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Preface

Random matrix theory (RMT) has a long history, starting with the statistics of
nuclear energy levels by Wigner, and it has found applications in wide areas of all
sciences from mathematics to biology. The universality of properties derived from
random matrices has led to a large number of applications such as network
statistics, big data analysis, and biological information. Useful surveys maybe
found in [61, 97, 111, 117, 124].

This book deals with Gaussian random matrix models with an external deter-
ministic matrix source. There are also numerous reasons to consider such exten-
sions of standard RMT theory. For instance for a system in the presence of
impurities with Hamiltonian H = H0 + V, a Gaussian distribution for the impurity
potential V yields a Gaussian distribution for H with a coupling term between H and
H0. However, we have restricted ourselves to a systematic exposition of the main
subject that we have studied in earlier publications, namely the geometric properties
of surfaces of arbitrary genera deduced from RMT with a nonrandom matrix source.

Indeed for a number of years random matrix theory has been known to be a
powerful tool for characterizing geometric properties of surfaces, leading in par-
ticular to explicit solution to 2D quantum gravity, and after Kontsevich’s resolution
of Witten conjectures, to the computation of intersection numbers for curves drawn
on Riemann surfaces of given genus with fixed marked points. Many techniques
have been used in such problems such as loop equations, Virasoro constraints, and
integrable hierarchies. However our work, over a long period, has consisted in
showing that simple Gaussian models with an appropriately tuned external source
provide an elementary alternative approach to these topics. A systematic exposition
of the main tools that underlie this method is the aim of this book. Two properties
are basic: (i) the n-point functions are known explicitly for a given arbitrary matrix
source. This is true for finite N � N matrices. (ii) A remarkable duality holds for this
probability distribution: the expectation value of the product of K characteristic
polynomials over N � N random matrices is equal to the expectation value of the
product of N characteristic polynomials over K � K random matrices.
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Then, an appropriate tuning of the external source generates, in a “double
scaling” limit, well-known models such as the Kontsevich Airy matrix model, the
Penner model and various generalizations. The duality makes it possible to relate
those models to Gaussian models whose correlations functions are known explic-
itly, providing thereby a simple tool to compute intersection numbers.

Among the mathematical techniques underlying this approach, the Harish
Chandra [77], Itzykson-Zuber [80] integral over the unitary group plays a central
role. The random matrices there are Hermitian, and the associated random surfaces
are orientable. However the general Harish Chandra formula holds for integration
over Lie algebras, such as antisymmetric or symplectic matrices for so(N) or sp(N).
The corresponding random surfaces are nonorientable. Therefore one can generalize
to these Gaussian models in a source the same strategy, namely finding explicit
expressions for the correlation functions plus a duality. In the double scaling limit,
this provides explicit results for finding the geometric intersection numbers for
nonorientable surfaces.

Another extension concerns a supersymmetric duality, whose geometric content
is not known to us.

Although the contents mostly consist of a systematic exposition of results
scattered through earlier publications, a few new results are presented in the last
chapters.

Paris, France Edouard Brézin
Kunigami-gun, Japan Shinobu Hikami
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About This Book

We consider Gaussian random matrix models in the presence of a deterministic
matrix source. In such models, the correlation functions are known exactly for an
arbitrary source and for any size of the matrices. The freedom given by the external
source allows for various tunings to different classes of universality. Our main
interest here is to use this freedom to compute various topological invariants for
surfaces, such as the intersection numbers for curves drawn on a surface of given
genus with marked points, or the P1 Gromov–Witten invariants. A remarkable
duality for the average of characteristic polynomials is essential for obtaining such
topological invariants. We have presented most results in several earlier publica-
tions, but here we have attempted to present a unified and concise exposition.

ix



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Gaussian Means. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Integral Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Generating Functions of Gaussian Means . . . . . . . . . . . . . . . . . . . 9
2.3 Gaussian Means in the Large N Limit . . . . . . . . . . . . . . . . . . . . . 12
2.4 Gaussian Means in the Replica Limit N ! 0 . . . . . . . . . . . . . . . . 13

3 External Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 HarishChandra Itzykson–Zuber Formula. . . . . . . . . . . . . . . . . . . . 17
3.2 n-Point Function with an External Source . . . . . . . . . . . . . . . . . . 18

4 Characteristic Polynomials and Duality . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Characteristic Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Characteristic Polynomial in the Real Symmetric Case. . . . . . . . . 29
4.3 Characteristic Polynomials Fo the Lie Algebras oðNÞ

and spðNÞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Characteristic Polynomials for Supermatrices . . . . . . . . . . . . . . . . 32

5 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1 Universal Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Level Spacing Probability Distribution . . . . . . . . . . . . . . . . . . . . . 39
5.3 Universality Classes at an Edge and at a Gap Closure . . . . . . . . . 44
5.4 Distribution of Zeros of Riemann’s Zeta Function . . . . . . . . . . . . 57

6 Intersection Numbers of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.1 Kontsevich Airy Matrix Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Evaluation of Intersection Numbers of Curves . . . . . . . . . . . . . . . 62
6.3 KdV Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xi



7 Intersection Numbers of p-Spin Curves . . . . . . . . . . . . . . . . . . . . . . . 65
7.1 Moduli Space of p-Spin Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 Intersection Numbers of Spin Curves . . . . . . . . . . . . . . . . . . . . . . 67
7.3 s-Point Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4 Generalized KdV Hierarchy and Gelfand-Dikii Equation . . . . . . . 83
7.5 Euler Characteristics and the Negative Value p ¼ �1 . . . . . . . . . 85
7.6 The Negative Value p ¼ �2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.7 Gauged WZW Model of SUð2Þk=Uð1Þ, SLð2;RÞk=Uð1Þ

and Black Hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Open Intersection Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.1 Two Matrix Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 The Kontsevich–Penner Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.3 Open Virasoro Equations for the Kontsevich–Penner Model . . . . 102

9 Non-orientable Surfaces from Lie Algebras. . . . . . . . . . . . . . . . . . . . 113
9.1 Intersection Numbers from the Lie Algebras oðNÞ and spðNÞ . . . 113

10 Gromov–Witten Invariants, P1 Model . . . . . . . . . . . . . . . . . . . . . . . . 123

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xii Contents



Chapter 1
Introduction

Random matrix theory is an approach to complex phenomena, such as the energy
levels of nuclei, through integrals over N ×N randomly distributed matrix elements.
Historically the distribution of the spacings of the eigenvalues was first studied by
Wigner [132], and then computed exactly [50, 97]. Dyson [50] conjectured the
universality of the spacings distribution (appropriately scaled by the non-universal
density of states) which is now well understood, and has also been extended to
Gaussian models with a source [18, 22]. Following ’t Hooft breakthrough in his
study of the 1/N expansion of SU (N ) gauge theories [125], in which he showed
that the large N limit consisted of planar Feynman diagrams and increasing powers
in the 1/N expansion to diagrams drawn on surfaces of increasing genera, the 1/N
expansion for random matrices, with non-Gaussian distributions, was introduced
and solved in [13]. It was then pointed out that such matrix models could be used
as generating functions for counting discretized, for instance triangulated, random
surfaces of arbitrary genus [7, 42, 84].

In the early nineties, a study of 2D quantum gravity, the theory of a bosonic string
sweeping in its motion a Riemann surface, was then developed on the basis of matrix
integrals [15]. Remarkably this discretization of the surface leads, in the continuum
limit, to an analytic explicit solution of 2D quantum gravity in terms of integrable
hierarchies [14, 55, 69]. Understanding this integrability and universality is a central
issue of random matrix theory.

The random Gaussian matrix model with an external source, the central subject
of this book, is solvable explicitly and, with appropriately tuned sources, it leads to
explicit solutions to a number of geometric problems.

This article consists of 10 chapters. The second deals with Gaussian averages of
vertices ; N × N Hermitian matrices M have invariant vertices of the form trMk .
The average of products of such vertices gives interesting results depending upon k
and N . The Proposition 2.1 gives the generating function for such Gaussian means ;
its proof is a consequence of the Theorem 3.3.1, which is one of the main theorems
of this book.

© The Author(s) 2016
E. Brézin and S. Hikami, Random Matrix Theory with an External Source,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-981-10-3316-2_1
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2 1 Introduction

In chapter three, an external source matrix A is introduced, which couples to the
random matrix M . A key theorem is due to HarishChandra-Itzykson-Zuber, which
enables one to integrate over the unitary group. The n-point correlation functions
are expressed as a determinant of a kernel (Theorem3.2.2). This kernel is given in
explicit integral form, for finite N and for arbitrary eigenvalues ai of the external
source.

In chapter four, Gaussian averages of the product of K characteristic polynomials
are considered. An amazing duality which interchanges K and N is derived (The-
orem 4.1.2), and characteristic polynomials for o(N ) and sp(N ) Lie algebras are
considered. There super matrices turn out to be a convenient tool for deriving the
correlation functions.

In chapter five, the universality of the random matrix theory is discussed. The
universality of the sine kernel, independently of the external source, is shown in
Theorem 5.1. The level spacing probability distributions for the sine kernel, for
the Airy kernel and generalized Airy kernels, are evaluated. Airy kernel and the
generalized Airy kernel are related to the singularities of the Green function. The
distribution of the zeros of Riemann’s zeta function is known to be related to the level
spacing distribution of random matrices [100, 105]. The moments of the character-
istic polynomials show the same universal behavior as the average of the moments
of Riemann’s zeta function and various generalized L-functions.

In chapter six, we discuss the algebraic geometrical study of moduli space of
curves, produced by a random matrix model with an external source. As shown by
Kontsevich [89] an Airy matrix model, expanded through trivalent ribbon graphs, is
a tool for computing the intersection numbers of moduli spaces of curves for given
genus.

In chapter seven, curves are generalized to p-spin curves, and the n-point function
U (σ1, ...., σn) are shown to be generating functions of the intersection numbers of
the moduli space of p-spin curves for genus g and n marked points.

In chapter eight, the open intersection numbers with a boundary are considered
through a Kontsevich-Penner model, a matrix model with a logarithmic term.

In chapter nine, the study of characteristic polynomials of chapter four is further
investigated for the Lie algebra o(N ) and sp(N ) invariant ensembles. Tuning again
the external source to a singular p → −1 limit, one recovers a generalized Euler
characteristics for non-orientable surfaces.

Finally, in the chapter ten, the matrix model with an external source for the moduli
space of curves is extended to the P1 Gromov-Witten case, providing a computation
of its invariants. The Gaussian averages computed in chapter two, are compared, in
the large N limit, to the Gromov-Witten invariants of genus zero.

http://dx.doi.org/10.1007/978-981-10-3316-2_3
http://dx.doi.org/10.1007/978-981-10-3316-2_4
http://dx.doi.org/10.1007/978-981-10-3316-2_5


Chapter 2
Gaussian Means

2.1 Integral Representation

In this chapterwe are dealingwith the standardGUEmatrix integrals in the absence of
any external source. TheGaussian randommatrix theory has a probability distribution
P(M)

P(M) = 1

Z0
exp[−λ

2
trM2] (2.1)

where M is an N × N Hermitian matrix. The partition function Z0 is thus given by

Z0 =
∫

dMexp[−λ

2
trM2] (2.2)

The integration is performed with the standard U(N) invariant measure over the N2

matrix elements. The Gaussian average of a product of vertices
∏

trMki is given by

〈
n∏

i=1

trMki〉 =
∫

dMP(M)

n∏
i=1

trMki (2.3)

where ki, (i = 1, . . . , n) is integer. The Gaussian means may be computed with the
help of Wick’s theorem, which counts the pairings of the vertices. InWick’s theorem
for matrices averages, the size N of the matrices appears in the combinatorics and
it is at the origin of the topological properties. The topological dependence on N
was first pointed out by t’ Hooft [125] for U(N) gauge theories. In the large N limit,
planar diagrams dominate. For the non-Gaussian case, planar diagrams are discussed
in the approach to two dimensional quantum gravity in [13, 15].

Wick’s theorem for the matrix Mij provides the Gaussian means of products of
vertices. For instance,

© The Author(s) 2016
E. Brézin and S. Hikami, Random Matrix Theory with an External Source,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-981-10-3316-2_2
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4 2 Gaussian Means

〈 1
N
trM2〉 = 〈 1

N

N∑
i,j=1

MijMji〉 = N/λ (2.4)

〈 1
N
trM4〉 =

∑
i,j,k,l

1

N
〈MijMjkMklMli〉 = N2

λ2
(2 + 1

N2
) (2.5)

Wick’s theorem for matrix elements is based upon

〈MijMlk〉 = 1

λ
δi,kδj,l (2.6)

where δi,k is the Kronecker delta function. In the rest of this section we simply take
λ = N in the probability measure (2.1). The n-point function, which is a generating
function of the above Gaussian means, is given by

U(σ1, . . . , σn) = 〈
n∏

i=1

1

N
treσiM〉 = 1

Nn

∑
k1,...,kn

(

n∏
i=1

1

ki!σ
ki
i )〈trMk1 · · · trMkn〉 (2.7)

This generating function is also the evolution operator of the n-point resolvent Gn,
defined as

Gn(z1, · · · , zn) = 〈
n∏

a=1

1

N
tr

1

za − M
〉. (2.8)

For instance, the average resolvent G(z) is written in terms of the evolution operator
as

G(z) = 1

N
〈tr 1

z − M
〉 = i

∫ ∞

0
dte−itzU(σ ). (2.9)

From the definition of (2.7), n-point density correlation function Rn is written as

Rn(λ1, . . . , λn) = 1

Nn
〈

n∏
i=1

trδ(λi − M)〉

=
∫ ∞

−∞
· · ·

∫ ∞

−∞

n∏
i=1

dti
2π

e−i
∑

i tiλiU(σ1, . . . , σn). (2.10)

We have obtained an exact representation for those generating functions U(σ1, . . . ,

σn), which will be derived in the next section.
Note thatRn(λ1, . . . , λn) is obtained also from the probability distribution function

PN (x1, . . . , xN ), which becomes after the integration of unitary degree of freedom,

PN (λ1, . . . , λN ) = C
∏

(λi − λj)
2e− λ

2

∑
λ2
i (2.11)



2.1 Integral Representation 5

Rn(λ1, . . . , λn) = N !
(N − n)!

∫ ∞

−∞
· · ·

∫ ∞

−∞
dλn+1 · · · dλNPN (λ1, . . . , λN ) (2.12)

This n-point correlation function becomes the determinant of the kernel by the
orthogonal polynomial method [97].

Rn(λ1, . . . , λn) = det[KN (λi, λj)] (2.13)

We will discuss this determinant formula for the case of external source, which
orthogonal polynomial method does not work, in Chap.3 (Theorem 3.2.2).

Proposition 2.1

U(σ1, . . . , σn) = 1

Nn

∮ n∏
i=1

dui
2π i

N∏
i=1

(1 + σi

ui
)Ne

∑
uiσi/λ+ 1

2λ

∑
σ 2
i det

1

ui − uj + σi

(2.14)
where the contours enclose all poles at ui = 0.

This Proposition 2.1 follows from Theorem 3.2.1 in the next section which deals
with a Gaussian model with an external source, when the external source vanishes.
Remarkably enough introducing a source provides explicit formulae even for a van-
ishing source, which would be very difficult to derive directly.

For the connected part of the above correlation functions, one simply keeps the
longest cycles in the expansion of the determinant which appears in (2.14). The
Proposition 2.1 determines explicitly the coefficients of the expansions in powers of
σi.

In the following, the n-point functions (n = 1, 2 and 3) are considered with the
help of this formula.

(i) one point function

U(σ ) = 〈 1
N
treσM〉 = e

σ2

2λ

Nσ

∮
du

2iπ
(1 + σ

u
)Neuσ/λ (2.15)

In terms of the density of eigenvalues

ρ(x) = 〈 1
N
trδ(x − M)〉 (2.16)

one has by definition of (σ ) in (2.15),

U(σ ) =
∫ ∞

−∞
dxρ(x)eitx (2.17)

where σ = it. In the large N limit, by the shift of u → Nu and putting λ = N , U(σ )

becomes

http://dx.doi.org/10.1007/978-981-10-3316-2_3
http://dx.doi.org/10.1007/978-981-10-3316-2_3
http://dx.doi.org/10.1007/978-981-10-3316-2_3


6 2 Gaussian Means

lim
N→∞U(σ ) = 1

σ

∮
du

2iπ
eσ(u+ 1

U ) =
∞∑
k=0

1

k!(k + 1)!σ
2k = − 1

iσ
J1(−2iσ), (2.18)

where J1(x) is Bessel function of order one. Its Fourier transform provides thus the
density of eigenvalues

ρ(x) =
∫ ∞

−∞
dt

2π
e−itxU(it) =

∫ ∞

−∞
dt

2π

1

t
J1(2t)e

−ixt = 1

π

√
1 − x2

4
, (|x| ≤ 2)

(2.19)
One recovers for the density of state ρ(x), the well known Wigner’s semi-circle.

The finite N expression for U(σ ) is for λ = N , through a binomial expansion,

U(σ ) = 1

σ

∮
du

2iπ

∞∑
k=0

N !
k!(N − k)!uk

1

Nk
σ k

∑
m

1

m!σ
mume

σ2

2N

= e
σ2

2N

∞∑
k=0

N !
Nk+1(N − k − 1)!k!(k + 1)!σ

2k

=
∞∑
k=0

k∑
l=0

σ 2k

2k−lNk

(N − 1)!
(N − l − 1)!

1

l!(l + 1)!(k − l)!
(2.20)

This expression, provides an explicit finiteN result for the Gaussian average from
(2.15) :

1

N
〈trM2k〉 = (2k)!

k∑
l=0

1

2k−lNk

(N − 1)!
(N − l − 1)!

1

l!(l + 1)!(k − l)!

= (2k)!
k∑

l=0

(

l∏
j=1

(1 − j

N
))

1

(2N)k−l

1

l!(l + 1)!(k − l)! (2.21)

(Alternatively one may compute the resolvent

G(x) = 1

i

∫ ∞

0
dteitxU(it) = −1

x

∫ ∞

0

dt

t
eit

∮
du

2iπ
(1 + it

Nu
)Neitu/x−t2/2Nx2

with λ = N in U(σ ) and expand it in powers of 1/x.)
The above equations provide also the 1/N expansions for U(σ ) and for the aver-
age vertices. The leading large N limit is given by (2.18) and beyond it one finds
easily [28]:



2.1 Integral Representation 7

l∏
j=1

(1 − j

N
) = exp[

l∑
j=1

log(1 − j

N
)]

= 1 − l(l + 1)

2N
+ l(l + 1)(l − 1)(3l + 2)

24N2
+ · · · (2.22)

1

N
〈trM2k〉 = (2k)!

k!(k + 1)!
(
1 + k(k − 1)(k + 1)

12N2

+ k(k + 1)(k − 1)(k − 2)(k − 3)(5k − 2)

1440N4

)
+ O(

1

N6
)

(2.23)

Okounkov [106, 107] have shown that the Kontsevich intersection numbers [89],
may be obtained by taking a simultaneous large N and large k limit of Gaussian
averages. From (2.23), the limit for large N, large k, and finite k/N , is

1

N
〈trM2k〉 = (2k)!

k!(k + 1)!
(
1 + 1

12

k3

N2
+ 5

1440

k6

N4
+ · · ·

)
(2.24)

In the above equation, the coefficients of k3g

N2g , namely 1
(12)gg! , are the intersection

numbers of the moduli space of curves with one marked point.

〈τ3g−2〉g = 1

(12)gg!2g (2.25)

In our previouswork, we have used the exact integral representation valid for finite
N of those vertex correlation functions, and obtained explicitly the scaling region
for large ki and large N by a simple saddle-point [28]. This led to a practical way to
compute intersection numbers from a pure Gaussian model, much simpler than with
the Kontsevich’s Airy matrix model. The intersection numbers derived by several
different methods will be discussed in Chap. 6.

(ii) two point function

The connected part is given by the shifts ui → Nui and λ → N in (2.14),

Uc(σ1, σ2) = − 1

N2

∮
du1du2
(2iπ)2

(1 + σ1
Nu1

)N (1 + σ2
Nu2

)N

(u1 − u2 + σ1
N )(u2 − u1 + σ2

N )
eσ1u1+σ2u2+ 1

2N (σ 2
1 +σ 2

2 )

(2.26)
Expanding the denominator as

1

u2

∞∑
l=0

(
u1
u2

)l(1 + σ1

Nu1
)l

∞∑
m=0

um1
(1 + σ2

Nu2
)m+1um+1

2

(2.27)

http://dx.doi.org/10.1007/978-981-10-3316-2_6
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the two point function follows from a residue calculation,

Uc(σ1, σ2) = 1

N2 e
1
2N (σ 2

1 +σ 2
2 )

∞∑
k,t,l,m=0

σ 2k+l+m+1
1 σ 2t+l+m+1

2

k!(k + l + m + 1)!t!(t + m + l + 1)!

× (N + l)! (N − m − 1)!
(N − m − k − 1)!(N − m − t − 1)!Nk+t+l+m+1

= 1

N2 e
1
2N (σ 2

1 +σ 2
2 )(σ1σ2 + 1

2
σ 2
1 σ 2

2 + 1

2
(1 − 1

N
)(σ 3

1 σ2 + σ1σ
3
2 ) + σ 3

1 σ 3
2 (

1

3
− 1

2N
+ 1

3N2 )

+ · · · )
= 1

N2

(
σ1σ2 + 1

2
σ 2
1 σ 2

2 + 1

2
(σ 3

1 σ2 + σ1σ
3
2 ) + (

1

3
+ 1

12N2 )σ 3
1 σ 3

2 + · · ·
)

(2.28)

Nothing that

Uc(σ1, σ2) = 1

N2

∑
k1,k2

〈trMk1 trMk2〉c 1

k1!k2!σ
k1
1 σ

k2
2 (2.29)

the Gaussian means are obtained,

1

N2
〈trMtrM〉c = 1

N2
,

1

N2
〈trM2trM2〉c = 2

N2
,

1

N2
〈trMtrM3〉c = 3

N2
,

1

N2
〈trM3trM3〉c = 12

N2
+ 3

N4
, . . . (2.30)

(iii) three point function

There are two longest cycles in the determinant (2.14), which contribute to the
connected part Uc(σ1, σ2, σ3), which are after the shifts ui → Nui and λ → N ,

I = 1

(u1 − u2 + σ1
N )(u2 − u3 + σ2

N )(u3 − u1 + σ3
N )

+ 1

(u1 − u3 + σ1
N )(u3 − u2 + σ3

N )(u2 − u1 + σ2
N )

(2.31)

Computing the residues in the contour integrals, the three point function reads

Uc(σ1, σ2, σ3) = −e(σ 2
1 +σ 2

2 +σ 2
3 )/2N

∞∑
k,l,m,n1,n2,n3=0

(N + k)!(N + l)!(N + m)!
n1!n2!n3!Nn1+n2+n3+3

×
(

σ
2n1+k−l
1 σ

2n2+l−m
2 σ

2n3+m−k
3

(n1 + k − l)!(n2 + l − m)!(n3 + m − k)!(N + l − n1)!(N + m − n2)!(N + k − n3)!

+ σ
2n1+m−l
1 σ

2n2+k−m
2 σ

2n3+l−k
3

(n1 + m − l)!(n2 + k − m)!(n3 + l − k)!(N + l − n1)!(N + m − n2)!(N + k − n3)!
)

(2.32)
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2.2 Generating Functions of Gaussian Means

The evaluation of Gaussian means has attracted considerable interests in various
fields. A different generating function for the Gaussian means appears for instance
in the work of Harer and Zagier [76] and Morozov and Shakirov [102, 103]. Harer
and Zagier have found a generating function for C2k = 1

N 〈trM2k〉 which reads

∞∑
k=0

C2k
Nkx2k

(2k − 1)!! = 1

2Nx2
((
1 + x2

1 − x2
)N − 1) (2.33)

This has the very simple large N limit

lim
N→∞

∞∑
k=0

C2k
x2k

(2k − 1)!! = e2x
2 − 1

2x2
(2.34)

From (2.33) one finds also

∞∑
N,k=0

C2k
x2kμNNk+1

(2k − 1)!! = μ

1 − μ

1

(1 − μ) − (1 + μ)x2
(2.35)

whereN is the size of theHermitianmatrixM. These formulae can be derived directly
from the above result (2.21). For instance

∞∑
k=0

C2k
Nkx2k

(2k − 1)!! =
∫ ∞

0
dte−tU(x

√
2Nt)

= 1

x

∫ ∞

0
dt

∮
du

2iπ
e−t(1−x2−2Nux)[(1 + x

Nu
)N − 1]

= 1

2Nx2
((
1 + x2

1 − x2
)N − 1) (2.36)

Morozov and Shakirov [102] have considered the two point function, for odd
powers C2k1+1,2k2+1, as a generating function of μ,

μ

(1 − μ)
3
2

1√
1 − μ + (1 + μ)(x21 + x22)

arctan(
x1x2

√
1 − μ√

1 − μ + (1 + μ)(x21 + x22)
)

=
∞∑

N,k1,k2=0

C2k1+1,2k2+1
x2k1+1
1 x2k2+1

2 μN

(2k1 + 1)!!(2k2 + 1)!! (2.37)
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with C2k1+1,2k2+1 = 〈 1
N trM

2k1+1 1
N trM

2k2+1〉. These results can also be derived from
the generating function (2.15) and (2.26) [103]. The Gaussian means have applica-
tions for various problems and further investigated, for instance in [8].

The generating function of Gaussian means is given by the introduction of the
parameters tk coefficients of trMki .

Z = 1

Z0

∫
dMexp[−N

2
trM2 +

∞∑
k=1

tk
N
trMk] (2.38)

with Z0 = ∫
dMe−N/2 trM2

. Those Gaussian averages include non-connected parts.
Therefore, it is useful to expand the free energy F = logZ . The expansion of F reads
(the suffix c indicates the connected parts) :

F = t21
2N2

〈(trM)2〉c + t2
N

〈trM2〉c + 1

N2
t1t3〈trMtrM3〉c + t4

N
〈trM4〉c

+ 1

2N3
t21 t2〈(trM)2(trM2)〉c + t22

2N2
〈(trM2)2〉c + · · ·

= 1

2N2
t21 + t2 + 3

N2
t1t3 + t4(2 + 1

N2
) + 1

N4
t21 t2 + 1

N2
t22 + · · · . (2.39)

This expansion may be generated with the help of the Virasoro differential oper-
ators. They are defined through the identites

∫
dM

∂

∂Mab

(
(Mn)cd exp[−N

2
trM2 +

∞∑
i=1

ti
N
trMi]

)
= 0 (2.40)

Let us start with the simple n = 0 case, the so-called string equation, i.e.

∫
dM

∂

∂Mab

(
exp[−N

2
trM2 +

∞∑
k=1

tk
N
trMk]

)
= 0 (2.41)

which gives

〈−NMba + 1

N
t1δab + 1

N

∑
k=2

ktk(M
k−1)ba〉 = 0 (2.42)

and after summing on a = b = 1, · · · ,N

L−1Z = 0 (2.43)

with
L−1 = −N2∂1 + t1 +

∑
(k + 1)tk+1∂k (2.44)
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in which ∂k stands for ∂
∂tk
. Similarly for n = 1 the identity(2.40) gives

〈δacδbd − NMcdMba + 1

N
Mcd

∑
ktk(M

k−1)ba〉 = 0 (2.45)

and, after summing over b = d and a = c, one obtains the ’dilaton’ equation

L0Z = 0 (2.46)

with
L0 = −N2∂2 + N2 +

∑
k=1

ktk∂k (2.47)

The same identity for general n provides the full algebra LnZ = 0 for n ≥ −1 with,
for n ≥ 1,

Ln = −N2∂n+2 + 2N2∂n + N2
n−1∑
1

∂p∂n−p +
∑
1

ktk∂n+k (2.48)

in which L1 and L2 are given by

L1 = −N2∂3 + 2N2∂1 +
∑

ktk∂k+1

L2 = −N2∂4 + 2N2∂2 + N2∂2
1 +

∑
ktk∂k+2 (2.49)

These differential operators satisfy the zero central charge Virasoro algebra

[Lk,Lm] = LkLm − LmLk = (k − m)Lk+m (2.50)

Note that the commutation relations may also be used to determine successively all
the Ln for n ≥ 2. Finally one notes that L−1,L0,L1 are linear in the derivatives with
respect to the parameters tk and thus act simply also on the free energy. However
the non-linearity of the Ln for n〉1 gives non-linear constraints on F. Therefore if
the Virasoro constraints can be used easily to determine the lower moments of the
Gaussian distribution, the integral form ofU(σ1, . . . , σs) turns out to be amuchmore
efficient method for computing all the n-points moments.

Instead of Virasoro constraints on the partition functions Z(t1, · · · , tn, · · · ) one
can also use recursion relations directly on pure Gaussian means, i.e. with the weight
exp[−N/2 trM2]. Consider an operator O(M) = trMk1 · · · trMkn ; one can use sys-
tematically the identities

∫
dM

∂

∂Mab

(
(Mq)cdO(M) exp[−N/2 trM2]

)
= 0 (2.51)

For instance for q = 0 one obtains
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N〈trM trMk1 · · · trMkn〉 =
∑
i

ki〈trMk1 · · · trMki−1 · · · trMkn〉 (2.52)

(which follows also immediately from Wick’s theorem; 〈· · · 〉 refers to the expecta-
tion value with the normalized weight 1

Z0
exp [−N

2 trM2] as same as (2.3)). For q=1
similarly for the same O(M)

N〈trM2 O(M)〉 = (N2 +
∑
i

ki)〈O(M)〉 (2.53)

and so on.

2.3 Gaussian Means in the Large N Limit

The Gaussian means in the large N limit are easily derived from the expression of
U(σ1, . . . , σn), by the replacement

lim
N→∞

n∏
i=1

(1 + σi

Nui
)N = exp

(
n∑

i=1

σi

ui

)
, (2.54)

or from the explicit finite N expressions of Gaussian means in the N → ∞ limit. In
this limit, the n-point correlations U(σ1, . . . , σn) becomes from (2.14) by the shift
ui → Nui and λ → N ,

U(σ1, . . . , σn) =
∮ n∏

i=1

dui
2π i

e
∑

(ui+ 1
ui

)σidet
1

Nui − Nuj + σi
(2.55)

From this formula, we obtain the following Gaussian means in the large N limit.

Proposition 2.3
In the large N limit, the Gaussian connected averages become

〈 1
N
trM2k〉 = (2k)!

k!(k + 1)!
〈 1
N
trM2k1

1

N
trM2k2〉c = 1

N2

(2k1)!(2k2)!
(k1!)2(k2!)2

k1k2
k1 + k2

〈 1
N
trM2k1+1 1

N
trM2k2+1〉c = 1

N2

(2k1 + 1)!(2k2 + 1)!
(k1!)2(k2!)2

1

k1 + k2 + 1

〈 1
N
trM2k1

1

N
trM2k2

1

N
trM2k3〉c = 1

N4

(2k1)!(2k2)!(2k3)!
(k1!)2(k2!)2(k3!)2 k1k2k3

〈 1
N
trM2k1

1

N
trM2k2+1 1

N
trM2k3+1〉c = 1

N4

(2k1)!(2k2 + 1)!(2k3 + 1)!
(k1!)2(k2!)2(k3!)2 k1
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〈 1
N
trM2k1

1

N
trM2k2

1

N
trM2k3

1

N
trM2k4〉c = 1

N6

4∏
i=1

(2ki)!
(ki!)2 k1k2k3k4

×(k1 + k2 + k3 + k4 − 1)

〈 1
N
trM2k1

1

N
trM2k2

1

N
trM2k3+1 1

N
trM2k4+1〉c = 1

N6

4∏
i=1

1

(ki!)2 (2k1)!(2k2)!

×(2k3 + 1)!(2k4 + 1)!k1k2(k1 + k2 + k3 + k4)

〈 1
N
trM2k1+1 1

N
trM2k2+1 1

N
trM2k3+1 1

N
trM2k4+1〉c = 1

N6

4∏
i=1

(2ki + 1)!
(ki!)2

×(k1 + k2 + k3 + k4) (2.56)

It is easy to check that the Virasoro equation of the previous section holds for
the above correlation functions in the large N limit. The Gaussian means appear in
various applications. Fat graphs, used in topology (and in biology), use the planar
character of the large N limit of Gaussian means [8]. The universal character of
Chern-Simon invariants also uses Gaussian means [96]. In Chap.10, the Gromov-
Witten invariants of P1 will be compared with the expressions of Gaussian means of
Proposition 2.3.

2.4 Gaussian Means in the Replica Limit N → 0

We now return to the probability distribution (2.1) with a parameter λ 	= N . In the
study of the intersection numbers of the moduli space of curves, we have used a
replica limit (N → 0) in [30] and the reason for this replica limit will be explained
below. The integral representation (2.14) for λ 	= N reads

U(σ1, . . . , σn) = 1

Nn

∮ n∏
i=1

dui
2π i

(1 + σi

ui
)Ne

∑
uiσi/λ+ 1

2 σ 2
i /λdet

1

ui − uj + σi
. (2.57)

Let us consider first the N → 0 limit of the one-point function

U(σ ) = 1

Nσ
e

σ2

2λ

∮
du

2iπ
eσu/λ(1 + σ

U
)N (2.58)

from which one gets

lim
N→0

U(σ ) = 1

σ
e

σ2

2λ

∮
du

2iπ
eσu/λlog(1 + σ

U
) (2.59)

The contour integral reduces to the integral of the discontinuity of the logarithm
leading to

http://dx.doi.org/10.1007/978-981-10-3316-2_10
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lim
N→0

U(σ ) = sinh( σ 2

2λ )

( σ 2

2λ )
(2.60)

From above formula, in the replica limit N → 0 of U(σ ) = 1
N 〈treσM〉, one obtain

lim
N→0

1

N
〈trMk〉 = 4k!

λ2k4k(2k + 1)! .

Proposition 2.4 ([30])

For the n-point functions the replica limit is given by

lim
N→0

U(σ1, . . . , σn) = λ

χ2

n∏
i=1

2sinh
χσi

2λ
(2.61)

with χ = ∑n
i=1 σi.

Using this replica result, the intersection numbers of p-spin curves of the moduli
space of curves with one marked point have been derived in [30]. In Kontsevich’s
model for the intersection numbers of curves, a trivalent vertex trM3 has been used.
With one marked point, a one stroke line around a marked point characterizes the
moduli space of a Riemann surface. This one stroke Feynman diagram is obtained
by a N → 0 limit (replica limit).

(2.61) is a generating function for the N = 0 limit of 1
N 〈trMp1 · · · trMpk 〉 by

expanding in the σi’s. Selecting the coefficients of equal powers for every σi, for
instance of (σ1 · · · σk)

3, we find

lim
N→0

1

N
〈(trM3)4g−2〉 = 33g−22−2g(6g − 4)!

λ6g−3
· (4g − 2)!
g!(3g − 2)! (2.62)

all other powers of limN→0
1
N 〈(trM3)k〉 vanishes unless k = 2 (mod4). This leads to

Kontsevich’s intersection numbers 〈τl〉 for one marked point. Indeed, these intersec-
tion numbers 〈τl〉 are expressed for one marked point, from the partition function Z
of following Kontsevich Airy matrix model with trM3 term in exponent, as will be
shown in Chap.6,

lim
N→0

1

N
logZ =

∞∑
m=1

〈τm〉tm, Z = 1

Z ′

∫
dMe

i
3 trM

3−trΛM2
(2.63)

with Z ′ = ∫
dMe−trM2

, and tm = (−2)−(2m+1)/3 ∏m−1
l=0 (2l + 1)( 2

λ
)2m+1, where all

eigenvalues of Λ in Kontsevich model are put equally to λ.

http://dx.doi.org/10.1007/978-981-10-3316-2_6
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This provides

〈τ3g−2〉g = 1

(24)gg! (2.64)

which agrees with (2.25).
From (2.61), the intersection numbers 〈τn〉 of one marked point for p-spin curve

(the algebraic geomerical definition will be given in Chap.7) are obtained. The par-
tition function for this higher Airy matrix model with p-spin is

Z = 1

Z0

∫
dMexp[ 1

p + 1
tr(Bp+1 − Λp+1) − tr)(B − Λ)Λp] (2.65)

with normalization constant Z0 [30] andF = ∑
km,j

〈∏m,j τ
km,j

m,j 〉
∏

m,j t
km,j

m,j /km,j!,where

tm,j = (−p)
j−p−m(p+2)

2(p+1)

m−1∏
l=0

(lp + j + 1)tr
1

Λmp+j+1
. (2.66)

Expanding the partition function of (2.65) and using (2.61), we obtain the intersection
numbers of one marked point by this replica method, for instance we obtain p = 3
case,

lim
N→0

1

N
〈(trM4)2m−1〉 = 22m−2

λ4m−2
(4m − 3)! (2m − 1)!

m!(m − 1)! , (2.67)

〈τ(8g−5−j)/3,j〉g = 1

(12)gg!
Γ (

g+1
3 )

Γ (
2−j
3 )

(2.68)

A later section is devoted to the intersection numbers of the moduli spaces of
curves by the use of the function of U(σ ), instead of above formula of N → 0
limit (2.61). In Sect. 5, we will show that, by tuning an external source, the n-point
functionsU(σ1, . . . , σn) are indeed generating functions of the intersection numbers
of moduli space of curves. Note that the n-point function of (2.14) is valid only for
a Gaussian ensemble without external source. For external source, the formula will
be given by (3.6) in Theorem 3.2.1.

http://dx.doi.org/10.1007/978-981-10-3316-2_7
http://dx.doi.org/10.1007/978-981-10-3316-2_5
http://dx.doi.org/10.1007/978-981-10-3316-2_3
http://dx.doi.org/10.1007/978-981-10-3316-2_3


Chapter 3
External Source

3.1 HarishChandra Itzykson–Zuber Formula

An external, i.e. deterministic, sourcematrixA is now coupled to the randommatrices
with weight

PA(M) = 1

ZA
exp

[
−λ

2
trM2 + trMA

]
(3.1)

The matrix A is an N × N Hermitian matrix. The normalization ZA, up to a trivial
constant, is proportional to exp[ 1

2λ trA
2].

The following integral over the unitary group is due Harish Chandra–Itzykson–
Zuber. Consider two Hermitian matrices A and B. Then the integral over the unitary
group, with the standard Haar measure normalized to one, is given by the following
theorem [77, 80].

Theorem 3.1 (Harish Chandra–Itzykson–Zuber)
∫

dU exp(trAUBU†) = cN
det[exp(aibj)]
Δ(A)Δ(B)

(3.2)

where Δ(A) is the Vandermonde determinant
∏

i〈j(ai − aj) constructed with the

eigenvalues of A, and cN is a normalization constant cN = ∏N−1
j=1 j!.

This formula is a remarkable example of “localization”, i.e. the fact that the sum
over the saddle points of the integrand is exact.

Proof of Theorem 3.1

This HCIZ formula may be derived by considering the Laplace operator [11, 26],

L = − ∂2

∂Xij∂Xji
(3.3)

Its eigenfunctions are plane waves,

© The Author(s) 2016
E. Brézin and S. Hikami, Random Matrix Theory with an External Source,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-981-10-3316-2_3
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LeitrΛX = (trΛ2)eitrΛX (3.4)

One can construct a unitary invariant eigenfunction of L, for the same eigenfunction
trΛ2, by the superposition

I =
∫

dUeitrΛUXU†
(3.5)

which is the HCIZ integral. The integral I being unitary invariant, is a function of the
eigenvalues xi of X. The unitary invariant eigenstates are functions of the eigenvalues
xi of the matrix X and they are orthogonal with the measure

〈ψ1|ψ2〉 =
∫

dx1 · · · dxNψ∗
1 (x1, . . . , xN )ψ2(x1, . . . , xN )Δ2(x1, . . . , xN )

Acting on unitary invariant states the operator L reduces to

L = − 1

Δ(X)

∑
i

∂2

∂x2i
Δ(X).

Therefore the lowest eigenstates of this quantum mechanical problems, multiplied
by the Vandermonde determinant Δ are simply plane waves; the antisymmetry of
Δ under permutations gives thus a free-fermion Slater determinant of plane waves.
Therefore the unitary invariant eigenstate I is simply equal to det eiλaxb/Δ(X) up to
a constant. The exchange of Λ and X implies that this constant is proportional to
1/Δ(Λ). �

3.2 n-Point Function with an External Source

Theorem 3.2.1

U(σ1, . . . , σn) = 1

Nn

∮ n∏
i=1

dui
2π i

N∏
α=1

(
1 + σi

ui − aα

)
e
∑

uiσi/λ+σ 2
i /2λdet

1

ui − uj + σi

(3.6)

with the contours around all aα (α = 1, . . . ,N), which are eigenvalues of the external
source A.

(Proposition 2.1 in the previous section is obviously derived from Theorem 3.2.1
when setting all eigenvalues aα = 0).

The n-point correlation function of Rn(λ1, . . . , λn) is defined as (2.10), which is
the Fourier transform of the n point functionU(σ1, . . . , σn). Without external source,
this n-point correlation function is expressed in terms of a kernel KN (λi, λj) as

http://dx.doi.org/10.1007/978-981-10-3316-2_2
http://dx.doi.org/10.1007/978-981-10-3316-2_2
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Rn(λ1, . . . , λn) = det[KN (λi, λj)] (3.7)

where i, j = 1, . . . , n. However, this determinant form remains valid also for the
external source problem.

Theorem 3.2.2 When an external source is coupled to Gaussian distribution, the
n-point correlation function of (2.10) is expressed by the determinant of a kernel, as
in the sourceless case:

Rn(λ1, . . . , λn) = det[KN (λi, λj)] (3.8)

Proof of Theorems 3.2.1 and 3.2.2

Given the unitary invariance of the measure dM, one can assume, without loss of
generality, that the source matrix A is diagonal, with eigenvalues (a1, . . . , aN ).

1. Let us start with the case n = 1, i.e.

U(σ ) = 1

N
〈tr eσM〉 (3.9)

where σ = it and the average is taken with PA in (3.1), (note that we here nor-
malize U(σ ) as U(0) = 1).

Lemma

∫ ∞

−∞

N∏
i=1

(√
λ

2π
dxi

)
e
∑N

k=1

(
− λ

2 x
2
k+akxk

)
Δ(x1, . . . , xN ) = Ce

1
2λ

∑N
i=1 a

2
i Δ(a1, . . . , an)

(3.10)

in which Δ(xi) denotes the Vandermonde determinant Δ(xi) = ∏
i〈j(xi − xj) and

C = λ−N(N−1)/2. The proof is easy: after a shift xi → xi + ai/λ which produces
the Gaussian factor, one obtains an integral whose result is an antisymmetric
polynomial of degreeN in the ai’s and thus, up to a constant, it yieldsΔ(a1 . . . aN ).
Now we return to (3.9). The change to the variables xi and Ω , by diagonalizing
M = ΩXΩ† yields the Jacobian Δ2(x1, . . . xN ); the unitary matrix Ω appears
only in the exponent as tr(�X�†A). The integral over the unitary group is then
given by (3.2)

U(σ ) = 1

ZAΔ(A)

∫
dx1 · · · dxNΔ(X)(det eaixj )e− ∑

j
λ
2 x

2
j

N∑
k=1

eitxk (3.11)

The antisymmetry in theN integration variables xi implies that theN ! terms of the
determinant give equal contributions and thus up to a factor (the normalization
will be given later)

http://dx.doi.org/10.1007/978-981-10-3316-2_2
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U(σ ) = 1

ZAΔ(A)

∫
dx1 · · · dxNΔ(X)e

∑
j(ajxj− λ

2 x
2
j )

N∑
k=1

eitxk (3.12)

Defining ã(k)
j = aj + itδjk and with lemma (3.10) and the normalization of the

probability distribution we obtain

U(σ ) = 1

N

N∑
k=1

e
1
2λ

∑
j[(ã(k)

j )2−a2j ] Δ(Ã(k))

Δ(A)

= 1

N
e−t2/2λ

N∑
k=1

eitak/λ
N∏
l �=k

ak − al + it

ak − al
(3.13)

The r.h.s. may be conveniently written as a contour integral

U(σ ) = 1

Nit
e−t2/2λ

∮
du

2iπ
eitu/λ

N∏
k=1

(
1 + it

u − ak

)
(3.14)

in which the integral encloses around all the eigenvalues ai, (i = 1, . . . ,N) of A.
The normalization implied by the definition (3.9), i.e. U(0) = 1, is manifestly
correct, since

∏N
k=1(1 + it

u−ak
) = 1 + it

∑N
1

1
u−ak

+ O(t2).

2. The case of the two-point function is similar.

Let us follow the same line for

U(σ1, σ2) =
〈
1

N
treit1M

1

N
treit2M

〉
(3.15)

where σ1 = it1 and σ2 = it2. After using Harish Chandra–Itzykson–Zuber for-
mula, it becomes

U(σ1, σ2) = 1

N2

N∑
α1,α2=1

∫ N∏
i=1

dxi
Δ(x)

Δ(A)
e
∑

i(− λ
2 x

2
i +aixi)+it1xα1+it2xα2 (3.16)

where xi is an eigenvalue of M and ai of A. Again one can integrate over the xi
with the lemma (3.10)

U(σ1, σ2) = 1

N2

N∑
α1,α2=1

∏
i〈j(ai − aj + it1(δi,α1 − δj,α1) + it2(δi,α2 − δj,α2)]∏

i〈j(ai − aj)

× e
1
λ
(it1aα1+it2aα2− 1

2 t
2
1− 1

2 t
2
2−t1t2δα1 ,α2 ) (3.17)

Dividing the sum into two terms; α1 = α2 and α1 �= α2 one obtains,
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U(σ1, σ2)= 1

N2

∑
α1

∏
i〈j

ai − aj + i(t1+t2)(δi,α1 − δj,α1)

ai − aj
e

i
λ
(t1+t2)aα1− 1

2λ (t1+t2)2

+ 1

N2

∑
α1 �=α2

aα1 − aα2 + i(t1 − t2)

aα1 − aα2

∏
γ �=α1,α2

(aα1 − aγ + it1)(aα2 − aγ + it2)

(aα1 − aγ )(aα2 − aγ )

× exp
1

λ

[
it1aα1 + it2aα2 − 1

2
(t21 + t22)

]
(3.18)

Since R2(λ1, λ2) defined in (2.10) is given by a Fourier transform

R2(λ1, λ2) =
∫

dt1dt2
(2π)2

e−it1λ1−it2λ2U(σ1, σ2) (3.19)

the first sum of (3.18), (α1 = α2 case), becomes δ function, and can be neglected
for R2(λ1, λ2) for λ1 �= λ2. The first term of (3.18) is U(σ1 + σ2)/N of (3.14),
and Fourier transform of this term becomes [17, 18]

1

N(2π)2

∫ ∫
dt1dt2e

−it1λ1−it2λ2U(σ1 + σ2) = 1

N
δ(λ1 − λ2)ρ(λ1) (3.20)

with

ρ(λ) =
∫ +∞

−∞
dt

2π
e−itλU(σ ). (3.21)

where σ1 = it1, σ2 = it2 and σ = it.
The double sum of the second term, (α1 �= α2 case), is represented by a double
contour integral,

U(σ1, σ2) = 1

N2t1t2
e− 1

2λ (t21+t22 )
∮

dudv

(2iπ)2
ei(t1u+t2v)/λ

(u − v + it1 − it2)(u − v)

(u − v + it1)(u − v − it2)

×
N∏

γ=1

(
1 + it1

u − aγ

) (
1 + it2

v − aγ

)
(3.22)

Since

(u − v + i(t1 − t2))(u − v)

(u − v + it1)(u − v − it2)
= 1 − t1t2

(u − v + it1)(u − v − it2)
(3.23)

the above result is a sum of a disconnected and a connected part. The disconnected
term, which comes from the first term 1 in r.h.s. of above equation, leads to the
product of KN (λ1, λ1)KN (λ2, λ2). For the connected term, shifting transform t1
and t2, t1 → t1 + iu and t2 + iv, R2(λ1, λ2) is expressed as

R2(λ1, λ2) = KN (λ1, λ1)KN (λ2, λ2) − KN (λ1, λ2)KN (λ2, λ1) (3.24)

http://dx.doi.org/10.1007/978-981-10-3316-2_2
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a 2 × 2 determinant of the kernel, which is expressed by

KN (λ1, λ2) = 1

N

∫
dt

2π

∮
du

2iπ

N∏
γ=1

(
aγ − it

u − aγ

)
1

u − it
e− 1

2λ (u2+t2)−itλ1−uλ2 .

(3.25)
This completes the proof of Theorems3.2.1 and 3.2.2 for the two-point function.

The generalization of the two point function R2(λ1, λ2) to Rn(λ1, . . . , λn) is straight-
forward.

Rn(λ1, . . . , λn) = 1

Nn

∫ n∏
i=1

dti
2iπ

e− 1
2λ

∑
t2p−i

∑
tpλp

∮ n∏
i=1

dui
2iπ

ei
∑

tpup

×
n∏

p=1

N∏
α=1

(
1+ itp

up−aα

) n∏
p=1

1

tp

∏
p〈q

[up−uq+i(tp − tq)](up−uq)

(up − uq+itp)(up−uq−itq)

(3.26)

With the shift of variables tp → tp + iup,

Rn = 1

Nn

∫ n∏
i=1

dti
2iπ

∮ n∏
i=1

dui
2iπ

e− 1
2λ

∑
t2p− 1

2λ

∑
u2p+

∑
λp(−itp+up)

×
n∏

p=1

1

tp + iup

n∏
p=1

N∏
α=1

(−aα + itp
up − aα

)∏
p〈q

(itp − itq)(up − uq)

(−uq + itp)(up − itq)
. (3.27)

The Cauchy determinant (i, j = 1, . . . , n) is

det

[
1

ai − bj

]
= (−1)

n(n−1)
2

∏
i〈j(ai − aj)(bi − bj)∏

i,j(ai − bj)
(3.28)

and from this formula with ap = itp and bp = up, Rn becomes

Rn= 1

Nn

∫ n∏
i=1

dti
2iπ

∮ n∏
i=1

dui
2iπ

e− 1
2λ

∑
(t2p+u2p)−

∑
λp(itp+up)det

[
1

uj − iti

N∏
γ=1

aγ − iti
uj − aγ

]

(3.29)
Since this determinant id det[K(λi, λj)], Theorems 3.2.1 and 3.2.2 are proved. �

Proposition 3.2.1

This kernel satisfies the composition rule, well-known in the sourceless case,

∫ +∞

−∞
dμKN (λ, μ)KN (μ, ν) = KN (λ, ν) (3.30)
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Proof of Proposition 3.2.1

From the contour integrals,

∫ +∞
−∞

dμKN (λ, μ)KN (μ, ν) =
∫ +∞
−∞

dt1dt2
(2π)2

∮
du1du2
(2iπ)2

N∏
γ=1

(
aγ − it1
u1 − aγ

)(
aγ − it2
u2 − aγ

)

× 1

(u1 − it1)(u2 − it2)
e− 1

2λ (u21+u22+t21+t22 )−(it1λ+it2μ+u1μ+u2ν) (3.31)

integration over μ, after the shift t2 → t2 + iu1, provides a δ function for t2. The
contour integration over u1 around the pole u1 = it1 reconstructs KN (λ, ν). �



Chapter 4
Characteristic Polynomials and Duality

4.1 Characteristic Polynomials

The consideration of expectation values of characteristic polynomialswas introduced
in [85] for the unitary group.We here consider theHermitianmatrix for characteristic
polynomials [24]. These expectation values turn out to be oftenmore convenient than
resolvents. Some observables such as

G(λ, μ) =
〈
det(λ − M)

det(μ − M)

〉
(4.1)

give back to averaged resolvents G(μ) in (2.9) since

G(μ) = 1

N

〈
tr

1

μ − M

〉
= 1

N

∂

∂λ
G(λ, μ)|λ=μ

In addition they satisfy a remarkable duality which will be used in the following.

Theorem 4.1.1 For Gaussian ensemble of N × N Hermitian random matrices M
in an external matrix source A, the expectation value of the product of K - char-
acteristic polynomials 〈∏K

i=1 det(λi · I − M)〉 is equal to the expectations value by
an average of N characteristic polynomials in an ensemble of Gaussian K × K
Hermitian matrices B, with an external matrix source given by the Λ:

FK (λ1, . . . , λK ) = 1

ZN

∫
dM

K∏
i=1

det(λi · I − M)e− 1
2 tr(M−A)2

= 1

ZK

∫
dB

N∏
j=1

det(−a j · I + i B)e− 1
2 tr(B+iΛ)2 (4.2)
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with ZN = 2N/2π N 2/2, ZK = 2K/2π K 2/2; λi is an eigenvalue of Λ, and aα an eigen-
value of A. This duality has appeared in [24, 30, 72], and has been used to study a
(p, q) minimal string theory [95].

Proof of Theorem 4.1.1
As usual one can take, without loss of generality, A diagonal with eigenvalues
(a1, . . . , aN ). The N × k complex Grassmannian variables ψ

α

i , ψ
α
i (i = 1, . . . , N

and α = 1, . . . , K ), normalized for each i and α by

∫
dψdψ

(
1

ψψ

)
=

(
0
1

)
(4.3)

The product of characteristic polynomials is then given by the integral

K∏
i=1

det(λi · I − M) =
∫ N∏

i=1

K∏
α=1

dψ
α

i dψα
i exp

⎡
⎣ N∑

i, j=1

K∑
α=1

ψ
α

i (λα − M)i jψ
α
j

⎤
⎦
(4.4)

This allows to perform the Gaussian average with the identity

1

ZN

∫
dMe− 1

2 trM
2+trMX = e

1
2 trX

2
(4.5)

The matrix X is here given by

X pq = apδp,q −
K∑

α=1

ψ
α

qψ
α
p (4.6)

and

trX2 = trA2 − 2
N∑
p=1

K∑
α=1

apψ
α

pψ
α
p −

K∑
α,β=1

γα,βγβ,α (4.7)

with

γα,β =
N∑
i=1

ψ
α

i ψ
β

i . (4.8)

The last term of (4.7) is thus −trγ 2, and it is convenient to use the identity

e− 1
2 trγ

2 = 1

ZK

∫
dβe− 1

2 trβ
2+i trγβ (4.9)
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where β is an auxiliary Hermitian K × K matrix. Then FK (λ1, . . . , λK ) is written as

FK (λ1, . . . , λK ) = 1

ZK

∫ ∏
dψ

α

i dψα
i

∫
dβei trγ (β−iΛ)− 1

2 trβ
2−∑N

i=1

∑K
α=1 aiψ

α

i ψα
i ,

(4.10)

where Λ is the K × K diagonal matrix with eigenvalues (λ1, . . . , λK ). The integra-
tion over the Grassmannian variables leads to

FK (λ1, . . . , λK ) = 1

ZK

∫
dβe− 1

2 trβ
2

N∏
j=1

det[(λμ − a j )δμ,ν + iβμ,ν] (4.11)

Putting β = B + iΛ, one obtain the duality formula of Theorem 4.1.1. �
The duality formula in Theorem 4.1.1 is for the Gaussian average of charac-

teristic polynomials. For non-Gaussian distributions, the average of the product of
characteristic polynomials may also be expressed as a determinant [101].

Proposition 4.1 [24] For an ensemble of N × N Hermitian matrices X, with the
probability distribution P(X)

P(X) = 1

ZN
exp[−N trV (X)], (4.12)

the average of K distinct characteristic polynomials,

FK (λ1, . . . , λK ) =
〈

K∏
α=1

det(λα − X)

〉
, (4.13)

may be expressed as a determinant built with orthogonal polynomials

FK (λ1, . . . , λK ) = 1

Δ(λ1, . . . , λK )
det|pM−1+i (λ j )| (4.14)

Thepolynomials pn(x)areorthogonalwith respect to themeasuredμ(x)=dxe−NV (x)

and normalized by
pn(x) = xn + lower order (4.15)

Proof of Proposition 4.1
After integration over the unitary group, the average of the product of characteristic
polynomials is expressed as
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FK (λ1, . . . , λK ) = 1

ZN

∫ N∏
i=1

dμ(xi )Δ
2(x1, . . . , xN )

K∏
α=1

N∏
i=1

(λα − xi ) (4.16)

Δ(x) is theVandermonde determinant,Δ(x)= ∏
(xi − x j ) and themeasure dμ(x) =

e−NV (x)dx . ZN is a normalization constant

ZN =
∫ N∏

i=1

dμ(xi )Δ
2(x1, . . . , xN ) (4.17)

The integrand can be written as

Δ(x1, . . . , xN )

K∏
α=1

N∏
i=1

(λα − xi ) = Δ(x1, . . . , xN ; λ1, . . . , λK )

Δ(λ1, . . . , λK )
(4.18)

and
Δ(x1, . . . , xN ) = det[pn(xm)] (4.19)

since pn(x) = xn+ lower degree. In (4.19), n runs from 0 to N -1 and m runs from
one to N . The numerator in (4.18) is written as

Δ(x1, . . . , xN ; λ1, . . . , λK ) = det[pa(ub)] (4.20)

in which a runs from zero to N + K − 1, b runs from one to N + K , and ub stands
for xb if b ≤ N , or λb for N 〈b ≤ N + K . Choosing the polynomials orthogonal with
the measure dμ(x) as ∫

dμ(x)pn(x)pm(x) = hnδn,m (4.21)

one can integrate over the N eigenvalues,

∫ N∏
i=1

dμ(xi )Δ(x1, . . . , xN ; λ1, . . . , λK )Δ(x1, . . . , xN )=N !
(N−1∏

n=0

hn

)
det[pα(λβ)]

(4.22)
in which α runs from N to N + K − 1 and β runs from 1 to K . The normalization
factor ZN is

ZN =
∫ N∏

i=1

dμ(xi )Δ
2(x1, . . . , xN ) = N !

(N−1∏
n=0

hn

)
. (4.23)

Then FK (λ1, . . . , λK ) is written as
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FK (λ1, . . . , λK ) = 1

Δ(λ1, . . . , λK )
det

∣∣∣∣∣∣∣∣

pN (λ1) pN+1(λ1) · · · p+K−1(λ1)

pN (λ1) pN+1(λ1) · · · p+K−1(λ1)

· · ·
pN (λK ) pN+1(λK ) · · · pN+K−1(λK )

∣∣∣∣∣∣∣∣
(4.24)

�

4.2 Characteristic Polynomial in the Real Symmetric Case

The average of the product of the characteristic polynomial for the real symmetric
matrix X is

Fk(λ1, . . . , λk) =
∫

dXe− N
2 trX

2
k∏

i=1

det(λi − X) (4.25)

where X is a real symmetric matrix, X = XT .

Proposition 4.2.1 ([25])

Fk(λ1, . . . , λk) =
∫

dBdDe−N tr(B2+D†D)[−PfM]N (4.26)

where

M =
(

D Λ − i BT

−(Λ − i B) D†

)
(4.27)

in which B is a k × k Hermitianmatrix and D a k × k complex antisymmetric matrix.
Pf is the pfaffian of the antisymmetric matrix M.

The generalization of theHarishChandra formula, for integration over Lie groups,
such as real symmetric and quaternion symmetric matrices, is given by the following
formula by the use of zonal polynomial Z p due to Jack [25, 26, 78, 81].

Proposition 4.2.2

Iβ(X,Λ) =
∫

dgexp(trgXg−1Λ) (4.28)

where g is one of the Lie groups O(k),U (k), Sp(k), and dg is the Haar measure. Let
us use the conventional parameter β, which takes value of 1,2 and 4 for O(k),U (k)
and Sp(k) respectively. Then the Iβ is expressed by the zonal polynomials Z p,

Iβ(X,Λ) =
∞∑

m=0

1

m!
(m−1∏

q=0

1

1 + qα

)∑
p

χp(1)
Z p(X)Z p(Λ)

Z p(1)
(4.29)
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where α = 2
β
, χp(1) is the character of the representation associated to a Young

tableau p, and Z p(X) is a zonal polynomial [93]. Z p(1) is a normalization constant,
depending on N.

This Iβ satisfies the differential equation,

[ N∑
i=1

∂2

∂x2i
+ β

N∑
i=1,(i �= j)

1

xi − x j

∂

∂xi

]
I = ε I (4.30)

with ε = ∑N
i=1 λ2

i . The x-dependent eigenfunctions of this Schrödinger operator
have a scalar product given by the measure

〈φ1|φ2〉 =
∫ N∏

i=1

dxi |Δ(x1, . . . , xN )|βφ∗
1 (x1, . . . , xN )φ2(x1, . . . , xN ). (4.31)

Changing I to ψ

ψ(x1, . . . , xN ) = |Δ(x1, . . . , xN )|β/2 I (x1, . . . , xN ) (4.32)

one obtains the Calogero-Moser integrable Hamiltonian,

[ N∑
i=1

∂2

∂x2i
− β

(
β

2
− 1

) ∑
i〈 j

1

(xi − x j )2

]
ψ = εψ. (4.33)

In the case β = 2, one recovers immediately the HarishChandra-Itzykson-Zuber
formula. However for β = 1 and 4, it is difficult to derive a useful formula for
random matrix model with an external source, except for small values of the size N
[26, 78].

4.3 Characteristic Polynomials Fo the Lie Algebras o(N)

and sp(N)

Let us consider real anti-symmetric matrices, which are the generators of the Lie
group O(N ).

Since HarishChandra’s formula works for semi-simple Lie algebras, we can con-
sider matrix models made of the elements of a Lie algebra (such as anti-symmetric
matrices for o(N )), with an external matrix source [24, 31]. The steps exposed above
for the unitary case can be repeated for those Lie algebras. The symplectic case is also
of interest. We have shown in [23] that Lie algebra sp(N ) appears in the description
of a superconductor vortex in the dirty limit, and we have also studied antisymmetric
matrices coupled to an external source. In the analysis of L functions of type o(N )
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and sp(N ), the characteristic polynomials for such Lie algebras have been studied in
the relation to the universal moments of L functions [24]. Since the case of sp(N ) has
a similar structure of o(2N ), we expose mainly here o(2N ) case, and HarishChan-
dra’s formula for sp(N ) and o(2N + 1) will be given in Chap.9, which play the key
role for the evaluation of the intersection numbers of non-oriented surfaces.

HarishChandra’s formula for a Lie group G reads

∫
G
e〈Ad(g)·a|b〉dg =

∑
w∈W (detw)e〈w·a|b〉

Δ(a)Δ(b)
(4.34)

where a, b are elements of Cartan subalgebra of Lie algebra h. The generalization of
the Vandermonde in the denominator is defined as follows. For any H ∈ h, Δ(H) =∏

α∈Δ+ α(H) where Δ+ is the collection of positive roots, W is the finite reflection
group, called the Weyl (or Coxeter) group. det(w) = ±1.

For the integration over SO(2n),

∫
SO(2n)

etr(gag
−1b)dg = C

∑
w∈W (detw)e2

∑
j w(a j )b j∏

j〈k(a
2
j − a2k )(b

2
j − b2k )

(4.35)

where C = (2N − 1)!∏2N−1
j=1 (2 j − 1)!, and w is element of Weyl group, which

consists here of permutations followed by the reflections (yi → ±yi ; i = 1, . . . , N )

with an even number of sign changes. The matrix H is written as the direct sum of

v′s defined as H = h1v ⊕ h2v ⊕ · · · ⊕ hnv, with v =
(

0 1
−1 0

)
.

The previous duality (4.2) for characteristic polynomials averages, extends to
Lie algebras of the classical groups, such as antisymmetric real matrices for the
orthogonal Lie algebra o(2N ). It reads

〈
k∏

α=1

det(λα · I − X)

〉

A

=
〈

N∏
n=1

det(an · I − Y )

〉

Λ

(4.36)

where X is a 2N × 2N real antisymmetric matrix (Xt = −X ) and Y a 2k × 2k real
antisymmetric matrix; the eigenvalues of X and Y are thus pure imaginary. The
matrix source A is also a 2N × 2N antisymmetric matrix, coupled to X by trX A.
The matrix Λ is 2k × 2k antisymmetric matrix, coupled to Y . We assume, without
loss of generality, that A and Λ have the canonical form: A = a1v ⊕ · · · ⊕ aNv.

A =

⎛
⎜⎜⎜⎜⎝

0 a1 0 0 · · ·
−a1 0 0 0 · · ·
0 0 0 a2 0
0 0 −a2 0 0
· · ·

⎞
⎟⎟⎟⎟⎠ , (4.37)

http://dx.doi.org/10.1007/978-981-10-3316-2_9
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Λ is expressed also asΛ = λ1v ⊕ · · · ⊕ λkv.Thecharacteristic polynomial det(λ ·
I − X) has the 2N roots, (±iλ1, · · · ,±iλn). The Gaussian averages in (4.36) are
defined as 〈· · · 〉A = 1

ZA

∫
dXe

1
2 trX

2+trX A, 〈· · · 〉Λ = 1
ZΛ

∫
dYe

1
2 trY

2+trYΛ in which X
is a 2N × 2N real antisymmetric matrix, and Y a 2k × 2k real antisymmetric matrix;
the coefficients ZA and ZΛ are such that the expectation values are normalized to
one. The derivation relies on a representation of the characteristic polynomials in
terms of integrals over Grassmann variables, as for the U (N ) case, but it is more
involved [31].

Here again the HarishChandra formula leads to explicit formulae for the correla-
tion functions. The one-point function for instance is

U (σ ) = 1

2N
〈treσ X 〉A

= 1

Nσ

∮
du

2π i

N∏
n=1

(
(u + σ

2 )2 − a2n
u2 − a2n

)
u

u + σ
4

euσ+ σ2

4 , (4.38)

where the contour encircles the poles u = an . One may repeat the same tuning plus
duality strategy in this case, leading to the desired topological numbers for non-
orientable surfaces generated by these antisymmetric matrix models,which will be
discussed inChap. 9. The cases of o(2N + 1) and sp(N ) have similar duality formula
as o(2n), and one point function and the intersection numbers for such cases will be
derived in Chap.9.

4.4 Characteristic Polynomials for Supermatrices

This brief introduction to supermatrices and super determinants intends to show that
they are convenient tools to express the characteristic polynomials of supermatrices
and their averaged resolvent correlation functions GN in (2.8) [27, 130].

Consider the expectation value of a ratio of characteristic polynomials

FP,Q(λα · · · μβ · · · ) = 1

ZN

〈 ∏P
α=1 det(λα − M)∏Q
β=1 det(μβ − M)

〉

A

(4.39)

with

〈O(M)〉A = 1

ZA

∫
dMO(M)e− 1

2 trM
2+trMA (4.40)

Such expectation values are interesting; for instance, the average resolvent is given
by P = Q = 1, after taking derivative with respect to λ and setting λ = μ.

Let us recall standard definitions for supermatrices: let

http://dx.doi.org/10.1007/978-981-10-3316-2_9
http://dx.doi.org/10.1007/978-981-10-3316-2_9
http://dx.doi.org/10.1007/978-981-10-3316-2_2
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X =
(
a α

β b

)
(4.41)

in which the matrix elements of a and b are commuting numbers, those of α and β

are anticommuting. Then the supertrace

strX = tra − trb (4.42)

ensures the cyclic invariance. The super determinant is given by

sdetX = det a

det(b − βa−1α)
= det(a − αb−1β)

det b
(4.43)

based on the integral

∫
dθd θ̄dxdx̄εiΦXΦ = (sdetX)−1 (4.44)

where Φ = (
x
θ

), Φ = ( x̄ θ̄ ). The formulae are obtained either by integrating first

the commuting variables, or the anticommuting variables first. We use the conven-

tions θ1θ2 = θ̄1θ̄2 and θ = θ.

Finally the usual bosonic formula still holds here, namely

str(log X) = log (sdetX). (4.45)

We are now in position to derive the duality formula for (4.39) which we first
write in integral form as

FP,Q(λα · · ·μβ · · · ) =
∫ N∏

a=1

P∏
α=1

Q∏
β=1

dx̄aαdx
a
αd θ̄a

βdθa
β

〈e− ∑P
α=1 x̄

a
α(λα−M)abxbα−∑Q

β=1 θ̄a
β (μβ−M)abθ

b
β 〉A (4.46)

or, introducing the (Q + P) × (Q + P) diagonal matrix Λ made of μβ and λα ,

FP,Q(λα · · · μβ · · · ) =
∫ N∏

a=1

P∏
α=1

Q∏
β=1

dx̄aαdx
a
αd θ̄a

βdθa
β 〈e− Φ̄aΛΦa+Φ̄aMabΦ

b 〉A (4.47)

Since
〈etrXM 〉A = e

1
2 trX

2+trAX (4.48)

we have
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Xba = Φ̄a · Φb =
P+Q∑
α=1

Φ̄a
αΦb

α. (4.49)

Then

tr(AX) =
N∑

n=1

an

P+Q∑
α=1

�̄n
α�n

α (4.50)

in which the an are the eigenvalues of A,

trX2 =
N∑

a,b=1

P+Q∑
α,β=1

�̄a
α�b

α�̄b
β�a

β. (4.51)

Let us define the matrix Γ , (Q + P) × (Q + P)

Γα,β =
N∑

a=1

Φa
αΦa

β =
(

Γ1 Γ2

Γ
†
2 Γ3

)
=

(
x̄ · x θ̄ · x
x̄ · θ θ̄ · θ

)
(4.52)

This matrix Γ1 is Hermitian but Γ3 is anti-Hermitian.
To express trX2 in terms of the matrix Γ some commutations are required and

one obtains easily
trX2 =

∑
α,β

str(�2) (4.53)

Therefore

FP,Q(λα · · · μβ · · · ) =
∫ N∏

a=1

dx̄aαdx
a
αd θ̄a

βdθa
β

e− Φ̄aΛΦa+∑N
n=1 an

∑P+Q
α=1 Φ̄n

αΦn
α+ 1

2 str�
2

(4.54)

The SUSY Hubbard-Stratonovich transformation reads
∫

dΔestr(−
1
2 Δ2+Δ�) = e

1
2 str�

2
(4.55)

in which Δ is (P + Q) × (P + Q) and like Γ as far as hermiticity is concerned.
Then

FP,Q(λα · · ·μβ · · · ) =
∫

dΔ

∫ N∏
a=1

dx̄aαdx
a
αd θ̄a

βdθa
β

e− Φ̄aΛΦa+∑N
n=1 an

∑P+Q
α=1 Φ̄n

αΦn
α e− 1

2 strΔ
2+strΔ� (4.56)
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One can integrate out on the x’s and θ ’s. The quadratic form in the exponential is

−Φ̄aΛΦa +
N∑

n=1

an

P+Q∑
α=1

Φ̄n
αΦn

α + Δα,βΦ̄a
βΦa

α(−1)Fβ

in which Fβ = 0 for 1 ≤ β ≤ P or Fβ = 1 for (P + 1) ≤ β ≤ (P + Q) The inte-
gration then gives

N∏
1

s det −1[(Λα − an)δαβ − Δαβ(−1)Fβ ]

Therefore we change Δαβ(−1)Fβ → Δ̃αβ and one verifies that

strΔ2 = strΔ̃2. (4.57)

Then one ends up with the following proposition,

Proposition 4.4

FP,Q(λα · · ·μβ · · · ) = 1

ZN

〈 ∏P
α=1 det(λα − M)∏Q
β=1 det(μβ − M)

〉

A

=
∫

dΔe− 1
2 strΔ

2
N∏
1

sdet−1[(Λα − an)δαβ − Δαβ] (4.58)

The above identity (4.58) relates an ordinary integral to a supermatrix integration.
In this sense it is not a full duality although it can be used for the large N-limit or
for a super-generalization of the Kontsevich model. However a full super duality
has been derived by Desrosiers and Eynard for expectation values of ratios of super
determinants [51] and our identity appears as a simple limiting case [87].

Arbitrary β

An extension of the GUE duality (4.2) to the three classical Gaussian ensembles
GOE, GUE, GSE with respectively β = 1, 2, 4 has been derived by Desrosiers [52],
but it exchangesβ to 4/β. However the lack ofHarishChandra formula for integrating
over the orthogonal or symplectic group in terms of τi j = (xi − x j )(λi − λ j ) (i, j =
1, . . . , N ) for general N [26, 78] does not allow one to compute explicitly the k-
point functions and we cannot repeat the steps that we have followed for β = 2.
Howeverwe have used supergroupmethods to obtain the one and two-point functions
[23, 27, 29].



Chapter 5
Universality

5.1 Universal Correlation Functions

The sine kernel was derived for the Gaussian unitary ensemble (GUE) by Dyson
[50].

KN (λ, μ) = − 1

πN(λ − μ)
sin[πN(λ − μ)ρ(λ)] (5.1)

where ρ(λ) is the density of states, i.e. the one point function. More generally for
arbitrary unitary invariant ensembles the correlation functions are known to have a
universal scaling limit as follows, apart from a scale dependence provided by the
density of states ρ. For instance the two point connected correlation function of two
eigenvalues λ andμ has a universal scaling limit, when the distanceλ−μ ismeasured
in terms of the average spacing 1/Nρ, in other words whenN → ∞ and the distance
to zero, so that N(λ − μ) is fixed.

This universality holds for unitary invariant measures, but it is also true in the
presence of an arbitrary external source matrix A.

Theorem 5.1 For the GUE with an external source, the sine kernel (5.1) is inde-
pendent of the external source A.

Proof of Theorem 5.1 [18] From the integral expression of the kernel KN (λ, μ)

derived in (3.25), the large N limit, N → ∞ but N(λ − μ) fixed, is given by a
saddle-point. The density of states of the external source ρ0(λ) is denoted

ρ0(λ) = 1

N

N∑
i=1

δ(λ − ai). (5.2)

The unperturbed resolvent is

G0(z) = 1

N
tr

1

z − A
=

∫
da

ρ0(a)

z − a
. (5.3)

© The Author(s) 2016
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Since from (3.13),

U(−σ) = − 1

it

∮
du

2iπ

N∏
γ=1

(
1 − it

N
(
u − aγ

)
)
e−itu− t2

2N (5.4)

where σ = it, and in the large N limit, the integrand of (5.4) becomes

N∏
γ=1

(
1 − it

N(u − aγ )

)
= exp

N∑
γ=1

log

(
1 − it

N
(
u − aγ

)
)

∼ exp

[
−

∑
γ

it

N(u − aγ )

]
= exp[−itG0(u)] (5.5)

and t2/2N is negligible. Therefore the average resolvent,

G(z) = 〈 1
N
tr

1

z − M
〉 = −

∫ ∞

0
dτU(−iτ) exp(−τz)

satisfies
∂G

∂z
=

∮
du

2iπ

1

u + G0(u) − z
(5.6)

The contour circles over the N-poles given by the solution of

u + 1

N

∑
γ

1

u − aγ

= z (5.7)

which remain close to the aγ for z large. In addition there is an (N + 1)th solution
û(z), which goes to infinity with z

û(z) = z − 1

z
+ O

(
1

z2

)
(5.8)

Therefore, instead of summing over the first N roots, one takes the contribution of
this external pole û(z), plus the pole at infinity. Then

∂G

∂z
= 1 − 1

1 + dG0
dû(z)

= 1 − dû(z)

dz
(5.9)

since u + G0(u) = z. The integration of this equation is

G(z) = z − û(z) (5.10)

http://dx.doi.org/10.1007/978-981-10-3316-2_3
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This leads to Pastur’s self consistent equation [113].

G(z) = G0(z − G(z)) (5.11)

By the same argument,

∂KN

∂λ1
= 1

π
Im

∮
du

2iπ

1

u + G0(u) − λ1 + iε
e−uy (5.12)

with y = N(λ1 − λ2). The term t2/N is neglected. Then, from (5.6) and (5.9), with
û = û(λ1 − iε), we obtain

∂KN

∂λ1
= 1

π
Im

dû

dλ1
e−yû(λ1−iε) = − 1

πy

∂

∂λ1
Im(e−yû(λ1−iε)) (5.13)

Since
û(λ1 − iε) = λ1 − ReG(λ1) − iπρ(λ1) (5.14)

KN (λ1, λ2) = − 1

πy
e−y(λ1−ReG(λ1))sin[πyρ(λ1)] (5.15)

The phase factor of above expression, which differs from (5.1), is cancelled when
combined with the conjugate KN (λ2, λ1):

KN (λ1, λ2)KN (λ2, λ1) = | sin(πNρ(λ1)(λ1 − λ2))

πN(λ1 − λ2)
|2 (5.16)

�

5.2 Level Spacing Probability Distribution

Let us consider the probability E(θ) that the interval
[− 1

2θ, 1
2θ

]
does not contain any

of the eigenvalues (x1, . . . , xN )

E(θ) =
∫
out

· · ·
∫
out

PN (x1, . . . , xN )dx1 · · · dxN (5.17)

with the probability distribution of the N eigenvalues, x1, . . . ., xN ,

PN (x1, . . . ., xN ) = C
∏
i〈j

(xi − xj)
2e−N

∑N
i=1 V (xi),
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where C is a normalization constant and V (x) is a polynomial of x. The integral
being is performed outside of the interval

[− 1
2θ, 1

2θ
]
[97],

∫
out

dx =
(∫ ∞

−∞
−

∫ θ
2

− θ
2

)
dx. (5.18)

and the n-point correlation function Rn(x1, . . . , xn) in (2.12) is

Rn(x1, . . . , xn) = N !
(N − n)!

∫ ∞

−∞
· · ·

∫ ∞

−∞
dxn+1 · · · dxNPN (x1, . . . , xN ). (5.19)

Then E(θ) may be expanded as

E(θ) = 1 − N
∫ θ

2

− θ
2

ρ(x)dx + N2

2!
∫ θ

2

− θ
2

∫ θ
2

− θ
2

R2(x, y)dxdy + · · · . (5.20)

The natural scale for the level spacing θ is of order 1
N . Then the short distance scaling

limit is defined by θ goes to zero and N to infinity, with fixed Nθ . In this limit

N
∫ θ

2

− θ
2

ρ(x) = Nθρ(0) + O

(
1

N

)
. (5.21)

Therefore one replaces θ by the scaling variable s

s = Nθρ(0) (5.22)

In this scaling limit, E(s) is expressed as

E(s) =
∞∑
n=0

(−1)n

n!
∫ s

2

− s
2

· · ·
∫ s

2

− s
2

dx1 · · · dxndet[K(xi, xj)] (5.23)

where K(x, y) is

K(x, y) = sin[π(x − y)]
π(x − y)

(5.24)

This leads for small s to the expansion

E(s) = 1 − s + π2

36
s4 − π4

675
s6 + O(s7) (5.25)

Let us now introduce the eigenvalues λi(s) of the kernel K̃ : Then

http://dx.doi.org/10.1007/978-981-10-3316-2_2
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∫ s
2

− s
2

K(x, y)ψi(y)dy = λiψi(x) (5.26)

E(s) =
∞∏
i=1

(1 − λi) = det[1 − K] (5.27)

The level spacing probability distribution p(s) is obtained by

p(s) = d2

ds2
E(s). (5.28)

A closed equation for E(s) for the sine kernel was obtained by Jimbo et. al. [83].
Since, as shown above, a generalized kernel governs also the case of an external
source, one can generalizeE(s) and p(s) to the external source problem. Furthermore,
as will be discussed in Sect. 5.3, an Airy kernel governs the edge of the spectrum. For
that problem Tracy and Widom have obtained p(s) using a Fredholm determinant
method [126].Other kernels, such as the onewhich governs a gap closing distribution,
are of interest and the same technique can be used to handle those generalized kernels.

The Fredholm determinant relative to an interval [a, b], is given by the expansion
of the determinant (5.27)

E(a, b) =
∞∑
n=0

(−1)n

n!
∫ b

a
· · ·

∫ b

a

n∏
k=1

dxkdet[K(xi, xj)] (5.29)

where i, j = 1, . . . , n. Extending the analysis of Tracy and Widom [126], a Hamil-
tonian system may be derived, which leads to coupled nonlinear differential equa-
tions. We now follow the presentation of [22].

Considered a kernel, relative to an interval (a, b), of the form

K(x, y) = φ(x)φ′(y) − φ(y)φ′(x)
x − y

. (5.30)

For the usual sine kernel φ(x) = sinx, and φ′′(x) = −φ(x). It is the structure
(5.30) which generalizes to edge problems and source problems. The operator K̂ is
introduced as

[X, K̂] = |φ〉〈φ′| − |φ′〉〈φ| (5.31)

in which X is a position operator. It is convenient to define q(x) and p(x) as

q(x) = 〈x| 1

1 − K̂
|φ〉, p(x) = 〈φ′| 1

1 − K̂
|x〉 (5.32)

and the Fredholm resolvent K̃ by
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K̃ = K̂

1 − K̂
. (5.33)

Note the simple relation,

(x − y)K̃ = 〈x|[X, K̃]|y〉 = 〈x|
[
X,

K̂

1 − K̂

]
|y〉 = 〈x| 1

1 − K̂
[X, K̂] 1

1 − K̂
|y〉
(5.34)

From the definition of the kernel K̂ (5.31), and then (5.34) reads

K̃(x, y) = q(x)p(y) − q(y)p(x)

x − y
(5.35)

Since q(x) and p(x) depend upon the interval [a, b], we denote them now q(b, a; x)
and p(b, a; x) to emphasize their dependence on the interval. Consider now the
derivative of q(b, a; x = b), with respect to b ; it consists of two terms

∂q(b, a; b)
∂b

= 〈b|D 1

1 − K̂
|φ〉 + 〈b| 1

1 − K̂

∂K̂

∂b

1

1 − K̂
|φ〉 (5.36)

where D is the derivative operator. 〈x|D|f 〉 = f ′(x). From the definition of K̂ ,

∂K̂(x, y)

∂b
= K(x, y)δ(b − y) = 〈x|K|b〉〈b|y〉 (5.37)

Then the second term of (5.36) is K̃(b, b)q(b). The first term is

〈b|D 1

1 − K̂
|φ〉 = p(b) + 〈b|

[
D,

1

1 − K̂

]
|φ〉

= p(b) + 〈b| 1

1 − K̂
[D, K̂] 1

1 − K̂
|φ〉 (5.38)

The commutator is

〈x|[D, K̂]|y〉 =
(

∂

∂x
+ ∂

∂y

)
K̂(x, y) = K(x, y)[δ(y − a) − δ(y − b)] (5.39)

and it reads to
[D, K̂] = K|a〉〈a| − K|b〉〈b| (5.40)

Thus (5.36) becomes

∂q(b, a; b)
∂b

= p(b, a; b) + K̃(b, a)q(b, a; a) (5.41)
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Similarly, for p(b),

∂p(b, a; b)
∂b

= −q(b, a; b) + K̃(b, a)p(b, a; a) (5.42)

Let us now take a symmetric interval (−b, b)with a = −b and denote q(b,−b; b) =
Q(b). Then

dQ(b)

db
= ∂q(b, a; b)

∂b
|a=−b − ∂q(b, a; b)

∂a
|a=−b. (5.43)

The last term involves

∂q(b, a; b)
∂a

= 〈b| 1

1 − K̂

(
∂K̂

∂a

)
1

1 − K̂
|φ〉 = −K̃(b, a)q(b, a; a) (5.44)

A nonlinear differential equation follows

Q̇(b) = P(b) + 2K̃(b,−b)Q(−b) = P(b)

(
1 − 2Q2

b

)
(5.45)

withQ(−b) = −Q(b), P(−b) = P(b), and K̃(b,−b) = Q(b)P(b)
b . Similarly, for P(b),

Ṗ(b) = Q

(
2P2

b
− 1

)
. (5.46)

The logarithmic derivative of the level spacing probability E(s) is given by

K̃(b, b) = P2 + Q2 − 2P2Q2

b
(5.47)

If we replace b by b = 1
2 s, the coupled equations are

dQ

ds
= P

2

(
1 − 4

s
Q2

)
,

dP

ds
= Q

2

(
4P2

s
− 1

)
. (5.48)

For small s, the solution of this system is

Q = s

2
− s3

48
+ O(s5), P = 1 + s + 7

8
s2 + O(s3), (5.49)

and
H(s) = K̃(b, b) = 1 + s + s2 + O(s3), (5.50)

E(s) = exp

[
−

∫ s

0
H(s′)ds′

]
= 1 − s + O(s4). (5.51)
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5.3 Universality Classes at an Edge and at a Gap Closure

1. Edge distribution

Near the edge of the spectrum, in scale at which the eigenvalues are within a distance
N−1/3 of the edge, an Airy kernel governs the spacing distribution. It is defined as

K(x, y) = Ai(x)A′
i(y) − A′

i(x)Ai(y)

x − y
(5.52)

where Ai(x) is an Airy function which replaces the φ(x) of (5.30). In the Airy case
it satisfies φ′′(x) = xφ(x). The probability E(s) of the previous section is now
considered for the interval [s,∞].

As in the sine kernel case, the Fredholm resolvent K̃(a, b) is given by

K̃(a, b) = q(a)p(b) − p(a)q(b)

a − b
(5.53)

From the differential equation φ′′(x) = xφ(x), one obtains

(
∂

∂x
+ ∂

∂y

)
K(x, y) = −φ(x)φ(y) (5.54)

[D,K] = −|φ〉〈φ|Θ + K|a〉〈a| − K|b〉〈b| (5.55)

where Θ is defined as
Θ(y) = θ(y − a)θ(b − y) (5.56)

with the Heaviside function θ(x). As in the sine case,

∂q(b)

∂b
= p(b) − q(b)u + K̃(b, a)q(a)

∂p

∂b
= bq(b) + up(b) − 2q(b)v + K̃(b, a)p(a) (5.57)

where u = 〈φ|q〉, v = 〈φ|p〉. The Fredholm resolvent K̃(b, b), which acts as a
Hamiltonian H(b), is now

H(b) = K̃(b, b) = p2(b) − bq2(b) − 2up(b)q(b) + 2q2(b)v

+ 1

b − a
[q(b)p(a) − p(b)q(a)](q(a)p(b) − p(a)q(b)) (5.58)

and indeed it has the Hamiltonian property

∂H(b)

∂p(b)
= 2

∂q(b)

∂b
,

∂H(b)

∂q(b)
= −2

∂p(b)

∂b
. (5.59)
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The derivative of this Hamiltonian is

dH(b)

db
= −q2(b) + [q(b)p(a) − p(b)q(a)]2

(b − a)2
(5.60)

If we now set a = − s
2 ,

∂q(a)

∂a
= p(a) − q(a)u − K̃(a, b)q(b),

∂p(a)

∂a
= aq(a) + up(a) − 2q(a)v − K̃(a, b)p(b) (5.61)

The Hamiltonian H(a) becomes

H(a) = p2(a) − aq2(a) − 2up(a)q(a) + 2q2(a)v + K̃(a, b)[q(a)p(b) − p(a)q(b)]
(5.62)

Taking now a large b limit, K̃(a, b) can be neglected. From the relation

u2 − 2v = q2 (5.63)

we obtain
d2q(a)

da2
= aq(a) + 2q3(a) (5.64)

which is a Painlevé equation of type II.
The solution for large s behaves as q(a) ∼ ± 1

2

√
s and H(a) ∼ 1

16 s
2. Therefore

the large s spacing distribution behaves as

E(s) ∼ exp

[
− 1

96
s3

]
(5.65)

2. Gap closure

We consider now a matrix source A which possesses only two eigenvalues aγ = a
and aγ = −a, both of them N/2 times degenerate. In the large N limit, the resolvent
(Green function) satisfies [16]

G(z) = = 1

N

∑
γ

1

z − aγ − G(z)

= 1

2

(
1

z − a − G(z)
+ 1

z + a − G(z)

)
(5.66)

This reads
G3 − 2zG2 + z2G = z + (a2 − 1)G (5.67)
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Therefore, for a2 = 1, G ∼ z
1
3 for z small, and the density of state ρ(x) behaves as

ρ(x) ∼ x
1
3 near the origin. For |a| > 1, a gap appears around x = 0. Therefore, the

case of a source aγ = ±1 corresponds to a new universality case [21]. The kernel
is now described by a Pearcey integral [9, 21, 22, 110, 115, 127], i.e. a higher Airy
function, The expression of the kernel K(λ1, λ2) with an external source aγ = ±a,
is given in (3.25). The gap closure scaling is governed by the large N- limit

λ1 = N− 3
4 x, λ2 = N− 3

4 y

K(x, y) = N
1
4KN (N

3
4 λ1,N

3
4 λ2) (5.68)

The density of state ρ(λ) is given by K(λ, λ), and the derivative of ρ(λ) is

1

N

∂

∂λ
ρ(λ) = −φ(λ)ψ(λ) (5.69)

with

φ(λ) =
∫ +∞

−∞
dt

2π
e− N

2 t
2+ N

2 ln(a
2+t2)−Nitλ (5.70)

ψ(λ) =
∮

du

2iπ
e− N

2 u
2− N

2 ln(a
2−u2)+Nuλ (5.71)

In the large N limit, with a2 = 1, it reduces to

φ(λ) =
∫ +∞

−∞
dt

2π
e− N

4 t
4−Nitλ (5.72)

ψ(λ) =
∫
c

du

2iπ
e

N
4 u

4+Nuλ (5.73)

These two functions satisfy

φ′′′(x) = xφ(x), ψ ′′′(x) = −xψ(x). (5.74)

This new kernel K(x, y) has a form slightly different from (5.30) [21].

Theorem 5.3 When the external source aγ = ±1, the gap closure kernel (3.25) is
given by

K(x, y) = φ′(x)ψ ′(y) − φ′′(x)ψ(y) − φ(x)ψ ′′(y)
x − y

. (5.75)

Proof of Theorem 5.3 The kernel is given as

http://dx.doi.org/10.1007/978-981-10-3316-2_3
http://dx.doi.org/10.1007/978-981-10-3316-2_3
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KN (λ, μ) = (−1)N−1
∫

dt

2π

∮
du

2iπ

N∏
γ=1

(
aγ − it

u − aγ

)
1

u − it

× e− N
2 (u2+t2)−Nitλ+Nuμ (5.76)

The derivative of the kernel,

∂

∂z
K(x + z, y + z) = −φ(x + z)ψ(y + z) (5.77)

From this equation, one finds

(x − y)
∂

∂z
K(x + z, y + z) = −[(x + z) − (y + z)]φ(x + z)ψ(y + z)

= −
(

φ′′′(x + z)ψ(y + z) + φ(x + z)ψ ′′′(y + z)

)

= − ∂

∂z

(
φ′′(x + z)ψ(y + z) + φ(x + z)ψ ′′(y + z) − φ′(x + z)ψ ′(y + z)

)

(5.78)

The integration over z gives

(x − y)K(x + z, y + z)

= −
(

φ′′(x + z)ψ(y + z) + φ(x + z)ψ ′′(y + z) − φ′(x + z)ψ ′(y + z)

)

+C(x, y). (5.79)

Since the kernel satisfies
(

∂

∂x
+ ∂

∂y

)
K(x, y) = −φ(x)ψ(y) (5.80)

using (5.74) and setting z = 0 one finds

(
∂

∂x
+ ∂

∂y

)
C(x, y) = 0 (5.81)

This leads to
C(x, y) = C(x − y) (5.82)

When y = 0 and z = 0, from (5.79) one obtains

xK(x, 0) = −(φ′′(x)ψ(x) + φ(x)ψ ′′(x) − φ′(x)ψ ′(x)) + C(x) (5.83)
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For x → 0, one finds limx→0C(x) = 0, sinceφ′(0) = ψ(0) = ψ ′′(0) = 0. Therefore,
the kernel is expressed as stated in Theorem 5.3.2. �

When the external source a is close to ±1, the scaling region of this new univer-
sality class, described by a parameter α [22] defined by

a2 = 1 + 2√
N

α. (5.84)

Then the previous two functions φ and ψ are modified as

φ(λ) =
∫ ∞

−∞
dt

2π
e− 1

4 t
4−αt2+itλ (5.85)

which satisfies
φ′′′ − 2αφ′ − λφ = 0 (5.86)

The ψ(λ) is also modified as

ψ ′′′ − 2αψ ′ + λψ = 0 (5.87)

Following the previous analysis for a = ±1, the kernel is then expressed as

Proposition 5.3.1 The kernel K(x, y) in the scaling region for a2 = 1 + 2√
N
α

becomes

K(x, y) = φ′(x)ψ ′(y) − φ′′(x)ψ(y) − φ(x)ψ ′′(y) + 2αφ(x)ψ(y)

x − y
(5.88)

Proof of Proposition 5.3.1 Following the previous analysis for Theorem5.3, we
have obtained the kernel governing the scaling region a2 = 1 + 2√

N
α [22]. �

The large λ behavior of φ(x), for fixed α, is obtained by a saddle point method.
Changing t to λ1/3t, one finds that the term αt2 becomes negligible compared with
the other terms of order λ4/3. Then one obtains the large x behavior of ρ(x) as x1/3

as before.
The level spacing probability p(s) for this gap closure case is also studied by the

Fredholm theory as in the Airy kernel case. The level spacing function E(s), the
probability that there is no eigenvalue inside the interval

(− s
2 ,

s
2

)
centered around

the singular point s = 0, is given by the Fredholm determinant

E(a, b) = det[1 − K̂] =
∞∑
n=0

(−1)n

n!
∫ b

a
· · ·

∫ b

a

n∏
l=1

dxl

× det[Ki,.xj ]i,j=1,...,n (5.89)
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where the interval (a, b) is
(− s

2 ,
s
2

)
. The kernel K(x, y) in (5.75) is not symmetric,

since two functions φ(x) and ψ(x) are different. Therefore, the kernel K̂(x, y) is
defined by the restriction of K to the interval:

K̂(x, y) = K(x, y)θ(y − a)θ(b − y) = K(x, y)Θ(y), (5.90)

where θ(x) is the Heaviside function, and for convenience the notation Θ stands for

Θ(y) = θ(y − a)θ(b − y). (5.91)

From
logE(a, b) = trlog(1 − K̂), (5.92)

one obtain
∂logE(a, b)

∂b
= −tr

(
1

1 − K̂

∂K̂

∂b

)
. (5.93)

From (5.90), one finds
∂K̂(x, y)

∂b
= K(x, b)δ(y − b). (5.94)

The Fredholm resolvent K̃(b, b) is defined as

K̃ = K̂

1 − K̂
. (5.95)

From (5.93) and (5.94), one obtains

∂logE(a, b)

∂b
= −K̃(b, b), (5.96)

and similarly
∂logE(a, b)

∂a
= K̃(a, a), (5.97)

When the interval (a, b) is symmetric, namely it is
(− s

2 ,
s
2

)
, one obtains

dlogE(s)

ds
= 1

2

(
∂

∂b
− ∂

∂a

)
logE(s)|b=−a= s

2
= −K̃

(
s

2
,
s

2

)
. (5.98)

This leads to the following proposition,

Proposition 5.3.2

E(s) = exp

[
−

∫ s

0
K̃

(
s′

2
,
s′

2

)
ds′

]
. (5.99)
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To solve K̃, six functions are introduced. These are obtained by the action of (1−K̂)−1

on the two functions φ and ψ , and on the their first two derivatives.

q0(x) = (1 − K̂)−1φ(x) = φ(x) +
∫ b

a
K(x, y)φ(y)dy

+
∫ b

a

∫ b

a
K(x, y)K(y, z)φ(z)dydz + · · · . (5.100)

It is convenient to use Dirac’s notations

q0(b, a; x) = 〈x| 1

1 − K̂
|φ〉

qn(b, a; x) = 〈x| 1

1 − K̂
|φ(n)〉, (n = 1, 2)

pn(b, a; x) = (−1)n−1〈ψ(2−n)| 1

1 − L̂
|x〉, (n = 0, 1, 2). (5.101)

where
L̂(y, x) = Θ(y)K(y, x). (5.102)

When x = b and a = −b, these six functions qn and pn become functions of the
single variable b. They are denoted as

Qn(b) = qn(b,−b; b), Pn(b) = pn(b,−b; b). (5.103)

These six functions satisfy the following differential equation of b, (a dot means
taking the derivative with respect to b).

Q̇0 = Q1 + 2

b
Q1P1Q0,

Q̇1 = Q2 − 2

b
Q2

1P1 − Q0u,

Q̇2 = bQ0 + 2

b
Q1P1Q2 − Q1v,

Ṗ0 = −bP2 − 2

b
Q1P1P0 + P1u,

Ṗ1 = −P0 + 2

b
Q1P

2
1 + P2v,

Ṗ2 = −Pqn(b, a)1 − 2

b
Q1P1P2. (5.104)

where the two auxiliary functions u and v are defined as

u = 〈ψ |q1〉, v = 〈ψ ′|q0〉 (5.105)
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Using operator notation,

[X,K] = |φ′〉〈ψ ′| − |φ′′〉〈ψ | − |φ〉〈ψ ′′| (5.106)

and

(x − y)K̃ = 〈x| 1

1 − K̂
[X, K̂] 1

1 − K̂
|y〉

= q1(x)p1(x) − q2(x)p0(y) − q0(x)p2(y) (5.107)

The derivatives of qn(b, a; b) for fixed a is

∂qn(b, a; b)
∂b

= 〈b|D 1

1 − K̂
|φ(n)〉 + 〈b| 1

1 − K̂

(
∂K̂

∂b

)
1

1 − K̂
|φ(n)〉

= qn+1(b, a; b) + 〈b| 1

1 − K̂
[D, K̂] 1

1 − K̂
|φ(n)〉

+ 〈b| K̂

1 − K̂
|b〉〈b| 1

1 − K̂
|φ(n)〉 (5.108)

where D is the derivative operator: 〈x|D|f 〉 = f ′(x).
Then [D, K̂] reads

〈x|[D, K̂]|y〉 =
(

∂

∂x
+ ∂

∂y

)
K(x, y) + 〈x|K|a〉〈a|y〉 − 〈x|K|b〉〈b|y〉. (5.109)

The first term is −φ(x)ψ(y). Then, since

[D, K̂] = −|φ〉〈ψ |Θ + K|a〉〈a| − K|b〉〈b| (5.110)

one finds
∂qn(b, a; b)

∂b
= qn+1 + K̃(b, a)qn(a) − q0(b)〈ψ |qn〉 (5.111)

and

q3 = 〈x| 1

1 − K̂
X|φ〉

= 〈x|X 1

1 − K̂
|φ〉 + 〈x|

[
1

1 − K̂
,X

]
|φ〉

= xq0(x) + 〈x| 1

1 − K̂
[K̂,X] 1

1 − K̂
|φ〉

= xq0 − v2q1 + u1q2 + v3q0 (5.112)

where u1 = 〈ψ |q0〉, v2 = 〈ψ ′|q0〉 and v3 = 〈ψ ′′|q0〉.
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For pn(x), one obtains similarly the following equations.

pn(x) = (−1)n−1〈ψ(2−n)| 1

1 − L̂
|x〉, (5.113)

with L̂(y, x) = Θ(y)K(y, x). The derivative operator D acts as

[D, L̂] = −Θ|φ〉〈ψ | + |a〉〈a|K − |b〉〈b|K (5.114)

in which Θ is a local operator defined by

〈y|Θ|y′〉 = δ(y − y′)θ(y − a)θ(b − y) (5.115)

Therefore, one obtains

∂pn(b)

∂b
= −pn−1(b) − p0(b)〈ψ(2−n)|q0〉 + pn(a)K̃(a, b) (5.116)

with p−1, which is

p−1(x) = −〈ψ ′′′| 1

1 − L̂
|x〉

= xp2(x) − 〈ψ | 1

1 − L̂
[x, L̂] 1

1 − L̂
|x〉

= −xp0(x) − p1(x)〈ψ |q1〉 − p2(x)〈ψ |q2〉 − p0(x)〈ψ |q0〉,
(5.117)

where

〈y|[X, L̂]|x〉 = (y − x)Θ(y)K(y, x)

= Θ(y)

(
|φ′〉〈ψ ′| − |φ′′〉〈ψ | − |φ〉〈ψ ′′|

)
.

(5.118)

Noting that φ(x) is an even function of x and ψ(x) is an odd function, one finds
u1 = v3 = 0. Also 〈ψ |q2〉 = 〈ψ |q0〉 = 〈ψ ′′|q0〉 = 0. Non vanishing quantities are
u2 = 〈ψ |q1〉 and v2 = 〈ψ ′|q0〉, which are denoted simply as u and v.

The derivative of this u with respect to b becomes

u̇ = −2P2(b)Q1(b) (5.119)

Since
∂K̂

∂b
= K(x, y)δ(y − b) = K|b〉〈b|, (5.120)
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one obtains
∂u

∂b
= 〈ψ |Θ 1

1 − K̂

∂K̂

∂b

1

1 − K̂
|φ′〉ψ(b)q1(b). (5.121)

This leads to
∂u

∂b
= −p2(b)q1(b). (5.122)

The derivative with respect to a is similar.

∂u

∂a
= p2(a)q1(a). (5.123)

Then, by putting a = −b, one obtains

u̇ = ∂u

∂b
|a=−b − ∂u

∂a
|a=−b = −2P2(b)Q1(b). (5.124)

which is (5.119). For v, one obtains similarly,

v̇ = 2P1Q0. (5.125)

From the derivatives of u and v, one finds

u + v = −2P2Q0 (5.126)

and

Q̇0 = Q1

(
1 + v̇

b

)
, Ṗ2 = −P1

(
1 − u̇

b

)
(5.127)

From (5.126),(5.119),(5.125) and (5.104) one verifies the closed coupled equations
for u and v.

− 2P2Q2 = ü − u̇v̇

u + v
+ 2

b

v̇u̇2

u + v
+ u(u + v),

−2Q0P0 = v̈ − u̇v̇

u + v
− 2

b

u̇v̇2

u + v
+ v(u + v) (5.128)

Taking the derivatives of these two equations, one obtains coupled equations for u
and v

d3u

db3
+

(
2u̇

b
− 1

)[
b(u + v) + 1

u + v
(v̈u̇ + 2v̇ü)

− u̇v̇

(u + v)2
(2v̇ + u̇)

]
− 2v̇(u̇)2

b2(u + v)
= 0
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d3v

db3
+

(
2v̇

b
+ 1

)[
b(u + v) − 1

u + v
(üv̇ + 2u̇v̈)

+ u̇v̇

(u + v)2
(2u̇ + v̇)

]
+ 2u̇(v̇)2

b2(u + v)
= 0. (5.129)

In the large b limit, the solutions of these equations are

u = b2

4
− 1

2

(
1

4

) 1
3

b
2
3 + · · · ,

v = −b2

4
− 1

2

(
1

4

) 1
3

b
2
3 + · · · , (5.130)

The kernel K̃(b, b) is expressed as

K̃(b, b) = bP2Q0 + Q2P1 + Q1P0 − uP1Q0 − vP2Q1

− 1

2b
(P2

1Q
2
1 − Q2P2 − Q0P0)

2. (5.131)

This kernel K̃(b, b) becomes again a Hamiltonian

H(b) = K̃(b, b)

Q̇n = ∂H

∂Pn
, Ṗn = − ∂H

∂Qn
(5.132)

which indeed provide the differential equations (5.104). Thus, one finds

dH(b)

db
= Q0P2 + 2

b2
P2
1Q

2
1

= −u + v

2
+ (u̇v̇)2

2b2(u + v)2
. (5.133)

For large b, from (5.130) one obtains

dH(b)

db
= 5 × 2− 11

3 b
2
3 (5.134)

which leads H(b) ∼ 3 × 2− 11
3 b

5
3 = 3 × 2− 16

3 s
5
3 . Thus E(s) behaves in the large s

limit as

E(s) = Dexp

[
−

∫ s

0
H(s′)ds′

]
∼ exp[−9 × 2− 25

3 s
8
3 ], (5.135)
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where D is a constant. The exponent 8
3 agrees with the exponent β of the density of

state ρ(x), namely 8
3 = 2β +2, in which β = 1

3 is the exponent governing the density
of states near the gap closure point.

In this closure gap singularity, the n-point function U(σ1, . . . , σn) becomes the
generating function of the intersection numbers of p-spin curves (p=3), which will
be discussed in Sect.7.2.

3. Higher edge singularities

Higher edge singularities may be obtained by an appropriate tuning of the external
source eigenvalues aγ . The next singularity is obtained with a source matrix possess-
ing three distinct eigenvalues, with aγ = a1, a2, a3, each one N/3 times degenerate.
The new singularity corresponds to a choice of three numbers which satisfy

1

a21
+ 1

a22
+ 1

a23
= 3,

1

an1
+ 1

an2
+ 1

an3
= 0, (n = 3, 4) (5.136)

The aα (α = 1, 2, 3) are the solution of the cubic equation

1 + βx + γ x2 + δx3 = 0 (5.137)

with

β2 = 9 ± 3
√
6, γ = 1

2
(β2 − 3), δ = 3

2β
(β2 − 3) (5.138)

The solutions for the ai are [29]

(a1, a2, a3) = (±0.52523,±0.41127 ± 0.46403i,±0.41127 ∓ 0.46403i),

(a1, a2, a3) = (±1.0076,∓0.71801 ± 0.33908i,∓0.71801 ∓ 0.33908i)

(5.139)

Both solutions give a density of state, which behaves in the vicinity of the edge as
ρ(λ) ∼ λ

1
4 Indeed in the large N limit, the resolvent satisfies

G(z) = 1

3

(
1

z − a1 − G(z)
+ 1

z − a2 − G(z)
+ 1

z − a3 − G(z)

)
(5.140)

This corresponds to a singularity governed by a higher Airy function, which satisfies

φ′′′′(x) = xφ(x) (5.141)

The singularity corresponds to p = 4 of p-spin curves, and will be discussed later in
Sect. 7.2.

http://dx.doi.org/10.1007/978-981-10-3316-2_7
http://dx.doi.org/10.1007/978-981-10-3316-2_7
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The next singularity p = 5 is obtained with four distinct ai , N
4 times degenerate

and

G(z) = 1

4

(
1

z − a1 − G(z)
+ 1

z − a2 − G(z)
+ 1

z − a3 − G(z)
+ 1

z − a4 − G(z)

)

(5.142)
provided the ai satisfy

1

a21
+ 1

a22
+ 1

a23
+ 1

a24
= 4,

1

an1
+ 1

an2
+ 1

an3
+ 1

an4
= 0, (n = 3, 4, 5). (5.143)

The solutions (up to 4 digits) belong to three different classes [29]

(a1, a2, a3, a4) = (ρ + iξ, ρ − iξ,−ρ + iξ,−ρ − iξ)

(ρ = ±0.7769, ξ = ±0.3218)

(a1, a2, a3, a4) = ±(0.6249,−1.014, 0.5336 + i0.4735, 0.5336 − i0.4735)

(a1, a2, a3, a4) = ±(0.2806 + i0.5117, 0.2806 − i0.5117, 0.4337 + i0.1589,

0.4337 − i0.1589) (5.144)

All these cases give a closing gap singularity for the density of state ρ(λ) ∼ λ
1
5 .

This gap closure singularity is related to the p = 5 spin curve of Chap.7. The kernel
K(x, y) has been studied in [21]. It is given by

K(λ, μ) = −
∫ ∞

−∞
dt

2π

∮
du

2iπ

1

u − it
e− 1

3 (t6+u6)−itλ+uμ. (5.145)

The scaling limit is obtained by scaling t and u as N− 1
6 , and λ and μ as N− 5

6 . The
scaled kernel K(x, y), which is a generalization of a gap closure kernel (5.75), is

K(x, y) = 2

x − y
[φ′′′′(x)ψ(y) − φ′′′(x)ψ ′(y) + φ′′(x)ψ ′′(y)

− φ′(x)ψ ′′′(y) + φ(x)ψ ′′′′(y)], (5.146)

with

φ(x) =
∫ ∞

−∞
dt

2π
e− 1

3 t
6+itx

ψ(x) =
∫
c

du

2iπ
e− 1

3 u
6+ux (5.147)

These two functions satisfy

http://dx.doi.org/10.1007/978-981-10-3316-2_7
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d5

dx5
φ(x) = −1

2
xφ(x),

d5

dx5
ψ(x) = 1

2
xψ(x) (5.148)

and one can repeat the same analysis leading to a Hamiltonian systemwhich governs
the level spacing distribution.

5.4 Distribution of Zeros of Riemann’s Zeta Function

It is well-known that the distribution of the zeros of Riemann’s zeta function on
the critical line are in total agreement with the spacings of eigenvalues of the GUE
ensemble of random matrices [100, 105]. It is interesting to compare the moments
of this distribution to the average of characteristic polynomials.

Let us begin with the characteristic polynomials and extend the probability mea-
sure to non-Gaussian distributions governed by polynomials V (x)

P(X) = e− N
2 trV (X) (5.149)

For this probabilitymeasure, the average of characteristic polynomials of proposition
4.1 for λ1 = · · · = λ2k = λ satisfy the following relation in the large N-limit.

Theorem 5.4

e−NkV (λ)F2K(λ, . . . , λ) = (2πNρ(λ))K
2
e−NK

K−1∏
l=0

l!
(K + l)! (5.150)

where the factor
∏K−1

l=0
l!

(K+l)! is a universal number, i.e., it is independent of the
potential V .

Proof of Theorem 5.4 [24] The proof starts from the expression of 〈∏k
l=1 det(λl −

X)〉 for distinct λl, in the Dyson limit N(λi − λj) fixed, which is universal, i.e.
independent of the polynomial V (X). One then sets all the λl = λ, i.e. zero Dyson
limit.

Let us consider first the Gaussian case

P(X) = 1

Z
exp

(
−N

2
trX2

)
(5.151)

for Hermitian matrices of size M × M (it is interesting to disentangle M and N).
We return to the expression of the correlation functions FK(λ1, . . . , λK)of charac-
teristic polynomials in terms of orthogonal polynomials (4.24). For a Gaussian, the
polynomials pn(x) are Hermite polynomials,

http://dx.doi.org/10.1007/978-981-10-3316-2_4
http://dx.doi.org/10.1007/978-981-10-3316-2_4
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Hn(x) = (−1)n

Nn
e

1
2Nx

2
(
d

dx
)ne− N

2 x
2

= (−1)nn!
Nn

∮
dz

2iπ

e−N( 1
2 z

2+xz)

zn+1
(5.152)

From (4.24) and above integral representation of Hermite polynomial,

F2K(λ1, . . . , λ2K)

= (−1)K

Δ(λ1, . . . , λ2K)

1

NK(2M+2K−1)

2K−1∏
l=0

(M + l)!
∮ 2K∏

l=1

dzl
2iπzM+l

l

exp

[
−N

2

2K∑
l=1

z2l

]

× det(e−Nλazb) (5.153)

This formula is exact for finite N andM. We can expand the determinant in (5.153),
and keep only one of (2K)! terms, antisymmetrizing instead of integration of zl. We
have

F2K (λ1, . . . , λ2K ) = (−1)K

Δ(λ1, . . . , λ2K )

1

NK(2M+2K−1)

2K−1∏
l=0

(M + l)!

×
∮ 2K∏

l=1

dzl

2iπzM+2K
l

exp

⎡
⎣−N

2K∑
l=1

(
z2l
2

+ λlzl

)⎤
⎦Δ(z1, . . . , Z2K ). (5.154)

In the large N limit (and M/N = O(1)), the integrand has two saddle points for
every zl, namely the two roots z±, of z2 + λlz + 1 = 0, for every zl independently
(i.e. there are 22K saddle-points). Let us denote λ and xa, the parameters

λ = 1

2K

2K∑
l=1

λl (5.155)

and
xa = 2πNρ(λ)(λa − λ), (5.156)

the scaling variables, with
∑2K

a=1 xa = 0, The dominant saddle-points in the large
N-limit correspond to K roots equal to z+ and K roots to z− , i.e. up to a permutation

zl(λl) = z+(λl), l = 1, . . . ,K,

zl(λl) = z−(λl), l = K + 1, . . . , 2K (5.157)

Noting that in the scaling limit in which all the z+(λl) approach z+(λ) and the z−(λl)

approach z−(λ)

http://dx.doi.org/10.1007/978-981-10-3316-2_4


5.4 Distribution of Zeros of Riemann’s Zeta Function 59

Δ(z1, . . . , z2K)

Δ(λ1, . . . , λ2K)
=

(
dz+
dλ

dz−
dλ

) 1
2K(K−1)

(2icosφ)K
2

∏
1≤l≤K,K+1≤m≤2K

1

λl − λm

= (Ni)K
2
(2πρ(λ))K+K2

∏
1≤l≤K,K+1≤m≤2K

1

xl − xm
(5.158)

in which we have used λ = 2sinφ, so that Wigner’s semi-circle corresponds to the
density ρ(λ) = 1

π
cosφ. We now compute the contour integral

exp

[
−N

2

2K∑
l=1

V (λl)

]
F2K(λ1, . . . , λ2K) = (2πNρ(λ))K

2 1

K !e
−NK

×
∮ K∏

α=1

duα

2π
exp

[
−i

K∑
α

uα

]
K∏

α=1

2K∏
l=1

1

uα − xl
Δ(u1, . . . , uK) (5.159)

by summing over the 22K saddle-points and one finds in the limit λi = λ, in which
x → 0,

exp [−NKV (λ)]F2K(λ, . . . , λ)

= (2πNρ(λ))K
2 1

K !e
−NK

∮ K∏
α=1

duα

2π
exp

[
−i

K∑
α

uα

]
K∏

α=1

1

u2Kα
Δ(u1, . . . , uK)

(5.160)

The last factor in the contour integration reads

∮ K∏
α=1

duα

2π
exp

[
−i

K∑
α−1

uα

]
K∏

α=1

1

u2Kα
Δ(u1, . . . , uK) = K !

K−1∏
l=0

l!
(K + l)! (5.161)

ThenonGaussian case results in simply amodificationofρ(λ).Wehave thus obtained
the Theorem 5.4.

�
Let us now compare with the moments of the zeta function ζ(s) computed in [40],

1

T

∫ T

0
|ζ(

1

2
+ it)|2kdt = 1

T

∫ T

0
dt|

∞∑
n=1

dK(n)

n
1
2 +it

|2 � γkak(logT)k
2

(5.162)

where dK(n) is the Dirichlet coefficient, defined by dK(n) = ∑
n1···nK=n 1, and γk and

ak are
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γk =
k−1∏
l=0

l!
(k + l)! . (5.163)

ak =
∏
p

[
(1 − p−1)k

2
∞∑
j=0

d2k (p
j)

pj

]
(5.164)

Note that the factor log T is indeed the asymptotic density of primes as in (5.150)
and the factor γk is also common to both. The universal coefficient comes from the
combinatorics. Similarly we have considered in [24] the integral of a product of ζ

functions on the critical line
∏

ζ(1/2 + it + iλn), integrated from 1 to T over t.
Again this is analogous to the contour integration of characteristic polynomials and
the combinatoric coefficient (5.150) is also present.

The Riemann zeta function is one of the generalized L-functions, which show the
same universal behavior. The ubiquitous occurrence of the coefficient γk in (5.150)
and in (5.162) is attracting interest.



Chapter 6
Intersection Numbers of Curves

6.1 Kontsevich Airy Matrix Model

Witten [134] conjectured that a generating function of the intersection numbers of
the moduli space of curves on a Riemann surface with marked points, is a solution
of the KdV hierarchy. Kontsevich [89] has proved this conjecture with the use of an
Airy matrix model. In addition it has been realized that matrix models of this type
are examples of an exact closed/open strings duality [63].

The definition of intersection numbers on the moduli space of algebraic curves, is
mathematically quite involved and we refer the reader for proper definition to ([89,
134]). It dealswith themoduli spaceMg of algebraic curves (orRiemann surfaces) on
C , of genus g with s marked points. The dimension n of the moduli space for curves
of genus g and s marked points is given by 3g−3+ s = n due to Riemann [118]. To
each marked point is associated an integer ni so that 3g − 3+ s = n1 + · · · + ns for
s marked points. The meaning of ni within a matrix model will be specified below.

The intersection theory of Kontsevich relies upon an expansion of a matrix inte-
gral, which produces so called ribbon graphs. The ribbon graphs generated by the
double lines Feynman graph expansion of a matrix model make a triangulation of the
moduli space. The computation of intersection numbers is reduced to counting the
automorphism of Feynman graphs. Algebraic geometrical definition of the intersec-
tion numbers are given in the next chapter. We will here show the several intersection
numbers, based upon Airy matrix model, through Virasoro equations.

Theorem 6.1 (Kontsevich)
The Airy matrix model is a generating function for the intersection numbers of

the moduli space of curves:

F(t0, t1, . . . , ) = log〈exp
(
i

6
trM3

)
〉 = 〈exp

(∑
tiτi

)
〉 (6.1)

where the matrix average of a function 〈 f (M)〉 is defined with a weight
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〈 f (M)〉 = 1

Z

∫
dM f (M)exp

[
−1

2
trΛM2

]
(6.2)

where Z is a normalization constant. The expansion parameters tk are defined as

tk = − 1

2k + 1
tr

1

�2k+1
(6.3)

and the generating function F(t0, t1, . . . , ) expanded with coefficient τi

F(t0, t1, . . . , ) = 〈exp
[ ∞∑

i=0

tiτi

]
〉 =

∑
ki

〈τ k0
0 τ

k1
1 · · · 〉

∞∏
i=0

t kii
ki ! (6.4)

provide the intersection numbers as coefficients. Note that the size N of the matrix
M is absorbed in the trace over powers of the Λ. Therefore, Kontsevich’s formula
for the intersection numbers is valid for finite N. It is necessary for N to be large
enough to avoid algebraic relations between traces of increasing power.

6.2 Evaluation of Intersection Numbers of Curves

The intersection numbers may be computed by several methods. The following three
methods have been used successfully:

(i) edge singularity from Gaussian means (2.24), [28, 106]
(ii) replica method based on the replica formula (2.61), [30]
(iii) duality method for the n-point function U (σ1, . . . , σn) in presence of a simple

external source multiple of the identity A = 1, [29, 32].

(i) In (2.24) we have given the Gaussian mean 1
N 〈trM2k〉, in the limit k → ∞ and

N → ∞, in a scale in which k3

N 2 is finite. The genus one coefficient of k3

N 2 is
simply 1

12 , which the g = 1 intersection number

〈τ3g−2〉g = 1

(12)g2gg! . (6.5)

The scaling limit corresponds to the Tracy–Widom edge of the density of states.
Therefore, this edge scaling domain is obtained by coupling to a constant exter-
nal matrix A = 1, which simply brings the edge of Wigner’s semi-circle to the
origin.

(ii) As shown in Sect. 2.4, the intersection numbers are described by ribbon graphs,
which circulate between the marked point as one single stroke line. For one
marked point, the Gaussian means in the N → 0 replica limit, corresponds to

http://dx.doi.org/10.1007/978-981-10-3316-2_2
http://dx.doi.org/10.1007/978-981-10-3316-2_2
http://dx.doi.org/10.1007/978-981-10-3316-2_2
http://dx.doi.org/10.1007/978-981-10-3316-2_2
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one stroke line Feynman diagrams, with trivalent vertices.The computation has
been done by this method in [30], reproducing (6.5).

(iii) From the duality relation (4.2), with a unit matrix source A = 1 (ai = 1), one
obtains a dual model for matrices B. In the large N limit, it reduces to Kontse-
vich’s Airy matrix model. The n-point functionU (σ1, . . . , σn), with this simple
choice of external source A, becomes a generating function of the intersection
numbers of curves. For the one point function this yields

U (σ ) = 1

σ

∫
du

2π i
e

1
3

[
(u+ 1

2 σ)
3−(u− 1

2 σ)
3
]

(6.6)

which yields immediately (6.5) if one uses the identification spelled out below
in (7.25).

6.3 KdV Hierarchy

Kontsevich’s matrix model is

Z =
∫

dMe− i
6 trM

3− i
2 trΛ

2M

= e−tr Λ3

3

∫
dMe− i

6 trM
3− 1

2 tr�M2
(6.7)

where the matrices M andΛ are N ×N Hermitian matrices, and shift M → M − iΛ
is used.

Following Kontsevich [89], we factor Z as

Z =
∏
a,b

(λa + λb)
− 1

2 Y (6.8)

where λa are eigenvalues of Λ.
The free energy F = logZ in (6.4), which is the generating function of the inter-

section numbers, has hierarchical structure. Kontsevich has shown that the second
derivative of this free energy F with respect to t0, satisfies the Korteweg de Vries
equation (KdV).

V = ∂2F

∂t20
(6.9)

∂V

∂t1
= V

∂V

∂t0
+ 1

12

∂3V

∂t30
(KdV equation) (6.10)

This KdV equation is the first of a hierarchy of differential equations,

http://dx.doi.org/10.1007/978-981-10-3316-2_4
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∂V

∂tn
= ∂Rn+1

∂t0
(6.11)

with the Gelfand–Dikii differential polynomials Rn .

R1 = V,
∂Rn+1

∂t0
= 1

2n + 1

(
∂V

∂t0
Rn + 2V

∂Rn

∂t0
+ 1

4

∂3Rn

∂t30

)
. (6.12)

This gives for instance,

R2 = 1

2
V 2 + 1

12

∂2V

∂t20
. (6.13)

Alternatively one can use differential equations (or Virasoro equations) for Y in
(6.7), which becomes LmY = 0, [43, 70].

L−1 = −1

2

∂

∂ t̃0
+ 1

2

∑
k

(2k + 1)t̃k
∂

∂ t̃k−1
+ 1

4
t̃ 20

L0 = −1

2

∂

∂ t̃1
+ 1

2

∑
k

(2k + 1)t̃k
∂

∂ t̃k
+ 1

16

Ln = −1

2

∂

∂ t̃n+1
+ 1

2

∑
k

(2k + 1)t̃k
∂

∂ t̃k+n
+ 1

4

∑
k

∂2

∂ t̃k−1∂ t̃n−k
. (6.14)

and the intersection numbers can be computed from the differential equations (6.11)
or (6.14). The expansion of Y is obtained from (6.14), by the relation of t̃n and tn as
tn = (2n + 1)!!t̃n ,

Y = 1 +
(
1

6
t30 + 1

24
t1

)
+

(
25

144
t30 t1 + 1

24
t0t2 + 25

1152
t21 + 1

72
t60

)
+ · · · . (6.15)

and free energy F = logY becomes

F = 1

6
t30 + 1

24
t1 + 1

6
t30 t1 + 1

24
t0t2 + 1

48
t21

+ 1

1152
t4 + 1

6
t30 t

2
1 + 1

24
t40 t2 + 1

72
t31 + 29

5760
t2t3 + · · · . (6.16)

From (6.4), the intersection numbers for p = 2, with genus g determined by the
relation 3g − 3 + s = ∑

i ni , are evaluated as

〈τ 3
0 〉g=0 = 1, 〈τ1〉g=1 = 〈τ 2

1 〉g=1 = 〈τ0τ2〉g=1 = 1

24
,

〈τ4〉g=2 = 1

1152
. (6.17)



Chapter 7
Intersection Numbers of p-Spin Curves

The duality formula presented in Chap.4 and the explicit results for the n-point
functions with an external source, make it possible to compute the intersection num-
bers of a moduli space of p-spin curves, a generalization of Kontsevich intersection
numbers considered in the previous chapter.

7.1 Moduli Space of p-Spin Curves

Let Σ is Riemann surface of genus g with s marked points, x1, . . . ., xs . Integer p
(p ≥ 2) is introduced, and label each xi by an integer mi , (mi = 0, 1, . . . , p − 1).
(after the consideration of following conditions, xi is labeled by an additional non-
negative integer ni ). The canonical line bundle K of Σ has degree 2g−2. LetO(xi )
be the line bundle of degree 1, and the sections are functions with a simple pole
at xi . The line bundle S = K ⊗i O(xi )−mi has degree 2g − 2 − ∑

i mi . If this
degree is divisible by p, then S has pth roots. There exists a line bundle T such
that T ⊗p � S .

To each marked point one associates now a dimension ni and a “spin” mi . The
relation giving the dimension of the compactified moduli spaceM g,s is now written
according to Witten [135]

3g − 3 + s =
s∑
1

ni + D (7.1)

with

D = (g − 1)

(
1 − 2

p

)
+ 1

p

s∑
1

mi (7.2)
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66 7 Intersection Numbers of p-Spin Curves

The intersection numbers are now labelled by the double indices, dimension ni
and spin mi such as 〈τni ,mi 〉g for genus g.

In Kontsevich spinless case the mi are all equal to zero, and p = 2 so that D
vanishes. As we will see in a matrix model generalizing Kontsevich Airy model, this
double label, dimension and spin of a marked point, corresponds to an expansion in
powers of tr 1

Λ
n+ m+1

p
, with an external source matrix Λ.

The intersection numbers of s-marked points are represented with the first Chern
class c1 and with the top Chern class cD(V ) and a spin value (m = 0, 1, . . . , p− 1),
which contribute to the dimensions of the moduli spaces of (7.1). V is a vector
bundle, V = H 0(Σ, K ⊗ T −1) = H 0(Σ, Hom(T , K )) [135]. This top Chern
class cD(V ) is Euler class, and when p = −1, indeed as will be shown later, the
intersection numbers becomes Euler characteristics.

〈
s∏

i=1

τni ,mi 〉g = 1

pg

∫
M

1/p
g,s

s∏
i=1

c1(Li )
ni cD(V ) (7.3)

where Li is a cotangent line bundle at a marked point xi .
The dimensional constraint of (7.1) must hold, otherwise the intersection numbers

are vanishing. The generating functions of the intersection numbers of p spin curves
as matrix models have been studied in [1, 89, 135]. Witten conjectured that in this
p spin curve case, the generating function will satisfy a higher KdV hierarchy. The
spinless intersection numbers have been studied within Teichmuller spaces [99], but
such studies p spin curves in Teichmuller space have not appeared yet. We mention
here the relevant case, in which arithmetic Euler characteristics with character p was
studied for Abelian variety. This case has similar automorphism as p-spin curve at
least for small genera. Deuring mass formula for genus one is

p − 1

24
=

∑
E

1

#Aut(E)
. (7.4)

where the sum is over the number of isomorphism classes of supersingular elliptic
curves in characteristics p [128]. For higher genus g, the generalization of above
formula is,

∑
A

1

#Aut(A)
= (−1)

g(g+1)
2

2g

g∏
k=1

ζ(1 − 2k)
g∏

k=1

(pk + (−1)k) (7.5)

where the sum is over the isomorphism classes of principally polarized abelian vari-
eties, ζ(z) is Riemann zeta function and ζ(1 − 2k) = (−1)k Bk

2k , with Bernoulli
number Bk ,

B1 = 1

6
, B2 = 1

30
, B3 = 1

42
, B4 = 1

30
,
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B5 = 5

66
, B6 = 691

2730
, B7 = 7

6
, B8 = 3617

510
. (7.6)

Above formula contains arithmetic Euler characteristics of χ(Sp(2g, Z)), which
has been known as [122]

χ(Sp(2g, Z)) =
g∏

k=1

ζ(1 − 2k). (7.7)

These numbers χ(Sp(2g, Z)) of lower genus (g = 1, 2, 3) appear in the coeffi-
cients of the intersection numbers of p-spin curves, in Sect. 7.2. The Euler charac-
teristic χ(Sp(2g, z)) is interpreted as a volume of orbifold or Satake’s V manifold
[121], which is Gauss-Bonnet volume formula [75].

7.2 Intersection Numbers of Spin Curves

The generalization of Kontsevich Airy matrix model is defined simply as [1, 89],

Z p = 1

Z0

∫
dBe

1
p+1 trB

p+1−trBΛ (7.8)

As for the p = 2 Airy case, this matrix model may be obtained as resulting from
the duality on the expectation values of characteristic polynomials by an appropriate
tuning of the external source. For this, one uses an external source A with (p − 1)
distinct eigenvalues, each of them being N

p−1 times degenerate:
A = diag(a1, . . . , a1, . . . .., ap−1, . . . , ap−1).
Theorem 4.1.1 yields the duality formula. The r.h.s. of this duality formula (4.2)

reads in this case,

〈
p−1∏
α=1

det(aα−i B)
N
p−1 〉 = 〈exp

[
N

p − 1

p−1∑
α=1

trlog

(
1 − i B

aα

)
+ NK

p − 1
log

(
p−1∏
α=1

aα

)]
〉

(7.9)

The left-hand side of (4.2) is 〈∏K
1 det(λi − M)〉 averaged over N × N matrices with

external source A. The matrices B are thus K × K . The value of K is arbitrary in
this analysis, except that it should be large enough to be able to treat as independent
the successive powers

∑
α(1/aα)m .

We now expand the logarithm in powers of B, and chose a source matrix A whose
eigenvalues fulfill the following conditions:

p−1∑
α=1

1

a2α
= p − 1,

p−1∑
α=1

1

amα
= 0, (m = 3, . . . , p)

p−1∑
α=1

1

a p+1
α

�= 0. (7.10)
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By tuning the external source as (7.10), in the large N limit, the higher order terms
except Bp+1 can be negligible, and the non-Gaussian matrix model is obtained. This
provides the matrix model Z p (7.8).

Z p = 1

Z0

∫
dBexp

[
1

p + 1
tr(Bp+1 − tr(BΛ)

]
(7.11)

In doing so we have rescaled the matrix B by a factor −i

[
N
p−1

∑ 1
a p+1

α

]−1/(p+1)

. It

is because we work in the large N -regime, in which the rescaled B is finite, that we
can drop the higher powers of B in the expansion of the logarithm. For instance the
next one N Bp+2 after rescaling has a coefficient proportional to N−1/(p+1). This is
the scaling at the edge of spectrum. For the p = 2 case, it is well known for the edge
of semi-circle law.

As a concrete example let us consider the case p = 3. The external source
a1 = 1, a2 = −1, with degeneracies N/2, is the solution of the previous constraints.
In the dual problem we expand up to order B4, take B of order N−1/4, and obtain in
the large N limit,

〈
N∏
i=1

det(ai − i B)〉 = 〈[det(1 + B2)] N
2 〉 =

∫
dBe− N

4 trB
4−i N trBΛ (7.12)

For generalized Kontsevich matrix model, the intersection numbers are evaluated by
several different methods as indicated in the previous section as (i)–(iii).

(i), (ii) the replica method of limN→0U (σ ) provides as (2.68),

〈τ 1
3 (8g−5− j), j 〉g = 1

(12)gg!
Γ (

g+1
3 )

Γ (
2− j
3 )

(7.13)

where spin value j = 0 for g = 1, 4, 7, 10, . . . and j = 1 for g = 3, 6, 9, . . .. For
g = 2, 5, 8, . . . , the intersection numbers are zero.

(iii) As alternative approach, instead of replica limit ofU (σ ) (N → 0), the use of
formula of U (σ ) under the external source A is proposed in [32], and developed in
[32, 35]. It turns out that U (σ1, . . . , σs) is a generating function of the intersection
numbers of the moduli space of p-spin curve, when the external source A has a
condition which gives the vanishing coefficients of (u + σ

2 )m (m = 1, . . . , p).

Theorem 7.2 ([32])
The following s-point function of Gaussian matrix model with an external source,

obtained by the conditions for the external source aα of (7.10) and in the large N
limit, is a generating function of the intersection numbers of the moduli space of
p-spin curve, which is defined in (7.3),

http://dx.doi.org/10.1007/978-981-10-3316-2_2
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U (σ1, . . . , σs) = 1

(2iπ)s

∫ s∏
i=1

duie
−C1

∑s
i=1[(ui+ σi

2 )p+1−(ui− σi
2 )p+1]

× e−C2
∑s

i=1 σidet
1

ui − u j + 1
2 (σi + σ j )

(7.14)

with C1 = NC
p2−1 , C = ∑p−1

α=1
1

a p+1
α

, and C2 = N
p−1

∑p−1
α=1

1
aα
. The numbers C1,C and

C2 are obtained from the expansion of (7.9) with the condition (7.10).

Proof of Theorem 7.2

The proof of Theorem 7.2 is to show that it provides the intersection numbers eval-
uated from Z p in (7.8). By the definition of U (σ1, . . . , σs) in (2.7), it is a Fourier
transform of the resolvents 〈tr 1

λ1−B · · · tr 1
λs−B 〉. This resolvent is obtained from the

characteristic polynomials by taking replica limit (k → 0 limit). For one point func-
tion,

U (σ ) = lim
k→0

1

k

∫
dλeσλ

∑
α

∂

∂λa
〈

k∏
α=1

det(λα − M)〉A|λα=λ

= lim
k→0

1

k

∫
dλeσλ

∑
α

∂

∂λα

〈e
∑

trlog(λα−M)〉A|λα=λ

= lim
k→0

1

k

∫
dλeσλk〈tr 1

λ − M
ektrlog(λ−M)〉A

=
∫

dλeσλ〈tr 1

λ − M
〉A (7.15)

Noting the duality formula is

1

Z0
〈

k∏
α=1

det(λα − M)〉A = 1

Z ′
0

〈
N∏
j=1

det(a j − i B)〉Λ (7.16)

the right hand side of above equation leads to Z p for generalized Kontsevich model
of the intersection numbers of p-spin curves, up to normalization constant,

Z p =
∑
kn, j

〈
∏
n, j

τ
kn, j

n, j 〉
∏
n, j

t
kn, j

n, j

kn, j ! (7.17)

with

tn, j = C tr
1

Λ
n+ j+1

p

= C
k∑

α=1

1

λ
n+ 1+ j

p
α

(7.18)

http://dx.doi.org/10.1007/978-981-10-3316-2_2
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where C is a constant. Putting all λα = λ, the trace gives a factor k, and tn, j is
proportional to k. Then replica limit k → 0 of U (σ ) of (7.15) selects the single
trace, which means the one point marked point (s = 1). The Fourier transform in
(7.15) gives just the inverse of λ, σ = 1

λ
. Thus, the evaluation of the coefficients of the

tr 1
Λpn+1+ j , is equivalent to the coefficient of the power of σ inU (σ ). The coefficients

are intersection numbers.
This argument is extended to s-marked points case. The coefficients∏s
m=1 σ

nm+(1+ jm )/p
m of the expansion of U (σ1, . . . , σs) corresponds to coefficients

of
∏

m tr 1
Λnm+(1+ jm )/p , an intersection number for s-marked points, 〈∏m τnm , jm 〉. �

The expression for one marked point U (σ ) at the critical point is obtained from
(7.14). The determinant in (7.14) becomes 1

σ
.

U (σ ) = 1

σ

∫
du

2iπ
e− c

p+1 [(u+ 1
2 σ)p+1−(u− 1

2 σ)p+1] (7.19)

with c = N
p−1

∑ 1
a p+1

α

. The irrelevant factor e−C2σ is neglected. Expanding the expo-
nent, this one point function is

U (σ ) = 1

σ

∫
du

2iπ
exp[−csu p]

× exp

[
−c

(
p(p − 1)

3!4 σ 3u p−2 + p(p − 1)(p − 2)(p − 3)

5!42 σ 5u p−4 + · · ·
)]

(7.20)

This integral yields gamma functions after the replacement u = ( t
cσ )1/p,

U (σ ) = 1

σ pπ
· 1

(cσ)1/p

∫ ∞

0
dtt

1
p −1e−t

× e− p(p−1)
3!4 σ

2+ 2
p c

2
p t1−

2
p − p(p−1)(p−2)(p−3)

5!16 σ
4+ 4

p c
4
p t1−

4
p +···

= 1

Nσπ

1

(cσ)1/p

[
Γ

(
1 + 1

p

)
− p − 1

24
yΓ

(
1 − 1

p

)

+ (p − 1)(p − 3)(1 + 2p)

5!423 y2Γ

(
1 − 3

p

)

− (p − 5)(p − 1)(1 + 2p)(8p2 − 13p − 13)

7!4332 y3Γ

(
1 − 5

p

)

+ (p − 7)(p − 1)(1 + 2p)(72p4 − 298p3 − 17p2 + 562p + 281)

× 1

9!4415 y
4Γ

(
1 − 7

p

)
+ · · ·

]
(7.21)

with y = c
2
p σ

2+ 2
p . There appear fraction power of σ due to the double scaling of

large N and tuning the external source, although (2.7) has an integer power of σ . The

http://dx.doi.org/10.1007/978-981-10-3316-2_2


7.2 Intersection Numbers of Spin Curves 71

condition of the dimension of moduli space for one marked point s = 1 becomes
from (7.1)

(p + 1)(2g − 1) = pn + m + 1 (7.22)

The intersection numbers 〈τn,m〉g for genus g are then determined as

U (σ ) =
∑
g

〈τn,m〉g 1
π

Γ

(
1 − 1 + m

p

)
c

2g−1
p pg−1σ

(2g−1)(1+ 1
p ) (7.23)

For genus one, the intersection number is

〈τ1,0〉g=1 = p − 1

24
(7.24)

For more than genus two (g ≥ 2), the intersection numbers of one marked point
become

〈τn,m〉g=2 = (p − 1)(p − 3)(1 + 2p)

p · 5!423
Γ (1 − 3

p )

Γ (1 − 1+m
p )

(7.25)

〈τn,m〉g=3 = (p − 5)(p − 1)(1 + 2p)(8p2 − 13p − 13)

p2 · 7!4332
Γ (1 − 5

p )

Γ (1 − 1+m
p )

. (7.26)

〈τn,m〉g=4 = (p − 7)(p − 1)(1 + 2p)(72p4 − 298p3 − 17p2 + 562p + 281)

p3 · 9!4415

× Γ (1 − 7
p )

Γ (1 − 1+m
p )

(7.27)

〈τn,m〉g=5 = (p − 1)(p − 3)(p − 9)(1 + 2p)(3 + 4p)(32p4 − 162p3 + p2

+ 326p + 163)
1

p4
1

11!453
Γ (1 − 9

p )

Γ (1 − 1+m
p )

(7.28)

〈τn,m〉g=6 = (p − 1)(p − 11)(1 + 2p)(530688p8 − 5830544p7 + 16589332p6

+ 8955300p5 − 65056373p4 − 26944928p3 + 85178190p2

+ 80708428p + 20177107)
1

p5
1

13! · 7 · 5 · 4633
Γ (1 − 11

p )

Γ (1 − 1+m
p )

(7.29)
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〈τn,m〉g=7 = (p − 1)(p − 13)(1 + 2p)(276480p10 − 4162944p9 + 19373392p8

− 15701284p7 − 85580336p6 + 90672709p5 + 223326185p4

− 61441286p3 − 299056874p2 − 189131035p − 37826207)

× 1

p6
1

15!4733
Γ (1 − 13

p )

Γ (1 − 1+m
p )

(7.30)

〈τn,m〉g=8 = (p − 1)(p − 3)(p − 5)(p − 15)(1 + 2p)(3 + 4p)(5 + 6p)

× (462976p8 − 6035600p7 + 19687956p6 + 7469268p5

− 80449429p4 − 28891344p3 + 110585438p2

+ 103042188p + 25760547)
1

p7
1

17! · 5 · 4832
Γ (1 − 15

p )

Γ (1 − 1+m
p )

(7.31)

〈τn,m〉g=9 = (p − 1)(p − 17)(1 + 2p)(43867 · 47 · 90p14
− 444463 · 127 · 33210 p13 + 125652557 · 37 · 23 · 27 p12
− 6071689831 · 31 · 28 p11 + 19841 · 11699 · 131 · 7223 p10
+ 116212686067 · 643 · 22 p9 − 1409311 · 86627 · 59 · 7 · 3 · 2p8
− 1431305011 · 13781 · 17 · 3p7 + 724878602897547p6

+ 65033 · 359 · 137 · 37 · 312 · 7 · 3p5 + 199710238499 · 491 · 3p4
− 2544870788486423p3 − 2461465523248055p2

− 940301719307839p − 134328817043977)
1

p8
1

19!49 · 7 · 5 · 35

× Γ (1 − 17
p )

Γ (1 − 1+m
p )

(7.32)

The integers n and m should satisfy the condition of (7.22) for non-vanishing inter-
section numbers. The ratio of gamma functions becomes by this condition,

Γ (1 − 2g−1
p )

Γ (1 − 1+m
p )

= Γ (1 − 2g−1
p )

Γ (m + 2 − 2g − 2g−1
p )

. (7.33)

Therefore, this number is a rational number. The commondenominator ofΓ function,
Γ (1− 1+m

p ), shows that the intersection numbers form = p−1 are always zero, since
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this gamma function diverges. This shows that the Ramond part, which corresponds
to m = p − 1, is decoupled from Neveu-Schwarz part (m = 0, 1, . . . , p − 2). The
expressions for the intersection numbers of one marked point for arbitrary p up to
genus nine (g = 9) are verified for the cases of p = 2, p = −1 and p → ∞, which
are known. Also above expressions of the intersection numbers are consistent with
the results of p = 3, 4 and 5 [91]. The expressions of p → ∞ and p = −1 are

lim
p→−1

〈τn,m〉g = ζ(1 − 2g) = (−1)g
Bg

2g
(7.34)

and

lim
p→∞〈τn,m〉g = (−1)g

Bg

(2g)!(2g) p
g + O(pg−1) (7.35)

where Bg is a Bernoulli number, B1 = 1
6 , B2 = 1

30 , B3 = 1
42 ,…. These two expres-

sions will be derived in Sects. 7.5 and 7.7 (Propositions 7.5 and 7.7).
The expression of genus one coincides with the Duering formula for the Euler

characteristics χ(Sp(2g, Z)) times 2−g in (7.4). The numerical coefficients of the
intersection numbers up to order g = 4 coincide with the arithmetic Euler char-
acteristics χA; for instance, 1

24 ζ(−1)ζ(−3)ζ(−5)ζ(−7) = 1
9!4415 , which appears

in the coefficient of genus four. For genus five, the coefficient 1
11!453 is equal to

3
25 ζ(−1)ζ(−3)ζ(−5)ζ(−7)ζ(−9). Thus there appears a difference of a factor 3. For
genus g ≥ 5, the coefficient of the intersection numbers differs from the arithmetic
Euler characteristics χA. The coincidence of the coefficients of the intersection num-
bers to arithmetic Euler characteristics χg for g = 2 and g = 3 is understood by
considering the difference of dim Mg = 3g − 3 and dim Ag = 1

2g(g + 1). Ag is
Abelian variety of genus g. They become same for g = 2 and g = 3. (g = 1 is
exceptional since dim Mg = 0. For g = 4, these dimensions become different by one,
which is related to Schottky problem).

The intersection numbers for small p in (2.15) are explicitly obtained to all order
of genus from U (σ ). This generating function U (σ ) for p = 2, p = 3 and p = 4
are expressed by simple exponential function and Bessel functions [21, 36]. In the
following, we set c = 1 in (7.21) for simplicity.

U (σ ) = 1

2
√

πσ
3
2

e
σ3

12N2 (p = 2) (7.36)

U (σ ) = 1

Nσ(3Nσ)1/3
Ai

(
− N 2/3

4 · 31/3 σ 8/3

)

= 1

6
√
3

[
J 1

3

(
1

12
√
3
σ 4

)
+ J− 1

3

(
1

12
√
3
σ 4

)]
(p = 3) (7.37)

http://dx.doi.org/10.1007/978-981-10-3316-2_2
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U (σ ) = 1

2
√
8
e

3
160 σ 5 1

2sin( π
4 )

[
I− 1

4

(
1

32
σ 5

)
+ I 1

4

(
1

32
σ 5

)]

= 1

8

∞∑
m,n=0

1

m!n!Γ (n + 5
4 )

(
3

160

)m (
1

64

)2n+ 1
4

σ 5m+10n+ 1
4 , (p = 4)

(7.38)

and the intersection numbers, therefore, are written for arbitrary genus g for p = 2,
and p = 3 as

〈τn〉g = 1

(24)gg! (p = 2)

〈τn,m〉g = 1

(12)gg!
Γ (

g+1
3 )

Γ ( 2−m
3 )

,

(
n = 8g − 5 − m

3
,m = 0, 1, p = 3

)
. (7.39)

For p = 2, it reduces to the expression of Kontsevich model in Chap.6 [89]. For
p = 3, above result is just expansion of Airy function, as can be seen in explicit inte-
gral representation. For generalized Airy functions for p〉3, we consider Airy-Hardy
integrals. One notes that the Airy-Hardy integrals Ein(x) are given by Tchebycheff
polynomials [74, 129]. The Tchebycheff polynomials are

Tn(x) = cos(narccosx) (7.40)

with
T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1.

The Airy-Hardy integral (generalized Airy integral) is

Ein(x) =
∫ ∞

0
exp[−Tn(t, x)]dt (7.41)

with a Tchebycheff function Tn(t, x) defined by

Tn(t, x) = 2x
n
2 (−i)nTn

(
i t

2
√
x

)
. (7.42)

The generalized Airy integral is expressed as a Bessel function [129].

Ei2n(x) =
√
x

n
K 1

2n
(2xn)

Ei2n(−x) = π
√
x[I 1

2n
(2xn) + I− 1

2n
(2xn)] 1

2nsin( π
2n )

(7.43)



7.2 Intersection Numbers of Spin Curves 75

Ein(x) satisfies
Ei ′′n (x) + n2xn−2Ein(x) = nx

(n−3)
2 (7.44)

The explicit intersection number for p = 4 in (7.37) is obtained by the use of Airy-
Hardy integral Ei4(x) in (7.43). For p > 4, however the expression as a Airy-Hardy
integral is not useful.

In the large p limit, the intersection numbers become

lim
p→∞〈τn,m〉g = Bg

(2g)!(2g) p
g + O(pg−1) (7.45)

where Bg is a Bernoulli number in (9.30). Since the Bernoulli numbers are related
to the Riemann zeta function

ζ(2g) = 22g−1π2g Bg

(2g)! , (7.46)

this large p limit of the intersection numbers are expressed as

lim
p→∞〈τn,m〉g = pg

(2π)2gg
ζ(2g) (7.47)

The derivation of this result will be given in (7.170) of Sect. 7.7.
For more than one marked point, the formula forU (σ1, . . . , σs) for p-spin curves

gives the intersection numbers. After rescaling of the parameters, ui → ui − σi
2 ,

σi → σi/N , the term of two point function U (σ1, σ2) is expressed as

1

u1 − u2 + 1
2N (σ1 + σ2)

1

u1 − u2 − 1
2N (σ1 + σ2)

= N

σ1 + σ2

∫ ∞

0
dxex(u1−u2)sh

(
x

2N
(σ1 + σ2)

)
(7.48)

The two point functionU (σ1, σ2), after the external source eigenvalues aα are tuned
to the critical values of p spin curves and by large N limit, becomes

U (σ1, σ2) = 2N

σ1 + σ2

1

(2π i)2

∫ ∞

0
dx

∫
du1du2sh

(
1

2N
x(σ1 + σ2)

)
e−(u1−u2)x

× exp

[
− N

p2 − 1

∑
α

1

a p+1
α

(∑
i

(
ui + 1

2N
σi

)p+1

− (
∑
i

(
ui − 1

2N
σi

)p+1)]

(7.49)

Two point function U (σ1, σ2) is expressed in the power series with the intersection
numbers 〈τn1,m1τn2,m2〉g ,

http://dx.doi.org/10.1007/978-981-10-3316-2_9
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U (σ1, σ2) =
∑

n1,n2,m1,m2

〈τn1,m1τn2,m2〉g pgΓ
(
1 − 1 + m1

p

)
Γ

(
1 − 1 + m2

p

)

× σ
n1+(1+m1)/p
1 σ

n2+(1+m2)/p
2 (7.50)

with the condition,

2g(p + 1) = p(n1 + n2) + m1 + m2 + 2. (7.51)

If this condition is not satisfied, the intersection numbers are vanishing. For instance,
the intersection numbers of two marked point for p = 3 has been evaluated from
U (σ1, σ2) [35]. For p = 3,

U (σ1, σ2) = 2

(σ1 + σ2)(3σ2)1/3

∫ ∞

0
dy sh

(
σ1 + σ2

2
(3σ1)

1
3 y

)

× Ai

(
y − 1

4 · 31/3 σ
8/3
1

)
Ai

(
−ay − 1

4 · 31/3 σ
8/3
2

)
(7.52)

where a = ( σ1
σ2

)1/3, and Airy function Ai (y) satisfies

A′′
i (y) = yAi (y). (7.53)

The value of Airy function at origin and its derivative become

Ai (0) = 3−2/3

Γ (2/3)
= 1

2π31/3
Γ

(
1

3

)
, A′

i (0) = − 3−1/3

Γ (1/3)
= − 1

2π
Γ

(
2

3

)

(7.54)
which provide the factor of gamma function in (7.50). By the integration of parts,
the intersection numbers of two point are obtained in genus two. The terms of genus
two becomes

U (σ1, σ2)|g=2 = (Ai (0))2

32 · 32/3 (−σ
14/3
1 σ

2/3
2 − 11

5
σ
11/3
1 σ

5/3
2

− 17

5
σ
8/3
1 − 11

5
σ
5/3
1 σ

11/3
2 − σ

2/3
1 σ

14/3
2 ). (7.55)

From this expression, the intersection numbers of genus two are obtained,

〈τ0,1τ4,1〉g=2 = 1

864
, 〈τ1,1τ3,1〉g=2 = 11

4320
, 〈τ2,1τ2,1〉g=2 = 17

4320
. (7.56)

For genus three [35],
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〈τ0,0τ7,1〉g=3 = 1

31104
, 〈τ0,1τ7,0〉g=3 = 1

15552

〈τ1,0τ6,1〉g=3 = 5

31104
, 〈τ1,1τ6,0〉g=3 = 19

77760

〈τ2,0τ5,1〉g=3 = 103

217728
, 〈τ2,1τ5,0〉g=3 = 47

77760

〈τ3,0τ4,1〉g=3 = 443

544320
, 〈τ3,1τ4,0〉g=3 = 67

77760
(7.57)

This results are in agreement with the previous evaluations of recursion relations [86,
92].

For p〉3, the same method can be applied, and for instance in the case p = 4, the
following intersection numbers are obtained.

〈τ0,0τ2,0〉g=1 = 1

8
, 〈τ1,0τ1,0〉g=1 = 1

8
, 〈τ0,2τ1,2〉g=1 = 1

96
(7.58)

〈τ0,1τ4,1〉g=2 = 1

320
(7.59)

Further results are obtained up to p = 7 in [35].
For general p, from (7.49), the intersection numbers of two point are evaluated

in terms of the polynomial of p. For genus one,

〈τ0,0τ2,0〉g=1 = p − 1

24
, 〈τ0,2τ1,p−2〉g=1 = p − 3

24p
(7.60)

This agrees with the results of special values of p = 4, 5, 7 in [53, 91]. For genus
two,

〈τ0,0τ4,2〉g=2 = (p − 1)(p − 3)(2p + 1)

5760p
,

〈τ0,1τ4,1〉g=2 = (p − 1)(p − 2)(p + 2)

2880p

〈τ0,2τ4,0〉g=2 = (p − 1)(p − 3)(2p + 11)

5760p
(7.61)

These results are in agreement with the previous results for special values of p = 4, 5
[86, 91, 92, 139], obtained by the recursion relations.

The present approach, based on a random matrix theory and use of the generating
function of s-point functions, is indeed a very differentway of computing intersection
numbers.
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7.3 s-Point Function

The expression ofU (σ1, . . . , σs) provides the generating function for the intersection
numbers of p spin curves of s marked points due to Theorem 7.2 of (7.14). The three
point and four point function are particularly important to find the algebraic structure
of the p spin curves.

The generating function, which is free energy F , is defined with the parameter
tn,m for the intersection numbers

F =
∑
dn,m

〈
∏
n,m

(τn,m)dn,m 〉g
∏
n,m

1

dn,m ! t
dn,m
n,m (7.62)

with s = ∑
n,m dn,m . This is a generalization of Gaussian case in Sect. 2.2.

In three marked point, s = 3, the non-vanishing intersection numbers appears for
genus zero. The necessary condition of the dimension of the moduli space, when
g = 0 and s = 3, becomes from (7.1),

(p + 1) = p
3∑

i=1

ni +
3∑

i=1

mi + 3 (7.63)

Hence

n1 = n2 = n3 = 0,
3∑

i=1

mi = p − 2. (7.64)

This reads to [135]
〈τ0,m1τ0,m2τm3〉g=0 = δm1+m2+m3,p−2 (7.65)

The string equation is

∂F

∂t0,0
= 1

2

p−2∑
i, j=0

ηi j t0,i t0, j +
∞∑
n=1

p−2∑
m=0

tn+1,m
∂F

∂tn,m
(7.66)

with
ηi j = δi+ j,p−2 (7.67)

For the convenience, we define 〈〈τn1,m1 · · · 〉〉 as

〈〈τn1,m1 · · · τns ,ms 〉〉 = ∂

∂tn1,m1

· · · ∂

∂tns ,ms

F. (7.68)

For tn,m = 0, it reduces to the intersection numbers 〈τn1,m1 · · · τns ,ms 〉.

http://dx.doi.org/10.1007/978-981-10-3316-2_2
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Proposition 7.3.1
The four point function is expressed as a product of three point functions, which

is called as topological recursion equation [135],

〈〈τn1+1,m1τn2,m2τn3,m3τn4,m4〉〉
=

∑
m ′,m ′′

〈〈τn1,m1τn2,m2τ0,m ′ 〉〉ηm ′m ′′ 〈〈τ0,m ′′τn3,m3τn4,m4〉〉

(7.69)

Proposition 7.3.2
There is a crossing symmetry due to the exchange of the indices since the permu-

tations of 2, 3, 4 yields invariance.

〈〈τn1,m1τn2,m2τ0,m ′ 〉〉ηm ′m ′′ 〈〈τ0,m ′′τn3,m3τn4,m4〉〉
= 〈〈τn1,m1τn3,m3τ0,m ′ 〉〉ηm ′m ′′ 〈〈τ0,m ′′τn2,m2τn4,m4〉〉 (7.70)

Corollary 7.3.1
When all tn,m = 0 for (7.69), it becomes

〈τn1+1,m1τn2,m2τn3,m3τn4,m4〉g =
∑
m ′,m ′′

〈τn1,m1τn2,m2τ0,m ′ 〉g′

× ηm ′m ′′ 〈τ0,m ′′τn3,m3τn4,m4〉g−g′ (7.71)

The dimensional condition of left hand is

(p+1)(2g+2) = p(n1+n2 +n3 +n4 +1)+ (m1 +m2 +m3+m4)+4 (7.72)

The dimensional condition for the sum of two terms of right hand is

(p+1)(2g+2) = p(n1+n2+n3+n4+1)+ (m1+m2+m3+m4)+ (m ′ +m ′′)+6
(7.73)

Since m ′ + m ′′ = p − 2, two dimensional conditions coinside.

Corollary 7.3.2

〈τn1,m1τn2,m2τ0,m ′ 〉ηm ′m ′′ 〈τ0,m ′′τn3,m3τn4,m4〉
= 〈τn1,m1τn3,m3τ0,m ′ 〉ηm ′m ′′ 〈τ0,m ′′τn2,m2τn4,m4〉 (7.74)

where ηm ′m ′′
is (7.67).

These Eqs. (7.69), (7.70) are equivalent to Gelfand-Dikii equation in the next
section (Proposition 7.4). �

The structure constant Ci jk is obtained from F for the genus zero,
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〈τ0,m1τ0,m2τ0,m3〉g=0 = ∂3F

∂t0,m1∂t0,m2∂t0,m3

|tn,m=0 = Cm1,m2,m3 (7.75)

By ηn,m in (7.67), and with the definition,

Ci j
k =

∑
m

Ci jmηm,k (7.76)

one finds from the crossing symmetry of (7.74)

Ci j
kCkml = Cim

kCkjl (7.77)

This is a Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) relation [43, 44, 46, 135].
There are two terms, which come from the connected parts of the longest cycles

of the determinant in (7.14),

det(ai j )|longest = a12a23a31 + a13a21a32 (7.78)

with ai j = (ui −u j + 1
2 (σi +σ j ))

−1. These terms are expressed by the integral form.
The term of a12a23a31 becomes [32]

1

u1 − u2 + 1
2 (σ1 + σ2)

1

u2 − u3 + 1
2 (σ2 + σ3)

1

u3 − u1 + 1
2 (σ3 + σ1)

= 2

σ1 + σ2 + σ3

∫ ∞

0
dx

∫ ∞

0
dy sh

(
x

2
(σ1 + σ2 + σ3)

)

×
[
e− σ2

2 x− σ1+σ2
2 y−(x+y)u1+yu2+xu3 + e− σ2

2 x− σ2+σ3
2 y−xu1−yu2+(x+y)u3

]

(7.79)

From (7.14), with the scaling x → σ
1/p
1 , σi → σi/N , and with the notation N ′ =

N (
p−1
pc )1/p, the three point function related to the term of a12a23a31 is expressed by

U1 = 2N ′

σ1 + σ2 + σ3

(
1

σ3

) 1
p

∫ ∞

0
dx

∫ ∞

0
dy

∫ ∞

−∞
dv1dv2dv3

(2π)3
sh

(
x

2N ′ σ
1
p
1 (σ1 + σ2 + σ3)

)

×e
− σ2

2N ′ σ
1
p

1 x− σ1+σ2
2N ′ σ

1
p

2 y−iv1(x+(
σ2
σ1

)
1
p y)+iyv2+i(

σ1
σ3

)
1
p xv3G(v1)G(v2)G(v3)

U2 = 2N ′

σ1 + σ2 + σ3

(
1

σ3

) 1
p

∫ ∞

0
dx

∫ ∞

0
dy

∫ ∞

−∞
dv1dv2dv3

(2π)3
sh

(
x

2N ′ σ
1
p
1 (σ1 + σ2 + σ3)

)

×e
− σ2

2N ′ σ
1
p

1 x− σ2+σ3
2N ′ σ

1
p

2 y−iv1x−iyv2+i((
σ1
σ3

)
1
p x+(

σ2
σ3

)
1
p y)v3G(v1)G(v2)G(v3)

(7.80)
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where

G(vi ) = exp

[
− (ivi )p

p
− i p

[ p
2 ]∑

m=1

(−1)m(p − 1)!
(2m + 1)!22m(p − 2m)!N ′2m σ

(2+ 2
p )m

i vp−2m
i

]

(7.81)
The intersection numbers 〈τn1,m1τn2,m2τn3,m3〉 is obtained from the coefficients of

σ
n1+ 1+m1

p

1 σ
n2+ 1+m2

p

2 σ
n3+ 1+m3

p

3 .
For genus zero, the intersection numbers of three marked points are obtained from

above expressions. From U2, the relevant terms of order of genus zero are obtained
by the expansions of sh function and exponential functions,

∫ ∞

0
dx

∫ ∞

0
dy

∫
dv1dv2dv3

(2π)3

⎡
⎣σ

1
p
1

σ
1
p
3

((
σ2

σ3

) 1
p

yv3

)q2 ((
σ1

σ3

) 1
p

xv3

)q1 (
σ3σ

1
p
2

1

2
y

)⎤
⎦

×e−iv1x−iyv2G0(v1)G0(v2)G0(v3)
1

q1!q2! = σ

1+q1
p

1 σ

1+q2
p

2 σ

1+(p−2−q1−q2)

p
3 (7.82)

where G0(v) = e− 1
p (iv)p . Hence, it gives

〈τ0,q1τ0,q2τ0,p−2−q1−q2〉g=0 = 1 (7.83)

which agrees with (7.65). Hence the generating functions F of the genus zero
becomes up to three marked points are obtained as

F = 1

6
t0,0

3, (p = 2)

F = 1

2
t0,0

2t0,1, (p = 3)

F = 1

2
t0,0

2t0,2 + 1

2
t0,0t0,1

2, (p = 4)

F = 1

2
t0,0

2t0,3 + t0,0t0,1t0,2 + 1

3! t0,1
3, (p = 5) (7.84)

From these expressions, the structure constant Ci jk in (7.75) is obtained.
The four point functionU (σ1, σ2, σ3, σ4) for p spin curves has an integral expres-

sion (7.14). With the same notation as three point function ai j = (σi − σ j + 1
2 (σi +

σ j ))
−1, one of the longest cycle of the determinant of U (σ1, σ2, σ3, σ4) is

a12a23a34a41 = 1

σ1 + σ2 + σ3 + σ4
(a12 + a23)(a34 + a41)

×
(

1

u1 − u3 + 1
2 (σ1 + 2σ2 + σ3)

− 1

u1 − u3 − 1
2 (σ1 + 2σ4 + σ3)

)

= − 2

σ1 + σ2 + σ3 + σ4

∫ ∞

0
dxdydze−x(u1−u3)− 1

2 (σ2−σ4)x
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× sh

(
1

2
x(σ1 + σ2 + σ3 + σ4)

)[
e− 1

2 y(σ1+σ2)− 1
2 z(σ3+σ4)−y(u1−u2)−z(u3−u4)

+ e− 1
2 y(σ1+σ2)− 1

2 z(σ1+σ4)−y(u1−u2)−z(u4−u1) + e− 1
2 y(σ2+σ3)− 1

2 z(σ3+σ4)−y(u2−u3)−z(u3−u4)

+ e− 1
2 y(σ2+σ3)− 1

2 z(σ1+σ4)−y(u2−u3)−z(u4−u1)

]
(7.85)

From these four terms, U1,U2,U3 and U4 are expressed by the same scaling as

three point function, x → σ
1
p

1
1
N ′ x, u1 → iσ

− 1
p

1 N ′v1, etc. With the notation σ =
σ1 + σ2 + σ3 + σ4,

U1 = −2N ′3

σ

(
1

σ4

) 1
p
∫ ∞

0
dxdydz

∫
1

(2π)4

4∏
i=1

dvi sh

(
x

2N ′ σ
1
p

1 σ

) 4∏
i=1

G(vi )

× exp

[
− 1

2N ′ (σ2 − σ4)σ
1
p

1 x − 1

2N ′ (σ1 + σ2)σ
1
p

2 y − 1

2N ′ (σ3 + σ4)σ
1
p

3 z

−i xv1 − i

(
σ2

σ1

) 1
p

yv1 + iyv2 + i

(
σ1

σ3

) 1
p

xv3 − i zv3 + i

(
σ3

σ4

) 1
p

zv4

]

(7.86)

U2 = −2N ′3

σ

(
1

σ4

) 1
p

∫ ∞

0
dxdydz

∫
1

(2π)4

4∏
i=1

dvi sh

(
x

2N ′ σ
1
p
1 σ

) 4∏
i=1

G(vi )

× exp

[
− 1

2N ′ (σ2 − σ4)σ
1
p
1 x − 1

2N ′ (σ1 + σ2)σ
1
p
2 y − 1

2N ′ (σ1 + σ4)σ
1
p
3 z

−i xv1 − i

(
σ2

σ1

) 1
p

yv1 + iyv2 + i

(
σ1

σ3

) 1
p

xv3 + i z

(
σ3

σ4

) 1
p

v1 − i

(
σ3

σ4

) 1
p

zv4

]

(7.87)

U3 = −2N ′3

σ

(
1

σ4

) 1
p
∫ ∞

0
dxdydz

∫
1

(2π)4

4∏
i=1

dvi sh

(
x

2N ′ σ
1
p

1 σ

) 4∏
i=1

G(vi )

× exp

[
− 1

2N ′ (σ2 − σ4)σ
1
p

1 x − 1

2N ′ (σ2 + σ3)σ
1
p

2 y − 1

2N ′ (σ3 + σ4)σ
1
p

3 z

−i xv1 + i

(
σ2

σ3

) 1
p

yv3 − iyv2 + i

(
σ1

σ3

) 1
p

xv3 − i zv3 + i

(
σ3

σ4

) 1
p

zv4

]

(7.88)
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U4 = −2N ′3

σ

(
1

σ4

) 1
p

∫ ∞

0
dxdydz

∫
1

(2π)4

4∏
i=1

dvi sh

(
x

2N ′ σ
1
p
1 σ

) 4∏
i=1

G(vi )

× exp

[
− 1

2N ′ (σ2 − σ4)σ
1
p
1 x − 1

2N ′ (σ2 + σ3)σ
1
p
2 y − 1

2N ′ (σ1 + σ4)σ
1
p
3 z

−i xv1 + i

(
σ2

σ3

) 1
p

yv3 − iyv2 + i

(
σ1

σ3

) 1
p

xv3 − i

(
σ3

σ4

) 1
p

zv4 + i

(
σ3

σ1

) 1
p

zv1

]

(7.89)

The term σ
2/p
1 σ

2/p
2 σ

(p−1)/p
3 σ

(p−1)/p
4 , which yields the intersection numbers,

〈τ0,1τ0,1τ0,p−2τp−2〉0, is obtained from U3 for the genus zero, for instance. In the
large N ′ limit (genus zero),

U3 = −
(

σ1

σ4

) 1
p

∫ ∞

0
dxdydz

∫
1

(2π)4

4∏
i=1

dvi x

(
σ4

2
σ

1
p
1 x

) (
1

2
σ3σ

1
p
2 y

)
i

(
σ2

σ3

) 1
p

yv3

× exp

[
− i p

p

∑
i

vpi − i xv1 − iyv2 − i zv3

]

× exp

[
i

(
σ1

σ3

) 1
p

xv3 + i

(
σ2

σ3

) 1
p

yv3 + i

(
σ3

σ4

) 1
p

zv4

]
(7.90)

Expanding the last factor, one obtains the term, one obtain

σ
2+q1
p

1 σ
2+q2
p

2 σ
p−1−q1−q2+q3

p

3 σ
p−1−q3

p

4

terms. This reads to 〈τ0,1+q1τ0,1+q2τ0,p−2−q1−q2+q3τ0,p−2−q3〉g=0.

7.4 Generalized KdV Hierarchy and Gelfand-Dikii
Equation

Proposition 7.4 (Witten conjecture [135])
The generating function F of the Intersection numbers of moduli space of p-spin

curves satisfy p-th Gelfand-Dikii hierarchy equations;

∂F

∂t0,0∂tn,m
= −cn,mRes(Q

n+ 1+m
p ) (7.91)

with

cn,m = (−1)n pn+1∏n
l=0(lp + m + 1)

, (7.92)

and with pseudo differential operator Q.
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The differential operator Q is introduced as

Q = Dp −
p−2∑
i=0

ui (x)D
i (7.93)

Q
1
p = D +

∑
i〉0

wi D
−i (7.94)

with D = ∂x and Qn+ m
p = (Q

1
p )np+m .

The fractional power of the differential operators, pseudo-differential equations,
has been investigated by Gelfand and Dikii [64–66]. The Witten conjecture about
p-spin curves are studied, and proved by Faber, Shadrin and Zvonkine [58], based
upon the Givental’s results [67] for Gromov-Witten theory.

For p = 3, the generalized KdV equation becomes Boussinesq equation, which is
known as the shallowwater wave equation (propagation of tsunami). The Boussinesq
equation [10] is

Byy = aBxx + b(B2)xx + cBxxxx (7.95)

where the suffix means a partial derivative; a, b and c are parameters. In the case of
the shallow water equation, y is a time, and x a space coordinate. In terms of t0,0 and
t0,1, the Boussinesq equation becomes

∂2F

∂t0,12
= −2

3

(
∂2F

∂t0,02

)2

+ ∂4F

∂t0,04
(7.96)

The pseudo differential operators K is defined as,

K =
n∑

i=−∞
ki (x)D

i (7.97)

D = i√
p

∂

∂x
(7.98)

The decomposition of K is

K = K+ + K−, K+ =
∞∑
i=0

ki (x)D
i (7.99)

and the residue of K is defined as

resK = k−1 (7.100)
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The Gelfand-Dikii equation is

i
∂Q

∂tn,m
= [Qn+ 1+m

p

+ , Q]cn,m√
p

(7.101)

with [Qn+ m
p

+ , Q] = −[Qn+ m
p

− , Q]. The Eq. (7.101) becomes a equation of ui and also
for equation of vi ,

vi = − p

1 + i
res(Q

1+i
p ), 0 ≤ i ≤ p − 2 (7.102)

The Gelfand Dikii equation for F now becomes

∂2F

∂t0,0∂t0,i
= vi (7.103)

i
∂Q

∂tn,m
= [Qn+ 1+m

p

+ , Q]cn,m√
p

(7.104)

From theseGelfand-Dikii equation and a string equation, the intersection numbers
are obtained. [91, 135]

The Virasoro equations for p-th generalized KdV hierarchy are obtained [45, 62]
from p − 1 matrix model of Douglas [55]. For p-th generalized KdV hierarchy, we
need Wn algebra in addition to Virasoro algebra, which will be discussed briefly in
chapter eight for open intersection numbers.

7.5 Euler Characteristics and the Negative Value p = −1

The negative value p = −1 corresponds to the Euler characteristics. This is because
the Penner model [114] for Euler characteristics is obtained in this limit in (7.11).
From the general expression of the intersection numbers of p-spin curves in (7.24)–
(7.27), with p = −1, the intersection numbers are

〈τ 〉g=1 = − 1

12
, 〈τ 〉g=2 = 1

120

〈τ 〉g=3 = − 1

252
, 〈τ 〉g=4 = 1

240

〈τ 〉g=5 = − 1

132
, 〈τ 〉g=6 = 691

32760

〈τ 〉g=7 = − 7

84
, 〈τ 〉g=8 = 3617

8160

〈τ 〉g=9 = −43867

14364
(7.105)
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where we denote 〈τ 〉g as 〈τn,m〉g in (7.24)–(7.32), since for p = −1 the suffix n,m
looses meaning. The index ni of intersection number 〈∏ τni ,mi 〉 takes a value of
ni = 0, since there is no first Chern class c1(Li )

ni = 1 in (7.3) and only the top
Chern class cD(V ) exists, which is the Euler characteristics.

Proposition 7.5
Euler characteristics χ(M g,1) are

χ(M g,1) = ζ(1 − 2g) = (−1)g
Bg

2g
(7.106)

where Bg is Bernoulli number in (9.30). Euler characteristics are χ(M 1,1) = − 1
12 ,

χ(M 2,1) = 1
120 , χ(M 3,1) = − 1

252 , . . . , which coincides with (7.105).

Proof of proposition 7.5
In the limit p → −1,

U (σ ) = 1

Nσ

∫
du

2iπ
e
−N log

u+ 1
2 σ

u− 1
2 σ

= 1

N

∫
du

2iπ

(
u − 1

2

u + 1
2

)N

(7.107)

By the shift of u as σu, one finds that U (σ ) is independent of σ . After u → 1
2u, by

setting
u − 1

u + 1
= e−y,

(
u = 1 + e−y

1 − e−y

)
(7.108)

U (σ ) becomes

U (σ ) = − 1

N

∫
dy

2π

e−y

(1 − e−y)2
e−Ny .

With the integration by parts, it becomes (t = Ny)

U (σ ) = 1

N

∫ ∞

0
dt

1

1 − e− t
N

e−t =
∞∑
n=0

Bn

n

(
1

N

)n

(−1)n (7.109)

with B̃0 = 1, B̃1 = 1
2 , B̃2 = 1

6 , B̃3 = 0, B̃4 = − 1
30 . These another definitions of

Bernoulli numbers B̃n are used here. B̃2n = Bn(−1)n+1. Bn is defined in (7.6). The
Euler characteristics for an orbifold with one marked point is thus given by (7.106),
obtained from the limit of p-spin curves with p → −1, and it does agree with the
result of [76, 114]. �

Higher correlation functions may be obtained by the dilaton equation (2.47) in a
recursive way,

〈(τ1,0)n〉g = (2g − 2 + n)〈(τ1,0)n−1〉g (7.110)

http://dx.doi.org/10.1007/978-981-10-3316-2_9
http://dx.doi.org/10.1007/978-981-10-3316-2_2
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with

〈τ1,0〉g = χ(M g,1) = ζ(1 − 2g) = (−1)g
Bg

2g
(7.111)

Hence the Euler characteristics of s marked points χ(M g,s) are expressed as

χ(M g,s) = 〈(τ1,0)s〉g = −2g − 1

(2g)! (2g + s − 3)!Bg (7.112)

This result agrees with the previous results of [76, 114].

The Structure of Polynomial of p in the Intersection Numbers

The expressions (7.24)–(7.32) show an interesting structure. The intersection num-
bers are factorized for the polynomial of p. The complicated term of p except trivial
factors, denoted by Q(p), has a structure as

Q(p) = Apm − (p + 1)B(p) (7.113)

where A is a coefficient of highest order term, and B(p) is a polynomial of order
m − 2. For g = 3,

Q(p) = 8p2 − 13p − 13 = 8p2 − 13(p + 1). (7.114)

For g = 4,

Q(p) = 72p4−298p3−17p2+562p+281 = 72p4−(p+1)[298p2−281(p+1)].
(7.115)

For g = 5,
Q(p) = 32p4 − (p + 1)[162p2 − 163(p + 1)]. (7.116)

These interesting structures of the factor (p + 1) for the sub-leading terms in
Q(p) remain up to genus nine, and it seems valid to all order in the genus. In the
large p limit, the intersection numbers become 1

(2g)!2g Bg , and the difference with
the expression of the Euler characteristics ζ(1 − 2g) = (−1)g Bg/2g comes from
the ratio of gamma functions. Therefore, there is an interesting relation between the
p = −1 Euler characteristics and the limit p → ∞ for intersection numbers. The
case p → ±∞ case will be discussed in Sect. 7.7. Related to the relation between
p → ∞ and p = −1 cases, we consider the (p+ 1) expansion around p = −1. For
small p + 1,

U (σ ) = 1

σ

∫
du

2π
e

N
p+1 [(u+ σ

2 )p+1−(u− σ
2 )p+1]

= 1

σ

∫
du

2π

(
u + σ

2

u − σ
2

)N [
1 + N

p + 1

2
log

(
u + σ

2

u − σ
2

)
log

(
u2 − σ 2

4

)]
+ O((p + 1)2)

(7.117)
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By the change of variable (u + σ
2 )/(u − σ

2 ) = e−y , and y → y/N , up to order
(p + 1), it becomes

U (σ ) = 1

N

∫
du

2π

e− y
N

(1 − e− y
N )2

e−y

[
1 − p + 1

2
y
(
2logσ − y

N
− 2log(1 − e− y

N )
)]

(7.118)

The terms of order (p + 1) are evaluated by the use of expansion,

log(1 − e− y
N ) = − y

2N
+ log

y

N
+

∞∑
n=1

(−1)n−1 2
2n−1Bn

(2n)!n
( y

2N

)2n
(7.119)

Thus we find the series of the perturbation of (p + 1), and the term of order (p +
1) is expressed by product of two Bernouill numbers of (7.119) and (7.109). The
coefficient of the highest order of p in B(p) will be evaluated by 1/p expansion in
Sect. 7.7. Therefore, there exists a relation between p = −1 and p → ∞ cases.

Analytic Continuation of Positive p to Negative Value

The analytic continuation of positive p > 0 to negative p < 0 corresponds to
the analytic continuation from SU (2)p−2/U (1) to the SL(2, R)|p|−2/U (1) Wess-
Zumino action with level |p| − 2. The analytic continuation to negative p in the
matrix model means

Z =
∫

dBe− 1
|p|−1 trB

−|p|+1+trBΛ (7.120)

The corresponding U (σ ) reads

U (σ ) = 1

Nσ

∮
du

2iπ
e

1
p+1 [(u+ σ

2 )p+1−(u− σ
2 )p+1] (7.121)

with negative value of p. The matrix model of (7.120) is obtained from the duality
formula of (4.2) by the tuning ai .We divide ai to two groups bl and c j , {ai } = {bl , c j },
with i = 1, . . . , N and l = 1, . . . , N1, j = 1, . . . , N2 and N1 + N2 = N . By formal
expansion of large bl and small c j , it becomes

〈
N∏
i=1

det(ai − i B)〉 = 〈
N1∏
l=1

det(bl − i B)

N2∏
j=1

det(cj − iB)〉

= 〈e
∑

l trlog[bl (1−i B/bl )]e
∑

j trlog[−i B(1+ic j /B)]〉 (7.122)

The following constraint for bl eliminates the term B2 in the Gaussian distribution,

N1∑
l

1

bl
= 0,

N1∑
l

1

b2l
= 1 (7.123)

http://dx.doi.org/10.1007/978-981-10-3316-2_4
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and constraints for c j

N2∑
j=1

c j = 0,
N2∑
j=1

c2j = 0, . . . ,
N2∑
j=1

cmj �= 0 (7.124)

provides (7.122) in the scaling limits N1, N2 → ∞,

Z = 1

Z0

∫
dBec trB−m+N2trlogB+trBΛ (7.125)

where Z0 and c are normalization constants, and B is Hermitian matrix. This anti-
polynomial matrix model with external source becomes equivalent to (7.120) when
there is no logarithmic term. Thus we found for negative p case that the character-
istic polynomials of duality formula in (4.2) gives the partition function Z of anti-
polynomial matrix model with logarithmic term, which has been discussed in [98].
Also by the tuning of external source bl and c j , from the characteristic polynomial,
we obtain

Z =
∫

dBe
∑

m1
cm1 trB

m1+∑
m2

cm2 trB
−m2+N2trlogB+trBΛ (7.126)

and we will discuss in Chap. 8, open intersection numbers for Kontsevich-Penner
model for which all coefficients cm1 and cm2 are vanishing except cm1=3. In Chap. 10,
Gromov Witten theory of P1 for stationary sector is shown to be related to above
partition function.

7.6 The Negative Value p = −2

For p = −2, the one-point function reads [30]

U (σ ) = 1

σ

∮
du

2iπ
e− 1

u+σ
+ 1

u (7.127)

The contour in the u-plane is parallel to the imaginary axis through the point u =
− 1

2 at which 1
u(u+1) is a maximum in the real direction. The change of variable

u = 1
2 (−1 + i

x
√

σ
) gives

U (σ ) = − 1

4π
√

σ

∫
dx

x2
e− 4x2

1+σ x2 (7.128)

The expansion forl σ small reduces to Gaussian integrals.

http://dx.doi.org/10.1007/978-981-10-3316-2_4
http://dx.doi.org/10.1007/978-981-10-3316-2_8
http://dx.doi.org/10.1007/978-981-10-3316-2_10
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U (σ ) = 1

2
√

πσ

(
1

8
σ − 9

3!27 σ 2 + 9 · 25
5!29 σ 3 − 32 · 52 · 7

218
σ 4 + · · ·

)
(7.129)

This expansion is indeed the same as the limit when p → −2 from the general
p-spin curve case of (7.24)–(7.27).

U (σ ) = 1

Nσ
1+ 1

p π

[
Γ

(
1 + 1

p

)
− p − 1

24
yΓ

(
1 − 1

p

)
+ · · ·

]
(7.130)

with y = σ
2+ 2

p . Since the expansion of U (σ ) in (7.21) for positive p was derived
from the Gaussian integrals, the small σ expansion due to this Gaussian integrals
can be obtained for negative value of p cases from the analytic continuation from
positive to negative values of p.

This result has a relation to the unitary matrix model with an external source,
which has been considered before as a simple gauge theory. It is

Z =
∫

dUexp[tr(C†U + CU †)] (7.131)

where U is N × N unitary matrix (U †U = 1), and the external source matrix C is a
given fixed complex matrix. Gross andWitten [71] found the third order transition at
some critical value gc, (C = N

g2 ), and Brézin and Gross [12] found also a third order

transition governed by the parameter tr(C†C)− 1
2 . This model has a weak coupling

expansion, i.e. when the eigenvalues λi of C†C are large, in terms of the parameters

tm =
N∑
i=1

1

λ
m− 1

2
i

= tr(C†C)m− 1
2 (7.132)

This unitary matrix model is equivalent to an Hermitian matrix model,

ZB =
∫

dBetr
1
B +ktrlogB+trBΛ (7.133)

with k = −N . Here the matrix B is Hermitian N × N , and Λ is an external source.
This equivalence has been noted by Mironov et al. [98]. The logarithmic term is
similar to the Kontsevich-Penner model, which will be discussed in the next chapter.

Let us return to the duality formula in Theorem 4.1.1,

∫
n×n

dM
N∏

α=1

det(λα − M)e− 1
2 trM

2+trMA =
∫
N×N

dB
n∏
j=1

det(a j − i B)e− 1
2 trB

2+trBΛ

(7.134)

http://dx.doi.org/10.1007/978-981-10-3316-2_4
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when the external source a j vanishes. The r.h.s. coincides with ZB in (7.133) for
n = k.Whenwe take the zero-rplica limit n → 0, the s-point functionU (σ1, . . . , σs)

gives the Fourier transform of r.h.s. of (7.133) with s = N .
The weak coupling expansion of the unitary matrix model has been obtained by

[37], and it reads

ZB = 1

(
∏

λi )
k+1
2 Δ(λ)

det

⎛
⎝ 1

λ
j−1
2

i

Ik+ j (2
√

λi )

⎞
⎠

i, j

(7.135)

The large-λ expansion of the Bessel function is given by

Il(2
√

λ) = e2
√

λ√
4π

√
λ

(
1 − l2 − 1

4

4
√

λ
+ · · ·

)
. (7.136)

Defining

Z0 =
N∏
i〈 j

1√
λi + √

λ j

N∏
i=1

1

λ
k
2
i

e
∑

2
√

λi , (7.137)

the partition function ZB is expressed as

ZB = Z0

[
1 − (2k + 2N )2 − 1

16

N∑
i=1

1√
λi

+ ((2k + 2N )2 − 1)((2k + 2N )2 − 9)

512

(
N∑
i=1

1√
λi

)2

+ ((2k + N )2 − 1)((2k + N )2 − 9)

3!46

⎛
⎝−8

N∑
i=1

1

(
√

λi )3
+ ((2k + 2N )2 − 17)

(
N∑
i=1

1√
λi

)3⎞
⎠

+ · · ·
]
. (7.138)

When k = −N , this expression reduces to the partition function of the unitary
matrix model. The above expansion can be compared with the expansion of U (σ )

for p = −2 and it will be discussed later [33].

U (σ ) = − 1

2
√

πσ

(
−σ

1

8
(4k2 − 1) + σ 2 1

3!27 (4k2 − 1)(4k2 − 9)

− σ 3 1

5!29 (4k2 − 1)(4k2 − 9)(4k2 − 25) + σ 4 1

21 · 218
4∏
j=1

(4k2 − (2 j − 1)2)

− σ 5 1

135 · 222
5∏
j=1

((4k2 − (2 j − 1)2) + O(σ 6)

)
, (7.139)
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which is derived from

U (σ ) =
∮

du

2π i
e

1
σu(u+1)

(
u + 1

u

)k

. (7.140)

Also from the expression of U (σ ) for general p of (7.21), this expansion for k = 0
is obtained by putting p = −2.

Note that the constraints of (7.123) and (7.124) of ai provide the expression of
U (σ ) as

U (σ ) =
∮

du

2π i

N∏
i=1

u − a j + σ

u − a j
e

1
2 σ 2+uσ

=
∮

du

2π i

N1∏
l=1

1 − (u + σ)/bl
1 − u/bl

N2∏
j=1

(
u + σ

u

) (
1 + c j

u+σ

1 − c j
u

)
euσ+ 1

2 σ 2

=
∫

du

2π i

(
u + σ

u

)N2

ec[
1

(u+σ)m − 1
um ]

. (7.141)

This leads to (7.140) for p = −2 andgives the general negative values of p expression
(m = |p| − 1).

This equivalence between the two models for N = 0 (replica limit), may be seen
also from the Virasoro equations, which were derived by Gross and Newman [70].

∂2ZU

∂Cab∂C
†
bc

= δac ZU (7.142)

ZU is function of the eigenvalues λi of CC† only, and this equation becomes [12]

∂2ZU

∂λ2
a

+
∑
a �=b

1

λa − λb

(
∂ZU

∂λa
− ∂ZU

∂λb

)
= 1

λa

(
ZU −

∑
b

∂ZU

∂λb

)
. (7.143)

This leads to the differential equations. With ZU = Z0Y , it becomes

−∂0Y =
∞∑
k=0

(
k + 1

2

)
t k∂kY + 1

16
Y

−∂nY =
∞∑
k=0

(
k + 1

2

)
t k∂k+nY + 1

4

n∑
k=1

∂k−1∂n−kY, (n ≥ 1) (7.144)

with t k = − 1
2k+1

∑
b(

1
λb

)k+ 1
2 and ∂k = ∂

∂t k
. Note that these equations, are consistent

with (7.139) for p = −2 by appropriate renormalization of tn , but there is noVirasoro
operator L−1 in this unitary matrix model. The differential equations of (7.144) can
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be solved, restricted to single tn terms,

logY = − 1

42
t0 − 32

45
t1 − 52 · 32

47 · 2 t2 − 53 · 32 · 72
411

t3 + · · · (7.145)

and one finds by a multiplication of appropriate normalization factors, it agrees with
the single sum terms in logZ of (7.138). For the comparison of Y with the expansion
of U (σ ) of p = −2 in (7.21), both expressions agree with normalization factors,
i.e. (−1)k+1(2k + 1)Γ (k + 1

2 )/Γ ( 12 ), which becomes −1, 3/2, −15/4, 3 · 5 · 7/23,
…. This gamma factor is due to the definition of U (σ ),which has Laplace (Fourier)
transform of one particle density of state, and the definition of t̄k . By multiplication
of these factor to U (σ ), we obtain above logY , since

U (σ ) = 1

16
σ 1/2 − 3

29
σ 3/2 + 5 · 3

213
σ 5/2 − 3 · 52 · 7

219
σ 7/2 + · · · . (7.146)

The strong coupling expansion for this unitary matrix model follows from the
expansion of the Bessel functions for small arguments; it yields

Z = C

⎛
⎝1 + 1

N

∑
i

λi + 1

2(N 2 − 1)

(∑
i

λi

)2

− 1

2N (N 2 − 1)

∑
i

λ2
i + O(λ3)

⎞
⎠

(7.147)

where C is a constant.
The equivalent one point function from the p-spin curve correlation function at

p = −2, after the shift u → (u − 1)/2, is

U (σ ) = 1

2

∮
du

2iπ
e

4
σ(u2−1)

(
u + 1

u − 1

)k

= 1

2

∞∑
m=1

4m

m!σm

∮
du

2π i

1

(u2 − 1)m

(
u + 1

u − 1

)k

(7.148)

where k = −N . This contour integral is around the origin, but since the integral falls
off at infinity, it is replaced by the contour over the discontinuities across the cuts
which run from (1,∞) and (−∞,−1). This contour integral becomes

∮
du

2iπ
e

4
σ(u2−1)

(
u + 1

u − 1

)k

= − 2

π
sinπk

∫ ∞

1
dx

(x + 1)k−m

(x − 1)k+m
(7.149)

which vanishes when k is integer. With an Euler beta function, one finds

∫ ∞

1
dx

(x + 1)k−m

(x − 1)k+m
= 21−2m(2m − 2)!Γ (−k − m + 1)

Γ (−k + m)
. (7.150)
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With the expression

Γ (−k − m + 1)

Γ (−k + m)
= 1

k

m−1∏
l=1

1

k2 − l2
(7.151)

up to an additional constant and to an overall factor, one finds

U (σ ) =
∞∑

m=1

(2m − 2)!
m!σm

1

N

m−1∏
l=1

1

N 2 − l2
(7.152)

where k = −N is inserted. The expansion for large σ corresponds to the strong
coupling of (7.147) since 1

σm = ∑
i λ

m
i . Therefore the strong coupling expansion

of the unitary matrix model is indeed recovered from the p-spin curve result with
p = −2 [33]. The poles in this strong coupling expansion is an anomaly noted by
de Wit-’t Hooft, but not a real divergence [49, 120].

7.7 Gauged WZWModel of SU(2)k/U(1),
SL(2, R)k/U(1) and Black Hole

The Wess-Zumino-Witten (WZW) model [131, 133] of a conformal field theory has
interesting relation to random matrix theory with an external source. The random
matrix theory with external source provides p-th degenerate singularities, as shown
in previous sections, and and their singularities are equivalent to the singularity of
SU (2)k/U (1) Wess-Zumino -Witten model, or conformal Wess-Zumino algebra,
where the level k is related to p as p = k+2. The matrix model can be interpreted as
conformal field theory [90] without external source. The relation of Wess-Zumino-
Witten model for SU (2)k/U (1) coset space to p-th spin curves of Riemann surface,
generated by random matrix theory with external source, is more intriguing. This
relation can be seen in the Virasoro algebra of p-th generalized KdV hierarchy. In
the following, we show the correlation function of Wess-Zumino-Witten model for
SU (2)k/U (1) case, which is related to n-point correlation function ofU (σ1, . . . , σn)

for p-th spin curves.
The Wess-Zumino-Witten model is described by the two-dimensional non-linear

σ model with a metric ρi j plus an additional Γ (ĝ) term [88, 116, 133],

I (ĝ) = − 1

8π

∫
Σ

d2σ
√

ρρi j tr(ĝ−1∂i ĝ · ĝ−1∂ j ĝ) − iΓ (7.153)

where ĝ runs over a compact Lie group. When Σ is a Riemann surface without
boundary, the Γ (ĝ) reads

Γ (ĝ) = 1

12π

∫
B
d3σεi jk tr(ĝ−1∂i ĝ · ĝ−1∂ j ĝ · ĝ−1∂k ĝ)· (7.154)
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where ∂B = Σ . The full action is I (ĝ) multiplied by an integer k, which becomes
the number of level.

S = k I (ĝ). (7.155)

The current algebra of Wess-Zumino-Witten model has been clarified by [88]. The
extension to cyclic discrete group ZN , including two dimensional Ising model
(N = 2) and three state Potts model (N = 3), has been analyzed by parafermion
current algebra [138].

For the gauged WZW model of coset space SU (2)/U (1), the coset of the Lie
group for ĝ is made of 2 × 2 matrices, and the correlation functions are [136]

〈Un1(z1) · · ·Uns (zs)〉 = 〈g11(z1)n1 · · · g11(zs)ns 〉 (7.156)

where Un(z) = gn11 = einφ(z), and g11 is a (1,1) component of a coset of the Lie
group ĝ,

ĝ =
(
eiφ 0
0 e−iφ

)
. (7.157)

The three point function is given by the so called φ−a system, a being a connection,

〈ein1φ(z1)ein2φ(z2)ein3φ(z3)〉 =
∫

DφDae
i
2π

∫
Σ

φ·((k+2) f + R
2 ) · ein1φ(z1)ein2φ(z2)ein3φ(z3)

(7.158)
where f and R are curvature of U (1) field and Ricci scalar of Σ . This is non-
vanishing iff n1 +n2 +n3 = k. This result is well known as chiral algebra ofN = 2
minimal model at level k = p − 2.

〈Un1(z1)Un2(z2)Un3(z3)〉 = δn1+n2+n3,k . (7.159)

This is a chiral ring for genus zero. We have indeed found in (7.83),

〈τ0,n1τ0,n2τ0,n3〉g=0 = δn1+n2+n3,k . (7.160)

For genus g, the gravitational operator τr (Un) can be introduced as r -th gravitational
descendant of primary field Un , and their correlation function is expressed by the
formula of the intersection numbers of (7.3).

These considerations exhibit the relation between the parameter p of the p-spin
curves and the level k of SU (2)k/U (1) coset space as

p = k + 2. (7.161)

This shows that gauged WZW conformal field theory for SU (2)k/U (1) is equiv-
alent to the present moduli space of p-spin curves. This WZW model has aN = 2
supersymmetry, and the central charge c becomes
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c = 2 − 6

p
= 2 − 6

k + 2
. (7.162)

The central charge c of the N = 2 supersymmetric minimal model is 3k/(k + 2)
and the central charge of gauged WZW model is (−1) from the above value due to
U (1) gauge field. Thus the intersection numbers of themoduli space of p-spin curves
describes the correlation functions of the gauged WZWmodel with level k = p−2.
There are interesting relations of p spin curve to parafermion theory, which deals
with the cyclic group Z p−2. The central charge c is same for both theories as (7.162)
[138]. When p = 4, it gives c = 1/2, which is the central charge of two dimensional
Isingmodel. Two dimensional 3-state Pottsmodel, which has central charge c = 4/5,
is relevant to p = 5 spin curve since the central charge in (7.162) coincides with 4/5.

We turn to the non compact case for p < 0. At the transition point of the unitary
matrix model in Sect. 7.5, some relations to a black hole have been discussed [6,
123]. The two dimensional black hole of the symmetry SL(2, R)/U (1) has been
investigated [46, 137]. The two dimensional current algebra of SL(2, R)/U (1) is
known to be unitary, and the coset SL(2, R)/U (1) is a modular invariant model.
The gauged WZW model of this SL(2, R)k/U (1) is a realization of the analytic
continuation of k, from positive to negative value, k → −k of SU (2)k/U (1) WZW
model, since SL(2, R) has a signature (−,+,+) [54].

The central charge c for the coset SL(2, R)k/U (1) with level k is therefore,

c = 3k

k − 2
− 1 = 2 + 6

k − 2
. (7.163)

Comparing to the relation c = 2 − 6/p, we find |p| = |k| − 2, where p is negative
spin value of p-spin curve. There are two interesting regions: (i) k → ∞, where the
σ model couples weakly to the black hole, and (ii) k = 9

4 , (p = − 1
4 ), which means

that the black hole has a central charge c = 26, and it is described by a bosonic
string.

The gauged WZW model is described by the choice of g as [137]

g = coshr + (sinhr)

(
cos θ sin θ

sin θ − cos θ

)
(7.164)

with θ = i t ; it has a Lorentz signature,

dσ 2 = dr2 − (tanh2r)dt2 (7.165)

and the black hole solution has been obtained.
Let us now consider the limit p → −∞. Since the analytic continuation from

positive p to negative value p is valid, this limit corresponds also to p → ∞.
From the expression of the intersection numbers for p-spin curves, the limit

p → −∞ has been obtained in [35]. Starting form
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U (σ ) = 1

Nσ

∫
du

2iπ
exp

[
−

((
u + 1

2
σ

)p+1

−
(
u − 1

2
σ

)p+1
)]

(7.166)

with σ → σ/p and u p+1 = x2, one finds in the limit p → ∞,

U (σ ) = 2

Nσ

∫
dx

2iπ
x−1+ 2

p e− 2c
p+1 x

2(sh σ
2 )

= 2

Nσ
Γ

(
2

p

) (
2c

p + 1
sh

σ

2

)− 1
p

. (7.167)

This is expanded as

U (σ ) = 2

Nσ
Γ

(
2

p

) (
2c

p + 1

)− 1
2 (σ

2

)− 1
p

[
1 − 1

p
log

(
sh

(
σ
2

)
(

σ
2

)
)]

. (7.168)

Expanding now

log

[
sh( σ

2 )

( σ
2 )

]
=

∞∑
n=1

(−1)n−1 Bnσ
2n

(2n)!2n (7.169)

and dropping the irrelevant terms, we find

U (σ ) =
[
1 − 1

p

∞∑
n=1

(−1)n−1 Bn

(2n)!2n σ 2n

]
p

Nσ
Γ

(
1 + 2

p

)
. (7.170)

This large p limit gives the intersection numbers with one marked point.

Proposition 7.7
The intersection numbers of moduli space of p spin curve of one marked point is

given in the large p limit as

lim
p→∞〈τn,m〉g = (−1)g

Bg

(2g)!(2g) p
g. (7.171)

The Bernoulli numbers Bg which appear in this expression, are indeed the same
as in the p → −1 limit. The difference of numerical factor comes from the gamma
function in (7.25)–(7.32).

From the relation

1

eσ − 1
+ 1

2
− 1

σ
= − d

dσ
(σU (σ )) =

∞∑
n=1

(−1)n−1 Bn

(2n)!σ
2n−1 (7.172)

and by the expression of digamma function,
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d

dz
logΓ (z) = logz − 1

2z
− z

d

dz

∫
dσU (σ )e−σ z, (7.173)

the density of state ρ(E) is expressed in this limit as

ρ(E) = d

dE
Im(logΓ (i E)) − π

2
− 1

2E
. (7.174)

This density of state is related to the density of state of the black hole of
SL(2, R)/U (1). [35, 73, 79, 94]. Note that this coincides also with the asymptotic
density of the non trivial zeros of the ζ -function on the critical line.



Chapter 8
Open Intersection Numbers

The intersection numbers are defined on the moduli space of Riemann surface with
s-marked points and genus g. When Riemann surface is cut and has boundary, the
open intersection numbers appear. There appear open strings which touch to the
boundary. Recent development shows that the intersection numbers of moduli space
is described by Kontsevich–Penner model, which is Kontsevich Airy matrix model
with the logarithmic potential (Penner model) [4, 112]. This Kontsevich–Penner
model has been studied, and we derived from two-matrix model, which originates
from time dependent Gaussian matrix model with an external source [32, 34].

8.1 Two Matrix Model

The time dependent Gaussian matrix model can be introduced from the Hamiltonian,

H = 1

2
trṀ2 + 1

2
trM2 (8.1)

M(t) are time-dependent Hermitian matrices, Ṁ their time derivatives [19, 32]. This
is a matrix generalization of a quantum particle in an harmonic potential. Starting
from a path integral formulation of this time dependent matrix model one can reduce
it to a two-matrix model corresponding to the boundaries of the paths [19].

Therefore we consider a two-matrix Gaussian model

P(M1, M2) = 1

Z
exp

(
−1

2
trM2

1 − 1

2
trM2

2 − ctrM1M2 + trM1A

)
(8.2)

where M1 and M2 are N × N Hermitian matrices; c is a coupling constant, which
is related to the total time of the path by c = e−t . It vanishes for t → ∞. A is an

© The Author(s) 2016
E. Brézin and S. Hikami, Random Matrix Theory with an External Source,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-981-10-3316-2_8

99



100 8 Open Intersection Numbers

external source with eigenvalues ai , and Z a normalization constant. The duality
for the two matrix model with an external source has been investigated in [32]. The
characteristic polynomial for k1 + k2 points are defined by

Fk1,k2 = 〈
k1∏

α=1

det(λα − M1)

k2∏
β=1

det(μβ − M2)〉 (8.3)

where the average is over the distribution (8.2).

Proposition 8.1

Fk1,k2 =
∫

dB1dB2dDdD†exp

[
−N

2
tr(B2

1 + B2
2 + 2D†D) − i N

√
1 − c2trB1Λ1

−i N
√
1 − c2trB2Λ2 −

N∑
i=1

trlog(1 − Xi )

]
(8.4)

with

Xi =
(

i
√
1 − c2 B1

ai

√
c(1 − c2) D

ai

−√
c(1 − c2) D†

cai
−i

√
1 − c2 B2

cai

)
(8.5)

where B1 and B2 are Hermtian matrices, k1 × k1 and k2 × k2 respectively. D is a
complex k1 × k2 rectangular matrix. The eigenvalues of Λ1 are λα , and for Λ2 they
are denoted μβ , (α = 1, . . . , k1, β = 1, . . . , k2). The eigenvalues of the external
source A are ai , (i = 1, . . . , N).

Proof of Proposition8.1
The product of characteristic polynomials may be written as an integral over

Grassmann variables ψα
i and χ

β

i , with α = 1, . . . , k1 and β = 1, . . . , k2,

Fk1,k2 =
〈∫

dχ̄dχdψ̄dψeN [ψ̄α(λα−M1)ψα+χ̄β (μβ−M2)χβ ]
〉

(8.6)

Then the integrations over M1 and M2 lead to four-fermion terms that may be dis-
solved with the help of three auxiliary matrices: B1 a k1 × k1 Hermitian matrix, B2

a k2 × k2 Hermitian matrix and D a complex k1 × k2 rectangular matrix. From the
identities

e
− N

2(1−c2)
ψ̄ψψ̄ψ =

∫
dB1e

− N
2 trB

2
1+ i N√

1−c2
trB1ψ̄ψ

e
− N

2(1−c2)
χ̄χχ̄χ =

∫
dB2e

− N
2 trB

2
2+ i N√

1−c2
trB2χ̄χ

e
Nc

1−c2
ψ̄χχ̄ψ =

∫
dDdD†e−N trD†D+N

√ c
1−c2

tr(Dψ̄χ+D†χ̄ψ) (8.7)
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after Gaussian integration over M1 and M2, and the shifts B1 → B1 + i
√
1 − c2

λα,α′δα,α′ and B2 → B2 + i
√
1 − c2μβ,β ′δβ,β ′ one recovers the duality (8.4). �

We now expand log(1 − Xi ) in powers of Xi , and consider the case all
ai = a = 1 − c2. The quadratic term trB2

1 cancels with the one coming from from
the expansion of log(1 − X). Note that B2

2 is not cancelled due to the coupling con-
stant c. Given the factor N in the exponent, the edge scaling limit corresponds to
B1 ∼ O(N−1/3), B2 ∼ O(N−1/2), D ∼ O(N−1/3) in the large N limit, and the term
N tr(D†DB2) ∼ O(N−1/6) become negligible. Then, in the large N limit, we obtain

Z =
∫

dB1dD
†dDe−i trB1Λ1+ i

3 trB
3
1+i trDD†B1 (8.8)

where the decoupled matrix B2 is integrated out. After the integration of matrices D†

and D, we obtain Kontsevichmatrixmodel with a logarithmic potential, Kontsevich–
Penner model, [32]

Z =
∫

dB1e
i
3 B

3
1−k2trlogB1−i trB1Λ1 (8.9)

which turns out as the generating function of the open intersection numbers. The
matrix B is k1 × k1 matrix and if we put k2 by k, and k1 by N , we obtain Kontsevich–
Penner model.

8.2 The Kontsevich–Penner Model

The moduli space of curves has been studied for a closed Riemann surface. When
there is a boundary, such as a puncture disk, the boundary conditions requires a theo-
retical extension of the intersection number. When the marked points are located on
the closed cycle of boundary, the intersection numbers are called as open intersection
numbers, and this open intersection numbers leads to the extension of Kontsevich
intersection numbers. The algebraic and geometric investigations of the open inter-
section numbers attract interest. The study has been initiated by Pandharipande,
Solomon and Tessler [112], and the related open KdV hierarchy and open Virasoro
equation have been discussed [38, 39, 119].Amatrixmodel has been proposed for the
hierarchical structures [3–5]. The proposed matrix model is Kontsevich Airy model
with an logarithmic potential, Kontsevich–Penner model, which was discussed in the
previous Sect. 8.1.

Z =
∫

dMe− 1
3 trM

3+trMΛ+ktrlogM (8.10)

As discussed in the Sect. 7.6, (negative p = −2 case), the logarithmic potential term
appeared in the unitary matrix model, which was related to a strong coupling expan-
sion [98].

http://dx.doi.org/10.1007/978-981-10-3316-2_7
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Since this logarithmic term is exp(ktrlogM) = (detM)k , it is an insertion in the
partition function Z of (detM)k . Thismay be interpreted as an insertion of a boundary
or a brane.

Although the open intersection numbers are considered for k = 1 in [3], we take
a general case with arbitrary k. For this Kontsevich–Penner model, the same duality
technique can be applied; again the s-point function U (σ1, . . . , σs) is a generating
function of the intersection numbers.

For instance the intersection numbers for one marked point and genus 1 becomes

〈τ1〉g=1 = 1 + 12k2

24
(8.11)

and the intersection numbers of Kontsevich model, 〈τn〉, are with integer number n,
and integer g, aswe have discussed inChap.6, butwe have new terms forKontsevich–
Penner model, such as

〈τ0τ 1
2
〉g= 1

2
= k (8.12)

with half integer 1/2 for n, and with half integer g = 1/2. The appearance of half-
integer genera, a characteristic feature of open intersection numbers, is similar to the
case of non-orientable surfaces which will be discussed in the next chapter.

The generating function of the intersection numbers with one marked point is
U (σ ), due to duality and replica argument of previous sections, with

U (σ ) = 1

σ

∫
du

2π
e
− c

3

[
(u+ σ

2 )
3−(u− σ

2 )
3
]
+klog(u+ σ

2 )−klog(u− σ
2 ) (8.13)

Expanding this for small k, one obtains the intersection numbers for open bound-
aries. The intersection numbers computed by this method [34, 36] agree with the
results obtained by Virasoro equations, which will be discussed in the next section.

8.3 Open Virasoro Equations for the Kontsevich–Penner
Model

In this section, we discuss open Virasoro equation in relation with the Wn algebras.
Let us start again with the Kontsevich–Penner model

Z =
∫

dMetr(−
1
3 M

3+ΛM+klogM) (8.14)

with M Hermitian N × N matrix.
From the trivial equation of motion,

http://dx.doi.org/10.1007/978-981-10-3316-2_6
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∫
dM

∂

∂Mba
etr(−

1
3 M

3+ΛM+klogM) = 0 (8.15)

one obtains third order partial differential equation,

(
−

(
∂

∂Λ

)3

ab

+
(

ΛT ∂

∂Λ

)
ab

+ (N + k)δab

)
Z = 0 (8.16)

Since Z is a function of the eigenvalues λi of Λ, it is necessary to to trade this
equation for differential equations in terms of eigenvalues.

The matrix Λ has eigenvalues λ1, λ2, . . . and corresponding orthonormal eigen-
functions |φa〉.

Λ|φa〉 = λa|φa〉. (8.17)

An increment matrix dΛ is,

(Λ + dΛ)

(
|φ〉 + |dφ〉

)
= (λ + dλ)

(
|φ〉 + |dφ〉

)
(8.18)

and from this equation, we obtain at first order

(Λ − λa)|dφa〉 + (dΛ − dλa)|φa〉 = 0 (8.19)

Multiplying 〈φa| from the left side, it becomes

〈φa|dΛ|φa〉 = dλa (8.20)

In an arbitrary fixed orthonormal basis |b〉, it becomes

dλa = 〈φa|b〉〈b|dΛ|c〉〈c|φa〉 (8.21)

Therefore, we obtain the first formula,

∂λa

∂Λbc
= 〈φa|b〉〈c|φa〉 (8.22)

Note that 〈φa|b〉 = Uab, where U is a unitary matrix. From (8.19), multiplying by
〈φb| (b 	= a) the left hand side,

〈φb|dφa〉 = 1

λa − λb
〈φb|dΛ|φa〉 (8.23)

Therefore, we have
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|dφa〉 =
∑
b 	=a

1

λa − λb
|φb〉〈φb|dΛ|φa〉 (8.24)

from which follows the second formula,

∂〈b|φa〉
∂Λcd

=
∑
f 	=a

1

λa − λ f
〈b|φ f 〉〈φ f |c〉〈d|φa〉 (8.25)

The conjugate of this formula is

∂〈φa|b〉
∂Λdc

=
∑
f 	=a

1

λa − λ f
〈φ f |b〉〈c|φ f 〉〈φa|d〉 (8.26)

By the chain rule, we obtain the first derivative,

∂Z

∂Λab
= ∂λc

∂Λab

∂Z

∂λc

= 〈b|φc〉〈φc|a〉
(

∂Z

∂λc

)
(8.27)

The formula for higher derivatives of Z are obtained through a systematic use of
(8.22) and (8.25). For the second derivative, one obtains

(
∂2

∂Λ2

)
ab

Z =
(

∂

∂Λ

)
ad

(
∂

∂Λ

)
db

Z

= ∂

∂Λad

(
〈b|φc〉〈φc|d〉

(
∂Z

∂λc

))
(8.28)

Noting that

〈φc|d〉
(

∂Z

∂λc

)
∂

∂Λad
〈b|φc〉

= 〈φc|d〉
(

∂Z

∂λc

) ∑
f

1

λc − λ f
〈b|φ f 〉〈φ f |a〉〈d|φc〉

=
∑
d

〈b|φc〉〈φc|a〉
(

∂Z

∂λd

)
1

λd − λc
(8.29)

and
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〈b|φc〉
(

∂Z

∂λc

)
∂

∂Λad
〈φc|d〉

= 〈b|φc〉
(

∂Z

∂λc

) ∑
f

1

λc − λ f
〈φ f |d〉〈d|φ f 〉〈φc|a〉

= 〈b|φc〉〈φc|a〉
(

∂Z

∂λc

) ∑
d

1

λc − λd
(8.30)

we obtain

(
∂2

∂Λ2

)
ab

Z = 〈b|φc〉
(

∂2

∂λc
2 +

∑
d 	=c

1

λc − λd

(
∂Z

∂λc
− ∂Z

∂λd

))
〈φc|a〉 (8.31)

The third order differentiation is obtained by repeating the same procedure.Denot-
ing by Γc the operator

Γc = ∂2

∂λc
2 +

∑
d 	=c

1

λc − λd

(
∂

∂λc
− ∂

∂λd

)
(8.32)

one obtains

(
∂3

∂Λ3

)
pb

=
(

∂

∂Λ

)
pa

(
∂2

∂Λ2

)
ab

=
(

∂λc

∂Λpa

)
∂

∂λc

(
〈b|φc〉Γc〈φc|a〉

)

= 〈b|φc〉〈φc|p〉〈a|φc〉〈φc|a〉∂Γc

∂λc

+〈φc|p〉〈a|φc〉Γc〈φc|a〉∂〈b|φc〉
∂λc

+〈φc|p〉〈a|φc〉〈b|φc〉Γc
∂〈φc|a〉

∂λc
(8.33)

Therefore, we obtain

(
∂3

∂Λ3

)
ab

= 〈b|φc〉
(

∂Γc

∂λc
+

∑
d 	=c

1

λc − λd
(Γc − Γd)

)
〈φc|a〉 (8.34)

Using the identity,

1

(λc − λd)(λc − λe)
+ 1

(λd − λc)(λd − λe)
+ 1

(λe − λc)(λe − λd)
= 0 (8.35)

we obtain the expression in terms of eigenvalues
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(
∂3

∂Λ3

)
ab

= ∂3

∂λc
3

+
∑
d 	=c

1

λc − λd

(
∂

∂λc
− ∂

∂λd

) (
2

∂

∂λc
+ ∂

∂λd

)
−

∑
d 	=c

1

(λc − λd)
2

(
∂

∂λc
− ∂

∂λd

)

+ 2
∑
d 	=e,c

∑
e 	=c

1

(λc − λe)(λe − λd)

(
∂

∂λc
− ∂

∂λe

)
(8.36)

If we write

Γ (1)
c = ∂

∂λc
(8.37)

we have (
∂2

∂Λ2

)
ab

= 〈b|φc〉Γ (2)
c 〈φc|a〉 (8.38)

Γ (2)
c = ∂

∂λc
Γ (1)
c +

∑
d

1

λc − λd
(Γ (1)

c − Γ
(1)
d ) (8.39)

Repeating this procedure, if one defines

(
∂ p+1

∂Λp+1

)
ab

= 〈b|φc〉Γ (p+1)
c 〈φc|a〉 (8.40)

one finds

Γ (p+1)
c = ∂

∂λc
Γ (p)
c +

∑
d

1

λc − λd
(Γ (p)

c − Γ
(p)
d ) (8.41)

with the initial condition

Γ (1)
c = ∂

∂λc
(8.42)

Therefore, the third derivative for Z becomes

∂3Z

∂λc
3 +

∑
d 	=c

1

λc − λd

(
∂

∂λc
− ∂

∂λd

) (
2

∂

∂λc
+ ∂

∂λd

)
Z

−
∑
d 	=c

1

(λc − λd)2

(
∂

∂λc
− ∂

∂λd

)
Z

+ 2
∑
d 	=e,c

∑
e 	=c

1

(λc − λe)(λe − λd)

(
∂

∂λc
− ∂

∂λe

)
Z

− λc
∂Z

∂λc
− (N + k)Z = 0 (8.43)
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Finally, if one defines the parameters tn as

tn =
N∑
i=1

1

λ
n+ 1

2
i

(8.44)

where n takes both integer and half-integer values (n = 0, 1
2 , 1,

3
2 , . . .), one finds dif-

ferentials equation in terms of the tn . The appearance of half-integers is characteristic
of the Kontsevich–Penner model. The derivatives with respect to λ j are replaced by

∂

∂λ j
=

∑
n

∂tn
∂λ j

∂

∂tn
= −

∑
n

(
n + 1

2

)
1

λ j
n+ 3

2

∂

∂tn
(8.45)

∂2

∂λ j
2 =

∑
n

(
n + 1

2

) (
n + 3

2

)
λ j

n+ 5
2

∂

∂tn
+

∑
n

∑
m

(
n + 1

2

) (
m + 1

2

)
λ j

m+n+3

∂2

∂tn∂tm
(8.46)

∂2

∂λ1∂λ2
=

∑
n

∑
m

(
n + 1

2

) (
m + 1

2

)
λ1

n+ 3
2 λ2

m+ 3
2

∂2

∂tn∂tm
(8.47)

∂3

∂λ1
3 = −

∑
n

(
n + 1

2

) (
n + 3

2

) (
n + 5

2

)
λ1

n+ 7
2

∂

∂tn

−
∑
n

∑
m

(
n + 1

2

) (
m + 1

2

) (
2n + m + 9

2

)
λ1

n+m+4

∂2

∂tn∂tm

−
∑
n

∑
m

∑
j

(
n + 1

2

) (
m + 1

2

) (
j + 1

2

)
λ1

n+m+ j+ 9
2

∂3

∂tn∂tm∂t j
(8.48)

where n,m, j = 0, 1
2 , 1,

3
2 , 2, · · · .

The zero-th order contribution for large Λ, is obtained from the shift M → M +
Λ

1
2 ; then keeping only the terms which grow for large Λ one finds

Z0 =
∫

dMe−trM2Λ
1
2 + 2

3 trΛ
3
2 + k

2 trlogΛ

= 1∏
i, j (

√
λi + √

λ j )
1
2

e
2
3

∑
λ

3
2
i

∏
i

λ
k
2
i (8.49)

In the limit λi → ∞, the partition function reduces to Z0. Therefore, it is convenient
to express the partition function Z as

Z = Z0g(λ) (8.50)
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where g has an expansion in inverse powers of
√

λ :

g = 1 + O

(
1

λ
3
2

)
(8.51)

As observed in [34], the analysis for small numbers of N , for instance N = 2, is
useful. With the expansion in the power of λ

−(n+1/2)
1 , the equation of (8.43) reduces

to the equations of g of order λ−(n+1/2). By the use (8.44), we obtain the first equation
of order λ−1/2,

(
− ∂

∂t0
+ 1

4
t20 − k

2
t 1
2
+

∑
n=0, 12 ,1,...

(
n + 1

2

)
tn+1

∂

∂tn

)
g = 0 (8.52)

Using F̃ = lng, one obtain the string equation,

∂ F̃

∂t0
= 1

4
t20 − k

2
t 1
2
+

∑
n=0, 12 ,1,...

(
n + 1

2

)
tn+1

∂ F̃

∂tn
(8.53)

The next order is

(
− 2

∂

∂t 1
2

− kt0 − k

4
t 1
2

2 − k

2
t0t1 − 1

4
t0
2t 1

2
− 1

16
t 3
2

− 1

4
k2t 3

2

−
∑

n=0, 12 ,1,...

(2n + 1)tn+ 1
2

∂

∂tn
+ k

∑
n=0, 12 ,1,...

(
n + 1

2

)
tn+2

∂

∂tn

−1

2

∑
−i− j+k=− 3

2

(
k + 1

2

)
ti t j

∂

∂tk
− 1

2

∑
−i+ j+k=− 5

2

(
j + 1

2

) (
k + 1

2

)
ti

∂2

∂t j ∂tk

)
g = 0

(8.54)

The next order is proportional to λ1
− 3

2 , and we obtain the dilaton equation,

(
− 3

∂

∂t1
+ 1

16
+ 3

4
k2

+
∑

n=0, 12 ,1,...

(
1

2
+ n

)
tn

∂

∂tn
+

∑
n=0, 12 ,1,...

(
n + 1

2

)
tn+ 3

2

∂

∂tn

)
g = 0 (8.55)

These equations determine the free energy F̃ = lng up to order O(λ− 9
2 ),
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F̃ = 1

12
t30 +

(
1

48
+ 1

4
k2

)
t1 − 1

2
kt0t 1

2
+ 1

24
t30 t1

+
(

1

192
+ 1

16
k2

)
t21 − 1

4
kt0t 1

2
t1 − 1

24
kt31

2
+

(
1

32
+ 3

8
k2

)
t0t2 − 1

4
kt20 t 32

+ 1

4
k2t 1

2
t 3
2
− 1

6
(k + k3)t 5

2

+ 1

64
t40 t2 − 1

6
kt30 t 52 + 1

48
t30 t

2
1 +

(
5

128
+ 15

32
k2

)
t20 t3

− 3

16
kt20 t 12 t2 − 1

4
kt20 t1t 32 − 1

2
(k + k3)t0t 7

2
+ 1

2
k2t0t 1

2
t 5
2

+
(

1

32
+ 3

8
k2

)
t0t1t2 + 1

4
k2t0t

2
3
2
− 1

8
kt0t

2
1
2
t 3
2
− 1

8
kt0t 1

2
t21

−
(
15

64
k + 5

16
k3

)
t 1
2
t3 + 3

16
k2t21

2
t2 + 1

4
k2t 1

2
t1t 3

2
− 1

6
(k + k3)t1t 5

2

+
(

1

576
+ 1

48
k2

)
t31 −

(
1

8
k + 1

4
k3

)
t 3
2
t2 + 1

9

(
105

1024
+ 735

128
k2 + 105

64
k4

)
t4

− 1

24
kt31

2
t1 (8.56)

This expansion agrees with the result of [4] by the changes of our parame-
ters to the parameters of A.2 in [4] as k → −N , tn → (2n + 1)2(2n+1)/3t2n+1, (n =
0, 1/2, 1, 3/2, 2, . . .), due to a different normalization of Kontsevich–Penner model
of (8.14). To express these equations in a more compact form, it is convenient to
introduce the differential operators J (k)

n , obtained as follows [1]. First let us denote
by xn ,

xn = 1

n
t n−1

2
(8.57)

Then the differential operators

Jm
(1)(x) = ∂

∂xm
− mx−m, (m = . . . ,−2,−1, 0, 1, 2, . . .) (8.58)

and xm = 0 for x ≥ 0. We now define J (2)
m from J (1)

m as

J (2)
m =

∑
i+ j=m

: J (1)
i J (1)

j : (8.59)

where : · · · : means a normal ordering, i.e. pulling the differential operator to the
right. Then we obtain

Jm
(2) =

∑
i+ j=m

∂2

∂xi∂x j
+ 2

∑
−i+ j=m

ixi
∂

∂x j
+

∑
−i− j=m

(i xi )( j x j ) (8.60)
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Jm
(3) =

∑
i+ j+k=m

: J (1)
i J (1)

j J (1)
k :

=
∑

i+ j+k=m

∂3

∂xi∂x j∂xk
+ 3

∑
−i+ j+k=m

ixi
∂2

∂x j∂xk

+ 3
∑

−i− j+k=m

(i xi )( j x j )
∂

∂xk
+

∑
−i− j−k=m

(i xi )( j x j )(kxk) (8.61)

where i, j, k = 1, 2, 3, . . .
Returning to the variables tn

xn = 1

n
t n−1

2
, (8.62)

we find

J (2)
−4 = 2t0t1 + t21

2
+ 4

∑
n=0, 12 ,1,...

(
n + 1

2

)
tn+2

∂

∂tn
(8.63)

J (2)
−2 = t20 + 2

∑
n=0, 12 ,1,...

(2n + 1)tn+1
∂

∂tn
(8.64)

J (2)
−1 = 4

∑
n=0, 12 ,1,...

(
n + 1

2

)
tn+ 1

2

∂

∂tn
(8.65)

J (2)
0 = 4

∑
n=0, 12 ,1,...

(
n + 1

2

)
tn

∂

∂tn
(8.66)

From (8.61), we have

J (3)
4 = 3t20 t 12 + 3

∑
−i+ j+k=− 5

2

(2 j + 1)(2k + 1)ti
∂2

∂t j∂tk

+ 3
∑

−i− j+k=− 3
2

(
k + 1

2

)
ti t j

∂

∂tk
(8.67)

Then, the first Virasoro constraint is

(
− ∂

∂t0
+ 1

4
J (2)
−2 − k

2
t 1
2

)
g = 0 (8.68)

The second equation becomes
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(
− 2

∂

∂t 1
2

− kt0 − 1

16
t 3
2
− k2

4
t 3
2
− 1

12
J (3)
−4 + k

4
J (2)
−4 − 1

2
J (2)
−1

)
g = 0 (8.69)

The third equation is expressed by

(
− 3

∂

∂t1
− 1

16
− 3

4
k2 + kt0t 1

2
− 1

4
J0

(2) − 1

4
J−3

(2)

)
g = 0 (8.70)

The differential operator J (3)
m appears only at order λ−n

1 (n = 1, 2, 3,…). This is
similar to the p-spin generalized Kontsevich model without logarithmic term, where
the spin 0 equations are described by J (2)

n and the spin non-zero equations by J (3)
m

[43].
If we define the differential operators Lm as

Ln = 1

4
J (2)
2n (8.71)

those Ln have the commutation relations

[Ln, Lm] = (n − m)Ln+m (8.72)

The structure of the generating function for open intersection numbers obeysW (3)

algebra [60], which is known to have different operators Mn in addition to above Ln ,
and these algebraic structures have been studied [5, 119]. It is interesting to consider
the open intersection numbers of the moduli space of p-spin curve.

From the duality and replica method in the previous sections, by the expression
of U (σ1, . . . , σs), these open intersection numbers has been studied [36], and their
results agree with the evaluation of (8.56).



Chapter 9
Non-orientable Surfaces from Lie Algebras

9.1 Intersection Numbers from the Lie Algebras
o(N) and sp(N)

Usually Feyman diagrams related to real symmetric matrices are used for generating
non-orientable surfaces. The Euler characteristics of non-orientable surfaces have
been derived from real symmetric matrices [68]. There are also studies of integrable
systems which satisfies the Drinfeld–Sokolov hierarchy [56], and they are related to
non-orientable surfaces [47, 59].

However the lack of HarishChandra formula for such cases, makes it necessary
to turn to alternative models. As explained in Sect. 4.3, the HarishChandra formula
holds also for the Lie algebras of o(N ) and sp(N ). The corresponding matrix models
o(N ) and sp(N ) (real antisymmetricmatrices and symplecticmatrices) produce non-
orientable surfaces. So we shall now consider the corresponding matrix models.

X ∈ o(2N )Lie algebra

When the random matrix X varies over a classical Lie algebra, with Gaussian
distribution, the n-point correlation function in an external source may be obtained
again in closed form, using the HarishChandra localisation formula [77]. We have
discussed in an earlierwork suchmodelswith an external source [23, 31]. In Sect. 4.3,
the duality formula for characteristic polynomials has been discussed.

We rewrite the duality formula of Sect. 4.3,

〈
k∏

α=1

det(λα · I − X)〉A = 〈
N∏

n=1

det(an · I − Y )〉Λ (9.1)

where X is a 2N × 2N real antisymmetric matrix (Xt = −X ) and Y is a 2k × 2k
real antisymmetric matrix; the eigenvalues of X and Y are thus pure imaginary. The
matrix source A is also a 2N × 2N antisymmetric matrix. The matrixΛ is a 2k × 2k

© The Author(s) 2016
E. Brézin and S. Hikami, Random Matrix Theory with an External Source,
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antisymmetric matrix, coupled to Y . We assume, without loss of generality, that A
and Λ take the canonical form:

By an appropriate tuning of the an’s, and a corresponding rescaling of Y and Λ,
one may generate similarly higher models of type p with the conditions (7.10),

Z =
∫

dYe− 1
p+1 trY

p+1+trYΛ (9.2)

where p is an odd integer.
The HarishChandra integral for the integral over g ∈ SO(2N ) group, and given

real antisymmetric matrices Y and Λ, reads

∫
SO(2N )

dgetr(gYg
−1Λ) = C

∑
w∈W

(detw)exp

[
2

N∑
j=1

w(y j )λ j

]

∏
1≤ j〈k≤N

(y2j − y2k )(λ
2
j − λ2

k)
(9.3)

whereC = (2N − 1)!∏2N−1
j=1 (2 j − 1)!, andw are elements of theWeyl group,which

consists here of permutations followed by reflections (yi → ±yi ; i = 1, · · · , N )
with an even number of sign changes.

For the one point function we obtain from the above formula, when X is a 2N ×
2N real antisymmetric random matrix,

U (σ ) = 1

2N
〈treσ X 〉A

= 1

2N

N∑
α=1

N∏
γ �=α

(
(aα + σ

2 )2 − a2γ
a2α − a2γ

)
eσaα+ σ2

4 + (σ → −σ)

= 1

Nσ

∮
du

2π i

(
(u + σ

2 )2 − a2γ
u2 − a2γ

)
u

u + σ
4

eσu+ σ2

4

(9.4)

where the contour encircles the poles u = aγ . Then, shifting u → u − σ
4 ,

U (σ ) = 1

Nσ

∮
du

2π i

N∏
i=1

(
u − σ

4

)2 − a2i(
u + σ

4

)2 − a2i

(
u − σ

4

u

)
eσu (9.5)

where the contour cycles around all poles at u = ai − σ
4 and u = −ai − σ

4 . Tuning
the external source to obtain the p-th degeneracy, one finds

U (σ ) = 1

Nσ

∫
du

2iπ
e
− c

p+1

[
(u+ σ

4 )
p+1−(u− σ

4 )
p+1

] (
1 − σ

4u

)
(9.6)

http://dx.doi.org/10.1007/978-981-10-3316-2_7
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Let us first specialize to specific values of p.

(1) p = 3

There are two terms in (9.6); the first term U (σ )OR is exactly one-half of U
(

σ
2

)
for the GUE (orientable Riemann surfaces). The second term is a new term, and
we denote it as the non-orientable part U(σ )NO , since it is related to non-orientable
surfaces with half-integer genus:

U (σ )OR = 1

2
U

(σ

2

)
= 1

12
√
3

[
J 1

3

(
1

12
√
3

(σ

2

)4
)

+ J− 1
3

(
1

12
√
3

(σ

2

)4
)]

= 1

2 · 3 1
3
(

σ
2

) 4
3

Ai

(
− 1

4 · 31/3
(σ

2

) 8
3

)
(9.7)

For non-orientable surfaces, from the condition for genus g, characteristics p of spin
curves, dimension n, and spin j in (7.22),

(p + 1)(2g − 1) = pn + j + 1 (9.8)

we find that the genus g is always a half-integer (g = 1
2 ,

3
2 ,

5
2 , . . .), and U(σ )

NO has

a series expansion in powers of σ
n+ 1+ j

p . For p = 3, we have

U (σ )NO = 1

4

∮
du

2π i

1

u
e− σ

2 u
3− σ3

32 u

= 1

12

∮
dx

2π i

1

x
e−x− 21/3

32 σ 8/3x1/3

= Re

{
1

12iπ

∫ ∞

0

1

x
e−x− 1

4 e
2π i
3 ( σ

2 )
8/3

x1/3
}

(9.9)

This function is expanded as

U (σ )NO = Re

{
1

12iπ

∫ ∞
0

dx
1

x
e−x

∞∑
n=0

1

n!
(

−1

4
e
2π i
3

(σ

2

)8/3
x1/3

)n
}

= − 1

π

1

48

(σ

2

) 8
3

(
sin

2π

3

)
Γ

(
1

3

)
+ 1

π

1

384

(σ

2

) 16
3

(
sin

4π

3

)
Γ

(
2

3

)

− 1

π

1

3! · 12 · 43
(σ

2

)8
(sin 2π) + 1

π

1

4! · 12 · 44
(σ

2

) 32
3

(
sin

8π

3

)
Γ

(
4

3

)
− · · ·
(9.10)

Using Airy functions, the p = 3 case is expressed as

U (σ ) = 1

2 · 31/3 (
σ
2

)4/3 Ai(x) − 1

4

∫ x

0
dx ′Ai(x ′) (9.11)

http://dx.doi.org/10.1007/978-981-10-3316-2_7
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with x = − 1
4·31/3

(
σ
2

)8/3
. TheAiry function Ai(z) and the integral of theAiry function

may be expanded as

Ai(z) = π

32/3

∞∑
n=0

1

n!Γ (
n + 2

3

)
(
1

3

)2n

z3n − π

34/3

∞∑
0

1

n!Γ (
n + 4

3

)
(
1

3

)2n

z3n+1

(9.12)∫ z

0
Ai(t)dt = π

32/3Γ
(
2
3

) z − π

34/3 · 2Γ (
4
3

) z2 + π

36 · 32/3Γ (
5
3

) z4 + · · · (9.13)

Inserting these expansions, we have for p = 3, π

sin( π
3 )

= Γ
(
1
3

)
Γ

(
2
3

)
.

U (σ ) = π

24Γ
(
1
3

) (σ

2

)4/3 − π

108 · 64Γ
(
2
3

) (σ

2

)20/3 + · · ·

+
⎡
⎣ π

48Γ
(
2
3

) (σ

2

)8/3 + π

384Γ
(
1
3

) (σ

2

)16/3 − π

864 · 44Γ ( 23 )

(σ

2

)32/3 + · · ·
⎤
⎦

(9.14)

U (σ ) = 〈τ1,0〉g=1Γ

(
1 − 1

3

) (σ

2

)1+ 1
3 + 〈τ6,1〉g=3Γ

(
1 − 2

3

)
32

(σ

2

)6+ 2
3 + · · ·

+
[

〈τ2,1〉g=3/2Γ

(
1 − 2

3

)
32

(σ

2

)2+ 2
3 + 〈τ5,0〉g=5/2Γ

(
1 − 1

3

)
34

(σ

2

)16/3

+ 〈τ10,1〉g=9/2Γ

(
1 − 2

3

)
38

(σ

2

)32/3 + · · ·
]

(9.15)

We have for p = 3,

U (σ )NO = 1

12
y2Γ

(
1 − 2

3

)
+ 1

24
y4Γ

(
1 − 1

3

)
+ 1

864
y8Γ

(
1 − 2

3

)
+ . . .

(9.16)
We have obtained for p = 3 the explicit intersection numbers for non-orientable

surfaces with one marked point. The intersection number 〈τ2,1〉g=3/2 corresponds to
a cross-capped torus. For g = 1/2 we are dealing with the topology of the projective
plane but for this case, the intersection numbers 〈τ 2

0,1〉g=1/2 are present only beyond
the two marked points level [31]. We have

〈τ1,0〉g=1 = 1

24
, 〈τ2,1〉g= 3

2
= 1

864
, . . . (9.17)
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(2) general p

Using the binomial expansion, one finds (y = 1
2

(
σ
2

)1+ 1
p )

U (σ ) = − 1

4ypN

∫
dtt

1
p −1e−t

[
1 − p(p − 1)

6
y2t1−

2
p + · · ·

]
×

[
1 + yt−

1
p

]

(9.18)
This is again the sum of two contributions, orientable (OR) and non-orientable

(NO). The odd powers in y correspond to the orientable contribution, which is the
same as for the unitary case; the even powers in y correspond to the non-orientable
case:

U (σ ) = U (σ )OR +U (σ )NO (9.19)

U (σ )OR is same as GUE with σ replaced by σ/2.
The first term in the above series expansion is divergent, and it should be regu-

larized. Discarding this divergent term, we give the series expansion up to order y8(
neglecting the phase factor sin

(
2πm
p

))
,

U (σ )NO = y2

24
(p − 1)Γ

(
1 − 2

p

)
+ y4

6! (p − 1)(p2 − 5p + 1)Γ

(
1 − 4

p

)

+ y6

7! · 9 (p − 1)(p − 3)(4p3 − 23p2 − 2p − 6)Γ

(
1 − 6

p

)

+ y8

7!33 · 10 (p − 1)(9p6 − 121p5 + 435p4 − 317p3

−167p2 − 471p − 43)Γ

(
1 − 8

p

)
+ O(y10) (9.20)

From this genus expansion, one obtains the intersection numbers of p-spin curves
for non-orientable surfaces.

(3) p = −1

We now consider the limit, p → −1, which we found to be related to the virtual
Euler characteristics. When we set p = −1 in (9.20), the Γ function term becomes
an integer, and this agrees with the intersection number of 〈τ1,0〉g , which gives a

factor Γ
(
1 − 1

p

)
= Γ (2) = 1 for the spin zero. We obtain

U (σ )NO = − 1

24
(2y)2 − 7

240
(2y)4 − 31

504
(2y)6 − 127

480
(2y)8 + · · · (9.21)

This series agrees precisely with the series expansion

U (σ )NO = −
∞∑
ĝ=1

1

2ĝ

(
22ĝ−2 − 1

2

)
Bĝ(2y)

2ĝ (9.22)
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where Bĝ is a Bernoulli number in (9.30). The coefficient of (2y)2ĝ is the same as
for the virtual Euler characteristics of the moduli space of real algebraic curves for
genus g and one marked point, which was derived from the Penner model of the real
symmetric matrix by Goulden et al. [68]. (We use for the half genuses in the list, 12 , 1,
3
2 , 2, …for a projective plane, Klein bottle, cross-capped torus, doubly cross-capped
torus, …, with the notation ĝ = 1, ĝ = 2, ĝ = 3,ĝ = 4, …, respectively [82], and
this is the reason for the appearance of the (2y)2ĝ factor in (9.21)).

Since we derived this from the antisymmetric o(2N ) Lie algebra, the coinci-
dence between o(2N ) lie algebra and GOE for the virtual Euler characteristics seems
remarkable.

χ NO(M̄g,1) = 1

2g

(
1

2
− 22g−2

)
Bg. (9.23)

This result may be obtained analytically to all orders. We now derive this result from
the integral form (2.23) replacing c by N . With p = −1, it becomes

U (σ ) = − 1

4Nσ

∫
du

(
u − σ

u + σ

)N (
1 + σ

u

)
(9.24)

With the change of variable u → σu,

U (s) = − 1

4N

∫
du

(
u − 1

u + 1

)N (
1 + 1

u

)
(9.25)

We divide it into two parts, U (σ )OR and U (σ )NO ,

U (σ )OR = − 1

4N

∫
du

(
u − 1

u + 1

)N

(9.26)

U (σ )NO = − 1

4N

∫
du

(
u − 1

u + 1

)N 1

u
(9.27)

We use the same change of variables as for the unitary case in (7.108),

U (σ )OR = 1

2N

∫
dye−Ny e−y

(1 − e−y)2
(9.28)

U (σ )NO = 1

2N

∫
dye−Ny e−y

(1 − e−y)2

(
1 − e−y

1 + e−y

)
= 1

4N

∫
dye−Ny

[
1

1 − e−y − 1

1 + e−y

]

(9.29)

It is interesting to note that both the Bose-Einstein and the Fermi-Dirac distributions
enter in the above integrand (9.29).

http://dx.doi.org/10.1007/978-981-10-3316-2_2
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If we use the expansions,

1

1 − e−y
= 1

y
+ 1

2
+

∞∑
n=1

(−1)n−1 Bn

(2n)! y
2n−1

1

1 + e−y
= 1

2
+

∞∑
n=1

(−1)n−1(22n − 1)

(2n)! Bn y
2n−1 (9.30)

then they become

U (σ )OR = 1

2N

∫
dy

1

y2
e−Ny − 1

2

∞∑
n=1

(−1)n−1 Bn

2n

1

N 2n

U (σ )NO = 1

4N

∫
dye−Ny + 1

4

∞∑
n=1

(−1)n−1 Bn

2n

1

N 2n+1

− 1

4

∞∑
n=1

(−1)n−1 (22n − 1)

2n
Bn

1

N 2n+1

= 1

4N

∫
dy

e−Ny

y
+ 1

4

∞∑
n=1

(−1)n−1 (2 − 22n)Bn

2n

1

N 2n+1
(9.31)

We now get from the above expression (replacing n by g),

χOR(M̄g,1) = −1

2
ζ(1 − 2g) = −1

2

(−1)g Bg

2g
,

χ NO(M̄g,1) = (−1)g−1 1

2g
(22g−2 − 2−1)Bg (9.32)

For s marked points, the result obtained from the real symmetric matrix Penner
model by Goulden et. al. [68] is

χ NO(M̄g,s) = (−1)s
1

2

(2g + s − 2)!(22g−1 − 1)

(2g)!s! Bg (9.33)

This result may be obtained by applying the Eq. (9.32) [35]. In this o(2N) model,
we have the following condition, the same as for Riemann surfaces with spin j and
s-marked points

(p + 1)(2g − 2 + s) = p
s∑

i=1

ni +
s∑

i=1

ji + s (9.34)

However, we have to consider half integer values of the genus g to represent non-
orientable surfaces [31].
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X ∈ o(2N + 1)Lie algebra

For so(2N + 1) Lie algebra, the matrix X is X = h1v ⊕ h2v ⊕ · · · hNv ⊕ 0. The
measure is V (H)2, V (H) = ∏

1≤ j≤N (h2j − h2k)
∏N

j=1 h j . The HarishChandra for-
mula is

I =
∫
SO(2N+1)

etr(gag
−1b)dg = CG(N )

∑
w∈G(N )

(detw)exp

(
2

N∑
j=1

w(a j )b j

)

∏
1≤ j≤k≤N

(a2j − a2k )(b
2
j − b2k )

N∏
j=1

a jb j

(9.35)

withCG(n) = ∏N
j=1(2 j − 1)!∏4N−1

j=2N j !. Comparedwith the o(2N ) case, this formula
differs from (9.3) by the presence of the term

∏
a jb j in the denominator. For the

one point function, we have

U (σ ) = 1

N

N∑
α=1

∫ ∞

−∞

N∏
i=1

dλi

∏
(λ2

i − λ2
j )

∏
λk∏

(a2i − a2j )
∏

ak
e− ∑

λ2
i +σλα+2

∑
aiλi (9.36)

This sum of integrals may be written as a contour integral, which collects poles at
u = a2i ,

U (σ ) =
∮

{u=a2i }
du

2π i

N∏
j=1

(
√
u + σ)2 − a2j
u − a2j

1

(
√
u + σ)2 − u

(
1 + σ√

u

)
eσ 2+2σ

√
u

= 2

σ

∮
dv

2π i

N∏
j=1

(v + σ)2 − a2j
v2 − a2j

v + σ

σ + 2v
eσ 2+2σv

= 1

σ

∮
dv

2π i

N∏
j=1

(
v + σ

2

)2 − a2j(
v − σ

2

)2 − a2j

(
1 + σ

2v

)
eσv (9.37)

By tuning to the p-th degeneracy, we obtain

U (σ ) = 1

σ

∮
du

2π i
e
− 1

p+1

(
(u+ σ

2 )
p+1−(u− σ

2 )
p+1

) (
1 + σ

2u

)
(9.38)

This takes the same form as for the o(2N ) case.

X ∈ sp(N )Lie algebra

The Haar measure of sp(N ) is Δ(λ)2, with Δ(λ) = ∏
i〈 j (λ

2
i − λ2

j )
∏

k λk .

The HarishChandra formula for sp(N ) reads [23]
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I =
∫
G
e〈Ad(g)·a|b〉dg =

∑
w∈W (detw)e〈w·a|b〉

Δ(a)Δ(b)

= C
det[2sinh(2aib j )]∏

(a2i − a2j )(b
2
i − b2j )

∏
(akbk)

(9.39)

For the one point function, we have

U (σ ) = 1

N

N∑
α=1

∫ ∞

−∞

N∏
i=1

dλi

∏
1≤i〈 j≤N

(λ2
i − λ2

j )
∏

1≤k≤N
λk

∏
1≤i〈 j≤N

(a2i − a2j )
∏

1≤k≤N
ak

e− ∑
λ2
i +σλα+2

∑
aiλi

=
∮

du

2π i

N∏
j=1

(
√
u + σ)2 − a2j
u − a2j

1

(
√
u + σ)2 − u

(
1 + σ√

u

)
eσ 2+2σ

√
u

= 2

σ

∮
dv

2π i

N∏
j=1

(v + σ)2 − a2j
v2 − a2j

v + σ

σ + 2v
eσ 2+2σv

= 1

σ

∮
dv

2π i

N∏
j=1

(
v + σ

2

)2 − a2j(
v − σ

2

)2 − a2j

(
1 + σ

2v

)
eσv (9.40)

where we have shifted v → v − σ
2 and aγ → aγ /2. This expression is identical to

that of the o(2N ) case, when we change v → 2v, up to a factor 2. Note that we do
not need to consider the replacement σ → σ

2 as in the o(2N ) case. The first term of
the expression is the same as for GUE. By tuning the aγ to the p-th case, we have

U (σ ) = 1

σ

∮
du

2π i
e
− 1

p+1

(
(u+ σ

2 )
p+1−(u− σ

2 )
p+1

) (
1 + σ

2u

)
(9.41)

We write these two terms asU (σ ) = U (σ )OR +U (σ )NO . It is then obvious that we
obtain the same intersection numbers and virtual Euler characteristics as with the
o(2N ) case.



Chapter 10
Gromov–Witten Invariants, P1 Model

The intersection numbers of p-spin curves is a simple example of more general
Gromov–Witten invariants, where the manifold X is a point.

Gromov–Witten invariants are the subjects of active research. Here one considers
only the simplest example of P1 case, which is related to this present book [36].
P1 means the complex projection manifold CP1 = SU (2)/U (1), and represents a
sphere of topology.

The definition of the Gromov–Witten invariants of the moduli spaceM g,s(P1, d),
for genus g, s marked points, manifold X = P1 and degree d, is given by

〈
l∏

i=1

τni (1)
s∏

i=l+1

τni (ω)

〉

g,d

=
∫
Mg,s (P1,d)

l∏
i=1

ci (Li )
ni

s∏
i=l+1

ci (Li )
ni evi (ω) (10.1)

where ω ∈ H 2(P1, Q) and 1 ∈ H 0(P1, Q), and ev∗
i (ω) ∈ H 2(M g,n(X, d), Q), evi

is morphism: M g,n(X) → X . H 2 and H 0 are cohomological classes. When X is
P1, it vanishes unless the condition for the moduli space M g,s(X, d) is satisfied,

2(g − 1) + s =
s∑

i=1

ni +
s∑

i=1

qi − 2d, (10.2)

where d is degree, ni is parameter defined as above, and qi (i = 1, . . . ,s) is U (1)
charge of instantons. In P1, there are cohomological two classes (1, ω). The ω class,
ω ∈ H 2(X, Q), is related to the instanton, π2(X) = Z (integers). We consider here
only stationary sector of the Gromov–Witten theory, i.e. ω class, which is integral
involving only the descendants of ω, since it is fundamental.

The matrix model for P1 has been studied with a logarithmic potential through
Virasoro equations [57]. By the duality (mirror symmetry), different matrix model
can be considered, which is

© The Author(s) 2016
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HGL = tr

(
M + 1

M

)
(10.3)

This is due to the form of the Ginzburg–Landau Hamiltonian HGL (a quantum ring
for the genus zero) for Pn is

HGL = M1 + · · · + Mn +
n∏

i=1

1

Mi
(10.4)

Since X = P1 is a sphere, the periodic covers are important, and therefore instead
of M , it is useful to consider

H = tr(eM + e−M) + trMA (10.5)

This form resembles to the sine-Gordon model. The P1 model (or supersymmetric
P1 model) is well known as a toy model of four dimensional gauge fields. It is
asymptotically free, namely the β-function of the renormalization group is negative
at the origin, and it has an instanton.

The intersection numbers of Gromov–Witten theory are holomorphic maps from
Riemann surface onto a target manifold, and p-spin curves corresponds to the point
target space. It corresponds to the supersymmetric nonlinear sigma model in two
dimensions, with a target manifold P1, which is known to be asymptotic free. We
will apply duality and replica method in previous sections to Gromov–Witten theory
of P1.

Recently, this Gromov–Witten theory for P1 has been studied from various point
of views [57]. The intersection numbers of stationary sector, ω class, for P1 have
been evaluated in [104, 109], and we will compare results with them.

The definition of the intersection numbers for s-marked point for stationary sector
is [108] 〈

s∏
i=1

τni (ω)

〉

g,d

=
∫
M g,s

s∏
i=1

c1(Li )
ni evi (ω) (10.6)

which may be compared the expression for p spin curve with the top Chern class
cD(V ) in (7.3),

〈
s∏

i=1

τni ,mi

〉

g

= 1

pg

∫
M

1/p
g,s

s∏
i=1

c1(Li )
ni cD(V ) (10.7)

Thematrixmodel for theGromov–Witten theory ofP1 is similar to theKontsevich
matrix model [2], which we will investigate below by applying the previous method
based on external source and duality. The partition function is

http://dx.doi.org/10.1007/978-981-10-3316-2_7
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ZP1(�) =
∫

dBe− 1
gs
tr(eB+qe−B−B�) (10.8)

where B is an n × n Hermitian matrix, and gs and q are coupling constants. The
partition function ZP1(�) is characterized by the parameters tn

tn = 1

n
tr

1

�n
(10.9)

which correspond to Toda times. The model is similar to the Kontsevich model, but
the fractional power seen in p-th Airy matrix model is not necessary. This model has
the form of a superpotential V (x) = ex + qe−x in genus zero, where q = et0,Q , which
appears in P1 problem [57]. This model is then similar to the sine-Gordon model,
and it seems reasonable since the supersymmetric P1 model has a close connection
to the sine-Gordon model for generating a mass.

Let consider the simplest case by taking n = 1, (n is the size of the matrix B, and
B is x), in (10.8); we find

ZP1(λ) =
∫ ∞

−∞
dxe− 1

gs
(ex+qe−x−xλ) (10.10)

When gs is small (gs ∼ 1
N , N → ∞), we use a saddle point approximation and

expand around the saddle point xc = log[(λ ± √
λ2 + 4q)/2]:

gs F = −λ log
λ ± √

λ2 + 4q

2
±

√
λ2 + 4q (10.11)

Taking xc = log[(λ + √
λ2 + 4q)/2], we find the expansion,

gs F+ = −λ logλ + λ + λ

∞∑
m=1

(
Γ ( 32 )

m!Γ ( 32 − m)
− (2m − 1)!!

(2m)!!(2m)

) (
4q

λ2

)m

= −λ logλ + λ + q

λ
− 7

2

q2

λ3
+ 2

3

q3

λ5
+ O(q5) (10.12)

The Gromov–Witten theory for P1 corresponds to the supersymmetric nonlinear
sigma model in two dimensions for P1 [41]. The form of F is consistent with a
supersymmetric P1 model with a curve of marginal stability, by identifying λ as a
mass m and q as a normalized scaling momentum �̃.

Since the form of the matrix model in (10.8) resembles Kontsevich model or the
p-th higher Airy matrix model with an external source, we can apply the duality
formula of Gaussian matrix model with an external source tuned to provide the
potential (10.8). Using the same replica method as in the p-th higher Airy matrix
model, we start withU (σ ). Using the duality formula of external source a j , we obtain
the general polynomial of B in (7.126),

http://dx.doi.org/10.1007/978-981-10-3316-2_7
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〈
N∏
i=1

det(a j − i B)

〉

�

=
∫

dBe
− 1

2gs
trB2+ 1

gs
trB�+

N∑
i=1

trlog(ai−iB)

=
∫

dBe
− 1

2gs
trB2+ 1

gs
trB�+∑

j logaj+
∑

j trlog
(
1− iB

aj

)

=
∫

dBe
1
gs

[trB�−tr(eB+qe−B)] (10.13)

where we put cm1 = (1 + q(−1)m1)/m1! in (7.126), by the tuning of the external
source a j . We have

U (σ ) = e
1
2 σ 2

σ

∮
du

2π i

N∏
j=1

a j − (u + σ)

a j − u
euσ (10.14)

Taking the same conditions for a j as in (10.13), we find

U (σ ) = 1

σ

∮
du

2π i
e− 1

gs
[(eu+σ +qe−(u+σ))−(eu+qe−u)]

= 1

σ

∮
du

2π i
e− 2

gs
(sinh σ

2 )(eu+ σ
2 −qe−u− σ

2 ) (10.15)

By the change of variable, x = eu , we have

U (σ ) = 1

σ

∮
dx

2π i

1

x
e− 2

gs
sinh σ

2 (xe
σ
2 −qx−1e− σ

2 ) (10.16)

This integral is done by taking the residue at x = 0,

U (σ ) = 1

σ

∞∑
d=0

qd

d!d! (−1)d
(
2

gs
sinh

σ

2

)2d

= 1

σ
J0

(
2
√
q

gs
sinh

σ

2

)
(10.17)

where J0 is Bessel function of order zero. The constant gs is of order 1
N , and it is

scaled by the change σ → gsσ , which gives a 1
N genus expansion. Therefore, we are

able to put gs = 1, and the genus g is extracted from the power of σ as σ 2g+2d−1.

U (σ ) = 1

σ

[
1 − q

(
σ 2 + 1

12
σ 4 + · · ·

)
+ q2

(
1

16
σ 4 + · · ·

)
+ O(q3)

]
(10.18)

The genus zero (g = 0) is

http://dx.doi.org/10.1007/978-981-10-3316-2_7
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U (σ )g=0 =
∞∑
d=0

(−1)d

d!d! qdσ 2d−1 (10.19)

TheGromov–Witten theory is a generalization of the intersection theory ofmoduli
space of curves. The moduli space (stack) of stable maps is denoted by Mg,s(X, d),
where g is genus, s is marked point, and d is degree. The condition of this moduli
space is for X = P1,

dimMg,s(P1, d) = 2d + 2(g − 1) + s (10.20)

where dimMg,s = ∑s
i=1(ni + qi ). The instanton of P1 has to be counted, and qi is

U (1) charge of the field. Thus we have

2(g − 1) + s =
s∑

i=1

ni +
s∑

i=1

qi − 2d (10.21)

Comparing this with the condition for p-spin curves with s marked point in (7.1), in
which

2(g − 1) + s =
s∑

j=1

n j + 1

p

s∑
i=1

ji − 2(g − 1)

p
(10.22)

we find the U(1) charge qi (i is index of a marked point), corresponds to the spin
ji , ( ji = 0, . . . , p − 1). The degree d corresponds to (g−1)

p for the case of p-spin

curves. The number 2 in front of d appears according to c1(P1) = 2. For one marked
point, s = 1, we have

n + q1 = 2g + 2d − 1 (10.23)

and the Free energy F has a following expansion by above condition,

qs F =
∑
n,q1

∑
d

Cn,q1(d)
qd

λn+q1
(10.24)

and we find that the expansion in (10.12) agrees with above formula for g = 0 and
the expansion of (10.17) for g ≥ 0 agrees the form of (10.24). From (10.23), we
obtain the expression of Gromov Witten invariants for genus zero with q1 = 1 as

〈τ2n−2〉g=0 = 1

(n!)2 (10.25)

For higher genus, we obtain terms of all genus g of onemarked point from (10.18).
The first few terms are

http://dx.doi.org/10.1007/978-981-10-3316-2_7
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〈τ2n(ω)〉g=1 = 1

24(n!)2 (2n − 1)

〈τ2n(ω)〉g=2 = 1

27325(n!)2 n
2(2n − 3)(10n − 17)

〈τ2n(ω)〉g=3 = 1

210345 · 7
1

(n!)2 n
2(n − 1)2(2n − 5)(140n2 − 784n + 1101)

(10.26)

These results are obtained from (10.23) by collecting the coefficient of σ 2d , and
making the shift 2d → 2d − 2g + 1 in the expansion of (2sinh σ

2 )2d . The obtained
Gromov–Witten invariant for stationary sector is consistent with the result of [109],
which gives

∞∑
g=0

σ 2g〈τ2g−2+2d(ω)〉 = 1

(d!)2
(
sinh σ

2
σ
2

)2d−1

. (10.27)

Since we have used a replica method, n → 0 (n is the size of the matrix �), the
form of F with one marked point, for the matrix model of (10.8) is considered as

qs F =
∑
n,q1

∑
d

Cn,q1(d)qd tr

(
1

�n+q1

)
(10.28)

with the condition (10.23).
The correlation function for s-marked points, U (σ1, . . . , σn) is

U (σ1, . . . , σs) =
∮ s∏

k=1

duk
2π i

∏
det

(
1

ui − u j + σi

)
e
−

s∑
i=1

[(eui+σi +qe−(ui+σi )−(eui +qe−ui )]

(10.29)

The connected part is realized as a maximum cyclic loop in the determinant. For two
point function, with zi = eui , we have

U (σ1, σ2) =
∮

dz1dz2
(2π i)2

1

z1z2

1

(z1 − z2 + σ1)(z2 − z1 + σ2)

× e−(sinh σ1
2 )(z1−qz−1

1 )−(sinh σ2
2 )(z2−qz−1

2 ) (10.30)

The shifts z1 → σ1z1 and z2 → σ2z2 give

1

σ1(z1 + 1) − σ2z2
· 1

σ2(z2 + 1) − σ1z1

= − 1

σ 2
2 z2(z2 + 1)

∞∑
m=0

(
σ1(z1 + 1)

σ2z2

)m

·
∞∑
l=0

(
σ1z1

σ2(z2 + 1)

)l

(10.31)
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The calculation is quite similar to the Gaussian case in (2.28) in Chap.2.
The Gromov–Witten invariants of P1 for genus zero s-points have been studied

up to s = 4 and they are [104]

〈τ2k1τ2k2〉g=0 = 1

k1!2k2!2
1

1 + k1 + k2

〈τ2k1−1τ2k2−1〉g=0 = k1k2
k1!2k2!2

1

k1 + k2

〈τ2k1τ2k2τ2k3〉g=0 = 1

k1!2k2!2k3!2
〈τ2k1τ2k2−1τ2k3−1〉g=0 = k2k3

k1!2k2!2k3!2 (10.32)

These results may be compared with the Gaussian means in (2.56), where τk is
replaced by trMk with a normalization factor k!

http://dx.doi.org/10.1007/978-981-10-3316-2_2
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