in Green’s second identity (Betti’s theorem) by a second singular term of the
opposite sign, so that in the limit—which is guaranteed to be zero,

lim
ε→0

B(u,Gyy
1 )Ωε =∞−∞+ finite terms = 0 (7.206)

we are left with meaningless terms, “the ashes”, which convey no real infor-
mation.

Hence each influence function is the limit of an integral identity. Concepts
as Cauchy principal value or Hadamard’s partie fini integral are just other
names for the limit

lim
ε→0

B(u,Gyy
1 )Ωε = 0 . (7.207)

By this process singular or hypersingular integrals are automatically regular-
ized, because the critical terms drop out.

In Sect. 1.20, p. 80, we argued that in the presence of stress singularities
it is more reasonable to work with resultant stresses. Now we can be more
precise. If the stress σyy becomes singular at the crack tip but if the integral

Ny =
∫ l

0

σyy dx <∞ (7.208)

across the cut is bounded, there exists an influence function for the resultant
stress Ny—in the sense of (7.207)—and the FE program has a chance to
approximate this influence function.

Equivalent nodal forces

The equivalent nodal forces fG
i for the numerical Green’s functions are the

displacements, the stresses, etc. of the shape functions at the point x, see
Sect. 1.19 p. 69,

fG
i = ϕi(x) fG

i = σxx(ϕi)(x) fG
i (x) = qx(ϕi)(x) . (7.209)

But the dimension of each fG
i is force × displacements

fG
i =

∫
Ω

δ0(y − x) ϕi(y) dΩy ≡ kN×m (7.210)

To extract the stress from a field we apply a dislocation and calculate the
work done by the stress on acting through the dislocation, [kN/m2] × [m],
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and to extract a bending moment we apply a dimensionless unit rotation,
so that the work done is M × w′ = [kNm] × [ ], etc.. (A unit slope means
dw/dx = 1× [m]/[m] = 1× [ ] or tan ϕ = 1).

This result is in agreement with the fact that the influence functions are
energy expressions

u(x) [m]× 1 [kN] = . . . σxx(x) [kN/m2]× 1 [m] = . . . (7.211)

So when we calculate a point value by summing over the nodes

uh(x) [m]× 1 [kN] =
∑

i

fG
i [kNm] · ui (7.212)

we must divide by the unit, here 1 kN, which extracts the displacement or the
stress, etc., from the field u via (7.210), so that

uh(x) [m] =
1

kN

∑
i

fG
i [kNm] · ui =

∑
i

ϕi(x) [m] · ui . (7.213)

Recall that the fG
i of the Green’s function for uh(x) are the nodal values of

the shape functions ϕi at the point x.
The nodal displacements ui play the role of weights, that is pure num-

bers. The dimension [m] of the displacement u(x) =
∑

i ui ϕi(x) =
∑

i ui ×
(ϕi(x)[m]) is attached, so to speak, to the ϕi and has already been consumed
in the definition of the fG

i in (7.210).
The net result is that nothing needs to be done: the equivalent nodal forces

fG
i of the Green’s functions are the displacement, stresses, etc. of the shape

functions at x —times the physical dimension of the Dirac delta, [m], [kN],
etc., but because we later divide again by these terms we may ignore them
from the start—and so when we multiply the fG

i with the nodal values ui of
the FE solution we obtain—quite naturally—the pertinent values of the FE
solution at the point x

σh
xx(x) =

∑
i

fG
i · ui =

∑
i

σxx(ϕi)(x) · ui . (7.214)

The same can be expressed as

σh
xx(x) =

∑
i

fi · uG
i (7.215)

where the uG
i are the nodal values of the Green’s function and the fi are the

equivalent nodal forces of the load case p, see Sect. 1.19 p. 79.
The first formula corresponds to

σh
xx(x) =

∫
Ω

δ1(y − x) uh(y) dΩy =
∑

i

∫
Ω

δ1(y − x)ϕi(y) dΩy︸ ︷︷ ︸
σxx(ϕi)(x)

·ui

(7.216)
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and the second formula corresponds to

σh
xx(x) =

∫
Ω

Gh
1 (y,x) p(y) dΩy =

∑
i

Gh
1 (yi,x)︸ ︷︷ ︸

uG
i

·
∫

Ω

ϕi(y) p(y) dΩy︸ ︷︷ ︸
fi

(7.217)

7.7 Weak form of influence functions

With Mohr’s integral we can calculate the deflection of a beam

w(x) =
∫ l

0

M0 M

EI
dy M(x) 	=

∫ l

0

M2 M

EI
dy = 0 (7.218)

but not the bending moment M(x). But if we do finite elements then every-
thing fits perfectly

Mh(x) =
∫ l

0

Mh
2 Mh

EI
dy . (7.219)

This surprising result is the topic of this section.
The classical influence functions are “strong” formulations, are based on

Betti’s theorem or Green’s second identity. Here we study “weak” formulations
which are based on the principle of virtual forces/displacements or else, on
Green’s first identity. By weak we mean that the output value

J(w) = a(Gi, w) ≡ w(x) =
∫ l

0

M0 M

EI
dy (7.220)

is calculated by forming the strain-energy product between the Green’s func-
tion Gi and the solution w; an engineer would say: with Mohr’s integral. This
is only possible if J(w) is a displacement or a deflection or rotation (Euler-
Bernoulli beams and Kirchhoff) because the strain energy product of higher
order Green’s functions (for stresses and alike) is zero a(Gi, w) = 0 and so
J(w) = a(Gi, w) makes no sense.

The strange thing is that if we approximate the Green’s function z (= Gi)
with finite elements by solving the problem

zh ∈ Vh : a(zh, ϕi) = J(ϕi) ϕi ∈ Vh (7.221)

then the FE solution zh is a reasonable approximation of z and we have

J(wh) =
∫ l

0

zh(y, x) p(y) dy = a(zh, wh) . (7.222)

This is just Tottenham’s equation (1.210), p. 64. In simpler terms the Green’s
function zh just does what it is supposed to do
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a(MA, M) = 0 is
zero

J(wh) =
∑

i

J(ϕi) ui =
∑

i

a(zh, ϕi)ui = a(zh, wh) (7.223)

because if zh solves (7.221) and wh =
∑

i ui ϕi then (7.223) follows naturally.
So in FE analysis we can use both formulas, Betti and a(zh, wh), regardless

of what we calculate. When z is exact then only Betti will do for force terms.
The solve this riddle let us compare the three variants of influence func-

tions: the exact formulations

∂i w =
∫ l

0

Gi(y, x) p(y) dy = a(Gi, w) =
∫ l

0

δi(y − x)w(y)dy (7.224)

(1) (2) (3)

and the approximate formulations

∂i wh =
∫ l

0

Gh
i (y, x) p(y) dy = a(Gh

i , w) =
∫ l

0

δh
i (y − x) w(y)dy (7.225)

(1h) (2h) (3h)

where ∂i w is any of the four values w,w′,M, V .
Let us start at the end: the formula (3) with the Dirac delta is not an

integral in the ordinary sense which can be looked up in an integral table
because the Dirac delta is not a proper function and so (3) is a symbol for
the point value ∂i w(x).

But the formula (3h) is not a symbol. It is an integral—though in a some-
what abbreviated notation. To see this compare Fig. 1.45 a and 1.45 b on page
67 where the horizontal displacement ux(x) and uh

x(x) of a plate is calculated
with two Dirac deltas δ0 and δh

0 respectively.
The point load δ0 in Fig. 1.45 a and its action, the integral

ux(x) =
∫

Ω

δ0(y − x) • u(y) dΩy , (7.226)

must be interpreted symbolically. But the action of the approximate Dirac
delta δh

0 , the integral

Fig. 7.8. The strain
energy product
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uh
x(x) =

∫
Ω

δh
0 (y − x) • u(y) dΩy =

∑
e

∫
Ωe

ph
0,e • u dΩ +

∑
k

∫
Γk

jh
0 • u ds

(7.227)

can be calculated. It is the work done by the true displacement field u on
acting through the residual volume forces ph

0,e and jumps jh
0 in the stress

vectors along the interelement boundaries—these forces try to imitate the
Dirac delta δ0. The forces jh

0 are the shaded triangles in Fig. 1.45 b. The
volume forces ph

0,e are given only as element resultants re = ((ph
x)2+(ph

y)2)1/2
Ωe

.
With regard to the second equation, (2), there holds:

a(Gi, w) =
{

∂iw ∂i w = displacement
0 ∂i w = force term (7.228)

that is force terms, M(x) and V (x), cannot be calculated with Mohr’s integral
or in more general terms: stresses σij are out of reach for any weak formulation

σij 	= a(G1,u) = 0 . (7.229)

This is familiar from beam analysis: the scalar product between the bending
moment M in a beam and the bending moment MA of a redundant XA (≡ G2)
(see Fig. 7.8) is zero which simply means that the slope w′ of the deflection
is continuous at the support.

So to summarize the results: in FE analysis—where we operate with sub-
stitute Green’s functions Gh

i —all three equations (1h), (2h) and (3h) are valid
formulations. If the Green’s function Gi is exact (3) is not computable, it is
a symbol, (2) is only applicable if ∂iu is a displacement, and only (1) will do
in all cases.

Remark 7.3. We trust that the reader is now familiar with the technique and so
we can quickly study the full range of possible weak formulations for influence
functions. Let −u′′ = p with boundary values u(0) = u(l) = 0 then we obtain
by formulating Green’s first identity and taking the limit

lim
ε→0

G(Gi, u)Ωε
= 0 (7.230)

the results

a(G0, u) =
∫

Ωε

−G′′
0 u dy + [G′

0 u]Ωε
= u(x) (7.231)

a(u, G0) =
∫

Ωε

−u′′ G0 dy + [u′ G0]Ωε
=
∫ l

0

p G0 dy (7.232)

a(u, G1) =
∫

Ωε

−u′′ G1 dy + [u′ G1]Ωε =
∫ l

0

p G1 dy − u′(x) (7.233)

a(G1, u) =
∫

Ωε

−G′′
1 u dy + [G′

1 u]Ωε = 0 + lim
ε→0

[. . .] (7.234)
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Fig. 7.9. The Green’s function GE for the strain energy in the element Ωe

where the notation means

lim
ε→0

a(., .)Ωε
= lim

ε→0
. . . = result (7.235)

and

Ωε = [0, x− ε] ∪ [x + ε, l] . (7.236)

Because (7.233) is Betti, u′(x) = (G1, p), we conclude that a(u, G1) = 0 and
therefore the limit of the jump terms in the last equation

lim
ε→0
{−G′

1(x + ε) u(x + ε) + G′
1(x− ε) u(x− ε)} = 0 (7.237)

must be zero as well. The two opposite horizontal forces G′
l and G′

r press the
cut by one unit apart—in the force method this pair would be a pair X1 = 1—
and in the force method a(G1, u) = 0 would be a test that u is continuous at
x: if both sides of the cut move by the same amount u(x) then the work done
by the two opposite but equal forces, the pair G′

l, G
′
r or 1, 1 respectively, is

zero.
So in this light a(w,Gi) = 0 must be zero if Gi is the Green’s function for

a force term—N , M or V —because with a(w,Gi) we test whether u, w′ or w
is continuous at x. A value a(w,Gi) 	= 0 would signal a discontinuity at x.

Because a(G0, u) = a(u, G0) also the first two results are the same and the
combined result is Betti for u(x). Note that G′′

0 = 0 in Ωe and that the limit
of [G′

0, u] (replace G1 in (7.237) by G0) is u(x) because the normal force G′
0

jumps by one unit at x.
In textbooks a(G0, u) = the principle of virtual forces and a(u, G0) = the

principle of virtual displacements. So both principles, a(u, Gi) = a(Gi, u),
return zero for the strain energy product if δu = Gi is a Green’s function for
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a force term while lower order Green’s functions, a(u, Gi) = a(Gi, u) = ∂i u,
return displacements

a(Gi, u) =
{

J(u) J(u) = displacement
0 J(u) = force term .

(7.238)

7.8 Influence functions for other quantities

The reach of Green’s second identity B(u, û) = 0 extends well beyond the
calculation of point values.

• To derive an influence function for the strain energy in a single element Ωe

we argue as follows: According to Green’s first identity the strain energy
in a single element Ωe = [xa, xb] of the beam in Fig. 7.9 a is

a(w,w)Ωe =
∫ xb

xa

EI (w′′)2 dx =
∫ xb

xa

p w dx + [V w −M w′]xb
xa

= : p(w)Ωe
+ [R,w]Ωe

(7.239)

where in the abbreviated notation R is short for the internal actions V
and M at the ends of the element Ωe which balance the applied load p.
Next let GE the deflection of the beam if the distributed load p acts on
Ωe alone and when the forces R are applied; see Fig. 7.9 c. Evidently then

a(w,w)Ωe
= p(w)Ωe

+ [R,w]Ωe︸ ︷︷ ︸
W1,2

= a(GE , w) =
∫ l

0

GE p dx︸ ︷︷ ︸
W2,1

. (7.240)

Hence the solution GE is the Green’s function for the strain energy in the
element Ωe. The Green’s function for the strain energy in the whole beam
is the solution w itself because a(w,w) = (p, w). Note that GE is load case
dependent.
The implication for the FE solution is that

a(wh, wh)Ωe =
∫ l

0

Gh
E p dx (7.241)

where Gh
E is the FE solution of the auxiliary load case pΩe

, R. This result
is based on integration by parts and (7.408)

a(wh, wh)Ωe
= (ph, wh) + [Rh, wh] =

∫ l

0

Gh
E ph dx

=
∫ l

0

Gh
E p dx . (7.242)
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• To derive an influence function for the L2-norm squared of a displacement
field

||u||20 =
∫

Ω

u • u dΩ (7.243)

we apply the displacement field u as volume forces. Let uu the solution of
this problem, that is

a(uu,v) = (u,v) v ∈ V , (7.244)

and with u ∈ V it follows

W1,2 =
∫

Ω

uu • p dΩ = a(uu,u) = (u,u) = W2,1 , (7.245)

where p is the right-hand side (the volume forces) which belongs to the
original displacement field u. In this particular case the technique is also
known as the Aubin–Nitsche trick .
The extension of (7.245) to the FE solution is evident∫

Ω

uh
u • p dΩ = (uh,uh) . (7.246)

Here uh
u is the FE solution if the volume forces uh are applied.

• The influence function for the integral value of the displacement in a bar
under the action of a distributed load p is the solution of −EAG′′

I = 1
because

W1,2 =
∫ l

0

1× u dx =
∫ l

0

GI × p dx = W2,1 . (7.247)

That is GI is a quadratic function. Now this is interesting. The influence
function for the sum of the horizontal forces is GΣ = 1, that is a constant
function. The influence function for the integral value of the stress σx =
N/A is a linear function because two opposite forces ±1 pull at the ends
of the bar to generate the influence function Gσ.

const =⇒
∑

H = 0 =
∑

Hh = Nh(l)−Nh(0) +
∫ l

0

ph dx

linear =⇒
∫ l

0

σx(x) dx =
∫ l

0

σh
x(x) dx

quadratic =⇒
∫ l

0

u(x) dx =
∫ l

0

uh(x) dx .

That is, if the element shape functions can model constant displacements
then the equilibrium condition is satisfied. If they can model linear dis-
placements then the integral values of the stresses coincide, (σx, 1) =
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(σh
x , 1), and if they even can solve the equation −EAu′′ = 1 exactly then

it is guaranteed that the integral value of the displacement is the same∫ l

0

u dx =
∫ l

0

uh dx . (7.248)

(Note that by dividing with the length l we could establish the same results
for the average values). The higher the degree of the shape functions the
higher the moments that will agree (−EAϕ′′

i = xk)∫ l

0

uxk dx =
∫ l

0

uh xk dx (7.249)

where k = p−2 and p ≥ 2 is the degree of the polynomial shape functions.

Hence it seems that for any quantity we are interested in, there is an influence
function and the important point is that the FE program replaces the exact
Green’s functions in these formulas by approximate solutions or as we say by
shifted Green’s functions.

7.9 Shifted Green’s functions

In more abstract terms most properties of an FE solution are based on a
Shifted Green’s function theorem, that we want to formulate in the following.

The model boundary value problem is the Poisson equation:

−∆u = p in Ω u = 0 on Γ . (7.250)

The associated identities are

G(u, û) =
∫

Ω

−∆u û dΩ +
∫

Γ

∂u

∂n
û ds−

∫
Ω

∇u •∇û dΩ = 0 (7.251)

and

B(u, û) =
∫

Ω

−∆u û dΩ −
∫

Γ

∂u

∂n
û ds−

∫
Γ

u
∂û

∂n
ds

−
∫

Ω

u (−∆û) dΩ = 0 . (7.252)

In the following G(u/p, û) = 0 denotes the formulation of Green’s first identity
if in G(u, û) the term −∆u is replaced by p and the trace of u (= boundary
value) on Γ by 0, i.e. in a first step for the left-hand side the data on the right-
hand side of the boundary value problem (7.250) are substituted—wherever
possible—and in a second step the remaining slots are filled with the function
u or its derivatives, where u is the argument to the left of the slash in u/p. In
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Fig. 7.10. The essence of the FE method—the substitute load ph is work equivalent
to p with respect to all virtual displacements ϕi ∈ Vh: a) original load case, b)
equivalent load case

the same sense a formulation like B(u/p, û/p̂) = 0 is understood where û is
the solution of a problem

−∆û = p̂ in Ω û = 0 on Γ . (7.253)

With these substitutions, the identities become instances of the principle of
virtual displacements:

G(u/p, δu) =
∫

Ω

p δu dΩ︸ ︷︷ ︸
δWe(p,δu)

−
∫

Ω

∇u •∇δu dΩ︸ ︷︷ ︸
δWi(u,δu)

= 0 , (7.254)
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Fig. 7.11. On Vh the approximate Dirac deltas δh
0 are perfect replacements or

proxies for the original Dirac deltas δi

and Betti’s theorem:

B(u/p, û/p̂) =
∫

Ω

p û dΩ −
∫

Ω

u p̂ dΩ = 0 . (7.255)

If u is the exact solution of (7.250), the expression G(u/p, δu) is the same as
G(u, δu). Things will become interesting if the exact data are mixed with the
FE solution uh as in G(uh/p, ϕi). This is what is done in FE methods.

Principle of virtual displacements

The essential property of the exact solution u is that it satisfies the principle
of virtual displacements (7.254) for any (sufficiently regular) virtual displace-
ment δu.

The characteristic property of the FE solution uh is that it satisfies (7.254)
only with regard to the trial functions ϕi ∈ Vh (see Fig. 7.10):

G(uh/p, ϕi) =
∫

Ω

p ϕi dΩ −
∫

Ω

∇uh •∇ϕi dΩ = 0 ϕi ∈ Vh (7.256)

but not for arbitrary admissible virtual displacements δu (admissible means
δu = 0 on Γ )

G(uh/p, δu) =
∫

Ω

p δu dΩ −
∫

Ω

∇uh •∇δu dΩ 	= 0 , (7.257)

because −∆uh 	= p.
Equation (7.256) essentially means that G(u/p, ϕi) = 0 and G(uh/p, ϕi) =

0 are the “same”. In the expression G(u/p, ϕi) = 0 the exact solution u can
be replaced by the FE solution uh.
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An immediate consequence of the equivalence between p and its FE coun-
terpart ph on Vh is that the approximate Dirac deltas δh

0 are perfect substitutes
for the exact deltas on Vh; see Fig. 7.11.

Betti’s theorem

By similar reasoning Betti’s theorem can be extended to FE solutions. Given
the solutions u1 and u2 of two model problems

−∆u1 = p1 u1 = 0 on Γ , −∆u2 = p2 u2 = 0 on Γ (7.258)

it follows that

B(u1, u2) = 0 or
∫

Ω

p1 u2 dΩ =
∫

Ω

p2 u1 dΩ , (7.259)

and the message is that in the last equation the exact solutions u1 and u2 can
be replaced by their FE counterparts uh

1 and uh
2 ,∫

Ω

p1 uh
2 dΩ =

∫
Ω

p2 uh
1 dΩ , (7.260)

which means that B(u1/p1, u2/p2) = 0 and B(uh
1/p1, u

h
2/p2) = 0 are on Vh

the “same”. The proof rests on the Equivalence Theorem (see Eq. (7.402)),∫
Ω

p1 uh
2 dΩ =

∫
Ω

ph
1 uh

2 dΩ

∫
Ω

p2 uh
1 dΩ =

∫
Ω

ph
2 uh

1 dΩ (7.261)

and Betti’s theorem,

B(uh
1 , uh

2 ) =
∫

Ω

ph
1 uh

2 dΩ −
∫

Ω

ph
2 uh

1 dΩ = W1,2 −W2,1 = 0 . (7.262)

Hence (7.260) means that the FE solutions can serve on Vh as “proxies” for
the exact solutions; see Fig. 7.12.

Principle of virtual forces

Here the sequence of functions is reversed2. The auxiliary state û and the
virtual forces p̂ (the right-hand side of û) comes first

G(û/p̂, u) =
∫

Ω

p̂ u dΩ +
∫

Γ

∂û

∂n
u ds−

∫
Ω

∇û •∇u dΩ = 0 (7.263)

and the rule is now the following: (i) if ûh ∈ Vh is the FE solution of a load
case p̂, and if (ii) the second argument u lies in Vh (therefore we write uh

2 We mention this principle only to be complete. The result essentially is contained
in the previous formulations
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Fig. 7.12. Betti’s theorem and its extension to FE solutions. Tottenham’s equation
is the most prominent application of this extension

instead of u), then for the virtual forces p̂ may be substituted the FE forces
p̂h

G(û/p̂h, uh) =
∫

Ω

p̂h uh dΩ +
∫

Γ

∂ûh

∂n
uh ds−

∫
Ω

∇ûh •∇uh dΩ = 0 .

(7.264)

To prove this rule, we calculate the deflection ϕi ∈ Vh of a beam by applying
a “virtual force”P = 1 at a point x:

G(G0/δ0, ϕi) =
∫ l

0

δ0 ϕi dy −
∫ l

0

M0 Mi

EI
dy = 0 . (7.265)

Next recall that

a(G0 −Gh
0 , ϕi) = 0 (7.266)

and that

a(G0, ϕi) = (δ0, ϕi) a(Gh
0 , ϕi) = (δh

0 , ϕi) . (7.267)

Hence it follows that
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G(G0/δh
0 , ϕi) =

∫ l

0

δh
0 ϕi dy −

∫ l

0

M0 Mi

EI
dy = 0 , (7.268)

which means that∫ l

0

δ0 wh dy =
∫ l

0

δh
0 wh dy wh ∈ Vh . (7.269)

Hence any point value wh(x) of a function wh ∈ Vh is equal to the work
done by the approximate load δh

0 (y − x) acting through wh(y), or stated
otherwise, on Vh the kernel δh

0 is a perfect replacement for the kernel δ0.
This is a truly remarkable result, which of course also holds for the higher
Dirac deltas.

Note that the notation G(G0/δh
0 , uh) implies that in the extension of the

principle of virtual forces the FE load case p̂ is substituted for p̂ but that G0

is left untouched! This is just the reverse of the previous substitutions.

Summary

The practical importance of these three extensions, (7.256), (7.260), and
(7.264) is that probably all post-processing in mechanics is applied duality,
is based on Green’s first or second identity:

G(u/p, û) = 0 (principle of virtual displacements) (7.270)
G(û/p̂, u) = 0 (principle of virtual forces) (7.271)

B(u/p, û/p̂) = 0 (Betti’s theorem) . (7.272)

Thus to extract information from the solution for u, the exact solution is
substituted (and therewith the right-hand sides p and 0, etc.), and the place
of û is taken by appropriate auxiliary functions. The function û can be a rigid
body motion û = 1 so that

G(u, 1) =
∫

Ω

−∆u · 1 dΩ +
∫

Γ

∂u

∂n
· 1 ds = 0 , (7.273)

provides the sum of the vertical forces (û = 1 would then be called a general-
ized Green’s function) or it can be a genuine Green’s function if, say, the stress
σ(x) = ∇u • n in the membrane at a specific point in a particular direction
(n)

σ(x) =
∫

Ω

G1(y,x) p(y) dΩy (7.274)

is to be calculated. This equation is identical to B(u, G1[x]) = 0. Similarly, the
unit-dummy-load method of structural mechanics, which is used to calculate
the deflection of a beam at a specific point x
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Fig. 7.13. The two approaches to FE analysis

w(x) =
∫ l

0

M(y) M2(y, x)
EI

dy M2 = −EI
d2

dy2
G2(y, x) , (7.275)

is identical to G(G2[x], w) = 0 (principle of virtual forces).
Hence the (original) Green’s function Gi and the generalized Green’s func-

tion z allow us to extract information from the exact solution via Green’s
identities.

If we simply speak of Green’s function—and drop the artificial distinction
between original Green’s functions and generalized Green’s functions—we can
formulate the following theorem:

Shifted Green’s function theorem: the FE solution satisfies all iden-
tities or tests with regard to the projections of the Green’s functions

G(uh/p,Gh
i ) = 0 G(Gi/δh

i , uh) = 0 B(uh/p, Gh
i /δi) = 0 , (7.276)

where the projections Gh
i ∈ Vh are the FE approximations of the Green’s

functions.
To appreciate this theorem the reader must understand the importance of

the Green’s identities and Green’s functions for structural mechanics. When
we say that the support reactions maintain the equilibrium with the applied
load then this actually means that

G(u/p, û) = 0 û = a + b x = rigid-body motion . (7.277)

Any property that we are used to attribute to the exact solution as the sat-
isfaction of the equilibrium conditions or the fact, that the deflection of a
cantilever beam carrying a point load P is w(l) = P l3/(3 EI), is a result
that can be reproduced by substituting for u the exact solution and for û an
appropriate Green’s function into Green’s identities. And all what we do in
FE analysis is that we create a shadow world Vh where anything which is true
in the real world V is true as well if only we consequently substitute for the
exact Green’s function the projections Gh

i .
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Fig. 7.14. Four load cases

That is with any mesh (or trial space Vh) we can associate a shift-operator
which maps the exact Green’s functions Gi[x] onto functionals Gh

i [x] in the
dual space H ′

m(Ω) and the “only” problem with the FE method is that the
algorithm considers these shifted Green’s functions to be the real Green’s
functions.

Just as a change in the elastic parameters or a change in the stiffness of a
support effects a shift in the Green’s functions so an FE mesh produces a shift
of the Green’s functions. This seems to be the whole point of FE analysis.

Two approaches

From the standpoint of a reviewing engineer the FE method basically can be
classified in two ways. Both are depicted in Fig. 7.13.

• In the first approach the FE solution is identified with the solution of an
equivalent loadcase ph and the displacements and the stresses

uh(x) =
∫ l

0

G0(y, x) ph dy σh(x) =
∫ l

0

G1(y, x) ph dy (7.278)

are the scalar product between the exact Green’s functions and the equiv-
alent load.

• In the second approach the same displacements and stresses

uh(x) =
∫ l

0

Gh
0 (y, x) p dy σh(x) =

∫ l

0

Gh
1 (y, x) p dy (7.279)

are the scalar product between the approximate Green’s functions (the
shifted Green’s functions) and the original load.
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In the first approach the load p is replaced by a work-equivalent load ph and
in the second approach the Green’s functions Gi are replaced by equivalent
Green’s functions Gh

i , where equivalent means that on Ph (= the set of all
FE load cases) the two coincide; (Gi, pj) = (Gh

i , pj) for every unit load case
pj . Note that a change in the Green’s function is the same as a change in the
governing equation.

Proxies

As mentioned earlier, the kernel δh
0 is a perfect substitute on Vh for the kernel

δ0, namely

wh(x) = (δ0, wh) = (δh
0 , wh) = (δh

0 ,
∑

i

ϕi ui)

=
∑

i

(δ0, ϕi) ui =
∑

i

ϕi(x)ui . (7.280)

The inner workings of this result are best understood by studying a two-span
beam, which is subdivided into two elements; see Fig. 7.14 a. The influence
function for the deflection at the center x̄ of the first span is the deflection
curve G0[x̄] if a single force P = 1 is applied at x̄. To solve this load case on Vh,
the deflections of the nodal unit displacements at the point x̄ must be applied
as equivalent nodal forces fi; see Fig. 7.14 b. This strange rule—deflections
become equivalent nodal forces—is easily understood if this substitute Dirac
delta

δh
0 (x̄− y) = {f1, f2, f3, f4, f5, f6}

= {ϕ1(x̄), ϕ2(x̄), ϕ3(x̄), ϕ4(x̄), 0, 0} (7.281)

is applied to a function wh ∈ Vh. Then indeed the value of wh at x̄ is recovered,∫ 2l

0

δh
0 (x̄− y) wh(y) dy

= f1 wh(0)− f2 w′
h(0) + f3 wh(l) − f4 w′

h(l) + 0 wh(2 l) + 0 w′
h(2 l)

= −ϕ2(x̄) w′
h(0)− ϕ4(x̄)w′

h(l) = wh(x̄) , (7.282)

(a positive f2 contributes negative work upon acting through a positive rota-
tion w′

h(0)), because wh lies in Vh and therefore

wh(x̄) = [−ϕ2(x) w′
h(0)− ϕ4(x)w′

h(l)− ϕ6(x) w′
h(2 l)]x=x̄

= [−ϕ2(x̄)w′
h(0)− ϕ4(x̄)w′

h(l)] . (7.283)

On the larger space V this substitute Dirac delta δh
0 will not work. Consider

for example the function w(x) = sin x. The result
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Fig. 7.15. Maxwell’s theorem can be extended to the substitute Dirac deltas δh
0

∫ 2l

0

δh
0 (x̄− y) sin y dy = −ϕ2(x̄) cos(0)− ϕ4(x̄) cos(π)

= −(−π

8
) · 1− π

8
· (−1) =

π

4
= 0.785 (7.284)

does not fit, because sin x̄ = sin(π/2) = 1. Note that in the first span

ϕ2(x) = −x + 2
x2

π
− x3

π2
ϕ2(x̄) = −π/8 (7.285)

ϕ4(x) =
x2

π
− x3

π2
ϕ4(x̄) = +π/8 . (7.286)

Maxwell’s theorem

Maxwell’s theorem, δij = δji, seems to make no sense in FE analysis, because
we cannot study the effects of true point loads with an FE program since the
program replaces any point load by work-equivalent surface loads and line
loads. But because these substitute loads δh

0 are (on Vh) a perfect substitute
for the original Dirac deltas, it follows that

wh
2 (x1) = (δ(1,h)

0 , wh
2 ) = (δ(2,h)

0 , wh
1 ) = wh

1 (x2) . (7.287)
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Here δ1,h
0 is the assemblage of loads that simulate the action of P = 1 at x1

(see Fig. 7.15 a; simply the nodal forces fi in this 1-D problem), and δ2,h
0 has

the equivalent meaning (see Fig. 7.15 b).
Of course linear algebra provides the same result: let

K ui = ei K uj = ej (7.288)

then

δij = uT
j K ui = uT

i K uj = δji . (7.289)

And also the extension to arbitrary other pairs of Dirac deltas (that’s what
the point loads are after all) is evident.

Classical Maxwell

δ0
1,2 =

∫
Ω

G0(y,x1) δ0(y − x2) dΩy =
∫

Ω

G0(y,x2) δ0(y − x1) dΩy = δ0
2,1

(7.290)

or, to keep it short,

δ0
1,2 = (G0[x1], δ0[x2]) = (G0[x2], δ0[x1]) = δ0

2,1 (7.291)

—the superscript 0 stands for displacement—is simply Betti (L is the self-
adjoint differential operator)

(G0[x1], δ0[x2]) = (G0[x1], L G0[x2]) = (LG0[x1], G0[x2]) = (δ0[x1], G0[x2]) .

(7.292)

The extension to arbitrary pairs {i, j} of Green’s functions amounts to

δi
1,2 = (Gi[x1], δj [x2]) = (Gj [x2], δi[x1]) = δj

2,1 . (7.293)

Let for example i = 3 and j = 2 then the equation

δ3
1,2 = (G3[x1], δ2[x2]) = (G2[x2], δ3[x1]) = δ2

2,1 (7.294)

means that the shear force at the point x1 of the influence function for the
bending moment at the point x2 in a slab is the same as the bending moment
at the point x2 of the influence function for the shear force at the point x1.

Equ. (7.294) must be read as: G3[x1] picks from the “load”δ2 the shear
force (3) of the field G2[x2] (= Lδ2) at point x1, etc..

The extension of this result to finite elements is more or less obvious (we
skip the details)

δi,h
1,2 = (Gh

i [x1], δh
j [x2]) = (Gh

j [x2], δh
i [x1]) = δj,h

2,1 . (7.295)
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Are all results of point loads adjoint?

Consider the following question: in load case 1 a single force P1 acts at a point
x1 and in load case 2 a force P2 at a point x2. Are the stresses caused by P1

at the foot of P2, say σ
(1)
xx (x2), the same as the stress σ

(2)
xx (x1) caused by P2

at the foot of P1? No, this is not true

σ(1)
xx (x2) 	= σ(2)

xx (x1) . (7.296)

To see this let K u1 = f1 and K u2 = f2 two FE solutions then the symmetry
of K implies that

uT
2 f1 = uT

1 f2 (7.297)

which is Betti. If the vectors f are the equivalent nodal forces of Green’s
functions then we have Maxwell

(uG
2 )T fG

1 = (uG
1 )T fG

2 . (7.298)

So Betti is “two” and Maxwell is “two” but in (7.296) we operate with four
states

σ(1)
xx (x2) = (u(P1))T fGσ

2 	= (u(P2))T fGσ
1 = σ(2)

xx (x1) (7.299)

and so we cannot use the symmetry of K to switch sides. Why, after all,
should the value of a functional J1(u2) at u2 be the same as the value of a
second functional J2(u1) at u1? The numbering scheme, 1,2, alone is no proof.

7.10 The dual space

Recall Sobolev’s Embedding Theorem, see p. 46, which states that:
If Ω is a bounded domain in R

n with a smooth boundary, and if 2m > n,
then

Hi+m(Ω) ⊂ Ci(Ω̄) (7.300)

and there exist constants ci <∞ such that for all u ∈ Hi+m(Ω)

||u||Ci(Ω̄) ≤ ci ||u||Hi+m(Ω) . (7.301)

This seems to be an abstract theorem with no immediate consequences
for structural mechanics—besides of course clarifying our ideas about point
loads—(see Sect. 1.14, p. 44). But we wish to comment on some interesting
consequences of this theorem.

Recall that the norm ||u||Ci(Ω̄) of a function is the maximum absolute value
of u and its derivatives up to order i on Ω̄. Hence if two deflection surfaces
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Fig. 7.16. If two solutions are close in the sense that a(u − û, u − û) � 1, the
maximum stresses must not be the same

w1 and w2 of a Kirchhoff plate are close in the sense of the Sobolev space
H2(Ω)—if their strain energy is about the same—the maximum deflections
of the two surfaces must also be nearly the same:

||w1 − w2||2  1 ⇒ max w1 ∼ max w2 . (7.302)

This follows from (7.301)—using a somewhat symbolic notation in the last
step,

max |w1 − w2| = ||w1 − w2||C0(Ω̄) ≤ c0 ||w1 − w2||2  c0 · 1 , (7.303)

if we assume that the constant c0 is not too pessimistic, i.e., too large.
For displacement fields u = [ux, uy]T of plates—which we typically asso-

ciate with the space H1(Ω) = H1(Ω)×H1(Ω)—this is not necessarily true

||u1 − u2||1  1 	⇒ max |u1| ∼ max |u2| (7.304)

because the inequality 2m = 2 · 1 > 2 = n is not true.
To study the consequences of this theorem more systematically, we need to

introduce the concept of the dual space of a Sobolev space Hm(Ω). The dual
space is defined as the set of all continuous linear functionals p(.) on Hm(Ω)
as for example

p(w) :=
∫

Ω

p w dΩ . (7.305)

In the following the focus is on the Sobolev space H2(Ω), endowed with the
norm

||w||2 :=
[∫

Ω

(w2 + w,2x +w,2y +w,2xx +w,2xy +w,2yx +w,2yy ) dΩ

]1/2

, (7.306)
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which is the energy space of Kirchhoff plates.
For a very special reason we focus initially on the subspace H2

0 (Ω) ⊂
H2(Ω) of this space. All the functions w ∈ H2(Ω) with vanishing deflection
and slope on the boundary, w = ∂w/∂n = 0, constitute this subspace H2

0 (Ω).
If a plate is clamped, the deflections w lie in H2

0 (Ω). The nice feature of H2
0 (Ω)

is, that its dual can be identified with the Sobolev space H−2(Ω)3 [202].
To understand this “negative” space, recall that the regularity of the func-

tions in Hm increases with the index m. The opposite is true with regard to
the negative spaces H−m: the more negative, the worse the regularity. Such
functions “borrow” their regularity from their brethren in Hm.

Take for example the Green’s function G0(y, x) of a taut rope (prestressed
with a force H = 1) with its triangular shape. This function has no second
derivative at the source point y, the foot of the point load, so that the integral∫ l

0

G′′
0(y, x) δw(x) dx ( )′′ =

d2

dx2
(7.307)

makes no sense. The point load δ0 = G′′
0 does not lie in L2(0, l) = H0(0, l),

because the integral of G′′
0 squared does not exist:∫ l

0

[G′′
0(y, x)]2 dx =∞ . (7.308)

Hence the point load must lie in a weaker space, in some negative Sobolev
space H−m(0, l), namely H−2(0, l).

To understand this choice, note that if the virtual displacement δw lies in
H2(0, l), then integration by parts can be applied twice, and because G0 and
δw have zero boundary values (the rope is fixed at its ends), the result is∫ l

0

G′′
0(y, x) δw(x) dx = [G′

0 δw]l0 −
∫ l

0

G′
0(y, x) δw′(x)dy

= [G′
0 δw −G0 δw′]l0 +

∫ l

0

G0(y, x) δw′′(x) dx

=
∫ l

0

G0(y, x) δw′′(x) dx (7.309)

i.e., the work done by the point load acting through δw can be expressed in
terms of the work done by the distributed load δw′′ acting through G0.

The point load δ0 = G′′
0 is called the generalized second derivative of G0

and because this technique can always be applied if δw ∈ H2(0, l) it is said
that the point load δ0 lies in H−2(0, l).

From an engineering point of view, the concept of generalized derivatives
is an application of Betti’s theorem W1,2 = W2,1. “If W1,2 seems to make no
sense or cannot be calculated, then try W2,1!”.
3 We spare the reader a definition of negative Sobolev spaces, because the essence

of such spaces hopefully will become clear in the following discussion.
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Fig. 7.17. In the unit ball B1 = {w | ||w||E = 1} the normalized exact solution
w/||w||E gets “the most mileage” out of p, i.e. the virtual work exceeds that of any
other normalized virtual deflection ŵ/||ŵ||E .

Continuous functionals

If a functional p is continuous, there exists a constant c such that

|p(ŵ)| ≤ c ||ŵ||E . (7.310)

The lowest bound c—divide the equation by ||ŵ||E—is defined as the norm
of the functional p

||p ||−E := sup
ŵ∈V
ŵ �=0

|p(ŵ)|
||ŵ||E = sup

ŵ∈V
||ŵ||E=1

|p(ŵ)| . (7.311)

If w is the solution of the load case p, then

|p(ŵ)|
||ŵ||E =

|a(w, ŵ)|
||ŵ||E ≤ ||w||E ||ŵ||E||ŵ||E = ||w||E (7.312)

i.e., ||w||E is an upper bound and because of

|p(w)|
||w||E =

|a(w,w)|
||w||E = ||w||E (7.313)

it is also the lowest upper bound. Hence the norm ||p ||−E of a load case p is
just the norm of the solution

||p ||−E = ||w||E =
∫ l

0

M2

EI
dx (in a beam) . (7.314)
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This means that the exact solution w is that deflection in V which gets “the
most mileage” out of p in the sense of (7.311); see Fig. 7.17.

It seems intuitively clear that any surface load or line load p represents a
continuous functional

|p(δw)| < c ||δw||2 . (7.315)

(We switch again to Sobolev norms).
But does this also hold true for point loads acting on a Kirchhoff plate?

The answer is yes. The Dirac delta δ0—a point load of magnitude P = 1—
belongs to H−2(Ω). The reason is that the functions w ∈ H2(Ω) lie also in
C(Ω) and because the embedding H2(Ω) ⊂ C(Ω) is—according to Sobolev’s
Embedding Theorem continuous, (m− i > n/2 or 2− 0 > 1)—it follows

max
x∈Ω

|w(x)| ≤ c ||w||2 (7.316)

where the constant c does not depend on w. Thus any function w ∈ H2(Ω) is
guaranteed to have a bounded value w(x) at every point x ∈ Ω, and therefore
an expression such as

δ0(w) :=
∫

Ω

δ0(y − x) w(y) dΩy = w(x) (7.317)

makes sense, and is a continuous functional on H2(Ω)

|δ0(w)| = |w(x)| ≤ c ||w||2 . (7.318)

That is if ||w||2 → 0 then also |δ0(w)| → 0. So if the strain energy of a slab
is zero (||w||E = a(w,w)1/2 and ||w||2 are equivalent norms) then w ≡ 0 and
no single point is allowed to break ranks while in a plate (2-D elasticity) this
is possible: the influence function for the point support is zero—the plate
does not move, ||u||E = 0—but one single point leaves the plate and travels
downward by one unit length, see Fig. 1.73 p. 103. Hence the conclusion is

• A slab with finite strain energy, w ∈ H2(Ω), is smooth, i.e., the deflection is
continuous—no sudden jumps—and the maximum value of w is bounded.

But it is not guaranteed that all functions w ∈ H2(Ω) have a well-defined
slope at all the points x ∈ Ω, because the embedding of H2(Ω) into C1(Ω)
is not continuous, because the inequality 2− 1 > 1 is not true. Hence a single
moment M = 1 (Dirac delta δ1) is not a continuous functional on H2(Ω).

But the embedding of H3(Ω) into C1(Ω) is continuous, so δ1 ∈ H−3(Ω),
and δ2 lies in H−4 and δ3 lies in H−5:

H

δ3

−5 H

δ2

−4 H

δ1

−3 H

δ0

−2 H−1 H0 = L2(Ω) H1 H

C0

2 H

C1

3 H

C2

4 H

C3

5
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Fig. 7.18. The deflection curve w caused by the moment M lies in H2(0, l) but not
in H3(0, l), otherwise the bending moment would have to be continuous, because
H3(0, l) ⊂ C2(0, l), 3 − 2 > 1/2

From a theoretical point of view the only load cases p that are admissible
lie in the dual of the energy space Hm(Ω), i.e., there must exist a bound c
such that

|p(w)| ≤ c ||w||m . (7.319)

Because the constant c is just the norm of the solution of the load case p,
i.e., c = ||w||m and because the norm ||w||m and the energy norm ||w||E =
a(w,w)1/2 are equivalent, the constant c is proportional to ||w||E .

Unbounded point functionals

Normal structural loads do lie in the dual space. The solution can be approx-
imated by minimizing the distance in the energy. This even holds true—at
least for the classical point loads P = 1 and M = 1—in beams; see Fig.
7.18. But in higher dimensions point loads (point functionals, Dirac deltas)
are critical.
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To prescribe the displacement u1(x) at a particular point x of a plate
makes no sense, because the embedding of the energy space H1(Ω) :=
H1(Ω) × H1(Ω) of the displacement fields u = [ux, uy]T into C0(Ω) :=
C0(Ω)× C0(Ω) is not continuous.

The displacement field u(x) = [ln(ln(1/r)), 0]T for example has finite en-
ergy, in any circular domain Ω1−ε = {(r, ϕ)| 0 ≤ r ≤ 1 − ε, 0 ≤ ϕ ≤ 2 π} but
the horizontal displacement ux = ln(ln(1/r)) is infinite at r = 0.

Hence the Dirac delta δ0 does not lie in the dual of H1(Ω), because there
is no constant c such that for all u ∈H1(Ω)

|(δx
0 ,u)| = |ux(x)| ≤ c ||u||1 . (7.320)

Rather we are lead to conclude that c = ∞. This even makes sense, because
a point load will generate a stress field with infinite strain energy and so
c = ||u||1 ∼= a(u,u)1/2 =∞.

Even more critical are the stresses (the first derivatives), because a result
such as

|(δxx
1 ,u)| = |σxx(x)| ≤ c1 ||u||1 (7.321)

would require that the embedding of the energy space H1(Ω) into C1(Ω)
is continuous—which is not true in 2-D and 3-D elasticity. Hence the point
functional δxx

1 which extracts the stress σxx at a particular point (post pro-
cessing!) is not a continuous functional on the energy space H1(Ω). If we pick
an arbitrary point x ∈ Ω, there is no global bound on the stress, say, σxx(x)
at this point, i.e, which is a bound for the stress σxx(x) of all displacement
fields u in H1(Ω) in the sense of (7.321). A displacement field u can have a
bounded strain energy, a(u,u) <∞, (the norms ||u||1 and ||u||E are equiva-
lent) but the stresses may become infinite at some points inside Ω. This is no
contradiction.

• Hence, if we calculate the stress at a point, we apply an unbounded point
functional, even though we think we only evaluate the polynomial function
which represents the stress distribution.

Also note that if two displacement fields have nearly zero distance in the
metric of the Sobolev space H1(Ω), ||u− û||1  1, it is not guaranteed that
the maximum stresses are about the same; see Fig. 7.16, p. 553.

Riesz’ representation theorem

We have mentioned Riesz’ representation theorem before, but it deserves more
than a place in a footnote because this theorem is central to Green’s functions
and finite elements.

Extracting information from a structure means—in an abstract sense—to
apply a functional J(u) to the solution
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J(u) = u(x) J(u) = σxx(x) J(u) =
∫

Ω

u dΩ etc. (7.322)

According to Riesz’ representation theorem for each linear, bounded functional
J() there is an element z ∈ V such that

a(z, u) = J(u) . (7.323)

The function z is of course the (generalized) Green’s function G.
In structural mechanics most functionals are unbounded

J(u) = u(x) J(u) = σ(x) J(u) = u,x (x) . . . (7.324)

that is it cannot be guaranteed that the functional is less than the energy of
u times a global constant (not depending on the single u)

|J(u)| ≤ c ||u||E (7.325)

(a displacement field u can be infinite at one point x, that is J(u) = ux(x) =
∞, but the energy is finite, ||u||E < ∞) and also the strain energy of the
Green’s functions Gi (= z) is infinite

a(Gi, Gi) = ||Gi||2E =∞ (7.326)

so that—theoretically at least—Riesz’ representation theorem is not appli-
cable. But we know that if we replace point values, i.e. point functionals
J(u) = u(x), by average values

u(x) → ū(x) =
1
|Ωε|

∫
Ωε

u dΩ (7.327)

then the functionals J() are bounded and the corresponding generalized
Green’s function ||Gi||E < ∞ have finite energy. So we may assume that
Riesz theorem is “very nearly” applicable to our problems.

Now to each mesh belongs a test and trial space Vh ⊂ V and an abstract
operator P which maps each functional J() onto a functional4 Jh()

P : J() ∈ V ′ ⇒ Jh() ∈ V ′
h (7.328)

such that (see Fig. 1.45 p. 67)

J(v) = Jh(v) for each v ∈ Vh . (7.329)

To the mapping J()→ Jh() corresponds a mapping

V " G → Gh ∈ Vh (7.330)

4 V ′ and V ′
h are the duals of V and Vh that is the set of all functionals defined on

V and Vh resp.
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Fig. 7.19. The element size h

of the Riesz element.
The interesting aspect of this operator P is that it allows to characterize

FE solutions via the functionals Jh(): namely in FE analysis we choose uh ∈ Vh

in such a way that for all J()

J(uh) = a(G, uh) = a(Gh, uh) = (p,Gh) = Jh(u) (7.331)

or, to keep it short,

J(uh) = Jh(u) . (7.332)

Surprisingly this statement is equivalent to

a(uh, v) = (p, v) v ∈ Vh . (7.333)

For a proof of (7.329) and (7.332) see (1.228) p. 69.
Note that all this happens automatically. A mesh is a space Vh, is an

operator P, is an assemblage of Green’s functions Gh
i and all this before even

one single load case has been solved on this mesh.

7.11 Some concepts of error analysis

Asymptotic error estimates

These estimates tell what kind of convergence rate we can expect if the mesh

u(x) = u(0) + u′(0)x + . . . + u(n)(0)
xn

n!︸ ︷︷ ︸
n-th degree polynomial

+u(n+1)(ξ)
x(n+1)

(n + 1)!︸ ︷︷ ︸
remainder

(7.334)

consists of an n-th degree polynomial and a remainder term, which is essen-
tially the derivative u(n+1) at an unknown point ξ between 0 and x.

Let us apply this series to the exact solution u(x) in an element [xi, xi+1] of
length h = xi+1−xi. If the Taylor series is truncated after the first derivative,
then at a point xi ≤ x ≤ xi+1 we have

size h tends to zero; see Fig. 7.19. The Taylor series of a function
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u(x) = u(xi) + u′(xi) x + u′′(ξ)
x2

2
xi ≤ ξ ≤ xi+1 . (7.335)

Next let us assume that the FE solution consists of a string of first-degree
polynomials (hat functions), and the exact solution is interpolated at the
nodes. Then the error eI(x) = u(x) − uI(x) of the interpolating function
uI(x) is

eI(x) = u(xi) + u′(xi) x + u′′(ξ)
x2

2
− uI(xi)− u′

I(xi) x

= e′(xi) x + u′′(ξ)
x2

2
because of uI(xi) = u(xi) . (7.336)

Because the error at the other end of the element is zero as well, uI(xi+1) =
u(xi+1), the error eI(x) must have its maximum at some point s in between,
and because e′′I = u′′ − u′′

I = u′′ it follows that

e′I(x) =
∫ x

s

u′′(z) dz ≤
∫ xi+1

xi

|u′′(z)| dz ≤ h max
xi≤z≤xi+1

|u′′(z)| . (7.337)

If (7.337) and (7.336) are combined, then we have the estimate

|eI(x)| ≤ h2 max
xi≤ξ≤xi+1

|u′′(ξ)| . (7.338)

This can be generalized: if the shape functions can represent any poly-
nomial up to degree k exactly (completeness!) and if the derivatives of the
shape functions are uniformly bounded,5 then in plate problems the error in
the displacements is of order O(hk+1) and the error in the stresses of order
O(hk), and the constant factor in the error bound (see (7.338)) depends on
the derivatives of order k + 1 of the solution u(x).

If quadratic shape functions are used in plate problems, k = 2, then the
error in the displacements is of order O(h3) and the error in the stresses is of
order O(h2). In beam or in plate bending analysis, complete cubics (k = 3)
would yield O(h4) for the error in the deflection, O(h2) for the error in the mo-
ments, and O(h) for the error in the shear forces. Each order of differentiation
reduces the order of the convergence by 1.

All this holds of course only for smooth solutions. In the presence of singu-
larities, or if the solution is simply not that smooth enough the convergence
rate is lower, because the Taylor series terminates with the last regular deriva-
tive of u.

If for example the distributed load abruptly drops to zero as in Fig. 7.20
a the third derivative u′′′ is a delta function and the Taylor series of u(x) is
truncated with the remainder u′′(ξ)

u(x) = u(0) + u′(0)x + u′′(ξ)
x2

2
← forced stop , (7.339)

5 [230] p. 137



562 7 Theoretical details

Fig. 7.20. An unfavorable arrangement of the elements reduces the order of the
convergence

and the estimate does not extend beyond |eI | ≤ h2 max |u′′|. Even quadratic
shape functions, which theoretically allow a rate O(h3), do not fare better
than O(h2).

The presence of a single force ensures that the second derivative u′′ is
already a delta function and the Taylor series is terminated with the remainder
u′(ξ):

u(x) = u(0) + u′(ξ)x , (7.340)

which means that it is not possible to do better than O(h).
Hence, if the elements are of order k, and if under normal circumstances

the bound on the error in the interpolating function is

|eI | ≤ hk+1max |u(k+1)| , (7.341)

then with each derivative that is not smooth, one order in the convergence
rate is lost.

These examples illustrate how important it is to arrange the elements
in such a way that single forces are applied at the nodes or that load dis-
continuities occur at interelement boundaries. Of course the same applies to
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discontinuities in the modulus of elasticity or, say, the cross section A of a
bar, though all this is evident.

In an energy method such as FE analysis the pointwise interpolation error
eI(x) = u(x) − uI(x) is not the typical error studied. Rather, it is the L2-
measure

||eI ||m =

[∫ l

0

[ e2
I + (e′I)

2 + (e′′I )2 + . . . + (e(m)
I )2] dx

]1/2

, (7.342)

that is, the error e is measured in terms of Sobolev norms of order m, where
m typically has the same order as the energy:

2 m =
{

2 bar, plates, Reissner–Mindlin plates
4 Euler–Bernoulli beams, Kirchhoff plates (7.343)

From (7.338) follows the estimate for the interpolation error:

||eI ||m = c hk+1−m ||u||k+1 . (7.344)

The highest derivatives in the Sobolev norm ||.||m are of the same order as
the highest derivative in the strain energy a(., .). This is one of the reasons
why under regular circumstances the energy norm ||u||E =

√
a(u, u) and the

Sobolev norm ||.||m are equivalent

c1 ||u||m ≤
√

a(u, u) ≤ c2 ||u||m with constants c1 and c2 . (7.345)

In an Euler–Bernoulli beam, which is governed by the equation EI wIV = p,
the Sobolev norm

||w||2 =

[∫ l

0

(w2 + (w′)2 + (w′′)2) dx

]1/2

(7.346)

is, if the beam cannot perform any rigid-body motions, equivalent to the
energy norm

||w||E := a(w,w)(1/2) =

[∫ l

0

M2

EI
dx

]1/2

(7.347)

i.e., there exist constants c1 and c2 such that

c1 ||w||2 ≤ ||w||E ≤ c2 ||w||2 . (7.348)

This is a remarkable fact, because the energy norm only measures the second-
order derivatives. The equivalence implies that if the bending moments and
therefore ||w|||E are zero in a beam, then w and w′ also are zero (in the L2

sense).
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The index k + 1 in the norm ||u||k+1 on the right-hand side of Eq. (7.344)
comes from the remainder uk+1(ξ) of the Taylor series. For other indices r,
estimates such as

||eI ||m = c hα ||u||r α = min (k + 1−m, r −m) (7.349)

are obtained where either the degree of the element is decisive: the greater
the value of k, the more the Taylor series can be expanded and powers of h
gained. On the other hand the regularity of the solution (steering the index r)
might not allow one to go that far, and the expansion must stop. The weakest
term in the chain determines the possible convergence rate.

Up to now we only talked about the interpolation error, not the error in
the FE solution. But thanks to Céa’s lemma,

||u− uh||m ≤ c inf
vh∈Vh

||u− vh||m (7.350)

this is only a small additional step and we obtain, see (7.349), the basic error
estimate for the error e = u− uh of the FE solution

||e||m ≤ c hα ||u||r α = min (k + 1−m, r −m) . (7.351)

The proof is simple:

||e||m ≤ c−1
1 a(e, e)1/2 ≤ c−1

1 a(u− uI , u− uI)1/2

≤ c2

c1
||u− uI ||m ≤ c3 hα ||u||r (7.352)

using—in this sequence—the equivalence of the energy norm and the Sobolev
norm ||.||m, Céa’s lemma, once more the equivalence, and finally the estimate
(7.349).

To obtain estimates in lower-order norms, 0 ≤ s ≤ m, the Aubin–Nitsche
trick [51] is employed, which yields

||e||s = c hα ||u||k+1 α = min (k + 1− s, 2 (k + 1−m)) . (7.353)

For k = m = 1 (e.g., linear shape functions in plate problems), the error e of
the FE solution becomes

||e||0 = c h2 ||u||2 ||e||1 = c h ||u||2 , (7.354)

where the typical pattern of a Taylor series shines through. The constants c
are generic quantities independent of u and h.

In the case of a bar—a one dimensional structure—the singularity is due
to the load. In plates or slabs singularities typically occur at corner points. If
an L-shaped opening is covered with a cloth that is pulled taut by a force H,
then under heavy wind pressure p the membrane can be pressed against the
vertical edge of the abutment, and the cloth tears apart, because the stress
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σn = H∇w • n = H (w,x nx + w,y ny) n = normal vector (7.355)

becomes infinite. The reason is that the deflection w(x) of the membrane

−H ∆w = p in Ω w = 0 on Γ (7.356)

is basically of the form

w = k1 s1(r, ϕ) + wR = k1 rα t(ϕ) + wR α = 90◦/360◦ = 0.25 < 1 ,

(7.357)

where k1 is the stress intensity factor and wR is the regular part of the solution,
which has bounded stresses.

If sh
1 is the FE approximation of the singular function s1, then the estimate

for the L2-norm of the error is

||s1 − sh
1 ||0 + hα ||∇(s1 − sh

1 )||0 ≤ c h2 α (7.358)

and for the pointwise error

||s1 − sh
1 ||L∞ ≤ c hα . (7.359)

Hence the singularity in the solution determines the highest possible conver-
gence rate, and higher-degree elements would not provide a better convergence
rate [47].

Interpolation estimates

We want to give a short sketch of the proof6 of the energy error estimate
(1.431), p. 151,

||ei||2E := a(e,e)Ωi ≤ c η2
i . (7.360)

Recall that the error e is the displacement field of the structure under the
action of the residual forces ri = (p− ph) on each element Ωi, and the jump
terms ji at the edges Γi of the elements. The principle of conservation of
energy Wi = We (Green’s first identity) implies that

2 Wi = a(e,e) =
n∑
i

{∫
Ωi

ri • e dΩ +
∫

Γi

ji • e ds

}
= 2 We . (7.361)

Because of the Galerkin orthogonality , the field Ihe ∈ Vh that interpolates
the field e at the nodes can be subtracted from e without changing the result:
6 For details see e.g. [2]



566 7 Theoretical details

||e||2E := a(e,e) =
n∑
i

{∫
Ωi

ri • (e− Ihe) dΩ +
∫

Γi

ji • (e− Ihe) ds

}

≤
n∑
i

{||ri||L2,Ωi ||e− Ihe||L2,Ωi + ||ji||L2,Γi ||e− Ihe||L2,Γi} . (7.362)

Under suitable assumptions about the FE space Vh, the following interpolation
property holds:

||e− Ihe||L2,Ωi
≤ c1 hi ||e||E,Ωi

||e− Ihe||L2,Γi
≤ c2 h0.5

i ||e||E,Ωi

(7.363)

where hi is the diameter of the element Ωi. Hence if (7.362) is divided by
||e||E we have

||e||E ≤ c3

n∑
i

{
hi ||r||L2,Ωi + h0.5

i ||j||L2,Γi

}
. (7.364)

Now a sum
∑n

i xi of n terms is always at most
√

n× the length of the vector
x, or to be precise

|
n∑
i

xi| = |x • 1| ≤ ||x|| ||1|| = √n ||x|| 1 := [1, 1, . . . , 1]T (7.365)

so that (the sum consists of 2n terms)

||e||E ≤ c3

√
2n

[
n∑
i

{
h2

i ||r||2L2,Ω1
+ hi ||j||2L2,Γi

}]1/2

(7.366)

or if both sides are squared [10], [15],

||e||2E ≤ c4

n∑
i

[
h2

i ||ri||2L2,Ωi
+ hi ||ji||2L2,Γi

]
. (7.367)

Error estimators

The terms ri and ji are error indicators. Not to be confused with these error
indicators are the so-called error estimators ε, which provide upper and lower
bounds on the error of an FE solution:

c1 ε < ||u− uh||E < c2 ε . (7.368)

and thus can serve as a stopping criterion [19]. The significance of such error
estimators is that a) they can be calculated unlike the exact solution u, and
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b) we trust that there exist constants ci that bound the error. Nevertheless
little is known about the magnitude of these constants.

Hence, the error estimator has the same tendency as the exact error. It
is a reliable substitute for the unknown error, and it can be calculated. In
structural mechanics the standard error indicators ηi are also often used as
error estimators; that is the stress discontinuities between elements and the
residual forces within elements are considered to be reliable estimators for the
error of an FE solution.

One characteristic feature of a good error indicator/estimator is that it
is efficient in the sense that there exists a constant C independent of the
element size so that

||e||E ≤ c
∑

i

ηi ≤ C ||e||E (7.369)

which guarantees that the error indicator mirrors the actual error rather then
becoming too pessimistic if h tends to zero.

Recovery based error estimators

Many commercial FE programs offer the option to smooth the raw discontin-
uous stresses and the error estimation is then simply based on comparing the
post-processed stresses σp

ij with the raw stresses σij

η2 =
∫

Ω

[(σp
xx − σxx)2 + (σp

xy − σxy)2 + (σp
yy − σyy)2] dΩ . (7.370)

This seems a very natural approach and it can result in good estimates but
pollution may spoil the whole strategy as in Fig. 1.103 on p. 145 where a large
but smooth error remained undetected. See also the remarks in Sect. 1.31, p.
152.

Explicit error estimators

These estimators are based on the element residual forces r and the traction
discontinuities j and are typically of the form (7.367). They are also called
explicit a posteriori estimators, because they are based on readily available
data.

Implicit error estimators

Many so-called implicit error estimators are based on Green’s first identity
which for one element states that

G(e,v)Ωe = (p− ph,v)Ωe + [r − rh,v]Γe − a(e,v)Ωe = 0 (7.371)
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where the brackets denote the boundary integral. This is motivation to find an
approximation to e either by solving a Dirichlet problem on a single element
or patch of elements (u = 0 on the edge)

G(e,v)Ωe
= (p− ph,v)Ωe

− a(e,v)Ωe
= 0 v ∈ Vh(Ωe) (7.372)

or an “equilibrated”Neumann problem

G(e,v)Ωe
= (p− ph,v)Ωe

+ [r − rh,v]Γe
− a(e,v)Ωe

= 0
v ∈ Vh(Ωe) . (7.373)

Equilibrated because the unknown edge forces r must be replaced by approx-
imations r̂ which are subject to the equilibrium conditions. The FE solutions
of these local problems then serve as error estimators. Because such estima-
tors require the solution of additional problems they are referred to as being
of implicit type.

7.12 Important equations and inequalities

For the convenience of the reader we repeat some definitions: in a load case p
loads are applied, for example,

− EAu′′(x) = p(x) 0 < x < l u(0) = 0 , N(l) = P (7.374)

while in a load case δ displacements are prescribed

− EAu′′(x) = 0 0 < x < l u(0) = 0 , u(l) = δ . (7.375)

V denotes the trial or test space, that is the set of all possible virtual dis-
placements that are compatible with the support conditions of the structure.

S is the solution space. In a load case p the two spaces coincide, S = V ,
while in a load case δ it is S = uδ ⊕ V where uδ is a function with the
properties uδ(0) = 0, uδ(l) = δ, see Sect. 1.7, p. 22. The symbol ⊕ means,
that any function u in S is the sum of uδ plus a function v ∈ V .

Vh ⊂ V is the space spanned by the nodal unit displacements ϕi. That is
the generic element of Vh is vh =

∑
i vi ϕi(x).

Sh is the composition of a function uh
δ plus the space Vh

Sh = uh
δ ⊕ Vh (7.376)

where uh
δ is a displacement field, that satisfies the homogeneous geometric

boundary conditions such as u(0) = 0 exactly and the inhomogeneous ge-
ometric boundary conditions such as u(l) = δ either exactly (Sh ⊂ S) or
approximately (Sh 	⊂ S).

In a load case p the FE solution lies in Vh and in a load case δ it lies in
Sh.
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In a load case p the FE solution is an expansion in terms of the nodal unit
displacements

uh =
∑

i

ui ϕi(x) (7.377)

and in a load case δ a function uh
δ is added

uh = uh
δ (x) +

∑
i

ui ϕi(x) = uh
δ (x) + uh

V (x) (7.378)

to satisfy the (partially) inhomogeneous geometric boundary conditions

uh
δ (0) = 0 uh

δ (l) = δ . (7.379)

The exact solution u satisfies

a(u, v) = p(v) v ∈ V , (7.380)

and the FE solution satisfies

a(uh, vh) = p(vh) vh ∈ Vh . (7.381)

In a load case δ the load p is zero and u = uδ + uV , where uV ∈ V , so that
(7.380) is equivalent to

a(uV , v) = −a(uδ, v) v ∈ V , (7.382)

and in the same sense in the finite element case, see (7.378),

a(uh
V , vh) = −a(uh

δ , vh) vh ∈ Vh . (7.383)

Note that in FE analysis we replace the right-hand side a(uh
δ , ϕi) by the virtual

work done by the negative7 fixed end forces resulting from uh
δ , i.e.,

a(uh
δ , ϕi) = ph

δ (ϕi) = fi . (7.384)

An important role in FE analysis plays Green’s first identity

G(u, û) =
∫ l

0

−EAu′′ û dx + [N û]l0 −
∫ l

0

EAu′ û′ dx = 0 (7.385)

which allows to switch at will between external and internal virtual work

G(uh, vh) = ph(vh)− a(uh, vh) = 0 , (7.386)

where
7 negative because of actio instead of reactio
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ph(vh) : =
∫ l

0

−EAu′′
h vh dx + [Nh, vh]l0 (7.387)

a(uh, vh) : =
∫ l

0

EAu′
h v′h dx . (7.388)

Note that if u is the exact solution and û ∈ V then

G(u, û) = δ Π(u, û) =
[

d

dε
Π(u + ε û)

]
ε=0

(7.389)

is the first variation of the potential energy.
Boundary conditions as u(0) = 0 or u(l) = δ are essential boundary con-

ditions and boundary conditions as N(0) = −P or N(l) = P are natural
boundary conditions. In a problem such as

− EAu′′(x) = p(x) 0 < x < l , u(0) = 0 N(l) = P (7.390)

the essential boundary condition enters the definition of the trial and solution
space V

V = {u ∈ H1(0, l) |u(0) = 0} (7.391)

while the natural boundary condition enters the definition of the virtual ex-
ternal work p(û) in the associated variational formulation

a(u, û) =
∫ l

0

EAu′ û′ dx =
∫ l

0

p û dx + P · û(l) =: p(û) û ∈ V . (7.392)

It is called a natural boundary condition, because the variational solution
satisfies N(l) = P .

The boundary integrals in Green’s identities are L2 products (or simply
products in 1-D problems) of conjugate boundary terms as [N û]l0 = N(l) ·
û(l) − N(0) · û(0). A boundary value problem is well posed if of two such
conjugate boundary terms one is prescribed and the other is unknown.

Under regular conditions the strain energy product constitutes a norm on
V

||u||E :=
√

a(u, u) (7.393)

which is equivalent to the Sobolev norm, i.e., there exist constants c1 and c2

such that

c1 ||u||m ≤ ||u||E ≤ c2 ||u||m , (7.394)

and the strain energy product is a continuous bilinear form on V × V

|a(u, v)| ≤ c3 ||u||m ||v||m , (7.395)
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and the virtual work is continuous on V

p(v) ≤ c ||v||m . (7.396)

If u is the solution of the load case p then G(u, u) = 0 implies

a(u, u) = p(u) (7.397)

and because of the definition (7.393) and (7.314) we have

||u||E =
√

a(u, u) =
p(u)
||u||E = sup

v∈V
v �=0

p(v)
||v||E =: ||p||−E . (7.398)

The strain energy product of the FE solution uh and a test function vh ∈ Vh

can be identified with the work done by the forces in a load case ph acting
through vh

a(uh, vh) = ph(vh) (7.399)

where ph(vh) is obtained from a(uh, vh) by integration by parts, that is

ph(vh) = G(uh, vh)− a(uh, vh) vh ∈ Vh (7.400)

where G(uh, vh) is Green’s first identity.
The FE method

uh ∈ Vh : a(uh, vh) = p(vh) vh ∈ Vh (7.401)

is therefore equivalent to

ph(vh) = p(vh) vh ∈ Vh Equivalence theorem . (7.402)

Let u be the exact solution, uh the FE solution, and e = u− uh the error;

• On V

a(e, v) = p(v)− a(uh, v) = p(v)− ph(v) v ∈ V . (7.403)

• Hence in particular

p(u)− p(uh) = p(e) = a(e, u) = p(u)− ph(u) (7.404)

and as well

p(uh) = ph(u) symmetry (7.405)

which is of course Betti’s theorem.
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• Let e = G0 −Gh
0 then follows

u(x)− uh(x) = a(G0 −Gh
0 , u) = (δ0, u)− (δh

0 , u) , (7.406)

i.e., the work done by the exact solution u acting through the jump terms
and element residuals of the approximate Dirac delta δh

0 = {j, r} has the
same value as the error.

• For test functions vh ∈ Vh ⊂ V the right-hand side in (7.403) is zero
because p(vh) = ph(vh), and hence on Vh the error is orthogonal to the
test functions

a(e, vh) = 0 vh ∈ Vh Galerkin orthogonality . (7.407)

• The residual forces p− ph are orthogonal to the test functions

a(e, vh) = p(vh)− ph(vh) = 0 vh ∈ Vh. (7.408)

• If p = 0 as in stability problems, the FE load ph is orthogonal to each test
function

ph(vh) = 0 vh ∈ Vh. (7.409)

• The FE load ph is orthogonal to the displacement error e

a(uh, e) = ph(e) = 0. (7.410)

• The unit load cases pi are orthogonal to the error e

a(ϕi, e) = pi(e) = 0. (7.411)

• The FE solution uh attains the smallest possible value for the strain energy
product of the error e on Vh, i.e., the FE solution has the shortest distance
in the energy metric from the true solution

a(e, e) ≤ a(u− vh, u− vh) vh ∈ Vh , (7.412)

because for any wh ∈ Vh

a(e + wh, e + wh) = a(e, e)︸ ︷︷ ︸
> 0

+2 a(e, wh)︸ ︷︷ ︸
= 0

+ a(wh, wh)︸ ︷︷ ︸
> 0

(7.413)

and choosing wh = uh − vh gives the result. Céa’s lemma is based on
(7.412), the equivalence (7.394) and the continuity (7.395)

c1 ||e||2m ≤ a(e, e) = a(e, u− vh) + a(e, vh − uh)
= a(e, u− vh) ≤ c3 ||e||m ||u− vh||m (7.414)

and therefore

||e||m = ||u− uh||m ≤ c3

c1
inf

vh∈Vh

||u− vh||m . (7.415)
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• In a load case p the internal energy of the FE solution is less than the
internal energy of the exact solution (we drop the factor 1/2 on both
sides)

a(uh, uh) ≤ a(u, u) in a load case p , (7.416)

because

0 < a(u, u) = a(uh + e, uh + e)
= a(uh, uh) + 2 a(e, uh)︸ ︷︷ ︸

= 0

+ a(e, e)︸ ︷︷ ︸
> 0

. (7.417)

• In a load case δ where Π(u) = 1/2 a(u, u) the internal energy of the FE
solution exceeds the internal energy of the exact solution

a(u, u) ≤ a(uh, uh) in a load case δ . (7.418)

The proof was given in Sect. 1.7 on p. 16.
• In a load case p holds

a(u, u) = a(uh, uh) + a(e, e) ’Pythagoras c2 = a2 + b2 ’ (7.419)

or ’the energy of the error is the error in the energy’

a(e, e) = a(u, u)− a(uh, uh) , (7.420)

because

a(u, u) = a(uh − e, uh − e) = a(uh, uh)− 2 a(e, uh)︸ ︷︷ ︸
= 0

+a(e, e) . (7.421)

In a load case δ the equation a(e, uh) = 0 is not true, because uh =
uh

δ + uh
V 	∈ Vh, while a(e, vh) = 0 is true if vh ∈ Vh.

• The potential energy of the FE solution exceeds the potential energy of
the exact solution

Π(u) ≤ Π(uh) , (7.422)

because

Π(uh) = Π(u− e) =
1
2

a(u, u)− a(u, e) +
1
2

a(e, e)− p(u) + p(e)

= Π(u)−a(u, e) + p(e)︸ ︷︷ ︸
G(u,e)=0

+
1
2

a(e, e)︸ ︷︷ ︸
> 0

. (7.423)

• The virtual external work done by p acting through uh is less than the
work done acting through u

p(uh) = a(uh, uh) < a(u, u) = p(u) . (7.424)
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• The fact that the residual forces are orthogonal to the ϕi

p(ϕi)− ph(ϕi) = 0 ϕi ∈ Vh (7.425)

does not suffice to guarantee, that the FE solution uh interpolates the
exact solution at the nodes. This would be true, if the residual forces
were orthogonal to the Green’s functions G0[xi] = G0(y,xi) of the nodal
displacements ui = u(xi)

p(G0[xi])− ph(G0[xi])
?
= 0 . (7.426)

But the nodal Green’s functions G0[xi] do not lie in Vh

G0(y,xi) 	=
∑

j

uj(xi) ϕj(y) . (7.427)

The exception are 1-D problems where—in standard situations—the in-
clusion G0(y, xi) ∈ Vh is true. The reason is, that (i) the Green’s functions
G0(y, xi) are expansions in terms of homogeneous solutions and (ii) the
element shape functions ϕe

i form a complete set of linearly independent
homogeneous solutions of the governing equation.

• Let Gh
0 the FE approximation of G0, then holds

uh(x) =
∫

Ω

G0(y,x) ph(y) dΩy =
∫

Ω

Gh
0 (y,x) p(y) dΩy

=
∫

Ω

u(y) δh(y − x) dΩy (7.428)

where δh is the approximate Dirac delta, i.e., that assemblage of external
loads that attempts to imitate the action of the true Dirac delta or simply
the “right-hand side” of Gh

0 .
This means that the FE solution can be written in two ways

uh(x) =

⎧⎪⎨
⎪⎩
∑

i

ϕi(x)ui = (δh
0 , u)∫

Ω

Gh
0 (y,x) p(y) dΩy = (Gh

0 , p)
(7.429)

so that

uh(x) =
∑

i

ϕi(x)ui =
∫

Ω

Gh
0 (y,x) p(y) dΩy

=
∫

Ω

∑
i

ϕi(y)uG
j (x) p(y) dΩy =

∑
i

uG
i (x) fi

= uT
G f = uT

G K u = uT
G KT u = fT

G u (7.430)

or in short (see Fig. 1.52 p. 77)
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uh(x) = uT
G f = fT

G u . (7.431)

Note that this holds true for any quantity, σh(x) = . . ., Vh(x) = . . . if the
nodal vectors uG and fG respectively are replaced by the corresponding
vectors of the Green’s function Gi.

• Betti’s theorem and the principle of virtual work, δWe = δWi, imply

Betti︷ ︸︸ ︷
u(x) = p(G0[x])︸ ︷︷ ︸

δWe

= a(G0[x], u)︸ ︷︷ ︸
δWi

(7.432)

and therefore as well

u(x)− uh(x) = p(G0[x])− ph(G0[x]) = a(G0[x], u− uh) . (7.433)

• The Galerkin orthogonality implies that

a(G0[x]−Gh
0 [x], vh) = 0 vh ∈ Vh (7.434)

and

a(Gh
0 [x], u− uh) = 0 because Gh

0 [x] ∈ Vh . (7.435)

• Which proves that on Vh the kernel Gh
0 is a perfect replacement for the

kernel G0

vh(x) = a(Gh
0 [x], vh) = (δh

0 , vh) vh ∈ Vh . (7.436)

Which is also true for higher kernels Gh
i as well.

• All this jointly implies that, see also (1.451) p. 158,

u(x)− uh(x) = p(G0[x])− ph(G0[x])
= p(G0[x]−Gh

0 [x])− ph(G0[x]−Gh
0 [x])

= a(G0[x]−Gh
0 [x], u− uh) , (7.437)

and this allows an estimate such as

|u(x)− uh(x)| ≤ ||G0[x]−Gh
0 [x]||E ||u− uh||E , (7.438)

where

||u||E := a(u, u)1/2 (7.439)

is the energy norm.
• If the Green’s function G0 = g0 + uR is split into a fundamental solution

g0 and a regular part uR and the FE approximation Gh
0 = g0 +uh

R as well,
the previous estimate can be replaced by

|u(x)− uh(x)| ≤ ||uR[x]− uh
R[x]||E ||u− uh||E . (7.440)
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• If the exact solution u lies in Vh, i.e., if u = uh the error of any approximate
Green’s function Gh

i is orthogonal to the load case p (the right-hand side
of u), see Sect. 1.17, p. 57,

p(Gi)− p(Gh
i ) = a(Gi −Gh

i , u) = a(Gi −Gh
i , uh) = 0 . (7.441)

This means, for example, that even though the Green’s function G1 for
the stresses does not lie in Vh, the stresses are exact σ = σh = p(Gh

1 ).
• The turnstile character of the symmetric strain energy

p(û) ← a(u, û) → p̂(u) (7.442)

plays a very important role in FE analysis. Betti’s theorem rests on this
character

W1,2 = p(û) = a(u, û) = p̂(u) = W2,1 (7.443)

and also Tottenham’s equation is an application of Betti’s theorem but
with a special twist, namely that (7.443) remains true if u and û are re-
placed by the FE solutions uh and ûh of the load cases p and p̂ respectively

W1,2 = p(ûh) = a(u, ûh) = a(û, uh) = p̂(uh) = W2,1 . (7.444)

• Note that the Galerkin orthogonality

a(u− uh, ûh) = 0 (7.445)
a(û− ûh, uh) = 0 (7.446)

implies

a(u, ûh) = a(uh, ûh) (7.447)
a(û, uh) = a(ûh, uh) (7.448)

which establishes

a(u, ûh) = a(û, uh) (7.449)

and therewith proves (7.444).
• The FE solution can be written in two ways

uh(x) =

⎧⎪⎪⎨
⎪⎪⎩
∑

i

ϕi(x) ui∫ l

0

Gh
0 (y, x) p(y) dy

(7.450)

or (see Fig. 1.52 p. 77)
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uh(x) =
∑

i

ϕi(x) ui =
∫ l

0

Gh
0 (y, x) p(y) dy

=
∫ l

0

∑
i

ϕi(y) uG
j (x) p(y) dy =

∑
i

uG
i (x) fi

= uT
G f = uT

G K u = uT
G KT u = fT

G u . (7.451)

This extends naturally to any quantity as for example

σh(x) =

⎧⎪⎪⎨
⎪⎪⎩
∑

i

σ(ϕi(x))ui = fT
G u∫ l

0

Gh
1 (y, x) p(y) dy = uT

G f

(7.452)

where uG and fG are now the nodal displacements and equivalent nodal
forces respectively of the Dirac delta δ1.
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||u||E 507
||f ||0 505
||u||m 506
(p, u) 505
(p, ϕi) 507
(p, w) 505
C0-elements 338
C1-elements 424
Gj 81
Hm(Ω) 506
L2 scalar product 505
Ph 28
S 22
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V ′ 559
Vh 6
V ′
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V +

h 185
δ0 69
δi 69
div 503
div2 M 426
tr, trace 395
∇ 503
⊗ 504
∂i w 536
C [ ], elasticity tensor 395
E 503
S 503
uG 134
a(u, û) 504
a(w, ŵ) 35
a(w, w) 10
p(ϕi) 507

a posteriori error indicators 147
accuracy 80
actio = reactio? 177

adaptive mesh refinement 383
adaptive methods 147
adaptivity, dimension 154
adaptivity, model 154
adding a member 323
approximations for stiffness matrices

298
asymptotic error estimates 560
Aubin–Nitsche trick 540, 564

Babuška–Brezzi condition 399
backward error analysis 201
Bathe–Dvorkin element 439
beam girders 462
beam models 459
beam-like elements 356
Bessel’s inequality 10
bilinear elements 340
bilinear form 504
boolean matrix 329
boundary layer effect 436
Boussinesq 256
brachistochrone 175
bulk modulus 393

cables 305
capacity 56
Castigliano’s Theorem 50
Cauchy-Schwarz inequality 506
change in an elastic support 316
changes in a structure 313
circular arches 491
circular slabs 461
columns 443
composition 22
concentrated forces 44
condition number 230
continuity 221
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corner force 421
coupling degrees of freedom 224
cracks in a beam 316
critical angles, plane problem 336
critical load 302
CST element 338
cubic elements 338
cycloid 175

d-adaptivity 154
deformation space 6
degenerate shell elements 490
dichotomy 149
dimension argument 45
dipole 97
Dirac delta 69
Dirac energy 110, 111
direct design method 476
direct product 504
discontinuities 389
displaced point supports 354
displacement methods 393
displacement model of slabs 421
displacements 40
distance 37
DKT element 440
drilling degrees of freedom 344
drop panels and column capitals 451
DST element 441
dual load 69
dual quantities 70
dual weighted residual error estimate

525
duality 40
duality techniques 156, 160, 520

effective length factor 302
effective width 467
efficiency of estimator 567
eigenvalue 230
eigenvector 230
eigenwork 17
Element Free Galerkin method 215
element stresses 357
elements 220
elements, plane problems 338
elements, slabs 422
ellipticity 21
energy method 4

energy norm 151
equilibrium 86, 184, 420
equilibrium of resultant forces 378
equilibrium point 20
error estimators 566
error in energy 151
error indicator 566
essential boundary conditions 570
Euler equation 25, 40
Euler-beam I 193
explicit error estimators 567

finite element 197
first fundamental form 486
flat elements 493
flexibility matrix 198
folded plates 463
forces 40
foundation slabs 469
fundamental solution 241

Galerkin method 193
Galerkin orthogonality 11
Gateaux derivative 402
Gaussian curvature 488
Generalized Finite Element method

213
geometric matrix 301
global equilibrium 185
goal-oriented recovery 160, 520
goal-oriented refinement 412
Green’s first identity 508
Green’s function 51, 57, 516
Green’s identities 508
Green-Lagrangian strain tensor 401

h-methods 154
half-space model 256, 470
hard support 436
hat functions 197
Heaviside function 218
Hellinger–Reissner principle 396
Hermite Polynomials 201
hierarchical elements 309
higher-order elements 344
homogeneous deflection curve 289
hourglass modes 230
How to predict changes 113
hp-method 154
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hyperelastic material 402

implicit error estimators 567
incompressible material 393
infinite energy 208
influence functions 42, 69
influence functions for mixed formula-

tions 399
influence of a single element 126
integral operators 82
integration by parts 508
interpolation 197
isotropy 221

kernel of a matrix 231
kernel of an influence function 58
kinematic constraints 347
Kirchhoff plates 416
Kirchhoff shear 420
Kronecker delta 199

Lagrange element 200, 343
Lagrange multipliers 226
Lagrange polynomials 200
least action 20
least squares 33
linear elements 338
linear strain triangle 341
lintels 356
load case δ 17
load case p 17
loads 255
local equilibrium 185
local solution 136
locking 437
loss of a frame member 320
loss of a support 317
LST element 341

m-adaptivity 154
mapped polynomials 203
master degree of freedom 226
Maxwell’s theorem 550
membrane locking 491, 492
membrane stresses 487
membranes 498
Mindlin shell elements 490

missing member 325

mixed methods 393

Mohr’s integral 240, 535

natural boundary conditions 570

Nitsche trick 540

nodal influence functions 77

nodal stresses 357

nonlinear problems 123, 161, 167, 401,
526

normal equations 34

order of the singularity 46

order of the strain energy 46
output 181

p-methods 154

particular deflection curve 289

partition of unity 211

Partition of Unity method 213

Pascal’s triangle 200
patch test 344
peaks 102
piecewise polynomials 197
piled raft foundations 258
plane elements 338
plane strain 222, 334
plane stress 222, 334
point supports 353, 477

Poisson’s ratio 416, 419
polynomials 199

potential energy 6
primal problem 157
primary load case 386
principal stresses 336
principle of minimum potential energy
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principle of virtual displacements 25

principle of virtual forces 240
projection 515
projection method 2
pulley 111
Pythagorean theorem 573

Q4 340
Q4 + 2 341
Q8 343
quadratic elements 338
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recovery based error estimators 567
reduced global stiffness matrix 228
reduced integration 228
reduced stiffness matrix 185, 224
Reissner–Mindlin plates 431
remeshing 154
residual 236
residual forces 15
restriction 1
retrofitting structures 130
Riesz’ representation theorem 521,

559
rigid-body motions 221
rope 6
rotational invariance 221, 338
rounding errors 230

safety of structures 326
scalar product 33, 40, 503
scalar product of matrices 504
second fundamental form 486
second Piola-Kirchhoff stress tensor

401
self-equilibrated stresses 386
sensitivity analysis 313
serendipity elements 200, 343
set theory 16
settlement of supports 187
settlements 387
shape functions 337
shear forces 451
shear locking 437
shear modulus 336, 393
shearing strain 432
shell equations 485
shells 485
shells of revolution 488
shift 82
Shifted Green’s Function Theorem

547
shifted Green’s functions 541
singular matrices 227
singularities 175
skew projection 13, 22
slabs, Reissner–Mindlin 431
slave degree of freedom 226
smoothing process 362

Sobolev’s Embedding Theorem 46
soft support 436
spurious modes 211
St. Venant’s principle 172
stability problems 193
stiffness matrices 221
stiffness matrices for 1-D elements 292
stiffness matrices, slabs 424
stiffness matrices, three properties 223
stiffness matrix, 2-D 339
strain energy product 31, 35, 221, 339,

395
stream model 330
substitute load case 2
superconvergence 206
support conditions 183
support reactions 99, 353
supports 441
symmetries 354

T beams 226
tangential supports 354
Taylor series 199
temperature 187
tension 6
tension stiffening 288
test range 36
test space 22
three-moment equation 198
Timoshenko beam 296
Timoshenko beam element 301
Tottenham’s equation 64
translations 212
trial space 6, 22
truss models 363

values at a point 62
variable thickness 452
virtual displacements 24
volume elements 490

weak convergence 40
weak equal sign 4
weak form of influence functions 535
weak solution 40
weighted least squares 35
weighted residual method 194
wheel loads 460

r-adaptivity 154 Sobolev norms 12
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Winkler model 255, 469

X-FEM 215

yielding of a rigid support 319

zero-energy modes 230

Wilson’s Element 341
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